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Isotonic regression is a technique for detecting trencls that have the property of being non-

decreasing or non-increasing. The first purpose of this study is to present the theory and

computational procedures to conduct isotonic regression analysis for a one-way analysis of

variance experimental design. The second purpose is to illustrate the use of the isotonic

regression technique in analyzing psychological data. Using a data set from Hossack (1997),

the property of isotonicity is tested by using a technique that preserves the order of group

means. In this study, groups of Intrinsic Religious Orientation (IRO) are hypothesized to be

significantly different for Attachment to Mother (ATM), Attachment to Father (ATF), Sense

of Coherence (SOC) and Satisfaction with Life (SWL) at the 0.05 level of significance.

Moreover, there is no expected significant cliffelence hypothesized between IRO groups for

Agreeableness (AGR), Conscientiousness (CON) or Neuroticism (NEU) at the same level of

significance. Results confirm these hypotheses under both ANOVA and isotonic regression

analyses. However, there are three exceptions. For ANOVA, the IOR groups were

Abstract
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significantly different for CON (p < 0.01) when a non-significant result was expected. For

isotonic regression, the IOR groups were significantly different for NEU and AGR (p <

0.05), when a non-significant result was expected. In addition, the goodness of fit values

using isotonic regression estimates were greater than goodness of fit values using sample

mean estimates for each of the criterion variables. Besides the linear ANOVA-typed model,

isotonic regression techniques are also used with some nonlinear models such as exponential

and logistic functions. The implications are that isotonic parameter estimates should be used

instead of sample mean estimates. In the conclusion, the advantages and disadvantages of

isotonic regression are discussed.
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Chapter One: Background of the Study

l.l lntroduction

Tests for hypotheses that involve order restricted inferences, such as pl S pz I ...

< Fr. or l\2llz

developed by Page (1963), Barlow, Bartholomew, BLemner and Brunk (7972), and

Robertson,IVright and Dykstra (1988). An introcluctory example in Nelson (1976)

Table 1.1

Warm-up Times for a Three Level Factor of Tube Type

A

Note: Data from Hicks' (1973, p.49) is used to demonstrate that significance for
hypotheses with directional alternatives depends on the sequence of the population
means.

demonstrates that tests for directional hypotheses may be applied to detect increasing

wafln-up time in glass containers shaped as tubes. He concludes that there is a

directional trend of wann-up time between glass containers. The data are presented in

Table 1.1 and can be used to show that there is warming trend between containers

depending on container sequence. There is a significant directional trend for ¡rc<[¿n<ps

(p<0.05) and ¡ra<ps<¡t¡(p<0.05) , but not pA<pb<lts (p>0.05) according to an isotonic

19 20
23 20
26 18

18 35

Tube Type

B

20 40
20 24
32 22
27 18

C

76 19

15 I7
18 19

26 18
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regression analysis where the dependent variable is warm-up time and the factor is type

of tube (levels A, B or C).

variables and categorical factors has been developed fi'om both a parametric and non-

parametric points of view. From a paramehìc perspective, the likelihood ratio test and E2

statistic are both derived from the f statistic using frequency data (Bartholomew, 1959a;

Barlow etal,19J2, p.119, 121). From a non-parametric perspective, Joncheere (1954)

has introduced a distribution-free test for directional altematives, and Page (1963)

presented a ranking statistic, L, for a test of monotonic relationships in a two-way

ANOVA to be used in place of Friedman's chi-square of ranks statistic. Recently, this

technique has also been used in an applied setting. Leuraud and Benichou (2001)

introduce a chi-square test to detect trends for a monotonic dose-response relationship

between exposure and disease in epidemiological and clinical studies. Karabatsos and

Ullrich (2002) also use a Monte Carlo procedure to illustrate the importance of order-

restricted statistical inference for the selection ancl testing of mathematical (axiomatic)

models. The testing of directional hypotheses using isotonic regression analysis has

therefore been developed substantially over the years.

Standard ANOVA methods have not usually been used for the testing of

directional hypotheses. The standard ANOVA does not constrain the function to vary

montotonically, which can give rise to inferences that are quite contradictory to our

intuition (Mukerjee & Tu, 1995). The standard ANOVA tests for a non-directional

alternative hypothesis where there is no sequence of population means, say H1: ¡¡+ þ¡for

at least one i and j; i, j = 1,2,..., n. Moreover, ANOVA uses numerous types of multiple

The concept of testing for directional hypotheses with continuous criterion
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comparison procedures upon failure to retaín the null hypothesis. Hypotheses with

ordered-restricted alternatives, on the other hand, will lesult in combining the sample

means where necessary and plotting the data to detect a clirectional trend. Although there

are multiple comparison procedures for directional alternatives, see Ruberg (1989), a plot

of the trend is used more frequently.

Trend analysis can be an alternative to isotonic regression. However, there are

also limitations to the standard methods for trend analysis. A trend may be non-

monotonic such as a quadratic or cubic function, so the constraint of non-decreasing (or

. non-increasing) parameter estimates must be imposed. A typical method of t¡end analysis

is the use of planned contrasts, which will cletect if a trend is not significantly different

from a linear or quadratic function. A limitation to this type of analysis is that it is

possible that there is not a planned contrast available to constrain for monotonicity.

Several contrasts would be necessary to detect a monotonic function, which inflates the

type I error rate. There are additional limitations to tlend analysis such that sometimes

only the significance of the means for the first ancl last treatment groups is used to detect

a monotonic trend (Page, lg63).The two limitations of this approach are that, first, such

a test discards large numbers of observations between the extremes and, second, the order

of the middle treatment groups is not taken into consideration.

The importance of testing for directional hypotheses using isotonic regression

techniques is demonstrated by overcoming the limitations of the standard methods for

ANOVA and trend analysis. As a parametdc test, isotonic regression is generally more

powerful than non-parametric tests (Robertson et. al, 1988, p.86). In addition, isotonic

regression techniques use the sums of squares (accolding to the least squares principle) to
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maintain sensitivity to outlying observations and mal<e sample size a factor for

significance tests. Each of the treatment groups is used in the isotonic regression

techniques and the shape of the trend is always testecl for linear monotonicity (i.e. not

quadratic or cubic). There is also only one test for isotonic regression as the order of the

population means is usually determined by empirical evidence from related experiments,

prior reasoning or expert opinion. The single test approach yields lower type I and

experimental error than multiple comparison proceclures of the standard ANOVA

omnibus F-test (Page, 1963).

Isotonic regression is the statistical theory for applying the regression techniques

"to deal with problems in which conditional expectations are subject to order restrictions"

(Barlow et al,I9J2, p.5). In general, the term 'isotonic' is a synonym for 'order-

preserving'astheorderofthepopulationmeans,,ullptz<.'.<

tested when there are several possible reversals from their sample mean estimates.

Without loss of generalizability, we only consider the case of monotonically increasing

(non-decreasing) estimates (Barlow et al., 7972,p.7). The process of preserving the

direction of the population means requires the folmation of isotonic regression estimate-s

¡^t¿* where adjacent sample means that violate the orcler of the trend are combined into one

estimate. The factor levels that underlie the amalgamation process demonstrate the

properties of reflexivity, transitivity and asymmetly (Robertson et al., 1988, p.12). A

typical hypothesis for isotonic regression would be that a criterion variable lti @.g.y =

test scores in a course) will be increased when the str-ength of a stimulus x¡ (e.g. x =

number of hours studying) is gradually increased over several populations (age groups,

1.2 What is isotonic reglession?
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subject areas, etc.). A trend of score increments can be examined with test scores as the

dependent meâsure and hours of study as the between-subjects factor. The levels of the

factor xt, x2, ...., xk(or the number of hours for stLrclying) can be nominal, categorical, or

ordinal and do not need to be placed in sequence from largest to smallest or vice versa.

As is the case for the usual one-way analysis of variance , the p¿ are from a ratio or

interval scale of measurement.

The figure below illustrates three monotonic trends which will be useful for

explaining the properties of isotonic regression models. In each figure, y represents test

scores (from 0 to 50) and x represents five categolies of lrours spent studying. In the

Figure 1,.L

(a)

Figure 1.1 The plots are examples of trends between population means [h 3ltz 
= 

... 
= *tthat may be tested using isotonic regression. Each of these trends do not have to be linear

and may be compared against the hypothesis of no trend.

first plot, (a), test scores in a course yi increases without interruption across each group.

The curve has three linear, non-decreasing segments which are joined together to

demonstrate that the level of the criterion variable is steadily incleasing with study time.

The trend could be non-linear, but since it increases without decreasing there is no need

to combine the sample means. There are therefore no isotonic regression estimates, þi*,

that are required for this sequence of populatìon means. An isotonic regression analysis

(b) (c)
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may now be conducted directly on the sample means of test scores to determine if the

population means demonstrate a monotonic tlencl. The second plot, (b), shows a linear,

increasing trend. The test scores (y¡) increase proportionately to the level of the regtessor

variable. No amalgamations of sample means are needed since the trend is monotonic.

Therefore, the isotonic reglession analysis can be conducted on the sample means

immedíately across each of the categories of hours of stucly. The third plot, (c) shows

that y¡ increases but at different rates, and the trend is neveftheless monotonic. An

amalgamation of group means is required at the location where the trend is close to being

constant (in the middle section of the curve). The two adjacent sample means are first

combined and then the isotonic regression technique ploduces the arithmetic average of

the two sample means. The result is a trend that woLrld have potentially demonstrated a

decrease prior to the amalgamation, but is now monotonic and can be analyzed by the

isotonic regression procedure for hours of study. To summarize, isotonic regression is

used primarily to detect if there is a non-decreasing trencl between population means.

The sample means must be order-preserving (i.e. rronotonically trended) prior to deriving

the test statistic, adhering to the direction of the population means. If this condition is

violated, some of the group means must be combined and their averages are computed.

This is called "the amalgamation process". The amalgamation process of producing

isotonic regression estimates reassures that the sample means are in a monotonic

sequence. Both the properties and procedules for the amalgamation process and the

direction of sample means are discussed in chapter two.

For the results of isotonic regression analysis to be properly interpreted, several

assumptions must be met. First, the criterion and regressor variables are normally
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distributed. Second, the homogeneity of variance assumption is satisfied; that is, the

error variance of the criterion variable is not significantly different between groups.

Thirdly, the observations are independent. The final assumption is that the order of the

populationmeansispreserved,withatleastoneineqLtality(say,I-tllW<..'<

first assumption is verified by using a histogram or a plot of the normal quantiles (P-P

plot). The second assumption is verified by using a residual plot and the third assumption

is maintained by experimental design. The final assumption of monotonicity applies an

algorithm which verifies that the predicted order of the sample means is preserved.

Empirical studies have shown that test statistics in stanclard regression analysis are robust

to departures of the normality and homogeneity of variance assumptions (Maxwell &

Delaney, 1990, p.109).

The purpose of this thesis is threefold. Firstly, the theory, development and

application of isotonic regression are presented in such a way that is relevant for

psychologists. The theory component involves presenting hypotheses that can be tested

in isotonic regression analyses and the background for the use of isotonic regression

estimates from some techniques such as the pool-adjacent-violators algorithm. In

particular, the development of the two most prominent test statistics for isotonic

regression is also illustrated, with an emphasis on their cdtical value tables and the

appropriate use of the scientific method for psychological research (stating the

hypothesis, statistic, decision and conclusion). The applied component is a study on the

isotonic trend of groups varying in relation to the other variables. The regressor variable

is represented by 10 balanced groups of 520 undelglacluate psychology students, an

1.3 Statement of Pr,rrpose
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almost equal number of males and females, who have completed Allport's (1960)

Intrinsic Religiousity Scale. Separate ANOVAs and isotonic regressions are computed on

each of the seven criterion variables to be elabolaiecl on in Section 1.4 and Chapter 4.

Secondly, this thesis discusses the issues and plocedures for testing the role of

goodness of fit for isotonic regression models. The loles as well as the methods for

goodness of fit assessment in the context of Iinear and non-linear trends are studied.

Illustrative examples are used to show the differences in the goodness of fit values

between the standard ANOVA and isotonic regression models. The intention is to

demonstrate the strengths of isotonic regression in estimation and statistical inference.

Thirdly, this thesis examines the advantages and limitations of isotonic regression

and explores further avenues for psychological resealch. The advantages include a lower

standard error of the sample mean estimate, better type I error control and increased

power. The main limitation of isotonic regressíon is that the shape of the trend is

compromised to satisfy the monotonicity assumption. Methods for improving this

shortcoming are discussed.

The main purpose of this thesis is to present the isotonic regression technique to

researchers in the field of psychology. The focus will be on the significance testing and

goodness of fit models for isotonic regression with Intrinsic Religious Orientation (IR.O)

as the independent variable. Chapter two introduces the null and alternative hypotheses

for several order-restricted population means, as well as their test statistics and critical

values. Chapter three presents goodness of fit in model assessment as well as methods

for assessing goodness of fit when trends are monotonically increasing (or decreasing).

1.4 Overview
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The ordinary least squares simple regression and multiple regression methods are

compared to the isotonic regression technique with an illustrative example involving the

effects of drugs on driving behavior. Chapter four involves an application of isotonic

regression with psychology variablesl. The IRO variable will be used as the regressor

variable for seven psychology criterion varjables. Seven ANOVAs and isotonic

regressions are computed separately with the use of multiple comparison procedures to

detect differences between 10 IRO groups. The results of the ANOVA models and

isotonic regressions are compared by means of plots to detect any trends that may be

attributed to the relation between the regressor and criterion variables. The hypothesis

that isotonic regression estimates produce higher goodness of fit values than sample mean

estimates for linear, exponential and logistic models is also tested. Each model has the

property of being monotonically increasing. Chapter five presents the advantages and

disadvantages of isotonic regression with the most recent literature for directional

decisions. The advantages include the sophistication of the isotonic regression technique

compared to standard ANOVA procedures and the trend analysis method, as well as the

capacity to make decisions pertaining to non-normal data, statistical power and Bayesian

inference. The disadvantages include the inability to test for a specific function or shape

of a trend, the lack of programming software for clirectional alternatives, and the few

: ..
empirical studies in the social sciences that apply isotonic regression to their psychology

variables. The new contributions of isotonic regression to psychologists include a

statistical technique to detect trends that are non-increasing or non-decreasing. This

1. Permission was given by Dr. Schludermann to use Hossack's (1997) data set.
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technique also introduces isotonic regression estimates and overcomes several limitations

of other trend analysis techniques. An application of isotonic regression demonstrates

that this technique provides useful information to psychologists.
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Chapter Two: Hypothesis Testing in Isotonic Regression

2.1The Null and Alternative Hypotheses

To briefly outline this chapter, the isotonic regression f andË2 statistics are

presented with research hypotheses, algorithms for isotonic regression estimates, critical

values and illustrative examples. More specifically, the isotonic regression hypotheses

are compared against the hypotheses for ANOVA, and a step-by-step approach is used to

demonstrate the pool-adjacent-violators algorithm. The distributions for the f anaEz

statistics are also defined along with explanations pel'taining to critical values. The

chapter concludes by using average monthly temperatnres in Palmero, Italy to illustrate

the f test and time to complete a test as measurecl by length of test using the Ë2 statistic.

In the standard one-way analysis of variance, the null hypothesis for isotonic

regression postulates that all group means are the same, namely Ho: Fr = þ12 = ...- Fr for

all j = I,2,..., k. However, the alternative hypotheses are different, in the ANOVA and

isotonic regression techniques. In the isotonic regression context, Bartholomew (1959a)

and Barlow et al (7972, p.2) postulate a sequence of population means, say H1: Ih S ltzS

....lrnorH1: þt>-Irz

The population means demonstrate a two-sided alternative in either the non-decreasing or

non-increasing direction. On the other hand, the alternative hypothesis for ANOVA

states that the population means are not significantly different from one another, say W*

p¡ for allit' j, when i, j = 1, 2, ..., k (Maxwell and Delaney,7990, p.78).

Barlow et al (1972, p.2) mention that the simplest hypothesis for isotonic

regression is similar to that of the one{ail t-test for two groups, in which the null
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hypothesis is postulated as H¡: þt = þz and the alternative hypothesis, as H1: þr ( pz or

Hl, þl > Pz. In fact,when there are only two groups, one should usea one-tailed

(directional) t-test to evaluate the above hypothesis. Hence, given the homogeneity of

variances (ot2 = o22), if the tests statistic r = (Xr - xù I So./ 1tln, + llnù where So = (n1S12

+n2522)/(nt+nz-2)isgreaterthanthecorrespondingcriticalvalue, tçor+n2-2),ç¡2,then

the null hypothesis is not retained. The procedure and test statistics under the isotonic

regression approach for two or more populations are discussed in Section 2.3.

In the isotonic regression testing procedure, when the sample means Ít,..., Y*do

not preserve the directional sequence of the popr-rlation means þt S IrzS . .. llrn, say, then

one must obtain isotonic regression estimates of gror,rp means prior to computing the test

statistics in the hypothesis testing procedure. Consider the case of three group means

where the alternative hypothesis is postulated to be Hr: I-,q 3 $z < ps. Suppose the sample

2.2 The Pool-Adj acent-Vi ol ators Al gori thm

mean estimates are observed to be ir 3yz2 y3. The sample mean I: has violated the

direction of the hypothesized trend. Therefore new estimates of sample means must be

obtained such that the non-decreasing sequence of the population means is preserved. For

this purpose, the sample mean estimates are replaced by their isotonic regression

estimates. In the example just presented, the sample mean estim ale ! s is replaced by the

isotonic regression estimate !t* = (yz+ h)/2. The technique for arriving at isotonic

regression estimates is referred to as the "pool-adjacent-violators algorithm" (Barlow et

a1.,1972, p.13). The algorithm consists of the following three steps.
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Step 1: Align the sample mean estimates in the order of the population means under the

alternative hypothesis, say H1: I¡ 3 W

to one another, in that order.

Step 2: Determine if the order of the population means has been violated. If !¡ ¡ ! 6a1¡ for

any j - 1,2, ...,k, then both f¡ and y6*1¡ are replacecl by theirarithmetic average, namely

Yj* = i(i* L)* = (Y¡ + ia*x)/2. For example, let the sample means be yr = l,Yz=4, !s= 2

andy¿=5.Supposethealternativehypothesisinstep1isspecifiedasH¡:p1<...<

j2and !3 are replaced by their isotonic regression estimates of yr* = i¡* = (4+2)12 = 3,

according to the pool-adjacent-violators algorithm. The outcome of this procedure is

presented below in Table 2.1.

Table 2.1

Sample Mean Estimates become Isotonic RegressiqD Estimates

Sample Mean Estimates

ir Yz i: lq

7425

Note: In the above table, a straight line connects group means that do not conform to the
postulated direction in the alternative hypothesis. The group means are combined to
become isotonic regression estimates and preserve the dilpction of the population means.

Isotonic Regression Estimates

_+ _* _* _*Yr Yz Y: Yq
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Step 3: There may be more than one violator among the sample means. Treat each

violator as a block, pool it with its preceding sample mean, and obtain the isotonic

regression estimate as the arithmetic average of these adjacent sample means. If there is

more than one block, treat each one separately. When the algorithm is finished, the

blocks will be combined into one segment which contains isotonic regression estimates

that preserve the order of the population means. Fol the data presented below in Table

2.2,92 and y5 are violators that must be amaìgamatecl.

If the sequence of sample means þt < Irz

partitionof samplemeansisalsothefinalpartition anclpr¡* =pj, j =7,2,...,k. If not,

Table2.2

Blocks of Samnle Mean Estimates become Isotonic Resression Estimates

ir
1

Note: When there is more than one violator', the sample mean estimates are put into
blocks and the isotonic regression estimates are ready to be calculated. As mentioned
previously, a straight line connects means that do not confonn to the postulated direction
in the alternative hypothesis.

Yz lt
42

Blocks
Y+ Vs

15

Yr
I

select any of the pairs of violators of the ordering,

values placing them in the same block. When the

then the algorithm is finished.

Isotonic Resression Estimates

9z Yz Yq Is le
33666

la lt
67

Yt
7

sr,rch that [t¡) g+r, and 'pool' these two

orclering of l.ul< Wzl ... <[¿ris observed,
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2.3 Test Statistics and Critical Values

There are two approaches in calculating the test siatistics for isotonic regression.

The first is the likelihood ratio test derìved by Baltholomew (1959a,1959b). This statistic

uses the weighted sums of squares after amalgamation as the numerator and d as the

denominator, Í = znllt* - ø2 / ê where rz¡ is the sampìe size of the jth population, ¡4.*

is the isotonic regression parameter of the jth popLrlation mean, and pis the grand

population mean. This approach may not be plactical since the population variance d is

assumed to be known a priori (Barlow et al, 1972, p.l 16). The critical values for the y2

test are presented in Table 2.4, the null distriburion being Prl6uz > C) = >PQ,k) Pr{X,,-t'>

C) whenC>0, and,Pr{yyz -0} =P(l,k)when C=0 (Barlow etal,1972,p. 126).The

notations used in the above distribution ate'. 'k', to represent the number of levels in the

factor, 'l', the number of levels after amalgamation ancl P(l,k), the probability that the

isotonic regression function p4" takes exactly / distinct values from fr population means.

The sum of the probabilities EP(I,k) is the probability of all possible I and k

combinations. The second statistic, denoted as E2, is mole practical for applied

researchers. It is computed as E*2 - Eni\¡* - y)2 / Ð4y¡¡ - y)2,for which the numerator is

an estimate of the numerator in the / test, but the denominator is the total sums of

squares (Barlow et al., 1972, p.120). This statistic represents the amount of criterion

variance accounted for by the group means of y¡¡. The null distribution is Pr{Eyz ì C} =

et al., 7972, p.127). The notation Bp,s denotes the beta distdbution with parameters p and

q aslhe shape and location respectively. In general, as the f and F values increase, the



Isotonic Regression 17

more likely it is that the null hypothesis will be rejected. Some selected critical values

for E are found in Nelson (1917) and are reprodr-rcecl in the Appendix. The tables are for

applying isotonic regression to one-way ANOVA clata rvhich consists of j - 3, 4,..., l0

factor levels.

2.4 Illustrative Ex amples

There are two examples presented in this section to illustrate the isotonic

regression techniques discussed above. In the filst example, Cameron (1970) studied the

Table 2.3

Likelihood Ratio Test Analvsis of Mean Monthly 'femDeratures of Palmero, Italy

Jan Feb Mar April May June July Aug Sept Oct Nov Dec

51

31

52

pr = Z(niYi) lZni= l1 600 I 274 = 64.23

pz = x(nrii) lÐni- 921 179 = 59.67

xtz=åni(w- lt)z / o2 = 1059.962

xz2 =I,n:(w - w)2 | o2 = L22.3281

55

Month

3t

58

3t

Note: In the first row, there is an increasing tlend until August, followed by a decreasing

trend (underlined) until December. The !¡ r'epresents mean monthly temperature and the
n¡ represents the number of days per month.

11

30

ltJ

3T

77

31

73

30

67

3t

59 53

37
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average monthly temperature in Palmero, Italy. The criterion variable is average monthly

temperature and the regressor is the month of the year. The monthly temperatures tend to

increase from January to September and then decrease from October to December as seen

in Table 2.3. There are therefore two trends to be tested, one that is non-decreasing and

another that is non-increasing. The null hypothesis FI6: !.fran = þF.b = ... = þD". is tested

against Hl: F¡on S ltr"u

Table2.4

Critical Values for the.2 Test (H¿: u¡ S pz I ... I pr,r or H¿: p¡ 2 trz ) ... ) trd

0.100
0.050
0.025
0.010
0.005
0.001

2.580
3.820
5.098
6.823
8.r44
1r.249

4

K

C[

3.t87
4.528
5.891
7.709
9.092

t2.3r8

0.100
0.050
0.025
0.010
0.005
0.001

3.636
5.049
6.47 r
8.356
9.784

13.098

4.542
6.088
7.624
9.638

lL.r52
14.640

6

Note: The / critical values for a factor with up to I2 levels are presented above. The
levels of significance (o) range from 0.100 to 0.001 (see Robertson et al., 1988, p. alQ.

3.994
5.460
6.928
8.865

10.327
13.717

4.161
6.339
7.90t
9.945

11.480
15.009

10

4.289
5.800
1.304
9.284

t0.774
14.2r4

4.956
6.s60
8.145

10.216
11.768
15.333

11

5.130
6.758
8.363

10.458
12.025
15.622

t2

5.288
6.937
8.56r

r0.676
12.251
15.883
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trend) using the likelihood ratio test. The trends are expected to be significant at a = 0.05

as no amalgamations or isotonic regression estimates are required. The critical values for

Hr and H2 are set at k = 9 and k = 3 factor levels respectively. The variance, 02, is

unknown, however, to illustrate the use of the y2 test, assume o2 = 25. The design is

unbalanced as there are an unequal number of days per month and the sample mean

estimates are used in place of isotonic regression estimates. The numerator for the

likelihood ratio test is therefore the between sums of squares, Ini(pti - ¡r)2, and not the

sums of squares after amalgamation, Ini(pi'* - p)2 where lt¡* is the ith isotonic regression

estimate, for i = I,2,..., k. It can be concluded from the likelihood ratio test using the

critical values found in Table 2.5 that there is a significant warming tlend in Palmero,

Italy (y12 =7059.96 > 6.931) followed by a significant cooling trend (Xzz = 122.33 >

3.820).

The Palmero, Italy example reveals some strengths and weaknesses of the isotonic

regression technique. The strengths include a single, one test approach to determine if

there is a monotonic trend among several population means that is robust to

departures of the normality and homogeneity of variance assumptions (Chacko, 1963 &.

Shorack, 1967). The technique is more flexible than the standard ANOVA and trend

analysis method for directional hypotheses and plovides clear decisions. The weakness is

that the variance I must be assumed a priori. Hence, the conclusions are theoretical and

tentative for the likelihood ratio test.

As an example of the E calculation, we use a data set from Lehman (1995) for

testingHo: þl =þ2=þz=lLq againstHl: þt lltr< þtr I pta. The criterion variable is the
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time in minutes to complete a multiple-choice test. The regressed variable is the length

of the test (10, 15,20 or 25 items). The assumption of monotonicity is that the sample

means will have the ordering of Yl 3 lz3I;' 3!+so that the trend is non-decreasing.

When there are violations to the order of the sample means, then isotonic regression

estimates a¡e used according to the pool-adjacent violators algorithm. For the example

presented in Table 2.6, isotonic regression estimates ale Lrnnecessary since as length

Table 2.6

Time to Complete the Test is Measured for Lensth of Test

Length of Test (items)

10 15

L3 17

105
13 13

51423
61124
612t7
2310

72 16 27

20 25

18

L7

10 28

I6
2T

fl18
128
t2 14

27
17 t3

22
24
T2

9

t8
18

9

15

15

t0

Note: An independent groups design shows that as the length of the test increases so does
the time to complete the test. The Ë2 statistic is used since raw data has been collected.-

Sum: 138 199 255 268
Mean: 8.63 12.43 15.94 16.15

2l
24
23

8

I4
36tl
774830
1 18 l0 14

E2= rni(yi* -y)zi lr(y¡ -y)2 =662.125 /11556.25=0.225232
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of the test increases, so does length of time to complete the test. The sample means are

placed in order from smallest to largest according to the order of the population means.

Given that o2 can be estimated from the data, the F statistic is then used in this example.

It is expected that Ho witl not be retained at the 0.05 level of significance as the sample

mean estimates increase at a steady rate.

Since E=0.22522 Ëo.os2 =.0571 (where cr=0.05,n = 16 andk =4),thecritical

value obtained from the Appendix, there is sufficient evidence to reject He and conclude

that as the length of the test increases, so does the time to complete the test. The

illustrative examples of the data sets by Carmen (1970) and Lehman (1995) show the

uses of the y2 test for theoretical purposes and the F statistic for applied situations.
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Chapter Three: Goodness of Fit of Isotonic Regression Models

3.1 The Role of Goodness of Fit Model Assessment

There are several roles goodness of fit plays when assessing statistical models. In

this section, we will discuss three of them. First, goodness of fit assessment refers to how

well a model, or combination of models, explain the patterns of variation of exploratory

criterion variables within a particular data set (King and Minium,2003, p.187). The

goodness of fit tests decide the best fit for a single regression line, and obtain the best

regression line among several possible regression lines (Neter, Kutner, Nachtsheim,

Wasserman,1996, p.81). The better the fit, the more accurate the models are for making

predictions about future outcomes. However, two models are often compared against one

another to determine which exploratory variables, ol combination of these variables, can

be used to explain the criterion variation more accurately (Neter et al, 1996, p.287).

Secondly, goodness of fit assesses the strengths and weal<nesses of each model, such as

how well each model fits the data and how different combinations of variables in the

model affect the fit more profoundly than others. In the context of regression models, the

simplest measures of goodness of fit are the standard error, Sr, and the square of the

correlation coefficient, ,R2 lKing and Minium ,2003, p.I57 , 162). The standard error is

the average standard distance of the observations from many samples for the line of best

fit. The square of the correlation coefficient is the amount of criterion variance explained

by one or many of the regressors in the model. The partial correlation is used to identify

how much variation a group of variables explains when one variable is excluded from the

group. Thirdly, the results from goodness of fit inclices can help to identify (or eliminate)

a set of regressors that reduce error variation for precliction or description purposes (Neter
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et al, 1996, p3aQ. The concept involves minimizing eror variance, according to the

least squares principle, to provide an increasingly accurate representation of the real

world. In regression analysis, some popular techniques for variable and model selection

involve the forward, backward and stepwise procedures.

Let us compare the regression lines of two plots in Figure 3.1 to better understand

goodness of fit. From a statistical perspective, a regression line will have a good fit if it

minimizes the residuals, e¡, between the observed points (y) andestimated points (!). The

sum of the residuals, .h¡ = 4y¡ - î) for i = 1,2,..., n, can be used to determine the best fit

Figure 3.1

Figure 3.1 Two plots from Wayne (1986, p.378) demonstrate the estimated lines for the
fit of two regression models. For (a), the estimatecl Iine fits the observed points exactly,
whereas for (b), the observed points deviate more from the estimated line.

of the regression models. The difficulty with this approach is that this sum will always

equal zero, providing no new information about which line has the best fit. On the other

hand, taking the sum of the absolute value of the residuals between the observed and

predicted points, ¿l y, - ytl provides useful informatìon as the line in plot (a) is a better

measure of goodness of fit than the line in plot (b). The problem with absolute values is

that they do not indicate the direction of the error for each of the observations. In effect,

we want to find a way to penalize large errors so that we can have a model that is more

(a) (b)
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sensitive to individual differences (or outlying observations). This can be accomplished

by taking the sum of the squared residuals, ¿eiz = Eb,, - j,,)t, for i = 1,2,..., n. Squaring

the difference magnifies large errors and cancels the efl'ect of the positive and negative

signs in front of the values. Since we are looking for the line that minimizes the error

sum of the squares, we call this the least squares principle. With this technique, plot (a)

minimizes error (provides a better fit) more effectively than plot (b). When one line has

more points than another line then the estimated standard eror S, is often used to

compare the goodness of fit of the two lines. This is a measure of goodness of fit that is

used as frequently as the square of the correlation coefficient, R2. As goodness of fit

improves,.R2 values become larger and S, values become smaller.

There is a trade-off between goodness of fìt (minimizing the error sums of

squares) and the principle of variable parsimony. Regressors that are added to a model

explain more of the error variance that is not previolrsly accounted for by other regressors

already in the model. With enough regressors, a moclel could have a nearly perfect fit of

the data. Further, a regression model with enough regressors will always yield a good fit.

The drawback to too many regressors is the loss of clegrees of freedom as there is no

longer any potential to generalize a conclusion beyond the sample. There is also no

applicability for interpolation within the sample since the error variance will be so small.

The principle of parsimony was therefore necessary to prevent any unwanted or

unimportant regressors from entering the model. The prìnciple of parsimony states that

we need to choose the model with the fewest regressors that still yield a good fit. This

model would therefore also have the fewest degrees of freedom, the most generalizability



Isotonic Regression 25

from the sample to the population, and be the simplest in interpolation. The principle of

parsimony ensures that the conclusion has strength and applicability to the population.

3.2 Methods of Goodness of Fit Assessment

The simple regression model y¡ = þo + þtx¡ + q and its estimate Îi = bo * b1x¡ ma]

be obtained by means of the method of oldinary least squares (OLS). The regression

coefficients B6 and Bl areestimated in the sense of least squares as bo = ! - bt X and b7 =

(Dry - nxy) / Øf - nl). There are several methocls of assessing goodness of fit for

simple regression as listed below ('Wayne, 1986, p. 381):

(1) Standard error of the mean estimate of y: Sn = ú0t - boÐ - bttxy)/(n-2))

(2)Standarderrorof theprediction:Sp=S,fl + tt,t+(x-*ùt(.h'-n2¡*here*sis
the specific value of x at which we want to predict the value of y.

(3) Standard error of the regression coefficientl S¿ = S" /ú¿*' - nç )

(4) Squared correlation coefficient: R2 = (boÐ - btExy - ny) / Øy2 - ny2)

Any standard error is a measure of how well the parameters have been estimated

from the data. Smaller standard error values lead to a model with better goodness of fit.

Confidence intervals for parameter estimates of the mean of y, predicted value of y given

a value of x, and the regtession coefficient (slope) can be computed using the standard

effor. These confidence intervals tend to be narrower when standard error estimates are

smaller. Even though confidence intervals are not measures of goodness of fit, a narrow

confidence interval is a strong indication that the parameter is properly measured. There

are several types of confidence intervals (Wayne, 1986, p. 384):

(5) Confidence interval for estimate of the regression coefficient: b 1 +/- (ton, n_ùSø

(6) Confidence interval for prediction of an observation: / +/- (t*n, n-z)S,



(7) Confidence interval for estimate of the mean: y +/- (t*2.,_)Su

(8) Prediction interval for an exact observation xs í) +/- (ton,,-ùSp

When a multiple regression analysis is computed, there is at least one regressor in

themodel. Theregression equation isy¡ = þo+ þF¡¡+ e¡ fori=I,2,...,n andj =1,2,...,

k with the ordinary least squares estimation of the hyperplane being yi¡ = bs + bix¡ (Neter

et al, 1996, p.218). The objective in fitting a multiple regression model involves finding

the best hyperplane that will minimize the sum of the squared error. According to the

least squares principle, the standard errors presented in the standard (simple) linear

regression model have direct counterparts under the multiple regression model. For the

latter model, however, the formulas are often expressed in matrix notation. Properties of

the confidence intervals discussed above are also applied to the multiple regression

models. The best fit for several differçnt models is cletermined by the highest R2 value.

Because adding an additional variable into the equation always increases R2,the R2adjurtrd

statistic is used to account for degrees of freedom (Neter et a1., p. 231).

For multiple regression, the most common methods for model selection are the

forward, backward and stepwise procedures. Cook and weisberg (1999, p. 275-283),

Chatterjee and Price (1991, p.236-237) and Chatterjee and Hadi (1988 , p. 49-51) provide

an excellent description of the three proceduLes, as well as indices for model fitting

criteria and partial residual plots for model diagnostics. In forward regression, a

statistical package such as SPSS or SAS uses a conelation matrix to find the regressor x1,

x2,..., x; with the highest correlation to the criterion variable. The regressor is then placed

in the model and a t-ratio significance test is conducted to see if the corresponding

regression coefficient p¡ accounts for a significant amount of the criterion variance. If the

Isotonic Regression 26
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t-ratio is significantly different from zero, then the legressor is selected to be retained in

the model. A partial correlation matrix between the criter-ion and the remaining

regressors is then computed to determine if a seconcl legressor is to be selected for the

model. The regressor with the highest partial-con'elation becomes the second regressor

in the model and a second significance test is conducted to determine if a third regressor

is required. 'When the addition of another variable no longer produces a significant t-

ratio, the procedure comes to an end. Generally, a variabie is added to the model as long

as it contributes a significant increase in R2 of the model. For backward selection, the

model is estimated with all the regressors and then the procedure successively drops one

regressor at a time. 'When 
each of the regression coelficients in the model is significant,

the procedure comes to an end. Those regressors with the smallest R2 value (or lowest

residual sums of squares) are first deleted from the model. The stepwise procedure is a

combination of both the forward and backward procedures since regressors are added or

dropped from the model in successive steps. A forwarcl selection is conducted, but

regressors are deleted when they are no longer significant after the introduction of new

regressors to the model. Chatterjee and Hadi (1988, p 8a-87) provide an excellent

discussion of residual plots used to determine which regressors should be added or

deleted in a regression equation.

There is also a stepwise method for isotonic regression. The objective, from the

principle of parsimony, is to determine the minimum number of regressors that yield a

model with a significant F statistic. The regressors in this case would be population

means ¡4 and not regression coefficients B¡ as in OLS multiple regression. A full model

with all of theregressors is firstobtained, and then models with fewerregressors are
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computed. For example, when k= 4, the E statistic would be computed on all possible

orderings of a model with four regressors. If significant, the F statistic would be

computed on all possible orderings of three regressors. The algorithm for isotonic

regression then comes to an end as orderings of two legressors require a different statistic

(namely the directional t-test). The isotonic regression stepwise method therefore deletes

one regressor at a tíme to determine the model with the highest F statistic. An

equivalent alternative method to determine which regressor should be dropped from the

model is the use of the p-value. Those models with p-values below the pre-determined

significance level (o = 0.05 or 0.01) are retained. Model.s with p-values above the

significance level are removed. The p-value may be obtained by linear interpolation

when using the tables of the E cnti,cal values in the appendix.

3.3 Using Isotonic Regression for Assessing Monotonic Linear and
Non-Linear Trends

isotonic regression. The main differences are in the form of the regression equations

between simple, multiple and isotonic regression models, The first main difference is

that whereas the predictor can be continuous or categorical in simple and multiple linear

regression, the regressor must be categorical in the isotonic regtession context (Barlow et

aL,1972, p.2). Most commonly, the regressors in simple and multiple regression models

are continuous. The most pertinent implication of continuous versus categorical variables

is that the unit of measurement is different. With the former, the unit of observation is

the subject or participant in the study. With the latter, it is the group mean estimates of

the populations. Further, the main parameters to be estimated in simple and multiple

We can now extend the discussion pertaining to the goodness of fit tests to
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regression are the regtession coefficients, p¡, whercas the main parameter for isotonic

regression is the isotonic regression estimate, lj+

The second main difference between the three types of regressions is the objective

of the study. A typical hypothesis for simple linear regression is Hs: gi = 0 against Hr: Þi

* 0 where the objective is to determine if the slope is significantly different from a pre-

specified cut-off value (Neter et a1.1996, p. 51). For multiple regression, the objective is

to determine the model with the fewest significant regr-ession coefficients without

compromising the fit of the model. For example, consider a model with one regressor,

and the hypothesis to be tested is H6: yi = Fo + Êrxr * Ê¡ versus Hr: Yi = Êo + Þlxr + þzxz+

e¡. The objective is to determine if xz will be a significant regressor for predicting the

criterion variable oflce ï7 has already been added to the model (Neter et al, 1996, p.261).

The regressors r¡ and xz may have been selected r-rsing the forward, backward or stepwise

procedures. On the other hand, the isotonic regression hypotheses, as stated in Section

2.1,arcH0: Fr =þ2=...- þrandHr: WSttz

al,1972,p. 2). The alternative hypothesis tests whether there is a non-decreasing or non-

increasing trend in the data. Examples in psychology include trends of stress and anxiety

reduction, enhanced learning, progressive long-telm memory development, intelligence

across the life span and academic improvement at an educational institution. Isotonic

regression has the additional assumption of preselving monotonicity, and multiple

regression and isotonic regression also require the assumption of multivariate normality.

As the third main difference, isotonic regression may be used to test for nonlinear

patterns of group means. Isotonic regression analyzes several linear segments tip-to-tail

in order to produce a piecewise non-linear trend. In other words, isotonic regression does
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not require the continuity of the regression lines as in simple and multìple linear

regression models. The additional flexibility enables isotonic regression to test a variety

of different data sets.

Besides comparing simple and multiple regression models, properties of isotonic

regression models can also be illustrated by comparring them against other non-linear

regression models. There are several different types of non-linear models that may be

used in place of isotonic regression. The two and three parameter exponential models as

well as logistic model are examples of such non-linear models (Neter et al, 1996, p. 532,

533). All of these models can be used for testing tlends. The difference between the

non-linear models and isotonic regression is that, whereas exponential and logistic

Figure 3.2

Figure 3.2. The (a) two-parameter exponential model, (b) three-parameter exponential
model and (c) logistic model are monotonic functions that may explain a trend between
population means (Neter et aL,1996, p.533).

models test for d particular type of monotonic trend, isotonic regression tests if a

monotonic trend is present between categorical population means. Further, isotonic

regression techniques involve differences between sample means that are increasing (or

decreasing) whereas the other models see how well observations fit specified functions of

a trend. In other words, the application of an isotonic reglession technique does not



require the specification of a function, as illustrated in Figure 3.2.

exponential and logistic models. In the first plot, (a), the trend is an exponential function

that does not increase initially, but then gradually increases to display a concave form.

The second plot, (b), has a trend with an immediate increase in slope but then gradually

tapers to a uniform level. The final plot, (c), demonstrates a trend with no slope initially,

but then gradually increases until the end where it levels out once more. In all of these

cases, isotonic regression can be used to evaluate the monotonicity of the trend. In

summary, the simple, multiple and isotonic regression models test different hypotheses,.

require different types of data and have different objectives and assumptions.

3.4 Illustrati ve Examples

The figure above demonstrates that monotonic trends may exist for both
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This section presents an example from Keppel (1973, p. 70) for comparing the

results by fitting simple, multiple and isotonic regression models to the same data set.

Each of these three techniques has different hypotheses and objectives. The example

consists of determining the effect of sleep deprivation on the abiliiy of subjects to locate

objects moving on a radar screen. Four different lrours of sleep deprivation (xt =4 hrq, x2

= 12 hrs, xs = 20 hrs and xa =28 hrs)are tested for their effects on vigilanc e (y) with

subjects taking a simulated object detection test. The simple regression component

involves estimating the linèar equation yij = P0 + Frx,¡ * e¡ for i = 1,2,..., n¡ and j = I,2,

... 4 using the least squares principle. If there is a stlong linear association between x

and y then the omnibus F will be significant and then the goodness of fit measures .d and

S" will be large and small respectively. For multiple regression, the model Y,¡ = Fo +

EF¡x'¡ + e¡ for i= 7,2,..., fl, j = 1,..., 3 is also estimated using the least squares principle
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where x¡¡ is a dummy variable representing hours of sleep deprivation. The stepwise

procedures are used to determine which of the three regressors .Ë7,x2 and x3 should be

included in the model. The difference between this moclel and the simple regression

model is the number of parameters to be estimatecl. 
'Whereas the simple regression model

estimates one regression coefficient, p1,the multiple regression model must determine the

best combination of regression coefficients, B; for j = I,2, .. ., 4, to detect objects moving

on a radar screen. For isotonic regression, the null hypothesis of no trend, Ho: Fr = tp.z=

þt = þ+, is tested against the alternative hypothesis of a non-decreasing trend,Ht: þt 1 ILz

I p, < pt4 using the E statistic. A stepwise ptoceclule is used to determine both the

smallest number of population means and their order. The process begins by determining

if there is a non-decreasing trend among þr, . .., þ[4, then a population mean is dropped

and the isotonic regression analysis is recomputecl. The process continues until there are

too few population means or each ordering of the population means is non-significant.

Since there are 24 possible combinations of the popLrlation means þr,..., þ¿ and 18

possible combinations of the population means þ1, ..., F:, the ordering of the population

means is predetermined. The criterion variable data (y) is presented below in Table 3.1

along with a description of the coding of the regressors (x) for simple and multiple

regression. 
i

The analysis for simple regression consists of several components. The fitted

regression equation is I = 14.5 + I2.55y, the estimate of the slope is b = 12.55 with a

standard error of Sa = 2.65229. The t-ratio is significant for the intercept (p < 0.0001)

and the slope (p < 0.0003). Consequently, the rRZ value for the model is very high,0.6153

F = 22.39, p = 0.003). For this data set, there is a significant difference between
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Vigilance Scores are Measured for Hours without Sleep

28

Hours withoLrt Sleeo

76
66
43
62

20

Codins for Multiole Resression

241
61.75

43
l5
66
46

YXYXTþXT
37137100
22122100
22r22100
25125100
36236010
45245010
47247010
23223010
43343001
753'75001
66366001
46346001
76476000
66466000
43443000
624'62000

12

230
57.50

Table 3.1

36
45
47
23

151

37;75

3t
22
22
25

Codins for Simnle Resression

Note: The data consists of vigilance scores for a simple, multiple and isotonic regression
with one regressor for simple regression and four regressors for multiple regressions.

hours of sleep deprivation when the depenclent valiable is vigilance toward objects

moving on a radar screen. As hours of sleep deprivation increase so do the number of

objects that fail to be detected on a radar screen. Very similar results aré found for the

106
26.5

Sum:
Mean:
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multiple regression analysis. First, Table 3.2 provicles a point-bisedal correlation matrix

of the criterion variable (vigilance) with the three re_qressors (hours of sleep), x1, x2 Ãfid

xj, cãch is a dummy variable that represents amount of sleep. The criterion variable

correlates highly with x7 (r = -0.6321), xz t = -0.2649) andxt (r = 0.4186). Notice also

that xj correlates with x1 and xz (r = -0.3636). Similarly, the same correlations between x1

and x2 are observedfor xa (r = -0.3015). In othel words, there are sígnificant differences

among the effects of the four groups of sleep deprivation for xs and xa. This observation

is reconfirmed from the multiple regression analysis of y, against x,1, x2 and x3. The

Table 3.2

Point-biserial Correlation Matrix of Vigilance ancl Hours of Sleep Deprivation

1. VIGILANCE I.OO

2. 4 HRS

3. 12 HRS

4. 20 HRS

5. 28 HRS

VIGILANCE 4 HRS 12 HRS 20 HRS
(y)

-0.6321

-0.2649

-0.4186

0.5184

Vadables

Note: The criterion variable is vigilance and the regressors are the number of hours of
sleep deprivation. The correlations are significant at the 0.05 level of significance.

predicted regression equation is î - 67.75 -35.25xt - 72x2- l.42xt with p-values of the

regression coefficients at 0.0096 ,0.0702and 0.6630 respectively. Each procedure

concludes that the regressors x1, 12 ârrdx.i should be included in the model.

(xr) (xz)

-0.632r -0.2649 0.4186

1.00 -0.3636 -0.3015

-0.3636 1.00 -0.3015

-0.3015 -0.3015 1.00

-0.3ó36 -0.3636 -0.3015

:

(x¡)
28 HRS

(x¿)

0.5184

-0.3636

-0.3636

-0.3015

1.00
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For the isotonic regression component, there are 24 possible orderings for the

population means Þ1, ..., pa so a strategy was developed to reduce the number of F tests

that would be computed on the population means. The stlategy involved placing the

population means in ascending order and then randomizing the order of the first three

population means while maintaining that the last population mean is always largest. The

number of possible orderings is then reduced to 6 models and there are fewer F tests to

Table 3.3

Isotonic Resression Models for Visilance Resressecl on Hours of Sleeo Denrivation

1.

2.

J.

4.

5.

6.

Model

I¡1SlrzIp:Sp¿

þr I [r¡ 3þz3lt+

þz3I¡ 3,ltt 3ltq

Itz3ll.4SprSp¿

lr¡ S lrr SWzSW

W3ltzS pr S p¿

É2

Note: The isotonic regression technique ploduces a significant monotonic trend for the
order of the population means [Lt,...,llq at the 0.05 significance level.

be computed. Those models that are significant are then tested again'while randomizing

the order with one fewer population mean. The data is the same as the simple and

multiple regression analyses with the exception that sample means are estimated and not

regression coefficients. The analysis is plesented in Table 3.3.

0.1844

0.7006

0.1625

0.5r24

0.5124

0.5124
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There is enough evidence to suggest that thele is a non-decreasing trend of

vigilance for different hours of sleep deprivation. The clitical value taken from the

appendix forthis analysiswithk=4factorlevels andn = 4ata=0.05 is 0.2923. This

value is much smaller than the smallest F value in Table 3.4. Nelson (1976) reports F

values for a three level factor as "B = T / SSlo¡o¡" where Z is the between groups sums of

squares taken after amalgamation, Ini(yi* - y)2 , ancl SSr,,rn¡ is Z)(y¡ - y)2. The analysis

above is the same as Nelson's (1916) procedure, tal<ing jnto account the most possible

orderings for a factor with four levels. To summalize bliefly, simple regression suggests

that there is a linear association between hours of sleep deprivation and vigilance. As the

hours of sleep deprivation increase so do the number of objects not detected on a radar

screen. Multiple regression suggests that the model with x7, x2 and xj ãre the best

predictors of vigilance, and isotonic regression suggests that there is a non-decreasing

trend of vigilance across hours of sleep deprivation. Each type of analysis provides

information about the association between vigilance and hours of sleep deprivation.
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Chapter Four: Isotonic Regression, ANOVA and Non-Linear Regression

in the study of Intrinsic Religious Orientatìon

4.1 Purpose of the Study

The purpose of this study is to apply and compare several statistical techniques in

analyzing an empirical data set in psychological research. For these objectives, seven

ANOVAs and isotonic regressions with Scheffe post hoc multiple comparison procedures

are investigated. To illustrate the importance of the curent study, Hossack (1996)

proposed a model that would integrate "trait" and "plocess" approaches to personality

development in a sample of undergraduate Psychology students at the University of

Manitoba. In the primary analysis, a structural eqLtation model demonstrated how the

interaction of traits and interpersonal variables tend to influence parental attachment

styles, providing adults with a sense of well-being (happiness). In the secondary analysis,

the relationship between Intrinsic Religious Orientation (IR'O), several personality traits

and parental attachment types was explored. Specifically, IRO was correlated with

Extraversion (r - 0.12, p<0.05), Attachment to Mother (r = 0.22, p<0.01), Attachment to

Father (r = 0.16, p<0.01), and Satisfaction with Life (r = 0.19, p<0.01). This study

examined how trends that have the property of being monotonic could be used to describe

the relation between IRO and parental attachment types, three NEO subscales

(Neuroticism, Agreeableness and Conscientiousness), as well as Satisfaction with Life.

In particular, the methods of ANOVA and isotonic legression are illustrated with these

variables. The hypotheses for this study are presented in section 4.3.



Participants: There were 520Introductory Psychology students, 258 males and262

females from the University of Manitoba. A majority (85.670) were within the age range

of 18 to 22years. These students were placed into one of ten different groups based on

their level of Intrinsic Religious Orientation (Allport & Ross, 1967).

Materials: The undergraduate psychology students were measured on seven different

measures: Attachment to Mother, Attachment to Father, Neuroticism, Agreeableness,

Conscientiousness, Sense of Coherence, and Satisfactjon with Life. A description of these

variables and Intrinsic Religious Orientatìon is presented below.

4.2 Methodology
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Intrinsic Religious Orientation (AIIport & Ross, 1967): IRO is a2}-item scale that

measures an individual's motive for their behavior and way of life as it relates to their

belief in God. Other needs and values are brought into harmony with this belief in God.

A sample item would be: 'My religious beliefs are what leally lie behind my whole

approach to life.' This item would be responded to according to a 5-point Likert scale: (a)

this is definitely not so, 5 (b) probably not so, 4, (c) neutral, 3, (d) probably so, 2, (e)

definitely so, 1. A score of 1 indicates high intrinsic religiousity whereas a score of 5

indicates a score of low intrinsic religiousity (or high extlinsic religiousity). This

subscale has good intemal consistency reliability (a = .83) and correlates highly with

variables such as mental health, altruism and religioLrs commitment (Trimble, 1997). The

intrinsically religious person considers religion to be a way of life.
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Attachment to Mother (Armsden & Greenberg, 1987): The ATM subscale contains 25

items that ask about feelings toward their mother ancl about their tendency to approach

their mother when they are upset or have to make a decision. Items include "My mother

helps me understand myself better" and "I tell my mother about my problems and

troubles." The items are responded to using a five-point Lil<ert scale from (1) seldom true

to (5) almost always or always true. The ATM construct is measured from the Inventory

of Parent and Peer Attachment (IPPA) which has three subscales (trust, communication

& alienation).

Attachment to Father (Armsden & Greenberg, 1987): The ATF subscale contains 25

items pertaining to how the individual views, thinl<s and feels about their father. The

word "father" replaces the word "mother" fol each item in the IPPA subscales. The

scoring methodology for ATF is the same for the ATM construct.

Neuroticism (Costa & McCrae, 1989): The NEO pelsonality inventory measures the big-

five dimensions of personality: Neuroticism, Extraversion, Openness, Agreeableness and

Conscientiousness. The NEU component contains 12 items that measure anxiety,

hostility, depression, self-consciousness, impulsiveness and vulnerability. Reliabilities

for this subscale are in the high .80s to low .90s for both internal consistency and test-

retest reliability (Kaplan &. Saccuzzo, 1997).

Agreeableness (Costa & McCrae, 1989): The AGR component of the NEO contains 12

items which measure the degree to which a person is warm and cooperative as opposed to
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unpleasant and disagreeable. Agreeable individuals are communicative, supportive and

tend to be very kindhearted

Conscientiousness (Costa & McCrae, 1989): The CON component of the NEO is a 12

item subscale which measures the degree to which a person is persevering, responsible,

and organized as opposed to lazy, irresponsible and ìmpulsive. Conscientious individuals

are concerned about others and plan their activíties ahead of the scheduled time.

Sense of Coherence (Antonovsþ, 1987): The SOC subscale has 29 items with 7-point

likert scale ratings, where 1 is "strongly disagree" and 7 is "strongly agree." The three

components of the subscale (comprehensibility, manageability and meaningfulness)

allow an individual to see the world as predictable, understandable and well structured.

Comprehensibility is the ability to make cognitive sense of information that is ordered

and consistent rather than random or accidental. Manageability is the extent to which an

individual perceives that resources are available to attend to the information that is

presented to them. A person with high manageability will not feel victimized by events

or that life is unfair. Meaningfulness is the extent that an individual shapes their own

destiny and daily experience.

Satisfaction with Life (Díener, Larsen & Grffin, I9B5): The SWL subscale contains five

items and is measured on a seven point likert scale. Items from the scale would be "So

far I have gotten the important things I want in life" and "The conditions of my life are
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excellent." The retest reliability and intemal consistency leliability for this scale are 0.82

and 0.87 @iener et al, 1985)

To illustrate the use of isotonic regression methodology, seven one-way

ANOVAs and seven isotonic regressions were calculated on IRO, a ten-level factor. The

null hypothesis H¡: þt = þLz-...= prg was tested against Hr: IIi + W, i*j, i andj = l, 2, ...,

10 for ANOVA and p1 3ltr<... I ¡rro for the isotonic regression. The first hypothesis is

that, for ANOVA, there will be a significant difference between the 10 groups of Intrinsic

Religious Orientation (IRO) for Attachment to Mother (ATM), Attachment to Father

(ATF), Sense of Coherence (SOC) and Satisfaction with Life (SWL) but not Neuroticism

OIEU), Conscientiousness (CON) and Agreeableness (AGR) at the 0.05 level of

significance. The second hypothesis is similar to the first, in that for isotonic regression,

there will also be differences between the 10 groups for ATM, ATF, SOC and SWL but

not NEU, CON and AGR at the same significance level. The third hypothesis is that

isotonic regression estimates will produce higher goodness of fit values (R2 values) than

the sample mean estimates for linear, exponential and logistic models. This chapter

represents a reanalysis of the data collected by Hossack (1996) as an empirical example

of isotonic regression.

The criterion variables of interest were the two measures of attachment, the three

NEO subscales, SOC and SWL. In all the statistical tests below, the alpha level was set

at 0.05. It must be pointed out at the outset that all the F,nn* tests for variance

homogeneity are significant. Hence, the assumption of variance homogeneity is not

4.3 Hypotheses, Procedure and Design
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tenable. Strictly speaking, the ANOVA results wor-lld be invalid. However, for the

purpose of illustrating the uses of isotonic regression, ANOVA designs will be taken into

consideration. The descriptive statistics for the valiables in the study are presented below

Table 4.1

Descriptive Statistics for the Variables in the Stuclv

Variable

ATM

ATF

NEU

CON

AGR

SOC

SWL

TOR

Descripti ve Statistics

Mean

80.025

76.06

20.89

29.37

25.02

92.05

17.68

27.31

observations for the variables are close to the mean except for ATM, ATF, SOC and IRO.

in Table 4.1. The table demonstrates that the mean for SOC is largest, followed by ATM

and ATF. The standard deviations for these variables are between 3.49 for CON and 9.59

for IOR. The variances for each of the variables are quite large and should therefore be

applicable for statistical analyses.

S.D.

1.59 51.61

8.62 74.30

4.03 16.24

3.49 12.18

4.00 16

6.36 40.45

3.87 14.98

g.5g g7.g7

Var
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When the IOR variable observatíons are placed into ten groups, the means,

standard deviations and variances are mentioned in Table 4.2. The sample sizes were

Table 4.2

Descrintive Statistics for Grouns of Intrinsic Relisious C)rientation

Group

1

2

J

4

5

6

7

8

9

10

Sample Size Mean

Descriptive Statistics

50

50

57

55

51

52

53

49

52

51

12.18 1.35 1.8225

16.62 1.00 1.0

19.84 0.86 0.7396

23.04 0.84 0.7056

25.80 0.80 0.64

28.36 0.86 0.1396

30.98 0.77 0.5929

33.94 0.83 0.6889

38.44 1.70 2.89

45.12 1.89 3.5369

S.D. Var

Note: The sample means for the ten groups of Intrinsic Religious Orientation are used to
detect trends for the seven dependent measures. Sample sizes are approximately equal.

selected to be as equal as possible. The F,on* statistic indicates that the homogeneity of

variance assumption is not supported for this analysis as F,no* = 9L91 / 12.18 = 7.55 is

greater than F1N_r, = 5le, k = s) = z.zz. Table 4.2 shoivs that upon parsing the IRo variable

into ten groups, the means of these groups were between 12.18 and 45.I2 with standard

deviations between 0.80 and 1.89. The standard deviations indicate that although there is



Table 4.3

Correlations of Intrinsic RelÍsious Orientation and Criterion Variahles

1. IRO 1.00 0.19**

2. ATM 0.19** 1.00

3. ATF 0.16** 0i.44..

4. NEU -0.07 0.01

5. coN o.z5** 0.22"*

6. AcR -0.03 -0.16.

7. SOC 0.20*" 0.14

g. swl- 0.r7"* 0.23**

*p<0.001,**p<0.0001

IRO ATM

Variables

ATF NEU

Isotonic Regression 44

Students (N = 520)

0.16** -o.ol 0.25**

0.44** o.o1 0.22*"

1.00 -0.07. 0.r4*

-0.07 1.00 -0.11.

0.14. -0.II 1.00

-0.1g** o.2g** o.06

0.16** -0.06 0.22**

o.zo"* -0.31** o.3J**

CON

Note: Correlations between IRO and the seven criterion variables indicate that ATM,
ATF, CON, SOC and SWL are expected to produce significant monotonic trends.
variation due to individual differences (randomization and sampling error) between the

not much error in the ten groups, they have been varied widely. Prior to computing the

ANOVA and isotonic regression analyses, correlations of the criterion variables with

Intrinsic Religious Orientation have been examined for possibly identifying the

monotonic trends that are significant at G = 0.05 (as seen in Table 4.3). Specifîcally,

those variables that have a high correlation with Intlinsic Religious Orientation are

AGR SOC SWL

-0.03

-0.16

-0.1g**

0.28

0.06

1.00

0.14

-0.24**

0.20

0.74

0.16x*

-0.06

0.22

0.r4

1.00

0.18**

0.r7**

0.23

0.20

-0.31

0.37

-0.24

0.1g**

1.00
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expected to produce significant linear trends. Results in the correlation matrix

demonstrate that ATM, ATF, CON, SOC and SWL are expected to produce significant

monotonic trends with IRO (p < 0.0001). Additional findings suggest that ATM is highly

correlated with ATF, CON and SWL (p<0.0001),but not with NEU and SOC (p>0.05).

The SWL variable was significantly correlated with each of the remaining variables (p <

0.0001). Non-significant conelations between IRO and both NEU and AGR suggest that

there may be no trend between these variables, or a trend in the other direction.

Results for the ANOVA and isotonic regression analyses were summaizedin

Table 4.4. The omnibus hypothesis in Ho: lh = þz = ... = l¿ro in the ANOVA analysis for

five of the seven variables were significantly different at û, = 0.05, ATM (p<0.01), ATF

(p<0.05), CON (p<0.0/,), SOC (p< 0.01) and SWL (p<0.01). The p-value for CON is

smaller than expected as it was hypothesized that there would be no significant difference

between the IRO groups for this variable. Scheffe multiple comparison procedures at the

0.05 significance level indicate that there is a significant difference between groups one

and ten for ATM and ATF. Similar results can be found for CON, where group ten is

4.4 Results for the ANOVA and Isotonic Regression Analysis



Table 4.4

ATM

ATF

NEU

CON

AGR

SOC

STVL

77.0 79.28 79.47 79.69 79.55 80.60 79.85 80.12 80.19 84.51

73.36 75.16 15.05 76.25 75.73 77.63 76.43

2030 2r.56 21.26 2r.51 20.90 20.92 20.96

28.84 28.40 28.00 29.0 29.51 28.94 29.87

25.10 25.88 24.39 24.81 24.41 25.69 25.13 25.69 24.31 24.75

(**)-p<0.01, (*)- p<0.05

Note: The ANOVA indicates that Attachment to Mother, Conscientiousness, Sense of Coherence and Satisfaction with Life are
statistically significantly at o = 0.01 level. Attachment to Father is significant at cr = 0.05. The isotonic regression suggests that
Neuroticism and Agreeableness are significant at cr =0.01 and Attachment to mother, Attachment to Father, Sense of Coherence and
Satisfaction with Life are significant at cx = 0.05.

88.46 9t.82 90.56 92.t8 92.18 92.69 92.57 94.t8 9r.33 94.73 4.12 0.001**

17.50 16.42 17.53 17.36 17.24 11.71 r7.6r 11.61 17.58 20.20 3.26 0.007x*

Group

74.92 76.19 79.78

20.37 2r.r7 19.80

29.45 29.98 3t.82
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3.13 0.01**

2.r0 0.026't

1.01 0.434

5.15 0.001*x

r.06 0.369

0.t76 0.03*

0.I34 0.02*

0.057 0.0023*r

0.023 0.06

0.237 0.005x*

0.196 0.058

0.151 0.02*
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significantly different from groups one, two, three and six. The SOC variable also shows

significant differences between groups one and six, as well as groups one and ten. The SWL

variable demonstrates a significant difference between groups two and ten. Each of these

comparisons maintain a mean square error of 14.39 and a critical value of F = 1.89 using the

SAS programming language. The Scheffe multiple comparison procedure has more power than

most multiple comparison procedures so the results are useful for detecting group differences.

The plots of the variables in Figures 4.1 to 4.7 for the ANOVA analysis suggest that the

monotonically increasing trend for three variables (ATM, CON and SWL) is quite likely, but

nevertheless there is no clear trend for other variables. The purpose of these plots is to observe

differences and trends between the sample means. The ATM variable increases from group 1 to

group 2 and then remains steady until group 9, where it increases to group 10. The ATF variable

increases from group I to group 6 and then decreases to from group 6 to group 8 before

increasing to group10. The NEU variable demonstrates a sharp incline from group 1 to group 2

and then gradually decreases until group 8, where it increases to group 9 and then diminishes to

group 10. The CON variable decreases from groups I to 3, and then increases slowly until group

10. The AGR variable increases from group 1 to group 2, but then decreases sharply from group

2 to group 3, before increasing to group 6. The variable then decreases to group T,before

increasing to group 8 and finally decreasing to group 9. The SOC variable increases from group

1 to group 2 and,then iecreases from group 2 to group 3. The variable remains steady until

group 8, where it decreases sharply to group 9, before increasing sharply to group 10. The SWL

va¡iable decreases initially from group 1 to group 2, and then increases for the remainder of the

trend. The y-axis (level of the dependent variable) is not the same for each of these variables.
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For the isotonic regression analysis, the planned multiple comparison procedures have the

same significance level and a critical t-value of 3.053. The comparisons indicate that group 10 is

significantly different from groups 1, 2 and 3 for the ATM variable and groups 1 and 3 for the

ATF variable (p < 0.05). The CON, SOC and SWL variables demonstrate that group 10 is

significantly different from group 3 (p < 0.05). The p-value for CON was smaller than

anticipated as a non-significant result was expected. The comparisons were for those of the

endpoints and tended to demonstrate that groups 8 and 9 were not significantly different from

groups 1,2 or 3 (p >0.05). Each variable had a potential nine multiple comparisons that could

be performed (group 8, 9 and l0 compared to groups I,2 and 3 respectively) and no more than

three were significant per variable. The alpha level was controlled to account for capitalization

on chance by dividing 0.05 by the number of t-tests. The result, 0.05/9 = 0.006 suggest that none

of the previous comparisons would be lower than this number. The possibility of rejecting a null

hypothesis on the basis of chance and chance alone is therefore very small.

The planned comparisons have more power than post hoc comparisons since fewer tests

are performed and the familywise error rate is lower. The tendency is for differences between

groups to occur at the end points of the trends. Differences that occur in the middle of a curve

can be identified from a plot and the number of amalgamations can be observed when the trend

is constant. A critical evaluation of the plots allows the comparison of the different variables.

There are trends the may b" r"produced among several variables and there may be evidence to

suggest that levels of IRO are different depending on the variable (this is a multivariate statistics

problem).
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The group means after conducting the "amalgamation process" in the isotonic regression

procedure were then estimated and plotted as seen in Figr-rres 4.8 to 4.14. As the number of

amalgamations increase, the slope of the trend becomes more level. The plots depict the number

of amalgamations as well as the steepness of the slope. 'When 
the value of the slope is very low

between the means and there are many amalgamations, then the null hypothesis of monotonic

trend is not expected to be rejected. The ATM variable requires one amalgamation (groups 7 to 9

are combined) to make the trend monotonic. The trencl tends to increase from group 1 to

group 2 with not much change until group 9 where it increases to group 10. The ATF variable

shows a very similar trend. There is also one amalgamation which occurs at the same location as

the ATM variable. The variable tends to have slightly more of an incline from groups 1 to 6, and

then remains steady until group 9 where it increases to gloup 10. The level of IRO tends to

increase in a stepwise manner from group 2 to group 6. The NEU variable demonstrates several

amalgamations (groups 2 to 10 are combined) after a sharp increase from group 1 to group 2.

The trend remains constant until the 1Oth group. The CON variable does not have any

amalgamations and nevertheless shows lower levels of the IRO variable than the NEU

variable. The trend is uniform from group I to group 2, and then increases gradually from

group 2 to group 10. The AGR variable demonstrates four amalgamations (groups 1 to 4 and

5 to 10 are combined) such that the trend remains constant until there is dramatic increase

from group 5 to group 6. The trend then remains at the same level of IOR until group 10.

The SOC variable does not show any amalgamations and increases gradually from the group

2 to group 10. The variable becomes greater as the trend progresses, with a gradual

improvement from group 3 to group 9. The SWL variable has a very gradual increase from
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group 1 to group 9, suggesting that most individuals are satisfied with their life regardless

of their level of IRO. There is then a sharp increase from group 9 to group 10, which

suggests that those individuals in the last group are also extremely satisfied with their life.

These seven variables did not tend to demonstrate lineal trends, however several variables

such as the ATM, ATF, CON and SOC variables were increasing without amalgamations and

have the potential to be fit by a linear trend. These variables demonstrate the property of

monotonocity.

A more thorough investigation reveals that the ATM and SOC variables are the

most strongly increasing of the variables. Both of these variables begin and end with

very steep, increasing slopes with a tendency to be more flat and stable in the middle of

the trend. The SWL variable is also similar, however the beginning of the trend has a

steep declination. This declination, while being somewhat immediate, does not tend to

damage the shape of a predominantly increasing trend in the middle and end. The same

should be mentìoned of the CON variable as its shape is the same as the SWL variable.

The ATF variable is íncreasing at the beginning and end of the trend with a sharp

declination in the middle. This variable is therefore similar to the ATM and SOC

variables with a decline in the middle in place of being flat and stable.

4.5 Results for ANOVA and Isotonic Regression Goodness of Fit Indices

The second purpose of this paper is to determine when goodness of fit values

(measured using standard deviates) of isotonic regression estimates are greater than the

goodness of fit values of sample mean estimates for three non-linear models. The results

are summari zedinTable 4.5. Thegoodness of fit values using isotonic regression



Table 4.5

The Goodness of Fit for Three Models (Linear. Exnonential and Losistic) usins

the Ssuare of the Correlation Coefficient lR2)

ATM

ATF

NEU

CON

AGR

SOC

SWL

Sample Mean Estimates

Linear Exponential Logistic

0.714

0.588

0.203

0.732

0.048

0.591

0.51
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0.719

0.59

0.204

0.734

0.048

0.589

0.574

Isotonic Reqression Estimates

Linear Exponential Logistic

0.663

0.573

0.102

0.59

0.042

0.654

0.374

Note: The R'values are presented for ATM, ATF, NEU, AGR, CON, SOC and SWL
The regressor variable for each of the regressions is IRO. It is hypothesized that the R2
values will be greater for isotonic regression than for sample mean estìmates.

estimates and sample mean estimates are not the same for each model. For the sample

mean estimates, goodness of fit values for each of the models were high for ATM, ATF

and SOC, moderate for CON and S'WL, and low for NEU and AGR. The,exponential

model showed greater goodness of fit values than the linear and logistic models for each

of the variables except AGR, where the linear model was slightly higher than the

exponential model. Similar to the analysis using santple mean estimates, the goodness of

fit isotonic regression values were high for ATM, ATF and SOC, moderate for CON and

0.136

0.800

0.281

0.871

0.685

0.872

0.629

0.741

0.804

0.281

0.882

0.685

0.868

0.647

0.682

0.764

0.432

0.147

0.663

0.907

0.501
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S'WL, and low for NEU and AGR. The exponential model had greater goodness of fit

values than the linear and logistic models for each of the variables except AGR, where

the logistic model was greater than the exponential model. The isotonic regression

goodness of fit values were greater than the sample mean goodness of fit values for each

of the variables except for NEU, CON and AGR (the three NEO subscales).
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Chapter 5: Advantages and Limitations of Isotonic Regression

5.1 Advantages of Isotonic Regression

'When considering the methods for testing directional hypotheses, isotonic regression

is a sophisticated technique comparable to the standard ANOVA method and trend analysis

method. The ANOVA method uses multiple comparison procedures after rejection of the

omnibus F-test. The trend analysis method tests for specific functions, such as quadratic or

cubic trends using contrasts. Isotonic regression, however, tests the equality of population

means against order-restricted alternatives. The technique is different from other techniques

in that it is a one-test procedure applicable in numerous mathematical models (Kabatsos &

Ullrich, 2002). Isotonic regression can also be used for estimating confidence intervals of

parameters, such as ¡1, when the observations are subject to order restrictions (Hwang and

Das Peddada,1994). Further applications of isotonic regression can be found from Dykstra

(1983), who presents an algorithm for restricted least squares regressíon when the data is

constrained to an order restriction. This algorithm is useful for finding the closest quadratic

function to a set of points while using the least squares principle. There is also a

multivariate version of the / andF isotonic regression test statistics (Sasabuchi, Inutsuka

and Kulatunga, 1983). Therefore, the isotonic regression technique has many uses for

statistical inference.

Another advantage of isotonic regression is that the technique can provide a clear

statistical decision on whether trends are non-decreasing or non-increasing (i.e. monotonic).

The procedures that are available to make this decision are numerous. For example, Wang

(1996) used a Monte Carlo simulation study to derive a likelihood ratio test for order

restrictions when distributions are unknown under the null hypothesis. Also, there are



Isotonic Regression 57
methods for estimating confidence bands of monotonic dose-response regression

functions (Lee,1996). The confidence bands provide an indication of how much effor can

be tolerated for making decisions about the curve. Kelly (1989) has shown that the absolute

error of the isotonic regression estimate F¡x is smaller than that of the sample mean estimate.

Isotonic regression estimates are therefore preferable to sample mean estimates as a smaller

error variance is expected in the f and F tests. Thel'e have also been additional refinements

to the amalgamation process for clearer decision mal<ing, e.g. Dykstra and Robertson (1982)

present an algorithm for isotonic regression with two or more independent variables.

A third advantage to isotonic regression is that there are several studies pertaining to

non-norrnal data, statistical porver, and the Bayesian approach to order restricted statistical

inference. When data are non-noÍnal, Wang's (1996) approach of using a distribution free

likelihood ratio test is appropriate for testing directional hypotheses. Other distribution free

tests for non-norTnal data have been presented by Page (1963) for two independent variables

and Joncheere (7954) for one independent variable. With respect to statistical power,

Mancuso, Ahn and Chen (2000) have studied an empirical distribution of the test statistics

and critical values for isotonic regtession. They also discuss an adjustment to the likelihood

ratio test to increase the power of isotonic regression for dose-response curves. Marcus

(1976) concludes that the power of the likelihood ratio test is slightly greater than the

William's and modified William's test (L9lI) for the minimum effective dose in the context

of a one-way design. The Bayesian approach to order restricted statistical inference has

been studied most recently by Dunson and Neelon (2003), who present non-parametric

bayesian inference on order-constrained parameters in general linear models. An isotonic

regression transformation of the data is used to derive a posterior distribution for the general
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Iinear model. Deaton (1980) presents a parametric Bayesian approach to polynomial

regression under order restrictions. A Monte Carlo plocedure is used to demonstrate that

the Bayes approach of estimating order-constrained parameters in a prior distribution has

improved goodness of fit compared to other methods of polynomial regression. Isotonic

regression is therefore useful for Bayesian statistical inference.

A potential disadvantage to isotonic regression is that the technique is used for

testing the monotonicity of a trend, but not a specific function or shape of a trend. A

researcher may use isotonic regression estimates to con'ect for reversals that may occur

between population means. The potential difficulty is that amalgamations will change the

shape of the trend despite preserving the order of the population means in the alternative

hypothesis. If a particular shape of a trend is to be tested and an amalgamation is required

then there is a compromise for the shape of the trencl. Since researchers may be interested in

testing for a particular shape (e.g. linear, quadratic and cubic), further research is required to

preserve both the shape and sequence of the population means. Brownie, Boos and Hughes-

Olivier (1990) present a technique for pooling the homogeneity of variance of two or more

treatment groups with a control group. This procedure helps to increases power without

compromising the shape of the trend. The modified rtest and ANOVA are the preferred

techniques for this type of analysis.

Another disadvantage to isotonic regression is the lack of programming software for

directional hypotheses. The prominent use of isotonic regression in psychology will rely on

a simple procedure that can be implemented in statistical packages such as SAS and SPSS.

5.2 Disadvantages of Isotonic Regression
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Nelson (1976) has developed a program using the Basic programming language, but a

more practical program or module is necessary. A computer program to assess the

monotonicity of a trend would allow users to analyse their data without too much

complication.

As a third disadvantage, there are few empirical studies in the social sciences that

apply isotonic regression to their data sets. There is nevertheless an application of isotonic

regression by Deary, Caryl and Gibson (1993) for testing psychophysical responses

(reaction times) in a visual inspection task. Some clinical studies that use isotonic

regression consist of research pertaining to AIDS by Ancukiewicz, Finkelstein and

Schoenfeld (2003), radiation dosage by Morton-Jones, Diggle, Parker, Dickinson and Binks

(2000) and irreversible diseases such as cancer (Dinse and Lagakos, i982). A survey of the

research pertaining to isotonic regression reported in Table 5.1 reveals that the Psychlnfo

database contain only four references. The database with the most references is JSTOR

(Journal Storage), followed by MathSciNet (the Math Science Network) and Medline.

These three databases contain research papers from the disciplines of Statistics,

Mathematics and Medicine. The Science database has the next most number of references

pertaining to isotonic regression, predominantly in the discipline of Biology. From the

results for Psychlnfo, it is clear that social researchers have not exploited isotonic regression

to detect monotonic trends. This technique should be made more available to social

scientist, particularly in the discipline of Psychology.

Table 5.1

Number of References using Isotonic Regression in Psvchology and other Disciplines



1. Psychlnfo

2. Econlit

3. ERIC

4. JSTOR

5. Medline

6. MathSciNet

7. Science

Isotonic Regression (Keywordl

4

5

2

200

45

723

22

Note: The number of references in a key word search using the terms isotonic regression is
recorded. The JSTOR, MathSciNet and Medline databases have the most references.

5.3 Summary

This thesis had three purposes. Firstly, it presented the theory, development and

application of isotonic regression for the benefit of researchers in Psychology. The theory

component involved discussing the alternative hypothesis for isotonic regression and the

background for the use of isotonic regression estimates from the pool-adjacent-violators

algorithm. The applied component was a study on the isotonic trend of groups varying in

relation to the other variables. In this study, the criterion variables were the constructs of

Attachment to Mother, Attachment to Father, Neuroticism, Conscientiousness,
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Agreeableness, Sense of Coherence and Satisfaction with Life. Separate ANOVA and

isotonic regressions were computed on each of these seven criterion variables. Secondly,

goodness of fit tests for isotonic regression models were discussed. The role and methods of

goodness of fit procedures in assessing models using isotonic regression have been

discussed and illustrated in the context o linear and non-linear models. Further, their

goodness of fit was compared when isotonic regression estimates were used in place of
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sample mean estimates. The intention rvas to demonstrate that isotonic regression

estimates may be useful in situations other than hypothesis testing.
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Critical values for E2 statistic involving k groups each containing n observations
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.0254 .0317

.0190 .0238

.0127 .0159

0.01 0.001

.5391 .6973

.3753 .5133

.2869 .4032

.2320 .3313

.1947 .2810

.1676 .2438

.1472 .2152

.13t2 .1927

.1183 .7744

.1078 .1592

.0989 .1465

.0850 .1263

.0850 .1263

.0794 .1782

.0745 .1110

.0701 .1047

.0663 .0990

.0628 .0939

.0597 .0893

.0498 .0748

.0399 .0600

.0300 .0452

.0200 .0303



L-O¡\-/

0.r0 0.05 0.025

.2178 .3535 .421r

.1824 .2359 .2857

.1357 .1769 .2158

.1080 .1414 .r733

.0897 .1t18 .1448

.0767 .1009 .1243

.0670 .0883 .1089

.0595 .0785 .0969

.0535 .0706 .0873

.0486 .0642 .0194

.0445 .0588 .0728

.0410 .0543 .0672

.0381 .0504 .0624

.0355 .0470 .0583

.0333 .044r .0541

.0313 .0415 .0515

.0296 .0392 .0486

.0280 .0311 .046r

.0266 .0353 .0438

.022r .0294 .0365

.0n7 .0235 .0292

.0133 .0116 .0219

.0088 .0717 .0146

n

2
-J
4
5

6

7

8

9

10

l1
T2

T3

t4
15

t6
t7
18

T9

20
24
30
40
60

0.01 0.001

.4998 .6536

.3462 .4759

.2642 .3120

.2t34 .3048

.1190 .2580

.154r .2236

.7352 .1913

.1205 .r765

.1087 .1596

.0990 .T457

.0908 .1340

.0839 .124r

.0780 .1155

.0129 .1080

.0684 .10r4

.0644 .0956

.0608 .0904

.0577 .0858

.0548.0816

.0451 .0682

.0366 .0548

.0275 .0412

.0184 .0216
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0. r0

.2586

.1701

.t261

.1009

.0838

.0717

.0627

.0s56

.0500

.0454

.0416

.0384

.0356

.0332

.0312

.0293

.0277

.0262

.0249

.0207

.0166

.0t24

.0083

k= 10

0.05 0.025

.3286 .3918

.2194 .2654

.1645 .2004

.1316 .1609

.1096 .1344
.0939 .1154
.0822 .i011
.0730 .0899
.0657 .0810
.0591 .0137
.0541 .0616
.0505 .0624
.0469 .0579
.0438 .054r
.0410 .0507
.0386 .0478
.0365 .0451
.0346 .0427
.0328 .0406
.0214 .0339
.02L9 .0211
.0164 .0203
.0109 .0136

0.01 0.001

.4660 .6147

.3217 .4437

.2451 .3455

.1978 .2825

.1658 .2388

.1427 .2067

.1252 .1822

.1116 .1629

.1006 .1473

.0916 .1344

.0840 .1236

.0777 .1144

.0722 .1064

.0674 .0995

.0632 .0935

.0596 .0881

.0563 .0833

.0533 .0790

.0507 .0752

.0423 .0628

.0339 .0504

.0254 .0380

.0170 .0254



Between-Subjects Design: An experimental design where the differences between two or

more treatment groups are compared. Each treatment group has different subjects and is

uncorrelated with each other, usually being sampled from different populations.

Ë2: The test statistic that is used to determine when thele is a significant non-decreasing or

non-increasing trend. The statistic is the ratio of the between sums of squares after

amalgamation and the total sum of squares. High values of this statistic suggest that a

significant amount of the criterion variable can be accounted for by the order of the levels of

the independent variable.

Glossary of Statistical Terms
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Isotonic Regression Estimate: An isotonic regression estimate replaces a sample mean

estimate to preserve a non-decreasing or non-increasing trend. The estimate is the arithmetic

average of the sample mean that violates the trend and the sample mean that precedes this

mean. 
'When 

an isotonic regression estimate is required, a curvi-linear trend is obtained.

Likelihood Ratio Test: A statistic that measures the ratio of the between sums of squares

after amalgamation and the population variance. This statistic is used for iheoretical

purposes. The likelihood ratio test indicates the amount of dependent variable variation

accounted for by the trend.
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Monotonic: The term used to describe the shape of a trend. A monotonic trend occurs

when the dependent variable is either non-decreasing or non-increasing over the levels of

the manipulated variable. The trend is usually curvi-linear but may be linear.

Within-Subjects Design: An experimental design where subjects are measured on each

treatment group. The treatment groups are correlated and the order of the treatments must

be counter-balanced.




