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Isotonic Regression 1
Abstract

Isotonic regression is a technique for detecting trends that have the property of being non-
decreasing or non-increasing. The first purpose of this study is to present the theory and
computational procedures to conduct isotonic regression analysis for a one-way analysis of
variance experimental design. The second purpose is to illustrate the use of the isotonic
regression technique in analyzing psychological data. Using a data set from Hossack (1997),
the property of isotonicity is tested by using a technique that preserves the order of group
means. In this study, groups of Intrinsic Religious Orientation (IRO) are hypothesized to be
significantly different for Attachment to Mother (ATM), Attachment to Father (ATF), Sense
of Coherence (SOC) and Satisfaction with Life (SWL) at the 0.05 level of significance.
Moreover, there is no expected significant difference hypothesized between IRO groups for
Agreeableness (AGR), Conscientiousness (CON) or Neuroticism (NEU) at the same level of
significance. Results confirm these hypotheses under both ANOVA and isotonic regression
analyses. However, there are three exceptions. For ANOVA, the IOR groups were
significantly different for CON (p < 0.01) when a non-significant result was expected. For
isotonic regression, the IOR groups were significantly different for.NEU and AGR (p <
0.05), when a non-significant result was expected. In addition, the goodness of fit values
using isotonic regression estimates were greater than goodness of fit values using sample
mean estimates for each of the criterion variables. Besides the linear ANOVA-typed model,
isotonic regression techniques are also used with some nonlinear models such as exponential
and logistic functions. The implications are that isotonic parameter estimates should be used
instead of sample mean estimates. In the conclusion, the advantages and disadvantages of

isotonic regression are discussed.




Isotonic Regression
Chapter One: Background of the Study

1.1 Introduction

Tests for hypotheses that involve order restricted inferences, such as u; S p, < ...

S UgOr Py 2 Uy 2 ... 2 L, have been introduced by Bartholomew (1959a, 1959b), and
developed by Page (1963), Barlow, Bartholomew, Bremner and Brunk (1972), and
Robertson, Wright and Dykstra (1988). An introductory example in Nelson (1976)
Table 1.1

Warm-up Times for a Three Level Factor of Tube Type

2

Tube Type
A B C
19 20 20 40 16 19
23 20 20 24 15 17
26 18 32 22 18 19
18 35 27 18 26 18

Note: Data from Hicks' (1973, p.49) is used to demonstrate that significance for
hypotheses with directional alternatives depends on the sequence of the population
means.

demonstrates that tests for directional hypotheses may be applied to detect increasing
warm-up time in glass containers shaped as tubes. He concludes that there is a

directional trend of warm-up time between glass containers. The data are presented in

Table 1.1 and can be used to show that there is warming trend between containers

depending on container sequence. There is a significant directional trend for pc<pa<pg

(p<0.05) and pc<pp<pa (p<0.05), but not pa<pcsug (p>0.05) according to an isotonic
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regression analysis where the dependent variable is warm-up time and the factor is type
of tube (levels A, B or C).

The concept of testing for directional hypotheses with continuous criterion
variables and categorical factors has been developed from both a parametric and non-
parametric points of view. From a parametric perspective, the likelihood ratio test and E?
statistic are both derived from the ;f statistic using frequency data (Bartholomew, 1959a;
Barlow et al, 1972, p.119, 121). From a non-parametric perspective, Joncheere (1954)
has introduced a distribution-free test for directional alternatives, and Page (1963)
presented a ranking statistic, L, for a test of monotonic relationships in a two-way
ANOVA to be used in place of Friedman's chi-square of ranks statistic. 'Recently, this
technique has also been used in an applied setting. Leuraud and Benichou (2001)
introduce a chi-square test to detect trends for a monotonic dose-response relationship
between exposure and disease in epidemiological and clinical studies. Karabatsos and
Ullrich (2002) also use a Monte Carlo procedure to illustrate the importance of order-
restricted statistical inference for the selection and testing of mathematical (axiomatic)
models. The testing of directional hypotheses using isotonic regression analysis has
therefore been developed substantially over the years.

Standard ANOVA methods have not usually been used for the testing of
directional hypotheses. The standard ANOVA does not constrain the function to vary
montotonically, which can give rise to inferences that are quite contradictory to our
intuition (Mukerjee & Tu, 1995). The standard ANOVA tests for a non-directional
alternative hypothesis where there is no sequence of population means, say H;: p; # p; for

atleastoneiandj;i,j=1,2,...,n. Moreover, ANOVA uses numerous types of multiple
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comparison procedures upon failure to retain the null hypothesis. Hypotheses with
ordered-restricted alternatives, on the other hand, will result in combining the sample
means where necessary and plotting the data to detect a directional trend. Although there
are multiple comparison procedures for directional alternatives, see Ruberg (1989), a plot
of the trend is used more frequently. |

Trend analysis can be an alternative to isotonic regression. However, there are
also limitations to the standard methods for trend analysis. A trend may be non-
monotonic such as a quadratic or cubic function, so the constraint of non-decreasing (or

_hon-increasing) parameter estimates must be imposed. A typical method of trend analysis
is the use of planned contrasts, which will detect if a trend is not significantly different
from a linear or quadratic function. A limitation to this type of analysis is that it is
possible that there is not a planned contrast available to constrain for monotonicity.
Several contrasts would be necessary to detect a monotonic function, which inflates the
type I error rate. There are additional limitations to trend analysis such that sometimes
only the significance of the means for the first and last treatment groups is used to detect
a monotonic trend (Page, 1963). The two limitations of this approach are that, first, such |
a test discards large numbers of observations between the extremes and, second, the order
of the middle treatment groups is not taken into consideration.

The importance of testing for directional hypotheses using isotonic regression
techniques is demonstrated by overcoming the limitations of the standard methods for
ANOVA and trend analysis. As a parametric test, isotonic regression is generally more
powerful than non-parametric tests (Robertson et. al, 1988, p.86). In addition, isotonic

regression techniques use the sums of squares (according to the least squares principle) to
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maintain sensitivity to outlying observations and make sample size a factor for
significance tests. Each of the treatment groups is used in the-isotonic regression
techniques and the shape of the trend is always tested for linear monotonicity (i.e. not
quadratic or cubic). There is also only one test for isotonic regression as the order of the
population means is usually determined by empirical evidence from related experiments,
prior reasoning or expert opinion. The single test approach yields lower type I and
experimental error than multiple comparison procedures of the standard ANOVA
omnibus F-test (Page, 1963).

1.2 What is isotonic regression?
Isotonic regression is the statistical theory for applying the regression techniques

2

“to deal with problems in which conditional expectations are subject to order restrictions’
(Barlow et al, 1972, p.5). In general, the term ‘isotonic’ is a synonym for ‘order-
preserving’ as the order of the population means, i S < ... S U Or Uy > Uy = ... = Pk i
tested when there are several possible reversals from their sample mean estimates.
Without loss of generalizability, we only consider the case of monotonically increasing
(non-decreasing) estimates (Barlow et al., 1972, p. 7). The process of preserving the
direction_ of the population means requires the formation of isotonic regression estimates ‘
1" where adjacent sample means thét violate the order of the trend are combined into one
estimate. The factor levels that underlie the amalgamation process demonstrate the
properties of reflexivity, transitivity and asymmetry (Robertson et al., 1988, p.12). A
typical hypothesis for isotonic regression would be that a criterion variable g (e.g. y =

test scores in a course) will be increased when the strength of a stimulus x; (e.g. x =

number of hours studying) is gradually increased over several populations (age groups,
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subject areas, etc.). A trend of score increments can be examined with test scores as the
dependent measure and hours of study as the between-subjects factor. The levels of the
factor xj, x2, ...., X¢ (or the number of hours for studying) can be nominal; categorical, or
ordinal and do not need to be placed in sequence from largest to smallest or vice versa.

As is the case for the usual one-way analysis of variance, the /4 are from a ratio or
interval scale of measurement.

The figure below illustrates three monotonic trends which will be useful for
explaining the properties of isotonic regression models. In each figure, y represents test
scores (from O to 50) and x represents five categories of hours spent studying. In the

Figure 1.1

(a) g (b) g © *

Figure 1.1 The plots are examples of trends between population means W S Uy < ... < Us
that may be tested using isotonic regression. Each of these trends do not have to be linear
and may be compared against the hypothesis of no trend.

first plot, (a), test scores in a course y; increases without interruption across each group.
The curve has three linear, non-decreasing segments which are joined together to
demonstrate that the level of the criterion variable is steadily increasing with study time.
The trend could be non-linear, but since it increases without decreasing there is no need

. . . . - *
to combine the sample means. There are therefore no isotonic regression estimates, z; ,

that are required for this sequence of population means. An isotonic regression analysis
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may now be conducted directly on the sample means of test scores to determine if the
population means demonstrate a monotonic trend. The second plot, (b), shows a linear,
increasing trend. The test scores (y;) increase proportionately to the level of the regressor
variable. No amalgamations of sample means are needed since the trend is monotonic.
Therefore, the isotonic regression analysis can be conducted on the sample means
immediately across each of the categories of hours of study. The third plot, (c) shows
that y; increases but at different rates, and the trend is nevertheless monotonic. An
amalgamation of group means is required at the location where the trend is close to being
constant (in the middle section of the curve). The two adjacent sample means are first
combined and then the isotonic regression technique produces the arithmetic average of
the two sample means. The result is a trend that would have potentially demonstrated a
decrease prior to the amalgamation, but is now monotonic and can be analyzed by the
isotonic regression procedure for hours of study. To summarize, isotonic regression is
used primarily to detect if there is a non-decreasing trend between population means.
The sample means must be order-preserving (i.e. monotonically trended) prior to deriving
the test statistic, adhering to the direction of the population means. If this condition Vis
violated, some of the group means must be combined and their avérages are computed.
This is called “the amalgamation process”. The amalgamation process of producing
isotonic regression estimates reassures that the sample means are in a monotonic
sequence. Both the properties and procedures for the amalgamation process and the
direction of sample means are discussed in chapter two.

For the results of isotonic regression analysis to be properly interpreted, several

assumptions must be met. First, the criterion and regressor variables are normally
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distributed. Second, the homogeneity of variance assumption is satisfied; that is, the
error variance of the criterion variable is not significantly different between groups.
Thirdly, the observations are independent. The final assumption is that the order of the
population means is preserved, with at least one inequality (say, it Spz < ... < Ux). The
first assumption is verified by using a histogram or a plot of the normal quantiles (P-P
plot). The second assumption is verified by using a residual plot and the third assumption
is maintained by experimental design. The final assumption of monotonicity applies an
aléorithm which verifies that the predicted order of the sample means is preserved.
Empirical studies have shown that test statistics in standard regression analysis are robust
to departures of the normality and homogeneity of variance assumptions (Maxwell &
Delaney, 1990, p.109). -

1.3 Statement of Purpose

The purpose of this thesis is threefold. Firstly, the theory, development and
application of isotonic regression are presented in such a way that is relevant for
psychologists. The theory component involves presenting hypotheses that can be tested
in isotonic regression analyses and the background for the use of isotonic regression
estimates from some techniques such as the pool-adjacent-violators algorithm. In
particular, the development of the two most prominent test statistics for isotonic
regression is also illustrated, with an emphasis on their critical value tables and the
appropriate use of the scientific method for psychological research (stating the
hypothesis, statistic, decision and conclusion). The applied component is a study on the
isotonic trend of groups varying in relation to the other variables. The regressor variable

is represented by 10 balanced groups of 520 undergraduate psychology students, an
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almost equal number of males and females, who have completed Allport’s (1960)
Intrinsic Religiousity Scale. Separate ANOVAs and isotonic regressions are computed on
each of the seven criterion variables to be elaborated on in Section 1.4 and Chapter 4.

Secondly, this thesis discusses the issues and procedures for testing the role of
goodness of fit for isotonic regression models. The roles as well as the methods for
goodness of fit assessment in the context of linear and non-linear trends are studied.
Ilustrative examples are used to show the differences in the goodness of fit values
between the standard ANOVA and isotonic regression models. The intention is to
demonstrate the strengths of isotonic regression in estimation and statistical inference.

Thirdly, this thesis examines the advantages and limitations of isotonic regression
and explores further avenues for psychological research. The advantages include a lower
standard error of the sample mean estimate, better type I error control and increased
power. The main limitation of isotonic regression is that the shape of the trend is
compromised to satisfy the monotonicity assumption. Methods for improving this
shortcoming are discussed.

1.4 Overview

The main purpose of this thesis is to present the isotonic regression technique to
researchers in the field of psychology. The focus will be on the si gnificance testing and
goodness of fit models for isotonic regression with Intrinsic Religious Orientation (IRO)
as the independent variable. Chapter two introduces the null and alternative hypotheses
for several order-restricted population means, as well as their test statistics and critical
values. Chapter three presents goodness of fit in model assessment as well as methods

for assessing goodness of fit when trends are monotonically increasing (or decreasing).
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The ordinary least squares simple regression and multiple regression methods are
compared to the isotonic regression technique with an illustrative example involving the
effects of drugs on driving behavior. Chapter four involves an application of isotonic
regression with psychology variables’. The IRO variable will be used as the regressor
variable for seven psychology criterion variables. Seven ANOV As and isotonic
regressions are computed separately with the use of multiple comparison procedures to
detect differences between 10 IRO groups. The results of the ANOVA models and
isotonic regressions are compared by means of plots to detect any trends that may be
attributed to the relation between the regressor and criterion varjables. The hypothesis
that isotonic regression estimates produce higher goodness of fit values than sample mean
estimates for linear, exponential and logistic models is also tested. Each model has the
property of being monotonically increasing. Chapter five presents the advantages and
disadvantages of isotonic regressioﬁ with the most recent literature for directional
decisions. The advantages include the sophistication of the isotonic regression technique
compared to standard ANOVA procedures and the trend analysis method, as well as the
capacity to make decisions pertaining to non-normal data, statistical power and-Bay}esian
inference. The disadvantages include the inability to test for a specific function or shape
of a trend, the lack of programming software for directional éltematives, and the few
elﬁpirical studies in the social sciences that apply isotonic regression to their psychology
variables. The new contributions of isotonic regression to psychologists include a

statistical technique to detect trends that are non-increasing or non-decreasing. This

1. Permission was given by Dr. Schludermann to use Hossack’s (1997) data set.
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technique also introduces isotonic regression estimates and overcomes several limitations
of other trend analysis techniques. An application of isotonic regression demonstrates

that this technique provides useful information to psychologists.
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Chapter Two: Hypothesis Testing in Isotonic Regression
2.1 The Null and Alternative Hypotheses

To briefly outline this chapter, the isotonic regression 7> and E? statistics are
presented with research hypotheses, algorithms for isotonic regression estimates, critical
values and illustrative examples. More specifically, the isotonic regression hypptheses
are compared against the hypotheses for ANOVA, and a step-by-step approach is used to
demonstrate the pool-adjacent-violators algorithm. The distributions for the #*and E2
statistics are also defined along with explanations pertaining to critical values. The
chapter concludes by using average monthly temperatures in Palmero, Italy to illustrate
the ;f test and time to complete a test as measured by length of test using the E? statistic.

In the standard one-way analysis of variance, the null hypothesis for isotonic
regression postulates that all group means are the same, namely Ho: W = Yz = ...= P for
all j=1, 2,..., k. However, the alternative hypotheses are different, in the ANOVA and
isotonic regression techniques. In the isotonic regression context, Bartholomew (1959a)
and Barlow et al (1972, p.2) postulate a sequence of population means, say Hj: Wy S <
. SHxor Hy: gy 2 Wp 2 ... 2 Wy with at least one inequality between population means.
The population means demonstrate a two-sided alternative in either the non-decreasing or
non-increasing directior_l. On the other hand, the alternative hypothesis for ANOVA
states that the population means are not significantly different from one another, say ; #
w;foralli#j, wheni,j=1,2, ...,k (Maxwell and Delaney, 1990, p.78).

Barlow et al (1972, p.2) mention that the simplest hypothesis for isotonic

regression is similar to that of the one-tail t-test for two groups, in which the null
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hypothesis is postulated as Hy: 1; = Yz and the alternative hypothesis, as Hy: u; < ppor
Hi. iy =y, In fact, when there are only two groups, one should use a one—tailed
(directional) t-test to evaluate the above hypothesis. Hence, given the homogeneity of
variances (012 = 022), if the tests statistic # = (X — %3) / Sp\/ (I/n; + 1/np) where S;, = (n1$12
+ 18,9 /(ny +np — 2) is greater than the corresponding critical value, 1 +n2-2), w2, then
the null hypothesis is not retained. The procedure and test statistics under the isotonic

regression approach for two or more populations are discussed in Section 2.3.

2.2 The Pool-Adjacent-Violators Algorithm
In the isotonic regression testing procedure, when the sample means ¥y,..., ¥ do
not preserve the directional sequence of the population means p; < Py < ... <p, say, then
one must obtain isotonic regression estimates of group means prior to computing the test
statistics in the hypothesis testing procedure. Consider the case of three group means

where the alternative hypothesis is postulated to be H;: p < Uz < ps. Suppose the sample

mean estimates are observed to be ¥; £ ¥, = ¥3. The sample mean ¥3 has violated the .
direction of the hypothesized trend. Therefore new estimates of sample means must be
obtained such that the non-decreasing sequence of the population means is preserved. For
this purpose, the sample mean esti{nates are replaced by their isotonic regression
estimates. In the example just presented, the sample mean estimate ¥;is replaced by the
isotonic regression estimate }73* = (Y2+ ¥3)/2. The technique for arriving at isotonic
regression estimates is referred to as the "podi—adj acent-violators algorithm" (Barlow et

al., 1972, p.13). The algorithm consists of the following three steps.
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Step 1: Align the sample mean estimates in the order of the population means under the
alternative hypothesis, say Hy: iy S pp < ... < ug. Then ¥y, 9, ..., Fx are placed adjacent
to one another, in that order.
Step 2: Determine if the order of the population means has been violated. If §j - ¥ ¢+1) for
anyj=1,2,....k then both §; and ¥.1y are replaced by their arithmetic average, namely
}‘fj* = V5« k)* = (§; + Y5+1)/2. For example, let the sample means be ;=1 ¥2-4, §3=2
and ¥4 = 5. Suppose the alternative hypothesis in stepl is specified as Hy: py <... < ps, then
¥, and ¥, are replaced by their isotonic regression estimates of ,* = ¥5* = (4+2)/2 = 3,
according to the pool-adjacent-violators algorithm. The outcome of this procedure is
presented below in Table 2.1.

Table 2.1

Sample Mean Estimates become Isotonic Regression Iistimates

Sample Mean Estimates

Note: In the above table, a straight line connects group means that do not conform to the
postulated direction in the alternative hypothesis. The group means are combined to
become isotonic regression estimates and preserve the dirgction of the population means.
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Step 3: There may be more than one violator among the sample means. Treat each
violator as a block, pool it with its preceding sample mean, and obtain the isotonic
regression estimate as the arithmetic average of these adjacent sample means. If there is
more than one block, treat each one separately. When the algorithm is finished, the
blocks will be combined into one segment which contains isotonic regression estimates
that preserve the order of the population means. For the data presented below in Table »
2.2, y3and ¥s are violators that must be amalgamated.

If the sequence of sample means p; < Yy < ... <l is not violated then this
partition of sample means is also the final partition and Mj* =W;,j=12,.,k Ifnot,
Table 2.2

Blocks of Sample Mean Estimates become Isotonic Regression Estimates

Note: When there is more than one violator, the sample mean estimates are put into
blocks and the isotonic regression estimates are ready td be calculated. As mentioned
previously, a straight line connects means that do not conform to the postulated direction
in the alternative hypothesis.

select any of the pairs of violators of the ordering, such that p;> p,1, and ‘pool’ these two
values placing them in the same block. When the ordering of ui< pp< ... <uxis observed,

then the algorithm is finished.
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2.3 Test Statistics and Critical Values

There are two approaches in calculating the test statistics for isotonic regression.
The first is the likelihood ratio test derived by Bartholomew (1959a, 1959b). This statistic
uses the weighted sums of squares after amalgamation as the numerator and ¢ as the
denominator, 3 = 2 * - W/ o where n; is the sample size of the jth population, £4*
is the isotonic regression parameter of the jth population mean, and g is the grand
population mean. This approach may not be practical since the population variance ¢ is
assumed to be known a priori (Barlow et al, 1972, p.116). The critical values for the x>
test are presented in Table 2.4, the null distribution being Pr{xk2 > C} =2ZPk) Pr{y. 12 >
C} when C >0, and Pr{x = 0} = P(1,k) when C = 0 (Barlow et al, 1972, p. 126). The
notations used in the above distribution are: ‘k’, to represent the number of levels in the
factor, ‘I’, the number of levels after amalgamation and P([,k), the probability that the
isotonic regression function g takes exactly [ distinct values from & population means.
The sum of the probabilities 2P(1 k) is the probability of all possible [ and k
combinations. The second statistic, denoted as E?, is more practical for applied
researchers. It is computed as 5(2 = 2hyy;* - )‘7)2 /22y - § )2, for which the numerator is
an estimate of the numerator in the ,1; test, but the denominator is the total sums of
squares (Barlow et al., 1972, p.120). This statistic represents the amount of criterion
variance accounted for by the group means of y;;. The null distribution is Pr{E2>C} =
EP(LKPr{B1ne1’ 1amw-p= C} when C>0 and Pr{E2 = 0} = P(Lk) when C =0 (Barlow
et al., 1972, p.127). The notation B, 4, denotes the beta distribution with parameters p and

g as the shape and location respectively. In general, as the 7° and £ values increase, the
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more likely it is that the null hypothesis will be rejected. Some selected critical values

for £ are found in Nelson (1977) and are reproduced in the Appendix. The tables are for

applying isotonic regression to one-way ANOVA data which consists of j =3, 4,..., 10

factor levels.

2.4 Nlustrative Examples

There are two examples presented in this section to illustrate the isotonic

regression techniques discussed above. In the first example, Cameron (1970) studied the

Table 2.3

Likelihood Ratio Test Analysis of Mean Monthly Temperatures of Palmero, Italy

Month

Jan Feb Mar April May June July Aug

Sept Oct Nov Dec

yi 51 52 55 58 64 71 76 77

m 31 28 31 30 31 30 31 31

73 67 59 53

30 31 30 31

W =2y / Zni= 17 600/ 274 = 64.23
W =Z(n;¥;) / Zmy= 92/ 179 = 59.67
2= Eni(pi - w)?/ 6% = 1059.962

x2' = Eni(; - Wo)* / 6% = 122.3287

Note: In the first row, there is an increasing trend until August, followed by a decreasing
trend (underlined) until December. The ¥; represents mean monthly temperature and the

n; represents the number of days per month.
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average monthly temperature in Palmero, Italy. The criterion variable is average monthly
temperature and the regressor is the month of the year. The monthly temperatures tend to
increase from January to September and then decrease from October to December as seen
in Table 2.3. There are therefore two trends to be tested, one that is non-decreasing and
another that is non-increasing. The null hypothesis Ho: Ljan = Wpeb = ... = Upec 1S tested
against Hy: Pyan S ey < ... < Usepe (Warming trend) and Ha: poct > Liney > Mpec (cooling
Table 2.4

Critical Values for the y* Test (Hi: W< <uxorH: 2w > ... 2 Uy)

K

o 3 4 5 6 7
0.100 2.580 3.187 3.636 3.994 4.289
0.050 3.820 4.528 5.049 5.460 5.800
0.025 5.098 5.891 6.471 6.928 7.304
0.010 6.823 7.709 8.356 8.865 9.284
0.005 8.144 9.092 9.784 10.327 10.774
0.001 11.249 12.318 13.098 13.711 14.214
a 8 9 10 11 12
0.100 4.542 4.761 4.956 5.130 5.288
0.050 6.088 6.339 6.560 6.758 6.937
0.025 7.624 7.901 8.145 8.363 8.561
0.010 9.638 9.945 10.216 10.458 10.676
0.005 11.152 11.480 11.768 12.025 12.257
0.001 14.640 15.009 15.333 15.622 15.883

Note: The ,1; critical values for a factor with up to 12 levels are presented above. The
levels of significance (a) range from 0.100 to 0.001 (see Robertson et al., 1988, p. 416).
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trend) using the likelihood ratio test. The trends are expected to be significant at a. = 0.05
as no amalgamations or isotonic regression estimates are required. The critical values for
H; and H; are set at k = 9 and k = 3 factor levels respectively. The variance, 02, is
unknown, however, to illustrate the use of the xz test, assume o =25. The desi gnis
unbalanced as there are an unequal number of days per month and the sample mean
estimates are used in place of isotonic regression estimates. The numerator for the
likelihood ratio test is therefore the between sums of squares, Zn;(W; - u)z, and not the
sums of squares after amalgamation, Zn;(L;* - W) where * is the ith isotonic regression
estimate, fori =1, 2,..., k. It can be concluded from the likelihood ratio test using the
critical values found in Table 2.5 that there is a significant warming trend in Palmero,
Ttaly (12 =1059.96 > 6.937) followed by a significant cooling trend (),* = 122.33 >
3.820).

The Palmero, Italy example reveals some strengths and weaknesses of the isotonic
regression technique. The strengths include a single, one test approach to determine if
there is a monotonic trend among several population means that is robust to
departures of the normality and homogeneity of variance assumptions (Chacko, 1963 &
Shorack, 1967). The technique is more flexible than the standard ANOVA and trend
analysis method for directional hypotheses and provides clear decisions. The weakness is
that the variance o° must be assumed a priori. Hence, the conclusions are theoretical and
tentative for the likelihood ratio test.

As an example of the £ calculation, we use a data set from Lehman (1995) for

testing Ho: W1 = U = Us = Ug against Hy: wy < Uy < s < g The criterjon variable is the
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time in minutes to complete a multiple-choice test. The regressed variable is the length
of the test (10, 15, 20 or 25 items). The assumption of monotonicity is that the sample
means will have the ordering of ¥; < ¥, < 3 < ¥4 so that the trend is non-decreasing.
When there are violations to the order of the sample means, then isotonic regression
estimates are used according to the pool-adjacent violators algorithm. For the example
presented in Table 2.6, isotonic regression estimates are unnecessary since as length
Table 2.6

Time to Complete the Test is Measured for Length of Test

Length of Test (Items)

10 15 20 25

13 17 18 16

10 5 17 21

13 13 10 28

5 14 23 22

6 11 24 24

6 12 17 12

2 3 10 9

12 16 27 18

17 18 21 18

12 g8 24 9

12 14 23 15

2 7 8 15

17 13 14 10

3 6 1 7

7 14 8 30

1 18 10 14
Sum: 138 199 255 268
Mean: 8.63 1243 1594 16.75

E*= Zni(yi* - 9)° / Z2(yy - §)° = 662.125 / 11556.25 = 0.225232

Note: An independent groups design shows that as the length of the test increases so does
the time to complete the test. The E? statistic is used since raw data has been collected. .
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of the test increases, so does length of time to complete the test. The sample means are
placed in order from smallest to largest according to the order of the population means.
Given that 6° can be estimated from the data, the £ statistic is then used in this example.
It is expected that Hy will not be retained at the 0.05 level of significance as the sample
mean estimates increase at a steady rate.

Since £ = 0.2252 > £yo5° = .0571 (where 0. = 0.05, n = 16 and k = 4), the critical
value obtained from the Appendix, there is sufficient evidence to reject Ho and conclude
that as the length of the test increases, so does the time to complete the test. The
illustrative examples of the data sets by Carmen (1970) and Lehman (1995) show the

uses of the % test for theoretical purposes and the £ statistic for applied situations.
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Chapter Three: Goodness of Fit of Isotonic Regression Models |
3.1 The Role of Goodness of Fit Model Assessment
There are several roles goodness of fit plays when assessing statistical models. In
this section, we will discuss three of them. First, goodness of fit assessment refers to how
well a model, or combination of models, explain the patterns of variation of exploratory
criterion varigbles within a particular data set (King and Minium, 2003, p.187). The
goodness of fit tests decide the best fit for a single regression line, and obtain the best
regression line among several possible regression lines (Neter, Kutner, Nachtsheim,
Wasserman, 1996, p.81). The better the fit, the more accurate the models are for making
predictions about future outcomes. However, two models are often compared against one
another to determine which exploratory variables, or combination of these variables, can
be used to explain the criterion variation more accurately (Neter et al, 1996, p. 287).
Secondly, goodness of fit assesses the strengths and weaknesses of each model, such as
how well each model fits the data and how different combinations of variables in the
model affect the fit more profoundly than others. In the context of regression models, the
simplest measures of goodness of fit are the standard error, S,, and the square of the
correlation coefficient, R? (King and Minium, 2003, p.157, 162). The standard error is
the average standard distance of the observations from many samples for the line of best
fit. The square of the correlation coefficient is the amount of criterion variance explained
by one or many of the regressors in the model. The partial correlation is used to identify
how much variation a group of variables explains when one variable is excluded from the
group. Thirdly, the results from goodness of fit indices can help to identify (or eliminate)

a set of regressors that reduce error variation for prediction or description purposes (Neter
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et al, 1996, p.346). The concept involves minimizing error variance, according to the
least squares principle, to provide an increasingly accurate representation of the real
world. In regression analysis, some popular techniques for variable and model selection
involve the forward, backward and stepwise procedures.

Let us compare the regression lines of two plots in Figure 3.1 to better understand
goodness of fit. From a statistical perspective, a regression line will have a good fit if it
minimizes the residuals, ¢;, between the observed points (y) and estimated points ($). The

sum of the residuals, 2e; = Xy;— ;) fori =1, 2,..., n, can be used to determine the best fit

Figure 3.1

» ¢
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(a) x (b) x

Figure 3.1 Two plots from Wayne (1986, p.378) demonstrate the estimated lines for the
fit of two regression models. For (a), the estimated line fits the observed points exactly,
whereas for (b), the observed points deviate more from the estimated line.

of the regression models. The difficulty with this approach is that this sum will always
equal zero, providing no new information about which line has the best fit. On the other
hand, taking the sum of the absolute value of the residuals between the observed and
predicted points, 2| y; — 3| provides useful information as the line in plot (a) is a better
measure of goodness of fit than the line in plot (b). The problem with absolute values is

that they do not indicate the direction of the error for each of the observations. In effect,

we want to find a way to penalize large errors so that we can have a model that is more
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sensitive to individual differences (or outlying observations). This can be aécomplished
by taking the sum of the squared residuals, Sel - Jyi— ), fori=1,2,...,n. Squaring
the difference magnifies large errors and cancels the effect of the positive and negative
signs in front of the values. Since we are looking for the line that minimizes the error
sum of the squares, we call this the least squares principle. With this technique, plot (a)
minimizes error (provides a better fit) more effectively than plot (b). When one line has
more points than another line then the estimated standard error S, is often used to
compare the goodness of fit of the two lines. This is a measure of goodness of fit that is
used as frequently as the square of the correlation coefficient, R®. As goodness of fit
improves, R? values become larger and S, values become smaller.

There is a trade-off between goodness of fit (minimizing the error sums of
squares) and the principle of variable parsimony. Regressors that are added to a model
explain more of the error variance that is not previously accounted for by other regressors
already in the model. With enough regressors, a model could have a nearly perfect fit of
the data. Further, a regression model with enough regressors will always yield a good fit.
The drawback to too many regressors is the loss of degrees of freedom as there is no
longer any potential to generalize a conclusion beyond the sample. There is also no
applicability for interpolation within the sample since the error variance will be so small.
The principle of parsimony was therefore necessary to prevent any unwanted or
unimportant regressors from entering the model. The principle of parsimony states that
we need to choose the model with the fewest regressors that still yield a good fit. This

model would therefore also have the fewest degrees of freedom, the most generalizability
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from the sample to the population, and be the simplest in interpolation. The principle of
parsimony ensures that the conclusion has strength and applicability to the population.

3.2 Methods of Goodness of Fit Assessment
The simple regression model y; = ) + fix; + & and its estimate §; = bg + byx; may
be obtained by means of the method of ordinary least squares (OLS). The regression

coefficients f and £ are estimated in the sense of least squares as by =y — b; % and b; =

(Zxy - nxy)/(3* — ns). There are several methods of assessing goodness of fit for
simple regression as listed below (Wayne, 1986, p. 381):
(1) Standard error of the mean estimate of y: S, = x/( ( y2 —bp2y —b;2xy)(n-2))

(2) Standard error of the prediction: S, = S, 1/( 1+ 1/n+(x- xo)z/( 2 —n? ) where xp is
the specific value of x at which we want to predict the value of y.

(3) Standard error of the regression coefficient: S, = S,/ \/( 5 -ns )
(4) Squared correlation coefficient: RZ = ( boZy — b Sxy - ny) /(5 — ny’)

Any standard error is a measure of how well the parameters have been estimated
from the data. Smaller standard error values lead to a model with better goodness of fit.
Confidence intervals for parameter estimates of the mean of y, predicted value of y given
a value of x, and the regression coefficient (slope) can be computed using the standard
error. These confidence intervals tend to be narrower when standard error estimates are
smaller. Even though confidence intervals are not measures of goodness of fit, a narrow
confidence interval is a strong indication that the parameter is properly measured. There
are several types of confidence intervals (Wayne, 1986, p. 384):

(5) Confidence interval for estimate of the regression coefficient: b; +/~ (¢a2 n-2)Sh

(6) Confidence interval for prediction of an observation:  +/- (242 n-2)Se
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(7) Confidence interval for estimate of the mean: § +/- (1o, n-2)Se
(8) Prediction interval for an exact observation Xo: ¥ +/~ (tg2 n2 )Sp

When a multiple regression analysis is computed, there is at least one regressor in
the model. The regression equation is yi =+ fx+ g fori=1,2,...,nandj=1,2,.,
k with the ordinary least squares estimation of the hyperplane being ¥ = by + bx;; (Neter
et al, 1996, p. 218). The objective in fitting a multiple regression model involves finding
the best hyperplane that will minimize the sum of the squared error. According to the
least sqﬁares principle, the standard errors presented in the standard (simple) linear
regression model have direct counterparts under the multiple regression model. For the
latter model, however, the formulas are often expressed in matrix notation. Properties of
the confidence intervals discussed above are also applied to the multiple regression
models. The best fit for several different models is determined by the highest R? value.
Because adding an additional variable into the equation always increases R? , the Rza@,ﬂed

statistic is used to account for degrees of freedom (Neter et al., p. 231).

For multiple regression, the most common methods for model selection are the
forward, backward and stepwise procedures. Cook and Weisberg (1999, p. 275-283),
Chatterjee and Price (1991, p. 236-237) and Chatterjee and Hadi (1988, p. 49-51) provide
an excellent description of the three procedures, as well as indices for model fitting
criteria and partial residual plots for model diagnostics. In forward regression, a
statistical package such as SPSS or SAS uses a correlation matrix to find the regressor x;,
X2,..., Xj with the highest correlation to the criterion variable. The regressor is then placed
in the model and a t-ratio significance test is conducted to see if the corresponding

regression coefficient f3; accounts for a significant amount of the criterion variance. If the




Isotonic Regression 27
t-ratio is significantly different from zero, then the regressor is selected to be retained in
the modelA. A partial correlation matrix between the criterion and the remaining
regressors is then computed to determine if a second regressor is to be selected for the
model. The regressor with the highest partial-correlation becomes the second regressor
in the model and a second significance test is conducted to determine if a third regressor
is required. When the addition of another variable no Jonger produces a significant t-
ratio, the procedure comes to an end. Generally, a variable is added to the model as long
as it contributes a significant increase in R? of the model. For backward selection, the
model is estimated with all the regressors and then the procedure successively drops one
regressor at a time. When each of the regression coefficients in the model is significant,
the procedure comes to an end. Those regressors with the smallest R? value (or lowest
residual sums of squares) are first deleted from the model. The stepwise procedure is a
combination of both the forward énd backward procedures since regressors are added or
dropped from the model in successive steps. A forward selection is conducted, but
regressors are deleted when they are no longer significant after the introduction of new
regressors to the model. Chatterjee and Hadi (1988, p 84-87) provide an excellent
discussion of residual plots used to determine which regressors should be added or
deleted in a regression equation.

There is also a stepwise method for isotonic regression. The objective, from the
principle of parsimony, is to determine the minimum number of regressors that yield a
model with a significant £ statistic. The regressors in this case would be population
means /4 and not regression coefficients f; as in OLS multiple regression. A full model

with all of the regressors is first obtained, and then models with fewer regressors are
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computed. For example, when &k = 4, the £ statistic would be computed on all possible
orderings of a model with four regressors. If significant, the F statistic would be
computed on all possible orderings of three regressors. The algorithm for isotonic
regression then comes to an end as orderings of two regressors require a different statistic
(namely the directional t-test). The isotonic regression stepwise method therefore deletes
one regressor at a time to determine the model with the highest F statistic. An
equivalent alternative method to determine which regressor should be dropped from the
model is the use of the p-value. Those models with p-values below the pre-determined
significance level (o0 = 0.05 or 0.01) are retained. Models with p-values above the
significance level are removed. The p-value may be obtained by linear interpolation

when using the tables of the £ critical values in the appendix.

3.3 Using Isotonic Regression for Assessing Monotonic Linear and
Non-Linear Trends

We can now extend the discussion pertaining to the goodness of fit tests to
isotonic regression. The main differences are in the form of the regression equations
between simple, multiple and isotonic regression models. The first main difference is
that whereas the predictor can be continuous or categorical in simple and multiple linear
regression, the regressor must be categorical in the isotonic regression context (Barlow et
al, 1972, p.2). Most commonly, the regressors in simple and multiple regression models
are continuous. The most pertinent implication of continuous versus categorical variables
is th_a_t the unit of measurement is different. With the former, the unit of observation is
the subject or participant in the study. With the latter, it is the group mean estimates of

the populations. Further, the main parameters to be estimated in simple and multiple
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regression are the regression coefficients, £, whereas the main parameter for isotonic
regression is the isotonic regression estimate, ,uj*

The second main difference between the three types of regressions is the objective
of the study. A typical hypothesis for simple linear regression is Ho: i = 0 against Hy: B
# 0 where the objective is to determine if the slope is significantly different from a pre-
specified cut-off value (Neter et al.1996, p. 51). For multiple regression, the objective is
to determine the model with the fewest significant regression coefficients without
compromising the fit of the model. For example, consider a model with one regressor,
and the hypothesis to be tested is Ho: y; = Bo + Bix + & versus Hy: y; = Bo + Bixq + Pox2 +
&. The objective is to determine if x, will be a significant regressor for predicting the
criterion variable once x} has already been added to the model (Neter et al, 1996, p. 261).
The regressors x; and x, may have been selected using the forward, backward or stepwise
procedures. On the other hand, the isotonic regression hypotheses, as stated in Section
21, areHy = =...=gandHy: i S <o SpgorHy py 2 Up 2 ... 2 P (Barlow et
al, 1972, p. 2). The alternative hypothesis tests whether there is a non-decreasing orvnon-
increasing trend in the data. Examples in psychology iﬁclude trends of stress and anxiety
reduction, enhanced learning, progressive long-term memory development, intelligence
across the life span and academic improvement at an educational institution. Isotonic
regression has the additional assumption of preserving monotonicity, and multiple
regression and isotonic regression also require the assumption of multivariate normality.

As the third main difference, isotonic regression may be used to test for non-linear
patterns of group rﬁeans. Isotonic regression analyzes several linear segments tip-to-tail

in order to produce a piecewise non-linear trend. In other words, isotonic regression does
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not require the continuity of the regression lines as in simple and multiple linear
regression models. The additional flexibility enables isotonic regression to test a variety
of different data sets.

Besides comparing simple and multiple regression models, properties of isotonic
regression models can also be illustrated by comparing them against other non-linear
regression models. There are several different types of non-linear models that may be
used in place of isotonic regression. The two and three parameter exponential models as
well as logistic model are examples of such non-linear models (Neter et al, 1996, p. 532,
533). All of these models can be used for testing trends. The difference between the

non-linear models and isotonic regression is that, whereas exponential and logistic

Figure 3.2
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Figure 3.2. The (a) two-parameter exponential model, (b) three-parameter exponential
model and (c) logistic model are monotonic functions that may explain a trend between
population means (Neter et al, 1996, p.533).
models test for d particular type of monotonic trend, isotonic regression tests if a
monotonic trend is present between categorical population means. Further, isotonic
regression techniques involve differences between sample means that are increasing (or

decreasing) whereas the other models see how well observations fit specified functions of

a trend. In other words, the application of an isotonic regression technique does not
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require the specification of a function, as illustrated in Figure 3.2.

The figure above demonstrates that monotonic trends may exist for both
exponential and logistic models. In the first plot, (a), the trend is an exponential function
that does not increase initially, but then gradually increases to display a concave form.
The second plot, (b), has a trend with an immediate increase in slope but then gradually
tapers to a uniform level. The final plot, (c), demonstrates a trend with no slope initially,
but then gradually increases until the end where it levels out once more. In all of these
cases, isotonic regression can be used to evaluate the monotonicity of the trend. In
summary, the simple, multiple and isotonic regression models test different hypotheses,
require different types of data and have different objectives and assumptions.

3.4 Tllustrative Examples

This section presents an example from Keppel (1973, p. 70) for cbmparing the
results by fitting simple, multiple and isotonic regression models to the same data set.
Each of these three techniques has different hypotheses and objectives. The example
consists of determining the effect of sleep deprivation on the ability of subjects to locate
objects moving on a radar screen. Four different hours of sleep deprivation (x; = 4 hrs, x;
= 12 hrs, x3 = 20 hrs and x4 - 28 hrs) are tested for their effects on vigilance (y) with
subjects taking a simulated object detection test. The simple fegression component
involves estimating the linear equation y;j = Po + Bixj +g;fori=1,2,...,nand j= 1, 2,
... 4 using the least squares principle. If there is a strong linear association between x
and y then the omnibus F will be significant and then the goodness of fit measures R and
Se will be large and small respectively.” For multiple regression, the model y;j = Bo +

ZBx+e;fori=1,2,...,n,j=1,..., 3 is also estimated using the least squares principle
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where x; is a dummy variable representing hours of sleep deprivation. The stepwise
procedures are used to determine which of the three regressors x;, x; and x3 should be
included in the model. The difference between this model and the simple regression
model is the number of parameters to be estimated. Whereas the simple regression model
estimates one regression coefficient, £; the multiple regression model must determine the
best combination of regression coefficients, B; for j = 1, 2, ..., 4, to detect objects moving
on a radar screen. For isotonic regression, the null hypothesis of no trend, Hp: py = pp =
Us = 4, is tested against the alternative hypothesis of a non-decreasing trend, Hj: g < up
< p3 < Py using the £ statistic. A stepwise procedure is used to determine both the
smallest number of population means and their order. The process begins by determining
if there is a non-decreasing trend among W, ..., M4, then a population mean is dropped
and the isotonic regression analysis is recomputed. The process continues until there are
too few population means or each ordering of the population means is non-significant.

Since there are 24 possible combinations of the population means W, . g and 18

ey

possible combinations of the population means W, .. U3, the ordering of the population
means is predetermined. The criterion variable data (y) 1s presented below in Table 3.1
along with a description of the coding of the regressors (x) for simple and multiple
regression.

The analysis for simple regression consists of several components. The fitted
regression equation is y = 14.5 + 12.55x, the estimate of the slope is b = 12.55 with a
standard error of Sj, = 2.65229. The t-ratio is significant for the intercept (p < 0.0001)
and the slope (p < 0.0003). Consequently, the R ‘value for the model is very high, 0.6153

(F=22.39,p=0.003). For this data set, there is a significant difference between
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Table 3.1

Vigilance Scores are Measured for Hours without Sleep

Hours without Sleep

4 12 20 28
37 36 43 76
22 45 75 66
22 47 66 43
25 23 46 62
Sum: 106 151 230 247
Mean: 26.5 37.75 57.50 61.75
Coding for Simple Regression Coding for Multiple Regression
Y X Y X X X
37 1 37 1 0 0
22 1 22 1 0 0
22 1 22 1 0 0
25 1 25 1 0 0
36 2 36 0 1 0
45 2 45 0 1 0
47 2 47 0 1 0
23 2 23 0 1 0
43 3 43 0 0 1
75 3 75 0 0 1
66 3 66 0 0 1
46 3 46 0 0 1
76 4 76 0 0 0
66 4 66 0 0 0
43 4 43 0 0 0
62 4 62 0 0 0

Note: The data consists of vigilance scores for a simple, multiple and isotonic regression
with one regressor for simple regression and four regressors for multiple regressions.

hours of sleep deprivation when the dependent variable is vigilance toward objects
moving on a radar screen. As hours of sleep deprivation increase so do the number of

objects that fail to be detected on a radar screen. Very similar results aré found for the
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multiple regression analysis. First, Table 3.2 provides a point-biserial correlation matrix
of the criterion variable (vigilance) with the three regressors (hours of sleep), x;, x; and
x3, each is a dummy variable that represents amount of sleep. The criterion variable
correlates highly with x; (r = -0.6321), x; (r = -0.2649) and x3 (r = 0.4186). Notice also
that x3 correlates with x; and x; (r = -0.3636). Similarly, the same correlations between x;
and x; are observed for x4 (r = -0.3015). In other words, there are significant differences
among the effects of thé four groups of sleep deprivation for x; and x4. This observation
is reconfirmed from the multiple regression analysis of y, against x;, x, and x3. The
Table 3.2

Point-biserial Correlation Matrix of Vigilance and Hours of Sleep Deprivation

Variables
VIGILANCE 4 HRS 12 HRS 20 HRS 28 HRS

82 (x1) (x2) (x3) (x4)
1. VIGILANCE 1.00 -0.6321 -0.2649 0.4186 0.5184
2. 4HRS -0.6321 1.00 -0.3636 -0.3015 -0.3636
3. 12HRS -0.2649 -0.3636 1.00 -0.3015 -0.3636
4. 20 HRS -0.4186 -0.3015 -0.3015 1.00 -0.3015
5. 28 HRS 0.5184 -0.3636  -0.3636 -0.3015 1.00

Note: The criterion variable is vigilance and the regressors are the number of hours of
sleep deprivation. The correlations are significant at the 0.05 level of significance.

predicted regression equation is § = 61.75 — 35.25x; — 12x, — 1.42x3 with p-values of the
regression coefficients at 0.0096, 0.0102 and 0.6630 respectively. Each procedure

concludes that the regressors x;, x; and x3 should be included in the model.




Isotonic Regression 35

For the isotonic regression component, there are 24 possible orderings for the
population means [y, ..., Ug SO a strategy was developed to reduce the number of Z tests
that would be computed on the population means. The strategy involved placing the
population means in ascending order and then randomizing the order of the first three
population means while maintaining that the last population mean is always largest. The
number of possible orderings is then reduced to 6 models and there are fewer £ tests to
Table 3.3

Isotonic Regression Models for Vigilance Regressed on Hours of Sleep Deprivation

Model E*
1. RS U2 S U3 S Wy 0.7844
2. WSS U S g 0.7006
3. U2 Sp S U3 < Uy 0.7625
4, mSmSmSm 0.5124
5. S S Uy 0.5124
6. Uz < M2 S g S g 0.5124

Note: The isotonic regression technique produces a significant monotonic trend for the
order of the population means ;. U4 at the 0.05 significance level.

be computed. Those models that are significant are then tested again‘while randomizing
the order with one fewer population mean. The data is the same as the simple and
multiple regression analyses with the exception that sample means are estimated and not

regression coefficients. The analysis is presented in Table 3.3.
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There is enough evidence to suggest that there is a non-decreasing trend of
vigilance for different hours of sleep deprivation. The critical value taken from the
appendix for this analysis with k = 4 factor levels and n = 4 at oc = 0.05 is 0.2923. This
value is much smaller than the smallest £ value in-Table 3.4. Nelson (1976) reports £
values for a three level factor as "B = T/ SStow” Where T is the between groups sums of
squares taken after amalgamation, Zn;(y;* - 37)2 , and SS7om 18 Z2(yi; - )7)2. The analysis
above is the same as Nelson's (1976) procedure, taking into account the most possible
orderings for a factor with four levels. To summarize briefly, simple regression suggests
that there is a linear association between hours of sleep deprivation and vigilance. As the
hours of sleep deprivation increase so do the number of objects not detected on a radar
screen. Multiple regression suggests that the model with x;, xz and x;3 are the best
predictors of vigilance, and isotonic regression suggests that there is a non-decreasing
trend of vigilance across hours of sleep deprivation. Each type of analysis provides

information about the association between vigilance and hours of sleep deprivation.
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Chapter Four: Isotonic Regression, ANOVA and Non-Linear Regression
in the study of Intrinsic Religious Orientation
4.1 Purpose of the Study

The purpose of this study is to apply and compare several statistical techniques in
analyzing an empirical data set in psychological research. For these objectives, seven
ANOV As and isotonic regressions with Scheffe post hoc multiple comparison procedures
are investigated. To illustrate the importance of the current study, Hossack (1996)
proposed a model that would integrate “trait” and “process” approaches to personality
development in a sample of undergraduate Psychology students at the University of
Manitoba. In the primary analysis, a structural equation model demonstrated how the
interaction of traits and interpersonal variables tend to influence parental attachment
styles, providing adults with a sense of well-being (happiness). In the secondary analysis,
the relationship between Intrinsic Religious Orientation (IRO), several personality traits
and parental attachment types was explored. Specifically, IRO was correlated with
Extraversion (r = 0.12, p<0.05), Attachment to Mother (r = 0.22, p<0.01), Attachment to
Father (r = 0.16, p<0.01), and Satisfaction with Life (r = 0.19, p<0.01). This study
examined how trends that have the property of being monotonic could be used to describe
the relation between IRO and parental attachment types, three NEO subscales
(Neuroticism, Agreeableness and Conscientiousness), as well as Satisfaction with Life.
In particular, the methods of ANOVA and isotonic regression are illustrated with these

variables. The hypotheses for this study are presented in section 4.3.
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4.2 Methodology
Participants: There were 520 Introductory Psychology students, 258 males and 262
females from the University of Manitoba. A majority (85.6%) were within the age range
of 18 to 22 years. These students were placed into one of ten different groups based on

their level of Intrinsic Religious Orientation (Allport & Ross, 1967).

Materials: The undergraduate psychology students were measured on seven different
measures: Attachment to Mother, Attachment to Father, Neuroticism, Agreeableness,
Conscientiousness, Sense of Coherence, and Satisfaction with Life. A description of these

variables and Intrinsic Religious Orientation is presented below.

Intrinsic Religious Orientation (Allport & Ross, 1967). IRO is a 20-item scale that
measures an individual’s motive for their behavior and way of life as it relates to their
belief in God. Other needs and values are brought into harmony with this belief in God.
A sample item would be: ‘My religious beliefs are what really lie behind my whole
approach to life.” This item would be responded to according to a 5-point Likert scale: (a)
this is definitely not so, 5 (b) probably not so, 4, (c) neutral, 3, (d) probably so, 2, (e)
definitely so, 1. A score of 1 indicates high intrinsic reli giouSity whereas a score of 5
indicates a score of low intrinsic religiousity (or high extrinsic religiousity). This
subscale has good internal consistency reliability (o = .83) and correlates highly with
variables such as mental health, altruism and religious commitment (Trimble, 1997). The

intrinsically religious person considers religion to be a way of life.
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Attachment to Mother (Armsden & Greenberg, 1987): The ATM subscale contains 25
items that ask about feelings toward their mother and about their tendency to approach
their mother when they are upset or have to make a decision. Items include “My mother
helps me understand myself better” and “I tell my mother about my problems and
troubles.” The items are responded to using a five-point Likert scale from (1) seldom true
to (5) almost always or always true. The ATM construct is measured from the Inventory
of Parent and Peer Attachment (IPPA) which has three subscales (trust, communication

& alienation).

Attachment to Father (Armsden & Greenberg, 1987): The ATF subscale contains 25
items pertaining to how the individual views, thinks and feels about their father. The
word “father” replaces the word “mother” for each item in the IPPA subscales. The

scoring methodology for ATF is the same for the ATM construct.

Neuroticism (Costa & McCrae, 1989): The NEO personality inventory measures the big-
five dimensions of personality: Neuroticism, Extraversion, Openness, Agreeableness and
Conscientiousness. The NEU component contains 12 items that measure anxiety,
hostility, depression, self-consciousness, impulsiveness and vulnerability. Reliabilities
for this subscale are in the high .80s to low .90s for both internal consistency and test-

retest reliability (Kaplan & Saccuzzo, 1997).

Agreeableness (Costa & McCrae, 1989): The AGR component of the NEO contains 12

items which measure the degree to which a person is warm and cooperative as opposed to




Isotonic Regression 40
unpleasant and disagreeable. Agreeable individuals are communicative, supportive and

tend to be very kindhearted.

Conscientiousness (Costa & McCrae, 1989): The CON component of the NEO is a 12
item subscale which measures the degree to which a person is persevering, responsible,
and organized as opposed to lazy, irresponsible and impulsive. Conscientious individuals

are concerned about others and plan their activities ahead of the scheduled time.

Sense of Coherence (Antonovsky, 1987): The SOC subscale has 29 items with 7-point
likert scale ratings, where 1 is “strongly disagree” and 7 is “strongly agree.” The three
components of the subscale (comprehensibility, manageability and meaningfulness)
allow an individual to see the world as predictable, understandable and well structured.
Comprehensibility is the ability to make cognitive sense of information that is ordered
and consistent rather than random or accidental. Manageability is the extent to which an
individual perceives that resources are available to attend to the information that is
presented to them. A person with high manageability will not feel victimized by events
or that life is unfair. Meaningfulness is the extent that an individual shapes their own

destiny and daily experience.

Satisfaction with Life (Diener, Larsen & Griffin, 1985): The SWL subscale contains five
items and is measured on a seven point likert scale. Items from the scale would be “So

far I have gotten the important things I want in life” and “The conditions of my life are
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excellent.” The retest reliability and internal consistency reliability for this scale are 0.82

and 0.87 (Diener et al, 1985).

4.3 Hypotheses, Procedure and Design

To illustrate the use of isotonic regression methodology, seven one-way
ANOVAs and seven isotonic regressions were calculated on IRO, a ten-level factor. The
null hypothesis Ho: W = fo =...= pjo was tested against Hy: i # Wy, i #j,iandj=1,2, ...,
10 for ANOVA and Ui < Ua < ... < Wy for the isotonic regression. The first hypothesis is
that, for ANOVA, there will be a significant difference between the 10 groups of Intrinsic
Religious Orientation (IRO) for Attachment to Mother (ATM), Attachment to Father
(ATEF), Sense of Coherence (SOC) and Satisfaction with Life (SWL) but not Neuroticism
(NEU), Conscientiousness (CON) and Agreeableness (AGR) at the 0.05 level of
significance. The second hypothesis is similar to the first, in that for isotonic regression,
there will also be differences between the 10 groups for ATM, ATF, SOC and SWL but
not NEU, CON and AGR at the same significance level. The third hypothesis is that
isotonic regression estimates will produce higher goodness of fit Valqgs (R? values) than )
the sample mean estimates for linear, exponential and logistic models. This chapter
represents a reanalysis of the data collected by Hossack ( 1996) as an empirical example
of isotonic regression.

The criterion variables of interest were the two measures of attachment, the three
NEO subscales, SOC and SWL. In all the statistical tests below, the alpha level was set
at 0.05. It must be pointed out at the outset that all the Fp,, tests for variance

homogeneity are significant. Hence, the assumption of variance homogeneity is not
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tenable. Strictly speaking, the ANOVA results would be invalid. However, for the
purpose of illustrating the uses of isotonic regression, ANOVA designs will be taken into
consideration. The descriptive statistics for the variables in the study are presented below

Table 4.1

Descriptive Statistics for the Variables in the Study

Descriptive Statistics

Variable Mean S.D. Var

ATM 80.025 7.59 5761
ATF 76.06 8.62 7430
NEU 20.89 403 1624
CON 29.37 3.49  12.18
AGR 25.02 4.00 16

el 92.05 6.36  40.45
SWL 17.68 3.87  14.98
IOR 27.37 059  91.97

Note: The descriptive statistics for the variables in the study (N = 520) suggest that
observations for the variables are close to the mean except for ATM, ATF, SOC and IRO.

in Table 4.1. The table demonstrates that the mean for SOC is largest, followed by ATM
and ATF. The standard deviations for these variables are between 3.49 for CON and 9.59
for IOR. The variances for each of the variables are quite large and should therefore be

applicable for statistical analyses.
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When the IOR variable observations are placed into ten groups, the means,

standard deviations and variances are mentioned in Table 4.2. The sample sizes were

Table 4.2

Descriptive Statistics for Groups of Intrinsic Religious Orientation

Descriptive Statistics

Group Sample Size Mean S.D. Var
1 50 12.18 1.35 1.8225
2 50 16.62 1.00 1.0
3 57 19.84 0.86 0.7396
4 55 23.04 0.84 0.7056
5 51 25.80 0.80 0.64
6 52 28.36 0.86 0.7396
7 53 30.98 0.77 0.5929
8 49 33.94 0.83 0.6889
9 52 38.44 1.70 2.89
10 "51 45.12 1.89 3.5369

Note: The sample means for the ten groups of Intrinsic Religious Orientation are used to
detect trends for the seven dependent measures. Sample sizes are approximately equal.

selected to be as equal as possible. The Fry statistic indicates that the homogeneity of

variance assumption is not supported for this analysis as F.x = 91.97/12.18 = 7.55 is

greater than Fn.1, =519,k =8) = 2.22. Table 4.2 shows that upon parsing the IRO variable

into ten groups, the means of these groups were between 12.18 and 45.12 with standard

deviations between 0.80 and 1.89. The standard deviations indicate that although there is
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Correlations of Intrinsic Religious Orientation and Criterion Variables

Variables
IRO ATM ATF NEU CON AGR SOC SWL
Students (N = 520)

1 IRO 1.00 0197 016" -007 025" -003 020" 017"
2. ATM 0197 100 044 0.1 0.22” -0.16" 014 023"
3. ATF 016" 044” 100 -007° 014" -018" 0.16%* 020"
4. NEU -007 001 -0.07 .00 -0.11° 028" -006 -031"
5. CON 0257 0227 014" -0.11 .00 0.06 0227 0377
6. AGR -0.63 -0.16° -0.18" 028" 006 100 0.14 -0.247
7. SOC 020" 014  0.16* -0.06 022" 0147 100 0.18"
8. SWL 0.177 0237 020" -031" 0377 -024" 0.18% 1.00
*p < 0.001, ** p < 0.0001

Note: Correlations between IRO and the seven criterion variables indicate that ATM,
ATF, CON, SOC and SWL are expected to produce significant monotonic trends.
variation due to individual differences (randomization and sampling error) between the

not much error in the ten groups, they have been varied widely. Prior to computing the

ANOVA and isotonic regression analyses, correlations of the criterion variables with

Intrinsic Religious Orientation have been examined for possibly identifying the

monotonic trends that are significant at oo = 0.05 (as seen in Table 4.3). Specifically,

those variables that have a high correlation with Intrinsic Religious Orientation are
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expected to produce significant linear trends. Results in the correlation matrix
demonstrate that ATM, ATF, CON, SOC and SWL are expected to produce significant
monotonic trends with IRO (p < 0.0001). Additional findings suggest that ATM is highly
correlated with ATF, CON and SWL (p<0.0001), but not with NEU and SOC (p>0.05).
The SWL variable was significantly correlated with each of the remaining variables (p <
0.0001). Non-significant correlations between IRO and both NEU and AGR suggest that

there may be no trend between these variables, or a trend in the other direction.

4.4 Results for the ANOQVA and Isotonic Regression Analysis
Results for the ANOVA and isotonic regression analyses were summarized in

Table 4.4. The omnibus hypothesis in Hp: 1} = 2 = ... = py0 in the ANOVA analysis for
five of the seven variables were significantly different at a = 0.05, ATM (p<0.01), ATF
(p<0.05), CON (p<0.01), SOC (p< 0.01) and SWL (p<0.01). The p-value for CON is
smaller than expected as it was hypothesized that there would be no significant difference
between the IRO groups for this variable. Scheffe multiple comparison procedures at the
0.05 significance level indicate that there is a significant difference between groups one

and ten for ATM and ATF. Similar results can be found for CON, where group ten is
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Table 4.4

Statistics for ANOVA and Intrinsic Religious Orientation and the Seven Criterion Variables

Group
Variable 1 2 3 4' 5 6 7 8 9 10 F  F(p-value) E*  EXp-value)
ATM 770 7928 7947 79.69 79.55 80.60 79.85 80.12 80.19 84.51 3.13 0.01%* 0.176  0.03*
ATF 7336 75.16 75.05 76.25 75.73 77.63 7643 7492 76.19 79.78 2.10 0.026* 0.134 0.02*
NEU 2030 21.56 21.26 21.51 20.90 20.92 20.96 20.37 21.17 19.80 1.01 0434 0.057  0.0023%%
CON 28.84 2840 28.00 29.0 29.51 28.94 29.87 29.45 29.98 31.82 5.15 0.001%* 0.023  0.06
AGR 12510 25.88 24.39 24.87 24.47 25.69 25.13 25.69 2431 2475 1.06 0.369 0.237  0.005%
SOC 88.46 91.82 90.56 92.18 92.18 92.69 92.57 94.18 91.33 94.73 4.12 0.001%* 0.196  0.05%
SWL 17.50 16.42 17.53 17.36 17.24 17.77 17.61 17.61 17.58 2020 3.26 0.007** 0.151  0.02%

(**)-p<0.01, (*)- p<0.05

Note: The ANOVA indicates that Attachment to Mother, Conscientiousness, Sense of Coherence and Satisfaction with Life are
statistically significantly at o = 0.01 level. Attachment to Father is significant at o= 0.05. The isotonic regression suggests that

Neuroticism and Agreeableness are significant at o =0.01 and Attachment to mother, Attachment to Father, Sense of Coherence and
Satisfaction with Life are significant at o = 0.05.
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significantly different from groups one, two, three and six. The SOC variable also shows
significant differences between groups one and six, as well as groups one and ten. The SWL
variable demonstrates a significant difference between groups two and ten. Each of these
comparisons maintain a mean square error of 14.39 and a critical value of F = 1.89 using the
SAS programming language. The Scheffe multiple comparison procedure has more power than
most multiple comparison procedures so the results are useful for detecting group differences.

The plots of the variables in Figures 4.1 to 4.7 for the ANOVA analysis suggest that the
monotonically increasing trend for three variables (ATM, CON and SWL) is quite likely, but
nevertheless there is no clear trend for other variables. The purpose of these plots is to observe
differences and trends between the sample means. The ATM variable increases from group 1 to
group 2 and then remains steady until group 9, where it increases to group 10. The ATF variable
increases from group 1 to group 6 and then decreases to from group 6 to group 8 before
increasing to groupl0. The NEU variable demonstrates a sharp incline from group 1 to group 2
and then gradually decreases until group 8, where it increases to group 9 and then diminishes to
group 10. The CON variable decreases from groups 1 to 3, and then increases slowly until group
10. The AGR variable increases from group 1 to group 2, but then decreases shamly from group
2 to group 3, before increasing to group 6. The variable then decreases to group 7, before
increasing to group 8 and finally decreasing to group 9. The SOC variable increases from group
1 to group 2 and then (iecreases from group 2 to group 3. The variable remains steady until
group 8, where it decreases sharply to group 9, before increasing sharply to group 10. The SWL
variable decreases initially from group 1 to group 2, and then increases for the remainder of the

trend. The y-axis (level of the dependent variable) is not the same for each of these variables.
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For the isotonic regression analysis, the planned multiple comparison procedures have the
same significance level and a critical t-value of 3.053. The comparisons indicate that group 10 is
significantly different from groups 1, 2 and 3 for the ATM variable and groups 1 and 3 for the
ATF variable (p < 0.05). The CON, SOC and SWL variables demonstrate that group 10 is
significantly different from group 3 (p < 0.05). The p-value for CON was smaller than
anticipated as a non-significant result was expected. The comparisons were for those of the
endpoints and tended to demonstrate that groups 8 and 9 were not significantly different from
groups 1, 2 or 3 (p >0.05). Each variable had a potential nine multiple comparisons that could
be performed (group 8, 9 and 10 compared to groups 1, 2 and 3 respectively) and no more than
three were significant per variable. The alpha level was controlled to account for capitalization
on chance by dividing 0.05 by the number of t-tests. The result, 0.05/9 = 0.006 suggest that none
of the previous comparisons would be lower than this number. The possibility of rejecting a null
hypothesis on the basis of chance and chance alone is therefore very small.

The planned comparisons have more power than post hoc comparisons since fewer tests
are performed and the familywise error rate is lower. The tendency is for differences between
groups to occur at the end points of the trends. Differences that occur 1:11 the middle of a curve
can be identified from a plot and the number of amalgamations can be observed when the trend
is constant. A critical evaluation of the plots allows the comparisén of the different variables.
There are trends the may be repr(;duced among several variables and there may be evidence to
suggest that levels of IRO are different depending on the variable (this is a multivariate statistics

problem).
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The group means after conducting the “amalgamation process” in the isotonic regression
procedure were then estimated and plotted as seen in Figures 4.8 to 4.14. As the number of
amalgamations increase, the slope of the trend becomes more level. The plots depict the number
of amalgamations as well as the steepness of the slope. When the value of the slope is very low
between the means and there are many amalgamations, then the null hypothesis of monotonic
trend is not expected to be rejected. The ATM variable requires one amalgamation (groups 7 to 9
are combined) to make the trend monotonic. The trend tends to increase from group 1 to
group 2 with not much change until group 9 where it increases to group 10. The ATF variable
shows a very similar trend. There is also one amalgamation which occurs at the same location as
the ATM variable. The variable tends to have slightly more of an incline from groups 1 to 6, and
then remains steady until group 9 where it increases to group 10. The level of IRO tends to
increase in a stepwise manner from group 2 to group 6. The NEU variable demonstrates several
amalgamations (groups 2 to 10 are combined) after a sharp increase from group 1 to group 2.
The trend remains constant until the 10th group. The CON variable does not have any
amalgamations and nevertheless shows lower levels of the IRO variabl_e than the NEU
variable. The trend is uniform from group 1 to group 2, and then increases gradually from
group 2 to group 10. The AGR variable demonstrates four amalgamations (groups 1 to 4 and
5 to 10 are combined) such that the trend remains constant until there is dramatic increase
from group 5 to group 6. The trend then remains at the:same level of IOR until group 10.
The SOC variable does not show any amalgamations and increases gradually from the group
2 to group 10. The variable becomes greater as the trend progresses, with a gradual

improvement from group 3 to group 9. The SWL variable has a very gradual increase from
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group 1 to group 9, suggesting that most individuals are satisfied with their life regardless

of their lIevel of IRO. There is then a sharp increase from group 9 to group 10, which
suggests that those individuals in the last group are also extremely satisfied with their life.
These seven variables did not tend to demonstrate linear trends, however several variables
such as the ATM, ATF, CON and SOC variables were increasing without amalgamations and
have the potential to be fit by a linear trend. These variables demonstrate the property of
monotonocity.

A more thorough investigation reveals that the ATM and SOC variables are the
most strongly increasing of the variables. Both of these variables begin and end with
very steep, increasing slopes with a tendency to be more flat and stable in the middle of
the trend. The SWL variable is also similar, however the beginning of the trend has a
steep declination. This declination, while being somewhat immediate, does not tend to
damage the shape of a predominantly increasing trend in the middle and end. The same
should be mentioned of the CON variable as its shape is the same as the SWL variable.
The ATF variable is increasing at the beginning and eﬁd of the trend with a sharp
declination in the middle. This variable is therefore similar to the ATM and SOC

variables with a decline in the middle in place of being flat and stable.

4.5 Results for ANOVA and Isotonic Regression Goodness of Fit Indices
The second purpose of this paper is to determine when goodness of fit values
(measured using standard deviates) of isotonic regression estimates are greater than the
goodness of fit values of sample mean estimates for three non-linear models. The results

are summarized in Table 4.5. The goodness of fit values using isotonic regression
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Table 4.5

The Goodness of Fit for Three Models (Linear, Exponential and Logistic) using

the Square of the Correlation Coefficient (Rz)

Sample Mean Estimates Isotonic Regression Estimates

Linear Exponential Logistic Linear Exponential Logistic
ATM 0.714 0.719 0.663 0.736 0.741 0.682
ATF 0.588 0.59 0.573 0.800 0.804 0.764
NEU 0.203 0.204 0.102 0.281 0.281 0.432
CON - 0.732 0.734 0.59 0.871 0.882 0.747
AGR 0.048 0.048 0.042 0.685 0.685 0.663
SOC 0.591 0.589 0.654 0.872 0.868 0.907
SWL 0.51 0.514 0.374 0.629 0.647 0.501

Note: The R” values are presented for ATM, ATF, NEU, AGR, CON, SOC and SWL.
The regressor variable for each of the regressions is IRO. It is hypothesized that the R?
values will be greater for isotonic regression than for sample mean estimates.

estimates and sample mean estimates are not the same for each model. For the sample
mean estimates, goodness of fit values for each of the models were hi gh for ATM, ATF
and SOC, moderate for CON and SWL, and low for NEU and AGR. The. exponential
model showed greater goodness of fit values than the linear and logistic models for each
of the variables except AGR, where the linear model was slightly higher than the

exponential model. Similar to the analysis using sample mean estimates, the goodness of

fit isotonic regression values were high for ATM, ATF and SOC, moderate for CON and
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SWL, and low for NEU and AGR. The exponential model had greater goodness of fit

values than the linear and logistic models for each of the variables except AGR, where
the logistic model was greater than the exponential model. The isotonic regression

goodness of fit values were greater than the sample mean goodness of fit values for each

of the variables except for NEU, CON and AGR (the three NEO subscales).
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Chapter 5: Advantages and Limitations of Isotonic Regression

5.1 Advantages of Isotonic Regression

When considering the methods for Festing directional hypotheses, isotonic regression
is a sophisticated technique comparable to the standard ANOVA method and trend analysis
method. The ANOVA method uses multiple comparison procedures after rejection of the
omnibus F-test. The trend analysis method tests for specific functions, such as quadratic or
cubic trends using contrasts. Isotonic regression, however, tests the equality of population
means against order-restricted alternatives. The technique is different from other techniques
in that it is a one-test procedure applicable in numerous mathematical models (Kabatsos &
Ullrich, 2002). Isotonic regression can also be used for estimating confidence intervals of
parameters, such as y, when the observations are subject to order restrictions (Hwang and
Das Peddada, 1994). Further applications of isotonic regression can be found from Dykstra
(1983), who presents an algorithm for restricted least squares regression when the data is
constrained to an order restriction. This algorithm is useful for finding the closest quadratic
function to a set of points while using the least squares principle. There is also a
multivariate version of the ;f and £ isotonic regression test statistics (Sasabuchi, Inutsuka
and Kulatunga, 1983). T}iérefore, the isotonic regression technique has many uses for
statistical inference.

Another advantage of isotonic regression is that the technique can provide a clear
statistical decision on whether trends are non-decreasing or non-increasing (i.e. monotonic).
The procedures that are available to make this decision are numerous. For example, Wang
(1996) used a Monte Carlo simulation study to derive a likelihood ratio test for order

restrictions when distributions are unknown under the null hypothesis. Also, there are
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methods for estimating confidence bands of monotonic dose-response regression

functions (Lee, 1996). The confidence bands provide an indication of how much error can
be tolerated for making decisions about the curve. Kelly (1989) has shown that the absolute
error of the isotonic regression estimate p;* is smaller than that of the sample mean estimate.
Isotonic regression estimates are therefore preferable to sample mean estimates as a smaller
error variance is expected in the ,1; and £ tests. There have also been additional refinements
to the amalgamation process for clearer decision making, e.g. Dykstra and Robertson (1982)
present an algorithm for isotonic regression with two or more independent variables.

A third advantage to isotonic regression is that there are several studies pertaining to
non-normal data, statistical power, and the Bayesian approach to order restricted statistical
inference. When data are non-normal, Wang's (1996) approach of using a distribution free
likelihood ratio tést is appropriate for testing directional hypotheses. Other distribution free
tests for non-normal data have been presented by Page (1963) for two independent variables
and Joncheere (1954) for one independent variable. With respect to statistical power,
Mancuso, Ahn and Chen (2000) have studied an empirical distribution of the test statistics
and critical values for isotonic regression. They also discuss an adjustment to the likelihood
ratio test to increase the power of isotonic regression for dose-response curves. Marcus
(1976) concludes that the power of the likelihood ratio test is slightly greater than the
William's and modified William's test (1971) for the minimum effective dose in the context
of a one-way design. The Bayesian approach to order restricted statistical inference has
been studied most recently by Dunson and Neelon (2003), who present non-parametric
bayesian inference on order-constrained parameters in general linear models. An isotonic

regression transformation of the data is used to derive a posterior distribution for the general
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linear model. Deaton (1980) presents a parametric Bayesian approach to polynomial

regression under order restrictions. A Monte Carlo procedure is used to demonstrate that
the Bayes approach of estimating order-constrained parameters in a prior distribution has
improved goodness of fit compared to other methods of polynomial regression. Isotonic

regression is therefore useful for Bayesian statistical inference.

5.2 Disadvantages of Isotonic Regression

A potential disadvantage to isotonic regression is that the technique is used for
testing the monotonicity of a trend, but not a specific function or shape of a trend. A
researcher may use isotonic regression estimates to correct for reversals that may occur
between population means. The potential difficulty is that amalgamations will change the
shape of the trend despite preserving the order of the population means in the alternative
hypothesis. If a particular shape of a trend is to be tested and an amalgamation is required
then there is a compromise for the shape of the trend. Since researchers may be interested in
testing for a particular shape (e.g. linear, quadratic and cubic), further research is required to
preserve both the shape and sequence of the population means. Brownie, Boos and Hughes-
Olivier (1990) present a technique for pooling the homogeneity of variance of two or more
treatment groups with a control group. This procedure helps to increases power without
compromising the shape of the trend. The modified t-test and ANOVA are the preferred
techniques for this type of analysis.

Another disadvantage to isotonic regression is the lack of programming software for
directional hypotheses. The prominent use of isotonic regression in psychology will rely on

a simple procedure that can be implemented in statistical packages such as SAS and SPSS.
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Nelson (1976) has developed a program using the Basic programming language, but a

more practical program or module is necessary. A computer program to assess the
monotonicity of a trend would allow usérs to analyse their data without too much
complication.

As a third disadvantage, there are few empirical studies in the social sciences that
apply isotonic regression to their data sets. There is nevertheless an application of isotonic
regression by Deary, Caryl and Gibson (1993) for testing psychophysical responses
(reaction times) in a visual inspection task. Some clinical studies that use isotonic
regression consist of research pertaining to AIDS by Ancukiewicz, Finkelstein and
Schoenfeld (2003), radiation dosage by Morton-Jones, Diggle, Parker, Dickinson and Binks
(2000) and irreversible diseases such as cancer (Dinse and Lagakos, 1982). A survey of the
research pertaining to isotonic regression reported in Table 5.1 reveals that the PsychInfo
database contain only four references. The database with the most references is JSTOR
(Journal Storage), followed by MathSciNet (the Math Science Network) and Medline.
These three databases contain research papers from the disciplines of Statistics, .
Mathematics and Medicine. The Science database has the next most number of references
pertaining to isotonic regression, predominantly in the discipline of Biology. From the
results for Psychlnfo, it is clear that social researchers have not exploited isotonic regression
to detect monotonic trends. This technique should be made more available to social
scientist, particularly in the discipline of Psychology.

Table 5.1

Number of References using Isotonic Regression in Psychology and other Disciplines
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Isotonic Regression (Keyword)

1. PsychInfo 4

2. EconLit 5

3. ERIC 2

4. JSTOR 200
5. Medline 45
6. MathSciNet 123
7. Science 22

Note: The number of references in a key word search using the terms isotonic regression is
. recorded. The JSTOR, MathSciNet and Medline databases have the most references.

5.3 Summary

This thesis had three purposes. Firstly, it presented the theory, development and
application of isotonic regression for the benefit of researchers in Psychology. The theory
component involved discussing the alternative hypothesis for isotonic regression and the
background for the use of isotonic regression estimates from the pool-adjacent-violators
algorithm. The applied component was a study on the isotonic trend of groups varying in
relation to the other variables. In this study, the criterion variables were the constructs of
Attachment to Mother, Attachment to Father, Neuroticism, Conscientiousness,
Agreeableness, Sense of Coherence and Satisfaction with Lifé. Separate ANOVA and
isotonic regressions were computed on each of these seven criterion variables. Secondly,
goodness of fit tests for isotonic regression models were discussed. The role and methods of
goodness of fit procedures in assessing models using isotonic regression have been
discussed and illustrated in the context o linear and non-linear models. Further, their

goodness of fit was compared when isotonic regression estimates were used in place of
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sample mean estimates. The intention was to demonstrate that isotonic regression

estimates may be useful in situations other than hypothesis testing.
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Critical values for E? statistic involving k groups each containing n observations

k=3

0.10 0.05 0.025

.5402
3355
2421
1891
1551
1315
1141
.1007
0902
0816
0745
.0686
.0635
0592
0554
0520
.0490
.0464
.0440
0365
0291
0218
0144

.6866
4554
3373
2673
2212
.1886
.1643
.1456
1307
1185
.1084
.0999
0927
.0864
.0809
0761
0718
.0680
0645
0536
.0428
.0320
0213

7898
5567
4232
3401
2840
2436
2132
.1895
.1706
1551
1421
1312
1218
1136
1065
.1003
0947
0897
.0852
0710
0568
0425
0284

0.01

.8781
6646
5219
4272
.3608
3120
2747
.2453
2215
2020
1856
1716
1596
1491
.1400
1319
1247
1182
1124
0983
0752
0565
0378

0.001

9707
.8367
7052
.6020
5227
4608
4116
3716
3386
3109
2873
2670
2494
2339
2203
2081
1972
1874
1785
.1500
1210
0915
0615

k=4

0.10 0.05

4626
2944
2154
1697
1399
1190
1036
0917
0822
0745
.0682
0628
0582
.0543
0508
0477
0450
0426
.0405
0336
0268
.0201
0133

.5900
3923
2923
2327
1932
1651
1441
1279
.1149
1043
0955
.0881
.0817
0762
0714
0672
0634
.0601
0570
0475
0379
0284
.0189

0.025

.6897
4783
.3630
2919
2439
2094
1834
1632
.1469
1336
1225
1131
1051
.0981
0920
.0866
0817
0775
.0736
0613
.0491
.0368
0245

0.01

1872
5748
4467
3641
3069
.2650
2332
2081
1879
1713
1573
.1455
1353
1264
1186
1118
.1057
.1002
.0952
.0795
0637
0479
.0320

0.001

9205
7483
6137
5163
4443
3894
.3463
3117
2833
2596
.2396
2224
2074
.1944
1829
1727
1635
1553
1479
1241
0999
0755
.0506
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k=5

0.10 0.05 0.025

4056
2614
1925
1523
1260
1074
0936
.0829
0744
0675
0618
0570
.0528
0492
.0461
0434
.0409
0387
0368
0306
0244
0183
0122

5178
3448
2576
2055
1708
1461
277
1134
1019
0926
.0848
0783
0726
0678
0635
0597
0564
0534
0507
0422
0338
0253
0169

6104
4196
3181
2557
2137
1835
.1608
.1430
1288
1172
1075
.0992
0922
.0860
.0807
0760
0717
0680
.0646
0538
0431
.0323
0216

0.01

7075
.5063
.3909
3177
2673
2306
2028
.1809
1633
1488
1366
1263
175
.1098
.1030
0970
0917
.0869
.0826
.0690
0553
.0416
0278

0.001

.8605
6727
5424
4521
.3869
3377
2996
2690
2442
2234
.2060
1910
1781
.1668
1568
.1480
1410
1330
1266
1061
0854
0644
.0432
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k=6

0.10 0.05 0.025

3623
2353
1740
1380
1143
0976
0851
0755
0678
0615
0563
0519
0482
.0449
0421
0396
0374
0354
0336
0279
.0223
0167
0111

4623
3082
2306
1841
1532
1312
1147
1018
0916
0832
0763
0704
0653
.0609
0571
0537
0507
0481
.0457
0380
0304
0228
0152

5476
3745
2836
2279
1905
1636
1433
1275
1148
1045
0958
0885
0822
0767
0719
0677
0640
0606
0576
0480
0384
02388
0192

0.01

.6409
4529
3481
2823
2373
2046
1798
1603
.1446
1318
1210
1118
.1040
0971
0912
0859
0812
0769
0731
0610
.0489
0368
0245

0.001

.8012
.6098
4860
4026
3431
2988
2645
2372
2150
1966
1811
1678
1563
.1463
1376
1298
1228
1165
1109
0929
0747
0563
0377
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0.10

3283
2142
1588
1262
.1046
.0894
0780
.0692
0622
0565
0517
0477
.0442
.0413
.0387
0364
.0343
.0325
0309
.0257
.0205
.0154
0102

0.05

4185
2791
2091
1670
1391
1191
1041
0925
0832
0756
.0693
0640
0594
0554
0519
.0489
.0462
0437
0415
.0346
0277
0207
0138

k=7

0.025

4972
3388
2563
2059
1721
1478
1295
1152
.1037

0944

0865
0799
0742
0693
.0650
0612
0578
0548
.0520
.0434
0347
0261
0174

0.01

5855
4102
3143
2545
2137
1841
1617
1442
1301
1185
.1088
1005
.0934
.0873
0819
0771
0729
.0691
0657
0548
.0439
.0330
0220

0.001

7464
5547
4406
3633
3087
.2683
2372
2125
1924
1758
1618
.1499
1396
1306
1228
1158
1095
1039
0989
.0828
0665
0501
0335
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k=28

0.10 0.05 0.025

3007
1969
1463
1163
0966
.0825
0721
.0639
0575
0522
0478
0441
.0409
0382
0358
0336
0318
.0301
0286
0238
.0190
0142
.0095

3830
2555
1915
1531
1275
1092
.0955
.0849
0763
0694
.0636
0545
0545
.0508
0477
.0449
.0424
.0401
0381
0318
0254
.0190
0127

4557
.3098
2342
.1881
1572
1349
1182
1052
0947
.0862
0790
0678
0678
.0633
.0594
.0559
0528
.0500
0475
.0396
.0317
0238
.0159

0.01

5391
3753
2869
2320
1947
1676
.1472
1312
1183
1078
.0989
.0850
.0850
0794
0745
0701
.0663
0628
.0597
.0498
.0399
.0300
.0200

-0.001

.6973
5133
4032
3313
2810
2438
2152
1927
1744
1592
.1465
1263
1263
1182
1110
.1047
.0990
0939
.0893
0748
.0600
0452
.0303
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0.10

2778
1824
1357
.1080
0897
0767
0670
0595
0535
.0486
.0445
.0410
.0381
.0355
0333
0313
0296
0280
0266
0221
0177
0133
.0088

0.05

3535
.2359
1769
1414
1178
.1009
0883
0785
0706
0642
0588
0543
0504
.0470
0441
0415
.0392
0371
0353
0294
0235
0176
0117

k=9

0.025

4211
2857
2158
1733
.1448
1243
.1089
.0969
0873
0794
0728
0672
0624
0583
0547
0515
0486
0461
0438
0365
0292
0219
0146

0.01

4998
3462
2642
2134
1790
1541
1352
1205
.1087
.0990
.0908
0839
.0780
.0729
.0684
.0644
.0608
0577
.0548
0457
.0366
0275
.0184

0.001

6536
4759
3720
3048
.2580
2236
1973
1765
1596
1457
1340
1241
1155
.1080
1014
0956
.0904
0858
.0816
0682
0548
0412
0276
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k=10

0.10 0.05 0.025

2586
1701
1267
.1009
.0838
0717
0627
.0556
.0500
0454
0416
0384
0356
0332
0312
0293
0277
0262
.0249
.0207
.0166
0124
0083

3286
2194
1645
1316
.1096
.0939
0822
0730
0657
0597
0547
0505
0469
0438
0410
0386
0365
0346
0328
0274
0219
0164
0109

3918
2654
.2004
.1609
1344
1154
1011
.0899
0810
0737
.0676
.0624
0579
0541
0507
.0478
0451
0427
.0406
.0339
0271
.0203
.0136

0.01

4660
3217
2451
1978
.1658
1427
1252
J116
.1006
0916
0840
0777
0722
0674
0632
.0596
0563
.0533
0507
.0423
0339
0254
.0170

0.001 .

6147
4437
3455
2825
2388
2067
1822
1629
1473
1344
1236
1144
.1064
.0995
.0935
.0881
.0833
0790
0752
0628
0504
0380
0254
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Glossary of Statistical Terms

Between-Subjects Design: An experimental design where the differences between two or

more treatment groups are compared. Each treatment group has different subjects and is

uncorrelated with each other, usually being sampled from different populations.

E%: The test statistic that is used to determine when there is a significant non-decreasing or
non-increasing trend. The statistic is the ratio of the between sums of squares after
amalgamation and the total sum of squares. -High values of this statistic suggest that a
significant amount of the criterion variable can be accounted for by the order of the levels of

the independent variable.

Isotonic Regression Estimate: An isotonic regression estimate replaces a sample mean
estimate to preserve a non-decreasing or non-increasing trend. The estimate is the arithmetic
average of the sample mean that violates the trend and the sample mean that precedes this

mean. When an isotonic regression estimate is required, a curvi-linear trend is obtained.

Likelihood Ratio Test: A statistic that measures the ratio of the between sums of squares

after amalgamation and the population variance. This statistic is used for theoretical
purposes. The likelihood ratio test indicates the amount of dependent variable variation

accounted for by the trend.
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Monotonic: The term used to describe the shape of a trend. A monotonic trend occurs
when the dependent variable is either non-decreasing or non-increasing over the levels of

the manipulated variable. The trend is usually curvi-linear but may be linear.

Within-Subjects Design: An experimental design where subjects are measured on each

treatment group. The treatment groups are correlated and the order of the treatments must

be counter-balanced.





