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Abstract

CMOS circuits implementing analog neural networks with built-in Hebbian and contrastive
Hebbian learning have been designed, fabricated and tested. These circuits employ capacitive
synaptic weight storage. The Hebbian learning circuit was incorporated into a 600 synapse,
28 000 transistor neural network to evaluate its performance in a medium-sized system. A dis-
cussion of CMOS synaptic circuits motivated by invertebrate biology explores the relationship
between certain aspects of leaming in the marine mollusc Aplysia and Hebbian learning.
Because adaptive circuits, such as neural networks with built-in learning, can compensate for
imperfections in the components from which they are constructed, it is possible to build this
type of system using simple, silicon area-efficient analog circuits. Typical analog computa-
tional elements, such as multipliers and adders, are far more compact than their digital counter-
parts: consequently analog neural networks have tremendous computational potential. A 3um
CMOS 1cm? implementation of the circuits described in this work has a throughput of more

than 6 billion analog multiplications per second, at a conservative 1MHz operating frequency.
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Glossary

AL Artificial intelligence

algorithmic computation:
Computation in which a procedure consisting of a sequence of steps (the algorithm) is followed
to transform a set of inputs into a set of outputs.

analog circuits:
Circuits in which quantities are represented as continuous-valued voltages, currents, etc.

ANN: Artificial neural network.

artificial intelligence:
Artificial systems (computers) that perform operations normally associated with biological intel-
ligence.

artificial neural network:
A computer designed to perform computation in a manner similar to that of a biological neural
network (biological brain).

back-propagation learning:
A supervised learning technique for feed-forward ANNs.

biological neural network:
The brain of a human or lower animal.

bipolar signals:
Signals which can take on both positive and negative values.

BNN: Biological neural network.

BP: Back-propagation.

chip: Integrated circuit.

CHL: Contrastive Hebbian learning.

CMOS: A common IC fabrication technology -- Complementary Metal Oxide Semiconductor.

contrastive Hebbian learning:
A supervised leaming technique for fully-connected (Hopfield-type) ANNS.

digital circuits:
Circuits in which quantities are represented as discrete-valued voltages, currents, etc.

EEPROM:
Electrically Erasable Programmable Read Only Memory. Typically used in ANNs for synaptic
weight storage.

Hebbian learning:
An ANN learning technique, typically used for unsupervised learning applications.

Hopfield ANN:
An ANN architecture with synaptic connections between each pair of neurons (ie. fully con-
nected).

HSPICE:
Circuit-level simulation program.
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1C: Integrated circuit

Manhattan CHL:
Contrastive Hebbian learning variant, in which fixed-size weight change steps are used.

neuron:
Basic information processing unit in biological and artificial neural networks.

non-algorithmic computation:
Computation which does not follow an algorithm.

SPICE: Circuit-level simulation program.,

supervised learning:
ANN network weight training scheme in which the network is presented with pairs of inputs
and outputs from a set of training data which it is supposed to learn to associate.

synapse:
Connection point between neurons. The synaptic weight determines the strength of the synap-
tic connection.

synaptic weight:
The synaptic weight determines the strength of the synaptic connection between two neurons.

transconductance circuit:
A circuit with voltage inputs and current outputs.

unipolar signals:
Signals which can only take on positive values.

unsupervised learning:
ANN network weight training scheme in which the network is presented with data from which
it is supposed to extract common features, discover regularity, patterns, etc.

XNOR: Exclusive NOR
XOR: Exclusive OR



CHAPTER

Introduction

Digital computation systems have evolved over the past few decades into the ubiquitous,
inexpensive electronic computers of the 1990’s. These machines perform a wide variety of
tasks, such as arithmetic and sorting, exceptionally well: far better in fact than their human
creators. Conversely, there are a large number of tasks which humans perform with ease
which digital computers perform rather poorly. Some of the most important examples are
found in the field of artificial intelligence (AI), including 3-D scene interpretation and uncon-
strained speech recognition. What is the fundamental difference between digital electronic and
biological computation systems which makes them suitable for such disparate computational
tasks? One of the most fundamental differences is system architecture. Electronic computers
perform digital computations, typically in a small number of complex processing units, whereas
biological computers (brains) consist of a very large number of simple processing units which
perform analog computations in parallel. The basic premise of artificial neural network (ANN)
research is that when we can identify and synthesize the features of biological computers
which enable them to perform tasks such as 3-D scene interpretation, then we can construct

artificial systems which can perform the same operations.

A general definition of artificial neural networks is given by Kohonen: ‘‘Artificial neural
networks are massively parallel interconnected networks of simple (usually adaptive) elements
and their hierarchical organizations, which are intended to interact with objects of the real
world in the same way as biological nervous systems do’’ [Kohonen-1]. There is a fundamen-
tal difference in the way that conventional digital computers and biological neural networks
(BNN§) process information: in a digital computer, information is manipulated according to an
algorithm, or sequence of instructions, whereas BNNs perform non-algorithmic computation, in

which computation does not involve executing a sequence of instructions [Kohonen-1]. Thus
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conventional computers are suited to applications whose solutions may be cast into the form of
an algorithm. Interestingly, for such an application, a simple digital computer can out-perform

the human brain, a BNN with vastly greater computational power.

1.1 The Failure of Algorithmic AI

BNNs excel at the operation of pattern matching and completion, which is thought to be
the basis of much of the non-algorithmic information processing in the brain. Pattern matching
and completion of the type found in BNNs is extremely difficult to implement efficiently as an
algorithm. An interesting case, which exemplifies this difficulty, arose during the development
of Al expert systems, which attempt to capture the knowledge of a human expert as a complex
database of rules. Although expert system research has been moderately successful, their per-
formance frequently resembles that of an ‘‘expert novice’’, rather than a true expert. The
difference is that a novice tends to apply rules that he has been taught, while a true expert uses
the non-algorithmic pattern matching at which the brain excels, analyzing a new scenario by
comparing (matching) it with situations which were encountered previously. As a result of this
difference between expert systems and human experts, the initially encouraging performance of
an expert system can not easily be improved to the level of a human expert, simply by adding
more rules to its database. Significantly, when human experts were interviewed by expert sys-
tems developers, and were asked to elucidate the rules by which they made their decisions,
more often than not they gave examples, rather than rules. The reason for this is simple: their

expert knowledge is stored as a complex collection of examples, rather than as a set of rules.

TAE CAT

Figure 1.1 Example of a difficult character recognition problem.

Outside the expert systems field, AI is replete with problems which are simple for
humans to solve, and are very difficult for conventional computers to solve. An example
which demonstrates a few of the typical difficulties is illustrated in Fig 1.1 [Rumelhart-1].

When presented with these six symbols, the human brain will readily recognize the sentence
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fragment ‘“THE CAT”’, even though the ‘‘H’’ and the ‘“A”’ are represented by the same sym-
bol in the two words. This decepiively simple recognition process is actually quite complex:
the individual line segments are grouped into symbols, the symbols into words, and lastly
semantic knowledge of English is used to complete the decoding of the sentence fragment.
Unfortunately, this type of multi-level processing is exceptionally difficult to implement in a
conventional computer system: there is a fundamental difficulty in attacking a problem at a
number of different levels (line, symbol, word, and English semantic in this example) simul-
taneously to arrive at a solution. Clearly even this simple recognition problem cannot be
solved without looking at the problem from a number of different levels of abstraction at one

time.

This example illustrates another of the fundamental weaknesses of conventional comput-
ers: they suffer from the *‘worm’s eye view’’ syndrome, where the minutiae of a problem are
analyzed, but there is no good, general overview of the entire problem. Again, it appears that
this deficiency and other related ones are very fundamental, resulting from the basic structure,

or architecture, of digital computers.

The failure of expert and other AI systems to achieve performance approaching that of a
BNN using algorithmic information processing resulted in a renewed interest in ANN research
in the 1980’s. Artificial neural network research is an attempt to solve these problems by
designing systems structured in the same way as the brain, an organ which can solve these
types of problems with ease. Non-algorithmic pattern matching and completion is the basic
operation that ANNs implement. Thus we have an existence proof (the biological brain) that
this type of problem can be solved efficiently: what remains is to extract the salient features of

the biological brain, and find a way to implement these features in an artificial system.

1.2 Neural Network Models

The complexity of biological neural systems has resulted in the development over the
years of a highly disparate collection of artificial neural systems, each of which models certain
aspects of biological neural anatomy, and ignores many others. There is currently no con-
sensus as to which characteristics of neural anatomy are important for computation, and which
are merely the result of design restrictions imposed on the biological system by the basic

chemistry and physics of biological systems.
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Figure 1.2 Portion of a artificial neural network.

Despite considerable variation, most current research employs the architecture of Fig. 1.2.
The circles represent processing units, or nodes (roughly analogous to neurons), and the lines
between processing units represent some form of communication path, or link, between the

nodes (roughly analogous to axons, synapses and dendrites).

Prevailing neural network models impose several restrictions on this general architecture:
typically the processing node stores a single activation state @;(¢), and performs some sort of
weighted suinmation aggregation operation, using the current output values of connected nodes
to update its own state. Typical equations governing the operation of an ANN are

[Rumelhart-1]:

N
a;(t+1) = F | Y w;j0;(1), a[(t)} 1D
j=1
Aw;j = g(a; (@), 1;(t)) h(0;(t), wy) (1.2)
where
o0; = f(a;): current output of node i
aq;: current value at node i

strength of node j’s influence on node i

t;: external teaching input for node i
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FO, F(e): activation functions

g() k() learning functions

Learning in these networks involves modifying the weights w;; (1.2), and problem solving is
accomplished by running the network through a number of time-steps until activation states
stop changing from one time-step to the next (1.1). This neural network model omits a great
many biological details: in a sense it is the minimal implementation of an artificial neural Sys-
tem which can still be used to perform arbitrary computation. However, it is not clear that the
omission of biological details from this model improves the efficiency of the resulting ANN

system, either in terms of processing speed or circuit size.

This interesting question of how closely biological neurons should be modeled for max-
imum system efficiency is one of the issues which was examined as part of this research pro-
gram. Below, a general outline of the approach we have taken to ANN implementation using
CMOS VLSI circuits is presented, followed by a discussion of other researchers’ work which

is most relevant to this investigation.

1.3 CMOS VLSI and Artificial Neural Networks

CMOS VLSI has been used extensively in the implementation of neural networks; the
high integration density of modem MOS technologies is very attractive for the construction of
large neural systems. Most MOS neural network implementations consist predominantly of
digital circuitry, and are designed using the same methods that are used for conventional com-
puters. Digital implementations of ANNs were recently reviewed by Atlas and Suzuki [Atlas].
Digital systems have many desirable properties -- high accuracy, reliability, repeatability, etc.
However, a substantial price is paid in terms of circuit complexity, and consequently silicon

area, for these features.

In this work we present analog circuits for neural networks which are far more compact
than their digital counterparts. Analog implementations of ANNs have been reported by
several authors, for example [Graf, Mead, Raffel, Schwartz-1, Satyanarayana, Hollis, Murray,
Sage, Shoemaker, Holler, Card-1, Furman, Alspector-1, Schwartz-2, Clark, Arima], and a

review of analog neural networks up to 1988 was included in [Card-1].

By using simple analog circuits, we can build systems with tremendous computational

power: for example, a neural network chip that can perform more than 6 billion analog
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multiplications per second (lem? die, 3um CMOS, 1MHz operation). Unfortunately, this
computational potential is difficult to exploit, because the architecture of an analog VLSI Sys-
tem must be tolerant of imperfections in the components from which it is constructed -- for
example, two identical multipliers may have outputs that differ by 20% or more for the same
input values. Digital systems design relies upon identical components having identical
behavior: thus most digital system architectures cannot be implemented using analog com-

ponents.

Neural networks with learning capability, as well as other adaptive networks, are suitable
candidates for implementation using simple, highly imperfect analog components. If designed
properly, these systems can ‘‘learn’’ to take component variations into account. Examples of
this property of neural networks, as it relates to our work, are discussed in subsequent

chapters.

The chapters which follow describe analog circuits for a variety of ANN applications.
Despite their differences, several important design characteristics are shared by all circuits.
Firstly, all circuits are constructed from compact low-accuracy analog computational com-
ponents. As discussed above, this makes it possible to put tremendous computational power in
a single integrated circuit; in addition, low-accuracy components are biologically plausible.
The second common characteristic is that synaptic weights are stored as electric charge on a
capacitor in all ANN implementations developed as part of this work. Capacitive weight
storage is a silicon-area efficient way to store an analog weight value, and can be implemented
in the IC fabrication processes available to our university. Lastly, our circuits all incorporate
in situ learning; that is, weight adaptation circuitry is built into each synaptic circuit. In situ
learning provides a way for an ANN system to compensate for variations in the low-accuracy
analog components from which it is constructed, as well as avoiding the problems of long
learning times and weight downloading, which plague many ANN systems with off-chip learn-
ing. It is anticipated that the present synaptic circuits will find applications in a wide variety
of ANNs, operating in either supervised [Hopfield, Sivilotti, Peterson-2, Hinton-1, Rumelhart-
2, Jacobs, Hinton-3] or unsupervised [Linsker, Kohonen-1, Hinton-2] learning modes. The sui-
tability of our circuits for these applications is discussed in chapter 3 (unsupervised) and
chapter 5 (supervised). Below, a survey of other electronic ANN implementation research

efforts, which incorporate some of the features of this work, is presented.
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The previous studies which are most relevant to our discussion are [Schwartz-1,
Satyanarayana, Card-1, Furman, Alspector-1, Schwartz-2, Clark, Arima, Ismail-1, Ismail-2].
Papers [Schwartz-1, Satyanarayana, Card-1, Furman, Schwartz-2, Arima] represent synaptic
weights as charge on capacitors, as opposed to digital storage of weights [Raffel, Hollis,
Alspector-1], or EEPROM weights [Sage, Shoemaker, Holler]. Papers [Card-1, Furman,
Alspector-1, Schwartz-2, Clark, Arima] report circuits which incorporate in situ learning; that
is, the synapses contain circuitry which performs local computations of weight updates. A
variety of analog ANN circuit designs, as well as general system-level considerations are dis-

cussed in [Ismail-1, Ismail-2].

Schwartz et al [Schwartz-1] describe an ANN synaptic circuit in which the weight is
represented as the difference between the voltages stored on two capacitors. Synaptic weights
are modified by transferring charge from one capacitor to the other using charge injection, and
thus the total charge on the two capacitors remains constant. The authors do not address the
issue of learning (as opposed to setting weight values), since their interest was in evaluating

their weight storage circuit, and not in constructing a complete ANN system.

In [Satyanarayana], a reconfigurable feed-forward ANN implementation consisting of
1024 distributed-neuron synapses with analog data processing is described. Capacitive weight
storage is employed, with a weight resolution of 1% of the maximum weight value. Analog
weight resolution is limited by charge injection and leakage at the storage node, and analog

weights are periodically refreshed from an off-chip digital weight memory.

Furman et al have developed an analog CMOS implementation of the back propagation
algorithm {Furman], where each IC consists of 48 input and 10 output neurons, and a fully
connected synaptic matrix. Again, weights are stored as electric charge on capacitors, and in
situ learning is performed by a three analog multiplier implementation of the generalized delta

rule. Chip test data is not reported.

The paper [Schwartz-2], discusses a special-purpose VLSI ANN circuit, which can leam
to approximate a mathematical function of a small number of variables from discrete data
points. A simple one-layer linear network with capacitive weight storage is used in this spe-

cialized application.

Clark [Clark] describes a CMOS current mode ANN with in siru Hebbian learning which
is intended for a self-organizing network, such as the Kammen-Yuille orientation selective net-

work [Kammen]. Learning in the circuit is based on a linear swiiched capacitor integrator
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circuit using an operational amplifier,

In [Alspector-1], a 32 neuron 496 bi-directional synapse ANN which implements both
Boltzmann and mean field networks is described. Weights are stored as 5 bit digital values,
and in situ learning circuitry is incorporated into each synapse. Aside from weight storage,
chip operation is analog. 32 uncorrelated pseudo-random noise sources are used to implement
the simulated annealing process of the stochastic Boltzmann machine; the signals are summed
along with the weighted post-synaptic signals at the input to each neuron. The authors report
simulations comparing the performance of back propagation, Boltzmann and mean field archi-
tectures. They concluded that these three approaches have approximately the same recognition
accuracy in partity and replication problems. They also studied the effect of the limited
dynamic range of their 5 bit digital weights, and concluded that in most cases the use of 5 bit
weights had no effect on performance. An exception was the mean field architecture, in which
performance degradation occurred for large replication problems. This is consistent with our
simulations, in which we found that small weight increments are essential for stable learning in
mean field networks [R. Schneider]. No IC test data comparing chip performance to simulation

results is reported in [Alspector-1].

Arima et al [Arima] describe a combined analog and digital IC implementation of a
Boltzmann ANN, with 125 neurons and 10000 synapses. Analog capacitive weight storage is
used, together with binary neuron activations. The product between binary neuron outputs and
analog weights is implemented with a six transistor circuit. The network is organized into a
fully connected Boltzmann ANN with symmetrical weights Wi = Wj). Network weight
adaptation is achieved with a modified version of Boltzmann learning -- the learning algorithm
is implemented with a weight modifier circuit, consisting of two charge-pump circuits con-
nected in series: the weight modifier circuit is designed to change weights in increments of
approximately 10% of their full range value. The authors report training the IC to memorize
15 patterns (25 input, 100 output, no hidden units). Our simulations of mean field ANNs, a
similar neural network architecture, and discussions in [Schwartz-1] indicate that a weight
change of far less than 10% (perhaps 100 to 1000 times smaller) is required for stable weight
convergence. Also, Arima et al’s circuit has poor matching between the two phases of the
Boltzmann leaming algorithm, which our simulations indicate will degrade network perfor-
mance. Perhaps significantly, no test results are reported in which hidden units are employed,

as this is the situation in which these problems will become evident.
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The brief descriptions of related work presented above illustrates the tremendous variety
of approaches to electronic ANN implementation which are currently under investigation. The
remainder of this document presents four CMOS ANN implementations. Chapter 2 discusses a
CMOS synaptic circuit with Hebbian learning and unipolar weights. In chapter 3, a CMOS
ANN implementation with bipolar Hebbian synapses is described and IC test results are
reported. Circuits motivated by synaptic function of the marine mollusc Aplysia, which model
habituation, sensitization and classical conditioning, appear in chapter 4. Lastly, chapter 5

describes our work in developing a fully analog mean field ANN.



CHAPTER

Unipolar Hebbian Synaptic Circuits

2.1 Introduction

In the development of the circuits described in this chapter, the primary goal was silicon-
area efficiency. To achieve this goal, very simple circuits are used to implement arithmetic
operations, such as multiplication and summation. Although many current ANN architectures
require more accurate computation than these simple circuits provide, in the long term it is
important that the properties and capabilities of the hardware that is used to implement an
ANN be taken into account in the system design process. Thus ANN architectures must be
developed that are suited to implementation using low-accuracy computational components.
This also makes sense from the biological plausibility point of view, because most current
ANN models require far more computational accuracy than is found in a biological neural net-
work. Below, a compact analog CMOS synaptic circuit which uses the ‘‘natural” capabilities

of CMOS VLSI is described, and its performance is evaluated.

2.2 Basic MOS Synapse

Artificial neural networks consist of neurons and synapses; the area of electronic imple-
mentations is normally dominated by the synapses, as there are many more of these than there
are neurons (Fig. 2.1). In the approach shown in Fig. 2.2, the synaptic weights Wi; between
neurons are represented by the channel conductance of MOS transistors, with weight voltages
V¢ stored on capacitors. The output of a neuron corresponds to an analog voltage V;

(=V < V; <+V) which is a function of a weighted sum of its inputs.
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Wi Synapses

S \i
V. Out

Figure 2.1 Model of an artificial neural network.

Other syhapses Other synapses

Figure 2.2 Synaptic weights (W;;) in analog MOS neural networks are com-
monly represented as charge storaged on a capacitor, which in turn controls

the conductance of an MOS transistor.

Provided the artificial neurons produce both +V; and —V;, an inhibitory weight may be
realized by employing —V;. In this way, all weights W;; can be positive (unipolar weights).
In Fig. 2.2 the weight W;; is adjusted according to a learning algorithm which is normally per-
formed off-chip, and applied as V,. In some cases the weight storage (which refreshes the
capacitor voltage) is on-chip but the learning algorithm runs off-chip. In this chapter, we
present circuits which perform in situ weight adjustments as a continuous analog process while
the network is operating. We do not switch learning signals on and off; learning proceeds

along with the circuit dynamics, although at a much slower rate.
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To increase or decrease the synaptic weight one adds or removes charge from the capaci-

tor C. A common analytical form of Hebbian learning is [Kohonen-17:

Wy _ AV.V. — BW.. 2.1
dl_ [N | i

where A is usually taken to be a constant term to represent the learning process; B may in
general be dependent upon V; and V;, and represents a weight decay or forgetting term. Equa-

tion (2.1) is consistent with Hebb’s original qualitative statement of the learning rule [Hebb]:

““When an axon of cell A is near enough to excite a cell B and repeatedly or per-
sistently takes part in firing it, some growth process or metabolic change takes place
in one or both cells such that A’s efficiency, as one of the cells firing B, is

increased’’

Let us consider how the capacitor voltage V> controls the weight W;; of the i,j synapse.
If one employs aV; as the drain voltage of the MOS transistor M ;, where a is a small con-
stant, then V, <« Vi — Vi and this device operates in its triode region. In the simple case of
threshold voltage Vi = 0 the drain current through this device, which contributes to the total

current into neuron i, is given, for Vo > V, by

2

Vb
Ve—-Vr)Vp — —2"—] = Ba(Ve-Vr)V; = W;V; 2.2)

I =8

where the VD2 / 2 term is assumed to be negligible, § = WCpxyW/L is a constant known as the
conduction parameter of the transistor, and V, and aV; represent the gate and drain voltages
Ve and Vp respectively. For Vi < Vi the transistor M is in the cutoff region and the current
decreases exponentially with further decreases in V. The weight W;; remains positive (but

very small) for negative V.

2.3 Unipolar Hebbian Synapses and MOS Learning Rules

Hebbian learning depends upon local variables V; and V;, and there are penalties associ-
ated with implementing learning externally in VLSI; these penalties involve the amount of wir-
ing and the number of pins required, which in turn impact the achievable speed and resolution
of the circuit. It is therefore desirable to compute the weight changes locally at each synapse.
One method is to employ an analog circuit such as a Gilbert multiplier [Gilbert] with inputs V;

and V; to provide a current I to the capacitor to represent the first term of (2.1), and a
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: Other synapses
Other synapses

Figure 2.3 Analog synapse with low transistor count which qualitatively ap-
proximates multiplicative Hebbian correlation of input and oumput activities V;

and V; using a two transistor multiplier.

leakage resistance R to represent the forgetting term. The leakage resistance R leads to a
modulation of Vi and hence W; in accordance with the analytical form of (2.1). To reduce
the complexity of the synaptic circuitry the multiplier may be replaced with the simpler circuit
of Fig. 2.3. The leakage resistor R is approximated by the transistor M,. The rate of synaptic
weight change (the learning rate) is then given by

dw; d(Ve-Vr) [?_>a @a
— =R = I; — |% .
de Ba dz c 't RC ¢ 2.3)

and the learning current /; in (2.3) is

Vi
IL = BVI(VJ + 7 - VT) (24)

when V; and V; are both positive or both negative and Vo = 0. When V; and V; have oppo-
site signs, [;, = 0. It is apparent from (2.4) that this circuit implements a form of Hebbian
learning. Eqns. (2.3) and (2.4) are approximations of the behavior of the circuit of Fig. 2.3:
they are intended as a guide to understanding the simulations below.

Iy, is the current charging the weighting capacitor (the learning signal) which for Vo =0
is approximately proportional to the product V; V; (2.4). As the capacitor charges (V. and Wi
increase) the current /;, will decrease and eventually become zero when the output voltage
from the (M3, M) pair is equal to V¢ + Vp, where V), is the forward diode voltage drop.

This is in contrast to (2.1) where the learning signal AV; V; is independent of W;;. The diode
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in Fig. 2.3 isolates the charge stored on the capacitor when V; V; is low (when V; and V; are
uncorrelated or anticorrelated). In other words, the diode decouples learning and forgetting so
that their rates may be independently adjusted. Normally the learning rate will be considerably
larger than the forgetting rate so that the charge on the capacitor remembers a large number of
training patterns. To summarize, (2.3) is a crude approximation of (2.1); however, learning
governed by (2.3) is still consistent with Hebb’s original qualitative statement, that weights
increase according to the correlation between V; and V;. Quantitatively it departs from the
simple form of (2.1) because of the dependence of the learning rate is on the previous weight
value. High weight values discourage further learning. The present MOS learning rules are
motivated by the desire to achieve low synaptic circuit complexity in VLSI neural networks,
rather than being derived from established theoretical principles. Also, weight saturation is

likely a feature of biological synaptic learning.

2.4 Circuit Layout and Performance of CMOS Synapses

Figure 2.4 Four CMOS synapses with in situ MOS leaming rules.

Fig. 2.4 presents a layout of four synapses of the type shown in Fig. 2.3. In 1.2um
CMOS the dimensions of a single synapse are 115x11wm? so a neural network chip of lcm?
area could contain approximately 70000 synapses, assuming that the synapses dominate the
chip area. SPICE simulations of these layouts have been performed using level 3 transistor

models. The multiplication aV;(V¢c — Vp) (transistor M), representing the contribution Iy
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Figure 2.5 Multiplication of aV; by V; in transistor M, of Fig. 2.3.

200

V; (Volts)

Figure 2.6 Current I;, from (Ms, M), which performs Hebbian correlation
of Vi and V;.

15
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0 20 30 40 50 60
Time (ns)

Figure 2.7 Voltage on capacitor C due to current from (Ms, M,),
corresponding to learning various positive correlations between V; and Vi. At

t = 32ns, learning is turned off, and V¢ discharges through M.

from synapse j to the total current into neuron i, is shown in Fig. 2.5. For | av; | <05V
this circuit provides a respectable approximation to an analog multiplication. Fig. 2.6 presents
the approximation to the multiplication required for Hebbian weight changes, or learning. This
figure corresponds to the case Vo =0 and therefore represents the maximum learning rate.
Note that in this case we cannot employ the above trick of driving the learning from av;
because we require large signal voltage excursions at the output of the (M4, M ) pair. There is
a pronounced departure from linear multiplication near the origin, so small correlations
between V; and V; are ignored by this circuit. The effects of weight saturation are clearly
observed in Fig. 2.7. As discussed in the previous section, this represents the major departure

from the traditional analytical form of Hebbian learning given by (2.1).

Weight decay has been greatly exaggerated in this circuit by employing a small R (imple-
mented using M, in Fig. 2.3) in order to be able to observe its influence in Fig. 2.7. Actual
implementations of neural network models would employ weight decay rates which would not
be discernible in Fig. 2.7. This is readily achieved with the circuit of Fig. 2.3. If extremely

low decay rates are desired (to remember large training sets) the chip could be cooled (perhaps
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(Volts)

Time (ns)

Figure 2.8 Dynamic operation of two synapses j and k driving neuron i .

even to cryogenic temperatures such as liquid nitrogen 77K) in order to reduce p-n junction
leakage currents. Finally, in Fig. 2.8 we show an example of the dynamic behavior of a sim-
ple neural circuit of two synapses j and & driving one neuron i. V; is negative throughout the
simulation. V; and V, have both initially been high for a considerable time and the weight of
the & synapse V¢, has thus achieved its maximum value. V} is then switched to its exireme
negative value, and since V¢; is negative, (ie. W;; = 0, so the j * neuron’s state does not affect
neuron i) neuron output V; follows V, and also swings negative. Since V: and V; are now
both at their extreme negative values, they are fully correlated, and Vc; now begins to rise,
eventually reaching its saturation value near 5V. V., began to decay when V, was set to -5V,

but as V; soon followed, V; and V, were again correlated, and Ve returned to its former

value.

2.5 Discussion
On the basis of the above simulations it appears that a mechanism consistent with the

spirit of Hebbian learning is operating properly at the level of single synapses and neurons. It

should be emphasized however that we do not have a theory at the systems level for the
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behavior of networks whose synapses employ these MOS learning rules. Depending upon the
architecture of the network (feed-forward, feed-forward with crosstalk, or fully-connected feed-
back network) and the learning mode (supervised or unsupervised) the objective function to be
optimized by the learning process will differ. For example in feed-forward supervised nets one
minimizes a sum of squared errors by gradient descent [Rumelhart-2], whereas in an unsuper-
vised feed-forward net with crosstalk one may maximize mutual information between several
neighboring hidden units [Hinton-2]. Different measures are optimized by fully-connected
supervised mean field networks [Hinton-1] and by unsupervised linear networks [Linsker] even

though both of these latter cases employ versions of Hebbian learning rules at the synapses.

In this work we have only briefly discussed the issue of weight decay or forgetting rates.
Forgetting rates determine the number of training cases remembered by the capacitor charge,
and are dependent upon the number of weights that are mutually dependent during the leamning
process. For unsupervised leamning based on optimization of local objective functions, the
desired forgetting rates are expected to be larger than in supervised networks with global error
signals during training. In the supervised case all the weights in the network are mutually
dependent. The forgetting rate will normally be orders of magnitude lower than the leaming
rate so that many past training cases (on the order of the number of weights) can be remem-
bered. To control the learning rate, one can adjust the length/width ratio L/W of the transis-
tors M5 and M4 in Fig. 2.3. Leaming rates are inversely proportional to both L/W and to the
capacitance C so that by increasing L/W and C one can decelerate the learning process to the
desired rate. One could alternatively introduce a series resistor in Fig. 2.3 to reduce the learn-

ing rate. All of these adjustments increase the silicon area per synapse.

One of the limitations of the present approach to in situ learning circuits is the inherent
volatility of capacitive weight storage. Synaptic weights represent the knowledge of the net-
work, and the network must be continuously exposed to relevant inputs or training data.
Irrelevant or null inputs would otherwise corrupt the weights. One cannot simply disconnect
the power supply and have the network retain its present state. To circumvent this problem
cither a refresh mechanism could be incorporated as in dynamic RAM or nonvolatile storage

may be employed.
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2.6 Summary

The suitability of VLSI-efficient learning algorithms based on the above MOS learning
rules, as compared to previous analytical forms of Hebbian learning, can only be ascertained
by simulation of a range of network models employing these synapses attempting a variety of
learning tasks. These simulation studies are important in view of the potential benefits from
reductions in silicon area in the realization of synaptic circuits, since the area of these synapses
determines the VLSI complexity of the neural network itself. Hebbian learning has become
popular in neural network research because it has achieved success in associative tasks and
because it represents a simple mathematical approximation to what is believed to underlie bio-
logical neural systems. Recent work by Brown and his colleagues has established the presence
of Hebbian synapses in the hippocampus of mammalian brains [Zador]. We believe it to be
worthwhile to search for learning algorithms which achieve approximations to classical Heb-
bian rules based upon the simplest silicon implementations even though the corresponding

mathematical models may be more complex.



CHAPTER

Bipolar Synaptic Learning Circuits

3.1 Introduction

In this chapter we describe a set of analog circuits which we have used to implement an
ANN with bipolar weights and neuron activations. These circuits are considerably more com-
plex than those developed in the previous chapter, and implement better approximations to the
computational functions required by ANN theory. These circuits were developed because we
wanted to implement existing ANN models in analog CMOS; ANN models which we were
interested in implementing would have required extensive modifications to be compatible with
the highly approximate computation of the circuits presented in the previous chapter. Further-
more, due to time constraints, we chose circuit designs which were robust and therefore likely
to function properly the first time that they were fabricated. Of course the analog circuits
presented in this chapter are still far more compact than their digital counterparts, so the com-

putational benefits of analog computation have not been lost.

We have designed, fabricated and tested a fully analog neural network architecture with
in situ Hebbian learning at each synapse. Synaptic weights are stored as voltages on capaci-
tors. Below, we begin by describing the ideal neural network model which our analog VLSI
implementation approximates. Next, our system architecture is discussed, followed by a
detailed analysis of the behavior of the components from which the system is constructed. The
ramifications of using imperfect components is analyzed, followed by a description of chip test

results.
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3.2 Ideal Neural Network Model

Our circuits implement a common neural network model, where both synaptic weights
and neuron activations can take on values in the range [-V,V]. Network operation is governed

by the following equations:

Vi =W,V (3.1
J
dw;;
dr = AVL VJ - BW‘J (32)

where V; and V; are the current activations of the i™ and j* neurons, W;; is the weighting
factor determining the effect that the j neuron has on the i neuron’s activation, and A and

B are small constants. f(-) is a sigmoidal saturating non-linear function.

The current activation of the i** neuron is computed from a weighted summation of the
current activations of all neurons which synapse on neuron i (equation 3.1). Network learning,
or adaptation, is governed by (3.2), a common form of the Hebbian learning rule [Kohonen-1].
According to the first term in (3.2), when the activations of the i# and Jj ** neurons are both
positive or both negative, (ie. they are correlated), the weight W;; will slowly increase over
time, and when they have opposite signs (ie. they are anti-correlated), W;; will decrease. The
second term in (3.2) is a weight decay term, which causes all weights to decay towards zero

over time.

Note that these two equations governing network behavior operate on very different time

scales -- network learning (3.2) typically occurs at Lth to th the rate of network

100 10000

operation, governed by (3.1). This makes intuitive sense, because the values of network

weights represents the aggregate effect of many hundreds or thousands of network activations.

3.3 Analog CMOS Implementation

The circuit of Fig. 3.1 implements our analog CMOS approximation of the ideal neural
network described by (3.1) and (3.2). In a typical neural network, many copies of the synaptic
circuit (left half of Fig. 3.1) are connected to each neuron circuit, one for each neuron which
affects the i neuron. Thus, there can be as many as N (N-1) synapses in an N neuron sys-
tem, in the case of a fully connected network, and synaptic circuitry occupies most of the sili-

con area of a typical neural network chip.
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Synapse Neuron
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Figure 3.1 Synapse and neuron circuits.

The circuit of Fig. 3.1 implements (3.1) as follows. The synaptic weight Wi is
represented as the voltage V;; on capacitor C, and the i and j™® neuron activations are
represented by the voltages V; and V; respectively. The three multipliers, Py, P, and P, mul-
tiply two differential input voltages, producing an output current proportional to the product of
the inputs, independent of the voltage at the multiplier output. Thus the product Wi;V; in (3.1)
is computed by P,, and the summation operation is implemented as current summation at the
input to P3. P35 converts the resulting net current into a voltage signal which is then input to
the neuron multiplier P4. The saturating non-linearity f(-) in (3.1) is produced using the
saturating behavior of the neuron multiplier P,, with signals NGain and NBias controlling

neuron gain.

Hebbian learning (3.2) is implemented by P:

aw;; av;; Ioap
o = « V,V, 3.3
dt dt C g (3.3)

since P produces an output current /4p proportional to V; V;, independent of V;, the voltage

ij
on the capacitor C. The weight decay term in (3.2) has been set to zero (B = 0) in this cir-

cuit.

Since any practical neural network contains many hundreds or thousands of synapses, it
is essential that the components of Fig. 3.1 be as simple as possible. For this reason, the com-
ponents in Fig. 3.1 deviate considerably from the ideal case represented by (3.1) and (3.2).

The behavior of these components is analyzed in detail below.
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3.4 Circuit Components

a) Wide-range Gilbert Multiplier b) I-V Converter
. vdd
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Figure 3.2 Schematics of circuit components.

In keeping with our goal to use the simplest and most robust circuit design possible, our
neural network architecture is constructed from the components of Fig. 3.2 (with some minor

specializations, depending on application).

3.4.1 Muiltiplier Circuit

The multiplier circuit is a variant of a wide-range Gilbert multiplier [Mead], implement-
ing the operation Ipyr = a(V{ — Vy)(V3 — V). Note that unlike in [Mead], transistors in our
multiplier circuit are operating above threshold (Vgg>Vy). The six transistors which perform
the basic multiplication operation (Fig. 3.2, M, - M) are three source-coupled differential

pairs, of the form shown in Fig. 3.3. Using the simplified square-law equation

Ips = %(VGS—VT)z, where 3 = uCOX%V— to represent the behavior of an N-channel transistor

in saturation,
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Figure 3.3 MOS differential pair.
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Figure 3.4 Basic MOS Gilbert circuit.
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3.4

(3.5)

(3.6)

/ 21
where Vy =V ~V_, provided I V.- v_| < F?—. Equations 3.4, 3.5 and 3.6 may be

used to derive an expression for the output current of the basic Gilbert multiplier of Fig. 3.4,

which consists of three differential pairs:
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Tour =I+‘-I_=([3+I5)-—(I4+I6) 3.7
=U3=1)—-Uec—15)

which is the difference between the output currents of two differential pairs of the form (3.6),
where the current source Ip is replaced by expressions (3.4) and (3.5), representing /; and 7.

Thus,

NP2
Loyr = BZVY V% {x/zuB Iy \/BIVVZ]Z — V2 (3.8)

L[ ) -

where Vy = V3~V and V; = V—V,. The multiplier circuit of Fig. 3.2 also consists of three
differential pairs, connected in the same way as in the basic Gilbert multiplier. The difference
between the two circuits is that current mirrors (Mg, Mg, and Mg, M ;) have been placed
between the two stages to allow the restriction max(V3,Vy) > min(V,V,) to be relaxed.
Assuming that these current mirrors are ideal (ie. Iyy = Ioyr), then the transfer function
remains unchanged. Introduction of the current mirrors also requires that the two stages be
implemented with complementary transistors -- in this case the first stage is implemented with
p-channel transistors, and the second stage with n-channel transistors. Finally, the current
source Ip is implemented with transistor M (operating in saturation), and three more current
mirrors (M 15 - M y7) are used to perform the subtraction 7, —/_, and to make /oy indepen-

dent of Voyr.

The multiplier transfer function is given by:

NP
Loyr = BZVY '\/% {\/413 Ry \/EFVZ]Z Sy (3.9)

- \/’i‘ [W— \/B—PVZJZ - BV vy?
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and when V; — V, and V4 — V, are small,

5y ——
loyr = BZ ! \/%[ 4lp —BPVZZ“F\/FVzJZ (3.10)
L [y )
NnP
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Figure 3.5 Ipgr as a function of V3-Vy4 for V=V, from -0.8V o 0.8V
(3um CMOS test chip, Vdd = 2.5V, Vss = =25V, Vp =09V, data collected
using HP4145A).

Measurements from our test chip (Fig. 3.5) confirm the behavior predicted by (3.9) and (3.10):
for small inputs the multiplier is nearly linear, with saturation occurring when
max (| V- Vzl , | Vs—Vy4 [y >0.8V. Fig. 3.6 shows that for Vyyr in the multiplier’s
operating range of £0.8V, there is a variation in Ipyr of 3% of max (yyr). This is achieved
by using long transistors (L = 14um) to minimize channel-length modulation effects for the

output current mirrors (M4 - M 17).
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Figure 3.6 Ioyr as a function of Voyy for Vi—V,=-2.5V, V=V, from
—0.8V 10 0.8V (3um CMOS test chip, Vdd =25V, Vss =-2.5V, Vy = 0.9V,
data collected using HP4145A).

The design of this multiplier circuit involved two important tradeoffs: low power con-
sumption versus circuit speed, and wide linear input voltage swing versus good matching
between identical multiplier circuits. An operating current in the 3uA range was chosen as a
compromise between power consumption and circuit operating speed, giving a worst-case DC
power consumption of 55uW/multiplier, and a typical switching time of 70ns. To achieve
good matching between identical transistors, Vg should be well above Vg, to minimize the

effects of threshold variations. Since Ipgo<(Vgs—Vir)?, the sensitivity of Ipg with respect to
—2Vr

I

DS __
Vr, Sy, = v
Gs—Vr

,» S0 clearly good matching is impossible for Vs near Vy. However,

increasing Vdd—Vp to achieve good matching between current sources (implemented with M ;)
reduces the linear input range (Vz 2V,,V,2-Vp is the linear range). A compromise
Vdd—Vp value of 1.6V (Vy = 0.77V) was chosen. Similar calculations were made to ensure

that the input voltages to the current mirrors in this circuit are also well above threshold.
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Increasing supply voltages is another way that the linear input swing can be improved: how-
ever, impact ionization effects limit the supply voltage of the 3um CMOS technology that we

are using to SV.

3.4.2 1I-V converter

a) b)
vdd
G
Vour Vour
Ine Iy
G, G
-vdd

Figure 3.7 Linear I-V converter. a) linear resistors to Vdd and Vss; b) sim-

plest case, when G =G, = -%—G

For our application, accurate current-to-voltage conversion is not necessary, so the simple
circuit of Fig. 3.2b was chosen. This circuit performs the same operation as its linear

equivalent (Fig. 3.7a). Here,

Iy +Vdd(G —G»)

V = 3.11
ouT GG, 3.1D

(assuming Viss = -Vdd), and when G; =G, = %G this circuit behaves like the simplest I-V

converter, a resistor to ground (Fig. 3.7b).

Linear resistors require too much silicon area, so G and G, are implemented using M 4,
and M,;. When Vé"NTL = Vdd and VSNTL = Vss, M,y and M,; are operating in the triode
region (Vpg<Vgs—Vr), an approximate expression for I-V converter behavior may be calcu-
lated, using Ipg = B((Vgs—Vr)*~V3/2). Assuming that the transistors are matched
" =B’ =PB), and Vss = -Vdd,

Iy +BVAd (Vi +Vinm)

our = (3.12)
BV —Vinm —2Vr)
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Figure 3.8 Measured I-V converter performance (3um CMOS test chip,
Vdd = 2.5V, Vss =-2.5V, V¥ = 2.50, Vi = —2.27, data collected using
HP4145A).

which is in the same form as (3.11) (note that Vi, is negative). In practise it is difficult to
match M,y and M4, but V]CVNTL and V&7, can be adjusted to correct for transistor mismatch.

Fig. 3.8 shows a typical I-V converter characteristic.

3.5 Effect of Imperfect Components

As mentioned previously, the reason that neural networks with learning capability are
suitable for implementation using simple, low accuracy analog computational elements is that
their architectures enable them to compensate for these imperfections. For example, assume
that P in Fig. 3.1 produces a larger than average Ioyr for a given weight value, Vi;. Simply
by learning a slightly different weight, the circuit can compensate for substantial variations in
P,. Similarly, an offset introduced into the neuron output V; by mismatches in P3, P, and P
can also be cancelled by adjusting the synaptic weights of the system. As might be expected,
neural networks can have critical components: our investigations using a modified version of

these synaptic circuits to implement a Deterministic Boltzmann network [Hinton-1] demonstrate
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that architectures typically have certain operations which must be performed accurately.

Another important source of error is variation in temperature. As the neural network chip
is operating, increasing temperature will alter component characteristics, perhaps non-uniformly
across the chip’s surface. Since our circuits are intended for neural networks which learn con-
tinuously, either from each input pattern or by interspersing training patterns between
unclassified patterns, weights will change with temperature, reflecting the effect of temperature

changes on each component in the circuit.

As the preceding discussion indicates, learning is not just important from the point of
view of training a neural network to perform a certain task; it also serves as a form of slow
feedback which allows the neural network to compensate for a wide variety of component
imperfections. Qualitatively, leaming feedback is performing the same correcting role in a

neural network that a negative feedback path performs in a linear amplifier.

3.6 Implementation

The circuits described in sections 3.3 and 3.4 were fabricated using a 3um double metal,
P-well CMOS process (Northern Telecom CMOS3). In this combined analog/digital process,
linear capacitors are created between heavily doped P-diffusion regions and polysilicon. Fig.
3.9 is a photomicrograph of a single synaptic cell, which implements the synaptic portion of
the circuit of Fig. 3.1. The majority of the cell area is occupied by the two multipliers, with
the remainder of the area occupied by control circuitry and the weight storage capacitor. For
our test circuits, C = 1.1pF (the capacitor is located in the lower right corner of the cell). Fig.
3.10 shows the layout of the neuron circuit. For this cell, layout efficiency was not an issue,
because neuron cells occupy an insignificant fraction of total silicon area of a typical neural

network chip.

Approximately 3000 synaptic cells will fit on a 1cm? die. Such a network can perform
more than 6 000 multiplications simultaneously, giving a throughput of 6 billion analog mulii-
plications per second (assuming a conservative 1MHz operating speed). These calculations
demonstrate that analog computation is far more area-efficient than its digital equivalent. As
mentioned previously, the key to using analog components for computation is that the system

architecture must be tolerant of imperfect component behavior.
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Figure 3.9 Photomicrograph of synaptic circuit (32440um? per synapse ).

Boundaries of subcircuits are indicated by broad, dark lines.

To test our synaptic and neuron circuits in a complete neural network system, a fully-
connected (each neuron synapses with every other neuron) Hopfield-type configuration was
chosen. We fabricated two neural networks: a 3 neuron, 6 synapse network (Fig. 3.11), and a
larger 25 neuron 600 synapse network containing more than 28 000 transistors (Fig. 3.12). The
diagonal of missing synaptic cells in Figs. 3.11 and 3.12 arises from the fact that neurons do
not synapse with themselves (W; = 0). In the following section, test results for these networks

are reported.

3.7 Circuit Performance

The DC behavior of circuit components was discussed in section 3.4 and compared with
simplified analytical expressions for component behavior. In this section the results of a

variety of transient tests (both simulated and measured) are reported. In some cases, such as
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Figure 3.10 Photomicrograph of neuron circuit (44 430]VLm2 per neuron ).

Boundaries of subcircuits are indicated by broad, dark lines.

the learning test below, simulation data, rather than measured data is used, because attaching
measurement equipment alters circuit behavior too drastically. For example, the 10M € input
impedance of a typical oscilloscope will drain the weight storage capacitor in 10us. By
presenting simulation results, as well as measurements, a clearer picture of circuit operation is
obtained. Table 3.1 summarizes signal characteristics. Note that voltage signals (V;, V;, Vi,
Vijs Vi, and Vsuy) may saturate at the supply voltages 2.5V, but their active range is as
stated in Table 3.1.

3.7.1 Three Neuron Learning Test

The test setup consists of the i neuron of a neural network, with two synapses con-
nected to it, from neurons j and k (Fig. 3.13). The learning behavior of this circuit is shown

in Fig. 3.14 and Table 3.2.

At ¢t =0, the system is stable, since V; and V; are anti-correlated and Vi; = Vss (max-

imum negative weight value); V; and V, are correlated, and V;, = Vdd (maximum positive
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Figure 3.11 Photomicrograph of 3 neuron, 6 synapse network
(1.0 x 0.5mm?).

weight value). At ¢t =0.9us, we reverse the signs of inputs V; and V,. As a result, V; also
switches sign, because the circuit has learned that V; is correlated with V,, and anti-correlated
with V;. Thus, the circuit is using the relationships it has learned between V;, V; and V; to
predict a new value for V;. At ¢t =29us, V; is set to a moderate negative value. Since V;

and V; are anti-correlated, V; begins to increase. However, V; and V, are correlated, and V),

)

is still negative, so the net result is that V; settles to a smaller negative value ( | Vi | > | Vi
so ViWy + V;W;; <0, and hence V; < 0). Now V; and V; are weakly correlated, and V;; gra-
dually becomes positive as this new condition is learned. Note that for purposes of illustration,
a higher than typical learning rate was used: normally adaptation to new relationships between

neuron activations occurs much more slowly than shown in Fig. 3.14.
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Figure 3.12  Photomicrograph of 25 neuron, 600 synapse network
(5.5 X 4.6mm?).

This learning test demonstrates that this circuit behaves in a way that is consistent with
(3.1) and (3.2), the equations describing an ideal neural network with Hebbian learning.
Details, such as the precise form of the product W;;V; may differ, but the basic operation of
learning correlation and anti-correlation, and performing a weighted summation are imple-
mented with sufficient accuracy by our circuits. This learning test was also performed using
the 3-neuron neural network on our test chip (Fig. 3.11), yielding the same results as the simu-

lation discussed above.
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Table 3.1 Summary of signals.

35

Signal Type Range Function
Vi, Vj, V., | voltage [-0.8V,0.8V] neuron activation
Viis Vix voltage [-0.8V.,0.8V] synaptic weight
Veuu voltage [-0.8V,0.8V] Iy after I-V converter
Tsum current | [-3.5p4,3.51A4] sum current
Table 3.2 Learning test.
t=0.0 | =09us | r=29us
Vi + -
1
V. — -+ ——
J 2
Vi + -
Vij - - +
Vik +
Vi Vi i neuron
Y Y ISUM V
Vik Vi *)—D-’i
() L]
7 T—°

Figure 3.13 Learning test configuration.

3.7.2 Dynamic Circuit Tests

A number of dynamic circuit tests were performed to characterize the behavior of our cir-

cuits. Fig. 3.15 illustrates the behavior of the 3-neuron network when V, is held at 0.4V, and

V; is switched at 25kHz. Fig. 3.15 shows that V; follows V; (the network has learned that V;
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Time (is)

Figure 3.14 Learning test results (HSPICE MOSFET model level 3 simula-

tion).

and V; are correlated). However, because V; is held at 0.4V while V; switches (V; and V, are
also correlated), V; does not saturate at its maximum negative value (about —1.0V'), because V,
remains positive while V; is negative; thus the value of V; generated by the network reflects
the influence of both V; and V. The network could also have learned an anti-correlation
between V; and V;, and V; and V,, with similar results. In our test setup, the relation learned
between V; and V; can be changed by briefly forcing V; either high or low. If V; is released
when V; has the same sign as V; (either positive or negative), then a correlation is learned;
otherwise an anti-correlation is learned. The same comments apply to the relation between V;
and V,. Note that the V; rise and fall times seen in Fig. 3.15 reflect the large capacitance that

the neuron output has to drive in our test setup, rather than system learning dynamics.

Fig. 3.16 shows the effect of a high learning rate. In this test, V; and V, both switch at
25kHz , and therefore V; should also switch each time V; and V) switch. However, because
the learning operation (3.2) is faster than system dynamics (3.1), at ¢ = 5us when V; and Vy
switch, V; begins to follow, but learns a new relation (anti-correlation) before V; rises above
OV. Notice that the learning rate chosen in Fig 3.16 is just slightly too high, so the network

operates correctly when V; and V, switch at r =25Us and ¢ =45us, and fails again at
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Figure 3.15 Dynamic test of 3-neuron network, response of V; when
Vi =04V, V; switching at 25kHz (test data generated using ASIX-2 IC tester,

analog data collected using Tektronix 2232 digital storage oscilloscope).

4

t = 65ius. Noise determines whether V; rises above OV before Vi and V change sign (in

Fig. 3.16 V; rises to almost OV before falling again in the cases that fail).

3.7.3 Power Dissipation

Power dissipation is a critical issue in VLSI systems, limiting both speed and integration
density. Since neural networks have to be large to be useful, circuit designs with large power
requirements are not practical. Synaptic circuitry occupies most of the chip area of a typical
neural network, so power dissipation requirements may be estimated by considering synaptic
power consumption. The worst-case DC power consumption of our synaptic circuit is 110uW
(two multipliers at SSUW /multiplier), giving a chip power dissipation of 0.34W /cm? QBum

CMOS), which is achievable using conventional air cooling.
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Figure 3.16 Dynamic test of 3-neuron network, effect of high learning rate
(test data generated using ASIX-2 IC tester, analog data collected using Tek-

tronix 2232 digital storage oscilloscope).

3.8 Discussion

Although the synaptic circuits described in this chapter have been incorporated into a
fully-connected Hopfield-type architecture to evaluate their performance in a complete system,
they are suitable for a variety of other ANN architectures as well. In assessing the suitability
of our analog circuits for a particular learning model or architecture, the most important con-
sideration is whether the architecture is tolerant of low-accuracy computation. This tolerance
may be achieved in a number of ways, with weight adaptation (learning) being the most
effective. As was discussed in previous sections, an ANN can compensate for a wide variety

of component flaws by learning appropriate weight values.

3.8.1 Back-propagation ANNs

Studies have shown that the successful and popular back-propagation (BP) ANN
[Rumelhart-2] requires between 8 and 16 bits of accuracy for gradient descent weight adapta-
tion. Although it is difficult to achieve this level of accuracy using analog computation, this
accuracy may only be required to permit small weight changes during learning, as is the case

with contrastive Hebbian learning (see Chapter 5). Support for this point of view comes from
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informal discussions with other researchers, whose investigations seem to indicate that lower
weight resolutions are sufficient for solving many classification problems. Thus, variants of

our analog circuits may well be suitable for implementing back-propagation ANNs.

3.8.2 Self-Organizing Perceptual Map ANNs

There are a variety of ANNs which are well suited to the circuits described in this
chapter. Generally, they use learning rules that depend only on local interactions, which
simplifies communication in a VLSI system. Below, representative approaches which use

unsupervised learning are discussed.

Linsker describes a self-organizing network which learns to extract features from an
image in a way that is reminiscent of feature extraction in the first stages of the mammalian
visual system [Linsker]. The self-organizing principle used by this system is based on infor-
mation theory: the network connections (weights) develop such that the amount of information
that is preserved at each processing stage is maximized. Linsker’s system uses linear neurons

and no feedback, as his goal was to use as simple a system as possible to model early vision.

The equations governing system operation are:

J

AW‘] = CVIVJ + DVJ + EVL + F (314)

where A, B, C, D, E and F are arbitrary constants, C > 0 and weights W;; are constrained to
lie in the range -V < W;; £ V. The similarity between (3.13) and (3.14), and (3.1) and (3.2)
is obvious, and thus implementation of this ANN with our circuits should pose no major prob-
lems. Nonlinear extensions of Linsker’s network could also be implemented with our analog
circuits. This is an important consideration, because practical ANNs must have nonlinear
information processing: strictly linear systems are only suitable for a restricted class of applica-

tions.

Linsker found that after passing through two layers of this linear network, governed by
equations (3.13) and (3.14), center-surround cells develop, and after three layers, orientation-
selective cells. Center-surround [Kandel-1] cells respond to bright spots surrounded by a dark

background, and orientation-selective cells respond to bright bars with a particular orientation.

A further modification of Linsker’s approach, following [Oja), results in a network which

can perform a form of principle-component analysis, a method used in statistics for extracting
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unanticipated structure from high-dimensional data sets. Oja found that a Hebb-type learning
rule which maximizes the output variance, subject to the constraint ZWi}?' =1 implements

principle-component analysis.

3.8.3 Self-Organizing Feature Map ANNs

Kohonen has done considerable work in the area of unsupervised ANN learning, with
networks called self-organizing feature maps [Kohonen-2]. Here, we discuss Kohonen’s work
with respect to a particular application, an experimental speech recognition system. The ANN
architecture employed consists of a 2-dimensional hexagonal arrangement of neurons, each of
which has an adaptive synaptic connection to an external input. The network has lateral feed-
back synaptic connections between neurons in the network, with the strength of the feedback
connections following a ‘‘Mexican hat’’ [Kohonen-2] function, in which connection strengths
decrease with distance from the objective neuron, alternating between excitatory and inhibitory.
Self-organizing feature maps are a form of competitive leaming network, in which the network
activity develops into clusters or ‘‘bubbles’’ as the lateral feedback connections suppress
activity in neurons near strongly activated neurons. Thus, neurons ‘“‘compete’”” with one
another, and the winner suppresses its neighbors through lateral inhibition in a ‘‘winner take
all”’ fashion.

The following equations describe network operation:

V; =f(ZWijVj) (3.15)
j

aw;;
- = AVV; — BV)W (3.16)

where (- is a scalar function with a Taylor expansion in which the constant term is zero, f (-)
is a sigmoidal function, and A is a positive constant. Typically, B(-) has a simple form that
would be straightforward to implement in analog CMOS. It is apparent from (3.15) and (3.16)
that this ANN’s weight learning rule is a variation on Hebbian learning, and is therefore realiz-
able using the analog CMOS circuits described above. Developing circuits to implement the
lateral feedback connections poses no major problem, and as was the case with Linsker’s ANN

architecture, weight adaptation will compensate for analog component imperfections.
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3.8.4 Unsupervised Discovery of Spatially Coherent Higher-order Features

Hinton and Becker [Hinton-2] describe a self-organizing ANN for perceptual learning,
whose objective is to extract higher-order features that are coherent across time or space.
Their procedure maximizes the explicit mutual information between pairs of parameters from
adjacent but non-overlapping parts of the input [Hinton-2]. Although the objective function
that Hinton and Becker propose is not ideal for direct implementation with analog hardware,
Linsker’s development of Hebb-type learning rules for information theoretic objective functions
suggests that Hebb rules exist for a variety of information theoretic measures, including the one
used by Hinton and Becker. As discussed previously, Hebbian learning rules are well suited to
VLSI implementation because they require only local information for weight adaptation, and

computation typically involves only multiplication, addition and subtraction.

3.8.5 Scalable Architectures

Very large ANN systems are required to tackle real-world problems: thus, a critical issue
in evaluating network architectures is how well a very large implementation of a particular
ANN will perform. Increased network size leads to additional redundancy, and hence addi-
tional fault tolerance. Conversely, large systems will have additional problems: for example,
difficulties related to timing of global signals may require unclocked or self-timed circuits.
Very large ANN systems involve many additional considerations beyond the scope of the

present work.

Evidence from neurobiology indicates that there are upper limits on the size of tightly-
coupled systems required for artificial intelligence: biological brains consist of many sub-
systems with a high level of internal connectivity, and relatively less interaction between sub-
systems. An example of an ANN which has a hierarchical structure of this sort is discussed

in chapter 5.
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3.9 Summary

We have designed, implemented and tested an analog CMOS neural network architecture
with in situ Hebbian leamning and capacitive weight storage. Because analog CMOS imple-
mentations of common computational operations, such as multiplication and addition, are far
more compact than their digital counterparts, analog systems have tremendous computational
potential. The difficulty arises in designing a system architecture tolerant of component varia-
tions. Our investigations show that other neural networks are well suited to implementation
using simple, inaccurate analog components [R. Schneider]. The adaptive ability of a neural
network with on-chip learning makes it possible for the network to compensate for imperfec-
tions in the analog components from which the system is constructed. Computational perfor-
mance in excess of 6 billion multiplications per second is achievable (1IMHz, 1cm? die, 3um

CMOS).



CHAPTER

Synaptic Circuits Motivated by Invertebrate Biology

4.1 Introduction

In chapters 3 and 5 implementations of artificial neural networks (ANNSs) using low-
accuracy analog CMOS transconductance circuits are described. These ICs implement conven-
tional ANN architectures, with Hebbian [Hebb] and mean field [Peterson-2] learning circuitry
at each synapse. In this chapter, we take a slightly different approach to the implementation of
ANNs: rather than designing circuits to implement an ANN architecture, we propose circuits
which are suggested by the behavior of a biological neural network. These biologically
motivated analog CMOS circuits include functions which, although important for the operation
of biological neural networks, are typically omitted from ANN models. We incorporate only
certain abstractions of the biological processes into our circuits, since our goal is to develop
efficient ANNs for computational artificial intelligence, rather than modeling neural biology in
a literal way. This is an important distinction, because there are computationally important
differences between analog CMOS VLSI and neural biochemistry. Operations which are

impossible to implement in one may be easy to implement in the other.

Our circuits model three learning paradigms present in biological synapses: habituation,
sensitization and classical conditioning. Specifically, we are modeling the behavior of the
marine mollusc Aplysia, which has been studied extensively -- see for example, [Kandel-1,
Kandel-2, Hawkins]. Investigation of mammalian synaptic function is complicated by the
small size of neurons and synapses in higher-order animals, and consequently less data is avail-
able. It must be emphasized that, although our circuits are more biologically plausible than

most current ANNS, they still present a highly simplified picture of biological neural networks.
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More complex aspects of biological synapse operation, such as those involving extinction and
spontaneous recovery [Hawkins], are are omitted from the circuits described below. In doing

so we achieve a balance between accurate modeling of neural biology, and mainstream ANNS.

This work draws upon two previous investigations, [Card-2], in which CMOS circuits
implementing habituation, sensitization and classical conditioning with EEPROM weight
storage are described, and chapter 3, which deals with analog CMOS Hebbian leaming circuits
using capacitive weight storage. Other approaches to ANN implementation with learning cir-
cuitry at each synapse have been reported recently, including [Schwartz-2, Alspector-1]. In
section 4.2, biological synaptic learning is reviewed. Section 4.3 presents a simplified
mathematical model of this learning behavior, which is followed by a description of CMOS
components which implement these operations in section 4.4. The proposed analog CMOS
synaptic circuit, constructed from these components, as well as simulation results, are discussed

in section 4.5.

4.2 Basic Biological Synaptic Learning Mechanisms

Siphon
CSenm
Us NS
F
= e

Mantle

Figure 4.1  Simplified schematic diagram of the portion of Aplysia’s nervous

system responsible for gill withdrawal reflex.

Kandel et al [Kandel-2], in their study of the marine mollusc Aplysia, have shown that
chemical changes in individual synapses are responsible for three important types of learning:
habituation, sensitization and classical conditioning. In this section, biological synaptic func-
tion is described at the behavioral level; for a description of the electro-chemical processes

involved, see [Kandel-2]. Fig. 4.1 shows a simplified schematic diagram of the portion of
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Aplysia’s 10° neuron nervous system responsible for its protective gill withdrawal reflex. The
neural network connecting the gill (Aplysia’s respiratory organ), siphon (a small spout for
expelling sea water), mantle and tail allows the mollusc to withdraw its gill when a stimulus is
applied to the tail, siphon or mantle. In nature, this reflex has obvious evolutionary advan-
tages, as it allows Aplysia to protect its sensitive gill at the first sign of attack. Aplysia’s
response to tail, mantle and siphon stimuli may be altered dramatically by what it has learned
about these stimuli in the past. In Fig. 4.1, the three sensory neurons SN, SN, and SNj
receive stimuli from the mantle, siphon and tail, respectively. SN; and SN, synapse directly
with motor neuron MN (S, and S,), so siphon and mantle stimuli can trigger gill withdrawal.
In addition, SN5 synapses with the facilitating interneuron FN, which in turn synapses with
synapses S, and S, (through F; and F,). These synapses on synapses, F, and F,, play a crit-
ical role in learning, as described below. For the purposes of neural modeling, the pairs S
and Fy, and §, and F, may be regarded as single ternary synapses (synapses between three
neurons), in which the synaptic weight is determined by the interaction of two external signals.
This is the approach that we take in the following section. Note that the schematic of Fig. 4.1
is highly simplified; in particular, each neuron illustrated represents approximately 6 to 24 neu-

rons operating in parallel.

Habituation may be defined as ‘‘a decrease in the strength of a behavioral response that
occurs when an initially novel eliciting stimulus is repeatedly presented’” [Kandel-1]. Kandel et
al have shown that repeated mild tactile stimuli to the mantle cause the gill withdrawal reflex
to habituate, as the animal learns that the stimuli pose no danger. This learning behavior has
been traced to chemical changes in the synaptic connection between mantle sensory neurons

and gill motor neurons (S;): the effective weight of the synapse S is reduced.

The sensitization mechanism is somewhat more complex. Sensitization is defined as,
“‘the enhancement of an animal’s reflex response as a result of the presentation of a strong or
noxious stimulus’’ [Kandel-1]. In the case of Aplysia, noxious stimuli to the tail result in
enhanced subsequent gill withdrawal in response to mild mantle stimuli. Again the locus of
learning is the synapse S, in this case through presynaptic facilitation from synapse F. The
mechanism is as follows: tail sensory neuron firing (SN3) causes the [acilitating interneurons
(FN) to fire, which in tumn cause F to alter the chemistry of S, such that the synaptic weight

of § is increased. Not surprisingly, sensitization can reverse the effects of habituation.
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“In classical conditioning, an initially weak or ineffective conditioned stimulus (CS)
becomes highly effective in producing a behavioral response after it has been paired in time
with a strong unconditioned stimulus (US)”’ [Kandel-1]. Classical conditioning is a form of
associative leamning, by which an organism learns a predictive relationship between two
stimuli. Aplysia can be classically conditioned by applying a mild tactile stimulus to the man-

tle (CS), followed approximately —;— second later by a strong stimulus to the tail (US). Again

F, plays an important role. In classical conditioning, recent activity in S; due to the CS
results in activity-dependent enhancement of presynaptic facilitation. Thus classical condition-
ing uses the same mechanism as sensitization (presynaptic facilitation), the effect of which is

enhanced by the arrival of the CS % second before. In classical conditioning, the time

between the CS and the US is critical: if the US arrives before the CS, no classical condi-
tioning occurs. This makes good survival sense, since Aplysia is concerned about learning
when a mild stimulus (CS) predicts a potentially threatening one (US). In Kandel’s experi-
ments with Aplysia, CScyr;, (siphon stimulus) was used to differentiate between the effects of

sensitization and classical conditioning.

As the above discussion shows, classical conditioning is a form of associative learning,
and is therefore related to Hebbian learning [Hebb] and its variants. However, classical condi-

tioning is non-commutative, because the CS must precede the US by a critical interval.

Kandel’s investigation of synaptic leamning shows that Aplysia uses learning rules which
are much more elaborate than those used by most ANNSs. Aplysia employs non-commutative
timing-critical associative learning, as well as two forms of non-associative learning, habitua-
tion and sensitization. Work by others demonstrates that these mechanisms are important in a
wide variety of organisms. Studies using the fruit fly Drosophila indicate that similar chemi-
cal mechanisms are involved in learning. In human studies, it was found that the ability of a
one year old baby to habituate to repeated visual stimuli correlates well with measured intelli-
gence at four years of age. The implication is that simple non-associative forms of leaming
may be an important part of biological intelligence, and should therefore be considered for
inclusion in ANN models. In the following section, an abstraction of these aspects of learning
in Aplysia is presented. Note that the above description of biological synaptic function omits

many interesting aspects of learning in Aplysia; see [Hawkins] for a more detailed discussion.
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4.3 Model of Habituation, Sensitization and Classical Conditioning

As a starting point for the development of this learning model, we use a standard ANN
model with Hebbian leaming described in chapter 3. In this model, both synaptic weights and
neuron activations can take on values in the range [-V,V]. Network operation is governed by

the equations (3.1) and (3.2).

The neural network model presented in chapter 3 differs from neuron biology in two
important ways. Neuron activations are represented as analog values in the model, rather than
as neuron firing rates. Secondly, biological neurons only have positive (unipolar) activations
and synaptic weights, whereas the above model allows both positive and negative (bipolar)
activations and weights. Although at first glance the use of bipolar weights and activations
violates the principle of biological plausibility, it allows both excitatory and inhibitory synaptic
connections to be treated in a unified way, and follows the principle of implementing functions
in a way that is ‘‘natural’’ for the medium being used to build the system. In our case, the

medium is analog CMOS circuitry, in which bipolar operation is easily achieved.

System behavior in the model of biological synaptic function proposed in this chapter is

governed by the equations:

Vi=f (Z%Wijkvj) @.1)
j

aw;
d;jk =CAdWVjlV, =D | V; [ Wy + E [V, | Wy, (42)

The ternary nature of these synapses is evident in (4.1) and (4.2): Wi is the weighting factor
determining the effect that correlation between the activations of the | * and k™ neurons will
have on the activation of the i** neuron. Hebbian learning, as described by (3.2), may be
regarded as a special case of (4.2), in which i = j. Using the notation of the previous section,
the unconditioned stimulus US = Vg = V,, the conditioned stimulus CS = Ves =V;, and

(4.2) may be rewritten (for motor neuron MN) as:

ﬁ‘fi—Wt— = Cd(Ves)Vys =D | Ves | W+ E | vyg | W @3)

where the synaptic weight W is a shorthand notation for Wik = Wyn cs us» and indices CS
and US represent neurons SN, and FN respectively, rather than their activations. The term
Cd(Vs)Vys implements classical conditioning, where d(Vg) is a delayed, time-averaged ver-

sion of Vg, representing the presynaptic facilitation function of F; in Fig. 4.1. Note that 4.3)
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differs from Hebbian leaming, as it involves a correlation of two inputs, rather than an input
and an output activation. Vg must precede Vg by a critical interval for classical conditioning
to cause a change in synaptic weight W, as in Aplysia, and the size and direction of the weight
change are determined by the signs and magnitudes of Vg and Vyg, as in the system
described by (3.2). Thus the system can learn predictive relationships between Vg and V.
Note that in addition to creating a delay, the function d(Vg) is gated by Vyg # 0, such that
classical conditioning will not occur when Vyg precedes or coincides with Vg (absence of

reverse conditioning).

The second term in (4.3) represents habituation. Habituation occurs when Vg is non-
zero, and always causes W to decay towards zero. This extension of habituation to the bipolar
case makes intuitive sense, since it causes non-associative weight decay when Vg is active, as
in habituation in Aplysia. The form of the expression is also appropriate, in light of Mead’s
observation, ‘A great deal of inhibitory feedback in biological systems depends on activity in

sensory input channels, but does not depend on the sign of the input’” [Mead].

Finally, the third term in (4.3) E | Vus | W is the sensitization term. Vs activity causes
an increase in the magnitude of the weight, resulting in increased sensitivity to subsequent Ves
signals. Notice that unlike in Aplysia, classical conditioning and sensitization are implemented
by different mechanisms in (4.3). This is due to the generalization to bipolar weights and
activations. In the unipolar case, weights can increase in only one direction, whether through
associative learning or sensitization, and therefore classical conditioning and sensitization can
use the same biochemical machinery. However, this is a special case: (4.3) gives a clearer pic-
ture of the fundamental difference between the operations of sensitization and classical condi-
tioning.

In general, C > E > D, so associative learning dominates, and sensitization and habitua-
tion result in smaller non-associative weight changes. The role of habituation as a form of
inhibitory (negative) feedback is apparent from (4.3). Sensitization causes weight values to
increase: however, the natural saturating behavior of any practical realization of (4.3) will limit

the effects of sensitization.

Next we describe analog CMOS components which will be assembled into a system to

implement this model of biological synaptic learning.
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4.4 Analog CMOS Components

The analog CMOS circuits described below are compact, low-accuracy amplifiers, multi-
pliers, absolute value circuits, etc. The decision to use analog, rather than digital, computation
results in large silicon chip area savings, at the expense of computational accuracy and repeata-
bility. However, the biological machinery of Aplysia is even less precise, so any neural net-
work architecture that requires high accuracy components is not biologically plausible, and
therefore not of interest in the present work.

The components which we are using are transconductance circuits, where the input sig-
nals are voltages and the output is a current. Many of these circuits are variants of the circuits
used in [Mead], but unlike in Mead’s work, the transistors in our circuits are operating above
threshold (Vg > V). Our goal at this stage is not to use the most compact circuits possible;
rather we wanted to use circuits that are reasonably silicon-area efficient, but still robust, and

therefore requiring only one fabrication iteration.

Below, circuits are discussed in detail, approximate analytic expressions for their opera-
tion are derived, and SPICE MOSFET level 3 simulations of their behavior are presented. As

in the previous chapter, analytic expressions are derived using the simplified square-law equa-

tion for the drain current of a MOSFET in saturation: Ipg = %(VGS — Vr)?, where

= nuCoy —-.
BHOXL

4.4.1 Transconductance Amplifier

The transconductance amplifiers of Fig. 4.2 perform the operation Iopr = a(Vy —V,). In
Fig. 4.2a, M, and M5 form a differential pair, and M4 and M 5 implement a current mirror, so
Ioyr is the difference between 7, and 7_ from (3.4) and (3.5):

\/B_PVX Nalp — BF vy ?

2

loyr =1, —1_= (4.4)

where Vy =V — V, and the current source Ip is implemented by M; operating in saturation.
This amplifier has a limitation which restricts its usefulness: for the circuit to operate as
described in (4.4), Vpyr must be more negative than at least one of the input voltages. This
restriction causes problems in many system applications, in which the output voltage cannot be

guaranteed.
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a) Amplifier b) Wide-range Amplifier
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Figure 4.2  Transconductance amplifiers, Ioyr = a(V,~V,);, a) Basic

Vour

amplifier, where Voyr is limited by inputs V1, Vo, b) Wide-range amplifier,
where Voyr is limited only by Vdd, Vss .

The amplifier circuit of Fig. 4.2b eliminates this restriction by adding two current mirrors
(Mg, M 1o, and M 13, M ,4) which mirror the current through M twice, and thereby isolate input
and output without altering the amplifier’s transfer function. Fig. 4.3 shows that the amplifier
circuits behave as predicted by (4.4): for small values of V| — V, the amplifier is linear, with

saturation occurring when | Vi=-V, [ >0.75V.

4.4.2 Transconductance Multiplier

The transconductance multipier performs the operation Ipyr = a(Vq — V)(V5 — Vg It

is basically the same circuit that is described in section 3.4.1.

4.4.3 Absolute Value Circuit

To implement (4.3), an absolute value function is required. The circuit of Fig. 4.4a
[Mead] works as follows: P produces a current I; = a(V; — V,), which is mirrored by the
current mirror My, M,. However, this current mirror can only mirror /, > 0, and thus pro-

duces a half-wave rectified version of V| — V,. Similarly, P,, M5 and M, produce a
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Figure 4.3 Wide-range amplifier Ioyy as a function of V {, for various V ,.
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Figure 4.4 a) Absolute value circuit, Ioyr = a | Vi—V, | ; b) RC delay cir-

cuit.

half-wave rectified version of — (V| -~ V), and Iy = pos(@(V, — V) + pos(— a(V; — Vo))

=a | Vi—-V, |, as required. The transfer function of this circuit is
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VB? | vy | V4L, — BT V2
our = ) “4.5)

4.4.4 RC Delay Circuit
The delay circuit of Fig. 4.4b is used for the presynaptic delay function d(-) in (4.3). Iis
transfer function in the Laplace domain is:

Vour -G

= (4.6)
IIN C1C2(T1S + 1)(’E2S + 1)

and its impulse response:

Gt

v - __________(e-—tlr2 _ e——t/rl) (4'7)
O = C\C oty — 1)

25
Time (us)

Figure 4.5 RC delay circuit response to pulse input.

where 1; and 1, are determined by G,, G,, G3, Cy and C,. In response (o a current impulse,
assuming that T; < T,, and that 7; and T, are well separated, the rise time of Vyyr will be
approximately determined by t; and its fall time by 1,. Fig. 4.5 illustrates the circuit’s
response to a short input pulse: T; and T, have been chosen such that Vyyr has a short rise
time and a long decay time (T, = 2.0us, T, = 49us). Insufficient biological data is available

to determine the appropriate shape of d(-) precisely.
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4.4.5 Absolute Value Multiplier

a) Absolute value muliplier b) Comparator
Vvdd
vdd
M4 M5 M6
3 Tour Vrenr, =9 E/Ig
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Vi Iaps
v —<"° Vour
—|[ms 2
Vss
Vg
o v \%
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Vrento

Figure 4.6 a) Absolute value multiplier, Ioyr = a(Vy = V)| Vs =V, b)
Comparator, Voyr = Vdd, when | Vi-— V2| < Vrures, Vour = Vss, when

The circuit of Fig. 4.6a performs the calculation Ipyr = a(V; — V) | Vs — V4| , which
is required to implement habituation and sensitization, as follows. P takes the absolute value
Ii=a ] Vi — V4l , which serves as the bias current Ip for the wide-range transconductance
amplifier, M; - Mg Fig. 4.7 shows the behavior of this circuit -- notice that it has approxi-
mately the same characteristics as the wide-range multiplier (Fig. 3.5), with the exception of
the absolute value operation. Its transfer function is:

@VY [V{ 4lp —BPV22+\/B_P[ vz ]2 — 4l - Vv,

loyr = 4.8)

This circuit is assembled from two sub-circuits: the absolute value circuit and the wide-
range amplifier. The transconductance circuits that we are using are easily combined in this
way, resulting in efficient implementation of complex functions. In this case, the functions of
an absolute value circuit (14 transistors), and a multiplier (17 transistors) can be implemented

with a 22 transistor circuit which combines these functions, resulting in a 30% saving in
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Figure 4.7 Absolute value multiplier, loyr as a function of V4—V, for

V-V, from 0.8V 10 0.8V.

silicon area.

4.4.6 Comparator Circuit

The final circuit we need to build our analog CMOS synapse is the comparator circuit of

Fig. 4.6b. It performs the presynaptic facilitation inhibition operation when Vi is non-zero.

Vrenre is used to set the threshold voltage, as shown in Fig. 4.8. When the input
| Vi = Vil < Vigres, Vopr = Vdd, and when | V=V, | 2 Vigres, Vour = Vss. A com-
parator circuit is conveniently built from a transconductance circuit, by connecting its output to
a circuit with infinite input impedance (such as a MOSFET gate) -- the output voltage will
saturate at either Vdd or Vss. Is this case, when a | Vi- Vzl = Ixps < Itgrps, Vopr will

saturate at Vdd.

4.5 Synaptic Learning Circuit

Fig. 4.9 is a bipolar synaptic learning circuit, built from the components described in the

previous section. This circuit approximates (4.3), incorporating classical conditioning,
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Figure 4.9 Synaptic circuit.

habituation, and sensitization. The synaptic weight is stored as the voltage W on capacitor Cy,

and weight changes are governed by:
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where I, Iy and I are, respectively, the classical conditioning, habituation and sensitization
weight change components. P, - P4, M and R, implement classical conditioning. Inhibition
of presynaptic facilitation (prevention of reverse conditioning) is achieved as follows: when
| Vs | > Vryres » P turns on My, which tumns off P, by setting its bias current to zero. As
a result, when | Vus | > Vrures» Ves has no effect on Vi, and therefore no classical condi-
tioning can occur. Conversely, when | Vs | < Vrures s P, i active, and classical condition-

ing can occur.

Absolute value multipliers Ps and Pg approximate habituation and sensitization. Note
that W is connected to the negative input of Ps, since habituation drives W towards zero.
Below, three examples are presented which illustrate the learning behavior of this synaptic cir-
cuit. For the purposes of illustration, higher than typical leamning rates are used, so that weight

changes are evident over the relatively short interval of these simulations.

4.5.1 Classical Conditioning

Fig. 4.10 shows the synaptic circuit’s response to a typical classical conditioning event.
At ¢ =3us, a 2us conditioned stimulus (V¢g) pulse initiates a presynaptic facilitation pulse
(Vp). At ¢ =T7us, the unconditioned stimulus (Vi) is presented, resulting in an increase in
the weight W, as the correlation relation between Vg and Vg is learned. The critical period
for classical conditioning, that is, the time after Vg occurs in which Vi must be presented
for conditioning to occur, is approximately 2 to 8us. The shape of V can easily be changed

by choosing different component values for the delay circuit, P 5.

At ¢ =30us, Vys is briefly pulsed negative. The presynaptic facilitation signal Vj has
decayed to almost zero, and thus no classical conditioning occurs. However, Vi does cause a
slight increase in W, through the sensitization mechanism. Notice that despite Vyg being
negative at ¢ = 30ps, W increases, since sensitization is independent of the sign of Vyg. The

slow decay of W from 13 to 30ps is due to a small component mismatch in P4, Ps and Py,
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Figure 4.11 Reverse conditioning. Vyg occurs before Veg, so no classical

conditioning occurs.

4.5.3 Bipolar Circuit Behavior

Thus far, we have shown classical conditioning examples in which both Vg and Vg are
positive. However, our circuits are bipolar, as illustrated in Fig. 4.12. In this example, the
Vs pulse presented is negative, resulting in a negative V. A positive Vs arrives during the
critical period for classical conditioning, and the synapse learns an anti-correlation relationship
between Vg and Vyg. When a second negative Vg is presented at ¢ = 30us, habituation

occurs, causing W to decay towards zero.

4.6 Implications for ANNS

The development of our biology-motivated learning model raises a number of interesting
questions, including, whether the biological learning details presented in this chapter are impor-
tant in ANN models. We began with a conventional Hebbian model, generalizing and extend-
ing it to incorporate the functions of synaptic learning found in Aplysia. Thus Hebbian learn-
ing (3.2) is a special case of (4.3), in which the delay of d() is zero, i = J» and reverse condi-

tioning is allowed.



Chapter 4 — Synaptic Circuits Motivated by Invertebrate Biology 59

0.8 7~ oo : — —
0.6 - ,,,,,,,,,,,,, 5 : : : : :

(Volts)

Time (Us)

Figure 4.12 Bipolar circuit behavior. Synapse can be classical conditioned

to learn anti-correlation.

The effect of non-zero delay in d(-), together with inhibition of reverse conditioning, is
that learning becomes non-commutative. This ‘‘symmetry breaking’’ would result in non-
symmetric weights (W # W) in the case of a fully-connected, Hopfield-type network. This
type of non-commutative learning could be incorporated into networks using contrastive Heb-
bian learning [Peterson-2], again resulting in non-symmetric weights. Further work is planned
to investigate this possibility.

The non-associative leamning found in biological systems, habituation and sensitization,
may also have a role to play in ANNs. Their importance, and how to go about incorporating
them into an artificial system is less clear than with non-commutative learning, because non-
associative learning is not used in many ANNs. However, they are obviously important in bio-
logical neural networks, as shown by the study of a variety of animals, and therefore must be

considered for inclusion in ANNS.

An important issue is whether the biological synaptic learning presented in this work
depends upon a certain degree of ‘‘hard-wiring”’. For example, Aplysia has been ‘‘wired’’ so
that it can leam a predictive relationship between mild mantle stimuli and noxious tail stimuli.

If the neural network of Fig. 4.1 were missing the facilitating interneuron FN, then neither
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sensitization nor classical conditioning could occur. There are two interpretations of this
“‘pre-wiring’’: it is evidence that the biology of Aplysia is not of interest to ANN researchers,
because it represents a special case in which pre-determined network architecture plays a major
role; or, it is an indication that tailoring a network architecture for a particular purpose is an
essential part of neural networks, whether natural or artificial. Our tendency is towards the

latter view, although the issue is far from settled.

4.7 Summary

This work has demonstrated that biological details, which are omitted from most current
ANN models, may be efficiently implemented with analog CMOS circuits. Three types of
learning, habituation, sensitization and classical conditioning, are incorporated in the synaptic
learning circuit which we have developed. Habituation and sensitization are types of non-
associative learning, and are not often included in ANN models. Classical conditioning is a
form of associative learning, related to Hebbian leamning. It differs from Hebbian learning in
temporally correlating two inputs at ternary synapses (synapses between three neurons), rather
than the input and output of binary synapses. Classical conditioning is also more complex, as
it is non-commutative, resulting in a type of ‘‘symmetry breaking’’ in the neural network sys-
tem. Our work shows that biological synaptic learning is substantively different from current
ANN learning, both in terms of learning paradigms employed, and in terms of the extensive
use of ‘‘hard-wiring”’ of connections in biological neural networks. Further research is
required to determine whether these aspects of neural biology are a critical part of information

processing in biological and artificial neural networks.



CHAPTER

Circuits for Contrastive Hebbian ANNSs

5.1 Introduction

In this chapter we describe an analog CMOS implementation of a fully connected ANN
with contrastive Hebbian learning [Movellan] circuitry at each synapse. This work is an exten-
sion of the simple Hebbian learning ANN implementation presented in Chapter 3. Networks
with contrastive Hebbian learning are intended for supervised learning applications, where a set
of training patterns is used for weight learning. A key feature of contrastive Hebbian learning
is that it can be used to train weights in networks with hidden neurons, that is, neurons whose
activations are neither network inputs nor outputs. Implementations similar to those of this

chapter appear in [Alspector-1, Arima]. See section 1.3 for a description of their work.

Below, we begin by outlining the theoretical basis of contrastive Hebbian learning. Then
we present a description of our analog CMOS realization of contrastive Hebbian theory, with a
discussion of approximations that were required for efficient implementation, and circuit test-

ing. Lastly, other applications of these analog circuits are explored.

5.2 Theory of Network Operation

The architecture of the ANN under consideration is a fully-connected Hopfield-type
arrangement of neurons and synapses, in which there is a synaptic connection between each
pair of neurons. Thus, a network of N neurons has N (N-1) synapses, and synaptic circuitry
occupies the majority of silicon chip area (Fig. 5.1). In this section, we present some elements

of the theory of operation of a fully-connected ANN with contrastive Hebbian weight learning



Chapter 5 — Circuits for Contrastive Hebbian ANNs 62

.
1
H

Synapses

Input Hldden Output

III

III

._L.._L._i_

Figure 5.1 Architecture of fully connected network.

[Movellan, Peterson-1]. We begin by describing the well studied Hopfield network [Hopfield],

extending the discussion to include contrastive Hebbian learning.

Hopfield ANNs are typically used for associative memory applications, in which the net-
work is presented with a set of inputs, for which it generates a set of outputs. The input-
output relationship is determined by the system’s synaptic weights, W;;. These networks are a
variety of relaxation network, in which the network sestles into a minimum energy state, sub-
ject to the constraints imposed by inputs and synaptic weights. Theory indicates that sym-
metric network weights (W;; = W;;) are required to ensure that Hopfield networks will settle

into a stable final state. However, in practise weight symmetry is not essential [Galland].

In a Hopfield network, the stable neuron activations after settling are determined by the

relation:

Vi=f&EW;V) 5.1
J

where V; is the activation of the i* neuron, W;; is the synaptic weight determining the effect
that the j’h neuron has on the i”* neuron, and S () is a sigmoidal nonlinear saturating function.

The optimum synaptic weights, W;;, to represent a particular set of input-output associations,
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may be readily calculated [Hopfield].

The major limitation of Hopfield networks is that they have no hidden neurons, that is,
neurons whose activations are neither network inputs nor outputs. Networks without hidden
neurons can not represent a wide variety of input-output associations, including the exclusive
OR (XOR) function and its generalizations [Rumelhart-1]. The contrastive Hebbian network
architecture, which we describe below, takes the basic Hopfield network and incorporates hid-
den neurons. In principle, this is an easy task, because hidden neurons are simply neurons
whose activations are not set to particular values during network training and operation. The
difficulty arises in finding a weight learning scheme which makes use of the hidden neurons to

represent input-output relationships: contrastive Hebbian learning is one such method.

Contrastive Hebbian learning (CHL) is a two-phase weight learning process, governed by:
AWL] =a (Vi+Vj+ - Vi_Vj_) (52)

where V;* and V" are the activations of the i** and j* peurons in the clamped phase, V;~ and
V;~ are the activations of the i and j‘h neurons in the unclamped phase, and a is a small
positive constant which determines the weight learning rate. During the clamped phase, input
and output neuron activations are held at the desired values (ie. clamped), and the network is
allowed to settle into its minimum energy state. After settling, the activation values V;* are
recorded for all neurons. In the unclamped phase, only inputs are fixed, and the network deter-
mines the activations of both output and hidden neurons as it settles into its minimum energy
state. After settling in the unclamped phase, (5.2) is used to modify network weights. This
two phase procedure is repeated for each pair of input-output associations in the training set.
Typically, several hundred passes through the training data set are required for CHL weight
training. This weight training procedure is also called deterministic Boltzmann or mean field
learning, because it is a non-stochastic version of the Boltzmann weight learning algorithm
[Hinton-1]. As mentioned previously, the key feature of CHL is its ability to use hidden neu-

rons 1o represent complex associations.

CHL. is a form of gradient descent learning in the contrastive function J [Movellan]:
J=FY*—F~ (5.3)

where F™ and F~ are the energy functions of the network after settling in the clamped and
unclamped phases. Here we present a brief outline of the theoretical basis of CHL: for a more

detailed account, see [Movellan]. As we are dealing with a fully connected Hopfield-type
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architecture, F* and F~ are minimum energies, subject to the constraints of weights and
clamped inputs and outputs. Assume the F has a unique minimum over allowed neuron
activations. Then, since F* and F~ share the same free parameters (the activations of the hid-
den neurons), and F~ also has the activations of the unclamped neurons as free parameters,
F* 2 F~. Given the assumption that the minimum energy state of the network is unique, when
J =0, V¥ =V; for all output neurons, and therefore J may be used as a gradient descent

function for weight learning. For Hopfield-type networks [Movellan],

oF

=-V,V; i#) (5.4)

and from (5.3)

aJ
v,

ij

o< Vi_Vj_ - Vi+Vj+ (55)

so CHL (5.2) descends in the contrastive function J .

The difficulty with CHL arises from the assumption that F has a unique minimum. In
the case where the network has no hidden neurons a unique minimum exists. However, when
hidden neurons are introduced, there need no longer be a unique minimum, and thus F* > F~
is not guaranteed. Fortunately, if the training procedure maximizes the probability that the
clamped phase F* settles to the same activations as the unclamped phase F~, CHL performs
well. Two approaches are commonly used. If the unclamped phase is performed first, and the
settled unclamped activations are used as the initial activations during the clamped phase (as
opposed to random activations), then the network tends to settle into the same state [Movellan].
The fixing of output neuron activations when the clamped phase follows the unclamped phase
may be regarded as an imposition of additional constraints on the permissible energy function,
which perturbs the values of the unclamped phase activations. As the network learns correct
weight values, the difference between clamped and unclamped output activations is reduced,
and these perturbations tend towards zero. A second technique that is used to promote settling
is a form of annealing, in which neuron gains are gradually increased while the network activa-
tions are settling. This annealing procedure reduces the probability that the network will settle
into spurious local minima [Movellan]. We have implemented both these techniques in our

VLSI implementation of CHL.

Peterson and Hartman [Peterson-2] describe a Manhattan updating variant of CHL,



Chapter 5 — Circuits for Contrastive Hebbian ANNs 65

AW‘] =a -Sgn(V,-+Vj+ - Vi_Vj—) (56)

where the magnitude of the fixed-size weight changes is determined by the constant ¢, and the
sign of the change by sgn(V;"V;" — V;"V"). 1t is apparent that (5.2) and (5.6) perform gradient
descent in the same function. Peterson and Hartman found that Manhattan updating can result
in more stable learning, because situations arise in practise in which (5.2) produces weight
changes which vary greatly in magnitude, making it difficult to choose a suitable learning rate
[Peterson-2]. Our circuits implement a further modification of Manhattan leaming, where

weight changes are governed by:
AWy = a(sgn(V;*'Vi) — sgn(V;V)) (5.7)

Simulations show that weight adaptation govermned by (5.7) results in learning performance
approaching that of conventional CHL, provided that Gaussian noise is added to neuron activa-
tions during the learning process. For more details regarding the performance of this modified
form of CHL, see [R.Schneider]. This form of Manhattan updating is well suited to imple-
mentation using analog CMOS circuits. In the next section, we describe an analog CMOS

ANN with modified Manhattan contrastive Hebbian learning circuitry at each synapse.

5.3 Overview of Implementation

Fig. 5.2 is a block diagram of the ANN system: the circuit is an analog CMOS approxi-
mation to (5.1) and (5.7). Both neuron activations and synaptic weights may take on analog
values in the range [-V,V]. Multipliers P; and Ps are transconductance multipliers, whose
inputs are voltages and output is a current. P, and P are linear current to voltage converters,
functioning as a resistor to (Vdd + Vss)/2. The comparator P, outputs either Vdd or Vss,
depending on whether its input is above or below its threshold reference, and Pg and Py are
conventional digital gates. Lastly, P, and P, are modified Manhattan CHL circuits, containing
weight update circuitry and weight storage capacitors. Synaptic weights are represented by the
differential voltage Vi, — Vi storing synaptic weights as differential voltages has a number

of advantages, which are discussed below.

The circuit of Fig. 5.2 approximates equations (5.1) and (5.7), representing ideal network
behavior, as follows. The synaptic weight W;; is represented by the differential voltage,
Veo —Vyy.  Then, the product W;V; in (5.1) is implemented by Pj; as

Isyye = bV — Vyy)Vj, and the summation operation is performed as current summation at
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Figure 5.2 System block diagram. N — 1 synaptic circuits are connected to

each neuron circuit.

the input to P4. A true summation is performed, despite the fact that the input to P4 is not
held at virtual ground, because muliiplier P53 produces an output current, independent of the
output voltage. This is an important consideration, because simpler schemes, which perform
averaging, rather than summation, such as that employed in [Hopfield], will not function prop-
erly in a CHL network [R. Schneider]. P, - P realize a variable gain neuron, whose transfer
function may be adjusted in a variety of ways, using the NGair control signals.

Since we implement modified Manhattan learning, only the sign of neuron activations are
required for leaming. P, - Pg generate LV;, a binary version of each neuron activation for
learning. XNOR gate Pg is used to invert LV; via control signal /nvLVi: details concerning

the function of LV; and its non-invertible counterpart LV are provided in section 5.7.

5.3.1 Network Operation

Network operation proceeds as follows. First, the network inputs are set for a particular
training pattern, while output and hidden neurons remain free (ie. unclamped). The network is

allowed to settle to its unclamped phase minimum energy state, LV;” and LV;" (the binary
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k and j* neurons) settle, and control signals LUPulse”

learning activations generated by the i”
and LUPulse™ are pulsed briefly. The binary product LV{LV; determines whether a small
quantity of charge is added to, or removed from, the storage capacitor connected to the
unclamped leaming circuit. Next, network outputs are set to training pattern values, the net-
work settles in the clamped phase, and learning control signals LCPuise® and LCPulse" are
pulsed briefly. As before, the binary product LV;*LV;" determines whether charge is added to,
or removed from the clamped storage capacitor. In the case where the network has learned the
current training pattern perfectly, LV;” = LV, for all neurons, LV, LV; = LV;"LV}", V¢ and
Vun are both increased or decreased by the same amount, and the synaptic weight
Wij = Vg — Vyy remains unchanged. In all other cases, the net effect of the two phase pro-
cedure will be a small weight change. This two phase procedure is repeated for each training
pattern. Typically, many passes through the entire set of training data is required to learn net-

work weights.

The network operation detailed above deviates somewhat from the ideal case described by
(5.1) and (5.7). In particular, weights are updated after the unclamped phase according to the
product LV;"LV;” and then again after the clamped phase, according to LV;"LV;". As a result,
weights may take a small unnecessary step after the unclamped phase, which is corrected in the
subsequent clamped phase. In addition, since noise is added to neuron activations during
weight learning, the learning process is non-deterministic, which introduces additional spurious
weight adjustment steps. However, system level simulations [R. Schneider] indicate that these

deviations from CHL theory do not seriously affect network learning.

5.3.2 Fabrication

To test our design, we had several circuits fabricated in Northemn Telecom’s 1.2um dou-
ble metal twin-tub CMOS process. In this process, linear capacitors are formed between two
layers of polysilicon. Fig. 5.4 is a photomicrograph of the multi-project die containing a 19
neuron, 342 synapse test network, and Fig. 5.3 illustrates a 3 neuron network. Figs. 5.5 and
5.6 show individual synapse and neuron circuits. In addition, a variety of test circuits were
fabricated. It is evident from these photomicrographs that capacitors (the apparently unoccu-
pied areas of Figs. 5.3 and 5.5) take up a significant portion of total IC area. However, this
design will still function properly when constructed with smaller capacitors: large capacitors

are used in this preliminary design to facilitate testing.
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Figure 5.3 Photomicrograph of 3 neuron, 6 synapse network
(0.66 x 0.78mm?).

5.4 Analog Implementation Considerations

The primary reason for using simple analog components is that these circuits are far more
compact than their digital counterparts, and hence systems with substantial information process-
ing capability may be integrated on a single chip. An ANN is generally well suited to imple-
mentation with low-accuracy analog components, because many operations are not highly criti-
cal. Thus, low accuracy computation, in the form of non-ideal multipliers and adders, may be
used in their construction. In addition, weight learning allows the network to compensate

for a wide variety of component imperfections.

Despite the fact that many operations in an ANN are non-critical, simulations
[R. Schneider] indicate that there are two operations in CHL which must be implemented accu-
rately. First, there must be good matching between the clamped and the unclamped learning
phases: in particular, in the case of Manhattan weight updating, the size of the weight incre-

ment and decrement steps must be the same. It is easy to see why this is important in the
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Figure 5.4  Photomicrograph of 19 neuron, 342 synapse network
(4.16 x 2.76mm?).

special case when the network has learned a particular training pattern perfectly. Then, the
clamped and unclamped phases should cancel one another, and there should be no weight
change. If there is a mismatch between the two phases, then the synaptic weight will be
changed from its correct value. Simulations show that the size of the mismatch between learn-
ing phases is of the same order as the minimum attainable mean squared error in learning asso-

ciations [R. Schneider]. Clearly, phase mismatch must be kept to at most a few percent.

The second critical function is the weight learning rate. Simulations show [R. Schneider]
that a small learning step size (ie. a small AW};) is essential for reliable weight learning. In a
high-dimensional weight space, in which the energy function typically has a complex topology,
convergence is impossible with large weight change steps. Our results are consistent with
those reported by Peterson [Peterson-2] in his discussion of the advantages of Manhattan
weight updating. Large sets of training data require small learning steps in any case, to avoid

biasing the network weights towards the training patterns presented most recently. The design
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Figure 5.5 Photomicrograph of synaptic circuit (27012um?> per synapse ).

ramifications of these two critical operations are discussed in section 5.7. In the following sec-
tions, we describe circuit components in detail, illustrating their behavior with measured data

from our test chips.

5.5 Transconductance Multiplier

The analog multiplier circuit that we use to implement Pj, Fig. 5.2 is illustrated in
schematic form in Fig. 5.7. It is a Gilbert transconductance multiplier [Gilbert, Mead], whose
inputs are voltages and output is a current. This circuit is well suited to our application: it has
differential voltage inputs with a near-infinite input resistance, which is what is required to read
the differential weight voltage V¢, — Vyy without discharging the weight storage capacitors.
As well, muitiplier current outputs Iy, may be summed directly with no additional hardware.
As with many analog multiplier circuits, this multiplier does not require accurate matching

between N and P channel transistors: only matching between identically sized same-polarity
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Figure 5.6 Photomicrograph of neuron circuit (41 847um? per neuron ).

transistors is necessary.

Fig. 5.8 shows the transfer characteristic of the summation multiplier. Its linear range is
fairly narrow: about 0.75V for the Vo, — Vyy input, and 1.6V for the V; input, but our simu-
lations indicate that this is sufficient for our synaptic circuit. Similarly, the ‘step’ in the
characteristic of Fig. 5.8 for Vo — Vyy > 0 is not large enough to matter for our application.
It is due to a mismatch between the transistors making up the current mirror (M 19, M 11): M
was rotated by 90° in the layout to save space.

Fig. 5.9 illustrates the range of common mode weight voltages for which this multiplier
circuit functions properly: V; and Vyy must be kept in the range [-2.5, 1.0] volts. In design-
ing this circuit, there was a tradeoff between common mode voltage swing and the linear range
of Vo, — V-

At this stage of our investigation it was not a high pribn'ty to use the most compact and

fastest circuit designs possible; rather, we opted for circuits which were likely to function after
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Figure 5.7 Synaptic transconductance multiplier, Isyy = a(Vep — Vgn)V;

one design and fabrication cycle. We also wanted to build our system out of as few different

circuits as possible, primarily to reduce design time.

5.6 Other Circuits: Comparator and I-V Converter

The comparator (Fig. 5.10a) consists of a transconductance amplifier driving an infinite
input resistance circuit: Vypr will saturate at either Vdd or Vss. We use this comparator to
create a sharp, adjustable breakpoint between positive and negative activations for modified

Manhattan learning.

Fig. 5.10b is the current to voltage converter circuit P, Fig. 5.2. When the conductances
of Mo and M {; are matched, this circuit functions as a resistor to ground: Fig. 5.11 shows this
circuit performs a near-linear current to voltage conversion. Highly linear behavior is not
essential, since Vg, is passed through the highly nonlinear neuron amplifier. For greater test-
ing flexibility, the second I-V converter, P¢ at the neuron output, has been implemented off-

chip.
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Figure 5.8 Synaptic multiplier, Igyy as a function of Voy — Vyy for V; from
—0.8V to 08V (1.2um CMOS test chip, Vdd =25V, Vss =-25V,
Vg =-0.9V, data collected using HP4145A).

5.7 Learning Circuit

Fig. 5.12 is a schematic of the learning circuits P; and P,, Fig. 52. We begin by
describing the typical operation of this circuit. XINOR gate P, implements the binary product
LV;LV;. Assume that LV;LV; >0, so Mg and M, are turned on and M and Mg are turned
off. After settling, learning pulses LPulse” (from its resting value of Vdd to Vdd — Vp) and
LPulse™ (from its resting value of Vss to Vss + Vp) are pulsed briefly. Because we are deal-
ing with the case where LV;LV; >0, My is on, LPulse® causes M 1 to be tumed on briefly,
charge flows onto the weight storage capacitor, and V4p is increased. In the case where
LV;LV; <0, M, is briefly activated, and V4p is decreased. Note that transistors M5 and M
are normally on, and M, and M 4 are normally off: these four transistors are used to set capaci-
tor values at the beginning of the training process. The capacitor access transistors M; and M,
operate in saturation, serving as current sources, and consequently, AV.,p will be the same,

independent of Vgyp.

Differential weight storage schemes have been described by other authors, for example,

[Schwartz-1]. However, our approach is substantially different from the techniques employed
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Figure 5.9 Synaptic multiplier, Iy, as a function of V¢, for Vyy from 2.5
to 2V (1.2um CMOS test chip, V; =25V, Vdd =25V, Vss =-2.5V,
Vg =009V, data collected using HP4145A).

in [Schwartz-1]: see section 1.3 for a discussion of Schwartz’s work.

5.7.1 Small Learning Step

System-level simulations of CHL ANNs indicate that a learning step that is from 107 to
1073 of the full range of the weights is required for stable weight learning [R. Schneider]. The
only way to achieve such a small weight change with the circuit of Fig. 5.12 is to use the

subthreshold characteristics of the access transistors M ; and M.

A MOSFET is operating in its subthreshold region when Vgg < Vy. When Vg < Vi,
no channel is formed between source and drain and I, is the result of diffusion of electrons
from source to drain. Thus, a MOSFET operating in its subthreshold region behaves like a
bipolar transistor, with /pg exponentially dependent on Vgg. The N-channel MOSFET drain
current expression is derived in the same way as the expression for the collector current in a

bipolar n—p—n transistor with homogeneous base doping [Sze]:

IDS - IO%eB(VGS'.VT)(l_e"BVDS) (5.8)
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Figure 510 a) Comparator, Voyr = Vdd when Viy > Vegr, Voyr = Vss

when Viy < Vggr, b) Current to voltage converter, Voyr = cljy.

and for large Vg,

Ips = Igor-ePVas™/m

3 (5.9)

where Vg < Vr, the constant [, absorbs a number of process parameters, and § = ~kgf

Figs. 5.13 and 5.14 plot Ic4p as a function of LPulse for access transistors M and M,.
The exponential relationship between the access transistors’ gate voltages and I4p appears as
a straight line on these log plots. We require a leamning current /4p in the 2 — 20nA range to
achieve a learning rate in the 107 to 10~ of full weight swing range. The exponential
subthreshold MOSFET characteristic has the advantage of providing a tremendous range of
learning rates: however, care must be taken to achieve adequate matching between the clamped

and unclamped learning phases.

5.7.2 Capacitive Coupling Effects

During weight leamning the access transistors’ gate voltage is switched rapidly in each
learning cycle: thus there is a potential problem with capacitive coupling between the gates of

the access transistors and the weight storage capacitor. Even if the storage capacitor is much
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Figure 5.11 Summation current to voltage converter, Voyr as a function of
Iy (1.2um CMOS test chip, Vdd = 2.5V, Vss = -2.5V, data collected using
HP4145A).

larger than the access transistors’ gate capacitances, the capacitive coupling effect can still be
large when compared to the small weight change. Fortunately, the small LPulse that is
required for subthreshold transistor activations also prevents capacitive coupling between the
drain and the gate (Fig. 5.15). In the subthreshold operation, most of the gate capacitance is
between the bulk and the gate, and as long as the transistor is in saturation, the remainder is
between the gate and the source. Only a small linear overlap capacitance couples the gate and

the drain.

5.7.3 Matching Between Phases

Considerable care was taken to ensure that learning in the clamped and unclamped phases
is well matched. If matching was not important, then a single weight storage capacitor could
be used, and the unclamped phase would simply involve negating the product LV;LV;. A sin-
gle capacitor weight storage scheme relies on matching between transistors M; and M, to
achieve matching between the leaming phases. Unfortunately, it is not possible to reliably

match N and P channel transistors, particularly for operation in the subthreshold region. Thus
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Figure 5.12 Modified Manhattan synaptic learning circuit.

we adopted a two capacitor differential voltage scheme, in which only matching between
same-polarity, same-size transistors is required. The access transistors are also all oriented in
the same direction, and have large channel regions to further improve matching. Figs. 5.13
and 5.14 show the matching between four transistors from two different test chips. Typical
mismatch between access transistors on the same chip is 5% (N-channel) and 3% (P-channel).

Between chips, the N-channel mismatch is 40% and the P-channel, 30%.

Differential weight storage causes an additional complication: we must keep the common
mode weight voltage (V¢ + Vyy)/2 in the proper range for the summation multiplier (Fig.
5.9). The following scheme is used. Capacitor voltages are initialized to approximately —1V’.
A training pass is made through the entire set of training data. Before the second pass through
the training set, /nvLVi is used to invert the learning product LV;LV;. This is possible because
the non-inverted learning activation LV is the actual source of LV;: otherwise, if both terms
in LV;LV; were inverted, then the sign of the product LV;LV; would remain unchanged. In
this inverted mode, clamped weight changes are applyed to the unclamped capacitor, and visa-

versa. InvLVi is used in this manner for every second pass through the training set; the effect
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Figure 5.13 Learning current Ic,p as a function of LPulse® ; four measure-
ments from two test chips illustrated. Typical variation in Icup
(LPulse™ =1.725V): 5% on same chip, 40% between chips. (1.2um CMOS
test chip, LPulse? =25V, Vdd =2.5V, Vss =-2.5V, data collected using
HP4145A).

of this procedure is to keep the common mode weight voltages roughly centered. Weight

decay may also be used to keep common mode voltages in range.

5.7.4 Charge Leakage

Leakage from weight storage capacitors is less than 1pA at room temperature, and even
modest cooling reduces the leakage current dramatically [Schwartz-2]. Differential weight
storage provides some additional immunity from leakage, as the stored capacitor voltages will
decay simultaneously, and their difference will be maintained. We anticipate that these circuits
will be used in ANNs where training data is interspersed with pattemns that the network is sup-
posed to classify: in this case, weights will be continually refreshed by the occasional training
patterns, and weight decay becomes a less serious problem. An additional benefit of this con-
tinuous learning process is that it provides a way for the network to compensate for component

drift, as the temperature of the circuit changes.
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Figure 5.14 Learning current Ic,p as a function of LPulse” ; four measure-
ments from two test chips illustrated. Typical variation in Icup
(LPulse® =175V ): 3% on same chip, 30% between chips. (1.2um CMOS
test chip, LPulseN = -2.5V, Vdd = 2.5V, Vss =—2.5V, data collected using
HP4145A).

5.8 Power Dissipation

Power dissipation is an important consideration for VLSI circuits. Typical DC power
consumption for these circuits is in the 54uW /synapse range, or about 200mW /cm?. The digi-
tal circuits which implement modified Manhattan learning have a high transient power con-
sumption, but as this circuit runs at a fairly low clock rate, the average total power consump-

tion is approximately 50% more than the DC power consumption.

5.9 System Testing

We used an ASIX-II IC tester to perform a series of circuit tests. Two typical tests are
described below. Fig. 5.16 illustrates three learning test runs, in which a 100kHz learning
pulse frequency with 3jis pulse widths was used. The weight storage capacitor voltage was
read using the summation multiplier operating in its linear region, as connecting measurement

equipment directly to the capacitor storage node would alter circuit behavior drastically. For
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Figure 515 Cgp, Cgs, Cop as a function of LPulse™ for Vo =-2V.

(HSPICE MOSFET model level 3 simulation).

these tests, Vyy was held constant, and LCPulse” pulses were applied as shown in Fig. 5.16.
Three cases are illustrated, for LCPulse’ = 1.7, 1.75, and 1.8V, giving leamning rates of
3.2x1073, 1.7x1073 and 6.7x107* respectively. Fairly high learning rates were used for these
tests so that weight changes could be measured above background noise. The low learning
pulse rate (100kHz) was used because the summation multiplier does not have sufficient drive

to supply large off-chip capacitances at rates of more than a few hundred kilo-Hertz.

In Fig. 5.17, the same test was repeated, in this case with a 400kHz pulse rate and 50xns
pulse widths. Since the pulses were narrow, a larger LPulse” was used to give learning steps
that are visible over background noise. The test of Fig. 5.17 illustrates that the learning circuit
operates properly with short learmning pulses. Combining the results shown in Figs. 5.16 and
5.17, it is evident that this circuit can achieve very low learning rates, by using small, narrow

learning pulses.

Similar tests were performed to evaluate the remainder of the synaptic and neuron circui-
try: all components functioned properly. However, a defect in the neuron circuit prevented
testing of the 19 neuron network: the neuron operated correctly in a small test circuit, but had

insufficient drive in its learning circuitry to drive a full array of synapses. This problem may
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Figure 516 Weight up learning test, 100kHz pulse rate, 3us VPulse®
pulses, VPulse? =1.7,1.75 and 1.8V, giving learning rates of 3.2x1073,
1.7x107 and 6.7x10~* (test data generated using ASIX-2 IC tester, analog

data collected using Tektronix 2232 digital storage oscilloscope).

be readily solved by increasing the drive of inverter Py in Fig. 5.2, a change that requires very
little circuit redesign. Our testing indicates that despite this flaw, these analog circuits are suit-

able for implementing an analog CMOS contrastive learning ANN.

5.10 Discussion

The basic mean field implementation described above may be extended in a number of
ways. The papers discussed below each take basic supervised learning ANNs and improve
their performance by modifying their structure. These types of enhancements may be readily
incorporated into our circuit designs, and may in fact address some of the problems associated

with implementing ANNs with analog hardware.
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Figure §.17 Short pulse weight up learning test, 400kHz pulse rate, 50ns
VPulse? pulses, VPulsef = 1.4V, learning rate: 1.2x107> (test data generated
using ASIX-2 IC tester, analog data collected using Tektronix 2232 digital

storage oscilloscope).

5.10.1 Fast and Slow Synaptic Weights

In standard ANN models synaptic weights are represented by a single weight value, Wij.
Hinton and Plaut [Hinton-3] describe interesting properties of ANNs with two weights: a
slowly-changing weight which stores long-term knowledge, and a fast-changing weight with a
short decay time which stores temporary knowledge. The effective synaptic weight is the sum
of fast and slow weights. Supervised learning affects both weights, but the learning rate of the
fast weights is higher than that of the slow weights, and consequently the fast weights are

strongly biased towards recent training data.

The temporary overlaying of fast weights gives the ANN a remporary context, resulting
in more flexible information processing [Hinton-3]. Fast and slow weights have a number of
applications. If an ANN leams a set of associations, which are subsequently ‘‘blurred’’ by
later training data, all the original associations may be ‘‘deblurred’’ by rehearsing with a small
number of patterns from the original training set. The rehearsal process results in learning fast

weight values which compensate for the later training of the slow weights. Thus, a temporary
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context of the earlier associations is created.

Other benefits of fast weights include the ability to perform a type of recursive process-
ing, in which the fast weights are used to store a temporary context during recursive computa-
tion. The state of the system is not stored as the activation of a set of neurons, and thus the

same neurons can participate in computation at multiple levels of recursion.

Fast and slow weights may be implemented in a variety of ways using analog CMOS cir-
cuits. Fast weights can be added to the circuits described in this chapter by incorporating a
second set of weight storage capacitors and summation multipliers in each synaptic circuit.
Analog EEPROM weight storage [Shoemaker] presents an intriguing possibility. In this case,
EEPROMSs would store the slow weights, and capacitors the fast weights. This approach has
the advantage that it eliminates the need for constant weight refreshing, since an EEPROM will
maintain its charge for years. The disadvantage of this approach is that a special IC fabrication
technology with EEPROM capability is required, and that adjusting EEPROM weights is an

involved procedure [Holler].

5.10.2 Hybrid Network Architectures

It is natural to decompose a large problem into several sub-tasks, and then combine the
solutions of each of the sub-tasks to arrive at a solution of the original problem. In the case of
ANNS, this approach implies that a problem may be solved more efficiently by some sort of
hierarchically structured network, in which small neural networks solve specific aspects of the
entire problem, and then the individual results are combined into a final solution. This
hierarchical approach is consistent with human brain function: the brain is partitioned into sub-
systems which perform a specific operation, thereby contributing to the solution of a larger
problem. Whether this hierarchical structure should be at most a few levels deep, with
bottom-level sub-systems performing complex computation, or whether the hierarchical struc-
ture should be very deep, with bottom-level sub-systems consisting of only a few neurons, is

an unresolved issue.

Jacobs et al [Jacobs] present a two-level hierarchical supervised learning ANN in which
small ‘‘local expert’’ networks solve sub-problems, whose results are combined by a super-
visory gating network. This system may be viewed as a competitive learning network in
which each hidden unit consists of a small sub-network. The operation of both the local expert
networks and the gating network is determined by the weight training procedure. The learning

algorithm that Jacobs et al use decouples the training of the sub-networks: the goal of a local
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expert for a given training case is not directly affected by the weights within other local
experts [Jacobs]. There is still some indirect interaction between the sub-networks, but the
sign of the error that a local expert senses for a particular training pattern does not depend on
other portions of the network. Jacobs et al report that this hierarchical network arrangement
avoids the strong interference effects that occur when a single non-hierarchical multilayer net-

work is used to perform different sub-tasks on different occasions.

As the size of a supervised learning ANN is increased, lower learning rates are needed, a
requirement that is hard to satisfy using analog circuitry. Thus, an additional advantage of a
hierarchical network structure is that a hierarchy of small networks is better suited to analog

implementation than a single large network.

5.11 Summary

We have designed, fabricated and tested analog CMOS circuits for constructing fully con-
nected ANNs with contrastive Hebbian leamning at each synapse. In developing these circuits,
system-level simulations of CHL networks were used to discover which operations had to be
implemented accurately, and which operations were tolerant of low-precision calculation.
Thus, we were able to use compact analog circuits for most computations, and care was taken
to implement critical operations accurately. We believe that this approach to analog ANN
implementation, where only a few key computations are implemented accurately, may be used

for a variety of other ANN architectures.
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Conclusion

The investigations presented in this work all address the basic question of what types of
ANN architectures may be implemented with low precision analog circuitry. The reason for
this interest in analog implementations, as we have stated previously, is that analog computa-
tions can be implemented far more efficiently than their digital counterparts. Although our
work is restricted to a particular implementation medium, namely CMOS VLSI, this question
of analog versus digital computation has far-reaching consequences. The same principles and
tradeoffs will likely apply to future implementation technologies as well. The history of

artificial computation shows that the rivalry between digital and analog computers is not new.

6.1 Analog Computation and ANNs

Before the microelectronics revolution began in the 1960’s, analog computers were used
for a variety of applications. With the advent of integrated circuit technology, digital systems
became fast, reliable, and ultimately, inexpensive: as a result, digital computation has dom-
inated for the past thirty years. An important reason for this dominance is that conventional
computer architectures rely upon basic features of digital computation, such as its precision and

repeatability, features which analog computation does not possess.

The resurgence of ANN research in the 1980’s resulted in the development of a variety
of ANN designs which are potential candidates for analog implementation. The common
feature of these ANN architectures is that the system does not require precise, repeatable,
error-free components: rather, some collective property of the entire system tolerates unreliable
and inaccurate components. Our investigations, and those of other researchers, show that ana-

log VLSI is suitable for the implementation of these types of artificial neural networks, but a
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great deal of additional research is required.

Our work with contrastive Hebbian learning ANNs demonstrates that system architectures
that are tolerant of many component imperfections can still require that some operations be
performed accurately. This raises the question of whether further ANN research will lead to
architectures that do not have any critical operations. As always, biological neural networks
provide an existence proof that such an architecture must exist. An important guide for this
future ANN research may be the basic properties and underlying physics of the medium which
will ultimately be used to implement the ANN. Architecture and implementation research
should be an interactive process, so that an attempt is made to use the ‘natural’ capabilities of

the underlying hardware.

6.2 Analog Circuit Design and Testing

This work has demonstrated the importance of accurate simulation for analog circuit
research. Although simulation is also a key element of digital circuit design, analog work
places much more stringent requirements on simulation tools. Even second-order effects, such
as channel-length modulation in MOSFETS, must be modeled accurately. Thus, an ongoing
effort to improve simulation accuracy through fine-tuning of model parameters is a worthwhile
undertaking. Our experience shows that with careful design, one design and fabrication cycle

will result in functional analog chips.

Analog IC testing is complicated by the lack of analog-oriented test equipment. The
ASIX-II digital IC tester provides some of the functions required for our investigations, but
lacks the ability to generate a variety of analog signals. In addition, analog voltage measure-

ment equipment with a very high input impedance would be an asset.

6.3 Analog VLSI versus Neural Biology

The basic goal of ANN research is to develop artificial systems which will perform the
functions associated with biological intelligence. Thus, it is interesting to make comparisons
between artificial and biological systems. Below, we compare CMOS VLSI and neural biol-
ogy [McClelland] in terms of integration density: this allows us to compare the complexity of

artificial and biological systems.
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The neocortex is the center of high-level information processing in the mammalian brain.
It is a highly convoluted sheet of neurons, between 1.5 and Smm thick, with a total area of
approximately 2 000cm? in humans, and 200cm? in macaque monkeys. Interestingly, the neo-
cortex is basically a two dimensional structure, even though neurons are stacked vertically.
This is an encouraging indication that full three dimensional connectivity is not required for
artificial neural systems. The density of neurons in the neocortex is approximately 80000 per
mm?, independent of the sheet thickness, for a wide variety of species [McClelland]. The one
exception to this rule appears to be the striate cortex of primates, where there are approxi-
mately 200 000 neurons per mm?

1000 to 10000 synapses.

. Each neuron in the neocortex typically receives inputs from

The 1.2um CMOS VLSI technology which we used to implement the circuits of chapter

2, or about

5 has an integration density of approximately 63000 transistor-sized cells per mm
0.78 transistor cells per neocortex neuron. For a 0.5um technology, this figure rises to approx-
imately 4.5 transistor-sized cells per neuron. An area of at least 100 of these cells is required

to make a simple circuit.

This analysis ignores the 1000 to 10000 synapses connected to each neuron: when these
are taken into account, it is apparent that a biological brain has an integration density of at
least 10° to 10° times that of a 0.5 wm VLSI technology. Finally, if we compare a single 1¢m?
chip to the 2000cm? neocortex, we conclude that the brain has at least 2x10% to 2x10° times
the complexity of a state of the art IC. The actual figure may be higher still if current ANN

models grossly oversimplify computationally important aspects of neural behavior.

Although these calculations are highly approximate, they give an indication that ANNs
will not rival the complexity of mammalian brains, given current IC technology. However,
even extremely simple nervous systems, such as that of Aplysia, perform remarkable computa-
tional feats. Thus we conclude that although we cannot hope to build an artificial human
brain, we can certainly construct ANNs for a host of important artificial intelligence applica-

tions.



APPENDIX

HSPICE Simulation Parameters

This appendix contains HSPICE simulation parameters for Northern Telecom’s 3pm
CMOS3 and 1.2um CMOSA4S fabrication processes. These parameters were used for all cir-

cuit simulations conducted as part of this work.



Appendix 1 — HSPICE Simulation Parameters

Ap-1.1 CMOS3 Parameters

.MODEL N.1 NMOS (
LMIN=0E-6
LMAX=6E-6
WMIN=0
WMAX=1
U0=800
THETA=0.05
GAMMA=1.11
KAPPA=(.8
LEVEL=3
VTO=0.702
NFS=1.541E+11
TPG=1.0
TOX=5.048E-08
NSUB=2.022E+16
VMAX=2.306E+05
XJ=1.132E-07
LD=2.693E-07
DELTA=0.6
ETA=0.1
PB=0.800
IS=1.000E-16
JS=1.000E-04
CJ=4.090E-04
MJ=0.498
CISW=4.780E-10
MISW=0.363
CGSO=2.910E-10
CGDO=2.910E-10
FC=0.500
)
.MODEL N.2 NMOS (
LMIN=6E-6
LMAX=12E-6
WMIN=0
WMAX=1
U0=740
THETA=0.05
GAMMA=1.1325
KAPPA=2.38
LEVEL=3
VTO=0.702
NFS=1.541E+11
TPG=1.0
TOX=5.048E-08
NSUB=2.022E+16
VMAX=2.306E+05
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XJ=1.132E-07
LD=2.693E-07
DELTA=0.6
ETA=0.1
PB=0.800
IS=1.000E-16
JS=1.000E-04
CJ=4.090E-04
MJ=0.498
CISW=4.780E-10
MIJSW=0.363
CGSO=2.910E-10
CGDO=2.910E-10
FC=0.500
)
.MODEL N.3 NMOS (
LMIN=12E-6
LMAX=18E-6
WMIN=0
WMAX=1
U0=700
THETA=0.045
GAMMA=1.155
KAPPA=7.533
LEVEL=3
VTO=0.702
NFS=1.541E+11
TPG=1.0
TOX=5.048E-08
NSUB=2.022E+16
VMAX=2.306E+05
XJ=1.132E-07
LD=2.693E-07
DELTA=0.6
ETA=0.1
PB=0.800
IS=1.000E-16
JS=1.000E-04
CJ=4.090E-04
MIJ=0.498
CISW=4.780E-10
MISW=0.363
CGSO0=2.910E-10
CGDO=2.910E-10
FC=0.500

)
.MODEL N.4 NMOS (

+ o+ + o+ +
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LMIN=18E-6
LMAX=24E-6
WMIN=0
WMAX=1
U0=660
THETA=0.04
GAMMA=1.1775
KAPPA=12.27
LEVEL=3
VTO=0.702
NFS=1.541E+11
TPG=1.0
TOX=5.048E-08
NSUB=2.022E+16
VMAX=2.306E+05
XJ=1.132E-07
LD=2.693E-07
DELTA=0.6
ETA=0.1
PB=0.800
1S=1.000E-16
JS=1.000E-04
CJ=4.090E-04
MJ=0.498
CISW=4.780E-10
MISW=0.363
CGS0=2.910E-10
CGDO=2.910E-10
FC=0.500
)
.MODEL N.5 NMOS (
LMIN=24E-6
LMAX=1
WMIN=0
WMAX=1
U0=620
THETA=0.035
GAMMA=1.2
KAPPA=17
LEVEL=3
VTO=0.702
NFS=1.541E+11
TPG=1.0
TOX=5.048E-08
NSUB=2.022E+16
VMAX=2.306E+05
XJ=1.132E-07
LD=2.693E-07
DELTA=0.6
ETA=0.1
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PB=0.800
IS=1.000E-16
JS=1.000E-04
CJ=4.090E-04
M1J=0.498
CISW=4.780E-10
MISW=0.363
CGS0O=2.910E-10
CGDO=2.910E-10
FC=0.500

)

.MODEL P.1 PMOS (

R s i s S S SN S S R S Syt S St S AU A VU I

LMIN=0E-6
LMAX=6E-6
WMIN=0
WMAX=1
U0=280
KAPPA=3.5
LEVEL=3
VTO=-0.769
NFS=4.121E+11
TPG=1.0
TOX=5.048E-08
NSUB=3.843E+15
VMAX=1.61E5
XJ=3.091E-07
LD=1.686E-07
DELTA=.9
THETA=.1
ETA=12
PB=0.800
IS=1.000E-16
JS=1.000E-04
CJ=1.440E-04
MIJ=0.621
CISW=3.360E-10
MISW=0.434
CGS0O=2.370E-10
CGDO=2.370E-10
FC=0.500
)

MODEL P.2 PMOS (

+ 4+ 4+ + 4+ 4+

LMIN=6E-6
LMAX=12E-6
WMIN=0
WMAX=1
U0=250
KAPPA=35
LEVEL=3
VTO=-0.769

90
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NFS=4.121E+11
TPG=1.0
TOX=5.048E-08
NSUB=3.843E+15
VMAX=1.61E5
XJ=3.091E-07
LD=1.686E-07
DELTA=.9
THETA=.1
ETA=1.2
PB=0.800
IS=1.000E-16
JS=1.000E-04
CJ=1.440E-04
MJ=0.621
CISW=3.360E-10
MISW=0.434
CGS0=2.370E-10
CGDO=2.370E-10
FC=0.500

)

.MODEL P.3 PMOS (

S S S S S S T T R S S N S S SN SRR O U

LMIN=12E-6
LMAX=18E-6
WMIN=0
WMAX=1
U0=250
KAPPA=73.33
LEVEL=3
VTO=-0.769
NFS=4.121E+11
TPG=1.0
TOX=5.048E-08
NSUB=3.843E+15
VMAX=1.61E5
XJ=3.091E-07
LD=1.686E-07
DELTA=9
THETA=.1
ETA=12
PB=0.800
1S=1.000E-16
JS=1.000E-04
CI=1.440E-04
MI=0.621
CISW=3.360E-10
MISW=0.434
CGS0O=2.370E-10
CGDO=2.370E-10
FC=0.500

91

+ )

.MODEL P.4 PMOS (
LMIN=18E-6
LMAX=24E-6
WMIN=0
WMAX=1
U0=250
KAPPA=111.67

LEVEL=3
VTO=-0.769
NFS=4.121E+11
TPG=1.0
TOX=5.048E-08
NSUB=3.843E+15
VMAX=1.61E5
XJ=3.091E-07
LD=1.686E-07
DELTA=.9
THETA=.1
ETA=1.2
PB=0.800
IS=1.000E-16
JS=1.000E-04
CJ=1.440E-04
MiJ=0.621
CJSW=3.360E-10
MISW=0.434
CGS0O=2.370E-10
CGDO=2.370E-10
FC=0.500
)
.MODEL P.5 PMOS (
LMIN=24E-6
LMAX=1
WMIN=0
WMAX=1
U0=250
KAPPA=150

LEVEL=3

VTO=-0.769

NFS=4.121E+11

TPG=1.0

TOX=5.048E-08

NSUB=3.843E+15

VMAX=1.61ES

XJ=3.091E-07

LD=1.686E-07

DELTA=9

THETA=.1

ETA=1.2

i i T S S S S S I T T T T T T T T S S S S S
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PB=0.800
IS=1.000E-16
JS=1.000E-04
CJ=1.440E-04
MI=0.621
CISW=3.360E-10
MISW=0.434
CGS0O=2.370E-10
CGDO=2.370E-10
FC=0.500

)
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Ap-1.2 CMOS4S Parameters

.MODEL N.1 NMOS (
capop=2
LMIN=0E-6
LMAX=2.4E-6
WMIN=0
WMAX=1
UO0=566.3
KAPPA=2.000E-17
CGDO=1.973E-10
CGS0=1.973E-10
CJ=2.900E-4
CISW=3.3E-10
DELTA=0.3551
ETA=9.814E-2
FC=0.500
1S=1.000E-16
JS=1.00E-4
LD=1.157E-7
LEVEL=3
MIJ=0.486
MISW=0.330
NEFF=1.000
NFS=5.764E+11
NSUB=1.4E+16
PB=0.8
RD=26.77
RS=26.77
THETA=6.574E-2
TOX=2.502E-8
TPG=1.000
UCRIT=1.000E+4
VMAX=1.651E+5
VTO=0.7572
XJ=1.165E-7
XQC=1.000
)

.MODEL N.2 NMOS (
capop=2
LMIN=2.4E-6
LMAX=4.8E-6
WMIN=0
WMAX=1
U0=587.4
KAPPA=.5714
CGDO=1.973E-10
CGSO0=1.973E-10

S S S S s i s S I S S S S S SO SR S U IO VAU I SRS
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CJ=2.900E-4
CISW=3.3E-10
DELTA=0.3551
ETA=9.814E-2
FC=0.500
1S=1.000E-16
JS=1.00E-4
LD=1.157E-7
LEVEL=3
MJ=0.486
MISW=0.330
NEFF=1.000
NFS=5.764E+11
NSUB=1.4E+16
PB=0.8

RD=26.77
RS=26.77
THETA=6.574E-2
TOX=2.502E-8
TPG=1.000
UCRIT=1.000E+4
VMAX=1.651E+5
VTO=0.7572
XJ=1.165E-7
XQC=1.000

)

.MODEL N.3 NMOS (
capop=2
LMIN=4.8E-6
LMAX=7.2E-6
WMIN=0
WMAX=1
U0=608.5
KAPPA=1.1429
CGDO=1.973E-10
CGSO=1.973E-10
CJ=2.900E-4
CISW=3.3E-10
DELTA=0.3551
ETA=9814E-2
FC=0.500
1S=1.000E-16
JS=1.00E-4
LD=1.157E-7
LEVEL=3
MIJ=0.486
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MISW=0.330
NEFF=1.000
NES=5.764E+11
NSUB=14E+16
PB=0.8

RD=26.77
RS=26.77
THETA=6.574E-2
TOX=2.502E-8
TPG=1.000
UCRIT=1.000E+4
VMAX=1.651E+5
VTO=0.7572
XJ=1.165E-7
XQC=1.000

)

.MODEL N.4 NMOS (

S s e PTG I PR

capop=2
LMIN=7.2E-6
LMAX=9.6E-6
WMIN=0
WMAX=1
U0=629.6
KAPPA=1.7143
CGDO=1.973E-10
CGS0=1.973E-10
CJ=2.900E-4
CISW=3.3E-10
DELTA=0.3551
ETA=9.814E-2
FC=0.500
IS=1.000E-16
JS=1.00E-4
LD=1.157E-7
LEVEL=3
MI=0.486
MISW=0.330
NEFF=1.000
NFS=5.764E+11
NSUB=1.4E+16
PB=0.8
RD=26.77
RS=26.77
THETA=6.574E-2
TOX=2.502E-8
TPG=1.000
UCRIT=1.000E+4
VMAX=1.651E+5
VTO=0.7572
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+  XIJ=1.165E-7
+  XQC=1.000
)

.MODEL N.5 NMOS (
capop=2
LMIN=9.6E-6
LMAX=1
WMIN=0
WMAX=1
U0=640
KAPPA=2
CGDO=1.973E-10
CGSO0=1.973E-10
CJ=2.900E-4
CISW=3.3E-10
DELTA=0.3551
ETA=9.814E-2
FC=0.500
IS=1.000E-16
JS=1.00E-4
LD=1.157E-7
LEVEL=3
MJ=0.486
MISW=0.330
NEFF=1.000
NFS=5.764E+11
NSUB=14E+16
PB=0.8
RD=26.77
RS=26.77
THETA=6.574E-2
TOX=2.502E-8
TPG=1.000
UCRIT=1.000E+4
VMAX=1.651E+5
VTO=0.7572
XJ=1.165E-7
XQC=1.000
)

.MODEL P.1 PMOS (
capop=2
LMIN=0E-6
LMAX=2 4E-6
WMIN=0
WMAX=1
UO=185
KAPPA=4
CGDO=3.284E-10

+
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CGSO0=3.284E-10
CJ=4.100E-4
CISW=34E-10
DELTA=0.4598
ETA=6.729E-2
FC=0.500
IS=1.000E-16
JS=1.00E-4
LD=1.364E-7
LEVEL=3
MIJ=0.540
MISW=0.300
NEFF=1.000
NFS=5.864E+11
NSUB=2.011E+16
PB=0.8

RD=58.90
RS=58.90
THETA=0.1376
TOX=2.502E-8
TPG=1.000
UCRIT=1.000E+4
VMAX=2.823E+5
VTO=-0.8307
XJ=1.742E-7
XQC=1.000

)

.MODEL P.2 PMOS (

S i 2 S S S T S At AR RR RS

capop=2
LMIN=24E-6
LMAX=4.8E-6
WMIN=0
WMAX=1
U0=230
KAPPA=23
CGDO=3.284E-10
CGS0=3.284E-10
CJ=4.100E-4
CISW=34E-10
DELTA=0.4598
ETA=6.729E-2
FC=0.500
IS=1.000E-16
JS=1.00E-4
LD=1.364E-7
LEVEL=3
MJ=0.540
MISW=(0.300
NEFF=1.000
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NFS=5.864E+11
NSUB=2.011E+16
PB=0.8

RD=58.90
RS=58.90
THETA=0.1376
TOX=2.502E-8
TPG=1.000
UCRIT=1.000E+4
VMAX=2.823E+5
VTO=-0.8307
XJ=1.742E-7
XQC=1.000

)

.MODEL P.3 PMOS (
capop=2
LMIN=4.8E-6
LMAX=7.2E-6
WMIN=0
WMAX=1
UO0=230
KAPPA=41.8
CGDO=3.284E-10
CGS0O=3.284E-10
Cl=4.100E-4
CISW=34E-10
DELTA=0.4598
ETA=6.729E-2
FC=0.500
IS=1.000E-16
JS=1.00E-4
LD=1.364E-7
LEVEL=3
MJ=0.540
MISW=0.300
NEFF=1.000
NFS8=5.864E+11
NSUB=2.011E+16
PB=0.8
RD=58.90
RS=58.90
THETA=0.1376
TOX=2.502E-8
TPG=1.000
UCRIT=1.000E+4
VMAX=2.823E+5
VTO=-0.8307
XJ=1.742E-7
XQC=1.000

+ 4+ + 4+t ++
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.MODEL P.4 PMOS (
capop=2
LMIN=7.2E-6
LMAX=9.6E-6

- WMIN=0
WMAX=1
U0=230
KAPPA=60.6

CGDO=3.284E-10
CGS0=3.284E-10
CJ=4.100E-4
CISW=34E-10
DELTA=0.4598
ETA=6.729E-2
FC=0.500
IS=1.000E-16
JS=1.00E-4
LD=1.364E-7
LEVEL=3
MI=0.540
MISW=0.300
NEFF=1.000
NFS=5.864E+11
NSUB=2.011E+16
PB=0.8

RD=58.90
RS=58.90
THETA=0.1376
TOX=2.502E-8
TPG=1.000
UCRIT=1.000E+4
VMAX=2.823E+5
VTO=-0.8307
XJ=1.742E-7
XQC=1.000

)

.MODEL P.5 PMOS (
capop=2
LMIN=9.6E-6
LMAX=1
WMIN=0
WMAX=1
U0=230
KAPPA=70
CGDO=3.284E-10
CGS0O=3.284E-10
CJ=4.100E-4

S S T T T e kst S S S SR S S S S S VOO PR FUR A U P FIS FEFS
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CISW=34E-10
DELTA=0.4598
ETA=6.729E-2
FC=0.500
IS=1.000E-16
JS=1.00E-4
LD=1.364E-7
LEVEL=3
MJ=0.540
MISW=0.300
NEFF=1.000
NFS=5.864E+11
NSUB=2.011E+16
PB=0.8

RD=58.90
RS=58.90
THETA=0.1376
TOX=2.502E-8
TPG=1.000
UCRIT=1.000E+4
VMAX=2.823E+5
VTO=-0.8307
XJ=1.742E-7
XQC=1.000

)
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