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CMOS circuits implementing analog neural networks with built-in Hebbian and contrastive

Hebbian leaming have been designed, fabricated and tested. These circuits employ capacitive

synaptic weight storage. The Hebbian leaming circuit was incorporated into a 600 synapse,

28 000 transistor neural network to evaluate its performance in a medium-sized system. A dis-

cussion of CMOS synaptic circuits motivated by invenebrate biology explores the relationship

between certain aspects of leaming in the marine mollusc Aplysia and Hebbian leaming.

Because adaptive circuits, such as neural networks with built-in leaming, can compensate for

imperfections in the components from which they are constructed, it is possible to build this

type of system using simple, silicon area-efficient analog circuits. Typical analog computa-

tional elements, such as multipliers and adders, are far more compact than their digital counter-

parts: consequently analog neural networks have tremendous computational potential. A 3¡tm

CMOS lcmz implementation of the circuits described in this work has a throughput of more

than 6 billion analog multiplications per second, at a conservative lMHz operating frequency.
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Glossany

AI: A¡úficial inælligence

algorithmic computation:
Computation in which a procedure consisting of a sequence of sæps (the algorithm) is followed
to transform a set of inpuß into a set of oufputs.

analog circuits:
Circuits in which quantities are represented as continuous-valued voltages, currents, etc.

ANlttr: A¡tificiat neu¡al network.

artificial intelligence:
Artificial systems (computers) that perform operations normally associated with biological intel-
ligence.

artificial neural network:
A computer designed to perform computation in a manner similar to that of a biological neu¡al
network (biological brain).

back-propagation learning:
A supervised leaming technique for feed-forward ANNs.

biological neural network:
The brain of a human or lower animal.

bipolar signals:
Signals which can take on both positive and negative values.

BNN: Biological neural network.

BF: Back-propagation.

chip: Inægraædcircuit.

CFI[-: Contrastive Hebbian leaming.

CMOS: A common IC fabrication technology -- Complementary Metal Oxide Semiconductor.

contrastive flebbian learning:
A supervised leaming technique for fully-connected (Hopfield-type) ANNs.

digital circuits:
Circuits in which quantities are represented as discrete-valued voltages, cuûents, etc.

EEPROM:
Electrically Erasable Programmable Read Only Memory. Typically used in ANNs for synaptic
weight storage.

ÍIebbian Iearning:
An ANN leaming technique, fypically used for unsupervised learning applications.

flopfield ANN:
An ANN architecture with synaptic connections between each pair of neurons (ie. fully con-
nected).

IISFICÐ:
Circuit-level simulation program.
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lC: Inægrated circuit

Manhattan CFIX,:

Contrastive Hebbian learning variant, in which txed-size weight change steps are used.

neuron:
Basic information processing unit in biological and artificial neural networks.

non-algorithmic computation :

Computation which does noÍ. follow an algorithm.

SPICE: Circuit-level simulation progam.

supervised learning:
ANN nefwork weight Eaining scheme in which the nefwork is presented with pairs of inputs
and outputs from a set of raining data which it is supposed to learn to associate.

synapse:
Connection point between neurons. The synaptic weight determines the strength of ttre synap-
tic connecf.ion.

synaptic weight:
The synaptic weight determines the snength of the synaptic connection befween two neurons.

transconductance circuit:
A circuit with voltage inputs and crurent outputs.

unipolar signals:
Signals which can only take on positive values.

unsupervised learning:
ANN network weight training scheme in which the network is presented with data from which
it is supposed to extact common features, discover regularity, pafterns, etc.

XNOR: Exclusive NOR

XOR: Exclusive OR
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Digital computation systems have evolved over the past few decades into the ubiquitous,

inexpensive electronic computers of the 1990's. These machines perform a wide variety of

tasks, such as arithmetic and sorting, exceptionally well: far better in fact than their human

creators. Conversely, there are a large number of t¿sks which humans perform with ease

which digital computers perform rather poorly. Some of the most important examples are

found in the field of artificial intelligence (AI), including 3-D scene interpretation and uncon-

strained speech recognition. What is the firndamental difference between digital electronic and

biological computation systems which makes them suitable for such disparate computational

tasks? One of the most fundamental differences is system architecture. Electronic computers

perform digital computations, typically in a small number of complex processing units, whereas

biological computers (brains) consist of a very large number of simple processing units which

perform analog computations in parallel. The basic premise of anificial neural network (AÞ{\D

research is that when we can identify and synthesize the feafures of biological computers

which enable them to perform tasks such as 3-D scene inteqpretation, then we can construct

anif,cial systems which can perform the same operations.

A general definition of artificial neural networks is given by Kohonen: "Artificial neural

networks are massively parallel interconnected networks of simple (usualty adaptive) elements

and their hierarchical organizations, which are intended to interact with objects of the real

world in the same way as biological nervous systems do" [Kohonen-l]. There is a fundamen-

tal difference in the way that conventional digital computers and biological neural networks

(BNNs) process information: in a digital computer, information is manipulated according to an

algorithm, or sequence of instructions, whereas BNNs perform non-algorithmic computation, in

which computation does not involve executing a sequence of instructions [Kohonen-l]. Thus
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conventional computers are suited to applications whose solutions may be cast into the form of

an algorithm. Interestingly, for such an application, a simple digital computer can out-perfbrm

the human brain, a BNN with vastþ greater computational power.

î"î T'he Faülx]re of AlgoritRamic Al
BNNs excel at the operation of pattem matching and completion, which is thought to be

the basis of much of the non-algorithmic information processing in the brain. Pattem matching

and completion of the type found in BNNs is extremely difficult to implement efficiently as an

algorithm. An interesting case, which exemplif,es this diff,culty, arose during the development

of AI expert systems, which attempt to capture the knowledge of a human expert as a complex

database of rules. Although experl system research has been moderately successful, their per-

formance frequently resembles that of an "expert novice", rather than a true expert. The

difference is that a novice tends to apply rules that he has been taught, while a true expert uses

the non-algorithmic pattem matching at which the brain excels, analyzing a new scenario by

comparing (matching) it with situations which were encountered previously. As a result of this

difference between expert systems and human experts, the initially encouraging performance of

an expert system can not easily be improved to the level of a human expert, simply by adding

more rules to its database. Significantly, when human experts were interviewed by expert sys-

tems developers, and were asked to elucidate the rules by which they made their decisions,

more often than not they gave examples, raiher than rules. The reason for this is simple: their

expert knowledge is stored as a complex collection of examples, rather than as a set of rules.

TAH CAT
Figure 1,.X. Example of a dfficult character recognition problem.

Outside the expert systems field, AI is replete with problems which are simple for

humans to solve, and are very difficult for conventional computers to solve. An example

which demonsirates a few of the typical difficulties is illustrated in Fig 1.1 [Rumelhart-1].

When presented with these six symbols, the human brain will readily recognize ihe sentence
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fragment "TIIE CAT", eventhough the "H" and the "Ao'are represented by the same sym-

bol in the two words. This deceptively simple recognition process is actually quite complex:

the individual line segments are grouped into symbols, the symbols into words, and lastty

semantic knowledge of English is used to complete the decoding of the sentence fragment.

Unforh¡nately, this type of multi-level processing is exceptionally difficult to implement in a

conventional computer system: there is a fundament¿l difficutty in attacking a problem at a

number of different levels Qine, symbol, word, and English semantic in this example) simul-

taneously to arrive at a solution. Clearly even this simple recognition problem cannot be

solved without looking at the problem from a number of different levels of abstraction at one

time.

This example illustrates another of the fundamental weaknesses of conventional comput-

ers: they suffer from the "worm's eye view" syndrome, where the minutiae of a problem are

analyzed, but there is no good, general ovewiew of the entire problem. Again, it appears that

this deficiency and other related ones are very fundamental, resulting from the basic structure,

or architecture, of digital computers.

The failure of expert and other AI systems to achieve performance approaching that of a

BNN using algorithmic information processing resulted in a renewed interest in ANN research

in the 1980's. Artiûcial neural network research is an attempt to solve these problems by

designing systems structured in the same way as the brain, an organ which can solve these

types of problems with ease. Non-algorithmic pattem matching and completion is the basic

operation that ANNs implement. Thus we have an existence proof (the biological brain) that

this type of problem can be solved efficientiy: what remains is to extract the salient features of
the biological brain, and find a way to implement these features in an artificial system.

4,2 Neuna[ Netwonk IVfodels

The complexity of biological neural systems has resulted in the development over the

years of a higttly disparate collection of artificial neural systems, each of which models certain

aspects of biological neural anatomy, and ignores many others. There is currently no con-

sensus as to which characteristics of neural anatomy are impoffant for computation, and which

are merely the result of design restrictions imposed on the biological system by the basic

chemistry and physics of biological systems.
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Figure 1.2 Portion of a artificial neural network.

Despite considerable variation, most current research employs the architecture of Fig. 1.2.

The circles represent processing units, or nodes (rougtrly analogous to neurons), and the lines

between processing units represent some form of communication path, or link, between the

nodes (rougtrly analogous to axons, synapses and dendrites).

Prevailing neural network models impose several restrictions on this general architecture:

typically the processing node stores a single activation state a¡(r), and performs some sort of

weighted summation aggregation operation, using the current ouþut values of connected nodes

to update its own state. Typical equations goveming the operation of an ANN are

[Rumelhart-1]:

Oraii = g@¡(t), t¡(t)) h(o¡(t), wi¡)

cunent output of node i

current value at node i

strength of node j's influence on node I

external teaching input for node i

(1. 1)

(1.2)

where

o¡ = f (a;):

A¡1

wij:

t¡:

a ; (t +t) =, 
l,Ë.-*,, ", 

(t), û ì e ))



Chapter 1 - Introduction

"f 
(.), ,F ('): activation functions

g(.), h(.): leaming functions

Leaming in these networks involves modifying the weights w¡¡ (1.2), and problem solving is

accomplished by running the network through a number of time-steps until activation states

stop changing from one time-step to the next (1.1). This neural network model omits a great

many biological details: in a sense it is the minimal implementation of an artificial neural sys-

tem which can still be used to perform arbitrary computation. However, it is not clear that the

omission of biological details from this model improves the fficíency of the resulting ANN

system, either in terms of processing speed or circuit size.

This interesting question of how closely biological neurons should be modeled for max-

imum system efficiency is one of the issues which was examined as part of this research pro-

gram. Below, a general outline of the approach we have taken to ANN implementation using

CMOS VLSI circuits is presented, followed by a discussion of other researchers' work which

is most relevant to this investigation.

1"3 CMOS VLSÏ and ,{rtíficiatr Neural Networks

CMOS VLSI has been used extensively in the implementation of neural networks; the

high integration density of modem MOS technologies is very attractive for the construction of
large neural systems. Most MOS neural network implementations consist predominantly of
digital circuitry, and are designed using the same methods that are used for conventional com-

puters. Digital implementations of ANNs were recently reviewed by Atlas and Suzuki [Atlas].

Digital systems have many desirable properties -- high accuracy, reliability, repeatability, etc.

However, a substantial price is paid in terms of circuit complexity, and consequently silicon

area, for these features.

In this work we present analog circuits for neural networks which are far more compact

than their digital counterparts. Analog implementations of ANNs have been reported by

several authors, for example lGrai Mead, Raffel, Schwartz-l, Satyanarayana, Hollis, Murray,

sage, shoemaker, Holler, card-l, Furman, Alspector-l, schwartz-2, Clark, Arima], and a

review of analog neural networks up to 1988 was included in [Card-l].

By using simple analog circuits, we can build systems with tremendous computational

power: for example, a neural network chip that can perform more than 6 billion analog
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multiplications per second (Icmz die, 3¡tm CMOS, lMHz operation). Unfortgnately, this

computational potential is difficult io exploit, because the architecture of an analog VLSI sys-

tem must be tolerant of imperfections in the components from which it is constructed -- for

example, two identical multipliers may have outputs that differ by 20Vo or more for the same

input values. Digital systems design relies upon identical components having identical

behavior: thus most digital system architecfures cannot be implemented using analog com-

ponents.

Neural networks with ieaming capability, as well as other adaptive networks, are suitable

candidates for implementation using simpte, higtrly imperfect analog components. If designed

properly, these systems can "leam" to take component variations into account. Examples of
this property of neural networks, as it relates to our work, are discussed in subsequent

chapters.

The chapters which follow describe analog circuits for a variety of ANN applications.

Despite their differences, several important design characteristics are shared by all circuits.

Firstly, all circuits are constructed f¡om compact low-accuracy analog computational com-

ponents. As discussed above, this makes it possible to put tremendous computational power in

a single integrated circuit; in addition, low-accuracy components are biologicalty plausible.

The second coÍrmon characteristic is that synaptic weights are stored as electric charge on a

capacitor in all ANN implementations developed as part of this work. Capacitive weight

storage is a silicon-area efficient way to store an analog weight value, and can be implemented

in the IC fabrication processes available to our university. Lastly, our circuits all incorporate

in situ leaming; that is, weight adaptation circuitry is buitt into each synaptic circuit. In sia
leaming provides a way for an ANN system to compensaie for variations in the low-accuracy

analog components from which it is constructed, as well as avoiding the problems of long

leaming times and weight downloading, which plague many ANN systems with off-chip leam-

ing. It is anticipated that the present synaptic circuits will find applications in a wide variety

of ANNs, operating in either supervised [Hopf,eld, Sivilotti, Peterson-2, Hinton-1, Rumelhart-

2, Jacobs, Hinton-31 or unsupervised [Linsker, Kohonen-l, Hinton-2] learning modes. The sui-

tability of our circuits for these applications is discussed in chapter 3 (unsupervised) and

chapter 5 (supervised). Below, a survey of other electronic ANN implementation research

efforts, which incorporate some of the features of this work, is presented.
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The previous studies which are most relevant to our discussion are [Schwartz-l,

Satyanarayana, Ca¡d-l, Furman, Alspctor-l, Schwartz-Z, CIark, Arima, Ismail-l, Ismail-21.

Papers [Schwartz-l, Satyanarayana, Card-l, Furman, Schwartz-Z, Arima] represent synaptic

weights as charge on capacitors, as opposed to digitai storage of weights [Raffel, Hollis,

Alspector-l1, or EEPROM weights [sage, shoemaker, Holler]. papers [card-l, Furman,

Alspector-l, Schwartz-2, Clark, Arimal report circuits which incorporate in sin leaming; that

is, the synapses contain circuitry which performs local computations of weight updates. A

variety of analog ANN circuit designs, as well as general system-level considerations are dis-

cussed in [Ismail-1, Ismail-2].

Schwartz et al [Schwartz-l] describe an ANN synaptic circuit in which the weight is

represented as the difference between the voltages stored on two capacitors. Synaptic weights

are modified by transferring charge from one capacitor to the other using charge injection, and

thus the total charge on the two capacitors remains constanl The authors do not address the

issue of leaming (as opposed to setting weight values), since their interest was in evaluating

their weight storage circuit, and not in constructing a complete ANN system.

In [Satyanarayana], a reconf,gurable feed-forward ANN implementation consisting of
1024 distributed-neuron synapses with analog data processing is described. Capacitive weight

storage is employed, with a weight resolution of LVo of the maximum weight value. Analog

weight resolution is limited by charge injection and leakage at the storage node, and analog

weights are periodically refreshed from an off-chip digital weight memory.

Furman et al have developed an analog CMOS implementation of the back propagation

algorithm [Furman], where each IC consists of 48 input and 10 output neurons, and a fully

connected synaptic matrix. Again, weights are stored as electric charge on capacitors, and in

situ leaming is performed by a three analog muitiplier implementation of the generali zed delta

rule. Chip test data is not reported.

The paper [Schwartz-2], discusses a special-purpose VLSI ANN circuit, which can leam

to approximate a mathematical function of a smali number of variables from discrete data

points. A simple one-layer linear network with capacitive weight storage is used in this spe-

cialized application.

Clark [Clark] describes a CMOS cunent mode ANN with in situHebbian leaming which

is intended for a self-organizing network, such as the Kammen-Yuille orientation selective net-

work [Kammen]. Leaming in the circuit is based on a linear switched capacitor integrator
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circuit using an operational amplifier.

In [Alspector-1], a 32 neuron 496 bi-directional synapse ANN which implements both

Boltzmam and mean field networks is described. Weights are stored as 5 bit digital values,

and in situ leaming circuitry is incorporated into each synapse. Aside from weight storage,

chip operation is analog. 32 r¡ncorrelated pseudo-random noise sources are used to implement

the simulated annealing process of the stochastic Boitzmann machine; the signals are summed

along with the weighted post-synaptic signals at the input to each neuron. The authors report

simulations comparing the performance of back propagation, Boltzmann and mean field archi-

tectures. They concluded that these three approaches have approximately the same recognition

accuracy in partity and replication problems. They also studied the effect of the limited

dynamic range of their 5 bit digital weights, and concluded that in most cases the use of 5 bit

weights had no effect on performance. An exception was the mean field architecture, in which

performance degradation occurred for large replication problems. This is consistent with our

simulations, in which we found that small weight increments are essential for stable leaming in

mean field networks [R. Schneider]. No IC test data comparing chip performance to simulation

results is reported in [Alspector-1].

Arima et ai [Arima] describe a combined analog and digital IC implementation of a

Boltzmann ANN, with 125 neurons and 10000 synapses. Analog capacitive weight storage is

used, together with binary neuron activations. The product between binary neuron outputs and

analog weights is implemented with a six transistor circuit. The network is organized into a

fully connected BolTzmann ANN with s¡'rnmetrical weights (W¡¡ = W¡). Network weight

adaptation is achieved with a modified version of Boltzmann leaming -- the learning algorithm

is implemented with a weight modifier circuit, consisting of two charge-pump circuits con-

nected in series: the weight modifier circuit is designed to change weights in increments of

approximately l)Vo of their fulI range value. The authors report training the IC to memorize

15 panems (25 input, 100 output, no hidden units). Our simulations of mean field ANNs, a

similar neural network architecfure, and discussions in [Schwartz-l] indicate that a weight

change of far less than 10Vo (perhaps 100 to 1000 times smaller) is required for stable weight

convergence. Also, Arima et al's circuit has poor matching between the two phases of the

Boltzmann leaming algorithm, which our simulations indicate will degrade network perfor-

mance. Perhaps significantly, no test results are reported in which hidden units are employed,

as this is the situation in which these problems will become evident.
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The brief descriptions of related work presented above illustrates the tremendous variety

of approaches to electronic ANN implementation which are currently under investigation. The

remainder of this document presents four CMOS ANN implementations. Chapter 2 discusses a

CMOS synaptic circuit with Hebbian leaming and unipolar weights. In chapter 3, a CMOS

ANN implementation with bipolar Hebbian slnapses is described and IC test results are

reported. Circuits motivated by synaptic function of the marine mollusc Aplysia, which model

habituation, sensitization and classical conditioning, appear in chapter 4. Lastly, chapter 5

descrihs our work in developing a fully analog mean field ANN.
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2"1, {ntnoducfion

In the development of the circuits described in this chapter, the primary goal was silicon-

area efficiency. To achieve this goal, very simple circuits are used to implement arithmetic

operations, such as multiplication and summation. Although many cuffent ANN architectures

require more accurate computation than these simple circuits provide, in the long term it is

important that the properties and capabilities of the hardware that is used to implement an

ANN be taken into account in the system design process. Thus ANN architectures must be

developed that are suited to implementation using low-accuracy computational components.

This also makes sense from the biological plausibility point of view, because most cunent

ANN models require far more computational accuracy than is found in a biological neural net-

work. Below, a compact analog CMOS slmaptic circuit which uses the "natural" capabilities

of CMOS VLSI is described, and its performance is evaluated.

2.2 Easic MOS Synapse

Artificial neural networks consist of neurons and synapses; the area of electronic imple-

mentations is normally dominated by the synapses, as there are many more of these than there

are neurons @ig. 2.1). In the approach shown in Fig. 2.2, the synaptic weights I4lü berween

neurons are reprcsented by the channel conductance of MOS transistors, with weight voltages

Vc stored on capacitors. The output of a neuron corresponds to an analog voltage V¡

(-V < V¡ < +V) which is a function of a weighted sum of its inputs.



Chapter 2 - Unipolar Hebbian Synaptic Circuits

Slmapses

Figure 2.1 Model of øn artificial neural network.

Figure 2.2 Synaptic weights (W¡¡) in analog MOS neural networks are com-

monly represented as charge storaged on a capacitor, which in turn controls

the conductance of an MOS transistor.

Provided the artificial neurons produce both +yj and-V¡, an inhibitory weight may be

realized by employing -V¡. In this way, all weights W¡¡ can be positive (unipolar weights).

In Fig. 2.2 the weight W¡¡ is adjusted according to a leaming algorithm which is normally per-

formed off-chip, and applied as Vo. In some cases the weight storage (which refreshes the

capacitor voltage) is on-chip but the leaming algorithm runs off-chip. In this chapter, we

present circuits which perform in situ weight adjustments as a continuous analog process while

the network is operating. We do not switch leaming signals on and off; leaming proceeds

along with the circuit dynamics, although at a much slower rate.

11
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To increase or decrease the synaptic weight one adds or removes charge from the capaci-

tor C. A common analytical form of Hebbian leaming is fKohonen-l]:

t2

dw,,'r =AV,V'-BW'.dt "'t'J -"u (2.r)

where A is usually taken to be a constånt term to represent the leaming process; B may in

general be dependent upon V¡ and V¡, and represents a weight decay or forgefting ienn. Equa-

tion (2.1) is consistent with Hebb's original qualitative statement of the leaming rule lHebb]:

"'When an axon of cell A is near enough to excite a ce17 B and repeatedly or per-

sistently takes part in fìring it, some growth process or metabolic change takes place

in one or both cells such that A's efficiency, as one of the cells ûring B, is
increased"

Let us consider how the capacitor voltage Vs controls the weight W;¡ of ttre i,j synapse.

If one employs aV¡ as the drain voltage of the MOS transistor M¡ where a is a small con-

stant, then VD << Vc - Vr and this device operates in its triode region. In the simple case of

threshold voltage Vr = 0 the drain current through this device, which contributes to the total

current into neuron i, is given, for Vç > Vr, by

= $a(Vç-V7)V¡ = W¡¡V¡ (2.2)

where theVß l2ßrm is assumed to be negligible, B =¡tC6yWlL is a constant known as the

conduction parameter of the transistor, and Vc and aV¡ represent the gate and drain voltages

V6 and Vp respectively. For Vc < Vr the transistor M 1 is in the cutoff region and the current

decreases exponentially with further decreases in Vç. The weight lV,y remains positive (but

very small) for negative Vç.

2"3 LlnipoÏan F{ebbÍan Synapses arìd MOS [-earning R.ules

Hebbian leaming depends upon local variables % and V¡, and there are penalties associ-

ated with implementing leaming extemally in VLSI; these penalties involve the amount of wir-

ing and the number of pins required, which in tum impact the achievable speed and resolution

of the circuit. It is therefore desirable to compute the weight changes tocally at each synapse.

One method is to employ an analog circuit such as a Gilbert multiplier [Gilbert] with inputs V;

and V¡ to provide a current Iç to the capacitor to represent the first term of (2.1), and a
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Figure 2.3 Analog synapse with low transistor count which qualitatívely ap-

proximates multíplicative Hebbian correlation of input and output activities V¡

and V¡ using a two transistor multiplier.

leakage resistance R to represent the forgetting term. The leakage resistance R leads to a

modulation of V, and hence W¡¡ in accordance with the analyticai form of (2.1). To reduce

the complexity of the synaptic circuitry the multiplier may be replaced with the simpler circuit

of Fig.2.3. The leakage resistor R is approximated by the transistor M2. The rate of synaptic

weight change (the leaming rare) is then given by

73

+=þ"Y#ù:y,,_ffv,
and the leaming current I¡ in (2.3) is

(2.3)

I¡ : þV¡(V¡ vr) (2.4)

when V¡ and V¡ are both positive or both negative and Vs = Q. When V¡ and, V¡ have oppo-

site signs, Ir = 0. It is apparent from (2.4) that this circuit implements a form of Hebbian

leaming. Eqns. (2.3) and Q.$ are approximations of the behavior of the circuit of Fig. 2.3:

they are intended as a guide to understanding the simulations below.

1¿ is the current charging the weighting capacitor (the leaming signal) which for V" = 6

is approximately proportional to the product ViVj (2.4). As the capacitor charges (Vç and,W¡¡

increase) the current 1¿ wiil decrease and eventually become zero when the output voltage

from the (Ms, Mq) pair is equal to V¿ +Vo, where Vp is the forward diode voitage drop.

This is in contrast to (2.1) where the leaming signal AViVj is independentof W¡¡. The diode

V'+'-
2

Other syrapses
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in Fig. 2.3 isolates the charge stored on the capacitor when V¡V¡ is low (when V¡ and V¡ are

uncorrelated or anticorrelated). In other words, the diode decouples leaming and forgetting so

that their rates may be independently adjusted. Normally the leaming rate will be considerably

larger than the forgetting rate so that the charge on the capacitor remembers a Iarge number of

training pattems. To summarize, (2.3) is a crude approximation of (2.1); however, leaming

govemed by (2.3) is still consistent with Hebb's original qualitative statement, that weights

increase according to the correlation between V¡ and V¡. Quantitatively it departs from the

simple form of (2.1) because of the dependence of the leaming rate is on the previous weight

value. High weight values discourage further leaming. The present MOS learning rules are

motivated by the desire to achieve low synaptic circuit complexity in VLSI neural networks,

rather than being derived from established theoretical principles. Also, weight saturation is

likely a feature of biological synaptic leaming.

2"4 CÍncuit Layotet and Fenforrnance of C&AOS Synapses

Figure 2.4 Four CMOS synapses with in slrø MOS leaming rules.

Fig. 2.4 presents a layout of four synapses of the type shown in Fig. 2.3. In I.Z¡tm

CMOS the dimensions of a single synapse are 115x11pm2, so a neural network chip of lcmz

area could contain approximately 70 000 s)mapses, assuming that the synapses dominate the

chip area. SPICE simulations of these layous have been performed using 1evel 3 transistor

models. The multiplication aV¡(Vc - Vr) (transistor M1), representing the contribution 1,;

I4
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Figure 2.5 MuMplication of aV j by Vc¡ in tansistor M 1 of Fig. 2.3.
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30
Time (ns)

Figure 2.7 Voltage on capacitor C due to current from (Ms, M+),

corresponding to learning various positive correlations betweenV¡ and.V¡. At

t =32ns,learning is turned off, andVç discharges through Mz.

from synapse j to ttre total cunent into neuron l, is shown in Fig. 2.5. For I aV¡ I . O.Sy

this circuit provides a respectable approximation to an analog multiplication. Fig. 2.6 presents

the approximation to the multiplication required for Hebbian weight changes, or leaming. This

figure corresponds to ttre case Vs = 0 and therefore represents lhe maximum leaming rate.

Note tlrat in this case we canriot employ the above trick of driving the leaming ftom aV¡

because we require large signal voltage excursions at the ouÞut of the (M t, M q) pair. There is

a pronounced deparrure from linear multiplication near the origin, so small correlations

between V¡ and V¡ are ignored by this circuit. The effects of weight saturation are clearly

observed in Fig. 2.7. As discussed in the previous section, this represents the major departure

from the traditional analytical form of Hebbian leaming given by (2.1).

Weight decay has been greatly exaggerated in this circuit by employing a small R (imple-

mented using M, in Fig. 2.3) n order to be able to observe its influence inFig.2.7. Actual

implementations of neural network models would employ weight decay rates which would not

be discemible in Fig. 2.7. This is readily achieved with the circuit of Fig. 2.3. If extremely

low decay rates are desired (to remember large training sets) the chip could be cooled (perhaps

I6
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Figure 2.8 Dynamic operation of nuo synapses j and k driving neuron i.

even to cryogenic temperatures such as liquid nitrogen 77K) in order to reduce p-n junction

leakage currents. Finally, in Fig. 2.8 we show an example of the dynamic behavior of a sim-

ple neural circuit of two synapses j and ft driving one neuron i. V; is negative throughout rhe

simulation. V¡ andV¡have both initially been high for a considerable time and the weight of
the À synapse Vrn has thus achieved its maximum value. V¿ is then switched to its extreme

negative value, and since Vç¡ is negative, (ie.W¡¡ = 0, so the jth neuron's state does not affect

neuron i ) neuron output V; follows V¡ and also swings negative. Since V; and, V¡ are now

both at their extreme negative values, they are fully correlated, and Vç¡ now begins to rise,

eventually reaching its saturation value near 5V. Vç¡, began to decay whenV¡ was set to -SV,
but as V; soon followed, V¡ and V¡, were again correlated, and Vrp retumed to its former

va1ue.

2"5 Ðiscr¡ssion

On the basis of the above simulations it appears that a mechanism consistent with the

spirit of Hebbian leaming is operating properly at the level of single synapses and neurons. It
should be emphasized however that we do not have a theory at the systems level for the

t7
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behavior of networks whose synapses employ these MOS leaming rules. Depending upon the

architecture of the network (feed-forward, feed-forward with crosstalk, or fully-connected feed-

back network) and the leaming mode (supervised or unsupervised) the objective function to be

optimized by the leaming process will differ. For example in feed-forward supervised nets one

minimizes a sum of squared errors by gradient descent [Rumelhart-2], whereas in an unsuper-

vised feed-forward net with crosstalk one may maximize mutual information between several

neighboring hidden units [Hinton-Z]. Different measures are optimized by fully-connected

supervised mean field networks [Hinton-l] and by unsupervised linear networks [Linsker] even

though both of these latter cases employ versions of Hebbian leaming rules at the s1'napses.

In this work we have only briefly discussed the issue of weight decay or forgetting rates.

Forgetting rates determine the number of training cases remembered by the capacitor charge,

and are dependent upon the number of weights that are mutually dependent during the leaming

process. For unsupervised leaming based on optimization of local objective functions, the

desired forgetting rates are expected to be larger than in supervised networks with global enor

signals during training. In the supervised case all the weights in the network are mutually

dependent. The forgening rate will normally be orders of magnitude lower than the leaming

rate so that many past training cases (on the order of the number of weights) can be remem-

bered. To control the leaming rate, one can adjust the length lwidth ratio L lW of the transis-

tors M3 and Mo in Fig. 2.3. Leaming rates are inversely proportional to both LlW and. to the

capacitance C so that by increasing LIW and C one can decelerate the leaming process to the

desired ¡ate. One could altemativeiy introduce a series resistor in Fig. 2.3 to reduce the leam-

ing rate. All of these adjustments increase the silicon area per synapse.

One of the limitations of the present approach to in sttu leaming circuits is the inherent

volatility of capacitive weight storage. Synaptic weights represent the knowledge of the net-

work, and the network must be continuously exposed to relevant inputs or training data.

Irrelevant or null inputs would othenvise corrupt the weights. One cannot simply disconnect

the power supply and have the network retain its present state. To circumvent this problem

either a refresh mechanism could be incorporated as in dynamic RAM or nonvolatile storage

may be employed.

r8
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2"6 Smxraneany

The suitability of VlSl-efficient leaming algorithms based on the above MOS teaming

rules, as compared to previous analytical forms of Hebbian learning, can only be ascertained

by simulation of a range of network models employing these synapses attempting a variety of

leaming tasks. These simulation studies are important in view of the potential benef,ts from

reductions in silicon area in the realization of synaptic circuits, since the area of these synapses

determines the VLSI complexity of the neural network itself. Hebbian leaming has become

popular in neural network research because it has achieved success in associative tasks and

because it represents a simple mathematical approximation to what is believed to underlie bio-

logical neural systems. Recent work by Brown and his colleagues has established the presence

of Hebbian synapses in the hippocampus of mammalian brains [Zador]. We believe it to be

worthwhile to search for leaming algorithms which achieve approximations to classical Heb-

bian rules based upon the simplest silicon implementations even though the corresponding

mathematical models may be more complex.

19
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3.1 lntroduction

In this chapter we describe a set of analog circuits which we have used to implement an

ANN with bipolar weights and neuron activations. These circuits are considerably more com-

plex than those developed in the previous chapter, and implement better approximations to the

computational functions required by ANN theory. These circuits were developed because we

wanted to implement existing ANN models in anaiog CMOS; ANN models which we were

interested in implementing would have required extensive modifications to be compatible with

the highly approximate computation of the circuits presented in the previous chapter. Further-

more, due to time constraints, we chose circuit desigrs which were robust and therefore likely
to function properly the f,rst time that they were fabricated. Of course the analog circuits

presented in this chapter are still far more compact than their digital counterparts, so the com-

putational benefits of analog computation have not been lost.

We have designed, fabricated and tested a fulty analog neural network architecture with

in situ Hebbian leaming at each synapse. Synaptic weights are stored as voltages on capaci-

tors. Below, we begin by describing the ideal neural network model which our analog VLSI
implementation approximates. Next, our system architecture is discussed, followed by a

detailed analysis of the behavior of the components from which the system is constructed. The

ramifications of using imperfect components is analyzed, followed by a description of chip test

results.
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3.2 Xdeaå Neunaå NetwonEc Vlode[

Our circuits impiement a common neural network model, where both synaptic weights

and neuron activations can take on values in the range f-V,V l. Network operation is govemed

by the foìIowing equations:

V¡ = f (ZW¡¡V)
J

dW;;
AV,V, _ BW..

dt --'t'J -"ry

(3.1)

(3.2)

where V¡ and V¡ are the current activations of the ith and;rå neurons, W¡¡ is the weighting

factor determining the effect that the 7/¿ neuron has on fhe ith neuron's activation, and A and

B arc small constants. / (.) is a sigmoidal saturating non-linear function.

The current activation of the i¡å neuron is computed from a weighted summation of the

current activations of all neurons which synapse on neuron I (equation 3.1). Network leaming,

or adaptation, is govemed by (3.2), a common form of the Hebbian leaming rule [Kohonen-l].

According to the first term in (3.2), when the activations of the ith and, jtå neurons are both

positive or both negative, (ie. they are correlated), the weight W¡¡ wi77 slowly increase over

time, and when they have opposite signs (ie. they are anti-correlated), W¡¡ wil7 decrease. The

second term in (3.2) is a weight decay term, which causes all weights to decay towards zero

over time.

Note that these two equations goveming network behavior operate on very different time

scales -- network leaming (3.2) typically occurs at *th tt 1

100 ) 
10000 

t¿ the rate of network

operation, govemed by (3.1). This makes intuitive sense, because the values of network

weights represents the aggregate effect of many hundreds or thousands of network activations.

3.3,Amatrog CMOS Implernexrtatioxl

The circuit of Fig. 3.1 implements our analog CMOS approximation of the ideal neural

network described by (3.1) and (3.2). In a typical neural network, many copies of the synaptic

circuit (left half of Fig. 3.1) are connected to each neuron circuit, one for each neuron which

affects Ihe ith neuron. Thus, there can be as many as N(N-l) synapses in an N neuron sys-

tem, in the case of a fully connected network, and synaptic circuitry occupies most of the sili-

con area of a typical neural network chip.
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Figure 3.n Synapse and neuron circuits.

The circuit of Fig. 3.1 implements (3.1) as follows. The synaptic weight 142,7 is

represented as the voltage V¡¡ on capacitor C , and the ith and jth neuron activations are

represented by the voltages V¡ and V; respectively. The three multipliers, P 1, P2ãnd Pa mul-

tiply two differential input voltages, producing an output current proportional to the product of

the inputs, independent of the voltage at the multiplier output. Thus the product WUV¡ in (3.1)

is computed by P z, and the summation operation is implemented as current summation at the

input to Pr. P3 converts the resulting net current into a voltage signal which is then input to

the neuron multiplier Pa. The saturating non-lineanty f(.) in (3.1) is produced using the

saturating behavior of the neuron multiplier Pa, with signals NGain and NBias controlling

neuron gain.

Hebbian leaming (3.2) is implemented by P1:

22

Vr

vj

dWii

-æ
dt

dvij lc¿p

- 

* v-.v.dt C ''r (3.3)

since P1 produces an output current 16¿¡ proportional to V¡V¡, independent of V;¡, the voltage

on the capacitor C. The weight decay term in (3.2) has been set to zero (B = 0) in this cir-

cuit.

Since any practical neural network contains many hundreds or thousands of synapses, it

is essential thatthe components of Fig. 3.1 be as simple as possible. Forthis reason, the com-

ponents in Fig.3.1 deviate considerably from the ideal case represented by (3.1) utd (3.2).

The behavior of these components is analyzed in detail below.

Neuron

LBias LCnilP NGain2 NBias

other sy'napses other sYnaPses

tl_c

Tr
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3"4 Cüncn¡if Comaponexafs

v1
v2
v3
v4

23

b) I-V Converter
t

vno*

f,Pv CNTL

I

'^-lîIl-u"*
VNcvrr

Figure 3.2 Schematics of circuit components.

In keeping with our goal to use the simplest and most robust circuit design possible, our

neural network archiiecture is constructed from the components of Fig. 3.2 (with some minor

specializations, depending on application).

3.4.1, Multiplier Circuit

The multiplier circuit is a variant of a wide-range Gitbert multiplier [Mead], implement-

ing the operation low = a(V t - Vù(Vz - V q). Note ttrat unlike in [Mead], transistors in our

multiplier circuit are operating above threshold (Vcs>Vù. The six transistors which perform

the basic multiplication operation Gig. 3.2, Mz - Mù are three source-coupled differential

pairs, of the form shown in Fig. 3.3. Using the simplified square-law equation

IDS = l{vor-vr)2, where þ = IrCoxl , represent the behavior of an N-channei transistor

in saturation,

a) Wide-range Gilbert Multiplier

tr.l77

vdd

vNorç
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Figure 3.3 MOS dffirential pair.
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(3.4)

(3.s)

(3.6)Ia- I-=

Ia

Vrl

Figure 3.4 Basíc MOS Gilbert circuit.

L

l- v,

where vx =v*-v-, provided lv*-v- I < {F^- Equations 3.4, 3.s and 3.6 may be

used to derive an expression for the output cuffent of the basic Gilbert multiplier of Fig. 3.4,

which consists of three differentiai pairs:
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(3.7)Iour = I*- I_ = (13 + IÒ- (14+ I6)

=Ut-Iò-(/'6-Is)

which is the difference between the output currents of two differential pairs of the form (3.6),

where the current source 1¡ is replaced by expressions (3.4) and (3.5), representing 11 and 12.

Thus,

(3.8)

lr
- \ + l^t¡; -eç; -Fv,)' - Þ*v,'l')

where Vy =VrVaandVT =VrVz. The multiplier circuit of Fig. 3.2 also consists of three

differential pairs, connected in the same way as in the basic Gilbert multiplier. The difference

between the two circuits is that current mirrors (M s, M 9, and M rc, M ¡) have been placed

between the two stages to allow the restriction max(Vs,Vq)> min(V¡V2) to be relaxed.

Assuming that ttrese current mirrors are ideal (ie. /¡¡u, = Iow), then the transfer function

remains unchanged. Introduction of the current mirrors also requires that the two stages be

implemented with complementary transistors -- in this case the f,rst stage is implemented with

p-channel transistors, and the second stage with n-channel transistors. Finally, the current

source 1¿ is implemented with transistor M, (operating in saturation), and three more current

mirrors (M p - M s) are used to perform the subtraction 1* - I -, and to make l6ur indepen-

dent of Vow.

The multiplier transfer function is given by:

f_roUT - (3.e)

rour=ry|
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and when Vt-VzandV3-Vaare small,

26

rour=ry| (3.10)
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Figure 3.5 Isur a.s a function of V3-Vafor V;V2from -0.8V to 0.8V

(3¡tm CMOS test chip, Vdd =2.5V, Vss = -2.5V, Vs =0.9V, data collected

using HP4145A).

Measurements from our test chip Sig. 3.5) confirm the behavior predicted by (3.9) and (3.10):

for small inputs the multiplier is nearly linear, with saturation occurring when

max(lVt-Vzl ,lvr-Vol ) > 0.8y. Fig. 3.6 shows that for v6ur in the multiptier's

operating range of +0.8y, there is a variation in Isuy of 3Vo of max(Isar). This is achieved

by using long transistors (L = 14Wm) to minimize channel-length modulation effects for the

output cuffent mirrors (M M - M n).
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-0.5 0 0.5 I
Vou, (Volts)

Figure 3.6 I6u7 as a function of Vow for V3-V a=:2.5V , V ¡V2 from

-0.8y to 0.8V (3¡tm CMOS test chip, Vdd = 2.5V, Vss = -2.5V , Vn = 0.9V ,

data collected using HP4I45A).

The design of this multiplier circuit involved two important tradeoffs: low power con-

sumption versus circuit speed, and wide linear input voltage swing versus good matching

between identical multiplier circuits. An operating cuffent in the 3¡r..4 range was chosen as a

compromise between power consumption and circuit operating speed, giving a worst-case DC

power consumption of 55¡.tW lmulrtplier, and a iypicat switching time of 70ns. To achieve

good matching between identical transistors, V65 should be well above Vy, to minimize the

effects of threshold variations. Since 1¿r*(Vcs-Vr)z, the sensitivity of 1p5 with respect to

r^- -2V,V-- S,/o , so clearly good matching is impossible for V6s neat V7. However,tT Í/ Í7
V GS_V T

increasing Vdd-VB to achieve good matching between cuüent sources (implemented with M1)

reduces the linear input range (Vn >VyVz2-Vn is the linear range). A compromise

Vdd-VB value of l.6V (Vr = 0.77V) was chosen. Similar calculations were made to ensure

that the input voltages ïo the cuffent mirrors in this circuit are also well above threshold.
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Increasing supply voltages is another way that the linear input swing can be improved: how-

ever, impact ionization effects limit the supply voltage of the 3¡tm CMOS technology that we

are using to 5V.

3.4.2 I-V converter

a)

vdd

b)

For our application, accurate current-to-voltage conversion is not necessary, so the simple

circuit of Fig. 3.2b was chosen. This circuit performs the same operation as its linear

equivalent @ig. 3.7a). Here,

t/VOUT _
I,r+Vdd(G r4z)

G :ÉGz
(3.1 1)

(assumingV,r.t = -Vdd), andwhen Gt=Gz=lC this circuitbehaveslikethesimplestl-V

converter, a resistor to ground Gig. 3.7b).

Linear resistors require too much silicon area, so G, and G2 are implemented using Mr6

and M21. When VÜ¡vy =Vdd and V[¡¡y¡ = V,s,s, M2s and M21 are operating ìn the triode

region (Vns<Vcs-V7), an approximate expression for I-V converter behavior may be calcu-

lated, using IDS = þ((Vcs-VÐ2-V]ttZ¡. Assuming that the transistors are matched

(0N = FP = Ê), and Vss = -Vdd.,

I r N +þv d d (v Ü N r L +v Pc 

¡¡r r)

J
lo'

ì>*+ÐVow -}_1-øVorn

'*To, '^lo
_vdd

Figure 3.7 Linear I-V converter.

plest case, when G t = Gz= *C

a) Iinear resistors to Vdd and Vss ; b) sim-

Í7VOUT _
þUü¡uru-v\¡,rrr-Zvr)

(3.12)
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0
I,* (pAmps)

Figure 3.8 Measured I-V converter performance (3¡tm CMOS test chip,

Vdd. :25V , Vss = 1.5V , Vänrr = 2.50, VE¡oru = 1.27, data collected using

HP414sA).

which is in the same form as (3.11) (note that VE*t is negative). In practise it is difficult to

match M2s and M21, but VÜn t and V[¡¡77 can be adjusted to correct for transistor mismatch.

Fig. 3.8 shows a typical I-V converter characteristic.

3"5 Effect of lmpenfecf Components

As mentioned previously, the reason that neural networks with leaming capability are

suitable for implementation using simple, low accuracy analog computational elements is that

their architectures enable them to compensate for these imperfections. For example, assume

that Pz in Fig. 3.1 produces a larger than average lour for a given weight value, V,7. Simply

by leaming a slightly different weight, the circuit can compensate for substantial variations in

P2. Similarly, an offset introduced into the neuron output V; by mismatches in P 3, P a and P 5

can aiso be cancelled by adjusting the synaptic weights of the system. As might be expected,

neural networks can have critical components: our investigations using a modified version of

these synaptic circuits to implement a Deterministic Boltzmann network lHinton-i] demonstrate
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that architectures typically have certain operations which must be performed accurately.

Another important source of error is variation in temperature. As the neural network chip

is operating, increasing temperature wili alter component characteristics, perhaps non-uniformly

across the chip's surface. Since our circuits are intended for neural networks which leam con-

tinuously, either from each input pattem or by interspersing training pattems between

unclassifred patrerns, weights will change with temperature, reflecting the effect of temperature

changes on each component in the circuit.

As the preceding discussion indicates, leaming is not just important from the point of

view of training a neural network to perform a certain task; it also serves as a form of slow

feedback which allows the neural network to compensate for a wide variety of component

imperfections. Qualitatively, leaming feedback is performing the same correcting role in a

neural network that a negative feedback path performs in a linear amplifier.

3.6 lmplementation

The circuits described in sections 3.3 and 3.4 were fabricated using a 3pz double metal,

P-well CMOS process Q.{orthem Telecom CMOS3). In this combined analog/digital process,

linear capacitors are created between heavily doped P-diffusion regions and polysilicon. Fig.

3.9 is a photomicrograph of a single slnaptic cell, which implements the synaptic portion of

the circuit of Fig. 3.1. The majority of the ce1l area is occupied by the two multipiiers, with

the remainder of the area occupied by control circuitry and the weight storage capacitor. For

our test circuits, C = l.lpF (the capacitor is located in the lower right comer of the ce11). Fig.

3.10 shows the layout of the neuron circuit. For this cell, layout efficiency was not an issue,

because neuron cells occupy an insignificant fraction of total silicon area of a typical neural

network chip.

Approximately 3 000 synaptic cells will fit on a lcmz dle. Such a network can pedorm

more than 6 000 muitiplications simultaneously, giving a throughput of 6 billion analog multi-

plications per second (assuming a conservative IMHz operating speed). These calculations

demonstrate that analog computation is far more area-efficient than its digital equivalent. As

mentioned previously, the key to using analog components for computation is that the system

architecfure must be tolerant of imperfect component behavior.
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Figure 3.9 Photomicrograph of synaptic circuit (3244o¡tm2 per synapse).

Boundaries of subcircuits are indicated by broad, dark lines.

To test our synaptic and neuron circuits in a complete neural neiwork system, a fulty-

connected (each neuron slnapses with every other neuron) Hopfield-type confrguration was

chosen. We fabricated two neural networks: a 3 neuron, 6 synapse network (Fig. 3.11), and a

larger 25 neuron 600 synapse network containing more than 28000 transistors @g. 3.12). The

diagonal of missing synaptic cells in Figs. 3.11 and 3.12 arises from the fact that neurons do

not synapse with themselves (I4z;; = 0). In the following section, test results for these networks

are reported.

3.7 Cincuit Fenformance

The DC behavior of circuit components was discussed in section3.4 and compared with

simplif,ed analytical expressions for componeni behavior. In this section ihe results of a

variety of transient tests (both simulated and measured) are reported. In some cases, such as

3l
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Figure 3.L0 Photomícrograph of neuron circuit (44 430¡tm2 per neuron).

Boundaries of subcircuits are indicated by broad, dark lines'

the leaming test below, simulation data, rather than measured data is used, because attaching

measurement equipment alters circuit behavior too drastically. For example, the 10MQ input

impedance of a typical oscilloscope will drain the weight storage capacitor in 10ps. By

presenting simulation results, as well as measurements, a clearer picture of circuit operation is

obtained. Table 3.1 summarizes signal characteristics. Note that voltage signals (V¿, V¡, V¡a,

V¡¡, V¡¡, and Vsry) may saturate at the supply voltages X2.5V, but their active range is as

stated in Table 3.1.

32

3.7.tr- Three l{euron n-earning T'est

The test setup consists of the ith neuron

nected to it, from neurons / and k Gig. 3'13).

in Fig. 3.14 andTable 3.2.

At t = 0, the system is stable, since V¡ and V¡ are anti-correlated and V¡¡ = Vss (max-

imum negative weight value); V¡ and, V¡ are conelated, and V¡¡r=Vdd (maximum positive

of a neural network, with two synapses con-

The leaming behavior of this circuit is shown
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Figure 3.1,1 Photomicrograph of 3 neuron, 6 synapse network

(1.0 x 0.5mmz).

weight value). At t = 0.9¡rs, we reverse the signs of inputs V¡ and V¡. As a result, V; also

switches sign, because the circuit has leamed thatV¡ is correlated with V¿, and anti-correlated

with V¡. Thus, the circuit is using the relationships it has leamed between V¡,Vj and Vo to

predict a new value for V¡. At t = 2.9W , V; is set to a moderate negative value. Since V;

and V¡ are anti-correlated, V; begins to increase. However, V; and V¡ arc correlated, and V¿

is stillnegative, so thenetresultisthatV; settlesto asmallernegativevalue( lVol , lVrl,
so V¡W¡¡ + VjWíj < 0, and hence y¡ < 0). Now V; andV¡ are weakly correlated, andV¡¡ gra-

dually becomes positive as this new condition is leamed. Note that for purposes of illustration,

a higher than typical leaming rate was used: normatly adaptation to new relationships between

neuron activations occurs much more slowly than shown in Fig. 3.14.
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Figure 3.12 Photomicrograph of 25 neuron, 600 synapse network

(5.5 x 4.6mmz).

This leaming test demonstrates that this circuit behaves in a way that is consistent with

(3.1) and (3.2), ¡he equations describing an ideal neural network with Hebbian leaming.

Details, such as the precise form of the product W;¡V¡ may differ, but the basic operation of

leaming correlation and anti-correlation, and performing a weighted summation are imple-

mented with sufficient accuracy by our circuits. This leaming test was also performed using

the 3-neuron neural network on our iest chip (Frg. 3.11), yielding the same results as the simu-

lation discussed above.
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Table 3.X. Summary of signals.

Type Range Function

neuron activation

synaptic weight

Isuy afrrct I-V converter

sum current

35

vi, v j, vk

v¡j, v¡t

vsuu

I suu

voltage

voltage

voltage

current

[-0.8v,0.8v]

[-0.8v,0.8v]

[-0.8y,0.8y]

l-3.5p4 ,3.5tr¿ l

Table 3.2 Learning test.

V¡

vj

vk

vij

V¡¡

/=0.0 t=0.9ps t:2.9lts

_1
2

Figure 3.13 Learning test configuration.

3.7.2 Ðynamic Circuit Tests

A number of dynamic circuit tests were performed to characterizethe behavior of our cir-

cuits. Fig. 3.15 illustrates the behavior of the 3-neuron network when V¿ is held at OAV , utd

V; is switched at25kHz. Fig. 3.15 shows thatV¡ follows V¡ (the network has leamedlhatV¡
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Figure 3.L4 Learntng test results (HSPICE MOSFET model level 3 simula-

tion).

andV¡ are correlated). However, because V¿ is held at0.4v while V; switches (yr and V¡, are

also conelated),Vt does not saturate at its maximum negative value (about -1.0y), because V¿

remains positive while I/; is negative; thus the value of V; generated by the network reflects

the influence of both V¡ and V¡. The network could also have leamed an anti-correlation

between V¡ and V¡, urd V¡ and V¡, with similar results. In our test setup, the relation leamed

between V¡ andV¡ can be changed by briefly forcing V; either high or low. If V; is released

when V; has the same sign as V¡ (either positive or negative), then a correlation is leamed;

otherwise an anti-coffelation is leamed. The same comments apply to the relation between V;

and Vo. Note that the V; rise and fall times seen in Fig. 3.15 reflect the large capacitance that

the neuron output has to drive in our test setup, rather than system leaming dynamics.

Fig. 3.16 shows the effect of a high leaming rate. In this test, V¡ urdVo both switch at

25lcIlz, and therefore V; should also switch each time V¡ and V¿ switch. However, because

rhe leaming operation (3.2) is faster than system dynamics (3.1), at r = 5!rs when V; and V¡

switch, V¡ begins to follow, but leams a new relation (anti-conelation) before V; rises above

0V. Notice that the ieaming rate chosen in Fig 3.16 is just slightly too high, so the network

operates correctly when v; and v¡ switch at t:25ps and t = 45ps, and fails again at
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30
Time (ps)

Figure 3.L5 Dynamic test of 3-neuron network, response of V¡ when

Vr = O.4V , V¡ switching at 25kHz (test data generated using ASIX-2 IC tester,

analog data collected using Tektronix 2232 digttal storage oscilloscope).

r = 65ps. Noise determines whether V; rises above 0V before V¡¡ and V¡¡ change sign (in

Fig. 3.16 V; rises to almost 0V before falling againin the cases that fail).

3.7.3 Fower Ðissipation

Power dissipation is a critical issue in VLSI systems, limiting both speed and integration

density. Since neural networks have to be large to be useful, circuit designs with iarge power

requirements are not practical. Synaptic circuitry occupies most of the chip area of a typical

neural network, so power dissipation requirements may be estimated by considering synaptic

power consumplion. The worst-case DC power consumption of our synaptic circuit is 110¡rl{z

(two multipliers at 55¡t"W lmultiplier), giving a chip power dissipation of 0.34W lcmz ç3¡tm

CMOS), which is achievable using conventional air cooling.

3t
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Figure 3.tr6 Dynamic test of 3-neuron network, effect of high learning ra¡e

(test data generated using ASIX-2 IC tester, analog data collected using Tek-

tronix 2232 digital storage oscilloscope).

3"8 ÐÍscussÍon

Although the synaptic circuits described in this chapter have been incorporated into a

fully-connected Hopf,eld-type architecture to evaluate their performance in a complete system,

they are suit¿ble for a variety of other ANN architecfures as well. In assessing the suitability

of our analog circuits for a particular leaming model or architecture, the most important con-

sideration is whether the architecture is tolerant of low-accuracy computation. This tolerance

may be achieved in a number of ways, with weight adaptation (leaming) being the most

effective. As was discussed in previous sections, an ANN can compensate for a wide variety

of component flaws by leaming appropriate weight values.

3.8.X- tsack-propagation ANNs

Studies have shown that the successful and popular back-propagation (Bp) ANN

[Rumelhart-2] requires between 8 and 16 bits of accuracy for gradient descent weight adapta-

tion. Although it is diflicult to achieve this level of accuracy using analog computation, this

accuracy may only be required to permit small weight changes during leaming, as is the case

with contrastive Hebbian leaming (see Chapter 5). Support for this point of view comes from

38
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informal discussions with other researchers, whose investigations seem to indicate that lower

weight resolutions are sufflcient for solving many classification problems. Thus, variants of

our analog circuits may well be suitable for implementing back-propagation ANNs.

3.E.2 Self-Organizing Ferceptual Map ANNs

There are a variety of ANNs which are well suited to the circuits described in this

chapter. Generally, they use leaming nrles that depend only on local interactions, which

simplifies communication in a VLSI system. Below, representative approaches which use

uns up erv is e d Leaming are di scussed.

Linsker describes a self-organizing network which leams to extract features from an

image in a way that is reminiscent of feafure extraction in the first stages of the mammalian

visual system [Linsker]. The self-organizing principle used by this system is based on infor-

mation theory: the network connections (weights) develop such that the amount of information

that is preserved at each processing stage is maximized. Linsker's system uses linear neurons

and no feedback, as his goal was to use as simple a system as possible to model early vision.

The equations goveming system operation are:

V¡=A+B>Wíjvj
j

O'¡rri = CViVj + DV¡ + EVi + F

(3.13)

(3.r4)

where A, B, C, D, E and F are arbitrary constants, C > O and weights W¡¡ are constrained to

lie in the range -v =Y,i <v. The similarity between (3.13) and (3.14), and (3.1) and (3.2)

is obvious, and thus implementation of this ANN with our circuits should pose no major prob-

lems. Nonlinear extensions of Linsker's network could also be implemented with our analog

circuits. This is an important consideration, because practical ANNs must have nonlinear

infotmation processing: strictly linear systems are only suitable for a restricted class of applica-

tions.

Linsker found that after passing through two layers of this linear network, govemed by

equations (3.13) and (3.14), center-surround cells develop, and after three layers, orientation-

selective cells. Center-surround fKandel-l] cells respond to bright spots surrounded by a dark

background, artd orientation-selectiv¿ cells respond to bright bars with a particular orientation.

A furtÌrer modifìcation of Linsker's approach, following [Oja], results in a network which

can perform a fotm of princíple-component annlysis, a method used in statistics for extracting
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unanticipated structure from high-dimersional data sets.

rule which maximizes the output variance, subject to

principle-component analysis.
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Oja found that a Hebb-rype leaming

the constraint \W] = 1 implements

(3.1s)

(3.16)

3.8.3 Setf-Organizing Feature Map ,A.NNs

Kohonen has done considerable work in the area of unsupervised ANN leaming, with

networks called self-organizing feature maps [Kohonen-2]. Here, we discuss Kohonen's work

with respect to a particular appiication, an experimental speech recognition system. The ANN

architecture employed consists of a 2-dimensional hexagonal arrangement of neurons, each of
which has an adaptive synaptic connection to an extemal input. The network has lateral feed-

back synaptic connections between neurons in the network, with the strength of the feedback

connections following a "Mexican hat" [Kohonen-2) function, in which connection sffengths

decrease with distance from the objective neuron, altemating between excitatory and inhibitory.

Self-organizing feature maps are a form of competitive leaming network, in which the network

activity develops into clusters or "bubbles" as the lateral feedback connections suppress

activity in neurons near strongly activated neurons. Thus, neurons "compete" with one

another, and the winner suppresses its neighbors through iateral inhibition in a "winner take

all" fashion.

The foliowing equations describe network operation:

V¡ = f (Zwuvl
J

dW,,
-f=AViVj-þ(v¡)W¡¡

where 0(') is a scalar function with a Taylor expansion in which the constant term is zero, f (.)

is a sigmoidal function, and A is a positive constant. Typically, B(.) has a simple form that

would be straightforward to implement in analog CMOS. It is apparenr from (3.15) and (3.16)

that this ANN's weight leaming rule is a variation on Hebbian leaming, and is therefore realiz-

able using the analog CMOS circuits described above. Developing circuits to implement the

lateral feedback connections poses no major problem, and as was the case with Linsker's ANN
architecture, weight adaptation will compensate for analog component ìmperfections.
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3.E.4 {,lnsupervised Discoven'y of Spatialty Coherenú F{igher-orden Featunes

Hinton and Becker [Hinton-2] describe a self-organizing ANN for perceptual leaming,

whose objective is to extract higher-order features that are coherent across time or space.

Their procedure maximizes the explicit mutual information between pairs of parameters from

adjacent but non-overlapping parts of the input [Hinton-2]. Although the objective function

that Hinton and Becker propose is not ideal for direct implementation with analog hardware,

Linsker's development of Hebb-type leaming rules for information theoretic objective functions

suggests that Hebb rules exist for a variety of information theoretic measures, including the one

used by Hinton and Becker. As discussed previously, Hebbian learning rules are well suited to

VLSI implementation because they require only local information for weight adaptation, and

computation typically involves only multiplication, addition and subtraction.

3.8.5 ScalabXe Architectures

Very large ANN systems are required to tackle real-world problems: thus, a critical issue

in evaluating network architectures is how well a very large implementation of a particular

ANN will perform. Increased network size leads to additional redundancy, and hence addi-

tional fault tolerance. Conversely, large systems will have additional problems: for example,

difficulties related to timing of global signals may require unclocked or self-timed circuits.

Very large ANN systems involve many additional considerations beyond the scope of the

present work.

Evidence from neurobiology indicates that there are upper limits on the size of tightly-

coupled systems required for artiûcial intelligence: biological brains consist of many sub-

systems with a high level of intemal connectivity, and relatively less interaction between sub-

systems. An example of an ANN which has a hierarchical structure of this sort is discussed

in chapter 5.
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3.9 Sumamany

We have designed, implemented and tested an analog CMOS neural network architecture

with ín situ Hebbian leaming and capacitive weight storage. Because analog CMOS imple-

mentations of common compuiational operations, such as multiplication and addition, are far

more compact than their digital counterparts, analog systems have tremendous computational

potential. The difficulry arises in designing a system architecfure tolerant of component varia-

tions. Our investigations show that other neural networks are well suited to implementation

using simple, inaccurate analog components [R. Schneider]. The adaptive ability of a neural

network with on-chip leaming makes it possible for the network to compensate for imperfec-

tions in the analog components from which the system is constructed. Computational perfor-

mance in excess of 6 billion muttiplications per second is achievable (LMHz, lcmz die, 3¡tm

cMos).
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In chapters 3 and 5 implementations of artificial neural networks (ANNs) using low-

accuracy analog CMOS transconductance circuits are described. These ICs implement conven-

tional ANN architectures, with Hebbian lHebb] and mean field [Peterson-2] leaming circuitry

at each slnapse. In this chapter, we take a slightly different approach to the implementation of
ANNs: rather than designing circuits to implement an ANN architecture, we propose circuits

which are suggested by the behavior of a biological neural network. These biologically

motivated analog CMOS circuits include functions which, although important for the operation

of biological neural networks, are typically omitted from ANN models. We incorporate only

certain abstractions of the biologicat processes into our circuits, since our goal is to develop

efficient ANNs for computational artificial intelligence, rather than modeling neural biology in

a iiteral way. This is an important distinction, because there are computationally important

differences between analog CMOS VLSI and neural biochemistry. Operations which are

impossible to implement in one may be easy to implement in the other.

Our circuits model tfuee leaming paradigms present in biological synapses: habituation,

sensitization and classical conditioning. Specifically, we are modeling the behavior of the

marine mollusc Aplysia, which has been studied extensively -- see for example, [Kandel-l,

Kandel-2, Hawkinsl. Investigation of mammalian sgraptic function is complicated by the

small size of neurons and synapses in higher-order animals, and consequently less data is avail-

able. It must be emphasized that, although our circuits are more biologically plausible than

most current ANNs, they still present a highty simplified picture of biological neural networks.
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More complex aspects of biological synapse operation, such as those involving extinction and

spontaneous recovery [Hawkins], are are omitted from the circuits described below. In doing

so we achieve a balance between accurate modeling of neural biology, and mainstream ANNs.

This work draws upon two previous investigations, [Card-2], in which CMOS circuits

implementing habituation, sensitization and classical conditioning with EEPROM weight

storage are described, and chapter 3, which deals with analog CMOS Hebbian leaming circuits

using capacitive weight storage. Other approaches to ANN implementation with leaming cir-

cuitry at each synapse have been reported recently, including [Schwartz-2, Alspector-1]. In

section 4.2, biological synaptic leaming is reviewed. Section 4.3 presents a simplified

mathematical model of this leaming behavior, which is followed by a description of CMOS

components which implement these operations in section 4.4. The proposed analog CMOS

synaptic circuit, constructed from these components, as well as simulation results, are discussed

in section 4.5.
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4"2 tsasic Biological Synaptic l-earning Mechanisms

Figure 4.tr simplified schematic diagram of the portion of Aplysía's nervous

system responsible for gill withdrowal reflex.

Kandel et al [Kandel-2], in their study of the marine mollusc Aptysia, have shown that

chemical changes in individual synapses are responsibie for three important types of leaming:

habituation, sensitization and classical conditioning. In this section, biological synaptic func-

tion is described at the behavioral level; for a description of the electro-chemical processes

involved, see [Kandel-2]. Fig. 4.1 shows a simplified schematic diagram of the portion of
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Aplysia's 105 neuron neryous system responsible for its protective gilt withdrawal reflex. The

neural network connecting the gill (Aplysia's respiratory organ), siphon (a small spout for

expelling sea water), mantle and tail allows the mollusc to withdraw its gitl when a stimulus is

applied to the tail, siphon or mantle. In nature, this reflex has obvious evolutionary advan-

tages, as it allows Aplysia to protect its sensitive gill at the first sign of attack. Aplysia's

response to tail, mantle and siphon stimuli may be altered dramatically by what it has learned

about these stimuli in the past. In Fig.4.1, the three sensory neurons SNt, S¡/2 and SN3

receive stimuli from the mantle, siphon and tail, respectively. SNr and SN2 synapse directly

with motor neuron MN (S 1 arid S), so siphon and mantle stimuli can trigger gill withdrawal.

In addition, ,SN3 slnapses with the facilitating intemeuron F'N, which in tum synapses with

synapses S 1 and 52 (through Ft and F). These synapses on synapses, F 1 and Fr, play a crit-

ical role in leaming, as described below. For the purposes of neural modeling, the pairs S 
1

and F 1, ârld,S2 and Frmay be regarded as single ternary synapses (synapses between three

neurons), in which the slmaptic weight is determined by the interaction of two extemal signals.

This is the approach that we take in the following section. Note that the schematic of Fig. 4.1

is highly simplif,ed; in particular, each neuron illustrated represents approximately 6 to 24 neu-

rons operating in parallel.

Habituation may be defined as "a decrease in the strength of a behavioral response that

occurs when an initialty novel eliciting stimulus is repeatedly presented" [Kandel-l]. Kandel et

al have shown that repeated mild tactile stimuli to the mantle cause ihe giJI withdrawal reflex

to habituate, as the animal leams that the siimuli pose no danger. This learning behavior has

been traced to chemical changes in the synaptic connection between mantle sensory neurons

and gill motor neurons (S1): the effective weight of the synapse S1 is reduced.

The sensitizafion mechanism is somewhat more complex. Sensitizatio¡¿ is defined as,

"lhe enhancement of an animal's reflex response as a result of the presentation of a strong or

noxious slimulus" [Kandel-l]. In the case of Aplysia, noxious stimuli to the tail result in

enhanced subsequent gili withdrawal in response to mild mantle stimuli. Again the locus of

leaming is the synapse S1, in this case through presynapticfacilitation from synapse F1. The

mechanism is as follows: tail sensory neuron firing (SN3) causes the lacìtitating intemeurons

@N) to fire, which in tum cause Ft to alter the chemistry of 51, such that thc synaptic weight

of 'S 1 is increased. Not surprisingly, sensitization can reverse the effects of habituation.

45



Chapter 4 - Synaptic Circuits Motivated by Invertebrate Biology

"In classical conditioning, an initially weak or ineffective conditioned stimulus (CS)

becomes highly effective in producing a behavioral response after it has been paired in time

with a strong unconditioned stimulus (U.S)" [Kandel-l]. Classical conditioning is a form of

associative leaming, by which an organism learns a predictive relationship between two

stimuli. Aplysia can be classically conditioned by applying a mild tactile stimulus to the man-

tle (CS), followed approximately ] second later by a strong stimulus ro rhe tail (¿/S). Again

Fr plays an important role. In classical conditioning, recent activity in S, due to the C,S

results in activity-dependent enhancement of presynaptic facilitatíon. Thus classical condition-

ing uses the same mechanism as sensitization (presynaptic facilitation), the effect of which is

enhanced by the arrival of the CS ] second before. In classical conditioning, the time

between the CS and the US is critical: if the US arrives before the C,S, no classical condi-

tioning occurs. This makes good survival sense, since Apþsla is concemed about leaming

when a mild stimulus (CS) predicts a potentially threatening one (US). In Kandel's experi-

ments with Aplysia, CSç¡¡7¡ (siphon stimulus) was used to differentiate between the effects of

sensitization and classical conditioning.

As the above discussion shows, classical conditioning is a form of associative leaming,

and is therefore related to Hebbian leaming lHebb] and its variants. However, classical condi-

tioning is non-commutative, because the C,S must precede the U,S by a critical interval.

Kandel's investigation of synaptic leaming shows that Aplysia uses leaming rules which

are much more elaborate than those used by most ANNs. Aplysia employs non-commutative

timing-critical associative leaming, as well as two forms of non-associative leaming, habitua-

tion and sensitization. Work by others demonstrates that these mechanisms are important in a

wide variety of organisms. Studies using the fruit fly Drosophila indicate that similar chemi-

cal mechanisms are involved in leaming. In human studies, it was found that the ability of a

one year old baby to habituate to repeated visual stimuli correlates well with measured intelli-

gence at four years of age. The implication is that simple non-associative forms of leaming

may be an important part of biological intelligence, and shoul<i therefore be considered for

inclusion in ANN models. ln the following section, an abstraction of these aspects of leaming

in Aplysia is presented. Note that the above description of biological synaptic function omits

many inferesting aspects of leaming:y:rAplysia; see [Hawkins] for a more detailed discussion.
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4"3 Mode[ of' F{ahÍÉuatüon, SexrsitËzatåom and Cåassica[ Coxrditüoxaing

As a starting point for the development of this leaming model, we use a standard ANN

model with Hebbian leaming described in chapter 3. In this model, both synaptic weights and

neuron activations can take on values in the range l-V,Vl. Network operation is govemed by

the equations (3.1) nd (3.2).

The neural network model presented in chapter 3 differs from neuron bioiogy in two

important ways. Neuron activations are represented as analog values in the model, rather than

as neuron firing rates. Secondly, biological neurons only have positive (unipotar) activations

and synaptic weighis, whereas the above model allows both positive and negative (bipolar)

activations and weights. Although at flrst glance the use of bipolar weights and activations

violates the principle of biological plausibility, it allows both excitatory and inhibitory synaptic

connections to be treated in a unifled way, and follows the principle of implementing functions

in a way that is "natural" for the medium being used to build the system. In our case, the

medium is analog CMOS circuitry, in which bipolar operation is easily achieved.

System behavior in the model of biological synaptic function proposed in this chapter is

govemed by the equations:

V¡ = f (ZÐW;¡¡V)

ry = cd(v¡)vt - n I v, I w¡,0 + z I vo| w,,o

(4.r)

(4.2)

The temary nature of these synapses is evident in (4.1) and, (4.2):W¡¡p is the weighting factor

determining the effect that correlation between the activations of the jth and. kth neurons will
have on the activation of ¡}re ith neuron. Hebbian leaming, as describe d by (3.2), may be

regarded as a special case of (4.2), in which i = j . Using the notation of the previous section,

the unconditioned stimulus US =Vus =Vk, the conditioned stimulus CS = Vcs =V¡, ãnd

(4.2) may be rewritten (for motor neuron MN) as:.

# = Cd(vcìvus - o I v* Iw + a I vo, Iw (4.3)

where the synaptic weight W is a shorthand notation for W;¡¡, =WMu,cs,t¡s, and indices CS

and US represent neurons SN1 and FN1 respectively, rather than their activations. The term

Cd(Vcs)Vus implements classical conditioning, where d(Vcs) is a delayed, time-averaged ver-

sion of I/65, representing the presynaptic facilitation function of F' 1 in Fig. 4. I. Note that (4.3)



Chapter 4 
- Synaptic Circuits Motivated by Invertebrate Biology

differs from Hebbian leaming, as it involves a correlation of two inputs, rather than an input

and an output activation. V65 must precede Vus by a critical interval for ciassical conditioning

to cause a change in synaptic weight W , as n Aplysia, and the size and direction of the weight

change are determined by the signs and magnitudes of V6s and Vus, as in the system

described by (3.2). Thus the system can leam predictive relationships between Vçs and,Vus.

Note that in addition to creating a delay, the function d(Vcs) is gated by Vus * 0, such That

classical conditioning will not occur when Vy5 precedes or coincides with V6.5 (absence of

reverse conditioning).

The second term in (4.3) represents habituation. Habituation occurs when V6s is non-

zero, and always causes W n decay towards zero. This extension of habituation to the bipolar

case makes intuitive sense, since it causes non-associative weight decay when V65 is active, as

in habituation in Aplysia. The form of the expression is also appropriate, in light of Mead's

observation, "A great deal of inhibitory feedback in biological systems depends on activity in

sensory input channels, but does not depend on the sign of the input" [Mead].

Finally, the third term in (4.3) E I yur I IV is the sensitization term. Vy5 activity causes

an increase in the magnitude of the weight, resulting in increased sensitivity to subsequent V¿5

signals. Notice that unlike in Aplysia, classical conditioning and sensitization are implemented

by different mechanisms in (a.3). This is due to the generalization to bipolar weights and

activations. In the unipolar case, weights can increase in only one direction, whether through

associative leaming or sensitization, and therefore classical conditioning and sensitization can

use the same biochemical machinery. However, this is a special case: (4.3) gives a clearer pic-

ture of the fundamental difference between the operations of sensitization and classical condi-

tioning.

In general, C > E > D, so associative leaming dominates, and sensitization and habitua-

tion result in smaller non-associative weight changes. The role of habituation as a form of
inhibitory (negative) feedback is apparent from (4.3). Sensitization causes weight values to

increase: however, the natural saturating behavior of any practical realization of (4.3) wilt limit

the effects of sensitization.

Next we describe analog CMOS components which will be assembled into a system to

implement this model of biological synaptic leaming.

4B
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4"4 ^Anaåog CV{OS Comporeenets

The analog CMOS circuits described below are compact, low-accuracy amplifìers, multi-

pliers, absolute value circuits, etc. The decision to use analog, rather than digital, computation

results in large silicon chip area savings, at the expense of computational accuracy and repeata-

bility. However, the biological machinery of Aplysia is even less precise, so any neural net-

work architecfure that requires high accuracy components is not biologically plausible, and

therefore not of interest in the present work.

The components which we are using are transconductance circuits, where the input sig-

nals are voltages and the output is a current. Many of these circuits are variants of the circuits

used in [Mead], but unlike in Mead's work, the transistors in our circuits are operating above

threshold (Vcs > Vr). Our goal at this stage is not to use the most compact circuits possible;

rather we wanted to use circuits that are reasonably silicon-area efficient, but still robust, and

therefore requiring only one fabrication iteration.

Below, circuits are discussed in detail, approximate analytic expressions for their opera-

tion are derived, and SPICE MOSFET level 3 simulations of their behavior are presented. As

in the previous chapter, anal¡ic expressions are derived using the simplifled square-law equa-

tion for the drain current of a MOSFET in saturation: IDS = 9(U".ç - Vr)z, whereu¿ 2. "o

þ = ttco*ï.

4.4.n Transconductance Amplifien

The transconductance ampliflers of Fig. 4.2 perlorm the operation low = a(V t - V ù. In

Fig. 4.2a, M 2 and M 3 form a differential pair, and M a and M 5 implement a cuffent mirror, so

Içur is the difference between 1* and /_ from (3.4) and (3.5):

Iow : I¡- I-=
.fFv*^,[aÇ-Fv?

2
(4.4)

where Vx =Vt-V2 and the current source 13 is implemented by Mt operating in saturation.

This amplifier has a limitation which restricts its usefulness: for the circuit to operate as

descdbed in (4.4), V¿y1 must be more negative than at least one of the input voltages. This

restriction causes problems in many sysiem applications, in which the output voltage cannot be

guaranteed.



Chapter 4 
- 

Synaptic Circuits Motivated by lnveÍebrate Biology

a) Amplifier

vdd

b) Wide-range Amplifier

50

Vss
Vs

i;Þ.-

value function is required. The circuit of Fig. 4.4a

a cunent I r = a(V t - Vù, which is mirrored by the

current mirror can only mirror 1r ) 0, and thus pro-

- V2. Similarly, Pz,Mz and Mo produce a

vdd

vn -d

vr! Þv,
Iour

vour

Vss

vl
Y2

4.4.3 Absolute Value Circuit

To implemenr (4.3), an absolute

[Mead] works as follows: P1 produces

current mirror M t, Mz. However, this

duces a half-wave rectifìed version of V1

Figure 4.2 Transconductance amplifiers, Iour = a(V 1 - V); a) Basic

amplifier, where V6u7 is limited by inputs Vy V2i b) Wide-range amptifi,er,

where Vç¡¡¡ is limíted only by Vdd, Vss .

The ampiifier circuit of Fig. 4.2b eliminates ttris restriction by adding two current mirrors

(M g, M rc, and M p, M p) wlrrich mirror the current through M7 twice, and thereby isolate input

and output without altering the amplifier's transfer function. Fig. 4.3 shows that the amplif,er

circuits behave as predicted by @.Q: for small values of V1 - V2the amplifier is linear, with

saturation occurring when I V t - Vzl, O.ISV .

4,4.2 Transconductance Multiplier

The transconductance multipier performs the operation lour = a(Vt - Vù(Vz - V+). It
is basically the same circuit that is described in section 3.4.1.
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F''igure 4.3 Wide-range amplffier Isar as a function of V t, for various V 2.

b) RC delay

Vi¡

I¡.r

v^ .9t Vour
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4

J

2

Ø,Ê. I

ì-0
F.

B-1

a

-J

-4

Vs

];þ*-.* ,^*fl-uo-

Figure 4.4 a) Absolute value circuit, Iow = a I Vt - Vzl ; Ð RC delay cir-

cuit-

half-waverectifiedversionof-(V1 -Vz),andIo*-pos(ø(Vt-Vù)+pos(-a(V1-V))
= a I Vt - Vrl, as required. The transfer function of this circuit is

a) Absolute value
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Iow
{pFlv" 

I

(4.s)

4.4.4 RC Ðelay Circuit

The delay circuit of Fig. 4.4b is used for the presynaptic delay function d(') in (a.3). Irs

transfer function in the Laplace domain is:

Vovr - G lf.t,2
Im C1C2(r6 + 1)(t2s + 1)

(4.6)

and its impulse response:

52

G ß(Eo 4ft. -ttx,,.tftoUT= _-;-- _le '-e ')
Cp2l't2-r,)

(4.7)

^ 1.5Ø

o
v1

Figure 4.5 RC delay circuit response to pulse input.

where tl andf,zare determinedbyGr, G2,G3,C1andC2. Inresponsetoacurrentimpulse,

assuming that t1 112, ãnd that t1 and 12 are well separated, the rise time of V6u7 will be

approximately determined by t1 and its fall time by 12. Fig. 4.5 illustrates the circuit's

response to a short input pulse: T1 and t2 have been chosen such that VsuT has a short rise

time and a long decay time (t1 = 2.0ps, tz= 4.9þs). Insufficient biological data is available

to determine the appropriate shape of d(.) precisely.
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4.4.5 Absolute Value Mutrtiptien

a) Absolute value muliplier b) Comparator

53

v'l
V

1,, IrrnBs

Vour

Vs

ï;þ'.-
Vrc¡¡rr

vi
Y2V3

Va

vl
v2
v3
v4

Figure 4.6 a) Absolute value multiplier, I6ur = a(Vt-VùlVz-V+l ; b)

Comparator, Vow =Vdd, when lVr-Vzl .Vranrs, Vo(¡r =Vss, when

lvr-vrl ,-vrnnss.

The circuit of Fig. 4.6a performs the calculation Isur = a(Vt - Vùl Vr - Va L which

is required to implement habituation and sensitization, as follows. P 1 takes the absolute value

Ir: o lVt- Va I , which serves as the bias current /¿ for the wide-range transconductance

amplifier, Mt - Mg Fig. 4.7 shows the behavior of this circuit -- notice that it has approxi-

mateiy the same characteristics as the wide-range multiplier (Fig. 3.5), with the exception of

the absolute value operation. Its transfer firnction is:

. {pltv"
lour = 

z
(4.8)

This circuit is assembled from two sub-circuits: the absolute value circuit and the wide-

range amplifier. The transconductance circuits that we are using are easily combined in this

way, resulting in efficient implementation of complex functions. In this case, the functions of
an absolute value circuit (14 transistors), and a multiptier (17 transistors) can be implemented

with a 22 transistor circuit which combines these functions, resulting in a 3OVo saving in

vdd

vdd
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-0.5 0 0.s
Vr-Vo ffolts)

Figure 4.7 Absolute value multiplier, I6u7 as a function of V3-Va for
V 1 - V 2from 4.8V to 0.8V .

silicon area.

4.4.6 Comparaton Circuiú

The final circuit we need to build our analog CMOS synapse is the comparator circuit of

Fig. 4.6b. It performs the presynaptic facilitation inhibition operation when Vy5 is non-zero.

Vrc¡vrt is used to set the threshold voltage, as shown in Fig. 4.8. When the input

lvr-vrl <vrnnns,vour =vdd, and. when I vt-vzl >vr,onr,vour = vss. A com-

parator circuit is conveniently built from a transconductance circuit, by connecting its output to

a circuit with infinite input impedance (such as a MOSFET gate) -- the output voltage will

saturate at either Vdd or Vss. Is this case, when olVr-Vrl =Irtls <lrnnas, V6u7 will
saturate at vdd.

4"5 Synaptic l-earnÍng Circuít

Fig. 4.9 is a bipolar synaptic leaming circuit, built from the components described in the

previous section. This circuit approximates (4.3), incorporating classical conditioning,
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Figure 4.8 Comparator, Vour as a function of V 1 - V 2, for yarious Vrc¡¡rt.

F''igure 4.9 Synaptic circuit.

habituation, and sensitization. The synaptic weight is stored as the voltage W on capacitor C 1,

and weight changes are govemed by:

55

IA

a
Ðo

-0.8

CSBias



Chapter 4 - Synaptic Circuits Motivated by Invertebrate Biology 56

(4.e)
Icc+IH+ls

cr

cvpvus - a lv", I w + e I vw lw
C1

where lcc,ln and 15 are, respectively, the classical conditioning, habituation and sensitization

weight change components. Pr - Pq, Mt and R1 implement classical conditioning. Inhibition

of presynaptic facilitation (prevention of reverse conditioning) is achieved as follows: when

lVutl >Vranns, P1 tums onM1, which tums off Pzby setfing its bias cuffentto zero. As

a result, when lVurl >VrHREs, V¿.5 has no effect onVp, and therefore no classical condi-

tioning can occur. Conversely, wtren I Vys I < VrnnBs, P, is active, and classicat condition-

ing can occur.

Absolute value multipliers P5 and P u approximate habituation and sensitization. Note

Lhat W is connected to the negative input of P5, since habituation drives VTl towards zero.

Below, three examples are presented which illustrate the leaming behavior of this synaptic cir-

cuit. For the purposes of illustration, higher than typicai leaming rates are used, so that weight

changes are evident over the relatively short interval of these simulations.

4.5.î Classical Conditioning

Fig.4.10 shows the synaptic circuit's response to a typical classical conditioning event.

At t = 3ps, a 2ps conditioned stimulus (Vc's) pulse initiates a presynaptic facilitation pulse

(Vr). At t = 7¡rs, the unconditioned stimulus (Vy5) is presented, resulting in an increase in

the weight W, as the correlation relation between V65 and Vy5 is leamed. The critical period

for classical conditioning, that is, the time after V65 occurs in which Vy5 must be presented

for conditioning to occur, is approximately 2 to 8¡rs. The shape of Vp can easily be changed

by choosing different component values for the delay circuit, p3.

At t = 30ps, Vys is briefly pulsed negative. The presynaptic facilitation signal Vp has

decayed to almost zero, and thus no classical conditioning occurs. However, Vy5 does cause a

slight increase in I4l, through the sensitization mechanism. Notice that despite Vy5 being

negative at t = 30ps, W increases, since sensitization is independent of the sign of Vy5. The

slow decay of I4l from 13 to 30¡ts is due to a small component mismatch in P 4, P 5 and P 6.

dw
dt
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Figure 4.1tr Reverse conditioning. Vus occurs beþre Vçs, so no classical

conditioning occurs.

4.5.3 tsipolan Circuit Eehavion

Thus far, we have shown classical conditioning examples in which both V65 and Vus are

positive. However, our circuits are bipolar, as illustrated in Fig.4.12. In this example, the

V6's pulse presented is negative, resulting in a negative 7¡. A positive Vy5 arrives during the

critical period for classical conditioning, and the synapse leams an anti-correlation relationship

between Vçs wrd Vus. When a second negative V6'5 is presented àt t = 30ps , habituation

occurs, causing W to decay towards zero.

4"6 Tmpnícations for ANNS

The development of our biology-motivated ieaming model raises a number of interesting

questions, including, whether the biological leaming details presented in this chapter are impor-

tant in ANN models. We began with a conventional Hebbian model, generalizing and extend-

ing it to incorporate the functions of synaptic leaming found n Aplysia. Thus Hebbian leam-

ing(3.2) isaspecialcaseof (4.3),inwhichthedelayof d(.)iszero, i: j,andreversecondi-

tioning is allowed.
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Figure 4.X2 Bipolar circuit behavior. Synapse can be classical conditioned

to learn anti-correlation.

The effect of non-zero delay in d('), together with inhibition of reverse conditioning, is

that leaming becomes non-commutative. This "symmetry breaking" would result in non-

symmetric weights (W;ft + W¡¡¡) in the case of a fulty-connected, Hopfield-type network. This

tlpe of non-commutative leaming could be incorporated into networks using contrastive Heb-

bian leaming [Peterson-2], agan resulting in non-symmetric weights. Further work is planned

to investigate this possibility.

The non-associative leaming found in biological systems, habituation and sensitization,

may also have a role to play in ANNs. Their importance, and how to go about incorporating

them into an artificial system is less clear lhan with non-commutative leaming, because non-

associative learning is not used in many ANNs. However, they are obviously important in bio-

logical neural networks, as shown by the study of a variety of animals, and therefore must be

considered for inclusion in ANNs.

An important issue is whether the biological synaptic learning presented in this work

depends upon a certain degree of "hard-wiring". For example, Aplysia has been "wired" so

that it can leam a predictive relationship between miid mantle stimuli and noxious tail stimuli.

If the neural network of Fig. 4.1 were missing the facilitating intemeuron .F'N, then neither

59
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sensitization nor classical conditioning couid occur. There are two interpretations of this

"pre-wiring": it is evidence that the biology of Aplysia is not of interest to ANN researchers,

because it represents a special case in which pre-determined network architecture plays a major

role, or, it is an indication that tailoring a network architecture for a particular purpose is an

essential part of neural networks, whether natural or artifÌcial. Our tendency is towards the

latter view, although the issue is far from settled.

4.7 Sumxnary

This work has demonstrated that biological details, which are omitted from most current

ANN models, may be eff,ciently implemented with analog CMOS circuits. Three types of

leaming, habituation, sensitization and classical conditioning, are incorporated in the synaptic

learning circuit which we have developed. Habituation and sensitization are types of non-

associative leaming, and are not often included in ANN models. Classical conditioning is a

form of associative leaming, related to Hebbian leaming. It differs from Hebbian leaming in

temporally correlating two inputs at temary synapses (synapses between three neurons), rather

than the input and output of binary synapses. Classical conditioning is also more complex, as

it is non-commutative, resulting in a type of "symmetry breaking" in the neural network sys-

tem. Our work shows that biological synaptic leaming is substantively different from current

ANN leaming, both in terms of leaming paradigms employed, and in terms of the extensive

use of "hard-wiring" of connections in biological neural networks. Further research is

required to determine whether these aspects of neural biology are a critical part of information

processing in biological and artificial neural networks.
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CüncadÉs flon CoxaÉnaståve F{ehhåaua ANNs

5.1 lxrtnod¡¡ctÍon

In this chapter we describe an analog CMOS implementation of a fu11y connected ANN

withcontrastiveHebbian leaming [Movellan] circuitry at each synapse. This work is an exten-

sion of the simple Hebbian leaming ANN implementation presented in Chapter 3. Netwo¡ks

with contrastive Hebbian leaming are intended for supervised leaming applications, where a set

of training pattems is used for weight leaming. A key feature of contrastive Hebbian leaming

is that it can be used to train weights in networks with hidden neurons, that is, neurons whose

activations are neither network inputs nor outpuis. Implementations similar to those of this

chapter appear in [Alspector-1, Arima]. See section 1.3 for a description of their work.

Below, we begin by outlining the theoretical basis of contrastive Hebbian leaming. Then

we present a description of our analog CMOS realization of contrastive Hebbian theory, with a

discussion of approximations that were required for efficient implementation, and circuit test-

ing. Lastly, other applications of these analog circuits are explored.

5"2 Tleeory of Network OpenatÍon

The architecture of the ANN under consideration is a fully-connected Hopfield-type

arrangement of neurons and synapses, in which there is a synaptic connection between each

pair of neurons. Thus, a network of N neurons has N(¡¿-1) synapses, and synaptic circuitry

occupies the majority of silicon chip area @ig. 5.1). In this section, ,,ve present some elements

of the theory of operation of a firlly-connected ANN with contrastive Hebbian weight leaming
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Figure 5.X. Archítecture of fully connected network.

[Movellan, Peterson-l]. V/e begin by describing the well sfudied Hopfield network [Hopfield],

extending the discussion to include contrastive Hebbian leaming.

Hopfield ANNs are typically used for associative memory apptications, in which the nei-

work is presented with a set of inputs, for which ii generates a set of outputs. The input-

output relationship is determined by the system's synaptic weights, I4l¡. These networks are a

variety of relaxation network, in which the network settles into a minimum energy state, sub-

ject to the constraints imposed by inputs and synaptic weights. Theory indicates that sym-

metric network weights (W¡j =W¡¡) are required to ensure that Hopfield networks will settle

into a stable final state. However, in praciise weight symmetry is not essential [Galland].

In a Hopfield network, the stable neuron activations after settling are determined by the

relation:

V¡ = f (\W;¡V¡)
l

where V; is the activation of the l¡å neuron, W¡¡ is the synaptic weight determining the effect

that the 7rå neuron has on lhe ith neuron, and ,f (') is a sigmoidal nonlinear saturating function.

The optimum s¡'naptic weights, W¡¡, to represent a particular set of input-output associations,

(s.1)
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may be readily calculated fHopfieldl.

The major limitation of Hopfield networks is that they have no hidden neurons, that is,

neurons whose activations are neither network inputs nor outputs. Networks without hidden

neurons can not represent a wide variety of input-output associations, including the exclusive

OR (XOR) function and its generalizations [Rumelhart-1]. The contrastive Hebbian network

architecture, which we describe below, takes the basic Hopfield network and incorporates hid-

den neurons. In principle, this is an easy task, because hidden neurons are simply neurons

whose activations are not set to particular values during network training and operation. The

diff,culty arises in f,nding a weight leaming scheme which makes use of the hidden neurons to

represent input-ouþut relationshipsr contrastive Hebbian leaming is one such method.

Contrastive Hebbian leaming (CHL) is a two-phase weight leaming process, govemed by:

ot4r,i = a(V¡+Vf - vr vl) (s.2)

where V¡+ and V¡+ are the activations of the ith utdjrfr neurons in the clamped phase, V¡- utd,

V¡ are the activations of the ith and j'h neurons in the unclamped phase, and a is a small

positive constant which determines the weight leaming rate. During the clamped phase, input

and output neuron activations are held at the desired values (ie. clamped), utd the network is

allowed to settle into its minimum energy state. After settling, the activation values V¡+ are

recorded for all neurons. In the unclamped phase, only inputs are fixed, and the network deter-

mines the activations of both output and hidden neurons as it settles into its minimum energy

state. After settling in the unclamped phase, (5.2) is used to modify network weights. This

two phase procedure is repeated for each pair of input-output associations in the training set.

Typically, several hundred passes through the training data set are required for CHL weight

training. This weight training procedure is also called deterministic Bolømann or mean field

leaming, because it is a non-stochastic version of the Boltzmarur weight leaming algorithm

[Hinton-l]. As mentioned previously, the key feature of CHL is its ability to use hidden neu-

rons to represent complex associations.

CHL is a form of gradient descent leaming in t}:re contrastíve function J fMovellan]:

J=F+-F- (s.3)

where iq'+ and F' are the energy functions of the network after settling in the clamped and

unclamped phases. Here we present a brief outline of the theoretical basis of CHL: for a more

detailed account, see fMovellan]. As we are dealing with a fully connected Hopfield-type
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architecture, ,F'+ and F- are minimum energies, subject to the constraints of weights and

clamped inputs and outputs. Assume the F' has a unique minimum over allowed neuron

activations. Then, since F+ and .F'- share the same free parameters (the activations of the hid-

den neurons), and F- also has the activations of the unclamped neurons as free parameters,

F+ > F-. Given the assumption that the minimum energy state of the network is unique, when

J =0, V|:V¡- for aI1 output neurons, and thereforc J may be used as a gradient descent

flrnction for weight leaming. For Hopfield-type networks [Movellan],

Ur¡r ii
= _V¡Vj i*j (s.4)

and from (5.3)

òwij
* v¡-v¡ - v¡*v¡* (s.s)

so CHL (5.2) descends in the contrastive function,I.

The difficulty with CHL arises from the assumption rhat F has a unique minimum. In

the case where the network has no hidden neurons a unique minimum exists. However, when

hidden neurons are introduced, there need no longer be a unique minimum, and thus F+ > F-

is not guaranteed. Fornrnately, if the training procedure maximizes the probability that the

clamped phase F+ settles to the same activations as the unclamped phase F-, CHL performs

well. Two approaches are commonly used. If the unclamped phase is performed first, and the

settled unclamped activations are used as the initial activations during the clamped phase (as

opposed to random activations), then the network tends to setile into the same state lMovellan].

The fixing of output neuron activations when the clamped phase follows the unclamped phase

may be regarded as an imposition of additional consüaints on the permissible energy function,

which perrurbs the values of the unclamped phase activations. As the network learns correct

weight values, the difference between clamped and unclamped output activations is reduced,

and these perturbations tend towards zero. A second technique that is used to promote settling

is a form of annealing, in which neuron gains are gradually increased while the network activa-

tions are settling. This an¡realing procedure reduces the probability that the network will settle

into spurious local minima [Movellan]. We have implemented both these techniques in our

VLSI implementation of CHI-.

Peterson and Hartrnan [Peterson-2] describe a Manhattan updating variant of CHL,
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Or¡tii = a'sgn(V¡+Vl - Vi Vl)

65

(s.6)

where the magnitude of the fixed-size weight changes is determined by the constant a, and the

sign of the change by sgn(V;+Vr.+ -ViVÐ. It is apparentthat (5.2) and (5.6) perform gradient

descent in the same function. Peterson and Harfrnan found that Manhattan updating can result

in more stable leaming, because situations arise in practise in which (5.2) produces weight

changes which vary greatly in magnitude, making it difficult to choose a suitable leaming rate

[Peterson-2]. Our circuits implement a furttrer modification of Manhattan leaming, where

weight changes are govemed by:

Or4r ii = a (sgn( ¡+V f) - sgn(V;-V;)) (s.7)

Simulations show that weight adaptation govemed by (5.7) results in leaming performance

approaching that of conventional CHL, provided that Gaussian noise is added to neuron activa-

tions during the leaming process. For more details regarding the performance of this modified

form of CHL, see [R. Schneider]. This form of Manhattan updating is well suited to imple-

mentation using analog CMOS circuits. In the next section, we describe an analog CMOS

ANN with modified Manhattan contrastive Hebbian leaming circuitry at each synapse.

5.3 Ovenview of funplementatíon

Fig. 5.2 is a block diagram of the ANN system: the circuit is an analog CMOS approxi-

mation to (5.1) and (5.7). Both neuron activations and s}'naptic weights may take on analog

values in the range [-V,V]. Multipliers P3 and P5 are transconductance multipliers, whose

inputs are voltages and output is a current. P a and P 6 are linear current to voltage converters,

functioning as a resistor to (Vdd +Vss)12. The comparator P7 outputs either Vdd or Vss,

depending on whether its input is above or below is threshold reference, and Ps and P9 are

conventional digital gates. Lastly, P 1 and P 2 are modified Manhattan CHL circuits, containing

weight update circuitry and weight storage capacitors. Synaptic weights are represented by the

differential voltage Vcr - Vy¡ I storing synaptic weights as differential voltages has a number

of advantages, which are discussed below.

The circuit of Fig. 5.2 approximates equations (5.1) and (5.7), representing ideal network

behavior, as follows. The synaptic weight W¡¡ is represented by the differential voltage,

Vcr - Vuu. Then, the product W¡V¡ in (5.1) is implemented by p 3 as

Isuu =b(Vcr -VuN)V¡, and the summation operation is performed as current summation at
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NGainP3 CBias
YLVi

NGainNr
NGainN3 CTh¡es LVTNI

Vi (noise added during ing)

LCPulseP
LCPulseN

LVi
LVj

LUPulseP
LUPulseN

LVi
LVj

SBias

Synapse

Figure 5.2 System block diagram. N - 1 synaprtc circuits are connected to

each neuron circuit.

the input ro P 4. A true summation is performed, despite the fact that the input to Pa is not

held at virtual ground, because multiplier P3 produces an output current, independent of the

output voltage. This is an important consideration, because simpler schemes, which perform

averaging, rather than summation, such as that employed in [Hopfield], will not function prop-

erly in a CHL network [R.Schneider). Pq - P6reaIize a variable gain neuron, whose transfer

function may be adjusted in a variety of ways, using the NGain control signals.

Since we implement modified Manhattan leaming, only the sign of neuron activations are

required for leaming. P7 - P9 generate LV¡, a binary version of each neuron activation for

leaming. )il{OR gate Pe is used to invert LV¡ via control signal InvLVi: details conceming

the function of LV¡ and its non-invertible counterpafi LVyr are provided in section 5.7.

5.3.f. Network ûperation

Network operation proceeds as follows. First, the network inputs are set for a paiticular

training pattern, while output and hidden neurons remain free (ie. unclamped). The network is

allowed to settle to its unclamped phase minimum energy state, LVi- utd LV¡ (the binary
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leaming aciivations generated by the ith utd;tå neurons) settle, and control signals LtlPulseP

and, LUPutseN are pulsed briefly. The binary product LV;LVI determines whether a small

quantity of charge is added to, or removed from, the storage capacitor connected to the

unclamped leaming circuit. Next, network outputs are set to training pattem values, the net-

work settles in the clamped phase, and leaming control signals LCPulseP and LCPuIsTN are

pulsed briefly. As before, the binary product LV:LVj+ determines whether charge is added to,

or removed from the clamped storage capacitor. In the case where the network has leamed the

current training pattem perfectly, LV¡- = LVr+ lot all neurons, LVi LVj = LV¡*LVj*,Vç2 and

Vuu are both increased or decreased by the same amount, and the s5maptic weight

14/ii = Vct - Vy¡,' remains unchanged. In all other cases, the net effect of the two phase pro-

cedure will be a small weight change. This two phase procedure is repeated for each training

pattem. Typically, many passes through the entire set of training data is required to leam net-

work weights.

The network operation detailed above deviates somewhat from the ideal case described by

(5.1) and (5.7). In particular, weights are updated after the unciamped phase according to the

product LV;LVj and then again after the clamped phase, according to LVi+LVf. As a result,

weights may take a small unnecessary step after the unclamped phase, which is corrected in the

subsequent clamped phase. In addition, since noise is added to neuron activations during

weight leaming, the leaming process is non-deterministic, which introduces additional spurious

weight adjustrnent steps. However, system level simulations [R. Schneider] indicate that these

deviations from CHL theory do not seriously affect network leaming.

5.3.2 Fabrication

To test our design, we had several circuits fabricated in Nonhem Telecom's 7.2¡tm dou-

ble metal twin-tub CMOS process. In this process, Iinear capacitors are formed between two

layers of polysilicon. Fig. 5.4 is a photomicrograph of the multi-project die containing a 19

neuron, 342 synapse test network, and Fig. 5.3 illustrates a 3 neuron network. Figs. 5.5 and

5.6 show individual synapse and neuron circuits. In addition, a variety of test circuits were

fabricated. It is evident from these photomicrographs tTrat capacitors (the apparently unoccu-

pied areas of Figs. 5.3 and 5.5) take up a significant portion of total IC area. However, this

design will still function properly when constructed with smaller capacitors: large capacitors

are used in this preliminary design to facilitate testing.
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Figure 5.3 Photomicrograph of 3 neuron, 6 synapse network

10.66 x 0.78mm2).

5.4 ^A.nalog nrnplemrentatÍon Considenations

The primary reason for using simple analog components is that these circuits are far more

compact than their digital counterpafts, and hence systems with substantial information process-

ing capability may be integrated on a single chip. An ANN is generally well suited to imple-

mentation with low-accuracy analog components, because many operations are not higtrly criti-

caI. Thus, low accuracy computation, in the form of non-ideal multipliers and adders, may be

used in their construction. In addition, weight leaming allows the network to compensate

for a wide variety of component imperfections.

Despite the fact that many operations in an ANN are non-critical, simulations

[R. Schneider] indicate that there are two operations in CHL which must be implemented accu-

rately. First, there must be good matching between the clamped and the unclamped leaming

phases: in particular, in the case of Manhattan weight updating, the size of the weight incre-

ment and decrement steps must be the same. It is easy to see why this is important in the
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Figure 5.4 Photomicrograph of 19 neuron, 342 synapse network

(4.16 x 2.76mmz).

special case when the network has leamed a particular training pattem perfectly. Then, the

clamped and unclamped phases should cancel one anoiher, and there should be no weight

change. If there is a mismatch between the two phases, then the synapiic weight will be

changed from its correct value. Simulations show that the size of the mismatch between leam-

ing phases is of the same order as the minimum attainable mean squared error in learning asso-

ciations [R. Schneider]. Clearly, phase mismatch must be kept to at most a few percent.

The second critical function is the weight leaming rate. Simulations show [R. Schneider]

that a small leaming step size (ie. a small LW,¡) is essential for reliable weight leaming. In a

high-dimensional weight space, in which the energy function typically has a complex topology,

convergence is impossible with large weight change steps. Our results are consistent with

those reported by Peterson [Peterson-2] in his discussion of the advantages of Manhattan

weight updating. Large sets of training data require small leaming steps in any case, to avoid

biasing the network weights towards the training pattems presented most recently. The design
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Figure 5.5 Photomiuograph of synaptic círcuit (27 Ol\¡tmz per synapse ).

ramifications of these two critical operations are discussed in section 5.7. In the following sec-

tions, we describe circuit components in detail, illustrating their behavior with measured data

from our test chips.

5.5 Tnansconductance MuXtíptrÍer

The analog multiplier circuit that we use to implement P3, Fig. 5.2 is itlustrated in

schematic form in Fig.5.7. It is a Gilbert transconductance multiplier fGilbert, Mead], whose

inputs are voltages and output is a current. This circuit is well suited to our application: it has

differential voltage inputs with a near-infinite input resistance, which is what is required to read

the differential weight voltage Vcr - Vy¡y without discharging the weighi siorage capacitors.

As weli, muitipiier current outputs Isuy ma! be summed directly with no additional hardware.

As with many analog multiplier circuits, this multiplier does not require accurate matching

between N and P channel transisiors: only matching bet'ween identically sized same-potarity

70



Chapter 5 - Circuits for Contrastive Hebbian ANNs
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Figure 5.6 Photomicrograph of neuron circuit (41 847¡tmz per neuron).

transistors is necessary.

Fig. 5.8 shows the transfer characteristic of the summation multiplier. Its linear range is

fairly narrow: about 0.75V for the Vct - Vy¡ input, and 1.6V for the V; input, but our simu-

lations indicate that this is sufficient for our synaptic circuit. Similarly, the 'step' in the

characteristic of Fig. 5.8 for Vcr - Vun > 0 is not large enough to matter for our application.

It is due to a mismatch between the transistors makìng up the current miffor (M rc, M n): M n

was rotated by 90' in the layout to save space.

Fig. 5.9 illustrates the range of common mode weight voltages for which this multiplier

circuit functions properly: Vç¿ utd Vy¡ must be kept in the range l-2.5,I.01volts. In design-

ing this circuit, there was a tradeoff between common mode voltage swing and the linear range

of Vç¿ - Vup.

At this stage of our investigation it was not a high priority to use the most compact and

fastest circuit designs possible; rather, we opted for circuits which were likely to function after
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Vour

VUN
v(L

V¡n¡r-T

Figure 5.7 Synaptic transconductance multiplier, Isuy = a(Vct - Vuu)V¡

one design and fabrication cycle. We also wanted to build our system out of as few different

circuits as possible, primarily to reduce design time.

5"6 Othen Cincuits: Comparaton and l-V Converter

The comparator (Fig. 5.10a) consists of a transconductance amplifier driving an infinite

input resistance circuit: Vow will saturate at either Vdd or Vss. We use this comparator to

create a sharp, adjustable breakpoint between positive and negative activations for modified

Manhattan leaming.

Fig. 5.10b is the current to voltage converter circuit P 0,Fig.5.2. When the conductances

of M rc and M s are matched, this circuit functions as a resistor to ground: Fig. 5.11 shows this

circuit performs a near-linear cuffent to voltage conversion. Highly linear behavior is not

essential, since Vsura is passed through the higiily nonlinear neuron amplifier. For greater test-

ing flexibility, the second I-V converter, P 6 ãt the neuron output, has been implemented off-

chip.
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V¡=-0.8 i .
-------i- -0.6---i--

-0.5 0 0.5
V.r-Vu* (Volts)

Figure 5.8 Synaptic multiplter, Isuy as a function of Vcr - Vu¡,¡ for V¡ from

-0.8y to 0.8y (1.2¡tm CMOS test chip, Vdd = 25V, Vss = -2.5V,

Vn = -0.9V , data collected using HP4145A).

5"7 ï-eannÍng Círcuit

Fig. 5.I2 is a schematic of the leaming circuits Pt and Pr, Fig. 5.2. We begin by

describing the typical operation of this circuit. )ßIOR gate P 1 implements the binary product

LV¡LVj. Assume thatLVtLVt > 0, so MsandMrcare tumed on and M7 andMs arc fumed

off. After settling, leaming pulses LPuIseP (from its resting value of Vdd to Vdd - V¡) and

LPulseN (from its resting value of Vss to Vss + Vp) are pulsed briefly. Because we are deal-

ing with the case where LV1LV j > 0, M s is on, LPuIs¿P causes M I to be tumed on briefly,

charge flows onto the weight storage capacitor, and Vç¡p is increased. In the case where

LViLVj 10, Mz is briefly activated, andVç¿p is decreased. Note that transistors M5 and M6

are normally on, and M 3 and M 4 arc normally off: these four transistors are used to set capaci-

tor values at the beginning of the training process. The capacitor access transistors M 1 and M 2

operate in saturation, seruing as cuffent sources, and consequently, LVc,qt will be the same,

independent af Vçap.

Differential weight storage schemes have been described by other authors, for example,

[Schwartz-1]. However, our approach is substantially different from the techniques employed
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--1

-2.5 -1.5 -1 -0.5 0 0.5
V", (Volts)

1.5 2 2.5

Figure 5.9 Synaptic multiplier, Isuy a.s a function of Vcr for VuN from 15
to 2V (1.2¡tm CMOS test chip, Vj =2.5V, Vdd =2.5V, Vs,ç = 1.5V,
Vn = -0.9V , data collected using HP4I45A).

in fSchwartz-l]: see section 1.3 for a discussion of Schwartz's work.

5.7.n Srnall n-earning Step

System-level simulations of CHL ANNs indicate that a leaming step rhat is from 10+ to

10-3 of the full range of the weights is required for stable weight leaming [R. Schneider]. The

only way to achieve such a small weight change with the circuit of Fig. 5.12 is to use the

subthreshold charactenstics of the access transistors M 1 and M 7.

A MOSFET is operating in its subthreshold region when Vcs <Vr. When Vcs <Vr,
no channel is formed between source and drain and 1¿5 is the result of diffusion of electrons

from source to drain. Thus, a MOSFET operating in its subtfueshold region behaves like a

bipolar transistor, with 1¿5 exponentially dependent on ycs. The N-chan:rel MOSFET drain

current expression is derived in the same way as the expression for the collector current in a

bipolar n-p-n transistor rvith homogeneous base doping [Sze]:
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a) Comparator

Vss

v*n" -J

Iour
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b) I-V Converter

vdd

vor* I

v
Vg

Þ!"-4
Vn¡r'

V¡¡

Figure 5.L0 a) Comparator, V6ur =Vdd when V¡¡¡ )VREF, Vow =Vss

when V¡¡¡ 3 Vnap; b) Current to voltage conyerter, V6¡¡7 = cl¡y.

and for large Vp5,

IDS = I oVe\(v^-v')

where Vcs < V7, fhe constant Is absorbs a number of process parameters, and þ = ft
Figs. 5.13 and 5.14 plot I¿* as a functionof LPulse for access transistors Ml urd M2.

The exponential relationship between the access transistors' gate voltages and 16¿¡ appears as

a straight iine on these log plots. We require a leaming current Iç¡p inthe 2 - 20nA range to

achieve a leaming rate in the 104 to 10-3 of full weight swing range. The exponential

subthreshold MOSFET characteristic has the advantage of providing a tremendous range of

learning rates: however, care must be taken to achieve adequate matching between the clamped

and unclamped leaming phases.

5.7.2 Capacitive Coupling Effects

During weight leaming the access transistors' gate voltage is switched rapidly in each

leaming cycle: thus there is a potential problem with capacitive coupling between the gates of

the access transistors and the weight storage capacitor. Even if the storage capacitor is much

dd

(s.e)

M11

v**.o I

vPcvn-
I
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i .-': :

VNcvrr=2.2, VPc¡rrr=- 1. 9

-1 0
I,* (pAmps)

Figure 5.l,L Summation current to voltage converter, Vsur as a function of

I¡¡¡ (1.2¡tm CMOS test chip, Vdd = 2.5V , Vss = 1.5V , data collected using

HP4r4sA).

larger than the access transistors' gate capacitances, the capacitive coupling effect can still be

large when compared to the small weight change. Fornrnately, the small LPuIse that is

required for subthreshold transistor activations also prevents capacitive coupling between the

drain and the gate (Fig. 5.15). In the subthreshold operation, most of ttre gate capacitance is

between the br¡lk and the gate, and as long as the transistor is in saturation, the remainder is

between the gate and the source. Orfy a small linear overlap capacitance couples the gate and

the drain.

5.7.3 Matching Between Fhases

Considerable care was taken to ensure that leaming in the clamped and unclamped phases

is well matched. If matching was not important, then a single weight storage capacitor could

be used, and the unclamped phase would simply involve negating the product LViLVj. A sin-

gle capacitor weight storage scheme relies on matching between transistors M1 and M2 to

achieve matching between the leaming phases. Unforrunately, it is not possible to reliably

match N and P channel transistors, particularly for operation in the subtfueshold region. Thus
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SetNeg Vsss4p

LPulseP
LPulseN

LVi
LVj

Figure 5.12 Modified Manhattan synaptic learning círcuit.

we adopted a two capacitor differential voltage scheme, in which only matching between

same-polarity, same-size transistors is required. The access transistors are also all oriented in

the same direction, and have large channel regions to further improve matching. Figs. 5.13

and 5.14 show the matching between four transistors from two different test chips. Typical

mismatch between access transistors on the same chip is 57o (N-channel) and 3Vo @-channel).

Between chips, the N-charurel mismatch is 40Vo and the P-channel, 302o.

Differential weight storage causes an additionat complication: we must keep the common

mode weight voltage (Vcr + VuN)12 in the proper range for the summation multiplier (Fig.

5.9). The following scheme is used. Capacitor voitages are initialized to approximately -1V.
A training pass is made through the entire set of training data. Before the second pass through

the training set, InvLVi is used to invert the leaming product LVíLV j. This is possible because

the non-inverted leaming activation LVlt is the actual source of LVr: otherwise, if both terms

in LV¡LV¡ were inverted, then the sign of the product LViLVj would remain unchanged. In

this inverted mode, clamped weight changes are applyed to the unclamped capacitor, and visa-

versa. InvLVi is used in this manner for every second pass through the training set; the effect
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LPulseN

Figure 5.13 Learning current lçop as a function of LPulseN ; four measure-

ments from two test chips illustrated. Typical variation ín Ic*
(LPulseN = 1.725V ): 5Vo on same chip, 407o beween chips. (1.2¡tm CMOS

test chip, LPulseP = 2.5V , Vdd = 2.5V , Vss = -2.5V , data collected using

HP414sA).

of this procedure is to keep the common mode weight voltages roughly centered. Weight

decay may also be used to keep common mode voltages in range.

5.7.4 Charge Ï-eakage

Leakage from weight storage capacitors is less than 7pA at room temperature, and even

modest cooling reduces the leakage current dramatically [Schwartz-2]. Differential weight

storage provides some additional immunity from leakage, as the stored capacitor voltages will

decay simultaneously, and their difference will be maintained. We anticipate that these circuits

will be used in ANNs where training data is interspersed with pattems that the network is sup-

posed to classify: in this case, weights will be continually refreshed by the occasional training

pattems, and weight decay becomes a less serious problem. An additional beneflt of this con-

tinuous ieaming process is that it provides a way for the network to compensate for component

drift, as the temperature of the circuit changes.



Chapter 5 - Circuits for Contrastive Hebbian ANNs 79

10-s

10-6

Ø

3 ro-*

I to-n
Q

10-7

10-10

10-11

10-12

t.4 1.5 1.6
LPulseP

Figure 5.L4 Learning current Iç¿p as a function of LPulseP ; four measure-

ments from two test chips illustrated. Typical variation in lcp
(LPutseP =1.75V): 3% on same chip, 307o beween chips. (L2¡tm CMOS

test chíp, LPuIseN = -2.5V, Vdd =2.5V, Vss =-2.5V, dnta collected using

HP4145A).

5.8 Fowen Ðissipation

Power dissipation is an important consideration for VLSI circuits. Typical DC power

consumption for these circuits is in the 54¡tW lsynaps¿ range, or about 2O0mW lcm2. the digi-

tal circuits which implement modified Manhauan leaming have a high transient power con-

sumption, but as this circuit runs at a fairly low clock rate, the average total power consump-

tion is approximately 50Vo more than the DC power consumption.

5.9 Sysúena Testïng

We used an ASIX-il IC tester to perform a series of circuit tests. Two typicai tests are

described below. Fig. 5.16 illustrates three learning test runs, in which a lA\kHz leaming

pulse frequency with 3ps pulse widths was used. The weight storage capacitor voltage was

read using the summation multiplier operating in its linear region, as connecting measurement

equipment directly to the capacitor storage node would alter circuit behavior drastically. For
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-0.5 0 0.5
LPulseN (Volts)

Figure 5.15 Ccn, Ccs, CGD as a function of LPuIseN for Vç¡p = -2V.
(HSPICE MOSFET model level3 simulation).

these tests, Vy¡s was held constant, and LCPulseP pulses were applied as shown in Fig. 5.16.

Three cases are illustrated, for LCPulseP =1.7,1.75, and 1.8V, giving leaming rates of

3.2x70-3,1.7x10-3 and 6.7x10+ respectively. Fairly high leaming rates were used for these

tests so that weight changes could be measured above background noise. The iow leaming

pulse rate (l}1kHz) was used because the summation multiplier does not have sufficient drive

to supply large off-chip capacitances at rates of more than a few hundred kilo-Hertz.

In Fig. 5.17, the same test was repeated, in this case with a400kHz pulse rate and 50¡zs

pulse widths. Since the pulses were narrow, a larger LPulseP was used to give leaming steps

that are visible over background noise. The test of Fig. 5.17 illustrates that the leaming circuit

operates properly with shorr leaming pulses. Combining the results shown in Figs. 5.16 and

5.17, it is evident that this circuit can achieve very low leaming rates, by using small, narrow

leaming pulses.

Similar tests were performed to evaluate the remainder of the synaptic and neuron circui-

try: all components functioned properly. However, a defect in the neuron circuit prevented

testing of the 19 neuron network: the neuron operated correctly in a small test circuit, but had

insufficient drive in its leaming circuitry to drive a frrll array of synapses. This problem may
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50 i00 150 200 250 300 350 4m 450 500
Time (ps)

Figure 5.16 Weight up learning test, 100HIz pulse rate, 3¡ts VPuIseP

pulses, VPulseP = 1.7,1.75 and.I.8V, giving learning rates of 3.2x10-3,

l.7x1,O-3 ønd 6.7x1.0-a ¡test data generated using ASIX-T IC tester, analog

data collected using Tektronix 2232 digital storage oscilloscope).

be readily solved by increasing the drive of inverter Ps in Fig. 5.2, a change that requires very

little circuit redesign. Our testing indicates that despite this flaw, these analog circuits are suit-

able for implementing an analog CMOS contrastive leaming ANN.

5"n0 Ðiscussion

The basic mean field impiementation described above may be extended in a number of

ways. The papers discussed below each take basic supervised leaming ANNs and improve

their performance by modifying their structure. These types of enhancements may be readily

incorporated into our circuit designs, and may in fact address some of the problems associated

with implementing ANNs with analog hardware.
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40 60
Time (ps)

Figure 5.1.7 Short pulse weight up learning test, 400kHz pulse rate, S}ns

VPuIseP pulses, VPulseP = 7.4V, Iearning rate: l.ZxlC-3 ¡test dnta generated

using ASIX-2 IC tester, analog data collected using Tektronix 2232 digital

storag e os cillos c op e ).

5.X.0.1, Fast and SIow Synaptic Weights

In standard ANN models synaptic weights are represented by a single weight va\ue,W¡¡.

Hinton and Plaut [Hinton-3] describe interesting properties of ANNs with two weights: a

slowly-changing weight which stores long-term knowledge, and a fast-changing weight with a

short decay time which stores temporary knowledge. The effective synaptic weight is the sum

of fast and slow weights. Supervised leaming affects both weights, but the leaming rate of the

fast weights is higher ttran ttrat of the slow weights, and consequently the fast weights are

strongly biased towards recent training data.

The temporary overlaying of fast weights gives the ANN a temporary context, resulting

in more flexible information processing [Hinton-3]. Fast and slow weights have a number of

applications. If an ANN leams a set of associations, which are subsequently "blurred" by

later training data, all tlire original associations may be "deblurred" by rehearsing with a small

number of pattems from the original training set. The rehearsal process results in leaming fast

weight values which compensate for the later training of the slow weights. Thus, a temporary
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context of the earlier associations is created.

Other benefits of fast weights include the ability to perform a type of recursive process-

ing, in which the fast weights are used to store a temporary context during recursive compuia-

tion. The state of the system is not stored as the activation of a set of neurons, and thus the

same neurons can participate in computation at muitiple levels of recursion.

Fast and slow weights may be implemented in a variery of ways using analog CMOS cir-

cuits. Fast weights can be added to the circuits described in this chapter by incorporating a

second set of weight storage capacitors and summation multipliers in each synaptic circuit.

Analog EEPROM weight storage lShoemaker] presents an intriguing possibility. In this case,

EEPROMs would store the slow weights, and capacitors ttre fast weights. This approach has

the advantage that it eliminates the need for constant weight refreshing, since an EEPROM will

maintain its charge for years. The disadvantage of this approach is ttrat a special IC fabrication

technology with EEPROM capability is required, and that adjusting EEPROM weights is an

involved procedure lHoller].

5.L0.2 Hybrid Network Architectures

It is natural to decompose a large problem into several sub-tasks, and then combine the

solutions of each of the sub-tasks to arrive at a solution of the original problem. In the case of

ANNs, this approach implies that a problem may be solved more efficiently by some sort of

hierarchically structured network, in which small neural networks solve specific aspects of the

entire problem, and then the individual results are combined into a final solution. This

hierarchical approach is consistent with human brain function: the brain is partitioned into sub-

systems which perform a specific operation, thereby contributing to the solution of a larger

problem. Whether this hierarchical structure should be at most a few levels deep, with

bottom-level sub-systems performing complex computaiion, or whether the hierarchical struc-

ture should be very deep, with bottom-level sub-systems consisting of only a few neurons, is

an unresolved issue.

Jacobs et al Uacobsl present a two-levei hierarchical supervised learning ANN in which

small "local expert" networks solve sub-problems, whose results are combined by a super-

visory gating network. This system may be viewed as a competitive leaming network in

which each hidden unit consisis of a small sub-network. The operation of both the local expert

networks and the gating network is determined by the weight training procedure. The leaming

algorithm that Jacobs et al use decouples the training of the sub-networks: the goal of a local
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expen for a given training case is not directly affected by the weights within other local

experts [Jacobs]. There is stili some indirect interaciion between the sub-networks, but the

sign of the error that a local expert senses for a particular training pattem does not depend on

other portions of the network. Jacobs et al report that this hierarchical network arrangement

avoids the strong interference effects that occur when a single non-hierarchical multilayer net-

work is used to perform different sub-tasks on different occasions.

As the size of a supervised leaming ANN is increased, lower leaming rates are needed, a

requirement that is hard to satisfy using analog circuitry. Thus, an additional advantage of a

hierarchical network structure is that a hierarchy of small networks is better suited to analog

implementation than a single large net'work.

S.tn Sunernary

We have designed, fabricated and tested analog CMOS circuits for constructing fully con-

nected ANNs with contrastive Hebbian leaming at each synapse. In developing these circuits,

system-level simulations of CHL networks were used to discover which operations had to be

implemented accurately, and which operations were tolerant of low-precision calculation.

Thus, we were able to use compact analog circuits for most computations, and care was taken

to implement critical operations accurately. We believe that this approach to analog ANN

implementation, where only a few key computations are implemented accurately, may be used

for a variety of other ANN architectures.
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The investigations presented in this work all address the basic question of what types of

ANN architectures may be implemented with low precision analog circuitry. The reason for

this interest in analog implementations, as we have stated previously, is that analog computa-

tions can be implemented far more efficiently than ttreir digital counterparts. Although our

work is restricted to a particular implementation medium, namely CMOS VLSI, this question

of analog ve$us digital computation has far-reaching consequences. The same principles and

tradeoffs will likeiy apply to future implementation technologies as well. The history of

artiflcial computation shows that the rivalry between digital and analog computers is not new.

6.3, Analog Coxnputatíon and .&NNs

Before the microelectronics revolution began in the 1960's, analog computers were used

for a variety of applications. With the advent of integrated circuit technology, digital systems

became fast, reliable, and ultimately, inexpensive: as a result, digital computation has dom-

inated for the past thirty years. An important reason for this dominance is that conventional

computer architectures rely upon basic features of digital computation, such as its precision and

repeatability, features which analog computation does not possess.

The resurgence of ANN research in the 1980's resulted in the development of a variety

of ANN designs which are potential candidates for analog implementation. The common

feature of these ANN architectures is that the system does not require precise, repeatable,

error-free components: rather, some collective property of the entire system tolerates unreliable

and inaccurate components. Our investigations, and those of other researchers, show that ana-

log VLSI is suitable for the implementation of these types of artificial neural networks, but a
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great deal of additional research is required.

Our work with contrastive Hebbian leaming ANNs demonstrates that system architectures

that are tolerant of many component imperfections can still require that some operations be

performed accurately. This raises the question of whether furúrer ANN research will lead to

architecfures that do not have any criticai operations. As always, biological neural networks

provide an existence proof that such an architecture must exist. An important guide for this

future ANN research may be the basic properties and underlying physics of the medium which

will ultimately be used to implement the ANN. Architecture and implementation research

should be an interactive process, so that an attempt is made to use the 'natural' capabilities of

the underlying hardware.

6"2 Analog CincuÍt Ðesígn and TestÍng

This work has demonstrated the importance of accurate simulation for analog circuit

research. Although simulation is also a key element of digital circuit design, analog work

places much more stringent requirements on simulation tools. Even second-order effects, such

as channel-length modulation ìn MOSFETS, must be modeled accurately. Thus, an ongoing

effort to improve simulation accuracy through fìne-tuning of model parameters is a worthwhile

undenaking. Our experience shows that with careful design, one design and fabrication cycle

will result in functional analog chips.

Analog IC testing is complicated by the lack of analog-oriented test equipment. The

ASIX-II digital IC tester provides some of the functions required for our investigations, but

lacks the ability to generate a variety of analog signals. In addition, analog voltage measure-

ment equipment with a very high input impedance would be an asset.

6.3 Analog VÏ.SI versus Neuna[ Biology

The basic goal of ANN research is to develop artificial systems which will perform the

functions associated with biological intelligence. Thus, it is interesting to make comparisons

between artificial and biological systems. Below, we compare CMOS VLSI and neural biol-

ogy [McClelland] in terms of integrøtion density: this allows us to compare the complexity of
anificial and biological systems.
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-[he neocortex is the center of high-level information processing in the mammalian brain.

It is a higttly convoluted sheet of neurons, between 1.5 and 5mm thick, with a total area of

approximately 2000cm2 in humans, and 200cmz in macaque monkeys. Interestingly, the neo-

cortex is basically a two dimensional structure, even though neurons are stacked vertically.

This is an encouraging indication that full three dimensional connectivity is not required for

anificial neural systems. The density of neurons in the neocortex is approximately 80 000 per

mmz, independent of the sheet thickness, for a wide variety of species fMcClelland]. The one

exception to this rule appears to be the striate cortex of primates, where there are approxi-

mately 200000 neurons per mm2. Each neuron in the neocortex typicalty receives inputs from

1 000 to 10000 synapses.

The t.2¡tm CMOS VLSI technology which we used to implement the circuits of chapter

5 has an integration density of approximately 63000 transistor-sized cells per mmL, or about

0.78 transistor cells per neocortex neuron. For a 0.5prn technology, this f,gure rises to approx-

imately 4.5 transistor-sized cells per neuron. An area of at least 1@ of these cells is required

to make a simple circuit.

This analysis ignores the 1 000 to 10000 synapses connected to each neuron: when these

are taken into account, it is apparent that a biological brain has an integration density of ør

least lO5 to 106 times that of a 0.5W VLSI technology. Finally, if we comp are a single 1.cmz

chip to t}re 2000cm2 neocorte*, we conclude that the brain has at least 2x108 to 2x10e times

the complexity of a state of the art IC. The actual figure may be higher still if current ANN

models grossly oversimplify computationally important aspects of neural behavior.

Although these calculations are highly approximate, they give an indication that ANNs

will not rival the complexity of mammalian brains, given current IC technology. However,

even extremely simple nervous systems, such as that of Aplysia, perform remarkable computa-

tional feats. Thus we conclude that although we cannot hope to build an artificial human

brain, we can cerfainly construct ANNs for a host of important artificial intelligence applica-

tions.
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This appendix contains HSPICE simulation parameters for Northem Telecom's 3¡rru

CMOS3 and I.2¡tm CMOS4S fabrication processes. These parameters were used for all cir-

cuit simulations conducted as part of this work.
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Ap-X..1 Ce40S3 Fanaxr¡eÉens

.MODEL N.l NMOS (
+ LMIN=0E-6
+ LMAX=6E-6
+ WMIN=O
+ WMAX=I
+ UO=800
+ THETA=0.05
+ GAìvfliIA=1.11
+ KAPPA=O.8
+ LEVEL=3
+ Y'fO=0.702
+ NFS=1.541E+11
+ TPG=1.0
+ TOX=5.048E-08
+ NSUB=2.0228+16
+ VMAX=2.306E+05
+ XJ=l.l32E-07
+ LD--2.6938-07
+ DELTA=0.6
+ ETA=0.1
+ PB=0.800
+ IS=1.000E-16
+ JS=1.000E-04
+ CJ=4.090E-M
+ MJ=0.498
+ CJSW=4.780E-10
+ MJSW=0.363
+ CGSO=2.9108-10
+ CGDO=2.910E-10
+ FC=0.500
+)
.MODEL N.2 NMOS (
+ LMIN=6E-6
+ LMAX=12E-6
+ WMIN=O
+ WMAX=I
+ UO=740
+ TIIETA=O.O5
+ GAMMA=I.1325
+ KAPPA=2.8
+ LEVEL=3
+ VTO=0.702
+ NFS=1.54lE+11
+ TPG=1.0
+ TOX=5.048E-08
+ NSUB=2.0228+16
+ VMAX=2.3068+05

+ XI=1.1328-07
+ LD=2.6938-07
+ DELTA=0.6
+ ETA=0.1
+ PB=0.800
+ IS=1.000E-16
+ JS=1.000E-04
+ CJ=4.0908-04
+ MJ=0.498
+ CJSW=4.780E-10
+ MJSW=0.363
+ CGSO=2.910E-10
+ CGDO=2.910E-10
+ FC=0.500
+)
.MODEL N.3 NMOS (
+ LMIN=12E-6
+ LMAX=188-6
+ WMIN=0
+ WMAX=I
+ UO=700
+ TFIETA=0.045
+ GAMMA=1.155
+ KAPPA=7.533
+ LEVEL=3
+ VTO=0.702
+ NFS=1.541E+11
+ TPG=1.0
+ TOX=5.048E-08
+ NSUB=2.0228+1.6
+ VMAX=2.306E+05
+ XJ=1.732F-07
+ LD=2.6938-07
+ DELTA=0.6
+ ETA=0.1
+ PB=0.800
+ IS=1.000E-16
+ JS=l.000E-04
+ CJ=4.090E-04
+ MJ=0.498
+ CJSW=4.780E-10
+ MJSW=0.363
+ CGSO=2.910E-10
+ CGDO=2.910E-10
+ FC=0.500
+)
.MODEL N.4 NMOS (
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+ LMIN=18E-6
+ L}d.AX=24F-6
+ WMIN=O
+ WMAX=I
+ UO=660
+ THETA=0.04
+ GAMMA=I.1775
+ KAPPA=12.27
+ LEVEL=3
+ VTO=0.702
+ NFS=1.541E+11
+ TPG=1.0
+ TOX=5.048E-08
+ NSUB=2.0228+16
+ VMAX=2.306E+05
+ XJ=1.1328-O7
+ LD=2.6938-07
+ DELTA=0.6
+ ETA=0.1
+ PB=0.800
+ IS=1.000E-16
+ JS=l.000E-04
+ CJ=4.090E-04
+ MJ=0.498
+ CJSW=4.7808-10
+ MJSW=0.363
+ CGSO=2.910E-10
+ CGDO=2.910E-10
+ FC=0.500
+)
.MODEL N.5 NMOS (
+ LMIN=24E-6
+ LMAX=I
+ WMIN=O
+ WMAX=I
+ UO=620
+ T[{ETA=0.035
+ GAMMA=l.2
+ KAPPA=l7
+ LEVEL=3
+ VTO=0.702
+ NFS=1.541E+11
+ TPG=1.0
+ TOX=5.048E-08
+ NSUB=2.0228+L6
+ VMAX=2.306E+05
+ XJ=|.I32E-07
+ LD=2.6938-07
+ DELTA=0.6
+ ETA=0.1

90

.MODEL P.i PMOS (

+ LMIN=0E-6

PB=0.800
IS=1.000E-16
JS=1.000E-04
CJ=4.090E-04
MJ=O.498
CJSW=4.7808-10
MJSW=O.363
CGSO=2.9108-10
CGDO=2.910E-10
FC=0.500

)

LMAX=6E-6
WMIN=0
WMAX=1
UO=280
KAPPA=3.5
LEVEL=3
VTO=-O.769
NFS=4.12lE+11
TPG=1.0
TOX=5.048E-08
NSUB=3.843E+15
VMAX=1.6185
XJ=3.091E-07
LD=1.686E-07
DELTA=.9
TFIETA=.1
ETA=1.2
PB=0.800
IS=1.000E-16
JS=1.000E-M
CJ=l.44OE-M
MJ=O.621
CJSW=3.360E-10
MJSW=0.434
CGSO=2.370E-10
CGDO=2.310E-10
FC=0.500

)

+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
.MODEL P.2 PMOS (

LMIN=6E-6
LMAX=12E-6
WMIN=0
WMAX=i
UO=250
KAPPA=35
LEVEL=3
VTO=-0.769

+
+
+
+
+
+
+
+
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+ NFS=4.121E+i1
+ TPG=1.0
+ TOX=5.0488-08
+ NSUB=3.843E+15
+ VMAX=1.61E5
+ XJ=3.09iE-07
+ LD=1.686E-07
+ DELTA=.9
+ TÉIETA=.I
+ ETA=1.2
+ PB=0.800
+ IS=1.000E-16
+ JS=1.000E-04
+ CJ=1.4408-04
+ IrII=0.621
+ CJSW=3.3608-10
+ MJSW=0.434
+ CGSO=2.370E-10
+ CGDO=2.370E-10
+ FC=0.500
+)
.MODEL P.3 PMOS (
+ LMIN=12E-6
+ LMAX=I8E-6
+ WMIN=0
+ WMAX=I
+ UO=250
+ KAPPA=73.33
+ LEVEL=3
+ VTO=-0.769
+ NFS=4.121E+11
+ TPG=1.0
+ TOX=5.048E-08
+ NSUB=3.843E+15
+ VMAX=1.61E5
+ XJ=3.091E-07
+ LD=1.686E-07
+ DELTA=.9
+ TIIETA=.I
+ ETA=L.2
+ PB=0.800
+ IS=i.000E-16
+ JS=l.000E-04
+ CJ=L.4408-04
+ MJ=0.621
+ CJSW=3.360E-10
+ MJSW=0.434
+ CGSO=2.370E-10
+ CGDO=2.3708-10
+ FC=0.500
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.MODEL P.4 PMOS (
+ LMIN=18E-6
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

LM.AX=248-6
WMIN=0
WMAX=1
UO=250
KAPPA=I11.67
LEVEL=3
VTO=-O.769
NFS=4.1218+11
TPG=1.0
TOX=5.048E-08
NSUB=3.843E+15
VMAX=1.61E5
XJ=3.091E-07
LD=1.686E-07
DELTA=.9
THETA=.1
E^|1r=1.2
PB=O.800
IS=1.000E-16
JS=1.000E-04
CJ=|.440E-M
MJ=0.621
CJSW=3.3608-10
MJSW=0.434
CGSO=2.370E-10
CGDO=2.370E-10
FC=0.500
)

.MODEL P.5 PMOS (
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

LMIN=24E-6
LMAX=1
WMIN=0
WMAX=1
UO=250
KAPPA=150
LEVEL=3
VTO=-O.769
NFS=4.12lE+11
TPG=1.0
TOX=5.O48E-08
NSUB=3.843E+15
VMAX=1.61E5
XJ=3.091E-07
LD=1.686E-07
DELTA=.9
TIIETA=.1
ETA=7.2
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+
+
+
+
+
+
+
+
+
+
+

PB=0.800
IS=1.000E-16
JS=1.000E-04
CI=l.44OE-O4
MJ=0.621
CJSW=3.360E-10
MJSW=0.434
CGSO=2.3708-10
CGDO=2.370E-10
FC=O.500

)
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Ap-3."2 CMÛS4S Faraxneúers

.MODEL N.l NMOS (
+ capop=l
+ LMIN=0E-6
+ LMAX=2.4F-6
+ WMIN=0
+ WMAX=I
+ UO=566.3
+ KAPPA=2.000E-17
+ CGDO=I.973E-10
+ CGSO=1.973E-10
+ CJ=2.9OOE-4
+ CJSV/=3.3E-10
+ DELTA=0.3551
+ ETA=9.8148-2
+ FC=0.500
+ IS=1.000E-16
+ JS=l.008-4
+ LD=1.151F-7
+ LEVEL=3
+ MJ=0.486
+ MJSW=0.330
+ NEFF=1.000
+ NFS=5.764E+11
+ NSUB=1.4E+16
+ PB=0.8
+ RD=26.77
+ RS=26.77
+ TIIETA=6.5748-2
+ TOX=2.502E-8
+ TPG=1.@0
+ UCRIT=1.000E+4
+ VMAX=1.6518+5
+ YTO=0.7572
+ XJ=l.165E-7
+ XQC=1.000
+)

.MODEL N.2 NMOS (
+ capop=)
+ LMIN=2.4E-6
+ LMAX=4.8E-6
+ WMIN=O
+ WMAX=I
+ UO=587.4
+ KAPPA=.5714
+ CGDO=1.973F-10
+ CGSO=1.973E-10

+ CJ=2.9008-4
+ CJSW=3.3E-10
+ DELTA=0.3551
+ ETA=9.8I48-2
+ FC=0.500
+ IS=1.000E-16
+ JS=l.008-4
+ LD=1.I57E-7
+ LEVEL=3
+ MJ=0.486
+ MJSW=0.330
+ NEFF=1.000
+ NFS=5.764E+1i
+ NSUB=1.4E+16
+ PB=0.8
+ RD=26.77
+ P-S=26.77
+ TIIETA=6.5748-2
+ TOX=2.5028-8
+ TPG=1.000
+ UCRIT=I.000E+4
+ VMAX=1.651E+5
+ YTO=0.7572
+ XJ=7.765F-7
+ XQC=I.000
+)

.MODEL N.3 NMOS (
+ capop=/
+ LMIN=4.8E-6
+ LÌ|ll.AX=7.2E-6
+ WMIN=O
+ WMAX=I
+ UO=608.5
+ KAPPA=I.1429
+ CGDO=I.973E-10
+ CGSO=1.973E-10
+ CJ=2.9008-4
+ CJSW=3.3E-10
+ DELTA=0.3551
+ ETA=9.8148-2
+ FC=0.500
+ IS=1.000E-16
+ JS=1.00E-4
+ LD=1.757F-7
+ LEVEL=3
+ MJ=0.486
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+ MJSW=0.330
+ NEFF=1.000
+ NFS=5.764E+11
+ NSUB=1.48+16
+ PB=0.8
+ RD--26.77
+ RS=26.77
+ TÉIETA=6.5748-2
+ TOX=2.502E-8
+ TPG=1.000
+ UCRIT=I.000E+4
+ VMAX=1.651E+5
+ YTO=O.7572
+ XJ=l.165E-7
+ XQC=1.000
+)

.MODEL N.4 NMOS (
+ capop-z
+ LMIN=7.28-6
+ LMAX=9.6E-6
+ WMIN=0
+ WMAX=I
+ UO=629.6
+ KAPPA=I.7143
+ CGDO=I.973E-10
+ CGSO=1.973E-10
+ CJ=2.9008-4
+ CJSW=3.3E-10
+ DELTA=0.3551
+ ETA=9.8148-2
+ FC=0.500
+ IS=1.0008-16
+ JS=1.00E-4
+ LD=1.751F-7
+ LEVEL=3
+ MJ=0.486
+ MJSW=0.330
+ NEFF=1.000
+ NFS=5.764E+11
+ NSUB=1.48+16
+ PB=0.8
+ RD=26.77
+ RS=26.77
+ THETA=6.5748-2
+ TOX=2.502E-8
+ TPG=1.@0
+ UCRIT=I.000E+4
+ VMAX=1.651E+5
+ YTO=0.7572

+ XJ=l.165E-7
+ XQC=1.000
+)

.MODEL N.5 NMOS (
+ capop=)
+ LMIN=9.6E-6
+ LMAX=I
+ WMIN=O
+ WMAX=I
+ UO=640
+ KAPPA-2
+ CGDO=1.9738-10
+ CGSO=I.973E-10
+ CJ=2.90O8-4
+ CJSW=3.3E-10
+ DELTA=0.3551
+ E'ïA=9.8148-2
+ FC=0.500
+ IS=1.0008-16
+ JS=1.008-4
+ LD=1.157F-7
+ LEVEL=3
+ MJ=0.486
+ MJSW=0.330
+ NEFF=1.000
+ NFS=5.764E+11
+ NSIIB=1.4E+16
+ PB=0.8
+ RD=26.77
+ RS=26.77
+ THETA=6.5748-2
+ TOX=2.5028-8
+ TPG=1.000
+ UCRIT=1.0008+4
+ VMAX=I.651E+5
+ YTO=0.7512
+ XJ=1.165E-7
+ XQC=1.000
+)

.MODEL P.1 PMOS (
+ capop=l
+ LMIN=0E-6
+ LM.AX=2AE-6
+ WMIN=O
+ WMAX=I
+ UO=i85
+ KAPPA=4
+ CGDO=3.284E-i0
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+ CGSO=3.2848-10
+ CI=4.1008-4
+ CJSW=3.4E-10
+ DELTA=0.4598
+ ETA=6.7298-2
+ FC=0.500
+ 15=1.0008-16
+ JS=l.008-4
+ LD=1.364E-7
+ LEVEL=3
+ MJ=0.540
+ MJSW=0.300
+ NEFF=1.000
+ NFS=5.864E+11
+ NSUB=2.011E+16
+ PB=0.8
+ RD=58.90
+ RS=58.90
+ THETA=0.1376
+ TOX=2.502E-8
+ TPG=1.@0
+ UCRIT=I.0008+4
+ VMAX=2.8238+5
+ VTO=-0.8307
+ XJ=1,.7428-7
+ XQC=1.000
+)

.MODEL P.2 PMOS (
+ capop-z
+ LMIN=2.48-6
+ LMAX=4.8E-6
+ WMIN=O
+ WMAX=I
+ UO=230
+ KAPPA=23
+ CGDO=3.284E-10
+ CGSO=3.284E-10
+ CJ=4.100E-4
+ CJSW=3.4E-10
+ DELTA=0.4598
+ E'f A=6.7298-2
+ FC=0.500
+ IS=1.0008-16
+ JS=1.00E-4
+ LD=1.364F-7
+ LEVEL=3
+ MJ=0.540
+ MJSW=0.300
+ NEFF=1.000

+ NFS=5.864E+11
+ NSUB=2.011E+16
+ PB=0.8
+ RD=58.90
+ RS=58.90
+ TIIETA=0.1376
+ TOX=2.502E-8
+ TPG=1.000
+ UCRIT=1.000E+4
+ VMAX=2.8238+5
+ VTO=-0.8307
+ XI=1.7428-7
+ XQC=I.000
+)

.MODEL P.3 PMOS (
+ capop-z
+ LMIN=4.8E-6
+ L}¡4.AX=7.2F-6
+ WMIN=0
+ V/MAX=1
+ UO=230
+ KAPPA=41.8
+ CGDO=3.284E-10
+ CGSO=3.284E-10
+ CJ=4.1008-4
+ CJSW=3.4E-10
+ DELTA=0.4598
+ ETA=6.7298-2
+ FC=0.500
+ IS=1.000E-16
+ JS=l.00E-4
+ LD=1.364F-7
+ LEVEL=3
+ MJ=0.540
+ MJSW=0.300
+ NEFF=1.000
+ NFS=5.864E+11
+ NSUB=2.011E+16
+ PB=0.8
+ RD=58.90
+ RS=58.90
+ TIIETA=O.1376
+ TOX=2.502E-8
+ TPG=1.000
+ UCRIT=I.000E+4
+ VMAX=2.8238+5
+ VTO=-0.8307
+ XI=1.7428-7
+ XQC=I.000
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.MODEL P.4 PMOS (

+ capop=)
+ LMIN=7.2E-6
+ LMAX=9.6E-6
+ WMIN=O
+ WMAX=I
+ UO=230
+ KAPPA=60.6
+ CGDO=3.284E-10
+ CGSO=3.284E-10
+ CJ=4.100E-4
+ CJSW=3.4E-10
+ DELTA=0.4598
+ ETA=6.7298-2
+ FC=0.500
+ IS=1.000E-16
+ JS=1.00E-4
+ LD=1364F-7
+ LEVEL=3
+ MJ=0.540
+ MJSW=0.300
+ NEFF=1.000
+ NFS=5.864E+11
+ NSUB=2.011E+16
+ PB=0.8
+ RD=58.90
+ RS=58.90
+ TIIETA=O.1376
+ TOX=2.502E-8
+ TPG=1.@0
+ UCRIT=I.000E+4
+ VMAX=2.8238+5
+ VTO=-0.8307
+ XJ=1.7428-7
+ XQC=1.000
+)

.MODEL P.5 PMOS (
+ capop=/
+ LMIN=9.6E-6
+ LMAX=I
+ WMIN=O
+ WMAX=I
+ UO=230
+ KAPPA=7O
+ CGDO=3.284E-10
+ CGSO=3.284E-10
+ CJ=4.100E-4

CJSV/=3.4E-10
DELTA=0.4598
ETA=6.7298-2
FC=O.500
IS=1.000E-16
JS=1.00E-4
LD=1.3648-7
LEVEL=3
MJ=0.540
MJSW=O.3@
NEFF=1.000
NFS=5.864E+11
NSUB=2.0118+16
PB=0.8
RD=58.90
RS=58.90
THETA=0.1376
TOX=2.5028-8
TPG=1.000
UCRIT=I.000E+4
VMAX=2.8238+5
VTO=-0.8307
XJ=|.7428-7
XQC=I.000
)

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
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