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Abstract

This thesis provides a review of left-ordered groups and amenable groups. These are used

to investigate a conjecture by Peter Linnell, which relates the existence of a nonabelian

free group to a strengthening of left-orderability, by examining three research articles.

Lastly, we propose a possible generalisation of a theorem by Dave Witte Morris and Peter

Linnell.
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Chapter 1

Introduction to Orderable Groups

1.1 Introduction

Left-orderable groups have received a great deal of attention in the last century. A group

G is left-orderable if we can give all its elements a strict total ordering < which is left-

invariant, i.e., g < h implies fg < fh for all g, h, f ∈ G. Some notable mathematicians

who work in this field are O. Hölder, P. Dehornoy, and A. A. Vinogradov. They discovered

that free groups, torsion-free abelian groups, fundamental groups of many important

spaces, and braid groups are left-orderable. A group having an ordering implies powerful

algebraic properties. For example, left-orderable groups satisfy Kaplansky’s zero-divisor

conjecture [31, Chapter 9] . In Chapter 1, we give an example of a fundamental group of

a space which is torsion-free but not left-orderable, and in Chapter 5 we give an example

of a torsion-free group which is not left-orderable.

This thesis begins with a review of left-orderable groups and amenable groups. The

first three chapters of the thesis are dedicated to an introduction of some well-known

results of left-ordered groups, the space of left-ordered groups, and amenable groups,

respectively. The fourth chapter aims to look at what has been done in linking amenable

groups to Conradian left-ordered groups by providing a review of three research papers

which investigate the following conjecture by P. Linnell:

Conjecture 1.1. [23, Conjecture 1.1] Let (G,<) be a left-ordered group which does not

contain a non-Abelian free subgroup. Then G is Conradian left-orderable.

1



2 CHAPTER 1. INTRODUCTION TO ORDERABLE GROUPS

In the last chapter, we proposed a generalisation of a theorem by D. Witte Morris and

P. Linnell by weakening a condition known as “local invariance”.

In this chapter, we introduce orderable groups with an emphasis on left-orderable

groups. Furthermore, we will give some algebraic properties of orderable groups and

introduce Archimedean and Conradian orderings.

There are several useful references on orderable groups, for example, Orderable Groups

and Topology by Clay and Rolfsen [9], Groups, Orders, and Dynamics by Deroin, Navas

and Rivas [14], and Orderable groups by Mura and Rhemtulla [3]. Many results which will

not be discussed here can be found in these books.

1.2 Definitions

Definition 1.1. [9, Chapter 1] A group G is left-orderable if we can give all its elements

a strict total ordering < which is left invariant, i.e., g < h implies fg < fh for all

g, h, f ∈ G.

Remark 1.1. We denote by (G, <) a group G with an ordering < and the identity element

by 1.

We can ask ourselves if there exists a notion of right-orderability. We say that a group

G is right-orderable if we can give all the elements of G a strict total ordering < which is

right-invariant. We have that left-orderable groups are right-orderable as well; however,

the orders might be different (see Proposition 1.1). Furthermore, if the ordering of a group

is right and left invariant, we say that the group is bi-orderable.

1.3 Properties

What properties do left-orderable groups have? Let us investigate some of them.

Proposition 1.1. [9, Chapter 1, Problem 1.2] Let (G, <) be a left-ordered group, then ≺

defines a right ordering g ≺ h if and only if h−1 < g−1.
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Proof. Let g, h ∈ G such that g ≺ h. We want to show that ≺ is right-invariant. Let

c ∈ G be given, then

g ≺ h ⇐⇒ h−1 < g−1

⇐⇒ ch−1 < cg−1 (multiplying by c ∈ G on the left)

⇐⇒ (cg−1)−1 ≺ (ch−1)−1

⇐⇒ gc−1 ≺ hc−1.

Thus ≺ is a right-invariant ordering.

Proposition 1.2. [9, Chapter 1, Problem 1.1] Let (G,<) be a left-ordered group. Then

(a) For all g ∈ G, 1 < g if and only if g−1 < 1.

(b) If 1 < g and 1 < h, then 1 < gh.

Proof. (a) We can multiply 1 < g by g−1 on the left and we obtain

g−1 < g−1g =⇒ g−1 < 1, since g−1g = 1.

Conversely, we can multiply g−1 < 1 by g on the left and we get

gg−1 < g =⇒ 1 < g since gg−1 = 1.

(b) We can multiply 1 < h by g and we get that g < gh. From the hypothesis we have

that 1 < g, thus 1 < g < gh. Therefore we have that 1 < gh.

Proposition 1.3. [9, Chapter 1, Proposition 1.3 ] Let (G, <) be a left-ordered group.

Then G is torsion-free.

Proof. Let G be a left-orderable group. Let g ∈ G. We have two cases 1 < g and g < 1.

Let g ∈ G. If 1 < g, then by multiplying by g on the left we get g < g2. By repeating

this process we obtain

1 < g < g2 < g3 < · · · < gn ∀n ∈ Z+.
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Therefore 1 < gn for all positive integers n ∈ Z+.

Similarly for the case g < 1. We get that

gn < · · · < g2 < g < 1.

Then gn < 1 for all positive integers n.

Example 1.1. [9, Chapter 1, Example 1.5] Some examples of bi-orderable groups are

(R, +), (Q, +), and (Z, +). The group (R \ {0}, ·) is not bi-orderable, because (−1)2 = 1

(where −1 ∈ R \ {0}), i.e., it has an element which has finite order, and by Proposition

1.3 this cannot happen.

Example 1.2. [9, Chapter 1, Example 1.5] We have that left (or bi)-orderability is

preserved under taking direct products. To see this let, G and H be left (or bi)-orderable

groups, then the direct product G×H is left (or bi)-orderable using a lexicographic ordering

(g, h) < (g′, h′) if and only if g <G g
′ or g = g′ and h <H h′, where <G and <H are left

(or bi)-orderings of G and H, respectively.

Proposition 1.4. [9, Chapter 1, Problem 1.8] Let G be a group, K be a normal subgroup

of G and H ∼= G/K be its quotient group. Assume that there exists a short exact sequence:

1 - K - G
p - H - 1.

Then G is left-orderable if H and K are left-orderable.

Proof. Let (H,<H) and (K,<K) be two left-ordered groups. We want to show that G is

left-orderable. Consider g ∈ G. We can define a left-ordering on G as follows: 1 < g if

p(g) 6= 1 and 1 <H p(g) or p(g) = 1 and 1 <K g. This defines a left ordering of G.

An example to illustrate Proposition 1.4 is the following:

Example 1.3. [9, Chapter 1, Problem 1.9 and Problem 1.10] Let us consider the Klein

bottle group. Recall that the Klein bottle is a non-orientable surface. Furthermore, we have

that we can think of Klein bottle group as a square with sides identified as in Figure 1.1.
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Figure 1.1: Klein Bottle seen as a square

The Klein bottle has the following fundamental group: [17, Chapter 1, Exercise 12]

K ∼= 〈x, y | xyx−1 = y−1〉.

We have that 〈y〉 is a normal subgroup of K and that 〈y〉 ∼= Z . Furthermore, the

quotient group K/〈y〉 ∼= Z. Thus we have the following short exact sequence

1 - Z - K - Z - 1.

We know that Z is left-orderable, thus by Proposition 1.4 we have that K is left-orderable.

Moreover, the kernel and the quotient each admit two left-orderings. Thus K has at

least four left-orderings. In Section 1.8, Example 1.6 we will see that these are the only

left orderings of K.

Example 1.4. [9, Chapter 1, Problem 1.7] How can we order (Z2, +)? There are two

ways of doing this. One of them is by using Example 1.2 with G = H = Z. The other

one is by thinking of Z2 as sitting inside the xy-plane in the usual way. We choose a

vector ~v = (v1, v2) ∈ R2 which has irrational slope. Given two elements ~a = (a1, a2) and

~b = (b1, b2) of Z2, we declare the ordering to be

~a <~b ⇐⇒ a1v1 + a2v2 < b1v1 + b2v2.
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We can also choose ~v to have rational slope. In this case, we pick another vector

~t = (t1, t2) ∈ R2 which is orthogonal to ~v. Then given ~a and ~b, declare

~a <~b ⇐⇒ a1v1 + a2v2 < b1v1 + b2v2,

unless a1v1 +a2v2 = b1v1 + b2v2, which implies that ~a−~b is orthogonal to ~v. If this happens

we declare

~a <~b ⇐⇒ a1t1 + a2t2 < b1t1 + b2t2.

Proposition 1.5. [9, Chapter 1, Problem 1.29] Let (G, <) be a left-ordered group. Then

the following are equivalent:

(1) (G,<) is right-ordered.

(2) If g < h, then h−1 < g−1 for all g, h ∈ G.

(3) If g < gh, then g < hg, for all g, h ∈ G.

(4) If g1 < h1 and g2 < h2, then g1g2 < h1h2.

Proof. To prove this theorem we will show the following implications (1) ⇐⇒ (2) ⇐⇒

(3), and (4) ⇐⇒ (1).

Firstly, we will show (1) ⇐⇒ (2). Assume that < is right-invariant. If we have that

g < h, then we multiply by h−1 from the right and obtain

gh−1 < hh−1 =⇒ gh−1 < 1.

Now we multiply by g−1 from the left. We can do this because < is left invariant, and we

obtain

g−1gh−1 < g−1 =⇒ h−1 < g−1.

Conversely, assume that g < h and (2) holds and let c ∈ G, then

g < h =⇒ h−1 < g−1

=⇒ ch−1 < cg−1 (multiplying by c ∈ G on the left)

=⇒ gc−1 < hc−1 ( by part (2)).
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Thus < is right-invariant.

For (2) ⇐⇒ (3), suppose that g < h =⇒ h−1 < g−1. If we have g < gh, then

g < gh =⇒ g−1 < g−1h (multiplying by g−2 on the left)

=⇒ h−1g < g (by part (2))

=⇒ g < hg (multiplying by h−1 on the left).

Conversely, assume that g < h and (3) holds. Then

g < h =⇒ g−1 < g−2h = g−1(g−1h)

=⇒ g−1 < g−1hg−1 ( by part (3))

=⇒ 1 < hg−1 (multiplying by g on the left)

=⇒ h−1 < g−1 (multiplying by h−1 on the left).

For (4) =⇒ (1), assume that if g1 < h1 and g2 < h2, then g1g2 < h1h2. We have that

g1 < h1 implies that h−11 < g−11 . If not, then g1 < h1 and g−11 < h−11 which gives 1 < 1.

Thus for all g ∈ G

g1 < h1 =⇒ h−11 < g−11

=⇒ g−1h−11 < g−1g−11

=⇒ (g−1g−11 )−1 < (g−1h−11 )−1 (g−1 ∈ G)

=⇒ g1g < h1g.

For (1) =⇒ (4), suppose that g1 < h1 and g2 < h2 and (1) holds. Then we have that

g1g2 < h1g2

h1g2 < h1h2

 =⇒ g1g2 < h1g2 < h1h2

=⇒ g1g2 < h1h2.
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Definition 1.2. [9, Chapter 1, Theorem 1.24] Let (G,<) be a left-ordered group. The

positive cone P of G is defined as:

P = {g ∈ G | g > 1}.

Furthermore, we call the elements of P positive.

Theorem 1.1. [9, Chapter 1, Theorem 1.24] Let G be a group. Then G is left-orderable

if and only if there exists P a subset of G such that

(1) P · P ⊂ P and

(2) G = P t P−1 t {1}, where t is the disjoint union.

Proof. Let (G,<) be a left-ordered group and P its positive cone. Then we have

(1) P · P ⊂ P (by Proposition 1.2 part (b)) and

(2) G = P t P−1 t {1} (by Proposition 1.2 part (a)).

Conversely, given such a P we can define a strict total ordering of G using the rule

g < h ⇐⇒ g−1h ∈ P.

Note that the proof of the above statement yields the stronger statement that the set

of left-orders is in a bijection with the set of P ⊂ G satisfying (1)-(2).

We know that a group is bi-orderable if there is a left-ordering on G which is right-

invariant as well. How can we translate this to the language of positive cones? Well, the

positive cone P of a bi-orderable group needs to be the positive cone of a left-ordering and

we need to add the condition that gPg−1 = P for all g ∈ G. Thus we have the following

Theorem:

Theorem 1.2. [9, Chapter 1, Problem 1.26] A group G is bi-orderable if and only if it

there exists P ⊂ G satisfying
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(1) P · P ⊂ P ,

(2) G = P t P−1 t {1}, where t is the disjoint union, and

(3) gPg−1 ⊂ P for all g ∈ G.

Note that the proof of the above statement yields the stronger statement that the set

of bi-orders is in a bijection with the set of P ⊂ G satisfying (1)-(3).

1.4 Bi-orderable Groups

Not all facts that hold for left-ordered groups hold for bi-ordered groups. In this section,

we look at some facts about bi-orderable groups that do not hold for left-orderable groups.

Proposition 1.6. [9, Chapter 1, Problem 1.20] Consider (G,<) to be a bi-ordered group

and let g, h ∈ G. If gn = hn, for some n > 0, then g = h.

Proof. Using Proposition 1.5 we have that, if g < h then g2 < h2 and then g3 < h3, and

so on, thus distinct elements cannot have equal n-th powers. Thus, if gn = hn, then

g = h.

Proposition 1.7. [9, Chapter 1, Problem 1.21] If (G,<) is a bi-ordered group. Then gn

commutes with h if and only if g commutes with h.

Proof. Assume that h and gn commute, then we have that (h−1gh)n = h−1gnh = gn. Thus,

by Proposition 1.6 we have that h−1gh = g, which implies that g and h commute.

The converse is trivial.

Proposition 1.8. [9, Chapter 1, problem 1.22] If (G,<) is a bi-ordered group, then G

does not have generalised torsion.
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Proof. Let (G,<) be a bi-ordered group and assume that 1 6= g ∈ G is a generalised

torsion element. Then there exists elements a1, . . . , an ∈ G such that

(a−11 ga1)(a
−1
2 ga2) . . . (a

−1
n gan) = 1.

Since g 6= 1 we have that either g < 1 or g > 1. If g < 1, then a−1i gai < 1 for all i by

bi-orderability. Thus

(a−11 ga1)︸ ︷︷ ︸
<1

(a−12 ga2)︸ ︷︷ ︸
<1

. . . (a−1n gan)︸ ︷︷ ︸
<1

< 1,

which is a contradiction. The case g > 1 is similar.

The Klein bottle group shows that none of these propositions hold for a left-orderable

group.

1.5 Example of a Torsion-free Group which is not

Left-orderable

In this section we want to show that the fundamental group of the Weeks manifold is

torsion-free but not left-orderable. The fundamental group is: [7]

π1(W ) ∼= 〈a, b | bababa−1b2a−1, ababab−1a2b−1〉.

Assume that π1(W ) is left-orderable. Then without loss of generality we can assume

that a ∈ P . Furthermore, assume that b ∈ P . Then we have two possibilities, either: (i)

ab−1 ∈ P or (ii) ba−1 ∈ P .

If ab−1 ∈ P , then consider the relation ababab−1a2b−1 = 1. Thus

1 = a︸︷︷︸
∈P

b︸︷︷︸
∈P

a︸︷︷︸
∈P

b︸︷︷︸
∈P

ab−1︸︷︷︸
∈P

a︸︷︷︸
∈P

ab−1︸︷︷︸
∈P

∈ P,

which is a contradiction.

If ba−1 ∈ P , then consider the relation bababa−1b2a−1 = 1. Thus

1 = b︸︷︷︸
∈P

a︸︷︷︸
∈P

b︸︷︷︸
∈P

a︸︷︷︸
∈P

ba−1︸︷︷︸
∈P

b︸︷︷︸
∈P

ba−1︸︷︷︸
∈P

∈ P,
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which is a contradiction.

Thus if a ∈ P , then b /∈ P . However, this implies that b−1 ∈ P , and therefore,

b−1︸︷︷︸
∈P

a︸︷︷︸
∈P

b−2︸︷︷︸
∈P

a2︸︷︷︸
∈P

b−1︸︷︷︸
∈P

a2︸︷︷︸
∈P

b−1︸︷︷︸
∈P

∈ P.

Let us show that 1 = b−1ab−2a2b−1a2b−1, and so 1 ∈ P which is a contradiction.

We have

b−1ab−2a2(b−1a2b−1) = b−1ab−2a2(a−1b−1a−1b−1a−1) (using ababab−1a2b−1 = 1)

= b−1(ab−2a)b−1a−1b−1a−1

= b−1(babab)b−1a−1b−1a−1 (using bababa−1b2a−1 = 1)

= 1.

Hence π1(W ) is not left-orderable.

Theorem 1.3. [9, Chapter 5, Theorem 5.13] Let W be the Weeks manifold and π(W ) its

fundamental group. Then π1(W ) is a torsion-free group.

The proof can be found in [7].

Note that the universal cover of W is H3 and recall that H3 is contactable; thus,

π1(W ) has finite cohomological dimension. Therefore we have that π1(W ) is torsion-free

[7, Theorem 9.2].

Hence, by Theorem 1.3, we have that π1(W ) is a torsion-free group which is not

left-orderable.

We will see another example of a torsion-free group which is not left-orderable in

Chapter 5.
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1.6 Archimedean Ordered Groups

Definition 1.3. [9, Chapter 2] Let (G,<) be a left-ordered group. We say that the left-

ordering < is an Archimedean ordering if for all elements g, h ∈ G there exists an integer

n such that hn ≤ g < hn+1.

Example 1.5. The groups (Q,+) and (R,+) with their usual ordering are Archimedean.

Lemma 1.1. [10, Section 3, Theorem 3.8] Let (G,<) be an Archimedean left-ordering.

Then < is a bi-ordering.

Proof. [9, Chapter 2] Let (G,<) be an Archimedean left-ordered group. Let P be its posi-

tive cone. We want to show that G is bi-orderable, i.e., we want to show that g−1Pg ⊂ P

for all g ∈ G.

Let h ∈ P and g ∈ G. We have two cases: g is a positive element and g is not a positive

element. Firstly, assume that g is positive, then because < is an Archimedean ordering we

have that there exists n ∈ Z+ such that g < hn. Thus 1 < g−1hn and 1 < g−1hng (because

both g−1hn and g are positive elements). This implies that 1 < g−1hg (this is because its

n-th power is positive), which implies that g−1hg ∈ P .

Secondly, assume that g is a negative element of G and h ∈ P . Further assume that

g−1hg /∈ P . Therefore, from g−1hg /∈ P , we have that

1 < (g−1hg)−1 =⇒ 1 < g−1h−1g.

Now g(g−1h−1g)g−1 is a positive element (by the above, conjugation of g−1hg with the

positive element g−1 will result in a positive element). Therefore, we have that

1 < g(g−1h−1g)g−1 = h−1,

which is a contradiction. Thus G is bi-orderable.

Lemma 1.2. [9, Chapter 2, Lemma 2.5] Let G be a bi-ordered group which does not have

a least positive element. Then given g ∈ G with g > 1 there exists h ∈ G with h > 1 such

that 1 < h2 < g.
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Proof. Let g > n > m > 1, where n,m ∈ G, and consider nm−1 > 1. If (nm−1)2 ≥ n, then

m−1nm−1 ≥ 1 and n ≥ m2, so we can choose h = m. Otherwise, choose h = nm−1.

Lemma 1.3. [9, Chapter 2, Lemma 2.4] Let (G,<) be an Archimedean left-ordered group.

Then G is abelian.

Proof. [9, Chapter 2] We know that the ordering is bi-invariant. Let P be its cone and

p ∈ P . Then we have two cases (i) P does not have a least element and (ii) P has a least

element.

Consider (i). Let g, h ∈ G and assume that g and h do not commute. Furthermore,

without loss of generality we may assume that g,h, and ghg−1h−1 are positive elements

of G. Then using Lemma 1.2 we have that there exists an element f ∈ G such that

1 < f 2 < ghg−1h−1. Using the fact that < is Archimedian we have that there exists two

integers m,n such that fn ≤ g < fn+1 and fm ≤ h < fm+1, this implies that g−1 ≤ f−n

and h−1 ≤ f−m. Now

ghg−1h−1 ≤ ghg−1f−m

≤ ghf−nf−m

< fn+1fm+1f−nf−m

= f 2,

this is a contradiction. Thus G is abelian.

Consider (ii). We want to show that 〈p〉 ∼= G, where p ∈ P is a least element. Let

g ∈ G \ 〈p〉. Using the fact that < is Archimedian we have that there exists an integer n

such that pn ≤ g < pn+1. This gives us that 1 ≤ p−ng < p, which is a contradiction. Thus

G ∼= Z, which implies that G is abelian.

Theorem 1.4 (Hölder, 1901). [9, Chapter 2, Theorem 2.6] If (G,<) is an Archimedean

left-ordered group, then G is isomorphic with a subgroup of (R,+).

Proof. Let (G,<) be a group with the Archimedean property. By Lemma 1.1 we have

that < is bi-ordering. Fix a positive element f ∈ G. Now for all g ∈ G and ni ∈ Z by the
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Archimedean property we have an integer ani
∈ Z such that

fan1 ≤ gn1 < fan1+1 and fan2 ≤ gn2 < fan2+1,

then using bi-orderability we have that

fan1+an2 ≤ gn1+n2 < fan1+an2+2.

Hence an1 + an2 ≤ an1+n2 ≤ an1 + an2 + 1; it follows that the sequence
{an
n

}
converges

to a real number (this is due to Fekete’s Lemma since the sequences an are subadditive).

Then we can define a function φ : G→ R by φ(g) =
an
n

.

To see that φ is homomorphism let g, h ∈ G and n ∈ Z. By the Archimedean property

we have integers an, bn ∈ Z and cn ∈ Z such that

f cn ≤ (gh)n < f cn+1

fan ≤ gn < fan+1 (1.1)

f bn ≤ hn < f bn+1. (1.2)

We want to relate an and bn to cn. Thus by multiplying Equation 1.1 and Equation 1.2

we get

fan+bn ≤ gnhn < fan+bn+2 =⇒ fan+bn ≤ (gh)n < fan+bn+2. (1.3)

Thus an + bn ≤ cn and cn + 1 ≤ an + bn + 2. Applying φ to Equation 1.3 we get

φ(fan+bn) ≤ φ ((gh)n) < φ(fan+bn+2)

an + bn ≤ φ ((gh)n) < an + bn + 2.

We have to find lim
n→∞

cn
n

. Now

lim
n→∞

an + bn
n

≤ lim
n→∞

cn
n

= lim
n→∞

cn + 1

n
≤ lim

n→∞

an + bn + 2

n
.

Thus by the squeeze theorem we have that

lim
n→∞

cn
n

= lim
n→∞

an + bn
n

.
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Then

φ(gh) = lim
n→∞

an + bn
n

= lim
n→∞

an
n

+
bn
b

= lim
n→∞

an
n

+ lim
n→∞

bn
n

= φ(g) + φ(h).

Lastly, we need to show that φ is injective. Note that φ is an order preserving homo-

morphism, i.e., if g < h, then φ(g) < φ(h), and that φ(f) = 1. Assume that h ∈ G is a

nontrivial element. Then because the ordering is Archimedean we have that there exists

an integer n such that hn ≥ f . Thus if φ(h) = 0, then

0 = nφ(h) = φ(hn) ≥ φ(f) = 1,

which is not possible. Therefore, h = 1 when φ(h) = 0.

1.7 Bi-orderable Groups are Locally Indicable

Definition 1.4. [9, Chapter 2] Let (G,<) be a left-ordered group and C ⊂ G a subset

of G. We say that C is convex relative to < if for all g, h ∈ C and f ∈ G such that

g < f < h, then f ∈ C. Furthermore, we say that a subset C of G is relatively convex if

there exists an ordering of G relative to which C is convex. If C is a relatively convex set

which is a subgroup of G, then we say that C is a relatively convex subgroup of G.

One reason why we are interested in convex subgroups is because we can produce a

left ordering by taking quotients by them. We have the following theorem:

Theorem 1.5. [9, Chapter 2, Problem 2.13] Let (G,<) be a left-ordered group and H a

convex normal subgroup of G, then G/H is left-ordered.

Sketch of Proof. Let (G, <) be a left-ordered group and H ⊂ G a normal convex subgroup

of G. We have that on G/H there exists a natural left-ordering ≺ defined by

a < b ⇐⇒ aH ≺ bH.
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Left-invariance follows from the definition and well-definedness follows from convexity.

Theorem 1.6. [9, Chapter 2, Problem 2.9] Let (G, <) be a left-ordered group and C, D ⊂

G be convex subgroups of G. Then either C ⊂ D or D ⊂ C.

The conclusion of Theorem 1.6 says that convex subgroups are ordered by inclusion.

Proof. Let (G,<) be a left-ordered group and C, D convex subgroups of G. Assume that

the conclusion of the theorem is false. Then take elements c ∈ C \ D and d ∈ D \ C.

Without loss of generality, assume that 1 < c and 1 < d (if this is not the case, then take

the inverses). Then we either have 1 < c < d or 1 < d < c. This means that either d ∈ C

or c ∈ D by convexity, both of which we assume is false.

Theorem 1.7. [3, Chapter 1, Theorem 1.45] Let (G, <) be a left-ordered group and

{Ci}i∈I (I is an indexing set) a family of convex subgroups. Then
⋂
i∈I
Ci and

⋃
i∈I
Ci are

convex subgroups.

The proof can be found in [3] Chapter 1, Section 1.4.

Definition 1.5. [9, Chapter 1] Let G be a group. We say that G is locally indicable if for

every nontrivial finitely generated subgroup H of G we have a homomorphism H → Z.

Theorem 1.8. [9, Chapter 2, Corollary 2.20] Let (G,<) be a bi-ordered group, then G is

locally indicable.

Corollary 1.1. [9, Chapter 2, Theorem 2.19] Let G be a finitely generated group and < a

bi-ordering of G. Then then G surjects onto Z

Sketch of Proof of Theorem 1.8. [9, Chapter 2] Let (G,<) be afinitely generated, bi-

ordered group, and H a finitely generated subgroup of G. Let the generators of H

be ordered as follows:

1 < g1 < g2 < . . . < gn.

Denote the union of all convex subgroups of H that do not contain gn by K. The only

convex subgroup which properly contains K is H. Recall that bi-orderings are conjugation
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invariant. Thus we have that K is conjugation invariant. Therefore we have that K is a

normal convex subgroup in G by Theorem 1.7. Thus by Theorem 1.5, we have that H/K

is left-orderable. In fact, H/K is Archimedean ordered; this is because there are no convex

subgroups between K and H, thus by Hölder’s Theorem 1.4 there exists H → (R,+).

Since H is finitely generated, we have that there exists a homomorphism

H → H/K → Z.

Thus, G is locally indicable.

1.8 Conradian left-ordering

In Chapter 4 we will be using Conradian left-orderings. Thus let us see what conditions

we need for a left-ordering to be a Conradian left-ordering.

We can build a Conradian ordering from Archimedean orderings of abelian quotients.

To do this, consider (G,<) a left-ordered group and C, D ⊂ G convex subgroups of G.

We say that (C, D) is a Conradian convex jump if C is normal in D, and the natural

ordering of D/C is an Archimedean ordering. A Conradian left-ordering is a left-ordering

where all jumps are Conradian.

Example 1.6. We have seen that the Klein bottle group, K, has at least four orderings

(see Example 1.3). We want to show that K has exactly four orderings all of which are

Conradian. To do this we will show that 〈y〉 is convex in any left-ordering of K.

The steps are as follows:

• We need to show that any element of K can be written as ynxm with m, n ∈ Z.

• We need to show that 〈y〉 is convex.

• We need to find the convex jumps and infer that all orderings are Conradian.

Recall that

K ∼= 〈x, y | xyx−1 = y−1〉.
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From the relation xyx−1 = y−1 we get four new relations

• xy = y−1x, to show this multiply xyx−1 = y−1 by x on the left;

• yx = xy−1, this is because

xyx−1 = y−1 =⇒ yxyx−1 = 1 multiply by y on the left

=⇒ yxy = x multiply by x on the right

=⇒ yx = xy−1 multiply by y−1 on the right;

• x−1y−1 = yx−1, this is because

xyx−1 = y−1 =⇒ yx−1 = x−1y−1 multiply by x−1 on the left

• x−1y = y−1x−1.

Thus by using these relationships we can write an element of K with all powers of x on

one side and all powers of y on the other side. Meaning that an element g of K can be

written as ynxm (m, n ∈ Z).

To show that 〈y〉 is convex, we need to show that if g ∈ G and there exists k, n ∈ Z

such that y−k < g < yn, then this implies that g is a power of y. Assume that x > 1, and

we will show that yn < xm for all n ∈ Z and m and odd integer. Let us suppose that this

does not happen to arrive at a contradiction. Let

1 < xm < yn, (without loss of generality we can assume that m is an odd integer)

=⇒ x−myn > 1

=⇒ x−mynxm > 1 (because x is positive)

=⇒ (x−myxm)n > 1

=⇒ (y−1)n > 1 (because xyx−1 = y−1 and m is odd)

=⇒ y−n > 1,
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which is a contradiction. Thus yn < xm for all n ∈ Z if x > 1.

Let g ∈ K be an element where g = ynxm. Suppose that y−k < g < yl for k, l ∈ Z.

Then

y−k < ynxm < yl

=⇒ 1 < yk+nxm < yl+k

=⇒ 1 < xm < yl+k−k−n = yl−n,

which is a contradiction if m 6= 0. Thus g ∈ 〈y〉.

Recall that 〈y〉 and K/〈y〉 are infinite cyclic groups and also, that all the left-orderings

of K arise from the following exact sequence:

1 - 〈y〉 - K - K/〈y〉 - 1.

Thus we have that K has exactly four orderings, this is because the kernel and the quotient

both have exactly two orderings. Furthermore, in every left-ordering of K the convex

subgroups are {1}, 〈y〉, and K. Therefore the only convex jumps in a left-ordering of K

are ({1}, 〈y〉) and (〈y〉, K). Moreover, 〈y〉 and Z/〈y〉 are Archimedean; thus every convex

jump of a left-ordering of K is a Conradian jump. This implies that every left-ordering of

K is Conradian

Theorem 1.9. [10, Lemma 4.2][9, Chapter 9, Theorem 9.5] Let (G,<) be a left-ordered

group, then < is a Conradian left-ordering if and only if for all g, h ∈ G positive elements

there exists n > 0 such that g < hgn.

From Theorem 1.9 we have that every bi-ordering is Conradian. Why is this? Well, we

know that in a bi-ordering g < hgn is true for all positive elements g, h ∈ G by taking

n = 1.

In fact we have that requiring n = 2 is equivalent to Theorem 1.9. Thus we can think

of Conradian groups as follows:
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Proposition 1.9. [29, Section 3, Proposition 3.7] Let (G,<) be a left-ordered group. Then

< is Conradian if and only if g < hg2 for all g, h ∈ G with g, h > 1.

Proof. Assume that < is Conradian and that hg2 < g. Then from hg2 < g we have that

(g−1hg)g < 1, this implies that g−1hg is a negative element. From g−1hg < 1 we have that

hg < g. Note that h and hg are two positive element of G. Then for all n ≥ 0 we have:

h(hg)n = h(hg)n−2(hg)(hg)

< h(hg)n−2(hg)g

= h(hg)n−2(hg2)

< h(hg)n−2g

...

< hg.

Therefore, h and hg do not satisfy Theorem 1.9, which is a contradiction to our assumption.

The converse follows from Theorem 1.9.

Theorem 1.10 (Conradian Burns-Hale). [9, Chapter 9, Theorem 9.17] A group G is

Conradian left-orderable if and only if for every nontrivial finitely-generated subgroup

H ⊂ G, there exists a Conradian left-orderable group K and a nontrivial homomorphism

H → K .

A proof of Theorem 1.10 can be found in Chapter 9, Section 2 in [9].

Proposition 1.10. [9, Chapter 9, Proposition 9.19] Let G be a nontrivial finitely-generated

Conradian left-ordered group, then there exists a homomorphism G→ Z.

Proof. The proof is similar to Theorem 1.8 from Section 1.7. We choose a maximal convex

subgroup C of G and conclude that G/C is Archimedean ordered, thus there exists a

homomorphism G→ Z

Corollary 1.2. [5][9, Chapter 9, Corollary 9.21] Let (G,<) be a left-ordered group. Then

G is locally indicable if and only if G is Conradian left-ordered.
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Proof. Let G be a group with a Conradian ordering and let H be a non-trivial finitely

generated subgroup of it. We have that H also has a Conradian left-ordering. Therefore,

by Proposition 1.10 we have that there exists a map of H onto Z.

Conversely, if for every nontrivial finitely-generated subgroup H of G there is a surjective

map H → Z, then by Theorem 1.10 we have that G has a Conradian left-ordering .
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Chapter 2

Spaces of Orderings

This chapter aims to see how we can topologise the set of left-orderings on a group G.

This will be used in Chapter 4.

2.1 Introduction

Let us introduce some important definitions and facts about topologies, which we will be

using in the coming chapters.

Let X be a set. A topology on X is a collection τ of subsets of X such that:

1. The empty set ∅ and X are in τ ;

2. If {Xi}i∈I ∈ τ , then
⋃
i∈I
Xi ∈ τ , where I is an indexing set;

3. If {Xi}ni=1 ∈ τ , then
n⋂
i=1

Xi ∈ τ .

A pair (X, τ) is called a topological space. We say that a subset U of X is an open set of

X if U ∈ τ .

We say that a collection of open sets {Bi}i∈I of a topological space X is an open cover

if X =
⋃
i∈I
Bi. We say that a topological space X is compact if every open covering has

a finite subcollection whose union is X. We say that a collection B of subsets of X is a

23
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basis of X if the open sets are exactly all unions of sets in B.

Recall that if {Xi}i∈I is a family of topological spaces and I an indexing set, then the

product topology on
∏
i∈I
Xi is the topology having as basis the collection

B =

{∏
i∈I

Ui | Ui is a open set in Xi and Ui 6= Xi for all but finitely many i ∈ I

}
.

Let us recall a theorem that will be used in the following subsection.

Theorem 2.1 (Tychonoff’s Theorem). [28, Chapter 5] Let {Xi}i∈I be compact spaces,

then
∏
i∈I
Xi is compact in the product topology.

The proof can be found in [28] Chapter 5, Section 37.

2.1.1 Topology on the Power Set

We want to topologise the set of left-orderings on G. Before doing this, let us recall what

is the topology of the power set, as this will be useful in understanding the topology of

the set of left-orderings on G.

Let X be any set. Recall that the power set of X is the collection of all its subsets,

denoted by P(X) or 2X . The notation 2X means that we can identify the power set with

the set of all functions f : X → {0, 1} by using the characteristic function χA : X → {0, 1}

associated to a subset A of X. The characteristic function is defined as

χA(x) =

{
1, x ∈ A
0, x /∈ A.

Now, to give the set 2X a topology we use the product topology. To do this, consider

2X to be the product of |X| copies of {0, 1} such that for each x ∈ X the sets

{f ∈ 2X | f(x) = 0}
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and

{f ∈ 2X | f(x) = 1}

are a subbasis. Going back to the other notation, P(X), we have that the subbasic open

sets are of the form:

Vx = {A ⊂ X | x ∈ A} and V c
x = {A ⊂ X | x /∈ A}.

Note that these sets are closed as well, since the sets are complement of each other.

Theorem 2.2. [9, Chapter 1] Let X be a set and P(X) be its power set. Then P(X) with

the product topology is compact.

2.2 The Space of Orderings

Now that the preliminaries are done, let us see how can we topologise the set of left-orderings

of a group G.

Definition 2.1. [9, Chapter 1, Definition 1.37] Let G be a group. We define the space of

left-orderings of G, denoted by LO(G), equipped with the subspace topology arising from

LO(G) ⊂ P (G) as

LO(G) = {P ⊂ G | P is the positive cone}.

I.e., LO(G) is the collection of all subsets P ⊂ G such that:

1. P ∩ P−1 = ∅ and

2. G = P t P−1 t {1}, disjoint union.

What are the open sets of LO(G)? To find them we need to relate the space of LO(G)

with P(G), the power set of G. To do this, we view LO(G) ⊂ P(G) as a subset of the

power set of G. The subbasis of LO(G) is sets of the form

Ug = Vg ∩ LO(G) = {P ∈ LO(G) | g ∈ P}
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and

U c
g = V c

g ∩ LO(G) = {P ∈ LO(G) | g−1 ∈ P} = Ug−1 .

A basic open set of LO(G) has the form
n⋂
i=1

Ugi , for a finite subcollection {gi}ni=1 of elements

of G .

Is LO(G) compact?

Proposition 2.1. The space LO(G) with the topology described above is compact.

Proof. The sets which are not positive cones satisfy one of the following two conditions

(i) P · P 6⊂ P or (ii) G 6= P t P−1 t {1} (disjoint union). In order for a set X to satisfy

condition (i) we must have elements g, h ∈ G such that g, h ∈ X and gh /∈ X, i.e., all the

sets which satisfy (i) are

T =
⋃

g, h∈G

{X ∈ 2G | ∃g, h ∈ X such that gh /∈ X} =
⋃

g, h∈G

(
Vg ∩ Vh ∩ V c

gh

)
,

which is an open set.

In order for X to satisfy (ii) we must have an element 1 6= g ∈ G such that g, g−1 ∈ X

or g, g−1 /∈ X, or 1 ∈ X. The collection of sets satisfying this is

S =

(⋃
g∈G

{X ∈ 2x | g, g−1 ∈ X}

)
∪

 ⋃
g∈G\{1}

{X ∈ 2x | g, g−1 /∈ X}



=

 ⋃
g∈G\{1}

Vg ∩ V c
g

 ∪
 ⋃
g∈G\{1}

V c
g ∩ Vg

 ,

which is an open set as well.

This makes LO(G) a closed subset of P(G), and thus a compact space.

Proposition 2.2. [33, Theorem 1.4.] The space LO(G) is totally disconnected .
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Proof. Let P1 and P2 be two distinct positive cones in a set U . such that for g ∈ G we

have that g ∈ P1 and g /∈ P2. Then we have that P1 ∈ Ug and P2 ∈ Ug−1 and Ug ∪ Ug−1 is

the entire space. Therefore Ug and Ug−1 disconnect U .

Proposition 2.3. [33, Proposition 1.3] If G is countable infinite, then LO(G) is metriz-

able.

Proof. Let G be a countable infinite set and g0, g1, . . . its elements. Let P1, P2 ∈ LO(G) be

two positive cones such that the orderings determined by P1 and P2 agree on g0, . . . , gr−1

and disagree on gr. Define d(P1, P2) =
1

2r
. This is a metric on LO(G).

It is important to know if our space is compact or not, totally disconnected or not,

and if it has isolated points or not. This is because if we know this information we might

be able to determine to what space it is homeomorphic to.

Theorem 2.3. [6, Theorem 1] Let X be a nonempty, compact, totally disconnected,

metrizable space without isolated points. Then X is homeomorphic to the Cantor space.

Definition 2.2. The Cantor set is defined as:

C = [0, 1] \
∞⋃
n=1

3n−1⋃
k=0

(
3k + 1

3n+1
,
3k + 2

3n+1

)

A Cantor space is any space which is homeomorphic to the Cantor set C.

Note that LO(G) is a totally disconnected since P(G) is totally disconnected. Further-

more, if G is countable infinite, we have that LO(G) is metrizable, since P (G) is metrizable.

Theorem 2.3 can give a characterisation of the homeomorphism type of LO(G). This

characterisation is that LO(G) is homeomorphic with the Cantor set if and only if it

contains no isolated points. By isolated points, we mean open one-point sets.

In this thesis, we have that an isolated ordering is one where the positive cone P satisfies

{P} =
n⋂
i=1

Ugi ,
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where g1, . . . , gn are positive elements of G.

2.3 The Structure of LO(G)

Can we give LO(G) a natural G-action? Let (G,<) be a ordered group. Given g ∈ G the

action of g on LO(G) is P 7→ g−1Pg. Moreover, G acts on LO(G) by homeomorphisms,

since the image of a basic open set
n⋂
i=1

Ugi under an action of g is the basic open set

n⋂
i=1

Ug−1gig [9, Chapter 10]. We will be using this in Chapter 4 Section 4.1.

More often than not, we do not know the structure or the action of LO(G). An example

when the structure and the action are known is the Klein bottle. In Example 1.6, we saw

that the Klein bottle has exactly four orderings and that all orderings come from the short

exact sequence

1→ 〈y〉 → K → K/〈y〉 → 1,

note that K/〈y〉 is generated by the cosets of x. The four orderings of K depend on if x

and y are positive or negative. Now LO(K) = {P++, P+−, P−+, P−−}, where

• P++ means that both x and y are positive;

• P+− means that x is positive and y is negative;

• P−+ means that x is negative and y is positive;

• P−− means that x is negative, and y is negative.

Now, let us see what the action does to the above four orderings. Note that, from the

relations, xyx−1 = y−1 and yxy−1 = x have that the sign of x does not change when we

conjugate by y and that the sign of y changes when we conjugate by y. Thus when we

conjugate the ordering P++ we get the ordering P+− and when we conjugate the ordering

P−+ we get P−−. Therefore the generator y acts trivially and the generator x acts by

swapping pairs of left-orderings (Figure 2.1).
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Figure 2.1: Action of the generators of K on LO(K)

Recall that K is not bi-orderable, thus every orbit of the action contains more than

one point.

Let us give another example of a group where the structure of LO(G) is known.

Example 2.1. Consider the braid group with infinite many generators, B∞. We will show

that LO(B∞) is homeomorphic to the Cantor set. This group has the following presentation

[12, Chapter XIV, Proposition 2.10]

B∞ = 〈σ1, . . . , σn, · · · | σiσj = σjσi, for |i− j| ≥ 2

σiσjσi = σjσiσj, for |i− j| = 1〉.

Let P ⊂ B∞ be the positive cone of a left-ordering of B∞. Let H ⊂ P be a finite subset.

Furthermore, let Bn
∞ be the braid group with infinitely many generators where we shift the

generators by n, i.e., the generator σi becomes σi+n. We want to show that there exists an

i such that σiPσ
−1
i is a positive cone of B∞ with P 6= σiPσ

−1
i and H ⊂ σiPσ

−1
i .

Fix an integer n such that H ⊂ Bn, where Bn is the braid group with n− 1 generators.

Note that Bn is the subgroup of B∞ generated by the first n− 1 generators. Furthermore,

for i > n we have that every element h ∈ H commutes with σi. Therefore, H = σiHσ
−1
i ⊆

σiPσ
−1
i .

Now assume that there exists i > n such that P 6= σiPσ
−1
i . Then we have that Bn

∞

is isomorphic to B∞. Thus both P ∩ Bn
∞ and (σiPσ

−1
i ) ∩ Bn

∞ are positive cones of Bn
∞.
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Therefore, if P = σiPσ
−1
i for some i > n, then B∞ and Bn

∞ are bi-orderable group, which

is a contadiction since B∞ is not bi-orderable (this is because the braid σ1σ
−1
2 is conjugate

to its inverse; see [12] Chapter II Proposition 1.2. for a proof that B∞ is not bi-orderable).



Chapter 3

Amenable Groups

Amenability is an important property for groups. There are many different definitions

which characterise this class of groups. In this chapter, we will introduce the notion of

amenable groups using some of these characterisations. We will restrict our discussion to

discrete groups. We will be using amenable groups in Chapter 4.

3.1 Definitions and Examples

Let us look at an interesting example of a non-amenable groups. To do this we need to

introduce Ponzi schemes:

Definition 3.1. [26, Lecture 3, Definition 3.2] Let G be a discrete group. A Ponzi scheme

on G is a function m : G→ G such that

1. #m−1(g) ≥ 2 for all g ∈ G,

2. there is a finite subset S ⊂ G such that m(g) ∈ gS for all g ∈ G.

One of the reasons we are looking at Ponzi schemes first is because they are easier to

understand than the following definition:

Definition 3.2. [11, Chapter 9, Definition9.1.1] Let G be a group. If there exists a

sequence of nonempty finite subsets of G, {Fn}n≥1 such that

lim
n→∞

| Fn \ gFn |
| Fn |

= 0,

31
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for all g ∈ G, then we say that {Fn}n≥1 is a Følner sequence.

Definition 3.3. [11, Chapter 9, Proposition9.1.2] Let G be a group. If G has a Følner

sequence, then G is amenable.

Theorem 3.1 (Gromov). [26, Lecture 3, Theorem 3.4] Let G be a group. Then G is not

amenable if and only if there exists a Ponzi scheme on G.

Recall the following definition:

Definition 3.4. [15] Let G be a finitely generated group and H ⊆ G a set of generators

for G. The Cayley graph, Cay(G, H), corresponding to G has vertex set equal to G and

two vertices g1, g2 ∈ G are connected by a directed edge from g1 to g2 if and only if there

exists h ∈ H such that g1 = hg2.

Example 3.1. [26, Lecture 3, Example 3.1] Let us look at an example of a group that is

not amenable. Consider the free group F2 = 〈a, b〉. Assume that each vertex of the Cayley

graph of F2 represents a person holding one dollar. Let ft(g) denote the amount of money

that a person, an element g ∈ F2, has at time t. At time t = 0 we have

f0(g) = $1, ∀g ∈ F2.

At a given time every person passes its dollar to a neighbour, h, which is closer to the

identity (by closer to the identity we mean that the path length between h and the identity,

1, in Cay(F2, {a, a−1, b, b−1}) (see figure 3.1) is minimal). Furthermore, we have that the

identity will keep its dollar as there is nowhere it can pass it to.

Now, at time t = 1 we have that all elements, except the identity element, have

f1(g) = $3 for all g

and

f1(e) = $5.

The Ponzi scheme function is m : F2 → F2 defined by g 7→ g′. If g = n1n2 . . . nm

(ni ∈ {a±1, b±1}) is a reduced word then g passes its dollar to g′ = n1n2 . . . nm−1 and the
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identity keeps its dollar. Hence we have that every element more than doubled their money,

which satisfies condition (1) of the definition. By taking S = {a, b, a−1, b−1} we satisfy

condition (2) of Ponzi schemes.

a a

b−1

b

b−1

b−1

a−1 a

b

b

aa−1

a−1a−1

b

b−1

Figure 3.1: Cayley graph of F2 with generators a and b

Example 3.2. [11, Chapter 9, Proposition 9.1.4] If G is a finite group, then G is amenable.

To show this we need to find a Følner sequence for G. Let {Fn}n≥1 be a nontrivial sequence

of finite subsets of G such that Fn = G for all n ≥ 1. Then

lim
n→∞

|Fn \ gFn|
|Fn|

= 0, ∀g ∈ G,

thus G is amenable.

Example 3.3. [11, Chapter 9, Proposition 9.1.5] The set of integers Z is an amenable

group. To show this we need to find a Følner sequence. Consider the following nontrivial

finite sequence of subsets of Z:

Fn := {0, . . . , n− 1} ⊂ Z.
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Now, let g ∈ Z be a fixed point. Then for all n such that |g| ≤ n we have

Fn \ (g + Fn) =


{0, . . . , g − 1}, g ≥ 1

∅, g = 0

{g + n, g + n+ 1, . . . , n− 1}, g ≤ −1.

Now

|Fn \ (g + Fn)|
|Fn|

=



|{0, . . . , g − 1}|
|Fn|

=
|g|
n
, g ≥ 1

|∅|
|Fn|

= 0, g = 0

|{g + n, g + n+ 1, . . . , n− 1}|
|Fn|

=
|g|
n
, g ≤ −1.

Hence,

lim
n→∞

|Fn \ (g + Fn)|
|Fn

=


lim
n→∞

|g|
n

= 0, g ≥ 1

lim
n→∞

0 = 0, g = 0

lim
n→∞

|g|
n

= 0, g ≤ −1.

Thus we have that {Fn}n≥1 is a Følner sequence for Z, which implies that Z is an amenable

group.

3.2 Different Characterisations of Amenability

In this section, we want to prove that three different characterisations of amenability are

equivalent.

Definition 3.5. [24, Chapter 9] Let X be a set. The set of all bounded functions of the

form X → R is denoted by `∞(X,R).

Here, `∞(X, R) is a real vector space where the binary operations are pointwise addition

and scalar multiplication.
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If we have a group G with a left G-action on X then we have a natural G-action on

`∞(X,R) as follows

φ : G× `∞(X, R)→ `∞(X, R)

(g, f) 7→ f ◦ g−1

Definition 3.6. [24, Chapter 9, Definition 9.1.1] Let G be a group. A left-invariant mean

on `∞(G,R) is a linear map µ : `∞(G, R)→ R such that

1. (Normalisation.) If 1G is the constant map: g 7→ 1, then µ(1G) = 1;

2. (Positivity.) If f ∈ `∞(G,R) is non-negative (i.e., f(g) ≥ 0 for all g ∈ G), then

µ(f) ≥ 0;

3. (Left-invariance.) For all f ∈ `∞(G,R) and all g ∈ G we have that µ(g · f) = µ(f),

where · is the left-action of G on `∞(G,R).

Theorem 3.2. [26, Lecture 3, Exercise 3.8.2 and Proposition 3.11][11, Chapter 9,

Lemma9.2.1] If G is a countable discrete group, then the following are equivalent:

1. G is amenable;

2. For all finite subsets S of G and every ε > 0, there is a nonempty finite subset F of

G such that

| F \ sF |
| F |

≤ ε ∀s ∈ S

(this is also called almost-invariant);

3. There is a left-invariant mean on `∞(G,R).

Proof. [26, Lecture 3][11, Chapter 9] (1) =⇒ (2) Suppose G admits a Følner sequence,

call it {Fn}n≥1. Let S be a finite subset of G and ε > 0. Then for each s ∈ S we can find

t(s) ∈ Z such that

| Fn \ sFn |
| Fn |

≤ ε ∀n ≥ t(s).
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Take m = max
s∈S

t(s), then we have that Fm satisfies

| Fm \ sFm |
| Fm |

≤ ε ∀s ∈ S.

For (2) =⇒ (1), assume that (2) holds. Let S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ . . . be finite subsets

of G such that G =
⋃
n

Sn. For each (n,m) ∈ Z× Z, let Fn,m be the set corresponding to

Sn from condition (2) using ε =
1

m
. By condition (2) we have that Fn,m satisfies

| Fn,m \ gFn,m |
| Fn,m |

≤ 1

m
∀g ∈ Sn.

We want to show that Fn,n is a Følner sequence. Let g ∈ G. There exists k such that

g ∈ Sn for all n ≥ k. Thus

| Fn,n \ gFn,n |
| Fn,n |

≤ 1

n
∀g ∈ Sn whenever n ≥ k.

Thus

lim
n→∞

| Fn,n \ gFn,n |
| Fn,n |

≤ lim
n→∞

1

n
= 0

and

lim
n→∞

| Fn,n \ gFn,n |
| Fn,n |

≥ 0.

Therefore,

lim
n→∞

| Fn,n \ gFn,n |
| Fn,n |

= 0,

which implies that Fn,n is a Følner sequence.

Now we will present a sketch of a proof that (1) implies (3). Let {Fn}n≥1 be a Følner

sequence and f ∈ `∞(G,R). Let us consider

mn(f) =
1

| Fn |
∑
x∈Fn

f(x).
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We have that mn(f) is the average value of f on the set Fn, and thus mn(f) is a mean on

`∞(G,R). Since Fn satisfies condition (2) of the theorem, we have that mn(f) is “almost”

left-invariant. This is because the linearity and left-invariant condition may not hold

(i.e., mn(g · f) = mn(f) may not hold). To make mn(f) left-invariant we can choose a

subsequence {nk} such that the limit m(f) = lim
k→∞

mnk
(f) exists. Such a choice can be

made using either ultrafilters, Hahn - Banach Theorem, or a clever application of the

Axiom of Choice (see [26, Lecture 3]).

To show that (3) =⇒ (1), (3) =⇒ (2), or (2) =⇒ (3), we need to use functional analysis,

which is beyond the scope of this thesis. Proofs can be found in [27] Chapter 12 Section

12.3.

One important characterisation of amenability which we will use in the coming chapters

is that a group G is amenable if every space X with a G-action has an invariant probability

measure (see Corollary 3.1). Let us recall the definition of probability measure:

Definition 3.7. [16, Definition 1.12] Let G be a discrete group acting on a compact metric

space X. We define a G-invariant finite additive probability measure on P(X) µ with the

following properties

1. µ(X) = 1;

2. µ(A tB) = µ(A) + µ(B), A,B ⊂ X disjoint;

3. µ(gA) = µ(A), for g ∈ G and A ⊂ X.

Corollary 3.1. [26, Lecture 3, Corollary 3.12] Let G be an amenable group which acts

on a compact metric space X by homeomorphisms. Then there exists a left-invariant

probability measure µ on X.

Proof. [16] Let G be an amenable group. Let m ∈ `∞(G,R)→ R be a left-invariant mean

on G. We want to show that there exists a probability measure on `∞(G,R) which is

invariant under multiplication from the left. Firstly, let A ⊂ G, then define µ(A) = m(1A),
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where 1A(g) =

{
1, g ∈ A
0, g /∈ A.

Let us show that µ is a measure:

• µ(G) = m(1G) = m(1) = 1;

• Let A, B ⊂ G and note that 1AtB = 1A + 1B. Thus

µ(A tB) = m(1AtB)

= m(1A + 1B)

= m(1A) +m(1B)

= µ(A) + µ(B).

• Let A ⊂ G and g ∈ G and note that

g · 1A(h) = 1A(gh)

=

{
1, gh ∈ A
0, gh /∈ A

=

{
1, h ∈ g−1A
0, h /∈ g−1A

= 1g−1A(h).

Thus

µ(g−1A) = m(1g−1A)

= m(g · 1A)

= m(1A)

= µ(A).

Lastly, pick x0 ∈ X and define t : G → X by t(g) = gx0. Then we can define a

finitely additive G-invariant probability measure on X as follows:

τ : P(X)→ [0, 1]

τ(A) = µ(t−1(A)), A ⊂ X.



3.3. PROPERTIES 39

3.3 Properties

In this section, let us introduce some important properties of amenable groups.

Proposition 3.1. [24, Chapter 9, Proposition 9.1.6]

(a) Subgroups of amenable groups are amenable.

(b) Consider the following short exact sequence

1 - N
i - G

π - Q - 1.

Then G is amenable if and only if N and Q are amenable.

Proof. [24, Chapter 9, Proposition 9.1.6]

(a) Assume that G is an amenable group and let N be a subgroup of G. Since G is

amenable we have that there exists a left-invariant mean µG. Consider the inclusion

map i : N → G. Then we can define a left-invariant mean of N as

µN : `∞(N,R)→ R

f 7→ µG(i ◦ f)

Thus subgroups of amenable groups are amenable, i.e., N is amenable.

(b) Assume that G is amenable, then by part (a) we have that N is amenable. We, now,

have to show that Q is amenable. Consider the surjective homomorphism π : G→ Q.

Then define a left-inavriant mean on Q as

`∞(Q,R)→ R

f 7→ µQ(π ◦ f).

Therefore Q is amenable.
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Conversely, assume that N and Q are amenable groups. Thus we have that there

exists left-invariant means µN and µQ for N and Q, respectively. We want to build

a left-invariant mean of µG for G.

Let f ∈ `∞(G,R) and consider the map f ′ : Q→ R (i.e., f ′ ∈ `∞(Q,R)) defined by

f ′(gN) = µN(fg), where fg ∈ `∞(N,R) is a the function defined by fg(n) = f(g · n)

for all the cosets of gN . Then we have that

µG : `∞(G,R)→ R

defined by µG(f) := µQ(f ′)

is a left-invariant mean for G, which implies that G is amenable. To show it is

indeed a left-invariant mean, we need to show that µG satisfies the conditions of

Definition 3.6. Let us show the first condition. Because N and Q are amenable

we have that µN(1) = 1 and µQ(1) = 1, where 1 is the constant map. Take

f = 1 ∈ `∞(G,R). Then we have that fg(n) = f(g · n) = 1(g · n) = 1. Thus

f ′ ∈ `∞(Q,R) is f ′(gN) = µN(fg) = µN(1) = 1, which implies that

µG(1) = µQ(f ′) = µQ(1) = 1.

The remaining conditions will follow similarly.

Proposition 3.2. [35, Chapter 2, Proposition 2.8.8] Let G1 ⊂ G2 ⊂ · · · ⊂ Gn, . . . be

amenable groups. Then G :=
⋃
n

Gn is amenable.

Proof. [35, Chapter 2, Section 2.8] We use Følner sequences. Let S ⊂ G be a finite set.

Given ε > 0 we have that S ⊂ Gn for some n. We know that Gn is amenable, thus we

have that there exists Fn ⊂ Gn such that

lim
n→∞

|Fn \ gFn|
|Fn|

= 0

for all g ∈ S. Thus G is amenable.
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Proposition 3.3. [11, Chapter 9, Corollary 9.2.7] Let G be a countable abelian group.

Then G is amenable.

Proof. By Proposition 3.2 it is enough to show that finitely generated abelian groups are

amenable. This follows from the fundamental theorem of finitely generated abelian groups,

Example 3.2, Example 3.3, and Proposition 3.1.

Proposition 3.4. If G is an amenable group, then G has no non-abelian free subgroups.

Proof. The proof follows from Proposition 3.1 and Example 3.1
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Chapter 4

A conjecture by Peter Linnell

We have seen that not all left-orderable groups are Conradian left-orderable groups. An

example of such a group is the infinite braid group B∞ [9, Chapter 10, Problem 10.11].

Thus a question we can ask ourselves is: What other condition must we include for a left-

orderable group to always be a Conradian left-orderable group? We have seen (Corollary

1.2) that including locally indicability is one answer (in fact, local indicability is not just

sufficient but also necessary). Another answer is including the condition of amenability.

This chapter aims to look at what has been done in linking amenability to Conradian

left-orderable groups. Throughout this chapter, we consider G a discrete group.

Recall that a group G is locally indicable if every nontrivial finitely generated subgroup

H has an infinite cyclic quotient. In 1977 [3, Theorem 7.3.1] it was proved that a locally

indicable group is left-orderable; however, the converse is not true [2]. Furthermore,

in 1993, [8, Theorem A], it was shown that left-ordered elementary amenable groups

are locally indicable. Moreover, in 1999, Peter Linnell [22] the following question: Are

left-ordered amenable groups locally indicable? In 2006 Dave Witte Morris answer this

question and showed that amenable left-ordered groups are locally indicable (see Section

4.1 for the proof of this theorem). In 2001 Peter Linnell [23] formulated the following

stronger statement:

Conjecture 4.1. [23, Conjecture 1.1] Let (G,<) be a left-ordered group which does not

contain a non-abelian free subgroup. Then G is Conradian left-orderable.

43
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Then in 2006, Dave Witte Morris [25] investigated Peter Linnell’s conjecture and

showed that amenable left-orderable groups are locally indicable (this is Theorem 4.1).

Amenable groups are a natural class of groups to consider in light of Proposition 3.4

The structure of this chapter is as follows: We will be presenting three research articles

and each article will have its own section. The articles are

• Dave Witte Morris: “Amenable groups that act on the line” [25]; this is Section 4.1,

• Peter Linnell, Dave Witte Morris: “Amenable groups with a locally invariant order

are locally indicable” [21]; this is Section 4.2,

• Yago Antoĺın, Cristóbal Rivas: “The space of relative orders and a generalisation of

Morris indicability theorem” [1]; this Section 4.3.

The proofs of the main theorems in all three articles follow the following four steps:

• Step 1: Define a topological space and find an action by homeomorphisms of the

given group G;

• Step 2: we use the fact that the group G is amenable (co-amenable, in the case of

the third article) to find an invariant probability measure on the topological space

defined in Step 1;

• Step 3: we use the Poincaré Recurrence Theorem to find a recurrent point;

• Step 4: we use the previous steps to tie everything together with Conradian orders

(local indicablility, a generalization of Conradian order, respectively).

4.1 Research Article 1

In 2006 Dave Witte Morris proved the following theorem:

Theorem 4.1. [25, Theorem B] If G is an amenable left-orderable group, then G is locally

indicable.
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See Chapter 1 Section 1.7 for the definition of locally indicable.

Because we want to show that G is locally indicable, we can assume without loss of

generality that G is a non-trivial, finitely generated group [25]. We review the proof of

Theorem 4.1 via the next 4 steps:

4.1.1 Step 1: Topology and an Action by Homeomorphisms

Let LO(G) be the collection of all left-orderings of a group G. Recall that in Chapter 2

we saw how we can give LO(G) a topology. Also, recall that LO(G) ⊂ P(G) and LO(G)

has subbasic sets of the form:

Ug = Vg ∩ LO(G) = {P ∈ LO(G) | g ∈ P}

U c
g = V c

g ∩ LO(G) = {P ∈ LO(G) | g−1 ∈ P} = Ug−1 ,

where Vg is the subset of sets containing g and V c
g is its complement of P(G). Thus we

have that Ug is a subbasic set of the subspace topology. A basic open set is

n⋂
i=1

Ugi , gi ∈ G.

Furthermore, from Proposition 2.1 we know that LO(G) is a closed subset of P(G) and

thus it is a compact topological space.

Let < be an ordering on G. In Chapter 2 we saw that there is an action of g ∈ G by

homeomorphisms which sends P to g−1Pg. It is an action by homeomorphisms because

the image of a basic open set
n⋂
i=1

Ugi under an element of g is the basic open set
n⋂
i=1

Ug−1gig.

4.1.2 Step 2: Applying Amenability

Let G be a group which acts on the compact metric space LO(G). Since G is an amenable

group, by Corollary 3.1, we have that there exists a left-invariant probability measure, µ,

on LO(G).
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4.1.3 Step 3: Recurrent Ordering

Recall the Poincaré Recurrence Theorem:

Proposition 4.1 (Poincaré Recurrence Theorem). [25, Proposition 3.1] Let X be a

measurable space with probability measure µ. Consider the homeomorphism f : X → X

which preserves the measure µ and let A ⊂ X be any measurable subset. Then there exists

a subset B of X such that µ(B) = 0 and for all a ∈ A \ B, there exists a sequence of

positive integers {ni}n≥1 so that fni(a) ∈ A for every i.

Note that as long as we avoid the ”bad” points, which there are not that many, we

have that the iterates fni(a) will return near to a infinitely often.

Definition 4.1. [25, Definition 3.2] Let (G,<) be a left-ordered group. We say that

< is recurrent for every cyclic subgroup if for all finite subsets {g1, . . . , gn} such that

g1 < g2 < · · · < gn and for all g ∈ G there is a sequence {ni} such that

g1g
ni < · · · < gng

ni

for every i.

Proposition 4.2. [25, Corollary 3.4] Let G be a countable amenable left-orderable group.

If there exists a left-invariant probability measure, µ, on LO(G), then G has a left-invariant

order that is recurrent for every cyclic subgroup.

Proof. Let G be a countable amenable, left-orderable group, P its positive cone and < its

corresponding left-ordering. Let g ∈ G. Because G is amenable we have that there exists

a probability measure on LO(G). Consider a sequence of distinct elements of G, g1, . . . , gr.

We can apply the Poincaré Recurrence Theorem with X = LO(G) with the transformation

P 7→ g−1Pg in the role of f , and the basic open set
r−1⋂
i=1

Ug−1
i gi+1

for A. Then we have that

there exists a set Bg,g1,...,gr of measure 0 such that for all P ∈
r−1⋂
i=1

Ug−1
i gi+1

\Bg,g1,...,gr there

exists a sequence of positive integers n1, n2, . . . , ni, . . . such that

g1g
ni < · · · < grg

ni ∀i,
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i.e., gniPg−ni ∈
n−1⋂
i=1

Ug−1
i gi+1

.

The union
⋃
Bg,g1,...,gr has measure 0 (since G is countable), thus there exists a positive

cone P which is not in
⋃
Bg,g1,...,gr . This order is recurrent for every cyclic subgroup.

Note that the basic open set
r−1⋂
i=1

Ug−1
i gi+1

does not need to have positive measure. This is

because when we take the union ∪Bg,g1,...,gr , since G is countable, it will still have measure

0. Thus we have that there exist a point P which is outside of this union ∪Bg,g1,...,gr , i.e.,

P /∈ ∪Bg,g1,...,gr . If the positive cone P satisfies the inequality g1 < g2 < · · · < gr, then we

have that for this collection of elements P /∈ Bg,g1,...,gr ; this means that P is a recurrent

point.

4.1.4 Step 4: Tying Everything Together with Conradian Or-

derings

Lemma 4.1. [25, Lemma 4.3] Let (G,<) be a left-orderable group where < is recurrent

for every cyclic subgroup, then G is Conradian 1.

Proof. Let g, h be positive elements of the group. Since we have that g > 1, then recurrence

implies that there exists ni such that ghni > 1hni = hni for all i. Since we also have h > 1,

then hni > h, thus ghni > h for all i, which implies that the order is Conradian.

Let G be a left-ordered group such that its left-ordering is recurrent for every cyclic

subgroup. Then by Corollary 1.2 and Lemma 4.1 we have that G is locally indicable. This

concludes the proof of Theorem 4.1.

Not all Conradian ordered groups are recurrent orderable, and there exist Conradian

left-orderable groups which are not recurrent orderable.

1See Chapter 1 Section 1.8 for the definition of Conradian order.
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4.2 Research Article 2

Definition 4.2. [21, Definition 2.2] Let G be a group. We say that a partial order < on

G is locally invariant if for all x, y ∈ G such that y 6= 1, then either xy > x or xy−1 > x.

In 2013 Peter Linnell and Dave Witte Morris [21] improved Dave Witte Morris’ result,

Theorem 4.1 as follows:

Theorem 4.2. [21, Theorem 1.1] If G is an amenable group which has a locally invariant

ordering, then G is locally indicable.

We outline a proof when G is countable of Theorem 4.2 with the following 4 steps:

4.2.1 Step 1: Topology and Action by Homeomorphism

In Dave Witte Morris’ paper [25], we have seen that the space of left-orderings on G was

used. Unlike the first research article where we used left-invariant orderings on G, here we

will be using binary relations on G.

How can we give the set of all relations which define a locally invariant ordering a

topology? Using a similar method as we have shown in Chapter 2, let X be any set. To

give P(X × X) or 2X×X a topology we can identify 2X×X with the set of all functions

f : X ×X → {0, 1}. Furthermore, we can view 2X×X as the Cartesian product of |X ×X|

copies of the set {0, 1}. By Tychonoff’s Theorem, we have that for any set X, 2X×X is a

compact Hausdorff space when equipped with the product topology 2.

The subbasis of this topology are the following sets:

U(x,y) = {S ⊂ X ×X | (x, y) ∈ S}

U c
(x,y) = {S ⊂ X ×X | (x, y) /∈ S}.

2We do not need X to be a compact topological space. Recall that {0, 1} is a compact space and by
the Tychonoff’s theorem an arbitrary product of compact spaces is compact, i.e., |X ×X| copies of {0, 1}
is compact, which implies that 2X×X is compact for any set X.
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Note that U(x,y) is both open and closed.

Since the U(x,y)’s are a subbasis, we have that the open basic sets are

n⋂
i=1

U(xi,yi) xi, yi ∈ X, ∀i.

We denote by LI(G) ⊂ P(G×G) the set of all relations which define a locally invariant

ordering. In this embedding we have that the locally invariant ordering < corresponds to

R ∈ G×G by setting x < y if and only if (x, y) ∈ R. It can be shown that LI(G) using a

similar method to the one we have presented for LO(G).

The group G acts on 2G×G by both left and right translations. Thus we have that

there exists an action of G×G on 2G×G defined as follows: Given (g, h) ∈ G×G, set

φ(g,h) : P(G×G)→ P(G×G)

(x, y) ∈ φ(g,h)(R) ⇐⇒ (gxh−1, gyh−1) ∈ R.

Let us check that this is an action. For this we need to show that

(x, y) ∈ φ(g, h) ◦ φ(s, t)(R)

is the same as (x, y) ∈ φ(gs, ht)(R). We have

(x, y) ∈ φ(g, h) ◦ φ(s, t)(R) ⇐⇒ (gsxt−1h−1, gsyt−1h−1) ∈ R

and

(x, y) ∈ φ(gs, ht)(R) ⇐⇒ (gsx(ht)−1, gsy(ht)−1) ∈ R

⇐⇒ (gsxt−1h−1, gsyt−1h−1) ∈ R.

This is an action by homeomorphisms since the image of a basic open set
n⋂
i=1

U(xi,yi),

where xi, yi ∈ G for all i, under the action of (g, h) ∈ G × G is the basic open set

n⋂
i=1

U(gxih−1, gyh−1), where xi, yi ∈ G for all i. It restricts to an action of homeomorphisms

on LI(G).
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4.2.2 Step 2: Applying Amenability

Let G be a group which acts on the compact metric space LI(G). Since G is an amenable

group, by Proposition 3.2 we have that G×G is amenable. Now by Corollary 3.1 we have

that there exists a left-invariant probability measure, µ, on LI(G).

4.2.3 Step 3: Recurrent Locally Invariant Ordering

Definition 4.3. [21, Definition 2.8] Let G be a group and R a relation on G, i.e.,

R ∈ 2G×G. We have that R is recurrent for (g, h) ∈ G×G, if for every finite

F = {(x1, y1), . . . , (xk, yk)} ⊂ G×G :

with (xi, yi) ∈ R for all i, there exists a sequence of positive integers {ni} such that

φ(gni , hni )(R) ∈
k⋂
j=1

V(xj , yj) for all i. We say that R is recurrent if it is recurrent for every

element of G×G.

This means that R is recurrent if:

(x, y) ∈ φ(gni ,hni )(R) ⇐⇒ (gnixh−ni , gniyh−ni) ∈ R.

Then recurrent for (g, h) means that there exists ni such that (x1, y1), . . . , (xk, yk) ∈

φ(gni ,hni )(R), i.e.,

x1 ≺ y1, . . . , xk ≺ yk ⇐⇒ gnixjh
−ni ≺ gniyjh

−ni ∀j = 1, . . . , k.

This means that if ≺ is a locally invariant ordering, then, by using Poincaré’s Theorem,

we have that the locally invariant order, ≺, is recurrent.

Corollary 4.1. [21, Corollary 3.6] Let G be a countable, amenable group with a locally

invariant order. Then the locally invariant order < on G is recurrent.
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4.2.4 Step 4: Tying everything together with locally indicability

Proposition 4.3. [21, Proposition 4.1] Let G be a group and ≺ be a recurrent locally

invariant order. Then:

1. Let H = 〈x〉 be a cyclic subgroup of G. By restricting ≺ to a left coset of H we get

either:

. . . ≺ gx−2 ≺ gx−1 ≺ g ≺ gx ≺ gx2 ≺ . . . , (4.1)

or

. . . � gx−2 � gx−1 � g � gx � gx2 � . . . . (4.2)

for g, x ∈ G with x 6= 1.

2. The set P = {g ∈ G | g � 1} is closed under multiplication.

3. The group (G,<) is left-ordered.

Proof. 1. Fix 1 6= x ∈ G and g ∈ G. Then locally invariant implies that either

gx � g or gx−1 � g. Suppose that gx � g. Then by local invariance applied

to gx and x either gx2 � gx or gx(x−1) � gx (which contradicts our assump-

tion). Thus g ≺ gx ≺ gx2 ≺ . . . . Similarly, by assuming gx−1 � g we get that

· · · ≺ gx−2 ≺ gx−1 ≺ g.

Now (4.1) happens when gx−1 ≺ g and g ≺ gx and (4.2) happens when gx−1 � g

and g � gx.

Let us assume neither (4.1) nor (4.2) hold. Then either gx−1 � g and g ≺ gx or

gx−1 ≺ g and gx ≺ g. Using gx−1 � g and g ≺ gx we get:

g ≺ gx ≺ gx2 ≺ gx3 ≺ . . .

and

gx−1 ≺ gx−2 ≺ gx−3 ≺ . . . .
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Because ≺ is recurrent for x and since gx−1 ≺ gx−2 we have that there exists a

positive integer k such that (gx−1)xk+2 ≺ (gx−2)xk+2. This means gxk+1 ≺ gxk,

which contradicts g ≺ gx ≺ gx2 ≺ . . . . Similarly we arrive at a contradiction if

gx−1 ≺ g and gx ≺ g.

2. Assume that there exists x and y, with x � 1 and y � 1, but xy 6� 1. From (1) we

have that ≺ is a total order, and thus 1 � xy. Then, because x � 1 � xy, we have

that x � xy and from (1) we obtain

x � xy � xy2 � . . . ,

thus

1 � xy � xyn, for all n ∈ Z+.

Furthermore, ≺ is recurrent for y and x � 1. Using part (1) we have that for x � 1

there is some n ∈ Z+ such that xyn � 1yn � 1, which is a contradiction.

3. Let P be the positive cone of ≺. Given x ∈ G a nontrivial element of G and using

part (1) with g = 1 we get that either x ∈ P or x−1 ∈ P . Now, using part (2) we

have that P is closed under multiplication. Thus (G,<) is a left-ordered group.

To finish the proof of Theorem 4.2, assume that G is a countable group (because we

want to show that G is a left-orderable group we may assume that G is finitely generated

[20, Chapter 3]. Hence, we can assume that G is countable). Using Corollary 4.1, we have

that G has a locally invariant order <. Now by part (3) of Proposition 4.3 we have that

(G,<) is left-ordered. Now using Theorem 4.1 and Step 4 of its proof, we have that G is a

locally indicable group.

4.3 Research Article 3

In 2018 Yago Antoĺın and Cristóbal Rivas extended this result to groups acting on the line,

which may or may not be amenable, but contain large point-stabilisers. A generalization
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of amenability is co-amenability, and a generalization of Conradian left-ordering is G

surjects onto Z if G is finitely generated. Recall that in Corollary 1.2 we showed that G is

Conradian left-orderable if and only if it is locally indicable.

Definition 4.4. [1] Let G be a group and H a subgroup of G. We say that H is co-

amenable in G if when G acts on a compact space by homeomorphisms such that H

preserves a probability measure, then G preserves a probability measure.

A generalization of Theorem 4.1 is:

Theorem 4.3. [1, Theorem 1.2] Let G be a finitely generated left-orderable group. Suppose

there is a proper, relatively convex (see below for a definition) co-amenable subgroup. Then

G surjects onto Z.

We outline a proof of this theorem below:

4.3.1 Step 1: Topology and Action by Homeomorphism

Definition 4.5. [1, Definition 1.3] Let G be a left-orderable group and C a proper subgroup

of G. Recall that C is relatively convex in G if there exists a total order < on G/C such

that if fC < gC then hfC < hgC for all f, g, h ∈ G. We say that < is a relative order

of G with respect to C.

Rivas and Antoĺın [1] noted that a subgroup C of G is relatively convex if and

only if there exists P ⊂ G a nonempty semigroup such that: (i) CPC ⊂ P and (ii)

G = P t P−1 t C. Such subsets P can be identified with the set of relative orders. Let

LOR(G) be the set of P ⊂ G such that P satisfies:

(i) CPC ⊂ P and

(ii) G = P t P−1 t C, where C is a relatively convex subgroup.

To prove that the space LOR(G) is compact (using a similar method as the one

presented in Chapter 2) we need a different characterisation of relative convexity.
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Lemma 4.2. Let G be a left-orderable group. A subgroup C is relatively convex in G if

and only if there exists P ⊂ G such that

1. P ∩ P−1 = ∅,

2. P · P ⊂ P ,

3. CP := G \ (P ∪ P−1) is a subgroup of G,

4. cPd ⊂ P for all c, d /∈ P ∪ P−1.

Let LORel(G) to be the set of P ⊂ G satisfying these properties.

We want to show that LOR(G) and LORel(G) \ ∅ are the same, meaning our notion of

relatively convex agrees with Antolin and Rivas’. Thus we need to show that if P is a

set satisfying the conditions (i) and (ii) from above, then P satisfies the conditions from

Lemma 4.2, and vice-versa.

Suppose that there exists C relatively convex in G and P satisfying (i) CPC ⊂ P and

(ii) G = P t P−1 t C. Then we have that P satisfies (1)-(4) of Lemma 4.2:

1. P ∩ P−1 = ∅ is true, because G = P t P−1 t C is a disjoint union.

2. P · P ⊂ P is true because P is a semigroup.

3. CP := G \ (P ∪ P−1) is a subgroup because CP = C and G = P t P−1 t C .

4. cPd ⊂ P is true for all c, d ∈ C because CPC ⊂ P .

On the other hand, assume that P is nonempty and satisfies conditions (1)-(4) of

Lemma 4.2. Then we need to show that CP is relatively convex and P satisfies

(i) CPPCP ⊂ P

(ii) G = P t P−1 t CP .
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Now (i) CPC ⊂ P and (ii) G = P tP−1tC follow from part (4) and part (3), respectively,

of Lemma 4.2.

Lastly, we need to show that CP is a relatively convex subgroup. Let P ′ ⊂ CP be a

positive cone and set Q = P ′ ∪ P . Let us show that Q is a positive cone. For this we

need to show that Q · Q ⊂ Q and Q t Q−1 t {id} = G. Let c ∈ P ′ and d ∈ P . Then

cd ∈ P ∪ P ′, thus Q · Q ⊂ Q (property (4) is used). For the second one we have that

Q−1 = (P ′)−1 ∪ P−1. Thus

Q tQ−1 t {1} = (P ′ ∪ P ) t
(
(P ′)−1 ∪ P−1

)
t {1}

= G.

Define fCp ≺ gCp if and only if f−1g ∈ Q. Not that this definition is independent of the

coset representatives. Furthermore, recall that by Theorem 1.5 the order ≺ is left-invariant.

Thus we have that Cp is a relatively convex subgroup of G.

Thus LORel(G) \ ∅ is the same set that Antolin and Rivas [1] have in their paper, but

defined differently.

Since LORel(G) ⊂ P(G), the subbasis of the topology of LORel(G) are the following

sets:

Ug = Vg ∩ LORel(G)

U c
g = V c

g ∩ LORel(G),

where Vg, V
c
g ⊂ P(G). The basic open sets are

n⋂
i=1

Ugi ∩
n⋂
j=1

U c
gj

.

Theorem 4.4. LORel(G) with the topology described above is compact.

Proof. Note that LORel(G) ⊂ P(G) and that P(G) is compact. Thus we need to show

that LORel(G) is a closed subset of P(G). To do this let us see the ways a subset X ⊂ G

fails to be an element of LORel(G). This happens if X does not satisfy one of (1)− (4).

Let us check that (1)-(4) are closed conditions by showing the complements are open.
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(1) X such that X ∩ X−1 = ∅ is an open set, by a proof similar to that of LO(G) is

compact (Theorem 2.1) .

(2) X such that X · X 6⊂ X is an open set, by a proof similar to that of LO(G) is

compact (Theorem 2.1).

(3) Consider X such that CP := G \ (X ∪X−1) is not a subgroup. Thus either

(a) there exists g ∈ CP such that g−1 /∈ CP , or

(b) there exists g, h ∈ CP such that gh /∈ CP , or

(c) id /∈ CP .

If (a) holds, then there exists g /∈ X ∪X−1 such that g−1 ∈ X ∪X−1, which is not

possible. Note that (c) cannot happen, since X ∩X−1 = ∅.

Now, if (b) holds, then g, h ∈ G \ (X ∪X−1) and gh ∈ X ∪X−1 so that

X ∈
[
U c
g ∩ U c

g−1 ∩ U c
h ∩ U c

h−1

]
∩
[
Ugh ∪ U(gh)−1

]
= Wg,h.

Therefore,

X ∈
⋃

g, h∈G

Wg,h

if and only if X satisfies (3)(b). Note
⋃

g, h∈G
Wg,h is open.

(4) Consider X such that cXd 6⊂ X for some c, d 6∈ X ∪X−1. If cXd 6⊂ X, then there

exists g ∈ X such that cgd /∈ X, hence X ∈ Ug ∪ U c
cgd for some g, which is open.

Thus the collection of all such X is
⋃

c,d 6∈X∪X−1

⋃
g∈G

(
Ug ∪ U c

cgd

)
, which is open.

Hence LORel(G) is a closed subset of P(G), which implies that LORel(G) is compact.

Note that ∅ ∈ LORel(G) and this will pose a problem when we use the Poincaré

Recurrence Theorem, because the empty set is a fixed point of the G-action and when

we use the Poincaré Recurrence Theorem the empty set might always be the recurrent point.
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However, if we add in Lemma 4.2 the condition that G is finitely generated, then

LORel(G) \ {∅} is also compact. This is because if {g1, . . . , gn} are the generators of G,

then {∅} =
n⋂
i=1

U c
gi
∩ U c

g−1
i

is an open set. In other words, the only P ⊂ G satisfying (1)-(4)

and containing no generators is the empty set.

Now when we use the Poincaré Recurrence Theorem, we will get a recurrent point

which is guaranteed not to be the empty set.

Proposition 4.4. Let G be a group. Then we have that G acts on LORel(G) \ {∅} by

conjugation. If P is a relative cone with respect to C ⊂ G, then for any g ∈ G, gPg−1 is

a relative cone with respect to gCg−1.

Proof. We need to show that gPg−1 is a relative cone with respect to gCg−1. To do this

we need to show that gPg−1 satisfies the conditions in Lemma 4.2. I.e., we need

1. gPg−1 ∩ gP−1g−1 = ∅;

2. (gPg−1)(gPg−1) ⊂ gPg−1;

3. gCPg
−1 := G \ (gPg−1 ∪ gP−1g−1) is a subgroup;

4. cgPg−1d ⊂ gPg−1 for c, d /∈ gPd ∩ gP−1g−1.

Let us show that conditions (1)-(4) from above are true.

1. gPg−1 ∩ gPg−1 = ∅ is true because P is a relative cone.

2. (gPg−1)(gP−1g−1) ⊂ gPg−1 is true because P is a semigroup and P is a relative

cone.

3. To show that gCPg
−1 := G\ (gPg−1∪ gP−1g−1) is a subgroup, we need to show that

gCPg
−1 is closed under multiplication and inverses. Let f, h ∈ G\(gPg−1∪gP−1g−1).
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Then consider f, h /∈ gP−1g−1 and fh ∈ gP−1g−1, which implies

g−1fg, g−1hg /∈ P ∪ P−1

=⇒ g−1fg, g−1hg ∈ CP = C \ (P ∪ P−1)

=⇒ g−1fhg ∈ CP

=⇒ g−1fhg /∈ P ∪ P−1

=⇒ fh /∈ gPg−1 ∪ gP−1g−1

=⇒ fh ∈ gCPg−1.

4. Assume cPd ⊂ P for c, d /∈ P ∪ P−1. We want to show that cgPg−1d ⊂ gPg−1.

Note that

c, d /∈ gPg−1 ∪ gP−1g−1 =⇒ g−1cg, g−1dg /∈ P ∪ P−1.

Thus, g−1cgPg−1d ⊂ P (since P satisfies condition (4)). Therefore cgPg−1d ⊂

gPg−1.

The action is by homeomorphisms, this is because the image of a basic set
n⋂
i=1

Ugi under

an element g ∈ G is the basic open set
n⋂
i=1

Ug−1gig.

4.3.2 Step 2: Applying Co-amenability

Proposition 4.5. [1, Corollary 2.6] If C is a relatively convex subgroup of G, then C

fixes every point P ∈ LORel(G) \ {∅} for which C = CP .

Proof. Let P be a relative cone with respect to C and c ∈ C. ThenG = cP−1c−1tCtcPc−1.

By Lemma 4.2 we have that cPc−1 ⊂ P , which implies that cPc−1 = P .

We have that the space LORel(G) \ {∅} is compact and C acts with a fixed point

and because C is co-amenable, we have that there exists a probability measure, µ, on

LORel(G) \ {∅}. The probability measure is the Dirac measure.
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4.3.3 Step 3: Recurrent Ordering

Definition 4.6. Let P be a relative cone with respect to C with corresponding relative

order <. We say that < is recurrent for every cyclic subgroup if for every g ∈ G and every

finite sequence g1, . . . , gr in G such that g1C ≤ · · · ≤ grC, there exists positive integers

ni →∞ such that

g1g
niC ≤ · · · ≤ grg

niC.

Corollary 4.2. Suppose G is a finitely generated group and C is a relatively convex

subgroup. Assume that there exists a G-invariant probability measure, µ, on LORel(G)\{∅}.

Then G admits a nontrivial relative order which is recurrent for every cyclic subgroup.

Proof. Let G be a finitely generated group and g1, . . . , gr its generators. By using the

Poincaré Recurrence Theorem we have that there exists a set Bg,g1,...,gr of measure 0

such that for all P /∈
r⋂
i=1

Ug−1gig \ Bg,g1,...,gr there exists a sequence of positive integers

n1, n2, . . . , ni, . . . such that

g1g
niC ≤ · · · ≤ grg

niC ∀i.

The union
⋃
Bg,g1,...,gr has measure 0, thus there exists a positive cone P /∈

⋃
Bg,g1,...,gr .

This order is recurrent for every cyclic subgroup.

Note that the basic open set
r⋂
i=1

Ug−1gig does not need to have positive measure. This is

because when we take the union ∪Bg,g1,...,gr , since G is countable, it will still have measure

0. Thus we have that there exist a point P which is outside of this union ∪Bg,g1,...,gr , i.e.,

P /∈ ∪Bg,g1,...,gr . If the relative cone P satisfies the inequality g1g
niC ≤ · · · ≤ grg

niC, then

we have that for this collection of elements P /∈ Bg,g1,...,gr ; this means that P is a recurrent

point.
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4.3.4 Step 4: Tying everything together with a generalization

of Conradian Orderings

In order to show that G surjects onto Z we need a generalisation of Conradian order. This

generalisation has been developed by Andrés Navas in [29] and is called “crossings”. Let

us define what a crossing on an action is:

Definition 4.7. [1, Definition 3.2.] Let (T ,≤) be a totally ordered space and G a group

acting on (T ,≤) by order-preserving bijections. Let f, g ∈ G and u, v, w ∈ T . We say that

(f, g;u, v, w) is a crossing for the action if:

1. u < w < v

2. gnu < v and u < fnv for every n ∈ N

3. there exists M, N ∈ N such that fNv < w < gMu.

We can relate Conradian orderings with crossings as follows:

Theorem 4.5. [30, Theorem 1.4] If (G, <) is Conradian, then the left-action of G on

itself has no crossings.

Proof. Assume ≤ is not a Conradian ordering and let f, g ∈ G be positive elements such

that fgn < g for every n ∈ Z+. We want to show that there exists a crossing (i.e., we want

to show that (f, g : u, v, w) is a crossing) for (G,≤) where u = 1, v = f−1g, and w = g2.

For n = 2 we have that fg2 < g and thus we have that g2 < f−1g. Using g > 1 we get

that 1 < g2 < f−1g, i.e., u < w < v.

From fgn < g where n ∈ Z+ we have that gn < f−1g. Thus gnu < v. Furthermore,

since f and g are positive elements of G we have that fn−1g > 1 . Thus fnv > u for all

n ∈ Z+. Lastly, observe that f(f−1g) = g < g2, thus fNv < v for N = 1 and g2 < g3 is

w < gMu for M = 3.
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Note that actions without crossings give maps onto the integers when the group is

finitely generated [1].

Lemma 4.3. [1, Lemma3.7] Let G be a group and ≤ be a relative order of G with respect

to C that is recurrent for every cyclic subgroup. Then the left-action of G on (G/C, ≤) is

an action without crossings. If G is a finitely generated group, then G surjects onto Z.

Using Lemma 4.3 we have that: if G is a finitely generated group and ≤ a relative

order of G which is recurrent for every cyclic subgroup, then G surjects onto Z. This

concludes the proof of Theorem 4.3.
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Chapter 5

Unique Product Property for Groups

We want to give a generalisation of the theorems we saw in Chapter 4. We saw that in order

to investigate Peter Linnell’s Conjecture 4.1, we required our group to be amenable. Then

we weakened left-orderablility to locally invariance, and lastly, we weakened amenability

to co-amenability. What is a weakening of locally invariance? One weakening of locally

invariance is the unique product property. What is a group with the unique product

property?

Definition 5.1. [32] Let G be a group. Let A,B ⊂ G any two finite subsets of G. We

say that G has the unique product property if for all A,B ⊂ G, there exists at least one

element x ∈ G such that x = ab (a ∈ A and b ∈ B) has a unique representation. The

product ab will be called a unique product for A and B. We denote by U(A, B) the set of

all unique products from A and B.

The unique product property fits with the classes of algebraic properties we have

defined from Chapter 1 to Chapter 4 as follows: let

(A) bi-orderable;

(B) recurrent left-invariant orderable;

(C) locally indicable;

(D) Conradian orderable;
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(E) left-orderable;

(F) locally-invariant orderable;

(G) unique product property (UPP);

(H) torsion-free.

We have that the class of bi-orderable groups is inside the class of recurrent left-invariant

orderable groups which is a subset of locally indicable groups and so on, i.e.,

(A) ⊂ (B) ⊂ (C) ⊂ (D) ⊂ (E) ⊂ (F ) ⊂ (G) ⊂ (H) and (D) ⊂ (C).

The second and third inclusions were presented in this thesis (the second is Lemma

4 in Chapter 4, and the third one is Corollary 1.2 Chapter 1), the first inclusion can be

found in [18], the fifth and sixth inclusions can be found in [18] and the seventh inclusion

can be found in [13]. Note that it is an open problem whether or not (G) ⊂ (F ), and

in the next section, we will give an example that torsion-free groups are not UPP. (I.e.,

that (G) ⊂ (H) is proper.) Note that every let-orderedable group has the unique product

property [14, Chapter 1, Section 1.4.3]. The converse is not true, i.e., groups with unique

product property are not left-ordered; this was proved in [19, Appendix A, Theorem A.1].

Furthermore, in [2], it was proved that left-ordered groups are not locally indicable.

We can write all of this as a directed graph, Figure 5.1, where the edges of the graph

denote the containments between the classes of groups. Note that the edge (C) to (D) is

reversible, which means that (C) if and only if (D). As noted above, it is an open problem

if (G) implies (F), all the other edges are not reversible.

Going back to Chapter 4, we saw that if we add the condition that the group is

amenable, then some of the above implications are reversible (see Figure 5.2), the red

edges correspond to implications whose converse hold under the additional assumption

of amenability. We saw that amenable left-ordered groups are indicable (see Theorem

4.1) and that amenable groups with a locally invariant ordering are locally indicable (see
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A

B
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D E

F

G

H

Figure 5.1: Directed graph which represents the implications for the defined class of groups

Theorem 4.2). Thus a question one can ask is what condition we must include for a group

with the unique product property to make it left-ordered? In light of the theorems from

Chapter 4, we have that amenability might be an answer. Theorem 4.2 makes natural the

following question

Question 5.1. [14, Chapter 4, Question 4.1.11]: Are amenable groups with the unique

property product left-orderable?

A

B

C

D E

F

G

H

Figure 5.2: Directed graph under the additional assumption of amenability
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5.1 Torsion-free groups are not UPP

Before we try to answer Question 5.1. Let us look at an example of a torsion-free groups

which does not have the unique product property.

Consider the group [32]:

G = 〈x, y | x−1y2x = y−2, y−1x2y = x−2〉.

To show that G is torsion-free and does not have the unique product property we will

follow [31, Chapter 9, Proposition 37.1] and [14, Chapter 1].

Given

x(a, b, c) = (a+ 1, 1− b,−c)

y(a, b, c) = (−a, 1 + b, 1− c),

consider H = 〈x, y〉 ⊂ Isom(R3). It can be checked that x, y satisfy the same relations as

G, and in fact H ∼= G.

Note that every element of H is a map f : R3 → R3 defined by

f(a, b, c) = (u0a+ u1, v0b+ v1, w0 + c+ w1),

where u1, v1, w1 ∈ Z and u0, v0, w0 ∈ {±1}.

In fact, there are only four kinds of elements :

(Type 1) f1(a, b, c) = (a+ x,−b+ y,−c+ z), where x and y are odd and z is even;

(Type 2) f2(a, b, c) = (−a+ x, b+ y,−c+ z), where x is even and y and z are odd;

(Type 3) f3(a, b, c) = (−a+ x,−b+ y, c+ z), where x and z are odd and y is even;
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(Type 4) f4(a, b, c) = (a+ x, b+ y, c+ z), where x, y, and z are even.

Let T denote the set of all functions of Type 1, Type 2, Type 3, and Type 4. Then we

can check that (T, ◦) satisfies the conditions of a group. For the closure condition, let f1

be a function of Type 1 and f2 be a function of Type 2. Then

f1 ◦ f2(a, b, c) = f1(−a+ x, b+ y,−c+ z)

= (−a+ 2x,−b, c)

which is of Type 3. The other 15 cases are similar to verify. The other group conditions

can be shown similarly.

Furthermore, the generators of H are in T , thus H ⊂ T . If we show that T is torsion-

free, then we have that H is torsion-free and hence G is torsion-free.

To show that T is torsion-free, we need to show that fn1 , f
n
2 , f

n
3 , f

n
4 6= 1, for n ∈ Z \ {0}

and f1, f2, f3, f4 6= 1, and that products of fi’s are different from the identity. Let us look

at f4:

f4 ◦ · · · ◦ f4︸ ︷︷ ︸
n times

(a, b, c) = (a+ nx, b+ ny, c+ nz) 6= 1.

The other cases follow similarly.

To show that G is not UPP, consider the subset S = Ax ∪By ∪ C(xy) of G, where

A = {1, x−2, x−2y2, y2, x−2(xy)−2, (xy)2}

B = {1, x2, y−2, y−2(xy)2, (xy)2, x2y−2(xy)2}

C = {(xy)2, (xy)−2}.

Then |S| = 14 and S · S has no unique product. Unfortunately there is no simple way to

check all products by hand, this was done in [32] using a computer.
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5.2 Another characterisation of UPP

Let us look at another characterisation of the unique product property, called the two

unique product property.

Definition 5.2. [4] Let G be a group and A, B ⊂ G such that |A| ≥ 2 and |B| ≥ 2. We

say that G has the two unique property if there are at least two distinct elements, c1, c2,

of AB each of which has a unique expression as a product, ci = aibi where ai ∈ A, bi ∈ B

are unique products. Let TU(A,B) be the set of all pairs of unique products for A and B

where |A|, |B| ≥ 2 are finite:

TU(A,B) = {(c1, c2) | c1, c2 are unique products for AB}.

In [34], it was shown that the unique product property is equivalent to the two unique

product property.

5.3 Question

Now, going back to Question 5.1, we have that if the Question 5.1 were true, then the

proof is likely follow the four steps we have seen in Chapter 4, i.e.,

• Step 1: Topology and action by homeomorphism

• Step 2: Using amenability to get a probability measure

• Step 3: Recurrence and Poincaré Recurrence Theorem

• Step 4: Tying the previous steps with left-orderability.

5.3.1 Step 1: Topology and Action by Homemorphism

Let us try to tackle the topology part of Step 1. Let

U(G) = {U(A,B) | A, B ⊂ G, A, B finite and nonempty} ⊂ P(G)
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be the set of all sets of the form U(A,B) where A, B ⊂ G with |A|, |B| ≥ 1, A and B

finite. Recall that P(G) has a topology (see Chapter 2), thus U(G) will inherit a topology

from P(G).

We need U(G) to be compact for us to apply Step 2, Step 3, and Step 4. This is

equivalent to U(G) being closed since P (G) is a compact Hausdorff space.

Let us show by using a counterexample that U(G) is not compact. Let G = F2 = 〈x, y〉.

Consider the subsets

A1 = {id}, A2 = {id, y}, . . . , Ak = {id, y, . . . , yk−1}, B = {x}.

Then U(Ak, B) = {x, yx, y2x, . . . , yk−1x}. Observe that | U(Ak, B) |= k and that

U(A1, B) ⊂ U(A2, B) ⊂ · · · ⊂ U(Ak−1, B) ⊂ U(Ak, B) ⊂ . . . .

Now, taking the lim
k→∞

U(Ak, B) =
∞⋃
k=1

U(Ak, B) we get a infinite set which is not in our

space U(F2) (this is because of the way we have defined the space), thus U(F2) is not

compact.

This is a bad definition of a space U(G) in the sense that our space is not compact. If

we can find a topology of U(G), which gives compact spaces, it is reasonable to assume

that Step 2, Step 3, and Step 4 will be similar to Step 2, Step 3, and Step 4 from Section

4.1.

Alternatively, because the two unique product property and the unique product prop-

erty are equivalent we can try the set TU(G) of all sets of the form TU(A,B) ⊂ P(G×G)

where A, B ⊂ G with |A|, |B| ≥ 2, A and B finite. Recall that P(G×G) has a natural

topology (see Chapter 4), thus TU(A,B) will inherit a topology from P(G×G).

We need TU(G) to be compact for us to apply Step 2, Step 3, and Step 4. This is

equivalent to TU(G) being closed.
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However, TU(G) is not compact. To show this, let G = F2 = 〈x, y〉. Consider the

subsets

A1 = {id, y}, A2 = {id, y, y2}, . . . , Ak = {id, y, . . . , yk−1}, B = {id, x}.

Then TU(Ak, B) = {(id, id), (id, x), (y, id), (y, x)(y2, id), (y2, x), . . . , (yk−1, id), (yk−1, x)}.

Observe that | TU(Ak, B) |= 2k and that

TU(Ak−1, B) ⊂ TU(Ak, B).

Now, taking the lim
k→∞

TU(Ak, B) =
∞⋃
k=1

TU(Ak, B), we get a infinite set, thus TU(F2) is

not compact.

This is a bad definition of topology of TU(G) since our space is not compact if

we can find a topology of TU(G) which gives compact spaces it is reasonable to assume

that Step 2, Step 3, and Step 4 will be similar to Step 2, Step 3, and Step 4 from Section 4.2.

Even though we do not have a compact topological space, let us try to see how the rest

of the steps will proceed. Before we go to Step 2, we need to find subbasis of the topology,

the basic open sets and an action by a homeomorphism.

Since U(G) ⊂ P(G), the subbasis of the topology of LORel(G) are the following sets:

Ug = Vg ∩ U(G)

U c
g = V c

g ∩ U(G),

where Vg, V
c
g ⊂ P(G). The basic open sets are

n⋂
i=1

Ugi ∩
n⋂
j=1

U c
gj

.

Similarly to Chapter 4, we have that there exists an action of G on U(G). This ac-

tion is an action by conjugation which sends U(A,B) to gU(A,B)g−1. Let us show

that U(A,B) 7→ gU(A,B)g−1. For this we need to to show that gU(A,B)g−1 =
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U(gAg−1, gBg−1), where

gU(A,B)g−1 = {gabg−1 | gabg−1 is a unique expression}

U(gAg−1, gBg−1)g = {gag−1gbg−1 | gag−1gbg−1 is a unique expression}.

Let gabg−1 ∈ gU(A,B)g−1, where gabg−1 is a unique expression. Then

gabg−1 = gag−1gbg−1, g−1g = 1.

We need to show that gag−1gbg−1 is a unique expression. Let gcg−1 ∈ gAg−1 and

gdg−1 ∈ gBg−1 such that gcg−1gdg−1 = gag−1gbg−1. Then

gcg−1gdg−1 = gag−1gbg−1

=⇒ cd = ab

=⇒ c = a and d = b.

Thus gag−1gba−1 is a unique product, and hence gU(A,B)g−1 ⊆ U(gAg−1, gBg−1). Simi-

larly, we can show that gU(A,B)g−1 ⊇ U(gAg−1, gBg−1) This is an action by homeomor-

phism becasue the image of a basic open set
n⋂
i=1

Ugi under an element g ∈ G is the basic

open set
n⋂
i=1

Uggig−1 .

5.3.2 Step 2: Left-invariant Probability Measure

As we have seen in Chapter 4, to move to Step 2 of the proof, we need our group to act

on a compact space by a homeomorphism. However, the way we have defined U(G) does

not make it a compact topological space. Nevertheless, let us assume that we somehow

have constructed a left-invariant probability µ on LO(G).
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5.3.3 Step 3: Recurrent Point (or ordering)

Because we want to show that G is a left-orderable group, we may assume that G is finitely

generated [20, Chapter 3, Corollary 3.1.1] and hence we can assume that G is countable.

What we need for Step 3 of the proof is that G admits a recurrent point and also, we

want to use the Poincaré Recurrence Theorem. In Chapter 4, we saw that in Step 3 in

the three articles we used the fact that our group, G had an ordering (a left-ordering, a

locally invariant ordering, and a relative ordering, respectively).

Definition 5.3. Let G be a group with the unique product property. We say that a point

U(A,B) ∈ U(G) is a recurrent point if for every g ∈ G and every finite sequence g1, . . . , gn

there exists a positive integer ni →∞ such that

gniU(A,B)g−ni ∈
n⋂
i=1

Uggig−1 .

Proposition 5.1. Let G be a countable amenable group which has the unique product

property (or the two unique product property) and let τ be a left-invariant measure on

U(G) (or TU(G)). Then G admits a recurrent point.

Proof. Let G be a countable amenable group and U(A,B) ∈ U(G). Using Step 2, we

have that there exists a probability measure, τ , on U(G). Consider a sequence of distinct

elements of G, g1, . . . , gn. We can apply the Poincaré Recurrence Theorem with X = U(G)

with the transformation U(A,B) 7→ gU(A,B)g−1 in the role of f , and the basic open set

n⋂
i=1

Uggig−1 for A.Then, we have that there exist a set Cg,g1,...,gn of measure 0 such that

for all U(A,B) ∈
n⋂
i=1

Uggig−1 \ Cg,g1,...,gn there exists a sequence of positive integers {ni}i≥1

such that

gniU(A,B)g−ni ∈
n⋂
i=1

Uggig−1 .
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The union of ∪Cg,g1,...,gn has measure 0 (since G is countable), thus there exists a point

U(A,B) which is not in ∪Cg,g1,...,gn . Thus G admits a recurrent point.

5.3.4 Step 4: Tying the previous steps together

From Step 3 we have that there exists a recurrent point U(A,B). This means that for

every U(A,B) ∈
n⋂
i=1

Ugi and g ∈ G, then there exists ni ∈ ∞ such that

gniU(A,B)g−ni = U(gniAg−ni , gniBg−ni).

Now, we have that U(A,B) is a finite set such that for every element of the group there

exists infinitely many ni’s such that gniU(A,B)g−ni = U(gniAg−ni , gniBg−ni) ∈
n⋂
i=1

Ugi .

Note that this happens only for some groups.

For example, this does not happen for a free group. Let Fn(x1, . . . , xn) be the free

group with n generators. Consider S = {a1, . . . , ar} ⊆ Fn, where a1, . . . , ar are reduced

words where ai 6= aj (i 6= j) and where S ∈
r⋃
i=1

Uai . If S were a recurrent point, then

for all h ∈ Fn there exists a positive integer ni →∞ such that hniSh−ni ∈
r⋃
i=1

Uai . This

happens if and only id hniajh
−ni ∈ S, i.e, hniSh−ni = S. However, this is not possible.

Consider aj = xi1 . . . xin ∈ S be a word from S of biggest length and let ` = `(aj), where

`(aj) is the length of aj. Now take xj ∈ Fn an element that does not commute with aj.

When we conjugate aj by xmj , where m > ` we know that at one point we will get that

xmj ajx
−m
j is still longer than the longest aj after we have reduced everything that can be

reduced. Thus as we conjugate aj with higher power of xj we will get longer and longer

words. Hence amj ajx
−m
j /∈ S, which implies that for all h ∈ Fn there exists ni →∞ such

that hniSh−ni /∈
r⋃
i=1

Uai .
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Chapter 6

Conclusion

In Chapter 4 Sections 4.1, 4.2 we have seen that in order to investigate Peter Linnell’s

conjecture we needed to add the condition that the group is amenable and we needed

to weaken left-orderability to locally invariance. In Chapter 4 Section 4.3 we have seen

that Dave Witte Morris’ result can be extended to groups acting on the line by giving a

generalisation of amenability.

In Chapter 5 we proposed generalisations of the theorems presented in Chapter 4

by weakening the locally invariance condition and replacing it with the unique product

property and the two unique product property, respectively. However, when we tried to

tackle Step 1 of the proofs we saw that there is no obvious topological space to build on

and mimic the proofs. If we able to somehow overcome this and construct a probability

measure µ on U(G), then our next hurdle will be to understand what

gniU(A,B)g−ni = U(gniAg−ni , gniBg−ni) ∈
n⋂
i=1

Ugi

means and how we can tie it with left-orderability.

Further works investigating Peter Linnell’s conjecture will require to either:

1. define the set of all unique products property or the set of all two unique products

in such a way that their respective topological spaces are compact, or
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2. if we assume that we can construct a probability measure µ on U(G) we need to

analyse how to link the existence of a recurring point with left-orderability, or

3. weaken the amenability condition by replacing it with the non-existence of non-

abelian free subgroups.

However, either of these things will require a new idea because there is no way to

replicate the established proofs.
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