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Abstract

Simple random sampling (SRS) is the most commonly used sampling design

in data collection. In many applications (e.g., in fisheries and medical research)

quantification of the variable of interest is either time-consuming or expensive but

ranking a number of sampling units, without actual measurement on them, can be

done relatively easily and at low cost. In these situations, one may use rank-based

sampling (RBS) designs to obtain more representative samples from the underlying

population and improve the efficiency of the statistical inference. In this thesis,

we study the theory and application of the finite mixture models (FMMs) under

RBS designs. In Chapter 2, we study the problems of maximum likelihood (ML)

estimation and classification in a general class of FMMs under different ranked set

sampling (RSS) designs. In Chapter 3, deriving Fisher information (FI) content

of different RSS data structures including complete and incomplete RSS data, we

show that the FI contained in each variation of the RSS data about different fea-

tures of FMMs is larger than the FI contained in their SRS counterparts. There

are situations where it is difficult to rank all the sampling units in a set with high

confidence. Forcing rankers to assign unique ranks to the units (as RSS) can lead to

substantial ranking error and consequently to poor statistical inference. We hence

focus on the partially rank-ordered set (PROS) sampling design, which is aimed at

reducing the ranking error and the burden on rankers by allowing them to declare

ties (partially ordered subsets) among the sampled units. Studying the information

and uncertainty structures of the PROS data in a general class of distributions,



in Chapter 4, we show the superiority of the PROS design in data analysis over

RSS and SRS schemes. In Chapter 5, we also investigate the ML estimation and

classification problems of FMMs under the PROS design. Finally, we apply our

results to estimate the age structure of a short-lived fish species based on the length

frequency data, using SRS, RSS and PROS designs.

Keywords: Finite mixture models; Ranked set sampling; Partial ranking; Latent

variables; Expectation-Maximization algorithm; Classification; Fisher information;

Entropy; Age structures of Spot fish.
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Djemel Ziou (Université de Sherbrooke, UdeS) for his unforgettable support and all

those stimulating discussions and advice as well as his hospitality and cordiality

in my visits at the UdeS and MOIVRE (Modelling Images, Vision and Neural

Networks Centre). I gained many valuable skills and knowledge (e.g. in machine

learning and image processing) from him. The impact of these potentials in my

prospective towards statistical studies is undeniable.

I would like to express my appreciation to Dr. Alexandre Leblanc for his invalu-

able support, helpfulness as well as all the skills, I gained from him and his courses

during my PhD program. I would like to acknowledge him and other members of

my PhD committee including Prof. Liqun Wang and Prof. Miroslaw Pawlak (De-

partment of Electrical and Computing engineering, UofM) as well as Prof. Haikady

Nagaraja (Division of Biostatistics, OSU), as external referee of the thesis. I am very

thankful to Dr. Saumen Mandal for his support and advice regarding my teaching

i



as well as his kindness to me. In addition, I own many thanks to the outstand-

ing Department of Statistics at UofM; from Dr. Brad Johnson (graduate chair and

chair of my candidacy examination) to all of my professors, fellow students and

department staff.

I have had a good fortune of having a wonderful circle of friends whose compan-

ionships and favours helped me throughout these years in Uof M and Winnipeg.

Maryam, Elahe, Rojiar, Shabnam, Paymoun, Mohssen and Mohammad, to name a

few. To all of my friends mentioned or been in my heart, thanks!

I am eternally grateful to my family for believing in me and for continuously

supporting my desire to pursue my education for 22 years. Moreover, I would have

never connected with Statistics, if it were not Atefe (my sister and my first teacher

in Statistics) to lead me towards the academic education in statistical sciences.

Last but not least, financial support by the University of Manitoba Gradu-

ate Fellowship (UMGF), Manitoba Graduate Scholarship (MGS), Gordon P. Osler

Scholarship and Faculty of Science Studentship are gratefully acknowledged.

ii



This work is dedicated to

my parents:

Tahere & Aliasghar,

my siblings:

Arefe & Adele & Iman & Ehsan and Atefe,

who have supported me with heart and soul.

iii



Vita

B.Sc. Statistics, September 2004 - August 2008

Ferdowsi University of Mashhad, Iran

M.Sc. Mathematical Statistics, September 2008 - May 2010

Ferdowsi University of Mashhad, Iran

PhD Statistics, September 2010 - August 2014

University of Manitoba, Canada

Publications

• Hatefi, A., Jafari Jozani, M. and Ziou, D. (2014). Estimation and classification for

finite mixture models under ranked set sampling. Statistica Sinica, 24, 675–698.

• Hatefi, A. and Jafari Jozani, M. (2013). Fisher Information in different types of

perfect and imperfect ranked set samples from finite mixture models. Journal of

Multivariate Analysis, 119, 16–31.

• Hatefi, A. and Jafari Jozani, M. (2014). Information content of partially rank

ordered set samples. Revision Submitted.

• Hatefi, A., Jafari Jozani, M. and Ozturk, O. (2013). Mixture model analysis of

partially rank ordered set samples: estimating the age-groups of fish from length-

frequency data. Under Revision.

• Hatefi, A., Jafari Jozani, M. (2014). Proportion estimation based on a PROS sam-

ples with multiple concomitants in a breast cancer study. Submitted.

iv



Contents

Contents v

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Ranked set sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Partially rank ordered set sampling . . . . . . . . . . . . . . . . . . 7

1.3 Finite mixture models . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 An overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . 12

2 Estimation and Classification for FMM under RSS 15

2.1 Likelihood functions . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Likelihood function for M1-RSS data . . . . . . . . . . . . . 18

2.1.2 Likelihood function for M2-RSS data . . . . . . . . . . . . . 19

2.2 EM algorithms for RSS techniques . . . . . . . . . . . . . . . . . . 20

2.2.1 EM algorithm for M1-RSS data . . . . . . . . . . . . . . . . 21

v



2.2.2 EM algorithm for M2-RSS data . . . . . . . . . . . . . . . . 29

2.2.3 Modified EM algorithm for M2-RSS . . . . . . . . . . . . . . 34

2.3 Classification of the RSS sample . . . . . . . . . . . . . . . . . . . 37

2.4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Simulation study 1 . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.2 Simulation study 2 . . . . . . . . . . . . . . . . . . . . . . . 42

3 Fisher Information of RSS Data from FMM 49

3.1 FI in perfect RSS from FMM . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 FI in Type-M0 perfect RSS data . . . . . . . . . . . . . . . 53

3.1.2 FI in Type-M1 perfect RSS data . . . . . . . . . . . . . . . 55

3.1.3 FI in Type-M2 perfect RSS data . . . . . . . . . . . . . . . 62

3.2 FI in imperfect RSS data from FMM . . . . . . . . . . . . . . . . . 65

3.2.1 FI in Type-M0 imperfect RSS data . . . . . . . . . . . . . . 67

3.2.2 FI in Type-M2 imperfect RSS data . . . . . . . . . . . . . . 68

3.3 Missing information principle . . . . . . . . . . . . . . . . . . . . . 70

3.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 RSS versus SRS . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.2 Mixed sampling . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.3 Effect of ranking errors . . . . . . . . . . . . . . . . . . . . . 80

vi



4 Information Content of PROS Samples 83

4.1 Distributional properties of PROS samples . . . . . . . . . . . . . . 84

4.2 FI content of PROS samples . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 FI matrix of complete PROS data Ypros . . . . . . . . . . . 87

4.2.2 FI matrix of Xpros and the effect of misplacement errors . . 95

4.3 Other information criteria . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Shannon entropy of PROS samples . . . . . . . . . . . . . . 100
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Chapter 1

Introduction

Rank-based sampling designs and finite mixture models are two important statistical

tools in data analysis. Rank-based sampling designs, such as ranked set sampling,

partially rank-ordered sampling and some of their variations, have attracted the at-

tention of many statisticians and practitioners in the past few years. Finite mixture

models as convenient and flexible statistical tools, have been extensively employed

in not only mainstream statistical literature but also in various scientific disciplines.

Considering these two statistical tools, this thesis studies the problem of finite mix-

ture modelling under rank-based sampling designs. In this chapter, we provide an

overview of rank-based sampling designs as well as finite mixture models. To this

end, we briefly describe the ranked set sampling design and some of its variations.

The partially rank-ordered set sampling design is introduced as a generalization of

the ranked set sampling technique. Then, we present finite mixture modelling as a

flexible tool in statistical analysis. Finally we give an overview of the thesis.
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1.1 Ranked set sampling

Simple random sampling (SRS) is the most commonly-used probability sampling

design in data analysis; in many applications, however, the actual measurement

of sampling (experimental) units is very difficult to obtain, in the sense that mea-

surements are costly, time-consuming, invasive or even destructive. Despite this

difficulty in data collection, a small number of sampling units may be easily ranked

through visual inspection, judgment ranking or available auxiliary variables without

actual measurements of the variable of interest and this can be done at low cost.

Ranked set sampling (RSS), as a powerful and cost-effective sampling design, can

be employed as an alternate to SRS in these sampling situations. The RSS design

was introduced by McIntyre (1952) to estimate mean pasture yields. He argued

that quantification of pasture yield plots is a costly and time-consuming process

(e.g., requiring mowing and weighing the hay); however, an experienced person can

fairly accurately rank a small number of plots without actual measurement.

To construct a ranked set sample of size nN with replacement, we proceed as

follows. First, we take a simple random sample of size n, say X111, . . . , X11n (called

hereafter a set of size n), from the population of interest. Using a ranking operator,

say Or(·), we rank the sample as Or(X111, . . . , X11n) = (X[1], . . . , X[n]) from the

smallest to the largest. Note that this ranking may be done using any means other

than the actual measurement of the variable of interest. RSS selects the item with

the smallest rank, denoted X[1]1, from this set for full measurement. We then take

another independent random sample of size n from the population; perform ranking

and choose the unit with the second smallest rank, denoted X[2]1, for measurement.

2



Table 1.1: An example of RSS sample

cycle set ranking the units within the sets Observation
1 1 {X111, X112, X113} → {X[1], X[2], X[3]} X[1]1

2 {X121, X122, X123} → {X[1],X[2], X[3]} X[2]1

3 {X131, X132, X133} → {X[1], X[3],X[3]} X[3]1

2 1 {X211, X212, X213} → {X[1], X[2], X[3]} X[1]2

2 {X221, X222, X223} → {X[1],X[2], X[3]} X[2]2

3 {X231, X232, X233} → {X[1], X[3],X[3]} X[3]2

Finally, for the n-th independent SRS sample of size n, the item with the largest

rank is measured and it is denoted by X[n]1. This whole process is referred to

as a cycle. We repeat this process for N cycles deriving the total number of nN

observations from the population. This is called a balanced RSS of size nN . In this

setting X[r]i denote the measured value of the r-th ordered unit in the i-th cycle.

We call X[r]i the r-th judgment order statistic in the i-th cycle. Our measured

balanced RSS is then given by {X[r]i, r = 1, . . . , n; i = 1, . . . , N}, based on the set

size n and N cycles. The construction of a balanced RSS design is shown in Table

1.1 with set size n = 3 and N = 2 cycles. Once the items are judgement ranked

from the smallest to the largest within each set, the boldfaced items are selected

for full measurement. The measured balanced RSS, in the example, are denoted

by X[r]i, r = 1, 2, 3 and i = 1, 2. One can similarly construct an unbalanced RSS

sample of size
∑n

r=1Nr, say {X[r]i, r = 1, . . . , n; i = 1, . . . , Nr}, where Nr stands

for the number of times the r-th judgment order statistic, namely X[r], has been

selected for full measurement from the sets.

The essence of RSS is conceptually similar to the stratified sampling technique.

The RSS technique uses inherent heterogeneity among the sampling units through a

3



ranking process to create artificial strata. One can consider RSS as a stratification of

the units during the sampling process based on their ranks in the sample, although

balanced RSS requires identification of Nn2 units from the population but only nN

of them are actually measured. Note also that in SRS, observations are independent

and identically distributed (i.i.d) and each of them represents a typical value from

the population and there is no additional structure imposed on their relationship

to one another. In RSS, however, additional information and structure has been

provided through the ranking process. Since all the units selected for the final

measurement in our sample are obtained from independent sets, the order statistics

are mutually independent, however, they are not identically distributed. On the

other hand, samples with judgment ranks have the same distribution, provided

that the ranking procedure is consistent within the sets. If the ranking process is

perfect (i.e. no ranking error), then the distributions of the measured judgment order

statistics agree with those of the usual order statistics. Therefore, X[1]1, . . . , X[n]N

are independent judgment order statistics and each of them provides information

about different aspects of the population. Indeed, it is this extra structure that

allows RSS data to provide more representative samples from the population than

SRS data with the same number of measurements.

RSS has many applications in industrial statistics, environmental and ecological

studies as well as medical research. For example, in analysis of environmental risks of

hazardous waste sites, measuring toxic chemicals and assessing their environmental

impact requires substantial scientific processing of materials and, consequently, high

cost. However, Barabesi and El-Sharaawi (2001) show that the hazardous waste

sites can be easily ranked according to their contamination levels by utilizing a

4



visual inspection of defoliation or soil discolouration.

Another setting where RSS is found to be useful is medical studies. Biomark-

ers such as polyphenol DNA adducts, micronuclei and sister chromatid exchanges

play important roles in the assessment of lung cancer status. Measurement of these

biomarkers involves expensive and time-consuming laboratory investigation; how-

ever, ranking the sampling units according to their smoking exposure levels can be

easily done, for example, using the records of smoking exposure in pack-years. Using

the association between smoking exposure and three carcinogenic biomarkers, Chen

and Wang (2004) explored the properties of RSS protocols in the analysis of lung

cancer. Some other examples of applications of RSS include estimating phytomass

(Muttlak and McDonald, 1992), stream habitat area (Mode et al., 1999), mean and

variance in flock management (Ozturk et al., 2005) and the mean stock abundance

of fish species using the catch-rate data available from previous years as a concomi-

tant variable (Wang et al., 2009). Moreover, there are many applications of RSS in

agriculture (e.g., Halls and Dell, 1966 and Cobby et al., 1985) and in environmental

studies (e.g., Johnson et al., 1993 and Patil et al., 1994).

Estimation problem of population mean µ can be considered as an example of

statistical inference using RSS data. An intuitive estimator for µ under balanced

RSS is the average of the RSS observations given by

µ̂RSS =
1

nN

N∑
i=1

n∑
r=1

X[r]i,

which is an unbiased estimator of µ and is always at least as precise as the SRS

estimator based on the same number of measured observations. For more details, see
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Chen et al. (2004) and Patil (2006). There are a number of factors influencing the

superiority of RSS over SRS in different inferential problems (e.g., estimation of the

population mean). A key factor here lies in the ranking step of the sampling process.

If there is no error in ranking of the sampling units within each set, which results in a

perfect RSS, the efficiency (e.g., precision in the estimation of the population mean)

of statistical inference gained in RSS is very high. In many practical applications,

however, ranking error is inevitable which results in an imperfect RSS. Minimal

ranking error may not cause an excessive decrease in the superiority of RSS over

SRS, but an increase in the ranking error reduces the efficiency of the RSS technique.

In the worst scenario, where ranking is done by chance, RSS and SRS techniques lead

to the same statistical inference about the population. Hence the more accuracy in

the ranking within each set, the more efficiency is gained (e.g., Barnett and Moore,

1997; Chen, 2000 and Barabesi and El-Sharaawi, 2001). Throughout the thesis, the

square brackets are used to show the possibility of ranking errors; hence imperfect

RSS data is denoted by {X[r]i, r = 1, . . . , n; i = 1, . . . , N}. If there is no ranking

error, square brackets are replaced with round ones so that the perfect RSS data

are represented by {X(r)i, r = 1, . . . , n; i = 1, . . . , N}.

As noted earlier, for balanced RSS we measure the same number of observations

N (i.e., cycle size) from each judgment ordered statistic; however, if we measure

a different number of observations from each rank, the resulting sample is called

an unbalanced RSS. In unbalanced RSS, the units are allocated unequally to the

ranks. We still sample n independent sets of size n units each from the population

and perform the ranking of the sampling units within each set as before; however,

we measure Nr units with the r-th judgment rank so that the total number of

6



measured units is then
∑n

r=1Nr. There are many variations of RSS. For more details

on them, readers are referred to Takahasi and Wakimoto (1968), Dell and Clutter

(1972), Muttlak and Mc Donald (1990), Ozturk and Wolfe (2000), Jafari Jozani and

Johnson (2011) as well as Jafari Jozani and Perron (2011).

RSS was initially introduced and explored in various aspects of nonparametric

inference. For example, see Bohn (1996), Presnell and Bohn (1999), Ozturk (1999),

Barabesi (2001) and references therein. On the other hand, parametric inference

based on RSS has attracted a lot of attention, for example, Sinha et al. (1996), Tarn

et al. (1998) and Barnett (1999). The focus of research on parametric problems is

mainly placed on different aspects of the best linear unbiased estimator (BLUE)

(e.g., Kim and Arnold, 1999 and Lavin, 1999) and theoretical analysis of the effi-

ciency of RSS with respect to SRS (e.g., Stokes, 1995; Chen, 2000; Barabesi and

El-Sharaawi, 2001 and Chen et al., 2004). For an overview of the theory and appli-

cations of RSS and its variations, readers are referred to the monographs of Chen

et al. (2004) and Wolfe (2012).

1.2 Partially rank ordered set sampling

In RSS, if the within-set ranking process is accurate, there will be a big separation

among strata (judgment classes) and the inference based on RSS could be highly

efficient. On the other hand, error in ranking reduces the efficiency, and may also

produce invalid inference. In RSS, rankers have to declare unique ranks for each

unit inside the sets. There are many situations where it is difficult to rank all

of the sampling units in a set with high confidence, particularly when subjective
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information is utilized in the ranking process. Forcing rankers to declare unique

ranks can lead to inflated within-set judgment ranking error and consequently to

invalid statistical inference including tests with inflated type-I error rates, confidence

intervals with incorrect coverage probabilities and biased estimates. For this reason,

it is desirable to have a sampling design that is less sensitive to within-set ranking

error. The partially rank-ordered set (PROS) sampling design is a generalization

of RSS, due to Ozturk (2011), which is aimed at reducing the impact of ranking

error and the burden on rankers by not requiring them to provide a full ranking of

all the units in each set. Under the PROS sampling technique, rankers have more

flexibility by being able to divide the sampling units into subsets. These subsets

are partially rank-ordered so that each unit in subset h has a rank smaller than the

rank of the units in subset h
′

for all h
′ ≥ h. An observation is then collected from

one of these subsets in each set.

Let D = {d1, . . . , dn} denote a partition of the integers {1, . . . , S} into n mu-

tually exclusive subsets dr, each of size m, where dr = {(r − 1)m + 1, . . . , rm},

r = 1, . . . , n, and m = S/n. To construct a PROS sample from the population of

interest, we first select a set of S units. Then, a ranker is asked to assign these

units to subsets dr, r = 1, . . . , n. This assignment can be made based on the visual

inspection, concomitant variables or any other means that does not require a full

measurement of the variable of interest. We note that the subsetting process does

not require a full ranking of all units, since there is no need to know the ranks of the

units in the subset dr. From the subset d1, we select a unit at random for full mea-

surement. The measurement from this unit is denoted by X[d1]1. We select another

set of size S and again assign the units into the subsets dr, r = 1, . . . , n. This time
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we select a unit at random from the subset d2 for a full measurement and denote it

by X[d2]1. We continue this process until we obtain X[dn]1 as the final measurement

from the subset dn. These fully measured observations, X[d1]1, . . . , X[dn]1, constitute

the PROS sample obtained from the first cycle of the sampling. In order to increase

the sample size, this process can be repeated N times to generate a PROS sample of

size nN denoted by {X[dr]i; r = 1, . . . , n; i = 1, . . . , N}. Throughout this thesis, we

only focus on balanced PROS sampling design in which the number of observations

in each judgment class is the same; however, with slight modifications the results

can be obtained for an unbalanced PROS data. Note that, for the special case with

m = 1, this design reduces to a balanced RSS design with the set size n = S, and

when S = 1 it results in the usual SRS design. On the other hand, it should be

noted that there are different variations of PROS sampling design in which the sub-

set sizes and even the number of subsets involved in each set may not be necessarily

the same from set to set and cycle to cycle. For more information about the other

variations of the PROS sampling design, readers are referred to Ozturk (2011).

The construction of a PROS design is illustrated in Table 1.2 when S = 9,

n = 3 and the cycle size is N = 2. In this example, the design D = {d1, d2, d3} =

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} is used to generate the data. Each set contains nine

units, which are placed into three subsets with partial ranking information. The

partial ranking information indicates that the units in d1 have the smallest three

judgment ranks among the nine units, units in subset d2 have judgment ranks greater

than the judgment ranks of units in d1 and less than the judgment ranks of units in

d3. The partial ranking process dose not assign any ranks to units within subsets.

These units are equally likely to take any rank in that subset. One of the units in
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Table 1.2: An example of PROS sample

cycle set Subsets Observation
1 S1 D1 = {d1, d2, d3} = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} X[d1]1

S2 D2 = {d1,d2, d3} = {{1, 2, 3},{4, 5, 6}, {7, 8, 9}} X[d2]1

S3 D3 = {d1, d2,d3} = {{1, 2, 3}, {4, 5, 6},{7, 8, 9}} X[d3]1

2 S1 D1 = {d1, d2, d3} = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} X[d1]2

S2 D2 = {d1,d2, d3} = {{1, 2, 3},{4, 5, 6}, {7, 8, 9}} X[d2]2

S3 D2 = {d1, d2,d3} = {{1, 2, 3}, {4, 5, 6},{7, 8, 9}} X[d3]2

each set is selected at random for full measurement, from the bold faced subsets in

Table 1.2. The fully measured units are denoted by X[dr]i, r = 1, 2, 3 and i = 1, 2.

The PROS design has been used successfully in a wide range of problems. Gao

and Ozturk (2012) developed a two-sample distribution-free rank-sum test based

on PROS data. Ozturk (2012) used a PROS sampling design to draw inference for

population quantiles. Frey (2012) studied nonparametric estimation of the popula-

tion mean with PROS data while Arslan and Ozturk (2013) developed parametric

inference for the location and scale parameters of a location-scale family of distribu-

tions based on this design. Ozturk and Jafari Jozani (2014) used the properties of

PROS sampling for estimation in the finite population settings. Nazari et al. (2014)

developed nonparametric kernel density estimators with PROS data and compared

them with their SRS and RSS data counterparts.

1.3 Finite mixture models

Due to the recent advances in simulation and computational techniques, finite mix-

ture models (FMMs) have been extensively employed as flexible and convenient
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statistical tools in data analysis. They are used not only in mainstream statisti-

cal analysis such as modelling unknown distributional shapes, analyzing data with

group-structures, model-based classification and clustering analysis, but also in a

wide range of applications. For example, Sodium and Lithium Counter-transport

(SLC) activity in red blood cell is an important trait in quantitive genetics, since

it relates to blood pressure and the prevalence of hypertension. Moreover, SLC

activity is easier to study than blood pressure. Suppose SLC trait is determined

by the action of a single gene with alleles A and a. Using FMMs for modelling the

SLC population, Chen et al. (2012) explored the existence of a major gene and if

it exists, whether or not it is dominant. FMMs have a wide range of applications

in scientific disciplines including quantitative genetics (e.g., Roeder, 1994, Schork

et al., 1996 and Chen and Chen, 2003), medical studies (e.g., Schlattmann, 2009)

and different engineering fields, such as speech recognition, medical imaging and

pattern recognition (e.g., El Zaart et al., 2002). More applications can be found

in McLachlan and Peel (2004), McLachlan et al. (2005), McLachlan and Krishnan

(2007) as well as Mengersen et al. (2011).

Suppose X is a random variable associated with the random phenomenon of

interest and the distribution of X is a mixture of M component densities in some

unknown proportions π = (π1, . . . , πM) with πj > 0 and
∑M

j=1 πj = 1. Equivalently,

each observed data point X = x is taken to be a realization of a FMM with the

following probability density function (pdf)

f(xi; Ψ) = π1f1(xi; θ1) + · · ·+ πMfM(xi; θM), (1.1)

where fj(·; θj), j = 1, . . . ,M , refers to the pdf of the j-th component of the model
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which is specified up to a vector θj of unknown parameters, known a priori to be dis-

tinct. In this context, it is assumed that the data have come from M different classes

C1, . . . , CM where fj(·; θj) represents the pdf of the variable of interest in the j-th

class. The vector of all unknown parameters is denoted by Ψ = (π1, . . . , πM−1, ξ)>,

where ξ = (θ>1 , . . . , θ
>
M)> and the superscript > refers to vector transposition.

Throughout the thesis, we assume that the number of components of the underlying

FMM, M, is known and given.

Among the various statistical inference procedures considered in the literature

for FMMs, the maximum likelihood (ML) estimation of parameters of FMM via

the EM algorithm (Dempster et al., 1977 and McLachlan and Krishnan, 2007) has

dominated the field mainly, because of its simplicity relative to other methods and

its monotonic convergence. For a review of the theory and applications of FMMs,

readers are referred to McLachlan and Peel (2004), Mengersen et al. (2011) and

Titterington et al. (1985).

1.4 An overview of the thesis

In the standard methods of inference for FMM, samples are typically drawn from

the population using SRS. There are many problems in finite mixture modelling in

which the measurement is costly, destructive or invasive; but ranking a small number

of sampling units can be done easily and at little cost; therefore rank-based sampling

designs can be used efficiently to tackle the existing problems and also to obtain

better inference about the population parameters. Throughout the thesis, we study

FMMs based on rank-based samples. Since our approach is model based, whenever
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we are sampling from a finite population, we assume that sampling schemes includ-

ing SRS as well as different rank-based samples are performed with replacement.

The study of statistical inference for FMMs under rank-based sampling schemes is

motivated by various applications ranging from fishery studies to medical research.

For example, estimation of the population age structure or describing the length (or

weight) distribution of an age class of fish are of high importance in stock assess-

ment and fishery management for monitoring fish populations, especially in the case

of short-lived species. The age of the fish is usually determined by examining an

individual’s growth structures in either the otoliths (ear bones), scales or other bony

parts, as there are annular rings (much like a tree) laid down in these structures

over successive years as fish grow. Age structure provides information on age at

first maturity, age of recruitment, life span, mortality, reproduction and growth in

stock composition (e.g., Summerfelt and Hall, 1987; Beamish, 1987). These kinds

of studies are not only time-consuming and costly (e.g., hiring expensive experts

and requiring substantial scientific and laboratory investigations) but also destruc-

tive (e.g., requiring dissection of fish for age determination). For more details, see

Kumar and Adams (1977); MacDonald and Pitcher (1979) and Wang et al. (2009).

The age group of fish can be estimated (predicted) indirectly by the use of the

less expensive and easily obtained length-frequency data which is often modelled

by a FMM. In these settings, rank-based sampling designs are more suitable and

efficient in reducing the cost and in providing more representative samples from the

population.

In this thesis, we study the problem of finite mixture modelling under rank-

based sampling designs including RSS, PROS and some of their variations. The
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work is aimed at getting more insight into finite mixture modelling based on rank-

based sampling techniques by developing new, more suitable and efficient statistical

methods. In Chapter 2, we study the problem of maximum likelihood (ML) estima-

tion of FMMs under different variations of RSS design. We propose two variations

of perfect RSS from a FMM, called M1-RSS as a prospective sampling scheme and

M2-RSS as a separate sampling technique. We also develop a new classification cri-

teria to demonstrate the effect of the extra information associated with RSS data.

Chapter 3 is devoted to the calculation of the Fisher information (FI) content of

RSS data about the FMM parameters. Deriving FI matrices under different RSS

approaches (perfect or imperfect), we show the superiority of RSS estimation of

parameters of FMM over their SRS counterparts. In Chapter 4, we explore the

concept of information and uncertainty structures of the PROS data as a gener-

alization of RSS data in a general class of distributions. The ML estimation in

FMM under PROS sampling design is investigated in Chapter 5. We also explore

the model-based classification method under PROS sampling. We show that the

proposed criterion results in more precise classification of the observed PROS data

than the commonly used classification criteria based on SRS data. Our results are

finally applied to a fishery study where we estimate the age structure of a short-lived

fish species based on the length frequency data. Lastly, the summary of this thesis

and future directions for research in this area are presented in Chapter 6.
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Chapter 2

Estimation and Classification for
FMM under RSS

In this chapter, we study the problem of ML estimation of unknown parameters of

FMMs based on two variations of RSS under the assumption of perfect ranking and

compare the obtained results with the corresponding ones with SRS data. We show

that, using RSS leads to better inference about unknown features of the underlying

model such as the estimation of unknown parameters and identification of unob-

served classes and their weights. Also, we explore both theoretically and numerically

the problem of classification of RSS data and show how the extra information via

the rank of each observation will lead to a more efficient classification of the data

compared to the usual one with SRS data. Due to the nature of FMM, RSS from

the FMM (1.1) can be carried out using two different approaches to be denoted

M1-RSS and M2-RSS. In M1-RSS design, the ranked set samples are obtained from

the whole mixture model (1.1) so that, within each set, individuals from different

components can possibly be involved in the ranking process. This design, which

is more practical, can be considered as a kind of prospective RSS and enables us

to make better inference on classification of the observations and estimation of the
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mixing proportions. The M1-RSS design can be used in a wide range of applied

fields such as fisheries research, health related studies, economics and environmental

and ecological studies. For example, in the fishery example, to model the age class

of a specific type of fish (e.g., Spot) by a mixture of two normal densities, we first

note that there are two subpopulations consisting of immature (0 or 1 year-old) and

mature (2 year-old or older) Spot. One can easily execute an M1-RSS design to

obtain an RSS from this population. To this end, subsamples of Spot are obtained

and the r-th shortest Spot (r = 1, . . . , n) is retained and then the mature status of

the selected Spot is determined (using some time-consuming methods) in the lab.

Here the subsamples consist of fish from both components.

In M2-RSS design, it is assumed that RSS is performed within each component

of the FMM separately and individuals in each set are obtained from one and only

one component of the model. In addition, we assume that the component to which

each measurement belongs is unknown (not be confused with labeled data). One

advantage associated with this kind of separate sampling is that it proposes an ap-

propriate method for retrospective studies which are often faced in epidemiological

investigations. This in turn enables us to make better inference about all com-

ponents of the underlying population, even components which are rarely observed

(McLachlan and Peel, 2004). The M2-RSS design can also be used in a variety of

situations where the RSS is performed within each subpopulation separately, how-

ever, the component membership of each data point is missing due to some reason,

such as confidentiality or simply because it is not recorded. This could be the case

for many research studies involving human subjects as participants. For example,

statistical agencies could perform RSS separately within different subpopulations,
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such as males and females, or different minority groups, but in the end, the mem-

bership is unknown (perhaps due to confidentiality or sensitivity of the questions).

In other words, the observation X(r)i is known to be obtained from a set consisting

of units (subjects) from one of the M subpopulations (e.g., all males or all females),

but it is not known which subpopulation.

The outline of this chapter is as follows. Section 2.1 deals with the problem of

ML estimation of unknown parameters of the FMM using perfect RSS techniques.

We also point out the link between inference based on RSS and SRS techniques.

Suitable EM algorithms are developed in Section 2.2. We show that the underlying

theory behind the EM algorithm for RSS data is different from its counterpart under

the standard situation with SRS data. In Section 2.3, we consider the classification

problem for an RSS sample of size n and compare it with the classification of SRS

samples. Section 2.4 is devoted to the study of the performance of ML estimators

of parameters of finite mixtures of normal distributions via an extensive simulation

study.

2.1 Likelihood functions

In this section, we study the problem of ML estimation of the unknown parameters

Ψ of the FMM based on RSS data. Let f(x; Ψ) be defined as in (1.1) and suppose

F (x; Ψ) =
∑M

j=1 πjFj(x; θj) is its corresponding cumulative distribution function

(cdf), where Fj(x; θj), j = 1, . . . ,M , refers to the cdf of the j-th component of the

model. The pdf of X(r), the r-th order statistic of a sample of size n from (1.1), is
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given by

f (r:n)(x; Ψ) = n

(
n− 1

r − 1

)
f(x; Ψ){F (x; Ψ)}r−1{F̄ (x; Ψ)}n−r, (2.1)

where F̄ (x; Ψ) = 1− F (x; Ψ), and we have

f(x; Ψ) =
1

n

n∑
r=1

f (r:n)(x; Ψ). (2.2)

Similarly, for each component of the FMM (1.1), we have

fj(x; θj) =
1

n

n∑
r=1

f
(r:n)
j (x; θj), j = 1, . . . ,M, (2.3)

and so (1.1) can be written in terms of the pdf of the order statistics of each

component, f
(r)
j (·; θj), as follows

f(x; Ψ) =
1

n

n∑
r=1

M∑
j=1

πjf
(r:n)
j (x; θj). (2.4)

2.1.1 Likelihood function for M1-RSS data

Suppose XM1,RSS = {X(r)i, r = 1, . . . , n; i = 1, . . . , N} is an M1-RSS sample of size

nN from (1.1) where n is the set size and N is the cycle size. Since for each i, X(r)i

corresponds to the r-th order statistic of a sample of size n from (1.1), using (2.1),

the likelihood function of Ψ for M1-RSS sample is

LM1,RSS(Ψ) =
N∏
i=1

n∏
r=1

f (r:n)(x(r)i; Ψ), (2.5)
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where f (r:n)(·; Ψ) is defined in (2.1). Let lM1,RSS(Ψ) = logLM1,RSS(Ψ). Now, the

ML estimate of Ψ, denoted by Ψ̂M1,RSS, is given as an appropriate root of the

likelihood equation,

∂lM1,RSS(Ψ)

∂Ψ
= 0. (2.6)

Remark 2.1. Suppose XSRS = {X1, ..., XnN} is an SRS sample of size nN from

(1.1). One can represent XSRS in the form of a matrix D = [X(r)i] of size n × N ,

where n and N refer to the number of columns and rows of D, respectively. Here

X(r)i simply denotes the (r, i)-th element of D and the likelihood function of the SRS

data can be written as

LSRS(Ψ) =
N∏
i=1

n∏
r=1

f(x(r)i; Ψ) =
N∏
i=1

n∏
r=1

{
M∑
j=1

πjfj(x(r)i; θj)

}
. (2.7)

Using (2.5) we have

LM1,RSS(Ψ) = LSRS(Ψ)×

{
N∏
i=1

n∏
r=1

n

(
n− 1

r − 1

)
[F (x(r)i; Ψ)]r−1[F̄ (x(r)i; Ψ)]n−r

}
. (2.8)

Note that the extra term in LM1,RSS(Ψ) compared with LSRS(Ψ) can be interpreted

as the effect of the rank information provided to us using RSS as a more complex

sampling design.

2.1.2 Likelihood function for M2-RSS data

Suppose XM2,RSS = {X(r)i, r = 1, . . . , n; i = 1, . . . , N} is a sample of size nN from

(1.1) obtained through M2-RSS design where n and N are defined as before. For
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the M2-RSS design, X(r)i corresponds to the r-th order statistic of a sample of size

n from one of the components of the FMM (1.1); therefore the likelihood function

of Ψ based on M2-RSS data is

LM2,RSS(Ψ) =
N∏
i=1

n∏
r=1

{
M∑
j=1

πjf
(r:n)
j (x(r)i; θj)

}
, (2.9)

where f
(r:n)
j (·; Ψ) corresponds to the pdf of r-th order statistic of component j. Let

lM2,RSS(Ψ) = logLM2,RSS(Ψ). Now the ML estimate of Ψ, denoted by Ψ̂M2,RSS, is

given as an appropriate root of the likelihood equation

∂lM2,RSS(Ψ)

∂Ψ
= 0. (2.10)

In Section 2.2, we develop new EM algorithms to obtain the solutions of (2.6)

and (2.10) corresponding to local maximizers of the likelihood functions (2.5) and

(2.9), respectively.

2.2 EM algorithms for RSS techniques

The EM algorithm is a general approach that can be used for ML estimation of the

parameters of the FMM (1.1). The EM algorithm alternates between two steps,

an E-step in which the conditional expectation of the complete data log-likelihood

is computed, and an M-step in which parameters that maximize the expected log-

likelihood from the E-step are determined. For more details see Dempster et al.

(1977). RSS data has a unique data structure different from the usual SRS data
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and as a result, the standard EM algorithm developed for FMM is not applicable

for RSS data. In this section, we develop new EM-algorithms for data obtained

through different variations of RSS.

2.2.1 EM algorithm for M1-RSS data

To use the EM algorithm for estimating the parameters of the FMM (1.1) based

on an M1-RSS data, the problem is viewed as being incomplete since the label-

component vectors associated with feature variables x(r)i are missing. However,

what makes this problem different from the standard EM algorithm is the presence

of the terms [F (·; Ψ)]r−1 and [F̄ (·; Ψ)]n−r in (2.1). To overcome this problem, we

propose a different missing data mechanism by introducing three different latent

vectors for each x(r)i. Let Zr
i denote the usual component membership of the obser-

vation x(r)i, Wr
i denote the component memberships of the observations less than

x(r)i and Vr
i denote the component memberships of the observations larger than

x(r)i. More specifically, suppose Z
(r)
i =

(
Z

(r)
i1 , . . . , Z

(r)
iM

)
is an M -dimensional vector,

where Z
(r)
ij is one or zero, according to whether or not x(r)i belongs to the j-th

component of the mixture model (j = 1, . . . ,M). That is

Z
(r)
ij =

{
1 if x(r)i belongs to component j;
0 otherwise,

with
∑M

j=1 Z
(r)
ij = 1. Indicator vectors Z

(1)
1 , . . . ,Z

(n)
N follow a multinomial distri-

bution consisting of one draw on M classes (C1, . . . , CM) with probabilities π =
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(π1, . . . , πM), that is, Z
(1)
1 , . . . ,Z

(n)
N

i.i.d.∼ Mult(1, π), with

P (Z
(r)
i = z

(r)
i ;π) =

M∏
j=1

π
z
(r)
ij

j .

In addition, suppose W
(r)
i =

(
W

(r)
i1 , . . . ,W

(r)
iM

)
is an M -dimensional vector,

where W
(r)
ij denotes the number of observations less than x(r)i which are selected

from component j. Note that
∑M

j=1W
(r)
ij = r − 1. Accordingly, the latent vec-

tors W
(1)
1 , . . . ,W

(n)
N are assumed to be distributed according to a multinomial dis-

tribution consisting of r − 1 draws on M classes (C1, . . . , CM) with probabilities

π = (π1, . . . , πM); that is, W
(1)
1 , . . . ,W

(n)
N

i.i.d.∼ Mult(r − 1,π), with

P (W
(r)
i = w

(r)
i ;π) =

(
r − 1

w
(r)
i1 , . . . , w

(r)
iM

) M∏
j=1

π
w

(r)
ij

j .

Likewise, let V
(r)
i =

(
V

(r)
i1 , . . . , V

(r)
iM

)
be an M -dimensional vector where V

(r)
ij

denotes the number of observations bigger than x(r)i that are selected from com-

ponent j, with
∑M

j=1 V
(r)
ij = n − r. Accordingly, the latent vectors V

(1)
1 , . . . ,V

(r)
N

are assumed to follow a multinomial distribution consisting of n − r draws on M

classes (C1, . . . , CM) with probabilities π = (π1, . . . , πM); that is, V
(1)
1 , . . . ,V

(n)
N

i.i.d.∼

Mult(n− r,π), with

P (V
(r)
i = v

(r)
i ;π) =

(
n− r

v
(r)
i1 , . . . , v

(r)
iM

) M∏
j=1

π
v
(r)
ij

j .
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Since each set of RSS consists of independent samples from the population and

component memberships of those observations are independent of each other, the

latent variables Z
(i)
i ,W

(r)
i and V

(r)
i are conditionally independent.

Lemma 2.1. For fixed values i and r, i = 1, . . . , N , r = 1, . . . , n; the joint distri-

bution of (X(r)i, Z
(r)
i ,W

(r)
i , V

(r)
i ) is given by

f(x(r)i, z
(r)
i , w

(r)
i , v

(r)
i ; Ψ) = c1 c2 c3

M∏
j=1

π
{z(r)ij +w

(r)
ij +v

(r)
ij }

j

×{fj(x(r)i; θj)}z
(r)
ij {Fj(x(r)i; θj)}w

(r)
ij {F̄j(x(r)i; θj)}v

(r)
ij ,

where c1 = n
(
n−1
r−1

)
, c2 =

( r−1
w

(r)
i1 ,...,w

(r)
iM

)
and c3 =

( n−r
v
(r)
i1 ,...,v

(r)
iM

)
.

Proof. The conditional pdf of the latent variables Z
(r)
ij ,W

(r)
ij , V

(r)
ij given X(r)i are

given as follows

f(z
(r)
ij |x(r)i; Ψ) =

f(x(r)i|z(r)ij ; Ψ)f(z
(r)
ij )

f (r)(x(r)i; Ψ)

=
c1
∏M

j=1{fj(x(r)i; θj)}
z
(r)
ij {F (x(r)i; Ψ)}r−1{F̄ (x(r)i; Ψ)}n−r

∏M
j=1 π

z
(r)
ij

j

c1f(x(r)i; Ψ){F (x(r)i; Ψ)}r−1{F̄ (x(r)i; Ψ)}n−r

=
M∏
j=1

(
πjfj(x(r)i; θj)

f(x(r)i; Ψ)

)z(r)ij

, (2.11)
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as all z
(r)
ij are zero except for one.

f(w
(r)
ij |x(r)i; Ψ) =

f(x(r)i|w(r)
ij ; Ψ)f(w

(r)
ij )

f (r)(x(r)i; Ψ)

=
c1c2f(x(r)i; Ψ)

∏M
j=1{Fj(x(r)i; θj)}

w
(r)
ij {F̄ (x(r)i; Ψ)}n−r

∏M
j=1 π

w
(r)
ij

j

c1f(x(r)i; Ψ){F (x(r)i; Ψ)}r−1{F̄ (x(r)i; Ψ)}n−r

= c2

M∏
j=1

(
πjFj(x(r)i; θj)

F (x(r)i; Ψ)

)w(r)
ij

, (2.12)

as
∑M

j=1w
(r)
ij = r − 1, and

f(v
(r)
ij |x(r)i; Ψ) =

f(x(r)i|v(r)ij ; Ψ)f(v
(r)
ij )

f (r)(x(r)i; Ψ)

=
c1c3f(x(r)i; Ψ){F (x(r)i; Ψ)}r−1

∏M
j=1{F̄j(x(r)i; θj)}

v
(r)
ij
∏M

j=1 π
v
(r)
ij

j

c1f(x(r)i; Ψ){F (x(r)i; Ψ)}r−1{F̄ (x(r)i; Ψ)}n−r

= c3

M∏
j=1

(
πjF̄j(x(r)i; θj)

F̄ (x(r)i; Ψ)

)v(r)ij

, (2.13)

as
∑M

j=1 v
(r)
ij = n − r. From the conditional independence of the latent variables,

the proof is completed.

The following Lemma is useful to show that maximization of the complete data

log-likelihood of M1-RSS in the M-step of every iteration of the EM algorithm

results in the maximization of the corresponding incomplete data log-likelihood.

Lemma 2.2. For each x(r)i, i = 1, . . . , N ; r = 1, . . . , n, we have

f (r:n)(x(r)i; Ψ) =
∑

z

∑
w

∑
v

f(x(r)i, z
(r)
i , w

(r)
i , v

(r)
i ; Ψ).
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Proof. To show the result, we have

∑
z
(r)
i

∑
w

(r)
i

∑
v
(r)
i

f(x(r)i, z
(r)
ij , w

(r)
ij , v

(r)
ij ; Ψ)

= c1


∑

z
(r)
i1 +···+z(r)iM=1

M∏
j=1

{πjfj(x(r)i; θj)}z
(r)
ij




∑
w

(r)
i1 +···+w(r)

iM=r−1

c2

M∏
j=1

{πjFj(x(r)i; θj)}w
(r)
ij



×


∑

v
(r)
i1 +···+v(r)iM=n−r

c3

M∏
j=1

{πjF̄j(x(r)i; θj)}v
(r)
ij



= c1


M∑
j=1

πjfj(x(r)i; θj)




M∑
j=1

πjFj(x(r)i; θj)


r−1

M∑
j=1

πjF̄j(x(r)i; θj)


n−r

= c1f(x(r)i; Ψ){F (x(r)i; Ψ)}r−1{F̄ (x(r)i; Ψ)}n−r.

where c1, c2 and c3 are defined as in Lemma 2.1.

The complete M1-RSS data YM1 = {(X(r)i, Z
(r)
i ,W

(r)
i , V

(r)
i ), i = 1, . . . , N ; r =

1, . . . , n} consist of the feature variables and their associated latent variables. Using

Lemma 2.1, the complete data likelihood function is given by

Lc(Ψ|yM1) = c1

N∏
i=1

n∏
r=1

c2 c3

M∏
j=1

π
{z(r)ij +w

(r)
ij +v

(r)
ij }

j

×{fj(x(r)i; θj)}z
(r)
ij {Fj(x(r)i; θj)}w

(r)
ij {F̄j(x(r)i; θj)}v

(r)
ij , (2.14)

where the constants c1, c2 and c3 are as in Lemma 2.1. Using (2.14) and Lemma

2.2, it is easy to see that the incomplete-data likelihood function LM1,RSS(Ψ) can
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be obtained by summing over Z,W and V of the complete-data likelihood, i.e.,

∑
Z

∑
W

∑
V

Lc(Ψ|yM1) =
N∏
i=1

n∏
r=1

f (r)(x(r)i; Ψ).

Also, the complete-data log-likelihood function of Ψ is obtained as

lM1(Ψ) ∝
N∑
i=1

n∑
r=1

M∑
j=1

[
Z

(r)
ij

{
log πj + log(fj(x(r)i; θj))

}
+W

(r)
ij

{
log πj + log(Fj(x(r)i; θj))

}
+V

(r)
ij

{
log πj + log(F̄j(x(r)i; θj))

}]
. (2.15)

Now, we can formulate the EM algorithm for the M1-RSS data as follows; see

McLachlan and Peel (2004) for more details.

E-Step: Let Ψ(0) be the initial value specified for Ψ and define the condi-

tional expectation of the complete data log-likelihood function (2.15) given

the observed data YM1 = yM1 by

QM1(Ψ,Ψ(0)) = EΨ(0) [lM1(Ψ)|yM1], (2.16)

where the expectation will be computed by using Ψ(0) instead of Ψ in the

conditional distribution. On the (p+ 1)-th iteration, the E-step needs the cal-

culation of QM1(Ψ,Ψ(p)), where Ψ(p) is the value of Ψ after the p-th iteration.

This involves the calculation of the expectations of Z
(r)
ij , W

(r)
ij and V

(r)
ij given
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the observation x(r)i. Now from (2.11), (2.12) and (2.13), it is easy to see that

Z
(r)
ij |X(r)i = x(r)i ∼ Bin

(
1,
πjfj(x(r)i; θj)

f(x(r)i; Ψ)

)
,

W
(r)
ij |X(r)i = x(r)i ∼ Bin

(
r − 1,

πjFj(x(r)i; θj)

F (x(r)i; Ψ)

)
,

V
(r)
ij |X(r)i = x(r)i ∼ Bin

(
n− r,

πjF̄j(x(r)i; θj)

F̄ (x(r)i; Ψ)

)
,

where i = 1, . . . , N ; r = 1, . . . , n and j = 1, . . . ,M . Hence, the conditional

expectations of Z
(r)
ij , W

(r)
ij and V

(r)
ij given the observation x(r)i are given by

follow

τj,M1(x(r)i; Ψ
(p)) = EΨ(p) [Z

(r)
ij |x(r)i] =

π
(p)
j fj(x(r)i; θ

(p)
j )∑M

h=1 π
(p)
h fh(x(r)i; θ

(p)
h )

, (2.17)

βj,M1(x(r)i; Ψ
(p)) = EΨ(p) [W

(r)
ij |x(r)i] =

(r − 1)π
(p)
j Fj(x(r)i; θ

(p)
j )∑M

h=1 π
(p)
h Fh(x(r)i; θ

(p)
h )

, (2.18)

γj,M1(x(r)i; Ψ
(p)) = EΨ(p) [V

(r)
ij |x(r)i] =

(n− r)π(p)
j F̄j(x(r)i; θ

(p)
j )∑M

h=1 π
(p)
h F̄h(x(r)i; θ

(p)
h )

. (2.19)
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Using (2.17), (2.18) and (2.19), we have

QM1(Ψ,Ψ(p)) = cst+
N∑
i=1

n∑
r=1

M∑
j=1

τj,M1(x(r)i; Ψ
(p))
{

log πj + log(fj(x(r)i; θj))
}

+
N∑
i=1

n∑
r=1

M∑
j=1

βj,M1(x(r)i; Ψ
(p)){log πj + log(Fj(x(r)i; θj))}

+
N∑
i=1

n∑
r=1

M∑
j=1

γj,M1(x(r)i; Ψ
(p)){log πj + log(F̄j(x(r)i; θj))}.

(2.20)

Now, we are ready to implement the M-step.

M-Step: In this step, the maximization of QM1(Ψ,Ψ(p)) with respect to

Ψ will be done over the parameter space to obtain the updated estimates

Ψ(p+1) = (π
(p+1)
1 , . . . , π

(p+1)
M−1 , ξ

(p+1))>. Note that according to (2.15) the up-

dated estimates π
(p+1)
j of the mixing proportions πj can be calculated indepen-

dently of the updated estimates ξ(p+1) of the parameters ξ in Ψ. If Z
(r)
ij ,W

(r)
ij

and V
(r)
ij were observed by z

(r)
ij , w

(r)
ij and v

(r)
ij , the (complete data) ML estimate

of πj would be given by

π̂j =
1

Nn2

N∑
i=1

n∑
r=1

(
z
(r)
ij + w

(r)
ij + v

(r)
ij

)
, (2.21)

by using the Lagrangian multipliers method over the constraint
∑M

j=1 πj = 1;

however, since they are not observable, we update the estimates of πj, j =
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1, . . . ,M , by

π
(p+1)
j,M1 =

1

Nn2

N∑
i=1

n∑
r=1

{
τj,M1(x(r)i; Ψ

(p)) + βj,M1(x(r)i; Ψ
(p)) + γj,M1(x(r)i; Ψ

(p))
}
.

(2.22)

Also, the updated value ξ(p+1) is obtained as the solution of

N∑
i=1

n∑
r=1

M∑
j=1

τj,M1(x(r)i; Ψ
(p))

fj(x(r)i; θj)

∂

∂ξ
fj(x(r)i; θj)

+
N∑
i=1

n∑
r=1

M∑
j=1

∂

∂ξ
Fj(x(r)i; θj)

(
βj,M1(x(r)i; Ψ

(p))

Fj(x(r)i; θj)
−
γj,M1(x(r)i; Ψ

(p))

F̄j(x(r)i; θj)

)
= 0,

(2.23)

with respect to ξ.

The E- and M-steps are iterated repeatedly until |lM1(Ψ
(p+1))− lM1(Ψ

(p))| becomes

negligible.

2.2.2 EM algorithm for M2-RSS data

To formalize the EM algorithm based on M2-RSS, we only need to define one latent

variable. Suppose Z
(r)
i =

(
Z

(r)
i1 , . . . , Z

(r)
iM

)
is an M -dimensional vector where Z

(r)
ij

is one or zero, according to whether or not X(r)i corresponds to the r-th order

statistic of the j-th component of the FMM (j = 1, . . . ,M). The conditional pdf of

the feature variables X(1)1, . . . , X(n)N given Z
(1)
1 , . . . ,Z

(n)
N is as follows

f(x(1)1, . . . , x(n)N |z(1)
1 , . . . , z

(n)
N ; ξ) =

N∏
i=1

n∏
r=1

f (r:n)(x(r)i|z(r)
i ; ξ),
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where

f (r:n)(x(r)i|z(r)
i ; ξ) =

M∏
j=1

{
f
(r:n)
j (x(r)i; θj)

}z(r)ij

.

Also, the likelihood function of Ψ based on the complete M2-RSS data which is

denoted by YM2 =
{

(X(r)i,Z
(r)
i ), i = 1, . . . , N ; r = 1, . . . , n

}
can be expressed as

LM2(Ψ) =
N∏
i=1

n∏
r=1

M∏
j=1

{
πjf

(r:n)
j (x(r)i; θj)

}Z(r)
ij

=

N∏
i=1

n∏
r=1

M∏
j=1

{
n

(
n− 1

r − 1

)
πjfj(x(r)i; θj)[Fj(x(r)i; θj)]

r−1[1− Fj(x(r)i; θj)]n−r
}Z(r)

ij

.

(2.24)

Here again the incomplete M2-RSS likelihood function (2.9) can be obtained by

summing Z
(r)
i out of the complete M2-RSS likelihood function LM2(Ψ). The likeli-

hood function (2.24) leads to the complete data log-likelihood function of Ψ as

lM2(Ψ) =
N∑
i=1

n∑
r=1

M∑
j=1

Z
(r)
ij

{
log πj + log f

(r:n)
j (x(r)i; θj)

}

= N
n∑
r=1

log n

(
n− 1

r − 1

)
+

N∑
i=1

n∑
r=1

M∑
j=1

Z
(r)
ij

{
log πj + log fj(x(r)i; θj)

}

+
N∑
i=1

n∑
r=1

M∑
j=1

Z
(r)
ij

{
(r − 1) logFj(x(r)i; θj) + (n− r) log(F̄j(x(r)i; θj))

}
.

(2.25)

Now, the EM algorithm can be applied to obtain estimates of Ψ. To this end, we
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first calculate

τj,M2(x(r)i; Ψ
(p)) = EΨ(p) [Z

(r)
ij |x(r)i]

=
π
(p)
j fj(x(r)i; θ

(p)
j )[Fj(x(r)i; θ

(p)
j )]r−1[F̄j(x(r)i; θ

(p)
j )]n−r∑M

h=1 π
(p)
h fh(x(r)i; θ

(p)
h )[Fh(x(r)i; θ

(p)
h )]r−1[F̄h(x(r)i; θ

(p)
h )]n−r

,

(2.26)

where j = 1, . . . , n; i = 1, . . . , N and Ψ(0) denotes the initial value for Ψ. Us-

ing (2.26), the conditional expectation of the complete M2-RSS data log-likelihood

function (2.25) given the observed data XRSS = xRSS (on the p-th iteration) of the

EM algorithm yields

QM2(Ψ,Ψ(p)) = N
n∑
r=1

log n

(
n− 1

r − 1

)

+
N∑
i=1

n∑
r=1

M∑
j=1

[
τj,M2(x(r)i; Ψ

(p))
{

log πj + log fj(x(r)i; θj)
}

+τj,M2(x(r)i; Ψ
(p)){(r − 1) logFj(x(r)i; θj) + (n− r) log F̄j(x(r)i; θj)}

]
.

(2.27)

In the M-step, using the Lagrangian multipliers method, we update mixing propor-

tions by (2.26) independently of the other parameters of the model through

π
(p+1)
j =

1

nN

N∑
i=1

n∑
r=1

τj,M2(x(r)i; Ψ
(p)), j = 1, . . . ,M − 1. (2.28)
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Furthermore, ξ(p+1) is updated by an appropriate root of

N∑
i=1

n∑
r=1

M∑
j=1

τj,M2(x(r)i; Ψ
(p))

fj(x(r)i; θj)

∂

∂ξ
fj(x(r)i; θj)

+
N∑
i=1

n∑
r=1

M∑
j=1

τj,M2(x(r)i; Ψ
(p))

∂

∂ξ
Fj(x(r)i; θj)

(
r − 1

Fj(x(r)i; θj)
− n− r
F̄j(x(r)i; θj)

)
= 0.

(2.29)

The E- and M- steps are iterated repeatedly until |lM2(Ψ
(p+1)) − lM2(Ψ

(p))|

becomes negligible.

Remark 2.2. The complete data likelihood function of Ψ for the SRS sample can

be written as

LC,SRS(Ψ) =
n∏
i=1

M∏
j=1

{πjfj(xi; θj)}zij , (2.30)

where x(r)i refers to the (r, i)-th element of the matrix of observations D and Z
(r)
ij

is its corresponding indicator function which specifies whether x(r)i is an obser-

vation from the j-th component of the FMM (1.1) or not. It can be seen that

logLC,SRS(Ψ) = lC,SRS(Ψ) = lM2(Ψ)− ΛM2(ξ), with

ΛM2(ξ) = N

n∑
r=1

log n

(
n− 1

r − 1

)

+
N∑
i=1

n∑
r=1

M∑
j=1

Z
(r)
ij

{
(r − 1) logFj(x(r)i; θj) + (n− r) log F̄j(x(r)i; θj)

}
.
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In addition, lC,SRS(Ψ) = lM1(Ψ)− ΛM1(ξ), and

ΛM1(ξ) =
N∑
i=1

n∑
r=1

log

{
n

(
n− 1

r − 1

)(
r − 1

w
(r)
i1 , . . . , w

(r)
iM

)(
n− r

v
(r)
i1 , . . . , v

(r)
iM

)}

+
N∑
i=1

n∑
r=1

M∑
j=1

W
(r)
ij {log πj + logFj(x(r)i; θj)}

+
N∑
i=1

n∑
r=1

M∑
j=1

V
(r)
ij {log πj + log F̄j(x(r)i; θj)}.

One can easily rewrite the EM algorithm based on SRS data in terms of their new

matrix representations defined in Remark 2.1. To this end, for the E-step, let Ψ(0)

be the initial value specified for Ψ and Q(Ψ,Ψ(0)) = EΨ(0) [lC,SRS(Ψ)|xSRS]. In the

(p+ 1)-th iteration of this step we compute

Q(Ψ,Ψ(p)) =
N∑
i=1

n∑
r=1

M∑
j=1

τj,SRS(x(r)i; Ψ
(p))
{

log πj + log fj(x(r)i; θj)
}
, (2.31)

where

τj,SRS(x(r)i; Ψ
(p)) =

π
(p)
j fj(x(r)i; θ

(p)
j )∑M

h=1 π
(p)
h fh(x(r)i; θ

(p)
h )

. (2.32)

Similarly, for the M-step, and at its (p + 1)-th iteration, a local maximization of

Q(Ψ,Ψ(p)) with respect to Ψ will be done over the parameter space to obtain Ψ(p+1).

The updated estimate of πj is given by

π
(p+1)
j =

1

Nn

N∑
i=1

n∑
r=1

τj,SRS(x(r)i; Ψ
(p)), j = 1, . . . ,M − 1, (2.33)
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while the updated estimate of ξ is obtained as an appropriate root of

N∑
i=1

n∑
r=1

M∑
j=1

τj,SRS(x(r)i; Ψ
(p))

fj(x(r)i; θj)

∂

∂ξ
fj(x(r)i; θj) = 0. (2.34)

A comparison of (2.23) and (2.29) with (2.34) shows the contribution of the ranks

provided by the RSS technique in obtaining the ML estimates of Ψ.

2.2.3 Modified EM algorithm for M2-RSS

ML estimation of Ψ in the FMM (1.1) based on different RSS samples through the

EM algorithms consist of updating ξ in the corresponding M-step for the (p + 1)-

th iteration by solving (2.23) and (2.29) in θj’s. However, it may not be easy to

solve those equations and/or find closed form expressions for the solutions. This, of

course, is due to the presence of the terms involving forms of the hazard and inverse

hazard rate functions, i.e. ∂
∂ξ

logFj(·; θj) and ∂
∂ξ

log(1 − Fj(·; θj)) in the obtained

equations. In this section, we provide an approximate ML method to reduce the

computational complexity for iteratively solving the likelihood functions and to

obtain simpler and possibly closed forms for the solutions to (2.29). The results,

with slight modifications, can be similarly extended to the case of M1-RSS. We use

the method of Johnson et al. (1972) as well as Mehrotra and Nanda (1974) which

are based on replacing the hazard rate terms by their expectations. Mehrotra and

Nanda (1974) applied this method in estimating parameters of normal and gamma

distributions based on type II censored data and showed that their approximate ML

estimators are still unbiased and are highly efficient relative to the ML estimators

based on the complete ML equation. For more details we refer to Bhattacharyya
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(1985) which provides a rigorous treatment of this method along with some of its

optimal properties.

We first obtain a modified version of (2.29) by replacing the terms involving

∂
∂ξ

logFj(·; θj) and ∂
∂ξ

log(1 − Fj(·; θj)) by their expectations. This results in sim-

pler expression for updating ξ in the M-step of the (p + 1)-th iteration of the EM

algorithm. Note that, this method will not affect the estimation procedure of the

mixing proportions πj’s, j = 1, . . . ,M . We need the following lemma whose proof

can be found in Chen (2000) as well as in Chen et al. (2004).

Lemma 2.3. Let Yr = X(r)i, r = 1, . . . , n, i = 1, . . . , N , with pdf f (r:n)(·; Ψ) be

the r-th order statistic of a simple random sample of size n from f(x; Ψ) with cdf

F (x; Ψ). Then, for any function G(·),

E

[
n∑
r=1

(r − 1)
G(Yr)

F (Yr; Ψ)

]
= E

[
n∑
r=1

(n− r) G(Yr)

1− F (Yr; Ψ)

]
= n(n− 1)EΨ[G(X)].

We need to compute

Iijr = E

[
τj,M2(X(r)i; Ψ

(p))

(
∂
∂ξ
Fj(X(r)i; θj)

Fj(X(r)i; θj)

)]
,

and

Jijr = E

[
τj,M2(X(r)i; Ψ

(p))

(
∂
∂ξ
Fj(X(r)i; θj)

1− Fj(X(r)i; θj)

)]
.

Using Lemma 2.3 with Gj(X(r)i) = τj,M2(X(r)i; Ψ
(p)) ∂

∂ξ
Fj(X(r)i; θj), it is easy to
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show that

N∑
i=1

n∑
r=1

M∑
j=1

(r − 1)Iijr = N

M∑
j=1

n∑
r=1

(r − 1)E
[
Gj(X(r)1)

Fj(X(r)1; θj)

]

= Nn(n− 1)
M∑
j=1

E[Gj(X)]. (2.35)

Similarly, it can be shown that

N∑
i=1

n∑
r=1

M∑
j=1

(n− r)Jijr = N
M∑
j=1

n∑
r=1

(n− r)E
[

Gj(X(r)1)

1− Fj(X(r)1; θj)

]

= Nn(n− 1)
M∑
j=1

E[Gj(X)]. (2.36)

Now, upon substituting (2.35) and (2.36) in (2.29) we get a modified expression for

updating ξ in the M-step of the EM-M2 algorithm which leads to an approximate

ML estimate of ξ as a solution to

N∑
i=1

n∑
r=1

M∑
j=1

τj,M2(x(r)i; Ψ
(p))

fj(x(r)i; θj)

∂

∂ξ
fj(x(r)i; θj) = 0. (2.37)

Note that (2.37) is similar to the updating equation (2.34) obtained in McLachlan

and Peel (2004) under the SRS technique. Similarly to the SRS case, one nice feature

of this modified version of the EM algorithm is that the solutions of (2.37) often

exist in closed form and that they can be obtained by replacing τj,M2(x(r)i; Ψ
(p)) by

τj,SRS(x(r)i; Ψ
(p)) in the available solutions for their SRS counterparts.
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2.3 Classification of the RSS sample

Once Ψ̂ is obtained (based on either M1-RSS or M2-RSS data) estimates of the

posterior probabilities of the population membership can be formed for each obser-

vation to perform a probabilistic classification of the data. Suppose i ∈ {1, . . . , N}

is fixed and yr = x(r)i is observed. For the M2-RSS design, classification of yr is

based on the posterior probability that yr belongs to the j-th component of the mix-

ture model, that is τj,M2(yr; Ψ) as in (2.26). Also, from (2.17), (2.18) and (2.19),

classification of yr under M1-RSS design is done via the following formula

αj,M1 =
1

n
{τj,M1(yr,Ψ) + βj,M1(yr,Ψ) + γj,M1(yr,Ψ)} . (2.38)

Now, yr is classified into the component j, i.e., yr ∈ Cj, if

τj,M2(yr; Ψ̂) > τt,M2(yr; Ψ̂) or αj,M1(yr; Ψ̂) > αt,M1(yr; Ψ̂),

for all t 6= j, t = 1, . . . ,M . In this section, we focus on this classification approach

and demonstrate the effect of the extra information obtained from the ranks in RSS

when designs compared to SRS.

For an SRS sample of size Nn the posterior probability that yr = x(r)i belongs

to the j-th component of the mixture model is given by

τj,SRS(yr; Ψ) =
πjfj(yr; θj)∑M
h=1 πhfh(yr; θh)

, (2.39)

Now, it can be seen that

αj,M1(yr; Ψ) =
1

n
{τj,SRS(yr; Ψ) + Aj,M1(yr; Ψ)} , (2.40)
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where

Aj,M1(yr; Ψ) = (r − 1)

(
πjFj(x(r)i; θj)

F (x(r)i; Ψ)

)
+ (n− r)

(
πjF̄j(x(r)i; θj)

F̄ (x(r)i; Ψ)

)
. (2.41)

Using M2-RSS design instead, we get

τj,M2(yr; Ψ) = τj,SRS(yr; Ψ)Aj,M2(yr; Ψ), (2.42)

where

Aj,M2(yr; Ψ) =

(∑M
v=1 πvfv(yr; θv)

)
[Fj(yr; θj)]

r−1[1− Fj(yr; θj)]n−r∑M
h=1 πhfh(yr; θh)[Fh(yr; θh)]

r−1[1− Fh(yr; θh)]n−r
. (2.43)

The following example demonstrates the effect of the rank information on the

classification decision. Suppose x = 0 is observed from a population. Assume that

the underlying population consists of two components C1 and C2 with pdfs

0.5φ(x;−2, 1) + 0.5φ(x; 1, 1) or 0.6φ(x;−2, 1) + 0.4φ(x; 1, 3),

where φ(x;µ, σ) refers to the pdf of a normal distribution with mean µ and variance

σ2. Assume that x = 0 is observed through an RSS with the set size n = 3. As

it is shown in Table 2.1, if x is treated as an observation obtained from an SRS

(i.e., ignoring its rank information), since τ2,SRS(0; Ψ) = 0.8176 ≥ τ1,SRS(0; Ψ) =

0.1824, then it should be classified into the second component, C2, of the population.

However, using the rank information attached to x = 0 one could get a different

classification result. For example, if x = 0 is to be the observation of the third order

statistic via the M1-RSS technique with n = 3 then we have α1,M1(0; Ψ) = 0.6344 ≥

α2,M1(0; Ψ) = 0.3656. That is, x = 0 should be classified into C1. Similarly, from
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Table 2.1: Classification of x = 0 under SRS and M1-RSS designs.

Mixture SRS M1-RSS with n = 3
Mixture Model

Component x = 0 y1 = 0 y2 = 0 y3 = 0

C1 0.1824 0.0783 0.3563 0.6344
0.5φ(x;−2, 1) + 0.5φ(x; 1, 1)

C2 0.8176 0.9217 0.6437 0.3656

C1 0.3917 0.1647 0.4138 0.6631
0.6φ(x;−2, 1) + 0.4φ(x; 1, 3)

C2 0.6083 0.8353 0.5862 0.3369

Table 2.2: Classification of x = 0 under SRS and M2-RSS designs.

Mixture SRS M2-RSS with n = 3
Mixture Model

Component x = 0 y1 = 0 y2 = 0 y3 = 0

C1 0.1824 0.0002 0.0358 0.8944
0.5φ(x;−2, 1) + 0.5φ(x; 1, 1)

C2 0.8176 0.9998 0.9642 0.1056

C1 0.3917 0.0008 0.0578 0.8184
0.6φ(x;−2, 1) + 0.4φ(x; 1, 3)

C2 0.6083 0.9992 0.9422 0.1816

Table 2.2, if x = 0 is actually the observation of the third order statistic in an

M2-RSS design with n = 3, we have τ1,M2(0; Ψ) = 0.8944 ≥ τ2,M2(0; Ψ) = 0.1056

which means that x = 0 should be classified into C1. Tables 2.1 and 2.2 provide the

values of the posterior probabilities for the classification of x = 0 under the SRS,

M1-RSS and M2-RSS designs for two different normal mixtures.

Note that Tj ∼ Bin(n− 1, Fj(yr; θj)). Equation (2.43) can be written as follows,

Aj,M2(yr,Ψ) =

(∑M
v=1 πvfv(yr; θv)

)
P (Tj = r − 1)∑M

h=1 πhfh(yr; θh)P (Th = r − 1)
, (2.44)

and if P (Tj = r − 1) ≥ P (Th = r − 1) for all h 6= j ∈ {1, . . . ,M}, then the

posterior probability that yr belongs to the j-th component of the FMM is bigger

in RSS than in SRS.
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2.4 Simulation studies

In this section, using simulation studies, the performance of ML estimators of the

unknown parameters of the finite mixture of normal distributions based on M1-RSS

and M2-RSS is investigated. In the first simulation study, the emphasis is placed

on the comparison between M1-RSS, M2-RSS and SRS designs for estimating the

mixing proportions of the model. In our second simulation study, the performance

of the ML estimators of all parameters of the model based on M1-RSS and M2-RSS

are compared with the corresponding ones under SRS.

2.4.1 Simulation study 1

Here the goal is to compare the performance of the estimators of the mixing pro-

portion π using M1-RSS, M2-RSS and SRS data for a mixture of two normal dis-

tributions

f(x; Ψ) = πφ(x;µ1, σ) + (1− π)φ(x;µ2, σ). (2.45)

We first compare the performance of π̂ under M1-RSS and SRS designs. To this end,

we generate two data sets each of size Nn = 120 form the model (2.45) with Ψ =

(π, µ1, σ) = (0.8,−1, 1). To study the effect of the set size as an important design

parameter of RSS on the performance of the estimators, we let n ∈ {1, 2, 3, 4, 5}.

Note that n = 1 corresponds to the usual SRS method. To investigate the effect

of the distance between the components of the model on the performance of π̂,

we let d = µ2 − µ1 and perform the simulation study for two different values of

d ∈ {1, 3}. The EM algorithm is used, assuming π̂(0) = 1/2 and stopping criteria
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Table 2.3: π̂k,MLE based on SRS (i.e., n = 1) and M1-RSS designs, its standard error (in round
bracket), MSE [in square bracket] and RE.

d = 1 d = 3
π̂k,MLE RE iterations π̂k,MLE RE iterations

0.8175 1 50 0.8056 1 10
n = 1 (0.0901) (0.0418)

[0.0084] [0.0017]
0.8233 1.235 70 0.8052 1.416 14

n = 2 (0.0756) (0.0340)
[0.0068] (0.0012)
0.8103 1.448 72 0.8036 1.889 17

n = 3 (0.0747) (0.0299)
[0.0058] [0.0009]
0.8026 1.527 79 0.8083 2.213 20

n = 4 (0.0754) (0.0287)
[0.0055] [0.0008]
0.8072 1.909 88 0.8095 2.213 21

n = 5 (0.0661) (0.0279)
[0.0044] [0.0008]

|π̂(p+1) − π̂(p)| < 10−5. Table 2.3 provides ML estimates and their corresponding

standard errors (presented in parenthesis) and mean square errors (MSE) (presented

in brackets) under SRS and M1-RSS with different set sizes. Using Basford et al.

(1997), the estimates of standard errors and biases (used for MSE’s) are obtained

via a bootstrap with b = 100 replications.

We also calculated the observed relative efficiency of the ML estimators π̂n,MLE

of π under SRS (i.e., π̂1,MLE) and RSS-based designs (i.e., π̂n,MLE, n ≥ 2) using

RE(π̂n,MLE, π̂1,MLE) =
1/MSE(π̂n,MLE)

1/MSE(π̂1,MLE)
=
MSE(π̂1,MLE)

MSE(π̂n,MLE)
.

Table 2.3 presents the values of the relative efficiencies for different set sizes when

d ∈ {1, 3}. The results indicate that ML estimates of π under M1-RSS design

are more efficient than their corresponding estimators under SRS and the relative

efficiency is an increasing function of n. In addition, when two components are
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Table 2.4: π̂k,MLE based on SRS (i.e., n = 1) and M2-RSS designs, their standard error (in
round bracket), MSE [in square bracket] and RE.

d = 1 d = 3
π̂k,MLE RE iterations π̂k,MLE RE iterations

0.8175 1 50 0.8056 1 10
n = 1 (0.0901) (0.0418)

[0.0084] [0.0017]
0.8287 1.333 43 0.8234 1 7

n = 2 (0.0746) (0.0374)
[0.0063] [0.0017]
0.8016 1.423 27 0.8044 1.133 5

n = 3 (0.0754) (0.0375)
[0.0059] [0.0015]
0.8069 1.75 25 0.8189 1.214 5

n = 4 (0.0663) (0.0370)
[0.0048] [0.0014]
0.8111 2.1 23 0.8061 1.214 4

n = 5 (0.0629) (0.0367)
[0.0040] [0.0014]

separated (i.e., d = 3) the performance of the M1-RSS design for estimating π is

much better than that of SRS. We obtained similar results under M2-RSS design

as they are shown in Table 2.4. However, the efficiency of ML estimators under

M2-RSS design reduces slightly as the distance between components increases.

2.4.2 Simulation study 2

In this simulation study, the performance of ML estimates of all parameters of the

mixture model using M1-RSS, M2-RSS and SRS designs are investigated. To this

end, the underlying distribution is chosen to be a homoscedastic mixture of two

univariate normal distributions. To investigate the effect of the distance between

two components of the model on parameter estimation, we generated samples of

size nN = 300 from two mixture of normal densities of the form (2.45) with Ψ1 =

(π, µ1, µ2, σ) = (0.4,−2, 1, 1), i.e. Model 1 and Ψ2 = (0.4,−1, 1, 1.5), i.e. Model 2
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using SRS, M1-RSS and M2-RSS with n = 5.

We examined three different methods for setting the initial values of Ψ con-

sisting of (a) fixed initial values method, (b) Finch’s method, and (c) the method

of moments (see Finch et al., 1989 and Karlis and Xekalaki, 2003). The stop-

ping criteria here is ‖Ψ̂(p+1) − Ψ̂(p)‖∞ < 10−5. The bias, standard error and MSE

are used as three performance measures for each estimator. These measures are

obtained via the bootstrap method of Basford et al. (1997) with b = 100 repli-

cations and then this procedure was repeated 10 times. The mean and standard

errors of these measures under fixed initial values, Finch’s method and the method

of moments are respectively reported in Tables 2.5, 2.6 and 2.7. We also calcu-

lated the observed relative efficiency of the estimators based on RSS design com-

pared with their SRS competitors using the ratio of the average of their MSE’s.

We used Ψ
(0)
1 = (π(0), µ

(0)
1 , µ

(0)
2 , σ(0)) = (0.3,−1.95, 0.95, 0.95) for Model 1 and

Ψ
(0)
2 = (0.3,−0.95, 0.95, 1.40) for Model 2 as initial values for the fixed initial values

method. The initial values for Finch’s method correspond to case (v) in Karlis and

Xekalaki (2003). To obtain these initial values, π(0) is chosen to be 1/2 and obser-

vations are ordered; then we used the first half of the data to form the first class

and the second half to form the second class. Now, the sample means of these two

classes (denoted by µ
(0)
j j = 1, 2) are considered as initial values of the means of

the components. The initial value for the common standard deviation is calculated

by σ̂0 =
√
s2 − s20, where s20 = 1

2
{(x̄ − µ(0)

1 )2 + (x̄ − µ(0)
2 )2}, and s2 is the sample

variance. For the method of moments the initial values are obtained via the method

developed by Furman and Lindsay (1994) by simply treating RSS data as SRS.
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According to the results of our simulation study, Model 1, for all designs, con-

verged with 100% of times; however, under Model 2, rates of convergence for each

method of selecting initial values (a), (b) and (c) are, respectively (SRS: 99%, 97%,

99%), (M1-RSS: 95%, 96%, 95%) and (M2-RSS: 100%, 100%, 99%). The mean

number of iterations required for the convergence under initial values (a), (b) and

(c) for Model 1 are (SRS: 19, 24, 22), (M1-RSS: 46, 44, 30) and (M2-RSS: 4, 7, 5),

respectively. Similarly for Model 2 these values are given by (SRS: 432, 837, 249),

(M1-RSS: 776, 501, 738) and (M2-RSS: 50, 47, 40), respectively.

As seen in Tables 2.5, 2.6 and 2.7, for all initial values, RSS-based estimators

perform significantly better than their SRS-based competitors in estimating the

parameters of the model (in terms of both the bias and the standard error). Com-

paring the M1-RSS and M2-RSS designs, it is evident that the M2-RSS proposes

more efficient estimators for component parameters of the model than M1-RSS.

This is due to the fact that the M2-RSS design has a more informative assumption

that x(r)i is indeed the r-th order statistic of one of the components of the model.

It is also seen that the performance of RSS-based estimators is better than their

SRS competitors under both models. In other words, when two components of the

model are close together (i.e., distinguishing between two components is difficult)

RSS-based estimators performed better for estimating the parameters than their

SRS counterparts. For instance, from Table 2.7, one can easily observe that, using

the method of moments for initial values, the relative efficiency of M2-RSS to SRS

in estimating the mixing proportion is 5.88; in other words, each observation in

M1-RSS design has as much information as roughly 6 SRS observations. Moreover,

under Model 1, it is seen that the performance of M1-RSS and SRS in estimating
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the mixing proportion is slightly better than that of M2-RSS; however, M2-RSS

still is very good at estimating parameters of the component densities.
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Chapter 3

Fisher Information of RSS Data
from FMM

The Fisher information (FI) matrix is a measure to quantify the amount of infor-

mation that observations from a statistical experiment designed to investigate a

parametric model carry about the unknown parameters of interest. The FI is also

useful, for example, to obtain a matrix lower bound for the covariance matrix of

unbiased estimators of the vector of unknown parameters of the model, or to study

the asymptotic properties of the ML estimators of the unknown parameters. In

Chapter 2, we considered the problem of ML estimation of the vector of unknown

parameters Ψ for the FMM (1.1) using RSS data. We showed that RSS-based esti-

mators are more efficient than their SRS counterparts and explained this using the

structural differences between SRS and RSS. In this chapter, we obtain the FI of

RSS data from FMM (1.1) and show that it is bigger than that of SRS data. In

SRS, observations are i.i.d and each of them represents a typical value from the

underlying model. However, there is no additional structure imposed on their re-

lationship to one another. But in RSS, additional information and structure has
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been provided through the ranking process. The samples obtained through RSS

are independent (judgment) order statistics and each of them provides information

about different aspects of the distribution. Indeed, it is this extra information pro-

vided by the ranking and the independence of the resulting order statistics that

makes procedures based on RSS to be more efficient than their counterparts based

on SRS data with the same number of measurements. So, it would be of interest

to quantify the amount of information that RSS data carry about the parameters

of the underlying FMM and compare it with that of SRS data. It should be noted

that a theoretical analysis of the efficiency of RSS with respect to SRS was done

by Stokes (1995) for the case of the location-scale family of distributions and by

Chen (2000) and Barabesi and El-Sharaawi (2001) for multi-parameter family of

distributions.

In this chapter, we focus on three types of ranked set samples from the FMM

(1.1). These three types correspond to different variations of RSS data considered

in Chapter 2. The first case referred to Type-M0 or incomplete RSS data where

the data are obtained from the whole FMM and no more information about the

component of origin of each observation is available. For Type-M1 or complete M1-

RSS data, the observations and their latent variables are known. In other words, we

have access to the observations and the component of origin of each observation x(r)i

and the number of observations smaller than and larger than x(r)i that are used from

the j-th component of the FMM (1.1) in the ranking process. Finally, we consider

Type-M2 or complete M2-RSS data where each x(r)i and its component of origin are

known to be obtained from a set consisting of units selected from only one of the

components of the mixture model. Examples of these types of data under SRS can
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be found in Titterington et al. (1985) as well as Hosmer Jr (1973). Since there is no

ranking involved in the SRS scheme, the SRS counterparts of both Type-M1 and

Type-M2 RSS data will be the same. Adapting the notation of Titterington et al.

(1985), we refer to the SRS counterpart of Type-M1 and Type-M2 RSS data as

Type-C SRS data. We provide a general expression for the FI matrix for each type

of RSS data. The FI matrices are decomposed into the sum of the SRS FI matrix

and semi-positive definite matrices. Hence, the superiority of each type of RSS

protocol over their associated SRS scheme is generally established in parametric

inference for FMMs.

The outline of the chapter is as follows. Section 3.1 develops the FI matrices for

three types of RSS data under the perfect ranking assumption. We show that the

FI contained in each type of RSS data is larger than the FI contained in its SRS

counterpart. We obtain some interesting results concerning the FI about mixing

proportions contained in RSS data relative to the corresponding FI contained in

SRS data. In particular, we find cases where the ratio of the determinant of the

RSS and SRS FI matrices neither depends on the component densities nor the

number of components of the underlying mixture model and is always equal to the

set size. In Section 3.2, we consider the FI matrices of imperfect ranked set samples

and explore the effect of ranking error on the amount of information contained in

each type of RSS data. In Section 3.3, we make a comparison among different types

of perfect RSS using the missing information criterion. Section 3.4 is devoted to

several numerical studies using a mixture of two exponential distributions.
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3.1 FI in perfect RSS from FMM

In this section, we study the FI content of three RSS data structures from the FMM

(1.1) under the perfect ranking assumption. The impact of imperfect ranking will

be studied in Section 3.2. The considered RSS data structures are as follow:

Type-M0: This is incomplete RSS data, where each x(r)i, i = 1, . . . , N ; r = 1, . . . , n

is obtained from a set consisting of observations from the whole FMM. The joint

pdf of the resulting sample is given by (2.5) which means that Type-M0 RSS is

essentially the incomplete variation of M1-RSS considered in Chapter 2. The FI

matrix for Type-M0 perfect RSS data will be denoted by IM0,RSS(Ψ).

Type-M1: This is the complete M1-RSS data, where we observe (x(r)i, z
(r)
i ,w

(r)
i ,v

(r)
i ),

i = 1, . . . , N ; r = 1, . . . , n from the FMM (1.1). The joint pdf of the complete M1-

RSS data is given by (2.14) with latent variables defined in Section 2.2.1. The FI

matrix for Type-M1 perfect RSS data is also denoted by IM1,RSS(Ψ).

Type-M2: This is the complete M2-RSS data, where we observe (x(r)i, z
(r)
i ) as

defined in Section 2.2.2. So the joint pdf of the sample is given by (2.24). The FI

matrix for Type-M2 perfect RSS data is denoted by IM2,RSS(Ψ).

Remark 3.1. The SRS counterparts of Types M0, M1 and M2 RSS data can easily

be obtained by setting the set size n = 1 in (2.5), (2.14) and (2.24), respectively.

This, however, results in the same pdf for the SRS counterparts of Types M1 and M2

RSS data. Adapting the notation of Titterington et al. (1985), we refer to this type

of SRS data as Type-C SRS data. To be more specific, Type-C SRS data consists of

observations (X,Z) from the FMM (1.1), with the joint pdf (2.30) where Zi is the
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usual indicator random vector whose realization identifies the component of origin

of xi. The FI matrix for Type-C SRS data is denoted by IC,SRS(Ψ).

Throughout the chapter, we use the following notation.

1. We use A ≥ 0 and A ≥ B to indicate that A and A − B are non-negative

definite matrices.

2. We let φr(λ) = (r−1)I(λ = 0) + (n− r)I(λ = 1) with λ ∈ {0, 1}, r = 1, . . . , n

and where I is the usual indicator function.

3. Under the usual regularity conditions Chen et al. (2004), we use I(Ψ) =

−E[D2
Ψ logL(Ψ)] to denote the FI matrix, where Dl

Ψ refers to the l-th deriva-

tive of the log-likelihood function with respect to Ψ with D1
Ψ = DΨ.

3.1.1 FI in Type-M0 perfect RSS data

Our framework here closely resembles the one introduced by Chen (2000) as well as

Chen et al. (2004), and some of the following preliminary results are reproduced here

for the sake of completeness. We first obtain IM0,RSS(Ψ), the FI matrix of Type-

M0 RSS data from the FMM (1.1), and compare it with its counterpart under

SRS. Using (2.5), the log-likelihood function of Ψ under Type-M0 RSS design is

logL0,RSS(Ψ) ∝ logL0,SRS(Ψ) + ΓM0(Ψ), where

ΓM0(Ψ) =
N∑
i=1

n∑
r=1

1∑
λ=0

φr(λ) log[λ+ (1− 2λ)F (x(r)i; Ψ)].
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It is easy to see that

D2
ΨΓM0(Ψ) =

N∑
i=1

n∑
r=1

1∑
λ=0

(−1)λφr(λ)

×
{

D2
ΨF (x(r)i; Ψ)

λ+ (1− 2λ)F (x(r)i; Ψ)
−
DΨF (x(r)i; Ψ)[DΨF (x(r)i; Ψ)]>

[λ+ (1− 2λ)F (x(r)i; Ψ)]2

}
,

(3.1)

and, IM0,RSS(Ψ) = IM0,SRS(Ψ)− E[D2
ΨΓM0(Ψ)].

We need the following result whose proof can be obtained in Chen (2000) as well

as Chen et al. (2004).

Lemma 3.1. Let Yr = X(r)i, r = 1, . . . , n, i = 1, . . . , N , with pdf f (r)(·; Ψ) be the

r-th order statistic of an SRS sample of size n from f(x; Ψ) with cdf F (x; Ψ). Then,

for any function G(·),

E

[
n∑
r=1

φr(λ)G(Yr)

λ+ (1− 2λ)F (Yr; Ψ)

]
= n(n− 1)E[G(X)],

subject to the existence of the expectations, when λ = 0 or 1.

Theorem 3.1. The FI matrix of Type-M0 RSS data about Ψ in the FMM (1.1) is

given by

IM0,RSS(Ψ) = IM0,SRS(Ψ) +Nn(n− 1)E
(
DΨF (X; Ψ)[DΨF (X; Ψ)]>

F (X; Ψ)F̄ (X; Ψ)

)
= IM0,SRS(Ψ) +Nn(n− 1)ΞM0(Ψ), (3.2)

where

IM0,SRS(Ψ) = NnE
(
D2

Ψf(X; Ψ)

f(X; Ψ)

)
+NnE

(
DΨf(X; Ψ)[DΨf(X; Ψ)]>

[f(X; Ψ)]2

)
,
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is the FI matrix of Type-M0 SRS data of the same size and ΞM0(Ψ) is a non-negative

definite matrix.

Proof. Using Lemma 3.1 with G(u) = D2
ΨF (u; Ψ), we get

E

[
N∑
i=1

n∑
r=1

(r − 1)
D2

ΨF (X(r)i; Ψ)

F (X(r)i; Ψ)

]
= E

[
N∑
i=1

n∑
r=1

(n− r)
D2

ΨF (X(r)i; Ψ)

F̄ (X(r)i; Ψ)

]
.

Similarly, in Lemma 3.1, choosing G(u) to be Gλ(u) = DΨF (u;Ψ)[DΨF (u;Ψ)]>

λ+(1−2λ)F (u;Ψ)
, λ ∈

{0, 1}, we obtain

E

[
N∑
i=1

n∑
r=1

φr(λ)Gλ(X(r)i)

λ+ (1− 2λ)F (X(r)i; Ψ)

]
= Nn(n− 1)E[Gλ(X)],

where φr(λ) = (r − 1)I(λ = 0) + (n − r)I(λ = 1). Now, the result follows upon

taking the expectation of (3.1).

Theorem 3.1 shows that the FI of Type-M0 RSS sample about Ψ is not smaller

than the FI of Type-M0 SRS sample of the same size.

3.1.2 FI in Type-M1 perfect RSS data

To obtain the FI matrix of Type-M1 RSS data about Ψ we need to work with the

joint pdf ofX(r)i, i = 1, . . . , N ; r = 1, . . . , n and their latent variables (Z
(r)
i ,W

(r)
i ,V

(r)
i )

as defined in Section 2.2.1. Considering the joint pdf of Type-M1 RSS data (2.14),

we have the following log-likelihood function

lM1(Ψ) ∝ lC,SRS(Ψ) + ΓM1(Ψ), (3.3)
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where

lC,SRS(Ψ) =
N∑
i=1

n∑
r=1

M∑
j=1

Z
(r)
ij

{
log πj + log fj(x(r)i; θj)

}
, (3.4)

and

ΓM1(Ψ) =
N∑
i=1

n∑
r=1

M∑
j=1

log πj

{
W

(r)
ij + V

(r)
ij

}

+
N∑
i=1

n∑
r=1

M∑
j=1

{
V

(r)
ij log F̄j(x(r)i; θj) +W

(r)
ij logFj(x(r)i; θj)

}
. (3.5)

Before pursuing, we need the following additional technical result.

Lemma 3.2. Let (X(r)i,Z
(r)
i ,W

(r)
i ,V

(r)
i ), i = 1, . . . , N be Type-M1 RSS data from

FMM (1.1), where Z
(r)
i , V

(r)
i and W

(r)
i are defined as before. For any G(·), subject

to the existence of the expectations, we have

(i)
M∑
j=1

n∑
r=1

E
(
Z

(r)
ij G(X(r)i)

)
= n

M∑
j=1

πjEj [G(X)] , where Ej indicates the expecta-

tion with respect to the j-th component of the mixture.

(ii)
M∑
j=1

n∑
r=1

E
(
{W (r)

ij }1−λ{V
(r)
ij }λG(X(r)i)

)
= c1

M∑
j=1

E [G(X)(λ+ (1− 2λ)Fj(X; θj))]

where λ ∈ {0, 1} and c1 = n(n− 1).
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Proof. For part (i), from (2.11) we have

M∑
j=1

n∑
r=1

EΨ

[
Z

(r)
ij G(X(r)i)

]
=

M∑
j=1

n∑
r=1

EΨ

[
G(X(r)i)E(Z

(r)
ij |X(r)i)

]

=
M∑
j=1

∫
πjG(x)fj(x; θj)

{
n∑
r=1

c2[F (x; Ψ)]r−1[F̄ (x; Ψ)]n−r

}
dx

= n

M∑
j=1

πjEj [G(X)],

where c2 = n
(
n−1
r−1

)
and Ej is the expectation with respect to the pdf of the j-th

component of the mixture. For part (ii), when λ = 0, using (2.12), a straightforward

calculation shows that

M∑
j=1

n∑
r=1

EΨ

[
W

(r)
ij G(X(r)i)

]
=

M∑
j=1

n∑
r=1

EΨ

[
G(X(r)i) E(W

(r)
ij |X(r)i)

]

=n(n− 1)
M∑
j=1

πjEΨ [G(X)Fj(X; θj)] ,

where the last equality is due to Lemma 3.1. A similar proof can be given for the

case λ = 1, and hence is omitted.

Now, we obtain the FI contained in Type-M1 RSS data from the FMM (1.1) and

compare it with its SRS counterpart.

Theorem 3.2. The FI matrix of a Type-M1 RSS sample of size nN about Ψ from

the FMM (1.1) is given by

IM1,RSS(Ψ) = IC,SRS(Ψ)− E[D2
ΨΓM1(Ψ)], (3.6)
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where

E[D2
ΨΓM1(Ψ)] = Nn(n− 1)

M∑
j=1

πj(D
2
Ψ log πj)

−Nn(n− 1)
M∑
j=1

πjEΨ

(
DΨFj(X; θj)[DΨFj(X; θj)]

>

F̄j(X; θj)Fj(X; θj)

)
.

Furthermore, −E[D2
ΨΓM1(Ψ)] is a non-negative definite matrix.

Proof. Using Lemma 3.2, a straightforward calculation shows that

−E
[
D2

ΨlC,SRS(Ψ)
]

=−Nn
M∑
j=1

πj[D
2
Ψ log(πj)]−Nn

M∑
j=1

πjEj
[
D2

Ψfj(X; θj)

fj(X; θj)

]

+Nn
M∑
j=1

πjEj
[
DΨfj(X; θj)[DΨfj(X; θj)]

>

[fj(X; θj]2

]

= IC,SRS(Ψ). (3.7)

Moreover, we observe that D2
ΨΓM1(Ψ) can be written as

D2
ΨΓM1(Ψ) =

N∑
i=1

n∑
r=1

M∑
j=1

{
W

(r)
ij D

2
Ψ log πj + V

(r)
ij D

2
Ψ log πj

}

+
N∑
i=1

n∑
r=1

M∑
j=1

1∑
λ=0

[
(−1)λ{W (r)

ij }1−λ{V
(r)
ij }λ

×
{

D2
ΨFj(x(r)i; θj)

λ+ (1− 2λ)Fj(x(r)i; θj)
−
DΨFj(x(r)i; θj)[DΨFj(x(r)i; θj)]

>

[λ+ (1− 2λ)Fj(x(r)i; θj)]2

}]
.

Using the distributions of W
(r)
ij and V

(r)
ij , r = 1, . . . , n, we have E

{
W

(r)
ij D

2
Ψ log πj

}
=

πj(r − 1)(D2
Ψ log πj) and E

{
V

(r)
ij D

2
Ψ log πj

}
= πj(n− r)(D2

Ψ log πj). Using Lemma
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3.2, it is easy to show that

M∑
j=1

n∑
r=1

E

(
{W (r)

ij }1−λ{V
(r)
ij }λD2

ΨFj(X(r)i; θj)

λ+ (1− 2λ)Fj(X(r)i; θj)

)
= n(n− 1)

M∑
j=1

πjEΨ

[
D2

ΨFj(X; θj)
]
,

and

M∑
j=1

n∑
r=1

E

(
{W (r)

ij }1−λ{V
(r)
ij }λDΨFj(X(r)i; θj)[DΨFj(X(r)i; θj)]

>

[λ+ (1− 2λ)Fj(X(r)i; θj)]2

)

= n(n− 1)
M∑
j=1

πjEΨ

(
DΨFj(X; θj)[DΨFj(X; θj)]

>

λ+ (1− 2λ)Fj(X; θj)

)
.

Now, the result follows by taking the second derivative of (3.3) and calculating its

expectation using the above equations.

Theorem 3.2 shows that the FI contained in Type-M1 RSS data about Ψ is not

smaller than its counterpart under SRS. In the next result we consider the specific

case of a mixture of two known densities and obtain a very interesting result con-

cerning the relative efficiency of Type-M1 RSS data relative to Type-C SRS data

in the estimation of the mixing proportion.

Theorem 3.3. Suppose f(x; π) = πf1(x) + (1 − π)f2(x) is a finite mixture of

two known component densities f1(·) and f2(·) where π is unknown. Let RE(π) =

IM1,RSS(π)

IC,SRS(π)
be the relative efficiency of a Type-M1 perfect RSS of size nN for esti-

mating the mixing proportion π compared with its SRS counterpart with a sample

of the same size. Then, under the usual regularity conditions Chen et al. (2004),

RE(π) = n.
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Proof. When π in the only unknown parameter of the model, the second term on

the right-hand side of (3.6) becomes E [D2
ΨlC,SRS(Ψ)] = −Nn(n−1)

π(1−π) . From (3.7) we

have IC,SRS(π) = Nn
π(1−π) . Therefore, using Theorem 3.2 we get

IM1,RSS(π) = IC,SRS(π) +
Nn(n− 1)

π(1− π)

=
Nn2

π(1− π)

= n IC,srs(π),

which completes the proof.

Theorem 3.3 shows that the relative efficiency of a Type-M1 perfect RSS of size nN

for estimating the mixing proportion π compared with its SRS counterpart with a

sample of the same size does not depend on the component densities f1 and f2.

Remark 3.2. (A modified FI matrix for Type-M1 perfect RSS) As pro-

posed in Section 2.2.3, to reduce the computational burden of calculating the FI

matrix for type M1-RSS data and obtaining the ML estimates, we derive a modifi-

cation of the log-likelihood function lM1(Ψ) by replacing the derivative of the second

term on the right side of the expression obtained for ΓM1(Ψ) in (3.5) with its ex-

pectation. With this modification, it is easy to see that the modified log-likelihood

function is

l∗M1(Ψ) ∝
N∑
i=1

n∑
r=1

M∑
j=1

Z
(r)
ij

{
log πj + log fj(x(r)i; θj)

}

+
N∑
i=1

n∑
r=1

M∑
j=1

log πj

{
W

(r)
ij + V

(r)
ij

}
. (3.8)
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Now, the approximate FI matrix for Type-M1 RSS about Ψ is given by

I∗M1,RSS(Ψ) = IC,SRS(Ψ)− E[D2
ΨΓ∗M1(Ψ)], (3.9)

where E[D2
ΨΓ∗M1(Ψ)] = Nn(n − 1)

∑M
j=1 πj D

2
Ψ log πj. Here, again −E[D2

ΨΓ∗M1(Ψ)]

is a non-negative definite matrix. Hence, the approximate FI contained in Type-M1

RSS data is larger that its SRS counterpart.

The method proposed in Remark 3.2 can be used to obtain a modified relative

efficiency of Type-M1 RSS data for estimating the parameters Ψ of the FMM (1.1)

relative to its counterpart under SRS.

Theorem 3.4. Let RE∗(Ψ) =
det{I∗M1,RSS(Ψ)}
det{IC,SRS(Ψ)} be an approximation to the RE relative

efficiency of a Type-M1 RSS data of size Nn relative to its SRS counterpart for

estimating the parameters Ψ of the FMM (1.1). Then, RE∗(Ψ) = n.

Proof. Let c1 = Nn(n− 1). It is easy to see that

E[D2
ΨΓ∗M1(Ψ)] = c1

M∑
j=1

πj(D
2
Ψ log πj) = c1

(
I(π) 0
0t 0

)
, (3.10)

where 0 is a square matrix of zeros of size equal to the number of component

parameters and 0 is a vector of zeros. Also, I(π) =
∑M

j=1 πj(D
2
π log πj). On the

other hand, as presented earlier in (3.7), one gets

IC,SRS(Ψ) = Nn

(
I(π) 0
0t I(ξ)

)
, (3.11)
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where

I(ξ) = −Nn
M∑
j=1

πjEj
[
D2

Ψfj(X; θj)

fj(X; θj)

]
+Nn

M∑
j=1

πjEj
[
DΨfj(X; θj)[DΨfj(X; θj)]

>

[fj(X; θj]2

]
.

Now from (3.9), (3.10) and (3.11), we have

I∗M1,RSS(Ψ) =

(
Nn I(π) 0

0t Nn I(ξ)

)
+

(
c1 I(π) 0

0t 0

)
=

(
Nn2 I(π) 0

0t Nn I(ξ)

)
.

Finally,

RE(Ψ) =
det{I∗M1,RSS(Ψ)}
det{IC,SRS(Ψ)}

=
N2n3 det{I(π)} × det{I(ξ)}
N2n2 det{I(π)} × det{I(ξ)}

= n,

and this completes the proof.

Theorem 3.4 shows that the efficiency of the modified Type-M1 RSS data relative

to its SRS counterpart in the estimation of the parameters Ψ of the FMM (1.1)

is independent of the component densities and the number of components of the

model.

3.1.3 FI in Type-M2 perfect RSS data

Suppose (X,Z) is a Type-M2 complete ranked set sample of size Nn from the FMM

(1.1). For each observation x(r)i, i = 1, . . . , N ; r = 1, . . . , n, Z
(r)
i = (Z

(r)
i1 , . . . , Z

(r)
iM)

is an M-dimensional vector defined as in Section 2.2.2 and Z
(1)
1 , . . . ,Z

(n)
N are i.i.d.

samples from a Mult(1,π) distribution. From (2.25), the log-likelihood function is

written as

lM2,RSS(Ψ) ∝ lC,SRS(Ψ) + ΓM2(Ψ), (3.12)
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where ΓM2(Ψ) =
∑N

i=1

∑n
r=1

∑M
j=1

∑1
λ=0 Z

(r)
ij φr(λ) log[λ+ (1− 2λ)Fj(x(r)i; θj)]. Us-

ing Lemma 3.2, since Z
(r)
ij |X(r)i = x(r)i ∼ Bin

(
1,

πjf
(r:n)
j (x(r)i;θj)

f (r:n)(x(r)i;Ψ)

)
, we can easily

show that IC,SRS(Ψ) = −E[D2
ΨlC,SRS(Ψ)]. On the other hand, taking the second

derivatives of ΓM2 with respect to Ψ yields

D2
ΨΓM2(Ψ) =

N∑
i=1

n∑
r=1

M∑
j=1

1∑
λ=0

(−1)λφr(λ)Z
(r)
ij

×
{

D2
ΨFj(x(r)i; θj)

λ+ (1− 2λ)Fj(x(r)i; θj)
−
DΨFj(x(r)i; θj)[DΨFj(x(r)i; θj)]

>

[λ+ (1− 2λ)Fj(x(r)i; θj)]2

}
.

We pursue with a very useful lemma which is necessary to obtain some of our

theoretical results.

Lemma 3.3. Let (X(r)i,Z
(r)
i ), r = 1, . . . , n, i = 1, . . . , N , be Type-M2 RSS data

obtained from the FMM (1.1). Further, let fj(·, θj) and Fj(·, θj), respectively, rep-

resent the pdf and cdf of the j-th component of (1.1), j = 1, . . . ,M . Then, for any

function G(·) (subject to the existence of the expectations), we have

E

[
M∑
j=1

n∑
r=1

φr(λ)Z
(r)
ij G(X(r)i)

λ+ (1− 2λ)Fj(X(r)i; θj)

]
= n(n− 1)

M∑
j=1

πjEj[G(X)], λ ∈ {0, 1},

where Ej denotes the expectation with respect to fj(·, θj), j = 1, . . . ,M.

Proof. To show the result, first note that φr(λ)
(
n−1
r−1

)
= (n − 1)

(
n−2
r+λ−2

)
, λ ∈ {0, 1}.

Also,

φr(λ)f
(r)
j (x; θj)

λ+ (1− 2λ)Fj(x; θj)
= n(n− 1)

(
n− 2

r + λ− 2

)
f(x; θj)[Fj(x; θj)]

r+λ−2[F̄j(x; θj)]
n−r−λ.

(3.13)
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The result then follows from (3.13), Lemma 3.1, and

EΨ

[
M∑
j=1

n∑
r=1

φr(λ)Z
(r)
ij G(X(r)i)

λ+ (1− 2λ)Fj(X(r)i; θj)

]

= EΨ

[
M∑
j=1

n∑
r=1

φr(λ)G(X(r)i)

λ+ (1− 2λ)Fj(X(r)i; θj)
E[Z

(r)
ij |X(r)i]

]

= EΨ

[
M∑
j=1

n∑
r=1

πjf
(r:n)
j (X(r)i; θj)φr(λ)G(X(r)i)

[λ+ (1− 2λ)Fj(X(r)i; θj)](f (r:n)(X(r)i; Ψ))

]
.

Now, setting G(u) = D2
ΨFj(u; θj), for λ ∈ {0, 1}, Lemma 3.3 leads us to

E

[
N∑
i=1

n∑
r=1

M∑
j=1

φr(λ)Z
(r)
ij D

2
ΨFj(X(r)i; θj)

λ+ (1− 2λ)Fj(X(r)i; θj)

]
= Nn(n− 1)

M∑
j=1

πjEj[D2
ΨFj(X; θj)].

Similarly, by choosing Gλ(u) =
DΨFj(u;θj)[DΨFj(u;θj)]

>

[λ+(1−2λ)Fj(u;θj)]2
, λ ∈ {0, 1}, it is easy to show

E

[
N∑
i=1

n∑
r=1

M∑
j=1

φr(λ)Z
(r)
ij Gλ(X(r)i; θj)

[λ+ (1− 2λ)Fj(X(r)i; θj)]2

]

= Nn(n− 1)
M∑
j=1

πjEj
(
DΨFj(X; θj)[DΨFj(X; θj)]

>

λ+ (1− 2λ)Fj(X; θj)

)
.

These allow us to derive of the FI matrix of Type-M2 RSS data about Ψ as follows.

Theorem 3.5. The FI matrix associated with Type-M2 RSS data from the FMM
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(1.1) is given by

IM2,RSS(Ψ) = IC,SRS(Ψ) +Nn(n− 1)
M∑
j=1

πjEj
[
DΨFj(X; θj)[DΨFj(X; θj)]

>

Fj(X; θj)F̄j(X; θj))

]

= IC,SRS(Ψ) +Nn(n− 1)
M∑
j=1

πjΞM2,j(ξ). (3.14)

Furthermore,
∑M

j=1 πjΞM2,j(ξ) is a non-negative definite matrix.

Theorem 3.5 shows that the FI contained in the Type-M2 RSS sample about Ψ

is not smaller than the FI contained in Type-C SRS sample of the same size. We

now present a result similar to Theorem 3.3, concerning the relative efficiency of

Type-M2 RSS data compared with its SRS counterpart for estimating the mixing

proportion of a mixture of two known densities. Theorem 3.6 says that Type-M2

RSS data does not provide extra information about the mixing proportion when

compared to Type-C SRS data.

Theorem 3.6. Under the conditions of Theorem 3.3, the relative efficiency of Type-

M2 RSS of size nN for estimating the mixing proportion π relative to its SRS

counterpart is equal to one, regardless of the component densities f1 and f2.

Proof. When π in the only unknown parameter of the model,
∑M

j=1 πjΞM2,j(ξ) = 0.

Hence, the result follows from Theorem 3.5.

3.2 FI in imperfect RSS data from FMM

The FI matrices were obtained for different RSS data structures under the assump-

tion of perfect ranking in the previous section. In practice, however, error in ranking
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is inevitable and ranks assigned to the sample units could possibly be different from

their actual ranks. So, it is natural to study the effects of ranking error on the FI

contained in RSS data. In an imperfect RSS, the pdf of X[r], the r-th judgemental

order statistic in a random sample of size n is

f [r](x; Ψ) =
n∑
s=1

psr f
(s:n)(x; Ψ) = gr(x,Ψ)f(x; Ψ),

where psr = P (X[r] = X(s)),
∑n

r=1 psr =
∑n

s=1 psr = 1 and

gr(x; Ψ) =
n∑
s=1

psrf
(s:n)(x; Ψ)/f(x; Ψ),

with

n∑
r=1

gr(x; Ψ) = n. (3.15)

Suppose X̃ = {X[r]i, r = 1, . . . , n; i = 1, . . . , N} is data from an imperfect RSS data

of size nN . We can consider three different structures for the imperfect RSS data

as in Section 3.1. The description of each structure and the underlying likelihood

function is similar to the corresponding ones under perfect ranking. For example,

in Type-M0 imperfect RSS, the joint pdf of the sample is given by

f(x̃; Ψ) =
N∏
i=1

n∏
r=1

f [r](x[r]i; Ψ). (3.16)

We here consider the FI of Type-M0 and Type-M2 imperfect RSS data about Ψ

and compare them with their counterparts under SRS. The problem of ML esti-

mation of Ψ and the derivation of the FI matrix based on Type-M1 RSS data is
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very complicated and computationally intensive. This will be the subject of future

investigation.

3.2.1 FI in Type-M0 imperfect RSS data

To obtain the FI matrix of Type-M0 imperfect RSS data, using (3.16) we first obtain

the likelihood function as

LM0,IRSS(Ψ) =
N∏
i=1

n∏
r=1

gr(x[r]i; Ψ)f(x[r]i; Ψ).

Therefore, the FI matrix of Type-M0 imperfect RSS data can be written as the sum

of two quantities as given by

IM0,IRSS(Ψ) = −E

[
D2

Ψ

N∑
i=1

n∑
r=1

log gr(X[r]i; Ψ)

]
− E

[
D2

Ψ

N∑
i=1

n∑
r=1

log f(X[r]i; Ψ)

]
.

Using (3.15), an argument similar to the one used in the Type-M0 perfect RSS case,

we get

−E

[
D2

Ψ

N∑
i=1

n∑
r=1

log f(X[r]i; Ψ)

]
= IM0,SRS(Ψ).

In addition, it is easy to show that

(a) E

[
D2

Ψ

n∑
r=1

log gr(X[r]; Ψ)

]
=

n∑
r=1

E

[
D2

Ψgr(X[r]; Ψ)

gr(X[r]; Ψ)

]

−
n∑
r=1

E

[
DΨgr(X[r]; Ψ)[DΨgr(X[r]; Ψ)]>

[gr(X[r]; Ψ)]2

]
.
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(b)

n∑
r=1

E

[
DΨgr(X[r]; Ψ)[DΨgr(X[r]; Ψ)]>

[gr(X[r]; Ψ)]2

]
=

n∑
r=1

E
[
DΨgr(X; Ψ)[DΨgr(X; Ψ)]>

gr(X; Ψ)

]
.

(c)
n∑
r=1

E

[
D2

Ψgr(X[r]; Ψ)

gr(X[r]; Ψ)

]
= 0.

Now, we are ready to obtain the FI matrix of Type-M0 imperfect RSS about Ψ,

i.e. IM0,IRSS(Ψ).

Theorem 3.7. The FI matrix of Type-M0 imperfect RSS data about Ψ in the FMM

(1.1) is given by

IM0,IRSS(Ψ) = IM0,SRS(Ψ) +N
n∑
r=1

E
[
DΨgr(X; Ψ)[DΨgr(X; Ψ)]>

gr(X; Ψ)

]

= IM0,SRS(Ψ) + ∆̃0(Ψ), (3.17)

where ∆̃0(Ψ) is a non-negative definite matrix.

Theorem 3.7 shows that the FI of Type-M0 imperfect RSS sample of size nN about

Ψ is not smaller than its counterpart under SRS.

3.2.2 FI in Type-M2 imperfect RSS data

Let (X̃,Z) be a Type-M2 imperfect RSS sample of size Nn. Suppose for each X[r]i,

Z
[r]
i = (Z

[r]
i1 , . . . , Z

[r]
iM) is an M -dimensional vector, where

Z
[r]
ij =

{
1 if X[r]i is the r-th judgemental order statistic of component j;
0 otherwise,
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with
∑M

j=1 Z
[r]
ij = 1. Indicator vectors Z

[1]
1 , . . . ,Z

[n]
N are i.i.d. samples from a Mult(1,π)

distribution. Also, the log-likelihood function of Ψ can be written as follow

lM2,IRSS(Ψ) = log

{
N∏
i=1

n∏
r=1

M∏
j=1

{
πjfj(x[r]i; θj)

}z[r]ij

N∏
i=1

n∏
r=1

M∏
j=1

{
πjgr(x[r]i; θj)

}z[r]ij

}

∝ lC,SRS(Ψ) + Γ̃M2(Ψ),

where Γ̃M2(Ψ) =
∑N

i=1

∑n
r=1

∑M
j=1 z

[r]
ij log gr(x[r]i; θj). Since

Z
[r]
ij

∣∣X[r]i = x[r]i ∼ Bin

(
1,
πjf

[r]
j (x[r]i; θj)

f [r](x(r)i; Ψ)

)
,

it is easy to see that IC,SRS(Ψ) = −E[D2
ΨlC,SRS(Ψ)]. Also,

D2
ΨΓ̃M2(Ψ) =

N∑
i=1

M∑
j=1

n∑
r=1

z
[r]
ij

{
D2

Ψgr(x[r]i; θj)

gr(x[r]i; θj)

}

−
N∑
i=1

M∑
j=1

n∑
r=1

z
[r]
ij

{
DΨgr(x[r]i; θj)[DΨgr(x[r]i; θj)]

>

[gr(x[r]i; θj)]2

}
.

Using the conditional expectation and f(X̃,Z; θj) = f(X̃; Z, θj)f(Z; θj), a straight-

forward calculation shows that

E

{
N∑
i=1

M∑
j=1

n∑
r=1

Z
[r]
ij

D2
Ψgr(X[r]i; θj)

gr(X[r]i; θj)

}
=

N∑
i=1

M∑
j=1

πjEj

{
n∑
r=1

D2
Ψgr(X[r]i; θj)

gr(X[r]i; θj)

}

= N

M∑
j=1

πj

∫
D2

Ψ[
n∑
r=1

gr(x; θj)]fj(x; θj)dx = 0.
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Similarly,

E

{
N∑
i=1

M∑
j=1

n∑
r=1

Z
[r]
ij

DΨgr(X[r]i; θj)[DΨgr(X[r]i; θj)]
>

[gr(X[r]i; θj)]2

}

= N

M∑
j=1

πj

n∑
r=1

Ej
{
DΨgr(X; θj)[DΨgr(X; θj)]

>

gr(X; θj)

}
.

Now, we obtain the FI matrix of Type-M2 imperfect RSS data about Ψ in the

following theorem.

Theorem 3.8. The FI matrix of a Type-M2 imperfect RSS sample of size nN from

the FMM (1.1) is given by

IM2,IRSS(Ψ) = IC,SRS(Ψ) +N
M∑
j=1

πjẼM2,j(ξ), (3.18)

where

ẼM2,j(ξ) =
n∑
r=1

Ej
{
DΨgr(X; θj)[DΨgr(X; θj)]

>

gr(X; θj)

}
.

Furthermore,
∑M

j=1 πjẼM2,j(ξ) is a non-negative definite matrix.

Theorem 3.18 shows that the FI of Type-M2 imperfect RSS sample is not smaller

than its SRS counterpart.

3.3 Missing information principle

In this section, the estimation problem of unknown parameters of FMM (1.1) using

RSS data is considered through a missing information principle (MIP) by noting
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that in practice usually the latent variables Z, V and W are missing. If these

were available then one could use either Type-M1 or Type-M2 RSS data to make

inference about the unknown parameters Ψ using their corresponding likelihood

functions. The MIP of Orchard and Woodbury (1972) can be used as a useful tool

to quantify the amount of information that one may lose by using an incomplete

or Type-M0 RSS instead of Type-M1 or Type-M2 RSS to make inference about

Ψ. We first give a brief introduction to the MIP and then study the impact of

for using Type-M0 RSS instead of Type-M1 or Type-M2 RSS in a mixture of two

exponential distributions from the perspective of missing information. We only

consider prefect RSS of different types of data. Results for the imperfect cases can

be obtained similarly. Suppose Y = (X,M) denotes the complete data, where X

is the incomplete data that we usually observe in practice and M is the missing

observations. For example, for comparing Type-M0 RSS to Type-M1 RSS the

missing observations are M = (Z,W,V). Let LY(Ψ) and LX(Ψ) be the likelihood

functions of the complete and incomplete data, respectively. Also, assume that

g(M|X; Ψ) is the conditional distribution of the missing data M given X. Then,

the complete data likelihood function may be written as

LY(Ψ) = LX(Ψ)× g(M|X; Ψ),

resulting in the relationship lY(Ψ) = lX(Ψ)+log g(M|X; Ψ) among the log-likelihood

functions. Under suitable regularity conditions and after taking the second deriva-

tives with respect to Ψ and the required expectations, we have

IY(Ψ) = IX(Ψ) + IM|X(Ψ). (3.19)

Now, the loss of information due to the use of X instead of Y for making inference

about Ψ, which is denoted by MIPX,Y(Ψ), is the last quantity on the right side of
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(3.19) and it is calculated as follows

MIPX,Y(Ψ) = IM|X(Ψ) = IY(Ψ)− IX(Ψ). (3.20)

Unfortunately, this elegant equality is computationally unattractive and it is indeed

very hard to use in practice, especially in the case of FMMs with ranked set samples.

In order to reduce the computational burden, we can estimate (3.19) or equivalently

(3.20) using their observed versions (i.e., conditional on x). To this end, let

Q(Ψ,Ψ∗) = EΨ∗
[
D2

ΨlY(Ψ)|x
]

and K(Ψ,Ψ∗) = EΨ∗ [D
2
Ψ log g(M|X; Ψ)|x].

Suppose Hx
Q(Ψ,Ψ) = Q(Ψ,Ψ∗)|Ψ∗=Ψ is the conditional expectation of the Hessian

matrix associated with lY(Ψ) or equivalently Q(Ψ,Ψ∗) evaluated at Ψ∗ = Ψ.

Similarly, let Hx
K(Ψ,Ψ) = K(Ψ,Ψ∗)|Ψ∗=Ψ and Hx(Ψ) = D2

Ψlx(Ψ). Then, we

obtain the observed MIP as follows

MIP(Ψ|x) = Hx
K(Ψ,Ψ) = Hx

Q(Ψ,Ψ)−Hx(Ψ),

which can be estimated by M̂IP(Ψ̂|x) = Hx
Q(Ψ̂, Ψ̂)−Hx(Ψ̂), where Ψ̂ is a suitable

estimator of Ψ. We should also mention that when MIP(Ψ|x) is calculated, it can

be used to derive the asymptotic variance-covariance matrix of the ML estimator

of Ψ. Let Ψ̂MLE be the ML estimator of Ψ using Type-M0 RSS data (see Chapter

2). Under suitable regularity conditions, the asymptotic variance of Ψ̂MLE is given

by {̂IX(Ψ̂MLE)}−1, or equivalently,

Ĉov(Ψ̂MLE) =
(
Hx
K(Ψ̂MLE, Ψ̂MLE)−Hx

Q(Ψ̂MLE, Ψ̂MLE)]
)−1

,

where K(Ψ,Ψ∗)|(Ψ∗=Ψ) = Hx
K(Ψ,Ψ) = −CovΨ[DΨlY(Ψ)|x].
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In the following examples, we show how to obtain the missing information about Ψ

due to the use of Type-M0 perfect RSS instead of Type-M1 and Type-M2 perfect

RSS for a finite mixture of two exponential distributions.

Example 3.1. (Type-M0 RSS vs. Type-M1 RSS) Suppose X is a Type-M0

perfect RSS sample of size Nn from a finite mixture of two exponential distribution

as

f(x; Ψ) = π αe−αx + (1− π)βe−β x, x > 0,

where Ψ = (π, α, β), α, β > 0 and π ∈ (0, 1). To obtain the missing informa-

tion due to the use of Type-M0 RSS instead of Type-M1 RSS, using (2.5), (2.14)

and the conditional distribution fZ,W,V|X(z,w,v|x,Ψ), one can easily show that

Hx
Q(Ψ,Ψ) = −diag(L1

Ψ(x), L2
Ψ(x), L3

Ψ(x)), where

L1
Ψ(x) =

(1− 2π)

π(1− π)2

N∑
i=1

n∑
r=1

{
αe−αx(r)i

f(x(r)i; Ψ)
+

(r − 1)(1− e−αx(r)i)
F (x(r)i; Ψ)

+
(n− r)e−αx(r)i
F̄ (x(r)i; Ψ)

}

+
Nn2

(1− π)2
,

L2
Ψ(x) =π

N∑
i=1

n∑
r=1

{
e−αx(r)i

αf(x(r)i; Ψ)
+

(r − 1)x2(r)ie
−αx(r)i

(1− e−αx(r)i)F (x(r)i; Ψ)

}
,

L3
Ψ(x) =(1− π)

N∑
i=1

n∑
r=1

{
e−βx(r)i

βf(x(r)i; Ψ)
+

(r − 1)x2(r)ie
−βx(r)i

(1− e−βx(r)i)F (x(r)i; Ψ)

}
,

and F (x; Ψ) = 1−{πe−αx+(1−π)e−βx}. It is worth mentioning that by further tak-

ing the expectation with respect to fX(x; Ψ), one gets IM0,RSS(Ψ) = −E
(
HX
Q (Ψ,Ψ)

)
.

Let Y = (X,Z,W,V) denote the Type-M1 perfect RSS data. Then, DΨl
M1,RSS
Y (Ψ) =
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A1(X)M +B1(X), where M is a 3Nn-dimensional vector defined as

Mt =
(
Z

(1)
11 , . . . , Z

(n)
N1 ,W

(1)
11 , . . . ,W

(n)
N1 , V

(1)
11 , . . . , V

(n)
N1

)
.

Also, A1(x) is a 3× (3Nn) matrix and B1(x) is a 3-dimensional vector given by
1

π(1−π) . . . 1
π(1−π)

1
π(1−π) . . . 1

π(1−π)
1

π(1−π) . . . 1
π(1−π)

1
α − x(1)1 . . . 1

α − x(n)N
x(1)1e

−αx(1)1

1−e−αx(1)1
. . .

x(n)Ne
−αx(n)N

1−e−αx(n)N
−x(1)1 . . . −x(n)N

x(1)1 − 1
β . . . x(n)N − 1

β −x(1)1e
−β x(1)1

1−e−β x(1)1
. . . −x(n)Ne

−β x(n)N

1−e−β x(n)N
x(1)1 . . . x(n)N

 ,

and (
− Nn2

1− π
, 0,

nN

β
−

N∑
i=1

n∑
r=1

{
(n− r + 1)x(r)i −

(r − 1)x(r)ie
−βx(r)i

1− e−βx(r)i

})>
,

respectively. Hence, Hx(Ψ) = A1(x)CovΨ(M|x)A>1 (x), and the observed (or condi-

tional) missing information is MIP(Ψ|x) = Hx
Q(Ψ,Ψ)−Hx(Ψ), which can be esti-

mated using a suitable estimator Ψ̂ by MIP(Ψ̂|x). Using the structure of RSS and

the definition of Z, W and V, it is easy to show that CovΨ(M|x) = diag(L1, L2, L3),

where L1 = π(1−π)INn×Nn, and L2, L3 are (Nn×Nn) diagonal matrices such that

L2 = π(1 − π)diag(0, 1, . . . , n − 1, . . . , 0, 1, . . . , n − 1), and L3 = π(1 − π)diag(n −

1, . . . , 1, 0, . . . , n− 1, . . . , 1, 0).

Example 3.2. (Type-M0 RSS against Type-M2 RSS) In Example 3.1, sup-

pose we are interested in calculating the missing information due to the use of Type-

M0 RSS instead of Type-M2 RSS. Here, using (2.5) and (2.24) and by working with

the conditional distribution fZ|X(z|x; Ψ) we get

Hx
Q(Ψ,Ψ) = −diag(L1

Ψ(x), L2
Ψ(x), L3

Ψ(x)),
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where

L1
Ψ(x) =

(1− 2π)

π(1− π)2

N∑
i=1

n∑
r=1

{
f
(r:n)
1 (x(r)i;α)

f (r:n)(x(r)i; Ψ)

}
+

nN

(1− π)2
,

L2
Ψ(x) =

N∑
i=1

n∑
r=1

πf
(r:n)
1 (x(r)i;α)

f (r:n)(x(r)i; Ψ)

{
1

α2
+

(r − 1)x2(r)iF̄1(x(r)i;α)

[F1(x(r)i;α)]2

}
,

L3
Ψ(x) =

N∑
i=1

n∑
r=1

(1− π)f
(r:n)
2 (x(r)i; β)

f (r:n)(x(r)i; Ψ)

{
1

β2
+

(r − 1)x2(r)iF̄2(x(r)i; β)

[F2(x(r)i; β)]2

}
,

and f
(r:n)
j (x; θj) and F

(r:n)
j (x; θj) are respectively the pdf and cdf of the r-th order

statistic from the j-th component of the mixture of two exponential distributions,

j = 1, 2, with θ1 = α and θ2 = β. Note that, again, by taking the expectation with

respect to fX(x) we have IM0,RSS(Ψ) = E
(
HX
Q (Ψ,Ψ)

)
. Let Y = (X,Z) be the

Type-M2 RSS sample of size nN . Then DΨl
M2,RSS
Y (Ψ) = A2(X)Z + B2(X), where

Z is an nN-dimensional vector defined in (2.24). Also, A2(x) is a 3 × nN matrix

and B2(x) is a 3-dimensional vector defined as


1

π(1−π) . . . 1
π(1−π) . . . 1

π(1−π)
1
α − nx(1)1 . . . 1

α − k1x(r)i +
(r−1)x(r)ie

−αx(r)i

1−e−αx(r)i
. . . 1

α − x(n)N +
(n−1)x(n)Ne

−αx(n)N

1−e−αx(n)N

nx(1)1 − 1
β . . . k1x(r)i − 1

β −
(r−1)x(r)ie

−βx(r)i

1−e−βx(r)i
. . . x(n)N − 1

β −
(n−1)x(n)Ne

−βx(n)N

1−e−βx(n)N

 ,
and

B2(x) =

(
− Nn

1− π
, 0,

Nn

β
−

N∑
i=1

n∑
r=1

{
k1x(r)i −

(r − 1)x(r)ie
−βx(n)N

1− e−βx(n)N

})>
,

respectively, where k1 = n−r+1. Hence, using the structure of RSS and Z we have

Hx(Ψ) = A2(x)CovΨ(Z|x)A>2 (x) = π(1− π)A2(x)A>2 (x).
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Also, the observed (or conditional) missing information is obtained as MIP(Ψ|x) =

Hx
Q(Ψ,Ψ)−Hx(Ψ) which can be estimated by MIP(Ψ̂|x), where Ψ̂ is any suitable

estimate of Ψ.

3.4 Numerical results

In this section, we study the FI content of different types of RSS data and compare

them with their SRS counterparts for a mixture of two exponential distributions

f(x; Ψ) = παe−αx + (1− π)βe−βx x > 0, (3.21)

where π ∈ (0, 1), α, β > 0 and Ψ = (π, α, β). Model (3.21) has many applications in

environmental studies, reliability and life testing problems. For example, Liu et al.

(2002) used (3.21) for modelling the diameter distribution of mixed-species forest

stands. To calculate the numerical values of the efficiencies, we followed the method

presented by Hill (1963) for handling the mixture of exponential distributions. To

this end, we introduce the new parameter h = α
β

and transform the model (3.21)

with three unknown parameters (π, α, β) to a mixture density with two parameters

(π, h). This enables us to investigate the effect of the parameters (π, h) as well as

the set size n on the relative efficiencies of different Types of RSS data compared

with their SRS counterparts using the ratio of the determinant of the FI matrices

as defined in Theorems 3.3 and 3.4. We first compare the FI of Type-M0 RSS with

that of Type-M0 SRS. Then the results are presented for other types of perfect RSS

data. Considering a case where the observed sample is of mixed types of (Type-M0

and Type-M1) perfect RSS data, we investigate the contribution of these two types
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of data in the estimation of the mixing proportion. Finally, the effects of ranking

error on the FI matrices and the relative efficiencies are investigated.

3.4.1 RSS versus SRS

We first compare the FI of Type-M0 perfect RSS data and Type-M0 SRS data about

the mixing proportion π for the model (3.21) with (partially) known component

parameters when the set size is n ∈ {2, 3, 4, 5} and h = α
β
∈ {2

3
, 1
3
, 1
10
, 1
1000
}. We use

the ratio of the determinant of the FI matrices to obtain the relative efficiency of

RSS data relative to SRS data. A value of the relative efficiency bigger than one

shows the superiority of RSS over SRS. The results are presented in Table 3.1. We

also show the graphs of the relative efficiency as a function of π for different values

of n and h in Figure 3.1. When h is large, (i.e., h ∈ {1
3
, 2
3
}), the relative efficiency

seems to be increasing in π. This was expected intuitively, since the mixture model

(3.21) will be more influenced by the component with higher mixing proportion

and we expect to observe more order statistics in the RSS data selected from that

component. On the other hand, for other cases (i.e., h ∈ { 1
10
, 1
1000
}) especially when

the first component is associated with a very high weight, the mixture model is still

influenced to some extent by the second component and consequently a portion of

order statistics (usually with higher ranks) are selected from the second component

of the model so that it still performs better (although with a smaller magnitude)

than its SRS counterpart.

Table 3.1 shows the relative efficiency of Type-M0 perfect RSS relative to Type-

M0 SRS data for π = 0.1(0.1)0.9 and h ∈ {2
3
, 1
2
, 1
10
} and n ∈ {2, 3, 4}. We also
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Table 3.1: Relative efficiencies of Type-M0 perfect RSS data to Type-M0 SRS data.

π 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
n h
2 2/3 1.505 1.537 1.562 1.584 1.603 1.619 1.633 1.646 1.658

1/2 1.508 1.554 1.588 1.616 1.640 1.659 1.675 1.688 1.698
1/10 1.522 1.568 1.599 1.622 1.638 1.648 1.652 1.647 1.632

3 2/3 2.041 2.118 2.180 2.234 2.281 2.322 2.358 2.392 2.422
1/2 2.046 2.157 2.242 2.313 2.372 2.423 2.466 2.501 2.530
1/10 2.057 2.160 2.233 2.289 2.330 2.357 2.368 2.358 2.321

4 2/3 2.608 2.744 2.854 2.949 3.034 3.109 3.175 3.237 3.293
1/2 2.615 2.809 2.963 3.091 3.20 3.293 3.373 3.44 3.494
1/10 2.621 2.802 2.936 3.040 3.117 3.168 3.189 3.172 3.105

calculated the relative efficiencies of both Type-M1 and Type-M2 perfect RSS data

compared with Type-C SRS data for π = 0.1(0.1)0.9, h ∈ {2
3
, 1
2
, 1
10
} and n ∈

{2, 3, 4}. These results are presented in Table 3.2.

3.4.2 Mixed sampling

As exemplified by Titterington et al. (1985), sometimes the available sample may

be of mixed type, i.e., composed of different types of data. Here, we consider the

case where the observed sample from the FMM (3.21) consists of both Type-M0

and Type-M1 RSS data. Suppose that ρc denotes the percentage of the mixed

sample which is of Type-M0 RSS data. Then, the likelihood function of the mixed

sample can be written as

Lmixed(Ψ) = LM0,RSS(Ψ)LM1,RSS(Ψ).

Table 3.3 provides the values of

(1− ρc)IM0,RSS(π) + ρcIM1,RSS(π)

IM1,RSS(π)
,

78



Table 3.2: Relative efficiencies of Type-M1 and Type-M2 perfect RSS to Type-C SRS.

π 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 M2-RSS
n h
2 2/3 3.82 3.84 3.86 3.88 3.89 3.91 3.93 3.95 3.97 1.971536

1/2 3.70 3.73 3.76 3.79 3.82 3.85 3.88 3.91 3.94 1.971536
1/10 3.10 3.13 3.17 3.20 3.23 3.25 3.27 3.29 3.31 1.971538

3 2/3 9.34 9.41 9.49 9.56 9.63 9.71 9.78 9.86 9.94 3.269688
1/2 8.88 8.99 9.11 9.22 9.34 9.45 9.57 9.68 9.80 3.269688
1/10 6.58 6.74 6.89 7.01 7.03 7.22 7.30 7.36 7.41 3.269692

4 2/3 18.43 18.61 18.79 18.97 19.16 19.34 19.52 19.71 19.89 4.894456
1/2 17.31 17.59 17.87 18.15 18.43 18.71 18.99 19.28 19.56 4.894455
1/10 11.72 12.15 12.53 15.58 13.13 13.36 13.54 13.67 13.75 4.894464

that is, the efficiency (in percentage) of the mixed sample relative to a Type-M1

perfect RSS sample when the mixing proportion of the model is unknown and

h ∈ { 1
10
, 1
2
, 2
3
}. We consider four values of ρc ∈ {0, 14 ,

1
2
, 3
4
}.

The case ρc = 0 corresponds to the FI of Type-M0 RSS data, IM0,RSS(Ψ),

and the inverse of the values in that column can be interpreted as the number of

Type-M0 observations required to obtain the same efficiency based on a single fully

categorized observation from Type-M1 RSS structure. The efficiency is smaller

when π = 0.1 than the case when π = 0.5. From the Table 3.1, it is seen that

the relative efficiency of Type-M0 RSS to Type-M1 RSS decreases as ρc decreases.

This suggests that Type-M0 RSS data does not contribute very much information

about the mixing proportion relative to Type-M1 RSS data. It is interesting to note

that, for example, when ρc = 0, h = 2
3

and n = 5, one single Type-M1 RSS data

point gives as much information as 1
0.009

= 111 observations obtained via Type-M0

RSS. So, if the main interest is to make inference about the mixing proportion, it is

highly recommended to try to observe some Type-M1 RSS data in the final sample.
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3.4.3 Effect of ranking errors

In the previous subsections, we established through simulations that perfect RSS

data contain more FI about the unknown parameters of the FMM than SRS data.

We now consider the case where ranking is not perfect. Suppose the set size is

Table 3.3: Percentage efficiencies of mixed samples relative to Type-M1 perfect RSS data.

π = 0.1 π = 0.5
ρc ρc

n h 0 1/4 1/2 3/4 0 1/4 1/2 3/4
2/3 3.1 26 50.6 75.3 2.6 27 51.3 75.6

2 1/2 4.4 28.3 52.2 76.1 7.1 30.3 53.5 76.7
1/10 35.3 51.5 67.6 83.8 40.6 55.4 70.3 85.1
2/3 1.1 25.8 50.5 75.2 2.3 26.7 51.1 75.5

3 1/2 3.5 27.6 51.7 75.8 6.2 29.6 53.1 76.5
1/10 27.9 45.9 63.9 81.9 35.6 51.7 67.8 83.9
2/3 0.9 25.6 50.4 75.2 2 26.5 51 75.5

5 1/2 2.9 27.1 51.4 75.7 5.4 29.1 52.7 76.5
1/10 22 41.5 61 80.5 31.5 48.6 65.7 82.8

n ∈ {2, 3} and consider the following doubly stochastic matrices for the probability

of ranking error, respectively, for n = 2 and n = 3,

P =

[
p 1− p

1− p p

]
, P =

 p (1−p)
2

(1−p)
2

(1−p)
2

p (1−p)
2

(1−p)
2

(1−p)
2

p

 .
It is straightforward to verify that the relative efficiency of Type-M2 imperfect RSS

data relative to Type-C SRS data does not depend on the mixing proportion π.

The relative efficiencies of Type-M0 RSS relative to Type-M0 SRS and Type-M2

RSS relative to Type-C SRS are presented in Table 3.4 for different values of p and

π. From Table 3.4, it is apparent that errors in ranking will slightly influence the

FI content of RSS data. Obviously, the FI content of RSS data is equal to that of
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the SRS data when p = 0.5 for the case n = 2, i.e. in the case when ranking is done

at random. The relative efficiency shows a symmetric behaviour ,as a function of p,

when n = 2.

Table 3.4: RE of Type-M0 RSS to Type-M0 SRS. The last column shows the RE of Type-M2
imperfect RSS to Type-C SRS data.

π 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 M2-RSS

n p
0.9 1.427 1.449 1.463 1.474 1.481 1.486 1.488 1.490 1.490 1.486
0.75 1.158 1.171 1.180 1.188 1.194 1.199 1.203 1.206 1.208 1.161

2 0.50 1 1 1 1 1 1 1 1 1 1
0.25 1.158 1.171 1.180 1.188 1.194 1.199 1.203 1.206 1.208 1.161
0.1 1.427 1.449 1.463 1.474 1.481 1.486 1.488 1.490 1.490 1.486
0.9 1.748 1.754 1.752 1.745 1.735 1.724 1.710 1.697 1.683 2.280
0.75 1.404 1.423 1.437 1.448 1.456 1.463 1.467 1.471 1.474 1.582

3 0.50 1.066 1.070 1.074 1.077 1.079 1.081 1.083 1.084 1.085 1.083
0.25 1.018 1.019 1.020 1.020 1.021 1.022 1.022 1.023 1.023 1.022
0.1 1.157 1.166 1.174 1.179 1.184 1.189 1.192 1.195 1.198 1.205
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Figure 3.1: RE of estimators of Type-M0 perfect RSS to Type-M0 SRS data for the mixing
proportion π. The solid line refers to h = 2

3 , dashed line to h = 1
3 , dotted line to h = 1

10 and

finally dash-dotted line to h = 1
1000 .
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Chapter 4

Information Content of PROS
Samples

In previous chapters, we focused on RSS designs as a powerful and cost-effective data

collection technique that results in more representative samples from the underlying

population. There are many situations where it is difficult to rank all of the sampling

units in a set with high confidence, particularly when subjective information is

utilized in the ranking process. Forcing rankers to declare unique ranks can lead

to inflated within-set judgment ranking error and consequently to invalid statistical

inference. The partially rank-ordered set (PROS) sampling design is a generalization

of RSS due to Ozturk (2011). It is aimed at reducing the impact of ranking error and

the burden on rankers by not requiring them to provide a full ranking of all the units

in each set. Under the PROS sampling design, rankers have more flexibility by being

able to divide the sampling units into subsets of pre-specified sizes. As indicated in

Chapter 1 in the construction of PROS samples, these subsets are partially rank-

ordered so that each unit in subset h has a rank smaller than the rank of units in

subset h
′

for all h
′ ≥ h. An observation is then collected from one of these subsets
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in each set. PROS sampling has a wide range of applications in different fields

ranging from environmental and ecological studies to medical research and it has

been shown to be superior to RSS and SRS for estimating the population mean.

For more details regarding the theory and applications of PROS sampling, readers

are referred to Ozturk (2011).

In this chapter, we study the information content and uncertainty structure

(i.e., entropy) of PROS samples. To this end, in Section 4.1, we provide some

preliminary results on distributional properties of PROS samples. In Section 4.2,

we obtain the FI content of PROS samples and show that it is more than the FI

content of their SRS and RSS counterparts of the same size. Several examples

including the FI of PROS samples from a location-scale family of distributions

as well as a simple linear regression model are also discussed in this section. In

addition, we explore the effect of sub-setting errors when using the PROS sampling

design on the FI content of samples. Finally in Section 4.3, we study information

and uncertainty of PROS samples using the Shannon entropy, Réyni entropy and

Kullback-Leibler (KL) information measures and compare them with their SRS and

RSS counterparts.

4.1 Distributional properties of PROS samples

To obtain a PROS sample of size n, we choose a set size S and a design param-

eter D = {d1, . . . , dn} that partitions the set {1, . . . , S} into n mutually exclusive

subsets. Throughout the chapter, without loss of generality, we assume that N = 1

(cycle size is one). We use PROS(n, S,D) to denote a PROS sampling design with
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set size S, number of subsets n and the design parameter D = {dr, r = 1, . . . , n}

where dr = {(r − 1)m + 1, . . . , rm}, in which m = S/n is the number of unranked

observations in each subset. We note that RSS and SRS can be expressed as special

cases of the PROS(n, S,D) design when S = n and S = 1, respectively.

Suppose X is a continuous random variable with pdf f(·;θ) and cdf F (·;θ),

where θ is the vector of unknown parameters with θ ∈ Rp. Let Xpros = {X(dr), r =

1, . . . , n} be a PROS(n, S,D) sample of size n from f(·,θ). The PROS data likeli-

hood function of θ is given by the joint pdf of Xpros as follows:

L(θ|xpros) = f(xpros;θ) =
n∏
r=1

{
1

m

∑
u∈dr

f (u:S)(x(dr);θ)

}
,

where f (u:S)(·;θ) is the pdf of the u-th order statistic of an SRS of size S from

f(·;θ). For each X(dr) define the latent vector

∆(dr) =
(
∆(dr)(u), u ∈ dr = {(r − 1)m+ 1, . . .m}

)
,

where

∆(dr)(u) =

{
1 if X(dr) is selected from the u-th position within the subset dr;
0 otherwise,

with
∑

u∈dr ∆(dr)(u) = 1. Denote Ypros = {(X(dr),∆
(dr)), r = 1, . . . , n} as the

complete PROS data consisting of X(dr) and their corresponding latent vectors

∆(dr), r = 1, . . . , n. The complete PROS data likelihood function of θ using the

joint pdf of Ypros is given by

L(θ|ypros) = f(ypros;θ) =
n∏
r=1

∏
u∈dr

{
1

m
f (u:S)(x(dr);θ)

}δ(dr)(u)
. (4.1)
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Furthermore, by summing the joint distribution of (X(dr),∆
(dr)) over ∆(dr) = δ(dr),

the marginal distribution of X(dr) is obtained as follows

f(dr)(x(dr);θ) =
∑
δ(dr)

f(x(dr), δ
(dr);θ) =

1

m

∑
u∈dr

f (u:S)(x(dr);θ). (4.2)

Also, one can easily check that

1

n

n∑
r=1

f(dr)(x;θ) =
1

S

S∑
v=1

f (v:S)(x;θ) = f(x;θ). (4.3)

In addition, the conditional distribution of ∆(dr) given X(dr) is

f(δ(dr)
∣∣x(dr);θ) =

∏
u∈dh


f (u:S)(x(dr);θ)∑

u∈dr

f (u:S)(x(dr);θ)


δ(dr)(u)

. (4.4)

4.2 FI content of PROS samples

In this section, we first obtain the FI content of Ypros, the complete PROS data, and

derive analytical results to compare it with the FI content of SRS and RSS data of

the same size. We give examples regarding a location-scale family of distributions

as well as a simple linear regression model. Then, we study the FI content of

Xpros by modelling an imperfect PROS design involving misplacement errors in the

sub-setting process. The FI of PROS samples can play a key role in theory and

application to study the asymptotic behaviour of the ML estimators of θ as well as

the derivation of the Cramer-Rao lower bound for unbiased estimators of θ or some

of its functions based on PROS samples.
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Similar to Section 3.1, in this chapter, we use the following notation. Under the

usual regularity conditions (Chen et al., 2004), the FI matrix is given by I(θ) =

−E[D2
θ log f(X;θ)], provided the expectation exists, where Dl

θ refers to the l-th

derivatives of the log-likelihood function with respect to θ with D1
θ = Dθ. For any

two matrices A and B of the same size, we use A ≥ 0 and A ≥ B to indicate

that A and A − B are nonnegative matrices. We also let φu(λ) = (u − 1) I(λ =

0) + (S − u) I(λ = 1) with λ ∈ {0, 1}, u = 1, . . . , S, where again I is the usual

indicator function.

4.2.1 FI matrix of complete PROS data Ypros

To obtain the FI matrix of Ypros, we need the following useful result.

Lemma 4.1. Suppose Yr = X(dr), with pdf f(dr)(·;θ), is observed from a continuous

distribution with pdf f(·,θ) and cdf F (·;θ), respectively, using a PROS(n, S,D)

design. Let δ(dr)(u) be the latent variable associated with X(dr). For any λ ∈ {0, 1}

and any function G(·),

E

{
n∑
r=1

∑
u∈dr

φu(λ) δ(dr)(u)G(Yr)

λ+ (1− 2λ)F (Yr;θ)

}
= n(S − 1)E[G(X)],

subject to the existence of all involved the expectations.
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Proof. Let λ = 0. By the total law of expectations and equation (4.4) we get

E

{
n∑
r=1

∑
u∈dr

(u− 1)
δ(dr)(u)G(Yr)

F (Yr;θ)

}

=
1

m

n∑
r=1

∑
u∈dr

(u− 1)

∫
G(x)

F (x;θ)
f (u:S)(x;θ)dx

=
S

m

∫
G(x)f(x;θ)

{
S∑
v=1

(v − 1)

(
S − 1

v − 1

)
[F (x;θ)]v−2[F̄ (x;θ)]S−v

}
dx

= n(S − 1)E[G(X)],

The proof for λ = 1 is similar and hence omitted.

Now, we obtain the FI content of Ypros and compare it with its SRS counterpart of

the same size.

Theorem 4.1. Under the usual regularity conditions, the FI matrix of a complete

PROS(n, S,D) sample of size n from f(·;θ) is given by

Ipros(θ) = Isrs(θ) + K(θ),

where Isrs(θ) denotes the FI matrix of an SRS of size n,

K(θ) = n(S − 1)E
{

[DθF (X;θ)][DθF (X;θ)]>

F (X;θ)F̄ (X;θ)

}
,

is a non-negative definite matrix and the expectation is taken with respect to X.

Proof. Let Yr = X(dr), r = 1, . . . , n. Using (4.1), the log-likelihood function of θ

can be written as

lpros(θ) ∝ lsrs(θ) + Γp(θ),
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where

Γp(θ) =
n∑
r=1

∑
u∈dr

1∑
λ=0

φu(λ) δ(dr)(u) log[λ+ (1− λ)F (yr;θ)],

and lsrs(θ) is the log-likelihood function of θ under an SRS sample of size n so that

−E[D2
θlsrs(θ)] = Isrs(θ). Taking the second derivative of Γp(θ) with respect to θ,

one gets

D2
θΓp(θ) =

n∑
r=1

∑
u∈dr

1∑
λ=0

(−1)λφu(λ)δ(dr)(u)

×
{

D2
θF (yr;θ)

λ+ (1− λ)F (yr;θ)
− [DθF (yr;θ)][DθF (yr;θ)]>

[λ+ (1− λ)F (yr;θ)]2

}
. (4.5)

Using Lemma 4.1 with G(x) = D2
θF (x;θ), we have

E

{
n∑
r=1

∑
u∈dr

(u− 1)
δ(dr)(u)G(Yr)

F (Yr;θ)

}
= E

{
n∑
r=1

∑
u∈dr

(S − u)
δ(dr)(u)G(Yr)

F̄ (Yr;θ)

}
. (4.6)

Similarly, by choosing G(x) = [DθF (x;θ)][DθF (x;θ)]>

λ+(1−2λ)F (x;θ)
in Lemma 4.1, we obtain

E

{
n∑
r=1

∑
u∈dr

φu(λ) δ(dr)(u)G(Yr)

λ+ (1− 2λ)F (Yr;θ)

}
= n(S − 1)E {G(X)} , λ ∈ {0, 1}. (4.7)

Finally, taking the expectation of D2
θΓP (θ) and using (4.6) and (4.7), we obtain

K(θ) = −E[D2
θΓp(θ)] = n(S − 1)E

{
[DθF (X;θ)][DθF (X;θ)]>

F (X;θ)F̄ (X;θ)

}
, (4.8)

which completes the proof.
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Theorem 4.1 shows that the FI matrix of the complete PROS(n, S,D) sample can be

decomposed into the FI matrix of the SRS data and a nonnegative definite matrix,

hence Ipros(θ) ≥ Isrs(θ). In other words, complete PROS samples provide more

information about the unknown parameter θ than SRS samples of the same size. It

is worth noting that the result of Barabesi and El-Sharaawi (2001) about FI of RSS

data can be obtained as a special case of Theorem 4.1 by setting S = n. We now

compare the FI content about the unknown parameter θ of the complete PROS

sample with that of a RSS sample of the same size.

Theorem 4.2. Under the conditions of Theorem 4.1, the FI matrix of a complete

PROS(n, S,D) sample may be decomposed as

Ipros(θ) = Irss(θ) + H(θ),

where Irss(θ) is the FI matrix of an RSS of size n (when the set size is n), and

H(θ) = n(S − n)E
{

[DθF (X;θ)][DθF (X;θ)]>

F (X;θ)F̄ (X;θ)

}
,

is a non-negative definite matrix.

Proof. Using Theorem 4.1 for S = n, we have

Irss(θ) = Isrs(θ) + n(n− 1)E
{

[DθF (X;θ)][DθF (X;θ)]>

F (X;θ)F̄ (X;θ)

}
,

where Isrs(θ) denotes the FI matrix of a SRS of size n. Now, the result follows from

the above equation and the expression for Ipros(θ) in Theorem 4.1.
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Theorem 4.2 shows the superiority of a complete PROS sample over an RSS of the

same size in terms of the FI content about the unknown vector of parameters θ. In

the following examples we obtain the FI content of a complete PROS sample from

a location-scale family of distributions as well as a simple linear regression model

and compare them with those based on SRS and RSS data of the same size. To this

end, let

RE1(θ) =
det{Ipros(θ)}
det{Isrs(θ)}

and RE2(θ) =
det{Ipros(θ)}
det{Irss(θ)}

.

From Theorems 4.1 and 4.2 one can notice that the set size (S) and the number of

subsets (n) are two important parameters that influence the FI content of PROS

samples. In addition, the matrix Ipros and Irss are of order nS and n2 while Isrs is

of order n, then RE1 and RE2 are obviously of order Sp and {S/n}p, respectively,

where p indicates the number of unknown parameters of the underlying model. So,

both RE1 and RE2 increase with the number of the parameters of the model.

Example 4.1. (Location-Scale family of distributions). Under the assump-

tions of Theorem 4.1, if f(x;θ) is a member of the location-scale family of distri-

butions with pdf

f(x;θ) =
1

σ
g(
x− µ
σ

), θ = (µ, σ) ∈ R× R+,
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where g(·) is a pdf with corresponding cdf G(·), then

Ipros(θ) =Isrs(θ) + K(θ)

=
n

σ2

 E{g
′
(Z)

2

g(Z)2
} E{Zg

′
(Z)

2

g(Z)2
}

E{Zg
′
(Z)

2

g(Z)2
} E{Z

2g
′
(Z)

2

g(Z)2
− 1}



+
n(S − 1)

σ2

(
E{ g(Z)2

G(Z)[1−G(Z)]
} E{ Zg(Z)2

G(Z)[1−G(Z)]
}

E{ Zg(Z)2

G(Z)[1−G(Z)]
} E{ Z2g(Z)2

G(Z)[1−G(Z)]
}

)
.

In the specific case where f(x;θ) is symmetric about µ, the FI matrix reduces to

Ipros(θ) =
n

σ2

 E{g
′
(Z)

2

g(Z)2
} 0

0 E{Z
2g
′
(Z)

2

g(Z)2
− 1}



+
n(S − 1)

σ2

(
E{ g(Z)2

G(Z)[1−G(Z)]
} 0

0 E{ Z2g(Z)2

G(Z)[1−G(Z)]
}

)
.

Tables 4.1 shows the values of RE1 and RE2 for some location-scale families of

distributions. As expected, the largest values of RE1 and RE2 are achieved for the

cases where both location and scale parameters are unknown.

Example 4.2. (Linear Regression Model). In this example, the PROS(n, S,D)

sampling design is used for inference on the simple regression model Yi = β0 +

β1xi + εi where, for each xi, i = 1, . . . , k, we have a PROS sample of Y ’s denoted

by (Yi(dr), . . . , Yi(dn)). Suppose εi are i.i.d random variables from a symmetric dis-

tribution with pdf f(·) and cdf F (·), respectively. Let E(εi) = 0 and var(εi) = σ2.

Without loss of generality, we take x̄ = 1
k

∑k
i=1 xi = 0, s2x = 1

k

∑k
i=1 x

2
i and let
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θ = (β0, β1, σ). Using Example 4.1, it is easy to show that

Isrs(θ) =
k∑
i=1

n

σ2


E{f

′
(Z)2

f(Z)2
} xiE{f

′
(Z)2

f(Z)2
} 0

xiE{f
′
(Z)2

f(Z)2
} x2iE{

f
′
(Z)2

f(Z)2
} 0

0 0 E{Z
2f
′
(Z)2

f(Z)2
} − 1



=
nk

σ2
diag

(
E{f

′
(Z)2

f(Z)2
}, s2xE{

f
′
(Z)2

f(Z)2
},E{Z

2f
′
(Z)2

f(Z)2
} − 1

)
,

and

K(θ) =
k∑
i=1

2n(S − 1)

σ2


E{f(Z)

2

F (Z)
} xiE{f(Z)

2

F (Z)
} 0

xiE{f(Z)
2

F (Z)
} x2iE{

f(Z)2

F (Z)
} 0

0 0 E{Z
2f
′
(Z)2

F (Z)
}


=

2kn(S − 1)

σ2
diag

(
E{f(Z)2

F (Z)
}, s2xE{

f(Z)2

F (Z)
},E{Z

2f
′
(Z)2

F (Z)
}
)
.

Note that RE1(θ) is independent of xi and θ and it only depends on the pdf f(·) and

its corresponding cdf F (·). As a special case, when the εis are normally distributed,

we get

RE1(θ) = {1 + 0.4805(S − 1)}2 {1 + 0.1350(S − 1)} .

When S = n, this reduces to the result of Barabesi and El-Sharaawi (2001) for RSS

data.
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4.2.2 FI matrix of Xpros and the effect of misplacement er-

rors

In this section we obtain the FI matrix of Xpros. We study a general setting where

it is assumed that the sub-setting process of the PROS(n, S,D) design is subject

to misplacement errors between the groups. For example, when the actual rank

of a unit is in the judgment subset dr, due to judgment ranking error it could

have been misplaced into another judgment subset, say ds, r 6= s, which leads to

a different kind of ranking error than the one usually happening in RSS. This is

a very general setting where the FI matrix of Xpros under the perfect sub-setting

assumption can also be obtained as a special case. We use the missing data model

proposed by Arslan and Ozturk (2013) to model possible misplacement errors in

PROS sampling design. Let Xpros = {X[dr], r = 1, . . . , n} denote an imperfect

PROS sample where [·] is used to show the presence of misplacement errors in the

sub-setting process. When the sub-setting process is perfect we simply use X(dr) to

denote PROS observations. Let α denote the misplacement probability matrix,

α =


αd1,d1 αd1,d2 . . . αd1,dn
αd2,d1 αd2,d2 . . . αd2,dn

...
... . . .

...
αdn,d1 αdn,d2 . . . αdn,dn


n×n

,

where αdr,dh is the probability of misplacing a unit from subset dh into subset

dr. Since the design parameter D creates a partition over the sets, the matrix α

should be a doubly stochastic matrix, that is, a matrix such that
∑n

r=1 αdr,dh =∑n
h=1 αdr,dh = 1. Suppose f[dr](·;θ) is the pdf of X[dr], r = 1, . . . , n. One can easily
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show that

f[dr](x[dr];θ) =
n∑
h=1

αdr,dhf(dh)(x[dr];θ) = f(x[dr];θ)gr(x[dr];θ), (4.9)

where

gr(x;θ) = n

n∑
h=1

∑
u∈dh

αdr,dh

(
S − 1

u− 1

)
[F (x;θ)]u−1[1− F (x;θ)]S−u. (4.10)

The likelihood function under an imperfect PROS(n, S,D) design is now given by

L(Ω) =
n∏
r=1

f[dr](x[dr];θ) =
n∏
r=1

f(x[dr];θ)gr(x[dr];θ),

where Ω = (θ,α). To obtain the FI matrix of an imperfect PROS sample and

compare it with its SRS and RSS counterparts, we need the following result, the

proof of which is left to the reader.

Lemma 4.2. Let Yr = X[dr], r = 1, . . . , n be observed from a continuous distribu-

tion with pdf f(·;θ) using an imperfect PROS(n, S,D) sampling design. Suppose

f[dr](·;θ) and gr(·,θ) are defined as in (4.9) and (4.10), respectively. Under the

regularity conditions Chen et al. (2004), we have

(i)
∑n

r=1 f[dr](x;θ) = nf(x;θ),

(ii)
∑n

r=1 gr(x;θ) = n,

(iii)
∑n

r=1 E
{
D2

θgr(Yr;θ)

gr(Yr;θ)

}
= 0,
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(iv)
∑n

r=1 E
{

[Dθgr(Yr;θ)][Dθgr(Yr;θ)]
>

g2r(Yr;θ)

}
=
∑n

r=1 E
{

[Dθgr(X;θ)][Dθgr(X;θ)]>

gr(X;θ)

}
.

Now, we show that the FI content of Xpros is more than that of its SRS counterpart.

Unfortunately, it is hard to obtain analytical results to compare the FI content of

PROS and RSS data, therefore, we should rely on numerical studies for this case

(see Tables 4.2 and 4.3).

Theorem 4.3. Under the conditions of Lemma 4.2, the FI matrix of an imperfect

PROS(n, S,D) sample about unknown parameters Ω = (α,θ) is given by

Iipros(Ω) = Isrs(θ) +
n∑
r=1

E
{

[Dθgr(X;θ)][Dθgr(X;θ)]>

gr(X;θ)

}

= Isrs(θ) +
n∑
r=1

∆̃r,

where
∑n

r=1 ∆̃r is a nonnegative definite matrix.

Proof. The proof is similar to the proof of Theorem 4.1 and hence is omitted.

To study the effect of misplacement errors in the sub-setting process of PROS(n, S,D)

design, on the information content of data, we consider the following misplacement

probability matrices when n = 2 and n = 3,

α1 =

[
p 1− p

1− p p

]
and α2 =

 p 1−p
2

1−p
2

1−p
2

p 1−p
2

1−p
2

1−p
2

p

 .
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Table 4.2: Values of RE1 and RE2 for comparing the FI content of imperfect PROS data with
its SRS and RSS counterparts with the same sample size for some distributions (Dist.) including
Normal (Nor.), Exponential (Exp.) and Logistic (Log.) when S = 6.

p
Dist. n Design 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Nor. 2 RE1 2.37 1.65 1.33 1.13 1.03 1.00 1.03 1.13 1.33 1.65 2.37

RE2 1.44 1.24 1.13 1.06 1.01 1.00 1.01 1.06 1.13 1.24 1.44
3 RE1 1.75 1.27 1.07 1.00 1.01 1.10 1.27 1.52 1.87 2.39 2.78

RE2 1.24 1.10 1.03 1.00 1.00 1.04 1.10 1.17 1.24 1.33 1.44
Exp. 2 RE1 1.91 1.46 1.23 1.10 1.02 1.00 1.02 1.10 1.23 1.46 1.91

RE2 1.36 1.20 1.11 1.04 1.01 1.00 1.01 1.04 1.11 1.20 1.36
3 RE1 1.47 1.18 1.05 1.00 1.01 1.07 1.18 1.35 1.58 1.90 2.45

RE2 1.18 1.07 1.02 1.00 1.00 1.03 1.07 1.12 1.19 1.26 1.35
Log. 2 RE1 2.70 1.77 1.38 1.16 1.03 1.00 1.03 1.16 1.38 1.77 2.70

RE2 1.56 1.29 1.16 1.07 1.01 1.00 1.01 1.07 1.16 1.29 1.56
3 RE1 1.88 1.30 1.08 1.00 1.01 1.11 1.31 1.61 2.05 2.75 4.16

RE2 1.31 1.12 1.03 1.00 1.00 1.05 1.11 1.20 1.30 1.42 1.59

For some members of the location-scale family of distributions, numerical values

of RE1(θ) and RE2(θ) are calculated to compare the FI content of imperfect PROS

data with their SRS and imperfect RSS (with ranking error models α1 and α2 for

n = 2 and n = 3, respectively) counterparts of the same size when S = 6 and

S = 12. These values are reported in Tables 4.2 and 4.3, respectively. Both tables

show that misplacement errors in the subsetting process of PROS sampling have

considerable effect on the information content of PROS data about the unknown

parameters of the model. Note that, when the subsetting process is done randomly,

i.e., p = 1/2 when n = 2 and p = 1/3 in the case n = 3, the FI content of PROS

data is the same as the FI content of SRS and RSS samples of the same size.

4.3 Other information criteria

The concept of information and uncertainty of random samples is so rich that sev-

eral measures have been proposed to study its different aspects. For example, in

engineering studies, the Shannon entropy, Rényi entropy and KL information mea-
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Table 4.3: Values of RE1 and RE2 for comparing the FI content of imperfect PROS data with
its SRS and RSS counterparts with the same sample size for some distributions (Dist.) including
Normal (Nor.), Exponential (Exp.) and Logistic (Log.) when S = 12.

p
Dist. n Design 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Nor. 2 RE1 3.01 1.94 1.48 1.20 1.04 1.00 1.04 1.20 1.48 1.94 3.01

RE2 1.83 1.46 1.26 1.12 1.03 1.00 1.03 1.12 1.26 1.46 1.83
3 RE1 2.34 1.47 1.13 1.00 1.02 1.17 1.45 1.85 2.43 3.27 4.89

RE2 1.67 1.27 1.08 1.00 1.01 1.11 1.25 1.42 1.61 1.81 2.10
Exp. 2 RE1 2.39 1.68 1.35 1.14 1.03 1.00 1.03 1.14 1.35 1.68 2.39

RE2 1.70 1.38 1.21 1.09 1.02 1.00 1.02 1.09 1.21 1.38 1.70
3 RE1 1.88 1.32 1.09 1.00 1.02 1.12 1.31 1.59 1.97 2.49 3.40

RE2 1.50 1.20 1.06 1.00 1.01 1.08 1.19 1.32 1.48 1.65 1.88
Log. 2 RE1 3.56 2.13 1.56 1.23 1.05 1.00 1.05 1.23 1.56 2.13 3.56

RE2 2.06 1.56 1.31 1.14 1.03 1.00 1.03 1.14 1.31 1.56 2.06
3 RE1 2.73 1.55 1.15 1.00 1.03 1.20 1.53 2.04 2.83 4.07 6.72

RE2 1.90 1.33 1.10 1.00 1.02 1.12 1.30 1.53 1.80 2.10 2.57

sures are used more than FI to quantify the information and uncertainty structures

of random samples. These measures quantify the amount of uncertainty inherent in

the joint probability distribution of a random sample and have been applied in many

areas such as ecological studies, computer science and information technology, in

different context including order statistics, spacings, censored data, reliability, life

testing, record data and text analysis. For more details see Jafari Jozani and Ah-

madi (2014) and Johnson (2004) and references therein.

In this section, we compare the uncertainty measures including Shannon entropy,

Rényi entropy and KL information of PROS samples with SRS and RSS samples

of the same size. Jafari Jozani and Ahmadi (2014) compared these uncertainty

measures of the RSS data with those under SRS data. The results of the following

sections extend the results of Jafari Jozani and Ahmadi (2014) to PROS sampling

technique. Throughout this section, the sub-setting process of PROS design and

the ranking process of RSS are assumed to be perfect.
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4.3.1 Shannon entropy of PROS samples

Let X be a continuous random variable with pdf f(·;θ). The Shannon entropy

associated with X, is defined as

H(X;θ) = −
∫
f(x;θ) log f(x;θ)dx,

subject to the existence of the integral. The Shannon entropy, as a quantitative

measure of information (uncertainty) is extensively used in information technology

and computer science and other engineering fields. In practice, smaller values of

the Shannon entropy are more desirable (see Johnson, 2004). The Shannon entropy

content of an SRS of size n is given by

Hn(Xsrs;θ) = −
n∑
i=1

∫
f(x;θ) log f(x;θ)dx = nH(X1;θ).

Similarly, for an RSS of size n (with the set size n)

Hn(Xrss;θ) = −
n∑
i=1

∫
f (i:n)(x;θ) log f (i:n)(x;θ)dx,

where f (i:n)(·;θ) is the pdf of the i-th order statistic in a SRS of size n from f(·;θ).

Furthermore, for a PROS(n, S,D) sample, it is easy to see that

Hn(Xpros;θ) = −
n∑
r=1

∫
f(dr)(y;θ) log f(dr)(y;θ)dy.

In the following lemma, we show that the Shannon entropy of a PROS sample is

smaller than that of an SRS sample of the same size. Unfortunately, we are not able
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to obtain an ordering relationship among the Shannon entropy of RSS and PROS

data for sample of the same size. Instead, we obtain a lower bound for the Shannon

entropy of a PROS(n, S,D) sample in terms of the Shannon entropy of an RSS data

of size S when the set size is S.

Lemma 4.3. Let Xpros be a PROS(n, S,D) sample from a population with pdf

f(·;θ) and let m = S/n be the number of observations in each subset. Suppose Xsrs

is a SRS of size n from f(·;θ) with Shannon entropy Hn(Xsrs;θ) and let HS(Xrss;θ)

represent the Shannon entropy of an RSS of size S when the set size is S. Then,

1

m
HS(Xrss;θ) ≤ Hn(Xpros;θ) ≤ Hn(Xsrs;θ), for all n ∈ N.

Proof. Using (4.3) and let convexity of h(t) = t log t, t > 0, we have

Hn(Xpros;θ) ≤ −n
∫ (

1

n

n∑
r=1

f(dr)(x;θ)

)(
log

[
1

n

n∑
r=1

f(dr)(x;θ)

])
dx

= Hn(Xsrs;θ).

Furthermore, using (4.2) and the convexity of h(t) = t log t, t > 0, we have

Hn(Xpros;θ) = −
n∑
r=1

∫ (
1

m

∑
u∈dr

f (u:S)(x;θ)

)(
log

[
1

m

∑
u∈dr

f (u:S)(x;θ)

])
dx

≥ − 1

m

n∑
r=1

∑
u∈dr

∫
f (u:S)(x;θ) log f (u:S)(x;θ)dx

=
1

m
HS(Xrss;θ),

which completes the proof.
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4.3.2 Rényi entropy of PROS samples

In this section we use Rényi entropy as a quantitative measure to quantify the

entropy associated with PROS data Xpros. The Réyni entropy of a random variable

X with pdf f(·;θ) is defined as follows

Hα,1(X;θ) =
1

1− α
logE[fα−1(X;θ)],

where α > 0, α 6= 1. The Rényi entropy is a very general measure and includes the

Shannon entropy as its special case due to the following relationship

lim
α→1

Hα,1(X;θ) = −
∫
f(x;θ) log f(x;θ)dx = H(X;θ).

Due to the flexibility of the Rényi entropy, Hα,1(X;θ) has been used in many fields

such as statistics, ecology, engineering and etc. We derive the Rényi entropy of

Xpros and compare it with the Rényi entropy of Xsrs. We present the results for

0 < α < 1 and the case with α > 1, which requires further investigation, will be

presented in later work. To this end, the Rényi entropy of an SRS of size n is given

by

Hα,n(Xsrs;θ) =
1

1− α

n∑
i=1

log

∫
fα(xi;θ) dxi = nHα,1(X;θ);

and for an RSS with set size n,

Hα,n(Xrss;θ) =
1

1− α

n∑
i=1

log

∫
[f (i:n)(x;θ)]αdx.
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Also, for a PROS(n, S,D) sample, one gets

Hα,n(Xpros;θ) =
1

1− α

n∑
r=1

log

∫
[f(dr)(x;θ)]αdx.

Lemma 4.4. Let Hα,n(Xpros;θ) represent the Rényi entropy of a PROS(n, S,D)

sample of size n from a population with pdf f(·;θ). Suppose Xsrs and X∗rss are,

respective an SRS of size n and a RSS of size S (with the set size S) from f(·;θ).

For any 0 < α < 1 and all n ∈ N , we have

1

m
Hα,S(X∗rss;θ) ≤ Hα,n(Xpros;θ) ≤ Hα,n(Xsrs;θ).

Proof. By using (4.2) and the concavity of the functions h1(t) = log t and h2(t) = tα,

we have

Hα,n(Xpros;θ) ≤ n

1− α

[
log

∫
1

n

n∑
r=1

(
1

m

∑
u∈dr

f (u:S)(x;θ)

)α

dx

]

≤ n

1− α
log

∫ (
1

S

n∑
r=1

∑
u∈dr

f (u:S)(x;θ)

)α

dx

= Hα,n(Xsrs;θ).

Similarly, one can show the following inequalities

Hα,n(Xpros;θ) ≥ 1

1− α

n∑
r=1

log

(
1

m

∑
u∈dr

∫
[f (u:S)(x;θ)]αdx

)

≥ 1

m(1− α)

n∑
r=1

∑
u∈dr

log

(∫
[f (u:S)(x;θ)]αdx

)

=
1

m
Hα,S(X∗rss;θ),
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which complete the proof.

4.3.3 KL information in PROS samples

The Kullback-Leibler (KL) distance is another measure to quantify the information

of a random phenomenon by comparing two probability density functions of the

random experiment. Consider two pdfs f(·;θ) and g(·;θ). The KL information

measure based on f(·;θ) and g(·;θ) is defined by

K(f, g) =

∫
f(t;θ) log

(
f(t;θ)

g(t;θ)

)
dt,

which quantifies the information lost by using g(·;θ) for the density of the random

variable X instead of f(·;θ). In this section, using the KL measure we make a com-

parison between PROS, SRS and RSS designs to determine which design provides

more informative samples from the underlying population. To this end, we use

K (Lpros(θ|y), Lsrs(θ|y)) =

∫
· · ·
∫
Lpros(θ|y) log

(
Lpros(θ|y)

Lsrs(θ|y)

)
dy, (4.11)

to compare the PROS(n, S,D) and SRS designs, where Lpros(θ|y) and Lsrsθ|y)

denote the likelihood functions of PROS and SRS samples of the same size, respec-

tively. The KL information measure for comparing RSS and SRS is defined similarly

by using (4.11) and setting S = n in the PROS sampling design. One can inter-

pret (4.11) in terms of a hypothesis testing problem within the Neyman-Pearson

log-likelihood ratio testing framework (see Johnson, 2004).

Lemma 4.5. Let Lpros(θ|y) and Lsrs(θ|y) denote, respectively, the likelihood func-

tions of a PROS(n, S,D) sample and a SRS of size n from a population with pdf
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f(·;θ). Then we have

K (Lpros(θ|y), Lsrs(θ|y)) =
n∑
r=1

∫
f(dr)(y;θ) log

(
f(dr)(y;θ)

f(y;θ)

)
dy.

Proof. To show the result, using (4.11) we have

K (Lpros(θ|y), Lsrs(θ|y)) =

n∑
r=1

∫
· · ·
∫ { n∏

h=1

f(dh)(yh;θ)

}
log

(
f(dr)(yr;θ)

f(yr;θ)

)
n∏
j=1

dyj


=

n∑
r=1

∫
f(dr)(y;θ) log

(
f(dr)(y;θ)

f(y;θ)

)
dy,

where the last equality follows from the independence of observations and the fact

that n− 1 of the integrals are 1.

In the following lemma, we show that the KL distance between the likelihoods of

PROS and SRS samples is greater than the KL information distance between the

likelihoods of two SRS samples. Hence, PROS sampling scheme provides more

informative sample from the underlying population compared with SRS sampling

scheme. We also obtain a lower bound for the KL information between the likeli-

hoods of PROS and SRS data of the same size.

Lemma 4.6. Let Lpros(θ|y) denote the likelihood function of a PROS(n, S,D) sam-

ple from a population with pdf f(·,θ). Suppose Lsrs,1(θ|y) and Lsrs,2(θ|y) denote

the likelihood functions of simple random samples of size n from f(·;θ) and g(·;θ),

respectively. In addition, let Lrss∗(θ|y) represent the likelihood function of a RSS

of size S with set size is S. Then,

K (Lsrs,1(θ|y), Lsrs,2(θ|y)) ≤ K (Lpros(θ|y), Lsrs,2(θ|y)) ≤ 1

m
K
(
L̃rss∗(θ|y), Lsrs,2(θ|y)

)
.
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Proof. Applying Lemma 4.5 and using the convexity of h(t) = t log t, t > 0, we

derive

K (Lpros(θ|y), Lsrs,2(θ|y))

=
n∑
r=1

∫
g(y;θ)

(
f(dr)(y;θ)

g(y;θ)

)
log

(
f(dr)(x;θ)

g(y;θ)

)
dy

≥ n

∫
g(y;θ)

[
1

n

n∑
r=1

f(dr)(y;θ)

g(y;θ)

]
log

[ 1
n

∑n
r=1 f(dr)(y;θ)

g(y;θ)

]
dy

= n

∫
f(y;θ) log

(
f(y;θ)

g(y;θ)

)
dy

= K (Lsrs,1(θ), Lsrs,2(θ)) ,

which shows the first inequality. Similarly,

K (Lpros(θ|y), Lsrs,2(θ|y))

=
n∑
r=1

∫
g(y;θ)

(
1

m

∑
u∈dr

f (u:S)(y;θ)

g(y;θ)

)
log

(
1

m

∑
u∈dr

f (u:S)(y;θ)

g(y;θ)

)
dy

≤ 1

m

S∑
v=1

∫
f (v:S)(y;θ) log

(
f (v:S)(x;θ)

g(y;θ)

)
dy

=
1

m
K (Lrss∗(θ|y), Lsrs,2(θ|y)) ,

which completes the proof.
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Chapter 5

Mixture Model Analysis of PROS

Samples

In Chapter 2, we developed parametric inference for the FMMs based on an RSS

design under the perfect ranking assumption and showed that it improved the ef-

ficiency for the estimation of the mixing parameters and parameters of the com-

ponent distributions compared with the usual case under the SRS design. In this

chapter, we investigate the FMMs under PROS design with an imperfect ranking

error model. This extends the results of Chapter 2 to an imperfect setting. In order

to minimize the magnitude of the ranking error, we propose to use a PROS sampling

design in which subsets are partially ordered in each set and units within subsets are

not ordered. The partial ordering does not eliminate the possibility of ranking er-

ror completely, but reduces it to the misplacement errors of the units into subsets.

Implementing the ML method to estimate the parameters of the model is much

more challenging when working with PROS samples compared to the traditional

SRS and even RSS samples. One significant difference is that the full likelihood

based on PROS data involves powers of convex combinations of the survival and
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cumulative distribution functions of the underlying FMM. We propose a new EM

algorithm for the ML estimation of the unknown parameters of the FMM as well

as the ranking error probabilities under the PROS sampling design.

To this end, in Section 5.1, we introduce the PROS sampling design for FMMs.

In Section 5.2, we present the likelihood function of the PROS sample from a FMM

and introduce suitable indicator variables to obtain the complete-data likelihood

function. In Section 5.3, we introduce an EM algorithm for the estimation of the

parameters of the model given the PROS sample. One major challenge to ML

estimation, when it involves PROS data from FMMs, is computational intractabil-

ity. In Section 5.4, a modified version of the proposed EM algorithm is suggested

to reduce the computational burden of the estimation process. In Section 5.5, we

study the problem of classification of the PROS sample into the components of the

FMM. We describe our simulation studies in Section 5.6. An application of our

method to a fishery data example is presented in Section 5.7. We apply the pro-

posed method to estimate the age groups of a fish species in the Chesapeake Bay

area using length-frequency data which can be considered to be a mixture of two

normal densities.

5.1 PROS sample from FMM

Suppose X is a random variable associated with a random phenomenon of interest

following the FMM (1.1). Let D = {d1, . . . , dn} denote a partition of the integers

{1, . . . , S} into n mutually exclusive subsets dr, each of size m, where dr = {(r −

1)m+1, . . . , rm}, r = 1, . . . , n, andm = S/n. Let {X[dr]i; r = 1, . . . , n; i = 1, . . . , N}

denote a balanced PROS sample of size Nn constructed through the PROS sampling
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design described in Chapter 1, with set size S, number of subsets n of equal size

m = S/n and number of cycles N .

To provide a model for misplacement errors in PROS design, we consider a

missing data model proposed in Arslan and Ozturk (2013). Let

Xi =
{
X(1)i < X(2)i < · · · < X(S)i

}
be the order statistics in set i, i = 1, . . . , N . The PROS design selects one unit,

X[dr]i, from the subset dr in this set. The construction of dr and the selection of X[dr]i

is modelled by a missing data model which accommodates the possibility of ranking

error between judgment subsets dr, r = 1, . . . , n. Let α denote the misplacement

probability matrix,

α =


αd1,d1 αd1,d2 . . . αd1,dn
αd2,d1 αd2,d2 . . . αd2,dn

...
... . . .

...
αdn,d1 αdn,d2 . . . αdn,dn


S×S

; αdr,dh = αdr,dh


1
m2

1
m2 . . . 1

m2

1
m2

1
m2 . . . 1

m2

...
... . . .

...
1
m2

1
m2 . . . 1

m2


m×m

,

where αdr,dh is the probability that any order statistic from the subset dh is misplaced

into the subset dr. Since the design D is a partition, we must have the constraint∑n
h=1 αdr,dh = 1. In order to have a valid probability model, we also need to have

the constraint
∑n

r=1 αdr,dh = 1. These two constraints define a doubly stochastic

matrix α. Thus, the matrix α contains the misplacement probabilities of an order

statistic from the subset dh to a judgment order statistic in another subset dr, for

h, r ∈ {1, . . . , n}. Entries 1/m2 indicate that random selection from dh and random

replacement to dr are all equally likely.

Now, for each X[dr]i, define an m× S dimensional multinomial random matrix,
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∆
[dr]
i , with parameters 1 and α[dr], where α[dr] = (αdr,d1 , . . . ,αdr,dn), and αdr,dh are

as defined above. It is clear that α[dr] is an m× S dimensional probability matrix

whose entries sum to 1. With this structure, ∆
[dr]
i can be written as an m × S

random matrix ∆
[dr]
i =

(
∆

[dr,dh]
i (k, u) : k ∈ dr, u ∈ dh

)
which has only one nonzero

(exactly equal to 1) entry and all the other entries are zero. The position of the

nonzero entry determines the identity of the unit and the subset from which the

unit is selected at random; that is,

X[dr]i = 1>m ∆
[dr]
i X(i),

where 1m is a column vector of ones. Since ∆
[dr]
i is a multinomial random matrix,

its pdf is given by

P(∆
[dr]
i = δ

[dr]
i ;α) =

∏
k∈dr

n∏
h=1

∏
u∈dh

(αdr,dh
m2

)δ[dr,dh]

i (k,u)

. (5.1)

Also, the conditional distribution of X[dr]i given ∆
[dr]
i can be written as

f(x[dr]i|δ
[dr]
i ; Ψ) =

∏
k∈dr

n∏
h=1

∏
u∈dh

{
f (u:S)(x[dr]i; Ψ)

}δ[dr,dh]

i (k,u)
, (5.2)

where f (u:S)(x; Ψ) is the pdf of the u-th order statistic in a set of size S from the

FMM (1.1) as follows

f (u:S)(x; Ψ) = S

(
S − 1

u− 1

)
f(x; Ψ){F (x; Ψ)}u−1{F̄ (x; Ψ)}S−u, (5.3)

and F̄ (x; Ψ) = 1 − F (x; Ψ). Finally, the joint distribution of (X[dr]i,∆
[dr]
i ) follows
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from (5.1) and (5.2) and is given by

f(x[dr]i, δ
[dr]
i ; Ω) =

∏
k∈dr

n∏
h=1

∏
u∈dh

{αdr,dh
m2

f (u:S)(x[dr]i; Ψ)
}δ[dr,dh]

i (k,u)

, (5.4)

where Ω = (Ψ,α). The marginal distribution of X[dr]i is then obtained by summing

f(x[dr]i, δ
[dr]
i ; Ω) over δ

[dr]
i , that is

f(x[dr]i; Ω) =
∑
δ
[dr ]
i

f(x[dr]i, δ
[dr]
i ; Ω) =

1

m

n∑
h=1

∑
u∈dr

αdr,dhf
(u:S)(x[dr]i; Ψ). (5.5)

Form (5.4) and (5.5), it is easy to see that

f(δ
[dr]
i

∣∣x[dr]i; Ω) =
∏
k∈dr

n∏
h=1

∏
u∈dh

{
αdr,dhBu,S+1−u(F (x[dr]; Ψ))

m
n∑
h=1

∑
u′∈dh

αdr,dhBu′ ,S+1−u′ (F (x[dr]; Ψ))

}δ[dr,dh]

i (k,u)

.

(5.6)

where Ba,b(·) is a beta density function with parameters a and b.

5.2 Likelihood functions for PROS sample

In this section, we derive the ML estimator of the unknown parameter Ψ of the FMM

(1.1) based on a PROS sample. Let F (x; Ψ) =
∑M

j=1 πjFj(x; θj) be the cumulative

distribution function (cdf) of the FMM (1.1), where Fj(x; θj), j = 1, . . . ,M , refers

to the cdf of the j-th component of the model. Using (5.5), the incomplete likelihood

function under the imperfect PROS sampling design is given by

L1(Ω) =
N∏
i=1

n∏
r=1

f(x[dr]i; Ω). (5.7)
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Let l1(Ω) = logL1(Ω). Now, the ML estimator of Ψ, denoted by Ψ̂, is given as an

appropriate root of the likelihood equation, ∂l1(Ω)
∂Ψ

= 0. Note that finding Ψ̂ from

(5.7) is not tractable since the pdf involves summations over h and u in the subset dr.

To overcome this problem we rewrite the likelihood function L1(Ω) from a missing

data model perspective. Considering the unmeasured (latent) multinomial random

matrices ∆
[dr]
i defined in (5.4), the complete likelihood function of Ω becomes

L2(Ω) =
N∏
i=1

n∏
r=1

f(x[dr]i, δ
[dr]
i ; Ω). (5.8)

Using the marginalization principle in (5.5), it is easy to see that the likelihood

function (5.7) can be obtained by summing the complete-data likelihood function

(5.8) over ∆
[dr]
i .

Note that the complete-data likelihood function L2 is more tractable than L1

when interest lies in the estimation of the parameterα. Using the EM algorithm, the

ML estimator of α, α̂ML, can easily be obtained. However, from equations (5.3) and

(5.8), we note that, due to the presence of the terms [F (·; Ψ)]u−1 and [F̄ (·; Ψ)]S−u

in L2, the complete likelihood function L2 is still intractable for estimating Ψ. To

reduce the computational complexity in the estimation of the parameter Ψ, we

provide an alternative representation for the likelihood function L2. We first insert

(5.3) into equation (5.2) and rewrite the conditional density of X[dr]i given the latent

vector ∆
[dr]
i = δ

[dr]
i and Ψ as follows

f(x[dr]i|δ
[dr]
i ; Ψ) (5.9)

=
∏
k∈dr

n∏
h=1

∏
u∈dh

{
S

(
S − 1

u− 1

)
f(x[dr]; Ψ)[F (x[dr]; Ψ)]u−1[F̄ (x[dr]; Ψ)]S−u

}δ[dr,dh]

i (k,u)

.

112



In equation (5.9), to keep track of the component membership of the judgment order

statistics X[dr]i and to simplify the density to a manageable form, we introduce three

additional latent variables Z
[dr]
i ,W

[dr]
i ,V

[dr]
i for each x[dr]i, given ∆

[dr]
i = δ

[dr]
i . Let

Z
[dr]
i |δ

[dr]
i denote the conditional component membership of the observation x[dr]i

and W
[dr]
i |δ

[dr]
i denote the conditional component membership of the observations

less than x[dr]i in a set of size S from which x[dr]i is obtained. Similarly, let V
[dr]
i |δ

[dr]
i

denote the conditional component membership of the observations larger than x[dr]i

in its corresponding set of size S. We note that these second-level latent variables

are handled conditionally, given the first-level latent matrix ∆
[dr]
i , since the rank

and the exact position of x[dr]i (i.e., the subset and the position within the subset)

are determined by the latent matrix ∆
[dr]
i .

For a given judgment order statistic x[dr]i, let {∆[dr,dh]
i (k, u) = 1} denote the

event that the entry of the matrix ∆
[dr]
i at the k-th row of the subset dr and

u-th column of the subset dh is one. The latent vector Z
[dr]
i |{∆

[dr,dh]
i (k, u) = 1}

is then an M -dimensional vector, where Z
[dr]
ij |{∆

[dr,dh]
i (k, u) = 1} is one or zero,

according to whether or not x[dr]i belongs to the j-th component of the mixture

model (j = 1, . . . ,M), that is,

Z
[dr]
ij

∣∣{∆[dr,dh]
i (k, u) = 1} =

{
1 if x[dr]i belongs to component j;
0 otherwise,

with
∑M

j=1

(
Z

[dr]
ij

∣∣{∆[dr,dh]
i (k, u) = 1}

)
= 1. For i = 1, . . . , N ; r = 1, . . . , n, we have

that each Z
[dr]
i |{∆

[dr,dh]
i (k, u) = 1} follows a multinomial distribution consisting of
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one draw on M classes (C1, . . . , CM) with probabilities π = (π1, . . . , πM). Hence, it

is easy to show that

f(z
[dr]
i

∣∣δ[dr]i ;π) =
∏
k∈dr

n∏
h=1

∏
u∈dh

{(
1

z
[dr]
i1 , . . . , z

[dr]
i1

) M∏
j=1

π
z
[dr ]
ij

j

}δ
[dr,dh]

i (k,u)

. (5.10)

In addition, suppose M -dimensional latent vector W
[dr]
i |{∆

[dr,dh]
i (k, u) = 1} denote

the number of observations less than x[dr]i which are selected from component j of

the FMM (1.1). It should be noted that
∑M

j=1

(
W

[dr]
ij |{∆

[dr,dh]
i (k, u) = 1}

)
= u− 1,

and the latent vectors W
[dr]
i |{∆

[dr,dh]
i (k, u) = 1}, i = 1, . . . , N ; r = 1, . . . , n, each

have a multinomial distribution consisting of u−1 draws on M classes (C1, . . . , CM)

with probabilities π. Therefore, we can show that

f(w
[dr]
i

∣∣δ[dr]i ;π) =
∏
k∈dr

n∏
h=1

∏
u∈dh

{(
u− 1

w
[dr]
i1 , . . . , w

[dr]
i1

) M∏
j=1

π
w

[dr ]
ij

j

}δ
[dr,dh]

i (k,u)

. (5.11)

Similarly, let V
[dr]
i |{∆

[dr,dh]
i (k, u) = 1} be an M -dimensional vector, such that

variable V
[dr]
ij |{∆

[dr,dh]
i (k, u) = 1} denotes the number of observations bigger than

x[dr]i that are selected from component j of the FMM (1.1), with the fact that∑M
j=1

(
V

[dr]
ij |{∆

[dr,dh]
i (k, u) = 1}

)
= S−u. Accordingly, V

[dr]
i |{∆

[dr,dh]
i (k, u) = 1}, i =

1, . . . , N ; r = 1, . . . , n, follows a multinomial distribution consisting of S − u draws

on M classes (C1, . . . , CM) with probabilities π, and

f(v
[dr]
i |δ

[dr]
i ;π) =

∏
k∈dr

n∏
h=1

∏
u∈dh

{(
S − u

v
[dr]
i1 , . . . , v

[dr]
i1

) M∏
j=1

π
v
[dr ]
ij

j

}δ
[dr,dh]

i (k,u)

. (5.12)
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Since each set in the PROS design consists of independent samples from the popula-

tion, and since the component memberships of those observations are independent

of each other, the latent variables Z
[dr]
i ,W

[dr]
i and V

[dr]
i are conditionally indepen-

dent, given ∆
[dr]
i . The joint distribution of the judgment order statistic X[dr]i and

the latent variables Z
[dr]
i ,W

[dr]
i and V

[dr]
i is given in the following lemma.

Lemma 5.1. For fixed values i and r, (i = 1, . . . , N , r = 1, . . . , n), we have

f(x[dr]i, δ
[dr]
i , z

[dr]
i ,w

[dr]
i ,v

[dr]
i ; Ω)

∝
∏
k∈dr

n∏
h=1

∏
u∈dh

M∏
j=1

{
αdr,dh
m2

π
{z[dr ]ij +w

[dr ]
ij +v

[dr ]
ij }

j

}δ[dr,dh]

i (k,u)

×
{

[fj(x[dr]i, θj)]
z
[dr ]
ij [Fj(x[dr]i, θj)]

w
[dr ]
ij [F̄j(x[dr]i, θj)]

v
[dr ]
ij

}δ[dr,dh]

i (k,u)

.

Proof. Let c1 = S
(
S−1
u−1

)
, c2 =

(
1

z
[dr ]
i1 ,...,z

[dr ]
iM

)
, c3 =

( u−1
w

[dr ]
i1 ,...,w

[dr ]
iM

)
and c4 =

( S−u
v
[dr ]
i1 ,...,v

[dr ]
iM

)
.

f(x[dr]i|{z
[dr]
i , δ

[dr]
i }; Ψ)

=
∏
k∈dr

n∏
h=1

∏
u∈dh

{
c1

M∏
j=1

[fj(x[dr]i; θj)]
z
[dr ]
ij [F (x[dr]i; Ψ)]u−1[F̄ (x[dr]i; Ψ)]S−u

}δ[dr,dh]

i (k,u)

.

Using (5.1) and (5.10), we write

f(x[dr]i, z
[dr]
i , δ

[dr]
i ; Ω) =

∏
k∈dr

n∏
h=1

∏
u∈dh

{
αdr,dh
m2

c1 c2

M∏
j=1

[πjfj(x[dr]i; θj)]
z
[dr ]
ij

× [F (x[dr]i; Ψ)]u−1[F̄ (x[dr]i; Ψ)]S−u
}δ[dr,dh]

i (k,u)

. (5.13)
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Furthermore, using (5.4), one gets

f(z
[dr]
i |{x[dr]i, δ

[dr]
i }; Ψ) =

∏
k∈dr

n∏
h=1

∏
u∈dh

c2
M∏
j=1

(
πjfj(x[dr]i; θj)

f(x[dr]i; Ψ)

)z[dr ]ij


δ
[dr,dh]

i (k,u)

.

(5.14)

On the other hand, the conditional distribution of X[dr]i given W
[dr]
i = w

[dr]
i and

∆
[dr]
i = δ

[dr]
i can be written as

f(x[dr]i|{w
[dr]
i , δ

[dr]
i }; Ψ)

=
∏
k∈dr

n∏
h=1

∏
u∈dh

{
c1

M∏
j=1

f(x[dr]i; Ψ)[Fj(x[dr]i; θj)]
w

[dr ]
ij [F̄ (x[dr]i; Ψ)]S−u

}δ[dr,dh]

i (k,u)

.

From (5.1) and (5.11), it is easy to write

f(x[dr]i,w
[dr]
i , δ

[dr]
i ; Ω) =

∏
k∈dr

n∏
h=1

∏
u∈dh

{
αdr,dh
m2

c1 c3

M∏
j=1

f(x[dr]i; Ψ)

× [πjFj(x[dr]i; θj)]
w

[dr ]
ij [F̄ (x[dr]i; Ψ)]S−u

}δ[dr,dh]

i (k,u)

.

Now, using equation (5.4) shows

f(w
[dr]
i |{x[dr]i, δ

[dr]
i }; Ψ)

=
∏
k∈dr

n∏
h=1

∏
u∈dh

c3
M∏
j=1

(
πjFj(x[dr]i; θj)

F (x[dr]i; Ψ)

)w[dr ]
ij


δ
[dr,dh]

i (k,u)

. (5.15)

Similarly, we have

f(x[dr]i|{v
[dr]
i , δ

[dr]
i }; Ψ)

=
∏
k∈dr

n∏
h=1

∏
u∈dh

{
c1

M∏
j=1

f(x[dr]i; Ψ)[F (x[dr]i; Ψ)]u−1[F̄j(x[dr]i; θj)]
v
[dr ]
ij

}δ[dr,dh]

i (k,u)

.
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Again, making use of equations (5.1) and (5.12) yields the following joint distribu-

tion

f(x[dr]i,v
[dr]
i , δ

[dr]
i ; Ω) =

∏
k∈dr

n∏
h=1

∏
u∈dh

{
αdr,dh
m2

c1 c4

M∏
j=1

f(x[dr]i; Ψ)

× [F (x[dr]i; Ψ)]u−1[πjF̄j(x[dr]i; θj)]
v
[dr ]
ij

}δ[dr,dh]

i (k,u)

.

Once again, using (5.4), we write

f(v
[dr]
i |{x[dr]i, δ

[dr]
i }; Ψ) =

∏
k∈dr

n∏
h=1

∏
u∈dh

c4
M∏
j=1

(
πjF̄j(x[dr]i; θj)

F̄ (x[dr]i; Ψ)

)v[dr ]ij


δ
[dr,dh]

i (k,u)

.

(5.16)

Finally, based on the conditional independence of the latent variables and from

(5.14), (5.15), (5.16) and (5.4), the lemma is easily proved.

The key difference between the joint pdf in Lemma 5.1 and the pdf in equation

(5.7) is that the summation in equation (5.7) is replaced by products with the help

of the latent variables. The following lemma shows that the conditional distribution

of X[dr]i given δ
[dr]
i can be obtained from Lemma 5.1. Therefore, we can use the EM

algorithm to obtain the ML estimate of Ω.

Lemma 5.2. For each x[dr]i, i = 1, . . . , N ; r = 1, . . . , n, we have

f(x[dr]i, δ
[dr]
i ; Ω) =

∑
Z|δ

∑
W|δ

∑
V|δ

f(x[dr]i, δ
[dr]
i , z

[dr]
i ,w

[dr]
i ,v

[dr]
i ; Ω).

where Z|δ, W|δ and V|δ in the summations indicate all the possible values of Z
[dr]
i ,

W
[dr]
i and V

[dr]
i given ∆

[dr]
i = δ

[dr]
i , respectively.
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Proof. To show the result, we have

∑
Z|δ

∑
W|δ

∑
V|δ

f(x[dr]i, δ
[dr]
i , z

[dr]
i ,w

[dr]
i ,v

[dr]
i ; Ω)

=
∏
k∈dr

n∏
h=1

∏
u∈dh

c1αdr,dhm2

∑
Z|δ

c2

M∏
j=1

{πjfj(x[dr]i; θj)}
z
[dr ]
ij



×

∑
W|δ

c3

M∏
j=1

{πjFj(x[dr]i; θj)}
w

[dr ]
ij

∑
V|δ

c4

M∏
j=1

{πjF̄j(x[dr]i; θj)}
v
[dr ]
ij


δ
[dr,dh]

i (k,u)

=
∏
k∈dr

n∏
h=1

∏
u∈dh

c1αdr,dhm2

 M∑
j=1

πjfj(x[dr]i; θj)

 M∑
j=1

πjFj(x[dr]i; θj)

u−1

×

 M∑
j=1

πjF̄j(x[dr]i; θj)

S−u

δ
[dr,dh]

i (k,u)

=
∏
k∈dr

n∏
h=1

∏
u∈dh

{
c1
αdr,dh
m2

f(x[dr]i; Ψ)[F (x[dr]i; Ψ)]u−1[F̄ (x[dr]i; Ψ)]S−u
}δ[dr,dh]

i (k,u)

=f(x[dr]i, δ
[dr]
i ; Ω).

Since the random matrix ∆
[dr]
i follows a multinomial distribution with one draw

from mS cells (only one entity is 1 and other entries are 0), we could switch the

order of the triple summations with the triple products in the first equality.

Let Y denote the collection of all latent variables and X denote the observed

PROS data, that is, Y = {(∆[dr]
i ,Z

[dr]
i ,W

[dr]
i ,V

[dr]
i ), i = 1, . . . , N ; r = 1, . . . , n}

and X = {X[dr]i, i = 1, . . . , N ; r = 1, . . . , n}, respectively. Using Lemma 5.1, the
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likelihood function can be written as follows

L(Ω|y,x) =
N∏
i=1

n∏
r=1

f(x[dr]i, δ
[dr]
i , z

[dr]
i ,w

[dr]
i ,v

[dr]
i ; Ω).

It is easy to see that the likelihood function L2(Ψ, α) can be obtained from L(Ω|y,x)

by summing over Z|∆,W|δ and V|δ, i.e.,
∑

Z|δ
∑

W|δ
∑

V|δ L(Ω|y,x) = L2(Ω).

The log-likelihood function of Ω based on the full data is now given by

l(Ω|y,x)

∝
N∑
i=1

n∑
r=1

∑
k∈dr

n∑
h=1

∑
u∈dh

δ
[dr,dh]
i (k, u) logαdr,dh

+
N∑
i=1

n∑
r=1

∑
k∈dr

n∑
h=1

∑
u∈dh

δ
[dr,dh]
i (k, u)

M∑
j=1

[{
z
[dr]
ij + w

[dr]
ij + v

[dr]
ij

}
log πj

]

+
N∑
i=1

n∑
r=1

∑
k∈dr

n∑
h=1

∑
u∈dh

δ
[dr,dh]
i (k, u)

×
M∑
j=1

[
z
[dr]
ij log fj(x[dr]i; θj) + w

[dr]
ij logFj(x[dr]i; θj) + v

[dr]
ij log F̄j(x[dr]i; θj)

]

=l1(α|y,x) + l2(π|y,x) + l3(ξ|y,x). (5.17)

Note that the log-likelihood function is partitioned into three parts, l1(α|y,x),

l2(π|y,x), and l3(ξ|y,x), where l1(α|y,x) depends only on α, l2(π|y,x) depends

only on π and l3(ξ|y,x) depends only on ξ. Thus, maximization of the full likelihood

is done by maximizing each piece separately.
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5.3 EM algorithm based on PROS sample

In this section, we introduce an EM algorithm to maximize the log-likelihood func-

tion (5.17). The EM algorithm starts with an initial value of the population pa-

rameter Ω(0) and involves two steps.

5.3.1 E-Step

This step computes the conditional expectation of the full data log-likelihood func-

tion (5.17) given the observed data X = x by

Q(Ω,Ω(0)) = EΩ(0) [l(Ω,Y)|x], (5.18)

where the expectation will be computed by using Ω(0) instead of Ω in the condi-

tional distribution. On the (p+ 1)-th iteration, the E-step requires one to compute

Q(Ω,Ω(p)), where Ω(p) is the value of Ω after the p-th iteration. This involves the

calculation of the conditional expectation of the appropriate latent variables. For

the expected value of ∆
[dr,dh]
i (k, u), from (5.6), we have

∆
[dr,dh]
i (k, u)|{X[dr]i = x[dr]i} ∼ Bin

(
1, φ

[dr,dh]
i,k,u (Ω)

)
,

where Bin(a, b) is a binomial distribution with parameters a and b,

φ
[dr,dh]
i,k,u (Ω) =

αdr,dhBu,S−u+1(F (x[dr]i; Ψ))

m
n∑
h=1

∑
u
′∈dh

αdr,dhBu′ ,S−u′+1(F (x[dr]i; Ψ))

,
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and Ba,b(·) is a beta density function with parameters a and b. By summing

φ
[dr,dh]
i,k,u (Ω(p)) over k and u, we obtain

φ
[dr,dh]
i (Ω(p)) =

∑
k∈dr

∑
u∈dh

φ
[dr,dh]
i,k,u (Ω(p)),

which is the conditional probability that a randomly selected judgment unit in the

subset dr came from a randomly selected order statistic in the subset dh given that

X[dr]i has been measured from the subset dr. For notational convenience, we also

write

φ
[dr,dh]
i,·,u (Ω(p)) =

∑
k∈dr

φ
[dr,dh]
i,k,u (Ω(p)), and φ

(p)
r,h =

N∑
i=1

φ
[dr,dh]
i (Ω(p)).

To obtain the conditional expectation of the latent variables Zi, Wi and Vi, we

first establish their conditional distributions given X[dr]i and the latent variable

∆
[dr,dh]
i (k, u). Note that from equations (5.14), (5.15) and (5.16), we observe that

Z
[dr]
ij |{x[dr]i,∆

[dr,dh]
i (k, u) = 1} ∼ Bin

(
1,
πjfj(x[dr]i; θj)

f(x[dr]i; Ψ)

)
,

W
[dr]
ij |{x[dr]i,∆

[dr,dh]
i (k, u) = 1} ∼ Bin

(
u− 1,

πjFj(x[dr]i; θj)

F (x[dr]i; Ψ)

)
,

V
[dr]
ij |{x[dr]i,∆

[dr,dh]
i (k, u) = 1} ∼ Bin

(
S − u,

πjF̄j(x[dr]i; θj)

F̄ (x[dr]i; Ψ)

)
,

where i = 1, . . . , N ; r = 1, . . . , n and j = 1, . . . ,M . Let τ
[dr]
u,i,j(Ω), β

[dr]
u,i,j(Ω) and

γ
[dr]
u,i,j(Ω) denote the conditional expectations of Z

[dr]
ij , W

[dr]
ij and V

[dr]
ij , given the
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observed measurement x[dr]i and the latent variable ∆
[dr,dh]
i (k, u) = 1, respectively.

Using the conditional expectation we have

EΩ(p)

[
∆

[dr,dh]
i (k, u)Z

[dr]
ij

∣∣x[dr]i] = φ
[dr,dh]
i,k,u (Ω(p)) τ

[dr]
u,i,j(Ω

(p)),

EΩ(p)

[
∆

[dr,dh]
i (k, u)W

[dr]
ij

∣∣x[dr]i] = φ
[dr,dh]
i,k,u (Ω(p)) β

[dr]
u,i,j(Ω

(p)),

EΩ(p)

[
∆

[dr,dh]
i (k, u)V

[dr]
ij

∣∣x[dr]i] = φ
[dr,dh]
i,k,u (Ω(p)) γ

[dr]
u,i,j(Ω

(p)).

The above expressions will help us to calculate the conditional expectation of the

log-likelihood function in (5.18) given the observed data as follows

Q(Ω,Ω(p)) = Q1(α,Ω
(p)) +Q2(π,Ω

(p)) +Q3(ξ,Ω
(p)),

where

Q1(α,Ω
(p)) =

N∑
i=1

n∑
r=1

∑
k∈dr

n∑
h=1

∑
u∈dh

φ
[dr,dh]
i,k,u (Ω(p)) logαdr,dh

=
n∑
r=1

n∑
h=1

φ
(p)
r,h logαdr,dh ,

Q2(π,Ω
(p)) =

N∑
i=1

n∑
r=1

∑
k∈dr

n∑
h=1

∑
u∈dh

M∑
j=1

φ
[dr,dh]
i,k,u (Ω(p)) log πj

×
{
τ
[dr]
u,i,j(Ω

(p)) + β
[dr]
u,i,j(Ω

(p)) + γ
[dr]
u,i,j(Ω

(p))
}
,
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and

Q3(ξ,Ω
(p)) =

N∑
i=1

n∑
r=1

M∑
j=1

{
log fj(x[dr]i; θj)

n∑
h=1

∑
u∈dh

φ
[dr,dh]
i,·,u (Ω(p))τ

[dr]
u,i,j(Ω

(p))

+ logFj(x[dr]i; θj)
n∑
h=1

∑
u∈dh

φ
[dr,dh]
i,·,u (Ω(p))β

[dr]
u,i,j(Ω

(p))

+ log F̄j(x[dr]i; θj)
n∑
h=1

∑
u∈dh

φ
[dr,dh]
i,·,u (Ω(p))β

[dr]
u,i,j(Ω

(p))

}
.

5.3.2 M-Step

The M-step considers the maximization of the conditional log-likelihood function

Q(Ω,Ω(p)) over the parameter space Ω to obtain the updated estimates Ω(p+1) =

(Ψ(p+1),α(p+1)). The maximization of Q1(α,Ω
(p)) should be done under the con-

straint that α is a doubly stochastic matrix. In order to force the constraint, we use

the Lagrangian multipliers λ = (λ1, . . . , λn) and rewrite the expected log-likelihood

function as

Q1(α,Ω
(p);λ) =

n∑
h=1


h−1∑
h′=1

φh,h′ (Ω
(p)) logαdh,dh′ +

n∑
h′=h

φh,h′ (Ω
(p)) logαd

h
′ ,dh


+

n∑
h=1

λh


h−1∑
h′=1

αdh,dh′ +
n∑

h′=h

αd
h
′ ,dh − 1

 .

In this equation, we used the fact that αdh,dh′ = αd
h
′ ,dh . The details of the maxi-

mization algorithm are given in Arslan and Ozturk (2013).

The maximization of Q2(π,Ω
(p)) with respect to πj, j = 1, . . . ,M , does not

123



depend on the updated estimates ξ(p+1) of the parameters ξ in Ψ and it is accom-

plished by using the Lagrangian multipliers to enforce the constraint
∑M

j=1 πj = 1.

After a little algebra, the estimator is given by

π̂
(p+1)
j = c4

N∑
i=1

n∑
r=1

n∑
h=1

∑
u∈dh

φ
[dr,dh]
i,·,u (Ω(p))

{
τ
[dr]
u,i,j(Ω

(p)) + β
[dr]
u,i,j(Ω

(p)) + γ
[dr]
u,i,j(Ω

(p))
}
.

where c4 = 1
N(nm)3

. Finally, the maximization of Q3(ξ,Ω
(p)) with respect to ξ (to

obtain the updated estimate ξ(p+1)) is achieved by solving the following estimating

equation in ξ

N∑
i=1

n∑
r=1

M∑
j=1

∂
∂ξ
fj(x[dr]i; θj)

fj(x[dr]i; θj)

n∑
h=1

∑
u∈dh

φ
[dr,dh]
i,·,u (Ω(p))τ

[dr]
u,i,j(Ω

(p))

+
m∑
i=1

k∑
r=1

M∑
j=1

∂

∂ξ
Fj(x[dr]i; θj)

(
n∑
h=1

∑
u∈dh

φ
[dr,dh]
i,·,u (Ω(p))

{
β
[dr]
u,i,j(Ω

(p))

Fj(x[dr]i; θj)
−

γ
[dr]
u,i,j(Ω

(p))

F̄j(x[dr]i; θj)

})

= 0. (5.19)

In order to compute the MLE of Ω, the E- and M-steps are alternated repeatedly

until ‖Ω(p+1) −Ω(p)‖∞ becomes negligible, where || · ||∞ is the sup-norm.

5.4 Modified EM algorithm

Similarly to Subsection 2.2.3, in this section we propose a modified EM algorithm

by replacing the hazard rate function in the log-likelihood function (5.19) with its

expectation. This enables us to reduce the computational complexity of ML esti-

mation based on PROS sampling to the level of computational complexity of ML
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estimation under SRS. We also note that, this approach only affects the maximiza-

tion of the conditional log-likelihood function Q3(ξ,Ω
(p)).

Lemma 5.3. Let X[dr]i be a fully measured observation from the subset dr of the

PROS design with pdf (5.5). Suppose W
[dr]
ij and V

[dr]
ij are the j-th elements of the

latent variables W
[dr]
i and V

[dr]
i associated with X[dr]i. Then, for any function G(·)

(subject to the finiteness of the expectations) we have

(a)
n∑
r=1

∑
k∈dr

n∑
h=1

∑
u∈dh

M∑
j=1

E
(

∆
[dr,dh]
i (k, u)W

[dr]
ij G(X[dr]i)

)

= S(S − 1)
M∑
j=1

πjEΨ [G(X)Fj(X; θj)] ,

(b)
n∑
r=1

∑
k∈dr

n∑
h=1

∑
u∈dh

M∑
j=1

E
(

∆
[dr,dh]
i (k, u)V

[dr]
ij G(X[dr]i)

)

= S(S − 1)
M∑
j=1

πjEΨ

[
G(X)F̄j(X; θj)

]
,

and the expectations on the right sides are with respect to the FMM (1.1).

Proof. Despite the lack of independence between the vectors ∆
[dr,dh]
i (k, u)|x[dr]i and

W
[dr]
ij |{x[dr]i, δ

[dr,dh]
i }, using the distribution of ∆

[dr,dh]
i (k, u)|{X[dr]i = x[dr]i} and the
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total law of expectation, we have

n∑
r=1

∑
k∈dr

n∑
h=1

∑
u∈dh

M∑
j=1

E
(

∆
[dr,dh]
i (k, u)W

[dr]
ij G(X[dr]i)

)

=

n∑
r=1

∑
k∈dr

n∑
h=1

∑
u∈dh

M∑
j=1

E

(
G(X[dr]i)

(u− 1)πjFj(X[dr]i; θj)

F (X[dr]i; Ψ)

αdr,dhf
(u:S)(X[dr]i; Ψ)

f[dr](X[dr]i; Ψ)

)

=

n∑
r=1

∑
k∈dr

n∑
h=1

∑
u∈dh

M∑
j=1

∫
G(x)

(u− 1)πjFj(x; θj)

F (x; Ψ)
αdr,dhf

(u:S)(x; Ψ)dx

=

S∑
r∗=1

S∑
u∗=1

M∑
j=1

∫
G(x)

(u∗ − 1)πjFj(x; θj)

F (x; Ψ)
αr∗,u∗f (u

∗:S)(x; Ψ)dx

=

S∑
u∗=1

M∑
j=1

∫
G(x)

(u∗ − 1)πjFj(x; θj)

F (x; Ψ)
f (u

∗:S)(x; Ψ)dx

= S

M∑
j=1

πj

∫
G(x)Fj(x; θj)f(x; Ψ)

(
S∑

u∗=1

(u∗ − 1)

(
S − 1

u∗ − 1

)
[F (x; Ψ)]u

∗−2[1− F (x; Ψ)]S−u
∗

)
dx

= S(S − 1)

M∑
j=1

πjEΨ [G(X)Fj(X; θj)] ,

where the last equality holds as

S∑
u∗=1

(u∗ − 1)

(
S − 1

u∗ − 1

)
[F (x; Ψ)]u

∗−2[1− F (x; Ψ)]S−u
∗

= S − 1.

Using Lemma 5.3 and considering G1(x[dr]i) = ∂
∂ξ
Fj(x[dr]i; θj)/Fj(x[dr]i; θj), one can

easily show that

n∑
r=1

∑
k∈dr

n∑
h=1

∑
u∈dh

M∑
j=1

E
(

∆
[dr,dh]
i (k, u)W

[dr]
ij G1(X[dr]i)

)
= c5

M∑
j=1

πjEΨ

[
∂

∂ξ
Fj(X; θj)

]
,
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and similarly, considering G2(x(r)i) = ∂
∂ξ
Fj(x(r)i; θj)/F̄j(x(r)i; θj) in Lemma 5.3, we

get

n∑
r=1

∑
k∈dr

n∑
h=1

∑
u∈dh

M∑
j=1

E
(

∆
[dr,dh]
i (k, u)V

[dr]
ij G2(X[dr]i)

)
= c5

M∑
j=1

πjEΨ

[
∂

∂ξ
Fj(X; θj)

]
.

where c5 = S(S−1). Now, using (5.19) and the above equalities, we get the following

modified estimating equation to update ξ in the M-step of the EM algorithm. This

approach leads to approximate ML estimate of ξ:

N∑
i=1

n∑
r=1

M∑
j=1

∂
∂ξ
fj(x[dr]i; θj)

fj(x[dr]i; θj)

{
n∑
h=1

∑
u∈dh

φ
[dr,dh]
i,·,u (Ω(p))τ

[dr]
u,i,j(Ω

(p))

}
= 0. (5.20)

Note that (5.20) is similar to the updating equation for parameters of the component

densities under the SRS design. Therefore, the modified version of the proposed

EM algorithm for PROS design requires the same computational efforts as the EM

algorithm based on SRS to update ξ. However, in the current setup, we still take

advantage of updating the mixing proportions by using the information contained

in all the latent variables. Similar to the SRS case, one nice feature of this modified

version of the EM algorithm is that the solutions to (5.20) often exist in closed form.

5.5 Classifications of PROS samples

In this section we first consider the problem of classifying an observed PROS sample

into the components of the FMM (1.1) by inferring the component membership of

each observation. To achieve this, we use the model-based classification technique

by assigning each observation to different components according to their posterior

probabilities. Suppose i ∈ {1, . . . , N} is fixed and x[dr]i is observed. To classify x[dr]i,
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we estimate the component membership vector Z
[dr]
i by Ẑ

[dr]
i , where Ẑ

[dr]
i = (Ẑ

[dr]
ij )

and Ẑ
[dr]
ij is defined by

Ẑ
[dr]
ij =

{
1, if j = argmaxhηh(x[dr]i; Ω),
0, otherwise,

for j = 1, . . . ,M , where

ηh(x[dr]i; Ω) = P(Z
[dr]
ih = 1|x[dr]i).

Also, by using (5.13) and the definitions of z
[dr]
i and δ

[dr]
i , we have

P(Z
[dr]
i = z

[dr]
i |x[dr]i) =

∑
δ
[dr ]
i
f(x[dr]i, z

[dr]
i , δ

[dr]
i ; Ω)∑

z
[dr ]
i

∑
δ
[dr ]
i
f(x[dr]i, z

[dr]
i , δ

[dr]
i ; Ω)

=

∏M
j=1

{
πjfj(x[dr]i; θj)

}z[dr ]ij∑M
j=1 πjfj(x[dr]i; θj)

,

and so

ηh(x[dr]i; Ω) = ηh(x[dr]i; Ψ) =
πh fh(x[dr]i; θh)

f(x[dr]i; Ψ)
. (5.21)

In practice, the so-called plug-in rule ηh(x[dr]i; Ψ̂) can be used to estimate the poste-

rior probabilities ηh(x[dr]i; Ψ), where Ψ̂ denotes the PROS estimates of the unknown

parameter vector Ψ.Every observation is then assigned to the component having

the highest estimated posterior probability that the observation originates from this

component. It is interesting to note that the expression we obtained in (5.21) as

the posterior probability of component membership of each PROS observation is

equal to the commonly used expression for the SRS design. However, as we will
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see in Section 5.7, the PROS estimates of the FMM tend to provide a better fit

to the model and the mixing proportions are estimated with better precision than

their SRS counterparts. Thus we observe a better component-wise classification for

PROS samples when compared to their SRS counterparts.

One can also perform a model-based subset-wise classification of the PROS sam-

ple which helps to estimate the true subset-membership of a new observation ob-

tained through the PROS design. This could also be useful to estimate and monitor

the misplacement error probability matrix associated with the PROS design. To

this end, once Ω̂ is obtained, estimates of the posterior probabilities of the subset

misplacement error of each observed data can be formed to perform a probabilistic

subset-wise classification of the data. Under the PROS design, the subset misplace-

ment error of an observation x[dr]i, obtained from the subset dr, can be defined

based on the posterior probability that x[dr]i is judged to belong to the subset dr

when its true subset is dh using the following formula

φ[dr,dh](x[dr]i; Ω̂) =
α̂dr,dh

∑
u∈dh Bu,S−u+1(F (x[dr]i; Ψ̂))

n∑
h=1

∑
u′∈dh

α̂dr,dhBu′ ,S−u′+1(F (x[dr]i; Ψ̂))

.

Now, x[dr]i will be classified into the subset dh if

φ[dr,dh](x[dr]i; Ω̂) > φ[dr,d
h
′ ](x[dr]i; Ω̂),

for all h
′ 6= h, h

′
= 1, . . . , n.
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5.6 Simulation study

In this section, we investigate the finite sample properties of the ML estimates of the

parameters of a FMM based on PROS data. The ML estimates are computed using

the EM- and modified EM-algorithms. We generated data sets from a homoscedastic

mixture of two univariate normal distributions based on the PROS, SRS and RSS

sampling designs. The parameter of the mixture model and the number of judgment

subsets in the PROS design are selected as Ψ = (π, µ1, µ2, σ) = (0.8,−2, 1, 1) and

n = 3, respectively. Each study comprised 3000 replications with a cycle size of

N = 30. In each replication of the simulation, the initial values of Ψ = (π, µ1, µ2, σ)

in the EM-algorithm are computed following the method of Furman and Lindsay

(1994) by treating the PROS sample as a simple random sample.

We aim to assess the small sample performance of the ML estimates under

the PROS sampling design and compare it with their competitors under SRS and

RSS designs. In particular, the simulation study investigates two main features of

the estimators: robustness against possible ranking error and the efficiency of the

estimators. For robustness, we use four different misplacement error structures α1,

α2, α3 and α4. In these models α1 leads to an error-free ranking model, while α2,

α3, and α4 induce misplacement errors among judgment subsets. Defining

α1 =

 1 0 0
0 1 0
0 0 1

 , α2 =

 0.9 0.10 0
0.10 0.80 0.10

0 0.10 0.90

 ,

α3 =

 0.75 0.15 0.10
0.15 0.70 0.15
0.10 0.15 0.75

 ,α4 =

 0.5 0.35 0.15
0.35 0.3 0.35
0.15 0.35 0.50

 ,
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the misplacement error is gradually more severe. Since αi, i = 1, . . . , 4, is a dou-

bly stochastic and symmetric matrix, we only need to estimate three independent

parameters (entries). The other parameters of αi can be computed by using the

constraints,
∑n

h=1 αh′,h =
∑n

h′=1 αh′,h = 1. For the initial values of α, we use the

random ranking assumption, namely, {α(0)
i,j = 1

3
; i, j = 1, 2, 3}. The estimators are

computed based on the stopping criteria ‖Ψ̂(k+1) − Ψ̂(k)‖∞ < 10−5.

The ML estimates of the FMM based on RSS data under perfect ranking assump-

tion is developed in Chapter 2. For each one of the ranking models αi, i = 1, . . . , 4,

the ML estimates of the parameters of the model are computed for PROS and RSS

sampling designs. For the RSS design, samples are generated based on the PROS

design with m = 1 (number of units in each subset) and ranking probability models

αi so that both PROS and RSS sampling designs have the same judgment ranking

error. In all three sampling designs (PROS, RSS, SRS), the number of measured

units is matched so that a meaningful efficiency comparison can be made. The ML

estimates based on the RSS design are computed under perfect ranking by using

the estimators developed in Chapter 2.

The first part of the simulation study considers the robustness of the estimators

against imperfect ranking. Tables 5.1 and 5.2 present the amount of biases for the

parameter estimates for ranking models αi, i = 1, . . . , 4. It is clear that PROS

estimators of αi have very little bias compared with their RSS counterparts and

one may consider them as unbiased estimators of αi. Also, we observe that the

PROS estimators of the FMM parameters Ψ have the lowest bias compared with

their SRS and RSS counterparts, regardless of the quality of ranking errors. It is

interesting to note that the results under the modified EM algorithm show similar
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Table 5.1: Bias estimates of the ML estimates under complete (Comp.) and modified (Mod.)
EM-algorithm techniques with between-judgment class ranking error model αi, i = 1, 2, 3, 4, when
sample size is 30 such that N = 10, n = 3, and S = 12.

EM α Design α11 α12 α22 π µ1 µ2 σ

SRS -0.0549 -0.1204 -0.1113 -0.1071
α1 PROS -0.0143 0.0140 -0.0288 -0.0148 -0.0255 -0.0251 -0.0466

RSS -0.0615 0.0540 -0.1070 -0.0204 -0.0357 -0.0377 -0.0728
α2 PROS -0.0015 -0.0044 0.0142 -0.0161 -0.0378 -0.0036 -0.0463

Comp. RSS -0.0314 0.0151 -0.0275 -0.0255 -0.0400 0.0240 -0.0764
α3 PROS 0.0018 -0.0045 0.0140 -0.0166 -0.0340 0.0174 -0.0312

RSS -0.0332 0.0393 -0.0538 -0.0220 -0.0611 -0.0274 -0.0693
α4 PROS 0.0010 -0.0022 0.0085 -0.0199 -0.0395 0.0303 -0.0431

RSS 0.0243 -0.0326 0.0488 -0.0311 -0.0882 0.0335 -0.0698
α1 PROS -0.0171 0.0169 -0.0330 -0.0190 -0.0416 0.0117 -0.0482

RSS -0.0634 0.0554 -0.1160 -0.0289 -0.0661 -0.0121 -0.0689
α2 PROS -0.0019 -0.0050 0.0154 -0.0179 -0.0374 0.0110 -0.0579

Mod. RSS -0.0400 0.0238 -0.0425 -0.0262 -0.0773 -0.0220 -0.0754
α3 PROS -0.0011 0.0046 -0.0183 -0.0326 -0.0248 -0.0714 -0.0398

RSS -0.0224 0.0265 -0.0414 -0.0297 -0.0679 -0.0237 -0.0701
α4 PROS 0.0047 -0.0071 0.0117 -0.0246 -0.0535 -0.1617 -0.0492

RSS 0.0129 -0.0332 0.0480 -0.0394 -0.0789 -0.0465 -0.0750

behaviour, which is promising especially for practical purposes.

Table 5.2: Bias estimates of the ML estimates under complete (Comp.) and modified (Mod.)
EM-algorithm techniques with between-judgment class ranking error model αi, i = 1, 2, 3, 4, when
sample size is 30 such that N = 10, n = 3, and S = 18.

EM α Design α11 α12 α22 π µ1 µ2 σ

SRS -0.0549 -0.1204 -0.1113 -0.1071
α1 PROS -0.0090 0.0090 -0.0179 -0.0113 -0.0219 0.0219 -0.0337

RSS -0.0605 0.0532 -0.1044 -0.0257 -0.0520 -0.0406 -0.0692
α2 PROS 0.0014 -0.0073 0.0168 -0.0143 -0.0338 0.0305 -0.0541

Comp. RSS -0.0283 0.0110 -0.0232 -0.0263 -0.0428 -0.0250 -0.0727
α3 PROS 0.0032 -0.0022 0.0135 -0.0205 -0.0484 0.0091 -0.0480

RSS -0.0213 0.0237 -0.0389 -0.0290 -0.0693 0.0135 -0.0706
α4 PROS 0.0075 -0.0021 0.0047 -0.0269 -0.0411 0.0150 -0.0558

RSS 0.0218 -0.0302 0.0635 -0.0303 -0.0686 -0.0206 -0.0814
α1 PROS -0.0125 0.0125 -0.0244 -0.0215 -0.0483 -0.0132 -0.0472

RSS -0.0645 0.0575 -0.1170 -0.0205 -0.0629 0.0281 -0.0623
α2 PROS -0.0011 -0.0043 0.0112 -0.0258 -0.0367 -0.0406 -0.0508

Mod. RSS -0.0396 0.0247 -0.0335 -0.0244 -0.0524 0.0327 -0.0780
α3 PROS -0.0053 0.0094 -0.0073 -0.0361 -0.0303 -0.0851 -0.0262

RSS -0.0240 0.0267 -0.0485 -0.0307 -0.0549 -0.0322 -0.0735
α4 PROS 0.0007 -0.0031 0.0054 -0.0702 -0.0231 -0.2559 -0.0168

RSS 0.0202 -0.0314 0.0668 -0.0377 -0.0657 -0.0411 -0.0713

The second part of the simulation study considers the relative efficiencies of
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Table 5.3: MSEs of PROS and RSS estimators for between-judgment class ranking error model
αi, i = 2, 3, 4, when same size is 30 such that N = 10, n = 3, and S ∈ {12, 18}.

S = 12 S = 18
EM α Design α11 α12 α22 α11 α12 α22

α2 PROS 0.0089 0.0089 0.0176 0.0076 0.0076 0.0157
RSS 0.0240 0.0228 0.0488 0.0234 0.0218 0.0477

Comp. α3 PROS 0.0156 0.0136 0.0284 0.0147 0.0121 0.0251
RSS 0.0387 0.0374 0.0768 0.0380 0.0361 0.0767

α4 PROS 0.0215 0.0192 0.0393 0.0192 0.0166 0.0318
RSS 0.0431 0.0436 0.0948 0.0442 0.0434 0.0959

α2 PROS 0.0090 0.0091 0.0184 0.0086 0.0085 0.0165
RSS 0.0269 0.0251 0.0520 0.0256 0.0243 0.0501

Mod. α3 PROS 0.0169 0.0136 0.0290 0.0145 0.0119 0.0239
RSS 0.0394 0.0353 0.0807 0.0386 0.0368 0.0801

α4 PROS 0.0252 0.0212 0.0377 0.0211 0.0170 0.0318
RSS 0.0433 0.0423 0.0890 0.0432 0.0441 0.0859

the PROS sample estimators with respect to RSS and SRS estimators. Relative

efficiencies are given in terms of the ratio of mean square errors of the estimators

based on RSS, SRS and PROS sampling designs as

RE1 =
MSE(RSS)

MSE(PROS)
and RE2 =

MSE(SRS)

MSE(PROS)
.

The values of RE1 and RE2 greater then one indicate that the PROS sample esti-

mators have higher efficiency than their competitor estimators based on RSS and

SRS designs. These relative efficiencies are given in Table 5.4. We observe that the

PROS estimators of the αis and the FMM parameters Ψ are significantly better

than their SRS and RSS counterparts, regardless of the quality of ranking errors.

The efficiency of PROS estimators is increased with the set size S. Also, results

under the modified EM algorithm show similar behaviour, which is very important

from the computational cost perspective.
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Table 5.4: REs of PROS estimators with respect to RSS and SRS estimator for between-judgment
class ranking error model αi, i = 1, 2, 3, 4, when same size is 30 such that N = 10, n = 3, and
S ∈ {12, 18}.

S = 12 S = 18
EM α RE π µ1 µ2 σ π µ1 µ2 σ

α1 RE1 1.4081 1.7439 1.3527 1.2700 2.0129 2.3710 1.2618 1.3723
RE2 2.7894 2.9834 1.7912 1.9892 3.2669 3.5963 1.4324 2.3886

α2 RE1 1.4014 1.5492 1.6203 1.2840 1.4144 1.2910 1.1445 1.2447
Comp. RE2 2.5806 2.8769 1.9890 1.9800 2.5893 2.7652 1.7126 2.0365

α3 RE1 1.4776 1.5843 1.7131 1.2665 1.4404 1.5050 1.4255 1.3199
RE2 2.5433 2.8185 1.1307 1.9481 2.4740 2.8612 1.5921 1.9051

α4 RE1 1.5387 1.8249 1.4806 1.3433 1.0700 1.5838 1.4469 1.2167
RE2 2.3743 2.4780 1.0839 1.8424 1.8875 1.9660 1.0892 1.8055

α1 RE1 1.6518 1.3953 1.3487 1.2491 1.9302 1.9012 1.2646 1.3388
RE2 2.5581 2.4729 1.6801 1.7701 3.1324 3.4532 1.6440 2.1511

α2 RE1 1.3183 1.4449 1.4498 1.1365 1.3893 1.3179 1.1288 1.2318
Mod. RE2 2.3436 2.7380 1.8935 1.7525 2.4236 2.6897 1.9505 1.7445

α3 RE1 1.3944 1.4111 1.6176 1.1845 1.4540 1.5203 1.5516 1.2262
RE2 2.4141 2.6083 1.6633 1.4266 2.3146 2.1266 1.2486 1.5064

α4 RE1 1.2641 1.7560 1.6420 1.1103 1.2007 1.8976 1.7582 1.2415
RE2 2.0461 2.2601 1.0577 1.8156 1.6762 1.9619 1.0927 1.7476

5.7 Application

Spot (Leiostomus xanthurus) is an important fish species in the Chesapeake Bay

area. They usually appear in all areas of the Chesapeake Bay in the late spring

and will remain until fall when water temperature starts to go down. Spots are

a substantial food source for other fish species including striped bass, bluefish,

weakfish, shark and flounder, as well as many bird species. As one of the most

frequently caught species, they are important for both commercial and recreational

fisheries in the area. The commercial catch of Spot has averaged 8.2 million lbs per

year since 1950. Recreational catches throughout the region averaged 3.9 million lbs

per year since 1981. Because of an increase in commercial and recreational fishing

pressure, the Chesapeake Bay Program (CBP) adopted a fishery management plan

for Spot in 1991. The goal of the plan is to protect the Spot as a resource in the

Chesapeake Bay, its tributaries, and coastal waters, while providing the greatest
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long term ecological, economic, and social benefits from their usage over time. In

spite of these efforts, there continues to be a downward trend in the number of

Spots in the Chesapeake Bay. Recent research suggests that chemical pollution

may have a serious impact on maturation of Spot adults, which may account for the

continued decline in population, see Rickabaugh and Capossela (2011). Analyzing

the age structure of the population of Spots (and any other species under threat)

is vital and provides an understanding of multiple effects on the species population

dynamics. Age data are especially important when managing fish species, like Spot,

which migrate in and out of Chesapeake Bay waters and that are targeted by both

recreational and commercial fishermen.

In this section, we consider the age (from otoliths) and length of 403 Virginia-

Chesapeake Bay Spot as our population. The data set is available online in R under

the FSAdata package (Ogle, 2013) and it is extracted from Table 1 in Chapter 8

of the Virginia Marine Resources Commissions’s Final Report on fish aging, 2002

(see, http://ww2.odu.edu/sci/cqfe/). The maximum life span of a Spot is about

five years, although Spots over three years of age are uncommon. Spot mature

between ages one and two and have lengths of seven to eight inches. We are es-

pecially interested in two classes of Spot. Age zero and one year old, which are

sexually immature and usually smaller, and two years and older fish, which are

sexually mature and usually longer. Analyzing these two groups is critical. As is

often the case in exploited species, the larger size class are harvested first, which

clearly influences the abundance of reproductively active individuals and therefore

would have serious consequences for the population size of subsequent generations.

Conversely, the presence of young Spot is important because it indicates Spots are
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Table 5.5: Summary statistics for Spot classes.

Spot Class Group Size Min Q1 Median Q3 Max µ σ
0 and 1 year 273 6.3 8.2 8.9 9.7 12 9.01 1.15

2 years and older 130 8.5 11.1 11.6 12.5 13.9 11.7 1.11

naturally reproducing and if removal of this size class can be postponed for one to

two years the population productivity may increase greatly. Table 5.5 provides the

summary statistics for these two classes for the underlying population.

Figures 5.1 and 5.2 indicate that a two-component mixture model appears to

be appropriate for the length measurement of Spots in this data set since both

components are reasonably close to a normal distribution. We then treat these

403 fish as a population and perform a simulation study with 3000 repetitions

by generating PROS, SRS and RSS samples to illustrate the use of our proposed

estimators. We generated PROS samples with set size S = 12, subset size n = 3,

cycle size N = 5 and design

D = {d1, d2, d3} = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}.}

Since Spots are ranked according to their length, there is no misplacement error in

PROS and RSS sample. But we still estimated the misplacement probabilities αh,h′

in PROS data to illustrate the use of the estimators. The misplacement probabilities

are not estimated in RSS data. The PROS data is constructed by selecting a set of

12 Spots out of 403 for each fully measured observation X(dr)i, r = 1, 2, 3 and i =

1, . . . , 5. These 12 Spots are ranked from smallest to largest and divided into three

subsets d1, d2 and d3. One of the fish from subset dr in set i is selected at random

for full measurement to create a balanced PROS sample. We also constructed a
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Figure 5.1: The length distribution of Spots in a population of size 403 as a mixture of two
components. Solid, dashed and dotted lines are for the mixture, zero and one group and two years
and older group densities, respectively.

ranked set sample from the same population. The ranked set sample is constructed

in the same way as in the PROS design, but with parameters N = 5, S = 3 and

D = {d1, d2, d3} = {{1}, {2}, {3}}.

Table 5.6 presents the bias and efficiency of the estimates of the two-component

mixture model parameters based on PROS and RSS samples. The column labeled

precision provides the percentage of correct classification of Spots into one of the

components of the mixture model based on the posterior probabilities developed in

Section 5.5.
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Figure 5.2: The length frequency distributions of Spots of (a) age zero and one and (b) two
years and older. The total population size is 403.

Table 5.6: Biases and REs of estimators based on PROS and RSS designs with respect to SRS
estimators for Ψ = (π, µ1, µ2, σ) when N = 5, n = 3, and S = 12. The last column shows the
classification precision associated with each design.

EM-Tech. Design π µ1 µ2 σ Precision
SRS Bias -0.0751 -0.2566 -0.0577 -0.2164 83.49%

PROS
Bias -0.0572 -0.2006 -0.0897 -0.1514

94.38%RE 2.4444 2.3546 2.2693 1.8366
Complete

RSS
Bias -0.0614 -0.2164 -0.0611 -0.1744

91.57%RE 1.6046 1.6688 1.6991 1.4925

PROS
Bias -0.0572 -0.2046 -0.0593 -0.1570

93.46%RE 2.3162 2.2725 2.1875 1.7415
Modified

RSS
Bias -0.0544 -0.2131 -0.0234 -0.1701

90.58%RE 1.5175 1.5281 1.5921 1.4622
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Chapter 6

Summary and Future Work

In this thesis, we developed statistical inference for finite mixture models (FMMs)

using rank-based sampling designs. The work is aimed at getting more insight into

finite mixture modelling using rank-based sampling techniques by developing new,

more suitable and efficient statistical methods. Due to advances in computational

techniques, FMMs provide flexible and convenient statistical tools in the data anal-

ysis and play important roles in not only mainstream statistical analysis (e.g., mod-

elling unknown distributional shapes, analyzing data with group-structures), but

also in various scientific disciplines such as quantitative genetics, medical studies,

engineering and so on. Ranked set sampling (RSS) is a powerful and cost-effective

sampling design which is used to obtain more representative samples from the un-

derlying population when the exact measurement of the variable of interest is costly

or difficult to obtain, but a small number of sampling units can be ranked via auxil-

iary variables or judgment ranking, without actual measurement and at little cost.

There are many situations where it is even difficult to rank all of the sampling units

in a set with high confidence. Forcing rankers to declare unique ranks (as in RSS)
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can lead to substantial ranking error and, consequently, to poor statistical inference.

The partially rank-ordered set (PROS) sampling design, a generalization of RSS,

aiming to reduce ranking errors as well as the burden of ranking was studied. In

standard methods of inference for FMMs, samples are typically drawn from the pop-

ulation using simple random sampling (SRS). It is important to develop statistical

inference for FMMs using non-standard sampling designs used often in practice. To

this end, we use rank-based sampling designs to take samples from population whose

distribution can be represented by a FMM to tackle the existing problems and also

to draw better inference about the underlying population. In fishery studies, for

example, interest lies in estimating (or predicting) the population age structure or

describing the length distribution of an age class of fish, especially in the case of

short-lived species. These kinds of studies are usually time consuming and costly.

Rank-based sampling designs are more suitable and efficient sampling designs for

these situations. To reduce the cost, the length of the fish caught, which can be

modelled a FMM, can be measured in the field. The age of a retained subsample

can later be determined by more time consuming methods in the lab. This example

can be treated as a problem of inference based on rank-based samples from FMMs.

In Chapter 2, we studied the analysis of FMMs based on different variations

of RSS designs under perfect ranking assumption. RSS from an FMM results in

two different approaches including prospective RSS, called M1-RSS, and separate

RSS, called M2-RSS. The M1-RSS samples are obtained from the whole FMM

so that, within each set, individuals from different components could possibly be

involved in the ranking process. Under the M2-RSS design, it is assumed that RSS

is performed within each component of the FMM separately and individuals in each
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set are obtained from one and only one component of the model. Proposing new

EM-algorithm for each RSS approach, we studied the estimation and classification

problems of the FMM under RSS designs. The developed methods are valid under

balanced RSS designs. We conjecture that using a suitable unbalanced RSS can lead

to better estimation of the parameters of the FMM over the balanced RSS. To this

end, we considered the problem of estimating the mixing proportion of a mixture

of two normal densities studied in Section 2.4.1 using unbalanced RSS samples

consisting of (1) only minimums, (2) only maximums, and (3) both minimums

and maximums. The results for a small simulation study are presented in Table

6.1. The performance of these unbalanced RSS designs compared with their SRS

counterparts are calculated using the ratio of the MSEs of the maximum likelihood

(ML) estimators of π based on unbalanced RSS and SRS samples of size 120. We

also investigated the relative efficiency as a function of the set size n ∈ {2, 3, 4, 5}.

A comparison of the results in Table 6.1 with Tables 2.3 and 2.4 shows that the

performance of the proposed unbalanced RSS design could be better than that of the

balanced RSS. In this example, selecting only maximums seems to be better than

using an unbalanced RSS consisting of only minimums, or even both minimums and

maximums. Note that when d = µ2 − µ1 is large, the SRS design performs better

than an unbalanced M1-RSS consisting of only minimums. This simulation study

shows that finding an optimal unbalanced RSS design for making inference about

FMMs requires more investigation. A comprehensive study in this area is essential

to study the statistical inference about the unknown parameters of FMMs based on

unbalanced RSS as well as the effect of imperfect ranking.

In Chapter 3, we considered three different RSS data structures corresponding
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Table 6.1: The REs of the ML estimates of π using unbalanced M1-RSS and M2-RSS samples
consisting of the minimums, the maximums and both minimums and maximums for model (2.45)
when π = 0.8, µ1 = −1, µ2 = µ1 + d and σ = 1.

d design RSS n = 2 n = 3 n = 4 n = 5

Min M1 0.980 1.079 1.219 1.282
M2 1.250 1.704 1.704 1.704

1 Max M1 1.562 2.027 2.586 2.830
M2 1.162 1.339 1.648 1.829

Both M1 1.327 1.851 1.578 1.764
M2 1.200 1.648 1.875 1.898

Min M1 0.666 0.615 0.524 0.500
M2 1.032 1.333 1.230 1.142

3 Max M1 1.777 1.777 2.666 4.000
M2 1.032 1.066 1.333 1.103

Both M1 1.142 1.523 1.882 2.461
M2 1.142 1.103 1.454 1.230

to different RSS approaches from FMMs under both perfect and imperfect ranking.

These data structures include two complete M1-RSS, M2-RSS data (as explored

in Chapter 2) as well as an incomplete M0-RSS data containing only the observed

values of the underlying FMM. Deriving Fisher information (FI) matrices under

these data structures, we showed that the FI contained in each variation of the

RSS data is larger than the FI contained in their SRS counterparts. The missing

information principle was also utilized as a useful tool to quantify how much infor-

mation one may lose through using these data structures for statistical inference.

We here derived the FI of Type-M0 and Type-M2 imperfect RSS data about the

parameters of FMMs and compared them with their counterparts under SRS. Due

to the complexity of the imperfect M1-RSS design, the problem of deriving the FI

matrix based on imperfect Type-M1 RSS data has not considered and will require

further investigation in the future. In addition, missing information principle under

the imperfect ranking assumption (similar to Section 3.3) would be of interest.

We focused on the information content and uncertainty associated with PROS
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samples for a general class of distributions in Chapter 4. We compared the FI

content of PROS samples with the FI content of SRS and RSS data of the same

size under both perfect and imperfect sub-setting. We showed that PROS sampling

designs generally result in more informative observations from the underlying pop-

ulation than SRS and RSS. Some examples were presented to show the amount of

extra information provided by the PROS sampling design. We then studied other

information and uncertainty measures such as Shannon entropy, Rényi entropy and

the Kulback-Leibler (KL) distance. Similar results were obtained an assumption

of perfect sub-setting. It would naturally be of interest to extend these results to

imperfect sub-setting situations. The results of Chapter 4 suggest that one might be

able to obtain more powerful tests for hypothesis testing or model selection problems

based on PROS data. For example, it seems promising to develop goodness-of-fit

tests based on a PROS sampling design and KL distance. We believe that further

investigation of the PROS sampling design using the missing information criterion

as in Chapter 3 is of interest and appealing as well.

In Chapter 5, we examined the problem of ML estimation of the parameters of

FMMs based on PROS samples. We explored the use of the PROS sampling design

for FMMs and a model was used to incorporate the subset misplacement error asso-

ciated with the sampling into the estimation process. A suitable EM-algorithm was

developed to obtain the ML estimates of the parameters. One major challenge to

ML estimation based on PROS data from FMMs is its computational intractability.

To overcome this difficulty, we presented a modified version of the commonly used

EM-algorithm which reduces the computational complexity to the level of the usual

EM-algorithm based on SRS data. Our numerical studies showed that the modified
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EM-algorithm performs very well in estimating the parameters. We further studied

the problem of classification of a PROS sample into the components of the underly-

ing FMM. Simulation studies indicated a very good performance of the PROS data

for estimating the parameters of the FMM in terms of bias and precision of the

estimates. The success rate of classification under the PROS sampling design was

substantially better than those of SRS and RSS designs. The proposed methods

were applied to estimate the age group of fish in the Chesapeake Bay area using

length-frequency data which can be considered as a mixture of two normal densi-

ties. The developed methodologies are valid under balanced PROS sampling (i.e.,

pre-specified number of subsets of the same size); however, future investigation for

the analysis of FMMs under unbalanced PROS protocols is required.

In many settings, in order to reduce the impact of ranking errors and deficiencies

of ranking operators, one can use rank-based sampling designs based on multi-

observers. This not only overcomes the problems associated with the ranking error

involved in the data, but also implies significant improvements in the inference on

the underlying population. We would like to investigate the effect of using multi-

observer approach on methodologies developed for the analysis of FMM under rank-

based sampling designs.

As a long-term research project, we shall study the number of components in-

volved in (or the order of) the mixture model. Testing for the order of a mixture

model is one of the most important problems in mixture modelling and related fields

(e.g., classification and clustering analysis) which has not been completely resolved.

Many methods have been proposed to tackle the problem based on non-parametric

and parametric approaches including penalized likelihood functions, likelihood ratio
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testing (LRT), bootstrapping LRTs and EM-algorithm tests; however there are still

many drawbacks associated with the proposed methods. For instance, the compo-

nents have to be well-separated in order to be detected, finding the distribution of

test statistics is difficult, etc. As rank-based sampling designs provide extra infor-

mation about different aspects of the population and lead to better estimation of

the parameters of the model, it is expected that this extra information can be used

to obtain better results in assessing the number of components of FMMs.
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