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Abstract

With improvements in computational power, more and more mechanistic models are

being formulated to explain physical and biological phenomena. In this thesis, we

assess the strengths and weaknesses of different well-known models of pre-vaccine

era measles dynamics. We investigate the assumptions inherent in each model, how

well they fit to pre-vaccine era data and how well simple extensions of them perform

when extended to modeling vaccine era dynamics. The four focus models we studied

were (1) the standard deterministic SEIR models with school-term forcing, (2) the

stochastic SEIR model with school-term forcing, (3) the Bjornstad et al. [2002] time

series SIR model with a general time-varying transmission rate and (4) the He et al.

[2010] model which incorporates school-term forcing, cohort effect and infection from

outside the population into the model. We found that the He et al. [2010] model,

fitted using maximum likelihood estimation, is the best model in terms of likelihood

and the Akaike information criterion. However this model was also the lowest ranked

among all four models when comparing fit using residuals, leading to some open

questions on possible trade offs between noise and likelihood.
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1

EPIDEMIOLOGICAL

BACKGROUND

1.1 Introduction

Infectious diseases of humans have been well-documented in literature and historical

records due to their sometimes calamitous effects on civilizations. Ancient Hindu

texts mention the disease of leprosy as early as 2000 BCE. The effect of infectious

diseases in shaping the evolution of human society cannot be overstated. Diseases

have had repercussions on communities similar to that of warfare and natural disas-

ters. During the 1700s conquest of the Americas, Europeans introduced infections

like smallpox that may have devastated the populations of the natives who were

ill-equipped to handle such conditions. It is not only humans that have been af-

fected by the courses of epidemics, many other species on earth have been touched

and scarred by infectious diseases (Anderson and May [1991], Grenfell and Dobson

[1995]). These days we often hear about the Tasmanian devil (Sarcophilus harrisii)

population becoming endangered in part due to a transmissible facial tumour disease

threatening the wild population since the 1990s (Miller et al. [2011]).
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The effect of a disease on a population varies, depending on the structure of the

population (rural or urban, aging or young, easy or difficult access to health care),

and the history that the community has had with the specific disease. In many

cases, an individual can develop protection from reinfection after recovery from an

infectious disease. This protection may be temporal or permanent. Additionally,

immunity may sometimes be induced in an individual by infection with a weaker

strain of the infection-causing agent (a virus or bacterium), or by other biological

preparations designed to elicit a similar immune response. Mathematical epidemi-

ology is the study of how these individual-level effects translate to ramifications at

the population-level, and how public health interventions such as vaccination can

change the progression of a disease through a population.

Mathematical and statistical tools have been used to describe the dynamics of

infectious diseases since Daniel Bernoulli’s smallpox model in 1766. Models are often

classified into one of two main categories: (1) empirical models and (2) mechanistic

models. Empirical models are based on empirical observations, focusing on col-

lecting data and making predictions from observed data. Though empirical model

predictions in the short term can often be accurate, it does not provide additional

understanding of the underlying processes involved in a disease process. Mechanistic

models, on the other hand, attempt to directly explain the underlying processes in-

volved in a process. These models may not be as good in forecasting since this is not

the purpose of such models. To illustrate the difference between empirical and mech-

anistic models, let us consider a disease that tends to have annual peaks in incidence

at a specific time of year. An empirical model can reproduce these dynamics by

adopting a form that allows for such peaks, such as a seasonal auto-regressive mov-

ing average (SARMA) model. A mechanistic model may include a forcing function

that reflects actual seasonally changing circumstances, such as changing transmis-

sion rates due to school-term schedules, or annual temperature variation, or the

2



Figure 1.1: Distribution of the number of reported measles cases in the world from
April 2015 to Septembers 2015. Image source: WHO 2015.

alternation of wet and dry weather periods.

In this thesis we present a study of different mechanistic models of measles trans-

mission in which assumptions are made about the nature of the underlying disease

dynamics based on epidemiological research and medical observations. These models

are ranked based on how they perform when their simulations are compared to data.

We begin with a short introduction of the disease in section 1.2. In section 1.3 we

present some epidemiological terminology that is used in this thesis. In section 1.4

we state the goals of this thesis and in section 1.5 we present an outline of what will

be covered in each of the succeeding chapters.
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Figure 1.2: A child inflicted by measles displaying measles rashes. Image source:
Centers for Disease Control and Prevention (CDC). Photo Credit: Jim Goodson.

1.2 Measles

Measles is an infectious childhood disease caused by the single-stranded RNA virus

Measles morbillivirus (Barrett [1987]). The mode of transmission can be airborne

(via coughs and sneezes from an afflicted person) or via direct contact with tainted

surfaces. A person may be infected if the virus comes into contact with the nose,

mouth, eyes and skin. There is no vertical transmission which means that newborns

may not get the infection from their mothers. However a mother that has had the

disease in the past passes temporary immunity to her offspring. This immunity

wanes and lasts for approximately four months (Black [1984]).

Measles is now vaccine preventable, however in the pre-vaccine era, most people

got infected by age 20 (Anderson and May [1978]), and the mean age of infection was

much younger, approximately 4–5 years. After infection, there is a latent stage of
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the disease which lasts for approximately 10–12 days (Sume et al. [2012]). After, this

stage individuals are usually infectious for approximately 8 days (Centers for Disease

Control and Prevention [2015]). According to the Centers for Disease Control [2017],

the symptoms of measles include:

• Fever

• Cough

• Runny nose

• Conjunctivities (watery and red eyes)

• Rashes (flat red spots on the skin) appear a few days after the other symptoms

People often recover fully from measles within two weeks, although the disease

may last for three weeks. Measles on its own does not usually have disease-related

fatalities, however, it can be fatal to infants, people with weakened immune system

and malnourished persons (Anderson and May [1991]). There are 134,200 people

recorded to have died from measles in 2015 (WHO 2017), which means that the

disease is still a leading cause of death in the world, especially for children.

There is no cure for measles, most people recover naturally from it. However,

there is a very effective measles vaccine with an efficacy estimated to be between 95%

to 98%. This is administered to children at six months or older since maternal im-

munity transferred to babies can interfere with vaccine efficacy (de Quadros [2004]).

However, not everyone can be vaccinated. Exceptions include people who have vac-

cine allergies, infants too young to be vaccinated, people with HIV and other diseases

that weaken the immune system making vaccination life-threatening. These people

are susceptible to measles infection and cases of measles sometimes flare up even in

developed countries due to recent campaigns by “anti-vaxxers” against vaccination

based on the discredited theory that this can cause autism (Hotez [2016]).

5
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In regions where measles vaccine coverage has been high for many years (such as

the United States, United Kingdom and Canada), the dynamics of measles can be

be roughly split into three different time frames: the pre-vaccine era, the transition

era right after the start of mass vaccination, and the vaccine era wherein the disease

has settled into stationary dynamics. The dynamics of the disease during the pre-

vaccine era is well-studied and many models can adequately reproduce the dynamics

of pre-vaccine era measles time series data. However, the same cannot be said about

the transient and vaccine eras (Barrett [1987], Grenfell et al. [2014]). In this thesis

we reviewed and compared existing measles models for the pre-vaccine era. We

performed a preliminary comparison of how these models perform when extended

into the vaccine era. Lastly, we also presented suggestions to improve the fit to the

transient and vaccine eras.

1.3 Terminology

We begin by introducing some of the standard terminology used in the mathematical

modeling of disease transmission. The main references for this section are Milwid

et al. [2016] and Mishra et al. [2010].

• Host: This is the living entity of interest that can be infected by a pathogen

(Mishra et al. [2010]). In this thesis, we focus on humans as the hosts for

measles.

• Pathogen: This is the organism that infects the host (Mishra et al. [2010]).

In this thesis the pathogen we consider is the measles virus.

• Endemic: This refers to the state of constant presence and/or usual prevalence

of a disease or infectious agent in a population within a geographic area (Dicker

[2006]).
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• Epidemic: There is said to an epidemic of a disease if there is a substantial

increase in incidence of the disease to a peak (the epidemic peak), then a

substantial decrease to pre-epidemic levels.

• Compartmental models: These are systems of equations describing flows

of material between units called compartments (Jacquez and Simon [1993]).

These compartments partition the population under study at any given time.

For each compartment, its elements are time-homogeneous (local homogene-

ity). In the epidemiological setting, these are models that group hosts, based

on their states at infection (Mishra et al. [2010]).

• SEIR model framework: This is a standard compartmental model frame-

work used in epidemiology in which the hosts have the following compartments

available: susceptible, exposed/latent, infectious/infected, recovered/removed.

These terms are described below and further details are provided in Chapter

2. An SIR model framework is like the SEIR model framework but without

the exposed/latent stage.

• Susceptible: This is the compartment of individuals who can be infected by

the pathogen.

• Exposed/Latent: This is the compartment of individuals that have been

infected by the pathogen but are still in the latent stage of the disease and

are not yet able to transmit the disease at that particular time. Additionally,

the latent period is the time in between successful infection of the host and its

disease transmission stage. In this thesis we usually refer to this compartment

as simply the exposed compartment.

• Infectious/Infected: This is the compartment of hosts that have been in-

fected by the disease and is also infectious, i.e. capable of transmitting the

7



disease to susceptible hosts. In this thesis we usually refer to this compart-

ment as simply the infectious compartment.

• Recovered/Removed: In this thesis, we consider the recovered compartment

to be the same as the removed compartment. However some other papers may

make a distinction between these compartments. The recovered compartment

is usually defined to be the compartment of individuals that have recovered

from the infection and is no longer infectious. The removed compartment is

usually defined to be the compartment of individuals that are not currently

exposed or infected, and are not susceptible to the disease. If this distinction

is made then hosts that have been vaccinated (with a perfect vaccine) are in the

removed compartment but not in the recovered compartment. In this thesis we

assume that all recoveries and vaccination lead to the recovered/removed com-

partment and simply refer to this compartment as the removed compartment.

Hosts in this compartment do not take part in the the transmission process.

• Incidence: This is the number of new cases of the disease in a span of time,

usually normalized by the size of the population (usually in units of cases per

100,000 individuals).

• Prevalence: Prevalence is the number of cases of the disease at a particular

point in time. This is equal to the size of infected classes at the certain point

in time.

• Vaccination: Vaccination is the act of inducing immunity in a host, by expos-

ing the host to a weaker strain of the pathogen or by a biological preparation

that is designed to elicit an immune response similar to that of natural infection

(Centers for Disease Control and Prevention [2015]).

• Immunity: Immunity as defined in Milwid et al. [2016], is protection against
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a disease. Individual immunity (whether temporal or permanent) can be ac-

quired at birth from maternal antibodies, recovery from a disease, or vaccina-

tion. Herd immunity is a population-level protection, obtained as a result of

collective individual immunity (Milwid et al. [2016]).

• Basic reproduction number R0: This is the average number of secondary

infections from the introduction of an infected host into a completely suscep-

tible population. For deterministic models, this is the spectral radius of the

next generation matrix associated with the transmission model. The technical

definition is given in Chapter 2.

• Deterministic model: A deterministic model is a system in which no ran-

domness is involved in determining the states of the system. For example, com-

partmental models written as a set of ordinary differential equations (ODEs) or

partial differential equations (PDEs) are deterministic models. Deterministic

models are usually written as models that reflect the “average” behaviour of

the system (Mishra et al. [2010]). In this thesis what we refer to as determin-

istic models can still allow for randomness in the measurement/observations

of the states, but not in the states themselves. For example, one can define a

deterministic SEIR model defined by ODEs that yields a fixed number of states

within some time interval. However the actual observation process (reporting

of the cases to authorities to be recorded as data) may involve a reporting

probability and a binomial distribution in reports.

• Stochastic model: A stochastic model is described by processes that incor-

porate some randomness in determining the states of the system (Mishra et al.

[2010]). Each transition denotes an event that can occur to each individual

in a time interval according to a probability that is determined using rates

of transitions. A stochastic model needs to have stochastic processes deter-
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mining the states of the model, and it may also allow for stochasticity in the

measurement/observation of the states.

• Trajectory: A trajectory is a solution of a deterministic process. In this thesis

we use trajectory to mean the states of a deterministic model as a function of

time. These are fully determined for a given deterministic model with fixed

parameter values and initial conditions.

• Simulation: A simulation is a realization of a stochastic process. There can

be many different realizations of the same model. One can also present a

simulation of the stochastic observations of a deterministic process.

• Generation time: The generation time of a disease like measles is defined to

be the time interval from the start of the infectious period of a primary case

of infection to the beginning of the infectious period in a secondary case.

1.4 Goals of this project

The transmission dynamics of measles has been widely studied and there are many

models that have been developed to explain its dynamics, most of them focusing on

the pre-vaccine era. However there are still some inconsistencies in the best models

we have of measles. Some of the best models fitted to time series of measles reports

yield estimates of the infectious period of measles that is known to be different from

clinical observation. Others yield estimates of the basic reproduction number of

measles that are much higher than would be expected from serological data. In this

thesis, we reviewed and compared four well-known models of pre-vaccine era measles

transmission that are based on the standard susceptible-exposed-infected-recovered

(SEIR) model framework:

1. Deterministic SEIR model with school-term forcing

10



2. Stochastic SEIR model with school-term forcing

3. Bjornstad et al. [2002] time series SIR (TSIR) model with a general forcing

function

4. He et al. [2010] stochastic SEIR model with school-term forcing, the cohort

effect and infection from outside the population

We recreated the existing analysis, coded and refitted each model to bi-weekly

data from the pre-vaccine era in London, United Kingdom (UK). We evaluated the

performance of these models using likelihood and other model comparison criteria

such as Akaike information criterion (AIC) and residuals. Additionally, to compare

the performance of these models into the transient and vaccine eras, we compared

the simulations of these models using the pre-vaccine era estimated parameters and

data on UK national vaccine uptake coverage. At the end of this thesis we present a

discussion of the performance of each model, and a discussion of what these model

comparison criteria mean, and some suggestions on how to improve model fit in the

vaccine era.

1.5 Outline of the thesis

In Chapter 2, we present the mathematical preliminaries required for this study. We

review models such as the standard ODE form of the SEIR model (without any

forcing), the SEIR model with the addition of annual forcing functions, and the

continuous time Markov chain SEIR model. We also review the partially observed

Markov process model (POMP) which is the set up we use to make a clear distinction

between state and observation processes. We discuss how to calculate the likelihood

of a POMP model and how this can be calculated using the particle filter. Finally,

we present the Akaike information criterion (AIC) which is a criterion for model

11



comparison. In Chapter 3 we present a review of some existing measles models,

including the four measles model that we focused on in this thesis. We discuss each

focus model in detail, outlining the assumptions involved in the formulation of the

model, its strengths and weaknesses, and the difficulties in simulating and fitting the

parameters of the different models. In Chapter 4 we compare our four focus models

using standard comparison criteria, such as the AIC and residuals. We also discuss

the features apparent in simulations of the models and compare it to the data. In

Chapter 5 we present a summary of the thesis and discuss some future directions for

modeling measles past the pre-vaccine era.
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2

MATHEMATICAL

BACKGROUND

In this chapter, we present the mathematical preliminaries for this study. In sec-

tion 2.1, we present the standard ODE formulation of the susceptible-exposed-

infected-recovered (SEIR) model with demography. In section 2.1.1 we go through

basic properties and analysis of this model. In section 2.1.2, we explain why this

autonomous model is inadequate to describe the dynamics of measles. In section 2.2,

we expand upon the standard SEIR model by introducing a seasonal forcing func-

tion to allow for periodic solutions, which can look like either the annual and bi-

ennial dynamics of measles in pre-vaccine era London, UK (shown in Figure 2.1).

In section 2.3, we present the steps to derive a stochastic SEIR model from the de-

terministic models. In section 2.5 the definition of the likelihood is given and the

expressions for the likelihood for both deterministic and stochastic models are de-

rived. Maximum likelihood estimation of parameters of the model is also discussed.

In section 2.6, we present the particle filter, a Monte Carlo method for calculating

the likelihoods. In section 2.7, we discuss the Akaike Information Criterion (AIC),

a criterion for selecting the best among competing models.

13



Figure 2.1: A plot of reported measles cases, the annual birth rates and population
sizes of London from 1944 to 1965. Source of data: http://kingaa.github.io/
pomp/vignettes/twentycities.rda
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2.1 Standard SEIR model

The SEIR model is an extension of the SIR model first studied by Kermack and

McKendrick [1932, 1933]. SEIR and SIR models have now been studied extensively in

the literature (Hethcote [2000, 1976]). In this section we review the basic assumptions

and properties of the standard SEIR model.

We begin by considering a population with birth rate of µb > 0 and per capita

death rate of µ > 0. Thus the total population N(t) satisfies

N ′(t) = µb − µN(t),

which converges to its state value N0 = µb

µ
. For convenience we assume that N(0) =

N0 and this implies that N(t) = N0 for all t. We now divide the total population

into the SEIR components and assume that we always have,

S(t) + E(t) + I(t) +R(t) = N(t) = µb
µ
.

Let β > 0 denote the transmission rate of the disease through this population,

σ > 0 be the incubation rate (the rate of going from the latent to infectious stage

of the disease), and γ > 0 be the recovery rate (the rate of leaving the infectious

period). Let v ∈ [0, 1) be the vaccination coverage (which is equal to zero in the

pre-vaccine era). We assume that the disease-induced death rate is negligible in this

model so that the constant death rate µ applies to all the compartments. We also

assume that there is no vertical transmissions, i.e. unvaccinated newborns are born

directly into the susceptible class. Under the assumption of homogeneous populations

mass action, there are βSI/N0 infections per unit time, going from the susceptible

compartment to the exposed compartment. Individuals in the exposed compartment

move on to the infected compartment with rate σ, then eventually into the recovered
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class with rate γ. We assume that both vaccinated and recovered individuals have

permanent immunity and thus the fraction v of newborns that have been vaccinated

directly goes into the recovered class. The system of equations in (2.1)–(2.4) and a

schematic of this model is presented in Figure 2.2.

S ′ = µb(1− v)− βIS/N − µS (2.1)

E ′ = βSI/N − (σ + µ)E (2.2)

I ′ = σE − (γ + µ)I (2.3)

R′ = γI − µR + µbv (2.4)

S E I R

B

µb(1− v)
µbv

βSI/N σE γI

µdS µdE µdI µdR

Figure 2.2: Diagram of the SEIR model

We require the following assumptions on the initial conditions of the system,

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0 (2.5)

and

S(0) + E(0) + I(0) +R(0) = µb
µ
. (2.6)

Before we evaluate how suitable this model is for modeling measles dynamics, we

first ensure that the model is well-posed and it at least has a solution.
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2.1.1 Properties

Invariance

To ensure that the model is well-posed, we have to verify that the states, which

represent populations, cannot be negative given non-negative initial conditions. Thus

we expect that solutions of the equations with non-negative initial condition remain

in the following simplex:

T =
{

(S,E, I, R) | S ≥ 0, E ≥ 0, I ≥ 0, R ≥ 0, S + E + I +R = µb
µ

}
.

We have already shown that N = S + E + I + R has a steady sate at µb

µ
if the

requirements on initial conditions are satisfied. To prove that T is invariant, let us

examine the behaviour of states at the boundaries of this domain.

1. At the boundary S = 0 the equation for S ′ becomes S ′ = µb(1− v) > 0. Thus

the solution cannot exit T by crossing this boundary.

2. At the boundary E = 0 the equation for E ′ becomes E ′ = βS(t)I(t)/N ≥ 0. If

E(t) = 0, S(t) > 0 and I(t) > 0 then βS(t)I(t)/N > 0 and the solution cannot

exit T by crossing the E = 0 boundary in this case. If E(t) = 0, S(t) = 0 and

I(t) > 0 we have E ′ = 0 and S ′ > 0, thus E ′′ > 0 and the solution cannot

cross the E = 0 boundary. If E(t) = 0, I(t) = 0 and S(t) ≥ 0 then the SEIR

equations become:

S ′ = µb(1− v)− µS (2.7)

E ′ = 0 (2.8)

I ′ = 0 (2.9)

R′ = −µR + µbv (2.10)
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Thus in this case the solution maintains E(s) = I(s) = 0 for all s > t

and additionally, S(s) = S(t)e−µ(s−t) + µb(1−v)
µ

((1 − e−µ(s−t)) and R(s) =

R(t)e−µ(s−t)+ µbv
µ

((1−e−µ(s−t)) which keeps the solution in T . Thus the solution

cannot exit T by crossing the boundary E = 0.

3. At the boundary I = 0 the equation for I ′ becomes I ′ = σE. If I(t) = 0

and E(t) > 0 then I ′(t) = σE(t) > 0 and thus the solution cannot exit T

through the I = 0 boundary in this case. The case I(t) = 0 and E(t) = 0 has

already been considered above. Thus the solution cannot exit T via the I = 0

boundary.

4. At the boundary R = 0 the equation for R′ becomes R′ = γI + µbv ≥ 0.

If R(t) = 0 and I(t) > 0 then R′(t) = γI(t) + µbv > 0 and the solution

cannot exit T via this boundary. In the case when R(t) = 0 and I(t) = 0,

we consider cases: First, the case when R(t) = I(t) = E(t) = 0 is included

in the discussion of the case I(t) = E(t) = 0 above and we know the the

solution cannot leave T in this case. Second, the case when R(t) = I(t) = 0

and E(t) > 0 yields R′(t) = µbv ≥ 0. If v > 0 then R′(t) > 0 and the solution

cannot exit T by crossing the R = 0 boundary. If v = 0 then R′(t) = 0 and

R′′(t) = γI ′(t) = σE(t) > 0 which also shows that the solution cannot exit T

by crossing the R = 0 boundary.

This completes the proof of the invariance of the domain T .
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Existence and uniqueness of solutions

Let the states X = (S,E, I, R) and f(X) be given by,

f(X) =



µb(1− v)− βSI/N − µS

βSI/N − (σ + µ)E

σE − (γ + µ)I

γI − µR + µbv



Since f is continuous in X and f ′(X) is continuous at all points in its domain then

f is Lipschitz. From the standard theory of ordinary differential equations, this

proves local existence and uniqueness of solutions (Miller and Michel [1982]). Since

we also have X confined to T , solutions are always bounded yielding existence and

uniqueness in its domain (i.e. the simplex T)

Disease-free equilibrium

A point X is an equilibrium point of the system if f(X) = 0. The disease-free

equilibrium X0 = (S0, E0, I0, R0) of the model is an equilibrium with I0 = 0. Thus

the disease-free equilibrium of the system we have defined can be found by setting

I0 = 0 in the equation f(X0) = 0 and solving for S0, E0 and R0. Clearly this

equilibrium also requires E0 = 0 and we can solve for the remaining terms easily.

We obtain the following expression for the unique disease-free equilibrium of this

system,

X0 =
(µb(1− v)

µ
, 0, 0, µbv

µ

)
. (2.11)

Basic reproduction number

The basic reproduction number (denoted by R0) is defined to be the spectral radius

of the the next generation matrix (Diekmann et al. [2010],van den Driessche and

Watmough [2008]). To derive this we consider the states with infection, which are
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E and I.

E ′ = βSI/N − (σ + µ)E (2.12)

I ′ = σE − (γ + µ)I. (2.13)

We linearize (2.12)–(2.13) about the disease-free equilibrium and decompose the

linearized system into, E
I


′

=
(
T + Σ

) E
I

 ,
where

T =

0 β µb(1−v)
µ

0 0

 , Σ = −

σ + µ 0

−σ γ + µ

 .
Here T is the matrix that include the terms giving rise to new infections, and Σ is

the matrix taking into account the progression of the disease. The next generation

matrix is K = −TΣ−1 evaluated at the disease-free equilibrium. Thus,

K =


µb(1−v)

µ
β

γ+µ
σ

σ+µ
µb(1−v)

µ
β

γ+µ

0 0



Thus, R0 = µb(1−v)
µ

β
γ+µ

σ
σ+µ . Theory by Diekmann et al. [2010] shows that if R0 < 1,

the disease-free equilibrium is locally stable. We can break down the terms involved

in the basic reproduction number in the following manner:

R0 = µb(1− v)
µ︸ ︷︷ ︸

susceptible
population

β︸︷︷︸
transmission

rate

1
γ + µ︸ ︷︷ ︸
average

infectious
duration

σ

σ + µ︸ ︷︷ ︸
probability
progressing
from E to I

(2.14)
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Endemic equilibrium

The endemic equilibrium of the SEIR model is the unique equilibrium with postive

number of infections I > 0. We can denote this by X∗ = (S∗, E∗, I∗, R∗). We can

derive expressions for this by first finding the S∗, E∗ and R∗ components in terms of

I∗. By setting the right hand sides of (2.1), (2.2) and (2.4) equal to zero we derive,

S∗ = µb(1− v)
µ+ βI∗

N

(2.15)

E∗ = µb(1− v)
µ+ βI∗

N

βI∗

N(σ + µ) (2.16)

R∗ = γI∗ + µbv

µ
(2.17)

An expression for I∗ can be found by deriving another expression for E∗ using (2.3),

setting this equal to the E∗ value derived above and solving for I∗.

γ + µ

σ
= µb(1− v)

µ+ βI∗

N

β

N(σ + µ) (2.18)

1 = µ

µN + βI∗
µb(1− v)

µ

β

γ + µ

σ

σ + µ
(2.19)

1 = µ

µb + βI∗
R0 (2.20)

I∗ = 1
β

(µR0 − µb) (2.21)

From the results of Li and Muldowney [1995], this endemic equilibrium is globally

asymptotically stable in the simplex T when R0 > 1.

2.1.2 Shortcomings of the standard SEIR model

The fact that the endemic equilibrium X∗ is globally asymptotically stable in the

simplex T when R0 > 1 means that solutions of (2.1) must all asymptotically tend to

the endemic equilibrium point X∗. Thus the standard SEIR model we have reviewed

(with constant birth rates and transmission rates) cannot reproduce the sustained
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Figure 2.3: A sample trajectory of the proportion of prevalence (E(t)/N(t) +
I(t)/N(t)) resulting from the standard SEIR model. When R0 > 1 the model is
known to asymptotically tend to an endemic equilibrium value and its solutions
does not include sustained oscillations of epidemics.

periodic dynamics such as the annual and biennial dynamics of the disease that have

often been observed in pre-vaccine era data (e.g. pre-vaccine era data in London

shown in Figure 2.1). Even if the model is changed to include changing population

sizes and birth rates (accomplished by making µb and µ functions of time), as long

as these are not strongly periodic forcing functions, the model at best can exhibit

transient oscillations that eventually get damped. A typical trajectory of this model

is shown in Figure 2.3.

2.2 SEIR model with school-term forcing

Table 2.1: The start and end dates of each of the four school terms in the UK. This
is used in the school-term forcing function.

School Session Session Start Date Session End Date
1 7th January 10th April
2 15th April 18th July
3 9th Sept 27th Oct
4 4th Nov 31 Dec
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One obvious way to improve the standard SEIR model to enable it to exhibit

the periodic dynamics seen in the data is to incorporate a periodic forcing function

such as a time-dependent transmission rate (Earn et al. [2000a]). Such a forcing

function can be consistent with real phenomena. In this section we introduce a

forcing function that allows for variation in transmission rate based on the schedule

of school-terms. Measles is a childhood disease, and the amount of contacts between

children is expected to be significantly higher during the school term and lower during

school breaks. Thus it makes sense to incorporate this into the model. This can be

done by changing the system of differential equations from (2.1)–(2.4) into one with

a school-term forcing function:

S ′ = µb(1− v)−B(t)SI
N
− µS (2.22)

E ′ = B(t)SI
N
− (λ+ µ)E (2.23)

I ′ = λE − (γ + µ)I (2.24)

R′ = γI − µR + µbv (2.25)

The function B(t) is a piece-wise continuous function defined to be,

B(t) =


β (1 + 2(1− p)a), during term,

β (1− 2pa), during vacation,
(2.26)

where a is the amplitude parameter, and p the proportion of the school days for

which the school-term is in session. Table 2.1 shows the start and end dates of days

for which the school-term is in session in the UK and this what we use in the school-

term forcing function. All parameters above are non negative. We also require the

same assumptions on the initial conditions (2.5)–(2.6). Figure 2.4 shows a trajectory

of the SEIR model with forcing.
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Figure 2.4: A sample trajectory of the number of cases from an SEIR model with
school-term forcing. Unlike the standard SEIR model with no forcing, this model
has periodic endemic solutions.

The invariance of the simplex T can be proven in a similar manner for the SEIR

model with seasonal forcing. The disease-free equilibrium can be determined by

setting E = I = 0 and obtaining the same disease-free equilibria as in (2.11). We

also no longer have an endemic equilibrium point, but rather an endemic periodic

solution. The stability analysis of the zero solution and the endemic periodic solution

requires using the method of Floquet Multipliers (Williams and Dye [1997]) which

is beyond the scope of this thesis.

Both the standard SEIR model and the SEIR model with school-term forcing

as presented here are deterministic processes. Next we present models of epidemics

that allow for some stochasticity in the dynamics.

2.3 Stochastic SEIR model

Markov chains can be used to model epidemic dynamics. A system is said to have the

Markov property if the current state of the system only depends on of its previous

state. Mathematically this property can be stated in the following manner: Let

X(t) be a stochastic process. This is a Markov process if, given the value of X(t)

24



the value of X(t + h) for some h > 0 is independent of X(s) for all s < t. The

Markov property lets us specify a model by giving the transition probabilities on

small intervals of time. This Markov property is inherent in many models when all

relevant variables are included in the states and the SEIR models can be conveniently

remodeled as counting processes (He et al. [2010]). Following Bretó et al. [2009] and

He et al. [2010], in this section we present a derivation of a stochastic version of the

SEIR model by tracking the flow of individuals between each compartment to keep

track of the number of individuals in each compartment.

The stochastic SEIR model that we derive here is a continuous-time, discrete

state Markov process which can take on values from N4 (the set of vectors with

four components each taking on values in the set of non-negative integers). We let

the state variable be denoted by X(t) = (S(t), E(t), I(t), R(t)), and the components

represent the numbers of individuals at time t in each of the compartments S, E, I

and R. The process is defined in terms of counting processes which are non-negative,

non-decreasing, integer-valued processes. Let ZA→B(t) be the total number of indi-

viduals that have transitioned from some compartment A to another compartment

B in the time interval [0, t]. We also use the notation ZO→A(t) to represent the total

number of entry into compartment A from outside the existing population (in this

model we assume this is via birth) and ZA→O(t) to represent exit from compartment

A (in this model we assume this is via death). To define the stochastic model, we

first specify the probability of a change in ZA→B(t) after a small time interval, for

all pairs of compartments.

Let t > 0 and h > 0. We define ∆ZA→B(t, t+h) = ZA→B(t+h)−ZA→B(t) to be

the change in the ZA→B counting process over the time interval [t, t + h]. As usual
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Let N(t) = S(t) + E(t) + I(t) +R(t) and,

P (∆ZS→E(t, t+ h) = 1 | X(t)) = βS(t)I(t)
N(t) h+ o(h) (2.27)

P (∆ZE→I(t, t+ h) = 1 | X(t)) = σ E(t)h+ o(h) (2.28)

P (∆ZI→R(t, t+ h) = 1 | X(t)) = γ I(t)h+ o(h) (2.29)

where o(h) stands for the standard little o notation. We also consider the proba-

bility of births into the susceptible class denoted by P (∆ZO→S(t, t+ h) = 1 | X(t)),

probability of births into the recovered class (due to vaccination) denoted by

P (∆ZO→R(t, t+ h) = 1 | X(t)) and probability of deaths from each of the S, E, I and

R components denoted by P (∆ZS→O(t, t+ h) = 1 | X(t)), P (∆ZE→O(t, t+ h) = 1 | X(t)),

P (∆ZI→O(t, t+ h) = 1 | X(t)) and P (∆ZR→O(t, t+ h) = 1 | X(t)) respectively,

P (∆ZO→S(t, t+ h) = 1 | X(t)) = µb (1− v)h+ o(h) (2.30)

P (∆ZO→R(t, t+ h) = 1 | X(t)) = µb v h+ o(h) (2.31)

P (∆ZS→O(t, t+ h) = 1 | X(t)) = µS(t)h+ o(h) (2.32)

P (∆ZE→O(t, t+ h) = 1 | X(t)) = µE(t)h+ o(h) (2.33)

P (∆ZI→O(t, t+ h) = 1 | X(t)) = µ I(t)h+ o(h) (2.34)

P (∆ZR→O(t, t+ h) = 1 | X(t)) = µR(t)h+ o(h) (2.35)

We assume that the probability of multiple transitions occurring within the time

interval [t, t+h] are o(h). The changes in the sizes of the compartments and subcom-
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partments over the time interval [t, t+h] interval is given by the following equations.

∆S = ∆ZO→S(t, t+ h)−∆ZS→E(t, t+ h)−∆ZS→O(t, t+ h) (2.36)

∆E = ∆ZS→E(t, t+ h)−∆ZE→I(t, t+ h)−∆ZE→O(t, t+ h) (2.37)

∆I = ∆ZE→I(t, t+ h)−∆ZI→R(t, t+ h)−∆ZI→O(t, t+ h) (2.38)

∆R = ∆ZO→R(t, t+ h) + ∆ZI→R(t, t+ h)−∆ZR→O(t, t+ h) (2.39)

2.4 Partially observed Markov process model

Partially observed Markov process (POMP) models are more frequently known as

hidden Markov models or state-space models. These models consist of unobserved

states X(t) and observed states Y (t). For instance, in the disease models that we

have been considering, the S(t), E(t), I(t) and R(t) states are all unobserved states so

we can as before set X(t) = (S(t), E(t), I(t), R(t)) We can also introduce a function

C(t, t + h) based on these states which gives the number of new cases of disease

generated within a given time interval [t, t+h]. Some of these cases will be reported

and the number of reported cases would be the observed state Y (t). These reported

cases would be the state that should be compared to disease reporting data when

models are fitted.

A POMP model requires a distribution of the initial states, a process model de-

scribing the transitions of the unobserved states and an observation model describing

how observations are taken from the underlying states (King [2016b]) The process

model is assumed to satisfy the Markov property. We also assume that the obser-

vation process is defined by a distribution P(Y (t) = y|X(t) = x(t)). Thus we can

think of the data, {y∗i } as being a single realization of the {Y (t)} process.

The general form of a POMP model presented above is a stochastic model with

a stochastic process model and a stochastic measurement model. It is also possible
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to define a deterministic POMP model by choosing a deterministic process model

with a stochastic measurement model. There are also other combinations possible

(such as a stochastic process model with deterministic observation) however they are

beyond the scope of this thesis.

2.5 Likelihood

Let y∗1:n be a sequence of n observed data at discrete time points t1:n. Let θ ∈ Θ ⊂ RK

be a vector of parameter values for a given statistical model. The likelihood L(θ) as

a function of θ is defined to be,

L(θ) = P(Y (t1:n = y∗1:n|θ)), (2.40)

(Fisher [1922]). This is a measure of the plausibility that an observed data comes

from a distribution given by the set of parameters θ. For a continuous state process,

one may also consider the likelihood function by replacing the probability with the

probability density function.

For this section and the remaining sections of this chapter we use the notation

Xi = X(ti) and Yi = Y (ti). Given a deterministic POMP model, the likelihood has a

simple form because for any given parameter θ, the states Xi have only one possible

value xi(θ) for i = 1, . . . , n. Thus

L(θ) = P(Y1:n = y∗1:n; θ) (2.41)

=
n∏
i=1

P (Yi = y∗i |Xi = xi(θ)) (2.42)

It is common to consider the logarithm of the likelihood instead of the likelihood

L(θ) to convert products into sums in the likelihood expressions like the one above.
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We define the log-likelihood to be,

`(θ) = log
(
L(θ)

)
(2.43)

For the deterministic POMP model, we easily derive that,

`(θ) = log
n∏
i=1

P (Yi = y∗i |Xi = xi(θ)), (2.44)

=
n∑
i=1

logP (Yi = y∗i |Xi = xi(θ)). (2.45)

The likelihood of a stochastic POMP model is more complicated since the states

are not fixed (for a given θ there are many possible values of Xi). Thus the likelihood

needs to be summed over all possible values of the unobserved states according to

their transition probabilities,

L(θ) = P(y∗1:n|θ) =
∑
x1

∑
x2

. . .
∑
xn

n∏
i=1

P(Yi = y∗i |Xi = xi, θ)P(xi|xi−1, θ). (2.46)

The log-likelihood `(θ) of a stochastic POMP model is simply the logarithm of the

expression above.

The maximum likelihood estimate (MLE) is defined to be the value of the pa-

rameter vector θ that yields the highest value of the likelihood, or equivalently the

log-likelihood.

θMLE = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

`(θ).

This may not be unique.

2.6 Particle filter

The expression (2.46) is in general not analytically tractable. However, it can be

estimated by Monte Carlo methods. For instance, this can be estimated using the
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standard Monte Carlo method by just generating multiple simulations of the model,

finding the likelihood of the data for each simulation and averaging across all simu-

lations. Though this is known to converge to the true likelihood as the number of

simulations approach infinity, it can require an unfeasibly large amount of simula-

tions to converge (King [2016b]). Instead of using standard Monte Carlo methods

to estimate (2.46) for a stochastic POMP model, we can use the sequential Monte

Carlo method, also called the particle filter.

We present the main idea behind the calculation of the likelihood via the particle

filter below. This is based on the work of Kitagawa [1987], Doucet et al. [2001],

Arulampalam et al. [2002], King [2016b]. The first step to the calculation of the

likelihood is to factor it in the following manner:

L(θ) = P(y∗1:n|θ)

= P(Yn = y∗n|Y1:n−1 = y∗1:n−1, θ)P(Y1:n−1 = y∗1:n−1, θ)

= P(Yn = y∗n|Y1:n−1 = y∗1:n−1, θ)P(Yn−1 = y∗n−1|Y1:n−2 = y∗1:n−2, θ)P(Y1:n−2 = y∗1:n−2, θ)

Continuing on in this manner yields,

L(θ) =
n∏
i=1

P(Yi = y∗i |Y1:i−1 = y∗1:i−1, θ)

=
n∏
i=1

∑
xi

P(Yi = y∗i |Xi = xi, θ)P(Xi = xi|Y1:i−1 = y∗1:i−1, θ)

We call the distribution P(Xi = xi|Y1:i−1 = y∗1:i−1, θ) the prediction distribution

since this provides the distribution of the state Xi given y∗1:i−1, all the past data. We

also introduce the filter distribution, P(Xi = xi|Y1:i = y∗1:i, θ) which is the distribution

of the state given all the past data and the current data. The prediction distribution
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can be written in terms of the filter distribution and the process model distribution,

P(Xi = xi|y1:i−1, θ) =
∑

xi=xi−1

P(Xi = xi|Xi−1 = xi−1, θ)P(Xi−1 = xi−1|Y1:i−1 = y∗1:i−1, θ)

We can also write the filter distribution in terms of the prediction distribution,

P(Xi = xi|Y1:i = y∗1:i, θ) = P(xi|yi, y1:i−1, θ)

= P(yi|xi, θ)P(xi|y1:i−1, θ)∑
xi

P(yi|xi, θ)P(xi|y1:i−1, θ)

Thus at time ti−1, given a set of J points from the filtering distribution
{
xFi−1,j

}J
j=1

,

we can simulate from this set to the next time point ti to obtain a set of J values{
xPi,j

}J
j=1

which would come from the prediction distribution,

xPi,j ∼ P(Xi = x|Xi−1 = xFi−1,j, θ), j = 1, . . . , J.

A set of points from the filtering distribution can then be obtained by re-sampling

from
{
xPi,j

}J
j=1

with weights proportional to P(Yi = y∗i |Xi = xPi,j, θ). Thus we can

derive an estimate of the conditional likelihood at the ith time index of observation,

Li(θ) ≈
1
J

∑
j

P(Yi = y∗i |Xi = xPi,j, θ).

Sequentially solving for the conditional likelihoods in this manner until the last time

index yields an unbiased estimate of likelihood (Bretó et al. [2009], King [2016b,a]),

L(θ) =
n∏
i=1
Li(θ) ≈

n∏
i=1

[ 1
J

∑
j

P(Yi = y∗i |Xi = xPi,j, θ)
]
.

The particle filter yields stochastic estimates of the likelihood which we would

like to maximize when we fit the model to data. There are different methods to
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maximize stochastic likelihood estimates to get the MLE. In this project we used the

maximization via iterated filtering algorithm of Ionides et al. [2015, 2006], Ionides

[2011] and implemented in the R package pomp (King et al. [2017], Ionides et al.

[2016]). The mechanics of this algorithm is beyond the scope of this thesis but is

discussed in Ionides et al. [2016], King [2016b].

2.7 Akaike information criterion (AIC)

The Akaike information criterion (AIC) (Akaike [1974]) is a criterion from infor-

mation theory that facilitates the selection of a preferred model among a suite of

different models. The AIC measures the relative “goodness of fit” among the com-

peting models but also includes a penalty for overfitting. As discussed earlier, the

likelihood gives a sense of how probable it is that the data is taken from a given

model (in our case the entire POMP model including both the process and observa-

tion model) with parameter values given by the parameter vector θ. The maximized

log-likelihood is a measure of the bias in the model, but it does not take into ac-

count the variability in the model. Variability and uncertainty increases in the model

with the number of free model parameters. All things being equal, the more free

parameters a model has the more variability it will have. There is usually a trade

off between increasing the number of free parameters and variability (including er-

ror introduced by these free parameters) in a model. The AIC selects the optimum

among competing models by balancing both the bias and the variability. For the

maximum likelihood case, it is defined by the following equation,

AIC = −2(`(θ∗)) + 2K,

where `(θ∗) is the maximized log-likelihood of the model and K is the number of

free parameters used to fit the model.
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To compare models using the AIC, the same data should be used to fit the

models, since comparison cannot be made otherwise. The most preferred among the

competing models corresponds to that with the least AIC score. The value of the

AIC scores by themselves does not mean anything and this criterion should only be

used to help with ranking models (Akaike [1974, 1981]).

2.8 Summary

In this chapter, we presented the mathematical preliminaries for this study, including

the basic properties of the simple deterministic SEIR model (well-posedness, invari-

ance in the simplex, existence and stability of the disease-free equilibrium, derivation

of the basic reproduction number, existenceand stability of the endemic equilibrium).

We also presented the steps to build this model up into a stochastic SEIR model

with a school-term forcing function using counting processes. This will be the basis

of many models discussed in the next chapter.

In this chapter we also discussed the likelihood function, calculation of the like-

lihood using the particle filter, the maximum likelihood estimates of parameters of

a model and the AIC. In the next chapter we will use these concepts to fit some of

the focus measles models. Later on we will also use the AIC for model comparison.
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3

MEASLES MODELS

In this chapter, we review some of the well-known models of measles transmission

and present a detailed discussion of the four models that we focus on in this thesis:

(1) the deterministic SEIR model with school-term forcing, (2) the stochastic SEIR

model with school-term forcing, (3) the Bjornstad et al. [2002] TSIR model, and (4)

the He et al. [2010] model which includes school-term forcing, the cohort effect and

infections from outside the population.

We begin by reviewing the literature on the history of measles transmission mod-

els in section 3.1. In section 3.2, we describe the open questions that have motivated

this review of measles models, and describe the work that has been done for this

project. In section 3.3, we present a description of the London data set that we used

for comparing the different models. In sections 3.4–3.7, we discuss each of the four

focus models. For each model, we present the assumptions inherent in each model,

the method by which the model is fitted to the data, the maximum likelihood es-

timates of the model parameters, and its strengths and weaknesses. A summary of

the different properties of the four focus models is presented in Table 3.5.
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3.1 Literature review

Measles is the poster child for disease modeling. The disease is very infectious and

most people who recover from it gain lifelong immunity. Thus in the pre-vaccine era,

most adults would have already had measles and were effectively removed from the

transmission pool. Among children it is reasonable to assume homogeneous contact

rates that varies with the opening and closing of schools. The standard SEIR model

framework with the addition of school-term forcing is appropriate for modeling this.

Measles transmission dynamics typically exhibits regular periodic behaviors in

the pre-vaccine era and there is a rich collection of data on the disease. In this

study, we focus on pre-vaccine era data in London, UK where the disease exhibited

annual dynamics before 1949 which gave way to more biennial dynamics from 1949

until the start of the vaccine era in 1968. It has been shown that the simple SEIR

formulation with the appropriate seasonal forcing can capture (at least qualitatively)

these annual and biennial dynamics of measles (Earn et al. [2000a]).

Many models including a range of empirical and mechanistic models have been

formulated to explain the physical and biological aspects of measles transmission

(Schwartz [1985], Olsen and Schaffer [1990], Sugihara et al. [1990], Rand and Wilson

[1991], Kendall et al. [1994], Ellner et al. [1995, 1998], Grenfell and Harwood [1997],

Earn et al. [2000b], Mollison and Ud Din [1993], He et al. [2010], Cauchemez et al.

[2008], Grenfell et al. [2002]). Below we provide a short discussion of some of the

well-known mathematical studies of measles transmission.

Bartlett [1957] and Bartlett [1960]

In a study by Bartlett [1957] of measles in pre-vaccination era UK, it was noted that

there were two main types of dynamics that could be observed: periodic endemic dy-

namics in large populations, and episodic outbreaks in smaller communities. Bartlett

[1957] noted that the latter is due to random extinctions or “fadeouts” of the disease
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which are more likely to occur in smaller communities. He derived a threshold pop-

ulation size (also known as the critical community size) that differentiates this large

and small population dynamics, estimating that it was about 200,000–250,000. In a

later study, Bartlett [1960] estimated that this threshold is between 250,000–300,000

using data from the the United States. Existing estimates of the critical community

size for measles now range from 250,000-500,000 (Bjornstad et al. [2002],Keeling and

Grenfell [1997]).

London and Yorke [1973]

In Chapter 2, we noted that the standard deterministic SEIR model with no seasonal

forcing cannot yield the sustained periodic outbreaks of measles expected in the

pre-vaccine era. This was pointed out as a problem by London and Yorke [1973]

for modeling measles childhood diseases. The authors proposed that employing

variable contact rates could account for the observed seasonal variation in number of

cases, and that the variable contact rates could arise from the closer contacts among

children during the school terms. The authors presented an SEIR-type differential

equation model with variable monthly contact rates and delays due to the disease

incubation and infectious periods. The models were fitted to childhood disease data

in the US and their measles model was able to reproduce the biennial dynamics of

pre-vaccine measles in the New York City dataset they used (also observed in the

later part of the London dataset used in this thesis.) The contact rates calculated

for measles, chickenpox and mumps all reflected higher contact rates during the

school-term.

The authors also studied the effect of the latent period and infectious period on

the dynamics of the disease. They observed that a shorter infectious period led to

more disease extinctions. Additionally, increasing the length of the infectious period

could change the model dynamics from exhibiting a biennial cycle to an annual cycle.
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Schenzle [1984]

Schenzle [1984] proposed a model that accounted for the age-structure of a population

to reflect the variation in contact rates between different age classes. His model is

called the realistic age-structured model (RAS model). It was derived as an SEIR

system consisting of PDEs that was simplified into an SEIR system of ODEs with

multiple age classes. From this an approximate stochastic formulation of the model

was derived. The RAS model incorporates a changing contact rate among school-

aged children due to schools opening and closing. Like the London and Yorke [1973]

model, this model successfully captured the biennial epidemics of measles in England

and Wales. Age-specific prevalence curves derived from this model were also closer

to the data than those derived from mass action models.

Keeling and Grenfell [1997]

The stochastic dynamics of the RAS model were found to be inadequate for model-

ing transmission in populations with less than a million people (Keeling and Grenfell

[1997]). It generated more fade outs than was observed in recorded data. To rectify

this, Keeling and Grenfell [1997] proposed a pulsed realistic age-structured model

(PRAS model). In this model the standard assumption of constant transition rates

(and therefore exponentially distributed times) were replaced with a normally dis-

tributed incubation and infection period (Keeling and Grenfell [1997]). This change

resulted in more intense “pulses” of infection, hence the name of the model. The

PRAS model yielded a better fit in estimating the critical community size.

Finkenstadt et al. [1998]

The effect of covariates such as birth rates and the population sizes on the dynamics of

measles were explored by Finkenstadt et al. [1998]. Using the PRAS model of Keeling

and Grenfell [1997], the authors found that small population sizes corresponded to
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irregular disease patterns while larger population sizes corresponded to more regular

and predictable endemic patterns of disease. The authors also showed that birth

rates affected the cyclical dynamics of the disease. In particular lower birth rates

led to a transition from regular biennial epidemics to more annual epidemics in the

model simulations corresponding to what has been observed in real data.

Bjornstad et al. [2002]

The time-series SIR (TSIR) model constructed by Bjornstad et al. [2002] is a well-

known measles model as it is one of the first to explore not only the endemic dynamics

of measles in the major cities but also the episodic dynamics in small cities, where

there are epidemics followed by disease extinction and reintroduction (Cliff et al.

[1993]). It does this by first reconstructing the dynamics of the number of suscep-

tible from recorded birth and incidence data using the Susceptible Reconstruction

Algorithm (Finkenstädt et al. [2000]). It does not take into account age classes but

allows for a seasonal forcing function and non-linearity in contact rates. The TSIR

model is a discrete time stochastic SEIR model with a time step that has to match up

with the time between data points. This allowed fitting the model to data. Further

details on this model will be discussed later on in this chapter.

Cauchemez and Ferguson [2007]

Cauchemez and Ferguson [2007] proposed a continuous-time, discrete-state Markov

chain SIR model for measles. Unlike the Bjornstad et al. [2002] TSIR model, this

model allowed for the data and generation time of the disease to be at different

time scales and for data to be collected at irregular intervals. An approximation

of the model was derived using a Cox-Ingersoll-Ross (CIR) diffusion process and

Metropolis-Hastings Markov chain Monte Carlo (MCMC) was used to estimate pa-

rameters using likelihood. This method was found to be successful in simulation
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studies and the authors concluded that generation time could be well estimated if

the observation interval is less than 2.5 times the generation time. However the

authors found that applying the method to fit measles pre-vaccine era data was un-

successful at estimating the known generation times of measles. They suggested that

simple models for measles with homogeneous contact rates may be inadequate.

He et al. [2010]

The He et al. [2010] model is another model that we explore in further detail later

in this thesis. This model is a continuous time Markov Chain SEIR model. It uses

actual data on the demography of populations as covariate, and allows for extra

demographic stochasticity and imported infections. Both school-term forcing and

the cohort effect are included in the model. This model was formulated and fitted to

UK data using new plug-and-play (i.e. simulation-based) inference techniques called

maximization via iterated filtering, which is implemented in R software package

pomp (King et al. [2016, 2017]). This study yielded a model for the London data

(and other UK cities) with very good likelihood and AIC relative to other modeling

studies. However the authors also noted that they obtained values for the basic

reproduction number that are higher than what would be estimated based on other

forms of data (e.g. serological surveys). This again may be due to the use of a model

with homogeneous contact rates, and is further motivation for the review of existing

measles models in this thesis.

3.2 Summary of the work done for this thesis

In this thesis, we perform a detailed study of four different well-known models for

pre-vaccination era measles: the deterministic SEIR model with school-term forcing,

the stochastic SEIR model with school-term forcing, the Bjornstad et al. [2002] TSIR
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model, and the He et al. [2010] model. This involved studying the papers on modeling

measles, presenting the assumptions of the four different models, writing the code to

numerically solve or simulate each of these models, applying appropriate statistical

inference techniques to find the maximum likelihood estimates of the parameters of

each model, and assessing the strengths and weaknesses of each model. We compared

these models based on how they fit the pre-vaccine era London data set using the

likelihood, Akaike information criterion and residuals for comparison. Finally we also

compared how these models perform when extended to the transition period and to

the vaccine era. The goal of this project is to review the developments in modeling

measles in order to gain a better understanding of the major mechanisms that need

to be included in pre-vaccine era measles transmission models. This review should

also help with future work on identifying the shortcomings of simple extensions of

these models into the vaccine era.

3.3 Description of the dataset

We used data on reports of measles from the pre-vaccine era in London, UK. The data

is obtained from url: http://kingaa.github.io/pomp/vignettes/twentycities.

rda. This weekly data from the start of 1944 to the end of 1963 had been obtained

from the UK Registrar General (OPCS) under the national notification program

which started in 1944. Aside from the measles reports data, we also used the annual

birth rates and annual population data for London from this data set. For this project

we aggregated the measles reports biweekly and used a spline of the population and

birth data to obtain biweekly estimates of these covariates as shown in figure 2.1.

To compare models of measles in the transient and vaccine era, data on reports

of measles in London from 1944 to 1994 (including the vaccine era), and the cor-

responding data on demographic covariates, was obtained from the International
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Infectious Disease Data Archive (IIDDA) at url: http://lalashan.mcmaster.ca/

theobio/IIDDA/index.php/Main_Page.

3.4 Deterministic SEIR model with school-term

forcing

The first focus model of this thesis is the deterministic SEIR model with school-term

forcing. Here we take the deterministc model with forcing discussed in Chapter 2

and allow it to have varying birth rates and population sizes so that it can reflect

the actual London data on birth rates and population sizes.

3.4.1 Description

In section 2.2 we presented a deterministic SEIR model with a changing transmission

rate due to school-term forcing as one way to improve the standard SEIR model to

enable it to exhibit the periodic dynamics seen in the data (Earn et al. [2000a]). Here,

we again use a periodic forcing function B(t) for the time-dependent transmission

rate which reflects the opening and closing of school terms. Additionally we introduce

a time-dependent birth rate µb(t). Since we are focusing on homogeneous models,

we do not have a separate class for infants and very young children who are expected

to have low contact rates. Thus to accommodate this we instead introduce a delay

of τ = 4 years to reflect a delay in entry from birth into the susceptible class. We

also assume that the vaccine coverage is now a time-dependent function v(t). A

fraction v(t) of births at time t are assumed to be vaccinated and go directly to the

recovered/removed class. When we consider only the pre-vaccine era we set v(t) = 0.
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The equations for the model are given as the system (3.1)—(3.4):

S ′ = µb(t− τ)(1− v(t− τ))−B(t)SI
N
− µS (3.1)

E ′ = B(t)SI
N
− (λ+ µ)E (3.2)

I ′ = λE − (γ + µ)I (3.3)

R′ = γI − µR + µb(t− τ)v(t− τ) (3.4)

We require the following assumptions on the initial conditions of the system,

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0 (3.5)

and the non negativity of model parameters. The school-term forcing function B(t)

is defined to be,

B(t) =


β (1 + 2(1− p)a), during the school term,

β (1− 2pa), during vacation,
(3.6)

where β is the average transmission rate in one year, a is the amplitude parameter,

and p the proportion of the school days for which the school-term is in session. As

before, the days included in the school term for the school-term forcing function is

shown in table 2.1.

3.4.2 Fitting the model to data

To fit the model to data, we assume that the number of new cases of measles occur-

ring within the time interval [t1, t2] is C(t1, t2) =
∫ t2
t1
γ I(t)dt which gives the number

of transitions from I to R in that time interval. We note that a different way to ob-

tain the number of cases would be to define C(t1, t2) =
∫ t2
t1
B(t)S(t)I(t)

N
dt which yields

the number of transitions from S to E. We choose to use the latter definition of
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C(t1, t2) because we assume that reports are likely to occur after reaching the infec-

tious stage, then after reporting to a doctor these individuals are more aware and less

likely to contribute to new infections by (voluntarily or involuntarily) quarantining

themselves. We also assume that the cases have a reporting probability of ρ ∈ (0, 1).

Following He et al. [2010], we assume that the reports of measles within the time

interval [t1, t2] have mean ρC(t1, t2), and variance ρ(1− ρ)C(t1, t2) + (ψ ρC(t1, t2))2.

The first term ρ(1−ρ)C(t1, t2) of this variance corresponds to the standard variance

of a binomial distribution. The second term (ψ ρC(t1, t2))2 allows for over-dispersion.

Thus ψ is an over-dispersion parameter and the reports have an over-dispersed bino-

mial form. Again following He et al. [2010] we set the reports to have the following

distribution,

reports ∼ Normal
(
ρC(t1, t2), ρ (1− ρ)C(t1, t2) + (ψ ρC(t1, t2))2

)
. (3.7)

The model was encoded as a pomp object using the pomp package from the Com-

prehensive R Archive Network (CRAN) (King et al. [2016, 2017]). The pomp object

was provided with a vector field type deterministic skeleton given by the differential

equations (3.1)—(3.4) and a measurement density and measurement process follow-

ing (3.7) (using a binned normal distribution). State processes were initiated at 1940

(the start of the year 1940 corresponds to t = 0) and fitted to the London data from

1944–1964.

In Table 3.1 we present a a description of the parameters of the model and a list

of which parameters were fixed or estimated. We note that here µ now represents

the death rate minus the net immigration rate of the population. Additionally, the

values of the incubation and recovery rates were fixed so that the latent and infec-

tious periods were fixed at eight and five days respectively. The basic reproduction

number was estimated using the mean transmission rate and equation (2.14). Pa-

rameter fitting was performed using the trajectory matching algorithm in the pomp
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package and the subplex algorithm for optimization. A global search for the maxi-

mum likelihood estimates of parameters was performed. For each of the estimated

parameters, trajectory matching was initiated from different points in its range us-

ing the pomp function profileDesign. The likelihood was maximized over all other

estimated parameters while holding the focal parameter fixed.

Table 3.1: Descriptions and values of parameters for the deterministic SEIR model
at the MLE

Symbols Description Range Value Fixed/Estimated
µ Death minus net immigra-

tion rate
[0,∞) 0.02 yr−1 Estimated

τ Delay of entry into suscep-
tible class

[0,∞) 4 yr Fixed

σ Incubation rate [0,∞) 45.66 yr−1 Fixed
γ Recovery rate [0,∞) 73.05 yr−1 Fixed
R0 Basic reproduction num-

ber
[0,∞) 31.19 Estimated

a Amplitude of seasonality [0, 1] 0.38 Estimated
d Recruitment delay [0,∞) 4 yrs Fixed
ρ Reporting probability [0, 1] 0.46 Estimated
ψ Reporting overdispersion [0,∞) 0.90 Estimated
N(0) Initial population size [0,∞) 2,445,368 Fixed
S(0)/N(0) Initial fraction of suscepti-

bles
[0, 1] 0.03 Fixed

E(0)/N(0) Initial fraction of exposed [0, 1] 5.17 ×10−5 Fixed
I(0)/N(0) Initial fraction of infected [0, 1] 5.14 ×10−5 Fixed
R(0)/N(0) Initial fraction of recov-

ered
[0, 1] 0.97 Fixed

3.4.3 Model strengths and weaknesses

At the MLE, this model can exhibit the annual and biennial endemic dynamics seen

in the London data. We expect however that this model cannot exhibit the episodic

dynamics in smaller cities. Such dynamics require the variability in the process model

for small populations, which this model cannot recreate because it is deterministic.
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There is a gap between the theoretical model and empirical data, because with this

ODE model we assume a continuous state model in which the population can be

divided into infinitesimally small fractions. Additionally, similar to the findings of

He et al. [2010], this model resulted in relatively high R0 values than have been found

from estimating R0 using serological data (Edmunds et al. [2000]).

3.4.4 Summary of the model

The deterministic model with school-term forcing has the following assumptions and

properties:

• The model is a deterministic system of differential equations with continuous

time and continuous state variables given by (3.1)–(3.4).

• Cases can be aggregated over any time period by integrating over the number

of transitions from I to R.

• Report are assumed to have an over-dispersed binomial distribution approxi-

mated by equation (3.7) with constant reporting probability ρ and over-dispersion

parameter ψ.

• Annually changing transmission rates assumed to be due to school-term forcing

and given by (3.6).

• Actual London birth rates and population used as covariates.

• Entry into the susceptible class is assumed to have a delay of four years corre-

sponding to the delay in school entry.

• The continuous states do not allow for actual fadeouts of the disease (the E(t)

and I(t) states go to very low values but cannot go to zero).
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3.5 Stochastic SEIR model with school-term forc-

ing

The deterministic SEIR model from the previous section can be extended into a

stochastic model using a similar extension described in section 2.3. A schematic of

the stochastic SEIR model is shown in Figure 3.1.

S E I R

B

∆Z0→S

∆Z0→R

∆ZS→E ∆ZE→I ∆ZI→R

∆ZS→0 ∆ZE→0 ∆ZI→0 ∆ZR→0

Figure 3.1: Schematic of the stochastic SEIR model with school-term forcing

3.5.1 Description

As in section 2.3, we use the notation X(t) = (S(t), E(t), I(t), R(t)) and ZA→B(t)

be the total number of individuals that have transitioned from compartment A to

B in the time interval [0, t]. Let t > 0 and h > 0. We define ∆ZA→B(t, t + h) =

ZA→B(t+h)−ZA→B(t) to be the change in the ZA→B counting process over the time

interval [t, t + h]. Let N(t) = S(t) + E(t) + I(t) + R(t). We specify the transition
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probabilities due to infections and recovery as follows,

P (∆ZS→E(t, t+ h) = 1 | X(t)) = B(t)S(t)I(t)
N(t) h+ o(h) (3.8)

P (∆ZE→I(t, t+ h) = 1 | X(t)) = σ E(t)h+ o(h) (3.9)

P (∆ZI→R(t, t+ h) = 1 | X(t)) = γ I(t)h+ o(h) (3.10)

We use the same B(t) given in (3.6) as used in the deterministic version of this

model. Table 2.1 shows the start and end dates of days for which the school-term is

in session in London, used in the school-term forcing function.

We use time-varying birth rates µb(t) given in the London data, and a constant

death rate of µ. Thus births into the S and R components, and deaths are given by

the following equations,

P (∆ZO→S(t, t+ h) = 1 | X(t)) = µB(t− τ) (1− v(t− τ))h+ o(h) (3.11)

P (∆ZO→R(t, t+ h) = 1 | X(t)) = µb(t− τ) v(t− τ)h+ o(h) (3.12)

P (∆ZS→O(t, t+ h) = 1 | X(t)) = µS(t)h+ o(h) (3.13)

P (∆ZE→O(t, t+ h) = 1 | X(t)) = µE(t)h+ o(h) (3.14)

P (∆ZI→O(t, t+ h) = 1 | X(t)) = µ I(t)h+ o(h) (3.15)

P (∆ZR→O(t, t+ h) = 1 | X(t)) = µR(t)h+ o(h) (3.16)

We again assume that multiple transitions within the time interval [t, t+h] are o(h).

Though there is a delay in model entry, this does not affect the Markov property of

the model. This is because the model’s birth term is from recorded number of births

and this is fixed and independent of model states. Thus this delay in births can be

viewed as an independent at any point in time, thus keeping the Markov property

intact. The changes in the sizes of the compartments and subcompartments over the
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time interval [t, t+ h] interval is given by the following equations.

∆S = ∆ZO→S(t, t+ h)−∆ZS→E(t, t+ h)−∆ZS→O(t, t+ h) (3.17)

∆E = ∆ZS→E(t, t+ h)−∆ZE→I(t, t+ h)−∆ZE→O(t, t+ h) (3.18)

∆I = ∆ZE→I(t, t+ h)−∆ZI→R(t, t+ h)−∆ZI→O(t, t+ h) (3.19)

∆R = ∆ZO→R(t, t+ h) + ∆ZI→R(t, t+ h)−∆ZR→O(t, t+ h) (3.20)

The stochastic scheme used to simulate this process is the Euler-multinomial

scheme which is described in the following references: King [2016b], He et al. [2010],

Bretó et al. [2009].

3.5.2 Fitting the model to data

For this model we assume, as in the deterministic case, that cases are only reported

during the transition from I to R. Thus for this model we set C(t1, t2) = ZI→R(t2)−

ZI→R(t1). Given C(t1, t2), the number of actually reported cases within the time

period [t1, t2] are also assumed to be given by (3.7) (over-dispersed binomial form)

with observation probability ρ and over-dispersion parameter ψ.

The model was encoded as a pomp object using the pomp package (King et al.

[2016, 2017]). The pomp object was provided with a process model given by (3.8)–

(3.16) and (3.17)–(3.20), and a measurement model following (3.7). State processes

were again initiated at 1940 and fitted to the London data from 1944–1964. Param-

eter fitting was performed using the maximization via iterated filtering algorithm

in the pomp package (King et al. [2016, 2017]). A search for the maximum likeli-

hood estimates of parameters was performed by initiating value at the MLEs of the

deterministic model.

In Table 3.2 we present a a description of the parameters of the stochastic SEIR

model and a list of which parameters were fixed or estimated. Once again the param-
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eter µ here represents death rate minus the net immigration rate of the population.

Additionally, the values of the incubation and recovery rates were again fixed so that

the latent and infectious periods were fixed at eight and five days respectively. The

basic reproduction number is also an approximation using the mean transmission

rate and (2.14).

Table 3.2: Descriptions and values of parameters for the stochastic SEIR model with
school term forcing at the MLE

Symbols Description Range Value Fixed/Estimated

µ Death minus net immigra-
tion rate

[0,∞) 8.4 ×10−4 yr−1 Estimated

σ Incubation rate [0,∞) 45.66 yr−1 Fixed
γ Recovery rate [0,∞) 73.05 yr−1 Fixed
R0 Basic reproduction num-

ber
[0,∞) 28.02 Estimated

a Amplitude of seasonality [0, 1] 0.33 Estimated
τ Recruitment delay [0,∞) 4 yrs Fixed
ρ Reporting probability [0, 1] 0.40 Estimated
ψ Reporting over-dispersion [0,∞) 0.57 Estimated
N(0) Initial population size [0,∞) 2,445,368 Fixed
S(0)/N(0) Initial fraction of suscepti-

bles
[0, 1] 0.03 Fixed

E(0)/N(0) Initial fraction of exposed [0, 1] 5.17 ×10−5 Fixed
I(0)/N(0) Initial fraction of infected [0, 1] 5.14 ×10−5 Fixed
R(0)/N(0) Initial fraction of recov-

ered
[0, 1] 0.97 Fixed

3.5.3 Model strengths and weaknesses

At the MLE, this model can also exhibit both the annual and biennial endemic

dynamics seen in the London data. This model is expected to also do better than

the deterministic model at exhibiting the dynamics in smaller cities. Unlike the ODE

system describing the previous deterministic SEIR model, this model uses discrete
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states which allow for fadeouts of the disease. However the model does not include

infections from outside the population and thus fadeouts of the disease in this model

would correspond to permanent extinction, which is not what we expect in small

cities. Additionally, this model is more computationally expensive to simulate and

fit than the deterministic model. This model also exhibits the relatively higher R0

values than would be expected from serological studies of measles.

3.5.4 Summary of the model

The stochastic SEIR model with school-term forcing involves the following assump-

tions and has the following properties:

• The model is a continuous time Markov chain model with discrete states and

transitions given by (3.8)–(3.16) and (3.17)–(3.20).

• Cases can be aggregated over any time period by adding the number of tran-

sitions from I to R.

• Report are assumed to have an over-dispersed binomial distribution given by

equation (3.7) with constant reporting probability ρ and over-dispersion pa-

rameter ψ.

• Annually changing transmission rates assumed to be due to school-term forcing

and given by (3.6).

• Actual London birth rates and population were used as covariates.

• Entry into the susceptible class is assumed to have a delay of four years corre-

sponding to the delay in school entry.

• The model includes stochasticity in the transitions which allows for more vari-

ability in dynamics.
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• Discrete states allow this model to display stochastic fadeout in small popula-

tions, but a fadeout would correspond to permanent extinction of the disease.

3.6 Bjornstad et al. [2002] model

The Bjornstad et al. [2002] TSIR model takes a different approach to modeling the

dynamics of measles. This discrete time, process involves first reconstructing the

dynamics of the unobserved susceptible class, using cumulative cases of measles and

cumulative number of births. This algorithm is described below.

3.6.1 Susceptible reconstruction algorithm (SRA)

In the susceptible reconstruction algorithm (SRA) we assume that we can model the

disease using discrete time steps of length equal to the generation time of the disease.

Thus in the case of measles, we assume that each time step is two weeks long. At

each step all infections are assumed to be new and all previous infections are assumed

to have recovered (thus making the incidence of the disease equal to the prevalence).

By also assuming that during the pre-vaccine era, all hosts would have been infected

by measles at some point, we can derive the following relationship between St, the

number of susceptibles at time t, and It, the number of infected people at time t

(Finkenstädt et al. [2000]):

St = Bt−d + St−1 − It + ut,

Here Bt is the number of susceptible births at time t (if there is vaccination then

it corresponds to the unvaccinated newborns). The parameter d corresponds to a

delay that allows maternal immunity to wane, which for measles is approximately 16

weeks (Finkenstädt et al. [2000], Anderson and May [1991]). Since we assume that

we have a time step of two weeks, we set d = 8. Additionally, ut be an additive error
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factor, with E(ut) = 0 and Var(ut) = σ2
u.

We also assume that the actual number of measles cases at any time is propor-

tional to the number of reported cases, i.e. It = ρtCt where Ct is the number of

reported cases and ρt ≥ 1 is a random variable such that E(ρt) = ρ. We note that

for this model, ρ is the inverse of how this has been used in the other models where

the parameter ρ was the actual reporting probability.

The equation for the susceptibles can be rewritten as (Finkenstädt et al. [2000]):

St = Bt−d + St−1 − ρtCt + ut (3.21)

We now introduce a new variable Zt = St − S̄ where S̄ = E(St) so that E(Zt) = 0.

Clearly St and Zt have similar recursive relations. By subtracting S̄ from both sides

of (3.21) we derive,

Zt = Bt−d + Zt−1 − ρtCt + ut. (3.22)

Successively iterating the above equation leads to:

Zt = Z0 +
t∑
i=1

Bi−d −
t∑
i=1

ρiCi +
t∑
i=1

ui (3.23)

This last equation is free from the initial autoregressive form of St and Zt in (3.21)

and (3.23). We now define the following variables,

Xt =
t∑
i=1

Ci (3.24)

Yt =
t∑
i=1

Bi−d (3.25)

Ut =
t∑
i=1

ui (3.26)

Rt =
t∑
i=1

(ρi − ρ)Ci (3.27)
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Figure 3.2: Estimates of the variation from equilibrium of the size of the susceptible
population to measles (Zt from (3.23)) for London from 1944–1964 using the SRA.

for t = 1, ..., n. Then the following are random-walk processes,

Rt = Rt−1 + (ρt − ρ)Ct,

Ut = Ut−1 + ut.

With the new notation we have introduced, the regression equation becomes

Yt = −Z0 +Rt + ρXt + Zt − Ut.

Recalling that E(Zt) = 0, under the assumption of a constant reporting rate

(Rt ≈ 0) and noise free data ( Ut ≈ 0) we have a simple linear relation between

cumulative births (Yt) and cumulative incidence (Xt). A point estimate of the average

reporting rate is the reciprocal of the estimate of the slope (ρ). Additionally, the

regression equation allows us to estimate the Zt by looking at the residuals to the

linear relationship. Figure 3.2 shows the dynamics of Zt. Since Zt = St = S̄, this

also yields the dyanmics of the susceptible class St about S̄.

The assumption of a constant reporting rate can be refined to a constant reporting

within each observation interval. In this case, Local Regression Analysis (LRA) can

be used to obtain a better fit. The local linear regression is done with a Gaussian
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kernel. If the bandwidth of the LRA is too small the resulting fitted values will

be the same as the dependent variable. Also, a bandwidth large enough will result

in a local regression with the same results as the global linear regression (with the

assumption that errors are normally distributed about 0 with constant variance).

Thus a bandwidth should be chosen that optimizes the explanatory power of LRA

while preserving the cyclicality in the remainder (Finkenstädt et al. [2000]). This

is chosen at the intersection of the sum of squared error (SSE) of the local linear

regression and the SSE between the global and local linear regression’s fitted values.

3.6.2 Description

We define θt to be the number of migrant infected hosts at time t and assume that this

is Poisson distributed with fixed rate m. We also define a time varying transmission

rate such that,

βt = βt+26. (3.28)

Since each time step is two weeks apart, this means that the transmission rate has

a one-year period. For the TSIR model, we allow for 26 different values of the

transmission rate. This is in contrast to the two different values allowed using the

school-term forcing function in the previous two models.

The TSIR model is fully specified by initial conditions I0 and S0, and the following

system of equations:

λt+1 = βt(It + θt)αSt (3.29)

It+1 ∼ Negative Binomial(λt+1, It) (3.30)

θt ∼ Poisson(m). (3.31)

St = Bt−d + St−1 − It + ut (3.32)
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Here the parameter α is a “mixing parameter” which allows for non-linearity in

contact patterns, and ut is again the additive error term with E(ut) = 0 and

Var(ut) = σ2
u.

3.6.3 Fitting the model to data

Recall that It = ρtCt is defined to be the true number of cases at time t and Ct is

the number of reported cases. Using the Zt and ρt from the SRA, the model can be

fitted to data on measles reports using the reconstructed model below:

λt+1 = βt(It + θt)α(S̄ + Zt) (3.33)

It+1 ≈ Negative Binomial(λt+1, It) (3.34)

θt ≈ Poisson(m) (3.35)

Given C(t1, t2), the number of actually reported cases within the time period

[t1, t2] are also assumed to be given by (3.7) which has mean and variance in the form

of an over-dispersed binomial with observation probability 1/ρt and over-dispersion

parameter ψ. We note that in Bjornstad et al. [2002], the reporting process is

not fully specified. In a later paper by Morton and Finkenstädt [2005], the TSIR

model is modified and the reporting process is fully specified to attain a better fit,

however, that is beyond the scope of this thesis. Additionally, the reporting process

we have here is only used in calculation of the model’s likelihood and AIC to facilitate

comparison with the other model. However this model was not fitted using the given

reporting process.

reports ∼ Normal
(

1
ρt
C(t1, t2), 1

ρt

(
1− 1

ρt

)
C(t1, t2) +

(
ψ

1
ρt
C(t1, t2)

)2
)

(3.36)
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The parameter estimation was done using a modified version of the runTSIR

function of the tsiR package of CRAN (Becker and Morris [2017]). This fits model

to the London data and parameters are estimated in hierarchy as described in Bjorn-

stad et al. [2002] using simple regression (not maximum likelihood using the given

reporting model). In order to compute the likelihood and AIC of this model for com-

parison with the other models, this model was also encoded using the pomp package

of the Comprehensive R Archive Network (CRAN) (King et al. [2017]). The pomp

object had a process model had a discrete time simulator given by (3.29)–(3.32).

Table 3.3 presents a description of the estimated parameters of the Bjornstad

et al. [2002] TSIR model.

3.6.4 Model strengths and weaknesses

Being a discrete state stochastic model, the TSIR can exhibit the endemic dynamics

of big cities (annual and biennial dynamics) and the episodic dynamics in smaller

cities. This model is also more efficient than a continuous time Markov chain model

to simulate, and thus more efficient to fit to data.

By using time steps equal to the generation time of the disease, the TSIR model

was one of the first models to bridge the gap between theoretical model and empirical

data. However, the assumption that the generation interval should be a multiple

of the observation interval, and that all infections recover within one time step is

a strong assumption. This also constrains the applicability of the model to other

disease where the generation time is not in the same scale as the observation periods.

The reliance of the model on the SRA may also affect results since this relies on the

assumption that everyone eventually gets measles, and since this algorithm is also

less reliable in the early part of the time series as the initial conditions are difficult

to estimate without allowances at the beginning of the time series (Bjornstad et al.

[2002]).
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Table 3.3: Descriptions and values of parameters for the Bjornstad et al. [2002] model
estimated using the tsiR package of CRAN (Becker and Morris [2017])

Symbol Description Range Value Fixed/Estimated
α Mixing exponent [0,∞) 0.978 Estimated
m Mean number of visiting

infectives
[0,∞) 5 Fixed

S̄ Mean number of suscepti-
bles

[0,∞) 1.09258.7× 105 Estimated

1/ρt reporting rate (0, 1) 0.45 (mean) Reconstructed
ψ Over-dispersion parameter [0,∞) 2.55 Estimated
β1 Transmission rate 1 [0,∞) 1.164170× 10−5 Estimated
β2 Transmission rate 2 [0,∞) 1.230797× 10−5 Estimated
β3 Transmission rate 3 [0,∞) 1.413762× 10−5 Estimated
β4 Transmission rate 4 [0,∞) 1.242972× 10−5 Estimated
β5 Transmission rate 5 [0,∞) 1.210762× 10−5 Estimated
β6 Transmission rate 6 [0,∞) 1.163952× 10−5 Estimated
β7 Transmission rate 7 [0,∞) 1.050347× 10−5 Estimated
β8 Transmission rate 8 [0,∞) 1.237272× 10−5 Estimated
β9 Transmission rate 9 [0,∞) 9.785120× 10−6 Estimated
β10 Transmission rate 10 [0,∞) 1.105360× 10−5 Estimated
β11 Transmission rate 11 [0,∞) 1.073516× 10−5 Estimated
β12 Transmission rate 12 [0,∞) 1.093355× 10−5 Estimated
β13 Transmission rate 13 [0,∞) 1.055878× 10−5 Estimated
β14 Transmission rate 14 [0,∞) 9.756590× 10−6 Estimated
β15 Transmission rate 15 [0,∞) 9.810637× 10−6 Estimated
β16 Transmission rate 16 [0,∞) 9.082545× 10−6 Estimated
β17 Transmission rate 17 [0,∞) 6.826086× 10−6 Estimated
β18 Transmission rate 18 [0,∞) 7.639430× 10−6 Estimated
β19 Transmission rate 19 [0,∞) 7.248873× 10−6 Estimated
β20 Transmission rate 20 [0,∞) 1.104402× 10−5 Estimated
β21 Transmission rate 21 [0,∞) 1.342619× 10−5 Estimated
β22 Transmission rate 22 [0,∞) 1.170455× 10−5 Estimated
β23 Transmission rate 23 [0,∞) 1.231981× 10−5 Estimated
β24 Transmission rate 24 [0,∞) 9.968867× 10−6 Estimated
β25 Transmission rate 25 [0,∞) 1.143540× 10−5 Estimated
β26 Transmission rate 26 [0,∞) 1.160626× 10−5 Estimated
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3.6.5 Summary of the model

The Bjornstad et al. [2002] TSIR model involves the following assumptions and has

the following properties:

• The model is a discrete time Markov chain model with discrete states and

transitions given by (3.29)–(3.32).

• The interval between each discrete time step needs to be equal to the generation

time of the disease (two weeks for measles). The latent period is included in

this generation time.

• At every time step, all cases are assumed to be new and all cases from the

previous time step are assumed to have recovered.

• Report are assumed to have an over-dispersed binomial distribution given by

equation (3.36) with constant reporting probability 1
ρt

and dispersion parame-

ter ψ.

• Annually changing transmission rates are assumed with 26 possible values for

the transmission rate throughout the year.

• Actual London birth rates and population used as covariates.

• Entry into the susceptible class are delayed by 16 weeks to correspond to the

mean time until maternal immunity has been lost.

• The model includes stochasticity in the transitions which allows for more vari-

ability in dynamics.

• Discrete states allow this model to display stochastic fadeouts in small popu-

lations.

• If m > 0, this allows for importation of infections from outside the region.
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• The SRA is used to estimate the size of the susceptible pool in the population

and a time-varying reporting rate.

• The model allows for nonlinearity in contact patterns.

3.7 He et al. [2010] Model

He et al. [2010] presented a measles model for pre-vaccine era UK cities to demon-

strate the plug-and-play methods for fitting partially observed Markov process mod-

els to data using maximization via iterated filtering in the R package pomp King et al.

[2017]. The model is a refinement of the stochastic SEIR model in section 3.5. It

includes new features that appear to be important for measles transmission dynam-

ics such as the cohort effect, demographic, extra demographic noise and imported

infections (He et al. [2010]).

3.7.1 Description

We again let ZA→B(t) again be the total number of individuals that have transitioned

from compartment A to B in the time interval [0, t]. In the He et al. [2010] model,

the transition probabilities as follows

P (∆ZS→E(t, t+ h) = 1 | X(t)) = B(t)S(t)
N(t) (I(t) + ι)α ζ(t)h+ o(h) (3.37)

P (∆ZE→I(t, t+ h) = 1 | X(t)) = σ E(t)h+ o(h) (3.38)

P (∆ZI→R(t, t+ h) = 1 | X(t)) = γ I(t)h+ o(h) (3.39)

Here the time-dependent transmission rate B(t) is again the school-term forcing

function from (3.6). The parameter ι is a constant that allows for imported infections

from outside the populationN(t). The parameter α is a mixing parameter that allows

for variation from the standard mass action contact assumption. The function ζ(t)
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is a source of multiplicative Gamma white noise in the transmission rate and we

assume that it has intensity given by parameter σSE.

We also define a parameter c to reflect the strength of the cohort effect, which

accounts for cohorts of individuals entering the susceptible pool at the same time,

possibly due to this cohort all entering school for the first time at a certain time of

year. This effect is incorporated into the model by using µb(t), a time-varying birth

rate in to the susceptible class, and µc(t), a time-varying birth rate into the removed

class. The values of these functions are derived from the actual birth rates b(t) and

the vaccine uptake v(t) using the following equations,

µb(t) = (1− c) b(t− τ)(1− v(t− τ))

+ c δ(t− t0)
∫ t

t−1
b(t− τ − s)(1− v(t− τ − s)) ds, (3.40)

µc(t) = (1− c) b(t− τ)v(t− τ)

+ c δ(t− t0)
∫ t

t−1
b(t− τ − s)v(t− τ − s) ds. (3.41)

In this equation, τ is again a delay reflecting the amount of time from birth to entry

to the susceptible class (usually the time from birth to school-entry.) In He et al.

[2010], the vaccine uptake rate v(t) was assumed to be fixed at zero so they only had

the µb(t) function in their equations. Here we include µc(t) to allow for the eventual

extension of the model to the vaccine era where v(t) is nonzero. Using (3.40), the
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births into the S and R components, and deaths are given by the following equations,

P (∆ZO→S(t, t+ h) = 1 | X(t)) = µb(t)h+ o(h) (3.42)

P (∆ZO→R(t, t+ h) = 1 | X(t)) = µc(t)h+ o(h) (3.43)

P (∆ZS→O(t, t+ h) = 1 | X(t)) = µS(t)h+ o(h) (3.44)

P (∆ZE→O(t, t+ h) = 1 | X(t)) = µE(t)h+ o(h) (3.45)

P (∆ZI→O(t, t+ h) = 1 | X(t)) = µ I(t)h+ o(h) (3.46)

P (∆ZR→O(t, t+ h) = 1 | X(t)) = µR(t)h+ o(h) (3.47)

As in the simpler stochastic SEIR model discussed before, we assume that multiple

transitions within the time interval [t, t + h] are o(h). The changes in the sizes of

the compartments and subcompartments over the time interval [t, t + h) interval is

given by the following equations.

∆S = ∆ZO→S(t, t+ h)−∆ZS→E(t, t+ h)−∆ZS→O(t, t+ h) (3.48)

∆E = ∆ZS→E(t, t+ h)−∆ZE→I(t, t+ h)−∆ZE→O(t, t+ h) (3.49)

∆I = ∆ZE→I(t, t+ h)−∆ZI→R(t, t+ h)−∆ZI→O(t, t+ h) (3.50)

∆R = ∆ZO→R(t, t+ h) + ∆ZI→R(t, t+ h)−∆ZR→O(t, t+ h) (3.51)

3.7.2 Fitting the model to data

To fit this model we assume that reporting is done as in the simple stochastic SEIR

model with school-term forcing. This means we again assume that cases can only

be reported during the transition from I to R. The total number of new cases

of measles that can be reported within a given time interval [t1, t2] is C(t1, t2) =

ZI→R(t2)− ZI→R(t1). Given C(t1, t2), the number of actually reported cases within

the time period [t1, t2] are also assumed to be given by (3.7) which has mean and
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variance in the form of an overdispersed binomial with observation probability ρ and

overdispersion parameter ψ.

Like the previous models, the model was encoded as a pomp object using the

pomp package (King et al. [2016, 2017]). The pomp object was provided with a

process model given by (3.37)–(3.47) and (3.48)–(3.51), and a measurement model

following (3.7). State processes were also initiated at 1940 and fitted to the London

data from 1944–1964. Parameter fitting was performed using the maximization via

iterated filtering algorithm in the pomp package (King et al. [2016, 2017]). A search

for the MLE parameters was performed by initiating value at the MLEs given by He

et al. [2010] in their paper for the best fit to the London data.

Table 3.4 provides a description of the parameters we obtained from fitting the He

et al. [2010] model, as well as a list of which parameters were fixed or estimated. We

again note that the parameter µ here represents death rate minus the net immigration

rate of the population. Unlike in the deterministic and stochastic SEIR models with

school-term forcing, the values of the incubation and recovery rates were estimated

for this model. Additionally, the basic reproduction number was estimated using the

mean transmission rate and (2.14).

3.7.3 Model strengths and weaknesses

As a discrete state stochastic model, the He et al. [2010] can exhibit both the endemic

dynamics of big cities (inclunding annual and biennial dynamics) and the episodic

dynamics in smaller cities. If the immigration term ι is greater than zero, the model

can allow for stochastic fadouts and reemergence of the disease. A weakness of this

model is that as a continuous time Markov chain model, it is more computationally

expensive to simulate and fit to data. It is more computationally expensive than the

stochastic SEIR model discussed earlier due to its multiple sources of stochasticity

(multiplicative noise in the transmission process, stochasticity from the Euler mul-
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Table 3.4: Descriptions and values of parameters for the He et al. [2010] model at
the MLE

Symbols Description Range Value Fixed/Estimated
µ Death minus net immigra-

tion rate
[0,∞) 0.01 yr−1 Estimated

σ Incubation rate [0,∞) 41.21 yr−1 Estimated
γ Recovery rate [0,∞) 62.69 yr−1 Estimated
R0 Basic reproduction num-

ber
[0,∞) 30.45 Estimated

a Amplitude of seasonality [0, 1] 0.12 Estimated
τ Recruitment delay [0,∞) 4 yrs Fixed
ρ Reporting probability [0, 1] 0.50 Estimated
ψ Reporting overdispersion [0,∞) 0.05 Estimated
α Mixing exponent [0,∞) 0.98 Estimated
σSE White-noise intensity on

S → E transition rate
[0,∞) 0.0700 yr1/2 Estimated

ι Mean number of visiting
infectives

[0,∞) 4.5876 Estimated

c Cohort entry fraction [0, 1] 1.0000 Estimated
N(0) Initial population size [0,∞) 2,445,368 Fixed
S(0)/N(0) Initial fraction of suscepti-

bles
[0, 1] 0.03 Estimated

E(0)/N(0) Initial fraction of exposed [0, 1] 5.17 ×10−5 Estimated
I(0)/N(0) Initial fraction of infected [0, 1] 5.14 ×10−5 Estimated
R(0)/N(0) Initial fraction of recov-

ered
[0, 1] 0.97 Estimated

tiinomial draws, and stochasticity from the measurement model). While the many

sources of noise should help improve the likelihood of this model, this may also lead

to larger variation in predictions

3.7.4 Summary of the model

• The model is a continuous time Markov chain model with discrete states and

transitions given by (3.37)–(3.47) and (3.48)–(3.51).

• Cases can be aggregated over any time period by adding the number of tran-
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sitions from I to R during that time period.

• Report are assumed to have an overdispersed binomial distribution approxi-

mated by equation (3.7) with constant reporting probability ρ.

• Seasonally changing transmission rates assumed to be due to school-term forc-

ing and given by (3.6).

• Actual London birth rates and population were used as covariates.

• Entry into the susceptible class is assumed to have a delay τ of about four

years corresponding to the delay in school entry.

• The cohort effect (3.40) adds an additional source of seasonal forcing in the

model.

• The model includes stochasticity in the transitions which allows for more vari-

ability in dynamics.

• Discrete states allow for stochastic fadeouts in small populations.

• If ι > 0 this parameter allows for infections from outside the region.

• Of the four focus models, this model is the most computationally expensive to

simulate and fit.

3.8 Overall summary

In this chapter, different models of pre-vaccine era measles transmission were pre-

sented. A review of the history of measles transmission models was presented in-

cluding the papers by Bartlett [1957, 1960] which established the critical community

size of measles, and London and Yorke [1973] which presented the necessity of using

changing transmission rates to reflect school-term forcing. The work of Schenzle
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[1984] on the RAS model, Keeling and Grenfell [1997] on the PRAS model was also

discussed, as well as well as the contributions of Finkenstadt et al. [1998] on the

effect of birth rates on periodicity, and Cauchemez and Ferguson [2007] on using a

continuous time Markov chain model for measles were also discussed.

An exposition of the work done for this project was given in section 3.2. The pre-

vaccine era London data set used to fit and compare the different measles models, as

well as the transient and vaccine era data set that was not used for fitting but used

to compare the models, were described in section 3.3. Four measles models were

chosen to be studied in detail for this thesis: (1) the deterministic SEIR model with

school-term forcing, (2) the stochastic SEIR model with school-term forcing, (3) the

Bjornstad et al. [2002] TSIR model, and (4) the He et al. [2010] model. A detailed

description and discussion of these four models were given in the four subsequent

sections. Finally, in Table 3.5 we present a summary of the four models with their

important features and characteristics.

In the next chapter, we compare the four focus models at their MLEs from fitting

to the pre-vaccine era London data. We compare them using likelihood, AIC and

residuals. We also perform a preliminary study of how these models at their pre-

vaccine era MLEs extend to vaccine era.
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4

COMPARISON OF THE

MODELS

In this chapter, the four focus models from chapter 3 are evaluated with regards to

their performance in the pre-vaccine, transient and vaccine era. Recall that these

four models were (1) the deterministic SEIR model with school-term forcing, (2) the

stochastic SEIR model with school-term forcing, (3) the Bjornstad et al. [2002] TSIR

model, and (4) the He et al. [2010] model.

In section 4.1, the performance of four focus models in the pre-vaccine era are

compared using likelihood, Akaike information criterion (AIC) and residuals. In

section 4.2, a comparison of the performance of these four models into the transient

and vaccine eras is presented. This comparison was done by using a simple extension

of the models fitted to pre-vaccine era data and incorporating the historical vaccine

coverage estimates from the UK. Finally, in section 4.3, sample simulations of the

models at their best estimated parameters are presented. The general features of

these simulations, such as their periodicity and heights of epidemics are discussed

and compared to the data.

67



4.1 Pre-vaccine era comparison

4.1.1 AIC

As described in section 2.7, the AIC is one way of selecting the best among competing

models. This criterion selects the best model by balancing bias and flexibility as

measured by the log-likelihood and the number of model free parameters respectively.

The best among the competing models is the one with the smallest AIC value. These

values are presented in Table 4.1. The table shows the estimated log-likelihood, the

number of parameters, and the AIC score for each model. We also present the

likelihood of the best log-SARMA (1, 1)× (1, 1)26 model fitted to the data. SARMA

stands for Seasonal Auto-Regressive Moving Average and y1:N is said to be log-

SARMA if log(y1:N) = log y1, . . . , log yN is SARMA (He et al. [2009]). Thus the

log-SARMA model is a non-mechanistic empirical model. The likelihood for the

log-SARMA model shown in Table 4.1 is obtained by using auto.arima function

of the forecast package of CRAN (Hyndman et al. [2017]) on log y1:N , adjusted by

subtracting ∑N
n=1 log yn to transform the likelihood back from the logarithmic scale

(He et al. [2009]).

From Table 4.1, it is clear that the best among these models using the AIC

criterion is the He et al. [2010] model with an AIC of 6656. This is the only model in

this study that performs better that the empirical log-SARMA model (AIC of 6884)

with regards to this criterion. This is followed by the stochastic SEIR model with

school-term forcing (AIC of 8150), then the deterministic model with school-term

forcing (AIC of 8670). The least preferable model here happens to be the Bjornstad

et al. [2002] TSIR model (AIC of 8966). The ranking by AIC is strongly dictated by

the ranking of the models by likelihood. Adjusting by the number of parameters to

calculate the AIC yielded the same ordering of the models as the ordering we would

have derived from ranking the models using likelihood only.
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We note that it is perhaps not surprising that the Bjornstad et al. [2002] model

has the worst likelihood since, as discussed in the previous chapter, the parameters of

the process model were not fitted using maximum likelihood with the given reporting

model. Because of this we present another method of model comparison in the next

section, one that does not use likelihood.

Table 4.1: Log-likelihood and AIC’s of the four focus models at their best parameter
estimates.

Model No. of param-
eters

Log-likelihood AIC

Deterministic model with
school-term forcing

5 -4330 8670

Stochastic model with
school-term forcing

5 -4070 8150

Bjornstad et al. [2002]
model

28 –4455 8966

He et al. [2010] model 15 -3313 6656
SARMA model 6 -3436 6884

4.1.2 Residuals

The four focus models were also compared with respect to their residuals at their

fitted parameter estimates. This is a commonly used, direct and very intuitive way

to compare the goodness of fit of the different models. However, it is important to

remember that the parameters of these models were not determined by minimizing

the residuals (least squares fitting). Applying the standard least squares proce-

dure would have been equivalent to maximizing likelihood under the assumption of

a Gaussian measurement model with constant variance regardless of the value of

the number of measles cases. In contrast, we had instead assumed over-dispersed

binomial measurement model which allows for more variance during the peaks of

epidemics than during the troughs.
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The sum of square residuals (SSR) is the standard residual used for considering

model fit to data. Here we also consider the sum of square relative residuals (SSRR).

The SSR is a measure of the absolute deviation of the model from the data, and

the SSRR is a measure of the deviation of the model from the data relative to the

magnitude of the recorded cases. Given data on measles reports denoted by reports1:n

and model simulation output given by y1:n, the SSR and SSRR are defined as follows:

SSR =
n∑
i

(
reportsi − yi

)2

SSRR =
n∑
i

(reportsi − yi
reportsi

)2
.

In the SSR, all residuals are equally weighted. Large deviations from recorded

cases are penalized irrespective of the magnitude the recorded cases, unlike how the

overdispersed binomial which would be more forgiving when there are large numbers

of cases as opposed to smaller number of cases.

The SSRR is more lenient to large deviations that are associated with large

observations. The mean and variation of the SSR and SSRR of the four focus models

at their MLEs are presented in Table 4.2. These were calculated by looking at the

distribution of the SSR and SSRR for each model using 500 simulations.

Table 4.2: Residual statistics of the four focus models at their best parameter esti-
mates in the pre-vaccine era.

Model Mean SSR SSR S.E. Mean SSRR SSRR S.E.
Deterministic model
with school-term forcing

9.574× 108 9.849× 107 8.643× 103 2.529× 103

Stochastic model with
school-term forcing

9.318× 108 2.088× 108 1.757× 104 1.465× 104

Bjornstad et al. [2002]
model

6.949× 108 1.606× 108 1.522× 103 2.805× 103

He et al. [2010] model 1.395× 109 3.782× 108 1.455× 105 1.891× 105
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With regard to the SSR, the Bjornstad et al. [2002] model is now by far the best

performing model with an SSR of 6.949 × 108. This is followed by the stochastic

model with school-term forcing and the deterministic model with school-term forcing,

which are comparable in terms of SSR. The He et al. [2010] model, which was the

best model in terms of likelihood, is the worst performing model here. This may be

due to the model having the most inherent variability and noise.

The best model according to the SSRR is still the Bjornstad et al. [2002] model

with the least SSRR (1.522× 103). Up next, the deterministic model and stochastic

model with school-term forcing switch places, with the deterministic model with

school-term forcing having a slightly smaller SSRR (i.e. 8.643× 103) as compared to

the stochastic model with school-term forcing SSRR of 1.757×104. Additionally, the

stochastic model with school-term forcing had more variability in the SSRR statistic.

This suggests that the deterministic model does better than the stochastic model at

the troughs of epidemics. The He et al. [2010] model is again the lowest ranked

model by this criterion with an SSRR of 1.891× 105.

Overall, the Bjornstad et al. [2002] model performs the best with regard to the

residual statistics. This is followed by the deterministic model with school-term

forcing and the stochastic model with school-term forcing which are comparable.

Curiously, the He et al. [2010] model, which was the best model according to like-

lihood and AIC, is the lowest ranked with respect to the residual statistics in the

pre-vaccine era. This result is a matter of interest for future work on the connections

between noise and likelihood.
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4.2 Comparison of simple extensions of the model

into the transient and vaccine eras

We also compared how simple extensions of the four focus models would perform

in the transient and pre-vaccine era. We did this by changing the vaccine coverage

v(t) from zero in the pre-vaccine era to values from the historical measles vaccine

coverage in England and Wales which is given in Table 4.3. We did not fit the models

to the transient and vaccine era data, we just used the four focus models fitted to

the pre-vaccine era and considered how the models performed in the new period by

looking at the SSR and SSRR, as well as by looking at the qualitative features of the

dynamics. The residuals for the transient and vaccine era are presented in Table 4.4.

Table 4.3: Historical vaccine coverage in England and Wales obtained from
The National Archives of Public Health England at http://webarchive.
nationalarchives.gov.uk/20140714110743/http://www.hpa.org.uk/
Topics/InfectiousDiseases/InfectionsAZ/VaccineCoverageAndCOVER/
EpidemiologicalData/coverVaccineUptakeData/.

Year Vaccine coverage
1968 0.33
1969 0.46
1970 0.51
1971 0.53
1972 0.52
1973 0.46
1974 0.46
1975 0.48
1976 0.48
1977 0.51
1978 0.53
1979 0.55
1980 0.58
1981 0.60
1982 0.63
1983 0.68
1984 0.71
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Table 4.4: Residual statistics of the four focus models in the vaccine era

Model SSR SSR S.E. SSRR SSRR S.E.
Deterministic model
with school-term forcing

1.258× 109 2.337× 108 1.605× 105 5.431× 104

Stochastic Model with
school-term forcing

3.088× 108 1.225× 108 3.551× 104 2.762× 104

Bjornstad et al. [2002]
model

5.715× 108 9.054× 107 9.971× 104 4.221× 104

He et al. model model 3.635× 108 1.597× 108 7.899× 104 1.036× 104

With regard to the SSR in the transient and vaccine eras, the stochastic model

with school-term forcing is the best performing model with an SSR of 3.088 × 108.

This is followed by the He et al. [2010] with 3.635 × 108, and then Bjornstad et al.

[2002] model with 5.715× 108. The deterministic model with school-term forcing is

the worst performing model here with an SSR of 1.258 × 109. In the next section,

we show that the bad performance of the extension of the deterministic model is due

to the use of continuous states not allowing for fadeouts of the disease and yielding

periodic large epidemics in the vaccine era.

The ranking of the extensions of the models does not change with regard SSRR.

The stochastic model with school-term forcing still performs the best with 3.551×104.

This is followed by the He et al. [2010] model (7.899×104), then the Bjornstad et al.

[2002] model with 9.971× 104. The model with the worst SSRR (i.e. 1.605× 105) in

the transient and vaccine era is the deterministic model with school-term forcing.

Overall, the stochastic model with school-term forcing performs the best with

regard to the residual statistics in the transient and vaccine era. This is followed

by the He et al. [2010] model, then the Bjornstad et al. [2002] model. The worst

performing model here is the deterministic model with school-term forcing.
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4.3 Model simulations

Deterministic model with school-term forcing

Sample simulations (including measurement noise) of the deterministic model with

school-term forcing at its MLE is shown in Figure 4.1. The transition from regular

annual to biennial epidemics of measles are evident in the model trajectory, however

the model trajectory appears to be a little late in getting the transition right, and

the peaks from the biennial epidemics are not as high. The model does well with

the troughs of the epidemics, explaining its relatively small SSRR.

This model is clearly exhibiting multi-year periodic epidemics in the vaccine era,

something that we do not observe in the actual data. This is due to the model having

continuous states which does not allow for the I(t) state to go to zero. Instead, I(t)

goes to very low values which allow for the number of susceptibles to build up until

this pool becomes so large it is able to set off a large epidemic. This clear discrepancy

between one of the model’s key features and the data indicates that this model is

very inadequate at modeling the vaccine era dynamics.

Figure 4.1: Simulations of the deterministic SEIR Model with school-term forcing
and its simple extension in the vaccine era.
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Stochastic SEIR model with school-term forcing

Sample simulations of the stochastic SEIR model with school-term forcing at its

MLE are shown in Figure 4.2. The simulations exhibit more stochasticity than the

simulations of the deterministic model in Figure 4.1. The model also exhibits the

expected transition from annual to biennial epidemics in the pre-vaccine era, however

the added stochasticity in the model’s state process makes the transition less clear.

Unlike the deterministic model, the stochastic model has discrete states and it

is therefore possible to have extinction of the disease when prevalence has gone

down in the vaccine era. This means the stochastic model is less likely to decisively

exhibit multi-year periodic epidemics in the vaccine era that the deterministic model

displays. However it also means that the disease has a significant probability of

going extinct as we see in the sample simulations. While extinction yields better

SSR and SSRR than the large vaccine era epidemics of the deterministic model, this

still indicates that the stochastic model that we use is inadequate for the vaccine

era. Inclusion of infection from outside the region (such as the ι term in the He et al.

[2010] model) would help prevent the disease from exhibiting permanent extinction

and would lead to better simulations in the vaccine era.

Figure 4.2: Comparison of the data and simulations of the stochastic model with
school-term forcing extended into the vaccine era.
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Bjornstad et al. [2002] model

Figure 4.3 presents sample simulations of the Bjornstad et al. [2002] model at its

best parameter estimates. Here it is clear that the model can exhibits the biennial

epidemics of measles, but the annual epidemics are less clear. This models also

appears to have less noise than the stochastic SEIR model due to being a discrete

time process.

The TSIR model exhibits large deviations from data mostly in the biennial peri-

odic dynamics, where there are larger peaks. This may be one reason for its relatively

small SSRR.

The transient and vaccine era dynamics of the TSIR model is clearly different

form what we see in the data. The number of simulated reports given by the model

is much higher in magnitude, and it also exhibits a transient periodic epidemics of

about every 2–3 years before settling to annual epidemics that are still larger than

what we see in the data. It is clear that the simple extension of this model is not

sufficient for modeling the transient and vaccine era dynamics in London.

Figure 4.3: Comparison of the data and simulations of the Bjornstad et al. [2002]
model extended into the vaccine era.
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He et al. [2010] model

The simulations of the He et al. [2010] model at its MLE is compared to the data

in Figure 4.4. Here we can see why this model, which has the best likelihood,

is the lowest ranked in terms of SSR and SSRR in the pre-vaccine era. Though

individual simulations of its measles cases clearly exhibit the early pre-vaccine era

annual dynamics and late pre-vaccine era biennial dynamics, there is larger variation

in the timing of the transition as well as the occurrence of large epidemics in the

simulations.

The He et al. [2010] model simulations into the vaccine era had worse SSR and

SSRR than the stochastic SEIR model with school-term forcing. However, as already

mentioned, the stochastic SEIR model obtains this score by often driving the disease

to extinction and not allowing for reintroduction of the disease. The He et al. [2010]

model, on the other hand, yields irregular epidemics in the transient and vaccine era.

This still does not quite look like the data, but at least there are no clear regular

large epidemics (like the deterministic SEIR model) or extinctions (like the stochastic

SEIR model). However, in many cases the simulations still exhibited occasional big

epidemics with peaks that are much higher than what can be found in the data.

Figure 4.4: Comparison of the data and simulations of the He et al. [2010] model
extended into the vaccine era.
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4.4 Summary

In this chapter we compared the four focus models of this thesis which were discussed

in detail in chapter 3. The models were compared with regards to how well they fit

the data in the pre-vaccine era (the data used to fit the models), and the transient

and vaccine era (the data that was not used to fit the model).

In section 4.1, the models were compared in the pre-vaccine era using their like-

lihoods and criteria such as AIC and residuals. The He et al. [2010] model ended up

performing the best under the AIC and likelihood, but the Bjornstad et al. [2002]

model performed the best in terms of SSR and SSRR in the pre-vaccine era (refer to

Tables 4.1 and 4.2). The He et al. [2010] model performed the worst in terms of both

the SSR and SSRR, perhaps due to the presence of more noise in this model. This

case of having the best likelihood but the worst residuals is is a rather surprising

result that merits further study.

In section 4.2, the performance of these models into the transient and vaccine eras

were compared. This was done by extending the four models using the pre-vaccine

era’s estimated parameters and including estimates of the vaccine coverage. The

residual statistics in the vaccine era were presented in Table 4.4. Here the stochastic

model with school-term forcing performed the best by having a high fraction of its

simulation exhibiting extinction of the disease. As a result of all this we conclude

that none of the simple extensions of these four focus models perform well in the

vaccine era.

In section 4.3 the qualitative features of the simulations of the four models were

compared to the features we see in the data. Most models can exhibit some rough

transition from annual to biennial dynamics in the pre-vaccine era, however they do

not always exhibit the transition at the right time.

The simulation of the models extended into the vaccine era were also compared.

After the start of mass vaccination, all of the simulations from all the models ex-
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hibited a decrease in measles reports. However, aside from this, none of the models

actually did very well in capturing the transient and vaccine era dynamics which

consisted of much smaller regular epidemics. The deterministic SEIR with school-

term forcing model instead yielded simulations in the vaccine era that had too large

epidemics with long interepidemic periods. The stochastic SEIR model with school-

term forcing did not have this feature, and though some simulations look a little

like the data, many other simulations exhibited disease extinction which was not be

found in the data. The Bjornstad et al. [2002] model simulations into the transient

and vaccine era showed transient periodic epidemics that were 2–3 years apart which

later on gives way to smaller annual epidemics that still had too high peaks relative

to the data. The He et al. [2010] model simulations showed irregular epidemics that

had peaks that were higher (sometimes much higher) than what can be found in the

data.

In the next chapter, we conclude this thesis by summarizing the motivation and

goals for this project, the results, open questions and future directions on how the

project can be further extended.
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5

CONCLUSION

The transmission dynamics of measles during the pre-vaccine era is a well-studied

topic in mathematical epidemiology. Many models have been formulated to explain

the dynamics of the disease. These models were derived under various assumptions

and come with different levels sophistication. The goal of this project was to present

an overview of the history of measles models and to carefully compare the assump-

tions and performance of some well-known models. In particular, we considered the

following four models based on the standard susceptible-exposed-infected-recovered

(SEIR) model framework:

1. Deterministic SEIR model with school-term forcing

2. Stochastic SEIR model with school-term forcing

3. Bjornstad et al. [2002] time series SIR (TSIR) model with a general time-

dependent transmission rate

4. He et al. [2010] model, a stochastic SEIR model with school-term forcing,

cohort effect and possibility of infection from outside the population

A summary of the important features of these four models is presented in Table 3.5

at the end of Chapter 3.
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5.1 Summary of results

In this thesis we carefully reproduced the analysis of each of the four focus models

and fitted them to bi-weekly data from 1944–1964 (in the pre-vaccine era) in London.

The performance of each model was evaluated using the likelihood and model com-

parison criteria such as AIC and residuals. Additionally, we performed a preliminary

comparison of the performance of these models into the transient and vaccine eras

by extending the fitted pre-vaccine era models using known estimates of the vaccine

coverage.

The He et al. [2010] model performed the best among all models with respect to

both AIC and likelihood. This continuous time, discrete state model which included

school-term forcing, the cohort effect and possibility of infections arising from outside

the population (if ι > 0) was also the only one of the four models to beat the non-

mechanistic SARMAmodel in terms of AIC. Unfortunately the He et al. [2010] model

is also the most computationally expensive to simulate of the four focus models. The

remaining three models are ranked in the following order: The stochastic SEIR model

with school-term forcing had the next highest AIC, followed by the deterministic

SEIR model with school-term forcing. The least preferred model using likelihood

and the AIC criterion was the Bjornstad et al. [2002] model. We again note that

this may not be surprising since this model was not fitted using maximum likelihood

estimation.

Interestingly, the Bjornstad et al. [2002] model performed the best in the residual

statistics (both SSR and SSRR) than the other three models in the pre-vaccine

era. And even more interestingly, the He et al. [2010] performed the worst. We

hypothesize that this is perhaps due to the presence of more noise in the He et al.

[2010] model. This unexpected result will be an interesting topic for future study

The models (with parameters fitted to the pre-vaccine era data) were extended

into the transient and vaccine era by taking into account the historical national
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vaccine coverage data from the UK. Here it is the extension of the stochastic SEIR

model with school-term forcing performed the best with respect to the SSR and

SSRR in the transient and vaccine era. This was accomplished by having a significant

fraction of its simulations exhibiting extinction of the disease with no possibility of

reintroduction. However, we do not expect that this is the actually what is happening

with measles.

None of the model simulations into the transient and vaccine eras seem to ex-

hibit the patterns we see in the recorded data. After the start of mass vaccination,

all of the simulations from all the models exhibited a decrease in measles reports,

however the other features of the data were not captured. The deterministic SEIR

with school-term forcing model simulations displayed too large epidemics with inter-

epidemic periods that were too long. The stochastic SEIR model with school-term

forcing exhibited too much disease extinction. The Bjornstad et al. [2002] model

had transient periodic epidemics that had too long periods then annual epidemics,

all of which had too high peaks. The He et al. [2010] model simulations had irreg-

ular epidemics that can sometimes have too high peaks. From this, and from the

fact that the stochastic SEIR performed best in terms of the residuals (by letting

the disease go to extinction often), we concluded that none of the four focus mod-

els, even the He et al. [2010] model which included many important mechanisms

for measles transmission, can simply be extended into the vaccine era. We note

that all of these models are homogeneous models of measles transmission. Perhaps

structured population models can lead to better fits in the vaccine era.

5.2 Limitations of the study

In this study we compared measles models by looking at how well these models fit to

the pre-vaccine era data from London, a large city in the UK. However, it has been
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observed that pre-vaccine era measles in the UK can often be classified into one of

two large classes of dynamics: endemic dynamics with clear periodicity exhibited in

large cities, and the episodic outbreaks presented in smaller communities (Bjornstad

et al. [2002]). Since we focused on the city of London in this thesis we do not have

a careful comparison of how these models would perform in smaller communities.

Our expectation is that the deterministic SEIR model would perform worse than

the other three models, just as it performed worst in the transient and vaccine eras,

since the continuous state model would be unable to produce stochastic “fadeouts”

we expect to see in smaller communities.

Additionally, we performed a preliminary comparison of how these models would

perform when extended to the vaccine era by incorporating estimates of the vaccine

coverage. However, the vaccine era data was not used for fitting the models. Thus

it is possible that the ranking of how well the models fit the vaccine era data may

change if the vaccine era data was also used for fitting the models.

5.3 Recommendations for future work

As we have already mentioned, the curious result of the He et al. [2010] model hav-

ing the best likelihood and AIC, but worst SSR and SSRR (which are more intuitive

measures of model fit) in the pre-vaccine era merits further investigation. Addi-

tionally, to obtain a more comprehensive review of the different measles models, the

models can be fitted to more of the available data from other UK cities. In particular

they should be fitted to at least one smaller city that exhibits episodic rather than

endemic measles dynamics. This will help in comparing the generalizability of the

dynamics of the models.

A more exhaustive review of how the models perform in the transient and vaccine

era could also be performed. It is notable that simple extensions of the models to

83



the vaccine era do not appear to be able to recreate these dynamics. We note

that all of the four focus models we considered assume that the population exhibits

homogeneous contact rates. The results of this study indicate that homogeneous

models appear to work well for the pre-vaccine era dynamics. However, it is widely

accepted that population contact rates may be structured by age and that this may

be relevant for disease transmission models (Schenzle [1984]). Perhaps age-structured

contact rates may play a more important role in modeling the transition from pre-

vaccine era to the vaccine era.
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