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Abstract

A mechanical assembly is a composition of parts interconnected to form a stable unit.The
mechanical assembly sequence problem is to find a feasible, cost-effective sequence of
tasks to perform the assembly. This problem has recently been recognised as significant by
the manufacturing industries, since this plan will help mechanical designers to analyse the
assembly tasks off-line and justify the cost involved in the process. Homen de Mello and
Sanderson proposed the AND/OR graph notation to represent all feasible assembly
sequences for a given assembly in one graph and also provide an algorithm to generate the
AND/OR graph.

Recently, object-oriented approach to software design becomes popular in the computer
science community, mainly because of its advantages over the functional approach
towards software reuse and maintenance. The object-oriented approach asserts that
enhancement and adaptation of the software to the environment are easier to do, compared
to the functional approach. In thesis, we have used the object-oriented approach to rede-
sign the AND/OR graph generation algorithm for assembly sequence generation. This
approach inherits the advantages of the object-oriented paradigm.

The main contributions of this thesis are the following:
¢ An object-oriented version of the assembly sequence algorithm to generate AND/OR
graph notation is given.
» This version eliminates some of the redundant steps in the functional algorithm.
e The object-oriented design described in this thesis is easy-to-understand, easy-to-
enhance and inherits the advantages of the object-oriented paradigm.
« A formal model of the object-oriented design is also included in the thesis.



Acknowledgements

First of all I would like to give my deepest gratitude to my supervisor, Dr. Kasi Periya-
samy for his guidance, advice and encouragement. I wouldn’t be able to finalize the whole
work within one month without his help. I feel very lucky to have him as the supervisor.

My thanks go to my parents, my brothers’ family and my sister for their support and con-
cemns. I also need to thank my daughter for her very good performance during I am away.
Finally my thanks go to my husband for his emotional support all the time.



List of Figures

Figure 1: An Assembly with fiveparts - - - - - - = = = - = - - - - - - - . (9)
Figure 2: The relational graph of the assembly shown in Figure 1 - - - - - (10)

Figure 3: The graph of connections of the assembly shown in Figure 1 - - - ( 10)

Figure 4: AND/OR graph for the assembly shown in Figure 1 - - - - - - - (20)
Figure 5: The ObjectModel - - - - - ~ = = = = = - o - - oo 00 oo - - (36)
Figure 6: data-consistency - Phase 1 - - - - - - - - - - - - - - - - - -« (38)
Figure 7: data-consisiency -Phase2 - - -------“----------- (39)
Figure 8: data-consistency - Phase3 - - - - - - - - - - - oo oo (40)
Figure 9: data-consistency - Phase 4 - - - - - - - - - - - - - - - - ... (41)
Figure 10: Gen-feasible-decompositionsQ) - - - - - = = - =« = - - - - - - (43)

Figure 11:isConnected() - - - - -~ - == o= o v oo (45)



Table of Contents

Chapter I: Introduction - - - - = = = == = =« = c o oo o o o000 o - (1)
Chapter 2: AND/OR Graph Generation - Functional Approach - - - - - - (6)
2.1: Input to AND/OR Graph Method - - - - - - - - = - - - - - - - (6)

2.2: AND/OR Graph Generation - - - = = = - - = - =« -~ - - - - (14)

2.3: Generation of Assembly Sequences - - - - - - - - - - - - - (15)
23.1:0verview - - - = - - - - - - - - - oo oo oo (15)
232:Algorithm - - - - - - -« - - oo oo (16)

2.4: Formal Description of AND/OR Graph Functional Model - - - (21)
Chapter 3: AND/OR Graph Generation - Object - Oriented Approach - - - (22)
31:0verview - - =« = = - = - e -0 e o et e e e e e e m - (22)
3.2:ClassDefinition - - - - - ~ = =« = = = = ==« o oo - - (23)

3.3: Interactions among the objects - - - - = - - - - - - - - - - - (37)

3.3.1: Generate the Assembly - - - - - = - =« - - - - - - - - - - (37)

3.3.2: Generate Feasible Decompositions - - - - - - = - = -« - - (42)

3.3.3: Generate AND/ORGraph - - - - - = - - - - - - - - (46)
334:Example- - - - - - ----+--- <222t ---- (47)

3.4: Formal Description of the Object-Oriented approach - - - - - - (48)



Chapter 4: Comparison - - - = - = - = = = = - - oo oo - oo oo (54)
4.1: The equivalence of the two approaches - - - - - - - - - - - - (54)

4.2: The advantages of our approach over Homen De Mello and Sander-

son’sapproach - - - - = - - - - - - e - L. ... (56)

4.3: Limitation of both the approaches - - - - - - - - - - - - - . (57)
Chapter 5: Conclusion and Future Work - - - - - - - - - - - - - - - - . (58)
S.1:Conclusion - - - - - - = - - oo e cmmoaa ol (58)
52:FutureWork - - - - - - - - - e - - oo ool (59)
Appendix A: Formal Notations - - = - - = - = = - - - - - - - - .- - (60)
Appendix B: AND/OR graph for the example assembly - - - - - - - - - (61)
Appendix C: Object Model Notation - - - - - - = = = - - - - - - - - - - (63)

Bibliography - - - -~ ----= - - (64)



Chapter 1

Introduction

A mechanical assembly is a composition of parts interconnected to form a stable unit{ 10].
The process of assembling a product consists of several tasks; each task describes how to
join two or more subassemblies to form a larger subassembly. This process starts with
individual parts and ends with all parts joined properly to form the final product. The
mechanical assembly sequence problem is to find a feasible, cost-effective sequence of
tasks to perform the assembly. For the purposes of this thesis, each task in the assembly
process accepts at most two subassemblies as input, and a part by itself becomes a sub-

assembly.

The problem of generating a correct and feasible assembly sequence has recently been
recognised as significant by the manufacturing industries, since this plan will help
mechanical designers to analyse the assembly tasks off-line and justify the cost involved
in the process. For example, the difficulty of assembly steps, the need for fixtures, the
potential damage that could occur to the parts during assembly, the occurrence of tool

changes and thus the cost of the assembly are all affected by the choice of the assembly

sequence.

Traditionally, the sequence of assembly tasks is decided by a human expert[9]. For exam-
ple, in a manufacturing plant the sequence is planned by an experienced industrial engi-

neer and in repair work it is planned by a maintenance personnel. However, humans tend



to make mistakes, particularly with larger assemblies. There will always exist the possibil-
ity that a good assembly sequence has been overlooked. The more complex the product is.
the more possibility that a good assembly sequence will be overlooked. Hence, it is evi-
dent that a systematic and computerized mechanism is needed to plan the assembly
sequence. Moreover, automation of this process is feasible with the computerized mecha-

nism in place; in addition, this process can be linked to other tasks in the industry.

In this thesis, we focus on algorithms to generate all the feasible assembly sequences for a
given mechanical product so that a mechanical engineer can pick up a suitable solution
among the alternatives. There is a considerable difference between assembling a mechani-
cal product and assembling electronic components on a printed circuit board. This thesis is
devoted to the former category and hence is not related to the electronic components

assembly.

A lot of research has been done in solving assembly sequence problem. Several methods
have been proposed to generate the assembly sequences from the geometric descriptions

of the final product and the components. A brief introduction to some of these methods is

given below:

Homen de Mello and Sanderson proposed an AND/OR graph notation to represent all fea-
sible assembly sequences in one graph[9, 10]. Each node in the graph represents a sub-
assembly showing all of its possible decompositions, thus showing the OR component.
Each decomposition shows the ANDing of two subassemblies. The AND/OR graph in this
case is generated using a disassembly process which uses the representation of the final
product as its input. In this approach, the problem of disassembling a subassembly is
decomposed into two distinct subproblems, each being to disassemble one subassembly.
The key point in this process is to find out whether the decomposed subassemblies can be
reassembled by a reversible disassembly process. If so, that particular step of disassembly

is included in the set of feasible decompositions. The process continues until the whole



assembly is disassembled into individual components. This approach lends itselt to an
AND/OR graph representation of assembly sequence[9]. The whole process is automata-
ble. The AND/OR approach is an industrially successful method because of its natural
decomposition; i.e. any design approach uses AND/OR decomposition intuitively.

De Fazio and Whitney proposed a method called precedence relation graph(6}]. In this
approach, each assembly task is associated with another task having some precedence
over the other. The partial ordering among the precedence of the assembly tasks gives rise
to a correct sequence. This approach accepts the information on parts and the
“user_defined” relations between parts called “ligisons’; it then enumerates these liaisons,
asking two questions: 1) what liaisons must be done prior to doing this liaison? 2) what
liaisons must be left to be done after doing this liaison? The whole assembly sequence is
then computed by applying the answers collected from the user for the questionnaire.

Peral Pu proposed a method called cased-based search techniques{19]. It solves the
assembly sequence problem by retrieving a solution from its case library which is derived
from solving similar problems in the past and then adapting the solution to the new prob-

lem. Each case in the case-base is a solved assembly problem.

In the first two cases, the establishment of a feasible assembly sequence as well as its cor-
rectness are discussed by the respective groups. In addition, both approaches give all fea-
sible assembly sequences for a given set of parts and its final assembly. But the approach
proposed by De Fazio and Whitney accepts very little information from the user compared
to the AND/OR graph approach. This leads to considerable problems in automating the
precedence relation approach. Another problem with the precedence relation approach is

that its inexplicit representation makes it harder to understand and use.

The Case-based method mainly depends on the case library. If a case does not exist in the
library, the system creates a new case and updates its library. Consequently, automation of



this approach is relatively tedious. Moreover, the size of the library determines the com-
plexity of the algorithms used and the efficiency of the application.

Some other approaches have also been reported in the literature[13, 24).All the methods
proposed so far are functional since they concentrate on the tasks to be performed[9.6,
20]. Recently, object-oriented approach to software design becomes popular in the compu-
ter science community, mainly because of its advantages over the functional approach
towards software reuse and maintenance[2, 20]. The former asserts that enhancement and
adaptation of the software to the environment are easier to do, compared to the functional
approach. Therefore, it is decided by the author to adapt an object-oriented approach in
this thesis to redesign the assembly sequence generation algorithms to gain advantages

such as reuse and enhancement.

Since our purpose is to show the advantages of the object-oriented approach, we do not
plan to invent a new algorithm for assembly sequence planning. Rather, we redesign
Homen de Mello and Sanderson’s AND/OR graph generation algorithm because of its scv-
eral advantages over other functionalapproaches reported in the literature. Informally, we
justify that the object-oriented model captures all properties of the functional model and
show how the object-oriented model can be enhanced to include additional information
such as material and functionality of the components in order to improve the assembly

sequence generation algorithm.
In summary, the contributions of this thesis are given below:

e An object-oriented version of the assembly sequence algorithm using AND/OR graph

notation is given in this thesis.



» This version eliminates some of the redundant steps in the functional algorithm at the
cost of introducing redundant data information. Details of this claim are given in Chap-

ter S.

e The object-oriented design described in this thesis is easy-to-understand, easy-to-
enhance and inherits the advantages of the object-oriented paradigm.

« A formal model of the object-oriented design is also included in this thesis.

The organization of the thesis is as follows: Chapter 2 briefly describes the functional
approach given by Homen de Mello and Sanderson. For more details, readers are reterred
to [9]. Chapter 3 describes in detail the object-oriented design of the AND/OR generation
algorithm and its formal representation. The comparison between the two approaches are

given in Chapter 4. The thesis concludes in Chapter 5 with comments on future work.



Chapter 2

AND/OR Graph Generation - Functional
Approach

In this Chapter, we briefly describe the function approach to generate AND/OR graph.
This work was done by Homem de Mello and Sanderson; more details about this approach
can be found in [9]. We choose the method based on AND/OR graph notation in this thesis
because (i) it is an industrially successful method; (ii) compared to the other methods, the
AND/OR graph based method is easier to automate; and (iii) the method was an intuitive
notion of decomposition based on disassembly approach; such an approach is casier to

understand and implement.

Hereafter, we use the term “AND/OR graph method” in this Chapter to refer to the tunc-

tional approach for generating assembly sequences.

2.1 Input to AND/OR Graph Method

The AND/OR graph method starts with a relational graph of an assembly which describes

the parts and their interconnections making up the assembly.

Formally, the relational graph of an assembly is a quintuple <P, C, A, R, a-function>

where



e P is a set of symbols, each of which uniquely identifies a part in the assembly.

e C s a set of symbols, each of which uniquely identifies a contact between exactly two

parts in the assembly.

e A is a set of symbols, each of which uniquely identifies an attachment that acts on a con-
tact. Typically, an attachment describes the physical media of the contact, such as glue,

screw, etc.

¢ R is a set of symbols, each of which uniquely describes a relationship between pairs ot
elements among parts, contacts and attachments. The purpose of defining a relationship
is to identify the role of entities during an assembly task. For example, during a screw
assembly, one part serves as an agent being driven and the others part serves as the tar-

get.

e a-function is a set of attribute functions, each of which uniquely associates the entities or
relationships to their characteristics. For example, an a-function may return the shape of
a part, the location of a part or the type of a contact. An a-function can be modified to

include any additional information that is necessary to generate assembly sequences.

The following assumptions are made with respect to the examples used in this Chapter and
in the rest of the thesis.

e The types of contacts considered are: planar-to-planar, cylindrical shaft-to-cylindrical
hole, polyhedral shaft-to-polyhedral hole, and threaded cylindrical shaft-to-threaded
cylindrical hole.

e The type of attachment considered are glue, clip, pressure fit attachment, and screw

attachment.



o The types of relationships included are part-contact relationship, target-attachment
relationship and agent-attachment relationship. Part-contact relationship is the relation-
ship between the part and the contact. Every contact must have exactly two part-contact
relationships and every part must have at least one part-contact relationship. Turget-
attachment/agent-attachment relationship is the relationship between the attachment
and its target/agent. Every attachment must have at least one target-attachment and at

least one agent-attachment relationship.

» These classifications can be expanded/modified without affecting the algorithms or the
method.

To illustrate, consider the example of an assembly whose parts are given in Figure 1; the
corresponding relational graph of the assembly given in Figure 2. This graph shows all
elements of P, C, A and R from the quintuple. A simplified view of the relational graph
showing only the parts and contacts given in Figure 3. Even though this view is redundant,
we have included it here because all the papers by Homen de Mello and Sanderson include
both versions of the relational graph. In their terminology, the simplified version of the

relational graph is called “graph of connections”.
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The elements of the quintuple are:

P = {P1, P2, P3, P4, P5}

C={C1,C2,C3,C4,C5,C6,C7, C8}

A ={Al, A2, A3, A4, A5}

R = {R1, R2,R3, .., R26}

The a-function for this assembly are categorized as follows:

1. The functions that associate a part to a description of its shape.

2. The functions that associate a contact to its type.

3. The functions that associate a planar contact to the coordinates, with respect to the
assembly’s global frame of references, of a vector normal to the planar contact.

4. The functions that associate a planar contact to its Forward part, which is the part
that the normal to the plane of contact pointing to the exterior of the part.

5. The functions that associate a planar contact to its Back part, which is the part that
the normal to the plane of contact pointing to the interior of the part.

6. The functions that associate a cylindrical, a slot, or a thread__ cylindrical contact to
its coordinates, with respect to the assembly’s global frame of reference, of the
line of the axis of both the hole and the shaft.

7. The functions that associate an attachment to its type.

8. The functions that associate a relationship to its type.

9. The functions that associate a part_contact relationship to its part.

10. The functions that associate a part_contact relationship to its contact.

11. The functions that associate an attachment or a contact in an agent_attachement

relationship.



12. The functions that associate an attachment contact in a target_attachment rela-
tionship.

13. The functions that associate an agent_attachment relationship to its agent.

14. The functions that associate an target-attachment relationship to its target.

The a-functions are shown in Table 1 - Table 4.

TABLE 1.
a-function
part | pl p2 p3 p4 pS in category
shape | plannar_cylin | planner | planner_cylin | cylindri- | cylindri- | 1
drical_combi dricalhole_co | cal cal
nation mbination
TABLE 2.
a.
function
in
contact | C1 C2 c3 C4 Cs Cé C7 Ccs category
type thread | cylin- | cylin- | cylin- | cylin- | planar | planar | planar | 2
ed_cyl | drical | drical | drical | drical
indri-
cal
Normal (100) | (100) | (OOD) |3
Forward P3 PR 4
Back P1 P2 5
Coordi- | (002) | (200) | 200) | 210) | (210) 6
nate @01 | (000) | (300) | 310) | (010)
target- R18 R19 R22 R23 R26 12
attach-
ment
relation-
ship
agent- R17 R20 R21 R24 R2S part
attach- of item
ment 11
relation-
ship

12
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related-
related- related- attachme
Relationship | type part contact ot agent target
R24 agent-attach- C4 A4 P4
ment
R25 agent-attach- cs AS P5
ment
R26 target-attach- Cs AS P1
ment
a-functionin | 8 9 10 11 13 14
Category

The relational graph provides a data structure that maintains contact geometry and con-
nectivity information at one level of representation and completed part geometry at a sec-
ond level[9]. As observed from the set of data, most of the a-functions are meant to
describe an attribute or property of a particular entity. In our model, we have simplificd

these a-functions; details on these simplifications are described in the next chapter.

2.2 AND/OR Graph Generation

An AND/OR graph consists of a set nodes corresponding to subassemblies created during
the assembly process, and a set of hyperarcs emanating from each subassembly. Each
hyperarc shows two subassemblies which are joined to make up the subassembly under
consideration (which represents AND). The set of hyperarcs emanating from a subassem-
bly node shows the possible decompositions of a given subassembly (which represents
OR). During actual assembly, only one of the possible decompositions is considered.
Selection of a particular decomposition depends on serval factors such as cost, tool sup-
port and other organizational concerns. Thus, an AND/OR graph represents all possible
assembly decompositions and sequences of assembly task. Any path from the leaves (the
separated parts) to the root (the final assembly) of the AND/OR graph is a valid assembly.

14



2.3 Generation of the Assembly Sequences

In this section, we describe in detail the algorithms of the AND/OR graph method.

2.3.1 Overview

Homem de Mello and Sanderson transformed the problem of generating assembly
sequences to the problem of generating disassembly sequences. The following assump-
tions have been made during the generation of the AND/OR graph:

e Each disassembly task is the reverse of a feasible assembly task.
 Exactly two parts or subassemblies are joined at each time.

o All the contacts between two parts or subassemblies are established when these two

parts or subassemblies are joined.

e All the contacts within the subassemblies still remain when an assembly is disassembled

into two subassemblies.

A decomposition approach was used to solve the disassembly problem. Every decomposi-
tion corresponds to a disassembly task. Every reversible disassembly task is then a valid
assembly task which can be tabulated. Each disassembly step creates one decomposition
which is a pair of subassemblies. The decomposition is checked for feasibility(i.c. con-
firming the possibility of a reverse assembly) based on two criteria: task-feasibility and
subassembly-stability criteria. The task-feasibility predicate is true if there exists a
mechanical process to join the two subassemblies. The subassembly-stability predicate is
true if the parts in each subassembly maintain their relative position and do not break con-

tact spontaneously. The process continues until the whole assembly is disassembled into

15



the components. This approach lends itself to an AND/OR graph representation of assem-

bly sequence.

2.3.2 Algorithms

The basic idea of the algorithm is to enumerate all possible decompositions first and then
retaining only those that pass the check on feasibility. The AND/OR graph generation is
then to develop the graph to show all feasible sequences in one graph.

Two procedures were given by Homem de Mello and Sanderson: GET_FEASIBLE
_DECOMPOSTION and GENERATE_AND_OR_GRAPH. Before describing these two

procedures, let us start the with the concept of cut_set.

CUT-SET

A cut-set describes the possibility of a decomposition in a given assembly. For example, in
a 5-parts assembly, a decomposition can be achieved by breaking one or more contacts

resulting in one 2-part and one 3-part subassemblies. The set of contacts must be broken in

order to generate the decomposition is called a cut-set

Algorithm: GET_FEASIBLE_DECOMPOSTION:

» This algorithm accepts the relational graph as input.

o It first generates the graph of connection from the relational graph by calling a proce-
dure GET_GRAPH_OF_CONNECTION and then computes the cut_sets from this
graph. Remember that cut-sets denotes the set of all cur-sets for the graph.

16



e For every cut_set in the cut_sets, a decomposition is generated by calling the procedure
GET_DECOMPOSITION.

e Each decomposition is then subject to the feasibility test. If feasible, the decomposition
is included in a list called fsl-dec.

e The algorithm finally returns fsl-dec.
We now illustrate the algorithm using the example shown in Figure 1
Step 1: The cut_sets CS is generated

CS = [{C2, C3}, (CS5, C6, C7, C3)}, (CI, C2, C3, C8)}, [(C1, C4, C6, C8}, {C4, C5}, (C2,
C7, C6, C4}, {C2, C6, C7, C5}, [C1, C2, C8}, {C1, C5, C6, C8}, [C3, C4, C6, C7})

Step 2: For every cut_set in CS, generate its comresponding decomposition. The list of

decompositions dec thus generated is:

{pl, p2, p3, p4} (p5} {pl, p2, p5}(p3, p¥} {p2, pS}pl, p3, p4}
{p2, p3, p5} {pl, p4} {p4}] (pl, p2, p3, p5} {p3, p5}ipl, p2, p4}
{p3, p4, p5} (pl, p2} {(p2}(pl, p3, p4, p5} {p1}{p2, p3, p4, p5}

{(p3}pl, p2, p4, pS}

In the above list, the two sets in each decomposition indicates the parts in each subassem-

bly.

Step 3: For each decomposition in the list dec, exercise the feasibility test by calling the
procedure feasible-test. The feasibility test will use all the information about the assembly

17



given by the users, such as the attachments, relationships and a-functions. As an example,
consider the decomposition{p5}{pl, p2, p3, p4}. This decomposition will fail during the
feasibility test for the following reasons: Part p5 has contacts with p2 and p3 via the con-
tacts c2 and c3 respectively. Parts p2 and p3, in turn, are connected through the contact ¢7.
From the information such as the axis of alignment of the hole and shaft in p2 and p3
respectively, it is inferred that c2 and ¢3 must be made before c7. However, the current
decomposition shows that ¢7 must be made before c2 and ¢3 which is contradictory.

Therefore, this decomposition does not generate a feasible assembly task.

Homem de Mello and Sanderson have included a number of procedures in their imple-
mentation to automate the feasibility test, most of these procedures computes feasibility
based on engineering calculations. In this thesis, we do not include these procedures.
Instead, we display the set of information on the screen and let the user decide on the tea-

sibility.

The feasible_test includes task_feasiblites test and subassembly_stability test. The auto-
matic generation of AND-OR graph is based on the assumption that there exists a correct

algorithm for computing these two tests.

Therefore, assume that we have a correct algorithm for computing feasible_test, the result
from enumerating the decomposition list which is feasible decomposition list fs/_dec will
be:

{p1, p2, p5} {p3, p4} {p3, p5} (pl, p2, p4} {p3, p4. p5} (p1, p2}

{p3} {pl, P2, p4, p5}

Algorithm: GENERATE_AND_OR_GRAPH

I8



This algorithm generates the AND/OR graph from the list of feasible decompositions.
Two lists are used in this procedure: open list and closed list. both pointing to the rela-
tional graph of the assembly. The list open list stores the subassemblies that are not yet
decomposed and closed list stores the one that are already decomposed. Actually, this
algorithm works in conjunction with the decomposition algorithm. In summary.

e For each item in open list, generate all feasible decompositions by calling the procedure
GET_FEASIBLE_DECOMPOSTION.

*Using the pointers to the relational graph by calling the procedure GET_POINTS, check
whether each subassembly has appeared before. If so, ignore the subassembly. Other-
wise, create a new pointer and insert it into the open list.

eEach decomposition yields one hyperarc in the AND/OR graph.

eMove the element to the closed list.

eExecute the loop until the open list is empty.

Figure 4 shows the AND-OR graph for assembly in Figure. 1
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Figure 4 AND/OR graph for the assembly shown in Figure 1



2.4 Formal Description of AND/OR Graph Functional Model

As given in [9], an abstract functional model of an assembly is represented by a set of
parts and a set of contacts. This model should reflect the initial graph of connections of the
assembly. The assembly process is described by a sequence of assembly states, where at
each assembly state, exactly two subassemblies are joined together. Initially, every part
forms a subassembly. At the final stage, there is only one subassembly corresponding to

the whole assembly.

A formal model of the AND/OR graph for a given set of parts P={p,, p,,.... py/ is given

below: [9]

, ={0e II(P)|sa(8) Ast(0) }

D, =(8, {8,8,} )16, 5,78, 5,78, 5 A

6, = 8,U8,amf (8,0} )ngf {6, ej})}

Where 6, and 6 ; represent the subsets of parts from which two subassemblies are assem-
bled; 8, represents the subassembly which is derived from 6, and 6 ;s TI(p) is the set of
all subsets of P (power set of P); § p Tepresents the set of all valid and stable subassemblics
which are indicated by sa (8) and st(0) respectively; Dp represents the set of all

mechanically feasible and geometrically feasible assembly tasks which are represented by

mf{0, Bj} and gf{0, Oj} respectively.
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Chapter 3

AND/OR Graph Generation - Object-Ori-
ented Approach

In this Chapter, we describe the AND/OR graph generation using an object-oriented

approach. This chapter provides the major contribution of the thesis.

3.1 Overview

An object-oriented approach to software design is a new way of thinking about problems
using models organized around real-world concepts. The fundamental construct in this
approach is the object, which combines both data structure and behaviour in a single
entity[9).

The object-oriented approach concentrates on designing objects and their individual
behaviours. The system is represented as a collection of objects and the system tasks are
performed by interactions among these objects. Generally, the designer of an object-ori-
ented system starts by designing the real-world objects first and then adds system objects
which support the realization of the real-world objects.

In object-oriented terminology, a class represents a group of objects with similar proper-

ties (attributes), common behaviours (operations), common relationships to other objects,



and common semantics{9]. By grouping objects into classes, we can abstract the problem,

which is the heart of the object-oriented design.

For the AND/OR graph generation using the object-oriented approach, we start with class
definitions, and then describe the interactions among these classes; an example is given to
show how the AND/OR graph is generated by the object-oriented approach. Finally, we
also give the formal model of an object-oriented design to generate AND/OR graphs.

We use the Object-Modeling Technique (OMT) by Rumbaugh and others to represent the
design. OMT supports three views of the system: Object model, dynamic model and func-
tional model. The object model captures the static structure of the system. The object
model of the proposed design describes the structure of objects in the system - their identi-
ties, relationships to other objects and attributes, and operations in each object. The
dynamic model describes the behavioural aspects of objects individually. The behaviour
of an object is represented using a state transition diagram. Consequently, the dynamic
model consists of a collection of state transition diagrams, one for each class. The func-
tional model gives a transformational view of the system and is represented by data-flow
diagrams. In our approach, we do not use the dynamic and functional model. Instead, we
describe the algorithm using flowcharts.

3.2 Class definition

To start with, we introduce the object-oriented design model for an assembly. The object-
oriented model is expected to be synonymous to the functional model described in the

Chapter 2 in the following sense:

e The model should capture all the information in the relational model which is the input
of AND/OR graph generation using the functional approach.
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e The model should generate AND/OR graph which is the output of the functional

approach.

We start our discussion by modeling individual classes. A class definition should include a
structure and behaviours, one of them may be empty. The main goal in the design of a
class is to see that a class definition is more or less self-descriptive; in other words, it is
encapsulated and describes a part of the real-world problem.

We extract the structure and behaviour of each class definition from the entities in the
functional model. The functional model describes five major entities: parts, contacts,
attachments, relationships and a-functions. The first three can be modelled as individual
classes since they describe fairly independent and distinct sets of information. A relation-
ship describes the connectivity among parts, contacts and attachments and partly adds
some information about the nature of the relationship and the role played by each of these
entities (such as agent and target). Hence, a relationship can also be modelled as a class.
The a-functions in the functional model describe the characteristics of each of these enti-
ties. Typically, each function corresponds to an attribute of the entity. Therefore, in our
approach, we do not model them separately; instead, we distribute the information
extracted from the a-functions to the various class definitions as attributes and functions

within the classes.

The details of the individual class definitions follow:

1. CLASS PART

Structure:

Each part belonging to the class PART must have a unique identifier and a unique
type. The identifier corresponds to the symbols P1, P2, ..., PN as used in the func-
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tional model. The shape of a part serves as a reasonable classification of its type.
Even though complex shapes are difficult to express, we do not take into account
the naming of such complex shapes. A part must have a position, expressed as a
vector in a global coordinate frame. Additional information such as the material of
the part can be included. In addition, for encapsulation purposes, a part also main-
tains information about the contacts and relationships in which the part is
involved. Even though it is redundant, we need to have at least pointers to the con-
tacts and relationships for easy manipulation of relevant information during AND/

OR graph generation.

Behaviour:

The only behavioural aspect of a part interesting to the current problem is the
movement of the part during the assembly process. When a part moves, its position
changes. A move operation could be simple such as translation or rotation, or com-
plex such as a threaded path movement or screwing. Complex movements can bhe
modeled as.combinations of simple translations and rotations. So, we include only

translation and rotation in the behavioural section of a part.

Definition:

class PART {

data members:

identifier: String

relatedContacts: set of CONTACT;

relatedRelationships: set of RELATIONSHIP



shape: {planar, cylindrical, thread-cylindrical, polyhedral, complex}
position: Vector;
material: {... material name of the part...}
member functions:
void rotate (axis: DIRECTION; angle: REAL);
void translate (dir: DIRECTION; distance: REAL);
h

2 Class CONTACT

Structure:

Every contact belonging to the class CONTACT must have a unique identifier and
a unique type. The identifier corresponds to the symbols C1, C2, ..., CN as used in
the functional model. A contact is defined between exactly two parts; they are
named as front and back parts of the contact (these terminologies are borrowed
from the functional approach). There are four types of contacts used in our
approach. They are: planars, cylindrical, threaded-cylindrical and polyhedral. For
encapsulation purposes, a contact also maintains information about parts joined by
the contact, attachments acting on the contact and relationships in which the con-
tact is involved. Another useful structural parameter is the area of the contact
which may later be used in mechanical stability and feasibility analysis.

Behaviour:



We do not include any operation at present in this object, because we do not per-
form engineering calculation. However, when required, operations to this class can
be added.

Definition;

CLASS CONTACT {

data members:
identifier: String;
type: {planar, cylindrical, threaded-cylindrical, polyhedral }
forward-or-along-part: PART
backward-or-against-part: PART
contactArea: REAL
related Attachments: set of ATTACHMENT
relatedRelationships: set of RELATIONSHIP

5

3. CLASS ATTACHMENT

Structure:

Like parts and contacts, each attachment belonging to the class ATTACHMENT
must have a unique identifier and a unique type. We consider the following four
types of attachments: SCREW, GLUE, CLIP and PRESSUREFIT. This list can be
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extended without affecting the algorithms or the model. A attachment has a weight
limit that it can withstand.

Each attachment acts on only one contact. Correspondingly, a relationship is estab-
lished between the parts involved in the contact, the contact itself and the attach-

ment.

Behaviour:

We do not include any operation at present in this object, because we do not per-
form engineering calculation. However, when required, operations to this class can

be added.

Definition:

CLASS ATTACHMENT (

data members:
identifier: String
type: (GLUE, SCREW, CLIP, PRESSUREFIT)
contactActingOn: CONTACT
relatedRelationships: set of RELATIONSHIP
maxWeight: REAL

b

4. CLASS RELATIONSHIP
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Structure:

A relationship in this approach is always binary and is applied between two com-
ponents chosen from objects of classes PART, CONTACT and ATTACHMENT.
Every relationship is uniquely identified by a distinct identifier such as R1, R2, ...,
RN as used in the functional approach. We consider the following types of rela-
tionships in our approach: part-contact relationship, agent-attachment relation-
ship and target-attachment relationship (these names are derived from work done
using the functional approach). In the class RELATIONSHIP, we include three
attributes referring to parts, contacts and attachments on which a relationship is
defined. Since any instance of this class uses exactly two of these attributes, the
third attribute is set to NIL. For example, in a part-contact relationship, the attach-

ment attribute is set to NIL.

Behaviour:

We do not include any operation at present in this object, because we do not per-
form engineering calculation. However, when required, operations to this class can

be added.

Definition:

public class RELATIONSHIP {
data members:
identifier: String

type: {part-contact, target-attachment, agent-attachment, blocking-part-attach-
ment}
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relatedPart: PART
relatedContact: CONTACT
relatedAttachment: ATTACHMENT
AgentOrTargetName: String

|5

We now consider the a-functions and their categories described for the functional
approach in Chapter 2. Below, in Table 5, we illustrate that these categories are already

captured by the class definitions.

TABLE §.

a-function in category captured by the class

Category 1 PART

Category 2 CONTACT

Category 3 CONTACT

Category 4 CONTACT

Category § CONTACT

Category 6 CONTACT

Category 7 ATTACHMENT

Category 8 RELATIONSHIP

Category 9 PART and RELATIONSHIP

Category 10 CONTACT and RELATION-
SHIP

Category 11 1) ATTACHMENT and
RELATIONSHIP
2) CONTACT and RELA-
TIONSHIP

Category 12 1) ATTACHMENT and
RELATIONSHIP
2) CONTACT and RELA-
TIONSHIP

Category 13 RELATIONSHIP

Category 14 RELATIONSHIP




So far, we have captured all the input information from the relational model. In addition,
our object-oriented model also requires other classes in order to generate the AND/OR
graph. These are described below:

5. CLASS ASSEMBLY

Structure:

An assembly consists of a set of parts, a set of contacts, a set of attachments and
relationships among these. This is a major class in our model incorporating the

important functionalities required to generate AND/OR graph.

Behaviour:

Given an assembly, one can generate all its feasible decompositions and can gener-

ate its corresponding AND/OR graph.

As stated earlier, consistency of information among the parts, contacts, attach-

ments and relationships must be established. This is described by the function

data-consistency().

All the parts in an assembly should be connected through the contacts. This check
is described by the function isConnected().

Definition:

public class ASSEMBLY (

data members:
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parts: set of PART
contacts: set of CONTACT
attachments: set of ATTACHMENT
relationships: set of RELATIONSHIP
andorgraph: ANDORGRAPH
member functions:
public set-of-DECOMPOSITION Gen-feasible-decompositions()
public void GENERATE_AND_OR_GRAPH();
public boolean data-consistency();

public boolean isConnected();

6. CLASS DECOMPOSITION

Structure:

Each decomposition consists of two subassemblies

Behaviour:

An important behavioural component of a decomposition is to check its feasibility.

Definition
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public class DECOMPOSITION {
data members:

sub-1: ASSEEMBLY

sub-2: ASSEMBLY
member functions:

public boolean feasible-test();

7. CLASS NODE

Structure:

This class represents a node in the AND/OR graph. It corresponds to one sub-
assembly during the assembly process. The possible OR compositions of this sub-

assembly is also included in the node.

Behaviour:

None

Definition:

public class NODE {
data members:

subassem: ASSEMBLY
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OR-arcs: set of DECOMPOSITION
|5

8. CLASS ANDORGRAPH

Structure:

An AND/OR graph consists of set of NODEs.

Behaviour:

The two relevant operations for an AND/OR graph are: “add’” to add a node during

the generation of the graph and “print” to print the graph in a nice format.

Definition:
CLASS ANDORGRAPH (
data members:
nodes: set of NODE;
member functions:
void add(node);
void print();
k

We do not define SUBASSEMBLY as a separated class since it performs the same function-
ality and attributes as that of ASSEMBLY; in other words, a SUBASSEMBLY is an
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ASSEMBLY. Hence, these two terms are used interchangeably. The following shows the
object model of these classes (Figure S).
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PART CONTACT ATTACTMENT RELATIONSHIP
identifier identifier identifier identifier
relatedContact type type type
shape forward-or-along-part contactActingOn relatedPart
position backward-or-against-part reiatedRelationships relatedContact
material contactArea maxWeight relatedAttachment

relatedRelationships AgentOrTargetName
rolate relatedAttachments Cn
translate
+
ASSEMBLY
2 |parts
contacts
attachments
andorgraph
- ANDORGRAPH
Gen-feasible-decom i
g:n-ANDIOR—GmphO nodes
Data-consistency() add(NODE node)
isConnected() print)
DECOMPOSITION] NODE
sub-1 subassem
sub-2

feasible-test()

Figure 5 Object Model

<>| OR-arcs



3.3 Interactions among the objects

Having defined the classes, we now show how the objects from these classes interact with
each other to generate the AND/OR graph.

The basic idea of generating the AND/OR graph for an assembly is to take the information
of the parts in the assembly, find all possible decompositions each resulting in two scts of
connected parts, and then check the feasibility of these decompositions. For each decom-
position which passes the feasible-test, we must create a node in the AND/OR graph. By
appropriately connecting each decomposition node to its descendants, we will complete
the AND/OR graph.

3.3.1 Generate the Assembly

One of the prime requirements of the AND/OR graph generation method is to ensure con-
sistency of information among the entities. For example, when two parts are joined
together to make a subassembly, they must have same or compatible shapes. In our model,
we do not provide additional methods for such mechanical compatibility; rather, we
assume that such algorithm could be easily introduced at the implementation level. The
other consistency issue in the object-oriented approach is due to the redundant information
stored in each class. For example, a part includes the set of contacts in which the part is
involved while a contact includes the two parts making up the contact. It is therefore

required to ensure consistency among these duplicated information.
We describe these checks in the method data-consistency() which consist of four phases.

The flowcharts shown in Figure 6 - 9 illustrate these four phases. In all the flowcharts in

this thesis, a solid arrow represents data flow and dash-arrow indicates control flow.
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ATTACHMENTS and RELATIONSHIPS

Access the object P;
get all contacts in P

|
|
|
|
|
|
|
I
I
|
|
|
|
------------ b | |
by
Lo
Py
Fy
by
Ly
by
|
I
|
| |
|
|
I I
| |
| |
. All ||
es _dcontactsinP» . _— 4 |
No ¥ \checked? l
-+ - - - - No |
consistency-
check fails :
|
|
No |
-— e e o)
—————— >
Yes
consistency-chech
phase 1 passed

Figure 6 data-consistency- Phase 1

K} J



set of PARTS, CONTACTS
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3.3.2 Generate Feasible Decompasitions

The next step is to generate the feasible-decompositions for the assembly.

The functional approach includes two data structures during the generation of feasible
decompositions: cut-sets and connection-graph. A connection graph is a simplified ver-
sion of the relational graph input to the assembly sequence generation process and hence
can be safely ignored. As observed from the paper [9], the connection graph is used only
to generate the cut-sets. In our approach, we ignore the cut-sets itself. The justification is
that a cut-set is a temporary data structure which is used to identify the two subassemblies
during a decomposition process. We propose to model “decomposition” as a separate class

which therefore includes the concept of cut-set.

The generation of feasible decomposition proceeds as follows: Starting with a completely
assembled product, we generate two assemblies by breaking a set of contacts. In this con-
text, we still follow the notion of a cut-set, but without mentioning or storing it. Each of
these subassembilies is subject to (i) a connectivity test which ensures whether the parts are
geometrically connected, and (ii) to a feasibility test which ensures that the parts can be

mechanically joined together to form a stable subassembly.

Figure 10 shows the flowchart of the algorithm Gen-feasible-decompositions().
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In Gen-feasible-decompositions method showed above, the ASSEMBLY class interacts

with the following classes:
+»ASSEMBLY class: the method isConnected()

«DECOMPOSITION class: the method DECOMPOSITION() to create a DECOMPOSI-
TON object

*DECOMPOSTION class: the method feasible-test()
Each of these methods are described in detail below:
isConnected

This algorithm determines whether or not a given set of parts are connected through

the contacts specified in the assembly. Let §;, be the set of parts under consideration.
The algorithm starts by selecting a part P in §; , access all the contacts in P and
includes all the parts that are connected to P through the contacts in another set S, .

when all the parts in § are ana-

temp

This process is repeated for every partin S,

lyzed, the algorithm checks whether §; and § are identical. If so, it confirms that

temp

the set of parts S, are all connected. Figure 11 illustrates this algorithm through a

flowchart.
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DECOMPOSITION( ).

This algorithm represents a constructor function. Given two sets of parts, this algo-
rithm constructs an instance of the class DECOMPOSITION (see the class definition
DECOMPOSITION). An instance of DECOMPOSITION requires two subassem-
blies. The information for creating each subassembly can be derived from the sets of
parts. The rest of the algorithm is trivial.

feasible-test()

This algorithm determines whether or not a decomposition is a valid decomposition.
In the context of AND/OR graph generation process, this refers to checking whether
the reverse of a disassembly process is feasible. The functional approach uses two cri-
teria to determine the feasibility: stability of the two subassemblies and mechanical
feasibility of the two subassemblies. The former refers to judging whether cach sub-
assembly is stable by itself and the latter ensures whether there exists a mechanical
process by which the two subassemblies can be joined together. In our approach, we
present all the information regarding the two subassemblies to the user and let the user
decide the feasibility. Hence, we do not describe this algorithm any further in this the-

sis.

3.3.3 Generate AND/OR Graph

Once the feasible decompositions generated, we can now develop the AND/OR graph. As
given in the class ANDORGRAPH, an AND/OR graph consists of a set of nodes; ecach
node indicates the subassembly and its all feasible decompositions. Hence, it is a straight-
forward task to generate the graph using the set of decompositions. In the implementation,
the generation of AND/OR graph is done recursively whenever a decomposition is identi-

fied, we discuss this in detail in the next chapter.



3.3.4 Example:

Now we illustrate the generation of an AND/OR graph using the example shown in Figure
L.

Step 1. Create the assembly object from the set of PART, set of CONTACT, set of
ATTACHMENT and the set of RELATIONSHIP.

e input:
parts = (P1, P2, P3, P4, PS5}
contacts = {C1, C2, C3, C4, CS, C6, C7, C8}
attachments = {Al, A2, A3, A4, AS}
relationships = {R1, R2, R3,..., R26}
» Check consistency of the input data.
This is done by calling the data-consistency() algorithm.
« Create an assembly object using the constructor function in ASSEMBLY
ASSEMBLY: ASSEMBLY (parts, contacts, attachments, relationships)
STEP 2: Create the feasible decomposition list
* Create all subset of parts and pair them. The list of all pairs is given below:
(p1Hp2p3p4p5}  {p2} {pl p3 p4 p5} (p1 p2} {p3 p4 pS)
{p3) {p1p2p4p5}  (plp3} {p2p4pS} {p2 p3} {pl p4 p5}

{p1p2p3} (p4p5}  (p4) (plp2p3p5} {p1 p4} {p2 p3 pS}
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{p2p4} {(pl p3pS}  (plp2p4} {p3 p5} (p3 p4} {pl p2 p5}
(pl p3p4} (p2pS}  {p2p3 p4} {pl p5} {p1 p2 p3 p4} {p5}
» Check whether each pair represents a set of connected parts. This results in the follow-
ing list:
{p1}{p2 p3 p4 p5} {p2} {p1 p3 p4 p5} {p1 p2} {p3 p4 p5}
{p3} {p1p2p4p5}  (p4} (p1p2p3p5} {p1 p4} {p2 p3 p5}
{p1p2p4} (p3p5}  {(p3p4} (pl p2pS} (p1 p3 p4} {p2 p5}
(p1 p2 p3 p4} {p5}
« For each pair, create an instance of DECOMPOSITION.

« Perform feasibility test on each decomposition and delete those which fail the test. The

resulting list after the feasibility test is:

{p3 p4p5} {p1p2}  (p3} {(pl p2 p4 pS} (p3 p5} {p!l p2 p4}
{p1 p2 p5} {p3 p4}
Step 3: Generate AND/OR graph

o The result is shown in Figure 4.

3.4 Formal description of the Object-Oriented approach

We now discuss the formal, abstract object-oriented model of an assembly. The notations

used in this section are listed in Appendix A.



A part is characterized by a unique part name and a set of contacts in which the part is
involved. Initially, this set of contacts will be empty and during the assembly process, it
will be updated. Formally,

Part == PartName X H (Contact)

Initial: H: @ (Contact)
A contact is characterized by its contact name and the two parts involved in that contact.
Contact == ContactName x PartName x PartName
An assembly is described by a set of parts making up the assembly. This model of assem-

bly coincides with the functional model so that it is easy to compare them. The set of con-

tacts in the assembly can be extracted from the parts records. Initially, an assembly is

empty.

Assembly == [] (Part)
initial: [ (Part)= @

A subassembly is an assembly by itself. Therefore, it simply inherits the definition of an

assembly.
Subassembly inherits Assembly

A graph of connection for an assembly consists of a set of parts and a set of contacts.
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Graph == H (Part) x H (Contact)

Having defined the model, we now establish several invariant conditions on the model.
These invariant conditions assert the validity of each entity whenever it is created or used.
For example, the invariant of an assembly asserts that the assembly should be stable and
valid (using the sa and of predicates in the functional model. Following give the invariant
conditions for the various entities defined above:

e For every contact ¢ within a part’s record p, the name of p must be stored in the record of
c. This ensures the consistency of information between the contacts and parts. In a simi-
lar way, for every part name pn in a contact c, the contact ¢ must be stored in the corre-

sponding part’s record (whose name is pn).
Vp: ParteVc: Contacte ce H (Contact) (p)

=> PartName (p) = PartName (c)

Vc: contacte Yp: Part e PartName (p) = Partname (c)

=cC€ 1_[ (Contact) (p)

We also need an additional constraint asserting that the two parts involved in a contact
must be different. In other words, a contact cannot be established within the same part.

Thus:

Vc: Contacte 3(p,, P,) : Parte PartName (p,) = PartName (c) A



PartName (p,) = PartName (c) =p, #p,
o Every assembly must be stable and valid.

Va: Assembly e st(a) ® sa(a)

The predicates “st” and “sa” have the same interpretations as in the functional model (i.c.

stability and validity)

A single part constitutes an assembly (which is, by the previous invariant, valid and sta-

ble). The contacts in that part must be empty.
Vp: Parte H (Contact) (p)= D =3a: Assembly e r[ (Part) (a)= {p}

e A subassembly should respect all invariants of an assembly. This is vacuously true by

the semantics.

» The set of parts and the set of contacts in a graph of connection should be consistent
with each other; in other words, the set of contacts in the record of every part in a graph
of connection should contain only those contacts which are defined within the graph of
connection and nothing else. Similar constraints apply to the set of contact.

Vg: Graphe
Vp: Partepe H (Part) (g) =>n (Contact) (p) cH (Contact) (g)

Vc: Contactece H (Contact) (c) = 3Ip:Parte

st



Partname (p) = PartName (c) Ape [] (Pary) (g)

An assembly process is now defined as an operation in (in object-oriented terminology, a
behaviour of) Assembly. It typically merges two subassemblies into an assembly, making
all the contacts between the parts involved. Formally it is defined as:

Assembly Process: Assembly x Assembly -> Assembly
i.e., it is defined as a function taking two assemblies (or subassembly) and returning a
composite. If al and a2 are the two operands for the assembly process, then it returns a
third assembly a satisfying the following conditions:
« The assembly process must be mechanically feasible and geometrically feasible

e The set of parts in a must be the union of parts from a/ and al

e The set of contacts made during the assembly are derived from the graph of connections

and the parts’ records are updated accordingly.

AssemblyProcess (a, a,) = a & mf(AssemblyProcess (a;, a,)) A

gf(AssemblyProcess (a,, a,)) A

[1Parn) (a) = [] (Pare) (a) © (Par) (a) A



Let g = Graph(a) in

Vc: Contactece II (Contact) (g) = 3Ip,,p,
Parte P e [] (Parr) (al) ap, e [] (Pars) (a,) A M (Contact) (p,) «

H (Contact) (p,) v {c} AllContact) (p, ) «
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Chapter 4

Comparison

In this chapter, we critically compare the functional and the object-oriented approaches for

generating the AND/OR graph.

4.1 The equivalence of the two approaches

Basically, there are two ways to prove the equivalence of the two approaches: (i) For a
given assembly, it can be shown that both the models generate the same set of assembly
sequences. This approach is called validation in terms of software engineering terminol-
ogy and it requires a lot of test cases (different assemblies) to convince that the two mod-
els are equivalent. (ii) The other approach is to prove that the two models are
homomorphic; i.e., any operation performed on the two models will result in the same
state, provided that the state of the two models are identical before performing the opera-

tion. The second approach is used here.
We claim that the two models are homomorphic based on the following facts:

»First, it is required to show that the object-oriented model has all the structural informa-
tion required for the assembly task. In the functional model, each assembly task checks
whether the subassemblies are stable and valid, and also checks whether the task is
mechanically feasible and geometrically feasible. These checks use the parts records and

contacts records which are available globally in the functional model.



In the object-oriented approach, the a-functions are localized within the class PART,
CONTACT, ATTACHMENT and RELATIONSHIP and are used whenever they are
required. Since parts contain all the information about those contacts in which the parts
are involved. Access to parts information automatically provide access to those contacts
as well; contacts contain all the information about the parts, attachments and relation-
ships in which the contacts are involved, access to contacts information automatically
provide access to those parts, attachments and relationships as well. Thus, the global
information for an assembly task is distributed across the classes PART, CONTACT and
ATTACHMENT and RELATIONSHIP which are used when needed. This indicates that
for every assembly state in the functional model, one could easily derive the correspond-
ing state in the object-oriented model. The justification for the existence of such a formal

derivation can be found in [18).

» The assembly process is a local operation to the object Assembly (which is also applica-
ble to subassembly through inheritance). During the assembly process, the conditions
such as mechanical feasibility and geometric feasibility are checked as in the functional
mode. Besides the functional model also ensures that the resulting assembly (or sub-
assembly) is stable and valid. These two constraints are coded as local to the assembly
class which are to be satisfied by every instance of the assembly class. Thus, all the tour
constraints mentioned in the functional model are taken care of by the assembly opera-

tion in the object-oriented model.

Thus, every invocation of the assembly process will result in the same state as defined in

the functional model, and thus establishing the equivalence between the two models.
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4.2 Advantages of the our approach over Homen de Mello and
Sanderson’s approach

We claim that the object-oriented model has several advantages over the functional model.
These advantages are summarized below:

 The object-oriented model naturally fits into assembly sequence problem. As one of the
characteristics of object-oriented design, our object-oriented model closely resembles
the real-world application. For example, the DECOMPOSTION class includes two sub-
assemblies which are being created during a decomposition process. Another character-
istic of the object-oriented model is that the model provides an abstraction of the real-
world as well as a mechanism to implement or to realize the abstraction. Thus, the
object-oriented approach fits into the assembly sequence problem because the assembly

sequence problem deal with physical objects and their interactions,

» The object-oriented model provides the flexibility for easy extension and maintenance of
the software derived from the model. Due to the separation of abstraction and imple-
mentation, one can change the implementation without affecting the abstraction. For
example, the current implementation of the feasible-test method is interactive, letting the
user to decide the feasibility, we can automate this process by modifying the code for the
class DECOMPOSITION alone. This modification does not require recompilation of
other classes. Due to high information hiding characteristics of the class, one can also
enhance a class representation without affecting the rest of the system. As an example,
one can add more information to the class PART which might include functionality of

the part in the overall product.

¢ Our approach eliminates the redundant algorithms and data structures in the functional
model. The two major data structures eliminated are CUT-SET and CONNECTION-

GRAPH. This make the whole system simpler and easier to understand.



e In our approach, we have changed the non-recursive algorithms. In the functional model
to recursive algorithms. This make the algorithms easier to understand and easier to

implement.

4.3 Limitations of the approaches

Both approaches have limitations on the computer resources when there are a lot of parts
in the assembly. Larger assemblies are quite common in the automobile industries. This is
an inherent problem of the AND/OR graph method itself and not on the approaches. The
amount of computation involved in generating all mechanical assembly sequences was
assessed by determining the number of decompositions that must be analyzed[9]. This
will dramatically increase with the number of the parts in the assembly.

As suggested in [9], two strategies can be applied to address this problem:
1. Artificially reduce the number of parts by treating subassemblies as single parts.
2. The algorithm generate fewer, hopefully the best, sequences using some heuristics to

guide the generation of assembly sequences. Such heuristics should be compatible with

the evaluation function used to choose among the altemative assembly sequences[9].



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have used the object-oriented approach to redesign Homen de Mello and
Sanderson’s assembly sequence generation algorithm, also known as AND/OR graph gen-
eration algorithm. We do not propose a new algorithm; rather, we redesigned the tunc-

tional model using the object-oriented approach.

In our approach, we retain all information contained in first four elements of the quintuple
<P, C, A, R, a-functions> through the class definitions PART, CONTACT, ATTACH-
MENT and RELATTOINSHIP. The information captured by the a-functions is distributed

across the four classes.

In addition, we have introduced four other classes ASSEMBLY, ANDORGRAPH,
DECOMPOSITON and NODE. Among these classes, ASSEMBLY is the major class
incorporating the important functionalities required to generate the AND/OR graph.

We also give a formal model of the object-oriented design in this thesis and established the
equivalence between the object-oriented model and the functional model. We claim that
the object-oriented model is easy-to-understand and easy-to-enhance which are typical

characteristics of the object-oriented paradigm.
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5.2 Future work

With regard to possible extensions to this thesis, we propose that the object-oriented
model can be strengthened in the following aspects:

1. The method isConnected() in class ASSEMBLY can be optimized. By clever tech-
niques, we could modify this algorithm to reduce the number of accesses to objects of
classes PART and CONTACT. The complexity of the algorithms in object-oriented
approach generally depends on the number of accesses to individual objects.

2. The feasible-test() algorithm can be elaborated and partially automated by introducing
algorithms to perform engineering calculations.

3. The run-time efficiency of the Gen-AND/OR-graph() method can be improved by elim-
inating unnecessary and redundant computations. One way is to check whether the sub-
assembly is computed before. For example, when we generate the AND/OR graph for
subassembly {pl p2 p4}(node B in Figure 4), we found it was computed before (node A),
therefore there is no need to do further computing; we can as well use the AND/OR graph
from node A.
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Appendix A

Formal Notations

X=YxZ
means X is a type, defined as a cartesian product of Y and A. If x is of type X, thenY (x)

and Z(x) refer to the first and second component of x respectively.

€ denotes set membership.

& denotes emptyset.

< denotes subset relationship.

[T (P) denotes the powerset of P.

{p} denotes singleton set; a set with only one element.
A denotes logical AND (conjunction).

=> denotes logical implication.

f-XxY->2

means fis a function whose inputs are of types X and Y and whose output is of type Z.

Vx: X e< predicate >

denotes universal quantification; i.e., for all x of type X, < predicate > is true.

3x: X e<predicate>
denote existential quantification; i.c., there exists at least one x of type X for which < pred-

icate > is true.



Appendix B

AND/OR graph for the example assembly

The following AND/OR graph is generated by the object-oriented approach for the exam-
ple assembly in [9]
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Appendix C

Object Model Notation

Class:
class name
attribute 1
bnperation 1
Association:
Association name
class-1 [F=2 i L_class-2
Multiplicity of associations:
class Exactly one

———-q class Many (zero or more)

Aggregation: Aggregation (alternate form)
Assembly Class mly class
Part1-Class Part2-Class

Partl-Class Part2-Class
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