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Abstract 

The goal of this study was to investigate the potential of breathing sounds recorded during 

wakefulness for Obstructive Sleep Apnea (OSA) screening and severity estimation. Breathing 

sounds were recorded from 189 subjects in supine and sitting postures during nose and mouth 

breathing. Features were extracted from power spectrum and bispectrum of the signals. Data 

from 70 subjects were used for training. Validation accuracy, specificity, and sensitivity for non-

OSA and OSA groups were 78%, 77%, and 82%, respectively. Screening based on six OSA risk 

factors was less accurate. Parallel classification by both breathing sound features and risk 

factors had high sensitivity (94%). OSA severity estimation, by classifying subjects into three 

classes of OSA severity, achieved a maximum validation accuracy of 71%. The results 

demonstrate the potential of breathing sounds for OSA screening. The proposed method can 

lead to significant improvements in efficient use of resources such as sleep laboratories. 
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Chapter 1 

Introduction 

1.1 Obstructive Sleep Apnea 

Sleep is an essential requirement for overall physical and mental health and well-being. 

Adequate proper sleep is necessary for daytime alertness and optimum productivity. Not only 

does it have a vital role in the proper functioning of the nervous system, it is also essential for 

the normal functioning of the body's immune system and ability to fight disease and sickness 

[1].  

Obstructive sleep apnoea (OSA) is a common sleep disorder, characterized by repetitive 

pharyngeal collapses resulting in extended pauses in breathing (apnea) or instances of 

abnormally low breathing flow (hypopnea) during sleep. There is extensive evidence suggesting 

that untreated OSA may result in neurocognitive impairments and cardiovascular complications 

including hypertension, heart failure, stroke, excessive daytime sleepiness, as well as the 

increased risk of occupational and traffic accidents [2-5].  

Severity of OSA is quantified by apnea hypopnea index (AHI), which is the number of apnea and 

hypopnea events per hour of sleep. An apnea is defined as complete cessation of respiratory 
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airflow for at least 10 s, whereas a hypopnea is characterized by a decrease of at least 50% in 

airflow that lasts at least 10 s [6]. Apnea/hypopnea events usually result in a significant drop 

(>4%) in blood’s Oxygen saturation level (SaO2) [6]. In OSA, breathing is interrupted despite 

respiratory effort, because the airway is physically blocked. In another type of apnea, known as 

central sleep apnea (CSA), the effort to breathe is too weak or absent. There is also a third type 

of apnea, mixed sleep apnea, which is a combination of OSA and CSA. However, OSA is by far the 

most common type of sleep apnea [7]. 

OSA is highly prevalent; the general estimate is that between 2-7% of women and 4-14% of men 

above the age of 30 suffer from moderate or severe OSA [8-10]. Yet, studies have also shown 

that OSA is massively underdiagnosed. For example, a major study in the United States found 

that in a population with access to a sleep disorders clinic, more than 80% of middle-aged men 

and women who suffered from moderate or severe OSA had not been diagnosed [11]. In 

addition to its negative impacts on the patient’s overall health and quality of life and increased 

risk of accidents, undiagnosed OSA is very costly to the medical system. A study has estimated 

that mean annual medical cost of an undiagnosed OSA patient is approximately twice that of a 

non-OSA individual, causing an estimated $3.4 billion in additional annual medical costs in the 

U.S. in 1999 [12]. 

1.2 Pathophysiology of OSA 

Unlike most mammals, the human pharyngeal airway does not have rigid skeletal support. This 

is probably due to the development of speech in the evolution of human species [13]. As a 

result, the human upper airway is kept open by muscle activation and soft tissue. The patency of 

the upper airway is a function of complex balance of the forces that tend to close it and those 

that tend to keep it open. The former include the negative airway pressure during inspiration 
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and positive pressure outside the airway as a result of extra fat surrounding the upper airway 

[14]; the latter include the action of dilator muscles such as genioglossus muscle [15]. 

Imaging studies have confirmed that individuals with OSA, in general, have a smaller upper 

airway size compared to healthy controls at the same pharyngeal dilator muscle activity [16]. 

More than 20 muscles in the upper airway are responsible for maintaining its patency. Precise 

control and coordination of these muscles is necessary for speech, swallowing, breathing, and 

other tasks. Therefore, activation of these muscles is accurately controlled to meet the demands 

of specific tasks, but their activation is also influenced by sleep [17]. During wakefulness, when a 

negative pressure develops in the upper airway (e.g., due to inspiration), dilator muscles will 

respond within milliseconds, with a response that is linearly proportional to the negative 

pressure [18]. Because of the anatomical abnormalities of the upper airway mentioned above, 

the dilator muscles of individuals with OSA are significantly more active compared to healthy 

individuals [19]. This increased muscle activity has two reasons. First, because of the narrower 

upper airway, OSA individuals will require a larger rate of airflow that will, in turn, result in a 

larger negative airway pressure. Since the activity of the dilator muscles is proportional to the 

negative pressure, this will lead to increased muscle activity. Second, even in the absence of the 

negative pressure, the activity of these muscles in OSA individuals is higher than non-OSA 

individuals. Even though the mechanisms behind this are not completely understood, it is 

thought to be due to plasticity of the neural system [20]. 

The patency of the upper airway is easily maintained during wakefulness even in individuals with 

severe OSA. During sleep, on the other hand, the response of the dilator muscles to negative 

airway pressure significantly decreases. This decrease is seen in OSA individuals and healthy 

individuals alike [20]. Even though the details of the mechanisms involved are still debated, a 
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loss or decrease of neuromuscular reflexes is the likely reason [21]. Obviously, if an individual’s 

upper airway patency during wakefulness depends on the reflex activation of dilator muscles, 

that individual will be at risk of airway collapse during sleep when the reflex-driven activation of 

those muscles are lost or weakened. Even though this is believed to be the main mechanism 

behind OSA [20], other factors and mechanisms may play important roles. For example, it is 

believed that reduced lung volume during sleep will lead to smaller longitudinal traction of the 

upper airway and, therefore, increased risk of closure [22]. Studies have also shown that the 

loop gain of the ventilatory control system in OSA patients is significantly larger than that of 

healthy controls. Increased loop gains mean a less stable ventilatory control system that may 

contribute to OSA [23]. 

1.3 OSA diagnosis 

The current standard method for OSA diagnosis is overnight polysomnography (PSG) in a sleep 

laboratory. PSG includes simultaneous recording of electroencephalogram, electrooculogram, 

electromyogram of chin and anterior tibialis, respiratory airflow, electrocardiogram, pulse 

oximetry, and snoring sounds. Because of the high cost and time-consuming nature of PSG, 

many researchers have tried to develop simpler and faster diagnostic methods. This has led to 

increasing usage of simpler diagnostic modalities of unsupervised monitoring such as home 

sleep studies, which are now considered a part of commonly utilized tests in many sleep labs, 

with continuing need to further develop faster and easier-to-apply screening methods. Most of 

these methods essentially rely on a small subset of the signals used in PSG [24-26]. Some other 

methods have used short-time recordings of the nasal or oronasal airway pressure [27, 28], 

speech signals [29], and breath sounds [30-32]. The fact that a large number of people with OSA 
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are not diagnosed is partly because the current OSA diagnostic methods, such as PSG, are 

complicated and expensive. 

Breath sounds signal analysis for OSA diagnosis has received considerable attention in recent 

years [19-21] because it is an inexpensive and non-invasive technology; breath sounds are easy 

to record, and are also representative of the OSA pathology. The rationale behind the use of 

breath sounds for OSA diagnosis lies in the anatomical and physiological differences of the 

upper airway between OSA and non-OSA individuals. Previous studies have demonstrated major 

anatomical abnormalities in people with OSA including a narrower oropharynx, thicker soft 

palate, and shorter intermaxillary space [22]. As mentioned before, this is compensated by the 

increased dilator muscle activity and more negative pharyngeal pressure during wakefulness 

[23]. However, these differences will alter the nature of airflow turbulence through the upper 

airway in OSA individuals compared to non-OSA individuals. A change in the airflow 

characteristics will, in turn, alter the breath sounds. If this hypothesis is true, these anatomical 

and physiological differences in the upper airway should be detectable by analysis of breath 

sounds during wakefulness. 

The potential use of breath sounds analysis during sleep for OSA diagnosis has been noted as 

early as 1985 [24]. That study proposed a system for recording and analysis of tracheal 

respiratory sounds as a means to identify apneic events in infants. However, the suggested 

technique was only tested on rabbits. Later studies have successfully used breath sounds to 

detect the occurrence of apneic events and to classify them as central or obstructive apneic 

events during sleep [25, 26]. One of these studies used a pair of non-contacting microphones 

and achieved sensitivity of 99.2-100% and specificity of 52-82% in detecting apneic events in 

three separate clinical trials [25]. The other study used a microphone attached to a chestpiece 
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that was placed on the heart region of the chest [26]. Full-night respiratory sounds have also 

been used for identifying people with OSA. One such study used tracheal breath sounds and the 

blood oxygen saturation level to detect apnea and hypopnea events and estimate the AHI for 40 

subjects [20]. The estimated AHI scores were very close to the AHI determined through full-

night PSG, with a correlation coefficient of 0.96. Classifying the subjects into moderate or severe 

OSA and simple snorer groups resulted in sensitivity and specificity values of up to 100% and 

96% respectively [20].  In another study using breath sounds of 60 subjects during sleep, the 

subjects were classified into two groups with a threshold of AHI=10 [27]; the sensitivity and 

specificity were reported as 96% and 91%, respectively. 

On the other hand, there have been few efforts to diagnose OSA using breath sounds during 

wakefulness. One study compared the change in the intensity of tracheal breath sounds 

between supine and upright postures during wakefulness and found statistically significant 

differences between severe OSA patients (n=7) and healthy controls (n=8) [30]. However, in 

addition to the small number of subjects included in the study, no classification was performed.  

Another study used tracheal breath sounds recorded with different 1-min manoeuvres during 

wakefulness for OSA diagnosis. The results of this study with a relatively small number of 

subjects (n=52) showed a classification accuracy of 91% [32]. However, due to the small size of 

population, the classification and feature selection stages were not fully unbiased. 

1.4 OSA Risk Factors 

This section briefly describes major risk factors for OSA. These include male sex, obesity, aging, 

smoking, menopausal status, black race, and alcohol [20, 33]. Even though the mechanisms 

behind some of these risk factors, such as age and gender, are not entirely clear, studies have 

consistently shown that they are correlated with the risk of OSA [34, 35]. Physicians use these 
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risk factors, along with OSA symptoms such as snoring and witnessed apneas, to roughly 

estimate the OSA risk when deciding on whether a patient should be referred for 

comprehensive tests such as PSG. 

1.4.1 Male sex 

Men are at higher risk of OSA compared to women. This has been suggested to be, at least in 

part, due to hormonal influences [36]. Some researchers have suggested gender differences in 

the shape of the upper airway, genioglossal muscle activity, and pattern of fat deposition in the 

upper airway as possible causes [37]. However, there is no conclusive evidence to support any 

of these hypotheses [34]. The increased risk due to male sex reported by most studies is 

between 1.5 and 3 [38]. 

1.4.2 Obesity 

Obesity is particularly important because it is the only major reversible risk factor and it is also 

becoming an epidemic, especially in developed countries. The effect of overweight and obesity 

on increased risk of OSA has been established by many studies [e.g. 39, 40]. It has been 

suggested that obesity affects breathing in several ways, including change in the shape of the 

upper airway, change in the function of the upper airway (e.g., by increasing its collapsibility), by 

reducing the functional residual capacity, and by increasing the oxygen demand of the body [41, 

42]. Studies on the effect of obesity on OSA have relied on different body habitus measures 

including neck size [43], general obesity [44], and central obesity [45]. 
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1.4.3 Aging 

In general, OSA prevalence increases with age in midlife; however, this simple trend does not 

exist in childhood, adolescence, and older age [34]. Many studies have shown that OSA is highly 

prevalent in people older than age 65 years [e.g. 46, 47]. However, the OSA risk reaches a 

plateau after age 65 years [34]. 

1.4.4 Smoking 

Smoking is often mentioned as a risk factor for OSA. However, there have been relatively few 

studies to investigate the effect of smoking. Most of these studies have found a significant 

positive correlation between smoking and OSA [48, 49]. There are also studies that have found 

opposite results. For example, a study on a large population (n=6,440) found a negative 

association between smoking and OSA [50]; in a model that adjusted for age and BMI, current 

smokers had significantly fewer respiratory disturbance events compared to never smokers. The 

exact mechanisms by which smoking affects OSA are not clear. Some researchers have 

suggested that smoking increases the risk of OSA through an increase in sleep instability and 

airway inflammation [34]. Other studies have suggested a rebound effect, in which the effects of 

nicotine that lead to the increased upper airway muscle tone are reversed during night, 

resulting in a decreased muscle activity and increased OSA risk [51]. 

1.4.5 Other risk factors 

There are other OSA risk factors that are not considered in this study. These are minor risk 

factors that are briefly described here. Alcohol consumption is a manageable risk factor. Alcohol 

consumption increases nasal and pharyngeal resistance during wakefulness [52]. Therefore, it is 

reasonable to expect that it may increase the risk of OSA. In general, most studies have 
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confirmed this hypothesis [e.g. 53, 54]. However, there have also been some studies that did not 

find a significant association between alcohol consumption and OSA [55]. Ethnicity has also been 

shown to be a significant factor. For example, it has been found that OSA is more prevalent 

among African Americans compared to white people, especially at younger ages [56]. Studies 

have also found an increase in frequency of apnea in postmenopausal women compared with 

premenopausal women [57]. 

1.5 Objectives 

The objectives of the study can be listed as follows: 

I. To develop a classification algorithm for screening of OSA patients based on short 

recordings of breathing sounds during wakefulness. 

II. To evaluate the power of clinical risk factors for OSA screening and compare a 

diagnostic classification based on risk factors with the proposed method of the objective 

1 based on the breathing sounds.  

III. To explore the potential of breathing sounds features for estimation of the severity of 

OSA. 

 1.6 Organization of the Thesis 

The thesis is organized as follows: 

Chapter 2 explains the methods followed to collect and process the breathing sound signals. It 

provides the details of the features and how they were extracted from breathing sounds. 

Feature reduction and feature selection methods are explained, followed by classifier 

development and testing. Classification based on OSA risk factors is also explained. 
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Chapter 3 presents the results of the classification based on breathing sounds and compares 

them with a classification based on risk factors. 

Chapter 4 discusses the results and compares them with current OSA diagnostic methods. The 

possibilities of combining the classification based on breathing sound features with classification 

based on risk factors to achieve improved classification accuracy are also investigated. The 

results of OSA severity estimation based on breathing sound features and risk factors are also 

discussed. 

Chapter 5 presents the conclusions of the thesis and suggestions for future research. 
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Chapter 2 

Methods 

2.1 Data Collection 

2.1.1 Subjects 

One hundred and eighty nine subjects, who had been referred to the full-night PSG, participated 

in this study. The study was approved by the Biomedical Research Ethics Board of the University 

of Manitoba, and all participants gave a written consent prior to collecting data. Data recording 

was performed at the Sleep Disorder Centre in Misericordia Health Centre in Winnipeg, MB. Our 

study was run in 10 minutes, while the subjects were awake before they proceeded for PSG 

assessment preparation. The AHI of the subjects was determined through the full-night PSG 

scoring by the skilled sleep lab technologists. For the purpose of developing an algorithm for 

OSA screening, the subjects were divided into three groups based on their AHI values: non-OSA 

group (subjects with ��� < 10), OSA group (subjects with ��� > 20), and middle group 

(subjects with 10 ≤ ��� ≤ 20). Table 2.1 shows the description of each group and the number 

of subjects in each group as well as a summary of the anthropometric information for the 

subjects. 
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Table 2.1.   Anthropometric information (mean ± standard deviation) for the subjects. 

 age BMI weight (kg) gender 

Non-OSA  (��� < 10);   � = 105 50.0 ± 14.8 31.3 ± 8.8 90.7 ± 27.3 48 F, 57 M 

Middle group (10 ≤ ��� ≤ 20);   � = 32 54.4 ± 12.9 32.3 ± 6.9 91.8 ± 21.2 13 F, 19 M 

OSA (��� > 20);   � = 52 53.4 ± 11.9 35.2 ± 6.5 106.3 ± 22.5 7 F, 45 M 

2.1.2 Data recording 

Breathing sounds were recorded with an ECM77B Sony microphone. The microphone was 

inserted into a plastic chamber allowing 2 mm cone shape space between the microphone and 

the skin; it was placed on the suprasternal notch of the trachea using a double-adhesive disk. 

The subjects were asked to breathe at their maximum respiratory flow rate at two different 

postures: while sitting upright on a chair or on the edge of the bed, and while lying on their back 

on the bed. At each posture, the subjects were asked to first breathe through their nose with 

their mouth closed. Then, they were asked to wear a nose clip and breathe only through their 

mouth. Therefore, from each subject four breathing sound signals were recorded, each 

containing 4-5 full breath cycles (inspiration and expiration). People usually tend to extend the 

duration of their breath when they breathe deeply. To minimize the effect of this habit, the 

subjects were asked to coordinate their inspiration-expiration with up-down movement of the 

hand of the experimenter. The experimenter stood next to the bed and moved his hand up and 

down at a relatively constant timing. Using this strategy, all subjects breathed at almost equal 

flow rate of approximately 17 breaths per minute. The signals from the microphone were band-

pass filtered to remove the frequency components below 0.05 Hz and above 5000 Hz, amplified, 
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and recorded on a laptop computer. The sampling frequency was set at 10240 Hz. Figure 2.1 

shows the setup used for data recording. 

  

Figure 2.1.   Tracheal breath sound recording. 

After recording the breathing sounds, the subject’s neck circumference was measured with a 

plastic tape measure to the nearest 1.0 cm and their Mallampati score was determined. 

Mallampati score, also known as Mallampati classification, is a score that is based on the 

visibility of uvula, faucial pillars, and soft palate and is used in anaesthesiology to predict the 

ease of intubation [58]. To determine the Mallampati score, the subject is instructed to open 

his/her mouth, while protruding their tongue. Mallampati score can range from 1 to 4 as follows 

[59]: 

Class I: soft palate, tonsils, and uvula are completely visible, 

Class II: soft palate and the upper portion of uvula are visible, 

Class III: soft palate and the base of uvula are visible, 
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Class IV: soft palate is not visible 

The subject’s body mass index (BMI) was determined by measuring their height and weight at 

the same night that they completed the PSG test. The subject’s age, gender, and smoking history 

were collected from a questionnaire that the subject completed prior to PSG. 

2.2 Data Analysis 

2.2.1 Data Pre-processing 

Features were computed for each inspiration and expiration phase. As mentioned in the 

previous section, each signal contained 4-5 breath cycles. To ensure correct identification of 

inspiratory/expiratory phases, the first inspiratory phase in each signal was marked verbally 

during recording. The method introduced in [31] was used to detect the breath onsets and 

separate inspiration and expiration phases in each signal. In brief, the logarithm of the sound’s 

variance (log-var) was computed in windows of 50 ms with 95% overlap (Figure 2.2). The valleys 

of the log-var signal are basically the breath onsets; all the detected valleys were checked 

manually to ensure accuracy. Knowing the first phase as inspiration and given the fact that the 

breathing was regular (alternating phases), we used the breath onsets and labeled all the breath 

phases as inspiration or expiration; these two respiratory phases were analyzed separately. 

After separating inspiration and expiration phases, the signal from each phase was divided by its 

standard deviation in order to minimize the effect of the difference in respiratory flow between 

the subjects and between the breathing cycles of each subject. 
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Figure 2.2.   The spectrogram of a typical tracheal breath sound signal recorded in this study 

(a), and the logarithm of the sound variance used to separate individual inspiration and 

expiration phases (b). 

2.2.2 Feature Extraction 

Features were computed from the power spectrum and bispectrum of the signals. Power 

spectrum of stochastic signals has been used in various fields of engineering and science in the 

past 30 years, and is currently an essential signal processing tool in communication, speech, 

radar, biomedical, and other signal processing applications. However, power spectrum 

suppresses phase relationships between frequency components. The information in the power 

spectrum of a signal is identical to that contained in the autocorrelation function of the signal. 
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This information is sufficient for complete description of the signal only if the signal is Gaussian. 

Higher-order spectra are also used to detect and characterize nonlinear properties of signals and 

systems [60, 61]. Tests of Gaussianity and linearity introduced in [62] were run on all inspiration 

and expiration segments of the data collected in this study. An overwhelming majority of the 

signals did not pass these tests. Therefore, it was decided to extract characteristic features from 

the power spectral density (PSD) as well as the bispectrum of the signals. 

The breathing sound signal from an inspiration or expiration phase in each of the 4 recordings 

was first normalized by its standard deviation as mentioned above. Tracheal breathing sounds 

are broad-spectrum signals covering a frequency range that starts from below 100	�� and 

extends up to and above 1500	��, usually with a significant drop in signal power approximately 

at 800	�� [63]. However, tracheal breathing sounds below 100	�� are often contaminated by 

various types of noise, such as heart sound and background noise. Furthermore, since the 

breathing sounds in this study were collected at maximum airflow, they had significant power 

up to 2500	��. Therefore, we estimated power spectrum density of each normalized signal in 

the frequency range of 100 Hz to 2500 Hz. The Welch estimation method with a Hamming 

window of 80 ms length and 50% overlap was used. The choice of the window length was made 

by trial and error. Windows of length 80 ms provided a good compromise between the 

smoothness of the estimated PSD and its frequency resolution. 

From the estimated power spectrum, the following features were computed: 

i. Signal power-  it gives the power of the signal in the frequency band in consideration 

[64]: 

∑ �	
�∆
,����	
��	��      (2.1) 
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where �	
� is the estimated PSD and 
� and 
� represent the upper and lower limits of 

the given frequency band. 

ii. Spectral centroid – it finds the weighted average frequency of the area under the PSD 

for a given frequency band [65]. Therefore, this feature can identify the location of 

major peaks, if any. 

∑ �	����∆�
�=��	
�=	��

∑ ����∆�
�=��	
�=	��

    (2.2) 

iii. Spectral bandwidth – it finds the weighted average of the squared distance between 

different frequency components and the spectral centroid, �
, with the weight being 

the value of the estimated PSD at each frequency [66]. 

∑ (����)�.����∆��=��	

�=	��

∑ ����∆��=��	
�=	��

   (2.3) 

iv. Spectral flatness – also called tonality coefficient; it quantifies how tone-like a signal is, 

as opposed to being noise-like [67]. For a completely flat power spectrum, i.e. white 

noise, it evaluates to 1. As shown by the following equation, spectral flatness is 

computed as the ratio of the geometric mean to the arithmetic mean of the PSD. 

	∏ �����=��
�=	��

�
�

�����

�
�����

∑ ����∆��=��	
�=	��

    (2.4) 
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v. Crest factor –it is another measure of tonality of the signal. In other words, it can be 

used to distinguish between wideband signals (with smaller crest factor) and 

narrowband signals (with a larger crest factor) [66]. 

���	(����)

�
�����

∑ ����∆�
����	

��	��

    (2.5) 

All these features were computed for the entire frequency band used in power spectrum 

estimation, i.e. 100-2500 Hz, as well as for six sub-bands: 100-150 Hz, 150-450 Hz, 450-600 Hz, 

600-1200 Hz, 1200-1800 Hz, and 1800-2500 Hz. The choice of these sub-bands was mainly 

through visual inspection of the shape of the estimated PSD and its apparent differences 

between non-OSA and OSA subjects. Furthermore, the relative power in each of the sub-bands 

was computed by dividing the signal power in that sub-band by the power in the band of 100-

2500 Hz. 

The bispectrum of a stochastic signal or random process is defined as the Fourier transform of 

its third-order cumulant as follows [60]: 

�����, ��� = ∑ ∑ �����, ��� exp�−2	
����� + ������ ,��
�����

��
�����   (2.6) 

where c3(τ1,τ2) is the third-order cumulant. For a zero-mean signal, the third-order cumulant is 

equal to the third-order moment defined by: 

�����, ��� = �����, ��� = 
�������� + ������ + ����  (2.7) 

We used the conventional direct method of bispectrum estimation, which is an approximation 

of bispectrum for the time series with limited available samples [60]. This method can be 

implemented using the following steps: 
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1. The signal ����,� = 0,1,… ,� − 1 is divided into � overlapping segments of length �. 

We used windows of length 80	�� with 50% overlap. Each of these segments is denoted 

by �(	)���,� = 0,1,… ,� − 1. 

2. Computed the zero-mean signal segments by subtracting the mean of the signal 

segment. 

3. Compute the discrete Fourier transform (DFT) of the segment multiplied by a Hamming 

window: 

�
	�(�) = �

∑ �������� exp(−�2���/�)
�����    (2.8) 

4. Compute the raw estimate of bispectrum as: 

���(	)���, ��� = �
��(��)�
��(��)�
��(�� + ��)  (2.9) 

5. Estimate of the bispectrum will be obtained by averaging the estimates from each 

segment: 

������, ��� = �

�
∑ ���(	)���, ������
	�
    (2.10) 

Since the bispectrum is symmetric across multiple axes due to the symmetric nature of the 

cumulant, we only considered the non-redundant region which is defined as follows [61]: 

Ω = �	
�,
��|			0 ≤ 
� ≤ 
� ,			0 ≤ 
� ≤ 
�,			2	
� + 
� ≤ 2
��,  (2.11) 

where 
�represents the Nyquist frequency. Furthermore, we limited our analysis of the 

bispectrum to the frequencies ranging from 100-2600 Hz in every dimension of the bispectrum 

with a frequency resolution of 5 Hz. Figure 2.3 shows an example of estimated bispectrum. 
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Figure 2.3.   An example plot of the logarithm of absolute value of the estimated bispectrum. 

From the estimated bispectrum, the following features were extracted. These features have 

been successfully applied to biomedical signals in previously published research [68-71]. 

i. Bispectral invariant parameter, ���� proposed in [72], where the authors also prove 

that these features are invariant to translation, amplification, and DC level. 

���� � atan 	�����
�����


     (2.12) 

where 

���� � ����� � 
	����� � 	� �����, ����
�

���

	�
�
�

���  (2.13) 

The non-redundant region corresponds to a range of 0 � � � 1. We estimated ���� on 

radial lines with a slope of 1° to 45° with 1° intervals. The integration was approximated 
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using the technique suggested in [68]. Specifically, the integral in (2.13) is approximated 

as  

�	�� = ∑ 
�	�,���
���

�
��� 
����� �

	��  .   (2.14) 

The bispectrum is interpolated as: 


�	�,��� = �	
�	�,  ��!�+ 	1 − ��
�	�, "��#� ,  (2.15) 

where � = �� −  ��!,  �! represents the largest integer contained in �, and "�# 

represents the smallest integer that is larger than �. 

ii. Average magnitude of the bispectrum in the non-redundant region, computed as: 

���� = 	 �� 	∑ |
�	
�,
��|� ,   (2.16) 

where Ω indicates the non-redundant region [70]. 

iii. Average power of the bispectrum in the non-redundant region: 

���� = 	 �� 	∑ |
�	
�,
��|��    (2.17) 

iv. Normalized bispectral entropy: 

%� = 	−∑ ��	log	��,�     (2.18) 

where 

�� =

|	 
�!,�"�|
∑ |	 
�!,�"�|#

.    (2.19) 

v. Normalized bispectral squared entropy: 
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� = 	−∑ ��	log	��� ,    (2.20) 

where 

�� =

|	 
�!,�"�|"

∑ |	 
�!,�"�|"#
.    (2.21) 

vi. Sum of logarithmic amplitudes: 

�� = ∑ log	(|
�	
�,
��|)�     (2.22) 

vii. Sum of logarithmic amplitudes of diagonal elements of the bispectrum: 

�� = ∑ log	(|
�	
, 
�|� )    (2.23) 

viii. First-order moment of the logarithmic amplitudes of diagonal elements: 

�� = ∑
. log	(|
�	
, 
�|)    (2.24) 

ix. Second-order moment of the logarithmic amplitudes of diagonal elements: 

�$ = ∑	
 −����. log	(	|
�	
, 
�|)    (2.25) 

x. Phase entropy of the estimated bispectrum: 

�% = 	 ∑ �	&�� log'�	&��( ,�     (2.26) 

where 

�	&�� =
�
�∑ 1')	
�	
, 
� ∈ 	 &��(� ,    (2.27) 

&� = �)| − � + 2��/� ≤ ) ≤ −� + 2�(� + 1)/��. 
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xi. The median bifrequency - as the name suggests, median bifrequency is the frequency at 

which the area under the bispectrum is equal on both sides. Median bifrequencies were 

calculated along each frequency dimension of the non-redundant region of the 

bispectrum using the following approach: 

a. The sum of all values of the bispectrum for all bifrequencies in the non-

redundant region was calculated. 

b. The value of 
� was set to the smallest value in the non-redundant region. 

c. The sum of bispectral values for all bifrequencies (
�,
�) in the non-redundant 

region was calculated. 

d. If the sum calculated above was greater than half of the sum calculated in step 

(a), then the value of 
� was taken as the median frequency for the first 

dimension. Otherwise, 
� was incremented by 5�� (the frequency resolution of 

the estimated bispectrum) and steps (c) and (d) were repeated. The sum in step 

(c) was calculated accumulatively with previous runs.  

Similar steps were repeated for the second dimension of the bispectrum to obtain 

the median bifrequency in the 
� direction. 

xii. Average amplitude of the bispectrum over equal and non-overlapping regions in the 

non-redundant region was computed. Specifically, the frequency band of 100-2600 Hz in 

each of the 
�and 
� frequency axes was divided into 10 equal non-overlapping sub-

bands, each extending 250 Hz in frequency. This partitioned the non-redundant region 

into a set of square-shaped regions (triangle-shaped for regions on the diagonal). The 

average amplitude of the bispectrum over each of these regions was computed. 



24 

 

For each of the four breath sound signals, after computing the above features for individual 

inspiration and expiration phases, they were averaged to give one feature value for inspiration 

and one for expiration. Studies have shown that the power spectral features of tracheal 

breathing sounds are highly variable between subjects but they show very little variability within 

the same subject [73]. Therefore, by averaging the feature values for the same subject, we hope 

to obtain a more representative and less variable feature value. Furthermore, the difference in 

feature values between nose and mouth breathing as well as the difference between upright 

and supine breathing were computed.  

As mentioned in the previous chapter, the idea of using breathing sounds for OSA screening is 

based on the assumption that the anatomical differences in the upper airway between OSA and 

non-OSA subjects lead to differences in the turbulent air flow through the upper airway. It is 

reasonable to expect that these differences would change between supine and upright postures 

and between nose breathing and mouth breathing. This is the rationale behind computing the 

difference of features between supine and upright postures and between nose breathing and 

mouth breathing. In other words, the difference of a feature between, say, nose breathing and 

mouth breathing may bring forth patterns that are not present in the feature from nose 

breathing or mouth breathing alone. 

In addition, all features were normalized such that each had a mean of zero and a unity standard 

deviation. Normalization of the features is necessary because, as described in the next section, 

feature selection and classification steps include computation of the difference between feature 

values and comparing them across the features. Therefore, normalization of features ensures 

that all features are given equal weight in feature selection and classification steps. 
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2.2.3 Feature Selection 

A total of 912 features were computed for each subject. Because this was a very large number 

and the features were highly correlated, it was necessary to identify a small subset of features 

with the highest classification power. This was done in several steps as described sequentially in 

this section. These steps are shown schematically in Figure 2.4. 

 

Figure 2.4.   Feature selection steps; “n” represents the number of features at each step. 

In statistical classification, it is usually recommended to use between 67% and 75% of the entire 

data for training and the remainder of the data for performance evaluation [74, 75]. Deciding on 

the amount of data to use for training and testing steps was more complicated in this study 
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because the number of subjects in different groups were highly unequal (Table 2.1). We decided 

to use the data from 35 non-OSA (AHI<10) and 35 OSA subjects (AHI>20) for feature selection 

steps. By using 35 subjects from non-OSA and severe-OSA groups, we hoped to be able to select 

the best feature subsets in terms of classification power, while leaving enough data in each 

group for testing step. 

A. Welch’s t-test. First, Welch’s t-test was used to identify those features that were 

statistically different between the two groups of subjects. For this step, data from 20 of 

the non-OSA (AHI<10) and 15 of the OSA subjects (AHI>20) were used. A total of 153 

features were significantly different at p= 0.05 level. 

B. The receiver operating characteristic (ROC) curve. Statistical tests, such as the t-test 

used in step A, provide statistical evidence regarding the difference in the mean value of 

a feature between two or more classes. Even though this is an effective method for 

discarding less important features, the features that pass these tests do not necessarily 

possess a discriminative power. In other words, although the mean values may differ 

significantly between the classes, the spread of the feature values around the mean 

values can be very large. Therefore, it is essential to examine the discriminative power 

of the features that pass the statistical test. One of the simplest and most widely used 

criteria for this purpose is the area under the receiver operating characteristics (ROC) 

curve [74]. In general, the ROC curve is the plot of the true positive rate versus the false 

positive rate of a binary classifier as its threshold is varied. 

For each of the 153 features that had passed the t-test, a simple threshold classifier was 

built to classify the 35 subjects with AHI<10 and 35 subjects with AHI>20. Then, the area 

under the receiver operating characteristics (ROC) curve was computed by changing the 
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value of the threshold. Figure 2.5 shows a plot of the feature values for a particular 

feature along with the ROC curve for this feature. A total of 6 features that had an area 

under the ROC curve less than 0.50 were removed from the list, leaving 147 features for 

the next steps. 

 

Figure 2.5.   (a) A sample plot of normalized feature values; the feature depicted in this plot is 

the signal power in the band of 450-600 Hz for inspiration phase of nose breathing in supine 

posture. The data for OSA and non-OSA subjects are shown on two different levels to avoid 

clutter. (b) The ROC curve for the feature plotted in part (a). The area under the ROC curve in 

this case is equal to 0.654. 
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C. Minimal-redundancy-maximal-relevance (mRMR) criterion. Usually an exhaustive 

search is best to select the most characteristic features for classification. However, an 

exhaustive search of all possible feature combinations, from among the 147 features of 

step B, is very time consuming and computationally expensive; in this case, it was only 

possible for sets of size up to 4. In order to choose features sets of size 5 or larger 

through exhaustive search, it was necessary to significantly reduce the number of 

features from 147. For this purpose, the mRMR method introduced in [76] was 

employed. This method is a filter-type feature selection method [74] that selects 

features with maximum relevancy to the class labels but also with minimum redundancy 

among themselves. 

The mRMR method is based upon the Max-Dependency criterion, but makes simplifying 

assumptions so that the method can be applied to practical problems with limited data. 

In general, the goal of feature selection is to select a subset � of � features from among 

the � features (� < �) such that these � features have the largest joint dependency on 

the target class *. This is known as Max-Dependency criterion and is written as: 

���		+(�, *)     (2.28) 

where +(�, *), the dependency, is defined as: 

+	�, *� = +	��& , � = 1,… ,��, *� = �	��& , � = 1,… ,��; *�.	  (2.29) 

In the above equation, �(�,,) is the mutual information between the two variables � 

and , and is defined in terms of their marginal and joint probability distributions as 

follows: 

�	�; ,� = 	∬�	�,,� log '((,))
'
(�'()) 	.�	.,   (2.30) 
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A feature selection approach based on Max-Dependency criterion starts by finding the 

best single feature (the feature with largest dependency with the class label) and 

incrementally adds more features until the desired number of features are found or 

some other condition is satisfied. Having found a feature set of size � − 1, a feature set 

of size � is found by adding the feature that results in largest increase in the 

dependency +	��, *�. This can be written as: 

          ��
�, �� = ∬��
�, �� log '(*	,+)
'
*	�'(+) 	�
�	��						     

= ∬��
���,��, �� log '(*	
�,(	,+)
'
*	
�,(	�'(+) 	�
������	��      (2.31) 

= �…� ����, … , ��, �� log '((�,…,(	,+)
'
(�,…,(	�'(+) 	���…���	��  

Even though Max-Dependency is a powerful concept, its implementation requires 

estimation of the joint probability densities in the above equation. Accurate estimation 

of these probability density functions requires very large data sets. The amount of data 

needed for accurate estimation of these probability density functions grows 

exponentially with the desired number of features, �. Therefore, the Max-Dependency 

criterion as formulated above cannot be accurately implemented for most practical 

applications. An alternative to Max-Dependency is maximal relevance criterion (also 

known as Max-Relevance) that estimates +	��, *� in (2.28) by computing the average 

of the mutual information between the individual features and the class label. In other 

words, Max-Relevance aims at maximizing +(�, *) defined as: 

+	�, *� = 	 �|*| 	∑ �(�&; *)(�∈* ,   (2.32) 
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where |�| denotes the cardinality of set �. This definition overcomes the main difficulty 

with the Max-Dependency criterion because (2.29) requires estimation of the joint 

probability density function of two variables only, which can be estimated accurately 

with a modest amount of data. However, because Max-Relevance relies only on the 

mutual information of individual variables and the class label, it is likely that the 

features selected based on this criterion will have significant redundancy among 

themselves. To overcome this problem, the authors of [76] define the redundancy 

among the features as follows: 

���� = 	 �
|�|�

	∑ �(��; ��)��,��∈�    (2.33) 

In other words, redundancy of the set of features � is simply the average of the mutual 

information between the pairs of features in that set. The minimal-redundancy-

maximal-relevance (mRMR) criterion is then defined by combining (2.29) and (2.30) in 

the following simple way: 

maxΦ	+,/�,      where     Φ	+,/� = + − /  (2.34) 

In the incremental form, having selected a set of � − 1 features, ����, set of size � is 

found by adding the feature that maximizes the following function: 

max��∈������
�����; �� − 	 �

���
	∑ �(��; ��)��∈����

�  (2.35) 

Estimation of the mutual information terms �	�&; *� and �(�&; �-) requires numerical 

estimation of marginal and joint probability density functions �(*), �(�&), �(�&; *), and 

�(�&; �-). In this study, features were continuous, whereas the class labels were 

discrete. Therefore, for estimation of the mutual information between features and 
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class labels, �	�&; *�, the features must be discretized too and the probability density 

functions should be estimated in discrete form. For estimation of the mutual 

information between pairs of features, �(�&; �-), on the other hand, all probability 

density functions can be estimated in continuous form, as explained below. 

For estimating �	�&; *�, �(*) can be easily estimated by counting the number of subjects 

in each class in the training data. Estimation of	�(�&)and  �(�&; *) were carried out by 

discretizing the feature values such that the double integral in (2.27) could be written as 

a double summation. The number of bins used to discretize the features is a critical 

parameter and needs to be determined by trial and error for each specific problem. The 

optimum number of bins depends on the amount of data available; with a larger dataset 

the number of bins can be increased to achieve a more accurate estimation. In this 

study, the same 70 subjects that had been used in step B were used for this step. Trial 

and error showed that approximately 12 bins were optimal. After discretizing the 

feature values and estimating �(�&) and �(�&; *), the mutual information between 

features and class labels, �'�-; *(, was estimated using a discrete version of (2.30): 

����; �� = ∑����; �� log �
��;��

�
����(�)
,   (2.36) 

where summation is carried over non-zero bins. 

For estimating �(�&; �-), �(�&) and �(�-) were estimated using the built-in Matlab 

functions to fit a nonparametric kernel-smoothing distribution. In order to estimate 

�(�&; �-), Parzen-window density estimation with a 2D Gaussian kernel was used: 

����; ��� = 	 �
�
∑ �

����
exp �− ������(�)�

�
�������(�)�

�

�	��
� ,�

	��   (2.37) 
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where 0'�&(	),�-(	)(,			� = 1,… ,�1 is the set of the training data. The important 

parameter in this estimation is ℎ, which should be chosen based on the range of feature 

values as well as the amount of data (i.e. �). An optimal value for ℎ can be found by 

plotting �(�&; �-) for different values of ℎ. In this study, ℎ = 0.3 was used. Finally, 

�(�&; �-) is computed by numerical integration of (2.30). 

D.  Exhaustive search. The final step in feature selection was an exhaustive search of all 

combinations of a large set of features in order to find the set of features that resulted 

in the highest classification accuracy on the training data set. For example, to choose a 

subset of size 3, all possible combinations of 3 features from among the 147 features 

were considered. For each set, a classifier was built and its classification accuracy on the 

training data set was evaluated; then, the set of 3 features that resulted in the highest 

classification accuracy on the training data was selected. However, exhaustive search 

within the 147 features from step B was only computationally possible for sets of 

features of size less than 5. To select the best sets of features of size 5 or larger, the set 

of 147 features had to be reduced further so that an exhaustive search would be 

possible. This was performed using the mRMR method explained in step C. As 

mentioned in step C, mRMR sorts the features based on minimal-redundancy-maximal-

relevance criterion. The top 45 features from this method were used to choose best 

feature subsets of size 5, 6, and 7 exhaustively; the top 30 features were used to choose 

best feature subsets of size 8, 9, and 10 exhaustively. Numbers 45 and 30 were chosen 

so that the exhaustive search to determine the best feature subsets of size 5 to 10 could 

be completed in less than 48 hours on a PC with a 1.73-GHz processor. As mentioned 

before, the “best” feature subsets were defined to be the subsets that resulted in the 

highest classification accuracy on the training data. The selected sets of features were 



33 

 

then used to evaluate the classification accuracy on the testing dataset. The same 

classification method was used in both training and testing steps, as explained in the 

next step. 

2.3 Classification 

2.3.1 Classification Based on Breathing Sound Features 

The proposed classification method is based on building a separate minimum-distance classifier 

for each feature. Figure 2.6 shows such a classifier. In this example, the distance from the 

feature value of the subject to be classified to the mean of the OSA group is smaller than that of 

the non-OSA group; therefore, the subject is classified as OSA. After a subject is classified based 

on each feature separately, the final class label of that subject is assigned by the majority vote. 

For example, assuming five features are included in the classification, if a specific subject is 

classified as “non-OSA” by three of the features and as “OSA” by the remaining two features, 

the subject is then classified as “non-OSA”. 

 

Figure 2.6.   Schematic demonstration of a minimum-distance classifier based on one feature. 

The data for OSA and non-OSA subjects are shown on two different levels to avoid clutter. The 

value of the feature for the subject to be classified is shown with the solid blue circle. 
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It is possible that the number of votes is equal (due to having even number of features to votes 

and/or missing data for a particular feature). This may happen, for example, when four features 

are involved and a subject is classified as “non-OSA” by two features and as “OSA” by the other 

two. In such an event, the strengths of the decisions of the individual classifiers are considered. 

The strength of the decision of a classifier was defined as the difference in the distances of the 

feature value of the subject being classified with the mean feature value of the two classes. For 

example, the strength of the classification shown in Figure 2.6 is .�.��/*0 − ./*0. A feature, 

for which this difference is large, will provide a strong vote; whereas, a feature for which this 

difference is small, will provide a weak vote. The weighted sum of these votes will then be used 

to make the classification. 

There were two main reasons for adopting this specific classification approach: 

1. Our preliminary analysis showed that an optimal number of features for this study was 

more than 3. However, most classification methods require a very large training data in 

a high-dimensional feature space. For example, all classification methods that are based 

on finding a separating hyperplane suffer from this problem. Building a separate 

classifier for each feature overcomes this problem, because adding more features will 

not increase the dimensionality of the classifier and the involved classifiers are always in 

one dimension. 

2. Many of the subjects in the training and testing data sets in this study did not have all 

the features due to noise that caused to exclude a signal partially or entirely from the 

analysis. The proposed classification approach allows classification of a subject even 

when some of the features involved in classification are missing. For example, if the 
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classification is based on 5 features and a specific subject is missing 2 of the features, 

that subject can still be classified based on the 3 existing features’ votes. 

The main objective of this study was to investigate the potential of breathing sound features for 

screening of OSA patients. For this purpose, the subjects were divided into three groups, as 

previously presented in Table 2.1.  

Table 2.2 presents details of the number of subjects used in training and testing steps for this 

analysis. As shown in this table, 35 subjects with ��� < 10 and 35 subjects with ��� ≥ 20 

were used for training steps, leading to the selection of best sets of features of different sizes.  

Once the features were selected as explained in previous section, they were used to classify the 

remaining subjects with ��� < 10 (� = 70) and ��� ≥ 20 (� = 17). 

Table 2.2.   Breakdown of the number of subjects used in classification for OSA screening.  

Range of AHI 

Total no. of 

subjects 

No. of subjects 

in training step 

No. of subjects 

in the first 

testing step 

No. of subjects 

in the second 

testing step 

 ��� < 10 105 35 70 - 

10 ≤ ��� < 15 16 - - 16 

15 ≤ ��� < 20 16 -  16 

��� ≥ 20 52 35 17 - 
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Note that the test dataset was completely separate from the data used for feature selection and 

training the classifiers. The subjects with 10 ≤ ��� < 20 were also divided into two groups 

with a threshold of A�� = 15 and were classified. In all classification steps, a leave-one-out 

strategy [74] was used to evaluate the classification accuracy. As the name suggests, leave-one-

out cross-validation uses the data from one subject as the testing data, and the data from the 

remaining subjects as the training data. This strategy is repeated to classify every subject. 

Another analysis was performed in order to investigate the power of the proposed method for 

estimating the severity of OSA. The classification method used in this analysis was similar to the 

one described before for screening analysis. The only difference was that in this analysis we 

considered three classes: non-OSA (��� < 5), moderate OSA (10 ≤ ��� < 25), and severe OSA 

(��� ≥ 30). This analysis started with the same features that had passed the t-test from the 

previous analysis. In other words, the statistical t-test analysis was not repeated; instead, the 

features from the previous analysis that was based on discriminability for OSA screening were 

used. However, selection of the best subsets of features was performed in order to maximize 

the classification accuracy for the three-class problem. Furthermore, instead of the exhaustive 

search method, we adopted the forward floating search [77]. This was partly because the three-

class classification used in this analysis was computationally more expensive than the two-class 

classification used in the previous analysis, making an exhaustive search of all feature 

combinations even more difficult. Moreover, as it will be explained in the next chapter, in 

classification for OSA screening, optimal number of features was 7; adding more features did 

not improve the classification performance on the testing data set. However, for the three-class 

classification used for OSA severity estimation, the classification accuracy continued to improve 

as the size of feature set was increased beyond 10. Therefore, it was necessary to adopt a more 

sophisticated approach than the exhaustive search. 
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Floating search methods are modifications of sequential forward or backward search methods. 

Sequential search methods suffer from the so-called nesting effect [74]. For example, in 

sequential backward method, once a feature is discarded, it will not be included again in a later 

step. Floating search techniques remove this constraint so that the decision to include or 

exclude a specific feature can be changed in future steps. In this study, a forward floating search 

method was used.  

Assuming that the total number of available features is �, the goal of floating search method is 

to find the subsets of size � for � = 1, 2,…� that optimize some cost function 
. In this study 

we defined 
 to be the product of the classification accuracy on the training data set for the 

three classes involved. In other words: 


 = 	1 − 2�.��/*0� ∗ 	1 − 2�.1%2�3%�/*0� ∗ 	1 − 24%�%2%�/*0�,  (2.38) 

where 2�.��/*0, 2�.1%2�3%�/*0, and 24%�%2%�/*0 represent the classification error on the 

training data set for these three classes. Then, the floating search method tries to maximize this 

cost function. Suppose that �	 = 	 ���,��, … , �	� is the best subset of size �. We use 3��	 to 

denote the set of remaining features not present in �	. Moreover, as the algorithm is making 

progress, it keeps a record of all the lower-dimension subsets of best features and their 

associated cost function. The algorithm is presented as a pseudo-code below. The basic idea is 

that, having found subsets of size 1, 2,… ,�, the best subset of size � + 1, �	��, is found by 

adding one feature from 3��	. Then, we return to the lower-dimension subset, and examine 

whether exclusion of any of the previously-selected features will improve the cost function. The 

answer to this question will determine if further backward search is performed or not. Details 

are provided in the pseudo-code. 
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Pseudo-code for forward floating search [74] 

Step I. Inclusion- Choose the new feature to add: �	�� = 	argmax)∈5

� 
	�	 ,,�. In 

other words, choose the feature that results in the largest improvement in the cost 

function. Set �	�� = ��	 ,�	��	�. 

Step II. Test  

1. Find the feature that, if removed, has the least effect on the cost function: 

�2 = 	argmax)∈6���

 	�	�� − �,��. 

2. If 4 = � + 1, change � = � + 1 and go to Step I. 

3. If 4 ≠ � + 1 and 
(�	�� − ��2�) < 
(�	), go to Step I. 

4. If � = 2, set �	 = �	�� − ��2�	 and 
	�	� = 
(�	�� − ��2�), go to Step I. 

Step III. Exclusion 

1. Remove �2:    �	
7 = �	�� − ��2� 

2. Find the feature that, when removed from this new set, has the least effect on 

the cost function; i.e. �4 = 	argmax)∈6�
� 
 	�	

7 − �,��. 

3. If 
	�	
7 − ��4�� < 
(�	��), then �	 = �	

7; go to Step I. 

4. Set �	��
7 = 	 �	

7 − ��2� and � = � + 1. 

5. If � = 2, set �	 = �	
7 and 
	�	� = 
	�	

7�; go to Step I. 

6. Go to Step III.; part 1. 

The algorithm was initialized by finding the best single feature, ��, and best combination of two 

features, ��, through an exhaustive search. The algorithm was terminated after finding the best 

feature subsets of size up to 31. 
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Table 2.3 shows details of the number of subjects used in different steps in this analysis. For 

training, data from 20 subjects with ��� < 5, 20 subjects with 10 ≤ ��� < 25, and 15 subjects 

with ��� ≥ 30 were used. The selected best feature subsets were then used to classify the rest 

of the subjects. First, the subjects in the same three AHI ranges were classified. This included 59 

subjects with ��� < 5, 25 subjects with 10 ≤ ��� < 25, and 14 subjects with ��� ≥ 30. Then, 

the subjects within the AHI gaps, i.e. 5 ≤ ��� < 10 and 25 ≤ ��� < 30 were classified. Similar 

to the classification for OSA screening, all classifications were carried out using a leave-one-out 

cross-validation strategy. 

Table 2.3.   Breakdown of the number of subjects in classification for OSA severity estimation.  

Range of AHI 

Total no. of 

subjects 

No. of subjects 

in training step 

No. of subjects 

in the first 

testing step 

No. of subjects 

in the second 

testing step 

 ��� < 5 79 20 59 - 

5 ≤ ��� < 10 26 - - 26 

10 ≤ ��� < 25 45 20 25 - 

25 ≤ ��� < 30 10 - - 10 

��� ≥ 30 29 15 14 - 

 

2.3.2 Classification Based on Risk Factors 

In addition to and independent of the classification based on the features extracted from the 

breathing sounds, explained in the previous subsections, we classified the subjects based solely 
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on six risk factors. The risk factors included in this classification were: age, gender, BMI, 

Mallampati score, neck circumference, and smoking history. This was performed in order to 

compare the accuracy of the classification based on breathing sounds with the accuracy based 

solely on the risk factors. 

In this approach, a relative risk was computed for each subject. The computation relied on the 

results of other studies that have estimated the contribution of different risk factors from large 

populations. The contributions of age, gender, BMI, and neck circumference were identified 

from a big study (n= 5615) on the major predictors of OSA in general population [35]. That study 

estimated the odds ratio for several risk factors and an AHI of 15 or higher by developing 

multiple linear regression models. We used the odds ratios for a model that included gender, 

BMI, age, and neck circumference as presented in [35]. To include the contribution of the 

Mallampati score and smoking history on relative risk, the results from two other studies were 

used [78, 51]. The following is a summary of the results from these three studies: 

• Gender 

Compared to women, men have an odds ratio of 1.71 [35]. 

• Age 

Up to the age of 65, every 10-year increment in age will increase the odds ratio by a 

factor of 1.36. Beyond 65 years, the odds ratio will remain unchanged [35]. 

• BMI 

Every 5.3	�5/�� increment in BMI will increase the odds ratio by a factor that depends 

on age. For age in the ranges 34-45, 45-55, 55-65, 65-75, and 75-85 years, this factor is 

equal to 2.0, 1.8, 1.6, 1.5, and 1.3 respectively [35]. 
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• Neck circumference 

Every 4.32	*� increment in neck circumference will increase the odds ratio by a factor 

of 1.48 [35]. 

• Smoking 

The odds ratio for former smokers versus never-smokers is 1.86. Compared to never-

smokers, the odds ratio for current smokers who smoke less than 20 cigarettes per day, 

between 20 and 40 cigarettes per day, and more than 40 cigarettes per day is 3.94, 3.25, 

and 6.74, respectively [51]. 

• Mallampati score 

Every 1-point increase in the Mallampati score increases the odds ratio approximately 

by a factor of 2 [78]. 

The relative risk for all subjects was initialized to 1. Then, for each of the risk factors, the relative 

risk of the corresponding subjects was multiplied by the odds ratio for that risk factor. For 

example, compared to women, men have 1.71 times the odds of having an AHI of 15 or greater 

[35]. Therefore, the relative risk for male subjects is multiplied by 1.71. This is not an exact 

approach, because the odds ratio is not a simple ratio of probabilities, as shown in the following 

equation: 

�  !	"#$%� = 	 �� 
�����⁄

�� 
�����⁄
    (2.39) 

Our approach disregards the (1 − �) terms because there is no closed-form equation that 

relates odds ratio to the ratio of the probabilities �� ��⁄ . This does not create a large error 

because the probabilities in here are much smaller than 0.50. Furthermore, for some of the 
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subjects the information on risk factors was incomplete. For example, neck circumference had 

not been measured for some of the subjects. In order to be able to compute the relative risk for 

these subjects, the missing information was replaced by the average of the subjects in the same 

AHI group. 

After computing the relative risk of the subjects, threshold(s) were identified to classify the 

subjects. For screening analysis, a single threshold was identified to separate the subjects into 

non-OSA and OSA groups. In other words, it is expected that the OSA subjects have a higher 

relative risk compared to non-OSA subjects. Using the same 70 subjects that were used for 

selecting the most characteristic features of the breathing sound signals, we found a threshold 

that could best separate these subjects. The same threshold was then used to classify the 

subjects in the training set. For the three-class classification required for OSA severity 

estimation, two thresholds were identified so that the subjects could be divided into three 

classes of non-OSA, moderate OSA, and severe OSA.  
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Chapter 3 

Results  

3.1 Classification Results for OSA Screening 

3.1.1 Classification Based on Breathing Sound Features 

As mentioned in Chapter 2, a total of 153 features were found to be statistically different 

between a randomly selected dataset including 20 non-OSA (AHI<10) and 15 OSA (AHI>20) 

subjects. Six of these features were discarded because they had an area under the ROC curve of 

smaller than 0.50. The best feature subsets were selected from among these 147 features. As 

mentioned in Chapter 2, subsets of 2, 3, and 4 features were selected by exhaustive search of all 

147 features, whereas subsets of 5 to 10 features were selected by exhaustive search of a 

smaller set of features selected by the mRMR algorithm (Figure 2.4). For feature selection step, 

data from 35 non-OSA (AHI<10) and 35 OSA (AHI>20) subjects were used. This dataset included 

the 20 non-OSA and 15 OSA subjects that had been used in the initial statistical significance test. 

None of the 147 features appeared consistently in all of the subsets. However, there were clear 

patterns in terms of the types of features that were selected more often. For example, most of 

the selected PSD features were selected from the sub-bands of 150-450 Hz, 450-600 Hz, 600-
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1200 Hz, or from the entire frequency band of 100-2500 Hz. Regarding the bispectral features, 

the invariant features appeared most frequently in the best feature subsets. Moreover, the 

difference of the features between the nose and mouth breathing were selected quite 

frequently, whereas the difference of the features between the upright and supine breathing 

were selected less frequently. Appendix A provides details of the 7 features that together 

produced the lowest classification error on the training data set. 

After identifying the best combinations of features, the prediction accuracy of each feature 

subset was evaluated in an unbiased manner respect to training data. For this purpose, first, the 

data from the 87 subjects in AHI<10 and AHI>20 groups that had not been included in feature 

selection stage was used. These subjects included 70 and 17 subjects in the AHI<10 and AHI>20 

groups, respectively. A subset of 7 features produced the lowest prediction errors on these 

subjects. Specifically, this subset of 7 features, resulted in the accuracy, specificity, and 

sensitivity of 78%, 77%, and 82%, respectively, on the test dataset for classification of the two 

groups with AHI<10 and AHI>20 . Sensitivity, here, is the accuracy of classifiying the group with 

higher AHI. 

!�&�%�%�%$' = 	 ��

��� !
     (3.1) 

!&(!%$%)%$' = 	 �!

�!� �
     (3.2) 

�)&"#**	#��+"#�' = 	 �!���

�!���� !� �
    (3.3) 

where in the above equations, 7�, 7�, 8�, and 8� stand for true positive, true negative, false 

positive, and false negative, respectively. 
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 Subsets of smaller or larger sizes resulted in lower accuracies. Therefore, we restricted our 

attention to the best subset of 7 features, the exact description of which is provided in Appendix 

A. It is worth mentioning that the accuracy, specificity, and sensitivity for classification of the 

training set using this best combination of 7 features were 81%, 79%, and 82%, respectively. The 

fact that the classification performance on the training and testing data sets were very close is a 

good indication of robustness of the proposed classification method. Table 3.1 shows the 

accuracy, specificity, and sensitivity for classification using the best combination of 7 features 

along with the results of classification based on risk factors for comparison. 

Table 3.1.   Summary of classification results for the test dataset including 70 subjects with 

AHI<10 and 17 subjects with AHI>20. 

 Overall accuracy Specificity Sensitivity 

Classification based on 

breathing sound features (best 

combination of seven features) 

78% 77% 82% 

Classification based on 

estimated relative OSA risk 

68% 76% 35% 

 

The best combination of 7 features was then used to classify the subjects in the middle group. 

This group included the subjects with an AHI value between 10 and 20. Since an AHI of 15 is 

considered as the border line between mild and moderate OSA, a classifier that could separate 

the subjects on the two sides of this border would be desirable. From the 32 subjects in the 

middle group, 16 had an AHI of below 15 and 16 had an AHI of above 15. From the 16 subjects 

with 10 ≤ ��� < 15, one of them did not have any of the feature values because of the noisy 
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signals, and therefore could not be classified. In this group, 10 (67%) were correctly classified as 

non-OSA and 5 (33%) were misclassified as OSA. From the 16 subjects with 15 < ��� ≤ 20, 7 of 

them (44%) were misclassified as non-OSA, and 9 of them (56%) were correctly classified as 

OSA.  

Table 3.2 summarizes the result of classification of the middle group. In addition to the 

classification based on breathing sound features, the results of the classification based on risk 

factors is also provided in this table. It should be noted that in this table, classification accuracy 

for subjects with 10 ≤ ��� < 15 indicates those classified as non-OSA and classification 

accuracy for subjects with 15 < ��� ≤ 20 indicates those classified as OSA. 

Table 3.2.   Summary of classification results for the subjects in the middle group (9: <

;<= ≤ >:). 

 Overall 

classification 

accuracy 

Classification 

accuracy on 

subjects with 

10 ≤ ��� < 15 

Classification 

accuracy on 

subjects with 

15 < ��� ≤ 20 

Classification based on 

breathing sound features (best 

combination of seven features) 

61% 67% 56% 

Classification based on 

estimated relative OSA risk 

41% 38% 44% 
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3.1.2 Classification Based on Risk Factors 

Figure 3.1 shows a plot of the relative risk for the 70 subjects used in the training phase. As 

expected, on average, non-OSA subjects had a lower relative risk compared to OSA group. A 

threshold of 58.4 resulted in the highest accuracy in separating the OSA and non-OSA groups in 

the training set. The threshold is also shown in the figure. With this threshold, the overall 

accuracy, specificity, and sensitivity for classifying the training data are 68%, 71%, and 66%, 

respectively. 

 

Figure 3.1.   Relative OSA risk for the 70 subjects in the training dataset. The red horizontal 

line shows the threshold used for classification. 

Applying the same threshold to classify the 87 subjects in the AHI<10 and AHI>20 groups that 

had not been used in the training phase, the classification accuracy, specificity, and sensitivity 

were 68%, 76%, and 35%, respectively, as shown in Figure 3.2 and Table 3.1. Considering the 

very different number of subjects in the two groups of the testing dataset (70 vs. 17), the overall 
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accuracy was biased towards the specificity. Nevertheless, it is clear that this method does not 

have a good sensitivity. 

 

Figure 3.2.   Relative OSA risk for the 87 subjects in the testing dataset. The red horizontal line 

shows the threshold used for classification. 

The 32 subjects in the middle group were also classified based on relative risk and a threshold of 

58.4. From the 16 subjects with 10 � ��
 � 15, 6 of them (38%) were correctly classified as 

non-OSA, and 10 of them (62%) were misclassified as OSA. From the 16 subjects with 

15 � ��
 � 20, 9 of them (56%) were misclassified as non-OSA, and 7 of them (44%) were 

correctly classified as OSA. Therefore, it might be said that the overall accuracy was 41%. These 

results are shown in Table 3.2 along with the results of the same classification based on 

breathing sound features alone. 
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3.2 Classification Results for OSA Severity Estimation 

3.2.1 Classification Based on Breathing Sounds 

As mentioned in Chapter 2, estimation of OSA severity was performed by classifying the subjects 

into three groups of non-OSA (��� < 5), moderate OSA (10 ≤ ��� < 25), and severe OSA 

(��� ≥ 30). Selection of best set of features was performed through the use of the forward 

floating search algorithm on data from 20 subjects in the non-OSA group (��� < 5), 20 subjects 

in the moderate OSA group (10 ≤ ��� < 25), and 15 severe OSA subjects (��� ≥ 30). Best 

classification results on this training dataset were obtained with a feature set of size 22. 

Appendix A describes these features in detail. Table 3.3 shows the classification results on the 

training dataset. 

Table 3.3.   The results of the three-class classification based on breathing sound features on 

the training dataset. 

 Assigned class 

��� < 5 10 ≤ ��� < 25 ��� ≥ 30 

True class 

��� < 5 18 1 1 

10 ≤ ��� < 25 5 13 2 

��� ≥ 30 1 0 14 

 

The set of 22 features were then used to classify the subjects in the test dataset, which included 

59 subjects in the non-OSA group (��� < 5), 25 subjects in the moderate OSA group 

(10 ≤ ��� < 25), and 14 severe OSA subjects (��� ≥ 30). Table 3.4 presents the classification 

results on the test dataset. The overall classification accuracy, defined as the percentage of 



50 

 

subjects that were classified in their true class, was 82% on the training dataset and 71% on the 

testing dataset. The classification accuracies for non-OSA (��� < 5), moderate OSA (10 ≤

��� < 25), and severe OSA (��� ≥ 30) groups were 90%, 65%, and 93%, respectively, for  

training dataset, while these accuracies were 75%, 64%, and 71%, respectively, for testing 

dataset. 

Table 3.4.   The results of the three-class classification based on breathing sound features on 

the testing dataset. 

 Assigned class 

��� < 5 10 ≤ ��� < 25 ��� ≥ 30 

True class 

��� < 5 44 8 7 

10 ≤ ��� < 25 6 16 3 

��� ≥ 30 3 1 10 

 

Table 3.5 shows the classification results for the subjects, whose AHI score was not within any of 

the three classes defined for OSA severity estimation; this included 26 subjects with 5 ≤ ��� <

10 and 10 subjects with 25 ≤ ��� < 30. It is difficult to specify a classification accuracy value 

for these subjects. However, it is clear that the majority of subjects (i.e. 78% of them) were 

classified into one of the two neighboring classes. 

3.2.2 Classification Based on Risk Factors 

Figure 3.3 shows the estimated relative OSA risk for the 55 subjects in the training step. 

Thresholds that resulted in lowest classification errors were 59 and 148. Subjects with an 

estimated OSA risk of below 59 are classified as non-OSA, those with a risk above 148 are 
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classified as severe OSA, and subjects in between the two thresholds are classified as moderate-

OSA. Table 3.6 shows the classification table for the training data using these thresholds. The 

classification accuracies for non-OSA, moderate-OSA, and severe-OSA groups were 75%, 55%, 

and 55% respectively.  

Table 3.5.   The results of the three-class classification based on breathing sound features for 

subjects with � � ��� � �� and 	� � ��� � 
�. 

 Assigned class 

��
 � 5 10 � ��
 � 25 ��
 � 30 

True class 

5 � ��
 � 10 10 10 6 

25 � ��
 � 30 2 2 6 

 

 

Figure 3.3.   Relative OSA risk for the 55 subjects in the training dataset for estimation of OSA 

severity based on risk factors. The red horizontal lines show the thresholds used for 

classification. 
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Table 3.6.   The results of the three-class classification based on estimated relative OSA risk on 

the training dataset. 

 Assigned class 

��� < 5 10 ≤ ��� < 25 ��� ≥ 30 

True class 

��� < 5 15 4  1 

10 ≤ ��� < 25 7 11 2 

��� ≥ 30 2 2 11 

 

The same thresholds were then used to classify subjects in the testing dataset. The classification 

accuracies for non-OSA, moderate-OSA, and severe-OSA groups were 83%, 28%, and 21% 

respectively. Detailed classification results for these subjects are presented in Table 3.7 and 

shown graphically in Figure 3.4. 

Table 3.7.   The results of the three-class classification based on estimated relative OSA risk on 

the testing dataset. 

 Assigned class 

��� < 5 10 ≤ ��� < 25 ��� ≥ 30 

True class 

��� < 5 49 4 6 

10 ≤ ��� < 25 14 7 4 

��� ≥ 30 10 1 3 
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Figure 3.4.   Relative OSA risk for the 98 subjects in the testing dataset for estimation of OSA 

severity based on risk factors. The red horizontal line shows the threshold used for 

classification. 

Table 3.8 shows the classification results for subjects with 5 � ��
 � 10 and those with 

25 � ��
 � 30 that were not included in Tables 3.6 and 3.7. This can be compared with Table 

3.5 that shows a similar classification based on breathing sound features.  

Table 3.8.   The results of the three-class classification based on the estimated OSA risk for 

subjects with � � ��� � �� and 	� � ��� � 
�. 

 Assigned class 

��
 � 5 10 � ��
 � 25 ��
 � 30 

True class 

5 � ��
 � 10 15 5 6 

25 � ��
 � 30 6 2 2 
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Overall, the classification based on breathing sound is more accurate. In Table 3.8, 67% of 

subjects are classified into one of the two neighboring classes, compared to 78% for 

classification based on breathing sound features. 
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Chapter 4 

Discussion 

The subjects of this study were divided into three groups based on their AHI: non-OSA group 

(AHI<10; n=105), middle group (10≤AHI≤20; n=32), and the OSA group (AHI>20; n=52).  To have 

reliable statistical tests, it is important to have enough data equally distributed in the groups. 

However, as noted above, our dataset was skewed toward non-OSA group, and the middle 

group did not have enough data to be used for both training and testing. Therefore, for training 

the algorithm, we selected equal numbers of subjects in the two lowest and highest AHI groups; 

thus, data from 35 of the subjects in non-OSA group and 35 of the subjects in the OSA group 

were used to select the best subsets of the features. The selected sets of features were first 

used to classify the remaining subjects in the non-OSA and OSA groups. The subjects in the 

middle group were classified using the same features with a threshold of AHI=15. 

The classification results clearly show the potential of power spectral and bispectral features of 

the breathing sounds recorded during wakefulness for OSA screening. A total of 153 features 

were identified as statistically significantly different between non-OSA and OSA subjects 

(� < 0.05). Seventy five of these features had been extracted from PSD and the remaining 78 

from the bispectrum of the signals. Although the main focus of this study was on classification 
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accuracy, the results of statistical analysis are also important because they indicate the 

significantly different features that represent underlying differences between the breathing 

sounds of non-OSA and OSA individuals. Forty six of the statistically significant features were 

actually the difference of the features between the nose and mouth breathing maneuvers and 

30 of the features were the difference of the features between supine and upright postures, and 

these features were often among the best combinations of features for classification. This 

indicates that the breathing maneuvers of the protocol play an important role in achieving the 

goal of the study.  

Among the PSD features, the signal power and spectral centroid were selected in the best 

feature subsets more frequently than the other features. These two features represent the 

intensity of the breathing sounds and the frequency of major PSD peaks in different frequency 

bands. Anatomical differences in the upper airway of non-OSA and OSA subjects lead to 

different airflow patterns that shift the frequency of major spectral peaks of breathing sounds. 

This shift in the frequency of major spectral peaks will, in turn, change the values of the signal 

power and spectral centroid in different frequency bands.  

Among the bispectral features, the bispectral invariant feature and the area under the 

bispectrum in different parts of the non-redundant region were selected most often. Differences 

in the area under the bispectrum in different frequency bands between non-OSA and OSA 

subjects is indicative of the differences in nonlinear interactions, e.g. phase coupling, among the 

harmonic peaks of different frequencies. The precise interpretation of the bispectral invariant 

feature is difficult to be speculated without having a physical model of the respiratory system 

and investigating different scenarios of plausible changes due to OSA. Nevertheless, as 

described in section 2.2.2, this feature is the ratio of the imaginary and real parts of the area 
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under radial slices of the bispectrum in the non-redundant region. Clearly, the value of this 

feature is determined by the overall shape of bispectrum and the location of its major features. 

In general, the observed difference in bispectral features between non-OSA and OSA subjects 

may be due to more complex oscillation patterns on the airflow in the upper airway of OSA 

subjects. Studies have shown that under normal conditions, when upper airway is open, the 

airflow through upper airway is mostly a laminar flow [79, 80]. However, as the airway narrows, 

the flow can become turbulent [81]. We know that the Reynolds number, which is the most 

commonly used variable to predict the flow regime is inversely proportional to the diameter of 

the tube or conduit carrying the fluid [82]. Large Reynolds numbers are indicative of turbulent 

flow, which is dominated by chaotic eddies, vortices and other unstable flow patterns. In 

addition, for large Reynolds numbers, relative roughness of the surface of the tube becomes an 

increasingly important factor and contributes to the turbulence of the flow [82]. Therefore, a 

narrower upper airway in people with OSA may result in more complex flow patterns and 

breathing sounds in non-OSA people that are captured by bispectrum analysis. 

In terms of classification accuracy based on breathing sound features, the most striking fact is 

that the training and prediction accuracies are very close, which is an indication of the 

robustness of the proposed method. The prediction accuracy is close to 80%, which is relatively 

high, considering the easy and fast nature of the recordings used in this method.  

Since the proposed algorithm in this study claims to use breath sounds for OSA screening during 

wakefulness, we compared the performance of the proposed acoustic OSA screening with 

screening based on six risk factors (BMI, gender, age, smoking history, neck circumference, and 

Mallampati score). Our proposed method was based on estimating a relative OSA risk for each 

subject and using a threshold to separate non-OSA and OSA subjects. As shown in Tables 3.1 and 
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3.2, this method was considerably less accurate and less robust than screening based on 

breathing sound features. In addition to the approach based on estimated relative risk, a 

decision tree classifier was also developed using Iterative Dichotomiser 3 (ID3) algorithm [83] to 

classify the subjects based on risk factors. This algorithm uses the idea of information gain, 

defined as the reduction in the entropy. Building the tree from top down, at each node ID3 

selects the feature that results in the highest information gain in the training dataset. This 

approach produces decision trees that achieve high accuracy on the training dataset, and are 

relatively short. Shorter decision trees are less likely to suffer from overfitting problems. The 

number of decision tree layers was set to 4. For continuous features such as BMI, the decision 

was based on the median of the feature value in the training set. The choice of the number of 

layers, as well as the design of the decision tree was based on achieving the lowest classification 

error rate on the same 70 subjects used for feature selection. The classification accuracies for 

the decision tree classifier were not better than those of the relative risk approach. For example, 

the classification accuracy, specificity, and sensitivity on the test dataset (70 subjects with 

AHI<10 and 17 subjects with AHI>20) was 66%, 70%, and 47%, respectively. 

It is not obvious which of these techniques, i.e. estimating the relative contribution of each risk 

factor in an additive or multiplicative fashion versus a classifier approach, better models a 

physician’s decision-making approach. It is likely that a classifier approach is intrinsically 

inadequate for this purpose. It is also possible that the low classification accuracies by the 

decision tree classifier in this study were mainly due to the small amount of data that was used 

to train the classifier. It is likely that a dataset that is proportionally large relative to the number 

of features could actually produce better results. 
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Nevertheless, the results obtained in this study are not considerably different from those 

reported in other studies that have used OSA risk factors and symptoms for OSA screening. For 

example, one study used snoring, BMI, age, and gender in a logistic regression model to predict 

OSA with ��� ≥ 10 [84]. All four factors were significantly correlated with OSA. However, 

applying the model to 410 subjects, the sensitivity and specificity were 28% and 95%, 

respectively. The study also investigated the accuracy of subjective decision of a single clinician 

and found sensitivity and specificity of 52% and 70%, respectively. Generally, studies that have 

used OSA symptoms and OSA risk factors have reported higher accuracies. For example, one 

study used snoring, gasping at night, witnessed apneas, age, sex, and BMI to estimate an apnea 

risk index using multiple logistic regressions [85]. The estimated risk index was then used to 

classify 427 subjects. The sensitivity and specificity were 88% and 55%, respectively. A 

commonly used tool for OSA screening is the Berlin Questionnaire [86]; this questionnaire 

consists of three categories of questions: category 1 asks questions regarding presence, 

frequency, and loudness of snoring and witnessed apneas, category 2 questions ask about 

sleepiness and fatigue during the day as well as a question specifically about drowsy driving, 

while questions in category 3 ask about history of hypertension and BMI. If a subject fulfills the 

criteria in at least two of the three categories, they are considered to be at high risk of OSA. 

Many studies have investigated the accuracy of the Berlin Questionnaire, but the reported 

accuracy is highly varied. Most studies have reported sensitivity values between 35% and 67%, 

and specificity values between 55% and 64% [87-89]. However, there have been studies that 

have reported sensitivities around 80% but with specificity values between 39% and 58% [90, 

91]. 

On the other hand, it is also clear that in classification based on estimated risk, one can decide 

to increase the sensitivity at the cost of specificity by simply lowering the threshold, or vice 
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versa. In general, a high sensitivity is more desirable because a misclassification of an OSA 

patient as non-OSA is more undesirable than misclassification of a non-OSA individual as an OSA 

patient. This is particularly true when a method is meant to be used for pre-screening. For 

example, if we choose a threshold of 20, instead of 58.4 (that maximized the overall 

classification accuracy on the training data set), the specificity and sensitivity on the training 

data will be 31% and 86% respectively, and specificity and sensitivity on testing dataset will be 

51% and 82%. 

Moreover, one may expect that a combination of classification based on breathing sound 

features and classification based on risk factors may provide a more powerful screening tool. 

One may speculate that the features computed from breathing sounds may contain some 

information that are already present in the risk factors. In other words, some of the differences 

observed in breathing sound features may be equivalently present in the risk factors, which are 

more easily measured. However, the wide difference between classification results based on 

breathing sound features and those based on risk factors can be interpreted as an indication 

that there is little overlap between these two sets of features. Nevertheless, since both of these 

approaches can be considered as easy and quick screening tools, it would be interesting to 

explore the possibility of combining them together for more accurate screening.  

Because the classification based on breathing sound features was considerably more robust and 

more accurate, one approach to combine the two methods would be to use the classification 

based on breathing sounds as the primary classifier. Then, if this primary classifier cannot 

strongly associate a subject with any of the two classes, a classification based on risk factors is 

performed. We explored this approach by defining the strength of an assignment by the primary 

classifier as the number of the votes of the winning class. For example, considering the classifier 
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based on the best subset of 7 features, if the votes were divided 7 to 0, 6 to 1, or 5 to 2, it was 

considered a strong classification, whereas if the votes were divided 4 to 3, it was considered a 

weak classification. If a subject was weakly classified based on breathing sound features, we 

resorted to classification based on estimated OSA risk. Although this approach seems very 

reasonable and provided highly improved accuracy on the training dataset, the accuracy did not 

improve on the testing dataset. 

A second approach would be to use both methods in parallel. In other words, each subject is 

classified by both of the classification methods and if a subject is classified as OSA by any of the 

two methods, the subject can be considered as high-risk and referred for more accurate tests 

such as PSG. Clearly, this approach is expected to increase the sensitivity at the cost of reduced 

specificity; as argued above, this is desirable for pre-screening. We explored this approach by 

using the classification based on best subset of 7 breathing sound features and classification 

based on estimated OSA risk using the same threshold computed for the training dataset (i.e. 

21.1). The sensitivity in identifying the subjects in the OSA (AHI>20) group for both the training 

and testing datasets was 94%. The cost, as expected, was reduced specificity, which was 60% 

and 57% on training and testing datasets respectively. 

As shown in Table 3.2, for subjects in the middle group (10 ≤ ��� < 20), the classification 

accuracy was low for both classification based on breathing sound features and classification 

based on estimated OSA risk. This is not a surprising result considering that for classification 

based on breathing sound signals characteristic features had been selected based on their 

power in discriminating non-OSA and OSA groups, without any regard for the middle group. One 

should also bear in mind the continuous nature of AHI values in contrast to the artificially crisp 

nature of using a border-line AHI value, in this case ��� = 	15, to separate the subjects into two 
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classes. For example, 5 of the subjects in the middle group had an AHI score of between 13 and 

15, and 6 of the subjects had an AHI of between 15 and 17.6. It is not reasonable to expect that 

short recordings of breathing sounds during wakefulness be able to mark such fine differences. 

Tables 3.3 to 3.8 summarize the results of three-class classification. As suggested before, this 

analysis can be thought of as an effort to estimate the severity of OSA. Similar to the analysis for 

OSA screening, breathing sound features resulted in a more accurate classification than the 

method based on estimated OSA risk. The classification accuracy on the testing dataset was 

71%, which is almost 10% lower than the two-class classification. This is not surprising because 

with increasing number of possible classes the accuracy in assigning the true class should 

normally decrease. It is also worth noting that the classification accuracy for the moderate-OSA 

class (i.e. 10 ≤ ��� < 25) was considerably lower than the accuracy for non-OSA and severe-

OSA classes. This may be partly due to the fact that the initial t-test analysis to identify 

statistically different features used the data from subjects in the two extreme AHI groups, i.e. 

��� < 5 and ��� ≥ 30. 

The three-class classification based on estimated OSA risk was considerably less accurate. It 

seems that risk factors used in this study are not very promising for estimation of severity of 

OSA.  However, as mentioned in section 2.3.2, relative OSA risk was estimated based on odds 

ratios that had been found in other studies with a threshold of ��� = 15. Therefore, it is 

reasonable to expect that using odds ratios to estimate the OSA risk, as done in this study, 

should produce better results when dividing the subjects into two groups rather than into three 

groups. A thorough search in the relevant databases did not find any previously-published 

studies to classify subjects into more than two classes using OSA risk factors or symptoms. 
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It is also not obvious how one can effectively combine the information in breathing sound 

features with the information provided by the risk factors for more accurate OSA severity 

estimation. One approach may be to use the estimated OSA risk to select the subjects that are 

at very low or very high OSA risk. In other words, a very low threshold for OSA risk can be 

specified below which a subject is classified as non-OSA and a very high threshold above which 

the subject is classified as severe OSA. The subjects with an estimated OSA risk between these 

two thresholds are then classified using breathing sound features. We investigated this 

approach with various values for the low and high thresholds, but could not achieve any 

improvements beyond the classification results based on breathing sound features alone. 

Overall, the results of this study are very promising. The methods suggested in this study 

provide an easy and powerful OSA screening method. As mentioned in Chapter 1, the gold 

standard for OSA diagnosis remains the overnight PSG. However, in view of the limited 

resources such as recording beds and skilled technicians, high cost, and long waiting lists, many 

researchers have explored the potential of OSA symptoms and risk factors for identifying higher-

risk individuals. Screening devices in the form of single or multi-channel monitoring systems 

have also become common and represent an alternative OSA screening method. The reported 

accuracy of single-channel systems has been very varied with sensitivity and specificity values 

ranging from 41% to above 90% [92-95]. In general, the accuracy of multichannel monitoring 

systems is about 80%, with more channels improving the accuracy at the cost of adding cost and 

complexity [96, 20]. Even though many such devices are commercially available and can be used 

at the patients’ home without the need for expert supervision [97, 98], their role and use is still 

controversial [20]. As explained previously in this chapter, screening based on OSA risk factors 

and symptoms has also been explored quite extensively, with mixed results even for the widely 

used Berlin Questionnaire. 
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Being able to screen patients for OSA before PSG is an important issue because the full-night 

PSG is costly and time-consuming, and there is usually a long waiting list for this test. In addition, 

many of the patients referred for full-night PSG are non-OSA. For example, all of the 189 

subjects in this study had been referred for PSG by a physician, but 79 of them (42%) had an AHI 

of less than 5. Therefore, powerful screening tools can be very helpful for more efficient use of 

limited facility and resources such as PSG by identifying individuals who are at higher risk. The 

screening method proposed in this study relies on a combination of breathing sound features 

and major OSA risk factors. Although it is a simple and fast technique, its accuracy is very good 

compared to other OSA screening methods and devices currently used as alternatives to PSG. 

Therefore this study is a major step in development of fast and reliable OSA screening methods 

that can lead to efficient use of expensive and limited resources such as sleep laboratories and 

their personnel and reduction in the number of undiagnosed OSA patients. 
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Chapter 5 

Conclusion and Recommendations for Future Work 

5.1 Conclusion 

This study demonstrated the potential of second and third-order spectral features of breathing 

sounds for OSA screening and OSA severity estimation. The proposed classification technique 

based solely on breathing sound features was able to achieve acceptable accuracy and very high 

robustness in classifying subjects with AHI>20 from subjects with AHI<10. To the best of our 

knowledge there is no previously published work on OSA diagnosis during wakefulness with 

more than 52 subjects. Therefore, this study can be regarded as a landmark because it increases 

the hopes for fast and inexpensive OSA screening during wakefulness. 

It is unlikely that techniques such as the one proposed in this study will completely replace full-

night PSG. However, they may provide very powerful screening tools for identifying patients 

that are more likely to suffer from OSA. Therefore, one of the potential applications of this 

technology is for identifying the patients at higher risk of OSA for PSG referral. The proposed 

screening method based on breathing sound features outperformed the suggested screening 

method based on OSA risk factors by a wide margin. The risk factors included in this study were 
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among the most significant OSA risk factors. In addition to these risk factors, a physician may 

use OSA symptoms such as witnessed snoring or apneas (by a bed partner) when referring a 

patient for PSG. However, this information is not always available or accurate. Therefore, it is 

reasonable to claim that the results of this study demonstrate the potential of the proposed 

screening method based on breathing sounds as a reliable alternative screening tool. 

Using the classification based on breathing sounds in parallel with a classification based on risk 

factors resulted in very high sensitivity at the cost of very low specificity. With this approach, 

only one of the 17 subjects with AHI>20 was misclassified in the testing dataset. Recording of 

breathing sounds as suggested in this study can be performed in a very short time in a 

physician’s office. Risk factors can also be measured by an interview and simple measurements. 

Therefore, the great advantage of the methods suggested in this study is the ease and speed. 

Even though parallel classification using breathing sounds and risk factors has low specificity, it 

should be noted that all of subjects in this study had been referred for full-night PSG by a 

physician. Using the methods suggested in this study, 54 of the subjects with AHI<10 (i.e. 51% of 

the 105 subjects in this class) had been classified as non-OSA by both classification using 

breathing sounds and classification using risk factors. This is a significant saving in expensive and 

time-consuming resources such as sleep laboratories that could be used for diagnosis of OSA 

patients. 

Estimation of OSA severity based on breathing sounds is a more challenging task. This study 

achieved a maximum classification accuracy of 71% on testing dataset when classifying the 

subjects into three different classes of OSA severity. The severity estimation based on estimated 

OSA risk was less accurate, probably due to the nature of the OSA risk estimation method used 

in this study. 
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Overall, the results of this study showed the potential of breathing sounds recorded during 

wakefulness for OSA screening. The proposed classification proved much more accurate than 

classification based on risk factors alone. It was possible to combine the two methods to achieve 

a higher sensitivity at the cost of specificity. Considering the fact that the subjects in this study 

had all been referred for full-night PSG, the proposed method may lead to significant reduction 

in the waiting time for comprehensive tests such as PSG, reduction in the number of 

undiagnosed OSA patients, and substantial decrease in the cost of undiagnosed OSA for the 

healthcare system. 

5.2 Recommendations for future work 

I. This study used AHI from the PSG test as the gold standard for severity of OSA. Even 

though no other metric has proven to be better than AHI [33], AHI does not consider 

some very important processes such as the degree of oxygen desaturation or the total 

number of arousals from sleep [33]. Therefore, it would be valuable to compare the 

results of the classification methods developed in this study with other OSA metrics. 

II. This study focused only on features extracted from the estimated PSD and bispectrum 

of the breathing sound signals. Bispectral features were frequently selected among the 

best feature combinations. It is likely that other higher-order polyspectra such as the 

trispectrum would reveal additional information in the breathing sounds that are hidden 

to PSD and bispectrum. It is also likely that estimation of the bispectrum at a higher 

frequency resolution, than 5	�� used in this study, will improve the results further. We 

were unable to explore these possibilities due to our limited computational resources. 

III. The greatest advantage of the proposed screening method proposed in this study is the 

ease and speed with which the required information can be collected. Breathing sounds 
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and the information about risk factors can be collected very easily. In addition, OSA 

symptoms such as daytime sleepiness, snoring, and witnessed apneas are also strong 

predictors of OSA. Future studies can explore whether including the information about 

OSA symptoms can further improve the accuracy of the methods proposed in this thesis. 

IV. The proposed OSA screening method in this study is based on classifying each subject 

twice, once based on breathing sound features and once based on the estimated OSA 

risk. An alternative approach would be to match the subjects based on the risk factors 

and then perform the classification based on breathing sounds. This approach will 

require a large databank of breathing sounds so that a new subject could be matched 

with an adequate number of subjects within the same age, gender, and BMI group. The 

classification of the new subject as non-OSA or OSA will be performed by comparing his 

or her breathing sound features with those of the matched subjects. 

V. The results of this study show that the change in PSD and bispectral features of the 

breathing sounds between nose and mouth breathing and between upright and supine 

postures are significantly different between non-OSA and OSA subjects. In addition to 

breathing maneuver (nose or mouth breathing) and posture, it is likely that airflow rate 

can also be an influential factor. This study only looked at the breathing sound features 

at deep breathing with maximum airflow rate. Future studies can look at the change in 

PSD and bispectral features between shallow or normal breathing and deep breathing. 

Characteristics of a flow such as flow regime, i.e. laminar or turbulent, strongly depend 

on the flow velocity [82]. Therefore, it is likely that airflow rate through the upper 

airway will significantly alter the characteristics of breathing sounds and this change is 

probably different between non-OSA and OSA individuals. 
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VI. As described in Chapter 2, in this study 4 breathing sound signals were recorded from 

each subject and each signal contained 5 inspiration/expiration cycles, resulting in 40 

inspiration and expiration cycles. Estimation of PSD and bispectrum using the 

techniques described in this thesis for one subject takes approximately 12 minutes using 

Matlab software (Mathworks, Natick, MA) on a PC with a 1.73 GHz processor. It would 

be valuable to explore possible ways to decrease this time. For example, if the collected 

signal is free from noise and artefacts, it may not be necessary to compute the features 

from all five respiratory cycles in each signal. Also, it may be possible to reduce the 

frequency resolution used in this study for estimation of PSD (1	��) and bispectrum 

(5	��) without any loss of classification accuracy. 

VII. Biological signals, such as the breathing sounds analyzed in this study, are characterized 

by their huge variability. A full understanding of the underlying variability in such signals 

requires a very large set of measurements. In this study, data from 189 subjects were 

used, 70 of which were used for statistical significance test and for selection of the best 

feature subsets. A complete understanding of the variability of the spectral and 

bispectral features of breathing sounds requires a much larger dataset. This is 

particularly true if the breathing sounds are to be used for estimation of OSA severity. 

Therefore, future studies should consider increasing the number of subjects. 
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Appendix A 

Description of features in the best feature combinations for OSA 

screening and OSA severity estimation 

A.1 Best set of features for OSA screening 

• Spectral centroid of PSD for the band of 450-600 Hz, for expiration phase of mouth 

breathing in upright posture 

• Spectral bandwidth for the band of 1200-1800 Hz, for expiration phase of mouth 

breathing in supine posture 

• Difference between nose and mouth breathing in spectral centroid for the band of 100-

2500 Hz, for expiration phase in supine posture 

• Difference between supine and upright postures in signal power for the band of 100-150 

Hz, for inspiration phase of mouth breathing 

• Bispectral invariant at 15°, for inspiration phase of mouth breathing in upright posture 

• Bispectral invariant at 24°, for inspiration phase of mouth breathing in upright posture 
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• Bispectral invariant at 27°, for inspiration phase of mouth breathing in upright posture 

 

A.2 Best set of features for OSA severity estimation 

• Signal power in the band of 450-600 Hz, for inspiration phase of nose breathing in 

supine posture 

• Signal power in the band of 600-1200 Hz, for expiration phase of mouth breathing in 

supine posture 

• Crest factor for the band of 100-2500 Hz, for inspiration phase of nose breathing in 

upright posture 

• Spectral centroid for the band of 600-1200 Hz, for inspiration phase of nose breathing in 

upright posture 

• Spectral centroid for the band of 600-1200 Hz, for inspiration phase of mouth breathing 

in supine posture 

• Spectral centroid for the band of 1200-1800 Hz, for inspiration phase of nose breathing 

in upright posture 

• Spectral bandwidth for the band of 100-150 Hz, for inspiration phase of mouth 

breathing in supine posture 

• Spectral bandwidth for the band of 150-450 Hz, for expiration phase of nose breathing 

in upright posture 

• Spectral bandwidth for the band of 120-1800 Hz, for expiration phase of mouth 

breathing in supine posture 

• Difference between nose and mouth breathing in signal power in the band of 600-1200 

Hz, for expiration phase of upright posture 
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• Difference between nose and mouth breathing in relative signal power for the band of 

1800-2500 Hz, for expiration phase in supine posture 

• Difference between nose and mouth breathing in spectral centroid for the band of 150-

450 Hz, for expiration phase in supine posture 

• Difference between nose and mouth breathing in spectral bandwidth for the band of 

100-2500 Hz, for inspiration phase in upright posture 

• Difference between nose and mouth breathing in spectral bandwidth for the band of 

1200-1800 Hz, for inspiration phase in upright posture 

• Difference between supine and upright postures in signal power for the band of 100-150 

Hz, for inspiration phase of nose breathing 

• Difference between supine and upright postures in relative signal power for the band of 

1800-2500 Hz, for inspiration phase of nose breathing 

• Difference between supine and upright postures in median bi-frequency in 
� direction, 

for inspiration phase of nose breathing 

• Area under the bispectrum in [350-600 Hz, 2350-2600 Hz], for inspiration phase of nose 

breathing in supine posture 

• Area under the bispectrum in [850-1100 Hz, 1600-1850 Hz], for inspiration phase of 

nose breathing in upright posture 

• Area under the bispectrum in [350-600 Hz, 600-850 Hz], for inspiration phase of mouth 

breathing in upright posture 

• Difference between nose and mouth breathing in are under the bispectrum in [850-

1100 Hz, 1600-1850 Hz], for inspiration in upright posture 

• Difference between supine and upright postures in are under the bispectrum in [1850-

2100 Hz, 2100-2350 Hz], for inspiration phase in nose breathing 


