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Abstract

The dependence structure of a parallel computation can be cha¡acterized by a di-
rected acyclic graph (DAG) where nodes and edges represent tasks and dependences
respectively. These edges define message-passing synchronization in a distributed-
memory model. If a dependence edge in the DAG is transitive, then there is an
alternate path composed of edges connecting source and sink node of that depen-
dence. The startup cost of a message transmission is typicatly higher than actual
data transfer. Communication overhead can be reduced by grouping messages.
Message transfers along transitive edges can be avoided, withãut loring!arallelism,
by appending the data to the messages on the alternate path that .orr"r, the tran-
sitive edge. In this thesis, a compiler-optimization technique for pipelined compu-
tation is introduced. This algorithm: (1) identifies the dependences corresponding
to transitive edges in simple loops with constant dependences; and (2) introduces
a scheme for assigning storage for nonlocal data, corresponding to the transitive
edges, in the node program.
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Chapter 1

fntroduction

Conventional parallel computers are classified, based on their architectures, into two

groups: shared memory multiprocessors, and distributed memory multicomputers.

Each makes different tradeoffs with respect to scalabitity and programmability but
future parallel architectures are likely to reflect aspects of these two models. De-

veloping high-level parallel programming languages that are easy to program and

portable across multiple architectures is a central issue at current research. Ideally,

compilers that generate efficient parallel code must be developed so program effi-

ciency does not rely on programmer expertise. Such a compiler would exploit the

inherent parallelism in a program so the generated parallel code has a minimum

at communication overhead. This thesis presents an optimization for a paralleliz-

ing compiler to reduce communication overhead on distributed-memory machines,

which is the most dificult programming model among parallel architectures.

Eliminating of redundant dependences has been shown to reduce synchronization

costs in a shared-memory multiprocessor [12]. A computation's dependence struc-
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ture is captured by a directed acyclic graph (DAG), where nodes represent tasks

and edges represent dependences between tasks. Krothapalli and Sadayappan [12]

demonstrate that the constraint imposed by a dependence edge is enforced by an

appropriate synchronization instruction.

Most early research [11] in parallelizing compilers focused on data dependence anal-

ysis, ioop transformations, and reducing synchronization costs in a shared memory

multiprocessor. Since the introduction of Intel's hypercube [1], there has been in-

creasing interest in distributed-memory machines which coordinate activities by

exchanging messages. Unfortunately, for small messages, the message initiation

is typically two orders of magnitude higher than the data transmission costs. So

several optimizations that increase the message length in executing data-parallel

loops have been proposed [14]. These optimizations increase the message length by

combining several messages between two processors into one.

The dependency structure captured by the DAG used by Krothapalli and Sa-

dayappan [12] is sufficient for shared memory architectures because the interpro-

cessor communication overhead is effectively negligible. This is not true for the

distributed-memory architecture. Krothapalli and Sadayappan also argue that ihe

transitive edges are not required in their analysis, so they are effectively ignored, but

this is because their primary concern is ensuring that all constraints are captured.

This thesis argues that by exploiting the transitive edges in the DAG, message

traffic can be reduced because small messages are combined to save communication

overhead. The technique requires messages be rerouted based on the transitive

edges found in the graph.

Discussions of optimizing parallel compilation requires a suitable compiler. The
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compiler must support code parallelization, readily provide source code, and be

extensible. The FORTRAN D compiler under development at Rice University

provides a programming ianguage and environment that meets these needs [13].

Although this language is freely available it is not currently well known. Therefore,

this thesis carefully describes the language with particular attention paid to the

parallel aspects. Further, the source code is available, so it is possible to extend

the compiier and its data structures in interesting new ways. Therefore, this thesis

also describes the FORTRAN D compiler and the corresponding optimizer. The

description of the language, compiler, and optimizer provides a pragmatic way to

discuss the central issues in parallelizing compilers.

1.1- Organization

Chapter 2 reviews parallel processors and parallel programming. FORTRAN D
and the FORTRAN D compiler is described in Chapters 3 and 4, respectively.

The FORTRAN D Compiler optimizations are discussed in Chapter 5. Chapter 6

presents important result from this thesis by proposing a new optimization tech-

nique as outlined above. Finally, Chapter 7 summarizes the problems, results and

contributions at this thesis in addition to providing suggestions for further research

directions.



Chapter 2

Parallel Processors and Parallet

Programmir.g

In 1992 the U.S. High-Performance Computing and Communication (HPCC) pro-

gram announced the'Grand Challenges'facing scientific computing (these are sum-

marized in Table 2.1). The computing requirements for each challenge are shown

in Figure 2.I. A computer system sufficient to meet all of these reguirements will
have one Teraflop of computing power, one Terabyte of main memory, in addition

to one Terabyte per second of IIO bandwidth [1]. Unfortunately. This is ,,the

goal of 3T performance". Unfortunately, , the most powerful conventional com-

puters are still many orders of magnitude away from 3T performance. Therefore,

parallel processing seems to be the only alternative that satisfies these requirements.

The balance of this chapter provides the fundamentals of parallelism in terms of

both parallel processors and programming. Section 2.1 provides a historical per-

spective by describing the evolution of computer architectures over the past 20
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Table 2.1: Grand Challenge Applications (quoted from [1], pg. 11g)

Magnetic recording

Technology

To study magnetostatic and exchange interactions to reduce noise in high

density disks

Rational drug design
To develop drug to cure cancer or AIDS by blocking the action of HIV
proteåse.

High-speed civil ransport To develop supersonic jets through computational fluid dynamics running

Catalysis Computer modeling of biomimetic catalysts to analyze enzymatic reactions
in manufacturing process.

Fuel combustion Designing betær engine models via chemical kinetics ca.lculations to reveal
fl uid mechanical effects.

Ocean mo{eling Iange-scale simulation of ocean activities and heåt exchange with
atnospl erical flows.

Ozone depletion
To study chemical and dynamical mechanisms controlling the ozone

depletion process

Digital anatomy
Real-time, clinical imaging, computed tomography, magnetic resonance

imaging with computers.

Air pollution Simulated air quality models running on supercomputers to provide more

understanding of atrnosoheric svstems.

Technology linking research

to education
Scientic or engineering education aided by computer simulation in
heterqeneouJ network svstems.

Protein structure design
3-D strucrual sfudy of protein formation by using Mpp system to perform
computational simulations.

Image understanding Use large supercomputers for producing the rendered images or animations

in real time.
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Memory Capacity
Globaì Change

Human Genome

Fluid Turbulence
1000 c Vèhiôle'Djñiunics

Ocean Circulation

Viscous Fluid Dynamics

S uperconducitor Modeling

Semiconducior Modeling

Quantu m Cltomodynamics

Vision

Structural

Biology

Pharmaceutical

Design

Chemical
Dynamics

1993 1995 and beyond

System Speed

100 Mflops I Gflops

Figure 2.1: Grand Challenge

l0Gflops l00Gflops I Tflops

Requirements (quoted from [1], pg. 121)
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years. Particular attention is paid to Flynn's well known taxonomy though other

classification schemes may work equally well. Secondly, section 2.2 introduces the

fundamentals of parallel programming and provides a basis for the claim that FOR-

TRAN D is an appropriate basis for the results presented in this basis.

2.L The Evolution of computer Architecture

Over the past two decades, demand for higher performance, lower cost, and sus-

tained productivity in scientific applications has resulted in improvements in system

performance. Major improvements achieved in technology, system architecture, sys-

tem software, and system organization contributed to this increase in performance.

Over the last two decades, technological advances are the major contributors to

the increase in system speed. Due to the limitations imposed by laws of physics,

the von Neumann architectures and the parallel computing seems to be the best

alternative to improve system performance [1, 2, 3].

The evolution of computer architecture is illustrated in Figure 2.2 [l]. The scalar

computer is the origin and it is based on von Neumann architecture, built as a se-

quential machine, for executing scalar data. The subsequent architectures adopted

the lookahead approach which overlaps instruction prefetch/decode phase with exe-

cution phase. This technology led to functional parallelism that adopt s instructi.on

pipelining to allow multiple functional units to work concurrently. Pipelining de-

compose's a computation into a number of steps that can be assigned to processors

in a sequence so multiple data streams can appear to be executed in "parallel,'.

It can be applied to instruction execution, arithmetic computations, and memory-
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Figure 2,2: Computer Architecture Evolution from Sequential Scalar Computers to

Vector Processors and Parallel Computers (quoted from [1], pg. 10)

access operations. The advanced vector computers are equipped with scalar and

vector hardware. System performance of these machines is in order of hundreds of

MFLOPS.

During the last decade, parallelism has become a well-kno\¡/n and popular strat-

egy to achieve higher performance [2]; The advent of very large-scale integration

(VLSI) technology is the principal contributor to parallel computer technology.



CHAPTER 2. PARALLEL PROCESSORS AND PARALLEL PROGRAI¿TMINGI

This spawned much research activity that developed both real and theoretical

computers. Recently a number of commercial parallel computers, based on vari-

ous architectu¡al models, have appeared on the market in a wide range of prices [1].

z.L.L Flynn's Taxonomy

Flynn (1972) provided a useful taxonomy that helps us understand the principles of

parallel architectures. It is based on the concepts of instruction and data streams.

In this classification, the multiplicity of hardware is used to classify each architec-

ture. "The multiplicity is defined as the maximum possible number of simultaneous

operations (instructions) or operands (data) being in the same phase of execution

at the most constrained component of the organizatio", [A].

Uniprocessor based computers are classified as Single Instruction Stream, Single

Data strearn (sISD) computers. As shown in Figure 2.3(a), a sISD computer has

one control unit (CU) and one processing unit (PU). In any instruction cycle the

control unit issues an instruction to the processing unit. PU reads operands and

executes the instruction. A computer with functional parallelism or pipelining is

also classified as SISD computer, because it decodes only a single instruction in a

unit time [1, 4].

Single-Instruction Strearn, Multiple Data Streanzs (SIMD) computers (Figure 2.8(b))

are computers with a single control unit (CU) to monitor a number of processing

elements (PE). During an instruction cycle, the controi unit broadcasts an instruc-

tion to all the PEs and ali the PEs execute this instruction on different data. This
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(a) SISD uniprocessor architecture

Program loaded

from host

Data sets loaded from host

(b) SIMD uniprocessor architecrure(with distributed memory)

(d) MIMD a¡chitecrures(with distributed-memory)

Figure 2.3: Flynn's Classification of Computer

12)

(c) MIMD architecture with shared-memory

Architectures (quoted from [1], pg,
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model is also called processor o,rraa [ ]. The SIMD machines such as Illiac IV and

Thinking machine CM2 are not suitable for general purpose computations [1].

Most existing parallel computers fall into the class of Multiple Instruction Streams,

Multiple Data Strearzzs (MIMD). In a MIMD parallel computer, a separate control

unit is associated with each processing unit. In an instruction cycle, each CU issues

an instruction to its corresponding processing unit, so we have multiple instruction

streams executed over multiple data st¡eams.

2.L.2 MIMD Parallel Processors

The MIMD parallel computers can be further defined into two broad groups, namely,

shared-memory multiprocessors and distributed-memory multicomputers (see Fig-

ure 2.3(c) and Figure 2.3(d), respectively). This section describes the former while

the latter is discussed in section 2.I.3. In a shared-memory multiprocessor, synchro-

nization between processors is achieved through shared variables. The following are

most common shared-memory multiprocessor models:

The Uniform-Memorg-Access (UMA) model: In this model, all the physical mem-

ory modules and peripherals are shared by all the processors. Figure2.4(a)

shows processors can access a shared global memory through a common bus,

a crossbar switch, or a multi-stage interconnection network. The access time

to each memory word in the global memory is the same for all the processors.

The UMA model is the simplest processor intercommunication modeÌ and is

suitable for general-purpose applications by multiple users. However, they
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are not architecturaliy scalable [1]. Bus-based multiprocessors with twenty to

thirty processors are commercialiy available.

The Nonuniform-Mernory-Access (NUMA) model: In this model, the access time

fo¡ each memory word depends on the location of the memory word. There

are two types of memories in this machine model: local memory and remote

memory. Each processor is directly connected to its local memory and all

local memories together constitute the global shared-memory (Figure 2.4(b)).

Local memory access time is an order of magnitude smaller than remote

memory [1,4].

The Cache-Only Mernory Architecture (COMA) rnodel: This model is similar to the

NUMA model, except each local memory module is replaced with a cache.

In a COMA machine, the binding between an address and a processor is dy-

namic. This model can be treated as cache-only NUMA machine. The shared

memory is formed by all local caches in the system as shown in Figure 2.aþ).

COMA machines have scalable architecture and research groups such as Stan-

forä FLASH [5], I-ACOMA [6], and Data Diffusion Machines [7] are exploring

this architecture. One benefit of this model is the simple programming model.

2.L.3 Distributed-Memory Multicomputers

The second MIMD machine is a distributed-memory multicomputer system where

multiple computers exist but there is no shared global memory. Each computer (or

node) owns a processor and a local memory module. Inter-processor synchroniza-

tion is achieved with a message-passing network.
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(a) The UMA multiprocessor model

(c) The COMA model of a multiprocessor
(P: Processor, C: Cache, D: Directory)

Figure 2.4: Shared-Memory Multiprocessors (quoted from [1], pg. 20-2b)

Inter-

connection

Network

(b) The NUMA model for multiprocessor systems

Interconnection Network
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Each node in a traditional message-passing network is connected to others through

point-to-point static connection channels. Each node connects to a router uses the

static connection network to send messages to other nodes possibly by cooperating

with a sequence of routers and channels. Each local memory is accessed by its
own processor and is not accessible by others. Therefore, these multicomputers are

called no-remote-rnemorA-access (NORMA) machines. However, some new genera-

tion parallel processors, such as SP2 [10], use a multi-stage interconnection networþ,

(MIN) instead of point to point static channels which provides a higher bisection

bandwidth over the static channels.

Programming on a distributed-memory multicomputer is difficult because program-

mers must allow for distributed computation, data flow between nodes, and inter-
processor communication. Building a sound parallel programming environment is

critical if the difficulty of programming on multicomputer systems is to be feasible.

The fundamental shortcoming of shared-memory multiprocessors is they are not

architecturally scalable. Distributed-memory multicomputers provide scalable ar-

chitecture but offers a difficult programming model. The latter model ofiers a

significant long term advantage but requires more research to make the computing

environment acceptable for the program developers.

2.2 Parallel Programming

Code development on conventional uniprocessor computers requires programmers

develop code for a sequential programming environment. The computation model
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for such computers is based on SISD machine model. The instructions in a sequen-

tial program are executed one after another. Most existing languages, compilers,

and operating systems are developed for uniprocessor based computers. When us-

ing a parallel computer, software developers want to exploit a parallel programming

environment that detects parallelism in the program.

To provide a parallel programming environment, new language extensions or con-

structs must be developed that support parallelism. This first requires techniques

to detecJ parallelism at various granularity levels, probably by using intelligent

compilers. There are two popular parallel programming techniques:

o Using a conventional language, such as C or Fortran and a parallelizing com-

piler, a sequential program is translated into a parallel node program. The

compiler must have the ability to detect and exploit parallelism in the sequen-

tial program and to distribute computation using the target machine resources

(Figure 2.5(a)). This method has been applied to both shared-memory mul-

tiprocessors and distributed-memory multicomputers. The 'intelligence'of a
parallelizing compiler is a decisive factor in the success of this approach. The

major advantages are that: (1) no programmer retraining and (2) the existing

conventional software does not need to be rewritten.

o Aiternatively, programmers can be required to specify the paralleiism in their

programs (Figure 2.5(b)). The programmer needs to develop an expiicit par-

allel program by using parallel dialects of C or Fortran . The compiler is less

complicated than a compiler for the first method, because some of respon-

sibility has been passed into the programmers. The compiler only needs to
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-\ Programmer
\-/

Source code written in sequential

language C, Fortra¡, Lisp or
Pascal

Parallelizing Compiler

Parallel object code

Execution by runtime system

a\
Programmer

\/

Source code written in concurrent

diaìects C, Fortran, Lisp or
Pascal

Concurreny preserving compiler

Concurrent object code

Execution by runtime system

(a) Implicit parallelism (b) Explicitparallelism

Figure 2.5: Two Approaches of Parallel programming (quoted from [1], pg. 19)
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preserve parallelism specified and generate parallel code.

Machine-Independent Parallel Programming

Despite all the advantages of parallel machines, programming on parallel machines

is still widely believed to be very dificult. Programmers must learn the new paral-

lel programming environment and to exploit the underlying machine architecture.

Programs must be rewritten in a parallel programming language that reflects the

underlying machine architectures. For example, a message-passing dialect for a

MIMD distributed-memory machine, extended vector and array syntax for a SIMD

machine, or an explicitly parallel dialect with synchronization for a MIMD shared-

memory machine [13].

Most existing parallel programming models are machine-dependent so programmers

need to deal with machine-specific issues such as improving data locality and the

exploitation of specific memory hierarchies. Such parallel programs cannot be eas-

ily modified or ported to different machine architectures. It should be noted that
programming MIMD distributed-memory machines is the most challenging environ-

ment because each processor has its local memory (address spaces) and inter-node

communication is through calls to machine-specific communication libraries. Pro-

Srammers must write their programs in a message-passing dialect and deal with
address translation and processor synchronization using messages. The resulting

programs are often nearly impossible to maintain.

One way to solve the parallel programming problem is by providing a machine-

independent programming model. This model must be easy to program and be
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portable. A good parallel language model should have the following attributes: (1)

efficiency in its implementation, (2) portability across different a¡chitectures, (3)

compatibility with existing conventional sequential languages, (4) expressiveness of
parallelism, and (5) ease of programming.

2.3 Related Work

Before preceding to the thesis itself a brief review at some related work

set the framework. Although all issues may not be clear at this point

of this thesis wiil clarify the significance of this related work.

will help to

the balance

FORTRAN D can be viewed as a second-generation distributed-memory com-

piler. It'incorporates and extends many compiler-time analysis and optimization

techniques from many other research projects, which can be treated as the first-
generation compilers. Some of the important ones are SUPBRB, Kali, and CM

FORTRAN [13].

SUPERB is a semi-automatic parallelization tool designed for MIMD distributed-

memory machines [15, 13]. This tool provides user-specified BLOCK distributions

and performs dependence analysis to guide program transformations and commu-

nication optimizations. SUPERB first uses guards and element-wise messages to
generate an intermediate program using run-time resolution and then applies the

transformations and optimizations to the intermediate code. It originates ouerlaps

as a means to store nonlocal data accesses. SUPERB also provides interprocedural

data-flow analysis of parameter passing. This tool does not support CYCLIC dis-
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tribution, collective communications, dynamic data decomposition and storage of
nonlocal values in temporary buffers.

Kali is the first compiler system which supports both regular and irregular distribu-
tions on MIMD distributed-memory machines[16]. It supports BLocK,cycLIC,
and user-specified distributions. Kali requires the programmer explicitly to par-

tition the loop iterations among processors by specifying an o¿ clause for each

parallel loop. Arguments to procedures are labeled with their expected incoming

data distribution. It does not provide dependence analysis. Mandat ory on clauses

for parallel loops, collective communications, and dynamic decompositions are ma-
jor differences between FORTRAN D and Kali.

CM FORTRAN is a version of FORTRAN 77 with vector constructs[12]. pro-

grammers must explicitly specify data parallelism by using of vector operations or

making array dimensions as parallel. CM FORTRAN allows users to define a data

partition for each partition by using interface blocks. Array parameters are copied

to buffers of the expected distribution at run time, eliminating the interprocedural

analysis.

Compared with the first generation research projects, FORTRAN D has provided

two main advantages: (1) the dependence analysis helps the compiler to exploit
parallelism in the source code, without using any language extending constructs or

explicitly specifying parallelism in the source code. The analysis also provides the

information for compiler to appiy more optimizations, (2) the FORTRAN compiler

performs its analysis up front and use it to derive the SPMD code, decreasing the

load of run-time system.
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2.4 Summary

The existing parallel languages can be divided into two groups [1, B]: (1) a real new

parallel language and (2) a conventional programming language enhanced with new

constructs. The advantage of a new language is providing explicit high-level con-

structs which present the computation models for parallel architectures, but new

languages are often incompatible with existing languages. Most existing parallel

languages belong to the second group [1].

In Chapter 3, the FORTRAN D compiler is introduced because it is a machine

independent language. This language was developed at Rice U. and it adopted the

second approach of parallel programming. It meets all the requirements of a good

parallel programming language, described above and provides a suitable environ-

ment for demonstrating the new innovations proposed in this thesis.
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FORTR,AN D

Currently several parallel architectures are used, each equipped with its o\/n com-

munication library. This introduces two difficulties: (1) programmers have to adapt

to multiple programming environments and (2) it is difficult to port software across

different platforms. One solution to this problem is a machine-independent pro-

gramming model suitable for a various parallel architectures.

FORTRAN D is a version of FORTRAN enhanced with a rich set of d,ata d,ecornpo-

sitions [13]. It provides a machine-independent programming model for distributed

MIMD machines which supports new features that make it possible to write effi-

cient machine-independent data-parallel programs using data decomposition speci-

fications. FORTRAN D allows programmers to express parallelism but it is simple

enough to let a compiler generate efficient SPMD programs for diffe¡ent parallel

machine architectures. FORTRAN D also supports techniques such as automatic

data decomposition and communication generation.

2I
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The balance of this chapter introduces and describes the FORTRAN D program-

ming language. Since the focus of the discussion is on parallelism, a working knowl-

edge of FORTRAN is assumed, so the chapter focuses on the extensions to support

parallelism. Finally, section 3.2 makes few summary comments.

3.1- FORTR,AN D Language

The data decomposition problem in a FORTRAN D program is solved using two

levels of parallelism [S]. The first ievel is called problem mapping and decides how

arrays should be aligned with respect to one another in the program. It is decided

by the slructure of the underlying computation, but is mostly independent of any

machine architecture. Problem mapping is the basic requirement for reducing data

movement during program execution. The second level is called machine mapping.

It decides how arrays shouid be distributed onto the processors. When applying ma-

chine mapping, architectural characteristics such as the topology, communication

mechanisms, size of the local memory on each processor, and number of processors

in the system must be considered. Some program characteristics like the size of a

distributed array and computation structure may also determine data distribution.

During loop execution in a parallel program, inter-processor communication pri-

marily depends on mapping iterations and array elements to processors. Consider

the program segment in Figure 3.1. Depending upon the different data distribu-

tion of the arrays and the scheduling of iterations on z processors it is possible to

generate different communication overhead. For example, if A(i) and B(i11) are

mapped to the same processor and iteration i is executed on the same processor,
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fori=1,¡
A(i) = B(i+l)

end

Figure 3.1: Example of Problem Mapping

no communication is required to execute the iteration. However, if iteration i is

executed on a different processor, then B(i+1) must be sent to the computing pro_

cessor and the result must be stored back at the processor that owns A(i). Clearly,

the first alternative is preferred. Now consider a case where A(i) and B(i+l) are

on different processors. In this case, there are three different scenarios: (1) the là
iteration is executed by the owner of A(i); (2) the lå iteration is executed by the

owner of B(i-¡l); (3) the lå iteration is executed by a different processor. In first
case, B(i-¡1) must be sent to the o\4/ner of A(i) to perform the computation. In the

second case, the final result must be sent back to the owner of A(i). In the third
case, B(ia1) must be sent to the computing processor and the final result must

be sent back to the owner of A(i). From these examples it can be seen that most

commu4ication overhead is due to poor program mapping (i.e., the alignment of

arrays does not match the computational requirements).

3.L.L Problem Mapping

Problem mapping is very important in a FORTRAN D program because at the

need to minimize the number of communication statements. Most parallel pro-

grams contain explicit or implicit communications caused by the memory hierarchy
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of massively parallel processors. A "nonlocal" data access results in communication

to a remote processor and it is a major factor in degrading the performance of a
parallel system. It should be noted that it could be impossible to eliminate all
communication so the goal is to minimize the quantity.

Problem Mapping Statements

Fortran D problem maps using DECoMposITIoN and, ALIGN statements. A

decomposition is simply an abstract problem or index domain and no storage is

associated with it. The DECOMPOSITIOy'ú statement declares a decomposition

with its.name' dimensionality, and size. Figure 3.2(a) illustrates two decomposi-

tions: D1 is an one-dimensional decomposition of size y'{and D2 is a two-dimensional

decomposition of size ,M*/ú. The ALIGN statement is used to map arrays onto a
decomposition. Arrays mapped to the same decomposition are aligned with each

other. The alignment is specified by the placeholders in the subscript expression of

the arrays and decomposition.

Each alignment inside a pïogram can be classified as one of the following types:

eract match, intra-dimension alignment, and inter-dimension alignment. Exact

match is the simplest form of alignment (Figure 3.2(a)). It maps the array exactly

onto the decomposition. In an exact match, no placeholder is required. Intra-
dimension alignment specifies an offset and/or a stride for each subscript expres-

sion of the data decomposition. The programmer can assign an alignment and/or
an alignment stride for any dimension of an array. An alignment stride is used as

the coefficient of the placeholder in the subscript expressions of a decomposition.

Figure 3.2(b) illustrates intra-dimension alignment with offsets, strides, or both for
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REAL AI(N), A2(NN), A3(N,N)
DECOMPOSITTON Dl (N),D2(N,N)
ALIGN Al with Dt /* Exacr March r/
ALIGN A2 with D2 /* Exacr Match */
ALIGN A3(IJ) wrh D2(IJ /* Exacr March

DECOMPOSnON A(I)

tltr
- J- - J-. J- - *-_.___---_-_-_

ALIGN AI With DI

(a) Exacr Match

ALIGN AI(I) with Dl(I+l)

ALIGN Al(I) with Dl(I-t)

DECOMPOSITION D2(I,J)

2-D Alignment Offsets

DECOMPOSITION Dz(I,J)

2-D Alìgnment Stride

ALIGN A3(I,J)
with D2(I,J-l)

ALIGN A3O,J)
with D2(2*I,2+J)

(b) Alignment Strides and Offsets

Figure 3.2: Example of Problem Mapping Statements



CHAPTER 3. FORTRAN D

one-dimensional and two-dimensional arrays.

Inter-dimension alignment determines the data decomposition between dimensions.

It includes permutation, collapse, ernbedding, or any combination of these three.

Permutation permutes the dimensional alignment between arrays and decomposi-

tions. This can be done by exchanging the position of placeholders in the decompo-

sition, such as "ALIGN A3(I,J) with D2(J,I)". collapse omits the assignments of

certain dimensions of the array while mapping the array onto its decomposition. All
the data elements in the omitted dimensions are collapsed and assigned to the same

location in the decomposition. Array embedding is the inverse of array collapsing. It
maps arrays with fewer dimensions onto a higher dimensional decomposition. Each

unmapped dimension of the decomposition is given an explicit value to denote

the position of the mapped dimension(s). Any combination of intra-dimensional

and inter-dimensional alignments is allowed when applying array-to-decomposition

mapping. Figure 3'3 illustrates array permutation, array collapse, and array em-

bedding.

FORTRAN D also provides some useful options for the ALIGN statement: ooer-

fl,ow, range, and repli,cation The oaerfl,ow option specifies the actions to be taken

when an array-to-decomposition overflow occurs. If it happens, the user can select

a method from three default actions: ERR)R, TRUNC, and wRAp. These options

are illust¡ated in Figure 3.4. FORTRAN D permits mapping at part of an array

onto its decomposition using the range option of the ALIGN statement. The range

of a dimension is specified by the from:to syntax. The symbol ,,*,, is used to denote

the entire array dimension should be mapped. The finai optio n is replication whjch
replicates distributed variables into a decomposition. The range option can be used
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ALIGN X(IÐ with D(J.I)

27

il., l,Tl
lilililrl

::;l

rh+T"ú

-[, -lHffi
ütcü

ALIGN X(I,J)

with D(I)
ALIGN Y(X,Y)

with D(l)

DECOÀ,ÍPOSITrON D(r,J) ALIGN A(t) with D0,2) ALIGN A(I) wirlr D(l,l)

ALIGN A(I) with

D(r-1,2)

Figure 3.3: Example of Array Permutation, collapse, and Embedding

<- Alignment Permutation

ALIGN AI,J,K)
WITH D(I)

<- Array Collapse

<- Array Embedding
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ALIGN X(Ð wirh D(r-t)

i-;;ET;TtI............|* r-E
ALIGN X(l) with D0-l) overflow (IRUNC)

FTTiTs I ' 
lN.,l,"¡Iñl

ALIGN X(I) with A(I-t) overflow(WRAp)

EfrFt'

28

3lN-2lN-llNll

elements ia treated as an error

are mapped to the element in the edge.

are wrapped to the opposite end of the decomposition.

Figure 3.4: Example of Alignment Options

with the replication option.

3.L.2 Machine Mapping

ALIGN and DBCOMPOSITION statements together specify how different data

structures should be aiigned. These two constructs provide a mechanism to re-

duce interprocessor communication due to unaligned data structures. However,

interprocessor communication may still be needed if poor iteration mapping oc-

curs. FOH|RAN D's DISTRIBUTE statement specifies data distribution onto the

processors. This information is used to schedule iterations so interprocessor com-

munication is minimized.

Each FORTRAN D's decomposition variable can only be specified with one dis-

tributioñ' The compiler will apply the distribution to arrays aligned with this

decomposition and defines data distribution for each dimension in the decomposi-

tion. The format of the DISTRIBUTE statement is:
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DISTRIBUTE D1 ( øúú ribute)

DISTRIB U TE D2( attrib ute, attribute)

There ar" thre. types of attributes in FORTRAN D: BLOCK, CyCLIC, and,

BLOCILCYCLIC. BLOCK distribution divides the size of decomposition into con-

tiguous blocks of size (N/P), where N is the size of the decomposition and p is

the number of processors. The compiler will then assign one block to each pro-

cessor. CYCLIC adopts a round-robin distribution for the decomposition. It as-

signs every PÀ element to the same processor which is good for load-balancing.

BLOCK-CYCLIC is a combination of the above two distributions which takes a
parameter X representing the block size (M). After dividing the decompositions

into contiguous chunks of size M, the compiler applies the CYCLIC distribution to
distribute these blocks. Figure 3.5 has the examples of these three types of distri-
bution.

FORTRAN D also allows the user to define the number of processors for each di-

mension of a decomposition. Figure 3.6 illustrates this data distribution where each

distributed dimension is given a number of processors on that dimension.

To support programs with irregular data parallelism, FORTRAN D provides irreg-

ular distributions. The user can assign the distribution through a mapping amay

which itself will be distributed. Figure 3.7's program segment illustrates irregular

distribution where the distribution of each element in decomposition IRRBG is de-

termined by the value of its corresponding array element in MAp. The mapping

result of IRREG on each processor is shown in Figure 3.g.
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(CYCLIC,BLOCK)

PI V2 H} P4

(BLOCK)

PrlnlnlE Þ¡lÞlBlB

(BLOCK-CYCLIC(2)

l-D Data Distribution

(CYCLIC,+)

EffHffi
(BLOCK,*) (*,BLOCK) @LOCK,BLOCK)

2-D BLOCK Distribution

30

(BLOCK_CYCLTC(2),*) (*,BLOCK_CyCLrC(3)) (BLOCK_CYCLIC(2),BLOCK_CyCLrC(3)
n$proc=2 n$proc=2 n$proc=4
n$proc : number ofprocessors.

(t,CYCLIC)

2-D CYCLIC Distribution

n n

4 h

(cYCLIC,CYCLIC)

2-D BLOCK_CYCLIC Distribution

(BLOCK,CYCLIC)(tsLocK,cycLrc) (BLOCK,BLOCK_CYCLrC(2))

2-D Combination Distributions

Figure 3.5: Example of Data Distribution

(cYCLrC)

P¡



CHAPTER 3. FORTRAN D

(BLocK(4),BLocK(z) @LOCK(2).BLocK(4)

2-D Uneven Block Distributions

31

(BLOCK(4),CYCL!C(2)

PI P5

P)

D? n
DÀ Pfl

PI
P2

P7

Þ^

(BLOCK(2),CYCLTC(4))

PI P3 P5 YÌ

P2 P4 P6 P8

PI P3 P5 n

P2 P4 Pó P6

(CYCLIC(4),BLOCK(2)) (BLOCK_CyCL¡C(2.2).BL6CK(4)

2-D Uneven combination Disributions

Figure 3.6: Example of Processor Distribution

3.L.3 . Additional Features of FORjTR,AN D

The following additional features are available in FORTRAN D [g] too:

Dynamic Data Decompositionz The computation pattern may change between dif-

ferent phases of the program. One way to reduce data movement is to change

data alignment between the different phases. FORTRAN D applies dynamic

data decomposition to provide this ability. Each ALIGN and DISTRIBUTE

statements inside the program may be interpreted as executable statements,

rather than declarations, so the data distribution can be changed dynamically

during program execution.

PI P] PI PI P5

v. P6 P2 P( P6 P' P6

P Y, P3 Y P P1 P: n

P4 P' P4 m P4 P8 P4 P8

I P3 )5 n PI P5 Y,

P2 P4 ,ó P8 P7 P6 ,E
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n$proc = {
REAr x(16)

TNTEGER M.A.P(16)

DECOMPOSTTION EG(16), rRREG(16)

ALIGN MAP with REG

ATIGN X with IRRÐG

DISTRIBUTE REG(BIOCK)

.....set values of MAP array

DISTRIBUTE IRREG(MAP)

Figure 3.7: Bxample of Program Segment with Irregutar Distribution
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MAP[1:4]

X Ð@G
J 2 I 2

processor I

processor 2

processor 3

processor 4

MAP[5:8]

X

lt3

MAP[9:12]

x
2 4 4 4

MAP[I3:16]

X @@@
I 0 3 0

Figure 3.8: Example of lrregular Distribution
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FORALLI=1,N

x(rNDEx(r)) = ...

... = x(TNDEX(r+1))

ENDDO

Figure 3.9: Example of FORALL Loop

Procedures: The scoping rule for data decompositions in FORTRAN D proced.ures

is defined as: (1) procedures inherit data decompositions from their callers,

and (2) the effects of all DECOMPOSITION, ALIGN and DISTR.IBUTE

defined inside a procedure are Ìimited to itself and procedures called by it. A
distributed array can also be passed as a parameter.

FORALL loops: FORALL loops prevent synchronization in a loop whose depen-

dences can not be detected at compile-time (eg. using index arrays). FORALL

Ioops can only use values defined before entering the loop or within the cur-

rent iteration, so each iteration has its own copy of the entire data space

before entering the loop. Therefore, all the iterations in the loop can be ex-

ecuted in parallel without communication. At the end of a FORALL loop,

the compiler performs another important operation - merge) which is used

to merge the variables that are assigned new values by different iterations

during the loop. The merge operation is done in a deterministic way using

values assigned from the latest sequential iteration. Figure 3.9 is a example

for FORALL loop where each iteration of the FORALL loop uses the values

of array elements, INDEX(I) and INDEX(I+I) defined before the loop.
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Reduction: A reduction can be performed on a group of data. The result for the

operation will have lesser dimensionality or just a single scalar value. The

REDUCE statement is used to specify the reductioz operation in a FORTRAN

D program. The following reduction functions are provided by FORTRAN

D:
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SUM

PROD

MIN

MAX

AND

OR

sum of a list of numbers

product of a list of numbers

minimum of a list of numbers

maximum of a list of numbers

logical AND of a list of booleans

logical OR of a list of booieans

The programmers are aiso allowed to define their own reduction functions if
they are associative and commutative.

ON clause: FORTRAN D allows user to specify the processor for each iteration of
the loop' This feature permits the users to control load-balancing and red.uce

communications.

3.2 Summary

The principal goal of Fortran D is to provide support for exploiting fine-grain par-

allelism on distributed-memory machines. It provides a simple programming model

for the programmers through the support of a sophisticated compiler. FORTRAN D
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provides high compatibility with FORTRAN. After removing the data decomposi-

tion statements in a FORTRAN D program, it becomes a PORTRAN program. To

develop ä sound parallel programming environment for distributed-memory MIMD
machines, several open questions must be addressed: automatic data decomposi-

tion, static performance estimation, run-time preprocessing using the PARTI com-

munication library, additional high-level language constructs to support parallel

operations, etc [13]. This thesis now turns its attention to the FORTRAN D com-

piler.
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FORITR,AN D Compiler

Two steps are required to write a data-parallel program in FORTRAN D: (1) se-

lecting a suitable data decomposition and (2) using it to derivethe single progra,m

ouer multiple data (SPMD) program with explicit communications to access non-

local data. The first part is the duty of the programmer and the second is the

FORTRAN D compiler.

The FORTRAN D compiler translates a program into a SPMD node program with
explicit message passing for distributed-memory machines. The compiler detects

and exploits parallelism in a FORTRAN D program and produces a node program

with minimal communication overhead executable on the nodes of a MIMD ma-

chine. The FORTRAN D compiler uses the principle that the owner computes to

generate the node program of the source program. Therefore, each processor only

performs the computation for its own local data set so means each processor can

only compute the values of data set assigned to it by data distribution. The data

decomposition specifications in the source program are changed into mathematical
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distribution functions by the compiler that are used to determine the ownership

of local data' FORTRAN D compilation can be roughly divided into three major

phases: program analysis (section 4.I), program optimization (section 4.2), and code

generation (section 4.3).

4.L Program Analysis

There are four parts to program analysis: dependence analysis, d,ata d,ecomposition

analysis, parti'tion anølysis, and comrnunication anatysis [rJ].

4.L.L Dependence Analysis

This phase analyzes the control flow and memory accesses in the source program to

determine a statement execution order that produces the same result as the orig-

inal program' If there is a data dependence between two references .E/ and, R2 in
a source program' then both reference the same memory location. To preserve the

semantics of the original program, their execution order must be consistent with
the sequential execution order. If there is a dependence between Rl and R2 and,

'Rl must be executed before R2, then r?/ is called the source of this dependence

and R2 is its sizÀ. Data dependences define these ordering relationships in a source

program. Four kinds of data dependences exist:

Flow (True) dependence: If the source RI is a write operation and R2 js a read,.
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Antidependence: If the source ,Bl is a read operation and Rp is a write.

output dependence: If both source .B/ and sink ,Rp are wTite operations.

Input dependence: If both source -Rl and sink R2 are read, operations. Input
dependences do not restrict statement order.

Each data dependence in a loop identifies two types of dependence relations. Con-

sider the sequential loop nest .[ in Figure 4.r, where I;, p¿,, and q¿, respectively,

are the index variable, Iower bound, and upper bound of L¿ for I < i 1 m., and

H(I1,I2,...,I-) is the loop body. This loop nest tr is denoted as L: (L1,,L2,...,L*).

When m is the arity of the loop, so if m : 3 it is a triple-nested loop. The itera-

tions of L are represented by the index vector of the loop, denoted by (I1,I2,...,I,,").

The index values or L are the values of the integer vector (\,i2,...,i*), such that
(Pr,Pz,...,p-) ( (i1,i2,...,i^) S (qr,qr,...,e-), respectively. Each index value (i1,i2,...,i-)

generates an instance of the loop body, denoted by H(i1,i2,...,,j^), which is an iter-

ation of L.If there is a data dependence from an instance S(i) of ,S to an instance

r(fl of 7 where .9 and r are two statements of the loop body, we can say ,,7

depends on ,9' based on the dependence relation between statements. Similarly,

"f (il depends on S(i)" based on the relation between the iterations of the loop.

A data dependence in .[ can be characterized by its dependence d,i,stance and, Ieuel.

The dependence distance of a dependence from s(i) to r(fi is defined as j - z. Its
dependence level has m*l possible values: 1,2,..,m*l which is decided by the first
non-zero entry in the distance vector. If ? depends on 

^g at a level /, 1 < t < rn)

then the dependenceof. T on,5is carried on loop L¡. The dependence of ?on ^gis
loop-independent if it is not carried by any loop (i.e, the distance is 0 and the level

is m+1).
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do 11 = p1, qt

do 12 - p2, q2

L^t do I- = pm, gm

II(I1,I2,...,I*)

enddo

enddo

enddo

Figure 4.1: Sequential Loop Nest

To provide a correct and efficient dependence test is important for a parallelizing

compiler. In the dependence analysis phase, the compiler must compute all the

data dependences in a program. Dependence testing is a method used to decide

whether dependences exist between two subscripted references to the same array

in a loop nest' To calculate the data dependences due to array references in a loop

nest, the compiler must solve a set of linear equations in the integer space [9]. Each

dependence found is represented by its dependence distance and level. This infor-

mation is crucial in guiding a FORTRAN D compiler during optimization . The

FORTRAN D compiler is developed in the context of the ParaScope programming

environment which incorporates this analysis [te, t+].

4.t.2 Data Decomposition Analysis

In this phase, the compiler determines the data decomposition at each reference of
a distributed array. A particularly important feature of FORTRAN D is dynamic
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data decomposition. Although this feature provides more flexibility, it makes the
job of the FORITRAN D compiler more difficult. To generate the correct guards

(conditional statements) and communication in the node program, the compiler

must know the correct decomposition for each array reference at any point of the

program. Reaching decompositions are the possible set of data decomposition spec-

ifications that may reach an array reference. The compiier applies both intra- and

interprocedural analysis to decide the data decompositions for each reference to

a distributed array. If multiple decompositions reach a procedure, node splitting
or run-time techniques are applied to generate the correct code for the program [18].

The scope rules for dynamic data decompositions in a FORTRAN D procedure are:

1. a procedure inherits data decompositions from the callers, and

2. lhe effects of dynamic data decompositions defined inside a procedure are

limited to itself and procedures called by it.

Since the dynamic data decompositions defined inside the procedure are not valid

after the procedure returns, the compiler must insert appropriate (and potentially

expensive) calls to run-time data distribution routines to restore the original data

decomposition.

4.1.3 Partitioning Analysis

Program partition analysis tses data decornposition speci,fi,cations and, the ouner

computes rule to partition the data and computations of the original program among
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processors. The compiler first uses data decomposition specifications to partition
the arrays to processors and then uses the owner computes rule to distribute the

computation onto the processors. Iteration sets, inder seús, and. regular section de-

scriptors (RSDs) are used during this phase. An iteration set is composed of loop

iterations that represents a section of the work space. An index set is a set of array

indices that represents a section of the data space. The FORTRAN D compiler

uses regular section descriptors as internal representation for iteration and index

sets. The representation of an RSD is [/¿:z¿:s¿,...] where Ii, ui, and s¿ respectively

represent lhe lower bound, upper bound, and step of the lå dimension of the RSD.

If a step of a RSD is not explicitly specified, then it is assigned the default value of

one' This representation provides an easy way for the compiler to describe rectan-

gular or right-triangular array sections. Operations, such as intersection and union,

can be e.asily performed on RSDs. In an RSD representation of a nested loop or a
multidimensional array, the leftmost dimension of the RSD maps to the outermost

loop of the loop nest or the leftmost array dimension of the array, respectively. In
most cases, RSDs are used in array section analysis to record the array sections

defined by an assignment statement at the loop level. The compiler can use the

RSDs computed for communication optimizations. Consider the example in Fig-

ute 4.2. The compiler computes a RSD for the refe¡ence A(i,j) at each loop level

and then tags it on that loop level for late¡ use. In this example, the RSDs for each

loop level starting from the innermost level are A[i,j], A[i,1:100], and A[1:100,1:100].

The FORTRAN D compiler produces a SPMD program that can be executed di-

rectly on each node of a MIMD machine. It means that all the processors must

execute the same program and have the same array declarations in the node pro-

8ram. Since all the plocessors are using the same array declarations, they must have
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doi=1,100

doj=1, 16¡

.A,(ij) : B(ij).. ..

enddo

enddo

{* Original program +}

REAL A(40)

doi=1,{Q
A(i) = 5.6

enddo

/* RSD = A[1:100,1:1oo] */

/* RSD = A[i, 1:100] */

/* RSD = A[i, j] +/
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Figure 4.2: Example of RSD Representation

{+ SPMD node program +}

REAL A(10)

doi=1,10
A(i) = 5.9

enddo

Figure 4.3: Example of Global and Local Indices

a local-indeÍ set which is diferent from the global indices in the original program.

The example in Figure 4.3 illustrates one-dimensional array (A) 
"f 

the original pro-

gram that is block-distributed among four processors. The SPMD node program

has different array and loop indices from the original program. In the node pro-

gram, the local indices for A are [1:10] but the global indices for array A after the

data partition are [1:10], [11:20], [21:80], and [81:40]. Therefore, the loop indices

in the node program are [1:10] but the global loop indices in the FORTRAN D

program are [1:40].

The way that FORTRAN D compiler computes the local index set is almost the

same. The compiler first decides the reaching decomposition set for each reference
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REAL Ä(100,100), B(100,100)

DECOMPOSITION D(100,100) {* The number of processors on the machine is four. *}
DISTRIBUTE D(:,BLOCK)

dok:1,time
doj - 2,99

doi=1,$B
sl: A(ij) = (B(ij_l) + B(i_lj) + B(i+lj) + B(ij+1))/4

enddo

enddo

doj - 2,99

doi=2,99
52: B(ij) = A(ij)

enddo

enddo

"nido

Figure 4.4: Example of a Fortran D program(Jacobi)

of a distributed array, then according to the reaching decomposition it computes

the iocal index set of each array which is the local array section owned by each

processor. Consider the Jacobi program shown in Figure 4.4 [13] where both arrays

A and B have the same data distribution as the data decomposition variable D. The

first dimension of D is undistributed and the second dimension is block-distributed.

The reaching decomposition set for both arrays has only element D and the local

index set on each processor is [1:100,1:2b].

The computation of the iocal index set decides the data partition for each array.

By using the result of data partition phase the compiler partitions the computation
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among the processors using the owner computes rule. The local iteration set of a
reference ,R on a processor Ç is defined to be the set of loop iterations that cause Æ

to access data owned by úr. This iteration set can be calculated in two steps [1S].

First, apply the inverse of the array subscript function of ,B to the local index set of

to, and second intersect the result of step one with the iteration set of the enclosing

loops. Tìe FORITRAN D compiler only computes the local iteration set of left-hand

side(Ihs)for each statement, because of the ouner cornytutes rule. Therefore, the set

of iterations to be executed on a processor is given by the union of local iteration

sets of the /åss of each assignment statement.

The Jacobi program in Figure 4.4 helps explain how to compute the local i,teration

seú. The compiler applies the inverse of the subscript function of the lhs to the local

index set of A (i.e, [1:100,1:25]) and generates the unbounded local iteration set

[:,1:25,1:100]. The first entry of this set, ":", indicates that every iteration of the fr

loop accesses local elements of A. The inverse subscript function maps j and i loops

to [i:25] and [1:i00], respectively. In the second phase, the compiler determines

the intersection of the unbounded iteration set and the actual bounds of the en-

closing loops, since these are the only iterations that actually exist. In Figure 4.4,

the global iteration set of the loop isll:time,2:99,2:99]. The local iteration sets for

statement 51 in Figure 4.4 which are computed by two steps: (1) converting the

globai iteration set into the local iteration sets for each processor and (2) perform-

ing the intersection with the unbounded local iteration sets for each processor (in

local indices) are:

The local iteration set for Proc(I) - [I:time,,2:25,,2:gg]
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The local ite¡ation set for proc( ) : ll:time,I:24,2:ggl

The same procedure is applied to comput e the local iteration seús for statement 52.

This algorithm uses the local indices - calculated for the local index set of each array
- to derive the local indices for the local iteration set. To generate a SPMD node

program which can be executed on ali the processors, the FORTRAN D compiler

must ensure that the processors on the boundary are different from the remaining
(inner) processors because they may have diferent local index and iteration sets.

The third aspect to be considered at this stage is how to handling bound,ary cond,i-

tions. The compiler handles boundary conditions diferently when generating local
index and iteration sets. In the program in Figure 4.5, the compiler will store dif-
ferent boundary conditions for processors one and four. This eliminates the need

to calculate and store the condition for each processor. For each loop or array

dimension, the boundary conditions for iteration or index sets are recorded in pre,

mi,d, and posú sets by the compiler [13]. The pre and posú sets are for boundary con-

ditions. These sets are represented as augmented iteration sets in the FORTRAN
D compiler. Each dimension in an augmented set contains these three sets and

their associated processors. As shown in Figure 4.5, the associated processors in
the augmented sets are indicated by the '@' sign. The iteration set of a processor is

the cartesian product of the corresponding iteration sets of each dimension. How-

evet, not all boundary conditions can be successfuily represented by the augmented

iteration sets. In a worst case, the compiler has to compute and store the index
and iteration sets for each processor.
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Figure 4.5: The Augmented lteration Sets of Jacobi program

doj - 2, 100

doi=2,100
51: X =A(ij+l) * B(ij)....

s2: A(ij) = A(ij) + 0.75 * (x_A(ij))
enddo

enddo

Figure 4.6: Example of Scalar Variables

The compiler replicates scalar variables on all processors. If the partitioning of a
loop that assigns a value to a scalar variable is done using the owner cornputes

rule, every processor has to execute all the loop's iterations. However, if the scalar

variable is 'private', (used) within a loop iteration, each processor need. not compute

all the iterations. The compiler uses this fact and identifies the local iteration set

for such an assignment as the union of the local iteration sets of the statements

that use the scalar variable. For example, in the code segment of Figure 4.6, X is a

replicated scalar that is identified as a priaate variable. The FORTRAN D compiler

computes the local iteration set of 52 and assigns it to the local iteration set of 51.
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4.I.4 Communication Analysis

In this phase the compiler uses local index and local iteration sets to compute

nonlocal data accesses for each rås reference. To compute the nonlocal index sets,

all rhs references to the distributed arrays are examined. For each rås reference,

the compiler computes the RSD of index set to be accessed by each processor by

applying the subscript functions of the rhsto the local iteration set assigned to the

statement. Nonlocal data accesses are obtained by subtracting the RSD of local

index set from the resulting RSD. The RSD corresponding to the nonlocal accesses

will be retained only if it is not empty. For the boundary processors, the compiler

must compute the nonlocal index set for each group of processors. For the Jacobi

program'(Figure 4.4), the compiler computes the nonlocal indea seús for the three

different processor groups. The local iteration set of the group of interior processors,

Proc(2:3), is [l:time,1:25,2:99]. The local index set for B on processors proc(2:B) is

[1:100,1:25]. The nonlocal index set for each reference is shown in Figure 4.7. The

rås references B(i,j-1) and B(i,jf 1) access nonlocal locations [2:99,0] and [2:9g,26],
respectively. Both references are marked and their nonlocal index sets are stored.

Similar analysis produces the nonlocal index sets for the other two groups, Proc(l)

and Proc(4). The nonlocal index sets for both processors are l2:gg,26l and [2:9g,0],
respectively. For the rhs reference to A (i,j) in statement 52, the nonlocal index set

is empty because only local accesses occur.

4.2 'Program Optimization

The results of program analysis are used to improve parallelism and reduce commu-

nication overhead by detecting the opportunities for parallelism. Several advanced
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The index set accessed by B(ij-1) is [2:99,0:24]

The index set accessed by B(i-lj) is [1:g8,1:25]
The index set accessed by B(i+lj) is [B:100,1:2b]

The index set accessed by B(ij+l) is f2:gg,2:261

The nonlocal index set for B(ij-1) is [2:gg,0]

The nonlocal index set for B(i-lj) is I
The nonlocal index set for B(i+lj) is I
The nonlocal index set for B(ij+l) is [2:gg,26]

Figure 4.7: Example of Index Sets and Nonlocal Index Sets for 51 in Jacobi program
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optimizations have been developed for the

allelism in a pipeline computation. The

pipeline computations and communication

introduced in this section.

FORTRAN D compiler to exploit par-

next chapter details optimizations for

, so only the fundamental concepts are

Message Vectorizati'on can reduce the communication overhead due to inefficient

messaging. Consider the run-time resolution in Figure 4.8(b) for the program in
Figure a.8(a). The send and reca operations directly precede each reference causing

a nonlocal data access. This simple approach is inefficient because it generates

many small messages resulting in high communication overhead. The FORTRAN
D compiler applies message vectorization to combine seve¡al small messages into a
large message (see Figure +.8(c)). The compiler uses data dependence information
to combine small messages from inner loops into one large message that may be

sent from some outer loop.

The compiler determines the appropriate loop level (calle d commleue[) to insert
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{* Original program +} 
{+ Run-time Resolution *}

REAr A(100) RÐAL A(100)

PARAMETÐR (n$proc = 4) my$p - msproc7 {* 0...3 *}

DECOMPOSITION D(100) do i = 1, 9b

ALIGN X with D if (my$p .eq. ouner\A(i+2))) then

do i - 1, 95 send(A,(i+2), oune\A(i)))
A(i) = A(i+2) endif

enddo if (my$p .eq. owner!A(i))) then

(a) FORTRAN D Program reca(A(i+2), owne(A(i+2)))

A(i) = A(i+2)

endif

enddo

. (b) Run_Time Resolution

{* Message Vectorization *}

REAL A(27)

my$p - myproc) {* 0...3 *}

if (my$p .Ct. 0) send,(A(\:2), my$proc-1)

if (my$p .lt. 3) reco(A(26:27), my$proc*1)

ub$1 = min((my$p*1)*25,95) - (my$p*25)

doi=1,ub$l
A(i) = A(i+2)

enddo

(c) SPMD Node Program

Figure 4.8: Example of Run-time Resolution and Message Vectorization
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messages for nonlocal references. A loop-carried dependence's comrnlelelis defined

as the level of the dependence. A loop-independent dependence's commleuel is de-

fined as the level of the deepest loop common to both the source and sink of the

dependence. Each rås reference ,B with a nonempty nonlocal index set requires

that the cross-processor f.ow dependences with ,B as the sink be identified as a

loop-carried or loop-independent dependence. The deepe st commleael, L, of all

such dependences is selected. If the dependence is loop-carried, the compiler tags

-B as loop-carried at the header of the loop corresponding to the deepest coTnrn-

Ieuel' If the dependence is loop independent and there exists a loop at level .L*1

enclosing A, where .D is the comrnleael for the dependence, then .B is tagged at the

header of the loop at level I+1 as independent. .R itself is tagged as independent

at the statement containing it if none of the loops at levei .L+1 enclose it. A carried

tag at -t implies that nonlocal data accessed by ,B must be communicated between

iterations of the loop .L. An independent tag indicates that nonlocal data accessed

by ,R must be communicated at this point on each iteration of loop .L. The compiler

may also move the independent tag to any statement in loop .[ between the source

and sink of the dependence to combine messages from different references.

In the program of Figure 4.8(a), the rås reference A(i+2) has nonlocal data accesses.

The message for this reference is of type loop-independent and its commleael is 2,

so the compiler inserts a independent tag at the i loop because it is the next deeper

loop enclosing A(i+2). Recall the Jacobi program of Figure 4.4, the rås references

B(i'j-1) and B(i,jf 1) have nonempty nonlocal index sets. These references partic-

ipate in the cross-processor true dependences. The source of this dependence is

statement 52 (Figure 4.4). These dependences are carri,edat loop k. The compiler

inserts a carried tag at the header of the k loop to signify the associated ioop-carried
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dependences. In the code generation phase, the messages for the references will
generated immediately following the k loop.

4.3 Code Generation

Code generation uses information collected during program analysis and optimiza-

tion to generate the SPMD node program. Two phases are required: progro,m

partitioning and mess&ge generat'ion The steps in the program partitioning phase

can be fu¡ther divided into: data partitioning, Ioop bound, reduction, and. guard in-
troduction Figure 4.9 lists the SPMD code generated for the program in Figur e 4.4.

The FORITRAN D compiler partitions data by reducing the array bounds of A and

B so that each processor allocates storage only for local data. Then the compiler

reduces loop bounds so that each processor only executes iterations in the union of
local iteration sets of the lhs for each statement in the loop. In the final phase of
code generation, the compiler introduces guards (inserts "ifl' statements) to: (1)

handle the boundary conditions and (2) test the membership of a statement in the

local iteration set.

Message Generation is the second step of code generation. The compiler uses infor-
mation gathered during the analysis and optimization phases to generate messages.

Figure 4.10 iilustrates how the compiler inserts nonblockin g send,s and blocking
recus to.handle messages. Arrays A and B are assumed to be block-distributed.

Messages can be categorized as loop-independent and loop-carried,.
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RBAL A(100,25), B(100,0:26)

if (Pro"o¡ = 1) lb1 = ! else lb1 - 1

iÎ (P¡o"o¡ - 4) ubr - 24 else ub1 - 25

dok=1,time
if (P¡o"o¡ > 1) send(B(2:gg,I),Pt"jt)

if (P¡o"o¡ < 4) send(B(2:99,25),P,;s¡¿)

if (P¡,"¿ < 4) reca(B(2:9g,26),p,;s¡ù

if (Pr,""r > 1) rect(B(2:99,0),P¡"¡)

do j - lb1, ub1

doi=2,99
A(ij) = (B(ij_1) + B(i_i j) + B(i+1j) + B(ij+1))/4

enddo

enddo

do j = lb1, ub1

doi=2,99
B(ij) = A(ij)

enddo

enddo

enddo

Figure 4.9: The SPMD Code of Jacobi Program
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Loop-Independent Messages: The messages for loop-independent references are tagged

as: (1) Ioop headers where the compiler inserts code to send, and. recu primitives

preceding the loop headers or (2) indiaidual references where the compiler in-

serts se¿d and reca primitives in the body of the loop preceding the reference.

In Figure 4.10, the message for reference B(i+1) is a loop-independent mes-

sage. The compiler tags the message for this reference at the k level so the

communication primitives for this loop-independent message is inserted pre-

ceding the loop header. The compiler aiso introduces the guards for ail the

messages to ensure that the owner and the recipients execute send and recu,

respectively. Each message has an associated RSD that represents the data

sent on each iteration.

Loop-Camied Messages: The FORTRAN D compiler constructs an RSD for each

rås reference at the level of the loop carrying the dependence. The messages

for loop-canied dependences can be classified as: carried-all and carried,-part.

For carried-all messages, the iterations of L are executed by all processors.

The compiler inserts calls to send and rectr primitives inside the loop header

f.or L at the beginning of the loop body. In Figure 4.10, the messages for

A(i+1) is of type carried-all at the k loop, so communication is inserted at

the head of the loop body. For carried-part messages, the iterations of L arc

partitioned across processors. In this case, Ioop-carried messages represent

data synchronization. The compiler inserts calls to reca pteceding loop 
^L,

since they are executed before the local iterations of tr. In Figure 4.10, the

message for A(i-1) is of type carried-part at the i loop, so communication is

ins'erted before and after the i loop header.

When the generated code contains both independent and carried-part inessages at

the loop header, the compiler orde¡s the insertion of send, and recu púmitives rel-
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{* Example Computation *}

dok-l,M
doi=l,N

A(i) = B(i+l) {*commleuelis B *}

+ A(i+l) {*commleoelis 1*}
+ A(i-l) {*commteaetis 2 *}

enddo

enddo

(a) FORTRAN D Progra'.

{+ Communication Generation *}

send and reca for B(i+1)

dok=l,M
send and reca for A(i+l)
reca for A(i-1)

do i = 1,N/p

A(i) = B(i+l) + A(i+l) + A(i_l)

enddo

sentl for A(i-1)

enddo

(b) SPMD Program

Figure 4.r0: Example of Message Generation for Loop-Carried and Loop_

Independent Dependences
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ative to the loop header. The compiler first inserts the primitives for independent

messages; these are positioned further away from the header. The primitives for
loop-carried messages are subsequently inserted preceding the loop header. This
ordering avoids deadlock by allowing communication for independent messages to
take place in parallel, before communicating data corresponding to carried-part

messages.

Recall the program in Figure 4.4 where the messages for the rås references in Sl is

of type loop-carried at the k loop in the program. The boundary conditions require

the compiler introduce guards to generate the communication for different RSDs

for each rås reference. The RSDs for the reference B(i,j+l) at the k loop level are:

Proc(l) : [2:99,3:26]

Proc(2: 3) : [2:99,2:26]

Proc(4) : 12:99,2:25]

After subtracting the local index set from the above three RSDs, the compiler can

determine the nonlocal index sets for the processors in each group.

The nonlocal RSDs for Proc(1:3) : l2:gg,26)

Proc( ) : []

55

The nonlocal RSD 12:99,26] for each of processors 1-3 causes its immediate successor

to send data to it. To compute the data that must be sent, the compiler trans-

lates the local indices of the receiving processors to that of the sending processors,
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obtaining the section [2:9g,26-251 - [2:gg,1]. The message for reference B(i,jal) is

of type carried-all and is carried on loop k so the communication primitives are

inserted at the beginning of the loop body. Messages for B(i,j-l) are also computed

in the same way. The final result is shown in Figure 4.9.

One final aspect to consider is storage management. The FORTRAN D compiler

provides three diferent storage schemes to allocate storage for nonlocal array ref-

erences received from other processors. Oaerlaps, buffers, and hash tables [13] are

the three options. Ouerlaps are extensions of local arrays that contain adjacent

nonlocal data' They are suitable for program with high iocality of references. They

are permanent and specific to each array so may require more spac e. Buffers arc
applied in the following case where storage for nonlocal data must be reused., or the

nonlocal area is bounded in size but not near the local array section. This avoids

the contiguous nature of overlaps. Hash tables are used when the set of nonlocal

elements accessed is sparse. They provide a quick look-up mechanism for arbitrary

sets of nonlocal values.

To select an appropriate storage type for each nonlocal set, the compiler examines

the RSDs for the nonlocal set during message generation phase. Array declarations

in the generated code must be extended for nonlocal data if overlaps have been

seiected. If buffers are used, the new bufer declarations are inserted. AII nonlocal

array references in the program are modified according to their selected storage

types.

Ðt)
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4.4 Summary

Currently the FORTRAN D compiler performs message vectorization, collective

communication, fine-grained pipelining, and several other optimizations for block-

distributed a rays. Ongoing researches include environment support for automatic

data decompositions and static performance estimation [8]. This thesis no\¡/ turns

its attention to a detailed investigation at the compiler's optimization techniques.
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FORITRAN D Compiler

Optirnizations

The FORTRAN D compiler uses data decomposition specifications to translate

FORTRAN D programs into explicit message-passing SPMD programs to be exe-

cuted on. a MIMD distributed-memory machìne. The compiler's goal is to generate

a parallel program with low communication overhead and storage requirements.

There are several advanced compiler optimizations in the existing FORTRAN D

prototype compiler to accomplish this goal. Each optimization can be ciassified

functionally into one of the following groups: (1) reducing communication startup

costs, (2) hiding message copy and transmit time, (3) exploiting parallelism, or (4)

reducing storage. The following lists some compiler optimizations in each group

[13, 14]:

o Reducing Communication Overhead

- Message Vectorization
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- Message Coalescing

- Message Á.ggregation

- Collective Communication

o Hiding Communication Overhead

- Message Pipelining

- Vector Message Pipelining

- Ite¡ation Reordering

- Nonblocking Messages

o Exploiting Parallelism

- Partifioning Computation

- Reductions and Scans

- Dynamic Data Decomposition

- Pipelining Computation

o Reducing Storage

- Partitioning Data

- Message Blocking
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S.L Reducittg Communication Overhead

Reducing communication overhead is the main goal of most parallelizing compilers.

Communication overhead for each message in a parallel program is divided into
three parts: Tsturtt T"opy, ã,ß.d T¡,ansit. Tstart is the time to setup a message; that is

the startup time to send and receive messages. T"o* is the time to copy a message

in and out of the program address space. Tbansit is the time to transfer a message

between processors. Both T"ooo and Ttransit grow vyith the size of a message, but
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T"to,t ts treated as constant.

The optr'mizations described here seek to reduce T"u,t by combining or eliminating
messages. For most MIMD distributed-memory machines, the time to send the first
byte is always much higher than the time for each additional byte. For example, in
the Intel iPSC/860, the time for the first byte is approxim ately 240 times that of
subsequent bytes [14].

5.1.1 Message Vectorization

Message vectorization significantly reduces the number of messages. It uses the re-

sult of data dependence analysis to combine several messages into a singie message

containing a vector of elements. This requires the compiler comput e the commleuel

for each. cross-processor dependence to decide the outermost loop where element

messages can be legally combined. The compiler stores each vectorized nonlocal

access set at the loop level given by commleuel. Each vectorized nonlocal access set

in a FORTRAN D compiler is represented as a RSD. Recall from chapter 4 that the
code generation phase generates communication messages corresponding to these

nonlocal RSDs.

5.L.2 Message Coalescing

The compiler avoids communicating redundant data by applying message coalesc-

ing to vectorized nonlocal accesses. It compares RSDs corresponding to different

references on the same array and merges overlapping or contiguous RSDs. This
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ensures each data value is sent

C O M P ILER O P T IMIZ ATIONS

to a processor only once.
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Figure 5.1(a) is program has processors 1-4 own x(1:25), X(26:b0), x(b1:zb), and

X(76:100), respectively. The owner computes rule assigns ite¡ations [1:2b] of the
k loop are executed on processor 1, iterations [26:50] are executed on processor

2', [5I:75] are executed on processor 3, and [76:9a] are executed on processor 4.

Communication analysis shows that the references U(k+l)..., U(k+6) cause nonlo_

cal data accesses and they are not loop-carried true dependences (Figure 5.1(b)).
By applying message vectorization, the nonlocal RSDs for these references can be

vectorized outside the /loops, resulting in the RSDs [26:26]...[26:31]. The result of
message coalescing for these RSDs are [26:31]. The send, and rectr statements for
these RSDs are inserted preceding the / loop (see Figure b.2).

5.1-.3 Message Aggregation

After message vectorization and coalescing, rr¿essage aggregation is applied to the

resulting RSDs to ensure that only one message is sent to each processor. It locates

and aggregates all RSDs representing data being sent to the same processor. During
the code generation, all the RSDs aggregated for the same processor are copied into
a single buffer as one message. The receiving processor copies the received bufier to
the program address space. This optimization reduces messages but requires more

storage for buffering.

Consider the program in Figure 5.3(a) where the nonlocal references to Zp(j1-i,kr)
and ZQ(j1-1,kr) inside the j1 loop are not loop-carried true dependences. Commu-
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REAL U(100),X(100),y(1 00), z(1.oo)

PARAMETER (n$proc = 4)

DECOMPOSITTON D(1oo)

ALIGN U, X, Y, Z wirh D

DTSTRTBUTE D(BLOCK)

do I - 1, time

dok=1,$4
x(k) = F(z(k),y(k),u(k),...,u(k+6))

enddo

enddo

(a) FORTRÄN D program

when k=20
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k=21

k=22

k=23

k=24

k=25

nonÌocal access set: U(26)

nonlocal access set: U(2d),U(22)

nonlocal access ser: U(26),U(22),U(28)

nonlocal access set: U(26),U(22),U(28),U(29)

nonlocal access set: U(26),U(27),U(28),U(29),U(30)

nonlocal access set: U(26),U(22),U(28),U(29),U(30),U(31 
)

(b) The non¡ocal access set for rå.s references :U(k),U(klr)...,U(k+6)

Figure 5.1: Example of Message Vectorization and Message Coalescing (Livermore

7-Equation of State Fragment)[i4]
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{* Compiler Output *}

REAL U(31), X(25), Y (25), Z(25)

ub1 - 25

my$proc = nyproc)

if (my$proc.gt. 0)

if (my$proc .lt. 3)

if (my$proc .eq. 3)

dol=1,time
dok=1,ub1

x(k) =
enddo

enddo
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{* 0..3 *}

send(U(1 :6), my$proc-t)

recu(U(26:31 ), m$proc{t )

ubl =19

r'(z(k),Y(k),u(k),...,u(k+6))

Figure 5.2: Example of Message Yectorization and Coalescing (Compiter Output)

nication from these dependences is vectorized and coalesced outside the / loop. The
compiler determines after message vectorization and coalescing that these messages

are sent to the same processor so it aggregates them into a single message.

The same steps are applied to nonlocal references ZR(j2_1,k z),ZR(ir¡1,kr), Ze(jr_
1,kz), and Zq$2+1,k2) in the j2 loop. Their references cause loop-carried true de-

pendences so their nonlocal RSDs are vectorized and communication instructions
are inserted in loop / just after the header to allow values from previous iteration
to be feiched at the beginning of each new iteration. The compiler then applies

message coalescing and aggregation.

Finally, the loop-independent true dependences nonlocal references to ZA(j2-L,k2)
in the j2 loop are considered. Its communication can be vectorized and coalescing

at the level of loop / because it is the only loop common to the endpoints of the
dependence. The final message to communicate will be inserted in front of the



CHAPTER 5. FORTRAN D COMPILER OPTIMIZATIONS

loop k2. .The nonlocal access set for each rås reference and the compiler output are

shown in Figure 5.3(b) and Figure 5.4, respectively.

5.L.4 Collective Communication

Collectiae communication is another technique to reduce communication overhead.

Instead of generating individual messages, the compiler uses fast coilective commu-

nication routines, such as broadcast, all-to-all, or transpose in the node program.

The opportunities for applying collective communication routines can be recognized

by comparing the subscript expression of each distributed dimension in the rås with
the aligned dimension in the /ås reference. For example, loop-invariant (constant)

subscripts in distributed array dimensions requires broadcast. Examples that use

of collective communication routine are described and given in Section 5.J.2.

5.2 Hiding Communication Overhead

In this section we investigate optimizations to hide Ttransit - the message transit

time - by overlapping communication with computation. The same optimizations

use nonblocking messages to hide T"opy, the message copy time.

5.2.L Message Pipelining

Message.pipelining inserts a send for each nonlocal reference immediateiy after it is
defined and the corresponding reca is placed immediately before the value is to be
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REAL Zp(100,100), zQ(100,100), zM(100,100), s, T
REAL ZR(I00,1o0), zz(1oo,100), zA(100,100)

REAL ZU(100,100), zv(100,100), zB(100,100)

PARAMETER (n$proc = 4)

DECOMPOSITION D(1 oo,1oo)

ALIGN ZA, ZB, ZM, Zp, zq, zR, zu, zv, zz with D
DTSTRTBUTE D(BLOCK,:)

dol-1,time
' do kr = 2,99

dojl - 2,99

ZA(j1,kl ) = F I (Zp (:t_r,kl ),Ze0r_1,kl ), ZR(jl _1,kl ),...)
ZB(ir, \) = Fu(ZP (i1-1,kl ),ze(ir-r,kr ),...)

enddo

enddo

dok2-2,99
doj2-2,99

zu (jz, k2) = F 3 (ZZ (j2_7,k2),zz (j2+1,k2 ),zA (j2_1,k2 ),...)
zv (ir, kz) = F 4(ZR(i2-t,k2),zR(:2+ t,k2),2 

^(i2-1,k2 
),... )

enddo

enddo

dok3-2,99
doj3-2,99

ZR(fu , ks) = F5(zR(is,k3),zu(i3,ks))

zz(h ,h) = F6(ZZ(j3,ks),zv0s,ks))

enddo

enddo

enddo

(a) Fortran D program

nonlocaì access sers of ZP01-1,kr), Ze(jr_1,k1) | Zp(O,2:gg),Ze(O,2:99),not loop_carried dependence.

ZR(i2-L,k2), ZZ(i2-t,k2) : ZF,(O,Z:99),ZZ(0,2:99),loopcarried rure dependence.
ZR(i 2 + L,k2), zZ (iz+7,k2) | ZR(26,2 ßg), Z e(26,2 :99), Ioop-carried r're dependence.
Z A(j2-L k2) : Z A(O,2:99), loop-independent dependence.

(b) the nonlocal access set for each rås reference

Figure 5.3: Example of Message Aggregation (Livermore 1g-Explicit
Hydrodynamics)[14]
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{* Compiler Output *}

ÈE AL ZP (o :25,I0o), ZQ(o:zS,t 00), ZM(0:2s,1 00), S, T
REAL ZR(0: 2 6,7oo), ZZ (o :26,1 0o), ZA (0:2s,1 00)

REAL ZU(25,100), ZV(2s,100), zB(25,100)

m9P =mgProc1 * 0...3 *

if (m$p.lt. 3) send.(zp(2s,2:sq,zqes,2ss),zM(2s,2:99),m$p{1)
if (m$p.gr. 0) reca(Zp(o,2:e9),Ze(o,z:9s),ZM(0,2:s9),m$p.1)

dol=1,¿j¡¡¡¿
if (m$p . st. o) s en d.(ZR(l,2 :9e),ZZ (1,2:9e),m$p 1 )
if (m$p .tt. 3) s en d.(ZR(25,2:9o),ZZ(25,2 :99) ¡n$p* 1 )

if (m$p .lt. 3) r e cu(ZR(26,2 :sg),ZZ (26, 2 :99),m$p* 1 )
if (m$p . gt. o) r e c I(ZPu(O,2 :99),ZZ (O,2:99 ),m$p- 1 )
do kr = 2,99

dojl - 1, 25

zA(jt, k1 ) = ¡'/(Zp(j1_1,k1 ),2Q61_1,k1 ),2R61_1,kl),...)
zB(:', kt) = Fà(ZP (jr -1,kl ),ze(jl-r,kr ),...)

enddo

enddo

if (m$p .lt. 3) send.(ZÃ(25,2:99),m$p+l)

if (m$p .gt. O) reca(ZR(0,2:99),m$p1)

dok2=!,$9
doj2 - 1, 25

ZU (i r, kz) = F 3 (zZ (i2-7,k2),ZZ (: 2 + L,k2),2 A(i 2 - t,k2),...)
Zv (:r, kz) = F 4(ZP'(i2-t,k2),ZF"(:2+r,k2),2 A(:2-r,k2),...)

enddo

enddo

dok3-2,99
doj3 = 1,25

ZR(i., ks) = F5(2R63,k3),ZU(i3,k3))

zz(h, ks) = F6(ZZ(ia,ks),zv(i3,h))

enddo

enddo

enddo

Figure 5.4: Example of Message Aggregation (compiler output)
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used. This arrangement helps to hide Tbansit by using the computation performed

between the definition and use of the value. The disadvantage for this method is

to prevent optimizations such as message vectorization, causing high communica-

tion cost, but it may be applied for exploiting parallelism for pipelined computation.

5.2.2 Vector Message Pipelining

Vector message pipelining uses data dependence information to place vector send,

and reca statements so Tbansit is hidden. Since send, and reca statements interlock

they must be scheduled carefully to avoid idle cycles. For example, applying vec-

tor message pipelining to invoke aIl send statements before reca whenever several

messages are sent at the same time should improve performances.

consider Figure 5.5(a) where the values computed by sl are used in sJ. The
nonlocal references for S3 cause loop-independent true dependence from S1 to SB.

The same pattern exists from 52 to 54. After message vectorization, the compiler

generates the communication for 53 and 54 at the level of loop / because it is the

deepest loop enclosing these true dependences. The messages for SB and 54 are

m$1 and m$2(see Figure 5.6). Vector message pipelining places the send,for m$l
and m$2 after the j loops enclosing S1 and 52, respectively. The corresponding recu

statements are placed before the j loops enclosing sJ and s4.

The loop-carried true dependence values computed by statements SB (S4) are used

by S1 (S2). Message vectorization creates communication for S1 and 52 at the level

of / because it is the loop with the deepest loop-carried dependences. The messages
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RÐAL V(1oo0,1ooo)

PARAMETER (n$proc = l0)
DECOMPOSITION D(looo,rooo)

ALIGN V with D

DISTRIBUTE D(:,BLOCK)

dol=1,time
do j = 3, 999, 2 {* compute red points *}

doi-3,999,2
51: v(ij) = r(v(ij-l), v(i-lj), v(ij+r), v(i+lj))

enddo

enddo

cô.

doj=!,$93,2
doi=2,998,2

v(ij) = F(v(ij_l), v(i_1j), v(ij+l), v(i+lj))
enddo

enddo

do j = 2, 998, 2 {+ compute ó/acÈ points *}
doi=3,999,2

v(ij) = f'(v(ij_l), v(i_lj), v(jj+1), v(i+1j))
enddo

enddo

doj = 3,999,2

do i - 2,998,2

v(ij) = F(v(ij_l), v(i_lj), v(ij+l), v(i+1j))
enddo

enddo

enddo

(a) FORTR'IA'N D program

nonlocal access sets of sr:v(ij-t) : v(8:999:2,0),loopcarried true dependence.

SZ :V(i j { 1 ) : V (2 :998:2,1 01), loop-carried rrre dependence.

53 :V (i j{ 1 ) : V(3:999:2,1 0t), loop-independent rrue dependence.

Sa:V(i j-f ) : V(2:998:2,0),loop-independent true dependence.
. (b) notrlocal access sets for rås references,

Figure 5.5: Example of vecto¡ Message pipelining (Red-Btack SoR) [14]
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{* Compiler Output *}

REAL V(1000,0:101)

mY$P = mgproc) * 0...9 *

if (my$p .lt. 9) sezd(m$3,V(3:999:2,100),my$p{1)

. dol=1,time
if (my$p .gr. 0) sezd(m$4,V(2:998:2,1),my$p_t)

if (rny$p .gt. 0) recu(m$3,V(3:999:2,0),my$pl)

doj - 1,99, 2

doi=3,999,2
sl: v(ij) = r(v(ij_l), v(j_lj), v(ij+l), v(i+l j))

enddo

enddo

if (my$p .st. 0) sezd(m$l,V(3:999:2,1),my$p-1)

if (my$p .lt. 9) reco(m$4,V(2:998:2,101),mv$p*l)

doj = 2,100,2

doi-2,998,2
s2: v(ij) = F(v(ij_l), v(r_lj), v(ij+t), v(i+lj))

enddo

enddo

if (my$p .lr. 9) sezd(m$2,V(2:998:2,100),my$p*1)

if (my$p .lt. 9) reco(m$l,V(3:999:2,101),my$pf1)

doj = 2,100,2

doi=3,999,2
53: v(ij) = F(v(ij-r), v(i-lj), v(ij+t), v(i+lj))

enddo

enddo

if (my$p .lt. 9) sezd(m$3,V(3:999:2,r00),my$pf 1)

if (my$p .gt. 0) reco(m$2,V(2:998:2,1),my$p1)

doj = 3,999,2

doi=2,998,2
s4: v(ij) = ¡'(v(i,i-1), v(i-lj), v(ij+l), v(i+lj))

enddo

enddo

enddo

if (my$p .gt. 0) recz(m$3,V(3:999:2,0),my$pl)
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Figure 5.6: Example of Vector Message Pipelining (compiler output)
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for S1 and 52 are m$3 and m$4, respectively. Vector message pipelining places the

recu for 52 just before the j loop enclosing 52 by using computation of 51 to hide

Ttron"it.

Vector message pipelining puts the send for 51 after 53 and uses the computa-

tion of 54 to hide the T¿,on"¿¿ needed by S1. Matching send and recustatements for

message m$3 must be inserted outside the / loop. Figure 5.5(b) and Figure b.6 are

the nonlocal access sets and the compiler output of the original program, respec-

tively.

5.2.3 Iteration Reordering

Iteration reordering uses data dependence information to change the order of pro-

gram execution. It allows loop iterations accessing local data to be separated and

enclosed by a pair or send and recu statements thereby hidding Ttronsit.

Figure 5.7 illustrates iteration reordering. Communication analysis determines the

references B(j,i-1) and B(j,i*1) access nonlocal data. The RSDs corresponding

to the nonlocal accesses to array B are given by [2:99,0] and 12:gg,26] (see Fig-

ure 5.7(b)). The compiier identifies and separates the iterations that access non-

local data from iterations accessing only local data and generate a ioop nest. The

iocal iterations for the above example are given by l2:24,2:gg]. Figure b.g is the

compiler output of the original program.
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{* FORTRAN D program *}

REAL A(100,100), B(100,100)

PARAMETER (n$proc = 4)

DECOMPOSITION D(1oo,1oo)

ALIGN A,B WITH D

DTSTRIBUTE D(:,BLOCK)

dol=1,time
do j = 2,99

do i = 2,99

A(i j) =r(B(i j_r ),8(i-1 j),8(i+1 j),8 (i j+1 
) )

enddo

enddo

do j = 2,99

do i = 2,99

B(ij) = A(ij)
enddo

enddo

enddo

(a) FORTR.AN D program

nonlocal access sets of B(ij-i) : B(2:9g,0), loop-carried dependences.

B(ij+1) : B(2:99,26), loop-carried dependences.

(b) The nonlocal access sets of rå.s references

Figure 5.7: Example of Iteration Reordering
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{*Compiler Output *}

REAL A(100,2s), B(100,0:26)

my$p = myproc) {* 0..9 *}

do I = 1, time

if (my$p .gt. 0) send(B(2:99,1), my$p-1)

if (my$p .lt. a) sezd(B(2:99,2s), my$p+l)

{* perform locaì operations: onìy access local data +}

do j = 2,24

do i = 2,99

A(i j) =r(B(i j_1 ),8(i_1 j),8(i+1 j),8(i j+1))
enddo

enddo

if (my$p .lt. 3) recu(B(2:99,26), my$p+1)

if (my$p .st. 0) recz(B(2:99,0), my$p-l)

{* perform non-local operations: access nonl.ocal data *}
ào j = 7,25,24

do i = 2,99

A(i j) =r(B(i j_1),8(i_1 j),8(i+1 j),8(i j+1))
enddo

enddo

do j = 1,25

do i = !,99

B(ij) = A(i,j)
enddo

enddo

enddo

Figure 5.8: Bxample of Iteration Reordering (compiler output)
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5.2.4 Nonblocking Message

The FORTRAN D compiler employs blocking send and recu operatrons for message

passing' Sendblocks the calling processor until the data is copied from the program

address space into a system buffer. A recu bolcks calling processor until the data

has been placed into the program's address space.

Nonblocking messages permits overlapping computation and message copying. A

nonblocking send returns control immediately to the calling processor which per-

mits the sending processor to continue computing while data is being copied into
the system buffer. Similarly, a nonblocking reca returns control immediately to
the calling processor after posting a message destination. Therefore, the calling
processor can perform computation while receiving and copying messages. The

nonblocking recu may avoid the overhead of writing into the system bufer because

the message is copied directly at the posted address. However, this requires an

expensiv'e system call to block computation until the copy is completed.

Vector message pipelining and iteration reordering with blocking messages only

hides Ttransit because the processor must remain idle while copying the data. Non-

blocking message provides a mechanism to hide both Tbonrit and, T"oru but it re-

quires more systems calls. Therefore, this method should be used selectively.
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5.3 Exploiting Parallelism

The goal of parallelism optimizations is to reconfigure

and/or communication so the amount of computation

imized.

74

the patterns of computation

performed in parallel is min-

5.3.1 Partitioning Computation

The amount of parallelism extracted from a program depends on how efficiently the
compiler partitions the computation. The FORTRAN D compiler uses loop bound

reduction and guard introduction to achieve the partitioning.

Cross-processor dependences reduce parallelism because processors must remain

idle until their predecessors complete. These dependences correspond to the se-

quential components of the computation that step over processor boundaries. The

balance of this section describes several optimizations that extract parallelism in
the presence of cross-processor dependences.

5.3.2 Reductions and Scans

Some computations allow for parallelization using red,uction and, scanoperations in
spite of cross-processor dependences. Reductions are associative and commutative

operations that return a single result when applied to a collection of data. For

example, a product reduction will calculate and return the product of all elements

of an array. Scans are also associative and commutative operations that perform
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parallel-prefix operations. For example, a product scan would compute and return
the product of all the prefixes of an array. Reduction and scan operations must
be associative and commutative because the compiler may change the computation
order.

The FORTRAN D compiler uses dependence analysis to determine when to apply
reductions and scans. The compiler can parallelize reductions or scans that contain
cross-processor dependences by relaxing the owner computes rule and by providing

methods to combine partial results. The global results can be obtained by combin-

ing the partial results either using individual send, or recu calls or using broad,cast

or specialized collective communication routines such as global-sum0. The sec-

ond method can reduce communication overhead further for common reductions.

Figure 5.9 shows an example for parallelizing a sum reduction with a global-sum

collective communication routine.

Scans are also parallelized by reordering operations. Scans allow each processor

to compute its local values in parallel and communicate the partial results to all
other processors. The globat data is used to update local results. Figure 5.i0(b)
shows an example that computes a prefix sum using scan. The compiler output
(Figure 5.10(a)) uses the global-concøú communication routine to collect the partial
sums from each processor in S. The partial sums coliected from all the preceding

processors are combined locally and used to compute local prefix sums. The final
result is shown in Figure b.10(b).

tÐ
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{* FORTRAN D Program *}

REAL X(100), 2(100), Q

PARAMETER (n$proc - 4)

DECOMPOSITION D(100)

ALIGN X, Z with D

DISTRIBUTE D(block)

dol=1,time
e=0.0
do k = 1,100

Q=Q+z(k)*X(k)
enddo

enddo

{* Compiìe Output *}

REAL X(25), Z(25), Q
dol-1,time

Q-0.0
do k = 1,25

Q=Q+Z(k)*X(k)
enddo

Q = global-sum} {* sum reduction function *}
enddo

Figure 5.9: Bxampie of Reduction (Inner product) 
[14]

lo
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{* FORTRAN D Program *}

REAL X(1oo), Y(1oo)

PARAMETER (n$proc = 4)

DECOMPOSTTTON D(1oo)

ALIGN X, Y with D
dol=1,time

x(1) = Y(1)

do k - 2,100

x(k) = x(k_l)+ Y(k)

enddo

enddo

(a) FORTR.A.N D program

{* Compile Output +}

REAL X(25), Y(25), S(o:a)

my$p = mgproc) {* 0...3 *}

dol=1,¿i¡¡¡¿
S(my$p) = s.6

do k = 1,25

S(my$p)- S(my$p) + y(k)

enddo

g lo bal-concat(S)

x(1) = Y(i)
if (my$p .ne. 0) rhen

dok=0,my$p1
x(l)=x(1)+s(k)

enddo

endif

do k - 2,25

x(k) = x(k_t)+ y(k)

enddo

enddo

(b) Compiter Output

II

Figure 5.10: Example of Scan (Firsi Sum)
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5.3.3 Dynamic Data Decomposition

In certain cases, the owner computes rule partitions an otherwise parailel computa-

tion in a \¡¡ay that causes sequential execution . Dynamic data d,ecompositioncan be

used to temporarily change data ownership when this occurs. This localizes cross-

processor dependences and achieves the desired parallelism. The decomposition

method is only applicable when there are full dimensions of parallelism available in
the computation.

Figure 5.11(a) illustrates a computation waaefront that crosses a spatial dimension

in each phase. A fixed column or ror¡/ data distribution is not suitable to both

phases. The FORTRAN D compiler applies dynamic data decomposition to par-

allelize the sequential phase using collective communication routines to change the

array decomposition after each phase. After changing the data decomposition, the

computation wavefront in both phases are internalized and all the processors can

be executed in parallel without communication (see Figure 5.1i(b)).

5.3.4 Pipelining Computation

Pipelining can often be used to extract partial parallelism from computations that
contain cross-processor dependences. In parallel computations all processors may

execute concurrently and communicate data as necessary but a pipeline means a

processor can execute only after it receives results computed by its predecessor.

Pipelining allows processors to overlap their computations by sending the partial

results to their successors earlier. The degree of pipeline parallelism depends on

how soon each processor is able to start working after its predecessor begins. Fig-
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REAL A(100), B(100), x(1oo,1oo)

PARAMETER (n$proc = 4)

DECOMPOSITION D(100,100)

ALIGN X WITH D

DISTRIBUTE D(:,BLOCK)

dol=1,time
doj - 1, 100 {* phase 1: sweep along columns *}

doi=2,100
x(ij) =rr(x(i j),x(i_1 j),A(i),8(i))

enddo

enddo

do j = !, 196 {* phase 2: sweep along rows *}
doi=1,166

x(i j) =rz(x(i j),x(i j_1),A(i),8(i))

enddo

enddo

enddo

(a) FORTR.A.N D program

RE,A,L A(100), B(100), x(r00,25), xl(25,100)
EQUiVALENCE (X,Xl)
doI=1,time

do j - L, 25 {+ phase 1: sweep along columns *}
doi=2,100

x(i j) =F/(x(i j),x(i_1 j),A(i),8(i))
enddo

enddo

red.islríbuie-row-to-col(X) {*DynamicDataDecomposition*}
do j = 2, 100 {+ phase 2: sweep along rows *}

doi=1,25
x(ij) =r'z(x(i j),x(i j_1),A(i),8(i))

enddo

enddo

red.istribute-col-to-rou(X'!.) {* Dynamic Data Decomposition.*}
enddo

(b) Compiler Output
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Figure 5.11: Bxample of Dynamic Data Decomposition (ADI Integration) [13]
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P1

l..........-

II>litrrll
I

Figure b.12: Parallel and pipelined Computation

ure 5.12 illustrates time-space diagrams of pipelined and parallel computations.

The FORTRAN D compiler uses cross-processor loops to distinguish between pipelined
and fully parallel computation. The presence of any cross-processor loop in a loop
nest indicates that it is a pipelined computation. Cross processor loop causes com-

putation wavefronts to sweep across processor boundaries. The Fortran D compiler
uses an algorithm that considers all pairs of array references that cause loop-carried

true dependences. If the subscript expressions in an array's distributed dimension

are not identical all loop index variables belong to cross-processor loops.

The granularity of pipelined computation is determined by the amount of com-
putation enclosed by cross-processor loops. Under fine-grain pipelining all cross-

processor loops are rearranged as deeply as possible to minimi ze the amount of
computation' The resulting program would achieve the finest pipelining granular-

ity by generating messages needed by other processors in the shortest time. This
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{* FORTRAN D program *}

REAL ZA(100,100), zB(100,100), zR(100,100), QA
REAL ZU(100,100), zv(100,100), zz(100,100)

PARAMETER (n$proc = 4)

DECOMPOSITION D(1oo,1oo)

ALIGN ZA,ZB,ZP",ZU,ZV,ZZ WITH D

DISTRIBUTE D(:,BLOCK)

dol=1,time
do j - 2,99

do k = 2,99

QA =¡'1(ZA(kj+1),ZA(kj_1),zA(k+1 j),zA(k_1 j))
zA(kj) =Fe(ZA(k j),QA)

enddo

enddo

enddo
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S1:

S2:

Figure 5.13: Example of Pipelining Computation (Implicit Hydrodynamics)

results in high message overhead because a message is sent for each iteration ac-

cessing nonlocal data.

Coarse-grain pipelining increases the amount of computation (Q enclosed by cross-

processor loops by applying loop interchanges and strip-mining. Under coarse-grain

pipelining, communication can be reduced by increasing C but this will weaken

parallelism because processors must wait longer before starting computation.

The program segment in Figure 5.13 contains a loop-carried true dependence be-

tween sl and s2 due to the references zA(k,Ð and zA(k,j-l). The compiler deter-

mines the second dimension of ZA is distributed and subsequently compares the
subscripts j and j-l. The j loop is labeled as a cross-processor loop, because the
subscripts are unequal.
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{* Compiler Outpurl: Fine-graining pipelining *}
RE.A,L zA(100,0:26), ZB(100,25), ZR(100,2s), eA
REAL ZU(100,25), ZV (1oo,25), Zz(roo,25)
my$p - msproc) {* 0..3 *}

dol=1,¡i¡ns
if (my$p .st. o) send(ZA(0:99,1),my$p.l)

if (my$p .tL. 3) reca(ZL(0:99,26),my$p*t)
' dok=2,99

if (my$p .st. o) recu(ZA(k,o),my$p1)

do j = 1,25

q Ã = F 1 (z A (kj + 1 ), zA (k j _ 1 ),2 A (k+ r j),ZA (k_ 1 j ) )
zA(k j) =r'2(zA(k j),QA)

enddo

enddo

if (my$p .lt. 3) send(ZA(k,25),mv$p*l)

enddo

(a) Compiler Outputl

{x Compiler Output2: Course-graining pipelining *}
REAL ZA(100,0:26), ZB(100,2s), ZR(100,25), eA
REAL ZU(100,2s), zv (7oo,25), zz (too,25)
my$p = nzyproc) {* o..B *}

dol-1,time
if (my$p .gt. O) send.(ZA(0:99,1),my$p1)

if (my$p .lt. 3) recr(ZA(o:99,26),my$pft)

o ld< = 2,99, B {* Strip_rnining, B is the size of the strip_mining *}
if (my$p .sL. o) recu(Z\(kk:kk*B-r,o),my$pl)
do j = 1,25

do k = kk,kk+B

QA = Fr ( ZA (k j + 1 ), zA (k j_ 1 ),2 A (k+1 j),ZA (k_1 j ) )
zL(ij) =Fc(zA(ij),QA)

enddo

"'rool'uo"
if (my$p .tt. 3) s end,(Z A(kk:kkaB_l,25),mv$p+r )

enddo

(b) Compiler Output,2

Figure 5.14: Example of Pipelining computation (Implicit Hydrodynamics)
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Compiler-outputl in Figure 5.1a(a) illustrates fine-grain pipelining. The compiler

repositions the cross-processor loop j to the innermost position to maximize pipelin-

ing. Compiler-output2 in Figure 5.14(b) illustrates course-grain pipelining. It strip-
mines the k loop by a factor B, then interchanges the iterator loop kk outside the
j loop. The compiler vectorizes the communication for B iterations at the ì loop.

5.4 Reducirg Storage

Usually program optimizations require more temporary storage. Compile-time stor-

age optimization is fundamental to an efficient compiler, so partitioning data so that
each processor allocates memory only for its local data is useful. The FORTRAN
D compiler provides three types of temporary storage schemes for nonlocal data:

overlaps, bufers, and hash table. If insufficient storage is available, message block-

ing strip-mines loops by a block factor (B). Each vectorized message of size n is
then divided into n/B messages of size B. This reduces the buffer space required

by a factor of. n/B at the expense of additional messages.

5.5 Optimization Algorithm

Figure 5-15 provides a high level description of the overall FORTRAN D compiler

optimization algorithm. It describes how optimizations are organized in the FOR-
TRAN D compiler.
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partition data across processor

partition computation :using ouner compttes rule
detect and parallelize reductions and scans

compute cross-processor loops

for each loop nest tr do

if,L is fully paralìel (í.e., no cross-processor loops) then
vectorize, coalesce, and aggregate messages

select a¡d insert collective comÌnun-ications

if suftcient ?comp exists to hide Tçqps, T¡¡ans;¿ tlnen

apply vector message pipelìning

insert nonblocking messages

else if T'cornp can be profitably created and used then

reorder iterations

apply vector message pipelining

insert nonblocking rnessages

else insert blocking messages

endif

else {* must be pipelined computation *}
select efficient granularity for pipeìining

apply strip.mining and loop interchange

vectorize a,nd coalesce, a^nd aggregate messages

insert blocking messages

endif

if insu-fficient storage is available then

apply storage optimizations

endif

enddo

Figure 5.15: Compiler Optimization Algorithm
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5.6 Program Transformations

The FORIRAN D compiler also applies program transformations to expose or en-

hance parallelism in the source code. Program transformations are useful for shared-

memory parallelizing compilers. They use dependence information to determine
theft legality and prof'tability. To determine the legality of each transformation in
distributed-memory compilers is the same for the shared-memory compilers. Their
profitability criteria expose and enhance parallelism in the source code and reduce

the communication overhead in the SPMD code. Bach of the following must be
considered.

Loop Distri'bution: separates the statements in a single loop into multiple loops

with identical lower bounds, upper bounds, and steps. Figure 5.16(b) shows

the result of applying loop distribution to the loop in Figure 5.16(a).

Loop Fusion: combines multiple loops with same lower bounds, upper bounds, and

steps into a single loop. Figure 5.17(b) shows the fusion result of the loops

in Figure 5.17(a).

Loop Interchange: changes the traversal order of adjacent loop headers. Loop in-
terchange can be used to increase the chance of applying message aggregation

in FORTRAN D pïogram. Figure 5.1g(b) is the resurt after apprying roop

interchange to the loops in Figure 5.ig(a).

Strip Mining:, increases the step size of an existing loop and adds an additional
inner loop. This method can break large messages into small packets in the
SPMD codes. Figure 5.19(b) is the result after applying strip mining to the
loops in Figure 5.19(a).
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fori=ltoNdo
51:

S2:

endfor

(a) Before Loop Distribution

fori=ltoNdo
51:

endfor

fori=ltoNdo
S2:

endfor

(b) After Loop Distribution

Figure 5.16: Loop Distribution

fori=ltoNdo
S1:

endfor

fori=ltoNdo
Qr.

endfor

(a) Before Loop Fusion

fori=ltoNdo
51:

eo.oa.

endfor

(b) After Loop Fusion

Figure 5.17: Loop Fusion
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fori=ltoNdo
forj - 1 to N do

endfor

endfor

(a) Before Loop Interchange

forj = 1 to N do

fori-ltoNdo

endfor

endfor

(b) After Loop fnterchange

Figure 5.18: Loop Interchange
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SEND(B(r:n))

RECEIVE(B(t:n))

fori=ltondo
S1: =B(i)...

endfor

(a) Before Strip Mining

fori=ltoN,bdo
sEND(B(i:i+b_1))

RECEIVE(B(i:i+b-1))

for j = i to i*b-l do

il: =B(j)...
endfor

endfor

(b) After Srrip Mining

Figure b.ig: Strip Mining

Testing the legality of these optimizations is identical to that of shared-memory

compilers.

5.7 Summary

The existing FOFÙTRAN D compiler prototype parallelizes reductions, pipelined
computations' and pedorms message vectorization, coalescing, and aggregation for
block-distributed arrays. The remaining optimizations are still under implementa-
tion and their effectiveness are under evaluation for larger and more varied programs
on different MIMD architectures, including networks of workstations.
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Chapter 6

Corrrpiler Opt irnization for
Parallel Computation

Chapter 5 discusses the (proposed) compiler optimizations in the FORTRAN D

compiler. All these optimizations yield significant improvement by reducing com-

munication overhead. During the optimization process, the compiler determines

the communication between any two processors and restructures the code to reduce

message traffic between them. This chapter describes a new compiler optimization
that reduces message traffic by anaiyzing communication patterns among all the
processors.

Dependences constrain parallel execution of programs. The dependence structure
of a computation can be modeled using a directed acyciic graph (DAG) where

the nodes represent tasks and edges represent precedence constraints. Depen-

dence edges due to flow dependences define message-passing synchronization in
a distributed-memory machine model of parallel execution. If a dependence edge
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PIP2P3

1....._

L"'-.'1""'.

rj;
I

After Elimlnetlon

P# Èocessor lD

Figure 6.1: Eliminating Messages for Pipelined Computation with Transitive-Edge
Dependences

in the DAG is transitive there is an alternative path composed of edges connecting
the source and sink of that dependence.

The startup cost of a message transmission is much higher than the actual data
transfer cost' Thus, if several messages can be grouped and sent as a single mes-

sage communication overhead can be significantly reduced. Message transfers fo¡
dependences corresponding to transitive edges can be rerouted, without iosing par-
allelism, by appending the data to the messages on the alternative path that coveïs
the transitive edge (see Figure 6.1).

This chapter describes a ne\ry compiler-optimization technique for pipelined com-
putation. The method identifies the dependences corresponding to transitive edges

in loops with constant dependences and introduces a scheme for assigning storage
for nonlocal data corresponding to the transitive edges in the node program. This
technique can be applied to single and double nested loops. The dependences dis-
cussed here are limited to flow dependences.
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6.1- fteration Space Dependence Graph

Parallel execution of loop iterations is constrained by dependences. The inter-
iteration dependences of a loop can be formally represented by an lteration Space

Dependence Graph (ISDG). An ISDG is a directed acyclic graph G(v,E) where v
and E are the set of nodes and the set of edges, respectiveiy. Each node in the graph

represents one iteration in the loop. An edge (V¿ ,V¡) in E signifies the existence

of a dependence from the iteration denoted by V, to the iteration denoted by V¡.
The dependence distance of each edge is given by subtracting the iteration number

of the source of a dependence from that of its sink. An ISDG is classified as regular

if the existence of a dependence with distance d¿ from a node implies the existence

of such a dependence from each node that has an adjacent point at a distance d;

in the iteration space. A regular loop is an iteration loop with a regular ISDG.

These concepts are illustrated by the program in Figure 6.2(a). In this FORTRAN
D program' array X is cyclically distributed among 4 processors. Figure 6.2(b)

shows the distribution pattern of array X on each processor after compilation. The

ISDG of the regular loop is shown in Figure 6.2(c). In this ISDG, each node repre-

sents one loop iteration. Any edge drawn between two nodes signifies the existence

of a dependence. The flow dependence from iteration i to iteration i+l manifests

itself as an edge from node i to node i+l in the ISDG. The same applies for the
dependence from iteration i to iteration i+2. Figure 6.3 shows the SpMD code

generated using the conventional optimization techniques described in chapter 5.

The compiler generates a pair of send and recu messages for each dependence in
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the SPMD code.

These dependence edges correspond to synchronization events of parallel computa-

tion which in a MIMD distributed-memory machines is achieved through message-

passing. In general, the sparser the ISDG, the smaller the communication ove¡head

is in a parallel computation. Any of the transitive edges may be removed from
the ISDG by rerouting the corresponding message through its alternative path. A
dependence-edge from iteration i to iteration fr is a transitive edge if and only if :

1. there exists a sequence of iterations i1, iz,...,ij such that j>0 and there is a
dependence from i^ to i**1 for 1( m < j, and,

2. there is a dependence from iteration i to iteration i1 and from iteration zr. to

iteration fr.

Elimination of transitive-edge dependences reduces message traffic in the parallel

execution of a loop. In the next section, we present a technique to identify the
dependences corresponding to a transitive edge and eliminate the message due to
this edge by re-routing it through its alternative path.

6.2 rdentifying Tþansitive-Edge Dependences

To identify transitive-edge dependences for a regular loop, the first step is to buitd
the ISDG of the loop. When an ISDG is regular, its transitive edges can be identi-

fied by analyzing a subgraph of the ISDG. This subgraph, called R_subgraph, is the
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REAL X(100)

PARÀMETER (n$proc = 4) {* the number of processors *}
DECOMPOSITION D(1oo)

,A,LIGN X WITH D

DTSTRTBUTE D(CYCLIC)

do k= 3, 100

x(k) = x(k_1)+x(k_2)

enddo

(a) FORTR.A,N D Program

(b) The Distribution Pattern of .A.rray X on Each processor

Figure 6.2: Example of ISDG

(c) ISDG of the loop
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{* compiler output *}

REAL X(25), tempt, remp2

my$proc= myprocfl {* 0...3 : the processor ID of each processor *}

{* next : the succeedingprocessor whose pID is ((my$proc{l) mod n$proc) *}
{* nnext : the processor succeeding next whose pID is ((my$proc{2) mod n$proc) *}
{* prev : the precedingprocessor whose pID is ((my$proc-1*n$proc) mod n$proc) *}
{* pprev : the processor preceding prev whose pID is ((my$proc-2}n$proc) mod n$proc) *J

lbl=1
ubl=2s

. if (my$pro" < 2) {* boundary condition *}
tbl -2
send(X(1),nexr)

send(X(1),nnexr)

endif

do k= lþ1, ¿61

recv(templ,prev)

recv(temp2,pprev)

X(k)=remplfremp2

send(X(k),nexr)

send(X(k),rurexr)

enddo

Figure 6.3: SPMD Program
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induced subgraph of an ISDG. The size of the subgraph is independent of the size

of the iteration space but depends on the values of dependence distances [12]. The

next section describes how to build the R-subgraph and identifies transitive-edges

in this subgraph for a non-nested or a double-nested loop.

6.2.L Regular Non-Nested Loops

For a regular nonnested loop the lower bound of the loop control variable is de-

noted lowerl and without loss of generality there are m dependences. Let D = {
dt, dz,"', d^ ) be the set of dependence distances and drnar: MAX(D) be the
largest value of the set D. A dependence distance is given subtracting the iteration
number of a dependence's source from its sink so any d¿ (1 < i < m) is positive.

The vertex set (Vr) and edge set (Ð) of the R-subgraph for this non-nested loop is
defined as follows:

Vl: 1 lowerl,, Iowerl*I ,...,, drnax*lowerl j
Et: {(i,j) I iff there exists a d¡ such that j:i1¿u,

for every lowerl < i < j 1 (drnar]lowerl)j

The R-subgraph of the ISDG in Figure 6.2(c) is given in Figure 6.a(a). In the pro-

gram of Figure 6.2(a), the lower bound of the loop control variable is 3 and there

are two flow dependences in this loop: the set of dependence distances (D) is {1,2}
and dmar is 2. The V¡ and El of the R_subgraph are:
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D= {1,2}

dmas =2

l2
(a) R-subgraph

3 <- - - Sequential Execution Order

Dependence distance 2 is transitive-edge dependence.

The alternative palh for 2 is (i,1)
(b) Tlansitive-Edge Dependence and the .A.lternative path

Figure 6.4: Example of R-subgraph and Transitive-Edge Dependences

Vl : 1 3,, 4,3+2 j
Ð : 1 (3,4), (4,5), (3,5) )

Determining the transitive edges in an ISDG only requires the determination of the
transitive edges at node lowerl [12]. The algorithm to identify the transitive edges,

a variant of Depth First search (DFS), is given in Figure 6.b and 6.6.

This algorithm identifies the transitive-edge dependences from the node lower| of
the R-subgraph. Let Vtt be the set of all vertices reachable from the node lowerl of
the R-subgraph and G(vz,Ez) be the induced subgraph of R_subgraph on Vz. The

definition of. Vtt implies that for any node i, there exists a path from node lowerl
to node i in G. The algorithm given in Figure 6.5 is appiied to find a spanning tree



CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATION|T

DO i :- 1 to N {* N is the number of vertex set *}
node[i].visited := faìse;

END

ForwardSet - {};
count := O;

v:=1;
node[v].parent - v;

WHILE (count I N) DO

BEGIN

lF node[v].visired = false THEN

BEGIN

coÌ¡-nt := count +1;

node[v].visited := trr.e;

Let S be the set of u¡visited nodes in the adjacency list of v
IF ISI# OTHEN

BEGIN

for all but the smallest u in S push (v,u)

onto the stack in decreasing SEO (Sequential Execution Order) of u.
vl=Yi
set v to the smallest element of S;

node[v].parent, - vr;

END

END

ELSE IF srack is not empry THEN

REPEAT

pop(stack(u,v));

IF node[v].visited = true THEN

ForwardSet = Forwa¡dSet * {(u,")};
ELSE

node[v].parent = u;

UNTIL node[v].visitedis false or stack is empty;
END;

Figure 6.5: Sequential Bxecution order Depth First Search Algorithm
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FOR each (u,v) in ForwardSet DO

BEGIN

push( (node[v].parenr,v) 
) ;

v/ = nods[y].pa'.r¿'

WHILE (vr I u) DO

BEGIN

push(node[vr.pa.rent,vr) ;

vr - node[vr].parent;

END

PRINT("Replaced path for forward edge",(u ,v ),,' is");
REPEAT

pop (stack(nodeþ{.parent,vr) 
) ;

PRINT( (node[v/.parenr,vr)) ;

UNTIL stack is empry;

ÐND

Figure 6.6: Sequential Execution Order Depth First Search Algorithm(Cont.)

(T(Yrr,Errr)) of G, rooted at the node lowerl. An edge (i,j) of G(vz,Ez) can be

classified as: (1) tree edge, if it belongs to T, (2) forward edge, if it does not belong

to T and there exists a path from i to j in T, or (3) cross edge, if it does not belong

to T and there is no path from i to j in T.

A forward edge of G(Vtt,Ert) with respect to a DFS spanning tree is a transitive
edge of R-subgraph [12]. The alternative path for each transitive edge dependence

can be found by using the alternative path for each forward edge in the spanning

tree T. Figure 6.4(b) shows the transitive-edge and its alternative path found in the
R-subgra.ph of Figure 6.4(a). Dependence distance 2 is identified as a transitive-

edge dependence and its alternative path is (1,i).
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6.2.2 Regular Double-Nested Loops

This section considers the double-nested loops that have a rectangular iteration
space where the lower and upper bound of the inner loop are independent of the

iteration number of the outer loop. Unlike simple loops, the presence of a mix
of negative and positive values in the second components of the dependence vec-

tors increases the complexity required to construct the R-subgraph for rectanguiar

loops' This section describes the construction of the R-subgraph for double nested

loop.

The lower bounds of the loop control variable s are lower-l and lowerL. The de-

pendence distances of two-dimensional loops are vectors. The first component of a
dependence vector corresponds to the outer loop and the second to the inner. The
component corresponding to the inner loop of a dependence distance vector can be

negative; that is, the iteration number corresponding to the source of a dependence

can be higher than the sink of the dependence. In any case, the first non zero com-

ponent of a dependence distance vector is positive. Here we denote a dependence

distance.vector d¿ by its component (d;1, d¿2). Let D: {dr dz, ...,d_} be the set

of dependence distance vectors in a rectangular iteration space. Depending on the
sign of the second components, D can be classified as non-negative, non-positive,

or mixed' The following examples illustrate a method to construct the R-subgraph

for each of these cases.

Case One: the second contponent of alt the depend,ence aectors a,re non-negati,ae.

Let drnari: MAX({ d¿r | (drt,d¿z) e to D}), dmarT: MAX({ d¿z r (d¿1,d¿2)

€ to D )), and d¿z ) 0, for all (d¿1,d¿2) e to D. The R_subgraph (R(Vr, Er)) of
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the double-nested loop is defined by the rectangular iteration space bounded by
(lowerl, Iower2) and (dmaxl* Iowerj, dmax2llower|).

vt:{(lowerl,lower7),(Iower|,Iowerp*r),...,(lowerl,,dmar2*lowerp),...,(dmarl

j lowerl, dmax2 * louer2)j

Er : {((i1,it),(ir,ir)) I if there exists a dependence vector d¡
: (it,jt) 4 dr, for every (lowerl, lower2) I (ir, jr) < (ir, ¡r¡
dmar2 j lower2) j

These concepts are illustrated using the example in Figure 6.7. Figure 6.2(a) The

lower bounds of loop control variables (lowerl, Iower\) are (J,4) (Figure 6.7(a)).
The dependence distance set D for this roop is {(1,1),(1,2),(2,g)}. The R_subgraph

for this loop is given in Figure 6.7(b). The vertices of this graph are labeled accord.-

ing to their sequential execution order and it is sufficient to determine the transitive
edges at node (lowerl, lower2). The algorithm in Figure 6.b is used to identify the
transitive edges and the corresponding alternative path. Figure 6.2(c) illustrates
the transitive edges in the R-subgraph of Figure 6.7(b). Dependence distance vec-

tor (2,3) is identified as a transitive edge dependence and its alternative path is
((1,1),(1,2)).

Case Two: the second component of aII the depend,ence uectors is non-positiue.

Let dmaxl: MAX({ d¿r | (d¿r,d;r) € to D i), dmarp: MAX(i abs(d¿2) r (d¿1,d;2)

e to Di) and d¿2 ( 0, for all (d¿1,d¿2) e to D. The R-subgraph (R( Vr, Ð)) of the
double-nested loop can be defined by the rectangular iteration space bounded by
(Iowerl ,Iower?) and (dmørj* Iowerj, dm,ar2*lowerp).

in D such that (i2,j2)

1 (dmarl ! lowerl,
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A( 100,100),8(100,100)

Parameter (n$proc = 100)

Decomposition D(100,100)

Align A,B wirh D

Distribute D (CYCLIC,BLOCK)

doi=3,100
doj - 4 ,100

A(ij) = B(i_rj-l)
B(ij) = B(i_1j_2) + A(i_2j_3)

end

end

(a) FORTR.A'N D Prosram

Execulion Order

D = (1,1), (1,2), (2,3)l

d mrl =2
d wr2 =3

Dependenæ d¡stance vector (2,3) is transitiveedge dependence.

The alternative palh for (2,31 is ((1,1),(1,2))

(c) Tlansitive-Edge Dependence and the á.lternative path

(b)

D Program

R-subgraph

Figure 6.7: Case One Illustrated
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Vl:1 (Iowerl,lower7),(lowerl,lowerp+ 1),. ..,(lowerl,d,rnatp* lowerp),...,(dmarl
t louerl, dmar? -f lower7)j

E/: {((ir,it),(ir,ir)) I iffthere exists a dependence vector d¡ in D such that (jr,iz)
: (ir,jr) + d¡, for every (lowerl, lower2) S (ir, jr) , 1ir, jr) < (dmax| ! lowerl,
dmar? * Iouer?) j

Figure 6.8 illustrates these concepts. In program of Figure 6.8(a), the lower bounds

of loop control variables (lower1, lowerT) are (3,1). The dependence distance set

D for this loop is {(1,-1),(1,-2),(2,-g)}. The R-subgraph for this loop is given in
Figure 6'8(b). The ve¡tices of this graph are numbe¡ed according to their sequen-

tiai execution order and it is sufficient to determine the transitive edges at node

(lowerl,lower2ldmar2). The aigorithm in Figure 6.5 is used to identify the tran-
sitive edges and the corresponding alternative paths. Figure 6.S(c) illustrates the
transitive edges in the R-subgraph of Figure 6.8(b). Dependence distance vector
(2,-3) is identified as a transitive-edge dependence and its alternative path is ((1,-
2),(1,-1 )).

Case Three : the second component of the d,epend,ence uectors consists of a ntir of
positiae and negatiae ualues. Let dmatl: MAX({ d¿r | (d;r,d¿r) € to D}) )pnxo,r
: MAX(MAX({ d¿z I (d;r,d¿r) eto D}),0 ),pmin: MIN(MIN({ d,, I (d¿1,d;2)

€ to D]), 0 ) In other words, pnTaî, is the largest positive value and. pminis the
smallest negative value.

The R-subgraph, R( Vr, Ð) of the double-nested ioop can be defined by the rect-

angular iteration space bounded by (IowerI, Iowerp) and, (dmarj * lowerl) prnu,r,
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A(100,100),8(100,1oo)

Parameter (n$proc = 100)

Decomposition D(100,100)

Align A,B with D

Distribute D(BLOCK,CYCLIC)

doi-3,100
doj = 1,100

A(ii) = B(i-lj+2)
B(ij) = B(j-1j+l) + A(i_2j+3)

end

FORTR,.A.N
2

D Program

a Sequential Execution Order

Dependence distance vedor (2,-3) is tansitive€dge dependence.

The altemative path for (2,-3) is ((1,-2),(1,-1))

(c) Tlansitive.Edge Dependence and the Alternative path

end

(a)

@

D = (1,-2),(1,-1),(2,-3))

dñax7 =2

(b) R-subgraph

Figure 6.8: Case Two Illustrated
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* abs(pmin) * lower|) where lowerl and lowerT are the iower bounds of the outer
and inner loops, respectively.

Yt - { (Iowerl,lowerp),(lowerl,lowerg + I), ...,(lowerl, prnar * abs(pmin) I
Iower2),, ...,(dmarl ! Iowerl, prnoÆ * abs(pmin) + tower2)j

Ð: {((it,it),(ir,ir)) I iffthere exists a dependence vector d¡ in D such that (ir,ir)
: (ir,jr) + dr, for every (lowerl, lower2) ( (ir, jr), (ir, jr) < (dmarl ! lowerl,
pn"Lo,r * abs(prnin) + Iower7) \

This case is illustrated in Figure 6.9. In the program of Figure 6.g(a), the lower
bounds of the loop control variables (lowerl,,lower2) are (3,2). The dependence set

D for this loop is {(1,1),(1 ,-J),(2,-2)}. The R-subgraph for this loop is illustrated
in Figure 6.9(b)' The vertices of this subgraph is labeled according to their sequen-

tial execution order and it is sufficient to identify transitive edges at node (Iowerl,
Iower?*abs(pmin)). The algorithm in Figure 6.5 is used to identify the transitive
edges and the corresponding alternative paths. Figure 6.g(c) illustrates the transi-
tive edges in the R-subgraph of Figure 6.9(b). Dependence distance vector (2,-z)
is identified as a transitive-edge dependence and its alternative path is ((1,-3),(1,i)).

6.3 fmplementation on the FORTRAN D Com_

piler

The compiler identifies the transitive edges in the program analysis phase. Rerout-
ing message corresponding to a transitive edge could be accomplished either by
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A(100,i00),8(100,1 o0)

Parameter (n$proc = teQ)

Decomposition D(100,100)

AIìgn A,B with D
Distribute D (cycììc,cyclic)

doi=3,100
doj=2,97

A(ij) = B(i_1'j_1)

B(ij) = B(i_1'j+3) + A(i_2,j+2)
end

end

(a) FORTRAN D Program

Execution Order

D = (r,1),(1,.3),(2,_2)l

úux1 =2

Pwr =1

þtin = -3

(b) R-subgraph

Dependence distance vector (2,-2) is Íansitive.edge dependence.

The altemative path for (2,-2) is ((1,-3)(1,t))
(c) Thansitive.Edge Dependence aud the Alternative path

Figure 6.9: Case Three Illustrated
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changing the communication analysis algorithm or by means of source to source

transformation of the loop. Both the schemes allocate storage for rerouted message

in the intermediate processors and rely on "message aggregation" optimization to
combine the rerouted message with another message. This section details of the
methodology.

6.3.1- ' Modifying Communication Analysis

During the communication analysis phase the compiler generates IN and OUT
sets of a reference for each processor pair. The set IN¿ of a reference is defined

as the indices of nonlocal data accessed by processor i and owned by processor 7.

Similarly, OUT;, of a reference is defined as indices of the data owned by processor

i and needed by processor j. These definitions imply rN¡ and ouT¡; are equal.

Let m¿¡ be a message to be rerouted from processor È to processor / and i1, i2,...,i^
be the intermediate processors. The OUT¿¡ due to the reference is replaced by
the following sets OUT¡;, T-OUT¡r;2, T_OUTi2i3t...t T_OUT;_¡, where T_OUTs

are the our sets for the rerouted data. similarly, IN¡¡ is replaced by IN¡;-,...,
T-IN;z;r,T-IN;r¡. During the code optimization phase temporary buffers for the
rerouted. messages are allocated and the messages are combined with others during
the message aggregation optimi zatjon.



CHAPTER 6. COMPILER OPTIMIZATION FOR PARALLEL COMPUTATIONIOT

for i - ...

A(i) = "'+ A(i-d¡)a...

endfo¡

for i = ...

Er(i) = A(i-dl)
E2(i) = El(i-d2)

E"-r(i) = E,-z(i-d,-r)
A(i) = ...+En-l(i-dn)+...

endfor

6.4

Figure 6.10: Source code transformation for A(i-di)

Program Tlansformat ion

To incorporate this scheme the aigorithms for communication analysis should be

modified. An alternative is to introduce a source to source transformation after
the program analysis phase. This approach alleviates the communication analysis

phase from the additional work required for rerouting. This could be accomplished

by a program transformation that uses distributed arrays for buffering rerouted

messages and additional assignments for rerouting messages. Let d; : dl * dz *
"' + d,o be a transitive dependence and the corresponding reference be A(i-d¿).

The program transformation allocates buffer space by declaring Er, E,,...,8",_r
as arrays with size and dist¡ibution identical to that of A. The reference A(i-d;) is

replaced by a sequence of assignment statements shown in Figure 6.10.

Recall the ISDG of Figure 6.2(c). The dependence distance 2 is identified as a
transitive-edge dependence so it can be replaced by an alternative path (1,1). Fig-

ure 6.11(a) illustrates the source code modification of the program shown in Fig-
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REAL X(loo), El(ioo)
PARAMETER (n$proc = 4)

DECOMPOSITION D(1oo)

ALIGN X, El WITH D

DTSTRIBUTE D(CYCLTC)

E1(2) = X(t)
do k- 3, 100

El(k) = x(k-l)
x(k) = x(k_l)+Er(k_1)

enddo

(a) Fortran D Program After code Tlansformation for the program in Figure 6.2(a)

@--=@-@
(b) ISDG of the Loop in (a)

Figure 6.11: Example of Source Code Transformation for Nonnested Loop

ure 6.2(a). Array E1 is used to store the message to be rerouted. The size and

distribution of Er are identical to that of array A. The ISDG of the modified pro-
gram is shown in Figure 6.11(b). The edges for transitive-edge dependences have

been removed from this ISDG. Figure 6.12 gives the SPMD code generated for the
modified code.

This thesis focuses on the array dimensions with cyclic data distribution. For
block-distributed arrays' the transitive-edge dependences may not cause transi-
tive interprocessor communication because the source and sink of the dependence

ut" 
"*".rrted in the same processor or across two adjacent processors. Consider

the example in Figure 6.13. Assume that A is block-distributed among 4 proces-

sors. Dependence distance 4 is a transitive-edge dependence and its alternate path
is (2,2). Because of the block distribution, the messages for loop-carried depen-

dences 2 permits fewer messages to be aggregated at commlevel i so they are sent
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{* compiling result *}

REAL X(25), E1 (2s), remp

{* next : the succeeding processor whose pID is ((my$proc}l) mod n$proc) *}
{* prev : the preceding processor whose PID is ((my$proc-1*n$proc) mod n$proc) *}
my$proc = myprocQ

lbl -1
ub1=25

if (my$proc < 2) lbl = 2 {* bor:¡rdary condition *}
if my$proc-0 send(X(1 ),nexr)
if my$proc=1

recv(E1 (1),prev)

send(X(1 ),81 (1 ),next)
endif

' do k= lbl, ub1

recv(E1 (k), temp, prev)

X(k)=81 (k)+temp

send(X(k),E1 (k), next)

enddo

Figure 6.12: Compiler Output



CHAPTER 6, COMPILER OPTIMIZATION FOR PARALLEL COMPUTATIONIIO

RE.A,L A(1oo),...

DECOMPOSTTION D(1oo)

ALIGN A with D

for i = ...

A(i) = "'+ A(i-2)+.{(i-¿)+.. .

".*;;

Figure 6.13: Example of Fortran D program Segment

to their immediate successors. For block-distributed arrays, the transitive-edge

dependences may not cause transitive interprocessor communication because the

source and sink iterations of the dependence are executed in the same processor or

across two adjacent processors. To appty the optimization effectively for a regular

nonnested loop, the number of processors must be greater than the maximum of

the dependence distances. If the number of processors is less than the maximum

of the dependence distances, then the transitive-edge dependences may not cause

communication. In Figure 6.13, if A is distributed cycliciy among two processors,

then the source and the sink of the transitive-edge dependence are executed in the

same processor. In this case, interprocessor communication is not required.

This phase is identical for regular double-nested loops and non-nested loops, ex-

cept each transitive-edge dependence d¡ is a dependence vector with two compo-

nents (d;r,d¿z) and the arra]¡ A which causes the transitive-edge dependence is a
2-dimensio¡ral amay. L,et d¿ : dr * dz * ... * d,. be a transitive dependence and

the corresponding reference be A(i-d;1,j-d¿r). The program transformation allocates

buffer space by declarin8 Er, Ez, " ., Er-l as arrays with size and distribution iden-
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for i = ...

. forj='.'

A(ii) =

""*.;'
endfor

for i - ...

for j - ...

El (i'j) = A(i-d¡1i-d12)

Ez(ij).= Er (i-d2r j-d22)

Ð"-r (ij) - E,-2(i-d1._r¡r j-d1,_r¡z)

A.(ij) = "'*En-r (i-d"ri-d,2)+. . .

endfor

Figure 6.14: Source Code Transformation for A(i-dtl,i_di2)

tical to that of A. The reference A(i-drr,j-d;z) is replaced by a sequence of assignment

statements shown in Figure 6.14.

Recall that in Figure 6.7(c) the dependence distance vector (2,8) is identified as a

transitive edge dependence and its alternative path is ((1,1),(1,2)). Figure 6.15 is

the source-code modification of the program in Figure 6.2(a). In Figure 6.15 we

define one more array E1 with the same size and data distribution as array A and

change the source code as described above. After this transformation, the transitive

edges in the original ISDG disappear and the number of edges in the new ISDG

is reduced. Figure 6.16 and 6.17 are the source modifications for Figure 6.S(a)

and Figure 6.9(a), respectively. They all applied the same steps illustrated in Fig-

ure 6.15. Each example demonstrates the different cases of the second component

of dependence distance vectors.

arrayAny in the above examples is cyclically distributed at least across one di-
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A(100,100),8(100,100), Er (100,100)

Pa¡ameter (n$proc = 100)

Decomposition D(100,100)

Align A,B,E1 with D

Distribute D(CYCLIC,BLOCK)

ù(2,2) = A(1,1)

doi-3,100
doj = 4,100

El(ii)= A(i-li-1)
A(ij) = B(i_1j_1)

B(ij) = B(i_1j_2) + Er(i_1j_2)

end

end

Figure 6.15: code Transformation for the program in case one

mension. If an array is (BLOCK,BLOCK) distributed, this optimizationwould not

be applicable. Similar to one dimensional array with BLOCK distribution, if an

array is (BLOCK'BLOCK) distributed, the source and sink iterations of a transi-

tive dependence are executed by the same processoï, except fo¡ the iterations that
access the boundary elements of the data space aligned to a processor. When a
two dimensional array is distributed across processors they are configured in two

dimensions. In other words, if the total number of processors, m*n, is configured

as an m*n grid. To apply this optimization to (CYCLIC,CYCLIC) dìstribution,

the valuè of m and z should be greater than the largest absolute value of the cor-

responding components of the dependence distance vectors. This guarantees that
iterations corresponding to the source and sink of any dependence are executed

on two different processors. For cases 1 and 2, if the array is (BLocK,cycLIC)
or (CYCLIC,BLOCK) distributed, the iargest value of the dependence distance

vector among the absolute value of the dependence distance vector components
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A(100,100),8(100,100), El (100,100)

Pa¡ameter (n$proc = lee)
Decomposition D(100,100)

Aìign A,B,E1 with D

Distribute D(BLOCK,CYCLIC)

E1(2,2)= .A,(1,4)

doi=3,100
doj - 1,100

E1(i j)= A(i_1j+2)

A(ii) = B(i-li+2)
B(ij)= B(j-1j+1) + E1(i-1j+r)

end

end

Figure 6.16: code Transformation for the program in case Two

corresponding to the cyclical distributed dimension should be less than the dimen-

sionality. of the processor grid in that dimension. The same conditions applies to
(*,CYCLIC) and (*,BLOCK) distributions too. (BLOCK,*) and (*,BLOCK) are

special cases of (BLOCK,BLOCK) distribution. For case 3, this optimization can

only be applied to (CYCLIC,CYCLIC) distribution.

In all the three examples, the array A and B were given a diferent data distribution.
However, in each case, when given at least one dimension with cyclic distribution,
this algorithm reduces the number of messages caused by transitive-edges.
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A(100,100),8(100,100), Ð1 (100,100)

Pa¡ameter (n$proc = 100)

Decomposition D(i00,100)

Align A,B,E1 with D

Distribute D (CYCLIC,CYCLIC)

Er (2,5)= A(1,4)

doi-3,100
doj = 2,97

El(ij)= A(i-i'j-i)
A(ij) = B(i-1j_l)

B(ij) = B(i-1j+3) + El(i-1,j+B)

end

end

Figure 6-17: code Transformation for the Program in case Three

6.5 Analytical Evaluation

This section presents an analytical evaluation of the proposed optimization . In
general, the cost of a message transfer is dependent on the interconnection and

the routing schemes employed in addition to the communication volume. Since

startup costs outweigh other costs and communication volume is sparse, only a

simple model for communication overhead is required. Recall the communication

overhead is divided into three components: T"¿o,¡ - time required to setup the send

and reca instructions, T"ops - time required to copy a message from program address

space to the system buffer space) ar,d T¡ron"¿¿ - time required to transmit a message

through the physical medium.

analysis the alternate path has exactly one intermediate node.

P3 be the source, the intermediate, and the sink processors of

To simplify

Let P1, P2,

the

and
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the message to be rerouted. Let T"o*ru¿" be the computation time in p2 before

it begins sending the combined message. Since a processor sends/receives mes-

sages sequentially and T.o^ou¿" is less than ?"¿o,¿, the time elapsed from the time
P1 begins to send the first message to the time P3 received both the messages is

3(T"to,t*T"opa*Tton"it).Wiih the optimization, only two messages are exchanged

but the time required to copy or transmit a message is doubled because the message

size is doubled. The total time elapsed from the first message sent by p1 to the time
P3 receives the combined message is2T"¿o,¿! 4T*oo+4Tt,on"it*T"o*put".Hence, this
optimization would reduce the communication overhead if (T*oo¡Tt,on"it*T"o^p,tu)

1 Tr¡o,¡.When the number of intermediate nodes increases, the left hand side of
inequality would increase linearly and there is a threshold beyond which this opti-
mization is not feasible.

6.6 Conclusions

We have presented an efficient technique for rerouting the messages for transitive-
edge dependences with loops having constant dependence vectors. This method

reduces the number of messages by analyzing communication pattern among all
the processors in a pipelined computation, which is different from some traditional
compiler optimizations that focus on identifying the communication between any

two processors. This technique can be implemented as a phase before commu-

nication optimization of the FORTRAN D compiler. Then all messages for the
transitive dependences will be combined to the messages on the alternative path
after the compiler applies message aggregation optimization.
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Conclusions

Programming on parallel computers is always considered as a tedious job. program-

mers are required to have some knowledge of the underlying machine architectures.

Scientists are attempting to develop a machine-independent programming environ-

ment' FORTRAN D is one of these languages. In order to increase the reusability

of the existing conventional software, the research group of FORTRAN D enhanced

FORTRAN with a rich set of data decompositions. The FORTRAN D compiler is

designed to generate data-parallel programs which can be efficiently executed on

the nodes of a distributed-memory machine. To improve the run-time performance

reducing communication overhead in the compiler output is a major goal of the
FORTRAN D compiler.

This thesis presented a method for reducing communication overhead in the com-

piler output of a parallelizing compiler. This method is presented in the framewo¡k

of FORTRAN D programming environment. It reduces the communication mes-

sages by analyzing the dependence structure of the source program. First, it char-
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acterizes the dependence structure of the FORTRAN D program into a iteration

space dependence graph (ISDG), then by analyzing the ISDG this method identifies

the transitive-edge dependences which can be removed later from the dependence

structure. Second, by performing a source-to-source transformation to the source

program the corresponding messages for the transitive edges are efficiently rerouted

in the compiler output. After the transformation, the transitive-edge dependences

identified in the first step do not exist in the dependence structure of the trans-

formed program.

This method reduces the number of messages by analyzing communication pat-

tern among all the processors in a parallel computation which is different from

some traditional compiler optimizations that only focus on identifying communi-

cation between any two processors. Since the dependence analysis is included in
the FORTRAN D programming environment, this method can be incorporated as

a phase after the dependence analysis and before communication optimization in
ihe FORTRAN D compiler. Finally, all the messages for the routed transitive-edge

dependences can be combined after the compiler applies message aggregation opti-

mization.

The thesis focuses on identifying the transitive edges of the ISDGs of single loops

and double-nested loops with constant dependence vectors. This optimization pro-

vides an efficient way to reduce the number of messages. The analytical evaluation

of the proposed scheme demonstrated that this scheme would reduce the commu-

nication.overhead in the compiler output. The algorithm for identifying transitive-

edge dependences can also be applied to shared-memory multiprocessors. In a

shared-memory programming environment, this algorithm can be used to remove
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redundant synchronization instructions in the compiler output. Those redundant

synchronization instructions are transitive-edge dependences in the ISDG(s). This

algorithm can be incorporated in a parallelizing compiler for shared-memory ma-

chines to reduce the synchronizing computation in the compiler output.

7.L Future Work

The following are some areas for continuing the research:

Etperimental Eaaluation and Validation on a Distributed,-Memory Machine : toin'-
plement this optimization and incorporate it into a parallelizing compiler; this

can be done on a distributed-memory machine, such as IBM sp2.

Ertending the Optirnizati,on to higher Di,mensions : to extend the the research of

identifying the transitive edges of ISDGs of higher dimensions.

Reducing storage Buffer for Rerouted Messages : to reduce the

rary buffers which are used to store the rerouted messages

edge dependences in the transformed program.

size of the tempo-

for the transitive-
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