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iii.

PREFACE

Qur main reference for this thesis is Combinatorial

Group Theory by Magnus, Karrass, and Solitar; otherwise our

exposition is self-contained. Definitions, Lemmas, and Theorems
are numbered first with respect to chapter and then consecutively;
thus in Chapter 1 the fourth and fifth numbered items are
Definition 1.4 and Lemma 1.5. The third part of Lemma 1.5 will be
referred to as Lemma 1.5(c). The symbol "®" indicates the end

of a proof. 1In the proof of a Lemma or Theorem with several parts, -
the end of proof symbol will appear at the conclusion of the
proof of the last part. An index of numbered items and an index
of special symbols are included at the end of the manuscript. A
bibliography is also included; our convention will be to refer to

the n—-t-h item in the Bibliography as [n].



iv.

ABSTRACT

If F is a free group and (w, u) 1is a pair of

(reduced) words in F , the endomorphism problem for the pair

w, u) is the problem of effectively deciding whether or not
tﬁere is an endomorphism of F which sends w to u .

Theorem 2.2 gives a necessary and sufficient condition that the
endomorphism problem be solvable for w and arbitrary u . This
condition is based on a set, C(w) , of words in F . To obtain
our applications we prove (Theorem 5.1) that if 2 and v,

are quadratic words in F 1in non-overlapping variables for

which C(wl) and C(w are finite sets, then C(W1W2) is also

9)
a finite set. Using this we show (Theorems 6.2 and 6.3) that the
endomorphism problem is solvable for (w, u) where u is arbi-

trary for w a product of distinct squares or a product of

commutators with non-overlapping entries.



CHAPTER O
INTRODUCTION

Tarski originally raised the question of the decida-
bility of the elementary theory of free groups. It seems that
this theory could be decidable since the solutions of the
classical decision problems for groups — the word problem, the
conjugacy problem, the isomorphism problém ~ are nearly trivial
for free groups. However, many investigations ([ 1] - [21])
made in the past fifteen to twenty years show Tarski's question
to be very difficult. For the most part, these investigations
involve special decision problems for free groups. For example,

there is the endomorphism problem for a pair (w, u) of ele-

ments in a free group F :

Problem I. Can it be effectively decided (by a finite procedure)
whether or not there is an endomorphism of F which sends w to

An alternate form of this is the substitution problem

[16] for the pair (w, u)

Problem II. If F is freely generated by {xl, Xos ttt xn}

and w = w(x <, xn) , can it be effectively decided

1) x2)

whether or not there are elements Wiy Wy, ttt, W € F such that

w(wl’ w2, PP n



In response to Problem 11, raised by Lyndon in a note
in [11], Schupp [16] solved the problem positively for every
pair (w, u) in a free group of rank 2. This covered the only
other results known at that time viz. (w, u) where w 1is a
power or a commutator and u is arbitrary. The commutator
result is due to Wicks [21] . 1In Chapter 2 we will give a
necessary and sufficient condition (Theorem 2.2) that Problem II
be solvable for any given w and arbitrary u's. Using this
criterion, we will solve Problem II for a new class of words
which is not covered by any previous result (Theorem 6.1) . As
consequences of this, we will show that Problem II is solvable
for (w, u) 1if w 1is a product of distinct squares or a product
of commutators with distinct entries (Theorem 6.2 and 6.3). Our
result for one commutator covers Wicks' result [21], and our
solution to Problem II for w a product of n ( = 2) commutators
answers a question of Wicks (written communication).

In 1959, Baumslag, Boone, and Neumann [ 3 ] showed that
there are groups for which it is impossible to decide whether or not
a given word w 1is a commutator. Wicks [21] reports that in 1960
Boone asked if it could be effectively decided whether or not a
given element of a free group is a commutator (i.e. whether
Problem IT is solvable for the pair ([xl, xz], u).) Wicks gives

an elegant solution to this problem: A word w 1in a free group




is a commutator if and only if some cyclic permutation of w

-1 -1 -1 -1 ~1
y z

has one of the forms xyx or XyzZx 'y Qur Chapter 2

is inspired by Wicks' idea. Given a word, w , we will generate a

set of words C(w) , the closure of w . This set will be used to
test whether or not a word u can be derived from w by a sub-

stitution (i.e. whether or not there is an endomorphism of the

free group which sends w to u.)

The process of finding Wi, Wo, ttt, W in F such
that W(Wl’ Wy s .y wn) = u , can be viewed as solving the
équation

w(xl, Koy *°7 xn) = u

's are thought of as variables and u 1is a con-

where the X,
stant. This is the approach taken by Lyndon in his study of
equations in free groups ({8} - {l14]). Lyndon was prompted to
undertake this study by Tarski's question about the decidability
of the elementary theory of free groups and by a specialized
(unpublished) conjecture of Vaught, iig. if a, b, and c¢ are

a2 2 - c2 , then ab = ba .

elements of a free group F such that b
In [ 8], Lyndon showed that under these conditions a, b, and ¢
all lie within the same cyclic subgroup of F . Many generaliza-
tions of this result have been made [1 ]}, [21, [41, [ral, [171],

[18], [191], [20].




4,
Along these lines we will reprove (Theorem 6.4) a new
result of Lyndon and Newman {13]; namely, that if F is a free

group freely generated by Xy and Xy then there are no words

1-1_ 2.2

a and b € F such that 9

xlxzxz
In Chapter 1 we describe our notation and introduce
some definitions. The most important new idea here is that of a
c-free (cancellation free) substitution (Definition 1.1l(e)) for a
freely reduced word w . This is a monoid endomorphism (from the

free monoid X , freely generated by {Xl’ x11, Xy X;l, Y,

to itself) which preserves formal inverses, sends no x-symbol
occurring in w to the empty word, and sends w to a word which
is freely reduced as written.

In Chapter 2 we define the set C(w) and show that
C(w) is the minimal complete set of images of w in the sense
that each element of C(w) comes from w by a substitution,
each element of X which comes from w by a substitution comes
from some element of C(w) by a c-free substitution, and any
other set with these properties contains a copy of C(w)
(Theorems 2.13 and 2.14). From this we show (Theorem 2.2) that
Problem III (which is equivalent to Problem II) is solvable for
w and arbitrary u's if and only if membership in C(w) is

effectively decidable.




Having reduced Problem II for (w, u) to a study of
C(w) , we develop the machinery to prove that C(w) is finite

- . . n
if w 1is a quadratic word such that w = L where the
i=1

wi's are words in mutually disjoint symbols and each C(wi)
is finite. In Chapter 3 we introduce certain’diagrams in
Euclidean 2-space called *-graphs (star-graphs). We also intro-
duce a procedure for refining these *-graphs which in Chapter 4
is shown to yield a complete set of c-free solutions
(Definition 4.6) to certain equations in X . The use we make of
'graph" theory could probably be eliminated in favour of purely
algebraic techniques, but the geometric nature of the c-free
solution of equations makes the use of *-graphs convenient and
appropriate. Approaching the problem in this way enables us to
use our geometric as well as our algebraic intuition to study the
solutions of equations in free groups. Perhaps further investi-
gation will show that our main application (Theorem 6.1) could be
proved replacing Chapter 2 by a more involved discussion of
*-graphs in Chapters 3 and 4; however, we will not attempt to do
this here.

Chapter 4 is a technical chapter in which the link is
established between the *-graphs of Chapter 3 and the c-free

solution of certain equations in X (see Corollary 4,12),



In Chapter 5 we prove Theorem 5.1: 1if wl and w,

are freely reduced words in X such that

() 2 and w, are quadratic (i.e. each word con-

tains X with exponent +1 or -1 , at most twice,)

(ii) 2 and w, are words in non-overlapping vari-

ables, and g

(iii) both C(w and C(w are finite, then

» »

C(wlwz) is finite.
This implies that Problem II is solvable for (wlwz, u)

We list some of the consequences of our work in Chapter 6.



CHAPTER 1
DEFINITIONS AND NOTATION

We begin by discussing our notational conventions
regarding countably generated absolutely free groups. Any details
which we omit can be found in Magnus, Karrass, and Solitar [15].

Let X denote the set of (reduced and unreduced) words

+1 -1+ -1
[x )

172 %15 %95 ¥y, For notational con-

in the symbols

venience we let the symbol "1"  denote the empty word and

abbreviate the symbols it? (i=21) as X,

It will be convenient to write a non-empty word w as

e(l)y e(2) e (n)
*i(1) *i2) 77 Ficn)

and ¢(j) is +1 or -1 . The length of w will be denoted by

where each 1(j) 1is a positive integer

4(w) , and the support of w , which is the set

{x : x  or x occurs in w} ,
s s s

will be denoted by Supp(w)

e(l) _e(2) .. _e(n)
If v and w name the same word, Xi(l) xi(2) Xi(n) s

we say that v and w are identically (or schematically) equal

and write v = w = xigi; xigzg oee xigzg Note that the words
Xy i}} and 1 are not identically equal.
_ @) e e(m) @) 1@ )
E V=5 %@ 7 fim YT KA K5 7 ¥y

we define the product of v and w as follows:



e(l) _e(2) e(m) ML) _M(2) N(n)
1) *i2) 777 Fim) i) F3@) 7 Fim)

(with 1 » w=w * 1 =w). Clearly (X, *) is a semigroup with

identity element 1; we call (X, *) the free monoid in x-symbols.

e (1 e (2 € . .
If w= Xigl; Xigzg o xigzg , we define the (formal) inverse of
w as follows:
-1 _ ~e(n) ~e(n—1) = -e(l)
v *im) Ti(a-1) ey
(with 1% = 1)

If w=a* u°*ve°"Db where a and b are (possibly
empty) segments of w , u 1is a segment of w which ends with the
symbol xi , and v 1is a segment of w which begins with the

il il

symbol Xj , we call the segment xi xj the junction of the seg-
ments u and v .

The words x.ifl and xflx. (i 2 1) are called
i”i i 71

trivial relators. If w 1is a word in X , and no segment of w

is a trivial relator, w 1is said to be freely reduced; we let

X denote the set of all freely reduced words in X . Given any
word w in X , repeated deletion of trivial relators finally
yields a unique freely reduced word w . We let d(w) denote
the number of deletions of trivial relators required to reduce w
to w ; note that d(w) = %(E(w) - E(@)) . A word that results

from w by the deletion of some (but not necessarily all) trivial

relators is called a partially reduced form of w ; we also call

w a partially reduced form of itself.




Two words v, w € X are freely equal, denoted v~ w ,

if v =w . It can be shown that 's'" is an equivalence relation

on X , and that the set X /a~ with the multiplication and

inverse operations induced by "*'" and "-1" forms the absolutely

free group freely generated by {xl, X5 et Furthermore, the

freely reduced words in X comprise a set of unique equivalence

~

class representatives for X /a . Henceforth we will denote the

free group in x-symbols by (X, ©) where v Ow=1v * w .

We now introduce some definitions of a more specialized

nature.
Definition 1.1. (a) Given the monoid (X, *) , a substitution
from X into X is a homomorphism o : (X, *) - (X, *) such

that 1o =1 and X;16 = (xso)—l for each X - Note that if
o and T are substitutions from X into X , o =T if and
only if x o= x T for each x
S s S

(b) If ¢ 1is a substitution from X into X
such that x 0 € X for each X, , we call ¢ a reduced sub-
stitution.

(¢) The substitution which sends each word to

the empty word is called the trivial substitution.

(d) The substitution which sends each word to

itself is called the identity substitution.

(e) If w€X and ¢ is a substitution from

X into X , we say o 1is c-free (cancellation frec) for w if



10.
wo € X and x O # 1 for each X € Supp(w) . We denote by

SX(w) the set of all c¢-free substitutions for w from X into

X . Note that if ¢ is c-free for w , then 4(w) < L(wo)

Definition 1.2. Given w € X and X € Supp(w) , w 1is said to

be linear (quadratic) in X if the subscript s occurs exactly

exactly once (twice) in theword w . The word w is said to be
quadratic if for each X € Supp(w) the subscript s occurs at

most twice in w .

Definition 1.3. (a) If v, wEX , we call the expression v ¥ w a

verbal equation; the elements of Supp(v) and Supp(w) are

called verbal variables.

(b) A solution in X to the verbal equation
vy is a pair (0, T) , with o and T substitutions from X

into X such that vo =wrT

(¢) A c-free solution in X to the verbal

equation v Xy is a solution, (o, T) , such that o and T

are c-free for v and w respectively. We denote by Sx(v, W)

the set of all c-free solutions in X to the verbal equation

v¥w.

(d) A verbal equation v ¥ w is called

quadratic if both v and w are quadratic words.



11.

Definition 1.4. (a) The elementary level substitutions, Xi and

xi i (i< j3), from X into X are defined as follows:
2
X if s # i Xs if s
X A, = and x_ A = (x, 1if s
s 1 -1 5 1,1} J
X if s=1 .
i X if s

(b) A substitution A is called level if it is
a product of elementary level substitutions. See [15] p. 163 for

a similar use of the term "level'.

(¢) Ordering the x-symbols x <:i_l<:x <:x—1<<---

1 1 2 2

the words in X can be ordered lexicographically (see [15] p. 26).

It is easy to see that (X, <) 1is a well-ordered set, where

v £ w means either v precedes w 1in the lexicographic
ordering or v =w . A word w € X is said to be in (special)
normal form if, for each level substitution A\ from X into

X , w<w)l . Henceforth, we will use the term "normal form" in

place of "special normal form'".

Lemma 1.5. (a) If A 1is a level substitution from X into X
and w € X , then \ € Sy ()

(b If A is a level substitution from X into X
and w € X , then AZ(w) = L(w})

(¢) For each level substitution A from X into X

. . . 1 .
there exists a level substitution A\ from X into X such

that Xx_l' = X~1K is the identity substitution from X into X

b4



12.
(d) If w &€ X , there exists a 1eve1‘substitution v
from X into X such that wv is in normal form, and this
normal form ié unique.
(e) If wE€ X R card(Supp(w)) =¢ , and w is in
normal form, then Supp(w) = {xl, Xoy to xc} , where card(S)

denotes the cardinality of the set S .

Proof. (a) Since A 1is level, it is a product of elementary
level substitutions. Each of these is obviously c-free for any
freely reduced word, and since a product of substitutions which
are c-free for any reduced word is c¢-free for any reduced word,
A is c~free for any reduced word.

(b) This result is obvious for any elementary level sub-
stitution and follows for any level substitution, A , by induction

on the number of elementary level substitutions of which A 1is a

product.
-1_ -1
(¢) Clearly A "=A, and A.”, =2ir, . . 1If
1 1 1,7 1,1
A\ = Wolhg 0 B where each by is an elementary level sub-
. . -1 _ -1 -1 . -1
stitution, then A = = by Boog by

(d) The lexicographic ordering of the set X 1is a well
ordering; thus the set f{wX: A 1is a level substitution from X
into X} has a least element, say wv . By Definition 1.4 (c),

wVv is in normal form. Suppose that vl and v2 were level

substitutions from X into X such that both v:vl and W'vz

were in normal form with LAY # LA It would follow that



13.

vV, < WV, and wv, < Wy, by the definition of normal form
applied to WYy and WV, respectively. But since "s" isg
antisymmetric, WV S WY, which is a contradiction. Thus the

normal form is unique.
(e) Suppose, by way of contradiction, that X, ¢ Supp(w)

for some i(l £ i < ¢) ; thus for some i (j > 1) we have

xj € Supp(w) . It is clear that the word w)\i 3 precedes w
2

in the lexicographic ordering, since these two words are the
same up to the leftmost occurrance of x? in w and at this
point w)\i . contains XE:{ and w contains x? . Since )‘i

5 ] )

is a level substitution and w)\i ; precedes w in the lexico-
2
graphic ordering, we have a contradiction to the hypothesis that

w was in normal form.

Definition 1.6. If W & X , the normalization of W , denoted

N(W) , is the set {wv: w€ W and v is a level substitution

which brings w to its unique normal form} .

Definition 1.7. For v, w € X » We say v is less than or equal

to w , denoted v S w,if vo =w for some g € S,(v) ; with
e 2 X >

equality, denoted v =w , if and only if some such o is level.

Lemma 1.8. (a) The relation "=" is an equivalence relation
on X
(b) The relation " S'" is a partial order relation

on X /=




14,

(¢) 1If both v and w are in normal form and v = w s
then v = w .
(d) 1If Wy z,wz DA Wy R ++- 1is a descending

chain of words in X , then for some n = 1 5

w > W el = ..

n n+1 n+i

Proof. (a) The reflexive property follows from the fact that
the identity substitution is level, the symmetric property
follows by Lemma 1.5 (c), and the transitive property follows
since the product of two level substitutions is clearly level
(see Definition 1.4 (b)).

(b) The reflexive property follows since the identity
substitution is c-free for any reduced word. To verify the
antisymmetric property, we consider the words v, w € X with

vIw and wS v, and show that v=1w .

~

Since v Sw and w S v , there exist o € SX(V) and

T € SX(W) such that vo =w and wT = v . Being c-free,

o and T do not decrease length, thus LW)slbvo)=4W)<l(wT) =
L) €@ e

£(v) . Let us write v = i(1) Xi(2) i(n) and

W= gggi; £§E§§ v xgggg where n = f(v) = 4(w) . Since vg =w
we can also write w = Wyt oW, where Wy o= xigi;o and

W, = (xiggg xiggg < xiggi)c . If z(wl) = 0 , then W, = 1  which

contradicts the fact that ¢ is c-free (and hence sends no X

to the empty word). Thus ﬂ(wl) 2 1 and so z(wz) <n-1



15.

Since o is c-free for v , it is c¢-free for any segment of v ;

in particular 'G is c-free for xiggg iggg <o igﬁ§ . There-
1= g @ B e
fore n 1 L(x 1(2) 1(3) 1(n))
L((x igg; igg; <o iggg)o) £(w2) , and so E(wz) =n~-1 and
E(Wl) =1 . As a result, we have that xegi; 22%; ;
€(2) e(3) <& () N2 N(3) N (n)
L) MG) T ST T K@) K50 Fiay o s @Pplying
the same argument using T instead of o , that gngi; = iéi;
N(2) N(3) () = (2 (@) | e
e G5E) FE) U e T T K@) KiG) T Fiw) B e

straightforward induction on "n, we arrive at the fact that

e (k) () ﬂ(k),r o e(k)

1007 7 ¥ Y ) ) Toreach k=1,2, ., n.

b3
Define the mapping m : {s : X € Supp(v)} - {k : xkE Supp (w) }

by sm = k where x 0 = QE for M € {-1, 1} . We claim that
T is one-to-one. To see this, suppose that s = t1m = k )

_ - B - '
then x 0 = x  and x0 = x  for some «, B € {~1, 11 . since

X, X, € Supp(v) , there exist positive integers p and q such

that xz(p) = xiggg and xi(q) = igg; . Therefore,
AP) <& (P e(P) _ ,. e(pP) _
i) T Fip)° (Xi(p)c) (x0)
(Xk)ae(p) - (XB)a66<p) - (th)aﬁe(p) _ (xtc)e(q)aBE(p)e(q)
= (x e(q) )aBe(p)e(q) - (Xe(q)c)aﬁe(p)e(q)

i(q)

i

( ﬂ(q))aBe(P)e(q)
(@) '



16.

Thus,
e®) _ e®) _ M@ - _ M) _oBed)e(q)
% 1) T i) 1T By ™
= (@ aBe(ple(q) _ ,_e(q)oBe(p)e(q)
- (xl(q)) - (Xt )
Since X, = xil ; we have s = t ; it follows that ™ 1is one-to-

one. Since T is one-to-one, some permutation of the set

{s : X € Supp(v) U Supp(w)} sends i(k) to j(k) for each
k=1, 2, ..., n. Any permutation of a finite set can be
written as a product of transpositions, thus there is a level
substitution from X into X , A (a product of elementary

level substitutions of the form Xi .) , which sends x, to

P i(k)
xj(k) for each k=1, 2, -« , n . Since the substitutions
A, . affect only subscripts and leave exponents unchanged, we

’ c(1) e  _e(n)
3@ F3(2) *i(n)

If e(k) = M(k) for each k=1, 2, ... , n , then

have vA = x

VA = w ; therefore v =w and we are done. Otherwise, let s

be the least integer such that e(s) # N(s) and write
_ YW Y@ v

VM) T *3@) T Fi)

will prove by contradiction that if & is the least integer such

Note that v(s) = N(s) . We

that v(t) # M(t) , then t > s . Since ¥Y(s) = N(s) it is

clear that t # s . Suppose that t <s . If j(t) # j(s) ,

e (t) c e (t) (= Y(t))

then ). sends = Xj(t)

i(s) ey "% Fi(n)

Y(t) = e(t) . But since t < s and s was chosen to be the

, therefore

least integer such that e(s) # N(s), we have e(t) = T(t)
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Therefore vY(t) = M(t) , which contradicts the choice of ¢t .

Thus we can assume that j(t) = j(s) . Since m is one-to-one,
we also have 1i(t) = i(s) , so Xi(t)c = xi(s)o . Thus

N(t)e(t) _ - = N(s)e(s) . . -
Xj(t) = Xi(t)c = Xi(s)o = xj(s) , and since j(t) = j(s) ,
N(t)e(t) = M(s)e(s) . But since N(s)e(s) = =1 , we have
M(t)e(t) = -1 and, as a result, e(t) # N(t) . This is a contra-

diction, thus t > s .
Now by induction on n there exists a sequence of

b such that,

level transformations ). . s .
i PR TCOS RS TCN

letting p = ;, we have vy =

RIS RS T

N M@ M@
W *52) 7 %)

Ay € SX(v) such that vAy = w , and hence v=w .

W . Thus we have the level substitution

In order to verify the transitive property it suffices

to show that if wu, v, and w are in X with u = v and

<

vSw, then ulSw. If u S

Sv and v Sw , there exist

o € SX(u) and T € SX(V) such that uc =v and vT =w .

(uo)T=vT =wé€X. Thus, in order to show

Clearly u(oT)
that oT is c-free for wu, it suffices to show that for each
X € Supp(u) , x0T # 1 . Since o € SX(u), X O # 1 ; thus
there is an X, € Supp(xsc) . Since T € SX(V) 5 X T F1;
thus there is an X € Supp(xtT) c Supp(xSGWO . Therefore

xSGT' #1
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(¢) If wv(x) = w(x) , there exist level substitutions

A and X—l from X into X such that vA =w and v = sz—l

Since v is in normal form we know that, in the lexicographic

ordering, v < vA (= w) , and since w is in normal form, we

also know that w < wk—l' (= v) . Therefore; we have v = w .
(d) Let us suppose that there is an infinite properly

. . > > > . P
descending chain, vy i Vo Loeee ¢,wk Z 5, of words in X .

Since i implies that ﬂ(wk) = A(w and since

e P V%41 K+1)

L (w

1) is finite, there is an integer i = 1 such that

ﬂ(wi) = £<Wi-+1) = ... = z(wii-j) = ...

Letting v be a level substitution which brings w

|S k

into normal form and letting Vi T WV for each k=21 , we

note that,

= > o
i MKk 2 k4 1k+1 k41

Therefore we obtain the chain Vi i,vz i,--- i Vi i,--- where |
each Vi is a word in X which is in normal form and all Voo (k= i)
have the same length, say n . It is clear that card(Supp(vk)) <n

for each k 2 i ; furthermore, since each v, 1is in normal form,

k
it follows by Lemma 1.5 (e), that Supp(vk) = {xl, Koy =00, xc}
where c¢ = card(Supp(vk)) . Thus the set of words

{vi, Viiyq -+ } is a subset of the finite set of all words

of length n whose support is a subset of {xl, Xop T xn} 5

therefore there exist integers k and j ({ <k < j) such that



19.

V. =v_, . But if k < j v. > v, and, in particular
k j Tkt ] ’ P o

vk?* vj . This contradicts the fact that vk = Vj (and hence

that vkg‘ vj) . Therefore, no such chain exists.
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CHAPTER 2

THE SUBSTITUTION PROBLEM

Given the free monoid (X, *) and. two words

w, u € X , we pose the following problem.

Problem III. Can it be decided by a finite procedure whether or

not there is a substitution o from X into X such that

This will be called the substitution problem for the
~pair (w, u) . It is easy to see that Problem III is an alter-
nate form of Problems I and II of the Introduction.

Since the condition wo = u involves a free reduction,
Problem ITI is really a problem about free groups rather than
monoids. In later sections our method of solving Problem III for
certain words will centre around the associativity of &, ),
i.e., the fact that (X, *) is a monoid. This will result from
the reduction of Problem III, which involves an arbitrary substi-
tution, to problems involving only c-free substitutions. Thus
the free group problem will truly become a problem about free
monoids,

The following problem is much simpler than Problem IIL.

Problem IV. Can it be decided by a finite procedure whether or

not there is a c¢-free substitution ¢ € SX(w) such that wog = u

?
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This will be called the c-free substitution problem for

the pair (w, u) , and can be solved as follows.

Solution of Problem IV, If there is a o € SX(W) such that

wo = u, then for each X € Supp(w) , ﬂ(xsc) < 4(u) and
Supp(xso) S Supp(u) . Clearly, if there is such a o , then
there is one which sends X to itself for each X, ¢ Supp (w)
Since there are only finitely many such substitutions, T , we can
list all the words, w7 . If some wT = u, the problem is solved
by setting o = T ; otherwise, there is no c-free o € SX(W)
such that wo = u. 1In either case, the problem has been solved

by a finite procedure. ®

As an obvioué corollary to the solution of Problem IV,
we note that, given a finite set of words {wl, Wos tt, wn} and
anéther word u , it can be decided by a finite procedure whether
or not there is a W, and a o € SX(Wi) such that w.o = u .

In this chapter we will give a procedure for generating
a certain set C(w) (see Definition 2.5(b)), of images of a word
w € X . This set will be shown (Theorem 2.13) to be "complete"

in the following sense,.

Definition 2.1. A complete set of images of a word w € X is

a set W S X such that:
(1) for each v € W there is a substitution y from

X dinto X such that ;ﬂ =v ,
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and . (ii) for any substitution ¢ from X into X for
which wo # 1 |, there is a word v € W such that v < wo (see
Definition 1.7).

The set C(w) will also be shown (Theorem 2.14) to be

"minimal" in the sense that C(w) = N N(I)
1€9

class of all complete sets of images of w and N(I) is the

, where J is the

normalization of I (see Definition 1.6).
The central role played by the set C(w) throughout

this thesis is illustrated by the following important result.

Theorem 2.2. Given w € X and assuming that C(w) is a complete’

set of images of w (Theorem 2.13) and that C(w) = N N(I)
I€d

(Theorem 2.14), it follows that Problem III is solvable for w
and arbitrary wu's if and only if membership in C(w) is
effectively decidable. (i.e. 1if and only if, given v € X , it
can be decided by a finite procedure whether or not v is an

element of C(w).)

Proof of Theorem 2.2. Given v € X , let us suppose that we can

effectively decide whether or not there is a substitutionm, p ,
from X into X such that ;ﬂl =v . If no such | exists,
then by Theorem 2.13 and Definition 2.1(i), v € C(w) . If v is
an image of w , then by the corollary to the solution of
Problem IV, given the finite set, {wl, Wos e, wn} , of all
normalized words in X of length not exceeding 4 (v) , we can

effectively list those wi‘s for which W, i v (i.e. W, < v
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but w, 7 v .) TFurthermore, by our assumption that Problem ITI
is solvable for w and arbitrary u's , we can effectively list
those wi's from the list above which are images of w . Let
V denote the set of all such words. If v is not in normal
form, v £ C(w) ; thus w.L.o0.g. we may assume that v is in
normal form.

We claim that v € C(w) if and only if V = ¢ ;

since V can be effectively listed, this implies that it can be
effectively decided whether or not v € C(w) . First let us
suppose that v € C(w) and V # ¢ . Thus there is a word u € V
which is an image of w such that u é v . Since C(w) 1is a
complete set of images of w there is a u’ € C(w) such that
u’ £ u ; therefore S = C(w) \ {vl is also a complete set of
images of w . But then § = N(S) is a proper subset of C(w)
in contradiction to Theorem 2.14. Thus we have V = ¢ . Now let
us suppose that V =¢ and v € C(w) . Since C(w) 1is a complete

set of images of w , there is a word u € C(w) such that u S v .

If u=v , it follows that u = v by Lemma 1.7(c), but this con-
tradicts the assumption that v € C(w) . Thus u 1is a normalized
image of w such that u i v ; therefore u € V in contradiction
to our assumption that V = ¢

Suppose that membership in C(w) 1is effectively decidable

and that u € X . By Theorem 2.13 and Definition 2.1(ii),
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in order to determine whether or not there is a substitution ¢
such that wg = u , it is enough to check all u € SX(V) s
where v € C(w) , to see if vy =u. If v € C(w) , then v is
in normal form, and if vy = u, then 4(v) < £L(u) . Since
there are only finitely many normalized words of length not
exceeding £(u) , there are only finitely many "candidates" for
v . Since membership in C(w) is effectively decidable, the set
{vi, Vos ttt vn} of "candidates" for v which lie in C(w)
can be found effectively. The solution.of Problem III for the
pair (w, u) then reduces to the solution of Problem IV for the
set {vl, Vos tots vn} and the word u . Since this is solvable,

Problem III is solvable as well. ®

Remark. If C(w) 1is a finite set, Lemma 2.6(d) will imply that
the elements of C(w) can be listed by a finite procedure. As a
corollary to Theorem 2.2, assuming Lemma 2.6(d), it follows that
if C(w) 1is finite, Problem III is solvable for w and arbitrary

u's

THE SET C(w)

We now proceed with the definition of the set C(w)
and the proofs of Theorems 2.13 and 2.14. First we make some

preliminary definitions.

Definition 2.3. (a) Let TS be the substitution from X into

X if s # i

X defined by
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By convention, we let T be the identity substitution.

0
e N
b For each segment x.x. of w let ) ] be
() & i3 ’ Pwii,e; 3,M)
the substitution from X into X defined by
[ X . if s # 1, j
-1 . . .
X T x x if s=1= 3
- m “s’m
Xsp(w;i,e;j,ﬂ) R -1 e+ 1
2 2 . _ - .
X XX if s—.17r£ j
_N+1 1-T
2 2 . _ . .
L %, xjxm if S—-J?—‘lv
where m = max{s: X € Supp(w)} + 1 and XI(I)I = 1 . By convention,

. ) tc -A . .
we let p(w; 0, 0; 0, 0) be the identity substitution

E 1 Gi = -1 -1 we have
xample. ven w Xy x3 X, x3,

= _1 L) —1 . (] =
wT, = (xz'rz) (x3 T2) (x2 72) (x3 Ty Xq Xq

and letting p = p(w. 3,-1;2,1) we have
> 2 b b

W= (x,0) T Ggp) e () ¢ (egp)

-1 -1 -1 -1 -1 ~1
= (X4 x2) . (x4 Xq (x4 x2) . (x4 x3)

-1 -1 -1 -1
= x X, X, X, X,X

2 *u¥3 Fp ¥y Xp ¥, ¥

3
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Remark. The substitution T, has the effect of deleting each
occurrence of the symbols Xy and k;l from w . The substi-

tution has the effect of replacing each occur-

Pws i, e; 3,M)

rence of the symbols Xis k;l, X., and xgl by words involving

|
x, and x or x, and x_ and, in particular, replacing
i m j m
the segment x?>J} by xS x x~1xn .
i7j i"mm 7j
Notation. If o = {j(1), j(2), -+, j(£)} is a set of distinct
ositive integers, we denote the composition . T, Tt T,
’ Beres ¥ 3WT52) 3 ()
by Ty 2 and we let T¢ = TO .

Definition 2.4. For W S X we define the sets of reduced words

T(W) (trivialization), R(W) (replacement), and M(W)

(minimization) as follows:

() TW) = U U {wt :oc{s: x € Supp(w)1} .
weW o @ s
- — R -2 | B
(b) RW) = U U {w;)(W; i,e;4,1)° Xixj is a

wEW (w; i,e; 3

segment of w or i=¢ = j=1 = 0}

(¢) MW) = {w€W: w is minimal in W with respect to " <"}

(see Definition 1.7).

Examples. If W = {xlxle X3%y 3

-1
TW) = {xlxle XgXps EpXg, XXy, XiXo, Xg, X, Xy, 1}
{x,x -1 %%, e Ly X,, XiX,%. % k. x
T1F2%L ¥3Xpo FyFo¥y Fp ¥g¥ Xy ¥yX¥o¥Xp XgXp¥X,,

and RW)

X—l « -1 -1
4 Xp%oX¥

-1 -1
1%2%1 ¥3%y Xy Xy XXXy xxax
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If W= {k_lx x.}, NW) = {x x 2—1} and if W = {x x
1 72717 1721 ’ 2917 7

NW) = {xlx2 .

-1 -1 1

If W= {xlx2x3J X XKy 5 Xy Xy, X Xy ¥y Xy, x3x3} s

-1 -1
{xz Xy 5 XgXg, x1x2x3}, NW) = {xlxl,.xlxzxz, X, X)%o,

MW) =
xlxleXB}, and NMW) = {xlxl, xlx2X3} .
Remarks. (1) It should be noted that, although we write sub-
stitutions on the right (e.g. wT) , operations on sets of words
will always be written on the left (e.g; TW)).

(2) Given any w € W there exists a v € M(W) such
that v < w . This is clear if w € M(W) . If w & M(W) ,
there is a word VH_E W such that w ;'Wl (ie. such that
w > Wy but w wl)

are done; otherwise, we continue the process. Either we produce

If Wy €EMMW) , we let v = Wy and we

an infinite descending chain w i Wy i w2 i .. i,wk i s+ oOr

at some stage we obtain a chain w i Wy i v, i < i Wy where

W € M(W) . The first case cannot occur according to Lemma 1.8(d),
therefore the latter case must occur for some integer k . Thus
we let v = W, -

(3) If W is a finite subset of X , the sets

TW), R(W), N(W), and M(W) are finite and can be constructed
by finite procedures. This is obvious for T(W), RW) and N(W)
The complement of M(W) can be constructed from W by first

performing all possible substitutions which are c-free for some

word in W and which give words, u , for which
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Supp(u) & Supp(W) (= U Supp(w)) and 4£(u) < max{4(v): v € W} .
WwEW

Those elements of W which arise through non-level substitutions
of the above type comprise the complement of M(MW) in W , thus
we can construct M(W)

The "minimal" complete set, C(w) , of images of w will
be generated by normalizing w and then successively performing
the operations R, T, N, and M, repeatedly. This will generate
a sequence of sets CO(w) = N(w), ¢t (w) = MAU(TRCO®))))),

Cz(w) = M(N(T(R(Cl(w))))), +++ 3 C(w) will consist of those words,

v , for which there is an integer n(v) such that v € N Cl(w)
izn(v)

Definition 2.5. If w € X we define the sets of reduced words

Cl(w) (1 20) and C(w) (closure) as follows:

(& c®w) =n{w} and ¢t lwy = mrrcin))  for

® cw =0 f ctw
=1 i=j

Each set Ci(w) (i 2 0) 1is finite and can be con-
structed by the finite process (see Remark 3 following
Definition 2.4) of first normalizing w , then replacing,
trivializing, normalizing, and minimizing, in that order,.i times.

Examples. (1) First we calculate C(i;l)g

5h = NS = (k)

Re%6o1) = Rixgd = {x)
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0, -1, _ _
TRC™ (x,") = T{xl} = {xl, 1} ,
NTREY GOy = Nix., 1} = {x., 1}
2 1) 1J )
0, -1
MNTRC (x2 ) = M{xl, 1} = {xl, 1} ; therefore
1 -1

¢ e = Iy, 1)

It is easy to see that Cl(xgl) = {xl, 1} for i=1,
thus C(k;l) = {xl, 1} . Since C(xgl) is a finite set, we apply
the corollary to Theorem 2.2 to obtain the fact that Problem III

is solvable for (2;1, u), where u is arbitrary. Of course,

this is obvious since we could choose the substitution, ¢ , which

sends %, to wu and X to Xo for s # 2 . The next
Example will give a less obvious result. n-times
/“‘"“"/\"—"—\
n n _
{(2) We calculate C(xl) (where X T xxg Xl)

e = nixl) = &8,

0, n n -1
RC™(x;) = R{xl} = {x?, %, x?xz} s

O, n, _ n -ln
TRC (xl) = {xl, Xy X X, 1} ,

0, n n n ~1
NTRC (xl) = {xl, X XXy, 1} , and

1, n 0, n n n -1
C (xl) = MNTRC (xl) = {Xl’ xlxle 5 l}

RCl(x?) = R{x?, X an—l 1}

-1 -

= {xn, X, XX , X xox. o, % (x,x 1)nx.“1
1772 71727 717271 0 1273 1

ln-1

1 n - -1l.n
2 X2} Xl(X2X3 ) xl 2 (X2X3 ) 3

1, n, ¢n =1n n_ -
TRC (xl) = {Xl’ Xy XqXg; xlxzxl

—-1.n ~1 -1.n -1 n -1 -1 n
xl(x3 ) X, (x3 ), (xlx3 )x2(x3xl ) x3 x2x3, 1} s

-1, n -1
’ (X1X3 )X2(X3X1 )5 ]-} )
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n n -1

1 n, _ n -1 n n, -1 -1
NTRC™ (x;) = {xl, X %%y, xl(x2x3) X1 (xlx2 , (X1X2)X3(X2 X175 11,

n n -1
10 ¥1%9% s 1} .

and Cz(x?) = MNTRcl(x{‘) = {x

It is easy to see that Ci(x?) = {x?, xlxgle, 1} for
each i =1 , thus C(x?) = {x;, xlx;kzl, 1} . By the corollary
to Theorem 2.2, we obtain the fact that Problem III is solvable
for (x?, u) , where n=1 and u 1is arbitrary. Thus it can
be decided whether or not a given word, u , ié an n—'Eh power.
Although this is well known, it illustrates the way we will
apply our results in Chapter 6.

(3) If w € X and there is an X € Supp(w) such
that w 1s linear in X then C(w) = {xl, 1} . To see this,

suppose that v brings w into normal form. Clearly wwv is

linear in x_ , where {xt} = Supp(x_v) ; thus, letting

o = Supp(wv) - {xt} , we have W\)p(W\n 0,00, O)Ta = X .
Since X is the normal form of X it follows that
Xy € NRT(CO(W)); and since X1 S u for any non empty word

It

u € X s Cl(w) = MNTR(CO(W)) {Xl’ 1} . It is then clear that
clw) = {xl, 1} for i =1 ; therefore C(w) = {xl, 1} . Thus

Problem III is trivial for w's which are linear in some x
s

Lemma 2.6. (a) If the word u is produced at any stage in the
construction of Cl(w) (i 2 0) , then there exists a word

v € C(w) such that v S u .
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(b) If w is a quadratic word in X , then each
word in C(w) 1is also quadratic.

(c) The set C(w) is finite if and only if there
exists an integer m = 0 such that Cm(w) = Cm_Fl(w) ; and if
this occurs, then C(w) = Cmﬁkk(w) for each k= 0 .

(d) If C(w) is known to be a finite set, C(w) can
be constructed by a finite procedure.

Proof. (a) Since every word produced in the construction of
Ciﬁ%l(w) appears first in either Ci(w), R(Ci(w)), TR(Ci(w)) s
or NTR(Ci(w)) for some i 2 Q0 and since Ci(w) < R(Ci(w)) c
TR(Ci(w)) ; it suffices to verify this Lemma for words in
TR(Ci(w)) or NTR(Ci(w)) for each 1 =2 0 . Given a word

u € TR(Ci(w)) there is a word v € NTR(Ci(w)) such that

v = u (choose v to be the normal form of u .) Thus it

suffices to verify this Lemma for each word VO € NTR(Cl(w))

(i=0)

By the definition of M , there is a word vy € MNTR(Ci(w))
= Ci+‘1(w) such that vy b vy - Since vy € Cii‘l(w) c TR(Ci+1(w))J
there is a word vi € NTR(Ciﬁ-l(w)) such that vi‘* vy By the
definition of M , there is a word v, € mtret )y = ¢t 2w
such that v, < vi (= vl) Using this argument repeatedly we
get a chain of words vO > vl > v, 2 ... with vj € Cii‘j(w)
for each j 21 . From Lemma 1.8(d), we deduce that there is an

integer n such that vy =y o, = = ... . By

n+l Va+k
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Lemma 1.8(c) we also deduce that VoS Vo1 T = Voik T ,
i+
since each v, 1is in normal form. But v = v €ct n+k(w)
J n n+k
for each k = 0 , and so v € N CJ(w) . This implies that

j=itn

0
(b) The words in C(w) are produced by repeated appli-

A € C(w) and, by the transitivity of < , we have v Sv

cations of the substitutions T, , p, . . Los
i (vii,e; 5,

, and A (where
A 1is elementary level) together with free reduction. It is
obvious that quadratic words go to quadratic words under triviali-
zation (Ti), normalization ()A) , and the deletion of trivial

relators. The substitution introduces at most

Pvii,es 3, M)
four occurrences of symbols with the subscript m into the
quadratic word, v , but, upon free reduction, at least two of
these form a trivial relator (which is deleted). Therefore the
result of replacement into a quadratic word followed by free
reduction is also a quadratic word.

(c) Suppose C(w) = {wl, Wos Tt wn} is a finite set.
By the definition of C(w) , for each i (1 £ i £ n) there is
an integer m(i) such that w, € N Cj(w) . Let

jzm(i)
m = max m(i) ; therefore w. € Cm(w) for each i and, as a
1<i<n t °

result,

c) € ¢™(w) = MeTR(C™ T (w)) € NTR(C™ F(w))
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Recall that Cm(w) is the set of elements in NTR(Cm_-l(w))
minimal with respect to " St | Suppose there were a word

u € Cm(w) ~ C(w) ; then by Lemma 2.6(a), there is a v € C(w)
such that v S u . But v € C(w) implies that

v € NTR(Cm_-l(w)) , thus u dominates an element of

NTR(C™ ™ L)) (viz. v) . By the minimality of u we have
u™ v and further by Lemma 1.8(c) since both words are in
normal form, we have u = v . This contradicts the assumption
that u ¢ C(w) . Thus C(w) = C'(w) . In fact, by the same
proof, if 1 1is any number for which C({w) < NTR(Ci(w)) , then

C(w) = Cl4_1(w) . Thus C(w) = Cm(w) implies that

C(w) = Cmﬁ%l(w) ; therefore by induction,
cw) = ¢®w) = ¢ lewy = ...
Now suppose there is an integer m  for which
Cm(w) = Cm—kl(w) ; then
™t 2y = TR L)y = MNTR (C™(w)) = ¢™ 7 L (w) ,
and similarly, Cm(w) = Cm4‘1(w) = Cm4—2(w) = ... , Given

u € Cm(w) , we have u &€ CJ(w) ; thus u € C(w) . As a
j=m

result we know that Cm(w) S C(w) . Suppose v € C(w) ; by the
definition of C , there is an integer n such that v € 0 Cl(w)

izn

l
Choose n' = max{m, n} , then since n’ > m s c" (w) = Cm(w) and

s
since n’ = n , V E c” (w) ; therefore v € Cm(w) . Hence we have

the inclusion C(w) < Cm(w) , and thus C(w) = Cm(w)
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When applied to a finite set, each of R, T, N and M
yields a finite set. Thus beginning with the finite set Co(w)
and applying the combined operation, MNTR, m times we produce the
finite set Cm(w) . In the above case Cm(w) = C(w) , thus C(w)
is finite,
(d) 1If C(w) is known to be finite, Lemma 2.6(c) shows

that the procedure of successively constructing the sets

0 2
C (w), Cl(w), C (w), *** nmust terminate in the sense that for
some m, Cm(w) = Cm4_1(w) . When this occurs, we stop the con-
struction, knowing by Lemma 2.6(c), again, that C(w) = Cm(w) . B

PRELIMINARY LEMMAS.

It remains to be shown that C(w) 1is a complete set

of images for w (Theorem 2. 13) and that C(w) = N N(I) where
19

Jd 1is the class of all complete sets of images for w (Theorem 2.14).
The following lemmas lead to the proofs of these theorems.
Recall that d(w) 1is the number of deletions of

trivial relators required in the free reduction of w to w .

Lemma 2.7. Suppose w € X and ¢ 1is a substitution from X
into X , then the word wo is a partially reduced form of wo |,

and if w is not freely reduced, d(@(j) < d(w o) .

Proof. We induct on d = dw) . If d=0, then w=w and
thus wo = wo . Since wo 1is a partially reduced form of

itself. this case is complete.
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If dw) =d+ 1>0, then w contains a trivial

relator. Let us write w = vy xi x_i'€ v, where ¢ € {-1, +1}

and vl is a freely reduced initial segment of w not ending in

the symbol X (i.e. X xie is the leftmost trivial relator

in w.)

. —_— ° e * —e L

Since wg = (Vl o) (xicr) (xic) (v2 o) , the
word (v1 o) (v2 c) is clearly a partially reduced form of
wo, and (v1 g) - (v2 o) = (vlvz)c . Since d(vlvz) =d , we

can apply the induction hypothesis to the word v.v and the

12
‘substitution ¢ . Thus ;1—\_7;0 is a partially reduced form of
(vlvz)cr which in turn is a partially reduced form of wo . But
since’ vlv2 is a partially reduced form of w , vlv2 = w ;
therefore wo 1is a partially reduced form of wog . B

Lemma 2.8. If w € X and p is a substitution from X into X ,
then there exists a reduced substitution ¢ from X into X

(see Definition 1.1(b)) such that wo = wy, and

d(wo) < d(wy)

Proof. Let o be defined by x 0 = ;;;; for each X, 3 clearly ¢
is a reduced substitution from X dinto X . It is also clear
that wg can be obtained from wi by the deletion of those
trivial relators occurring within the segments XM Thus wo
is a partially reduced form of wy . It follows that wo = Wy,

and d(wo) < d(wy) . =
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Before we proceed, we introduce the following

Definition.

Definition 2.9. If w € X and o is a substitution from X

into X , the set of singularities of o with respect to w ,

denoted sing(o, w) , is the set

{xs € Supp (w): x 0 = ;}

Lemma 2.10. If w € X , v € Cn(w) for some integer n , and o

is a reduced substitution from X into X such that vg # 1 s

n+n
then there exists a word o €C O(w) . (for some integer nO)

and a reduced substitution 00 from X into X such that

VSy = VO, d(voco) < d(vo), and Slng(do: Vo)

It

¢ .

Proof. 1If sing(o, v) = ¢ , choose n, = 0, o

Og = O3 otherwise, let ¢ # oy = sing(oc, v) and let Wy = TQ

= v, and

1
Note that ﬁ(wl) < L(v) . Since v € Cn(w) c R(Cn(w)) , it

follows that Wl € TR(Cn(w)) . It is clear that wo=vao ,

d(wlo) < d(vo) , and sing(o, wl) =¢ .

Let Vl be a level substitution from X into X

which brings w to normal form. If w v € MNTR(Cn(w)) (==Cn+1(w))J

1 1

_ _ _ -1 .
we let nO =1, vO wlvl , and 00 vl o and the proof is

complete. Otherwise we have € NTR(Cn(w)) \ MNTR(Cn(w));
Cn+1

Y11

thus there exists a word vy € MNTR(Cn(w)) (= (w)) such
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. < o , < .
that ViR wlvl( wl) and hence Z(vl) = Z(wl) < 4(v) . Let
Yl S SX(vl) so that VlYl = wl . Therefore v1Y1<5 = w0 and,
by Lemma 2.8, there exists a reduced substitution oy from X
- - <
into X such that V10 lelcr and d(vlcl) d(vlvlo)

. _ - n+1
But since lelcj = W0 =Vvo , we have vy €C (w) and oy
a reduced substitution from X into X such that vi0p = vo
and d(vlol) < d(vo) . If sing(cl, vl) = ¢ , we choose
n, = 1, Vo = V15 and Oy = 9 and the proof is complete. Other-
wise we let o, = sing(cl, vl) and repeat the above process,

thereby obtaining a word Vo € Cn—Fz(w) with ﬂ(vz) < z(vl) and

a reduced substitution 02 from X dinto X such that

Vo0, = V10, and d(vzcz) < d(vlcl) . If 51ng(02, v2) = ¢ , the
proof is complete; if not, we continue this process. Since each
Vie41 that is produced has length strictly less than its pre-
decessor, Vi s the process must terminate after a finite number

of steps, say k . Thus we have Vi € Cn_kk(w) , and a reduced

substitution O from X into X such that Vi O T VO,

d(vkck) < d(vo), and sing(ck, vk) =¢ . ®8

Note that a reduced substitution is, in general, c-free
only for the words, xz (s 2 1), and a substitution which is
c-free for a word w need not be a reduced substitution for
those X, € Supp(w) . Even if a reduced substitution sends a

word v to a reduced word, the substitution may not be c-free
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_for v , since it may send some X € Supp(v) to 1 . However,

we do have the following.

Corollary 2.11. If w € X , vV E Cn(w) for some integer n , and

o 1is a reduced substitution from X into X with 1 #vg € X s
n+n0
then there exists a word o €C (w) , for some integer

n, = 0 , and a substitution % € SX(VO) such that Vo = VO -

n-+n, .
Proof. By Lemma 2.10, we have a VO €C O(w) and a reduced :

substitution S from X into Y such that VoPp = VO i

d(vOGO) < d(vo) , and sing(co, VO) =¢ . Since d(vo) =0, it

is clear that d(vocO = 0 and hence that V%0 is freely
reduced as written. Thus the equation VOOO = vg 1is the same
as VOOO = vg . Since no cancellation occurs in VOGO and no

, O is c-free

symbol, X € Supp(vo) , is sent to 1 by o 0

0

£ .
or Yo

THE KEY LEMMA.

The following lemma is central in our proof of Theorem
2.13. Starting with a word, w , and a substitution, o , we will
apply Lemma 2.12 repeatedly to obtain a sequence of words,
Vis Vos seey Vo (vi € Ci(w)), and substitutions, O15 Cos “7%5 Op
such that d(vmdm) = 0 . This will yield a substitution which is

c-free for v (€ Cm(w)) and which sends v to wo , thus

Verifying the second half of Definition 2.1 for C(w)
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n
Lemma 2.12. If w € X , Yo €cC O(w) for some integer n, = 0,

and 00 is a reduced substitution from X into X such that
Vo9 # 1 , then either,

(a) d(voco) =0

n0+1
or (b) there exists a word vy €C . (w) and a
reduced substitution 9y from X into X such
that vi0p = VOUO and d(vlol) < d(vooo)

Proof. We will suppose that d(voco) # 0 and verify condition

(b). Since % is a reduced substitution and v.g is not

0o

freely reduced there must be a segment of VO 5 xi.gg , such
that a trivial relator (w.f.o.g. Xlle) is the junction of the
segments xico and ggoo in VOOO . We note that the segments
xi gg and xg xze may occur more than once in VO, and so all
the junctions of x?o' and Qno' (or Xin(j and xfe c.)

i70 j o j 0 i 70
are the trivial relators xlle (or lexl) . Thus there exist

possibly empty words u, and u. in X such that

€ _ T -
XiGO ule and xjco xl ur .

In the event that i = j , we clearly have ¢ = M, for

otherwise vO is not freely reduced. Also there is a non-empty

il _ -1

word u € X such that x?o‘ = X,0, = x ux, . This is true
i 0 jo 1 1
because i = j and ¢ =1 imply that xicjo = x%<30 and hence
| . . ) -1
upXp = Xpu . Thus, the first symbol of u, isox and the
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last symbol of u, is o oxo. Therefore we can write u, = XU,
= ' - R
and u = ouxg But then U, Xy X u, implies that
x—lu’x = i_l "% and so u, = u’ If u/ =u =1 then
1A T B | 4 Y 4 ’
XQO' = u,x, = x—lu'x = x_lx and hence is not reduced
i% " T YRR o ’

contrary to our hypothesis; thus ué = u; F1 .
We will treat as separate cases the possibilities that
i=3 or i# j and in the latter case that either or both of

u, and u. may be empty. In each case we give a word \£] and

a substitution o, which fulfill the requirements of (b) in

1

this Lemma.

Case 1. Let i = j and abbreviate T B by o
O bl 2
Recall that i? = xi , and so ggoo = xioo = x_]:lux1 with u

n
a freely reduced non-empty word. Since vO €C O(w) , it is

n n
clear that Voo € R(C O(w)) < TR(C O(w)) . Thus there exists a

no n04-1
word v, € MNTR(C ~(w)) (= C (w)) such that v, =< Voo

This implies that there is a substitution o € SX(vl) with

v = VP

10

thus we can define a reduced substitution “1 from X into X

by x. 0, if s# i, m
X g = § u® if s=1i
Xy if s=m.

By Definition 2.3, we have Supp(vop) c Supp(vo) U {xm};



We note that VoP By = Vq0y, since x pp, = x % for
each X, € Supp(vo) . This is true because if s # i , X P = X
and thus x p =X {4, = %X 0 ; and if s =1 xp=x_1xx

sP H1 s™1 s 0° 77 m i'm

— —-1 — e L] =
and thus x,p Wy = (xm Xixm)u’l = (xmul) (Xi U’l) (Xmul)

-1 & € -1

XU oxy We began with X0y T Xpuxg, therefore
e _ -1 - . =1 e _ ~1 ¢
(xi 00) = %" uxy agd X; 04 (x1 uxl) XpouR . Thus we
have x,0. = x_1 €x. = X
o 1" LT FiPHp-

o° “1. is a partially reduced form of

By Lemma 2.7,

VPl But VoP By T Vylgky s and so Vibghy is a partially

reduced form of Voo By (= R ) . Therefore Vikghy T V595

and since v was not freely reduced as written, Lemma 2.7

Op
implies that d(vl b p,l) < d(v0 oo)

Letting p = bouy We apply Lemma 2.8 to vy and p to

get a reduced substitution o from X into X such that

1
L n0+1
ViOp T Vi and d(Vl 0'1) = d(Vl W) . Now vy €c¢ W) , %1

is a reduced substitution for vy into X ,

ViOp T Vim =Y N VOGO , and d(vl cyl) < d(vl p,Ole) < d(voco) 5

therefore, vy and oy satisfy the requirements of (b)
Case 2(a). Let i # j, let Uy and u be non-empty, and abbre-

viate the substitution by p . The proof

p(VO; i,e; 3, )
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here is exactly the same as that of Case 1 except that the

substitution By is defined by

xg 9 if s#1i, j, m
uz if s =1
st T ﬁ u_ if s=j
\ % if s=m

It remains to verify that VoP g = Vo9 in this

case. This will follow from the fact that e for

each X - We have three possibilities; s =i, s = j, and

s# i, j. If s# i, j , then Xp = X and so
xspp,l =Xsp’1 =xsoo . If s=1 and ¢ =1 , then
X.p F X, X and

i i"m

€
¥Phy T Gy uy = Gy Gpug) T uyx s ux

If s=1 and ¢ = -1, then x,p = x—l X, and
i m i
_ .-l _ -1, -1 e _ -1 -1
L B N Y R C TR Gy = %y =T
. e - = € :
Recalling that X, % ule , we have X 9 (ule) which
is identically equal to X, OFr -1 -1 a is +1 or =1
e y equ u,x; XUy s ¢
Thus if s =1 , XPlq = X Op - If s= 3 and T =1 , then
X,.p = x—]'x and x.p = (x_lx ) = (x 1} )_1 ¢ (x )y =
i m <j i ¥ m *37H1 m 1 i1
x—-1 un = x—l If s=3j and M = -1 then x.p = x.x and
1 r 1% J ’ jp jim
= = L =t n = —1
Xgoty = (6% Dug Gyup) o Gpug) = wxg = u T
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. M _ 1 P SN
Recalling that xj 9, X, u. o, we have x, 9 (xl ur)
. . L -1 -1 .
which is identically equal to Xpu, or u X, as N is +1
or ~1 . Thus if s = j , X Py = %X 04

Case 2(b). Let i # j, let u, = 1 and u # 1 and abbrsviate

. . 0
th bst t . b . i €C
e substitution ie; j,ﬂ)Ti vy op Since VO (w) ,

P .
g3
n

it is clear that VoP € TR(C O(w)) . Thus the same proof used in

Case 2(a) will go through with by defined by

%09, if s# j, m
xsp‘l = < ur if s = j
x1 if s = m.

Case 2(c). Let i # j, let u, # 1 and u = 1, and abbreviate

the substitution by p . As in Case 2(b)

. . T.

p(VO; i,e5;3,T) 3
n

it is clear that vop € TR(C O(w)) . Thus the same proof used

in Case 2(a) will go through with Wy defined by

’xSo-O if s# i, m
X by = § o if s =1
s™1 4

L %Xy if s=m
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Case 2(d). Let i # j, let u, = u =1 , and abbreviate the
J J z T J )

n
substitution ¢ . . T T, by p . Since v_€ ¢ O(w) 5
(Vg3 ise5 5, M 1 j 0
it is clear that VP € TR(C “(w)) . Again we use the same

proof as in Case 2(a) but with by defined by

4

X 9, if s # m

THE COMPLETENESS OF = C(w).

We are now in a position to prove the following

Theorem.

Theorem 2.13. For each w € X ;, C(w) 1s a complete set of

images for w .

Proof. We must verify that the set C(w) satisfies

Definition 2.1(i) and (ii).

(i) Let u € C(w) , then there is a least integer k
such that u € Ck(w) . We will prove by induction on k that
for each u € Ck(w) there is a substitution g from X into
X such that ;ﬂz = u

If k=0, then u€ Co(w) = {wvo} where vy brings

w into normal form. Since w € X , we know that wvo is freely

reduced; therefore, u = vva and we are done. Now suppose
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u € Ck+1(w) = IVII\ITR(Ck(w)) , then there is a word v € Ck(w)

and there exist substitutions p, T and Vv (any of which

may be the identity substitution) such that u = vp Ty V

Here p 1is a replacement defined for v , Toz is a trivialization

(see Definitions 2.3 and 2.4), and v is the level substitution

which brings 0 Ta' to normal form. By the induction hypo-
thesis applied to v , there exists a substitution by from X
into X such that ;«7_@1 = v . By Lemma 2.7, ;—p:lp is a

partially reduced form of VP o3 therefore,

p = ﬁl P = Wpyo . Again by Lemma 2.7 Vi P T, is a partially

reduced form of LAV p’ra thus, 7_5 Toz = Wiy pToz = Wiy p'ra

Applying Lemma 2.7 once more we see that Vg P Toz\) is a

partially reduced form of Wi P 'ra\) ; therefore

u = p'ra\)=wu1pTa\)=wulp'ra\) . Thus U
is a substitution from X into X such that —vﬁ; = u .

(ii) Let |, be a substitution from X into X
such that Wy # 1 . We may assume w.f.o.g. that w is in

normal form since the following proof could be given beginning
with wv (where v brings w to normal form) and v_lp,

instead of w and | . By Lemma 2.8, there exists a reduced

substitution ¢ from X into X such that wo =§7_p: # 1
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and d(wo) < d(wp) . Since we have assumed that w 1is in
normal form we have w € CO(w) . We induct on d(wo) to
obtain the final result.

If d(wo) = 0 , by Corollary 2.11, there exists a
word v € Cn(w) for some integer n = 0 and a substitution
TGSX(V) such that vT = wg . But wc5=—_5=ﬁ ,
and so v T = ﬁ and the proof is complete.

If d(wo) > 0 , we apply Lemma 2.12 to w and o .
Since d(wo) # 0 , there exists a word vy € Cl(w) and a
reduced substitution ¢ from X into X such that

1
=wgo and d(vlcl) <d(wo) . If d(v

101) >0 we

can apply Lemma 2.12 to Vi and o1 - By repeated applications

. m
of Lemma 2.12, we arrive at a word v € C (w) and a reduced
substitution o from X into X such that v O, = VO and

d(vmcm) = 0 . Thus, by Corollary 2.11, there is a word

v € Cn(w) for some integer n = m and a substitution T € SX(V)

such that vT =v 0 = wo =wy
m m

Since v € Cn(w) , from Lemma 2.6(a) we see that there

exists a word u € C(w) such that u S v . Thus there is a

substitution v € SX(u) such that uvy v . The substitution
YT is the composition of two c¢-free substitutions and hence

is c-free. Thus we have u € C(w) and VYT € SX(u) such that

uyYT =vT = wy , as required. =
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CHARACTERIZATION OF C(w) FROM ABOVE.

Theorem 2.14. If w € X ; then C(w) = N N(I) where J& is
1€9

the class of all complete sets of images for w .

Proof. Since each element of C(w) is in normal form, we have
NC(w) = C(w) . By Theorem 2.13, C(w) € & ; thus it follows that

N N(I) < NC(w) = C(w) . Therefore it suffices to show that the
IES

reverse inclusion holds.

Let I €3 and consider the set N(I); this is defined
to be the set of words in I put into normal form. It is easy
to see that since I € J , we also have N(I) € J . Thus both
C(w) and N(I) satisfy Definition 2.1(1) and (ii).

Given any word u € C(w) we know that there exists
a substitution ¢ from X into X such that wog = u , by
2.1(i) for C(w) . By condition 2.1(ii) for N(I) , there is

a word v € N(I) and a substitution 7T € SX(V) such that

VT =u, i.e. vSu . By condition 2.1(i) applied to N(I),
there is a substitution ¢’ from X into X such that wg =1v .

Thus, by 2.1(ii) applied to C(w), there is a word u’ € C(w) and

a substitution T’ € SX(u/) such that u't’ = v , i.e. u ZSv.

Thus we have u’ Tv S u » and by the minimality of the elements

in C(w) it follows that u’ == v =1y . Now by Lemma 1.8(c), we
have v = u; thus C(w) € N(I) for each I € d and therefore

C(w) € N N(I) as required. =
169
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CHAPTER 3
*-GRAPHS

In this chapter we discuss certain diagrams in
Euclidean 2-space which we refer to as *-graphs (see Definition 3.2).
A procedure, Fl , for "simplifying" these *-graphs, is given and
several facts are proved about this procedure. The results of

this section will be applied, in Chapter 4, to the c-free solu-

tion of certain quadratic verbal equationms.

Definition 3.1. Let m be a Euclidean plane. A diagram, 8 ,

in 1w is a pair (V, E) where V 1is a finite set of points in
m and E is a set of (not necessarily straight) line segments.
in- m whose endpoints form a subset of V . Furthermore, two
distinct points v, v/ € V determine at most one line segment,
(v, v') € E » joining them. If such a line segment exists, we say
that v and v’ are adjacent. The sets V and E will be

referred to, respectively, as the vertices and edges of ® . If

8 = (V', E') is a diagram in m with V' €V and E’ ¢ E , we
call 8’ a subdiagram of §

Definition 3.2, Let za and ﬂb be two horizontal parallel lines

in the plane 1m with Za above and £b below, and let
{al, a5, ", am} and {bl, byy tovy bn} be non-empty finite

subsets of points on ﬁa and Ab respectively, linearly ordered
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from left to right (di.e. a; < aj means - a, is to the left of

aj on £a) - A *-graph (star-graph) G = (V, E) 1is a diagram
in m such that:

(1) v= {al, 8y, v, @, by, by, tee, bn} s

and (2) the set E satisfies (i) and (ii) below.

(1) A vertex on za is joined by an edge to at most
one other vertex on Ea and at least one other vertex on zb .
Similarly, a vertex on £b is joined by an edge to at most one
other vertex on £b and at least one other vertex on Ea .

(ii) The edges joining vertices on opposite lines are

straight line segments which intersect only at the vertices of G .

Examples. 1In the following diagrams: Ql and QZ are *—graphé,
and are not *-graphs, since they fail to satisfy

3 4 8 ’

property 2(i), and QS is not a *-graph since it fails to satisfy

property 2(ii).
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Definition 3.3. If v 1is a vertex of a *-graph, G = (V, E) , we

define the opposite-line degree and the same-line degree of v as

follows:
dego(v, G) = card{w on fhe line opposite to v for
which (v, w) € E} ,
and degs(v, G) = card{w on the same line as v for which

(v, w) € E} .
Remarks. When the meaning is clear from context, we will abbre-
viate dego(v, G) and degs(v, G) by aego(v) and degs(v)
respectively. We note that condition 2(i) of Definition 3.2,
then takes the form:

2(i)': For each v €V , dego(v) = 1 and degs(v) < 1.

Definition 3.4. If G is a *-graph, the deviation of § , denoted

dev(G) , is T (dego(v) = 1) . If dev(@) = 0 , we say that §
vev

is a simple *-graph. (The *-graph, Ql , in the previous example is

simple.)
It is straightforward to verify the following lemma.

Lemma 3.5. (a) G = (V, E) 1is simple if and only if dego(v) = 1
for each v € V .

(b) If a; < a, < -+ < a and b1 < b2 < -+ <b
are respectively the vertices on Za and zb of a simple

*-graph, G , then m = n and the set of edges joining za and

£, in G is precisely {(ai’ b): i=1,2, -+, n]
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(¢) If v 1is a vertex of a simple *-graph, G , then

v lies on a unique, maximal path in G ; this path islsimple and
may be closed. That is, there exists a maximal set of pairwise

ad jacent edges of Q b/ {(V]_; Vz); (VZ) VB); Y (vq__l} Vq)} b

such that v = for some k , and v, = Vj implies that

Vi s
i =3 or (in the event that this path is closed) that i =1

and j=q or i=gq and j =1 . By "maximal" we mean that

any other path containing v is a subpath of this maximal one.

Definition 3.6. If G = (V, E) is a diagram with vertices V

and edges E ,
(a) Removal of a vertex v € V from G results in
the diagram G - v = (V', E’) where V' =V \ {v} and
E' = E\ {(v, w) : wE€ vi .
(b) Removal of an edge (v, v') € E from G results
in the diagram G - (v, v') = (v, E') where v/ =V and
’

E°=E\ {(v, vH}.

(¢) Addition of a vertex v to (G results in the

diagram G + v = (V', E’) where V' =V U {vl and E’' =&

(d) Addition of an edge (v, v') to G , providing

v, v €V , results in the diagram G + (v, v') = (V', E')

where V' =V and E' = EU {(v, v/)} . (Addition of a set, E; ,
. ’ 7
of edges to G results in G + E1 = (V, E') where E =E U El)

(e) The sum of the diagrams G = (V, E) and ¥ = (V' , E')

is the diagram G+ ¥ = (VU V', EUE")
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THE *-GRAPH SIMPLIFICATION PROCEDURE.

In the following discussion we will be dealing with
*-graphs whose vertices are labelled (not necessarily uniquely)
€ . . .
by the symbols {xa : e € {~1, +1} and o = (11, iy w0y lt)
is a finite sequence of positive integers} . .At this stage, our
requirement for the labelling is that if v and v’ are ad jacent

~

vertices of G on the same line (i.e. both on Za or ﬁb) 5

then they must be labelled by symbols, xg and XB

(indexed by
the same sequence). Later we will apply the results of this sec-
tion to find the c-free solutions of certain quadratic verbal
equations in free groups. We will see that, upon "translating"
an equation into the context of *-graphs, "simplifying" these
#*-graphs according to the procedure defined below, and then
"translating" back into a verbal setting, we get a procedure for
solving the equation in question. Below we define this simpli-

fication procedure and prove some useful facts about its effect

on a *-graph, labelled as above.

Definition 3.7. Let G = (V, E) be a *-graph, labelled as above,

and let v be a vertex of § . The *-graph simplification

procedure, Fi ; 1s a mapping which sends the labelled *-graph G
1
to a finite set of labelled *-graphs which we denote by FV(Q)

and define below.
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Without loss of generality we assume that v lies on
Za ; since the procedure is defined symmetrically if v 1is on
ﬂb (i.e. we interchange x and y , a and b, and o and B
in the following definition, to oBtain the definition of Fi(Q) 5

when v 1is on Eb) . Suppose v is labelled by the symbol

x; , where o 1is a finite sequence of positive integers and
e € {~1, 41} . There are two cases to consider.
Case 1, (degs(v) = 0) . Let dego(v) = m(= 1) and let

w, <w, < -++ <w_ be the m vertices of ¢ on {4, which are
1 2 m b

adjacent to v . Fi(Q) consists of the set containing the single
*-graph defined as follows:

If v 1is not the leftmost vertex on za in G , then
there exists a vertex, x , of ¢ in Za such that x < v , and y<v

implies that y = x . We say that x 1is immediately to the left

of v . We define immediately to the right symmetrically.

To the diagram G - v , we add m vertices,

v, < v, < < v such that x < v and v < where x
1 2 m ’ 1 m LA

and y are the vertices of ( which are, respectively,
immediately to the left and right of v in G . (If v is
leftmost or rightmost on ﬂa , we omit the meaningless condition).

According to whether ¢ =1 or -1 we label v,, v cr, v

1’ "2’ m

@, 1) 7 “@,2) " e, my )

oL il con ot
(@, m) > “(o, m=1) ~’ 7 e, 1)

by the symbols x

To this diagram, we add
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the edges {(vi, wi) : i=1, -, m} , and call the resulting

labelled *-graph Ql. We then denote the set {Ql} by Fi(Q)

Case I1. (degs(v) =1) . Let (v, v’') be the edge with v’ on

/
za ; let dego(v) =m , dego(v ) =n, and let W) < Wy < cee < W

and w{ < wé < e < w; be the vertices of ¢ on Zb which are

adjacent to v and v’ respectively.
To the diagram (G - v) -~ v’ we add the 2m vertices

v, < v, < . < vy and v! <v! < .- <v’ such that x < v
m 1 2 - m

1 2 1 °

’

f
v < x <
m I Vi

and v; <y’ where x and y and x' and

y! are, respectively, immediately to the left and right of v

and v’ in G . (If either v or v’ is leftmost or right~

most on ﬂa , we omit the meaningless conditions.) Suppose

il

that v and v’ are labelled by %; and X, in G ,

where ¢, N € {-1, 1} . According to whether ¢ =1 or -1 we
label Vis Vo, Tty Vo by the symbols X(a, 1) x(a’ 2y Tt
X or i—l x—1 v x_1 and accordin

(@, m) (@, m)’ (@, m-1)" 7 F(a, 1)’ &
to whether T =1 or -1 we label vi, vé, sy, V; by the
symbols x b4 e, X or x_l xfl

d (@, 1)’ @, 2”77 F@, w @, )’ *@, m~1),

o 0 X—l

7 e, 1)
To this diagram we add the edges {(vi, v;) : 1=

1,2, ---, m} or {(Vi) Vm,—i-{-l) : i=1, 2, ...)m}

m
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respectively as ¢ =1 or ¢ #7 . Also we add the (straight

line) edges {(Vi, wi) : i=1,2, ..., m} and
{(vi, wi), (v;, wé)} and call the resulting diagram § .
The set, {(v;, wg) : i=1,2, --+, m and

j=1,2, --- n} , is the set of all possible (straight line)
edges between the vi and wé vertices and is clearly finite,
thus it has only finitely many subsets. Let El’ E2, cee, Ek

be those subsets such that each diagram & + Ei , is a *-graph.
Let ql’ QZ’ cee Qk denote these *-graphs and let Fi(@)

denote the set {Ql, QZ’ s Qk}

Examples. Given the following *-graph,

applying the simplification procedure (Case I) to the upper

vertex, we get
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And, given the *-graph

applying the simplification procedure to the upper left vertex,

we get,

%2, 1y

and

G2, 2y

G2, 3)F
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Notation. If ( is a labelled *-graph with vertices V , we will

use the notation, Tl(Q) ; to denote the finite set U Fi(Q) ,
vev

and if {Ql, Gys 70 Qn} is a finite set of labelled *-graphs,

we define Fl({Ql, QZ’ <o Qn}) to be the finite set

n —
U rl(qi> . Also we let T(@) =T " @) for n>1 :
i=1 -

note that, for each n , I'"'(G) is a finite set. Finally, we
let T(G) denote the set 8 Fn(Q)
n=1

The study of what types of *-graphs these sets contain
will prove interesting and useful. The labelling of the *-graphs
will assume importance only for purposes of application; thus we
will ignore the labelling for the rest of this chapter, remembering
that since some labelling exists, we can apply the simplification
procedure. The following Lemma justifies the use of the word
"simplification'" to describe the procedure Fi
Lemma 3.8. Let v be a vertex of a *-graph, G .

(a) If degs(v) = 0 , then

dev(l) = dev(G) - (dego(v) - 1)

for each ¥ € Fi(@) (in this case there is only one such X )
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(b) 1If degs(v) =1, and v’ is adjacent to v and
on the same line as v , then

dev(@) = £(deg (v), deg,(v')) = dev(d) < dev(G)

for each ¥ € Fi(Q) , where f£(x, y) = (x~- 1) + (y - 1) ~
](x - 1) - (y~- l)‘ . Furthermore, these bounds are best

possible,
Note that if ¥ € Fi(Q) , then dev(#) < dev(G) ; thus

the procedure Ti does tend to "simplify" G 1in the sense that

Fi produces *-graphs which are of deviation no 1érger than that

of G .

Proof. (a) Since degs(v) = 0 , the single *-graph, ¥ , in

Ti(Q) results from G by replacing the vertex v by the

m( = dego(v)) vertices v

v v and the edges

10 Vs Ttes
{(v, w.): 1=1,2, ..., m} by the edges

{(vi, wi) : i=1,2, *++, m} . Thus dego(w, G = deg_(w, 3)
if w isnot v (in G) or some v (in H) for

i=1,2, ---, m. Therefore, since dego(vi, ) =1, it

follows that
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, m
z (dego(w, H) - 1) + % (dego(vi, H -~ 1)
w#vi i=1

dev(#)

= I (deg (w, M) - 1) = T (deg_(w, §) - 1)
w#vi wiv

= dev(@) - (deg (v, @) - 1)

(b) Let ¥H be a *-graph in Fi(@) produced by replacing

v and v’ by Vis Vo, s, Vo and vi, vé, cev, v' and

choosing (according to Definition 3.7, Case II), E' a subset
of {(vi, W;)V: i=1, -+, m and j=1, ..., n} , where

7

7 ’ _ ’ . .
Wi, Wo, tee, Woooare the n( = dego(v )) vertices on Zb which

are adjacent to v’ in G . Let X be the subdiagram of ¥

. . £ h . ! ! / d / / . ’
consisting of the vertices Vis Voot vooand wp, oW, , W

with edges E’ U {(vi, wi), (v;, wé)} .

First we establish the upper bound. It is easy to see
that if m=1 or n =1, then dev(¥) = dev(G) ; thus w.b.o.g.

we assume that m, n > 1 . Note that dego(w, G) = dego(w, H)

1,2, -+, n) (in @) or if

if w is not v, v', or a w; (i s
w is not a Vi v; (i=1,2, ---, m), or a w; (j=1,2, ---, n)

(in H) . Thus we have
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(1) T (deg (w, - 1) = T (deg (w, W) = 1)
w#v,v/,wj w#vi,vi,wj

The following equations also hold:

(2) dego(viJ H)y = 1 1<i<m,

(3)  deg (vi, ¥) = deg (v, X) (L<ism,
? _ / .

(@) deg (v, ) = deg (W}, K) (L<i<n),

(5)  deg (w;, ) = (deg (w;, G) = 1) + deg_(vy, ¥) ,

(6)  deg (w , W) = (deg_(w', G) = 1) + deg_(w/, X)

These equalities are easily verified by counting the appropriate
edges added to (G - {v}) - {v'} during the simplification
process (see Case II Definition 3.7). The following diagrams
serve to illustrate the situation. (Note that we have drawn
only some of the edges between za and %b and none of the

edges connecting vertices on the same line.)
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Now,

dev(@® = T | (deg (w, G) = 1) + (deg (v, G) - 1) +
WiV, v ,wj

(deg (v, §) = 1) + (deg (w), @) = 1) + (deg (', @) - 1) ,
since dego(wl., G) —1=0 for 1< j<n.
J
Thus, by (1), (5), and (6), we have

dev(G) = T , l(dego(w, -+ m-1)+ (n~-1) +

WiV, , V., w,
i’ 717 7

dego(w]/_, Hy - dego(wi, X)) + dego(wr’l, H) - dEgo(wrlx’ ) .

Now,

dev(d) = = I(dego(w, H)y - 1) +

WAV, , v, w
i} i) j

m m ’
i'i,"l(dego(vi, H) = 1) + izl (dego(vi, B ~-1) +

T ™Ms

(dego(wg, H) - 1) .

i=1

And, by (2), (3), and (4), we have

dev(}) = bY , l(dego(w, W - 1) +

WFV,., V., W,
.T‘l) i’ j

- .
 (deg (vi, ¥) = 1) + (deg_(w;, ¥) = 1) +
i=1

n-1
’ ’
j§2<dego(wj’ H) - 1) + (dego(wn) 3:i) - l) .
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Thus,

dev(}) ~ dev(¥) = (m~ 1) + (n - 1) - dego(w{, Xy + 1 -

m
deg (W, X) + 1 - I (deB v, 10 = 1) -

1
z

2<dego<w3, K) - 1)
5=

-

m
=m+n- (32 (dego(v£, K) — 1) +
i=1

nMp
ey

(deg, (w3, ¥) = 1)) = 2

J

n

(m+n - 2) - dev(®)

Therefore it suffices to prove that dev({) <m+ n - 2

We prove that dev() <m+ n ~ 2 by induction on n .
If n=1, the result is clear. If 1l <k < n , our inductive
hypothesis is; given a #*-graph with k vertices on one line and
m vertices on the other, the deviation of such a graph is
bounded by m+ k - 2 . We let X be a *-graph, with m ver-

tices on one line and n on the other, which has maximal

deviation. Let us call the vertices of X s vi, vé, , v and
m
' ’ . ’
Wy, W, s W
We claim that there is an i (1 < i < m) for which
dego(vg) = 2 . Suppose the claim is not true, then dego(vé) =1
for each i . Since n > 1 , we have wi and wé , distinct

. . . . . . ’
vertices, and since X is a *-graph, there exist vertices vy
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’ / / / /
and Vitk such that (Vi’ wl) and (Vi-+k’ w2) are edges

of X . If 0<gq=<k, then since X is a *-graph, each

!

vertex v{ , is adjacent to wi or w, . Thus for some q

+q

between 0 and k , we have that (vi_{~ s wi) and

q

!

' . ' o
(Vi*-qi-l’ w2) are edges of ¥ ; but since dego(vi) =1 for

~

4 ’ 4
R WZ). and (Vii-qi-l’ wl) are not edges of X

I

each i | (vi+q

The graph ¥ + (vi-kq’ wé) is clearly still a *-graph, but

dev( + (Véi-q’ wé)) = dev() + 2 > dev(X) . This contradicts
the maximality of dev({) ; therefore the claim is true.

Let wé and w’ be adjacent to v{ . Let P be the

_]+1

/ /

subdiagram of ¥ with vertices vi, Vos Tt VL and

1 / L.
le wz} 2

ws and with all edges of ¥ which join these
vertices; and let 2 be the subdiagram of ¥ with vertices

v, v! oo, v and w’ w! s
i? Ti+ 1 ’ 'm j+L Tij+ 2 ’

w; and with all
edges of ¥ which join these vertices. The deviations of P
and ) must be maximal since ¥ is chosen to have maximal
deviation. Also dev(®) = dev(P) + dev(D) + 1 where the extra
"1" is added since the vertex v£ in X will have degree one
more than we count in # and 2 together. By induction,
dev(P) = i+ j~ 2 and dev(®) = m - (i - )+ (- 3) -2, so

dev) = (i+ j-2)+ (m=- A -1+ (-3 -2)+1l=m+n- 2",
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In order to show that this upperAbound is best
possible, it suffices to exhibit a *-graph, ¥ , with m points
on one line and n points on the other such that-
dev(¥) = m+ n - 2 . It is easily verified that the following

*-graph has this property.

’ / ’
Vin Vagy Vi

7 7 / I3 4
Wy Wg Wg Wn-y Wa
(assuming w.£.o.g. that m = n)

Lastly, we establish the lower bound. Proceeding as
in the case of the upper bound, we note that it suffices to show
thét a *-graph X with m vertices on one line and n on the
other must have dev() = (m + n - 2) - f(m, n) = lm - nl . We
assume w.f.0.g. that m = n , thus Im - nI =m=n . Since ¥ .
is a *-graph, each of the vi vertices is adjacent to at least

n
one of the w3 vertices, thus ¢ dego(wg) 2 m . Therefore,

i=1

dev(¥) = § (dego(v{) - 1) + § (deg (w') - 1) 2
i=1 t =1 °

n , n
.Z (dego(wj) - 1) = (.Z

dego(wf)) - nzm-=n = lm - n‘.
j=1 j=1 ]
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This bound is best possible, as illustrated by the
fact that the following *-graph has deviation m - n (where

m2n w.f.o.g.).

Definition 3.9. (a) If v 1is a vertex of a *-graph G for

which degs(v) =0 , we will call v an end of G .

(b) We denote the number of ends of G by

ends (G)

Lemma 3.10. If v 1is a vertex of a *-graph, G , and

H € Ti(Q) , then dev(H) + ends(M) < dev(G) + ends(G) , with
equality if and only if either v 1is an end or dev(H) = dev(G)

Proof. If v is an end of G , the number of "new" ends in ¥
is dego(v, @ - 1. By Lemma 3.8(a),
dev(#) = dev(G) - (dego(v, G) - 1), and, by Case I of
Definition 3.7, ends(#) = ends(G) + (dego(vJ G) - 1) . Therefore,
dev(H) + ends(¥H) = dev(G) - (dego(v, @) - 1) + ends(G) +
(degO(v) G) - 1) = dev(G) + ends (G)
If v is not an end of § , there is some vertex v’
on the same line as v and adjacent to v . Since no "new"

ends are added in going from (G to ¥ by Fi , we have
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ends(#) = ends(G) . By Lemma 3.8(b), dev(H) < dev(§) . Thus
dev(H) + ends(¥) < dev(G) + ends(§) with equality if and only

if dev() = dév(Q) . 8

We are now in a position to make the following

important observation:

Theorem 3.11. If G is a *-graph and H is a simple *-graph

in T(§) , then ends(¥) < dev(G) + ends(}) < 2(card(V) - 1) ,

where V 1is the set of vertices of G .

Proof. Since M €T(G) it follows that ¥ € I'(G) for some n ;
so, by induction on =n , using the previous Lemma we have

dev(#) + ends(¥) < dev(G) + ends{(G) . But since ¥ is simple,
dev(H) = 0 ; thus ends(H) < dev(G) + ends(G) . If G is a
*-graph with m vertices on one line and n vertices on the
other, we could have at most m + n ends, and we have already-
shown, during the proof of Lemma 3.8(b), that dev(() <m -+ n - 2 .
Therefore dev(() + ends(G) < (m+ n - 2) + (m + n) =

2(m+ n) - 2 = 2(card(V) - 1). =

The above Theorem says that when a simple *-graph, ¥ ,
is produced from a *-graph, G , by repeated applications of Fl 5
the number of ends of ¥ is bounded by a constant associated with
the original *-graph. When a quadratic verbal equation is "trans-

lated" into a set of *-graphs and the simplification procedure



68.

is applied repeatedly, the simple *-graphs resulting from this
process can then be "translated" into solutions of the original
equation. Theorem 3.11 will allow us to bound these solutions in

some sense (see Corollary 4.12),
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CHAPTER 4

THE c-FREE SOLUTIONS TO CERTAIN EQUATIONS

In this chapter we will be interested in the c-free

¥ , for which

solutions to any quadratic verbal equation, 2 9

P

Supp(wl) il Supp(wz) = ¢ . We begin by defining a set,

Q(wl, wz) (Definition 4.1), of labelled *-graphs associated

with the equation, w, ¥ w Applying the simplification pro-

1
cedure repeatedly, we obtain the set F(Q(wl, w2)) . Next we

2

give a procedure (Definition 4.2) for relabelling the simple
(labelled) *-graphs in F(Q(wl, w2)) . This procedure may
produce an "incomplete" relabelling for some simple *-graphs, but
‘for those simple *-graphs, G € F(Q(wl, w2)) , for which the
relabelling is complete, we can define a pair, (ul, uz) , of
substitutions said to be "derived" (Definition 4.3) from G .
This pair may or may not be a c-free solution to w1;¥ Lo We
define the set KX(wl, wz) (Definition 4.5) to be the set of all
those pairs, (ul, uz) ; which are also c-free solutions to the

equation, w, ¥ y Our main result (Theorem 4.7) is that

1 - "2
Kx(wl, w2) is a complete (Definition 4.6) set of c-free solu-

. . v
tions in X to w1 < w2
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THE *-GRAPHS OF AN EQUATION.

Throughout this chapter we fix the non-empty reduced

quadratic words

e) e | c(m TSR Te SN T
L RS@ 5@ T w2 TR a) Fi@) T *y)

Definition 4.1. The set of labelled *-graphs of the equation

2 - LI denoted Q(wl, wz) ; 1s the finite set of labelled

*-graphs, {ﬁl, ﬁz, cee, H (k 2 1) , defined as follows:

.
With 1 , ﬁa , and Eb as in Chapter 3, we let

ﬁo = (V, ¢) be a diagram in m with vertices, respectively,

ay < a, < -+ < a_ and b1 < b2 < e < bn . We label a by<

¢ (- NGy
%5 (r) (t=1,2, -+, m) and b, by X5 (s) (s=1,2, --+, n)

and let H be the diagram in 1 produced- by adding edges to

HO according to the following rule:

For each x,

i) - Fi(sy) (¢ 7 8) , add the edge

(ar, as) , and for each x (r # s) , add the edge

. = X,
i(x) i(s)
(b_, b))

Thus, in ¥ , vertices on the same line are adjacent if
and only if their labels have the same subscript. Note that,

since Wy and W, are quadratic words, degs(v) <1 for each

v € V (see Definition 3.3).
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Letting E = {(ai, bj) : i= 1,‘2, +++, m and

j=1,2, ---, n} , we choose those subsets, El’ E2, s Ek s

of E for which Y+ E, (#=1,2, -+, k) is a *-graph, in
accordance with 2(i)l and 2(ii) of Definition 3.2. Letting

ﬂi =Y + E, for each i =1, 2, -+, k , we denote the set of

labelled +*-graphs, {ﬁl, ﬁz, seey Hk} , by Q(w1J wz)

. . z . .
Example. Given the equation X ¥y = XpXg the diagrams mentioned

above are as follows:

X X
__________ Pt S
a
HO:
.......... € e
Xg X3 b
________ - lmf}“-_"_- 4
R a
H:
---------- L ey R R SONpE N zb




72,

THE RELABELLING PROCEDURE,

Definition 4.2, Below we define a relabelling procedure for any

simple labelled *-graph @ € F(Q(wl, w2)) . Since G is simple,
Lemma 3.5(b) implies that G has the same number of vertices on

ﬂa and Zb , thus we let the vertices of G be

1 < a, < e < ap and b1 < b2 <+ <b ,

respectively labelled by

YA Y@ ) 8(L)y  6(2)  8(p)
a1y 2 Fa(2) ¢ C R (p) M Xg(1) 0 Xg(2) o *Bp)

where the o (i)'s and B(i)'s are finite sequences of positive
integers and v(i), 8§(i) € {-1, +1} . We define a mapping 6
from the edges of G into {~1, +1} as follows:

G(ar, as) = ¥Y(r) * v(s) , e(br, bs) = 06(r) ¢« 8(s) , and
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e(ar, bi) =1 . (Note that (ar, bs) (r # s) 1is not an edge of

G , since G is simple.) By Lemma 3.5(c), G can be viewed as
a sum (see Definition 3.6(e)) of disjoint maximal paths,

G = Pl + Pz + -+ Pk . The relabelling procedure will be
defined for G 1in terms of the relabelling of each path Py -

We relabel Pi (1 < i < k) as follows;
Let a_ be the left most vertex on za in the path Pi;

relabel a, by X, . Now suppose that v( # ar) is a vertex

in Pi ; if Pi is not closed it has a unique subpath,

Ly, 10 v, 900 O 9o vy g)s s g v )

where v = a and v =v . If ., 1is closed it has two
1,1 T 1,s i

subpaths joining a, and v , in this case denote the second path
.by

(v, 1Y, 900 (7 55 V2,300 Gy g vy DY

where vz,]' =a and V2, ¢ TV .. We let

e =00y, 15 vy, )t 00y 5, V1,3 " 0l g V1, s
and

e, = 0(v

2,172, 2) "0, 9y vy )0 s 0y =1, V2, ¢)

(e2 is defined only if Pi is closed.) 1If Pi is closed
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and e # e the path Pi cannot be relabelled, If e; = e

e
or if Pi is not closed, we relabel v by Xil . We

continue.relabelling the vertices of Pi until Pi is
completely relabelled or until we come to a vertex, v , for which
e # e, , in which case we stop. |

The relabelling of G is accomplished by relabelling
each of the paths Pi (1 =i=<k). Ifall of these paths can
be relabelled, we say the relabelling procedure completely
relabels @ ; otherwise we say the relabelling procedure is

incomplete for ¢ .

Examples. The paths Pl and P2 are relabelled as indicated,

P3 cannot be relabelled.

X3

Xg

P.: (relabelled)
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X1
PZ:
lel
PZ: (relabelled)
Tl
PB:

Xg

Remarks. (1) 1If the relabelling procedure is incomplete for a

simple *-graph, G , then there is a closed maximal path in G ,

Pl = {(Vl) Vz): (V2; VS), Tty (Vq-—l’ Vq)} (Vl = Vq) 5
such that

OV, V) * B(v,, V) ¢ e s e(v“q_l, v = -l
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This is clear, since for some vertex v on P. , e, #F e,
i 1 2

thus €2, (= 6(v1, Vz).‘ G(Vz, v3) ¢ e e(vq-l’ Vq)) =-1.
(2) 1f G 1is completely relabelled by the relabelling
procedure, then a, and bt (1 = t £ p) are relabelled by the
same x-symbol,
(3) The number of distinct x-symbols (not counting

inverses) used in the relabelling of G 1is precisely k , the

number of disjoint maximal paths in G .

THE SET K (v, w,)
Let G be a simple labelled *-graph in
F(Q(wl, w2)) which is completely relabelled by the relabelling

procedure. Suppose the vertices of G ,

<'=11<a2<---<ap and bl<b2<---<b ,

were originally labelled

D@ vk 5L 82 . 6(p)

w(1) 7 Fa2) 0 T Fap) ™ Fg(1) 0 %p(2) > *3(p)
and are relabélled
e(l) _e(2) e(p) e(l) e e
o) @) 0 T NG B Ry v Ko@) 0 T By

where the v(i)'s are positive integers and e(i) € -1, +1} .
(Note that the new labels for a_ and br (1 £r <p) are the

same by Remark 2 following Definition 4.2.)
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Since G € F(Q(wl, w2)) , there is a labelled *-graph
QO € Q(wl, wz) (see Definition 4.1), with vertices
<al< .- <a’ d b, <bl <. <b’
45 % S L) n

respectively labelled

e(l) _e(2) . _e(m) N N2 N (n)

) i@ U My 2 %) %5y T ¥y
and there is a sequence of *-graphs, Ql, QZ""" Qz , such that
qi%—l € Fi (Qi) O0=si<yg~-1, v, a vertex of Qi) and

i
G, = G .

We define a map, ko 12 from the labels of QO to
2
sequences of labels of Ql (S Fi (QO)) as follows:
0

We will assume w.4.o0.g. that o a; (if vy is on

zb , the mapping bo 1 is defined similarly).
. J

1. 1If degs(a;) =0 we let

, N (s) = N(s)
(i) Xj(s) MO, 1 xj(s) (Egi siqze:cz Zf length 1)
(ii) xe(s) = (9 for s#r (1 <s < m)

i(s) Po,1 7 *i(e)

CFEE), D REE), 2 T Xy, @)
e i e =1
(lll)xi(r)“o,f
k_l k—l . X—l
(1(r), d)” “(i(r), &=1)" 7 F(i(ry, 1)

if e(r) = -1 ,
where d = dego(a;, QO)
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Note, by Definition 3.7, Case I,'po 1 sends a label
2
of to the label, or sequence of labels, which it corresponds
O 2 2

to in Ql
Iy _ ' ! .
2. 1If degs(ar) =1 , say (ar, at) is an edge of QO , we

let Bo 1 be defined as in part 1, except that when s =t we
2 .

/

Let @), 1) Fac), 27 T F (e, @

(iv) xigg bo, 1 = if e(t) = 1
-1 -1

\ X(i(t), d):x i(t), d—l), e

X—l
7 U((E), 1)

if e(t) = -1 .

In this case, also sends a label in QO to the correspond-

3 UJO’]_
ing label, or sequence of labels, in Ql (see Definition 3.7,
Case II.)

Similarly, we can define from the labels of

i i+l
Qi to the labels of Qi-&l (€ Fii(Qi)) (i.e. we send each

label of Qi to the corresponding label, or sequence of labels
in Qi%—l') Thus the composition bo, 1hy, 0 bo-1, 4

sends each label of QO to the sequence of labels in Qz which
ultimately replace it.

Definition 4.3. If ¢ (as above) is a simple *-graph in

T(Q(wl, WZ)) which is completely relabelled by the/relabelling

procedure, we define the pair (“1’ “2) ; derived from G as

follows:
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Wyt If X € Supp(wl) then there is a least r
(1 £ r <m) such that X, = Xi(r) We let
1 8 R G
where XSEB, x\‘:‘gﬂ;, e xjg:;g (Isi<i+ j<p)

is the sequence of new labels which replaces the sequence

e () N _ Y@ YE+HD) oy )
*i(r) Yo, 11, 2 b1, ¢ Fa (i) Fa(i+1)° P X1+ )
when Qz is relabelled.

1f X ¢ Supp(wl) , let X By = X -

ot If X € Supp(wz) T is defined similarly;
if X ¢ Supp(wz) we let X Py = X o
Lemma 4.4. With G and (ul, uz) as above, we have

e(l) e(2) e(p) _

v ) Fv@) T Fup) T Mol

1H1
Proof. To see the lefthand equality, we first note that if Wy
is quadratic in X, , say s = i(r) = i(t) (I<sr<tsm,

then (a;, a;) is an edge of QO and for some k (> i + j)

the vertices 4 3 4 °'.’-ak-Fj are precisely the vertices
of Qz which ultimately replace a; . Furthermore, the labels
YO YR+ v )

a(k)? To+1)’ T Fa(k+ §)
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equal either

Y(i) _v(i+1) Y(i+3)
Ta(i)? Fa(i+1)’ w(i+i) O°F
Y@+ YA+ -1 =y
Ta(i+ ) ) Ta(i+ -1y > T (i)

as e(r)e(t) =+l or —1. All this follows from Definition 3.7 by
a straightforward induction on £ (the number of times the
simplification procedure was applied to obtaiﬁ G .) Since
either

)i 0<gq=<jl or {(ai+_ s ak+—j-q> : 0=qc< 3}

{(ai4-q’ ak—l—q q

are edges of G , when G 1is relabelled we have

e(i) _e(i+1) e(i+ j).e(x) _ e(k) e(k+1) L..owek+ ) e(p)
Co@) @+ T Bu(ia ) = G50 B +1) okt 7))
Thus xe(t) e(k)  e(k+1) xSk Since Wy sends

1M T ) +1) T B+ )
each Xig;; in Wy to the product of the new labels of the
vertices in G which ultimately replace the vertex a; in QO

(even if 2 is quadratic in Xi(r) ) , the lefthand equality

follows,

The righthand equality is verified similarly., =
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Definition 4.5. Letting § = {(ul, uz) : (pl, uz) is derived
from a simple *-graph in T(Q(wl, w2)) which can be completely
relabelled}, we set Re@y, wy) = 81N Sx(wl, w,) (see

Definition 1.3(c)).

Example. Suppose we wish to find Kx(x Referring to

1%17 ¥2%3)

the example following Definition 4.1, we have

e

Q(xlxl, X,X5) = {ﬁl, HZ, H3} , where Hl, HZ’ and H3 are given

in that example. ﬁl is simple, thus when the simplification
procedure is applied to Hl , only ﬂl results,

When the simplification procedure is applied to HZ s

we get the two simple *-graphs, ¥ and H , below:
2,1 2,2

X1n
H
2,1
Xa X 350 X a2 X358
X1
H
2,2

Xa X g5 X g52,7 X328

And when the simplification procedure is applied to

H3 ; we get the two simple *-graphs, H and H below:

3,1 3,2




82.

X1 Xis2
H
3,1
X2;1)1 X 21,2 XE)Q X3
X1n X2
H,
3,2

Xean

Xa

Applying the Relabelling Procedure to H H

2,12 72,27
H , and ¥ ;> we get the single simple *-graph, H |
3,1 3,2

below (see the Example following Definition 4.2):

Xq Xg X4 Xg ST

And Relabelling Hl ; we get X below:




83.

The pair, (ul, Ww,) , derived from ﬂl is defined

(Definition 4.3) as follows:

X if s # 1
Fgby 7 9
X, L if s =1
X if s# 2,3
X Wy = 4 Xy 'ij s =2
xl if s=3 .
The pair (u,, p,) derived from ¥ is defined by:
3 4 2,1
[ x if s#1
s
xsp,3= <
L XX, if s=1
) 4
X if s# 2,3
xsu4 = ¢ Xl if s =2
{ xlex2 if s=3

The same pair, (H3: MA) ; 1s derived from 312 9

J
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The pair, (MS’ p6) ; derived from H3, 1 is
defined by:
x if s#1
s
XS‘LS N
X%, if s=1
X if s#2,3
Xsu6 = x1x2x1 if x=2
x2 if s =3

The same pair is derived from EB 9
J

Thus by Definition 4.5,
KX(X].X].) X2X3) = SX(X].X].’ X2X3) n {(lJllJ f-Lz)) (PJ3J !J'l(.)’ (MS) UJ6)}

Since (xlxl)p,1 = X Xy = (x2x3)p,2 and Wy and b, are c-free

for x

1% and x.x respectively, (Ml’ Mz) € SX(xlxl, x2x3)

1 273
Similarly, (uB, Mh)’ (ps, u6) € SX(xlxl, x2x3) . Therefore,
KX(Xixl’ X2X3) = {(]Jaly M?_)J (|.L3, ]-La)J (MS’ u(,)} :

Note that in general Kx(wl, w2) is not a finite set.




85.

THE MAIN THEOREM.

Before we can state our main result, we need the

following definition.

Definition 4.6, If Wi, W, €X, a subset, K , of Sx(wl, w2)

(see Definition 1.3(c)) is a complete set of c-free solutions

in X to the verbal equation Wy x w, , if for each
(cl, 02) € SX(Wl, W2) ; there exists a pair (pl, uz) € K and

a c-free substitution § € SX(wl‘Ll) such that;:

3“16 = x. 04 for each X € Supp(wl) s

£ Wy X 0, for each X, € Supp (w

o
It

and X 2)

(Note that since (pl, uz) is a c-free solution to W W,

we have w = Vol therefore, § is c-free for w

1M1
well as Wyl )
Our main result in this chapter is the following

Theorem.

Theorem 4.7. The set KX(wl, w2) (see Definition 4.5) is a

complete set of c-free solutions in X to the verbal equation

AV

wl_wz.

The proof of this theorem is rather involved; there-

fore we will begin with an example of how the proof works.
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ABOUT THE PROOF OF THEOREM 4.7,

Though trivial, the equation X X = X,%q
provides a good example with which to illustrate the idea of the
proof of Theorem 4.7. Starting with a specific solution

(cl, 02) € SX(Xlxl’ x2x3), we will choose a pair,

(ui, ui_+1) (i =1, 3, or 5) , from KX(Xlxl’ X, X and define

2%3)
a substitution, 8 , with the required properties (see Definition 4.6).

Suppose (cl, cz) is the pair defined by:

X if s # 1
Xscl -
X1X2X3 if s=1
f X if s # 2,3
s
xscz = xlx2 if s =2
. x3x1x2x3 if s =3

It is easy to check that (01, 02) € SX(xlxl, x2x3)

Consider the word, (xlxl)crl (= (x2x3)02) = XX, X, X XX in

1927371 %2%3 3
our proof we will call this word w . The two substitutions 9,
and ¢

5 partition w in two different ways (call these par-

titions uo and UO . )
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corresponds to the pair of partitions (uo, UO) in the sense
that the vertices on ﬁa and 2b in HZ are in one-to-one
correspondence with the segments in UO and UO respectively
and vertices on opposite lines are adjacent if and only if the
corresponding segments overlap. In this case we have an edge
between the upper left vertex and lower right vertex of Hz
since the lefthand segment, x1x2x3 , of UO overlaps the right-
hand segment, XXy KoKy of UO .

We will simultaneously refine the partitions (uo, UO)
and simplify ﬁz so that there is still this correspondence
between them.

In this case our first refinement of (UO, UO)
results in (ul, Ul)

ulz (xlXZ) . (x3) . (XlXZ) o (x3)

Ul: (XlXZ J (x3x1x2x3)
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This is obtained by partitioning the segment, x , of uo

1%2%3

into (XIXZ) . (x3) . The corresponding *-graph is Hé below.

X1)1

Note that ﬁé € Tl(HZ) and is produced by applying the simpli-
fication procedure to the upper left vertex of Hz

The next refinement partitions X3X) X %5 into
(x3) . (Xlx2) e (x3) , thus yielding

u2: (X1X2) . (x3) o (xlxz) ° (x3)
UZ: (xlxz) . (x3) J (xlxz) . (x3)

and the corresponding *-graph, H; (which is simple.)

X1n

Xp X311 Xga Xz

At this point we stop refining the partitions since

u2 = UZ and Hé’ is simple. Note that if we had started with

another solution, (01, cé) , that had the same pattern of over-

lapping as (cl, 02) ; we would also arrive at Hé/ as the
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simple *-graph produced by our procedure. Now, we have already

derived the pair (u,, u,) from ¥ (= ¥ in the example
: 3774 2 2,1

following Definition 4.5.) This will turn out to be the correct

pair to choose. The substitution, § ; 1s defined by sending

the new labels of ¥/ to their corresponding segments in
2 g g

(uz, Uz) , L.e.

x if s# 1,2
s
xsé = xlx2 if s =1
x3 if s =2

It is easy to check that (M3: H4) and & are the correct
choices given this particular solution (01, 02)

Before we prove Theorem 4.7, we will make the nature
of the correspondence between a pair of partitions, (U, U) , of
a word and a labelled *-graph, G , more precise (Definition 4.9).
Also, we will define the procedure for simul taneously refining

(U, ) and simplifying G (Definition 4.11).

VALID CORRESPONDENCE.

Definition 4.8. Given a word w € X and two partitions, U and

U , of w into non-empty segments,
u e U (=W)

12... q W),

(=)
<
<
<
~
il
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we say the segments ug (1=<1i<p) and vj (1l <3< q)

overlap in (U, i) if either
E(vlv2 ) Vj—l) < Z(ulu2 o ui—l) < z(vlv2 S Vj—lvj) s
or I,(ulu2 ce ui—l) < I,(Vlv2 cee Vj_l) < £(ulu2 . ui—lui)

Definition 4.9. Let G = (V, E) be a labelled *-graph, with

vertices

a, < a, < " < ap and b, < b, < - <b (p, 9> 0),

respectively labelled by

YA  v@ . Y(p) 8(1)  8(2)  _8(q)
(1)’ Fw2)) T Fap) M ) Fg(2)’ T Fp(g)

where the «o(i)'s and B(i)'s are finite sequences of positive
integers and v (i), 8(i) € {-1, 1} . Further, let U and U be
two partitions of a word w € X into p and g non-empty
segments respectively. Letting ¢ be the map which sends ay
and bj l=<sis<p,l<ji=<gq), respectively, to the iEh

segment of U and the th segment of U , we say that G and

the pair (U, U¥) are in valid correspondence if the following

properties hold:

(1) (ai, bj) € E if and only if @(ai) overlaps

$(bj) )

(ii) (ai’>aj) € E implies that @(ai) = (@(aj))Y(i).Y(j)}

and (i11) (b, b)) € B fmplies that o(b,) = (@(bj)>6<i)' 8
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Examplc. Referring to our example illustrating the proof of

Theorem 4.7, the *-graphs H2, Hé, and ﬁ; are easily seen to
be in valid correspondence with the pairs (UO, UO), (ul, Ul),

and (uz, Uz) respectively.

Lemma 4.10. (a) If G and (U, \) are in valid correspondence,
then U =1V1 1if and only if G 1is simple.

(b) If G is a simple *-graph in F(Q(wl, wz))
which is completely relabelled by the relabelling procedure and
G is in valid correspondence with a pair (U, k) , then if

il

14 . €
v and v are vertices of ( , relabelled x_ and X s

we have ¢(v) = (cp(v'))en

Proof. The proof of part (a) follows immediately from
Definition 4.9. Part (b) follows easily by induction on the
length of the shortest path in G joining v and v’ (they lie
on the same maximal path since they are relabelled by x-symbols

with the same subscript.)

S-R-S PROCEDURE.

Definition 4.11. Suppose G and (U, U) are as in

Definition 4.9 and that there is a valid correspondence between
G and (u, b) ; below‘we define a procedure for finding a new
pair of partitions, (Ul, Ul) , and a new *-graph, Ql . This

will be accomplished by simul taneously refining one of the
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partitibns, U or VU , and applying the simplification procedure
to G , hence the name S-R-S (simultaneous refinement and
simplification) procedure.

To begin with, if U =1 we let Ul = u, Ul =V, and
Ql = G and stop the procedure; otherwise there is a leftmost pair
of vertices, a_ and br , such that £(¢(ar)) # £(@(br))
We assume, w.4.0.g., that L(@(ar)) > £(¢(br)) since the other
possibility will be handled symmetrically.

Since Zﬁp(ai)) = ch(bi)) (I=<i<r) and
L(@(ar)) > z(¢(br)) ; there exist segments @(br) s w(brﬁ-l) s

¢(br4_m_ l) which overlap @(ar) . (Note that m = dego(ar, (69

since G and (U, U) are in valid correspondence.) Some

inal
terminal segment of m<br4-m- 1) may not overlap @(ar) , thus
we partition m(ar) into the segments
9(b) o, ) ¢ o cob_, ) +y , where
¢(br4-m-l) =Yy ¢z with 2z the longest terminal segment of
w(br-+nv—l) which does not overlap ¢(ar) . Note that y # 1
but z may be empty.

If degs(ar) =0, we let ul be the refinement of Yy

with @(ar) partitioned into m segments as above. Further,

we let Ul =Vl and we let G. be the single “*-graph in

1
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If degs(ar) = 1 , there is an edge (ar, at)
in G . By property (ii) of the valid correspondence, this

implies that @(at) = (w(ar>>Y(r)-Y(t) -

CP(br) '¢(br-kl) T 'm(br-+nr-2) Ty oor

A IR DU PP PP Y b at

as Y(r) e y(t) =1 or -1 . Thus, in this cése, we let ul
be the refinement of U with @(ar) and m(at) each partitioned
into m segments as we have described. As in the previous
1 from Ti @) . It is easy
r

to see that there is exactly one *-graph in Fi (@) which
r

case, we let Ul =V and choose

is in valid correspondence with (ul, Ul) ; this is the *-graph
produced by choosing the edges between the vertices that replace
a, and those on ﬂb in accordance with property (i) of the
valid correspondence.

In the event that ﬂ(m(ar)) < 2(@(br)) we would

refine VU , instead of u , partitioning w(br) (and

m(bt) , 1if (br, bt) is an edge) into dego(br, G) segments.

We would then choose Ql from Fi (G) appropriately.
r

Remark. It is clear from the definition that the S-R-S procedure
preserves valid correspondence, (i.e. if G and (U, ) are in

valid correspondence, then so are Ql and (ul, Ul) )
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PROOF OF THEOREM 4.7 .

. c . ,
Since Kx(wl, w2) c SX(wl’ wz) , it suffices to show

that if (Gl, 02) € Sx(wl, w2) , there is a pair

(ul, uz) € KX(wl’ w2) and a substitution § satisfying the

conditions of Definition 4.6. We begin by finding the appropriate

~

pair) (U’lJ |J,2)
. . . ¥
Since (cl, 02) is a c-free solution to W] =W,

the word w = w =y is freely reduced and the substitutions,

191 7 2%
oy and oy induce two (possibly different) partitions, UO

and UO » of w . It is easy to see, from Definition 4.1, that
there is a unique labelled *-graph, QO , in Q(wl, w2) such
that QO is in valid correspondence with W, UO) ; QO is the
*-graph in Q(wl, w2) such that (ai, bj) is an edge of QO

if and only if the iEE segment of uo and the j—iz-tl segment of

UO overlap. Let 9, be the correspondence between QO and

(Ugs Uy

)

We apply the S-R-S procedure (Definition 4.11)

Tepeatedly to obtain a sequence of pairs of partitions of w 5

(uO; UO)) (ul) Ul)) ] (u b Uz) 5

and a sequence of *-graphs,
Q’O) ql; Tty Qz p)

such that Qi is in valid correspondence with (Ui, Ui) , say



under @i , for each 1 (1 =i < 4) . The positive integer, £ ,
is chosen so that Uz = UZ , and hence QZ is simple

(Lemma 4.10(a)); this is possible since, at each stage in the
S-R-S procedure, either ui+_l is a proper refinement of ui

or UV, is a proper refinement of VU, . The fact that £ (w)

i+1 i
is finite then clearly implies that for some 4 =21, U% = UE .

. 4 3
Since QZ er (QO) and qo € Q(wl, w2) , it follows
that QZ € F(Q(wl, W2)) . Letting the vertices of Qz be

< e ’ < s
ay a, < < ap and b1 < b2 < bp s

labelled by

Y1)  v(2) Y(p) 6(1)  8(2) 6(p)
Xa(l)’ Xd(2)’ cee, X and

o (p) "B’ *B(2)’ T Fppy

it is easy to see that the relabelling procedure (Definition 4.2)
completely relabels Qz . If the relabelling were incomplete, by

Remark 1 following Definition 4.2, there is a closed path,
Pi = {(Vl; VZ)J (VzJ V3>; ) (Vq_1) Vq)} (Vl = Vq) b)
in Qz such that
9(v1, V2) . e(VZ’ v3) (IR e(vq__l, vq) = -1
But since 9, is valid, using properties (1), (ii), and (iii)

of Definition 4.9 and the fact that Qﬂ is simple, we have:
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8 (v, v,) 8(v,, v,)
o) = @) e = e,y DY,

B (v

q-1 Vg
‘Pz("q—l) = (cpz(vq))

And since vy © vq , it follows that QZ(Vl) = (cp'e(vl))e where
e = e(vl, V2) . e(vz, v3) e e G(Vq_ 1’ vq) = -1

This is impossible unless wz(vl) is empty, but each segment in
the partitions u% and Uz is non-empty; thus we have a contra-

diction. Therefore, G is a simple *-graph in I'(G(w,, w ))
7 7h 1’ 72

which is completely relabelled by the relabelling procedure.

Referring to Definition 4.3, there is a well defined
pair, (ul, uz) ;, of substitutions derived from QZ . First we
will show that (ul, uz) € Sx(wl, wz) (and hence

(pl, Mz) € Kx(wl, wz)) ; then we will define a substitution §

so that (Ml’ uz) and § have the desired properties.

By Lemma 4.4, we have

e(l) _e(2) e(p) _
)y *v@y T By T Vakg o

181
thus, in order to show that (ul, uz) € SX(wl, WZ) , it

suffices to show that by € SX(w and Wy € SX(WZ) . We will

1)
prove only that € S, (w,) since the proof that
S & K

Ho € SX(WZ) is similar. It is clear, from the definition of
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by (Definition 4.3), that X by # 1 for each Xy - Thus it

e(l) e(2) ., _e(p)

suffices to show that Xv(l) Xv(2) xv(p)

is freely

reduced as written. Suppose not; then there is a segment

e(i) _e(i+1)

Xv(i) Xv(ii-l) such that v(i) = v(i+1) and e(i) = -e(i+1)

By Lemma 4.10(b), we have @ﬁ(ai) = mﬂ(ai-+1)_1 3 thus

w (= wlol) has two consecutive non-empty segments which cancel

with each other. This contradicts the fact that w € X ; there-

e(l) e(2) . _e(p)
v(1) *u(2) ()

fore, x is in X and Ky is c-free for

Wy o Thus we have (pl, “2) € SX(Wl’ W (and hence

2
(s By) € K (og, W) .)

We define the substitution, § , as follows:

X if X ¢ Supp(w1 ul)
x 06 =«
s
e(r) .
{ mz(ar) if X € Supp(wl‘il) s
where r is the least positive integer such that v(r) = s .

(Note that by Remark (2) following Definition 4.2 and Lemma 4.10(b),

¢£(ar) = ¢£(br) (L £xr <p) .) First we claim that § is

c-free for w This is clear since xsé # 1 for each Xs

1™
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e(l) |

e(2) ..., e, -
v(l) )8

and (wi;il) b = (x v(2) Xv(p)

X

wﬂ(al) WE(aZ) ces @z(ap) = w101 €X . (Note that

]

9, = cpz(aj)e(j) if v(i) = v(j) , by Lemma 4.10(b).)

Thus § € SX(wl‘Ll)

Finally we show that, for X, € Supp(w and

1)
X, € Supp(wz) s

Again, both proofs are similar; thus we only prove the first
equality. By the definition of ul (Definition 4.3), if

x, € Suwpp(w)

_ e(i) _e(i+1) e(i+ j).e(r)
by T (00) Byie1) *o(i+ 3y ;
where r 1is the least positive integer such that xi(r) = X
= 61 (@) . e(m).
(recall, Wy Xi(l) Xi(2) xi(m) .) We then have,
e(1) e(i+1) e(i+9)ye(r),

() b = (xpeyy WEHD) T R )
- e(r)
= (@,(a)) Pplay ) oo mz(ai4_j))
But wz(ai) wz(aiﬂ-l) s mz(aiﬂ-j) = mo(a;) , where a; is

the r‘-t-E vertex on La in G (This follows from

0 "
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Definition 4.11.) By the definition of QO s
e(x)

’ famed . ol
¢0(3r) = xi(r) oy therefore

_ rove{r) _ -
(XS U*l) 6 = (CPO(ar)) - Xi(r)cl - Xscl s
as required. &

We will apply Theorem 4.7 in the next chapter by way

of the following consequence.

Corollary 4.12, 1If Wy oo v, 1s a quadratic verbal equation

with Supp(wl) N Supp(wz) = ¢ , then there exists a complete

w and there is

set, K , of c-free solutions in X to w 2

i
1 -
an integer n(wl, w2) 2 0 such that if W, (1=1, 2) is

linear in some X € Supp(wi) , then z(xsuj) < n(wl, w2)

for each pair (ul, uz) €K .

Proof. We let K = KX(Wl’ w2) and use Theorem 4.7 to show that

K is complete. If w., is linear in X, let (ul, uz) € K

1
and consider X Mg - By Definition 4.3, we have
_ e(l) e(i+1) L..oe(i+ i) e
b1 T (0) Xo(ia1) %1+ 3)) :

where r 1is the least integer such that i(r) = s and

a, < a, < .o <oa, |
i i+1 i+ ]
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are the consecutive vertices of Q£ which ultimately replace

/ . . . . . / =
a_ in QO . Since wp o is linear in Xy degs(ar, QO) =0

(i.e. aé is an end of QO) . Since the simplification pro-
cedure (Definition 3.7) replaces ends by ends,

-+, and ai+—j are ends of qz . By Theorem 3.11,

87 85410
the number of ends of Qz is bqunded by 2(card(VO)—1) where
VO is the set of vertices of QO . By the definition of QO 5
card(VO) = m+ n . Therefore,

Z(Xsul) = j< ends(Qz) < 2(m+n-1)

A similar argument for W, (linear in some Xt) would show

that it suffices to choose n(wl, w2) 22m+n-1) . =
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CHAPTER 5

THE PRODUCT OF TWO QUADRATIC WORDS

In this Chapter, we apply the results of Chapter 4,

to obtain the following Theorem.

Theorem 5.1, 1If 2 and w, are quadratic words in X such
that Supp(wl) n Supp(wz) =¢ , C(wl) is finite, and C(WZ)
is finite.

is finite, then C(w1 . w2)

We note that this theorem is trivial if either Wl

or w
2

following Definition 2.5); henceforth we will assume that Wi

is empty or linear in some X (see Example (3)

and W, are non-empty and strictly quadratic, i.e. quadratic
in each element of their supports.

We will draw several interesting conglusions from
Theorem 5.1 in conjunction with the corollary to Theorem 2,2,
We will list these consequences in Chapter 6.

To prove Theorem 5.1, we will exhibit a complete set,

S , of images of w, * w (see Definition 2.1) which contains

1 2
only words of length less than some fixed bound. By Lemma 1.5¢),
it will follow that N(S) , the normalization of § ; is finite.
But once we have N(S) finite for some complete set, S , of
images of Wyt W, Theorem 2.14 will imply that C(wl *w

is finite., The following sequence of definitions leads to the

5)

definition of the set § .
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Definition 5.2, If w € X and X, € Supp(w) , we define the

substitutions B(w_ i Y)(Y € {-1, +11) from X into X by
> J

X if s # i
st(w; i,v) =

(mem4-1)y if s =i

where m = max{s: X € Supp(w)} + 1

If w is quadratic in X;, We can write

w = ulxiuzxniu3 where ¢, T € {~1, 41} , and u and  u,

are (possibly empty) words in X whose support does not contain

1) u2)

X, .
1

If e#’ﬂ,then

_ -1 -1
) = upx koL qux T 1¥n U3

(w; i, e

-1 -
and u.x x

B ,M) T M 1%m Yo ¥eXna 1Y

-1 -1

R L R

In this case, we call the words U

respectively, the special initial and special terminal segments
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- -1 -1
of V7B(w; ¢) similarly, we call X E u,x and

1,

Xo+1Y3 the special initial and special terminal segments of

YBas 1, M)

If ¢ =1, then

YRs o) TR My T Ui Enna 1Y% 1%

In this case, we call the words WX and WX KU the

Special initial segments of WB(W_i e) and we call the words
3 2
xm_l_luzxmxm_!_lu3 and xm_*_lu3 the special terminal segments
of w .
Pwsi,e)
Definition 5.3. If w is a quadratic word in X , we define

the finite sets of reduced words Initial(w) and Terminal (w) as

follows:
Initial (w) (Terminal (w)) consists of the initial
(terminal) segments of w (including 1 and w) and, for all

X € Supp(w) , the special initial (terminal) segments of

WB(W; ie) and WB(W; 1,1 (as defined above)

_ -1
Example. TIf w = Xy EyXoXg then

~1 -1
X, X XX

VB wy 2, -1) T FyXs¥yXg X, %y,

‘iB(w;B, 1) = X, x4x5x2x4x5 , and
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wB = 2—1k-lx X, X X, .
(w; 2, 1) 5 74 73747573

Thus, for instance,

L _ .1 -1 -1 -1 -1
Initial(w) = {xz XaX X, X) KXo, X, Xg5 Xy, 1, X0 %y X,

—

X, X,X_X,X £1;1 x,}
2 .54%5%0 %0 By ¥y E3X,S -

According to the hypothesis of Theorem 5.1, v, is a

quadratic word in X and C(wz) is finite. Henceforth, we will

denote by D(w the set of words obtained by adding the con-

9)
stant ™y to each subscript of each x-symbol occurring in C(wz),

where

m, = max{s : X € Supp(w) where w € C(wl)} + 2,

This insures that, for each w € C(w and u € D(wz) s

1)
Supp(w) N Supp(u) = ¢

and S W . N Supp(u . = .
n WP (WP (o5 ¢)) PP(uB .y q) =0
Also, since D(wz) is produced by a level substitution, it

follows clearly that D(w is a complete set of images of Wy o

2)

Definition 5.4. (a) The set of cancellation equations derived

from the pair, (wl, w2) , is the set

LA

{WT = u.1 1 weg C(wl) , u€ D(wz) > Wi € Terminal (w), uy € Initial(u)} .

I
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(b) The set of residual products derived from

the pair, (W1’ w2) , is the set
{WI tuniow € C(wl) ,u€ D(w,), Wy € Initial(w), uTE Terminal (u)} .

We note that by Lemma 2.6(b) the sets C(wl) and

C(w (and hence D(wz)) contain only quadratic words. Since

2)
segments of quadratic words are quadratic and since B .
(w; 1,¢€)
sends quadratic words to quadratic words, we also note that each
cancellation equation derived from a pair of quadratic words is

quadratic and that each residual product derived from a pair of

quadratic words is a quadratic word.

Proof of Theorem 5.1. Beginning with the pair (wl, w2) , we

derive the finite sets of (quadratic) cancellation equations,

{WT o u}l i w € C(wy), u € D(w,) , wy, € Terminal (w), u; € Initial (u)],

and (quadratic) residual products,

{wI tupiow € C(wl) , u€ D(WZ) > Wy € Initial (w), U, € Terminal (u)}

For each equation, Vi ¥ u;l ; we use Corollary 4.12 to obtain the

1 . ~1
set KX(WT, ug ) and the integer n(wT, uy ) . We let m, be
the maximum of all these integers.
- -1 -1
If (Ml’ pz) € KX(WT, u ) for some Vo and u;s o, we
will assume w.£.o0.g. that

X Wy = Xsﬁ-m(wT) for X ¢ Supp(wT)
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: ' -1
and X Wy = X -1 for X ¢ Supp(uI ),
s+m(u.”)
I
where m(v) = max{t : X, € Supp(v)} if v 1is a non-empty freely
reduced word and m(v) = 0 if v =1 . If we redefine the pairs
in KX(WT, u; ) to be of this type, it is easy to see that the

new set of pairs (which we will also refer to as KX(WT, ug )

for convenience) has all the properties mentioned in Corollary 4.12.
Therefore we lose no generality in making this assumption. Later

we will assume that for each (pl, “2) € KX(WT, ug ) , the
associated substitution, & (see Corollary 4.12), is also of a
special type; again, no generality will be lost in this
assumption.

We now define the set, S , as follows:

where S’ = f{w .+ u: we€ C(w and u € D(wz)} , and

1)

s” = {(wlp,l) o (u,l,p,2 ) €X : w€C(wl), uED(wZ), WIE Initial (w) ,
uTETerminal(u), and (p,l, “2) GKX(WT, u}l) where
W W S W oor WB(w;iv e) for some xi in w , and

u_u. = u or

no.
u . for some x! in u
1t Plus 1,M) j )

We will show that S is a complete set of images of

Wyt W, and that there is a bound on the length of the words in

S . It will then be clear that N(S) (see Definition 1.6) is a
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finite complete set of images of wp ot W, and thus, by

Theorem 2.14, C(w1 'w2) is finite.

To show that S 1is a complete set of images of

Wy * W, , We must verify Definition 2.1(i) and (ii) for S ,

VERIFICATION OF 2.1(i).

~

If weu€t€s’ , then w € C(wl) and u € D(w and,

2)
by the definition of D(WZ) > Supp(w) N Supp(u) = ¢ . Since

C(w and D(w are complete sets of images of w and w

1> 2) 1 2

respectively, there exist substitutions ¢ and T such that

WO =W and Ww,T = u . Defining the substitution Y by
X0 if X € Supp(wl)
Xs'\( =
X7 otherwise ,

it is clear that vy 1is well defined and

(wy * W)Y = (wo) + (w,m) . Therefore, w * u ( = ("Jl“c) . (WE))

is a partially reduced form of (w1 ’ WZ)Y . But w ¢ u is
freely reduced, since Supp(w) N Supp(u) = ¢ implies that the

junction of w and u cannot be a trivial relator. Thus,

(w1 . w2)Y =W*u=w-+*u, and hence w * u. is an image of
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" .
Suppose (wI ‘Ll) (UTp,z) € S . Since Wy Vo

equals either w or wB(w' . for some w € C(wl) , it follows

by Theorem 2.13 and Definition 2.1(i) that there is a substitution

o such that w0 % Voot g Similarly there is a o, such
that Wy 0, = oug . un - Let the substitution o be defined by
..
X 05 by \ if X € Supp(wl)
x 0 = g X 0y by if Xg € Supp(wz)
)
X otherwise.

-

The substitution ¢ 1is well defined since Supp(wl) N Supp(wz) = ¢ .
Now

0y ) @8, uy) = (G * wug) ¢ ((up * u)p,) =

Grpg) o Gipug) v Cupug) 0 (g,
and since (p,l, “’2) € KX (WT, u;;l)J Vol = (uI |_L2)- ; therefore
(wI “’l) . (qu,z) is a partially reduced form of
(wlc1 U‘l) . (wzc2 “’2) which is a partially reduced form of

— . . . . "

(wlo) . (wzcy) = (wl wz)o— . By the definition of §

(WI p,l) . (uT U‘Z) is in X and thus is freely reduced as
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written. Therefore, (wl . w2)0 = (qul) . (uTuz) as

required.

VERIFICATION OF 2.1(ii).

This portion of the proof of Theorem 5.1 breaks up

into four separate cases and, therefore, becomes somewhat long.

The proof of the first case is given in full detail, but the

proofs of the remaining cases are given in a more abbreviated

form, since they are similar to the proof of the first case.
Suppose that ¢ 1is a substitution from X into X

and consider the (not necessarily reduced) word

(w1 ° Wz)d = (wlo) . (wzo) . Since C(w

and D(w are

1 2)

complete sets of images for Wy and v, respectively, there

exist words w € C(wl) and u € D(wz) and substitutions

Yl € SX(w) and Yo € Sx(u) such that w‘yl = w0 and

uy, = w,o . Thus Gvyl) J (uyz) is a reduced form of

(w1 . wz)o with the initial segment, VY and the terminal

segment, uy, both freely reduced.

If the word Ovyl) o (uyz) is freely reduced as

written, we choose w. = w, w, = u_ = 1 ; and u, = u , and

I T I T

define the substitution ¥y € SX(w * u) by
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xS‘Yl' if X € Supp(w)

x . otherwise.
SYZ

Clearly XY = stZ for X € Supp(u), since

Supp(w) N Supp(u) = ¢ .

Thus we have (wl . w2)0 = (w\(l) . (UYZ) = (w ¢ u)y

with vy € SX(w * u) . Also since w € C(w and u € D(WZ) s

1)
we have w + u€ 8’ ¢ s ; thus 2.1(ii) holds in this case.

Suppose (wvy, ) * (uy,) 1is not freely reduced as
1 2

written; since wyl and uy, are freely reduced, the free
reduction of (w \(1) s (u YZ) can be accomplished by cancelling
a terminal segment of (w 'Yl) against an initial segment of

uyz. Thus wyl and u\{2 can be partitioned into segments
WY = WY))pt (UV)p and uy, = (uy,); ¢ (uy,)p so

. -1 .
that (le)T = (u'YZ)I and (w\{l)I J (u\(2 )T is freely

reduced as written. Therefore (w1 J w2)c = (w‘\(l) . (uyz) =

T O N (O e I R 2D M (L
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And thus it suffices to show that for some (wlul) . (uT p,z) € s,
there is a substitution § € SX((wI I’Ll) . (uT By )} such that
(Wpup) * (uguy 8 = @y )+ (uy,), .

We partition w and u as follows: w=w + x° ¢y

i

and u = LLL . xj . uR where
€
LG ¥ S @YD < G x5v))

n.
and £CGey » updYy) > £((uY,)0) = £CuY,)
We have four cases to consider.
Case 1. Suppose that J(’,(wL Yl) = 4((w Y1 )I) and

}Z((u\(2 )T) = ,G(uRYZ) . Then we let w=w_ » w and

I T
u=u. * u, where w. = w W, = xw u. = le and
1" Yp I AR A R s A
up = up Since w € C(wl) and u € D(wz) , it follows that
Vi ¥ u;l is a cancellation equation derived from (Wl’ w2)

and vy Uy is the residual product associated with it.

Since ﬂ,(wLYl) = ,@((wvl )I) and both words are initial segments

of wyl , it follows that wLyl = (w Yl )I and similarly that

(u Y, )T = URYZ . Thus

WIYl = (W Y]. )I and (U Y2 )T = UTYZ 2
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therefore
WTY1 = (w'\{l)T and lﬁY2 = (uYz)I .

. -1 -1 .
Since WTYI = (w'yl)T = (u‘Yz)I =y, the pair

(Yl’ Y2) is in SX(WT, u, ) . And since KX(wT, uIl) is a

& -1,
T~ YUr in X , there

complete set of c-free solutions to w
. . -1 . .

is a pair (ul, uz) € KX(WT, u ) and a substitution § from X
into X which is c¢-free for WTul (= u}luz) and for which

X fhy 6 = XSYI for each X € Supp(wT) and xdi26 = XtYZ for

each X, € Supp(uI)

Recall, we have assumed that X Hy = Xs4—m(wT) and

X4, = X _ respectively, for X ¢ SUPP(WT) and
t-i-m(uI )

X ¢ Supp(uI) . Similarly, w.f.o0.g. we may assume that

xsé = Xs-m(wT)Yl for X € Supp(wlul) \ SUPP(WTHl) and
x 6 =x 1. Y for X, € Supp(quZ) \ Supp(uluz) . To
t—m(uI )

see that no generality is lost when § 1is chosen this way,
first note that

(Supp (Wpi)) \ Supp (wpy ) N (Supp (upp, )\ Supp(up,)) = ¢ .
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This is true, for suppose X € Supp(wlul)\ SUPP(WTLLl) , then

X € SUPP(XtMl) for some X, € Supp(wl)\‘ Supp(wT) and thus
I where ¢t = s—m(wT) . Similarly, if
X S Supp(uT u,z)\ SUPP(UIMZ) , we have X € SUPP(XrMQ_) for

some X € Supp(uT)\ Supp(uI) and thus X, = X My where

_ -1 -1
r = s—m(uI ) . Therefore, t+m(wT) = 1:—i-m(uI ) . But,
since X, € Supp(w) and X, € Supp(u) and u € D(WZ) , the
definition of D(WZ) implies that t < r and m(wT) < m(u;]')
Therefore t+m(wT) # r+m(u-£1) , which is a contradiction.

Since
Supp (Wpuy) \ Supp(wppy ) and  Supp(upp, )\ Supp (ug by )
are disjoint sets, the values of xsé and xté can be

defined to be any non-empty reduced word we choose (viz.

and x 1Y ) on these sets and it is still

X Y
s—m(wT) 1 t-—m(uI )

true that xsp,lé = st1 on Supp(wT), xtuzé = XtYZ on

. -1
Supp(uI) ; and & is c-free for Vo kg (= uy “’2)
We claim that Wy g 6 = wr'Yy and Up by 5 = urYs

To see this, let X € Supp(wI) n Supp(wT) ; then, since

X € Supp(wT) , we have X by § = xsyl . If
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X, € Supp(wl)\y Supp (wT) , then by our conventions concerning

by and 6 we have XoHy = Xs+m(wT) ; and thus

X B0 T X T Fs+m(w ) - m(w )V1 T ¥g¥p - Therefore,
T T T

for each X € Supp (wI) ;X &5 = X Yl and thus

Wy by 6 = wr Yy A similar argument shows that Up by § = urY,

We have shown that ((wI ul) . (qu,Z))é =
(wI'Yl) o (uT‘Yz) = (w Yl )I o (u\(2 )T ; which is freely reduced
by assumption, thus, by Lemma 2. 7, (wI p,l) . (uT p,z) is freely

reduced as written and hence is in §”. Therefore, we have
exhibited (wI I_J,l) . (uT “’2) € S and § € SX((WI p,l) . (uT p,z))

such that

(Grpug) = Cagpy 6=y )y e+ (Y, =Wy * vy = Gy ~w))o
This completes the proof in Case 1.
Case 2. Suppose that E(WLYl) < 4L ({w Yl )I) and
4((u Yo )'I' =4 (uR'Yz) . Recall that we have written
W=w oo x° e w and u= xTl u thus we can write
R T L%y YR
(W Yl )I = (wLYl) ° Vl, 1 and (le)T = Vl) 2 * (wR Yl) ]

€ _ . ,
where xi’Yl Vl,l V1,2 and neither Vl,l nor v
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is empty. Also we have

WB(W; i,e) = (WLB(W; i e)) . (xmxm+l) . (WRB(W; ;| €)) Choose

il -

up = uij y up = up and from Initial(w) and Terminal(w) choose

* X and w, = x .

Y1 (WLB(w;i,e)) m T Fna1 " (RPy, i,e))

Clearly wT f u;l is a cancellation equation derived from

(wl, WZ) , and Vot U is the residual pair associated with it.

We can assume w.f.o.g. that x v is any arbitrary non-empty

s'1
freely reduced word in X , provided X ¢ Supp(w) ; thus

w.l.0.g. assume that me1 = Vl,]. and Xm4-1Y1 = V1J2

We note that, under this assumption, v:Yl = WB<W; i}€>Y1
and furthermore, wIY1 = Ovyl)l s (u‘\{z)T = UTYZ s
WTY1 = val)T , and UIYZ = (uyz)I . The proof now proceeds as
in Case 1.

Case 3. Now suppose Z(wLY1)==Z((wV1)I) and Z((uyz)T)<:£(uRY2).

= = € = .
Here we choose Wi WL ) Vi = X0 W, uL (uLB(u;,j,ﬂ)) X
= . + T n = °
and U X 41 (uRB(u; j,ﬂ)) . And, writing XjYZ V2, 1 Vz, 5
we assume w.4.o0.g. that anz = V2) 1 and xn4_1Y2 = V2, )

where n = max{xs: X € Supp(u)} + 1

Casc 4. Finally suppose E(WLY1)<:£(OJY1)I) and ﬂ((uyz)T)> ﬁ(uRYZ).
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Again the proof is essentially the same as in the pre-

vious cases, but here we choose w. = (wLB

I t X

(w; i,e)) m’

YT M T R i, e)) o v T (B, o)t %, o and

u =

T X 41 ° (URB(u; j,ﬂ)) And w.{.0.g. we assume that
W1 TV, TV TV, 0 XYy T vy gy s and

X +1Yy = v2, 5 Note that since u € D(wz) and the sub-
scripts of u have been increased by

m. ( = max{s: X € Supp(w) , w € C(wl)} + 2) , we are assured

of
that m+ 1 is less than every subscript appearing in u or

Thus we do not lose generality in making the

“Blus 1, )
assumptions above.

This completes the verification of 2.1(ii) and, thus,
shows that S 1is a complete set of images for Wy © W,
THE BOUND,

Finally, we will show that there is a bound on the
lengths of the words in the set §

By assumption, C(wl) and D(wz) are finite sets;
therefore there are only finitely many cancellation equationé,

x ~1

W, = u ; and residual products w_

T I 1 Up derived from the pair

(wl, w2) - Thus, it suffices to prove that for each residual
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product, LA Up there is a bound on the length of the words

-1

i set . : . £
in the set {(wlul) (uppy) s (ys py) € Ry (g u D} I
X, occurs twice in Vi then it cannot occur in W1 since

= W or ) ) is quadratic. TIf X occurs
€

1T ( wB(w;i

J
once in W it can occur at most once in Wy , and thus

-1 .

< . =

Z(xsul) my (Recall, my max{n(wT, u; 1 .o1f x, is
not present in Vo o, we have assumed that by is defined so
that X Wy = Xs4-m(wT) » thus z(xsul ) =1c< m . A similar
argument shows that for each X € Supp(uT) 5 £<XS‘L2> < m

1

Since there are only finitely many residual products, Vit Up o,

there is an upper bound on the length of all wI‘s and uT's
And since my bounds the length of each X Mg and X Wy
where X € Supp(wI) and X, € Supp(uT) ; it follows that there
is a bound on the maximum length of the words in the set

-1 .
{(WI‘Ll) (UT;LZ) : (ul, pz) € KX(WT, u >} . This completes

the proof of Theorem 5.1. =
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CHAPTER 6
APPLICATIONS

In this chapter we apply the techniques developed in
the preceding chapters. Our main application is the following

theorem.

Theorem 6.1. If w 1is a freely reduced quadratic word in

(E, ©) such that w= ¥ W, where
i=1

(i) C(Wi) is finite for each .i R
and (ii) Supp(wi) n Supp(wj) =¢ for 1<i< j<n,
then it can be effectively decided whether any given u € X is
an image of w under an endomorphism of (X, ©)

This provides new information concerning the endomor-

phism pfoblem (see Lyndon [11], p. 283). As consequences of this

theorem we will obtain the following results.

Theorem 6.2, For each n > 1 ; there is an effective procedure
for deciding whether or not a given word u , in a free group, is

a product of n squares.

Theorem 6.3. For each n > 1 » there is an effective procedure
for deciding whether or not a given word u , in a free group, is
a product of n commutators.

COROLLARY By the standard method used to put compact surfaces into
normal form, due to Max Dehn, it is well known that every quadratic word
can be effectively transformed by Nielsen transformations into the form

in Theorems 6.2 or 6.3.
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For the case n = 1 , this latter result is a theorem of
Wicks [21]; for n 2> 2 , it answers positively a question of
Wicks (written communication to N.D. Gupta).

Following the proof of these main results, we will
apply our results to prove a new result of Lyndon and Newman [13]

and to answer a question of our own.

PROOF OF THEOREMS 6.1, 6.2, and 6.3.

To prove Theorem 6.1, we note that since w is
reduced and quadratic, each W, is reduced and quadratic; thus,
by a straightforward induction on n wusing Theorem 5.1, it
follows that C(w) is finite. But then by the corollary to
Theorem 2.2, Problem III (and hence Problems I and I1) is solvable
for w and arbitrary u's .

Theorems 6.2 and 6.3 will follow easily from Theorem 6.1

by letting W, (1 £1i<n) be respectively xi and

[x It clearly suffices to show that C(xi) and

2i-17 X9l

.. _ -1 -1
C([xl, x2]) are finite sets ([xl, x2] = XlXZXl %, Y . To see

that C(xi) is finite, we refer the reader to Example 2

following Definition 2.5, It is not difficult to calculate

C([X1J XZ])
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_ -1 -1 -1 -1 -1 ~1 -1 -1
C([xl, x,1) = {1, XpXoX) Xy s K EpXaX, Ho X, X XXXy TRy T

X X---1 X— ~1 X. X X X-_1 —1 —1 —-l
¥1%2%1 *3¥p Xy XXX XX, xaTx, Tx T,

X, X X X-]-X X—1X~1X—1 X, X X X—1X xnlx—lx—l
1727372 T473 Fy Ty 0 FpF¥e¥y XXy X3 0%,

X, X, X, X x—lx x_lx—lx_lx—l}
172737472 7573 4 5 g )

Since this set is finite, our proof is complete., &

In [13] Lyndon and Newman comment that if x and vy
are elements of any group, then

[x, 51 = &n° ¢ gH2 .

This leads to the natural question of whether there is a group
in which some commutator cannot be written as a product of fewer
than three squares. Their theorem, stated in our notation, is

the following.

Theorem 6.4, 1If (Xz, ©) is the free group of rank two, freely

generated by X and Xy s there are no words a, b € iz such
2,2

that [xl, x2]:w ab

Proof. To prove this result using our techniques, we first

| 2.2

suppose that there exist a, b € iz such that [Xl’ x2] ~ ab

Let o be the substitution from X into X defined by

o)
=
Hh
-
H]
=
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It is clear that (kixg)o = [Xl’ x2]; theréfore, by

Theorem 2.13, there is a word u € C(xixé) such that
u = [xl, x2] . Note that since u = [xl, x2] ; it follows that
£(u) < 4 . The words in C(xixg) which are of length no more

than four are:

1 2 X, X, X x'_l X -1 xzx--1 2,2 x2
 Fp FTRRIRy 0 XX Xy, XpEoX) T, XXy, xiXox
It is easy to see (from the solution to Problem IV in Chapter 2)

that, upon c-free substitution, none of these words yields

such that

. 22
[xl, x2] . Thus there is no u € C(xlx2

u =< [xl, X,]; this is a contradiction. =

We conclude these applications by answering a question’
of our own. A word w € (i, 0) is said to be primitive if there
is an automorphism of (i, 0) which sends w to Xy The

following theorem completely characterizes those words which can

be sent to x, under an endomorphism of (i, 0)

1

Theorem 6.5. Given w € (i, 0) , the following conditions are

equivalent.

(1) There is an endomorphism of (i, ©) which
sends w to X

(i)  Cc(w) = {1, xl} .

(iii) ged(w) (= gcd{‘ds(w)\ Poxg € Supp(w)}) =1 ,

where gs(w) is the exponent sum of w on X (see [15], p. 76).
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Proof. It is clear that (i) is equivalent to (ii) since C(w)
is a complete set of images of w (see Definition 2.1). To see
that (ii) is equivalent to (iii), first suppose that gcd(w) = 1;

therefore there are integers {ns} such that Zrk;os(w) =1

Letting T be the substitution from X into X defined by

n
s .
X if x_ € Supp(w)
1 s
X T =
S

X otherwise,

it is easy to see that wrt = X thus there is a word u € C(w)

. . . € .
such that u S x But this implies that u = X for some i .

1

Since each word in C(w) is in normal form we have x

1= U (€ C(w))
Now the ﬁinimality of X in (X, <) implies that cw) = {1, xl} .
Therefore (iii) implies (ii).

To see that (ii) implies (iii), suppose that (iii) does
not hold, i.e. that gcd(w) # 1 . We claim that for each
u € N(w), T(w), or R(w) gcd(u) # 1 . First note that if u is
a (partially) reduced form of w 5 os(w) = cs(u) for each s ;

thus gcd(u) = ged(w) . If A is an elementary level substi-

tution, it is easy to see that

{|cs(w)\)‘ P € Supp(wir)} = {lcs(w)‘ S € Supp(w)} ;
thus if v 1is a level substitution such that wv € N(w) , we
have gcd(wv) = ged(w) . If u € T(w) , it is clear that

{los(u)] P € Supp(u)} ¢« {Ics(w)‘ Poxg € Supp(w)} ;
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thus if gcd(w) # 1, ged(u) # 1 also. Lastly, suppose that

u=w ] ) and u € R(w . Note that u is obtained
Pws i, 65 5,M) )

by adding several occurrences of a "new" variable, X into w
(see Definition 2.3). It is easy to see that
== A -+ N
Gm(u) e o, (w) TIGJ (w)

~

and o _(u)

cs(w) for s # m .

Therefore, we have gcd(u) = ged(w) .  Since free reduction pre-
serves gecd, it follows that ged(u) = ged(w) # L

Since C(w) consist; of words produced by repeated
use of T, R, N (and M) , it follows that if gcd(w) # 1 , then
gced(u) # 1 for each u € C(w) . But gcd(xl) = 1 ; therefore

Xy ¢ C(w) which contradicts (ii) . =
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‘INDEX OF NUMBERED ITEMS

ITEM PAGE ITEM PAGE ITEM PAGE
1.1 9 3.1 48 5.1 101
1.2 10 3.2 48 5.2 102
1.3 10 3.3 51 5.3 103
1.4 11 3.4 51 5.4 104
1.5 11 3.5 51
1.6 13 3.6 52 6.1 118
1.7 13 3.7 53 6.2 118
1.8 13 3.8 58 6.3 118
3.9 66 6.4 120
2.1 21 3.10 66 6.5 121
2.2 22 3.11 67
2.3 24
2.4 26 4.1 70
2.5 28 4.2 72
2.6 30 4.3 78
2.7 34 4ok 79
2.8 35 4.5 81
2.9 36 4.6 85
2.10 36 4.7 85
2.11 38 4.8 89
2.12 39 4.9 90
2.13 A 4.10 91
2.14 47 4,11 91
4.12 99




INDEX OF SPECIAL SYMBOLS

Symbol Page
Pws i, v +02
card(s) 12
Ci(W)J cW) 28
L@, @, 1@ 58
d(w) 8
deg , deg_ 51
dev (G) 51
D(WZ) 104
ends (G) 66
ged(w) 121
G+v, G-v 52

G+ w,v),G- (v,v) 52

G+ E
G+ H
Initial(w)

K (s wy)
£ (w)

52
52
70
103

81

48

11

Symbol

)

m

1

m(v)

M (W)

Hi i+l
n(wl, w2)
N (W)

R(W)

Plus i,¢; 3,M)

sing (o, w)
Supp (w)
SX (w)
SX(V, W)
wGo
o (W)

(o, )
T (W)
Terminal (w)
T,

i

T
o
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Page

104
105
106
26
77-78
99

13

26

25

36

10

10

121
10
26

103
24

26




N

Page

72

90

11
13

13

10

Symbol

vV *w

(X, 9)
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