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ABSTRACT

The object of this work was to propose methods which
are both simple and accurate for the prediction of sSym-
metrical and asymmetrical heat transfer in single~phase
turbulent fluid flow in rectangular channels and parallel
plates. Existing heat-transfer correlations for circular
tubes, symmetrically and asymmetrically heated rectangular
channels and parallel plates were reviewed. New correlations,
based on the Spalding-Jayatilleke P-function concept, were
developed by the present author for symmetrically and
asymmetrically heated parallel plates. The approach for
the selection of the best methods for heat-transfer pre-
diction was by comparison with ailthe available published
experimental data. In the case of symmetrical heat transfer
in rectangular channels and/or parallél plates, both -
Barrow's correlation and the present author's extension of
the Spalding-Jayatilleke P-function method, with root mean
square deviations of approximately 2%% and 24% respectively,
provided better results than the circular-tube correlations.
Furthermore, for asymmetrical heat transfer in rectangular
channels, the James-Martin-Martin correlation was found to
be superior to all others with a root mean square deviation
of approximately 13%. In the case of asymmetrical heat
transfer in parallel plates, the present author's exten-
sion of the Spalding-Jayatilleké P-function method yielded
better prediction than any existing correlation with a root

mean square deviation of 17%.
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CHAPTER 1

INTRODUCTION

The heat-transfer and flow friction characteristics
for single-phase turbulent fluid flow in circular tubes
have been the subjectofagreat deal of theoretical an-
alysis and experimentation in the last seventy years.

The circular passage has been analysed extensively be-
cause of its importance in technical application and be=-
cause its simplicity makes it amenable to analysis. 1In
recent years, rectangular channels and parallel plates
have been used extensively in engineering systems, e.g.
nuclear power reactors, solar energy collectors, compact
heat exchangers, ventilating and air conditioning systens,
etc. These applications may be under symmetrical or asym-
metrical heating conditions. However, they have been in-
vestigated to a much lesser extent than the circular tubes.

The object of this present work is to obtain simple
and directly-usable correlations for the prediction of
symmetrical and asymmetrical heat transfer of single-phase
turbulent flow in rectangular channels and parallel plates.
Existing heat-transfer correlations for circular tubes,
symmetrically and asymmetrically heated rectangular
channels and parallel plates were reviewed. New cor-

*
relations, based on the Spalding-Jayatillekezz’43

* Superscript numbersrefer to literature references listed
in the thesis section entitled "References".

1



P-function concept, were developed by the present author
for the symmetrically and asymmetrically heated parallel
plates. The advantages of the Spalding-Jayatilleke method
are that:
1. it is a delicate blend of theory and empiricism;
2. there is some distinct physical significance to the
various terms appearing in the equation(s);

3., it is simple to use.
The approach for the selection of the best correlations
for heat-transfer prediction was by comparison with all the
available pﬁblished experimental data.

The body of the work is divided into four major areas.
In Chapter 2, the friction factor for turbulent flow in a
rectanguiar geometry and parallel plates is diséﬁssed. In
Chabter %2, 4 and 5, the heat-transfer correlations are
outlined. The effect of fluid property variations on
heat transfer is investigated in Chapter 6. Chapter 7,
8 and 9 consist of the test results, conclusions and re-

commendations.



CHAPTER 2

FRICTION FACTOR

2.1 General

In the solution of practically all heat-transfer
convection problems, the corresponding fluid-dynamic pro-
blem must first be solved, if it is not indeed completely
coupled to the heat-transfer problem. Although this wgrk
is not on viscous fluia dynamics, the friction factor in
fully-developed turbulent non-circular duct flow is in=-
vestigated in detail. The effect of the friction factor
on heat transfer is demonstrated in the later chapters of

this work.

2.2 Circular Tubes

2.2.,1 Definition

Consider the steady flow of an imcompressible
fluid in a long circular tube., Let the bulk velocity be

. The friction factor, Cey is defined by

v
f s — (2.1)

c

where Ty 1S the shear stress at the tube wall and p is

the density of the fluid.



2.2.2 Developed Turbulent Flow

For turbulent flow in smooth tubes, Blasius's

31

empirical formula gives

%
cp = 0.079 Re™* (2.2)

where Re is the Reynolds number. It agrees closely with
experimental results for Reynolds numbers between 3000
and 10°, It is both explicit and simple to apply. Hith
some theorefical foundation, the Karman-Nikuradse24 (also
known as Karman-Prandtl and Prandtl-Nikuradse) formula
gives

.1

== 4.0 log,,( Re/c_f)-O.Af . (2.3)

£

Equation (2.3) is inconvenient to use because one cannot
solve it directly for Cre The two formulas (2.2) and
(2.3) are plotted in Figure 2.1. They agree very well
with one and other for Reynolds numbers between 4000 and

10°,

2.3, Rectangular Channels and Parallel Plates

It is quite customary to apply the concept of
hydraulic equivalent diameter in the calculation of friction

factor for developed turbulent flow in channels of
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rectangular or other non-¢ircular cross—sectionBB. The
hydraulic equivalent diameter, De’ is defined as

Flow Area

D = 4 x (2.4)

Perimeter

However, there have also been theoretical analyses12 and

experiments16’29

which indicate significant errors may re-
sult . Because of these contradictory reports, a review
of the literature was done by the present author, as sum-
mariged in Table 2.1. Some of the more recent and im=-
portant papers are discussed in the rest of this chapter,

In 1962, Hartnett et al.17 made a detailed survey of
the literature. In addition, friction factors for ducts
of aspect ratio 1:1, 5:1 and 10:1 were predicted by the

10 and Deissler and Taylor11, and ex-

method of Deissler
periments were also performed on these ducts. The cal-
culated and measured results were found to be in agreement
for ducts having large aspect ratios. As for aspect ratios
less than 5:1, the predicted values of friction factor

were lower than the experimental data, with a maximum dif-
ference of only 12% evident for the square duct. 4 plot
was made by Hartnett et al. to compare the Blasius cor-

relation with all available experimental data. Those data

included
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" Year: 1923 - 1962
Aspect Ratio: 1:1 - 169:1

2 5 x 105

Reynolds Number: 1.25 x 10
It was concluded by Hartnett et al, that, with the hydraulic
equivalent diameter, the Blasius circular tube correlation
accurately predicts the ffiction factor for flow through
rectangular channels at any aspect ratio for Reynolds num-
- bers between 6 x 10° and 5 x 107, Maurer and LeTourneau-2
did experiments on narrow rectangular channels at Reynolds
numbers from 4 x 103 to 5 x 105. Their results were in
agreement with the works df Hartnett et al., i.e the con-
cept of hydraulic equivalent diameter can be applied.

5 suggested the using of hydraulic equivalent dia-

Barrow
meter with the Blasius correlation for parallel plates,
However, the presence of éecondary currents in tur-
bulent non-circular conduit flow4’19 made it doubtful
that a single unique resistance law, such as the Blasius
equation, could describe friction phenomena in rectangular
channels by simply using the hydraulic equivalent diameter
as the characteristic length parameter. In Leutheusser's

29, it was found that, by using hydraulic equivalent

work
diameter, the function relating friction factor with

Reynolds number was not unique. He considered the con-
ventional use of hydraulic equivalent diameter not only

implied absence of shape effects on the resistance func-

tion, but also presumed the existence of wall and Reynolds
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similarity in the general case of channel flow. His ex-
perimental results showed that there was a trend toward a
more rapid decrease of friction factor with increasing
Reynolds number as compared to the Karman-Nikuradse
equation. For Reynolds numbers gfeater than approximately
5 x 104, all the data lay consistently below the Karmane-
Nikuradse line by about 20%. Brundrett and Burroughs5

also found that, with the explanation of stagnation in the
duct corners, the friction factor was slightly lower for
square ducts as compared with circular tubes for Reynolds
numbers betﬁeen 3 x 1O4 and 8 x 104. Although these authors
have disproved the use of hydraulic equivalent diameter
with circular tube correlation, they did not suggest new
equations. As for turbulent flow betWeen parallel plates,
Patel and Head37 pointed out the inaccuracy in measurements

of the early researchers and proposed a new correlation

cr = 0.0376 Re"/6 (2.5)

for Re greater than 2.8 x 103 and hydraulic equivalent
diameter as the length parameter. However, the Reynolds
numbers of their experiments were never greéter than 104.

23 obtained friction factor data for channels

Jones
having aspect ratios between unity and 39:1 in the litera-
ture and, in conjunction with his new experimental data,

examined for deviations from the smooth circular tube
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line. It was found that at constant Reynolds number

(based on hydraulic equivalent diameter) the friction

factor increases monotnically with increasing aspect ratio.
It was thus concluded by Jones that the hydraulic equivalent
diameter is not the proper length dimension to use in
Reynolds number to insure similarity between the circular
and rectangular channels. Instead, it was determined that

if a modified Reynolds number, Re¥*, was obtained so that

geometric similarity was provided in laminar flow by the
‘relation Ce = 16/Re* for all geometries, that this Reynolds
number also‘provided good similarity in fully developed
turbulent flow within an apprbximately 5% scatter band
about the smooth tube line. By using this "laminar equi-
valent Reynolds number", Re*, Jones stated that circular
tube methods may be readily applied to rectangular ducts
thereby eliminating large errors in estimation of friction
factor.

Mathematically,

Re* = ¢*(¥) Re (2.6)

where w is the channel width, s is the channel spacing, Re

is as before and the geometry function @* (%) is given by
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2
SERE IGRORIEE -

0 ,
:E: 1 tanh (2n+1)ww (2.7)

(2h+1)5 2s . ¢
n=0

The function @* (%) is shown graphically in Figure 2.2.
An approximate relationship which will give @* (%) within
about 2% is-

~ 2 11
HOYE PSR (2.8)

NG

In this present work, the hydraulic equivalent dia-
meter concept was adopted because it is widely used and
easy to apply. Fﬁrthermore, correction of friction factor
for rectangular channels and parallel plates as proposed

by the Jones method23 was also considered.
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Fig. 2.2 Geometry Function for Calculation of
Laminar Equivalent Reynolds Number



CHAPTER 3

CIRCULAR TUBE HEAT-TRANSFER THEORY

3.1 General

There is a voluminous literature on the subject
of heating or cooling of fluids inside circular tubes, and
many design equations of varying degrees of generality are
available. 1In the calculation of heattransfer in tur-
bulent non-circular duét flow, the practice until recently
has been to use circular-tube correlations on the assumption
that they can be applied by using the concept of hydraulic
equivalent diameter. This practice has been adopted for
both symmetrical and asymmetrical heat-transfer conditions.
In this chapter, circular-tube heat-transfer correlations

are investigated.

3.2 Correlations Obtained from Dimensional Analysis

For turbulent flow in tubes, dimensional analysis

gives

hp - ..Dg SpH
= & ) (3.1)

where the function is to be determined experimentally. For
moderate temperature differences between fluid and tube

surface, the Dittus-Boelter13 and Sieder-Tate42 equations

15
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are commonly used. The Dittus-Boelter equation evaluates

all physical properties at the bulk temperature of the

fluid
008 [o] ‘0.4-
20 - 0.024 (&) (—ﬁﬁ—) (3.2)
b #b b
or Nu = 0.024Reo'8]?ro’4 (3.3)

The Sieder-Tate equation evaluates all physical properties

at the bulk temperature, except/uw in a viscosity=-ratio

term
hD pg (08 cop 0.33 u, 0.14
© = 0.027 (5=) (=) (=)
(3.4)
/A
or Nu = 0.027Reo‘8PrO'33(-:‘-‘--}3)0°14 (3.5)
W

3.3 The Petukhov and Popov Egquation

Petukhov and Popov39 used the integral formulation

21 and numerically solved for the Stanton

developed by Lyon
number using velocity distribution and eddy diffusivity
equations proposed by Reichardt4o. They then developed a
Stanton number equation which reasonably approximated the
values yielded by their numerical solution. Their recom-—

mended equation is
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Cr
£

1,07 + 12.7/C£(pr?/3- 1)
2

St =

where the friction factor, Cgy may be calculated from the

Karman-Nikuradse equation

1 .
/%?P = 4,0 10g10 (Re /cf - 0.4) (2.3)

and St is the Stanton number defined as h/ch-

3.4 The Spalding-Jayatilleke P-Function

22,43 referred to the

Spalding and Jayatilleke
extra resistance to heat transfer in the viscous sublayer
(see Figure 3.1) of a turbulent flow as'Prtuer. A re=-
lationship was developed between P and essentially the
laminar Prandtl number of the fluid. Then, from the
P-function, the Stanton number of the fluid can be cal-
culated. It is beneficial to review their work in detail
here because in the next two chapters, the present author
extends the P-function to symmetrical and asymmetrical
heating conditions in parallel plates.

Based on the observation that pipe velocity profiles
resemble that of a Couette flow remarkably, Spaiding and

Jayatilleke22#43

applied the Couette flow analysis to
pipe flows.

From dimensional analysis, the velocity profile is
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expressible by a unique relationship of the form

ut = ut(yh) (3.7)
where PR— ' (3.8)
Tw
P

. . YTaP

and = (3.9)
7 A
A total viscosity,;ntot, is defined by
T
Piot EE_ (%3.10)
dy

and a total thermal exchange coefficient,fﬂtot, of specific

enthalpy, §, by

*n
qy ‘
r-,.to.t ='§;_Q—_ (3.11)
dy
°u
where q, is the heat flux from wall into the fluid stream.
So,
K
M, = ==t (3.12)

where ktotis the total thermal conductivity and cp the
specific heat at constant pressure of the fluid.

The total Prandtl number, Prtot’ is defined by

L “tot
Prtot - r—.‘tOt (3013)
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Mot C '
or Pr = __.E.?;t_g (3014)
tot ktot

Dimensional analysis leads to the result
. + !
Prtot = Prtot(y , Pr) (%3.15)

where Pr is the laminar Prandtl number of the fluid. The

/4
dimensionless total viscosity, ﬂtOt, is however a function

of y+ alone i.e.

P40t
M

=&, (") | (3.16)

By virtue of the constancy of shear stress and heat flux

in Couette flbw, it may be shown that

M +
tot dy
= & .= : (3.17)
}‘ tOt du+
and £tot dy+
Pr = + (3.18)
tot ag

where o+ (¢ -'?wb Twf (3.19)

Ly

By elimination of &, . from equations (3.17) and (3.18),
there is obtained the important result

-+
X u
g* =f Pr, du’ u (3.20)
0
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In principle, ¢+ can be evaluated, since Prtot can be ree-
lated to u’ by means of equations (3.7) and (3.15).

The friction factor, Cps as defined in section 2.2.1

is
T
cp = b . (2.1)
% pu
c 2
£ 1
or 5 = (E:f) (3.21)

Since the u+(y+) relationship is normally taken as having
the form®>

ut = d1n yt o4 (3.22)
over the great part of the pipe area, it can be shown that,

for circular pipe,

' *
=t 4+ 3
w = uR - 2“ (3-23)

where ug is the dimensionless centre-line velocity and &

is a constant, usually taken as equal to 0.4.

Then it follows from equations (3.21) and (3.23) that

2 (3.24)

T 'R 2

&

The Stanton number is defined by

n

q
St = W

= - (3.25)
(8, - D) pu

* Appendix A4 Section A.1 shows the derivation of equation
(3.23)
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which can be reduced to

St

m

T (3.26)
where § is the mixed mean value of @ over the pipe cross-
section and ¢+ the corresponding non-dimensional value.,

It is possible to derive a relation between P¥ and ¢E

on the basis of the ¢+A/y+ relation being logarithmic over
most of the stream as a consequence of Prtot having a con-

stant value Prturb within the turbulent core*, this being

p* =8} - Br —)

2=+ (3‘27>**
47

(2= -
turb‘2k

From equations (3.20), (3.21), (3.23), (3.26) and
(3.27), there is a relationship between the friction factor

and the Stanton number,

/T
f +
2 Prturb 5 Cr

u
Uy + S_._f
5T 'J[ (Prygy = Prygppldu’ + (1 + —=55=)
£ 4x
0 /3
(3.28)"

* Appendix A, Section A.2 demonstrates that Pr =

constant in the turbulent core. turb
*% Appen?ix A, Section A.3 shows the derivation of equation
(3.27

# Apendix A, Section A.4 shows the derivation of equation

(3.28)
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The term on the left-hand side, being proportional to the
inverse of the Stanton number, represents the total re-
sistance to transfer of §. The right-hand side is the sum
of two resistances in series. The latter term is what
e would remain if Pr, . was made equal to Pr, ., over the
whole cross-section of the circular pipe. The first term
of the right-hand side then represents the extra thermal
resistance which arises solely due to any differences be-

tween Prtot and Prturb’ P is defined as

P‘E/'

It is known from experiment that Prtot differs significantly

-+
u, Pr t

R( to -
Pr
0 turd

1)au” (3.29)
from Prturb only in the region very close to the wall

+ . . . - v
(0O%u™x20), i.e. in the "viscous sublayer". 'Prturb P
therefore represents the extra thermal resistance offered
by the viscous sublayer on account of the total Prandtl

number in it being different from that in turbulent core.

Equation (3.28) can now be written as

turby , 5 £)  (3.30)
£ 4k
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Spalding and Jayatilleke recommend
3/4
P =9.24 (%%————) -1 } (3.31)
turd
Pr_turb = 009
k = 0-4

and Cp, can be calculated by the use of Karman-Nikuradse

equation. Equation (3.31) is a simplified formula for

' 3/4
P = 9.24 {(——-——Pr ) - 1} X
Prturb '

{1 + 0.28 exp(-0.00?%%——*;)}- (3.32)
' tur ~ :

By substituting P, Prturb’@ » Cp into equation (3.30),

the value of Stanton number can be obtained.

24



CHAPTER 4
PARALLEL - PLATE THEORY WITH SYMMETRICAL HEATING
4.1 General

Correlations which are equivalent to those such
as Dittus-Boelter13 or Sieder-Tate42 for turbulent flow in
rectangular channels and parallel plates are practically
unavailable. The present author could find only Barrow's
work2 in the literature. Because of the scarcity of exist-
ing équations, a2 new correlation for parallel-plate sym-
metrical heating is developed by the present author in
this chapter. Ihis new correlation is basically an ex-
tension of the Spalding-Jayatillékezz’43 P-function (see
Section 3.4 and Appendix A) to cover the parallel-plate
geometry. The parallel-plate configuration is selected
because this avoids the complication of secondary flows

and makes the assumption of one-dimensional flow analysis

applicable.

4.2 Barrow Equation

Barrow2 determined the heat-transfer coefficient

>4 extension of Reynolds analogy between the

by Mizushina's
transfer of heat and the transfer of momentum. The veloeity
distribution was divided in two regions: for viscous sub-

layer,

25
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and for turbulent core

wt o= 6.2 log y© + 3.6

No account was taken of the buffer or transition zone.
His semi-theoretical analysis results in the following

equation for turbulent flow between parallel plates.

0.1986 Re!/8pr (4.1)
5.03(2+T)Re1/8 + 9.74-{Pr - (2 + T)}

Nu =

The Reynolds number is based on the hydraulic equivalent
diameter of the parallel plates. Barrow stated that equation
(4.1) is applicable to both symmetrical or asymmetrical
heating conditions depending on the value of v, where r
equals the heat transfer at one surface divided by‘the

heat transfer at the other surface. TFor symmetrical heating,
¥ is equal to -1. As a result, equation (4.1) can be re-

written as

7/8
Na = 0.1986 Re Pr (4.2)

5.03 Re1/8 + 9.74(Pr - 1)

4,3 Extension of Spalding=-Jayatilleke P-Function

4.3.17 The Friction Factor

Following Spalding and Jayatilleke's work (see

Section 3.4 and Appendix A), U is defined through
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(Area)pl =p ud (Area) (4.3)
Area
For parallel plates, area per unit width = 2L (see. Figure 4.1)

Then equation (4.3) becomes
'_ L
2Lpl = ij i dy (4.4)
0

Using the equivalent dimensionless parameters, equation
(4.4) can be re-written as
. . y_+
3t o= J:] Loyt ay”* (4.5)
Y17 0
Substitution of the logarithmic expression for u+, i.e.
equation (3.22), into equation (4.5) and ihtegrafion yields
the relationship between bulk velocity 1" and centre-line

velocity uz as

1
X (4.6)

Again defining Cp @s in equation (2.1) and u’ in the usual

way, it then follows from equations (3.21) and (4.6) that

(4.7)

4.3.2 The Stanton Number

For the case of heat transfer, parallel to
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equation (4.3), it can be stated that

(Area)pu P ==,o'/~ u@ d(Area) (4.8)
‘ Area
vl |
or, SRl A -%_/ Yut gt gyt (4.9)
1Y o
Now, ut = gln vUo+ ¢ : (3.22)

over most of the flow area. The profile of ¢ (and tem-

perature) is shown in Figure 4.2.

+
u

Again, g* =/ Pr, . du’ | (3.20)
0
For obtaining P*, one uses

+ +
P7 o= Progm U (4.10)

since over most of the cross-section (the turbulent core)

Prtot has the constant value Prturb'

Substitution of equations (3.22) and (4.10) into (4.9)

and integration yields

=+ =+ 1 2 _+ 2.1 \ +
ut P - Prturb{;’zln e R R

+ (2—2-23+02)}‘
P ¥ 4
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. + _ 1
With up = p:

the above expression becomes

1n LY + ¢, equation (4.6) and ¢£ = Pryo % u£,

+ _ gt S R B
B = By - Proum (5 x2ﬁ+) (4.11)
From equations (4.11) and (3.20) written at I, the following

equation is obtained:

+

u
+ L + 1 1
P j/r (Pryor = Prpppp)dw = Proo( - =)
0 & u
+
u .
L s+
t/ﬁ Pr o Gu (4.12)
0

Combining equations (3.21) and (3.26)
(4.13)
is obtained. The last term of equation (4.12), with equa-

tions (4.6) and (3.21), becomes

+
u

, L +
J[ Prturb dq - Prturb(
0

'_.\
+
x|

) (4.14)
o]

N

Substitution of equations (4.13) and (4.14) into (4.12)

yields
C
/T +
—— PI- C
2 _rY1 + turb 1 .%r
3T i}r (Pryog = Priypp) du’ + —=(1 7" 3)
0 £ P
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Using Spalding=-Jayatilleke's concept of "extra thermal re-
sistance" of the viscous sublayer (first term on the right-
hand side of equation (4.15)) and the definition,

T opr

u
PEjL(-ls-l-,—t-‘Eﬁ—-ﬂduT (4.16)
0 turb

one can re-state equation (4.15) as

Cr

— Pr. . c

2 _ turb 1 . f

5T = TTgurp £ 4 Cr (1 + 2 2 ) (4.17)
== K
2

With the proper values of P, Pr b"‘ and Cps the Stanton

tur
number for symmetrical heating in parallel plates can be

calculated by means of equation (4.17).



CHAPTER 5
PREDICTIVE METHOD WITH ASYMMETRICAL HEATING
5.1 General

As in the case of symmetrical heating, there are
very few correlations for asymmetrical neating in rectangular
channels and parallel plates. Barrow's workz’3 involves an
analytical solution with an experimental comparison. James
et al.21 proposed an experimentally-determined correlation.
Here again, the present author develops a further exfension of
the Spalding-Jayatilleke P-function (see Section 3.4, 4.3
and Appendix 4) to cover asymmetrical heating in parallel-

plates,

5.2 Barrow Equation

As mentioned in Section 4.2, equation (4.1) is
applicable to both symmetrical and asymmetrical heating
conditions for turbulent flow between parallel plates.

Equation (4.1) is repeated here:

0.1986 Re7/8 Pr
4—5.03 (2+7) Re1/8’+ 9.74 {Pr - (2+T)}

Nu (4.1)

In the case of asymmetrical heating where one surface is
heated while the opposite one is insulated, the value of

¥ is equal to zero. Thus, equation (4.1) becomes

33
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8

Nu =
10.06 Re1/8 + 9.74 (Pr - 2)

5.3 James-Martin-Martin Equation

James et a1.21 carried out experiments on heat
transfer from one side of a rectangular-section duct to an
internally flowing fluid. A correlation for the data was
developed in terms of the Nusselt, Reynolds and Prandtl
numbers and the viscosity and aspect ratio of the duct,

based purély on experimental results. The correlation is

“Oo9
213 Re '
0.104 ReO.OO16Pr + 0.75 Pr0.4 . e

Nu = :
eO.O134Pr(2.05 + 1,62 e-A)

(5.2)

The aspect ratio, A, is defined by

A = Nidth of channel normal to heating surface (5.3)
= Breadth of heating surface *

The viscosity ratio MR = % where Py is the viscosity
evaluated at the bulk temperature and‘pw is the viscosity
evaluated at the temperature of the heat-transfer surface.
The Reynolds number is based on the hydraulic equivalent
diameter. The recommended range of validity of equation
(5.2) is over the following ranges of Pranatl and Reynolads

numbers and viscosity and aspect ratios:
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With reasonable With moderate
certainty confidence
Re: 5 x 10° - 1 x 10° 3 x 10° - 2 x 10°
Pr: 6.5 -« 100 0.7 - 100
A 0.5 - 4.0 Any value
Mo 1.5 = 9 | 1 - 10

5.4 Extension of Spalding-Jayatilleke P-Function

5.4.1 Velocity and Temperature Distributions

In the case of asymmetrical heating, the velocity
and temperature profiles are dissimilar as illustrated in
rig. 5.1. The wall distance where the local temperature
equals thelbulk temperature of fluid is different from
the wall distance where the local velocity equals-the
average velocity. 1In order to have a relatively simple
analytical solution without sacrificing much accuracy, the
present author assumes two approximated § (and temperature)
profiles.

In Figure 5.2(A), the @ profile is
p* = g7 for OS y€ 2L (5.4)
Figure 5.2(B) shows a profile which consists of two portions:

+
. u
gt =f Pr, . du’ for 0<ys§L (5.5)
0
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and gt = ¢£ for Leyg 2L (5.6)
For identification purpose, Figure 5.2(4) is referred to
as the uniform temperature profile while Figure 5.2(B) as

the two-portion temperature profile.

5.4.2 The Uniform Temperature Profile

From equation (5.4), it is obvious that
+ + ,
P = g7 (5.7)

The expression for ¢£, based on equation (3.20), is

+
LV P

+ L +
oy _jo Pry,¢ du
+

+ u£ .+ uL +
Thus, 1) =J[O (Prtot - Prturb) du +)[O Prturb du

(5.8)

Equations (4.13) and (4.14) in Section 4.3%.2 are also valid

here. As a result, equation (5.8) becomes

Cg

+
72 4
5T _fo (Prygp = Pryypp) Qu
Pr (P
+ 2‘;“ (1 +Kl/-2-f-) (5.9)

2
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Again, using Spalding-Jayatilleke's concept of "extra thermal
resistance" of the viscous sublayer, with the definition,

+

u Pr
P ?jf L (ﬁ;ﬁﬂi— - 1) au* (5.10)
0 turb

one can re-state equation (5.10) as

Pr c
_ turb 1/°f
= Pryoo P+ —222 (1 +K¢/C:3 (5.11)
(o]
£
2

7

5.4.3 The Two-Portion Temperature Profile

mlml\o|
t Hy

Parallel to equation (4.9), it can be stated that

+
- Y
u+¢+ - A / 2L u+¢+ dy+

+
Y217 0
yI v
- 1 /- L utgt dy+ . 1 f 2L utgt dy+
‘‘‘‘‘‘‘‘ Y21/ 0o Jo1 yE

(5.12)

As shown in Figure 5.2(B), #* is logarithmic for O< y*s;yi .
Therefore, with eguations (3.22) and (4.10), the first term

on the right-hand side of equation (5.12) becomes

y+ Pr M 2 +
1 J[ L u+¢+dy+ - tur?/ryL(l in y+ + c) dy
+ +
Y21¥ o 2y, o ¥
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Pr
turb J 1 2 .+ _ 2.1 _ +
= ——-_-2 {—2-11'1 yL - /6(/6 C)ln :YL
K
2 2¢ 2
+ ;'2- - = + c } (5.13)

With g% = ¢£ for y£$y+$ y;L, the 'second term on the right-

hand side of equation (5.12) becomes

y+ ¢+ y+
_%_J[ 2L u+¢+dy+ - _L:J[ L (1 1n y+ . c)dy+
Vopl ot 2y k
¥, L 0
-+
u' P :
= & (5.14)

where ' is given by equation (4.6).
Substituting equations (5.13) and (5.14) into equation

(5.12) and simplifying gives

+ + 1 1
7 = ¢L = Pryop (gz - E;ga:) (5.15)

As in the case of the uniform temperature profile,

+ u£ +
L i/r Prtot du
0

Then
+

u
+ L + S
7 ‘J[ ( Pigy = Pryyppldn’ - PT b (TR 2kzﬁ+>
0

-+
u

fj[ L Pr, . du* (5.16)
0
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o
FTiurp 1 /% 1 %

—=— = Pr P+ —(1+ 5=/ + =)
St turdb Cr / 2 2K§

no
N

(5.17)
With the proper values of P, Prturb’ ¥ and Crs the Stanton
number for asymmetrical heating in parallel plates can be

calculated.

5.4.4 The Real Temperature Profile

The real temperature profile would fall between
the uniform temperature profile and the two-portion tem-~

perature profile. The uniform temperature profile, with

pT = o7 (5.7)

yields the maximum value of ¢+. The two-portion temperature

profile, with

t gt S,
P = B P (3 - ) (5.15)

. “ PR +
would give the minimum value of P,

5.5 Summary of Spalding=-Jayatilleke P-Function Method

and its Extensions

In Sections 3.4, 4.3 and 5.4, the Spalding-

Jayatilleke P-function concept for circular tubes and
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parallel plates under symmetrical and asymmetrical heat-
transfer conditions are discussed in details. The following
is a summary of the applicable equations:

1. For circular tubes with axially symmetrical heating

C
£
- Pr c
gt = Prturb P+ gurb(1 * —2? ?i) (3.30)
by 4k
=
2. For parallel plates with symmetrical heating
T
T
S Priiry 1 Cr
St = Plgurp T+ e =(1 + 2 7) (4.17)
z
3. For parallel plates with asymmetrical heating
A. with the uniform temperature profile
Cr '
7 PTiury 1 [Cg
5t = Priypp P+ e (1 + 2/70) (5.11)
z
B. with the two-portion temperature profile
_:_1: PTiury 1 G5 1 S
5T % Faurp P Y = g7t = )
by 2K
=
(5.17)

OF MANITOBA
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CHAPTER 6

EFFECT OF THE VARIATION OF FLUID PROPERTIES ON HEAT TRANSFER

Fluid physical properties depend on temperature. As
a result, heat-transfer correlatiéns obtained with the as-
sumption of constant physical properties can only be used
in practice either at small temperature differences in s
flow or with physical properties changing slightly in the
temperature range considered. For such cases the effect
of changing physical properties can be approximately ac-
counted for by choosing the properties at the bulk fluid
temperature. However, in heat-transfer systems with large
temperature drops and high heat fluxes, it is impractical
to consider physiéal properties constant because sizable
errors may result. Under such conditions the analysis of
heat transfer should include the dependence of panysical
properties on temperature., In Chapters 3, 4 and 5, the
heat-transfer correlations of circular tubes, rectangular
channels and parallel plates are discussed. 411 these cor-
relations, with the exceptions of Sieder-Tate (see Section
3.2) and James-Martin-Martin (see Section 5.3) equations,
are based on constant physical fluid properties. In order
to apply these correlations properly, the as-measured ex-
perimental heat-transfer data should be corrected to con-
stant-property values. Here, some simple and widely-used

methods of constant-property correction are examined.

43
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For liquids far from their critical point, only dynamic
viscosity varies greatly with temperature; all the other
physical properties depend on temperature rather weakly.
Therefore,while investigating non-isothermal liquid flow,

a model with variable viscosity may be used as a good
approximation, other physical properties being assumed con-
stant. It is found that an equation of the following type

often provides an excellent approximation:

Nu St - ( Fb)n (6.1)

Nucp Dtcp Pw

where the subscript cp refers to the appropriate constant-
property solution or small-temperature-difference experi-
mental result. The vis.cpsityﬂb is evalugted at the bulk
temperature, while 'Fw is evaluéted ét the wall temperature.
The exponent n is'a function of geometry and the tyﬁe of flow.

42

Sieder and Tate suggested n = 0,14 for heating, i.e

A 014
WL (=)

Nucp Fw
Deisslerg, in a theoretical work, made the recommendations

summarized in Table 6.1, Petukhov38 suggested the use of
equation (6.1) with n = 0,11 for the case of heating,being
recommended over a range of 0.008 to 40 for ﬂw/ﬂb, 10% to
1.25 x 105 for Re, and 2 to 140 for Pr. James et al.21

discovered experimentally that, in the case of asymmetrical

heating in rectangular channels, the influence of viscosity
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Table 6.1

9

Deissler's” Viscosity-Ratio Exponents

M M
—E~<1 —£1>‘
My A
Pr (Cooling) (Heating)
1 0.19 0,20
3 0,21 0.27
10 0.22 0.36
30 ‘ 0.21 0.39
100 0.20 0.42

1000 0..20  0.46
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ratio decreases as the Reynolds number increases, becoming
negligible when Re exceeds a value of about 5 x 104. This
trend is explained from the increasing concentration of

the resistance to the heat transfer in the turbulent core

as the Reynolds number rise321.The recommended equation is
Nu Hy 213870+
Nl'.l = ) (603)
““ep Pw

For gases, the viscosity, thermal conductivity, and
density are functions of absolute temperature, T. For-
tunately the absolute temperature dependence tends to be
similar for different gases,‘although the similarity does
break down at the temperature extremes. Thus it is found
that the temperature-dependent-property effects can usually

be adequately correlated by the equation

-3

m

- = 5 = =) (6.4)
3% cp w
Kay326 on the basis of theoretical and experimental works,

recommended the following for turbulent flow of a gas in

a circular tube:

Ty
T < 1 (Heating) m= 0.5
W
(6.5)
Tb ’
L > 1 (Cooling) m =0
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In his thorough discussion, Petukhov38 proposed

T
m=blogTﬁ+o.36
b
Tb ‘
7= < 1 (Heating) b =0.3 (6.6)
w
Th
T > 1 (Cooling) b =0
W

For heated air, Petukhov stated that m = 0.5 produces
slightly better results.

It is important to recognise that all the above con-
stant-property corrections, with the exception of that of

21, are for turbulent flow in circular tubes

James et al,
with symmetrical heat'transfer} " However, in the absence
of other appropriate corrections, they are commonly applied
to non-circular ducts with symmetrical or asymmetrical
heat transfer. The correction by James et al. is intended

for turbulent flow in rectangular channles under asym-

metrical heat-transfer conditions.



. CHAPTER 7
EXPERIMENTAL DATA
7.1 General

In Chapters 3, 4 and 5, a collection of heat-
transfer equations have been reviewed and developed. The
criteria for the selection of the most suitable ones for
engineering applications are their agreement with experi-
mental data and ease of application. Hence a part of the
present task has been the collection of all available ex-
perimental results for symmetrical and asymmetrical heat
transfer in rectangular channels and parallel plates,
~covering a large range of parameters such as Prandtl,

Reynolds and Nusselt numbers.

7.2 Symmetrical Heat Transfer

Unfortunately, most of the experimental works on
symmetrical heat transfer in rectangular ducts fall in the
category of boiling burnout tests. However, there are a
number of experimental investigations on single-phase heat-
transfer characteristics of rectangular ducts of different
aspect ratios with the particular aim of determining
whether the heat transfer is greatly affected by the thermal
boundary conditions. A literature survey revealed the

1,30

worxs by Levy et a and Novotny et al.36 and these are

summarized in Table 7.1.

48
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Levy et al.BO presented heat-transfer coefficients for
water flowing vertically in thin rectangular channels
(0.1" x 2.5" approximately) 18 and 36 inches long and
heated electrically around the entire periphery. The
Prandtl numbers, Pr, were in the 1.33 to 7.30 range owing
to the changing of the fluid properties of water caused by
the large axial temperature difference. Each test run had
a fixed fluid flow rate and hence a fixed nominal Reynolas
number. However, variations in actual Reynolds number oc-
curred along the duct because of axial changes in tempera-
ture. Two data, those with the lowest and highest actual
Reynolds number, of each test run were selected for com=-
parison purposes. Owing to the large temperature differences,
Levy et al. had accounted for the variation in fluid pro-
perties by using thé Sieder-Tate correction (see Chapter 6).
Test Section No. 4 was made up of two'L strips and had very
sharp corners, while Test Section No. 11 was fabricated
from a circular tube and had round edges. Section No. 5
had a variable cross-section - with round corners and
hydraulic’ equivalent diameter generally 50% larger
than the last two sections. The experimental data are in
Table B.1 of Appendix B.

Novotny et a1.36

presented fully developed heat-
transfer results for turbulent flow of air in rectangular
ducts with aspect ratios of 1:1, 1:5 and 1:10. The heating
condition was such that the two longer top and bottom walls

of the rectangle were uniformly heated, while the two
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shorter walls were unheated. Uniform heat generation in
the top and bottom walls of the test section was achieved
by passing an electric current longitudinally through the
duct walls. To approach as closely as possible the con-
dition of adiabatic side walls, the latter were made of

a fabricated board which had a small thermal cbnductivity
of 0.15 Btu/hr-ft-°F, 4 summary of the experimental data
is given in Table B.2 of Appendix B. The Réynolds number
range of the runs was approximately 1O4 to 1.4 x 105. The
lower end of the Reynolds number range lies above the limit
at which frée convection effects are noticeable, while the
upper end of the range lies below the limit of significant

compressibility effects.

7.3 Asymmetrical Heat Transfer

Table 7.2 is a summary of recent experimental
works on asymmetrical heat transfer in rectangular channels
and paréllel plates under fully-developed turbulent con-
ditions.

3 carried out heat-transfer experiments with a

Barrow
0.32" x 9.3" duct. The lower wall was heated electrically
while the upper wall was insulated. The spacers or side
walls of the channel were made of hardwood to reduce heat
conduction from the lower to the upper wall to a2 minimum.
The experimental heat-transfer coefficients were calculated

based on (a) electrical power measurement and (b) thermo-

couple-probe readings. The reuslts are tabulated in Table
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B.3 of Appendix B.

Forced-convection heat transfer to RP-1 kerosene was
investigated under asymmetric heating conditions by Hines18.
The experimental technique was to electroplate a copper
heating strip to one side of a 0.50" x 0.319" rectangular
cross-sectioned stainless steel channel of 0.010" wall
thickness. When electrical current was passed along the
tube, approximately 95% of the resistance heating occurred
in the copper strip and adjacent channel wall, producing
an asymmetric heat input to the fluid. Data were gathered
at liquid velocities to 120 ft/sec. and heat fluxes to
2.36 Btu/sq in-sec. Experimental results are presented in
Table B.4 of Appendix B. Hines did not specify the exact
Prandtl number of RP-1 Kerosene. The two extreme cases are
considered here: Pr =.18 and Pr = 22, |

44 used the same rectargular duct

Sparrow et al.
(0.6" x 3") as that in experiments of Novotny et al.36.
Again, air was used as the testing fluid. Unlike the latter,
only one of the two long sides was heated. The results are
shown in Table B.5 of Appendix RB.

21 consisted of a burner

The apparatus of James et al.
which generated a stream of hot combustion products. These
gases passed over fins machined on one end of a copper
block. EHeat was transferred by conduction through the
block to a liguid stream flowing in a channel of rectangular

section constructed on part of the long face on the block

remote from the .fins. The test liguids were mixtures of
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distilled water and chemically pure glycerine. Measurements
were made of the heat-transfer coefficient between the heated

surface and the liquid for the following conditions:

Re 3 x 10° to 10 x 104

Pr 6.5, 32.5, 100

A 0.5, 1, 2, 2.5, 3, 4
At 40°F to  150°F

b
where the bulk temperature difference4Atb = tw - tb and tw
and tb are the wall temperature and bulk temperature re-
spectively.. The experimental Nusselt numbers, shown in
Table B.6 of Appendix B, were corrected to4ﬁtb = 0 con=-
dition by James et al. using the extrapolation technique
established by Eagle and Ferguson14. '

The steel-heated width of Bruzzi's6 channel was fixed
at 0.25" while the aspect ratios were 0.54, 1.12 and 3.01.
The test fluid was Arcton-113 which gave a range of Prandtl
number from €.9 to 8.1 in this case. There was a moderate
radial temperature difference withlﬂb/ﬂw = 1,10 to 1.25.
Pressure drops in the channel were reported, but they were
not accurate enough for the purpose of calculating of
friction factors. The experimental data are tabulated in

Table B.7 of Appendix B.

In the design of a flat-plate solar air heater with
rectangular flow-passages, Tan and Charters45 undertook
an experimental investigation of asymmetrical heat transfer.

The regulated electrical power input on the top heated wall
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of a rectangular channel was adjusted to simulate solar
conditions, i.e an intensity of approximately 300 Btu/hr-ftz.
The Reynolds number range tested was from 9,500 to 22,000.
All test runs were carried out under steady-state conditions.

Table B.8 of Appendix B gives the results of their test runs.



CHAPTER 8
COMPUTATIONS AND DISCUSSION

8.1 Symmetrical Heat Transfer

8.1.1 DMethod

In Chapter 3, there were considered, of the
various ones available, four of the more commonly used, or
especially interesting, correlations.for heat transfer
for turbulent flow in circular tubes. These are:

1. Dittus-Boelter'>,

2. Sieder-Tate42,

3 Petukhov-Popovsg,
and . 4. Spalding-Jayatillekezz’43f
From Chapter 4, there are two correlations of éymmetrical
heat transfer for tﬁrbulent flow between parallel plates.
They are:

5 Barrowz,
and 6. the present author's extension of the
Spalding-Jayatilleke method. The published experimental
data available for comparison with the above correlations
have been discussed in Chapter 7, Section 7.2. They in-
clude the works of:

1. Levy et al.BO
énd 2. Novotny et al.36

The experimental data are tabulated in TablesB.4 and B.2

of Appendix B.
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In order to be consistent with ail the correlations,
the basis of comparison is the predicted Stanton number
from the correlations versus the experimental Stanton

number. The percentage root mean square deviation, PD

rms’
of Stanton number is defined as
‘ St - St X 2
PD..o = gﬁi (—=E—EE=C & 100) (8.1)
i=1 pred
where N = number of data
Stexp = experimental Stanton number
Stpred = predicted Stanton number from correlation.

The relationship among Stanton, Nusselt, Prandtl and

Reynolds numbers is

St = —pai— (8.2)

Levy et al.BO in their paper report data already cor-
rected to constant-property conditions by thé Sieder-Tate
method. In the present case, for certain comparison,
their reported data were used to deduce as-measured
conditions and these in turn were corrected to constant-
property conditions using the methods of Deissler9 and of
Petukhovsa. All these corrected experimental data were
then compared with the predicted values from the cor-
relations. No attempt was made to correct experimental

36

data of Novotny et al. to constant-property conditions

58

because their experimental Tb and Tw had not been specified.
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In applying the Dittus~Boelter, Sieder-Tate,.and Bar-
row correlations, the experimental Prandtl and Reynolds
numbers from Tables B.1 and B.2 of Appendix B were sub-
situted into equations (3.3), (3.5) and (4.2). The pre-
dicted Stanton numbers were then compared with the cor-
responding experimental data.

The friction factor, Crs in the Petukhov-Popov equation
(3.6) was obtained from the Blasius equation (2.2) by using
the Reynolds numbers in Tables B.1 and E.2 of Appendix B.
The Blasius equation is used instead.of the Karman-Nikuradse
because the former is much more convenient to apply and both
equations give more or less identical results for Reynolds
number between 4 x 103 and 105. Wwith the calculated fric-
tion factors and the tabulated values of Prandtl number,
the predicted Stanton numbers from eqﬁation (3.6) were ob-
tained and compared. -

The Spalding-Jayatilleke P-function, P, was calculated
from equation (3.31) with Pr from Tables B.1 and B.2 of
Appendix B. Prturb and K were taken as 0.9 and 0.4 re-
spectively. The friction factor, Ces again was obtained
from the Blasius equation (2.2) by using the Reynolds num-
bers in Tables B.1 and B.2 of Appendix b. By subsituting
the.above appropriate P, Prturb’” , and Cse into equation
(3.30), the predicted Stanton numbers were obtained and
compared.

In the calculation of the present author's extension

of Spalding-Jayatilleke P-function, P was taken as

A
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P = 9.24 {(E&_)BM - 1 } (3.31)
turd
where Prturb = 0.9

and Pr was obtained from Tables B.1 and B.2 of Appendix B.
The friction factor, Cps Was calcﬁlated from the Blasius
equation (2.2) by using (a) the Reynolds numbers tabulated
in Tables B.1 and B.2 of Appendix B and (b) the "laminar
Reynolds numbers", Re*, as suggested by Jones23 (see
Chapter 2, section 2.,3). The value of & was taken as 0.4,
By substituting the above appropriate P, Prturb’“” and

C, into equation (4.17), the predicted Stanton numbers were

obtained and compared.

- 8.1.2 Results and Discussioén

The resulting percentage root mean square devia-
tions, as defined in equation (8.1), on Stanton number by
using the different correlations and experimental data are
summarized in Table 8.1,

The upper half of the last column in Table 8.1 in-
dicates that the use of circular-tube correlations, with
the concept of hydraulic equivalent diameter, on the pre-
diction of symmetrical heat transfer in rectangular channels
and parallel plates would result in a 28 to 35 per cent error.
Dittus-Boelter and Sieder-Tate correlations, the two most
cbmmonly used circular-tube equations, give percentage root

mean square deviations of 27.8% and 30.6% respectively.
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The Petukhov-Popov correlation produces a percentage root
mean square deviation of 28.8%. The Spalding-Jayatilleke
P-function correlation provides the largest difference be=-
tween the predicted and experimental Stanton numbers with
a percentage root mean square deviation of 34.5%.

It is interesting to examine the lower half of the
last column in Table 8.1. Those three figures of percentage
rbot mean square deviation are derived from parallel-plate
correlations with the concept of hydraulic equivalent dia-
meter. The Barrow correlation giveé a percentage root mean
square deviation .of 22.9% which is an improvement compared
with the use of any circular-tube correlations. 4lso, the
Barrow correlation, equation (4.2), is as simple to apply
as any circular-tube equation because the Nusselt number
is simply expressed as an explicit function of Reynolds
numbers., The correspondiné results of the present author's
extension of Spalding-Jayatilleke correlation, equation
(4.17), for parallel plates as compared with the original
Spalding-Jayatilleke circular-tube correlation, equation
(3.30), show only a small improvement: PD..s =33.5% versus
34.5%. However, the friction factor for the above cal-
culations was obtained from the Blasius equation with the
concept of hydraulic equivalent diameter., As pointed out

23, the aspect ratio of the channel plays an im=~

by Jones
potant role in the friction characteristics of the fluid
flow and the "laminar Reynolds number" should be used in

the friction factor calculation. With the friction factor
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corrected by the Jones method, there is a marked improvement
in the results of heat-transfer prediction by using the
present author's extension of Spalding-Jayatilleke cor-
relation: PDns = 24.5% versus 33.5%.

The P-function concept is attractive because of the
‘physical significance of P, namély, P being essentially
the extra thermal resistance in the viscous sublayer of

the fluid flow. With the following data:

1. experimental Stanton number,

20 Prturb = 009’
3. K = 004',
and 4._ Cs from the Blasius equation,

the experimental P-valﬁes can then be obtained from equation
(4.17). Figures 8.1 and 8.2 show the experimental P-value
based on the constant-property (corrected by the Sieder-
Tate method) experimental data of Levy et al.30 and the
as-measured data of Novotny et al.36 respectively. Equation
(3.31) is superimposed onto Figures 8.1 and 8.2 for com-
parison purposes because this equation has already been estab-
lished . for circular tubes. Figufes 8.3 and 8.4 afe similar
to Figures 8.1 and 8.2 with the exception that Cp was 0b=-
tained from the Blasius equation with correction by the
Jones23 method. Owing to the scarcity of experimental data,
no attempt is made here to produce a new P-function equation
equivalent to equation (3.31) for parallel plates only.
Figure 8.5 shows the changes of the predicted Stanton

number with respect to the changes of the P-value, with
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ef/2 as an independent parameter., The relation between the
two scales of the abscissa is via equation (3.31). For
small Prandtl numbers, large errors in P cause only small
errors in the predicted Stanton number. For example, with
Pr = 0.7 and c¢./2 = 0.00625, Figure 8.5 gives %2-/% = 0.12,
i.e a 50% error in P would yield an error of only 6% in
the predicted Stanton number. In the case of large Prandtl
numbers, the percentage changes of the predicted Stanton
’’’’’ number with respect to the percentage changes in P approach
an asymptotic value of 90% approximately. Thus, when the
P-function equation (3.30) for circular tubes is applied to
the parallel-plate case, the resulting errors in the predicted
Stanton number would not be too large, especially in the
cases of small Prandtl numbers. | |
All the correlations in Table 8.1, with the exception
of Sieder-Tate, are intended for fluids undeér constant-
property conditions. Table 8.2 shows the effect of dif-
ferent fluid=-property corrections on the comparison be-

30

tween the experimental data of Levy et al. and the cor-

relations. Levy et al. in their paper report data already
corrected to constant-property conditions by the Sieder-Tate
method42. The as-measured data were deduced from their
reported data using equation (6.2). These as-measured data,
in turn, were corrected to constant-property conditions
using equation (6.1) with Table 6.1 and equation (6.1)
with n = 0.11 for the methods of Deissler9 and of Petukhov38

respectively. After the correction to constant-property
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Table 8.2 (cont'd)

Data Corrected to ConStant-Fluid—Property Conditions by:

As-
Correlation Measured Sieder-Tate Deissler Petukhov
Data Method Method Method
Parallel-Plate
5. Barrow 26.0 28.3 32.9 27.6
(2.3) (6.9) (1.6)
6. Present
author's
extension of
Spalding-
Jayatilleke
case (a)* 38.6 41.8 48.0 42,3
(3.2) (9.4) (3.7)
Case (b)*@ 25.6 29.1 34,3 28.3
(3.5) (8.7) (2.7)
Av. Diff, = Av. Diff. Av, Diff, =
(3.7) (8.5) (2.9)

* P = 0.9

rturb

cp corrected by the Jones23 method

The difference in PDrms as compared with Variable Fluid Properties is in brackets.

9L
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conditions, there is an increase in the percentage root
mean square deviation compared with the as-measured con-
ditions. The Petukhov correction has the least effect and
gives an average difference of 2.9 in the percentage root
mean square deviation. The Sieder-Tate correction is
similar to Petukhov with an average difference of 3,7. The
Deissler correction gives the largest average difference

of 8.5 which is more than twice those of the other two cor-
rections. In general, the effect of the variable fluid
properties on heat-transfer prediction is not significant
for the fluid flows with small or moderafe temperature

differences,

8.2 Asymmetrical Heat Transfer

8.2.,1 Method

The four correlations for symmetrical heat-
transfer calculations of turbulent flow in circular tubes
are also used here for correlating asymmetrical heat
transfer in rectangular channels and parallel plates.
These correlations are:

1. Dittus-Boelter13,

2. Sieder-Tate42,
3. Petukhov-Popong,
‘s . 22,43
and 4. Spalding-Jayatilleke .

From Chapter 5, there are three correlations for asym-

metrical heat-transfer calculations for turbulent flow in
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rectangular channels and/or parallel plates. They are the

correlations of:

5 Barrowz,

6. James, Martin and Martin21,

and 7. the present author's extension of the
Spalding-Jayatilleke method for the:

- uniform-temperature-profile case,

- two-portion-temperature~-profile case.

The published experimental data available for comparison

with the above correlations have been discussed in Chapter

7, Section 7.3. They include the works of:

1. Barrowa,
2. Hines18,
%3, .Sparrow et al}44,

4., Janmes et'al.21,

5. Bruzzi6,
and 6. Tan and Charters45.
The experimental data are tabulated in Tables B.3 to B.8

of Appendix B.

Again, the percentage root mean square deviation be-
tween the predicted Stanton number from the correlations
and the experimental ones is used as the basis for compériSon.
The experimental data of Bruzzi were corrected to con-

stant-property conditions by means of:

i. Sieder-Tate method42,
ii, Deissler methodg,
iii., Petukhov method o,

James-Martin-Martin method

21

®
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The test fluid of Barrow, Sparrow et al., and Tan and Charters
is air. As a result, their experimental data were corrected
to constant-property conditions by means of equation (6.4)
with m = 0.5, a figure recommended by both Kay826 énd
Petukhov o (see Chapter 6). James et al. and Hines had
corrected their experimental data to constant—ﬁroperty con-
ditions by the Eagle and Ferguson method14 and the Sieder-
Tate method respectively.

In applying the circular-tube correlations, i.e Dittus-
Boelter, Sieder-Tate, Petukhov-Popov, and Spalding-
Jayatilleke, the procedures used for the symmetrical heat-
transfer case was also followed here. Of courée in this
case, the experimental Prandtl, Reynolds, Nusselt and
' Stanton numbers were taken from Tables 3.3 to B.8 of
‘Appendix B.

The Barrow correlatian for asymmetrical heat transfer
was again applied in a similar manner as in the symmetrical
heat-transfer case. However, the predicted Nusselt number
in this case was from equation (5.1). The James-Martin-
lMartin correlation involved the substitution of the ap-
propriate experimental Pr, Re, 4 and M, into equation (5.2).
The predicted Nusselt numbers, and subsequently the Stanton
numbers, were obtained and compared with the experimental
ones. In the calculation of the present author's exten-
sion of Spalding-~Jayatilleke P-function, the values of P
and friction factor, Cps Were obtained in the same manner

as in the symmetrical heat-transfer case. Again, k was
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taken as 0.4. The values of Pr were obtained from Tables
B.3 to B.8 of Appendix B. In the uniform-termperature-pro-
file case, the appropriate P, Prturb’ K , and Cp were sub-
stituted into equation (5.11) while equation (5.17) was
used 1n the two-portion-temperature-profile case. The
predicted Stanton numbers which were obtained from these
two equations, were then compared with the experimental

Stanton numbers.

8.2.2 Results and Discussion

The resulting percentage root mean square de-
viations on Stanton number by using the various correlations
and experimental data without any fluid-property correction

18 21 which'they

(except those for Hines and James et al,
corrected to constant-propérty conditions by the Sieder=-
Tate and the Eagle and Ferguson methods respectively) ére
summarized in Table 8.3,

Table 8.3 indicates that the use of circular-tube cor-

relations for the prediction of asymmetrical heat transfer
in rectangular channels and parallel plates would result

in a 19 to 35 per cent error. This is because cof the
cifferences in heat-transfer conditions and cross-sectional
geometry. Futhermore, this confirms similar findings of
other works, such as James et al.21, who did research in
this area{

The pioneering work of Barrowz’3 on asymmetrical heat

transfer in parallel plates resulted in equation (5.1).
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With the exception of the experimental data from Tan and

45 and Barrow's own, the percentage root mean

Charters
square deviations between the predicted Stanton number
from equation (5.1) and the other experimental data are
extremely large. This is especially marked for data from

18 21

Hines 7, James et al. and Bruzzi6; all have much higher

Frandtl numbers than 0.7.

~The equation (5.2) of James et a1.21

g2ives the best
correlation, with a percentage root mean square deviation
of 13.4% between the predicted Stanton number and all the
experimental data involved. When the James-Martin-Martin
correlation is compared with their own experimental aata,
the percentage root mean square deviation is 5.7. Good
agreement is also obtained when using the experimental data
of Hines18 and Brﬁzzi6.‘ It is intéresting to'noté that

the Reynolds numbers, Prandtl numbers and aspect ratios are
within the "with reasonable certainty" range of the recom=-
mendation of James et al..

The corresponding results of the present author's ex-
tension of the Spalding-Jayatilleke correlation, equations
(5.11) and (5.17), for asymmetrical heat transfer in
parallel plates as compared with the original Spaldaing-
Jayatilleke correlation, equatioﬁ (3.27), for circular
tubes show little improvement, as indicated in Tables 8.3
(24.2% and 24.8% versus 25.5%).

It is interesting to note, from Tables 8.3 and 8.4,

that the present author's extension of the Spalding-
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Jayatilleke correlation yields better results in the pre-
centage root mean square de#iation when only the experi-
mental parallel-plate data are considered (24.2% to 17. 7%,
28.4% to 23.1%, 24.8% to 20.2% and 28.5% to 19.5%). The
parallel-plate data are data which are related to small
aspect ratios; A less than, say, 0.5. These include the
data of BarrowB, Sparrow et al.44 and Tan and Charters45.
Furthermore, the uniform-temperature-profile correlatioh,
equation (5.11), yields percentage root mean square de-
viations of 17.7% for as-measured data and 17.0% for cor-
rected constant-property data (see fable 8.4) and is
superior to all the other correlations for parallel-plate
conditions. The application of Jones "laminar Reynolds

23

number" correction™  on friction factor is not as
sﬁccessful here ‘as in the case of symmetrical heat trénsfer.
In fact, it tends to make matters worse.
- With the following data:
1. Parallel-plate experimental Stanton number
under constant-property conditions*,
2. Prturb = 0,9,
3. K& = 0.4,

and 4. cy from Blasius equation,
the experimental P-values of Barrowp, Sparrow et al.44 and
45

Tan and Charters can then be obtained from equations

(5.11) and (5.17). The results, with equation (3.31), are

* Data corrected to constant-property conditions by using
equation (6.4) with m = 0,5,



86

shown in Figures 8.6 and 8.7. Figures 8.8 and 8.9 are
similar to Figures 8.6 and 8.7 with the exception that Cr
was obtained from the Blasius equation with correction by

25 method. These figures, 8.6 to 8.9, provide

the Jones
similar information as in Table 843, Item 7, Experimental
Data (1), (3) and (6). 1In Tabie 8.3, the parameter is the
percentage root mean square deviation on Stanton number,
while in Figures 8.6 to 8.9, it is the P-value. Figures
8.6, 8.8, 8.7 and 8.9 correspond to Table 8.3, Item 7,
Uniform-Temperature Case (a) and (b)_and Two-Portion-
Temperature Case (a) and (b) respectively. The large de-
viation between the experiemtnal P-values and the line of
equation (3.31), as shown in some of the figures in Figures
8.6 to 8.9, should not be mistaken as large error in the
prédicted Stanton number becéuse the Prandtl number in-
volved is small (Pr =.0,.7).

The effects of fluid property correction* on the
parallel-plate data are illustrated in Table 8.5. The
average difference on the percentage root mean square de-
viation between the as-measured and constant-property data
is only 1.5. Furthermore, by comparing Figures 8.6 with
8.10, the difference in the experimental P-values due %o
the changes in fluid properties is small. Bruzzi6 provided
accurate information on M. andfxw of his experiments.
Hence, the data of Bruzzi were corrected to constant-

property conditions by the Sieder-Tate, Deissler, Petukhov

* Data corrected to constant-property conditions by
using equation (6.4) with m = 0.5,
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and James-Martin-Martin methods. The average differencev
on the percentage root mean square deviation between the
as-measured and constant-property data as indicated in

Table 8.6, is again small (0.5 to 4.5).
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

22,453 method of heat-

The Spalding-Jaytilleke
transfer prediction is attractive because it is a delicate
blend of theory and empiricism. It is simple and directly-
usable and there is some distinct physical significance to
the various terms appearing in the correlation. The present
author exteﬁded the Spalding-Jayatilleke method for parallel
plates for conditions of symmetrical and asymmetrical
heating. An assessment of the various existing correlations,
including the extension of the Spalding-Jayatilleke method, .
was conducted. It was found that for symmetrical heat
transfer, the present author's extension of the Spalding-
Jayatilleke method is as good as the Barrow'52 correlation
for parallel-plate prediction and they both yield better
results than all the existing circular-tube correlations.

As for asymmetrical heat transfer, the Spalding-Jayatilleke

extension is better than any existing correlation for

parallel-plate predictidn.

9.2 Recommendations

9.2.1 Symmetrical Heat Transfer

(1) In symmetrical heat-transfer predictions for

109
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turbulent fluid flow in rectangular channels and/or
parallel plates, recommended are Barrow'32 cor-
relation, equation (4.2) or the present author's
extension of the Spalding-Jayatilleke P-function
method, egquation (4.17).
(2) In applying the present author's extension of
the Spalding-Jayatilleke P-function method, use
should be made of
A, friction factor, Cpy from Blasius's
equation with Jonesfz3 correction to
rectangular or parallel-plate geometries,
equations (2.2) and (2.8),
B. turbulent Prandtl number, Prturb’ as 0.9,
C. wvalue of P as recommended by Spalding
and Jayatilleke, equation (3.31), |

and D. K& as 0.4.

9.2.2 Asymmetrical Heat Transfer

(1) In asymmetrical heat-transfer predictions for
turbulent fluid flow between parallel plates, the
present aufhor's extension of the Spalding-Jayatilleke
F-function method, equations (5.11) or (5.17), is
recommended.

(2) 1In applying the present author's extension of

the Spalding-Jayatilleke P-function method, use

should be made of

A. eilther the uniform temperature profile,



9.2.3

11

equation (5.11), or the two-portion
temperature profile, equation (5.17),
B, friction factor, Cps from Blasius's
equation (2.2),
C. turbulent Prandtl number, Prturb’ as 0.9,
D. wvalue of P as recommended by Spalding
and Jayatilleke, equation (3.31),
and E. &k as 0.4.
(3) 1In the case of rectangular channels (aspect ratio
greater than, say, 0.5) the correlation of James,

Martin and Martin21’is recommended.

Further Work

(1) It would be extremely interesting.to learn if

the Spalding-Jayatilleke P-function for circular

tubes, equation (3.31), is equally applicable to

other gedmetries, i.e. the effect of the aspect ratio
on the P-value. Although good predictions are possible
using it with other geometries (and the appropriate
equations), a thorough test awaits further data.

(2) TFurther experimental work on symmetrical and
asymmetrical heating of liquids betweén parallel

plates would be desirable,
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APPENDIX A
DERIVATION OF EQUATIONS
This appendix consists of four sections. Sections 4.1,
A.3 and A.4 show the derivation of equations (3.23), (3.27)

and (3,.28) respectively. Section A.2 demonstrates that

Prturb = constant in the turbulent core of pipe flow.
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A.1 Derivation of Equation (3.23)

The bulk velocity, u, of pipe flow is defined through

(Area)pu Epf ud (Area)
' Area

R
or, TrRzpﬁ = 2n'/:1- u(R = y)dy
0

+
- y *+
Then, 4° = %/f R —%— ut (1 - —%—-)dy+
o Jr

IR

+ +
y + y +

2{ R 2:dy+ i/p R _gé_u+dy+
0 YR 0 YR ‘

2 (A - B)

(A1)



+
_ 1 + 1
= &ln YR e
+ 1
+
y +
R + +
B =/ R dy
o Jr
+
y
= R ytdin gt o o)ayt
+2 K
YR 7 0
_ 1 l(y+21n . Yfz) . cy+2 YR
..... 2 | %2 J 3 2
R Vg .
A+ _ 1
- ZuR 4y (A-B)

Substitute (A.2) and (4.3%3) into (4.1),

-+
u

+ 3
= uR - Z‘ (3-23)
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A.2 Derivation of Prturb = Constant in the Turbulent Core

From equation (3.22),

+

dy

au”

where K1 is

Since g m y*

¢+

where K2 and

From (4.5),

3

K y+ . (Ao4)

constant.

is logarithmic over the turbulent core,

1 +
E—lny + K3 (A.S)
are constants.
. +
= K2 y . | (A.6)

From equations (3.17) and (3.18),

Pr

tot

av* /[ ay*
- _51.% Eg: (A.7)

Substitute (A.4) and (A.6) into (4.7),

Pr

tot

=

= fl = constant (A.8)

N

This Prtot in the turbulent core corresponds to Prturb’

i.e Pr

turb

= constant



A.3 Derivation of Equation (3.27)

Through the definition of uf,

R
n‘R2p5¢ = 21Tp/' ug (R - y)dy
O .

: v .
then,  u'P* = %/f B L't (1 - Loyt
o YR YR
Now, ut o= llny+ + C
X
ut
+ +
and @ i/ro Pry +du
ot
+
= Pr du
turbjfo
Pr +

turb ¢
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(A.9)

(3.22)

(3.20)

(4.10)
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or, " = Prturb (%1ny+t+ c) (4.11)
Substitute equations (3.22) and (A.10) into (A.9),

+

v .

R 1 2+

2 Prtur?/f ( = In%y
0

K

ﬁ+¢+

+-%§1n y©o+ c2)

o™
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By integration,

1 2 2 2
A = ;ﬁ(ln yg - 21n yg + 2) + z?(ln y§ -1) + ¢
(A.13)

and Bal(lndyt - Jnyt el 4 Byt - 1) L S
Ay Jp = 21 IR * 7 % \2WR T 7 2



Substitute (A.13) and (4A.14) into (4.12),

=tzt 1 2+ _ + 1
g = Prturb-{xz(ln YR - 31n yg + 2)
c + 2
+ ;(Zln Yg - 3) + ¢ } (A.15)
Also, from (A.10)
+ +
P2 = Priur Ug (4.16)
+ 1 + ’
or ¢R = Pr‘turb (Kln Vg * c) (A.17)
3t = ot - >
- "R T 2% (3.23%)
c ' + ' 3
or St (%ln yg + c? - %% (A.18)
From (A.17) and (4.18),
=+a+ _ 1 + _ 3 1 +
u ¢R = (Kln Y * © 2“) X Proo o (ﬁln yg * c)
(A.19)
Compare (A.15) and (A.19),
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atpr = 4 ¢R Prurh (gk?ln JrR * 2% 2,"2)
Dividingby T,
+ 3 5
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A.4 Derivation of eguation (3.28)

From equations (3.20) and (3.27),

+

u N
+ R - + é_
7 'J[ (Prtot Prturb)du Prturb(Zx
0
_—
R +
+ / Pr, o G0
0

From equations (3.21) and (3.26),

From equations (3.23%) and (3.21)

R
+ - 3
/[O Prturb du’ = Prturb(u * ZK)

I.._s
+
Nrﬂ

x
-

Pr (
turb =

™
H,
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T o=+
4

(A.20)

(A.21)

(A.22)



Substitute (4.21) and (A.22) into (4.20),
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APPENDIX B
EXPERIMENTAL DATA

Table B.1 to B.8 are collected experimental data.

Summary:

Table Ref. Investigator(s) Total Humber of Data
B.1 (30) Levy et al. 86
B.2 (%6) Novotny et al. 49
B.3 (3) Barrow 22
B.4 (18) Hines 48
B.5 - (44) Sparrow et al. 12
B.6 (21) James et al. 73
B.7 (6) Bruzzi 52
B.8 (45) Tan and Charters 7

30

Table B.1. Experimental data of Levy et al.

Notes:

1.

2.

The data are obtained from Table 1 and Figure 6 of
Reference 30.

All the data are based on bulk conditions for fluid
properties.

The characteristié length of the Reynolds numbers, Re,
is the hydraulic equivalent diameter.

‘The Nusselt numbers, Nu, have been corrected to the
constant-property conditions by Levy et al., using the
Sieder-Tate method.
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Table B.1 (cont'd)

(4) Section No. 4 (0.118" x 2.405")
-4 Nux10~2 Ay
Run ho. Pr Rex10 (Constant- —
Property) Ay
8 4.09 10.40 3,04 1.44
3.45 12.40 3.33 1.37
9 - 2.71 15.20 3.07 1.58
10 4,09 10.40 2.56 1.50
3.38 12.50 2.63 1.45
11 4.09 10.40 3.28 2.01
2.67 15.10 3.47 1.62
12 4,06 9.30 2.55 1.49
3.31 11.20 2.61 1.44
13 4.09 9.40 2.40 2.15
2.60 14.10 2.48 1.79
14 3.95 8.90 2.13 1.59
%3.10 11.00 2.19 1.52
15 4,06 8.50 2.31 2.03
2.43 12.60 2.22 1.74
16 4,06 4.10 1.36 1.57
2.88 5.40 1.49 1.50
17 4,06 10.40 2.55 1.28
3.67 11.70 2.70 1.25
18 4.02 12.00 3.10 2.58
2,10 19.50 3.46 1.70
19 4,02 12.00 3.02 2.57
2.12 19.60 3.47 1.71
20 4,06 12.00 3.11 2.36
2.16 19.00 3.75 1.71
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Table B.1 (cont'd)

(B) Section No. 11 (0.114" x 2,349")

" Nux10™2 Py
Run No. Pr Rex10 (Constant- —
Property) M
100 3.88 7.70 2.28 2.76
1.78 12.60 2.55 1.75
101 3,58 7.10 2,22 2.26
1.98 13,50 2.8% 1.69
103 3,59 11.00 2.07 2.61
1.80 20.00 3,22 1,81
108 2.15 19.10 2.97 1.79
109 2,31 18.60 2,12 2.02
110 4,27 11.3%0 2.35 2.76
2.55 19,20 2.60 2.17
111 4.89 10. 30 2,29 2,46
3,34 15.00 2.70 2.11
113 2.48 19.40 3,11 2.15
114 5.98 1.06 0.60 1.29
5.01 1.24 0.77 1.17
115 5.98 0.90 0.55 1.64
4,02 1.3% 0.76 1,41
116 5.59 0.84 0.49 2.21
2.95 1.73% 0.75 1.56
117 6.63 2.94 1.41 1.70
4.70 3.97 . 2.01 1.39
118 5,07 5,32 2.41 2.29
2.99 8.79 2.3% 1.83
119 5.01 3.64 1.39 2.70
2.41 7.25 1.94 1.86
120 5.51 3,48 1.47 2.36

3.17 5.96 1.74 1.81



Table B.1 (cont'd)
-4 Nux10™2 My
Run No. Pr Rex10 (Constant- —_
Property) Ay
121 6.08 3.20 1.37 2.1
3.91 4,88 1.97 1.68
122 3,88 9.52 2.75 2.49
2.05 16.83% 2.92 1.78
123 6.54 2.29 1.20 2.38
3.56 4.09 1.68 1.77
124 7.13 2.16 1.08 1.66
125 6.82 2.21 1.08 2.06
4,24 3.%5 1.21 1.65
126 7.30 1.88 1.11 1.43
| 5.81 2.27 1.08 1.35
127 5.28 0.93 0.51 1.65
3059 1037 0058 1038
128 5.37 0.79 0.46 1.79
3.42 1.24 0.63 1.40
129 5,28 0.77 0.45 2.43
2.38 1.63 0.6% 1.57
130 4.50 0.73 0.39 2.63
1.70 1.79 0.59 1.54
131 4.27 0.71 0.37 3.17
1.33 2.14 0.68 1.47
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Table B.1 (cont'd)

(C) Section No. 5 (Variable, 0.14" x 2.40" nominal)

N -2
fun -4 Nux10 ) Py
un No. Pr Rex10 (Constant- —_—
. Property) M
24 %.91 10.50 3.70 2.29
2.48 15.70 3,38 1.80
25 4.06 10.10 3.11 1.78
3.27 12.50 2.60 2.17
27 3.99 9.60 5.55 1.61
2.71 13,10 4.17 1.49
28 3.99 10.50 6.03% 1.79
2.53 15.70 3,82 1.57
29  4.02 8.30 4.93 1.48
3.02 10.70. 3.18 1.34
34 . 3.95 10.70 5.45 2.40
2.03 19.30 5.07 1.44
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Table B.2 Experimental data of Novotny et al.36

Notes:

1. The data are obtained from Figure 6 of Reference 36,

2. All the data are based on bulk conditions for fluid

properties.,

3. The characteristic length of the Reynolds numbers, Re,

is the hydraulic equivalent diameter.

4., The Nusselt numbers, Nu, are as-measured values (i.e

no constant-property correction).
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Table B.2 (cont'd)

(A) Duct with Aspect Ratio 1:1 (0.98" x 0.98")

Pr Rex10”4 (As-ﬁzasuredL
0.7 1.05 34
" 1.15 39
! 1.45 43
" 1.70 | 50
" 2.05 58
" 2.40 67
" 2.50 70
" 2.80 72
" 3,20 80
" 3.90 88
" 4.50 100
n 4.90 105
" 5.30 115
" 5.70 115
n 6.10 125
" 7.10 140
" 8.70 160
" 8.80 | 165
: 10,00 175

" 14.00 220
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Table B.2 (cont'd)

(B) Duct with Aspect Ratio 1:5 (0.604" x 3,0")

Nu

Pr Rex10~4 (As-Measured)
0.7 1.40 38
" 1.70. 49
" 1.95 51
" 2.05 52
" 2.22 54
" 2.25 59
" 2.25 63
" 2.30 61
" 2.45 64
" 2.80 67
" ' 2.70 12
" 3.00 70
" 3.20 80
" 3.25 77
" 3.40 80
" 3.80 86
" 5.00 115
" 6.00 120
" 7,00 135
" 7.80 145
" 10.50 200
" 11.00 190

" 14.00 210



134

Table B.2 (cont'd)

(C) Duct with Aspect Ratio 1:10 (0.40" x 4.0")

Pr Rex10~4 (As- IVIggasured)
0.7 - 1.40 42

" 2.20 60

" 2.60 70

" 3,20 82

" 4,20 S0

" 7,00 130
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Table B.3 Experimental data of Barrow3

Notes:

1. The data are obtained from Figure 11 of Reference 3.

2. All the data are based on bulk conditions for fluid

properties,

3. The characteristic length of the Reynolds numbers, Re,

is the hydraulic equivalent diameter.

4. The as-measured Nusselt numbers, Nu, were corrected
to the.constant-property conditions by the present author
using equation (6.4) with T, = 531°R, T, = 542.5°R
and m = 0.5, |
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Table B.3 {(cont'd)

(A) Electrical Rasis

Corrected
A Pr Rex10™4 (As-Mezgured) (Constgzt-Property)

0.0344 0.7 1.05 31 31.31
1.10 30 30.30

1.25 35 35435

1.30 39 39.39

1.55 38 '38.38

1.55 47 47.47

1.80 44 44,44

2.05 49 49.49

2,05 58 58.58

2.10 50 50.50

2.50 - 64 64.64

‘ ' 2.60 63 63.63
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Table B.3 (cont'd)

(B) Thermocouple Basis

N Corrected
A Pr Rex10™% (As-Mei:ured) (Consﬁint-Property)
0.03%44 0.7 1.05 21 21.21
1.30 22 22,22
1.70 30 30.30
1.80 . 32 32.32
2.10 56 36,36
2.10 38 38.38
2.10 44 44,44
2.15 37 3737
2.50 29 29.29
Y Y 2.60 50 50450
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Table B.4 Experimental data of Hines 'O

Notes:

1., The data are obtained from Figure 10 of Reference 18.

2. All the data are based on bulk conditions for fluid

properties.

3, The characteristic length of the Reynolds numbers, Re,

is the hydraulic equivalent diameter.

4. The Nusselt numbers, Nu, have been corrected to the
constant-property conditions by Hines using the

Sieder-Tate method.
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Table B.4 (cont'd)

Pr = 18 Pr = 22
A Re x 107% Na x 1072 Nu x 10°°
(Constant-Property) (Constant-Property)

1.75 2.70 2.32 2.50
2.90 2.26 2.43

2.90 2.43 2.62

2.90 2.21 2.37

3.00 2.49 2.68

5.00 4.53 4.89

5.30 4.81 5.17

5.70 4.39 4,72

5.70 4.95 5.32

6.00 4.67 5.02

6.20 4.95 5.32

8.00 6.23 6.69

8.60 " 6.79 7.30

9.50 7.08 7.61

11.50 8.21 8,82

12.00 8.78 9.43

13,00 9.06 9.74

14.00 §9.20 9.89

15.00 10.90 11.71

15.50 10.33 11.11

16.00 11.04 11.87

17.00 11.32 12.17

18.00 11.89 12.78

& 19.00 12,74 13.69




Table B.5 Experimental data of Sparrow et al.

- 140

44

Notes:

1.

2.

The data are obtained from Figure 1 of Reference 44.

All the data are based on buik conditions for fluid

properties.

The characteristic length of the Reynolds numbers, Re,

is the hydraulic equivalent diameter.

The as-measured Nusselt numbers, Nu, were corrected to
the constant-property conditions by the present author

using equation (6.4) with T, = 554°R, T 592.5°R

w

and m = 0.5,
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Table B.5 (cont'd)

Corrected
A Pr Re x 10'4 (AsJﬂeggured) (ConstanﬁEProperty)
0.020 0.7 1.8 45 | 46.39
343 70 72.16
4.5 93 95.88
4,8 98 101.03
5.5 108 111.34
6.4 ' 120 123.71
6.5 125 128,87
3.0 150 154.64
9.8 - 170 175.26
12.0 195 | 201.03
13.0 190 195.88
' Y 14.0 200 | 206.19



Table B.6 Experimental data of James et al.
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21

Notes:

1.

2.

The data are obtained from Figure 4 of Reference 21.

All the data are based on bulk conditions for fluid

properties.

The characteristic length of the Reynolds numbers, Re,

is the hydraulic equivalent diameter.

The Nusselt numbers, Nu, have been corrected to the
constant-property conditions by James et al. using
the extrapolation technique of the Eagle and Ferguson

method14.



Table B.6 (cont'd)

(A) Pr = 6.5

AU

A Re x 10°%4 (Constant-Property)
0.5 1.00 80
1t 4-4'0 230
1.0 0.50 50
" 1.00 88
iy 2.40 170
" 7.10 385
2.0 0.40 45
" 0.52 60
" 7.00 430
2.5 0.40 48
" 2,20 180
" 4,00 285
3.0 2.00 180
n 3.00 250
" 6.00 410
" 9,80 570
4.0 1.05 110
" 2,10 200
" 5.90 400
8,20 520

143



144
Table B.6 (cont'd)
(B) Pr = 32.5

Ju

A v Re x 10”4 " (Constant-Property)
0.5 0.%6 &0
" 0.51 84
n 1.00 145
" 1.60 190
1,0 0.3%2 62
1 0.515 100
" 0.97 175
2.0 ' 0.31 68
. 0.51 110
" 1.80 300
2.5 0.505 110
. 1.20 240
. 1.60 280
. 2.00 | k 330
. 2.20 380
3.0 0.505 110
. 0.73 160
y 1.00 190
. 1.60 280
4.0 0.30 80
W 0.73 150
. 0.83 180

" 1.40 270



Table B.6 (cont'ad)
(C) Pr = 100

-4 Au

A Re x 10 (Constant-Property)
0.5 0.30 80
" 0.30 82
" 0.405 100
" 0,40 100
" 0,52 140
" 0.68 200
1.0 0.3%95 120
" 0.81 250
" 0.3%6 100
" 0.505 170
" 0.79 220
" 1.00 280
" 1.00 300
2.0 0.29 105
| 0.40 150
" 0.50 190
2.5 0.30 110
" 0.38 140
" 0.42 160
" 0.59 220
" 0.80 310
" 1.00 340
3.0 0.29 130
" 0.39 155
" 0.52 195
" 0.62 205
" 0.70 270
" 0.90 320
4.0 0.60 250
0.70 280
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Table B.7 Experimental data of Bruzzi6

Notes:

1.

2.

The data are obtained from Table 6 of Reference 6,

All the data are based on bulk conditions for fluid

properties.

The characteristic length of the Reynolds numbers, Re,

is the hydraulic equivalent diameter.

The Nusselt numbers, Nu, are as-measured values (i.e

no constant-property cofrection).



Table B.7 (cont'd)
(4) A =0.54
i b

Run HNo. Pr Re x 10~%4 (As-i\lleglslured) 7rw.
055 8.06 1.439 132.22 1.18
062 7.01 1.792 132.0% 1.16
074 8.04 2.734 213,66 1.22
080 7.01 3.388 208,52 1.10
156 8.09 2.579 195.50 1.4%
157 8.08 2.228 172.46 1.44
158 8.08 2.009 159.08 1.42
159 8.07 1.695 141,30 1.43
160 8.07 1.388 118,17 1,48
161 8.03% 0.991 94.94 1.47
162 8.02 0.561 60.02 1.47
163 8.05 0.743 T4.35 1.50
197 8.10 2.570 178.40 1.46
198 8.09 2.220 161,10 1.46
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Table B.7 (cont'd)

(B) A= 1:12‘

] b
-4 Nu —
Run XNo. Pr Re x 10 (As-Measured) Py
1 8.46 4.409 328,99 1.26
15 7.01 2.550 192,16 1.17
16 8,08 2.034 179.80 1,20
22 8,08 2.048 181.36 1.42
- 23 8.01 3.996 298.63 1.38
35 6.65 2.688 185.72 1.09
117 8.33 6.244 369.29 1.20
118 8.33 5.442 335,46 1.22
119 8.33 4.340 295.60 1,20
120 8.33 4.337 289.02 1.10
121 8.05 0.855 81.63% 1.27
. 128 8.31 6.260 365,70 1.21
129 8.20 6.013 400.86 1.20
130 8.20 5.508 387.97 1.19
131 8.21 4.638 334,71 1,20
132 8.21 3,466 263,22 1.23
133 8.20 2.529 206.34 1.27
o 134 8.20 1.791 151,56 1.26
h 135 7.00 2.553% 174.60 1.17
140 7.00 2.554 175.92 1.20
152 6.81 2.684 175.47 1.17
199 8,22 4.736 195.87 1,25
200 8.21 5,624 321.36 1.21
201 8.20 2.583 170,72 1.32
202 7.02 1,093 £0.26 1,18
212 6.93 1.113 95.49 1.18

221 8,02 0.877 101.78 1.46
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Tatle B.7 (cont'd)

(C) 4= 3.01

Run No. Pr Re x 10~%4 (A37Mea§3red) ;f
87 8.10 3,07 266,08 1.19
88 8.10 3,06 265,21 1.14
89 7.01 1.56 134.51 1.11
90 7.02 1.56 131.41 1.08
g6 8.08 1.27 130.32 1.15

113 T.25 3.58 293.29 1.25
114 7.25 3.58 262.15 115
115 1.25 3.58 251.76 1.10
153 8.15 3.2 . 255.35 1.27
154 8.15 3.24 256.14 1.52

155 8.15 1.40 143,77 1.50
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Table B.8 Experimental data of Tan and Charters45

Notes:

1. The data are obtained from Figure 3 of Reference 45,

2. All the data are based on bulk conditions for fluid

properties,

3. The characteristic length of the Reynolds numbers, Re,

is the hydraulic equivalent diameter.

4. The as-measured Nusselt numbers, Nu, were corrected
to the constant-property conditions by the present
author using egquation (6.4) with T, = 585°%R, T, = 655°R

and m = 005'
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Table B.8 (cont'd)

Corrected
A Pr Re x 1074 (As-Meggured) (Constaﬂ%-Property)
0.34 0.7 0.95 24 - 25.26
1.15 28 29.47
1.27 30 31.58
1.44 34 35.79
1.74 39 41.05
1.93 43 45,26
! | 2.12 45 47.37




