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DESIGN AND REALIZATION OF
FIR AND BIRECIPROCAL
WAVE DIGITAL FILTERS

Yuhong Zhang

Abstract

This thesis concentrates on two subjects related to wave digital filter design and realiza-
tion. The first one considers the cascade synthesis of lossless two-port networks, which is
based on the factorization of the transfer matrix or the scattering matrix. Another subject
of this thesis is the design and realization of bireciprocal filters.

Jarmasz provided an efficient cascade synthesis algorithm of lossless two-port net-
works by extracting elementary sections step by step. Following this approach, based on
the factorization of the transfer matrix, necessary and sufficient conditions for cascade
synthesis of lossless two-port networks from a given canonic set of scattering polynomials
is presented. An algorithm to realize a digital filter with ladder structure based on the cas-
cade decomposition and an illustrative example are also provided.

Fettweis proposed another approach to the cascade decomposition of lossless two-
port networks based on the factorization of the scattering matrix. A proof that this
approach can be applied to FIR filters is provided and at the same time a realization struc-
ture and an algorithm in a very general form is developed. Several other realization struc-

tures and algorithms for FIR filters are derived directly from this general form, including




Fettweis® two structures. Two example are included to demonstrate the efficiency of the
algorithms and to compare the implementation structures.

An analytical formula method and an optimization method for the design of birecipro-
cal filters are presented. The analytical formula method is simple, direct and uses simple
calculations. It is obtained by reducing the design of bireciprocal filters to a Chebyshev
approximation problem and making use of a formula due to Cauer. The optimization
method for the design of bireciprocal filters is developed by applying a minimax algorithm
proposed by Dutta and Vidyasagar, and is an alternative to Wegener’s solution. A lattice
implementation structure is derived which clearly shows the advantages of bireciprocal fil-
ters which exhibit a saving in hardware of nearly one-half compared to nonbireciprocal fil-

ters.

1\
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Chapter 1 Introduction

Chapter 1

Introduction

Wave digital filters introduced by Fettweis(1] are modeled on classical analog filters and
therefore preserve some of the good properties of passive lossless analog filters, including
low round-off noise, large dynamic range, low sensitivity, and stability. There is a detailed
discussion of digital filters and their advantages in the review paper by Fettweis(1].

There are many different realization structures for wave digital filters. Ladder and lat-
tice structures play important roles in them. The ladder structure is built on a decomposed
analog circuit[ 10}, which is one reason why network cascade synthesis is of interest. Fett-
weis(3] gave a detailed discussion of the cascade synthesis of lossless two-port networks
by the transfer matrix factorization. Jarmasz[2] presented an efficient synthesis algorithm
for lossless two-port networks which is also based on the factorization of the transfer

matrix. For the given filter specifications, the canonic polynomial set
{f(w), g(w), A(¥)} can be obtained by using a classical filter design method. Then by

using Jarmasz’ synthesis algorithm, an analog and a wave digital network can be derived
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at the same time. Fettweis also proposed another approach[1] that the decomposition of
lossless two-port networks be based on the factorization of the scattering matrix instead of
the transfer matrix. This approach is suitable for application to FIR filters which have a
very simple form for g, where g is the canonic polynomial of Belevitch’s representation.

Lattice wave digital filters are one of the most attractive ones among the different
structures of [IR digital filters[1][19]. Especially, the lattice wave digital filters with bire-
ciprocal characteristic function form an important subclass of the lattice wave digital fil-
ters. These kinds of filters, called bireciprocal filters lead to a significant saving in the
number of multipliers and adders since only less than half the number of adaptors is
required if they are implemented with lattice wave digital structures{14]. One of the popu-
lar design methods [24] uses the aid of optimization, e.g. nonlinear optimization as in the
Fletcher-Powell algorithm or a Remez-type optimization. Wegener offered a general real-
ization structure for bireciprocal filters in [14].

The goal and motivation of this thesis are as follows:

1) To provide a complete proof to the theory of the realizability of cascade decomposi-
tion of lossless networks, which is not found in [2].

2) To develop an efficient decomposition algorithm for FIR filters and to prove that by
applying the approach in [1] that the cascade synthesis of lossless two-port networks
based on the factorization of scattering matrix applied to FIR filters is successful. Fettwis
suggested two realization structures for FIR filters in [1], but no algorithm and no proof of
the realizability are given.

3) To give an analytical formula method and an alternative optimization method to

design bireciprocal filters.
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In order to realize a digital filter using a ladder structure, a decomposed analog net-
work is necessary. Chapter 2 follows the decomposition scheme in [2], extracts elementary
sections step by step based on the factorization of the transfer matrix. In particular, a nec-
essary and sufficient condition for cascade synthesis of lossless two-port networks from a
given canonical set of scattering polynomials is proven. Therefore, it shows in theory that
Jarmasz’ decomposition approach of lossless two-port networks is realizable. An algo-
rithm and an example that realize a ladder structure based on the decomposed network are
presented at the end of this chapter.

Chapter 3 applies Fettweis’ suggestion that cascade decomposition can be based on
the factorization of the scattering matrix of FIR filters, and it develops a realization struc-
ture and algorithm in a very general form. Using this approach several realization struc-
tures and algorithms for FIR filters are derived directly, including two structures proposed
by Fettweis. The fact that linear phase FIR filters have symmetric or antisymmetric (anti-
metric) structures is proven, which means that only half the number of multipliers needs to
be calculated for linear phase FIR filters. Two examples which are used to demonstrate the
efficiency of the algorithm and to compare between the implementation structures are
included.

Chapter 4 discusses the design and realization of bireciprocal filters. An analytical for-
mula method and an optimization method are presented. From the definition of birecipro-
cal filters, some useful properties are derived. Based on the definition and properties, the
design of bireciprocal filters reduces to a Chebyshev approximation problem, which can
be solved by Cauer’s formula[30]. The analytical formula method proposed in this thesis

is simple and direct. Optimization is an important tool for the design of bireciprocal fil-
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ters[21][24]. In Chapter 4, the optimization method for the design of bireciprocal filters is
achieved by applying a minimax algorithm proposed by Dutta and Vidyasagar and is an
alternative solution to that of [14] for bireciprocal filters. A lattice implementation struc-
ture is derived which shows the savings in the number of required multipliers and adders.

Finally, conclusions are included in Chapter 5.
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Chapter 2

Cascade Synthesis of Lossless Two-port Networks
Using the Transfer Matrices

Jarmasz{2] provided an efficient synthesis algorithm for lossless two-port networks

(Fig. 2.1) based on a simplified characterization of elementary sections. However, a com-
plete proof of the theory of decomposition is not found in [2]. In this Chapter, following
the approach in (2] that uses the transfer matrix as a tool to complete the decomposition of
lossless two-port networks, a proof of the realizability of the decomposition procedure is
given. Finally, a wave digital realization algorithm based on the decomposed structure and

an illustrative example are presented.

Fig. 2.1 A lossless two-port network
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2.1 Belevitch’s Representation for Two-Port Networks and
the Definition of the Canonic Parameters

A lossless, passive, two-port network N as shown in Fig. 2.1 can be represented by

canonic polynomials in the form of a scattering matrix S, or a transfer matrix IT1],

s= 1[" °f*], T= l{"g* "] ©.1ab)
8|f -Ghy floh, g

where the subscript asterisk denotes para conjugation, i.e., for a real polynomials

S+(¥) = f(-y) and the polynomials f, g and A satisfy the following necessary and suf-

ficient conditions:
l. Polynomials f, g and A are real in some complex frequency variable, say y.

2./, g and A are related by the Feldtkeller equation

88x T ff* + hh* 2.2)

3. g(y) is a Hurwitz polynomial with all its zeros strictly in the left-hand plane.
4. ¢ is either +1 or -1. For reciprocal two-ports,
o= /f/fx (2.3)

That the above four conditions are necessary and sufficient means that for any lossless,
passive, two-port network, there are three polynomials which fulfil the four conditions and
correspond to the network via the scattering matrix S. Vice-versa, if the three polynomials
/ g, and A, satisfy the four conditions, there must be a two-port network which has a scat-
tering matrix S as in (2.1a).

Three further parameters, transmission zero g, reflectance p, and delay d play impor-

tant roles in the synthesis of lossless two-ports{2]. They have the following definitions:
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Vo:f(W| _. =0 (2.4)

V=V,

ply,) = W) (2.5)
g(\l’) ¥V =Y,

d(y,) = (gg:—',"—') (2.6)

V=¥,
where the prime denotes differentiation. The special case of y, = o, called a transmis-

sion zero at infinity, definitions (2.4")-(2.6") are applied instead of (2.4)-(2.6).

Wo ==, f(=) = 0, if S| _ =0 2.4)
p(e) = h(®) @2.5)
EW)|g=0
-y = (&K
d() (g ’.’)_» 2.6)
y=0

with f(§) = §"£(1/9), h(§) = §"h(1/§) and 2(§) = §"g(1/§), where n is the

degreeof gand ¥ = |/y.

2.2 Elementary Sections

In this part, the elementary sections, i.e., zero-, first- and second-order polynomials
f, g, h and their corresponding two-port networks, are presented as tables which are

included in Jarmasz’ thesis(2]. For convenient reference, they are shown below.
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Zero order sections

E 0 n -1 2n
S S = P+l ntl
8 i 2
= 2n l-n
; _n2+l n2+l_
@ O
= c=1, n=L+h
f
l-n  -2n
O 251 nt+
§ -’ S= n n
s ) C 2n l-n"
<y 3 3
’e) (n"+1 "+
_ -h
c==-l, n=
f
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First and second order sections

Fec¥ Clrcult components ~ Polynomlials Reallzability |
Conditions
- c=1 p(e0) =1
5 o_fYYWY\_,O f:d
3 L=2/d g=y+d d>0
= h=vy
= o O
e O —O ;=dl p(oe) =-1
§ ;%C=2fd g=y+d d>0
= h=-y
B o O
e 1( c=-i p0) =1
= =
8 O- O S=dy
I C=d2 g=dy+1 d>0
% h=1
3 o 0
. O O c=-1 p0)=-1
f=dy
E L=d2 g=dy+l d>0
ré h=-1
O O
" _%O °=“:2 PUdo) = |
o— - f=v+ o
g oy g=v+2dy+o2 | 470
3 h=2idy
o O
o, O c=1 (o) = -1
ND - - 2 PUSo
i -4 f=v*+ 0 450
>
Ledd g=V +2dy+¢y’
! h=-2ldy
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Tad nonreciprocal secfion 9

2
= co(I N C = I-ﬂ
2 K
S S
rz(l + cosY)
K

k= =2r(l + cos‘y)cosco

f=wz-2r(cc;as¢0)w+r2

cosy’+12 .
= L4

siny

[(l - Bz)cos¢0 sing,
2r -

e+
2

. 2
sin (1-P )cos
b= 2c0321 W2+r 00_ B > % v
siny ana 1+

(1- Bz)sin-{2 tanoitany

p= g(wo) = B",a

v, is a zero of f

ec Clrcult components Polynomials Reallzabllity |
Conditions
o=1
- 2
s 4 "% sinQt
cosz+l2 2(1 cos'r=d—
g = Y o + ( —cosotzcoetl)° +g %
¢ siny dsiny
b _ Zcosy (cosa - cosy 0
: h=="=0~ ¢
g siny dsiny
o j d>0
£ 2j6g) = p = ¢° >
E u ’ h'
i . d = £(jag) - 7i0g)
¢0("‘ 1)
e
,§ 1 g=1f=y~+r
"§ ] g=v+'(02+l) r>0, & p7>1
g o—L** si—o p2_| r<0, & pi<l
=Y —'»
§ ) C h=—L§’ . g(—r)=p
2 o o) p- -1
=
o=1

cos §g >0, & B2>1
cos 9y <0, & B2 <l

cosy = 2@sina

(1- ﬁz)tan%
2Esina <1
(1 - B%)tane,

10
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2.3 Cascade Decomposition from the Scattering Polynomials

Suppose that the three polynomials f, g, # and unimodular number 6, which satisfy
the four conditions, are given. OQur objective is to synthesize the two-port network which
corresponds to the given polynomials as a cascade of elementary sections.

One effective synthesis method consists of decomposing the transfer matrix 7 of a loss-

lcss two-port network (Fig. 2.1) into a product form{2):

ogy h

r=r,T,=T-=23%* @7
S|ohy g

where T, and T} are both transfer matrices of lossless two-ports, in particular T, corre-

sponds to one of the elementary sections. The canonic polynomials corresponding to 7,

shall be designated by f,, g,,. and h,, and those corresponding to T, by f;, g;. and h,. From

.7n,
6 =00, f =SS (2.8)
g = 8,851 O.h,xhy 2.9)
h = hgs+0.8,4h, (2.10)

The equation T = T, T, is equivalent to

" 6,85, h
T, =T 'T=| t56x" @11
a S5 |04hs, 85
where
6, = 6/6,, f,= fi @.12)
[/}

11
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g, = 8,x8 hai&h = gah - hag
b fafa* e <”afcclfaill'

(2.13ab)
Lemma 2.1: The reflectance p(y,) and delay d(y,) defined by (2.5) and (2.6) or
(2.5") and (2.6°) have the following properties:
D) p(Wo)ps(Wg) = | (2.14)
2) |p(wy)| = 1.if y, ison the jo axis
3) d(wy) = dy (Vo). if faulwy) = f(yy) =0 (2.15)
4) d(y,) isreal if W is on the jo axis
5) d(wyy) is positive if y, is on the jo axis
where y,, is a transmission zero, i.e.
S(y) =0 (2.16)

and

g (Wo), _h’(\vo)*
8(Wo) h(‘vo)*

he(Wy)
g2+(V¥q)’

Pe(Wo) = dy(Wo) = (2.17a,b)

Proof: 1) The Feldtkeller equation (2.2) and equation (2.16) imply
g(Vo)gx(Wy) = h(Wo)hy(Wo) or (h(wg))/(8(Wo)) = (8x(Wo))/ (hy(Wy)), ie.
P(Wo) = 1/(p«(Wy)), which yields equation (2.14).

2) If y, ison the jw axis, say Y, = jo,, substitute y, into (2.14), then

PGPy = 1

Since

PUido)Px(id) = P(Jdo)p(-jdo) = P(J'OO)P(U%)*) = P(ﬂbo)(i’(f%))*t = |if’(.i¢o)|2

12
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property 2) holds.
3) Differentiating the Feldtkeller equation (2.2), and evaluating at \,, yields
(@'8x—88"%)|y oy, = Wha=hH' )|y * LS5~ SNy oy, (2.18)
Since [, (V¥y) = f(¥,) = 0,(2.18) becomes

(8'8v 88 ¥ —Why+hh'y)|, ., =0

and
g8« 88« W g’)
—* 1.& =0 19
""*( hh, hh, g/ly -y, (2.19)
oo (8% h g h :
Substituting (—) = (;) and (,-) = (g—) into (2.19), (2.19)
hatly = v, V=¥ 1y = w, */ |y =y,

’ ’ %
becomes hh*(% _Ex HLZ *) = (. Taking the definitions of d(y,) and

d.(y,) into account, gives d(Y,) = d4(Y,), i.e. (2.15) holds.

4) If, as in property 2), vy, is on the j® axis, i.e. Yy, = j@,; then

d, (Vo) = d(=jwg) = d(yg) = (d(yo)*

This means that the value of the delay at the transmission zero on the j® axis is real, i.e.

property 4) is proven.

5) From the definitions of the admittance and the impedance

reuy = BLAOD) S g(w) +hy)
W) = s+ iw 2 T Ry

which are positive real [33], it follows that

13
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Y(y) = hmhhﬂnwu.;%uu_ and Z'(y) = Ilmm_lhmr.l\hu. :.Eu_

(g+h)32\& & g8(y) g-n\g h/ gy)
Furthermore,
= ly h(y) g Ay
dy) = 371 +mm¢h_ J.Eb.;aéu !
=1 _hw)Y( g e h(y)
d(w) = 570w} wz% sé?ﬁéi

Substituting ¥ = y, = j@, into the above two equations, yields

1
p(jdg)

d(y,)

WE?E + ocoo:ﬁ_ ¥ u if p(idg) # -1

H
Pidg)

d(yy) WNCG&:-EEQ:T - u if pidg) 21,

By property (2), it can be assumed that p(j¢,) = %, -t <a <, then the above two

equations become

d(y,) = Y'(joy)(l + cosa), azx

I

d(yy) = Z'(jog)(l —cosa), a0

Finally, the property S) can be obtained by referring to a property of positive real func-

tions, namely that Y’(jé,) >0 and Z’(j¢,) > 0[32].

Lemma 2.2(2]: The value of the reflectance and delay functions of a lossless two-port
network evaluated at a transmission zero of the first member of a cascade are equal to the

corresponding value of that member, i.e.
P.(Wo) = p(Wy) (2.20)

d,(yg) = d(¥g) (2.21)

14
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where f,(y,) = 0.

Proof: Starting from the definition of reflectance and substituting (2.9)-(2.10) for g

and A yields
Eax
+G, —h
p="_ ha8s * OuBaxhy _ ’legb “hy (2.22)
g 848p + oaha*&hb gagb +0a£hb
a
— . — . ga* _ ha‘iﬁ _ i e
8.8 = SaSag * Mahy, and f,(W,) = O imply e at y = vy, . Substituting
d a

this result into (2.22) yields the desired (2.20).

From the definition of delay and again substituting (2.9)-(2.10) for g and 4 yields

howh hoxh
, g l+o'agL*_f [+o’a;"_*f_b
d = (in§) = it = g +|n| —222 )| @23)
a4 g Sarlt |+ Sax2t
aha g ahagb

Making use of g;—: = —“-: andd, = (d,), aty = y,, after some calculations, the

value of the second term on the right hand side of (2.23) is zero which implies (2.21)

holds.

Theorem 2.1: Suppose that number ¢ and three polynomials g, hand f = [, f, sat-
isfy conditions 1, 2, 3, 4 (see 2.1), then so do 6, and {f,, g,, #,} which correspond to one
of the elementary sections, then the number oy, and {f}, g;, h,} determined by (2.12)-
(2.13) also fulfil the four conditions (rewritten here for easy reference)

I. Polynomials f,, g, and A, are real in some complex frequency variable, say v,

18
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2. f, 8, and h, are related by the Feldtkeller equation

Bo8py = fbfb* + hbhba& (2.24)

3. gp(y) is a Hurwitz polynomial with all its zeros strictly in the left-hand plane.

4. 0, is either +1 or -1. For reciprocal two-ports,

Sy = Sb/ [oxn (2.25)
Proof: 1. Since £, is a factor of f; so taking (2.12) into account it is obvious that f} is a

real polynomial. From (2.13), it is known that, in order to prove g, and 4, are both real
polynomials, it must be shown that /. divides the numerators of (2.13). In other
words, the numerators should contain the zerosof /,f,,
The numerators of g,(y) and h,(y) will be called p(y) and q(w), respectively,
ie.
P(W) = g(W)g, (W) = h(W)h 4 (W) (2.26)
(W) = g,(V)h(W) - h,(W)g(¥) 27
Assume y,, is a zero of f (¥)f,x (W), then there are two situations:
1) ¥, is not on the j® axis
2) y, ison the jo axis
Situation|) corresponds to the elementary sections 8-9 in which v, is a single zero of
S (W) f,% (W) . Situation 2) corresponds to the elementary sections 1-7. In this case, if y

is a zero of f, (), it must also be a zero of f_,(¥), and vise versa, i.e. f,(W¥)f, (V)
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has a factor (y - \yo)z.
Therefore, for situation 1), it is only necessary to prove that
p(Wo) = 0, q(yg) =0 (2.28a,b)
From (2.26),

h(Wo)h, (W)

p(w,) = gwo)g‘,*(wg)(l - ]= 2(W0)€, 5 (Vo)1 = P(Wo)P,(Wo))

the equation (2.28a) follows from Lemmas 2.1, 2.2, namely,

pa*(“’(}) = l/pa(w0)= I/P(‘l’o)

From (2.27) and Lemma 2.2

(Vo) ha(\l’o))

h
q(wg) = gwo)g,,(wo)[g(%) -y

= g(Vo)g+ (W) (P(Wg) — pa(Wy))= 0
For situation 2), rewrite equations (2.26) and (2.27) in a Taylor expansion form:

POW) = p(Wy) + P (W) (W - W) + O(W - w,)° (2.29)
and

2

q(¥) = q(Wo) + p (W) (W - W) + O(y - W) (2.30)
Since p(Y,) = 0 and q(y,) = 0, it is required to show that
P'(Wy) =0, q'(wy) =0 (2.31)

In fact,

i

p'(\llo) (g'ga*-_g(ga')*+h(h“')*—h'h“*)|'l‘wo

= hh (g'g"*-g(g"')*,»("_"'] _’L')
a* hha* hha* ha * h

V=¥,

17
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By Lemmas 2.1, 2.2, Sax _

ha*

definitions of d(y,), dy(y,) and Lemmas 2.1, 2.2,

' (84 h W
o g (3) ().
P (yy) g 25 \h )y K

-

¥ =Y

Differentiating equation (2.27) and using Lemmas 2.1, 2.2, yields

9" (W) = (g, 'h+g.h"~h,'g-hg))|,

I P +’.‘_'J
gg,.(gap P e

V=Y

88,p(d,-d) = 0

O(y - %)2 and p(y) = O(y - %)2 hold, which means the

Therefore, p(y)

numerators of g, and 4, do include the factor f,f,,., and the fact that g, and ), are real
polynomials is proved.
2. Substituting (2.13) into (2.24) and by simple calculation,

(ga*tg - ha-t-h)(gag* - hah*) _ (gah - hag)(ga*h* - ha*g*)
fafa*fafa* fafa* a’l ax

8u8hy — Mohps=

- (gg*"hh*)(gaga*—haha*) = ff*f“f“* - f f
TS st ax SafarSafax 5%

which means the Feldtkeller equation holds.

3. From (2.2) (with subscript a) and (2.24), it follows that
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h

a

&4

Ml ci,y = jo(o<t<w)
8

<1,

From (2.9), g = g,8, + 6,h,,h, 20, at y = jé, because g(y) is a Hurwitz polyno-

h
£,

<:,'haﬂii'kb
gagb

= oha*
&a

hy _
g

hb
gy

mial and

axhy| < 8,84 - So, it follows by

the extended Rouche’s theorem(4] that g and 2,2, have the same number of zeros in the
right-hand plane. Hence the fact that g is Hurwitz, i.e., there are no zeros in the right-hand

plane implies g,, g, are Hurwitz polynomials.

o

4. It is obvious that 6, = 5 " *1, and for a reciprocal two-port and a reciprocal
a
section a:
c 1f S %
Gy = =~ = =Jo/f
b Ga f /fa* b" J b*

Therefore, Theorem 2.1 is proved.
Theorem 2.2. Assume that polynomials g, g, and g, are the same as in Theorem 2.1.
Let n denote the degree of g, and n, and n, are the degrees of g, and g, respectively, then
the equation
n=ng+n (2.32)
holds.
Proof: First, from (2.9), it is easy to see that
ns<n,+n, (2.33)
Therefore, it is required to prove that

n2n,+n, (2.34)

19



Chapter 2 Cascade Synthesis of Lossless Two-port
Networks Using the Transfer Matrices

From the Feldtkeller equation
8.8ax = Salan* hahax (2.35)

it is known that the degree of f, and the degree of h, are less than or equal to n, and either
the degree of £, or the degree of A, equals n,. Hence only the following two situations are
in consideration.

1) degree of £, = n,

equation (2.13) yields n,<n,+n-2n, = n-n,, ie,n2n, +n,.

2) degree of f; < n,,

From the table of elementary sections, it is known that this case includes only two sec-

tions:

Section |: f, =d,,g, =w+d,, h,=wv, 6, =1, p,() =1,d,>0,

Section2: f, =d,g,=vy+d,, h,=-y, 6,=1, p (=) =~1,d,>0,

In this case, based on /' = f_f, and (2.2), it follows directly that the degree of f< n

and the degree of 4 = n. Therefore it is can be assumed that

gw) =g +g V' . g, h(y) = kg +hy" T+ L+ h, (2.36)

Lif pleo)=1 .
where &k = ZLif pfoe) = -1 . Substituting f, = d,, g, = W+d,. h, = ky into
(2.13a),

_ (—w+d,,)(gow"+g.w"" t..otg,) "'k‘l’(kgo‘#‘"*kl‘vn-l .. th)
g (¥) = -

On the right-hand side of the above equation the coefficient of y" ' is

20
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gt k2g0 = 0 and the coefficient of y", say c. is given by
c=d,gy-8, +kh,. 2.37)
On the other hand, the delay at infinity is computed by using (2.6") which yields

h
d =% _ L Now take into account that d = d,, it follows that

80 kgo

hy
d.8 = & "z = g, —kh,
which yields ¢ = 0.
Thus the inequality n,<n-1 = n-n, holds and therefore the inequality (2.34)

holds.
Thus if a set of canonic polynomials {f, g, A} with fin factored form is given, then
based on Theorem 1 and Theorem 2, a synthesis algorithm which realizes the circuits can

be given as follows:

1). Select a transmission zero {y, : f,(y,) = 0}, compute the reflectance p,, accord-

ing (2.5) or (2.5) and the delay d, for a reciprocal section according to (2.6) or

(2.6).

2). Referring to the elementary section tables, obtain {G, f , g,. #,} and compute

{6y /[, 8 hp} according to formulae (2.12)-(2.13).

3). Drop subscript b and return to step 1) until all the transmission zeros are extracted.

4). Extract a zero-order section.

2
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After all the factors of fhave been exhausted, the remainder polynomials correspond to

a zero-order section, i.e., an ideal transformer or a gyrator must be extracted to complete

the synthesis, as shown in Fig. 2.2 (a), (b), depending on whether & is +1 or -1, respec-

tively.
1 I
O <O
+
V| n ’ 1 v,
- N o "
n=8h
(a) /
Iy
O— n —<O 4
—
D C £
o— L—20"
—h
®) n= 22

Fig. 2.2

Note: when considering numerical computation, more attention must be paid to step 3
where g, and A, are calculated by using (2.13). The polynomials in (2.13) are in product
representation which is preferred to coefficient representation, since the frequency
responses of narrow-band filters are very sensitive to coefficients. g, and A, can be
obtained[29] in the same form by using the Newton-Maehly algorithm(31]. If this algo-
rithm does not converge for a particular starting value, Muller’s method followed by the
Secant method{31] can be used to obtained an improved starting value. The combination

of these algorithms has proven to be successful for a large number of circuits which have

been decomposed (see Appendix | for more details).
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2.3 Wave Digital Filter Realization

After the decomposition of a lossless two-port network is finished, i.e, a network like
Fig. 2.2 (a) or (b) is obtained, there are two efficient methods to transform it into a wave
digital filter realization structure.

The first one is to refer to the tables in [2], where for every analog elementary section
there is a wave digital elementary section corresponding to it. So it is easy to obtain the
wave digital equivalents for the analog networks presented in Fig. 2.2.

Another method is using the ladder wave digital structure. The details about how to
map an analog network into its ladder wave digital equivalent are presented in Antoniou’s
book([10]: Digital filters.

Therefore, for a given digital specification, the wave digital filter which satisfies the
specification can be obtained by the following steps.

Step 1. Pre-warp the frequency axis of the frequency specification using

¢ = tan((%l) , where ® and ¢ are digital and analog frequencies respectively,

T is the sampling frequency.

Step 2. Use this pre-warped frequency to design the analog filter, for example, a Butter
worth, a Chebyshev, or a Cauer filter and obtain the Belevitch'’s polynomial set
{f(w) g(w), h(w)}.

Step 3. Follow the algorithm proposed in section 2.2 and derive a decomposed analog
network, Fig. 2.2 (a) or (b).

Step 4. Transfer the analog network to its ladder wave digital equivalent.

An option at Step 2, is to switch to the following Step 3°.

Step 3°. Follow the algorithm proposed in section 2.2 and refer to the tables in [2],

then derive the wave digital structure directly.
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2.4 Illustrative Algorithm Example

To illustrate the algorithm proposed in the previous section, a simple example is shown

here.

Example: specifications 4, = 0.4dB, 4, = 40dB , ®, = 25, ©, = 41,T = 30

Step 1. Pre-warp the frequency axis and obtain 0, = 1.9, = 34.

Step 2. Three canonic polynomials and the number © are obtained as tollow:

f=vy'+16.06=1

7.4 1363 32353 2. 6268 . 124
g=gY "TooY TT0¥ TV TS

7.4 1237 3 247 2 1732 76
M T AT A AT

>
|

Step 3: Follow the algorithm proposed in section 2.2 and derive a decomposed analog

network:

1) Calculate the reflectance and the delay at the first transmission zero:

v, =4j,p, = 1.d; =

al—

2) From the elementary section tables, select {6}, /. &), h,} and compute

{S4 /4 &8s by}, according to (2.13):

o =1/ = w2+16,gl = w2+8w+16,h, = 8y
- _ _ 7.2 1067 2 18l _ 1.2 67 19
%=1 /o= 1.8 = 5¥ “350¥ " 1500 = 5¥ "306¥ " 180
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3) Drop subscript b and return to 1), the values of the reflectance and the delay at

transmission zero Y, = e are p; = -1, d; = 10/7, and also

10 10
02=l,f2 B 7,g2 = w+7’h2 = _w

- _ 1, 1, e 7 133
%=L/, = 758 = 18¥ " Ts00" " = 18¥Y " 1500

Return to 1) again, computc the valucs of the reflectance and the delay at

transmission zero Y3 = as p3 =1, d3 =2, and select

°3=l.f3 = 2,g3 = w+2,h] = w
4) Extract the ideal transformer.

fo= L g 21267, 133 ,=8ith_ 9
47 20'% 7 3600° "4 T 3600 7. 10

The final realized circuit is shown in Fig. 2.3.

Step 4. Transfer the analog two-port network in Fig. 2.3 to its ladder wave digital equ-
valent which is shown in Fig. 2.4.

Step § Calculate all the parameters according to the approach in [1], [11], [10]).

_ 1. _ 85 17 o 1102 o 1975
=55 B= 33087 o By = 3353

After 8 bits of quantization, the above parameters become

15 . _ 69 o _33 4 _ NS o _ 55 115
N5 5 b "GP btg 128

|
I

X

n

The frequency response of the above ladder wave digital filter is presented in Fig. 2.5

which shows that the specifications are satisfied.
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L|'|
AL Lz“l
O— y o o__._fYYYYY\__c ’e)
1c
9
C, =16 = -
b T =15 " 10 H :
O O O- O

Fig. 2.3 Analog two-port network

O—] > > ——0—0
—‘—--l | | ' ﬂz—ﬁé—-
o—{ B « 1 < —eO0—O
B, 285 4,
756
s 69 . _us _ss
Mo N3 b & B: = 5% b= %2

Fig. 2.4 Ladder wave digital equvalent
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Attenuation response of 4" order ladder WDF
m ] T ¥ LS Al T ¥ T T

Attenuation/dB
8

A_ = 40dB
10F
0
0 5 10 15 20 25 30 35 40 45 50
®
Phase response of 4'® order ladder WDF
0 e T T T ¥ T L] T
.
-
-
4
-
-
_5 Il L e ' 4 4 L
Q - 10 15 20 25 k o] kL 40 45 50
(1)
Fig. 2.5
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Chapter 3
Realization of FIR Wave Digital Filters
by Factorization of the Scattering Matrix

In the previous chapter, the cascade decomposition with the transfer matrix of a lossless
two-port network is discussed. In fact, a lossless two-port network N can also be synthe-
sized by factorization of the scattering matrix [1]. Fettweis presented the resulting struc-

ture and its corresponding wave flow diagram as follows.

t <+
(5

I
) e

~
n

1

n

Fig. 3. 1. Synthesis of a classical two-port by scattering matrix factorization

;
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A, AZ
O—e Q)
B| Bz

Fig. 3.2. Wave Flow Diagram

In Figs 3.1, 3.2, N, to N,, are lossless two-ports of lower degree than that of N. Therefore,
the question is how to decompose the network N into a series sub-networks N; (i = 1, 2....,

n), which appear to offer advantages over those obtained directly. In the next section, an

application of this approach to an FIR filter is discussed.

3.1 Some Basic Characteristics of FIR Filters [10)
FIR filters have a finite number of terms in the impulse response, therefore, the output

can be written as a finite convolution sum
N
y(n) = Y, h(m)x(n-m) 3.1
m=0
where x(n) is the input and A(n) is the length-~V impulse response. The transfer function

of an FIR filter is given by the z transform of A(n) as
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N
Hiz) = Y h(n)z " (3.2)
n=0

For the FIR filter to have linear phase, the impulse response h(n) must be either sym-

metric (h(n) = h(N - n))or anti-symmetric (h(n) = -h(N-n).
There are several design methods[10}, [12]. The basic design procedure is to construct

an ideal lowpass filter in the frequency domain and use the inverse = transform to derive

h;400/(n) . The impulse response 4,,,,,(n) is then truncated by a window function. How-
ever, the truncated filter is typically not causal, i.e 4(n) # 0, n < 0. To make the truncated

filter causal, multiply by =%, where k is selected as the minimum positive integer such

that the truncated FIR filter is causal.

The classical implementation of an FIR filter is to use the transversal structure as fol-

lows:

®___

Fig. 3.3 Transversal structure

C
C

3.2 Belevitch’s Representation for an FIR filter

Consider the given FIR filter (3.2), for convenience, rewrite it as

HZ) = fot f12' + £y 24 4 £,27 [ o 20 (33)
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and assume F(z) is scaled so that |[H(z)| <1 on the unit circle in the z~' .domain. Also

assume the polynomial set { f(z), g(z), h(z)} is the Belevitch’s representation in the .
domain. Then

-n

f@) = for i 4 ozt S
and its para conjugatc in the 2~ -domain is
fil2) = f(?--l) = SfatSn- IZ—I +fn—2-’—z+ ot S
Further g(z) = 1, g, (z) = =", where g4 (2) is the para conjugate of g(z) . The equation
h(2)hy(z) = 8(2)84(2) - f(2) f4(2)

follows from the Feldtkeller equation gg, = ff, + hh, . Next rewrite the right-hand

side in product form as

2n

h(z2)h,(2) = cl-I(:._I -a;) 3.4)

i=1
where cis a constantand a,, i = 1,2, ..., n, are the zeros of h(z)h,(z). h(z) can be sep-

arated from (3.4) by using the property that every zero of #(z) must be a reciprocal of a

zero of h(2)[29]. If a; is a zero of h(z), there must exist an a; satisfying a; = 1/a; in
the set of zeros of h(z)h,(z), which can be allotted as a zero to 4,(z). After all elements

in the set of zeros of 4(z)h,(z) have been exhausted, all the zeros of (z) are obtained.

n
The constant factor of A(z), namely & can be determined by & = & ’c/ ( n (-b,)J,
i=1

3
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n
where b,, i = 1,2, ..., n, are the zeros of 4(z) and the ratio c/(n (—b,-)] must be pos-

i=1
itive (see Appendix I). Based on this idea, using a program written in MATLAB, A(z)

which has the same degree as f(z) can be obtained, say,

h(z) = hg+hz” +hy2 "+ .+ bz hy, hy20
and by the definition: f,(z}) = z'"h(z—I ), its para conjugate is

hylz) = h +h, 27 +h, 2 +. . +hgz"

Thus, the scattering matrix §= —

L |A(z) 6f () can be written as
8(2) | £(2) ~0h4(2)

- - -1 -
G- hot bz + b2 St S et S 35)
fot f17 4L e h, v, 2 L Ry
Additionally, by the Feldtkeller equation, the elements of the matrix should satisfy
Z fon j (l+j)+ Z Zh,hn jz—(1+j)
1=0y= i=0;=0
Consider the term =" and obtain an important equation
SoSfothhg=0 (3.6)

which will be useful later.

3.3 A New Implementation Structure and Algorithm for FIR Filters

In [1], Fettweis proposed two implementation structures which are shown in Figs. 3.7-

3.8. In this section, applying the approach of Figs. 3.1, 3.2 to FIR filter (3.3), a general
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implementation structure and algorithm are presented. Starting from this general implemen-
tation structure and algorithm, a series of implementation structures and algorithms, which
include Fettweis’ structures, are derived.

Assume Sand S;,i = 1, 2, ..., n, are the scattering matrices corresponding to networks

Nand N; (i = 1,2, ..., n)(Figs. 3.1, 3.2) respectively,

el - ‘.
Ay - B
A2 - B,
b oo o o o e o e e e e e e e o e - o
Fig. 3. 4
Then from Fig. 3.4, it is easy to derive that
§=858,_,---5; (3.7)

Therefore, the question is how to decide the form of §; (i = 1, 2, ..., n) such that network
N is decomposed into a series of realizable sub-networks N; (i = 1, 2...., n). This is discussed

next.
Suppose that a lossless two-port network N for the FIR filter can be decomposed into

two lossless two-port sub-networks N,, N, (see Fig. 3.4), where N, is called an elementary

section,

—-————-g ==

aal

|
{
I

n
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and §, S, and S, are the scattering matrices corresponding to Networks N, N,, and N, respectively.

Then §=S5,5, and$, = SypS.= [-a, B'] [l 01:| vie. § = 85,65.5,, which implies

B, a0z
5.5, = S.a"'S . Notethat 5,5~ = —— | Pl 4g consider (3.5). This yields
9% ap af a1a2+ﬂlﬁz BZ a,
:

i n n
Yhs' oY s, "
S.S, = 1 l:-az Bl} i:o ,-=no
2 f,z—( -0 z hn_‘z'l
=0

i=0

n n ]
: Y B -ho)z" -6 Y (h,_ B+ [, 0"
= 4 _fli=0 i=0
00+ BBy n .o | ©8)
2Pyt fo)z o F (S, By-h,_ @)z
=0 i=0 )
The desired degree of S, is n-1 which can be reached if and only if
SoBy—-h,0, =0 (a)
hoBy + foat; = 0 ()
(3.9)
hoB + foa; = 0 (c)
: . h_ Sy B, _ B, _h
Making use of (3.6), i.e., == ==, thenfrom (39), = = — = =2 Leta, = &, B, = B and
8 ) fn h(] ( ) a’l 0.2 fn : B2 B
o, = xa, B; = kB, x#0. Then the general form for S,q is
S.=|-axB| B_" (3.10a,)
ab B xa| & S, '
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If Syp is required to be normalized, i.e, SaBTSaB = I, where [ is the identity matrix, then

x, o and P should satisfy x?=1anda’+ Bz = 1. Therefore, let x = | , @ = cos®

and B = sin@. Then S5 can be rewritten as

S = —-cosO sin® G3.11)
sin® cosO

h
where tan®@ = - and (3.8) becomes

S

n-|

1 o]l <
e[ | R
0z |[{"C

U=0
and

n-~1
Z (f;sin® — h cosB)z™"

Sb= =0
n-1

i =0

2 (f;sin® - hl.cosO)z_'

Y (4, \sin@+f,, cos8)z" 0 Y (f,.,_ sin@-h, _, cos8)z”

Y (h,. sin@+f,, cos8)z" -6, Y (f,_ _;sin@—h_ _, _cos8)z”

n-1

~6 Y (h,_;sin@+ f, _cos@)z"
i=0

n-1

t=0 _‘

n-1
o, Y (h,_;sin@+f,_cos8)z"
i=0 (3.12)

n-1

i=0

-

where 6, = -G. Itis obvious that S, has the same form as S, except that it is one degree

lower than S. If its Belevitch representation in the 2" -domain is {/5(2), g5(2), hp(2)}, then

n-1

n-1

f(2) = z(h,.,, ,sin0+f,+,cosﬂ)z'i, hy(z) = z (f,sine—hicosﬁ)z'i,

i=0

gb(z) = l ,and gb*(Z) =2

-(n~1)

i=0

s
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Now it is required to prove that the polynomials f;(z), g,(z) and h(z) also satisfy the
Feldtkeller equation

gb(Z)g,,*(Z) = f[,('&'}fb*(z) +hb(2)h[,*(2) (3.13)
Since S = $55.5, and det(S) = det(Sy)det(S,)det(S,) .ie,
—O(f(2) () + h(Dhy(2)) = —z"la(f,,(:)f,,*(z)+hb(z)h,,*(z))

equation f,(2)f,,(2) + hy(2)hpy (2) = (f(2)f4(2) + h()hy(z)z = =™" " holds, which
yields equation (3.13).

The above conclusion that S, has the same properties as S except a lower degree shows
that by replacing S with S;, the decomposed procedure can be repeated until all elementary
sections are extracted. Based on the above derivation, the realization structure and an algo-

rithm to solve for all parameters 0,,i =0, 1, 2..... n, is given below.

When n is even, the realization structure is as presented in Fig. 3.6 (a), and the scattering

matrix S is factorized as

5= ~cos@, sin®,|(1 O ||-cosB,_, sin®,_,|[l O 1 0]{—cosB, sinf, (3.14)
sin®, cos@,||o :7'|| sin®,_, cos8,_,[loz!| |0z'|]| sin8, cos@,
When 7 is odd, there is a small change in the realization structure and the factorization of the

scattering matrix (see Fig. 3.6 (b) and equation (3.15)).

S = ~cos0, sin@,{11 0 ||-cos®, _, sin@,_,[|1 O 1 0|]|-cos@, sin@;||] o
sin@, cos@,[(o ;7'|| sin®,_, cos8,_,[{0z'| |0z'|| sin8y cos@y||0 -

(3.15)
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(a) niseven

(c) Normalized two-port

Fig. 3.6 Wave digital realization of an FIR filter

Now, the algorithm is presented as follows:
Stepl: j =n,
hk.j = hk’fk,j = fk'k = "‘2,""[,“
h S/ h
tan@, = —, c0s0, = ———==, $inO, = —0u—
2 2 " 2 2
Sn /;,n +f, /;,n +f,
Step2: j=j-1
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fk,j = "k*l.j+lsm0j+l+fk+|,j+|°°59,-+1’05k = j—z,j—l,j

. h; [ : h
Step3: ifj21, tan@; = 7L~’- cosf; = .__..-ZJ-L_.E sin@; = __Z.LL_._2
i Nhi + S hij %1,

go to Step 2, otherwise go to Step 4.

Step4: tanf, = —{0—'0, cos8y = —hy ,, sin@, = f,
0.0

3.4 Other Implementation Structures
In(3.10a),letx = |, = | andset B = §. Then S5 = [’; 5] which yields the
|

Fettweis implementation structure:

AI o o Bl
8o - 3,
00— SN .. 0
A 2
(a) n is even

or

A G .

0O~y A~~~
-

0—0 <z 80 ,m - —

Ay

(b) nis odd

Fig.3.7 Ss - structure
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where the corresponding scattering matrices S are factorized as

SR A 190 | R
R 9 e R R o

Compared the algorithm proposed in last section, here,

and

n
8, =tan8,i=0,1,.,n, 0= []coss, (3.16)
i=0

Reconsider (3.10a), but this timeletx = 1, = | andseta = . Then

Sp = [—IB ‘;J and another Fettweis realization structure{1] is obtained as

(b)nis odd

Fig. 3.8 SB — structure

¥
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where
n

i=01,..,n a= []sins, 3.17)
i=0

It is noticed that in the above two structures, both multipliers 8, = tan®, and

B, = cot®, may be greater than one. But in the realization of a digital filter, it is required

to quantize the multipliers for implementation in hardware and it is desirable to have all

the multipliers less than one. This can be achieved as follows: Consider

-cos0; sinf, . :
S =| | .1f |cos@ 2 |sin@,| , extract cos@,, and rewrite Sg as
' sin®; cosO, '

_ . -18.
Sy = cosf, L gy cos, d .
‘ tan®, | 3 1
where

8= tan@,, for |tan@|<1; (3.18)

otherwise |sin@,| > |cos8|, then extract sin@,. Sy becomes

where

B,= cot@,, for |cot9,.| <1 (3.19)
So, after the above manipulation, the scattering matrix S can be factored as a mixed

product of S5 and Sy, and a coefficient
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a= [T coss, [l sin6, (3.20)
|cos®] 2 |sin@ | [sin@] >|cosB

Thus a mixed structure which has the desired properties can be obtained.

Next, by considering two other equivalent forms of Sg = [‘ cos® sin 6] , another two

sin® cos@

realization structures are obtained. One of the equivalent forms of Sg is a 2-port adaptor

Al Bl
O——)——l 1—->—O Bl
Y= B,

o—— L0

A‘) B1

Y4, + (1 +7)4,

(I-1)4, +v4,

Fig. 3.9 2-port adaptor

cascaded with a pair of inverse multipliers [2}, i.e., S = P'lSYP, where P = [l 0} \
0

k = tang, and the corresponding scattering matrix S, = L‘Y l +Y] (1), ¥ = cos@.
i AR

Thus, another factored form of the scattering matrix S is obtained as
s=l(l) "‘Ynl+7nll? 1 0 1 0 l,? -1 l‘*‘Yo[I 0]
Orl =1 v Jlo=]lo=" o2 ok—(‘) I-yp 1 |0 kg
n-

where

0.
Y, = cosO, k; = tan-z-', i=0,1,2,....n (3.21)

and the sign before k, depends on whether the degree n is even or odd. If n is even, +k,, is
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preferred, otherwise, -k, and its realization structure is presented in Fig. 3.10.

Ay Bl
| 1 [—>— —————— —-—)——l l—)—o

YO__ ‘Yl_ k /k P h— k

+k k,/k n’ ®n-1 V4 n
0—0—] > - —-of——T Lo
Az 2

Fig. 3.10 Two-port adaptor structure

Another equivalent form of S is a cross adaptor

B
A, B, 4 B,
o>—] >< —>—0 3
o—oA B o 4
4, 8, 2 B,
B, = B4, +4,
(a) Cross adaptor B, = Al"BB|= (1 _BZ)Al _BA’
{(b) Signal-flow diagram
Fig. 3.11

cascaded with a pair of inverse multipliers[18](13), P = {' 2] , where k = sin8, i.e.,
0

Sg = P"SBP with S = [ B ) l], = —c0s0 . Thus the scattering matrix S can also
1-p"-B

be factored as
10 1 0 10
lodl e oo b 2o B b i)
k—n 1-p° -p Ok,,_ 0:z 0z Ol-c; 1 - B, -B| |0 2k,

Bi = —COSe,'s k.’ = Sil‘le‘-, i=0,1,2,..,n (3.22)

where
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Theretore, it is easy to give its realization structure as

Al Bl

o———- b — - - 0
| X ezt | X ko | X | 128,

o0 B +o-rH B —--- ofH B oo

Fig. 3.12. Cross adaptor structure
So far, six different realization structures have been derived. The original one, pre-

sented in Fig. 3.6 (a), (b), is named the Sg - structure. The one in Fig. 3.7 is named the S -
structure and the one in Fig. 3.8 the Sy - structure. The mixed S5 and Sy structure is called
the S -Sg -structure and the last two are the 2-port-adaptor-structure and the cross-adap-

tor-structure. For the S - structure, the algorithm is already given in 3.3. In fact, it is easy

to obtain different algorithms for the different structures by making small modifications on

the known algorithm according to the definitions of the different structures.

3.5 Illustrative Algorithm Example

In order to demonstrate the algorithm, a simple FIR filter

H(z) = i+%z'l +‘l‘z'2,
with its scattering matrix
1+42 1 1-42 2 I S
— 27t — -+ =2 +=2
S = 4 2 4 }2 4 J_

1 1. 1 -2 1-J2 1 -1 1+42 -2

r S '( 2 2 '3 z)
will be considered.
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Based on the algorithm proposed in section 3.3, the factorization result is obtained in

1+.J2

4 ’

Fig. 3.13. If it is realized according to Fig. 3.7, by the formula (3.16), a = -

8 =1-42,8, =1and$, = | - 2. The implementation structure is shown is Fig.
3.14. Based on Fig. 3.8 and equation (3.17), the S structure is obtained and shown in Fig.

3.15. For this example, because all |cos| 2 1, the S;-Sg-structure is the same as the S;-

structure. Similarly, by Fig. 3.10 and equation (3.21), Fig. 3.12 and equation (3.22), the 2-
port-adaptor-structure and cross-adaptor-structure are obtained, respectively (see Figs. 3.16,

3.17).

Ay (0} R _ . . Bl

0—0 8o g 8, - 5,

0—0 5o 5 5, > 82

AZ B,
a = -‘l +4J§ 80 = l"JZ. 8] = l 82 = l-o/.i

Fig. 3.14 55— structure for an example
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Lol gD Bl By 144D

Fig.3.15. Sg -structure for an example

o—>— I e

Y2

Yo—— "W
ky/k, 1/k,

: tk k, ko ,

J _ A2 _N2+J2
Yo = 2'2*~/§ YI——-)" 72__?_
kg = 22+ ) -1 Kk =42-1 ky = N2(2+42)-2-1

Fig. 3.16. Two-port adaptor structure for an example

Ay B,
o———— b—o0
+hy X kLK, X ky/ky X L7k,
o0 B B —o{H ® |09
2
o= Y2242 p o o2 g 20
/(’ =42—‘/§ k _,"/_i k 2—4\/5
0 2 S I

Fig. 3.17. Cross adaptor structure for an example
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3.6 Linear Phase FIR Filters
FIR filters have the important characteristic that they can achieve exactly linear phase
and cannot be unstablef12]. For convenience, rewrite (3.3) here,
H(z) = fo"'fﬁ-'al "'fzz-z*’ +f,,2-n, S fo20

There are four possible types of FIR filters leading to a linear phase.

Type l.nisoddand f, = f,_;,i = 0,...,"—;—1;
Type2.nisevenand f, = f,_,,i = 0,....%;
Type3.nisoddand f;, = —f,_,,i = O,...,"%l;
Typed.nisevenand f, = -f,_,,i = 0"—_g and f, = 0.

2 3

-

For the four Types of FIR filter, let us consider the scattering matrix

ho+hiz' + . +hz" o(f,+f,. 2+ )
|

s =

fot iz 4t [z —o(h, th, 2+ kg2

1]

For Type l and 2,let ¢ = 1,then S = ST, where ST means the transpose of S, for Type

3Jand4,leto = -1, S

it

ST also holds. It is known that the decomposition proposed in
3.3 does not require any change no matter if ¢ = | or -1. Therefore the factorization

structure will be discussed under the situation S = S7. The interesting point here is to see

if there is any special relationship between S, and S, fori =0,..., '-'%% ,ifnis

even,{ = Q, ...,%,ifﬂisodd.
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If the degree n is even, according to the discussion in 3.3, the matrix S can be factor-

ized as

§=25y8,.5, 5., (3.23)
Its central factor is Sg . Where the definitions of S, and Sg , i = 0,1, ..., n, are the same

as before. Note that all these matrices are symmetric, i.e., S, = ST and Sy = SJ . Hence

from S$ = S7, another factorization of S

S = Sp,S,...5,..5.5, (3.24)

is obtained.

If n is odd, from 3.3, the scattering matrix can be factorized as
S =-55...5,..5.5,,, (3.25)
where the central factor is S, . Similar to the situation where n is even, here S also has
another factorization
S = -5,35....5;...5.5q, (3.26)
Rewrite (3.23) and (3.24) as
S = 545.5,, S =555, (3.27a,b)

where S, = Sg ...Sp ...5.89 and S, = Sg ...Sg ...S.Sy .From the decomposition

3

and the algorithm in 3.3, tan@, = == = tan@, which implies S = +S, and

S

3

Sy, = 1S, . Replacing Swith S, or S, ,yields tan@,_, = tan@, and Sy = 1S .
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This procedure can be repeated # times. Therefore the relationship between Sy and

S¢  can be described as

-2
S = 1S,i =0, .. ==, (3.28)

For n odd, equation (3.28) also holds fori = 0, ..., '—’;—l .

The above conclusions show that for a linear phase FIR filter, it is only required to

extract half of the elementary sections and obtain the other half according to (3.28). In

particular, if n is even, it is required to calculate Sg , Sg , ..., Sg ;if nisodd, Sq ,

Se, ,» -+ Sg, - Therefore, half the computions for the decomposition are required.
-

3.7 The Design Procedure and Examples

In this section, the design procedure for an FIR filter according to the factored struc-

ture will be presented first, then two examples to illustrate the procedure follow.

3.7.1 Procedure
The general design procedure can be carried out as follows: for a given specification in

terms of attenuation as illustrated in Fig. 3.18
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A

y A _: maximum attenuation in the passband
. S
-
?é 2 A : minimum attenuation in the stopband
2 A
g f f p’ upper edge frequency of the passband
= Y/
< Y/
1 ; S lower edge frequency of the stopband
4, -

Ip S Frequency

Fig. 3.18 Design specification

A MATLARB function REMEZ is used to create the FIR frequency response function, say,
- - -2 -n
H(z) = fo+ [z l*-fzz vt f,
which (after scaling so that |H(z)| £ 1 on the unit circle) can also be seen as f(z) of the

Belevitch representation { f(z), g(z), h(z)}. As described in 3.2, g(z) = | and A(z) can

be obtained by MATLAB programming, i.e. the scattering matrix

h
S = L_ (2) 6fx(2) is then known. Next by applying the algorithm stated in 3.3,
8(2)| f(z) -Ghy(2)

the basic factored structure, namely the Sq - structure (see Fig. 3.19)

A[ BI
%l

A; niseven, +1 B,
nis odd, -1

Fig. 3.19 Sg - structure
and all multipliers cos®,, sin®;,i = 0, 1, ..., n are determined. Based on this basic

structure, it is easy to derive other structures, such as the S; -structure, S -structure, S; -

4
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Sg -structure, S-S -structure, 2-port-adaptor-structure and cross-adaptor-structure. The

formulae to determine all the structures are listed below.

For the S - structure (see Fig. 3.7),

8, =tand,i=01,..,n0

!

n
n cos0;
i=0

For the SB' structure (see Fig. 3.8),

=
I
(e}
o
Lnd

@
"
L
3
Q
I

n

n sin@,
i=0
For the S5 -5 -structure,

3,= tan@,, for |tan9,-| <1,

! i

o= n cos®; n sin@,
|cos®,| 2 |sind| [sin@| >|cos8|

For the 2-port-adaptor-structure (see Fig. 10)

Y, = cos@,k,=tan=,i=0,1,2,...,n

-
2 ,
For the Cross-adaptor-structure (see Fig. 3. 12),

B, = ~cos@, k,=sin@,i=0,1,2,....,n

= cotf,, for |cot®,| < |

3.29)

(3.30)

(3.31a)

(3.31b)

(3.32)

(3.33)

After all the multipliers for a selected structure are determined, they must be quantized

to a limited number of bits for implementation in hardware. The last step is to implement

the selected structure with the quantized multipliers.

Several structures have been established so far. The question then arises as to which

one is the preferred one. The S5 and Sg mixed structure, namely, the S-Sy -structure is
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preferred. There are two reasons for this: the first one is that the S;-Sg -structure has a rel-

ative ly low sensitivity to changes in the multipliers; the second reason is that the S5 -Sg -

structure has only n+1 multipliers, nearly half of that in the 2-port-adaptor-structure and

the Cross-adaptor-structure, both of which have 2n multipliers.

3.7.2 Examples

Next, two examples are presented according to the above design procedure.

Example 1: Specification: 4, = 0.7dB, 4, = 27dB, f,/F = 0.19, f./F = 03]

For the specification, an 18" order linear phase FIR filter

H(z) = f0+f,z'l +f2z'2 + ... +f,8z‘18

is obtained by using the MATLAB function REMEZ. Its coefficients are listed in Table 1.

Table 1: The Coefficients of 18'® FIR Filter

fotoss fswofy Notofia fist0 /18
0.008529761 16030J= 0.00006700756621 | 0.30237336760195 | -0.00011210088575
-0.00027229773499 | - 0.09144000481338 | - 0.00167956359552 | -0.00207147488452
-0.00207147488452 | - 0.00167956359552 | - 0.09144000481338 | -0.00027229773499
-0.00011210088575 | 0.30237336760195 | 0.00006700756621 | 0.00852976116030
0.04325196780017 | 0.48270667557107 | 0.04325196780017

From the Feldtkeller equation gg, = ffx +hhy,

h(2)h(2) = g(2)84(2) - f(2) f4(2)

Using a program written in MATLAB, the coefficients of polynomial

h(z) = h0+h,z-' +hzz'z+ +hlsz_'

s1
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are obtained and are listed in Table 2

Table 2: The Coeflicients of A( 2)

hotO h4 hs(O’lg #10(0}”4 hlStOhls
+ —— —— = ——
0.00014898602099 | 0.00146461024170 | 0.02025633839697 | -0.15902734981553
0.00014092406863 | -0.00248467048961 | -0.00046542490305 <0.16789904854537
0.00001886135183 | -0.00344262073546 | 0.04776333715866 | 0.49310040472701
-0.00007952875273 | 0.01228141317667 | 0.13623545506986 -0.48834665809613
0.00141074774734 | 0.03162019272969 | 0.07730405960422

Next, by the algorithm proposed in 3.3, all the multipliers in the Sq - structure, cos6,,

sin®,,’ = 0, 1, ..., 18 are calculated and presented in Table 3

Table 3: The Multipliers of Sy- Structure

cosf, to cos,

sin@, to sin@,

cos0,, to cosO

sin@, to sinB 4

-0.01746394733352 | 0.99984749364267 | 0.91437521742956 | 0.40486783244738
0.99985427389608 | -0.01707134944094 | 0.98587254086448 | 0.16749726316991
0.99985427389608 | 0.00698883712781 | 0.99324153334487 | -0.11606574188251
0.99998883744629 | 0.00472493204264 | 0.99633918901237 | -0.08548813039352
0.99692940283443 | 0.07830559216426 | 0.99692940283443 | 0.07830559216425
0.99633918901236 | -0.08548813039354 | 0.99998883744630 | 0.00472493204262
0.99324153334487 | -0.11606574188250 | 0.99997557777958 | 0.00698883712784
0.98587254086448 | 0.16749726316992 | 0.99324153334487 | -0.01707134944096
0.91437521742957 | 0.40486783244735 | 0.01746394733353 | -0.99984749364267
0.61783822787511 | -0.78630523600962

Substituting the value of cos®,, sin@,, = 0, 1, ..., 18, into (3.31a), (3.31b), the mul-

s2
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tipliers of the S; - S -structure are obtained and listed in Table 4 after 8 bit quantization.

Table 4: The Multipliers of S5-S Structure

o =0.62109375

84 =0.0781250

By = —0.78515625

8” = 0078 1 250

Bo=-0015625 | 8;=-0.0859375 | 8,0=0.44140625 | &, =0.00390625
8, = -0.015625 86=-0.1171875 | 8,,=0.16796875 | 6,5 =0.0078125
8, =0.0078125 8,=0.16796875 | 8,,=-0.1171875 | §,,=-0.015625
8,=0.00390625 | 8;=0.44140625 | §,3=—0.0859375 | B,5=-0.015625

Similarly, from (3.32) and (3.33), the coefficients of the 2-port-adaptor-structure and
cross-adaptor-structure can be solved for respectively. The results after 8 bit quantization
are presented in Table 5 and 6. Here it is noticed that the relationship between the x; in

Table 5 and 6 and k; in equation (3.32) or (3.33) is

Ko = ko X, = k/k;_,i=1,2,.

W 18, K9 = 17k

Table 5: The Multipliers of 2-port Adaptor Structure

Yoo Yo Yioto Y18 K| to Xy Kjto Xy
-0.015625 0.9140625 -0.0078125 0.3984375
1.0000000 0.9843750 -0.41015625 0.69140625
1.0000000 0.9921875 0.67578125 0.734375
1.0000000 0.99609375 16.59765625 -0.9140625

0.99609375 0.99609375 -1.0937500 0.05859375
0.99609375 1.0000000 1.3593750 1.48046875
0.9921875 1.0000000 -1.44921875 -2.44140625
0.9843750 1.0000000 2.5078125 115.1171875
0.9140625 0.015625 -2.296875 -1.01953125
0.6171875 -0.43359375
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Table 6: The Multipliers of Cross Adaptor Structure

Bo to Bo Bioto Bis K| to Xg X toKg
1.0000000 0.98437500 -0.41015625 -0.69140625
1.0000000 0.99218750 0.67578125 0.73828125
1.0000000 0.99609375 16.57421875 -0.91406250

0.99609375 0.99609375 -1.08984375 0.05859375
0.99609375 1.0000000 1.35937500 1.48046875
0.99218750 1.0000000 -1.44140625 -2.44140625
0.98437500 1.0000000 2.41796875 58.570312§
0.91406250 0.015625 -1.94140625 -1.00000000
0.61718750 -0.51562500

The frequency responses for the three structures, S; -Sg -structure, 2-port-adaptor-

structure and cross-adaptor-structure are presented in Figs 3. 20, 3.21. Fig. 3.20 shows all
the three structures satisfy the specification given in (3.34), and Fig. 3.21 shows that they

have an exact linear phase in the passband except for jumps of ® in the stopband.
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Atteauation Response of the FIR Filter
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Example 2. Specification: A, = 0.1dB, A4, = 35dB, f,/F = 005, f/F = 0.2

A 29'" order linear phase FIR filter, whose coefficients are listed in Table 7, satisfies
this specification. The objective of this example is to make a comparison between the §j-
SB-structure and the traditional direct form also called the transversal structure (Fig. 3.3).

The plots of frequency responses of the two structures are showed in Figs. 3.22-3.24.

Where all multipliers are quantized to 8 bit numbers. Fig. 3.23 shows that the frequency

response of the Sg - S -structure in the passband is much better than that of the direct form

structure. This means the S-S -structure has lower sensitivity than the direct form struc-

ture does.
Table 7: The Coefficients of FIR Filter
fotofy Jatofs N6 to 23 Sratof

-0.000426304637 191 -0.024Sﬁ953949 0.19075151 30=82 10 =(0.00830962 149705
-0.00102730266266 | -0.03551867388150 | 0.10741363204064 | 0.00506311841444
-0.00096202663252 | -0.02168898167948 | 0.02807531585830 | 0.00104626691673
0.00104626691673 | 0.02807531585830 | -0.02168898167948 | -0.00096202663252
0.00506311841444 | 0.10741363204064 | -0.03551867388150 | -0.00102730266266
0.00830962149705 | 0.19075151308210 | -0.02453618953949 | -0.00042630463719
0.00565576915057 | 0.24430988827920 | -0.00646614620569
-0.00646614620569 | 0.24430988827920 | 0.00565576915057
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Table 8: The Coefficients of A(2)

hg to hq hgto h|s hye to hayy hyg to hyg
0.00000034276696 | -0.00009420872339 | -0.01021909665958 | -0.12425888037911
0.00000206763716 | 0.00021469741907 | -0.00392449346170 | -0.15486851688892
0.00000615487718 | 0.00076408490255 | 0.01161776668001 -0.07901344306601
0.00001012223697 | 0.00120744895716 | 0.03296766382364 | 0.17033614952607
0.00000339277886 | 0.00079832454232 | 0.04967801129910 | 0.64293557240964
-0.00003101506972 | -0.00128293958644 | 0.04680430158976 | -0.53020175423781
-0.00009794928814 | -0.00514140783996 | 0.01231422944750
-0.00015553255273 | -0.00925678376415 | -0.05252852187793
o Attenuation Response of the FIR Filter
Y |
rof vy : A
os - — SB- S structure ,: :l IIlI r"
o} — Direct form :l !‘. A :: :*‘ " 4
ssf AN A (U
sok ’: \\ 'i |‘ " N Y ,‘ 4
a5 .~ ~ ’ \ s ' /I ‘\ ra ! 7
'§ &0} - \\ Il \\ ’ )
ash N7 i
2ul ]
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15F e
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Fig. 3.22
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Attenuation Response at Passhand of the FIR Fiiter
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Chapter 4

Design and Realization of Bireciprocal Filters

Bireciprocal IIR filters have big advantages in many communication applications of digi-
tal filters in that the lattice structure with bireciprocal characteristic function leads to enor-
mous savings in hardware [14], [19], [24]. In this chapter, an analytical formula for the
design of bireciprocal filters is presented first, followed by an optimization design method,
and finally by a lattice realization structure. Some examples which demonstrate the real-

ization structures are shown in sections 4.4, 4.5.

4.1 The Definition and Some Properties of Bireciprocal Filters

Here three canonic polynomials f(), g(¥) and A(y) are used to represent an [IR

filter. The frequency V is defined(8] by

N
|
—
[
-~

v - a2 -

> ,Z2=e 4.1)

z+1

where s is the actual complex frequency and 7 the sampling period. Furthermore, g(y) is

a Hurwitz polynomials of degree n.
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If the characteristic function([8]
k) = 78 “2)
satisfies
| 1
-] = — 4.
Hy) = mw 43)

then the characteristic function is called a bireciprocal or a mirror-image function {1] and

the corresponding filter H(y) = glfy_\v)) is a bireciprocal filter. Based on the definition of a

bireciprocal filter defined by (4.2), some useful properties of f(y), g(y) and A(y) can

be derived, i.e.

h(y) = :w”/(é), f(y) = i\u"h(“ll) (4.4a.b)

s(v) = y'g(;) @4.5)
v
where n is the degree of g(y).

Proof[29]: substituting (4.2) into (4.3) and multiplying the lefi-hand ratio by y",

yields

Y h(/y) _ f(y) 46
v's(sy) W) o

Let A(y) = y"h(1/y) and (¥) = y"f(1/y), then (4.6) becomes

h(w)hy) = F(w)f(w) 4.7

Assume polynomial h(y) and f(y) are relatively prime. Then A(y) and f (y) are
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also relatively prime. This can be proven as follows: Suppose 4(y) and f(y) are not rel-
atively prime, then there exist a polynomial p(\y) such that p(y){A(y) and p(y)|A(y)

and deg p = nyg>0. Let h(y) = p(\y)ixl(\u),then deg h, = deg fl—no , and let

(W) = p(w)f1(w), then deg f| = deg f—n, . Thus

=71 1N re: (1) degh-n,
o) = v = ol v (G v

Let p(w) = p(1/y)y", then p(y)|h(y). Similarly ()| /(). Thatis p(¥)|h(y),
p(W)|f(y) and deg p = ny>0, which is a contradiction.

Now from (4.7), /()| h(y) and h(y)| (). Also f(y)|h(w) and k(y)| f(w)
hold. f(y)|h(w) and h(y)|f(y) imply deg h = deg f.Then

f(w) = kh(y), (4.8)

where & is a constant. Substituting (4.8) into (4.7),
h(w) = kf(w) (4.9)
then A(y) = Y "A(1/y) = ky"f(1/y) = kf(y), which implies
h(w) = kf(y) (4.10)

From (4.8)-(4.10), k% = | which means (4.4a,b) are proven.

Next, the proof of (4.5) is considered. From the Feldkeller equation and (4.8), it fol-

lows that

g(W)Zx (W) = h(W)hy (W) + h(W)hx(y)
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ot s{gleely) = G HEE)
ie.

EWER(W) = h(Whx(W) + h(W)hy (W) = g(W)gx (W) @.11)

where g(y) = y"g(1/y). Since g(y) is Hurwitz, g(y) and g, () are relatively
prime and consequently so are g(y) and g, (y). Additionally, g(y) is Hurwitz also

implies g(y) is Hurwitz, which implies g(y) and ¢, () and g(y) and g, () are rel-

atively prime. So g(W¥)g4(¥) = £(y¥)g,(y) implies g(y)|g(v) and g(y)|g(y) and

finally g(y) = 2g(y), that is (4.5) is proven.

4.2 Analytical Method for Design of Bireciprocal Filters

Generally, in filter design, a specification in terms of attenuation as illustrated in Fig.
3.18 is given first. Then based on this specification, different kinds of filters can be
designed. In this section, an analytical method to design bireciprocal filters by building a
bireciprocal characteristic function k(y) which satisfies a specification (see Fig. 4.1)

derived from Fig. 3.18 is presented.
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)
/; 7777777 : € : maximum of [k(y)| in the passband
_ ? 8 : minimum of |k(y)| in the stopband
>
= 2 w p upper edge frequency of the passband
§ @, : lower edge frequency of the stopband
¢ V
L/
: »
@, a, Frequency

Fig. 4.1 Design specification for A(y)

If the maximum attenuation in the passband is A ,dB and the minimum attenuation in

the stopband is A dB, then

e =J1-10"" 5= J1-10""" (4.12)

because the attenuation a can be expressed in terms of the characteristic function k(y) as

a = 10log(l + k(W) = lOlog(l +

h( )2 = i = a)_r
f_(\\l'L)I ),where\v jo jtan( > ) Hence,

if only the attenuation is of interest, all zeros and poles of the characteristic function are
usually distributed on the imaginary axis. Furthermore, taking into account the definition
of a bireciprocal filter (4.3) and the properties (4.4a,b), the characteristic function k(y) can

be assumed to have the form

n/2 2 2
+p. o
AN if n is even

2.2 7
i=1p;y 1

k(y) = 5 -1/ 2. 2 (4.13)

v +p
v [1 = ifnisodd




Next, solve forthe p;, i = 1,2, ..., [n/2] (where [ ] denotes integer part) such that

k() satisfies the specification as illustrated in Fig. 4.1. That is, in the passband, the maxi-
mum of k()| is as small as possible and in the stopband, its minimum is as great as pos-

sible. This is a Chebyshev approximation problem and it has a unique solution [30]:

p = Gpn( 20k, i = 1,2, (02) (4.14)

n

where sn is the Jacobi elliptic function, and X is the complete eiliptic integral of the first

kind with modulus @, that is,

|
1 e
K= dr , ®, = £, w,= ,/wpw: 4.15)

o1 -1 -

The maximum of |k(y)| in the passband can be calculated by([30]

[n/2) 2i—1
e =@, [] sn( - K) (4.16)

n

i=1

The characteristic function &(\y) defined by (4.13) has the property([30]: if its maxi-
mum in the interval [0,@, ] is €, then its minimum in (@, , =] must be 1/€. This property
means that if the specification about € and § illustrated in Fig. 4.1 does not satisfy ed< 1,

but €3 > 1, a small adjustment to € or § is required: Let the new

4.17)

which satisfies e < 1.

The design procedure for bireciprocal filters using the analytical method is summa-

rized as follows:
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* for an attenuation specification 4,, 4, , ®, and o, calculate € and d according

formulae (4.12). If €8 > 1, compute a new € or a new § according (4.17).

* using (4.15) calculate @, first, then K. Next determine the degree n using (4.16).
» use(4.14) to calculate p;, i = 1,2, ..., [n/2], which yields k(y).

» from k(y), #(y) and f(y) immediately obtain

,

3

[:l(“’l"'l’,z) .if n is even [g]
o S = [Ielvi+n @as)

(n-1)
2 i=1
R
) “ (W'+p,2). if n is odd

=1

h(y) = |

» write the right-hand side of the Feldtkeller equation gg,, = ff, + hh, in product

2
form: g(y)g.(y) = Zn (v -w,). Since g(y) is a Hurwitz polynomial, all zeros
i=1
located in the left-half of the y -plane can be allotted to g(y), the reminder to g, (V).
In order to demonstrate the above design procedure, an example is shown below.
Example: Specification: 4, = 0.5dB, A, = 53dB,w, = 1, @, = 2
Step |: calculate €, § according to (4.13) and obtain
= 0.3493, § = 446.6825 and €8 = 156.0313> 1.
From (4.17) obtain a new £ = 0.0022387.
Step 2: From (4.15), (4.16),

@, = 0.7071, K = 1.6858,n = 7.

Step 3: From (4.14), p;, i = 1,2, 3, can be calculated as
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p, = 06917, p, = 0.5679, p; = 0.3248
Step 4: Substituting p,;, i = 1, 2, 3, into (4.18), the polynomials A(y) and f(y) are
found immediately
_ 2 2,,.2 2.2 2
h(y) = y(y" +0.6917")(y" +0.56797)(y" + 0.3248")
2.2 22 2 2
S(y) = (0.6917°y +1)(0.5679%y +1)(0.3248%y +1)
Step S: Using a program written in MATLAB, polynomial g(y) is obtained as

g(W) = (W+ 1)(y” +0.2448y + 1 )(y’ + 1.5640y + 1)(y’ +0.4126y + 1)
Step 6: Finally, the bireciprocal filter which satisfies the specification has the transfer

function

£y) _ (0.6917%y” + 1)(0.5679%y" + 1)(0.3248%y" + 1)
BW)  (y+ 1)(y® +0.24d8y + 1) (> + 1.5640y + 1)(y> +0.4126y + 1)

The frequency response for this filter is shown in Fig. 4.2
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Fig.4.2

4.3 Structure of Wave Digital Lattice Filters[8]

Wave digital filters are derived from real lossless reference filters using voltage wave

quantities. Consider a two-port network N

where the relationship between the incident wave 4, = V, + [|R; and reflected wave

B, = V,—-[,R,,(i = 1,2) and the scattering matrix

67
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S = [s“ "3} (4.19)
S21 22
can be described as
B, = 5,4, +5),4, (4.20a)
By = 5514, +554, (4.20b)

It is assumed that the two-port network N is symmetric and reciprocal, i.e.

S = S35 Sy = 8y (4.21)
Next, define reflections §, = s, ~5,,, §, = 5|, + 55, and take (4.21) into account.
Then equation (4.20a,b) can be written as

ZBl = Sl(Al -A2)+s2(Al +A2) (4.223)

28,

These equations lead to the lattice realization of a wave digital filter as shown in Fig.

4.3(a). For 4, = 0, the signal-flow diagram simplifies to Fig. 4.3(b).

B
12 172 2

Fig. 4.3 (a) Signal-flow diagram of the Lattice structure
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—{ s
172

O—— o)
Al B
S, 2

Fig. 4.3 (b) Simplified wave-flow diagram

Therefore the realization reduces to the realization of two reflectances: S, , §,. Itis

known that the scattering matrix (4.19) can also be described by canonic polynomials

70w}, g(w) and A(y).ie. S = L["(“” °f*(“”] . So in view of (4.20) and (4.21),

EG) | f(y) -Oh(y)
it follows that

= =’_,.(l) =s1l=h( )

Si = S )’ $12= 8, 2(y) (4.23a,b)

with
Se(W) = 6f(W), hy(y) = -Gh(y) (4.23¢c,d)

In addition, from the Feldtkeller equation g(W)g. (W) = f(W) /(W) + h(W)h (W)

and considering 4.23a,b,c,d, it follows that

g(W)gx (W) = a(f(y) - h(w)(f(¥) + h(y)) (4.24)
The polynomial g(y) can always be factored[!] as g(¥) = g,(¥)g,(¥), so that
S+ h(y) = g,(¥)g4(V) and o(f(W) - h(¥)) = g ,(W)g,(¥), where g, (y)

and g,(y) are also Hurwitz polynomials. Next from the definition for §, and S,,

- hyw-Sy) _ g %(V¥) _ h(y) + f(w) _ 81x(VW)
s,(y) = MWL) _ 58V gy = -
W == %@ Y T T T Bmw
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Thus both §, and S, are allpass functions. There are several methods(1] to realize allpass

functions §, and §,.

4.4 Optimization Method for the Design of Bireciprocal Filters

In the previous section, an analytical solution for the design of bireciprocal filters was
provided. The main advantage of the analytical method is simplicity, direct and easy cal-
culations since both the Jacobi elliptic function sn and the complete elliptic integral are
available in MATLAB. However for some situations, in order to obtain a fit to the pre-
scribed specification, overdesign is required. In this section, applying Yli-Kaakinen’s opti-
mization approach(15] to the design of bireciprocal filters, another efficient design method

is obtained.

4.4.1 The statement of problem

One kind of optimization problem can be stated in the following form[15]: Find an

adjustable parameter vector x to minimize

p(x) = max {vi(x)}
1SiSN_+N
p s 4.25)

subject to L inequality constraints

gl(x)<0) l = l! 2) "')L (4.26)

Now, the question arises, how to reduce the design of bireciprocal filters to an optimi-

zation problem, or how to define the objective function y,(x). The magnitude function is

70
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preferred rather than the characteristic function or attenuation function because there is an

ideal function

which the magnitude function can approximate. Here o, and , are the passband and

stopband edges, respectively. For any attenuation specification illustrated in Fig. 3.18, itis

easy to obtain the corresponding specification for the magnitude:

1 DNNONONNNNNNNS
-8 |
& : maximum deviation of the magnitude
3 P inthe passband
2 5: : maximum magnitude in the stopband
g ; ® p+ upper edge frequency of the passband
| o lower edge frequency of the stopband
sF————--- - —
¥ | 1 >
o, o Frequency
Fig. 4.4 Design specification for magnitude
where

8,, = | - exp(-A,log10/20), 3, = exp(-4,log10/20) (4.27a,b)

Generally, optimization methods are a good way to solve a problem which contains
some unknown parameters. The adjustable parameters included in the bireciprocal filters

which are designed are denoted as vector x. The magnitude function can be designated
H(x, ®), where © is the frequency. Thus the criteria illustrated in Fig. 4.4 can be stated

mathematically[15] as

n
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1-8,<|H(x,0)lsl, o0cl0,0,] (4.28a)
|H(x,0) <3, , we [, C] (4.28b)

For optimization purposes, or to find the appropriate y,(x) (cf 4.25) which have a uni-

form expression, it is beneficial to combine the passband and stopband criteria. Let

E(x, )] = W(w)|H(x,®)-D(®)], we 0.0, U (a, C] (4.29)
with
Dle) = {l, we [0, w,] and W(w) = {l/ﬁp,me [0, (nP],
0, we [0, C] 178,, we [, C]
then
IE(x,@)| <1, we [0,0,] U (w,, C] (4.30)

is equivalent to (4.28a,b). Function E(x,m) is called the weighted error function. Next,
focus on finding the adjustable parameter vector x to minimize

max |E(x,0)|
we [O.mp] U [ms, Ci

In order to make the above problem more suitable for optimization, the passband and

the stopband regions are discretized into the frequency points ®; € (0, o,],i=12,.. N p

and w; € (@, C},i=N,+1,N,+2,.., N, +N,. The resulting non-constrained dis-

crete problem is to find x to minimize

max N]E(x,(oi)|
ISiSN,+N,

4.31)
i.e., here |E(x,m‘.)| is taken as the y(x) in (4.25). In some situations where the parameter

vector is required to satisfy additional conditions such as in (4.26), the problems is called a
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constrained minimax problem. It can be solved by applying a minimization algorithm pro-

posed by Dutta and Vidyasagar{28], which is listed in the next section.

4.4.2 Minimax algorithm using the Dutta-Vidyasagar method
Problem:
In (28]. Dutta and Vidyasagar proposed a method to solve a problem of minimax opti-

mization under constraints. This problem can be stated as follows:

minimize F(x) = max f,(x)
iel

where I = {1,2,...,n} is a finite set of integers, under the constraints
g;(x) < 0, jeJ
glx)=0 jel

Converting the above constrained problem to an unconstrained minimization of Least-

squares type objective function yields

minimize P(x,9) = ) (fi(x)-0) + Y o wex) + Y vwx)

i€ l(x) i€ J(x) lel

where ¢ is a prespecified constant, w »Jj€J,and v, [ € L are prespecified weights, and

I(x) = {ie :f(x)>0}, J(x) = {je J:ig(x)>0}
Algorithm.
Step 1. Set B, < F(x), where F(%) is the optimum and B, is a lower bound on F(%).

Step2.Set ¢, < B, and ke 1.

Step 3. Minimize P(x, ¢,), call the solution %, .

A
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Step 4. Set B, as an upper bound on F(&). For an unconstrained problem one can set
B, « min{F(xy), F(Xx;)}, where x is the initial guess of the parameter vector.
Step S. Calculate

MY 0+ {P(%), 0,)/n}'"

M0, + P 0,)/ S (7)Y -0,), i€ l(F)

where 1(%,) = {i:f,(%)>0,}.

Step 6. If M’ < B, .,setd, ., « M7, otherwise set 0. & MY . Also set
o9y — 0

Step 7. Set B, « M", and S — P(%,,0,).

Step8.Setke—k+1.

Step 9. Minimize P(x, ¢,), call the solution ¥, .

Step 10. If (B, - B,) or ¢, <€, STOP (€ is a small number).

Step 11. If P(X,, 0,) >, go to Step 5, otherwise if§ < SMALL, STOP (SMALL is a
positive constant signifying the closeness of P(X, _ |, ¢, _,) to zero). If none is

true, then set B, & ¢,, S « 0, and ¢, « B, and go to Step 9.

4.4.3 Constructing the magnitude function
From the discussion in section 4.4.1, it is known that the first step of applying optimi-
zation for designing bireciprocal filters is to construct the magnitude function. In this sec-

tion, two construction methods are presented. Method [ starts from the characteristic
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function k(x, ), which includes the unknown parameter vector x. The magnitude func-
tion H(x, y) can be easily be obtained from k(x, ), as can the weighted error function
E(x, ). Parameter vector x is obtained after applying optimization to £(x, y). Different
from method 1, method 2 construct the magnitude function #(x, y) from the lattice real-
ization structure. The details of both methods are presented below.

Method 1. Based on the definition of the bireciprocal filter (cf (4.3)) and the property
that all zeros and poles of the characteristic function are usually distributed on the imagi-

nary axis, it can be assumed that the characteristic function which contains the adjustable

parameter vector x has the following form:

(n-1r2 2 2
W + X

Here x = (xl, Xyy eer X _ ,), n is the degree of the filter which is always assumed to be
7

odd in order to implement the lattice structure. Then the magnitude function is

|H(x, 0)] = /—'———2
1 +[k(x, W)

with ¢ = tan®. Consider (4.32), the magnitude function which contains the parameter

(4.33)

v =/

vector x and frequency . It has the following form:

(n-1)72 2 2
X, —tan®
|H(x, ®)| = l/(l ~tane’ [ k_—F] (4.34)

All that is needed next is to substitute (4.34) into (4.28a,b) and follow the procedure

stated in section 4.4.1. Afier applying the Dutta-Vidyasagar minimax algorithm, a solution
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for the parameter vector x will be obtained.
Method 2: The idea for this method comes from Wegener’s paper{ 14], which derives
the design and implementation of bireciprocal filters at the same time. Recall the lattice

structure proposed in the previous section where the realization of a digital filter was

reduced to the realization of two allpass filters S, (y) and §,(y):

g1x(V) g1x(¥)
S = -6———,S = 4.35
1Y) aw Y T W 4.33)
where g(y) = g,(w)g,(y). Based on three properties:
1) g(y) satisfies g(y) = iw"g(“l,) (cf4.5).
2) g(y) is Hurwitz polynomial.
3) the degree of g(y) is odd.
g(y) can be assumed to have the following product form:
(n-1)72
gw) = K+ [T W +xw+1) (4.36)

i=|
From the lattice structure Fig. 4.3 and equations (4.35) and (4.36), it is can be assumed

that a bireciprocal lowpass filter has the structure shown in Fig. 4.5, where

\

A) P2 AW [ — | Amv)

172

input output
Byy(v) | Bno(w) [ — ->| Ban(v)

Fig. 4.5
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- -ytl

Aw) = 5T 4.37)
\yz—-x.\p+l

Ay(y) = 4——, x>0, i=12..M (4.38)
vy orxy+ |
\vz—x.* AT

By(y) = ————— x>0, j=1,2.,N (439
AR PP T

WithM = Nl andn = M+ N+ 1, then

M N
H(x,y) = %(A,(w [T 42¢x. w) + [] 8= w))

i=1 J=1

Let y = jo and ¢ = tanw, and then obtain the magnitude function immediately.

M N
i, . . .
IH(x, 0)| = 5|4,(jtanw) [] 4(x;, jtanw) + [] By,(x,. ;» jtanw) (4.40)
- i=1 J=1

where x = (x}, X3, ..., Xpp0 Xpp 4 -o00 Xy) IS the parameter vector. Similar to Method 1,

by substituting (4.37) into (4.28a,b), following the procedure stated in section 4.4.1, and
then applying the Dutta and Vidyasagar minimax algorithm, a solution for parameter vec-
tor x is obtained.

Here it is appropriate to mention that this method can also be applied to any general

lattice filter design. This can be carried out by changing equations (4.37)-(4.40) to

A (¢) = , >0
1 (W) TS Yo
-X.W+
Ay (y) y _ 5V y‘, %y,>0, i=12.,M
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bl
‘P-'-‘w-‘&”‘y' j .
sz(w) = 2 d J ‘+J, xi+j,}"'+j>0, _’ = 1.2. ...,N

VA Wy,

Now the adjustable parameter is x = (x,...x3,, yVoV|.--Va + y) Whose dimension is

2(M + N) + 1 that is same as the degree of the filter.

4.5 The realization of Bireciprocal Filters

The realization structure for design merhod 2 has been given in the previous section

(see Fig. 4.5). For method 1, after solving for parameter vector x using the optimization
method and obtaining characteristic function k(x, y), it is easy to obtain f(y), A(y)
and g(y) (There is a statement about how to derive g(y) from f(y) and A(y) in sec-

tion 4.2.). Then following the procedure stated in section 4.3, g,(y) and g,(y) can be

obtained, then S, () and S,(y), and finally a structure similar to Fig. 4.5 is obtained.

This means that independently of whether the design for a bireciprocal filters uses method
1 or method 2, the realization structure can always be reduced to Fig. 4.5.

Next, focus on the realization of structure Fig. 4.5. It is known [14)] that the realization
of allpass sections, like 4, () in Fig. 4.5, require no arithmetic operations, but only a
delay 7. The wave-flow diagram is shown in Fig. 4.6 (a). For allpass sections of degree
two, like 4,,(y) (i = 1,2,...,M)and B,,(y) (j = 1,2, ..., N), the realization
requires a two-port adaptor and two delays 27. The coefficients y, of the two-port adap-
tors are given by

Y, = (x;=-2)/(x;+2),i = 1,2, .. MM+, . .M+N (4.41)
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The wave-flow diagram for degree two is shown in Fig. 4.6 (b), and the wave-flow dia-

gram for realization structure Fig. 4.5 is presented in Fig. 4.6 (c).

o o—>

s s— ||| e
a o—e— Y

(a). The first degree section

(b). The second degree section

i

T ™
Lo _ |
Input Output
“Ymel T™meN
o

(c) Signal-flow diagram for realization of a bireciprocal filter

Fig. 4.6 Realization of a bireciprocal filter

The above signal-flow diagram shows that it only requires M+ N = (n-1)/2 (nis

odd) two-port adaptors and n delays to implement an n™" order bireciprocal filter, which

means savings of almost one half in hardware compared with other digital filters.
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4.6 Example

The attenuation requirements are illustrated in Fig. 4.7[14] and the sampling fre-

quency F = 48H:z.

T 7048

Attenuation/dB

0.1dB

SkHz
Fig. 4.7

With method 1, starting from (4.32) and following the procedure described in section
4.4.1, the adjustment parameter x can be solved for by applying the minimization algo-
rithm proposed by Dutta and Vidyasagar. Here the parameter vector

x = (-0.565007, -0.312758, -0.469945)

is obtained and

ke v) = w[ y’ + (~0.565007)° ][ vl +(-0.312758)° ][ \y2+(—0.469945}2J
v2(-0.565007)° + 1  y?(~0.312758)% + 1 |\ y?(—0.469945) + |

then

F(y) = (Y(~0.565007)> + 1)(y2(~0.312758)% + 1)(y>(~0.469945) + 1)

h(y) = w(y’ + (~0.565007)2)(y? + (~0.312758)%) (> + (~0.469945))

and g(y) can be derived following the statement in section 4.2 as
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g(y) = (y+ 1)(y +0.3032196y + 1)(y’ + 16476963y + 1)(y’ +0.9578127y + 1)

Next from section 4.2, it follows that
g (y) = (y+1 )yl +0.9578127y + 1)

g>(W) = (w1 +0.3032196y + 1)(y> + 1.6476963y + 1)

and from equation (4.41), the parameters of the three 2-port adaptors can be obtained as

Y, = —0.35235092, y, = -0.09658259, y; = -0.73669939

After 11 bit quantization, the three parameters become

Y, = -361/1024, v, = -99/1024, 7, = —1509/2048 (4.42)

With merhod 2, as described in section 4.4, starting from (4.40) and following the pro-
cedure stated in section 4.1, the parameter x is obtained as
x = (0.95780467, 1.6476936, 0.3032167),
and the coefficients of three 2-port adaptors are obtained by (4.41) as

Y, = —0.35235435, vy, = -0.09658332, vy, = -0.73670154

After quantization, exactly the same results as in (4.42) are obtained which shows that the
results of the two method are the same, i.e., for the same problem, no matter which
method is applied, the same realization structure results. The advantage of method 2 is
that the realization structure can be obtained directly after applying the optimization algo-
rithm. However it requires the constrained minimax algorithm and uses more computer
time than method 1, which only requires the unconstraint minimax algorithm. Another
advantage of merhod 1 is that it is easy to derive f(y), g(y) and h(y) after applying

the optimization algorithm.
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Bireciprocal Fiiters
The realization structure for the example is shown in Fig. 4.8.
yi= -361/1024 ’_
Y2=-99/1024
F— |
1”2
— O—p——
Input Output

— 2

T

T

Fig. 4.8 Realization structure of the example

The frequency responses are presented in Fig 4.9 which shows that the specifications

(see Fig. 4.7) are satisfied.
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Fig. 4.9
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Chapter 5

Conclusions

In this thesis the following has been proven:

» The cascade decomposition of lossless two-port networks by means of the factoriza-
tion of the transfer matrix 7T is realizable. A proof of the necessary and sufficient
conditions for the realizability is included.

* The cascade synthesis of two-port lossless networks by the factorization of the scat-
tering matrix S applied to FIR filters is successful. An implementation structure and
an algorithm in a very general form are derived. Several other implementation struc-
tures and related algorithms, including Fettweis’ two structures, are obtained. Exam-
ples demonstrate that for broad-band FIR filters all proposed structures exhibit low

sensitivity to multipliers, but for some narrow-band FIR filters, one of the derived

structures, called the S;-Sg -structure, shows much lower sensitivity in the passband

than the classical direct form. Therefore the S;-Sg-structure is the recommended

structure for narrow-band FIR filters.
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* Both the analytical formula method and the optimization method for designing birecip-
rocal filters are efficient. The analytic formula method for the design of bireciprocal
filters appears to be new. A search of the literature of the past ten years has not pro-
duced any reference to it. The formula is simple, direct, and requires only simple cal-
culations. The only disadvantage is that it requires overdesign in some situations. The
optimization method developed in this thesis is very flexible. It is efficient not only for
the design of bireciprocal filters but also for general lattice wave digital filters after
minor modifications have been made. An example shows that the proposed optimiza-
tion method is an alternate solution to Wegener's optimization method.

Future research directions might be the following:

» Apply the approach of cascade synthesis of two-port lossless networks by factorization
of the transfer matrix to FIR filters and compare with the results obtained in chapter 3.

* Consider the design of half band filters using the same idea as in the design of birecip-

rocal filters.
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Appendix I[29]

The Sum of Polynomials in Product Representation

To determine the product representation of the sum of two polynomials p = a + b, a and
b both in product representation without converting to coefficient representation requires
an iterative procedure. For this purpose, consider the first two terms of the Tayler series

about a point s,

P(s)=p(s) + p'(s;)(s - 5;)

To determine an approximation s, , | to a zero, set p(s,, ) = 0 and solve fors, . |:

5 - pP(s;)
ko p'(se)

See1 T

This is Newton'’s estimate{31] and can be used iteratively, k = 0, 1, ..., &k, , to improve

ver Ky
the estimate of the zero.

After a zero has been found it is necessary to prevent finding the same zero repeatedly.
This can be accomplished by zero suppression; i.e. by formally dividing out the found
zero. For this purpose the found zeros are accumulated in a polynomial ¢ in product repre-

sentation. Next Newton'’s method is applied to
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= ps)
q(s) G)
giving
(p(s))/ c(sy)

kel T T p(8) 7)) |

§ = 5

_ 1
kTN (Pl - (¢ (50)7 (e(55)

This is the Newton-Maehly estimate[31].

m
Note that < ((:)) Z . _l = where the ¢, are the zeros of ¢ (the found zeros) and
=1 f

plis) _al(s)__a(s)  b(s) _b(s)
p(s) a(sya(s) + b(s) b(s)a(s)+b(s)

Similarly to ¢ above

m m
a’(s) _ L b4s) !
a® - &ima e - &5TE,

i=1

Thus the Newton-Maehly estimate for a zero is readily calculated from a, b and c. If the

sequence of estimates {x,} does not converge for a given initial value (a starting value)
Xy, an improved starting value can be obtained using Muller’s method followed by the
Secant method[31]. The sequence of estimates will be said not to converge if |x; . | - x|
is not less than some € >0 for k = &,

A further consideration is the determination of the constant factor K of p. Let K, and

K, be the constant factors of a and 5. Then
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a

{K if dega > degb
K =

K, ifdegb>dega

and if the dega = degb, K = K, + K, , unless K, + K, = 0 in which case degree

reduction is said to occur; i.e. the degree of p is less than the degree of a and 4. The degree
of p and the constant factor K can be determined by converting to coefficient representa-
tion and determining the nonzero coefficient of the highest power of the sum of 2 and &.

In a practical implementation exact equality cannot be expected. Therefore a test like

IKa + Kb'
—_—<
Kl

€
must be used to decide if K, + K, should be considered to be equal to zero. A similar test
is used for determining the highest nonzero coefficient of the sum if

degp < dega - |

P(sp) <'(sp)

[t has also been found that e(s;) = -~
p(sg)  c(sy)

may continue to increase and

exceed the maximum number representable in the computer and in this case a test must be
implemented and 1/e(s;) set equal to zero, implying 5, . | = s,.
The algorithm described above has been tested on a large number of filter examples

including high order, narrowband filters which are critical because of the clustering of

zeros. The described algorithm has been successfully used in the design of such filters.
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Appendix II[29]

Solution of the Feldtkeller Equation for FIR Filters

Theorem I: Given a polynomial

fizy=f2"+f,_ 2"Vt ffo20.850

lf(z) €1 forall ®with z = £ anda polynomial g(z) = 1. Then there exists a poly-

nomial

hz) = hz"+h,_ 27" D+ +hy, h,hy20, n>0
such that

8(2)8%(2) = f(2)Sx(2) + h(2)hy(2) (M
where the para conjugate is defined by
fel2) = 2"f(1/2) = [z "+ 127774 L+,

Proof: From the given f(z) and g(z),

[ 4(2) = fof T3+ ..+ fof, and g(2)gx(2) = 2"

Let
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a(z) = 2" = f(2) f5(2) (2)

then

a,(z) = z-z"a(l/z) = 2" - f,(2)f(2) = a(z)
deg a(z) = 2n and the constant term of a(z), f,f,#0. Therefore a(z) can be

expressed in product representation in the form

2n
a(z) = Kl‘[(z'l -a), a,20,K = fof, (3)

i=1
where the zeros are arranged so that |a| 2|a |, i</

Then

2n 2n |
a,(z) = Kna,-r[(z' -1/a;)
is1 il
2n |
But a(z) = ay(z) which implies that [Ja, = ! and a, = — for some, i.c. the zeros

a
i=1 J

A l .
oceur in pairs (a p—|witha, = a
a.
J

j-

Let

hz) = T -a) “

i=1

Notethat|a|21,i = 1,2,...,n,and jaj<1,i = n,n+1,...,2n. Then

n n n 2n
i’*(z) = n(-a,‘)n(z-l - l/a,') = n(‘a,') n (Z_l’a,‘)

i=1 i=1 i=1 i=n+l
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It follows that h(z)h«(z) and a(z) have the same zeros, and, furthermore,

a(z) = (K/ I1 (-ai)]i!(Z)iu(Z) )

i=1
From (2) and (5)

:" = [K/ n (—a‘.))}.r(z)ix*(:) + f(2)f4(2)

1=

and then

| = (K/l:[(-a;)]i’(z)i'e)J'f(z)/G)

i=1

and forz = &*

| = [K/ 1 (-a,)]liz(ef“’)l2 el ©)

i=1

2 ) .
Since | 1 m)| <1 for all ® and f'is nonconstant, there exists an w, such that

2 . 2
| £ e’%)l < 1, which together with (6) implies |h(ejm°)| # 0. Then from (6)

n Jog. |2
K/T](-ap) = l—}'—&i—-}'—m
i=1 e’
Now let
K, = /K/[](—a,-) = Jfof,,/l'[(-a,-) M
i=1 i=]
and let
h@z) = Kuh(2) = K, [ -a)) (8)

i=1
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Then

hy(2) = K, l:I (-a;) ﬁ (z_l - al,)

i=1 i=1

and

ﬁ(z—l‘a‘l-i) = Kl—l(::—I -a) = a(z) 9

i=1 i=1

hhe(z) = K T ap [T -ap)
-1 iy

Finally from (2) and (9)

8(2)gx(2) = 2" = h(2)hy(2) + f(2)f4(2) (10)
where A(z) is defined by (7) and (8). From (10), f,f, + h,hy = O implying
h,hy = -f,fo 20, and therefore h,, hy 20

Corollary I: Given a polynomial

f(z) = fnz"'+ n_lz_("'”+ +fnoz-"°. fn,f,,o#O.n>0
|f(z) <1 forall ®with z = e'w.andapolynomial g(z) = 1. Then there exists a poly-

nomial h(z) = z "h(z) ,where h(z) = hyz" +hy_ 27"+ L+ by with

n’ =n-ny, h, hy#0and 0<n, <n, ,such that
8(2)8x(2) = f(2)f4(2) +h(2)h(2)
Proof: Let f(2) = z_""]”(z),where

—(n—1-np)

s ~(n=ny)
f(2) = f,2 "ol w12 +,_,+fn°,fn°¢0

Then |f(z)| < 1 forall @ with z = €. Let n’ = n—ny. By Theorem 1, there exists
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h(z) = bz +h, 2" V4 +hg, ko hy 20, such that

T = h(@)hy(2) + f(2) f4(2)
Note that f,(2) = f,+ f,_ 12+ ... +f,,oz"" = fx(z). Now

= @A)+ 2 F (@) f(2) = 2 h(2)A(2) * £(2)fl2)
Let A(z) = z 'h(z) with 0<n,<ng,,then
ho(z) = 22 h(1/2) = 272" 2 hy(2)
and h(2)h4(z) = 2 “h(z)h,(z). And, finally,
g(2)gx(2) = 27" = h(Dhy(2) + f(2) f 4(2)
Corollary 2: Given f(z) = f,,z_", f,20, |f,,| <€ 1,and g(z) = 1, then there exists

h(z) = J1-f£22™, 0sn <n

which satisfies
8(2)8x(2) = f(2)f3(2) + h(2)h(2)

Proof. From the given f(z) and g(z), it is obvious that

S4(2) = for SO e(2) = £,227", 8(2)gx(2) = 27", and h(2)hy(2) = (1=, D)z

If f,2 = 1, h(z)=0. Otherwise f,2<1.Leth(z) = J1-£,22",0<n, <n,then
ho(2) = J1=£,327" 7™ and h(2)hy(2) = (1= £,z

Therefore f(z)f(2) + h(2)he(z) = (1= £,z + £,227" = 27" = g(2)g4(2)
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