Compiler Optimization for Parallel
Computation

by

Wen-Shiu Chyr

A thesis
presented to the University of Manitoba
in partial fulfilment of the
requirements for the degree of
Master of Science
in
Computer Science

Winnipeg, Manitoba, Canada, 1995

(©Wen-Shiu Chyr 1995

Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your file Votre référence

Qur file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-13034-7

i+l

Canada

3 5
Name _OmpnTer . §C (€l

Dissertation Abstract Infernational is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

0

738 UMI

(%m/nm Ter Science

SUBJECT TERM

Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES

LANGUAGE, LITERATURE AND
LINGUISTICS

Language |
Anc%-}eneroiem.:: :
h Linguistics .
Bilingual and Multiculturdl 0282 UmM,ﬁf:m """""""""""""""""
rusiness 88;2
Curriculum ond Instruction 0727 g::'ccrlmve
Early Childhoodvcceverrrers 0518 ok
F' l'ﬂl’)’ 0524 Modem
Finanoe 0277 Ah’iCOﬂ ':".
- American
Asian ..
Canadia
Canadian (French)
English ..
Language and Literature0279 Germa
hematics ..e.vverieereeciniennaenne 0280 Middle Eastern .
Music 0322 Romance
Phyciophy o G338 Slvie and Eaif Europecn

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES Geodesy ..o 0370
Agriculture Geology0372
Generdlooevrnreeriinenenenns 0473 Geophysics . .0373
AGronomycoceuvererseveses 0285 Vdrology .0388
Animal Culture and ineralogy041
NUTIHON ... ceveverraerernenens 0475 Paleobotany0345
Animal Pathology 0476 Palececology0426
Food Science and Paleontology0418
Technologyccocecerneneen 0359 Paleozoology ..0985
Forestry and Wildlife 0478 Palynology —........0427
Plant Culture0479 Physical phy0368 .
Plant Pathclogy0480 Physical Oceanography 0415
Plant Physiclogy0817
Range Management 0777 HEALTH AND ENVIRONMENTAL
é‘ lWoc>d Technology 0746 SCIENCES
10 Environmental Sciences 0768
gnercl 0306 Hedlth Sciences
Anatormy . ..0287 General 0566
Biostatioics 0308 1

ntistry 0567
- 0322 A 0350
0369 Hospital Management 0769
553 Human Development 0758
410 Immunologycceiininnns 0982
307 Medicine and Surgery 0564
317 Mental Health0347
414 Nursing
0433 Nutrition
....... 082 Obstefrics anld Gyll';hecol ..0380
Yeferinary Science... -0778 ocrﬁifghsrf.ff..ff 0354
B Zhoology 0472 Ophﬂwa[;ology0381
'OPGZ;S'CS 0786 Pathology0571
1012 1 o] SN P'lormacology ..0419
MedlCOI 0760 PHormc0572
Physical Therq, ..038
‘?é&sﬁﬁﬂﬁ‘,s 0425 Pug[ic‘ Health - 70573
Geochemistry .ev.eeenorrroerrrrooserns 0996 gggr':c‘,’,%ggg

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy
Religion
neral .
Biblical Studies .
Clergy .
History of0320
Philosophy of0322
Theologyocoreecurerinernercenenns 0469
SOCIAL SCIENCES
American Studiesooerrerenen 0323
Anthropol
Archaeology
Cultural
Physical
Business Ad
General ..o, 0310
Accounting0272
Banking0770
Management ..0454
Marketing0338
Canadian Studiesccoevrenna. 0385

Economics

Speech Pathology
Toxicology
Home Economicsccccvvvuenes
PHYSICAL SCIENCES
Pure Sciences
Chemistry
Generalccoevevivernnnnen. 0485
Agricultural0749
Andalytical . .0486
Biochemistry .0487
Inorganic .0488
Nuclecr . .0738
Orgonic .0490
Pharmac .0491
’l:h sical . 843§
olymer . .04
Rcc)]'irgfeion0754
Mathemahicscoevervrerrrennnne. 0405
Physics
Generalcoovereieiniinnn. 0605
ACOUSHES ..oveeceeeerererrenane 0986
Astronomy and
Astrophysicscoveverennnne. 0606

Atmospheric Science.
AOMIC ..o,
Electronics and Elecrricig'0607
Elementary Particles an

High Energycocoevueee.n. 0798
Fluid and Plasma0759
Molecular0609
Nucleor0610
Optics0752
Radiation0756
Solid State0611 |
SEABSHES ..eocreeiereereeienere e 0463
ied Sciences
,ﬁggﬁ!ed Mechanicscoueveee. 0346
Computer Sciencecccccenee. 0984

SUBJECT CODE

0.
Asia, Australia and Oceania 0332

gancdlon 8332
Uropean
Latin American0336
Middle Eastern0333
United Stotes0337
History of Sciencec.co..uu.... 0585
Law 0398

Political Science

Recreation ..
Social Work ..

Sociology

General ..o,

Relations

Generad!
Criminol

Individual and Family

Studies
Industrial and Labor

Relotionsccocvuinnn. 0629
Public and Secial Welfare 0630
Social Structure and

Development

Theory and Methods

Transportation
Urban and Regional Plonning ... 0999
Women's Studiesc.cocue.. 0453

Engineerin .
Generaloocevevcrrnencrenrnns 0537
Aerospace0538
Agricultural0539
Automotive0540
Biomedical0541
Chemical0542

Vil e 0543

Geotechnology
Operations Research ..
Plastics Technology .

Electronics and Electrical0544
Heat and Thermodynamics ... 0348
Hydraulic ..ol 0.
Industrial ..
Marine
Materials Science .
xechﬁ:nicc
etaliurgy ...
Mining g)'
Nuclear
Packaging
Petroleum
Sanitary and Municipa
System Science

Textile Technology
PSYCHOLOGY

General ...
Behavioral
Clinical ...

Developme

Experimental

|ncfuesfria| 0624
Personality ... 0625
Physiological ... 0989
Psychobiology . ..0349
Psychometrics0632
S0CHal v 0451

COMPILER OPTIMIZATION FOR PARALLEL
COMPUTATION

BY

WEN-SHIU CHYR

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba
in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

© 1995

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA
to lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to
microfilm this thesis and to lend or sell copies of the film, and LIBRARY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or other-wise reproduced without the author’s written
permission.

Compiler Optimization for Parallel Computation i

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions
or individuals for the purpose of scholarly research.

I further authorize the University of Manitoba to reproduce this thesis by pho-

tocopying or by other means, in total or in part, at the request of other institutions
or individuals for the purpose of scholarly research.

Abstract

The dependence structure of a parallel computation can be characterized by a di-
rected acyclic graph (DAG) where nodes and edges represent tasks and dependences
respectively. These edges define message-passing synchronization in a distributed-
memory model. If a dependence edge in the DAG is transitive, then there is an
alternate path composed of edges connecting source and sink node of that depen-
dence. The startup cost of a message transmission is typically higher than actual
data transfer. Communication overhead can be reduced by grouping messages.
Message transfers along transitive edges can be avoided, without losing parallelism,
by appending the data to the messages on the alternate path that covers the tran-
sitive edge. In this thesis, a compiler-optimization technique for pipelined compu-
tation is introduced. This algorithm: (1) identifies the dependences corresponding
to transitive edges in simple loops with constant dependences; and (2) introduces
a scheme for assigning storage for nonlocal data, corresponding to the transitive
edges, in the node program.

v

Acknowledgements

I wish to express my sincere gratitude to Dr. Ken Barker who generously granted
his time to proof-read my thesis and gave me many valuable suggestions. 1 deeply
appreciate Dr. Ken’s support in coordinating my thesis defence.

I also take this opportunity to thank both examiners, Dr. David Blight (Department
of Electrical and Computer Engineering) and Dr. Kasi Periyasamy (Department of
Computer Science), both of whom took time to read through my thesis.

I wish to express my heartfelt thanks to Dr. Prasad Krothapalli who inspired this
thesis and essentially made it possible. Despite a busy schedule, Dr. Prasad always
made sure to enquire about, criticize, and encourage my research. Thank you again.

Finally, I would like to thank my family for their never-ending love and support.

Contents

1 Introduction

1.1 Organization

2 Parallel Processors and Parallel Programming
2.1 The Evolution of Computer Architecture
2.1.1 Flynn’s Taxonomy
2.1.2 MIMD Parallel Processors
2.1.3 Distributed-Memory Multicomputers
2.2 Parallel Programming
23 Related Work

24 Summary

3 FORTRAN D
3.1 FORTRAN D Language
3.1.1 Problem Mapping
3.1.2 Machine Mapping
3.1.3 Additional Features of FORTRAND

3.2 Summary

4 FORTRAN D Compiler
4.1 Program Analysis
'4.1.1 Dependence Analysis

11
12
14
18
20

21
22
23
28
31
34

Compiler Optimization for Parallel Computation vii

4.1.2 Data Decomposition Analysis 39
4.1.3 Partitioning Analysis 40
4.1.4 Communication Analysis 47

4.2 Program Optimization 47
4.3 Code Generation 51
4.4 Summary ... 57
5 FORTRAN D Compiler Optimizations 58
5.1 Reducing Communication Overhead 59
.5.1.1 Message Vectorization 60
5.1.2 Message Coalescing 60
9.1.3 Message Aggregation 61
5.1.4 Collective Communication 64

5.2 Hiding Communication Overhead 64
9.2.1 Message Pipelining 64
9.2.2 Vector Message Pipelining 67
5.2.3 Iteration Reordering 70
9.2.4 Nonblocking Message N £

5.3 Exploiting Parallelism 74
9.3.1 Partitioning Computation 74
3.3.2 Reductionsand Scans, 74
3.3.3 Dynamic Data Decomposition 78
5.3.4 Pipelining Computation 78

9.4 Reducing Storage 83
5.5 Optimization Algorithm 83
5.6 Program Transformations 85

9.7 SUMMATY . . . v v it e 88

Compiler Optimization for Parallel Computation viii

6 Compiler Optimization for Parallel Computation 89
6.1 Iteration Space Dependence Graph 91
6.2 .Identifying Transitive-Edge Dependences 92

6.2.1 Regular Non-Nested Loops 95

6.2.2 Regular Double-Nested Loops 99

6.3 Implementation on the FORTRAN D Compiler 104
6.3.1 Modifying Communication Analysis 106

6.4 Program Transformation 107
6.5 Analytical Evaluation 114
6.6 Conclusions 115

7 Conclusions 116

7.1 Future Work 118

List of Figures

2.1
2.2

2.3

2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

Grand Challenge Requirements (quoted from [1], pg. 121) 6

.Computer Architecture Evolution from Sequential Scalar Computers

to Vector Processors and Parallel Computers (quoted from (1], pg. 10) 8

Flynn’s Classification of Computer Architectures (quoted from [1],
Pe- 12) . . 10

Shared-Memory Multiprocessors (quoted from [1], pg. 20-25) 13
Two Approaches of Parallel Programming (quoted from (1], pg. 19) 16

Example of Problem Mapping 23
Example of Problem Mapping Statements 25
Example of Array Permutation, Collapse, and Embedding 27
Example of Alignment Options 28
Example of Data Distribution 30
Example of Processor Distribution. 31
Example of Program Segment with Irregular Distribution 32
Example of Irregular Distribution 32
'Exa,mple of FORALL Loop 33
Sequential Loop Nest 39
Example of RSD Representation 42
Example of Global and Local Indices 42
Example of a Fortran D Program(Jacobi) 43
The Augmented Iteration Sets of Jacobi Program 46

1X

Compiler Optimization for Parallel] Computation X

4.6 Example of Scalar Variables 46
4.7 Example of Index Sets and Nonlocal Index Sets for S1 in Jacobi
Program 48
4.8 Example of Run-time Resolution and Message Vectorization 49
4.9 The SPMD Code of Jacobi Program 52
4.10 Example of Message Generation for Loop-Carried and Loop-Independent
Dependences., 54

5.1 Example of Message Vectorization and Message Coalescing (Liver-
more 7-Equation of State Fragment)[14] 62

5.2 Example of Message Vectorization and Coalescing (Compiler Output) 63
9.3 Example of Message Aggregation (Livermore 18-Explicit Hydrodynamics)[14] 65

5.4 Example of Message Aggregation (Compiler Output) 66
5.5 Example of Vector Message Pipelining (Red-Black SOR) [14] 68
5.6 Example of Vector Message Pipelining (Compiler Output) 69
3.7 Example of Iteration Reordering 71
9.8 .Example of Iteration Reordering (Compiler Qutput) 72
5.9 Example of Reduction (Inner Product) [14] 76
5.10 Example of Scan (First Sum) 77
5.11 Example of Dynamic Data Decomposition (ADI Integration) [13]. . 79
5.12 Parallel and Pipelined Computation 80
5.13 Example of Pipelining Computation (Implicit Hydrodynamics) . . . 81
5.14 Example of Pipelining Computation (Implicit Hydrodynamics) . . . 82
5.15 Compiler Optimization Algorithm 84
9.16 Loop Distribution 86
9.17T Loop Fusion, 86
5.18 Loop Interchange, 87
5.19 Strip Mining 88

6.1 Eliminating Messages for Pipelined Computation with Transitive-
Edge Dependences 90

Compiler Optimization for Paralle] Computation

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10

6.11
6.12
6.13
6.14
6.15
6.16
6.17

Exampleof ISDG
SPMD Program
Example of R.subgraph and Transitive-Edge Dependences
Sequential Execution Order Depth First Search Algorithm
Sequential Execution Order Depth First Search Algorithm(Cont.) .
Case One Illustrated
Case Two Illustrated
Case Three Illustrated
Source code transformation for A(i-d;)
Example of Source Code Transformation for Nonnested Loop
Compiler Qutput
Example of Fortran D Program Segment
Source Code Transformation for A(i-dil,j-di2)
Code Transformation for the Program in Case One
Code Transformation for the Program in Case Two

Code Transformation for the Program in Case Three

X1

Chapter 1

Introduction

Conventional parallel computers are classified, based on their architectures, into two
groups: shared memory multiprocessors, and distributed memory multicomputers.
Each makes different tradeoffs with respect to scalability and programmability but
future parallel architectures are likely to reflect aspects of these two models. De-
veloping high-level parallel programming languages that are easy to program and
portable across multiple architectures is a central issue at current research. Ideally,
compilers that generate efficient parallel code must be developed so program effi-
ciency does not rely on programmer expertise. Such a compiler would exploit the
inherent parallelism in a program so the generated parallel code has a minimum
at communication overhead. This thesis presents an optimization for a paralleliz-
ing compiler to reduce communication overhead on distributed-memory machines,

which is the most difficult programming model among parallel architectures.

Eliminating of redundant dependences has been shown to reduce synchronization

costs in a shared-memory multiprocessor [12]. A computation’s dependence struc-

CHAPTER 1. INTRODUCTION 2

ture is captured by a directed acyclic graph (DAG), where nodes represent tasks
and edges represent dependences between tasks. Krothapalli and Sadayappan [12]
demonstrate that the constraint imposed by a dependence edge is enforced by an

appropriate synchronization instruction.

Most early research [11] in parallelizing compilers focused on data dependence anal-
ysis, loop transformations, and reducing synchronization costs in a shared memory
multiprocessor. Since the introduction of Intel’s hypercube [1], there has been in-
creasing interest in distributed-memory machines which coordinate activities by
exchanging messages. Unfortunately, for small messages, the message initiation
is typically two orders of magnitude higher than the data transmission costs. So
éeveral optimizations that increase the message length in executing data-parallel
loops have been proposed [14]. These optimizations increase the message length by

combining several messages between two processors into one.

The dependency structure captured by the DAG used by Krothapalli and Sa-
dayappan [12] is sufficient for shared memory architectures because the interpro-
cessor communication overhead is effectively negligible. This is not true for the
distributed-memory architecture. Krothapalli and Sadayappan also argue that the
transitive edges are not required in their analysis, so they are effectively ignored, but
this is because their primary concern is ensuring that all constraints are captured.
This thesis argues that by exploiting the transitive edges in the DAG, message
traffic can be reduced because small messages are combined to save communication
overhead. The technique requires messages be rerouted based on the transitive

edges found in the graph.

Discussions of optimizing parallel compilation requires a suitable compiler. The

CHAPTER 1. INTRODUCTION 3

compiler must support code parallelization, readily provide source code, and be
extensible. The FORTRAN D compiler under development at Rice University
provides a programming language and environment that meets these needs [13].
Although this language is freely available it is not currently well known. Therefore,
this thesis carefully describes the language with particular attention paid to the
parallel aspects. Further, the source code is available, so it is possible to extend
the compiler and its data structures in interesting new ways. Therefore, this thesis
also describes the FORTRAN D compiler and the corresponding optimizer. The
description of the language, compiler, and optimizer provides a pragmatic way to

discuss the central issues in parallelizing compilers.

1.1 Organization

Chapter 2 reviews parallel processors and parallel programming. FORTRAN D
and the FORTRAN D compiler is described in Chapters 3 and 4, respectively.
The FORTRAN D Compiler optimizations are discussed in Chapter 5. Chapter 6
presents important result from this thesis by proposing a new optimization tech-
nique as outlined above. Finally, Chapter 7 summarizes the problems, results and
contributions at this thesis in addition to providing suggestions for further research

directions.

Chapter 2

Parallel Processors and Parallel

Programming

In 1992 the U.S. High-Performance Computing and Communication (HPCC) pro-
gram announced the ‘Grand Challenges’ facing scientific computing (these are sum-
marized in Table 2.1). The computing requirements for each challenge are shown
in Figure 2.1. A computer system sufficient to meet all of these requirements will
have one Teraflop of computing power, one Terabyte of main memory, in addition
to one Terabyte per second of I/O bandwidth [1]. Unfortunately. This is “the
goal of 3T performance”. Unfortunately, , the most powerful conventional com-
puters are still many orders of magnitude away from 3T performance. Therefore,

parallel processing seems to be the only alternative that satisfies these requirements.

The balance of this chapter provides the fundamentals of parallelism in terms of
both parallel processors and programming. Section 2.1 provides a historical per-

spective by describing the evolution of computer architectures over the past 20

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMINGS

Magnetic recording To study magnetostatic and exchange interactions to reduce noise in high

Technology density disks

Rational drug design To develop drug to cure cancer or AIDS by blocking the action of HIV

protease.

High-speed civil transport To develop supersonic jets through computational fluid dynamics running

on supercomputers.

Catalysis Computer modeling of biomimetic catalysts to analyze enzymatic reactions
y in manufacturing process.

Designing better engine models via chemical kinetics calculations to reveal
fluid mechanical effects.

Fuel combustion

Large-scale simulation of ocean activities and heat exchange with
atmospherical flows.

Ocean modeling

To study chemical and dynamical mechanisms controlling the ozone
Ozone depletion
depletion process

. Real-time, clinical imaging, computed tomography, magnetic resonance
Digital anatomy
imaging with computers.

Simulated air quality models running on supercomputers to provide more

Air pollution

understanding of atmospheric systems.
Technology linking research Scientic or engineering education aided by computer simulation in
to education hetergeneous network systems.

. . 3-D structrual study of protein formation by using MPP system to perform
Protein structure design . . .
computational simulations.

Use large supercomputers for producing the rendered images or animations
in real time.

Image understanding

Table 2.1: Grand Challenge Applications (quoted from [1], pg. 119)

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMINGS

Global Change

Memory Capacity Human Genome
Fluid Turbulence

Ocean Circuation

Viscous Fluid Dynamics
100 GB—— Superconduq:tor Modeling
Semiconducior Modeling
Quantum Ch:i'omodynamics
(11 6); o T Vision
Vehicle

Signature |

1GB —~ Structural
72-hour Biology
Weather

Pharmaceutical

3D Pjasma Design

Modgling

100 MB ——

48-hour
Weather

10MB—— l Oil Reservojr
Airfoil Modeling

1980 1988 1991 1993 1995 and beyond

}]I E I' II System Speed

Chemical
Dynamics

100 Mflops 1 Gflops 10 Gflops 100 Gflops 1 Tflops

Figure 2.1: Grand Challenge Requirements (quoted from [1], pg. 121)

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMING?

years. Particular attention is paid to Flynn’s well known taxonomy though other
classification schemes may work equally well. Secondly, section 2.2 introduces the
fundamentals of parallel programming and provides a basis for the claim that FOR-

TRAN D is an appropriate basis for the results presented in this basis.

2.1 The Evolution of Computer Architecture

Over the past two decades, demand for higher performance, lower cost, and sus-
tained productivity in scientific applications has resulted in improvements in system
performance. Major improvements achieved in technology, system architecture, sys-
tem softifvare, and system organization contributed to this increase in performance.
Over the last two decades, technological advances are the major contributors to
the increase in system speed. Due to the limitations imposed by laws of physics,
the von Neumann architectures and the parallel computing seems to be the best

alternative to improve system performance [1, 2, 3].

The evolution of computer architecture is illustrated in Figure 2.2 [1]. The scalar
computer is the origin and it is based on von Neumann architecture, built as a se-
quential machine, for executing scalar data. The subsequent architectures adopted
the lookahead approach which overlaps instruction prefetch/decode phase with exe-
cution phase. This technology led to functional parallelism that adopts instruction
pipelining to allow multiple functional units to work concurrently. Pipelining de-
composes a computation into a number of steps that can be assigned to processors
in a sequence so multiple data streams can appear to be executed in “parallel”.

It can be applied to instruction execution, arithmetic computations, and memory-

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMINGS

Functional

. VE Overlap Parallelism
Multiple
Func. Units

Vector Meglor

(Associative j [Processor Multicomputer Multiprocessor
Processor array

Figure 2,2: Computer Architecture Evolution from Sequential Scalar Computers to

Vector Processors and Parallel Computers (quoted from [1], pg. 10)

access operations. The advanced vector computers are equipped with scalar and

vector hardware. System performance of these machines is in order of hundreds of

MFLOPS.

During the last decade, parallelism has become a well-known and popular strat-
egy to achieve higher performance [2]; The advent of very large-scale integration

(VLSI) technology is the principal contributor to parallel computer technology.

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMING9

This spawned much research activity that developed both real and theoretical
computers. Recently a number of commercial parallel computers, based on vari-

ous architectural models, have appeared on the market in a wide range of prices [1].

2.1.1 Flynn’s Taxonomy

Flynn (1972) provided a useful taxonomy that helps us understand the principles of
parallel architectures. It is based on the concepts of instruction and data streams.
In this classification, the multiplicity of hardware is used to classify each architec-
ture. “The multiplicity is defined as the maximum possible number of simultaneous
operatioils (instructions) or operands (data) being in the same phase of execution

at the most constrained component of the organization” [3].

Uniprocessor based computers are classified as Single Instruction Stream, Single
Data Stream (SISD) computers. As shown in Figure 2.3(a), a SISD computer has
one control unit (CU) and one processing unit (PU). In any instruction cycle the
control unit issues an instruction to the processing unit. PU reads operands and
executes the instruction. A computer with functional parallelism or pipelining is
also classified as SISD computer, because it decodes only a single instruction in a

unit time [1, 4].

Single-Instruction Stream, Multiple Data Streams (SIMD) computers (Figure 2.3(b))
are computers with a single control unit (CU) to monitor a number of processing
elements (PE). During an instruction cycle, the control unit broadcasts an instruc-

tion to all the PEs and all the PEs execute this instruction on different data. This

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMINGI10

IS

l‘ IS DS

10— CU PU MU

(2) SISD uniprocessor architecture

—ru RS Mg 25

Data sets loaded from host

Program loaded IS CU

IS ' ' '
from host PU DS LMl DS

(b) SIMD uniprocessor architecture(with distributed memory)

o — cu HS-[py |8

Shared
Memory

10— cu S py |25

(c) MIMD architecture with shared-memory

MU | | MU MU
PU PU PU
MU | PU |— ——PU | MU
MU | PU |— PU | MU
PU || PU PU
MU | MU MU

(d) MIMD architectures(with distributed-memory)

Figure 2.3: Flynn’s Classification of Computer Architectures (quoted from [1], pg.
12)

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMING11

model is also called processor array [4]. The SIMD machines such as Illiac IV and

Thinking machine CM2 are not suitable for general purpose computations [1].

Most existing parallel computers fall into the class of Multiple Instruction Streams,
Multiple Data Streams (MIMD). In a MIMD parallel computer, a separate control
unit is associated with each processing unit. In an instruction cycle, each CU issues
an instruction to its corresponding processing unit, so we have multiple instruction

streams executed over multiple data streams.

2.1.2 MIMD Parallel Processors

The MIMD parallel computers can be further defined into two broad groups, namely,
shared-memory multiprocessors and distributed-memory multicomputers (see Fig-
ure 2.3(c) and Figure 2.3(d), respectively). This section describes the former while
the latter is discussed in section 2.1.3. In a shared-memory multiprocessor, synchro-
nization between processors is achieved through shared variables. The following are

most common shared-memory multiprocessor models:

The Uniform-Memory-Access (UMA) model: In this model, all the physical mem-
ory modules and peripherals are shared by all the processors. F igure 2.4(a)
shows processors can access a shared global memory through a common bus,
a crossbar switch, or a multi-stage interconnection network. The access time
to each memory word in the global memory is the same for all the Processors.
The UMA model is the simplest processor intercommunication model and is

suitable for general-purpose applications by multiple users. However, they

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMING12

are not architecturally scalable [1]. Bus-based multiprocessors with twenty to

thirty processors are commercially available.

The Nonuniform-Memory-Access (NUMA) model: In this model, the access time
for' each memory word depends on the location of the memory word. There
are two types of memories in this machine model: local memory and remote
memory. Each processor is directly connected to its local memory and all
local memories together constitute the global shared-memory (Figure 2.4(b)).
Local memory access time is an order of magnitude smaller than remote

memory [1, 4].

The Cache-Only Memory Architecture (COMA) model: This modelis similar to the
NUMA model, except each local memory module is replaced with a cache.
In a COMA machine, the binding between an address and a processor is dy-
namic. This model can be treated as cache-only NUMA machine. The shared
memory is formed by all local caches in the system as shown in Figure 2.4(c).
COMA machines have scalable architecture and research groups such as Stan-
ford FLASH [5], I-ACOMA [6], and Data Diffusion Machines [7] are exploring

this architecture. One benefit of this model is the simple programming model.

2.1.3 Distributed-Memory Multicomputers

The second MIMD machine is a distributed-memory multicomputer system where
multiple computers exist but there is no shared global memory. Each computer (or
node) owns a processor and a local memory module. Inter-processor synchroniza-

tion is achieved with a message-passing network.

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMINGI13

Processors
Pi P2 Pn
T i —
Ssytem Interconnect
(Bus, Crossbar, MultiStage network) LM2 P2 Inter-
connection
i :I $. . Network
176} SM1 SMm ')
Shared memory LMn Pn

(a) The UMA multiprocessor model

(b) The NUMA model for multiprocessor systems

Interconnection Network

U0 MU

D D
l I
o o
[[
P P

(c) The COMA model of a multiprocessor
(P: Processor, C: Cache, D: Directory)

Figure 2.4: Shared-Memory Multiprocessors (quoted from [1], pg. 20-25)

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMING14

Each node in a traditional message-passing network is connected to others through
point-to-point static connection channels. Each node connects to a router uses the
static connection network to send messages to other nodes possibly by cooperating
with a s.equence of routers and channels. Each local memory is accessed by its
own processor and is not accessible by others. Therefore, these multicomputers are
called no-remote-memory-access (NORMA) machines. However, some new genera-
tion parallel processors, such as SP2 [10], use a multi-stage interconnection network
(MIN) instead of point to point static channels which provides a higher bisection

bandwidth over the static channels.

Programming on a distributed-memory multicomputer is difficult because program-
mers must allow for distributed computation, data flow between nodes, and inter-
processor communication. Building a sound parallel programming environment is

critical if the difficulty of programming on multicomputer systems is to be feasible.

The fundamental shortcoming of shared-memory multiprocessors is they are not
architecturally scalable. Distributed-memory multicomputers provide scalable ar-
chitecture but offers a difficult programming model. The latter model offers a
significant long term advantage but requires more research to make the computing

environment acceptable for the program developers.

2.2 Parallel Programming

Code development on conventional uniprocessor computers requires programmers

develop code for a sequential programming environment. The computation model

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMING15

for such computers is based on SISD machine model. The instructions in a sequen-
tial program are executed one after another. Most existing languages, compilers,
and operating systems are developed for uniprocessor based computers. When us-
ing a parallel computer, software developers want to exploit a parallel programming

environment that detects parallelism in the program.

To provide a parallel programming environment, new language extensions or con-
structs must be developed that support parallelism. This first requires techniques
to detect parallelism at various granularity levels, probably by using intelligent

compilers. There are two popular parallel programming techniques:

¢ Using a conventional language, such as C or Fortran and a parallelizing com-
piler, a sequential program is translated into a parallel node program. The
compiler must have the ability to detect and exploit parallelism in the sequen-
tial program and to distribute computation using the target machine resources
(Figure 2.5(a)). This method has been applied to both shared-memory mul-
tiprocessors and distributed-memory multicomputers. The ‘intelligence’ of a
parallelizing compiler is a decisive factor in the success of this approach. The
major advantages are that: (1) no programmer retraining and (2) the existing

conventional software does not need to be rewritten.

e Alternatively, programmers can be required to specify the parallelism in their
programs (Figure 2.5(b)). The programmer needs to develop an explicit par-
allel program by using parallel dialects of C or Fortran . The compiler is less
complicated than a compiler for the first method, because some of respon-

sibility has been passed into the programmers. The compiler only needs to

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMING16

Source code written in sequential Source code written in concurrent
language C, Fortran, Lisp or dialects C, Fortran, Lisp or
Pascal Pascal

Paralielizing Compiler Concurreny preserving compiler

Paralle] object code Concurrent object code

. . Execution by runtim m
Execution by runtime system e Yy funtime syste

(a) Implicit parallelism (b) Explicit parallelism

Figure 2.5: Two Approaches of Parallel Programming (quoted from [1], pg. 19)

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMINGL7

preserve parallelism specified and generate parallel code.

Machine-Independent Parallel Programming

Despite all the advantages of parallel machines, programming on parallel machines
is still widely believed to be very difficult. Programmers must learn the new paral-
lel programming environment and to exploit the underlying machine architecture.
Programs must be rewritten in a parallel programming language that reflects the
underlying machine architectures. For example, a message-passing dialect for a
MIMD distributed-memory machine, extended vector and array syntax for a SIMD
machine, or an explicitly parallel dialect with synchronization for a MIMD shared-

memory machine [13].

Most existing parallel programming models are machine-dependent so programmers
need to deal with machine-specific issues such as improving data locality and the
exploitation of specific memory hierarchies. Such parallel programs cannot be eas-
ily modified or ported to different machine architectures. It should be noted that
programming MIMD distributed-memory machines is the most challenging environ-
ment because each processor has its local memory (address spaces) and inter-node
communication is through calls to machine-specific communication libraries. Pro-
grammers must write their programs in a message-passing dialect and deal with
address translation and processor synchronization using messages. The resulting

programs are often nearly impossible to maintain.

One way to solve the parallel programming problem is by providing a machine-

independent programming model. This model must be easy to program and be

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMINGIS

portable. A good parallel language model should have the following attributes: (1)
efficiency in its implementation, (2) portability across different architectures, (3)
compatibility with existing conventional sequential languages, (4) expressiveness of

parallelism, and (5) ease of programming.

2.3 Related Work

Before preceding to the thesis itself a brief review at some related work will help to
set the framework. Although all issues may not be clear at this point the balance

of this thesis will clarify the significance of this related work.

FORTRAN D can be viewed as a second-generation distributed-memory com-
piler. Itincorporates and extends many compiler-time analysis and optimization
techniques from many other research projects, which can be treated as the first-
generation compilers. Some of the important ones are SUPERB, Kali, and CM
FORTRAN [13].

SUPERB is a semi-automatic parallelization tool designed for MIMD distributed-
memory machines [15, 13]. This tool provides user-specified BLOCK distributions
and performs dependence analysis to guide program transformations and commu-
nication optimizations. SUPERB first uses guards and element-wise messages to
generate an intermediate program using run-time resolution and then applies the
transformations and optimizations to the intermediate code. It originates overlaps
as a means to store nonlocal data accesses. SUPERB also provides interprocedural

data-flow analysis of parameter passing. This tool does not support CYCLIC dis-

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMINGI19

tribution, collective communications, dynamic data decomposition and storage of

nonlocal values in temporary buffers.

Kali is the first compiler system which supports both regular and irregular distribu-
tions on MIMD distributed-memory machines[16]. It supports BLOCK,CYCLIC,
and user-specified distributions. Kali requires the programmer explicitly to par-
tition the loop iterations among processors by specifying an on clause for each
parallel ioop. Arguments to procedures are labeled with their expected incoming
data distribution. It does not provide dependence analysis. Mandatory on clauses
for parallel loops, collective communications, and dynamic decompositions are ma-

jor differences between FORTRAN D and Kali.

CM FORTRAN is a version of FORTRAN 77 with vector constructs[17]. Pro-
grammers must explicitly specify data parallelism by using of vector operations or
making array dimensions as parallel. CM FORTRAN allows users to define a data
partition for each partition by using interface blocks. Array parameters are copied
to buffers of the expected distribution at run time, eliminating the interprocedural

analysis.

Compared with the first generation research projects, FORTRAN D has provided
two main advantages: (1) the dependence analysis helps the compiler to exploit
parallelism in the source code, without using any language extending constructs or
explicitly specifying parallelism in the source code. The analysis also provides the
information for compiler to apply more optimizations, (2) the FORTRAN compiler
performs its analysis up front and use it to derive the SPMD code, decreasing the

load of run-time system.

CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAMMING20

2.4 Summary

The existing parallel languages can be divided into two groups [1,3]: (1) a real new
parallel language and (2) a conventional programming language enhanced with new
constructs. The advantage of a new language is providing explicit high-level con-
structs which present the computation models for parallel architectures, but new
languages are often incompatible with existing languages. Most existing parallel

languages belong to the second group [1].

In Chapter 3, the FORTRAN D compiler is introduced because it is a machine
independent language. This language was developed at Rice U. and it adopted the
second approach of parallel programming. It meets all the requirements of a good
parallel programming language, described above and provides a suitable environ-

ment for demonstrating the new innovations proposed in this thesis.

Chapter 3

FORTRAN D

Currently several parallel architectures are used, each equipped with its own com-
munication library. This introduces two difficulties: (1) programmers have to adapt
to multiple programming environments and (2) it is difficult to port software across
different platforms. One solution to this problem is a machine-independent pro-

gramming model suitable for a various parallel architectures.

FORTRAN D is a version of FORTRAN enhanced with a rich set of data decompo-
sitions [13]. It provides a machine-independent programming model for distributed
MIMD machines which supports new features that make it possible to write effi-
cient machine-independent data-parallel programs using data decomposition speci-
fications. FORTRAN D allows programmers to express parallelism but it is simple
enough to let a compiler generate efficient SPMD programs for different parallel
machine architectures. FORTRAN D also supports techniques such as automatic

data decomposition and communication generation.

21

CHAPTER 3. FORTRAN D 22

The balance of this chapter introduces and describes the FORTRAN D program-
ming language. Since the focus of the discussion is on parallelism, a working knowl-
edge of FORTRAN is assumed, so the chapter focuses on the extensions to support

parallelism. Finally, section 3.2 makes few summary comments.

3.1 FORTRAN D Language

The data decomposition problem in a FORTRAN D program is solved using two
levels of parallelism [8]. The first level is called problem mapping and decides how
arrays should be aligned with respect to one another in the program. It is decided
by the structure of the underlying computation, but is mostly independent of any
machine architecture. Problem mapping is the basic requirement for reducing data
movement during program execution. The second level is called machine mapping.
It decides how arrays should be distributed onto the processors. When applying ma-
chine mapping, architectural characteristics such as the topology, communication
mechanisms, size of the local memory on each processor, and number of processors
in the system must be considered. Some program characteristics like the size of a

distributed array and computation structure may also determine data distribution.

During loop execution in a parallel program, inter-processor communication pri-
marily depends on mapping iterations and array elements to processors. Consider
the program segment in Figure 3.1. Depending upon the different data distribu-
tion of the arrays and the scheduling of iterations on n processors it is possible to
generate different communication overhead. For example, if A(i) and B(i+1) are

mapped to the same processor and iteration i is executed on the same processor,

CHAPTER 3. FORTRAN D 23

fori=1,n
A(i) = B(i+1)

end

Figure 3.1: Example of Problem Mapping

no communication is required to execute the iteration. However, if iteration i is
executed on a different processor, then B(i-+1) must be sent to the computing pro-
cessor and the result must be stored back at the processor that owns A(i). Clearly,
the first alternative is preferred. Now consider a case where A(i) and B(i+1) are
on different processors. In this case, there are three different scenarios: (1) the it
iteration is executed by the owner of A(i); (2) the ##* iteration is executed by the
owner of B(i+1); (3) the #* iteration is executed by a different processor. In first
case, B(i+1) must be sent to the owner of A(i) to perform the computation. In the
second case, the final result must be sent back to the owner of A(i). In the third
case, B(i+1) must be sent to the computing processor and the final result must
be sent back to the owner of A(i). From these examples it can be seen that most
communication overhead is due to poor program mapping (i.e., the alignment of

arrays does not match the computational requirements).

3.1.1 Problem Mapping

Problem mapping is very important in a FORTRAN D program because at the
need to minimize the number of communication statements. Most parallel pro-

grams contain explicit or implicit communications caused by the memory hierarchy

CHAPTER 3. FORTRAN D 24

of massively parallel processors. A “nonlocal” data access results in communication
to a remote processor and it is a major factor in degrading the performance of a
parallel system. It should be noted that it could be impossible to eliminate all

communication so the goal is to minimize the quantity.

Problem Mapping Statements

Fortran D problem maps using DECOMPOSITION and ALIGN statements. A
decomposition is simply an abstract problem or index domain and no storage is
associated with it. The DECOMPOSITION statement declares a decomposition
with its'narne, dimensionality, and size. Figure 3.2(a) illustrates two decomposi-
tions: D1 is an one-dimensional decomposition of size N and D2 is a two-dimensional
decomposition of size N*N. The ALIGN statement is used to map arrays onto a
decomposition. Arrays mapped to the same decomposition are aligned with each
other. The alignment is specified by the placeholders in the subscript expression of

the arrays and decomposition.

Each alignment inside a program can be classified as one of the following types:
ezact match, intra-dimension alignment, and inter-dimension alignment. Exact
match is the simplest form of alignment (Figure 3.2(a)). It maps the array exactly
onto the decomposition. In an exact match, no placeholder is required. Intra-
dimension alignment specifies an offset and/or a stride for each subscript expres-
sion of the data decomposition. The programmer can assign an alignment and/or
an a,lignfnent stride for any dimension of an array. An alignment stride is used as
the coefficient of the placeholder in the subscript expressions of a decomposition.

Figure 3.2(b) illustrates intra-dimension alignment with offsets, strides, or both for

CHAPTER 3. FORTRAN D

REAL AI(N), A2(N.N), A3(N,N)
DECOMPOSITION DI(N),D2(N,N)

ALIGN Al with DI /* Exact Match */
ALIGN A2 with D2 /* Exact Match */
ALIGN A3(1)) wthD2(LJ) /* Exact Match */

DECOMPOSITION A(l)

SV T O A
R S F N

ALIGN Al with DI

(a) Exact Match

ALIGN AI(I) with D1(I+1)

ALIGN A1(l) with DI(I-1)

1-D Alignment Offsets

IR N O T S
0005 0 0T Ao Al win D1
HEEEE ALIGN AI(D) with D1(2*1-1)

e tea -

1-D Alignment Stride

: . et
- - e
DECOMPOSITION D2(LJ) ALIGN A3(L)) ALIGN A3(LJ)
with D2(LJ-1) with D2(I-1,J42)
2-D Alignment Offsets
muumwn B
T i LT]
. D . 1 H ' »
[] f—d 1 1
: i D L1]
ALIGN A3(L)) ALIGN A3(L))
DECOMPOSITION D2(.)) with D2(2%1, 2+1) with D2(2*1-1.7)
2-D Alignment Stride (b) Alignment Strides and Offsets

Figure 3.2: Example of Problem Mapping Statements

CHAPTER 3. FORTRAN D 26

one-dimensional and two-dimensional arrays.

Inter-dimension alignment determines the data decomposition between dimensions.
It includes permutation, collapse, embedding, or any combination of these three.
Permutation permutes the dimensional alignment between arrays and decomposi-
tions. This can be done by exchanging the position of placeholders in the decompo-
sition, such as “ALIGN A3(I,J) with D2(J,I)". Collapse omits the assignments of
certain dimensions of the array while mapping the array onto its decomposition. All
the data elements in the omitted dimensions are collapsed and assigned to the same
location in the decomposition. Array embedding is the inverse of array collapsing. It
maps arrays with fewer dimensions onto a higher dimensional decomposition. Each
unmapped dimension of the decomposition is given an explicit value to denote
the position of the mapped dimension(s). Any combination of intra-dimensional
and inter-dimensional alignments is allowed when applying array-to-decomposition

mapping. Figure 3.3 illustrates array permutation, array collapse, and array em-

bedding.

FORTRAN D also provides some useful options for the ALIGN statement: over
flow, range, and replication. The overflow option specifies the actions to be taken
when an array-to-decomposition overflow occurs. If it happens, the user can select
a method from three default actions: ERROR, TRUNC, and WRAP. These options
are illustrated in Figure 3.4. FORTRAN D permits mapping at part of an array
onto its decomposition using the range option of the ALIGN statement. The range
of a dim;ansion i1s specified by the from:to syntax. The symbol “+” is used to denote
the entire array dimension should be mapped. The final option is replication which

replicates distributed variables into a decomposition. The range option can be used

CHAPTER 3. FORTRAN D

................... >
------ >
T ERERY >
----- >
- ALIGN X(1,J) with D(J,I)

ALIGN X(1,1)
with D(I)

]
.
f
J--

|

P .
'
]

..[___LL '
fomde
coeed-d

v

[}

.

13

.

IS

h
beau
‘

t

ALIGN A(l) with
D(-1,2)

ALIGN A(]) with
D(1,1+2)

~<—— Alignment Permutation

) = Aurray Collapse

N ' » , .
1 o
N . N . ’ .
’ N M . ' v v v
L y 1 L L
v : ® ’
— T o "
I ' . co oo
I:l. I.["' m

ALIGN Y(X,Y)
with D(I)

ALIGN Z(1,JK)
WITH D(I)

BEIERE

L—
L-.}--’—-;-..+--:~-4
v 1

Ve deds .',-.;-J_...,
1

oo !
e B b B
t

ALIGN A(I) with D(1,]I)

<<——— Array Embedding

Figure 3.3: Example of Array Permutation, Collapse, and Embedding

27

CHAPTER 3. FORTRAN D

DECOMPOSITION D(N)

IE N O 2 53 (21 S

28

Any attempt to access overflowing array
elements ia treated as an error

All elements overflowing the decomposition
are mapped to the element in the edge.

All elements overflowing the decomposition

are wrapped to the opposite end of the decomposition.

Figure 3.4: Example of Alignment Options

with the replication option.

3.1.2 Machine Mapping

ALIGN and DECOMPOSITION statements together specify how different data

structures should be aligned. These two constructs provide a mechanism to re-

duce interprocessor communication due to unaligned data structures. However,

interprocessor communication may still be needed if poor iteration mapping oc-

curs. FORTRAN D’s DISTRIBUTE statement specifies data distribution onto the

processors. This information is used to schedule iterations so interprocessor com-

munication is minimized.

Each FORTRAN D’s decomposition variable can only be specified with one dis-

tribution. The compiler will apply the distribution to arrays aligned with this

decomposition and defines data distribution for each dimension in the decomposi-

tion. The format of the DISTRIBUTE statement is:

CHAPTER 3. FORTRAN D 29

DISTRIBUTE D1(attribute)
DISTRIBUTE D2(attribute,attribute)

There a,;‘e three types of attributes in FORTRAN D: BLOCK, CYCLIC, and
BLOCK_CYCLIC. BLOCK distribution divides the size of decomposition into con-
tiguous blocks of size (N/P), where N is the size of the decomposition and P is
the number of processors. The compiler will then assign one block to each pro-
cessor. CYCLIC adopts a round-robin distribution for the decomposition. It as-
signs every P element to the same processor which is good for load-balancing.
BLOCK.CYCLIC is a combination of the above two distributions which takes a
parameter X representing the block size (M). After dividing the decompositions
into contiguous chunks of size M, the compiler applies the CYCLIC distribution to
distribute these blocks. Figure 3.5 has the examples of these three types of distri-

bution.

FORTRAN D also allows the user to define the number of processors for each di-
mension of a decomposition. Figure 3.6 illustrates this data distribution where each

distributed dimension is given a number of processors on that dimension.

To support programs with irregular data parallelism, FORTRAN D provides irreg-
ular distributions. The user can assign the distribution through a mapping array
which itself will be distributed. Figure 3.7’s program segment illustrates irregular
distribution where the distribution of each element in decomposition IRREG is de-
termined by the value of its corresponding array element in MAP. The mapping

result of IRREG on each processor is shown in Figure 3.8.

CHAPTER 3. FORTRAN D

L pm [® [[m | -
(BLOCK) . o le 11 .
EIIPZIP3]P4IP11P2|P3|P4|Pl[P2lP3|P4|P1IP2|P3lm il n n
(CYCLIC) -
(BLOCK,*) (*BLOCK) (BLOCK,BLOCK)
Lel el ol vl ol vl n] «]
(BLOCK_CYCLIC(2)) 2-D BLOCK Distribution

1-D Data Distribution

I PP Jp [P e P3|y [P

P LU0 R K20 Rl [0 R KO R

[L NAT B O N O R O N R)

(CYCLIC¥) (*,CYCLIC) (CYCLIC,CYCLIC)
2-D CYCLIC Distribution

Pi P3 Pt

£l

- - n o P2 P4]

P P1 P3 Pl

" P2 P4 <3

(BLOCK_CYCLIC(2),*) (*,BLOCK_CYCLIC(3)) (BLOCK_CYCLIC(2),BLOCK_CYCLIC(3))
n$proc =2 n$proc =2 n$proc = 4
n$proc : number of processors.

2-D BLOCK_CYCLIC Distribution

(CYCLIC,BLOCK) (BLOCK,CYCLIC) (BLOCK,BLOCK_CYCLIC(2))

2-D Combination Distributions

Figure 3.5: Example of Data Distribution

CHAPTER 3. FORTRAN D 31

P P5
P1} P3{ ps| p7 Pii P5| P1{ PS| P1} P5{ Pli PS
P2 P6
- Pt {P3{PsIP7 | p1 P3| P5|P7
P3 p2|ps | Ps | P8 P21 p6|P2{ps1P2| p6 [P2| P
P4 Pg
P3| p7i P3| p7l P3| p7| P3| p7
(BLOCK(4).BLOCK(2)) (BLOCK(2).BLOCK(4)) P2 {P41P6 [P8| P2|P4 |P6 P8
2-D Uneven Block Distributions P4/ P8|P4 P8 P4/ P8 P4 P8

(BLOCK(#)CYCLIC) (BLOCK(2),CYCLIC(4))

Pl Ps

) oF P1 P3 ps | P7

P3 P7

P4 P8 P2 | P4 P6

Pl p3

P2 P PI p3 Jps |P7

P3 pP7

P4 PR P21 P4 Fps | pg
(CYCLIC(4),BLOCK(2)) (BLOCK_CYCLIC(2.2).BLOCK(4))

2-D Uneven combination Distributions

Figure 3.6: Example of Processor Distribution

3.1.3 . Additional Features of FORTRAN D

The following additional features are available in FORTRAN D [8] too:

Dynamic Data Decomposition: The computation pattern may change between dif-
ferent phases of the program. One way to reduce data movement is to change
data alignment between the different phases. FORTRAN D applies dynamic
data decomposition to provide this ability. Each ALIGN and DISTRIBUTE
statements inside the program may be interpreted as executable statements,
rather than declarations, so the data distribution can be changed dynamically

during program execution.

CHAPTER 3. FORTRAN D

n¥proc = 4

REAL X(16)

INTEGER MAP(16)
DECOMPOSITION EG(16), IRREG(16)
ALIGN MAP with REG

ALIGN X with IRREG

DISTRIBUTE REG(BLOCK)

..... set values of MAP array
DISTRIBUTE IRREG(MAP)

Figure 3.7: Example of Program Segment with Irregular Distribution

MAP[1:4] [3]2 1]

MAP[5:8] [2] 1] 3]T]

MAP[9:12]

21 4] 4
X OJONEC

MAP[13:16] | 1 | 0] 3]0 |

X WO ®

Figure 3.8: Example of Irregular Distribution

processor 1

processor 2

processor 3

processor 4

32

CHAPTER 3. FORTRAN D 33

FORALLI=1,N
X(INDEX(D)) = ...
.. = X(INDEX(I+1))
ENDDO

Figure 3.9: Example of FORALL Loop

Procedures: The scoping rule for data decompositions in FORTRAN D procedures
is defined as: (1) procedures inherit data decompositions from their callers,
and (2) the effects of all DECOMPOSITION, ALIGN and DISTRIBUTE
defined inside a procedure are limited to itself and procedures called by it. A

distributed array can also be passed as a parameter.

FORALL loops: FORALL loops prevent synchronization in a loop whose depen-
de:flces can not be detected at compile-time (eg. using index arrays). FORALL
loops can only use values defined before entering the loop or within the cur-
rent iteration, so each iteration has its own copy of the entire data space
before entering the loop. Therefore, all the iterations in the loop can be ex-
ecuted in parallel without communication. At the end of a FORALL loop,
the compiler performs another important operation - merge, which is used
to merge the variables that are assigned new values by different iterations
during the loop. The merge operation is done in a deterministic way using
values assigned from the latest sequential iteration. Figure 3.9 is a example
for FORALL loop where each iteration of the FORALL loop uses the values
of array elements, INDEX(I) and INDEX(I+1) defined before the loop.

CHAPTER 3. FORTRAN D 34

Reduction: A reduction can be performed on a group of data. The result for the
operation will have lesser dimensionality or just a single scalar value. The
REDUCE statement is used to specify the reduction operation in a FORTRAN
D program. The following reduction functions are provided by FORTRAN

D:
SUM sum of a list of numbers
PROD product of a list of numbers
MIN minimum of a list of numbers
MAX maximum of a list of numbers
AND logical AND of a list of booleans
OR logical OR of a list of booleans

The programmers are also allowed to define their own reduction functions if

they are associative and commutative.

ON clause: FORTRAN D allows user to specify the processor for each iteration of
the loop. This feature permits the users to control load-balancing and reduce

communications.

3.2 Summary

The principal goal of Fortran D is to provide support for exploiting fine-grain par-
allelism on distributed-memory machines. It provides a simple programming model

for the programmers through the support of a sophisticated compiler. FORTRAND

CHAPTER 3. FORTRAN D 35

provides high compatibility with FORTRAN. After removing the data decomposi-
tion statements in a FORTRAN D program, it becomes a FORTRAN program. To
develop a sound parallel programming environment for distributed-memory MIMD
machines, several open questions must be addressed: automatic data decomposi-
tion, static performance estimation, run-time preprocessing using the PARTI com-
munication library, additional high-level language constructs to support parallel
operations, etc [13]. This thesis now turns its attention to the FORTRAN D com-

piler.

Chapter 4

FORTRAN D Compiler

Two steps are required to write a data-parallel program in FORTRAN D: (1) se-
lecting a suitable data decomposition and (2) using it to derive the single program
over multiple data (SPMD) program with explicit communications to access non-
local data. The first part is the duty of the programmer and the second is the
FORTRAN D compiler.

The FORTRAN D compiler translates a program into a SPMD node program with
explicit message passing for distributed-memory machines. The compiler detects
and exploits parallelism in a FORTRAN D program and produces a node program
with minimal communication overhead executable on the nodes of a MIMD ma-
chine. The FORTRAN D compiler uses the principle that the owner computes to
generate the node program of the source program. Therefore, each processor only
performs the computation for its own local data set so means each processor can
only compute the values of data set assigned to it by data distribution. The data

decomposition specifications in the source program are changed into mathematical

36

CHAPTER 4. FORTRAN D COMPILER 37

distribution functions by the compiler that are used to determine the ownership
of local data. FORTRAN D compilation can be roughly divided into three major
phases: program analysis (section 4.1), program optimization (section 4.2), and code

generation (section 4.3).

4.1 Program Analysis

There are four parts to program analysis: dependence analysis, data decomposition

analysis, partition analysis, and communication analysis [13].

4.1.1 Dependence Analysis

This phase analyzes the control flow and memory accesses in the source program to
determine a statement execution order that produces the same result as the orig-
inal program. If there is a data dependence between two references Rl and R2 in
a source program, then both reference the same memory location. To preserve the
semantics of the original program, their execution order must be consistent with
the sequential execution order. If there is a dependence between RI and R2 and
R1 must be executed before R2, then Rl is called the source of this dependence
and R2is its sink. Data dependences define these ordering relationships in a source

program. Four kinds of data dependences exist:

Flow (True) dependence: If the source R1 is a write operation and R2is a read.

CHAPTER 4. FORTRAN D COMPILER 38

Antidependence: If the source R1 is a read operation and R2is a write.
Output dependence: If both source R! and sink R2 are write operations.

Input dependence: If both source RI and sink R2 are read operations. Input

dependences do not restrict statement order.

Each data dependence in a loop identifies two types of dependence relations. Con-
sider the sequential loop nest L in Figure 4.1, where L, pi, and g;, respectively,
are the index variable, lower bound, and upper bound of L; for 1 < i< m, and
H(Iy,Is,...,I) is the loop body. This loop nest L is denoted as L = (L1,La,...,Ly).
When m is the arity of the loop, so if m = 3 it is a triple-nested loop. The itera-
tions of L are represented by the index vector of the loop, denoted by (Iy,l,...,I,).
The index values of L are the values of the integer vector (ip,lg,...,inm), such that
(P1:P2y+sPm) < (i1yizyeensim) < (41,92,---,m), Tespectively. Each index value (11,2500 051m)
generates an instance of the loop body, denoted by H(i1,i2,-- yim), which is an iter-
ation of L. If there is a data dependence from an instance S(i) of S to an instance
T(5) of T where S and T are two statements of the loop body, we can say “T
depends on S” based on the dependence relation between statements. Similarly,
“T'(j) depends on S(7)” based on the relation between the iterations of the loop.
A data dependence in L can be characterized by its dependence distance and level.
The dependence distance of a dependence from S(i) to T(j) is defined as J- i Its
dependence level has m+1 possible values: 1,2,..,m+1 which is decided by the first
non-zero entry in the distance vector. If T depends on § at a level L 1<1< m,
then the dependence of T on § is carried on loop L;. The dependence of T on § is
loop-independent if it is not carried by any loop (i.e, the distance is 0 and the level

is m+1).

CHAPTER 4. FORTRAN D COMPILER 39

Li:dol; =p1,q1
Ly: doly =pg, q

L: do I, = pm, Gm
H(Iz, 1)
enddo
enddo
enddo

Figure 4.1: Sequential Loop Nest

To provide a correct and efficient dependence test is important for a parallelizing
compiler. In the dependence analysis phase, the compiler must compute all the
data dependences in a program. Dependence testing is a method used to decide
whether dependences exist between two subscripted references to the same array
in a loop nest. To calculate the data dependences due to array references in a loop
nest, the compiler must solve a set of linear equations in the integer space [9]. Each
dependence found is represented by its dependence distance and level. This infor-
mation is crucial in guiding a FORTRAN D compiler during optimization . The
FORTRAN D compiler is developed in the context of the ParaScope programming

environment which incorporates this analysis [13, 14].

4.1.2 Data Decomposition Analysis

In this phase, the compiler determines the data decomposition at each reference of

a distributed array. A particularly important feature of FORTRAN D is dynamic

CHAPTER 4. FORTRAN D COMPILER 40

data decomposition. Although this feature provides more ‘ﬁexibility, it makes the
job of the FORTRAN D compiler more difficult. To generate the correct guards
(conditional statements) and communication in the node program, the compiler
must know the correct decomposition for each array reference at any point of the
program. Reaching decompositions are the possible set of data decomposition spec-
ifications that may reach an array reference. The compiler applies both intra- and
interprocedural analysis to decide the data decompositions for each reference to
a distributed array. If multiple decompositions reach a procedure, node splitting

or run-time techniques are applied to generate the correct code for the program [13].

The scope rules for dynamic data decompositions in a FORTRAN D procedure are:

1. a procedure inherits data decompositions from the callers, and

2. the effects of dynamic data decompositions defined inside a procedure are

limited to itself and procedures called by it.

Since the dynamic data decompositions defined inside the procedure are not valid
after the procedure returns, the compiler must insert appropriate (and potentially
expensive) calls to run-time data distribution routines to restore the original data

decomposition.

4.1.3 Partitioning Analysis

Program partition analysis uses data decomposition specifications and the owner

computes rule to partition the data and computations of the original program among

CHAPTER 4. FORTRAN D COMPILER 41

processors. The compiler first uses data decomposition specifications to partition
the arrays to processors and then uses the owner computes rule to distribute the
computation onto the processors. lteration sets, index sets, and reqular section de-
scriptors (RSDs) are used during this phase. An iteration set is composed of loop
iterations that represents a section of the work space. An index set is a set of array
indices that represents a section of the data space. The FORTRAN D compiler
uses regular section descriptors as internal representation for iteration and index
sets. The representation of an RSD is [l:ugs;,...] where [, v, and s; respectively
represent the lower bound, upper bound, and step of the #* dimension of the RSD.
If a step of a RSD is not explicitly specified, then it is assigned the default value of
one. This representation provides an easy way for the compiler to describe rectan-
gular or right-triangular array sections. Operations, such as intersection and union,
can be easily performed on RSDs. In an RSD representation of a nested loop or a
multidimensional array, the leftmost dimension of the RSD maps to the outermost
loop of the loop nest or the leftmost array dimension of the array, réspectively. In
most cases, RSDs are used in array section analysis to record the array sections
defined by an assignment statement at the loop level. The compiler can use the
RSDs computed for communication optimizations. Consider the example in Fig-
ure 4.2. The compiler computes a RSD for the reference A(i,j) at each loop level
and then tags it on that loop level for later use. In this example, the RSDs for each
loop level starting from the innermost level are Ali,j], Ali,1:100], and A[1:100,1:100].

The FORTRAN D compiler produces a SPMD program that can be executed di-
rectly on each node of a MIMD machine. It means that all the processors must
execute the same program and have the same array declarations in the node pro-

gram. Since all the processors are using the same array declarations, they must have

CHAPTER 4. FORTRAN D COMPILER 42

doi=1,100 /* RSD = A[1:100,1:100] */
doj=1,100 /* RSD = Ali, 1:100] */
A(ij) = BGED.-... /* RSD = Ali, j] */
enddo
enddo

Figure 4.2: Example of RSD Representation

{* Original program *} {* SPMD node program *}
REAL A(40) REAL A(10)
doi=1,40 doi=1,10
AG) =50 A(i) = 5.0
enddo enddo

Figure 4.3: Example of Global and Local Indices

a local-index set which is different from the global indices in the original program.
The example in Figure 4.3 illustrates one-dimensional array (A) of the original pro-
gram that is block-distributed among four processors. The SPMD node program
has different array and loop indices from the original program. In the node pro-
gram, th-e local indices for A are [1:10] but the global indices for array A after the
data partition are [1:10], [11:20], [21:30], and [31:40]. Therefore, the loop indices
in the node program are [1:10] but the global loop indices in the FORTRAN D
program are [1:40].

The way that FORTRAN D compiler computes the local index set is almost the

same. The compiler first decides the reaching decomposition set for each reference

CHAPTER 4. FORTRAN D COMPILER 43

REAL A(100,100), B(100,100)
DECOMPOSITION D(100,100) {* The number of processors on the machine is four. *}
DISTRIBUTE D(:,BLOCK)

do k = 1, time
doj=2,99
doi=2,99
S1: A(1j) = (B(ij-1) + B(i-1,j) + B(i+1j) + B(i,j+1))/4
enddo
enddo
doj=2,99
doi=2 99
S2: B(i,j) = AGy)
enddo
enddo
enddo

Figure 4.4: Example of a Fortran D Program(Jacobi)

of a distributed array, then according to the reaching decomposition it computes
the local index set of each array which is the local array section owned by each
processor. Consider the Jacobi program shown in Figure 4.4 [13] where both arrays
A and B have the same data distribution as the data decomposition variable D. The
first dimension of D is undistributed and the second dimension is block-distributed.
The reaching decomposition set for both arrays has only element D and the local

index set on each processor is [1:100,1:25].

The computation of the local index set decides the data partition for each array.

By using the result of data partition phase the compiler partitions the computation

CHAPTER 4. FORTRAN D COMPILER 44

among the processors using the owner computes rule. The local iteration set of a
reference R on a processor ¢, is defined to be the set of loop iterations that cause R
to access data owned by ¢,. This iteration set can be calculated in two steps [13].
First, apply the inverse of the array subscript function of R to the local index set of
tp, and second intersect the result of step one with the iteration set of the enclosing
loops. The FORTRAN D compiler only computes the local iteration set of left-hand
side(lhs) for each statement, because of the owner computes rule. Therefore, the set
of iterations to be executed on a processor is given by the union of local iteration

sets of the lhss of each assignment statement.

The Jacobi program in Figure 4.4 helps explain how to compute the local iteration
set. The compiler applies the inverse of the subscript function of the Ihs to the local
index set of A (i.e, [1:100,1:25]) and generates the unbounded local iteration set
[:,1:25,1:100]. The first entry of this set, “”, indicates that every iteration of the k
loop accesses local elements of A. The inverse subscript function maps j and i loops
to [1:25] and [1:100], respectively. In the second phase, the compiler determines
the intersection of the unbounded iteration set and the actual bounds of the en-
closing loops, since these are the only iterations that actually exist. In Figure 4.4,
the globc:ﬂ iteration set of the loop is [1:time,2:99,2:99]. The local iteration sets for
statement S1 in Figure 4.4 which are computed by two steps: (1) converting the
global iteration set into the local iteration sets for each processor and (2) perform-
ing the intersection with the unbounded local iteration sets for each processor (in

local indices) are:

The local iteration set for Proc(1) = [1:time,2:25,2:99]
The local iteration set for Proc(2:3) = [1:time,1:25,2:99)]

CHAPTER 4. FORTRAN D COMPILER 45

The local iteration set for Proc(4) = [1:time,1:24,2:99]

The same procedure is applied to compute the local iteration sets for statement S2.
This algorithm uses the local indices - calculated for the local index set of each array
- to derive the local indices for the local iteration set. To generate a SPMD node
program which can be executed on all the processors, the FORTRAN D compiler
must ensure that the processors on the boundary are different from the remaining

(inner) processors because they may have different local index and iteration sets.

The third aspect to be considered at this stage is how to handling boundary condi-
tions. The compiler handles boundary conditions diffefently when generating local
index and iteration sets. In the program in Figure 4.5, the compiler will store dif-
ferent boundary conditions for processors one and four. This eliminates the need
to calculate and store the condition for each processor. For each loop or array
dimension, the boundary conditions for iteration or index sets are recorded in pre,
mid, and post sets by the compiler [13]. The pre and post sets are for boundary con-
ditions. These sets are represented as augmented iteration sets in the FORTRAN
D compiler. Each dimension in an augmented set contains these three sets and
their associated processors. As shown in Figure 4.5, the associated processors in
the augmented sets are indicated by the ‘@’ sign. The iteration set of a Processor is
the cartesian product of the corresponding iteration sets of each dimension. How-
ever, not all boundary conditions can be successfully represented by the augmented
iteration sets. In a worst case, the compiler has to compute and store the index

and iteration sets for each processor.

CHAPTER 4. FORTRAN D COMPILER 46

pre=[2:25]@pl
1:time,| mid=[1:25] ,2:99
post=[1:24]@p4

Figure 4.5: The Augmented Iteration Sets of Jacobi Program

doj =2, 100
doi= 2,100

Si: X = A(i,j+1) * B(i,j)....

52: A(L) = A(i) + 0.75 * (X-A(i,))
enddo

enddo

Figure 4.6: Example of Scalar Variables

The compiler replicates scalar variables on all processors. If the partitioning of a
loop that assigns a value to a scalar variable is done using the owner computes
rule, every processor has to execute all the loop’s iterations. However, if the scalar
variable is ‘private’, (used) within a loop iteration, each processor need not compute
all the iterations. The compiler uses this fact and identifies the local iteration set
for such an assignment as the union of the local iteration sets of the statements
that use the scalar variable. For example, in the code segment of Figure 4.6, X is a
replicated scalar that is identified as a private variable. The FORTRAN D compiler

computes the local iteration set of S2 and assigns it to the local iteration set of S1.

CHAPTER 4. FORTRAN D COMPILER 47
4.1.4 Communication Analysis

In this phase the compiler uses local index and local iteration sets to compute
nonlocal data accesses for each rhs reference. To compute the nonlocal index sets,
all rhs references to the distributed arrays are examined. For each rhs reference,
the compiler computes the RSD of index set to be accessed by each processor by
applying the subscript functions of the rhs to the local iteration set assigned to the
statement. Nonlocal data accesses are obtained by subtracting the RSD of local
index set from the resulting RSD. The RSD corresponding to the nonlocal accesses
will be retained only if it is not empty. For the boundary processors, the compiler
must compute the nonlocal index set for each group of processors. For the Jacobi
program- (Figure 4.4), the compiler computes the nonlocal index sets for the three
different processor groups. The local iteration set of the group of interior processors,
Proc(2:3), is [l:time,1:25,2:99]. The local index set for B on processors Proc(2:3) is
[1:100,1:25]. The nonlocal index set for each reference is shown in Figure 4.7. The
rhs references B(i,j-1) and B(i,j+1) access nonlocal locations [2:99,0] and [2:99,26],
respectively. Both references are marked and their nonlocal index sets are stored.
Similar analysis produces the nonlocal index sets for the other two groups, Proc(l)
and Proc(4). The nonlocal index sets for both processors are [2:99,26] and [2:99,0],
respectively. For the rhs reference to A (i,j) in statement S2, the nonlocal index set

is empty because only local accesses occur.

4.2 -Program Optimization

The results of program analysis are used to improve parallelism and reduce commu-

nication overhead by detecting the opportunities for parallelism. Several advanced

CHAPTER 4. FORTRAN D COMPILER 48

The index set accessed by B(i,j-1) is [2:99,0:24]
The index set accessed by B(i-1,j) is [1:98,1:25]
The index set accessed by B(i+1,j) is [3:100,1:25]
The index set accessed by B(i,j+1) is [2:99,2:26]
The nonlocal index set for B(i,j-1) is [2:99,0]
The nonlocal index set for B(i-1,j) is []

The nonlocal index set for B(i+1,j) is []

The nonlocal index set for B(i,j+1) is [2:99,26]

Figure 4.7: Example of Index Sets and Nonlocal Index Sets for S1 in Jacobi Program

optimizations have been developed for the FORTRAN D compiler to exploit par-
allelism in a pipeline computation. The next chapter details optimizations for
pipeline computations and communication , so only the fundamental concepts are

introduced in this section.

Message Vectorization can reduce the communication overhead due to inefficient
messaging. Consider the run-time resolution in Figure 4.8(b) for the program in
Figure 4.8(a). The send and recv operations directly precede each reference causing
a nonlocal data access. This simple approach is inefficient because it generates
many small messages resulting in high communication overhead. The FORTRAN
D compiler applies message vectorization to combine several small messages into a
large message (see Figure 4.8(c)). The compiler uses data dependence information
to combine small messages from inner loops into one large message that may be

sent from some outer loop.

The compiler determines the appropriate loop level (called commlevel) to insert

CHAPTER 4. FORTRAN D COMPILER

{* Original program *}
REAL A(100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100)
ALIGN X with D
doi=1,95
A(l) = A(i+2)
enddo
(a) FORTRAN D Program

{* Message Vectorization *}

REAL A(27)

my$p = myproc() {* 0...3 *}

if (my$p .gt. 0) send(A(1:2), mySproc-1)

if (my8p .1t. 3) recv(A(26:27), my$proc+1)
ub$1l = min((my$p+1)*25,95) - (my$p*25)

doi=1, ub$l
AQ) = A(1+2)
enddo
(¢) SPMD Node Program

{* Run-time Resolution *}
REAL A(100)
my$p = myproc() {* 0...3 ¥}
doi=1,95
if (my$p .eq. owner(A(i+2))) then
send(A(i+2), owner(A(i)))
endif
if (my$p .eq. owner(A(i))) then
recu(A(i+2), owner(A(1+2)))
A(l) = A(i+2)
endif
enddo

(b) Run-Time Resolution

Figure 4.8: Example of Run-time Resolution and Message Vectorization

49

CHAPTER 4. FORTRAN D COMPILER 50

messages for nonlocal references. A loop-carried dependence’s commlevel is defined
as the level of the dependence. A loop-independent dependence’s commlevel is de-
fined as the level of the deepest loop common to both the source and sink of the
dependence. Each rhs reference R with a nonempty nonlocal index set requires
that the cross-processor flow dependences with R as the sink be identified as a
loop-carried or loop-independent dependence. The deepest commlevel, L, of all
such dependences is selected. If the dependence is loop-carried, the compiler tags
R as loop-carried at the header of the loop corresponding to the deepest comm-
level. If the dependence is loop independent and there exists a loop at level L+1
enclosing R, where L is the commlevel for the dependence, then R is tagged at the
header of the loop at level L+1 as independent. R itself is tagged as independent
at the statement containing it if none of the loops at level L+1 enclose it. A carried
tag at L implies that nonlocal data accessed by R must be communicated between
iterations of the loop L. An independent tag indicates that nonlocal data accessed
by R must be communicated at this point on each iteration of loop L. The compiler
may also move the independent tag to any statement in loop L between the source

and sink of the dependence to combine messages from different references.

In the program of Figure 4.8(a), the rhsreference A(i+2) has nonlocal data accesses.
The message for this reference is of type loop-independent and its commlevel is 2,
so the compiler inserts a independent tag at the i loop because it is the next deeper
loop enclosing A(i+2). Recall the Jacobi program of Figure 4.4, the rhs references
B(i,j-1) and B(i,j+1) have nonempty nonlocal index sets. These references partic-
ipate in the cross-processor true dependences. The source of this dependence is
statement S2 (Figure 4.4). These dependences are carried at loop k. The compiler

inserts a carried tag at the header of the k loop to signify the associated loop-carried

CHAPTER 4. FORTRAN D COMPILER 51

dependences. In the code generation phase, the messages for the references will be

generated immediately following the k loop.

4.3 Code Generation

Code generation uses information collected during program analysis and optimiza-
tion to generate the SPMD node program. Two phases are required: program
partitioning and message generation. The steps in the program partitioning phase
can be further divided into: data partitioning, loop bound reduction, and guard in-

troduction. Figure 4.9 lists the SPMD code generated for the program in Figure 4 .4.

The FORTRAN D compiler partitions data by reducing the array bounds of A and
B so that each processor allocates storage only for local data. Then the compiler
reduces loop bounds so that each processor only executes iterations in the union of
local iteration sets of the Ihs for each statement in the loop. In the final phase of
code generation, the compiler introduces guards (inserts “if” statements) to: (1)
handle the boundary conditions and (2) test the membership of a statement in the

local iteration set.

Message Generation is the second step of code generation. The compiler uses infor-
mation gathered during the analysis and optimization phases to generate messages.
Figure 4.10 illustrates how the compiler inserts nonblocking sends and blocking
recvs to handle messages. Arrays A and B are assumed to be block-distributed.

Messages can be categorized as loop-independent and loop-carried.

CHAPTER 4. FORTRAN D COMPILER

REAL A(100,25), B(100,0:26)
if (Plocat = 1) Iby =2elselb; =1
if (Procar = 4) ub; = 24 else ub; = 25
do k = 1, time
if (Piocar > 1) send(B(2:99,1),Piey:)
if (Procar < 4) send(B(2:99,25),Pr,-ght)
if (Procat < 4) recu(B(2:99,26), Pright)
if (Procat > 1) 7ecv(B(2:99,0),Presy)
do j = lby, ub;
doi=2,99
A(1j) = (B(1-1) + B(i-1,j) + B(i+1,) + B(i,j+1))/4
enddo
enddo
do j = Iby, ub;
doi=2,99
B(i) = A(i)
enddo
enddo
enddo

Figure 4.9: The SPMD Code of Jacobi Program

52

CHAPTER 4. FORTRAN D COMPILER 53

Loop-Independent Messages: The messages for loop-independent references are tagged
as: (1) loop headers where the compiler inserts code to send and recv primitives
preceding the loop headers or (2) individual references where the compiler in-
serts send and recv primitives in the body of the loop preceding the reference.
In Figure 4.10, the message for reference B(i+1) is a loop-independent mes-
sage. The compiler tags the message for this reference at the k level so the
communication primitives for this loop-independent message is inserted pre-
ceding the loop header. The compiler also introduces the guards for all the
messages to ensure that the owner and the recipients execute send and Tec,
respectively. Each message has an associated RSD that represents the data

sent on each iteration.

Loop-Carried Messages: The FORTRAN D compiler constructs an RSD for each
rhs reference at the level of the loop carrying the dependence. The messages
for loop-carried dependences can be classified as: carried-all and carried-part.
For carried-all messages, the iterations of L are executed by all processors.
The compiler inserts calls to send and recv primitives inside the loop header
for L at the beginning of the loop body. In Figure 4.10, the messages for
A(i+1) is of type carried-all at the k loop, so communication is inserted at
the head of the loop body. For carried-part messages, the iterations of L are
partitioned across processors. In this case, loop-carried messages represent
data synchronization. The compiler inserts calls to recv preceding loop L,
since they are executed before the local iterations of L. In Figure 4.10, the
message for A(i-1) is of type carried-part at the i loop, so communication is

inserted before and after the i loop header.

When the generated code contains both independent and carried-part nessages at

the loop header, the compiler orders the insertion of send and recv primitives rel-

CHAPTER 4. FORTRAN D COMPILER 54

{* Example Computation *}

dok=1M
doi= 1N
A(l) = B(i+1) {*commlevel is 3 *}
+ A(i+1) {*commlevel is 1 *}
+ A(-1) {*commlevel is 2 *}
enddo
enddo

(a) FORTRAN D Program
{* Communication Generation *}
send and recv for B(i+1)
dok = l,M

send and recv for A(i+1)

recv for A(i-1)

doi=1,N/P

A1) = B(i+1) + A(i+1) + A(i-1)

enddo

send for A(i-1)
enddo

(b) SPMD Program

Figure 4.10: Example of Message Generation for Loop-Carried and Loop-

Independent Dependences

CHAPTER 4. FORTRAN D COMPILER 59

ative to the loop header. The compiler first inserts the primitives for independent
messages; these are positioned further away from the header. The primitives for
loop-carried messages are subsequently inserted preceding the loop header. This
ordering avoids deadlock by allowing communication for independent messages to
take place in parallel, before communicating data corresponding to carried-part

messages.

Recall the program in Figure 4.4 where the messages for the rhs references in Sl is
of type loop-carried at the k loop in the program. The boundary conditions require
the compiler introduce guards to generate the communication for different RSDs

for each rhs reference. The RSDs for the reference B(i,j+1) at the k loop level are:

Proc(l) = [2:99,3:26]
Proc(2:3)= [2:99,2:26]
Proc(4) = [2:99,2:25]

After subtracting the local index set from the above three RSDs, the compiler can

determine the nonlocal index sets for the processors in each group.

The nonlocal RSDs for Proc(1:3) = [2:99,26]
Proc(4) =[]

The nonlocal RSD [2:99,26] for each of processors 1-3 causes its immediate successor
to send data to it. To compute the data that must be sent, the compiler trans-

lates the local indices of the receiving processors to that of the sending processors,

CHAPTER 4. FORTRAN D COMPILER 56

obtaining the section [2:99,26-25] = [2:99,1]. The message for reference B(i,j+1) is
of type carried-all and is carried on loop k so the communication primitives are
inserted at the beginning of the loop body. Messages for B(i,j-1) are also computed

in the same way. The final result is shown in Figure 4.9.

One final aspect to consider is storage management. The FORTRAN D compiler
provides three different storage schemes to allocate storage for nonlocal array ref-
erences received from other processors. OQuverlaps, buffers, and hash tables [13] are
the three options. Overlaps are extensions of local arrays that contain adjacent
nonlocal data. They are suitable for program with high locality of references. They
are permanent and specific to each array so may require more space. Buffers are
applied in the following case where storage for nonlocal data must be reused, or the
nonlocal area is bounded in size but not near the local array section. This avoids
the contiguous nature of overlaps. Hash tables are used when the set of nonlocal
elements accessed is sparse. They provide a quick look-up mechanism for arbitrary

sets of nonlocal values.

To select an appropriate storage type for each nonlocal set, the compiler examines
the RSDs for the nonlocal set during message generation phase. Array declarations
in the generated code must be extended for nonlocal data if overlaps have been
selected. If buffers are used, the new buffer declarations are inserted. All nonlocal

array references in the program are modified according to their selected storage

types.

CHAPTER 4. FORTRAN D COMPILER 57

4.4 Summary

Currently the FORTRAN D compiler performs message vectorization, collective
communication, fine-grained pipelining, and several other optimizations for block-
distributed arrays. Ongoing researches include environment support for automatic
data decompositions and static performance estimation [8]. This thesis now turns

its attention to a detailed investigation at the compiler’s optimization techniques.

Chapter 5

FORTRAN D Compiler

Optimizations

The FORTRAN D compiler uses data decomposition specifications to translate
FORTRAN D programs into explicit message-passing SPMD programs to be exe-
cuted on a MIMD distributed-memory machine. The compiler’s goal is to generate
a parallel program with low communication overhead and storage requirements.
There are several advanced compiler optimizations in the existing FORTRAN D
prototype compiler to accomplish this goal. Each optimization can be classified
functionally into one of the following groups: (1) reducing communication startup
costs, (2) hiding message copy and transmit time, (3) exploiting parallelism, or (4)

reducing storage. The following lists some compiler optimizations in each group

[13, 14]:

¢ Reducing Communication Overhead

~ Message Vectorization

58

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 59

— Message Coalescing
— Message Aggregation
— Collective Communication

¢ Hiding Communication Overhead

— Message Pipelining

— Vector Message Pipelining

Iteration Reordering

|

Nonblocking Messages
o Exploiting Parallelism

— Partitioning Computation
— Reductions and Scans

— Dynamic Data Decomposition

Pipelining Computation
® Reducing Storage

~ Partitioning Data

— Message Blocking

5.1 Reducing Communication Overhead

Reducing communication overhead is the main goal of most parallelizing compilers.
Communication overhead for each message in a parallel program is divided into
three parts: Tars, T copys @A Tiransie. Tstare 1S the time to setup a message; that is
the startup time to send and receive messages. Tcopy, is the time to copy a message
in and out of the program address space. Tirqnsiz is the time to transfer a, message

between processors. Both T.opy and Tirgnsiz grow with the size of a message, but

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 60

Tstars is treated as constant.

The optimizations described here seek to reduce Tstert by combining or eliminating
messages. For most MIMD distributed-memory machines, the time to send the first
byte is always much higher than the time for each additional byte. For example, in
the Intel iPSC/860, the time for the first byte is approximately 240 times that of
subsequent bytes [14].

5.1.1 Message Vectorization

Message vectorization significantly reduces the number of messages. It uses the re-
sult of data dependence analysis to combine several messages into a single message
containing a vector of elements. This requires the compiler compute the commlevel
for each cross-processor dependence to decide the outermost loop where element
messages can be legally combined. The compiler stores each vectorized nonlocal
access set at the loop level given by commilevel. Each vectorized nonlocal access set
in a FORTRAN D compiler is represented as a RSD. Recall from chapter 4 that the
code generation phase generates communication messages corresponding to these

nonlocal RSDs.

5.1.2 Message Coalescing

The compiler avoids communicating redundant data by applying message coalesc-
ing to vectorized nonlocal accesses. It compares RSDs corresponding to different

references on the same array and merges overlapping or contiguous RSDs. This

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 61

ensures each data value is sent to a processor only once.

Figure 5.1(a) is program has processors 1-4 own X(1:25), X(26:50), X(51:75), and
X(76:100), respectively. The owner computes rule assigns iterations [1:25] of the
k loop are executed on processor 1, iterations [26:50] are executed on processor
2, [51:75] are executed on processor 3, and [76:94] are executed on processor 4.
Communication analysis shows that the references U(k+1)..., U(k+6) cause nonlo-
cal data accesses and they are not loop-carried true dependences (Figure 5.1(b)).
By a,ppb'ling message vectorization, the nonlocal RSDs for these references can be
vectorized outside the /loops, resulting in the RSDs [26:26]...[26:31]. The result of
message coalescing for these RSDs are [26:31]. The send and recv statements for

these RSDs are inserted preceding the [loop (see Figure 5.2).

5.1.3 Message Aggregation

After message vectorization and coalescing, message aggregation is applied to the
resulting RSDs to ensure that only one message is sent to each processor. It locates
and aggregates all RSDs representing data being sent to the same processor. During
the code generation, all the RSDs aggregated for the same processor are copied into
a single buffer as one message. The receiving processor copies the received buffer to
the program address space. This optimization reduces messages but requires more

storage for buffering.

Consider the program in Figure 5.3(a) where the nonlocal references to ZP(j1-1,ky)

and ZQ(j1-1,k;) inside the j; loop are not loop-carried true dependences. Commu-

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 62

REAL U(100),X(100),Y(100), Z(100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100)
ALIGN U, X, Y, Z with D
DISTRIBUTE D(BLOCK)
do I = 1, time

dok=1,94

X(k) = F(Z(k),Y(k),U(k),...,U(k+86))

enddo
enddo
(a) FORTRAN D program

when k=20 nonlocal access set: U(26)
k=21 nonlocal access set: U(26),U(27)
k=22 nonlocal access set: U(26),U(27),U(28)
k=23 nonlocal access set: U(26),U(27),U(28),U(29)
k=24 nonlocal access set: U(26),U(27),U(28),U(29),U(30)
k=25 nonlocal access set: U(26),U(27),U(28),U(29),U(30),U(31)

(b) The nonlocal access set for rhs references :U(k),U(k+1)...,U(k+6)

Figure 5.1: Example of Message Vectorization and Message Coalescing (Livermore

7-Equation of State Fragment)[14]

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 63

{* Compiler Output *}
REAL U{31), X(25), Y(25), Z(25)
ubl = 25
my$proc = myproc() {*0..3*}
if (my$proc .gt. 0) send(U(1:6), my$proc-1)
if (my$proc 1t. 3) recy(U(26:31), m$proc+1)
if (my$proc .eq. 3) ubl =19
dol =1, time
dok = 1, ubl
X(k) = F(Z(k),Y(k),U(k),...,U(k+6))
enddo
enddo

Figure 5.2: Example of Message Vectorization and Coalescing (Compiler Output)

nication from these dependences is vectorized and coalesced outside the] loop. The
compiler determines after message vectorization and coalescing that these messages

are sent to the same processor so it aggregates them into a single message.

The same steps are applied to nonlocal references ZR(j2-1,k3), ZR(jo+1,k,), ZQ(j2-
Lks), and ZQ(j+1,ks) in the j, loop. Their references cause loop-carried true de-
pendences so their nonlocal RSDs are vectorized and communication instructions
are inserted in loop [just after the header to allow values from previous iteration
to be fetched at the beginning of each new iteration. The compiler then applies

message coalescing and aggregation.

Finally, the loop-independent true dependences nonlocal references to ZA(jo-1,kp)
in the j; loop are considered. Its communication can be vectorized and coalescing
at the level of loop [because it is the only loop common to the endpoints of the

dependence. The final message to communicate will be inserted in front of the

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 64

loop ks. The nonlocal access set for each rhs reference and the compiler output are

shown in Figure 5.3(b) and Figure 5.4, respectively.

5.1.4 Collective Communication

Collective communication is another technique to reduce communication overhead.
Instead of generating individual messages, the compiler uses fast collective commu-
nication routines, such as broadcast, all-to-all, or transpose in the node program.
The opportunities for applying collective communication routines can be recognized
by comparing the subscript expression of each distributed dimension in the rhs with
the aligned dimension in the /s reference. For example, loop-invariant (constant)
subscripts in distributed array dimensions reqﬁires broadcast. Examples that use

of collective communication routine are described and given in Section 5.3.2.

5.2 Hiding Communication Overhead

In this section we investigate optimizations to hide 7| transit - the message transit
time - by overlapping communication with computation. The same optimizations

use nonblocking messages to hide T, the message copy time.

5.2.1 Message Pipelining

Message. pipelining inserts a send for each nonlocal reference immediately after it is

defined and the corresponding recv is placed immediately before the value is to be

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 65

REAL ZP(100,100), ZQ(100,100), ZM(100,100), S, T
REAL ZR(100,100), ZZ(100,100), ZA(100,100)
REAL ZU(100,100), ZV(100,100), ZB(100,100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100,100)
ALIGN ZA, ZB, ZM, ZP, 7ZQ, ZR, ZU, ZV, ZZ with D
DISTRIBUTE D(BLOCK,:)
dol = 1, time
dok; = 2,99
doj; = 2,99
ZA(1 k1) = FAZP(i1-1k:),2Q(01-1.k1), ZR(1-1k1),.n.)
ZB(i1 » ki) = F2(ZP(1-1%1),2Q(i1-1.k1),...)

enddo
enddo
do ko = 2, 99
doj, = 2,99
ZU(j2 , ko) = F3(Z2Z(32-1,k2),ZZ(j2+1 k2),ZA (j2-1,k2),...)
ZV(j2 » k2) = FY(ZR(j2-1.k2),ZR(j2+1 k2),ZA (j2-1 .kz),...)
enddo
enddo
do ks = 2, 99
do j3 = 2,99
ZR(js , ka) = F5(ZR(j3.k3),2U (i3 ks))
ZZ(i3 + ka) = F6(2Z(j3,k3),ZV (ja.k3))
enddo
enddo
enddo

(a) Fortran D program

nonlocal access sets of ZP(ji-1,k1), 2Q(51-1,k1) : ZP(0,2:99), Z.Q(0,2:99), not loop-carried dependence.
ZR(j2-1,k2), ZZ(j2-1,k2) : ZR(0,2:99), ZZ(0,2:99), loop-carried ture dependence.
ZR(j2+1,k2), ZZ(j2+1,k2) : ZR(26,2:99), 7Q(26,2:99), loop-carried ture dependence.
ZA(32-1,k2) : ZA(0,2:99), loop-independent dependence.

(b) The nonlocal access set for each rks reference

Figure 5.3: Example of Message Aggregation (Livermore 18-Explicit
Hydrodynamics)[14]

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS

{* Compiler Output *}
REAL ZP(0:25,100), ZQ(0:25,100), ZM(0:25,100), S, T
REAL ZR(0:26,100), ZZ(0:26,100), ZA (0:25,100)
REAL ZU(25,100), ZV(25,100), ZB(25,100)
m8p =myproc() *0..3%*
if (m$p .It. 3) send(ZP(25,2:99),ZQ(25,2:99),ZM(25,2:99),m$p+1)
if (m$p .gt. 0) rec'u(ZP(O,Z:QQ),ZQ(0,2:99),ZM(O,2:99),m$p—1)
dol = 1, time
if (m$p .gt. 0) send(ZR(1,2:99),2Z(1,2:99),m$p-1)
if (m$p .1t. 3) send(ZR(25,2:99),27Z(25,2:99) ,m$p+1)
if (m$p .1t. 3) recv(ZR(26,2:99),27(26,2:99),m$p+1)
if (m$p .gt. 0) recu(ZR(0,2:99),2Z(0,2:99),m$p-1)
dok; = 2, 99
doj; =1,25
ZA(1 , k1) = FIZP(j1-1k1),2Q(i1-1.k1),ZR(j1-1,k1),...)
ZB(1 , k1) = FQ(ZP(jl-l,kl),ZQ(jl-l,kl),..‘)
enddo
enddo
if (m8p It. 3) send(ZA(25,2:99),m$p+1)
if (m$p .gt. 0) recv(ZR(0,2:99),m$p-1)
do ko = 2, 99
dojo =1,25
ZU(2 , k2) = F3ZZ(32-1,k2),2Z(2+1 k2),ZA (j2-1 k3),...)
ZV(iz , ko) = FUZR(2-1.k2),ZR(j2+1,k2),ZA (jo- 1 k2),...)
enddo
enddo
doks = 2,99
dojs = 1,25
ZR(js , k3) = F5(ZR(js k3),ZU(ja k3))
ZZ(js , ks) = F6(Z2(j3,k3),ZV(jz.k3))
enddo
enddo
enddo

Figure 5.4: Example of Message Aggregation (Compiler Output)

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 67

used. This arrangement helps to hide Tiransis by using the computation performed
between the definition and use of the value. The disadvantage for this method is
to prevent optimizations such as message vectorization, causing high communica-

tion cost, but it may be applied for exploiting parallelism for pipelined computation.

5.2.2 Vector Message Pipelining

Vector message pipelining uses data dependence information to place vector send
and recv statements so Tyanei is hidden. Since send and recv statements interlock
they must be scheduled carefully to avoid idle cycles. For example, applying vec-
tor message pipelining to invoke all send statements before recv whenever several

messages are sent at the same time should improve performances.

Consider Figure 5.5(a) where the values computed by SI are used in S3. The
nonlocal references for S3 cause loop-independent true dependence from S1 to S3.
The same pattern exists from S2 to S4. After message vectorization, the compiler
generates the communication for S3 and S4 at the level of loop [because it is the
deepest loop enclosing these true dependences. The messages for S3 and S4 are
m$31 and m$2(see Figure 5.6). Vector message pipelining places the send for m$1
and m$2 after the j loops enclosing S1 and S2, respectively. The corresponding recv

statements are placed before the j loops enclosing S3 and S4.

The loop-carried true dependence values computed by statements S3 (S4) are used
by 51 (52). Message vectorization creates communication for S1 and S2 at the level

of [because it is the loop with the deepest loop-carried dependences. The messages

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 68

REAL V(1000,1000)
PARAMETER (n$proc = 10)
DECOMPOSITION D(1000,1000)
ALIGN V with D

DISTRIBUTE D(:,BLOCK)

dol =1, time

do j = 3, 999, 2 {* compute red points *}
doi = 3,999, 2
s1: V(i) = F(V(i,j-1), V(i-14), V(i,i+1), V(i+14))
enddo
enddo

doj = 2,998, 2
doi= 2,998, 2

S2: V(ig) = F(V(i,j-1), V(-1.3), V{,i+1), V(i+1,))
enddo
enddo
doj = 2,998,2 {* compute dlack points *}
doi = 3, 999, 2
S3: V(i) = F(V(i-1), V(-1), V(ij+1), V(i+1.))
enddo
enddo

do j = 3, 999, 2
doi = 2,998, 2
S4: V(i,§) = F(V(ij-1), V(i-14), V(,i+1), V(E+1,4))
enddo
enddo
enddo
(a) FORTRAN D program

nonlocal access sets of S1:V(i,j-1) : V(3:999:2,0), loop-carried true dependence.
52:V(i,j+1) : V(2:998:2,101), loop-carried true dependence.
$3:V(i,j+1) : V(3:999:2,101), loop-independent true dependence.
S4:V(i,j-1) : V(2:998:2,0), loop-independent true dependence.

(b) nonlocal access sets for rhs references.

Figure 5.5: Example of Vector Message Pipelining (Red-Black SOR) [14]

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS

{* Compiler Output *}
REAL V(1000,0:101)
my$p = myproc() *0..9*
if (my$p dt. 9) send(m$3,V(3:999:2,100),my$p+1)
. dol =1, time
if (my$p .gt. 0) send(m$4,V(2:998:2,1),my$p-1)
if (my$p .gt. 0) recy(m$3,V(3:999:2,0) ,my$p-1)

doj=1,99,2
doi= 3,999, 2
S1: V(i,j) = F(V(ij-1), V(i-1,j), V(i,j+1), V{(i+1,j))
enddo
enddo

if (my$p .gt. 0) send(m8$1,V(3:999:2,1),my$p-1)
if (my$p .1t. 9) recv(m$4,V(2:998:2,101),my$p+1)
doj = 2,100, 2
doi = 2,998, 2
s2: V(i) = F(V(ij-1), V(-14), V(id+1), V(i+1.))
enddo
enddo
if (my$p 1t. 9) send(m$2,V(2:998:2,100),my$p+1)
if (my8p .1t. 9) recv(m$1,V(3:999:2,101),my$p-+1)
doj = 2,100, 2
doi = 3,999, 2
_ s3; V(id) = F(V(i-1), V{i-1,5), V(i,i+1), V(i+1,)
enddo
enddo
if (my$p .It. 9) send(m$3,V(3:999:2,100),my$p+1)
if (my8p .gt. 0) recy(m$2,V(2:998:2,1),my$p-1)
doj = 3,999, 2
doi = 2,998, 2
S4: V(id) = F(V(i,-1), V(-14), V(ij+1), V(+1,))
enddo
enddo
enddo
if (my$p .gt. 0) recy(m$3,V(3:999:2,0),my$p-1)

Figure 5.6: Example of Vector Message Pipelining (Compiler Output)

69

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 70

for S1 and S2 are m$3 and m$4, respectively. Vector message pipelining places the

recv for 52 just before the j loop enclosing S2 by using computation of S1 to hide

Ttra.nsit .

Vector message pipelining puts the send for S1 after S3 and uses the computa-
tion of 54 to hide the Tyrqnsi needed by S1. Matching send and recv statements for
message m$§3 must be inserted outside the / loop. Figure 5.5(b) and Figure 5.6 are
the nonlocal access sets and the compiler output of the original program, respec-

tively.

5.2.3 TIteration Reordering

Iteration reordering uses data dependence information to change the order of pro-
gram execution. It allows loop iterations accessing local data to be separated and

enclosed by a pair of send and recv statements thereby hidding Tyyqnsir.

Figure 5.7 illustrates iteration reordering. Communication analysis determines the
references B(j,i-1) and B(j,i+1) access nonlocal data. The RSDs corresponding
to the nonlocal accesses to array B are given by [2:99,0] and [2:99,26] (see Fig-
ure 5.7(b)). The compiler identifies and separates the iterations that access non-
local data from iterations accessing only local data and generate a loop nest. The
local ite;‘a,tions for the above example are given by [2:24,2:99]. Figure 5.8 is the

compiler output of the original program.

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS

{* FORTRAN D program *}
REAL A(100,100), B(100,100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100,100)
ALIGN A.B WITH D
DISTRIBUTE D(:,BLOCK)
dol =1, time
doj = 2,99
doi = 2,99
A(Lj) =F(B(i,j-1),B(i-1,§},B(i+1.,j),B(i,j+1))
enddo
enddo
doj = 2,99
doi = 2,99
B(ij) = A(iJ)
enddo
enddo
" enddo
(a) FORTRAN D program

nonlocal access sets of ~ B(i,j-1) : B(2:99,0), loop-carried dependences.

B(i,j+1) : B(2:99,26), loop-carried dependences.

(b) The nonlocal access sets of rks references

Figure 5.7: Example of Iteration Reordering

71

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS

{*Compiler Output *}

REAL A(100,25), B(100,0:26)

my$p = myproc() {* 0.3 *}

dol =1, time
if (my$p .gt. 0) send(B(2:99,1), my$p-1)
if (my$p .1t. 3) send(B(2:99,25), my$p+1)

{* perform local operations: only access local data *3

doj = 2,24
doi= 2,99
A(iJ) =F(B(i,-1),B(i-1§),B(i+1,i),B(i,j+1))
enddo
enddo

if (my$p .1t. 3) recv(B(2:99,26), my$p+1)
if (my$p .gt. 0) recv(B(2:99,0), my$p-1)

{* perform nonlocal operations: access nonlocal data *}

doj = 1,25,24
doi = 2,99
A(iJ) =F(B(i,-1),B(i-1,)),B(i+1,i),B(i,j+1))
enddo
enddo
doj=1,25
doi= 2,99
B(ij) = A(i,j)
enddo
enddo
enddo

Figure 5.8: Example of Iteration Reordering (Compiler Output)

72

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 73

5.2.4 Nonblocking Message

The FORTRAN D compiler employs blocking send and recv operations for message
passing. Send blocks the calling processor until the data is copied from the program
address space into a system buffer. A recv bolcks calling processor until the data

has been placed into the program’s address space.

Nonblocking messages permits overlapping computation and message copying. A
nonblocking send returns control immediately to the calling processor which per-
mits the sending processor to continue computing while data is being copied into
the system buffer. Similarly, a nonblocking recv returns control immediately to
the calling processor after posting a message destination. Therefore, the calling
processor can perform computation while receiving and copying messages. The
nonblocking recv may avoid the overhead of writing into the system buffer because
the message is copied directly at the posted address. However, this requires an

expensive system call to block computation until the copy is completed.

Vector message pipelining and iteration reordering with blocking messages only
hides Tyqnsiz because the processor must remain idle while copying the data. Non-
blocking message provides a mechanism to hide both Tiransit and Teppy but it re-

quires more systems calls. Therefore, this method should be used selectively.

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 74

5.3 Exploiting Parallelism

The goal of parallelism optimizations is to reconfigure the patterns of computation
and/or communication so the amount of computation performed in parallel is min-

imized.

5.3.1 Partitioning Computation

The amount of parallelism extracted from a program depends on how efficiently the
compiler partitions the computation. The FORTRAN D compiler uses loop bound

reduction and guard introduction to achieve the partitioning.

Cross-processor dependences reduce parallelism because processors must remain
idle until their predecessors complete. These dependences correspond to the se-
quential components of the computation that step over processor boundaries. The
balance of this section describes several optimizations that extract parallelism in

the presence of cross-processor dependences.

5.3.2 Reductions and Scans

Some computations allow for parallelization using reduction and scan operations in
spite of cross-processor dependences. Reductions are associative and commutative
operations that return a single result when applied to a collection of data, For
example, a product reduction will calculate and return the product of all elements

of an array. Scans are also associative and commutative operations that perform

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 75

parallel-prefix operations. For example, a product scan would compute and return
the product of all the prefixes of an array. Reduction and scan operations must
be associative and commutative because the compiler may change the computation

order.

The FORTRAN D compiler uses dependence analysis to determine when to apply
reductions and scans. The compiler can parallelize reductions or scans that contain
cross-processor dependences by relaxing the owner computes rule and by providing
methods to combine partial results. The global results can be obtained by combin-
ing the partial results either using individual send or recv calls or using broadcast
or specialized collective communication routines such as global_sum(). The sec-
ond method can reduce communication overhead further for commeon reductions.
Figure 5.9 shows an example for parallelizing a sum reduction with a global_sum

collective communication routine.

Scans are also parallelized by reordering operations. Scans allow each processor
to compute its local values in parallel and communicate the partial results to all
other processors. The global data is used to update local results. Figure 5.10(b)
shows an example that computes a prefix sum using scan. The compiler output
(Figure 5.10(a)) uses the global_concat communication routine to collect the partial
sums from each processor in S. The partial sums collected from all the preceding
processors are combined locally and used to compute local prefix sums. The final

result is shown in Figure 5.10(b).

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS

{* FORTRAN D Program *}
REAL X(100), Z(100), Q
PARAMETER (n8proc = 4)
DECOMPOSITION D(100)
ALIGN X, Z with D
DISTRIBUTE D(block)

dol =1, time

Q= 0.0
do k = 1,100
Q= Q+2(k) * X(k)
enddo
enddo

{* Compile Output *}
REAL X(25), Z(25), Q

dol =1, time

Q=00
dok = 1,25
Q=Q+ 2(k) * X(k)
enddo
Q = global_sum() {* sum reduction function *}
enddo

Figure 5.9: Example of Reduction (Inner Product) [14]

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS

{* FORTRAN D Program *}
REAL X(100), Y(100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100)
ALIGN X, Y with D
dol =1, time

X(1)=Y()

do k = 2,100

X(k) = X(k-1) + Y(k)

enddo
enddo

(a) FORTRAN D Program

{* Compile Output *}
REAL X(25), Y(25), S(0:3)
my$p = myproc() {*0...3 *}
do1l =1, time
S(my$p) = 0.0
dok = 1,25
5(my$p) = S(my$p) + Y(k)
enddo
global_concat(S)
X(1) =Y(1)
if (my$p .ne. 0) then
do k = 0, my$p-1
X(1) = X(1) + S(k)
enddo
endif
dok = 2,25
Xk) = X(k-1) + Y(k)
enddo
enddo
(b) Compiler Output

Figure 5.10: Example of Scan (First Sum)

7

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 78
5.3.3 Dynamic Data Decomposition

In certain cases, the owner computes rule partitions an otherwise parallel computa-
tion in a way that causes sequential execution. Dynamic data decomposition can be
used to temporarily change data ownership when this occurs. This localizes cross-
processor dependences and achieves the desired parallelism. The decomposition
method is only applicable when there are full dimensions of parallelism available in

the computation.

Figure 5.11(a) illustrates a computation wavefront that crosses a spatial dimension
in each phase. A fixed column or row data distribution is not suitable to both
phases. The FORTRAN D compiler applies dynamic data decomposition to par-
allelize the sequential phase using collective communication routines to change the
array decomposition after each phase. After changing the data decomposition, the
computation wavefront in both phases are internalized and all the processors can

be executed in parallel without communication (see Figure 5.11(b)).

5.3.4 Pipelining Computation

Pipelining can often be used to extract partial parallelism from computations that
contain cross-processor dependences. In parallel computations all processors may
execute concurrently and communicate data as necessary but a pipeline means a
processor can execute only after it receives results computed by its predecessor.
Pipelining allows processors to overlap their computations by sending the partial
results to their successors earlier. The degree of pipeline parallelism depends on

how soon each processor is able to start working after its predecessor begins. Fig-

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS

REAL A(100), B(100), X(100,100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100,100)
ALIGN X WITH D
DISTRIBUTE D(:,BLOCK)

dol =1, time

doj =1, 100 {* Phase 1: sweep along columns *}
doi =2, 100
X(14) =FI(X(4)X(-15),A6),B())
enddo
enddo
doj = 2, 100 {* Phase 2: sweep along rows *3}
doi =1, 100
X (i) =F2(X(i4). X (1.3-1),A(1),B(i))
enddo
enddo
enddo

(a) FORTRAN D Program

REAL A(100), B(100), X(100,25), X1(25,100)
EQUIVALENCE (X,X1)
dol =1, time
doj=1,25 {* Phase 1: sweep along columns *}
doi=2,100
X (i) =FI(X(:4) X(-15),A6),B())
enddo
enddo
redistribute_row.to_col(X) {* Dynamic Data Decomposition *}
do j = 2, 100 {* Phase 2: sweep along rows *}
doi=1,25
X (i) =F2(X(i4).X (14-1),A () B())
enddo
enddo
redistribute_col_to-row(X1) {* Dynamic Data Decomposition.*}
enddo
(b) Compiler Output

Figure 5.11: Example of Dynamic Data Decomposition (ADI Integration) [13]

79

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 80

P1 P2 P3 P4 P1 P2 P3 P4

Figure 5.12: Parallel and Pipelined Computation

ure 5.12 illustrates time-space diagrams of pipelined and parallel computations.

The FORTRAN D compiler uses cross-processor loops to distinguish between pipelined
and fully parallel computation. The presence of any cross-processor loop in a loop
nest indicates that it is a pipelined computation. Cross processor loop causes com-
putation wavefronts to sweep across processor boundaries. The Fortran D compiler
uses an algorithm that considers all pairs of array references that cause loop-carried
true dependences. If the subscript expressions in an array’s distributed dimension

are not identical all loop index variables belong to cross-processor loops.

The granularity of pipelined computation is determined by the amount of com-
putation enclosed by cross-processor loops. Under fine-grain pipelining all cross-
processor loops are rearranged as deeply as possible to minimize the amount of
computation. The resulting program would achieve the finest pipelining granular-

ity by generating messages needed by other processors in the shortest time. This

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 81

{* FORTRAN D program *}
REAL ZA (100,100), ZB(100,100), ZR(100,100), QA
REAL ZU(100,100), ZV(100,100), ZZ(100,100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100,100)
ALIGN ZA, ZB, ZR, ZU, ZV, ZZ WITH D
DISTRIBUTE D(:,BLOCK)
dol =1, time
do j = 2,99
do k = 2,99
S1: QA =F1(ZA(k,j+1),ZA(k,j-1),ZA(k+1,j),ZA(k-lJ))
S2: ZA(k,j) =F2(ZA(k,j),QA)
enddo
enddo
enddo

Figure 5.13: Example of Pipelining Computation (Implicit Hydrodynamics)

results in high message overhead because a message is sent for each iteration ac-

cessing nonlocal data.

Coarse-grain pipelining increases the amount of computation (C) enclosed by cross-
processor loops by applying loop interchanges and strip-mining. Under coarse-grain
pipelining, communication can be reduced by increasing C but this will weaken

parallelism because processors must wait longer before starting computation.

The program segment in Figure 5.13 contains a loop-carried true dependence be-
tween S1 and S2 due to the references ZA(k,j) and ZA(k,j-1). The compiler deter-
mines the second dimension of ZA is distributed and subsequently compares the
subscripts j and j-1. The j loop is labeled as a cross-processor loop, because the

subscripts are unequal.

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS

{* Compiler Output,: Fine-graining pipelining *}
REAL ZA(100,0:26), ZB(100,25), ZR(100,25), QA
REAL ZU(100,25), ZV(100,25), ZZ(100,25)
my$p = myproc() {* 0..3 *}
do 1 =1, time
if (my8p .gt. 0) send(ZA(0:99,1),my$p-1)
if (my8$p .1t. 3) recu(ZA(0:99,26),my$p+1)
do k = 2,99
if (my$p .gt. 0) recv(ZA(k,0),my$p-1)
doj=1,25
QA =FI(ZA(kj+1),ZA(K,j-1),ZA (k+1,i),ZA (k-1,))
ZA(k,j) =F2(ZA(k,§),QA)
enddo
enddo
if (my$p .It. 3) send(ZA(k,25),my$p+1)
enddo
(a) Compiler Output;

{* Compiler Outputs: Course-graining pipelining *}
REAL ZA(100,0:26), ZB(100,25), ZR(100,25), QA
REAL ZU(100,25), ZV(100,25), ZZ(100,25)
my$p = myproc() {* 0..3 *}
dol =1, time
if (my$p .gt. 0) send(ZA(0:99,1),my$p-1)
if (my8$p .1t. 3) reco(ZA(0:99,26),my$p+1)
do kk = 2,99, B {* Strip-mining, B is the size of the strip-mining *}
if (my$p .gt. 0) recv(ZA (kk:kk+B-1,0),my$p-1)
doj=1,25
do k = kk,kk+B
QA =FI(ZA(kj+1),ZA(kj-1),ZA(k+1,7),ZA(k-1,5))
ZA(1,j) =F2(ZA(i,j),QA)
enddo
enddo
enddo
if (my$p It. 3) send(ZA(kkikk+B-1,25),my$p+1)
enddo
(b) Compiler Output,

Figure 5.14: Example of Pipelining Computation (Implicit Hydrodynamics)

82

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 83

Compiler-output; in Figure 5.14(a) illustrates fine-grain pipelining. The compiler
repositions the cross-processor loop j to the innermost position to maximize pipelin-
ing. Compiler-output, in Figure 5.14(b) illustrates course-grain pipelining. It strip-
mines the k loop by a factor B, then interchanges the iterator loop kk outside the

J loop. The compiler vectorizes the communication for B iterations at the j loop.

5.4 Reducing Storage

Usually program optimizations require more temporary storage. Compile-time stor-
age optimization is fundamental to an efficient compiler, so partitioning data so that
each processor allocates memory only for its local data is useful. The F ORTRAN
D compiler provides three types of temporary storage schemes for nonlocal data:
overlaps, buffers, and hash table. If insufficient storage is available, message block-
ing strip-mines loops by a block factor (B). Each vectorized message of size n is
then divided into n/B messages of size B. This reduces the buffer space required

by a factor of n/B at the expense of additional messages.

5.5 Optimization Algorithm

Figure 5.15 provides a high level description of the overall FORTRAN D compiler
optimization algorithm. It describes how optimizations are organized in the FOR-

TRAN D compiler.

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 84

partition data across processor
partition computation using owner computes rule
detect and parallelize reductions and scans
compute cross-processor loops
for each loop nest L do
if L is fully parallel (i.e., no cross-processor loops) then
vectorize, coalesce, and aggregate messages
select and insert collective communications
if sufficient Teomp exists to hide Teopys Ttransit then
apply vector message pipelining
insert nonblocking messages
else if T’comp can be profitably created and used then
reorder iterations
apply vector message pipelining
insert nonblocking messages
else insert blocking messages
endif
else {* must be pipelined computation *}
select efficient granularity for pipelining
apply strip-mining and loop interchange
vectorize and coalesce, and aggregate messages
insert blocking messages
endif
if insufficient storage is available then
apply storage optimizations
endif
enddo

Figure 5.15: Compiler Optimization Algorithm

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 85

5.6 Program Transformations

The FORTRAN D compiler also applies program transformations to expose or en-
hance parallelism in the source code. Program transformations are useful for shared-
memory parallelizing compilers. They use dependence information to determine
their legality and profitability. To determine the legality of each transformation in
distributed-memory compilers is the same for the shared-memory compilers. Their
profitability criteria expose and enhance parallelism in the source code and reduce
the communication overhead in the SPMD code. Each of the following must be

considered.

Loop Distribution: separates the statements in a single loop into multiple loops
with identical lower bounds, upper bounds, and steps. Figure 5.16(b) shows
the result of applying loop distribution to the loop in Figure 5.16(a).

Loop Fusion: combines multiple loops with same lower bounds, upper bounds, and
steps into a single loop. Figure 5.17(b) shows the fusion result of the loops
in Figure 5.17(a).

Loop Interchange: changes the traversal order of adjacent loop headers. Loop in-
terchange can be used to increase the chance of applying message aggregation
in FORTRAN D program. Figure 5.18(b) is the result after applying loop
interchange to the loops in Figure 5.18(a).

Strip Mining: increases the step size of an existing loop and adds an additional
inner loop. This method can break large messages into small packets in the
SPMD codes. Figure 5.19(b) is the result after applying strip mining to the
loops in Figure 5.19(a).

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS

fori=1toN do

S1:
S2:
endfor
(a) Before Loop Distribution
fori=1toNdo
S1:
endfor
fori=1toN do
S2:

endfor

(b) After Loop Distribution

Figure 5.16: Loop Distribution

fori =1toN do

S1:
endfor
fori=1toN do
S2:
endfor
(a) Before Loop Fusion
fori=1toN do
S1:
S2:

endfor

(b) After Loop Fusion

Figure 5.17: Loop Fusion

86

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS

fori=1toN do
forj = 1to N do

S1:
S2:

endfor
endfor

(2) Before Loop Interchange

forj=1toNdo
fori=1toNdo

S1:
S2:

endfor
endfor

(b) After Loop Interchange

Figure 5.18: Loop Interchange

87

CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS 88

SEND(B(1:n))
RECEIVE(B(1:n))
fori =1 ton do

Si: =B()...
endfor

(a) Before Strip Mining

fori=1toN ,bdo
SEND(B(i:i+b-1))
RECEIVE(B(isi+b-1))
for j = ito i+b-1 do
S1: =B(j)...
endfor
endfor

(b) After Strip Mining

Figure 5.19: Strip Mining

Testing the legality of these optimizations is identical to that of shared-memory

compilers.

5.7 Summary

The existing FORTRAN D compiler prototype parallelizes reductions, pipelined
computations, and performs message vectorization, coalescing, and aggregation for
block-distributed arrays. The remaining optimizations are still under implementa-
tion and their effectiveness are under evaluation for larger and more varied programs

on different MIMD architectures, including networks of workstations.

Chapter 6

Compiler Optimization for

Parallel Computation

Chapter 5 discusses the (proposed) compiler optimizations in the FORTRAN D
compiler. All these optimizations yield significant improvement by reducing com-
munication overhead. During the optimization process, the compiler determines
the communication between any two processors and restructures the code to reduce
message traffic between them. This chapter describes a new compiler optimization
that reduces message traffic by analyzing communication patterns among all the

Pprocessors.

Dependences constrain parallel execution of programs. The dependence structure
of a computation can be modeled using a directed acyclic graph (DAG) where
the nodes represent tasks and edges represent precedence constraints. Depen-
dence edges due to flow dependences define message-passing synchronization in

a distributed-memory machine model of parallel execution. If a dependence edge

89

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMP UTATION90

L\-:; §l [.".'\l b] P# Processor ID

sotooB Message Passing

L ?'f:_\ ﬁ [j 7 T 7= Message Passing for Transitve edges

h ‘~i .;I j ceeTom Appended Message
Before Elimination After Elimination

Figure 6.1: Eliminating Messages for Pipelined Computation with Transitive-Edge

Dependences

in the DAG is transitive there is an alternative path composed of edges connecting

the source and sink of that dependence.

The startup cost of a message transmission is much higher than the actual data
transfer cost. Thus, if several messages can be grouped and sent as a single mes-
sage communication overhead can be significantly reduced. Message transfers for
dependences corresponding to transitive edges can be rerouted, without losing par-
allelism, by appending the data to the messages on the alternative path that covers

the transitive edge (see Figure 6.1).

This chapter describes a new compiler-optimization technique for pipelined com-
putation. The method identifies the dependences corresponding to transitive edges
in loops with constant dependences and introduces a scheme for assigning storage
for nonlocal data corresponding to the transitive edges in the node program. This
technique can be applied to single and double nested loops. The dependences dis-

cussed here are limited to flow dependences.

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATION91

6.1 Iteration Space Dependence Graph

Parallel execution of loop iterations is constrained by dependences. The inter-
iteration dependences of a loop can be formally represented by an Iteration Space
Dependence Graph (ISDG). An ISDG is a directed acyclic graph G(V,E) where V
and E are the set of nodes and the set of edges, respectively. Each node in the graph
represents one iteration in the loop. An edge (V; ,V;) in E signifies the existence
of a dependence from the iteration denoted by V; to the iteration denoted by V;.
The dependence distance of each edge is given by subtracting the iteration number
of the source of a dependence from that of its sink. An ISDG is classified as regular
if the existence of a dependence with distance d; from a node implies the existence
of such a dependence from each node that has an adjacent point at a distance d;

in the iteration space. A regular loop is an iteration loop with a regular ISDG.

These concepts are illustrated by the program in Figure 6.2(a). In this FORTRAN
D program, array X is cyclically distributed among 4 processors. Figure 6.2(b)
shows th'e distribution pattern of array X on each processor after compilation. The
ISDG of the regular loop is shown in Figure 6.2(c). In this ISDG, each node repre-
sents one loop iteration. Any edge drawn between two nodes signifies the existence
of a dependence. The flow dependence from iteration i to iteration -1 manifests
itself as an edge from node i to node i+ in the ISDG. The same applies for the
dependence from iteration i to iteration i+2. F igure 6.3 shows the SPMD code
generated using the conventional optimization techniques described in chapter 5.

The compiler generates a pair of send and recv messages for each dependence in

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATION92

the SPMD code.

These dependence edges correspond to synchronization events of parallel computa-
tion which in a MIMD distributed-memory machines is achieved through message-
passing. In general, the sparser the ISDG, the smaller the communication overhead
is in a parallel computation. Any of the transitive edges may be removed from
the ISDG by rerouting the corresponding message through its alternative path. A

dependence-edge from iteration i to iteration k is a transitive edge if and only if :

1. there exists a sequence of iterations i, 7, - -,%; such that 7>0 and there is a

dependence from i, to tm41 for 1< m < 3, and

2. theére is a dependence from iteration i to iteration i; and from iteration i; to

iteration k.

Elimination of transitive-edge dependences reduces message traffic in the parallel
execution of a loop. In the next section, we present a technique to identify the
dependences corresponding to a transitive edge and eliminate the message due to

this edge by re-routing it through its alternative path.

6.2 Identifying Transitive-Edge Dependences

To identify transitive-edge dependences for a regular loop, the first step is to build
the ISDG of the loop. When an ISDG is regular, its transitive edges can be identi-
fied by analyzing a subgraph of the ISDG. This subgraph, called R_subgraph, is the

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATI ON93

REAL X(100)
PARAMETER (n$proc = 4) {* the number of processors *}
DECOMPOSITION D(100)
ALIGN X WITH D
DISTRIBUTE D(CYCLIC)

do k= 3, 100

X(k) = X(k-1)+X (k-2)

enddo

(a) FORTRAN D Program

Processor 1

x [1] s]5] 13117 21T 25] 29[33] sifat]as[as] s3] s7] e [ss]ed] 1377 81]s] 89] 93] 97}

Processor 2

X I 2]6 llolul |8l22| 26, 30|34|38|42l46]50'54|58, 62]66,70] 74[78]82[86] 90'94 198,

Processor 3

x |3 7]11]15,19[23|27'31|35|39|43|47l51l55|59 |63|67,71I75[79]83js7,91|95l99]

Processor 4

X L:t_lx I 12' 16, 20'24,28]32'36'40'44'48'52! 56!60, 64!68]72]76]80'84,88'92[96 100

(b) The Distribution Pattern of Array X on Each Processor

TN TN
O DD -

(c) ISDG of the loop

Figure 6.2: Example of ISDG

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATI ON94

{* compiler output *}

REAL X(25), temp1, temp?2

my$proc= myproc() {* 0---3 : the processor ID of each processor *}

{* next : the succeeding processor whose PID is ((my$proc+1) mod n$proc) *}

{* nnext : the processor succeeding next whose PID is ((my$proc+2) mod n$proc) *}

{* prev : the preceding processor whose PID is {{my8proc-1+n$proc) mod n$proc) *}

{* pprev : the processor preceding prev whose PID is {(my$proc-2+n$proc) mod n$proc) *}

b1=1

ubl=25

if (my$proc < 2) {* boundary condition *}
bl1=2
send(X(1),next)
send(X(1),nnext)

endif

do k= 1b1, ubl
recv(templ,prev)
recv(temp2,pprev)
X{k)=templ+temp2
send(X (k),next)
send(X (k),nnext)

enddo

Figure 6.3: SPMD Program

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATI ON95

induced subgraph of an ISDG. The size of the subgraph is independent of the size
of the iteration space but depends on the values of dependence distances [12]. The
next section describes how to build the R_subgraph and identifies transitive-edges

in this subgraph for a non-nested or a double-nested loop.

6.2.1 Regular Non-Nested Loops

For a regular nonnested loop the lower bound of the loop control variable is de-
noted lower! and without loss of generality there are m dependences. Let D = {
di, dg, -+, din } be the set of dependence distances and dmaz = MAX(D) be the
largest value of the set D. A dependence distance is given subtracting the iteration
number of a dependence’s source from its sink so any d; (1 <7< m) is positive.
The vertex set (V/) and edge set (E/) of the R_subgraph for this non-nested loop is

defined as follows:

Vi= { lowerl, loweri+1 ,---, dmaz+lower! }
Er= {(i,j) | iff there exists a dj such that j=i+d,,

for every lower! < i< j < (dmaz+lowerl)}

The R-subgraph of the ISDG in Figure 6.2(c) is given in Figure 6.4(a). In the pro-
gram of Figure 6.2(a), the lower bound of the loop control variable is 3 and there
are two flow dependences in this loop: the set of dependence distances (D) is {1,2}

and dmaz is 2. The V/ and E/ of the R_subgraph are:

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATI ON96

/_\ D={1,2)

OO e

1 2 3 =< - - Sequential Execution Order
(a) R.subgraph

£\

O—0C—0O

1 2 3

Dependence distance 2 is transitive-edge dependence.

The alternative path for 2is (1,1)
(b) Transitive-Edge Dependence and the Alternative Path

Figure 6.4: Example of R_subgraph and Transitive-Edge Dependences

Vi=1{3,4,342}
Er={(34), (45), (3,5) }

Determining the transitive edges in an ISDG only requires the determination of the
transitive edges at node lower? [12]. The algorithm to identify the transitive edges,

a variant of Depth First Search (DFS), is given in Figure 6.5 and 6.6.

This algorithm identifies the transitive-edge dependences from the node lower! of
the R_subgraph. Let V// be the set of all vertices reachable from the node lower of
the R_subgraph and G(V//,E/) be the induced subgraph of R_subgraph on V. The
definition of V// implies that for any node i, there exists a path from node lower!

to node i in G. The algorithm given in Figure 6.5 is applied to find a spanning tree

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATI ON97

DO i:=1to N {* N is the number of vertex set *}

nodeli].visited := false;

END

Forward Set = {};
count := 0;
vi=1;

node[v].parent = v;
WHILE (count # N) DO
BEGIN
IF node[v].visited = false THEN
BEGIN
count := count +1;
node[v].visited := true;
Let S be the set of unvisited nodes in the adjacency list of v
IF IS} # 0 THEN
BEGIN
for all but the smallest u in S push (v,u)
onto the stack in decreasing SEO {Sequential Execution Order) of u.
vl =v;
set v to the smallest element of S;
node[v].parent = vr;
END
END
ELSE IF stack is not empty THEN
REPEAT
pop(stack(u,v));
IF node[v].visited = true THEN
Forward Set = Forward Set + {(u,v)};
ELSE
node[v].parent = u;
UNTIL node[v].visited is false or stack is empty;
END;

Figure 6.5: Sequential Execution Order Depth First Search Algorithm

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATI ON98

FOR each (u,v) in Forward.Set DO
BEGIN
push((node[v].parent,v));
v/ = node[v].parent;
WHILE (vs # u) DO
BEGIN
push(node[v/.parent,v/);
v/ = node[v/].parent;
END
PRINT("Replaced path for forward edge”,(u ,v)" is");
REPEAT
pop(stack(node[v/].parent,v/));
PRINT((node[v.parent,v/});
UNTIL stack is empty;
END

Figure 6.6: Sequential Execution Order Depth First Search Algorithm(Cont.)

(T(Vn,Enr)) of G, rooted at the node lowerl. An edge (i,j) of G(V11,En) can be
classified as: (1) tree edge, if it belongs to T, (2) forward edge, if it does not belong
to T and there exists a path from i to jin T, or (3) cross edge, if it does not belong

to T and there is no path from i to j in T.

A forward edge of G(V/,EN) with respect to a DFS spanning tree is a transitive
edge of R._subgraph [12]. The alternative path for each transitive edge dependence
can be found by using the alternative path for each forward edge in the spanning
tree T. Figure 6.4(b) shows the transitive-edge and its alternative path found in the
R _subgraph of Figure 6.4(a). Dependence distance 2 is identified as a transitive-

edge dependence and its alternative path is (1,1).

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATI ON99

6.2.2 Regular Double-Nested Loops

This section considers the double-nested loops that have a rectangular iteration
space where the lower and upper bound of the inner loop are independent of the
iteration number of the outer loop. Unlike simple loops, the presence of a mix
of negative and positive values in the second components of the dependence vec-
tors increases the complexity required to construct the R_subgraph for rectangular
loops. This section describes the construction of the R_subgraph for double nested

loop.

The lower bounds of the loop control variables are lower! and lower2. The de-
pendence distances of two—diménsional loops are vectors. The first component of a
dependence vector corresponds to the outer loop and the second to the inner. The
component corresponding to the inner loop of a dependence distance vector can be
negative; that is, the iteration number corfesponding to the source of a dependence
can be higher than the sink of the dependence. In any case, the first non zero com-
ponent of a dependence distance vector is positive. Here we denote a dependence
distance. vector d; by its component (di1, di2). Let D= {d;,ds, -- -,dm } be the set
of dependence distance vectors in a rectangular iteration space. Depending on the
sign of the second components, D can be classified as non-negative, non-positive,
or mixed. The following examples illustrate a method to construct the R_subgraph

for each of these cases.

Case One: the second component of all the dependence vectors are non-negative.
Let dmaz! = MAX({ da | (di1,di2) € to D}), dmaz2 = MAX({ diz | (di1,ds2)
€ to D }), and d;; > 0, for all (di1,di2) € to D. The R_subgraph (R(V1, EN)) of

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATI ON100

the double-nested loop is defined by the rectangular iteration space bounded by
(lowerl, lower?) and (dmazl+ lowerl, dmaz2+lower2).

V1 = {(lowerl, lower2),(lowerl,lower2 + 1), -+, (lowerl, dmaz2 + lower),- - -,(dmaz1
+ lowerl, dmaz2 + lower2)}

E/ = {((i1,j1),(i2,j2)) | iff there exists a dependence vector dj in D such that (iz2,j2)
= (in,j1) + di, for every (lower!, lower2) < (i, j1) < (iz, j2) < (dmaz! + lowerl,
dmaz2 + lower2) }

These concepts are illustrated using the example in Figure 6.7. Figure 6.7(a) The
lower bounds of loop control variables (lowerl, lower2) are (3,4) (Figure 6.7(a)).
The dependence distance set D for this loop is {(1,1),(1,2),(2,3)}. The R_subgraph
for this loop is given in Figure 6.7(b). The vertices of this graph are labeled accord-
ing to their sequential execution order and it is sufficient to determine the transitive
edges at node (lowerl, lower2). The algorithm in Figure 6.5 is used to identify the
transitive edges and the corresponding alternative path. F igure 6.7(c) illustrates
the transitive edges in the R_subgraph of Figure 6.7(b). Dependence distance vec-

tor (2,3) is identified as a transitive edge dependence and its alternative path is

((1,1),(1,2)).

Case Two: the second component of all the dependence vectors is non-positive.

Let dmazl = MAX({ di; | (di1,diz) €Eto D }), dmaz2 = MAX({ abs(diz) | (di1,dso)
€ to D}) and d;; < 0, for all (d;1,d;5) € to D. The R _subgraph (R(V1, E/)) of the
double-nested loop can be defined by the rectangular iteration space bounded by

(lowerl ,lower2) and (dmazi+ lowerl, dmaz2+lower2).

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMP UTATIONI101

A(100,100),B(100,100)
Parameter (n$proc = 100)
Decomposition D(100,100)
Align A\B with D
Distribute D(CYCLIC,BLOCK)
doi=3, 100
doj=4,100
AGJ) = B(-14-1)
B(ij) = B(i-1,-2) + A(i-2,j-3)

end

end
(a) FORTRAN D Program

D ={(1.1),(1,2), (2:3))
dmax1 =2
dmax2 =3

(b) R_subgraph

Dependence distance vector (2,3) is transitive-edge dependence.
The alternative path for @3) s (1,1,(12)
(c) Transitive-Edge Dependence and the Alternative Path

Figure 6.7: Case One Illustrated

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATION 102

V1 = { (lowerl,lower2),(lowerl,lower2 + 1), ---,(lowerl, dmaz2 + lower2), - - - (dmax1
+ lowerl, dmaz2 + lower2)}

Er = {((i1,j1)(i2,j2)) | iff there exists a dependence vector d in D such that (iz,j,)

= (in,j1) + dg, for every (lower!, lower2) < (i, i1) 5 (2, j2) < (dmaz! + lowerl,
dmaz2 + lower2) }

Figure 6.8 illustrates these concepts. In program of Figure 6.8(a), the lower bounds
of loop control variables (lowerl, lower2) are (3,1). The dependence distance set
D for this loop is {(1,-1),(1,-2),(2,-3)}. The R_subgraph for this loop is given in
Figure 6.8(b). The vertices of this graph are numbered according to their sequen-
tial execution order and it is sufficient to determine the transitive edges at node
(lowerl,lower2+dmaz2). The algorithm in Figure 6.5 is used to identify the tran-
sitive edges and the corresponding alternative paths. Figure 6.8(c) illustrates the
transitive edges in the R_subgraph of Figure 6.8(b). Dependence distance vector

(2,-3) is identified as a transitive-edge dependence and its alternative path is ((1,-

2)’(1»'1))'

Case Three : the second component of the dependence vectors consists of a miz of
positive and negative values. Let dmazl = MAX({ di1 | (di1,ds3) € to D}), pmaz
= MAX(MAX({ diz | (di1,di2) € to D}), 0), pmin= MIN(MIN({ diz | (di1,ds2)
€ to D}), 0) In other words, pmaz is the largest positive value and pmin is the

smallest negative value.

The R._subgraph, R(V/, Er) of the double-nested loop can be defined by the rect-

angular iteration space bounded by (lowerl, lower) and (dmaz! + lowerl, pmaz

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATION 103

A(100,100),B(100,100)
Parameter (n$proc = 100)
Decompasition D(100,100)
Align A,B with D
Distribute D(BLOCK,CYCLIC)
doi=3, 100
doj=1,100
A(ij) = B(i-1,j+2)
B(ij) = B(i-1,j+1) + A(i-2,j+3)

end

end

(a) FORTRAN D Program

< Sequential Execution Order

D = {(1,-2),(1,-1),(2,-3)}

dmaxl =2

dmay? = abs(-3) =3

(b) R-subgraph

Dependence distance vector (2,-3) is transitive-edge dependence.
The alternative path for 2,-3) is ((1,-2),(1,-1)
(c) Transitive-Edge Dependence and the Alternative Path

Figure 6.8: Case Two Illustrated

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATI ON104

+ abs(pmin) + lower2) where lower! and lower2 are the lower bounds of the outer

and inner loops, respectively.

Vi = { (lowerl,lower?),(lowerl,lower? + 1), ---,(lowerl, pmaz + abs(pmin) +
lower?), - --,(dmaz! + lower!, pmaz + abs(pmin) + lower2)}

Er = {((i1,j1),(i2,j2)) | iff there exists a dependence vector d; in D such that (i2,j2)
= (i1,j1) + d, for every (lowerl, lower2) < (i1, j1), (i, j2) < (dmazl + lowerl,

pmaz + abs(pmin) + lower2) }

This case is illustrated in Figure 6.9. In the program of Figure 6.9(a), the lower
bounds of the loop control variables (lowerl,lower2) are (3,2). The dependence set
D for this loop is {(1,1),(1,-3),(2,-2)}. The R_subgraph for this loop is illustrated
in Figure 6.9(b). The vertices of this subgraph is labeled according to their sequen-
tial execution order and it is sufficient to identify transitive edges at node (lowerl,
lower2+abs(pmin)). The algorithm in Figure 6.5 is used to identify the transitive
edges and the corresponding alternative paths. F igure 6.9(c) illustrates the transi-
tive edges in the R_subgraph of Figure 6.9(b). Dependence distance vector (2,-2)
is identified as a transitive-edge dependence and its alternative path is ((1,-3),(1,1)).

6.3 Implementation on the FORTRAN D Com-

piler

The compiler identifies the transitive edges in the program analysis phase. Rerout-

ing message corresponding to a transitive edge could be accomplished either by

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMP UTATION105

A(100,100),B(100,100)
Parameter (n$proc = 100)
Decomposition D(100,100)
Align A,B with D
Distribute D(cyclic,cyclic)
doi=3,100
doj=2,97
A(ij) = B(i-1,j-1)
B(ij) = B(i-1,j43) + A(i-2,j+2)
end
end

(a) FORTRAN D Program

sptial Execution Order

D= {(111)1(11'3)1(2v'2)}

Onaxt =2
pmax =1
Prnin =-3

(b) R_subgraph

Dependence distance vector (2,-2) is transitive-edge dependence.
The alternative path for 2,-2) is ((1,-3)(1,1))
(c) Transitive-Edge Dependence and the Alternative Path

Figure 6.9: Case Three Illustrated

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATI ON106

changing the communication analysis algorithm or by means of source to source
transformation of the loop. Both the schemes allocate storage for rerouted message
in the intermediate processors and rely on “message aggregation” optimization to
combine the rerouted message with another message. This section details of the

methodology.

6.3.1 " Modifying Communication Analysis

During the communication analysis phase the compiler generates IN and OUT
sets of a reference for each processor pair. The set IN;; of a reference is defined
as the indices of nonlocal data accessed by processor ¢ and owned by processor J-
Similarly, OUT}; of a reference is defined as indices of the data owned by processor
¢ and needed by processor j. These definitions imply INy; and OUT}; are equal.
Let my be a message to be rerouted from processor k to processor [and 4y, is,...,0y,
be the intermediate processors. The OUT) due to the reference is replaced by
the following sets OUT}y;, T_OUTy,,, T-OUT,,,,-.., T_OUT,,,,;, where T_-OUTs
are the OUT sets for the rerouted data. Similarly, INy is replaced by INj ...,
T_INipi;,TIN; ;. During the code optimization phase temporary buffers for the
rerouted messages are allocated and the messages are combined with others during

the message aggregation optimization.

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATION107

fori=... fori=...

Ay =+ 4 A(i-di)+--- E1(i) = A(i-d;)
E(i) = E; (i-d2)

endfor

En—-l (1) = En-—2 (i‘dn—l)
AG) =+ +Eney (irdn) 4+ -

endfor

Figure 6.10: Source code transformation for A(i-d;)

6.4 Program Transformation

To incorporate this scheme the algorithms for communication analysis should be
modified. An alternative is to introduce a source to source transformation after
the program analysis phase. This approach alleviates the communication analysis
phase from the additional work required for rerouting. This could be accomplished
by a program transformation that uses distributed arrays for buffering rerouted
messages and additional assignments for rerouting messages. Let d; = d; + dy +
-+ + d, be a transitive dependence and the corresponding reference be A(i-d;).
The program transformation allocates buffer space by declaring E;, E, ---, E,,_4
as arrays with size and distribution identical to that of A. The reference A(i-d;) is

replaced by a sequence of assignment statements shown in F igure 6.10.

Recall the ISDG of Figure 6.2(c). The dependence distance 2 is identified as a
transitive-edge dependence so it can be replaced by an alternative path (1,1). Fig-

ure 6.11(a) illustrates the source code modification of the program shown in Fig-

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATI ON108

REAL X(100), E; (100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100)
ALIGN X, E; WITHD
DISTRIBUTE D{CYCLIC)

E1(2) = X(1)
do k= 3, 100

Ei(k) = X(k-1)

X(k) = X(k-1)+E1 (k-1)
enddo

(a) Fortran D Program After Code Transformation for the Program in Figure 6.2(a)

@_>_>@__>

(b) ISDG of the Loop in (a)

Figure 6.11: Example of Source Code Transformation for Nonnested Loop

ure 6.2(a). Array E; is used to store the message to be rerouted. The size and
distribution of E; are identical to that of array A. The ISDG of the modified pro-
gram is shown in Figure 6.11(b). The edges for transitive-edge dependences have
been removed from this ISDG. Figure 6.12 gives the SPMD code generated for the

modified code.

This thesis focuses on the array dimensions with cyclic data distribution. For
block-distributed arrays, the transitive-edge dependences may not cause transi-
tive interprocessor communication because the source and sink of the dependence
are executed in the same processor or across two adjacent processors. Consider
the example in Figure 6.13. Assume that A is block-distributed among 4 proces-
sors. Dependence distance 4 is a transitive-edge dependence and its alternate path
is (2,2). Because of the block distribution, the messages for loop-carried depen-

dences 2 permits fewer messages to be aggregated at commlevel i so they are sent

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATION109

{* compiling result *}
REAL X(25), E; (25), temp
{* next : the succeeding processor whose PID is ((my8$proc+1) mod n$proc) *}
{* prev : the preceding processor whose PID is ((my$proc-1+n8proc) mod n$proc) *}
my$proc = myproc()
Ib1=1
ubl1=25
if (my$proc < 2) Ibl = 2 {* boundary condition *}
if my$proc=0 send(X(1),next)
if my$proc=1
recv(E{(1),prev)
send(X(1),E;(1),next)
endif
" do k= 1b1, ubl
recv(E;(k), temp, prev)
X(k)=E; (k)+temp
send(X(k),E1(k), next)
enddo

Figure 6.12: Compiler Output

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATION110

REAL A(100),...
DECOMPOSITION D(100)
ALIGN A with D

fori= ...
A() = -4 AG-2)+A(-4)+---

endfor

Figure 6.13: Example of Fortran D Program Segment

to their immediate successors. For block-distributed arrays, the transitive-edge
dependences may not cause transitive interprocessor communication because the
source and sink iterations of the dependence are executed in the same Processor or
across two adjacent processors. To apply the optimization effectively for a regular
nonnested loop, the number of processors must be greater than the maximum of
the dependence distances. If the number of processors is less than the maximum
of the dependence distances, then the transitive-edge dependences may not cause
communication. In Figure 6.13, if A is distributed cyclicly among two processors,
then the source and the sink of the transitive-edge dependence are executed in the

same processor. In this case, interprocessor communication is not required.

This phase is identical for regular double-nested loops and non-nested loops, ex-
cept each transitive-edge dependence d; is a dependence vector with two compo-
nents (d;1,d;2) and the array A which causes the transitive-edge dependence is a
2-dimensional array. Let d; =d; + dy + --- + d, be a transitive dependence and
the corresponding reference be A(i-d;1,j-diz). The program transformation allocates

buffer space by declaring E;, E,, ---, E,_; as arrays with size and distribution iden-

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATION111

fori=.. fori= ...
forj=.. forj = ...
A(j) = -+ 4 A(i-diz j-diz)+- -+ E;(ij) = A(i-d11,i-di2)
E2 (i) = B1(i-d21 j-d22)
endfor
endfor)
En_1(iJ) = En—2(i-d(n—1)1d-d(n-1)2)
A(i) = -+ -+Epn—1(i-dp1,j-dp2) +- - -
endfor
endfor

Figure 6.14: Source Code Transformation for A(i-d:1,j-d:2)

tical to that of A. The reference A (i-d;1,j-d;;) is replaced by a sequence of assignment

statements shown in Figure 6.14.

Recall tl.la,t in Figure 6.7(c) the dependence distance vector (2,3) is identified as a
transitive edge dependence and its alternative path is ((1,1),(1,2)). Figure 6.15 is
the source-code modification of the program in Figure 6.7(&).. In Figure 6.15 we
define one more array E; with the same size and data distribution as array A and
change the source code as described above. After this transformation, the transitive
edges in the original ISDG disappear and the number of edges in the new ISDG
is reduced. Figure 6.16 and 6.17 are the source modifications for Figure 6.8(a)
and Figure 6.9(a), respectively. They all applied the same steps illustrated in Fig-
ure 6.15. Each example demonstrates the different cases of the second component

of dependence distance vectors.

Any array in the above examples is cyclically distributed at least across one di-

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATION112

A(100,100),B(100,100), E; (100,100)
Parameter (n$proc = 100)
Decomposition D({100,100)
Align A,B,E; with D
Distribute D(CYCLIC,BLOCK)
E1(2,2) = A(1,1)
doi= 3,100
doj=4,100
E1(ij)= AG-14-1)
AGi) = B(i-1,-1)
B(i) = B(i-1,i-2) + Ex (i-1,4-2)
end

end

Figure 6.15: Code Transformation for the Program in Case One

mension. If an array is (BLOCK,BLOCK) distributed, this optimization would not
be applicable. Similar to one dimensional array with BLOCK distribution, if an
array is (BLOCK,BLOCK) distributed, the source and sink iterations of a transi-
tive dependence are executed by the same processor, except for the iterations that
access the boundary elements of the data space aligned to a processor. When a
two dimensional array is distributed across processors they are configured in two
dimensions. In other words, if the total number of processors, m*n, is configured
as an m*n grid. To apply this optimization to (CYCLIC,CYCLIC) distribution,
the value of m and n should be greater than the largest absolute value of the cor-
responding components of the dependence distance vectors. This guarantees that
iterations corresponding to the source and sink of any dependence are executed
on two different processors. For cases 1 and 2, if the array is (BLOCK,CYCLIC)
or (CYCLIC,BLOCK) distributed, the largest value of the dependence distance

vector among the absolute value of the dependence distance vector components

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATIONI1 13

A(100,100),B(100,100), E; (100,100)
Parameter (n$proc = 100)
Decomposition D(100,100)
Align A\B,E; with D
Distribute D(BLOCK,CYCLIC)
E1(2,2)= A(1,9)
doi=3,100
doj=1,100
Ex(id)= A(-14+2)
A(i) = B-1i+2)
B(ij) = B(i-1,j+1) + E1(i-1,+1)
end

end

Figure 6.16: Code Transformation for the Program in Case Two

corresponding to the cyclical distributed dimension should be less than the dimen-
sionality, of the processor grid in that dimension. The same conditions applies to
(*,CYCLIC) and (*,BLOCK) distributions too. (BLOCK,*) and (*,BLOCK) are
special cases of (BLOCK,BLOCK) distribution. For case 3, this optlmlzatlon can
only be applied to (CYCLIC,CYCLIC) distribution.

In all the three examples, the array A and B were given a different data distribution.
However, in each case, when given at least one dimension with cyclic distribution,

this algorithm reduces the number of messages caused by transitive-edges.

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATION114

A(100,100),B(100,100), E; (100,100)
Parameter {n$proc = 100)
Decomposition D(100,100)

Align A,B,E; with D

Distribute D(CYCLIC,CYCLIC)

E1(2,5)= A(1,4)
doi=3,100
doj=2,97

E1(ij)= A(i-1,j-1)

A(ij) = B(i-14-1)

B(ij) = B(i-1,j4+3) + Ei(i-1,j4+3)
end

end

Figure 6.17: Code Transformation for the Program in Case Three

6.5 Analytical Evaluation

This section presents an analytical evaluation of the proposed optimization . In
general, the cost of a message transfer is dependent on the interconnection and
the routing schemes employed in addition to the communication volume. Since
startup costs outweigh other costs and communication volume is sparse, only a
simple rpodel for communication overhead is required. Recall the communication
overhead is divided into three components: Tiort - time fequired to setup the send
and recv instructions, T, - time required to copy a message from program address
space to the system buffer space, and Ty qnsit - time required to transmit a message

through the physical medium.

To simplify the analysis the alternate path has exactly one intermediate node.

Let Pi, P2, and P3 be the source, the intermediate, and the sink processors of

CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATI ON115

the message to be rerouted. Let Teompute be the computation time in P, before
it begins sending the combined message. Since a processor sends/receives mes-
sages sequentially and Tiompuse is less than Tstort, the time elapsed from the time
Py begins to send the first message to the time Pj received both the messages is
3(Tstart+ Teopy+ Tiransit). With the optimization, only two messages are exchanged
but the time required to copy or transmit a message is doubled because the message
size is doubled. The total time elapsed from the first message sent by P, to the time
P; receives the combined message 18 2 Tsyari+ 4 Toopy+4 Tiransic+ Teompute- Hence, this
optimization would reduce the communication overhead if (Teopy+ Tiransic+ Teompute)
< Tstart-When the number of intermediate nodes increases, the left hand side of
inequality would increase linearly and there is a threshold beyond which this opti-

mization is not feasible.

6.6 Conclusions

We have presented an efficient technique for rerouting the messages for transitive-
edge dependences with loops having constant dependence vectors. This method
reduces the number of messages by analyzing communication pattern among all
the processors in a pipelined computation, which is different from some traditional
compiler optimizations that focus on identifying the communication between any
two processors. This technique can be implemented as a phase before commu-
nication optimization of the FORTRAN D compiler. Then all messages for the
transitive dependences will be combined to the messages on the alternative path

after the compiler applies message aggregation optimization.

Chapter 7
Conclusions

Programming on parallel computers is always considered as a tedious job. Program-
mers are required to have some knowledge of the underlying machine architectures.
Scientists are attempting to develop a machine-independent programming environ-
ment. FORTRAN D is one of these languages. In order to increase the reusability
of the existing conventional software, the research group of FORTRAN D enhanced
FORTRAN with a rich set of data decompositions. The FORTRAN D compiler is
designed to generate data-parallel programs which can be efficiently executed on
the nodes of a distributed-memory machine. To improve the run-time performance

reducing communication overhead in the compiler output is a major goal of the

FORTRAN D compiler.

This thesis presented a method for reducing communication overhead in the com-
piler output of a parallelizing compiler. This method is presented in the framework
of FORTRAN D programming environment. It reduces the communication mes-

sages by analyzing the dependence structure of the source program. First, it char-

116

CHAPTER 7. CONCLUSIONS 117

acterizes the dependence structure of the FORTRAN D program into a iteration
space dependence graph (ISDG), then by analyzing the ISDG this method identifies
the transitive-edge dependences which can be removed later from the dependence
structure. Second, by performing a source-to-source transformation to the source
program the corresponding messages for the transitive edges are efficiently rerouted
in the compiler output. After the transformation, the transitive-edge dependences
identified in the first step do not exist in the dependence structure of the trans-

formed program.

This method reduces the number of messages by analyzing communication pat-
tern among all the processors in a parallel computation which is different from
some traditional compiler optimizations that only focus on identifying communi-
cation between any two processors. Since the dependence analysis is included in
the FORTRAN D programming environment, this method can be incorporated as
a phase after the dependence analysis and before communication optimization in
the FORTRAN D compiler. Finally, all the messages for the routed transitive-edge
dependences can be combined after the compiler applies message aggregation opti-

mization.

The thesis focuses on identifying the transitive edges of the ISDGs of single loops
and double-nested loops with constant dependence vectors. This optimization pro-
vides an efficient way to reduce the number of messages. The analytical evaluation
of the proposed scheme demonstrated that this scheme would reduce the commu-
nication overhead in the compiler output. The algorithm for identifying transitive-
edge dependences can also be applied to shared-memory multiprocessors. In a

shared-memory programming environment, this algorithm can be used to remove

CHAPTER 7. CONCLUSIONS 118

redundant synchronization instructions in the compiler output. Those redundant
synchronization instructions are transitive-edge dependences in the ISDG(s). This
algorithm can be incorporated in a parallelizing compiler for shared-memory ma-

chines to reduce the synchronizing computation in the compiler output.

7.1 Future Work

The following are some areas for continuing the research:

Ezperimental Evaluation and Validation on a Distributed-Memory Machine : to im-
plement this optimization and incorporate it into a parallelizing compiler; this

can be done on a distributed-memory machine, such as IBM SP2.

Extending the Optimization to higher Dimensions : to extend the the research of

identifying the transitive edges of ISDGs of higher dimensions.

Reducing Storage Buffer for Rerouted Messages : to reduce the size of the tempo-
rary buffers which are used to store the rerouted messages for the transitive-

edge dependences in the transformed program.

s

Bibliography

[1] Huang, K., Advanced Computer Architecture: parallelism, scalability, pro-
grammability, McGraw-Hill, Computer Science Series, 1993.

[2] Akl', S.G., The Design and Analysis of Parallel Algorithms, Prentice Hall,
Englewood Cliffs, N.J., 1989

(3] Hatcher, P.J., and Quinn, M.J. Data-Parallel Programming, The MIT press,
1991.

[4] Quinn, M.J. Designing Efficient Algorithms for Parallel Computers, McGraw-
Hill Series in Supercomputing and Artificial Intelligence, 1987,

[5] Kuskin, J., Ofelt, D., Heinrich, M., and Heinlein, J. “The Stanford FLASH
Multiprocessor”, In Proceedings of the 21st International Symposium on Com-

puter Architecture, Chicago, IL, April 1994, pp 302-313.

[6] Torrellas, J., Xia, C., and Daigle, R. “ Optimizing Instruction Cache Perfor-
mance for Operating System Intensive Workloads”, st International Sympo-

sium on High Performance Computer Architecture, 1995, pp 360-369.

[7] Stallard, P. W. A, Muller, L. and Warren, H. D., “Performance Evaluation of

Parallel Programs on the Data Diffusion Machine”. In Performance Evaluation

119

BIBLIOGRAPHY 120

(8]

[9]

[10]

[11]

[12]

[13]

[14]

of Parallel Systems, PEPS ’93. University of Warwick, UK, November 1993,
pp 94-101.

Fox, G., Hiranandani, S., and Kennedy, K., FORTRAN D Language Speci-
fication, Technical Report TR90-141, Department of Computer Science, Rice
University, December 1990.

Banerjee, U., Dependence Analysis for Supercomputing, Kluwer Academic Pub-

lishers, 1988.

IBM AIX Parallel Environment Parallel Programming Primer, Release 2.0.
IBM Corporation, 1994. (http://ibm.tc.cornell.edu/ibm/pps/doc).

Wolfe, M., Optimizing Supercompilers for Supercomputers, The MIT Press,
1989.

Krothapalli, V.P. and P. Sadayappan. “Removal of Redundant Dependence
in DOACCROSS Loops with Constant Dependences”, IEEE Transactions on
Parallel and Distributed Systems July 1991, pp 281-289.

Tseng, C. An Optimizing Fortran D Compiler for MIMD Distributed-Memory
Machines, Ph. D Thesis, Rice University, January 1993.

Hiranandani, S., Kennedy,K. and Tseng, C. “Evaluation of Compiler Opti-
mizations for Fortran D Compiler on MIMD Distributed-Memory Machines”,
In Proceedings of the 1992 ACM international Conference on Supercomputing,
Washington, DC, July 1992, pp 1-30.

Zima, H., H.-J. Best, and M. Gerndt. “SUPERB: A tool for semi-automatic
MIMD/SIMD parallelization” Parallel Computing, Vol.6, No:1, January 1988,
pp 1-18.

BIBLIOGRAPHY 121

[16] Koelbel, C., Mehrota, P. “Compiling Global Name-Space Parallel Loops for
Distributed Execution”, IEEE Transactions on Parallel and Distributed Sys-
tems, Vol.2, No:4, October 1991, pp 440-451.

[17] Thinking Machine Corporation, Cambridge, MA. CM FORTRAN Reference
Manual, Version 1.0., Cambridge, MA 02142, February 1991 .

