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Abstract

The quarantine of people suspected of being exposed to a disease, and the isolation
of those with clinical symptoms of the disease, constitute what is probably the oldest
infection control mechanism since the beginning of recorded human history. The the-
sis is based on using mathematical modelling and analysis to gain qualitative insight
into the transmission dynamics of a disease that is controllable using quarantine and
isolation. A basic model, which takes the form of an autonomous deterministic system
of non-linear differential equations with standard incidence, is formulated first of all.
Rigorous analysis of the basic model shows that its disease-free equilibrium is globally-
asymptotically stable whenever a certain epidemiological threshold (denoted by Rc) is
less than unity. The epidemiological implication of this result is that the disease will
be eliminated from the community if the use of quarantine and isolation could result in
making Rc < 1. The model has a unique endemic equilibrium whenever Rc > 1. Using
a Lyapunov function of Goh-Volterra type, it is shown that the unique endemic equilib-
rium is globally-asymptotically stable for a special case. The basic model is extended to
incorporate various epidemiological and biological aspects relating to the transmission
dynamics and control of a communicable disease, such as the use of time delay to model
the latency period, effect of periodicity (seasonality), the use of an imperfect vaccine
and the use of multiple latent and infectious stages (coupled with gamma-distributed
average waiting times in these stages). One of the main mathematical findings of this
thesis is that adding time delay, periodicity and multiple latent and infectious stages
to the basic quarantine/isolation model does not alter the essential qualitative features
of the basic model (pertaining to the persistence or elimination of the disease). On
the other hand, the use of an imperfect vaccine induces the phenomenon of backward
bifurcation (a dynamical feature not present in the basic model), the consequence of
which is that disease elimination becomes more difficult using quarantine and isolation
(since, in this case, the epidemiological requirement Rc < 1 is, although necessary,
no longer sufficient for disease elimination). Numerous numerical simulations are car-
ried out, using parameter values relevant to the 2003 SARS outbreaks in the Greater
Toronto Area of Canada, to illustrate some of the theoretical findings as well as to eval-
uate the population-level impact of quarantine/isolation and an imperfect vaccine. In
particular, threshold conditions for which the aforementioned control measures could
have a positive or negative population-level impact are determined.
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Chapter 1

Introduction

Epidemics, described as sudden outbreaks of diseases which infect a substantial fraction

of the population in a region before disappearing (while leaving many members of the

population susceptible)[2], have been occurring since the beginning of recorded human

history. For example, the Black Death (bubonic plague) spread from Asia throughout

Europe during the 14th century (beginning in 1346) resulting in the death of about one

third of the population of Europe between 1346 and 1350 [8]. The disease recurred in

various parts of Europe for more than 300 years (notably, the Great Plague of London

(1656-1666)) and then gradually disappeared from Europe. Smallpox killed over 300

million people in the 19th century alone [78]. The 1918 influenza pandemic (also known

as Spanish Flu) affected about one third of the human population (500 million people)

and killed between 20 to 100 million people [78]. More recently, since its inception

in the 1980s, the human immuno-deficiency virus (HIV) has killed about 25 million

people globally (and about 33 million people are currently living with HIV/AIDS)[72].

Malaria infects about 300 million people, and causes about 2 million deaths annually

[28]. Diseases such as plague, cholera, hemorrhagic fevers continue to erupt occasionally

[44], while others (such as malaria, HIV/AIDS, mycobacterium tuberculosis, typhus,

cholera, schistosomiasis etc.) are endemic (i.e., always present) in some regions of the

1



world.

Unfortunately, despite the major advances in the medical sciences, infectious dis-

eases continue to cause significant morbidity and mortality in human populations

worldwide, with disproportionate impact in developing countries (in general). A re-

cent survey estimated that infectious diseases are responsible for more than half of

human deaths in sub-Saharan Africa (and such diseases continue to impose heavy pub-

lic health and socio-economic burdens on the affected populations) [30]. Furthermore,

the adverse impact of infectious diseases extend beyond human populations, inflicting

tolls on domestic animal, wildlife and plant populations. The combination of complex

ecology, rapid evolution in response to changing circumstances, and the on-going emer-

gence of novel pathogens, ensures that infectious diseases will continue to pose serious

challenges for the foreseeable future [81].

When confronted with a possible epidemic, public health officials often ask questions

such as [8]:

(i) How many people will be infected and require hospitalization (i.e., how severe

will the epidemic be)?

(ii) What is the maximum number of people needing care at any given time?

(iii) How long will the epidemic last?

(iv) What will be the potential efficacy of some intervention strategies (such as quar-

antine, use of vaccine etc. in curtailing the severity of the epidemic)?

Mathematical modelling plays a major role in epidemiology, by way of providing

deeper insight into the underlying mechanisms for the spread of infectious diseases and

suggesting effective control strategies. Infectious diseases can exhibit complex non-

linear dynamics and mathematical models enable clear and rigorous analysis of the
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associated underlying mechanisms. Some of the main roles of mathematical modelling

of infectious diseases include the following:

(a) Building and testing theories; assessing quantitative conjectures; determining

sensitivities to changes in parameter values; estimating key parameters from data;

(b) Assessing and comparing the impact of various preventive and therapeutic mea-

sures;

(c) Identifying trends and making general forecasts;

(d) Providing early estimates of epidemiological thresholds (such as the basic repro-

duction number) and expected disease burden (attack rate, morbidity, hospital-

ization, mortality).

1.1 Modelling of Infectious Diseases

The use of compartmental mathematical models in epidemiology dates back to the

pioneering works of Sir Ronald Ross, Kermack and McKendrick [2, 3, 44, 53, 54]. The

models, typically of the forms of deterministic or stochastic systems of non-linear dif-

ferential equations, are used to evaluate various control strategies, such as vaccination,

the use of antibiotics or antivirals, quarantine and isolation.

The basic differential equation model proposed by Kermack and McKendrick in

1927 (to describe the Great Plague of London of 1665-1666), which splits the total

population at time t, denoted by N(t), into three mutually-exclusive compartments of

those who are susceptible (S(t)), infected (I(t)) and recovered or removed (R(t)) (so

that, N(t) = S(t) + I(t) + R(t)), is given by the following system of equations [54]:

3



dS

dt
= −β

SI

N
,

dI

dt
= β

SI

N
− αI,

dR

dt
= αI,

(1.1)

where β is the transmission coefficient (effective contact rate) and α is the per capita

rate of recovery (or removal) for infected individuals. Susceptible individuals become

infected upon successful transmission of the disease when two individuals from the sus-

ceptible (S) and infected (I) compartments interact. Infectious individuals are removed

from the infectious state at the given recovery rate. The model (1.1) is deterministic.

That is, the behaviour of the model is completely determined by its history and by the

rules which govern the development of the model. For small compartment sizes, the

behaviour of the compartment size may be strongly influenced by random perturba-

tions, and other types of models (stochastic) are more appropriate (see, for instance,

[1] for a general introduction of stochastic models).

Numerous extensions of the Kermack-McKendrick SIR model above, incorporat-

ing important epidemiological and biological concepts such as vaccination, quarantine,

isolation, antiviral treatment and periodicity (or seasonality), have been designed and

used in the mathematical epidemiology literature over the decades. Some of these

models include a class of exposed individuals (denoted by E). In summary, most of

the compartmental models used in the literature (which typically take the forms of

SIR, SIS, SIRS, SEIR, SEIRS compartmental models) are built based on the modelling

framework of Kermack and McKendrick [53, 54].
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1.2 Disease Incidence Functions

Disease incidence in a community is defined in terms of the number of new infections

generated per unit time in that community. Incidence, in disease models, is generally

characterized by an incidence function (which describes the rate at which new infections

are generated). Various types of incidence functions have been used in disease modelling

(see, for example, [46] for general discussion), and the choice of such function can play

an important role in the dynamics of the disease. A general approach for constructing

disease incidence function (required for modelling), as described in [46], is given below.

Let S(t), I(t) and N(t) denote the number of susceptible individuals, infected in-

dividuals and the total population size at time t, respectively. Suppose β(N) is the

effective contact rate (i.e., the average number of contacts sufficient to transmit infec-

tion) per person per unit time. Then, β(N)I/N is the average number of contacts with

infectious individuals a susceptible individual makes per unit time. Thus, the number

of new cases coming from all susceptible individuals (S) is λS, where λ = β(N)I/N

is the force of infection. If β(N) = β, a constant, then λS is referred to as a standard

incidence function. When β(N) = βN (that is, the contact rate depends on the total

population), then λS is called mass action incidence [44]. It is worth stating that

standard incidence models with constant total population (i.e., N(t) is constant), such

as the model in [56], are essentially mass action models.

The aforementioned two incidence functions (standard and mass action incidence)

appear to be the most widely used in the mathematical biology literature. Although

some studies have suggested that the standard incidence formulation is more realistic

for human diseases [2, 3], the choice of one incidence over the other, generally depends

on the disease being modeled (and, in some cases, the need for analytical tractability).
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1.3 Reproduction Number and Bifurcations

As stated earlier, compartmental models have been widely used to gain insight into

the spread and control of emerging and re-emerging human diseases, dating back to

the pioneering work of the likes of Ross, Kermack and McKendrick and others (see,

for instance, [2, 3, 44] and the references therein). The qualitative dynamics of these

models tend (generally) to be completely determined by a threshold quantity, known as

the basic reproduction number (denoted by R0), which measures the average number

of new cases generated by a typical infected individual in a completely susceptible

population [2, 22, 44].

Typically, when R0 is less than unity, a small influx of infected individuals will

not generate large outbreaks, and the disease dies out in time (in this case, the cor-

responding disease-free equilibrium (DFE) is asymptotically-stable). On the other

hand, the disease will persist in the population if R0 exceeds unity, where, typically,

anasymptotically-stable endemic equilibrium point (EEP) exists. This phenomenon,

where the DFE and an EEP exchange their stability at R0 = 1, is known as forward

bifurcation (or transcritical bifurcation). Bifurcation represents a change in the quali-

tative behavior of the model as a related parameter or quantity (typically R0) varies.

A schematic description of forward bifurcation is given in Figure 1.1.

6



Figure 1.1: Forward bifurcation diagram.

Forward bifurcation, first noted by Kermack and McKendrick [54], has been ob-

served in many disease transmission models (see, for instance, [12, 13, 44, 47] and

some of the references therein). In general, for models that exhibit forward bifurca-

tion, the requirement R0 < 1 is necessary and sufficient for effective disease control or

elimination

However, some modelling studies have shown that although R0 < 1 is necessary

for disease elimination, this requirement may not be sufficient. This is due to the

phenomenon of backward bifurcation, where (typically) a stable endemic equilibrium

co-exists with a stable disease-free equilibrium when R0 < 1. Backward bifurcation has

been observed in numerous disease transmission models, such as those for behavioral

responses to perceived risks [40], multiple groups [12], vaccination [27, 56], vector-

borne diseases [35] and the transmission dynamics of mycobacterium tuberculosis with

exogenous re-infection [31, 79]. The public health implication of backward bifurcation

is that the classical requirement of having the associated reproduction number of the

model being less than unity is insufficient (in general) for disease elimination (in a
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backward bifurcation situation, effective disease control when R0 < 1 is dependent on

the initial sizes of the sub-populations of the model). A schematic description of the

backward bifurcation phenomenon is given in Figure 1.2 (it should be emphasized that,

in a backward bifurcation situation, the global asymptotic stability property of the DFE

is only feasible outside the region of the co-existence of the two stable attractors, such

as the region 0 < R0 ≤ 0.59 in Figure 1.2).

Figure 1.2: Backward bifurcation diagram showing the co-existence of a stable DFE
and two branches of endemic equilibria (a stable and an unstable branch).

1.4 Quarantine and Isolation

Quarantine of individuals suspected of being exposed to a disease, and the isolation

of those with disease symptoms, constitute what is probably the first infection control

measure since the beginning of recorded human history [44]. Over the decades, quar-
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antine and isolation have been used to reduce the transmission of numerous emerging

and re-emerging human diseases, such as leprosy, plague, cholera, typhus, yellow fever,

smallpox, diphtheria, tuberculosis, measles, ebola, pandemic influenza and, more re-

cently, severe acute respiratory syndrome (SARS) [16, 48, 61, 64, 67, 73, 90, 93, 99].

Furthermore, these basic public health control measures are also applied to combat

the spread of animal diseases, such as bovine tuberculosis, rinderpest, foot-and-mouth,

psittacosis, Newcastle disease and rabies [48, 52].

The term quarantine is used to characterize the deliberate separation of individuals

exposed (i.e., suspected of being infected) to a contagious (communicable) disease

(by coming in contact with an infected individual), irrespective of their infectivity or

symptomatic status, from a population of susceptible individuals [68]. Quarantined

individuals are monitored, typically over the duration of the incubation period (the

time from infection to the onset of symptoms) of the disease (see Table 1.1 for a list

of some communicable diseases and their respective incubation periods). Individuals

who show disease symptoms (during the quarantine period) are isolated (typically in

hospitals). Isolation refers to the strict separation of individuals with disease symptoms

from all of the members of the population at risk. On the other hand, those who do not

show symptoms at the end of the quarantine period remain susceptible to the disease

[68].

Although, as stated above, some quarantined individuals may remain susceptible

at the end of the quarantine period [32, 61], in this thesis, the quarantine class involves

only newly-infected individuals detected either via contact tracing of symptomatic

cases, random testing (if a suitable diagnostic test exists) or the quarantine of suspected

cases. As noted by Feng [32], it is plausible to assume that, for large total population

sizes (N), the quarantine of susceptible individuals is unlikely to have a significant

impact on the disease dynamics (and, hence, it is ignored in this thesis). In other

words, the term quarantine in this thesis refers only to the detection and removal
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of new (asymptomatic) infections. It should be mentioned that the mass quarantine

adopted in the Greater Toronto Area of Canada during the 2003 SARS outbreaks only

resulted in the detection of very few confirmed SARS cases (see, for instance, [20]).

Table 1.1: Incubation period for
some of communicable
diseases [3, 95]

Disease Incubation period

Chicken pox 14-16 days

Ebola 2-21 days

Influenza 1-3 days

Measles 9-12 days

SARS up to 10 days

Smallpox 7-17 days

1.5 Motivation and Outline of the Thesis

The main objective of this thesis is to provide a rigorous qualitative study of various

deterministic models for the spread of a (general) contagious disease in a population

in the presence of quarantine and isolation, to gain deeper insight into the population-

level impact of these measures on the transmission dynamics and control of the disease.

In other words, the thesis focuses on designing new, robust, and realistic models for the

spread of a communicable disease in the presence of quarantine and isolation, and then

providing detailed qualitative analyses of the resulting models with emphasis on deter-

mining the existence and stability of the associated solutions (equilibrium or periodic),

as well as to characterize the kind of bifurcation the resulting models will undergo. The

knowledge of these dynamical properties is not only crucial for determining important
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epidemiological thresholds that govern the persistence or elimination of the disease, but

also allows for the realistic assessment of the impact of these measurers (quarantine

and isolation) in effectively controlling the spread of a given communicable disease in

a population.

A basic quarantine/isolation model is designed and qualitatively analysed first of all.

The basic model monitors the temporal dynamics of susceptible (S), latent or exposed

(E), quarantined (Q), infectious (I), isolated (H) and recovered (R) individuals. It also

allows for the loss of infection-acquired immunity (so that individuals who recovered

from infection can become susceptible again). The resulting SEIQHRS model (with

standard incidence) is then extended to include various related epidemiological and

biological concepts (such as time delay, effect of periodicity, effect of an imperfect

vaccine and the effect of using multiple latent and infectious stages).

Some of the main mathematical and epidemiological questions the thesis seeks to

address are:

(a) What kind of dynamics does the basic quarantine/isolation model with stan-

dard incidence exhibit? In other words, how many equilibria does the system

have? Under what conditions do they exist (and/or are stable)? What kind of

bifurcation does the system undergo?

(b) Does the dynamical behavior of the basic model change if the associated incu-

bation period is modelled using time delay? In such a setting, will the choice of

incidence function have any effect on the theoretical result obtained?

(c) What is the role of periodicity in the transmission dynamics of a disease that is

controllable using quarantine and isolation?

(d) What is the (mathematical and public health) impact of an imperfect vaccine on

the dynamics of a disease that is controllable using quarantine and isolation?
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(e) What is the impact of using multiple latent and infectious stages on the transmis-

sion dynamics of a disease in the presence of quarantine and isolation? A related

question of interest is: what is the role of modelling the associated waiting times

in the respective latent and infectious compartments using gamma distribution

assumptions?

The thesis is organized as follows. In Chapter 2, some basic mathematical prelimi-

naries, relevant to the thesis, are described. A basic quarantine/isolation model, with

standard incidence, is developed in Chapter 3. A detailed discussion on the existence

and stability of the associated equilibria of the resulting SEIQHRS model is given.

In Chapter 4, the quarantine/isolation model studied in Chapter 3 is extended to in-

corporate the effect of time delay (to model the incubation period of the disease) and

two different disease incidence functions (namely, the Holling Type II incidence and

standard incidence).

To qualitatively assess the impact of seasonality (periodicity) on the transmission

dynamics of the communicable disease (being considered) in the presence of quarantine

and isolation, the model developed in Chapter 3 is studied, in Chapter 5, for the case

where some of the associated epidemiological and biological parameters are periodic.

Furthermore, the effect of an imperfect vaccine on the transmission dynamics of the

disease, in the presence of quarantine and isolation, is investigated in Chapter 6. The

basic model is further extended in Chapter 7, by considering multiple infection stages

for individuals in the exposed, infectious, quarantined and hospitalized classes. A

major feature of the model considered in Chapter 7 is that the average waiting times

in the exposed and infectious compartments is modelled using gamma distribution

assumptions. The main contributions of the thesis, together with some discussions on

future work, are summarized in Chapter 8. It should be mentioned that the terms

”exposed” and ”latent” are used interchangeably in this thesis (although some have

argued that the two terms are not exactly the same biologically). For the purpose of
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this thesis, ”exposed/latent” means newly-infected individuals who have not yet shown

clinical symptoms of the disease.
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Chapter 2

Mathematical Preliminaries

This chapter introduces some of the key mathematical theories and methodologies rele-

vant to the thesis (the material presented in this chapter are mostly standard definitions

and results obtained from the literature).

2.1 Equilibria of Linear and Non-linear Systems

Consider the system of ordinary differential equation (ODEs) below (where a dot rep-

resents differentiation with respect to time ( d
dt

)):

ẋ = f(x, t; µ), x ∈ U ⊂ Rn, t ∈ R1, and µ ∈ V ⊂ Rp, (2.1)

where, U and V are open sets in Rn and Rp, respectively, and µ is a parameter. The

right-hand side function, f(x, t; µ), of equation (2.1) is called a vector field. ODEs which

explicitly depend on time are called non-autonomous, while those that are independent

of time are called autonomous.

Consider the following general autonomous system:

ẋ = f(x), x ∈ Rn. (2.2)
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Definition 2.1. An equilibrium solution of the system (2.2) is given by x = x̄ ∈ Rn,

where f(x̄) = 0. The vector or point x̄ is called an equilibrium point.

Theorem 2.1. (Fundamental Existence-Uniqueness Theorem [71]). Let E be an open

subset of Rn containing x0 and assume that f ∈ C1(E). Then, there exists an a > 0

such that the initial value problem (IVP):

ẋ = f(x), x(0) = x0,

has a unique solution x(t) on the interval [−a, a].

Lemma 2.1. ([71]). Let E be an open subset of Rn and let f : E → Rn. Then, if

f ∈ C1(E), f is locally Lipschitz on E.

Definition 2.2. The Jacobian matrix of f at the equilibrium point x̄, denoted by

Df(x̄), is the matrix of partial derivatives of f evaluated at x̄. It is given by:

J(x̄) =




∂f1

∂x1

(x̄) · · · ∂f1

∂xn

(x̄)

...
...

...

∂fn

∂x1

(x̄) · · · ∂fn

∂xn

(x̄)




,

Definition 2.3. Let x = x̄ be an equilibrium solution of (2.2). Then x̄ is called

hyperbolic if none of the eigenvalues of Df(x̄) has zero real part. An equilibrium point

that is not hyperbolic is called non-hyperbolic.

Consider the system:

ẋ = f(x), x ∈ Rn,

ẏ = g(y), y ∈ Rn,

(2.3)

where f and g are two Cr (r ≥ 1) functions defined on Rn.
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Definition 2.4. ([94]). The dynamics generated by the vector fields f and g of (2.3)

are said to be locally Ck conjugate (k ≤ r) if there exist a Ck diffeomorphism h which

takes the orbits of the flow generated by f , φ(t, x), to the orbits of the flow generated

by g, ψ(t, y), preserving orientation and parametrization by time.

Theorem 2.2. (Hartman and Grobman [94]). Consider a Cr(r ≥ 1) vector field f

and the system

ẋ = f(x), x ∈ Rn, (2.4)

with domain of f an open subset of Rn. Suppose also that (2.4) has equilibrium solu-

tions which are hyperbolic. Consider the associated linear ODE system

ξ̇ = Df(x̄)ξ, ξ ∈ Rn. (2.5)

Then the flow generated by (2.4) is C0 conjugate to the flow generated by the linearized

system (2.5) in a neighbourhood of the equilibrium point.

A direct implication of the Hartman-Grobman Theorem is that an orbit structure

near a hyperbolic equilibrium solution is (topologically) qualitatively-equivalent to the

orbit structure given by the associated linearized (around the equilibrium) dynamical

system.

2.2 Stability of Solutions and Bifurcations

The following are standard definitions and theorems used to analyze the stability of a

solution of an autonomous system. Let x̄(t) be any solution of the general autonomous

system (2.2). Then, x̄(t) is stable if solutions starting “close” to x̄(t) at a given time

remain close to x̄(t) for all later times. It is asymptotically-stable if nearby solutions
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converge to x̄(t) as t →∞. These concepts are formally defined below:

Definition 2.5. ([94]). The solution x̄(t) is said to be stable if given ε > 0, there exists

a δ = δ(ε) > 0 such that, for any solution y(t) of (2.2) satisfying |x̄(t0) − y(t0)| < δ,

|x̄(t)− y(t)| < ε for t > t0, t0 ∈ R.

Definition 2.6. ([94]). The solution x̄(t) is said to be asymptotically-stable if (i) it is

stable and (ii) there exists a constant c > 0 such that, for any solution y(t) of (2.2)

satisfying |x̄(t0)− y(t0)| < c, lim
t→∞

|x̄(t)− y(t)| = 0.

Definition 2.7. A solution which is not stable is said to be unstable.

Theorem 2.3. ([94]). Suppose all the eigenvalues of Df(x̄) have negative real parts.

Then the equilibrium solution x = x̄ of the system (2.2) is locally-asymptotically stable.

The equilibrium x̄ is unstable if at least one of the eigenvalues has positive real part.

Bifurcations

In general, systems of physical interest typically have parameters which appear in the

defining (governing) system of equations. As these parameters are varied, changes may

occur in the qualitative structures of the solutions for certain parameter values. These

changes are called bifurcations. The parameter values where bifurcations occur are

called bifurcation values (or bifurcation points). A standard definition of bifurcation

at a point is given below.

Definition 2.8. Let

ẋ = f(x, µ), x ∈ R, µ ∈ R, (2.6)

be a one-parameter family of one-dimensional ODEs. An equilibrium solution of (2.6)

given by (x, µ) = (0, 0) is said to undergo bifurcation at µ = 0 if the flow for µ near
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zero and x near zero is not qualitatively the same as the flow near x = 0 at µ = 0.

There are various types of bifurcations in dynamical systems, including saddle-node,

transcritical, pitchfork, backward, Bogdanov-Takens and Hopf bifurcations [94]. Two

of these, forward and backward bifurcations, are relevant to this thesis (and were briefly

described in Chapter 1). In particular, the following theorem is used to establish the

presence of the backward bifurcation phenomenon for the vaccination model considered

in Chapter 6.

Theorem 2.4. (Castillo-Chavez and Song [13]). Consider the following general

system of ordinary differential equations with a parameter φ

dx

dt
= f(x, φ), f : Rn × R→ Rn, and f ∈ C2(Rn × R). (2.7)

Without loss of generality, it is assumed that 0 is an equilibrium for system (2.7) for

all values of the parameter φ, (that is f(0, φ) ≡ 0 for all φ). Assume

A1: A = Dxf(0, 0) =
(

∂fi

∂xj
, 0, 0

)
is the linearized matrix of system (2.7) around the

equilibrium point 0 with φ evaluated at 0, zero is a simple eigenvalue of A and

all other eigenvalues of A have negative real parts;

A2: Matrix A has a nonnegative right eigenvector w and a left eigenvector v corre-

sponding to the zero eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj

(0, 0),

b =
n∑

k,i=1

vkwi
∂2fk

∂xi∂φ
(0, 0).

Then the local dynamics of system (2.7) around 0 are totally determined by a and b.
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i. a > 0, b > 0. When φ < 0 with |φ| ¿ 1, 0 is locally asymptotically stable and

there exists a positive unstable equilibrium; when 0 < φ ¿ 1, 0 is unstable and

there exists a negative and locally asymptotically stable equilibrium.

ii. a < 0, b < 0. When φ < 0 with |φ| ¿ 1, 0 is unstable; when 0 < φ ¿ 1, 0 is

locally asymptotically stable, and there exists a positive unstable equilibrium;

iii. a > 0, b < 0. When φ < 0 with |φ| ¿ 1, 0 is unstable, and there exists a locally

asymptotically stable negative equilibrium; when 0 < φ ¿ 1, 0 is stable, and a

positive unstable equilibrium appears;

iv. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability

from stable to unstable. Correspondingly a negative unstable equilibrium becomes

positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.

2.3 Irreducible Cooperative Systems

Consider the autonomous system (2.2), where f is continuously differentiable on an

open subset D ⊂ Rn. Let φt(x) denote the solution of the system (2.2) with initial

value x.

Definition 2.9. ([82]). f is said to be of Type K in D if for each i, fi(a) ≤ fi(b) for

any two points in D satisfying a ≤ b and ai = bi.

The Type K Condition can easily be identified from the sign structure of the Jacobian

matrix of the system (2.2). The following definition describes this structure.

Definition 2.10. ([82]). D is p-convex if tx+(1− t)y ∈ D for all t ∈ [0, 1] whenever

x, y ∈ D and x ≤ y.
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It is clear that if D is a convex set, then it is also p-convex. Furthermore, if D is a

p-convex subset of Rn and

∂fi

∂xj

≥ 0, i 6= j, x ∈ D, (2.8)

then f is of Type K in D.

Definition 2.11. ([82]). The system (2.2) is said to be a cooperative system if (2.8)

holds on the p-convex domain D. It is called a competitive system on D if D is p-convex

and the inequalities (2.8) are reversed:

∂fi

∂xj

≤ 0, i 6= j, x ∈ D.

Definition 2.12. ([82]). An n×n matrix A = (aij) is irreducible if for every nonempty,

proper subset I of the set N = {1, 2, · · · , n}, there is an i ∈ I and j ∈ N \I such that

aij 6= 0.

Definition 2.13. ([82]). The system (2.2) is called irreducible in D if the Jacobian

matrix of the system (2.2) is an irreducible matrix for every x ∈ D.

Theorem 2.5. ([82]). Suppose the system (2.2) is irreducible and cooperative in D.

Then

∂φt

∂x
À 0, t > 0.

Furthermore, if x0, y0 ∈ D satisfy x0 < y0, t > 0 and if φt(x0), φt(y0) are defined, then

φt(x0) ¿ φt(y0), t > 0.

The theory of irreducible cooperative systems will be used in establishing some of the

properties of the periodic solution discussed in Chapter 5.
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2.4 Lyapunov Functions and LaSalle’s Invariance

Principle

Definition 2.14. A point x0 ∈ Rn is called an ω−limit point of x ∈ Rn, denoted by

ω(x), if there exists a sequence {ti} such that

φ(ti, x) → x0 as ti →∞.

Definition 2.15. A point x0 ∈ Rn is called an α−limit point of x ∈ Rn, denoted by

α(x), if there exists a sequence {ti} such that

φ(ti, x) → x0 as ti → −∞.

Definition 2.16. ([94]). The set of all ω−limit points of a flow is called the ω−limit

set. Similarly, the set of all α−limit points of a flow is called the α−limit set.

Definition 2.17. ([94]). Let S ⊂ Rn be a set. Then, S is said to be invariant under

the flow generated by ẋ = f(x) if for any x0 ∈ S we have x(t, 0, x0) ∈ S for all t ∈ R.

If we restrict the region to positive times (i.e., t ≥ 0), then S is said to be a positively-

invariant set. In other words, solutions in a positively-invariant set remains there for all

time. The set is negatively-invariant if the solution remain there when we go backward

in time.

Definition 2.18. A function V : Rn → R is said to be a positive-definite function if:

• V (x) > 0 for all x 6= 0,

• V (x) = 0 if and only if x = 0.
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Definition 2.19. Consider the following system

ẋ = f(x), x ∈ Rn. (2.9)

Let, x̄ be an equilibrium solution of (2.9) and let V : U → R be a C1 function defined

on some neighbourhood U of x̄ such that

i) V is positive-definite,

ii) V̇ (x) ≤ 0 in U\{x̄}.

Any function, V , that satisfies the Conditions (i) and (ii) above is called a Lyapunov

Function [50, 94]. The general Lyapunov Function Theorem is given below.

Theorem 2.6. (LaSalle’s Invariance Principle [41]). Consider the system (2.9). Let,

S = {x ∈ Ū : V̇ (x) = 0}, (2.10)

and let M be the largest invariant set of (2.9) in S. If V is a Lyapunov function on U

and γ+(x0) is a bounded orbit of (2.9) which lies in S, then the ω−limit set of γ+(x0)

belongs to M (that is, x(t, x0) → M as t →∞.)

Corolary 2.1. If V (x) → ∞ as |x| → ∞ and V̇ ≤ 0 on Rn, then every solution of

(2.9) is bounded and approaches the largest invariant set M of (2.9) in the set where

V̇ = 0. In particular, if M = {0}, then the solution x = 0 is is globally-asymptotically

stable (GAS).

Theorem 2.7. ([41, 58]). Suppose there is a continuously differentiable, positive defi-

nite, and radially unbounded function V : Rn → R, such that

∂V

∂x
(x− x̄).f(x) = ∇V (x− x̄).f(x) ≤ W (x) ≤ 0, ∀ x ∈ Rn,

22



where W (x) is any continuous function on U . Then, x̄ is a globally-stable equilibrium.

The solution x(t) converges to the largest invariant set S contained in E = {x ∈ Rn :

W (x) = 0}.

Example 2.1. Consider the following system,

ẋ = y − x3,

ẏ = −x− y3.

The system has an equilibrium solution at (x, y) = (0, 0). Let V (x, y) = x2+y2. Clearly

V (0, 0) = 0 and V (x, y) > 0 in any deleted neighbourhood of (0, 0). Furthermore,

V̇ (x, y) = 2xẋ + 2yẏ,

= 2x(y − x3) + 2y(−x− y3),

= −2(x4 + y4) < 0.

Hence, V̇ < 0 if (x, y) 6= (0, 0). Thus, by Corollary 2.1, the equilibrium (0, 0) is GAS.

Comparison Theorem

Another approach for establishing the global asymptotic stability of equilibria is by

using the comparison theorem. The main idea is to compare the solutions of the

system of differential equations

ẋ = f(t, x), (2.11)

with the solutions of the differential inequality system

ż ≤ f(t, z), (2.12)
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or,

ẏ ≥ f(t, y), (2.13)

on an interval. This method requires that the solution of the system (2.11) is unique.

Theorem 2.8 (Comparison Theorem [83]). Let f be continuous on R×D and of type

K. Let x(t) be a solution of (2.11) defined on [a, b]. If z(t) is a continuous function on

[a, b] satisfying (2.12) on (a, b) with z(a) ≤ x(a), then z(t) ≤ x(t) for all t in [a, b]. If

y(t) is continuous on [a, b] satisfying (2.13) on (a, b) with y(a) ≥ x(a), then y(t) ≥ x(t)

for all t in [a, b].

2.5 Stability of Non-autonomous Systems

In this section, the results presented in Section 2.4 (for autonomous systems) are ex-

tended to non-autonomous systems.

Definition 2.20. ([41]). Consider the non-autonomous system:

ẋ = f(t, x). (2.14)

Let V (t, x) : R+ × Rn → R be continuous, U be any set in Rn and Ū be the closure of

U. Then V is called a Lyapunov function of (2.14) on U if

• given x in Ū there is a neighborhood N of x such that V (t, x) is bounded from

below for all t ≥ 0 and all x ∈ U ∩N.

• V̇ (t, x) ≤ W (x) ≤ 0 for (t, x) ∈ R+ × U and W is continuous on Ū .

Theorem 2.9. ([41]). Define, E = {x ∈ Ū : W (x) = 0}. Let V be a Lyapunov

function for (2.14) and let x(t) be a solution of (2.14) which is bounded and remains

in U for t ≥ t0 ≥ 0.
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(a) If for each p ∈ Ū , there is a neighborhood N of p such that |f(t, x)| is bounded

for all t ≥ 0 and all x ∈ N ∩ U, then x(t) → E as t →∞.

(b) If W has continuous first derivative on Ū and Ẇ is bounded from above (or from

below) along the solution x(t), then x(t) → E as t →∞.

Example 2.2. Consider the following system [41],

ẋ = y,

ẏ = −x− p(t)y,

(2.15)

where p(t) ≥ δ > 0. Let V (x, y) = (x2 + y2)/2, then V̇ = −p(t)y2 ≤ −δy2, and V is a

Lyapunov function on R2 with W (x, y) = δy2. Furthermore, Ẇ = −2δ(xy + p(t)y2) ≤
−2δxy. Since every solution of (2.15) is bounded, it follows that the Condition (b) in

Theorem 2.9 is satisfied. The set E, for system (2.15), is the x− axis. Hence, it follows

from Theorem 2.9 that each solution (x(t), y(t)) of (2.15) satisfies y(t) → 0 as t →∞.

2.6 Next Generation Operator Method

The next generation operator method [21, 87] is popularly used to compute the repro-

duction number of disease transmission models (and, subsequently, establish the local

asymptotic stability of the associated disease-free equilibrium). The formulation given

in [87], for autonomous systems, is briefly described below.

Suppose the given disease transmission model, with non-negative initial conditions,

can be written in terms of the following autonomous system:

ẋi = f(xi) = Fi(x)− Vi(x), i = 1, · · · , n, (2.16)

where Vi = V−
i −V+

i and the functions satisfy the following axioms below. First of all,
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Xs = {x ≥ 0|xi = 0, i = 1, · · · ,m} is defined as the disease-free states (non-infected

state variables) of the model, where x = (x1, · · · , xn)t, xi ≥ 0 represents the number of

individuals in each compartment of the model.

(A1) if x ≥ 0, then Fi, V
+
i , V−

i ≥ 0 for i = 1, · · · ,m.

(A2) if xi = 0, then V−
i = 0. In particular, if x ∈ Xs then V−

i = 0 for i = 1, · · · ,m.

(A3) Fi = 0 if i > m.

(A4) if x ∈ Xs, then Fi(x) = 0 and V+
i (x) = 0 for i = 1, · · · ,m.

(A5) If F(x) is set to zero, then all eigenvalues of Df(x0) have negative real part.

In the above, Fi(x) represents the rate of appearance of new infections in compartment

i, V+
i (x) represents the rate of transfer of individuals into compartment i by all other

means, and V−
i (x) represents the rate of transfer of individuals out of compartment i.

It is assumed that these functions are at least twice continuously-differentiable in each

variable [87].

Definition 2.21. (M−Matrix). An n × n matrix A is an M−matrix if and only if

every off-diagonal entry of A is non-positive and the diagonal entries are all positive.

Lemma 2.2. (van den Driessche and Watmough [87]). If x̄ is a DFE of (2.16) and

fi(x) satisfy (A1)− (A5), then the derivatives DF(x̄) and DV(x̄) are partitioned as

DF(x̄) =




F 0

0 0


 , DV(x̄) =




V 0

J3 J4


 ,

where F and V are the m×m matrices defined by,

F =

[
∂Fi

∂xj

(x̄)

]
and V =

[
∂Vi

∂xj

(x̄)

]
with 1 ≤ i, j ≤ m.
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Furthermore, F is non-negative, V is a non-singular M−matrix and J3, J4 are ma-

trices associated with the transition terms of the model, and all eigenvalues of J4 have

positive real parts.

Theorem 2.10. (van den Driessche and Watmough [87]). Consider the disease trans-

mission model given by (2.16) with f(x) satisfying axioms (A1)− (A5). If x̄ is a DFE

of the model, then x̄ is LAS if R0 = ρ(FV −1) < 1 (where ρ is the spectral radius), but

unstable if R0 > 1.

The formulation above has been extended by Wang and Zhao [91] to compute

the reproduction ratio for disease transmission models in a periodic environment (see

Appendix A).

2.7 The Poincaré Map

Definition 2.22. (Periodic Solution). A solution x(t) is said to be periodic if x(t+T ) =

x(t) for all t, for some T > 0.

Consider the system defined by

ẋ = f(x), (2.17)

with f ∈ C1(E), where E is a open set of Rn. Assume that φ(t, x0) represents the flow

of the system (2.17). Then, φ(., x0) defines a closed solution of (2.17) if and only if for

all t ∈ R, φ(t+T, x0) = φ(t, x0) for some T > 0. The minimal time where this equality

holds is called the period of the periodic orbit φ(t, x0).

Consider the system (2.17) through the point x0, with hyperplane S perpendicular

to γ at x0. Then, for any point x ∈ S sufficiently close to x0, the solution of (2.17)

through x at t = 0, given by φ(t, x), will cross S again at a point P (x) near x0 (as

depicted in Figure 2.1).
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Figure 2.1: Geometry of Poincaré map with x0 ∈ γ, a closed orbit, where x ∈ S,
y = P (t, x) [71].

Definition 2.23. A Poincaré Map of the local section S is the map P : S → S defined

by P (x) = φ(τ, x) for x in some open subset of S and τ(x) is the first return of the

flow to S.

Theorem 2.11. ([71].) Suppose γ is a closed orbit that is linearly asymptotically-stable.

Then, γ is asymptotically-stable.

Properties of Poincaré Map

• P 0 := I, where I is the identity operator;

• P n+1 := P ◦ P n;

• P−n−1 := P−1 ◦ P−n.

Theorem 2.12. ([71]). Let γ be a stable closed orbit of (2.17). Then, no eigenvalue

of DP (x0) has magnitude larger than one, where x0 is any point on γ.
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2.8 Uniform Persistence Theory

Suppose X is a metric space with a metric d. Let P : X → X be a continuous map

and X0 ⊂ X is an open set. Define ∂X0 = X \ X0, and M∂ = {x ∈ ∂X0 : Pm(x) ∈
∂X0,∀m ≥ 0}, which may be empty.

Definition 2.24. ([104]). A bounded set A is said to attract a bounded set B in X if

lim sup
m→∞,x∈B

d(Pm(x), A) = 0.

• A subset A ⊂ X is said to be an attractor for f if A is nonempty, compact and

invariant (P (A) = A), and A attracts some open neighborhood of itself.

• A global attractor for P : X → X is an attractor that attracts every point in X.

• For a nonempty invariant set M, the set W s(M) := {x ∈ X : lim
m→∞

d(Pm(x),M) =

0} is called the stable set of M.

It should be recalled that a continuous mapping P : X → X is said to be point-

dissipative if there is a bounded set B0 in X such that B0 attracts each point in X.

Definition 2.25. ([104]). P is said to be uniformly-persistent with respect to (X0, ∂X0)

if there exists an ϑ > 0 such that lim inf
m→∞

d(Pm(x), ∂X0) ≥ ϑ for all x ∈ X0.

Definition 2.26. ([104]). P is said to be weakly uniformly-persistent with respect to

(X0, ∂X0) if there exists an ϑ > 0 such that lim sup
m→∞

d(Pm(x), ∂X0) ≥ ϑ for all x ∈ X0.

The following theorems are used in Chapter 5.

Theorem 2.13. ([104]). Assume that

(C1) P (X0) ⊂ X0 and P has a global attractor A;

(C2) The maximal compact invariant set A∂ = A ∩M∂ of P in ∂X, admits a Morse

Decomposition {M1, · · · , Mk} with the following properties
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(a) Mi is isolated in X;

(b) W s(Mi) ∩X0 = φ for each 1 ≤ i ≤ k.

Then there exists δ such that for any compact internally chain transitive set L with

L * Mi for all 1 ≤ i ≤ k, we have inf
x∈L

d(x, ∂X0) > δ.

Theorem 2.14. ([104]). Let P : X → X be a continuous map with P (X0) ⊂ X0.

Assume P has a global attractor A. Then weak uniform-persistence implies uniform-

persistence.

Theorem 2.15. ([104]). Let T (t) be an ω-periodic semiflow on X with T (t)X0 ⊂ X0,

for all t ≥ 0. Assume that S = T (ω) satisfies the following:

(1) S : X → X is dissipative;

(2) S is compact.

Then, uniform-persistence of S with respect to (X0, ∂X0) implies that of T (t).

Theorem 2.16. ([104]). Let S : X → X be a continuous map with S(X0) ⊂ X0.

Assume

(1) S : X → X is dissipative;

(2) S is compact;

(3) S is uniformly-persistent with respect to (X0, ∂X0).

Then there exists a global attractor A0 for S in X0, and S has a coexistence state

x0 ∈ A0.
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2.9 Delay Differential Equations (DDEs)

Time delays are used to model several mechanisms in the dynamics of epidemics, such

as incubation periods, latent periods and age structure. A brief introduction (and basic

properties) of DDEs is given below.

2.9.1 Existence and uniqueness of solutions

Suppose τ ≥ 0 is a given real number, Rn is an n-dimensional linear vector space

over the real numbers with norm |.|, C = C([−τ, 0],Rn) is the Banach space of con-

tinuous functions mapping the interval [−τ, 0] into Rn with the topology of uniform

convergence.

If φ ∈ C, then the norm ‖φ‖ = supθ∈[−τ,0] |φ(θ)|. If

σ ∈ R, A ≥ 0 and x ∈ C([σ − τ, σ + A],Rn),

then for any t ∈ [σ, σ + A], let xt be defined by

xt(θ) = x(t + θ), − τ ≤ θ ≤ 0.

If D is a subset of R× C, f : D → Rn, then the DDE on D is given by

ẋ(t) = f(t, xt). (2.18)

The existence and uniqueness of solutions of the DDE (2.18) are stated below.

Theorem 2.17. ([42]). Suppose Ω is an open subset of R × C and f 0 ∈ C(Ω,Rn).

If (σ, φ) ∈ Ω, then there is a solution of the delay differential equation (2.18) passing

through (σ, φ).

More generally, if W ⊆ Ω is compact and f 0 ∈ C(Ω,Rn) is given, then there is

31



a neighborhood V ⊆ Ω of W such that f 0 ∈ C0(V,Rn), there is a neighborhood U ⊆
C0(V,Rn) of f 0 and an α > 0 and r > 0 such that, for any (σ, φ) ∈ W , f ∈ U , there is

a solution x(σ, φ, f) of the equation (2.18) through (σ, φ) which exists on [σ− r, σ +α].

Theorem 2.18. ([42]). Suppose Ω is an open set in R×C, f : Ω → Rn is continuous,

and f(t, φ) is Lipschitzian in φ on each compact set in Ω. If (σ, φ) ∈ Ω, then there is

a unique solution of equation (2.18) through (σ, φ).

The DDE (2.18) can contain distributed or discrete delay. A distributed DDE has

the form

ẋ = f

(
t, x(t),

∫ 0

−∞
x(t + τ)dµ(τ)

)
,

where f depends on x computed on a continuum (possibly unbounded set of past

values). On the other hand, a discrete DDE has the form

ẋ = f(t, x(t), x(t− τ1), · · · , x(t− τn)) for τ1, · · · , τn ≥ 0,

where only a finite number of past values of the state variables x are involved.

2.9.2 Global stability of equilibria

The following results can be used to establish the global stability property of the

equilibria of some DDE systems.

Lemma 2.3. ([97]). Consider the following delay differential equation

u̇ =
au(t− τ)

1 + ωu(t− τ)
− bu(t), u(θ) = φ(θ) ≥ 0, θ ∈ [−τ, 0), φ(0) > 0 (2.19)

where a,b and ω are positive constants and τ ≥ 0. Then,
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(i) Equation (2.19) has a trivial equilibrium u = 0 and it is globally asymptotically

stable if a < b.

(ii) If a > b equation (2.19) has a unique positive equilibrium u∗ = a−b
ωb

which is

globally asymptotically stable.

Lemma 2.4. ([57]). Given a measurable sequence of non-negative uniformly bounded

functions fn,

∫
lim inf fn ≤ lim inf

∫
fn ≤ lim sup

∫
fn ≤

∫
lim sup fn.

2.10 Gamma Distribution

A gamma distribution is a two-parameter family of continuous probability distributions

[49]. It has a scale parameter θ and a shape parameter k. If κ is an integer, then the

distribution represents the sum of k independent exponentially distributed random

variables, each of which has a mean of θ. The probability density function of the

gamma distribution can be expressed in terms of the gamma function parameterized

in terms of a shape parameter k and scale parameter θ. Both k and θ will be positive

values. The equation defining the probability density function of a gamma-distributed

random variable x is given by

f(x; k, θ) = xk−1 θke−xθ

Γ(k)
for x > 0 and k, θ > 0.

A random variable X that is gamma-distributed, with scale θ and shape k, is denoted

by

X ∼ Γ(k, θ) or X ∼ Gamma(k, θ).
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Properties of Gamma Gistribution

Gamma distribution has the following properties [49]:

(i) Summation:

if Xi has a Γ(ki, θ) distribution for i = 1, 2, ..., N, then
∑N

i=1 Xi ∼ Γ
(∑N

i=1 ki, θ
)

provided all Xi (i = 1, 2, · · · , N) are independent;

(ii) Scaling:

If X ∼ Γ (k, θ) then for any α > 0, αX ∼ Γ(k,
θ

α
).

Example 2.3. If Ei ∼ Γ(1, aiα) for i = 1, 2, · · · ,m, it follows, from (ii), that aiEi ∼
Γ(1, α). Similarly,

aiEi

m
∼ Γ(1,mα). Finally, it follows from Item (i) above that

m∑
i=1

aiEi

m
∼ Γ(m,mα).

It should be mentioned that the numerical simulations in this thesis are carried out

using two Matlab routines, namely ODE45 (for the models in Chapters 3, 5, 6 and 7)

and DDE23 (for the DDE model in Chapter 4).
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Chapter 3

Basic Quarantine/Isolation Model

3.1 Introduction

As stated in Chapter 1, the quarantine (of individuals suspected of been infected) and

isolation (of those with disease symptoms) have, historically (over many decades or

even centuries), been applied to control the spread of of numerous emerging and re-

emerging human diseases, such as leprosy, plague, cholera, typhus, yellow fever, small-

pox, diphtheria, tuberculosis, measles, ebola, pandemic influenza and, more recently,

SARS [16, 48, 61, 64, 67, 73, 90, 93, 99].

Numerous mathematical modelling work have been carried out to assess the im-

pact of quarantine and isolation in controlling the spread of communicable diseases in

human and animal populations. Hethcote et al. [48] presented six endemic models

of SIQR-type (susceptible-infectious-quarantined-recovered) using three different inci-

dence functions (mass action, standard incidence and quarantine-adjusted incidence).

The study shows that the use of quarantine-adjusted incidence could lead to the pres-

ence of periodic solutions via a Hopf bifurcation. Nuno et al. [70] also established the
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presence of oscillatory solutions using an SIQR model for multiple strains of influenza,

which employs a quarantine-adjusted incidence function. Furthermore, the emergence

of SARS in 2003 led to the formulation of numerous quarantine and isolation models for

curtailing its spread (see, for instance, [16, 20, 38, 61, 64, 67, 73, 90, 93]). These mod-

els typically take the form of the SIR or SEIR Kermack-McKendrick formulation, with

additional compartments for the quarantined and isolated classes. Most of the disease

modelling studies, published in the literature, that use quarantine and isolation are

numerical in nature (see, for instance, the models in [16, 20, 38, 61, 64, 67, 73, 90, 93]).

That is, they provided quantitative evaluation of the control measures (quarantine and

isolation) by simulating the models with available epidemiological and demographic

data.

The purpose of this chapter is to provide a rigorous qualitative analysis of a de-

terministic model for quarantine and isolation, aimed at providing deeper insight into

the impact of these control measures on the spread of an arbitrary disease that is

controllable using quarantine and isolation. The model to be designed extends some

of the quarantine/isolation models, published in literature, notably by assuming that

infection does not confer permanent immunity against re-infection.

3.2 Model Formulation and Basic Properties

The total population at time t, denoted by N(t), is sub-divided into six compartments

of susceptible (S(t)), exposed (those who have been infected but do not show clinical

symptoms of the disease yet) (E(t)), quarantined (Q(t)), infectious (I(t)), hospitalized

(H(t)) and recovered (R(t)) individuals, so that

N(t) = S(t) + E(t) + I(t) + Q(t) + R(t) + H(t).

The susceptible population is increased by the recruitment of individuals into the popu-
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lation (assumed susceptible), at a rate Π. Susceptible individuals may acquire infection,

following effective contact with infectious individuals (in the I or H class) at a rate λ,

where

λ =
β(I + ηH)

N
. (3.1)

In other words, unlike in [38], it is assumed that the exposed and quarantined in-

dividuals (in the E and Q classes, respectively) do not transmit infection (i.e., only

infected individuals with clinical symptoms of the disease are assumed capable of trans-

mitting the disease to susceptible individuals). Furthermore, in (3.1), the parameter

β is the effective contact rate ( that is, contact capable of leading to infection), while

the modification parameter, 0 ≤ η < 1, accounts for the assumed reduction in disease

transmission by hospitalized individuals in comparison to non-hospitalized infectious

individuals in the I class. Thus, η measures the efficacy of isolation or treatment

given to hospitalized individuals (isolation is perfect if η = 0, leaky if 0 < η < 1 and

completely ineffective if η = 1). The population of susceptible individuals is further

decreased by natural death (at a rate µ), and increased when recovered individuals

lose their infection-acquired immunity (at a rate ψ). Thus, the rate of change of the

susceptible population is given by

dS

dt
= Π + ψR− βS(I + ηH)

N
− µS.

The population of exposed individuals is generated by the infection of susceptible

individuals (at the rate λ). This population is decreased by development of disease

symptoms (at a rate κ), quarantine (at a rate σ) and natural death (at the rate µ), so

that

dE

dt
=

βS(I + ηH)

N
− (κ + σ + µ)E.
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The population of infectious individuals is generated at the rate κ. It is decreased by

natural recovery (at a rate γ1), hospitalization (at a rate φ), natural death (at the rate

µ) and disease-induced death (at a rate δ1). This gives

dI

dt
= κE − (γ1 + φ + µ + δ1)I.

Exposed individuals are quarantined at the rate σ. The population of quarantined

individuals is decreased by hospitalization (at a rate α) and natural death (at the rate

µ). Thus,

dQ

dt
= σE − (α + µ)Q.

The population of hospitalized individuals is generated by the hospitalization of

quarantined individuals (at the rate α) and symptomatic individuals (at the rate φ).

This population is decreased by recovery (at a rate γ2), natural death (at the rate µ)

and disease-induced death (at a rate δ2 < δ1). It is assumed that hospitalized indi-

viduals have reduced disease-induced mortality rate in comparison to non-hospitalized

infectious individuals because of the hospital care (treatment etc.) given to hospital-

ized infectious individuals. Hence, the rate of change of the population of hospitalized

individuals is given by

dH

dt
= αQ + φI − (γ2 + µ + δ2)H.

Finally, the population of recovered individuals is generated by the recovery of non-

hospitalized and hospitalized infectious individuals (at the rates γ1 and γ2, respec-

tively). It is decreased by the loss of natural immunity (at the rate ψ) and natural

death (at the rate µ), so that
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dR

dt
= γ1I + γ2H − (ψ + µ)R.

Thus, the model for the transmission dynamics of an infectious disease in the pres-

ence of quarantine (of exposed individuals) and isolation (of infectious individuals) is

given by the following non-linear system of differential equations (a flow diagram is

given in Figure 3.1; and the associated variables and parameters are described and

estimated in Tables 3.1 and 3.2) [77]:

dS

dt
= Π + ψR− λS − µS,

dE

dt
= λS − (κ + σ + µ)E,

dI

dt
= κE − (γ1 + φ + µ + δ1)I,

dQ

dt
= σE − (α + µ)Q,

dH

dt
= αQ + φI − (γ2 + µ + δ2)H,

dR

dt
= γ1I + γ2H − (ψ + µ)R.

(3.2)
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Table 3.1: Description of variables and parameters of the model
(3.2).

Variable Description

S(t) Population of susceptible individuals
E(t) Population of exposed individuals
I(t) Population of infectious (symptomatic) individuals
Q(t) Population of quarantined individuals
H(t) Population of hospitalized individuals
R(t) Population of recovered individuals

Parameter Description

Π Recruitment rate
µ Natural death rate
β Effective contact rate
η Modification parameter for reduction in infectiousness

of hospitalized individuals
κ Progression rate from exposed to infectious class
σ Quarantine rate for exposed individuals
α Hospitalization rate for quarantined individuals
φ Hospitalization rate for infectious individuals
ψ Rate of loss of infection-acquired immunity
γ1 Recovery rate for infectious individuals
γ2 Recovery rate for hospitalized individuals
δ1 Disease-induced death rate for infectious individuals
δ2 Disease-induced death rate for hospitalized individuals
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Figure 3.1: Flow diagram of the model (3.2).

The model (3.2) is a slight extension of the SEIQHR model for SARS given in [38], by

including a term for the loss of infection-acquired immunity (at the rate ψ). The main

objective of this chapter is to carry out a detailed rigorous mathematical analyses of the

model (3.2) (no such analyses was provided in [38]). Such analyses will provide insight

into the transmission dynamics of the disease (vis-a-vis the persistence or elimination

of the disease) as well as the role of the control measures (quarantine and isolation) in

effectively combatting the spread of the disease in a population.
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Since the model (3.2) monitors human populations, all its associated parameters

are non-negative. Further, the following non-negativity result holds.

Theorem 3.1. The variables of the model (3.2) are non-negative for all time t > 0. In

other words, solutions of the model system (3.2) with positive initial data will remain

positive for all t > 0.

Proof. Let t1 = sup{t > 0 : S > 0, E > 0, I > 0, Q > 0, H > 0}. Thus, t1 > 0. It

follows from the first equation of the system (3.2) that

dS

dt
= Π + ψR(t)− λ(t)S(t)− µS(t) ≥ Π− (λ + µ)S(t),

which can be re-written as,

d

dt

{
S(t) exp

[
µt +

∫ t

0

λ(τ)dτ

]}
≥ Π exp

[
µt +

∫ t

0

λ(τ)dτ

]
.

Hence,

S(t1) exp

[
µt1 +

∫ t1

0

λ(τ)dτ

]
− S(0) ≥

∫ t1

0

Π exp

[
µy +

∫ y

0

λ(τ)dτ

]
dy,

so that,

S(t1) ≥ S(0) exp

[
−µt1 −

∫ t1

0

λ(τ)dτ

]

+

{
exp

[
−µt1 −

∫ t1

0

λ(τ)dτ

]} ∫ t1

0

Π exp

[
µy +

∫ y

0

λ(τ)dτ

]
dy > 0.

Similarly, it can be shown that E > 0, I > 0, Q > 0, H > 0 and R > 0 for all t > 0.

Theorem 3.1 can also be proven by using the method in Appendix A of [86].
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Lemma 3.1. The closed set

D =

{
(S, E, I, Q,H, R) ∈ R6

+ : S + E + I + Q + H + R ≤ Π

µ

}

is positively-invariant for the model (3.2).

Proof. Adding all the equations of the model (3.2) gives,

dN

dt
= Π− µN − (δ1I + δ2H).

(3.3)

Since dN/dt ≤ Π−µN , it follows that dN/dt ≤ 0 if N ≥ Π/µ. Thus, a standard com-

parison theorem (Theorem 2.8) can be used to show that N ≤ N(0)e−µt +
Π

µ
(1− e−µt).

In particular, N(t) ≤ Π/µ if N(0) ≤ Π/µ. Thus, the region D is positively-invariant.

Further, if N(0) > Π/µ, then either the solution enters D in finite time, or N(t)

approaches Π/µ asymptotically. Hence, the region D attracts all solutions in R6
+.

Since the region D is positively-invariant, it is sufficient to consider the dynamics of

the flow generated by the model (3.2) in D, where the usual existence, uniqueness,

continuation results hold for the system [46].

3.3 Stability of Disease-free Equilibrium (DFE)

3.3.1 Local stability

The model (3.2) has a DFE, obtained by setting the right-hand sides of the equations

in (3.2) to zero, given by

E0 = (S∗, E∗, I∗, Q∗, H∗, R∗) = (Π/µ, 0, 0, 0, 0, 0). (3.4)
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The local stability property of E0 will be explored using the next generation operator

method [21, 87]. Using the notation in [87], the non-negative matrix, F, of the new

infection terms, and the M -matrix, V, of the transition terms associated with the model

(3.2), are given, respectively, by

F =




0 β 0 ηβ

0 0 0 0

0 0 0 0

0 0 0 0




,

and,

V =




µ + κ + σ 0 0 0

−κ µ + δ1 + γ1 + φ 0 0

−σ 0 µ + α 0

0 −φ −α µ + γ2 + δ2




.

It follows that the control reproduction number [2, 44], denoted by Rc = ρ(FV −1),

where ρ is the spectral radius, is given by

Rc =
β[κ(µ + α)(µ + γ2 + δ2) + ηφκ(µ + α) + αησ(µ + δ1 + γ1 + φ)]

(µ + κ + σ)(µ + δ1 + γ1 + φ)(µ + α)(µ + γ2 + δ2)
.

Using Theorem 2.10, the following result is established.

Lemma 3.2. The DFE of the model (3.2), given by (3.4), is locally-asymptotically

stable (LAS) if Rc < 1, and unstable if Rc > 1.

The threshold quantity, Rc, measures the average number of new infections gener-

ated by a single infectious individual in a population.
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Interpretation of Rc

In order to interpret the reproduction threshold, the expression for Rc above is re-

written as

Rc =
βκ

(µ + κ + σ)(µ + δ1 + γ1 + φ)
+

βηφκ

(µ + κ + σ)(µ + δ1 + γ1 + φ)(µ + γ2 + δ2)

+
βασ

(µ + κ + σ)(µ + α)(µ + γ2 + δ2)
.

(3.5)

The first term of (3.5) represents the number of new infections generated by non-

hospitalized infectious individuals (in the I class). It consists of the product of the

infection rate in the I class (i.e., rate at which a single infected individual in class

I produces new infections in a wholly susceptible population) (β), the fraction of

exposed individuals that survived the exposed class and move to the symptomatic

class

(
κ

κ + σ + µ

)
and the average duration in the I class

(
1

γ1 + φ + µ + δ1

)
.

Similarly, the last two terms in (3.5) represent the number of infections generated

by hospitalized individuals (in the H class). In particular, the second term represents

contributions into the hospitalized class by infectious individuals (in class I). It is a

product of the infection rate of hospitalized individuals (βη), the fraction that survived

the exposed class and move to the infectious class

(
κ

κ + σ + µ

)
, the fraction of indi-

viduals that survived the I class and move to the hospitalized class

(
φ

γ1 + φ + µ + δ1

)

and the average duration in the hospitalized class

(
1

γ2 + µ + δ2

)
. Finally, the last

term of (3.5) represents the contributions of quarantined individuals into the hospi-

talized class. It is a product of the infection rate of hospitalized individuals (βη), the

fraction of quarantined individuals that survived the quarantine class and move to the

hospitalized class

(
α

α + µ

)
and the duration in the hospitalized class

(
1

γ2 + µ + δ2

)
.

Lemma 3.2 implies that the disease can be eliminated from the community (when

Rc < 1) if the initial sizes of the sub-populations of the model are in the basin of
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attraction of the DFE (E0). To ensure that disease elimination is independent of

the initial sizes of sub-populations, it is necessary to show that the DFE is globally-

asymptotically stable (GAS) if Rc < 1. This is explored below.

3.3.2 Global stability

It is convenient to express Rc as

Rc =
β[κk3k4 + η(φκk3 + ασk2)]

k1k2k3k4

,

where,

k1 = µ + κ + σ, k2 = µ + δ1 + γ1 + φ, k3 = µ + α and k4 = µ + γ2 + δ2.

Theorem 3.2. The DFE of the model (3.2), given by (3.4), is GAS in D whenever

Rc ≤ 1.

Proof. Consider the following Lyapunov function:

F =

(
k4Rc

ηβ

)
E +

(
k4 + ηφ

k2η

)
I +

(
α

k3

)
Q + H,

with Lyapunov derivative given by
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Ḟ =

(
k4Rc

ηβ

)
Ė +

(
k4 + ηφ

k2η

)
İ +

(
α

k3

)
Q̇ + Ḣ,

=
k4Rc

ηβ

[
βS(I + ηH)

N
− k1E

]
+

(
k4 + ηφ

k2η

)
(κE − k2I) +

(
α

k3

)
(σE − k3Q)

+ αQ + φI − k4H,

≤ k4Rc

η
(I + ηH)− k1k4Rc

ηβ
E +

κ(k4 + ηφ)

k2η
E − (k4 + ηφ)

η
I +

ασ

k3

E

+ φI − k4H, since S ≤ N in D

=

[−k1k4Rc

ηβ
+

κ(k4 + ηφ)

k2η
+

ασ

k3

]
E +

(
φ +

k4Rc

η
− k4 + ηφ

η

)
I + k4(Rc − 1)H,

=
k4

η
(Rc − 1)(I + ηH) ≤ 0 for Rc ≤ 1.

Since all parameters of the model (3.2) and variables are non-negative, it follows that

Ḟ ≤ 0 for Rc ≤ 1 with Ḟ = 0 if and only if E = I = Q = H = 0. Hence, F is a

Lyapunov function on D.

Thus, it follows, by the LaSalle’s Invariance Principle (Theorem 2.6), that

(E, I, Q,H) → (0, 0, 0, 0) as t →∞. (3.6)

Furthermore, it follows from (3.6) that lim sup
t→∞

I = lim inf
t→∞

I = 0 and lim sup
t→∞

H =

lim inf
t→∞

H = 0. Since lim sup
t→∞

I = 0 and lim sup
t→∞

H = 0, it follows that, for sufficiently

small $∗ > 0, there exist constants M1,M2 > 0 such that lim sup
t→∞

I ≤ $∗ for all t > M1

and lim sup
t→∞

H ≤ $∗ for all t > M2.

Hence, it follows from the last equation of the model (3.2) that, for t > max{M1, M2},
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Ṙ ≤ γ1$
∗ + γ2$

∗ − µR.

Thus, by the comparison theorem (Theorem 2.8),

R∞ = lim sup
t→∞

R ≤ γ1$
∗ + γ2$

∗

µ
,

so that, by letting $∗ → 0,

R∞ = lim sup
t→∞

R ≤ 0. (3.7)

Similarly (by using lim inf
t→∞

I = 0 and lim inf
t→∞

H = 0), it can be shown that

R∞ = lim inf
t→∞

R ≥ 0. (3.8)

Thus, it follows from (3.7) and (3.8) that

R∞ ≥ 0 ≥ R∞.

Hence,

lim
t→∞

R = 0. (3.9)

Similarly, it can be shown that

lim
t→∞

S(t) = Π/µ. (3.10)

Thus, it follows from (3.6), (3.9) and (3.10), that every solution of the equations in the

model (3.2), with initial conditions in D, approaches E0 as t →∞ when Rc < 1.

The epidemiological implication of the above result is that, the combined use of
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quarantine and isolation can lead to disease elimination if they can bring (and keep)

the threshold quantity, Rc, to a value less than unity (that is, the condition Rc < 1

is necessary and sufficient for disease elimination). Figure 3.2 depicts the numerical

results obtained by simulating the model (3.2) using various initial conditions for the

case when Rc < 1. It is evident from this figure that all initial solutions converged to

the DFE, E0 (in line with Theorem 3.2).

3.4 Existence and Stability of Endemic Equilibria

In this section, the possible existence and stability of endemic (positive) equilibria of

the model (3.2) (i.e., equilibria where at least one of the infected components of the

model is non-zero) will be explored.

3.4.1 Existence

Let, E1 = (S∗∗, E∗∗, I∗∗, Q∗∗, H∗∗, R∗∗) represent any arbitrary endemic equilibrium of

the model (3.2), so that N∗∗ = S∗∗ + E∗∗ + I∗∗ + Q∗∗ + H∗∗ + R∗∗.

Solving the equations of the model (3.2) at steady-state gives

S∗∗ =
Π + ψR∗∗

λ∗∗ + µ
, E∗∗ =

λ∗∗S∗∗

k1

, I∗∗ =
κE∗∗

k2

,

Q∗∗ =
σE∗∗

k3

, H∗∗ =
αQ∗∗ + φI∗∗

k4

.

(3.11)

It should be noted that the force of infection, λ, defined in (3.1), can be expressed, at

endemic steady-state, as

λ∗∗ =
β(I∗∗ + ηH∗∗)

N∗∗ . (3.12)

For computational convenience, the expressions in (3.11) are re-written in terms of
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λ∗∗S∗∗ as below:

E∗∗ =
λ∗∗S∗∗

k1

, I∗∗ =
κλ∗∗S∗∗

k2k1

,

Q∗∗ =
σλ∗∗S∗∗

k3k1

, H∗∗ =
ασλ∗∗S∗∗

k1k3k4

+
φκλ∗∗S∗∗

k1k2k4

= P1λ
∗∗S∗∗, (3.13)

R∗∗ =
γ1κλ∗∗S∗∗

k1k2(µ + ψ)
+

γ2ασλ∗∗S∗∗

k1k3k4(µ + ψ)
+

λ∗∗S∗∗

k1k2k4(µ + ψ)
= P2λ

∗∗S∗∗,

where,

P1 =
ασ

k1k3k4

+
φκ

k1k2k4

and P2 =
γ1κ

k1k2(µ + ψ)
+

γ2ασ

k1k3k4(µ + ψ)
+

γ2φκ

k1k2k4(µ + ψ)
.

Substituting the expressions in (3.13) into (3.12) gives,

λ∗∗S∗∗ +
λ∗∗S∗∗

k1

λ∗∗ +
κλ∗∗S∗∗

k2k1

λ∗∗ + P1λ
∗∗S∗∗ + ψP2λ

∗∗S∗∗ = βλ∗∗S∗∗
(

κ

k1k2

+ ηP1

)
.

(3.14)

Dividing each term in (3.14) by λ∗∗S∗∗(and noting that, at the endemic steady-state,

λ∗∗S∗∗ 6= 0) gives

1 + P3λ
∗∗ =

βκ

k1k2

+ βηP1, where P3 =
1

k1

+
κ

k2k1

+ P1 + ψP2 ≥ 0.

It should be noted that
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1 + P3λ
∗∗ =

βκ

k1k2

+ βηP1,

= β
κ

k1k2

+ βη

(
ασ

k1k3k4

+
φκ

k1k2k4

)
,

= β

(
κk3k4 + ηφk3κ + αησk2

k1k2k3k4

)
,

= Rc.

(3.15)

Hence,

λ∗∗ =
Rc − 1

P3

> 0, whenever Rc > 1. (3.16)

The components of E1 can then be obtained by substituting the unique value of λ∗∗,

given by (3.16), into the expressions in (3.13). Thus, the following result is established.

Lemma 3.3. The model (3.2) has a unique endemic (positive) equilibrium, given by

E1, whenever Rc > 1.

3.4.2 Local stability

The local stability of the unique endemic equilibrium of the model is now considered

for a special case (where the total population is at the disease-free steady-state).

Theorem 3.3. The unique endemic equilibrium of the model (3.2), with N = N∗, is

LAS if Rc > 1.

Proof. It should be stated that, for the case when N = N∗, it can be shown that

the model (3.2) has a unique endemic equilibrium point, denoted by Ẽ1 = E1|N=N∗ ,

whenever Rc > 1. The proof of Theorem 3.3 is based on using a Krasnoselskii sub-

linearity trick (see [46, 85], and also [28, 29]).
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Let Rc > 1 and N = N∗ (so that the associated endemic equilibrium exists).

Furthermore, the substitution S = N∗ − E − Q − I − H − R is used to re-write the

model (3.2) as:

dE

dt
=

β(I + ηH)(N∗ − E −Q− I −H −R)

N∗ − (κ + σ + µ)E,

dI

dt
= κE − (γ1 + φ + µ + δ1)I,

dQ

dt
= σE − (α + µ)Q,

dH

dt
= αQ + φI − (γ2 + µ + δ2)H,

dR

dt
= γ1I + γ2H − (ψ + µ)R.

(3.17)

Linearizing the system (3.17) around the endemic equilibrium, Ẽ1, gives

dE

dt
= [−a1 − (µ + κ + σ)]E + (a2 − a1)I − a1Q + (ηa2 − a1)H − a1R,

dI

dt
= κE − (γ1 + φ + µ + δ1)I,

dQ

dt
= σE − (α + µ)Q,

dH

dt
= αQ + φI − (γ2 + µ + δ2)H,

dR

dt
= γ1I + γ2H − (ψ + µ)R,

(3.18)

where, a1 = β(I∗∗ + ηH∗∗)/N∗ and a2 = βS∗∗/N∗.

It follows that the Jacobian of the system (3.18), evaluated at Ẽ1, is given by
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J(Ẽ1) =




−a1 − k1 a2 − a1 −a1 ηa2 − a1 −a1

κ −k2 0 0 0

σ 0 −k3 0 0

0 φ α −k4 0

0 γ1 0 γ2 −(µ + ψ)




.

Assume that the system (3.18) has solution of the form

Z(t) = Z0e
ωt, (3.19)

with Z0 = (Z1, Z2, Z3, Z4, Z5), ω, Zi ∈ C (i = 1, 2, . . . , 5). Substituting a solution of

the form (3.19) into the system (3.18) gives

ωZ1 = [−a1 − (µ + κ + σ)]Z1 + (a2 − a1)Z2 − a1Z3 + (ηa2 − a1)Z4 − a1Z5,

ωZ2 = κZ1 − (γ1 + φ + µ + δ1)Z2,

ωZ3 = σZ1 − (µ + α)Z3,

ωZ4 = φZ2 + αZ3 − (γ2 + µ + δ2)Z4,

ωZ5 = γ1Z2 + γ2Z4 − (µ + ψ)Z5.

(3.20)

System (3.20) is simplified as follows. Firstly, all the negative terms in the last four

equations of (3.20) are moved to the respective left-hand sides. Secondly, the (resulting)

last four equations are then re-written in terms of Z1 and substituted into the first

equation of (3.20), and all its negative terms are moved to the right-hand side. Doing

all these lead to the following system:
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[1 + F1(ω)] Z1 = (MZ)1,

[1 + F2(ω)] Z2 = (MZ)2,

[1 + F3(ω)] Z3 = (MZ)3,

[1 + F4(ω)] Z4 = (MZ)4,

[1 + F5(ω)] Z5 = (MZ)5,

(3.21)

where,

F1(ω) =
ω

µ + κ + σ
+

a1

µ + κ + σ

[
1 +

κ

ω + µ + γ1 + φ + δ1

+
σ

ω + µ + α

]

+
a1

µ + κ + σ

[
κφ

(ω + γ1 + φ + µ + δ1)(ω + γ2 + µ + δ2)
+

ασ

(ω + µ + α)(ω + γ2 + µ + δ2)

]

+
a1

µ + κ + σ

[
κγ1

(ω + µ + ψ)(ω + µ + α)
+

ασγ2

(ω + γ2 + µ + δ2)(ω + µ + ψ)(ω + µ + α)

]

+
a1

µ + κ + σ

[
κγ2φ

(ω + γ1 + φ + µ + δ1)(ω + γ2 + µ + δ2)(ω + µ + ψ)

]
,

F2(ω) =
ω

µ + γ1 + φ + δ1

, F3(ω) =
ω

µ + α
, F4(ω) =

ω

γ2 + µ + δ2

and F5(ω) =
ω

µ + ψ
,

with,
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M =




0
βS∗∗

N∗(µ + κ + σ)
0

ηβS∗∗

N∗(µ + κ + σ)
0

κ

µ + γ1 + φ + δ1

0 0 0 0

σ

µ + α
0 0 0 0

0
φ

γ2 + µ + δ2

α

γ2 + µ + δ2

0 0

0
γ1

µ + ψ
0

γ2

µ + ψ
0




.

The equilibrium Ẽ1 = (E∗∗, I∗∗, Q∗∗, H∗∗, R∗∗) satisfies Ẽ1 = M Ẽ1. Furthermore, the

notation (MZ)i (i = 1, . . . , 5) denotes the ith coordinate of the vector MZ, and the

matrix M has non-negative entries.

If Z is a solution of (3.21), then it is possible to find a minimal positive real number,

r, such that [28, 29]

‖Z‖ ≤ rẼ1, (3.22)

where, ‖Z‖ = (‖Z1‖, ‖Z2‖, ‖Z3‖, ‖Z4‖, ‖Z5‖) with lexicographic order, and ‖.‖ is a

norm in C. The main goal is to show that Re(ω) < 0. Assume, now, that Re(ω) ≥ 0,

and consider the following two cases.

Case 1: ω = 0.

In this case, (3.20) is a homogeneous linear system in the variables Zi (i = 1, . . . , 5).

The determinant of this system is given by

∆ = −A1 +

(
S∗∗Rc

N∗ − 1

)
A2, (3.23)
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where,

A1 = (γ1 + φ + µ + δ1)(µ + α)(γ2 + µ + δ2)(µ + ψ)a1 + κ(µ + α)(γ2 + µ + δ2)(µ + ψ)a1

+ κφ(µ + α)(µ + ψ)a1 + κγ1(µ + α)(γ2 + µ + δ2)a1

+ σ(γ1 + φ + µ + δ1)(γ2 + µ + δ2)(µ + ψ)a1

+ ασγ2(µ + γ1 + φ + δ1)a1 + ασ(γ1 + φ + µ + δ1)(µ + ψ)a1

+ κφγ2(µ + α)a1 > 0,

A2 = (µ + κ + σ)(γ1 + φ + µ + δ1)(µ + α)(γ2 + µ + δ2)(µ + ψ).

To finally determine the sign of ∆, the sign of
S∗∗Rc

N∗ − 1 in (3.23) must be obtained.

This is investigated below. Solving (3.17) at the endemic steady-state (Ẽ1) gives

βS∗∗

N∗ =
(µ + κ + σ)E∗∗

I∗∗ + ηH∗∗ , (3.24)

I∗∗ =
κE∗∗

µ + γ1 + φ + δ1

, (3.25)

Q∗∗ =
σE∗∗

µ + α
, (3.26)

H∗∗ =
αQ∗∗ + φI∗∗

γ2 + µ + δ2

. (3.27)

Substituting equations (3.25) and (3.26) into (3.27) gives
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H∗∗ =

[
ασ

(µ + α)(γ2 + µ + δ2)
+

κφ

(µ + δ1 + γ1 + φ)(γ2 + µ + δ2)

]
E∗∗. (3.28)

Furthermore, using equations (3.25) and (3.28) in (3.24) gives

S∗∗

N∗ =
(µ + κ + σ)(γ1 + φ + µ + δ1)(µ + α)(γ2 + µ + δ2)

β[κ(µ + α)(γ2 + µ + δ2) + ηασ(γ1 + φ + µ + δ1) + ηφκ(µ + α)]

=
1

Rc

,

(3.29)

so that,

S∗∗

N∗ −
1

Rc

= 0.

Thus, equation (3.23) becomes

∆ = −A1 < 0.

Since the determinant ∆ is negative, it follows that the system (3.20) has a unique

solution, given by Z = 0 (which corresponds to the DFE (E0) of the model (3.2)).

Case 2: ω 6= 0.

Since Re(ω) > 0 (by assumption), then |1 + Fi(ω)| > 1 for all i = 1, . . . , 5. Define

F (ω) = mini |1 + Fi|. Then, F (ω) > 1, and
r

F (ω)
< r. Furthermore, since r is a

minimal positive real number such that ‖Z‖ ≤ rẼ1, it follows then that

‖Z‖ >
r

F (ω)
Ẽ1. (3.30)
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On the other hand, by taking the norm of both sides of the second equation in (3.21),

and noting that M is a non-negative matrix, it follows that:

F (ω)‖Z2‖ ≤ |1 + F2(ω)| ‖Z2‖ = ‖(MZ)2‖ ≤ M‖Z2‖ ≤ rM(Ẽ1)2 = r(Ẽ1)2 = rI∗∗.

(3.31)

Furthermore, it follows from (3.31) that ‖Z2‖ ≤ r

F (ω)
I∗∗, which contradicts (3.30).

Hence, Re(ω) < 0. Thus, all eigenvalues of the characteristic equation associated with

the linearized system (3.18) will have negative real part, so that the unique endemic

equilibrium, Ẽ1, is LAS whenever Rc > 1.

It should be noted that the condition N = N∗ in Theorem 3.3 represents the case

where the disease-related mortality is assumed to be negligible (in this case, it follows

from (3.3) with δ1 = δ2 = 0 that dN
dt

= Π−µN , so that N → N∗ as t →∞) or the case

where mass action incidence is used in (3.2), as against standard incidence (i.e., the

rate β in (3.1) is replaced by µβN
Π

). The epidemiological implication of Theorem 3.3 is

that the disease will persist in the population if Rc > 1 (and the initial sizes of the sub

populations of the model are in the basin of attraction of the endemic equilibrium Ẽ1).

Numerical simulation results, depicted in Figure 3.3, using numerous initial conditions,

show convergence of the solutions to Ẽ1 for the case Rc > 1 (in line with Theorem 3.3).

3.4.3 Global stability for special case

Here, the global asymptotic stability property of the endemic equilibrium of the model

(3.2) is given for the special case when recovered individuals do not lose their infection-

acquired immunity (ψ = 0), hospitalized individuals do not transmit infection (η = 0)

and the associated disease-induced mortality is negligible (δ1 = δ2 = 0). The model

(3.2), with ψ = η = δ1 = δ2 = 0, then reduces to:

58



dS

dt
= Π− λS − µS,

dE

dt
= λS − (κ + σ + µ)E,

dI

dt
= κE − (γ1 + φ + µ)I,

dQ

dt
= σE − (α + µ)Q,

dH

dt
= αQ + φI − (γ2 + µ)H,

dR

dt
= γ1I + γ2H − µR,

(3.32)

where, now,

λ =
βI

N
. (3.33)

Adding the equations of the reduced model (3.32) gives dN/dt = Π − µN , so that

N → Π/µ as t →∞. Thus, Π/µ is an upper bound of N(t) provided that N(0) ≤ Π/µ.

Further, if N(0) > Π/µ, then N(t) will decrease to this level. Using N = Π/µ in (3.33)

gives a limiting (mass action) system given by (3.32) with

λ = β1I, where β1 =
βµ

Π
. (3.34)

It can be shown that the associated reproduction number of the reduced model (3.32)

with (3.34) is given by

Rcr =
βκ

(µ + κ + σ)(µ + γ1 + φ)
=

βκ

b1b2

,
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with b1 = µ + κ + σ and b2 = µ + γ1 + φ. Furthermore, it is easy to show, using the

technique in Section 3.4.1, that the reduced model, given by (3.32) with (3.34), has a

unique EEP whenever Rcr > 1.

Lemma 3.4. The reduced model, given by (3.32) with (3.34), has a unique positive

endemic equilibrium whenever Rcr > 1.

Define, D0 =

{
(S, E, I,Q, H,R) ∈ D : E = I = Q = H = R = 0

}
.

Theorem 3.4. The unique endemic equilibrium of the reduced model, given by (3.32)

with (3.34), is GAS in D \ D0 if Rcr > 1 .

Proof. Consider the reduced model, given by (3.32) with (3.34). Let Rcr > 1, so

that the associated unique endemic equilibrium (of the model (3.32) with (3.34)) exists

(Lemma 3.3). Further, consider the following non-linear Lyapunov function (non-linear

functions of this type have been used in the ecology and epidemiology literature, such

as in [33, 37, 39]) for the sub-system of the model (3.32) consisting of the first three

equations of the model (3.32), given by:

F = S−S∗∗−S∗∗ ln

(
S

S∗∗

)
+E−E∗∗−E∗∗ ln

(
E

E∗∗

)
+

b1

κ

[
I − I∗∗ − I∗∗ ln

(
I

I∗∗

)]
,
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with Lyapunov derivative,

Ḟ = Ṡ − S∗∗

S
Ṡ + Ė − E∗∗

E
Ė +

b1

κ

(
İ − I∗∗

I
İ

)
,

= Π− β1SI − µS − S∗∗

S
(Π− β1SI − µS) + β1SI − b1E

− E∗∗

E
(β1SI − b1E) +

b1

κ

[
κE − b2I − I∗∗

I
(κE − b2I)

]
,

= Π

(
1− S∗∗

S

)
− µS

(
1− S∗∗

S

)
+

(
β1S

∗∗ − b1b2

κ

)
I − E∗∗β1SI

E

+ b1E
∗∗ − b1I

∗∗E
I

+
b1b2I

∗∗

κ
.

(3.35)

It can be shown from (3.32) that, at the endemic steady-state,

β1S
∗∗ =

(µ + κ + σ)(µ + γ1 + φ)

κ
=

b1b2

κ
. (3.36)

Using the relation (3.36) in equation (3.35) gives
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= Π

(
1− S∗∗

S

)
− µS

(
1− S∗∗

S

)
− E∗∗β1SI

E
+ E∗∗b1 − b1I

∗∗E
I

+ β1S
∗∗I∗∗,

= (β1S
∗∗I∗∗ + µS∗∗)

(
1− S∗∗

S

)
− µS

(
1− S∗∗

S

)
− E∗∗β1SI

E
+ E∗∗b1

− b1I
∗∗E
I

+ β1S
∗∗I∗∗,

= µS∗∗
(

2− S∗∗

S
− S

S∗∗

)
+ β1S

∗∗I∗∗ − β1S
∗∗2

S
− β1SIE∗∗

E
+ b1E

∗∗

− b1I
∗∗E
I

+ β1S
∗∗I∗∗,

= µS∗∗
(

2− S∗∗

S
− S

S∗∗

)
+ β1S

∗∗I∗∗
(

3− S∗∗

S
− SIE∗∗

S∗∗I∗∗E
− EI∗∗

IE∗∗

)
.

In the above calculation, the relation b1E
∗∗ = β1S

∗∗I∗∗ (obtained from (3.32) at en-

demic steady-state) has been used. The first term in the last equation of Ḟ can be

simplified as follows.

(
2− S∗∗

S
− S

S∗∗

)
=

2SS∗∗ − S∗∗2 − S2

SS∗∗
= −(S − S∗∗)2

SS∗∗
≤ 0.

Finally, since the arithmetic mean exceeds the geometric mean, it follows that

(
3− S∗∗

S
− SIE∗∗

S∗∗I∗∗E
− EI∗∗

IE∗∗

)
≤ 0.

Further, since all the model parameters are non-negative, it follows that Ḟ ≤ 0 for
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Rcr > 1. Hence, F is a Lyapunov function of the sub-system of the model (3.32) con-

sisting of the first three equations, on D \ D0. Therefore, it follows, by the LaSalle’s

Invariance Principle (Theorem 2.6), that

(S, E, I) → (S∗∗, E∗∗, I∗∗) as t →∞. (3.37)

It is clear from (3.37) that lim sup
t→∞

E = E∗∗. Thus, for sufficiently small ε > 0, there

exists a T1 > 0 such that E ≤ E∗∗ + ε for all t > T1. Furthermore, it follows from the

fourth equation of (3.32) that, for t > T1,

Q̇ ≤ σ(E∗∗ + ε)− (α + µ)Q.

Thus, by comparison theorem (Theorem 2.8),

Q∞ = lim sup
t→∞

Q ≤ σ(E∗∗ + ε)

α + µ
.

Hence, by letting ε → 0,

Q∞ = lim sup
t→∞

Q ≤ σE∗∗

α + µ
. (3.38)

Similarly, by using lim inf
t→∞

E = E∗∗, it can be shown that

Q∞ = lim inf
t→∞

Q ≥ σE∗∗

α + µ
. (3.39)

Thus, it follows from (3.38) and (3.39) that

Q∞ ≥ σE∗∗

α + µ
≥ Q∞.

Hence, lim
t→∞

Q =
σE∗∗

α + µ
= Q∗∗. In a similar way, it can be shown that lim

t→∞
H = H∗∗

and lim
t→∞

R = R∗∗. Thus,
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(Q,H, R) → (Q∗∗, H∗∗, R∗∗) as t →∞. (3.40)

Hence, it follows from (3.37) and (3.40) that every solution to the equations of the

reduced model, with initial conditions in D \D0, approaches the unique endemic equi-

librium of the reduced system (3.32) with (3.34) as t →∞ for Rcr > 1.

Although no global asymptotic stability result is given for the endemic equilibrium

(E1), further extensive numerical simulations of the model (3.2) suggest that the unique

endemic equilibrium of the model (3.2), E1, is GAS in D \ D0, whenever Rc > 1. This

suggests the following conjecture.

Conjecture. The unique endemic equilibrium of the model (3.2), given by E1, is GAS

in D \ D0 if Rc > 1.

3.5 Threshold Analysis

In order to qualitatively measure the effect of quarantine and isolation on the transmis-

sion dynamics, a threshold analysis on the parameters associated with the quarantine

of exposed individuals (σ) and the isolation of individuals with disease symptoms (φ) is

carried out by computing the partial derivative of Rc with respect to these parameters.

For the case of the quarantine of exposed individuals, it is easy to see that

∂Rc

∂σ
=

β {[µ2 + (κ + φ + γ1 + δ1) µ + κ(γ1 + δ1)] α η − η κφµ}
(µ + κ + σ)2 (µ + γ1 + δ1 + φ) (µ + α) (µ + γ2 + δ2)

− βκ [µ2 + µ (δ2 + α + γ2) + α(γ2 + δ2)]

(µ + κ + σ)2 (µ + γ1 + δ1 + φ) (µ + α) (µ + γ2 + δ2)
,
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so that,

∂Rc

∂σ
< 0 (> 0) iff η < ησ (η > ησ),

where,

0 < ησ =
κ [µ2 + (δ2 + α + γ2) µ + α(γ2 + δ2)]

[µ2 + (κ + φ + γ1 + δ1) µ + κ(γ1 + δ1)] α− φκ µ
.

Thus, the quarantine of exposed individuals will reduce the reproduction number (Rc)

and, therefore, reduce disease burden (new infections, hospitalization, mortality etc.) if

the relative infectiousness of hospitalized individuals (η) does not exceed the threshold

ησ.

On the other hand, if η > ησ, then the use of quarantine (of exposed individuals)

will increase the reproduction number (Rc), and, consequently, increase disease burden

(hence, the use of quarantine is detrimental to the community in this case). This result

is summarized below.

Lemma 3.5. The use of quarantine of the exposed individuals will have positive (neg-

ative) population-level impact if η < (>) ησ.

Similarly, the impact of the isolation of infectious individuals is monitored by com-

puting the partial derivative of Rc with respect to the isolation parameter φ. This

gives

∂Rc

∂φ
=

βκ [(µ + γ1 + δ1) η − (γ2 + δ2 + µ)]

(µ + γ2 + δ2) (µ + γ1 + δ1 + φ)2 (µ + κ + σ)
.

Thus,

∂Rc

∂φ
< 0 (> 0) iff η < ηφ (η > ηφ),
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where,

0 < ηφ =
γ2 + δ2 + µ

γ1 + δ1 + µ
.

Hence, the use of isolation (of individuals with disease symptoms) will be beneficial to

the community if the relative infectiousness of hospitalized individuals ( represented by

the parameter η) does not exceed the threshold ηφ. This result is summarized below.

Lemma 3.6. The use of isolation of infectious individuals will have positive (negative)

population-level impact if η < (>) ηφ.

In summary, the qualitative analyses carried out in this section show that the

combined use of quarantine (of exposed individuals) and isolation (of individuals with

symptoms) will have positive population-level impact if and only if

η < min{ησ, ηφ}. (3.41)

Condition (3.41) makes Rc a decreasing function of the quarantine and isolation pa-

rameters σ and φ. These strategies (quarantine and isolation) will fail (i.e., have no

population-level impact) if

η ≥ max{ησ, ηφ}. (3.42)

Figure 3.4 shows that whenever condition (3.41) holds, the use of quarantine and

isolation would have positive impact, since the cumulative number of new cases of

infection in the presence of quarantine and isolation is less than that for the case when

quarantine and isolation are not implemented. However, for the case when Condition

(3.42) holds, the use of quarantine and isolation induce detrimental population-level

impact since, in this case, the cumulative number of new cases exceeds that for the

case when quarantine and isolation are not used (Figure 3.5).

66



3.6 Summary

A deterministic model for assessing the combined impact of quarantine of asymptomatic

cases and the isolation of symptomatic cases on curtailing the spread of a communicable

disease is presented and rigorously analyzed. The model, which consists of six mutually-

exclusive epidemiological compartments, uses standard incidence formulation (for the

infection rate) and assumes the loss of infection-acquired immunity among recovered

individuals. Simulation results, using a reasonable set of parameters values (consistent

with the SARS outbreaks of 2003), are reported. The main findings of this chapter are

summarized below:

(i) The model (3.2) has a globally-asymptotically stable disease-free equilibrium

whenever the associated reproduction number of the model is less than unity

(Theorem 3.2);

(ii) The model has a unique endemic equilibrium whenever the reproduction number

exceeds unity (Lemma 3.3);

(iii) The unique endemic equilibrium is shown to be locally-asymptotically stable and

globally-asymptotically stable for special cases (Theorems 3.3 and 3.4);

(iv) The effectiveness of quarantine (of asymptomatic cases) and isolation (of symp-

tomatic cases) is dependent on the size of the modification parameter for the

reduction in infectiousness of hospitalized individuals (η). The combined use

of quarantine and isolation will have positive population-level impact if η <

max{ησ, ηφ} and will have no, or result in detrimental, population-level impact

if η ≥ max{ησ, ηφ} (Lemmas 3.5 and 3.6).
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Table 3.2: Estimated values for the pa-
rameters of the model (3.2)

Parameters Values (per day) Sources

β [0.1, 0.2] [38]
µ 0.0000351 [38]
γ1 0.03521 [15]
γ2 0.042553 [15]
δ1 0.04227 [59]
δ2 0.027855 [15]
κ 0.156986 [23]
α 0.156986 [23]
φ 0.20619 [15]
Π 136 [38]
σ 0.1 [38]
ψ 0.005 Assumed
η (0,1] Variable
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Figure 3.2: Simulation of the model (3.2) showing the total number of infected individ-
uals as a function of time for Rc < 1. Parameter values used are as given
in Table 3.2, with β = 0.1 and η = 0.5 (so that, Rc = 0.8065.)
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Figure 3.3: Simulation of the model (3.2) showing the total number of infected individ-
uals as a function of time for Rc > 1. Parameter values used are as given
in Table 3.2, with β = 0.15 and η = 0.5 (so that, Rc = 1.2097).
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Figure 3.4: Simulation of the model (3.2) giving the cumulative number of new cases
of infection as a function of time. Parameter values used are as given in
Table 3.2, with β = 0.2 and η = 0.65 (so that, ησ = 0.9088, ηφ = 0.9088
and η < min{ησ, ηφ}).
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Figure 3.5: Simulation of the model (3.2) giving the cumulative number of new cases
of infection as a function of time. Parameter values used are given as in
Table 3.2, with β = 0.2 and η = 0.95 (so that, ησ = 0.9088, ηφ = 0.9088
and η > max{ησ, ηφ}).
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Chapter 4

Quarantine/Isolation Model With

Time Delay

4.1 Introduction

The aim of this chapter is to assess the roles of time delay and the choice of incidence

function on the transmission dynamics of a communicable disease in the presence of

quarantine and isolation. To achieve the objective of this chapter, the autonomous

quarantine/isolation model considered in Chapter 3, given by (3.2), will be extended

to incorporate time delay and two different incidence functions. The functional form of

the incidence functions to be considered are derived based on the framework described

below (this derivation follows the general description given in Section 1.2).

Let S(t), I(t) and N(t) denote the number of susceptible individuals, infectious

individuals and the total size of the population at time t, respectively. Further, let

β(N) be the average number of contacts that is sufficient to transmit infection (effective

contact rate). Then, the force of infection, given by β(N)I/N, represents the average

number of contacts a susceptible individual makes with infectious individuals per unit

time. If β(N) = βN (i.e., the contact rate depends on the total population, N), then
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the incidence function g1(I) = βI is called mass action incidence. If β(N) = β (a

constant), then the incidence function, g2(I) = βI/N , is called standard incidence

[44, 80]. These two functions are widely used in the modeling of the transmission

dynamics of human diseases [2, 3].

Another type of incidence function used in mathematical epidemiology is the Holling

type II incidence function, given by g3(I) = βI
1+ωI

, with ω > 0, [10, 51, 63, 74]. The

non-linear incidence function of type g3(I) was first introduced by Capasso and Serio

[10], in their study of cholera epidemic in Bari, Italy. The main justification for using

such a functional form of the incidence function stems from the fact that the number of

effective contacts between infective individuals and susceptible individuals may saturate

at high infective levels due to crowding of infective individuals, or due to the preventive

measures (and behavioral changes) taken by the susceptible individuals in response to

the severity of the disease [51, 63, 74].

4.2 Model with Standard Incidence

The model to be considered in this chapter is that for the transmission dynamics of an

infectious disease, in the presence of quarantine of exposed individuals and isolation

of infected individuals with disease symptoms, and is given by the following system of

delay integro-differential equations [75]:
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dS

dt
= Π− βS(t)I(t)

N(t)
− µS(t),

E =

∫ t

t−τ

βS(x)I(x)e−(µ+σ)(t−x)

N(x)
dx,

dI

dt
=

e−τ(µ+σ)βS(t− τ)I(t− τ)

N(t− τ)
− (γ1 + φ + µ + δ1)I(t),

dQ

dt
= σE(t)− (α + µ)Q(t),

dH

dt
= αQ(t) + φI(t)− (γ2 + µ + δ2)H(t),

dR

dt
= γ1I(t) + γ2H(t)− µR(t),

(4.1)

where, S, E, I, Q,H, R denote the populations of susceptible, exposed, infectious, quar-

antined, hospitalized and recovered individuals at time t, respectively.

Thus, the total human population at time t, denoted by N(t), is given by

N(t) = S(t) + E(t) + I(t) + Q(t) + H(t) + R(t).

The initial data for the model (4.1) is given by

S(θ) = φ1(θ), E(θ) = φ2(θ), I(θ) = φ3(θ),

Q(θ) = φ4(θ), H(θ) = φ5(θ), R(θ) = φ6(θ), θ ∈ [−τ, 0],

(4.2)

where, φ = [φ1, φ2, φ3, φ4, φ5, φ6] ∈ C such that φi(θ) = φi(0) ≥ 0 for (θ ∈ [−τ, 0], i =

1, 3, 4, 5, 6), φ2(θ) ≥ 0 (θ ∈ [−τ, 0]), and C denotes the Banach space C([−τ, 0],R6) of

continuous functions mapping the interval [−τ, 0] into R6, equipped with the uniform

norm defined by ‖φ‖ = sup
θ∈[−τ,0]

|φ(θ)|. Furthermore, it is assumed that φi(0) > 0 (for

i = 1, · · · , 6).

In (4.1), the parameter Π represents the recruitment rate into the population, β is

the effective contact rate. The delay parameter τ > 0 represents the associated incu-
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bation period [18]. Exposed individuals are quarantined at a rate α. Quarantined and

infectious individuals are hospitalized at the rates α and φ, respectively. The param-

eters γ1 and γ2 represent the recovery rates of infectious and hospitalized individuals,

respectively, while µ is the natural death rate. Finally, δ1 and δ2 are the disease-induced

death rates for infectious and hospitalized individuals, respectively. A flow diagram of

the model (4.1) is given in Figure 4.1, and the associated variables and parameters are

described and estimated in Tables 4.1 and 4.2.

Table 4.1: Description of variables and parameters of the model (4.3).

Variable Description

S(t) Population of susceptible individuals
E(t) Population of exposed individuals
I(t) Population of infectious individuals
Q(t) Population of quarantined individuals
H(t) Population of hospitalized individuals
R(t) Population of recovered individuals

Parameter Description

Π Recruitment rate into the community
µ Natural death rate
β Effective contact rate
τ Incubation period
ω Parameter for measuring psychological or inhibitory effect
σ Quarantine rate of exposed individuals
α Hospitalization rate for quarantined individuals
φ Hospitalization rate for infectious individuals
ψ Rate of loss of infection-acquired immunity
γ1 Recovery rate for infectious individuals
γ2 Recovery rate for hospitalized individuals
δ1 Disease-induced death rate for infectious individuals
δ2 Disease-induced death rate for hospitalized individuals
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Figure 4.1: Flow diagram of the delayed model (4.3).

The DDE model (4.1) is an extension of the autonomous quarantine/isolation model

(3.2) by incorporating time delay (τ > 0), but with the assumption of loss of infection-

acquired immunity relaxed (so that recovered individuals do not become susceptible

again) and hospitalized individuals do not transmit infection (i.e., we set ψ = η = 0 in

(3.2)). One of the main aims of this chapter is to determine whether or not incorporat-

ing time delay alters the qualitative dynamics of the autonomous quarantine/isolation

model (3.2). Another major objective is to determine whether replacing the stan-

dard incidence function in the model (4.1) with Holling type II incidence function

(g3(I) = I
1+ωI

) will introduce new (or different) dynamical features for the model (4.1).
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4.2.1 Basic properties

Using the generalized Leibnitz rule of differentiation, the model (4.1) can be re-written

as:

dS

dt
= Π− βS(t)I(t)

N(t)
− µS(t),

dE

dt
=

βS(t)I(t)

N(t)
− e−τ(µ+σ)βS(t− τ)I(t− τ)

N(t− τ)
− (σ + µ)E,

dI

dt
=

e−τ(µ+σ)βS(t− τ)I(t− τ)

N(t− τ)
− (γ1 + φ + µ + δ1)I(t),

dQ

dt
= σE(t)− (α + µ)Q(t),

dH

dt
= αQ(t) + φI(t)− (γ2 + µ + δ2)H(t),

dR

dt
= γ1I(t) + γ2H(t)− µR(t).

(4.3)

The basic properties of the model (4.3) will now be investigated.

Lemma 4.1. The solution (S(t), E(t), I(t), Q(t), H(t), R(t)) of the system (4.3), with

the initial data (4.2), exists for all t ≥ 0 and is unique. Furthermore, S(t) > 0, E(t) >

0, I(t) > 0, Q(t) > 0, H(t) > 0, and R(t) > 0 for all t ≥ 0.

Proof. The DDE system (4.3) can be written as

Ẋ = f(t,Xτ ),

where, X = (S(t), E(t), I(t), Q(t), H(t), R(t)) ∈ C. Since f(t,X) is continuous and Lip-

schitz in X, it follows then, by the Fundamental Theory of Functional Differential Equa-

tions [42], that the system (4.3) has a unique solution (S(t), E(t), I(t), Q(t), H(t), R(t))

satisfying the initial data (4.2).

It is clear from the first equation of the model (4.3) that

dS

dt
≥ −

[
βI(t)

N(t)
+ µ

]
S(t),
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so that,

S(t) ≥ S(0) exp

{
−

∫ t

0

[
βI(u)

N(u)
+ µ

]
du

}
> 0, for all t > 0.

Similarly, it follows, from the third equation of the system (4.3), that I(t) >

0 for all t > 0. Since the second equation of (4.3) is equivalent to the second equation

of (4.1), it follows (by using the fact that S(t) > 0 and I(t) > 0 for all t > 0, together

with the fact that all the parameters of the model are positive) that:

E(t) =

∫ t

t−τ

βS(x)I(x)e−(µ+σ)(t−x)

N(x)
dx > 0.

Furthermore, using the same approach as that for S(t), it can be shown that Q(t) >

0, H(t) > 0 and R(t) > 0 for all t > 0.

Lemma 4.2. The closed set

D =

{
(S, E, I, Q,H, R) ∈ R6

+ : S + E + I + Q + H + R ≤ Π

µ

}

is positively-invariant for the DDE model (4.1).

Proof. Adding all the equations of the model (4.3) gives,

dN

dt
= Π− µN − (δ1I + δ2H).

(4.4)

Since dN/dt ≤ Π − µN , it follows that dN/dt ≤ 0 if N ≥ Π/µ . Thus, a standard

comparison theorem (Theorem 2.8) can be used to show that

N(t) ≤ N(0)e−µt +
Π

µ

(
1− e−µt

)
.

In particular, N(t) ≤ Π/µ if N(0) ≤ Π/µ. Thus, the region D is positively-invariant.
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Further, if N(0) > Π/µ, then either the solution enters D in finite time, or N(t)

approaches Π/µ asymptotically. Hence, the region D attracts all solutions in R6
+.

4.2.2 Global stability of DFE

The DFE of the system (4.3), obtained by setting the derivatives in the model (4.3) to

zero, is given by

E0 =

(
Π

µ
, 0, 0, 0, 0, 0

)
. (4.5)

The global asymptotic stability property of E0 will be explored using the methodology

given in [56, 69]. It is convenient to define:

RS
0 =

βe−τ(µ+σ)

γ1 + φ + µ + δ1

.

The quantity, RS
0 , is the basic reproduction number of the DDE model (4.3).

Theorem 4.1. The DFE of the model (4.3), given by (4.5), is GAS in D whenever

RS
0 < 1.

Proof. Let RS
0 < 1. Furthermore, let (S(t), E(t), I(t), Q(t), H(t), R(t)) be any positive

solution of the system (4.3) with the initial data (4.2). The third equation of the

system (4.3) can be re-written as

I(t) =

∫ t

−∞

βe−τ(σ+µ)S(x− τ)I(x− τ)

N(x− τ)
e−(γ1+φ+µ+δ1)(t−x)dx

≤
∫ t

−∞
βe−τ(σ+µ)I(x− τ)e−(γ1+φ+µ+δ1)(t−x)dx, since S(t) ≤ N(t) in D.

(4.6)

It follows, by using the substitution s = t− x in (4.6), that

I(t) ≤
∫ ∞

0

βe−τ(σ+µ)I(t− s− τ)e−(γ1+φ+µ+δ1)(s)ds. (4.7)

Taking the lim sup of both sides of (4.7), and noting that lim sup
∫

f ≤ ∫
lim sup f
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(Lemma 2.4), gives

lim sup
t→∞

I(t) ≤
∫ ∞

0

βe−τ(σ+µ)e−(γ1+φ+µ+δ1)(s)ds lim sup
t→∞

I(t),

=
βe−τ(µ+σ)

γ1 + φ + µ + δ1

lim sup
t→∞

I(t) = RS
0 lim sup

t→∞
I(t).

(4.8)

Since RS
0 < 1, it follows that lim sup

t→∞
I(t) < lim sup

t→∞
I(t). This is a contradiction, unless

lim sup
t→∞

I(t) = 0. Thus, for any ε > 0 sufficiently small, there exists a T > 0 such that

if t > T, then I(t) < ε.

Using S(t)/N(t) ≤ 1 and I(t) < ε, for t > T, in the second equation of (4.3), gives

Ė ≤ βε− (σ + µ)E.

Furthermore, by the comparison theorem,

lim sup
t→+∞

E(t) ≤ βε

σ + µ
.

Since ε is arbitrary, it follows (by setting ε → 0) that

lim sup
t→+∞

E(t) = 0.

Hence, for ε1 > 0 small, there exists a T1 > T such that if t > T1, then E(t) < ε1.

Using E(t) < ε1, for t > T1, in the fourth equation of (4.3), gives

Q̇ ≤ ε1σ − (α + µ)E,

so that, by the comparison theorem,

lim sup
t→+∞

Q(t) ≤ ε1σ

α + µ
.
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Hence,

lim sup
t→+∞

Q(t) = 0.

In a similar way, it can be shown that

lim sup
t→+∞

H(t) = 0 and lim sup
t→+∞

R(t) = 0.

Finally, it follows from the first equation of (4.3), for t > T , that

Ṡ ≥ Π− ε− µS,

so that, using the comparison theorem,

lim inf
t→+∞

S(t) ≥ Π− ε

µ
.

Hence, by letting ε → 0,

lim inf
t→+∞

S(t) ≥ Π

µ
.

Additionally, since lim sup
t→+∞

S(t) ≤ Π

µ
, it follows that

lim
t→+∞

S(t) =
Π

µ
.

Thus,

lim
t→+∞

(S(t), E(t), I(t), Q(t), H(t), R(t)) =

(
Π

µ
, 0, 0, 0, 0, 0

)
= E0.

This result (Theorem 4.1) is consistent with that given for the model without delay

(3.2) for the case where recovered individuals do not lose their infection-acquired im-

munity and hospitalized individuals do not transmit infection (i.e., system (3.2) with
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η = ψ = 0) in regards to the DFE of the model (3.2). That is, adding time delay to

the quarantine/isolation model without time delay (3.2), for the case where ψ = η = 0,

does not alter the global asymptomatic stability property of the DFE (E0) of the model

(3.2). The epidemiological implication of Theorem 4.1 is that the combined use of quar-

antine and isolation can lead to disease elimination if the two interventions can bring

(and keep) the threshold quantity, RS
0 , to a value less than unity (i.e., for the DDE

model (4.3), the condition RS
0 < 1 is necessary and sufficient for disease elimination).

By solving for the delay parameter (τ) from the equation RS
0 = 1 (and noting

Theorem 4.1), the following result can be obtained.

Lemma 4.3. The DFE of the model (4.3), given by (4.5), is GAS in D whenever

τ > ln

(
β

µ + φ + γ1 + δ1

)( 1
σ+µ)

= τS
c .

In other words, Lemma 4.3 shows that the disease will be eliminated from the com-
munity if and only if τ > τS

c . Furthermore, it follows from Lemma 4.3 that the longer
infected individuals remain in the exposed class (E), the higher the likelihood of disease
elimination from the community. Figure 4.2 depicts the numerical results obtained by
simulating the model (4.3) using the parameter values in Table 4.2, and various initial
conditions, for the case τ > τS

c (RS
0 < 1). It is evident from this figure that all solutions

converged to the DFE, E0 (in line with Theorem 4.1 and Lemma 4.3). It should be
stated that the parameter values in Table 4.2 are relevant to the transmission dynamics
of SARS [16, 23, 38, 59].
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Table 4.2: Estimated values of the pa-
rameters of the model (4.3).

Parameter Value (per day) Source

Π 136 [38]
β (0,0.5) [38]
µ 0.0000351 [38]
γ1 0.03521 [15]
γ2 0.042553 [15]
δ1 0.04227 [59]
δ2 0.027855 [15]
κ 0.156986 [23]
α 0.156986 [23]
φ 0.20619 [15]
σ 0.1 [38]
ω 0.1 Assumed

4.2.3 Existence of EEP

In this section, the possible existence and stability of endemic equilibria of the model

(4.3) will be explored.

Let ES
1 = (S∗∗, E∗∗, I∗∗, Q∗∗, H∗∗, R∗∗) represent any arbitrary endemic equilibrium

point of the model (4.3), so that N∗∗ = S∗∗+E∗∗+ I∗∗+Q∗∗+H∗∗+R∗∗. Solving the

equations of the model (4.3) at steady-state gives

S∗∗ =
Π

λ∗∗ + µ
, E∗∗ =

λ∗∗S∗∗(1− e−τ(σ+µ))

σ + µ
, I∗∗ =

e−τ(σ+µ)λ∗∗S∗∗

γ1 + φ + µ + δ1

,

Q∗∗ =
σE∗∗

α + µ
, H∗∗ =

αQ∗∗ + φI∗∗

γ2 + µ + δ2

, R∗∗ =
γ1I

∗∗ + γ2H
∗∗

µ
,

(4.9)

where,

λ∗∗ =
βI∗∗

N∗∗ . (4.10)

For computational convenience, the expressions in (4.9) are re-written in terms of
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λ∗∗S∗∗ as below:

E∗∗ =
λ∗∗S∗∗(1− e−τ(σ+µ))

σ + µ
, I∗∗ =

e−τ(σ+µ)λ∗∗S∗∗

γ1 + φ + µ + δ1

,

Q∗∗ = P1λ
∗∗S∗∗, H∗∗ = P2λ

∗∗S∗∗, R∗∗ = P3λ
∗∗S∗∗,

(4.11)

where,

P1 =
σ(1− e−τ(σ+µ))

(σ + µ)(α + µ)
, P2 =

αP1

γ2 + µ + δ2

+
φe−τ(σ+µ)

(γ2 + µ + δ2)(γ1 + φ + µ + δ1)
,

P3 =
γ1e

−τ(σ+µ)

µ(γ1 + φ + µ + δ1)
+

γ2P2

µ
.

Substituting the expressions in (4.11) into (4.10) gives

λ∗∗S∗∗ +
λ∗∗S∗∗(1− e−τ(σ+µ))λ∗∗

σ + µ
+

λ∗∗e−τ(σ+µ)λ∗∗S∗∗

γ1 + φ + µ + δ1

+ λ∗∗P1λ
∗∗S∗∗ + λ∗∗P2λ

∗∗S∗∗ + λ∗∗P3λ
∗∗S∗∗ =

βe−τ(σ+µ)λ∗∗S∗∗

γ1 + φ + µ + δ1

.

(4.12)

Dividing each term in (4.12) by λ∗∗S∗∗(and noting that, at the endemic steady-state,

λ∗∗S∗∗ 6= 0) gives

1 + P4λ
∗∗ =

βe−τ(σ+µ)

γ1 + φ + µ + δ1

= RS
0 . (4.13)

Since,

P4 =
1− e−τ(σ+µ)

σ + µ
+

e−τ(σ+µ)

γ1 + φ + µ + δ1

+ P1 + P2 + P3 ≥ 0,
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it follows from (4.13) that,

λ∗∗ =
RS

0 − 1

P4

> 0, whenever RS
0 > 1. (4.14)

The components of the endemic equilibrium, ES
1 , can then be obtained by substituting

the unique value of λ∗∗, given in (4.14), into the expressions in (4.9). Thus, the following

result is established.

Lemma 4.4. The model (4.3) has a unique endemic equilibrium, given by ES
1 , whenever

RS
0 > 1.

Although not proven here, numerical simulations of the model (4.3) suggest that

the EEP (ES
1 ) of the model (4.3) is asymptotically-stable for RS

0 > 1 (Figure 4.3).

It should be mentioned, however, that the solutions depicted in Figure 4.3 did not

converge to zero, as they appear to (see Figure 4.4 for a blow up of the tail end of

Figure 4.3). In other words, Figures 4.3 and 4.4 show convergence of the solutions to

the unique EEP, ES
1 , of the model (4.3) for the case RS

0 > 1. The following conjecture

is suggested:

Conjecture 4.1. The unique EEP, ES
1 , of the model (4.3) is LAS whenever RS

0 > 1.

In summary, the model (4.3) has a globally-asymptotic stable disease-free equilib-

rium whenever RS
0 < 1, and it has a unique endemic equilibrium whenever RS

0 > 1.

These results are consistent with those reported for the corresponding autonomous

model (3.2) with η = ψ = 0. In other words, adding time delay to the model (3.2) with

η = ψ = 0 does not alter its qualitative (equilibrium) dynamics. The next task is to

determine whether or not the dynamics of the quarantine/isolation model (3.2) is af-

fected by the combined use of time delay and the substitution of the standard incidence

function with the Holling type II incidence function. This is considered below.
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4.3 Model with Holling Type II Incidence

In this section, the DDE model (4.3) will be analyzed subject to the use of the Holling

type II incidence function, given by g3(I) = I
1+ωI

(with ω > 0), in place of the stan-

dard incidence function. The DDE model (4.3), with the standard incidence function

replaced by g3(I), is given by

dS

dt
= Π− βS(t)I(t)

1 + ωI(t)
− µS(t),

dE

dt
=

βS(t)I(t)

1 + ωI(t)
− e−τ(µ+σ)βS(t− τ)I(t− τ)

1 + ωI(t− τ)
− (σ + µ)E,

dI

dt
=

βe−τ(µ+σ)S(t− τ)I(t− τ)

1 + ωI(t− τ)
− (γ1 + φ + µ + δ1)I(t),

dQ

dt
= σE(t)− (α + µ)Q(t),

dH

dt
= αQ(t) + φI(t)− (γ2 + µ + δ2)H(t),

dR

dt
= γ1I(t) + γ2H(t)− µR.

(4.15)

4.3.1 Global stability of DFE

The DDE system (4.15) has the same DFE, E0, as the system (4.3). Further, the

invariant region, D, holds for system (4.15) as well. The GAS property of the DFE

of the system (4.15) will be explored using the methodology given in [97] (which uses

Lemma 2.3). Define,

RH
0 =

βΠe−τ(µ+σ)

µ(γ1 + φ + µ + δ1)
.

Theorem 4.2. The DFE of the model (4.15), given by (4.5), is GAS in D whenever

RH
0 < 1.

Proof. Let RH
0 < 1. Furthermore, let (S(t), E(t), I(t), Q(t), H(t), R(t)) be any positive
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solution of the system (4.15) with the initial data (4.2). Since RH
0 < 1, it is clear that

βe−τ(µ+σ)Π/µ < γ1 + φ + µ + δ1. (4.16)

Since S(t) ≤ Π/µ in D for all t > 0, it follows from the second equation of (4.15) that

İ ≤ βΠe−τ(µ+σ)I(t− τ)

µ[1 + ωI(t− τ)]
− (γ1 + φ + µ + δ1)I(t). (4.17)

Consider, next, the auxiliary (with equality) equation associated with the inequality

(4.17) (where u is a dummy variable)

u̇ =
βΠe−τ(µ+σ)u(t− τ)

µ[1 + ωu(t− τ)]
− (γ1 + φ + µ + δ1)u(t). (4.18)

Using Item (i) of Lemma 2.3, together with equation (4.16), in (4.18) gives

lim
t→+∞

u(t) = 0.

Thus, it follows from (4.17), using comparison theorem (Theorem 2.8), that

lim sup
t→+∞

I(t) = 0.

Thus, for any ε > 0 sufficiently small, there exists a T > 0 such that if t > T, then

I(t) < ε. Using S ≤ Π/µ in D and I < ε, for t > T, in the second equation of (4.15)

(note that g(I) is monotone increasing) gives,

Ė ≤ βΠε

µ(1 + ωε)
− (σ + µ)E.

Furthermore, by the comparison theorem,

lim sup
t→+∞

E(t) ≤ βΠε

µ(σ + µ)(1 + ωε)
.
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Since ε is arbitrary, it follows (by setting ε → 0) that

lim sup
t→+∞

E(t) = 0.

Hence, for ε1 > 0 small, there exists a T1 > T such that if t > T1, then E(t) < ε1.

Using E(t) < ε1, for t > T1, in the fourth equation of (4.15) gives

Q̇ ≤ ε1σ − (α + µ)E,

so that, by the comparison theorem,

lim sup
t→+∞

Q(t) ≤ ε1σ

α + µ
.

Hence,

lim sup
t→+∞

Q(t) = 0.

In a similar way, it can be shown that

lim sup
t→+∞

H(t) = 0 and lim sup
t→+∞

R(t) = 0.

Finally, it follows from the first equation of (4.15), for t > T , that

Ṡ ≥ Π− βSε

1 + ωε
− µS,

so that, using the comparison theorem,

lim inf
t→+∞

S(t) ≥ Π(1 + ωε)

µ + ε(β + ωµ)
.

Hence (by letting ε → 0)
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lim inf
t→+∞

S(t) ≥ Π

µ
.

Additionally, since lim sup
t→+∞

S(t) ≤ Π

µ
in D it follows that

lim
t→+∞

S(t) =
Π

µ
.

Thus,

lim
t→+∞

(S(t), E(t), I(t), Q(t), H(t), R(t)) =

(
Π

µ
, 0, 0, 0, 0, 0

)
= E0.

The epidemiological implication of the above result (Theorem 4.2) is that the combined

use of quarantine and isolation can lead to disease elimination if they can bring (and

keep) the threshold quantity, RH
0 , to a value less than unity (i.e., for the DDE model

(4.15), the condition RH
0 < 1 is necessary and sufficient for disease elimination).

By solving for τ from the equation RH
0 = 1 (and noting Theorem 4.2), the following

result can be obtained.

Lemma 4.5. The DFE of the model (4.15), given by (4.5), is GAS in D whenever

τ > ln
[

βΠ
µ(µ+φ+γ1+δ1)

]( 1
σ+µ)

= τH
c .

In other words, like in the case of system (4.3), the disease will be eliminated from

the community if and only if τ > τH
c . Figure 4.5 depicts the numerical results obtained

by simulating the model (4.15) using the parameter values in Table 4.2 and various

initial conditions for the case τ > τH
c (RH

0 < 1). It is evident from this figure that all

solutions converged to the DFE, E0 (in line with Theorem 4.2 and Lemma 4.5).
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4.3.2 Existence of EEP and disease permanence

In this section, the possible existence of endemic equilibria of the model (4.15), and

the permanence of the disease, will be explored.

Existence of EEP

Let EH
1 = (S∗∗; E∗∗; I∗∗; Q∗∗; H∗∗; R∗∗) represent any arbitrary endemic equilibrium of

the model (4.15). Solving the equations of the model (4.15) at steady-state gives

S∗∗ =
Π(1 + ωI∗∗)

µ(1 + ωI∗∗) + βI∗∗
, E∗∗ =

β(1− e−(σ+µ)τ )S∗∗I∗∗

σ + µ
,

S∗∗ =
(1 + ωI∗∗)(γ1 + φ + µ + δ1)

βe−(σ+µ)τ
, Q∗∗ =

σE∗∗

α + µ
,

H∗∗ =
φI∗∗ + αQ∗∗

γ2 + µ + δ2

, R∗∗ =
γ1I

∗∗ + γ∗∗H∗∗

µ
.

(4.19)

Equating the first and third equations of (4.19), and solving for I∗∗ in terms of RH
0 ,

gives

I∗∗ =
RH

0 − 1

µ(β + ωµ)(γ1 + φ + µ + δ1)2
> 0, whenever RH

0 > 1. (4.20)

Substituting for I∗∗ from (4.20) into the first equation of (4.19) gives

S∗∗ =
ωΠe−(σ+µ)τ + (γ1 + φ + µ + δ1)

e−(σ+µ)τ (β + ωµ)
. (4.21)

It follows from (4.19) (noting from (4.20) and (4.21) that both I∗∗ and S∗∗ are positive

if RH
0 > 1) that EH

1 ∈ R6
+ whenever RH

0 > 1. Thus, the following result is established.

Lemma 4.6. The model (4.15) has a unique endemic equilibrium, given by EH
1 , when-

ever RH
0 > 1.
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Permanence of the disease

The permanence of the disease will now be explored in the context of the model (4.15).

That is, the objective is to determine whether or not the number of infectious cases in

the population will persist above a certain positive number for a long time period (for

the case when RH
0 > 1).

Theorem 4.3. If RH
0 > 1, then for any solution of (4.15) with the initial data (4.2),

there exists a positive number ν = e−τ(γ1+φ+µ+δ1)I∗∗, such that lim inf
t→∞

I(t) ≥ ν.

Proof. The proof of Theorem 4.3 is based on using the approach given in [34, 66, 89,

103]. It should be noted, first of all, that the second equation of (4.15) can be re-written

as

İ =
βe−τ(σ+µ)S(t)I(t)

1 + ωI(t)
− (γ1 + φ + µ + δ1)I(t)− d

dt

∫ t

t−τ

βe−τ(σ+µ)S(x)I(x)

1 + ωI(x)
dx. (4.22)

Consider the following function:

V (t) = I(t) +

∫ t

t−τ

βe−τ(σ+µ)S(x)I(x)

1 + ωI(x)
dx.

Clearly, V (t) is bounded (since I(t) and S(t) are bounded). Furthermore, it follows,

using (4.22), that

V̇ =
βe−τ(σ+µ)S(t)I(t)

1 + ωI(t)
− (γ1 + φ + µ + δ1)I(t). (4.23)

Since, at endemic steady-state, S(t) is given by S∗∗ =
Π

µ + βI∗∗
1+ωI∗∗

> 0 whenever RH
0 >

1, it is clear that for any 0 < q < 1, S∗∗ < K, where K =
Π

µ + βqI∗∗
1+ωqI∗∗

. Hence, there

exists a number m ≥ 1 such that S∗∗ < K(1− e−mΠτ/K).

The next task is to show that I(t) ≥ qI∗∗ for all t ≥ (m + 1)τ . Suppose, by

contradiction, that I(t) < qI∗∗ for all t ≥ (m + 1)τ . It then follows, from the first
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equation of (4.15), for t ≥ (m + 1)τ , that

Ṡ(t) > Π−
(

µ +
βqI∗∗

1 + ωqI∗∗

)
S(t) = Π− Π

K
S(t).

Hence,

S(t) > K − e−Π/K[t−(m+1)τ ] {K − S[(m + 1)τ ]} ,

> K
{
1− e−Π/K[t−(m+1)τ ]

}
,

so that, for t ≥ (2m + 1)τ,

S(t) > K(1− e−mΠτ/K) = Ŝ > S∗∗. (4.24)

Since I(t) < qI∗∗ < I∗∗, it follows from (4.23), for t ≥ (2m + 1)τ, that

V̇ >
βe−τ(µ+σ)S(t)I(t)

1 + ωI∗∗
− (γ1 + φ + µ + δ1)I(t),

>
βe−τ(µ+σ)ŜI(t)

1 + ωI∗∗
− (γ1 + φ + µ + δ1)I(t),

=

[
βe−τ(µ+σ)Ŝ

1 + ωI∗∗
− (γ1 + φ + µ + δ1)

]
I(t).

(4.25)

Let Î = min
θ∈[−τ,0]

I(θ + 2τ(m + 1)). It can be claimed that I(t) ≥ Î for all t ≥ (2m+1)τ .

Suppose the claim does not hold. Then there exists a constant d1 > 0 such that

I(t) ≥ Î for t ∈ ([2m + 1]τ, 2[m + 1]τ + d1 = t∗), with I(t∗) = Î and İ(t∗) ≤ 0.

However, it follows from the third equation of (4.15), when t = t∗, that
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İ(t∗) =
e−τ(σ+µ)βS(t∗ − τ)I(t∗ − τ)

1 + ωI(t∗ − τ)
− (φ + γ1 + µ + δ1)I(t∗),

=
e−τ(σ+µ)βS(t∗ − τ)I(t∗ − τ)

1 + ωI(t∗ − τ)
− (φ + γ1 + µ + δ1)Î , since I(t∗) = Î ,

≥ e−τ(σ+µ)βS(t∗ − τ)Î

1 + ωI(t∗ − τ)
− (φ + γ1 + µ + δ1)Î , since I(t) ≥ Î for t ∈ ([2m + 1]τ, t∗),

>

[
e−τ(σ+µ)βS(t∗ − τ)

1 + ωI∗∗
− (φ + γ1 + µ + δ1)

]
Î , since I(t) < I∗∗ for t ≥ (2m + 1)τ,

>

[
e−τ(σ+µ)βS∗∗

1 + ωI∗∗
− (φ + γ1 + µ + δ1)

]
Î = 0.

This contradicts the fact that İ(t∗) ≤ 0. Hence, I(t) ≥ Î for t ≥ (2m + 1)τ. Thus, it

follows from (4.25) that V̇ >
[

βe−τ(µ+σ)Ŝ
1+ωI∗∗ − (γ1 + φ + µ + δ1)

]
Î for all t ≥ 2(m + 1)τ .

Hence, lim
t→∞

V (t) = ∞, which contradicts the fact that V (t) is bounded. Finally, to

complete the proof, we need to show that I(t) ≥ ν for sufficiently large t.

Let t1 be sufficiently large and I(t1) = qI∗∗. Consider the following interval [t1, t2].

It follows, from the second equation of (4.15), that

İ ≥ −(φ + γ1 + µ + δ1)I.

Hence,

I(t) > I(t1)e
−(φ+γ1+µ+δ1)(t−t1) = qI∗∗e−(φ+γ1+µ+δ1)(t−t1), for t ∈ [t1, t2]. (4.26)

It is clear from (4.26) that if t2 − t1 ≤ τ, then I(t) ≥ qI∗∗e−τ(φ+γ1+µ+δ1) = qν.
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For the other case (where t2 − t1 > τ), it is easy to see that the inequality I(t) ≥
qI∗∗e−τ(φ+γ1+µ+δ1) = qν also holds for t ∈ [t1, t1 + τ ]. We claim that (4.26) also holds

for t ∈ (t1 + τ, t2]. If not, then there exists a constant d > 0 such that I(t) ≥ qν for

t ∈ (t1 + τ, t1 + τ + d = t0), with I(t0) = qν and İ(t0) ≤ 0.

However, it follows from the third equation of (4.15), when t = t0, that

İ(t0) =
e−τ(σ+µ)βS(t0 − τ)I(t0 − τ)

1 + ωI(t0 − τ)
− (φ + γ1 + µ + δ1)I(t0),

=
e−τ(σ+µ)βS(t0 − τ)I(t0 − τ)

1 + ωI(t0 − τ)
− (φ + γ1 + µ + δ1)qν, since I(t0) = qν,

≥ e−τ(σ+µ)βS(t0 − τ)qν

1 + ωqν
− (φ + γ1 + µ + δ1)qν, since I(t) ≥ qν,

≥
[
e−τ(σ+µ)βS(t0 − τ)

1 + ωI∗∗
− (φ + γ1 + µ + δ1)

]
qν, since qν ≤ I∗∗,

>

[
e−τ(σ+µ)βS∗∗

1 + ωI∗∗
− (φ + γ1 + µ + δ1)

]
qν = 0.

This contradicts the fact that İ(t0) ≤ 0. Hence, I(t) ≥ qν for t ∈ [t1, t1]. Since this

interval and q ∈ (0, 1) are chosen arbitrarily, it is concluded that I(t) ≥ ν. Thus,

lim inf
t→∞

I(t) ≥ ν.

The epidemiological implication of Theorem 4.3 is that the number of infectious

cases will persist in the population (as t → ∞) above a certain positive number (ν)

whenever RH
0 > 1.
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4.3.3 Global stability of EEP

Here, the global stability of the EEP, EH
1 , of the model (4.15) will be explored. It is

convenient to define.

D0 =

{
(S, E, I,Q, H, R) ∈ D : E = I = Q = H = R = 0

}
.

Theorem 4.4. The unique endemic equilibrium of the model (4.15), given by (4.19),

is GAS in D \ D0 if RH
0 > 1 and ωΠe−τ(σ+µ) > φ + γ1 + µ + δ1.

Proof. The proof of Theorem 4.4 is based on using a comparison argument and the

iteration technique given in [97, 98].

Let (S(t), E(t), I(t), Q(t), H(t), R(t)) be any solution of (4.15) with initial condi-

tions given by (4.2). Further, let

S∞ = lim inf
t→∞

S(t), S∞ = lim sup
t→∞

S(t), E∞ = lim inf
t→∞

E(t), E∞ = lim sup
t→∞

E(t),

I∞ = lim inf
t→∞

I(t), I∞ = lim sup
t→∞

I(t), Q∞ = lim inf
t→∞

Q(t), Q∞ = lim sup
t→∞

Q(t),

H∞ = lim inf
t→∞

H(t), H∞ = lim sup
t→∞

H(t), R∞ = lim inf
t→∞

R(t), R∞ = lim sup
t→∞

R(t).

The goal is to show that S∞ = S∞ = S∗∗, E∞ = E∞ = E∗∗, I∞ = I∞ = I∗∗, Q∞ =

Q∞ = Q∗∗, H∞ = H∞ = H∗∗ and R∞ = R∞ = R∗∗. It follows from the first equation

of (4.15) that

Ṡ(t) ≤ Π− µS,

so that, by the comparison theorem,

lim sup
t→∞

S(t) ≤ Π/µ.

Let US
1 = Π/µ. Thus, for sufficiently small ε > 0, there exists a T1 > 0 such that
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S(t) ≤ US
1 +ε for t > T1. It follows from the third equation of (4.15) that, for t > T1+τ,

İ(t) ≤ βe−τ(σ+µ)(US
1 + ε)I(t− τ)

1 + ωI(t− τ)
− (φ + γ1 + µ + δ1)I(t). (4.27)

Consider the auxiliary equation of (4.27):

u̇(t) =
βe−τ(σ+µ)(US

1 + ε)u(t− τ)

1 + ωu(t− τ)
− (φ + γ1 + µ + δ1)u(t). (4.28)

Since RH
0 > 1, it follows that, for sufficiently small ε > 0, βe−τ(σ+µ)(US

1 + ε) > (φ +

γ1 + µ + δ1). Hence, by Item (ii) of Lemma 2.3 and (4.28),

lim
t→∞

u(t) =
βe−τ(σ+µ)(US

1 + ε)− (φ + γ1 + µ + δ1)

ω(φ + γ1 + µ + δ1)
.

Thus, by the comparison theorem,

I∞ = lim sup
t→∞

I(t) ≤ βe−τ(σ+µ)(US
1 + ε)− (φ + γ1 + µ + δ1)

ω(φ + γ1 + µ + δ1)
,

so that, I∞ ≤ βe−τ(σ+µ)US
1 − (φ + γ1 + µ + δ1)

ω(φ + γ1 + µ + δ1)
.

Similarly, let U I
1 =

βe−τ(σ+µ)US
1 − (φ + γ1 + µ + δ1)

ω(φ + γ1 + µ + δ1)
. Then, for sufficiently small

ε > 0, there exists a T2 > T1 + τ such that I(t) ≤ U I
1 + ε for t > T2. It follows from the

first equation of (4.15), for t > T2, that

Ṡ(t) ≥ Π− µS − β(U I
1 + ε)

1 + ω(U I
1 + ε)

,

so that, by the comparison theorem,

S∞ = lim inf
t→∞

S(t) ≥ Π[1 + ω(U I
1 + ε)]

µ + (β + µω)(U I
1 + ε)

.

Hence, S∞ ≥ LS
1 , where LS

1 =
Π[1 + ωU I

1 ]

µ + (β + µω)U I
1

. In other words, for sufficiently small
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ε > 0, there exists a T3 > T2 + τ such that S(t) ≥ LS
1 − ε for t > T3. It follows from

the third equation of (4.15), for t > T3 + τ, that

İ(t) ≥ βe−τ(σ+µ)(LS
1 − ε)I(t− τ)

1 + ωI(t− τ)
− (φ + γ1 + µ + δ1)I(t),

so that (by considering the auxiliary equation)

u̇(t) =
βe−τ(σ+µ)(LS

1 − ε)u(t− τ)

1 + ωu(t− τ)
− (φ + γ1 + µ + δ1)u(t).

Hence, it follows from Item (ii) of Lemma 2.3 (since RH
0 > 1) that

lim
t→∞

u(t) =
βe−τ(σ+µ)(LS

1 − ε)− (φ + γ1 + µ + δ1)

ω(φ + γ1 + µ + δ1)
,

and comparison theorem gives

I∞ = lim inf
t→∞

I(t) ≥ βe−τ(σ+µ)(LS
1 − ε)− (φ + γ1 + µ + δ1)

ω(φ + γ1 + µ + δ1)
.

Hence, for sufficiently small ε > 0, there exists a T4 > T3 + τ such that I(t) ≥ LI
1 − ε

for t > T4, where

LI
1 =

βe−τ(σ+µ)LS
1 − (φ + γ1 + µ + δ1)

ω(φ + γ1 + µ + δ1)
.

Using S(t) ≤ US
1 + ε, I(t) ≤ U I

1 + ε, S(t) ≥ LS
1 − ε and I(t) ≥ LI

1− ε in the second

equation of (4.15), for t > T4 + τ , gives

Ė ≤ β(US
1 + ε)(U I

1 + ε)

1 + ω(U I
1 + ε)

− βe−τ(σ+µ)(LS
1 − ε)(LI

1 − ε)

1 + ω(LI
1 − ε)

− (σ + µ)E.

Hence, by comparison theorem,
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E∞ = lim sup
t→∞

E(t) ≤ β(US
1 + ε)(U I

1 + ε)

[1 + ω(U I
1 + ε)](σ + µ)

− βe−τ(σ+µ)(LS
1 − ε)(LI

1 − ε)

[1 + ω(LI
1 − ε)](σ + µ)

.

Therefore, for sufficiently small ε > 0, there exists a T5 > T4+τ such that E(t) ≤ UE
1 +ε

for t > T5, where

UE
1 =

βUS
1 U I

1

(1 + ωU I
1 )(σ + µ)

− βe−τ(σ+µ)LS
1 LI

1

(1 + ωLI
1)(σ + µ)

.

Similarly, by using S(t) ≤ US
1 + ε, I(t) ≤ U I

1 + ε, S(t) ≥ LS
1 − ε and I(t) ≥ LI

1− ε

in the second equation of (4.15), for t > T4 + τ , we have

Ė ≤ β(LS
1 − ε)(LI

1 − ε)

1 + ω(LI
1 − ε)

− βe−τ(σ+µ)(US
1 + ε)(U I

1 + ε)

1 + ω(U I
1 + ε)

− (σ + µ)E,

so that,

E∞ = lim inf
t→∞

E(t) ≥ β(LS
1 − ε)(LI

1 − ε)

[1 + ω(LI
1 − ε)](σ + µ)

− βe−τ(σ+µ)(US
1 + ε)(U I

1 + ε)

[1 + ω(U I
1 + ε)](σ + µ)

.

Hence, for sufficiently small ε > 0, there exists a T6 > T5 + τ such that E(t) ≥ LE
1 − ε

for t > T6, where

LE
1 =

βLS
1 LI

1

(1 + ωLI
1)(σ + µ)

− βe−τ(σ+µ)US
1 U I

1

(1 + ωU I
1 )(σ + µ)

.

Using E(t) ≤ UE
1 + ε in the fourth equation of (4.15), for t > T5, gives

Q̇(t) ≤ σ(UE
1 + ε)− (α + µ)Q,

so that,
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Q∞ = lim sup
t→∞

Q(t) ≤ σ(UE
1 + ε)

α + µ
.

Thus, for sufficiently small ε > 0, there exists a T7 > T6 + τ such that Q(t) ≤ UQ
1 + ε

for t > T7, where UQ
1 =

σUE
1

α + µ
.

Similarly, by using E(t) ≥ LE
1 − ε in the fourth equation of (4.15), for t > T6, we

have:

Q̇(t) ≥ σ(LE
1 − ε)− (α + µ)Q,

and,

Q∞ = lim inf
t→∞

Q(t) ≥ σ(LE
1 − ε)

α + µ
.

Thus, for sufficiently small ε > 0, there exists a T8 > T7 + τ such that Q(t) ≥ LQ
1 − ε

for t > T8, where LQ
1 =

σLE
1

α + µ
. Using I(t) ≤ U I

1 + ε and Q(t) ≤ UQ
1 + ε in the fifth

equation of (4.15), for t > T7, gives

Ḣ(t) ≤ α(UQ
1 + ε) + φ(U I

1 + ε)− (γ2 + µ + δ2)H,

and,

H∞ = lim sup
t→∞

H ≤ α(UQ
1 + ε) + φ(U I

1 + ε)

γ2 + µ + δ2

.

Thus, for sufficiently small ε > 0, there exists a T9 > T8 + τ such that H(t) ≤ UH
1 + ε,

for t > T9, where UH
1 =

αUQ
1 + φU I

1

(γ2 + µ + δ2)
. Similarly, it follows by using I(t) ≥ LI

1 − ε and

Q(t) ≥ LQ
1 − ε in the fifth equation of (4.15), for t > T8, that

Ḣ(t) ≥ α(LQ
1 − ε) + φ(LI

1 − ε)− (γ2 + µ + δ2)H,
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so that,

H∞ = lim inf
t→∞

H ≤ α(LQ
1 − ε) + φ(LI

1 − ε)

γ2 + µ + δ2

.

Hence, for sufficiently small ε > 0, there exists a T10 > T9 + τ such that H(t) ≥ LH
1 − ε

for t > T10, where LH
1 =

αLQ
1 + φLI

1

γ2 + µ + δ2

.

Using I(t) ≤ U I
1 + ε and H(t) ≤ UH

1 + ε in the last equation of (4.15), for t > T9,

gives

Ṙ ≤ γ1(U
I
1 + ε) + γ2(U

H
1 + ε)− µR.

Hence,

R∞ = lim sup
t→∞

R(t) ≤ γ1(U
I
1 + ε) + γ2(U

H
1 + ε)

µ
.

Thus, R∞ ≤ UR
1 , where UR

1 =
γ1U

I
1 + γ2U

H
1

µ
. Using I(t) ≥ LI

1 − ε and H(t) ≥ LH
1 − ε

in the last equation of (4.15), for t > T10, gives

Ṙ ≥ γ1(L
I
1 − ε) + γ2(L

H
1 − ε)− µR,

so that (by comparison theorem)

R∞ = lim inf
t→∞

R(t) ≥ γ1(L
I
1 − ε) + γ2(L

H
1 − ε)

µ
.

Hence, R∞ ≥ LR
1 , where LR

1 =
γ1L

I
1 + γ2L

H
1

µ
.

Continuing in this manner leads to the following sequences:
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US
n =

Π[1 + ωLI
n−1]

µ + (β + µω)LI
n−1

, LS
n =

Π[1 + ωU I
n]

µ + (β + µω)U I
n

,

U I
n =

βe−τ(σ+µ)US
n − (φ + γ1 + µ + δ1)

ω(φ + γ1 + µ + δ1)
, LI

n =
βe−τ(σ+µ)LS

n − (φ + γ1 + µ + δ1)

ω(φ + γ1 + µ + δ1)
,

UE
n =

βU I
nUS

n

(1 + ωU I
n)(σ + µ)

− βe−τ(σ+µ)LI
nL

S
n

(1 + ωLI
n)(σ + µ)

,

LE
n =

βLI
nLS

n

(1 + ωLI
n)(σ + µ)

− βe−τ(σ+µ)U I
nUS

n

(1 + ωU I
n)(σ + µ)

,

UQ
n =

σUE
n

(α + µ)
, LQ

n =
σLE

n

(α + µ)
,

UH
n =

αUQ
n + φU I

n

(γ2 + µ + δ2)
, LH

n =
αLQ

n + φLI
n

(γ2 + µ + δ2)
,

UR
n =

γ1U
I
n + γ2U

H
n

µ
, LR

n =
γ1L

I
n + γ2L

H
n

µ
.

(4.29)

Finally, since LS
n ≤ S∞ ≤ S∞ ≤ US

n , LE
n ≤ E∞ ≤ E∞ ≤ UE

n , LI
n ≤ I∞ ≤ I∞ ≤

U I
n, LQ

n ≤ Q∞ ≤ Q∞ ≤ UQ
n , LH

n ≤ H∞ ≤ H∞ ≤ UH
n and LR

n ≤ R∞ ≤ R∞ ≤ UR
n , the

proof is concluded by showing that

lim
n→∞

US
n = S∗∗ = lim

n→∞
LS

n, lim
n→∞

U I
n = I∗∗ = lim

n→∞
LI

n,

lim
n→∞

UE
n = E∗∗ = lim

n→∞
LE

n , lim
n→∞

UQ
n = Q∗∗ = lim

n→∞
LQ

n ,

lim
n→∞

UH
n = H∗∗ = lim

n→∞
LH

n , lim
n→∞

UR
n = R∗∗ = lim

n→∞
LR

n .

Using the first four sequences of (4.29), it is easy to see that the sequence US
n+1 can be

written in terms of US
n as:

US
n+1 =

ω2Π2e−2τ(σ+µ)US
n

k2 + e−τ(σ+µ)(β + ωµ)[ωΠe−τ(σ+µ) − k]US
n

, (4.30)

where, k = φ+γ1+µ+δ1. Furthermore, it can be shown that whenever ωΠe−τ(σ+µ) > k,

the sequence US
n is monotone as follows:
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US
n+1 − US

n =
[ωΠe−τ(σ+µ) − k][ωΠe−τ(σ+µ) + k − (β + ωµ)e−τ(σ+µ)US

n ]US
n

k2 + e−τ(σ+µ)(β + ωµ)[ωΠe−τ(σ+µ) − k]US
n

.

Since S∗∗ ≤ US
n , it follows that

US
n+1 − US

n ≤
[ωΠe−τ(σ+µ) − k][ωΠe−τ(σ+µ) + k − (β + ωµ)e−τ(σ+µ)S∗∗]US

n

k2 + e−τ(σ+µ)(β + ωµ)[ωΠe−τ(σ+µ) − k]US
n

,

= 0

(
since S∗∗ =

ωΠe−τ(σ+µ) + k

e−τ(σ+µ)(β + ωµ)

)
.

Thus, lim
n→∞

US
n exists.

Let M = lim
n→∞

US
n . Then, it follows from (4.30) that

M =
ω2Π2e−2τ(σ+µ)M

k2 + e−τ(σ+µ)(β + ωµ)[ωΠe−τ(σ+µ) − k]M
,

so that,

M = lim
t→∞

US
n =

ωΠe−τ(σ+µ) + k

e−τ(σ+µ)(β + ωµ)
= S∗∗.

Taking the limit as n →∞ of both sides of the third sequence of (4.29), gives

lim
n→∞

U I
n =

βe−τ(σ+µ)S∗∗ − (φ + γ1 + µ + δ1)

ω(φ + γ1 + µ + δ1)
= I∗∗.

Similarly by taking the limits of both sides of the remaining sequences in (4.29), and

using the previous results, gives
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lim
n→∞

LS
n = S∗∗, lim

n→∞
LI

n = I∗∗, lim
n→∞

UE
n = lim

n→∞
LE

n = E∗∗

lim
n→∞

UQ
n = lim

n→∞
LQ

n = Q∗∗, lim
n→∞

UH
n = lim

n→∞
LH

n = H∗∗,

lim
n→∞

UR
n = lim

n→∞
LR

n = R∗∗.

Hence, lim
t→∞

(S(t), E(t), I(t), Q(t), H(t), R(t)) = EH
1 .

Theorem 4.4 shows that the disease will persist in the population wheneverRH
0 > 1.

Here, too, by solving for τ from RH
0 > 1, the following result can be shown.

Lemma 4.7. The unique endemic equilibrium of the model (4.15), given by (4.19), is

GAS in D \ D0 if τ < ln
[

βΠ
µ(µ+φ+γ1+δ1)

]( 1
σ+µ)

= τc and ωΠe−τ(σ+µ) > φ + γ1 + µ + δ1.

Theorem 4.4 shows that the disease will persist in the population provided that

RH
0 > 1 (τ < τc) and ωΠe−τ(σ+µ) > φ + γ1 + µ + δ1. Thus, Lemma 4.5 and Lemma 4.7

suggest that τ = τc is a sharp epidemiological threshold that governs the persistence

(τ < τc) and elimination (τ > τc) of the disease in the population. Figure 4.6 shows

a time series plot of the total number of infected individuals for various of initial

conditions. This figure clearly shows convergence of the solutions to the EEP for the

case τ < τc (RH
0 > 1) (in line with Theorem 4.4 and Lemma 4.7). Figure 4.7 depicts

the total number of cases as a function of time for various values of τ. This figure shows

a decreasing number of cases with increasing values of the delay parameter τ. That is,

the longer individuals stay in the exposed class, the lower the disease burden.

4.4 Summary

A deterministic quarantine/isolation model with time delay is considered, subject to

two incidence functions (namely, the standard incidence function and the Holling type

II incidence function). The main findings of this chapter are summarized below:
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(i) The model with standard incidence function, given by (4.3), has a globally-

asymptotically stable disease-free solution whenever a certain epidemiological

threshold quantity (RS
0 ) is less than unity (Theorem 4.1). Furthermore, this

model has a unique positive endemic equilibrium whenever the threshold quan-

tity (RS
0 ) exceeds unity (Lemma 4.4).

(ii) The model with Holling type II incidence function, given by (4.15), has a globally-

asymptotically stable disease-free solution whenever its associated epidemiologi-

cal threshold quantity (RH
0 ) is less than unity (Theorem 4.2). This model has a

unique positive endemic equilibrium whenever the threshold quantity (RH
0 ) ex-

ceeds unity (Lemma 4.6). Furthermore, the model system is permanent whenever

RH
0 > 1 (Theorem 4.3). The unique endemic equilibrium of the model (4.15) is

globally-asymptomatic stable under certain conditions (Theorem 4.4).

In summary, the analyses in this chapter show that adding time delay and/or re-

placing the standard incidence function by a Holling type II incidence function in the

autonomous (without delay) quarantine/isolation model (3.2) with η = ψ = 0 does not

alter the qualitative dynamics (with regards to the elimination or persistence of the

disease) of the model (3.2). In other words, the theoretical results in this chapter show

that the quarantine/isolation model with time delay (τ > 0) and standard or non-linear

incidence function of Holling type II has essentially the same qualitative (equilibrium)

dynamics as the corresponding autonomous quarantine/isolation model (τ = 0) with

standard incidence function and ψ = η = 0 considered in Chapter 3. Furthermore,

numerical simulations of the model with time delay and standard incidence function

shows that the associated disease burden decreases with increasing time delay (τ).
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Figure 4.2: Simulations of the model (4.3), showing the total number of infected indi-
viduals as a function of time. Parameter values used are as given in Table
4.2, with τ = 20 and β = 0.15 (so that, RS

0 = 0.7150 < 1 (τ > τS
c )).
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Figure 4.3: Simulations of the model (4.3), showing the total number of infected indi-
viduals as a function of time. Parameter values used are as given in Table
4.2, with τ = 18 and β = 0.1 (so that, RS

0 = 1.0298 > 1 (τ < τS
c )).

104



1750 1800 1850 1900 1950 2000 2050

−800

−600

−400

−200

0

200

400

600

800

time (days)

T
ot

al
 n

um
be

r 
of

 in
fe

ct
ed

 in
di

vi
du

al
s

Figure 4.4: Blow up of the tail end of Figure 4.3.
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Figure 4.5: Simulations of the model (4.15), showing the total number of infected indi-
viduals as a function of time. Parameter values used are as given in Table
4.2, with τ = 20 and β = 0.0025809 (so that, RH

0 = 0.1599 < 1 (τ > τH
c )).
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Figure 4.6: Simulations of the model (4.15), showing the total number of infected indi-
viduals as a function of time. Parameter values used are as given in Table
4.2, with τ = 10 and β = 0.0025809 (so that, RH

0 = 2.3741 > 1 (τ < τH
c )).
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Figure 4.7: Simulations of the model (4.15) showing the total number of infected indi-
viduals for various values of τ . Parameter values used are as given in Table
4.2, with β = 0.15.
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Chapter 5

Quarantine/Isolation Model in a

Periodic Environment

5.1 Introduction

It is well known that some infectious diseases, such as measles, mumps and chickenpox,

exhibit periodic fluctuations in their transmission dynamics. For instance, the city of

New York recorded yearly outbreaks of chickenpox and mumps, and a biennial pattern

of measles outbreaks, between 1929-1970 [17, 65]. Furthermore, contact rates may

vary during a time period due to a number of factors, such as environmental (weather

changes; emergence of insects caused by seasonal variation) and the fact that children

are in school during certain months etc. [21]. London and Yorke [65] showed such

variations in contact rates by studying data for mumps, chickenpox and measles. Other

diseases show seasonal behavior as well (see, for instance, [19, 24, 25, 45, 65]).

As noted by Cooke and Kaplan [17], since periodic fluctuation in contact rate is

crucial to a number of diseases, it is instructive to carry out a rigorous mathematical

study to theoretically evaluate the effect of such fluctuations on the transmission dy-

namics of the relevant diseases in a population in the presence of the basic public health
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control measures (quarantine and isolation). However, as noted by McLeod et al. [67],

such basic control measures are gradually refined during the course of a disease out-

break (as more data and knowledge about the epidemiology and biology of the disease

becomes available). Thus, it is reasonable to incorporate the effect of periodicity in

disease transmission models that involve the use of such control measures (quarantine

and isolation). The aim of this chapter is to theoretically assess the role of periodicity

on the transmission dynamics of a disease that is controllable using quarantine and

isolation.

5.2 Model Formulation and Basic Properties

The model to be considered is that for the transmission dynamics of an infectious

disease, in the presence of quarantine of exposed individuals and isolation of infec-

tious individuals, and is given by the following non-autonomous system of differential

equations [76]:

dS

dt
= Π + ψR(t)− β(t)S(t)[I(t) + η(t)H(t)]

N(t)
− µS(t),

dE

dt
=

β(t)S(t)[I(t) + η(t)H(t)]

N(t)
− [κ(t) + σ(t) + µ]E(t),

dI

dt
= κ(t)E(t)− [γ1(t) + φ(t) + µ + δ1]I(t),

dQ

dt
= σ(t)E(t)− [α(t) + µ]Q(t),

dH

dt
= α(t)Q(t) + φ(t)I(t)− [γ2(t) + µ + δ2]H(t)

dR

dt
= γ1(t)I(t) + γ2(t)H(t)− (ψ + µ)R(t),

(5.1)

where, S, E, I,Q, H,R denote, respectively, the populations of susceptible, exposed,

infectious, quarantined, hospitalized and recovered individuals at time t, so that the

108



total human population at time t, denoted by N(t), is given by

N(t) = S(t) + E(t) + I(t) + Q(t) + H(t) + R(t).

Furthermore, the parameter Π represents recruitment rate into the population, β(t) is
the contact rate, ψ is the rate of loss of infection-acquired immunity, η(t) is a time-
dependent modification parameter for the reduction in infectiousness of hospitalized
individuals in relation to infectious individuals in class I. Exposed individuals are
quarantined at a rate α. They develop symptoms at a rate κ(t). Quarantined and
infectious individuals are hospitalized at the rates α(t) and φ(t), respectively. The
parameters γ1(t) and γ2(t) represent the recovery rates of infectious and hospitalized
individuals, respectively, while µ is the natural death rate. Finally, δ1 and δ2 are
disease-induced death rates for infectious and hospitalized individuals, respectively (a
flow diagram of the model (5.1) is given in Figure 5.1; and the associated variables and
parameters are described and estimated in Tables 5.1 and 3.2).
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Table 5.1: Description of variables and parameters of the model
(5.2).

Variable Description

S(t) Population of susceptible individuals
E(t) Population of exposed individuals
I(t) Population of infected individuals
Q(t) Population of quarantined individuals
H(t) Population of hospitalized individuals
R(t) Population of recovered individuals

Parameter Description

Π Recruitment rate
β Effective contact rate
η Modification parameter for reduction in infectiousness

of hospitalized individuals
κ Progression rate from exposed to infectious class
σ Quarantine rate of exposed individuals
α Hospitalization rate for quarantined individuals
φ Hospitalization rate for infectious individuals
ψ Rate of loss of infection-acquired immunity
γ1 Recovery rate for infectious individuals
γ2 Recovery rate for hospitalized individuals
δ1 Disease-induced death rate for infectious individuals
δ2 Disease-induced death rate for hospitalized individuals
µ Natural death rate
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Figure 5.1: Flow diagram for the non-autonomous model (5.2).

The non-autonomous quarantine/isolation model (5.1) is an extension of the au-

tonomous quarantine/isolation model (3.2), by considering some of the model pa-

rameters (namely, β, η, κ, σ, φ, γ1, γ2 and α) to be periodic positive continuous func-

tions in t, with period ω for some ω > 0 (unlike in the autonomous model (3.2),

where all the model parameters are assumed to be constant). It should be stated

that the non-autonomous system (5.1) reduces to the autonomous model (3.2) when

β(t) = β, η(t) = η, κ(t) = κ, φ(t) = φ, α(t) = α, γ1(t) = γ1, γ2(t) = γ2 and σ(t) = σ.

Using the equality, N = S +E + I +Q+H +R, the system (5.1) can be re-written
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as:

dS

dt
= Π + ψ[N(t)− S(t)− E(t)− I(t)−Q(t)−H(t)]− β(t)S(t)[I(t) + η(t)H(t)]

N(t)
− µS(t),

dE

dt
=

β(t)S(t)[I(t) + η(t)H(t)]

N(t)
− [κ(t) + σ(t) + µ]E(t),

dI

dt
= κ(t)E(t)− [γ1(t) + φ(t) + µ + δ1]I(t),

dQ

dt
= σ(t)E(t)− [α(t) + µ]Q(t),

dH

dt
= α(t)Q(t) + φ(t)I(t)− [γ2(t) + µ + δ2]H(t),

dN

dt
= Π− δ1I − δ2H − µN.

(5.2)

Basic properties

The basic properties of the model (5.2) will now be studied. We claim the following:

Lemma 5.1. System (5.2) has a unique and bounded solution with the initial value

(S0, E0, I0, Q0, H0, N0) ∈ X = {(S, E, I,Q, H,N) ∈ R6
+ : N ≥ S + E + I + Q + H}.

Further, the compact set

D = {(S, E, I,Q, H,N) ∈ X : N ≤ Π/µ}

is positively-invariant for the model (5.2) and attracts all positive orbits in X.

Proof. Following [62], let g ∈ (R6
+,R) be defined by:

g(S,E, I, Q, H, R) =





0 if (S, E, I,Q, H,R) = (0, 0, 0, 0, 0, 0);

S(I + η(t)H)

S + E + I + Q + H + R
, otherwise.

Thus, the function g(S, E, I,Q, H, R) is continuous on R6
+. Furthermore, it can be

shown that g(S,E, I, Q, H, R) is globally Lipschitz on R6
+ (with Lipschitz constant L =
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6). Theorem 5.2.1 of [82] can then be applied to show that, for any (S0, E0, I0, Q0, H0, N0) ∈
R6

+, the system (5.2) has a unique local non-negative solution (S, E, I, Q,H, N) with

[S(0), E(0), I(0), Q(0), H(0), N(0)] = (S0, E0, I0, Q0, H0, N0).

It follows from the last equation of the system (5.2) that

dN

dt
= Π− δ1I − δ2H − µN ≤ Π− µN,

from which it is clear that the associated linear differential equation,

dN

dt
= Π− µN,

has a unique equilibrium N∗ = Π/µ, which is GAS. Finally, it can be shown, using

comparison theorem (Theorem 2.8), that N(t) is bounded. Thus, the solution of the

system (5.2) exists globally on the interval [0,∞).

5.3 Stability of Disease-Free Solution (DFS)

5.3.1 Local stability

The concept of the basic reproduction number (or basic reproduction ratio) of a disease

transmission model in a periodic environment has been addressed by a number of

authors, most recently by Bacaër et al. [4, 5, 6] and Wang and Zhao [91]. The

methodology in [91] will be followed to compute the reproduction ratio associated with

the non-autonomous system (5.2).

The DFS of the system (5.2), obtained by setting the derivatives in (5.2) to zero,

is given by
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E0 = (S0, E0, I0, Q0, H0, N0) =

(
Π

µ
, 0, 0, 0, 0,

Π

µ

)
. (5.3)

The equations for the rates of change of the infected components (E, I, Q, H) of the

linearized version of the system (5.2), at the DFS (E0), are given by:

dE

dt
= β(t)[I(t) + η(t)H(t)]− [κ(t) + σ(t) + µ]E(t),

dI

dt
= κ(t)E(t)− [γ1(t) + φ(t) + µ + δ1]I(t),

dQ

dt
= σ(t)E(t)− [α(t) + µ]Q(t),

dH

dt
= α(t)Q(t) + φ(t)I(t)− [γ2(t) + µ + δ2]H(t).

Using the notation in [91], the next generation matrix F (t) (of new infection terms)

and the M-matrix V (t) (of the remaining transition terms) associated with the model

(5.2) are given, respectively, by

F (t) =




0 β(t) 0 η(t)β(t)

0 0 0 0

0 0 0 0

0 0 0 0




,

and,

V (t) =




κ(t) + σ(t) + µ 0 0 0

−κ(t) γ1(t) + φ(t) + µ + δ1 0 0

−σ(t) 0 α(t) + µ 0

0 −φ(t) −α(t) γ2(t) + µ + δ2




.

Following [91], let ΦM be the monodromy matrix of the linear ω-periodic system
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dZ

dt
= M(t)Z,

and ρ(ΦM(ω)) be the spectral radius of ΦM(ω). Further, let

Y (t, s), t ≥ s,

be the evolution operator of the linear ω-periodic system

dy

dt
= −V (t)y.

In other words, for each s ∈ R, the associated 4× 4 matrix, Y (t, s), satisfies

dY (t, s)

dt
= −V (t)Y (t, s) ∀t ≥ s, Y (s, s) = I.

It is further assumed that φ(s) (ω-periodic in s) is the initial distribution of infectious

individuals. That is, F (s)φ(s) is the rate at which new infections are produced by

infected individuals who were introduced into the population at time s [91]. Since

t ≥ s, it follows then that Y (t, s)F (s)φ(s) represents the distribution of those infected

individuals who were newly-infected at time s, and remain infected at time t.

Hence, the cumulative distribution of new infections at time t, produced by all

infected individuals (φ(s)) introduced at a prior time s = t, is given by

Ψ(t) =

∫ t

−∞
Y (t, s)F (s)φ(s)ds =

∫ ∞

0

Y (t, t− a)F (t− a)φ(t− a)da.

Let Cω be the ordered Banach space of all ω-periodic functions from R to R4, which is

equipped with maximum norm ‖.‖ and positive cone

C+
ω = {φ ∈ Cω : φ(t) ≥ 0, ∀t ∈ R}.
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Define a linear operator L : Cω → Cω by [91]

(Lφ)(t) =

∫ ∞

0

Y (t, t− a)F (t− a)φ(t− a)da ∀t ∈ R, φ ∈ Cω.

The reproduction ratio (R0) is then given by the spectral radius of L, denoted by

ρ(L). That is, R0 = ρ(L) [91]. The system (5.2) satisfies the Assumptions A1-A7 in

Appendix A (see Appendix B). Thus, using Theorem 2.2 in [91], the following result is

established.

Lemma 5.2. The DFS of the model (5.2), given by (5.3), is locally-asymptotically

stable if R0 < 1, and unstable if R0 > 1.

It is worth noting that, for the special case of the model (5.2) with β(t) = β, η(t) =

η, κ(t) = κ, φ(t) = φ, α(t) = α, γ1(t) = γ1, γ2(t) = γ2 and σ(t) = σ, the matrices F (t)

and V (t), respectively, become

Fa =




0 β 0 ηβ

0 0 0 0

0 0 0 0

0 0 0 0




,

and,

Va =




κ + σ + µ 0 0 0

−κ γ1 + φ + µ + δ1 0 0

−σ 0 α + µ 0

0 −φ −α γ2 + µ + δ2




,

so that,
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R0 = ρ(L) = ρ(FaV
−1
a )

=
β[κ(µ + α)(µ + γ2(t) + δ2) + ηφκ(µ + α) + αησ(µ + δ1 + γ1 + φ)]

(µ + κ + σ)(µ + δ1 + γ1 + φ)(µ + α)(µ + γ2 + δ2)
,

which is exactly the same expression obtained for the reproduction number (Rc) of the

corresponding autonomous quarantine/isolation model (3.2) given in Section 3.3.

To compute the reproduction ratio R0, associated with the non-autonomous model

(5.2), Theorem 2.1 in [91], reported below, will be used.

Theorem 5.1. (Wang and Zhao [91]). Let W (t, λ) t ≥ 0 be the standard fundamental

matrix of

dw

dt
=

(
−V (t) +

1

λ
F (t)

)
w, w ∈ Rn, λ ∈ (0,∞),

with W (0, λ) = I. The following statements are valid:

(i) If ρ(W (ω, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of L, and

hence R0 > 0;

(ii) If R0 > 0, then λ = R0 is the unique solution of ρ(W (ω, λ)) = 1;

(iii) R0 = 0 if and only if ρ(W (ω, λ)) < 1 for all λ > 0.

The computation for R0 is then carried out via the following steps [91]:

(a) First of all, for a given value of λ, the matrix W (ω, λ) is numerically computed

using a standard numerical integrator (such as the forward-Euler or Runge-Kutta

finite-difference method [55]);

(b) Then, the spectral radius ρ(W (λ)) is calculated;

(c) Let f(λ) = ρ(W (λ)) − 1. Then, a root-finding method (such as the bisection

method [55]) is used to find the zero of f ;
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(d) Let [R0] be the reproduction number of the corresponding autonomous system,

obtained from the averaging of the system (5.2). That is,

[R0] =
β̄[κ̄(µ + ᾱ)(µ + γ̄2(t) + δ2) + η̄φ̄κ̄(µ + ᾱ) + ᾱη̄σ̄(µ + δ1 + γ̄1 + φ̄)]

(µ + κ̄ + σ̄)(µ + δ1 + γ̄1 + φ̄)(µ + ᾱ)(µ + γ̄2 + δ2)
,

where,

β̄ =
1

ω

∫ ω

0

β(t)dt, η̄ =
1

ω

∫ ω

0

η(t)dt, κ̄ =
1

ω

∫ ω

0

κ(t)dt, φ̄ =
1

ω

∫ ω

0

φ(t)dt

σ̄ =
1

ω

∫ ω

0

σ(t)dt, ᾱ =
1

ω

∫ ω

0

α(t)dt, γ̄1 =
1

ω

∫ ω

0

γ1(t)dt, γ̄2 =
1

ω

∫ ω

0

γ2(t)dt;

(e) Let β(t) be defined by β(t) = β0

(
1.1 + sin(π(t+1)

6
)
)

[62], and the other parameters

are as given in Table 3.2 (it should be mentioned that the parameter values chosen

in Table 3.2 are largely relevant to the transmission dynamics of severe acute

respiratory syndrome (SARS)[15, 16, 23, 38, 48, 61, 64, 67, 73, 90, 93]).

Figure 5.2 shows the curves of the reproduction ratio (R0) and the average repro-

duction number [R0] as function of β0. It is clear from this figure that the average

reproduction number [R0] is either equal or greater than the reproduction ratio for

values of β0 considered. This conclusion is also drawn in [62]. The epidemiological

implication of the result in Lemma 5.2 implies that the disease can be eliminated from

the community (when R0 < 1) if the initial sizes of the sub-populations of the model

are in the basin of attraction of the DFS (E0). To ensure that disease elimination is

independent of the initial sizes of sub-populations, it is necessary to show that the DFS

is globally-asymptotically stable if R0 < 1. This is explored below.
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5.3.2 Global stability

Theorem 5.2. The DFS of the model (5.2), given by (5.3), is GAS in D whenever

R0 < 1.

Proof. It is sufficient to prove that E0 is globally-attractive if R0 < 1, since it is shown

(Lemma 5.2) that E0 is asymptotically-stable if R0 < 1. First of all, using the fact that

S(t) ≤ N(t) for all t ≥ 0 in D, the non-autonomous system (5.2) can be re-written as

dE

dt
≤ β(t)[I(t) + η(t)H(t))]− [κ(t) + µ]E(t),

dI

dt
= κ(t)E(t)− [γ1(t) + φ(t) + µ + δ1]I(t),

dQ

dt
= σ(t)E(t)− [α(t) + µ]Q(t),

dH

dt
= α(t)Q(t) + φ(t)I(t)− [γ2(t) + µ + δ2]H(t).

(5.4)

The equations in (5.4), with equality used in place of the inequality, can be re-written

in terms of the matrices F (t) and V (t), as follows:

dW

dt
= [F (t)− V (t)]W (t). (5.5)

It follows from Lemma 2.1 in [102] that there exists a positive ω-periodic function,

w(t), such that

W (t) = eθtw(t), with θ =
1

ω
lnρ[φF−V(ω)],

is a solution of (5.5). However, R0 < 1 implies that ρ(φF−V (ω)) < 1 (by Theorem 2.2

in [91]). Hence, θ is a negative constant. Thus, W (t) → 0 as t →∞. This implies that

the trivial solution of system (5.5), given by W (t) = 0, is GAS.

For any non-negative initial solution (E(0), I(0), Q(0), H(0))T of the system (5.5),

there exists a sufficiently large M∗ > 0 such that
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(E(0), I(0), Q(0), H(0))T ≤ M∗w(0).

Thus, by comparison theorem (Theorem 2.8), it follows that

(E(t), I(t), Q(t), H(t)) ≤ M∗W (t), for all t > 0,

where, M∗W (t) is also a solution of (5.5). Hence, (E(t), I(t), Q(t), H(t)) → (0, 0, 0, 0)

as t →∞. Finally, by Theorem 1.2 in [85], it follows that N(t) → Π/µ and S(t) → Π/µ

as t →∞. In summary,

lim
t→∞

[S(t), E(t), I(t), Q(t), H(t), N(t)] → E0, whenever R0 < 1.

The epidemiological implication of Theorem 5.2 is that the combined use of quar-

antine and isolation can lead to disease elimination in the community (periodic en-

vironment) if they can bring (and keep) the threshold quantity, R0, to a value less

than unity (i.e., the condition R0 < 1 is necessary and sufficient for disease elimina-

tion in the periodic environment). Figure 5.3 depicts the numerical results obtained

by simulating the model (5.2) using various initial conditions for the case R0 < 1. It

is evident from this figure that all solutions converged to the DFS, E0 (in line with

Theorem 5.2). It is worth mentioning that the DFE of the corresponding autonomous

qurantine/isolation model, given by (3.2), was also shown to be globally-asymptotically

stable when the associated reproduction number is less than unity (see Theorem 3.2).

Thus, this study shows that adding periodicity to the corresponding autonomous quar-

antine/isolation model (3.2) does not alter the stability properties of the associated

disease-free equilibrium of the autonomous model (3.2).
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5.4 Uniform-persistence of Periodic Solutions

In this section, the persistence of the infectious population, above a certain positive

level for a long time, will be explored. That is, condition(s) for which the disease

becomes endemic in the population (periodic environment) will be derived.

Theorem 5.3. If the reproduction ratio R0 > 1, then there exists ε > 0 such that any

solution (S(t), E(t), Q(t), H(t), N(t)) of the system (5.2) with initial value

(S0, E0, I0, Q0, H0, N0) ∈ {(S, E, I, Q,H, N) ∈ X : E > 0, I > 0, Q > 0, H > 0}
satisfies

lim inf
t→∞

I ≥ ε, lim inf
t→∞

E ≥ ε, lim inf
t→∞

Q ≥ ε, and lim inf
t→∞

H ≥ ε.

Proof. The proof is based on using persistence theory (see, for instance, [102, 104]).

This typically entails defining a Poincaré map for the system (5.2), and then showing

that the map is bounded, positively-invariant and uniformly-persistent (see also [9, 43,

82, 84, 102, 104]). This is done as follows.

Construction of the Poincaré map

Define,

X0 = {(S, E, I, Q,H, N) ∈ X : E > 0, I > 0, Q > 0, H > 0}, ∂X0 = X \X0.

Let P : X → X be the Poincaré map associated with system (5.2). That is,

P (x0) = u(ω, x0), ∀x0 ∈ X,

where, u(t, x0) is the unique solution of the system (5.2) with u(0, x0) = x0. It follows

that

Pm(S0, E0, I0, Q0, H0, N0) = u(mω, (S0, E0, I0, Q0, H0, N0)), ∀m ≥ 0.
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It can be shown that the regions X and X0 (defined in Sections 5.2 and 5.3.2, respec-

tively) are positively-invariant as follows. Let (S0, E0, I0, Q0, H0, N0) ∈ X0. It follows

from the first equation of the system (5.2) that

S(t) = e
−
∫ t

0

b(s1)ds1





S0 +

∫ t

0

[Π + ψk(s2)] e

∫ s2

0

b(s1)ds1

ds2





,

≥ Πe
−
∫ t

0

b(s1)ds1





∫ t

0

e

∫ s2

0

b(s1)ds1

ds2





> 0, ∀t > 0,

(5.6)

where,

b(t) = ψ+µ+
β(t)[I(t) + η(t)H(t)]

N(t)
and k(s2) = N(s2)−E(s2)−I(s2)−Q(s2)−H(s2).

It should be noted that N(t) ≥ S(t) > 0 for all t > 0. Further, since the matrix

J =




−[κ(t) + σ(t) + µ] β(t)S
N

0 η(t)β(t)S
N

κ −([γ1(t) + φ(t) + µ + δ1] 0 0

σ(t) 0 −[α(t) + µ] 0

0 φ(t) α(t) −[γ2(t) + µ + δ2]




(5.7)

is irreducible and cooperative (see Section 2.3), it follows that (E, I,Q, H)T À 0 ∀t > 0

(see Theorem 2.5). Thus, X and X0 are positively-invariant, as required. Furthermore,

it is clear that ∂X0 is relatively-close in X. Hence, it follows from Lemma 5.1 that the

discrete-time system {Pm} has a global attractor in X.

To prove that P is uniformly-persistent with respect to (X0, ∂X0), it is necessary to

show that P is weakly uniformly-persistent (since X and X0 are positively-invariant).

Following [102], let
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M∂ = {(S0, E0, I0, Q0, H0, N0) ∈ ∂X0 : Pm(S0, E0, I0, Q0, H0, N0) ∈ ∂X0,∀m ≥ 0}.

Lemma 5.3.

M∂ = {(S, 0, 0, 0, 0, N) ∈ X : S ≥ 0, N ≥ 0}. (5.8)

Proof. It suffices to prove that for any (S0, E0, I0, Q0, H0, N0) ∈ M∂, then E(mω) =

I(mω) = Q(mω) = H(mω) = 0,∀m ≥ 0. This is shown by contradiction as follows

[102]. Assume that there exists an m1 ≥ 0 such that (E(m1ω), I(m1ω), Q(m1ω), H(m1ω))T >

0. Since S(t) > 0, ∀t > 0, it follows that (by replacing the initial time 0 with m1ω)

N(t) ≥ S(t) > 0, ∀t > m1ω.

Similarly, by Theorem 2.5 (as generalized to non-autonomous systems), it follows that

(E(t), I(t), Q(t), H(t)) À 0 ∀t > m1ω,

which contradicts the fact that M∂ ⊂ X0. Thus, there is no m1 ≥ 0 such that

(E(m1ω), I(m1ω), Q(m1ω), H(m1ω))T > 0. Hence, the definition (5.8) holds. Thus,

there is exactly one fixed-point, E0 = (Π/µ, 0, 0, 0, 0, Π/µ), of P in M∂.

Weakly uniformly-persistence

Lemma 5.4. P is weakly uniformly-persistent with respect to (X0, ∂X0). That is, there

exists ε∗ > 0 such that

lim
m→∞

sup d(Pm(S0, E0, I0, Q0, H0, N0), E0) ≥ ε∗, ∀(S0, E0, I0, Q0, H0, N0) ∈ X0.

(5.9)

Proof. The proof is based on using the method in [102]. Assume, by contradiction,

that the inequality (5.9) does not hold. Then,
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lim
m→∞

sup d(Pm(S0, E0, I0, Q0, H0, N0), E0) < ε∗,

for some (S0, E0, I0, Q0, H0, N0) ∈ X0 and all ε∗ > 0. Without loss of generality, let

d(Pm(S0, E0, I0, Q0, H0, N0), E0) < ε∗ for all m ≥ 0.

Hence, by the continuity of the solutions of the system (5.2) with respect to the initial

values,

‖u(t, Pm(S0, E0, I0, Q0, H0, N0))− u(t, E0)‖ < ε, ∀m ≥ 0, ∀t ∈ [0, ω] for some ε > 0.

It follows, by the properties of the Poincaré map (see Section 2.7), for any t ≥ 0 such

that t = mω + t́ (where t́ ∈ [0, ω) and m is the largest positive integer less than or

equal to t
ω
), that

‖u(t, (S0, E0, I0, Q0, H0, N0))− u(t, E0)‖

= ‖u(t́, Pm(S0, E0, I0, Q0, H0, N0))− u(t́, E0)‖

< ε, ∀t ≥ 0.

Hence, it follows that

E(t) < ε, I(t) < ε, Q(t) < ε, H(t) < ε, ∀t ≥ 0. (5.10)

Noting the inequalities in (5.10), the equation for
dS

dt
in (5.2) can be expressed as:
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dS

dt
≥ Π− β(t)S[ε + η(t)ε]

N
+ ψ(N − S − 4ε)− µS,

≥ Π− εβ(t)(1 + η(t))− 4ψε− µS.

(5.11)

Consider, next, the auxiliary (with equality) equation of the system (5.11)

dŜ(t)

dt
= Π− εβ(t)[1 + η(t)]− 4ψε− µ ˆS(t). (5.12)

Thus, the system (5.12) has a unique periodic solution (Ŝ∗(t, ε)). It can be shown

that Ŝ∗(t, ε) is globally-attractive on R+ as follows. The equation (5.12) has a unique

periodic solution given by

Ŝ∗(t, ε) = e−µt

{
Ŝ∗(0, ε) +

∫ t

0

eµs[Π− εβ(s)(1 + η(s))− 4ψε]ds

}
, (5.13)

where, Ŝ∗(0, ε) is found by substituting t = ω in (5.13) (and noting that Ŝ∗(ω, ε) =

Ŝ∗(0, ε)). Hence,

Ŝ∗(0, ε) =

∫ ω

0
eµs{Π− εβ(s)[1 + η(s)]− 4ψε}ds

eµω − 1
.

Clearly, |Ŝ(t, ε)− Ŝ∗(t, ε)| → 0 as t →∞. Thus, Ŝ∗(t, ε) is globally attractive on R+.

It can be seen, from the form of Ŝ∗(0, ε), that Ŝ∗(0, ε) is continuous in ε. Hence,

fixed values of ε, ν, small enough, can be chosen such that

Ŝ∗(t, ε) > S∗ − ν, ∀t ∈ [0, ω],

where S∗ = π/µ is the unique steady-state solution of the equation
dS̄

dt
= Π − µS̄,
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which is globally-attractive in R+.

By the periodicity of Ŝ∗(t, ε), together with the fact S∗ − ν is constant, it follows

that the inequality

Ŝ∗(t, ε) > S∗ − ν

holds for sufficiently small ε and ν and t ≥ 0. Since the periodic solution Ŝ∗(t, ε), of

equation (5.12), is globally-attractive on R+, and Ŝ∗(t, ε) > S∗ − ν, it follows that

S(t) > S∗ − ν for sufficiently large t. Furthermore, it is clear from the last equation of

the system (5.2) that

N(t) ≤ Π

µ
+ ν, for sufficiently large t.

Similarly, it follows from the second, third, fourth and fifth equations of the system

(5.2), for sufficiently large t, that

dE

dt
≥ β(t)

(
1− 2ν

Π/µ + ν

)
[I + η(t)H]− (κ(t) + µ)E(t),

dI

dt
= κ(t)E(t)− [γ1(t) + φ(t) + µ + δ1]I(t),

dQ

dt
= σ(t)E(t)− [α(t) + µ]Q(t),

dH

dt
= α(t)Q(t) + φ(t)I(t)− [γ2(t) + µ + δ2]H(t).

(5.14)

Consider, now, the case when the inequality in (5.14) is replaced by equality, giving

dÊ

dt
= β(t)

(
1− 2ν

Π/µ+ν

) [
Î(t) + η(t)Ĥ(t)

]
− [κ(t) + µ]Ê(t). (5.15)

It follows from Lemma 2.1 in [102] that there exists a positive, ω-periodic function
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(Ē(t), Ī(t), Q̄(t), H̄(t))T such that

(Ê(t), Î(t), Q̂(t), Ĥ(t))T = eζt(Ē(t), Ī(t), Q̄(t), H̄(t))T ,

is a solution of system (5.15), where

ζ =
1

ω
ln ρ(ΦF−V−Mν (ω)),

and,

Mν =




0
2νβ(t)

Π/µ + ν
0

2νη(t)β(t)

Π/µ + ν

0 0 0 0

0 0 0 0

0 0 0 0




.

Since R0 > 1 implies that ρ(ΦF−V (ω)) > 1, a small enough ν > 0 can be chosen such

that ρ(ΦF−V−Mν (ω)) > 1. That is, ζ is a positive constant.

Let t = nω and n be a non-negative integer. Hence,

(Ê(nω), Î(nω), Q̂(nω), Ĥ(nω))T = eζnω(Ē(nω), Ī(nω), Q̄(nω), H̄(nω))T → (∞,∞,∞,∞)T ,

as n →∞, since ωζ > 0 and (Ē(t), Ī(t), Q̄(t), H̄(t))T > 0. For any non-negative initial

condition (E(0), I(0), Q(0), H(0))T , of system (5.14), there exists m∗ > 0 sufficiently

small such that

(E(0), I(0), Q(0), H(0))T ≥ m∗(Ē(0), Ī(0), Q̄(0), H̄(0))T .

It follows, by comparison theorem (Theorem 2.8), that

(E(t), I(t), Q(t), H(t))T ≥ m∗(E(t), I(t), Q(t), H(t))T , for all t > 0.
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Thus,

E(nω) →∞, I(nω) →∞, Q(nω) →∞ and H(nω) →∞,

which contradicts the inequalities given in (5.10). Hence, P is weakly uniformly-

persistent with respect to (X0, ∂X0).

Uniform-persistence of solutions

It follows from Theorems 2.13 and 2.14 that P is uniformly-persistent with respect

to (X0, ∂X0). Furthermore, by Theorem 2.15, the solutions of the system (5.2) are

uniformly-persistent with respect to (X0, ∂X0). That is, there exists ε > 0 such that

any solution (S(t), E(t), I(t), Q(t), H(t), N(t)) of the system (5.2) with initial value

(S0, E0, I0, Q0, H0, N0) ∈ X0 satisfies

lim inf
t→∞

I ≥ ε, lim inf
t→∞

E ≥ ε, lim inf
t→∞

Q ≥ ε, and lim inf
t→∞

H ≥ ε.

The epidemiological implication of Theorem 5.3 is that the disease will persist in the

population if R0 > 1.

5.5 Existence and Stability of Periodic Solution

In this section, the possible existence and stability of non-trivial periodic solutions of

the system (5.2) will be explored. Theorem 2.16 will be used to achieve this objective.

Theorem 5.4. The system (5.2) (or, equivalently, (5.1)) has a periodic solution in

X0, which is GAS in X0 whenever R0 > 1 and sign(S − S∗) = sign(E − E∗) =
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sign(I − I∗) = sign(Q−Q∗) = sign(H −H∗) = sign(R−R∗).

Proof. The proof of the existence part is based on the method in [102]. It follows from

Lemma 5.1 that the solutions of the model (5.2) are ultimately-bounded. Thus, P is

point-dissipative on R6
+ and P : R6

+ → R6
+. Furthermore, P is uniformly-persistent

with respect to (X0, ∂X0) whenever R0 > 1 (Theorem 5.3). Then, it follows from

Theorem 2.16 that P has a fixed-point

[S∗(t), E∗(t), I∗(t), Q∗(t), H∗(t), N∗(t)] ∈ Int(R6
+).

Hence, [S∗(t), E∗(t), I∗(t), Q∗(t), H∗(t), N∗(t)] is a positive ω-periodic solution of the

system (5.2). This shows the existence part.

For the stability part, it is convenient to consider the system (5.1) (since it is also

equivalent to the system (5.2)). Let,

E1 = [S∗(t), E∗(t), I∗(t), Q∗(t), H∗(t), R∗(t)],

be a positive ω-periodic solution of the system (5.1). To prove that the periodic solution

is globally-asymptotically stable, consider the following Lyapunov function (Lyapunov

functions of this type have been used in the literature, such as [96, 101]):

G = |S(t)− S∗(t)|+ |E(t)− E∗(t)|+ |I(t)− I∗(t)|+ |Q(t)−Q∗(t)|

+ |H(t)−H∗(t)|+ |R(t)−R∗(t)|,

where [S∗(t), E∗(t), I∗(t), Q∗(t), H∗(t), R∗(t)] is any solution of the system (5.1).

129



The right derivative, D+G, of G, along the solutions of (5.1), is given by:

D+G =sign [S(t)− S∗(t)] {ψ[R(t)−R∗(t)]− λ(t)S(t)− µ[S(t)− S∗(t)] + λ∗(t)S∗(t)}

+sign [E(t)− E∗(t)] {λ(t)S(t)− [κ(t) + σ(t) + µ][E(t)− E∗(t)]− λ∗(t)S∗(t)}

+sign [I(t)− I∗(t)] {κ(t)[E(t)− E∗(t)]− [γ1(t) + φ(t) + µ + δ1][I(t)− I∗(t)]}

+sign [Q(t)−Q∗(t)] {σ(t)[E(t)− E∗(t)]− [α(t) + µ][Q(t)−Q∗(t)]}

+sign [H(t)−H∗(t)]
{
α(t)[Q(t)−Q∗(t)] + φ(t)[I(t)− I∗(t)]

− [γ2(t) + µ + δ2][H(t)−H∗(t)]
}

+ sign [R(t)−R∗(t)]
{
γ1(t)[I(t)− I∗(t)]

+ γ2(t)[H(t)−H∗(t)]− (ψ + µ)[R(t)−R∗(t)]
}

with,

λ(t) =
β(t)S(t)[I(t) + η(t)H(t)]

N(t)
and λ∗(t) =

β(t)S∗(t)[I∗(t) + η(t)H∗(t)]
N∗(t)

.

Using the fact that sign(S − S∗) = sign(E − E∗) = sign(I − I∗) = sign(Q − Q∗) =

sign(H −H∗) = sign(R−R∗), it follows that

D+G =− µ |S(t)− S∗(t)| − µ |E(t)− E∗(t)| − (µ + δ1) |I(t)− I∗(t)| − µ |Q(t)−Q∗(t)|

−(µ + δ2) |H(t)−H∗(t)| − µ |R(t)−R∗(t)| ,

≤− µ |S(t)− S∗(t)| − µ |E(t)− E∗(t)| − µ |I(t)− I∗(t)| − µ |Q(t)−Q∗(t)|

−µ |H(t)−H∗(t)| − µ |R(t)−R∗(t)| ,

=− µG(t).

Hence, lim
t→∞

G(t) = 0. Thus, the non-trivial periodic solution, E1, of (5.1) is GAS in X0

130



whenever R0 > 1 and sign(S − S∗) = sign(E −E∗) = sign(I − I∗) = sign(Q−Q∗) =

sign(H −H∗) = sign(R−R∗).

Theorem 5.4 guarantees the persistence of the disease in the population whenever

R0 > 1 and sign(S −S∗) = sign(E −E∗) = sign(I − I∗) = sign(Q−Q∗) = sign(H −
H∗) = sign(R−R∗). It should be stated that the condition sign(S − S∗) = sign(E −
E∗) = sign(I − I∗) = sign(Q − Q∗) = sign(H − H∗) = sign(R − R∗) is somewhat

restrictive (but it is necessary for the proof to work). Figure 5.4 shows a time series

plot of the total number of infected individuals for two sets of initial conditions. It

should be mentioned that the solutions did not converge to zero as they appear to in

Figure 5.4 (see Figure 5.5 for a depiction of the zoomed version of the tail end of Figure

5.4). Figures 5.4 and 5.5 clearly show convergence of the solutions to the non-trivial

periodic solution for the case R0 > 1 (in line with Theorem 5.4). Phase portraits of

the solutions are also provided (Figure 5.6). Figure 5.7 shows the fixed-points of the

Poincaré map associated with the system (5.2). The fixed-points of the Poincaré map

are numerically computed as follows:

(i) For each value of β0, the model is run 5000 times, and the transient solutions are

removed by discarding the first 4900 iterates;

(ii) An arbitrary point (typically the first local maximum) is picked out of the re-

maining 100 iterates;

(iii) A time period of 12 days (arbitrarily) is selected;

(iv) The fixed-points of the Poincaré map are plotted, starting from the first local

maximum.

For all the 8 iterations carried out, the local maxima (corresponding to each period)

are the same (as plotted in Figure 5.7). Furthermore, it is clear from Figure 5.7 that

for β0 < β0c (i.e., R0 < 1), the map has a unique trivial fixed-point (corresponding
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to the trivial solution, DFS.) Furthermore, for β0 > β0c (i.e., R0 > 1), the map has

a unique non-trivial fixed-point (corresponding to the non-trivial periodic solution).

Hence, the system (5.2) undergoes a forward (transcritical) bifurcation at β0 = β0c (for

the parameter values used in the simulations, this bifurcation occurs at the point β0 =

β0c w 0.112). It should be recalled from Figure 5.2 that, for β0 = β0c w 0.112,R0 w

1 (which is in line with the simulation results depicted in Figure 5.7). A detailed

bifurcation diagram of the periodic solution is given in Figure 5.8 (this figure is plotted

using the same approach as that of Figure 5.7, except that the absolute minimum and

maximum of the number of infectious individuals in class I, denoted by Imin and Imax,

are depicted). Clearly, Figure 5.8 shows that β0 must exceed a critical value for the

disease to persist in the population (β0 > β0c = 0.112).

Additional numerical simulations of the model (5.2) suggest that the family of

periodic solutions (E1) is GAS in X0 whenever R0 > 1. This suggests the following

conjecture.

Conjecture. The periodic solution (E1), of the system (5.2), is GAS in X0 whenever

R0 > 1.

5.6 Summary

This chapter addresses the problem of assessing the impact of periodicity on the trans-

mission dynamics of a disease that is controllable using quarantine and isolation. The

model given in Chapter 3 is extended to incorporate the effect of periodicity. The

resulting non-autonomous model is rigorously analysed and also numerically simulated

using data consistent with the 2003 SARS outbreaks. The main findings of this chapter

are summarized below:

(i) The non-autonomous model (5.2) has a globally-asymptotically stable disease-

free solution whenever the associated reproduction ratio (R0) of the model is less
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than unity (Theorem 5.2);

(ii) The model has a positive periodic solution whenever the reproduction ratio (R0)

exceeds unity (Theorem 5.4);

(iii) Any solution of the model (5.2) is uniformly-persistent whenever the reproduction

ratio (R0) exceeds unity (Theorem 5.3);

(iv) The model (5.2) has a globally-asymptotically stable non-trivial periodic solution

for a special case (Theorem 5.4);

(v) Numerical simulations of the model show that the associated average basic re-

production number is always greater than the basic reproduction ratio (Figure

5.2).

In summary, the theoretical analyses of this chapter show that adding periodic-

ity to the non-autonomous quarantine/isolation model (3.2) does not really alter the

transmission dynamics of the disease (vis-a-vis the persistence or elimination of the

disease). In both the autonomous and the non-autonomous quarantine/isolation mod-

els considered, the disease dies out if the associated reproduction threshold is less than

unity, and persists if the threshold exceeds unity.
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Figure 5.2: Simulation of the model (5.2) showing the basic reproduction ratio R0.
and the average basic reproduction number [R0] as a function of β0 ∈
[0.01, 0.25]. Parameter values used are as given in Table 3.2.
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Figure 5.3: Simulation of the model (5.2) showing the total number of infected individ-
uals as a function of time for R0 < 1. Parameter values used are as given
in Table 3.2, with β0 = 0.1, (so that, R0 = 0.8551.)
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Figure 5.4: Simulations of the model (5.2) showing the total number of infected indi-
viduals as a function of time . Parameter values used are as given in Table
3.2, with β0 = 1 (so that, R0 > 1).
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Figure 5.5: Blow up of the tail end of Figure 5.4.

135



1000 2000 3000
450

500

550

600

650

E(t)

I(
t)

1000 2000 3000
900

1000

1100

1200

E(t)
Q

(t
)

1000 2000 3000
3900

3950

4000

4050

4100

E(t)

H
(t

)

400 600 800
900

950

1000

1050

1100

1150

I(t)

Q
(t

)

400 600 800
3900

3950

4000

4050

4100

I(t)

H
(t

)

800 1000 1200
3900

3950

4000

4050

4100

Q(t)

H
(t

)

Figure 5.6: Phase portraits of the model (5.2). Parameter values used are as given in
Table 3.2, with β0 = 1.6 (so that, R0 > 1).
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Figure 5.7: Simulations of the model (5.2) showing the fixed-points the Poincaré map
as β0 varies from 0 to 0.5. Parameter values used are as given in Table 3.2.
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Figure 5.8: Bifurcation diagram of the non-trivial periodic solution showing the number
of infectious individuals in class I as a function of β0 ∈ [0, 0.5]. Parameter
values used are as given in Table 3.2.
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Chapter 6

Quarantine/Isolation Model with

an Imperfect Vaccine

6.1 Introduction and Model Formulation

The purpose of this chapter is to qualitatively (and quantitatively) assess the combined

impact of quarantine, isolation and an imperfect vaccine in the control of the spread

of a communicable disease in a population. Such non-pharmaceutical [14] and phar-

maceutical [88] interventions have been applied (singly or in combinations) to control

the spread of a number of diseases, such as SARS [73] and the 2009 swine influenza

pandemic [36]. This chapter is based on the use of a new deterministic model, which

extends the quarantine/isolation model (3.2) by incorporating an imperfect vaccine.

The model is designed by splitting the total human population at time t, denoted

by N(t); into mutually-exclusive compartments of unvaccinated susceptible (S(t)), vac-

cinated susceptible (V (t)), unvaccinated exposed (E(t)), exposed vaccinated (EV (t)),

unvaccinated infectious (I(t)), vaccinated infectious (IV (t)), quarantined un- vacci-

nated (Q(t)), vaccinated quarantined (QV (t)), unvaccinated hospitalized (H(t)), vac-

cinated hospitalized (HV (t)), unvaccinated recovered (R(t)) and vaccinated recovered
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(RV (t)) individuals, so that (it should be mentioned that the terms ”susceptible” and

”unvaccinated susceptible” are used interchangeably)

N(t) = S(t)+V (t)+E(t)+EV (t)+I(t)+IV (t)+Q(t)+QV (t)+H(t)+HV (t)+R(t)+RV (t).

The equations of the model are obtained as follows. Individuals are recruited into

the population (assumed susceptible) at a rate Π. A fraction, ρ, of these newly-recruited

individuals, are vaccinated. Further, susceptible individuals are vaccinated at a rate ζ,

and the vaccine is assumed to wane at a rate ψ. Unvaccinated susceptible individuals

may acquire infection, following effective contact with infectious individuals at a rate

λ, where

λ =
β(I + ν1IV + ηH + ν2HV )

N
. (6.1)

In (6.1), the parameter β is the effective contact rate, while 0 ≤ η < 1 is the modifica-

tion parameter which accounts for the assumed reduction in disease transmission by un-

vaccinated hospitalized individuals (in the H class) in comparison to non-hospitalized

infectious individuals (in the I class), and 0 ≤ ν1, ν2 < 1 are the modification pa-

rameters accounting for the vaccine-induced reduction of infectiousness for vaccinated

individuals (in the IV and HV classes) in comparison to unvaccinated infectious in-

dividuals (in the I and H classes). Furthermore, it is assumed that the vaccine is

imperfect, so that vaccinated individuals can acquire break-through infection at a re-

duced rate (1− ε)λ, where 0 < ε < 1 represents the vaccine efficacy. The populations

of unvaccinated and vaccinated susceptible individuals are decreased by natural death,

at a rate µ.

Thus, the rates of change of the populations of susceptible and vaccinated individ-

uals are given, respectively, by
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dS

dt
= (1− ρ)Π + ψV − λS − (ζ + µ)S,

dV

dt
= ρΠ + ζS − (1− ε)λV − (ψ + µ)V.

The population of unvaccinated exposed individuals is generated by the infection of

susceptible individuals (at the rate λ) and is decreased by the development of disease

symptoms (at a rate κ), quarantine (at a rate σ) and natural death (at the rate µ), so

that

dE

dt
= λS − (κ + σ + µ)E.

Similarly, the population of exposed vaccinated individuals is generated by the break-

through infection of vaccinated individuals (at the rate (1 − ε)λ) and is decreased by

the development of disease symptoms (at a rate θ1κ, where 0 < θ1 < 1 accounts for the

reduction in the rate of development of symptoms for vaccinated exposed individuals

in relation to unvaccinated individuals), quarantine (at a rate σ1) and natural death

(at the rate µ), so that

dEV

dt
= (1− ε)λV − (θ1κ + σ1 + µ)EV .

The population of infectious unvaccinated individuals is generated by the development

of symptoms of unvaccinated exposed individuals (at the rate κ ). It is decreased by

natural recovery (at a rate γ1), hospitalization (at a rate φ), natural death (at the rate

µ) and disease-induced death (at a rate δ1). This gives

dI

dt
= κE − (γ1 + φ + µ + δ1)I.

The population of vaccinated infectious individuals is generated at the rate θ1κ, and is
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decreased by natural recovery (at a rate θ2γ1, where θ2 > 1 accounts for the assump-

tion that vaccinated infectious individuals recover at a faster rate in comparison to

unvaccinated infectious individuals), hospitalization (at a rate θ3φ, where 0 < θ3 < 1,

represents the relative reduction in hospitalization rate of vaccinated infectious indi-

viduals in comparison to unvaccinated infectious individuals), natural death (at the

rate µ) and disease-induced death (at a rate θ4δ1, where 0 < θ4 < 1 accounts for

the assumption that vaccinated individuals have reduced disease-induced mortality in

comparison to unvaccinated infectious individuals, so that

dIV

dt
= θ1κEV − (θ2γ1 + θ3φ + µ + θ4δ1)IV .

Unvaccinated exposed individuals are quarantined at the rate σ. The population of

unvaccinated quarantined individuals is decreased by hospitalization (at a rate α) and

natural death (at the rate µ). Thus,

dQ

dt
= σE − (α + µ)Q.

Similarly, exposed vaccinated individuals are quarantined at the rate σ1. The popu-

lation of quarantined vaccinated individuals is decreased by hospitalization (at a rate

θ5α, where 0 < θ5 < 1 accounts for the assumption that quarantined vaccinated in-

dividuals are hospitalized at a slower rate in comparison to unvaccinated quarantined

individuals) and natural death (at the rate µ). Thus,

dQV

dt
= σ1EV − (θ5α + µ)QV .

The population of unvaccinated hospitalized individuals is generated by the hospi-

talization of unvaccinated quarantined individuals (at the rate α) and unvaccinated

symptomatic individuals (at the rate φ). This population is decreased by recovery (at
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a rate γ2), natural death (at the rate µ) and disease-induced death (at a rate δ2 < δ1).

It is assumed that hospitalized individuals (vaccinated or unvaccinated) have reduced

disease-induced mortality rate in comparison to non-hospitalized infectious individu-

als because of the hospital care (e.g., treatment) given to individuals in the former

(hospitalized) class. Hence,

dH

dt
= αQ + φI − (γ2 + µ + δ2)H.

Similarly, the population of vaccinated hospitalized individuals is generated by the

hospitalization of vaccinated quarantined individuals (at the rate θ5α) and vaccinated

infectious individuals (at the rate θ3φ). It is decreased by recovery (at a rate θ6γ2, where

θ6 > 1 accounts for the assumption that vaccinated infectious individuals recover at

a faster rate than unvaccinated infectious individuals), natural death (at the rate µ)

and disease-induced death (at a rate θ7δ2 < θ4δ1, where 0 < θ7 < 1 accounts for the

assumed reduction of disease-related mortality of vaccinated hospitalized individuals

in comparison to unvaccinated hospitalized individuals). Thus,

dHV

dt
= θ5αQV + θ3φIV − (θ6γ2 + µ + θ7δ2)HV .

The population of unvaccinated recovered individuals is generated by the recovery

of unvaccinated non-hospitalized and unvaccinated hospitalized infectious individuals

(at the rates γ1 and γ2, respectively). It is decreased by natural death (at the rate µ),

so that

dR

dt
= γ1I + γ2H − µR.

Finally, the population of recovered vaccinated individuals is generated by the recovery

of vaccinated non-hospitalized and vaccinated hospitalized infectious individuals (at the
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rates θ2γ1 and θ6γ2, respectively). This population is decreased by natural death (at

the rate µ), so that

dRV

dt
= θ2γ1IV + θ6γ2HV − µRV .

Unlike in the basic quarantine/isolation model (3.2), it is assumed (for mathe-

matical tractability) that recovered individuals acquire permanent immunity against

re-infection (so that recovered individuals do not return to the susceptible class). Com-

bining the aforementioned derivations and assumptions, it follows that the model for

the transmission dynamics of an infectious disease, in the presence of an imperfect vac-

cine, quarantine of exposed individuals and isolation of infectious individuals, is given

by the following non-linear system of differential equations (a flow diagram is given

in Figure 6.1; and the associated variables and parameters are described in Tables 6.1

and 6.2):
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dS

dt
= (1− ρ)Π + ψV − λS − (ζ + µ)S,

dV

dt
= ρΠ + ζS − (1− ε)λV − (ψ + µ)V,

dE

dt
= λS − (κ + σ + µ)E,

dEV

dt
= (1− ε)λV − (θ1κ + σ1 + µ)EV ,

dI

dt
= κE − (γ1 + φ + µ + δ1)I,

dIV

dt
= θ1κEV − (θ2γ1 + θ3φ + µ + θ4δ1)IV ,

dQ

dt
= σE − (α + µ)Q,

dQV

dt
= σ1EV − (θ5α + µ)QV ,

dH

dt
= αQ + φI − (γ2 + µ + δ2)H,

dHV

dt
= θ5αQV + θ3φIV − (θ6γ2 + µ + θ7δ2)HV ,

dR

dt
= γ1I + γ2H − µR,

dRV

dt
= θ2γ1IV + θ6γ2HV − µRV .

(6.2)
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Table 6.1: Description of variables and parameters of the model (6.2).

Variable Description

S(t) Population of unvaccinated susceptible individuals
V (t) Population of vaccinated susceptible individuals
E(t) Population of unvaccinated exposed individuals
EV (t) Population of exposed vaccinated individuals
I(t) Population of unvaccinated infectious (symptomatic) individuals
IV (t) Population of infectious vaccinated individuals
Q(t) Population of unvaccinated quarantined individuals
QV (t) Population of quarantined vaccinated individuals
H(t) Population of unvaccinated hospitalized individuals
HV (t) Population of hospitalized vaccinated individuals
R(t) Population of unvaccinated recovered individuals
RV (t) Population of recovered vaccinated individuals

Parameter Description

Π Recruitment rate
β Effective contact rate
µ Natural death rate
ρ Fraction of newly-recruited individuals vaccinated
η Modification parameter for reduction in infectiousness

of hospitalized individuals
ν1, ν2 Modification parameters for reduction in infectiousness

of vaccinated infectious and hospitalized individuals
ε Efficacy of vaccine
ζ Vaccination rate of susceptible individuals
ψ Waning rate of vaccine
κ Progression rate from exposed to infectious class
σ Quarantine rate for exposed individuals
σ1 Quarantine rate for vaccinated exposed individuals
α Hospitalization rate for quarantined individuals
φ Hospitalization rate for infectious individuals
γ1 Recovery rate for non-hospitalized infectious individuals
γ2 Recovery rate for hospitalized individuals
δ1 Disease-induced death rate for non-hospitalized infectious individuals
δ2 Disease-induced death rate for hospitalized individuals
θ1, · · · , θ7 Modification parameters
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Figure 6.1: Flow diagram of the model (6.2).

The model (6.2) is a an extension of the SEIQHR model (3.2), by including six

compartments for the vaccinated individuals (namely, V,EV , QV , IV , HV and RV ). The

main objective of this chapter is to carry out a detailed rigorous qualitative analysis

of the model (6.2), and determine whether or not adding an imperfect vaccine to the

quarantine/isolation model (3.2) alters its qualitative (equilibrium) dynamics. It is

worth emphasizing that the model (6.2) considers an imperfect vaccine with a number

of therapeutic characteristics, such as:

(i) the vaccine blocks infection (with efficacy 0 < ε < 1);
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(ii) the vaccine reduces transmissibility in break-through infections (at rates ν1β and

ν2β for infectious individuals in the IV and HV classes, respectively; with 0 <

ν1, ν2 < 1);

(iii) the vaccine slows the development of disease symptoms in exposed vaccinated

individuals (at a rate θ1κ, with 0 < θ1 < 1);

(iv) the vaccine reduces disease-induced mortality in break-through infections (at the

rates θ4δ1 and θ7δ2 for IV and HV individuals, respectively; with 0 < θ4, θ7 < 1);

(v) the vaccine increases rate of recovery in break-through infections (at rate θ2γ1

and θ6γ2, for IV and HV individuals, respectively; with θ2 > 1 and θ6 > 1);

(vi) the vaccine reduces hospitalization rate in break-through infections (at rates θ5α

and θ3σ for QV and IV individuals, respectively; with 0 < θ3, θ5 < 1).

6.2 Basic Properties

Since the model (6.2) monitors human populations, all its associated parameters are

non-negative. The following results can be established using the approach in Section

3.2.

Theorem 6.1. The variables of the model (6.2) are non-negative for all time. In other

words, solutions of the model system (6.2) with positive initial data will remain positive

for all time t > 0.

Lemma 6.1. The closed set

D =

{
(S, V,E,EV , I, IV , Q, QV , H, HV , R,RV ) ∈ R12

+ :

S + V + E + EV + I + IV + Q + QV + H + HV + R + RV ≤ Π

µ

}

147



is positively-invariant for the model (6.2).

6.3 Local Stability of Disease-free Equilibrium

The DFE of the model (6.2) is given by

E0 = (S∗, V ∗, E∗, E∗
V , I∗, I∗V , Q∗, Q∗

V , H∗, H∗
V , R∗, R∗

V )

=

(
Π[(1− ρ)µ + ψ]

µ(µ + ψ + ζ)
,

Π(ρµ + ζ)

µ(µ + ψ + ζ)
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

(6.3)

The local stability of E0 will be explored using the next generation operator method

[21, 87]. Using the notation in [87], the non-negative matrix, F, of the new infection

terms, and the M -matrix, G, of the transition terms associated with the model (6.2),

are given, respectively, by

F =




0 0 βω1 ν1βω1 0 0 ηβω1 ν2ηβω1

0 0 (1− ε)βω2 (1− ε)ν1βω2 0 0 (1− ε)ηβω2 (1− ε)ν2ηβω2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




,

and,
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G =




k1 0 0 0 0 0 0 0

0 k2 0 0 0 0 0 0

−κ 0 k3 0 0 0 0 0

0 −θ1κ 0 k4 0 0 0 0

−σ 0 0 0 k5 0 0 0

0 −σ1 0 0 0 k6 0 0

0 0 −φ 0 −α 0 k7 0

0 0 0 −θ3φ 0 −θ5α 0 k8




,

where,

ω1 =
(1− ρ)µ + ψ

µ + ψ + ζ
, ω2 =

ρµ + ζ

µ + ψ + ζ
, k1 = κ + σ + µ, k2 = θ1κ + σ1 + µ,

k3 = γ1 + φ + µ + δ1, k4 = θ2γ1 + θ3φ + µ + θ4δ1, k5 = α + µ,

k6 = θ5α + µ, k7 = γ2 + µ + δ2, k8 = θ6γ2 + µ + θ7δ2.

It follows that the control reproduction number [2, 44], denoted by Rvac = ρ(FG−1), is

given by

Rvac =
β(1− ε)ω2[ν1θ1κk1k3k5k6k7k8 + ν2ηθ1κθ3φk1k3k5k6k7 + ν2ησ1θ5αk1k3k4k5k7]

k1k2k3k4k5k6k7k8

+
βω1[κk2k4k5k6k7k8 + ηφκk2k4k5k6k8 + ηασk2k3k4k6k8]

k1k2k3k4k5k6k7k8

.

Using Theorem 2.10, the following result is established.

Lemma 6.2. The DFE of the model (6.2), given by (6.3), is locally-asymptotically

stable if Rvac < 1, and unstable if Rvac > 1.

The quantity Rvac measures the average number of new infections generated by a

single infectious individual in a population where a certain fraction of the susceptible
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population are vaccinated. Lemma 6.2 implies that the disease can be eliminated from

the community (when Rvac < 1) if the initial sizes of the sub-populations of the model

are in the basin of attraction of the DFE (E0).

6.3.1 Backward bifurcation

In this section, the existence of endemic equilibria of the model (6.2) is established.

Let,

E1 = (S∗∗, V ∗∗, E∗∗, E∗∗
V , I∗∗, I∗∗V , Q∗∗, Q∗∗

V , H∗∗, H∗∗
V , R∗∗, R∗∗

V )

represent any arbitrary EEP of the model (6.2). Further, define

λ∗∗ =
β(I∗∗ + ν1I

∗∗
V + ηH∗∗ + ν2ηH∗∗

V )

N∗∗ (6.4)

(the force of infection of the model (6.2) at steady-state). It follows, by solving the

equations in (6.2) at steady-state, that

S∗∗ =
Π[ψ + (1− ρ){µ + (1− ε)}]

(1− ε)λ2 + [(1− ε)(µ + ζ) + µ + ψ]λ + µ(ζ + ψ + µ)
,

V ∗∗ =
Π[ρλ + ρµ + ζ]

(1− ε)λ2 + [(1− ε)(µ + ζ) + µ + ψ]λ + µ(ζ + ψ + µ)
,

E∗∗ =
λ∗∗S∗∗

k1

, E∗∗
V =

(1− ε)λ∗∗V ∗∗

k2

,

I∗∗ =
λ∗∗S∗∗κ

k1k3

, I∗∗V =
(1− ε)λ∗∗V ∗∗θ1κ

k2k4

,

Q∗∗ =
λ∗∗S∗∗σ

k1k5

, Q∗∗
V =

(1− ε)λ∗∗V ∗∗σ1

k2k6

,

H∗∗ =
λ∗∗S∗∗(ασk3 + κφk5)

k1k3k5k7

, H∗∗
V =

(1− ε)λ∗∗V ∗∗(θ5ασ1k4 + θ1κθ3φk6)

k2k4k6k8

,

R∗∗ =
λ∗∗S∗∗(γ1κk5k7 + γ2ασk3 + γ2φκk5)

µk1k3k5k7

,

R∗∗
V =

(1− ε)λ∗∗V ∗∗(θ2γ1θ1κk6k8 + θ6γ2θ5ασ1k4 + θ6γ2θ3φθ1κk6)

µk2k4k6k8

.

(6.5)
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Substituting the expressions in (6.5) into (6.4) shows that the non-zero equilibria of

the model satisfy the following quadratic equation (in terms of λ∗∗):

a0(λ
∗∗)2 + a1λ

∗∗ + a2 = 0, (6.6)
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where,

a0 = k2k4k6k8(1− ε)(1− ρ)(σ k3k7µ + γ1κ k5k7 + κ k7k5µ + µ α σ k3)

+ k2k4k6k8(1− ε)(1− ρ)(k3k5k7µ + γ2φ k5κ + µφ k5κ + γ2α σ k3)

+ ρk1k3k5k7(1− ε)(µ θ4φ k6θ1κ + µ θ1κ k6k8 + θ7γ2θ6α θ2σ k4 + θ7γ2θ4φ k6θ1κ)

+ ρk1k3k5k7(1− ε)(θ3γ1θ1κ k6k8 + µ k4k6k8 + µ θ2σ k4k8 + µ θ6α θ2σ k4),

a1 = −βµ(1− ε)

[
ηκφk2k4k5k6k8(1− ρ) + ν2ρηθ5ασ1k1k3k4k5k7 + ησαk2k3k4k6k8(1− ρ)

+ ν1ρθ1κk1k3k5k6k7k8 + ν2ηρθ1κθ3φk1k3k5k6k7 + κk2k4k5k6k7k8(1− ρ)

]

+ k1k3k5k7(1− ε)

[
µζθ1κθ3φk6(1− ρ) + µζσ1θ5αk4(1− ρ) + ρµθ1κk4k6(µ + ζ)

+ ρµk4k6k8(µ + ζ) + µk2k4k6k8(1− ρ)(1 + ζ) + µζθ1κk6k8(1− ρ) + ζθ1κθ2γ1k6k8(1− ρ)

+ µζσ1k4k8(1− ρ) + µρσ1k4k8(µ + ζ) + σ1θ5αθ6γ2k4 + µρθ1κθ3φk6(µ + ζ)

+ µρσ1θ5αk4(µ + ζ) + ζθ1κθ3φθ6γ2k6(1− ρ) + ρθ1κθ3φθ6γ2k6(µ + ζ)

+ ρθ1κθ2γ1k6k8(µ + ζ) + ρσ1θ5αθ6γ2k4(µ + ζ)

]

+ k2k4k6k8

[
µρk1k3k5k7 + µρψσk3k5 + µρψασk3 + µσk3k7(1− ρ)(µ + ψ) + µρφκφk5

+ µκk5k7(µ + ψ)(1− ρ) + µρψκk5k7 + µσαk3(µ + ψ)(1− ρ) + γ1κk5k7(µ + ψ)(1− ρ)

+ ρψκγ1k5k7 + µk3k5k7(µ + ψ)(1− ρ) + µφκk5(µ + ψ)(1− ρ) + γ2ασk3(µ + ψ)(1− ρ)

+ ρψασγ2k3 + ρψκφγ2k5 + µρψk3k5k7 + (1− ρ)(µ + ψκφγ2k5)

]
,

a2 = µk1k2k3k4k5k6k7k8(µ + ζ + ψ)(1−Rvac).

The endemic equilibria of the model (6.2) can then be obtained by solving for λ∗∗

from (6.6), and substituting the positive values of λ∗∗ into the expressions in (6.5).

The quadratic equation (6.6) can be analyzed for the possibility of multiple endemic

152



equilibria when Rvac < 1. It should be noted that the coefficient, a0, of the quadratic

(6.6) is always positive and a2 is positive (negative) if Rvac is less (greater) than unity.

Hence, the following result is established.

Theorem 6.2. The model (6.2) has

(i) a unique endemic equilibrium if a2 < 0 ⇔Rvac > 1;

(ii) a unique endemic equilibrium if (a1 < 0 and a2 = 0) or a2
1 − 4a0a2 = 0;

(iii) two endemic equilibria if a2 > 0, a1 < 0 and a2
1 − 4a0a2 > 0;

(iv) no endemic equilibrium otherwise.

Thus, it is clear from Case (i) of Theorem 6.2 that the model (6.2) has a unique

EEP (of the form E1) whenever Rvac > 1. Furthermore, Case (iii) of Theorem 6.2

indicates the possibility of backward bifurcation, where a LAS DFE co-exists with

a LAS endemic equilibrium when the associated reproduction number Rvac; is less

than unity (see, for instance, [27, 35, 80] for discussions on backward bifurcation) in

the model (6.2). The epidemiological importance of the phenomenon of backward

bifurcation is that the classical requirement of having Rvac < 1 is, although necessary,

not sufficient for disease elimination. In this case, disease elimination will depend upon

the initial sizes of the sub-populations of the model. To check for the possibility of

backward bifurcation in (6.2), the discriminant a2
1 − 4a0a2 of the quadratic (6.6), is

set to zero and the result solved for the critical value of Rvac (denoted by Rc
vac). This

gives:

Rc
vac = 1− a2

1

4a0µk1k2k3k4k5k6k7k8(µ + ζ + ψ)
,

from which it can be shown that backward bifurcation occurs for values of Rvac such

thatRc
vac < Rvac < 1 (see also [27, 35, 80]). This phenomenon is numerically illustrated
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by simulating the model (6.2) with the following set of parameter value (these param-

eter values may not all be realistic epidemiologically; the reader may refer to the study

in [60] for discussions on whether or not backward bifurcation can occur using a realis-

tic set of parameter values): Π = 136, β = 1.4, µ = 0.001, ζ = 0.06, ψ = 0.0001, κ =

0.00016, θ1 = 0.7 θ4 = 0.9, σ1 = 0.09, θ5 = 0.9, θ2 = 1, θ6 = 1, θ3 = 0.01, θ7 =

1, δ1 = 0.001, δ2 = 0.01, ν1 = 0.9, ρ = 0.1, ε = 10−7, α = 1, φ = 1, γ1 = 0.01, γ2 =

0.1, η = 1, ν2 = 1, σ = 1 (so that, Rc
vac = 0.5673706974 < Rvac = 0.6719831393 < 1).

The result obtained, depicted in Figure 6.2, shows that the model has a DFE and two

endemic equilibria (one of the endemic equilibria is LAS, the other is unstable (saddle)

and the DFE is LAS). This figure clearly shows the coexistence of two stable equilibria

when Rc
vac < Rvac < 1, confirming that the model (6.2) exhibits backward bifurcation

at Rvac = 1.

It should be stated that the backward bifurcation phenomenon of the model (6.2)

is only illustrated numerically. A more rigorous proof, based on using center mani-

fold theory (see, for instance, [11, 13, 35, 87]), is given in Appendix C. In particular,

Theorem 2.4 will be used to theoretically establish the presence of the backward bifur-

cation phenomenon of the model (6.2). It should be recalled that no such backward

bifurcation phenomenon exists in the corresponding quarantine/isolation model (3.2)

(without vaccine). Thus, the analyses of this chapter show that adding vaccination to

the quarantine/isolation model (3.2) alters its qualitative properties (by inducing the

phenomenon of backward bifurcation).

6.3.2 Non-existence of backward bifurcation

In this section, some scenarios where the backward bifurcation property of the model

can be lost are explored. The following cases are considered.
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Case 1: Use of perfect vaccination (ε = 1)

Consider the model (6.2) with a perfect vaccine (so that, ε = 1). In this case, the

coefficients a0, a1 and a2 of the quadratic equation (6.6) reduce to a0 = 0, a1 > 0 and

a2 ≥ 0 whenever R̃vac = Rvac|ε=1 ≤ 1. Thus, for this case, the quadratic equation (6.6)

has one solution (λ∗∗ = −c
b
≤ 0.) Therefore, the model (6.2) with a perfect vaccine

has no positive endemic equilibrium whenever R̃vac < 1. This rules out the possibility

of backward bifurcation in this case (since backward bifurcation requires the existence

of at least two endemic equilibria whenever R̃vac ≤ 1 [27, 35, 80]). Furthermore, it

can be shown that, for the case when ε = 1, the DFE (E0) of the model (6.2) is

globally-asymptotically stable under some conditions, as shown below.

Setting ε = 1 in the model (6.2) gives the following reduced model (it should be

noted from (6.2) that, for the case when ε = 1, (EV , IV , QV , HV , RV ) → (0, 0, 0, 0, 0) as

t → ∞; hence, these variables are omitted from the asymptotic analysis of the model

for the special case with ε = 1):

dS

dt
= (1− p)Π− λ1S − (ζ + µ)S,

dV

dt
= pΠ + ζS − µV,

dE

dt
= λ1S − (κ + σ + µ)E,

dI

dt
= κE − (γ1 + φ + µ + δ1)I,

dQ

dt
= σE − (α + µ)Q,

dH

dt
= αQ + φI − (γ2 + µ + δ2)H,

dR

dt
= γ1I + γ2H − µR,

(6.7)

with the associated force of infection λ = λ1, where
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λ1 = λ|ε=1 =
β(I + ηH)

S + V + E + I + Q + H + R
. (6.8)

It can be shown that the reproduction number associated with the reduced model (6.7),

with (6.8), is given by

R̃vac = Rvac|ε=1 =
βω1(κk5k7 + ηφκk5 + ηασk3)

k1k3k5k7

. (6.9)

Define,

D1 =

{
(S, V, E, I, Q,H, R) ∈ R7

+ : S + V + E + I + Q + H + R ≤ Π

µ

}
.

The model (6.7) has a DFE, given by E01 = (S∗, V ∗, 0, 0, 0, 0, 0).

Theorem 6.3. The DFE (E01) of the reduced model (6.7), with (6.8), is GAS in D1

whenever R̃vac ≤ ω1 < 1.

Proof. Consider the following Lyapunov function (this is the same Lyapunov function

used in the proof of the GAS of the DFE of the quarantine/isolation model (3.2)):

F =

(
k7R̃vac

ω1ηβ

)
E +

(
k7 + ηφ

k3η

)
I +

(
α

k5

)
Q + H,

with Lyapunov derivative given by
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Ḟ =

(
k7R̃vac

ω1ηβ

)
Ė +

(
k7 + ηφ

k3η

)
İ +

(
α

k5

)
Q̇ + Ḣ,

=
k7R̃vac

ω1ηβ

[
βS(I + ηH)

N
− k1E

]
+

(
k7 + ηφ

k3η

)
(κE − k3I) +

(
α

k5

)
(σE − k5Q)

+ αQ + φI − k7H,

≤ k7R̃vac

ω1η
(I + ηH)− k1k7R̃vac

ω1ηβ
E +

κ(k7 + ηφ)

k3η
E − (k7 + ηφ)

η
I +

ασ

k5

E

+ φI − k7H, since S ≤ N in D1,

=

[
−k1k7R̃vac

ω1ηβ
+

κ(k7 + ηφ)

k3η
+

ασ

k5

]
E +

(
φ +

k7R̃vac

ω1η
− k7 + ηφ

η

)
I + k7

(
R̃vac

ω1

− 1

)
H,

=
k7

η

(
R̃vac

ω1

− 1

)
(I + ηH) ≤ 0 whenever R̃vac ≤ ω1 < 1.

Since all the parameters and variables of the model (6.2) are non-negative (Theorem

6.1), it follows that Ḟ ≤ 0 for R̃vac ≤ ω1 (it should be noted that ω1 = S∗
N∗ < 1) with

Ḟ = 0 if and only if E = I = Q = H = 0. Hence, F is a Lyapunov function on D1.

Thus, it follows, by the LaSalle’s Invariance Principle (Theorem 2.6), that

(E, I, Q,H) → (0, 0, 0, 0) as t →∞. (6.10)

Since lim sup
t→∞

I = 0 and lim sup
t→∞

H = 0 (from (6.10)), it follows that, for sufficiently

small small $∗ > 0, there exist constants M1 > 0 and M2 > 0 such that lim sup
t→∞

I ≤ $∗

for all t > M1 and lim sup
t→∞

H ≤ $∗ for all t > M2. Hence, it follows from the seventh

equation of the model (6.7) that, for t > max{M1,M2},
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Ṙ ≤ γ1$
∗ + γ2$

∗ − µR.

Thus, by comparison theorem (Theorem 2.8),

R∞ = lim sup
t→∞

R ≤ γ1$
∗ + γ2$

∗

µ
,

so that, by letting $∗ → 0,

R∞ = lim sup
t→∞

R ≤ 0. (6.11)

Similarly (by using lim inf
t→∞

I = 0 and lim inf
t→∞

H = 0), it can be shown that

R∞ = lim inf
t→∞

R ≥ 0. (6.12)

Thus, it follows from (6.11) and (6.12) that

R∞ ≥ 0 ≥ R∞.

Hence,

lim
t→∞

R = 0. (6.13)

Similarly, it can be shown that

lim
t→∞

S(t) =
Π[(1− ρ)µ + ψ]

µ(µ + ψ + ζ)
= S∗, lim

t→∞
V (t) =

Π(ρµ + ζ)

µ(µ + ψ + ζ)
= V ∗. (6.14)

Thus, by combining equations (6.10), (6.13) and (6.14), it follows that every solution

of the equations in the model (6.7), with initial conditions in D1, approaches E0 as

t →∞ (for R̃vac ≤ ω1 < 1).
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Thus, these analyses show that the backward bifurcation property of the model 6.2

can be removed if the vaccine offer 100% protection against infection (i.e., ε = 1).

Case 2: Mass action incidence

Consider the model (6.2) with 0 < ε < 1 and the associated disease-induced mor-

tality rates set to zero (so that, δ1 = δ2 = 0). Substituting δ1 = δ2 = 0 into the model

(6.2) shows that dN/dt = Π − µN , so that N → Π/µ as t → ∞. Thus, Π/µ is an

upper bound of N(t) provided that N(0) ≤ Π/µ. Further, if N(0) > Π/µ, then N(t)

will decrease to this level. Finally, using N = Π/µ in (6.1) gives

λ = β1(I + ν1IV + ηH + ν2ηHV ), where β1 =
βµ

Π
. (6.15)

It should be mentioned that using (6.15) in the model (6.2) reduces the model (6.2)

(which is originally a standard incidence model) to a mass action model (as discussed

in Section 1.2). It is convenient to define the region:

D̂ = {(S, V, E,EV , I, IV , Q, QV , H, HV , R,RV ) ∈ D : S ≤ S∗, V ≤ V ∗} .

It can be shown that the associated reproduction number of the model (6.2), with

(6.15), is given by

Rm
vac = Rvac|δ1=δ2=0,

=
β1(1− ε)V ∗[ν1θ1κk1k̃3k5k6k̃7k̃8 + ν2ηθ1κθ3φk1k̃3k5k6k̃7 + ν2ησ1θ5αk1k̃3k̃4k5k̃7]

k1k2k̃3k̃4k5k6k̃7k̃8

+
β1S

∗[κk2k̃4k5k6k̃7k̃8 + ηφκk2k̃4k5k6k̃8 + ηασk2k̃3k̃4k6k̃8]

k1k2k̃3k̃4k5k6k̃7k̃8

,
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where, now, k̃3 = γ1 + φ + µ, k̃4 = θ2γ1 + θ3φ + µ, k̃7 = γ2 + µ and k̃8 = θ6γ2 + µ.

It can be shown, using the technique in Section 6.3.1, that the non-zero equilibria

of the model (6.2) with (6.15) satisfy the following quadratic equation (in terms of

λ∗∗ = β1(I
∗∗ + ν1I

∗∗V + ηH∗∗ + ν2ηH∗∗
V ))

b0(λ
∗∗)2 + b1λ

∗∗ + b2 = 0, (6.16)

where,

b0 = (1− ε),

b1 = 1− (1− ρ)(1− ε)A1 + ρA2

(1− ε)l1 + l2
,

b2 = µ(µ + ζ + ψ)(1−Rm
vac),

(6.17)

with,

A1 =
Πβ1[ησαk̃3 + κk5k̃7 + ηφκk5]

k1k̃3k5k̃7

,

A2 =
(1− ε)Πβ1[nu2ησ1θ5αk̃4 + ν1θ1κk6k̃8 + ν2ηθ1κθ3φk6]

k2k̃4k6k̃8

,

l1 = (ζ + µ), l2 = (ψ + µ).

The threshold quantity Rm
vac can be re-written as

Rm
vac =

(1− ρ)µ + ψ

µ(µ + ζ + ψ)
A1 +

ρµ + ζ

µ(µ + ζ + ψ)
A2.

Further, to show that the coefficient b1 in (6.17) is always positive when Rm
vac ≤ 1, it

is sufficient to show that
(1− ρ)(1− ε)A1 + ρA2

(1− ε)l1 + l2
≤ 1. When Rm

vac ≤ 1.

Let Rm
vac ≤ 1. It follows that
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A1 ≤ µ(µ + ζ + ψ)

(1− ρ)µ + ψ
and A2 ≤ µ(µ + ζ + ψ)

ρµ + ζ
.

Hence,

(1− ρ)(1− ε)A1 + ρA2

(1− ε)l1 + l2
≤ µ(1− ρ)(1− ε)(µ + ζ + ψ)

[(1− ε)l1 + l2][(1− ρ)µ + ψ]
+

ρµ(µ + ζ + ψ)

(ρµ + ζ)[(1− ε)l1 + l2]
,

=
µ(1− ρ)(1− ε)(µ + ζ + ψ)(ρµ + ζ) + ρµ(µ + ζ + ψ)[(1− ρ)µ + ψ]

(ρµ + ζ)[(1− ρ)µ + ψ][(1− ε)l1 + l2]
.

It can be shown, after some algebraic manipulations, that

µ(1− ρ)(1− ε)(µ + ζ + ψ)(ρµ + ζ) + ρµ(µ + ζ + ψ)[(1− ρ)µ + ψ]

− (ρµ + ζ)[(1− ρ)µ + ψ][(1− ε)l1 + l2]

= [(1− ρ)− 1](1− ε)ζµψ + [(1− ε)− 1]ρµζψ

+ (ρ− 1)(1− ρ)µ2ζ + [(1− ρ)− 1](1− ε)ρµ2ψ − (1− ε)ψζ2 − µζψ

− (1− ρ)µζψ − ζψ2 ≤ 0,

so that,

(1− ρ)(1− ε)A1 + ρA2

(1− ε)l1 + l2
≤ 1.

Hence, b1 ≤ 0 whenever Rm
vac ≤ 1. In other words, for Rm

vac ≤ 1, the coefficients b0, b1

and b2 of the quadratic equation (6.16) are non-negative. Thus, for this case (with

Rm
vac ≤ 1,) the quadratic equation (6.16) has no positive root. Therefore, the model

(6.2) has no positive endemic equilibrium wheneverRm
vac < 1 (which rules out backward

bifurcation in this case). This result is summarized below.

161



Theorem 6.4. The model (6.2), with (6.15), has no endemic equilibrium if Rm
vac ≤ 1.

The following result can be claimed.

Theorem 6.5. The DFE of the model (6.2), with (6.15), is GAS in D̂ whenever

Rm
vac ≤ 1.

Proof. Consider the following Lyapunov function:

F =
k̃8

k̃7ν2

[(
κk5k̃7 + κηφk5 + ηασk̃3

k1k̃3k5η

)
E +

(
k̃7 + ηφ

k̃3η

)
I +

(
α

k5

)
Q + H

]

+

(
ν1θ1κk6k̃8 + ν2ηθ3φ + θ1κk6 + ν2ηθ5ασ1k̃4

k2k̃4k6ν2η

)
EV +

(
ν1k̃8 + ν2ηθ3φ

ν2ηk̃4

)
IV

+

(
θ5α

k6

)
QV + HV ,

with Lyapunov derivative given by,

Ḟ =
k̃8

k̃7ν2

[(
κk5k̃7 + κηφk5 + ηασk̃3

k1k̃3k5η

)
Ė +

(
k̃7 + ηφ

k̃3η

)
İ +

(
α

k5

)
Q̇ + Ḣ

]

+

(
ν1θ1κk6k̃8 + ν2ηθ3φ + θ1κk6 + ν2ηθ5ασ1k̃4

k2k̃4k6ν2η

)
ĖV +

(
ν1k̃8 + ν2ηθ3φ

ν2ηk̃4

)
˙IV

+

(
θ5α

k6

)
Q̇V + ḢV .

(6.18)

162



The first four terms of Ḟ can be simplified as follows:

k̃8

k̃7ν2

[(
κk5k̃7 + κηφk5 + ηασk̃3

k1k̃3k5η

)
Ė +

(
k̃7 + ηφ

k̃3η

)
İ +

(
α

k5

)
Q̇ + Ḣ

]
,

=
k̃8

k̃7ν2

[(
κk5k̃7 + κηφk5 + ηασk̃3

k1k̃3k5η

)
(λS − k1E) +

(
k̃7 + ηφ

k̃3η

)
(κE − k̃3I)

]

+
k̃8

k̃7ν2

{(
α

k5

)
(σE − k5Q) + αQ + φI − k̃7H

}
,

=
k̃8

k̃7ν2

(
κk5k̃7 + κηφk5 + ηασk̃3

k1k̃3k5η

)
λS − k̃8

ν2η
(I + ηH),

=
k̃8

ην2

[(
κk5k̃7 + κηφk5 + ηασk̃3

k1k̃3k5k̃7

)
λS − (I + ηH)

]

≤ k̃8

ην2

[(
κk5k̃7 + κηφk5 + ηασk̃3

k1k̃3k5k̃7

)
λS∗ − (I + ηH)

]
, since S ≤ S∗ in D̂.

(6.19)

Similarly, by using V ≤ V ∗ in D̂, the last four terms of Ḟ can be simplified as follows:

(
ν1θ1κk6k̃8 + ν2ηθ3φ + θ1κk6 + ν2ηθ5ασ1k̃4

k2k̃4k6ν2η

)
ĖV +

(
ν1k̃8 + ν2ηθ3φ

ν2ηk̃4

)
˙IV

+

(
θ5α

k6

)
Q̇V + ḢV ,

≤ k̃8

ην2

[(
ν1θ1κk6k̃8 + ν2ηθ3φ + θ1κk6 + ν2ηθ5ασ1k̃4

k2k̃4k6k̃8

)
λV ∗ − (ν1IV + ν2HV )

]
.

(6.20)

Using (6.19) and (6.20) in (6.18) gives:

Ḟ ≤ k̃8

ην2

[(
κk5k̃7 + κηφk5 + ηασk̃3

k1k̃3k5k̃7

)
λS∗ − (I + ηH)

]

+
k̃8

ην2

[(
ν1θ1κk6k̃8 + ν2ηθ3φ + θ1κk6 + ν2ηθ5ασ1k̃4

k2k̃4k6k̃8

)
λV ∗ − (ν1IV + ν2HV )

]

=
k̃8λ

ην2β1

(Rm
vac − 1) ≤ 0, whenever Rm

vac ≤ 1.
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Since all the parameters and variables of the model (6.2) are non-negative, it follows

that Ḟ ≤ 0 for Rm
vac ≤ 1. Furthermore, Ḟ = 0 if and only if E = EV = I = IV = Q =

QV = H = HV = 0. Hence, F is a Lyapunov function on D̂. Thus, it follows, by the

LaSalle’s Invariance Principle (Theorem 2.6), that

(E, EV , I, IV , Q, QV , H, HV ) → (0, 0, 0, 0, 0, 0, 0, 0) as t →∞. (6.21)

Furthermore, it follows from (6.21) that lim sup
t→∞

I = lim inf
t→∞

I = 0 and lim sup
t→∞

H =

lim inf
t→∞

H = 0. Thus, for sufficiently small $∗ > 0, there exist constants M1,M2 > 0

such that lim sup
t→∞

I ≤ $∗ for all t > M1 and lim sup
t→∞

H ≤ $∗ for all t > M2. Hence, it

follows from the eleventh equation of the model (6.2) that, for t > max{M1,M2},

Ṙ ≤ γ1$
∗ + γ2$

∗ − µR.

Thus, by comparison theorem (Theorem 2.8),

R∞ = lim sup
t→∞

R ≤ γ1$
∗ + γ2$

∗

µ
,

so that, by letting $∗ → 0,

R∞ = lim sup
t→∞

R ≤ 0. (6.22)

Similarly (by using lim inf
t→∞

I = 0 and lim inf
t→∞

H = 0), it can be shown that

R∞ = lim inf
t→∞

R ≥ 0. (6.23)

Thus, it follows from (6.22) and (6.23) that

R∞ ≥ 0 ≥ R∞.
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Hence,

lim
t→∞

R = 0. (6.24)

Similarly, it can be shown that

lim
t→∞

S(t) = S∗, lim
t→∞

V (t) = V ∗, and lim
t→∞

RV (t) = 0. (6.25)

Thus, by combining equations (6.21), (6.24) and (6.25), it follows that every solution of

the equations in the model (6.2), with initial conditions in D̂, approaches E0 as t →∞
(for Rm

vac ≤ 1).

Hence, the model (6.2) cannot undergo backward bifurcation when the standard

incidence function is replaced by the mass action incidence function (since Theorem

6.4 shows that, in this case, the model has no endemic equilibrium when Rm
vac < 1; and

Theorem 6.5 shows that the associated DFE of the model (6.2) with δ1 = δ2 = 0, is

GAS when Rm
vac ≤ 1). Figure 6.3 depicts the numerical results obtained by simulating

the model (6.2) with δ1 = δ2 = 0, using various initial conditions, for the case when

Rm
vac < 1. It is clear from this figure that all initial solutions converged to the DFE, E0

(in line with Theorem 6.5).

In summary, the aforementioned analyses show that the vaccine-induced backward

bifurcation phenomenon of the model (6.2) can be removed by doing any of the follow-

ing:

(i) using a perfect vaccine (with efficacy 100%); or

(ii) ignoring disease-induced mortality in the model (this is equivalent to replacing the

standard incidence function in the model with a mass action incidence function).
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6.4 Global Stability of EEP

In this section, the global stability of the endemic equilibrium of the model (6.2) is given

for the special case where the vaccine does not wane (ψ = 0), no continuous vaccination

(ζ = 0; but there is cohort vaccination of newly-recruited susceptible individuals (ρ 6=
0)), unvaccinated hospitalized individuals do not transmit infection (η = 0) and the

associated disease- induced mortality is negligible (i.e., δ1 = δ2 = 0).

Substituting ψ = ζ = η = δ1 = δ2 = 0 into the model (6.2) gives:

dS

dt
= (1− p)Π− λS − µS,

dV

dt
= pΠ− (1− ε)λV − µV,

dE

dt
= λS − (κ + σ + µ)E,

dEV

dt
= (1− ε)λV − (θ1κ + σ1 + µ)EV ,

dI

dt
= κE − (γ1 + φ + µ)I,

dIV

dt
= θ1κEV − (θ2γ1 + θ3φ + µ)IV ,

dQ

dt
= σE − (α + µ)Q,

dQV

dt
= σ1EV − (θ5α + µ)QV ,

dH

dt
= αQ + φI − (γ2 + µ)H,

dHV

dt
= θ5αQV + θ3φIV − (θ6γ2 + µ)HV ,

dR

dt
= γ1I + γ2H − µR,

dRV

dt
= θ2γ1IV + θ6γ2HV − µRV ,

(6.26)

where, now,

λ =
β(I + ν1IV )

N
. (6.27)
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It should be recalled that setting δ1 = δ2 = 0 in (6.2) implies that N → Π/µ as t →∞.

Using N = Π/µ in (6.27) gives

λ = β1(I + ν1IV ), where β1 =
βµ

Π
. (6.28)

It can be shown that the associated reproduction number of the reduced model (6.26),

with (6.28), is given by

Rmr
vac =

β1(1− ε)ρΠν1θ1κ

µk2k̃4

+
β1(1− ρΠ)κ

µk1k̃3

.

Furthermore, it is easy to show, using the technique in Section 6.3.1, that the reduced

model, (6.26) with (6.28), has a unique EEP, of the form

E2 = (S∗∗∗, V ∗∗∗, E∗∗∗, E∗∗∗
V , I∗∗∗, I∗∗∗V , Q∗∗∗, Q∗∗∗

V , H∗∗∗, H∗∗∗
V , R∗∗∗, R∗∗∗

V ),

whenever Rmr
vac > 1.

Lemma 6.3. The reduced model (6.26), with (6.28), has a unique positive endemic

equilibrium, of the form E2, whenever Rmr
vac > 1.

It is convenient to define the region

D0 =

{
(S, V,E, EV , I, IV , Q, QV , H, HV , R, RV ) ∈ D :

E = EV = I = IV = Q = QV = H = HV = R = RV = 0

}
.

Theorem 6.6. The unique endemic equilibrium of the reduced model (6.26), with

(6.28), given by E2, is GAS in D \ D0 if Rmr
vac > 1 .
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Proof. Consider the reduced model (6.26), with (6.28). Let Rmr
vac > 1, so that the asso-

ciated unique endemic equilibrium exists (Lemma 6.3). Further, consider the following

non-linear Lyapunov function for the sub-system consisting of the first six equations

of (6.26):

F = (1− ε)β1V
∗∗∗I∗∗∗

[
S − S∗∗∗ − S∗∗∗ ln

(
S

S∗∗∗

)
+ E − E∗∗∗ − E∗∗∗ ln

(
E

E∗∗∗

)]

+ (1− ε)β1V
∗∗∗I∗∗∗

k1

κ

[
I − I∗∗∗ − I∗∗∗ ln

(
I

I∗∗∗

)]

+ ν1β1S
∗∗∗I∗∗∗V

[
V − V ∗∗∗ − V ∗∗∗ ln

(
V

V ∗∗∗

)
+ EV − E∗∗∗

V − E∗∗∗
V ln

(
EV

E∗∗∗
V

)]

+ ν1β1S
∗∗∗I∗∗∗V

k2

θ1κ

[
IV − I∗∗∗V − I∗∗∗V ln

(
IV

I∗∗∗V

)]
,

with Lyapunov derivative,

Ḟ = (1− ε)β1V
∗∗∗I∗∗∗

[
Ṡ − S∗∗∗

S
Ṡ + Ė − E∗∗∗

E
Ė +

k1

κ

(
İ − I∗∗∗

I
İ

)]

+ ν1β1S
∗∗∗I∗∗∗V

[
V̇ − V ∗∗∗

V
V̇ + ĖV − E∗∗∗

V

EV

ĖV +
k2

θ1κ

(
˙IV − I∗∗∗V

IV

˙IV

)]
,

so that (using the first six equations of (6.26)),

Ḟ = cβ1V
∗∗∗I∗∗∗

[
Π1 − β1S(I + ν1IV )− µS − S∗∗∗

S
(Π1 − β1S(I + ν1IV )− µS)

]

+ cβ1V
∗∗∗I∗∗∗

[
β1S(I + ν1IV )− k1E − E∗∗∗

E
(β1S(I + ν1IV )− k1E)

]

+ cβ1V
∗∗∗I∗∗∗

k1

κ

[
κE − k̃3I − I∗∗∗

I

(
κE − k̃3I

)]

+ ν1β1S
∗∗∗I∗∗∗V

[
Π2 − cβ1V (I + ν1IV )− µV − V ∗∗∗

V
(Π2 − cβ1V (I + ν1IV )− µV )

]

+ ν1β1S
∗∗∗I∗∗∗V

[
cβ1V (I + ν1IV )− k2EV − E∗∗∗

V

EV

(cβ1V (I + ν1IV )− k2EV )

]

+ ν1β1S
∗∗∗I∗∗∗V

k2

θ1κ

[
θ1κEV − k̃4IV − I∗∗∗V

IV

(
θ1κEV − k̃4IV

)]
,

(6.29)

168



where,

c = 1− ε, Π1 = (1− ρ)Π and Π2 = ρΠ.

It can be shown from (6.26) that, at endemic steady-state E2,

Π1 = β1(I
∗∗∗ + ν1I

∗∗∗
V )S∗∗∗ + µS∗∗∗, Π2 = cβ1(I

∗∗∗ + ν1I
∗∗∗
V )V ∗∗∗ + µV ∗∗∗,

k1 =
β1(I

∗∗∗ + ν1I
∗∗∗
V )S∗∗∗

E∗∗∗ , k2 =
cβ1(I

∗∗∗ + ν1I
∗∗∗
V )V ∗∗∗

E∗∗∗
V

,

k̃3I
∗∗∗ =

κ

k1

β1(I
∗∗∗ + ν1I

∗∗∗
V )S∗∗∗, k̃4I

∗∗∗
V =

θ1κ

k2

cβ1(I
∗∗∗ + ν1I

∗∗∗
V )V ∗∗∗.

(6.30)

Using the first two relations of (6.30) in equation (6.29), and simplifying, gives

Ḟ = cβ1V
∗∗∗I∗∗∗ [β1(I

∗∗∗ + ν1I
∗∗∗
V )S∗∗∗ + µS∗∗∗ − µS]

+ cβ1V
∗∗∗I∗∗∗

{
−S∗∗∗

S
[β1(I

∗∗∗ + ν1I
∗∗∗
V )S∗∗∗ + µS∗∗∗ − β1S(I + ν1IV )− µS]

}

+ cβ1V
∗∗∗I∗∗∗

[
−E∗∗∗

E
(β1S(I + ν1IV )− k1E) +

k1

κ

{
−k̃3I − I∗∗∗

I

(
κE − k̃3I

)}]

+ ν1β1S
∗∗∗I∗∗∗V [cβ1(I

∗∗∗ + ν1I
∗∗∗
V )V ∗∗∗ + µV ∗∗∗ − µV ]

+ ν1β1S
∗∗∗I∗∗∗V

{
−V ∗∗∗

V
[cβ1(I

∗∗∗ + ν1I
∗∗∗
V )V ∗∗∗ + µV ∗∗∗ − cβ1V (I + ν1IV )− µV ]

}

+ ν1β1S
∗∗∗I∗∗∗V

{
−E∗∗∗

V

EV

(cβ1V (I + ν1IV )− k2EV ) +
k2

θ1κ

[
−k̃4IV − I∗∗∗V

IV

(
θ1κEV − k̃4IV

)]}
,

so that,
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Ḟ = cµβ1V
∗∗∗S∗∗∗I∗∗∗

(
2− S∗∗∗

S
− S

S∗∗∗

)
+ ν1µβ1V

∗∗∗S∗∗∗I∗∗∗V

(
2− V ∗∗∗

V
− V

V ∗∗∗

)

+

(
cβ2

1S
∗∗∗V ∗∗∗I∗∗∗ + ν1cβ

2
1S

∗∗∗V ∗∗∗I∗∗∗V − k1k̃3

κ
cβ1V

∗∗∗I∗∗∗
)

I

+

(
ν1cβ

2
1S

∗∗∗V ∗∗∗I∗∗∗ + ν2
1cβ

2
1S

∗∗∗V ∗∗∗I∗∗∗V − k2k̃4

θ1κ
ν1β1S

∗∗∗I∗∗∗V

)
IV

+ cβ2
1S

∗∗∗V ∗∗∗I∗∗∗(I∗∗∗ + ν1I
∗∗∗
V )− cβ2

1V
∗∗∗I∗∗∗

(S∗∗∗)2

S
(I∗∗∗ + ν1I

∗∗∗
V )

− cβ2
1V

∗∗∗I∗∗∗
E∗∗∗

E
S(I + ν1IV ) + k1cβ1V

∗∗∗I∗∗∗E∗∗∗ − cβ1V
∗∗∗I∗∗∗

k1EI∗∗∗

I

+ cβ1V
∗∗∗I∗∗∗

k1k̃3

κ
I∗∗∗ + ν1cβ

2
1S

∗∗∗V ∗∗∗I∗∗∗V (I∗∗∗ + ν1I
∗∗∗
V )− ν1cβ

2
1S

∗∗∗I∗∗∗V

(V ∗∗∗)2

V
(I∗∗∗ + ν1I

∗∗∗
V )

− ν1cβ
2
1S

∗∗∗I∗∗∗V

E∗∗∗
V

EV

V (I + ν1IV ) + k2ν1β1S
∗∗∗I∗∗∗V E∗∗∗

V

− ν1β1S
∗∗∗I∗∗∗V

k2EV I∗∗∗V

IV

+ ν1β1S
∗∗∗I∗∗∗V

k2k̃4

θ1κ
I∗∗∗V .

(6.31)

It can be shown from the last two relations of (6.30) that

cβ2
1S

∗∗∗V ∗∗∗I∗∗∗ + ν1cβ
2
1S

∗∗∗V ∗∗∗I∗∗∗V − k1k̃3

κ
cβ1V

∗∗∗I∗∗∗ = 0,

ν1cβ
2
1S

∗∗∗V ∗∗∗I∗∗∗ + ν2
1cβ

2
1S

∗∗∗V ∗∗∗I∗∗∗V − k2k̃4

θ1κ
ν1β1S

∗∗∗I∗∗∗V = 0.

(6.32)

Substituting (6.32) in (6.31) gives
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Ḟ = cµβ1V
∗∗∗S∗∗∗I∗∗∗

(
2− S∗∗∗

S
− S

S∗∗∗

)
+ ν1µβ1V

∗∗∗S∗∗∗I∗∗∗V

(
2− V ∗∗∗

V
− V

V ∗∗∗

)

+ cβ2
1S

∗∗∗V ∗∗∗I∗∗∗(I∗∗∗ + ν1I
∗∗∗
V )− cβ2

1V
∗∗∗I∗∗∗

(S∗∗∗)2

S
(I∗∗∗ + ν1I

∗∗∗
V )

− cβ2
1V

∗∗∗I∗∗∗
E∗∗∗

E
S(I + ν1IV ) + k1cβ1V

∗∗∗I∗∗∗E∗∗∗ − cβ1V
∗∗∗I∗∗∗

k1EI∗∗∗

I

+ cβ1V
∗∗∗I∗∗∗

k1k̃3

κ
I∗∗∗ + ν1cβ

2
1S

∗∗∗V ∗∗∗I∗∗∗V (I∗∗∗ + ν1I
∗∗∗
V )− ν1cβ

2
1S

∗∗∗I∗∗∗V

(V ∗∗∗)2

V
(I∗∗∗ + ν1I

∗∗∗
V )

− ν1cβ
2
1S

∗∗∗I∗∗∗V

E∗∗∗
V

EV

V (I + ν1IV ) + k2ν1β1S
∗∗∗I∗∗∗V E∗∗∗

V − ν1β1S
∗∗∗I∗∗∗V

k2EV I∗∗∗V

IV

+ ν1β1S
∗∗∗I∗∗∗V

k2k̃4

θ1κ
I∗∗∗V .

(6.33)

Using the last four relations of (6.30) in equation (6.33) gives

Ḟ = cµβ1V
∗∗∗S∗∗∗I∗∗∗

(
2− S∗∗∗

S
− S

S∗∗∗

)
+ ν1µβ1V

∗∗∗S∗∗∗I∗∗∗V

(
2− V ∗∗∗

V
− V

V ∗∗∗

)

+ cβ2
1S

∗∗∗V ∗∗∗I∗∗∗(I∗∗∗ + ν1I
∗∗∗
V )− cβ2

1V
∗∗∗I∗∗∗

(S∗∗∗)2

S
(I∗∗∗ + ν1I

∗∗∗
V )

− cβ2
1V

∗∗∗I∗∗∗
E∗∗∗

E
S(I + ν1IV ) + cβ2

1S
∗∗∗V ∗∗∗I∗∗∗(I∗∗∗ + ν1I

∗∗∗
V )

− cβ2
1V

∗∗∗I∗∗∗S∗∗∗(I∗∗∗ + ν1I
∗∗∗
V )

EI∗∗∗

IE∗∗∗ + cβ2
1S

∗∗∗V ∗∗∗I∗∗∗(I∗∗∗ + ν1I
∗∗∗
V )

+ ν1cβ
2
1S

∗∗∗V ∗∗∗I∗∗∗V (I∗∗∗ + ν1I
∗∗∗
V )− ν1cβ

2
1S

∗∗∗I∗∗∗V

(V ∗∗∗)2

V
(I∗∗∗ + ν1I

∗∗∗
V )

− ν1cβ
2
1S

∗∗∗I∗∗∗V

E∗∗∗
V

EV

V (I + ν1IV ) + k2ν1cβ
2
1S

∗∗∗V ∗∗∗I∗∗∗V (I∗∗∗ + ν1I
∗∗∗
V )

− ν1cβ
2
1S

∗∗∗V ∗∗∗I∗∗∗V (I∗∗∗ + ν1I
∗∗∗
V )

EV I∗∗∗V

E∗∗∗
V IV

+ ν1cβ
2
1S

∗∗∗V ∗∗∗I∗∗∗V (I∗∗∗ + ν1I
∗∗∗
V ).

Thus,
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Ḟ = cµβ1V
∗∗∗S∗∗∗I∗∗∗

(
2− S∗∗∗

S
− S

S∗∗∗

)
+ ν1µβ1V

∗∗∗S∗∗∗I∗∗∗V

(
2− V ∗∗∗

V
− V

V ∗∗∗

)

+ cβ2
1S

∗∗∗V ∗∗∗(I∗∗∗)2

(
3− S∗∗∗

S
− E∗∗∗SI

ES∗∗∗I∗∗∗
− EI∗∗∗

IE∗∗∗

)

+ ν2
1cβ

2
1S

∗∗∗V ∗∗∗(I∗∗∗V )2

(
3− V ∗∗∗

V
− E∗∗∗

V V IV

EV I∗∗∗V V ∗∗∗ −
EV I∗∗∗V

E∗∗∗
V IV

)

+ ν1cβ
2
1S

∗∗∗V ∗∗∗I∗∗∗I∗∗∗V

(
6− S∗∗∗

S
− E∗∗∗SIV

ES∗∗∗I∗∗∗V

− EI∗∗∗

E∗∗∗I
− V ∗∗∗

V
− E∗∗∗

V V I

EV V ∗∗∗I∗∗∗
− EV I∗∗∗V

E∗∗∗
V IV

)
.

Finally, since the arithmetic mean exceeds the geometric mean, then

(
2− S∗∗∗

S
− S

S∗∗∗

)
≤ 0,

(
2− V ∗∗∗

V
− V

V ∗∗∗

)
≤ 0,

(
3− S∗∗∗

S
− SIE∗∗∗

S∗∗∗I∗∗∗E
− EI∗∗∗

IE∗∗∗

)
≤ 0,

(
3− V ∗∗∗

V
− E∗∗∗

V V IV

EV I∗∗∗V V ∗∗∗ −
EV I∗∗∗V

E∗∗∗
V IV

)
≤ 0,

(
6− S∗∗∗

S
− E∗∗∗SIV

ES∗∗∗I∗∗∗V

− EI∗∗∗

E∗∗∗I
− V ∗∗∗

V
− E∗∗∗

V V I

EV V ∗∗∗I∗∗∗
− EV I∗∗∗V

E∗∗∗
V IV

)
≤ 0.

Further, since all the model parameters are non-negative, it follows that Ḟ ≤ 0 for

Rmr
vac > 1. Thus, F is a Lyapunov function of the sub-system consisting of the first

six equations of the model (6.26) on D \ D0. Therefore, it follows, by the LaSalle’s

Invariance Principle [41], that

lim
t→∞

S(t) = S∗∗∗, lim
t→∞

V (t) = V ∗∗∗, lim
t→∞

E(t) = E∗∗∗,

lim
t→∞

I(t) = I∗∗∗, lim
t→∞

EV (t) = E∗∗∗
V , lim

t→∞
IV (t) = I∗∗∗V .

(6.34)

It is clear from (6.34) that lim sup
t→∞

E = E∗∗∗. Thus, for sufficiently small small $ > 0,

there exists a constant n1 > 0 such that lim sup
t→∞

E ≤ E∗∗∗ + $ for all t > n1. It follows

from the seventh equation of the model (6.26) that, for t > n1,
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Q̇ ≤ σ(E∗∗∗ + $)− (α + µ)Q.

Thus, by comparison theorem (Theorem 2.8),

Q∞ = lim sup
t→∞

Q ≤ σ(E∗∗∗ + $)

α + µ
,

so that, by letting $ → 0,

Q∞ = lim sup
t→∞

Q ≤ σE∗∗∗

α + µ
. (6.35)

Similarly (by using lim inf
t→∞

E = E∗∗∗), it can be shown that

Q∞ = lim inf
t→∞

Q ≥ σE∗∗∗

α + µ
. (6.36)

Thus, it follows from (6.35) and (6.36) that

Q∞ ≥ σE∗∗∗

α + µ
≥ Q∞.

Hence,

lim
t→∞

Q =
σE∗∗∗

α + µ
= Q∗∗∗. (6.37)

Similarly, it can be shown that

lim
t→∞

H(t) = H∗∗∗, lim
t→∞

QV (t) = Q∗∗∗
V , lim

t→∞
HV (t) = H∗∗∗

V ,

lim
t→∞

R(t) = R∗∗∗, lim
t→∞

RV (t) = R∗∗∗
V .

(6.38)

Thus, by combining (6.34), (6.37) and (6.38), it follows that every solution to the

equations of the reduced model (6.26) with (6.28), with initial conditions in D \ D0,

approaches the unique endemic equilibrium of the reduced system (6.26) with (6.28)
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as t →∞ for Rmr
vac > 1.

The above result (Theorem 6.6) shows that, for this special case (with ψ = ζ =

η = δ1 = δ2 = 0), the disease will persist in the population whenever the associated

reproduction number (Rmr
vac) exceeds unity. Figure 6.4A depicts the simulation results

of the model (6.26) for the case when Rmr
vac > 1, showing convergence to an EEP (in

line with Theorem 6.6; a blow up of Figure 6.4A is given in Figure 6.4B to confirm that

the solutions, indeed, converged to the EEP). Further extensive numerical simulations

suggest that the endemic equilibrium (E1) of the model (6.2) is GAS in D\D0, whenever

Rvac > 1. Hence, the following conjecture is suggested.

Conjecture 6.1. The unique endemic equilibrium of the model (6.2), given by E1, is

GAS in D \ D0, whenever Rvac > 1.

6.5 Assessment of Vaccinae Impact

In this section, the potential impact of the imperfect vaccine is assessed by carrying out

threshold analysis on the associated reproduction number (Rm
vac) as follows (it should

be recalled that Rm
vac is the reproduction number associated with the model (6.2) in the

absence of disease-induced mortality; in this case, the requirementRm
vac ≤ 1 is sufficient

for disease elimination, as confirmed by Theorem 6.5). First of all, the quantity Rm
vac is

expressed as a function of the fraction of susceptible individuals vaccinated at steady-

state, denoted by T = V ∗
N∗ , given by:

Rm
vac(T ) =

β(1− T )(κk5k̃7 + ηφκk5 + ησαk̃3)

k1k̃3k5k̃7

+
β(1− ε)T (ν1θ1κk6k̃8 + ν2ηθ1κθ3φk6 + ν2ησ1θ5αk̃4)

k2k̃4k6k̃8

.

Differentiating Rm
vac partially with respect to T gives
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∂Rm
vac

∂T =
−β(κk5k̃7 + ηφκk5 + ησαk̃3)

k1k̃3k5k̃7

+
β(1− ε)(ν1θ1κk6k̃8 + ν2ηθ1κθ3φk6 + ν2ησ1θ5αk̃4)

k2k̃4k6k̃8

.

(6.39)

The critical (threshold) value of vaccine efficacy (denoted by εc) needed to ensure

positive population-level vaccine impact (in reducing disease burden in the community)

can be obtained by setting the right-hand side of equation (6.39) to zero and solving

for ε (it should be mentioned that disease burden is typically measured in terms of the

number of new infections, hospitalizations and disease-induced mortality). This gives:

εc = 1− (κk5k̃7 + ηφκk5 + ησαk̃3)k2k̃4k6k̃8

(ν1θ1κk6k̃8 + ν2ηθ1κθ3φk6 + ν2ησ1θ5αk̃4)k1k̃3k5k̃7

.

It follows then that
∂Rm

vac

∂T < 0 whenever ε > εc. That is, Rm
vac is a decreasing func-

tion of the fraction of susceptible individuals vaccinated at steady-state (T ) whenever

ε > εc. Thus, the above analysis shows that the vaccine will have a positive population-

level impact in reducing disease burden whenever ε > εc, and will not otherwise. This

result is summarized below:

Lemma 6.4. Consider the model (6.2) with δ1 = δ2 = 0. The vaccine will have:

(i) a positive population-level impact if ε > εc;

(ii) no population-level impact if ε = εc;

(iii) negative population-level impact if ε < εc.

A plot of the reproduction number (Rm
vac) as a function of the fraction of susceptible

individuals vaccinated at steady-state (T ) is given in Figure 6.5, for the cases where

ε > εc and ε < εc. This figure shows that, for the case when ε > εc, the reproduction
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threshold,Rm
vac, decreases as T increases. On other hand,Rm

vac increases with increasing

values of T for the case when ε < εc (these results are in line with Lemma 6.4).

Alternatively, the vaccine impact can be measured by rewriting Rm
vac as

Rm
vac = R0

[
1− V ∗

N∗

(
1− R0v

R0

)]
, (6.40)

where,

R0 =
β(κk5k̃7 + ηφκk5 + ησαk̃3)

k1k̃3k5k̃7

, (6.41)

and V ∗ and S∗ are as defined in Section 6.3. The quantity, R0, is the reproduction

number of the model (6.2) with δ1 = δ2 = 0 in the absence of vaccination. Furthermore,

R0v =
β(1− ε)(ν1θ1κk6k̃8 + ν2ηθ1κθ3φk6 + ν2ησ1θ5αk̃4)

k2k̃4k6k̃8

(6.42)

is the reproduction number when every individual in the population is vaccinated

[7, 27].

Let,

χ =
V ∗

N∗

(
1− R0v

R0

)
. (6.43)

It should be noted from the expression in (6.43) that if R0v < R0, then the vaccine

impact factor, χ, is positive, so that the vaccine will reduce Rm
vac (hence, the vaccine

will have positive community-wide impact in this case disease burden). On the other

hand, if R0v > R0, then the vaccine will have negative community-wide impact (i.e.,

it will increase disease burden) since χ < 0 in this case. Finally, if R0v = R0 (so

that, χ = 0), then the vaccine will have no community-wide impact. These results are

summarized below.

Theorem 6.7. Consider the model (6.2) with δ1 = δ2 = 0. The vaccine will have:
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(i) a positive community-wide impact if χ > 0 (R0v < R0);

(ii) no impact if χ = 0 (R0v = R0);

(iii) negative community-wide impact if χ < 0 (R0v > R0).

The above result (Theorem 6.7) is numerically illustrated, by depicting the cumu-

lative number of new cases of infection as a function of time, in Figures 6.6 and 6.7.

Figure 6.6 shows the case with ε > εc (χ > 0), from which it is clear that the use of

the imperfect vaccine induces a positive community-wide impact (since the cumulative

number of new cases of infection in the presence of the vaccine is less than that in

the absence of vaccination). However, for the case when ε < εc (χ < 0), the use of

an imperfect vaccine causes a detrimental community-wide impact (since, in this case,

the cumulative number of new cases exceeds that for the case when vaccination is not

implemented (Figure 6.7)).

A contour plot of Rm
vac, as a function of the fraction of susceptible individuals

vaccinated at steady-state (T ) and the vaccine efficacy (ε), is depicted in Figure 6.8.

It is clear from Figure 6.8 that effective disease elimination is feasible if the fraction of

individuals vaccinated at steady-state (T ) and vaccine efficacy (ε) are high enough.

For example, if the vaccine is 70% effective (ε = 0.7), vaccinating 50% of the susceptible

population at steady-state (T = 0.5) will be sufficient to eliminate the disease.

Further numerical simulations were carried out to assess the impact of the singular

use of the quarantine/isolation strategy (in the absence of the imperfect vaccine). The

following levels of quarantine/isolation effectiveness are considered (arbitrarily):

(i) low effectiveness level of the quarantine/isolation strategy (φ = 0.05, σ =

0.05, δ1 = δ2 = 0; so that, R0 = 1.1138);

(ii) moderate effectiveness level of the quarantine/isolation strategy (φ = 0.1, σ =

0.1, δ1 = δ2 = 0; so that, R0 = 0.9815);
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(iii) high effectiveness level of the quarantine/isolation strategy (φ = 1, σ = 1, δ1 =

δ2 = 0; so that, R0 = 0.8491).

In other words, it is assumed that the moderately effective quarantine/isolation strategy

is twice as effective as the low effective quarantine/isolation strategy. Furthermore,

the high quarantine/isolation effective strategy is ten times more effective than the

moderately effective quarantine/isolation strategy (as mentioned above, these choices

are made arbitrarily).

The simulation results obtained, depicted in Figure 6.9, show a decrease in the

cumulative number of new cases of infection with increasing effectiveness level of the

quarantine/isolation strategy. For instance, while the low effectiveness strategy results

in about over 250,000 cumulative new cases over 2 years (Figure 6.9A), the moder-

ate and high effectiveness levels of the quarantine/isolation strategy resulted in only

4,000 and 1,000 new cases, over the same time period, respectively (Figure 6.9B).

Thus, based on the parameter values used in these simulations, the singular use of the

quarantine/isolation strategy could lead to the effective control (or elimination) of the

disease if its effectiveness level is moderately high enough (since both the moderate

and the high effectiveness level of the quarantine/isolation strategy guaranteed that

the associated reproduction number, Rm
vac, is less than unity so that, by Theorem 6.5,

the disease will be eliminated from the community).

Furthermore, simulations for the universal strategy, where the quarantine/isolation

strategy is combined with a vaccination strategy, are also carried out. Here, too, three

effectiveness levels are considered (arbitrarily), as follows:

(i) low effectiveness level of the universal strategy (φ = 0.05, σ = 0.05, σ1 =

0.05, ζ = 0.05, ρ = 0.25, δ1 = δ2 = 0; so that, Rm
vac = 0.7593);

(ii) moderate effectiveness level of the universal strategy φ = 0.1, σ = 0.1, σ1 =

0.1, ζ = 0.1, ρ = 0.4, δ1 = δ2 = 0; so that, Rm
vac = 0.5380);
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(iii) high effectiveness level of the universal strategy (φ = 1, σ = 1, σ1 = 1ζ = 1, ρ =

0.5, δ1 = δ2 = 0; so that, Rm
vac = 0.2355).

Clearly, each of the three levels of the universal strategy reduces the associated repro-

duction number, Rm
vac , to a value less than unity (so that, by Theorem 6.5, the disease

will be eliminated from the community under each of the aforementioned universal

strategy scenarios). Figure 6.10 shows the simulation results obtained for the various

effectiveness level of the universal strategy. This figure shows a dramatic decrease

in the cumulative number of new cases in comparison to the corresponding number

of cases recorded using the quarantine/isolation strategy alone (depicted in Figure

6.9). For instance, while the low effectiveness level of the universal strategy resulted

in 1800 cases over 2 years (note that the corresponding number of cases for the quar-

antine/isolation strategy only is about 250,000), the moderate and high effectiveness

levels of the universal strategy resulted in 600 and 200 new cases, over the same time

period, respectively.

These simulations show that, while a moderately high effectiveness level is required

if only quarantine/isolation is used, even the low effectiveness level of the universal

strategy (considered in this chapter) will guarantee elimination of the disease from the

community. Figure 6.11A shows that the disease can be eliminated after about 200

days using the high effectiveness level of the universal strategy (the time to disease

elimination increases with decreasing effectiveness level of the universal strategy ( see

Figure 6.11B and Figure 6.11C)). In other words, the prospect of disease elimination

from the community is greatly enhanced if the universal strategy is used.

6.6 Summary

In this chapter, a new deterministic model for disease transmission in a population,

subject to the use of quarantine (of asymptomatic cases) and isolation (of symptomatic
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cases) and an imperfect vaccine, is designed and rigorously analyzed. The analyses of

the model, which consists of twelve mutually-exclusive epidemiological compartments,

shows the following:

(i) The model undergoes the phenomenon of backward bifurcation when the associ-

ated reproduction number (Rvac) is less than unity (Theorem 6.2). The presence

of this phenomenon, which does not arise if the vaccine is 100% effective or if the

standard incidence function is replaced by mass action incidence function in the

model formulation (Theorems 6.3 and 6.5), implies that the effective control of

the spread of the disease, using an imperfect vaccine (in addition to quarantine

and isolation), depends on the initial sizes of the sub-populations of the model

(when Rvac < 1);

(ii) The disease-free equilibrium of the model is shown to be globally-asymptotically

stable under any of the following scenarios (Theorems 6.3 and 6.5):

(a) if the vaccine is perfect (i.e., the vaccine is 100% effective);

(b) if there is no disease-induced mortality;

(iii) The model has a unique endemic equilibrium whenever the associated reproduc-

tion threshold (Rvac) exceeds unity (Theorem 6.2). The unique endemic equilib-

rium of the model is shown to be globally-asymptotically stable for a special case

(Theorem 6.6);

(iv) An imperfect vaccine could have positive or negative population-level impact,

depending on the value of some associated threshold quantities (expressed in

terms of a critical vaccine efficacy, εc, or a vaccine impact factor, χ) (Lemma 6.4

and Theorem 6.7).

Numerical simulations of the model (6.2), with δ1 = δ2 = 0, suggest the following:
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(a) the singular use of quarantine/isolation strategy may lead to the effective control

of the disease (or elimination) if its effectiveness level is moderately high enough;

(b) the combined use of the quarantine/isolation strategy with a vaccination strategy

will eliminate the disease, even for the low efficacy level of the universal strategy

(considered in this chapter).

Overall, the analyses in this chapter show that adding a vaccine to the quaran-

tine/isolation model (3.2) alters its asymptotic dynamics (by inducing the phenomenon

of backward bifurcation). The prospect of disease control using quarantine/isolation,

as a single control strategy, is bright provided its effectiveness level is moderately high

enough. The use of a universal strategy, involving the use of quarantine, isolation and

an imperfect vaccine, will lead to disease elimination (even for the low effectiveness

level considered in the simulations).
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Table 6.2: Estimated values for the pa-
rameters of the model (6.2)

Parameters Values (per day) Sources
Π 136 [38]
β [0.1, 0.2] [38]
µ 0.0000351 [38]
γ1 0.03521 [15]
γ2 0.042553 [15]
δ1 0.04227 [59]
δ2 0.027855 [15]
κ 0.156986 [23]
α 0.156986 [23]
φ 0.20619 [15]
σ 0.1 [38]
σ1 0.06 Assumed
ψ 0.0666 Assumed
η 0.6 Assumed
ν1 0.9 Assumed
ν2 0.8 Assumed
ε [0,1] Variable
ζ 0.7 Assumed
θ1 0.6 Assumed
θ2 1.4 Assumed
θ3 0.7 Assumed
θ4 0.6 Assumed
θ5 0.5 Assumed
θ6 1.4 Assumed
θ7 0.7 Assumed
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Figure 6.2: Backward bifurcation diagram for the model (6.2). Parameter values used
are: Π = 136, β = 1.4, µ = 0.001, ζ = 0.06, ψ = 0.0001, κ =
0.00016, θ1 = 0.7 θ4 = 0.9, σ1 = 0.09, θ5 = 0.9, θ2 = 1, θ6 =
1, θ3 = 0.01, θ7 = 1, δ1 = 0.001, δ2 = 0.01, ν1 = 0.9, ρ = 0.1, ε =
10−7, α = 1, φ = 1, γ1 = 0.01, γ2 = 0.1, η = 1, ν2 = 1, σ = 1 (so that,
Rc

vac = 0.5673706974 < Rvac = 0.6719831393 < 1).
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Figure 6.3: Simulation of the model (6.2) with δ1 = δ2 = 0 showing the total number
of infected individuals as a function of time for the case when Rm

vac < 1.
Parameter values used are as given in Table 6.2, with β = 0.15 (so that,
Rm

vac = 0.6206).
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Figure 6.4: Simulation of the model (6.26) showing the total number of infected indi-
viduals as a function of time for Rmr

vac > 1. (A) Convergence to an EEP. (B)
Blow up of tail end of Figure 6.4A. Parameter values used are as given in
Table 6.2, with β = 0.5, ψ = ζ = η = δ1 = δ2 = 0 (so that, Rmr

vac = 1.2260).
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Figure 6.5: Simulations of the model (6.2) with δ1 = δ2 = 0 showing the reproduction
number (Rm

vac) as a function of the fraction of susceptible individuals vac-
cinated at steady-state (T ). Parameter values used are as given in Table
6.2, with (A): β = 0.3, θ2 = θ6 = 1.1, δ1 = δ2 = 0 and ε = 0.001 (so that,
0.001 = ε < εc = 0.0058); (B): ε = 0.5 (so that, 0.5 = ε > εc = 0.0058).
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Figure 6.6: Simulations of the model (6.2), showing the cumulative number of new cases
of infection as a function of time in the presence or absence of vaccination.
Parameter values used are as given in Table 6.2, with β = 0.3, θ2 = θ6 =
1.1, δ1 = δ2 = 0 and ε = 0.5 (so that, χ = 0.4538 > 0, 0.5 = ε > εc = 0.0058
and the vaccine has a positive population-level impact).
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Figure 6.7: Simulations of the model (6.2), showing the cumulative number of new cases
of infection as a function of time in the presence or absence of vaccination.
Parameter values used are as given in Table 6.2, with β = 0.3, θ2 = θ6 =
1.1, δ1 = δ2 = 0 and ε = 0.001 (so that, χ = −0.0053 < 0, 0.001 = ε <
εc = 0.0058, and the vaccine has a negative population-level impact).
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Figure 6.8: Simulation of the model (6.2), showing contour plots of Rm
vac as a function

of vaccine efficacy (ε) and the fraction of susceptible individuals vaccinated
at steady- state (T ). Parameter values used are as given in Table 6.2, with
β = 0.15 and δ1 = δ2 = 0.
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Figure 6.9: Simulations of the model (6.2) with δ1 = δ2 = 0, showing the cumula-
tive number of new cases of infection for various effectiveness levels of the
quarantine/isolation strategy in the absence of vaccination. Parameter
values used are as given in Table 6.2 with all vaccine-related parameters
set to zero. (A) Low effectiveness levels of quarantine/isolation strategy:
β = 0.06; φ = 0.05; σ = 0.05 (so that, R0 = 1.1138). (B) Moderate effec-
tiveness levels of quarantine/isolation strategy: β = 0.06; φ = 0.1; σ = 0.1
(so that, R0 = 0.9815) and high effectiveness levels of quarantine/isolation
strategy: β = 0.06; φ = 1; σ = 1 (so that, R0 = 0.8491).
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Figure 6.10: simulations of the model (6.2) with δ1 = δ2 = 0, showing the cumulative
number of new cases of infection for various effectiveness levels of the
universal strategy. Parameter values used are as given in Table 6.2, with:
(i) low effectiveness level of universal strategy: β = 0.06; φ = 0.05, σ =
0.05, σ1 = 0.05, ζ = 0.05, ρ = 0.25 (so that, Rm

vac = 0.7593); (ii) moderate
effectiveness level of universal strategy: β = 0.06; φ = 0.1, σ = 0.1, σ1 =
0.1, ζ = 0.1, ρ = 0.4 (so that, Rm

vac = 0.5380); (iii) high effectiveness level
of universal strategy: β = 0.06; φ = 1, σ = 1, σ1 = 1, ζ = 1, ρ = 0.5 (so
that, Rm

vac = 0.2355).
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Figure 6.11: simulations of the model (6.2) with δ1 = δ2 = 0, showing the time needed
to eliminate the disease for various effectiveness levels of the universal
strategy. Parameter values used are as given in Table 6.2, with: (A) high
effectiveness level of universal strategy: β = 0.06; φ = 1, σ = 1, σ1 =
1, ζ = 1, ρ = 0.5 (so that, Rm

vac = 0.2355); (B) moderate effectiveness level
of universal strategy: β = 0.06; φ = 0.1, σ = 0.1, σ1 = 0.1, ζ = 0.1, ρ = 0.4
(so that, Rm

vac = 0.5380); (C) low effectiveness level of universal strategy:
β = 0.06; φ = 0.05, σ = 0.05, σ1 = 0.05, ζ = 0.05, ρ = 0.25 (so that,
Rm

vac = 0.7593).
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Chapter 7

Quarantine/Isolation Model with

Multiple Disease Stages

7.1 Introduction

Many of the models used in studying the effect of quarantine and isolation in combat-

ting the spread of a communicable disease tend to be built based on the assumption that

the average waiting time in the associated disease stages is exponentially distributed

(see, for instance, [48, 77]). However, some recent studies [32, 92] show that it may be

more realistic to use gamma distribution assumptions for the average waiting time in

the disease stages (rather than the exponential distribution assumption). Furthermore,

Feng et al. [32] showed that quarantine and isolation models that assume exponential

distribution (for the disease stages) may not be suitable for diseases with relatively long

latent and/or infectious periods for the case when isolation is not completely effective

(i.e., for the case where isolated individuals can transmit infection).

The purpose of this chapter is to provide a rigorous qualitative analysis of a new

deterministic model for transmission dynamics of a communicable disease, subject to

the use of quarantine and isolation, where the average waiting times in the associated
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infected classes are assumed to have gamma distribution. The model to be designed

extends the SEIQHR model (3.2) by considering multiple stages of the exposed, in-

fectious, quarantined and hospitalized individuals (however, unlike in the model (3.2),

it’s assumed here that hospitalized individuals do not transmit infection). Diseases like

HIV [80] and influenza [26] are known to have multiple disease (infection) stages.

7.2 Model Formulation and Basic Properties

The total population at time t, denoted by N(t), is sub-divided into six disjoint classes

of susceptible (S(t)), exposed (E(t); with m exposed stages ), quarantined (Q(t); with

m quarantined stages), infectious (I(t); with n infectious stages ), hospitalized (H(t);

with n hospitalized stages) and recovered (R(t)) individuals, so that

N(t) = S(t) +
m∑

i=1

Ei(t) +
n∑

j=1

Ij(t) +
m∑

i=1

Qi(t) +
n∑

j=1

Hj(t) + R(t).

The susceptible population is increased by the recruitment of individuals into the com-

munity (assumed susceptible), at a rate Π. Susceptible individuals may acquire infec-

tion, following effective contact with infectious individuals (in any of the n infectious

stages) at a rate λ, where

λ =

β

n∑
j=1

Ij

N
. (7.1)

It is assumed that infected individuals in the Ei, Qi (with i = 1, 2, · · · ,m) and Hj

(with j = 1, 2, · · · , n) classes do not transmit infection (i.e., it is assumed that exposed

individuals do not transmit infection, and that quarantine and isolation measures are

implemented in a perfect manner, so that quarantined and isolated individuals do not

transmit infection). Although some of these assumptions may not be entirely realistic
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in some epidemiological settings, such as in the transmission dynamics of influenza

(where transmission by infected individuals without disease symptoms occurs), they

help in making the mathematical analysis of the resulting large system of non-linear

differential equations more tractable. Furthermore, in (7.1), the parameter β is the

effective contact rate (contact capable of leading to infection). The population of

susceptible individuals is further decreased by natural death (at a rate µ), and increased

when recovered individuals lose their infection-acquired immunity (at a rate ψ). Thus,

the rate of change of the susceptible population is given by

dS

dt
= Π + ψR− λS − µS.

The population of exposed individuals in stage 1 (E1) is generated by the infection

of susceptible individuals (at the rate λ). This population is decreased by progression

to the next exposed stage (E2; at a rate a1α), quarantine (at a rate σ1) and natural

death (at the rate µ), so that

dE1

dt
= λS − (a1α + σ1 + µ)E1.

The population of exposed individuals in stage i (with 2 ≤ i ≤ m) is generated

by the progression of individuals in stage Ei−1 into the stage i (at a rate ai−1α). It is

decreased by progression to the next exposed stage (at a rate aiα), quarantine (at a

rate σi) and natural death (at the rate µ), so that

dEi

dt
= ai−1αEi−1 − (aiα + σi + µ)Ei; i = 2, · · · ,m.

The population of infectious individuals in stage 1 is generated when exposed indi-

viduals in the final (m) stage develop symptoms (at the rate amα). It is decreased by

progression to the next infectious stage (I2; at a rate d1κ ), hospitalization (at a rate
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φ1), natural death (at the rate µ) and disease-induced death (at a rate δ1). This gives

dI1

dt
= amαEm − (d1κ + φ1 + µ + δ1)I1.

The population of infectious individuals in stage j (with 2 ≤ j ≤ n) is generated by

progression of individuals in stage j−1 (at a rate dj−1κ). It is decreased by progression

to the next infectious stage (at a rate djκ), hospitalization (at a rate φj), natural death

(at the rate µ) and disease-induced death (at a rate δj). Individuals in the final (n)

stage of infectiousness recover (at a rate γ1 = dnκ). Thus,

dIj

dt
= dj−1κIj−1 − (djκ + φj + µ + δj)Ij; j = 2, · · · , n− 1,

and,

dIn

dt
= dn−1κIn−1 − (φn + γ1 + µ + δn)In.

Exposed individuals in stage 1 are quarantined at the rate σ1. The population of

quarantined individuals in stage 1 is decreased by progression to the next quarantined

stage (at a rate b1α) and natural death (at the rate µ). Thus,

dQ1

dt
= σ1E1 − (b1α + µ)Q1.

Similarly, the population of quarantined individuals in stage i (with 2 ≤ i ≤ m−1)

is generated by the quarantine of exposed individuals in stage Ei (at the rate σi) and

the progression of quarantined individuals in stage Qi−1 into the stage Qi (at a rate

bi−1α). It is decreased by progression to the next quarantined stage (at a rate biα) and

natural death (at the rate µ). Thus,

dQi

dt
= σiEi + bi−1αQi−1 − (biα + µ)Qi ; i = 2, · · · ,m.
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It should be mentioned that the parameters σi (i = 1, 2, · · · ,m) can be used to

model the progressive refinement of quarantine measures in the population, by as-

suming smaller values of σi at the beginning and higher values for later stages (e.g.,

for m = 3, we can assume smaller values for σ1 and σ2, but a higher value for σ3; so

that, σ1 < σ2 < σ3).

The population of hospitalized individuals in stage 1 is generated by the hospital-

ization of quarantined individuals in the final stage (m; at the rate bmα) and infectious

individuals in stage 1 (at the rate φ1). It is decreased by progression to the next hospi-

talized stage (at a rate c1κ), natural death (at the rate µ), and disease-induced death

(at a rate δn+1). Thus,

dH1

dt
= bmαQm + φ1I1 − (c1κ + µ + δn+1)H1.

The population of hospitalized individuals in stage j (with 2 ≤ j ≤ n) is generated

by the hospitalization of infectious individuals in stage j (Ij) (at the rate φj) and the

progression of hospitalized individuals in stage j−1 (Hj−1) into the Hj class (at a rate

cj−1κ). It is decreased by the progression to the next hospitalized stage (at a rate cjκ),

natural death (at the rate µ) and disease-induced death (at a rate δn+j). Individuals

in the final n stage of hospitalized recover (at a rate γ2 = cnκ). Thus,

dHj

dt
= φjIj + cj−1κHj−1 − (cjκ + µ + δn+j)Hj; j = 2, · · · , n− 1,

and,

dHn

dt
= φnIn + cn−1κHn−1 − (γ2 + µ + δ2n)Hn.

As in the case of the quarantine measures discussed above, the parameters φi (i =

1, · · · , n) can also be used to model the progressive refinement of isolation (in hospital;
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so that, for n = 3, we can have φ1 < φ2 < φ3). Finally, the population of recovered

individuals is generated by the recovery of non-hospitalized and hospitalized infectious

individuals in the final n stage (at the rates γ1 and γ2, respectively). It is decreased by

the loss of natural immunity (at the rate ψ) and natural death (at the rate µ), so that

dR

dt
= γ1In + γ2Hn − (ψ + µ)R.

It should be stated that, in the above formulation, ai, bi, cj, dj (i = 1, 2, · · · ,m; j =

1, 2, · · · , n) are constants. Furthermore, it is assumed that the distributions of the

exposed, quarantined, infectious and hospitalized periods are exponential, given by

pEi
(s) = aiαe−aiαs,

pIj
(s) = diκe−diκs,

pQi
(s) = biαe−biαs,

pHj
(s) = cjκe−cjκs for i = 1, · · · ,m and j = 1, · · · , n.

(7.2)

In (7.2), TEi
= 1/aiα, TIj

= 1/djκ, TQi
= 1/biα and THj

= 1/cjκ are the mean exposed,

quarantined, infectious and hospitalized periods, respectively. The relations in (7.2)

are such that:

m∑
i=1

1

aiα
=

m∑
i=1

1

biα
=

1

α
and

n∑
j=1

1

cjκ
=

n∑
j=1

1

djκ
=

1

κ
. (7.3)

That is, the respective mean time spent in a given infected compartment (e.g., 1/κ for

the hospitalized compartment, H) is shared among the various stages in that compart-

ment. In other words, the time period 1/κ is distributed equally (if c1 = c2 = · · · =

cn = n) or unequally (if c1 6= c2 6= · · · 6= cn 6= n) between all the Hj (j = 1, 2, · · · , n)
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stages. Hence, this formulation extends the formulation in [32], where these periods

are equally distributed among the relevant stages (for all the infected compartments,

E, Q, I, H), by allowing for equal or unequal distribution of the average sojourn times

in the asymptomatic (1/α) and symptomatic (1/κ) compartments. In line with [32],

it is assumed that the mean exposed and quarantined periods are the same (1/α) and

the mean infectious and hospitalized periods are the same (1/κ).

Let,

E =
m∑

i=1

aiEi

m
, I =

n∑
j=1

djIj

n
, Q =

m∑
i=1

biQi

m
and H =

n∑
j=1

cjHj

n
. (7.4)

It follows from (7.2) and (7.4), using the properties of gamma distribution ([49]; see

also Section 2.10 for a brief description), that the compartments E, I,Q and H indeed

have gamma distributions, given, respectively, by

pE(s) =
(mα)me−mαssm−1

Γ(m)
; m ≥ 1,

pI(s) =
(nκ)ne−nκssn−1

Γ(n)
; n ≥ 1,

pQ(s) =
(mα)me−mαssm−1

Γ(m)
; m ≥ 1,

pH(s) =
(nκ)ne−nκssn−1

Γ(n)
; n ≥ 1,

where the associated exposed, infectious, quarantined and hospitalized periods are
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given, respectively, by (see also [32, 100])

TE =
1

α
,

TI =
1

κ
,

TQ =
1

α
,

TH =
1

κ
.

It should be mentioned that the above formulation ((7.3) and (7.4)) reduces to that

given in [32] by setting ai = bi = m (for i = 1, · · · ,m) and cj = dj = n (for j =

1, · · · , n). In other words, it should be emphasized that the main distinction between

the gamma distribution formulation in this chapter and that in [32] is that, here, it is

assumed that the average sojourn periods in each of the four compartments, E, I, Q,

and H, given by 1/α, 1/κ, 1/α and 1/κ, respectively, are distributed (not necessarily

equally) among the various sub stages (whereas, these periods are distributed equally

at each related stage in [32]). Eichner et al. [26] considered 9 latent and 19 infectious

stages to model the transmission dynamics of pandemic influenza.

It is worth stating that although the sums defined in (7.4) are gamma distributed,

the actual (true) total number of infected individuals, Etrue, Itrue, Qtrue and Htrue, given,

respectively, by

Etrue =
m∑

i=1

Ei, Itrue =
n∑

j=1

Ij, Qtrue =
m∑

i=1

Qi and Htrue =
n∑

j=1

Hj, (7.5)

are not necessarily gamma distributed. However, the different sums in (7.4) have the

same means, with their respective sums given in (7.5), but different variances.

Thus, putting all these formulations and assumptions together, it follows that the

model for the transmission dynamics of an infectious disease in the presence of exposed,
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quarantine, infectious and isolation periods, subject to gamma distributed sojourn

periods, is given by the following non-linear system of differential equations (a flow

diagram of the model is given in Figure 7.1; and the associated variables and parameters

are described in Table 7.1):

dS

dt
= Π + ψR− λS − µS,

dE1

dt
= λS − (σ1 + a1α + µ)E1,

dE2

dt
= a1αE1 − (σ2 + a2α + µ)E2,

dEj

dt
= aj−1αEj−1 − (σj + ajα + µ)Ej; j = 3, · · · ,m,

dI1

dt
= amαEm − (φ1 + d1κ + µ + δ1)I1,

dI2

dt
= d1κI1 − (φ2 + d2κ + µ + δ2)I2,

dIj

dt
= dj−1κIj−1 − (φj + djκ + µ + δj)Ij; j = 3, · · · , n− 1,

dIn

dt
= dn−1κIn−1 − (φn + dnκ + µ + δn)In,

dQ1

dt
= σ1E1 − (b1α + µ)Q1,

dQ2

dt
= σ2E2 + b1αQ1 − (b2α + µ)Q2,

dQj

dt
= σjEj + bj−1αQj−1 − (bjα + µ)Qj; j = 3, · · · ,m,

dH1

dt
= bmαQm + φ1I1 − (c1κ + µ + δn+1)H1,

dH2

dt
= φ2I2 + c1κH1 − (c2κ + µ + δn+2)H2,

dHj

dt
= φjIj + cj−1κHj−1 − (cjκ + µ + δn+j)Hj; j = 3, · · · , n− 1,

dHn

dt
= φnIn + cn−1κHn−1 − (cnκ + µ + δ2n)Hn,

dR

dt
= γ1In + γ2Hn − (ψ + µ)R.

(7.6)
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Table 7.1: Description of variables and parameters of the model (7.6).

Variable Description

S(t) Population of susceptible individuals
Ei(t) Population of exposed individuals in ith

exposed stage (i = 1, · · · ,m)
Ij(t) Population of infected individuals in jth

infectious stage (j = 1, · · · , n)
Qi(t) Population of quarantined individuals in ith

quarantined stage (i = 1, · · · ,m)
Hj(t) Population of hospitalized individuals in jth

hospitalized stage (j = 1, · · · , n)
R(t) Population of recovered individuals

Parameter Description

Π Recruitment rate
µ Natural death rate
β Effective contact rate
djκ Progression rate from infectious stage j to j + 1 (j = 1, · · · , n)
cjκ Progression rate from hospitalized stage j to j + 1 (j = 1, · · · , n)
σi Quarantine rate of exposed individuals on ith

exposed stage (i = 1, · · · ,m)
aiα Progression rate from exposed stage i to i + 1 (i = 1, · · · ,m− 1)
amα Progression rate to first infectious class

of exposed individuals in stage m
biα Progression rate from quarantined

stage i to i + 1 (i = 1, · · · ,m− 1)
bmα Progression rate to first hospitalized class of quarantined

individuals in stage m
φj Hospitalization rate for infectious individuals in jth infectious

stage (j = 1, · · · , n)
ψ Rate of loss of infection-acquired immunity
γ1 Recovery rate for infectious individuals in stage n
γ2 Recovery rate for hospitalized individuals in stage n
δj(1 ≤ j ≤ n) Disease-induced death rate for individuals in jth infectious stage
δj(n + 1 ≤ j ≤ 2n) Disease-induced death rate for individuals in (n− j)th hospitalized stage
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Figure 7.1: Flow diagram of the model (7.6).

The model (7.6) extends the multi-stage model given in [32], by:

(i) including a term for the loss of infection-acquired immunity (at the rate ψ). Al-
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though the numerical simulations to be carried out in this chapter are largely

based on the 2003 SARS outbreaks (which was a single season epidemic), the

model (7.6) is robust enough to enable the assessment of the transmission dy-

namics of any arbitrary disease where the infection-acquired immunity is lost

either during a single season or in multiple seasons (such as the case of influenza,

malaria, and some childhood diseases);

(ii) including disease-induced death (at rates δi; i = 1, 2, · · · , 2n). Most diseases,

such as HIV, malaria, influenza, TB, etc., have significant disease-induced mor-

tality. Hence, it is crucial that this feature is incorporated in their modeling

studies;

(iii) assuming the average sojourn periods in the exposed, quarantined, infectious and

hospitalized classes are distributed (not necessarily equally) among the various

stages (these periods are assumed to be equally distributed among each of the

aforementioned four infected compartments in [32]). Although, to our knowl-

edge, there is no definitive epidemiological data to suggest that these periods are

equally or unequally distributed, the model (7.6) is general enough to allow for

the assessment of each of the two cases;

(iv) assuming varied rates of quarantine and isolation in each quarantine and isolation

stage (same rates are used in [32] in all quarantine and isolation stages). This

assumption allows for the assessment of progressive refinement of quarantine and

isolation measures (this was evident during 2003 SARS outbreaks [38, 59]).

The model (7.6) is denoted by GD1 for comparison purposes.

It is worth emphasizing that the model (7.6) reduces to the model in [32] by setting

ψ = δ1 = δ2 = · · · = δ2n = 0, a1 = a2 = · · · = am = b1 = b2 = · · · = bm = m, c1 = c2 =

· · · = cn = d1 = d2 = · · · = dn = n, φ1 = · · · = φn = φ and σ1 = · · · = σ. Also, the
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model (7.6) is an extension of the model (3.2) by considering m stages for the exposed

(Ei; i = 1, 2, · · · ,m) and quarantined (Qi; i = 1, 2, · · · ,m) individuals, and n stages for

the infectious (Ij; j = 1, 2, · · · , n) and the hospitalized (Hj; j = 1, 2, · · · , n) individuals

(i.e., the model (7.6) reduces to the model (3.2) by setting n = m = 1, taking into

account the assumption that hospitalized individuals do not transmit infection; this

assumption is relaxed in the model (3.2)).

In addition to formulating the model in terms of gamma-distributed average wait-

ing times for the associated disease stages, this chapter contributes by way of carrying

out a detailed rigorous mathematical analysis of the model (7.6). In particular, global

asymptotic stability results for the equilibria of the model will be proven (under certain

conditions). Furthermore, the model (7.6) is used to evaluate the impact of quaran-

tine and isolation in combatting the spread of a given communicable disease (such as

SARS). This chapter offers not only important extensions to the model presented in

[32], it also contributes by extending some of the mathematical results presented in [32]

(particularly, by giving global stability proof of the associated endemic equilibrium of

the extended model (7.6)). The following results can be established using the approach

in Section 3.2

Theorem 7.1. The state variables of the model (7.6) are non-negative for all time. In

other words, solutions of the model system (7.6) with positive initial data will remain

positive for all time t > 0.

Lemma 7.1. The closed set

D =

{
(S, E1, · · · , Em, I1, · · · , In, Q1, · · · , Qm, H1, · · · , Hn, R) ∈ R2(m+n+1)

+ :

S +
m∑

i=1

(Ei + Qi) +
n∑

j=1

(Ij + Hj) + R ≤ Π

µ

}
is positively-invariant for the model (7.6).

(7.7)
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7.3 Stability of Disease-free Equilibrium

7.3.1 Local stability

The DFE of the model (7.6) is given by

Ω0 = (S∗, E∗
1 , · · · , E∗

m, I∗1 , · · · , I∗n, Q∗
1, · · · , Q∗

m, H∗
1 , · · · , H∗

n, R∗)

= (Π/µ, 0, · · · , 0).

(7.8)

The local stability of Ω0 will be explored using the next generation operator method

[21, 87]. Using the notation in [87], the non-negative matrix, F, of the new infection

terms, and the M -matrix, V, of the transition terms associated with the model (7.6),

are given, respectively, by

F =

(
AF BF CF

)
,

and,

V =




AV BV

CV DV


 ,

where, AF is 2(m+n)×m zero matrix, CF , BV are 2(m+n)×(m+n), (m+n)×(m+n)

zero matrices, respectively. Furthermore, BF is a 2(m + n)× n matrix, given by

BF =




β β · · · β

0 0 · · · 0

...
...

...

0 0 · · · 0




.

The matrices, AV , CV and DV are (m + n)× (m + n) are given, respectively, by
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AV =




k1

−a1α k2

−a2α k3

. . . . . .

−amα km+1

−d1κ km+2

−d2κ km+3

. . . . . .

−dn−1κ km+n




,

CV =




−σ1

−σ2

. . .

−σm

−φ1

−φ2

. . .

−φn




,

and,
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DV =




km+n+1

−b1α km+n+2

−b2α km+n+3

. . . . . .

−bmα k2m+n+1

−c1κ k2m+n+2

−c2κ k2m+n+3

. . . . . .

−cn−1κ k2(m+n)




,

with,

kj =





σj + ajα + µ; 1 ≤ j ≤ m;

φj−m + dj−mκ + µ + δj−m; m + 1 ≤ j ≤ m + n;

bj−(m+n)α + µ; n + m + 1 ≤ j ≤ 2m + n;

cj−(2m+n)κ + µ + δj−2m; 2m + n + 1 ≤ j ≤ 2(m + n).

Let,

Al = αm−l+1

m∏

i=l

ai, l = 1, 2, · · · ,m;

Bl =
m+n−1∏

i=l

ki, l = 1, 2, · · · , m + n− 1; with (Bm+n = 1);

Dl =
Al

Bl

; l = 1, 2, · · · ,m; Dm+1 =
1

Bm+1

;

(7.9)
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Cp,q = κp−1

p−1∏
i=1

di+q−1 +

p∏
s=2

km+s+q−1 +

p−2∑
t=1

κt

t∏
i=1

di+q−1

p∏
s=2+t

km+s+q−1;

for (p = 3, · · · , n; q = n + 1− p); C1,n = 1 and C2,n−1 = κdn−1 + km+n.

It follows that the control reproduction number [2, 44], denoted by Rc = ρ(FV −1),

where ρ is the spectral radius, is given by

Rc =
βD1Cn,1

km+n

.

Using Theorem 2.10, the following result is established.

Lemma 7.2. The DFE of the model (7.6), given by (7.8), is locally-asymptotically

stable if Rc < 1, and unstable if Rc > 1.

The quantity Rc measures the average number of new infections generated by a sin-

gle infectious individual introduced into a completely susceptible population. Lemma

7.2 implies that the disease can be eliminated from the community (when Rc < 1) if

the initial sizes of the sub-populations of the model are in the basin of attraction of

the DFE (Ω0). To ensure that disease elimination is independent of the initial sizes of

sub-populations, it is necessary to show that the DFE is globally-asymptotically stable

if Rc < 1. This is explored below.

7.3.2 Global stability

Theorem 7.2. The DFE of the model (7.6), given by (7.8), is GAS in D whenever

Rc ≤ 1.

Proof. Consider the following Lyapunov function (with the coefficients B,C and D as
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defined in (7.9)):

F =

(
km+nRc

β

)
E1 + Cn,1D2E2 +

m∑
j=3

Cn,1DjEj +
n−1∑
j=1

(
Cn−j+1,j

Bm+j

)
Ij + In

with Lyapunov derivative given by,

Ḟ =

(
km+nRc

β

)
Ė1 + Cn,1D2Ė2 +

m∑
j=3

Cn,1DjĖj +
n−1∑
j=1

(
Cn−j+1,j

Bm+j

)
İj + İn,

=

(
km+nRc

β

)



βS

n∑
j=1

Ij

N
− k1E1




+ Cn,1D2 (a1αE1 − k2E2)

+
m−1∑
j=3

Cn,1Dj (aj−1αEj−1 − kjEj) + Cn,1Dm (am−1αEm−1 − kmEm)

+
Cn,1

Bm+1

(amαEm − km+1I1) +
n−1∑
j=2

Cn−j+1,j

Bm+j

(dj−1κIj−1 − km+jIj) + dn−1κIn−1 − km+nIn,

≤ km+nRc

n∑
j=1

Ij −
(

k1km+nRc

β

)
E1 + Cn,1D2 (a1αE1 − k2E2)

+
m−1∑
j=3

Cn,1Dj (aj−1αEj−1 − kjEj) + Cn,1Dm (am−1αEm−1 − kmEm)

+
Cn,1

Bm+1

(amαEm − km+1I1) +
n−1∑
j=2

Cn−j+1,j

Bm+j

(dj−1κIj−1 − km+jIj)

+ dn−1κIn−1 − km+nIn, since S ≤ N in D,
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= km+nRc

n∑
j=1

Ij +

(
−k1km+nRc

β
+ Cn,1D2a1α

)
E1 +

m+1∑
j=3

Cn,1Djaj−1αEj−1

−
m∑

j=2

Cn,1DjkjEj +
n∑

j=2

Cn−j+1,j

Bm+j

dj−1κIj−1 −
n−1∑
j=1

Cn−j+1,j

Bm+j

km+jIj − km+nIn,

= km+nRc

n∑
j=1

Ij +
m∑

j=2

Cn,1 (Dj+1ajα−Djkj) Ej +
n−1∑
j=1

(
djκCn−j,j+1

Bm+j+1

− km+jCn−j+1,j

Bm+j

)
Ij

− km+nIn.

It can be shown, after some lengthy algebraic manipulations, that

Dj+1ajα−Djkj = 0,

and,

djκCn−j,j+1

Bm+j+1

− km+jCn−j+1,j

Bm+j

= −km+n.

Hence,

Ḟ ≤ km+n (Rc − 1)
n∑

j=1

Ij ≤ 0 for Rc ≤ 1.

Since all the parameters of the model (7.6) and variables are non-negative, it follows

that Ḟ ≤ 0 for Rc ≤ 1 with Ḟ = 0 if and only if I1 = I2 = · · · = In = 0. Hence, F is

a Lyapunov function on D. Therefore, by the LaSalle’s Invariance Principle (Theorem

2.6),

lim
t→∞

Ei(t) = 0, for all i = 1, · · · ,m;

lim
t→∞

Ij(t) = 0, for all j = 1, · · · , n.

(7.10)
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It is clear from (7.10) that lim sup
t→∞

E1 = 0. Thus, for sufficiently small small $1 > 0,

there exists a constant N1 > 0 such that lim sup
t→∞

E1 ≤ $1 for all t > N1. It follows from

the (m + n + 2)th equation of the model (7.6) that, for t > N1,

Q̇1 ≤ σ1$1 − km+n+1Q1.

Thus, by comparison theorem (Theorem 2.8),

Q∞
1 = lim sup

t→∞
Q1 ≤ σ1$1

km+n+1

,

so that, by letting $1 → 0,

Q∞
1 = lim sup

t→∞
Q1 ≤ 0. (7.11)

Similarly (by using lim inf
t→∞

E1 = 0), it can be shown that

Q1∞ = lim inf
t→∞

Q1 ≥ 0. (7.12)

Thus, it follows from (7.11) and (7.12) that

Q1∞ ≥ 0 ≥ Q∞
1 .

Hence,

lim
t→∞

Q1 = 0. (7.13)

Similarly, it can be shown that
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lim
t→∞

Qi(t) = 0, for all i = 2, · · · ,m,

lim
t→∞

Hj(t) = 0, for all j = 1, · · · , n,

lim
t→∞

R(t) = 0 and lim
t→∞

S(t) = Π/µ.

(7.14)

Thus, by combining (7.10), (7.13) and (7.14), it follows that every solution of the

equations in the model (7.6), with initial conditions in D, approaches the DFE, Ω0, as

t →∞ when Rc ≤ 1.

The epidemiological implication of the above result is that the combined use of

quarantine and isolation can lead to disease elimination if they can bring (and keep)

the threshold quantity,Rc, to a value less than or equal unity (i.e., the conditionRc ≤ 1

is necessary and sufficient for disease elimination). Figure 7.2 depicts numerical results

obtained by simulating the model (7.6), with m = 2 and n = 3, using various initial

conditions for the case Rc < 1. It is clear from this figure that all solutions converged

to the DFE, Ω0 (in line with Theorem 7.2). It should be mentioned that, unless

otherwise stated, the numerical simulations of the model (7.6) are carried out using

the parameter values in Tables 3.2 and 7.2. These parameter values are consistent with

those associated with the 2003 SARS outbreaks [15, 23, 38, 59]. It is worth mentioning

that the progressive refinement of quarantine and isolation measures is incorporated

in all numerical simulations in this chapter (unless otherwise stated) by using smaller

values of σ1 and σ2, in comparison to σ3; and also smaller values of φ1 and φ2, in

relation to φ3 (see Table 7.2).
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Table 7.2: Quarantine and hospitalization rates for different disease stages

Number of stages Quarantine rates Hospitalization rates
m = n = 1 σ1 = 0.1 φ1 = 0.20619
m = n = 2 σ1 = 0.05, σ2 = 0.1 φ1 = 0.1 φ2 = 0.20619
m = n = 3 σ1 = 0.03333, σ2 = 0.05, σ3 = 0.1 φ1 = 0.0666, φ2 = 0.1, φ3 = 0.20619

Table 7.3: Distribution of exposed and infectious periods for the model (7.6)

Number of stages Values of ai, bi, ci, di

m = n = 1 a1 = b1 = 1, c1 = d1 = 1
m = n = 2 a1 = b1 = 1.5, a2 = b2 = 3, c1 = d1 = 1.5, c2 = d2 = 3
m = n = 3 a1 = b1 = 2, a2 = b2 = 3, a3 = b3 = 6, c1 = d1 = 2, c2 = d2 = 3, c3 = d3 = 6

7.4 Existence and Stability of Endemic Equilibrium

In this section, the possible existence and stability of endemic (positive) equilibria of

the model (7.6) will be explored.

7.4.1 Existence

Let Ω1 = (S∗∗, E∗∗
1 , E∗∗

2 , · · · , E∗∗
m , I∗∗1 , I∗∗2 , · · · , I∗∗n , Q∗∗

1 , Q∗∗
2 , · · · , Q∗∗

m , H∗∗
1 , H∗∗

2 , · · · , H∗∗
n , R∗∗)

represent any arbitrary endemic equilibrium of the model (7.6).

Solving the equations of the model at endemic steady-state gives
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S∗∗ =
Π + ψR∗∗

λ∗∗ + µ
, E∗∗

1 =
λ∗∗S∗∗

k1

, E∗∗
j =

aj−1αE∗∗
j−1

kj

for j = 2, · · · ,m,

I∗∗1 =
amαE∗∗

m

km+1

, I∗∗2 =
d1κI∗∗1

km+2

, I∗∗j =
dj−1κI∗∗j−1

km+j

for j = 3, · · · , n,

Q∗∗
1 =

σ1E
∗∗
1

km+n+1

, Q∗∗
j =

σjE
∗∗
j + bj−1αQ∗∗

j−1

km+n+j

for j = 2, · · · ,m,

H∗∗
1 =

φ1I
∗∗
1 + bnαQ∗∗

n

k2m+n+1

, H∗∗
j =

φjI
∗∗
j + cj−1κH∗∗

j−1

k2m+n+j

for j = 2, · · · , n,

R∗∗ =
γ1I

∗∗
n + γ2H

∗∗
n

ψ + µ
.

(7.15)

The force of infection λ, given by (7.1), can be expressed at endemic steady-state as

λ∗∗ =

β

n∑
j=1

I∗∗j

N∗∗ . (7.16)

As in the case of the model (3.2), for instance, the expressions in (7.15) are re-written

in terms of λ∗∗S∗∗, for mathematical convenience, as below:

E∗∗
1 =

λ∗∗S∗∗

k1

, E∗∗
j =

(
αj−1

k1

j∏

l=2

al−1

kl

)
λ∗∗S∗∗, for j = 2, · · · ,m,

I∗∗1 =

(
αm

k1

m+1∏

l=2

al−1

kl

)
λ∗∗S∗∗, I∗∗j =

(
αmκj−1

k1

m+1∏

l=2

al−1

kl

j∏

l=2

dl−1

km+j

)
λ∗∗S∗∗, for j = 2, · · · , n,

Q∗∗
1 =

σ1λ
∗∗S∗∗

k1km+n+1

= p1λ
∗∗S∗∗, Q∗∗

j = pjλ
∗∗S∗∗, for j = 2, · · · ,m, (7.17)
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H∗∗
1 =

(
αmφ1

k1k2m+n+1

m+1∏

l=2

al−1

kl

+
bmαpm

k2m+n+1

)
λ∗∗S∗∗ = q1λ

∗∗S∗∗, H∗∗
j = qjλ

∗∗S∗∗, for j = 2, · · · , n,

R∗∗ =

(
αmκn−1γ1

k1(ψ + µ)

m+1∏

l=2

al−1

kl

n∏

l=2

dl−1

km+n

+
qnγ2

ψ + µ

)
λ∗∗S∗∗,

where,

p1 =
σ1

k1km+n+1

, q1 =
αmφ1

k1k2m+n+1

m+1∏

l=2

al−1

kl

+
bmαpm

k2m+n+1

,

pj =
bj−1αpj−1

km+n+j

+
σiα

j−1

km+n+jk1

j∏

l=2

al−1

kl

, for j = 2, · · · ,m,

and,

qj =
cj−1κqj−1

k2m+n+j

+
φjα

mκj−1

k1k2m+n+j

m+1∏

l=2

al−1

kl

j∏

l=2

dl−1

km+j

, for j = 2, · · · , n.

Substituting the expressions in (7.17) into (7.16) gives

λ∗∗S∗∗ +
λ∗∗S∗∗λ∗∗

k1

+
m∑

i=2

(
αj−1

k1

j∏

l=2

al−1

kl

)
λ∗∗S∗∗λ∗∗ +

(
αm

k1

m+1∏

l=2

al−1

kl

)
λ∗∗S∗∗λ∗∗

+
n∑

j=2

(
αmκj−1

k1

m+1∏

l=2

al−1

kl

j∏

l=2

dl−1

km+j

)
λ∗∗S∗∗λ∗∗ +

m∑
i=1

qiλ
∗∗S∗∗λ∗∗ +

n∑
j=1

pjλ
∗∗S∗∗λ∗∗

+

(
αmκn−1γ1

k1(ψ + µ)

m+1∏

l=2

al−1

kl

n∏

l=2

dl−1

km+n

+
qnγ2

ψ + µ

)
λ∗∗S∗∗λ∗∗

= β

[
αm

k1

m+1∏

l=2

al−1

kl

+
n∑

j=2

(
αmκj−1

k1

m+1∏

l=2

al−1

kl

j∏

l=2

dl−1

km+j

)]
λ∗∗S∗∗.

(7.18)

Dividing each term in (7.18) by λ∗∗S∗∗(and noting that, at the endemic steady-state,
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λ∗∗S∗∗ 6= 0) gives

1 + Wλ∗∗ = Rc,

where,

W =
1

k1

+
m+1∑
i=2

αj−1

k1

j∏

l=2

al−1

kl

+
n∑

j=2

αmκj−1

k1

m+1∏

l=2

al−1

kl

j∏

l=2

dl−1

km+j

+
m∑

i=1

qi +
n∑

j=1

pj

+
αmκn−1γ1

k1(ψ + µ)

m+1∏

l=2

al−1

kl

n∏

l=2

dl−1

km+n

+
qnγ2

ψ + µ
≥ 0.

Hence,

λ∗∗ =
Rc − 1

W
> 0, whenever Rc > 1. (7.19)

The components of Ω1 can then be obtained by substituting the unique value of λ∗∗

given in (7.19) into the expressions in (7.17). Thus, the following result is established.

Lemma 7.3. The model (7.6) has a unique endemic equilibrium, given by Ω1, whenever

Rc > 1.

7.4.2 Local stability

Define,

D0 =

{
(S, E1, E2, · · · , Em, I1, I2, · · · , In, Q1, Q2, · · · , Qm, H1, H2, · · · , Hn, R) ∈ D :

Ei = Ij = Qi = Hj = R = 0; for i = 1, · · · , m, j = 1, · · · , n

}
,

the stable manifold of the DFE (Ω0). Further, let,
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Rcr = Rc|δ1=δ2=···=δ2n=0 =
βD̃1

˜Cn,1

fm+n

,

where,

D̃1 =

αm

m∏

i=l

ai

m+n−1∏

i=l

fi

and ˜Cn,1 = κn−1

p−1∏
i=1

di +
n∏

s=2

fm+s +
n−2∑
t=1

κt

t∏
i=1

di

n∏
s=2+t

fm+s, (7.20)

with,

fj =





σj + ajα + µ; 1 ≤ j ≤ m;

φj−m + dj−mκ + µ; m + 1 ≤ j ≤ m + n;

bj−(m+n)α + µ; n + m + 1 ≤ j ≤ 2m + n;

cj−(2m+n)κ + µ; 2m + n + 1 ≤ j ≤ 2(m + n).

Theorem 7.3. The unique endemic equilibrium of the model (7.6) is LAS if Rcr > 1.

The proof is given in Appendix D.

The epidemiological implication of Theorem 7.3 is that the disease will persist in

the population if Rc > 1. Simulation results for the model (7.6), depicted in Figure

7.3 (for the case when m = 2, n = 3, and δ1 = δ2 = · · · = δ2n = 0, so that Rc > 1)

using numerous initial conditions, show convergence of the solutions to the endemic

equilibrium (in line with Theorem 7.3).

7.4.3 Global stability for special case

Here, the global stability of the endemic equilibrium of the model (7.6) is given for

the special case where the recovered individuals do not lose their infection-acquired
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immunity (i.e., ψ = 0) and the associated disease-induced mortality in all classes is

negligible (so that, δ1 = δ2 = · · · δ2n = 0). The model (7.6), with ψ = δ1 = δ2 = · · · =
δ2n = 0, then reduces to:

dS

dt
= Π− λS − µS,

dE1

dt
= λS − f1E1,

dE2

dt
= a1αE1 − f2E2,

dEj

dt
= aj−1αEj−1 − fjEj; j = 3, · · · ,m,

dI1

dt
= amαEm − fm+1I1,

dIj

dt
= dj−1κIj−1 − fm+jIj; j = 2, · · · , n,

dQ1

dt
= σ1E1 − fm+n+1Q1,

dQj

dt
= σjEj + bj−1αQj−1 − fm+n+jQj; j = 2, · · · ,m,

dH1

dt
= bmαQm + φ1I1 − f2m+n+1H1,

dHj

dt
= φjIj + cj−1κHj−1 − f2m+n+jHj; j = 2, · · · , n,

dR

dt
= γ1In + γ2Hn − µR.

(7.21)

Adding the equations of the reduced model (7.21) gives dN/dt = Π− µN . Hence,

N → Π/µ as t →∞. Thus, Π/µ is an upper bound of N(t) provided that N(0) ≤ Π/µ.

Further, if N(0) > Π/µ, then N(t) will decrease to this level. Using N = Π/µ in (7.1)

gives a limiting (mass action) system given by (7.21), with

λ = β1

n∑
j=1

Ij, where β1 =
βµ

Π
. (7.22)

It can be shown that the associated reproduction number of the reduced model, (7.21)

with (7.22), is given by
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Rcr =
βD̃1

˜Cn,1

fm+n

,

where, D̃1 =

αm

m∏

i=l

ai

m+n−1∏

i=l

fi

and ˜Cn,1 = κn−1

p−1∏
i=1

di +
n∏

s=2

fm+s +
n−2∑
t=1

κt

t∏
i=1

di

n∏
s=2+t

fm+s.

It is easy to show, using the technique in Section 7.4.1, that the reduced model, given

by (7.21) with (7.22), has a unique EEP whenever Rcr > 1.

Lemma 7.4. The reduced model, given by (7.21) with (7.22), has a unique endemic

equilibrium whenever Rcr > 1.

Furthermore, the following result is claimed (see Appendix E for the proof).

Theorem 7.4. The unique endemic equilibrium of the reduced model, given by (7.21)

with (7.22), is GAS in D \ D0 if Rcr > 1.

Figure 7.4 depicts the cumulative number of new infections as a function of quar-

antine rates, from which it is evident that the cumulative number of new infections

decreases with increasing quarantine rate. A similar result is obtained by increas-

ing the isolation rate (Figure 7.5). It should be mentioned that the simulation re-

sults in Figures 7.4 and 7.5 are consistent with those reported in [32]. Although

the global asymptotic stability result given in Appendix E is for a special case (with

ψ = δ1 = δ2 = · · · = δ2n = 0), further extensive numerical simulations suggest that the

endemic equilibrium Ω1, of the full model (7.6), is GAS in D \ D0 whenever Rc > 1.

Hence, the following conjecture is made.

Conjecture. The unique endemic equilibrium of the model (7.6), denoted by Ω1,

is GAS in D \ D0 if Rc > 1.
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The effect of the number of disease stages for the exposed (m) and infectious (n)

classes is monitored by simulating the model (7.6) with various values of m = n. The

results obtained, depicted in Figure 7.6, show an increase in the cumulative number of

disease-related mortality with increasing values of m = n.

Simulations for the cumulative number of probable SARS cases observed during

the 2003 outbreaks in the Greater Toronto Area (GTA) of Canada are also carried

out. The results obtained, for the case m = n = 3, are compared with those obtained

using the exponentially-distributed (ED) equivalent of the model (7.6) (i.e., model

(7.6) with m = n = 1) and another gamma-distributed version of the model (7.6) with

m = n = 3, denoted by GD2, where the average sojourn time in each of the exposed,

quarantined, hospitalized and infectious stages is shared equally among each associated

disease stage (this is similar to the model given in [32]). It should be mentioned that, in

such a setting, the standard ED model has the associated reproduction number given by

Rc = 0.6506. Similarly, the GD2 and GD1 models have Rc = 0.6962 and Rc = 0.9858,

respectively. Furthermore, about 250 probable SARS cases were reported for the GTA

(see Figure 2 in [38]). The simulation results obtained, depicted in Figure 7.7, show

that while the ED and GD2 models under-estimated the observed number of probable

cases, the GD1 model (7.6) gave a very good estimate of the observed data. It should

be mentioned that the GD2 model is also competitive if the quarantine and isolation

rates are distributed (unequally) to incorporate their progressive refinement (as in the

case of the model GD1).

Similar comparisons are made for the cumulative number of cases recorded for the

Hong Kong 2003 SARS outbreaks (approximately 1750 cases were recorded in Hong

Kong [38]). Here, too, the GD1 model is more competitive (Figure 7.8). For these

simulations, the ED, GD1 and GD2 models have Rc given by 0.7345, 0.9710 and

0.7861, respectively. It should be emphasized, however, that the reason why the GD1

model gives different results, compared to the GD2 model (for instance), is that the
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values of σ1 and σ2, and also φ1 and φ2, used in the simulations of the GD1 model are

different from the quarantine (σ) and isolation (φ) rates used in the simulations of the

GD2 model. While the values σ1 = 0.0333, σ2 = 0.05, σ3 = 0.1 and φ1 = 0.0666, φ2 =

0.1, φ3 = 0.20619 were used in the simulations of the GD1 model (to account for the

gradual refinement of quarantine and isolation), the values σ1 = σ2 = σ3 = 0.1 and

φ1 = φ2 = φ3 = 0.20619 were used in the simulations of the GD2 model (that’s why

the Rc value for the GD1 model is 0.9710, while that of the GD2 model is 0.7861 for

this setting).

The effect of the distribution of sojourn times for the symptomatic period (1/κ)

is monitored by simulating the GD1 model (7.6) with the parameters in Table 3.2 for

the case where the periods are either same or varied in each stage (i.e., the case where

dj = n = cj versus the case where dj 6= n 6= cj). In both cases, the same numerical

simulation results were obtained (Figure 7.9). In other words, distributing the average

sojourn times equally or unequally between the sub stages of the symptomatic classes

(I and H) does not alter the numerical simulation results obtained. The effect of the

distribution of sojourn times in the asymptomatic classes (E and Q; given by 1/α)

is also monitored by simulating the model with the parameters in Table 3.2 for three

different scenarios. An asymptomatic period 1/α = 6 days is chosen, and distributed

as follows:

(I) 2.5 days in E1 and Q1 classes (i.e., 1/a1α = 1/b1α = 2.5 days), 2 days in E2 and

Q2 classes (i.e., 1/a2α = 1/b2α = 2 days) and 1.5 days in E3 and Q3 classes (i.e.,

1/a3α = 1/b3α = 1.5 days);

(II) 2 days in E1 and Q1 classes (i.e., 1/a1α = 1/b1α = 2 days), 2 days in E2 and

Q2 classes (i.e., 1/a2α = 1/b2α = 2 days) and 2 days in E3 and Q3 classes (i.e.,

1/a3α = 1/b3α = 2 days);

(III) 1.5 days in E1 and Q1 classes (i.e., 1/a1α = 1/b1α = 1.5 days), 2 days in E2 and
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Q2 classes (i.e., 1/a2α = 1/b2α = 2 days) and 2.5 days in E3 and Q3 classes (i.e.,

1/a3α = 1/b3α = 2.5 days).

The simulation results obtained (depicted in Figure 7.10) clearly show that if the

asymptomatic period is distributed such that more time is spent in the early stages

of the asymptomatic (latent and quarantine) classes (i.e., more time is spent in the

E1, E2, Q1, Q2 classes in comparison to in the E3 and Q3 classes), the cumulative num-

ber of new cases is higher than for the cases where the asymptomatic period is dis-

tributed equally among the stages, or if more time is spent in the later asymptomatic

stages. In other words, unlike for the case of the sojourn time spent in the symptomatic

classes (I and H), the way the sojourn time is distributed in the asymptomatic com-

partments (E and Q) affects the cumulative number of new cases.

7.5 Summary

A new deterministic model for disease transmission, subject to the use of quarantine

and isolation, is presented and rigorously analyzed. The model, which is based on the

assumption that the mean waiting periods in all infected classes obey a gamma distri-

bution, adopts a standard incidence formulation for the infection rate. An important

feature of this model is that it allows for equal, or unequal, distribution of the average

sojourn time in each of the associated infected compartment. Furthermore, it allows for

the gradual refinement of quarantine and isolation measures (this was the case during

the 2003 SARS outbreaks).

The main theoretical findings of this chapter are given below:

(i) The model (7.6) has a globally-asymptotically stable disease-free equilibrium

whenever the associated reproduction number (Rc) is less than unity (Theorem

7.2);
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(ii) The model has a unique endemic equilibrium whenever the reproduction number

exceeds unity (Lemma 7.3 );

(iii) The unique endemic equilibrium of the model is shown to be locally and then

globally-asymptotically stable for some special cases (Theorems 7.3 and 7.4).

Numerical simulations of the model (7.6), using data related to the 2003 SARS out-

breaks, show the following:

(a) The cumulative number of new cases of infection decreases with increasing quar-

antine or isolation rate;

(b) the cumulative number of disease-related mortality increases with increasing num-

ber of disease stages (m and n);

(c) unlike the ED and GD2 models, the model (7.6) gives numerical results that are

consistent with the 2003 SARS outbreaks data for the GTA and Hong Kong;

(d) distributing the average sojourn time equally or unequally between the respective

symptomatic classes does not alter the numerical simulation result obtained (i.e,

the cumulative number of new cases);

(e) if the asymptomatic period is distributed such that more time is spent in the early

asymptomatic (latent and quarantine) stages, the cumulative number of new cases

is higher than for the cases where the period is distributed equally among the

asymptomatic stages or if more time is spent in the later asymptomatic stages.
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Figure 7.2: Simulation of the model (7.6) showing the total number of infected individ-
uals as a function of time for Rc < 1. Parameter values used are as given
in Tables 3.2 and 7.2, with β = 0.2, m = 2, n = 3, a1 = b1 = 1.5, a2 =
b2 = 3, c1 = d1 = c2 = d2 = c3 = d3 = 3 (so that, Rc = 0.4610).
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Figure 7.3: Simulation of the model (7.6) showing the total number of infected individ-
uals as a function of time for Rc > 1. Parameter values used are as given
in Tables 3.2 and 7.2, with β = 0.5, m = 2, n = 3, a1 = b1 = 1.5, a2 =
b2 = 3, c1 = d1 = c2 = d2 = c3 = d3 = 3 (so that, Rc = 1.1526).
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Figure 7.4: Numerical simulations of the model (7.6) showing the cumulative number
of new infections for various values of the quarantine parameters (σ1 and
σ2). Parameter values used are as given in Table 3.2, with β = 0.15, m =
2, n = 3, a1 = b1 = 1.5, a2 = b2 = 3 c1 = d1 = c2 = d2 = c3 = d3 = 3
and the isolation rates are as given in Table 7.2.
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Figure 7.5: Numerical simulations of the model (7.6) showing the cumulative number
of new infections for various values of the isolation parameters (φ1, φ2 and
φ3). Parameter values used are as in Table 3.2, with β = 0.15, m =
2, n = 3, a1 = b1 = 1.5, a2 = b2 = 3 c1 = d1 = c2 = d2 = c3 = d3 = 3
and the quarantine rates are as given in Table 7.2.
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Figure 7.6: Numerical simulations of the model (7.6) showing the cumulative number
of disease-induced mortality for various disease stages (m = n). Parameter
values used are as given in Tables 3.2, 7.2 and 7.3, with β = 0.15.
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Figure 7.7: Numerical simulations of the model (7.6) showing the cumulative number
of probable SARS for the GTA generated using the GD1, GD2 and ED
models. Parameter values used are as given in Tables 3.2, 7.2 and 7.3.
with β = 0.2, ψ = 0. GD1 model: m = n = 3, GD2 model: m = n = 3;
σ1 = σ2 = σ3 = 0.1 and φ1 = φ2 = φ3 = 0.20619. ED model: m = n = 1.
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Figure 7.8: Numerical simulations of the model (7.6) showing the cumulative number
of probable SARS for the Hong Kong generated using the GD1, GD2 and
ED models. Parameter values used are as given in Tables 3.2, 7.2 and 7.3,
with β = 0.2, ψ = 0 and Π = 122. GD1 model: m = n = 3. GD2 model:
m = n = 3. σ1 = σ2 = σ3 = 0.1 and φ1 = φ2 = φ3 = 0.20619. ED model:
m = n = 1.
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Figure 7.9: Numerical simulations of the model (7.6) showing the cumulative number
of new cases for various distributions of the symptomatic period (1/κ) using
different values of c1 = d1, c2 = d2, and c3 = d3. Parameter values used
are as given in Table 3.2, with β = 0.2, ψ = 0, σ1 = σ2 = σ3 = 0.1 and
φ1 = φ2 = φ3 = 0.20619.
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Figure 7.10: Numerical simulations of the model (7.6) showing the cumulative number
of new cases for various distributions of the asymptomatic period (1/α)
using different values of a1 = b1, a2 = b2, and a3 = b3. Parameter values
used are as given in Table 3.2, with β = 0.2, ψ = 0, σ1 = σ2 = σ3 = 0.1
and φ1 = φ2 = φ3 = 0.20619.
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Chapter 8

Summary of Contributions and

Future Work

The main contributions of this thesis can be classified into three main categories,

namely, model formulation, mathematical analysis and contributions to public health.

These categories are summarized as follows.

8.1 Model Formulation

A deterministic model for assessing the combined impact of quarantine (of asymp-

tomatic cases) and isolation (of symptomatic cases) on curtailing the spread of a com-

municable disease is considered. In addition to using standard incidence in modelling

the infection rates, the basic model allows for the loss of infection-acquired immunity

(so that individuals who recovered from infection can become susceptible again). The

thesis contains four new models which extend the basic model described above, for the

transmission dynamics of a disease that is controllable using quarantine and isolation,

as follows:

(i) A new quarantine/isolation model, that incorporates time delay as well as two
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different incidence functions (Holling type II and standard incidence) is designed

in Chapter 4;

(ii) The basic model (in Chapter 3) is extended to incorporate the effect of periodic-

ity in the transmission dynamics of the disease. The resulting non-autonomous

model is presented in Chapter 5;

(iii) A new quarantine/isolation model with an imperfect vaccine is constructed in

Chapter 6;

(iv) A new quarantine/isolation model that allows for multiple latent and infectious

stages, as well as gamma-distributed waiting times in these stages, is designed in

Chapter 7.

8.2 Mathematical Analysis

A major contribution of the thesis is the detailed qualitative analyses carried out (using

a robust collection of non-linear dynamical systems theories and techniques) of all the

models presented in this thesis (this is particularly noteworthy considering the relatively

large size and non-linearity of the models considered). Some of the main mathematical

results are summarized below.

Chapter 3

Rigorous qualitative analysis of the SEIQHRS model, which takes the form of a deter-

ministic system of nonlinear differential equations with standard incidence, reveals that

it has a globally-asymptotically stable disease-free equilibrium whenever its associated

reproduction number (Rc) is less than unity. Further, the model has a unique endemic

equilibrium when the threshold quantity exceeds unity. Using a Krasnoselskii sub-

linearity trick, it is shown that the unique endemic equilibrium is locally-asymptotically
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stable when it exists (for a special case). A non-linear Lyapunov function of Volterra

type is used, in conjunction with the LaSalle’s Invariance Principle, to show that the

endemic equilibrium is globally-asymptotically stable for a special case. These analyses

show that the disease will be eliminated from the community if the use of quarantine

and isolation can bring Rc to a value less than unity.

Chapter 4

The problem of the asymptomatic dynamics of a quarantine/isolation model with time

delay is considered, subject to two incidence functions (namely standard incidence and

Holling type II incidence function). Rigorous qualitative analysis of the model shows

that it exhibits essentially the same (equilibrium) dynamics regardless of which of the

two incidence functions is used. In particular, for each of the two incidence functions,

the model has a globally-asymptotically stable disease-free equilibrium whenever the

associated reproduction threshold quantity is less than unity. Further, it has a unique

endemic equilibrium when the threshold quantity exceeds unity. For the case with

Holling type II incidence function, it is shown that the unique endemic equilibrium

of the model (by using Comparison Theorem) is globally-asymptotically stable for a

special case. The permanence of the disease is also established for the model with

Holling type II incidence function. Furthermore, it is shown that adding time delay

to, and/or replacing the standard incidence function with the Holling type II incidence

function in, the corresponding autonomous quarantine/isolation model with standard

incidence (considered in Chapter 3, for the case where recovered individuals do not

lose their infection-acquired immunity and hospitalized individuals do not transmit

infection) does not alter the qualitative dynamics of the autonomous system (with

respect to the elimination or persistence of the disease).

236



Chapter 5

In this chapter, the model presented in Chapter 3 is extended to include the effect

of periodicity on the transmission dynamics of the disease. Rigorous analysis of the

resulting model reveals that it has a globally-asymptotically stable disease-free solu-

tion whenever its associated basic reproduction ratio is less than unity. Furthermore,

using persistence theory, it is shown that the model has a globally-asymptotically sta-

ble family of positive periodic solutions for a special case. These analyses show that

adding periodicity to the autonomous quarantine/isolation model (3.2) does not alter

its qualitative dynamics (with respect to the elimination or persistence of the disease).

Chapter 6

The potential impact of an imperfect vaccine in combatting the spread of a disease,

in the presence of quarantine and isolation is rigorously assessed by extending and

analysing the model in Chapter 3 to include an imperfect vaccine. Using center man-

ifold theorem, the new (12-dimensional) model is shown to undergo the phenomenon

of backward bifurcation, where a stable disease-free equilibrium co-exists with a stable

endemic equilibrium when the associated reproduction threshold is less than unity. It

is shown that the backward bifurcation phenomenon can be removed if the vaccine

is perfect or if mass action incidence is used, instead of standard incidence, in the

model formulation. Thus, this chapter shows that adding vaccination to the quaran-

tine/isolation model in Chapter 3 alters its qualitative properties (since the model in

Chapter 3 did not exhibit backward bifurcation). Further, the model has a unique

endemic equilibrium when the reproduction threshold quantity exceeds unity. A non-

linear Lyapunov function, of Goh-Volterra type, is used to show that the endemic

equilibrium is globally-asymptotically stable for a special case.
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Chapter 7

In this chapter, a new (2(m+n+1)-dimensional) quarantine/isolation model which in-

corporates multiple latent and infectious periods (as well as gamma-distributed waiting

times in these compartments) is designed and rigorously analysed. A linear Lyapunov

function is used, in conjunction with the LaSalle’s Invariance Principle, to show that

the disease-free equilibrium of the model is globally-asymptotically stable whenever its

associated reproduction number is less than unity. Further, the model has a unique

endemic equilibrium when the threshold quantity exceeds unity. Using a Krasnosel-

skii sub-linearity trick, it is shown that the unique endemic equilibrium is locally-

asymptotically stable for a special case. A nonlinear Lyapunov function of Volterra

type is used, in conjunction with the LaSalle’s Invariance Principle, to show that the

endemic equilibrium is also globally-asymptotically stable for a special case. This

chapter shows that adding multiple latent and infectious stages, as well as gamma-

distributed waiting times in these stages, does not alter the dynamics of the basic

quarantine/isolation model considered in Chapter 3, for the case where recovered indi-

viduals do not lose their infection-acquired immunity (with respect to the persistence

or elimination of the disease).

8.3 Public Health

The study provides some important epidemiological insights into the impact of quar-

antine/isolation on the control of a communicable disease, including the following:

(i) The level of transmission by individuals isolated in hospitals play an important

role in determining the qualitative impact of the two control measures (the use

of quarantine and isolation could offer a detrimental population-level impact if

the isolation-related transmission is high enough);
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(ii) The disease burden decreases with increasing time delay (incubation period);

(iii) The singular use of a quarantine/isolation strategy may lead to the effective

disease control (or elimination) if its effectiveness level is at least moderately high

enough. The combine use of the quarantine/isolation strategy with a vaccination

strategy will eliminate the communicable disease being studied, even for the low

efficacy level of the universal strategy considered in this thesis. It is further shown

that the imperfect vaccine could induce a positive or negative population-level

impact depending on the size (or sign) of a certain associated epidemiological

threshold;

(iv) Owing to the phenomenon of backward bifurcation in the quarantine/isolation/vaccination

model considered in Chapter 6, it is shown that, in this setting, effective disease

control (or elimination) depends on the initial sizes of the sub-populations of the

model;

(v) The cumulative number of new cases of infection decreases with increasing quar-

antine or isolation rate;

(vi) The cumulative number of new cases of infection is higher if the asymptomatic

period is distributed such that most of the period is spent in the early stages of

the asymptomatic compartments in comparison to the cases where the average

time period is equally distributed among the associated stages or if most of the

time period is spent in the later (final) stages of the asymptomatic compart-

ments. Distributing the average sojourn time in the asymptomatic infectious

classes equally or unequally does not effect the cumulative number of new cases.

8.4 Future Work

The work in this thesis can be extended in numerous directions, including:
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(i) Establishing the global dynamics of the endemic equilibria of the models (without

considering any special cases);

(ii) Investigating the uniqueness and stability of the periodic solution associated with

the non-autonomous model in Chapter 5;

(iii) Studying the cost-effectiveness and optimal control of quarantine and isolation

measures in controlling the spread of a disease in a population;

(iv) Carrying out detailed uncertainty and sensitivity analyses in the models (to study

the effect of such uncertainties on some of the simulation results obtained);

(v) Modelling the impact of quarantine and isolation in a multi-patch setting (such

as for the case of the spread of animal diseases, like foot-and-mouth disease).
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Appendices

Appendix A: Basic Reproduction Ratio in Periodic

Environment

In this appendix, the theory of basic reproduction ratio for disease transmission models

in a periodic environment, developed by Wang and Zhao [91], is described.

Suppose that the disease compartments are divided into infected compartments

(labeled by i = 1, 2, · · · ,m) and uninfected compartments (labeled by i = m+1, · · · , n).

Define Xs to be the set of all disease-free states:

Xs := {x ≥ 0 : xi = 0, for all i = 1, 2, · · · ,m}.

Let Fi(t, x) be the input rate of newly infected individuals in the ith compartment,

V+
i (t, x) be the input rate of individuals and V−i (t, x) be the rate of transfer of indi-

viduals out of compartment i. Thus, the disease transmission model is governed by a

non-autonomous ordinary differential system:

d

dt
x(t) = F(t, x(t))− V(t, x(t)) = f(t, x(t)), (A.1)

where, Vi(t, x) = V−i (t, x)− V+
i (t, x), f = (f1, f2, · · · , fn).

Assume the following:
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(A1) For each 1 ≤ i ≤ n, Fi(t, x), V+
i (t, x) and V−i (t, x) are non-negative, continuous

on R× Rn
+ and continuously differential with respect to x.

(A2) There exists a real number ω > 0, such that Fi(t, x), V+
i (t, x) and V−i (t, x) are

ω-periodic in t.

(A3) If xi = 0, then V−i = 0 for i = 1, · · · , m.

(A4) Fi = 0 for i > m.

(A5) if x ∈ Xs, then Fi = V+
i = 0 for i = 1, · · · ,m.

It is further assumed that the model (A.1) has a disease-free solution, given by

x0(t) = {(0, · · · , 0, x0
m+1(t), · · · , x0

n(t))T with x0
i (t) > 0,m + 1 ≤ i ≤ n for all t}.

Define, an (n−m)× (n−m) matrix

M(t) =

(
∂fi(t, x

0)

∂xj

)

m+1≤i,j≤n

,

and the m×m matrices

V (t) =

(
∂Fi(t, x

0)

∂xj

)

1≤i,j≤m

, F (t) =

(
∂Fi(t, x

0)

∂xj

)

1≤i,j≤m

.

Let ΦM(t) be the monodromy matrix of the linear ω-periodic system
dz

dt
= M(t)z.

Further, it is assumed that

(A6) ρ(ΦM(ω)) < 1, where ρ(ΦM(ω)) is the spectral radius of ΦM(ω).

(A7) ρ(Φ−V (ω)) < 1.
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Let,

Y (t, s), t ≥ s,

be the evolution operator of the linear ω-periodic system

dy

dt
= −V (t)y.

In other words, for each s ∈ R, the associated m×m matrix Y (t, s) satisfies

dY (t, s)

dt
= −V (t)Y (t, s) ∀t ≥ s, Y (s, s) = I.

It is further assumed that φ(s) (ω-periodic in s) is the initial distribution of infectious

individuals. That is, F (s)φ(s) is the rate at which new infections are produced by

infected individuals who were introduced into the population at time s [91]. Since

t ≥ s, it follows then that Y (t, s)F (s)φ(s) represents the distribution of those infected

individuals who were newly-infected at time s, and remain infected at time t.

Hence, the cumulative distribution of new infections at time t, produced by all

infected individuals (φ(s)) introduced at a prior time s = t, is given by

Ψ(t) =

∫ t

−∞
Y (t, s)F (s)φ(s)ds =

∫ ∞

0

Y (t, t− a)F (t− a)φ(t− a)da.

Let Cω be the ordered Banach space of all ω-periodic functions from R to R4, which is

equipped with maximum norm ‖.‖ and positive cone

C+
ω = {φ ∈ Cω : φ(t) ≥ 0, ∀t ∈ R}.

Define a linear operator L : Cω → Cω by [91]
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(Lφ)(t) =

∫ ∞

0

Y (t, t− a)F (t− a)φ(t− a)da ∀t ∈ R, φ ∈ Cω.

The reproduction ratio ( denoted by R0) is then given by the spectral radius of L,

denoted by ρ(L). That is, R0 = ρ(L) [91].

Appendix B: Verification of Assumptions A1-A7 in

Appendix A

The assumptions are verified following the approach in [91]. Using the notation in

Appendix A, the system (5.1) can be re-written as:

d

dt
x(t) = F(t, x(t))− V(t, x(t)) = f(t, x(t)), (B.1)

where,

x =




S

E

I

Q

H

R




, F =




0

β(t)S(t)[I(t) + η(t)H(t)]

N(t)

κE

σE

αQ

0




,

and,
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V =




−Π− ψR +
β(t)S(t)[I(t) + η(t)H(t)]

N(t)
+ µS

(κ(t) + σ(t) + µ)E

(γ1 + φ + µ + δ1)I

(α(t) + µ)Q

(γ2 + µ + δ2)H

−γ1I − γ2H + (ψ + µ)R




.

Further, let,

V+ =




Π + ψR

0

0

0

0

γ1I + γ2H




and V− =




β(t)S(t)[I(t) + η(t)H(t)]

N(t)
+ µS

(κ(t) + σ(t) + µ)E

(γ1 + φ + µ + δ1)I

(α(t) + µ)Q

(γ2 + µ + δ2)H

(ψ + µ)R




.

It is easy to see that V = V−−V+. The functions F ,V+ and V− satisfy the following:

(A1) For each 1 ≤ i ≤ 6, Fi(t, x), V+
i (t, x) and V−i (t, x) are non-negative, continuous

on R × R6
+ and continuously differential with respect to x, (since each function

denotes a direct non-negative transfer of individuals).

(A2) By assumption (note that it is assumed that some of the model parameters are ω-

periodic functions), there exists a real number ω > 0, such that Fi(t, x), V+
i (t, x)

and V−i (t, x) are ω-periodic in t.

(A3) If xi = 0, then V−i = 0 for i = 2, 3, 4, 5.

(A4) Fi = 0 for i = 1, 6.
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(A5) Define Xs = {x ≥ 0 : xi = 0 for i = 2, 3, 4, 5}. It is clear that if x ∈ Xs, then

Fi = V+
i = 0 for i = 2, 3, 4, 5.

System (5.1) has a disease-free periodic solution x∗ = (x∗1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6) = (π/µ, 0, 0, 0, 0, 0).

Define a 2× 2 matrix

M(t) =

(
∂fi(t, x

∗)
∂xj

)

i,j=1,6

.

It follows from (B.1), and the definitions of the matrices F and V , that

M(t) =



−µ ψ

0 −(µ + ψ)


 .

(A6) Since M(t) is a diagonalizable matrix with negative eigenvalues, then

ρ(ΦM(ω)) < 1.

(A7) Similarly, −V (t) is a diagonalizable matrix with negative eigenvalues. Hence,

ρ(Φ−V (ω)) < 1.
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Appendix C: Backward Bifurcation in Model (6.2)

Proof. Consider the model (6.2). It is convenient to make the following change of

variables. Let,

S = x1, V = x2, E = x3, EV = x4, I = x5, IV = x6,

Q = x7, QV = x8, H = x9, HV = x10, R = x11, RV = x12,

so that,

N = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12.

Further, let X = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)
T . Thus, the model (6.2)

can be re-written in the form dX
dt

= F (X), with F = (f1; f2; f3; f4; f5; f6; f7; f8; f9; f10; f11; f12)
T ,

as follows:
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dx1

dt
= f1 = (1− ρ)Π− β(x5 + ν1x6 + x9 + ν2x10)x1

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12

+ ψx2 − (µ + ζ),

dx2

dt
= f2 = ρΠ− (1− ε)β(x5 + ν1x6 + x9 + ν2x10)x2

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12

+ ζx1 − (µ + ψ),

dx3

dt
= f3 =

β(x5 + ν1x6 + x9 + ν2x10)x1

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12

− k1x3,

dx4

dt
= f4 =

(1− ε)β(x5 + ν1x6 + x9 + ν2x10)x2

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12

− k2x4,

dx5

dt
= f5 = κx3 − k3x5,

dx6

dt
= f6 = θ1κx4 − k4x6,

dx7

dt
= f7 = σx3 − k5x7,

dx8

dt
= f8 = σ1x4 − k6x8,

dx9

dt
= f9 = αx7 + φx5 − k7x9,

dx10

dt
= f10 = θ5αx7 + θ3φx6 − k8x10,

dx11

dt
= f11 = γ1x5 + γ2x9 − µx11,

dx12

dt
= f11 = θ2γ1x6 + θ6γ2x10 − µx11.

(C.1)

The Jacobian of the system (C.1), at the associated DFE (given by E0, in (6.3)) is

given by

J(E0) = [M12×6 U12×6]

where,
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M =




−(ζ + µ) ψ 0 0 − βx∗1
x∗1 + x∗2

− βν1x
∗
1

x∗1 + x∗2

ζ −(ψ + µ) 0 0 −(1− ε)βx∗2
x∗1 + x∗2

−(1− ε)βν1x
∗
2

x∗1 + x∗2

0 0 −k1 0
βx∗1

x∗1 + x∗2

βν1x
∗
1

x∗1 + x∗2

0 0 0 −k2
(1− ε)βx∗2

x∗1 + x∗2

(1− ε)βν1x
∗
2

x∗1 + x∗2

0 0 κ 0 −k3 0

0 0 0 θ1κ 0 −k4

0 0 σ 0 0 0

0 0 0 σ1 0 0

0 0 0 0 φ 0

0 0 0 0 0 θ3φ

0 0 0 0 γ1 0

0 0 0 0 0 θ2γ1




,
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U =




0 0 − βηx∗1
x∗1 + x∗2

− βην2x
∗
1

x∗1 + x∗2
0 0

0 0 −(1− ε)βηx∗2
x∗1 + x∗2

−(1− ε)βην2x
∗
2

x∗1 + x∗2
0 0

0 0
βηx∗1

x∗1 + x∗2

βην2x
∗
1

x∗1 + x∗2
0 0

0 0
(1− ε)βηx∗2

x∗1 + x∗2

(1− ε)βην2x
∗
2

x∗1 + x∗2
0 0

0 0 0 0 0 0

0 0 0 0 0 0

−k5 0 0 0 0 0

0 −k6 0 0 0 0

α 0 −k7 0 0 0

0 θ5α 0 −k8 0 0

0 0 γ2 0 −µ 0

0 0 0 θ6γ2 0 −µ




.

Consider the case when Rvac = 1 (where Rvac is as defined in Section 6.3). Suppose,

further, that β is chosen as a bifurcation parameter. Solving for β from Rvac = 1, gives

β∗ =
k1k2k3k4k5k6k7k8

B1 + B2

,

where,

B1 = ω2k1k3k5k7(1− ε)(ν1θ1κk6k8 + ν2ηθ3φθ1κk6 + ν2ηθ5ασ1k4),

B2 = ω1k2k4k6k8(κk5k7 + ηφκk5 + ηασk3).

It is worth stating that the transformed system (C.1), with β = β∗, has a hyperbolic
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equilibrium point (that is, the linearized system has a simple eigenvalue with zero real

part and all other eigenvalues have negative real part). Hence, the center manifold

theorem can be used to analyze the dynamics of (C.1) near β = β∗. It can be shown

that the right eigenvector of J(E0)|β=β∗ is given by w = (w1, w2, · · · , w11, w12)
T , where,

w1 =
k2w4 + (µ + ψ)w2

ζ
, w2 =

[ −ζ

µ(µ + ζ + ψ)

] [
k1w3 +

k2w4(µ + ζ)

ζ

]
,

w3 =
β(x∗1w5 + ν1x

∗
1w6 + ηx∗1w9 + ν2ηx∗1w10)

k1(x∗1 + x∗2)
, w7 =

σw3

k5

,

w4 =
(1− ε)β(x∗2w5 + ν1x

∗
2w6 + ηx∗2w9 + ν2ηx∗2w10)

k2(x∗1 + x∗2)
, w8 =

σ1w4

k6

,

w11 =
γ1w5 + γ2w9

µ
, w12 =

θ2γ1w6 + θ6γ2w10

µ
,

w5 = w5 > 0, w6 = w6 > 0, w9 = w9 > 0, w10 = w10 > 0.

Similarly, J(E0)|β=β∗ has a left eigenvector v = (v1, v2, · · · , v11, v12), where,

v1 = 0, v2 = 0, v3 =
κv5 + σv7

k1

, v4 =
θ1κ + θ5σv8

k2

, v5 = v5 > 0, v6 = v6 > 0,

v7 =
αv9

k5

, v8 =
θ5αv10

k6

v9 = v9 > 0, v10 = v10 > 0, v11 = 0, v12 = 0.

Consequently, it follows that the bifurcation coefficients, a and b (defined in Theo-
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rem 2.4) are given, respectively, by

a =
12∑

k,i,j=1

vkwiwj
∂2fk(0, 0)

∂xi∂xj

= −(1− ε)v4x
∗
2(w1 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12)

+ w2x
∗
1(1− ε)v4 + w1x

∗
2v3 − x∗1v3(w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9

+ w10 + w11 + w12),

b =
12∑

k,i=1

vkwi
∂2fk(0, 0)

∂xi∂β∗
=

(v3x
∗
1 + (1− ε)v4x

∗
2)(ηw9 + w5 + w6v1 + ηw10v2)

x∗1 + x∗2
> 0.

(C.2)

Since the coefficient b is always positive, it follows from Theorem 2.4 that the system

(C.1) will undergo backward bifurcation if the coefficient a, given in (C.2), is positive.

This result is summarized below.

Theorem 1. The transformed model (C.1), or equivalently (6.2), exhibits backward

bifurcation at Rvac = 1 whenever the bifurcation parameter a, given in (C.2), is positive.

252



Appendix D: Proof of Theorem 7.3

Proof. Consider the model (7.6) with δ1 = δ2 = · · · = δ2n = 0. In such a case, the

reproduction number Rc reduces to Rcr. The proof is based on using a Krasnoselskii

sub-linearity trick (see [46, 85], and also [28, 29]). First of all, setting δ1 = δ2 = · · · =
δ2n = 0 in (7.6) shows that dN/dt = Π − µN , so that N → Π/µ = N∗∗ as t → ∞.

Using N = N∗∗, the substitution S = N∗∗ −
m∑

i=1

(Ei + Qi)−
n∑

j=1

(Ij + Hj)−R is then

used to re-write the model (7.6) as:

dE1

dt
=

β

n∑
j=1

Ij

[
N∗∗ −

m∑
i=1

(Ei + Qi)−
n∑

j=1

(Ij + Hj)−R

]

N∗∗ − f1E1,

dE2

dt
= a1αE1 − f2E2,

dEj

dt
= aj−1αEj−1 − fjEj; j = 3, · · · ,m,

dI1

dt
= amαEm − fm+1I1,

dIj

dt
= dj−1κIj−1 − fm+jIj; j = 2, · · · , n,

dQ1

dt
= σ1E1 − fm+n+1Q1,

dQj

dt
= σjEj + bj−1αQj−1 − fm+n+jQj; j = 2, · · · ,m,

dH1

dt
= bmαQm + φ1I1 − f2m+n+1H1,

dHj

dt
= φjIj + cj−1κHj−1 − f2m+n+jHj; j = 2, · · · , n,

dR

dt
= γ1In + γ2Hn − (ψ + µ)R.

(D.1)

Linearizing the model (D.1) around the endemic equilibrium, Ω1 (defined in Section

7.4) gives

253



dE1

dt
= (−r1 − f1)E1 − r1

m∑
i=2

Ei + (r2 − r1)
n∑

j=1

Ij − r1

m∑
i=1

Qi − r1

n∑
j=1

Hj − r1R,

dE2

dt
= a1αE1 − f2E2,

dEj

dt
= aj−1αEj−1 − fjEj; j = 3, · · · ,m,

dI1

dt
= amαEm − fm+1I1,

dIj

dt
= dj−1κIj−1 − fm+jIj; j = 2, · · · , n,

dQ1

dt
= σ1E1 − fm+n+1Q1,

dQj

dt
= σjEj + bj−1αQj−1 − fm+n+jQj; j = 2, · · · ,m,

dH1

dt
= bmαQm + φ1I1 − f2m+n+1H1,

dHj

dt
= φjIj + cj−1κHj−1 − f2m+n+jHj; j = 2, · · · , n,

dR

dt
= γ1In + γ2Hn − (ψ + µ)R,

(D.2)

where, r1 =

β

m∑
j=1

Ij

N∗∗ and r2 = βS∗∗/N∗∗.

It follows that the Jacobian of the system (D.2), evaluated at Ω1, is given by

J(Ω1) =




AJ BJ

CJ DJ


 ,

where AJ , is an (m + n)× (m + n) matrix, BJ is an (m + n)× (m + n + 1) matrix, CJ

is an (m + n + 1) × (m + n) matrix and DJ is an (m + n + 1) × (m + n + 1) matrix,

given by
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AJ =




−f1 − r1 −r1 −r1 · · · −r1 r2 − r1 r2 − r1 · · · r2 − r1 r2 − r1

a1α −f2

a2α −f3

. . . . . .

am−1α −fm

amα −fm+1

d1κ −fm+2

d2κ −fm+3

. . . . . .

dn−1κ −fm+n




,

BJ =




−r1 −r1 · · · −r1

0 0 · · · 0

...
...

...

0 0 · · · 0




, CJ =




σ1

σ2

. . .

σm

φ1

φ2

. . .

φn

γ1




,

and,
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DJ =




−fm+n+1

b1α −fm+n+2

. . . . . .

bmα −f2m+n+1

c1κ −f2m+n+2

. . . . . .

cn−1κ −f2(m+n)

γ2 −(ψ + µ)




.

Assume that the system (D.2) has solution of the form

Z(t) = Z0e
ωt, (D.3)

with Z0 = (Z1, Z2, · · · , Z2(m+n)+1), ω, Zi ∈ C(i = 1, 2, · · · , 2(m + n) + 1). Substituting

a solution of the form (D.3) into the system (D.2) gives
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ωZ1 = (−r1 − f1)Z1 − r1

m∑
i=2

Zi + [r2 − r1]
m+n∑

j=m+1

Zj − r1

2(m+n+1)∑
i=m+n+1

Zi,

ωZ2 = a1αZ1 − k2Z2,

ωZj = aj−1αZj−1 − kjZj; j = 3, · · · ,m,

ωZm+1 = amαZm − km+1Zm+1,

ωZm+j = dj−1κZm+j−1 − km+jZm+j; j = 2, · · · , n,

ωZm+n+1 = σ1Z1 − km+n+1Zm+n+1,

ωZm+n+j = σjZj + bj−1αZm+n+j−1 − km+n+jZm+n+j; j = 2, · · · ,m,

ωZ2m+n+1 = bmαZ2m+n + φ1Zm+1 − k2m+n+1Z2m+n+1,

ωZ2m+n+j = φjZm+j + cj−1κZ2m+n+j−1 − k2m+n+jZ2m+n+j; j = 2, · · · , n,

ωZ2(m+n)+1 = γ1Zm+n + γ2Z2(m+n) − (ψ + µ)Z2(m+n)+1.

(D.4)

System (D.4) is simplified as follows. First, all the negative terms in the last nine

equations of (D.4) are moved to the respective left-hand sides. Secondly, the (resulting)

last nine equations are then re-written in terms of Z1 and substituted into the first

equation of (D.4), and all its negative terms are moved to the right-hand side. Doing

all these lead to the following system:

[1 + Fi(ω)] Zi = (MZ)i, for i = 1, 2, · · · , 2(m + n), (D.5)

where,
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F1(ω) =
ω

k1

+
r1

f1

(
1 +

m+1∑
i=2

i∏

l=2

al−1α

ω + fl

+
m+1∏

l=2

al−1α

ω + fl

m+n∑
i=m+2

i−m∏

l=2

dl−1κ

ω + fm+l

)

+
r1

f1




2m+n∑
i=m+n+1

Gi−(m+n)(ω) +

2(m+n)∑
i=2m+n+1

Li−(2m+n)(ω)


 ,

and,

Fj(ω) =
ω

fj

, for j = 2, 3, · · · , 2(m + n) + 1,

with,

G1(ω) =

σ1

i∏

l=2

al−1α

ω + fl

ω + fm+n+1

, Gj(ω) =
σj

ω + fm+n+j

+
bj−1αGj−1(ω)

ω + fm+n+j

, for j = 2, 3, · · · ,m,

L1(ω) =

φ

m+1∏

l=2

al−1α

ω + fl

i−m∏

l=2

dl−1κ

ω + fm+l

f2m+n+1

+
bmαGm(ω)

f2m+n+1

,

and,

Lj(ω) =
φj

ω + f2m+n+j

+
cj−1κGj−1(ω)

ω + fm+n+j

, for j = 2, 3, · · · , n.

Furthermore,

M =




AM BM

CM DM


 ,

where AM is an (m+n)× (m+n) matrix, BM is an (m+n)× (m+n+1) zero matrix,

CM is an (m+n+1)× (m+n) matrix and DM is an (m+n+1)× (m+n+1) matrix,

given by
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AM =




0 0 0 · · · 0 r2 r2 · · · r2 r2 r2

a1α
f2

0

a2α
f3

0

. . . . . .

am−1α
fm

0

amα
fm+1

0

d1κ
fm+2

0

d2κ
fm+3

0

. . . . . .

dn−1κ
fm+n

0




,

CM =




σ1

fm+n+1

σ2

fm+n+2

. . .

σm

f2m+n

φ1

f2m+n+1

φ2

f2m+n+2

. . .

φn

f2(m+n)

γ1

ψ+µ




,
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DM =




0

b1α
fm+n+2

0

. . . . . .

bmα
f2m+n+1

0

c1κ
f2m+n+2

0

. . . . . .

cn−1κ
f2(m+n)

0

γ2

(ψ+µ)
0




.

It is easy to verify that the equilibrium Ω1 satisfies Ω1 = MΩ1. The notation (MZ)i (i =

1, . . . , 2(m + n) + 1) denotes the ith coordinate of the vector MZ, and the matrix M

has non-negative entries. If Z is a solution of (D.5), then it is possible to find a minimal

positive real number r such that [28, 29]

‖Z‖ ≤ rΩ1, (D.6)

where, ‖Z‖ = (‖Z1‖, ‖Z2‖, · · · , ‖Z2(m+n)+1‖) with lexicographic order, and ‖.‖ is a

norm in C. The main goal is to show that Re(ω) < 0. Assume, now, that Re(ω) ≥ 0,

and consider the following cases.

Case 1: ω = 0.

In this case, (D.4) is a homogeneous linear system in the variables Zi (i = 1, . . . , 2(m+

n) + 1). The determinant of this system is given by

∆ = −A +

(
S∗∗Rcr

N∗∗ − 1

) 2(m+n+1)∏
i=1

fi, (D.7)
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where, A is very long positive expression (not given here). Here, it easy to show that

at steady-state S∗∗Rcr

N∗∗ = 1. Hence, the equation (D.7) becomes

∆ = −A < 0

Since the determinant ∆ is negative, it follows that the system (D.4) has a unique

solution, given by Z = 0 (which corresponds to the DFE (Ω0)).

Case 2: ω 6= 0.

Recalling that Re(ω) > 0 (by assumption), it follows then that |1 + Fi(ω)| > 1 for

all i = 1, . . . , 2(m + n) + 1. Define F (ω) = mini |1 + Fi|. Then, F (ω) > 1, and

r

F (ω)
< r. Since r is a minimal positive real number such that ‖Z‖ ≤ rΩ1, then

‖Z‖ >
r

F (ω)
Ω1. (D.8)

On the other hand, by taking the norm of both sides of the second equation in (D.5),

and noting that M is a non-negative matrix, we have,

F (ω)‖Z2‖ ≤ |1 + F2(ω)| ‖Z2‖ = ‖(MZ)2‖ ≤ M‖Z2‖ ≤ rM(Ω1)2 = r(Ω1)2 = rE∗∗
2 .

(D.9)

It follows from (D.9) that ‖Z2‖ ≤ r

F (ω)
I∗∗, which contradicts (D.8). Hence, Re (ω) <

0. Thus, all eigenvalues of the characteristic equation associated with the linearized

system (D.2) will have negative real part, so that the unique endemic equilibrium, Ω1,

is LAS whenever Rcr > 1.
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Appendix E: Proof of Theorem 7.4

Proof. Consider the reduced model (7.21) with (7.22). Let Rcr > 1, so that the associ-

ated unique endemic equilibrium exists (Lemma 7.4). Further, consider the following

non-linear Lyapunov function for the sub-system of the model (7.21), consisting of the

equations for S, Ei (i = 1, · · · ,m) and Ij (j = 1, · · · , n), given by:

F = S − S∗∗ − S∗∗ ln

(
S

S∗∗

)
+ E1 − E∗∗

1 − E∗∗
1 ln

(
E1

E∗∗
1

)

+
m∑

i=2

xi

[
Ei − E∗∗

i − E∗∗
i ln

(
Ei

E∗∗
i

)]
+

n∑
j=1

yi

[
Ij − I∗∗j − I∗∗j ln

(
Ij

I∗∗j

)]
,

where the coefficients xi (i = 1, · · · ,m) and yj (j = 1, · · · , n) are positive constants to

be determined. Thus,

Ḟ = Ṡ − S∗∗

S
Ṡ + Ė1 − E∗∗

1

E1

Ė1 +
m∑

i=2

xi

(
Ėi − E∗∗

i

Ei

Ėi

)
+

n∑
j=1

yj

(
İj −

I∗∗j

Ij

İj

)
.

Substituting the expressions of the derivatives from the system (7.21), using (7.22),

gives (note that the relation Π = β1S
∗∗ ∑n

j=1 I∗∗j + µS∗∗, at endemic steady-state, has

been used)
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Ḟ = β1S
∗∗

n∑
j=1

I∗∗j + µS∗∗ − β1S

n∑
j=1

Ij − µS − β1
S∗∗

S

n∑
j=1

I∗∗j − µ
(S∗∗)2

S

+ β1S
∗∗

n∑
j=1

I∗∗j + µS∗∗ + β1S

n∑
j=1

Ij − f1E1 − β1S

n∑
j=1

IjE
∗∗
1

E1

+ f1E
∗∗
1

+
m∑

i=2

xiai−1αEi−1 − xifiEi − xiai−1α
Ei−1E

∗∗
i

Ei

+ xifiE
∗∗
i + y1amαEm − y1fm+1I1

− y1am
EmI∗∗1

Em

+ y1fm+1I
∗∗
1 +

n∑
j=2

yjdj−1κIj−1 − yjfm+jIj − yjdj−1κ
Ij−1I

∗∗
j

Ij

+ yjfm+jI
∗∗
j ,

which can simplified to

Ḟ = µS∗∗
(

2− S∗∗

S
− S

S∗∗

)
+ β1S

∗∗
n∑

j=1

I∗∗j − β1
S∗∗

S

n∑
j=1

I∗∗j + β1S
∗∗

n∑
j=1

I∗∗j − β1S

n∑
j=1

IjE
∗∗
1

E1

+ (x2a1α− k1)E1 +
m−1∑
i=2

(xi+1aiα− xifi)Ei + (y1amα− xmfm)Em

+
n−1∑
j=1

(β1S
∗∗ + yj+1djκ− yjfm+j)Ij + (β1S

∗∗ − ynfm+n)In

+
m∑

i=2

(xifiE
∗∗
i − xiai−1α

Ei−1E
∗∗
i

Ei

)

− y1am
EmI∗∗1

I1

+ y1fm+1I
∗∗
1 +

n∑
j=2

(yjfm+jI
∗∗
j − yjdj−1κ

Ij−1I
∗∗
j

Ij

).

(E.1)

The coefficients xi (i = 2, · · · ,m) and yj (j = 1, · · · , n) of Ḟ are chosen such that

x2a1α− k1 = 0,

xi+1aiα− xifi = 0; for i = 3, · · · ,m− 1,

y1amα− xmfm = 0,

β1S
∗∗ + yj+1djκ− yjfm+j = 0,

β1S
∗∗ − ynfm+n = 0,

(E.2)
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so that, from (E.2),

xi =
i−1∏

l=1

fl

alα
; i = 2, · · · , m,

y1 =
m∏

l=1

fl

alα
;

yn =
β1S

∗∗

fm+n

;

(E.3)

and,

yn−j =
β1S

∗∗

fm+n−j

+ β1S
∗∗

j∑
s=1

j∏

l=s

dn−lκ

j∏

l=s−1

fn+m−l

; j = 1, · · · , n− 2.

Using the relations in (E.3) into the equation (E.1) gives
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Ḟ = µS∗∗
(

2− S∗∗

S
− S

S∗∗

)
+ 2β1S

∗∗
n∑

j=1

I∗∗j − β1
S∗∗

S

n∑
j=1

I∗∗j − β1S

n∑
j=1

IjE
∗∗
1

E1

− f1
E1E

∗∗
2

E2

+
f1f2

a1α
E∗∗

2 +
m∑

i=3

−

i−1∏

l=1

fl

i−2∏

l=1

alα

Ei−1E
∗∗
i

Ei

+

i∏

l=1

fl

i−1∏

l=1

alα

E∗∗
i

−

m∏

l=1

fl

m−1∏

l=1

alα

EmI∗∗1

I1

+

m+1∏

l=1

fl

m∏

l=1

alα

I∗∗1

+
n−1∑
j=2

−dj−1κ




β1S
∗∗

fm+j

+ β1S
∗∗

n−j∑
s=1

n−j∏

l=s

dn−lκ

n−j∏

l=s−1

fn+m−l




Ij−1I
∗∗
j

Ij

+
n−1∑
j=2

fm+j




β1S
∗∗

fm+j

+ β1S
∗∗

n−j∑
s=1

n−j∏

l=s

dn−lκ

n−j∏

l=s−1

fn+m−l




I∗∗j − β1S
∗∗dn−1κ

fm+n

In−1I
∗∗
n

In

+ β1S
∗∗I∗∗n .

(E.4)

It can be shown from (7.21) that, at endemic steady-state,
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f1 =

β1S
∗∗

n∑
j=1

I∗∗j

E∗∗
1

,

i∏

l=1

fl

i−1∏

l=1

alα

=

β1S
∗∗

n∑
j=1

I∗∗j

E∗∗
i

i = 2, · · · ,m,

m+1∏

l=1

fl

m∏

l=1

alα

=

β1S
∗∗

n∑
j=1

I∗∗j

I∗∗1

,

(E.5)

and,

djκ

fm+j+1

=
I∗∗j+1

I∗∗j

j = 1, · · · , n− 1. (E.6)

Using the relations in (E.5) and (E.6) in equation (E.4) gives

Ḟ = µS∗∗
(

2− S∗∗

S
− S

S∗∗

)
+ (m + 2)β1S

∗∗
n∑

j=1

I∗∗j − β1
S∗∗

S

n∑
j=1

I∗∗j − β1S

n∑
j=1

IjE
∗∗
1

E1

− β1S
∗∗

n∑
j=1

I∗∗j

(
m−1∑
i=1

EiE
∗∗
i+1

E∗∗
i+1Ei

)
− β1S

∗∗EmI∗∗1

I∗∗1 Em

n∑
j=1

I∗∗j

− β∗∗1 S∗∗
n−1∑
j=1

(
IjI

∗∗
j+1

Ij+1

n∑

l=j+1

I∗∗l

I∗∗j

)
+ β1S

∗∗
n∑

j=2

(
n∑

l=j

I∗∗l

)
,

which can be re-written as
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Ḟ = µS∗∗
(

2− S∗∗

S
− S

S∗∗

)
+ β1S

∗∗
[
(m + 2)− S∗∗

S
−

m−1∑
i=1

EiE
∗∗
i+1

E∗∗
i+1Ei

− EmI∗∗1

E∗∗
m I1

]

+ β1S
∗∗

n∑
j=2

I∗∗j

[
(m + j + 1)− S∗∗

S
−

m−1∑
i=1

EiE
∗∗
i+1

E∗∗
i+1Ei

− EmI∗∗1

E∗∗
m I1

−
j−1∑

l=1

IlI
∗∗
l+1

Il+1I∗∗l

− SIjE
∗∗
1

S∗∗I∗∗j E1

]
.

(E.7)

Finally, since the arithmetic mean exceeds the geometric mean, it follows that

2− S∗∗

S
− S

S∗∗
≤ 0,

(m + 2)− S∗∗

S
−

m−1∑
i=1

EiE
∗∗
i+1

E∗∗
i+1Ei

− EmI∗∗1

E∗∗
m I1

≤ 0,
(E.8)

and,

(m+j+1)− S∗∗

S
−

m−1∑
i=1

EiE
∗∗
i+1

E∗∗
i+1Ei

−EmI∗∗1

E∗∗
m I1

−
j−1∑

l=1

IlI
∗∗
l+1

Il+1I∗∗l

− SIjE
∗∗
1

S∗∗I∗∗j E1

≤ 0 for j = 2, · · · , n.

(E.9)

Further, since all parameters of the model (7.6) are non-negative, it follows from

(E.8) and (E.9) , using (E.7), that Ḟ ≤ 0 for Rcr > 1. Hence, F is a Lyapunov

function for the sub-system of the model (7.21) consisting of the equations for S,Ei (i =

1, · · · ,m) , Ij (j = 1, · · · , n) of the model (7.21) on D\D0. Therefore, by the LaSalle’s

Invariance Principle (Theorem 2.6),

lim
t→∞

S(t) = S∗∗, lim
t→∞

Ei(t) = E∗∗
i , for all i = 1, · · · ,m

lim
t→∞

Ij(t) = I∗∗j , for all j = 1, · · · , n.

(E.10)

It is clear from (E.10) that lim sup
t→∞

E1 = E∗∗
1 . Thus, for sufficiently small small $ > 0,
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there exists a constant n1 > 0 such that lim sup
t→∞

E1 ≤ E∗∗
1 + $ for all t > n1. It follows

from the (m + n + 2)th equation of the model (7.21) that, for t > n1,

Q̇1 ≤ σ1(E
∗∗
1 + $)− fm+n+1Q1.

Thus, by comparison theorem (Theorem 2.8),

Q∞
1 = lim sup

t→∞
Q1 ≤ σ1(E

∗∗
1 + $)

fm+n+1

,

so that, by letting $ → 0,

Q∞
1 = lim sup

t→∞
Q1 ≤ σ1E

∗∗
1

fm+n+1

. (E.11)

Similarly (by using lim inf
t→∞

E1 = E∗∗
1 ), it can be shown that

Q1∞ = lim inf
t→∞

Q1 ≥ σ1E
∗∗
1

fm+n+1

. (E.12)

Thus, it follows from (E.11) and (E.12) that

Q1∞ ≥ σE∗∗
1

fm+n+1

≥ Q∞
1 .

Hence,

lim
t→∞

Q1 =
σ1E

∗∗
1

fm+n+1

= Q∗∗
1 . (E.13)

Similarly, it can be shown that
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lim
t→∞

Qi(t) = Q∗∗
i , for all i = 2, · · · ,m,

lim
t→∞

Hj(t) = H∗∗
j , for all j = 1, · · · , n,

lim
t→∞

R(t) = R∗∗.

(E.14)

Thus, by combining (E.10), (E.13) and (E.14), every solution to the equations of the

reduced model, with initial condition in D \ D0, approaches the unique endemic equi-

librium of the reduced model (7.21) with (7.22) as t →∞ for Rcr > 1 and ψ = 0.
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