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PREFACE

Our main reference for this thesis is Combinatorial

Group Theory by Magnus, Karrass, and Solitar; oLherwise our

exposition is self-contained. DefinitÍons, Lemmas, and Theorems

are numbered first with respecË to chapter and then consecutively;

thus in Chapter 1 the fourth and fifth numbered items are

DefiniËion 1.4 and Lemma L.5. The third part of Lemma 1.5 will be

referred to as Lemma 1.5(c). The symbol rr E! rr indícates the end

of a proof. In the proof of a Lemma or Theorem wíth several parts,

the end of proof symbol will appear at Ëhe conclusion of the

proof of the lasË part. An index of numbered items and an index

of special symbols are included at the end of the manuscript. A

bibliography is also included; our corÌ.vention will be Ëo refer to

.n" ,J! item in the Bibliography as [n].
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ABSTRACT

If F is a free group and (o¿, u) 
. 
is a pair of

(reduced) words in F , the endomorphism problem for the pair

(w. ,t) is the problem of effectively deciding whether or noË

there is an endomorphism of F whÍch sends vr to u .

Theorem 2.2 gíves a necessary and sufficienÈ condition that Ëhe

endomorphism problem be solvable for \¡r and arbitrary u . This

condition is based on a set, C(w) , of words in F To obtain

our applications we prove (Theorem 5.1) that if tl and *2

are quadratic v,¡ords in F in non-overlapping variables for

which C(v71) and C(wr) are finite sets, then C(wrwr) is also

a finite set. Using this we show (Theorems 6.2 and 6.3) that the

endomorphism problem is solvable for (w, u) where u is arbí-

trary for w a product of distinct squares or a product of

commutators with non-overlapping enËries.
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INTRODUCTIü)I

Tarski originally raised the questi.on of the decida-

bility of the elementary theory of free groups. It seems thaË

this theory could be decidable since the solutions of the

classical decision problems for groups - the word problem, Ëhe

conjugacy problem, the isomorphism problem - are nearly trivial

for free groups. However, many investígations (l 1 ] - t21l)

made in the past fifteen to twenty years show Tarskirs question

to be very difficult. For Ëhe most part, these investigations

involve special decision problems for free groups. For example,

there is the endomorphism problem for a pair (w, u) of ele-

menËs in a free group F :

Problem I. Can ít be effectively decided (by a finite procedure)

whether or not there is an endomorphism of F which sends r^7 to u ?

An alCernate form of this is the substiËutíon problem

l16l for the pair (w, u) :

Problem II. If F is freely generated by [*r, *2, *r,J

and \,J = r'i(xl , *2, *rr) , can it be effectively clecided

rvhether or not there are elements *Lr rZ, , wr., € F such that

w(w1 , w2, ..., r.) = u ?
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In response to Problem II, raised by Lyndon in a note

in [11], Schupp tl6l solved the problem positively for every

pair (w, u) in a free group of rank 2. This covered the only

other results known at that time viz. (w, u) where w is a

por¡Jer or a commutator and u is arbitrary. The commuËator

result is due to Wicks l,zLl In Chapter 2 we will give a

necessary and sufficienË condition (Theorem 2.2) that Problem II

be solvable for any given w and arbitrary u's. Using Ehis

criterion, we will solve Problem II for a new class of words

which is not covered by any previous result (Theoreur 6.1) As

consequences of this, we will show th¿rt Problem II is solvable

for (w, r) if \¡7 is a product of distinct squares or a product

of commutators with dísËincË entries (Theorem 6.2 and 6.3). Our

result for one conmuËaËor covers l^lícks' result lzLl , and our

solution to Problem II for w a product of n ( > 2) commuËators

answers a question of I¡licks (writËen communication).

In 1959, Baumslag, Boone, and Neumann [ 3 ] showed that

Ëhere are groups for rvhich iÈ is impossible to decide rvhether or not

a given r,vord v7 is a commutator. I^licks [21] reports that in 1960

Boone asked if it could be effectively decided whether or not a

given element of a free group is a commutator (i... whether

Problem II is solvable for the pair ([*r, xrJ , u).) tr^licks gives

an elegant solution to this probleni: A word \^7 in a free group
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is a commutator if and only if some cyclic permutation'of w

has one of the forms *y*-1y-1 or *y"{L{!.-l our Chapter 2

is inspired by l^iícksr idea. Given a rn¡ord t w t we will generaËe a

set of words C(w) , the closure of w . This set will be used to

test whether or not a word u can be derived'from w by a sub-

stitution (.!=s=_ whether or not Ëhere is an endomorphism of the

free group which sends w to u . )

The process of finding ,L, *2r ..., wn in F such

thaË w(w1, w2, '.., rr) = u ¡ can be viewed as solving the

equation

w(x1 , x2, . ".: xrr) = u

where the X, ts are thought of as variables and u is a con-
].

sËanl-. This is the approach taken by Lyndon in his study of

equations in free groups ([B] - t14l). Lyndon was prompted to

undertake this study by Tarskirs question about the decídability

of the element,ary theory of free groups and by a specialized

(unpublished) conjecture of Vaught, viz. if a, b, and c are

elements of a free group F such that u'b' = "2 , then ab = ba

In I B ], Lyndon shoived that under these conditions âr b, and c

all lie within the same cyclic subgroup of F l"lany generaliza-

tions of this result have been made [1 ], 12l, l4l, [L4], [tl],

ltel, lrlJ, ï.20].
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Along these 1Ínes we will reprove (Theorem 6.4) a ne\¡i

resulË of Lyndon and Ner.¡man [13]; namely, that if F is a free

group freely generated by *1 and *Z , then there are no words

a and b € F such that *r*ri'|L = 
^2b2

In Chapter I we describe our notation and inËroduce

some definitions. The most important new idea here is that of a

c-free (cancellation free) substituËion (Definitíon 1.1(e)) Í.or a

freely reduced word w This is a monoid endomorphism (from the

free monoid x , freely generated by [*r, {t, *2, tt, 
...] t

to itself) which preserves formal inverses, sends

occurring in r,J to the empty word, and sends 1r

is freely reduced as wrítten.

no

to

x- symbol

a word which

In Chapter 2 we define the set C(w) and show that

C(w) is the minimal complete set of ímages of w in the sense

ËhaË each element of C(w) comes from w by a substitution,

each element of X which comes from \^7 by a substitution comes

fro* "o*" element of C(w) by a c-free substitution, and any

oËher set with these properties contains a copy of C(w)

(Theorems 2.13 ar.d 2.L4). From Ëhis we show (Theorem 2.2) that

Problem III (which is equivalent to Problem II) is solvable for

\¡r and arbitrary u's if and only if membership ín C(w) is

effectively decidable.
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Having reduced Problem II for (w, u) to a study of

C(w) , we develop Ëhe machinery to prove that C(w) is finite

if \,r is a quadratic word such chat w = Ê r. , where the
i=l- I

tr,.rs are rvords in mutually disjoint symbols and each C(wr)

is fínite. In ChapÈer 3 we introduce certain díagrams in

Euclidean 2-space called :'<-graphs (star-graphs). lIe also intro-

duce a procedure for refining Ëhese :k-graphs which in Chap ter 4

is shown to yíeld a complete set of c-free solutíons

(Definition 4.6) to certain equations in X The use we make of
I'graph" theory could probably be elíminated in favour of purely

algebraic techniques, but the geometric nature of the c-free

solutíon of equations makes the use of *-graphs convenient and

appropriate. Approaching the problem in this way enables us to

use our geometric as well as our algebraic ínËuítion to study the

solutÍons of equations ín free groups. Perhaps furLher investi-

gation will show that our main application (Theorem 6.1) could be

proved replacing Chapter 2 by a more involved discussion of

:'r-graphs in Chapters 3 and 4; however, we will not attempt to do

this here.

Chapter 4 is a technical chapter in which the link is

established between the :'.--graphs of Chapter 3 and the c-free

solution of certain equations in X (see Corollary 4.L2).
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In Chapter 5 we prove Theorem 5.1: íf. 11 and *2

are freely reduced words in X such that

(i) *1 and *2 are quadraric (i.e. each word con-

tains *i , rvith exponent +1 or -1 , at most twice,)

(ii) 11 and *2 are words in non-overlappíng vari-

ables, and

(iii) both C (\^71) and C iwr) are f inire, rhen

C(wrwr) ís finite

This implies Ëhat Problem II is solvable for (wrwr, ,r)

l.le list some of the consequences of our work in Chapter 6.
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CHAPTER 1

DEF]NITICET S AND NOTATION

I,rIe begin by discussing our notatíonal conventions

regarding countably generated absolutely free groups. Any details

which we omit can be found in Magnus, Karrass, and Solitar Il5 ] .

Let X denote the set of (reduced and unreduced) words

i.n Èhe symbot" tJ1l, \t , {:, ;}, ... I For norarional con-

venience we let the symbol rrlrt denoËe Èhe empty word and

abbreviate Ëhe symbol" r.*i (i > 1) as x. .

It will be conveníenË to wríËe a non-empty word \., as

"1!1) ":!?) ":Í:ì where each i(j) is a posirive inreger"i (1) "i(2) "i (n)

and e (j) is +1 or -L The length of w will be denored by

!,(w) , and the support of w , which is the set

[*. , *" or {t occurs in w] )

will be denoted by Supp (w)

rf v and w name Ëhe same word, "i[lì "i[;ì "i[T] ,

we say that v and \^i are identically (or schematically) equal

and write v = w = ":,(11 ":fÎl ":!") Nore Èhar rhe words"i (1) "í(2) '^i (n)

-1*f * i and I are noÈ identically equal.

rf y=*€(1)*e(2) efm) =*Tì(1)*1(2)...*1(")= "iiri "tizi "ti*i and ' = *jirl "¡ ir> " "ji;i
we define the product of and as follorvs:
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e (1) e (2) 
-e 

(*) *Tl(1) *Tì(2) *1(n)v'w=*iit>"iiz> "ii*j "iiri "iizi *j(r,)'

(with 1 . w = r¡J ' 1 = w). Clearly (X, .) is a semigroup with

identity element 1; we call (X, .) the free monoid in x-symbols.

tf ' = *T[lì "i[i] "ï[Tì , we derine Ehe (_{.'*'!) ínverse or

rri as f ol1ows:

-1 -e (n) -e (n - 1) -e (1)\'7 = "i(i)' "t(i- 1) ' ' ' "içi¡' '
-1(with 1'=1)

If 'rÁ7=a.ue vob l¡here a and b are(possibly

empËy) segments of w , u is a segment of \.{ which ends with Ehe

symbol "? , and v is a segment of r¡7 which begins with the¿

îoTl
symbol *'] , we call the segment *l *'l the junction of the seg--J-1J-

ments u and v

-1 _1
The words X.x." and *l'*-. (i > 1) are calledl-11-a

Èrivial relators. If vr is a word in X , and no segment of w

is a trivial relator, Tt ís said to be freely reduced; we let

i denote the set of all freely reduced words in X Given any

word T¡r in X , repeated deletíon of trivial relators final ly

yields a unique freely reducecl word ; . Inle let d(w) denote

the number of deletions of trivial relators requíred to reduce \¡l

to " ; note that d(rv) = Trnr", - ¿(;)) A word that results

from r¡7 by the deletion of some (but not necessarily all) trivial

relaLors is called a parti¿rlly reduced form of vr ; we also call

\¡r a partially reclucecl forn of itself
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. Two words v, w € X are freely equal, denoted v Ar w ,

if v = r rt can be shown that rt^srr is an equivalence relation

on X , and that the set X /æ with the multiplication and

inverse operations induced by rr¡rr and rr-1rr forms the absolutely

free group freely generated by [*r, *2, ...] FurËhermore, the

freely reduced rvords in x comprise a set of unique equivalence

class representatives for í t* . HenceforEh we will denote the

free group in x-symbols by (X, o) where v o w = 7-w-

I^Ie now introduce some definitions of a more specialized

nature.

Definition 1.1

thaÈ Lo = 1

o and T are

only if xo=
S

(a) Given the monoid (X, .) , a substiËution

from X into X is a homomorphism o : (X, ') -> (X, . ) such

Note that íf

=T ifand

and {to = (*"o)-1 for each

substitutions from X into X

v
S

,o
x T for each x

SS

(b) If o isa

€ Ï for each *" ,

substitution from X into

we call o a reduced sub-such that x o
s

stitution-

(c) The substitution which sends each word to

Èhe empty word is called the trivial substitutíon.

(d) The .substitution which sends each word to

itself is called the identity substitution.

(e) If w€X ancl o is a. substitution from

ation free) for w ifX into X , we say o is c-free (cancell
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r^to € 1 and *.o I 1 for each x" € Supp(w) l^le clenote by

S*(w) the set of all c-free substiÈutions for \^r from X into

X Note that if o is c-free for w , then X(w) < /(wo)

Definition 1.2. Given w € X and x" € Supp(w) , ür is said to

be línear (g.rudtglt.) ir, *" if the subscript s occurs exactly

exactly once (twice) in thefuord w . The word !ù is said to be

quadratic if for each x" € Supp (w) the subscript s occurs at

most twice in 'ül

DefiniËion1.3. (a) If vrw€lrr"callËheexpression vIw a

verbal equation; the elements of Supp(v) and Supp(w) are

called verbal varíables.

(b) A solution in I to the verbal equation

v v w is a pair (o, r) , with o and r substítutions from X

into X suchthat ""=;î
(c) A c-free solution in X to the verbal

equation v ! r is a solution, (o, t) , such that o and T

are c-free for v and \,7 respectively. We denote by S*(v, w)

the set of all c-free solutions in X to the verbal equation

tvt

(d) A verbal equation t V ,o is called

quadratic if both v and w are quadratic words.



Definition 1.4. (a)

À. , (i<i),
Lt J

x À.S1

The elementary level substitutions,

X into X are defined as follows:
("
ls

and x ).. .= 1..s r¡J 
ì J

l"t

].

11.

and

rt s f r.,

if s=i

íf. s= j

from

I=ï
Jx if s#i

s

-1L .-x. 1r s = 1
t_

(b) A substitution l. is called

a product of elementary level substitutions. See

a similar use of the termttlevel"

level if it is

t15 I p. 163 for

(c) ordering the x-symbol" *1. {t . *2. \' . . .

the words in X can be ordered lexicographically (see [15] p. 26>.

It is easy to see that (X, <) is a well-ordered set, rvhere

v < v7 means either v precedes w in the lexicographíc

ordering or v = w A word w € X is said to be in (special)

normal form if, f.or each leve1 substitution À from X into

X , w < w), Henceforth, we will use the term|tnormal formtt in

place of rrspecial normal formtt.

Lemma 1.5. (a) If À is a level substitution from X into X

and w€Xrthen l,€S*(w)

(b) If ì. is a level substitution from X into X

and w€Xrthen .1"(w)= /(wI)

(c) For each level substitution ì. from X into X

there exists a level sr-rbstitution I-1 frorn X into X such

-1 -1that ¡. À ' = l. 'ì. is the identicy substitution from X into X



from X

normal

normal

denot es

Proof.

(d) If w€X

into X such that

form is unique.

(") If w€x
f orm, then Supp (w)

Ehe cardinality of

L2.

, there exisÈs a level substitution v

w v is in normal form, and this

, card (Snpp (w) ) = c , and rn is in

= l*- . x^. x L where card(S)."1 ) '-2t ) "ct

the set S

1eve1 substitutions. Each of these is obviously c-free for any

freely reduced word, and since a product of subsEiËutions which

are c-free for any reduced word is c-free for any reduced word,

L is c-free for any reduced word.

(b) This result is obvious for any elementary level sub-

stitution and follows for any 1evel substitution, l, , by induction

on the number of elemenËary level substitutions of which l. is a

producË.

(a) Since is level, íË is a product of elementary

sub-

-1 - 1(.) Clearly ì..-= l,- and I.-, = tr. , . If- i r 1r J 1., J

tr = Lr1u2 Þr, r where each pi is an elementary level

stiËution, then À-1 = rr"1 rr"l 1 
.. . *;t

(d) The lexicographic ordering of the set X is

ordering; thus the seË [w ]. : ]. is a level substituÈion

into XJ has a least elernent., say w v By Def inition

r^rv is in norrnal form. Suppose that ul and ,2 were

substitutions from X into X such that both r ul and

were in normal form r^¡j-th rVl f wvZ It would follow

a well

from X

L.4 (c),

level

tu2

thaL
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"ul < Wv2 and "u2 = rul

applied Eo " ul and r u2

antisymmetric, wv, = "u2 ,

normal form is unique.

(e) Suppose, by way of contradiction, that x. É Supp(w)

for some i(l < ' 
= c) ; thus for some j (j > i) we have

x. € supp(w) rt is clear'anra the word wL. precedes r¡7J _i, j
in the lexicographic ordering, since these two words are the

same up to the leftmost occurrance of *1 in w and at this
J

point w tr, . cont.ains 
"! and w contains *.. Since À.LtJ i " --j ,.i,J

is a level substituËion and 
" ^r, , 

precedes \^7 in the lexico-

graphic ordering, we have a contradiction to the hypothesis that

r¡7 was in normal form. Et

Definition 1.6. If W g X, the normalization of lnj , denoted

by the definition of normal form

respectively. But since rr<rr is

rvhich is a contradiction. Thus the

[w v : ru € I^I and v is a level subsËitut,ion

its unique normal form]

N (I^I) , is the set

which brings vr to

Defínition L.7.

to !'r , denoted

equality, denoted

we say v Ís

\À7 f of some

only if some

than or eq uaIFor v,

vÉw,

v-w

w€X, less

o€

such

ifv

,íf

o=

and

s"(v) ;

ois

with

1eve1.

Lemma 1. B. (a)

on X.

The relation rr: rr is an equivalence relation

on X/-

(b) The relation rr ( tt is a partial orcler relation



(c) If both v and \¡t are in

L4.

normal form and v - rv

then v =

chain of

rù -vtn n+

f.t

(d) rf
words in

1

w1ìwr)...àwu

, then for some n

n+ a

is a descending

x

v7

!qoof. (a) The reflexíve property follows from the facC that

the identity substitution is level, the symmetric property

follows by Lemma 1.5 (c), and the transitive pïoperty follows

since the product of two level substitutions ís clearly level

(see Definition 1.4 (b) ) .

(b) The reflexive property follows since the identíty

substitution is c-free for any reduced word. To verify the

antísymmeEric property, we consider the words v, w € I wiËh

vSw and wSvrandshowthat v-rù.

Since vSw and wSvrthereexist o.€S"(v) and

r € S*(w) such that vo = w and wr = v. Being c-free,

o and r do not decrease lengrh, thus /(v) < !,(v o) =,0(w) <.0(wr) =

x1v) Let us wrire " = "î Í1ì "9 
!?) *. (') and' "i(1) '-í(2) ^i(n)

' = ;:[] ;:[tì ;:[:ì where n = !,(v) = /(w) since vo = !ù

we can also write \^7 = vrl , ,02 r.rhere ", = "i[lì" and

,2 = ,"i[;ì "i[3ì "i[iì," rr /(wr) = 0 , rhen ,1 = 1 which

contradicts the fact that o is c-free (and hence sencls no *"

to the empty worcl). Tirus /(wr) > L and so !,(wr) < n - 1
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sínce o ís c-free for v , it is c-free for any segment of v ;

in parricular o is c-free for 
"TÍî1, "i[3ì "i[iì rhere_

rore n - I = n(""rÍ73":[3ì "i[ïì, =

!'("?[3ì ":[3ì "i[Ïì)o) = !'(vr), and so .a('z) n - 1 and

/(wr) = 1 As a resulr, we have rhar "i[iì" = 4[ì ,

("i[;] ":[3] ":[:],, = ;:[;ì ;:[3ì ;l[ïì , and, applying

the same arsumenr usíng r insread of o , rhar 
{t[ì " = "i[ì

and .;:[3ì ;:[3ì ;![;ì," = "î[;] "î[ì "î[iì By a

straightforward inductíon on 'n, we arrive at the fact that

"i[ì" = ;:[] and ;:[iì " = "î[ì ror each k = L, 2,..., n .

Define the mapping fi : [s : x" € Supp(v)J * [f. , "k€ Supp(w)J

by sTT = ft r¡here *"o = 4 for Tì € [-1, lJ I^]e claim rhar

n is one-to-one. To see thís, suppose that sTT = tTT = k ,

then *"o = { and *ro = *f for some ø, p € [-1, 1l Since

*s, *È € Supp(v) , there exisË positive integers p and q such

rhar xe(p) = "i[;ì and xe(q) = "î[;] rhererore,

;:[iì = "i[l], = (*r(o)o)e(p) = (*"o)e (p) 
=

(*u)o (R) = (*fl)"9t(p) = (*.o)oÊ"(R) = (*.o)e(q)øBe(p)e(q)

= (*:(c)oroBe (p)e (q) = ,"i[;ì")"0e (p)e (q)

= (;:Ilì'"u'(P)e (q)
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Thus,

*e(p) = *1[iì = ;l[3ì " = ,;:[;ì ")oe'(p)e 
(q)

= ,"iIiì)dge (p)e (q) = (xe 
(q)røpe (p)e (q)

since *^=fl ,wehave s=t;itfollowsÈhat fi isone-Èo-ST
one" since fi is one-to-one, some permutation of the set

[" t x. € Supp(v) U Supp(w)J sends i(k) ro j(k) for each

k = L, 2, ..., n Any permutation of a finite set can be

written as a producË of transpositions, thus there is a level

substítution from x into x , À (a product of elementary

level substiÈutions of the form 
^r, j) , which sends 

"i(t) to

*j (t ) 
for each k = L, 2, , n Since the substitutions

^r, j affect only subscripts and leave exponents unchanged, we

have v l. = ":[lì ":[;ì ":[;]
If e(k)=Tl(k) foreach U=112) tf t rhen

v À = r^r ; theref ore v - w and we are done. otherwise, let s

be the least integer such rhar e (s) I Tl (s) and wrire

'Àtrj(") = "l[lì "][;ì "l[ïì Note that v(s) = r(s) we

will prove by contradiction that if t is the least integer such

that Y(t) I Tì(t) , rhen r ) s Since y(s) = l(s) ir is

clearthat tls S,rpposerhar r<s If j(r)l j(s),

rhen 
^j (,) 

sends 
": [:ì ro .: [:ì ,= i[i], , rhererore

Y(t) = e(t) But since t ( s and s rnas chosen to be the

le.rst integer such that e (s) I I(s), r^¡e have e(r) = Tl(r)
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Therefore v(t) = Tl(t) , which conrracìicts the choice of t

Thus we can assume that i(t) = i(s) since rT is one-to-onc,

we also have i(t) = i(s) r so *i(a)o = *i(")o Thus

;ll (t)e (t) = * Tì (s)e (s) _ ,^j(.) - *i(r)o = *t(")o = "ji"Í " , and since j(t) = j(s) 
'

1 (t)e (t) = Tl (s)e (s) Bur since I (s)e (s) = -1 , we have

1(t)e(r) = -1 and, as a resulr, e(r) I Tì(r) This is a conrra_

dictionrthus Ë)s

Now by inducËion on n there exists a sequence of

level transformations tr,¡,- rr I ì . _ such that.Itions trj (kr) , rj (kz) ' 
' ' ', Àj (nr)

letting p = trj(nr)^j(kz) rj(k*) 
' 

we have vÀp =

"n(1) -'fl(2) dflì = vr . Thus we have the tevel subsÈirurion^ j (t ) ^ i(z) " j (n) "'iIS \¡/e nave tne

l,¡.r, €S*(v) suchËhat vÀp=\nTrandhence v-w.

rn order to verify the transitive property it suffices

Èo show that if ur vr and w are in X with ,, S v and

vSw,thenr.rÍw If ,r5v and vSwrthereexist

o € S*(u) and r € S"(v) such that uo = v and vT = r¡7 .

Clearly u(ot) = (uo) r = vr = r^7 € X . Thus, ín order to show

Ëhat oT is c-free for u, it suffices to show that for each

x" € Supp(u), *"or + I Since o € s*(u), x"o I 1 ; rhus

there is an x, € Supp(*"o) Since r € S*(v) , xar I 1 ;

thus there is an x, € Supp(*ar) c Supp(x"or) Thercfore

xsor I t
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(c) If v(x) * w(x) , there exisr level substitutions

À and tr-]- from X ínto X such that v l. = r,r and ., = * tr-1

since v is in normal form rve know that, in the rexicographic

ordering, v ( v L (= w) , and since r^/ is in normal form, we

also know that r < r¡.-1 (= v) Thereforei vre have v = r^7 .

(d) Let us suppose that there is an infiniLe properly

descendíng chain, ,t4 ,27 7 "u7 
... , of words in X .

Since "U7 "k+ 1 implies that /(wU) > /(wU* r) and since

!'(wr) is finite, there is an integer i > 1 such that

/(wr) - /(wi+ 1) = = X(wí* j) =

Letting uk be a level substÍËution whích brings 
"k

into normal form and letting tk = rkuk for each k > 1 r w€

noËe that,

tk - tkuk 7 tu*1vt +1- tk*r-

Therefore we obtain rhe chain "t7 uZ7 ... 7 "ui 
... where

each tk is a word in x r^¡hich is in normal f orm and all rk (k > i)
have the same length, say n rt is clear thaË card(s,rpp(vu)) < n

for each k > i ; furthermore, since each tk is in normal form,

itfo11owsbyLemma1.5(e),thatSupp("t)[*,,*2,

where c = card(Supp(vr.)) Thus the seË of words

[tr-, ti + 1 , . ] i" a subset of the finite set of all words

of length n rvhose support is a subsct of [*r, *2, . . . : *r,J ;

therefore there exist íntegers l< and j (i = 1. < i ) such Ëlrat
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t,.=tj Butif k< j, u.*Tuj and, inparticular,

tU 7 tj This contradicts the fact thar rk = rj (and hence

thac tU - tj) Therefore, no such chain exísts. E
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CHAPTER 2

THE SUBSTITUTIOilI PROBLEM

Gíven the free monoid

w, " € l, we pose the following

(X, . ) and. two words

problem.

Problern III. Can it be decided by a fÍnite procedure wheËher or

X ínto X such thatnot Ëhere ís a subsËitutíon o from

ñ=u ?

This wÍIl be called the substíËution problem for the

pair (w, u) rt is easy to see that problern rrr is an alter-

nate form of Problems I and II of the InËroduction.

since Èhe condition 
"o = u involves a free reduction,

Problem rrr is really a problem about free groups rather than

monoids. rn later sections our method of solvíng problem rrr for

certain words will centre around the associativity of (x, .) ,

i."', the fact that (x, .) is a monoid. This wirl result from

the reduction of Problern rrr, which involves an arbiÈrary substi-

tution, Ëo problems involving only c-free substitutions. Thus

the free group problem rvill truly become a problem about free

monoids.

The follorving problern is much sirnpler than problem rrr

Problem IV. Can it be decided by a f inite proceclure rvhether or

substitution o € S*(w) such that wo = u ?
not there is a c-free



This will be

the pair (r,r, u) , and

Solution of Problem IV.

2L.

called the c-free substíËution problem for

can be solved as follows.

If there is a o € Sr(w) such that

r¡ro = u; then for each x" € Supp(w) , l,(xro) < X(") and

supp (x"o) ç supp (u) Clearly, if there is such s Ç t then

there is one rvhich sends *t to itself for each xa É Supp(w)

Since there are only finiËely many such substitutions, I , vre can

list all Ëhe words, wr. If some v7T =.u, the problem is solved

by setting o = r ; otherwise, there is no c-free o € S*(w)

such that wo = u. In eíËher case, the problem has been solved

by a finite procedure. El

As an obvious corollary to the solution of problem IVr.

we note that, given a finite set of words [r1, "2
another word u , it can be decided by a finite procedure whether

or not there is a ti and a o € S*(wr) such that w.o = u

In this chapter we will give a procedure for generating

a certain set C(w) (see Definition 2,5(b)), of images of a word

w € i This set will be shown (Theorem 2.L3) to be'rcompleteil

in the following sense.

Definition 2.1. A complete set of images of a word w €

aset WcX suchthat:

(i) for each v

X into X such that .tr p =

Xis

€

V

Iil there is a substitution

t

from
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and (íí) for any substirutíon o from X ínro X for

whích ro"*f ,thereisaword v€W suchthat vswo (see

Definitíon 1.7) .

The set C(w) will also be shorvn (Theorem 2.14) ro be

rrminimalr' in the sense that C(w) = n N(I) , where .g is the
I€"9

class of all complete sets of images of w

normal ization of I (see Definition 1.6) .

The central role played by Ëhe set

this thesis is illustrated by the following

and N (I) is the

C (w) Èhroughout

important result.

Theorem 2. 2. Given w € X and assuming that C(w) is a complete

set of images of \,,r (Theorem 2.1-3) and rhar C(w) = n N(I)
I€.9

(Theorem 2.L4), it follows that Problem III is solvable for

and arbitrary uts if and only if membership in C(w) is

effectively decidable. (i-r-r- if and only if , gíven v € Ï ,

can be decided by a finite procedure whether or not v is an

element of C (w) .)

Proof of Theorem 2.2. Given v € I , let us suppose that we can

effectively decide whether or not there is a substitution, ¡.r ,

from X into X such that r¡-r, = v If no such p exists,

then by Theorem 2.13 and Definition 2.1(i), v É C1w¡ If v is

an image of rv r then by the corollary to the solr.rtion of

Problem TV, given the finitc set, lrol r rZ, ..., rrJ , of all

norulal izecl rvorcls in 1 of J ength not exceecii'ng !,(v) , we can

ef f ectivcly list those ri'" for which ", f 
r (._.-g,. 

"i I u

Ír
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but w- 7 v .) Furtherrnorc, by our assLrmption th¿lt problem IIII

is solvable for w and arbitrary u's , v/e can effectively list

those r.¡- rs from the list above which are images of w LetI

V denote the seË of alI such rvords, If. v is not in normal

f orm, v É C (w) ; thus w. !, . o. g. \¡re may assume that v is in

normal form.

I,{e claim that v € C(ü) if and only if V = Ø ;

since V can be effectÍvely listed, this implies that it can be

effectively decided whether or not v € C(w) First let us

supposethat v€C(w) and Vfø ThusËhereisaword u€V

which is an image of w such that 
" I " Since C(w) is a

complete set of images of w there is a u' € Ciw¡ such that

u'Í,t; therefore S = C(w) \ [v] is also a complete ser of

images of w But then S = N(S) is a proper subset of C(w)

in contradicËion to Theoren 2.L4. Thus we have V = ø Now let

us suppose that V = ø and v É C(w) Sínce C(w) is a complete

set of images of v7 , there is a word u € C(w) such that u 5 v

If u- v , it follows that u = v by Lemma 1.7(c), but this con-

tradicts the assumption that v É c(w) Thus u is a normaLized

image of $r such that " l, ; therefore u € V in contradiction

Èo our assumption that V = Ø

Suppose that mcmbership in C(w) is effectively decidable

and that u € X By Theorem 2.13 and Definirion 2.L(ii),
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in order to determine rvhether or not there is a substitution o

such that îã =,., , it is enough to check all ¡:, € S*(v) ,

where v€C(w)rtoseeif vp=u. 1.f. v€C(!r)rthen v is

in normal form, and if vlf, = u ¡ then !,(v) < /(") Since

there are only finitely many norma1- ízed v¡ords of length noE

exceeding /(") , there are only finiËely many'rcandidates" for

v Since membership in C(w) ís effectively decidable, the set

lu, ur¡ .'., tr,] of I'candidatestr for v which lie in C(w)

can be found effectively. The solution of Problem III for the

pair (w, r) Ëhen reduces to the soluËion of Problem IV for the

set [r1, r,

Problem TII is solvable as well. s

Remark. If

the elements

corollary to

if C (w) is

uls

(a) Let r.
l-

X T. =
SI

tl-re substitution from

1r sf r

C(w) is a finite seË, Lemma 2.6(d) will imply that:

of C(iv) can be listed by a finite procedure. As a

Theorem 2.2, assuming Lemma 2.6(d), it follows that

finite, Problem III is solvable for rnÌ and arbitrary

THE SET C (rv)

üle norv proceed ivi th Ëhe def inition of the set C (w)

and the proofs of Theorems 2.13 and 2.L4. First we make some

prel iminary definitions.

Def ínition 2.3. in tobe

[",
1

Ir

X defined by

if s=i



By conv,ention, we let 
"0 

be the ídentity substitution,

(b) For each segmenr 
": J of v7 , ler p, be- r_ J -(w;ireijrTì)

the substittition from X into X defined by

x
S

-1XXXmsm

25.

if s # i, j

Lf. s=i= j
*"P(*; i, ei j, Tì) e-1 e*1

22x, x,x if s=iljm].m
_ Tl+1 1-1

22x_ x.x_- if s = j I imlm

where m=max[s: x"€Supp(w)]+1 and "3=1 ByconvenËion,

we let Þ (r; 0, O; 0, O) be the identity substitution.

Example. Given r = {t at *, x, , we have

,r2 = grrr)-L . (x3 ,r)-t . (xrr2) . (x, rr) = at *, ,

and letting p = p(w; 3, _L; 2,1) , we have
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Remarl<. The substitution 
"í has the effect of creleti.g each

occurrence of the symbol" *i and {t from w . The substi-

tution o . has the effect of replacing each occur_, (\.r; 1r e i j,tl)

rence of the symbols xrr 1-t, *i, and *;1 by words involving
JJ

x. and x or x. and x and, in particular, replacingrmjm

the segmenr ": ¿1 by *1* * Ur J ' rmm j

NotarÍon. If d = [:<i>, j(Z), .., j(r)] i" a ser of disrincr

positive integers, we denote the composiËion 
"j(f), j(r) "j(r)

by ra , and we let ,ø= 
"0

Definition 2.4. For I^l Ç x we define the sets of reduced words

T(W) (trivializaríon), R(W) (replacemenr), and M(I^t)

(minimization) as follows:

(") t,", = 
o'!" : t't; 6y c [s : x" € supp(')]l

(b) R(I^l)= U U {- eI
w€InI (rv; i, e ; j, Tl) 't 

P (t; i, e; jr I): "i"j is a

segmentof w or i=e=j=Tì=0J

(c) M(w) = [ru € I^I: ü7 is mÍnimal in \^] with respect to rr < 'rl
(see Definition 1.1).

Examples. If I¡i = [*r*r{1*r*r} ,

T(I^I) = [*r*r11*r*r, *2*3, *3*1, *L*2, *3, *2, *1, 1l

and R(tJ) = [*r*r*]1*r*r, *r*r{1{1*rxrx4, *r*o*r{1*3*t*4,

-1 -1 -1 -1 -1*4 *1*2*l*x3x4 xl , *4-*!*2*r**O*r*rÌ
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rf r^r - [{1*r*r], x(w) = ¡*r*r11} , and if t,l - [*r*rJ ,

N (i^l) = [xrxr]

rn \{ = [*r*r*, , *L*2*2, irÇr, *rr{1*r*r, *:*g] )

M(w) = t"r'"rt, *3*3, *1*2*3J, N(w) = [*t*t , *L*2*2, x1x2x3,

*1*2*1*3J, and NM(w) = [*1*1, *l*2*3]

Remarks. (1) rt should be noted that, although we wriËe sub-

stitutions on the right (s--g=_ w r) r operations on sets of rvords

will always be written on rhe 1ef r (Sr€. T(I^t)).

(2) Given any w € I^i rhere exisrs a v € M(W) such

that 'o : r This is clear if w € M(I^I) If w É M(ti) ,

there is a word w, € I^I such rhar r 7 ,, (ie. such thar

tì"t but w7wr) If w,€M(I^I),welet r=11,andve

are done; otherwise, we continue the process. Either rve produce

an infinire descending chain, T rtr+ "r7 
. 7 rtr| ... or

at some stage we obËain a chain ,7*t7rrr+... T roU where

wu € l'1 (tr'i) The first case cannor occur according to Lemma 1.8(d),

therefore the latter case must occur for some integer k Thus

welet v=r.tk

(3) If I^l is a finíre subset of X, the sets

T (I^i) , R(l,i) , N (inj) , and l''1(I^l) are f inite and can be cons rructed

by f inite procedures. This is obvious f or T (I^l) , R(I{) and N (i^l)

The complcmcnt of M(i\T) can be constructed from lù by first

pcrforming all possible substjtutions which are c-free for sorne

r,¡ord in W and r,thich give r.¡ords, u : for which
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Sr,rpp(u) E= Supp(tl) (= U Supp(w)) anct /(u) < *a*[.0ç.r¡: v € W]
w€W

Those elements of W which aríse through non-1eve1 substil-utions

of the above type comprise the complement of l'I (I^j) in I^l , thus

we can cons truc t M (I^l)

The rrminimalrr complete set, C(w) , of images of w wíl1

be generated by normalizing \.,J and then successively performing

the operaËions R, T, N, and l'I repeatedly. This will generate

a sequence of seËs c0(r) = N(w), cl(") = r"r(N(T(R(cO(w))))),
?1c-(w) = 1"1(N(T(R(c'(w))))), ; c(w) wirl consísr of rhose words,

v , for r¿hich there is an inËeger n(v) such that v € n cí(")
Þn (v)

Definitíon 2.5. rf w € x we define the sets of reduced words
1

C* (w) (i > 0) and C (w) (closure) as f ollorvs:

(a) c0(*) =u[wJ and ci+L(w) =]o,trR(ci(T^?)) for

i>0

(b) c(w) = ü n ci(")
j=l i=j

Each set Ci(r) (i > 0) is finire and can be con-

structed by the finite process (see Remark 3 following

Definition 2.4) of first normalizing \¡7 , then replacing,

trivialízing, normalizíng, and minimízLng, in that. orderr i times.

Examples. (1) First we calculare C(n1>;

.oc*rll = *[tlJ = [*1] ,

^ -1RC"(x2') = n[xr] = ["r] ,
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n -'lrRC"(xt') = r["r] = ["r, iJ ,

r,rRco<{tl - N[*r, 1] = [*r, r] ,

¡nirRc0 (*'rt) = tu[*1, 1J = [*r, rJ ; Eherefore

1 -1,-Gz¡=[xr, 1]

Ir is easy ro see rhar at <ntl = [*r, 1] f or i > 1 )

- --1 -lthus C (x2') = [*r, 1] Since c ("2') f inite set, r¡re apply

the corollary Ëo Theorem 2.2 to obtain the fact that problem rrr

is solvable for (4t , u), where u is arbiËrary. Of course,

this is obvious sínce we could choose the substitution, o , which

sends *2 to u-l and *, to *" , f.or s # 2 . The next

Example will gíve a less obvious resulË. n_Ëimes

(2) !tre calcurate c1*fl (where "ï = E\1. Ð :

.o{*T) = u[*f] = t"il ,

Rco(xl) = n¡*f} = [*1, ni"i*2] ,

rRco(xl) = [*l , {L*l*r, tJ ,

NrRCo(*l) = ["T, *r*]{1, iJ , and

.1c*fl = In{rRCo(*l) = [*î, *r*f{l, r}

o.l{*f) = o[*î, *r*]{1, r}

= f *û *-1 r _n -1 , -1.n -1 , -1. n, -1,^1, ;r'xix, xrx)xr', *1(*2*3*)"xt , (xrxr^)"){"r"r'), 1} ,

to.l{*l) = [*i, 4t*T*r, *r*l{t , *î,*r{*r,!l)"{t, {*r{1)' ,

*, ({t)"{t, {,{1)", r*r{t)*l<*r*rt) , "r1*!*r, 1l ,
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NrRCl(*l) = [*i, ",."T{t, *r(*2*3)"{t, lxr*r)', (*r*2).î,.,t{t), rJ ,

and .2t*il = MNTRC1(*1, = [*î, *r*!{1, r}

rr is easy ro see rhar ci<"fl = ["i, *r*!{i, r} for

each i > 1 , rhus c1*f) = ["T, *r*!{1, r} By rhe corottary

Ëo Theorem 2.2, we obtain the fact that problem rrr is solvable

for ("1, u) , r^rhere n > 1 and u is arbitrary. Thus ír can

be decided whether or not a given word., u , is an ts por¡rer.

Although this is well known, it illustrates the way we will

apply our results in Chapter 6.

(3) If w € I and rhere is an x" € Supp(w) such

that w is linear in *" , r,hen C (w) = [xr, lJ To see this,

suppose that v brings T¡r into normal form. Clearly \^i v is

linear in *t , where [*t] = Supp(x"v) ; Ëhus, letting

c = supp(w v) ["rJ , we have ru p(rv; o, 0; o, o) "o = *r

Since *1 is Ëhe normal form of *t ,
rìxl € NRT(C"(w)); and since xr 5,, for

1n
u € x , c'(r) =MI,trR(c"(r)) = [*1, 1]

ci(") = [*r, 1] for i > 1 ; rherefore

Problem III is trivial f or r^7' s which

Lemma 2.6. (a) If the word u is produced at any stage in the

constructíon of Ci(") (i > O) , then there exists a word

v € C(w) such that v S ,-t

it follo\,is that

any non empËy word

It is then clear that

c (w) = [xr, lj Thus

are linear in some *o
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(b) If w is a quadratic word ín ï , then each

word in C(w) is also quadratic.

(c) The ser C(w) is finire if and only if rhere

exists an integer m > 0 such that C*(r) = C**1(") ; and if

this occurs, then C(w) = C*+k1*o¡ f or each k > 0

(d) If C(w) is known to be a finire ser, C(w) can

be consLrucËed by a finite procedure.

Proof. (a) since every word produced in the construction of

at * 1 (r) appears f irst in eirher ci (*) , R(ci (w) ), TR(ci (v,) ) ,

or NTR(Ci(vr)) for some i > 0 and since ci(r) E R(Ci(w)) c

fnlCilw¡¡ , ít suffices to verify this Lemma for words in

tnlCilw¡¡ or NrnqCilw¡¡ for each i > 0 Given a word

,, € rnlciçr¡¡ rhere is a roord v € nrR(ci(*)) such thar

v - u (choose v to be Ëhe normal form of u . ) Thus it

suffices to verify this Lemma for each word vO € NTR(Ci(r))

(i>0)

By the definirion of tu1 , rhere is a word v, € M{TR(Ci(r))

= ci+ 1(") such rhaË t1 I r0 since v, € ci* t(") c TR(ci* 1(")),

there is a word .ri e xrn{at * 1(")) such rhar rí - ,t By rhe

definition of M , rhere is a word v, € INTRççi+ t(w)) = ci* 2(*)

such that ", s "', 1 5 vr) using this argument repeatedly we

geE a chain of worcls u0 à tl ,- u._r- . with v. € Ct* j(")

for each j > I From Ler¡ma 1.8(d), we deducc that there is an

intcger n such that v - v ,l ... = Vrr+i.- By



Lemma 1.8(c) we also deduce that v = v = vn 'n*1 'n*k

since each v. is in normal form. But v = v € Ci 
+

J n n+k

foreach k>0randso v € n Cj(") Thisimpliest 
¡>i+rt

vr, € C(w) and, by the transitivity of 5, we have rr,5

(b) The words in C(w) are produced by repeated

catíons of the substitutions r^. t p(rr; irej irl) , and À

32.

= 
r.. 

,

n*lc-
(w)

that

\7'0

appli-

(where

I is elementary level) togeËher with free reduction. It is

obvious thaÈ quadratic words go to quadratic words under triviali-

zatLon (rr), normalization (I) , and the deletion of trivial

relators. The subsËitution p(.,r; i, ei ir T.ì)

reduction is also a quadratic word.

(c) Suppose C(w) = [w' w2, ..

By the definition of C(w) , for each i

an inÈeger m(i) such that w. € n
j>*(i)

', rr] is a finite set.

(1<i<n) thereis

c 
j (") Ler

introduces at most

four occurrences of symbols with the subscript m into the

quadratic word, v , buË, upon free reduction, at least two of

these form a Ërivial relator (which is deleted). Therefore the

result of replacement into a quadratíc word followed by free

m = max ru(i) ; therefore
1<i<n

resul t,

w. € Cmiw) for each i and, as a

C (w) c cm(rv¡ = MITR(cm - 1 
(ro) ) -c NTR(Cm- 

t (") )



33.

Recall rhar c*(") is the ser of elemenrs in NTR(cm- 1(ro) 
)

minimal with respect to il < il Suppose there rvere a word

u € Cmlw) - C(v¡) ; rhen by Lemma 2.6(a), rhere is a v € C(rv)

suchthat vSu Bur v€C(w) impliesrhat

v € tlrR(c*- 1(")) 
, thus u dominates an element of

NTR(cm- t (*) ) (viz- v) By rhe minimaliry of u we have

u - v and.further by Lemma 1.8(c) since both worcrs are in
normal fornr, we have u = v This contradicts the assumption

that u É C(w) Thus C(w) = C*(") In facr, by rhe same

proof, if i is any number for which C(w) c XfnçCiçw¡¡ , then

C(w) = ci* 1(") Thus C(w) = c*(r) implies rhar

C(w) = C**1(r) ; rherefore by inducrion,

C(w) = C*(r) = C**t(r) =

Now suppose there is an integer m for which

c*(") = c**1(*) ; rhen

am*2(w) = r"ßrrR(cm*1(ro)) = Io{TR(c*(*)) = ct+1(*) ,

and simil arly, c*(r) = C** t(r) = am* 2(w) = Given

u € cm(w¡ , we have u € n cj(") ; rhus u € C(w) As a
j>m

result we know that Cm(rv) c C(w) Suppose v € C(w) ; by rhe

definition of c , there is an integer n such that v € .fì ci(lv¡
l>n

Choose n'= maxlm, nl , then since n, > m , Cn' (w) = c*(r) and

since r' > n , v € Ct'(r) ; therefore v € cm(w; llence r,¡e have

the inclusion C (rv) c cnt(") , ancl thus C (rv) = Cntlrv¡
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I^lhen applied to a f iniEe set, each of R, T, N and M

yielcls a finite set. Thus beginning with the finire ser C0(")

and applying the combined operation, MNTR, m Eimes we produce the

f inite set C*(") . In the above case C*(r) = C (w) , thus C (w)

is finíte.

(d) If C(w) is known to be finite, Lemma 2.6(c) shows

that the procedure of successively construcËing the sets

Co(r), Cl(r), C2(r) , musr terminate in the sense that for

some m, cmlw¡ = c** 1(") 
I^Ihen this occurs, \^re stop the con-

strucËion, knowing by Lemma 2.6(c), again, that C(w) = C*(") . s

PRELI}4INARY LE}ß,ÍAS .

It remains to be shown that C(w) is a complete set

of images for w (Theorem 2. L3) and Ëhat C(w) = n N(I) where
I€.9

.9 ís the class of all complete sets of images f or \Ár (Theorem 2.1_4) .

The following lemmas lead to the proofs of these theorems.

Recall that d(w) is the number of deletions of

trívial relators required in the free reduction of w to ; .

Lemma 2.7. Suppose w € X and o is a substiÈution from X

into X , then the word lo is a partially reduced form of w o ,

and if \,r is not freely reduced, d(Ço) < d(w o)

Proof. l^leinducton d=d(w) If d=Orthen "=l and

thus "o = wo Since wo is a partially reduced form of

iEself. this case is complete.
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If d(w) = d + 1 > O , then r,^, contains a trivíal

relator. Let us write r = 11 *9 *lt rr, where e € [-1, +lJ

and 11 is a freely reduced initial segment of \^i not encling in

the symbot *le (i. e. ": {t is the lef tmosr trivial relator-Íl_a

in w .)

Since r¡ro = (rto) . (*io)t . (*ioft , (r2o) , the

word (tt o) . (r2 o) is clearly a partially red_uced form of

wor and (uto) . (vro) = (vrvr)o Sínce d(vrvr) = d , r.re

can apply the induction hypothesis to the word uLu2 and the

substitution o Thus "rtr r is a partially reduced form of

(vrvr)o r,¡hích in turn is a partially reduced form of rdo But

since t1r2 is a

therefore r o is

Lemma 2.8. If w € i and p is a substitution fromXintoX)

X into Xthen there exists

(see Definition 1.

d(wo) < d(wp)

a reduced substitution o from

1(b)) such that r" = rt, and

partially reduced form of

a partially reduced form

, , uLu2 = w ;

of wo . E

= *"þ for each *" ; clearly

into X It is also clear

by the deletion of those

segments *"þ Thus \¡7 o

It follor.¡s that \^ro = wp

Proof. Let o be defined by *"o

is a reduced substítution from X

that w o can be obtainecl from \¡7 p

trivial relators occurring within the

is a partially recluced form of w p

and d(wo) rí d(vrp) . Er
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Before we proceed, we introcluce the followÍng

Definition.

Definitíon 2.9. rf w € i and o is a substitution from x

ínto X , the set of sÍngularities of o with respect to w ,

denoted sing(o, w) , is the set

[*" € Supp(w): " o = l]

Lemma2.10. If w€lrv€Cn(r) forsomeinteger n,and o

is a reduced substitution from x into x such that "" i t ,n*n-
then there exists a word vo € c '(") (for some integer .o)

and a reduced substitution o0 from x into x such that

t'o. = ro, d(v'oo) < d(vo) r and sing(oo, vo) = ø .

Proof. If sing(o, v¡ = Ø ¡ choose rO = 0, r0 = t, and

o0 = o; otherwise, let Ø t a, = sing(o, v) and let ", = %r.
Note that /(wr) < /(v) Since v € Cnçw¡ c R(Cn(w)) , ir

follows that w, € TR(Cn(vr)) Ir is clear rhar luf = "" ,

d(wro) < d(vo), and sing(o, wr) = Ø

Let ul be a level substitution from X into X

which brings "l to normal forrn. If 
"1ul € MNTR(Cn(r"r)) (= Cn* t(r)) ,

we let nO = 1r r0 = "1u1 , and oO = u]lo and rhe proof is

complcre. Orherwise we have rlul € NTR(Cn(") ) \ MNTR(Cn(w) ) ;

thus there exists a worcl v, € t"tt'tttt(cn(") ) (= ct * 1(,u) 
) such
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that ul

yl e sx(v

by Lemma

into X

But. since

those *a €

word v to

d(vuoU) g d(v o) , and

Note Ehat a

only for the words, x

c- f ree f or a ruord w

1) so that rlYI

2.8, there exists

such that v- o- =II

Supp (iv)

a reduced

"lul( -' rvr) and hence !,(vr) . l,(wt) < /(v) Let

and,

tlYl o and d(vror) <

ulYlo = wlo = v ; , we have .,r, € Ct+

a reduced substitution from into such that vlol = v o

and d(vror) < d(vo) If sing(or, 11) = ó , we choose

tO = 1r vg = V1; and o0 = o1 and the proof ís complete. OËher-

wise we let a, = sing(ol, 11) and repeat the above process,

thereby obraining a word v, € Cn*'(r) wirh X(vr) < l,(vL) and

a reduced substitution o2 from X into X such that

u2o2 = uLo! and d(vror) < d(vror) If sing(o, v2) = ø , rhe

proof is complete; if noË, \nie continue thÍs pïocess. since each

rk+l that is produced has length strictly less than its pre-

decessor, rk , the process must terminaËe afLer a finite number

of steps: say k Thus we have vU € Cn*u(r) , and a reduced

substitution ok from inEo X such that vkok = vo ,

= rl Therefore rly1 o = rlo

a reduced substitution ol from

d (vrv, o)

t (r) and o1

sing(ourvu)=Ø @

reduced substitution is, in general, c-free

1 (r > 1), and a substitution which iss

need not be a reduceå substitution for

Even if a reducecì substitution sends a

word, the srrbstitution may not be c-free



x" € Supp (v)
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However,tofor v , since it may send some

we do have the follorving.

Corollary2.11. If w€X,

o is a reduced substítution

then there exists a word r0

rO = 0, and a substitution

v € Cn (rv) f or some integer n , ancl

from X into X with I I vo € X ,
n*n

€ C o(r) , for some integer

oO € S*(vO) such that voo' = vo

n*n^
'(r) and a reduced

voo. = vo is the same

occurs in t'o' and no

by o0 , oO is c-free

havea vO€C

into Y such that v0o0 = vo ,

a(v'o') g d(vo), and sing(o', vO) = Ø Sínce d(vo) - 0 , LE

is clear that d(v'o') = 0 and hence that r.o0 is freely

Proof. By Lemma 2.10, we

substitution o0 from X

reduced as wriEten. Thus the equation

as v'oo = v o Since no cancellation

symbol, *" € Supp(v') , is senË to L

f csr rO

THE KEY LE¡,['{A.

The following lemma is central Ín our proof of Theorem

2.L3. Starting with a word, w , and a substitution, o , we will

apply Lemma 2.L2 repeatedly to obtain a sequence of words,

,!, u,r .. .r vm (ri € Ci(r)), and substitutions t olt o2t . .., o*

such that d(v*o*) = 0 This will yield a substitution which is

c-free for v (€ cmlw¡) and which sends v to -\,,o , thusmm
verifying the second half of Definition 2.1 for C(w)



Lemma 2,12. If. w €

and o^ is a reduced
U

voo'llrtheneither,

(a) d(v'o') = O

n^*1or (b) there exists a v¡ord v, € C 0 (w) and a

reduced substiÈution o1 from X into X such

that tlol = r0og and d(vror) < a(v'o')

Proof . I^Ie will suppose that d(vooo) I 0 and verify condition

i.]",r',"::"":'.r::"'-::.ï]ou""o""tution 
and'0oo is not

segment of ro , "i;: , such

that a trivial relator (w..0.o.g. "r"r-t) is the junction of the

' e and "1o^ insegments *i o0 J u t0oo tr^Ie noËe that the segments

--e 1 -1 -e*t "j and *j '*i- may occur more than once in r0, and so all

the juncrions of 
"T oo and "l ,o (or x,t oo and {. oo )

are the Ërivial -1 -'lrelators *1*1' (or xl'xr) Thus there exist
possibly empty v¡ords uX and ,. in X such that

e.Tì -1*i o0 = r¿*1 and "j oO = *1 ,,

In the event thaË i = j , we clearly have e = Tl, for
otherwise uo is not freely reduced. Arso there is a non-empty

word " € i such rhar *Too = iloo = {t ,*, This is rrue

because i = j and e = Tì imply rirar *T oO = ilo' and hence

-1.¿*1 = 1'u, Thus, the firsL symbol of ul, is at and the

n^
xrvo€culw¡ for

substitution from X

39.

some integer r0 = 0 ,

ínto X such that
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last symbol of ., is *1 Theref ore \de can write un = i'ul

and l., = ,r'*- But then 1r - x -1
r r I But then u!,*I = *l r, implies that

-1t-LIxr*ujx, = xr',r'x, and so "í = "'r. If u'O = u' = 1 , then

e -L' -1*i o0 = r¿*l_ = xl-u¿xl = *1 *1 and hence o0 is not reduced,

contrary Ëo our hypothesis; thus u'n = u', + t

Inle will treat r, á"prr"te cases the possibilíties that

i = j or L + j and in the latter case that either or both of

ul, and r, may be ernpty. In each case we give a word rl and

a substitution oL which fulfill the requirements of (b) in

this Lemma.

case 1. LeË i = j and abbreviate p(vo; i, e; i, e) by p

Recall that rrl = *1 , and so ,1 e -lj --Í "j oO = *i. oO = xl- uxl with u

n_
a freely reduced non-empËy word. Since vO € C 0(w¡ , ir is

clear rhar "y e nç6n0(w)) c rn(c olw¡¡ Thus rhere exisrs a

D^ n., * 1
word v, € Itr{TR(C "(or)) (= C t (w)) such rhar "f 5 ud .

This implies that there is a substirurion pg € SX(vr) wiËh

rltro = t00 By Definition 2.3, we have supp(vOÊ) c Supp(vO) U [x*],

thus we can define a reduced substitution Þ1 from X into X

by I *"oo if sli,m
I

*"þ1= 
{ 

u" if s=i
I

I ", if s=m.
t



each

I^Ie note that r,p Þ1 = r0 o0 , since

x" € Supn(v') This is true because if

4L"

=xo^forSU
.XO=X. S. S

-1
=v m tm

(**ur) =

therefore

-1¡g=x.ux-,fnusweII

*"9 þ1

sli

' 
*iÞand thus *"pþ1 = *rþ1 = *ro0; and if s = i

and thus *ip É1 = 1{1*.**)*1 = {**u1)-1 " (x, u,1) .

-1 e,.e-1*1 r *1 we began with 
"T oO = xr' ux, .r

e-l lc(xroO)- = xl- uxl and *io0 = (xr'ux1)"

have *i oo = *;t rt *1 = *ig þ1 .

By Lemma 2.7 , v6g lt1 is a partially reduced form of

u.g lr1 . But 
"0, *t = tL uoþl , and so tl îJOlrL is a partially

reduced form of r'g þl- (= vO oO) . Theref ore 11 þO trl

and since t.g \¡ras noË freely reduced as written, Lemma

implies that O(t, *O pt) . d(v' oO)

= tooo

2.7

Letting F = pgtrl

get a reduced substitution

tl o1 = tl l, and d(v, or)

we apply Lemma 2.8 Lo tl and p

from X into X such that
n-*1

a(v, u,) Now v, € c u (r) , oL

Eo

o1

is a reduced substituËion for tl into X ,

tl o1 =tl [, = tl þ0!r1 = vgoo: and d(v,or) < d(v1 popf) <d(v.o')

therefore, v, and o1 satisfy the requirements of (b)

Case 2(a). Let L + j, let u!, and ,. be non-empty, and abbre-

viate the substitution p(uO; i, e; j, TÌ) by p The proof
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here is exactly the sarne as tha t of case 1 exce¡> t that the

if s + L, j, m

is de

Í
i

t

substitution Þ1

V rr"s Fl

fined by

xaf
s -0
U

u.L

Tì
ut

*1

if s = i

íÍ. s= j

if s=m.

It remains to verify that t0Þ þl = ,0 o0 in this

case. This wÍll follow from the fact that *rp þ1 = *" oO for

each *" I^Ie have Ëhree possibilitiesi s = ir s = j, and

slirj rf sfí,j rthen *"g=*" andso

*"PþL = *"þl = *"o0 If s = i and e = 1 , then

*ip = *i** and

*iP þl = (xi **) Ìr1 = (x, u,1) ' (**u,r) = "Ï *t = u'*L

If s = i and e = -1 , then *ig = {t*, and

*iP þ1 = ({1 *r)u, - (xm*r)-t ' (xipl) = \t "; = {t'7t .

Recalling that "T"O = r¿*l , we have *io0 = (urxr)e which

is identically equal to r¿*1 or tt Vt as e is +l or -1

Thus if s = i , x"pÞ1 = *"o0 If s = j and Tì = 1 , then

_ -1 .-I -1*j0 = ** *j and *jp trl = (xm xj)*f (x*i1,1) - . (*, U,1) =

-11 -1x, u_l = x, u-- If s = j and ^fl = -1 , then x.p = x.x and--1 r --1*r ' rr ò - J ¿lttu tl - -r , tnen *jP = *j** anl

*j0 trt = (*r*r)Þ1 = (*, u,r) (*r,r1) = 4*, = {t*,
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Recalling that 1 -1*joo = *1 , wc have x. o^ = (*l 1,., )l' j-U I r'
-1 -tx.uorux-aslistrrl +1

u
T

to

or -1 Thus if s = j , *s0F1 =

Case2(bl . Let i+ j rler r.¿=1

the subsrirurion o(roi i, ej j, Tl)"i
n^

ir is clear rhaË vop € TR(C u(w))

Case 2(a) will go through wirh pl

oo

which is identically equal

*"sl =

Case 2(c). Let

the substitution

it is clear Èhat

in Case 2 (a) will

urll andabbreviate

. Since vo € c Oqw¡ 
,

the same proof used in

í+ i, ter un*L

P(vo; i, el j,l)"j
Dat

vop € TR(c "(w))

go through with p1

,.1

*" oo

and

byp

Thus

defined by

s I i, m

s= j

s = m.

Thus the same

defined by

s I i, m

s=i

s = m.

r, = 1, and abbreviate

p As in Case 2(b)

if

if

if

Y
S

1lu't

*1

and

by

proof used

xu.=
S'I

1l-oo

if

if

X
c

g
u"

)lr
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Case 2(d). Let í f j, let u, = u, = 1- , and abbreviate the

substitution 9(rroiirei jrTl)"i"j by p sÍnce "o€cto{"¡ '

it is clear rhar Ç e rn(c oqw¡¡ Again lre use rhe same

proof as in Case 2(a) buË wiÈh p1 defined by

*"o0 if s I m

xu.=
S'I

*1 if s=m. E

THE COMPLETENESS OF C(w).

I¡Je are now in a position to prove the following

Theorem.

Theorem 2.13. For each w € i, c(w) is a complete seË of

images for w .

Proof . InIe must verify that the set C(v¡) satisfies
Definition 2.1 (i) and (ii) .

(i) Ler u € C(w) , rhen there ís a leasr inreger k

such that ., € cklr¡ l.Ie wilr prove by induction on k thaË

for each u € ckqw¡ there is a substitution ¡r, from x Ínto

X such that r* = u

If k = 0 , rhen ,., € CO(w) = [wv'] where u0 brings

w into normal form. since w € x , rve knorv that rug is freely

reduced; therefore, " = il5 and r,¡e are done. Now suppose



u € clt*t(r) = I'ttrtìqcl(çiv¡¡ , rhen rhere is

and there exist substitutj_ons p t f o, and

v€

of

a word

( 
"ny

45.

ck (")

which

may be the idenEity substitution) such rhat ,, = ñ ,o

Here p is a replacement defined for

(see Definitions 2.3 and 2.4), and v

t is a trivialization
d,

the 1evel substitutíon

wu, 0 T'I' d
is a partially

\^tU- OT'r' d

I'

is

which brings v p

thesis applied to

ínto X such that

partially reduced

ru =lî,p='I

reduced form

r þ1 g Again by Lemma 2.7

of r þ1 p "cy thus, ñ-"o =

r, Eo normal form. By the induction hypo-d

v , there exists a substitution pl from X

rþ1 = v By Lemma 2.7 , w¡lrp is a

f orm of r Ìr1 g ; therefore,

Applying Lemma 2.7 once more \^7e see that rþ1 p 
"o

partially reduced form of rþ1 p 
"ou ; therefore

cyv = "Þ1 P"o u = tlrlP"o

is a substitution from X into X

= *Þ1 P "o

is a

v . Thus Þ = þ1p "ou

such that 
"1,l, 

= u .

u = vp T

(ii) Let p be a substiturion from X into X

such that " l, f t We may assume vr. X. o. g. that t/ is in

normal form since the following proof could be given beginning

with \d v (where v brings \,r to normal form) and u-lp

instead of w and p By Lemma 2.B, there exists a recluced

sub.stitution o from X into X such that r" = "1, (l f¡
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v/ord v€Cn(\^r) forsomeínteger n)0 and

r € S*(v) such that vr = wo But v7o =

and so v T = *1, and the proof is complete.

If d(wo) > 0 , we apply Lemma 2.L2 to w and

Sínce d(wo) I 0 , there exists a word v, € Cl1w¡ and a

reduced substitution o1 from X into X such that

uLol = wo and d(vror) < d(wo)

and d(rv 6) < d(rv ¡_r,) Since we have assumed

normal. form rve havc w € cO¡w¡ hre incluct on

obtain the finaL result.

If d(w o) = Q , by Corollary 2.LL,

that w is in

d(w o) to

there exists a

a substitutíon

t" = tÞ ,

If d(v, or) > 0 r{e

By repeated applications

c*(") and a reduced

Ëhat v o = wo andmm
there is a word

asubstitution r€S"(v)

can apply Lemma 2.12 to tl and

of Lemma 2.L2, we arrive at a word

substítution o from X into X
m

d(v_ o ) = 0 Thus, by Corollary'm m'

v € Cnçw) for some integer n > m

ol

V€
m

such

2.LL,

and

such that vr = t*o* = \nio = wlj

Since v € Cnlw¡ , from Lemma 2.6(a) vre see thar there

exists a word u € C(w) such that u 5 v Thus there is a

substitution y € S*(u) such that uy = v The substitution

Y T is the composition of two c-free substitutions and hence

is c-free. Thus v¡e have u € C(w) and y r € S*(u) such that

uYr = vr =;I , as rcquired. ø
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Theorem 2.14. If w € X , rhen C(w) = n N(I) where .g is
I€.9

the class of all complete sets of images for \ñr.

Prool. since each element of c(w) is in normar form, we have

Nc(w) = c(w) By Theorem 2.L3, c(w) € .9 ; rhus ir follor¿s rhar

! N(r) c NC(w) = c(w) Therefore ir suffices ro show thar rhe
I€.9

reverse inclusion holds.

Let I € .9 and consider the set N (I); this Ís defined

to be the set of words in r put inËo normar form. rt is easy

to see that sínce r € "g , we also have N(r) e ¡ Thus both

C (vt) and N (I) sarisfy Definirion 2. L (i) and (ii) .

Given any word u € c(w) we know that there exists

a substitution o from X into X such that lu" = u , by

2.1(i) for C(w) By condirion 2.l(ii) for N(I) , rhere is
a word v € N(I) and a subsrirurion r € S"(v) such thaË

vr = u , i.e. v 5 u By condirion 2.1(i) applíed to N(I),
there is a substiËution o' from X into X such that ;ã, = v .

Thus, by 2.1(ii) applied ro C(w), rhere is a rvord ,r, € Clr¡ and

a substitution r' € S*(rr') such that .u, lt = v ., i.e. u, S v
Thus we have u' 5 v 5 r , and by the minimality of the elements

in C(w) it follows that ,_,'- u - ,, Now by Lemma l.B(c), we

have v = u; thus C(rv) e N(I) for each I € .g and rherefore

C(w) c n N(I) as required. E!

I€.9
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CHAPTER 3

'T-GRAPHS

In this chapter we discuss certain.díagrams in

Euclidean 2-space which we refer to as Js-graphs (see DefiniËion 3.
1A procedure, l- , f.or 'tsimplifying" these :k-graphs, is given and

severar facts are proved about this procedure. The results of

this section will be applied, in chapter 4, to the c-free solu-

tion of certain quadratÍc verbal equations.

DefÍnition 3.1-. Let n be a Euclidean plane. A diagram, $ ,

in rT is a paÍr (v, E) where v is a finite set of points in

Tr and E is a set of (not necessarily straíght) line segments

in n whose endpoints form a subset of v Furthermore, two

distinct points ,r, 'rr' € v determine at most one line segment,

(v, v') € s , ioining them. rf such a line segment exists, we say

that v and v' are ad.'iacent. The seLs v and E wirl be

referred to, respectively, as the vertices ancl edges of $ If

2).

¡$'= (V', E') is a diagram in rT with V'ç V and E, .

call $' a subdiagram of $

Definition 3.2. Ler

in the plane fi with

[.r, ^2, 
..., u*J and

subsets of points on L

E rwê

u and XA be tr^ro horizontal parallel lines

X^ above and LO below, and let

lbf, b2, "., or,] benon-empryfinire

u and Xt respectively, linearly ordered



from lefË to righË (i.e. ., a 
"j means

â, on X,) 6 :k-graph (star-graph) ç =Ja'
in fi such Ehat:

(1) u= [r1,32, , âm, bl , b2, "', OrJ ,

and (2) the set E sarisfies (i) and (ii) below.

(i) A vertex on lu is joined by an edge ro at most

one other vertex on x^ and at leasË one other vertex on xa

similarly, a vertex on lo is joined by an edge to at most one

other vertex on XA and at leasË one other vertex on X^

(ii) The edges joining vertices on opposite lines are

straight line segments which intersect only at Ëhe vertices of q

Examples. In the f oI lowing diagrams, Çt and qZ are :'._graphs,

q3 and C¿4 are not :'.--graphs, sínce they fail to satísfy

property 2(i), and q5 is not ¿ :'.--graph since it fails to satisfy

property 2(í-í).

49.

a. is to the left of

(V, E) is a diagram
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Qrt
ï

Qz,

Çgt

Q+,

------!'

--------__0. -b

______!,

------!,

------!'
vs,
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Definition 3.3. rf v is a vertex of ¿ :t-graph, Q = (v, E) r w€

define the opposite-line degree and the same-line degree of v as

fol I ows:

'"'"t,,;rll =,;:',j'. 
;; :n" 

'ine 
opposite to v ror

and degr(v, Ç) = cardfw on the same line as v for which

(v, w) € EJ

Remarks. I^lhen the meaning is clear from context, ne will abbre-

viate dego(v, Ç) and deg"(v, Ç) by dego(v) and deg"(v)

respectivery. I¡le noËe thar condition 2 (i) of Def inition 3. 2,

then takes the form:

2(í)': Foreach v€Vrd"go(v)>1 and deg"(v)<1

Definition 3.4. rn q is a Js-graph, Ëhe deviation of e , denoted

dev(Ç) , is E (deg^(v) - 1) If dev(Ç) = 0 , we say Ëhar q
v€V u

is a simple +<-graph. (The :"-graph, Ç, , in the previous exampre is

simple. )

rt is straightforward to verify the forrowing remma.

Lemma 3.5. (a) Ç = (V, E) is simple if and only if dego(v) = 1

foreach v€V

(b) If ^L.^Z<...<am and bt.bZ<...<bn

are respectively the vertices on X^ and XA of a simple

',k-graph, C¡ , then m = n and the set of edges joining Xu and

Xl, in q is prccisely [(ui, b.): i = L, 2, ..., *J
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(c) If v is a vertex of a simple r<_graph , e , then

v lies on a unique, maximal path in Ç ; this paEh is simple and

may be closed. That is, there exists a maximal set of pairwise

adjacenr edges of Ç , [(v' vr), (v' vr), , (rq_1, vO)) ,

such that r = rk , for some k , and ri = yj implies that

i = j or (in the event that this path is closed) that i = 1

and j=q or i=q and j=1 Byrtmaximalilwemeanthat

any other path containing v Ís a subpath of this maximal one.

Definition 3.6. If q = (V, E) is a diagram with vertices V

and edges E ,

(.) Removal of a vertex v

thediagram Ç-n= (V'rE') where

E'=E\[('trr"): w€vJ

(b) Removal

the diagram q- (v,

= E \ [(rr, ,r')l

€V from q

v'= v\ ["]

,r'¡ € E from

where V' =

results in

and

C+ results

V and

of an

v')

edge

= (v"
(v,

E,)in

E,

(c) Addítion of a verrex v to q results in the

diagram Ç+y= (V'rE') where V'=VU["] and E/=E

(d) Addition of an edge (,r, r') ro Q , providing

v, v' € V

where V'

of edges

t results in the diagram Ç + (", v') = (V', E')

V and E/ = E U [1v, v'¡l (Addirion of a ser_, E, ,

to q resultsin Ç+Ef =(VrE') rvhere E'=EUEl)

(e) The sum of rhe diagrams Ç = (V, E) and H - (V,, Er)

is the diagram q + H = (VU V', E LJ E/)
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THE,".-GT{APH SIIVIPLIFICATION PROCEDURE.

rn the following discussion r¡e will be dealíng with
>t-graphs whose vert.ices are rabelled (not necessarily uniquely)

by the symbol" t{ : e € [-f, +f] and s = (i1, í2, ..., i.)
is a finite sequence of positive integersJ . At this s tage, our

requirement for the labelling is that íf v and v' are adjacent

vertices of q on the same line (i.e. both on lu or Xì ,

then they musË be laberled by symbors, { and { (indexed by

the same sequence). Later we ,will apply the results of this sec-

t.ion Ëo find the c-free solutíons of certain quadratic verbal

equations in free groups. tr^le will see that, upon rrtranslating'

an equation into the context of :k-graphs, "simplifying" these

*-graphs according to the procedure defined belov, and the*
trtranslatingt' back into a verbal setting, v¡e get a procedure for

solving the equation in question. Belor,¿ we define this simpli-

fÍcation procedure and prove some useful facts abouË its effect

on a:k-graph, labelled as above.

Definition 3 .7 Let Ç = (V, E) be a :k-graph, labelled as above,

and let v be a vertex of q The :k-graph simplification

1procedure, fi , is a mapping which sends the labelled :'r-graph q

to a finite set of labell"¿:k-graphs which we d.enote by fl(ql
V

and defÍne below.
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I^lithout loss of generaliLy we assume that v lies on

!u, since the procedure is defined symmetrically if v is on

!'. (_L-_g-_weinterchange x and yt a and brand d and po-
in the following definirion, ro obraín rhe definirion of flCA> ,

when v is on Xì Suppose v is labelled by the symbol

x-e. , where o is a finite sequence of positive integers and
d'

e € [-1, +1] There are two cases to consider.

Case I. (degs(v) = 0) LeÈ dego(v) = m(> 1) and let

tI a t2 < .. . < $/m be the m vertices of q on XA which are

adjacent to v . fl<Al consists of the set conËaining the single

:t-graph defined as follows:

If v is not the leftmost vertex on Xu in Q , Ëhen

thereexistsavertexrxrof q in Xu suchthat x<vrand y<v

implies that y < x tr{e say that x is imrnediately to the left

of v " We define immediately to the right symmetrically.

To the diagram Ç - v, roe add m vertíces,

tl(t2

and y are the vertices of q which are, respectively,

immediately Ëo the lefr and right of v in ç . (If v is

leftmost or rightmost on !,u , we omit the meaningless condition).

According to whether e = 1 or -1 we label uL, u2, ...r Vm

by the symbol" *(o, l) , *(a, 2) , '", x(a, ,n¡ or

-1 -1 -1*(o, *) ' 
*(ã, m- l) s "', "(o, t) To this diagram, we add



Case II.

I . leta'

t*'Y'

y' are,

and v'

mosf on

that v
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the edges [(v., wr) : i = 1, ..., m] , and call the resulting

label1u¿ >t-graph q1 . We rhen denore rhe ser tqil by f] <Al

(degs(v) = 1) Ler (t, r') be the edge wirh ,' on

dego(v) = ffi , dego(v') = n, and let 11 a *2 a ... a r*

and 
"í 

a 
"L 

< .'. < w' be Ëhe verrices of q on lO which are

adjacenÈ to v and v' respectively.

To the diagram (Ç - ,r) - v' we add the 2m vertices

tr. 
"2

*' o rl. and rå a t' where x and y and *' and

respecËively, immediately to the left and right of v

in q . (If either v or ,' is leftmost or right-

!"^ , we omit the meaningless condÍEions.) Suppose

and v' .ru labelled by i and ,* in Q ,

where e, I € [-t, 1] According to rvhether e = 1 or -1 r¡7e

label ,L, ,2r ...: vm by the symbol" *(o, 1), *(o, 2), ... ¡

-1 -1 -1*(o, *) or *(o, *), "(o, a- l) ' "' ' *(ã, 1), and according

to whether 1 = I or -1 we tabel "í, "L, 
... , tå by rhe

symbol" *(o, 1), *(o, z), "', x16y, m) or lj, *r, \j, m- 1),

-t" , *(o, 
1)

To this diagram we add the

1, 2,..., ml or [(uir r*'_r*r) :

edges [1".,"i): i=
i=Lr2r...rmJ
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respectively as e = 1 or € I I Al so \,i/e add the (straight

line) edges [(vr, wr) : i = 1, 2,..., m] and

¡1vi, ri), 1v', wj)1 and call rhe resulring diagram $

The ser, IC"i, *j) : í = L, 2, ..., m and

j = Ir 2,..., n] , is the set of all possíble (straight line)

edges between the u'. and r'. vertices and is crearly finite,

thus it has only finitely many subseËs. Let EL, 82, ,.. , Ek

be those subsets such that each diagram $ + n. , is a *-graph.

Let qL, eh, ... , Qy denote these :k-graphs and let tl<q)

denote Ëhe set lqL, e+Z , ÇUJ

Examples. Given the following :k-graph,

x1

Çr'

Xg

applying the simplification procedure

vertex, we get

x4

(Case I) to the upper

Ç(t, r)'

xlrI xlrÊ xlretn
X¡ X a X4
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And, gíven the )k-graph

Qzt

applying the simplification"pro.udrrre to Ëhe upper IefË vertex,

\,,te ge t,

Q (r, ,)t
x 4¡r

Q (r, ,)' and

Q (r, ,)'

xrj
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Notation. rf Ç is a laberlecl','(-graph with vertíces v, we wirl

use the norarion, f 1(Ç) , ro denore rhe f inire ser U f-1fql ,
v€v v

and if lC\, q2' , qrr] is a finire ser of labelled rr-graphs,

1-
we define ¡-([Çf , Q2, ..., qrrJ) ro be the finíre ser

n

_U,fr(qi) Also we 1er r"(q) = fI(rt-ttq)) for n > 1,
I_I

note Ëhat, for each n , fn(q) is a finite set. Finatly, we

ler f (q) denore rhe ser ü f"(q)
n=L

The study of what types of rr-graphs these sets contain

will prove interesting and useful . The labe1ling of ¡1-¡s :k-graphs

will assume importance only for purposes of application; thus we

will ignore the labelling for the rest of this chapter, remembering

ÈhaÈ since some labellÍng exists, \¡7e can apply the simplificaËion

procedure. The following Lemma justifies the use of the word

trsimplificationrr to describe the procedure f1v
Lemma 3.8. LeË v be a vertex of a :k_graph , e

(a) If deg, (v) = 0 , then

dev(H) = dev(q) - (deso(v) - 1)

for each H € ll(q) (in rhis case rhere is only one such H . )
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(b) If deg"(v) = 1 , and u' is adjacent to v and

on the same line as v , then

dev (Ç) - f (dego (v) , dego (v') ) = dev (H) < dev (Ç)

for each H € fl(q), where f(x, y) = (x - 1) + (y - 1) -
I C" - t) - (y - f) I Furrhermore, rhese bounds are besr

p os sibl e.

Nore that ir H € fl(q) , rhen dev(H) < dev(Ç) ; rhus

the procedure ll does tend to 'simplify' q in the sense that
1f; produces :"--graphs which are of deviation no larger than that

of q.

Proof. (a) Since deg"(v) = 0 , the single *--graph, H , in
1f;(ç) resulËs from q by replacing rhe verrex v by Ëhe

m( = dego(v)) vertices uL, u2, ..., vm and the edges

[1v, wr) : i = 1, 2,..., m] by rhe edges

[çv., wr) : i = 1, 2, ..., m] Thus dego(r"r, Ç) = dugo(w, H)

if \¡r is nor v (in q) or some ,í (in. H) for

í = l, 2, .'., m Therefore, since dego(v., H) = 1 , it

follows that
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dev(H) = 
"1,r. 

(dueo(w, H) - t, * 
,i, 

(deso(v' H) - 1)

I

= \ (dego(w, H) - 1) = x (dego(w, Ç) - 1)
wlvi wlv

= dev(Ç) - (dego(v, Ç) - 1)

(b) Ler H be a ?k-graph in flfAl produced by reptacÍng

v and v' by uL, u2r ... r vm and "í, "i, 
... , ,t* and

choosing (according to DefiniËion 3.7, Case II), E/ a subset

of [(v:, r^rj) : i = 1r ..., m and j = 1, ..., n] , where

"í, "L, 
... , *!-, are the n( = dego(n')) verrices on Xa which

are adjacent Ëo u' in q . Let )l be the subdiagram of H

consisting of the vertices "í, "'r, 
... , ,l and ,í, ,L, .. . , ,,1

wírh edges E' u [("í, rí), 1v" ,i)]

First we establish the upper bound. It is easy to see

that if m = 1 or n = L, then dev(H) = dev(Ç) ; thus w.,L.o.g.

ïie assume that m, n ) L Note that dego(w, q) = dego(w, H)

if w isnot yry',ora ro1 (j=Lr2r...rn) (in q) orif

vr is not " ur, 11 (i = L, 2, ..., m) s or u ,'j (j = L, z, ..., n)

(in H) . Thus we have
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(1)

(2)

(3)

(4)

(s)

(6)

, L, ,(d"Bo(r, Ç) - 1) = t , ,(d"Bu(w, H) - 1)
w/v, v' , w. wfv. , v. , w.J r' I- 

-l

The following equations also hold:

dego(ti, H) = 1 (1-<i<m),

dego(vl, H) = aego(v1, H)

dego(w1, É) = dego(w'., X)

(1 <i<m),

(1 <icn),

deso(rvl, H) = (desoçwi, Ç) - 1) + aeg.(wi, H) ,

dego(w', H) = (degolwi, Ç) - 1) + aeg.(wi, X)

These equalities are easily verifíed by counting the appropriate

edges added to (q - ["j) - ["'J during the simplification

process (see Case II Definition 3.7). The following diagrams

serve to illusËrate the situation. (I{ote thaË we have drawn

only some of Èhe edges between X 

^ 
and XU and none of the

edges connecting vertices on the same line.)

Itl
Wl wp \^7n

v1

Q:

Vt Ve V

ÏTTIJJWt Wti w

H:

vE
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N ow,

dev(Ç) = 
__,__L -, ,(d"Bo(", Ç) - 1) + (dego(v, q) - 1) +
wrv, v , "j

(deso(rr', Ç) - 1) + (de'o1wi, Ç) - 1) + (deso{ri, Ç) _ r) ,

since dego(w'.rq)-1=0 for 1< j<n

Thus, by (1), (5), and (6), we have

dev(Ç) = X (deso(w, H) - 1) + (m- 1) + (n- t) +
wtví, "i, ":

dego(wl, H) - dego(wf, x) + aego(wl, H) - dego(r', x)

N ow,

dev(H) = ,E , ,(duBo(w, H) - l) +
wfvir ti, *j

mm
X (dego(vr, H) - t) + 

.X- 
(dego("i, X) - 1) +

i=l i:l

X (dego(w'., U) - f)
j=1

And, by (2), (3), and (4), we have

dev(H) = x , ,(dugo(w, H) - 1) +
wlvr, ";r r; 

v

m

,3r(outo(";., 
lr) - 1) * (dego('í, x) - r) +

n-1

j]r(d"*o(",, 
x) - 1) + (desolw', H¡ - 1¡
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Thus,

dev(Ç) - dev(H) = (* - 1) + (n - t) - dego(wi, N) + L _

m
aeg.(wf,, Ìú) + 1 - .x, (o"so(ví, Ìú) - 1) -

1=I

rrl
X (deg^ (r',, H) - 1)

i=2uJ

;
= m * n - trlrtu"to(v1, x) - 1) +

n

-x- 
(deso(w1, X) - L)) - 2

j=l J

= (m*n-2)- dev(Ìú)

Therefore iË suffices Ëo prove that dev(,H) I m * n _ 2

I,tre prove that dev(f) I m * n _ 2 by inductíon on n .

rf n= 1, theresult is clear. rf 1<k 1fl, our inductive

hypothesis is; given a :k-graph with k vertices on one line and

m verËices on the oËher, the deviation of such a graph is

boundedby m*k-2 l{elet Jt bea*-graphrwith m ver-
tices on one line and n on the other, which has maximal

deviation. Let us call the vertices of N , u,r, u,r, ..., V, and
llt,L, ,2, "', wn

We claim that there is an i (l < i < *) for which

dego(v1) > 2 Suppose the claim is not Lrue, then dego(v1) = 1

for each i Since n > 1 , we have ,i and "; , clistinct

vertices, and since Ìl is a Jc-graph, there exist vertices v,.
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.tand "i * L such rhar 1v1, "i) and ("i * u, "i) are edges

of H If 0<q<krthensince H isa:k_graphreach

vertex "i * o , ís adjacent to *í or ,; . Thus for some q

between 0 and k, we have rhar ("i*O, rí) and

I I t-(t, * q + L, w2) are edges of Ìl ; bur since dego(v1) = 1 for

each i , ("'r*rr rL) rnd'(ri*q+1, r{) are nor edges of H

The graph Ìl + (v1 
+ r, w'r) is clearly srill ¿ :t-graph, bur

dev(}l + ("i +r, ot))) = dev0f) + 2 > dev(iú) This conrradicrs

the maximality of dev(,Ìl) ; therefore the claim is true

Let t1 and "1*, be adjacenr ro "i Ler [3 be rhe

subdiagram of ¡l with vertices 
"í, "í, 

. . . , u,i and

ItttI, 
"2' 

"', wj and with all edges of H which join these

vertices; and let 2 be the subdiagram of t(, with vertices

u'i, u'i*l_r..., v' and rj*r, w,i+zr..., 
"; and wiÈh all

edges of H ¡vhich join Ëhese vertices. The deviations of r-r

and 2 must be maximal since H Ís chosen to have maximal

deviatíon. Also dev(.r) = dev({r) + dev(2) + 1 where rhe exrra
rtlrr is added since the vertex ,r1 in )l will have degree one

more than we count in P and ) together. By índuction,

dev(fr) = i * j - 2 and dev(Ð) = m - (i - l) + (n - j) - 2 r so

devQf) = (i+ j - 2) + (m- (i - 1) + (n- j) - 2)+ I = m* n _ 2-.
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In order to show that this upper bound is best

possible, it suffices to exhibit a r<_graph, N , with m points

on one line and n points on the other such that

dev(ï) = tn * n - 2 rt is easily verified that the forlowing
:k-graph has this property.

v,í vJ*r vl

(assuming w.,1,. o. g. Ëhat

I wn

rn>n)

Lastly, we estat¡rísh the rower bound. proceeding as

in the case of the upper bound, r^re note that it suffices to show

that a *-graph H with m vertíces on one line and n on the

other must have dev(.{) > (m*n-2)- f(m, n) = l*_"1 tr^te

assumew.!,.o.g. that mànrthus l*-rl =*-n. Since )l

is a :k-graph, each of the ,r1 vertices is adjacent to at reast

one of the wi verrices, rhus i o"r^(wl) > * . Therefore,J :If 
eo\"j/

dev(Il) = 
,ir(deso("i) t, * ,!r(deso(w1) 

- r) >

n

.f., 
(o"ro{wl) - 1) = (

J-¡

)t:

n
5.

j=1
dego(w'.)) - n > m- n = l*- "1.
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This bound is

fact that Ëhe following

m > n w.L.o.g.).

best possible, as illustrated by the

>k-graph has deviation m- n (where

,
€"j v

ÏI
vn

H:

üt1 \a7g Irt n

Def inition 3.9. (a) If v is a vertex of a >t- graph

of q.

ends of

ç for

which deg" (v) =

ends (Ç)

Lemma 3.10. If
1

H € r; (q) , then

0 , we will call v an end

(b) I¡Ie denote Ëhe number of byq

v is a vertex of

dev(H) + ends(H)

:'.-graph, Ç , and

dev(Ç)+ends(Ç),vrirh

d

equality if and only if either is an end or dev(H) = dev(Ç)

Proof. If v

is dego(v, Q)

dev(H) = dev(q) - (dego(v, Ç) - 1), and, by Case I of

Definition 3.7, ends(H) = ends(q) + (dego(v, Ç) - 1) Therefore,

dev(H) * ends(H) = dev(Ç) - (dego(", Ç) - t) + ends(Ç) +

(dego(v, Ç) - 1) = dev(Ç) + encls(Ç)

If v is not an end of e , Ëhere is some vertex vt
on the same line as v and acljacent to v since no ,newrl

ends are added in going from q to N by fl , we have

is an end of Q , the number of ilnewrt ends in H

- 1 By Lemma 3. B (a) ,
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ends (H) = ends (Ç)

dev (H) * ends (H) <

Lf. dev(H) = clev(Ç)

By Lemma 3.8(b)

dev (Ç) + ends (Ç)

.Ë¡

, dev(H) < dev(Q) Thus

with equality if and only

üJe are now in a posÍtion to make the following

imp ortant observation :

Theorem 3. 1L. If q i" ¿ :i--graph and H is a simpls:k-graph

< 2(card(V) - 1) ,
in f (q) , then ends(H) < dev(q) + ends(Ç)

where V is the seË of vertices of q 
"

Proof. since H € f(q) iË forrows rhar H € rn(q) for some n ;

so, by induction on n , using the previous Lemrna we have

dev(H) * ends(H) < dev(Ç) + ends(Ç) Bur since H is simpre,

dev(H) = 0 ; thus ends(H) ( dev(q) + ends(Ç) rf q is a

.*-graph with m vertices oil one line and n vertices on the

other, rve could have at most m * n ends, and we have already

shown, during the proof of Lemma 3.8(b), thaË dev(Ç) s m * n - 2

Therefore dev(Ç) * ends(q) < (m * n - 2) + (m * n) =

2(m + n) - 2 = 2(card(V) - 1). Fr

The above Theorem says that when a símple:'._graph, H,
is produced from a 'k-graph , e , by repeated applications of fl ,

the number of ends of H is bounded by a constant associated with

the origir'ru1 :"--graph. l^lhen a quaclratic verbal equation is.trans_
latedrr into a set of J.-graphs and the simplification procedure
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ís applied repeatedly, the simple )'(-graphs resul ting from this

process can then be Ittransrated" into solut.ions of the original

equation. Theorem 3.1L will allow us to bound these solutions in

some sense (see Corollary 4.L2),
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CHAPTER 4

THE c-FREB SOLUTIONS TO CERTAIN EQUATICD{S

solut ions

this chapter

any quadratic

In

to

we will be interested in the c-free

verbal equation, ,Lo ,2 , f.ot rvhich

I{e begin by defining a set,Supp(wr) 0 Supp (wr) = Ø

Ç(wy wr) (Definition 4.1), of label1ed rr-graphs associared

with the equation, 11 Í rZ Applying the simplification pro_

cedure repeatedly., we obtain the set f (Ç(wf , wr)) Next we

give a procedure (Definition 4"2) for relabelring the simpre

(Iabelled) '*-graphs ín f (Ç(wf , vr)) This procedure may

produce an ttincompletert relaberling for some simple :k-graphs, but

for those simplq:'r-graphs, Ç € f(Ç(wi, w2)) , for which the

relabelling is complete, \^7e can defíne a paír, (pl , $2) , of

substitutions said to be rrderived' (Definition 4.3) from q .

This pair may or may not be a c-free solution Ëo ,0, y r, Inle

define the set \(*f , 12) (Defínition 4.5) to be rhe ser of all
those pairs, (pl, $2) , which are also c-free solutions to the

equation, 
"1 Í rZ Our main result (Theorem 4.7) is that

*"("t,'2) is a complete (Definition 4.6) set of c-free soru-

tions ín X to 11 ! r,
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THE )k-GRAPHS 0F AN EQUATION

ThroughouÈ this chapter we fix the non-empËy reduced

quadratic words

"r = *T[lì ":[3ì "i[iì and ', = "l[lì ":[;ì ;l[iì

Definition 4.1. The set of 1abelled :k_graphs of the equation
v.tL = t2 , denoted Ç(ror: w2) , ís the finite set of labelled

*-graphs, [H' Hz,..., HuJ (k > 1) , defined as follows:

üIíth n , X^, and lO as in Chapter 3, we let
HO = $, ø) be a diagram in TT with vertices, respectively,

^L1 ^2 
< ... < am and bl a bZ

"i[:] (r = 1,2,..., m) and b" by ;l[:ì (s = 1,2,..., n)

and let H be the diagram in fi produced by adding edges to

HO according to the following rule:

For each *i(t) = *i(") (r I s) 
' 

add the edge

(^r,t") , and for each "j(r) = *j(") (r # s) , add rhe edge

(b b)
S,

Thus, in H , vertices on the same line are adjacent if

and onry Íf their labels have the same subscript. Note that,

since rl and ,2 are quadratic rvords, deg"(v) < 1 for each

v € V (see Definition 3.3).
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LeËting [ = [(.i, Oj) : i = Lr 2,..., m and

j = t, 2, ..., n] , we choose those subsets , Ey, 82, ..., Ek ,

of E for which H + ¡. (i = L, 2, ..., k) is a e._graph, in

accordance wírh 2(í)' and 2(ii) of Definirion 3.2. Lerring

H. = H+ n. for each í = Lr 2, ..., k , we denote Ëhe set of

labelled r,--graphs, [Hf , Hz, ..., Hu] , by Ç(wr wr)

Example. Given the equation *1*r- r "2*3 , the díagrams mentioned

above are as follows:

x.
--'--- ----- x

d

ó____ __e__ ________ X-X€ xs b

Ç(*r*r, xrxr) = [H1, H2, HrJ :

Hot

H:

Hlt

x1

rìx1 x1

XqXa
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ÏHE RELABELLING PROCEDURE.

Definition 4.2. Belorü v7e

72.

defÍne a relabelling procedure for any

q € f(Ç(rf , wr)) Since q is simple,

q has the same number of vertices on

Èhe vertices of q be

H3'

simple labelled *-graph

Lemma 3.5(b) implies rhar

!' ^ and !,, , thus we l etab

^La ^2 
< .'. < ap and bl. b2 a

respectively label1ed by

{[1ì '4Í?, , ' , {[iì and "å[l] ,

<bp'

..ô ( 2)
^o(z) t ' ..ô (p)

^g (p)

where the cv(i)'s and p(i)'s are fínite seq.ences of positive
inËegers and y(i), ô(i) € [-f , +fJ . InIe c]efine a mapping e

from the edges of q inro [-t, +t] ", follows:

0(ar, a") = y(r) . y(s) , 0(br, b") = ô(r) . ô.(s) , anct
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O(ur, b ) = I (Note thar (ar, b") (r I s) is nor an edge of

Q , since q is simple.) By Lemma 3.5(c), Ç can be viewed as

a sum (see Definítion 3.6(e)) of disjoint maximal paths,

Ç = trl- + õt, + " ' + Pk The relabelling procedure will be

defined for cl in Ëerms of the relabellíng cif each path ö-rí

I^le relabel Fi (L < i < k) as f ollor¡s:

Let ^, be Èhe left most, vertex on !^ in the path tri;

relabel ^, by x. " Now suppose that v( I ar) is a vertex

in tri i if Fi is not closed it has a unique subpath,

[(v1, lrvl ,z),(urryv1,3), 
.t (tlr*1 ,v1rs)],

where tlr 1 = ", and tl, 
" 

= v rf F, is closed it has two

subpaths joining ^, and v , in thís case denote the second path

by

(t¡(v}tLrvzr2), (urrr u2r3), -.. , (uzrr_L, v2r¡)1 ,

where ur, L = ^, and u2, , = v Inle let

"1 = O(ttr , , uLr 2) 'A(ur, r, ulr 3) ' . e(vl, s_l , 11, 
")

and

.z = a(rr, r,uzr 2) ' e(v2 ,2, u2, 3) " . e(v2 , t_r,u2, ,) ,

(eZ is def ined only if tri is closed. ) Tf õ-Jí is closed
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and 
"L i "Z , the path Fr. cannot be

or if P. is not closed, we relabel v1

relabelled. If uL = 
"2

continue .relabelling the vertices of F,

completely relabelled or until \"7e come to

"L f "2 , in which case r¡ie stop.

The relabelling of q is accomplished by reraberling

each of the paths tri. (1- < i < k) rf all of rhese parhs can

be relabelled, \¡Je say the relabelling procedure completely

relabels Ç ; otherwise r¡Je say the relabelling procedure is
incompleËe for q .

Examples. The paths trt and trz are relabelled as indicated,

tr¡ cannot be relabel1ed.

e-.Ibv x. tr^le.L

until fr. is
l_

a vertex, v , for which

trl'

FL, (relabelled)
__ir

^1



75.

tr2t (relabelIed)

Xg

Xa

the relabelling procedure

Q , then there is a closed

is incomplete for a

maximal path in Q ,

rJ
'u 3'

Remarks.(1) If

simple J.-graph,

such that

Pi = [(vr, 'or), (v2, vr), , (tq - 1, tq) I ("r = to)

O(vr, ,) . 0(v2, 13) . 6(vt- 1r vo) = -1

.I
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This is clear, since for some verËex v on tri , uLl "2;
thus "Lu2 (= O(vl , u2) . e(v2, ,3) . g(r9_ 1, ,q)) = -l

(2) If q is complerely relabelled by the relabelling
procedure, then "Ë and ba (1 < t < p) are relabelled by the

same x-symbol

(3) The number of distinct x-symbols (not counting

ínverses) used in Ëhe relabelling of q is precisely k , the

number of disjoint maximal paths in C+ .

THE SET ç(w1, wr)

Let q be a simple labelled :t-graph in

r(q(wl, ,2)) which is completely relabelled by rhe relabelling

procedure. Suppose the vertices of Q ,

^I. ^2< 
... < ap and bl a bZ < ... < bp,

were originally label1ed

*Y(1) -Y(2) -y(n) --r ô(1) ô(2) __ô(p)^o,(1)'nu(2) , ""ipi and "pifi , "pizÍ ) , "pìol

and are relabelled

""f1) . ""!?l *e(p) e(1) -e(2) ..e(p)^v(1) , *v(2) ' "" t "rioi and "uirÍ , "uiãí , "uìo) ,

where the v(i)'s are positive integers and e(i) € [-f, +fJ

(Note that the nel labels for ^, and b, (1 < r < p) are Ehe

same by Remark 2 following Definítion 4.2.)



Since q€f(Ç("f ,\r2)), rtrcre

ÇO € q(t1, tr) (see Defínition 4.1), with

"'t' "',

respectively labelled

*e (1) *e(2)'^i(1)' "L(2)'

and there is a sequence

1

Çr*r € fj (qr) (o < i
'i

Qn=Q

_ e (m) .¡ (t) ..1 (2)x. ) : anclr "i(m) ^j(t)' ^j(z)' "''

of :k-graphs , Q1, Q2, ... , Q!, , such

< l, - 1 , vi a vertex of Çr_) and

77 .

is a label led :,c_gr;iph

ver tice s

< b'
n

1(n)
"¡ i"i '
thaË

(1 <s<m)

Inle define a map , þ0, L , from the labels of CrO to

sequences of labets of q1 ,a fl'(qo)) as foltows:

We will assume v.X.o.g. thaË ,O = ul (if ,0 is on

XA , Ëhe mapping þ0, 1 is defined similarly).

L. If deg,(a') = 0 we let

(i) {[:ì þ0, 1 = .l[:] (;:; "ïo:"ï": ;, 
,engËh 1)

(ii) "i[:ì þ0, 1 = "i[:ì for s#r

*(t (r) , 1) , *(i (r) , z)' '.., *(i(r), 
d)

if e (r) = 1

..-l -1 -l*(t(r), d)'*(i(r), èt)' "', "1iq.¡-, i¡
if e(t) = -1 ,

(iiÍ)x e (r)
LI=i(r) 0,1

I

where d = deg' (a' , q0)
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fo

Note, by Definition 3.7

q0 to the label, or sequence

in qI

2. If deg"(a/¡=1rsay

1et þ0, 1 be defined as in pa

let

, Case I, þ0, I
of labels, rvhich

("'r, rl)

L, except

xçi 
1t¡ , t¡

-1x'(í (r) , d)
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send.s a labe1

it corresponds

if e(t¡ = -1

In this case, also, þ0, 1 sends a label in q0 to the correspond_

ing label, or sequence of labels, in ql (see Definition 3.7,

Case II. )

Similarly, trde can define Þi, i+1 from the labels of

qi to the labels of Çr.*r (€ fl .(qi)) (ir_".- we send each
I

label of qi to the corresponding 1aber, or sequence of labels

ín Ç.,,r.) Thus the compositi<-r+ r ' 15 Lrre .,umPostElon ro, l v:Ir z "' Þl_L, x

sends each label of q0 to the sequence of labels in crx which

ultimately replace it.

Definition 4. 3. If q (as above) is a simple :'r-graph in

is completely relabclled by the relabelling

the Pair (u1, t-,,2) , derivcd from ç as

f (Ç(wf , wr))

procedure, we

follols:

rË

ís an edge of

that when s =

, *(i(t) ,2)' "

if

-1
' *(i (r) , d-1) ,

qorwê

twe

', *(i(r), 
d)

e(t¡ = 1

-1"', *(i(r),1)

(iv) "i[:ì þ0, 1 =

which

define
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þLt If x" € SuRR(wr) then there is a least r
(L<r<m) suchthat x =xs i (r) we let

*"Þ1 =,";[i] ";[iilì ";[îijì,'," ,

where ";[iì'";[iil],""', ";[îiiì (1 <i<i+ j<p)
is the sequence of new labels which replaces the sequence

"i[;ì þ0, 1 þ1,2.". vx-., t , = d[î],dlli lì, , dliî jì )

when e¿l is relabelled.

If x" É SueR (rvr) , ler *" þ1 = *"

þ2t If x" € SuPe(wr) , *"þ2 is defined similarly;

if x" É SulR(wr) we 1er *"þ2 = *"

Lemma 4.4. !¡ith q and (U,1, U,r) as above, we have

*, r,1 = ";[ì ";[;] ";8ì = ,2þ2

Proof. To see the lefthand equality, we first note that if ,l
isquadraticin *" tsay s=i(r)=i(t) (1<r<L<m) ,

then ("i, rl) is an edge of qO and for some k ( > i + j)

the vertices "k, .k + 1

of e¿x which ultimately replace ^', . Furthermore, the labels

*Y(k) *Y(k+ 1) *Y(k+ j)"cY(k)' ^ø(k+1)' -'' ^cv(k+¡¡
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equal either

*Y(Í) ..Y(i + 1) Y(i + .i)"cv(i)'^s(i+1)' 't ""(i+¡j or

*-Y(i+j) ..-Y(i+j-1) -vril"ø(i+¡¡ '^e(i+ j-1) , "cv(i)'

as e(r)e (r) =+r or -1. All thís forrows from Definiríon 3,7 by

a straightforward inducËion on ,L (the number of times the

simplification procedure was applied to obËain q .) Since

either

l(tr*q, uLnq) : o < q < j] or [{"r*0, ut +¡-n) : o < c < j]

are edges of Ç , when q is relabelled v¿e have

,";[i] ";[iiiì ";[îij]r'c'r - (";[l] ";üîlì ";gîi],.,.,
rhus "i[iì*' = .;üì ";äi lì ";[li jì sínce F1 sends

each 
"9 

ftl inr(r) tl to the product of the new labels of the

vertices in ç which ultimately replace the vertex "l in q0

(even if "1 is quadratic in *i(r) ) , rhe lefthand equarity

fol 1 ows .

The righLhand equality ís verified similarly. e



Definition 4.5. Letting

from a simple :'c-graph in

relabelled], we seL O"(rt

DefiniËion 1.3 (c) ) .

B1

s = [ (vy wr) , (pt , Þ2) is derived

f (Ç(wf , *2)) which can be complerely

,12) =S0t"(rt,12) (see

Example. Suppose we wish ro find *"(*1r1 , *Z*3) Referring to

the example following Definition 4.1, we have

Ç(*t*t, *2*3) = [Ht , H2, orí , where Hl, H, and H¡ are given

in that example. Hl is simple, thus when the sÍmplificaËion

procedure is applied Ëo H, , only Hf results.

When the simplíficatíon procedure is applied to H, ,

we get Ëhe two simple *--graphs , Hr, 
L

and H" ,, , below:
Lt'

il*2, L'

H, t:

x Bts

x gr1 x g;4.'1 x st?tg

And when the simplification

geË the two simple :k-grai:hs,

proceclure is appl ied to

nrr, and ot,r ,, below:Hrrwê
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l:':_
H
3, 1'

" rrr-r,

or, 2'

i:':_

^ €:1

x ?rL t2 X a.a

x €ra

Applying the Relabelling procedure ro Or, , , HZ, 2 ,

Hr, , , and Orr r, we get the single simple :k-graph, H ,

below (see rhe Example following Definitíon 4.2):

H:

And Relabelling

xÊ

Hr¡wê

x1

get

xa

bel ow:H

H:
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The pair, (Ur, U,r) , derived from il, ís def ined

(Definition 4.3) as follows:

*" if sllI

I(
*1 .iÍ s=1

*" íÍ. s12,3
*"F2 = f "f if s=2

x, if s=3
I

The pair (ur, uO) derived from Or,, is defined by:

*" if s#1

*rþ3 =

*"þr =

\ *1*2 if s=1

*" if sf213

*"þ4 = f "f if s=2

*2*1*2 if s=3

The same pair, (U,r, UO) , is clerÍved from O r,,
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The Pair, (P5 , Þ6) , derived from or, , , is
defined by:

rhe same ';;:"ï,ï"r;",.,::-" 
?,,'

K"(*1*1, *2*3) = s¡(xrx' x2x3) 0 [(u' t_,r), (L¡:, p+), (u5, l.16)] .

Since (*1*1)*1 = *1*1 = (*r*3)*Z and pl and þ2 are c_free

for *1*1 and *2*3 respecrively, (pt, uZ) € S*{*r*r, *2*3)

símilarly, (t1,, , v.4), (ur, þ6) € s*{*r*, , *2*3) Therefore,

Kx(*r*1, *2*3) - [(rr1 , u,2), (p3, $4), (p5, uu)]

Note that in general *"(w' wr) is not a finite set.

("- íf sl1j"
*"þs = 

l( *r*, if s=1

1"" if sf2,3
I*"þ6 = \ *1*2*1 if x= 2

I

\*Z íf s=3
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THE MAIN TTIEOREM.

Before v,e can state our main resurt, we need the

following definition.

Definition4.6. If ,L,*Z €i, a subset,K, of S*(wrr12)

(see Definition 1.3(c)) is a complere set of c-free solutions

in X to the verbal equation ,1 Í 12 , if for each

(oy or) € S*(wr r 12), there exisrs a pair (U' U,r) € r and

a c-free subsrirurion ô € SX(w, U,r) such Èhat:

*" þ1 ô = *" ol for each x" € Supl (wr) ,

and *t þ2 ô = x, o, for each xa € Sunn (wr)

Qtlote thaË sinc" (trl , Þ2) is a c-free solution to ,1 I 12 ,

we have 
"1 þl = ,2þ2; therefore, ô Ís c-free for ,2þ2 as

well as 
"1 Fl .)

Our main result ín this chapter is the following
Theorem.

Theorem 4.7. The ser **(*t, ,2) (see Definition 4.5) is a

complete seË of c-free solutions in x to the verbal equation
v

"r-t2

The proof of this theorem is rather invorved; there-

fore rve will begin rvith an exampre of how the proof works.



ABOUT THE PROOF OF TI]EOREI"T 4.7,

Though trivial, the equation *1*1 I *2*3

provides a good example rvíth which to illustrate the idea of Ëhe

proof of Theorem 4.7. Starting with a specific solution
(ort or) € s*{*r*r, *2*3), we will choose a pair,

86.

L, 3, or 5) , from **(*1*1 , x2x3) and define

, with the required propertíes (see Definition 4.6)

(o, or) is the pair defíned by:

(ur, tr, * 1) (i =

a substitutionr 6

Suppose

xo- =sI

xo^=
S¿

*1*2*3 if s=1

if sl1

aÏ

if

if s j 2, 3

s=2

s=3

s

*1*2

*3*1*2*3

j

l

t

Ir is easy ro check rhar (o, or) € S*(xrxr, *Z*3)

Consider the word, (xrxr)o, ( = (*z*s) oz) = *1*2*3*1*2*3 ; in

our proof we will call this r,rord \¡7 . The two substitutions o1

and oZ partition w in two diffcrenË ways (call these par_

titions UO and ùO . )
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Lo:

In

uo: (xrxrxr) ' (xrxrxr)

(*1*r) ' (xrxrxrxr)

Ç(*r", , *z*3) , rhe :k-graph,

H2'

xg x3
corresponds to the paír of partitions (ìJo, ù0) in the sense

that the vertices on !^ and XO in HZ are in one_to_one

correspondence with the segmenrs in uo and ùo respecËive1y

and vertices on opposite rines are adjacent if and onry if the

corresponding segmenLs overlap. rn this case we have an edge

between the upper left vertex and lower right vertex of H,

since the lefthand segment, *1"2*3 , of UO overlaps the right_
hand segment, *3*1*2*3 , oÍ ùO

trrle will simultaneously refine the partitíons

x1

(ìr0, ùO)

and simplify H, so that there is still this correspondence

between Èhem.

In this case our fírst refinement of

results in (ìJl, ù1)

Ult (xrxr) ' (*3) (*1*r) (":)

Ùlt ("1*r) ' (xrxrxrxr)

(ìJO, ìr0)



This is obtained by

into (*r*r) (":)

¡rartitioning the segment, *1*2*3 , of

. The corresponding 'k-graph is H;

BB.

uo

bel ow.

x 111

Note that ui e 11<ur) and is produced by applying rhe simpli-

fication procedure to the upper left vertex of H,

The next refinement partitions *3*l*2*3 into
(":) ' (xrxr) . (":) , rhus yielding

ú2, (xrxr) . (*3) . (xrx2) . (*3)

ú 2, (xrxr) . (*3) . (xrxr) . (*3)

and the corresponding ;,-grapln, Hl (which is simple.)

x rre

HL"

x GrI x gtã X a. a

HL,

v2 = ú2

another

I app ing

At this point we stop refíning the partitions since

an<l H; ís simple. Nore thar if we had started with

solution' @í, o;) , that had the same parrern of over-

as (o, or) , r,re would also arrive at H;' as the
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simplc r'(-graph procltrccd by our proceclure. Now, we h¿rvc;ilrcady

derivcd the pair (V, VO) from H;' ( = Hrr, in rl.re exanple

following Definition 4.5.) This will turn out to be the correct
pair to choose. The substituËion, ô , is defined by sencring

the new labels of H;' to their corresponding segments in
(u", ù.) , i.e.

¿L

*" if s + L, z

*"ô= \ "f", íÍ. s=1

*3 if s=2

It is easy to check thaË (lr, tL,4) and ô are the correct

choices given this particular solution (o, or)

Before we prove Theorem 4.7 , we will make the nature

of the correspondence between a pair of partitions, (U, ù) , of

a word and a labelled :k-graph, Ç , more precise (Definition 4.9).
Also, we will define the procedure for simultaneously refining
(U, ù) and simplifying q (Definirion 4.11).

vALrD CORRESPONDm{CE.

Definitíon 4.8. Given a word w € I and two partitions, ì.r and

Ù , of w ínto non-empty segments,

ì.r: ,lr2 ,p ( = w)

l¡: ,Lu2... vq ( = w) )
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r¡re say the segments ri (1 < i < p) ancl ,j (1 < j < q)

overlap in (ì.t, ù) Íf eirher

!"@Iuz "j_r) < L(uru, ,i_1) < L(vrv, rj_lr¡) ,

or !"(uru, ri_l) < l,(vrv, ,j_r) <.9,(uru, ,i_lri)

Def inition 4. 9. Let q = (V, E) be a labelled :'.--graph, vrirh

vertices

^La u2< "' < ap and bl. bZ < ... < bq (p, q> 0),

respectively labelled by

{[ì ' 4Íi,' ', d[i] and "å[i], "å[iì , " , "å[iì '
where the cv(i)'s and p(i)'s are finíËe sequences of positive

integers and y (i), ô(i) € [-1, lJ . Furrher, ler ìJ and ù be

ËwopartiËionsofaword w€I into p and q non-empËy

segments respecËively. LetËing g be the map which sends "i
and oj (1 < i < p, I s j < q), respecrively, ro rhe í!Þ

segment of ì.r and the ¡É ""g*"nË of ù , we say that ç and

the pair (ìJ, ù) are in valid correspondence if the following

properties hold:

(i) (ar, b.) € A if and only if g(ai) overtaps

,p(bj) ,

(ii) ("r, a.) € E implies rhar q(ai) = (co(" j))Y(i)'Y( 
j),

and (iii) (b' b.) € E impties rhar,p(bi) = (o(bj))ô(i)'ô(j)
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Examplc. Referring to our example ilrustrating trre proof of

Theorem 4.7, the r'.-graphs H, Hí, and H;' are easily seen to

be in valid correspondence wirh the pairs (1r0, UO), (U1, ù1),

and (U2, lJ ) respecrively.

Lemma 4.10. (a) If q and (ìJ, ù) are in valid correspondence,

then ì.t = ù if and only if q is simple.

(b) If q is a simple *_graph in f (Ç(wf , \t2))

which is compleÈely relabelled by Ëhe relabelling procedure and
õ.V rs rn varrd correspondence with a pair (ì',1, ù) , then if

v and v' are verËices of Ç , relabelled 
": and 4 ,

we have g(v) = (.p(rr'))tl

Proof. The proof of part (a) follows immediately from

Definition 4.9. Part (b) follows easily by induction on the

length of the shortesr path in c+ joining v and v' (they lie
on Ëhe same maximal path since they are relabelled by x-symbols

wiËh the same subscript.)

S-R-S PROCEDURE.

Definition 4.1_1. Suppose Ç and (ìr, ù) are as in

Definition 4.9 and that there is a valid correspondence between

q and (l-1, ù) ; below rve define a procecrure for finding a nerv

pair of partitions, (ì11 , ù1) , and a ne\^, ',.-graph, Ç, This

will bc accomplished by simultaneously refining one of the
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partitions, ì; or ù , and apprying Ehe sirnplification procedure

to Ç , hence the name S-R-S (simul_taneous refinernent and

simplification) procedure.

To begin with, if ì,1 = ù we let Ll = U, ùl = ù, and

Çr = Ç and stop the procedure; otherwise there is a leftmost pair

of vertices, 
^, and b, , guch rhar X(cp(ar)) # l,1g(br))

I¡Ie assume , w.X. o. g. , thar !,(gG)) > !,(cp(br) ) since rhe orher
possibility will be handled symmetrically.

since /(g(ar)) = .!,(p(bi)) (1 < i < r) and

!'(g@)) > !'(cp(br)) , rhere exisr segmenrs qo(br) , g(bra 1) , ...
g(br+*_ t) which overlap g(ar) (Note rhar m = deg'(ar, Ç)

sínce q and (ìJ, tj) are in valid correspondence.) Some

terminal segment of g(br+*_ t) may not overlap g(a.) , thus

we partition cp(ar) into the segments

ç(b.) 'g(br+l) c ... . g(br+m_2) , y , where

9(br**- t) = y " z w'th z the longest terminar segment of

9(br+*_ t) which does nor overlap g(ar) Nore thar y + L

but z may be empty.

If de8"(ar) = O , rve let Ut be the refinement of U

with ç(ar) partitioned into m segments as above. Further,
we let ùl = ù and we let ql be the single *_graph in

1r- (q)
t
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If de8"(a.) = I , there is an eclge (or, ua)

in q . By property (ii) of the valicl correspondence, this
implies thaE p(ar) = (g(ur))Y(r)'Y(t) =

ç(br) " g(br+t)' ... .ç(br+* _2) . y or

-1 ..-1 -ly - . (cp(br+*_z)) . ... . (ç(br)) .

as v(r)'Y(t) = 1 or -1 Thus, in this case, v¡e let Lt
be Ehe refinement of ìJ with g(ar) and ç(at) each partitioned
inËo m segments as v'e have described. As ín the previous

case, we 1er ù1 = ù and choos" Çf from ll (q) rr is easy
rto see Èhar rhere is exacrly one r.-graph in 11 (q) which

T

is in valid correspondence with (ì.rr, ùr) ; this is the :r_graph

produced by choosing the edges between the vertices that replace

^t and those on XO in accordance with property (i) of the

valid correspondence.

In rhe evenr rhar !,(cp(ar)) < !,(.p(br)) we would

refine ù , instead of ìl , partitioning g(br) (and

cp(br) , if (b., b.) is an edge) inro de8'(br, Ç) segmenrs.

ule would rhen choose ql from ll (q) appropriarely.
r

Remark. rt is clear from the defínition that the s-R-s procedure

preserves valid correspondence, (i. e. if q and (ì,r, ù) are in
valid correspondcnce, then so are ql and (ì.r1, ù1) .)
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PROOF OF THEORE}í 4.7.

since *"(rol , ,2) e s*(wr, ,2) , it suffices to show

that if (o, or) € s*(wr, 12) , rhere is a paír

(Uy U,r) € K"(w, , *Z) and a subsrirurion ô sarisfying rhe

conditions of Definition 4.6. IaIe begin by finding the appropriate
pair, (pt, þz)

Since (o, or) is a c-free solution to *l t 12 ,
the word r = 

"r.o1 = ,zoz is freely reduced and the substitutions,

oL and o2 , induce two (possibly different) partitions, ì.lO

and ùO , oÍ r¡r . It is easy Èo see, frorn Definition 4.L, that
Èhere is a unique labelled ,'._graph, ÇO , in Ç(w' wr) such

thaÈ qO Ís in valid correspondence wiËh (1r0, ùO) ; ÇO is the
>k-graph in Ç(w' wr) such rhar ("r, bj) is an edge of ç0
if and only if th" ith segment of Uo and Ëhe ¡g ""g*"nt of
ÙO overlap. Let g0 be the correspondence between q0 and

(ìr0, ù0)

We apply the S-R_S procedure (Definirion 4.11)

repeatedly to obtain a sequence of pairs of partitions of w ,
(lro, ùo), (u1, ùt) , (ú!,, ú,,) ,

and a sequence of :k-graphs,

Ç0,ç1,...,Qx,
such that qi is in valid corresponclence with (Ui, ùi) r say
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under qi , for each i (1 < L < !,) The

is chosen so that ú,ø = U n , and hence qX

(Lemma 4.10(a)); rhis is possible since, ar

S-R-S procedure, either U,* L is a proper

or Ùi * 1 is a proper refinement of ù,
is finite then clearly implies that for some

posítivc intcger , .!,

is simple

each stage in the

refinement of L,

The fact thar ,0(w)

L>I ì,t,=ìy- ) -"!, -!,

since e¡n e rl çe¡o¡ and Ço € q(w' wr) , ir follows

Ëhat QO € f çer(w' wr)) Lerring rhe verrices of ql be

ar1 ar1 "

labelled by

{Ël ' 4Íî,' s

a rO and bl. bZ < ... < bp ,

{[åì and "å[ì , "uuÍi],
. *ô (P)
' "p(p) '

it is easy to see that the rerabelling procedure (Definiri on 4.2)
completely relabe1" Ql, . If the relabellíng were incomplete, by

Remark 1 follorving Definition 4.2, there is a crosed paËh,

tri = [ @r, vr), (v2,

in qX such rhar

0(v' vr) . O(v2,

But since gX is valid,

of Definition 4.9 and the

t3), "'t (to- r, tq)l ("r = ro) ,

t:) o "' ' g(vc_1r vo) = -1

using properries (i), (ii), and (iii)
fact Èhat qX is simple, rae have:
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cp¿(vr) = @x(ur)rtttt' 
u2) 

, 9x(v2) = (e.(vr)) 
('2' u3) 

,

g.t(uc,-1) = (cir(vo))'(to-" 
to)

And since t1 = ro , ir follows rhar g¿(vr) = (Vr(vr))e where

e = 0 (vr, vr) . e(vz, 13) ' g(vg- 
1: vo) = -1

This is impossible unless WX&) is empty, but each segment in
the partitions vl, and ú1, is non-empty; thus we have a contra-

diction. Theref ore, Ç, is a simple :k_graph in f (Ç(wf , wr))

which is completely relabelred by the rerabelling procedure.

Referring to Definition 4.3, there is a werl defined

paír, (U1, U2) , of substitutions derived from (¿f. First we

will show that (pt, lrz) € s"(w, , *2) (and hence

(V1, V,2) € K"(w' w2)) , then we will define a subsriruËion ô

so that (þrt vù and ô have the desired properties.

By Lemma 4.4, we have

'1 þ1 = ";[iì ";[;] ";[åì = ,2þ2 ,

thus, in order to shorv thar (U1, tL,r) € S*(wr, 12), it
suf f ices to shorv rha r U, € S" (w, ) and U,, € S* (w, ) I^le wil l

prove only thar U,, € S"(wr) , since the proof rhat

U,, € S*(wr) is similar. It is clear, from the def inírion of
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ul (Definition 4.3), thar *"þl i t for each *" Thus ir

suffices ro show Ehar ";[iì ";[;ì ":[fì is freely

reduced as written. Suppose not; then there is a segment

--e (i) __e (i + 1)*uiiÍ "uii+ií such that v(i) = v(i+1) a4d e(i) = -e(i+1)

By Lemma 4.10(b), we have a^XG) = gX(^L*1) 1 ; rhus

w ( = "ro1) has two consecutive non-empty segments which cancel

with each other. This contradicts the fact that w € l; there-

rore, ";[l] ";[;] ";[iì is in x and pl is c-rree ror

"1 Thus we have (U1, U,2) € S*(w, , ,2) (and hence

(þr' þù € K"(wr, *2) .)
l.le def ine the substiËution, ô , as f ollows:

if x" É Supp(r, U,1)

xô=
S

g, {ur) " 
(t) if x" € supp (w, u,1) ,

where r is the least positive integer such that v(r) = s

(Itrote that by Remark (2) following Definírion 4.2 and Lemma 4.10(b),

gXGr) = 9¿(br) (1 < r < p) .) Firsr we claim rhar ô is

c-free for 11 þ1 This is clear since *"6 I 1 for each *"
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and (,r pr) ô = ,";[lì . ";[;ì . 
";[åì,u =

vnG) Vn@) ... gn(uo) r,'ro, € x (Nore rhar

QxG)e(i) = qnþj)t(j) 'r. v(i) = v(j) , by Lemma 4.ro(b).)

Thus ô € SX(rrU,r)

Finally we show that, for x" € SupR(wr) and

xa € Sutt (wr) ,

*" þ1 ô = *"o1 and *tþ2ô = *ao2

Again, both proofs are simirar; thus we onry prove the first
equality. By the definirion of pl (Definirion 4.3), íf
x" € Supp(wr) ,

*"É1 = (";[lì ";[iiiì ";[îijì,",', ,

where r Ís the least positive integer such that *i1r1 = *"

(recalr, wl = "i[] "i[;ì "î[iì , r^re rhen have,

= @o?r) pr(ar*r) ... gx(ur* j))e 
(r)

BuÈ vx@r) g¿(,lr* r) ... tl!,(rrn j) = cpo(ai) , where ^', is

the S ,rert"* on X^ in q0 . (This follows from
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Definition 4.11_.) By Èhe defínirion of qO )

vo(ail = "i[lì ", ; rhererore

(x" rr,r) ô = (cloC"il)e (t) = *i(r)ol = *"o1 ,

as required. E

I{e will apply Theorem 4.7 ín the nexÈ chapter by way

of the following consequence.

CoroLLary 4.L2. If ,1 I *2 is a quadratic verbal equation

with Supp(wr) fì Supp (wr) = Ø , then rhere exisrs a complere

set, K , of c-free solutions in X to *1 I "Z and there is
an integer n(wr: wr) > O such that if ,i (L = I, 2) is
linear in some x" € Supp(w.) , rhen /(*"U,r) = n(wl , *2)

for each paír (V1, V) € K

Proof. We let * = *"(r1, ,r) and use Theorem 4.7 to shovr thaË

K is complete. If "1 is linear in xs , let (U1, tL,r) € f

and consider *" É1 By Definition 4.3, we have

*"þ1=(*;[lì";[lilì ";[lijì,",.,,
where r is the least integer such that i(r) = s and

a-<a1 r+t -i+j
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are the consecuLivc vertices of (¿! which ultimately replace
t.

", ln tJ' Since 
"1 is linear in x

(i.e. a' is anr _ _-- end of ÇO) Since rhe

cedure (Definition 3.7) replaces ends by

uít 
"i+1t 

..., and rr*j are ends of

the number of ends of qX is bqunded by

s , deg"(a', Ço) = o

simplification pro-

ends,

qX . By Theorem 3.11,

2(card(V')-l) where

< 2(m + n - 1)z(x"u,r) = j

A similar argumenË for ,z

that iË suffices to choose

VO is the set of vertices of ç0 By Ëhe definition of qO ,

card(V') = m+ n Therefore,

< ends (C¿r)

(linear in

n(rl, rz) 
=

some

2(m +

would shoro

1) . E

*.)

n-
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to obtain

In

the

CI{AI'TEIì 5

THE PRODUCT OF T'i^lO QUADRATIC I^IORDS

this Chapter, we apply

folloiving Theorem.

the results of Chapter 4,

Theorem 5.1. *1 and are quadratic rvords in X such

that supp(wr) 0 Supp(rz) = 6 , C(wr) is finire, and C (vi2)

is finite, then C(!ù1 , r2) is finite.

I^Ie note that Ëhis theorem is trivial if either ,l
or ,2 is empty or linear in some *" (see Example (3)

following Definition 2.5); henceforth we will assume Ehat 
"1

and ,2 are non-empty and strictly quadratic, i.e. quadratic

in each element of their supports.

we will draw several interesting concrusions from

Theorem 5.1 in conjunction with the corollary to Theorem 2.2.
I^le will list these consequences in Chapter 6.

To prove Theorem 5.L, we wirr exhibit a complete seL,

S, of images of 11 .,2 (see Definition 2.L) which contains
onry rvords of length less than some fixed bound. By Lemma r.5(e)
it will follow that N(s) , the normarizarion of s, is finite.
But once we have N(S) finite for some complete set, S, of
images of 

"l 
, \tt'- , Theorem 2.L4 wiLl imply that C(\ùl , ,2)

is fi'ite. The following sequence of crefinitio*s Ieads to the

defir-rition of thc set S

,2

ø

f.

n
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Definition 5.2. If w € i and x. € Supp(w) , we define rhe

substitutions 0("; i, v) 
(Y € [-1, +1]) from x inro x by

if sli

if s=i

where m = max[s : x" € Supp(w)] + 1

If \^7 is quadratic in xir we can write
oT

w = urxYuZ"i": where e, I € [-f, +f] , and ,1, u2, and ,3

are (possibly empty) words in x whose support does not contain

X.
l_

If elI.,rhen

f .",
I

*"9(*, i, y) = 
1

I[ (***** t)Y

and

In this case, v¡e call the worcts u1** and **+ trZ{l ,{t", ,

respectively, the special i'itial a'cl spccial terrninal segnìents
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of vJß . cim1'Iô-1,, -1 -1v! *o(r; i, e) i similarly, v/e call ,tr{i1{tr2*,n and

xm+1u3 the special initial ancl special terminal segments of

" I ("; i, Tl)

rf e=Irthen

wP1"; i, e) = r'¡ 9(w; i, l) = u1****+ 
lu2xmxm+ 1u3

In Ëhis case, we call the words ,1** and .L****+ lu2xm the

special initial segments of tPlw; i, e) and we call the words

xm+ 
lt2xmxm+ 1u3 and xm+ 1u3 the specÍal terminal segments

of wB,' 1w; r, e)

Definition 5.J. If \,r is a quadratic word in Í,," define
the finite sets of reduced words rniËÍar(rv) and rerminar(w) as

fol 1 ows :

Inirial (w) (Terminal (w) ) consisrs of the initial
(Ëerminal) segmenÈs of w (including 1 and w) and, for alr
x. € supp(w) , the special initial (terminal) segments of

w Plw; i, e) and t 9(r; i, I) (as defined above)

Example. If " = r,11*r*r*r, rhen

t 9 (", 2, -!, = *o*r*r{t{t", 
'

wPlw;3, r¡ = *lt*o*r*2*4*5 , and
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w P 1w; z, 1¡ = At"*t*3*4*5*3

Thus, for instance,

rnirial(w) = l{rL*r*r*r, {t*r*, , \t*r, {rL, t, *4, úr*0,

-1 -L -1_x2-'x 
4* 5x 2x 4' xr'x'n-xrx'Ì

According to Lhe hypothesís of Theorem 5.L, w2 is a

quadratic word in x and c(wr) is finiËe. Henceforth, we will

denote by n(wr) the set of words obtaíned by adding the con-

stant *0 to each subscript of each x-symbol occurring in c(wr),

where

mO = max[s : x" € Supp(w) where w € C(wr)] + Z

This insures that, for each w € C(wr) and u € D(wr) )

Supp (w) lì Supp (u) = @

and supp(wplr;i,.)) f-ì supp("9(.r; j,ï) =ø

Also, since D(wr) is produced by a Ievel substitution, it

follows clearly that l(wr) is a complete set of images of ,z

Definition 5.4. (a) The set of cancellation equations derived

from the pair, (w' rvr) , is the set

c tL -1Iw, * ur-: rv€C(rvr)r u€D(wr), 
"T€Terminal(rv), ur€Inirial(u)]



(b) The set of

the pair, ("1 , ,2) , is the set

10s.

products derived from

u, € Terminal (u) J

4.L2 to obtain rhe

üle let m- beI

-'land rr* , rve

residual

[*r . rT : w€ c(wr), u€ D (w), w, € rnirial(w), ur€ Terminal(u)J

I^le note that by Lemma 2.6(b) the sets Clwr) and

c(wù (and hence D(wr)) conrain only quadraric words. since

segments of quadraËic words are quadratic and since Êqw; i, e)

sends quadraËic r¿ords to quadratic words, we also note that each

cancellation equation derived from a pair of quadratic words ís
quadratic and that each residual producË derived from a pair of
guadraËic words is a quadratic word.

Proof of Theorem 5.L. Beginning ioíth the pair (wt t ,2) : wê

equations,derive Ëhe finite sets of (quadratic) cancellatÍon

[trt.,]1 r w € C(r.rr), u € D(wr), w, € Terminal(w)r rI€Inirial(.r)],

and (quadratic) resídual products,

[tI' rT : w€ c(\,r1), u€ D (w2),iu, € Inirial(rv),

For each equatíon, r, Y \t , \,re use Corollary

-1set I(*(rvr, \t) and the integer ,("T, 
"rtl

the maximum of all these integers.

rr (u 
1 , r-r, ) € K" (wr: ";t ) ror some

will assume w.!,.o.g. that

tT

*" þ1 = *" * m(wr) for f Supp (wr)
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and *"þ2 . -1. for x" É supp<"rt, ,
s * m(ur')

where m(v) = ma*[t r *t € Supp(v)] if v is a non-empty freely

reduced word and m(v) = o if v = 1 rf we redefine the pairs
-1in Kx(rf, rr-) to be of Ëhis type¡ it is easy to see that the

nerv set of pairs (which we will also refer to € -1rs *X("rr rr-) ,

for convenience) has all the propertíes mentioned in corollary 4.L2.

Therefore we lose no generality in making this assumption. Later

we will assume rhar for each (W1, V,) € \(wr, \t) , rhe

associated substitution, ô (see corollary 4.L2), is also of a

special type; agaín, no generality will be lost in this

as sump tion.

We no\"r define the set, S , as follo¡,,¡s:

s = s' lJ s" ,

where S'-[rv.u: w€C(wr) and u€¡1wr)]rand

s" = [(rru,r) " (rTp2 ) €Ï : w€ c(wr), u€ D (wr), w, € rniriat(w) ,

u, € Terminal (u), and (U1, U2) € K*(vrr, \t, where

trtT=w or rü91w; i, e) for some *9 i'' t ' and

trtT = u or t 9(,r; j, Tì) for some ;: in u]

I^le will shov.r that s is a complete set of images of

"1 
, 12 and that there is a bourrd on the length of the words in

s rt will then be crear rhar N(s) (see Definirion 1.6) is a
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f inite compl.ete set of ímages of 11 , ,02 and thus, by

Theorem 2.L4, C(w, . wr) is finire.

To show that S is a complete set of images of

tL , ,2 , \"re musË verify Def inition 2.1(i) and (ii) for S

VERIFICATIOIT OF 2.L(i\ .

If. r^rou€S'rthen w€C(wr) ancl u€D(wr) and,

by the definiËion of D(w2) , supp(w) f'ì supp(u) = @ since

C(r.'?l) and n(wr) are complete sets of images of ,1 and ,2

respectively, there exist substítutions o and r such thaÈ

wlo = r,J and ,2, = u . Defining the substitution y by

it is clear that y is rvell defined and

(wt 'w2)Y= (r1o). (rurr) Therefore,w. u (= ("f). <Ç>l

is a partially reduced form of (r, .lvr)y. But r^/. u is
freely reduced, since Supp (w) l^ì supp (u) = @ implies that the

junction of w and Lr cannot be a trivial relator. Thus,
,---------------(tl . rvr)Y = \,, . u = l,i . u , and hence !ü . u. is an inrage of

"r 
o 

'2

I """ if x" € Supn(wr)

I*"Y = (

I
\ *"" otherwise
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Suppose (rv, Þ1 ) . (r, *, ) € S" Since rr . wT

equals either rv or " 9(r l í, e, for some w € C(wr) , it follows

by Theorem 2.13 and Definition 2.1(i) thar there is a subsriturion

o1 such that ,t, 
", 

= "I 
o 

"T Similarly there is a o2 such

thac ,2oZ = .I . rT Let the substitution o be defined by

if x" € Sutl(wr)

if x" € SupR (wr)

otherwise.

The subsËitution o is well defined since Supp(wr) 0 Supp(wr) = Ø

Now

(tro1 rr,1) @ro2v) = ((wr rr)pt) . ((ur . .'r) u,2) =

(w, u,r) (w, u,r) . (u, u,2) ' (u, u,2) ,

and since (pt, pz) € K* (wr, ,r;t), w1tr1 = (ur *r)''; rherefore

(w, u,1) ' (", U2) is a partially reduced form of

("ro1 fL,1) {"rorV) which is a partially reduced form of

("to) . (r2o) = (wt . wr)o By the definition of S" ,

(w, U,1) ' (u, U,r) is in X and thus is freely reduced as

I

*"o1 Þ

x o^us ¿'xo=
S
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\rritten. Therefore,

required.

(wt 'w2)o = (wru1) . ("rur)

=lrand .T=trand

AS

VERIFICATTON 0F 2.1 (ii) .

This portion of the proof of Theorem 5.1 breaks up

into four separate 
"u""" rrrå, therefore, becomes somewhat rong.

The proof of the first case is given in furr detail, but the

proofs of the remaining cases are given in a more abbreviated

form, since they are similar to the proof of the fÍrst case.

Suppose that o is a substitution from X into X

and consider the (not necessarily reduced) word

(wt ' wr)o = (r1o) . (r2o) Since C(wr) and o(wr) are

complete sets of images for ,1 and ,2 respectively, Ëhere

exist words w ( C(wr) and u € D(wr) and subsriËurions

Vt € S"(w) and Y, € S*(u) such Ëhar ryl = r1o and

t Y2 = *Zo Thus (" Vr) " (r y2) is a reduced form of

(wl . wr)o v¡ith the initial segment, , yl , and the terminal

segment, u\2, both freely recluced.

If the word (r yf) " (r y2) is freely reduced as

writÈen, we choose rI = r, ,oT = ,I

define the substil-ution y € S*(w . u) by
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j-f. x" € Supp (w)

xY=
s

otherwi se .

Clearly *"y = *"y2 for x" € Supp(u), since

Supp (w) fì Supp (.r) = Ø

Thus we have (r, . wr)o = (wVf) . (ry2) = (w. u)y

with y€S*(w"u) Alsosince w€C(wr) and u€D(wr),

we have I^I . u € S'- S ; thus 2.L(ii) holds in this case.

Suppose (r Vt ) . (r y2 ) is not freely reduced as

written; since r yl and . y2 are freely reduced, the free

reduction of (r yf ) . (r yZ) can be accomplished by cancelling

a terminal segment of (" yr) against an initial segment of

t Y2 Thus 
" 

yl and u \ 2 can be par titior.ted into segmenËs

tYl = (wYl )r'(wVr), and u\2 = (.yZ)l . (ryZ)f so

that (w Vr), = (, vz )il and (r yl ) r " (u v, ), is freely

reduced as wrirren. Therefore qGF = ("y;) 1"yt =

= (royl)t (uyr),
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And thus it suffices to show that for some (w, U,r) . (., tr, ) € S ,

rhere is a subsrirurion ô € SX((wrU,r) (urU,r)) such rhar

((wru,1 ) . (ur*z))ô = (wyr)r. (uyr),

I{e partition \^7 and u as follows: \4¡ = \¡tL . *1 . ,R

and.=ï.;:.rR where

/(w, Y, ) < I'((wyr )r) . l,((wt . "l)vr)
and ¿t("1 . u*)y2) > /((,ry2 )r) > .0(u*y, )

We have four cases to consider.

Case 1. Suppose rhar ,4(rl yt ) = .!,((w V, )r) and

l'((u\z)r) = /("nVz ) Then we let * = "I 
. *T and

t = tr''T where "r = tL r *T = *T"n r "r = ïJl, and

tT = rR . Since w € C(wr) and u € D(wr), it follows rhar

v-LrT I .I is a cancellation equation derived from (w' wr)

and "I 
. rT is the residual product associated \^rith it.

Since .4 (rlyt ) = .L( (w V, ) r) and both words are initial segment-s

of "Y1 , it follows rhat "Lyl = ("Vf ), and similarly rhar

(u v, ), = rRY2 Thus

"IYl = ("V, ), and (uy, ), = rTy2 ,
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thercfore

"TYl = (wY, ), and rly2 = (uy, ),

since rTYt = (r yl )r = (r vz )11 = ul'r* rhe pair

(Y1, yù is in ,*(rr, "ltl And since *n(rr, .,it) is a

complete set of c-free solutions to *, Y \t in X , there

is a pair (ur, tL,r) € K"(wr, \tl and a subsrirurion ô from x

inËo x which is c-free for rtþl ( = .it*r) and for which

*"þ1 6 = *"Y1 for each x" € Suel (wr) and *tþz ô = *ry2 for

each xa € Sull(ur)

Recall, we have assumed that *"þl = xs+m(wr) and

*t[r2 = *- , , _.) respectively, for x" É Suln(wr) and
t + m(ur-)

xa É SulR(ur) Simil arlry, w..!,.o.g. we may assume that

*"ô = *"- *(rr)Yl for x" € supp(*rpt) \ s"pp("rtL,r) and

*.ô = ". _ *(.r;t)t, 
for x, € supp("¡rr) \ supp(.,rur) To

see that no generality is lost when ô is chosen this way,

first note that

(supp("ru,r) \ s"pp(wru., )) t-ì (supp(", trz ) 1 s..,pp(rru,r) ) = Ø
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This is rrue, for supposc x" € Supp(rr*t)1 Supp(rrU,1) , rhen

x" € Supp(*a*I) for some x. € Supp(wr) \ Supp(wr) anct rhus

*" = *tþl where t = s-m(wr) Similarly, if

x" € supp(tr*, )\ s"pp("rur) , we have x" € supp(*ru,r) for

some x,. € Supp("r) \ Supp(ur) and thus *" = *r!2 rvhere

r = s-*1u11) Therefore, t+m(wr) = r+*q.rll) Bur,

since xa € Supp(w) and x, € Supp(u) and u € D(wr) , the

definition of n(wr) implies rhat r < r and rn(wr) < *q,rfl)

Therefore t+m(wr) i r+*C\11 , which is a contradiction.

Since

supp(wrÞ1) \ s"pp(rr Þt ) and supp(u, rrz ) \ supn(u, u,2 )

are disjoint sets, the values of *"ô and *rô can be

defined to be any non-empty reduced word we choose (ví2.

"s-*("r)Yl and x 
-1 Y-, ) on these sets and it is still

t - m(ur') ¿

true that *"þl ô = *ryl on Supp(wr) , xtþ2ô = xay, on

Supp(ur) r and ô is c-free fonoTþ1 1 = ", f, )

I,Ie claim that rl þ1 ô = wryl and ,T þ2 ô = ury,

To see rhis, Ier x" € Supp(w, ) l-ì Supp (wr) ; rhen, since

x" € sulp(wr) , we have *"þ1 ô = *"y1 rf
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x" € Supp("r)\ Supp(wr) , then by our convcntions concerning

pl and ô we have *" þ1 = *" * m(wr) , and thus

*"þ1 ô = *"+m(ivr)ô = *"+m(wr)-,r{wr)Yl = *"Y1 Therefore,

for each x" € supl (wr) , *s þ1 ô = *" yl and thus

tl þ1 ô = ", Yl A similar argurnent shoivs that .T þ2 ô = ury,

I^Ie have shown that 1((wru,1 ) ' (h*z))ô =

(wrYr) (urYr) = ("yl )r . (uy, ), , which is freely reduced

by assumption, thus, by Lemma 2.7, (w, U,1 ) . (rr,r, ) is freely

reduced as Ì¡Tritten and hence is in s'. Therefore, we have

exhibited ("ru,r) . ("rrrz) € S and ô € sx((wru,1 ) . (rru,2))

such that

((wru1 )' ("rp2 ))ô= (wyl )r. (,'yz )r=(w\t. Gyt =G;. "to .

This completes Ëhe proof ín Case l.

Case 2. Suppose rhar .4 (wlyt ) < !, ( (w V, ) r) and

X((u\Z)t = X ("*V, ) Recall rhar we have wrirren

I¡r = r{L . *9 " "R and . = ï Jl "*, thus r^re can write

(tYl )t = (tolYl) . tr,, and (wVr), = uL,2, (rvBy1) ,

where 
"TYf = rl, l . ul, , and *either rl, 1 nor uLr,
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is empty. Also rve havc

t9(,0, i, e) ("rÊ(", i,.))' (*,n*rnl) (tng1w; i,e)) choose

1tt =.t*j , .T = tR and from Initial(iv) and Terminal(w) choose

"r= (tr9("rir.))'** and wT=xm+1 ' (tRg(w;ire))

Clearlv r- * ,-1_ ,I _ ,I is a cancellation equation derived from

(wy wr) , and "I 
. uT is the residual pair associated with iÈ.

We can assume w.!,,o.g. that *"y1 is any arbitrary non_empty

freely reduced word in I , provided x" É Supp (rv) ; thus

w.!'.o,g. assume that **yl = 11r 1 and xm+lyl = uLr, .

We note that, under this assumption, 
"yl = ,0(r, i, e¡y1

and furthermore, rryl_ = (wy, ), , ("yz )T = ,Ty2 ,

tTYl = (wVr), , and rIY2 = ("V, ), The proof no\al proceeds as

in Case 1.

Case 3. Norv suppose ,(rr tr) = !,((wVr)r) and !,(fu\z)t) </(uoyr) .

Here we choose 
"r = "L , "T = "T ,* , .r = (.rg(r' j, Tì)) 

. *r, ,

and u = x , . lu A \ 
^-.t 

r.rrir"'-^ 1-.-T ^n* 1 ' (tng(.r; j,1)) And, writing "!'t, = ur, ! ' ur, r,
r¡7e assume w.!-o.g. thaC *rry2 = u2,I and *n+ 

1y2 = u2. 2 ,

where n = max[x" : x" € Supp(u)] + 1

Casc 4. Finatty suppose X(tl"yf ).,{((wVi)r) and !,((u\Z)ì>Uuoyr)
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Again the proof ís essentially

vious cases, but here we choose

the same as in the pre-

"r = (trÊ(", i, e)) ' ** ,

= ("¡91u; j,r)) ' *r, ' andwT = x*+ 1 . (rRg 
1w; i, e)) , ,I

tT = xn+ 1 ' (tng(,r; j, Tl)) And w..1,.o.g. we assume Ehat

*rJL=tl 
, l,xm+lYl =uLrz r*r\z=urrL, and

xn+ 1Y2 = ur, , . Note that, since u € D(wr) and the sub_

scripts of u have been increased by

*0(=maxfs: x" € Supp(w) , w€c{wr)}+Z), \^7e are assured

Èhat m * 1 is less than every subscript appearing in u or

t 9(,r; i, Tl) Thus we do not lose generality in making Èhe

assumptions above.

This completes the verification of 2.1(ii) and, thus,

shows that S is a com¡;lete seË of inages for ,1 . \ù2

THE BOI]ND.

Finally, we will shorv that there is a bound on the

lengths of the words in the set S

By assumption, C(wl) and O(wr) are finÍte sets;

therefore there are only finitery many cancerlation equations,
r¿ -1

"T = rI , and residual products 
"I 

. uT , derived from the pair

(wy wr) . Thus, it suffices to prove that for each resiclual
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procluct, rr ' uT , therc is a bou.d o. the rength of the worcrs

in the set [(rrrrr) . (uru,r): (vr, u2) € K"(wr, ,itl] rf
*" occurs twice in ,T , then it cannot occur in 

"I since

trtT ( = rv or 
" 9(r, i, e) ) is quadratic. rf *" occurs

once in 
"T it can occur at most once in wI , and thus

/ (*" þ1) < 11 (Recall, ml = rnaxfn(wr, 
"ril ] I rf *" is

not present in h7T , T¡Je have assumed that pl is defined so

that *"þ1 =*"*m(wr), thus /(*"þl) =1<*1 Asirnílar

argument shows that for each x" € Supe(ur) , !(*"Þ2 ) < m,

Since there are only finitely many residual products, wI . ,T ,
there is an upper bound on the length of all ,r,s and ,T,"

And since ,l bounds the 1ength of each *. þ1 and *tþ2 ,

where x" € Supp(rvr) and x, € Supl(ur) , ir follows rhar rhere

ís a bound on the maximum length of the words ín the set

[(wr¡.r,r )' (rru,r ) : (l't, pì € K*(wrr "rtrl This compteres

the proof of Theorem 5.1. q
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CHAPTER 6

APPLICATIONS

apply Ëhe techniques

rnain application is

In this chapËer we

the preceding chapters. Our

theorem.

Theorem 6.1. If

(1, o) such rhaË

Theorem 6.2. For each n >

for decíding wheÈher or not

a product of n squares.

developed ín

the following

w is a freely reduced quad.ratic word

I¡7= fi". where
i=l 1

1n

(i) C(wr) is finire for each í ,

and (ii) Supp(w.) [t Supp(w.) = Ø for 1< i <

then it can be effectively decided whether any given

an image of r,í under an endomorphism of (ï, o)

This provides new information concerning the end.omor-

phísm problem (see Lyndon [r1J, p. 2g3). As conseguences of this
theorem we will obtain the following resulËs.

jln,

"€I is

1

a

, there is

given word

an

u

effective procedure

, in a free group, is

Theorem 6.3. For each n > 1 , there is an effective procedure

for deciding whether or not a given word. u , in a free group, is
a product of n commutators.

coRoLLARY By the standard method used to put compact surfaces into
normal form, due to Max Dehn, it is luerl knolvn that every quadratic word
can be effectively transformed by Nielsen transformations into the form
in Theorems 6.2 or 6.3.
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For thc case n = 1 , this latter res.rt is a theorem of

I^licks [2L]; f or n 2 2 , it answers positivcly a question of

I^licks (written communication to N. D. Gupta) .

Following the proof of these main results, we wirl
apply our results to prove a ne\^' result of Lyhdon and Newman [13]
and to ans\.{er a question of .our own.

PROOF 0F THEOREMS 6.1, 6.2, and 6.3

To prove Theorem 6.1, we note that since \,,, is

reduced and quadratic, each ri is reduced and quadratic; Ëhus,

by a straightforward índuction on n using Theorem 5.1, it

follows that C(w) is fÍníte. BuË then by the corollary to

Theorem 2.2, Problem rrr (and hence problems r and rr) is solvable

f or \,1 and arbitrary ur s

Theorems 6.2 and 6.3 will folrow easíry from Theorem 6.1

by letting ri (L < i < n) be respecrively 
"? and

1

[*Zf_I, *Zt] It clearly suffices ro show rhar aq"fl and

c([xr , *27) are f inire sers ([xl, *zl = *r*rqlnl) To see

?that C({) is finite, we refer the reader to Example 2

following Definition 2.5. rt is not difficulr to calculaËe

c([xt, xr)) :
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c([xt , xr)) = [1, *r*r\L*rL, *r*r*r*lLtt"it, *t*z*:*itnt*rt )

*r*r*fl*r";t{t, *1*2*3*o1rtt"_t.;t,

*r*z*s*11*oit{t*f1, *r*r*r{t.ont{t*it,
x ,- ,- ,- __-1 -1 ._1_-1__1ìI*2*3*4*2 *5*3 *4 *S-*t-J

Since this set is finite, our proof is complete. B

In I1:1 Lyndon and Newman comment that if x and y

are elements of any group, then

[x, y] = (*y)2 cy-l* 1v>' ({r)t
This leads to the natural question of whether there is a group

in whích some commutator cannot be written as a product of fewer

than Èhree squares. rrlheir theorem, stated in our notatÍon, is
the following.

Theorem 6.4. If (XZ, o) is the free group of rank two, freely
generated by *1 and *2 , there are no words a, b € X2 such

that [*1, *r] * u2b2

Proof. To prove this result using our techniques, h7e first
suppose thaË there exist a, b € X2 such that [*1, *r] * 

^2b2
Let o be the substitr-rtion from x into x defined by

(
I a if i = 1
I*io= ( b if i=2

| ", if ífL,2
t
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rt is clear rhar G1"3)t = [*1 , *zh rherefore, by

Theorem 2.L3, rhere is a word u € C <"1"3) such rhar

u 5 ¡xr, *2f . Nore rhar since u 5 [*r, *Z] , it follows rhar

x(u) < 4 The words in 
"<"1"1> 

which are of rength no more

than four are:

--_¡1 -1 2-L 22 2L' *i, *l*2*1*2', xrxr{x, xrxixr', *í*'2, *1*2*l

rt is easy to see (frorn the solution to problem rV in chap Eer 2)

Èhat, upon c-free substitution, none of these words yields

[*1, *Z] Thus Ëhere is no u € c <"1"3) such rhar

u S [x, , *2]; this j-s a contradiction. E

I^le conclude these applications by answering a question'

of our own. A word. w € (x, o) is said to be prÍmiËive if there

is an automorphism of (X, o) which sends \Á7 to *1 The

following theorem completely characterizes those words which can

be sent to *l under an endomorphism of (X, o)

Theorem 6.5. Given w € (i, o) , the folrowing conditions are

equivalent.

(i) There is an endomorphism of (X, o) which

sends w to x-I
(ii) C(rv) = [f , "fJ
(iii) gcd(vi) (= ecdIlo"(w)l : x. € supp(")]) = I ,

r^¡here o"(w) ís the exponent sum of w on x (see I 15] , p. 76) .
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Proof.

is a c

thaË (

theref

Let tin

it is easy to see that rr = *1 ; thus there is a word u € c(w)

such that r Í *, BuË rhis implies rhar ,, = *: for some i
Since each word in C(w) is in normal form we have *1 = , (€ C(w))

Now the minimaliry of x, in (Xr 5 ) implies rhar C(w) = [], *f]
Therefore (iii) implies (ii).

To see thaË (ii) impries (íii), suppose rhar (íii) does

not hold, i.e. that gcd(w) l1 Inie claim thaË for each

u € N(w), T(rv), or R(w) gcd(u) I 1 Firsr noËe rhar if u is
a (partially) reduced form of ,, o"(w) = o"(u) for each s;
thus gcd(u) = gcd(w) rf À ís an elernentary leve1 substi-

tutíon, it is easy to see that

Ilo"GvL)l , *" € supp(wÀ)] = [lo"(")l ' x" € supp(rv)J ;

Ëhus if v is a level substitution such that wv € N(rv) r we

have gcd(w v ) = gcd(w) If u € T(w) , ir is clear rhar

Ilo"(")l : x. € Supp(u)] c Ilo"(w)l : *" € supp(w)l ;

It is clear that (i) is equivalenr ro (ii) since C(w)

omplete set of ímages of \.r (see Def inition 2.L) , To see

ii) is equivalent to (iii), first suppose rhat gcd(w) = 1;

ore there are integers [""] such that X."o"(w) = 1

g r be the substitution from X into X defined by

rnls
I xl- if x" € Supp(w)

IxT= \"l
I " oËherwise,\s
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thus if gccl(w) I 1, gcd(u) I 1 also. Lasrly, suppose rhar

u=rn70(r;irei jrl) and ue n¡t¡ Notethat u isobtained

by adding several occurrences of a ,,new,, variable, Xm , into w

(see Definition 2.3). It is easy ro see that

o*(u) = . oi (w) + T'l o., (w)

o"(u) = oo(w) for s I m
and

Therefore, we have gcd(u) = gcd(w) Since free reduction pre_

serves gcd, ir follows rhaË gcd(î) = gcd(w) (t t¡
Since C(w) consisËs of words produced by repeaËed

use of T, R, N (and M) , ir follows that if gcd(w) I 1 , rhen

gcd(u) I I for each u € c(w) Bur gcd(xa) = 1 ; rherefore
x, É c(w) which conrradicrs (iÍ) . E
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