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Abstract

The quarantine of people suspected of being exposed to a disease, and the isolation
of those with clinical symptoms of the disease, constitute what is probably the oldest
infection control mechanism since the beginning of recorded human history. The the-
sis is based on using mathematical modelling and analysis to gain qualitative insight
into the transmission dynamics of a disease that is controllable using quarantine and
isolation. A basic model, which takes the form of an autonomous deterministic system
of non-linear differential equations with standard incidence, is formulated first of all.
Rigorous analysis of the basic model shows that its disease-free equilibrium is globally-
asymptotically stable whenever a certain epidemiological threshold (denoted by R.) is
less than unity. The epidemiological implication of this result is that the disease will
be eliminated from the community if the use of quarantine and isolation could result in
making R, < 1. The model has a unique endemic equilibrium whenever R. > 1. Using
a Lyapunov function of Goh-Volterra type, it is shown that the unique endemic equilib-
rium is globally-asymptotically stable for a special case. The basic model is extended to
incorporate various epidemiological and biological aspects relating to the transmission
dynamics and control of a communicable disease, such as the use of time delay to model
the latency period, effect of periodicity (seasonality), the use of an imperfect vaccine
and the use of multiple latent and infectious stages (coupled with gamma-distributed
average waiting times in these stages). One of the main mathematical findings of this
thesis is that adding time delay, periodicity and multiple latent and infectious stages
to the basic quarantine/isolation model does not alter the essential qualitative features
of the basic model (pertaining to the persistence or elimination of the disease). On
the other hand, the use of an imperfect vaccine induces the phenomenon of backward
bifurcation (a dynamical feature not present in the basic model), the consequence of
which is that disease elimination becomes more difficult using quarantine and isolation
(since, in this case, the epidemiological requirement R. < 1 is, although necessary,
no longer sufficient for disease elimination). Numerous numerical simulations are car-
ried out, using parameter values relevant to the 2003 SARS outbreaks in the Greater
Toronto Area of Canada, to illustrate some of the theoretical findings as well as to eval-
uate the population-level impact of quarantine/isolation and an imperfect vaccine. In
particular, threshold conditions for which the aforementioned control measures could
have a positive or negative population-level impact are determined.
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Abbreviation Meaning

DDE

DFE

EEP

GAS

LAS

ODE

Delay differential equation
Disease-free equilibrium
Endemic equilibrium point
Globally-asymptotically stable
Locally-asymptotically stable

Ordinary differential equation
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Chapter 1

Introduction

Epidemics, described as sudden outbreaks of diseases which infect a substantial fraction
of the population in a region before disappearing (while leaving many members of the
population susceptible)[2], have been occurring since the beginning of recorded human
history. For example, the Black Death (bubonic plague) spread from Asia throughout
Europe during the 14th century (beginning in 1346) resulting in the death of about one
third of the population of Europe between 1346 and 1350 [8]. The disease recurred in
various parts of Europe for more than 300 years (notably, the Great Plague of London
(1656-1666)) and then gradually disappeared from Europe. Smallpox killed over 300
million people in the 19th century alone [78]. The 1918 influenza pandemic (also known
as Spanish Flu) affected about one third of the human population (500 million people)
and killed between 20 to 100 million people [78]. More recently, since its inception
in the 1980s, the human immuno-deficiency virus (HIV) has killed about 25 million
people globally (and about 33 million people are currently living with HIV/AIDS)|[72].
Malaria infects about 300 million people, and causes about 2 million deaths annually
[28]. Diseases such as plague, cholera, hemorrhagic fevers continue to erupt occasionally
[44], while others (such as malaria, HIV/AIDS, mycobacterium tuberculosis, typhus,

cholera, schistosomiasis etc.) are endemic (i.e., always present) in some regions of the



world.

Unfortunately, despite the major advances in the medical sciences, infectious dis-
eases continue to cause significant morbidity and mortality in human populations
worldwide, with disproportionate impact in developing countries (in general). A re-
cent survey estimated that infectious diseases are responsible for more than half of
human deaths in sub-Saharan Africa (and such diseases continue to impose heavy pub-
lic health and socio-economic burdens on the affected populations) [30]. Furthermore,
the adverse impact of infectious diseases extend beyond human populations, inflicting
tolls on domestic animal, wildlife and plant populations. The combination of complex
ecology, rapid evolution in response to changing circumstances, and the on-going emer-
gence of novel pathogens, ensures that infectious diseases will continue to pose serious
challenges for the foreseeable future [81].

When confronted with a possible epidemic, public health officials often ask questions

such as [8]:

(i) How many people will be infected and require hospitalization (i.e., how severe

will the epidemic be)?
(ii) What is the maximum number of people needing care at any given time?
(iii) How long will the epidemic last?

(iv) What will be the potential efficacy of some intervention strategies (such as quar-

antine, use of vaccine etc. in curtailing the severity of the epidemic)?

Mathematical modelling plays a major role in epidemiology, by way of providing
deeper insight into the underlying mechanisms for the spread of infectious diseases and
suggesting effective control strategies. Infectious diseases can exhibit complex non-

linear dynamics and mathematical models enable clear and rigorous analysis of the



associated underlying mechanisms. Some of the main roles of mathematical modelling

of infectious diseases include the following:

(a) Building and testing theories; assessing quantitative conjectures; determining

sensitivities to changes in parameter values; estimating key parameters from data;

(b) Assessing and comparing the impact of various preventive and therapeutic mea-

sures;
(c) Identifying trends and making general forecasts;

(d) Providing early estimates of epidemiological thresholds (such as the basic repro-
duction number) and expected disease burden (attack rate, morbidity, hospital-

ization, mortality).

1.1 Modelling of Infectious Diseases

The use of compartmental mathematical models in epidemiology dates back to the
pioneering works of Sir Ronald Ross, Kermack and McKendrick [2, 3, 44, 53, 54]. The
models, typically of the forms of deterministic or stochastic systems of non-linear dif-
ferential equations, are used to evaluate various control strategies, such as vaccination,
the use of antibiotics or antivirals, quarantine and isolation.

The basic differential equation model proposed by Kermack and McKendrick in
1927 (to describe the Great Plague of London of 1665-1666), which splits the total
population at time ¢, denoted by N(t), into three mutually-exclusive compartments of
those who are susceptible (S(t)), infected (/(t)) and recovered or removed (R(t)) (so

that, N(t) = S(t) + I(t) + R(t)), is given by the following system of equations [54]:
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where [ is the transmission coefficient (effective contact rate) and « is the per capita
rate of recovery (or removal) for infected individuals. Susceptible individuals become
infected upon successful transmission of the disease when two individuals from the sus-
ceptible () and infected (1) compartments interact. Infectious individuals are removed
from the infectious state at the given recovery rate. The model (1.1) is deterministic.
That is, the behaviour of the model is completely determined by its history and by the
rules which govern the development of the model. For small compartment sizes, the
behaviour of the compartment size may be strongly influenced by random perturba-
tions, and other types of models (stochastic) are more appropriate (see, for instance,
[1] for a general introduction of stochastic models).

Numerous extensions of the Kermack-McKendrick SIR model above, incorporat-
ing important epidemiological and biological concepts such as vaccination, quarantine,
isolation, antiviral treatment and periodicity (or seasonality), have been designed and
used in the mathematical epidemiology literature over the decades. Some of these
models include a class of exposed individuals (denoted by E). In summary, most of
the compartmental models used in the literature (which typically take the forms of
SIR, SIS, SIRS, SEIR, SEIRS compartmental models) are built based on the modelling
framework of Kermack and McKendrick [53, 54].



1.2 Disease Incidence Functions

Disease incidence in a community is defined in terms of the number of new infections
generated per unit time in that community. Incidence, in disease models, is generally
characterized by an incidence function (which describes the rate at which new infections
are generated). Various types of incidence functions have been used in disease modelling
(see, for example, [46] for general discussion), and the choice of such function can play
an important role in the dynamics of the disease. A general approach for constructing
disease incidence function (required for modelling), as described in [46], is given below.

Let S(t), I(t) and N(t) denote the number of susceptible individuals, infected in-
dividuals and the total population size at time ¢, respectively. Suppose 3(IV) is the
effective contact rate (i.e., the average number of contacts sufficient to transmit infec-
tion) per person per unit time. Then, S(N)I/N is the average number of contacts with
infectious individuals a susceptible individual makes per unit time. Thus, the number
of new cases coming from all susceptible individuals (5) is AS, where A = (N)I/N
is the force of infection. If G(N) = (3, a constant, then \S is referred to as a standard
incidence function. When G(N) = SN (that is, the contact rate depends on the total
population), then AS is called mass action incidence [44]. It is worth stating that
standard incidence models with constant total population (i.e., N(¢) is constant), such
as the model in [56], are essentially mass action models.

The aforementioned two incidence functions (standard and mass action incidence)
appear to be the most widely used in the mathematical biology literature. Although
some studies have suggested that the standard incidence formulation is more realistic
for human diseases [2, 3|, the choice of one incidence over the other, generally depends

on the disease being modeled (and, in some cases, the need for analytical tractability).



1.3 Reproduction Number and Bifurcations

As stated earlier, compartmental models have been widely used to gain insight into
the spread and control of emerging and re-emerging human diseases, dating back to
the pioneering work of the likes of Ross, Kermack and McKendrick and others (see,
for instance, [2, 3, 44] and the references therein). The qualitative dynamics of these
models tend (generally) to be completely determined by a threshold quantity, known as
the basic reproduction number (denoted by Ry), which measures the average number
of new cases generated by a typical infected individual in a completely susceptible
population [2, 22, 44].

Typically, when Ry is less than unity, a small influx of infected individuals will
not generate large outbreaks, and the disease dies out in time (in this case, the cor-
responding disease-free equilibrium (DFE) is asymptotically-stable). On the other
hand, the disease will persist in the population if Ry exceeds unity, where, typically,
anasymptotically-stable endemic equilibrium point (EEP) exists. This phenomenon,
where the DFE and an EEP exchange their stability at Ry = 1, is known as forward
bifurcation (or transcritical bifurcation). Bifurcation represents a change in the quali-
tative behavior of the model as a related parameter or quantity (typically Ry) varies.

A schematic description of forward bifurcation is given in Figure 1.1.
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Figure 1.1: Forward bifurcation diagram.

Forward bifurcation, first noted by Kermack and McKendrick [54], has been ob-
served in many disease transmission models (see, for instance, [12, 13, 44, 47| and
some of the references therein). In general, for models that exhibit forward bifurca-
tion, the requirement Ry < 1 is necessary and sufficient for effective disease control or
elimination

However, some modelling studies have shown that although Ry < 1 is necessary
for disease elimination, this requirement may not be sufficient. This is due to the
phenomenon of backward bifurcation, where (typically) a stable endemic equilibrium
co-exists with a stable disease-free equilibrium when Ry < 1. Backward bifurcation has
been observed in numerous disease transmission models, such as those for behavioral
responses to perceived risks [40], multiple groups [12], vaccination [27, 56|, vector-
borne diseases [35] and the transmission dynamics of mycobacterium tuberculosis with
exogenous re-infection [31, 79]. The public health implication of backward bifurcation
is that the classical requirement of having the associated reproduction number of the

model being less than unity is insufficient (in general) for disease elimination (in a



backward bifurcation situation, effective disease control when Rg < 1 is dependent on
the initial sizes of the sub-populations of the model). A schematic description of the
backward bifurcation phenomenon is given in Figure 1.2 (it should be emphasized that,
in a backward bifurcation situation, the global asymptotic stability property of the DFE
is only feasible outside the region of the co-existence of the two stable attractors, such

as the region 0 < Ry < 0.59 in Figure 1.2).
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Figure 1.2: Backward bifurcation diagram showing the co-existence of a stable DFE
and two branches of endemic equilibria (a stable and an unstable branch).

1.4 Quarantine and Isolation

Quarantine of individuals suspected of being exposed to a disease, and the isolation
of those with disease symptoms, constitute what is probably the first infection control

measure since the beginning of recorded human history [44]. Over the decades, quar-
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antine and isolation have been used to reduce the transmission of numerous emerging
and re-emerging human diseases, such as leprosy, plague, cholera, typhus, yellow fever,
smallpox, diphtheria, tuberculosis, measles, ebola, pandemic influenza and, more re-
cently, severe acute respiratory syndrome (SARS) [16, 48, 61, 64, 67, 73, 90, 93, 99].
Furthermore, these basic public health control measures are also applied to combat
the spread of animal diseases, such as bovine tuberculosis, rinderpest, foot-and-mouth,
psittacosis, Newcastle disease and rabies [48, 52].

The term quarantine is used to characterize the deliberate separation of individuals
exposed (i.e., suspected of being infected) to a contagious (communicable) disease
(by coming in contact with an infected individual), irrespective of their infectivity or
symptomatic status, from a population of susceptible individuals [68]. Quarantined
individuals are monitored, typically over the duration of the incubation period (the
time from infection to the onset of symptoms) of the disease (see Table 1.1 for a list
of some communicable diseases and their respective incubation periods). Individuals
who show disease symptoms (during the quarantine period) are isolated (typically in
hospitals). Isolation refers to the strict separation of individuals with disease symptoms
from all of the members of the population at risk. On the other hand, those who do not
show symptoms at the end of the quarantine period remain susceptible to the disease
68].

Although, as stated above, some quarantined individuals may remain susceptible
at the end of the quarantine period [32, 61], in this thesis, the quarantine class involves
only newly-infected individuals detected either wvia contact tracing of symptomatic
cases, random testing (if a suitable diagnostic test exists) or the quarantine of suspected
cases. As noted by Feng [32], it is plausible to assume that, for large total population
sizes (IV), the quarantine of susceptible individuals is unlikely to have a significant
impact on the disease dynamics (and, hence, it is ignored in this thesis). In other

words, the term quarantine in this thesis refers only to the detection and removal



of new (asymptomatic) infections. It should be mentioned that the mass quarantine
adopted in the Greater Toronto Area of Canada during the 2003 SARS outbreaks only

resulted in the detection of very few confirmed SARS cases (see, for instance, [20]).

Table 1.1: Incubation period for
some of communicable
diseases [3, 95]

Disease Incubation period

Chicken pox | 14-16 days

Ebola 2-21 days
Influenza 1-3 days
Measles 9-12 days
SARS up to 10 days

Smallpox 7-17 days

1.5 Motivation and Outline of the Thesis

The main objective of this thesis is to provide a rigorous qualitative study of various
deterministic models for the spread of a (general) contagious disease in a population
in the presence of quarantine and isolation, to gain deeper insight into the population-
level impact of these measures on the transmission dynamics and control of the disease.
In other words, the thesis focuses on designing new, robust, and realistic models for the
spread of a communicable disease in the presence of quarantine and isolation, and then
providing detailed qualitative analyses of the resulting models with emphasis on deter-
mining the existence and stability of the associated solutions (equilibrium or periodic),
as well as to characterize the kind of bifurcation the resulting models will undergo. The

knowledge of these dynamical properties is not only crucial for determining important
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epidemiological thresholds that govern the persistence or elimination of the disease, but
also allows for the realistic assessment of the impact of these measurers (quarantine
and isolation) in effectively controlling the spread of a given communicable disease in
a population.

A basic quarantine/isolation model is designed and qualitatively analysed first of all.
The basic model monitors the temporal dynamics of susceptible (.5), latent or exposed
(E), quarantined (@), infectious (I), isolated (H) and recovered (R) individuals. It also
allows for the loss of infection-acquired immunity (so that individuals who recovered
from infection can become susceptible again). The resulting SEIQH RS model (with
standard incidence) is then extended to include various related epidemiological and
biological concepts (such as time delay, effect of periodicity, effect of an imperfect
vaccine and the effect of using multiple latent and infectious stages).

Some of the main mathematical and epidemiological questions the thesis seeks to

address are:

(a) What kind of dynamics does the basic quarantine/isolation model with stan-
dard incidence exhibit? In other words, how many equilibria does the system
have? Under what conditions do they exist (and/or are stable)? What kind of

bifurcation does the system undergo?

(b) Does the dynamical behavior of the basic model change if the associated incu-
bation period is modelled using time delay? In such a setting, will the choice of

incidence function have any effect on the theoretical result obtained?

(c) What is the role of periodicity in the transmission dynamics of a disease that is

controllable using quarantine and isolation?

(d) What is the (mathematical and public health) impact of an imperfect vaccine on

the dynamics of a disease that is controllable using quarantine and isolation?
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(e) What is the impact of using multiple latent and infectious stages on the transmis-
sion dynamics of a disease in the presence of quarantine and isolation? A related
question of interest is: what is the role of modelling the associated waiting times
in the respective latent and infectious compartments using gamma distribution

assumptions?

The thesis is organized as follows. In Chapter 2, some basic mathematical prelimi-
naries, relevant to the thesis, are described. A basic quarantine/isolation model, with
standard incidence, is developed in Chapter 3. A detailed discussion on the existence
and stability of the associated equilibria of the resulting SEIQH RS model is given.
In Chapter 4, the quarantine/isolation model studied in Chapter 3 is extended to in-
corporate the effect of time delay (to model the incubation period of the disease) and
two different disease incidence functions (namely, the Holling Type II incidence and
standard incidence).

To qualitatively assess the impact of seasonality (periodicity) on the transmission
dynamics of the communicable disease (being considered) in the presence of quarantine
and isolation, the model developed in Chapter 3 is studied, in Chapter 5, for the case
where some of the associated epidemiological and biological parameters are periodic.
Furthermore, the effect of an imperfect vaccine on the transmission dynamics of the
disease, in the presence of quarantine and isolation, is investigated in Chapter 6. The
basic model is further extended in Chapter 7, by considering multiple infection stages
for individuals in the exposed, infectious, quarantined and hospitalized classes. A
major feature of the model considered in Chapter 7 is that the average waiting times
in the exposed and infectious compartments is modelled using gamma distribution
assumptions. The main contributions of the thesis, together with some discussions on
future work, are summarized in Chapter 8. It should be mentioned that the terms
"exposed” and ”latent” are used interchangeably in this thesis (although some have

argued that the two terms are not exactly the same biologically). For the purpose of
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this thesis, ”exposed/latent” means newly-infected individuals who have not yet shown

clinical symptoms of the disease.
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Chapter 2

Mathematical Preliminaries

This chapter introduces some of the key mathematical theories and methodologies rele-
vant to the thesis (the material presented in this chapter are mostly standard definitions

and results obtained from the literature).

2.1 Equilibria of Linear and Non-linear Systems

Consider the system of ordinary differential equation (ODEs) below (where a dot rep-

d

resents differentiation with respect to time ()):

= f(r,t;pn), € UCR", tcR' and pecV CR?, (2.1)

where, U and V are open sets in R™ and RP, respectively, and p is a parameter. The
right-hand side function, f(x,t; u), of equation (2.1) is called a vector field. ODEs which
explicitly depend on time are called non-autonomous, while those that are independent
of time are called autonomous.

Consider the following general autonomous system:

= f(z), xeR"™ (2.2)
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Definition 2.1. An equilibrium solution of the system (2.2) is given by v = z € R,

where f(z) = 0. The vector or point T is called an equilibrium point.

Theorem 2.1. (Fundamental Existence-Uniqueness Theorem [71]). Let E be an open
subset of R™ containing x¢ and assume that f € CY(E). Then, there exists an a > 0

such that the initial value problem (IVP):

= f(x), x(0) = x,

has a unique solution x(t) on the interval [—a,al.

Lemma 2.1. ([71]). Let E be an open subset of R™ and let f : E — R™. Then, if
f e CYE), f is locally Lipschitz on E.

Definition 2.2. The Jacobian matriz of f at the equilibrium point T, denoted by

Df(z), is the matriz of partial derivatives of f evaluated at T. It is given by:

ofi ofr ,_
8_:5'1(36) oz, (Z)
J(z) = : : :
Ofn Ofn ,_
a—zl(ﬂ?) oz, (Z)

Definition 2.3. Let © = & be an equilibrium solution of (2.2). Then T is called
hyperbolic if none of the eigenvalues of D f(Z) has zero real part. An equilibrium point

that s not hyperbolic is called non-hyperbolic.

Consider the system:

= f(z), x=eR" 23)

v=g9(y), yeR",

where f and g are two C" (r > 1) functions defined on R".

15



Definition 2.4. ([94]). The dynamics generated by the vector fields f and g of (2.3)
are said to be locally C* conjugate (k < r) if there exist a C* diffeomorphism h which
takes the orbits of the flow generated by f, ¢(t,x), to the orbits of the flow generated

by g, W(t,y), preserving orientation and parametrization by time.

Theorem 2.2. (Hartman and Grobman [94]). Consider a C"(r > 1) vector field f

and the system
= f(z), zeR", (2.4)

with domain of f an open subset of R"™. Suppose also that (2.4) has equilibrium solu-

tions which are hyperbolic. Consider the associated linear ODE system

§=Df(@)E, EeR™ (2.5)

Then the flow generated by (2.4) is C° conjugate to the flow generated by the linearized

system (2.5) in a neighbourhood of the equilibrium point.

A direct implication of the Hartman-Grobman Theorem is that an orbit structure
near a hyperbolic equilibrium solution is (topologically) qualitatively-equivalent to the
orbit structure given by the associated linearized (around the equilibrium) dynamical

system.

2.2 Stability of Solutions and Bifurcations

The following are standard definitions and theorems used to analyze the stability of a
solution of an autonomous system. Let Z(¢) be any solution of the general autonomous
system (2.2). Then, Z(t) is stable if solutions starting “close” to Z(t) at a given time

remain close to z(t) for all later times. It is asymptotically-stable if nearby solutions
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converge to Z(t) as t — 0o. These concepts are formally defined below:

Definition 2.5. ([94]). The solution Z(t) is said to be stable if given e > 0, there exists
a6 = d(e) > 0 such that, for any solution y(t) of (2.2) satisfying |Z(ty) — y(to)| < 9,

|Z(t) — y(t)] < e fort>ty, to € R.

Definition 2.6. ([94]). The solution Z(t) is said to be asymptotically-stable if (i) it is

stable and (i) there exists a constant ¢ > 0 such that, for any solution y(t) of (2.2)
satisfying |7(to) — y(to)| < ¢, lim |2(t) — y(t)| = 0.

Definition 2.7. A solution which is not stable is said to be unstable.

Theorem 2.3. ([94]). Suppose all the eigenvalues of D f(Z) have negative real parts.

Then the equilibrium solution x = T of the system (2.2) is locally-asymptotically stable.

The equilibrium T is unstable if at least one of the eigenvalues has positive real part.

Bifurcations

In general, systems of physical interest typically have parameters which appear in the
defining (governing) system of equations. As these parameters are varied, changes may
occur in the qualitative structures of the solutions for certain parameter values. These
changes are called bifurcations. The parameter values where bifurcations occur are
called bifurcation values (or bifurcation points). A standard definition of bifurcation

at a point is given below.

Definition 2.8. Let
= f(z,p), x€R, peR, (2.6)

be a one-parameter family of one-dimensional ODEs. An equilibrium solution of (2.6)

given by (xz, ) = (0,0) is said to undergo bifurcation at p = 0 if the flow for u near
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zero and x near zero is not qualitatively the same as the flow near x =0 at p = 0.

There are various types of bifurcations in dynamical systems, including saddle-node,
transcritical, pitchfork, backward, Bogdanov-Takens and Hopf bifurcations [94]. Two
of these, forward and backward bifurcations, are relevant to this thesis (and were briefly
described in Chapter 1). In particular, the following theorem is used to establish the
presence of the backward bifurcation phenomenon for the vaccination model considered

in Chapter 6.

Theorem 2.4. (Castillo-Chavez and Song [13]). Consider the following general

system of ordinary differential equations with a parameter ¢

Z_‘g = f(z,¢), f:R*xR—R" and f € C*(R" x R). (2.7)

Without loss of generality, it is assumed that 0 is an equilibrium for system (2.7) for

all values of the parameter ¢, (that is f(0,¢) =0 for all ¢). Assume

Al: A= D,f(0,0) = (afi 0,0) is the linearized matriz of system (2.7) around the

L)
Ox;

equilibrium point 0 with ¢ evaluated at 0, zero is a simple eigenvalue of A and

all other eigenvalues of A have negative real parts;

A2: Matrix A has a nonnegative right eigenvector w and a left eigenvector v corre-

sponding to the zero eigenvalue.

Let fi. be the kth component of f and

Then the local dynamics of system (2.7) around 0 are totally determined by a and b.
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7.

a>0,b>0. When ¢ <0 with |¢| < 1, 0 is locally asymptotically stable and
there exists a positive unstable equilibrium; when 0 < ¢ < 1, 0 is unstable and

there exists a negative and locally asymptotically stable equilibrium.

a<0,b<0. When ¢ < 0 with |¢| < 1, 0 is unstable; when 0 < ¢ < 1, 0 is

locally asymptotically stable, and there exists a positive unstable equilibrium,;

a>0,b<0. When ¢ <0 with |¢p| < 1, 0 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < ¢ < 1, 0 is stable, and a

positive unstable equilibrium appears;

a<0,b>0. When ¢ changes from negative to positive, 0 changes its stability
from stable to unstable. Correspondingly a negative unstable equilibrium becomes

positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at ¢ = 0.

2.3 Irreducible Cooperative Systems

Consider the autonomous system (2.2), where f is continuously differentiable on an

open subset D C R". Let ¢;(x) denote the solution of the system (2.2) with initial

value z.

Definition 2.9. ([82]). f is said to be of Type K in D if for each i, fi(a) < fi(b) for

any two points in D satisfying a < b and a; = b;.

The Type K Condition can easily be identified from the sign structure of the Jacobian

matrix of the system (2.2). The following definition describes this structure.

Definition 2.10. ([82]). D is p-convez if tx + (1 —t)y € D for allt € [0,1] whenever

x,y €D and x <y.

19



It is clear that if D is a convex set, then it is also p-convex. Furthermore, if D is a

p-convex subset of R” and

Ofi
al‘j

>0, i£j, x€D, (2.8)

then f is of Type K in D.

Definition 2.11. ([82]). The system (2.2) is said to be a cooperative system if (2.8)
holds on the p-convex domain D. It is called a competitive system on D if D is p-convex

and the inequalities (2.8) are reversed:

dfi
83:]-

<0, i#j, 2€D.

Definition 2.12. ([82]). Annxn matriv A = (a;;) is irreducible if for every nonempty,

proper subset T of the set N = {1,2,--- ,n}, there is ani € Z and j € N'\Z such that
Q45 7£ 0.

Definition 2.13. ([82]). The system (2.2) is called irreducible in D if the Jacobian

matrixz of the system (2.2) is an irreducible matriz for every x € D.

Theorem 2.5. ([82]). Suppose the system (2.2) is irreducible and cooperative in D.
Then

%>>0, t> 0.
ox

Furthermore, if xo,yo € D satisfy xo < yo,t > 0 and if ¢i(x0), d1(yo) are defined, then

b¢(mo) < d¢(yo), t > 0.

The theory of irreducible cooperative systems will be used in establishing some of the

properties of the periodic solution discussed in Chapter 5.
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2.4 Lyapunov Functions and LaSalle’s Invariance
Principle

Definition 2.14. A point xq € R" is called an w—Ilimit point of x € R™, denoted by

w(z), if there exists a sequence {t;} such that

o(ti,x) — xg as t; — 0.

Definition 2.15. A point xqg € R"™ is called an a—Ilimit point of v € R"™, denoted by

a(x), if there exists a sequence {t;} such that
O(ti,x) — xo as t; — —o0.
Definition 2.16. ([94]). The set of all w—Ilimit points of a flow is called the w—limit

set. Similarly, the set of all a—limit points of a flow is called the a—limit set.

Definition 2.17. ([94]). Let S C R" be a set. Then, S is said to be invariant under

the flow generated by & = f(x) if for any xo € S we have z(t,0,zq) € S for all t € R.

If we restrict the region to positive times (i.e., ¢ > 0), then S is said to be a positively-
wnwvariant set. In other words, solutions in a positively-invariant set remains there for all
time. The set is negatively-invariant if the solution remain there when we go backward

in time.
Definition 2.18. A function V : R™ — R is said to be a positive-definite function if:
o V(x) >0 forallz #0,

e V(x) =0 if and only if x = 0.
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Definition 2.19. Consider the following system

T = f(x), xe€R" (2.9)

Let, T be an equilibrium solution of (2.9) and let V : U — R be a C' function defined

on some neighbourhood U of T such that
i) V' is positive-definite,
i) V(z) <0 in U\{z}.

Any function, V, that satisfies the Conditions (i) and (ii) above is called a Lyapunov

Function [50, 94]. The general Lyapunov Function Theorem is given below.

Theorem 2.6. (LaSalle’s Invariance Principle [41]). Consider the system (2.9). Let,

S={zelU: V(z)=0}, (2.10)

and let M be the largest invariant set of (2.9) in S. If V is a Lyapunov function on U
and v+ (xo) is a bounded orbit of (2.9) which lies in S, then the w—limit set of v (o)

belongs to M (that is, x(t,z9) — M ast — 0.)

Corolary 2.1. If V(z) — oo as |z| — co and V < 0 on R”, then every solution of
(2.9) is bounded and approaches the largest invariant set M of (2.9) in the set where

V' =0. In particular, if M = {0}, then the solution x = 0 is is globally-asymptotically
stable (GAS).

Theorem 2.7. ([41, 58]). Suppose there is a continuously differentiable, positive defi-

nite, and radially unbounded function V : R™ — R, such that

ov

5y @ 2)-f(@) = VV(z —2).f(x) < W(x) <0, Yz R,
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where W (x) is any continuous function on U. Then, T is a globally-stable equilibrium.

The solution x(t) converges to the largest invariant set S contained in E = {x € R" :

W(z) = 0}.

Example 2.1. Consider the following system,

The system has an equilibrium solution at (z,y) = (0,0). Let V(z,y) = 2*>+y*. Clearly
V(0,0) =0 and V(x,y) > 0 in any deleted neighbourhood of (0,0). Furthermore,

Viz,y) = 2zt + 2yy,
_ 3 3
= 2z(y—2°) +2y(—2 —y°),

= 202" +y*) <0.

Hence, V < 0 if (z,y) # (0,0). Thus, by Corollary 2.1, the equilibrium (0,0) is GAS.

Comparison Theorem

Another approach for establishing the global asymptotic stability of equilibria is by
using the comparison theorem. The main idea is to compare the solutions of the

system of differential equations

i = f(t,x), (2.11)

with the solutions of the differential inequality system

z < f(t,2), (2.12)
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or,

y=fty), (2.13)
on an interval. This method requires that the solution of the system (2.11) is unique.

Theorem 2.8 (Comparison Theorem [83]). Let f be continuous on R x D and of type
K. Let x(t) be a solution of (2.11) defined on [a,b]. If z(t) is a continuous function on
la,b] satisfying (2.12) on (a,b) with z(a) < z(a), then z(t) < z(t) for all t in [a,b]. If
y(t) is continuous on [a,b] satisfying (2.13) on (a,b) with y(a) > x(a), then y(t) > x(t)

for all t in [a,b].

2.5 Stability of Non-autonomous Systems

In this section, the results presented in Section 2.4 (for autonomous systems) are ex-

tended to non-autonomous systems.

Definition 2.20. ([41]). Consider the non-autonomous system:
i = f(t,z). (2.14)
Let V(t,x) : Rt x R" — R be continuous, U be any set in R™ and U be the closure of

U. Then V is called a Lyapunov function of (2.14) on U if

e given x in U there is a neighborhood N of x such that V (t,z) is bounded from

below for allt > 0 and all x € U N N.
o V(t,x) <W(x) <0 for (t,z) € Rt x U and W is continuous on U.

Theorem 2.9. ([41]). Define, E = {x € U : W(x) = 0}. Let V be a Lyapunov
function for (2.14) and let x(t) be a solution of (2.14) which is bounded and remains

in U fort>ty>0.
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(a) If for each p € U, there is a neighborhood N of p such that |f(t,z)| is bounded

for allt >0 and all x € NNU, then z(t) — E as t — oo.

(b) If W has continuous first derivative on U and W is bounded from above (or from

below) along the solution xz(t), then z(t) — E ast — oo.

Example 2.2. Consider the following system [41],

(2.15)

where p(t) > 6§ > 0. Let V(x,y) = (22 + ¢?)/2, then V = —p(t)y*> < 69>, and V is a
Lyapunov function on R? with W (z,y) = dy?. Furthermore, W = —20(zy + p(t)y?) <
—20xy. Since every solution of (2.15) is bounded, it follows that the Condition (b) in
Theorem 2.9 is satisfied. The set F, for system (2.15), is the z— axis. Hence, it follows

from Theorem 2.9 that each solution (z(t),y(t)) of (2.15) satisfies y(t) — 0 as t — co.

2.6 Next Generation Operator Method

The next generation operator method [21, 87] is popularly used to compute the repro-
duction number of disease transmission models (and, subsequently, establish the local
asymptotic stability of the associated disease-free equilibrium). The formulation given
in [87], for autonomous systems, is briefly described below.

Suppose the given disease transmission model, with non-negative initial conditions,

can be written in terms of the following autonomous system:
where V; = V; — V7 and the functions satisfy the following axioms below. First of all,
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Xs={x>0|z; =0, i =1,--- ,;m} is defined as the disease-free states (non-infected
state variables) of the model, where z = (21, -+ ,z,)", x; > 0 represents the number of

individuals in each compartment of the model.

(A1) if £ >0, then F;, V', V, >0fori=1,---,m.

(A2) if z; =0, then V; = 0. In particular, if x € X then V;, =0fori=1,--- ,m.
(A3) F, =0ifi > m.

(A4) if z € X, then Fi(z) =0 and VS (z) =0 fori=1,--- ,m.

(A5) If F(x) is set to zero, then all eigenvalues of D f(xy) have negative real part.

In the above, F;(z) represents the rate of appearance of new infections in compartment
i, Vi () represents the rate of transfer of individuals into compartment i by all other
means, and V; (z) represents the rate of transfer of individuals out of compartment i.
It is assumed that these functions are at least twice continuously-differentiable in each

variable [87].

Definition 2.21. (M —Matrix). An n X n matriz A is an M —matriz if and only if

every off-diagonal entry of A is non-positive and the diagonal entries are all positive.

Lemma 2.2. (van den Driessche and Watmough [87]). If & is a DFE of (2.16) and
fi(z) satisfy (A1) — (AD), then the derivatives DF(x) and DV (x) are partitioned as

F 0 V 0
DF(z) = , DV(z) = :
0 0 J3 Jy

where F' and V' are the m X m matrices defined by,

oF; ov;  _ . o
= = < <m.
F [&cj (:L‘)} and V {&cj (x)} with1 <14, 7<m
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Furthermore, F' is non-negative, V' is a non-singular M—matriz and J3, Jy are ma-
trices associated with the transition terms of the model, and all eigenvalues of Jy have

positive real parts.

Theorem 2.10. (van den Driessche and Watmough [87]). Consider the disease trans-
mission model given by (2.16) with f(x) satisfying axioms (Al) — (Ab). If T is a DFE
of the model, then T is LAS if Ro = p(FV™') < 1 (where p is the spectral radius), but

unstable if Ry > 1.

The formulation above has been extended by Wang and Zhao [91] to compute

the reproduction ratio for disease transmission models in a periodic environment (see

Appendix A).

2.7 The Poincaré Map

Definition 2.22. (Periodic Solution). A solution x(t) is said to be periodic if x(t+7T) =

x(t) for all t, for some T > 0.

Consider the system defined by

i = f(x), (2.17)

with f € C}(FE), where E is a open set of R". Assume that ¢(t, z,) represents the flow
of the system (2.17). Then, ¢(., zo) defines a closed solution of (2.17) if and only if for
allt € R, ¢(t+T,x0) = ¢(t, z0) for some T' > 0. The minimal time where this equality
holds is called the period of the periodic orbit ¢(¢, x).

Consider the system (2.17) through the point xy, with hyperplane S perpendicular
to v at xp. Then, for any point x € S sufficiently close to x¢, the solution of (2.17)
through = at ¢ = 0, given by ¢(t,z), will cross S again at a point P(x) near xy (as

depicted in Figure 2.1).
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Figure 2.1: Geometry of Poincaré map with zy € v, a closed orbit, where z € S,
y = P(t,z) [T1].

Definition 2.23. A Poincaré Map of the local section S is the map P : S — S defined
by P(z) = ¢(1,x) for x in some open subset of S and 7(x) is the first return of the
flow to S.

Theorem 2.11. ([71].) Suppose is a closed orbit that is linearly asymptotically-stable.

Then, v is asymptotically-stable.

Properties of Poincaré Map
e PY:= ], where I is the identity operator;
o Pl .= Po pPm:
o P-l:— plopn,

Theorem 2.12. ([71]). Let vy be a stable closed orbit of (2.17). Then, no eigenvalue

of DP(zy) has magnitude larger than one, where xq is any point on 7.
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2.8 Uniform Persistence Theory

Suppose X is a metric space with a metric d. Let P : X — X be a continuous map
and Xy C X is an open set. Define 90Xy = X \ Xy, and My = {x € 90X, : P™(z) €

0Xo,¥m > 0}, which may be empty.

Definition 2.24. ([104]). A bounded set A is said to attract a bounded set B in X if

limsup d(P™(x),A) = 0.

m—oo,rEB
o A subset A C X is said to be an attractor for fif A is nonempty, compact and

invariant (P(A) = A), and A attracts some open neighborhood of itself.
e A global attractor for P : X — X s an attractor that attracts every point in X.

e For a nonempty invariant set M, the set W*(M) := {x € X : lim d(P™(z), M) =

0} is called the stable set of M.
It should be recalled that a continuous mapping P : X — X is said to be point-

dissipative if there is a bounded set By in X such that By attracts each point in X.

Definition 2.25. ([104]). P is said to be uniformly-persistent with respect to (Xo, 0Xo)
if there exists an ¥ > 0 such that iminf d(P™(z),0Xo) > ¥ for all x € X,.

Definition 2.26. ([104]). P is said to be weakly uniformly-persistent with respect to
(Xo,0Xo) if there exists an ¥ > 0 such that limsup d(P™(z),0Xy) > ¥ for all x € X.

The following theorems are used in Chapter 5.

Theorem 2.13. ([104]). Assume that

(C1) P(Xy) C Xo and P has a global attractor A;

(C2) The mazximal compact invariant set Ag = AN My of P in 0X, admits a Morse

Decomposition {My,--- , My} with the following properties
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(a) M; is isolated in X;
(b) W*(M;) N Xg = ¢ for each 1 <i <k.

Then there exists 0 such that for any compact internally chain transitive set L with

L& M; for all 1 <i <k, we have irelgd(:c, 0Xo) > 6.

Theorem 2.14. ([104]). Let P : X — X be a continuous map with P(Xy) C Xj.

Assume P has a global attractor A. Then weak uniform-persistence implies uniform-

persistence.

Theorem 2.15. ([104]). Let T'(t) be an w-periodic semiflow on X with T (t)X, C Xo,

for allt > 0. Assume that S = T'(w) satisfies the following:
(1) S: X — X is dissipative;
(2) S is compact.
Then, uniform-persistence of S with respect to (Xq,0Xo) implies that of T(t).

Theorem 2.16. ([104]). Let S : X — X be a continuous map with S(Xy) C Xo.

Assume
(1) S: X — X is dissipative;
(2) S is compact;
(8) S is uniformly-persistent with respect to (Xo,0Xo).

Then there exists a global attractor Ay for S in Xy, and S has a coexistence state

o € Ap.
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2.9 Delay Differential Equations (DDEs)

Time delays are used to model several mechanisms in the dynamics of epidemics, such
as incubation periods, latent periods and age structure. A brief introduction (and basic

properties) of DDEs is given below.

2.9.1 Existence and uniqueness of solutions

Suppose 7 > 0 is a given real number, R" is an n-dimensional linear vector space
over the real numbers with norm |.|, C' = C([—7,0],R") is the Banach space of con-
tinuous functions mapping the interval [—7, 0] into R™ with the topology of uniform

convergence.

If ¢ € C, then the norm ||¢|| = supye_, g [¢(0)]. If

ceR, A>0 and z€ C([oc—r1,0+ A],R"),

then for any t € [0,0 + A], let ; be defined by

() =z(t+60), —7<60<0.

If Dis asubset of R x C, f: D — R", then the DDE on D is given by

B(t) = f(t, z0). (2.18)
The existence and uniqueness of solutions of the DDE (2.18) are stated below.

Theorem 2.17. ([42]). Suppose Q is an open subset of R x C' and f° € C(Q,R").
If (0,0) € Q, then there is a solution of the delay differential equation (2.18) passing
through (o, ¢).

More generally, if W C Q is compact and f° € C(2,R") is given, then there is
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a neighborhood V- C Q of W such that f° € C°(V,R"), there is a neighborhood U C
C°(V,R™) of f° and an o > 0 and r > 0 such that, for any (o,¢) € W, f € U, there is

a solution z(o, ¢, f) of the equation (2.18) through (o, ¢) which ezists on [o —r, 0+ a].

Theorem 2.18. ([42]). Suppose §2 is an open set in Rx C, f: Q — R™ is continuous,
and f(t,¢) is Lipschitzian in ¢ on each compact set in ). If (o,¢) € Q, then there is

a unique solution of equation (2.18) through (o, ).

The DDE (2.18) can contain distributed or discrete delay. A distributed DDE has

the form

i = f(t,x(t),/o x(t—IrT)d,u(T)),

where f depends on x computed on a continuum (possibly unbounded set of past

values). On the other hand, a discrete DDE has the form

= f(t,z(t),x(t — 1), - ,x(t —7,)) for 7, -+, 7, >0,

where only a finite number of past values of the state variables x are involved.

2.9.2 Global stability of equilibria

The following results can be used to establish the global stability property of the

equilibria of some DDE systems.

Lemma 2.3. ([97]). Consider the following delay differential equation

au(t — )

= o=y~ PO, w() =6(0) 20, 0.€[=7,0),6(0) >0 (2.19)

where a,b and w are positive constants and T > 0. Then,
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(i) Equation (2.19) has a trivial equilibrium uw = 0 and it is globally asymptotically

stable if a < b.

(i) If a > b equation (2.19) has a unique positive equilibrium u* = 92 which is

globally asymptotically stable.

Lemma 2.4. ([57]). Given a measurable sequence of non-negative uniformly bounded

functions f,,

/ liminf f,, < liminf / fn < limsup / fn < / lim sup f,.

2.10 Gamma Distribution

A gamma distribution is a two-parameter family of continuous probability distributions
[49]. It has a scale parameter § and a shape parameter k. If x is an integer, then the
distribution represents the sum of k£ independent exponentially distributed random
variables, each of which has a mean of #. The probability density function of the
gamma distribution can be expressed in terms of the gamma function parameterized
in terms of a shape parameter k£ and scale parameter 6. Both k& and # will be positive
values. The equation defining the probability density function of a gamma-distributed

random variable x is given by

ek —x6
I'(k)

flz;k,0) = 2" for x > 0 and k,0 > 0.

A random variable X that is gamma-distributed, with scale 6 and shape k, is denoted

by

X ~T'(k,0) or X ~ Gamma(k, ).
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Properties of Gamma Gistribution

Gamma distribution has the following properties [49]:

(i) Summation:
if X, has a (k;, ) distribution for i = 1,2, ..., N, then 3>V, X; ~ T (zjil ;. 9)

provided all X; (i =1,2,---, N) are independent;

(ii) Scaling:

)

If X ~ I'(k,6) then for any o >0, aX ~ I'(k,—).
a
Example 2.3. If E; ~ '(1,a;«) fori=1,2,--- ,m, it follows, from (ii), that a;E; ~
a; F;
m

iEi : : , @
I'(1, ). Similarly, i I'(1,ma). Finally, it follows from Item (i) above that E ~ T'(m, ma).
m
i=1

It should be mentioned that the numerical simulations in this thesis are carried out
using two Matlab routines, namely ODE45 (for the models in Chapters 3, 5, 6 and 7)

and DDE23 (for the DDE model in Chapter 4).
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Chapter 3

Basic Quarantine/Isolation Model

3.1 Introduction

As stated in Chapter 1, the quarantine (of individuals suspected of been infected) and
isolation (of those with disease symptoms) have, historically (over many decades or
even centuries), been applied to control the spread of of numerous emerging and re-
emerging human diseases, such as leprosy, plague, cholera, typhus, yellow fever, small-
pox, diphtheria, tuberculosis, measles, ebola, pandemic influenza and, more recently,
SARS [16, 48, 61, 64, 67, 73, 90, 93, 99].

Numerous mathematical modelling work have been carried out to assess the im-
pact of quarantine and isolation in controlling the spread of communicable diseases in
human and animal populations. Hethcote et al. [48] presented six endemic models
of SIQR-type (susceptible-infectious-quarantined-recovered) using three different inci-
dence functions (mass action, standard incidence and quarantine-adjusted incidence).
The study shows that the use of quarantine-adjusted incidence could lead to the pres-

ence of periodic solutions via a Hopf bifurcation. Nuno et al. [70] also established the
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presence of oscillatory solutions using an SIQR model for multiple strains of influenza,
which employs a quarantine-adjusted incidence function. Furthermore, the emergence
of SARS in 2003 led to the formulation of numerous quarantine and isolation models for
curtailing its spread (see, for instance, [16, 20, 38, 61, 64, 67, 73, 90, 93]). These mod-
els typically take the form of the SIR or SEIR Kermack-McKendrick formulation, with
additional compartments for the quarantined and isolated classes. Most of the disease
modelling studies, published in the literature, that use quarantine and isolation are
numerical in nature (see, for instance, the models in [16, 20, 38, 61, 64, 67, 73, 90, 93]).
That is, they provided quantitative evaluation of the control measures (quarantine and
isolation) by simulating the models with available epidemiological and demographic
data.

The purpose of this chapter is to provide a rigorous qualitative analysis of a de-
terministic model for quarantine and isolation, aimed at providing deeper insight into
the impact of these control measures on the spread of an arbitrary disease that is
controllable using quarantine and isolation. The model to be designed extends some
of the quarantine/isolation models, published in literature, notably by assuming that

infection does not confer permanent immunity against re-infection.

3.2 Model Formulation and Basic Properties

The total population at time ¢, denoted by N(t), is sub-divided into six compartments
of susceptible (S(t)), exposed (those who have been infected but do not show clinical
symptoms of the disease yet) (E(t)), quarantined (Q(t)), infectious (I(t)), hospitalized
(H(t)) and recovered (R(t)) individuals, so that

N@t)=S{t)+ Et)+1(t)+Q(t) + R(t) + H(t).

The susceptible population is increased by the recruitment of individuals into the popu-

36



lation (assumed susceptible), at a rate II. Susceptible individuals may acquire infection,
following effective contact with infectious individuals (in the I or H class) at a rate A,
where

AU +nH)

A= (3.1)

In other words, unlike in [38], it is assumed that the exposed and quarantined in-
dividuals (in the £ and @ classes, respectively) do not transmit infection (i.e., only
infected individuals with clinical symptoms of the disease are assumed capable of trans-
mitting the disease to susceptible individuals). Furthermore, in (3.1), the parameter
3 is the effective contact rate ( that is, contact capable of leading to infection), while
the modification parameter, 0 < n < 1, accounts for the assumed reduction in disease
transmission by hospitalized individuals in comparison to non-hospitalized infectious
individuals in the I class. Thus, 1 measures the efficacy of isolation or treatment
given to hospitalized individuals (isolation is perfect if n = 0, leaky if 0 < < 1 and
completely ineffective if n = 1). The population of susceptible individuals is further
decreased by natural death (at a rate p), and increased when recovered individuals
lose their infection-acquired immunity (at a rate ¢). Thus, the rate of change of the
susceptible population is given by

ds BS(I+nH)

@ g 2L
pra N #

The population of exposed individuals is generated by the infection of susceptible
individuals (at the rate A). This population is decreased by development of disease
symptoms (at a rate k), quarantine (at a rate o) and natural death (at the rate ), so

that

dE BS(I +nH)

= W —(k+o0+p)E.
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The population of infectious individuals is generated at the rate x. It is decreased by
natural recovery (at a rate 1), hospitalization (at a rate ¢), natural death (at the rate
w) and disease-induced death (at a rate ;). This gives

dI

%:/-;E—(yl+¢+u+51)l.

Exposed individuals are quarantined at the rate ¢. The population of quarantined
individuals is decreased by hospitalization (at a rate ) and natural death (at the rate
). Thus,

%zaE—(a—i—ﬂ)Q.

The population of hospitalized individuals is generated by the hospitalization of
quarantined individuals (at the rate «) and symptomatic individuals (at the rate ¢).
This population is decreased by recovery (at a rate v;), natural death (at the rate u)
and disease-induced death (at a rate dy < d;). It is assumed that hospitalized indi-
viduals have reduced disease-induced mortality rate in comparison to non-hospitalized
infectious individuals because of the hospital care (treatment etc.) given to hospital-
ized infectious individuals. Hence, the rate of change of the population of hospitalized
individuals is given by

dH

Finally, the population of recovered individuals is generated by the recovery of non-
hospitalized and hospitalized infectious individuals (at the rates ; and s, respec-

tively). It is decreased by the loss of natural immunity (at the rate 1)) and natural

death (at the rate p), so that
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dR
P I +yH — (Y + p)R.

Thus, the model for the transmission dynamics of an infectious disease in the pres-
ence of quarantine (of exposed individuals) and isolation (of infectious individuals) is
given by the following non-linear system of differential equations (a flow diagram is

given in Figure 3.1; and the associated variables and parameters are described and

estimated in Tables 3.1 and 3.2) [77]:

ds

@1 S —

=T+ YR —AS — 48,
%:)\S—(/{—FU-}-/L)E,

dl
d_:’fE—(’71+¢+M+51)[,
dé (3.2)
o =~ (et

dH
%:@Q+¢[—(Vz+ﬂ+52)[{7
dR

’r =7l +7H — (Y +pR.
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Table 3.1: Description of variables and parameters of the model

(3.2).

Variable Description

S(t) Population of susceptible individuals

E(t) Population of exposed individuals

I(t) Population of infectious (symptomatic) individuals

Q(t) Population of quarantined individuals

H(t) Population of hospitalized individuals

R(t) Population of recovered individuals

Parameter Description

II Recruitment rate

7 Natural death rate

I5] Effective contact rate

n Modification parameter for reduction in infectiousness
of hospitalized individuals

K Progression rate from exposed to infectious class

o Quarantine rate for exposed individuals

« Hospitalization rate for quarantined individuals

10) Hospitalization rate for infectious individuals

P Rate of loss of infection-acquired immunity

Y1 Recovery rate for infectious individuals

Y2 Recovery rate for hospitalized individuals

01 Disease-induced death rate for infectious individuals

09 Disease-induced death rate for hospitalized individuals
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Susceptible

Individuals S(t)
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Exposed Quarantined

Individuals E(t) Individuals Q(t)

Infectious Hospitalized

Individuals I(t) Individuals H(t)

6,H

Recovered

Individuals R(t)

[

Figure 3.1: Flow diagram of the model (3.2).

The model (3.2) is a slight extension of the SETQH R model for SARS given in [38], by
including a term for the loss of infection-acquired immunity (at the rate ). The main
objective of this chapter is to carry out a detailed rigorous mathematical analyses of the
model (3.2) (no such analyses was provided in [38]). Such analyses will provide insight
into the transmission dynamics of the disease (vis-a-vis the persistence or elimination
of the disease) as well as the role of the control measures (quarantine and isolation) in

effectively combatting the spread of the disease in a population.
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Since the model (3.2) monitors human populations, all its associated parameters

are non-negative. Further, the following non-negativity result holds.

Theorem 3.1. The variables of the model (3.2) are non-negative for all timet > 0. In
other words, solutions of the model system (3.2) with positive initial data will remain

positive for all t > 0.

Proof. Let t; =sup{t >0: 5 >0,F >0, >0,Q >0,H > 0}. Thus, t; > 0. It

follows from the first equation of the system (3.2) that

% =TT+ YR(t) — M)S(t) — pS(t) > T — (A + ) S(1),

which can be re-written as,

%{S(t) exp luH /0 tA(T)dT]} > Mexp {ut+ /O tA(T)dT} |

Hence,

S(ty) exp {utl—i— /0 " A(T)dT} ~ S(0) > /O " Mexp [My+ /0 yA(T)dTl dy,

so that,

S(ty) > S(0) exp [—utl _ /0 ! A(T)df}

+{exp {—utl—/otl /\(T)dT}}/OtIHeXp [,uy—i—/oy r)dr

Similarly, it can be shown that £ > 0,1 > 0, > 0,H >0 and R > 0 for all ¢ > 0.

dy > 0.

O

Theorem 3.1 can also be proven by using the method in Appendix A of [86].
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Lemma 3.1. The closed set
6 II
D=<(S,E,I,Q HR)eR, : S+ E+I+Q+H+R< —
i

is positively-invariant for the model (3.2).

Proof. Adding all the equations of the model (3.2) gives,

dN
— =11 — uN — (011 + 62 H).

dt (3.3)

Since dN/dt < TI — uN, it follows that dN/dt < 0 if N > IT/u. Thus, a standard com-
parison theorem (Theorem 2.8) can be used to show that N < N(0)e™# + %(1 — e,
In particular, N(t) < II/u if N(0) < II/u. Thus, the region D is positively-invariant.
Further, if N(0) > II/u, then either the solution enters D in finite time, or N(¢)

approaches IT/p asymptotically. Hence, the region D attracts all solutions in R}. [

Since the region D is positively-invariant, it is sufficient to consider the dynamics of
the flow generated by the model (3.2) in D, where the usual existence, uniqueness,

continuation results hold for the system [46].

3.3 Stability of Disease-free Equilibrium (DFE)

3.3.1 Local stability

The model (3.2) has a DFE, obtained by setting the right-hand sides of the equations

in (3.2) to zero, given by

E = (5" E*, I", Q", H*, R*) = (II/u, 0, 0, 0, 0, 0). (3.4)
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The local stability property of & will be explored using the next generation operator
method [21, 87]. Using the notation in [87], the non-negative matrix, F, of the new
infection terms, and the M-matrix, V, of the transition terms associated with the model

(3.2), are given, respectively, by

0 8 0 no
o 000 O |
000 O
000 O
and,
w+r+o 0 0 0
V= —K p+or+vm+¢ 0 0
—0 0 W+« 0
0 —¢ —a  ptye+ 02

It follows that the control reproduction number (2, 44], denoted by R. = p(FV 1),

where p is the spectral radius, is given by

Blr(p + a)(p + v2 + d2) + ndr(p + a) + ano(p+ 61 + 71 + @)]
(n+r+0)(p+ 01 +7 + @)+ a)(p+ v+ 02) '

Re.=

Using Theorem 2.10, the following result is established.

Lemma 3.2. The DFE of the model (3.2), given by (3.4), is locally-asymptotically
stable (LAS) if R. < 1, and unstable if R. > 1.

The threshold quantity, R., measures the average number of new infections gener-

ated by a single infectious individual in a population.
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Interpretation of R,

In order to interpret the reproduction threshold, the expression for R. above is re-

written as

Bk N ok
(ntr+o)pt+d+n+9¢) (ptr+o)(p+d+y+¢)(n+y2+0d)
Bao
+(,u+/<—|—a)(,u+a)(,u+72+52)‘

Re=

(3.5)

The first term of (3.5) represents the number of new infections generated by non-
hospitalized infectious individuals (in the I class). It consists of the product of the
infection rate in the I class (i.e., rate at which a single infected individual in class
I produces new infections in a wholly susceptible population) (3), the fraction of

exposed individuals that survived the exposed class and move to the symptomatic

N+ O+ p+o
Similarly, the last two terms in (3.5) represent the number of infections generated

1
class [ —" ) and the average duration in the I class :
K+o+pu

by hospitalized individuals (in the H class). In particular, the second term represents
contributions into the hospitalized class by infectious individuals (in class ). It is a
product of the infection rate of hospitalized individuals (/37), the fraction that survived

the exposed class and move to the infectious class ( >, the fraction of indi-

K+o0+ 1
viduals that survived the I class and move to the hospitalized class ( ¢ )
N+ O+ p+ o
1
and the average duration in the hospitalized class (— Finally, the last
Yo+ H+ 0o

term of (3.5) represents the contributions of quarantined individuals into the hospi-
talized class. It is a product of the infection rate of hospitalized individuals (8n), the

fraction of quarantined individuals that survived the quarantine class and move to the

1
hospitalized class ( ) and the duration in the hospitalized class (—)

Q-+ Yo + p+ 02
Lemma 3.2 implies that the disease can be eliminated from the community (when

R. < 1) if the initial sizes of the sub-populations of the model are in the basin of
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attraction of the DFE (&). To ensure that disease elimination is independent of
the initial sizes of sub-populations, it is necessary to show that the DFE is globally-

asymptotically stable (GAS) if R. < 1. This is explored below.

3.3.2 Global stability

It is convenient to express R. as

Blkksks + n(prks + aoks)]
kikoksky ’

Re=

where,
ki=p+r+o, hke=ptor+mn+e¢, ki=pt+a and ky=p+e+ 0.

Theorem 3.2. The DFE of the model (3.2), given by (3.4), is GAS in D whenever
R. < 1.

Proof. Consider the following Lyapunov function:

_ (kR ky £ no a
7= () e () () m

with Lyapunov derivative given by
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Fe () e () e () e

kiR [650 i) E} . (’ﬂ]j_mﬁ) (hE — kol) + (ki) (0F — ks0)

nB N
+aQ + ¢I — k4H,

k kik k k
4RC(I+nH>_ 1 4RCE+F"( 4+n¢)E—MI+%E

775 kQTI n ]{33
+ ol — k4H, since S < N in D

<

—k1ksRe k ksR. k
_ | kiR K (ks + 1) CW}EJF(%L 4Re ks +n¢

ks n 7

I +ky(R.—1)H,
s i ) ol )

k
= ﬁ(Rc— DI +nH) <0 forR.<1.

Since all parameters of the model (3.2) and variables are non-negative, it follows that
fSOfochg1Withf:OifandonlyifE:I:Q:H:O. Hence, F is a
Lyapunov function on D.

Thus, it follows, by the LaSalle’s Invariance Principle (Theorem 2.6), that

(E,1,Q,H) — (0,0,0,0) as t — oc. (3.6)

Furthermore, it follows from (3.6) that limsup/ = liminf/ = 0 and limsup H =

t—o0 t—00 t—00
li%n inf H = 0. Since limsup/ = 0 and limsup H = 0, it follows that, for sufficiently
—00 t—o00 t—o0
small @w* > 0, there exist constants M;, My > 0 such that limsup I < @” for all t > M,
t—o00

and limsup H < @™ for all t > M.

t—o0

Hence, it follows from the last equation of the model (3.2) that, for ¢ > max{M;, M},
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R <@ + yw” — pR.

Thus, by the comparison theorem (Theorem 2.8),

Nw@* + Yow*

Y

R>* =limsup R <
t—o0 ,U

so that, by letting w* — 0,

R =limsup R < 0. (3.7)

t—o00
Similarly (by using li{n inf / =0 and liminf H = 0), it can be shown that

t—o0

R, = li{n inf R > 0. (3.8)

— 00

Thus, it follows from (3.7) and (3.8) that

R, > 02> R™.
Hence,
tlim R=0. (3.9)
Similarly, it can be shown that
tlim S(t) =11/ p. (3.10)

Thus, it follows from (3.6), (3.9) and (3.10), that every solution of the equations in the

model (3.2), with initial conditions in D, approaches & as t — oo when R, < 1. [

The epidemiological implication of the above result is that, the combined use of
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quarantine and isolation can lead to disease elimination if they can bring (and keep)
the threshold quantity, R., to a value less than unity (that is, the condition R. < 1
is necessary and sufficient for disease elimination). Figure 3.2 depicts the numerical
results obtained by simulating the model (3.2) using various initial conditions for the
case when R. < 1. It is evident from this figure that all initial solutions converged to

the DFE, & (in line with Theorem 3.2).

3.4 Existence and Stability of Endemic Equilibria

In this section, the possible existence and stability of endemic (positive) equilibria of
the model (3.2) (i.e., equilibria where at least one of the infected components of the

model is non-zero) will be explored.

3.4.1 Existence

Let, & = (S*, E**, I**, Q*™*, H**, R**) represent any arbitrary endemic equilibrium of
the model (3.2), so that N** = §** + E*™* 4 [** + Q* + H™ + R™.

Solving the equations of the model (3.2) at steady-state gives

S — m’ B = A5 ’ [ — KE ’
A 4 4 ey ko
(3.11)
Q** _ O'E**7 e O./Q** + ¢I** '
k?3 k4

It should be noted that the force of infection, A, defined in (3.1), can be expressed, at

endemic steady-state, as

)\** —
N**

(3.12)

For computational convenience, the expressions in (3.11) are re-written in terms of
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N S5** as below:

E** — I** —
ke koky
g H* = = PS5, (3.13
@ Faky Mk T Rk AT (B13)
o _ Y1RN*S Yoo A** S n NS — PAS
Fiko(p+v)  kikska(p+1)  kikoka(p + 1)
where,
ao oK V1K Y2000 V20K
P = + and P, = + .
YT kiksks | kikoky T kb 0) | kikska(p+ ) kikoka(p+ )
Substituting the expressions in (3.13) into (3.12) gives,
ky kaky F1ky

(3.14)
Dividing each term in (3.14) by A\*S**(and noting that, at the endemic steady-state,
NS £ 0) gives

Ok 1 K
1+ P\ = —— + nP;, where Ps= — + —— + P, + ¢y P, > 0.
5 k1 ko bnkr, e b ki koky 1ol 2

It should be noted that
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Ok
14+ P\ = —— P
+ 3 kle +577 1

K ao oK
= T (klm * klkzk) ’

(3.15)
- ﬁ Hk3k4 + n(b]fgli + Oé??O'kQ
B k1kokska ’
=R..
Hence,
-1
A= RCP > 0, whenever R, > 1. (3.16)
3

The components of £ can then be obtained by substituting the unique value of \**,

given by (3.16), into the expressions in (3.13). Thus, the following result is established.

Lemma 3.3. The model (3.2) has a unique endemic (positive) equilibrium, given by

&1, whenever R, > 1.

3.4.2 Local stability

The local stability of the unique endemic equilibrium of the model is now considered

for a special case (where the total population is at the disease-free steady-state).

Theorem 3.3. The unique endemic equilibrium of the model (3.2), with N = N*, is
LAS if R. > 1.

Proof. Tt should be stated that, for the case when N = N*, it can be shown that
the model (3.2) has a unique endemic equilibrium point, denoted by & = & |n—n-,
whenever R. > 1. The proof of Theorem 3.3 is based on using a Krasnoselskii sub-

linearity trick (see [46, 85], and also [28, 29]).
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Let R. > 1 and N = N* (so that the associated endemic equilibrium exists).
Furthermore, the substitution S = N* — F — Q — I — H — R is used to re-write the

model (3.2) as:

dE  B(I+nH)(N*—E—Q—1—H—R)
dat N*

dl
EZHE—(71+¢+M+51)L

L oE (0t me (3.17)

dH
EZQQ+¢[—(72+M+52)H,
dR

’ =l +vH — (¢ +upR.

—(k+ 0o+ p)E,

Linearizing the system (3.17) around the endemic equilibrium, &, gives

% =[-a1— (u+Kr+0)|E+ (ag —a))l —a1Q + (nag — a1)H — a1 R,

% =kE—(m+o+pu+d)l,

Y ob—(atne (3.18)
ij—]j =aQ+ ¢l — (2 +p+0)H,

% =l +7%H - (W +p)R,

where, a; = B(I™ +nH"™)/N* and a, = 35 /N*.

It follows that the Jacobian of the system (3.18), evaluated at &, is given by
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—a; —k ays—a; —a; nay —ag —ay
K —ko 0 0 0
J(&) = o 0 —ky 0 0
0 ) a —ky 0
0 gl 0 Y2 —(p+v)

Assume that the system (3.18) has solution of the form

Z(t) = Zoe™, (3.19)

with Zg = (Z1, 2y, Z3, Zy4, Zs),w, Z; € C (i = 1,2,...,5). Substituting a solution of

the form (3.19) into the system (3.18) gives

wZy = [—a; — (u+ K+ 0)|Z1 + (ay — a1) Zy — a1 Z3 + (nas — a1) Zy — a1 Zs,

wZey =kZ1— (M + b+ p+ 61)2s,

wZy =071 — (p+ a)Zs, (3.20)
wZy = ¢y + als — (V2 + p + 02) Zy,

WZs = 122 + Y22y — (1 + V) Zs.

System (3.20) is simplified as follows. Firstly, all the negative terms in the last four
equations of (3.20) are moved to the respective left-hand sides. Secondly, the (resulting)
last four equations are then re-written in terms of Z; and substituted into the first
equation of (3.20), and all its negative terms are moved to the right-hand side. Doing

all these lead to the following system:
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[1+ Fi(w)] 21 = (MZ),
[1+ Fy(w)] 2y = (M Z),,
1+ F3(w)] Zs = (MZ)s, (3.21)
[1+ Fy(w)] Zy = (M Z)s,

[]_ —|— F5(w)] Z5 = (MZ)5,

where,
w a K
Fi(w) = + - {1+ + 7
pu+K+o pu+r+o wHpu+m+o+dh wtpta
N a [ K N ao ]
pre+o [(Wrn+o+pt+o)(w+r+p+d) (WA p+a)(w+ v+ @+ ds)
i ap [ KN i Qo072 }
p+e+o|(Wrp+)(wHp+a) (W4 pu+6)(w+p+0) (w+p+a)
X aq "172¢
pte+o [(wWtn+o+p+o)wHrp+p+d)(w+p+v)]’
w w w w
Fy(w) = , Fy(w) = , Fy(w) = ————— and F5(w) = ,
) pty+ o+ () p+a () Yo+ p+ 0o ) ptv
with,

54



0 0
N*(p+ K+ o0) N*(u+ K+ o)
K
0 0 0 0
w+y+ o+ 0
M = g 0 0 0 0
n+ o
0 ¢ a 0 0
Yo+ p+02 Yo+ p 0o
§a! Y2
0 0 0
p+ U

The equilibrium & = (E**, [**,Q**, H**, R**) satisfies & = M&;. Furthermore, the
notation (MZ); (1 = 1,...,5) denotes the ith coordinate of the vector MZ, and the
matrix M has non-negative entries.

If Z is a solution of (3.21), then it is possible to find a minimal positive real number,

r, such that [28, 29

|1Z]| < réi, (3.22)

where, ||Z|| = (IZ1], | Z2l, 1| Zs|, || Z4l|, || Z5]|) with lexicographic order, and |.|| is a
norm in C. The main goal is to show that Re(w) < 0. Assume, now, that Re(w) > 0,

and consider the following two cases.

Case 1: w=0.

In this case, (3.20) is a homogeneous linear system in the variables Z; (i = 1,...,5).

The determinant of this system is given by

A=—A + (SN?C - 1) Ay, (3.23)
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where,

Ar=Mm+o+p+0)(p+a)(ye+p+d2) (1 +)ar + k(i + a)(y2 + p+ 62) (1 + )ay

+ kp(p+ o) (1 +Y)ar + ky(p+ a)(y2 + e+ d2)ay

+o(y+o+p+0)(ve+p+0)(u+Y)a

+aoy(pp+v+ ¢+ 01)ar +ao(n+ o+ p+ o) (n+v)a

+ rd7a(p + a)ay >0,

Ay = (p+ K+ o) (7 + o+ p+01) (14 a) (2 + g+ 02) (1 + ).

k3%

To finally determine the sign of A, the sign of N £ — 1in (3.23) must be obtained.

*

This is investigated below. Solving (3.17) at the endemic steady-state (£;) gives

Y

v K,E**
p+n+ o+
» O'E**
Q" = ;
p+a
e 0Q 01
Yo + p+ 02

Substituting equations (3.25) and (3.26) into (3.27) gives

o6

(3.24)

(3.25)

(3.26)

(3.27)



ao K¢

H™ = + B, 3.28
(Ht+a)(e+ptd) (k+tdh+7+0)(r+pr+d) (3.28)
Furthermore, using equations (3.25) and (3.28) in (3.24) gives
S _ (utr+o)n+o+n+0)(ut )2+ p+d)

N Bl ) + i+ ) + 0 (+ 0+ i+ 00 FngRlt )] (500

)

$|-

so that,

S 1
——=0.
N* R,
Thus, equation (3.23) becomes
A= —Al < 0.

Since the determinant A is negative, it follows that the system (3.20) has a unique

solution, given by Z = 0 (which corresponds to the DFE (&) of the model (3.2)).
Case 2: w # 0.

Since Re(w) > 0 (by assumption), then |1 + Fj(w)| > 1 for all ¢ = 1,...,5. Define

F(w) = min; |1 + F;|. Then, F(w) > 1, and % < r. Furthermore, since r is a
w

minimal positive real number such that ||Z| < r&, it follows then that

I1Z| > %&. (3.30)
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On the other hand, by taking the norm of both sides of the second equation in (3.21),

and noting that M is a non-negative matrix, it follows that:

FW)l|Za]l < 1+ ()| |1 Za]l = (M Z)sl < M| Zo|| < rM(Er)o = 1(E1)s = 1™,
(3.31)

r
F(w)
Hence, Re(w) < 0. Thus, all eigenvalues of the characteristic equation associated with

Furthermore, it follows from (3.31) that || Zs| <

I, which contradicts (3.30).

the linearized system (3.18) will have negative real part, so that the unique endemic

equilibrium, &;, is LAS whenever R, > 1. n

It should be noted that the condition N = N* in Theorem 3.3 represents the case
where the disease-related mortality is assumed to be negligible (in this case, it follows
from (3.3) with §; = , = 0 that 4&F = II—uN, so that N — N* as t — oo) or the case

where mass action incidence is used in (3.2), as against standard incidence (i.e., the

rate 3 in (3.1) is replaced by @) The epidemiological implication of Theorem 3.3 is
that the disease will persist in the population if R. > 1 (and the initial sizes of the sub
populations of the model are in the basin of attraction of the endemic equilibrium 51)
Numerical simulation results, depicted in Figure 3.3, using numerous initial conditions,

show convergence of the solutions to & for the case R, > 1 (in line with Theorem 3.3).

3.4.3 Global stability for special case

Here, the global asymptotic stability property of the endemic equilibrium of the model
(3.2) is given for the special case when recovered individuals do not lose their infection-
acquired immunity (i) = 0), hospitalized individuals do not transmit infection (7 = 0)
and the associated disease-induced mortality is negligible (9; = d2 = 0). The model
(3.2), with ¢ = n = §; = J, = 0, then reduces to:
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— == \S —uS

dt /’L7

dE

— =ANS—(k+o+pk,
dt

dl
%:KE—<71+¢+M)[7
i (3.32)
o —oF (et )@,

dH
%IQQ+¢I—(’V2+M)H>
dR

— =y H—uR

dt Y1 +r72 Hiv,

where, now,

a= oL (3.33)

Adding the equations of the reduced model (3.32) gives dN/dt = II — uN, so that
N — 11/ as t — oo. Thus, IT/p is an upper bound of N (t) provided that N(0) < I/ p.
Further, if N(0) > II/u, then N(t) will decrease to this level. Using N = I/ in (3.33)

gives a limiting (mass action) system given by (3.32) with

A = 611, where (3, = % (3.34)

It can be shown that the associated reproduction number of the reduced model (3.32)

with (3.34) is given by

Ok Ok

Rer = = )
(M"‘/‘i"‘@')(ﬂ""h‘*’(ﬁ) b1by
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with by = p+ k4 0 and by = p+ 11 + ¢. Furthermore, it is easy to show, using the
technique in Section 3.4.1, that the reduced model, given by (3.32) with (3.34), has a

unique EEP whenever R, > 1.

Lemma 3.4. The reduced model, given by (3.32) with (3.34), has a unique positive

endemic equilibrium whenever R > 1.
Define, Dy = {(S,E,[,Q,H,R) eED.E=1=Q= H:R:O}.

Theorem 3.4. The unique endemic equilibrium of the reduced model, given by (3.32)

with (3.34), is GAS in D\ Dy if Rer > 1.

Proof. Consider the reduced model, given by (3.32) with (3.34). Let R. > 1, so
that the associated unique endemic equilibrium (of the model (3.32) with (3.34)) exists
(Lemma 3.3). Further, consider the following non-linear Lyapunov function (non-linear
functions of this type have been used in the ecology and epidemiology literature, such
as in [33, 37, 39]) for the sub-system of the model (3.32) consisting of the first three

equations of the model (3.32), given by:

F=85-5 S ln(S**>—i—E E E 1n<E**)+/{{] I 1 hl(]**)}’
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with Lyapunov derivative,

LS. . B by . I
F=85-"g8+E- EE+;<J— ]1>,

=1 — ST — pS — SS (IT — 3, ST — uS) + p1ST — b E
E**

E

B g g w Db\ ETBSI
(15 s (1-52) ¢ (e ) B

b [**E N blbg_[**'
I K

kk

b I
(615 — b E) + ;1 [KJE —bol —

(KE — bgl)} , (3.35)

+ b B -
It can be shown from (3.32) that, at the endemic steady-state,

65**_ (M+/€+0>(M+71+¢) _blb?
1 = = .

Y K

(3.36)

Using the relation (3.36) in equation (3.35) gives
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S S E
b I™FE
I
S** S 618**2 ﬁlle**
S ( 5 S**) + 515 5 z + by
bI*™*FE

S S S** STE* BT
— *k 2 _ = **]** . o . )

In the above calculation, the relation by E** = (3, 5™ I** (obtained from (3.32) at en-
demic steady-state) has been used. The first term in the last equation of F can be

simplified as follows.

_ = — < 0.

Finally, since the arithmetic mean exceeds the geometric mean, it follows that

3— "o — - <0.
S SeI~E  IE™

Further, since all the model parameters are non-negative, it follows that F <0 for
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Rer > 1. Hence, F is a Lyapunov function of the sub-system of the model (3.32) con-
sisting of the first three equations, on D \ Dy. Therefore, it follows, by the LaSalle’s

Invariance Principle (Theorem 2.6), that

(S,E,I) — (S™, E*™,I") as t — oc. (3.37)

It is clear from (3.37) that limsup £ = E**. Thus, for sufficiently small ¢ > 0, there

t—o00

exists a 77 > 0 such that £ < E** + ¢ for all ¢t > T. Furthermore, it follows from the

fourth equation of (3.32) that, for ¢ > T},

Q< o(E™ +¢)— (a+p)Q.

Thus, by comparison theorem (Theorem 2.8),

E**
Q> =limsup @ < u.
t—00 a+ [
Hence, by letting e — 0,
oE**
= limsu < . 3.38
Q msup Q) < o . (3.38)
Similarly, by using li{n inf £ = E**, it can be shown that
O_E**
0o = liminf Q) > . 3.39
Qoo = liminf Q > — i (3.39)
Thus, it follows from (3.38) and (3.39) that
O_E**
o> > Q.
Qoo 2 T2 Q
. oE™ o o ) . o
Hence, thm Q = ot = Q™. In a similar way, it can be shown that 1thrn H=H
and lim R = R*™. Thus,

t—o0
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(Q,H,R) — (@™, H™, ™) as t — o0. (3.40)

Hence, it follows from (3.37) and (3.40) that every solution to the equations of the
reduced model, with initial conditions in D \ Dy, approaches the unique endemic equi-
librium of the reduced system (3.32) with (3.34) as t — oo for R, > 1.

]

Although no global asymptotic stability result is given for the endemic equilibrium
(&1), further extensive numerical simulations of the model (3.2) suggest that the unique
endemic equilibrium of the model (3.2), &, is GAS in D \ Dy, whenever R, > 1. This

suggests the following conjecture.

Conjecture. The unique endemic equilibrium of the model (3.2), given by &, is GAS
in D\ Dy if Re > 1.

3.5 Threshold Analysis

In order to qualitatively measure the effect of quarantine and isolation on the transmis-
sion dynamics, a threshold analysis on the parameters associated with the quarantine
of exposed individuals (o) and the isolation of individuals with disease symptoms (¢) is
carried out by computing the partial derivative of R. with respect to these parameters.

For the case of the quarantine of exposed individuals, it is easy to see that

OR. :5{[#2+('f+¢+71+51)N+’f(71+51)]0”7—77'f¢,u}
o (u+r+o) (tm 0+ ) (1t @) (1 ys + 52)

B Bk (1 + 1 (02 + a4+ 72) + a(y2 + 02)]
(4 r+0) (47 +0+0) (n+a) (u+y2+68)
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so that,

OR.
Jo

<0(>0)iff n <n, (n>n,),

where,

flp® 4+ (G + a4 99) pt a(ye + 6)]
W+ (k+o+m+o)p+rn+d)]a—drp

0<n, =

Thus, the quarantine of exposed individuals will reduce the reproduction number (R,)
and, therefore, reduce disease burden (new infections, hospitalization, mortality etc.) if
the relative infectiousness of hospitalized individuals () does not exceed the threshold
No-

On the other hand, if > 7,, then the use of quarantine (of exposed individuals)
will increase the reproduction number (R.), and, consequently, increase disease burden
(hence, the use of quarantine is detrimental to the community in this case). This result

is summarized below.

Lemma 3.5. The use of quarantine of the exposed individuals will have positive (neg-

ative) population-level impact if n < (>) N,

Similarly, the impact of the isolation of infectious individuals is monitored by com-

puting the partial derivative of R. with respect to the isolation parameter ¢. This

gives
8726: Br (1471 +01)n — (92 + 62 + )]
00 (u+72+02) (u+m+01+0) (u+r+0)
Thus,
OR. :
5 <0(>0)iff n <ng(n>ny),
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where,

+ 05 +
Y1+t
Hence, the use of isolation (of individuals with disease symptoms) will be beneficial to

the community if the relative infectiousness of hospitalized individuals ( represented by

the parameter 1) does not exceed the threshold 7,. This result is summarized below.

Lemma 3.6. The use of isolation of infectious individuals will have positive (negative)

population-level impact if n < (>)ng.

In summary, the qualitative analyses carried out in this section show that the
combined use of quarantine (of exposed individuals) and isolation (of individuals with

symptoms) will have positive population-level impact if and only if

n < min{n,, 1y} (3.41)

Condition (3.41) makes R, a decreasing function of the quarantine and isolation pa-
rameters o and ¢. These strategies (quarantine and isolation) will fail (i.e., have no

population-level impact) if

n > max{7n,, N} (3.42)

Figure 3.4 shows that whenever condition (3.41) holds, the use of quarantine and
isolation would have positive impact, since the cumulative number of new cases of
infection in the presence of quarantine and isolation is less than that for the case when
quarantine and isolation are not implemented. However, for the case when Condition
(3.42) holds, the use of quarantine and isolation induce detrimental population-level
impact since, in this case, the cumulative number of new cases exceeds that for the

case when quarantine and isolation are not used (Figure 3.5).
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3.6 Summary

A deterministic model for assessing the combined impact of quarantine of asymptomatic

cases and the isolation of symptomatic cases on curtailing the spread of a communicable

disease is presented and rigorously analyzed. The model, which consists of six mutually-

exclusive epidemiological compartments, uses standard incidence formulation (for the

infection rate) and assumes the loss of infection-acquired immunity among recovered

individuals. Simulation results, using a reasonable set of parameters values (consistent

with the SARS outbreaks of 2003), are reported. The main findings of this chapter are

summarized below:

(i)

The model (3.2) has a globally-asymptotically stable disease-free equilibrium
whenever the associated reproduction number of the model is less than unity

(Theorem 3.2);

The model has a unique endemic equilibrium whenever the reproduction number

exceeds unity (Lemma 3.3);

The unique endemic equilibrium is shown to be locally-asymptotically stable and

globally-asymptotically stable for special cases (Theorems 3.3 and 3.4);

The effectiveness of quarantine (of asymptomatic cases) and isolation (of symp-
tomatic cases) is dependent on the size of the modification parameter for the
reduction in infectiousness of hospitalized individuals (n). The combined use
of quarantine and isolation will have positive population-level impact if n <
max{7,,s} and will have no, or result in detrimental, population-level impact

if n > max{n,,ns} (Lemmas 3.5 and 3.6).
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Table 3.2: Estimated values for the pa-
rameters of the model (3.2)

Parameters | Values (per day) | Sources
b 0.1, 0.2] 38
H 0.0000351 [38]
72 0.042553 [15]
01 0.04227 159
02 0.027855 (15
A 0.156986 23]
@ 0.156986 [23]
4 0.20619 (15
Il 136 38]
¥ 0.005 Assumed
d (0,1] Variable
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Figure 3.2: Simulation of the model (3.2) showing the total number of infected individ-
uals as a function of time for R. < 1. Parameter values used are as given
in Table 3.2, with 5 = 0.1andn = 0.5 (so that, R. = 0.8065.)
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Figure 3.3: Simulation of the model (3.2) showing the total number of infected individ-
uals as a function of time for R. > 1. Parameter values used are as given
in Table 3.2, with § = 0.15andn = 0.5 (so that, R. = 1.2097).
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Simulation of the model (3.2) giving the cumulative number of new cases
of infection as a function of time. Parameter values used are as given in
Table 3.2, with § = 0.2andn = 0.65 (so that, n, = 0.9088, 1, = 0.9088

and 7 < min{n,, 7, }).
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Figure 3.5: Simulation of the model (3.2) giving the cumulative number of new cases
of infection as a function of time. Parameter values used are given as in
Table 3.2, with = 0.2andn = 0.95 (so that, 1, = 0.9088, n, = 0.9088

and 7 > max{n,, ns}).
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Chapter 4

Quarantine /Isolation Model With

Time Delay

4.1 Introduction

The aim of this chapter is to assess the roles of time delay and the choice of incidence
function on the transmission dynamics of a communicable disease in the presence of
quarantine and isolation. To achieve the objective of this chapter, the autonomous
quarantine/isolation model considered in Chapter 3, given by (3.2), will be extended
to incorporate time delay and two different incidence functions. The functional form of
the incidence functions to be considered are derived based on the framework described
below (this derivation follows the general description given in Section 1.2).

Let S(t),1(t) and N(t) denote the number of susceptible individuals, infectious
individuals and the total size of the population at time t, respectively. Further, let
B(N) be the average number of contacts that is sufficient to transmit infection (effective
contact rate). Then, the force of infection, given by S(N)I/N, represents the average
number of contacts a susceptible individual makes with infectious individuals per unit

time. If B(N) = BN (i.e., the contact rate depends on the total population, N), then
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the incidence function ¢;(I) = (I is called mass action incidence. If (N) = [ (a
constant), then the incidence function, go(I) = BI/N, is called standard incidence
[44, 80]. These two functions are widely used in the modeling of the transmission
dynamics of human diseases [2, 3].

Another type of incidence function used in mathematical epidemiology is the Holling
type I1 incidence function, given by g3(I) = %, with w > 0, [10, 51, 63, 74]. The
non-linear incidence function of type g3(I) was first introduced by Capasso and Serio
[10], in their study of cholera epidemic in Bari, Italy. The main justification for using
such a functional form of the incidence function stems from the fact that the number of
effective contacts between infective individuals and susceptible individuals may saturate
at high infective levels due to crowding of infective individuals, or due to the preventive

measures (and behavioral changes) taken by the susceptible individuals in response to

the severity of the disease [51, 63, 74].

4.2 Model with Standard Incidence

The model to be considered in this chapter is that for the transmission dynamics of an
infectious disease, in the presence of quarantine of exposed individuals and isolation
of infected individuals with disease symptoms, and is given by the following system of

delay integro-differential equations [75]:
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R O R
po [ Sl s,
% _ G_T(uw)f\}g((tt__:))](t -7) (11 + &+ + ) I(D), (1)
% — 0E(t) — (a + p)Q(b),
% = aQ(t) + ¢I(t) — (ya + p+8) H(t),
% = I (t) + 7 H(t) — pR(t),

where, S, E, I,Q, H, R denote the populations of susceptible, exposed, infectious, quar-
antined, hospitalized and recovered individuals at time ¢, respectively.

Thus, the total human population at time ¢, denoted by N(¢), is given by

N@#t)=S{t)+ E@{)+ 1(t) +Q(t) + H(t) + R(t).

The initial data for the model (4.1) is given by

Q(0) = ¢4(0), H(0) = ¢5(0), R(0) = ¢6(0), 0 € [-,0],

(4.2)

where, ¢ = [¢1, Pa, D3, 4, P53, dg] € C such that ¢;(0) = ¢;(0) >0 for (6 € [-7,0], i =
1,3,4,5,6), ¢2(0) >0 (6 € [-7,0]), and C denotes the Banach space C([—T, 0], R®) of
continuous functions mapping the interval [—7,0] into R®, equipped with the uniform
norm defined by [|¢]] = sup |¢(f)|. Furthermore, it is assumed that ¢;(0) > 0 (for
i=1,-.6). e

In (4.1), the parameter IT represents the recruitment rate into the population, 3 is

the effective contact rate. The delay parameter 7 > 0 represents the associated incu-
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bation period [18]. Exposed individuals are quarantined at a rate . Quarantined and
infectious individuals are hospitalized at the rates o and ¢, respectively. The param-
eters v; and s represent the recovery rates of infectious and hospitalized individuals,
respectively, while i is the natural death rate. Finally, §; and d are the disease-induced
death rates for infectious and hospitalized individuals, respectively. A flow diagram of
the model (4.1) is given in Figure 4.1, and the associated variables and parameters are

described and estimated in Tables 4.1 and 4.2.

Table 4.1: Description of variables and parameters of the model (4.3).

Variable Description

S(t) Population of susceptible individuals
E(t) Population of exposed individuals
I(t) Population of infectious individuals
Q(t) Population of quarantined individuals
H(t) Population of hospitalized individuals
R(t) Population of recovered individuals

Parameter | Description

II Recruitment rate into the community

o Natural death rate

16} Effective contact rate

T Incubation period

w Parameter for measuring psychological or inhibitory effect
o Quarantine rate of exposed individuals

« Hospitalization rate for quarantined individuals

10) Hospitalization rate for infectious individuals

P Rate of loss of infection-acquired immunity

Y Recovery rate for infectious individuals

Y2 Recovery rate for hospitalized individuals

01 Disease-induced death rate for infectious individuals
09 Disease-induced death rate for hospitalized individuals
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[

Figure 4.1: Flow diagram of the delayed model (4.3).

The DDE model (4.1) is an extension of the autonomous quarantine/isolation model
(3.2) by incorporating time delay (7 > 0), but with the assumption of loss of infection-
acquired immunity relaxed (so that recovered individuals do not become susceptible
again) and hospitalized individuals do not transmit infection (i.e., we set ¢» =n =0 in
(3.2)). One of the main aims of this chapter is to determine whether or not incorporat-
ing time delay alters the qualitative dynamics of the autonomous quarantine/isolation
model (3.2). Another major objective is to determine whether replacing the stan-

dard incidence function in the model (4.1) with Holling type II incidence function

will introduce new (or different) dynamical features for the model (4.1).
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4.2.1 Basic properties

Using the generalized Leibnitz rule of differentiation, the model (4.1) can be re-written

as:

B )

dE  BSH)I(t) e TWIBS(t —T)I(t —T)
NG N7 —(c+p)E,

e~ T(uto) -7 - T
% e %t_ r))[(t bt 9t B)I), (4.3)
‘2_? — 0E(t) — (a + 0)Q(),
dH
—- = aQ(t) +OI(t) = (12 + p+ 0) H(2),
% =l (t) +yH(t) — pR(t).

The basic properties of the model (4.3) will now be investigated.

Lemma 4.1. The solution (S(t), E(t),1(t),Q(t), H(t), R(t)) of the system (4.3), with
the initial data (4.2), exists for allt > 0 and is unique. Furthermore, S(t) > 0, E(t) >

0, I(t) >0, Q(t) >0, H(t) >0, and R(t) >0 for allt > 0.

Proof. The DDE system (4.3) can be written as

X = f(t.X,),

where, X = (S(t), E(t), 1(t),Q(t), H(t), R(t)) € C. Since f(t, X) is continuous and Lip-
schitz in X, it follows then, by the Fundamental Theory of Functional Differential Equa-
tions [42], that the system (4.3) has a unique solution (S(t), E(t), I(t), Q(t), H(t), R(t))
satisfying the initial data (4.2).

It is clear from the first equation of the model (4.3) that
ds o [6[ (t)

2 WJFM} S(t),

76



so that,

S(t) > S(0) exp {—/Ot {@IT(S)) +u} du} >0, forall ¢>0.

Similarly, it follows, from the third equation of the system (4.3), that I(¢) >
0 for all ¢ > 0. Since the second equation of (4.3) is equivalent to the second equation
of (4.1), it follows (by using the fact that S(¢) > 0 and I(t) > 0 for all ¢ > 0, together

with the fact that all the parameters of the model are positive) that:

(" BS(x)I(z)e =) )
O _/t—T N(z) dx > 0.

Furthermore, using the same approach as that for S(¢), it can be shown that Q(¢) >
0, H(t) > 0 and R(t) > 0 for all ¢ > 0. O

Lemma 4.2. The closed set
: II
D= (S,E,I,Q,H,R)eR+:S+E+I+Q+H+R§ﬁ

is positively-invariant for the DDE model (4.1).
Proof. Adding all the equations of the model (4.3) gives,

dN
— =11 — uN — (011 + 62 H).

dt (4.4)

Since dN/dt < II — uN, it follows that dN/dt < 0 if N > 1I/u . Thus, a standard

comparison theorem (Theorem 2.8) can be used to show that

N(#) < N(0)e ™ + % (1— ).

In particular, N(t) < II/u if N(0) < II/u. Thus, the region D is positively-invariant.
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Further, if N(0) > II/u, then either the solution enters D in finite time, or N(t)

. . . . 6
approaches II/p asymptotically. Hence, the region D attracts all solutions in RS. [

4.2.2  Global stability of DFE

The DFE of the system (4.3), obtained by setting the derivatives in the model (4.3) to
zero, is given by

1
& = <—,0,0,o,0,0) . (4.5)
W

The global asymptotic stability property of & will be explored using the methodology

given in [56, 69]. It is convenient to define:

fento)

Oyt otut+d

The quantity, RS, is the basic reproduction number of the DDE model (4.3).
Theorem 4.1. The DFE of the model (4.3), given by (4.5), is GAS in D whenever
R < 1.

Proof. Let R§ < 1. Furthermore, let (S(t), E(t), 1(t),Q(t), H(t), R(t)) be any positive
solution of the system (4.3) with the initial data (4.2). The third equation of the

system (4.3) can be re-written as

I(t) _ ¢ BG_T(U+M)S(x - 7—)[(:6 B T) e—('y1—&-(;5—1—#—‘,—51)(t‘—a})daj
N(z —
e (v (4.6)
< Be T [(z — 7)e”nFOutO)=2) gy ince S(t) < N(t) in D.
It follows, by using the substitution s = ¢ — x in (4.6), that
I(t) < / Be TOHI(t — 5 — 1) (MHoTHEE) g, (4.7)
0

Taking the limsup of both sides of (4.7), and noting that limsup [ f < [limsup f
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(Lemma 2.4), gives

.¢]
limsup I(t) < / Be T e=(nHe+ut01() g Jim sup 1(t),
t—o00 0 t—o00

/Be—T(/L-‘rU) (48)

= limsup I(t) = RS limsup I(t).
71+¢+,U+51 t—»oop () 0 tﬂoop ()

Since Ry < 1, it follows that lim sup I(t) < limsup I(t). This is a contradiction, unless

t—o0 t—o00

limsup I(t) = 0. Thus, for any € > 0 sufficiently small, there exists a 7' > 0 such that

t—o00

if ¢ > T, then I(t) < e.

Using S(t)/N(t) <1 and I(t) <e, for t > T, in the second equation of (4.3), gives
E < Be—(0+ p)E.

Furthermore, by the comparison theorem,

limsup E(t) < be .
t——~400 o+ 12

Since € is arbitrary, it follows (by setting ¢ — 0) that

limsup E(t) = 0.

t—+o00

Hence, for ¢; > 0 small, there exists a 77 > T such that if ¢t > T}, then E(t) < €.

Using E(t) < €, for t > T}, in the fourth equation of (4.3), gives
Q <o — (a+p)E,

so that, by the comparison theorem,

. €10
lim su t) < .
t—>+oop Q( ) T o+ 1%
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Hence,

lim sup Q(t) = 0.

t——4o00

In a similar way, it can be shown that
limsup H(t) =0 and limsup R(t) = 0.
t—+o00 t——+o0
Finally, it follows from the first equation of (4.3), for ¢t > T, that

SEH—G—/AS,

so that, using the comparison theorem,

I —
liminf S(t) > ‘.
t—+o00 M

Hence, by letting e — 0,

liminf S(t) >

t—+o00

=

II
Additionally, since limsup S(t) < —, it follows that
t——+00 %

=

lim S(t) = —.

t——+oo

=

Thus,

This result (Theorem 4.1) is consistent with that given for the model without delay
(3.2) for the case where recovered individuals do not lose their infection-acquired im-

munity and hospitalized individuals do not transmit infection (i.e., system (3.2) with
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n =1 = 0) in regards to the DFE of the model (3.2). That is, adding time delay to
the quarantine/isolation model without time delay (3.2), for the case where ¢y =n =0,
does not alter the global asymptomatic stability property of the DFE (&) of the model
(3.2). The epidemiological implication of Theorem 4.1 is that the combined use of quar-
antine and isolation can lead to disease elimination if the two interventions can bring
(and keep) the threshold quantity, RJ, to a value less than unity (i.e., for the DDE
model (4.3), the condition R < 1 is necessary and sufficient for disease elimination).

By solving for the delay parameter (7) from the equation R = 1 (and noting

Theorem 4.1), the following result can be obtained.

Lemma 4.3. The DFE of the model (4.3), given by (4.5), is GAS in D whenever

Y )W:Ts.

Ao+ m+ o ¢

In other words, Lemma 4.3 shows that the disease will be eliminated from the com-
munity if and only if 7 > 7. Furthermore, it follows from Lemma 4.3 that the longer
infected individuals remain in the exposed class (F), the higher the likelihood of disease
elimination from the community. Figure 4.2 depicts the numerical results obtained by
simulating the model (4.3) using the parameter values in Table 4.2, and various initial
conditions, for the case 7 > 75 (R§ < 1). It is evident from this figure that all solutions
converged to the DFE, & (in line with Theorem 4.1 and Lemma 4.3). It should be
stated that the parameter values in Table 4.2 are relevant to the transmission dynamics
of SARS [16, 23, 38, 59].
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Table 4.2: Estimated values of the pa-
rameters of the model (4.3).

Parameter | Value (per day) | Source
I 136 (3]

3 (0,0.5) 3]

" 0.0000351 38]

" 0.03521 [15]

o 0.042553 [15]

51 0.04227 (5]

5 0.027855 [15]

K 0.156986 [23]

o 0.156986 23]

¢ 0.20619 [15]

o 0.1 3]

w 0.1 Assumed

4.2.3 Existence of EEP

In this section, the possible existence and stability of endemic equilibria of the model
(4.3) will be explored.

Let £ = (S**, E**, I**, Q**, H**, R**) represent any arbitrary endemic equilibrium
point of the model (4.3), so that N** = S** 4+ E** 4+ [** 4+ Q™ + H* + R**. Solving the

equations of the model (4.3) at steady-state gives

- I . )\**5**(1 . e—T(O’—‘r/.L)) - e—T(a—l—,u,))\**S**

A a o+ p T Ao+t
(4.9)

Q** _ 9 7 H* — OéQ + ¢ : R — i + V2 ’

Qo+ Yo + p+ 02 e
where,
ﬁl**

A = . 4.10

For computational convenience, the expressions in (4.9) are re-written in terms of
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N S5** as below:

e )\**5**<1 . e—T(a—i—u)) . e—T(U+/,L))\**S**
B o+ p ’ o+ pu+o’
(4.11)
Q** _ Pl)\**S**, H* — PQ)\**S**, R — Pg)\**S**,
where,
0-(1 — 6_7(0+N)) aPl (be_T(U"’/'L)
= ) Py = + )
(0 + p)(a+p) Yo+ p+0a (Yot p+d)(nt o+ p+d)
P, — ye (e tn) Y2 P
pn+o+p+o)  p
Substituting the expressions in (4.11) into (4.10) gives
)\**5** 1— —7(o+p) 2\ 2\ 7T(U+'u,))\**s**
o+ p Nn+o+p+o
(4.12)
6677—(0+”)>\**S**

M+o+pu+o

Dividing each term in (4.12) by A\**S**(and noting that, at the endemic steady-state,
NS £ 0) gives

—7(o+p)
|4 P — ¢ = RS, (4.13)
MmFo+u+d
Since,
1 — e—T(O’+M> e—’r(a-‘,—u)

P, =

+ Y P 4P+ P >0,
o+ MmAtetp+oe L PTRE
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it follows from (4.13) that,

_Ri -1

AR
Py

>0, whenever R > 1. (4.14)

The components of the endemic equilibrium, £, can then be obtained by substituting
the unique value of A**, given in (4.14), into the expressions in (4.9). Thus, the following

result is established.

Lemma 4.4. The model (4.3) has a unique endemic equilibrium, given by £, whenever

RS > 1.

Although not proven here, numerical simulations of the model (4.3) suggest that
the EEP (&) of the model (4.3) is asymptotically-stable for RS > 1 (Figure 4.3).
It should be mentioned, however, that the solutions depicted in Figure 4.3 did not
converge to zero, as they appear to (see Figure 4.4 for a blow up of the tail end of
Figure 4.3). In other words, Figures 4.3 and 4.4 show convergence of the solutions to
the unique EEP, &7, of the model (4.3) for the case R > 1. The following conjecture

is suggested:
Conjecture 4.1. The unique EEP, £, of the model (4.3) is LAS whenever RS > 1.

In summary, the model (4.3) has a globally-asymptotic stable disease-free equilib-
rium whenever R5 < 1, and it has a unique endemic equilibrium whenever R > 1.
These results are consistent with those reported for the corresponding autonomous
model (3.2) with n = ¢ = 0. In other words, adding time delay to the model (3.2) with
n = 1 = 0 does not alter its qualitative (equilibrium) dynamics. The next task is to
determine whether or not the dynamics of the quarantine/isolation model (3.2) is af-
fected by the combined use of time delay and the substitution of the standard incidence

function with the Holling type I incidence function. This is considered below.
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4.3 Model with Holling Type I/ Incidence

In this section, the DDE model (4.3) will be analyzed subject to the use of the Holling

1

Trwl (with w > 0), in place of the stan-

type II incidence function, given by gs(I) =
dard incidence function. The DDE model (4.3), with the standard incidence function

replaced by gs(I), is given by

ds _ . BSWIW)

a T Ttwl) pS (),
SO

% N ﬁe_m: 2%(:)7{)@ R AR AL) (4.15)
% =0B(t) — (a+ m)Q(),

dd_]j = aQ(t) + ¢I(t) — (yo + pu + 62) H(t),

Wy 1(0) 4 7H () — R

4.3.1 Global stability of DFE

The DDE system (4.15) has the same DFE, &, as the system (4.3). Further, the
invariant region, D, holds for system (4.15) as well. The GAS property of the DFE
of the system (4.15) will be explored using the methodology given in [97] (which uses

Lemma 2.3). Define,

. Blle-Tleto)
O T un o tuta)

Theorem 4.2. The DFE of the model (4.15), given by (4.5), is GAS in D whenever

RE < 1.

Proof. Let R < 1. Furthermore, let (S(t), E(t), I(t), Q(t), H(t), R(t)) be any positive

85



solution of the system (4.15) with the initial data (4.2). Since R < 1, it is clear that

Be WL/ < g + ¢ + p + 0y (4.16)
Since S(t) <II/p in D for all ¢ > 0, it follows from the second equation of (4.15) that

. Blle "W [(t — 1)
I= p[l +wl(t—71)]

—(m+ o+ pu+01)I(t). (4.17)

Consider, next, the auxiliary (with equality) equation associated with the inequality
(4.17) (where u is a dummy variable)
Blle Tyt — 1)

U= A wult— 7] — (71 + @+ p+ 0y)ul(t). (4.18)

Using Item (i) of Lemma 2.3, together with equation (4.16), in (4.18) gives

lim wu(t) = 0.

t——+o0

Thus, it follows from (4.17), using comparison theorem (Theorem 2.8), that

limsup I(t) = 0.

t——+o00
Thus, for any ¢ > 0 sufficiently small, there exists a 7" > 0 such that if ¢ > T, then
I(t) < e Using S <II/pin D and I < ¢, for t > T, in the second equation of (4.15)

(note that ¢g(/) is monotone increasing) gives,

. Olle
FE< —M  — E.
= u(1 4+ we) (0+n)
Furthermore, by the comparison theorem,
IT
limsup E(t) < plle :
t—too (o + ) (1 + we)
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Since € is arbitrary, it follows (by setting ¢ — 0) that

lim sup E(t) = 0.

t——4o0
Hence, for ¢; > 0 small, there exists a 773 > T such that if ¢t > T}, then E(t) < €.

Using E(t) < €, for t > T}, in the fourth equation of (4.15) gives

Q< eo—(a+p)kE,

so that, by the comparison theorem,

€10

lim su t) < .
t—>+oopQ( ) - CX"‘H

Hence,

limsup Q(t) = 0.

t——+oo

In a similar way, it can be shown that

limsup H(t) =0 and limsup R(t) = 0.

t—+o0 t—+o00
Finally, it follows from the first equation of (4.15), for ¢ > T, that
S>11— 1556 — S,

B + we

so that, using the comparison theorem,

liminf S(t) > LA FwE)
t—+00 fo+ (8 +wp)

Hence (by letting € — 0)
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liminf S(t) >

t——+o0

=

II
Additionally, since limsup S(t) < — in D it follows that
L

t—-+o0

II
lim S(t) = —.
t—+00 )

Thus,

lim (S(t), B(t), (1), Q(t), H(t), R(t)) = (%,0,0,0,0,0) = &.
UJ

The epidemiological implication of the above result (Theorem 4.2) is that the combined
use of quarantine and isolation can lead to disease elimination if they can bring (and
keep) the threshold quantity, R, to a value less than unity (i.e., for the DDE model
(4.15), the condition R{ < 1 is necessary and sufficient for disease elimination).

By solving for 7 from the equation R = 1 (and noting Theorem 4.2), the following

result can be obtained.

Lemma 4.5. The DFE of the model (4.15), given by (4.5), is GAS in D whenever

1
[31’1 (m) _ _H
7>1In [M(M+¢+71+51)] = Te

In other words, like in the case of system (4.3), the disease will be eliminated from
the community if and only if 7 > 77. Figure 4.5 depicts the numerical results obtained
by simulating the model (4.15) using the parameter values in Table 4.2 and various
initial conditions for the case 7 > 7 (R < 1). It is evident from this figure that all

solutions converged to the DFE, & (in line with Theorem 4.2 and Lemma 4.5).
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4.3.2 Existence of EEP and disease permanence

In this section, the possible existence of endemic equilibria of the model (4.15), and
the permanence of the disease, will be explored.

Existence of EEP

Let & = (S**; E**; I**; Q**; H™; R**) represent any arbitrary endemic equilibrium of

the model (4.15). Solving the equations of the model (4.15) at steady-state gives

o II(1 + wl™) o B — ety g e
(1 wlF) 4 I B o+ ’
g (L+wl*)(n+¢+p+d) O = oB™ (4.19)
Be=(HhT ’ atu
e O HQQT L Ty H
Yo+ 40y It

Equating the first and third equations of (4.19), and solving for I** in terms of RY,

gives

_ R —1
(B Hwp) (v + G+ p+ 61)?

r > 0, whenever R > 1. (4.20)

Substituting for I** from (4.20) into the first equation of (4.19) gives

o WIe T4 (1 + ¢+ p+ 01

> I+ o)

(4.21)

It follows from (4.19) (noting from (4.20) and (4.21) that both I** and S*™* are positive

if R > 1) that & € RS whenever R{ > 1. Thus, the following result is established.

Lemma 4.6. The model (4.15) has a unique endemic equilibrium, given by EF | when-

ever R > 1.
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Permanence of the disease

The permanence of the disease will now be explored in the context of the model (4.15).
That is, the objective is to determine whether or not the number of infectious cases in
the population will persist above a certain positive number for a long time period (for

the case when RY > 1).

Theorem 4.3. If RY > 1, then for any solution of (4.15) with the initial data (4.2),

there exists a positive number v = e~ Fo+r+0) [ " yich that liminf I(t) > v.

t—o0
Proof. The proof of Theorem 4.3 is based on using the approach given in [34, 66, 89,
103]. It should be noted, first of all, that the second equation of (4.15) can be re-written

as

e S ()1

e S (2)1 (2)
14+ wi(t) de

14+ wl(x) - (422)

—(m o+ pu+ ) /

Consider the following function:

X.

o+ [ EEESIE),

1+ wl(x)

Clearly, V'(t) is bounded (since I(t) and S(t) are bounded). Furthermore, it follows,

using (4.22), that

Be TTTIS(1)I(t)

V:
1+ wl(t)

—(m+o+pu+a)ld) (4.23)

Since, at endemic steady-state, S(t) is given by S** = > 0 whenever R >

BI**
s -
1, it is clear that for any 0 < ¢ < 1, 8™ < K, where K = 4 B Hence, there
L

exists a number m > 1 such that S** < K(1 — e‘mHT/K).
The next task is to show that I(t) > ¢I™ for all ¢ > (m + 1)7. Suppose, by

contradiction, that I(t) < ¢I*™* for all t > (m + 1)7. It then follows, from the first

90



equation of (4.15), for t > (m + 1)7, that

. I 11
S(t) > 11 — (u + %) S(t) = 11— =5(1).

Hence,

S(t) > K — e VRO — S[(m + )7},

S K {1 _ efH/K[tf(erl)‘r}}

Y

so that, for t > (2m + 1),
S(t) > K(1—e ™7/Ky = § 5 g (4.24)

Since I(t) < qI** < I'*, it follows from (4.23), for ¢t > (2m + 1)1, that

. —7(p+o)
s B¢ S)I()
1+ wl*

—(m+é+p+o)I(t),

Be Tt ST (¢)

Bemwt) §
T (Mm+o+p+6)| I(t).

Let [ = Gr{lin } I(0 + 27(m + 1)). It can be claimed that I(t) > I for all t > (2m+1)r.
el—r,0

Suppose the claim does not hold. Then there exists a constant d; > 0 such that

I(t) > 1 for t € ([2m+1)7,2[m + 1|7 + dy = t,), with I(t,) = I and I(t,) < 0.

However, it follows from the third equation of (4.15), when t = ¢,, that
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e Tt BS(t, — ) (t, — T)

I(t,) = L+wl(t, —7) ~@AmtatH)lt),
_ GT(H/;)iSLt;(; Z)i(;* —7) _ (¢4 + pu+01)I, since I(t,) =1,
> B_T;ttﬁiti;; M (oyuts 80)F, siee 1) ot (2m + 11,1,
- [6‘7(":“155[(2: —7) (6471 +p+ 51)} I, since I(t) < I*" for t > (2m + 1)7,

|:€T(cr+,u)ﬁs**

— S| I =o0.
T ol (¢+%+u+1)} 0

This contradicts the fact that I(t,) < 0. Hence, I(t) > I for t > (2m + 1)7. Thus, it

follows from (4.25) that V > [561:;—#;% — (4 ¢+ pu—+01)| 1 for all t > 2(m + 1)7.

Hence, tlim V(t) = oo, which contradicts the fact that V(¢) is bounded. Finally, to
complete the proof, we need to show that I(t) > v for sufficiently large t.
Let ¢, be sufficiently large and I(t;) = ¢/**. Consider the following interval [tq,¢5].

It follows, from the second equation of (4.15), that

I>—(¢p+m+p+o)l
Hence,

I(t) > ](tl)ef(¢+71+u+51)(t*t1) — q[**e*(¢+71+u+51)(t*t1)’ for t € [ty,ts]. (4.26)

It is clear from (4.26) that if t, — t; < 7, then I(t) > qI*e T@tntrta) — g,
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For the other case (where to — t; > 7), it is easy to see that the inequality I(t) >
qI** e T@tMFut0) = gy also holds for ¢ € [t1,t; + 7]. We claim that (4.26) also holds
for t € (t; + 7,ts). If not, then there exists a constant d > 0 such that I(t) > qv for
te(ty+7,ti4+7+d=ty), with I(ty) = quv and I(t,) < 0.

However, it follows from the third equation of (4.15), when t = ¢y, that

. —71(o+p) _ _
I(ty) = ‘ iisi?(to i)f.()to ) —(@+m +p+6)I(t),

e T3S (tg — TV (tg — T ‘
- 1@. ci[o(to _)Tg =7 (¢ +n + p+61)qu, since I(ty) = qu,

e T3S (ty — T)qu

1+ wqv — (¢ +m + p+d1)qu, since I(t) > qu,

—m(0+1) 3S(t, —
= {e 1+6w1(*5 7) _(¢+71+u+51)} qu, since qu < I,
*T(Uﬂt)ﬁs**
e
S T 5 = 0.

This contradicts the fact that I(tg) < 0. Hence, I(t) > qu for t € [t;,t,]. Since this
interval and ¢ € (0,1) are chosen arbitrarily, it is concluded that I(¢) > v. Thus,

liminf I(t) > v. O

t—o0
The epidemiological implication of Theorem 4.3 is that the number of infectious
cases will persist in the population (as t — oo) above a certain positive number (v)

whenever RE > 1.
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4.3.3 Global stability of EEP

Here, the global stability of the EEP, £, of the model (4.15) will be explored. It is

convenient to define.
DO: {<57E7[7Q7H7R) EDE:I:Q:H:R:O}

Theorem 4.4. The unique endemic equilibrium of the model (4.15), given by (4.19),

is GAS in D\ Dy if RY > 1 and wlle ™) > ¢ 4 v + p + 0;.

Proof. The proof of Theorem 4.4 is based on using a comparison argument and the
iteration technique given in [97, 98].

Let (S(t), E(t),1(t),Q(t), H(t), R(t)) be any solution of (4.15) with initial condi-
tions given by (4.2). Further, let

Seo = li%n inf S(t), S =limsup S(t), Fw = li%n inf E(t), E* = limsup E(t),

t—o0 t—o0

I, =liminf I(t), I =limsup(t), Qu = litm inf Q(t), Q% = limsup Q(t),

t—o0 t—o0 t—o0o

Hy = li%n inf H(t), H* =limsup H(t), R = li{n inf R(t), R>™ = limsup R(t).

0 t—o00 t—o00

The goal is to show that S,, = 5™ =85, E,=E®=FE" I,=1°=1"Q =
Q™ =Q*", Hye=H>*=H"and R,, = R>® = R*. It follows from the first equation
of (4.15) that

so that, by the comparison theorem,

limsup S(t) < II/p.

t—o0

Let U = II/u. Thus, for sufficiently small € > 0, there exists a 77 > 0 such that

94



S(t) < U +efor t > Ty. It follows from the third equation of (4.15) that, for ¢t > T} +7,

Be TET(US + e)I(t — 7)

I(t) < - I(t). 4.2
(t>— 1—|—w[(t—7') (¢+’71+M+51) (t) ( 7)
Consider the auxiliary equation of (4.27):
—7(o4p) Us t —
i) = XTI ICZT) s, (429

1+ wu(t—r1)
Since RE > 1, it follows that, for sufficiently small € > 0, Be™""+*W(UF + €) > (¢ +

71 + 1+ 61). Hence, by Item (ii) of Lemma 2.3 and (4.28),

—7(o+p) (T]S _
limu(t)zﬂe (U? +e) (¢+%+u+(51).
t—o00 W(¢+'}/1+,U+51)

Thus, by the comparison theorem,

) (S 4 ) —
1% — limsup 1(t) < 2 U+ = (04 +p+ )
f=oe w(g+m+p+6)

Be T THIUF — (¢ + 71+ i+ 0)
w(d+m + p+ o)

Be T HIUF — (¢ + 71+ p+ 6)
w(¢+ v+ p+01)

€ > 0, there exists a Ty > T} + 7 such that I(t) < U] + ¢ for t > Ty. It follows from the

Y

so that, I <

Similarly, let Ul = . Then, for sufficiently small

first equation of (4.15), for t > Ty, that

: AU +e)
S(t) ZH—MS—ma

so that, by the comparison theorem,

o [1 + w(U{ +€)]
Seo =1 fS(t) > )

Rt 2 G ) T+ 9
11 + wU{]

Hence, S, > L7, where LY = )
! o (B pw)UT

In other words, for sufficiently small
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€ > 0, there exists a T3 > Ty + 7 such that S(t) > LY — € for t > Ty. It follows from

the third equation of (4.15), for t > T3 + 7, that

: Be TH(LY — ) I(t — T)
02—+ 10

— (@ 4+ 7 +pu+01)I(1),

so that (by considering the auxiliary equation)

oy Be T TI(LY — epu(t — 1)
u(t) = T wult = 7) — (047 + p+d)ult).

Hence, it follows from Item (ii) of Lemma 2.3 (since RE > 1) that

—T(o+u) (TS _ ¢) —
lim U(t) _ 66 (Ll 6) <¢ + §a! + % + (51)
t—oo w(@+7 +p+ )

)

and comparison theorem gives

rlotn) (LS _ ) —
Lo = liminf 1(1) > 2¢ (Lf =) — (@t +putd)
e w(d+v + p+61)

Hence, for sufficiently small € > 0, there exists a Ty > T3 + 7 such that I(t) > L — ¢

for t > T}, where

_ BT LT — (4 + i+ 61)

LI
! w(g+71 + p+ )

Using S(t) < U +e, I(t) <Ul+e, S(t) > LY —eand I(t) > LI — € in the second
equation of (4.15), for ¢t > Ty + 7, gives
BUP +e)(Uf +€)  Be ™MLY —e)(L{ —¢)

E < — — E.
= 1t wU te 1+ w(Ll—e) (04 1)

Hence, by comparison theorem,
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o 1 BUY 4+ €)(U] +¢) Be Tt (LY — €) (L1 —¢)
B =lmsw E() < o o olo s ) - Drwll —diota)

Therefore, for sufficiently small € > 0, there exists a Ty > T+ such that E(t) < UF +e
for t > T, where
UL e

Ur = (1+ wU{) (o + ) B (1+wLD)(o+p)

Similarly, by using S(t) < U +e¢, I(t) <Ul+e, S(t)> Ly —eand I(t) > LI —¢
in the second equation of (4.15), for t > T, + 7, we have
BILY — &) (L —€)  Be T (U +e)(Uf +¢)

— - E
14+ w(L{ —¢) 1+ w(Uf +¢) (T mE,

so that,

o BLY — €)(LL —¢) Be~ e (US + ) (U +¢)
B =Bl B0 = o S olo )~ v el + o+ m)

Hence, for sufficiently small € > 0, there exists a Ty > Ts + 7 such that E(t) > LF — ¢
for t > Ty, where
BISLL  perewusu

W= 0o er ) U elno )

Using E(t) < UF + € in the fourth equation of (4.15), for t > T, gives

Qt) < o(Uf +6) — (a+p)Q,

so that,
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. o(UE +¢)
*© =limsupQ(t) < ——=.
Q msup Q(t) < — .
Thus, for sufficiently small € > 0, there exists a 77 > Ty + 7 such that Q(t) < UlQ +e€
oUF
a+p
Similarly, by using E(t) > L¥ — € in the fourth equation of (4.15), for t > Tj, we

for t > Ty, where U =

have:

Qt) 2 o(LY —€) — (a+ )@,

and,

- o(L{ —¢)
= >4 -
Qo = liminf Q(t) > oy

Thus, for sufficiently small € > 0, there exists a Tg > Ty + 7 such that Q(t) > L? —€
LE
for t > Ty, where LY = U+1 . Using I(t) < Ul + € and Q(t) < U? + € in the fifth
o+
equation of (4.15), for t > T%, gives

H(t) < a(UP +€) + ¢(Uf +€) — (y2+ pu+ 62)H,

and,

Q I
H*® = lim supH S a(Ul + 6) + ¢(U1 + 6) )
t—o00 Y2 + H + 52

Thus, for sufficiently small € > 0, there exists a Ty > T + 7 such that H(t) < Ul +e,
aU + ¢U]!
(v2 +p+d2)
Q(t) > LY — ¢ in the fifth equation of (4.15), for ¢ > Ty, that

for t > Ty, where Ul = . Similarly, it follows by using I(t) > L{ — € and

H(t) > a(LY — €) + ¢(L{ — €) = (v2 + p+ 62) H,
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so that,

LQ - LI —
EQ:MMMH§M1 o) + oL —¢)
t=o0 Yo + f+ 02

Hence, for sufficiently small € > 0, there exists a Tyg > Ty + 7 such that H(t) > L —¢

LY + oL!
for t > Ty, where LI = 041—4‘¢1_
Yo + p+ 02
Using I(t) < U] + ¢ and H(t) < U + € in the last equation of (4.15), for ¢ > T,
gives
R< (U +€) +%(Uf +¢€) — pR.
Hence,

I H
R>® = limsup R(t) < 71(U1 + 6) + ’72(U1 + 6) )
t—oo /uL

WU 4+ U

o
in the last equation of (4.15), for ¢ > T, gives

Thus, R* < U, where Ul = . Using I(t) > LY —eand H(t) > L — ¢
R >~y (LI =€) + 7L —¢) — uR,

so that (by comparison theorem)

Y1 (L] — €) + (L —€)
]

R, = litm inf R(t) >

v L] + LY

i
Continuing in this manner leads to the following sequences:

Hence, Ry, > L, where L =
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s Hl+wL] ] s H[1+wU]]
"op+ ()l p+ (B o)UY
_ BeTUIUT — (bt p+d) L Be TOMLE — (b p A+ by)

U! Ll =
" w(p+y1 +p+61) o w(p+y1 +p+61) ’
e BUIUS  Gerewinis
" (T+wUD o+ ) (4+wLi)(o+p)
pp__ BLLLY e TUMIUIUT (4.29)
" (4wl (o+p)  (T+wUD)(o+p)’
UQ = ﬂ’ L9 = ﬂj
(o + p) (o + p)

g aU% + Ul H_ alQ + ¢LL

(e +p+d) " (r2+p+d)
_nUa+»Ud r_ by + el
1 C I

UR

Finally, since LY < S, < S* < U L[E<E <E*<UF L[I<I <I®<
UL < Qe <Q®<UQ, LHE<H,<H>®<U"and LF < R, < R® < UE the

proof is concluded by showing that

lim U = $* = lim LY, lim U! =1 = lim L?,

n—oo n—oo n—oo

. E _ ppxx 1 E . Q _ Nx* _ 1z Q
lim U, = E* = lim L/, lim Uy =Q" = lim Ly,
n—oo n—oo n—oo n—oo

lim UY = H* = lim LY, lim Uf = R** = lim L%
n—oo n—oo n—oo n—oo

Using the first four sequences of (4.29), it is easy to see that the sequence U? 1 can be
written in terms of U? as:

W22 (o+h) Uns

4.
k2 + e ot (8 + wp) [wlle~T(+t1) — E|US’ (4:30)

S _
Un+1 -

where, k = ¢+71+p+6,. Furthermore, it can be shown that whenever wlle=7+t#) > k.

the sequence US is monotone as follows:
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US . —US = wle™™ ) — k)lwlle ™ 4+ k — (8 + wp)e " OWUTUS
n+1 n k%2 + e~ (8 + wp) [wle=7(0+m) — kUS |

Since S** < U? it follows that

[oTTe= ) — KJWTle*) 4k — (5 + wp)e~T P 5|03
k2 + e—T(o+w) (6 + Wﬂ) [u)He*T(O’Jﬁu) _ k] Uf )

, . wllem @t 4k
=0 [ since ™ = )
e~ (B + wp)

S S
Un+1 - Un <

Thus, lim U? exists.

n—oo

Let M = lim U?. Then, it follows from (4.30) that

n—oo

WaIT2e—27(o+m) £ g
k24 et (B + wp)[wile—m Ot — KM

M

so that,

—7(0+p)
L s wlle + k -
M = tll>r£0 Un o e—T(o+p) (ﬁ —+ wlu,) =57

Taking the limit as n — oo of both sides of the third sequence of (4.29), gives

lim U7 = BemTlotm) G (+m+p+d6)

— I**'
n—o0 w(@+ 7+ p+ 1)

Similarly by taking the limits of both sides of the remaining sequences in (4.29), and

using the previous results, gives
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lim LY = S*, lim L. =1, lim U” = lim LY = E*

lim U9 = lim L9 = Q™, lim UY = lim LY = H*,
lim U® = lim L = R*.
Hence, lim (S(2), E(t), [(t), Q(1), H(t), R(t)) = &fl. 0

Theorem 4.4 shows that the disease will persist in the population whenever RE > 1.
Here, too, by solving for 7 from R > 1, the following result can be shown.

Lemma 4.7. The unique endemic equilibrium of the model (4.15), given by (4.19), is

GAS in D\ Dy if T < In [u Al ](w>:7'c and wlle ™) > ¢+ vy + 4 6.

u(utré+yi+o1)

Theorem 4.4 shows that the disease will persist in the population provided that
RE > 1 (1 < 7.) and wlle ™+ > ¢+, + p+ 6;. Thus, Lemma 4.5 and Lemma 4.7
suggest that 7 = 7. is a sharp epidemiological threshold that governs the persistence
(1 < 7.) and elimination (7 > 7.) of the disease in the population. Figure 4.6 shows
a time series plot of the total number of infected individuals for various of initial
conditions. This figure clearly shows convergence of the solutions to the EEP for the
case T < 7. (R¥ > 1) (in line with Theorem 4.4 and Lemma 4.7). Figure 4.7 depicts
the total number of cases as a function of time for various values of 7. This figure shows
a decreasing number of cases with increasing values of the delay parameter 7. That is,

the longer individuals stay in the exposed class, the lower the disease burden.

4.4 Summary

A deterministic quarantine/isolation model with time delay is considered, subject to
two incidence functions (namely, the standard incidence function and the Holling type

IT incidence function). The main findings of this chapter are summarized below:
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(i) The model with standard incidence function, given by (4.3), has a globally-
asymptotically stable disease-free solution whenever a certain epidemiological
threshold quantity (Rj) is less than unity (Theorem 4.1). Furthermore, this
model has a unique positive endemic equilibrium whenever the threshold quan-

tity (R5) exceeds unity (Lemma 4.4).

(ii) The model with Holling type I1 incidence function, given by (4.15), has a globally-
asymptotically stable disease-free solution whenever its associated epidemiologi-
cal threshold quantity (RE) is less than unity (Theorem 4.2). This model has a
unique positive endemic equilibrium whenever the threshold quantity (RE) ex-
ceeds unity (Lemma 4.6). Furthermore, the model system is permanent whenever
R > 1 (Theorem 4.3). The unique endemic equilibrium of the model (4.15) is

globally-asymptomatic stable under certain conditions (Theorem 4.4).

In summary, the analyses in this chapter show that adding time delay and/or re-
placing the standard incidence function by a Holling type I incidence function in the
autonomous (without delay) quarantine/isolation model (3.2) with n = ¢ = 0 does not
alter the qualitative dynamics (with regards to the elimination or persistence of the
disease) of the model (3.2). In other words, the theoretical results in this chapter show
that the quarantine/isolation model with time delay (7 > 0) and standard or non-linear
incidence function of Holling type 11 has essentially the same qualitative (equilibrium)
dynamics as the corresponding autonomous quarantine/isolation model (7 = 0) with
standard incidence function and ¢ = n = 0 considered in Chapter 3. Furthermore,
numerical simulations of the model with time delay and standard incidence function

shows that the associated disease burden decreases with increasing time delay (7).
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Figure 4.2: Simulations of the model (4.3), showing the total number of infected indi-

viduals as a function of time. Parameter values used are as given in Table
4.2, with 7 = 20 and 3 = 0.15 (so that, RS = 0.7150 < 1 (7 > 75)).
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Figure 4.3: Simulations of the model (4.3), showing the total number of infected indi-

viduals as a function of time. Parameter values used are as given in Table
4.2, with 7 = 18 and 8 = 0.1 (so that, R§ = 1.0298 > 1 (1 < 77)).
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Figure 4.4: Blow up of the tail end of Figure 4.3.
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Figure 4.5: Simulations of the model (4.15), showing the total number of infected indi-

viduals as a function of time. Parameter values used are as given in Table
4.2, with 7 = 20 and 8 = 0.0025809 (so that, R¥ = 0.1599 < 1 (7 > 7.7)).
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Figure 4.6: Simulations of the model (4.15), showing the total number of infected indi-

viduals as a function of time. Parameter values used are as given in Table
4.2, with 7 =10 and 8 = 0.0025809 (so that, R¥ =2.3741 > 1 (7 < 7H)).
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Figure 4.7: Simulations of the model (4.15) showing the total number of infected indi-

viduals for various values of 7. Parameter values used are as given in Table
4.2, with g = 0.15.
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Chapter 5

Quarantine /Isolation Model in a

Periodic Environment

5.1 Introduction

It is well known that some infectious diseases, such as measles, mumps and chickenpox,
exhibit periodic fluctuations in their transmission dynamics. For instance, the city of
New York recorded yearly outbreaks of chickenpox and mumps, and a biennial pattern
of measles outbreaks, between 1929-1970 [17, 65]. Furthermore, contact rates may
vary during a time period due to a number of factors, such as environmental (weather
changes; emergence of insects caused by seasonal variation) and the fact that children
are in school during certain months etc. [21]. London and Yorke [65] showed such
variations in contact rates by studying data for mumps, chickenpox and measles. Other
diseases show seasonal behavior as well (see, for instance, [19, 24, 25, 45, 65]).

As noted by Cooke and Kaplan [17], since periodic fluctuation in contact rate is
crucial to a number of diseases, it is instructive to carry out a rigorous mathematical
study to theoretically evaluate the effect of such fluctuations on the transmission dy-

namics of the relevant diseases in a population in the presence of the basic public health

107



control measures (quarantine and isolation). However, as noted by McLeod et al. [67],
such basic control measures are gradually refined during the course of a disease out-
break (as more data and knowledge about the epidemiology and biology of the disease
becomes available). Thus, it is reasonable to incorporate the effect of periodicity in
disease transmission models that involve the use of such control measures (quarantine
and isolation). The aim of this chapter is to theoretically assess the role of periodicity
on the transmission dynamics of a disease that is controllable using quarantine and

isolation.

5.2 Model Formulation and Basic Properties

The model to be considered is that for the transmission dynamics of an infectious
disease, in the presence of quarantine of exposed individuals and isolation of infec-
tious individuals, and is given by the following non-autonomous system of differential

equations [76]:

S _ 114y - KOS LAOHO) _

% _ 6(t)5(t)[1x)($ MOHWOL v o) + dEW),

d% K(DE(t) = [a(t) + 6(8) + 1+ 8i]1(8), (5.1)
—r = oOE®) = [a) + HQ(),

% = a()Q(t) + ¢(t)I(t) — [12(t) + o+ 0] H(t)

% =1 ()I(t) + () H(t) = (¥ + p)R(1),

where, S, E,I,Q, H, R denote, respectively, the populations of susceptible, exposed,

infectious, quarantined, hospitalized and recovered individuals at time ¢, so that the
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total human population at time ¢, denoted by N(t), is given by

N(t) = S(t) + E(t) + I(t) + Q(t) + H(t) + R(t).

Furthermore, the parameter IT represents recruitment rate into the population, 5(t) is
the contact rate, 1 is the rate of loss of infection-acquired immunity, 7(¢) is a time-
dependent modification parameter for the reduction in infectiousness of hospitalized
individuals in relation to infectious individuals in class I. Exposed individuals are
quarantined at a rate a. They develop symptoms at a rate (t). Quarantined and
infectious individuals are hospitalized at the rates «(t) and ¢(t), respectively. The
parameters 1 (t) and ~,(t) represent the recovery rates of infectious and hospitalized
individuals, respectively, while g is the natural death rate. Finally, ; and J, are
disease-induced death rates for infectious and hospitalized individuals, respectively (a
flow diagram of the model (5.1) is given in Figure 5.1; and the associated variables and
parameters are described and estimated in Tables 5.1 and 3.2).

109



Table 5.1: Description of variables and parameters of the model

(5.2).

Variable Description

S(t) Population of susceptible individuals

E(t) Population of exposed individuals

I(t) Population of infected individuals

Q(t) Population of quarantined individuals

H(t) Population of hospitalized individuals

R(t) Population of recovered individuals

Parameter | Description

II Recruitment rate

15} Effective contact rate

n Modification parameter for reduction in infectiousness
of hospitalized individuals

K Progression rate from exposed to infectious class

o Quarantine rate of exposed individuals

« Hospitalization rate for quarantined individuals

10} Hospitalization rate for infectious individuals

P Rate of loss of infection-acquired immunity

Y1 Recovery rate for infectious individuals

Y2 Recovery rate for hospitalized individuals

01 Disease-induced death rate for infectious individuals

) Disease-induced death rate for hospitalized individuals

7 Natural death rate
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Figure 5.1: Flow diagram for the non-autonomous model (5.2).

The non-autonomous quarantine/isolation model (5.1) is an extension of the au-
tonomous quarantine/isolation model (3.2), by considering some of the model pa-
rameters (namely, 3,7, k,0,®,71,7 and «) to be periodic positive continuous func-
tions in ¢, with period w for some w > 0 (unlike in the autonomous model (3.2),
where all the model parameters are assumed to be constant). It should be stated
that the non-autonomous system (5.1) reduces to the autonomous model (3.2) when
pt) =B, n(t) = n, &) = K, () = ¢, a(t) = @, n(t) =, 12(t) =7 and o(t) = 0.

Using the equality, N = S+ FE+ 1+ Q+ H + R, the system (5.1) can be re-written
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as:

ds BOSHUE) +n()H(t)]

— =11 N(t)—S(t)—E({t)—I(t) —Q(t) — H(t)] —
W N () — ()~ B) — (1)~ Q) — H(0) o
dE _ BOS@UE) +n(t)H()]

— = — |k(2 t E(t

= o 5(1) + o(1) + WE().

dl

= = BOEE) = () +6(t) + p+ a1 J(1),

dQ

—r = oM E®) — [a(t) + HQ(),

dH

= = Q) + o)1) — [1(t) + u+ 0] H(),

dN

— =11— 6,1 — 6H — uN.

I 1 2 H
Basic properties
The basic properties of the model (5.2) will now be studied. We claim the following:
Lemma 5.1. System (5.2) has a unique and bounded solution with the initial value
(SO, E%I°Q° H°, N°) e X ={(S,E,I,Q HN)eR,  N>S+E+I1+Q+H}.

Further, the compact set
D={(S,E,I[,Q,HN)e X:N<II/u}
is positively-invariant for the model (5.2) and attracts all positive orbits in X .
Proof. Following [62], let g € (RS, R) be defined by:
0 if (S,E,1,Q,H,R)=(0,0,0,0,0,0);

g(S,E, 1,Q,H,R) =
S(I+n(t)H)

, otherwise.
S+E+I+Q+H+R

Thus, the function ¢(S, E,I,Q, H, R) is continuous on Rg. Furthermore, it can be

shown that ¢(S, E, I, Q, H, R) is globally Lipschitz on RS (with Lipschitz constant L =
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6). Theorem 5.2.1 of [82] can then be applied to show that, for any (S°, E°, I°, Q°, H°, N°) €

RS, the system (5.2) has a unique local non-negative solution (S, £, I, Q, H, N) with

[5(0), £(0), 1(0), Q(0), H(0), N(0)] = ($°, E°, I°, Q" H", N°).
It follows from the last equation of the system (5.2) that

dN

from which it is clear that the associated linear differential equation,

— =1l —uN
dt ILL Y

has a unique equilibrium N* = II/u, which is GAS. Finally, it can be shown, using
comparison theorem (Theorem 2.8), that N(t) is bounded. Thus, the solution of the

system (5.2) exists globally on the interval [0, co). O

5.3 Stability of Disease-Free Solution (DFS)

5.3.1 Local stability

The concept of the basic reproduction number (or basic reproduction ratio) of a disease
transmission model in a periodic environment has been addressed by a number of
authors, most recently by Bacaér et al. [4, 5, 6] and Wang and Zhao [91]. The
methodology in [91] will be followed to compute the reproduction ratio associated with
the non-autonomous system (5.2).

The DFS of the system (5.2), obtained by setting the derivatives in (5.2) to zero,

is given by
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11 11
€0 = (So. Eo. Io, Qo Ho, No) = (—,o,o, 0.0, _> |
7 u

(5.3)

The equations for the rates of change of the infected components (E,I,Q, H) of the

linearized version of the system (5.2), at the DFS (&), are given by:

92— B + a0 HW] ~ [5(0) +o(0) + B,
% — k(OE(®) — P (6) + 6() + s+ 61]1(D),
%%:dﬂﬂﬂ—M@+MQ@a
%g:a@Q@+¢@Hﬂ—hﬂﬂ+u+MH@)

Using the notation in [91], the next generation matrix F'(¢) (of new infection terms)

and the M-matrix V(¢) (of the remaining transition terms) associated with the model

(5.2) are given, respectively, by

0 B(t) 0 n()s(@)
0 0 0 0
F(t) = )
0 0 0 0
0 0 0 0
and,
K(t) +o(t)+ p 0 0 0
P e U TR ORI 0
—o(t) 0 at) + p 0
0 —o(t) —a(t) () +p+ b

Following [91], let ®,; be the monodromy matrix of the linear w-periodic system
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dz

— =M(t)Z
o= M1)Z,

and p(®/(w)) be the spectral radius of ®,;(w). Further, let

Y(t,s), t>s,

be the evolution operator of the linear w-periodic system

dy _

i =V (t)y.

In other words, for each s € R, the associated 4 x 4 matrix, Y (¢, s), satisfies

dY (t, s)
dt

=—-V(@t)Y(t,s) Vt>s, Y(s,s)=1.

It is further assumed that ¢(s) (w-periodic in s) is the initial distribution of infectious
individuals. That is, F(s)¢(s) is the rate at which new infections are produced by
infected individuals who were introduced into the population at time s [91]. Since
t > s, it follows then that Y (¢, s)F'(s)¢p(s) represents the distribution of those infected
individuals who were newly-infected at time s, and remain infected at time ¢.

Hence, the cumulative distribution of new infections at time ¢, produced by all

infected individuals (¢(s)) introduced at a prior time s = ¢, is given by

B(t) = / Y (£, 5)F(s)d(s)ds /0 TVt — a)F(t — a)o(t — a)da.

Let C,, be the ordered Banach space of all w-periodic functions from R to R*, which is

equipped with maximum norm ||.|| and positive cone

Cl={peC,: o) >0, Vt e R}
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Define a linear operator L : C,, — C, by [91]

(Lo)(t) = /000 Y(t,t —a)F(t —a)p(t —a)da YVt eR, ¢ e C,.

The reproduction ratio (Ry) is then given by the spectral radius of L, denoted by
p(L). That is, Ry = p(L) [91]. The system (5.2) satisfies the Assumptions A1-A7 in
Appendix A (see Appendix B). Thus, using Theorem 2.2 in [91], the following result is
established.

Lemma 5.2. The DFS of the model (5.2), given by (5.3), is locally-asymptotically

stable if Ry < 1, and unstable if Ro > 1.

It is worth noting that, for the special case of the model (5.2) with 5(t) = 3,n(t) =
n, k() = K, 0(t) = ¢, a(t) = a,71(t) = 1,72(t) = ¥ and o(t) = o, the matrices F(t)

and V(t), respectively, become

08 0 np
P - 000 O |
000 O
000 O
and,
k+o+pu 0 0 0
v = —K Mm+o+p+do 0 0
—0 0 o+ p 0
0 —¢ —a Yo+ p+ 0o
so that,
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Ro = p(L) = p(F.V, ")

BlE(p+ a)(p + 72 (L) + 02) +nor(p 4 ) + ano(p+ 51 + 71 + @)]
(Ht+r+o)(u+d+m+ ) (u+a)p+v2+ da) ’

which is exactly the same expression obtained for the reproduction number (R.) of the
corresponding autonomous quarantine/isolation model (3.2) given in Section 3.3.
To compute the reproduction ratio Ry, associated with the non-autonomous model

(5.2), Theorem 2.1 in [91], reported below, will be used.

Theorem 5.1. (Wang and Zhao [91]). Let W(t,\) t > 0 be the standard fundamental

matrix of

d 1
Lo (—v)+ <F@t) ) w, weR" e (0,00),
dt A

with W(0,\) = I. The following statements are valid:

(1) If p(W(w,\)) =1 has a positive solution Ay, then Ny is an eigenvalue of L, and

hence Ry > 0;
(ii) If Ry > 0, then A = Ry is the unique solution of p(W(w,\)) = 1;
(11i) Ro = 0 if and only if p(W(w,\)) <1 for all X > 0.
The computation for Ry is then carried out via the following steps [91]:

(a) First of all, for a given value of A, the matrix W (w, A) is numerically computed
using a standard numerical integrator (such as the forward-Euler or Runge-Kutta

finite-difference method [55]);
(b) Then, the spectral radius p(W(\)) is calculated;

(c¢) Let f(A\) = p(W(X)) — 1. Then, a root-finding method (such as the bisection
method [55]) is used to find the zero of f;
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(d) Let [Ry] be the reproduction number of the corresponding autonomous system,

obtained from the averaging of the system (5.2). That is,

Ry] = D+ @)+ Toll) + ) + 70K +a) + 670 (1 + 61 + 51 + )
’ (ju+ i+ 0) (i + 61+ 71+ 0) (1 + &) (11 + T2 + 62) ’
where,
- 1 [¢ 1 [ 1 [ 1 [
5= 5/0 B(tydt, 7= ;/0 n(B)dt, F = ;/0 w(B)dt, &= ;/0 ()t

(e) Let () be defined by B(t) = Sy (1.1 + sin(@)) [62], and the other parameters
are as given in Table 3.2 (it should be mentioned that the parameter values chosen
in Table 3.2 are largely relevant to the transmission dynamics of severe acute

respiratory syndrome (SARS)[15, 16, 23, 38, 48, 61, 64, 67, 73, 90, 93]).

Figure 5.2 shows the curves of the reproduction ratio (Ry) and the average repro-
duction number [Ry] as function of (y. It is clear from this figure that the average
reproduction number [Ro] is either equal or greater than the reproduction ratio for
values of By considered. This conclusion is also drawn in [62]. The epidemiological
implication of the result in Lemma 5.2 implies that the disease can be eliminated from
the community (when Ry < 1) if the initial sizes of the sub-populations of the model
are in the basin of attraction of the DFS (&). To ensure that disease elimination is
independent of the initial sizes of sub-populations, it is necessary to show that the DFS

is globally-asymptotically stable if Ry < 1. This is explored below.
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5.3.2 Global stability

Theorem 5.2. The DFS of the model (5.2), given by (5.3), is GAS in D whenever
Ro < 1.

Proof. 1t is sufficient to prove that & is globally-attractive if Ry < 1, since it is shown
(Lemma 5.2) that & is asymptotically-stable if Ry < 1. First of all, using the fact that

S(t) < N(t) for all t > 0 in D, the non-autonomous system (5.2) can be re-written as

Ciz_f < B@IE) +n()H(E))] — k() + L E(),

% = () B(t) — [ (t) + 6(t) + p + 8]1(8),
(5.4)

% = o(H)E(t) — [a(t) + 1Q(t),
C;_f = a()Q(t) + S)I(t) — [valt) + pu + ] H(E).

The equations in (5.4), with equality used in place of the inequality, can be re-written

in terms of the matrices F(t) and V (¢), as follows:

= IF() - VI (). (5.5

It follows from Lemma 2.1 in [102] that there exists a positive w-periodic function,

w(t), such that

W(t) = eetw(t), with 6 = ilnp[gbp_v(w)],

is a solution of (5.5). However, Ry < 1 implies that p(¢r_v(w)) < 1 (by Theorem 2.2
in [91]). Hence, 0 is a negative constant. Thus, W (t) — 0 as ¢t — oco. This implies that
the trivial solution of system (5.5), given by W (t) = 0, is GAS.

For any non-negative initial solution (£(0), 1(0),Q(0), H(0))T of the system (5.5),

there exists a sufficiently large M* > 0 such that
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(£(0),1(0),Q(0), H(0))" < M"w(0).

Thus, by comparison theorem (Theorem 2.8), it follows that

(E(t),1(t),Q(t), H(t)) < M*W(t), forall t>0,

where, M*W (t) is also a solution of (5.5). Hence, (E(t),1(t),Q(t), H(t)) — (0,0,0,0)
as t — o0o. Finally, by Theorem 1.2 in [85], it follows that N(¢) — II/pand S(t) — I1/u

as t — oo. In summary,

lim [S(t), E(t),I(t),Q(t), H(t), N(t)] — &, whenever Ry < 1.

t—o0

]

The epidemiological implication of Theorem 5.2 is that the combined use of quar-
antine and isolation can lead to disease elimination in the community (periodic en-
vironment) if they can bring (and keep) the threshold quantity, Ry, to a value less
than unity (i.e., the condition Ry < 1 is necessary and sufficient for disease elimina-
tion in the periodic environment). Figure 5.3 depicts the numerical results obtained
by simulating the model (5.2) using various initial conditions for the case Ry < 1. It
is evident from this figure that all solutions converged to the DFS, & (in line with
Theorem 5.2). It is worth mentioning that the DFE of the corresponding autonomous
qurantine /isolation model, given by (3.2), was also shown to be globally-asymptotically
stable when the associated reproduction number is less than unity (see Theorem 3.2).
Thus, this study shows that adding periodicity to the corresponding autonomous quar-
antine/isolation model (3.2) does not alter the stability properties of the associated

disease-free equilibrium of the autonomous model (3.2).
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5.4 Uniform-persistence of Periodic Solutions

In this section, the persistence of the infectious population, above a certain positive
level for a long time, will be explored. That is, condition(s) for which the disease

becomes endemic in the population (periodic environment) will be derived.

Theorem 5.3. If the reproduction ratio Ro > 1, then there exists € > 0 such that any
solution (S(t), E(t),Q(t), H(t), N(t)) of the system (5.2) with initial value
(SO E° I°.Q° HO N°) € {(S,E,I[,Q,H/N) € X : E >0, > 0,Q > 0,H > 0}
satisfies

litm infI > e, li{n inf £ > e, li{n inf@ >¢€, and litm inf H > e.

Proof. The proof is based on using persistence theory (see, for instance, [102, 104]).
This typically entails defining a Poincaré map for the system (5.2), and then showing
that the map is bounded, positively-invariant and uniformly-persistent (see also [9, 43,

82, 84, 102, 104]). This is done as follows.

Construction of the Poincaré map

Define,

Xo={(S,E,I,Q,H N)e X:E>0,1>0,Q>0,H >0}, 0Xg=X\ Xo.
Let P: X — X be the Poincaré map associated with system (5.2). That is,
P(2°) = u(w, "), Va' € X,

where, u(t,z°) is the unique solution of the system (5.2) with u(0,2°%) = z°. It follows

that

P™(SY E° I1°,Q° H°, N°) = u(mw, (S°, E°, I°, Q°, H, N®)), ¥m > 0.
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It can be shown that the regions X and Xj (defined in Sections 5.2 and 5.3.2, respec-
tively) are positively-invariant as follows. Let (S°, E?, I1° Q°, H?, N°) € X,. It follows

from the first equation of the system (5.2) that

52

S(t) :e_/()tb(Sl)dS1 S0 4 / 4 ()] 6/0 Vs

0

Y

(5.6)

t 592
/ b(81>d81 t / b(sl)dsl
> Ile Jo /60 dsy p >0, Vt > 0,
0

where,

BEUE) +n(t)H(t

o) = vt PR LEHOTOL g (se) = (o) (o) s2) - Qo) H)

It should be noted that N(t) > S(t) > 0 for all ¢ > 0. Further, since the matrix

—[k(t) + o(t) + 1] aos 0 NI
. K —([n(t) + o(t) + p + 04] 0 0
o(t) 0 —[a(t) + p] 0
0 (t) a(t) —[2(t) + 1 + 62
(5.7)

is irreducible and cooperative (see Section 2.3), it follows that (E, I,Q, H)T >0 V¢ > 0
(see Theorem 2.5). Thus, X and X, are positively-invariant, as required. Furthermore,
it is clear that 0.Xj is relatively-close in X. Hence, it follows from Lemma 5.1 that the
discrete-time system {P™} has a global attractor in X.

To prove that P is uniformly-persistent with respect to (Xg, 9Xj), it is necessary to
show that P is weakly uniformly-persistent (since X and Xy are positively-invariant).

Following [102], let
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My = {(SO,EO,]O, Q°, HO, NO) € 0Xy: Pm(SO,EO,[O,QO,HO,NO) € 0Xy,Vm > 0}.
Lemma 5.3.

My = {(S,0,0,0,0,N) € X : $>0,N > 0}. (5.8)

Proof. Tt suffices to prove that for any (S° E° I° Q% H° N°) € My, then E(mw) =
I(mw) = Q(mw) = H(mw) = 0,Vm > 0. This is shown by contradiction as follows
[102]. Assume that there exists an m; > 0 such that (E(mw), I(mw), Q(miw), H(myw))" >

0. Since S(t) > 0, ¥t > 0, it follows that (by replacing the initial time 0 with mjw)

N(t) > S(t) >0, Vt>mw.

Similarly, by Theorem 2.5 (as generalized to non-autonomous systems), it follows that

(E(t),1(t),Q(t), H(t)) >0 Vt > mw,

which contradicts the fact that My C Xo. Thus, there is no m; > 0 such that
(E(mw), I(mw), Q(mw), H(miw))? > 0. Hence, the definition (5.8) holds. Thus,
there is exactly one fixed-point, & = (I1/x,0,0,0,0,11/u), of P in M. [

Weakly uniformly-persistence

Lemma 5.4. P is weakly uniformly-persistent with respect to (Xo,0Xg). That is, there

exists € > 0 such that

lim supd(P™(S% E°, I°,Q° H°, N, &) > ¢, V(S° E°, I°,Q°, H°, N°) € X,.

m—00

(5.9)

Proof. The proof is based on using the method in [102]. Assume, by contradiction,

that the inequality (5.9) does not hold. Then,
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lim supd(P™(S% E°, 1°,Q° H° N°), &) < ¢,

m—00

for some (S°, E°, 19, Q°, H°, N°) € X, and all €* > 0. Without loss of generality, let

d(P™(SY, E°, 1°,Q° H°, N, &) < € for all m > 0.

Hence, by the continuity of the solutions of the system (5.2) with respect to the initial

values,

|u(t, P™(S°, E°, I°,Q° H° N°)) —u(t,&)|| <€, ¥Ym >0, Vte[0,w]for some e > 0.

It follows, by the properties of the Poincaré map (see Section 2.7), for any ¢ > 0 such
that t = mw + f (where £ € [0,w) and m is the largest positive integer less than or

equal to 1), that

”U(t, (Soa an IO: Qoa Hoa NO)) - U(t, gO)H

= [lu(f, P™(S°, E°, 1°,Q°, H®, N°)) — u(f, &)

<e€ Vt>0.

Hence, it follows that

E(t) <eI(t) <eQ(t) <e H(t) <eVt>D0. (5.10)

Noting the inequalities in (5.10), the equation for T in (5.2) can be expressed as:
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E‘H_ I + (N — S — 4e) — uS,
(5.11)
> 11— €0(t)(1 4 n(t)) — 4e — uS.
Consider, next, the auxiliary (with equality) equation of the system (5.11)
ds(t) ,
B 11— )1 + (1)) — 4ve - usit) (5.12)

Thus, the system (5.12) has a unique periodic solution (S*(t,€)). It can be shown
that S*(¢,€) is globally-attractive on R, as follows. The equation (5.12) has a unique

periodic solution given by

S*(t,€) = e Mt {S’*(O, €) + /0 eIl —eB(s)(1 +n(s)) — 4we]ds} : (5.13)

where, $*(0,€) is found by substituting ¢ = w in (5.13) (and noting that S*(w,e) =

A

S5*(0,€)). Hence,

S5*(0,€) = [ ers {11 — eﬂ(jjljln(s)] — 4¢e}ds.

Clearly, |S(t,€) — S*(t,€)] — 0 as t — oo. Thus, 5*(t, €) is globally attractive on R.
It can be seen, from the form of $*(0,¢), that S*(0,€) is continuous in e. Hence,

fixed values of €, v, small enough, can be chosen such that

A

S*(t,e) > S, — v, Vte|0,w],

as ~
where S, = 7/u is the unique steady-state solution of the equation T IT — uS,
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which is globally-attractive in R.
By the periodicity of S* (t,€), together with the fact S, — v is constant, it follows

that the inequality

S*(t,e) > S, — v

holds for sufficiently small € and v and ¢ > 0. Since the periodic solution S (t,€), of
equation (5.12), is globally-attractive on R, , and g*(t, €) > S, — v, it follows that
S(t) > S, — v for sufficiently large ¢. Furthermore, it is clear from the last equation of
the system (5.2) that

N(t) < — + v, for sufficiently large t.

=

Similarly, it follows from the second, third, fourth and fifth equations of the system

(5.2), for sufficiently large ¢, that

15 5 ot <1 2_) [T+ n(t)H] — (5(t) + p) E(t),

CW/utv
% = K(t)E(t) — [n(t) + o(t) + p+ 511 (t), (5.14)

% — c()E(1) — [a(t) + 1Q(L),
% = a()Q(t) + S)I() — [ralt) + pu + ] H(E).

Consider, now, the case when the inequality in (5.14) is replaced by equality, giving

W 50) (1 - w2 ) [10) + W] ~ () + (0. (5.15)

It follows from Lemma 2.1 in [102] that there exists a positive, w-periodic function
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(E(t),I1(t),Q(t), H(t))T such that

(E(1),1(t), Q(1), H(t

is a solution of system (5.15), where

1
¢=- np(®p_v_u,(w)),
and,

wilt)  wn(t)()

O/p+v I/p+v
M, — 0 0 0 0
0 0 0 0
0 0 0 0

Since Ry > 1 implies that p(®r_y(w)) > 1, a small enough v > 0 can be chosen such
that p(®p_y_p, (w)) > 1. That is,  is a positive constant.

Let t = nw and n be a non-negative integer. Hence,

(E(nw), 1(nw), Q(nw), H(nw))T = (B (nw), I(nw), Q(nw), H(nw))" — (00, 00, 00, 00)",

as n — 00, since w¢ > 0 and (E(t), I(t),Q(t), H(t))T > 0. For any non-negative initial
condition (E£(0),1(0),Q(0), H(0))T, of system (5.14), there exists m* > 0 sufficiently
small such that

(£(0),1(0), Q(0), H(0))" = m*(E(0), 1(0),Q(0), #(0))".

It follows, by comparison theorem (Theorem 2.8), that

(BE(t), 1(t),Q(), Ht)" > m*(E(t),I(t),Q(t), H(t))", forall ¢t > 0.
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Thus,

E(nw) — o0, I(nw) — 00, Q(nw) — oo and H (nw) — oo,

which contradicts the inequalities given in (5.10). Hence, P is weakly uniformly-

persistent with respect to (Xo, 0X).

Uniform-persistence of solutions

It follows from Theorems 2.13 and 2.14 that P is uniformly-persistent with respect
to (Xo,0Xy). Furthermore, by Theorem 2.15, the solutions of the system (5.2) are
uniformly-persistent with respect to (Xg,9Xy). That is, there exists ¢ > 0 such that
any solution (S(t), E(t),1(t),Q(t), H(t), N(t)) of the system (5.2) with initial value
(S° E° I1°.Q° H° N°) € X, satisfies

liminf I > ¢, liminf £ > ¢, liminf () > ¢, and liminf H > e.
t—o0 t—o0 t—o0 t—o0

O

The epidemiological implication of Theorem 5.3 is that the disease will persist in the

population if Ry > 1.

5.5 Existence and Stability of Periodic Solution

In this section, the possible existence and stability of non-trivial periodic solutions of

the system (5.2) will be explored. Theorem 2.16 will be used to achieve this objective.

Theorem 5.4. The system (5.2) (or, equivalently, (5.1)) has a periodic solution in
Xo, which is GAS in Xy whenever Rg > 1 and sign(S — S*) = sign(E — E*) =
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sign(l — I*) = sign(Q — Q*) = sign(H — H*) = sign(R — R*).

Proof. The proof of the existence part is based on the method in [102]. It follows from
Lemma 5.1 that the solutions of the model (5.2) are ultimately-bounded. Thus, P is
point-dissipative on RS and P : RS — RS. Furthermore, P is uniformly-persistent
with respect to (Xo,0Xo) whenever Ry > 1 (Theorem 5.3). Then, it follows from

Theorem 2.16 that P has a fixed-point

[S*(8), B(t), I" (1), Q" (), H"(t), N*(t)] € Int(RY).

Hence, [S*(t), E*(t), I*(t), Q*(t), H*(t), N*(t)] is a positive w-periodic solution of the
system (5.2). This shows the existence part.
For the stability part, it is convenient to consider the system (5.1) (since it is also

equivalent to the system (5.2)). Let,

& = [S7(1), E7 (1), I"(t), Q" (1), H*(t), R*(t)],

be a positive w-periodic solution of the system (5.1). To prove that the periodic solution
is globally-asymptotically stable, consider the following Lyapunov function (Lyapunov

functions of this type have been used in the literature, such as [96, 101]):

G=[5(t) = S"(O)]+|E@X) = E (O] + [1(t) = I"(H)] + Q1) — Q"(¢)]

+H(t) = H ()] + |R(t) — B*(1)],

where [S*(t), E*(t), I*(t), Q*(t), H*(t), R*(t)] is any solution of the system (5.1).
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The right derivative, DG, of G, along the solutions of (5.1), is given by:

DTG =sign[S(t) = S* ()] {Y[R(t) — R*(1)] = AB)S(t) — pl[S(t) = S ()] + A"(1)S"(1)}
+sign [E(t) — E* (O] {A@)S () — [k(t) + o (t) + pl[E(t) — E*(8)] = A" ()S™ (1)}
+sign [I(t) — 'O {r(O[E() — E* ()] = [n1(t) + @) + p+ ][I () = I"(1)]}
+sign [Q(t) — Q" (D] {o([E() — E* ()] — [a(t) + p[Q(1) — Q" ()]}
+sign [H(t) — H* ()] {a(t)[Q(t) — Q"(t)] + ¢(t)[L(t) — I"(t)]

— [(t) + pn+ BJ[H(t) — H'(t)]} + sign [R(t) — R* O] {m (O (t) — I"(¢)]

+()[H(t) — H' ()] = (& + w[R(t) — R ()]}

p)S* (I () + n(t) H*(1)]
N*(#) '

At) = H{t and \*(t) =

Using the fact that sign(S — S*) = sign(E — E*) = sign(I — I*) = sign(Q — Q*) =
sign(H — H*) = sign(R — R*), it follows that

DG = — u|S(t) — §°(1)] — p|E(t) — E*(t)] — (u+8) |[1(t) — I*(8)] — | Q(t) — @ (1)

—(p+02) [H(t) = H*(1)| — p|R(t) — R*(1)],

< —plSE) = ST )] = plEQR) = E* ()] = p[1(t) = I"()] = p Q) = Q"(1)]

Hence, lim G(t) = 0. Thus, the non-trivial periodic solution, &, of (5.1) is GAS in X

t—oo
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whenever Ry > 1 and sign(S — S*) = sign(FE — E*) = sign(I — I*) = sign(Q — Q*) =
sign(H — H*) = sign(R — R*). O

Theorem 5.4 guarantees the persistence of the disease in the population whenever
Ro > 1 and sign(S — S*) = sign(FE — E*) = sign(I — I*) = sign(Q — Q*) = sign(H —
H*) = sign(R — R*). It should be stated that the condition sign(S — S*) = sign(E —
E*) = sign(I — I*) = sign(Q — Q*) = sign(H — H*) = sign(R — R*) is somewhat
restrictive (but it is necessary for the proof to work). Figure 5.4 shows a time series
plot of the total number of infected individuals for two sets of initial conditions. It
should be mentioned that the solutions did not converge to zero as they appear to in
Figure 5.4 (see Figure 5.5 for a depiction of the zoomed version of the tail end of Figure
5.4). Figures 5.4 and 5.5 clearly show convergence of the solutions to the non-trivial
periodic solution for the case Ry > 1 (in line with Theorem 5.4). Phase portraits of
the solutions are also provided (Figure 5.6). Figure 5.7 shows the fixed-points of the
Poincaré map associated with the system (5.2). The fixed-points of the Poincaré map

are numerically computed as follows:

(i) For each value of 3y, the model is run 5000 times, and the transient solutions are

removed by discarding the first 4900 iterates;

(ii) An arbitrary point (typically the first local maximum) is picked out of the re-

maining 100 iterates;
(iii) A time period of 12 days (arbitrarily) is selected;

(iv) The fixed-points of the Poincaré map are plotted, starting from the first local

maximuin.

For all the 8 iterations carried out, the local maxima (corresponding to each period)
are the same (as plotted in Figure 5.7). Furthermore, it is clear from Figure 5.7 that

for By < Po (i.e., Rp < 1), the map has a unique trivial fixed-point (corresponding
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to the trivial solution, DFS.) Furthermore, for Gy > [y, (i.e., Rop > 1), the map has
a unique non-trivial fixed-point (corresponding to the non-trivial periodic solution).
Hence, the system (5.2) undergoes a forward (transcritical) bifurcation at 5y = fy. (for
the parameter values used in the simulations, this bifurcation occurs at the point 5, =
Boe = 0.112). It should be recalled from Figure 5.2 that, for 5y = fo. = 0.112, Ry =
1 (which is in line with the simulation results depicted in Figure 5.7). A detailed
bifurcation diagram of the periodic solution is given in Figure 5.8 (this figure is plotted
using the same approach as that of Figure 5.7, except that the absolute minimum and
maximum of the number of infectious individuals in class I, denoted by I,;, and .,
are depicted). Clearly, Figure 5.8 shows that 3y must exceed a critical value for the
disease to persist in the population (8y > (o. = 0.112).

Additional numerical simulations of the model (5.2) suggest that the family of
periodic solutions (£1) is GAS in X, whenever Ry > 1. This suggests the following
conjecture.

Conjecture. The periodic solution (€, ), of the system (5.2), is GAS in Xy whenever
Ro > 1.

5.6 Summary

This chapter addresses the problem of assessing the impact of periodicity on the trans-
mission dynamics of a disease that is controllable using quarantine and isolation. The
model given in Chapter 3 is extended to incorporate the effect of periodicity. The
resulting non-autonomous model is rigorously analysed and also numerically simulated
using data consistent with the 2003 SARS outbreaks. The main findings of this chapter

are summarized below:

(i) The non-autonomous model (5.2) has a globally-asymptotically stable disease-

free solution whenever the associated reproduction ratio (Ry) of the model is less
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than unity (Theorem 5.2);

(ii) The model has a positive periodic solution whenever the reproduction ratio (Ry)

exceeds unity (Theorem 5.4);

(iii) Any solution of the model (5.2) is uniformly-persistent whenever the reproduction

ratio (Rg) exceeds unity (Theorem 5.3);

(iv) The model (5.2) has a globally-asymptotically stable non-trivial periodic solution

for a special case (Theorem 5.4);

(v) Numerical simulations of the model show that the associated average basic re-
production number is always greater than the basic reproduction ratio (Figure

5.2).

In summary, the theoretical analyses of this chapter show that adding periodic-
ity to the non-autonomous quarantine/isolation model (3.2) does not really alter the
transmission dynamics of the disease (vis-a-vis the persistence or elimination of the
disease). In both the autonomous and the non-autonomous quarantine/isolation mod-
els considered, the disease dies out if the associated reproduction threshold is less than

unity, and persists if the threshold exceeds unity.
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Figure 5.2: Simulation of the model (5.2) showing the basic reproduction ratio Ry.

and the average basic reproduction number [Ry] as a function of Gy €
[0.01,0.25]. Parameter values used are as given in Table 3.2.
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Figure 5.3: Simulation of the model (5.2) showing the total number of infected individ-

uals as a function of time for Ry < 1. Parameter values used are as given
in Table 3.2, with 5y = 0.1, (so that, Ry = 0.8551.)
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Figure 5.4: Simulations of the model (5.2) showing the total number of infected indi-
viduals as a function of time . Parameter values used are as given in Table
3.2, with By =1 (so that, Ry > 1).
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Figure 5.5: Blow up of the tail end of Figure 5.4.
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Figure 5.6: Phase portraits of the model (5.2). Parameter values used are as given in
Table 3.2, with §y = 1.6 (so that, Rg > 1).
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Figure 5.7: Simulations of the model (5.2) showing the fixed-points the Poincaré map
as [y varies from 0 to 0.5. Parameter values used are as given in Table 3.2.
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Figure 5.8: Bifurcation diagram of the non-trivial periodic solution showing the number
of infectious individuals in class I as a function of 3y € [0,0.5]. Parameter
values used are as given in Table 3.2.
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Chapter 6

Quarantine /Isolation Model with

an Imperfect Vaccine

6.1 Introduction and Model Formulation

The purpose of this chapter is to qualitatively (and quantitatively) assess the combined
impact of quarantine, isolation and an imperfect vaccine in the control of the spread
of a communicable disease in a population. Such non-pharmaceutical [14] and phar-
maceutical [88] interventions have been applied (singly or in combinations) to control
the spread of a number of diseases, such as SARS [73] and the 2009 swine influenza
pandemic [36]. This chapter is based on the use of a new deterministic model, which
extends the quarantine/isolation model (3.2) by incorporating an imperfect vaccine.
The model is designed by splitting the total human population at time ¢, denoted
by N(t); into mutually-exclusive compartments of unvaccinated susceptible (S(t)), vac-
cinated susceptible (V(t)), unvaccinated exposed (E(t)), exposed vaccinated (Ey(t)),
unvaccinated infectious (I(t)), vaccinated infectious ([y(t)), quarantined un- vacci-
nated (Q(t)), vaccinated quarantined (Qv(t)), unvaccinated hospitalized (H(t)), vac-

cinated hospitalized (Hy (t)), unvaccinated recovered (R(t)) and vaccinated recovered
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(Ry(t)) individuals, so that (it should be mentioned that the terms ”susceptible” and

"unvaccinated susceptible” are used interchangeably)

N(t)=St)+V () +Et)+Ev(t)+1(t)+1y(t)+Q(t)+Qv (t)+H (t)+Hy (t)+R(t)+ Ry (t).

The equations of the model are obtained as follows. Individuals are recruited into
the population (assumed susceptible) at a rate I1. A fraction, p, of these newly-recruited
individuals, are vaccinated. Further, susceptible individuals are vaccinated at a rate (,
and the vaccine is assumed to wane at a rate . Unvaccinated susceptible individuals
may acquire infection, following effective contact with infectious individuals at a rate
A, where

B +vily +nH + v Hy)

A= - . (6.1)

In (6.1), the parameter 3 is the effective contact rate, while 0 < n < 1 is the modifica-
tion parameter which accounts for the assumed reduction in disease transmission by un-
vaccinated hospitalized individuals (in the H class) in comparison to non-hospitalized
infectious individuals (in the I class), and 0 < vy,15 < 1 are the modification pa-
rameters accounting for the vaccine-induced reduction of infectiousness for vaccinated
individuals (in the Iy, and Hy classes) in comparison to unvaccinated infectious in-
dividuals (in the I and H classes). Furthermore, it is assumed that the vaccine is
imperfect, so that vaccinated individuals can acquire break-through infection at a re-
duced rate (1 — €)\, where 0 < € < 1 represents the vaccine efficacy. The populations
of unvaccinated and vaccinated susceptible individuals are decreased by natural death,
at a rate u.

Thus, the rates of change of the populations of susceptible and vaccinated individ-

uals are given, respectively, by
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%:(1—p)ﬂ+wV—AS—(C+M5,

%:pﬂ+§5—(1—5))\V—(¢+l~b)V

The population of unvaccinated exposed individuals is generated by the infection of
susceptible individuals (at the rate A) and is decreased by the development of disease
symptoms (at a rate k), quarantine (at a rate o) and natural death (at the rate u), so
that

dE

— = — E.
7 AS — (K + 0+ p)

Similarly, the population of exposed vaccinated individuals is generated by the break-
through infection of vaccinated individuals (at the rate (1 — ¢)A) and is decreased by
the development of disease symptoms (at a rate 61k, where 0 < 6; < 1 accounts for the
reduction in the rate of development of symptoms for vaccinated exposed individuals
in relation to unvaccinated individuals), quarantine (at a rate o1) and natural death

(at the rate p), so that

dE
d—tV = (1 —&)AV — (b1k 4 01 + p) Ey.
The population of infectious unvaccinated individuals is generated by the development
of symptoms of unvaccinated exposed individuals (at the rate x ). It is decreased by
natural recovery (at a rate 7;), hospitalization (at a rate ¢), natural death (at the rate
u) and disease-induced death (at a rate ;). This gives

dl

E:/<;E—(fy1+¢+wr51)1'.

The population of vaccinated infectious individuals is generated at the rate 61, and is
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decreased by natural recovery (at a rate o7, where 6 > 1 accounts for the assump-
tion that vaccinated infectious individuals recover at a faster rate in comparison to
unvaccinated infectious individuals), hospitalization (at a rate 03¢, where 0 < 03 < 1,
represents the relative reduction in hospitalization rate of vaccinated infectious indi-
viduals in comparison to unvaccinated infectious individuals), natural death (at the
rate ) and disease-induced death (at a rate 6,91, where 0 < 6, < 1 accounts for
the assumption that vaccinated individuals have reduced disease-induced mortality in
comparison to unvaccinated infectious individuals, so that
dly

i b1kEy — (Oay1 + 03¢0 + p + 60461) Iy

Unvaccinated exposed individuals are quarantined at the rate . The population of
unvaccinated quarantined individuals is decreased by hospitalization (at a rate «) and
natural death (at the rate ). Thus,

d
d—?zaE—(a—i—/L)Q.

Similarly, exposed vaccinated individuals are quarantined at the rate ;. The popu-
lation of quarantined vaccinated individuals is decreased by hospitalization (at a rate
Osa, where 0 < 05 < 1 accounts for the assumption that quarantined vaccinated in-
dividuals are hospitalized at a slower rate in comparison to unvaccinated quarantined
individuals) and natural death (at the rate p). Thus,

dQv

7 = O'lEV — (050& + /L)QV

The population of unvaccinated hospitalized individuals is generated by the hospi-
talization of unvaccinated quarantined individuals (at the rate «) and unvaccinated

symptomatic individuals (at the rate ¢). This population is decreased by recovery (at
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a rate 7,), natural death (at the rate p) and disease-induced death (at a rate do < dy).
It is assumed that hospitalized individuals (vaccinated or unvaccinated) have reduced
disease-induced mortality rate in comparison to non-hospitalized infectious individu-
als because of the hospital care (e.g., treatment) given to individuals in the former
(hospitalized) class. Hence,

dH

Similarly, the population of vaccinated hospitalized individuals is generated by the
hospitalization of vaccinated quarantined individuals (at the rate f5a)) and vaccinated
infectious individuals (at the rate 05¢). It is decreased by recovery (at a rate fg7y,, where
fs > 1 accounts for the assumption that vaccinated infectious individuals recover at
a faster rate than unvaccinated infectious individuals), natural death (at the rate u)
and disease-induced death (at a rate 0705 < 0401, where 0 < 6; < 1 accounts for the
assumed reduction of disease-related mortality of vaccinated hospitalized individuals

in comparison to unvaccinated hospitalized individuals). Thus,

dH
d_tv = 05aQv + 0301y — (0672 + o + 0702) Hy .

The population of unvaccinated recovered individuals is generated by the recovery
of unvaccinated non-hospitalized and unvaccinated hospitalized infectious individuals
(at the rates vy, and 9, respectively). It is decreased by natural death (at the rate u),
so that

dR

— =/ H — uR.
i Y14 + Y2 u

Finally, the population of recovered vaccinated individuals is generated by the recovery

of vaccinated non-hospitalized and vaccinated hospitalized infectious individuals (at the
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rates 6oy; and g9, respectively). This population is decreased by natural death (at
the rate u), so that
dRy

T Oovilv + Osy2 Hy — pRy.

Unlike in the basic quarantine/isolation model (3.2), it is assumed (for mathe-
matical tractability) that recovered individuals acquire permanent immunity against
re-infection (so that recovered individuals do not return to the susceptible class). Com-
bining the aforementioned derivations and assumptions, it follows that the model for
the transmission dynamics of an infectious disease, in the presence of an imperfect vac-
cine, quarantine of exposed individuals and isolation of infectious individuals, is given
by the following non-linear system of differential equations (a flow diagram is given
in Figure 6.1; and the associated variables and parameters are described in Tables 6.1

and 6.2):
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B =gV = AS — (C+ S,

dt
av
o = PIACS = (1 =)AV =@+ )V,
dE
— =M=kt o+ pE,
dE
_dtv = (1= e)AV — (615 + 01 + p) Ev,
dl
— =kE—(m+od+pu+d)l,
dt
dl
d—: = 01kEy — (0271 + 03¢ + 4 0401) Iy,
@ (6.2)
E =oF — <05+N)Q7
d
% = O'lEv — (9506 + N)Q\h
dH
— = aQ+ ol = (ot p+ 0)H,
dH
d_tV = 05aQy + 0501y — (062 + 1+ 6702) Hy,
dR
] H—uR
di Y1 +72 pnr,
dR
d_tv = Oy 1y + 072 Hy — pRy.
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Table 6.1: Description of variables and parameters of the model (6.2).

Variable Description

S(t) Population of unvaccinated susceptible individuals
V(t) Population of vaccinated susceptible individuals
E(t) Population of unvaccinated exposed individuals
Ey(t) Population of exposed vaccinated individuals

I(t) Population of unvaccinated infectious (symptomatic) individuals
Iy (t) Population of infectious vaccinated individuals
Q(t) Population of unvaccinated quarantined individuals
Qv (t) Population of quarantined vaccinated individuals
H(t) Population of unvaccinated hospitalized individuals
Hy(t) Population of hospitalized vaccinated individuals
R(t) Population of unvaccinated recovered individuals
Ry (t) Population of recovered vaccinated individuals

Parameter Description

II Recruitment rate

I5] Effective contact rate

7 Natural death rate

p Fraction of newly-recruited individuals vaccinated

n Modification parameter for reduction in infectiousness
of hospitalized individuals

V1,V Modification parameters for reduction in infectiousness
of vaccinated infectious and hospitalized individuals

€ Efficacy of vaccine

¢ Vaccination rate of susceptible individuals

P Waning rate of vaccine

K Progression rate from exposed to infectious class

o Quarantine rate for exposed individuals

o1 Quarantine rate for vaccinated exposed individuals

Q Hospitalization rate for quarantined individuals

10) Hospitalization rate for infectious individuals

Y Recovery rate for non-hospitalized infectious individuals

Y2 Recovery rate for hospitalized individuals

01 Disease-induced death rate for non-hospitalized infectious individuals
o) Disease-induced death rate for hospitalized individuals

01,---,07 Modification parameters
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Figure 6.1: Flow diagram of the model (6.2).

The model (6.2) is a an extension of the SEIQHR model (3.2), by including six
compartments for the vaccinated individuals (namely, V., Ey, Qv, Iy, Hy and Ry ). The
main objective of this chapter is to carry out a detailed rigorous qualitative analysis
of the model (6.2), and determine whether or not adding an imperfect vaccine to the
quarantine/isolation model (3.2) alters its qualitative (equilibrium) dynamics. It is
worth emphasizing that the model (6.2) considers an imperfect vaccine with a number

of therapeutic characteristics, such as:
(i) the vaccine blocks infection (with efficacy 0 < e < 1);
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(ii) the vaccine reduces transmissibility in break-through infections (at rates v;3 and
vo3 for infectious individuals in the Iy, and Hy classes, respectively; with 0 <

v, v < 1);

(iii) the vaccine slows the development of disease symptoms in exposed vaccinated

individuals (at a rate ¢k, with 0 < 6; < 1);

(iv) the vaccine reduces disease-induced mortality in break-through infections (at the

rates 0,01 and 079, for Iy, and Hy individuals, respectively; with 0 < 0,60, < 1);

(v) the vaccine increases rate of recovery in break-through infections (at rate 6oy,

and 0g7,, for Iy and Hy individuals, respectively; with 6, > 1 and 6 > 1);

(vi) the vaccine reduces hospitalization rate in break-through infections (at rates 5«

and 030 for Qy and Iy individuals, respectively; with 0 < 63,05 < 1).

6.2 Basic Properties

Since the model (6.2) monitors human populations, all its associated parameters are

non-negative. The following results can be established using the approach in Section

3.2.

Theorem 6.1. The variables of the model (6.2) are non-negative for all time. In other
words, solutions of the model system (6.2) with positive initial data will remain positive

for all time t > 0.

Lemma 6.1. The closed set

D

{(Sa‘/aEaEV7[>[VanQV7HaHV7RaRV) ER}E:
11
S+V—|—E+EV+[+IV+Q+QV+H+H\/+R+RVSE}

147



is positively-invariant for the model (6.2).

6.3 Local Stability of Disease-free Equilibrium

The DFE of the model (6.2) is given by

60 = (S*a V*7 E*a E\*/7 [*a Il*/a Q*v Q*\h H*7 H{*/v R*a R}k/)
_ (H[(l — P+l Mpp+¢)
p(p 49 +¢) " plp+ 9+ Q)

(6.3)

,0,0,0,0,0,0,0,0,0,0).

The local stability of & will be explored using the next generation operator method
[21, 87]. Using the notation in [87], the non-negative matrix, F, of the new infection
terms, and the M-matrix, G, of the transition terms associated with the model (6.2),

are given, respectively, by

0 0 Bur Vi fwi 00 npwi vanBwn

00 (1—¢)fwy (1—e)rnfwy 0 0 (1 —e)nfws (1 —e)vanfuwsy
00 0 0 0 0 0 0

P 00 0 0 0 0 0 0 |

0 0 0 0 0 0 0 0

00 0 0 0 0 0 0

00 0 0 0 0 0 0

0 0 0 0 0 0 0 0

and,
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ky 0 0 0 0 0 0 0
0 ko 0 0 0 0 0 0
—k 0 ks 0 0 0 0 O
o 0 -6k 0 k4 0 0 0 0 |
—o 0 0 0 ks 0 0 O
0 —o1 O 0 0 ke 0 0
0 0O —-¢ 0 —a 0 Kk O
0 0 0 —b3¢ 0 —0sa0 0 kg
where,

ks =m+o+pu+01, ki=0y +030+pu+ 0401, ks =a+pu,

ke = Osa + p1,  kr =yo+ pu+ 02, kg = Ogya + p1 + 070o.

It follows that the control reproduction number [2, 44], denoted by Ryee = p(FG™1), is

given by

R B(1 — €)wo[nby Kk kskskekrks + vonb1 K030k kskskekr 4+ vonoOsaky kskyksky]
e kikakskskskekrks
1 ﬁwl [Iikgk4k5k6]€7k8 + n¢ﬁk2k4k5k6k8 + na0k2k3k4k6k8]
kykokskykskekrks '

Using Theorem 2.10, the following result is established.

Lemma 6.2. The DFE of the model (6.2), given by (6.3), is locally-asymptotically

stable if Ryae < 1, and unstable if Ryqe > 1.

The quantity R,.. measures the average number of new infections generated by a

single infectious individual in a population where a certain fraction of the susceptible
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population are vaccinated. Lemma 6.2 implies that the disease can be eliminated from

the community (when R, < 1) if the initial sizes of the sub-populations of the model

are in the basin of attraction of the DFE (&).

6.3.1 Backward bifurcation

In this section, the existence of endemic equilibria of the model (6.2) is established.

Let,

51 — (S**’ V**’ E**’ E;k/*’ ]’**’ [‘*/*, Q**’ %}*7 H’>I<>l<7 H‘*/*, R**’ R;k/ik)

represent any arbitrary EEP of the model (6.2). Further, define

)\** —
N**

(6.4)

(the force of infection of the model (6.2) at steady-state). It follows, by solving the

equations in (6.2) at steady-state, that

g _ [+ (1 = p){p+ (1 —¢)}]
(T=N+[(1—=e)(u+¢) +p+ LA+ €+ +p)’
Ve I[pA + pp + (]

(L= +[(1=e)(p+ Q)+ p+ YA+ pu(C+ 1+ p)’

E* = D S A
kl ) 1% ]{52 )
e _ATSTR L (L)X Vs
kiky VT keoky ’
Q** B )\**S**O_ - (1 _ 5))\**‘/**0'1
ks Y koke ’
HY — NS (OéO'k’g + :‘igbl{?5> o — (]_ - 5))\**V** (050&0’1]€4 + Qlliegqﬁkﬁ)
B k1 kskskr v kokykeks ’
R — )\**S**(’}/ll-ﬂk5k7 + ’7201(7]63 + ’72¢/€k‘5)
Mkﬁlk3k5k’7 ’
R — (1 = )NV (027101 kkeks + Ogv205001 kg + 057203001 k)
v phakkeks '
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Substituting the expressions in (6.5) into (6.4) shows that the non-zero equilibria of

the model satisfy the following quadratic equation (in terms of \**):

CL()()\**)2 + al)\** + a9 = 0, (66)
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where,

ag = k’gk’4k’6k’8(1 — 6)(1 — p)(d k3k7,u + YK k5k7 + /-ik:7k5u + ,lLCYO'k’g)
+ k2k4k‘6k58(1 — E)(l — p)(k3k5/£7u + "}/QQS k’5/€ +u ¢ k’5/€ + Yoxo k’g)
+ pk1k3k5k7(1 — 6) (u 94¢ k6¢91/<; + u91/i k6k8 + 97’}’2(9604 (920 k4 + 97’)/2(94¢ k‘@(gll'i)

+ pk1k3k5k7(1 — 6) (03’}/1915 kﬁk’g + /Lk4]€6/€8 + MGQO' k‘4l€8 + ,M(9604 920' k4),

a; — —ﬁ,u(l — 6) |:77/€¢]£2k’4/{55/{56/{78(1 - p) + V2p1795a01/£1/€3/{:4k:5/{:7 + 770'6!]62]{53/{74/{76]{38(1 — p)
+ V1P91/€k1]€3]€5]€6k7k8 -+ Vgnp91503¢k1k3k5k6k7 + Hk2k4k5k6k7l€8(1 — p)
+ k1k3k5k7(1 — 8) |i/,6<91/€63¢k6(1 — p) + ,U<0'1950ék4(1 - ,0) + pu@ml@lkﬁ(u + C)

+ puk4k‘6k‘8(u + C) + ,uk:2k34k6k8(1 — p)(l + C) + ,Ucellik’ﬁk’g(l — ,0) + C91/€92’71/€6k’8(1 — p)
+ #C01k4k8(1 — ,0) + ,upalkr4k:8(,u + C) + 0105@96’)/2]{?4 + up91/<;93¢k:6(u + C)
+ up0195ak4(u + C) + C91/€93¢96’}/2]€6(1 — p) + p91/€93¢96’}/2k6(,u + C)

+ pOrkbamikeks (1 + C) + po1bsabsyaka(p + )
+ k2k4/{56/{58 Mpk1k3k5kf7 + ,upwdkgk?g) + ,UP’QDOKO’]C;; + M0k3k7(1 — p)(,u + ZZJ) + Mp¢%¢k5

+ prkskr (14 )(1 = p) + pprksks + poaks(p+ )(1 — p) + yrksks (14 ) (1 = p)
+ priksks + phsksks (14 0)(1 = p) + porks(p+ ) (1 — p) + yeaoks(p + ) (1 — p)

+ paoyaks + prgyks + ppkskskr + (1 — p) (e + Yrpyaks) |,

as = pkikokskakskekrks(p+ ¢ + 1) (1 — Ryac)-

The endemic equilibria of the model (6.2) can then be obtained by solving for \**
from (6.6), and substituting the positive values of A** into the expressions in (6.5).

The quadratic equation (6.6) can be analyzed for the possibility of multiple endemic
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equilibria when R,,. < 1. It should be noted that the coefficient, ag, of the quadratic
(6.6) is always positive and ay is positive (negative) if R,q. is less (greater) than unity.

Hence, the following result is established.
Theorem 6.2. The model (6.2) has
(i) a unique endemic equilibrium if ay < 0 < Ryee > 1;
(ii) a unique endemic equilibrium if (a; < 0 and ay = 0) or a? — 4agas = 0;
(111) two endemic equilibria if ay > 0,a; < 0 and a? — dagay > 0;
(iv) no endemic equilibrium otherwise.

Thus, it is clear from Case (i) of Theorem 6.2 that the model (6.2) has a unique
EEP (of the form &) whenever R,,. > 1. Furthermore, Case (ii7) of Theorem 6.2
indicates the possibility of backward bifurcation, where a LAS DFE co-exists with
a LAS endemic equilibrium when the associated reproduction number R,,.; is less
than unity (see, for instance, [27, 35, 80] for discussions on backward bifurcation) in
the model (6.2). The epidemiological importance of the phenomenon of backward
bifurcation is that the classical requirement of having R,.. < 1 is, although necessary,
not sufficient for disease elimination. In this case, disease elimination will depend upon
the initial sizes of the sub-populations of the model. To check for the possibility of
backward bifurcation in (6.2), the discriminant a? — 4agay of the quadratic (6.6), is
set to zero and the result solved for the critical value of R4 (denoted by R¢,.). This

gives:

Ripe =1— i
vac daopky kokskakskekrks(p + ¢ + )

from which it can be shown that backward bifurcation occurs for values of R, such

that RS, < Ryac < 1 (see also [27, 35, 80]). This phenomenon is numerically illustrated

vac
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by simulating the model (6.2) with the following set of parameter value (these param-
eter values may not all be realistic epidemiologically; the reader may refer to the study
in [60] for discussions on whether or not backward bifurcation can occur using a realis-
tic set of parameter values): Il = 136, = 1.4, u = 0.001, ¢ = 0.06, ¥» = 0.0001, kK =
0.00016, 6; = 0.7 6, = 0.9, 01 = 0.09, 05 =09, 0, =1, 05 =1, 03 = 0.01, 6; =
1, 61 =0.001, 55 =0.01, 1, =0.9, p=01,e=10", a=1, ¢ =1, v, =0.01, 1 =
0.1, =1, 1o =1, 0 =1 (so that, R¢,. = 0.5673706974 < R,e = 0.6719831393 < 1).
The result obtained, depicted in Figure 6.2, shows that the model has a DFE and two
endemic equilibria (one of the endemic equilibria is LAS, the other is unstable (saddle)
and the DFE is LAS). This figure clearly shows the coexistence of two stable equilibria
when RS, < Ryae < 1, confirming that the model (6.2) exhibits backward bifurcation
at Ryae = 1.

It should be stated that the backward bifurcation phenomenon of the model (6.2)
is only illustrated numerically. A more rigorous proof, based on using center mani-
fold theory (see, for instance, [11, 13, 35, 87]), is given in Appendix C. In particular,
Theorem 2.4 will be used to theoretically establish the presence of the backward bifur-
cation phenomenon of the model (6.2). It should be recalled that no such backward
bifurcation phenomenon exists in the corresponding quarantine/isolation model (3.2)
(without vaccine). Thus, the analyses of this chapter show that adding vaccination to

the quarantine/isolation model (3.2) alters its qualitative properties (by inducing the

phenomenon of backward bifurcation).

6.3.2 Non-existence of backward bifurcation

In this section, some scenarios where the backward bifurcation property of the model

can be lost are explored. The following cases are considered.
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Case 1: Use of perfect vaccination (¢ = 1)

Consider the model (6.2) with a perfect vaccine (so that, ¢ = 1). In this case, the
coefficients ag, a; and asy of the quadratic equation (6.6) reduce to ag = 0,a; > 0 and
as > 0 whenever Rype = Rouacle=1 < 1. Thus, for this case, the quadratic equation (6.6)
has one solution (A = 3¢ < 0.) Therefore, the model (6.2) with a perfect vaccine
has no positive endemic equilibrium whenever R,q. < 1. This rules out the possibility
of backward bifurcation in this case (since backward bifurcation requires the existence
of at least two endemic equilibria whenever Ryqe < 1 [27, 35, 80]). Furthermore, it
can be shown that, for the case when ¢ = 1, the DFE (&) of the model (6.2) is
globally-asymptotically stable under some conditions, as shown below.

Setting ¢ = 1 in the model (6.2) gives the following reduced model (it should be
noted from (6.2) that, for the case when ¢ = 1, (Ev, Iy, Qv, Hy, Ry) — (0,0,0,0,0) as

t — 00; hence, these variables are omitted from the asymptotic analysis of the model

for the special case with ¢ = 1):

dsS
Ez(l—p)n—)\ls—(@ru)&
dV

& 4¢SS — V.,

o =P + ¢S — uV,

dF

— =MS—(k+0o+pkE,

dt

dl
EZKE—(71+¢+M+51)I, (6.7)
aqQ

— =oE = (a+uQ,

dH
EZOZQ+¢I—(%+M+52)H7
dR

ST H—

i Y1id + 72 pR,

with the associated force of infection A = Ay, where
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B(I +nH)

A = Aoy = .
1= Al S+V+E+I+Q+H+R

(6.8)

It can be shown that the reproduction number associated with the reduced model (6.7),

with (6.8), is given by

Bwi(Kkkskr + nokks + naoks)
kikskske

72vac = Rvac|e:1 = . (69)

Define,

IT
Df=%&WEJ@JLMGRLS+V+E+I+Q+H+R§;}

The model (6.7) has a DFE, given by &; = (S*,V*,0,0,0,0,0).

Theorem 6.3. The DFE (&) of the reduced model (6.7), with (6.8), is GAS in Dy

whenever 7~2mc <w; < 1.

Proof. Consider the following Lyapunov function (this is the same Lyapunov function

used in the proof of the GAS of the DFE of the quarantine/isolation model (3.2)):

P il E+<hﬂﬂm)l+<g>Q+H}
w1/ ksn ks

with Lyapunov derivative given by
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Fo (FRue ) oy (""7+’7¢) i+ (3) O+,
winfB ksn ks

_ kiRoae [BSU +nH) kr + ¢ @ -
- [ e () e+ () B -0

+aQ + ¢l — kM,

k7Rvac ([ + nH) . k1k7RvacE + ’%(k7 + 77¢)E . (k7 + 77¢)] + %E
win winpB ksn n ks

+ ¢l — k;H, since S < N in Dy,

<

_|_

o _k1k77§/vac + H(k7 + 7’]@5) Oé_U
winf ksn ks

E+ <¢+k7Rvac_k7+n¢)l+k7 (Rvac_l) H,

win n w1

_
n

ﬁvac 4
<— - 1) (I +nH) <0 whenever R,o. <wp < 1.

Wi

Since all the parameters and variables of the model (6.2) are non-negative (Theorem

6.1), it follows that F <0 for Ryae < w1 (it should be noted that w; = % < 1) with

F=0ifand only if E =1 = = H = 0. Hence, F is a Lyapunov function on D;.

Thus, it follows, by the LaSalle’s Invariance Principle (Theorem 2.6), that

(E,I,Q,H) — (0,0,0,0) as t — oc. (6.10)

Since limsup I = 0 and limsup H = 0 (from (6.10)), it follows that, for sufficiently

t—o0 t—o0

small small o* > 0, there exist constants M; > 0 and M, > 0 such that limsup I < w”*

t—o0

for all t > M; and limsup H < w™ for all t > M,. Hence, it follows from the seventh

t—o00

equation of the model (6.7) that, for ¢t > max{M;, M},
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R < mw* + yo* — pR.

Thus, by comparison theorem (Theorem 2.8),

R® = limsup R < M,
t—o0 ,U

so that, by letting w* — 0,

R =limsup R < 0. (6.11)

t—o0

Similarly (by using li%n inf / =0 and liminf H = 0), it can be shown that

t—o0

Ro = liminfR > 0. (6.12)

Thus, it follows from (6.11) and (6.12) that

Ry > 0> R™.
Hence,
tlim R=0. (6.13)
Similarly, it can be shown that
. I[(1 — p)p + ] . (pp + ¢)
lim S(t) = =95 limV({t) = ———=V" 6.14
S MR- AL PETEs o1y

Thus, by combining equations (6.10), (6.13) and (6.14), it follows that every solution
of the equations in the model (6.7), with initial conditions in D;, approaches & as

t — oo (for Roge < Wy < 1). n
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Thus, these analyses show that the backward bifurcation property of the model 6.2

can be removed if the vaccine offer 100% protection against infection (i.e., £ = 1).
Case 2: Mass action incidence

Consider the model (6.2) with 0 < ¢ < 1 and the associated disease-induced mor-
tality rates set to zero (so that, 4, = d, = 0). Substituting J; = d, = 0 into the model
(6.2) shows that dN/dt = I — uN, so that N — II/u as t — oo. Thus, II/u is an
upper bound of N(¢) provided that N(0) < II/u. Further, if N(0) > IT/u, then N(t)

will decrease to this level. Finally, using N =II/u in (6.1) gives

B

A= Bi(I +wly +nH + vynHy), where 8, = T (6.15)

It should be mentioned that using (6.15) in the model (6.2) reduces the model (6.2)
(which is originally a standard incidence model) to a mass action model (as discussed

in Section 1.2). It is convenient to define the region:

D={(S,V,E,Ey,I,Iy,Q,Qv,H,Hy,R,Ry) €D: 5 < S* V<V*}.

It can be shown that the associated reproduction number of the model (6.2), with

(6.15), is given by

RZZLC - Rvac|§1=52:07
_ /61(1 — €>V*[V191Hk1§3k5k6]€~7gg + V27791/€93¢k1k~3k5k6]€7 + V2n0165&kllggg4k5g7]
key kg kghakskghrks
X 515* [/ik?gk74l€5k’6/{77k?8 + 77¢/€k52k?4/€5k6k78 + 7’]&0‘]{32]{73]{74]{36]{78]

Ky kokskakskekrks

)
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where, now, k3 = v + ¢+, ks =0y + 030+, kr =yo + pand kg = gyn + pu.
It can be shown, using the technique in Section 6.3.1, that the non-zero equilibria
of the model (6.2) with (6.15) satisfy the following quadratic equation (in terms of

bo(A™*)? 4 by A 4 by = 0, (6.16)
where,
by = (1 —¢),
bfﬂffl_ﬂqgﬁfgﬂ&, (6.17)
by = p(p+ ¢+ ¥)(1 = Rige),
with,

I8 [77004153 + kksks + norks)

B rKsks by

(1 =)l [nu2n0195ak~4 + 14,0, kkeks + vonb: kb5 dks)
kakskks

Lh=(C+up), l=@+up).

Ay

Y

Ay =

I

The threshold quantity R!" . can be re-written as

vac

m (L= p)p+1 pi+ ¢

o e e )

m

Further, to show that the coefficient b; in (6.17) is always positive when R}, < 1, it
(1= p)(1 =) As + pA <1. When R < 1.

(1 — 8)[1 + lQ
Let R™ < 1. It follows that

vac

is sufficient to show that
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A < MEECHY) g, < MEECHY)

(L—pp+ T putd
Hence,
1=p)A =) +pAy _ p(l=p)(d=e)(p+{+) pr(p+ ¢+ )
(L—e)li +1 T A=)l +LJ[(L=p)p+Y]  (pp+ QL =)l + L]

(1 =p) (1 =) (u+ C+ ) (pu+ Q) + pu(p + ¢+ V)1 — p)u + )]
(4 Q1 = p)p + )1 =)y + 1o

It can be shown, after some algebraic manipulations, that

p(1—=p)(1 —e)(p+C+ ) (pp+C) + pulp + ¢+ ) [(1 — p)p + ]

= (pp+ QI = p)pu +Y][(1 = &)l + o]

=[(1—p) =1 —e)Cup + [(1 — &) — 1]puc
+(p =11 = )¢+ [(1 = p) — J(A —e)ppPeh — (1 — )¢ — uCy

— (1= p)ucy — C¥* <0,

so that,

(1=p)(A—e)A +pAs _

1.
(1 —€)l1 +12 -

Hence, b; < 0 whenever R!" . < 1. In other words, for R = < 1, the coefficients by, b

vac vac

and by of the quadratic equation (6.16) are non-negative. Thus, for this case (with

R . < 1,) the quadratic equation (6.16) has no positive root. Therefore, the model

vac

(6.2) has no positive endemic equilibrium whenever R!" . < 1 (which rules out backward

bifurcation in this case). This result is summarized below.
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Theorem 6.4. The model (6.2), with (6.15), has no endemic equilibrium if R, < 1.

vac

The following result can be claimed.

Theorem 6.5. The DFE of the model (6.2), with (6.15), is GAS in D whenever
Ry, <1

vac

Proof. Consider the following Lyapunov function:

Fots [(“kd‘?ﬁmqﬁkﬁm"’%) E+ (Eﬁ"gb) I+ (3> Q+H

]571/2 k1/€~3k577 k3n ks
Vlellﬁkfﬁkvg + 1/27703¢ + Hllik'ﬁ + 1/27’]95040'1]{;4 Vllgg + V277¢93¢
+ . Ey+ | ——2 | Iy
k2k4k61/277 V277k4

0
+ (—5O‘> Ov + Hy,
ke

with Lyapunov derivative given by,

Fe ks [(nk5l€7+ﬁn¢ks+mff’53> o (k%frmb) I+ (3> Q+H

]571/2 k1/€~3k577 ksn ks
n 1101 Kkgks + 1/27793gz5~+ 01kke + vanbsao ky By + viks + Vg7793¢ I, (6.18)
k2k4k6V277 V277k4

9 . .
+ (—5a> Ov + Hy.
ke
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The first four terms of F can be simplified as follows:

G k k o\
]{38 kks 7+m7f255+770403 o kr + 0o I+< )Q—i—H
krvo k1ksksn /f377 ks

- - - k- .
~k38 /{k5]€7 + /‘iﬂfbl% + 7’/0./0'kg ()\S - klE) + v :i_ 77¢ (,‘QE — /{33[)
kv k1ksksn il
k?g (67 .
+ =3~ ) (CE—ksQ) + aQ + &I — ks H 3,
krvy (\ ks (6.19)
_ ]58 fik5/57 + fﬁ?ﬁfbk&s + 77040153 AS — ﬁ([ +nH), |
k‘7l/2 k‘1l€3k’577 vl
_ & rkksky + mzqﬂfsj' nacks AS — (I +nH)
nva i k’lk’gk’5k’7
p ﬁ kksks + H7Z¢k5~+ naoks AS* — (I +nH)|, since S <S* in D.
nva i /{71]{731{?5]{?7

Similarly, by using V < V* in D, the last four terms of F can be simplified as follows:

<V191/€k‘6k~8 + vanlsd + 01Kk + V277950401kj4) Byt <V1k~8 + V27793¢> I

k2/€~4/€6V27] vtk
0 ) )
. (5_a> Gy + Hy. (6.20)
ke
. ﬁ ,/1915]{6]58 4 y277(93¢~—|— 91~/$k6 + V27795040'1k~4 AV — (nly + v Hy) | .
Ny kakakeks

Using (6.19) and (6.20) in (6.18) gives:

>>\S*—(I+77H)

key ksksky

1/101&1{36]58 + V27’]03¢ + QllikG + 1/27705060'1154
kakykihs

i [(Iﬁlkg)]{;y + knoks + 77040/53

Ny
kB *

8 AV* — (nly + v Hy)
77V2

( Ri..—1) <0, whenever R < 1.

vac vac

77V251
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Since all the parameters and variables of the model (6.2) are non-negative, it follows

that F < 0 for R™ < 1. Furthermore, F = 0 if and onlyift E=Fy=1=1y=0Q =

vac

Qv = H = Hy = 0. Hence, F is a Lyapunov function on D. Thus, it follows, by the

LaSalle’s Invariance Principle (Theorem 2.6), that

(E,Ev,I,Iv,Q,Qv, H, Hy) — (0,0,0,0,0,0,0,0) as t — oo. (6.21)

Furthermore, it follows from (6.21) that limsup/ = liminf/ = 0 and limsup H =

t—o0 t—00 t—o0

liminf H = 0. Thus, for sufficiently small @* > 0, there exist constants M;, My > 0

t—o0

such that limsup I < @™ for all ¢ > M; and limsup H < w”* for all t > M,. Hence, it

t—o0 t—o00

follows from the eleventh equation of the model (6.2) that, for ¢ > max{M;, M},

R < y1@* + yow* — uR.

Thus, by comparison theorem (Theorem 2.8),

R® = limsup R < M,
t—o0 ,u

so that, by letting w* — 0,

R> =limsup R < 0. (6.22)

t—o0

Similarly (by using litm inf / =0 and li{n inf H = 0), it can be shown that

— 00

Ro. = liminfR > 0. (6.23)

Thus, it follows from (6.22) and (6.23) that

Ry > 02> R™.
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Hence,

Jim R =0. (6.24)
Similarly, it can be shown that
tlim S(t) =S", tlim V(t) = V*, and tlim Ry (t) = 0. (6.25)

Thus, by combining equations (6.21), (6.24) and (6.25), it follows that every solution of
the equations in the model (6.2), with initial conditions in f), approaches & as t — oo

(for R <1). O

vac

Hence, the model (6.2) cannot undergo backward bifurcation when the standard
incidence function is replaced by the mass action incidence function (since Theorem

6.4 shows that, in this case, the model has no endemic equilibrium when R} < 1; and

Theorem 6.5 shows that the associated DFE of the model (6.2) with §; = d2 = 0, is

GAS when R . < 1). Figure 6.3 depicts the numerical results obtained by simulating

vac
the model (6.2) with §; = d, = 0, using various initial conditions, for the case when

Rm

vac

(in line with Theorem 6.5).

< 1. It is clear from this figure that all initial solutions converged to the DFE, &

In summary, the aforementioned analyses show that the vaccine-induced backward
bifurcation phenomenon of the model (6.2) can be removed by doing any of the follow-

ing:
(i) using a perfect vaccine (with efficacy 100%); or

(ii) ignoring disease-induced mortality in the model (this is equivalent to replacing the

standard incidence function in the model with a mass action incidence function).
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6.4 Global Stability of EEP

In this section, the global stability of the endemic equilibrium of the model (6.2) is given
for the special case where the vaccine does not wane (¢ = 0), no continuous vaccination
(¢ = 0; but there is cohort vaccination of newly-recruited susceptible individuals (p #
0)), unvaccinated hospitalized individuals do not transmit infection (n = 0) and the
associated disease- induced mortality is negligible (i.e., §; = do = 0).

Substituting ¢ = ( = n = d; = d2 = 0 into the model (6.2) gives:

ds
- = (1 —p)II— S — uS,
dV
dFE
dE
d_tv = (1 —e)AV — (01K + 01 + p)Ey,
dl
dly
@ (6.26)
d
_thV = UIEV — (65Oé + M)QV?
dH
o = 0@+l = (n+wH,
dH
— = 050Qy + 0301y — (0572 + ) Hy,
dR
% = 71[+72H - ,uRa
dR
—dtv = Oanly + 0572 Hy — pRy,

where, now,

= Bt nlv) (6.27)
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It should be recalled that setting 6; = d2 = 0 in (6.2) implies that N — II/p as t — oo.
Using N =1II/p in (6.27) gives
B

A= 011 +vly), where 3 = T (6.28)

It can be shown that the associated reproduction number of the reduced model (6.26),

with (6.28), is given by

R:;Lzrc _ 61(1 - 8))0~HV101/€ i 51(1 — eH)I{
#k2k4 [kalk‘g

Furthermore, it is easy to show, using the technique in Section 6.3.1, that the reduced

model, (6.26) with (6.28), has a unique EEP, of the form

ok ok ok ok ok ok *okok ok ok ok ok ok ok *okok *okok *okok *okok ok ok
82:(S7V7EaEV7Ia]VaQ7QV7H7HV7R7RV)a

mr
whenever R, > 1.

Lemma 6.3. The reduced model (6.26), with (6.28), has a unique positive endemic

equilibrium, of the form &, whenever R, > 1.

It is convenient to define the region

DO: {(‘97‘/7E7EV7I7IV)Q7QV7H7HV7R7RV) eD:

E:EV:]:]V:Q:QV:H:HV:R:R\/:O}

Theorem 6.6. The unique endemic equilibrium of the reduced model (6.26), with

(6.28), given by &, is GAS in D\ Dy if R > 1 .

vac
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Proof. Consider the reduced model (6.26), with (6.28). Let R} > 1, so that the asso-
ciated unique endemic equilibrium exists (Lemma 6.3). Further, consider the following
non-linear Lyapunov function for the sub-system consisting of the first six equations

of (6.26):

E

k 1
K I***

V E
+ Vlﬁls***l{a;** |:V o V*** o V*** 11’1 ( > EV o E*** E‘*/** hl ( V*>:|

—‘f_
ko I
+ Vlﬁls***j\t**e |:IV o I*** [‘*/** In (I*‘:*):| ’
1R \%

with Lyapunov derivative,

— _ KRk TRkk _ - _ I
F=0Q-e)lV™I [S 5 S+E B+ (I 7 ﬂ

. V*** . . E*** k . I***
+ 1615 {V 7V By By v+ — in ( VT V)] )

so that (using the first six equations of (6.26)),

S***
S

+ VT [615(1 +uly) —kE - (B1SU +vily) — /ﬁE)}

(vE - /531)}

e <T29>

f = C/Blv***[*** |:H1 - 618([ + V1[V> - /I,S - (Hl - ﬁls<[ + Z/IIV) - ILLS):|

E***

koK

Lk .
+ eVl |:/-€E — kgl —
K

+ 1/1615***]‘*/** |:H2 — Cﬁ1V(I + 1/1]\/) — ,MV — v (Hg — Cﬁl‘/(] + 1/1[\/) — [LV)

ok sk

Eg/ (Cﬁl‘/(l + 1/1[1/) — k’gEv):|
\%4

+ v By ST [Cﬁlv(] +uvily) — ko By —

kokk

ks I
+ B ST o {emEV — kyIy — [VV
1R

(HmEV — k;[v)} ,
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where,

c=1—¢, I} =(1-p)I and Il = pIl.

It can be shown from (6.26) that, at endemic steady-state &,

Hl — 61(1*** 4 1/1[{;**)5*** 4 ,LLS***, H2 — Cﬁl (I*** + Vl];;**)v*** 4 ,LLV***,

ﬁl([*** + Vlj‘»}**)s***
E***

Cﬁ1<[*** + Vlj‘»}**)v***

kl = E*** )
1%

7k2:

(6.30)
91/‘1

~ K ~
1

Using the first two relations of (6.30) in equation (6.29), and simplifying, gives

S***
+ Cﬁlv***[*** { [*** + Vll***)s*** ,U/S*** . BIS(I + V1[V) o ,US]}
+ cﬁlV***I*** |:

E*** k: - I*** -
S(I +u1y) — kE) + & {—kgl - = (,@E - /g?,]) H
K

+ Vlﬂls***[*** Cﬂl([*** Yy I***)V*** + MV*** . V]

*kokk

\%4
E*** k' _ I*** ~
+ 1/1615***[‘*/** {— VV (Cﬁl‘/([ + 1/1]\/) szv) + 9—2 |: k‘4[v — }/V <91/€EV — k4lv>:| } s
1R

so that,
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V - V***

F =cu V™S ( 5 o

ki ke
_|_ (Cﬂ%s***v***[*** + VlCﬁ%S***V***I‘*/** . 13 Cﬁlv***l***> ]
K

Kok
+ (1/16535***‘/***]*** + V%Cﬁfs***v***I‘»}** _ 92 4V1515***[{.}**> [V
1R

koksk kokk okokok koksk kK k kkck Jokckk (S***>2 koksk kokk
+ BTV (I - 5 — BTV (i) (6.31)
J— C/B%v***l*** E S(I + Vl.[V) + klcﬁlv***l***E*** _ Cﬁlv***l*** 1 ]

k kT e 2
+ cﬁlV***[*** 1%3[*** + V1Cﬁ125***V***[{k/**([*** + Vlj'{!;**> B ulcﬂ%S***[‘*}**( - ) ([*** + Vl[{k/**)
2 Qrkkk Tk E;k/** sk Tokoksk Tksksk
— VlcﬁlS IV B V(] + VIIV) + k2V1/818 IV EV
174
ko By I kok.
_ Vlﬁls***f‘t-** 2LV Ly + Vlﬁls***]‘*/** 2 41‘»;**
Iy 01k

It can be shown from the last two relations of (6.30) that

ki k:
r (6.32)

kok.
2 BLST L = 0.

1R

Cﬁ%s***v***l*** 4 VlCﬂfs***V***I{;** o

V1Cﬁfs***v***1*** 4 V%CQ%S***V***[‘*/** o

Substituting (6.32) in (6.31) gives
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Vv - T/ e

F =cu V™S ( 5 o

S*** S

kxk ) 2

_ Cﬁ%v***I*** = S(I + V1[V> + klcﬂlv***f***E*** . Cﬂlv***l*** 1 7
koI (Vg (6.33)
+ Cﬁlv***[*** 1 3[*** +u lcﬂl S***V***[***<[*** + 1[***) _ V10ﬁ1 S***I*** ([*** + 1/1[‘*/**)
_ Vlcﬁl S***I‘a}** v(] + VIIV) + kQVlﬁls***I{;**E*** . Vlﬁls***l\»;** 2Lv 4y,
EV IV
kok.
+ Vlﬁls***l\i’** 02 41‘»}**

Using the last four relations of (6.30) in equation (6.33) gives

S*** S

S S’***

kxk ) 2

E
AVELED EL]
_ ‘/ I R
by E

S([ + V1[V> + cﬂfS***V***[***([*** + Vll‘*/**)

kokk

V***

\%4
Errx
_ Vlcﬁl S***[*** EV V(I + VIIV) 4 k2VIC/61 S***v***[***([*** Ny [***)
\%4

koksk

Eyv I
\%4

Thus,
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2 QUEkRX Y Rk [ TRk 2 o o

+ VZCBZS***V*** JEE 2 <3 . . |4 _
e 4 V. EyIpVes By

4 VlCﬁ%S***V***I***I;}** (6 .

Finally, since the arithmetic mean exceeds the geometric mean, then

_ — < — — <

g S SIETBITN (0 VBV BeltY

Further, since all the model parameters are non-negative, it follows that F <0 for
R, > 1. Thus, F is a Lyapunov function of the sub-system consisting of the first

six equations of the model (6.26) on D \ Dy. Therefore, it follows, by the LaSalle’s

Invariance Principle [41], that

lim S(t) = $°, lim V(t) = V=, lim B(t) = B,

fee (6.34)
lim I(t) = I, lim By (t) = By, lim Iy(t) = I;"".

It is clear from (6.34) that limsup £ = E***. Thus, for sufficiently small small w > 0,

t—o0

there exists a constant n; > 0 such that limsup £ < E** + w for all ¢t > n4. It follows

t—o00

from the seventh equation of the model (6.26) that, for t > ng,
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Q<o(E™ +w) — (a4 p)Q.

Thus, by comparison theorem (Theorem 2.8),

E***
0> = limsup g < ZE )
t—o0 o+ 12

so that, by letting o — 0,

O.E***

* = limsu < : 6.35
Q msup @ < (6.35)
Similarly (by using li{n inf £ = E*™), it can be shown that
O.E***
0o = liminf@) > : 6.36
Qoo =liminfQ > = — (6.36)
Thus, it follows from (6.35) and (6.36) that
o k3K >k
o> > Q.
Qoo = — T2 Q
Hence,
E***
lim Q = 2= = Q" (6.37)
t—o00 o+ o
Similarly, it can be shown that
lim H(t) = H™, lim Qv(t) = Qy™, lim Hy(t) = H™,
t—00 t—00 t—o00 (638)
tlim R(t) = R™, tlim Ry (t) = Ry™.

Thus, by combining (6.34), (6.37) and (6.38), it follows that every solution to the
equations of the reduced model (6.26) with (6.28), with initial conditions in D \ Dy,

approaches the unique endemic equilibrium of the reduced system (6.26) with (6.28)
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as t — oo for R™ > 1. O

vac

The above result (Theorem 6.6) shows that, for this special case (with ¢ = ¢ =
n =01 = dy = 0), the disease will persist in the population whenever the associated

reproduction number (R7Y) exceeds unity. Figure 6.4A depicts the simulation results

of the model (6.26) for the case when R > 1, showing convergence to an EEP (in

vac

line with Theorem 6.6; a blow up of Figure 6.4A is given in Figure 6.4B to confirm that
the solutions, indeed, converged to the EEP). Further extensive numerical simulations
suggest that the endemic equilibrium (&) of the model (6.2) is GAS in D\ Dy, whenever

Ruae > 1. Hence, the following conjecture is suggested.

Conjecture 6.1. The unique endemic equilibrium of the model (6.2), given by &, is

GAS in D\ Dy, whenever Ryq. > 1.

6.5 Assessment of Vaccinae Impact

In this section, the potential impact of the imperfect vaccine is assessed by carrying out

threshold analysis on the associated reproduction number (R!".) as follows (it should

vac

be recalled that R is the reproduction number associated with the model (6.2) in the

vac

absence of disease-induced mortality; in this case, the requirement R . < 1 is sufficient

for disease elimination, as confirmed by Theorem 6.5). First of all, the quantity R}, is
expressed as a function of the fraction of susceptible individuals vaccinated at steady-

state, denoted by 7 = ]‘G— , given by:

B(1 — T)(kkskr + norks + noaks)

kll~€3k5l~f7
L 8- VT (16 kkgks + vonby kBsdke + vonoBsaky)
kokakeks

Rm

vac

(T) =

Differentiating R . partially with respect to 7 gives

vac
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aTe’vac _ _ﬁ(/{kd;? + ngbﬁl% + 7’]0'04];73)
oT ey sk oy
i B(1 — e)(1161kkeks + vonb kO30kes + vano1Osaky)

kokykeks

(6.39)

The critical (threshold) value of vaccine efficacy (denoted by e.) needed to ensure
positive population-level vaccine impact (in reducing disease burden in the community)
can be obtained by setting the right-hand side of equation (6.39) to zero and solving
for € (it should be mentioned that disease burden is typically measured in terms of the

number of new infections, hospitalizations and disease-induced mortality). This gives:

(FL/{Z{,I;Z? + U(Z)Hkg, + 7]0-05];73>k2]%4k6]%8

Ee=1— = - —.
(1/191/{]{36]{38 + Vgnemﬁggbkﬁ + V2n0'19504k’4)k1k3k5k}7
It follows then that 8—Tm < 0 whenever € > .. That is, R is a decreasing func-

tion of the fraction of susceptible individuals vaccinated at steady-state (7°) whenever
€ > ¢.. Thus, the above analysis shows that the vaccine will have a positive population-
level impact in reducing disease burden whenever € > ¢,., and will not otherwise. This

result is summarized below:

Lemma 6.4. Consider the model (6.2) with §; = 0o = 0. The vaccine will have:
(i) a positive population-level impact if € > e.;
(7i) no population-level impact if € = e;

(7i) nmegative population-level impact if € < e..

A plot of the reproduction number (R

vac

) as a function of the fraction of susceptible
individuals vaccinated at steady-state (7) is given in Figure 6.5, for the cases where

e > e, and € < .. This figure shows that, for the case when € > €., the reproduction
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threshold, R . decreases as 7 increases. On other hand, R!"

vac) vac

increases with increasing
values of 7 for the case when ¢ < e, (these results are in line with Lemma 6.4).

Alternatively, the vaccine impact can be measured by rewriting R . as

% Row
R =Rp|l—— 11— 6.40
vac 0 { N* ( RO ):| ) ( )

where,

Ro = 5("{]@’5%7 + 77~¢"ka + 7700‘]:"’3)7 (6.41)
k1ksksky

and V* and S* are as defined in Section 6.3. The quantity, Ry, is the reproduction
number of the model (6.2) with 6; = dy = 0 in the absence of vaccination. Furthermore,
ﬁ(l — 5)(V191/€k’6];’8 + 1/27791/€93¢k‘6 + 1/2770195CY/;’4)

Row = 2o 6.42
0 ko ke hes (6.42)

is the reproduction number when every individual in the population is vaccinated
(7, 27].

Let,

Vv Row
= 1— . 6.43
= ( RO) (6.43)

It should be noted from the expression in (6.43) that if Rg, < Ry, then the vaccine

m

impact factor, x, is positive, so that the vaccine will reduce R .

(hence, the vaccine
will have positive community-wide impact in this case disease burden). On the other
hand, if Ry, > Ry, then the vaccine will have negative community-wide impact (i.e.,
it will increase disease burden) since x < 0 in this case. Finally, if Ry, = Ro (so

that, x = 0), then the vaccine will have no community-wide impact. These results are

summarized below.

Theorem 6.7. Consider the model (6.2) with 6, = 69 = 0. The vaccine will have:
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(i) a positive community-wide impact if x >0 (Ro, < Ro);
(ii) no impact if x =0 (Roy = Ro);
(111) negative community-wide impact if x <0 (Roy > Ro).

The above result (Theorem 6.7) is numerically illustrated, by depicting the cumu-
lative number of new cases of infection as a function of time, in Figures 6.6 and 6.7.
Figure 6.6 shows the case with £ > ¢, (x > 0), from which it is clear that the use of
the imperfect vaccine induces a positive community-wide impact (since the cumulative
number of new cases of infection in the presence of the vaccine is less than that in
the absence of vaccination). However, for the case when ¢ < e, (x < 0), the use of
an imperfect vaccine causes a detrimental community-wide impact (since, in this case,
the cumulative number of new cases exceeds that for the case when vaccination is not
implemented (Figure 6.7)).

A contour plot of R | as a function of the fraction of susceptible individuals
vaccinated at steady-state (7 ) and the vaccine efficacy (¢), is depicted in Figure 6.8.
It is clear from Figure 6.8 that effective disease elimination is feasible if the fraction of
individuals vaccinated at steady-state (7 ) and vaccine efficacy (¢) are high enough.
For example, if the vaccine is 70% effective (¢ = 0.7), vaccinating 50% of the susceptible
population at steady-state (7 = 0.5) will be sufficient to eliminate the disease.

Further numerical simulations were carried out to assess the impact of the singular

use of the quarantine/isolation strategy (in the absence of the imperfect vaccine). The

following levels of quarantine/isolation effectiveness are considered (arbitrarily):

(i) low effectiveness level of the quarantine/isolation strategy (¢ = 0.05, o =

0.05, 6 = 6, = 0; so that, R = 1.1138);

(ii) moderate effectiveness level of the quarantine/isolation strategy (¢ = 0.1, o =

0.1, 0; = 02 = 0; so that, Ry = 0.9815);
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(iii) high effectiveness level of the quarantine/isolation strategy (¢ =1, 0 =1, §; =

dy = 0; so that, Ry = 0.8491).

In other words, it is assumed that the moderately effective quarantine/isolation strategy
is twice as effective as the low effective quarantine/isolation strategy. Furthermore,
the high quarantine/isolation effective strategy is ten times more effective than the
moderately effective quarantine/isolation strategy (as mentioned above, these choices
are made arbitrarily).

The simulation results obtained, depicted in Figure 6.9, show a decrease in the
cumulative number of new cases of infection with increasing effectiveness level of the
quarantine/isolation strategy. For instance, while the low effectiveness strategy results
in about over 250,000 cumulative new cases over 2 years (Figure 6.9A), the moder-
ate and high effectiveness levels of the quarantine/isolation strategy resulted in only
4,000 and 1,000 new cases, over the same time period, respectively (Figure 6.9B).
Thus, based on the parameter values used in these simulations, the singular use of the
quarantine/isolation strategy could lead to the effective control (or elimination) of the
disease if its effectiveness level is moderately high enough (since both the moderate

and the high effectiveness level of the quarantine/isolation strategy guaranteed that

m
vac?

the associated reproduction number, R!" . is less than unity so that, by Theorem 6.5,
the disease will be eliminated from the community).
Furthermore, simulations for the universal strategy, where the quarantine/isolation

strategy is combined with a vaccination strategy, are also carried out. Here, too, three

effectiveness levels are considered (arbitrarily), as follows:

(i) low effectiveness level of the universal strategy (¢ = 0.05, ¢ = 0.05, 0 =

0.05, ¢ =0.05, p =0.25, 6; = d = 0; so that, R} = 0.7593);

vac

(ii) moderate effectiveness level of the universal strategy ¢ = 0.1, ¢ = 0.1, 0 =

0.1, (=0.1, p =04, 0; = &, = 0; so that, R = 0.5380);

vac
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(iii) high effectiveness level of the universal strategy (¢ =1, 0 =1, oy =1( =1, p=
0.5, & = &, = 0; so that, R™ = 0.2355).

vac

Clearly, each of the three levels of the universal strategy reduces the associated repro-

m
vac ?

duction number, R to a value less than unity (so that, by Theorem 6.5, the disease
will be eliminated from the community under each of the aforementioned universal
strategy scenarios). Figure 6.10 shows the simulation results obtained for the various
effectiveness level of the universal strategy. This figure shows a dramatic decrease
in the cumulative number of new cases in comparison to the corresponding number
of cases recorded using the quarantine/isolation strategy alone (depicted in Figure
6.9). For instance, while the low effectiveness level of the universal strategy resulted
in 1800 cases over 2 years (note that the corresponding number of cases for the quar-
antine/isolation strategy only is about 250,000), the moderate and high effectiveness
levels of the universal strategy resulted in 600 and 200 new cases, over the same time
period, respectively.

These simulations show that, while a moderately high effectiveness level is required
if only quarantine/isolation is used, even the low effectiveness level of the universal
strategy (considered in this chapter) will guarantee elimination of the disease from the
community. Figure 6.11A shows that the disease can be eliminated after about 200
days using the high effectiveness level of the universal strategy (the time to disease
elimination increases with decreasing effectiveness level of the universal strategy ( see

Figure 6.11B and Figure 6.11C)). In other words, the prospect of disease elimination

from the community is greatly enhanced if the universal strategy is used.

6.6 Summary

In this chapter, a new deterministic model for disease transmission in a population,

subject to the use of quarantine (of asymptomatic cases) and isolation (of symptomatic
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cases) and an imperfect vaccine, is designed and rigorously analyzed. The analyses of

the model, which consists of twelve mutually-exclusive epidemiological compartments,

shows the following:

(i)

(i)

(i)

(iv)

The model undergoes the phenomenon of backward bifurcation when the associ-
ated reproduction number (R,q.) is less than unity (Theorem 6.2). The presence
of this phenomenon, which does not arise if the vaccine is 100% effective or if the
standard incidence function is replaced by mass action incidence function in the
model formulation (Theorems 6.3 and 6.5), implies that the effective control of
the spread of the disease, using an imperfect vaccine (in addition to quarantine
and isolation), depends on the initial sizes of the sub-populations of the model

(when Ryee < 1);

The disease-free equilibrium of the model is shown to be globally-asymptotically

stable under any of the following scenarios (Theorems 6.3 and 6.5):

(a) if the vaccine is perfect (i.e., the vaccine is 100% effective);

(b) if there is no disease-induced mortality;

The model has a unique endemic equilibrium whenever the associated reproduc-
tion threshold (R,..) exceeds unity (Theorem 6.2). The unique endemic equilib-
rium of the model is shown to be globally-asymptotically stable for a special case

(Theorem 6.6);

An imperfect vaccine could have positive or negative population-level impact,
depending on the value of some associated threshold quantities (expressed in
terms of a critical vaccine efficacy, e., or a vaccine impact factor, y) (Lemma 6.4

and Theorem 6.7).

Numerical simulations of the model (6.2), with §; = d2 = 0, suggest the following:
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(a) the singular use of quarantine/isolation strategy may lead to the effective control

of the disease (or elimination) if its effectiveness level is moderately high enough;

(b) the combined use of the quarantine/isolation strategy with a vaccination strategy
will eliminate the disease, even for the low efficacy level of the universal strategy

(considered in this chapter).

Overall, the analyses in this chapter show that adding a vaccine to the quaran-
tine/isolation model (3.2) alters its asymptotic dynamics (by inducing the phenomenon
of backward bifurcation). The prospect of disease control using quarantine/isolation,
as a single control strategy, is bright provided its effectiveness level is moderately high
enough. The use of a universal strategy, involving the use of quarantine, isolation and
an imperfect vaccine, will lead to disease elimination (even for the low effectiveness

level considered in the simulations).
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Table 6.2: Estimated values for the pa-
rameters of the model (6.2)

Parameters | Values (per day) | Sources
II 136 [38]

8 [0.1, 0.2] [38]

1 0.0000351 [38]

" 0.03521 [15]

o 0.042553 [15]

01 0.04227 [59]

09 0.027855 [15]

K 0.156986 [23]

o 0.156986 [23]

10) 0.20619 [15]

o 0.1 [38]

o1 0.06 Assumed
P 0.0666 Assumed
n 0.6 Assumed
1 0.9 Assumed
9 0.8 Assumed
€ [0,1] Variable
¢ 0.7 Assumed
01 0.6 Assumed
0 1.4 Assumed
03 0.7 Assumed
04 0.6 Assumed
05 0.5 Assumed
Og 1.4 Assumed
07 0.7 Assumed
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Figure 6.2: Backward bifurcation diagram for the model (6.2). Parameter values used

are: I = 136, 0 = 14, p = 0.001, ¢ = 0.06, ¥ = 0.0001, x =
0.00016, 6, = 0.7 8, = 0.9, o = 0.09, 65 = 0.9, 6, = 1, 65 =
1, 05 = 0.01, 6; = 1, & = 0.001, 6 = 0.01, v, = 0.9, p = 0.1, & =
107, a=1,¢=1, 1 =001, =01, n=1, v, =1, 0 = 1 (so that,
RE,. = 0.5673706974 < Ryae = 0.6719831393 < 1).
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Figure 6.3: Simulation of the model (6.2) with d; = d, = 0 showing the total number
of infected individuals as a function of time for the case when R < 1.
Parameter values used are as given in Table 6.2, with § = 0.15 (so that,

R™ = 0.6206).
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Figure 6.4: Simulation of the model (6.26) showing the total number of infected indi-
viduals as a function of time for R}’ > 1. (A) Convergence to an EEP. (B)
Blow up of tail end of Figure 6.4A. Parameter values used are as given in

Table 6.2, with 5 =0.5,9 = ( =n =9 = d, = 0 (so that, R"" = 1.2260).
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Figure 6.5: Simulations of the model (6.2) with §; = d, = 0 showing the reproduction
number (R}}.) as a function of the fraction of susceptible individuals vac-
cinated at steady-state (7). Parameter values used are as given in Table
6.2, with (A): 5 =0.3,05 = 6 = 1.1,6; = d = 0 and € = 0.001 (so that,

0.001 =& < 2, = 0.0058); (B): £ = 0.5 (s0 that, 0.5 = & > =, = 0.0038).
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Figure 6.6: Simulations of the model (6.2), showing the cumulative number of new cases

of infection as a function of time in the presence or absence of vaccination.
Parameter values used are as given in Table 6.2, with § = 0.3,0, = 05 =
1.1,6; = 93 = 0and £ = 0.5 (so that, x = 0.4538 > 0,0.5 =& > £, = 0.0058
and the vaccine has a positive population-level impact).
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Figure 6.7: Simulations of the model (6.2), showing the cumulative number of new cases

of infection as a function of time in the presence or absence of vaccination.
Parameter values used are as given in Table 6.2, with § = 0.3,0, = 05 =
1.1,6;y = 05 = 0 and e = 0.001 (so that, y = —0.0053 < 0, 0.001 = ¢ <
g. = 0.0058, and the vaccine has a negative population-level impact).
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at steady- state (7°). Parameter values used are as given in Table 6.2, with

ﬁ2015 and 51 :52 = 0.
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Figure 6.9: Simulations of the model (6.2) with §; = J, = 0, showing the cumula-
tive number of new cases of infection for various effectiveness levels of the
quarantine/isolation strategy in the absence of vaccination. Parameter
values used are as given in Table 6.2 with all vaccine-related parameters
set to zero. (A) Low effectiveness levels of quarantine/isolation strategy:
B = 0.06;¢ = 0.05;0 = 0.05 (so that, Ry = 1.1138). (B) Moderate effec-
tiveness levels of quarantine/isolation strategy: = 0.06;¢ = 0.1;0 = 0.1
(so that, Ry = 0.9815) and high effectiveness levels of quarantine/isolation
strategy: = 0.06;¢ = 1;0 =1 (so that, Ry = 0.8491).
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simulations of the model (6.2) with §; = d5 = 0, showing the cumulative
number of new cases of infection for various effectiveness levels of the
universal strategy. Parameter values used are as given in Table 6.2, with:
(i) low effectiveness level of universal strategy: § = 0.06;¢ = 0.05,0 =
0.05,01 = 0.05,¢ = 0.05, p = 0.25 (so that, R . = 0.7593); (ii) moderate
effectiveness level of universal strategy: 8 = 0.06;¢ = 0.1,0 = 0.1,01 =
0.1, =0.1,p = 0.4 (so that, R . = 0.5380); (iii) high effectiveness level

of universal strategy: § = 0.06;¢ = 1,0 = 1,00 = 1,{ = 1,p = 0.5 (so
that, R™_ = 0.2355).
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Figure 6.11: simulations of the model (6.2) with §; = d2 = 0, showing the time needed
to eliminate the disease for various effectiveness levels of the universal
strategy. Parameter values used are as given in Table 6.2, with: (A) high
effectiveness level of universal strategy: 6 = 0.06;¢ = 1,0 = 1,00 =
1, =1,p = 0.5 (so that, R}’ = 0.2355); (B) moderate effectiveness level
of universal strategy: 6 =0.06;¢0 =0.1,0 =0.1,00 =0.1,( =0.1,p =04
(so that, R . = 0.5380); (C) low effectiveness level of universal strategy:
B = 0.06;¢ = 0.05,0 = 0.05,00 = 0.05,¢ = 0.05,p = 0.25 (so that,
R =0.7593).
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Chapter 7

Quarantine /Isolation Model with

Multiple Disease Stages

7.1 Introduction

Many of the models used in studying the effect of quarantine and isolation in combat-
ting the spread of a communicable disease tend to be built based on the assumption that
the average waiting time in the associated disease stages is exponentially distributed
(see, for instance, [48, 77]). However, some recent studies [32, 92] show that it may be
more realistic to use gamma distribution assumptions for the average waiting time in
the disease stages (rather than the exponential distribution assumption). Furthermore,
Feng et al. [32] showed that quarantine and isolation models that assume exponential
distribution (for the disease stages) may not be suitable for diseases with relatively long
latent and/or infectious periods for the case when isolation is not completely effective
(i.e., for the case where isolated individuals can transmit infection).

The purpose of this chapter is to provide a rigorous qualitative analysis of a new
deterministic model for transmission dynamics of a communicable disease, subject to

the use of quarantine and isolation, where the average waiting times in the associated
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infected classes are assumed to have gamma distribution. The model to be designed
extends the SEIQHR model (3.2) by considering multiple stages of the exposed, in-
fectious, quarantined and hospitalized individuals (however, unlike in the model (3.2),
it’s assumed here that hospitalized individuals do not transmit infection). Diseases like

HIV [80] and influenza [26] are known to have multiple disease (infection) stages.

7.2 Model Formulation and Basic Properties

The total population at time ¢, denoted by N (), is sub-divided into six disjoint classes
of susceptible (S(t)), exposed (E(t); with m exposed stages ), quarantined (Q(t); with
m quarantined stages), infectious (/(t); with n infectious stages ), hospitalized (H (t);

with n hospitalized stages) and recovered (R(t)) individuals, so that

N(t)=S(t)+ > _ Ei(t) + le(t) + ZQi(t) + ZHj(t) + R(t).

1=
The susceptible population is increased by the recruitment of individuals into the com-
munity (assumed susceptible), at a rate II. Susceptible individuals may acquire infec-
tion, following effective contact with infectious individuals (in any of the n infectious

stages) at a rate A\, where

BY I
j=1

A:
N

(7.1)

It is assumed that infected individuals in the E;, Q); (with i =1,2,--- ,m) and H,
(with j = 1,2,--- ,n) classes do not transmit infection (i.e., it is assumed that exposed
individuals do not transmit infection, and that quarantine and isolation measures are
implemented in a perfect manner, so that quarantined and isolated individuals do not

transmit infection). Although some of these assumptions may not be entirely realistic
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in some epidemiological settings, such as in the transmission dynamics of influenza
(where transmission by infected individuals without disease symptoms occurs), they
help in making the mathematical analysis of the resulting large system of non-linear
differential equations more tractable. Furthermore, in (7.1), the parameter ( is the
effective contact rate (contact capable of leading to infection). The population of
susceptible individuals is further decreased by natural death (at a rate u), and increased
when recovered individuals lose their infection-acquired immunity (at a rate ¢). Thus,
the rate of change of the susceptible population is given by
dsS

— =11 — S —uS.
7 + YR S —puS

The population of exposed individuals in stage 1 (E;) is generated by the infection
of susceptible individuals (at the rate A). This population is decreased by progression
to the next exposed stage (Es; at a rate aj«r), quarantine (at a rate o7) and natural
death (at the rate p), so that

dFEy

W =)\S — (ala + 01 —|—[L)E1

The population of exposed individuals in stage i (with 2 < i < m) is generated
by the progression of individuals in stage F;_; into the stage i (at a rate a;_j«). It is
decreased by progression to the next exposed stage (at a rate a;a), quarantine (at a

rate 0;) and natural death (at the rate u), so that

dE;
dt

=q;_10F;_1 — (aioz +0; + M)Ew 7 = 2, cee L m.

The population of infectious individuals in stage 1 is generated when exposed indi-
viduals in the final (m) stage develop symptoms (at the rate a,,«). It is decreased by

progression to the next infectious stage (Io; at a rate dyx ), hospitalization (at a rate
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¢1), natural death (at the rate p) and disease-induced death (at a rate d1). This gives

drl
d—tl = am By — (dyk + ¢y + pu+ 6))11.

The population of infectious individuals in stage j (with 2 < j < n) is generated by
progression of individuals in stage j—1 (at a rate d;_1x). It is decreased by progression
to the next infectious stage (at a rate d;x), hospitalization (at a rate ¢;), natural death

(at the rate p) and disease-induced death (at a rate §;). Individuals in the final (n)

stage of infectiousness recover (at a rate v; = d, k). Thus,

di;

= = Gkl = (s + b5+ p+ 6l =2, n— 1,

and,

drl,
% = dn—lﬁjn—l - (¢n +n+p+ 571)]71
Exposed individuals in stage 1 are quarantined at the rate o;. The population of
quarantined individuals in stage 1 is decreased by progression to the next quarantined
stage (at a rate bya) and natural death (at the rate p). Thus,

d@s

W = 0'1E1 — (blOé + :U’)Ql

Similarly, the population of quarantined individuals in stage i (with 2 <i <m —1)
is generated by the quarantine of exposed individuals in stage F; (at the rate o;) and
the progression of quarantined individuals in stage ();_; into the stage @); (at a rate
b;_1c). It is decreased by progression to the next quarantined stage (at a rate b;a) and

natural death (at the rate p). Thus,

d@Q;
dt

=0,k + bif1OéQi71 — (bla + /L)QZ D= 27 S Lm.
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It should be mentioned that the parameters o; (i = 1,2,---,m) can be used to
model the progressive refinement of quarantine measures in the population, by as-
suming smaller values of o; at the beginning and higher values for later stages (e.g.,
for m = 3, we can assume smaller values for o, and oy, but a higher value for o3; so
that, 01 < 09 < 03).

The population of hospitalized individuals in stage 1 is generated by the hospital-
ization of quarantined individuals in the final stage (m; at the rate b,,«) and infectious
individuals in stage 1 (at the rate ¢;). It is decreased by progression to the next hospi-
talized stage (at a rate ¢yk), natural death (at the rate p), and disease-induced death
(at a rate d,41). Thus,

dH,

b = bpnaQum + 0111 — (16 + pt+ 6pi1) Hy.

The population of hospitalized individuals in stage 7 (with 2 < j < n) is generated
by the hospitalization of infectious individuals in stage j (1;) (at the rate ¢;) and the
progression of hospitalized individuals in stage j —1 (H;_;) into the H; class (at a rate
cj_1k). It is decreased by the progression to the next hospitalized stage (at a rate c;x),
natural death (at the rate ;) and disease-induced death (at a rate d,,4;). Individuals
in the final n stage of hospitalized recover (at a rate v2 = ¢,k). Thus,

dH;

= Olyt ek o = (R dngg) Hy =2, n = 1,

and,

dH,
dt

= ¢n]n + Cn—l'%Hn—l - (72 + )% + 52n)Hn

As in the case of the quarantine measures discussed above, the parameters ¢; (i =

1,--+,n) can also be used to model the progressive refinement of isolation (in hospital;
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so that, for n = 3, we can have ¢; < @9 < ¢3). Finally, the population of recovered
individuals is generated by the recovery of non-hospitalized and hospitalized infectious
individuals in the final n stage (at the rates v, and 79, respectively). It is decreased by
the loss of natural immunity (at the rate ¢) and natural death (at the rate u), so that

dR

= = Y1dn 4+ 2 Hy, — (¥ + p)R.

It should be stated that, in the above formulation, a;,b;,¢;,d; (i = 1,2,--- ,m; j =
1,2,--- ,n) are constants. Furthermore, it is assumed that the distributions of the

exposed, quarantined, infectious and hospitalized periods are exponential, given by

—a;as

pE,(s) = a;ae ,

pr,(s) = dyre” %",

’ (7.2)
sz‘(S> = biae_bias7
pm,(s) = cjre” "™ fori=1,--- ,m and j=1,--- n.

In (7.2), Tg, = 1/a;a, Ty, = 1/d;k, Ty, = 1/bjoc and Ty, = 1/c;k are the mean exposed,
quarantined, infectious and hospitalized periods, respectively. The relations in (7.2)

are such that:

"1 i 1 1 1 1 1
— a0y ~ bov @ , K (7.3)
=1 =1 7=1

That is, the respective mean time spent in a given infected compartment (e.g., 1/x for
the hospitalized compartment, H) is shared among the various stages in that compart-
ment. In other words, the time period 1/k is distributed equally (if ¢; = ¢o = -+ =

¢, = n) or unequally (if ¢; # ¢y # -+ # ¢, # n) between all the H; (j =1,2,--- ,n)
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stages. Hence, this formulation extends the formulation in [32], where these periods
are equally distributed among the relevant stages (for all the infected compartments,
E,Q,I,H), by allowing for equal or unequal distribution of the average sojourn times
in the asymptomatic (1/a) and symptomatic (1/k) compartments. In line with [32],
it is assumed that the mean exposed and quarantined periods are the same (1/«) and
the mean infectious and hospitalized periods are the same (1/k).

Let,

It follows from (7.2) and (7.4), using the properties of gamma distribution ([49]; see
also Section 2.10 for a brief description), that the compartments E, I, Q) and H indeed

have gamma distributions, given, respectively, by

pals) = (moz)’”1_(‘3(—777:;1537”—17 i
pi(s) = (nm)”ﬁg;z;ss"—l; .
po(s) = (ma)m;(;;ssml; m > 1,
pi(s) = (n/i)”lf;;ssnﬂ; —

where the associated exposed, infectious, quarantined and hospitalized periods are

199



given, respectively, by (see also [32, 100])

1
TE:_7
(6%

1
TI:_a
K

1

Ty =—
Q o
1

Ty =~
K

It should be mentioned that the above formulation ((7.3) and (7.4)) reduces to that
given in [32] by setting a; = b; =m (for i =1,--- ,m)and ¢; =d; =n (for j =
1,-+-+,n). In other words, it should be emphasized that the main distinction between
the gamma distribution formulation in this chapter and that in [32] is that, here, it is
assumed that the average sojourn periods in each of the four compartments, F, I,Q,
and H, given by 1/a,1/k,1/a and 1/k, respectively, are distributed (not necessarily
equally) among the various sub stages (whereas, these periods are distributed equally
at each related stage in [32]). Eichner et al. [26] considered 9 latent and 19 infectious
stages to model the transmission dynamics of pandemic influenza.

It is worth stating that although the sums defined in (7.4) are gamma distributed,
the actual (true) total number of infected individuals, Eiue, Lirues Qtrue and Hipye, given,

respectively, by

Etrue = Z Ei; Itrue = le’ Qtrue = Z Qz and Htrue = Z Hj7 (75)
=1 j=1 i=1 j=1

are not necessarily gamma distributed. However, the different sums in (7.4) have the
same means, with their respective sums given in (7.5), but different variances.
Thus, putting all these formulations and assumptions together, it follows that the

model for the transmission dynamics of an infectious disease in the presence of exposed,
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quarantine, infectious and isolation periods, subject to gamma distributed sojourn
periods, is given by the following non-linear system of differential equations (a flow
diagram of the model is given in Figure 7.1; and the associated variables and parameters

are described in Table 7.1):

as

=T+ yR-AS— S,

dE
d_tl =AS — (01 + e + p) By,

dE
d_t2 = a1aFy — (09 + asar + p) Es,

dE; :
— = 1B = (o +aja+ By j =3, m,
dl

d_tl = ama By, — (¢1 + dik + p 4 01) 11,

dl

d_t2 =dikly — (¢2 + dak + p + 62) I,

dl, |

i = dmiklior = (¢ ds + p+ 0) 3§ =3, n— 1,
dl,

d_ = dnfl"i[nfl - ((bn + dn"ﬁ +u+ 5n)In;
¢ (7.6)

d
% = UlEl - (bla + M)Qla
d
_22 = 03By + 010Q) — (byov + 11)Qs,
dQ; _ g
At 0;Ej+bj_1aQj1 — (bjo + p)Qj; j = 3, -+ ,m,
dH
d_tl = bman —+ (Z§1[1 — (Cl/f + % + 5n+1)Hl7
dH
d_752 = ¢oly + c1kHy — (cok + pt + dpio) Ha,
dH; .
dt Gl + cjakHj 1 — (cjk + o+ Opyj) Hy; j =3, ,n — 1,
dH,,
dt = Onln + cp1kHp 1 — (Cok + o+ 020) Hy,
dR
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Table 7.1: Description of variables and parameters of the model (7.6).
Variable Description
S(t) Population of susceptible individuals
E;(t) Population of exposed individuals in i*?
exposed stage (i =1,--- ,m)
I(t) Population of infected individuals in j**
infectious stage (j =1,--- ,n)
Qi(t) Population of quarantined individuals in it"
quarantined stage (i = 1,--- ,m)
H;(t) Population of hospitalized individuals in j*
hospitalized stage (j =1, ,n)
R(t) Population of recovered individuals
Parameter Description
11 Recruitment rate
1 Natural death rate
I5] Effective contact rate
dik Progression rate from infectious stage jto j+1 (j =1,---,n)
CjK Progression rate from hospitalized stage jtoj+1 (j =1,---,n)
o; Quarantine rate of exposed individuals on "
exposed stage (i =1,--- ,m)
a;x Progression rate from exposed stage i toi+1 (i =1,--- ;m — 1)
A QL Progression rate to first infectious class
of exposed individuals in stage m
b« Progression rate from quarantined
stageitoi+1(i=1,---,m—1)
b Progression rate to first hospitalized class of quarantined
individuals in stage m
oj Hospitalization rate for infectious individuals in j** infectious
stage (j=1,---,n)
P Rate of loss of infection-acquired immunity
Y1 Recovery rate for infectious individuals in stage n
Y2 Recovery rate for hospitalized individuals in stage n
9;(1<j<n) Disease-induced death rate for individuals in j** infectious stage

Disease-induced death rate for individuals in (n — )" hospitalized stage
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A

Figure 7.1: Flow diagram of the model (7.6).

The model (7.6) extends the multi-stage model given in [32], by:

(i) including a term for the loss of infection-acquired immunity (at the rate v). Al-
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though the numerical simulations to be carried out in this chapter are largely
based on the 2003 SARS outbreaks (which was a single season epidemic), the
model (7.6) is robust enough to enable the assessment of the transmission dy-
namics of any arbitrary disease where the infection-acquired immunity is lost
either during a single season or in multiple seasons (such as the case of influenza,

malaria, and some childhood diseases);

(ii) including disease-induced death (at rates d;; ¢ = 1,2,---,2n). Most diseases,
such as HIV, malaria, influenza, TB, etc., have significant disease-induced mor-
tality. Hence, it is crucial that this feature is incorporated in their modeling

studies;

(iii) assuming the average sojourn periods in the exposed, quarantined, infectious and
hospitalized classes are distributed (not necessarily equally) among the various
stages (these periods are assumed to be equally distributed among each of the
aforementioned four infected compartments in [32]). Although, to our knowl-
edge, there is no definitive epidemiological data to suggest that these periods are
equally or unequally distributed, the model (7.6) is general enough to allow for

the assessment of each of the two cases;

(iv) assuming varied rates of quarantine and isolation in each quarantine and isolation
stage (same rates are used in [32] in all quarantine and isolation stages). This
assumption allows for the assessment of progressive refinement of quarantine and

isolation measures (this was evident during 2003 SARS outbreaks [38, 59]).

The model (7.6) is denoted by GD1 for comparison purposes.
It is worth emphasizing that the model (7.6) reduces to the model in [32] by setting
V=0 ===y =0,a1=a="=ap=by=by=--=bp,=m,c1 =c; =

=c,=dy=dy=---=d,=n,¢p=--=¢, =¢and o7 = --- = g. Also, the
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model (7.6) is an extension of the model (3.2) by considering m stages for the exposed
(E;; i=1,2,--- ,m) and quarantined (Q;;7 = 1,2,--- ;m) individuals, and n stages for
the infectious (I;;j = 1,2,--- ,n) and the hospitalized (H;;j = 1,2, -+ ,n) individuals
(i.e., the model (7.6) reduces to the model (3.2) by setting n = m = 1, taking into
account the assumption that hospitalized individuals do not transmit infection; this
assumption is relaxed in the model (3.2)).

In addition to formulating the model in terms of gamma-distributed average wait-
ing times for the associated disease stages, this chapter contributes by way of carrying
out a detailed rigorous mathematical analysis of the model (7.6). In particular, global
asymptotic stability results for the equilibria of the model will be proven (under certain
conditions). Furthermore, the model (7.6) is used to evaluate the impact of quaran-
tine and isolation in combatting the spread of a given communicable disease (such as
SARS). This chapter offers not only important extensions to the model presented in
[32], it also contributes by extending some of the mathematical results presented in [32]
(particularly, by giving global stability proof of the associated endemic equilibrium of
the extended model (7.6)). The following results can be established using the approach

in Section 3.2

Theorem 7.1. The state variables of the model (7.6) are non-negative for all time. In
other words, solutions of the model system (7.6) with positive initial data will remain

positive for all time t > 0.

Lemma 7.1. The closed set

D= {(S>E17"' aEm7[17"' 7[n7Qla"' :vaHlv"' 7Hn>R) ER?}-(m+n+1):

m n H
S+ Z (B + Qi) + Z (I, +H;))+R< ;} is positiely-invariant for the model (7.6).
i=1

=1
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7.3 Stability of Disease-free Equilibrium

7.3.1 Local stability

The DFE of the model (7.6) is given by

902(8*7 Eika "'7E:q,7 If? ) I:u Q; ”'aQ:ru Hik) ) H:m R*)
(7.8)

:(H//i, 0, -, 0),

The local stability of €2g will be explored using the next generation operator method
21, 87]. Using the notation in [87], the non-negative matrix, F, of the new infection
terms, and the M-matrix, V, of the transition terms associated with the model (7.6),

are given, respectively, by

F:(AF BF CF)7

and,

AV Bv
Cv Dy
where, Ap is 2(m+n) X m zero matrix, Cr, By are 2(m+n) X (m+n), (m+n) x (m+n)

zero matrices, respectively. Furthermore, Br is a 2(m + n) X n matrix, given by

6 B - B

00 --- 0
Bp =

00 --- 0

The matrices, Ay, Cy and Dy are (m + n) X (m + n) are given, respectively, by
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and,

Ay

ki

—a1x

Cy =

ks
—aox k3
km—l—l
«
—dlli
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km+2

dok  kpmys

—¢1

— 2

karn
K
_dnf 1

_¢n




km+n+1
_bla km—i—n-‘,—?

_b2a km+n+3

DV - —me[ k2m+n+1
-Gk kominie
—Ck Kom+n+3
—Cp—1R k2(m+n)
with,
(
0j + a;o+ L<j<m;
L Gjem +djembh + o+ 0,y m+1<j<m+n;
j pu—
b (mgn) ¢ + 4 n+m+1<j<2m+n;
\ Cj—@min)k + f+ 0j_om; 2m+n+1<j <2(m+n).
Let,

m
Al:amflJrlHai’ 12172,"'77”;
i=l

m+4n—1

Bi= [[ ki =12 m+n—1Liwith (Bys, = 1); (7.9)
i=l
A 1
D=2l 1=1,2,--+ ,m; Dppsy = :
l Bl7 ) , +1 Bm+1
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p—1 D p—2 t D
-1 t )
Cpq = K’ H ditqg-1+ H kmystq-1 + E K H ditq-1 H Fmtstq-1;
i=1 5=2 t=1 i=1

s=2+4t

for(p=3,---,n;gq=n+1-p);C,, =1and Cyp_1 = Kdy—1 + Kppin-

It follows that the control reproduction number (2, 44], denoted by R. = p(FV 1),

where p is the spectral radius, is given by

_ ﬁDIOn,l

RC km+n

Using Theorem 2.10, the following result is established.

Lemma 7.2. The DFE of the model (7.6), given by (7.8), is locally-asymptotically

stable if R. < 1, and unstable if R. > 1.

The quantity R, measures the average number of new infections generated by a sin-
gle infectious individual introduced into a completely susceptible population. Lemma
7.2 implies that the disease can be eliminated from the community (when R, < 1) if
the initial sizes of the sub-populations of the model are in the basin of attraction of
the DFE (£2y). To ensure that disease elimination is independent of the initial sizes of
sub-populations, it is necessary to show that the DFE is globally-asymptotically stable

if R. < 1. This is explored below.

7.3.2 Global stability

Theorem 7.2. The DFE of the model (7.6), given by (7.8), is GAS in D whenever
R.<1.

Proof. Consider the following Lyapunov function (with the coefficients B, C' and D as
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defined in (7.9)):

km ch - — Cn—‘ j
F= ( +ﬁ ) Ei+ CpiDoEy+ Y ConDiE;j+ ) (ﬁm) L+1,
j=3 j=1 m+)

with Lyapunov derivative given by,

: EmanRe\ - . o o o= (C i1\
F= <+—) Ey+ Cp1DyEs + Z CnaD;E; + Z <—]+1]) I + 1,

—1
B .
s =3 j=1 mtd

ﬁSZ I;

km nRC =
- ( —% ) ]Nl — kB | A+ CnleQ (ChOéEl - kQEQ)

m—1
+ Z leD]’ (aj—lan—l — k’jEj) + leDm (am_laEm_l — kmEm)
j=3
n—1

C, Coint
+ B - (amaEm - km+111) + Z N (djfl"i[jfl - km+j[j) +dy_15lp_1 — karn[m
m—+1 m-+j

Jj=2

- K1FkminRe
S km—i—ch le — <l—+) E1 + leDQ (alaEl — k?QEQ)
j=1

g
m—1
+ Z leDj (ijleEjfl — kjEj) + leDm (amflOéEmfl — kmEm>
j=3
Cna = Crojiny
+ 2 (B — ki 1) + S I (@ kT — KD
Bm+1 - ]22 Bm+j J J S
+dp 1kl — kpanln, since S < Nin D,
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m+1

k1kminRe
= km+nR Z ] ( 2 PmAn e + C’mngala) E, + Z leDjaj_lozEj_l

5 2
— ZCn 1D k E -+ Z ; Jiljd] 1/4/ Z ;jiljkm+jjj - km+n[n7
m+j mTj

- - d /ﬁ)C 1 k‘ C a1
= kminRe I Co1(D; — D;kj) E; negitl _ FmtiCnojirg) o
+ jz: J + z; ,1 ( j+1a;Q + Z ( Bm+]+1 Bm+j J

— kinln.

It can be shown, after some lengthy algebraic manipulations, that

Dj+1ajoz - Djkj = O,

and,

dikCnjjrr _ KmiCnji

— —k,
+n-
Bt Bt j

Hence,

F <k (Re = 1) ;<0 for R, < 1.

j=1
Since all the parameters of the model (7.6) and variables are non-negative, it follows
that F < 0 for R, < 1 with F = 0 if and only if Iy = I, =--- =1, = 0. Hence, F is
a Lyapunov function on D. Therefore, by the LaSalle’s Invariance Principle (Theorem

2.6),

lim E;(t) =0, foralli=1,--- ,m;
e (7.10)
lim [;(t) =0, forallj=1,---,n

t—o0
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It is clear from (7.10) that limsup £y = 0. Thus, for sufficiently small small w; > 0,

t—o0

there exists a constant N; > 0 such that limsup £y < w; for all £ > Nj. It follows from

t—o0

the (m + n + 2)th equation of the model (7.6) that, for ¢ > Ny,

Ql < oywy — km+n+1@1~

Thus, by comparison theorem (Theorem 2.8),

QF =limsup @y < -,
t—o0 km+n+1
so that, by letting w; — 0,
QT =limsup @ <0. (7.11)

t—oo

Similarly (by using litm inf £y = 0), it can be shown that

Q1o = liminf @1 > 0. (7.12)

Thus, it follows from (7.11) and (7.12) that

Qi =2 02 QT
Hence,
tlim @1 =0. (7.13)

Similarly, it can be shown that
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lim Q;(t) =0, foralli =2,---  m,

t—00
tlim H;(t)=0, forallj=1,--- n, (7.14)
tlim R(t) =0 and tlim S(t) =11/p.

Thus, by combining (7.10), (7.13) and (7.14), it follows that every solution of the
equations in the model (7.6), with initial conditions in D, approaches the DFE, €, as

t — oo when R, < 1. ]

The epidemiological implication of the above result is that the combined use of
quarantine and isolation can lead to disease elimination if they can bring (and keep)
the threshold quantity, R.., to a value less than or equal unity (i.e., the condition R, < 1
is necessary and sufficient for disease elimination). Figure 7.2 depicts numerical results
obtained by simulating the model (7.6), with m = 2 and n = 3, using various initial
conditions for the case R. < 1. It is clear from this figure that all solutions converged
to the DFE, € (in line with Theorem 7.2). It should be mentioned that, unless
otherwise stated, the numerical simulations of the model (7.6) are carried out using
the parameter values in Tables 3.2 and 7.2. These parameter values are consistent with
those associated with the 2003 SARS outbreaks [15, 23, 38, 59]. It is worth mentioning
that the progressive refinement of quarantine and isolation measures is incorporated
in all numerical simulations in this chapter (unless otherwise stated) by using smaller
values of o7 and o9, in comparison to o3; and also smaller values of ¢; and ¢,, in

relation to ¢3 (see Table 7.2).
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Table 7.2: Quarantine and hospitalization rates for different disease stages

Number of stages | Quarantine rates Hospitalization rates

m=mn= o1 =0.1 ¢1 = 0.20619

m=n= o1 =0.05, 09 =0.1 ¢1 =0.1 ¢o =0.20619

m=mn= o1 =0.03333, o2 =0.05, 03 =0.1| ¢; =0.0666, ¢2 =0.1, ¢3 = 0.20619

Table 7.3: Distribution of exposed and infectious periods for the model (7.6)

Number of stages | Values of a;,b;, ¢;, d;

m=n=1 a1:b1:1,01:d1:1

m=n=2 a1:b1:1.57a2:b2:3,01:d1:1.5,02:d2:3

m=n=23 a1:b1:2, a2:b2:3, a3:b3:6, 01:d1:2, 62:d2:3, 03:d3:6

7.4 Existence and Stability of Endemic Equilibrium

In this section, the possible existence and stability of endemic (positive) equilibria of

the model (7.6) will be explored.

7.4.1 Existence

_ ok ok Kok sk Tk TRk Kok Kok Kok ok Kok ok ok Kk
Leth_(S 7E17E27”'7Em7-[17]27”'7-[n7 1 27”'7QmJH17H27'”7Hn7R )

represent any arbitrary endemic equilibrium of the model (7.6).

Solving the equations of the model at endemic steady-state gives
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I R** E G Qi OZE*j
S**:;—*—wv ET*:]{?—’ E;*: jlk = fOrj:Qv"'7m7
+u 1 J
v QB v QIKITF v djiRT ,
Il - 7]T;; ) [2 - k 1’ [j - k.. for j=3,---,n,
m-1 m+2 m+j
e+ o E** + b: 1« *i
m-+n+1 m+n+j
I* + b,aQ** I+ kH:™
Hf*:gbllk—i_ naQn’ H;*: ]]k 7—1 j—1 forj:2’...7’n’
2m—+n+1 2m4n+j

[** H**
pee = ha + 72 n
Y+

The force of infection A, given by (7.1), can be expressed at endemic steady-state as

OB
j=1

A= 1
— (7.16)

As in the case of the model (3.2), for instance, the expressions in (7.15) are re-written

in terms of \**S** for mathematical convenience, as below:

o A5 o ajil ! aj—1 *ok Qrkk .
El :k—l’ EJ :<k_1H kl NS ) fOI‘j:2,"'7m,

=2

I** a™ ”ﬁ aj—1 )\**5** ]** am/ﬁ;j—l nﬁ aj—1 f[ dlfl )\**S** f . 2
— R JE— . = or - cee .M
1 k‘l e k‘l Y 7 kl 1 kl ) ] Y ) )

1=2 Kintj

Kk QK
. 0'1)\ S

1 — 7.5 :pl)\**S**a Q;* :p]/\**S**7 fOI‘j = 27 e, M,
klkm-l—n—l-l

(7.17)
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m+1
m — bm m
H** _ ( Q (bl ar—1 + ap

kl k2m+n+1 kl k2m+n+1

=2

ok CL[ 1 = dl*l qn"Y2 Kk IRk
R + ARG

=2

where,
m+1
D= 01 q = am¢1 aj—1 bmapm
11— 75 7 1 — )
klkm—i—n—l—l k1k2m+n+1 1—2 kl k2m+n+1
i-1 J
bj—1(1pj—1 opies aj—1 .
p]: k k k k Y for.]:27..'7m7
m+n-+j m~+n+jvl =9 1
and,

i1 m+l1 7
_Cjmikg-1 | oK a1 di—
=

, forj=2,---'n

k2m+n+j k1k2m+n+j 1=2 kl km+j

=2

Substituting the expressions in (7.17) into (7.16) gives

l

AP S )‘**S**)\** 4 i o ﬁ E DRl D a™ Tﬁ a—1 AFE G\
]{31 kl kl
J

=2 =2 =2
n Z (6] /{jj rm H 1 H dl 1 A**S**A** + Z (ZA**S**A** + zn:p )\**S**A**
ky Ko s — Y
=2 =2 i=1 7j=1
g anY (7.18)
-1 l 1 n /2 .
<k11/1+u el ll_! K+ ww)

_y nﬁla’ Ly O‘mﬁj_lnﬁlal ) § LB P
T 2\ "k i | '

k
1=2 1=2 =2 m+tJ

Dividing each term in (7.18) by A\**S**(and noting that, at the endemic steady-state,
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A£G £ 0)) gives

1+ WA™ =R,

where,

m, n—1 m+1 n
QR T H a1 dl—l qn"Y2
kl (w + ,U,) 1—9 kl 1—9 km+n Q/} + 1%

Hence,

Re—

1
7 > 0, whenever R. > 1. (7.19)

)\** —

The components of €2; can then be obtained by substituting the unique value of \**

given in (7.19) into the expressions in (7.17). Thus, the following result is established.

Lemma 7.3. The model (7.6) has a unique endemic equilibrium, given by €1y, whenever

R.>1.

7.4.2 Local stability

Define,

DOZ {(SaElaE%'“ 7Em7[17[27"' 7In7Q17Q27"' 7Qm7H17H27"' 7HnaR) €D:

EZ:[j:Ql:HJ:R:O, fori:1,~~~,m,j:1,~~,n},

the stable manifold of the DFE (). Further, let,
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Rer = Relsy=tp=mtpp=0 =
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I

where,

~ amH i N p—l n n—2 t n
Dy=—=— and Gy = 6" [[di + [ [ fnss + D_6" [[di T] Fnesr (7:20)
=1 s$=2 t=1 1

H fi = =1 s=2+t
(2
i=l

with,

05+ agot L<j=<m

. Gjm + dj_mi +p; m+1<j<m+mn;

T bj—(m+n)Q + 14 n+m-+1<75<2m+n;
Cj—(2man) K + 14 2m+n+1<j<2(m+n).

\

Theorem 7.3. The unique endemic equilibrium of the model (7.6) is LAS if Rer > 1.
The proof is given in Appendix D.

The epidemiological implication of Theorem 7.3 is that the disease will persist in
the population if R. > 1. Simulation results for the model (7.6), depicted in Figure
7.3 (for the case when m = 2, n = 3, and 0; = 09 = -+ = 09, = 0, so that R, > 1)
using numerous initial conditions, show convergence of the solutions to the endemic

equilibrium (in line with Theorem 7.3).

7.4.3 Global stability for special case

Here, the global stability of the endemic equilibrium of the model (7.6) is given for

the special case where the recovered individuals do not lose their infection-acquired
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immunity (i.e., 1 = 0) and the associated disease-induced mortality in all classes is
negligible (so that, 0; = dy = + -+ g, = 0). The model (7.6), with ) =, = dy = -+ =

09, = 0, then reduces to:

% =1T—AS — uS,

s B,

% = aak) — fak,

% =aj 0B — fjE;; 5 =3,---,m,

% = amEm — fmi1lh,

% =d; aklj 1 = foily; 5 =2, m, (7.21)
da%l =011 — fint1@n,

O 0B+ b10Q s — funss Qi G =2 m,
% = bnaQm + ¢111 — famini1Hi,

% = ¢il; +cj1kHj 1 — fomqniiHyj3 7 =2,-+ )0,
% =yl +H, — uR.

Adding the equations of the reduced model (7.21) gives dN/dt = II — uN. Hence,
N — 11/ ast — oo. Thus, I1/p is an upper bound of N (t) provided that N(0) < I1/p.
Further, if N(0) > II/u, then N(t) will decrease to this level. Using N = II/u in (7.1)

gives a limiting (mass action) system given by (7.21), with

A= 61 le,where ﬁl = % (722)
j=1

It can be shown that the associated reproduction number of the reduced model, (7.21)

with (7.22), is given by
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Where, D1 = m and le = KR Hdl + Hfm+3 + K Hdl H fm+s-
=1 s=2 t=1

| | f = = =1 s=2+t
(2
i=l

It is easy to ShO;N, using the technique in Section 7.4.1, that the reduced model, given

by (7.21) with (7.22), has a unique EEP whenever R, > 1.

Lemma 7.4. The reduced model, given by (7.21) with (7.22), has a unique endemic

equilibrium whenever Rq. > 1.
Furthermore, the following result is claimed (see Appendix E for the proof).

Theorem 7.4. The unique endemic equilibrium of the reduced model, given by (7.21)

with (7.22), is GAS in D\ Dy if R > 1.

Figure 7.4 depicts the cumulative number of new infections as a function of quar-
antine rates, from which it is evident that the cumulative number of new infections
decreases with increasing quarantine rate. A similar result is obtained by increas-
ing the isolation rate (Figure 7.5). It should be mentioned that the simulation re-
sults in Figures 7.4 and 7.5 are consistent with those reported in [32]. Although
the global asymptotic stability result given in Appendix E is for a special case (with
=01 =8y =+ = 09, = 0), further extensive numerical simulations suggest that the
endemic equilibrium €2y, of the full model (7.6), is GAS in D \ Dy whenever R, > 1.

Hence, the following conjecture is made.

Conjecture. The unique endemic equilibrium of the model (7.6), denoted by €,

is GAS in D\ Dy if R, > 1.
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The effect of the number of disease stages for the exposed (m) and infectious (n)
classes is monitored by simulating the model (7.6) with various values of m = n. The
results obtained, depicted in Figure 7.6, show an increase in the cumulative number of
disease-related mortality with increasing values of m = n.

Simulations for the cumulative number of probable SARS cases observed during
the 2003 outbreaks in the Greater Toronto Area (GTA) of Canada are also carried
out. The results obtained, for the case m = n = 3, are compared with those obtained
using the exponentially-distributed (ED) equivalent of the model (7.6) (i.e., model
(7.6) with m = n = 1) and another gamma-distributed version of the model (7.6) with
m = n = 3, denoted by GD2, where the average sojourn time in each of the exposed,
quarantined, hospitalized and infectious stages is shared equally among each associated
disease stage (this is similar to the model given in [32]). It should be mentioned that, in
such a setting, the standard ED model has the associated reproduction number given by
R. = 0.6506. Similarly, the GD2 and GD1 models have R. = 0.6962 and R. = 0.9858,
respectively. Furthermore, about 250 probable SARS cases were reported for the GTA
(see Figure 2 in [38]). The simulation results obtained, depicted in Figure 7.7, show
that while the ED and GD2 models under-estimated the observed number of probable
cases, the GD1 model (7.6) gave a very good estimate of the observed data. It should
be mentioned that the GD2 model is also competitive if the quarantine and isolation
rates are distributed (unequally) to incorporate their progressive refinement (as in the
case of the model GD1).

Similar comparisons are made for the cumulative number of cases recorded for the
Hong Kong 2003 SARS outbreaks (approximately 1750 cases were recorded in Hong
Kong [38]). Here, too, the GD1 model is more competitive (Figure 7.8). For these
simulations, the ED, GD1 and GD2 models have R. given by 0.7345, 0.9710 and
0.7861, respectively. It should be emphasized, however, that the reason why the GD1

model gives different results, compared to the GD2 model (for instance), is that the
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values of o1 and o5, and also ¢ and ¢5, used in the simulations of the GD1 model are
different from the quarantine (o) and isolation (¢) rates used in the simulations of the
GD2 model. While the values o; = 0.0333, 09 = 0.05, 03 = 0.1 and ¢; = 0.0666, ¢o =
0.1, ¢3 = 0.20619 were used in the simulations of the GD1 model (to account for the
gradual refinement of quarantine and isolation), the values o7 = 09 = 03 = 0.1 and
¢1 = ¢o = ¢3 = 0.20619 were used in the simulations of the GD2 model (that’s why
the R. value for the GD1 model is 0.9710, while that of the GD2 model is 0.7861 for
this setting).

The effect of the distribution of sojourn times for the symptomatic period (1/k)
is monitored by simulating the GD1 model (7.6) with the parameters in Table 3.2 for
the case where the periods are either same or varied in each stage (i.e., the case where
d; = n = ¢; versus the case where d; # n # ¢;). In both cases, the same numerical
simulation results were obtained (Figure 7.9). In other words, distributing the average
sojourn times equally or unequally between the sub stages of the symptomatic classes
(I and H) does not alter the numerical simulation results obtained. The effect of the
distribution of sojourn times in the asymptomatic classes (E and Q; given by 1/«)
is also monitored by simulating the model with the parameters in Table 3.2 for three
different scenarios. An asymptomatic period 1/a = 6 days is chosen, and distributed

as follows:

(I) 2.5 days in E; and @ classes (i.e., /a0 = 1/byjv = 2.5 days), 2 days in Ey and
Q- classes (i.e., 1/asax = 1/bsa = 2 days) and 1.5 days in E3 and Q3 classes (i.e.,
1/asa = 1/bsar = 1.5 days);

(IT) 2 days in E; and @ classes (i.e., 1/a;a0 = 1/bjac = 2 days), 2 days in Ey and
Q2 classes (i.e., 1/asa = 1/bsa = 2 days) and 2 days in F3 and Q3 classes (i.e.,
1/aza = 1/bsa = 2 days);

(III) 1.5 days in E; and @ classes (i.e., 1/a;a0 = 1/byjae = 1.5 days), 2 days in E, and
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Q- classes (i.e., 1/asa = 1/bsar = 2 days) and 2.5 days in E53 and Q)3 classes (i.e.,
1/asa = 1/bsav = 2.5 days).

The simulation results obtained (depicted in Figure 7.10) clearly show that if the
asymptomatic period is distributed such that more time is spent in the early stages
of the asymptomatic (latent and quarantine) classes (i.e., more time is spent in the
Ey, Es, 1, Qs classes in comparison to in the F3 and @3 classes), the cumulative num-
ber of new cases is higher than for the cases where the asymptomatic period is dis-
tributed equally among the stages, or if more time is spent in the later asymptomatic
stages. In other words, unlike for the case of the sojourn time spent in the symptomatic
classes (I and H), the way the sojourn time is distributed in the asymptomatic com-

partments (E and @) affects the cumulative number of new cases.

7.5 Summary

A new deterministic model for disease transmission, subject to the use of quarantine
and isolation, is presented and rigorously analyzed. The model, which is based on the
assumption that the mean waiting periods in all infected classes obey a gamma distri-
bution, adopts a standard incidence formulation for the infection rate. An important
feature of this model is that it allows for equal, or unequal, distribution of the average
sojourn time in each of the associated infected compartment. Furthermore, it allows for
the gradual refinement of quarantine and isolation measures (this was the case during
the 2003 SARS outbreaks).

The main theoretical findings of this chapter are given below:

(i) The model (7.6) has a globally-asymptotically stable disease-free equilibrium
whenever the associated reproduction number (R.) is less than unity (Theorem

7.2);
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(i)

(iii)

The model has a unique endemic equilibrium whenever the reproduction number

exceeds unity (Lemma 7.3 );

The unique endemic equilibrium of the model is shown to be locally and then

globally-asymptotically stable for some special cases (Theorems 7.3 and 7.4).

Numerical simulations of the model (7.6), using data related to the 2003 SARS out-

breaks, show the following:

()

The cumulative number of new cases of infection decreases with increasing quar-

antine or isolation rate;

the cumulative number of disease-related mortality increases with increasing num-

ber of disease stages (m and n);

unlike the ED and GD2 models, the model (7.6) gives numerical results that are

consistent with the 2003 SARS outbreaks data for the GTA and Hong Kong;

distributing the average sojourn time equally or unequally between the respective
symptomatic classes does not alter the numerical simulation result obtained (i.e,

the cumulative number of new cases);

if the asymptomatic period is distributed such that more time is spent in the early
asymptomatic (latent and quarantine) stages, the cumulative number of new cases
is higher than for the cases where the period is distributed equally among the

asymptomatic stages or if more time is spent in the later asymptomatic stages.
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Figure 7.2: Simulation of the model (7.6) showing the total number of infected individ-

uals as a function of time for R, < 1. Parameter values used are as given
in Tables 3.2 and 7.2, with 3 =0.2, m=2, n=3, ay=b; =15, ay =
b2 = 3, C1 = d1 = Cy = d2 = C3 = dg =3 (SO that, RC = 04610)
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Figure 7.3: Simulation of the model (7.6) showing the total number of infected individ-
uals as a function of time for R, > 1. Parameter values used are as given
in Tables 3.2 and 7.2, with 3 =0.5, m=2, n=3, ay=b; =1.5, ay =
bg = 3, C1 = d1 = Cy = d2 = C3 = dg =3 (SO that, RC = 11526)
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Figure 7.4: Numerical simulations of the model (7.6) showing the cumulative number
of new infections for various values of the quarantine parameters (o; and
09). Parameter values used are as given in Table 3.2, with § = 0.15, m =
2, TL:3, a1:b1:1.5, a2:b2:3 01:d1202:d2203:d3:3
and the isolation rates are as given in Table 7.2.
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Figure 7.5: Numerical simulations of the model (7.6) showing the cumulative number
of new infections for various values of the isolation parameters (¢, ¢, and
¢3). Parameter values used are as in Table 3.2, with § = 0.15, m =
2, TL:3, a1:b1:1.5, CLQZZ)2:3 01:d1202:d2203:d3:3
and the quarantine rates are as given in Table 7.2.
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Figure 7.6: Numerical simulations of the model (7.6) showing the cumulative number
of disease-induced mortality for various disease stages (m = n). Parameter
values used are as given in Tables 3.2, 7.2 and 7.3, with g = 0.15.
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Figure 7.7: Numerical simulations of the model (7.6) showing the cumulative number
of probable SARS for the GTA generated using the GD1, GD2 and ED
models. Parameter values used are as given in Tables 3.2, 7.2 and 7.3.
with g = 0.2, ¥» = 0. GD1 model: m = n = 3, GD2 model: m = n = 3;
01 =09 =03 =0.1and ¢; = ¢ = ¢35 = 0.20619. ED model: m =n = 1.
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Figure 7.8: Numerical simulations of the model (7.6) showing the cumulative number
of probable SARS for the Hong Kong generated using the GD1, GD2 and
ED models. Parameter values used are as given in Tables 3.2, 7.2 and 7.3,
with § = 0.2,¢ = 0 and II = 122. GD1 model: m = n = 3. GD2 model:
m=mn=3.01 =09 =03 =0.1and ¢; = ¢ = ¢p3 = 0.20619. ED model:
m=mn=1.
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Figure 7.9: Numerical simulations of the model (7.6) showing the cumulative number
of new cases for various distributions of the symptomatic period (1/x) using
different values of ¢; = dy, ¢o = dy, and c3 = d3. Parameter values used
are as given in Table 3.2, with 8 = 0.2, ¢ =0, 01 = 02 = 03 = 0.1 and
01 = P2 = ¢3 = 0.20619.
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Numerical simulations of the model (7.6) showing the cumulative number
of new cases for various distributions of the asymptomatic period (1/c)
using different values of a; = by, as = by, and a3 = bz. Parameter values
used are as given in Table 3.2, with f =0.2, v =0, 01 = 09 = 03 = 0.1
and ¢1 = gbg = ¢3 = 0.20619.
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Chapter 8

Summary of Contributions and

Future Work

The main contributions of this thesis can be classified into three main categories,
namely, model formulation, mathematical analysis and contributions to public health.

These categories are summarized as follows.

8.1 Model Formulation

A deterministic model for assessing the combined impact of quarantine (of asymp-
tomatic cases) and isolation (of symptomatic cases) on curtailing the spread of a com-
municable disease is considered. In addition to using standard incidence in modelling
the infection rates, the basic model allows for the loss of infection-acquired immunity
(so that individuals who recovered from infection can become susceptible again). The
thesis contains four new models which extend the basic model described above, for the
transmission dynamics of a disease that is controllable using quarantine and isolation,

as follows:
(i) A new quarantine/isolation model, that incorporates time delay as well as two
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different incidence functions (Holling type II and standard incidence) is designed

in Chapter 4;

(ii) The basic model (in Chapter 3) is extended to incorporate the effect of periodic-
ity in the transmission dynamics of the disease. The resulting non-autonomous

model is presented in Chapter 5;

(iii) A new quarantine/isolation model with an imperfect vaccine is constructed in

Chapter 6;

(iv) A new quarantine/isolation model that allows for multiple latent and infectious
stages, as well as gamma-distributed waiting times in these stages, is designed in

Chapter 7.

8.2 Mathematical Analysis

A major contribution of the thesis is the detailed qualitative analyses carried out (using
a robust collection of non-linear dynamical systems theories and techniques) of all the
models presented in this thesis (this is particularly noteworthy considering the relatively
large size and non-linearity of the models considered). Some of the main mathematical

results are summarized below.

Chapter 3

Rigorous qualitative analysis of the SEIQHRS model, which takes the form of a deter-
ministic system of nonlinear differential equations with standard incidence, reveals that
it has a globally-asymptotically stable disease-free equilibrium whenever its associated
reproduction number (R.) is less than unity. Further, the model has a unique endemic
equilibrium when the threshold quantity exceeds unity. Using a Krasnoselskii sub-

linearity trick, it is shown that the unique endemic equilibrium is locally-asymptotically
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stable when it exists (for a special case). A non-linear Lyapunov function of Volterra
type is used, in conjunction with the LaSalle’s Invariance Principle, to show that the
endemic equilibrium is globally-asymptotically stable for a special case. These analyses
show that the disease will be eliminated from the community if the use of quarantine

and isolation can bring R. to a value less than unity.

Chapter 4

The problem of the asymptomatic dynamics of a quarantine/isolation model with time
delay is considered, subject to two incidence functions (namely standard incidence and
Holling type II incidence function). Rigorous qualitative analysis of the model shows
that it exhibits essentially the same (equilibrium) dynamics regardless of which of the
two incidence functions is used. In particular, for each of the two incidence functions,
the model has a globally-asymptotically stable disease-free equilibrium whenever the
associated reproduction threshold quantity is less than unity. Further, it has a unique
endemic equilibrium when the threshold quantity exceeds unity. For the case with
Holling type II incidence function, it is shown that the unique endemic equilibrium
of the model (by using Comparison Theorem) is globally-asymptotically stable for a
special case. The permanence of the disease is also established for the model with
Holling type II incidence function. Furthermore, it is shown that adding time delay
to, and/or replacing the standard incidence function with the Holling type II incidence
function in, the corresponding autonomous quarantine/isolation model with standard
incidence (considered in Chapter 3, for the case where recovered individuals do not
lose their infection-acquired immunity and hospitalized individuals do not transmit
infection) does not alter the qualitative dynamics of the autonomous system (with

respect to the elimination or persistence of the disease).
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Chapter 5

In this chapter, the model presented in Chapter 3 is extended to include the effect
of periodicity on the transmission dynamics of the disease. Rigorous analysis of the
resulting model reveals that it has a globally-asymptotically stable disease-free solu-
tion whenever its associated basic reproduction ratio is less than unity. Furthermore,
using persistence theory, it is shown that the model has a globally-asymptotically sta-
ble family of positive periodic solutions for a special case. These analyses show that
adding periodicity to the autonomous quarantine/isolation model (3.2) does not alter

its qualitative dynamics (with respect to the elimination or persistence of the disease).

Chapter 6

The potential impact of an imperfect vaccine in combatting the spread of a disease,
in the presence of quarantine and isolation is rigorously assessed by extending and
analysing the model in Chapter 3 to include an imperfect vaccine. Using center man-
ifold theorem, the new (12-dimensional) model is shown to undergo the phenomenon
of backward bifurcation, where a stable disease-free equilibrium co-exists with a stable
endemic equilibrium when the associated reproduction threshold is less than unity. It
is shown that the backward bifurcation phenomenon can be removed if the vaccine
is perfect or if mass action incidence is used, instead of standard incidence, in the
model formulation. Thus, this chapter shows that adding vaccination to the quaran-
tine/isolation model in Chapter 3 alters its qualitative properties (since the model in
Chapter 3 did not exhibit backward bifurcation). Further, the model has a unique
endemic equilibrium when the reproduction threshold quantity exceeds unity. A non-
linear Lyapunov function, of Goh-Volterra type, is used to show that the endemic

equilibrium is globally-asymptotically stable for a special case.
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Chapter 7

In this chapter, a new (2(m+mn+ 1)-dimensional) quarantine /isolation model which in-
corporates multiple latent and infectious periods (as well as gamma-distributed waiting
times in these compartments) is designed and rigorously analysed. A linear Lyapunov
function is used, in conjunction with the LaSalle’s Invariance Principle, to show that
the disease-free equilibrium of the model is globally-asymptotically stable whenever its
associated reproduction number is less than unity. Further, the model has a unique
endemic equilibrium when the threshold quantity exceeds unity. Using a Krasnosel-
skii sub-linearity trick, it is shown that the unique endemic equilibrium is locally-
asymptotically stable for a special case. A nonlinear Lyapunov function of Volterra
type is used, in conjunction with the LaSalle’s Invariance Principle, to show that the
endemic equilibrium is also globally-asymptotically stable for a special case. This
chapter shows that adding multiple latent and infectious stages, as well as gamma-
distributed waiting times in these stages, does not alter the dynamics of the basic
quarantine/isolation model considered in Chapter 3, for the case where recovered indi-
viduals do not lose their infection-acquired immunity (with respect to the persistence

or elimination of the disease).

8.3 Public Health

The study provides some important epidemiological insights into the impact of quar-

antine/isolation on the control of a communicable disease, including the following:

(i) The level of transmission by individuals isolated in hospitals play an important
role in determining the qualitative impact of the two control measures (the use
of quarantine and isolation could offer a detrimental population-level impact if

the isolation-related transmission is high enough);
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(ii) The disease burden decreases with increasing time delay (incubation period);

(iii) The singular use of a quarantine/isolation strategy may lead to the effective
disease control (or elimination) if its effectiveness level is at least moderately high
enough. The combine use of the quarantine/isolation strategy with a vaccination
strategy will eliminate the communicable disease being studied, even for the low
efficacy level of the universal strategy considered in this thesis. It is further shown
that the imperfect vaccine could induce a positive or negative population-level
impact depending on the size (or sign) of a certain associated epidemiological

threshold;

(iv) Owing to the phenomenon of backward bifurcation in the quarantine/isolation/vaccination
model considered in Chapter 6, it is shown that, in this setting, effective disease
control (or elimination) depends on the initial sizes of the sub-populations of the

model;

(v) The cumulative number of new cases of infection decreases with increasing quar-

antine or isolation rate;

(vi) The cumulative number of new cases of infection is higher if the asymptomatic
period is distributed such that most of the period is spent in the early stages of
the asymptomatic compartments in comparison to the cases where the average
time period is equally distributed among the associated stages or if most of the
time period is spent in the later (final) stages of the asymptomatic compart-
ments. Distributing the average sojourn time in the asymptomatic infectious

classes equally or unequally does not effect the cumulative number of new cases.

8.4 Future Work

The work in this thesis can be extended in numerous directions, including:
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(i) Establishing the global dynamics of the endemic equilibria of the models (without

considering any special cases);

(ii) Investigating the uniqueness and stability of the periodic solution associated with

the non-autonomous model in Chapter 5;

(iii) Studying the cost-effectiveness and optimal control of quarantine and isolation

measures in controlling the spread of a disease in a population;

(iv) Carrying out detailed uncertainty and sensitivity analyses in the models (to study

the effect of such uncertainties on some of the simulation results obtained);

(v) Modelling the impact of quarantine and isolation in a multi-patch setting (such

as for the case of the spread of animal diseases, like foot-and-mouth disease).
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Appendices

Appendix A: Basic Reproduction Ratio in Periodic
Environment

In this appendix, the theory of basic reproduction ratio for disease transmission models
in a periodic environment, developed by Wang and Zhao [91], is described.

Suppose that the disease compartments are divided into infected compartments
(labeled by i = 1,2, -+ ,m) and uninfected compartments (labeled by i = m+1,---  n).

Define X, to be the set of all disease-free states:

Xe={2>0:2;,=0, foralli =1,2,--- ;m}.

Let Fi(t,x) be the input rate of newly infected individuals in the ith compartment,
V' (t,z) be the input rate of individuals and V; (¢,z) be the rate of transfer of indi-
viduals out of compartment 7. Thus, the disease transmission model is governed by a

non-autonomous ordinary differential system:

80 = F(t2(t) = V(t,2(t) = f(t, 2(1)), (A1)
where, V;(t,z) =V, (t,2) =V (t,x), f = (f1, far -+ 5 [n)-

Assume the following:
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(A1) Foreach 1 <i <mn, F(t,z), V(t,x) and V; (¢, z) are non-negative, continuous

on R x R? and continuously differential with respect to .

(A2) There exists a real number w > 0, such that F;(t,z), V;"(t,x) and V; (¢, ) are

w-periodic in t.
(A3) Ifx; =0, then YV, =0fori=1,--- ,m.
(A4) F, =0 for i >m.
(A5) ifz € X, then F; =V,  =0fori=1,--- ,m.
It is further assumed that the model (A.1) has a disease-free solution, given by

22(t) = {(0,--- 0,20 1 (t), -+ ,22(1))" with 2)(t) > 0,m +1 < i < n for all t}.

Define, an (n —m) x (n — m) matrix

8fz t, IO
i) = (255 ,
J m+1<i,5<n

and the m X m matrices

Vo ((’Jﬂ(t,wo)) Flo) - (aﬁ-(t,xo)) |
Ox; 1<i,j<m 7 Ox; 1<ij<m

Let ®,,(t) be the monodromy matrix of the linear w-periodic system d_j = M(t)=.

Further, it is assumed that
(A6) p(Pp(w)) <1, where p(®p(w)) is the spectral radius of @y (w).

(A7) p(@_v(w)) < L.
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Let,

Y(t,s), t>s,

be the evolution operator of the linear w-periodic system

dy _

i =V (t)y.

In other words, for each s € R, the associated m x m matrix Y (¢, s) satisfies

dY (t, s)
dt

=—-V(@t)Y(ts) Vt>s, Y(s,s)=1.

It is further assumed that ¢(s) (w-periodic in s) is the initial distribution of infectious
individuals. That is, F'(s)¢(s) is the rate at which new infections are produced by
infected individuals who were introduced into the population at time s [91]. Since
t > s, it follows then that Y (¢, s)F'(s)¢p(s) represents the distribution of those infected
individuals who were newly-infected at time s, and remain infected at time ¢.

Hence, the cumulative distribution of new infections at time t, produced by all

infected individuals (¢(s)) introduced at a prior time s = ¢, is given by

B(t) = / Y (£, 5)F(s)6(s)ds /O TVt — a)F(t — a)o(t — a)da.

Let C,, be the ordered Banach space of all w-periodic functions from R to R*, which is

equipped with maximum norm ||.|| and positive cone

CH={peC,: o) >0, VteR}.

Define a linear operator L : C, — C,, by [91]
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(L) (1) = /OOO Yt — a)F(t — a)p(t — a)da Vi€ R, 6 € C,.

The reproduction ratio ( denoted by Rg) is then given by the spectral radius of L,
denoted by p(L). That is, Ro = p(L) [91].

Appendix B: Verification of Assumptions A1-A7 in

Appendix A

The assumptions are verified following the approach in [91]. Using the notation in

Appendix A, the system (5.1) can be re-written as:

—:L’(t) = ]:(t?x(t)) - V(t,l’(t)) = f(t7x(t))7 (Bl)

where,

DT O~ T own
Q
&

and,

244



B)S(E)[L(t) +n(t)H ()]
N()

(k(t)+o(t)+pn)E

—II - yR+ + pS

(m+o+p+d)l

VY =
(at) + )@
(2 +p+62)H
1l —nH+ W+ R
Further, let,
04 R ﬁ(t)S(t)[Ix)(;)r n(t)H(t)] s
0 (k(t) +o(t) + n)E
V* = ’ and V™ = (n+otp+onl
0 (a(t) + 1)@
0 (V2 +p+02)H
nl+nH (Y + R

It is easy to see that V =V~ — VT, The functions F, V" and V™ satisfy the following:

(A1) Foreach 1 <i <6, F;(t,z), V;"(t,z) and V; (t,x) are non-negative, continuous
on R x Ri and continuously differential with respect to x, (since each function

denotes a direct non-negative transfer of individuals).

(A2) By assumption (note that it is assumed that some of the model parameters are w-
periodic functions), there exists a real number w > 0, such that F;(¢, z), V" (¢, z)

and V; (t,x) are w-periodic in t.
(A3) If ; =0, then V; =0 for i = 2,3,4,5.
(A4) F; =0 fori=1,6.
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(A5) Define Xy = {x > 0: x; =0 for ¢ = 2,3,4,5}. It is clear that if x € Xj, then
Fi=V=0fori=234,5.

System (5.1) has a disease-free periodic solution z* = (z7, x5, x3, 3, 2%, x§) = (7/1,0,0,0,0,0).

Define a 2 x 2 matrix

M(t) = <8fza(i’$*)> '
j i,j=1,6

It follows from (B.1), and the definitions of the matrices F and V), that

— (0
0 —(u+7)

(A6) Since M (t) is a diagonalizable matrix with negative eigenvalues, then

p(Pun(w)) < 1.

(A7) Similarly, =V (¢) is a diagonalizable matrix with negative eigenvalues. Hence,

p(P_y(w)) < 1.
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Appendix C: Backward Bifurcation in Model (6.2)

Proof. Consider the model (6.2). It is convenient to make the following change of

variables. Let,

S:ajl; V:$27 E:$3, EV:$4, I:xf)a IV:'Tﬁy

Q =27, Qv =23, H =29, Hy = 219, R =211, Ry = 712,

so that,

N =21+ 2o+ T3+ Ts + T5 + Tg + X7 + T8 + Tg + T19 + T11 + T12.

Further, let X = (x1, 22, 23, 24, T5, T¢, T7, Ts, Ty, T10, T11, T12) . Thus, the model (6.2)
can be re-written in the form £ = F(X), with F = (f1; fo; f3; f1; fs; fo; f7; fs5 foi fr0; fir; fa2)T

as follows:
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% (-l B(xs + v1x6 + T9 + Vo10)T1
dt ! 1+ 22+ 23+ Ty + T5+ T+ X7+ 23+ Tg+ T1o + T11 + T12
+77Z)ZL'2 - (M_’_C)a
@ — fy = pll — (1 —e)B(z5 + thae + 9 + voZ10) 2
dt 2 p LU1+$2+LU3+$4+SL’5+$6+$7+$8+$9+$10+$11+x12
—|—<£I§'1 - (N+¢>7
drs Iy = B(xs + 1126 + T + 12210) 21 b
dt ’ 1+ 22+ 23+ T4+ T5+ T+ X7+ X3+ Tg+ Tio+ T11 + To2 e
dry I = (1 —e)B(x5 + rixg + x9 + VoT10) T2 b
dt 4 $1+£L‘2+$3+£L‘4+$5+£L‘6+$7+£E8+$9+£L‘10+x11+l’12 204
dl’5
— = f5 = Koy — k35,
ddt 5 3 35 (1)
% = fo = O1kxy — kye,
dx
d_t7 = fr = oxg — k57,
d
% = fs = 0124 — kes,
dx
—2 = fo = axy + Qx5 — Ky,
dt
dx
710 = fio = Osax7 + O30x6 — kg0,
dx
711 = fi1 = Mx5 + Y29 — pUT11,
dx
712 = fi1 = bz + Osy2210 — HT11.

The Jacobian of the system (C.1), at the associated DFE (given by &, in (6.3)) is

given by

J(SO) = [M12><6 U12><6]

where,

248



61‘; 51/151,9{

* * * *
$1—|—I‘2 $1+,I2

—(C+p) Y 0o 0 -

¢ —(W+p) 0 0 (A =¢e)Bz;  (1—¢)prna;

T+ 25 x} +
0 0 _k.l 0 ﬂiﬂ{ 61/1.751K
1 + 25 e
0 0 0 —k (1 —¢)Bz; (1 —¢)Buras
1 + 25 e
0 0 K 0 —k‘g 0
0 0 0 0q 0 0
! 00 0 0 0
0 0 0 0 0 06
0 0 0 0 M 0
! 0 0 0 0 Oav1
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O By

0 0 ]+ x5 ]+ x5 0 0
0o o _A—e)fnas  (A-—e)fpery
]+ x5 ]+ x5
N i
Ty + 15 Ty + 75
0o o A-e)fney (A-e)fpery
Ty + 13 Ty + 13
U =
0 0 0 0 0 0
0 0 0 0 0 0
—ks 0O 0 0 0 0
0 —ks 0 0 0 0
o) 0 —ky 0 0 0
0 O 0 —ks 0 0
0 0 Y2 0 —u 0
0 0 0 0672 0 —u

Consider the case when R, = 1 (where R, is as defined in Section 6.3). Suppose,

further, that (3 is chosen as a bifurcation parameter. Solving for 3 from R,.. = 1, gives

 kikokskakskekrks
B B + By ’

*

where,

Bl = WQk1k3k5/{57(1 — 5)(y191/<ak6k8 + 1/27’]03¢91K)k76 + 1/2’17950101]{34),

B2 = wlk2k4k6k‘8(:‘€k’5k’7 + 7’]([5/‘{/'6’5 + 770(0']6‘3).

It is worth stating that the transformed system (C.1), with § = 3*, has a hyperbolic
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equilibrium point (that is, the linearized system has a simple eigenvalue with zero real
part and all other eigenvalues have negative real part). Hence, the center manifold

theorem can be used to analyze the dynamics of (C.1) near § = *. It can be shown

that the right eigenvector of J(&)|s=p~ is given by w = (wq,ws, - -+ , w11, wi2)T, where,
kowy + (0 + Y)w — k +
wy = qws + (1 + 7)) 2, Wy = { ¢ ] {klwg—i- awa(p + Q) 7
¢ plp+C+ ) ¢
_ B(riws + viaiwe + nriwg 4 vanriwig) ows
w3 = " " ) Wy = —F—,
s — (1 — &) B(zhws + v1xiws + nriwg + vanxiwig) e = T
4 — - - ) 8 — )
ko (27 + 23) ke
. M1Ws + 2wy _ bamws + Ogy2wio
=" W2 = )
7 7
ws =ws >0, wg=wg>0, wg=1wyg >0, wig=wi >0.
Similarly, J(&)|s=p- has a left eigenvector v = (v, vq, -+ ,v11,v12), where,

KUs + ovUy 01k + O50v5
UIZOJ U2:07 V3 = , U4 =
)

2 , Vs =v5 >0, wvg=1v5>0,
1

Vg 05@1}10
e Vg =
)
ks ke

V7 = Vg = Vg > 0, V19 = V19 > 07 V11 = 0, Vig = 0.

Consequently, it follows that the bifurcation coefficients, a and b (defined in Theo-
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rem 2.4) are given, respectively, by

a= Z VL W; > fk(o 0)

w;
7 dwi0x;
X
k,,j=1 J

—(1 — 5)v4x§(w1 + W3 + W4 + Wy + Wg + Wy + W + Wy + Wig + W11 + w12)
+ wox} (1 — €)vy + wixivg — xvs(wy + w3 + wy + ws + we + w7 + ws + Wy

(C.2)
+ wyp + w1 + wi2),

> 0.

b— Z W, 8 fk(o 0) _ (?ng'T + (]_ — 8)’041‘;)(7711}9 + w5 + wevy + ’r]wl(ﬂ)g)
T om08 i+ b

Since the coefficient b is always positive, it follows from Theorem 2.4 that the system
(C.1) will undergo backward bifurcation if the coefficient a, given in (C.2), is positive.

This result is summarized below. O

Theorem 1. The transformed model (C.1), or equivalently (6.2), exhibits backward

bifurcation at Ryq. = 1 whenever the bifurcation parameter a, given in (C.2), is positive.
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Appendix D: Proof of Theorem 7.3

Proof. Consider the model (7.6) with §; = d, = -+ = 3, = 0. In such a case, the
reproduction number R, reduces to R... The proof is based on using a Krasnoselskii
sub-linearity trick (see [46, 85], and also [28, 29]). First of all, setting §; = 0 = -+ =
d2n, = 0 in (7.6) shows that dN/dt = II — uN, so that N — II/u = N** as t — oo.
Using N = N**, the substitution S = N** — Zm: (Ei+ Qi) — Zn: (I; + Hj) — R is then

used to re-write the model (7.6) as: - "~
" 5; I |[N* — ; (Ei+ Qi) — 2 (I + H) — R
= e — fiFE,
% = a ol — foFy,
% =a;10E;_1 — f;E;; j=3,---,m,
% = amaFy, — fral,
% =djaklj 1 — frnily; =2, ,n, (D.1)
% = 01E1 — fmint1@n,
% =0jE; +bj_10Q-1 — fryniQj: 7 =2, ,m,
% = bpnaQm + 6111 — fomint1Hi,
% = ¢il; + ciakHj g — fananiHys =2, .,
C;_f = Iy + 12H, — (4 + w)R.

Linearizing the model (D.1) around the endemic equilibrium, §2; (defined in Section

7.4) gives
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n m n

dFE e
Y S ) DY RNCN) SIS DY) ST
i=2 j=1 i=1 j=1

dFE.

d_152 = a1l — foFs,

dE; )

d_tj - a’j—lan—l - f]EJ7 J= 37 e,

dl

d_tl - amaEm - fm—l—l]l;

dl; )

d_tj = j—l/ffj—l - fm+jlj§ J=2,-,n, (D.2)
d
% =01F1 — frinn1 @1,

dQ; .

d_tj = UjEj + bj—lo‘Qj—l - fm-i-n-i—j@j; J = 27 Uz
dH
d_tl = bpaQn + 111 — fomins1H1,

dH ; )
— = ¢j[j + Cj—lKij—l - f2m+n+jHj§ J=2,--,n,

dt

dR

ﬁz I;

where, 7 = ;\_[i* and ro = BS™ /N

It follows that the Jacobian of the system (D.2), evaluated at 2y, is given by

A; By
J(h) = ,
C; Dy

where Ay, is an (m +n) X (m +n) matrix, By is an (m +n) x (m +n + 1) matrix, C;
is an (m+mn+ 1) X (m + n) matrix and Dy is an (m +n + 1) X (m 4+ n + 1) matrix,

given by
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By =

and,

f1 - —n

a1

—f2

Ao X

—Js

a 10 _fm
m—

A O

7OJ:

255

T2
T2 — T :
T2
_fm+1
_fm+2
" dok = fim+s
2
dn_lli
01
02
Om
o1
b2
®n
§a!

o —T

_fm—l—n




- fm+n+1

bl a - fm+n+2

bm& - f2m+n+1

R —f 2m+n+2

Cn—1k _f2(m+n)

V2 — (¢ +p)

Assume that the system (D.2) has solution of the form

Z(t) = Zoe*, (D.3)

with Zo = (Z1, Za, -+, Zogminy41),w, Zi € C(i = 1,2,--+ ,2(m + n) + 1). Substituting

a solution of the form (D.3) into the system (D.2) gives
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m-n 2(m+n-+1)

WZ1:(—Tl—f1)Z1—leZz‘+[T2—T1] Z Zj—Tl Z Zi,
i=2

j=m+1 1=m+n+1

u}ZQ = a1a21 — k‘ng,
ij = aj,losz,l — ijj; ] = 3, e, M,
WZerl = amaZm - km+1Zm+1a
(.UZm+j = djfllﬁzm+j,1 — km+jZm+j; ,7 = 27 e, N, (D4)
wzm+n+1 = 0'121 - km+n+1Zm+n+17
WZm+n+j = Uij + bjflaZm+n+jfl - km+n+jZm+n+j; J=2,,m,
WZQm+n+1 = bmaZ2m+n + ¢1Zm+1 - k2m+n+122m+n+17
u)Z2m+n+j = <Z5jZm+j + Cj—1f€Z2m+n+j—1 - k?2m+n+jZ2m+n+j§ J=2,--+,n,

W (mAn)+1 = V1Zman + Vo Lo(mn) — (U + 1) Zo(meyn)+1-

System (D.4) is simplified as follows. First, all the negative terms in the last nine
equations of (D.4) are moved to the respective left-hand sides. Secondly, the (resulting)
last nine equations are then re-written in terms of Z; and substituted into the first
equation of (D.4), and all its negative terms are moved to the right-hand side. Doing

all these lead to the following system:

1+ F(w)]Zi=(MZ);, fori=1,2,---,2(m+n), (D.5)

where,
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m+n i1—m
dl 1R >

m+1 12
e A1 8 ) BT

kr i=2 =2 i=m+2 1=2
r 2m+n 2(m+n)
1
+ f_ E Gi—(m+n) (w) + E L 2m+n ) )
1 i=m-+n+1 i=2m+n—+1

and,
w .
Fj(w) = 7 forj=2,3,---,2(m+n)+1,
J
with,
a1
O‘1H
‘Lw+ f . b oG
Gi(w) = —=2 , Gi(w) = o7 4 210 1(w)’ forj=2,3,---,m,
W+ fm+n+1 W+ fm+n+j W+ fm+n+j
w + fl w + fm+l bmaGm(w)
Ly(w) = - ,
f2m+n+1 f2m+n+1
and,
A e
Lij(w) = 03 I 1(“’), for j =2,3,--- ,n.
w+ f2m+n+j w+ fm-i—n-f—j
Furthermore,
Ay By
M = ,
Cu Dy

where Ay is an (m+n) x (m+n) matrix, By is an (m+n) x (m+n+ 1) zero matrix,

(m—+n) matrix and Dy is an (m+n+1) x (m+n+ 1) matrix,

Cyisan (m+n-+1)x

given by
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Cy =

0 0 0 0 T2 o - T2 T2 T2
ajo
f2 0
asa
f3 0
dm_1Q
Jm 0
Am QL
fm+1 O
dik
fm+2 O
dok
fm+3
dn_1K
fm+n
o1
fm+n+l
g2
Frtni2
Om
f2m+n
é1
f2m+n+1
$2
f2m+n+2
Pn
f2('m+n)
71
Ytp
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bia
fm+n+2

b
D _ f27n+n+1

M=

C1k
fom+n42

Cn—1K
f2(m+n) 0
Y2
(P+mp) 0

It is easy to verify that the equilibrium € satisfies 3y = M. The notation (MZ); (i =
1,...,2(m+n) + 1) denotes the ith coordinate of the vector MZ, and the matrix M
has non-negative entries. If Z is a solution of (D.5), then it is possible to find a minimal

positive real number 7 such that [28, 29]

where, ||Z|| = ([|Z1], | Z2|,- - -, [| Z2(m+n)+1]]) with lexicographic order, and ||.|| is a
norm in C. The main goal is to show that Re(w) < 0. Assume, now, that Re(w) > 0,

and consider the following cases.
Case 1: w=0.

In this case, (D.4) is a homogeneous linear system in the variables Z; (i = 1,...,2(m+

n) 4+ 1). The determinant of this system is given by

2(m+n+1

)
SR
_ o _ | D.7
A A+( e 1) i||1 fir (D.7)
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where, A is very long positive expression (not given here). Here, it easy to show that

S Rer
N ** -

at steady-state 1. Hence, the equation (D.7) becomes

A=-A<0

Since the determinant A is negative, it follows that the system (D.4) has a unique

solution, given by Z = 0 (which corresponds to the DFE (€)).

Case 2: w # 0.

Recalling that Re(w) > 0 (by assumption), it follows then that |1 + Fj(w)| > 1 for
all i = 1,...,2(m +n) + 1. Define F(w) = min; |1 + F;|. Then, F(w) > 1, and

% < r. Since r is a minimal positive real number such that || Z|| < {2, then
w
2] > F=9 (D9)
F(w) 1- .

On the other hand, by taking the norm of both sides of the second equation in (D.5),

and noting that M is a non-negative matrix, we have,

Fw)|Zell < 1+ Fa(w)] |Z2]l = (M Z)2|| < M| Zs|| < rM ()2 = r($h)2 = rE5".
(D.9)
F(w)

0. Thus, all eigenvalues of the characteristic equation associated with the linearized

It follows from (D.9) that || Zs|| < I, which contradicts (D.8). Hence, Re (w) <

system (D.2) will have negative real part, so that the unique endemic equilibrium, €,

is LAS whenever R, > 1. O
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Appendix E: Proof of Theorem 7.4

Proof. Consider the reduced model (7.21) with (7.22). Let R, > 1, so that the associ-
ated unique endemic equilibrium exists (Lemma 7.4). Further, consider the following
non-linear Lyapunov function for the sub-system of the model (7.21), consisting of the

equations for S, E; (i =1,---,m)and I; (j =1,--- ,n), given by:

F=§-5"-5 ln<S**>+E1—E1 - E; m(E;ﬂl*)

+ 3w [E—E —E 1n(E**)]+Zyi [Ij—fj — I ln(pf*>],
‘ : p= :

where the coefficients z; (i =1,--- ,m) and y; (j = 1,--- ,n) are positive constants to

be determined. Thus,

S+ El o 1 )

d S E 1+;‘T( E

. n . I .
Ez) +Zy] (]] — ;—%)

Substituting the expressions of the derivatives from the system (7.21), using (7.22),
gives (note that the relation II = 3;5** Z?Zl 7" + pS™, at endemic steady-state, has

been used)
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F =35 Z I+ pS* — ﬁlsz I —

*k (S**>2
SZ[ g

7=1
+ Sy I 4 S +51521 — fiBy — ,elsz E;
j=1 j=1
- kB EF” .
+ Z vigiol — 2 i By — vi0 0 0———— + T, fi 57" + yrama By — Y1 frag1 L
— Ylm =ty S+ Z Yidi 1kl 1 = Ys fnsi Ly — yidi 1= ] + Yj i I
m J

=2

which can simplified to

7j=1
m—1
+ (zea1a — k1) Ey + Z (ip10,0 — 23 fi) By 4+ (Y10mQ — Ty frn) By
i—2

1

+ Y (B1S™ + yjradik — yj i) L + (B1S™ — Y frnin) In
1

3
|

<.
Il

m B EF
+ Z (szflEZ** - xiai—laE;i)
1=2
— Y1Qpm, [ +y1fm+1] +; y]fm-‘r]-[ yjdj_ll{ Ij] )

The coefficients z; (i =2,--- ,m) and y; (j =1,--- ,n) of F are chosen such that

Toara — k1 = 0,

ripa; —xif; =0; fori =3,--- ,m—1,

Y1amQ — Ty [ = 0, (E.2)
BrS™ +yjr1dik — Y frmgj = 0

618** - ynfm—l—n = 07
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so that, from (E.2),

i—1
IR s
xliHal_Oé, v = 2, , 1,
=1
1
Y1 = H_a
-1 a;x
_ BuS™
n fm+n7

and,

j
j H -1t

ﬁ S *% =s .
Ynj =+ BSTY Sy =1,
fern*j s=1 d
fn—l—m—l
l=s—1

Using the relations in (E.3) into the equation (E.1) gives
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(E.4)

m f[fl Hfl
LBy S Ei B N
- h 1E22 allof L Z Ell n il—ll E
Hala Hala
=1 I=1
m m+1
i fi
m—1 Il m 1
H a H aix
=1 =1
ﬁ
i dnflKv
R L e
fm—i-] s=1 ! Ij
H fn+mfl
l=s—1
ﬁ
i dn—l’f
Kok n—j - s
+ me+] ) + 55 Z nl_:s— - B1S™dp 1k In11;, ST
fm+] s=1 4 fm+n In
H fn+m—l
l=s—1

It can be shown from (7.21) that, at endemic steady-state,
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n

— =

fl Eik* )
[[n oS>0
=1 =1 i=2 ... .m
- L (E.5)
Haloz
=1
m+1 n
5 sy
=1 _ Jj=1
m [ik* )
Hala
=1

and,
AN Lo T (E.6)

fm+j+1 ]j*

Using the relations in (E.5) and (E.6) in equation (E.4) gives

F = psS™ <2—S; —Si> (m+2ﬁS**ZI**_51 ZI**—BSZ

- — ElEz** **E [** ok

=1

n

5

j=1

which can be re-written as
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Finally, since the arithmetic mean exceeds the geometric mean, it follows that

S8
92 __ 2 <
S g = Es)
S** m—1 EE** E. [+ .
2 o o 1+1 - m+1 < O
(m+2) = =5 ZEZ*;IE B, =
and,
EES, Bl i~ LI, SLEY
m—+ +1 i+l +1 71 SOfOI'.:2,"‘7TL
(m+j 2_; EE, Byl — Tl S°L°E J
(E.9)

Further, since all parameters of the model (7.6) are non-negative, it follows from
(E.8) and (E.9) , using (E.7), that F < 0 for R, > 1. Hence, F is a Lyapunov
function for the sub-system of the model (7.21) consisting of the equations for S, F; (i =
1,---,m),I; (j=1,---,n) of the model (7.21) on D\ Dy. Therefore, by the LaSalle’s

Invariance Principle (Theorem 2.6),

lim S(t) = 5™, lim E;(t) = E*, foralli=1,--- ,m

t—o0 t—o00 (ElO)
thm] (t) =67, forallj=1,---,n

It is clear from (E.10) that limsup £y = E7*. Thus, for sufficiently small small @ > 0,

t—o00
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there exists a constant n; > 0 such that limsup F; < EJ* 4+ w for all £ > n;. It follows

t—o0

from the (m + n + 2)th equation of the model (7.21) that, for ¢ > ny,

Q1 < 01(Bf* + @) — fingns1Q1-

Thus, by comparison theorem (Theorem 2.8),

. o(EF +w
7 =limsup@; < —1( ! )
t—o00 fm+n+1

Y

so that, by letting @ — 0,

E**
QY =limsup @Q; < it (E.11)
t—o00 fm—i—n—l—l
Similarly (by using litm inf £y = E}7), it can be shown that
Fex
Q1. = liminf Q; > =1 (E.12)
t—o0 m+n+1
Thus, it follows from (E.11) and (E.12) that
O_E**
Qoo 27— — 2 QF.
fm+n+1
Hence,
E**
lim Q, = 121 — Q1 (E.13)
t—o0 fm—l—n—i—l

Similarly, it can be shown that

268



tlim Qi(t) =QF, foralli=2,---  'm,

tlim H;(t) = Hi*, forall j = 1,--- | n, (E.14)
tlim R(t) = R™.

Thus, by combining (E.10), (E.13) and (E.14), every solution to the equations of the
reduced model, with initial condition in D \ Dy, approaches the unique endemic equi-

librium of the reduced model (7.21) with (7.22) as t — oo for R, > 1l and ¢ =0. O
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