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Abstract 

 

This thesis is concerned with an unconventional understanding of the mathematics 

taught in schools and, thus, the role that students’ engagement with mathematics plays 

for mathematics as a discipline. The discipline of mathematics has a rich 

philosophical history. In this thesis I explore mathematics through the lens of 

metaphor theory first developed by George Lakoff and Mark Johnson. This area of 

scholarship is used to develop the idea that all abstract concepts are conceived of 

metaphorically. From this perspective, the metaphors at the foundation of several 

major philosophies of mathematics are analyzed. This analysis concludes by asking if 

there might be another metaphor that allows for a different, more productive, 

understanding of school mathematics than commonly used mathematical metaphors. 

The metaphor “Math is Alive” is offered as an alternative through a detailed analysis 

of living systems in the tradition of Humberto Maturana and Francisco Varela’s 

theory of autopoietic organization. The final chapter looks specifically at school 

mathematics as a part of mathematics as a discipline, and how “Math is Alive” might 

alter how educators view the role of children in mathematics. 
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“It is inorganic, yet alive, and all the more alive for being inorganic”  

(Deleuze & Guattari, 1987, p. 520). 

 

I first discovered the science of complexity in a course on arts education. My exploration of 

its application to the arts in schools inspired my particular interest in autopoietic systems, and led 

me to a study of biological living systems. Maturana and Varela’s Tree of Knowledge (1987), 

Capra’s Web of Life (1996), and Deleuze and Guattari’s Thousand Plateaus (1987) altered my 

understanding of being alive, and invited the possibility of living ideas. 

As a teacher, I am constantly confronted with uncertainties and differences in paradigm when 

exploring conceptions of disciplines through discussions with others and through professional 

development and readings. Paradigmatic changes in disciplines over time and competing current 

conceptions became more apparent to me. I also began to notice curious resemblances between 

living systems and disciplines. This included similarities in their patterns of organization, 

similarities in the way they behaved, and similarities in their processes of evolution. 

As I continued to read further, seeking more recent explorations of living concepts from a 

complexity perspective, I was unable to answer my questions about disciplines in particular, and 

what it would mean for education if they were conceived of as being alive. Just as Deleuze relies 

on his metaphor of rhizome to allow us to see our thinking about concepts differently, I have 

begun this thesis to ask if the metaphor of a living discipline might allow us to think differently 

about disciplines. Further, if we conceive of disciplines in this way, I wonder what this implies 

for the way that we currently engage with them in classrooms, and what this could become. 

This inquiry will be philosophical, relying on philosophical inquiry as described by Burbules 

and Warnick (2006), Floden and Buchmann (1990), and to some extent, John Wilson (1963). It 
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is not about finding answers, but about asking fundamental questions about what it means to be 

alive, and what we perceive our role to be in the production of disciplined knowledge. It is about 

the potential impact of these beliefs on disciplines themselves, which it would be impossible to 

empirically measure. This is the realm of philosophical inquiry. The methods I have selected 

represent several of Burbules and Warnick’s (2006) ten methods of philosophical inquiry.  

These will include the use of concept analysis (method 1, Burbules & Warnick, 2006, p. 491) 

through an extensive literature review on metaphor, the philosophy of mathematics, complex 

living systems, and school mathematics methods and metaphors. My thesis deals with the 

meanings that we assign to the terms we use in the contexts in which we use them, and how our 

conceptions guide our actions.  

 

Philosophical inquiry often relies on analyses of language or concepts.  Inquiry will 

focus on terms that seem to play an important role in an argument or practice, trying 

to answer the question, what do these words or phrases mean or entail? (Floden & 

Buchmann, 1990, p. 3)  

 

Chapter one focuses on metaphor and its importance of our understanding of abstract 

concepts. Chapters two and three explore the target and source domains in a living mathematics 

metaphor, current conceptions of mathematics and the biology of living systems. 

Using information gathered regarding mathematics and living systems, a metaphor is then 

constructed in chapter four. This making of a metaphor will be shown to be a conceptual 

mapping, “an ambitious review of conceptual mapping may include a review of related concepts 

that share certain features with the primary object” (Burbules & Warnick, 2006, p. 492). The 



MATH IS ALIVE 3 
 

creation of a metaphor can identify correspondences in structure, maintenance, and reproduction 

in complex systems and mathematics, following method 10, “synthesizing disparate research 

from philosophy itself or other fields to find meaning and implications for educational theory and 

practice” (Burbules & Warnick, 2006, p. 491). Here I ask: what does living have to do with 

mathematics? Through this, I will be required to show that the vitality of a discipline is one of 

the “ends or purposes education should achieve,” reflecting method 6 (Burbules & Warnick, 

2006, p. 491). 

Finally, in chapter five I turn to method 7, “speculating about alternative systems or practices 

of education, whether utopian or programmatic, that contrast with and challenge conventional 

educational understandings and practices” (Burbules & Warnick, 2006, p. 491), in order to 

conceive of how this alternate view might impact the way mathematics is taught in schools. I 

will consider the implications of a living mathematics in educational practice, and how this 

might resolve difficulties with current perspectives, and create healthier relationships between 

children and mathematics. 
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CHAPTER ONE 

Metaphor 

 

“Language is a map, not a tracing”  

(Deleuze & Guattari, 1987, p. 98). 

 

Metaphor is a term most often used to describe a literary device. It is a type of figurative 

language used to compare objects with like properties. At least this is what I tell my grade six 

students. In 1980, Lakoff and Johnson challenged this assumption, by noticing the pervasiveness 

of everyday metaphors and their potential to shape our thinking (Kovecses, 2002, viii). These 

authors, as well as Gibbs (2008) and others continue to challenge our assumptions about 

metaphor comprehension, as knowledge about the inner workings of our brains increases. 

Interestingly, George Lakoff will reappear again later in this thesis when discussing philosophies 

of mathematics. 

In cognitive linguistics, metaphors have come to be regarded as any conceptual domain 

defined in terms of another (Kovecses, 2002, p. 4). It is surprising to realize how often we use 

metaphor in our everyday discourse, and how difficult it is to describe many things without it. 

Some metaphors become embedded in a concept, and become a part of that concept to the point 

where we are barely able to understand them as metaphors at all, and the concepts themselves 

mean little without them. “Just living an everyday life gives you the experience and suitable 

brain activations to give rise to a huge system of the same primary metaphorical mappings that 

are learned around the world without any awareness” (Lakoff as referenced in Gibbs, 2008, p. 

26). 
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In this chapter I will discuss some of Lakoff and Johnson’s ongoing exploration of metaphor, 

categories of metaphors and their attributes, how metaphors develop, the potential for and of 

novel metaphors, and how this discourse is important to my thesis. 

 

 

The Integrated Theory of Metaphor 

 

Lakoff and Johnson (1999, p. 46) refer to their “integrated theory of metaphor” to explain 

how metaphor becomes a part of our fundamental understanding of things, and how our ability to 

use metaphor fluently develops. First, the integrated theory of metaphor includes Johnson’s 

theory of conflation, wherein metaphors develop out of early experiences before infants are able 

to distinguish certain concepts from others. One example is love and warmth. Although love 

itself as an abstract concept has no temperature, the relationship between these two concepts is 

developed at an early age in a context where love and warmth are consistently correlated. Later, 

children are able to differentiate the two concepts, but “the cross-domain associations persist” 

(Lakoff & Johnson, 1999, p. 46).  

Second, the integrated theory is also informed by Grady’s theory of primary metaphor. This 

theory asserts that all metaphors come from primary metaphors. A primary metaphor “has a 

minimal structure and arises, naturally, automatically and unconsciously through everyday 

experience by means of conflation” (Lakoff & Johnson, 1999, p. 46).  

Third, Narayanan’s neural theory of metaphor contributes the argument that the neural 

connections developed during the period of conflation lead to the conceptual metaphorical 

structures we create as “simultaneous activations result in permanent neural connections being 
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made across the neural networks that define conceptual domains” (Lakoff & Johnson, 1999, p. 

46).  

The fourth and final theory that informs the integrated theory of metaphor is Fauconnier and 

Turner’s theory of conceptual blending. Here, connections continue to be made after the period 

of conflation when distinct conceptual domains are co-activated, allowing new inferences and 

connections to form. However, metaphor can exist without blending and blending without 

metaphor (Lakoff as referenced in Gibbs, 2008, p. 30). Yet, often when co-activations occur 

frequently, concepts become linked and one only has to think of one to think of the other. “Via 

the Hebbian Principle that neurons that fire together wire together, neural mapping circuits 

linking the two domains will be learned” (Lakoff as referenced in in Gibbs, 2008, p. 26). 

Of importance to this thesis is the idea that a base, fundamental metaphor often gives rise to a 

complex array of related metaphors from the same source. It is also interesting to note that the 

age at which a metaphor is experienced and its persistence in ongoing experiences impacts how 

deeply embedded it becomes in the meaning that we apply to a concept. 

 

 

Some Attributes of Metaphor 

 

In a metaphor, such as love is warmth, how we choose which features of warmth apply to love 

is not entirely clear (Glucksberg, 2003, p. 92). The long held pragmatic model has us reject 

literal meanings before searching for possible similarities, while newer models deny this process 

of comparison, such as Lakoff and Johnson’s (1999) reference to preexisting mappings of 

concepts, or Sam Glucksberg’s categorical assertions.  
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In Lakoff and Johnson’s (1999) view, all metaphors have source and target domains. In the 

above case, warmth is the source domain, and one’s experience of it. The concept of love is the 

target domain. We are to understand love through our understanding of warmth. The conceptual, 

systematic relationship between source and target domains is referred to as a mapping 

(Kovecses, 2002, p. 6). This particular primary metaphor leads to metaphors of lovers as hot (or 

not), and relationship outcomes as temperatures, like when you are given the cold shoulder. 

Metaphor theorists such as Glucksberg prefer the terms “topic” and “vehicle” to describe the 

target/source relationship. Although this reflects some difference in views of how metaphors are 

realized and understood (Gibbs, 2003, p. 6; Glucksberg & McGlone, 1999, p. 1546), the 

significance of metaphor and its embedded nature remain the same. Here, mathematics is the 

target and living systems are the source domain. This thesis seeks to uncover what the potential 

is for this mapping. 

It should also be noted that metaphorical mappings are asymmetrical, meaning that the source 

and target cannot be interchanged (Gibbs, 1996, p. 311). There is no consistency or 

meaningfulness between the idea that a car is a lemon and the idea that a lemon is a car. 

Glucksberg uses the example of surgeons and butchers, wherein both mappings can be 

understood metaphorically – the surgeon is a butcher and the butcher is a surgeon - but then have 

opposite meanings (Glucksberg, 2003, p. 95). I am not simply looking for similarities here, or to 

imply that living is like math, but instead to understand what it means to believe that math is 

alive (metaphorically speaking). 
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Categories of Metaphor 

 

Metaphors can be distinguished in a variety of ways. One important first distinction is 

between the primary metaphors mentioned above and complex metaphors. Primary metaphors, 

as in Grady’s (2008) theory, provide the basis for more complex metaphors in that they look at a 

broader conceptual domain in terms of another. For example, the metaphor ‘love is warmth’ is a 

primary metaphor that can be expressed in a variety of ways, including possibilities that are more 

specific or more complex. The general concept of warmth provides metaphorical possibilities, or 

entailments, for love.  

Metaphors can also be distinguished according to their type. The type that we are most 

familiar with is structural metaphor. Structural metaphors define one item or concept in terms of 

another item. When I say, “Love is warmth.” I am using a structural metaphor; one concept is 

structured in terms of another (Lakoff & Johnson, 1980, p.14). Another common type is the 

orientational metaphor. Orientational metaphors use direction and location as source domains, 

and align with basic human spatial concepts. For example, happiness is up and sadness is down, 

as in the case of “I’m feeling up today”, or perhaps, “I am feeling down.” Music uses the 

orientational metaphor of high and low to describe sound. We also talk about things in front of 

us, behind us, and backwards that could not possibly have this real capacity. When someone 

points out that a bad experience is behind him or her, do not go looking for it. Mathematics relies 

heavily on orientational metaphors to express concepts that really have nothing to do with spatial 

ideas, with numbers being higher or lower. 

Ontological metaphors are ways of viewing experience as having the abilities of generalized 

entities and substances (Kovecses, 2002, p. 34). Examples of this include personification, where 
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human abilities are the source for a non-human target. Other instances give the abilities of 

different general entities to concepts, such as Lakoff and Johnson’s (1980, p. 28) example of a 

shattering experience. This includes metonymy, and container metaphors, such as when an idea 

gets boxed up. 

Metaphors can also be categorized based on their conventionality (Kovecses, 2002, p. 29), or 

how commonly they occur. Kovecses (2002) lists examples such as “Argument is war; love is a 

journey; ideas are food; life is a journey” (p. 30). These metaphors are so common to our 

understanding that we use them in many ways without recognizing them as metaphors. In fact, 

most of the metaphors that we use fit into conventional categories, and unconventional 

metaphors can be quite shocking and disorientating, being often reserved for the figurative 

language we are accustomed to in poetry, such as when T.S. Eliot insists he “will show you fear 

in a handful of dust” (1922, pp. 473-485). While novel and unique metaphors can draw attention, 

conventional metaphors lie beyond notice with even greater powers to shape our thinking. Lakoff 

and Johnson (1999) warn against regarding conventional metaphors as ‘dead’, and reserve this 

language for instances where “the conceptual mapping has long since ceased to exist” (p. 124). 

They use the example of the word pedigree, which originally served as a metaphor for a grouse’s 

foot, but no longer calls that to mind at all.  

Metaphors for mathematics tend to be structural, and the metaphor “mathematics is a living 

system” (“mathematics is alive”) is a structural metaphor. The metaphor “math is alive” is 

ontological, because it means that mathematics has the abilities of a living system; mathematics 

behaves as a living system does. The structural metaphor wherein mathematics is given the 

characteristics of a living system will be important as I explore what mathematics is, but the 

ontological metaphor will be of particular significance given a process oriented systems view of 
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life. A living systems metaphor is both conventional and unconventional here, reflecting some 

metaphorical practices already in use, and challenging them with the distinct terminology of 

living systems theory. 

 

 

Where Metaphors Come From 

 

Embedded, everyday metaphors do more to shape our understanding of concepts than we 

realize, and their effect on how we experience our reality is deep and pervasive. “Like principles 

of phonology and grammar, conventional metaphors are relatively fixed, unconscious, automatic 

and so alive that they are used regularly without awareness or noticeable effect” (Lakoff & 

Johnson, 1999, p. 125). When it comes to abstract concepts, like love, evil or, say, mathematics, 

metaphors become even more important. Johnson (as referenced in Gibbs, 2008, p. 51) insists 

that “all our abstract concepts are metaphorically defined”. They allow us to reason about a 

“literal, nonmetaphorical skeleton” (Lakoff & Johnson, 1999, p. 125) with greater insight and 

flexibility, but they also shape and limit what potential reasoning can occur. “Most concepts are 

partially understood in terms of other concepts” (Lakoff & Johnson, 1980, p. 56). As in 

Fauconnier and Turner’s theory of conceptual blending (Lakoff as referenced in Gibbs, 2008, p. 

30), the metaphors we use for abstract concepts affect our thinking and reasoning about that 

concept. In this context, the metaphors that we use to describe mathematics are deeply embedded 

in our understanding of what mathematics is. 

This causes one to question why certain concepts may be favored over others as appropriate 

metaphors. Metaphors are grounded in correlations in experience (Lakoff & Johnson, 1999, p. 
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46). These correlations in experience are not to be seen as similarities (Kovecses, 2002, pp. 68-

69). For example, the correlation between more and up is based on viewing rising levels in a 

container, but is not a similarity between more and up. The same is true for “love is warmth”. 

There is no actual similarity between love – a completely abstract feeling, and warmth – the 

presence of higher temperature, there are correlations in experience that create metaphorical 

associations. “Metaphors are rarely understood as comparisons. Instead they are usually 

understood exactly as they appear, as class-inclusive assertions” (Glucksberg as referenced in 

Gibbs, 2008, p. 68). This leads to the following insight that is central to this thesis: Our 

experiences with mathematics will lead to the metaphors we favour, and the metaphors we 

favour will influence and define our experience of mathematics. This insight provides the 

rationale for why the focus of this thesis is quite relevant to education more generally and 

mathematics education more specifically.  

Some metaphors may develop very early when distinctions between these concepts have not 

yet developed, but they may also develop later as life experience accumulates. Lakoff and 

Johnson (1999) believe that many of our most basic primary metaphors and their associated 

mappings develop out of our physical experience of the world (pp. 54-57), and that these 

mappings form the basis for other more complex metaphors (Lakoff & Johnson, 1999, p. 49). 

Metaphors can be grounded in our own state of being in the world, as in “knowing is seeing” 

(Lakoff & Johnson, 1999, p. 48). They can also reflect perceived structural similarities, such as 

Kovecses (2001) example “ideas are food” (p. 72), wherein certain structural attributes of ideas 

are seen as comparable to food. Consider chewing on something that cannot be literally chewed. 

Another basis for metaphor is when the source is the root of the target. An excellent example is 
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the metaphor of life being a play, when in fact a play is a representation of life (Kovecses, 2002, 

p. 74/75). 

Because mathematics is an abstract concept, ideas about what it is have often been framed by 

metaphors, although it is not often that attention is drawn to this. In this thesis, I will explore the 

idea that current practice in school mathematics represents particular embedded metaphors that 

are long overdue for reconsideration. The metaphors we use matter, and we can choose to use 

new ones. Yet it is not as simple as saying ”look how mathematics is like a living system”. 

Mathematics is actually nothing like a living system. It has no biological matter, no cells or 

genes or organs or leaves or any of the things a living system can have. “Math is alive” is a 

metaphor based on what I perceive to be correlations in experience between mathematics and 

living systems that enable this class-inclusive assertion. Most of our ways of representing 

mathematics are metaphorical, so it fits right in. Given that metaphors often have their greatest 

impact when they are a consistent part of our early experience of the world, making the 

metaphors used with schoolchildren a part of dialogue about teaching is important. If metaphors 

gain the most traction not through language alone, but through our experiencing of the world as 

well, how might educators alter the language they use and the experiences they provide to 

encourage the development of the “math is alive” metaphor if they believe it is apt, useful and 

worthwhile? In this thesis I argue that is an apt, useful and worthwhile metaphor and that it has 

certain implications for the teaching of mathematics.  
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New Metaphors 

 

Metaphors develop through our experience of the world. They are always, in some way, based 

on physical or cultural experience (Kovecses, 2005, p. 264). Many are so deeply important to our 

system of language that we cannot understand each other without them. Yet, some metaphors can 

change, and can be changed. Lakoff and Johnson (1980) assert that novel metaphors are usually 

structural (p. 152) and often based on a preexisting primary metaphor or fixed conventional 

mappings (Lakoff & Johnson, 1999, p. 149). Kovecses (2005, p. 261) discusses Lakoff and 

Turner’s (1989) four ways in which creative metaphor is possible, including the extension and 

elaboration of current metaphors, as well as questioning and combining metaphors. Here again, 

we see metaphors growing from a pre-established metaphor based cognitive system. “Novel 

metaphors are often only novel as a linguistic expression but not as a deeper conceptual relation” 

(Katz as referenced in Katz, Cacciari, Gibbs, & Turner, 1998, p. 4). Glucksberg denies that there 

is always a need to reference preexisting conceptual structures for new metaphors. He admits 

that this is often the case, but adds to the discussion the idea that novel metaphors are often 

understood quickly and easily without reference to preexisting metaphors through our ability to 

quickly and readily identify apt categorical assertions (Glucksberg, 1999, pp. 1546, 1549 & 

1554). 

One example of a (relatively) new metaphor is “time is money”. It is a structural metaphor, 

wherein one concept, time, is structured in terms of another, money. It is related to a larger 

mapping of metaphors, coming from “time is a substance”, and it changes our thinking about 

time. Lakoff and Johnson (1980) said, “New metaphors have the power to create a new reality. 

This can begin to happen when we start to comprehend our experience in terms of a metaphor, 



MATH IS ALIVE 14 
 

and it becomes a deeper reality when we begin to act in terms of it” (p. 145). In regards to “time 

is money”, Lakoff and Johnson (1980, p. 145) assert that the introduction of this metaphor to 

various cultures has contributed to the Westernization of those cultures. New metaphors are 

capable of highlighting, downplaying, and hiding aspects of the concepts they define (Lakoff & 

Johnson, 1980, p. 152). In Metaphors We Teach By, Elaine Brouwer, when discussing metaphor 

in education, states, “If a set of metaphors gains traction, it can lead to pervasive shifts in 

practice” (Brouwer as referenced in Badley & Van Brummelen, 2012, p 86).  

The new metaphor “math is alive” is possible because it does, in fact, relate to primary 

metaphors that we use for mathematics. The implied notion that mathematics is a living system 

has structural similarities to philosophies, wherein math is a physical structure, and “math is 

alive” is also in some ways an expansion of preexisting primary ontological metaphors for 

knowledge wherein areas of knowledge have the characteristics of plant growth. Many other 

abstract concepts are already adopting metaphorical structures from living systems. In fact, 

metaphors of growth, plants, gardening, and nature are not uncommon in current educational 

language. The possibility that a living systems metaphor for mathematics may be able to grow 

out of these other metaphorical constructions is supported both by Lakoff and Johnson’s theory 

of primary metaphor and Glucksberg’s notion of apt categorical assertions. While I favour the 

former, the latter’s willingness to recognize the potential power of new metaphors, however it is 

our brain comes to reconcile them, invites more potential for the implications of new metaphors.  

 

It should be clear that such a simple view [that all new metaphors are understood only 

through preexisting mappings] had to be wrong, for it strongly implies that good 

metaphors tell us nothing new. Yet this is precisely what good metaphors are for – to 
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say something new and informative in an interesting and striking way. (Camac & 

Glucksberg, 1984, p. 453)  

 

The idea that mathematics is alive seems somewhat absurd at first, and this sense of novelty 

makes it noticeable and thought provoking, yet easily understood due to our preexisting 

metaphorical conceptual connections. 

 

 

Conclusion 

 

Beginning with our human ways of perceiving, we as a human society decide how to 

metaphorize the world. Through our child rearing, education, and living in the world we 

perpetuate metaphors that could just as easily have gone another way – that could still go another 

way. “Human conceptual systems are not monolithic. They allow alternative versions of 

concepts and multiple metaphorical perspectives of many important aspects of our lives” (Núñez 

as referenced in Gibbs, 2008, p. 360). Metaphors change, they change as paradigms shift and a 

need for new metaphors arises, and they shift paradigms when new inferences are built upon new 

metaphors. As was seen with ”time is money”, as well as many curricular metaphors in 

education, it is possible to purposefully introduce and reinforce new metaphors.  “Even novel 

metaphors can be understood as rapidly as comparable literal expressions, provided that the 

novel metaphors are apt (Glucksberg as referenced in Gibbs, 2008, p. 69). Lakoff and Johnson, 

and the many others who have followed them, have shown that metaphors pervade our thinking, 

particularly when it comes to abstract concepts. “Such a system [of fundamental metaphors] will 
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dominate your thought, your understanding of the world, and your actions” (Lakoff as referenced 

in Gibbs, 2008, p. 34). Gibbs asserts that it is possible to think of a concept metaphorically in 

more than one way. Concepts such as disciplines, become dependent on the metaphors we 

associate with them, but this also makes them malleable and changeable, “Multiple metaphors 

for concepts can be easily handled if we view concepts not as fixed, static structures, but as 

temporary representations that are dynamic and context-dependent” (Gibbs, 1996, p. 313). 

Mathematics is already defined and reasoned with using a variety of metaphorical concepts, and 

it can be expected that this variety will increase in the future.  
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CHAPTER TWO:  

What Mathematics Is (metaphorically speaking) 

 

Look at Mathematics, it’s not a science, it’s a monster slang, it’s nomadic. Even in the realm 

of theory, especially in the realm of theory, any precarious and pragmatic framework is better 

than tracing concepts, with their breaks and progress changing nothing.  

(Deleuze & Guattari, 1987, p.45) 

 

In the metaphor “math is alive”, mathematics is the target domain. As an abstract concept, 

mathematics has to be framed metaphorically in order to enable discourse about it. This thesis is 

concerned with the metaphors we use to frame our beliefs about what mathematics is and what 

that means for the ways we interact with it. Specifically, this thesis concerns school students and 

teachers, but before dealing with these participants, I will look more generally at the philosophy 

of mathematics and ways in which the idea of mathematics has been metaphorically framed 

historically and in the present. My assumption is that exploring philosophies of mathematics will 

provide an initial discourse which to make reference to when deconstructing research into the 

metaphors that teachers and students use to describe mathematics. I will start by framing the 

discourse of mathematics as a metaphorical enterprise. Following this I will differentiate what I 

see as three distinct yet overlapping groups of metaphors: those that are based on an objective 

view of reality and deny metaphor while relying on it heavily through physical descriptors, those 

that rely primarily on logical deduction using process-oriented language, game and time 

metaphors, but are not concerned with the nature of reality in general, and those that assume 
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mathematics is a human endeavor, utterly metaphorical yet entirely representative of our fallible 

and biological selves.  

 

 

Mathematics and Metaphor 

 

Ralph Núñez refers to the ideas that constitute mathematics as “idealized mental abstractions” 

that rely on our use of conceptual metaphor to define them (Núñez as referenced in Cienki & 

Muller, 2008, p.96). Núñez, with George Lakoff (Lakoff & Núñez, 2000), use the terms 

grounding and linking metaphors to describe how we understand what mathematics is. 

According to Lakoff and Núñez (2000), grounding metaphors, like primary metaphors, represent 

a sort of fundamental cognition that directly connects to our human ways of interpreting the 

world. This focuses on basic arithmetic and includes arithmetic as object collection, as object 

construction, and as motion along a path (Lakoff & Núñez, 2000, p. 53). These metaphors are 

“grounded” in our human cognitive system. We define mathematics with our particular, human 

noticing of the world, and we use the contexts this noticing arises from to form our metaphorical 

conceptions. It is not that mathematics is a collection, creation, or movement of objects, but that 

we must rely on these tangible conceptions to grasp at the abstract connections we make. Our 

minds also allow us to focus on some metaphors over others, either consciously or 

unconsciously. We choose to see motion as a journey instead of growth, or a collection as a 

structure instead of a family, or an object as a form instead of a body. When discussing how 

humans conceptualize mathematics, Núñez says, “Mathematics is not purely literal; it is an 
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imaginative, profoundly metaphorical enterprise, where the metaphorizing is, of course, 

generated, realized, and sustained by humans” (Núñez as referenced in Gibbs, 2008, p. 357).  

Grounding metaphors form the basis for other so called linking metaphors, similar to the 

relation between primary and complex metaphors (Lakoff & Núñez, 2000, p. 53), which allow us 

to conceive of the much more intricate abstractions of mathematics in all of its complexity. As 

discussed in chapter one, humans use metaphors to understand a great many things, but in 

particular they rely heavily on metaphor when addressing abstractions. When considering the 

philosophy of mathematics, the need for metaphor becomes evident. Each philosophy will be 

seen to favour particular metaphors over others, while bumping up against longstanding beliefs 

generated from prior metaphors. Without metaphor, these philosophies could scarcely be 

understood at all. The philosophies we adopt affect our interactions with mathematics and our 

use of metaphors for concepts within mathematics, such as points on a line. Lakoff (as 

referenced in Lakoff & Núñez, 2000, p. xvi) discusses particular mathematical concepts such as 

infinity to show that metaphors are necessary for our cognitive ability to make sense of 

mathematics. In Norma Presmeg’s research into the use of metaphor for mathematical concepts, 

she notes that “we cannot avoid the use of both metaphor and metonymy in mathematics” 

(Presmeg as referenced in Hoffman, Lenhard, & Seeger, 2005, p. 114). Lakoff and Núñez’ 

(2000) understanding of metaphor has led them to also conclude that mathematics itself is 

embodied, meaning that it is a part of our biologically based experience of the world, as will be 

seen in the following discussion of philosophies of mathematics. I believe that acceptance of the 

metaphorical nature of how humans conceive of mathematics and believe in embodied 

mathematics are not co-dependent or exclusive of alternate metaphors. In fact, this philosophy of 

mathematics appears to invite and encourage alternate metaphors. 
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Philosophy of Mathematics 

 

The philosophy of mathematics is brimming with variant ideas about the nature of 

mathematics, which I broadly see as belonging to three general groups: Objectivist philosophies, 

Deductive philosophies, and Humanist philosophies. I have borrowed the term “Humanism” in 

this context from Reuben Hersh’s (1999) What is Mathematics, Really?, as I see a collection of 

philosophies including Hersh’s and others that embody this perspective. Paul Ernest (1991, p. 

18) uses the term “Fallibilist” to describe a similar collection of views as a move away from 

“absolutist” perspectives, including both the Objective and Deductive views I have 

differentiated. 

From this standpoint, I have selected a few of the major philosophies from each of the three 

groupings I have created, looking for fundamental metaphors that may serve as reference points 

for the metaphorical ways in which educators and students refer to mathematics.  

 

 

Objectivist Philosophies 

 

Platonism. This philosophy is, not surprisingly, based on the Platonist worldview that implies 

abstract objects exist, and that ideas are somehow perfect forms belonging to a realm that is 

separate from human experience and physical reality. These forms are real, and have an 

objective, even if unperceivable, existence (Gowers as referenced in Hersh, 2006, p. 183; 

Jacquette, 2006, p. 238). In this sense, a circle has an existence outside of our application and 
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understanding of circles. This philosophy is often associated with the idea that math just “is”. As 

humans, we strive to learn more and more math, but what we are learning is out there to be 

learned if we ever become able. “According to this conception mathematical assertions are true 

or false propositions, statements of fact about some definitive state of affairs, some objective 

reality, which exists independently of and prior to the mathematical act of investigating it” 

(Rotman as referenced in Hersh, 2006, p. 101). Current Platonist-leaning philosophers of 

mathematics such as Mark Balaguer argue against relativism on the basis that if mathematical 

understandings are not true in a literal sense, then nothing is, and the whole argument is a 

relatively moot point. “Now, maybe it bothers you to think that our mathematical and scientific 

theories are untrue. But it doesn’t bother me. The trick is to notice that . . . according to 

fictionalism, our mathematical and scientific theories are virtually true, or for-all-practical-

purposes true, or some such thing (because they’re such that they would be true if there were 

abstract objects” (Balaguer, 2014, p. 8). 

True Platonists would assert that they aren’t using metaphors at all so that mathematics is 

literally a form. I believe that this simply represents one particular metaphor that humans use to 

understand what mathematics is. We continue to use this metaphor because it is useful in the 

absence of alternate ways to describe the otherness of mathematics. With it come all the 

implications and complex metaphors associated with viewing mathematics this way including 

truth and falsehood and right and wrong. 

 

Structuralism. A more recent version of an objectivist philosophy of mathematics is 

Structuralism. Michael Resnick (1975), a well-known Structuralist says,  
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Since structures are abstract entities, Structuralism is a variant of Platonism. 

However, it is free from the objections I raised earlier against standard Platonism . . . 

The Structuralist does not claim that all structures are perceived directly without the 

aid of ordinary experience. He believes instead that the mathematical patterns are 

known in the same way, as, say, linguistic or musical patterns. (p. 34)  

 

Structuralist ideas emerged in 1965 with the publication of Paul Benacerraf’s (1965) paper 

“What Numbers Could Not Be”. Benacerraf argued against some fundamental tenets of 

Platonism, rejecting the idea of abstract forms from another realm. However, he maintained that 

mathematics refers to mathematical structures and our description of them, and that these 

structures, in some way (there is debate about this among Structuralists), exist. Writing about 

numbers, Benacerraf states, “Only when we are considering a particular sequence as being, not 

the numbers, but of the structure of the numbers does the question of which element is, or rather 

corresponds to, 3 begin to make any sense” (1965, p.71). Stuart Shapiro, a self-professed “ante 

rem” Structuralist (Shapiro, 2009, p. 157) provides another clear and insightful brief commentary 

on the nature of Structuralism.  

 

A mathematical structure can, perhaps, be similarly construed as the form of a 

possible system of related objects, ignoring the features of the objects that are not 

relevant to the interrelations. The structure is thus completely described in terms of 

the interrelations. (Shapiro, 1983, p. 523)  
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As the Cambridge Introduction to the Philosophy of Mathematics points out, anything can 

play the role of the number two, so long as it maintains its place in the sequence of natural 

numbers; the number two has no value outside of its interrelations with other numbers (Colyvan, 

2012, p. 40). In this way, Structuralism responds to some of the criticisms of Platonism and the 

ethereal existence subscribed to mathematical entities, while still asserting the possibility of 

mathematical truth. The preference of a specifically structural metaphor over the metaphor of a 

form is evidence of how the philosophy of mathematics uses the manipulation of metaphors to 

introduce new ideas about what mathematics is. Structure metaphors related to construction and 

building have enabled the growth of a variety of new ways of thinking about mathematics that 

are included later in this section, and the relational metaphors introduced here impact later 

process-based philosophies. 

 

Deductive Philosophies 

 

Logicism. Others have responded to the question of what mathematics is quite differently. 

Many have included some form of logic or deduction, sometimes in reference to proofs, in their 

understanding of mathematics. Logicists, like Gottlob Frege, believed that logical processes of 

inference could be used to prove mathematical concepts, and that this is the essence of what 

mathematics is, “arithmetic is a branch of logic and need not borrow any ground of proof 

whatever from experience or intuition” (Frege, 1917, p. 114). Frege was a proponent of analytic 

philosophy and part of the move towards logical positivism in philosophy, science, and 

mathematics in the early twentieth century. Here, it is possible to find an objective truth through 

the quality of one’s deduction, and this is directly applicable to mathematics. “According to 
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Logicism, mathematics is logic” (Colyvan, 2012, p. 5). Logicists following Frege believed that 

“The deduction of the simplest laws of numbers by logical means alone” was possible (Frege, 

1917, p. 114), and that logic was infallible and led to truths. “[In the Logicist view] logical 

knowledge is thought to be more basic and less mysterious than mathematical knowledge” 

(Colyvan, 2012, p. 5). Frege was criticized for particular aspects of his proof of this notion, but 

even his criticizers, most notably Bertrand Russell, went on to continue his Logicist doctrine 

with some shifts in foundation (Colyvan, 2012, p. 6). Neo-Fregians such as Bob Hale and 

Crispin Wright claim to follow the basic tenets of Frege’s approach, and argue that Frege was his 

own worst enemy in some of his more detailed explanations.  

 

The two main components in Frege’s philosophy of Arithmetic . . . (i) his Platonist 

thesis that Arithmetic is a body of truths about independently existing objects . . . and 

(ii) his Logicist thesis that these truths are analytic . . . Neo-Fregians – such as Crispin 

Wright and myself – believe Frege to have been substantially right in both 

components of his view. (Hale, 2005, p. 21)  

 

These writers turn to the philosophy of David Hume to show the underlying irrefutable 

arithmetical logic of their approach, “Hume’s Principle: The number of Fs = the number of Gs if 

and only if there is a one-one correlation between the Fs and the Gs” (Hale, 2005, p. 21). Like 

Frege, Neo-Fregians maintain that a logical approach references objective truth, finding a 

different way to work around some of the pitfalls of Platonism while retaining its truthiness, “It 

is the assumption of this paper that there are necessary truths and that such truths can be known” 

(Hale,1994, p.300). In this logic-based approach, Platonic hints of truth and perfection remain. 
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“Note that one can be a Platonist and a Logicist at the same time” (Gowers as referenced in 

Hersh, 2006, p. 183). While Logicism could be grouped with the other objectivist philosophies 

mentioned, I have placed it in a separate category as I see it as a shift towards a Deductive 

approach that creates the stage for other similar philosophies where truth and reality cease to 

define mathematics. Logicism shuns the prefabricated metaphors of Platonism and Structuralism 

for metaphors of process, yet maintains its true/false metaphor. This sets the stage for the 

emergence of new metaphors that highlight mathematical processes and shift the focus away 

from issues of objectivity. 

 

Formalism. Other philosophies of mathematics based on a Deductive approach allow more 

relativist possibilities where truth is not necessary or conceivable. In the case of Formalism, it 

simply does not matter whether there are any true or real implications. “In Hilbert’s classic 

statement of the Formalist credo, mathematics consists of manipulating ‘meaningless marks on 

paper’” (Rotman as referenced in Hersh, 2006, p. 100). While mathematics from a Formalist 

standpoint relies on self-reference, Formalism remains unclear about the objective existence of 

mathematics, concerning itself more with proof within the system than proof of the system itself 

(Rav as referenced in Hersh, 2006, p. 85). Formalists, following the path begun by David 

Hilbert, see mathematics as a sort of rule-based enterprise. “[Mathematics] must also be self-

consistent; that is, starting from the rules themselves it must be impossible to deduce something 

declared to be false by those rules” (Courant & Hilbert, 1953, p. 2). Some branches of Formalism 

invite game structures to describe the relations of rules. Here, types of mathematics follow 

different sets of rules within semantic systems, and the mathematics within each type are sound 

when they absolutely follow the rules and the symbols are consistently applicable (Barton, 2008, 
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p. 69; Jacquette, 2006, p. 246; Peckhaus, 2003, p. 142). Alan Weir (2011), a current proponent of 

game theory Formalism in mathematics, also looks at the logic of language systems in a similar 

way, seeing a broader Formalism in semiotic systems. The mathematical philosopher Michael 

Gabbay (2010) rejects many notions of game theory in his Formalism, but maintains its linguistic 

notions and similarities: “knowledge of arithmetic, on my proposal, is obtained in much the same 

way as knowledge of the logical features of any language” (p. 234). Many recent Formalists 

prefer a strictly self-relational approach called “term Formalism”, wherein mathematical terms 

refer to themselves (Gabbay, 2010, p. 220). This type of Formalism rejects the game notion, 

including its relation to semiotic systems, seeing mathematics as fundamentally different from 

these systems. Haskell B. Curry (1953), an early proponent of term Formalism, states that, 

“mathematics, since it does not deal with signs and may be arrived at by abstraction from non-

linguistic fields, is not a division of semiotics” (p. 176). Whatever variation of Formalism one 

prefers, many of the basic assumptions remain. For all Formalists, it is possible to derive 

mathematical consistencies in the form of proofs based on a chosen symbol set and clearly 

defined rules, although sometimes this may result in minor adjustments to the rules along the 

way. Again, process metaphors are preferred, but Formalism also invites different linguistic 

metaphors and game theory metaphors. Even term Formalism, while stoically attempting to 

reduce metaphor, still conceives of itself as reliable and consistent. This type of Formalism does, 

however, hint at the idea that perhaps mathematics determines itself, which is an idea that will 

reappear later when I discuss the living systems metaphor. In the philosophy of Formalism, 

mathematics is freed from the metaphorical realm of being as a form or structure and becomes a 

form of doing like a language or a game, yet it remains locked in closed system metaphors. 
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Intuitionism. Another significantly different way of looking at mathematics from a 

Deductive standpoint lies in the Intuitionist conception of mathematics. Although this philosophy 

is often seen as a refutation of the Formalist standpoint, its relationship to this view through 

opposition and discussion and its fundamental reliance on the figuring out of things leads me to 

include it with this group. Although the locus of the Deductive process is more situated in this 

context, the creation of a process of deduction remains. Intuitionism in mathematics arises from 

the works of L. E. J Brouwer (e.g., Brouwer, 1981), who separated himself from the Formalists 

by seeing mathematics as a constructive, human-based entity instead of a set of rules. Although 

current Intuitionist mathematicians such as Giovanni Sambin, Wim Veldman, Dirk van Dalen, 

and Mark van Atten sometimes conflict on particular aspects of this view, an underlying homage 

to Brouwer is always made. The use of the word “intuition” comes from the mental processes we 

use to assure ourselves of the consistency of things. It is through these mental processes that we 

construct our understanding of mathematics, so that mathematics and mathematical knowledge is 

a construction of the human mind. Intuitionists claim that the mathematics that exists is the 

mathematics that we are able to construct. “Mathematics in his [Brouwer’s] view was a human 

enterprise; his aim was the revision of existing practice, by stressing that the fundamental 

objects, and indeed all objects, of mathematics are creations of the human mind” (van Dalen as 

quoted in van Atten, 2008, p. 4). While Intuitionism has some connection to Structuralism 

through its use of constructed elements, it differs in its conception of truth and the source of 

mathematics. 

Brouwer believed that mathematics was not language based, but was its own mental process, 

deriving from our ways of perceiving and understanding time. One classic Intuitionist notion 

invokes the idea of a choice sequence, which is a sequence that is “created by the individual 
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mathematician, by choosing one number at a time” (van Atten, 2003, p. 5). This sequence can 

never be known in advance of its creation and, like other mathematical objects, is under 

construction in time. “A choice sequence is generated freely, and at any time we have no more 

than a finite initial segment of it” (van Atten, 2003, p. 7). Intuitionism stood apart from 

Formalism and refuted the use of symbols, rules, and classical logic. Instead of seeing logic as a 

basis for mathematical thought, Brouwer saw mathematics as a basis for logical thought, but 

believed that what we consider logic was often polluted by language, which is emotive and 

cultural. Mathematical logic is a separate underlying constructed system that serves as a non-

symbolic, language-less deduction of the mind (Franchella, 1995, pp. 306-307). This version of 

logic stands in opposition to the classic Aristotelian version upheld by Logicists and, to some 

extent, Formalists. A more recent Intuitionist, Charles McCarty, states that, “In overturning 

supposed logical laws on purely mathematical grounds, the Intuitionists have toppled a central 

pillar beneath conventional mathematics” (as quoted in van Atten, 2008, p. 49).  

Intuitionism gave rise to a new metaphor by rejecting the eternal truths of Platonism, the 

rights and wrongs of Structuralism, the correct processes of Logicism, and the rules and 

languages of Formalism. At the same time, it grapples with retaining metaphors of purity and 

deduction. By situating mathematics as a type of human cognition and a process in time, 

Intuitionism introduced the new metaphor “math is time” and invited human and social 

metaphors into conversations about the nature of mathematics. 
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Humanist Philosophies 

 

Social Constructivism. One Humanist perspective on mathematics sees mathematics as a 

social construct. Hersh (1995) refers to mathematics as a social concept, and a social entity (pp. 

591 & 593), and Ernest (1991) describes his philosophy of mathematics as “Social 

Constructivism”. It is immediately apparent how metaphorical this is. Social Constructivists do 

not think it is possible to know whether or not mathematics has any sort of objective existence. 

Ernest (1992) clarifies by saying, “What is proposed is not the social construction of reality but 

the social construction of our knowledge of reality” (p. 96). Here math is seen as a shared social 

and historical construct, and a part of cultural initiation. Mathematics is consistent within 

cultures not because it refers to some underlying facts about the nature of reality, but because we 

have learned to perceive our reality in this way. “The uniformity of mathematical meaning 

amongst mathematicians, and a shared view of the structure of mathematics, results from an 

extended period of training in which students are indoctrinated with the ‘standard’ structure” 

(Ernest, 1992, p. 97). Mathematics makes sense because it is supported by the social reality in 

which we live, and not because it is somehow beyond that. Social Constructivists point to 

differences among cultures as evidence that there is no Platonist universal conception of 

mathematical forms. Cultural variance in the symbolism and language of mathematics affects the 

outcomes when Deductive reasoning is applied, whether it is a system of logic or intuition. In 

this view, mathematics is entirely a human construct and, furthermore, a construct of our minds 

and not a product of external reality.  

However, Social Constructivists still see mathematics as existing beyond the level of the 

individual human and conceive of it as a shared endeavour distinctly influenced by three factors, 
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or “fuzzy sets” as Ernest (1992, p. 93) refers to them. These include information-technology 

artefacts, persons, and linguistically based rules and activities (Ernest, 1992, p. 93). Information-

technology artefacts are our cultural record of mathematics. Books, media, software, and other 

recorded communications or ideas enable us to preserve and repeat our understanding of 

mathematics, and they allow us to build and revise. The people of mathematics create these 

artifacts. When discussing the people of mathematics, Ernest often speaks of mathematicians of 

varying degree. He refers to research mathematicians as strong members of the set, and uses the 

example of a mathematics teacher as a weak member (Ernest, 1992, p. 94). Numerate citizens are 

classified as the weakest members of the set, which puts young students of mathematics even 

lower on the scale. The linguistically based rules and activities of mathematics both limit and 

enable the knowledge that can be derived from it. Ernest (1992) says,  

 

Mathematics rests on spoken (and thought and read) natural language, and 

mathematical symbolism is a refinement and extension on written natural language. 

Mathematical truths arise from the definitional truths of natural language, which is 

acquired by persons through social interaction. (Ernest, 1992, p. 94)  

 

The language of mathematics makes sense to us (most of the time), because many of the rules 

and assumptions rest on a pre-established system of language, both historically and in the mind 

of the individual. Here there are hints of Formalism, however, in Social Constructivism, the 

language of mathematics is not entirely the same universally, creating different concepts of the 

logic and syntax of mathematics. For example, Bill Barton, a professor of mathematics and 

language at the University of Auckland, discusses number words in his book on the language of 
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mathematics as an example of multiple understandings (Barton, 2008). He discusses research he 

was engaged in with Maori mathematicians when he noticed some significant differences in how 

the structure of their natural language influenced their mathematics. “In everyday talk numbers 

are usually used like adjectives . . . In Maori, prior to European contact, numbers in everyday 

talk were like actions” (Barton, 2008, p. 5). We take for granted the constructed nature of our 

most basic mathematical concepts, and the impact of this on our conception of mathematics as a 

whole. Social Constructivists also provide evidence of change in the history of mathematics as 

proof that there is no one universal mathematics or universally sound way of engaging with 

mathematics. Hersh (1995) says “Certainly it’s historical. The history of mathematics is a 

developed subject. Historians have studied mathematics back to the Babylonians” (p. 551). 

Mathematics has changed significantly over time, and these changes often reflect cultural or 

paradigmatic shifts in other areas. In discussing the history of number, Ernest (2006) says, “the 

history of number and counting is also the story of the development of semiotic systems of 

numeration and calculation” (p. 80). Just as we are able to document changes in language over 

time, we also recognize changes in the semiotics of mathematics. These changes can have 

profound implications and effects on society as a whole. It seems absurd to assume we could 

come to a time when mathematics just “is” and ceases to change, when the history of 

mathematics clearly demonstrates its constantly changing, fallible nature. Social Constructivists 

depart from any semblance of truth by having mathematics being built by humans. To do this, 

they repurpose mathematical metaphors, including the structural dialogue of Platonism and 

Formalism and the metaphors of time and humanity in Intuitionism. Here, forms are not static or 

objective and time is not just process, but a history. Yet with our metaphorical ability to build 

comes a dialogue of control and claiming of mathematics as product of our humanity. 
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Embodied mathematics. Another recent philosophy of mathematics that follows in the 

Humanist tradition and highlights particular aspects of Social Constructivism is the embodied 

philosophy of mathematics, pioneered by Rafael Núñez. While this “mind-based mathematics”, 

as Lakoff and Núñez (2000) call it (p. 9), has some similarities to the Social Constructivism of 

Ernest and Hersh, it also seeks to differentiate itself from this philosophy. While Social 

Constructivists still see a mathematics “out there”, albeit a human creation, mathematical 

philosophers that embrace embodiment see only the mathematics “in there”, the constructions 

inside each mind with no existence beyond what each individual constructs for themselves. 

“Mind-based mathematics, as we describe it in this book, is not consistent with any of the 

existing philosophies of mathematics: Platonism, Intuitionism and Formalism. Nor is it 

consistent with recent post-modernist accounts of mathematics as a purely social construction” 

(Lakoff & Núñez, 2000, p. 9).  

According to the philosophy of embodied mathematics, to understand what mathematics is, 

one must have some understanding of how the human mind works, and how it creates knowledge 

and understanding in a human. Proponents of the Embodied Mind theory believe that the human 

brain, like all living systems, has grown out of a need to survive and thrive. Over time the human 

brain has adapted to enable human beings to manipulate their world, and survive in a constantly 

changing, far from equilibrium environment. Our brain works through a series of neurons that, in 

a highly simplistic sense, operate via an input-output network. The input stimulates a series of 

metaphorical pathways that enable our thought processes (Devlin, 2008, pp. 369-372). Through 

this process, we come to understand and navigate our worlds. What mathematics is depends on 

the prior and ongoing evolution of this process. Here the brain is not some sort of perfect Turing 

machine, computing and calculating, but is instead a dynamic network of connections and 
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responses that reflects its particular type of existence as a living system. This view of embodied 

cognition follows theories of mapping seen in representations of cognitive metaphor schemes. 

When we come across something novel, our brain is designed to try to perceive and understand it 

through prior knowledge. Although this is true of all knowledge, it is particularly important when 

dealing with human concepts and ideas that have no physical existence. Lakoff and Núñez 

(2000) remind us that, “For the most part, human beings conceptualize abstract concepts in 

concrete terms” (p. 5). We do this by relating the abstract concepts to concrete entities through 

metaphor. An often-cited example is the number line. Certainly, numbers do not physically sit on 

some infinite line increasing from left to right. However, when we call to mind this particular 

metaphor, it allows us to understand number in a way that is impossible without it. When we 

think of a number being higher or lower than another, we are calling up a metaphor that allows 

us to both think about and communicate our understanding of that number. However, as Núñez 

(2009) points out, the number line is not a universal truth but a recent Western cultural construct. 

(pp. 71, 72). Without these metaphors, mathematical thought could not exist. It is the evolution 

of our brain’s ability to use metaphors and connect concepts that enables and limits mathematics. 

It is our need to see mathematics as a concrete entity in order to make sense of it that causes it to 

seem real, infallible, and organized outside ourselves. “This is why mathematics is perceptually 

Platonistic . . . that is the only way the human brain can do it” (Devlin, 2008, p. 365). We have to 

work with what we have, but what we have is quite amazing. The human brain is a highly 

evolved system, but it is also only that and not a window to some greater understanding beyond 

itself. Mathematics is a product and a function of that brain. It is the result of both biology and 

indoctrination enabled by biology, and in the embodied perspective, it is nothing more than that. 

“Where does mathematics come from? It comes from us!” (Lakoff & Núñez, 2000, p. 9). 
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Embodied Mind theory enables the use of cognitive metaphors to describe the nature of 

mathematics. This theory asserts that we only think it has an existence of its own because our 

brain needs to think of it that way. We only think it makes sense because we made it to make 

sense. Embodied Mind theories of mathematics are the first to recognize that what we have to 

work with when describing mathematics is metaphors, yet new metaphors are not offered, and in 

its place is a sort of meta-cognitive analysis of the neuroscience of humans. From Embodied 

Mind theorists comes the understanding that our conception of mathematics is primarily 

metaphorical, which is an understanding so important to this thesis. Yet they have stopped short 

of identifying the potential of purposeful new metaphors. In Embodied Mind theory what is 

gained is recognition of the metaphorical nature of abstraction, but what is lost are metaphors for 

how to describe our relation to this mathematical entity that somehow dwells in us. 

 

 

Conclusion 

 

Mathematics is a metaphorical enterprise. Its fundamental nature as an abstract being in our 

minds demands that we cultivate comprehensible metaphors to express ourselves mathematically 

and when talking about mathematics. We are forced to name it as an entity in order to 

differentiate it from other conceptions, but we are at liberty to refine and evolve the metaphors 

we choose. Mathematics philosophy has shifted its grounding metaphors over time, creating new 

metaphors while holding on to others for either security or contrast. Mathematical reliability and 

its perseverance in human culture has been explained through Platonism as a result of its perfect 

form, through Structuralism as interrelations with a perfect fit, through Logicism as an inevitable 
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process, through Formalism as the product of assumptions, through Intuitionism as an unfolding 

of time, through Social Constructivism as a grand human creation and through embodiment as a 

way to survive. The main concern has been a contrast between objectivist philosophies and those 

that embrace relativism, with objectivists being unable to deal with the obvious humanity of 

mathematics and relativists being unable to cope with its apparent otherness. It is my belief that 

new metaphors are still needed to both challenge our thinking about mathematics as a 

metaphorical conception, and offer the potential to reconcile some of the difficult byproducts of 

past and current philosophies. The next chapter will explore the literal meaning of being alive so 

that this metaphor may be applied appropriately, and to seek out the complex metaphors that 

arise from the biological dialogue of living. 
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CHAPTER 3: 

Being Alive 

 

The One is said with a single meaning of all the multiple. Being expresses in a single meaning 

all that differs. What we are talking about is not the unity of substance but the infinity of the 

modifications that are part of one another on this unique plane of life. 

(Deleuze & Guattari, 1987, p. 276) 

 

In the metaphor “math is alive”, mathematics is the target and living systems are the source. 

Although living systems theory uses metaphor, and living can be seen as an abstract concept as 

well as a literal biological action, the following is an attempt to look at the latter literal meanings 

of the terms being used in this field of biology. A basic understanding of the literal scientific 

definitions of these terms precludes the use of living systems theory metaphorically. In order to 

understand the implications of conceptualizing mathematics as a living system, I have first 

analyzed what it is to be alive. 

Living beings hold a special status for us. We recognize in them aspects of growth and change 

that fascinate us. When a seed becomes a flower, I am fascinated, and I am fascinated when 

babies are born. Scholars across fields of study have asked what it is to be alive for centuries and 

yet no clear scientific consensus exists (Benner, 2010, p. 1021). I theorize that being alive 

biologically is an autopoietic act, following the tradition of biological systems theory.  

 

What is the difference between a live cat and a dead one? One scientific answer is 

‘systems biology’. A dead cat is a collection of its component parts. A live cat is the 
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emergent behaviour of the system incorporating those parts. (Anonymous, 2005, as 

quoted in Robert as quoted in Hull & Ruse, 2007, p. 364)  

 

Living systems theory sees living as a dynamic process, resistant to mechanistic reductionism, 

with any attempts to define it as observer-biased (Capra & Luisi, 2014, p. 43).  

In the 1950s and 60s, Ludwig Von Bertalanffy formalized the biological view of systems 

theory through the study of what he called “general systems theory”. He believed that his theory 

had potential applications beyond biology, but maintained his focus on living, open systems. 

This gave biologists a language that had the potential to resolve unanswered questions about 

living beings. These animate objects refused to operate according to mechanistic models being 

literally applied by classical physics, and even appeared to occasionally reject what were thought 

to be universal laws in thermodynamics (Bertalanffy, 1950, p.26). They were, growing, 

changing, becoming, and decaying, in ways that often appeared random or unpredictable. A 

continual breaking down into parts yielded answers about structure, but neglected to explain the 

behaviour of those structures. In response, Bertalanffy proposed that the whole was more than 

the sum of its parts, and that, instead of deconstruction, reconstruction was needed – an analysis 

not just of the parts, but also of their interplay. These ideas have been taken up in various 

disciplines as Bertalanffy predicted, and continue to have a strong influence on the search for a 

scientific understanding of life.  

The biologist James Grier Miller proposed in Living Systems that this view could be extended 

to a global perspective (Miller, 1978, p.5). Although he worked with similar systems concepts, 

his specific view of living systems is well known yet has not been taken up broadly in the study 

of living systems. Miller defines eight system levels with (exactly) twenty particular subsystems 
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and includes a lengthy, hierarchical redefining of terms that can be seen to contradict current 

ideas of unity and interdependence (Bailey, 2005, p.45). However, Miller’s concern for the roles 

of space and time, as well as the idea of nested systems continues to resonate. 

While Miller was extrapolating on living systems ideas, others were working with small 

living systems – focusing on cells, bacteria, and the chemical reactions of life. The Belgian 

chemist Ilya Prigogine further developed the systems view of life through his work with 

dissipative structures in self-organizing systems (Capra & Luisi, 2014, p. 158). Although Miller 

briefly discusses ideas of sufficient and increasing complexity (Miller, 1978, pp. 18 & 293), 

Prigogine expanded the concept of complexity in science, adding to rigorous scientific 

scholarship on how complex systems behave, while steadfastly maintaining that a complex 

system demonstrates sufficient randomness to make certainty impossible (Prigogine, 1989, p. 

399). Here, complexity refers to our inability to predict behaviour as a sum of the interaction of 

parts, because each interaction affects the other with multiple possible trajectories. Prigogine’s 

work with complex systems enabled scholars such as Francisco Varela and Humberto Maturana 

to begin to develop a biological understanding of living beings as complex, autopoietic systems 

(Maturana & Varela, 1987 p. 43).  

 

 

Characteristics of Living Systems 

 

Sustainable living systems share three general characteristics: a particular pattern of 

organization in their structures, expressions of this pattern in their continual existence, and 

reliance on this pattern in how they replicate and evolve. This pattern of organization is specific 
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to living systems (Capra & Luisi, 2014, p. 137). It is this pattern of organization – in structural 

characteristics, maintenance actions, and evolution – that shows intriguing similarities to the 

pattern of organization of a discipline such as mathematics. The goal of this chapter is to 

describe some fundamental aspects of living systems, so that I may provide evidence of the 

significance of these characteristics for a metaphorical understanding of mathematics in the next 

chapter. 

 

Pattern of Organization 

 

A living system is an autopoietic unit (Maturana & Varela, 1987, p. 43). Autopoietic systems 

are able to recreate themselves, they are “continually self-producing” (Maturana & Varela, 1987, 

p. 43). In living systems theory, the organization of structures that allows for autopoiesis is what 

differentiates living systems from the inanimate. The autopoietic goal is what governs our 

organization. Living systems sustain themselves autonomously in their environments through the 

circular logic of their organizational interactions, “It is a circular process: The structures can be 

formed only by its own operations because its own structures in turn determine the operations” 

(Luhmann as quoted in Clarke & Hansen, 2009, p.149).  

Autopoiesis relies on the organization of structures and their actions rather than the specific 

structures themselves. “It is the organization of the system that is stressed: structure (i.e., the 

actual material components) is almost secondary, in the sense that an autopoietic unity can be 

realized with several different specific structures” (Luisi as referenced in Stein & Varela, 1993, 

p.20). There is no particular set of structures that makes up a living system, but there is 

commonality in their pattern of organization. Here I will explore characteristics of this pattern of 
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organization that are common to all living systems when we regard autopoiesis as the defining 

attribute of life. This includes nesting, autonomy through boundary formation, being an open 

system with operational closure, extreme sensitivity to initial conditions, and instability, each of 

which I discuss in turn. 

All living systems are nested systems. Although there are substantial critiques of Miller’s 

subsystems hypothesis (Bailey, 2005, p. 45), our modern understanding of ecosystems comes 

from this view. Luhmann’s (1984/1995) theory of social systems is also generated from this 

notion. From this living systems perspective (a) the interdependence of these systems resists 

hierarchical descriptions (Hansen, 2009, p. 128), although systems exist in a network of 

increasingly complex systems; and (b) systems within systems rely on each other for their own 

survival (Capra & Luisi, 2014, p. 359; Hansen, 2009, p. 128). Capra and Luisi (2014) describe 

these systems as “interlocked” (p. 347). Some current theories in biology even support the idea 

that some of this increasing complexity results from living systems engulfing others, such as in 

Lynn Margulis’ symbiogenesis (Capra & Luisi, 2014, p. 201).  

Maturana and Varela (1987) view life as cellular, with the cell, in all its variations, 

representing the simplest living system. The cell is a bounded unit, held together by a boundary 

of its own making. Within this boundary, the cell functions to reproduce its own components 

through maintenance functions. Living systems interact with their environment for survival, yet 

they are still distinct and autonomous with distinguishable boundaries. A living system is unique 

in that it produces and maintains its own boundary, so that there is always a relationship between 

“the inner” and “the outer” (the system’s environment). “The most striking feature of an 

autopoietic system is that it pulls itself up by its own bootstraps and becomes distinct from the 

environment through its own dynamics, in such a way that both things are inseparable” 
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(Maturana & Varela, 1987, p. 46). It is this organization that defines their unity – that makes 

them distinct unto themselves. The boundary is not what separates the system from the outside 

world, but instead what enables its interaction with it, and it is the point at which the system 

operates by its own rules.  

Living systems are characterized as open systems through this interdependence. An open 

system exchanges both matter and energy with its environment (Prigogine, 1980, p. 78). You can 

distinguish bacteria, or a human, or any other living system from its environment, even if the 

thing itself may be a part of a larger system, such as the vast array of bacteria that populate and 

enable the human digestive system. This is because open systems exhibit organizational closure. 

“This organizational closure implies that a living system is self-organizing in the sense that its 

order and behaviour are not imposed by the environment but are established by the system itself” 

(Capra, 1996, p. 167). A system exhibits autonomous actions as a unity, even though it is both 

made up of, and making up, other systems. This dichotomy of openness and closure is discussed 

in Clarke and Hansen’s Emergence and Embodiment, where Hansen quotes Niklas Luhmann as 

follows: “Using boundaries, systems can open and close at the same time, separating initial 

interdependencies from system/environment interdependencies and relating both to each other” 

(Luhmann as quoted in Hansen, 2009, p. 114). Living systems remain “a distinguishable unity in 

the domain in which they exist” (Varela, 1997, p. 75). Although a tree may now look quite 

different from a tiny sprout that once popped out of the ground, we recognize it to be the same 

thing – a single living unity. The system produces its own boundary, even though that boundary 

is in a constant state of interaction with its own and other systems. It defines its identity and thus 

enables its identification as an autonomous unit. It also invites us to question the idea of a 

boundary more deeply – not just as a point of separation, but also as a point of contact – 
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autonomous, operationally closed, self-determining systems openly coupled to a volatile, 

unpredictable environment. 

Although living systems exhibit organizational closure, they are fundamentally different from 

closed systems. A closed system does not change and reacts predictably. A closed system will 

follow a linear trajectory. In Miller’s (1980) words, no “matter-energy or information 

transmissions” (p. 18) can be exchanged with a closed system. Prigogine (1980) later clarifies 

that a closed system can exchange energy, but not matter with the environment (p. 78). Given a 

set of initial conditions, you can predict the future of a closed system in a deterministic way. 

Newtonian physics is particularly good at providing answers about the behaviours of such 

systems.  

 

For example, if you kick a stone, it will react to the kick according to a linear 

chain of cause and effect, and its behaviour can be calculated by applying the 

basic laws of Newtonian mechanics. If you kick a dog, the dog will respond with 

structural changes according to its own nature and nonlinear pattern of 

organization – the resulting behaviour is generally unpredictable. (Capra & Luisi, 

2014, p. 136) 

 

Living systems have a set of initial conditions - the moment when they became an 

autonomous unity in a particular environment. While the initial conditions of a closed system are 

reliable predictors of its future states, this is not so for an open system (Kauffman, 1991, p. 81; 

Prigogine, 1989, p. 399). In a living system, initial conditions are not sufficient to predict the 

trajectory of the system over time (Bertalanffy, 1950, p. 25). Kenneth Showalter describes this as 



MATH IS ALIVE 43 
 

“extreme sensitivity to initial conditions” (as quoted in Wallaczek, 2000, p. 328), meaning that 

the smallest difference in initial conditions can set off exponential changes that result in great 

differences as the system grows. What first appears as virtually identical systems can become 

drastically differentiated over time. Despite vast similarities in genetic coding, apes, and even 

mice, are not like humans. Even twins with identical DNA grow less alike over time (Capra & 

Luisi, 2014, p. 196). It is not simply the structure of the code, but its actions, expressions, and 

interactions that make living systems what they are.  

As the internal and external interactions of a non-linear system become increasingly chaotic 

over time; the system becomes increasingly disordered (Prigogine & Stengers, 1984, p. 128) – 

sometimes to the point of radical structural change through infinite numbers of potential 

pathways (Prigogine, 1989, p. 399). As a result of the complex interactions within a living 

system and its complex interactions with the environment, we can imagine potential futures, but 

can never know future states with absolute certainty.  

Internally, a living system refuses reductionism and cannot be described as a particular 

collection of parts. Not only are different collections of particular structures sufficient to enable 

life, but these structures often change throughout the life of a system. The pattern of organization 

described here allows for life, but living is not accomplished by the presence of the parts, but by 

their interaction. This is an important distinction of the systems view of life; that the whole is 

greater than the sum of its parts. Like the dead cat, the pattern of organization of the structure of 

a system provides a potential landscape for life, but to understand life we must look not only at 

its properties, but also at its processes.  

 



MATH IS ALIVE 44 
 

Maintenance  

 

Prigogine (1980) named one of his books From Being to Becoming. Here, he stresses the 

importance of process over form in complex physical systems. These systems cannot be reduced 

or dissected, as we are so prone to do in science. What they are is in a constant state of flux, 

reacting to disequilibrium. In order to sustain themselves, living systems, as autopoietic unities, 

are constantly reproducing their own components. In order to do this, all living systems exhibit 

similarities in process. The fundamental process these systems are engaged in is self-

organization. Characteristics of this process include self-sustenance in far from equilibrium 

conditions, energy and information exchange, and the presence of feedback loops operating with 

decentralized control. Autonomous self-organization is what allows a living system to stay alive 

by being able to continually recreate itself.  

A living system exhibits particular processes in order to continually maintain its state of being 

alive through autopoiesis. The most significant process resulting from the pattern of organization 

of a living system is self-organization. This is “the capability of assuming an organized structure 

thanks to the inner rules of the system” (Capra & Luisi, 2014, p. 165). The continual, 

autonomous self-recreation of autopoiesis depends on the system’s ability to organize itself for 

this purpose. The concept of self-organization first arose in cybernetics when scientists 

discovered that systems whose initial conditions were selected randomly would reach states of 

ordered patterning through what appeared to be spontaneous emergence (Capra, 1996, p. 84; 

Capra & Luisi, 2014, p. 96). Just as similar initial conditions can lead to vast difference, different 

initial conditions can result in striking similarity. This term was later applied to living systems 

when biologists noticed that despite wide fluctuations in environmental conditions, a living 
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system is able to maintain its identity and regulate its inner state thought the self-organizing 

attributes of its pattern of organization. For example, the inner temperature of a human being 

remains relatively stable despite changes in the temperature in the outside environment. Living 

systems tend towards a state of homeostasis, defined in systems theory as a “state of dynamic 

balance” (Capra & Luisi, 2014, p. 91), wherein the system is never static and never able to reach 

infinite or absolute balance as it continually re-adjusts to conditions. Living systems are forced 

into non-equilibrium states due to disorder in the environment, sometimes acting far from 

equilibrium. “Not only does non-equilibrium lead to both order and disorder, but it also leads to 

events, because more possibilities appear than do in a state of equilibrium” (Prigogine, 1989, p. 

399). This allows for the creation of novel structures and for creativity within the system. Capra 

(1996, p. 85) lists this creativity as the first of his three characteristics of self-organization. 

His second characteristic of self-organization is that matter and energy are constantly being 

exchanged between a living system and its environment. The living system’s ability to regulate 

these transactions with its environment as they affect its internal conditions informs the process 

of self-organization. So, although a system identifies its autonomy by being organizationally 

closed and internally self-organizing, Clarke points out that these systems self-organize “in the 

presence of conditions provided for elsewhere, by environments that lend a necessary other to 

the self of self-organization” (Clarke, 2009, p. 42). Self-organization allows a living system to 

exist with and through its environment. Without this dynamic exchange, there is no life. 

Capra’s third characteristic of self-organization is the existence of non-linearity and feedback 

loops. Living systems are non-linear in the sense that the actions of the system cannot be 

represented or described using a linear, casual chain of events or set of equations, hence, the 

impossibility of prediction. Living systems, always operating at some distance from equilibrium, 



MATH IS ALIVE 46 
 

depend on self-regulating mechanisms to attempt to regain homeostasis. These self-regulating 

mechanisms operate through multiple feedback loops. Prigogine (1980) asserts that “most 

biological reactions depend on feedback mechanisms” (p.95), and Beloussov restates Capra’s 

premise that living systems are “far from thermodynamic equilibrium and their elements are 

linked with strong feedback, described mathematically by nonlinear differential equations” 

(Beloussov as quoted in Stein & Varela, 1993, p. 153). 

The concept of a feedback loop also appeared early in writing on cybernetics in the mid-

twentieth century, pioneered by Norbert Wiener among others. Wiener connected his cybernetic 

theory to living systems and theorized two types of feedback loops, positive and negative (Capra, 

1996, p. 52). Negative feedback loops are self-regulating. A common example is steering, 

wherein one steers in the opposite way when going off course. A modern example of Wiener’s 

“Steersman” concept would be if my car is going slightly to the left, I correct it by steering 

slightly to the right. The result is balanced and I avoid an accident. My hands feel that the wheel 

is going left, so my brain tells my hands to turn right, sometimes without even knowing it is 

happening. This is a negative feedback loop because the end result is balanced. Living systems 

rely on these conceptual loops to maintain homeostasis. Positive feedback loops also exist, 

wherein the car is going left, so I steer more left. The result is an amplified version of the 

original source. Capra (1996) reminds us of metaphors we have used for this process prior to 

scientific definitions; “vicious circles”, “self-fulfilling prophecies”, and “bandwagon effects” (p. 

63). The dynamic feedback loops of open systems must self-regulate an ever-changing system in 

relation to an unpredictable environment. These systems rely on both negative and positive 

feedback to maintain their dynamic balance. Capra (2014) says “both types of feedback play 

important roles in the self-organization of dynamic systems. Self-balancing (negative) feedback 
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loops maintain the system in a stable but continually fluctuating state, whereas self-amplifying 

(positive) feedback loops may lead to new emergent structures” (p. 159).  

An important structural note about the role of feedback loops in living systems is that they 

exhibit decentralized control. This means that there is not one particular locus of control over the 

entire being, and that the component structures are locally self-regulating and dependently 

interconnected. “Living systems consist of compartments and microdomains each with its own 

steady state; complexes of a few molecules can act as efficient cyclic molecular machines with 

no immediate reference to the steady state of the surroundings” (Ho & Popp as quoted in Stein & 

Varela, 1993, p. 188). Speaking about neural networks in this context, Varela, Thompson, and 

Rosch (1991) state, “In this approach, each component operates only in its local environment, so 

that there is no external agent that, as it were, turns the system’s axle” (p. 88). The achievement 

of the feedback loop is that it allows for independent self-regulation of a system while requiring 

limited resources.  

A living system must continually take in energy and use this energy to enable its self-

organizing mechanisms. These feedback mechanisms work as part of a self-organizing system 

that enables new forms of order despite increasing disorder entering the system. Energy is 

always conserved in these transactions, following the first law of thermodynamics. The second 

law states that entropy always increases. The amount of useful energy in a system is always 

decreasing through the dissipation of energy during processes into heat, friction, etc. (Capra, 

2014, p. 33). This increase in entropy has often been seen as a move towards disorder. However, 

biological systems seem to defy this rule in that they create order out of this increasing 

disequilibrium.  
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Whereas the physical world runs down according to the second law of 

thermodynamics such that useful energy continually degrades into heat or random 

molecular motion (technically referred to as entropy), the biological world seems 

capable of doing just the opposite in organization by a flow of energy and matter, (Ho 

& Popp as quoted in Stein & Varela, 1993, p. 188)  

 

Living systems take in energy through the consumption and metabolism of matter, and through 

this process living systems are able to both maintain and increase their organization.  

 

In an open system, and especially in a living organism, not only is there entropy 

production owing to irreversible processes, but the organism feeds, to use an 

expression of Schrödinger’s, from negative entropy, importing complex organic 

molecules, using their energy, and rendering back the simpler end products to the 

environment. (Bertalanffy, 1950, p. 26)  

 

Schrödinger (1967) theorized that a living system maintains its orderliness by “sucking 

orderliness from its environment” (p. 79). Prigogine refined these earlier concepts through the 

acknowledgment of the intimate relationship between order and disorder – that you cannot create 

one without the other.  

The second law of thermodynamics, when applied to living systems, is problematic. Instead 

of running down, they grow and flourish. But how are these systems able to “suck order” from 

the environment, break it down into disordered parts, and use it to maintain orderliness within 

their own boundaries? They are able to do this because living systems have the capacity for 
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knowledge and information. They know what to do, and they tell the system what to do in the 

form of information. “The biological sciences have adopted a theoretical perspective derived 

from information theory, together with developments in modern genetics and evolutionary 

science. This perspective holds that all biological processes involve the transfer of information” 

(Marcos as referenced in Arp & Terzis, 2011, p. 60). Feedback loops convey information about 

the outcome of a process or activity to the source (Capra & Luisi, 2014, p. 90). The system 

subsequently uses its available energy, and its ability to direct energy to enable work that needs 

to be done (Simms, 2003, p.402). “The perspective is developing that biological cells can be 

viewed as highly sophisticated information-processing devices that can discern complex patterns 

of extracellular stimuli” (Wallaczek, 2000, pp. 5-6). 

An open system is still “information-tight” (Capra & Luisi, 2014, p. 93). As Capra and Luisi 

(2014) state, “all information needed for a fly to be a fly is contained inside the fly” (p. 133). The 

information about the fly extends only to the fly’s boundaries, and not beyond into its even more 

complex environment. The fly must exist in and exchange with this immense complexity – it 

must use information to sort through all the noise and create order. Remarkably, “self-organizing 

systems can also translate the external noise of their environments into systemic gain” (Clarke as 

quoted in Clarke & Hansen, 2009, p. 47). Living systems take advantage of their environments. 

We know how to use them for our personal gain down to the cellular level. It is not enough for 

us to take in energy; we need knowledge in the form of information in order to use it. 

Information is not matter or energy (Marcos as referenced in Arp & Terzis, 2011, p. 62), and the 

causal relationships it brings about in living systems are not entirely clear. How a gene “knows” 

to replicate or a cell knows to metabolize are questions about biological information. V.V. 

Egorov (2010), in proposing a new law of thermodynamics to account for the behaviour of living 
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systems, defines information as “a thermodynamic function of the state of a living system, 

reflecting its ability for purposeful action” (p. 210). Egorov further notes that increases in 

information to offset increasing entropy imply increasing complexification and evolution. This is 

supported by Alvaro Moreno and Kepa Ruiz-Mirazo, who refer to living systems as 

“informational, genetically instructed organizations” who use their informational qualities to 

“reproduce their basic functional dynamics, bringing about an unlimited variety of equivalent 

systems, of ways of expressing those dynamics that are not subject to any predetermined upper 

bound of organizational complexity” (Moreno & Ruiz-Mirazo as quoted in Arp & Terzis, 2011, 

p. 168). 

Living systems use their pattern of organization to regulate their state through self-

organization – relying on information to respond to feedback loops, regulating these energy, 

matter, and information exchanges, and managing entropy despite increasing complexification. 

While this pattern of organization is designed to enable a living system to maintain its state of 

dynamic homeostasis, it is also designed to create and nurture change. 

 

Growth, Adaptation and Evolution  

 

How is it that living systems continually become? How have they kept going for so long 

through drastic change and even death? They do this through a pattern of organization that 

allows for adaptation and growth over a lifetime, reproduction, and the perseverance of favorable 

traits in evolutionary processes. A fundamental feature of our current definition of life is that it 

reproduces itself. This trait is what allows for bacteria to be included among living systems, but 

not viruses. The former can recreate itself through its own internal dynamics, but the latter 
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cannot (Capra & Luisi, 2014, p. 138). Living systems are able to do this because they are 

autopoietic, dissipative structures, existing far from equilibrium, that use increasing entropy to 

produce organization and novelty through reproduction. Living systems are unities of 

multiplicities that depend on several conditions and processes for their growth and evolution that 

will be discussed here, including their autopoietic nature, time, irreversibility, distance from 

equilibrium, bifurcation points, and emergence.  

A living system must first be an autopoietic unity before it can reproduce. However, Maturana 

and Varela (1987) note that while autopoiesis is necessary for the reproduction of living things, a 

living thing is not required to reproduce in order to be seen as living (p. 78). A mule cannot 

reproduce itself and is still regarded as alive. You might even know other humans who choose 

not to have children and yet appear very much alive. Regardless of evolutionary change, all 

living beings remain autopoietic. “For autopoietic theory, living systems conserve their 

organization, which means their functioning always restores homeostasis; evolution is merely 

structural change against this identity horizon” (Protevi as quoted in Clarke & Hansen, 2009, p. 

97). While we recognize that reproduction and evolution are things that only living systems do – 

we also see that life can happen, if only for a moment, without them. Any type of living system 

can become extinct. However, reproduction and evolution cannot happen without life. 

Autopoietic units remain coupled to their environments; open systems with operational 

closure, intimately linked to an environment that exists and changes in time. As one changes, so 

does the other. Adaptability and evolvability are significant features of living systems that 

produce a historical network of living systems (Protevi as referenced in Clarke & Hansen, 2009, 

p. 97), allowing them to exist through time, continually recreating their autopoietic pattern of 

organization in new and unexpected ways.  
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Capra notes that time plays two key roles in the processes of living beings – aging and 

evolution (Capra & Luisi, 2014, p. 137). In each case, from multiple potential paths, one is 

chosen, and that choice affects all potential options thereafter. Bailly and Longo (2011) use the 

example of reptilian jaw formations evolving into inner ear components in birds and mammals: 

“It would have been impossible to predict: it was not a necessity . . . but just one possibility to be 

formed, a generic path out of many compatible ones” (p. 122). This change affects all subsequent 

changes. When discussing biological time, Bailly and Longo (2011) refer to it as “the time of 

‘genesis of structure,’ of constitutive process, because a bifurcation, or a catastrophe, can depend 

on the entire history of a system, and not only its state description at a given instant” (p. 116). 

Bailly and Longo (2011) also focus on the idea that these changes are co-constructed between an 

organism and its environment, each affecting the other, continually altering the course of history 

for all the systems and subsystems involved. “There is no such thing as the time of a single 

isolated dynamical system displaying linearity in its bifurcations. No such system exists. The 

genesis of structures proceeds in parallel, through interaction of a plurality of structures” (Bailly 

& Longo, 2011, p. 117). The far-from-equilibrium system takes in energy and uses it to construct 

itself, but it does this with a history, and in the context of its dependence. As our open system 

operates with its environment, it develops its own history, which changes its potential futures.  

The history of all systems involved, as well as each system’s search for its own autonomy, 

individuation, and survival all play out in time – but it is not as simple as the arrow of time in 

thermodynamics. The breaking down is accompanied by the building up, complexifying, and 

becoming that which something never was before (Longo & Montevil, 2014, p. 16). Here, time 

does not destroy, but instead is a function of building and becoming – Prigogine’s (1989) 

“constructive role of time” (p. 398). Structurally, living systems exist in space, but it is their 
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organization through time that enables their state of living. The initial conditions of a system do 

not determine the trajectory of the system, because internal changes over time can widely 

differentiate that trajectory. There are a variety of answers to the non-linear equations that occur 

far-from-equilibrium (Prigogine, 1989, p. 399), and these answers come in the form of 

irreversible changes that affect what the next equation will be.  

Science struggles with irreversible processes. While water can melt, and freeze and melt and 

freeze again, some changes cannot be undone. Toast cannot be untoasted, popcorn cannot be un-

popped, and living systems cannot undo changes in their state. Thermodynamics deals with the 

materials and products of these changes, but in classical thermodynamics, irreversible change 

always comes with waste and loss (Capra, 1996, p.184). Prigogine helped to alter this conception 

when he showed that points of maximum entropy, or disorder, can actually lead to increases in 

order – beneficial adaptation and not loss (Prigogine, 1980, p. 78; see also Capra, 1996, p. 184). 

Living systems are able to go beyond maintenance and empower change during the process of 

taking in the low-entropy energy of organic molecules, using it to build and grow in increasingly 

complex ways, and releasing the resulting high entropy energy as waste. Ludovisi, Pandolfi and 

Taticchi (2005) describe it by saying that biological systems  

 

use the energy (low entropy energy) embodied in the solar radiation and chemical 

compounds to build highly ordered structures. The irreversibility of both the anabolic 

and catabolic processes results in a production of entropy, which is released towards 

the environment as high-entropy energy (heat). (p. 35)  
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You cannot undo the processes of living – hence the dilemma of aging. Everything will, at some 

point, reach maximum entropy and die (Schrödinger, 1967, p. 76), instead of changing and 

becoming.  

But prior to that, the system will do its best to maintain its steady state in a disordered, ever 

changing world. It will do things that cannot be undone as it develops, adapts, and prepares to 

reproduce. It will change its sameness and become different. In doing this, a living being engages 

in symmetry-breaking; creating difference from repetition and spontaneous unity formation, and 

making seemingly random choices from mirrors of statistical possibility (Prigogine & Stengers, 

1984, p. 163). Prigogine (1980) implies that progress in our understanding of irreversibility relies 

on viewing it as a “symmetry breaking mechanism” (p. 196). Through these irreversible 

processes, an organism develops its own path – its own particular being in the world. The more 

complexified as a system the being is, the more possibilities for novelty. To create more order, 

more disorder is required (Capra, 1996, p.189). Inviting disorder can sometimes lead to higher 

levels of order within a complex, dissipative structure such as a living system. “Nonequilibrium 

is the source of order, nonequilibrium brings ‘order out of chaos’” (Prigogine & Stengers, 1984, 

p. 287). From this chaos, the most striking irreversible processes occur. 

A living system is an open system existing in an organized, autonomous state far from 

equilibrium in a delicate balance with its environment – operationally closed and distinct, while 

still situated, dependent, and open to suggestions from the outside world. It is this unique 

organization in time that allows for indeterminate growth and evolution. The distance from 

equilibrium allows for adaptation, in that living beings are constantly changing in order to adapt 

at any point in time: cooling, heating, eating, making waste, and the infinite number of other 

processes responding to environmental perturbances. Generally, these feedback loops aim for 
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self-regulation – negative feedback steering the ship. However, positive feedback can also be 

beneficial to an organism because it is generational in nature – it generates new structures and 

responses. Prigogine (1989) notes that disequilibrium is what allows living systems to engage 

with their environment productively and ‘make choices’ that are advantageous to their survival;  

 

Out of equilibrium the system can see the totality of the system. One could almost say 

that matter in equilibrium is blind, and out of equilibrium it starts to see. Hence there 

are events, fluctuations which prepare for an event, amplification, sensitivity to the 

external world, historical perspectives due to other successive forms of organization, 

and the appearance of a series of new categories of phenomena, called attractors. 

(Prigogine, 1989, p. 399)  

 

Systems in a state of equilibrium, like a frictionless pendulum, will have a predictable 

trajectory in phase space that can be described as an attractor. Systems far from equilibrium can 

have a variety of attractors (Capra, 1996, p. 1320). The frictionless pendulum is a periodic 

attractor, and there are also point attractors and strange attractors. The name ‘attractor’ serves as 

a metaphor to describe the system’s return to its original state. It cycles through various stages 

with an apparent attraction towards an end point. Some strange attractors are less stable than 

others with a variety of points (Prigogine, 1989, p. 399). Complex dynamic systems, such as 

living systems, have multiple attractors including strange attractors, but because they are open 

systems, they are particularly sensitive to fluctuations in, and perturbations from, their 

environment. “In many non-linear systems, however, small changes of certain parameters may 

produce dramatic changes in the basic characteristics of the phase portrait. Attractors may 
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disappear or change into one another, or new attractors may suddenly appear” (Capra, 1996, p. 

136). It is difficult to predict the significance of small perturbations on a system, and positive 

feedback loops can amplify effects over time. “The inherent amplification properties of nonlinear 

systems thus represent one critical aspect that defines the system’s sensitivity and the magnitude 

of its response to external perturbations” (Walleczek, 2000, p. 6). 

Sometimes, when dissipative structures, such as living systems, reach extreme distances from 

equilibrium, a bifurcation point, previously known as a catastrophe (Capra & Luisi, 2014, p. 85), 

is met. At these points, the system appears to spontaneously move into a new highly ordered 

state. The system is a mixture of stability and instability designed to adapt by altering structures 

that determine its function. At certain points in their trajectories these far-from-equilibrium 

systems can reach points of instability where they exhibit mass organizational change. “When 

the flow of energy and matter through them increases, they may go through new instabilities and 

transform themselves into new emergent structures of increased complexity” (Capra & Luisi, 

2014, p. 159). The point at which new states of order emerge is called a bifurcation point. These 

points are sometimes, but not always, predictable, due to the combined influence of internal 

dynamics and environmental change.  

The potential unpredictability of the reorganization allows for emergent properties. 

Emergence – the spontaneous move to a new highly order state (Walleczek, 2000, p. 2) – is a 

part of the regular functioning of an individual living system, allowing it to respond to 

perturbations both in new ways and to new perturbations. Emergence is a part of a living 

system’s autopoietic organization and processes, resulting in evolutionary change and 

phenomenological differences despite possible genealogical similarities. “Most biological 

problems have a vast number of different solutions, and many of these solutions harbor the seeds 
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of innovation to solve other problems” (Wagner, 2005, p. 175). Emergence is also a higher order 

function related to the network connections of living structures, in the sense that the higher order 

processes of an ant colony emerge from the individual intricate interactions of individual ants 

(Trainor as referenced in Stein & Varela, 1993, p. 305; see also Capra & Luisi, 2014, p. 133). 

Miller’s living systems theory uses the word emergence strictly in this sense; the emergence of 

increasing hierarchy (Bailey, 2005, p. 34), and this view has been useful in social system theory 

and ecology (Gunaratne, 2007, p. 88). This definition of emergence, and the one used in 

association with spontaneous structural change, come from the same basic principle:  

 

Emergent properties are the novel properties that arise when a higher level of 

complexity is reached by putting together components of lower complexity. The 

properties are novel in the sense that they are not present in the parts: they emerge 

from the specific relationships and interactions among the parts in the organized 

ensemble. (Capra & Luisi, 2014, p. 154)  

 

Such relationships or interaction might be an adaptive reaction or complexification in one living 

being, or an ensemble of living beings doing the same to create something greater than 

themselves. Here the focus is on emergence as spontaneous structural change – definition of 

emergence in living systems commonly associated with the work of Prigogine (Capra & Luisi, 

2014, p. 116).  

Emergence in this sense is also what allows for the formation of novel genealogical attributes 

when spontaneous emergence or reorganization occurs at the point of reproduction. “External 

selection works through competition; internal selection through coordination” (Jantsch, 1974, p. 
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5). Kauffman (1991, p. 82) notes that a new understanding of evolution is developing, one that 

still honors Darwin’s ideas, but includes hypothesis about the role of self-organization – the 

internal coordination and problem solving of the autopoietic living system – in evolutionary 

processes. Self-organization is what allows the living system to accommodate its increasing 

entropy, using increasing disorder from the environment to form new, more highly complex 

forms of order internally (Capra & Luisi, 2014, p. 159; Davies, Rieper & Tuszynski, 2013, p. 1). 

Here, complexity is seen as a property of systems that allows for their behaviour to move beyond 

a simple analysis of parts. While Darwinian selection may account for the success or extinction 

of a trait, the possibilities that emerge are a product of self-organization. It is the organization of 

the system that allows for the capacity to reproduce and evolve, and the potential evolutions. 

Prigogine and Stengers (1984) remark that the emergence of life and its early evolution was not 

dependent on Darwinian selection principles, so much as it relied on the development of self-

organizing processes; “It seems reasonable to assume that some of the first stages moving toward 

life were associated with the formation of mechanisms capable of absorbing and transforming 

chemical energy, so as to push the system into ‘far-from-equilibrium’ conditions” (Prigogine & 

Stengers, 1984, p. 191). These far-from equilibrium conditions are then favored through 

evolution due to their adaptive capacities. “Thus natural selection may favour and sustain living 

systems ‘at the edge of chaos,’ because these may be the best able to coordinate complex and 

flexible behaviour, best able to adapt and evolve” (Capra, 1996, p. 204).  

At a bifurcation point, the emergent order can sometimes be unpredictable. Positive, 

amplifying feedback loops can lead to mass changes from what first seemed a small perturbation. 

The emergence of unpredictable change and new order leads to diversity among living systems 

of similar type or origin. This reach out to novelty and diversity accounts for the variety of 
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species and types we see living on our planet. Our ecology is naturally creative. “Ecosystems 

contain many more species than would be ‘necessary’ if biological efficiency alone were the 

organizing principle. This ‘over-creativity’ of nature emerges naturally . . . in which ‘mutations’ 

and ‘innovations’ occur stochastically and are integrated into the system” (Prigogine, 1980, p. 

128). Typically we have regarded evolution as a slow process that happens gradually. Research 

on bifurcation points implies that emergent forms of spontaneous order can happen quite 

suddenly, and that, in fact, most living systems go through periods of very little change followed 

by periods of large scale, cascading changes (Williams, 1985, p. 266). Maturana and Varela 

(1987) say “since every autopoietic system is a unity of many interdependencies, when one 

dimension in the system is changed, the whole organism undergoes correlative changes in many 

dimensions at the same time” (p. 116).  

The autopoietic pattern of organization of living systems and their existence in time at a point 

far from equilibrium allows for the generative processes of irreversibility and bifurcation that 

lead to large scale cascading changes. This is how living systems are able to invent emergent 

patterns and structures that never existed before. Not only do these unities recreate themselves, 

they evolve towards increasingly complex unities in the tradition of complexity theory in 

systems; “Creativity – the generation of new forms – is a key property of all living systems. And 

since emergence is an integral part of the dynamics of open systems, open systems develop and 

evolve. Life constantly reaches out into novelty” (Capra & Luisi, 2014, p. 161).  
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Conclusion 

 

The biology of living systems is amazing. The idea that molecules can self-organize into the 

highly complexified unities we see now invites new perspectives and possibilities into how we 

understand what it means to be alive. It also invites new languages and new comparisons. Living 

is no longer a deterministic clockwork, but a process of becoming. Autopoietic patterns of 

organization, tumultuous environmental dependencies, historical choices, and unpredictable 

futures characterize this new process-oriented notion of living.  

It is no surprise that this collection of traits has been noticed and observed in other contexts. 

The biological metaphor of complex self-organization has been used in a variety of ways in 

business and educational networks through the inference that social networks are the human 

equivalent of ant colonies or bee hives. I will explore this metaphor somewhat differently. I 

intend to propose its relevance beyond systems existing in our physical world to abstract 

conceptual systems, and disciplines in particular. Instead of picking and choosing language that 

applies literally, I will consider the entirety of systems theory in my metaphor as though math is 

alive. I do not ask whether a discipline shares some literal similarities with a living system, but 

what the implications are of speaking about it as though it is alive. What is implied by this 

pattern of organization? How does it form an autopoietic structure from abstract parts and 

maintain itself in relation to its environment? What do adaptation, growth, reproduction and 

evolution look like over time? This chapter has presented a general outline of the key 

components of living according to current living systems theorists. The terms used have been 

intended to be taken literally. In the next chapter they become metaphors. If we look at the target 

domain of mathematics through the source of this living systems framework, does it make sense? 
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Does the language of living systems lead to metaphors that are obvious and logical, not obscure, 

but fundamental? Do these metaphors have consistencies with prior metaphors? Do they invite 

new understandings? I now provide my interpretation of this metaphor as one potential 

interpretation and an invitation for discussion about living mathematics. 
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CHAPTER FOUR: 

Making a Metaphor 

 

Furthermore, if we consider the plane of consistency we note that the most disparate of things 

and signs moves upon it: a semiotic fragment rubs shoulders with a chemical interaction, an 

electron crashes into a language, a black hole captures a genetic message, a crystallization 

produces a passion, the wasp and the orchid cross a letter . . . There is no ’like‘ here, we are not 

saying ’like an electron,’ ’like an interaction,’ etc. The plane of consistency is the abolition of all 

metaphor; all that consists is Real.  

(Deleuze & Guattari, 1987, p. 90) 

 

Mathematics has been assigned a variety of metaphors through humankind’s efforts to notice 

its attributes and devise ways of interacting with it. It is a form in Platonism, a structure in 

Structuralism, a construction in Constructivist philosophies like Intuitionism, a set of rules and a 

game in Formalism, and a human condition in Social Constructivism and Embodied Mind 

theories. In all of these, mathematics is not its own maker. It has no independent self, no 

acknowledgement of its will to exist, and no needs. Orientationally it only goes one way along a 

predictable trajectory, and ontologically it only responds and never provokes. These metaphors 

define our thinking about this abstract entity in the absence of a tangible, finite, concrete 

existence. They contribute to the evolution of mathematics, and making conscious our 

metaphorical understanding of mathematics enables us to choose our metaphors more wisely, 

and to be aware of the mathematical and social implications of our choices. It is within our 

human abilities to be thoughtful about the metaphors we use, to choose and explore new 
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metaphors, and most importantly to be aware that they are indeed metaphors, even if we often 

use them without thinking about this at all. I propose that exploring the metaphor “math is alive” 

is possible because our understanding of mathematics sufficiently correlates in experience with 

our understanding of living systems. In this way describing mathematics as a living system can 

be seen as making a “class inclusive assertion” (Glucksberg as quoted in Gibbs, 2008, p. 68) 

regarding correspondences in characteristics and similar behavior in their fundamental features. 

 

 

Potential Mappings 

 

“Math is alive” works well as a new metaphor because the majority of new metaphors are 

structural (Lakoff & Johnson, 1980, p. 152), comparing one entity to another, and here 

mathematics is compared to a living system in a linguistically structural way. Although it gives 

rise to other orientational and ontological metaphors, the foundation is comfortably structural. 

Because it has a similar form to metaphors we already use for mathematics and follows the 

underlying structural metaphor “mathematics is a thing” that all philosophies of mathematics 

embrace, be it an outside structure or a human condition, it is also a conventional metaphor as 

most new metaphors are (Lakoff & Johnson, 1999, p. 149). Just as Plato compares mathematics 

to a type of form, “math is alive” compares mathematics to a type of system. It is a structural 

metaphor that aligns with our current use of metaphors for mathematics, and this makes it a good 

candidate to become a new metaphor, because we can use it to describe mathematics with the 

linguistic assumptions that we are familiar with and accustomed to. We already use a variety of 

growth-based metaphors in our language around disciplines, as we talk about fields of study, 
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branches and roots. This metaphor extends and elaborates metaphors already in use, while also 

existing in comparison with these other metaphors. It has the potential to become a primary or 

grounding metaphor, because it speaks to the fundamental existence of mathematics. As a 

potential primary metaphor, living mathematics implies a variety of complex metaphors based on 

the specific characteristics of a living system.  

I intend to demonstrate that the complex metaphors generated by the metaphor “math is alive” 

can be understood and make sense given the language of mathematics philosophy and the 

language of living systems. I will explore what mathematics is composed of and how it 

corresponds to the pattern of organization of a living system. I will also consider how 

mathematics maintains itself, at a state far from equilibrium in constant interplay with its 

environment. Finally, I will propose that mathematics adapts and evolves as a being in time 

corresponding to the experience of a living system. Just as the seed looks nothing like the oak 

tree it has become, sometimes new math seems unrecognizable at first. By the end of this section 

I hope to have shown that this metaphor not only works, but works well as a way in which to 

speak about mathematics. If you consider mathematics as a living system, you see its behaviours 

as something different than they appear through current metaphorical lenses. You begin to ask 

questions about how it lives and grows, how it changes unexpectedly, and what our role is and 

what it is not. When we live life with this metaphor we invite it to become a part of our everyday 

experience, and a part of the experience of very small children who see us treat mathematics as 

though it is alive. Through Johnson’s theory of conflation (Lakoff & Johnson, 1999, p. 46) 

children may truly be able to experience it as a primary metaphor. When discussing large 

mathematical change, Lakoff and Núñez (2000) said, “How do you accomplish such a complete 
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paradigm shift? How do you utterly change from one mode of thought to another, from one 

system of concepts to another? The answer is, via conceptual metaphor” (p. 309). 

Thus, what I try to do in this chapter is to use the defining properties of living systems as they 

were introduced in chapter two and try to demonstrate how well these properties can fit as 

properties of the target domain of the metaphor “math is alive”, i.e. the discipline of 

mathematics.  

 

Pattern of Organization 

 

Mathematics has a pattern of organization that is consistent with the pattern of organization of 

living systems. Some current and past philosophies have attempted to define this pattern as a 

building as in Structuralism, and in Constructivism including Intuitionism, or even in the idea of 

a form presented in Platonism. Other philosophies have used a game with a set of rules as the 

primary metaphor on which to base our mathematical conceptions. Some newer philosophies 

such as Social Constructivism and theories of Embodied Mind situate their metaphors in human 

being and interaction as tool-like entities. In fact, the fundamental features of mathematics’ 

pattern of organization correspond well with that of a living being, and this metaphor allows 

mathematics to be both a being unto itself and a feature of the human mind, resolving 

dichotomies created by other philosophies. In this next section I intend to reflect on class-

inclusive assertions that reflect correspondences in our experiences and understanding of 

mathematics and living systems wherein mathematics exhibits nested autonomy, is an open 

system with operational closure, exhibits extreme sensitivity to initial conditions, and is 

inherently unstable. Given that we are able to make sense of these mappings and that they have 
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meaning, this metaphor becomes applicable and potentially useful, which is what I want to 

demonstrate in this chapter. 

Mathematics is an autonomous unity. If it were not, we would not be able to separate it from 

other like and unlike entities. For example, it is clear to us that mathematics is not a chair or a 

banana or a boardroom meeting. Likewise, we are able to separate mathematics from items in its 

own group. We know that mathematics is not science, language arts or music, although this is a 

trickier distinction as attributes of mathematics show up in these other concepts. Music, for 

example, can be analyzed mathematically, but application of mathematics to music is not 

necessarily inherently a part of music. Mathematics is also distinct from other living systems 

such as cells, trees, and humans. The distinctions in all areas are created by the existence of a 

boundary constructed by the entity itself: “An important characteristic of living systems is that 

their autopoietic organization includes the creation of a boundary that specifies the domain of the 

network’s operations and defines the system as a unit” (Capra, 1996, p. 98-99). Mathematics 

defines what it is to be mathematics. Leslie White’s discussion of mathematical growth and 

change from an anthropological perspective provides support for mathematics remaining an 

autonomous system:  

 

The process of mathematical growth is, as we have pointed out, one of interaction of 

mathematical elements upon each other. The process requires, of course, a basis in 

the brains of [humans] just as a telephone conversation requires wires, receivers, 

transmitters, etc. But we do not need to take the brains of [humans] into account in an 

explanation of mathematical growth and invention any more than we have to take the 
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telephone wires into consideration when we wish to explain the conversation it 

carries. (White as quoted in Hersh, 2006, p. 313)  

 

The boundary is constructed so that it can interact with the environment and with the contents of 

the living system. But what is the environment of this type of living system? With other 

disciplines and systematic ideas, mathematics exists in the conceptual domain, or what White 

refers to above as “the brains of men [humans]”. According to Capra, Varela and Maturana 

(Capra, 2002, p. 34), thinking is the domain of living. Not in a conscious, Cartesian sense, but in 

the sense that cognition is the process by which living beings continue to live and reproduce. 

Mathematics as a living being not only exhibits cognition as it creates its own living, but 

manifests itself in the space created by mass human cognition; it is cognition within cognition. 

The mass mind of humans is intended quite literally, and in this context referes only to human 

cognition (taking for granted at this time the cognition of other living things). Humans exhibit 

cognition, and many humans together “think together” as a functional of the history and culture 

of communication. As will be noted there are geographical and social regions of this mass mind 

that are local, such as different occupations, locations, or intensities. For the purpose of this 

metaphor, human cognition within each human and as a part of communication between humans 

will be presented as a potential area or landscape environment.  

There appears to be some similarity here between this abstract unity in the conceptual space I 

am describing and the heavenly realm of Platonic forms. A key difference between Platonic 

conceptions of a distinct form, untouchable in an abstract realm, and a living system is that this 

living form interacts with and defines itself in relation to its human cognitive environment. It 

designs its boundary to create the potential for selective exchanges and combined actions. 
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Mathematics is not separated from humanity as a distinct form or as a system unto itself as in 

Logicism or Formalism, nor is it solely a product or action of humans as in Social Constructive 

and Embodied theories. The metaphor of a living system allows mathematics to be distinct while 

still existing within an interactive space created by and modified by human cognition, 

consciously and unconsciously through cognitive and communicative acts. It seems clear to me 

that we do not have absolute control over what mathematics is, and that the system of 

mathematics itself determines its fundamental form and being in relation to its environment. 

As a nested system, mathematics interacts with a variety of other living systems, assigning it a 

new, active ontological metaphor. In its environment, it exists within a system of subject matters, 

but also within a system of neurons and hardwiring. In this way, it differs from Luhmann’s view 

of social systems that emphasizes a systems-within-systems approach (Luhmann, 2013; Mingers, 

1992, p. 231). This is more consistent with Maturana and Varela’s (1987) view of nesting and 

Capra and Luisi’s (2014) use of the term “interlocked”, which is non-hierarchical and allows for 

more metaphorical inclusion and possibility: “The interaction between the living organism and 

the environment is a dynamic one based on co-emergence, where the living organism and the 

environment become one through cognitive interactions” (Capra and Luisi, 2014, p. 143). 

Mathematics, in its environment of the mass human mind, interacts with its environment through 

its boundary mechanism, and through this is also able to interact with other living systems, and 

even physical objects in the environment. When we measure the couch, mathematics interacts 

with us and with it, and, importantly from this living system view, all those involved and alive 

will learn from this experience. The couch will learn nothing and eventually decay, but more on 

that later. 
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For mathematics to be an open system with operational closure, it needs to exchange matter 

and energy with its environment. It would be different from a closed system that follows a 

predictable trajectory and, in Prigogine’s (1980) view, is only able to exchange energy with its 

environment, not matter or information (p.78). Platonic mathematics is a closed system. 

Everything is already in place, and we could know its inevitability if only we were wise enough 

to see it. It is separate from matter, and the stuff of the world does not interact with or change it 

(Gowers as referenced in Hersh, 2006, p. 183; Jacquette, 2006, p. 238). Structuralism, too, is 

limited to abstractions that can be built, and Formalism allows mathematics only to grow from 

itself, not from its interactions with others or the world. Living mathematics, on the other hand, 

metaphorically uses matter and energy in its human mass mind environment, as it would not 

exist without its applications to our perception of the physical world. Without a world for 

mathematics to interact with, it is unlikely it would have ever been noticed.  

Next I ask what it means for mathematics to exhibit extreme sensitivity to initial conditions. 

Mathematics came to be in the environment of human minds. It is limited by the characteristics 

of this space, including human physiology and its relation to human perception and human need. 

Basic neural processes of subitizing and categorizing characterize early mathematics. Lakoff and 

Núñez (2000) note that “Very basic arithmetic uses at least the following capacities; subitizing, 

perception of simple arithmetic relationships, the ability to estimate numerosity with close 

approximation (for bigger arrays), and the ability to use symbols, calculate, and memorize short 

tables” (p. 26). All human cultures appear to have mathematics. In a living system view, all 

cultures appear to interact with mathematics. Yet different geographical areas of the mass mind 

begin to differentiate the part of mathematics in their particular environment, and mathematics 

does not develop the same as cultural factors emerge, highlighting some abilities and 



MATH IS ALIVE 70 
 

downplaying others, while ascribing certain metaphors that lead mathematics in one way or 

another. Unlike the inevitability of Intuitionism, living mathematics is not limited and defined by 

the logic of the mind, but is instead influenced and nurtured by it.  

Barton (2009), who has explored linguistic cultural variations in the development of 

mathematics, says that,  

 

if mathematics had developed through a language where the path metaphor was 

dominant, then the mathematics that would have emerged would have been 

dominated by function, or some equivalent concept, rather than by sets. We have 

every reason to believe that this mathematics would have been just as powerful, and 

just as widely and effectively applicable: but it would have been different. (Barton, 

2008 p. 94)  

 

In Núñez’s (2011) extensive research into number line he concludes there is “no innate number 

line in the human brain” – that this is a cultural feature of mathematics reflecting a particular 

orientational metaphor that is not seen in all cultures although it may have come from some 

similar initial noticing about number (p. 654). As a living system, even the smallest difference in 

initial conditions can lead to drastically different forms of mathematics, or parts of the 

mathematical living system. Barton (2008) has also asked “Would mathematics have developed 

differently if it had developed through languages in which numbers were verbal?” (p. 6). The 

anthropological study of mathematics says yes. Although the Intuitionists may have been correct 

that math itself is not a language, they were wrong to assume it is entirely separate from 

language and cultural expression. Parts of mathematics can develop in vastly different ways, 
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even starting from very similar beginnings. This is also true of mathematics in its application. 

Richard Noss (2002), in his studies of epistemologies in mathematics, suggests that there are 

actually a variety of types of mathematics situated in various human actions that can operate as 

an identifiable part of the whole system while performing their own functions. “Abstractions 

constructed within concrete situations may compensate for their lack of universality by their gain 

in expressiveness” (Noss, 2002, p. 12). For example, engineers use and develop certain types of 

mathematics that are different from the types of mathematics used and developed by accountants. 

Although these parts of mathematics have similar initial conditions, the slightest deviation, such 

as with geographical location or occupation, can have a large-scale effect on how that part of the 

living being grows and becomes. 

As well as being sensitive to initial conditions, mathematics as a living system is also 

inherently unstable, leading to large and unpredictable changes through time. The environment 

of human consciousness provides space for mathematics to interact with other concept systems 

and undergo change. Leslie White points out that “Ideas, like other cultural traits, interact with 

each other forming new syntheses and combinations. Two or three ideas coming together may 

form a new concept or synthesis” (White as quoted in Hersh, 2006, p. 312). White notes that 

human beings are not in control of this change; the change comes from within mathematics itself 

(White as referenced in Hersh, 2006, p. 307), again ascribing it a metaphorical ontology of 

power it has never had before. The system of mathematics reaches critically unstable points that 

bring forth this change, and this instability is caused by the metaphorical collision of concepts 

across the human mass mind as the environment of mathematics. It is mathematics’ pattern of 

organization that is designed to interact with the environment while defining itself that enables 

this change.  
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Mathematics has a pattern of organization consistent with a living system. It is autonomous 

because it is consistently identifiable as a certain type of thing across all areas of the mass mind 

and it maintains a boundary between it and the other. Mathematics is an open system with 

operational closure because all the information about what it is comes from mathematics itself, 

yet it relies on the environment of the human mass mind to survive. It exhibits extreme 

sensitivity to initial conditions, because same ideas can develop differently in different contexts, 

creating vastly different areas within mathematics. And finally, mathematics is unstable because 

it never reaches a state of homeostasis, but is always growing, changing, and complexifying as a 

result of its search for balance. 

 

Maintenance 

 

For a living system to be an apt metaphor for mathematics, mathematics must be engaged in 

the process of maintaining its boundaried, identifiable living pattern of organization despite 

environmental fluctuations, and in the face of entropy accumulation. The pattern of organization 

of mathematics allows for it to maintain itself as a living being, but the process by which this 

occurs is self-organization. To be a living being, mathematics must be autopoietic, which means 

that its sole purpose is to maintain itself through inner processes of self-regulation controlled by 

the system (Maturana & Varela, 1987, p. 43). Autopoietic living systems self-organize and are 

challenged to do this even in far from equilibrium states (Prigogine, 1989, p. 399). The 

fundamental characteristics of the process of self-organization can be seen as characteristics of 

mathematics and the way it behaves. I will now consider how the maintenance properties of 

living systems including matter and energy exchange, information use, the use of feedback loops 
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with decentralized control, and the constructive use of entropy can be seen metaphorically in 

mathematics in significant and fundamental ways that enable the potential of a living systems 

metaphor. 

Capra’s (1996) first characteristic of self-organization is creativity (p. 85). In order to regulate 

and maintain themselves at far from equilibrium states and in unanticipated conditions, living 

systems must be able to produce novel responses and make adjustments to their very way of 

being. Again, we see new ontological metaphors entering the dialogue, as mathematics is 

metaphorically enabled to do things it has never done before in an ongoing process of self-

determination. The process of self-organization allows living systems to find this state of 

dynamic balance. Mathematics changes, but it also is remarkably able to stay consistent even 

when faced with enormous pressure. What makes mathematics be mathematics never changes. 

The point of self-organization is to stay as much the same as possible in order to create the 

potential for beneficial growth and gain, even if the world around changes and challenges the 

survival of the system. Mathematics cannot create greater mathematics unless it is first able to 

maintain a consistent unity. Mathematics has mastered the ability to create the perception that it 

is a unity, and that it is the same thing it has always been, even when it is quite different. This 

accounts for the dominance of philosophical views of mathematics as a logically predetermined 

entity. This is due to its processes of self-organization, an open system able to constantly make 

adjustments in response to changes in the environment and inviting the possibility of difference 

through the dynamic nature of its quest for stasis. “Networks on the boundary between order and 

chaos may have the flexibility to adapt rapidly and successfully through the accumulation of 

useful variations. In such poised systems, most mutations have small consequences because of 
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the systems’ homeostatic nature” (Kauffmann as quoted in Capra, 1996, p. 205). The first trick to 

being alive is simply maintaining a state of ongoing unity. 

To facilitate maintenance, a living system exchanges matter and energy with the environment. 

This is not to say that mathematics as a living system interacts with the matter of reality in the 

sensory way that humans do. Mathematics interacts with the reality that exists within mass 

human consciousness, as humans work together to define and relate perceptions and concepts, 

and the metaphorical matter and energy present in that environment. In this ontological 

metaphor, the matter is in mathematics’ taking in and breaking down of physical reality. Our 

thinking provides energy. When we interact with mathematics both consciously and 

unconsciously, we power it by providing the ideas, questions, and preferences we have.  

Yet the information for what it is to be mathematics and create mathematics is entirely 

contained within mathematics itself, like it is the case for Capra and Luisi’s (2014) fly, wherein 

“all information needed for a fly to be a fly is contained inside the fly” (p. 133). Humans do not 

control what mathematics is, which is why Fallibilist theories break down. If we did, we could 

consciously make it anything we wanted it to be. Instead, all the information for what 

mathematics is, is contained by and determined by mathematics itself. It will be greatly affected 

by its dynamic interplay with the environment, but it will respond in its own way. “Mathematical 

realities thus have an existence independent of the individual mind, but are wholly dependent on 

the mind of the species” (White as quoted in Hersh, 2006, p. 307). 

Mathematics is non-linear because its future cannot be predicted with any certainty. Previous 

orientational metaphors for mathematics have seen it proceeding only in one direction – forwards 

or upwards, but a living systems metaphor allows it to move and grow in multiple directions at 

once. A living system relies on information gathered by feedback mechanisms in its system to 
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function within its environment, and these mechanisms operate in multiplicity with decentralized 

control. Feedback loops are mechanisms of information exchange within the system that tell it 

how to behave. Feedback loops in living systems operate on a small, local level, not requiring all 

the resources of the whole (Ho & Popp as referenced in Stein & Varela, 1993, p. 188; Varela, 

Thompson, & Rosch, 1991, p. 88). In mathematics, feedback loops also occur across multiple 

branches and applications including various cultures and occupations, and these parts of 

mathematics operate locally to maintain their relationship to the mass mind environment. In 

different areas of the mass mind, both in the mind itself and across its global landscape, 

mathematics proceeds in a particular way that does not always relate to any other part of 

mathematics, and is not controlled by an outside force. The role of feedback is to absorb cues 

from the environment and help to regulate exchanges in a way that preserves balance. Negative 

feedback is self-regulating (Capra, 1996, p. 59) and this occurs metaphorically in mathematics 

when concepts are reproduced the same over and over again with the goal of attaining the same 

result. Negative feedback loops generate the predictability and repetition of mathematical 

concepts and ideas. When you give mathematics seven and three and it gives back ten, negative 

feedback occurs keeping mathematics the same and defining its boundaries and self. 

Alternatively, positive feedback loops amplify perturbations to the system instead of balancing 

them, and can lead to sudden change that is not always predictable (Capra & Luisi, 2014, p. 159). 

The system is forced to create new information in order to maintain the information it already 

has. In mathematics, we see this as new branches of mathematics form and new applications 

arise in occupational or cultural usage to address changes in the environment of our mass mind. 

While negative feedback maintains mathematics by creating consistency and reliability, positive 

feedback allows it to respond to the environment by changing in order to remain consistent and 
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reliable. As it changes, it complexifies in a systems view, becoming less predictable, and new 

ways of behaving become possible. Its trajectory is again changed, and it continues on with its 

particular non-linear way of being. Although feedback loops operate in local, decentralized 

ways, restructuring in any part of the system can set off a cascading effect on the whole and lead 

to even greater complexification, as mathematics struggles to remain a unity and keep on living. 

Mathematics self-organizes because it has to take in matter and energy in order to regenerate 

and maintain itself in a changing and sometimes far-from-equilibrium mass mind environment. 

Collective human cognition can be seen as being in a far from equilibrium state when it is its 

most disordered or most conflicted, such as in the moments before a paradigm shift or an 

innovation. Despite changes in how or what humans think, mathematics has to try to stay 

recognizably the same. As mathematics engages in the processes of breaking down and 

organizing matter and energy it creates entropy. According to the second law of 

thermodynamics, the amount of useful energy in a system decreases as it dissipates through the 

systems processes and entropy increases, pushing the system to greater states of disorder. This is 

why closed systems slowly degrade and break down over time. As mentioned in chapter three, 

living systems are instead able to subvert the second law of thermodynamics by taking in 

complex organic molecules and low-entropy energy, extracting what is needed for the system, 

and excreting the unused components as simpler waste products and high-entropy energy in the 

form of heat. In this way, they gain available energy and complexify without the addition of 

disorder. Returning to Schrödinger’s (1967) language, living systems “suck order from the 

environment” (p. 79) while avoiding the chaos that accompanies it. Is this not exactly what 

mathematics does? Mathematics is able to take in our reality through its interaction with the 

environment of our minds as a highly complex system, create order from this noise, and avoid 
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being damaged in the process. It even leaves behind metaphorical waste matter: the mathematics 

textbook is not mathematics, nor is the spreadsheet or the blueprint or even thinking about an 

equation. This is where the simplified broken down products of mathematizing something are 

recorded. Like living beings, the environment can use the waste created. Our mass human mind 

and any other systems within it utilize the products of mathematics. Mathematics is an open 

system, allowing it to exchange with the environment to attain and construct the materials for its 

own regeneration. It should degrade from the entropy created in these processes, but instead it 

manages entropy production effectively, and even invites the creative potential of its turmoil. 

Mathematics maintains itself, even in far-from-equilibrium states resulting from disorder and 

conflict in the human mass mind, because it behaves like a living system. When the maintenance 

language of living systems is applied to mathematics metaphorically, the resulting complex 

structural, orientational and ontological metaphors both make sense and invite new ways of 

imagining what mathematics is. Mathematics engages in the exchange of matter and energy with 

the environment as it takes in the energy of our thinking together, breaks down the matter of our 

mass human minds thinking and perceiving together, and uses the products to recreate its self. 

Mathematics is “information tight” (Capra & Luisi, 2014, p. 93) because it uses the information 

in its system to recreate itself and only the information in its system. Humans do not make 

mathematics. Mathematics makes itself. Mathematics has independent feedback loops operating 

with decentralized control as different areas of mathematics work in parallel to regulate 

mathematics and keep it consistent. Amplified positive feedback in one area can affect the 

whole, as increased disorder invites monumental change in order for mathematics to remain a 

unity. Mathematics defies entropy by “creating order out of chaos” (Prigogine & Stengers, 1984, 

p. 287). The most fundamental attribute of mathematics is that it seeks to break down and create 
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order and consistency, but by doing so particularities and inconsistencies are often a by-product 

of the process. Mathematics, like a living system, is able to use this entropy to invite what was 

never possible or imaginable before. The complex metaphors contained in this dialogue on the 

maintenance of living systems correspond with our experience of mathematics deeply enough to 

assert the primacy of the metaphor “math is alive”. 

 

Growth, Adaptation and Evolution 

 

Living systems are designed to reproduce their own components, and this is the process that 

we recognize as living. However, the reproduction of self does not necessarily constitute 

reproducing another living entity of the same type. As Maturana and Varela (1987) have noted, 

living beings are alive even when they are not reproducing and may never reproduce (pp. 57-58). 

It is not because I have children that I am alive, although it is because I am alive that I have 

children. “It follows that the proper evaluation of the phenomenology of living systems, 

including reproduction and evolution, requires their proper evaluation as autopoietic unities” 

(Maturana & Varela, 1980, p. 96). It is the living being’s pattern of organization allowing for 

self-organization in an unpredictable environment that enables it to be alive, although it is a 

unique feature of living beings that they tend to reproduce new living beings of the same type, 

allowing for mass reorganization and evolutionary change. Metaphorically I ask how the living 

system’s processes of growth, adaptation, and evolution correspond to fundamental features of 

mathematics. This entails examining the characteristics of these processes shown in living 

systems, including their autopoietic nature, time, irreversibility, distance from equilibrium, 

bifurcation points, and emergence.  
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The only thing that mathematics makes is mathematics, and sometimes even more 

mathematics. Mathematics as a dynamic living system is complex, and as choices are made and 

feedback loops form to regulate and replicate the mathematics that exists, mathematics develops 

a history. This history affects all subsequent mathematics. The autopoietic nature of mathematics 

is what allows for it to change, even though autopoiesis is designed to preserve the living system. 

The system is in a state of constantly trying to reach an impossible homeostasis – hence the 

appearance of Platonism. It is important that there is a sense of what mathematics is and that this 

is a predictable and reliable being. The rose stays a rose and the fish stays a fish. Speaking about 

cells, Capra and Luisi (2014) say, “There are very many transformations taking place; however 

there is cellular self-maintenance – the fact that the cell maintains its individuality” (p. 130). But 

this process of trying to stay what one is is the very process that enables the being to live and 

grow and become different and unique. It is because mathematics must live in an environment 

that forces it to adapt and challenges its processes of self-regulation that it is forced to adjust and 

become, and begin to be drastically different than it was, but always in relation to what it has 

been. Through autopoiesis the seed becomes a tree, and we are amazed at how intricate it has 

become, but only sometimes surprised from day to day, when something emerges that seems to 

have never been there before, but is somehow able to burst into existence. Through mathematics’ 

interplay with its human mass mind environment it is forced to change in order to stay the same. 

Mathematics as a living being creates only itself and is therefore autopoietic, which is the 

fundamental factor in living beings enabling growth and adaptation.  

 

In fact, autopoiesis implies the subordination of all change in the autopoietic system 

to the maintenance of its autopoietic organization, and since this organization defines 
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it as a unity, it implies total subordination of the phenomenology of the system to the 

maintenance of its unity. (Maturana & Varela, 1980, p. 97) 

 

A living system becomes in every moment from what it is, yet it is never limited to a single 

trajectory. Capra (1996) says that “The behaviour of a dissipative structure far from equilibrium 

no longer follows any universal law but is unique to the system” (p. 182). This self-determined 

becoming is a powerful new ontological metaphor. Mathematics is not a closed system that 

degrades and breaks down over time, reaching maximum entropy and falling apart. Mathematics, 

like a living system, gains through time, taking in matter and energy and creating and recreating 

itself with increasing complexity and increasing potential for unexpected and monumental 

change. Mathematics is greater than it was when it began and has developed into an extremely 

complex, particular, and dynamic living being. As well, time cannot be undone. All adaptations 

of a system over time affect the future potential adaptations, so as mathematics complexifies and 

grows over time, the potential for future adaptations is altered. The response of the system is not 

the same, no matter what time it occurs at. Despite coming only from its own past, mathematics, 

like a living system, does not always respond predictably. The Intuitionists were astute to notice 

the unraveling of mathematics in time, but not astute enough to realize that the outcome was not 

an eventuality but a possibility. Living systems such as mathematics can change in different 

ways, responding differently to different perturbations over time, like Capra’s scenario where 

kicking a rock is compared to kicking a dog (Capra & Luisi, 2014, p. 136). The dog exhibits a 

certain reaction from an infinite variety of possible responses and this affects every response to 

follow, with a mixture of expected and unexpected results. Mathematics, like the dog, learns and 

is changed forever in ways we cannot predict with certainty, especially as time goes on. The rock 
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does not learn or change, it only decays predictably until it is gone, just as the couch does in my 

previous example.  

All systems eventually reach maximum entropy and die. The difference between closed and 

open systems is that closed systems have an absolutely predictable trajectory through time, while 

open systems regenerate and improve prior to decaying, and have the potential for multiple 

possible trajectories. Yet from all potentials, one trajectory is followed and is irreversible. 

Irreversibility is the symmetry breaking process by which a change cannot be undone (Prigogine, 

1980, p. 196). This is how the history of a living system in time develops. “Living structure . . . 

is always a record of previous development” (Capra, 1996, p. 191). Mathematics has a history. It 

has a way of being that has developed through time and that cannot be undone.  

 

History of mathematics is an explanation, which gives us a picture that takes into 

account not only the final result of one mathematical theory, but its origin and 

development too. And that, I believe, lets us understand better, how mathematics was 

born and grew. (del Palacio as quoted in Hersh, 2006, p. 240).  

 

Although mathematics itself is orientationally diverse in the “math is alive” metaphor, the arrow 

of time only goes one way. Changes, like those seen in the philosophy of mathematics as 

paradigms shift and collide, will not go away, and even in rejecting Platonism, we acknowledge 

that it has led to our conceptions today, and we metaphorically cling to it even now.  

Living systems are able to facilitate these irreversible processes of gain (and not loss) by 

using entropy as a force of creativity instead of disarray. When the energy of our thinking 

becomes disordered or inconsistent, mathematics finds new ways to break it down and continue 
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to release the high-entropy energy of our complexified thinking and the waste of our broken 

down mathematical by-products through our documentation, artifacts, applications, and ideas. 

Mathematics is enabled through the matter and energy it consumes to facilitate irreversible 

processes that enable complexity, creativity, and unpredictability.  

As mathematics grows, complexifies and plods along its non-linear path, parts of the system 

may reach great distances from equilibrium as a result of irreversible processes pushing it in 

unforeseen directions. It is at these great distances that the greatest change is possible. 

Mathematics grows by responding with increasing complexity as it maintains itself dynamically 

and encounters novel situations. At times, mathematics is unable to process what the 

environment thrusts upon it. Positive feedback loops amplify, entropy spirals out of control and 

the system becomes chaotic. Constructive waste needs to be made. This happens in mathematics 

when it meets its greatest challenges; when it is forced to adapt or die due to changes in the 

environment. An engineer needs to build a building, a mathematician needs to create what seems 

to be an impossible proof, a politician needs to balance what seems to be an impossible budget, 

or a child needs to fit what seems to be an impossibly large number of toys in a bin. Because 

mathematics is a living system, it has an array of attractors, including strange attractors. An 

attractor is a tendency towards a certain state (Kauffman, 1991, p. 80). Mathematics must tend 

toward multiple states at any given time as its vast array of types and applications demand it in 

different forms. Metaphorically the attractors in mathematics are its particular tendencies in 

different contexts. When a system has multiple attractors like a living system and like 

mathematics it is more sensitive to changes in the environment as a minor fluctuation disturbs its 

entire phase portrait. Mathematics behaves like a living system in its ability to adapt when 
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threatened with chaos, making significant changes in short periods of time. When mathematics 

struggles to take in its world, significant adaptation is possible. 

As in living systems, the workings of the system (mathematics) over time cause it to become 

increasingly disordered as more ideas interact and create change and growth. Instability shows 

itself as contradiction and inconsistency in mathematics and the system seeks to undergo mass 

reconstruction. There have been many critical points in the history of mathematics, and there 

remain unsolvable problems and vague metaphorical assertions that keep mathematics from 

reaching stasis and make it dynamic and unstable like a living being. It is in these moments of 

extreme disequilibrium that a system is able to reorganize the most, allowing for growth and 

complexification. “The striking emergence of new structures and new forms of behaviour, which 

is the hallmark of self-organization, occurs only when the system is far from equilibrium” 

(Capra, 1996, p. 85). When everything is the most out of place, a vastly new order is possible. 

This is called a bifurcation point in a living system, and mathematics exhibits metaphorical 

bifurcations. These are times when part of the system undergoes a massive reorganization, and 

these changes can sometimes affect the entire system. Here, mathematics is challenged to adapt 

and complexify and the result is not always predictable and can never be undone. We do not 

know what will happen in the future as we continue to perturb mathematics, but the history of 

mathematics shows that it only grows and becomes more robust from this process.  

Mathematics must be alive, because its limits are changeable and complexity increases, based 

on its relation to its environment, but beyond the environment’s control. Like a living system, it 

is enabled through its self-organizing, autopoietic processes to make sudden adaptations at 

bifurcation points in order to self-regulate and continue existing as a distinct entity, shown in the 

vast array of mathematical applications, cultural nuances, occupations, and sub-disciplines that 
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exist. Hersh (1997) reminds us that mathematics encountered several crises in the nineteenth 

century leading to a questioning of geometry that led to the creation of new parts of math 

including infinite sets (p. 137). An example of mass change in the twentieth century occurred 

when Turing tried to solve a code, and no one at the time would have predicted the technological 

world that was to follow. Mathematics grew and changed and adapted both with its own limits 

and that of its mind environment, and over time the development of computing has drastically 

changed the trajectory of mathematics beyond the perturbation of one small part of the system 

for a single purpose (van Leeuwen & Wierdermann, 2000, p. 1139). There are many such 

examples spanning the history of mathematics. They are happening at this exact moment in some 

area of the discipline. Mathematics is alive, and because of this, a small theoretical or 

philosophical change can set off positive, amplifying feedback loops that can result in massive 

changes to the pattern of organization of the system while it preserves itself by continuing to 

assert its boundary and determine its own future. 

When a significant change happens, and something new is created within a living system, this 

process is called emergence. “This spontaneous emergence of order at critical points of 

instability – often referred to simply as “emergence” – has been recognized as one of the 

hallmarks of life” (Capra & Luisi, 2014, p. 116). When a new type of mathematics springs into 

being, it emerges from the internal dynamics of the system. Mathematics makes more of itself 

differently, and often quite suddenly. Emergent change in living systems is often seen at the 

point of reproduction and is perceived as part of the process of evolution towards increasing 

complexity and creativity “The theory of autopoiesis shows that creativity – the generation of 

configurations that are constantly new – is a key property of all living systems. A special form of 

this creativity is the generation of diversity through reproduction” (Capra, 1996, p. 221). Living 



MATH IS ALIVE 85 
 

beings do not have to reproduce or evolve to be alive, but these processes are only done by living 

beings.  

Mathematics is a living being that grows and adapts irreversibly in time, but is it the evolution 

of something else? Will it reproduce? What does evolving look like metaphorically for 

mathematics? It seems to be involved in this process with us. Unlike a biological living being, 

mathematics exists in an environment that is always on the move as human minds die and new 

minds are born. As such, mathematics constantly has to reproduce itself, but it does so bit by bit 

by bit. It takes a generation before mathematics has completed its reproduction, being entirely 

different than it was, and even then, it is still reproducing anew. As we use the products of 

mathematics and provide the necessities for it to grow, we keep it alive and aid in its 

reproduction by passing on this relationship to new minds as they become a part of our mass 

human mind and cultural cognition.  

 

The communication of ideas from person to person, the transmission of concept from 

one generation to another, placed in the minds of men (i.e. stimulated by their 

nervous systems) ideas which through interaction formed new synthesis which were 

passed on in turn to others” (White as quoted in Hersh, 2006, p. 338).  

 

Mathematics stays alive as a single unity throughout its reproduction and evolution, and it is only 

on close historical and structural inspection that you realize you are looking at the offspring of a 

mathematics from long ago. A series of bifurcations, sometimes in the context of the current 

mass mind but often at the point of reproduction when new minds enter or gain access, allow 

mathematics to restructure, renew, complexify, and develop emergent properties never seen 
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before yet clearly within the boundary of mathematics. “Ongoing structural change of living 

beings with conservation of their autopoeisis is occurring at every moment, continuously in 

many ways at the same time. It is the throbbing of all life” (Maturana & Varela, 1978, p. 100). 

Mathematics grows, adapts, and evolves in ways that are remarkably similar to living 

systems. As an autopoietic entity, it maintains itself in a state of dynamic balance where its 

ability to adapt to environmental change invites creative responses. Like a living system, it exists 

in time and is subject to increased entropy but is somehow able to use its own far from 

equilibrium states to create new forms of increasingly complex order. The changes that have 

happened to mathematics over the years cannot be undone. Attempts to go back will never 

succeed because mathematics changes irreversibly as time goes on. The future of the system is 

both entirely dependent on its past and completely unpredictable at the same time. It embraces 

the arrow of time metaphor first seen in Intuitionism, yet invites new multiplicities of 

orientations through increasing complexity. Although every change limits future changes, it also 

enables possibilities that never existed before. Finally, through the ontological metaphor “math 

makes all/more/new math” mathematics reproduces and evolves in ways that are similar to a 

living system. Through its continual becoming in the minds of humans mathematics is able to 

make more significant changes as feedback loops are amplified when impossibilities are 

confronted, attractors change as the needs and abilities of humans shift, and bifurcations are 

reached when massive restructuring suddenly occurs. 
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Conclusion 

 

Mathematics has significant parallels with living systems. It is possible to make statements 

about living systems that are also true for mathematics because it is possible to imagine 

mathematics this way and it makes sense. In fact, the correlations and relations are so evident 

and extensive that the idea that mathematics is alive could constitute a primary or grounding 

metaphor. From this fundamental relationship, a multitude of complex, contextual metaphors are 

possible, including structural, orientational and ontological metaphors. With the early 

introduction of this metaphor, a language can develop that changes the essence of mathematics in 

our mind from an early age when conflation based relationships may still be creating our reality. 

When the metaphor “math is alive” is used, it is implied that an experience of living systems 

corresponds with an experience of mathematics, and the characteristics of the process of living 

become potential metaphors. An exploration of these correspondences reveals that this metaphor 

does indeed provide a wealth of reasonable assertions about the nature of mathematics. First, 

mathematics has a pattern of organization consistent with the pattern of organization of a living 

system. Second, living systems must maintain themselves to avoid decay and flourish in their 

environment. Mathematics does this in the same way that living systems do. It takes in matter 

from the physical reality perceived and understood by human minds and breaks it down, putting 

it in mathematical order, and giving us back simple unifying consistencies of ideas jotted down 

in notebooks, labeled on designs or relayed in a conversation; exchanging what is waste to it 

with the environment that then often uses that waste for its own gain. Finally, mathematics can 

be seen as a living system when we consider its capacity to grow, adapt, and evolve. The pattern 

of organization of mathematics is designed to preserve its self through ongoing processes within 
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the system and exchanges with the environment, but it is also designed to enable adaptation and 

change when it benefits the living system in its relationship with its environment.  

 

A living dissipative structure, such as an organism, needs a continual flow of air, 

water, and food from the environment through the system in order to stay alive and 

maintain its order. The vast network of metabolic processes keeps the system in a 

state far from equilibrium and, through its inherent feedback loops, given rise to 

bifurcations and thus to development and evolution. (Capra, 1996, p. 172)  

 

Because mathematics makes itself, only it can make itself different. This often happens in living 

systems at the point of reproduction, and mathematics reproduces itself through generations of 

humans, gradually becoming completely different. Mathematics is also enabled to grow, adapt, 

and evolve because it has emergent properties. From the most challenging perturbations, the 

most creative and unique features of mathematics are able to emerge.  

Mathematics currently relies on a variety of metaphors from games to forms to constructions, 

and the living systems metaphor is just as reasonable when an examination of the characteristics 

of these systems are compared with the characteristics of mathematics. Inviting the metaphor 

“math is alive” into the conversation is not only apt, but necessary as it highlights the limits of 

our current language and invites new perspectives on how we interact with it. 
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CHAPTER FIVE: 

School Mathematics and Metaphor 

 

“Words are not tools, but we give children language, pens, and notebooks as we give workers 

shovels and pickaxes.” 

(Deleuze & Guattari, 1987, p. 97) 

 

The question of what mathematics is has been answered in a variety of ways in the philosophy 

of mathematics, with almost all of the conceptual views developed throughout recent history still 

playing a role. Formalist views, both objectivist and non-objectivist still abound, often standing 

in contrast to Humanist views. Structuralism is still often found, as one can occasionally find an 

Intuitionist position. However, in the public view, including the perspective taken in school 

mathematics, strict Platonism is still the most prominent philosophy of mathematics. I believe 

that current metaphors in mathematics education “highlight, downplay, and hide” (Lakoff & 

Johnson, 1980, p. 152) a variety of aspects of mathematics to and from students, and in fact, they 

do more to hide the potential of mathematics from students than to highlight or allow for new 

inferences to be built. “The system [of fundamental metaphors] will tend to make experiences 

and facts consistent with it noticeable and important, and experiences and facts inconsistent with 

it invisible” (Lakoff as quoted in Gibbs, 2008, p. 34).  

I will first consider whether school mathematics is separate or not from what we consider to 

be academic mathematics (what mathematicians do) and how it is conceived of. Do philosophies 

of school mathematics reflect philosophies of academic mathematics, and how are they similar or 

different? Next, I will turn to metaphors used for mathematics in schools, returning to the idea 
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that metaphors are fundamental to our understanding of abstract concepts, and using the 

understanding of what mathematics is or could be that was developed in chapter two to clarify 

the potential meaning of the metaphors being used and ground them in the tradition to which 

they refer. This includes a brief questioning of the way we understand school subjects in general, 

and an analysis of a selection of the research done into the metaphors used in school to describe 

mathematics by teachers and students. Educators state their philosophical beliefs about 

mathematics as a concept without even intending to through their regular use of metaphor in 

mathematical experiences. The language teachers choose perpetuates certain metaphors and the 

philosophies they draw on.  

I can then ask in the second part of this chapter whether or not the metaphors we use are our 

best choices, or if a new metaphor might change the way we interact with mathematics in 

schools and enable students to realize their potential and find themselves in the mathematics that 

they live. I believe that I can show that a living systems metaphor would be more appropriate and 

that this metaphor can open up new and novel possibilities for thinking about mathematics at 

school. 

 

 

School Mathematics as a Localized Area of Mathematics 

 

Reuben Hersh, in his 1991 paper “Mathematics has a Front and a Back”, discusses the 

difference between the public/school view of mathematics and the real work of mathematics 

using the metaphor of a front and back as there would be in a restaurant. “In general, the front is 

the region in which the public is admitted, where service is performed; the back is a region 
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restricted to professionals, where preparations are made to provide a service” (Hersh, 1991, p. 

127). The front does not have access to the back, where the decisions that affect them are being 

made, and the back only cares that the front is happy and able to make good decisions. Hersh 

(1991) identifies the members of the front and the back in the way they access and utilize 

mathematics. “The “front” of mathematics is mathematics in “finished” form, as it is presented to 

the public in classrooms, textbooks and journals. The “back” would be mathematics as it appears 

among working mathematicians, in informal settings, told to one another in an office behind 

closed doors” (Hersh, 1991, p. 128). Hersh (1991) goes on to identify the front of mathematics as 

myth-like. It is a belief in a certain way of doing math that is not representative of what actual 

mathematics is. “Mathematics, too, has its myths. One of the unwritten criteria separating the 

professional from the amateur, the insider from the outsider, is that the outsiders are taken in 

(deceived), and the insiders are not taken in” (1991, p.129).  

Anne Watson describes the difference between what she calls “authentic” mathematics and 

school mathematics similarly to Hersh:  

 

Mathematics as a discipline, by contrast to school mathematics, is concerned with 

thought, structure, alternatives, abstract ideas, Deductive reasoning and an internal 

sense of validity and authority . . . The concerns of school mathematics pull learners 

in directions that differ from these. (Watson, 2008, p. 6)  

 

Davis and Simmt (2006) argue that there indeed should be a “mathematics for teaching” that 

has its own individual traits distinct from mathematics as a discipline, although it would still be a 

part of this mathematics: “We argue further that mathematics-for-teaching might properly be 
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regarded as a distinct branch of mathematics” (Davis & Simmt, 2006, p. 294). However, they 

also describe the act of teaching mathematics as a way of enabling students to be a part of the 

authentic mathematics that Watson refers to. Not a preconceived certainty, but a social discourse 

and conceptual exploration.  

 

For teachers, knowledge of established mathematics is inseparable to historical 

emergence of core concepts, interconnections among ideas, and from the knowledge 

of how mathematics is established. Of significance are insights into analogies and 

images that have come to be associated with different principles” (Davis and Simmt, 

2006, p. 297).  

 

Although Davis and Simmt argue for a distinct way of looking at the teaching of mathematics, 

the end goal appears to be the fostering of more authentic mathematical experience in the 

classroom, similar to Watson’s interest in reforming mathematical education: “that school 

students should be introduced to authentic mathematical activity such as is practiced by 

professional mathematicians” (Watson, 2008, p. 3).  

 

The Pervasiveness of Platonism 

 

Current mathematics comes with a variety of different philosophies, metaphors and 

conceptions. Certain views evolve from others, and some fade into the past. Pure Platonism, the 

view of an otherworldly perfect math, tends towards the latter in current academic mathematics, 

with Formalism’s game metaphor resolving its spiritual side. However, many scholars working 
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with mathematics education claim that this view is still at the forefront of how we teach math in 

schools. Marcelo C. Borba and Ole Skovsmose (1997), working in the philosophy of 

mathematics education, have said,  

 

Phrases such as ‘it was mathematically proved’, ‘the numbers express the truth’, ‘the 

numbers speak for themselves’, ‘the equations show/assure that . . .’ are frequently 

used in the media and in schools. These phrases seem to express a view of 

mathematics as an ‘above-all’ referee, as a ‘judge’, one that is above humans, as a 

non-human device that can control human imperfection. (p. 17)  

 

Peter Charles Taylor (1996), who advocates for conceptual change, refers to a system of myths 

when speaking about mathematics in schools:  

 

Modern school mathematics continues to be influenced strongly by the rationalist 

myth of cold reason. The pedagogical implications of this myth include a belief in the 

certainty of mathematical knowledge which leads to the perception that disembodied 

mathematical facts are knowable by means of an asocial cognitive activity of pure 

reason that transcends human lifeworlds. (p. 163) 

 

When children ask mathematical questions, the answer too often involves a sense of “that is 

just how it is”. Even if that is how it is, expressing a willing ignorance of why gives mathematics 

a sort of power and authority over truth and reality. Mathematics is actually quite messy and 

complicated, but this can be avoided if one chooses the right question. The structure of schooling 
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with large classes and assessment expectations requires that messiness be avoided. The best 

questions in schools are those that conform to Platonic expectations with straightforward right or 

wrong answers. This type of question functions well on evaluations of knowledge, and can be 

easily administered and explained to large groups. 

 

The teacher, the textbook, and the answer book make up a united authority which 

hides the background of the correction. It becomes unnecessary for the teacher to 

specify the authority that is behind different types of corrections. The students are not 

met with argumentation but with references to a seemingly uniform and consistent 

authority. (Borba & Skovsmose, 1997, p. 19)  

 

In their research on teaching multiplication, Davis and Simmt (2006) found that teachers 

came to realize that there was no one right answer to the question of what multiplication is, and 

that the major stumbling blocks the researchers noticed in coming to this realization were that 

teachers themselves did not have enough experience with this way of thinking about 

mathematics and that most of the teachers did believe that “mathematics is a purely logical 

enterprise” (p. 303). Teachers, like students, are expected to know the right answer, and their job 

is to clear out any clutter that may imply that there is anything beyond this elegant simplicity. 

Stephen Lerman (1990), a philosopher of mathematics education, who puts himself in line with 

Lakatos’ Fallibilist philosophy describes the common understanding of school mathematics, 

“The teacher is the possessor of mathematical knowledge which the pupils must gain. That 

knowledge is certain, as are the methods used, and teaching becomes a conveying of that 

knowledge and those methods” (Lerman, 1990, p. 56). A heavy reliance on questions with single 
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correct answers also reinforces truth-based absolute views of mathematics itself. “The usual 

mathematics curriculum adopted deals with one and only one correct solution, a fact that 

reinforces the idea that mathematics is free of human bias” (Borba & Skovsmose, 1997, p. 17).  

Reuben Hersh (1991), like Taylor, also speaks of the myths of public and school mathematics 

and also notes the problematic nature of the belief that “to every question there is an answer” (p. 

128). The result is that the public view of mathematics is “formal, precise, ordered and abstract” 

(Hersh, 1991, p. 128), and its primary myths (or metaphors from my perspective) are about unity, 

objectivity, universality, and certainty (Hersh, 1991, p. 130). Anne Watson (2008) sees this need 

for certainty as another way in which school mathematics separates itself from the actual doing 

of mathematics, not as a part of mathematics, but a separate entity all together with very few ties 

to the reality of mathematical discourse, “There is a strong focus on answers and generalizations 

rather than structural insight or abstraction; there is avoidance by teachers, tests, and curricula, or 

the need for uncertain choices” (Watson, 2008, p. 6). 

This allows for a pretty straightforward step-by-step approach to mastery, and only the 

question of what order to do it in remains for the developers of school mathematics programs and 

teachers of math. “The core activity in school mathematics is to learn to use mathematical tools 

and ways of working so that these can be used to learn more tools and ways of working later on” 

(Watson, 2008, p. 6). We learn school mathematics because we will have to do more school 

mathematics. Teachers work on the assumption that they must prepare students for what lies 

ahead; that the purpose of grade two math is to enable proficiency in grade three math, and the 

authenticity of that mathematical discourse is beside the point, and sometimes even detrimental 

to it. “Mathematical knowledge is seen as a library of accumulated experience, to be drawn upon 

and used by those who have access to it” (Lerman, 1990, p. 56). When students leave school, 
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they often have no use for their accumulated library, finding that “most school students are 

taught and examined on mathematics of a kind that is done, both in the academy and in other 

workplaces, by machines” (Watson, 2008, p. 6). Children have no interest in authentic 

mathematics, having never been exposed to it and only having experienced a type of 

mathematics that is apart from them, predictable, unresponsive, and uninspiring.  

 

Constructivism as Hidden Formalism 

  

The term “Constructivism” stretches across a variety of fields of study, including mathematics 

and education. Constructivism in education has its roots in the works of Jean Piaget and the 

belief that humans build upon prior knowledge to construct new knowledge: “To put it simply, 

children construct their own knowledge” (Van de Walle & Lovin, 2006, p. 1). However, a 

Constructivist view in mathematics implies that a mathematical object must be able to be 

constructed in order to prove its existence. Intuitionism is often associated with Constructivist 

mathematics, although it is not the only form. While mathematics focuses on the construction of 

mathematics itself and the realization of its logical consequences, education uses this term in 

reference to the construction of an individual student’s learning, and has no relation to the 

Intuitionist idea that mathematics itself is being constructed. The Constructivism of education is 

not about new mathematical ideas, it is about the way that the brain forms concepts, and where 

those concepts come from is secondary. Peter Charles Taylor (1996), a critic of Constructivism 

in its current form in mathematics education, states that “Conceptual change pedagogy shows a 

disturbing lack of concern for the socio-cultural and socio-emotional contexts within which 

lifeworld knowledge is constructed intersubjectively by learners in their actions with significant 
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others” (p. 165). In most current educational practices, there is still a single right answer that the 

teacher already knows. The only difference for Constructivist education versus more traditional 

methods is that the idea cannot just be given or told because it is known, but must be constructed 

in the mind of the child through the teachers’ choice of tasks that are intended to prove the point 

in the cleanest possible way with little room for alternate viewpoints to muck things up.  

 

Also missing from the Constructivist perspective of learning as conceptual change is 

a rational for empowering teachers and students as curriculum negotiators, a role that 

entails an advanced sense of agency and voice on the part of both the teacher and 

students. By default, the prevailing technical rationality of the traditional school 

culture predetermines the teacher’s role as deliverer of curriculum and the students’ 

roles as passive recipients. (Taylor, 1996, p. 165)  

 

Students are not seen as constructors creating mathematics, they are not even seen as 

constructors discovering mathematics as Intuitionists do, but as constructors of their own storage 

system of a pre-established and unchangeable mathematics.  

 

There is a need to shift away from an overemphasis on students’ subjective 

conceptions and thought processes, which is sometimes associated with 

Constructivist views of learning. According to these perspectives, learning consists of 

the elaboration of subjective knowledge structures in the learners mind, and the 

acquisition and elaboration of these is primary, whereas public mathematical 
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activities such as working written mathematical tasks or assessment exercises is 

secondary. (Ernest, 1999, p. 79) 

 

Here there is no need to involve students, or even teachers, in the constructing of the 

mathematics being done, but only in the constructing of their understanding of some pre-

determined curriculum that continues to hearken back to a Platonic understanding of a fixed 

mathematics outside of humans and unchangeable. Taylor (1996) ultimately sees modern 

mathematical education as becoming Formalism (p. 164), with its game theory represented as the 

series of tests and worksheets one has to complete as the doing of mathematics. 

 

Beyond Platonism 

 

Some authors are currently working to alter this view of mathematics in education, although it 

appears very slow to change. These writers tend to align themselves with a Humanist or 

Fallibilist perspective of mathematics academically, and extend these beliefs to the educational 

sphere, instead of separating the act of learning from the act of creating mathematics.  

 

An important background development has been the emergence of Fallibilist 

perspectives in the philosophy of mathematics education. These views assert that the 

status of mathematical truth is determined, to some extent, relative to its contexts and 

is dependent, at least in part, on historical contingency. (Ernest, 1999, p. 67)  
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This philosophy of mathematics education denies the objective existence of mathematical 

truths and value-free mathematics. Here, mathematics can become without fixed or singular 

answers, and its becoming is a direct result of humans and in no way separable from the learning 

and processing of a culture of mathematics. “Notions of proof, truth, and rigour can be seen to be 

relative values, and there are conceivably alternate possibilities for the development of 

mathematics. There is no natural or logical necessity to the state of mathematical knowledge at 

present” (Lerman, 1990, p. 55). In this view, mathematics is not out there, but within us. It is not 

a series of inevitabilities, but a series of choices, and it is not something that we do, but 

something that we live.  

 

We propose that one important source of pedagogical problems in mathematics 

education are the philosophical foundations that have dominated our view of 

mathematics (objectivism, Platonism, Formalism). These philosophical commitments 

are necessarily (if unintentionally) transmitted in the teaching process, which can lead 

to the teaching of definitions and supposed eternal truths that capture mathematical 

essences, rather than mind based, embodied, human forms of sense making. (Ernest, 

1999, p. 61) 

 

Marilyn Frankenstein discusses the use of value-free or culture-free mathematics in education, 

and how viewing mathematics in this way, is not only limiting students ability to impact 

mathematics, but even limiting the legitimacy of the mathematics of some cultures and filtering 

through a lens of biased logic, “false assumptions about other peoples’ mathematical knowledge, 

coupled with lack of respect for their logic patterns, intersect with Eurocentric racism in Western 
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considerations of what counts as ‘mathematics’” (Frankenstein, 1990, p. 341). Frankenstein 

notes that mathematics is many things to many people, and not one (coincidentally Eurocentric) 

thing that some cultures are just late to arrive at.  

Stephen Lerman supports the position that mathematical knowledge is coloured by the 

cultural narrative from which it was derived. If this is the case, then the history of the culture is 

embedded in mathematics itself and cannot be separated from mathematical knowledge in 

education in a Platonic or Formalist way.  

 

If one holds the view that mathematical knowledge is social in nature, then one 

cannot get away from involvement in values. The mathematical ideas that one is 

teaching would have originated in a certain time and place as a response to some 

social need, whether of the individual mathematician or of the wider community, 

scientific or otherwise. (Lerman, 1990, p. 60) 

 

When considering mathematics as a semiotic system, Paul Ernest notes that it is imperative to 

go beyond mathematics in education as a Formalist game of terms, but instead to realize that 

semiotic system are social constructs. “At the heart of mathematics are its meanings, its purpose 

as a device for meaning making, and this is driven by its social and human aims and contexts” 

(Ernest as quoted in Hoffman, Lenhard & Seeger, 2005, p. 25). For Ernest, mathematics is a 

social construction in which learners play a part; a work in progress that reflects the context of 

the architect. Mathematicians play important roles in the architectural design of mathematics as a 

social construction. Ernest urges us not to see these agents as bias-free, objective observers, 

noticing and recording the mathematics around them, but as creators and artists bringing their 
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own culturally situated humanity and educational experiences to the process of manipulating and 

changing mathematics. “The social context and professional communities of mathematicians 

play a crucial role in the creation and justification of mathematical knowledge” (Ernest, 1999, p. 

68). As well, the validity of mathematical knowledge is judged beyond a single mathematician 

within a professional community with its own beliefs and expectations. “Both mathematical 

knowledge and mathematical knowers are judged within social institutions” (Ernest, 1999, p. 

80).  

Rafael Núñez brings his embodied views to education as he goes beyond mathematics being 

situated in social interactions to consider the situatedness of the mind itself in the realm of the 

human body. “Mathematics cannot be conceived as a pure and ‘abstract’ discipline. Our 

mathematical conceptual system, like the rest of our conceptual system, is grounded in our 

bodily functioning and experiences” (Núñez, 1999, p. 61). Núñez argues that we must teach 

mathematics as an embodied discipline; that this philosophy extends beyond scholars’ 

conceptions to how we actually teach mathematics in schools.  

 

We should provide a learning environment in which mathematical ideas are taught 

and discussed with all their human, embodied, and social features. Students (and 

teachers) should know that mathematical theorems, proofs, and objects are about 

ideas, and that these ideas are situated and meaningful because they are grounded in 

our bodily experience as social animals. (Núñez, Edwards & Matos, 1999, p.62)  

 

Brent Davis and Eileen Simmt (2006) have explored social dimensions of mathematics in the 

classroom through a complexity science based lens. Noticing the way mathematical 
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understanding develops as a social and human act, they echo Núñez’s noticing of the innate 

human nature of mathematics – that to do mathematics is to be human. A non-human 

mathematics is impossible and nonsensical for humans. “Mathematical knowing is rooted in our 

biological structure, framed by bodily experiences, elaborated within social interactions, enabled 

by cultural tools, and part of an ever-unfolding conversation of humans and the biosphere” 

(Davis & Simmt, 2006, p. 315). The Fallibilists offer an alternate perspective, both in the 

philosophy of mathematics and in the philosophy of mathematics education.  

At this point in history, this view is relatively unfamiliar to most teachers of mathematics, 

particularly elementary school teachers, so that we continue to instill only Platonist and 

Formalist philosophies of mathematics in the minds of children, particularly when they are just 

beginning to form conceptions about what mathematics is and what role they may have to play in 

this knowledge. The majority of students leave the education system to become Hersh’s (1991) 

”front” of mathematics; shaping the general public perception of what mathematics is, and 

perpetuating the objectivism they learned in school. The strength of the Platonist and Formalist 

leanings of mathematics education can be seen in the metaphors used by students and teachers to 

describe mathematics. These metaphors are very important in defining mathematics because, as 

an abstract concept, metaphorical descriptions are a fundamental part of how mathematics is 

understood. 

 

Metaphors for Mathematics in Schools 

 

Unfortunately, as children confront formal mathematics in schools and in public, they tend to 

be provided with metaphors that reinforce Platonic and Formalist philosophies, and these 
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philosophies block the potential contributions of other Fallibilist views such as Social 

Constructivism and Embodied perspectives. Research into the metaphors used to discuss 

mathematics in schools supports the observation that mathematics is conceived in this public 

context as a combination of a Platonic form and a Formalist game.  The structural metaphors of 

Constructivist views such as Structuralism and Intuitionism are also present, yet metaphors that 

support Fallibilism or an Embodied mathematics are largely absent, so there is no human 

connection to mathematics and nothing to bump up against these absolutist metaphors. These 

metaphors can be problematic at times because they tend to limit the potential for children and 

teachers to be active participants in what mathematics is; school children believe they cannot 

contribute to mathematics, so they do not attempt to contribute to mathematics, and therefore 

appear as non-contributors. This perpetuates the myth that their non-contributions are inherent in 

their role, and that they have nothing to do with what mathematics is.  

 

Research into Metaphors for Mathematics 

 

Amelie Schnick, Henry Neale, David Pugalee, and Victor Cifarelli (2008) researched 

metaphors used by high school students to describe mathematics. They specifically asked them 

to construct metaphors for this purpose, as opposed to listening for the metaphors they used in 

discourse. Schnick and her colleagues (2008) found that students used complex metaphors, such 

as being lost in a sewer system (p. 328), however several common themes emerged. Students 

saw mathematics generally as some sort of structure, journey or tool, and it often-included 

references to a need for perseverance or active involvement (p. 329), which the authors list as 

other major themes. The researchers found that encouraging the use of metaphor allowed 
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students to express their beliefs about mathematics, which they normally did not have adequate 

language for (having been lead to believe there are no metaphors involved), and allowed them to 

discuss and explore their own views (p. 332). The authors concluded that “Metaphor theory 

holds promise as a tool for unpacking students’ deeply held beliefs about the nature of 

mathematics and their roles as learners” (Schnick et al, 2008, p. 333). In Amy Noelle Parks 

(2010) research on metaphor and hierarchy in mathematics education, she focuses on the 

prevalence of orientational journey metaphors to describe children’s learning of mathematics in 

textbooks and classrooms, and also noted that this metaphor is then learned as a function of the 

nature of mathematics, “These metaphors also, in effect, portray mathematics as a narrow path, 

which can be traveled in only one direction (up and ahead)” (Parks, 2010, p. 86). Vincenc Font 

and his colleagues (Font, Godino, Planas, & Acevedo, 2010) explored how metaphors were used 

in mathematical discourse in the classroom, looking more specifically at metaphors for 

mathematical concepts and not mathematics itself. In response to their research, they commented 

that  

 

If the teacher does not take care when using the verb “exist”, the students in this class 

may not remain within a position of external existence. Instead, they may change the 

language game (Wittgenstein, 1963) and assume the ‘external existence’ or reality of 

mathematical objects. (Font et al., 2010, p.16) 

 

Teachers’ choices of mathematical metaphor have been explored by Andrew Noyes (2006), 

who identified four “root metaphors” (p. 902), choosing different language for primary or 

grounding metaphors, with three of them overlapping those noted by Schnick. Noyes (2006) 
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adds the metaphor of a language to the group consisting of a journey, a tool (although it is a tool 

kit for Noyes), and a structure (p. 902). Noyes (2006), like Schnick, has also grouped a collection 

of more specific and complex metaphors as coming from the roots, as the specific metaphors 

given by the teachers were varied and sometimes included reference to more than one root. For 

example, a network or a building (Noyes, 2006, p. 905) were identified as structure metaphors. 

Noyes (2006) believes that there is a connection between teachers’ metaphorical choices and the 

way in which they teach, noting that the toolkit metaphor is prevalent among new teachers, as is 

an instrumentalist view of practice (p.907).  

In her research on metaphors elementary mathematics teachers use to complete the phrase 

“math is . . .”, Gladys Sterenberg (2007) found that the teachers who participate in her study 

initially used the metaphors of a battle, a mountain, and a bridge, that Schnick and Noyes may 

have classified as journey and structure metaphors, but later focused more on the language 

metaphor (Sterenberg, 2007, p. 93).  

Alba Gonzalez Thompson (1984) researched the link between teachers’ conceptions of 

mathematics and their practice. Although metaphor is not directly explored, Thompson did find 

that beliefs about what mathematics is influenced teaching practices: “Teachers’ beliefs, views, 

and preferences about mathematics and its teaching, regardless of whether or not they are 

consciously or unconsciously held, play a significant, albeit subtle, role in shaping the teachers’ 

characteristic pattern of instructional behavior” (Thompson, 1984, p. 125).  
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Math is Alive 

 

Mathematics has a conceptual history. Its paradigm has not changed so much as it has 

multiplied with old, objectivist philosophies like Platonism thriving side by side with Formalist 

and Fallibilist perspectives. These philosophies are seen in mathematics education, with an over-

emphasis on Platonism and Formalism in the guise of child-friendly Constructivism with 

virtually no reference to Social Constructivist or Embodied mathematics. I established the 

significance of metaphor in mathematics discourse, and expected to find that Platonist, 

Formalist, and Intuitionist metaphors would be used more frequently than Fallibilist, relative 

metaphors. My inquiry yielded several overlapping themes in theses metaphors. Structures, tools, 

journeys, and language were often cited as root or theme metaphors mirroring primary and 

grounding metaphors. Structures and tools are building metaphors, and to see mathematics as a 

structure to be built implies an Intuitionist or structural perspective; mathematics is what has 

been or can be constructed. The journey metaphor seems more romantic, but both a path and a 

destination are implied. Amy Noelle Park’s metaphor of mathematics as a journey straight and 

upwards comes to mind. Here mathematics retains its sense of being constructed while creating a 

sense of a predetermined world to visit and explore. The romance is in the implication that 

personal experience counts for something, and there is a slight sense of relativism in the journey 

metaphor that structures and tools do not offer. I believe that the final common metaphor, 

language, is primarily a Formalist metaphor. It is the grammar and rules of language that allow 

communication, and it is the same for the language of mathematics. The only difference with 

math is that we tend to believe it is a sort of universal language instead of the product of a 

particular culture, difficult to understand for those outside of the culture and evolving with 
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different idioms and structures that invite varied meanings and perspectives. The language of 

mathematics is seen as the same everywhere. The Pythagorean Theorem is true for all the right 

triangles you find no matter where they are or who finds them, and this sort of universal rulebook 

is seen as the basis for the language of mathematics. And, like language, you have to go out into 

the world and learn it. When you know the language, you can communicate, and what you 

communicate about is the universal truths of the world. But anyone who has tried desperately to 

read Beowulf knows that even language changes drastically over time. Rules are made to be 

broken, but this is not part of the language metaphor. Neither is the fact that children change the 

world. All these metaphors, structures, tools, journeys and languages are conceptually 

problematic. David Pimm, in his research on metaphor in mathematics, notes the importance of 

how metaphors can evolve and yet retain old meanings and how the history of a concept can be 

perpetuated through metaphor as the concept itself changes. “It (the known meaning of an old 

metaphor in mathematics) certainly has the effect of altering the balance between the various 

connotations of the concept” (Pimm, 1988, p. 33).  

Our metaphorical conceptions of what mathematics is have a significant effect on how we 

teach and learn in classrooms, yet we continue to use outdated objectivist metaphors without 

even attempting to balance that with newer Fallibilist claims that mathematics may not be as “out 

there” as we were led to believe. We often do not even notice that we are using metaphors at all. 

As Pimm states,  

 

If the metaphoric quality of certain conceptual extensions in mathematics is not made 

clear to children, then specific meanings and observations (whether intuitive or 
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consciously formulated) about the original setting will be carried over to the new 

setting where they are often inappropriate. (Pimm, 1981, p. 40)  

 

We should choose our metaphors consciously, and not simply reiterate old metaphors or make 

reference to them without intention. We should consider making new metaphors. 

What primary/grounding/root/theme metaphor could capture mathematics as a dynamic, 

complex feedback system that could evolve and change under the right conditions? Conditions 

that include using all the parts of the system in the most effective possible way; conditions that 

create a “healthy” system of mathematics? Is it possible that a living systems metaphor could 

provide a robust metaphor for growing mathematics in classrooms and beyond? Does this 

metaphor have a range of effective and provocative applications? Does it resist contradiction? 

Mathematics is being taught to our children as though it is a task to be done; a beautiful journey 

at best and some sort of pre-fabricated warehouse to build at worst. We tell children, our most 

creative citizens, that their creativity is not needed here: this is mathematics, and mathematics 

just “is”. I propose that instead of asking them to reconstruct it, travel along it, or fluently speak 

it, we ask children to grow it. They need to notice it has been growing all along and its life is 

becoming their responsibility. By changing the way we speak about mathematics, we may be 

able to develop a more fertile landscape for a flourishing, lively mathematics. I believe that the 

conceptual metaphor of a living system offers new possibilities for philosophical perceptions of 

mathematics in schools, and that this will lead to a greater, more inclusive mathematics for all. 

In this final section I will consider the potential implications of the metaphor “math is alive” 

in the education of children. To do this I will revisit the mappings created in chapter four that 

present one possible interpretation of how the source domain “alive” can be understood as a class 
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inclusive assertion that correlates with humanity’s experience of the target domain “math”. This 

foundational metaphor uses the particular language of living systems theory to map complex 

metaphors. Here I discuss how the metaphorical pattern of organization of mathematics, its 

maintenance functions, and its ability to grow, adapt and reproduce might impact what we do in 

classrooms. In this philosophical inquiry, guided by Burbules and Warnick’s (2006) ten methods 

of philosophical inquiry, I have analyzed the concepts of metaphor, mathematics and living 

systems. I have engaged in conceptual mapping in proposing these metaphors, and in this final 

discourse I turn to method seven; “speculating about alternative systems or practices of 

education, whether utopian or programmatic, that contrast with and challenge conventional 

educational understandings and practices” (Burbules & Warnick, 2006, p. 491). At this time, I 

can only speculate what the implications for practice could be if this metaphor were to be 

included in the way that we think about and interact with mathematics in classrooms. I can only 

imagine how it might affect children to know that they matter and that mathematics depends on 

them for its very survival. We know what happens to children when they are confronted with 

Platonist metaphors that disenfranchise them and disempower mathematics. We know 

mathematics is not a building, a tool, an ethereal form, a game or a language, yet we have no 

issues applying this metaphorical language to the point that we lose the sense that these are 

metaphors at all. I believe that the mappings created in chapter four contrast and challenge these 

metaphorical conventions in mathematics education by confronting authenticity and questioning 

our relationship with mathematics, by asking us to both give up control and take responsibility, 

and by asking us to nurture creativity and complexification in a discipline that maintains itself 

through order and simplification. 
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Pattern of Organization 

 

Mathematics as a living being has a distinct pattern of organization that is particular to living 

systems. The idea of a pattern of organization breaks with the notion of a simple structural model 

because it recognizes that a variety of components can make up a living system and many living 

systems have drastically different components. This metaphor stretches this idea from biology to 

conceptions. Here I will explore what it means that children’s minds are part of the environment 

of mathematics and how classrooms access that environment. When considering the pattern of 

organization of mathematics as a living system, teachers must admit that they recognize 

mathematics is dynamic and unstable, and that they have been actively avoiding these parts of 

mathematics when planning for teaching. Recognizing chaos in mathematics by exploring 

competing metaphors and terms allows students to interact with mathematics as a living system 

more meaningfully and with mutual benefit. 

Mathematics is autonomous with a boundary of its own making. Although we may have 

constructed a variety of ways to facilitate conscious interaction with mathematics through the use 

of physical tools, technology and language and symbols, these things are not mathematics itself. 

Mathematics is its own being, and in this sense the Platonists were right to see it as a beautiful 

form, but they neglected to realize that its spiritual becoming is unnecessary, because math 

becomes itself and determines its own reach and limits. Mathematics as autonomous and open 

challenges Platonist, Deductive and Fallibilist perspectives, because recognizing the boundary it 

creates to determine itself defies our control, yet our role as the mindscape environment of 

mathematics makes it our responsibility to be conscious of how we interact with this open 

system.  



MATH IS ALIVE 111 
 

This potential for interaction is not present in current educational practice. In schools, we 

assume mathematics is the generation of universal truths discovered by professional 

mathematicians, but having always been true. If teachers instead assume that their students can 

and do interact with mathematics, even though it is its own unity, we invite conversations about 

what sort of being it is, how it behaves, and how we influence it. In these conversations, we find 

out more about children’s authentic mathematical interactions and conflicts.  

Fallibilism offers a way for us to consider human impact in mathematics, but Fallibilist 

perspectives that mathematics is within us and not a separate bounded unity are rarely considered 

in how mathematics is represented to children because of the difficulty presented by the 

relativism they invite. A living system metaphor resolves some of this difficulty by showing that 

mathematics is both beyond our control as an autonomous being, and dependent on us for its 

survival through the boundary it constructs to interact with us. We no longer have to fear telling 

children that mathematics is made up like Santa Claus, just because we question its status as a 

universal truth. With a living systems metaphor, children are invited to acknowledge what 

mathematics is while recognizing the relationship that they have with it. Schnick and her 

colleagues (2008) have shown that students do believe that they interact with mathematics, but 

they lack a language with which to explore this belief (p. 329). Acknowledging this relationship 

enables classrooms to consider the environment that they provide.  

Additionally, when we frame mathematics as an abstract form instead of as a living system 

we ignore the responsibility we have to grow and support mathematics. We assume mathematics 

is to be discovered by mathematicians as it is and always has been. Children should be aware that 

they are part of the environment of this open system with academics and others working with 

mathematics, and that mathematics depends on them for its survival. When considering the 
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mindscape of children as part of the mass human mind environment of mathematics, we must 

first wonder if we are really even considering how children actually interact with mathematics. 

This is in line with Anne Watson’s (2008) noticing that children need to be engaged with 

mathematics authentically through real challenges in their minds if they are to be involved with 

actual mathematics (p. 6). We must make classroom mathematics a relevant part of how children 

actually interact with mathematics by honouring children’s culture more in our planning for 

classroom learning. Children authentically impact mathematics through their use of technology, 

through their play choices, through their social interactions, and through their everyday needs 

and interests. As teachers, we must try to access the area of our mass mind where children and 

mathematics mingle together before we can contribute to the vitality of that environment. We 

must spend less time telling children what mathematics is, and more time finding out where it 

dwells in them, so that we can actually be a part of what their mathematics is becoming. 

As the Fallibilists have realized, in order to understand the relationship between humans and 

mathematics, you must take into account the biology of thinking in humans. What they are 

wrong about is assuming that mathematics is inherently based on human physiology and a 

human act. “Mathematics as we know it is limited and structured by the human brain and human 

mental capacities. The only mathematics we know or can know is a brain-and-mind-based 

mathematics” (Lakoff & Núñez, 2000, p. 1). Mathematics is embodied in the sense that it resides 

biologically in our minds, but I argue that we are capable of understanding that it is beyond us at 

the same time, nested and networked and dependent on itself to define what it is. In a living 

systems metaphor, mathematics can be its own self while living in its environment, the 

neurochemistry of humans. Students and teachers alike rarely discuss their brains and the impact 

of logical thinking, pattern seeking, or memory in their interactions with mathematics. 
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Mathematics in schools resists any form of Fallibilism and therefore does not have access to a 

discussion of how humans impact mathematics by being human. A living metaphor focuses on 

the relationship between human minds and mathematics, and invites discussions of biology, 

embodiment and humanity; such discussion is evident in philosophy of mathematics but still 

missing in education and other disciplines. 

Marcelo C. Borba and Ole Skovsmose (1997, p. 17) discussed the notion that Platonist 

teaching makes the mistake of assuming that mathematics is the same for all people at all times if 

only we can see it. Instead of recognizing truth and objectivity as metaphorical products of 

mathematical maintenance and the way that mathematics behaves, we mistakenly assume they 

are characteristics of mathematics itself. As in Hersh’s (1991) front and back metaphor, children 

are part of the public who are only permitted in the front and are shielded from what goes on in 

the back. As discussed, Font, Godino, Planas, and Acevedo (2010, p.16) have shown that 

teachers continue to present mathematics as having an objective immutable existence. In fact, the 

history of mathematics shows that it changes over time and creates internal inconsistencies, and 

that it grows differently in different geographical regions of the mass mind including a variety of 

academic contexts, professions and applications, and varied social and cultural elements existing 

in the environment. In a living system, even a small difference in initial conditions can lead to 

vastly different development both across and within systems. From a tiny group of cells, living 

allows the differentiation needed to produce all the parts of the system. Drastic differences can 

result in the mathematics we see being used in networks of cultures, countries, occupations and 

applications including in the realm of childhood education (Ernest, 1991, p. 263). Yet we aim to 

teach mathematics as though it is universally applicable and without an environmental context or 

history. Using standardized curricula or a “common core” and standardized testing is an example 
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of our inability to recognize that we are dealing with differentiated mathematics. What a child in 

school A knows or needs to know is not the same as a child in school B, and when we refuse to 

honour these differences in the way that we teach, we fail to recognize our role as the 

environment for mathematics. 

Even though mathematics presents the façade of reliability in its unity as all living creatures 

strive to do, it is always to some degree unstable. This instability and unpredictability is healthy 

and necessary for any living system. In education, we fear situations that are unstable or 

unpredictable in mathematics. We know the answers to all the questions that we ask and we cling 

to uniformity, tradition and technicality in language through an unseen Formalist tradition. 

Anything without an answer key is avoided and spontaneity is discouraged and constrained by a 

standardized curriculum that must be unraveled in a specific amount of time. Instead of seeking 

mathematical interaction, teachers avoid real living mathematics by trying to keep students in 

areas of little growth and change, maintaining ideas from hundreds if not thousands of years ago. 

If math is alive, then the job of a classroom teacher is reframed to notice it, nurture it, and tend to 

inconsistencies, pushing them to points of resolution. We need to seek out children’s interactions 

with mathematics instead of preparing them for what we pretend to believe is adult mathematics, 

or even just what happens next in school, as Watson (2008, p. 6) and Lerman (1990, p. 56) have 

shown is often the case.  

In doing this we must also honour the many mathematical languages that children bring with 

them into classrooms. From their families, their peers, and technology they pick up various 

words for mathematical expressions and actions, and we take it upon ourselves as teachers to 

weed out unnecessary language and provide a sort of “newspeak” that will solve all their 

mathematical problems. This is not to say that new metaphors for concepts should not be 
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introduced, but that a wealth of metaphors is necessary to provide a depth of understanding about 

mathematics itself and the concepts and operations associated with it. When we limit our 

metaphors, we imply that we are not using metaphors at all, instead of seeking to uncover the 

hidden associations in all our mathematical terminology. Recognizing and encouraging the use 

of multiple metaphors embraces the previously discussed research of Amelie Schick, Henry 

Neale, David Pugalee, and Victor Cifarelli (2008) showing that students desperately wanted 

languages to express their relationship with mathematics.  

One of the more elegant aspects of the metaphor “math is alive” is that it is so blatantly 

metaphorical that it forces us to realize how foolish we have been not to notice it has all been 

metaphors all along, and that complicating, not clarifying leads to a deeper understanding of 

mathematics and a more mutually interactive and beneficial relationship between mathematics 

and the minds of children. Accepting living mathematics as dynamic and unstable allows 

teachers to let go of the implication of control seen in the Platonist and Formalist philosophical 

leanings of education and embrace the chaos of the unknown and the unsolvable and the multiple 

languages and metaphors needed to fully and consciously interact and influence this process.  

When math is alive, it has a pattern of organization consistent with a living system, regardless 

of what the parts that make it up are composed of. When we acknowledge this being living in the 

minds of children, we can see that perfection, reliability, and standardization are impossible and 

repressive.  
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Maintenance 

 

The pattern of organization of a living mathematics generates the self-organization metaphor. 

Here I will discuss how classrooms might be impacted by recognizing that children provide what 

is necessary for it to continually create and recreate itself. They provide the matter and energy it 

consumes to fuel its self-production, and we must consider what sort of matter and energy school 

mathematics contributes, if any. As a living being, mathematics is enabled to build up and create 

instead of break down and destroy from its approach to entropy in the environment and within 

itself. Although education takes the Platonist stance that we can have complete faith in the 

absolute truth of math, we teach as though we have very little faith at all that it will not fall apart 

in an instant. The self-organization metaphor allows us to appreciate mathematical consistency 

and nurture this in classrooms. 

Living mathematics is an open system, which is how it is able to regulate itself in the far from 

equilibrium state caused by conflict, inconsistency, and changing collective human cognition, 

and how it continues to be itself through dynamic internal consistency. Because of its dynamism, 

it does not need its environment to always be consistent or predictable. In fact, only complexity 

and indeterminacy can push mathematics to become and grow. Teachers attempt to present 

children with a mathematics that is already organized and abstract, but real mathematics is messy 

and full of indecisive terms; consider Brouwer’s Intuitionist struggle with the excluded middle 

(Franchella, 1995, p. 308). In putting together a loot bag for a party the factors are infinite. What 

sort of toys? What sort of budget? How many of each? How many people? What relation of 

people? What does the child like? What sort of family does the child come from? We try to edit 

out the actual interactions with mathematics that are occurring. As Stephen Lerman (1990, p. 56) 
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noted with concern, we do not want to clutter up mathematics. However, if mathematics is a 

living system, it can deal with clutter just fine, and thrives on a little bit of healthy clutter now 

and then. Mathematics will self-organize even when the minds of children interacting with it, are 

in far-from-equilibrium states, confused and befuddled, yet actually working to interact with 

mathematics that can organize and produce for them.  

Mathematics requires a healthy variety of consumables to continue to live and grow and avoid 

decay. This is how the system is able to engage in autopoiesis and maintain itself. Mathematics is 

powered and empowered by the fuel it takes from our mass mind environment. Through our role 

as the environment of mathematics we provide the quality, novelty and quantity of the matter and 

energy that goes into mathematics. Whether or not we apply it to new experiences, and the type 

and amount of mathematical thinking that we do matters. Children are a large segment of the 

mass mind environment of mathematics. Mathematics may grow and maintain its state of living 

even if their mathematical interactions do not benefit it, just as other living systems rely on their 

ability to self-organize and stay alive even when a part of them is neglected by diverting 

resources. However, it is unlikely to thrive in these circumstances. When an entire area of 

mathematics such as the part that dwells in children is barely surviving, the entirety of 

mathematics is affected. Living mathematics becomes more robust when we consider the 

importance of novelty, quality, variety, and complexity in our mind environment as we interact 

with mathematics. Are we providing mathematics in classrooms with a rich variety of healthy 

matter and energy?  

The matter that is taken in by mathematics consists of the physical and mental constructions 

we apply it to. If we place mathematics primarily in the domain of textbooks and worksheets, we 

cannot provide novelty or depth and mathematics in schools becomes limp and grey, surviving 
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but not thriving as a part of mathematics nobody really likes. When we feed it the same matter 

over and over again we neglect any change that might impact the system. What does 

mathematics gain from the worksheet you are about to feed it? From the word problem you 

demand a specific solution for? From the measuring activity you are going out to do (you know, 

the one you did ahead of time to make sure it would work)?  

A living mathematics metaphor asks us to be critical not only of how children’s mathematical 

learning is affected by our educational choices, but what the effect on mathematics itself is. 

Many teachers are already on to the idea that drill style devices like “mad minutes” may not be 

healthy for children, but here we ask, too, if they are healthy for mathematics. Mathematics is 

more likely to be impacted and to undergo complexification and growth when students are 

enabled to interact with it authentically through their actual thoughts, interests and concerns 

because this exposes mathematics to a greater variety of matter, including matter it may have 

never been in contact with before. When children’s ideas interact with mathematics, mathematics 

is enabled to organize and combine, which is what it does best.  

Children provide mathematics with energy through their thinking. In classrooms, there is a 

tendency to encourage all students to demonstrate the same type of thinking; there is no healthy 

variety, no chaos, nothing too stimulating, only the essential minimum required for mathematics 

to maintain the boundary and distinguish itself in its environment. Healthy, robust mathematics 

takes its energy from a variety of sources in a variety of ways, so it benefits mathematics when 

children bring their unique childhood thinking, new ideas and different ways of approaching 

topics that are unique to them and cannot come from the teacher or from mathematics itself.  

Mathematics knows how to keep being mathematics despite unpredictability and novelty. We 

do not have to spend so much time worrying that it will fall apart in the minds of children when 
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we recognize that we do not control mathematics’ ability to be itself. We have come to believe 

that difference in mathematics is wrong. We only concern ourselves with the most effective way 

of arriving in the same place. We recognize that mathematics is information-tight, but our 

metaphors do not allow us to include recognition of growth, change and environmental 

adaptability. This Platonist/Formalist view can be reframed through the structural and 

ontological self-organization metaphors generated by a living mathematics as developing an 

understanding of how mathematics behaves. This allows us to respect the consistency and 

reliability of mathematics, while recognizing the potential for innovation. When mathematics is 

alive, it still controls what it is, while being open to creating a more complex self through its 

taking in of environmental matter and energy to maintain itself autopoietically.  

In a living system like mathematics, we see that the feedback that regulates the system is 

localized. Different parts of the system, occupational, academic or otherwise, work with 

autonomy and independence while playing a role in the health and function of the system as a 

whole. Mathematics senses what is available in each environment and responds (or doesn’t 

respond) appropriately. Feedback in a system is primarily negative and regulatory, and there is 

actually something to be said for dependable consistency in an environment. Living systems rely 

on the environment to stay the same more than it changes. We do want mathematics to reveal its 

consistencies to children through their experience. This cannot be done by seeking out the 

consistencies in advance for children, but by allowing them to experience this in their authentic 

interactions with a self-organizing mathematics that seeks to stay itself. On occasion, this may 

provoke positive feedback where mathematics is challenged to be itself. Here it is possible to 

impact the entire being of mathematics through the potential amplification of change. We must 

let go of our fear of Fallibilism and accept that we cannot absolutely control how mathematics 
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reacts, but embrace the idea that we can create a healthy environment that is likely to produce 

beneficial adaptation.  

Children’s minds are part of the environment of mathematics, and because their experiences 

are different from those before them, they will inevitably introduce novelty, creativity and 

complexity that the feedback mechanisms of mathematics will attempt to regulate. It is up to 

educators to decide whether or not they recognize the importance of these interactions and 

approach mathematics in schools in such a way as to contribute to the health and vitality of the 

relationship between mathematics and children’s mind environments.  

Entropy is required to complexify the behavior of mathematics as it struggles to find itself in 

disorder, yet it can also be destructive. In education, we should prevent chaos from building up, 

undigested and unstable, until it causes more damage than good to the living system. When 

entropy is left to build up instead of used to construct, frustration emerges in students as they 

desperately cling to a notion of one right answer. It is not about finding ways to relate the 

curriculum to children’s lives, but the honesty of dealing with the mess of thinking that comes 

along with children’s lives and often lies outside of or challenges the curriculum. This entropy 

created by children’s knowing there is a more authentic mathematics beyond their reach cannot 

be left behind to build up and cause the decay of relationships with mathematics. When 

educators believe in mathematics’ ability to maintain itself and prevent contradiction and 

dissolution, children are allowed to confront mathematics really with all its parts, redundancies 

and tendencies. They see that mathematics is regulatory and more reliable than not, and that 

there is nothing to fear.  

When the living system of mathematics runs smoothly, it takes in matter and energy from its 

environment and lets off high entropy energy and simple unused, deconstructed waste products. 
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Mathematics does not need to keep the paper you wrote on or the program you used. It emits the 

waste of its solutions through ideas relayed in language and symbols. Ideally, this waste is then 

useful to the environment, but in the case of school mathematics it usually is not. As a parent and 

teacher, I have thrown out thousands of worksheets. I have seen whole binders put in the trash as 

the textbooks head back to the shelves, inspected for any sign of use, because no one is allowed 

to write in those. All these ideas generated by children become useless, and any ideas that might 

have sprung forth from them are quashed by their irrelevance. Mathematics wants to be 

generative. It can only benefit mathematics if the environment it resides in is reciprocally healthy 

and vital, but education contributes little to this process because what mathematics in education 

produces is generally useless.  

When the “math is alive” metaphor is applied to mathematics education, the metaphors that 

can be created from considering the way it maintains itself as a self-organizing autopoietic entity 

highlight inadequacies currently inherent in our current Platonist and Formalist approaches. 

Mathematics is able to maintain itself in far-from-equilibrium states, so we do not need to fear 

chaos and unpredictability in the classroom. Mathematics will know what to do, because it alone 

can be itself. Mathematics is able to use localized feedback to regulate these interactions, and 

through children’s role as a part of the environment of mathematics they can influence this 

feedback through the types of interactions educators access. When we provide mathematics with 

what it needs to live well, we also enable it to change and grow in unexpected, unique and 

amazing ways. 
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Growth, Adaptation and Evolution 

 

Mathematics evolves through the consequences of small changes, as trajectories are 

irreversibly altered and old methods and beliefs die away with their environments. We cannot 

stop children from changing mathematics, we can only decide if school mathematics is a part of 

that interaction. Students, instead of academics, should create change in school mathematics, and 

from that they may influence mathematics as a whole. The trajectory can be changed 

irreversibly, and with each reproduction of mathematics from one generation to the next, mass 

reorganization is possible. The conflation of metaphors in the minds of children creates the 

possibilities that they are able to access, and defines their interactions with mathematics. When 

we invite metaphors of growth, change, reproduction and evolution into our conversations we 

not only change what is possible for children’s interaction with mathematics, but also what is 

possible for mathematics through their conscious, purposeful interactions with this living system.  

Children’s minds become a part of the environment of a mathematics that has existed for a 

long time. Although it has reproduced itself entirely several times over, it will not be wholly 

reproduced in their lifetimes. This is why it is important for them to understand that mathematics 

has a context and a history so that they can see purpose in starting from where we are in this 

relationship. This is not just how it is, but how it has become. We have failed to teach children 

anything about the history of mathematics, just as we have failed to recognize that mathematics 

history is a part of what it is generally. When we approach mathematics Platonically as though it 

is a universal truth, or from a Formalist perspective where learning the rules is the primary goal 

of instruction, we neglect to acknowledge our role in the development of this living system, and 

the opportunity we have to impact it at the current time. If mathematics is presented as a living 
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system, we are forced to analyze it according to our expectations of living systems and 

acknowledge the life that it has lived so far. Students begin to see that because of the way that 

mathematics reproduces and evolves through new minds, their mind matters. They are a part of 

the environment of mathematics and they are a part of the ongoing history of mathematics, 

because it lives and grows through its interactions with all humans. As students come to know 

mathematics, they appreciate the complexity that has developed throughout history and see the 

change and growth that has occurred, forcing them beyond Platonism. Instead of exploring or 

discovering mathematics, a living metaphor enables children to metaphorically interact and grow 

with mathematics and, most importantly, to see that it reacts to their intention to affect it. 

Changes to mathematics cannot be undone, but these changes are evidence that more change can 

happen.  

When a living system is forced to react, it can reach a point of instability from the 

amplification of positive feedback that causes the system to undergo mass reorganization. This is 

a bifurcation point, and they are sometimes, but not always predictable. What we know is that 

mathematics undergoes significant change at the point of paradoxical shifts in the human mass 

mind cognitively and communicatively, and when it is forced to confront matter and energy, it 

does not yet have the ability to break down, either in the more abstract forms of academic math 

or the more concrete forms of occupational math. We also see that big changes come from small, 

localized beginnings. Mathematics must be exposed to change and be challenged in order for it 

to grow new parts and reconfigure old ones, adding complexity while maintaining function. For 

school mathematics to be a relevant part of the environment of mathematics, students must bring 

with them their new ways of thinking and the problems that they authentically have. When 

mathematics is confronted with these inconsistencies, it realizes that it must adapt. Through 
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bifurcation, a tiny adaptation can lead to cascading changes throughout the entire system, so that 

any part of mathematics, including classroom mathematics, is capable of altering the entire 

system of mathematics. To provoke this we must dwell at the point of impact in the real worlds 

of children at this point in history, because they are the keepers of thoughts that have never been 

thought before.  

Mathematics has the greatest potential for change at the point of reproduction as it moves to 

new minds. Children’s experiences with mathematics are uniquely important because of this. The 

metaphors that we use and the interactions we present provide the very foundation of their 

relationship with mathematics. When educators show that there is always a right answer, they are 

teaching them to be Platonists. When educators give students a problem based on a process they 

have taught, they are teaching them to be Formalists. Neither of these philosophies is sufficient 

in its ability to explain how mathematics that tries so hard to stay the same can change. There has 

been significant change in school mathematics, and we have seen bifurcations that have led to 

adaptations. These adaptations tend to happen in quick succession, followed by long periods of 

relative stasis. New mathematics is one such adaptation, as is the back to basics movement that 

led to a common core approach. There has also been a significant impact on math in schools 

through the presence of a Constructivist mindset towards brain behavior and social behavior that 

has unintentionally brought with it Formalist and Intuitionist implications. We are at a point 

where we know that it is not a pure language or a true form, but it is easier not to notice. We are 

well aware that children’s ways of interacting with the world will change it, but we instead see it 

as our duty to simplify and reduce. This denial of novelty and chaos attempts to define the 

boundary of mathematics instead of letting it define its own boundary, and limits change at the 

point of reproduction. In childhood, when the next generation of metaphors are still shaped by 
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conflation and deeply embedded, when children are first coming to know mathematics and create 

a relationship with it, this is the place where mathematics can change the most, grow the most, 

and complexify the most. Educators must seize this opportunity to introduce the idea of living 

mathematics to children. When we use this metaphor, we empower children and educators alike 

to interact with mathematics more authentically, and we allow mathematics to grow and flourish 

as an open, living system.  

 

 

Conclusion 

 

This thesis started as an idea. Disciplines change and grow, so they must be alive. I believed 

that I could show that this was not only possible but apparent. I began to see limits in my 

teaching driven by old metaphors. In mathematics, in particular, an ethereal, untouchable 

discipline was unavoidable given the language and experiences provided in schools. 

Mathematics becomes a source of frustration for children in schools as a pre-determined, limited, 

inaccessible form void of personal meaning, ambivalence, history, artistry or vitality.  

I recognized early on that a discipline is not a biological system, but this hardly seemed 

problematic given the current language used to talk about what mathematics is. The history of 

mathematics philosophy is rife with metaphors or forms, constructions and behaviours that 

cannot be and are not what mathematics actually is as an abstract concept unto itself. An 

exploration of how we understand abstract concepts through metaphor brought me to Lakoff and 

Johnson and other researchers in the field where a dialogue about the mappings that metaphors 

generate and the way that metaphors enter our conceptions altered my understanding of how new 
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metaphors emerge and how current metaphors can suppress. This exploration supported my 

belief that abstract concepts such as mathematics rely heavily on our metaphorical 

understandings to define themselves, which are often deeply embedded in our ideas about ideas 

to the point where we cease to name these associations as metaphors. 

When I came back to the philosophy of mathematics, I came with a new perspective on how 

its metaphors formed and multiplied, growing out of and back into each other, and leaving 

infinite tracings behind of old objectivist mappings. I recognized mathematics in the descriptions 

of Platonism. I remembered encountering its Formalist rules with no meaning. I even recognized 

Intuitionism and Social Constructivism from my teacher education courses when disseminating 

how to adequately deconstruct a concept for reconstruction (although it was never so that it could 

be reconstructed differently). Aspects of Humanist philosophies were lacking or absent. I 

discovered that in the philosophy of mathematics there has been a move in academia towards 

social and cognitive views of mathematics, despite little evidence in the public consciousness. 

Reuben Hersh’s idea of the front and back of mathematics gave a voice to my noticing of the 

gaps in public awareness and the areas of mathematics to which only a select few were admitted. 

Despite this small and exclusive locus of control, mathematics still appeared to have the 

tendency to respond and change unexpectedly, often in response to cultural and geographical 

changes beyond academia in the history of our collective, networked experience. My exploration 

of the philosophy of mathematics supported my beliefs that our conceptions of mathematics are 

largely metaphorical and that metaphors can change and grow, even if the process is slow. It also 

confronted me with our perception of the fundamental consistency and reliability of 

mathematics, and our tendency to revert to Platonism to cope with our belief that mathematics is 

a separate entity from us. I began to see a living systems metaphor as a way to reconcile these 
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dichotomies, so that mathematics could be fundamentally trying to stay the same while enabling 

its ability to grow, and that it could be its own self and dependent on us at the same time. 

Biological living systems are complicated. There is no clear consensus as to what it means to 

be alive. I chose living systems theory as the source domain for my metaphor because it provided 

a consistent and applicable language for my attempt to conceive of mathematics as alive. I 

started with Maturana and Varela and was led from there to Capra, Kaufmann, Luhmann, 

Prigogine and others. I realized that because a living system can only be defined by the 

characteristics of its system and not by its parts, which may differ completely, it was possible 

that something completely different, like mathematics, could be a living system as well. Living 

systems emerged for me as networked yet autonomous, and bounded yet dependent. The 

maintenance functions that allow living systems to continually recreate themselves as they are 

and avoid decay reminded me of our human need to turn to math for predictability, reliability, 

truth and objectivity. This sameness is good for a system. Without it, the system’s unity and 

identity are destroyed. Because a system works within time to sustain itself, it is enabled to grow 

and change when it needs to in a volatile environment. Breaking points emerge where sameness 

no longer works and the build-up of entropy created by its failure causes new ideas to burst into 

being. As I read about living systems, I could not help but see mathematics as one of these varied 

creatures, and mappings began to emerge. 

When mathematics is seen as a living system, the pattern of organization of mathematics 

allows it to be both a separate entity from humans and intimately related to humans. Mathematics 

determines what mathematics is, and it enables the interactions that allow it to grow and become 

through a boundary of its own making. We notice the boundary of mathematics, but we do not 

choose it; the boundary comes from mathematics itself. However, we do have opportunities to 
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interact with mathematics through each of our individual roles in its environment of global 

human cognition, and these interactions and transactions can be consciously influenced by us to 

some extent, even if mathematics does with it what it will. Mathematics is impacted by a variety 

of human mathematical endeavours and has a complexly related array of parts that do not always 

interact directly with each other. Academic, occupational, and educational mathematics often 

segregate themselves by developing their own languages and contexts, creating localized self-

regulating feedback. However, all parts of mathematics have the ability, through the 

amplification of positive feedback loops, to impact the whole of mathematics in profound ways. 

The extreme complexity of the concept of a global human mass mind environment proposed in 

this discussion lends itself to change and unpredictability, and mathematics must continually 

react, reaching for homeostasis but never getting there, and kept alive by this dynamic interplay. 

As this goes on, mathematics develops a history. It has changed and developed through time, 

adding new branches and restructuring those that arose early in human civilizations. “The history 

of mathematics shows that mathematics is a dynamic process, which often develops through 

torturous and tormented paths not determined a priori, and proceeds through false starts and 

standstills, routine periods and sudden turnings” (Celucci, 2006, p. 22). If we only look back or 

outside of our own culture, it becomes obvious that objectivist philosophies of mathematics are 

neglecting obvious differences, changes and restructurings that have occurred and continue to 

occur. Mathematics becomes different in order to stay the same in a changing environment. It 

seems the same to us, but this is only because we are different too. 

I have become different in my teaching. As an example, I can reflect upon my recent 

encounters with transformations on a coordinate grid, specifically rotation and rotational 

symmetry. I chose this topic for teaching because it is a part of the provincial curriculum that 
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guides me. Specifically, I am referring to outcome 6.SS.6: “Perform a combination of 

transformations (translations, rotations, or reflections) on a single 2-D shape, and draw and 

describe the image” and outcome 6.SS.7: “Perform a combination of successive transformations 

of 2-D shapes to create a design, and identify and describe the transformations” (Manitoba 

Education, 2013). I know a trick for making wonderful yarn bookmarks with a design resulting 

from rotational symmetry, so I include this idea even though symmetry isn’t specified.  

Now that I see mathematics as having a pattern of organization that resists stability and 

depends on the strength of its unity and not the specificity of its parts, I am more comfortable 

seeing my curriculum as a guide and as a place to start and not as a prescription. I am confident 

to get out my yarn, and I realized that when the students ask what weaving might have to do with 

mathematics, they only do this because they have been taught to look for a closed boundary, not 

one of open interconnections. You simply have to ask them the same question back and a 

response is almost immediate. Mathematics is not lost, but clearly defined as they notice the 

consistency in the movement and pattern. 

At the same time, mathematics needs to maintain itself and wants to stay the same. Change 

can be gradual or immediate, but it cannot be constantly ongoing. The self-organizing properties 

of mathematics are designed to try to move towards balance. Worksheets were done, textbooks 

were inspected and many grids were drawn and used on paper, respecting the current state of 

school mathematics as a local area of the whole. An array of traditional language and symbols 

were used. Feedback was often negative and predictable. Yet there were also moments when I 

came across something messy or complicated and I didn’t walk away or attempt to simplify. 

Given my new understanding that mathematics will maintain itself, even when the environment 

enters a chaotic state, I started to embrace inconsistencies. I proceeded with the belief that 
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mathematics will assert its unity and identity in tricky situations. Preparing for rotational 

symmetry, I came across inconsistencies in my sources, with some using degrees and others 

fractions. My first instinct was to clarify what was in my curriculum and choose one, but my new 

understanding forced me to balance knowledge of local expectations and assumptions with the 

reality that there is more than one way to talk mathematically about moving around an axis. As it 

turns out, my students were quite flexible about the unit of rotation. They were also open to a 

variety of experiences on and off paper. They sometimes struggled to reconcile things they had 

been told, but rarely struggled to reconcile what they believed they knew. When I asked them to 

describe the rotational symmetry in their woven bookmarks, they were frustrated that I refused to 

tell them the exact wording I expected as an answer, yet all of them were able to provide a 

description with thoughtful mathematical detail. It is not my responsibility to show mathematics 

to them, it is our responsibility together to nurture their relationship with it. 

I have also been changed by my analysis of the way mathematics as a living system might 

metaphorically grow, adapt, and evolve. In my rotation example, students easily reconciled 

different ways of measuring rotation partially because they could understand and connect 

fractions and degrees. In my ongoing resource search, I found a piece that called 

counterclockwise “anti-clockwise”, a term even I was unfamiliar with. I could have put these 

examples aside to avoid confusion, but instead I investigated and confirmed that this is a British 

term. My students found this fascinating, and their immediate “whys” situated them in the 

history and culture of mathematics. I have also ceased to believe that academic thought is more 

valuable and that students are incapable of creating real perturbations because I recognize school 

mathematics as a part of mathematics that is capable of change and of changing the whole. In 

this spirit, I have tried to stop forcing them into the front of mathematics, to reference Hersh, and 
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to invite them into how it works in the back. During our experiences with rotation, I stopped 

worrying so much when they worked in groups that they might copy each other, and instead 

focused on ways to nurture and support their group learning so that they saw it as a time to 

bounce ideas off each other and to deepen their understanding by hearing others discuss the 

concept; to work with mathematics as mathematicians do. Sometimes they worked independently 

but often with others, struggling together with their relationships to mathematics. Finally, I have 

tried to notice and celebrate mathematics’ tiny evolutions as I see each new class living in a 

different moment than the one before. I have shared artistic uses of rotation before, but this is the 

first time many students went home and looked up different methods and designs on the internet. 

Students get their information from multitudes of sources where inconsistencies abound. What 

they need from mathematics and what mathematics needs from them is different than ever 

before. Instead I have been trying to encourage my students to build enough momentum to 

perturb the system, cause bifurcations and begin a cascade of significant change.  

In this last chapter, I have looked at what this means to me as a teacher in a school with 

children. I started by researching current conceptions of mathematics in classrooms, including 

those that acknowledged the importance of metaphor in this process, although they were few and 

far between. As I had anticipated, mathematics in schools was generally conceived of as 

Platonist or Formalist and more of a mathematical initiation than mathematics itself. Children 

were not provoked to impact mathematics. School mathematics has no history, no culture, no 

point of interaction, and it seems to ignore children completely. Yet, when educators and high 

school students were asked to describe mathematics metaphorically, they found this 

acknowledgement of metaphor liberating, because they could manipulate their own language 
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around this abstract entity. We can, and we want to, find new ways to talk about our relationship 

with mathematics, and we can begin this with children. 

Through my perception of mathematics as alive, I hypothesized some general ways in which 

educators could view their teaching of mathematics differently that might impact how they plan 

for (or do not plan for) classroom experiences. The pattern of organization of mathematics 

inspired my view that a deeper appreciation of authenticity is required through honouring 

children’s culture in the classroom, so that mathematics can be challenged by its real, messy 

environment, as well as the belief that children’s relationship with mathematics should be framed 

as interactive instead of absorptive. Children play, and they should be encouraged to play with 

math. Mathematics education needs to invite the clamour of children. In a living system 

metaphor, chaos does not cause decay, but instead vitality and growth. The maintenance 

functions of mathematics led me to the idea that classrooms must accept chaos and 

indeterminacy through the knowledge that mathematics is designed to adapt and stay consistent. 

Teachers must let go of some control for mathematics to show it can truly control itself. As we 

let go of control, we must accept responsibility as well. Education is a part of children’s 

mathematical lives, and children’s mathematical lives impact mathematics. Even when we try 

not to let children affect mathematics, they do through the quantity and quality of matter and 

energy they provide to its autopoietic processes. This includes the social values reflected in our 

mathematical teaching choices. When considering the growth, adaptation and evolution of 

mathematics, in education we must allow for complexification and change in mathematics. This 

means ceasing to narrow our language and instead nurturing its expansion, inviting conflicting 

ideas and solutions, and engaging consciously with multiple metaphors. It means acknowledging 

and teaching about paradigms and conflicts in the history of mathematics, and knowing that the 
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trajectory of mathematics comes from its past, but still has many potential futures that change 

with every moment and every person born who at first is a child.  

Finally, perceiving that mathematics grows, adapts, and evolves asks educators to capitalize 

on children’s natural creativity – their ability to see the world without the preconceptions and 

assumptions of the older generation and use new metaphors. Children have the potential to create 

new foundations that in turn enable new possibilities for mathematics never thought of before. 

When children are invited to view mathematics as living and recognize their role as its 

environment and their ability to influence mathematics through their contributions to its 

autopoietic process, they can become conscious of their change-making and attempt to perturb 

the system into brilliant new forms. When the parts change, the whole is changed as well, and a 

whole new mathematics is born from a single classroom moment cascading out into the world.  
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