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To my wife, wlto, at the prime of lrcr life,

ntarried not only a man of many weaknesse,t,

but a the,çis as well.



hdependent component anablçis (ICA) is a revolutionary class of algorithms for

the blind separation of independent sources from an instantaneous mixture. In theory, ICA

is stronger than classical approaches to signal dernixing because ICA is higher-or-der, non-

parametric, and data-ddven. The application of ICA to electrophysiological systems is of
particular interest, and the fetal electrctcarcliogram (ECG) separation pr-oblem is a specific

example that has been longstanding in the literature. Resear.ch in ICA, however, has not

provided a def,nition of performance measurement that is consistent with both ICA theory

and practice. In particular, the practical performance measures of classical signal processing

are limited by being second-order and model-driven. Since traditional measures do not apply,

how can a signal recovered blindly through ICA processing be measured for accuracy?

This thesis proposes that feature convergence be used as a practical measure of ICA sep-

aratioll performance. Arguments in principle are made regarcling the significance of this ap-

proach to signal processing. Using a novel simulation of the fetal ECG separation problem,

an expetimental study of feature convergence for the rneasurement of separation quality is

also presented. In pafticular, this experiment is designed to investigate the relationships of
nonlinear and higher-order convelgence measures to the fundamental converging elements of
ICA optimization (i.e.. cost functions and weight matrices). Results demonstrate that (i) two

categories of convergence apply to ICA cost functions (sub- and superlinear), (ii) two simi-

lar categories of convergence apply higher-order features (entropy and kurtosis), and (iii) the

convergence of nonlinear dynamical features is similar to entropy but is sensitive to nonlinear
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effects through the embedding dimension. In particular, these results demonstratethatdemix-

ing levels equivalent to 20 dB signal-to-noíse ratio (SNR) can be identified with a sratistical

match of signal kurtosis, but is insuflrcient fbr the estimation of entropy or nonlinear fea-

tures (i.e., multifractal spectra). Fufthermore, preliminary results indicate that random phase

comelation in the sollrce signals can íntroduce bias in most feature estimation.

This thesis presents several novel contributions, inclucling: (i) a discussion of ICA per-

formance using convergence profiles; (ii) an analysis of multifractal feature convergence Lln-

der ICA; (iii) an improved model for the synthesis of ECG fiom beat annotations; and (iv)

a technique for the direct calculation of the multifiactal spectrum of scaling indices from a

correlation partition.
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Chapter I

In theory, there is no difference between theory and practice.

But, in practice, there is.

tr.L Motivation

XrqrnooucrroN

The difference between theory and application is often a challenging problem in the design

of signal acquisition and processing systems. Specifically, practical systems that deal with the

classic problem of noninvasively acquiring, processing, and interpreting itt vivo biological

signals are subject to that challenge, and must undergo theoretical and practical scrutiny. The

class of bodlt stnface potentials (BSP) is a broad class of practical biomedical signals used

in current medical practice. These signals are recordings of electrical potentials at the skin

surface, such as: the electromyogram (EMG) concentrating on muscle tissue; the electroen-

cephalogram (EEG) concentrating on the skull; and the electrocardiogram (ECG) concentrat-

ing on the the thorax. The BSP methodology is a convenient method for clinical study of

internal systems since the non-invasive nature of these recordings is beneficial to the health

and comtbrt of the patient. The BSPs, however, also share the dr¿rwback of measuring the

electrophysiological activity of their respective internal sollrces (the muscles, the brain, and

the heart) only indirectly, and are subject to the signal-mixing problem. Though the biochemi-

cal reactions producing electric currents are independent and separately Tocalized, they are al1

-Jan 
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FEATURE CONVERGENCE UNDER ICA: FECG

transported to the skin surface and recorded at the electrodes in a mixture. This signal-mixing

problem is a common issue in applications involving indirect measurement techniques. The

acquired many-sensor signals are composed of multiple source components and affected by

an indirect mixing channel. To analyze the properties of the original sources, therefore, one

must counteract the mixing channel by perforrning,signal separation.

There is a long history of signal separation approaches in signal processing. Classical

signal separation theory is focused primarily on the conceptualization of signals in Fourier-

space: i.e., power distributions over frequency bands. If the sources dominate different regions

of fì'equency (spectral regions), then separation can be accomplished by filtering the acquired

signal to the appropriate bandwidth. For this reason, the application of electrophysiology

analysis has matured in spite of the signal-mixing problem. The ECG is primarily a recording

of the heart because, in practice, the geometrical proxirnity of the sensors to the heart, the

frequency-dependent conductance of the body, and the absolute amplitudes of the heart sig-

nals make them relatively dominant at the sensors. Likewise for the EEG and EMG signals.

Over time, the utility of the classical theory of "power-distribution" (i.e., Fourier decompo-

sition) has been enhanced with modern extensions, such as tinxe-frequency decontpo.sition.r.

These extensions have resultecl with practical signal-separation techniques such as decorela-

tion, radar, and denoising. Notwithstanding these advances, the t'oundation of classical signal

processing remains rooted in distributions of power, and the signal-mixing problem is over-

come by power separability.

New solutions to the signal-mixing dilemma, however, have been proposed recently that

relax the assumptions made in classical signal processing. These new solutions are based on

a theory of statistics and not power, and have the potential to radically change the practice of

signal separation. As a new theory, however, there must also a potential for new discrepancies
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Statistical $ignal Processing

Fig. L.1 The development of "intelligent" signal processing.

between theory and practice.

1..2 Froblem Definition

rf¡telli$entt$igñai
.,,.F,..Í-ô..êê.È,.É.iiiþ,,-,

This new theory for signal separation revolutionizes the statistical assumptions commonly

used in engineering: it allows for non.-Gaussian distributions and statistics. In its broad-

est form, this development in signal processing has been coined "itúelligent signal process-

ing" (ISP) [80, Haykin (2001)], since the rnethodologies are flexible, and thus effectively

"smart" by adapting to the arbitrary distribution of the data. That is, the Gaussian-based

m.odel-dñven approach of a century of signal processing is replaced by an adapfive, data-

driven approach. This extension beyond the physical, analytical, historical, and computational

elegance of the Gaussian model has been a very difficult challenge. only recently empowered

by pioneering minds, soft computing paradigms, and vigorous computer technology.

The power-based solutions of classical signal processing can be considered optimal in a

Gaussian sense, since power is essentially a second-order statistic (i.e., variance). The tools of

ISP are, consequently, the higher-order statistics (HOS), Fig. l.l . It is this new theory of HOS

Ch. 1: Introduction
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FEATURE CONVERGENCE UNDER ICA: FECG

that requires evalllation in practical application. Since the underlying assumptions of classical

theory have been questioned, and new approaches developed, the research community must

also address the new challenges of applying these approaches in practice, since the classical

theory and common experience no longer apply.

To addless the signal-mixing problem in particular, a class of ISP techniques structured

on HOS-based transformations have been proposed called índependent component analy-

sis (ICA). ICA is a theoretical extension to a foundation in traditional signal processing:

namely, principal cotnponent analysis (PCA). PCA is a linear transformation which takes the

data to or-thogonal output components of maximum variance (i.e., second-ordel statistics, or

power). In the context of the signal-mixin-e problem when localized and uncorrelated sources

are observed as a mixture through a linear instantaneous mixing channel, PCA is optimum in

the sense of signal-to-noise ratio. ICA, however, is based on new and different assumptions.

Here, the channel model is equivalent, but ICA takes the data into maximally independent

otttput components, Fig. 7.2, in the presence of higher-order statistics. Specifically, while

PCA is blind to HOS, ICA uses the HOS present in the observed distributions to adapt its

linear transformation to account for "higher-ordel conelations" in the mixture. Considerable

interest has been shown in ICA, since it is adaptive to the HOS in the unknown sources non-

parametrically, and therefore it offers a means of achieving blind sol¿rce separation (BSS).

That is, the processing of a linear mixture of unknown sources (either time signals or images)

into separate sources can be done withoul first modelling the unknown sources parametrically.

While the ISP paradigm breakthrough has spawned a rapid development of BSS signal-

demixing algorithms, the study of the performance of these algorithms has remained relatively

unchanged fiom the classical approach. Primarily, the evaluation of an ICA algorithm pro-

ceeds in two parts: (i) by theoretically or empirically evaluating the algorÌthm applied to a
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FEATURE CONVERGENCE UNDER ICA: FECG

Mixed
Signals

simple (non-blind) signal model; and (ii) by applying the algorithm to actual (blind) data for

subjective evaluation. In the second part, numerical measures are very difficult to apply, given

that the sources are not available fbr analysis. In the fìrst part, the primary tools fbr mea-

suring ICA accuracy is either: (i) signal-to-noise rarlo (SNR), or (ii) Amari's performance

index (,\Pl), which is a recent conf'usion-mahix-based separation measure that matches the

ICA conditions. Apparently, it has not concemed the researchers in the field that

(a) SNR is power-based and inconsistent with the ISP paradigm;

Fig. 1,.2 PCA and ICA separation achieve different output components.

{

{

Decorrelated
Orthogonal Sf\¡R - Performance
Max. Variance

Decorrelated
Quasi-orthogonal ? - P"rformance
Max. lndependence

(b) Amari's performance index, while theoretically consistent with ISP, provides little prac-

tical insight into the accuracy of feature extraction fì'om the ICA output; and

(c) The relationship between the theoretical analysis and the practical application in the

two-part evaluation scheme is often very weak.

These three limitations are persistent in the literature, and demonstrates a compelling need to

re-evaluate the concept of meaningful performãnce measures in the context of ISP in general,

and specifically, ICA. Otherwise, beyond any power-based characterization, the accuracy of

solutions to signal-mixing problems will be in question. Thus, it is critical that researchers

make headway in the use of signal processing quality measures that are meaningful in the

application of ISP. In particular, the distinction between the relevance of the separation quality
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measure in theory, its relevance in practice, and its relationship to other practical quality

measures is significant.

As described more fully in the next section, this work attempts to evaluate the connection

between the tradilional ICA metrics (e.g., SNR, API) that are applied in non-blind theoretical

settings to the features which would be extracted in practical cases (1.e., BSS). In doing this,

an evaluation of the theoretical and practical measures of separation quality can be provoked,

and the analysis of an advancing technology can, itself, advance.

1.3 Research Questions

The effect of ICA in plactice has been demonstrated in a rnultiple areas of image and signal

processing, including BSP processing [104, (2000)][5], (2000))U14, (2001)]. As described

in the last section, however, the literature exhibits several different approaches to performance

quantification, but none consider the connection between the two disjoint parts of ICA papers

in a practical way. In effect, the evaluation of ICA in practice is disjoint from the evaluation of

ICA in theory. This work is ilÌterested in exploring this unresolved issue in ICA performance

analysis. V/hat connections can be made between the traditional rnetrics of ICA performance,

which are limited to known trials, and the accuïacy of ICA processing in a BSS application?

Some rnitigating factors are known to affect the direct connection between theory and

practice. The HOS on which ICA is based ale known to be susceptible to outliers in the

data [93][63]. What influence can be expected, then, from observations contaminated with

observation noise? Furthermore, what effect can be expected on the features that a signal

processing system extracts from the output signal? While a subjective evaluation of output

features is common, can this effect of ICA be measured quantitatively?

To evaluate the possibilities for./eature-based separation quality metrics (SQM), .feature

Ch. 1: Introduction
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convergenc¿ under ICA optimization is analyzed here in an empirical experiment. This ex-

periment is designed to reduce the disparity between theory and practice in the context of the

chosen test case of fetal ECG separation from an abdominal BSP [51]. This signal separation

test case, demonstrated in Fig. 1,3, has been a problem of significant interest for many years

in the signal processing community 1234, (1975)11228, (1987)l[20], (1996)][51, (2000)]. It is

a particularly suitable benchmark test case for the desired ICA analysis since:

(a) The desired source signals are nonstationary;

(b) The desired source signals occupy similar bandwidth;

(c) The desired source signals are from the same class of sources (same type and function);

(d) Models are available for synthesizing the desired source signals Ii40, (2003)];

(e) Source separation has never been successtul to the point of developing a clinical practice

of f'etal ECG analysis tì'om (electrical) abdominal signals;

Ch. 1: Introduction

(f) Traditional metrics are limited in significance, and the utility of nonlinear dynamical

merrics has been established 1207, (2000)1t211 , (2002)1190, (2004)1.

ICA involves a theory of mathematical approximations, and, in practice, can also be sen-

sitive to data error. Can ICA, therefore, be considered robust enough to be an effective and

reliable processor fbr electrophysiological recordings? Will SNR-alone imply convergence of

non-power-based fèatures? Is it possible to successfully identify a "separation outlier" (i.ø.,

an unsuccesstul feature representation)? Within the context of f'etal ECG separation, this work

addresses these questions in a scoped sense.

Of course, some features of practical interest are specìfic to each application (e.9., ECG

analysis). Generic signal processing features with universal applicability, however, are used

M. Potter
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Fig. 1.3 The selected test case application of ICA: fetal ECG extraction. (a) BSP acquisition
(after [234]); (b) Acquired BSP time series with maternal dominance over fetal signal, (Data

from [5 ], (2000)]); (c) separation problem schematic.
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often in engineering (e.9., SNR). To maintain a feasible complexity of research, the focus of

feature convergence under ICA processing in this work is restricted to generic signal process-

ing features. In particular, a specific class of nonlinear features that are known to chancterize

nonlinear dynamics, multifractalfeature.s, will be analyzed for convergence. Since this class

of features is nonlinear, it is not intuitively clear how they will converge under ICA separation.

Thus, the thesis question for this work is formalized as

What measure of'ICA perfonnance can wùformly assltre saJe multtfractalJÞature

characterization of afetal ECG?

7..4 Thesis Staternent

This thesis demonstrates that (i) not all ICA cost finctions converge at the same rate,

(ii) not all higher-order statistics converge at the same rate, (iii) nonlinear dynamical features

extracted from ICA estimates may not converge to the f.eatures of the original independent

sources because of nonlinear sensitivities; and (iv) traditional bounds using second-order per-

formance metrics täil to account tbr sensitivities in some higher-order and dynamical feature

extraction.

This is accomplished in an ICA simulation of Fig. 1.3(c) by measuring the convergence

of statistical and rnultifractal scaling f'eatures extracted from an ICA separated signal to those

features extracted from the known independent source.

Furthemore, by demonstrating that the scaling features do not converge uniformly with

the other metrics, it is concluded that ICA convergence alone is not sufficient to validate any

scaling feature extraction from signals processed by ICA.

Ch. 1: Introductíon
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L.5 Thesis 0bjectives
1.5.1 Grand Objectives

As explained, this thesis is interested in validating predefined ICA processes in a context

that bridges engineering theory and practice. From the signal processing point of view, the

most impoftant elements in practice arc the.featltres extracted fiom the signals. Simply put,

it is the practical fèature quality of the outplrt signals that matters, and compromised feature

quality is the most concerning issue. Thus the objective here is to evaluate signal fecltlffe

convergence as a measure of ICA performance.

Moreover, it was mentioned that features in practice can very often be application specific,

(e.g., clinical features in the cardiological analysis of ECG do not apply ro colour images).

In general theory, signal processing is limited by the restricted meaning of "feature quality"

found in mathematical measures. HeLe, the convelgence of generic features that have shown

to be useful in the study of natural signals are analyzed; these include statistical, information-

theoretic, and multifractal dynamical scaling features. This choice of features is consistent

with the history of research on the ch:Nacterization of natural signal "feature quality" at the

University of Manitoba Signal and Data Compression Laboratory.

Considering the nature of these grand objectives, this work is, therefore, not a true "biomed-

icai engineering" thesis. This work is not intended to examine deeply the ECG signals them-

selves, or try to satisfy a physician directly. A biomedical thesis would directly focus on the

development of "im¡tctrtant cotnponent analysis", Fig. I .4. Instead of attempting to design yet

another "new ICA algorithm for fetal ECG separation", the objective here is to consider how

such an algorithm should be evaluated. It is an objective of this work to identify the engineer-

ing limitations of tCA in signal processing applications, and the limitations of methods that

evaluate ICA. This work will introduce a novel approach to the evaluation of ICA algorithms,

Ch. 1: Introduction
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fECG Separation

Fig. 1.4 The emphasis of this thesis is from the perspective of signal processing, and not
biomedical engineeling.

and demonstrate the complexities involved in "bridging theory and practice".

Notwithstanding the caveats above, this research also establishes a necessary groundwork

for the maturation of ICA separation from an exploratory research initiative into a signal pro-

cessing module available for use in the processing routines of intelligent clinical devices. In

expectation of increasing social emphasis on medical screening, this analysis of ICA in an

ECG context can contribute to proposed designs of intelligent and autonomic [95] ambula-

tory diagnostic assistants. Considering these objectives, it is then necessary to place some

significance on proper ECG dynarnics for both the analysis and simulation of ECG.

1.5.2 Method Objectives

Generic Complexity
Features

Engineer-based

Study Contemporary ICA

Ch. I: Introduction

The objective of the chosen methodology is to apply a scientific approach to the analysis

of the t'eature convergence of ICA separated signals. For this analysis, independent noise-fiee

uncontaminated signals modelling ECG behaviours are simulated and then mixed linezrly for

ICA processing, as shown in Fig. 1.-5. Although it is not the predominant goal of this work to

develop new dynamical models fbr the ECG, a requirement for these simulated ECG signals

M. Potter
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Synthesis
Parameters

i Simulation ,iGãl ñilt t;^r i

is that they exhibit dynarnical fidelity to natural ECG (e.g., regular morphology, statistical

variability, attrâctors, and scaling). A simulation of a simple fetal ECG system is designed to

represent the mixing of abdominal ECG. The complexity of this mixing model is kept quite

low in order to concentrate on the signals themselves and the features to be analyzed. In fact,

the demixing introduced by rnultiple ICA algorithrns (as measured by the convergence of their

cost functions), will be compared by parameterizing the ICA dernixing matrix.

To study the effect of ICA, the separation performance is measured by several simultaneous

sep(tration-quality metrics (SQM): (i) A-CIass SQMs based on a priori knowledge of the

independent signals, and (ii) B-CIas.ç SQMs based only on the observed (BSP) data athand:

namely, the ICA cost function itself. The mutual relationship of the SQMs define an ICA

"error-space" from different statistical, fractal, and signal features characteristic of the BSP

data. Patterns can detennine the relationship between A-Class errors and B-Class errors and

identify non-convergence. Specifically, the multifractal (dynamical scaling) characterization

of the ECG attractor reconstruction is used as one feature-based SQM. The objectives for the

analysis of the ICA error-space specifically include:

(a) To determine if ICA can recover the HOS of the original source from its BSP (A-Class

Analysis

Fig. 1.5 The experimental method to assess ICA perfonnance.

Feature Convergence
Measure

Ch. 1: Introduction
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convergence);

(b) To determine if ICA can recover the multifractal characterization of the original source

from its BSP (A-Class convergence).

1.5.3 Novelty and Contributions

This work represents the first feature-based analysis of ICA performanc e (i.e., where signal

Enlity is measured generically in a sense beyond simple matrix or power measures). This nov-

elty is tandem with the introduction of the new ICA error-space approach that bridges "theory"

and'þractice". This work also clearly demonstrates the complexity involved in maintaining

an experimental paradigrn suitable to connect the two "ends" of engineering. Furthennore,

this work presents the analysis of multifractal (dynamical scaling) feature convergence as a

new paradigm for ICA performance measurement.

Four contributions to science and technology are made with this work. First, the conver-

gence profile methodology for ICA analysis is proposed and demonstrated, provoking a new

discussion of what sepalation quality means in theory and practice. Second, the compara-

tive analysis of ICA SQM-convergence establishes the first relationship of multifractal feature

convergence to other ICA convergence measures. Third, the direct /(ø) correlation-integral

technique is defined, providing an extension to the canonical theory of multifractal analysis.

Last, the sunogate ECG method for ECG synthesis improves the dynamical fidelity of the

state of the art Oxford ECG dynamical model.

This work also contributes several resources to the community by (i) publishing code for

the generation of surrogate ECG, (ii) publishing code for the calculation of an attractor mul-

tifractal analysis from a corelation partition, (iii) synthesizing a historical and geometrical

background on ICA, (iv) synthesizing a survey on the fetal ECG separation problem, and (v)

Ch. 1: Introduction
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synthesizing a background on multifiactal analysis fiom a measure-theoretic perspective (that

applies to attractor or wavelet methodologies), and the significance of surrogate data for the

validation of multìflactal analysis.

L"6 Thesis Organization

The remainder of this thesis is organized into three groups of material: (i) four chapters on

background theory; (ii) three chapters on experimental design, results, and conclusions, and

(iii) appendices with details on the experimental techniques used in the thesis.

The first chapter on background, Ch. 2, scopes the fundamentals of signal processing and

biomedical engineering into the experimental requirements for the objectives outlined in the

last section. In particular, the limitations of signal-to-noise ratio as a quality measute is ad-

dressed, the biological facts and features of fetal ECG are reviewed, and the approaches to

the mathematical characterization and synthesis of ECG signals are considered. This chapter

provides the greater context of the mathernatical studies of features that follow.

The second background chapter, Ch. 3, is a mathematical study of higher-order statistics

for the definition of SQMs and the theory of ICA signal separation. Rényi generalized en-

tropies are presented in Sec. 3.4.1 as an extension to the traditional Shannon formula. The

significance of non-Gaussianity and the details of ICA as an extension of PCA is presented

in Sec. 3.5. Furthennore, the fundamental construction of ICA algorithms is described, with

specific attention to the significance of ICA cost functions and the geometry of matrix space

under the ICA degeneracies.

Then Ch. 4 presents a measure-theoretic approach to multifiactal scaling analysis. In par

ticuiar, procedures for (i) reconstrllcting fractal attractors, and (ii) chuacterizing them using

the Rényi fractal dimension spectrum and Mandelbrot singularity spectruffr are described. The

Ch. 1: Introduction
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novel extension of multifractal theory, the direct /(rr) correlation-integral technique, is defined

in Sec. 4.1.3.

The final background chapter, Ch. 5, presents the theory of surrogate dataf'or the validation

of multifractal analysis. Surrogate data provides an important context in the analysis of fractal

attractors, and, by extension, a context for the novel ECG synthesis algorithm. The difficulties

that can arise in the interpretation of multifractal analysis are discussed.

The first of the experimental chapters is Ch. 6, in which the design of experiments and

implementation is presented. The experiments are focused on the characterization of fiactal

attractors from a simulated ECG time series. Here, the techniques and procedures fbr the

synthesis and analysis of the fetal ECG separation simulation are described. Specif,cally, this

includes a discussion of how the statistical and fiactal fèatures identified in the background

chapters are used to implement the SQM error-space. The details of the ECG synthesis method

are left for a more complete discussion in App. A.

Results from the experiments that demonstrate a non-uniform convergence among HOS

and multifractal features are discussed in Ch. 7.

Conclusions are finalizecl in Ch. 8.

Several appendices are also included to expand on some of the ancillary theory or im-

plementation details of the thesis. Details of the newly developed suffogate ECG model are

presented in App. A. A survey of the literature examining the fetal ECG separation problem

is presented in tabular form in App. B. Details of the implementation for the calculation of the

corelation partition of Sec. 4.6.1 is presented in App. C. Moreover, details on a novel unified

aigorithm for the direct calculation of all multifractal entropies is included in Sec. C.4. Last,

an introduction to the wavelet-based approach of multifractal analysis which was considered

for (but ultimately dropped from) the experimental method is preserved in App. D, since it

Ch. 1: Introduction

M. Potter

PHD-Introduction
-15- September 15,2008

Version 4.1.4



FEATURE CONVERGENCE UNDER ICA: FECG

represents a notable and harmonized extension to Ch. 4. To save paper, only select code for

the most significant routines in the implernentation of experiments is included as text in the

appendices. Complete code does appear as an appendix in electronic form on CD versions of

the thesis.

Ch. 1: Introduction
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Chapter II

As stated in the previous chapter, this thesis studies the performance of ICA at blind source

separation using generic feature-based metrics. Therefbre, it is necessary (Fig. 1.5) to (i) sim-

ulate the chosen biomedical test case in controlled experiments, and (ii) extract features on

which to design ICA performance metrics, the SQMs. Specifìcations of these simulations and

features aLre required, and should be "AS simple as possible, but no simpler"l. This chapter

reviews the fundamentals in signal processing anci biology for sufficient specifications for the

experimental design. In particular,

(a) The deficiencies of signal-to-noise ratio as an SQM will be identified;

(b) The biological origins of the ECG will be surveyed to identify appropriate ECG f'eatures

fbr (i) SQM feature extraction, and (ii) the modelling of noise-free uncontaminated

ECG;

(c) The biornedical engineering background on the chosen test case, fetal ECG (fECG)

separation is presented; and

rAlbert Einstein
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(d) Some necessary background in general signal processing and data acquisition is final-

ized.

Note that the "SQM-tiiendly" ECG features that are identified in this chapter will be given a

more rigorous mathematical treatn.ìent in the subsequent chapters. Furthermore, only the basic

principles of the chosen ECG model will be presented hele. The details of the ECG synthesis

algorithm will be relegated to App. A. Beyond this chapter, there will be no further discussion

of ECG biology or fetal ECG signal acquisition.

This chapter will proceed in the following order:

(a) Discussions of signal-to-noise ratio as the prototypical generic SQM and its deficiencies;

(b) The physiology behind heaft function, heart rate, and ECG electrophysiology;

Ch. 2: ECG Processing, Analysis, and Modelling

(c) Fetal electrocardiography (including the acquisition process);

(d) Paradigms for analytical ECG characterization; and

(e) The modelling and simulation of the fetal ECG problem.

The final two items, in particular, involve the discussion of how to analyze and model

ECG signals for feature extraction and the problem of abdominal BSP simulation . It will be

demonstrated that, for this purpose, dynamical features are generic, yet complex enough to be

physiologically relevant and still within the scope of this thesis. Also, specific ploperties of

the fetal ECG separation problem will be identified that will validate the assumptions required

in the ICA approach (subsequently discussed in Ch. 3).
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2.2 Significance and Deficiencies of Signal-to-Noise Ratio

Signal-to-noise ratit¡ (SNR) is the prototypical generic measure of performance in signal

processing. It is used in image processing, communications, audio processing, and instrumen-

tation. (It is especially significant in audio processing where average power on a logarithmic

scale is perceived as loudness.) Its universal irnportance is a consequence of its simplicity and

the traditional noise models that are assumed.

As it is based on a quadratic measure of error, SNR is related to the natural Euclidean L2

and 12 metrics. As a ratio, SNR measures the relative contribution of average energy (power)

fiom the unwanted noise. So why not simply use SNR to measure the quality of ICA signal

separation? The truth about SNR is that, due to its simplicity, it is universally applicable, but

not universally significant. There are two compelling reasons to consider SQMs beyond SNR

alone: (i) the significance of higher-order statistics in intelligent signal processing; and (ii) the

iimitations of global metrics.

It is easy to show that sum-of:squared-error (and thus SNR) is the optimal maximum-

likelihood solution in the case of zero-mean Gaussian noise [180, Ch. 15][98, Ch. 9]. Fur-

thermore, the spread of the distribution, and often the distribution itself, can be completely

chatacterized by the SNR or noise power among a fixed class of zero-mean noise models.

Thus, SNR is a useful tool to compare noises from the same model (e.9., Gaussian to Gaus-

sian), but not as significant when comparing noise from different models (e.g., Gaussian to

shot, white to correlated). The fundarnental concept, here, is that for SNR to be uniquely

significant, the class of noise models must be chosen a priori. However, as was discussed in

the previous chapter, the goal of intelligent signal processing is to shun a priori models and

let the data itself influence the technique. Why should SNR be considered a sufficient metric,

Ch. 2: ECG Processing, Analysis, and Modelling
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then, when the noise is not restricted to a Gaussian model? If higher-order statistics are con-

sidered relevant fbr signal separation, they must also be considered relevant for signal quality.

Notwithstanding this observation, SNR or its equivalent is still the most predominant quality

metric used in the ICA literature.

The second reason to consider SQMs beyond SNR, is that SNR is a global metric, which

means it is insensitive to some non-statistical properties of noise, such as "local structure". As

an example, consider Fig.2.1 which demonstrates the impact of the local structure in noise

on image perception. The two noisy images in panels (b) and (c) have the exact same global
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noise statistics (as displayed in panel (d)). Even though they have the same SNR, panel (c)

is perceptively of lower quality. Only the organization in the local structure of the noise is

dift'erent, since the error of panel (c) has been sorted into a more uniform gradient (as shown

in panel (f)), instead of the scattered distribution of the original compression enor (shown in

panel (e)). Thus it is observed that "signal quality" (here, image perception quality) has some

properties in practice that are not well represented by SNR.

Since there is a motivation to consider "signal quality" for measuring ICA separation

petformance, SQMs should consider the signal's other features that are useful in the signal

processing paladigm. In the remainder of this chapter, the properties of ECG signals ale

surveyed so that generic data-driven features can be determined for SQMs. Some awkward

ECG-specific metrics for the quality measurement of practical fetal ECG separation have been

developed in several papers 11361[196], but these are not applicable to general ICA SQM anal-

ysis. These will not be pursued, because, as mentioned in the previous chapter, it is the goal

of this work to use the fetal ECG benchmark only as a specific test case for general methods.

Clt. 2: ECG Processíng, Analysis, and Modelling

2.3 ÍIeart Physiology and Function

Now the biomedical context for the required elements of this work will be reviewed. In

order fbr this work to be considered data-driven, it is important to consider the systematic

orìgins of the electrical signals under study. This will proceed in two sections. First, in

Sec. 2,3.1, the function and coupling of the heart at the system level will be described and

the equivalent behaviour of the fetal and adult heart will be demonstrated. This justifies the

use of a single model fbr the synthesis of both the fètal and maternal uncontaminated ECG.

Second, in Sec. 2.3.2, an overview of the origins of cardiac bioelectricity at the cell and fibre

level will be presented. This is a source of important features for both the feature extraction
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and synthesis modules of the chosen experimental method.

2.3.1 Adult and Fetal Heart Function

The heart serves as the hydrodynamic pump of the body and is a vital function fol both

adult and f'etal humans. The contraction of the blood chambers in the heart pushes blood

through the vascular network carrying oxygen, nutrients, waste, and cells tll'oughout the en-

tire body. The heart is both a mechanical and electrical oscillator'. It contracts mechanically

to create vascular flow, then restores itself to a preparation state, before pushing again. This

mechanical behaviour of the heart muscle is controlled by oscillating electrical signals among

the heart cells, to be discussed in the next subsection. The oscillation of this joint-system is

not independent of other systems. The electrical behaviour is specifically influenced by the

autonomic nervous system as it coordinates the mechanical cycle (via the vagal and syntpa-

thetic n.erves) with the rest of the autonomic functions [183]. Consequently, the vascular and

electrical cycles of the healt, dynarnically coupled to the oxygenation systems (1.e., pulmonary

or umbilical), are not perfectly periodic. Specifically. the coordination of the heart cycle rate

with oxygen level is clinically known as the sinus arrhythmia. In a post-natal system, this is

the observation that the heart cycles will speed up on inhalation (i.e., high levels of oxygen

in the lungs) and slow down on exhalation (low levels, respectively). In a fetal system (pre-

natal), oxygen is acquired from a hand-off with the mother's blood ìn the placenta. Here, it

is observed that the fetal heart beats slower during a constriction of the umbilical cord U421,

thus reducing its connection to the oxygen supply in the placenta. Even though it indirectly

uses the matemal circulation as the introductory system of oxygen (and nutrients, and also the

depository of waste), the fetus maintains its own independent circulatory system and its heart

coordinates with its perceived oxygen flow.

The heart is the first functioning organ of the fetus to develop, even though it is in a

Ch. 2: ECG Pt'ocessing, Analysis, and Modelling
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primitive state. After 2I-22 days of gestation (post-ovulation), the embryo has two primitive

heart tubes that merge into a single tubal heart. At this stage, the cardiomyocytes become

capable of beating [22]1. Once the vascular circuit is completed, the heart begins beating

and purnping blood. This involves the activation of rnyosin and actin in the presence of Caz*

12211. During this stage of development the fetal heart is beating and pushing blood, but the

heart cells are still immature and have a less-organized structure than a mature heart. With

development, the cells become larger in size, and come under increasing levels of tension

12211. As they grow, the cellular system of Ca2* pulnps and myosin myof,brils become more

complex, until these structures eventually become the dominant f'eature in the mature cardiac

cell.

By the fifth week of gestatiorial development, Fig. 2.2, the fetal cardiovascular system is

fully functional, but its regulatittg mechanisms and vascular structure differ from an adult sys-

tem. At this stage the fetal heart is only a tube and does not have four separate chambers. It

is "looped" and asymmetrical, reminiscent of the vascular position of the mature heart. As

the fetal heart continues growing through cell division, walls begin to extend into the heart

tube to separate what will become the four heart chambers 12271. In the adult system, the

left and right systems of the heart act in series with equivalent stroke volume. They differ,

however, in the pressures at which they act (low-pressure into the lungs, high pressure into the

vascular circulation system). In the fetal system, the subsections of the fetal heart and the fetal

vasculature operate in parallel. An adult has separate deoxygenated venal and oxygenated ar-

terial flows, whereas the fetal vascular system has oxygenated and deoxygenated blood mixed

throughout. A series of shunts in the fetal vascular pathways dilect the deoxygenated blood

to both the umbilical and body system, and reduce the blood flow to the lungs. Similarly oxy-

genated blood frorn the umbilical system is shunted to all vascular systems, including back to

Ch. 2: ECG Processing, Analysis, and Modelling
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Fig. 2.2 Timeline of fetal development: Specifically, the cardiac conduction system is fully
developed by week 16.

the placental22ll. About 407o of the fetal blood flow from the healt goes through the um-

bilical system tl891. These vascular differences, however, affect only the flow of the blood,

and not the electrical oscillation of the heart that is described in Sec. 2.3.2. By the 16th week

of gestation, the conduction system of the heart is functionally mature [240, Wood and Huhta

(1999)1. Significantly, the mother's heart is not responsible for fetal circulation and the two

hearts conduct, contract, and beat independently. As a result of this analysis of heart function,

the systematic and electrical function of the fetal and post-natal systems are sufficiently com-

parable that the same model fol ECG synthesis and the same ECG features for SQM analysis

can be used for both systems,

As above, the fetal ECG and maternal ECG can be considered the results of equivalent

processes and use the same ECG synthesis model f'or the simulations, though parameters of

the models must be different. One such parameter to consider is heart rate. As mentioned,

the fetal heart rate is much higher than that of an adult. The average baseline (resting) heart

rate of an adult male is near 70 beats per mirute (bpm), and near 75 bpm for a femal e 12371.

Baseline heart rates lower than 60 bpm or higher than 100 bpm are considered exceptional and

¿r¡e clinically termed bradycardia and tachycardia respectively 1691. Of course, heart rate is

time-varying; that is, the cardiac system characteristically changes over time. It is therefore

+q

{
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Heart Rate [bpm]

Adult

Pre-Natal

2A {t b

natural (and not unhealthy) for tachycardia to occur during exercise, and bradycardia to occur

during sleep.

In contrast, fetal baseline heart rates are much faster, and change over the course offetal

development as the nervous system's control on the heart's pacemaker increases. From the

fifth week of gestation, the heart rate increases until a maximum average of 180 bprn in weeks

8 to 10. [240] Fetal heart rate begins to decrease in the later stages as the nervous systems

establishes control over the sinoatrial nodel227l. (Fetal heart rate is, [hus, approximately 140

bpm in the 18th-24th weeks, and 130 bprn at term (37 weeks) 12401.) From i6 weeks on, fetal

baseline heart rate is considered healthy in the interval 100-180 bprn !991. In clinical terms,

then, fetal bradycardia and tachycaldia are defined as a baseline heart rate less than, or greater

than, respectively, that interval. Fetal heafi rates in unhealthy situations can go higher than

300 bprn [64]. There is also a strong relationship between structural heart disease and fetal

bradycardia [46].

For a comparison of the values of the heart rate between adult and fetus, and their intervals

of health, see Fig. 2.3. Thus, in synthesizing ECG time series for abdominal BSP simulation,

the mean heart rates are signif,cant parameters for consideration.

The following section presents the elecffophysiology of the ECG process that can be con-

sidered common to adult and fetal heart function (after 16 weeks of gestation). An analysis of

080

2A 40 60 B0 100 120 140 160 180 200 22A 240 260

Fig.2.3 Normal heart rates for adult and f-etal function.

Normal

00 120 140 160
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the origins of the ECG signals will serve to help derive features required for the ECG synthesis

model as well as SQM definition.

2.3.2 ECG Electrophysiology

As mentionetl earlier, the mechanical action of the heart is triggered through a spontaneous

electrochemical process native to the heart and regulated by electrochemical influences from

the vagal (accelerator) and sympathetic (brake) nervous system. First, the electro-cellular

properties are suweyed. Then the coupling of the cells and the nervous regulation of the heart

rate is discussed.

The cardiac cells are a unique class of modified muscle cells. As with other muscle and

nerve cells, a cardiac cell fulfills its electdcal function as a result of an action potential. A.

cardiac activation potential is distinguished tiom other muscle and nerve action potentials

because of its long response (150-300 milli,seconds (ms) compared to I ms for other fibres)

11831. The cardiac cell has a natural distribution of heavy ions throughout its s[ructure that

maintains a non-zero resting transmembrane potentlal across its cell wall. An action potential

occurs when the transmembrane potential changes as the distribution of ions (up to 10 ions

167 ,pg.61l) is disrupted by their flow across the cell membrane. The two most significant ions

in cardiac function are Na* which is the first and fastest action, and Caz* , which, while the

secondary and slower action, is that which initiates muscle contraction. The action potentiai

consists of a depolarization, when the transmembrane potential changes from its non-zero

resting state, and a re¡tolariTation, when the potential refurns to its resting state. The action

potential of any cell is dynamically native and self-consistent [67][66], but can be stimulated

by the behaviour of neighbouring cells. In general, this is to mean neighbouring cardiac

cells, bitt also applies to neighbouring nerve cells or pacemaking electrodes where they are

established. Hean cells are lather inhomogeneous in the details of their dift-erent activation

CIt. 2: ECG Processirg, Antrlysis, and Modelling

M. Potter

PHD-Sig.Proc.Background
-26 - September t.5,2008

Version 5.2.3



FEATURE CONVERGENCE UNDER ICA: FECG

Sinoohiol node
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Atrìol muscle

Ahiovenkiculor

Aclion potenliols

node

F'ig. 2.4 The activation potentials of healt cells by f,bre category. (from Morgan, Clinical
Anesthesiology, 3ld ed., 2002, [ 15 1 ] . Copyright McGraw-Hill. Used by permission.)

Common
bundle

Eundle
bronches

potentials depending on their position in the electrocaldiac structure, as shown inFig.2.4.

Each type of cell is slightly difr-erent in its natural (autonomic) rhythrn, refractory period, and

pacemaking abilities. However, the coupling of the cells promotes a l:l phase lock with the

fastest autonomic pacemaker in the network 161, pg. 1351. This resulting coupling is called

sinus rhythm, with well defined depolariacltion wcye,r and repolarilation waves that move

spatially over time through the heart's conduction network from a single pacemaking site.

The collective effect of these directed wavefronts are macroscopic electrical current vectors

through the cellular mass of the heart.

fibeis

Vanhiculor
muscle

Purkinie

o.2 o.4
Time [r]
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As mentioned before, the rate of cardiac oscillation is deterrnined by the fastest pacemaker

in the network, the sinoatrial node. As shown in the diagram of heart's conduction system in

Fig.2.5, this area is in the upper right atrium, @. The depolarization wavefront then moves

tlu'ough the heart as depicted by the alrows in Fig. 2.5. The atia (tpper chambers of the heart)

are electrically connected and depolarize together, O, with the wavefront moving at a slow rate

(0.4 tn/s Il52l). The ventricle.r (lower chambers) are electrically isolated from the atria except

at a special junction between the right atrium and ventrical, the atioventicular node, €). A

collection of internodal. pathwa.vs connect the sinoatrial node to the atriovenhicular node so

stimulation arives before the general atrial depolarjzation wavefiont. The special fibres of the

atrioventdcular node are designed to restrict ion flow and delay the conduction of the electrical

impulse to the ventricles by about 9 ms. This allows fbr the depolarization and mechanical

contraction of the atria before the ventricles are stimulated. Ventricular stimulation begins

once a bundle of fibres, known as the Bundle of His, carry the potential impulse, @, to the

bottom of the heart in two branches. These fibres conduct very fast (2 mls 11521), and then

repetitivley subdivide into the so-called Purkinje fibres. These fibres deliver the stimulus to

the ventricular muscle mass, @, and the depolarization wave then starts moving through the

ventricles from bottom to top. The mechanical contraction of the heart cells occuls after the

depolarization wave has moved through the muscle mass, under the (depolarìzed) presence of

the calcium ion.

Afier the mechanical contraction. repolarization of the heart proceeds in a similar fäshion.

However, atrial repolarization and ventricular depolarization occur concurrently. This tends

to obscure any remote observation of atrial repolarization, since the ventricles have (i) more

mass, and (ii) less activation delay, resulting in a stronger si_enal.

By this description, therefore, it is observed that each normal heart cycle is the result of

Ch. 2: ECG Processing, Analysis, and Modelling

M. Potter

PHD-Si g.Proc. B ackground
-28 - September 15, 2008

Version 5.2.3



FEATI.IRE CONVERGENCE UNDER ICA: FECG

Sinoatrial HodE

Àtrioventricular

Ch. 2: ECG Processing, Analysis, and Modelling

Fig. 2.5 The electrical anatomy of the heart. Modified from "Healt 3.tiff", P. Cull, ed., The

Sourcebook of Medical lllustration: The Pafthenon Publishing Group, 1989, Online. Avail-
able as of Oct. 2001 at http: / /nsSensen. eclucation. unn. edu/i¡üebanatomy/image_
database/Cardiovascular/heart- conduction. tif Copyright-free for educational use.

a massively coupled electrochemical cascade of cellular potential elements elaborately dis-

tributed through the anatomy of the heart. There is a regular structure common to the cycle,

induced by the structural synchronization of the cardiac network. There is also a variability

in the hezLrt cycle as the sinoatrial node responds to the electrochemical influence of the sym-

pathetic and vagal nelvous system. The presence of nerve cells at the sinoatrial node is an

important contributor to the changing hearl rate of the developing fètus.

The global cyclic regularity and cyclic variability observed in the ECG is familiar to a

class of nonlinear oscillators, as demonstrated in Fig.2.6. The origins of the ECG signal is

therefore analogous to snowflake growth or the dripping of water droplets: basic principles

RightAtrium

LeftAtrium

Right Ventricle

Bundle of His

Left Ventricle

Bundle Bmnches

Purkinje Fíhres
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Fig. 2.6 Pseudoperiodic phase-space patterns of nonlinear oscillators:
(a=b=0. 1 ,c= I 3); (b) Phase space of real ECG data.
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of stimulation and coupling create similar but non-identical structures. Sinus lhythm is reg-

ular, and near periodic, but each cycle is a unique response to the current conditions of the

cascade, as suggested by the resulting "thick curve" shown at the bottom right of Fig. 2.4. As

mentioned, this description of the heart's electrical behaviour is suitable for both the fetus and

adult.

In the next section the theory and practice of fetal electrocardiography is discussed. This

includes:

(a) A historical review offetal electrocardiography; and

ñtlirfl ;r4.-'ìÈ 'ì:1.'.
t :r'.';
f :4.:i'
4 ..':-r; ¡.'t :.?:..Þ arl'

T ;:::Ì'

(b) Principles of filtering and sampling fbr the acquisition of the ECG.

---.-',----1-'- 1

''<- 1.5

Lag-coord 2 [arb]

(a) Rössler oscillator
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2.4 Fetal Electrocardiography
2.4.1 Signal Acquisition

The ECG is a collection of signals made from the body at large that ale dominated by the

electrical irnpulse originating from the activation potential wavefront in the heart, as described

in the previous section. The fetal ECG can be taken from the skin of the fetus only by an in-

vasion of the womb and the fetal sack. This is done, for example, during labor to monitor

fetal distress 11421. Altematively, a BSP can be taken over the mother's abdomen as shown in

Fig.2.7(a). This method leaves the fetal sack undisturbed and can be done throughout preg-

nancy and fetal developrnent. This indirect method introduces an artifact from the mother's

hearr - effectively measuring her ECG as well, Fig. 2.7(b). Experimentally proposed as early

as 1906 (by Cramer,l24ll), fetal electrocardiology went through aperiod of research in the

i950s and '60s. Since the 1970s, it has been considered a benchmark separation problem in

signal processing research 1234, (1915)l[228, (1987)][201, (1996)][5], (2000)]. The interest

in the problern comes jointly from the significance of the source signals (and possible clinical

benefit to pre-natal rnonitoring), as well as the difficulty of the problem due to the

(a) Unwanted signal sources (i.e., noisy conditions);

Ch. 2: ECG Processing, Analysis, and Modelling

(b) Reversal of power dominance (i.e.,the unwanted mother's ECG is dominant);

(c) Nonstationarity of the source signals; and

(d) Broad and similar bandwidth of the source signals.

Source separation attempts have never been successful to the point of developing a com-

mon clinical practice of fetal ECG analysis from abdominal signals (since the finer features

of the fetal ECG are hidden). Instead, obstetric practice currently relies almost purely on
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echocardiography in the form of (i) infrequent monitoring of the heartbeat by stethoscope,

(ii) brief continuous or intermittent monitoring of the heartbeat by Doppler ultrasound, and

(iii) infiequent Doppler ultrasound images and movies to 'analyze cardiac structure and func-

tion [188]. For these reasons, fetal ECG separation from abdominal signals remains an in-

triguing benchmark tbr signal processing methods, and an open field for developments in new

screening techniques. As a field of research in fèta1 cardiology, Wood and Huhta (1999) 1240,

p. 8171 have charactenzed fetal electrocardiography as follows:

Electrocardiographic recordings of the t'etal heart would be ideal to difièrentiate

the various patterns of arrhythrnias, but to date, transabdominal recordings are un-

able to reliably show f'etal atrial P-wave morphology and the use of scalp electrode

electrocardiography is only available at the time of delivery.

The BSP electrodes placed on the maternal abdomen are steel plates with low resistance

which contact the skin through a sticky eiectrolyte paste. While electrode placement is stan-

dardized in adult electrocardiography, there is no standard electrode placement for abdominal

fetal ECG. The raw analog electrical signal picked up at the electrodes is then guided by wires

to the ECG recorder unit. At the recorder, there is an analog processor to defìne ECG leads.

These leads are virtual wires that define the signals against standardized references and gain.

Many lead configurations for adult cardiology have been developed. Two common types of

leads are bipolar leads where the signal is taken as the difference between two electrodes (e.9.,

Einthoven leads), or wtipolar leads where the signal is taken fiom a reference ground system

(e.g., aYr lead) [69]. The signals at the ECG recorder unit are then scaled by amplif,ers (r.e.,

gain),low-pass filtered tbr discretization, and sampled using a sample-and-hold methodology

and quantized 11811. This is a crjtical stage of the ECG acquisition. There is no universal

standard f'or ECG digitization, and theref-ore care must be made in conectly cataloging for any

Ch. 2: ECG Processing, Analysis, and Modelling
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Fig.2.7 The abdominal fetal ECG: (a) A rough schematic of electrodes that capture an fECG
without disturbing the womb (After Q3aD; þ) the resulting wavefbrm in a single lead with
both the maternal and fetal QRS peaks with amplitude ratio : 5.

record:

${eutral Ëlectrode

Âbdominal Ëlectrodes

(a) The gain;

(b) The quantization depth and lange;

(c) The cut-off tiequency of the analog-to-digital low-pass filter; and

(d) The sampling rate.

The gain is important for correlating the quantization step to real units. Clipping occurs if

the gain does not balance with the quantizer range. Amplitude resolution is based on the
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quantization depth (1. e. , number of bits) as well as an optimized use of the quantizer range. The

following section now discusses the principle that governs the cut-off frequency and sampling

rate.

2.4.2 ECG Sampling and Non-Bandlimited Signals

2.4.2.1 Basic Sampling Theor¡,

Now, some general principles of discretization are briefly discussed. First, the definition

of an important logarithmic unit for spectral measurement is given.

Definition 2.1 (Decibel, dB [81]). A decibel (clB) is a logarithmic unit of quantity. Let ube a

variable (on a typical linear scale). Then

¿¿ [dB] = l0logro ¿¿. (2.1)

Ch. 2: ECG Processing, Analysis, and Modelling

The quantity 3 dB becomes important since it approximates a doubling; i.e.,2.u --+ t+3 [dB].

(A note about nomenclature: v will be used in this subsection for an analog (linear) fre-

quency on lR..)

The faithful conversion of analog signals into a time series is driven by the Shannon-

Whittaker sampling theorem [163]. Underlying this fundamental theorem, however, lies the

assumption that the analog signal at hand is bandlintited. Thatis, it is assumed that there exists

an analog fiequency v0 above which the power spectrum is zero. (Alternatively, it can be said

that the signal has finite spectral support on [-v¡¡, ve].)

This description is impossible in practice, however, because only signals of infinite time

duration can be bandlimited [163]. In practice, therefore, this condition is relaxed into signals

with separable spectrum, as shown in Fig. 2.8. Here, the spectrum is separable into two

distinct regions, a passband and a stopband. The spectral values in the stopband will, in

M. Potter
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Fig. 2.8 Bandlimited signals in practice: Effectively bandlimited signals are separable into a
passband and a stopband. A non-zero noise floor is present in the stopband, but the traditional
concave-down skirt is weli characterized by 3 dB cutoff fiequency (solid). In contrast, a
power-law spectral decay (dashed) is heavy-tailed and theref'ore is poorly represented by a 3

dB passband only.

f'act, be non-zero (in opposition to the theory), but will act in ail practicality as a noise.floor.

The noise floor, in most circumstances, is of sufficiently smaller amplitude to be considered

negligible. The property of all classical signals (or linear filter response) is that some spectral

transition, c¿illed a skirt, can be defìned between the dominant passband (low fiequencies)

and the stopband (noise floor). Thus the class of "eff'ectively bandlimited" signals are those

with a well-def,ned spectral skirt that separates the analog spectrum. For convenience, the

location of the spectral skirt's cut-ofi'.f'requency, v0, is traditionally defined as the crossing

point 3 dB lower than the maximum spectral power in the passband (i.e., "max-3d8"), as

shown in Fig. 2.8. Effectively, this considers high frequencies "negligible" if they are less

than one half the maximum power. This provides the usual signal processing definition of

signal bandwidth I I 63].

In the discretization of an effèctively bandlimited si-enal, two important considerations

o

Ch.2: ECG Processing, Anitlysis, and Modelling
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include: (i) the sampling frequency, and (ii) the cut-off fiequency of the analog pre-filter. The

sampling rate of the recorder, v*, determines the resolution in time of the time series, and the

extent of its spectral content. The time series will clemonstrate only those frequencies in the

Nyquist interval of lv,l2,v,l2l. Purity against anti-aliasing in the time series is provided by

the recorcler's analog filter and its cut-off frequency, ve. According to the sampling theorem,

the time series correctly preserves the time/frequency structure of the original bandlimited

analog signal within the Nyquist interval, or more accurately, below the cut-off frequency.

Thus if the sampling frequency is chosen high enough such that the cut-ofi filter extends

beyond the natural skirt of the signal's spectrum, no loss occurs in the conversion to a time

series.

Note: the spectra of real-valued time series can be represented in Fourier space by conjugate-

symmetric distributions of complex coefficients over the Nyquist interval, or equivalently, by

(i) an even distribution of magnitude and (ii) an odd distribution of phase over the Nyquist

interval tl81l. All spectral images will use this symmetry and be simplified without loss of

generality to show the positive Nyquist interval on1y.

2.4.2.2 ECG Sampling Theory

Ch. 2: ECG Processing, Analysis, and Modelling

Next the general principles of Nyquist sampling are applied to the discretization of ECG

and fetal ECG. A clear discussion on the non-bandlimited spectral nature of ECGs and its

consequences is considered.

At issue with the sampling of ECGs is the Nyquist assumption of an effectively bandlim-

ited analog signal. As discussed in the previous section, this is equivalent to a "spectrally

separable" signal. Clearly, some signals, like sinusoidal signals, are easily sepalable. Others,

like white noise, are not separable and, theretbre, not effectively bandlimited. While white
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noise and bandlimited signals may cover a1l traditional classes of signals, in reality other be-

haviours occur that must be considered. One such class is observed in Fig. 2.8, where a slow

decay in the spectrllm (dashed) complicates the usual theory. While the spectrum in the stop-

band is consistently below the max-3dB threshold, there is still a significant contribution to

the overall distribution in the stopband. This would seem to violate its traditional classification

as "negligible frequencies". To fiIl the theoretical gap, the definition below is offered.

Definition 2.2 (Broadspectral Signal). A broadspectral si.gnal is a signal x(t) for which a

3 dB spectral cut-off changes severely the morphology, features, or sructures of the signal.

To cìarify, 1et S(v) be the spectrum of .r(r). Fur-thermore, let v6 be the frequency at which the

Fourier (power) spectrum last falls beyond 3 dB below the maximum amplitude; i.e.,

vo=suP{".n.

Define a bandlimited version of the original signal l'(r) = H,,,x(t), where Ilun is a low-pass

f,lter operator with cut-off fiequency vç. If y(r) is a poor approximation to .r(r), then x(¡) is

broadspectral.

In dealing with previously sampled signals, the test of (2.2) can be used, as long as only

the Nyquist interval is required. That is, substituting r,,r e l-v,,fZ,v"12) for v e IR in (2.2) can

be done as long as vs is less than the cut-off frequency of the sampling filter.

According to this signal-processing definition, it can be observed from Fig.2.9 on p. 38

that an ECG from the Physionet Normal Sinus Rhythnt Databas¿ (NSRD) is broadspectral,

since its bandlimited form becomes too smooth to accurately represent the edges of an ECG

waveform.

What constitutes, then, an appropriate sampling Íate v. for a broadspectral signal, if higher

s(v) > )ry-s(/))
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Fig. 2.10 Limitations of common ECG sampling: (a) idealized spectrum of a broadspectral

signal with optimal sampling ratefl\yquist frequency in log-1og scale; (b) spectrum of actual
ECG in log-log scale.
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frequency components are important? Broadspectral signals are conjectured to have an opti-

mal sampling rate obtained where the analog spec['um S(v) reaches the noise floor, as demon-

strated in Fig. 2.10(a). At higher frequencies the signal is buried in noise, but all lower fre-

quencies are significant. However, no recording is available in public databases such as the

NSRD with high enough sampling frequency to observe the noise floor knee. The clinically

used sampling rates have been determined through qualitative. (visual) analysis of the ECG

wavef'orms and the conditions of acquisition [ 86, Rijnbeek et al. (2001)]. As a result, no

digitized ECG time series contains all of the spectral infbrmation available. This can be ob-

served in the 1og-log spectrum of Fig. 2. 10(b). Limitations of ECG fèature analysis may occur

because of this missing information [90].
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2.4.2.3 ECG Sampling Practice

The practice of ECG sampling is determined mostly by the clinicai context involved, rather

than any infbrmation-theoretic or signal processing considerations as just discussed. Typically,

the sampling rate is chosen as small as possible, within the constraints thaf the time series mor-

phology is qualitatively still clinically useful. For long-term recordings (¿.9., 24-hour Holter

monitoring), sampling ar. L25 ,samples per .second (sps) will be considered acceptable since

HRV and the presence of abnormal beats are usually studied. Vectorcardiographic studies,

which provide a more detailed representation of cardiac conduction, âre more likely to be

sampled above 300 sps.

This work must also consider adaptations to the data acquisition practice in response to the

special characteristics of fetal ECG. No clinical standards exist, yet it is recommended that a

sampling frequency of 500- 1000 sps be usetl for pediatric signal acquisition (again, measured

qualitatively) [ 86, Rijnbeek et al. (200I)]. Since fetal heart rate typically exceeds that in

pediatrics (c.1, Sec. 2.3.1), at least that much should be considered fbr fetal ECG acquisition.

Furthermore, since the maternal ECG is dominant and the fetal ECG is much weaker, it should

be expected that the usual quantizer gain would suffice, but a greater quantizer dynamic range

would be required to capture the effects of fetal ECG.

The Physionet (Physiobank) ECG Archive l1l has signals with sampling frequency ranging

from 128 to 360 sps, and quantization from 8 bits to 12 bits, depending mostly on length and

clinical use. The abdominal maternal ECG used by De Lathauwer et al.151, (2000)l inFig. 2J

was sampled at 500 sps.
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2.5 Paradigms for Analytical Feature Characterization of
ECG

Body surface potentials like the ECG are very important electrophysiological recordings

because, with enough clinical experience, they can provide information about the dysfunc-

tion of major internal systems without an invasive procedure. Clinical experience is defined

here as the development of a "process of heuristic pattern recognition" 127, 199-/l over alarge

high-dimensional space. It is the goal of the engineer to extend this qualitative process by

designing a more quantitative pattern recognition process. This allows modern computers to

participate in the theory and practice of ECG t.eature characterization, which is called "analyt-

ical feature chancterization" in this work. Now, a discussion on several reasonable paradigms

for developing analytical ECG characterizations will be presented.

2.5.1 ECG Morphology and Dynamics

2.5.1.1 Cli¡tical Morphologies

Ch. 2: ECG Processing, Aniilysis, and Modelling

As was analyzed through the previous section, the two important elements of the ECG are

cyclic regularity and cyclic variability. The important features of clinical practice are regu-

lar morphologìcal features of the ECG cycle, termed waves, because they can be identified

with the electrophysiological behaviour of the excitation wavefront of the heart explained in

Sec.2.3.2. A typical example of such waves, labelled as (uppercase and/orlowercase [69])

P,Q,R,S, and T, are shown in Fig. 2.11. The deflection (i.e., direction and amplitude) of these

waves are different, however, depending on the ECG lead being analyzed. As such, the mor-

phological t-eatures of an ECG lead are relative wavef'orm f'eatures of the excitation wavefront.

Each lead creates an orientation vector against which the wavefront is measured. If the wave-

fiont moves parallel to the lead vector, than a positive wave is observed. If it moves antiparal-

lel, a negative wave is observed, and under perpendicular motion, the wavefront produces no
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wave in the lead at all. To observe the heart's electrophysiological function, a clinician notes

the pattern of these waves (i) in time duration, (ii) in amplitude and form, and (iii) across

the multiple leads [69, Goldberger (1999)]. As such, they perform a morphological analy-

sis on a high-dimensional time series to discern system function using the power of clinical

experience.

The first feature of the ECG cycle is the P-way¿, which corresponds to the depolarization

wavefront through the atria. It has a small amplitude and short width. The QRS-complex is

the largest and most singular event in the ECG cycle. This corresponds to the large depolar-

ization wavefront in the ventricular muscle (depicted as O in Fig. 2.5). Between the P and

QRS-cornplex is a short isoelectric segment as the depolarization is constrained through the

atrioventricular node and Bundle of His. After the QRS-complex, a normally isoelectric seg-

ment occurs as the ventricular cells stay at the plateau of the activation potential. Lastly, the

Fig. 2.11The PQRST waveform of an ECG cycle.
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Table 2.1 Average ECG Wavefbrm Properties

Wave Duration [ms] Amplitude [mV]
P-wave 60-80 0.1-0.2
PQ-segment 60-80 isoelectric

QRS-complex 80-100 I
ST-segment 100-120 isoelectric'Ë

T:wave 120-i60 0.1-0.3

T-wave is a small wave matched with the repolarization (relaxation) of the ventricular mass.

(A "U-wave" is also sometimes discussed, but is ralely observed in standard ECGs.) These

features identify a single cycle in the ECG (and consequently a single beat in the cardiovas-

cular dynamics) and their properties are summarized in Table 2.1 U83, Rangayyan (2001)1.

Each ECG cycle is very similar, but not identical. In par-ticular the length and amplitude of any

wave can vary, and the baseline amplitrde, or average amplitude through the cycle, can drift.

There are also many finer structures in the waveform that are not used in clinical analysis, but

may contain information for automated feature classification.

2.5.1.2 ECG Cyclostationaritl,

Now, the cyclic variability of the ECG is analyzed, beginning with some more definitions.

I Normal healthy function

Ch.2: ECG Processing, Analysis, and Modelling

Definition 2.3 (Cyclostationary tl83l). A signal x(r) is cyclostationary if it can be segmented

into rhythmic cycles (or beats) of finite nominal mean length.

It follows from the definition that any periodic analog signal becomes cyclostationary

when discretized. (Discrete periodic signals ale a small subclass of discretized periodic ana-

log signals [181].) Another example of a cyclostationary signal would be the frequency-

rnodulation of a periodic carrier signal. Since the ECG has a well-defined beat of bounded

length, normal ECGs are cyclostationaty, as well.
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Definition 2.4 (RR-interval 169l). The RR-interual is defined as the time duration between

consecutive R-peaks (maximum positive deflection of QRS-complex) as shown in Fig. 2.12(a).

(Note: some techniques use specific fiducial interpolation methocls to reduce sampling jitter

in RR-interval measurement.) RR-intervals are a measure of ECG cyclostationary variability.

The RR-interval, as a feature of cyclic variability, is very robust to (i) additive noise, and

(ii) the low sampling frequency observed in clinical recordings. Some of the properties of

natural RR-interval variability are shown in Fig.2.12(b)-(d). Panel (b) shows how the RR-

variability appears when comparing the mo¡phology of consecutive beats of natural ECG.

Panel (c) shows the trace of sequence of RR-intervals, or tachogram, wbich can demonsffate

nonstationary behaviour. Quantization enors in the tachogram are inversely proportional to

the ECG sampling frequency and alrtocomelated.

The mean heart rate in bpm, pç, âS used in clinical practice, is calculated from the mean

RR-interval Ç using

Ch. 2: ECG Processing, Analysis, and Modelling

60
|r9-_

Aa

where Ç is measured over a 10 minute window ll28l. (Note that the proportionality between

heart rate and an RR-interval in (2.3) is only true fbr scalars (i.e., mean rates, and not in-

stantaneous rates) because of the nonlinear nature of the reciprocal. Further details about the

interrelationship of heart rate and RR-intervals can be found in App. A.) That the RR-intervals

are not constant implies a heart rate variabtltry fiRV). Note that, in clinical research, there

is a demonstrated relationship between HRV and adult health t98lt97ltl72l,while in obstet-

ric practice, the patterns of fetal HRV are one of several clinical markers used to determine

fetal distress [128]. HRV patterns in adult or tètal practice are typically measured from mean

he¿nt rates over small sliding windows (e.g.,4-6 beats) t691t1281. However, the preferred

form for studying HRV in this work will be tachograms of the form shown in Fig. 2.1.2(c); i.e.,
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Fig. 2.12 RR-intelvals measure cyclostationary variability; (a) the RR-interval definition;
(b) RR variability in consecutive beats from an NSRD record; (c) extracted sequence of natural
RR-intervals; (d) distribution of RR-intervals under 2 s.
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RR-variability and not "rate variability" itself, though HRV will be used indiscriminantly for

either quanitity.

2.5. 1.3 Clinical and AnalyticaL Cltaracterization of Cycktstationartty

The cyclostationarity of the ECG is the dominant attribute that makes it suitable to clinical

interpretation (1.e., the patterns of regular-ity and variability in the morphological "waves"). In

this way, the patterns of the waves can be connected to physiolo_eical interpretations of the in-

ternal processes of the ECG (i.e., the excitation propagation of Sec.2.3.2). Clinical experience

amounts to the inference drawn from an analysis of the high-dimensional cyclostationary mor-

phological patterns of multi-lead ECGs to the conceptual description of the intemal cardiac

system. The clinical analysis of HRV patterns has proven to be a more difficult characteriza-

tion problem, with significant ambiguity and variation to interpretation [28, SOGC (2002)].

This is a considerable challenge to clinical practice, but is in keeping with the subtlety of the

properties that HRV represents (e.9., autonomic control, nervous influence).

Unlike the clínician, the engineel would prefer to use quantitative features that describe the

physical processes of the system. What class of quantitative features should be considered?

Figure 2.13 displays a cross-section of modelling classes with increasing complexity that can

be considered: (i) mo¡phological f'eatures, (ii) dynamical f'eatures, and (iii) physiological de-

scriptive features.

The simplest model to consider would be morphological features (left side of Fig. 2.13).

A limitation to a purely morphological characterization, however, is that no connection be-

tween the regularity and variability in the ECG process is characterized. The morphological

behaviours are essentially considered in isolation of any physiological function or process it

may represent. An added complication also arises because the morphological features of the

ECG waves are dependent on the lead geometry, and therefore may not properly characterize

Ch. 2: ECG Processing, Analysis, and Modelling
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Fig. 2.13 The levels of ECG modelling. Dynamics-driven features will be used in this thesis.

the results from unstandardized abdominal ECG recordings. Furthelmore, while it is true that

the statistics and rnorphologies are the only significant elements for the ICA process, this work

is interested in evaluating more than just statistical features for convergence.

However, to represent the physiological inference used in clinical experience quantitatively

involves a difficult and exhaustive analysis to create a descriptive model of the heart (right side

of Fig. 2.13). Here, the features could be physiologically significant (such as calculating a

"complete heart-block coefficient"), but would also be highly specialized to ECG signals, and

would not be applicable across signal processing in general. Essentially, this type of model is

a biomedical engineering problem, and is well beyond the scope of this thesis and its goal to

analyze ICA perfonnance metrics.

As shown in Fig. 2.13, dynatnical features are an important compromise because (i) they
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suppolt the signal morphology, yet capture some intrinsic relational structure; and (ii) do so

without requiring a full descriptive model. With the origins of the signal in physiological cas-

cades over maxy scales, and the connection to nonlinear oscillators demonstrated previously

in Fig. 2.6, this sllggests nonlinear models and complexity characterizations could be usef'ul

and sufficient. Thus, this work is justified to focus on using generíc dynamical features from

signal processing that can characterize, in palt, the inner workin_{s of a system that produces

simultaneous regularity and variability.

In the next section, the generic signal processing models available for ECG f'eature extrac-

tion are presented. The models surveyed will provide the required dynamics, morphology, and

inherent variability (at reasonable model complexity).

2.5.2 Mathematical Context of ECG Dynamics and Modelling

2.5.2.1 Signal Processing Basics

Ch. 2: ECG Processing, Analysis, and Modelling

As was identified in the preceding section, the ECG is a cyclostationary signal with well-

defined average morphology. This morphology, though, is dependent on the geometry of the

sensols used to acquire the ECG signal. The cyclostationary variability in the ECG signal was

also identified as a significant f'eature driven by the dynamics of the ECG. Now the analytical

characÍerization of the identified morphology and dynarnics are analyzed in the context of

available mathematical models.

The most general description of an ECG signal is as a randr¡m signal.

Definition 2.5 (Random Signal). A randor¡t signal is a random process for which eachrcaliza-

tion is in a family of Lebesgue square-integrable functions l22l; i.e., a subset of Ij. A random

time ,çeries has realizations in families of square-summable sequences, /2.

Since the recording process inherently has some a ¡triori uncertainty (otherwise taking a
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measurement provides no int'ormation), the ECG acquisition process is essentially a random

process.

The realization, x, of a random signal is the rawest form available to mathematically char-

acterize a landom signal in the signal processing paradigm. Typically, feature extraction, or

the calculation of a quantitative descriptor of the realization, is an essential step f'or practical

mathematical modelling.

Definition 2.6 (Signal Feature). A feature of a signal is a characteristic quantitative variable

or function onto which the fàmily of random signals can be mapped. The set of all features

describes thefeature spctce t'or the random signals.

Ch. 2: ECG Processing, Analysis, and Modelling

The purpose of feature extraction and the feature space is to provide a venue for analytical

characterization of the random signal. Here, the patterns and structure of feature space are

analyzed in order to determine distinguishable elements (1.e., class identification). Depending

on the context, the characterization of f'eature space may be a straightforward application of

an a priori model (1.e., Shannon communications), or a result tiom a data-driven process, such

as supervised or unsupervised learning. A fïlly chatacterized feature space is then able to be

used f'or the pu¡poses of classification. Conceptnally, classifìcation is a segmentation of the

f'eature space into different classes, but, practically, it appears as a mapping of a random signal

realization onto a label. A well-designed feature extraction greatly reduces the dimensionality

of the f'eature space compared to the raw realizations of the random signals without com-

promising the performance of the classification mapping. The author calls this property the

fficiency of the feature extraction. For example, for a signal class in /2çN¡ 1e.g., a time series),

a feature g : /2(N) r-+ IR2 is efficient. Good feature extraction enables proper classification with

simpler mathematical structures.
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2.5.2.2 Statistical Models

One large class of features is the statistical features, or .ttatisttcs, of a random signal -r.

These are the quantities (or functions) resulting from the ¡zth-instance joint probability distri-

butionfunctions (pdf , written /, of the random signal:

n=7 ;

n = 2 ; .f (xt, tt, )cz, tz)

n ; f(xt,tt,...,xu,t,,)

Ch.2: ECG Processing, Analysis, and Modelling

.f (x, t)

where the realization x(r) takes a possible amplitude x¡ at time instance r¡.

A full second-order charactet'ization of the random signal requires knowledge of these

distributions up to n = 2. Common second-order statistical features of a random signal include

[165, Ch. 9]:

(a) The mean t'unction, p¡(r) = Â xf (x,t) dx;

(b) The variance f uncrion, pz(t) = [ t, - ltt!Ð2 .f (x, r) dx:

(c) The autoconelation function, R(r1 ,h) = firrrtrrf(h,tt;xz,tz)dx1cIx2; and

(d) The autocovariance fïnction, C(t1,tz) = R(t1,t) - pt(tt)pt(tù.

As can be observed from (2.4), a complete statistical characterization of a random signal

is not efficient in the general case; ¿.9.,

{"r(l) e ¿'ß)} - {.f{"' ,ttt...ix,,t,) e trqR2"¡ lrz =7,...,*}

Only when a symmetry exists can a statistical characterization be efficient.

(2.4)
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Two important statistical feature symmetries that allow for efficiency are stationariry and

time-independence.

Definition 2.7 (Stationarity). A random signal is stationary if all its statistical properties are

time-invariant(i.e., invariant with respectto translationin time). That is,

n=I ; f(x,t)=f(x,t+ts) V/o

n=2 : f(xt,|t,x2,t) = .f(x1,t1*ls,x2,t2*ts) Vro

n : f(n,ttl...\x,,,tr) -- f(n,ty-l tç,...ixn,t,, * ts) Vfo

Stationarity implies, in particular, the second-order conditions [ 65, Ch. 9]

f(x,t) = f(x)

R(t1,r) = R(t2 - t) .

That is, the amplitudes are identically distrihuted (id), and the autocouelation is only lag-

dependent. If the two conditions (2.7) and (2.8) are met, the random signal is said to be

wide-sense stcttionary, irrespective of the behaviour of higher-order statistlcs. Second-order

assumptions like wide-sense stationarity are significant models in the theory of traditional

signal processing.

Definition 2.8 (Time-independence). A random signal ts time-independent if the n th-instance

joint pdfs factorize over time. That is,

.f (xt,tti . . . , xn,t,) = fl f (x¡, t¡) Yn .

i=l

This means that the amplitude at time r¡ has no bearing at all on the amplitude at time t2 ) t1,

and the random signal is completely characterized by the single-instance pdf f Q,r).

(2.6)
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Fixed

Fig.2.1,4 The difference between(a) stationa{y statistics that are invariant over changing trans-

lations in time, and (b) time-independent statistics that are invariant over changing differences

in time.

A random signal with time-independence up to second-instance is called an uncorrelated

or white process, This occurs iff the autocovariance is zero except at identical times. (If the

random signal is zero-mean, this is also equivalent to an impulse autoconelation function.)

Stationarity and time-independence are complementary stochastic symmetries of random

signals. Stationarity is an invariance of statistics with respect to changin g translation.r in time,

whereas tirne-independence is an invariance of statistics with respect to changing dffircnces

in time, as shown inFig.2.l4.

A stationary and time-independent random signal is written independent and identicall¡"

distributed (iid). This is one of the most tractable non-Gaussian models for a random signal.

The class of iid signals are useful because their statistical representation reduces, essentially,

Fixed
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It Time (s)
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to f(x); i.e.,

.f(xt,tt,...,rn,Ð = f|.f/) vn .

i-- I

According to the definition used here, then, iid variables have an efficient statistical character-

ization.

2.5.2.3 Deterministic Models

Notwithstanding their efficient representation, iid random signals have no dynamical or

cyclostationary structure, and are not good models of ECG signals (c.1., Fig.2.I1). So a

complementary analysis can be considered: random signals with complete time-dependence.

These deterministlc models of a random signal assume that a future amplitude is directly

related to a present amplitude through some evolutionary mechanism of states. That is, for the

realization x(r) indexe dby { , there exists a state vector u(t; () (of countably many components)

and an evolution operator Q which satisfies

Ch.2: ECG Processing, AnaJysis, and Modelling

and from which xz = x(u(tz:Q) at time 12 can be derived from x¡ = x(u(tt:Ð) at time 11.

From the stochastic perspective, a deterministic random signal has completely degenerate nth-

instance pdfs, so that, using the Dirac delta "tunction" ô-,

u(t';() = @(u(t:O:t',t) where t' > t

(2.t0)

f(xt,tt,... ,xn,t,,) = f (xt, r,) ' fl ó*(x¡ - x(u(t¡;O))
._a

and all the stochastic nature of the signal is in the single-instance, or initial conditions, of

the signal. (Contrast the deterministic symmetry defined in (2.12) with the time-independent

symmetry defined in (2.9).)

An example of a detenninistic random signal is x(Ð = sin(ut + 0). For a single real-

ization indexed by (, the signal is a well-behaved detenninistic function, with state vector
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u = lt,0(Ð)r. The intrinsic uncertainty in this random signal is the value of the phase, 0({).

For this example, it is f'easible that a regression on past points could estimate the intrinsic

uncertainty of the random signal (i.e., the phase) and the future amplitudes of the signal could

then be predicted.

Thus, deterministic signals are characterized by the full set of (i) the evolution opera-

tor, and (ii) the initial state of the system. In some situations (cl, the example above), the

evolution operator or equivalent can be "fitted" from predictable data. This approach to char-

acterizing deterministic systems is very limitecl, however, and rather naive given the natural

cyclostationarity variability that occurs in the ECG [07, K:antz and Schreiber (1998)]. Pre-

dictability, however, is not equivalent to determinism, and therefbre there are other means to

char acterize determin is ti c dyn am i c a1 sy s tems.

It has become a fact of modem computer culture that deterministic chaos can result from

sirnple nonlinear systems, Figure 2.15 shows the time series resulting from a deterministic

system with state u = Lr,x(O), i¿]r and evolution operator described by the equation

Ch.2: ECG Processing, Analysis, and Modelling

with parameters r = 3.99J,;r(0) = 0.5, and n = 0,. . .,255. No simple regression on the time

series (Fig.2.15(a)) will uncover any state or evolution operator. However, the dependent

nature of the time evolution can be seen from the constrained pattenì in the next-amplitude

map (Fig. 2.15(b)). The uncertainty, or lack of predictability, in deterministic chaos is a result

of the incomplete specification of the infinitely precise elements in the state vector, and the

"stretch-and-fold" dynamics of the nonlinear evolution operator [3, Addison (1997)]. This

can be interpreted in information-theoretic terms as an information loss that occurs as the less

significant bits of the cllffent state vector become important bits in the next state. Future states,

therefore, are dependent on information that is, essentially, beyond the current precision.

x(n) = r (1 - x(n - I)) x(n - l)
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Fig. 2.15 The deterministic chaos of the logistic equation: (a) The time series of the logistic
equation; and, (b) The next-amplitude map.

It is very difficult to characterize a deterministic nonlinear family of random signals ex-

hibiting such a short horizort o.f predictability by estirnating an evolution operator and the ini-

tial conditions fiom data. Instead, the strange attractor of the nonlinear dynamics is extracted

as a f-eature and characterized.

The strange attractor is the highly complicated subset of states to which the evolution op-

erator draws a large segment of initial conditions. This subset of initial states is called the

basin of attraction for the attractor. The attractor is stable, in the sense that any deviation

fi'om the attractor returns to the attractor. The evolution operatof, however, does not draw the

system into a single state, but a complex ergodic topoktgy of many states. This is in contrast

with the attractors of linear deterministic systems which are topologically simple: either point

attractors (e.9., darnped harmonic oscillator), or cyclic attractors (e.g., damped-driven har-

monic oscillator)[3]. Nonlinear dynarnical systems, with these "strange" attractors, produce

observations with the simultaneous, and seemingly contradictory, properties of equivalence

and uniqueness:

Equivalence All initial conditions within the basin of attraction relax onto the attracto¡ and,

Ch. 2: ECG Processing, Analysis, and Modelling
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once there, the gross properties oftheir subsequent trajectory are necessarily equivalent

and characteristic of the attractor topology (e.g., the ergodic probability density);

Uniqueness Everyr observed trajectory on the attractor is unique at the smallest scale, similar

to snowflake phenomena. Even close initial conditions in the basin of attraction will

diverge at a fast rate, reducing the horizon of predictability'

Given these two properties of observed attractors, quantitative measures for attractor char-

acterization focus on how the natural measure on the ergodic topology of the system attrac-

tor has a significant clistribution (or geometry) over different topological scales 1222,Theller

(1990)1. Simple attractors must lose complexity at smaller scales (e.g., reducing to manifolds

or points). The strange attractor, however, must remain complex - even at extremely small

scales - in order to support unique trajectories within an invariant bounded distribution. Thtts,

the complexity of the strange attractor scaling, measured through mul.tifractal anab,sis (MFA)

[75, (1986)] 1161, (1987)l is an irnpofiant feature of the nonlinear dynamics of a random

signal.

MFA measures the "scaling" (or power-law relationships) in highly singular objects with

regularized complexity at every scale. An MFA of ECG for the pulpose of signal compres-

sion has been studied by Huang and Kinsner in [90, (2004)). They, as well as others [211,

Small (2002)), have demonstrated the applicability of MFA of ECG signals by attractor re-

construction. This analysis of ECG feature characterization will be pursued in Ch. 4, since it

is a generic dynamical signal processing analysis consistent with the cyclostationary form of

ECG and its cyclic regular-ity and variability. As a nonlinear feature of the time series, MFA

is a nontrivial feature of interest for an SQM convefgence measure.
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2.5.2.4 Chosen ECG Feature Model

The above has provided a reasonable justif,cation fbr the restriction of random signal ECG

models to the class of deterministic nonline¿Lr families. This class of'signals provides the

joint properties of deterministic regularity and variability useful for ECG fèature extraction

(Fig.2.16). This class of signals is also consistent with the treatment of biological dynamics

as nonlinear oscillators (c.f.,[66, Glass (t983)][96, Glass (1992)]). It has been suggested by

these laboratory experiments that the variable phase lock observed in biological systems may

be consistent with deterministic dynamical models. Other experiments have demonstrated that

the "quasiperiodic phase lock" (i.e., aperiodicity) in ECG may be consistent with deterministic

dynamical unpredictability [67, Glass (1988)]t110, Kaplan (1994)11242, Small (1999)1. This

chosen class of signals fbr analytical ECG characterization:

(a) Reduces the inefficient f'eature representation of the ECG as a dependent, non-stationary,

and non-Gaussian random signal; and

(b) Avoids a detailed physiological approach to the ECG signal (as in Fig.2.13), requiring

(i) state vectors such as action potentials of individual cardiac cells, and (ii) dynamical

relationships such as the highly complicated cardiac geometry. Such a nearly intractable

model is outside the scope of this thesis.

With this restricted class of random signals identified, the next section examines the appli-

cation of this signal class to the fetal ECG simulation problem.

Ch. 2: ECG Processing, Analysis, and Modelling
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Fig.2.16 Cyclic regularity and variability of natural ECG: (a) Morphological regularity and

variability in consecutive beats from an NSRD times series; (b) Phase space representation of
the ECG's regularity and variability.
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2.6 BSP MixÍng and Dynamical Modelling of ECG Signals

The simulation of the fetal ECG signal-mixing problem requires a discussion of (i) the

characteristic mixing of an abdominal BSP, and (ii) the noise-free uncontarninated ECG mod-

elling of the fetal and maternal ECG signals. These ideas are developed in the following

subsections.

2.6.1 Instantaneous Linear Mixing Channel

Body tissue is composed mostly of water and has been proven experimentally to conduct

electrical currents as a resistive volume conductor [26, Briller et al. (1966)]. This conductivity

is nonunifbrm, especially considering the gas-filled areas (lower conductivity) of the lungs

and blood-filled areas (higher conductivity) around the heart [170, Plonsey (1969)], However,

the electrical properties of conductive media generally supports the additivity of signals, and

since the goal is not to try to recreate the internal electrical signals from the BSP (the inverse

problem of'cardiology), the inhomogeneous effects of the body tissue are irrelevant as long

--__--l^ o.s
1.5

Lag-coord 2 [arb]
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as they are natural to the problem. Simply pllt, any time-varying artifäcts in conductivity are

considered part of the BSP signal, and is inconsequential to the signal-mixing problem.

More importantly, the additivity of the signals at the sensors are subject to delays intro-

duced by conduction throu-qh the body. Again, tiequency dependent delays at the electrodes

due to the filtering of the body is considered native and a property of the BSP signals. How-

ever, geometry dependent delays are an important consideration in the signal-rnixing problem.

These, however, are of such small magnitude that all electrodes are effectively acquiring the

fetal and maternal ECGs in simultaneous fiames. Considering the upper bound represented

by conductivity at the speed of light in water, delays would be less than 1.331c = 4.4x70-e

s/m, [238] resulting in delays no greatel than l0 nanoseconds across the human body. Since

kiloHertz sampling intervals are stiil olders of magnitude greater than these geometric delays,

no effects are measurable.

According to these arguments, a BSP signal u¡(r) recorded in the presence of two hearts

independently and simultaneously generating action potentials in the mother's thorax can then

be modelled with the simultaneous and additive (linear) equation

Ch. 2: ECG Processing, Analysis, and Modelling

u¡(t) - m¡r s¡aQ) + mlr se(t)

where the index I indicates the coefficients Ør change with the leads (e.g., placement of the

electrodes) and the vectors s¡a(t) and s¡(t) represent isolated "uncontaminated" ECG signals

from the maternal heart and the fetal heart respectively. These vectors are traditionally mod-

elled as three-dimensional in the clinical literature, equivalent to the remote observation of a

dipole representation of the cardiac wavefront [69, Goldberger (1999)]U70, Plonsey (1969)1.
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Thus, the fundamental equation of the abdominal ECG u(t) can be written in matrix form

u('î,=*l"iíl,]

Here, the mixing matrix M is fundamentally due to the geometry of the electrodes and the

positioning of the fetus within the womb. Therefore, as long as the fetus is not changing its

orientation, M can be considered time-invariant during the signal acquisition [51, De Lath-

auwer (2000)1. It is again impor-tant to note that the si-qnals sn¿(f) and sn(/) are not the poten-

tials within the hearts' mass (or at their outer membrane), but rather the characteristic BSP of

an independent system - an "uncontaminated ECG". Models fbr synthesizing a noise-free

uncontaminated ECG are discussed next.

2.6.2 Uncontaminated ECG

Ch. 2: ECG Processing, Analysis, and Modelling

The plesent study of separation performance in the fetal ECG mixing problem requires

controlled simulations. As such, signals that represent "uncontaminated" ECG over many

cycles are required. This is formalized as a definition.

Definition 2.9 (Uncontaminated ECG). For the purposes of this thesis, an uncontaminated

ECG is any noise-free in vit¡o BSP originating from heart electrophysiology alone.

2.6.2.1 Forward. Problent Models

(2.rs)

It is impossible to actually record an uncontaminated ECG (even if noise were allowed).

This is because it is impossible to stop all other bioelecrrical sources tn vivo while the heart

continues to function normally in isolation. Since there is no empirical solution to the uncon-

taminated ECG dilemma, mathematical solutions can be drawn tiom theþ rw*ard problem in

electrocardiology (which is a specific field of electrophysiological study) instead.
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Here, source cunents at the cell and tissue level are assumed in the mathematical model,

and then minute electromagnetic currents are perpetuated thlough the body channel model

where they assimilate into a measurable current at the body surface. The success of forward

problem calculations rest on the accurate modelling of the source currents and body channel,

not to mention rigorous and highly demanding computation. The ECG, for the purposes of

this present study, reflects the properties of both the cardiac electricity and the body tissue (as

a volume conductor).

In a previous study of forward problem solutions presented in the literature, Huang and

Kinsner [90, (2004)] identified the work of Sachse et al.1190, (1998)l as a state of the art

model to the forward problem. This group created a three-dimensionai computer model of

both heart and torso from the maglretic resonance imaging (MRÐ dataset of the National

Library of Medicine "Virtual Man" project [159]. From this high-resolution digital model

(Il9 mm3 per voxel), they applied a texture analysis to determine anisotropy in the conduc-

tive fìbres. Lastly, they applied a cellular automaton model to generate the cellular currents,

propagating the cuments through the three-dilnensional model to a BSP map.

This process correctly idealizes the acquisition of an uncontaminated ECG, having no

interf'erence from other sources, and the Sachse et al. result of a simulated bipolar lead is

shown in Fig. 2.17. This moclel tries very hard to accurately represent the properties of the

electric channel, and also tries to preserve a cellular model for the source currents. However,

it only models the physiological origins of a single cycle, and not the dynamics of many cycles

as is required for this work. Perhaps with titure research, the model will account for more

dynamical complexity. The current benefit of this model to this research is a verification of

the ECG features in Fig. 2.1 I without electrical si-enatures from other sources.

Ch, 2: ECG Processing, Analysis, and Modelling
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ßig.2.17 A cycle of uncontaminated ECG from the Sachse et al.
problem model. (From 1233, (1998)1. Public Domain.)

2.6.2.2 ECGsyn Model and Exten,tions

"0.5

Another recent model for the synthesis of uncontaminated ECG has been developed from

a dynamical perspective. McSharry et al. [140, (2003)] have presented a nonlinear dynamical

model for ECG simulation, called ECGsyn. This model is designed to recreate the morpho-

logical features of'an ECG beat and also imitate the spectrum and statistics of the HRV. By

first generating a random sequence of instantaneous heart rates with a specified spectrum, as

shown in Fig. 2.18(a), a three-dimensional system of stochastic differential equations is in-

tegrated using a Runge-Kutta technique (Fig. 2.1 8(b)), and then projected down to generate

a one-dimensional time series representing an ECG (Fig.2.18(c)). The morphological and

statistical features of the ECGsyn output can be influenced by the design parameters of the

model. The considerable benefit of this model is that it provides a sequence of multiple beats

600

forward
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with a dynamical interrelationship, which imitates the real effect in the heart. In contrast with

Fig.2.17 , however, there is no physiological motivation in this morphological design, (i.e., no

remote sensing of an activation potential wave).

For the purposes of this thesis, the work of McSharry et al. has been generalized in two

ways to address limitations in the original model as discussed in App. A.

First, the stochastic RR-interval synthesizer has been eliminated, since there is some evi-

dence that HRV exhibits nonlinear effects and may not be just simple stochasticity Ii07, Kantz

and Schreiber (1998)l[9J,Ivanov et al. (1999)]. Instead, the algorithm has been modified to

accept the RR-interval sequence as an argument, as shown in Fig. 2.19 and described in [175,

Potter (2005)1. In this way, the natural variability properties of a real cyclostationary ECG

can be expressed in the synthesized time series. RR-intervals are available directly from the

Physionet databank or can be extracted from maintained ECG recordings, such as those in

the NSRD. Since fetal RR-intervals are not available for use with the modif,ed algorithm (cl,

Sec. 2.4), an NSRD sequence of RR-intervals is rescaled into the range of fetal heart rate for

fetal ECG synthesis.

Second, the module that transcribes the RR-interval sequence into an instantaneous an-

gular velocity (Fig. 2.18(b), equivalent to instdntaneou.s heart rate (lHR)), has been modified

to keep RR-intervais invariant and preserve PR- ancl RT-intervals (Fig. 2.19(b)). As exhibited

in the natural ECG of Fig.2.16(a), the cyclic variability tends to be concentrated in the inter-

beat (TP-) interval (i.e.,after the ventricular-repolarization and before the sinoatrial excitation)

[07, Kantz and Schreiber (1998)]. With the modifications described in App. A., a surrogaÍe

ECG can be synthesized to reflect these natural variabilities. The cyclic regularity and vari-

ability of the surrogate ECG is shown in Fig. 2.20 (c.f., Fig. 2.1 6 fbr comparison). The time

series representation of a natural ECG and its surrogate ECG are shown in Fig. 2.21. From

Ch.2: ECG Processing, Analysis, and Modelling
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Fig. 2.18 The ECGsyn model: A random HRV sequence, panel (a), is generated and applied
to a three-dimensional stochastic differential equation, panel (b) (after [40, (2003)]). A time
series is created from the z-component of panel (b), which has a realistic beat morphology,
panel (c).
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(b)

Fig. 2.19 Modifications to
(2003)l; (b) the new model
rithm.

this comparison, it is clear that the surrogate ECG represents an idealized recording fiom the

same dynamical process as the natural ECG, but possibly from a different lead configuration.

The end result of the proposed synthesis model is an isolated noise-fiee simulation of a

single ECG lead in the desired sampling frequency and quantized to IEEE double floating-

point values. This model represents an important contribution to the state of the art in ECG

modelling, but details of the surrogate ECG method will be left fbr App. A, since these details

are not directly related to the analysis of ICA performance metrics. One further limitation that

this thesis will not address at all, is the limitation of the model to produce a single lead ECG.

As a single lead, many of the morphological parameters lack any physiological context. Other

researchers have extended the model to the 3D-dipole context [ 92, Sameni et aL (2007)1,

but this is considered a biomedical engineering problem and beyond the scope of the thesis

presented here.

2.7 Surnmary

RR
Sequence

Ch. 2: ECG Processing, Analysis, and Modelling

ffiffi_

Modified Algorithm

the ECGsyn model: (a) Original McShany et al. model [140,
uses naturai RR-interval recordings and a modified RR-IHR algo-

ECG Time
Series

lntegrator
Module

ECG ïme
Se¡ies

This chapter has synthesized

(ii) ECG biomedical engineering

M. Potter

PHD-S ig.Proc.B ackglound

the

for

relevant principles in (i) general signal processing and

the study of ICA at fetal ECG separation using generic

-65- September 1-5,2008

Velsion 5.2.3



FEAITIRE CONVERGENCE UNDER

o
6

C)
ul

l--__..
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Time [s]

Fig.2.20 Cyclic regularity and variability of dynamical ECG model:

and variability in time series beats; (b) Phase space tepresentation
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Fig.2.2l Surrogate ECG results: (a) Dataset of actual NSRD ECG; (b) Synthesizecl surrogate

ECG with the same event-interval dynamics. This surrogate ECG represents an idealized

ECG fiom the same dynamical process as panel (a) but measured from a different lead (and

thus with different morphologies and statistics).
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feature-based performance metrics. The specif,cations for the experimental design identified

here are intended to be "as simple as possible, but no simpler". That is, the background is

sufficient to motivate and define the simulation and feature characterization to follow.

First, signal-to-noise ratio has been identif,ed as an insufficient SQM because it is insen-

sitive to (Ð HOS, and (ii) local distribution effects. Thus other generic fèatures should be

considered for the SQMs.

Second, the biological origins of the ECG were surveyed to identify appropriate ECG

¡eatures for SQM f'eature extraction and the modelling of noise-tiee uncontaminated ECG.

The physiology behind heart function, and ECG electrophysiology identified that the same

model f-or synthesis can be used in f'etal and maternal cases, as long as heart rate can be set to

the correct values.

Third, the mathematical context fbr ICA separation has been established. The line¿r mix-

ing assumption f'or the tètal ECG signal-mixing problern has been validated. This is required

specifically t'or the ICA assumptions to be discussed in Ch. 3.5. The clinical history and chal-

lenges of f'etal electrocardiography has been described. A minimum sampling frequency of

500 sps has been identified, but not fiom a signal processing paradigrn. Further experimental

study would be required to validate the proposed means of identifying sampling frequency for

broadspectral signals. These arguments complete the discussion of fetal ECG signal acquisi-

tion for the remainder of this work.

Fourth, it was demonstrated that ECGs have both a deterministic cyclic regularity and an

intrinsic cyclic variability. The clinical features of ECGs were discussed, but the mathernatical

character\zation of ECGs using both deterministic and stochastic random signal tnodels were

chosen for their universality. RR-intelvals were presented as an important feature of ECG

cyclostationary variability. It was dernonstrated that a nonlinear dynarnical paradigm would

Analysis, and Model
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acceptably represent both features. Therefore this paladi-em will be applied in the analytical

feature characterization of this work. Dynamical features are generic, yet complex enough to

be physiologically relevant and still within the scope of this thesis. In particular, the statis-

tics of the signal (stochastic) or the characterization of the attractor (deterministic) can be

emphasized as appropriate for SQMs.

Last, the nonlinear dynamical paradigm has presented a means to synthesize a noise-free

uncontaminated matemal and fetal ECG. A morphologically-inspired dynamical system is

chosen to emulate the cyclic variability and regularity of an ECG time series over many cy-

cles. Natural ECG-intervals extracted from recordings are used as an integral part of the

simulation method in order to preserve natural HRV in the synthesized ECG. Although the

basic principles of the chosen ECG model have been presented here, the complete details of

the ECG synthesis algorithm can be found in App. A.

With the mathematical context for analytical f'eature characteization established, the "SQM-

friendly" ECG fèatures that have been identified in this chapter will now be given a more rig-

orous mathematical treatment. Statistical fèatures fbl SQMs, as well as f'or the definìtion of

ICA, will be presented in the next chapter. Attractor characterization by multifractal analysis

will be discussed in Ch. 4. The final chapter of the background will be Ch. 5, which will

present the theory and applicaticln of surrogate data for the validation of multifiactal analysis.
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3.L Overview

Chapter III

AND Br,nrn Souncn Snpnn¿uox

This chapter presents a study of

(a) the statistical features of ECGs tbr the definition of statistics-based SQMs, and

(b) the theory behind ICA separation.

It will begin with an introduction to the ECG distributions that will be characterized.In partic-

ular, their distinction from a random process is clarified, and their visualization and modelling

is introduced. Thereafter, the definition and significance of statistical moments and cumulants

as general features of uni- and multidimensional pdfìs are reviewed. In particular, the higher-

order statistics are distinguished fiom the more common second-order statistics. Next, the

mathematical backbone behind ICA is reviewed in Sec.3.4: namely the statistical indepen-

dence of a joint distribution. Independence is then characterized in terms of pdf visualization,

moments, ancl entropies. The most significant definition here will be the mutual information

of a joint pdf. Also of-interest, a generalization to (Shannon) entropies, called the Rényi gen-

eralized entropies are discussed, which will prove useful for Ch. 4. As a statistical feature,

these entropies are introduced here.
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Section 3.5 then presents the specific background on independent component analysis.

First, a historical review of the ICA literature is presented to orient the reader with the con-

tributors and developments in ICA s short history. (For a literature survey specific to the

application of fetal ECG separation, including ICA techniques, see App. B.) Thereafter, in

keeping with the signal processing paradigni of this work, the classical principal component

analysis is reviewed (Sec. 3.5.2), from which ICA itself is formulated as a higher-order exten-

sion (Sec. 3.5.3). Theorem 3.22 in Sec. 3.5.3 reviews the seminal characterization of an ICA

process and the degeneracies that must exist in an ICA solution. This is discussed further in

Sec. 3.5.4, where the geornetrical context of optimization over matrices is analyzed and some

visualization of the ICA process in matrix space is presented. These geometrical features

of ICA are signif,cant in the state of the art ICA techniques. The application of the general

ICA theory to the derivation of specific algorithrns (Infomax and FastICA) is then exempli-

fied in Sec. 3.5.5. Further considerations of how the general theory applies to practical data is

discussed in Sec. 3.5.6.

The last element of ICA background is a section reviewing the perfbrmance metrics used in

the literature to evaluate ICA separation (Sec. 3.5.7). Here it is shown how the indeterminacies

of ICA must be considered in ICA separation quality metrics, and also that the majority of

published metrics are second-order with only indirect consideration of higher-order f'eatures.

From these, a methodology is proposed for this work to standardize the ICA indeterminacies,

and a collection of interesting elements for convergence analysis is identified.

3"2 ECG Distributions

Ch. 3: Statistics - ECG Feafures and BSS

Statistics are tools used to characterize distributions.ln the event that this is the distribu-

tion of a stochastic phenomenon, statistics are the complete characterization of the system. A
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distribution, more generally, is just a multiplicity of a variable and occurs even for determinis-

tic (non-stochastic) phenomena. As discussed in Ch. 2, deterministic systems simply require

more for a complete characterization.

In this section, three questions about the application of statistics to ECG will be addressed.

First, what are the ECG distributions being ch'aracterized, and how are they distinct from en-

semble statistics? Second, how can these distributions be visualized? Third, what approaches

are there for modelling these distributions?

3.2.I Ensemble vs. Time-Integrated Distributions

In the last chapter, it was demonstrated that a random signal is the broadest general class

for ECG characterization. That is, any ECG signal is a member of an ensemble of square-

integrable functions. As such, the ECG process can be characterized by a disiribution over an

ensemble {.x(Ð e ¿2ß)i: that is, an ensetnbl,e distrihution of time-functions. For the charac-

terization of a recorded ECG signal, however, this is no longer the case, since one realization,

x(r), has already been instantiated (or extracted) from the ECG ensemble. A characteriza-

tion of a single ECG recording by "statistics", therefbre, is not in reference to the ensemble

multiplicity.

Here, the time-integrated distributions of the signal is the source of the statistical chap

acterization. Moreover, since a multichannel recording of a BSP ís being considered, it is a

multidimensional distribution from the observed signal, r(r). The dimension, or nwnber of

channels, of these signals will be noted by &. Thus the time-integrated distribution is from

the ensemble of vectors {x(l) € RN' I t € R } indexed by their time coordinate r.

This does not impiy that ECG sígnals are stationary, time-independent, or stochastic as

defined in the previous chapter. Neither is it saying that the time-integrated distribution of one

ECG recording must be ch¿u'acteristic of an entire ensemble of ECGs. This demonstrates only

Ch. 3: Statistics - ECG Features and BSS
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that the multiplicity is taken over time instances, and, at most, one need only treat distributions

over N.-dimensions. A statistical distribution / will be identified with a 1/.-dimensional signal

x using the expression "distributed as", ! " f . Furthermore, the distribution / is directly

related to a unique random variable r, € RflRN"), where ß(mn'¡ is the set of all random variables

over lR.N". It follows from this formal connection that the statistical characterization of the

signal r and the random variable u are identical, since they share the same distribution /.
Therefore, one can characterize "random variables" in this chapter without signal processing

consequence. These variables can be distinguished phenomenologically, however, since ø ís

random while x need not be. (Further discussion of this association can be fbund in the chapter

on surrogate data, Ch. 5.)

(Note: The definition of stationarity for a time series is therefbre somewhat different from

the corresponding definition for a random signal, since, again, there is no ensemble. A time

series is considered stationary when the time-integrated distributions of a sliding interval of

data are invariant. Apart from truly stochastic and iid signals, stationarity is uncommon.)

Using time-integrated distributions is perfectly consistent with the signal separation of

instantaneously mixed sampled ECGs sampled at sampling frequency v.. Since

Ch. 3: Statistics - ECG Features and BSS

x(t) = Ms(¡), v r e {nv;l ln - 0,...,N- li

time integration results in two data sets, {x} and {s}, related by a fixed mahix M. The or-

dering of these data sets is not important, as long as the rnatching between the instantaneous

vector-couples is maintained; i.e., (3.1) holds true and M is constant. Although any time-

shuffiing of x(r) is no longer a meaningful ECG signal, the matrix M and the distributions of

the components are all invariant, and ICA focuses on estimating M-l from these distributions.

This study now proceeds by discussing the two approaches to the modelling of an ECG

distribution.
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3.2.2 Parametric vs. Non-parametric Modelling

The statistical characterization of an ECG is a feature mapping the samples from the ECG

signal {¡(r")} into a representation of the time-integrated distribution, /. This statistical mod-

elling is organized into two broad classes: par(Lmeîric, and non-¡tarametric modelling.

Parametric modelling consists of mapping the statistical samples into some finite set of

parameters that tune an a priori rnodel to the data. In signal processing this approach is

very common because the Gaussian model is chosen a priori to represent the statistics. The

goal of parametric modelling is to estimate these parameters in an optimum way given the

model. Optimality of these estimators is classically measured by considering bias and variance

t1981. A complete parametric statistical characterization then amounts to a calculation of the

minimwn-t,ariance ttnbiased estintator (MVUB) for the model from the samples.

The benefit of a parametric model is its simplicity and efficiency with finite data [198].

The risk with any parametric modelling, however, is that model mismatch introduces a ^r),r.-

tematic bias that is inconsistent with the actual data. If the underlying distribution of the data

is represented poorly by the chosen model, the calculated parameters will not optimally char-

acterize /. Moreover, while the parameters still represent some statistical feature of the data,

the significance of their interpretation is lost.

Systematic bias can be avoided by using a non-parametric approach to distribution mod-

elling. Instead of being model-driven, these techniques are data-driven, and more consistent

with the objectives of ICA. The two most common non-parametric approaches to distribution

modelling are (i) statistical moments, and (ii) kernel density estirnation.

Moments are similal in spirit to the MVUB estin'ìators in parametric rnodelling (and under

certain conditions MVUB estimators can be moments). They are features calculated directly

from the samples which represent some property of the underlying distribution. They are

Ch. 3: Statistics - ECG Feafures and BSS

M. Potter

PHD-Study Stats

-73 - September 15,2008

Version 5.2.6



FEATURE CONVERGENCE UNDER ICA: FECG

universal, however, and not optimized to a particular distribution. Since moments, and specif-

ically higher-order moments, are significant to ICA, they will be examined more deeply later

on in this chapter.

Kernel density estimation assumes a small kernel of probability should be assigned to

the region surrounding an observed sample [25]. The aggregation of these kernels provide

an estimate of the complete distribution. This approach to distribution modelling requires a

choice of mathematical kernel and its properties. The most important property of the kernel is

the smoothing parameter, which assigns the spread of the kernel ¿round the observeci sample.

The price that generally comes with non-parametric modelling is an increase in systenmtic

variance as compared to parametric modelling. That is, the consistency of modelling results

from different instances of finite data is decreased.

This study now proceeds by discussing the visualization of these distributions, and then

their characterization by moments and entropy. Then independence and both PCA and ICA

will be developed.

3.2,3 ECG Distribution Visualization

Ch. 3: Statistics - ECG Features and BSS

Visualization is key to understanding the behaviour of distributions intr-ritively, and it will

prove useful in the interpretation of ICA. The following defines four types of distribution

visualization techniques.

Definition 3.1 (Scatterplot). A scatterplor is the most raw fbrm of distribution visualization.

Afinitedataset{r(t,,)e lRel/,,e lR, tx=1,...,N} drawnfromthegivendistributionisthen

presented by individually marking the data points in IR&'. As such, visualization can only

occur unaided for Àd = I and 2. Using perspective-based plojection, N, = 3 can also be

drawn on the page and occasionally proves useful.

M. Potter

PHD-Study Stats

-14 - September 1-5,2008

Version 5.2.6



FEATURE CONVERGENCE LINDER ICA: FECG

Definition 3.2 (Intensityplot). Ãn intensityplot is a slightly more processed form of distribu-

tion realization. This expresses the behaviour of the distribution function .l'by approximating

it with pixel colourings scaled to the amplitude of the distribution. This correctly represents

the mapping nature of the distribution, and can be efficiently visualized for N,. = 2. Estimating

an intensityplot fiom real data can be done using histogram, nearest-neighbour, or other non-

parametric techniques [25]. In black and white printing, these plots can provide little detail,

and will be used only infrequently in this thesis.

Definition 3.3 (Densityplot). A densitl,p/of is the formal visualization of a distribution's den-

sity function, / : IR& p IR. This is best accomplished for one-dimensional variables N. - [,

though for N. = 2 some perspective-based projections are useful. Estimating the values of a

distribution from real data can be accomplished by the same non-parametric estimation meth-

ods as for the intensityplot. The densityplot is the most natural form of visualization of an

anaiytic distribution formula.

In particular, a technique to be used repeatedly will now be forrnalized in a definition.

Ch. 3: Statistics - ECG Features and BSS

Definition 3.4 (Histogram). A histograrn is a

a distribution density from a finite data set in

elements. Here,

î . N¡(x)
i(À-i =r . N V¡(x)

where lif (.x) is the number of data points in the cell i containing x and having volume V¡(x).

For normalization, N = I¡ N¡, which is the size of the data set. If the volumes of all cells are

identical, Vi = V, then the histograrn is called regular.

Figure 3.1 demonstrates the various visualizations of Gaussian noise in different dimen-

sions. The (fetal ECG) abdominal BSP data from de Lathauwer er at. (2000) t5 ll is visualized

piecewise-constant non-parametric estimate of

lR& calculated from non-overlapping volume
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as time-integrated BSP distributions in Fig. 3.2.

3.3 Moments

Now, the chalacterization of distributions by moments is discussed. As described in Ch.2,

moment-based chalacterizations of a distribution are divided into two categories: (i) second-

order moments, and (ii) higher-order moments. The second-order statistics capture the basic

idea of a distribution's location and spread. Higher-order statistics measure different properties

of a distribution's shape.

Before continuing, a few definitions are recalled. Here, for simplicity, distributions will

be treated as random valiables. Unidirnensional random variables will be represented by an

underscore x, while (multidimensional) random vectors appear bold as well, x.

Definition 3.5 (Expectation). Letu be random vector in IR4, written z e ß(lR.e). The expec-

tation of a function g : IRe ¡-+ lR with respect to a is

Ch. 3: Statistics - ECG Features and BSS

s {s(u )} = f s@)f (u) du\ - r Jn..v

where y " f . In general, one may view the expectation as an operator E { 
.} on the argltment

with respect to the random variable. If g is a vectol' function, g : lRN. F- lR&,', then the

expectation is taken component-wise to produce a unique vecror Al¡fÐ]}

Definition 3.6 (Cumulative Distribution Function). The cwnttlative distrihution.fïtnction (cdf)

of a one-dimensional random variable ¡.¿ is the function

ru
F(u)= | ¡'çu'¡du'./_-

where A" .f .
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3.3.1 Second-OrderMoments

The second-order statistics capture the basic idea of

Now, statistical moments are tensor representations of

reader will be the central tnonlents of a one-dimensional

u' -- a{u\ | t,, = a{@- u)"\, vn > I

where 6 {'} is the expectation operator. Then p1 and p2 are the mean and variance of the distri-

bution. Also, being that they are achieved by polynomials of degree less than or equal to two,

these statistics are called second-order momen.ts. These two numbers roughly capture the main

ideas of a distribution: (i) a (central) location, and (ii) a spread of values around the centre. (In

effect, a second-order characterization is akin to representing all distributions by the interval

lh - tl¡t2,¡tt + tlpl.) Alternatively, raw moments about the origin can be calculated from

simple polynomial functions, E lr"I. These, however, make for a more difficult interpretation,

except for the raw second-order moment (which represents the energy of the signal).

Moments of muitidirnensional random vectors become more complicated, being not scalars,

but tensor,ç of order n equal to the order of the polynomial. It suffices, therefore, that the

second-order moments of random vectors can be described by vectors (tensors of order 1) and

matrices (tensors of order 2). For the random vector u = l!!t, . . . , Lu,fr, these are the mean

Ch. 3: Statistics - ECG Features and BSS

a distribution's location and spread.

distributions. Most fämiliar to the

dish'ibution, given by

(3.5)
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vector p, and covariance matrix E, defined as

p = E{yl = | uf (u) ctu,(-, 
Jp-n.

Ð = 6 {ty- ù{y- rr)'}

=Í".

çu1 - elÐ2

(u, - eT Ð(u1 - e[ u)

(tr¡¡, - ef,,,F)Qu - el U)

From the above, it is clear that E is symmetric (i.e.,Ðr = Ð) and positive definite [40].

In a scatterplot, the nonzero mean vector of a unimodal distribution can usually be iden-

tified as an offset fiom the origin, as is shown in Fig. 3.3(a) for the case of a 2-dimensional

Gaussian. The diagonal elements of the covariance matrix give an idea of the spread of the dis-

tribution in space. In particular, the larger the element is, the färther the spread along that axis.

For off-diagonal elements, the sign denotes a linear correlation in the spread of the distribution

along those axes, as shown in Fig. 3.3(b).

It will be very common in the remainder of this thesis to assume that the distributions are

zero-mean. This is tlue without any loss in generality, since any distributed vector u canbe

centralized. to

Ch. 3: Statistic.s - ECG Featttres and BSS

(3.6)

(3.1)

.f (u) du.

,!= y- a þll

which has zero mean. This thesis will continue to use the notation 7 for central\zed variables.

Acquired BSPs are very likely to have non-zero mean. n *ouf¿ appear appropriate f-or

the baseline as defined in Ch. 2 to be the mean. However, it is not. The baseline is the most

frequent value attained in the BSP (the mode), and therefore strongly influences the mean, but

the large values that occur during the waves also influence the result, as shown in Fig. 3.4.
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Fig.3.3 Second-order moments: (a) the mean of a2-D Gaussian distribution ç = 10.5, 1l);
and (b) the spread of a2-D Gaussi¿rn with E = [1, -l -I,2].

As such an appropriately centralized BSP will often have a non-zero baseline. It is important

that, in the processing of the BSPs into fetal and matemal ECG estimates, the mean of the

joint system be removed before processing. It is a simple process to reintroduce after the ICA

processing is complete. Without loss of generality, this thesis will use centralized data in the

performance analysis of ICA.

3.3.2 Higher-Order Moments

3.3.2.1 One-Dimensional Case

Ch. 3: Statistics - ECG Fearu¡es and BSS

0
Vorioble I

The higher-order moments (1r,, n > 2) characterize quantitatively the properties of u - f
other than location and spread: in effect, the "shape" of .f .The central moments are known,

however, to be inefücient scalar charactertzers of even the sirnplest distributions. For example,

it can be shown (as done in Stuart and Ord [218, Sec. 3.4 (1994))) that the Gaussian distribu-

tion g(¡-r1, p2), has diverging even moments, i.e., þzr -> oo as k increases. (Since the Gaussian

is symmetric about zero, all odd moments vanish, þztt-t = 0.) Given the special distinction

-202
Vorioble I
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Fig. 3.4 Means of the time-integrated BSP distributions of the de Lathauwer et aL data
set f5ll : (a) l-D histogram (channel 2) has estimated mean p = 0.026:' (b) 2-D scar
terplot (channels 2 and 3) has estimated mean p = 10.026, -0.1991 and covariance I =
[88.8, -68,6; -68.6, 329.4].

of the Gaussian distribution in statistical theory and engineering applications, therefore, pref-

erence is given to other (more complicated) moment palameters that represent the Gaussian

compactly. A set of parameters called the cumulants of the distribution, K¡, in eff-ect, are the

standardized higher-order moments [218]. These are rather cumbersomely defined as the lth

Taylor coefficient of log f (f), where F(f) ts the Fourier transform of .f (u) (called the char-

acteristic function of the distribution). Using these parameters the Gaussian distribution is

compactly represented with only two non-zero momentsi /(¡ = l1 and Kz = ltz = a2,whichare

the usual mean and variance.

Thus, fbllowing the tradition of ICA theory, higher-order nlonlents implicitiy assumes a

cumulant system, though for any finite moment order, HOSs can be expressed combinatorially

and calculated in terms of the central moments. (Note, therefore, that as the moment order

increases, the cumulant expression in terms of central moments becomes more complicated.)

One similar property of cumulants and central moments is that all odd moments are zero if the
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Fig. 3.5 Kurtosis: three distributions of equivalent variance. The Gaussian
pdf is overlayed by a super-Gaussian (,t > 0) and sub-Gaussian (ft < 0) pdf.

distribution ./ is symmetric,12181 i.e.,

.f (x) = f (-x) Yx = þn = Kn = 0, V¿l odd

6 -4-202
.x

Therefore, the first .tymmetric measlte of non-Gaussianity by HOSs is ra. Termed the unnor-

malized klffto,ris , k' = K4, it is expressed in central moments by the formula [21 8]

Ch. 3: Statistics - ECG Featules a.rid BSS

The kurtosis is related to the sharpness in a unimodal distribution, as shown in the densityplots

of Fig. 3.5. Distributions with positive kurtosis tend to be sharply peaked unimodal curves

with heavy tails, and are called super-Gaussian. Negative kurtosis means a flatter (or often

multimodal) distribution with thin tails. Distributions of this type are called sub-Gaussian.

The kurtosis can also be expressed in a unitless normaliz,ed fonn,

k'= þ+-3(ltù'

s f/ìt_ Ik(tt\=---+-3
E{TT'

3.3.2.2 Multidimensional Case

Multivariate extensions to these HOS definitions and principals are essential for ICA.

These are quite standard and straightforward, guarding, as noted before, that higher-order
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moments require tensor analysis in the multidimensional case. Of equivalent distinction to

the kurtosis âs the first symmetric measure of non-Gaussianity, the centralized random vector

u = l!!t, . . . ,Lr"]r now has a 4-th order (cross) cumLrlant tensor [218]

Kn,y,(û) = s 
\L'" 

L,,,'Eì - >, a {nn. " {øl=}
wherc the sum is over all distinct combinations. For L€ N,,, this makes an 

^¿.,x 
N, x & x ¡/.

array. From this, one can observe that the unnormalized kurtosis k'(3.10) is the special case

of the fourth-ordeÍ auto-cutixulant, i.e., the diagonal tensor elements where w = x = y = ¿. As

such, the l/. diagonal elements of the 4-th order cumulant tensor (3.12) are the

x¡¡¡¡(u) = E ldl - za {ø'}' = LLq@) - t (ur{ù)'

= *u(D

= k,(D

Ch. 3: Statistics - ECG Features and BSS

Therefore, the diagonal elements of this tensor contain information on the symmetric non-

Gaussianity of the marginal distributions. The non-diagonal elernents, by analogy, have some

measure ofjoint (or coupled) non-Gaussianity, which is diflicult to interpret, and nearly impos-

sible to visualize. The diagonal elements become ernphasized in ICA and these are more open

to conceptualization. For this purpose, the definition of (3.I l) is extended to a nrtrmaltzed

kurtosis vectot'for the rnultidirnensional case in an element-wise way,

k@) =-[å.0,) = å*,0,0,,

=i.,f "Jq,L -,1i= l." {1.'}' )

where u = !- ¿ {Z} is the cenff alizedrandom variable.

(3.12)

The ECG signal in general, and all the acquired BSPs of de Lathauwer et al,. (2000) l5ll
have non-Gaussian time-integrated distributions, as shown in Fig. 3.6.
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Fig. 3.6 HOS of the time-integrated BSP distributions of the de Lathauw er et al. data set [51]:
(a) 1-D histogram (channel 2) has estimated kurtosis fr = 8.3; (b) 2-D scatterplot (channels 2
and 3) has estimated kurtosis vecror k - [8.3, 13,8].
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ICA is concerned about transtbrmjng a distribution of r € ß(RN.) into a linezLrly related

indepencìent distribution, its independent components,l e ß(Re ). The statistical background

required for a mathematical treatment of independence is presented here.

3.4.1 Definition

(b) -50:
-óu

The following recalls some well-known properties tl65l.

Definition 3.7 (Marginal PDF). Let a vector u = lur,!!2,...,!!¡u,fr have a distribution / over

RN" . Then the ith marginal of u is the distribution obtained by integrating out all other random

varjables j * i. That is,
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Definition 3.8 (Statistical Independence). Let a vecto r u = lur, !!2, . . . , !!u"lr have a distribu-

tion I' over IR&. Then ø has independent components if the distributionfactori?.es; i.e.,

N.

.f(u) =fl.f,ta,)
t=l

where f,(rl) is the lth marginal pdf.

3.4.2 Visualizing Independence

The statistical independence of a 2-dimensional distribution is visualized by its Cartesian

symmetry. Figule 3.7 shows the scatterplot visualizations of some Gaussian and non-Gaussian

independent distributions as well as their marginals. Edges, where they can be perceived, are

mutualiy orthogonal and aligned with the coordinate axes.

3.4.3 Independence in Moments

Ch. 3: Statistics - ECG Features and BSS

It follows fì'om the independence of u that the expectation operator with respectto ube-

comes separable on the off-diagonal; i.e., E{A,Uj\ = ¿ {4} "{ø} 
v i + j. Since the indepen-

dent pdf /(ø) can also be described by tensor statistical rnoments, these inherit diagonizability,

(3.1e)
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as shown below:

E(t) =

ol 0

o ol 
.

x 
^, "y,(Ð = a {4,,,44n 1 - 

Ð*,s 
[u,,LJ,) 

a {", t )

= 6 t (w, x)6 (w, y)6 r(w, z) cl,k@,.)

(

lc?k(A) : w-- x=!=2.=i Vi e {1,...,N.}
=1

I0 : otherwise
l.

where ô1 is the Kronecker delta function.

In fact, using the general form of the cumulant derived from

Fourier transform, the factorization of / implies the factorization

which further implies its logarithm is separable as sums, i.ø.,

0 0 o'*,

0

0
= ôr (1, ) ole¡el

Ch. 3: Statistics - ECG Features and BSS

togT(f) - los r(nf) = los f,rff,l = I r,sr_(f¡)
ttI

From (3.24), any order of mixed derivative, and thus the mixed Taylor coefficients, will be

zero. That is, any off-diagonal element of arry cumulant tensor from an independent dishi-

bution will vanish. Thus the cumulant characterization of an independent distribution can be

achieved without tensors at all. Only the infinitely many vectors consisting of all the auto-

cumulantsarerequired. Thekurtosisvectorof (3.16)is,therefore,importantasthefrst.rltyn-

ntet ric lti ghe r- orde r c har ac te ri z.ati o n of ind e p e nd¿¡zr dis tributi ons.

Similar to our discussion of random signals in Ch. 2,the diagonalization at second-order

and higher-orders are often distinguished. Of special historical considerati onis correlation, or

(3.20)

(3.21)

(3.22)

(3.23)
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second-order dependence. If a random v¿riable (distribution) ø satisfies (3.20) without being

independent, then it is decorrelated. In that case, all the relationship between its marginal

components occur at higher order. It is possible, therefore, that 3.22 is not satisfied even

though (3.20) holds.

3.4.4 Cumulant Additivity of Mixed Independent Sources

It was observed that the off-diagonal cumulants of a zero-mean factorable (indepenclent)

multivariate distribution are zero. What properties do cumulants have with respect to the

linear mixing of independent sources? As shown in the following proposition, cumulants eìre

additive (or "accumulative") elements, tiom which they derive their name t2l S].

Proposition 3.9 (Cumulant Algebra of Independent Sources). Consider the statisticatty ín-

dependent one-dimen,çional variables s,, for i = 7,...,N.. Then the cttmulantsfor the one-

dimensÌonal random variable x = Z¡ c¡s,, .for an! ci e JR, are additive.

Ch. 3: Statistics - ECG Features md BSS

Proof. The pdf of x is defined fiom the joint pdf of rhe s, as

.f¿(x)= f ./(sr,...,s,v.)ds- J lsl .t=c'ts l

rN'= 
J,,, .r=crs ) 

fl l(s') 'ls

M. Potter
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Thus the cumulants of the distribution f¡ue defined from the derivatives of

a*
logf f.(a) = log 

J -*e-r"'f, 
dx

=ros f n-,"" f, , -, Ël .f¡(s¡)dsdxJ-* J{r¡ .r=r,s I ¡=r

- log 
Í- [ 

,-i'octsi.¡,(s,) ds

ry,,

= f log I e- i"'''' ,'rs¡) r/s¡
wiKl- t

= I :r,gf .fu@c¡)

From the above, one observes that all derivatives are additive with respect to the independent

component sources. In fact, the general cumulant form for the mixture is

Ch. 3: Statistics - ECG Features and BSS

ôn .l sôn Ix,(tr) = r,,^ logff{a)l 
^ 

= L-^ Iog ff,,(ac¡)l
d" û) [¿=o 1_, - * l¿,=o

N"

-$"' ôn "l= àc'i ô,,u/loTf ft,@')1,=o

N"

= I ci,rn({¡)
i=1'

so that the nth-order cumulants are homogeneous of degree Ì? on its components.

useful property not held by the central moments (except ¡r1 = Kl ârìd þz = xz).

particular, it holds for the unnormalized kurtosis that
N.

k'(x) - ) cft'is,)
t- |

(3.21)

(3.28)

(3.2e)

(3.30)

(3.31)

3.4.5 Entropy

Entropy is a scalar measure of variability, or uncertainty, of a multidimensional distribu-

tion. It is another feature of / calculated from an expectation, just like statistical moments.

M. Potter
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Unlike moments, however, it does not have a growing tensor structure with higher dimension-

ality. It is presented as a f.ormal definition, but one important preliminary is required first:

Definition 3.10 (Support). Any disrribution / over lRe has a slrpport, f)1, defined as

e¿,={zelR&If@)>0} cRe

Definition 3.11 (Differential Shannon Entropy 147 , Cover and Thomas (2001)l). Let u be an

N.-dimensional random variable with continuous support Q1 c lR.& and distribution fu. Then

the differential Shannon entropy H is

( 1l r
H(y:) = e 

{tos Ml = - 
J.,, 

f"(u) tos f,(u) du ß.31)
\

The units of entropy are determined by the base of the logarithm. Using logr, entropy is

measured in bits.

Most well-known analytic distributions can be f-ormulatecl as a maximum-entropy distri-

bution of a specific support [165]. Entropy also has the fbllowing well-known properries [47].

Proposition 3.12 (Entropy). Let u be an N,-dimensional random variable witlt continuous

support f)¡ c R.e attd distribution .fu. Tlten the entropy H(u) satisifus thefollowirtg

(a) H(Ð € l-co, ool,'

(b) H(y+ a) = t7çu1 Vø e lR&;

(c) H(ayr) = H(u) + log lal Va e IR,'

(3.36)

(d) H(Ð < X5 HQ! and. eqtnt iffu is independent.

Note that (b) implies that entropy i.s invarÌant to centralization, H@) = H(u).

M. Potter
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Fig.3.8 Entropy: (a) Gaussian; (b) Exponential; (c) Exponenrial and Gaussian

Figure 3'8 shows the entropy of several analytic distributions and their independent joint-

distribution. Calculating entropy from sampled data is rnuch more complex than the analogous

problem for moment or cumulant estimation, since the nonlinearity log / must be approxi-

mated. Details on implementation issues for enrropy estimation will be described in Ch. 6.

Entropy is a HOS since it is sensitive to the non-Gaussian properties of a distribution. In

fact, the following bound holds for continuous distributions / with support over lR:

Proposition 3.13 (Gaussian Entropy). Let u - .f be a z.ero-ttean distribution with covarianc'e

matrixÐ. Tlten

-505
Vorioble

o.a
Iô
I
o uJ
c
c)

3 o.zo
U

0.1
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(b)

6t
I

n4l
õ
'= /lol
Enl
cl
c)c^lÕ -¿¡olxlU

_¿l

I

H = I /2 log2zr e a2 + logr(L/2e)

Vorioble

H(y.) < H(s,) = )togtzne 
det E)

where 9,, is the zero-mean Gaussian distribtûion oJ'covariance E.

Entropy is a very different HOS than the cumulants. First, entropy has a more complicated

nonlinearitY Q'e.,lo!f@)) than cumulant moments (which are essentially polynomials in ø).

Second, entropy is always a sc¿ìlar, invariant with the dimensionality of the rtistribution, as

shown in Fig. 3.9. Last, the entlopy of a mixtnre I = sr * sz is not directly expressible by a

simple algebra of the component entropies H(s;).

Goussion Vorioble

M. Potter
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Fig. 3.9 Entropy maps all distributions ro lR.

3.4,6 Mutuallnformation

Distributions

Relative charactenzations of distributions can also be defined from entropy. In particular,

these are the ntutual inþnnation (MI) and Kullback-Leibler divergence [47].

Definition 3.14 (Kullback-Leibler divergence). Let u and y be two N.-dimensional random

variables with continuous supports C)1(u),Ç)t (1) c lRe and distributions.fr, J,.Then the

Kullb ack- Leibl e r div e rg enc e is calculated

Ch. 3: Statistics - ECG Fearures and BSS

n*,(rlÞ) = so{r"s +}= fn,,o,¿(x)rog ffi0.
This scalar measure of two distributions is positive, is fìnite iff Ç)¡ (z) c Or(l), vanishes iff

fy= ,fy, and serves to define a scalarerror between two distributions, as shown in Fig.3.l0.

In particuler, this scalar errol cAn be used as a measure of dependence as follows.

Definition 3.15 (Mutual Information). Let ube an N,.-dimensional random variable with con,

tinuous support Q1 c R.e and distribution / and rnarginal pdfs j. Then the mutual information

Mis

R.

Ir(u)

M(y)= e,x,[rlln - 
Ü 

r) = f r(u)togff^n

This is a scalar measure of statistical independence, satisfying the very important property

below straight from the definition.

M. PoÈter
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Distributions over fl

Dístìbutilns ou"r O

Fig. 3.10 The Kullback-Leibler divergence maps distriburion pairs to lR+

Distributions over lft¡/c

Ch. 3: Statistics - ECG Features and BSS

RJ

lndependent - *

Fig.3.II The mutual information maps all higher-dimensional distributions
to lR+. Independent distributions are mapped to zero.

Theorem 3.L6 (MI and Independence). Let u be an N,-d.Ìmensional randont variable with

continuous support f)¡ c Re and distrihution f and margirml pdfs f¡. Tlzen u i,s independent

tff M(u) = 0.

Distributions

ßrr(ullv)

W#
/tø{a)

- >r/o

Û Equat
Distributíons

The independence theorem above is a critical result in ICA theory, and is shown in Fig. 3.1 1.

Taking the Gaussian as the standard again, the Kullback-Leibler is again used to define a

scalar measure called the negentropy.

Definition 3.17 (Negentropy). Let

support Q¡ c R.e and distribution

M. Potter
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be an N,.-dimensional random variable with continuous

with covariance Ð. Also let 9,, be the Gaussian random
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variable with the same mean and covariance. Then the negentropy of a is defined

Ho@) - ltxr l, lln, )
\ ¡r-l

Negentropy will become an important measure of non-Gaussianity in the ICA paradigm.

It explicitly quantifìes the higher-order properties of entropy.

3.4.7 Rényi Generalized Entropies

Rényi's extension to Shannon's definition of entropy will be considered at this point. These

alternative scalar measures of a distribution provide more quantitative statistical features for

analysis. They are, as such, mostly unrelated to the theory of ICA, bur will be used as higher-

order ECG features in the analysis of ICA performance.

Definition 3.18 (Rényi Generalized Entropies ! 18, Kinsner ( 1994)l). Letube an N.-dimensional

random variable with continuous sllpportf)¡ c IRM and distribution f . Letqbean arbitrary

real number. Then the Rényi generalized entropy of order q is

Ch. 3: Statistics - ECG Features and BSS

Hn@)=,1 roeI Jl:l@)dut-q Jo,

='t'"tll¿ll'

with the relationship to the classical 1.,-norm as shown.

This is a true generuIization of the Shannon differential entropy since limo- | H,t(y:) = n(y:)

[117, Kinsner (1994)]. V/hat no longer holds in the generalization is the relationship between

(3.4r)

the entropy and the expectation operator, (3.37).Instead, Hq(t!) = (1 - q)-t log1l¡r-tlin the

generalized case.

The effect of the order q, apart fi'om creating an orderecl family of entropies which can be

visualized as a bounded fïnction llo 
' 
R Ð R*, Fig.3.l2, is to change the sensitivity of the

M. Potter
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Distributions

enffopy from small probabilities (ø << -l) to large probabilities (q >> 1). In fact, infinite

limits at q = too are well-defined as is shown in the following proposition.

Proposition 3.19 (Extrema of Rényi Entropy [117, Kinsner (1994)]). The greatest lower

bound of Ho is attained at the limit as Q + -Ø, given by -Ioginf ç, fo. H-* i.t thereþrefinite

only J'or distributions that are bounded awa1, from zero on their support. Similarly the least

upper bound of Hn is attained at the Chebyshev limit, q --+ oo, and is given by -logsupc¿r .&.

Last, a generalized version of the Kullback-Leibler divergence is presented [48, Dansereau

and Kinsner (2001)1. This can be used as a relative measure of statistical features.

Definition 3.20 (Generalized Kullback-Leibler Divergence). Let u and y be two N.-dimensional

random variables with continuous supports Ç)¡ (u),Qt (1) c m.ru. and distributions fu, f,. Let q

be an arbitrary real number. Then the generaliz.ed Ktillback-Le.ibler divergence of order q is

calculated

Fig. 3.12 Rényi entropy maps all distributions to Z-(R) n C*(lR).

Ch. 3: Statìstics - ECG Features ¿nd BSS

C*(R)

u):R.F IR

¿*(R)

n*,n(! 
lÞ) = t 

'orf,,o, 
rr.,)(ffi)"-' n,

This is a true extension of the Kullback-Leibler divergence, for using Hôpital's rule to

M. Potter
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evaluate (3.44) in rhe limit as q - 1

åg'to.o (ollr) = lT
toe [n,,,, foo)(H),' d,

-(q-D

#¡ toe [n,,,,,.fo{Ð1u¡{ø-rr 
ro' ffi o,

= limtl-l

= - 
f,,0, J,@)losffio.= !1<r (nll,)

3.5 IndependentComponentAnalysis

= lim-
q-l

-l

[n,s1 f,1@)ffi çr¡Ø-rtto''# o,

Ch. 3: Statistics - ECG Feafures and BSS

Now the theory of the signal separation method intended for analysis, ICA, will be pre-
sented' ICA has been a developing field for twenty years as a result of neural network ex-
periments and research into unsupervised separation algorithms. ICA is a complicated topic
because it involves (i) higher-order statistics (such as cumulant tensors) as features, and (ii) an
optimization over matrices' The cumulants ancl Hos that are central to ICA have already been
presented in this chapter, and so morc focus can be made on the algebra ancl geomeny implicit
to the theory' In an attempt to give due emphasis to the significance and complexity of ICA
theory and its dynamic evolution, some history of the topic's emergence is briefly presented
first' Thereatter, the theory of ICA will be presented as an extension to principal component
analysis (PCA)' Though it has been argued that this is nor rhe besr peclagogy for ICA defi-
nition' [92' 1999], it is the most appropriate signal proce,rsingperspective. Also, given the

[n,6¡.fy(r) limn- r qs¡kl- 
t t'ot E- bg r# 

ax

[n,ç,¡ fy(*) (#),-' o,

[n,r,t.f::(*)¿*

tirl)

(3.4s)

(3.46)

(3.47)
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subject here, of anaiyzing SQMs for ICA above and beyond traditional SNR, the difference

between the second-order approach of PCA and its higher-order relative, ICA, is of paramount

importance.

3.5.1 ICA: A Historical Overview of the Literature

3.5.1.1 Prehistott

The development of ICA has been preceded by multiple signal separation techniques in

array processing and noise cancellation. These include

(a) Blind deconvoiution/Bussgang algorithms;

(b) Factor analysis;

Ch.3: Statistics - ECG Features andBSS

(c) Projection pursuit; and

(d) Artificial neural networks (ANN).

The successful application of various principles in the ANN topic of unsupervised learning

rules was the most prolific influence on the early development of ICA. These included infor-

mation theoretic principles such as Barlow's principle of redundancy reduction to maximize

neuron independence ll7, (1961)1, and the information maximization principle ("infomax")

developed by Linsker 1127, (I992)l and Nadal and Parga 1155, (1994)1. The most significant

contribution to ICA pre-history, however, came from Oja's modified Hebbian single-layer

ANN learning rule for deflationary PCA, [16], 1982]1162,1989).

3.5.1.2 Discovery and Early Expansiorz

Conventional ICA history begins with French experiments by Jutten and Herault [86,

(1986)lll05, (1991)l on extensions to Oja's PCA neural network. These experiments demon-

strated the ability for an ANN to isolate independent components from mixtures, but with

M. Potter
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inconsistent results. The ICA terminology was first applied here, and with subsequent col-

laboration with Pierre Conron, the theoretical underpinnings of ICA were investigated. The

1994 seminal paper by Comon [45], clarified the general theory of independent component

analysis as an extension to PCA (and also provides a good summary of the connections and

independent contributions by many in f,eld to that point). There, the identifiability criterion

for noiseless ICA was formalized, which, in fact, represents (i) the necessary assumptions

needed for ICA to apply, and (ii) the necessary and sufficient conditions for ICA cost func-

tions. Comon also demonstrated that, by approximating the mutual information, acceptable

cost functions can be defined which required much less complexity than the MI itself.

ICA research continued progressively in the French signal processing community through

this period. Pham and Jutten collaborated on a maximum likelihood approach to ICA t1681.

Cardoso analyzed and developed algebraic forms of ICA using cumulant eigenmatrices fioint

approximate diagonalization of eigenmatrices, JADE) t38lt37l as well as providing an effi-

cient stochastic gradient algorithm, called the relative gradient (or EASI algorithm) [32].

American contributions began with Bell's investigations of Linsker's infomax principle

in sigmoid ANNs under T. Sejnowski 121, (1995)1. Avoiding the complications required by

cumulant analysis, this work recast the iCA problem into an information-theoretic framework,

and consequently increased the popularity of ICA research in general. It also presented a

stochastic gradient learning rule for the implernentation of infomax. Two weaknesses of this

method were (i) the requirement of super-Gaussian sources, and (ii) a rnatrix inversion in

the algorithm. These were addressed later by Lee, Girolami, and Sejnowski in 1125, (1999)l

when they generalized the infornax learning rule to include sub-Gaussian signals, and included

Amari's "natural gradient" to eliminate the matrix inversion.

Ch. 3: Statistics - ECG Feafules and BSS
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Amari's work [7, (1996)]t8lt5l analyzed the non-Euclidean geometry of matrix space in-

duced by the multiplication operation, and consequently characterized an optimal structure

for matrix gradient updates. (This is discussed further in the iater section on the geometry of

matrix space.) When applied to ICA adaptive learning, the natural gradient update not only

improves the general convergence of the gradient descent, but also conveniently eliminates

the matrix inversions in infbmax and related algorithms. Moreover, Amari also introduced

one of the appropriate non-blind pertbrmance metrics for ICA, the Amari perfbrmance index

17, (1996)1. This matrix-baseci measule of ICA perfbrmance is a common tool in ICA per-

formance analysis. The Riken research group of Amari and Cichocki have been a consistent

influence on ICA [40].

Another significant contribution to ICA's early development came from Oja's school itself.

There the one-unit PCA neuron was adapted to HOS and the collection of algorithms known as

FastICA was developed [94, Hyvarinen and Oja (1997)] based on a principle of maximal non-

Gaussianity. Since these algorithms were based on fixed-point optimization, and not gradient

descent, the speed and simplicity of these algorithms distinguished themselves from the dom-

inant methods in the literature. Through the turn of the centllry, and since, the Hyvarinen-Oja

school has been both prolific and pragmatic at expanding and applying ICA.

3.5.1.3 Reconciliation

Ch. 3: Statistícs - ECG Features a¡d BSS

In the late 1990s, once the Finnish, Japanese, American, and French schools of ICA were

established, the ICA literature expressed a movement of reconciliation, whereby the differ-

ent techniques and algorithms were identified as equivalent under nominal conditions. Thus

the v¿ried principles for algorithrn derivation, such as maximum-likelihood, information max-

imization, redundancy reduction, nonlinear PCA. and maximal non-Gaussianity all can be

reduced to one another in noise-free situations if the pdfs of the blind sources are unimodal

M. Potter
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U35, (1999)1, smooth, and other wise well-behaved [156, (199])1134, (1997)l[160, (1998)][6,

(1998)1192, (1999)1. Ca¡doso's relative gradient was also proven to be equivalent to Amari's

natural gradient [36, (1998)][35, (1998)].

It is on this basis of equivalence that "toy problems" of mixing and ICA separation with

nicely conditioned source distributions are limited in eft'ect. Instead, the algorithms differ in

how they react to real-world situations, specifically when the real conditions are far from the

implicit assumptions or tunings of each algorithm. In one sense, therefore, it is the robustness

in practice that distinguishes the original ICA algorithms, not their derivations in theory.

3.5.1.4 Applicaîions

Applications of ICA to real-world data have been widespread, and so the full breadth of

the literature cannot be reviewed here. As a non-exhaustive list with only representative papers

or reviews to assist the interested reader, the effect of ICA has been observed in

(a) beamforming and anay processing;

Ch. 3: Statistics - ECG Feaúures and BSS

(b) speech and sound processing (e.g., the "Cocktail Party problem") l79l;

(c) EEG processing (e.g.,the "neural cocktail parry") U}ll\zql ll00l;

(d) fÀ4RI processing lz9l\aal;

(e) image processing I I 1lt 126l; and

(f) fetal ECG processing.

As discussed in Ch. 2, the fetal ECG separation problem has been of interest to signal pro-

cessing engineers for decades. Though EEG was the common application of ICA through the

1990's, it was the seminal work of De Lathauwer et al.l5l, (2000)l who brought the ÍECG

M. Potter
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issue to the ICA community in earnest. Table 8.1 in App.B categorizes some interesting

contributions in the application of ICA (or related signal processing methods) to fetal ECG.

In particular, the literature summarized in Table 8.1 is identified by the type of algorithms

applied, the type of data used in experiments, and the type of performance metrics used in

analysis. There, the type of experiments used in the f'etal ECG literature are broken down into

three subgroups:

(a) real fECG dara, identified by real noisydala (RND);

(b) simulated but not noise-free data, identified by simtilatecl but noi.sy clata (SND) (e.g.,

data is manipulated ECG recordings);

(c) simulated noise-fiee fECG data, identified by simtilatecl noise-free data (SFD) (e.g.,

data is generated from a mathematical ECG model); and

(d) simulated analytical data, identified by simulated analytical clara (SAD) (e.g., data is

generated from a (non-ECG) mathematical model).

It is very common for papers to have a theoretical section using some soft of SFD or SAD

experiment, as well as another section with an RND analysis. Moreover, these distinct sections

within the ref'erences are typically only loosely connected. In contrast to this, the design for

this work is to experiment somewhere between these "theoretical sections', and ,,practical

sections". Here, performance is to be analyzed with metrics that are consistent with the theory

of ICA and consistent with the practical conditions of blind source separation.

Also, considerable attention in Table B.l is paid to the types of performance metrics,

though more of this is discussed later in this chapter.

Ch. 3: Statistics - ECG Fearures and BSS
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3.5.1.5 State r¡f the Art

Since 2000, ICA has been maturing as a field in signal processing, and new alternative

approaches to ICA have proliferated to achieve better robustness. Mihoko and Eguchi [145,

(2002)1163) used an extension of the Kullback-Leibler divergence called beta-divergence to

derive an ICA algorithm that can modify the contribution of each point to the weighrmaffix

update. In this way, their technique is more robust to outlying points. Principe's group at the

U. of Florida introduced an ICA based on the Rényi generalized entropies defined previously

in this chapter 155, (2002)1. This algorithm (MRMI) optimizes an efficient cost function of

Rényi marginal enÍopies (estimated by Parzen windowing on the data) by a gradient descent

on Givens rotations. This work is of theoretical interest for its unusual and efficient cost

function, elegant derivations, and significant interpretations. It is also of practical interest

since they claim the algorithm uses data more efficiently.

Several state of the arl methods also go back to the fundamentals of ICA. The RADICAL

algorithm by Miller and Fisher 1123, (20031 is similar to the Principe marginal approach,

but a modif,ed Vasicek ru-spacings entropy estimator is used for the cost function calcula-

tions of the marginals. It, too, uses data efficiently and is more robust to outliers. Similarly,

Grassberger et al. ï215, (2004)l approached ICA directly from an estimation of MI (MILCA),

which is usually avoided in high-dimensional spaces because of the lack of good estimators.

The use of MI, here, is enabled by a nearest-nei,ehbour-based entropy estimate suitable f'or

high-dimensional spaces [120, Grassberger et al.. (2004)]. The difficulty with these methods,

in general, is the cost function estimates are not smooth (i.e., they are eflectively noisy), and so

the Givens rotations optimization of the algorithms needs some heuristic assistance: either via

resampling averages (RADICAL) or Fourier filtering (MILCA). Note that Givens rotation pa-

ramelerization is the common optimization space of JADE, MRMI, RADICAL, and MILCA

Ch. 3: Statistics - ECG Fearu¡es and BSS
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(though the optimization implementations are different). A fundamentally different, but seem-

ingly stlaightforward, approach is aiso presented in [4, Jutten eî al., (2004)1, whereby the

differential of MI is presented in its stochastic forrn. The first order update to a mixing ma-

trix can then be estimated from extremely crude non-parametric estimates of the joint pdf,

which performs surprisingly well in comparison to sirnilal algorithms, because the bias of the

differential estimator is effectively independent of the coarseness of the pdf estimate. This ap-

proach is considered significant because it generalizes well to (non-instantaneous) convolutive

mixtures.

Other methods have re-examined ICA and approached it fì'om the proverbial "left field".

Considering traditional ICA methods as an optimization of- Kullback-Leibler nonlinear ap-

proximants, Bach and Jordan extended these approximants to include selt--adaptingfamilies

of nonlinear approximants using kernel spaces U5, (2002)1. This support vector machine ap-

proach to the problem, casts the ICA cost tïnction in terms of the nonlinear correlation over a

reproducing kernel space. Though the theoretical complications of this approach are many, in

practical terms the al-eorithm involves numerous but rather efficient matrix computations, and

is more robust to outliers and less confused by near-Gaussian data. Optimization of the kernel

ICA objective function is done by conjugate gradient on the geodesics of orthogonal matdces.

(Further discussion of this geometry appears later in this chapter.)

3.5.L6 Books, Rettiews, and Conferences

Ch. 3: Statistics - ECG Features and BSS

Several books have been published on the topic of ICA. Few, however, provide more in-

sight than the original papers on which they are based. In particular,ll24l by Lee is a one-

sided account of the research pursued at the Salk Institute. Hyvai'inen's book [93, (2001)] is

nicely tutorial and more considerate to the contributions of other authors in the field. This

book too, however, is just a collection and extension of previous work: namely Hyvarinen's
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survey on ICA 192, 19991. Alone, the survey paper is recommended as an introduction to

the theory of ICA and its benefits and limitations, though the reprints in the book are helpful

as well. Another recommended (and more recent) review is [194, Sanchez (2002)]. A very

rigorous and algorithmic approach to the topic of blind source separation can be found in [40,

Cichocki and Amari (2002)1, however the reading is very difficult. Its appendices, however,

make an excellent resoltrce fbr matrix calculus identities that are beneficial in the derivation

of BSS learning rules. Among books, the latest contribution by James Stone 1216, (2004)l is

by far the most approachable and affordable beginning for one's own personal collection.

For a broader review of ICA, paper collections such as the speciai issue of the fuoc. o.f

the IEEE on "Blind ldentification ancl Estimation" ( 1998, v. 86 - invited papers by Amari [6]

and Cardoso [35]), Unsupervised Adaptive Filtering [78, Haykin, ed. (2000)], and Intelligent

Signal Processing [80, Haykin and Kosko, eds. (2001)] present superbly the many authors

and ideas of significance. Other collections of interest include [65, Girolami, ed. (2000)] and

[187, Roberts and Everson (2001)].

A regular International Conference on Independent Component Anaþ,sis and Signal Sepa-

ration was begun in 1999, and has consistently grown. (The latest installment, number 7, was

held in 2007.) Contributions in the field have also been growing in number and status at more

established annual conferences such as the International Conference ot'L Acoustic.s, Speech,

and Signal Processing and the Intentational Confererlce on Netral Networks, among others.

Now that a brief history of ICA is complete, the theory of ICA will be developed. Thís

begins with the second-ordel equivalent to ICA, principal component analysis.

Ch. 3: Statistics - ECG Features and BSS
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3.5.2 ICA Foundations: Principal Component Analysis

Principal cotnponent analysis (PCA) is a common preprocessing technique t'or signal pro-

cessing l25l that is a special case of the ICA method. PCA is also ref'erred to as "spher-

ing" (or "spatial whitening") in the literature [93]. Recall that the covariance matrix of

x = lh,x2,...,xN,lr is non-dìagonal if correlation exists between the obsen¿ed signals x¡.

That is to say that the second-order crosswise moments satisfy

tìElxtxjl+0 forsomei tj

The signals are therefore dependent at the second order. However, these signals can be decor-

related in a straightforward manner. This common knowledge is presented here as a theorem

in preparation f'or the higher-order analog to f'ollow in the next subsection.

Theorem 3.21 (Sphering PCA Transformation). Let tlrc stochastic signal x € RGR^L) have

finite covari,ance matrixÐ!= 
" {ttt} 

¡ In". Then there exists a tr¡nsform matrix'V{s uniqge

up to a unitary transformation that decorrelates and spatially spheres x (hy ys5ç6ling). That
(- 

- 
\

is, 6 jWox(Wox)tl = I*", wlterel¡¡, is the N,-dimensiottal identity matrix.
',

Proof. The covariance matrix Er is positive definite, and therefore has an eigenvalue decom-

position [40]

Ch. 3: Statistics - ECG Feafures and BSS

Ix = QÄQ-r

where Q has orthonormal columns and À is positive diagonal. It follows, therefore, that the

transfbrmation matrix Wo = ¡-t/zq-l can be applied to decorrelate and sphere x. Last,

since any unitary transformation (e.9., rotation) leaves the covaliance unchanged, any unitary

transformation to W¡ is also an acceptable transformation. tr

(3.s0)
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Decorrelation is equivalent to second-order independence. For not only do the second-

order moments factol for atl distributions, as 6 {ry} = ¿ {l}" {l} = 0, bur moreover,

if higher-order moments are zero, then the pdf itself factors. Since it was observed that the

Gaussian distribution is characterizedby a mean vector, covariance matrix, and zero higher-

order moments, then it is also true that the Gaussian distribution factors if and only if the

covariance is diagonal, satísfying M(x) = g.

The "white Gaussian" hypothesis of traditional signal processing enables and enforces

the equivalence between decomelation and independence. This has the benefit of turning the

expectation operator E {'} into an inner product, and thus a metric, on the second-order dis-

tributions, ßzße). Orthogonal basis expansions of Rr(lRN,) (like the Karhunen-Loeve basis)

are possible because of the similarity between L2 (functional) orthogonality and decorrelation

orthogonality. The existence of higher-order elements, however, disrupts this coexistence and

there is a much richer behaviourl . Thus, while suffìcient for the Gaussian universe ß2ßN,),

and undeniably useful, decoruelation and PCA fails as a method to factorize BSP distributions.

As mentioned, in the application of PCA on non-Gaussian distributions, the equivalence

of decorrelation and (full) independence is lost, and, in pafticular, the invariance to rotation

of independence is lost. In Fig.3.13(a) one observes the distribution from independent (and

decorrelated) non-Gaussian signals. However, by applying a rotation, Fig. 3.13(b), the system

remains uncorrelated but the pdf is clearly not factorable and therefore dependent. Visually,

the edges and symmetries of the joint-distribution make it very clear what rotation is required

to retllrn the system to independence. The challenge of ICA is in transfeffing this visual

Ch. 3: Statistics - ECG Features and BSS

lIn an analogy to complex variables, this is similar to the intloduction of complex elements to the real field:
e.g.,lhe vectors [1,-1]r and U,llr are rznl orthogonal, bLrt introduce complex elements, such as [1 + l,-l]r
and fl + i, llr, and orthogonality neecls to be redefìned.
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2.5

N

-2.5

Ã

(a)

Fig. 3.13 (a) Independent non-Gaussian distribution, and (b) rotated into higher-order
dependence.

property to something mathematically expressible, cornputable, and applicable in higher di-

mensions (where visualization fails completely). That is achieved in what follows.

3.5.3 General ICA Theory: Comon Theorem

-5
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The previous discussion of PCA and second-order dependence has made clear the im-

portance of higher-order statistics to achieve independence. However, as was demonstrated

in Theorem 3.27, the PCA transformation was a result of matrix theory being applied to the

covariance matrix of the signals. The discussion of higher-order moments should make it

clear that cumulant tensors must now be analyzed in order to find an equivalent ICA theorem.

Comon completed this analysis [45, Comon (1994)), and provided a unifìed discussion on the

many preceding experiments in BSS. He used the ICA acronym coined by Jutten and Herault

[105, 1991]. The ICA theorem will be rephrased here without proof and its implications will

be discussed.

Theorem 3.22 (ICA Transformation). Let the sÍoclzastic signal r e R(lRe) be afull-rank

mixture of independent sources; ïhat 1,1 r = n{s.for some.full-rankM and s e R(lR&), øru

independent stoclmstic signal. Let also that s has at most one Gaussian component and no

-2.5

Ê

ft) -u
Ã 0

fl

M. Potter

PHD-Study Stats
- 108- September 15, 2008

Version 5.2.6



FEATURE CONVERGENCE UNDER ICA: FECG

point-like mass, and x has afinite covariance matrixÐx. Thenfor any costfunction f satis-

fying.for arbitrary u

(i) I(.fp,t) = I(.f").for aLl pennutations P;

0i) f (fDò = f (fo).for all ituertible diagonalD

and independent u

0ä) f (fr) >_ f (f").for all iwerrible ntarrices T

(iv) f (fa,) = r(frò iffT = DP

one has f UwÐ = f Uz) IffWl{ = DP fr¡r some itt,vertible scaling mcrtixD ancl permutation

P. Thereþre, by minimizing f (f\\,r) over all mntrÌce,e W, a repre.sentation o.f'the soLtrces can

be achieved.2

The difficulty with this result is that it provides necessary and sufficient conditions for

only the existence of the ICA transformation in terms of the existence of the cost function. It

does not construct such a transfbrmation like the PCA theorem. (Note that Comon also did

present an example algorithm using this theoremin [45, 1994] as weil.) On the otherhand,

this theorem presents the crucial practical benefit of eliminating the requirement of cumulants

and mutual information from the construction of an ICA transformation. It can be understood

in the following way. The MI of the signals is a scalar measure of independence satisfying the

"conttast conditions" (3.52), (3.53), (3.54), and (3,55). One can therefore imagine that a cost

function for linear transformations can be defined

Ch. 3: Statistics - ECG Features and BSS

(3.s2)

(3.s3)

2This thesis uses a ntinimization .formulatiort t¡f tlrc theoretn, since t:r.¡st ntini¡nizaîion i.ç preferred. in signal
processing circles. Cotnon [45, 2004] in .fact maxitnized contrast functions, which are the negatives of cost
ftmcti.ons (witltout any loss o.f generality).

Co:T € I Ð lR such that C,(T) = M(Tx)

(3.s4)

(3.5s)
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and the ICA transformation is the solution T minimizing Co to zeÍo,Fig.3.l4. According

to the degeneracy conditions, there will be multiple equivalent solurtions (related by the de-

generacy matrix group P and D). Thus the problem breaks down to a nonlinear optimization

over a matrix space. However, as is often done in nonlinear optimization problems, substitute

cost functions can be used as long as the location of the minima are the same. By replacing

the cost "sudace" over the matrix space, one can perhaps hope to achieve faster convergence,

better accuracy, or an easier implementation. The ICA theorem specifies the necessary and

sufficient conditions to design a new ICA cost function C.,(T) = f (Tx). What distinguishes

different ICA algorithms is the cost functions used to derive the algorithm, or the tool used for

nonlinear optimization over its "surface".

In spite of the implicit nature of the solution 'Wx, this design has the benefit of being non-

parametric. The effecf of ICA, overlooking the indirect means of solution, is an exact parallel

to PCA. The statistics of the data themselve,s define a transformation T that sets a scalar

measure of the data dependence to zero. Thelefore, representative samples of the distribution

to estimate the statistics are all that are required to estimate ICA - not an a priori model. The

observation x is all that is required to estimate ICA, ancl the sources can remain blind apart

Fig. 3.14 A representation of the cost func[ion "sllrface" over matrix-space.

Ch. 3: Statistics - ECG Features and BSS
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Mixed
signals

I

Mixed I

from the hypotheses of the theorem. With good data, good algorithms can separate sources.

The formulation of ICA has also explained the failure of PCA on many erratic signals

having nonzero kurtosis. Rernoving the second-order conelation by rotating the space onto

the orthogonal directions of maximum variance does not remove the mixing in the higher-order

moments. Another linear transfolmation (e.9., rotation) is required to isolate the independent

components. Since higher-order statistics are the essence of the novelty of ICA, almost all ICA

techniques focus on achieving an independence measurable in the simplest symmetric non-

Gaussian higher-order moments'. i.e., of the fourth-order. Kurtosis becomes a very important

feature in the design of cost functions. Most techniques also begin with the PCA sphering

process and implement the ICA transformation in two steps: first, transforming to second-

order independence; then, rotating to fourth-order independence, Fig. 3.15.

It is advantageous to use PCA preproce,ssing because the ICA demixing matrix W of

sphered data can be constrained to be orthogonal. Also, since an ICA solution W only min-

imizes the independence cost function / (not reducing it to 0), there is no guarantee that the

given solution will be deconelated without explicit PCA.

signals 
I

Fig. 3.15 The two-step implernentation (second-order,
higher-order) of an ICA process.

I
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3.5.4 ICA Theory: Optimization Geometry

3.5.4.1 Parameterization of W

One of the signifìcant advances of ICA in the 1990s (i.e., the natural/relative gradient),

and a common feature among the state of the art [55, (2002)lll23, (2003)]1215, (2004)1154,

(2001)1, is the explicit inclusion of the geometrical properties of ICA optimization. That is, the

weight matrix W that is to be optimized is considered in the algebraic context of the space of

linear transformations, W € f-N,, and not only in the context of its N.2 elements W¡¡ = eTWe¡.

Considering the e¡ e Re to be the canonical basis of IRe and the q to be the canonical basis

of lR&t, the canonical parameterization of f.u, is by the embedding vector of simple matrix

elements

Ch. 3: Statistics - ECG Features and BSS

w r-+ I I (e,Iwer)ãa1,-'¡.,

This is not, however, the only parameterization of W by N.' independent values (e.g., the

matrix decomposition into symmetric and anti-symmetric parts, yielding N.(N, + l)12 and

N.(N. - l)12 independent parameters respectively). Specifically, the additional algebraic (e.g.,

multiplication) and pragmatic properties (e.9., determinant and transpose) that exist in I must

be expressed by awkward nonlinear relationships when using the lR.&' parameterization of

(3.58). It is not surprising, therefore, that the simple Euclidean geometry of IR&,t alone does

not characterize the ftrll richness of l¡'..

3.5.4.2 Natural Gradient

- I ÐW,, tr,,r-r1+7 € 1R&2

ì.i

The Amari natural gradient is a general principle of gradient optimization in Rieman-

nian manifolds. For ICA, this applies because BSS optimization in f.N, is restricted to the
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submanifold of nonsingtilar matrices. Note that matrix addition is not a closed operator

on this manifold (e.9., W + (-W) - 0), while matrix multiplication necessarily is (e.9.,

det(\{rWz) = det(Wr)det(\{2) > 0). Consequently, this manifold has a non-Euclidean ge-

ometry in Lx", and even though the Euclidean gradient of a cost function

can be used to update the estimate of the weight matrix additÌvely

W<-W+V/(W)

V/(W) = lôf lôWi¡l¡¿.'¡¿.

this does not take into account the natural "flow" of the Riemannían manifold of the solution

space. (This is equivalent to the general observation that a local gradient of an arbitrary cost

surface generally does not point directly away - i.e., radially - from the surface minimum

[25].) Instead, from arguments based on the Lie group invaliance of the nonsingular matrices

in f¡¡,, the natural step on the manifold (or natural gradient, V; involves a post-multiplication

of the form [5]l8l

Ch. 3: Statistics - ECG Feafures and BSS

w<-w+V¡(w)

<- W + V/(W)Wr\ry

which actually forms the update ntultiplicatively

w <- (r + vrlw)w')w

and, consequently, the optimization becomes a more efficient process.

3.5.4.3 ICA Indetenninacies

(3.5e)

The natural gradient takes into account the Riemannian-flow on the submanifold of f.w,

of the invertible matrices. Even more geometry exists in the BSS problem when the scaling

indeterminacy and sphering are also considered.

(3.60)
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Proj(!n(t),1)

Fig. 3.16 Visualization of canonical ICA solution space for W = lW¡¡) e f-z: Each row of
W appears as aZD projection space (row 1 on the left, row 2 on the right), and W is their
orthogonal product. The ICA scaling degeneracy makes an ICA solution [B¡ jointly appear
as lines through the origin (1D subspaces) in both left and right projections (solid). The ICA
permutation degeneracy swaps these projective subspaces (dashed). Action of PCA (sphering)
is to remove degeneracy by projecting the solution onto the ls manifold. ICA higher-order
optimization can then be considered as an optimization over lo to the nearest intersection
with the solution space Ð3¡. Any Givens matdx optimization behaves equivalently.

Since an ICA solution W is invariant to scaling by a diagonal matrix, W <- DW, this

means that under the canonical mapping of f.w, into lR&' = 8L iR&, the ICA solution can

be identified as a product of orthogonal subspaces. Let e¡ be the canonical basis for IR&, and

let

lpical sol'n 1+

wll

"** Proj{'lrî(2},1)

Ch. 3: Statistics - ECG Feafures and BSS

ldentity -*.---*.-..=

Proi{'rf),2)

Typical sÖl'n 1+

lB, = {f e lR"" lÉ = a,0ve,)t vdr e n 
}

so that Ð3¿ is identified as a line in IRN' that is in fact the rowspace of the single row We¡. It

follows that an ICA solution !X( 1) can be composed as the direct product of the lines

N.

!n(1) = Eou, (3.6s)
i=l

This is visualized for the simplest N, = 2 case in Fig.3.16 as the two solid lines on the two

Ptoi(tlt(1),2)
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orthogonal projections (left/right) identified as row 1 and row 2 respectively.

Since ICA also has a permutation indeterminacy, the direct products of the ÐJ¡ in (3.65) can

be arbitrarily reordered. In the simple case of Fig. 3. 16, this is exhausted by Uì( 1) = [ûr I lBz

and [B(2) - lBz IUB1 and the two possible forms ale distinguished by the solid (tB(l)) and

dashed (tB(2)) lines.

3.5.4.4 Orthogonal Constraints

As mentioned previously, ICA is often approached as two step-optimization, where second-

order independence is attained first, and then is optimized to remove higher-order dependen-

cies. When a sphering is applied (by Wo, rnaking the correlation matrix not only a diagonal

matrix, but equal to the identity), this removes the scaling degeneracy from W and more geo-

metrical interpretation can be considered.

Here, the ICA demixing rnatrix W now can be constrained to the set of ortlxogonal maffi-

ces, fe. This smaller search space appears as both a group under manix multiplication and

a submanifold of l¡v., and therefore can be interpreted geometrically. Here, lo is a special

case of a Stiefel manifold [59] [ 1 7 I ] . The Stiefel manifold in the sirnple N, = 2 case appears as

the two circles in Fig. 3.16, which are parameterized simultaneously by the single parameter

0 (the right hand image is ahead in phase by 90 degrees, c.f.,I as marked). Note that, since

the ICA soiution [} is radial in nature, the Stiefel manifold is (tangentially) perpendicular to it

everywhere. Theoretically, therefbre, the sphering approach is effective since the natural gra-

dient on f.o Q.63) is simply the Euclidean gradient (WrW = I). In practìce, howevel, some

difficulty is introduced by the curvilineaï structure of lo. This nonlinearity means that even

"perfect" updates along the Stiefel manifold's tângent introduce an en'or, lifting the matrix

W from the manifold. True motion within the lo manifold is by definition geodesic motion,

which can be approached in two ways. First, the optimal gradient geodesic update can be
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derived, but this requires, unfortrnately, matrix logarithms and exponentials [171]. Second,

a non-optimal geodesic update can be performed using Glvens ntaîrices. Givens matrices are

real orthonormal skew-symmetric matrices of the type

Gru"(i, j,0) =

which satisfies the identity

cos(0)

Ch. 3: Statistics - ECG Features and BSS

- sin(0)

sin(á)

efic*qi, j,o)e, =

cos(d)

whereitisassumedbythenotationG¡u,(i, j,0),that1<i< j < N.. Themultiplicative

action of G¡.(i,,r,9) (from the left) is to make a rotation of angle d in the direct product of

the I and j rowspace. Since these matrices act only on two rows and two columns at a time,

their action is equivalent to that visualized in Fig.3.l6, where the weights subscripts on the

axes generalizefrom I,2to i,.i. The angle 0 of the Givens matrix identifies the change of

angle applied to W as observed in Fig.3.16. Here, the change of angle is applied to both

circles simultaneously, but the right hand image remains ahead in phase by 90 degrees. In

order to optimize a matrix in the Stief-el manifold by Givens rotations, the rotations must

sweep through all i,.i pairs and then repeat because the later pairwise optimizations disrupt

the previously optimized pairs somewhat, just as in Jacobi diagonalization [180, Numerical

cos(0) '. nl = n e li., j\

sin(0) '.m=i,n=¡

- sin(0) '. nt = j,rt = ¡

ö1(m'n) : otherwise

(3.66)
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Recipes, Sec. 11.11. This approach to maintaining the geometrical constraint of the Stiefel

manifold is common to the MRMI, RADICAL, and MILCA algorithms.

Note that the Givens rotations cannot, in fact, search the entire Stiefel manifold, but only

the connected manifold made by the special orthogonal groLtp, i.e., those unitary matrices

with determinant equal + l, around the initial condition. A second portion of the manifold is

disconnected from the initial condition and conesponds to the unitary matrices with determi-

nant -1. An inversion is required to jump between the disconnected manifolds. In Fig.3.l6,

this appears as changing the fixed phase relationship between the action of the two circles. As

mentioned, the rotation matrices parametenze the right hand circle ahead by 90 degrees, while

a non-rotation matrix will have it lag by 90 degrees. This inability to rotate through the entire

Stiefel manifold is not an issue to ICA optimization, however: since the ICA solution is sign

invariant, only the intersection of the Stiefel manifold with the [B subspaces are relevant, and

such a subspace always intersects the special orthogonal group.

Practically speaking, therefore, an ICA algorithm attempts to search through matrix space

to some eiement of !13 under either a "hard" or "soft" normalization condition. Pre-sphering

the system and then solving via Givens rotations is an example of a hard constraint because

the algorithm updates attempt to remain within the Stiefel manifold. Another approach to a

hard constraint is to use a "push-back" constraint on a gradient update. Here, a gradient update

rule is not necessarily constrained to remain in the manifold, but the normalization constraint

is forcefully applied to its result before the algorithm continues (e.9., FastICA). This two-part

step, however, can apply considerable computational effort in the constraint stage [ 171]. Other

gradient descent updates can be classified as soft constraints because penalty terms in the op-

timization rule can stabilize the solution from drifting from the Stiefel manifold [54]. Even if

tangential updates are used, this approach is recommended so that drift does not accumulate

Ch. 3: Statistics - ECG Feafures and BSS
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over long trajectories. Again, it is not truly necessary to make this orthogonal matrix con-

straint (any member of ll is sufficient), but it ìs advantageous for ICA to enforce second-order

independence, and it is rather pointless to have the algorithm move predominantly in the di-

rection of the scaling matrix indeterminacies (i.e., radially in the "Grassmann manifbld" that

is orthogonal to the Stiefeì manifold).

3.5.4.5 Geometrical Nonn

The last point of discussion for the geometry of matrix space is the definition of norm in

lru", which is then used to define distance (closeness) between matrices. A standard norm that

is practically useful is the Frobenius norm, which by definition is

lwl? =llw,,l'
i,j

and theref'ore is equivalent to a Euclidean norm on the canonical parameterization vector

(3.58). The Frobenius norm is also sub-multiplicative

llw¿w¿llr < ll\{¿llr. llw¡llr

and thus properly accounts fbr matrix multiplication fiom the perspective of operator theory

12351. On this basis, an ICA algorithm will terminate once the Frobenius norm of the update

becomes smaller than a threshold. Note that under the Frobenius norm all unitary matrices

in f.¡¡, have norm N,.. Thus the Stietèl manif'old is at a constant radius fiom the zero matrix.

Just as with Euclidean distance on a circle, however, Frobenius distance is not equivalent to

geodesic length along the lo manifold.

Now that the context of ICA algorithms has been described in theoretical ¿urd geometrical

terms, some of the basic ICA update rules will be described.
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Jvt@r@uËiHî,x'f'
ICA

Algorithm

Fig.3.17 Creating a new ICA technique.

3.5.5 ICA Theory: Basic Algorithms

As was described, ICA algorithms are all connected to the assumptions and general ap-

plication of the ICA theorem, yet distinguished by the details of the cost functions and their

optimization. In this section, some popular techniques are described, namely Infonmx and

FastlCA, as well as their derivation from basic principles.

An ICA technique is typically derived fiom the ICA Theorem as shown by rhe design pro-

cess of Fig.3.l7. The mutual information, M,is adapted via approximation or theorem into

another cost function / satisfying (or nearly satisfying) the conditions (3.52)-(3.55). The cost

function is then optimized by an appropriate (nonlinear) method. ICA can be information-

theoretic if the process of Fig. 3.17 is basecl on mutual ínfonnation or other entropy consider-

ations. It can also be directly HOS-based if the optimization criterion involves cumulants or

kurtosis.

3.5.5.1 Xinfomax Techniqtte

An implementation of ICA based on information theoretic principles is presented now.

Introduced by Bell and Sejnowski in 1995 l2l), Inþmax popularized ICA among ANN re-

searchers. It is designed around an implementation in a single-layer feed-forward ANN t25l

with an unsupervised learning algorithm. Its relationship to the ICA theorem is identified next

as a theorem.

lmplementation

Ch. 3: Statistics - ECG Feafures and BSS
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Theorem 3.23 (Infomax Principle). Let.r € R(RN') pass through an ANN with nonlinear

squashing .fi,mctions 4¡, i = L, . . . , N,. and square weight matrix'W. Then if 'W maximizes the

mutual inforntation between the input x and the output y where

y:t n,@Tw1)

tlten y is independent. (That i:s, if W is u¡tdated to maximize. the infonnation between tnput

and ot$pttt, then the olúpltt converge,s tct independence.)

Lee et a/. showed later [25, 1999] that the squashing functions represenr the cdfs of the

unknown sources, but the success of the algorithm does not depend on the finer details of

the unknown pdf. Instead, the only critical factor is the non-Gaussianity of the distribution.

A traditional ANN sigrnoid squashing function [25] has a super-Gaussian derivative. Hence,

they have shown that the information throughput of that node is maximized by super-Gaussian

signals.

The extended-infomax (Xinfonrax) algorithm by Lee er al. 1125, 1999) extends the ANN

model of ICA to sub-Gaussian signals by redefining the squashing function. A sub-Gaussian

distribution will be weighted through a neuron with a sub-Gaussian cdf (i.e., its related pdf

has kurtosis ft < 0). A super-Gaussian distribution will be weighted through a neuron with a

super-Gaussian cdf.

Xinfomax uses the above to ref.ormulate ICA as the optimization of information throughput

in an ANN with a palameterized fämily of nonlinear squashing functions. An unsupervised

learning algolithm is then derived from the stochastic gradient update of an anti-Hebbian [2-5]

learning rule that maximizes the information throughput.

To summarize the Xinfomax derivation :

1. ICA Theorem;

Ch. 3: Statistics - ECG Features and BSS
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2. Infomax Principle: Reformulate cost tunction as "negative of information throughput";

3. Derive stochastic gradient update;

4. Obtain minima to condition by a (suitably modified) stochastic-gladient algorithm.

3.5.5.2 FastlCA Technique

A popular implementation of ICA called FastICA is presented now. Introduced by Hy-

varinen and Oja in l99l 1941, it is a fixed-point algorithm intended to overcome the slow

convergence and computational complexity of gradient descent algorithms. Their optimiza-

tion critelion is based on the following proposition, which is a corollary to the central limit

theorem.

Theorem 3.24 (Central Limit Theorem (Lyapunov)12361). Let x,be a sequence of in.dependent

randotnvariable.sonX srtcltrhatE{2,} = tt¡ 1æandE{fl,- F)zl=o! <æforalli.Then,

provided that

Ch. 3: Statistics - ECG Features and BSS

is{Þ,
\-rrLi=t

- r'fj

a{E,-
lim
/l+æ

the sum Ì,, = L'!=t xi converges to a Gaussian. In particular, the standardized variables $t , -
L'i=tp)lL'i=ra? converges in distribution to the standardized Gaussian g(0,7) (i.e., zero-

me an w ith unit - v ariant: e ).

<æYnand

L',i=, o?

,,1')

This theorem describes the limit of an infinite sum (i.e., mixture) of variables. However,

tbllowing this principle, mixtures (even finite mixtures) roughly become more Gaussian. This

principle of maxintal non-Gaussianty in orthogonal mixing is too complicated tbr the current

- 0 (Lyapunot, condition)
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exposition, and so the more accessible principle of extemal kurtosis in orthogonal mixing is

formalized below.

Corollary 3.25 (Extremal Kurtosis). Let s e ß(RN') have in¿¿Oendent non-Gau,ssian com-

ponents of tutit variance, fr({¡) + 0 Vt. Then for any unit vector v € IR&, llrlll = l, the

urutormalized kurtosis, k', of the mixture vr s satisfies

with equality tffv = ej for some j. That is, the kurtosts of an orthogonal independent mixture

ts extremized by the soLlrces.

Proof. Recall that the kurtosis of a mixture of independent distributions is additive (3.35) so

that

minft'(s,) < k'(vrs) < max fr'(s,)
II

Ch. 3: Statistics - ECC Feaúures and BSS

k'(vrs) = I v!n'Q,)
¡

First the upper bound will be proven.

Since llr,ll2 = 1,

¡v,¡2 < I v;

and equality can only be achieved in the case of a single non-zero element, 1.e.,

some j. It follows that lv¡la < lv,l' V¡ and hence L lr,lo S L lv,l' = I so that

\-L
i

where equality is again achieved iff lrl = e; for some j.

Now since, fr'(s,) < max¡,U(,r,) it follows that

lu,lo < I

(3.73)

v!t<'(¿,) < vf max k'(s,)'i

- I v!t' e)= I v! max k' (;,)
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from which it follows that

ft'(vrs) < mpxk'(¡,)

and so the kurtosis of the mixture is bounded by the maximal source kurtosis. The mixture

can achieve this maximum iff l?l = €n,e,n*i*,(s,) because the rightmost inequality of (3.78) is

strict for non-cardinal v.

Proof of the lower bound proceeds as the above from the inequality

- lu,lo k'(¡,) s - lr,lu min k'(g,)

tr

FastICA uses principles like the above to formulate the ICA theorem as an optimization

of non-Gaussianity (e.9., negentropy or kurtosis). Since the sum of independent random vari-

ables tend to a Gaussian limit, the maximally non-Gaussian linear combination is a trivial

one. This provides the FastICA optimization condition: jointly determine the ¡z maximally

non-Gaussian linear cornbinations of x. Using the two-step approach described earlier, W is

orthogonal. Hence, the linear combinations to be found are orthogonal. Therefore, the linear

combinations can be found one-by-one (in a deflationary sense), and constrained by Gram-

Schmidt orthogonalization l40l to be (i) orthogonal to one another and (ii) normalized.

To find a single maximal non-Gaussian linear combination, FastICA uses a fixed-point

implementation of nonlinear optimization. The vector v,, has converged when the change to

it, AY,r,, has become parallel; i.e., v,,, æ Ayr,, making yttt+7 = v¡¡¡ + Av,r, = v,, whon no¡malized.

The final component is to derive 4v,,, as the gradient ascent of negentropy or an equivalent

non-Gaussi anity measure.

To summarize the delivation of FastICA:

Ch. 3: Statistics - ECG Features and BSS
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l. ICA Theorem;

2. Maximum Negentropy Principle: Reformulate cost function as "negative of negen-

tropy";

3. Replace negentropy with stable approximations of equivalent maxima;

4. Obtain minima to condition by fixed-point iteration algorithm.

3.5.6 Some Practical Considerations of ICA

The preceding theory has established how ICA can manipulate the linear demixing of a

joint distribution through the optimization of cost functions that satisfy the contrast conditions.

However, filr the actual application of ICA in the processing of data (and not distributions),

a few properties must be discussed. First, the ICA theorem was based on an assumption of

continuous distributions with no point masses. Though this hypothesis does not apply directly

to finite data sets, neither does it completely break down the real-life application of ICA. In-

stead it is understood that the data points are representatives consistent with a large family of

continuous (generating) distributions. (Consider multiple Parzen windows, for example [25].)

ICA applies theoretically to the members of this family, and as long as the ICA algorithm can

be transcribed to account for the finite samples N, the algorithm can proceed on the data set to

reveal an ICA transfbrmation matrix frt¡Ul. This ICA matrix, however, captures conceptually

the relationship between a preferred pair of continuous generating distributions. These distri-

butions may not be an optimal or accurate selection. The fbllowing example shows the effect

of ICA on a dataset with point masses in one source.

Example 3.1 (Degenerate Effects). Let sr(n) be a periodic square wave soulce signal. Let

also s2(n) be a non-commensurate periodic signal, such as a sawtooth. A presentation of two
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such signals is made in Fig. 3. I 8(a). The effect of the square wave is to introduce two point

masses in its marginal distribution. The independent joint distribution has a similar degenerate

effect appearing as two lines parallel to the axis. By introducing a mixing between the signals,

the system is no longer independent and the degenerate behaviour is no longer aligned with an

axis, Fig. 3. l 8(b). Moleover, the periodic nature of the signals is 1ost. An ICA algorithm (here,

FastICA) can sepal'ate this mixture, however. The result is shown in Fig. 3.1 8(c). As can be

seen, the separated signals are quite close to the original sources, with some residual artifacts

still observable. These artifacts stress again the importance for the study of lCA convergence.

Now it has been shown how ICA can apply to datasets with degeneracies not considered

in the original ICA theory. A second consideration when dealing with ICA in application is

the importance of the time-integrated independence of the original signals to be estimated. In

particular, statistically independent realizations of some random processes ate not independent

in the time-inte$ated sense.

Example 3.2. Let.çr(n) be a Brownian noise process (i.e., the time-integral of a Gaussian

iid process). Let sz(n) be another realization of the same Brownian process. By construc-

tion, these ale independent realizations of a time-correlated random process. That is, they

have sirnilar correlation in their random walks, Fig.3.19(a). Thus, if one examines the joint

time-integrated distribution of the two signals, Fig.3.19(b), patterns that are not statistically

independent(i.e., factorable) are observed. Were these to be the sources to a BSS problem,

ICA algorithrns would not converge to the inverse of the mixing matrix M-r, but in fact, to

some other mixture that is less dependent. For application to ICA, the key issue to note is

that the statistical a priori status of the source signals is imelevant. The behaviour of the

time-integrated distribution of the given realization.ç is what matters.

In the following, the performance analysis of ICA will be considered more closely.
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Fig. 3.18 (a) Two independent non-commensurate periodic signals with a

degeneracy; (b) a mixture of these signals; (c) a FastICA separation of (b).
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Fig. 3.19 Two independently generated Brownian
not independent.

3.5.7 ICA Performance and SQMs

3.5.7.1 Performance Paradigms

Ch. 3: Statistics - ECG Features and BSS
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ICA performance can be considered under several paLradigms. First, it can be consid-

ered under the statistical estimation paradigrn, and hence the estimation of W is essentially

a statistical estimation of a multidimensional parameter of a parametric system. Under this

paradigm, optimization by maximum likelihood is clearly appropriate, and the issue of es-

timator performance is approached by analyzing the bias and variance under finitely many

points (i.e., Cramer-Rao efficiency). Second, it can be considered from an algorithmic (neural

network dynamical) standpoint, and hence convergence, stability, and algorithmic complex-

ity are analyzed. Third, it can be considered from a pattern recognition standpoint. Here,

since the estimates must be expressed as normalized linear cornbinations of the source sig-

nals, the contribution from the sources can be analyzed as confusion matrices (i.e., mixture

remnants). Last, ICA performance can be considered from a signal processing standpoint.
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Here, this is usually approached using SNR [35], as is indicated by the preponderance of

SNR based metrics in Table B.l. As was discussed in Ch.2, SNR is a "universal" metric

and analytically elegant. As such, it is actually represented within most of the paradigms

just described: parametric estimator variance (Cramer-Rao bounds) and Frobenius norms are

essentially power-based (mean square-error) metrics, as is SNR.

3.5.7.2 ICA Performance: The Devoted Literature

In general, the discussion of ICA performance metrics is secondary in the ICA literature

and, thus, contrjbutions tend to be disorganized and scattered. Some specific literature is

devoted to the subject directly. One such consideration is the work of Vincent et at. (c.f.,123lr,

(2006)l and its references), which is approached from the audio processing application. The

metrics proposed by Vincent Ne acoustic interpretations of multiple quadratic A-class SQMs.

Philosophically, their work is in keeping with the spirit of the investigation here, because

the metrics in theory are argued to represent practical acoustic properties. The limitation

of their work, however, is (i) their acoustic application, which does not generalize to other

BSS problems such as fECG separation, and, consequently, (ii) the consideration of quadratic

SNR-style metrics. All of their proposed metrics have the form of a logarithmic ratio of a

norm-square numerator to a norm-square denominator. (Note that those authors argue that

their performance measures are more meaningful since, in all cases, they extend fiom -oo

(poor quality) to oo (perfect quality).)

Another consideration f'or the measurement of ICA separation quality is a statistical char-

acterization from the pattern recognition paradigm. Three groups (Muller 1141, (2002)1, Hy-

varinen [89, (2003)], and Grassberger 1215, (2004)l) have used a clu.stering analysis to char-

actenze an algorithm's ability to extract sources fiom a mixture consistently under statisti-

cal fluctuations. This is a particularly useful idea in applications (such as fECG separation),
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For an ICA solutiofl, Z = Wy, from the observations ¡ and sphering J = Wo¡, boot-
strapping can generate sunogate resultsZfor clustering analysis by:

(a) posrsphering randomization: I 
g U, for random ÍJ e f.o;

(b) pre-sphering randomization: I I fr for random invertible T;

(c) observation shuffiing' ¡'3 Pm(r(t,)) fbr random permutations Pm(');

(cl) noise injection llTl: lug (WWo)-t (l,wwor +D1-,,n) fbr random noise sig-
nals r¿.

If the data is from sirnulations, different realizations of M and s can also be used.

where multiple components extracted from the channels can be identif,ed as a dependent mul-

tidimensional subspace and, therefore, may impact the algorithm. For example, any eight

channel abdominal BSP should identify (at least) a three-channel subspace for the maternal

heaft. Under repeated calculations, these channels may look different (i.e.,being mixtures of

each other), but they should always cluster together as subspace. The Hyvarinen et al. ap-

proach [89] considers absolute-corelation between channels as a clustering measure. Muller

et al. ll4I, (2002)l uses an angular "dot-product" measure of the ICA subspaces instead.

Grassberger et al. l2I5), meanwhile, evaluates MI to directly use a HOS-based clustering.

Whatever clustering measure is used, it must remain invariant to the ICA degeneracies.

When available, clustering can be applied to a ground truth, or simply to the ensemble of

results coming from a statistical bootstrap on the algorithm. Bootstrapping can be done by

changing the initial condition of the ICA algorithm (if taken as an explicit parameter), or by

modification of the data(i.e., Fig.3.20). If the algorithm is block-based or online, then the

ordering of the observations can be statistically shuffied as well. (Simulations from an a priori

statistical model, where s and M are available, can also simply generate different realizations

Ch. 3: Statistics - ECG Feafules and BSS

Fig. 3.20 Bootstrapping methods for ICA analysis.
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I.) Muller 171, (2003)l has also considered evaluating the sensitivity of the solution (i.e.,

robustness) to statistical changes by injecting noise under an energy constraint (1.e., replacing

some "source energy" with Gaussian noise energy) as a bootstrap.

Grassberger also considered evzrluating the rotational-mean pairwise-MI, EelM,(i, j)1,

against the pairwise MI of the actual solution, Mi,i), (which is minimal over g). Here,

the greater is the difference

the more stable the solution (i.e., the more independent it is). Grassberger argues that this

ability to estirnate easily the pairwise-independence of the solution is important in real life,

where it is unlikely that all sources in an observation will be independent.

The common element of these techniques is some graphical representation (e.g., an infen-

sity plot) of the clustering-sirnilarity of the channels. Non-diagonal contributions identify a

"confusion" to the ICA system.

The last dedicated contribution to the discussion of ICA performance is a classification of

algorithms by Cardoso. Some adaptive algorithms (including the maximurn likelihood equiv-

alent algorithms with a natural gradient), have the important property of BSS equivariance

under noise-free conditions. By definition [33, Cardoso (1996)]t35, Cardoso (1998)1, equiv-

ariance is a property of an BSS estimating algorithm where the estimat" fr(¡¿) is independent

of the initial mixing matrix M. It holds that all adaptive algorithms of the fbrm

EolMs(i, j)] - Jvtli, j)

Clt. 3: Statistics - ECG Feafu¡es and BSS

where J = Wx and 4þ) e ,I is some matrix function of y, are equivariant, including the nat-

ural gradient (3.63). In terms of an adaptive system, this implies that the attractive dynamics

(e.9., stability and asymptotic statistical bias and variance under finite samples) to the opti-

mum solutions in f. are only determined by the properties of the sources s, and not the mixing

AW cc q(J)W

(3.81)
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matrix M. In these conditions, M simply identifies (in one sense) the initial condition to the

optimization trajectory and plays no role in the "shape" of the cost surface /. (Note, therefore,

obtaining a clustering index of an equivariant algorithm by bootstrapping (i.e.,randornizing)

the mixing matrix does not accomplish much.) This dependency of an equivariant algorithm's

stability, bias, and variance on the sources, s, is a complicated relationship. Loosely speak-

ing, however, it follows that algorithms perform better as the factorable source distribution /
becomes more non-Gaussian.

Note, however, that equivariance is not possible in situations of nonzero additive noise.

Here, a poorly-conditioned mixing matrix will amplify the conuption due to noise more than

a well-conditioned one [35], effectively changing the cost sufface /. Thus bootstrapping with

Muller's noise injection scheme 171) still has al effect. Grassberger's consideration of pair'-

wise MI would also still be of interest, since it is analyzing the factorable source distribution

/(s).

The remainder of the developments in ICA performance are introduced in random papers

on ICA algorithms. The most recognizable of these is Amari's performance index, which acts

as scalar metric of a confusion matrix. This and related metrics used in the literature will be

presented in Sec. 3.5.1 .3. After this, the arsenal of SOS-based metrics will be considered.

3.5.7.3 Amari Error and Related. SQM,ç

Ch. 3: Statistics - ECG Features and BSS

One of the most significant and widely quoted SQM is the Amari pe(onnance index (API),

A, L7,(1996)1. The API is an A-class SQM requiring a priori inf'ormation in the form of the

mixing matrix M. Let an ICA solution be proposed using a spherin-e matrix W6 and an ICA
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demixing matrix W. Then, according to the ICA theorem, the product matrix R

n u{ wwoM

= [n"]

should be of the form

R=PD

for an accurate solution W, where (as in the theorem on p. 108) P is an arbitrary permutation,

and D is an arbitrary non-singular diagonal matrix. Thus only l/. elements R¡¡ should be

non-zero, one in each row, and one in each column. The API is a scalar value quantifying

the size of the supposed "sparse" elements of R. In this way, the API is invariant to the

ICA degeneracies, (3.52)-(3.55), as a true ICA SQM should be. If the ICA solution is poorly

chosen, then the "non-degenerate cross tefms" of R will be nonzero, and thus it acts as a type

of confusion matrix. (The analogy of a decision theory confusion matrix is made more exact

if the R matrix was reduced into a "nearest-to-identity" form, D-lP-lR.) The API calculates

the size of the "confusion" according tcl

Ch. 3: Statistics - ECG Fearu¡es and BSS

A.(R) 
= Ð t*+H, 

_') . 
Ð [*ffi ' )

Note that each fraction in the summands are bounded below by I and so each summand is non-

negative. (An entirely zero row or column should not exist, since only nonsingular matrices

have been considered. For the sake of consistency, however, any 010 fraction can be consid-

ered oo.) Here, the fraction notmalizes for the scaling degeneracy, while the creative indexing

compensates for the permutations. The right hand summation is essentially a column-oriented

version of the left hand side, so the API is invariant under transposifion; A.(T) = Au(Tr).3 For

(3.83)

(3.84)

(3.8s)

sThis has some interpretative benefit in the consideration of the parameterization of I and extensions to
non-square matrices, but they needn't be discussed here.
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a perfect ICA separation, each fraction is exactly 1 and hence

A.(R)=/.(PD)=0

since each summand is zero. For non-singular matrices, A€ is rnaximal atZN,(N, - 1) and

achieved by an element-wise constant matrix R¡l = R + 0 Vi,7. Sometimes the API is also

used in a normalized form to bound it in the unit interval.

A very similar matrix metric called the signal-to-interference ratio, SIR, [232], considers

only the left half of the API. That is,

srR,: I îf Ii:, lR';l _,j
N' 1l l(max7 In,,'l) )

and therefore it is a row-centric fonnulation (and not necessarily invariant under transposition).

Note also a normalization factor is applied in the above so the SIR is bounded above by 1.

A third meüic very sirnilar to API has appeared, but it penalizes the confusion maffix in a

quadratic sense. Called here as the Antari-squared index (ASI) ll66l, the ASI is calculated

Ch. 3: Statistics - ECG Features and BSS

+e,=Ðt*+*q_,) .l[*ffi,J
The quadratic form of the ASI makes it correspond slightly more to power-based consiclera-

tions, since the squere of the matrix entries R,?r. represents the energy in the lth estimate coming

from source j (loosely normalized). This is not a precise interpretation, however, since the ASI

maintains the symmetric f'orm of the original. In the opinion of the author, it would actually

make better sense, from this standpoint, to only use the row-centric form

(3.87)

¿-.(n)-*,r[#ffi')
which would corespond to the significance of the rows as signals in the ICA paradigm.

Now the second-order statistics-based A-class SQMs used in the literature will be sur-

veyed.
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3.5.7.4 SOS Related SQMs

The classic SOS statistic for measuring the similarity of two signals is the cross-correlation

function. In the case of instantaneous ICA, delays are not considered and hence the cross-

correlation index (CCI) of the .ith source with the ith estimates is the normalized cross-

cumulant

CCI(I, Ðs- 
a¡¡

CiC j

where ø¡; is the cross-coffelation proper

o,, Y (a{fA - ¿ {q) ('¡ - 
" {',})))"'

and o¡ and cr¡ are the standard deviations of $ and r; respectively. As an ICA SQM, the CCI

is appropriately invariant to the absolute scaling of the source and estimates, but the sign of

the CCI still appears. It should be considered, therefore, only in absolute value, ICCI(/, j)1.

Furthermore, the absolute magnitude is bounded by 1 (best reconstruction), which is signif'-

icantly different fi'om SNR (which is oo for best reconstruction). Note also that the CCI is a

direct estimate between a single source and estimate channel, and therefbre is not invariant to

permutations. Instead the confusion matrix of such values should be considered in form that

is reduced as rnuch as possible to a "nearest-to-identity" form. This type of error measure has

been used in practice in [57, (2008)] [42, (2004)).

The other classic form from an additive perspective is the SNR, previously defined in

ch.2,

Ch. 3: Statistics - ECG Features and BSS

,j r0r, s {(r,)tl
's''€;{ffildBl

Here, however, there is no invariance to scaling so it must be assumed that either

sNR¡i g

(3.e 1)

e {f';)'}
€ {G -';),}
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(a) the signals are norlnalized to an a ¡triori standard: e.g., unit standard deviation ø¿ =

c j = l, or variance; or

(b) the maximal (best possible) SNR is chosen [173] over all possible scalings.

When the normalization of the former is applied to energies (not variance), the SNR in decibel

units is equivalent to the signal-to-errorratio (SER) used in [9][166]:

n¡¡Q)! si(r) - cl¿ {'1}ta {c'}
s {'1}SER,, s I0logro 
M

Furthermore, note that the maximal SNR is achieved by rescaling $ according to

o-¡¡^
,ç¡ <- ---.t¡ci

Ch. 3: Statistics - ECC Features and BSS

and not the SER normalization. Both the SNR and SER must also be considered as a complete

confusion matrix (e.9., [SNR¡,.]) to allow for permutations.

Cardoso [35] considered the pairwise interference-to-signal ratio (ISR) in an asymptotic

form

ISR¡; 
u: 

^lt_* 

N¿

and discussed some ana

The remaining metri

W\ry6M. Vincent [231]

(3.es)

(3.e6)

ISI, g
LrlR,,l'
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(which is the simple summand of (3.90)). Principe [-55], meanwhile, has considered a decibel-

based signal-to-distortion ratio (SDR)

sDR'g 
I îroros,,, (ta^rn'r)'

uur\- 
Nrâ 

¡vrusloÑ

for A-class performance measulement. This SDR estimate is equivalent to an SNR if the

sources and estimates al'e normalized to unit variance, the signal for estimate I is the source j

with maximal power contribution, and the R¡¡ > 0. The SDR summands, fundamentally, are

also just 1/ISII converted to units of dB. Note, however, that SDR expresses the average dB of

all channels (instead of the aveÍage of all channels in dB).

In [88, (2001)], it is declared that a "good separation is achieved at an SDR of 20 dB"-

While this may be loosely true when visually observing a time series, in keeping with the

analysis of SNR presented in Ch. 2, any power-based global metric has inherent weaknesses.

(For example, if the mECG channel has 40 dB and the fECG channel has 0 dB, yielding an

SDR = 20 dB, is this a good separation?) In particular, it is of interest to study the connection

between this metric and other metrics that are sensitive to (i) higher-order statistics directly,

and (ii) patterns within the eror distribution. All the (officially) second-order metrics above

are related to HOS only indirectly through the matrix \{, which was HOS-dependent. Even

though the principle of ICA directly implies that the HOSs of a signal is significant, only

Grassberger has advocated that a HOS measurement of clustering or eror be applied in prac-

tice (and that through MI between the channels), This work will not evaluate all these power

and matrix-based metrics, but consider instead their relationship to the relevant HOS. That

is, any of these SQMs are related to the HOS-based objective function of the ICA algorithm

through the matrix W. What should be considered is the convergence ploperties of the metric

with that of the objective (cost) function of the algorithm.

Ch. 3: Statistics - ECG Features and BSS

(3.100)
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3.5.7.5 Proposed SQM Methodology

To complete this discussion of ICA metrics, a system for structuring the ICA performance

measurement for this work is now presented. In particular, a systematic approach for dealing

with the degeneracies of the ICA solution must be presented (since not all metrics are invariant

under them). The goal is to provide a framework by which the joint convergence of both

higher-order and second-order features and metrics - both pairwise and system-wide - can

be systematically evaluated.

Proposition3.26 (ICA Solution). For this work, it i,t propo,ted that

(a) the soLrces and estimates be centraliz,ed;

(b) the variance of the sources s¡ be normalized to uniy,;

Ch. 3: Statistics - ECG Feafures and BSS

(c) the ICA estimntes be of the.formfi = e,IWWsl{s (where rhe spheríng matix.W¡ is the

result of a PCA, and the mixing matrixM is given); and

(d) the ICA demixing matrixW be orthogonal sttch thatfor all i,

@ lcaî, t,)l 2 lcct6,t;)l v i (resolving permutcltion);

(b) CCIG1, s¡) > 0 (resol.ving sign bttt not scale); and

(c) the variance of the estimatesl¡ be nornmlized to unity (resolving scale).

From the traditional metrics described previously, those that will be included for study

include

(a) the CCI (3.91);

(b) Amari's original API, A. (3.86); and

M. Potter
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(c) the SNR (which, under Prop.3.26, can be averaged to something nearly equivalent to

Principe's SDR (3. 100)).

To supplement these metrics, two more geometrical A-class metrics wíll be used, since

these are consistent with the parameterizations of f,u". The f,rst of these is the vector norm

error (VNE)

vNE, 
= ll-¡ (**o - *-')ll

Note that there is no indeterminacy in the above under the assumptions of Prop. 3.26. The

VNE represents the Euclidean vector norm of the error in determining the ith ICA vector. (A

similar metric was applied in [87, (2001)].) The value of VNE¡ is closely related (under a

diff'erent ICA normalization than proposed here) to the sum

(#') 
'

which appeared in the ISI and (3.90).

Since the VNE is a vector norm, a full matrix version can also be def,ned. This is cailed

the matrix Frobeniu,t error (MFE) and is written

MFEsllwwn_M-,llo

which is well defined according to Prop. 3.26. The MFE can be related to the Frobenius norm

of the "non-degenerate cross terms" of R

Ð[#')
by a suitable normalization. It is the opinion of the author that explicitly using M-r (instead

of the product matrix R) makes more sense from the point of view of the ICA geometry and

optimization objective.

(3.r01)

M. Potter

PHD-Study Stats

(3.102)

-138-

(3.103)

(3.104)

September 15,2008

Version 5.2.6



FEATURE CONVERGENCE UNDER ICA: FECG

HOS will also be considered explicitly as SQM features for convergence analysis. These

include

(a) the kurtosis of the estimate ft@);

(b) the pairwise MI of the estimate to the source, MG, s¡); and

(c) the joint MI of the ICA estimate, M@1,.. .,1r").

Calculation of the MI will be performed using the Grassberger et al. algonthm [20, (2004)].

3.6 Summary

This chapter has presented the relevant concepts needed to statistically characterize (i) ECG

distributions and (ii) their separation by ICA. First, the ECG is an empirical signal, and hence

the time-integrated distributions from discrete time series are the focus of ICA separation.

Scatterplots were demonstrated to be a useful visualization of these distributions. Second,

these distributions were characterized by moments and cumulants. The properties of these

parameters have been described, and, in particular, the important distinction between second-

order and higher-order statistics has been made. HOS are key in the characterization of non-

Gaussianity. Third, the independence of a multivariate distribution has been defined, and the

properties of independence under factorization, entropy, mutual information, moments, and

cumulants have been discussed. The difference between second-order and higher-order inde-

pendence in the presence of non-Gaussian distributions was demonstrated. These elements of

independence provide the mechanism for ICA separation.

Fourth, ICA was universally defined as an extension to decorrelation (PCA) that requires

a nonlinear optimization of HOS cost functions over the space of matrices, The geometry of

this space and the interpretation of constrained maximization was discussed. Theorem 3.22

Ch. 3: Statistics - ECG Features and BSS
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[45, Comon (T994)] presented the natural indeterminacies that exist in an ICA solution. Some

practical considerations of ICA on data from determiriistic and random processes demon-

stratecl the significance of time-integrated distributions and the relative insignificance of point

masses. (Here, ICA has not been considered from the standpoint of sparse (¿1) optimi zation,

though some interesting literature appears on the subject (c.1, [53] and refèrences).)

Fitih, the structure of traditional metrics for ICA perf'ormance was discussed. The foun-

dation of these tend to be either (i) an SNR-type f'unction between an estimate channel and a

source channel, or (ii) an Amari-type evaluation of the non-degenerate cross terrns of the prod-

uct maffix \ryW¡M. Other statistical pairwise comparisons can be second-order (such as the

CCI) or higher-order (such as the MI). From these, a particular scheme for the post-processing

of ICA was presented whereby (Prop, 3.26)

Ch. 3: Statistics - ECG Feafures and BSS

(a) the variance of the sources s; are normalizecl to unity;

(b) the ICA estimates are of the f'orm $ = e,IWWoMs; and

(c) the ICA demixing matrix \{ is orthogonal and uniquely determined by the pairwise CCI

and unit variance.

A family of performance metrics was also identified

namely the

(a) cross-correlation index, CCI¡ = CCI@, s¡);

(b) signal-to-noise ratio, SNR; = SNRG,.y¡);

(c) vector norm error, VNEi (WWo, M);

(d) kurtosis of the estimate, k¡ = kG); and the

M. Potter

PHD-Study Stats

for inclusion in the experiment design;

- 140- September 1-5, 2008

Version 5.2.6



FEAIURE CONVERGENCE UNDER ICA: FECG

(e) pairwise MI of the estimate to the source, M¡ = MG,.s,);

that apply to each ICA estirnate l. Consideration hereafter will only consider the fECG com-

ponent that is the interest of this work.

Three other system-wide performance metrics were also identified; namely

(a) the Amari performance index, A.(WW9M);

(b) the matrix Frobenius error, MFE(WWo, M); and

(c) the joint MI of the ICA estimate, MGt,...,1r.).

Descriptions of the implementation of these ideas are presented in Ch. 6.

The last item of note from this chapter is the definition of the Rényi and relative Rényi en-

tropies in Sec. 3.4.1 . These will be used in the next chapter for defining scaling ECG features.

Ch. 3: Statistics - ECG Features and BSS
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4.1. Overyiew

This chapter presents a study of multifractal analysis (MFA) for ECG feature extraction.

These global complexity features can then provide scaling-based SQMs for ICA. This use of

scaiing SQMs is a novel development in the performance analysis of ICA.

To begin the chapter, scaling as a general characterizer is motivated by some arguments

from measurement theory. Then the advanced abstract mathematical concept of "measures" is

defined in order to unify the field of scaling theory for sets, functions, and distributions. Fractal

measures are then defined in Sec. 4.2.2.3 as non-differentiable measure limits of cascading

differentiable measures.

The core background on MFA is then presented in three parts. First, the characterization

of fractal measures by the scaling of fractal dirnensions is motivated and explained in Sec. 4.3.

The non-uniform Cantor measures are presented as analytical exarnples of multifractal mea-

sures. Here, scaling is defined mathematically, and the Hausdorff fractal dimension is pre-

sented in the conlext of a coarse-grained measure. Second, the preceding theme is extended in

Sec. 4.4, where a general notion of fractal dimension, and the necessity of multiple dimensions

to characterize multifractals. Farnilies of fractal dimensions with respect to a coarse-grained

measure's partition function are presented as suitable for MFA. For the classical Boltzmann

partition function, the r(q) family of scaling exponents is presented, and an example calcula-

tion is drawn from the non-uniform Cantor measures. Third. the families of scaling exponents

Chapter IV
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drawn from the Boltzmann partition function are extended via thermodynamic transforma-

tion to the Rényi and Mandelbrot fiactal dimension spectra to gain compactness in the MFA

dimensions. Here in Sec. 4.5, these spectra are demonstrated to all come from the exponen-

tial behaviour of a class of entropies extracted from the partition function. Specifically, the

Rényi spectrum, Sec. 4.5.1 , results from the characteristic exponents of Rényi generalized en-

tropies, while the Mandelbrot spectrum, Sec. 4.5,3, results from the exponents of Hölder and

Mandelbrot generalized entropies.

Section 4.6 applies these concepts of measure and coarse-graining to the MFA of an ECG.

The general process by which an ECG time series is reconstructed into an attractor is de-

scribed. The two techniques to implementing a fixed-size cclarse-graining of the ECG attrac-

tor, and their merits, are also discussed. Note, however, that the implementation details of the

chosen technique will be left for Ch. 6 and App, C.

One of the significant contributions developed in this work is the clerivation of the direct

Mandelbrot spectrum from a cor¡elation partition. To provide context fbr this development,

a directed review of the literature is presented in Sec. 4!7 that (i) distinguishes between di-

rect and indirect calculations, and (ii) identifies the missing component in the fractal theory.

Specifically, the required correlation-based Hölder and Mandelbrot entropies are derived in

Sec. 4.7.3. An example of the direct and indirect techniques applied to the lkeda attractor is

then shown in Sec. 4.7.4. While the general concept and fbrmulae of the direct correlation

calculations are explained here, App. C contains a more detailed discussion of the correlation

partition algorithm required for entropy calculation.

Last, Sec. 4.8 synthesizes the discussion of MFA spectra for the definition of SQMs.

Though both "relative metrics of scaling spectra" and the "scaling specfra of relative entropies"

Ch. 4: Scaling - ECG Features
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{å"}Ë_*

Fig. 4.1 Expressing a variable as a number is equivalent to measuring avanableby a scaling
system.

are considered, it is shown here that only simple error-type metrics on the differences in spec-

tra are available fbr the experimental design.

4.2 Scaling and F ractals
4.2.1 Scaling, Self-similarity, and Numbers

Variable

Measurement

t 
Scaling System

Ch. 4: Scafing - ECG Features

Expressing a variable on the real number line means that the v¿riable inherits from the very

numbers themselves an important relationship with scaling. The decimal system of number

representation is fundamental and unquestioned in modern society. With the development of

computers, this expression of the number line has been supplemented with the binary system

as well. Both systems have in common the expression of'a number as a "consecutive sum of

scaled parts". Essentially, a positive unit or base b > I is assumed. A number .r e lR is then

expressible as an infinite sequence of integers, a sign, and a radix point of the fbrm

JC

Ë r""
¿l=*ôC

x = + ...€z€t40.€t€-z
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where the d, € {0, . . . ,l"b)l are integers between zero and å. This representation is unique up

to infinite sequences. This formal sequence represents the number x because it satisfies the

following identity

x=+Ð€,u,

This fbrmal representation of x is in fact the idealized fbrm of measuring x as shown ín

Fig.4.1. Two basic philosophical t'orms in this measuring process exist as mathematical

finctions: scaling and concatenation. The number x exists on the number line, and can be

identified by comparing it with concatenated rods of length b". Any remaining difference can

be further measured by reducing n (and thus reducing the length of the comparison rod) and

repeating the measurement process. The concatenation is represented in the natural numbers

{,,, while the scaling is represented in the changing power of the base. One can conclude, thus,

that representing an object numerically means representing the object by a scaling system of

elements. This ideal mathematical analogy of measurement is, in fact, very physical. Length

in the international (metric) system of units is standardizedby comparison to scaled multiples

of the metrs, itself defìned as a concatenation of small absolute units, (i.e., an integer number

of wavelengths of a specific frequency of light),

From this elementary discussion of measuring numbers, it is clear that the measuring pro-

cess oJ'a variable is self-similar. The self-similarity paradigm is not a special add-on, sup-

plementary hypothesis, or method of convenience. It is at the very root of measuring with

numbers. This is not to say that every set, function, or distribution is invariant under scaling.

Invariance is only one property of the scaling behaviour of the said object. It does argue,

howeve¡ that the scaling behaviour of these objects exists and can be characterized; be it

by invariance or other more complicated forms. The application of scaling (or multifiactal)

analysis is too often bogged down in the mathematical idealism of historical invariant fractal

Ch. 4: Scaling - ECG Features
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objects and trlle multiplicative processes. It sumces to note that these classical fiactal objects

and multiplicative processes are specifically well-charactenzed by multifractal analysis. They

"fulfill each other" in much the same way the chalacterization of a random variable is fulfilled

by its distribution. However, as was mentioned at the beginning of Ch. 3, distributions can be

analyzed and characterized whether they came from a random variable or not. Similarly, in the

development of the multifractal analysis theory, it will be shown how the power-law scaling

behaviour of partition f'unctions can be characteñzed. This may be ideal only for multiplica-

tive processes, but this does not inhibit anyone from using these methods in characterizing the

scaling behaviour of partition fïnctions fiom empirical processes 170, (1996)1t117, (I994)l:

here, the ECG.

4.2.2 Measure Theory and Fractals

In the popular imagination,fractals are geometrically "roLlgh" natural objects like clouds,

mountains, and trees, Fig.4.2. They were coined historically as such by Mandelbrot after

fractus ("broken",thesamerootas"fracture")onlyas of 1915 tl33]. Sincethen,economists

consider the stock trends as fractals. Geometers consider intriguing pathological "monster"

sets from iterated equations as fractals. To dynamical theorists, fractals are the "stable but

abnormally distributed" attractors of nonlinear systems. The definin-e element in these very

different fields is that "fractal objects" can confuse the eye with a loss of characteristic scale.

Essentially, it is diflìcr,rlt to tell whether the object is being analyzed with the naked eye (at nor-

mal scale) or a zoom lens (high magnification). This demonstrates that these diverse examples

of fractals have a self-sirnilar contplexity at diflerent scales. This property of interdisciplinary

objects captures the universal spirit of MFA. However, it is very difficult to systematically ex-

press an MFA in a mathematical formalism without violating its universality 1132, Mandelbrot

(leee)1.

Ch. 4: Scaling - ECG Featnres
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One helpful tool in defining fractals for engineering efficiently in a broad way is the use

of measure theory and partition functions. Measure theory is a mathematical method that

unifies geometry and probability in a common treatment. Therefore the geometrical scaling

concerned with fractal sets, and the probabilistic scaling concerned with multifractal distribu-

tions can both be expressions of measure-theoretic constructs. To this end, a quick discussion

of measures is provided, which will enable the treatment of both sets and functions in a uni-

form way. It will be shown, then, that measures can be systematically transformed to partition

functions over coarse-grained scales. The partition functions act as different measurements of

distribution "complexity". That is, the meaning of fractal ,;elf-similar complexity is defined by

the partition function being used. When scaling exists intuitively (as described in the previous

paragraph), it will be shown that power-law relationships are approxirnated in the appropriate

partition functions over scales.

4.2.2.1 Mea,çure.s Defined

Fig. 4.3 Measures quantify the abstract "mass" of a set.

Ch. 4: Scaling - ECG Features

Definition 4.1 (Measure). A measure 7-z is a set f'unction to lR that quantifies the "mass" of the

set in abstract terms, Fig. a.3. (This abstraction is important in the theory of integration.) If one
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considers a space X, then for "every"r subset A c X, the mass of A is written p(,4) e {Rutco},

ptlAcX) +{lRu+oo¡

Very often, some restrictions to positive and/or finite mass (0 < p(A) < oo) are made.

4.2.2.2 Set,ç and Functions

Note now the representation of sets in function space, and vice-versa.

Definition 4.2 (Characteristic Function). Let ,Q c X be a set. Then there exists a unique

function¡2 e l,-(, ) such that

lt :.r € ç¿

xo(x) I {

lo :xÇtt
I

This function contains all the information of the set and is called the set characteristic function.

Definition 4.3 (Support). The .rlrpport of a function g : X ¡+ IR is the subset of the domain X

Ch. 4: Scaling - ECG Features

a, 9{xeXls(r)+O}

It follows that the support and characteristic function are neady "inverse operations" be-

tween sets and functions, since Q1Qò = Q.

Measures are set functions. From the above, however, one understands that sets can be

expressed as functions as we1l. This implies that measures can also be expressed as operators

on functions. The "natural" measures on sets in iR&, (i.e., the natural mass or "size" of a set),

are related to geometrical notions, such as distance. The usual measure on R is the idea of

interval length. In higher dimensions, IR&, this is the notion of N,-dimensional volume. The

(4.3)

lThis thesis will not concern itself with the clistinction of the sigma-algebra of measurable sets from the
non-measurable sets, and simplify by saying "every" subset can be measured [3 I].
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volume measures are f'ormally called the Lebesgue nreasures on lRN, and the notation ¡-r¿ will be

used here. It is possible to express now how these measures act as operators of characteristic

functions. Recall that the Lebesgue integral of a function g : Ç) c IR& n lR is defined as

1(s, Q) = fn!;) 
a,

where the dependence on both the f'unction g and the domain fl have been written explicitly.

As is common in physics and engineering, the volume of a set is in fact the integral

ttÁa) = Io*
= 1(1, fl)

By the use of the characteristic function

mapping from L* to lR:

Ft(a)= Ïno*=f".
= 1(Xc¿,lRe)

Ch. 4: Scaling - ECG Features

which depends on functions instead of sets. This transformation from set expression to func-

tion expression is diagrammed in Fig. 4.4.

The above equations identify (i) a representation of the Lebesgue measure in the form of

an integral of Xa, and (ii) a unifbrm weighting fïnction (namely 1) in the integral of (4.9).

This presents an obvious way to define arbitrary integral meãsures by introducing a nontriv-

ial weighting function m(x) + 1. This extension introduces a large class of measures. For

completeness, the fbllowing theorem, which demonstrates a suflicient requirement on a tnass

densit,vflrnctionrn, is included. Foraproof, see [31].

(4.1)

(4.8)

the set function (4.8) can also be expressed as a

Xa(x) clx = f
Jr...v,

(4.6)

xa@)-I dx
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lntegral-Theoretic

Fig. 4.4 The relationship of the action of an integral measure p to the set

characteristic function, the mass density function, and integration.

Theorem 4.4 (Integral Measures). Let p¡, be the classical Lebesgue (volume) measure on R&

Let also that m, dJ d mass density function, be continur¡us or a step Junction. Then

xÁx)
Ç. L*

Y

þ,,(A)= f- x¡@)m(x)dp¡(x) = f -"xo@)m(x)dx

Ch.4: Scaling - ECG Features

is a well-defined measure ¡tn. FurÍher if m is absolutely integrabLe (i.e., m e Lt ), then ¡t,,, is

rtnirc; and if m > 0, tlten ¡t,,, ts positive.

The complexity of the measure ¡t,,, will come to depend very importantly on whether the

weighting of ru is uniform or not. Figure 4.5 demonstrates the equivalence of uniform mea-

sures and the characteristic functions of their support.

4.2.2.3 Fra.ctal Mea,sure.s

Probabilities aÍe a special case of measures t1651. If the measure p is (i) positive, and

(ii) normalized over the entire space R& 1f.e., p(RN") = 1), then the measure acts as aprob-

ability me(tsltre, assigning a numerical value between I and 0 (the probahility^) to subsets of

RN" lthe et,ent). (Note, in fàct, that the event is a set and not necessarily a point.) The pdf fr, is

the rnost common way of dealing with probabilities in engineering. It is perfectly acceptable
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jser l)1
;..-.;-:-.-...,-^.--.-.....-.-.-.i

iV
:

iFunction

Fig. 4.5 The degenerate relationship of a uniform measure p with its char-
acteristic function.

fa, (x)

Lebesgue Differentiable
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Measures over ff
Fig. 4.6 Fractal measures exist as limits beyond the set of differentiable
measures.

to reduce probability measures to the pdf function (and much more expedient than a complete

measure formulation) as long as the measures can be described by integrals of the type

Lebesgue Nond ifferentiable

,(x)

tt(A) = 
fo.f,,rt, 

n*

as in in Theorem 4.4. Tltis is not alu,ays the ca.ge. If a poinrmass exists in the measure p,

similar to a Dirac Del.ta.function, ó*, [31], then any "density" would not be a true function.

Even though¡.r is a true measure, the ratio p(A)lprØ) can diverge. This non-differentiable

property of a measure is the trademark of fractals.

Fractal measures aÍe not characterized among the weighted Lebesgue measures that have
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just been described, Fig. 4.6. Instead, they are often charactenzed by a multiplicative cascade

of weighted Lebesgue measures. It is from this cascade rule that a fractal acquires its scaling

properties. lt is also this cascading process that makes fractals occur in nature. No single

definition of a fractal has been universally accepted. For the purposes of this thesis, therefore,

the def,nition of fractal will follow Kinsner ll l7l but be phrased in the terms of the currenr

measure discussion.

Definition 4.5 (Fractal Measure). A. Fractal measure ¡.r is a measure attainable as the limit

of an iterative cascade of weighted Lebesgue measures p,,, that cannot be represented as a

weighted Lebesgue measure itself. That is,

I
p(A) = ]np^rÐ * l.^, va@)nt*(x)clx

such that

¡tn*(A) = u,(A). Õ(1,,) = f y¡(x)m,,*¡(x) clx
Jtpñ,.

Ch. 4: Scaling - ECG Features

where @ is the fractal iteration, or generator, process. If the measures ptr are uniform mea-

sures (1.e., with density function related to a set characteristic function, r/1, 6 yr),than ¡tis

monofractal and its suppoft is a.fractal r¿l. Otherwise ¡-r is multifractal.

The two important features of this definition to be reco gnized are that (i) the ptr are

weighted Lebesgue integral rreasures, while their limit is not, and (ii) that the convergence

of the cascade is re-eularized through the repeated application of the fractal iteration process

O. Thus, it does well to write the limit multifractal measure as po.

In the usual treatment of fiactals tl l7l[132],.fractal sets are described, and then the ne-

cessity of multifractal measures is introduced by example. Here, a more general mathernatical

treatment has been used which demonstrates first the more descriptive capability of multifrac-

tals. It is clear from the definition that monofractals are only the special cases of cascading

M. Potter
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Fig. 4.7 The Cantor set: (a) the traditional "deleted middle thirds" construction is geo-

metric, C
C = {2{Iitn,r-*þu,,).

characteristic functions (i.e., uniform þ"). lt follows from this, that any example of a fractal

set has an equivalent expression in a measure-theoretic terms. The Cantor set C is a tämous

traditional fractal often presented in infroductory treatises on fiactals 111ll. This pathological

set of Cantor (1883) is an example of a monofractal embedded in IR. Here the definition of C

will be presented in both the set- and measure-theoretic terms.

Example 4.1 (Cantor Set: Set-Theoretic). Take the unit interval (i.e., of length 1). Delete the

open middle third tiom the set, leaving two closed equal lengths of I 13.By recursively delet-

ing the open middle thirds fi'om the remaining seglnents of the set, Fig. 4.7(a), an uncountable

number of points remain, each an accumulation point, but none of them an interior point. This

sparse closed set has zero length. Note that at every stage, the number of segments double and

are scaled to I 13 the size of the previous stage.

Exantple 4.2 (Cantor Set: Measure-Theoretic). Begin with the characteristic function of the

Ch. 4: Scaling - ECG Features
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unit interval, XLo,t).Define the generator (Þ as the linear transformation

I ¡xr I lx+2\
o(g(x)) = 1s l,¡/* ¡s\ 3 )

This transformation has a characteristic 1/3 scaling in the right hand arguments and2x repli-

cation (i.e., g appears twice in a sum). By defining a sequence of integral measures ¡-r,, fiom

the mass density functions nt,,(x) that satisfy the cascade

one can define the lirnit density, pc, = Iim,,--/-¿r. Several stages of mass density functions are

showninFig.4.T(b). Thevisualequivalenceof bothsidesof Fig.4.7 isclear: thesetsonthe

left are the supports of the equivalent m, on the right. Also, since the rz,,s are uniform, they can

be normalized to characteristic functions of the intervals on the left. The extra information of

the density height on the right-hand side is useful, though. Note that the non-zero values of ln,,

is proportional to 2-" (the height of Fig. 4.1(b) is in log-scale). If one tries to express the limit

measure p<p as an integral measure, lim,,-* n'1,, = 0, and the "measure" would be trivial and

have empty support. This is a demonstration of the non-differentiability of po. If one examines

how the height of rz,, scales with the length of the individual segments, the measure is assigning

U2 of the previous lnass to U3 of the length (Lebesgue measure). A rough calculation then

shows that the ratio of the measures increasesby 312 at every stage. As n goes to infinity, this

ratio diverges and Dirac Delta functions begin appearing in the "derivative of ¡-rn with respect

to Lebesgue measure". Though the m,,s converge to zeÍo, their ratio to Lebesgue measure

diverges, and so the true limit measure cannot be an integral measure. It is a fractal measure,

the uniform Carxtor tneasure whose support is the Cantor set C.

Example 4.3 (Non-uniform Cantor Measures). As stated in the definition, monofractals such

as the Cantor set are special cases of the general formalism. A non-uniform Cantor measure

m,,+t(x) = mn(x)' Q(m"(x))

Ch. 4: Scaling - ECG Features
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Fig. 4.8 Uniform and Non-uniforrn Cantor Measures: (a) the uniform Cantor measure cascade,
g = lll2,0,ll2l; (b) the I = U13,0,213)-weighted non-uniform Cantor measure cascade.

defined on the Cantor set can be defined by introducing inhomogeneities in the generator Õ.

Consider now the generator

0

-t

-1

_2

-4

-5
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o(s(x)) =!,(ä). ?'(+)
Note that the weighting (i.e., constant prefãctor to g) of each replication is now different. This

weighting can be described by the sequence of prefactors g - U13,0,2131 if it is written

formally as

(b) -óo'

llpll

o(s(x))= îer¿rr("##)
l=l

where llpll is by definition the length (or number of elements) of g, and L¡lpØl = 1. In this

formal sense, the uniform Cantor measure is defined by g = 1112,0,1/21. Figure 4.8 shows

the inhomogeneities in the measure cascade introduced by the non-unifbrm p weightings.

Remark 4.1 (Fractal Terminology). This thesis uses the word "fractal" as a generic term of

0.5
v
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regularized scaling, meaning multifractal and monoftactal behaviour inclusively. In the case

of a specific behaviour, it will be identified as multi- or monofractal as required.

This completes the introduction of measure theory and its inter-relationship with sets and

density functions. The thesis will proceed by describing the eharactenzation of measule frac-

tality through the regularized scaling of the coarse-grained partition functions.

4.3 Multifractal Analysis: Scaling and Dimensionality

MultíJractal analysis (MFA) is concerned with measuring the regularized complexity of

a multifiactal measure. It is not the inverse .fractal problem, which tries to determine the

fractal iteration process (Õ in (a.13)) frorn observatiorr of the data. This section begins with

the transition frorn a measure to coarse-grainings over scales. From these coarse-grainings,

a critical exponent, called a fractaL dimension, is defined. In later sections, these exponents

are extended to the scaling properties of partition functions and entropies defined from the

measure's coarse-graining. The end goal of this pedagogy is to present the two canonical

expressions of MFA dirnensions: the Rén.vt.fractal dimen,sion spectrum and the Mandelbrot

.fractal dimension spectrum.It will be assumed throughout this section that a measure is well-

defined and fractal. However, as described in the beginning of this chapter, the MFA method

can be extended to study the scaling behaviour of any empirical lneasure, multiplicative or

not.

Ch. 4: Scaling - ECG Featwes

4.3,1, Dimensions and Coarse-Graining

4.3.1.1 Cot,erings and Coarse-Grainings

MFA originated with the mathematical study

elementary concepts of MFA will be introduced
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ideas and terminology. For completeness, however, extensions to full measures are done where

appropriate. To begin, some mathematical machinery is formalized.

Definition 4.6 (e-Covering). Let A c Re. An e-cr¡vering,, i,, of A is an ensemble of open

balls %. of radius r < e such that

a. [J v,
V,ery(

A, minimal e-covering is the e-covering with the fewest members.

Hereafter, the r subscript on the members of an e-covering will be dropped when conve-

nient, and indexing over all the members V e 9, will be wdtten shorthand as indexing over

ryu.

Now given a measule¡-r with support Ç21, ând also given an c-covering of Q¡, it follows

that p(V) exists for every V e 9,. This helps the following be defined:

Definition 4.7 (Coarse-Graining). Let ¡t be a measure on IR& and A c lRe. LetU, be an

e-covering of ,4. Then the coarse-graining of (¡t,A)by 9, is the sum

C.h. 4: Scaling - ECG Features

luwt
Thus by (4.19), the coarse-graining is an upper bound for p(A) if ¡,r > 0.

Definitions 4.6 and 4.J can be recapped by saying that an e-covering is an object extracted

from a set A, while a coarse-graining is an object extracted from a measure and a set.

4.3.L2 Lebesgue Scaling and Fractional Dimensions

A coarse-graining is a mutual property of the measure ¡r, the set A and the coverinEiu.

The Lebesgue measures (normal volume measures) that were introduced in the previous sec-

tion satisfy the following proposition regarding the calculus of coarse-grainings:

(4.r9)
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Proposition 4.8 (Lebesgue Measure [ 17][70)). Let A c ]Re. Let g, be an e-covering of A.

The LebesgLrc measure þr o.f A can be characteriz.ed as the limit lower bumd of all coarse-

grainings. That i.s,

pÁA) = lsmrf prT)
ry,

Consider now the importance of the dimension of the embedding space, Nr, to Lebesgue

measure. This is done by defining the notion of local scaling.

Definition 4.9 (Local Scaling). A function g : IR --+ R locally scales as 4 m;g, written

S(r) l* - €d , if g is "proportional to / in the limit of small e". That is,

p(x"+e\-a'
lim ::-:---;:------= = a2 € (0, *) fbr some d¡ € R.
¿+0 Fd

This implies that, for e > 0, the local behaviour of g(.ro + e) and ed are proportional.

This definition implies that if g is differentiable at xe, then g 1,,, - ed with d > l, and

a1 = g(xs). Similarly, it is an often used property that all differentiable extrema are locally

quadratic: i.e., all differentiable g scale as e2 in the neighbourhood of an extremunl Js. How-

ever, local scaling is a relevant characteristic for non-differentiable g as well.

Consider now the local scaling of the function g(r) = Hr(V,). It is a property of the

Lebesgue metrics that p¿(V,) - rN"i that is, Lebesgue measure has a characteristic exponent

equal to the embedding dimension (and this is irrespective of the metric being used measuring

r). Examine now the scaling behaviour of coarse-grainings: that is, in the neighbourhood of

the limit e -+ 0. As befcx'e, letg, be an e-covering of a bounded set A c lRe. There is a finite

number of sets in the covering, which is identified here as N.(A). Now fbr each of the &(A)

sets in the covering,

Ch. 4: Scaling - ECG Features

(4.21)
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Applying this upper bound to the coarse-graining scaling above, one gets

ll" =.I.t" -N,(A)'N"
,V,

Since

,V,

Eq. @.2$ then provides an upper bound to the local scaling of the Lebesgue measure as

pilA)-Dur(r,)-s(e)

S(€) < N.(A)ee'

That is, the scaling of N.(A)ee is an upper bound to the scaling of ¡t1(A). It is of particular

interest that the bound in (1.26) has one factor, N,(A), which is characteristic of the set A,

while the other, e&, is the characteristic scaling of only the embedding space. The balance

between the scaling of these two factors contribute to the possible outcomes for ¡t¡(,4).If the

scaling of the geometric factor is written as

Ch. 4: Scaling - ECG Features

N,(A) - e-d

then if d . N. the upper bound product N,(A)IN" - €-d€N" €N"-¿ converges to zero, thus

forcing ¡.r¿(A) to zero as well. Equivalently, a necessary condition for the set A to have positive

volume is that N.(A) must scale (and diverge) in (4.21) as d > Nu.

Since the scaling of the bounding factor N.(A) is characteristic of the set A, it raises the

question, "Can the scaling of &(A) be extracted as a geometrical feature of the set A?" His-

torically, this is the origin of fractal analysis by afractal dimension.

A side effect of measuring the geometry of A by this scaling of N.(A) is that, by identifying

the scaling exponent of N.(,a) as the fractal dimension of A, fractal dimensions are no longer

constrained like Lebesgue measures to be integer. Fractional dimensions occur, as can be

(4.24)

(4.2s)

(4.26)
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shown by analyzing the Cantor set. Consider the set construction of C by the intersection of

deleted middle thirds, Ex.4.1 and Fig. a.7@). At each stàge n, one can identify a covering

of C by its construction at that stage. Thus one can observe that at each stage there is 2n

intervals, such that ¡/.(C) = 2". Note, howeve¡ that the interval length at that stage is 3-,', and

so 6 = 3-'. By eliminating n, it can be written

lo! É

N.(C) - 2=l%tl - a-log2/Jog3

Thus, by comparing the above to (4.27), one can see the Cantor set has non-integer fractal

dimension d = IoEZllog3.

The formalized method for fractional dimensions that follows is the result of Hausdorff's

extension to Lebesgue measure, the Hausdorff measure and dimension of a set 170, Gouyet

(1ee6)1.

Definition 4.10 (Hausdorff(-Besicovitch) Measure of Fractal Sers). Let A c lRe. Letg, be

an e-covering of A. The Hausdorff measltre of dimensiofi d, þg,t, is the set measure defined

by:

Ch. 4: Scaling - ECG Features

ttu¿(A) = l.t5 inf I rd
vÉ'v.

The unique positive real number d making þa¿(A) finite but nonzero is called the Hausdorff

dimension of the set A. In this way,

d- strp {d' I 
pn¿,Ø) = -}

int ld' I Hu a,Ø) = oJ

The traditional fractal sets covered in fractal texts are examples of nontrivial Lebesgue

measure zero Sets embedded in R or IR2.

(4.28)
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Points

:

I

0
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Fig. 4.9 The topological dimension of objects are integer dimensions describing their intrinsic
manifoid behaviour.

As can be seen from the definitions, the Hausdorff measure generalizes the Lebesgue mea-

sures by allowing the mass of the e-balls to scale in a fractional way, and not under the Eu-

clidean (integer) dimension of the embedding space, À/,. As an example, the Lebesgue mass of

a simple curve (e.g.,line, circle) in IR2 is necessarily zero because it has no area. These curves

(as sets) have an intrinsic topological dimension irrespective of the embedding space, Fig. 4.9

[ 17, Kinsner (1994)]. In fact, any set with a topological dimension less than the embedding

dimension will have zero Lebesgue measure (in the embedding space). By introducing the

scaling as a real-valued parameteÍ, d, things become more flexible, as shown in Fig. 4.10. The

geometric dimension of the set is now intrinsic to the set and not the embedding space. It can

now take non-integer values.

The important components of this analysis are the coarse-grctiníng of the geometry by the

e-coverings, and the (Hausdorff) critical exponetxî ¿/, which is the "natural" scaling exponent

of the covering sets V,. Coarse-graining is the key to measuring a fractal process at a given

scale. By changing e, it is as if the resolution, or zoom, of the fiactal can be changed. This is

the self'-similar process of measurement discussed at the beginning of this chapter, as applied

Surface

I

1

I

2

Topological Dimension
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,/
Lebesgue

Fig. 4.10 The theoretical limit of the coarse-grained measures of a fractal set with varying
dimension d, and its relationship to Lebesgue measures and integer dimensions.

Hausdorff

0.5
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to sets.

4.4

2D Lebesgue

I

It has been shown how the intrinsic geometry of s¿l¡ can be characterized by scaling

through the Hausdorff dimension. This analysis by scaling should now be extended to mea-

sures - or, more precisely, to non-uniform measures - by the set and measure formalism

that was introduced previously. Here, the goal is extend the coarse-graining methodology to

define scaling partition functions and entropies suitable to characterize multifractal measures.

First, observe that the Hausdorff "critical-exponent" formalism (involving an inf or sup of

a continuous interval of dimensions) is impossible in real circumstances. Instead it is more

Multifractal Analysis: Scaling and Partition Functions

1,5

3D Lebesgue

+

2.5
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comrnon, following the logic of the Cantor example on p. I 6 l, to express the Hausdorff di-

mension d of the set A as a ratio of the form

loeN.(A)
a\A) x

log €

For experimental data this would be expressed as the negative slope of two variabies on a

double-logarithmic plot. That is, a fämily of differenÍ. e¡ àre chosen, and f'or each €r, one

e-covering is expressed, from which N.,(A) is calculated. If the points (loge¡,-logNu(A))

follow a linear relationship, d(A) can be estirnated from the slope. This does not satisfy the

formal definitions of scaling because it omits the infimum over many open coverings, and

avoids the limit as 6 --+ 0. However, the estimate (4.32) is tractable, and a linearrelationship

between - log N.(A) and log 6 over a finite interval is sufficient to calculate d(A), though not

necessary for the Hausdorff dimension to exist. (For exarnple, if N.(A) - log e, then A has

Hausdorff dimension d = 0 but no power-law or linear scaling region in a log-log plot.) The

estimate of (4.32), however, is not unbiased, and therefore it is often given the name of box-

counting dimension. Falconer reports that the box-counting dimension is always greater than

the Hausdorff dirnension [56, Falconer (1990)]. In this work, the estimation of a dimension

by @.32) will be called the box-cottnting formal.ism.

Encapsulating the current discussion for the extension to the multifractal case, it is clear

that:

(a) The Lebesgue measure of open balls ¡t1.(V,) scale with integer dimension Nu;

Ch. 4: Scaling - ECG Features

(4.32)

(b) The Hausdorff dimension of a set exists as the critical exponent of the Hausdorff mea-

sures. Specifically, this captures the scaling behaviour of N.(A) by analyzin1 Z,v,/.
The dimension d may be non-integer;

(c) The box-counting dimension examines the scaling behaviour of N.(A) = Lv,lp(V,)|o
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directly. A linear relationship between - log N.(A) and log É ovel' a f,nite interval of

scale is required.

In the above, the first item remarks on the scaling of a measure. The second item remarks on

the scaling of a set. The final item represents a scaling as the slope of a linear relationship

between a function of the {p(V,)l over the logarithm of scale, log e. The following definition

is a unification of these principles: a general notion of afractal dimension.

Definition 4.11 (Arbitrary Fractal Dimension). Let ¡tbe a measure with support Q'. Let U,be

an e-covering of f)l. Suppose g is a positive scalar functional on the coarse-grained measure.

Then if g satisfies a power-lary with respect to e (that is, if

have a linear relationship on a finite interval of scale), then the scaling exponent is the "g-

dimension" of p.That is,

logg(l¡t(V,))) and log e

Ch. 4: Scaling - ECG Features

ds=

First it will be demonstrated how this definition confbrms to the aforementioned examples.

(a) Lebesgue Measure: Here, ¡z is given as Lebesgue measure. Let g([u¡l)9- Z,u, (i.e., g is

a simple sum). Therefore g(\pLg,.)Ð = Lry, ttt(V,). Then by (4.21), gfutL\,)Ð - €N",

the desired dimension.

(b) Hausdorff Measure: Here, ¡-r is given as the d'-dimensional Hausdorff measure. As

above, let g be a simple sum. Then g({¡-r¡7¿,V)D = Lry,trn¿,(V,) scales as d,. This

satisfies the definition of fractal dimension used here. Note: The Hausdorff dimension

oJ'a set is well-defined because only one d e ld'J results in g convergin-e to a finite and

non-zero limit.

logs({¡-r(Y,)})

log e
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(c) Box-CountingDimension: Here,pisarbitrary. Let g(u)) 9(I,(r,)o)-r,where00 = 0

by assumption, so the sum behaves as a counting function. Then g({¡t1(V,)}) = (N.(A))-t

and satisfles the defìnition.

There exist many other dimensions for the charactenzation of fractals in the literature (Gouyet

(1996) [70], for example). These are seen to conform with the general principle of Def. 4.1 I

by the appropriate choice for the function g.

What is special to note is the role of g in taking the finitely many real values lu¡ = ¡t(V,))

and mapping them to a positive real number. This real number does not necessalily charac-

terize an entire measure, however. For if one considers two measLlres ¡t1 and ¡t2 that have

identical support f)1, and then calculate the box-counting dimension of these measures, one

should observe that their box-counts N.(A) are identical for every e. Since the values of the

measures þL¡ = ¡t(V,.)) do not appear, only theil counts, they will have the same dimension.

This degeneracy is clear from the presented examples of uniform and non-uniform Cantor

measures, F,x.4.2 and 4.3, This observation is extended now into a formal proposition.

Proposition 4.12 (Limitations of Box-Counting Dimension). The box-counting dintension o.f

a tneasure ¡t depends only on the support of the nleasure, O r k). Thus all measl4res with the

same support have the sante box-countittg dimension.

To characterize a measure by its scaling, then, it is clear that many dimensions are needed

[1 17, Kinsner (1994)]. As mentioned above, the main property of g is that it maps the finitely

many lLt¡ = p(V,)l of a given coarse-graining into a positive real value

Ch. 4: Scaling - ECG Features

Instead, if g were extended to map into a function (i.e., an inf,nite family of values) depend-

ing on some parameter, an entire family of dimensions could be extracted from a power-law

g : ltt¡lt -, IR*
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analysis such as (4.34). Now enters the thermodynamical formalism to multifractal analysis.

Definition 4.13 (Partition Function). Let ¡,Lbe a measure with support Ç)1. Let9, be an e-

covering of Ç)1. Then define a positive functional g : P ¡-+ C2(n); that is which takes the

finite sequence {u¡ = p(V,)\ to a differentiable function g(lu¡}, q) > 0 over the free parameter

q. Then the partition.functirn of a coarse-graining of ¡-r is

ZrQt, q I 9,) = efti(V,)\, q)

As an example of the partition finction, consider a predominant model in classical theory,

the Boltzmann partition.

Example 4.4 (Boltzmann Partition Function 12391). The Boltztnann partitionfunction of ¡z is

ry,

That is, g(lu¡l,q) = E¡lz¡l'l. This is classically defined fbr all q > 0, but may be extended to

q<0asdesired.

From the above example, one can observe that the box-count N.(Or) of a coarse-grained

measure ¡r with support C)1 is a special case of the Boltzrnann partition:

ZnQt,q 19,) = lrtuw,>ln

Ch. 4: Scaling - ECG Features

N.(C¿r) = Zs(Jt, q = 0 I U,)

Remark 4.2 (lnlerpretation of the Boltzmann Partition). A coarse-grained Boltzmann partition

ZnQt,q | 9,) can be interpreted in analogy to digital images. The choice of e changes the

resolution of the measure, in much the same eft-ect as pixel size in a digital image. The smaller

the choice of e, the finer the partition becomes. The q parameter is a non-linear effect on the

partition that behaves like image contrdst. It controls how the different values of the pixel

elements contribute to the partition sum. For Q = 0, all elements contribute equally, r'egardless

(4.36)
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of individual intensity, like a black-and-white image. For large q >> 0, the largest values

dominate. While for q << 0, the smallest non-zero values dominate. In this wày, q serves to

enhance and quantify the inhomogeneities in the measure.

The power of a partition function is that it enables an extension to Def. 4.11 to intrinsic

families of fractal dimensions, through the following proposition.

Proposition 4.14 (Partition Function Scaling). Let p be a measl¿re with .support d\. Let 9,
be an e-covering of {ùt. Suppose ZrQt,q l9r) i:; a partition function on the coarse-grained

measure. Then if Zr(1,L,ct | 9) safisrtes a power-law with respect to € for every Jixed q (that

is, if TogZr(lu(V,)),q) andloge have a linea.r reLationship on a.finite tnterva.l of scale), then

the scaling exponentr(q) is the "qthmultifractal dimension" of Z,t(p,q). Thatis afamily of

dimension.ç
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characterize the partition function Zs(!, q), since

zr(p,q li) - r'rqt

r(q) =
logZr({p(V,)1, ct)

In particuLar, one finds for a Boltznlann parÍition.function,

log e

By charactenzing the partition function of ¡u, theref-ore, a level of characterization of

It greater than a single fractal dimension is achieved, capturing the influence of the non-

uniformity. This, by definition, is multifractal analysis (MFA). The scaling properties of the

measure is now expressed by the functional relationship of ((l,r(q)), derived from the choice

of partition function, Zr(p,q).

Now, an example of r(q) will be evaluated.

r(q) - log I.y, lp(V,)l'
log e
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Example 4.5 (Cantor set MFA). Consider the weighted Cantol measure defined by the nor-

malized finite vector g. As before, the generator of the measure po is

llell

o(s(r))= îet¿rr(ä")
j=1

wherellpllisbydefinitionthelength(ornumberof elements)of p,andlrlp(t)l = 1. Therefore

the cascading mass density functíons are the

mu+t(x) = m,(x)Q(m,r(x)) = Oo ''l' oO(;r)

an example of which is shown in Fig.4.ll(a). To calculate the MFA of this general form,

it is assumed for convenience (as is always done in the literature examples [70]) that the e-

coverings 'V, matches the set of natural intervals of length e = llgll-" from the cascade to some

level ¡2. By construction, then, all the points in a covering set, x' € V,(tt), begin with the same

real expansions (. h€z . . . (), afler which they differ. Also by construction, it then follows that

the value of m,.,(f ) is constant over Trin¡, such that
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lt(v,tÐ = 
frnum,,(x')dx' 

= m,(x') 
fr,,^,0*' 

= tttn(x'\rrY,ta)

By the cascading construction of (4.42), t71,,(x') =

above reduces to

= mn?')llgll-'

¡t(v a'7)= [l] rrír) 
t øtt 

-"

which takes the "product of fractions

(4.42)

(4.43)
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Fig.4.11 The calculation of r(q) fbr the non-unifbrm Cantor measure, I = lTl3,0,2l3l:
(a) the cascading nx^; (b) Boltzmann partition function for several E; (c) logZrQt, q | 9,,) vs

log e¡; (d) r(ø) vs. ø.
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ì*-;-;o-;-- 
ro-' 

(d)

That is, the measure of the €-covering set is determined by its "position" in the Cantor set

cascade, as indexed by the integers tt,€2,...,€n in the common radix expansion of the set

members.

To establish the MFA of the Cantor measure, the partition function is then evaluated as

'oI
uI

'l
-sI

- 101

L

-'u 
I

-?q;i

zn¡tp,qlry) =\lu{v,,,'= Ð Ðil(ffi)'
which can still undergo a combinatorial simplification. This simplification arises because

(1.47) is dependent on the product of a certain set of g(i), and not their ordering. Specifically,

the factor g(i) contributes the salne no matter frorn which scale (i.e., which f;) it originated.

Thus at any finite level n there is a finite amount of combinations that are achieved. This

can be observed by the f'ew recurring values assumed by m,,(x) in the interior "columns" of
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Fig. 4.1 1(a). If the multiple sum in (a.a8) is collected over the common values, then the sum

over the entire covering is, in fact, summing over all orderings to give the closed form

ze(trç, q I ry )= 
Æ, ñ#-ãllsll-," fr*r'r"''

This new sum is one over all "algebraic decompositions of n as a sum of n parts". Specifically,

all possible combinations of {c1 ,...,c,,} e Zl,such that li'=, ci = n

The exponential form of ZsQr*, q I ry) is shown in Fig. 4.I 1(b) for several choices of e.

Now fixing q,the behaviour of logZs(tiç,Q Ii) over loge is shown in Fig.4.ll(c). Here,

the scale variable loge is equivalent to -nlogllpll in (4.49). The scaling exponent r(q) can

be extracted by fixing q and computing the slope across log e . This derivative (for fixed 4) is

linear and dominated by Stir{ing's approximation for large factorials. The resulting r(q) as a

function of 4 is finally shown in Fig. 4.1 1(d). Even ín the general case, r(q) is a monotonic

function [75].

Remark 4.3. Note that the seminal paper on this partition formalism [75, Halsey et al., (1986)l

uses the same "inferred critical exponent" method of the Hausdorff dimension formalism. A

simpler presentation of the same is also shown on page 36 of Gouyet U0, (1996)1. Here,

however, the scaling of the partition function has been expressed more directly in analog to

the "box-counting" formalism, since this is more useful in practice. The main point to keep in

mind is the sequence of analysis:

(a) Begin with a given measure p;

(b) Extract the support, f)1;

Ch. 4: Scaling - ECG Features

(4.4e)

(c) For a sequence of e;, coarse-grain the measure with an e-covering, IUr,]: the finite

sequence lu¡ = ¡t(V,.)ii is calculated;
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(d) A partition function then expresses each coarse-graining as a smooth functional Zr(p, q I

9r,);

(e) The scaling of the partition function can be charucterized by a set of fiactal dimensions

estimated by the box-counting fbrmalism (-) and assigned to ¡-r.

4"5 Multifractal Analysis: Partition Entropies and
Thermodynamic Transformations

In the preceding section, an MFA of a fractal measure was defined in terms of the scaling

exponents of a partition function defined from the coiu'se-graining of the measure. It is a prop-

erty of the thermodynamics of partition functions, howeveï, that many different and relevant,

but dependent, variables can be extracted from the partition function. By using this change of

coordinate system, the scaling properties of ¡.2 can be expressed in any of several convenient

forms. In fact, the previous expression using the (q, z(q))-pairs is one of the least convenient

since it unbounded along both axes. Among these other thermodynamically conjugate vari-

ables are

(a) The Rényi generalized dimensions, D.,;

(b) The Hölder exponents, ø; and

(c) The Mandelbrot entropy, Do(u),

Ch. 4: Scaling - ECG Features

which are defined and used in the coming sections.

The end goal of the f'ollowing subsections is to formalize the two canonical expressions

of MFA spectra: the Rényi.fractal dimension spectrtLm and the Mandelbrot.f'ractal dimension

spectrum. It will be assumed throughout this section that a measure is well-defined and fractal.
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However, as described in the beginning of this chapter, the MFA method can be extended to

study the scaling behaviour of any ernpilical measure, multiplicative or not.

4.5.1 The Rényi Spectrum

As shown in the previous subsection, MFA is the characterization of a multifractal mea-

sure by the intrinsic scaling of a partition function as a tämily of fractal dimensions. This

family of dimensions is definecl through the behaviour of coarse-graining and a partition func-

tion analysis. From Ex. 4.5, it is clear thàt r(q) vs. ø can be very simple (i.e.,linear), but

unbounded along both axes. In that sense, the (q,'r(q)) "spectrum" is poorly behaved, because

it is not compact. The Rényi spectrum is an entropy-based manipulation of the Boltzmann

partition f'unction to create compaction along one axis. Historically, this method by Hentschel

and Procaccia [85, (1983)] actually predates the thermodynamic formalism. It is the first mul-

tifractal characterization that unified many of the previously defined fractal dimensions into a

well-defi ned smooth family.

To develop the Rényi spectrum, recall the Rényi generalized entropy, (3.42) from p. 95,

which is presented again here in discrete form

Ch. 4: Scalìng - ECG Features

l\ì(tHn(u) log ) u'!t_q "? r

Identifying the probability tt¡ = lp(V,)l for comparison to the Boltzmann partition function,

(4.31), one gets,

H,,(F,9,)=-- l t logZpQt,qlry,)
q- |

or

IogZBQt.,q lry) = -(Q - 1) H,r(u.,ry,)
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Now, by applying the definition of arbitrary tïactal dimensions, Def.4.1l, the fbllowing

one-parametric family of dimensions is defined:

Definition 4.L5 (Rényi generalizecl dimensions, Dn). The Rényi generaliz.ed dimensions are

the scaling exponents (i.e.,fractal dimensions) Dn defined from the scaling of e-Ho; that is,

e*p(-ar@,e)) - eD,

In the box-counting formalism, this is expressed as the slope of (log.,, -H,,(1t,9.,)) pairs over

a linear region. [n the notation used here, this is expressed by

-H,,(F,9,)uo = rogu

(Note that the exponential in the defìnition suppresses the log on the vertical axis/numerator.)

This definition for Rényi generalized dimensions provides the first canonical MFA spec-

trum.

Definition 4.16 (Rényi Fractal Dimension Spectrum). Let ¡t be a measure with support O1.

Let9, be an e-covering of ,Ç)1. Then the Réu,i spectrum (RS) of p is the function Dn : R. r+ R.

matching the Rényi generalized entropies to the partition function variable Q: Dq vs. q. The

variable Do is compact, bounded between,

i\
D-* = l lim D,,l > D,, , and (4.55)

\4+-æ I
/\

D* = | lirn D,,l < on (4.56)
\¿/+rc I

and is monotonic decreasing in 17. These dimensions are related to the Boltzmann critical

exponent r(q) as

Ch.4: Scaling - ECG Featu'es

(4.s3)

r(q) -- -DnQ - q)
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Fig.4.l2 Some analytic Rényi specÍa. The rnonofractal (horizontal line) is
the uniform Cantor measure (dp = Xc dx), and the curve is the [/3,0,213]-
weighted Cantor measure. They match at the box-counting dimension, (4 =
0).

-B-6-4-202A
s

thus replacing r(q) with a compact variable. In the case of uniform measures, such as the

Cantor set, the RS reduces to a single scaling, Dq = Do, equal to the box-counting dimension

[117, Kinsner (1994)][70, Gouyet (1996)].

The RS represents the "scaling spectrum of entropies". Examples of monofractal and

multifractal Rényi spectra are shown in Fig. 4.12. The RS has been a highly used and effective

tool within the University of Manitoba Signal and Data Compression research group.

4.5.2 Changing Variables: Singularities and Hölder Entropies

Ch. 4: Scaling - ECG Features

O = (l/3. O,r,rr/

As mentioned, the goal of refonnulating the scaling information of a measure's coarse-

graining partition function is to present a more compact form than r(q) vs. q. The Rényi

spectrum achieves compaction in one variable by transforming r(4) into D,,. The goal of the

Mandelbrot spectrum is to achieve a completely bounded representation (i.e., along both axes).

The transformation to the Mandelbrot spectrum is governed by the common thermodynamical
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relationships of partition functions: namely, the Legendre transform t70ltl0l.

The goal of this current section is to define a7 as the Legendre transform equivalent of

q (i.e., the domain valiable), determine a form of generalized entropy that can be used to

calculate a7 dftectly and provide it an appropriate fractal (l.e., scaling) interpretation.

From the definition of being "globally conjugate to q" in the Boltzmann partition formal-

ism, the variable ø7 is deflned, for given q, as 170, Gouyet (1996)l

ô
a7 = ^ r(q)

oq
ô

=-^ Dn(\ -q)oq

Theoretically speaking, this process is a change of variable az = az(Q) appiied to the r(q) vs.

q relationship after the scaling limit to small e has been taken. A direct approach, however,

would apply the derivative change of variable before the limit. To derive such a form, consider

the partition scaling Zs - 61(ø), and by taking logarithms and invoking the box-counting ratio,

one can write

Ch.4: Scaling - ECG Features

az(q) = -f- "{- rlgZsQt,q 1ry,)
Log€ oq

Now, recall that the direct form fbr the Rényi spectrum derived in the previous section is

1

Dn x -:-H,,(e)' 1096

where the Rényi generalized entropies of the Boltzmann partition function are HnG) = -(q -
L)-t logZs. (Here the shorthand ZB = Zu(lr,q I e) is introduced to save space, and will be

used consistently throughout the remainder of the chapter.) A similar representation can be

designed into the new t'ormalism if it is written that

Ioz@)x-, ^/o@,qlU)
tog €

where Tq(p,Q I ?.) is defined as below.

(4.s8)

(4.se)
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Definition 4.17 (Hölder Generalized Entropies, yq). Let a partitron Z(¡t,q I e) be the result

of a coarse-graining of a measure ¡r. Let q be an arbitrary real number. Then the Hr)lder

generalized entropy oforder 4 is the scalar value

TqQt,Ql .)'9 -*torZ(p,q I e) (4.63)
oq

For a Boltzmann partition Zs, this can be calculated by passing the derivative through (4.31)

v,@, e,, = Ðffi-loe lr¿(Y, )l

Units of Tq 'èüe measured by the base of the logarithm, just as with Shannon or Rényi general-

ized entropies. Thus the use of logr will imply the units of bits.

The express purpose of the Hölder generalized entropies is to provide an "entropy" for the

box-counting formalism in keeping with the pattern of the Rényi spectrum formula. The use of

the term entropy here is very loose and for convenience only. (The consistent feature of these

"entropies" is they are functions of log26.) Now, to help determine the fractal interpretation

of both a7 and Tq, a special case of local scaling in a measure is introduced'. Iocal measure

singularity, or Hölder exponents.

Definition 4.18 (Measure Singularity, a I70l). A measure pr has a local singularity of strength

a at the point x if the rnass of the local neighborhood V. scales with exponent a(x), i.e.,

Ch. 4: Scaling - ECG Features

llt(V,= x)l - 6"(x)

The exponent rz(x) is called the Hölder exponent of ¡t at x.

As can be seen by comparing (4.6.5) with (4.34), the Hölder exponent at x is essentially

a tiactal dimension of the Set A = {x} under the measure ¡r and the partition function g(u) =

(4.64)
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lal. In this sense the dimension ø is local to the point x and contains no information about

other points. Note, however, that for all Lebesgue measures pr, a(x) would be the integer

constant N, everywhere. The Hölder exponent is a quantitative interpretation of the Lebesgue

differentiability of ¡t atthe point x. If a(x) ) No, then ¡i is Lebesgue differentiable at r. It is

clear that any measure will have a family of singularities { ø(¡) | x e Qr } (though ø(x) may be

unbounded). It is a property of truly multiplicative processes that {ø} is in fact an interval in

R [75, Halsey et al., (1986)].

From the definition of Hölder singularities, it is now possible to derive an interpretation

for a7 and yn.

Proposition 4.19. The thermodynamic conjugate to Q, uz, rs a weighted average of the set of

Hölder exponents achieved by ¡t.

. Ch. 4: Scaling - ECG Features

Proqf. Substituting @.6Ð into (4.62), one then anives at

az(q) = -t- f :t'Vü-loe lr¿(%-)lL\ r' loge I L.v,Ut(V,)|" '

which when rearranged becomes

ç..' lp(V,)lq loe lp(Y,)l
L Zry,lp(v,)|" log e9,'
\-r lp(V,)l''x ) 

-UlXl

u Z'v,lP(v,)|",vr t

tr

Since, tbr a given q, the variable u7 has the interpretation of a global average Hölder

singuiarity, the subscript is dropped hereatier. Note that just as the value of q shifted the

sensitivity of the Rényi spectlum from small to large probabilities, here by ranging over all
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q,the weighting function shifts from the most singular to the least singular. Furthermore, the

extreme conditions

maxu(q) = ø(-oo)
q

mina(q) = ø(+co)
tl

are satisfied.

The global Hölder exponent ø is useful for the reparameterization of the Rényi spectrum

because (in useful cases) the extreme values above are bounded. Note that the lower bound

ø(+oo; is effectively greater than -N., which is the Hölder exponent of the Dirac singularity in

Re. In practical cases, the upper bound will also be finite ø(-*) < oo, though Mandelbrot has

demonstrated the limitation of the Halsey et al.Legendre formalism by designing a self-similar

measure with a(0) - oo and with ¡ and u undefined for q < 0 [134, Mandelbrot (1990)]. (This

was done in criticism of reserving the term "multifractal" for only the Halsey et aI. (i.e.,

restricted) sense.) For the purposes of this thesis, however, these pathological conflicts are

irrelevant. Just as the box-counting formalism is sufficient for the charactenzation of afractal

dimension, the "coarse-graining Boltzmann-paftition" fbrmalism is sufficient (but perhaps not

necessary) for the charactenzation of a multifractal.

4.5.3 The Mandelbrot Spectrum

The final requirement to compactify an MFA is to derive a thermodynamicai conjugate

variable to r(q). This new conjugate v¿uiable is, at once, both a new and old idea. As with the

Hölder singularities, the conjugate variable is obtained by a Legendre transform, and hence

Ch.4: Scaling - ECG Features

(4.6e)

(4.10)

Do=Qa-r(q)
ôr(q)

=q ôq -r\q)
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Note that the parameterization of De is most commonly expressed in terms of a = ø(q) and so

is written

for strong reasons soon to be explained. Parametrically, however, D6 can also be a function of

q.

The power of this "new" variable Do@) is its interpretation in the multifractal formalism. It

is, in fact, not a new feature requiring a new interpretation, but simply a Hausdorff dimension

of a very particular subset of Ç)¡ [75, Halsey et al. (1986)]. These special subsets are the

subject of the next definition.

Definition 4.20 ((Hölder) Equisingular Sets). Let¡r be a measure with support Q1 c RN". Let

ø € IR. be a Hölder singularity value of ¡.r. Then the (Hölder) equisingular sub,set,4,,, is the set

of all points in Ç)¡ with Hölder exponent equal to d'. i.e.,

Do = Dokv)
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A*={.r€Q1 lu(x)=s¡

By the details of its construction [75] in the multifiactal formalism, then, D6 is in fact

the scaling exponent of (N.(4,,))-t: i.e., the box-counting dimension of the equisingular set

4,,. Since Do@) is a Hausdorff dimension, no new symbol is introduced and the Hausdorff

dimension symbol D6 (consistent with the Rényi dimensions, D0 = Orlq=ù, is reused. This

rather involuted relationship of D0 and 4., is shown in Fig. 4.13.

Recall that the objective here is to replace r(q) with a conjugate bounded variable. The

variable D0 is therefore suitable. For. as a Hausdorff dimension, Ds is positive, so that Ds > 0.

(4.13)
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R

Fig. 4.13 The relationship of the Mandelbrot specffum to the Hausdorff dimension

of the singularity subsets.

Furthermore, since 4,, c Ç)¡, it follows that, [70, Gouyet (1996)]

PHr(A*) S l-tn¿$ù) Vd e lR+

- {rtlpn¿Ø-) = o}r ldlura@,) = o}

=+ inr {dl unaØ-) = 0) < inf 
{ 
dl uaa(at) = 0}

- 
þçr(!") < Do(Qr) S N.,

which demonstrates that Do@) is bounded above by &.
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Ðo(c) - ^Ds(Á")

ü

This completes the machinery fbr transforming the r(q) vs. q MFA into a completely

bounded multifractal fbrmalism. Here, this fully bounded spectrum is called the Mandelbrot

specrum2 [ 17, Kinsner (1994)).

Definition 4.21 (Mandelbrot Spectrum [1 17, Kinsner (1994)]). Let ¡t be a measure with sup-

portQl € lRN". Letalso A,,bethe(Hölder)equisingularsetof strengthø. Then theMandelbrot

€l-Hotoer
Singularity
Value

2In the literature, the Mandelbrot spectrum is most often called the /(ø) spectrum (which is unfortunately
inconsistent with the symbol used hele for a pdf).
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spectrunx (MS) of ¡z is the continuous function Ds : lR F [0, N,] satisfying

(The obvious dependence on ¡-r is suppressed to keep the notation of the left-hand side simple.)

The MS is completely bounded since { ø(x) | ¡ e Qr } for¡-r will (effectively) be a finite inrerval.

The MS captures the inhornogeneous scaling of ¡.2 by expressing the relative "density" (as

measured by the box-counting dimension) of the singularities of strength ø (as measured by

the Hölder exponent), and is considered the "spectrum of scaling indices" 12221.

This Mandelbrot spectrttm 1717, Kinsner (1994)l was originally conceived for multipiica-

tive cascades by Mandelbrot (1914) t70ltl54l and is the multifractal characterizarion derived

by Halsey et al.175, (1986)1. It is complementary to the Rényi spectrum and can be calculated

fronr D., and q by the Legendre transform 12221.

As with the previous change of variables, the change of variable to D¡(ø) from r(q) or Dn

is, theoretically speaking, on the MFA relationships produced after the scaling limit to small

e has been taken. As before, a direct approach, is desirable, whereby the change of variable

occurs on the partition function itself, before applying the limit. To maintain a symmetry

with both the definition of Dn and a, a generalized entropy is desired, whose scaling can be

measured by the box-counting tbrmalism. This is the subject of the next definition.

Definition 4.22 (Mandelbrot Generalized Entropies,Tr). Let a parririon ZQt,q I e) be the

result of a coarse-graining of a measule ¡r with support C)1 . Let q be an arbitrary real number,

and let Tq be the Hölder generalized entropy of order q. Then the Manclelbrot generalized

entropy of order 4 is the scalar value

D1lQt) = ¿l such that 0 < ltr¿(A,,) < *

Ch. 4: Scaling - ECG Features

(4.19)

' ' clcf'\' 
o(p, q I e) ; qyq}t, q I e) - logZ(¡t, q I e)
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Units of Tn are measured by the base of the logarithm, just as with Shannon, Rényi, and

Hölder generalized entropies. Thus the use of log, will imply the units of hits.

In particular, the Boltzmann form of the Mandelbrot generalized entropies is quite conve-

nient, as presented in the following proposition.

Proposition 4.23. For a Boltz.mann partition ZB and real q, the Mandelbrot generalized en-

tropies T,, have the expLicit.form of a Shannon entropy.

Proof. This can be calculated directly by the substitution of (a.64) and (4.37) into (4.80) and

the proper collection of terms. (Again, the shorthand Z6Qt, q I e) = Zp is used to save space.)

Begin with

r nø,,,r t e) = q(+ryroe k,(v,)t) - IogZ6

= 
[Ð ry Øberrrv'rr)) -bszg

= 
[Ð 

T 
i (togt¡t(v')t't)- ^"'

Ch. 4: Scalìng - ECG Features

By adding and subtracting log fu within the summand's second factor, as

ro!r,q, ., = 
[Ð ry (togl¡t(v,)lq -togft+ roszr)) -bgz6

(Ary:F"#.'"*,,)) -bsz6

a symmetry with l¡-r(V,.)l't 126 can be designed in the first term. Expanding out the second term

gives

rn,,, q, ., = 
[Ð ryi*VJ . [; ry),osz6 - toszg
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which reduces by the definition of .26 reduces to

= h ry!bg4g_,)tn'l+ rr) bsZs _ toszs
lî zs zB ) ' ''-ë-D

and deletes all but the first term

= Y lP(Y')lq ,onl¡(v,)lq/-t Z, ttt9 
-Zn 

(4.88)

Thus T., is an explicit Shannon entropy for all 4. Note however, that the discrete probability

measure analyzed here is 7- such that

( - .., us (i)

\u't\I) 
= ,,r*

and sol is a-deoendent.

As with the Hölder generalized entropies, the purpose of the Mandelbrot generalized en-

tropies is to provide a direct box-counting fbrmalism t'or the estimation of Ds from aBoltz-

mann partition. This can be established by considering the partition scaling 26 - 6r(ù, and by

taking logarithms and invoking the box-counting ratio, so that one can write

Ch.4: Scaling - ECG Features

u(i) = lp\)l yvì e ry\

I
r(q) = to*loSzo

and using (4.62)

I
a(q) = -;-To(Ze)log €

= qa(q) = -ql-y,(Zu)
log É'

which, when combined as in (4.71), produce

1

DoØ) = -"; (wrta,q I e) -tosh)
1

= -log-TqQt'q I e)

(4.87)
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F'ig. 4.14 Some analytic Mandelbrot spectra. The single point (star) is the
monofractal Cantor set, and the curve is the spectrum of the multifractal
g = U 13,0,2131-weighted non-uniform Cantor measure.

Thus a cotnplete formalisrn for the estimation of the MS has been presented using the

Mandelbrot generalized entropies. The analytic Mandelbrot spectra of some monofractal and

multifractal examples is shown in Fig. 4. 14. As can be seen, the uniform Cantor measure

appears as a point in (ø, Dç¡(a)) space, since it is a monofractal (i.e., defined from a cascade of

uniform measures). A multifiactal measure has a cap-convex curve, which, in the case shown,

has endpoints on the Do@) = 0 line. The (cornplete) boundedness of the MS is apparent.

With both the Rényi and Mandelbrot spectra for the characteùzation of an MFA defined,

the discussion now turns to the application of MFA to ECG.

Ch.4: Scaling - ECG Features

4.6 ApplicatÍon of MFA: ECG Time Senies

The preceding discussion has presented a complete overview of MFA. The question re-

mains, however, "How do these features apply to the ECG?" From the preceding, it should be

clear that this question is, effectively, "How should a coarse-graining be applied to an ECG?"

M. Potter

PHD-Study Scaling
- 185 - September 15,2008

Version 5.1.7



FEATTJRE CONVERGENCE UNDER ICA: FECG

There are two possible paradigms for the MFA of an ECG. The first uses embedding theory

t3l Il07l to define an ECG pseudo-attractor from which a measure is characterized by MFA

(Sec. 4.6. 1). This approach is consistent with the discussion in Ch. 2 about nonlinear sysrems

and the variability that can be sustained on their attractors. The second paradigm uses the

continuous wavelet transform Lo analyze the scaling properties of the ECG time-series as a

function over time. This so-called wavelet-transform ntodulu:s-maxitna (WTMM) formalism

was investigated and developed for inclusion in the thesis design, however, its full implemen-

tation was deferred to future work due to time constraints. To assist in this future work, a

description of the WTMM approach to MFA is included for completeness in App. D.

Consequently, the remainder of this chapter will focus on the analysis of an ECG pseudo-

attractor.

4.6.1 ECG Pseudo-Attractor as a Fractal Measure

As discussed in Ch. 2, the ECG is not a fully stochastic signal, yet its time-integrated

distributions can be statistically characterized (Ch. 3). Equivalently, the ECG does not have

a sfaightforward dynamical model, yet the dynamical method of attractor reconstruction and

characterization by MFA can produce useful results for ECG signals ll07 ,Kantzand Schreiber

(1998)11207, Small et al. (2000)1121l, Small et at. QA0\1. Note that onìy rhe conceprual

requirements for attl'actor reconstruction will be addressed here. The many details required in

a complete implementation will be left for Ch. 6.

The ECG x is, foremost, a random signal realized as a multidimensional time serìes, Its

cyclostationary structure, however, enables the definition of an ECG pseudo-attractor. That

is, the second-instance joint-pdf f(x1,ttixz,r2) has a very strong structure if the r¡ are in the

same cycle. In parlicular, it can be observed in Fig. 4. l5 that the constraints on the structure

are very nonlinear if tz - /¡ is on the order of a cycle (r. e., not so small that x(r¡ ) approximates

Ch. 4: Scaling - ECG Features
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Fig. 4.15 A scatterplor of rhe second-insrance joint-pdf of an ECG at time
positions within the one adult heart cycle (i.e., here a delay of 15.6 ms).

x(tù).The constrained structure of non-zero f (xt,tt)xz,tz) can be modelled as a manifold in

lRe x RN". This manifold is the suppoft of the probability measure defined by f . Itfollows

that ¡t¡ and its rnanifold is dependent on /¡ , t2, ãnd the signal r(r). The goal, however, is to

extract something intrinsic to the dynamics of the system, something invariant, rather than

so explicitly variable. To illustrate, the lkeda attractor will be used as an example of a true

-0.5 0 0.5 I
¡(¿) [m\¡]
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Fig. 4.16 Attractor Reconstruction: (a) Ikeda attractor; (b) Ikeda pseudo-attractor ftom the
{.x1} with N, = 2 and Az = 1.

00.5 1

rr(n)

attractor for charactenzation. Defined by the nonlinear system of equations,

x(n+l) = I +0.9,r¡(2)cos (r.O- - ---j-)\ t+xiQt)+,riØ)l

x2(n * l) = 0.9x2(rz) sin (n.O ---:j--l"^^'\" I + xltn)+"7fn¡)

1.5
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+
È

il

1.5

the Ikeda system represents a model of nonlinear laser dynamics. More importantly here, it is

observed that a seqllence of points x(n) satisfying the above can be observed as a scatterplot in

IRt by ignoring the well-ordering by n, Fig.4.16(a). This scatterplot represents the dynamics

of the system equations, since no extraneous variables have entered into it. It is a theorem in

nonlineardynamical theory that the measure¡.2¡ defined from this attractor lx(tù| can also be

reconstructed from the observation of a single observational variable [3]

ft) -u.5 ._

-0.5 0.5 1 1.5
xr(n)

{yo = )'o(x(rz)) | V¡r }
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More precisely, Taken.e' theorem [219, Takens (1981)]t1971 stares that an equivalent (diffeo-

morphic) measure H'¡ can be defined by an embedded pseudo-attractor manifold of the form

y(n) =

Yo(tt)

yç(n + Ln)

yo(n+(N"-1)An)

where N, is the embedding dimension of the pseudo-athactor manifold, and A¡z is a lag (here,

sample lag) of the embedding. Specifically, Takens showed that for an attractor with a man-

ifold of Hausdorff dimension De, a diffeomorphic equivalent ¡,r| exists with an embedding in

lR'& suchthatN, > 2Do+11219, Takens (l9Sl)1. Specifically, an MFA of theTakens pseudo-

attractor is the same as the MFA of the real attractor. This existence theorem, however, does

not specifically provide the means of determining N. and An.. Further work in embedding

theory has devised reasonable and tractable fbrms for estimating both N, and An l3l. For

comparison, a pseudo-attractor from the observation of the {-vo(n) = xt(n)} of the Ikeda attrac_

tor is shown in Fig. 4.16(b) with N, = 2 andlag Ln = 1. As can be seen, significant overlap of
the pseudo-attractor still exists, and a higher embedding dimension is required f'or the pseudo-

attractor than the attractor itself. This unfol.ding of the attractor is important, and is related to

the taiectory through the points on the manifbld (i.e., their well-ordering by time).

Thus, in imitation of this approach, ECG pseudo-attractors can be defined from a time se-

ries 'x(n) by deriving some sample lag An and embedding dimension N, by embedding theory

and thereby define a manifold equivarent ro rhe N¿th-instance pdf at times t¡ = t*(i-l)an. The

measure on this particular manif'old can be charactenzed using MFA as a scaling characteri-

zation of ECG [90, Huang (2004)]. According to the work of Huang, the ECG has embedding

dimension of N" = 7, making visualization of the manifold impossible.

e IR&
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4.6.2 Attractor Measure Coarse-Graining

Now that the measure ¡-r is implied on lR& by the set of sample poinrs {yl, it is desirable to

describe two implementations fbr defining the coarse-grained elements u¡ = lt(V,) required for

the partition function from these sample points. The first is the histogram teclznique, and, the

second is the correlation teclmique. The main difference between histogram based methods

and correlation-based methods is the pattern of the coarse-graining e-covering: be it homoge-

neously distributed in space (1,ø., histogram-based), or "naturally distributed" according to the

measure (i. e., correlation-based).

4.6.2.1 Histogram Coarse-Graining

The histogram coarse-graining of an irnplied pseudo-attractor is straightforward to con-

ceptualize and implernent. Cover the pseudo-attractor manifold with a single N"-dimensional

hypercube. Subdivide, fbr 7 = l, . , . ,"I the hypercube into 2N"i equal hypercubes indexed by i.

Thus, for each i, a non-overlapping e-covedng is created by the hypercubes, such that e x Z-i.

Then tbr each hypercube V¡(i), an estimate of Ltj(i) = p(V¡(i)) is made by relative fiequency,

that is

Ch. 4: Scaling - ECG Features

arn = ff YVi(i)

where N is the total number of sample points implying the pseudo-attractor, and Ni(i) is the

numberof samplepointsinthehypercube V¡(i). Itisclearrhar)¡N;(t) = Nforall j. The

histogram coarse-grained estimate of a Boltzmann partition function is therefore

2N" i

1rU,.,q le(r)) =\4'A>
i=l

2Nci

=Ð(T)'
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A visualization of histogram coarse-graining on the true Ikeda attractor is shown in Fig. 4.17.

As mentioned, histogram coarse-graining is straightforward to implement. However, it is

not necessarily the most robust, particularly because the estimate (4.99) is sensitive for small

hypercubes and large embedding dimensions l222l.It is preempted in the thesis design for a

more robust approach using the correlation-integral, as presented next.

4.6.2.2 Correlation Coarse-Graining

Another method of coarse-glaining an implied pseudo-attractor from data points {y} relies

on correlation between the sample points. Extending previous work by Grassberger and Pro-

caccia 172, (1983)1, Pawelzik and Schuster 1167, (1987)l described a method of estimating

Zsjl,q I e) by some ergodic "slight-of-hand". Assume that ¡t is positive, so that, tiom the

definition (Def'. 4.4), the Boltzmann sum can be decomposed as

Ch. 4: Scaling - ECG Features

zs1l, q 19,) = lwrv>t = luu) un-, (v)
ry.v

The fìnal form has the interpretation of an average of the function p't-t (V) weighted by p. A

more exact calculation with this interpretation can be written as [8-5][167]

ZnQt,ct lU,) = A{Un-t {V)l

where the V.(y) in (4. 104) are specifically the open balls centered on y. The form, in fact, is

well designed for an actual calculation by estimating p (V,(Ð) by the frequency of neighbours

around y. As such, this estimation of Zs is based on the clustering, or cr¡rrelation, of the

points y(n) in lRf . Since every point J must be considered as a centre, however, the covering

sets %(J) must naturally overlap.

= f uo-, (v,eÐ dp
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Thus coarse-graining by correlation is different in principle from the histogram technique

only because the expectation of (4.,l03) is coarse-grained by fixed-size cells of a different

type: correlation uses cells that overlap and ale nonuniformly distributed in space (but nat-

urally distributed on the measure support), while the histogram technique uses cells without

overlap that are homogeneously distributed in space. Specifically, the comelation method in

application leaves the coarse-graining balls centred on the data-points themselves, and so the

distribution of the e-covering sets is the same as the ECG measul'e itself. This equivalence of

distributions means each ball is ec1ually likely under an average, so that for all N points in the

atffactor, p (V,(JÐ = Pr (%(J)) = | lN . This simplifies (4. I 04) to the form

1-
zuQr,q Ii) = n}r '

i

where theí¡ are the mass of V,(tjÐ, and aTis used to identify the correlation form of the

Boltzmann paftition function. With finitely many points, thel¡ can be estimated by the ratio

of points in the ball to those outside, effectively

Ch.4: Scaling - ECG Features

N'
-_.tLT; _ 

-

' N- 1

(t \--r I
= lt; Ð 

tt' - lrY(i) - rorD,J

where E is the Heaviside function,
(

lo : r<o
I5(r') = 1 (4.108)

lt : r>0
(Note that the frequency ratio is normalized by N - I to avoid the self-counting of y(j) e

v,0(ù.)

All together, the conelation-based fonnula is

ilu(t, q t e,) =,i, ; [* Ð 
r,. - ry(i) - roil))
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which is an O(N2) calculation. This can be improved, howeve¡ because (i) E(e - lly(t) - JOll)

is zero with high probability, and so contributes only rarely; and (ii) E(e - lly(t) - y(f)ll) is

symmetric in i and j. Therefore, wise algorithrnic constructs can teduce the amount of com-

putation/comparison, generally at the cost of increased memory use.

Note that for the case q = 2 (Grassberger-Procaccia correlatiott dimension [72, Grass-

berger and Procaccia (1983)l), the power (q - 1) = I in (4.109) and the equation simplifies

into a double sum that counts all the pairs þ(i),y("r)) of distance less than e. In that case,

the efficiency of the algorithm can be greatly improved because, even as double counting is

removed, only the partial crtrrelation sr,nn (for every scale e) needs to be stored ìn memory.

Correlation coarse-graining is, in fact, preferred for ECG attractor analysis over histogram-

based coarse-graining, since it performs better in higher-dimensional embeddings. This better

performance is a result of superior dynamic range 1222,Therler (1990)1, meaning the coarse-

grained measure is approximated better at smaller scales and lower densities with the finitely

many points available.

4.6.2.3 Theiler Correctton to CorreLation Cr¡arse-Grainings

From the previous sections on the two different coarse-grainings, it should be clear that

the Boltzmann partition function can be calculated from either a histogranx partition (HP)

ot correlation partition (CP). To review, the Boltzmann paftition function estimate for an

attractor represented by the points y(n) e lRN" is

Ch. 4: Scaling - ECG Features

f"o : 1B,,", q l.v,) = z!:ï' 1,', (r)

l.r, Îu(p, q t ry,) = ¡ y!17t¡,'-,
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Fig. 4.18 Time-conelated neighbours: (a) trajectory of Ikeda first cornponent; (b) trajectory
of a chaotic Rössler z-component (in log scale); Both trajectories have a small time interval
marked to identify time neighbours. (c) 2D Ikeda reconstruction; The time neighbours (stars)
are scattered throughout the attractor. (d) 2D Rössler reconstruction; The time neighbours
(stars) are correlated and along the trajectory flow.

where Ñfy = N is constant for all e, while N(ry) increases to ¡/ as € --+ 0, and
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represent the number of points appearing in the ith set in the e-covering for the HP and CP

respectively. Note the exclusion made in the CP case of (4. I 12) to avoid the self-counting of

y(i) e V¡(e).

Depending on the natural conelation of the tirne series sequence 1'ff) that reconstructs the

(d)
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Fig. 4.19 Theiler con€ction for time-comelation: All points in the balls surrounding the left
centre point (dark solid) contribute to the CP, because they are not time correlated. The two
grey solid points in the largest ball around the right centre point (dark solid) should not con-
tribute to the CP because they are adjacent to the centre point in time. (i.e.They are neighbours
on the flow.) Setting the Theiler window Wr 2 2 will exclude them from the calculation.

embedded {y}, the avoidance of only self-counting may degrade the CP estimates. Theiler

1221, (1986)l analyzed the correlation integral (CP under Q = 2) scaling and determined a

bias is introduced by the counting of points y("r) e %(e) that are neighbours in the time series

itself; i.e., where lj - i I is small. This natural clustering of time series neighbours is dependent

on the amount of natural correlation in the times series, as shown in Fig.4.18. Here it can

be observed that the embedding of an Ikeda trajectory scatters time series neighbours widely

throughout the attractor without clustering, while neighbours from a chaotic Rössler trajectory

do cluster in the embedding. This clustering property of a dynamical flou, [3] introduces the

bias in the CP. The solution recommended by Theiler t22ll[222) is to increase rhe exclusion

criteria in (4.1 12) to apply to neighbours and not just self-counting. That îs, aTheiler window,
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W7, is specified so that

¡¿, = lltyÇ) eV¡llj - il > Wi.)ll

It is clear thatWT > 1, and the original estimate is achieved by the equality. Ref'erences [22],

Theiler (1986)11222, Theiler (1990)lll08, Kantz and Schreiber (1997)l can provide insight

into proper selection of W7. Using a Heaviside form like that of (4.101), this adjusted form of

Ñ, can be expressed by limiting the sum as

ñ,(.) = I E(e - lp(j) -r(Ðll)
li-il>wr

A schematic of the motivation and effect of the Theiler window is shown in Fig. 4.19.

As a consequence of the excluded points in Ñ,, however, the normalization in the relative

frequency estim¿ìte otl¡G)requires further modification, as well, yieìding

Ch. 4: Scaling - ECG Features

wherc

Nwr=ZWr-l (4.116)

Before the next section, where the conseqllences of all these adaptations to the conela-

tion partition are presented in the context of the Rényi, Hölder, and Mandelbrot generalized

entropies, the equations for the calculation of Boltzmann partition function from a CP are

(4.tt3)

(4.r14)
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summarized as

Nwr=zwr-l

¡ø,(u)= I E(e-lly(,¿)-J(,)ll) Vi
lj-il>wt

=ñ,u;(e\ = Vi
¡¡ - Nwr

, ñ(\\ 
=,1-lluQ',q lU,) = i )_,,r, (e)

l=l

where, as before, Ñçy = N and N is the number of points in the embeclding {y} c R4

4.7 MEA Spectra: DÍrect and Indirect Forms

The preceding sections of this chapter have presented a unified and rather straightforward

pedagogy for the MFA of an attractor measure by observing the scaling of a Boltzmann par-

tition function or some related entropies. The historical development of these ideas is much

less straightforward. Monofractal approaches for different fixed values of q were developed

independently using HP, CP [72, Grassberger and Procaccia ( 1983)], and other techniques [70,

Gouyet (1996)1. Legendre transform relationships between thermodynamical variables, such

as the Mandelbrot spectrum, existed early on in the literature [70], but their value were not

recognized in the literaturc until much later after a "unification of fractal dimensions" under

the Rényi spectrum formalism [85, Hentschel and Procaccia (1983)]. This unification, how-

evel, assumed an underlying histogram partition. The Rényi spectrum formalism was later

generalized to estimates from comelation partitions [167, Pawelzik and Schuster (1987)]. The

seminal paper on the Mandelbrot spectrum as an experimental approach came slightly ear-

lier, [75, Halsey et al, (1986)]. Last of all, Chhabra and Jensen [39, (1989)] discussed the

estimationof theMSdirectlyfrom (4.62) and(4.94). ArecommendedreviewonMFAthat

Ch. 4: Scaling - ECG Features

(4.111)

(4.1 18)
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covers most of this literature, (and a great source of refèrences, mathematical notation, and

introdtrction to fractal analysis) is [222, Theiler (1990)].

The pedagogical approach taken in this exposition of MFA theory, however, emphasizes

the elements of (i) partitions (coarse-grainings) of a measure, and (ii) estimation of MFA

by the box-counting relationship of a function of the Boltzmann partition function, B(Zù,

informally called an "entropy". In this synthesis of the literature, it becomes clear that a

missing formalism, namely a direct MS from a correlation partition, has not been discussed.

The following sections discuss further the distinction between direct and indirect methods, the

mosaic of possible fbrmalisms, and derives the novel direu correlation partition Mandelbrot

spectrum (DCPMS).

4.7.1 2 x 2 Mosaic of MFA Formalisms

Previously, this chapter has covered the two equivalent multitiactal formalisms that are

used for MFA characterization: (i) the Rényi spectrum fbrmalism, Dr, l85l which is based

on the generalized dimensions derived from a family of q-th order Rényi entropies; and (ii)

the Mandelbrot singularity spectrum formalism, Ds(ø), [75] which is based on equisingular

subsets of Hölder singularity a.3 The spectra are significant for different reasons.

The Do formalism is important because it (i) is the landmark unification and extension of

the various historical fractal dimensions defined previously by Mandelbrot and others, (ii) has

an intuitive interpretation fbr positive integral q regarding q-tuple correlations (Grassberger,

1983) 12221 U 16l, (iii) has the nice property of existing in the ¿-(R) function space, and

(iv) provides a template for the estimation of an MFA by the box-counting formalism of a

generalized entropy.

Ch.4: Scaling - ECG Features
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The D¡(ø) formalism is preferred, however, since it (i) describes a multifractal as a union

of interwoven monofractal sets, and therefore has a "naturally intuitive" interpretation [39],

and (ii) also provides a functional form with compact support (in practical situationsa).

As mentioned, these two spectra are thermodynamically related via a Legendre rransþrm

identity [75, Halsey et al. (1986)]1222, Theiler (1990)1. Though the Dç(ø) formalism has rhe

preferred interpretation, Halsey et al. [75, (1986)] only considered these variables indirectly

attainable from experimental data and calculated them through the D,, formalism (4.54) via

the Legendre transform identity 12221,

a(q,Dq)=-f;O-Q)Dq

Ds(q, Dr) -qu + (l - q)Dq

instead. Applying these equations to derive (a, Ds(a)) fiom (q, D,,) (or the reverse), is con-

sidered an indirect calculation of the MS (RS, respectively). Due to the nonlinear nature of

the transform, however, it is difficult to transfer confidence intervals or uncertainty estimates

between the spectra when numerical data are used.

The previous sections have also described direct methods for MFA, whereby the MFA of

an attractor is estimated by

(a) a scaling collection of coarse-grainings (or partitiorzs), which defines in turn

(b) a scaling collection of partition functions (or scaling collection of entropies), whose

(c) scaling exponents are extracted to, ultimately,

define a fractal dimension spectrum. A partition, as it used here, is a coarse-graining with open

sets of equal size, V r, and thus is a more practical form than a general coarse-graining. The two

Ch. 4: Scaling - ECG Features

a c.f. l3al for a contrived counterexample.
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Rényispectrum D,t

Fig. 4.20 MFA theory "mosaic": the organization of traditional multifì-actal spectra thermo-
dynamic formalisms,

distinct techniques to defining partitions on the attractor were also reviewed: (i) a histogram

partitioning (HP) of fixed-size boxes that is non-overlapping and uniform in space; and (ii) a

correlation partitioning (CP) of overlapping fixed-size balls nonunitbrmly distributed in space,

but naturally distributed on the attractor (i.e., equally likely). The simplicity and speed of HP

technique naturally lends it to the origin and instruction of multifiactal methods. It also has a

simple interpretation as a histogram estimate (of size e) of the attractor's probability density

function. Howevet, the convergence of HP tends to become inefficient f'or attractors embedded

in high-dirnensional spaces [74, Greenside et al. (1982)]. CP, on the other hand, is prefèrred

for high-dirnensional enibeddings, because it has better dynamic range than HP 1222,Theiler

(1990)1. (This rneans the attractor density is approximated better at smaller scales and lower

densities with fìnitely many points.) Thus, though the CP is computationally expensive with a

native O(Nz) algorithm complexity [67], it is the more popular rechnique in applied research

when the attractors ¿Lre embedded in higher dimensional spaces.

Between these two spectral tbrmalisms and these two partitioning techniques, a "mosaic"

of multifractal theory is generated, as shown in Fig. 4.20. The literature, however, has a gap

Hentschel & Procaccia
(1983) [HePr83]

lndirect Halsey ef a/. (1986) IHJKP86]

Pawelzik & Schuster
(1987) [PaSc87]

Mandelbrot Spectrum Do(a)
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in their theoretical combination. CP was originally developed t85l (and extended [167]) for

the Dn formalism, but can also be indirectly transformed to D6(ø). A direct formalism for the

Do@) singularity spectrum was defined from first principles [39], but only in the case of a HP.

As such, the theory of a direct Do@) calculation from a CP remains incomplete.

In the course of this work, the novel contribution of a direct Do@) formalism under the

assumption of a CP is made, filling the missing piece in Fig. 4.20. This novel technique main-

tains the sound interpretation of the Mandelbrot spectrum, provides an efficient estimation

of numerical uncertainty, but also allows the dynamical range of the correlation integral to

enhance the calculation from finite data in higher-dimensional embeddings.

To proceed, a more in depth review of Chhabra and Jensen's direct MS under HP will be

presented to motivate the derivation that follows.

4.7.2 Motivation: Direct MS from Histogram Partitions

Using the Legendre transform (4.121) and (4.122) [75] or more numerically robust forms

12221, it is possibie to calculate the singulzuity spectrum Do@), with its elegant multifractal

interpretation, from an experimental D,,spectrum. This process, however, introduces further

numerjcal elf'or, can obscure phase-transitions, and also makes it very difficult to estimate

uncertainty estimates. Chhabra and Jensen [39, (1989)] derived a direct formula in order to

specifically define uncertainty estimates on empirical Ds(a) spectra. Their formula and its

interpretation was derived from an independent set of first principles based on the Shannon

entropies of a q-ordered family of measures p(q,e¡ = {u'!(e>lL,"l@|. From rhis a priori

definition, it followed that their result must be consistent with the Legendre transformations

of Hentschel and Procaccia's D,, formalism. Their direct result is equivalent to the set of

parametric equations (4.62) and (4.94) reproduced below in the f'ormal sense with entropy

Ch. 4: Scaling - ECG Features
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substitutions

zs(e) = \uiG)
i

-v.,(e\a(a\=lim '"'
E_o log 6

I \--1 a?(€)
=lim - ) Ilos¿¿,

e-olo$e4ZnG) u ¡

- t,,(6)
Do@) = linl+

É+U lOg 6

I -- ¿/'/(€) u'!G)
=lim-) '" 1oq ''e-ologe4Zs(e) "ZnG)

The singularity spectrum Do(¿) is thus the parametric relationship of a and Ds(a) via q.

Note that, notwithstanding the mathematical complexity of scalin g"*" in the fbrmal sense,

(which includes the limit e --+ 0 and an inf), or its awkward circumvention by the box-counting

estimation "È", the Legendre transform can ffictively be applied to both sides of the relation-

ships (4.54), (4.62), and (4.94). That is, the Legendre transform (with its derivatives) of the

formal limits (r, a, and D6) can be estimated by the box-counting f'ormalism of the Legendre

transform of the entropies (Hq, Tq, and To). This calculation process can also be exploited to

obtain from (4.1 20) the direct (parametric) form of D¡(ø) under the assumption of a correla-

tion partition.

Ch. 4: Scalins - ECG Features

4.7.3 Derivation: Direct MS from Correlation-Integral Partitions

(4.r23)

(4.t24)

(4.12s)

(4.126)

(4.121)

Now the novel direct Do@) formulation from the conelation partition will be derived. The

same procedure of applying the Legendre transforms (4. I 21 ) and (4. 122) to both the partition

entropies and the spectrai variables is used, but the process begins from (4.120) on p. 198.

Thus, using the shorthand îu rcrthe complete Boltzmann partition function lr|r, q I U,)
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of (4.120), it is clear that (4.121) requires from (4.120) that

ã(q)- #*,,"r[*Ï'4,'-",nJ G28)

r r t1'1i'-'(r) == ro, u F à ãa 
log ra(e) (4'12e)

Furthermore, dropping the obvious e dependency, and substituting (4.129) and (4.120) into

(4.122) produces

I
Do@) È 

-
tog 6

Ix-
log e

1x-
log e

(t^nl''

1s
¡¡L

r=l

,ñwr\-r
¡v1

li
N1

I:

ñs¡I
l=l

ñw¡

N(r)-\r ú/¡)-L:
1=r 2

/) =q-lt Lt¡

,Zn
t¡ =a-lt Ll¡

Zg

and by adding ancl subtracting log T¡¡ in tt'te summand's second factor

- 
", 

.--1- + 

rä' 

* (,orr, - beã * ,,s?,) - beñ

I I t{, 1,'-' ( 1,0 I :
=,r L+llog= +lo926l-logZsloge.,-_, zB\ z; ")

which expands to the three terms

^u- |
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Lt¡

ZB
aj

1,)

/)

ogL

o$Lr

^A
! Ll¡

(q

- loi

- loi

-log

og

og

:
\Zn

,,zs

Zntog

=#[#ä+*+).(*
which then reduces by the definition of Zs to

- I - ñt'vt =q-t =s \= I l-1 Y Lrog+1.(r)rog z¡1-bsãlrogelNâ ã "z)
- , ñf.Vt =q-l =qI I ù,'¿¿¡ , Lt¡È;-- ). ^ log:-

l¡p 6 l\t L-/^"b - " i=l ZB Zs

(4.r30)

(4.r3t)

(4.t32)
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These new results can be cast in the same box-counting entropy form as the HP direct

results, yielding

I =.,alq) N -, T,r\€)log 6
l^
l-

DoØ) = -iTo(e)log 6

where the entropies specific to the CP Boltzmann partition function are

=., . dc, -l g'1,n-'(u). ^
lnQt,q I .) = ¡u à Za 

logã¡(e)

, ñrl,t =tt-l , =q .

f,rr,nl .)e+t';-9":.ep
i=r ZnG) ZeG)

Theequations(4.140)and(4.141)arethenewresults. Itisparticularlyimportanttonoticethe

asymmetry in the exponents of the 1, in (+.1 4l ) as compared to the completely symmetric HP

case (4.121). As a result of this loss of symmetry, (4.141) is no longer an explicit Shannon

enfiopy. It is recommended for future work that more analysis be done on the effects and

interpretation of the asymmetric form of f in (4.141). Recall that the benefit of using these

new direct forms is that uncertainties from the slope-fitting of the box-counting estimation can

be applied to the Mandelbrot spectrum variables.

The application of these techniques, including a simultaneous estimation of the Rényi,

Hölder, and Mandelbrot generalized entropies, is shown in the next section.

4.7.4 Example of Complete CP-based Attractor MFA

Ch.4: Scaling - ECG Features

(4.138)

(4.r3e)

To demonstrate the validity of the new direct CP-based MS, and also to demonstrate its

benefits, an experiment with the Ikeda attractor is now presented. A sequence of N = 96x2t0

points were drawn from the Ikeda map. The .r1 corrporlent (4.95) was then lag-embedded into

R.5 with a lag of An = L A CP was applied to the reconstructed attractor for e e l2-2,z-el with

(4.140)

(4.r41)
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o

T
I

Fig. 4.21 Entropy scaling of 5D Ikeda pseudo-attractor reconstruction: scaling plots of
(a) -HoG) vs. log 6, (b) -7,¡G) vs. log e, and (c) -T,r(e) vs. log 6 over the scaling region
€ e l2-4's,2-21. Approximating the D,, and D¡(ø) specrra by fitting the slopes in (a)-(c), the
calculated spectra are shown inFig.4.22.

Wr = | to prevent self-counting only, since the Ikeda map trajectories are highly uncorrelated.

From the CP, the generalized entropies were calculated and are shown in Fig. 4.21, Numerical

line-fitting to the equations produced a good slope estimate for q = (-2,...,1) over a scaling

region of about 2.5 octaves. The slopes of the linear fits in Fig. 4.21provide the experimental

estimates of the D,, and Do@) multifractal spectra, and also estimates of their uncertainty. The

slope value is taken from a minimum absolute deviation fit [180, Sec. 15.7], but the uncertainty

in the slope is measured using the least-squares estimate [ 80, Sec. 15.2] fbr simplicity. The

line was fit to the fïnctions in the scaling region common to all three direct entropies of

Fig.4.2l, and the red lines in the fìgure indicate the scaling interval endpoints. Note that

fbr 4 e 10,21, the scaling of the entropies persist below the chosen interval. The limited

scaling range for other q is consistent with the increased statistical sensitivity that occurs for

small and large Boltzmann probabilities 7¡ that are weighted by these q. In order to provide

a sufficient scaling region f'or the large lql used in this experiment, the number of samples N

used in defining the Ikeda trajectory was chosen quite large. (For example, an estimation of

only the correlation dimension, Dnlr=r, could use a much larger scaling region, or many fewer

-8 -6 -4 -2
log 2(€)

_õ

I
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2.5
Interval 0.O44I94 0.25

o

1.5

(a)

Fig.4.22 MFA of 5D Ikeda pseudo-attractor reconstruction: (a) Rényi spectrum direct frorn
the CP with errors; (b) Mandelbrot spectrum direct from the new CP formulas with errors
(dark solid). The indirect forrn of Do@) through the Legendre transform of panel (a) is also
shown (grey squares). The new direct MS technique is in agreement with the classical indirect
technique. Note that errors are estimated from the linear' fits in Fig.4.2l and are not abso-
lutely representative. They do indicate, however, the non-uniformity of the uncertainty in the
spectrum values.

points.) Further research is required to identify the minimal number of points N = N*¡,(e, 4)

that would be required to maintain a scaling region. (In all likelihood, the effective functional

form of Nn,i,,(€, 17) is not universal, but unique to each attractor.)

The Rényi fractal dimension spectrum D,, is shown in Fig. 4.22(a). The least dense por-

tions of the attractor, weighted more strongly for q < 0, exhibit a scaling dimension D,,that

surpasses 2. At the other end, Dn drops near 1.5. Since the Ikeda attractor has a fractal support

in the plane, it should have a Hausdorff dimension strictly less than 2. Thus the estimates

Dolo=,, roughly around 1.8, and Drlo=r, roughly 1.64, are consistent with the theory. The

smallest uncertainties are in the interval q € 11,2f , and as lql increases, so does the uncertainty

in the dimension estimate.

Ch. 4: Scaling - ECG Features
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The Mandelbrot singularity spectrurn D6(a) is shown in Fig. 4.22(b).Ir has the rraditional

cap-convex form, and is supported by Hölder exponents ø e I l, 3.5]. The maximal exponent

Do@) is in agreement with Dnlr=', around 1.8. Since the MS is estimated parametrically, error

bars are applied both horizontally and vertically. As with the RS, the smallest errors occur in

the micldle of the curve, near the cap. The most singular portions of the attractor (q > I) appear

to the lefi (small ø), and notwithstanding large errors, this has positive dimension D¡(ø). This

is not a conclusive f'eature however, since it is not taken in the limit of q ---> oo, (max Q = i).
Estimates for least singular sets 4,, appear on the right (q < 0) and are actually reported as

negative, with very large error bars, which rnay indicate that D¡¡(max a) would be near zero.

To validate the new direct MS calculation, the D,,curvein Fig. 4.22(a) is transformed using

the Legendre transform (4.121) and (4.122). This indirect estimate for the Dç(u) spectrum is

shown in Fig. 4.22(b) as grey sqllares. This curve does not have a simple uncertainty estimate

as does the direct technique. Note that the Do@) estimate provided by the new f'ormulae is

consistent with the indirect transform approach.

It should be emphasized however, that the error bars in Fig. 4.22 are a convenience and do

not mathematically represent an absolute error for the fractal dimensions. The box-counting

formalism, which measures an exponent by the slope of a linear scaling region (in a double-

log plot), is known to have a complicated and significant bias as an estimator of the "true"

dimensions (using either HP or CP) t71, Grassberger (1988)l[108, Kanrz and Schreib er (1997)

Sec' 11.3.1].5 Instead, the error bars shown here are a useful representation of the goodness-

of-fit of the box-counting slope. Since the multifiactal spectra consist of many slopes, and the

curvature properties of the scaling entropies in Fig. 4.21 are not unif'orm, confidence in these

estimates is not homogeneous. It is emphasized in the literature [108][222) that a scaling

5Other estimators, such as the Hill estimator, ale consitlered bettel power-law estimators in a statistical sense,
buttheseapplyto samples.fromapower-lav,distribution,ancìnotvaluesof apower-law¡trnctiottitselt.
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region must exist for any credence to be placed in an MFA, yet the practice in research to

justify and display this region is less than inspiring. This work will attempt to justify a scaling

by a visual inspection of all entropies. Since the number of these figures can be overwhelming

when convergence is being considered, it is a convenience to at least represent some useful

measure of confidence in the spectrum itself. Thus, an indicator (in the spectrum) of a poor

scaling region (in the entropies) would be consistently large error bars throughout the entire

MFA spectrum. These error bars are, therefore, useful in a relativ¿ sense. This is particularly

important for an analysis of convergence in an MFA.

The next section discusses how the convergence of MFA spectra can be evaluated quanti-

tatively to provide SQMs for ICA.

4.8 MEA-Based Separation Quality Metrics

The goal fbr defining these ECG scaling f'eatures is to charactenze the convergence of

ICA estimates to the original signals, which requires relatit,e measulements of these features.

As described in Ch. 2, the key f'eatures under investigation a-re those of the fètal ECG (i.e.,

the source component of the weakest observed signal). This thesis is specifically, therefore,

looking to compare the fractal spectra of the true fetal ECG signal (RS,, MS,) to that of the

ICA processed signal (RSa MS,). This is approached in two ways: (i) relative mefrics of MFA

scaling, and (ii) the MFA scaling of relative metrics.

4.8.1 Relative Metrics of Scaling Spectra

Ch.4: Scaling - ECG Features

The Rényi and Mandelbrot spectra have been defined as multifractal features. The goal

here, however, is to use these features as performance metrics for the separation of a signal

into its independent sources. This requires relative scaling metrics to be defined from these

features.
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The sirnplest relative multifractal metrics involve the use of error metrics on the d.ifference

between the spectra. That is a "relative metric of the MFA scaling spectra", such as

¡',[n,]=lq-r,lo

as a real function over q with p ) 1, or as a scalar

.,ulo,l= (Í lî,- ,,,1n or) iR*, p > r

among even others such as

n- [r,] = 'ïo l4 - ,,1 . *-

Since the consideration here is the convergence of enor metrics, any of these behave equiv-

alently on the smooth Rényi spectra.6 Different values of p simply change the shape of the

convergence profile. For simplicity sake, ÑIOr] will be chosen fbr its Euclidean charac-

ter and n- [rr] will be chosen since that is the natural norm for the space of Rényi spectra

(which are bounded functions on R). These are used in Ch. 6 as MFA-based SeMs under the

acronyms MSE-RS and CHE-RS respectively.

How to express the convergence of the Mandelbrot spectrum is more ambiguous, since its

support in ø is variable. One could use the parametric form in q and thus describe

Ch. 4: Scaline - ECG Features

t\,,ta,Dol = )lAø - notÐ| * )laro - o(,Ð1,'

as a real function over q with p > l,

n,þ,Dor = :Ålñø_

(4.142)

(4.143)

6Ïleoletically speaking, that is. Estimateci RS may not be as smooth.
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It is also possible to have

n- [ø, Dof = ] ,uo lñø - on@l* I ,op larq¡ -ø(q)l e R*
t tr I I t u

This is much less intuitive than the RS formulation.

4.8.2 Relative Multifractal Spectra

Another method for the calculation of MFA convergence is the "scaling spectra of relative

entropies": that is, the scaling of a relative partition function is analyzed. This is feasible

considering the relationship of Rényi entropies H,, and dimensions D,, to partition functions.

The reader has already seen the generalized Kullback-Leibler divergence (Def. 3.20), here

written in discrete form

\nyyn (u¡ lluz) = ¿L", Ð ",r, (ffi)

Ch. 4: Scalìng - ECG Features

If the relationship of Rényi generalized entropy with the Boltzmann partition function,

Hq(1r,9,) = fr t"t Z¡¡(1t, c1 | 9,)

is extended to a relative case, namely

lltxr-,i(#r llpz,9,)= + bgÐ176Qt1,uz,QlUu) Ø.150)t-q

then between (4.148) and (4.150), a "relative Boltzmann partition" Ð7zs(pt,lt2,e 19,) canbe

defined as

(4.141)

Il7¡¡(tt1,uz, Q) = Ðr{t) (ffi)t 
'

i

By analyzing the scaling behaviour of coarse-grainings ,7zsçtt, [tz, Q I 
q) - .rri(c) ¿s has been

described in this chapter, an entire class of relative scaling metrics can be defined.
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Definition 4.24 (Relative Rényi Spectrum [48, Dansereau and Kinsner (2001)]). The relative

Rényi dimension specftum is the characteristic function (q,\lo) of p1 and p2 defined from the

scaling (linear log-log relationship)

o, -l logll7sQt1,ltz,Ql9r)
'iD't l-q rtg.

Since the MS can also be estimated directly from entropies under a histogram partition, a

similar approach can be made for a relative Mandelbrot .rpectrum.

Definition 4.25 (Relative Mandelbrot Spectrum). The relative Mandelbrot dimension,ypec-

trum is the charactelistic function (!1,,,1ìD0) of ¡.r¡ and ¡-r2 defined from the scating (linear

log-log relationship)

I -- /lLltr¡)1ø-' ",
!r,,(ø) = # T,p, r^¡>ffi!,, w¿,", #ffi

I - 
luv.t¡rl1't-t (p(v,(¡ù\q-l

ffio"(q)= # T, u, rr,øtffi w,lrr, ffi}*,
forallq€R

VrTelR
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For the case of identical measures, ,TzsQtt,ltz,cl)ly,=tr = 1, and hence nD(t 0 V q or

(!1,,, Tl¿,,) = (0,0).

For a scalar measure, norms can be used to express the magnitude of these functions, such

(4.ts2)

sup l!1,,(4)l + lnr.'(q)l
q

or

sup lrr,l
q
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As powerful and interesting as these methods may be, they are directly enabled by the

cotnmon partitioning of the two measures. That is, the same €-covering is applied to coarse-

grain both measures simultaneously. Since HP is established in the context of the embedding

space, this is easily applied. Correlation pafiitioning, however, is not uniform in the embed-

ding space, but follows the manifold of the attractor itself. While this has the many benefits

described in the earlier sections of this chapter, it makes it very difficult for the partitioning to

be common to both measures. Since the e-covering is centred on the samples of the attractor

themselves, then considerable expense must be made to simultaneously reconstrLrcted the at-

tractors, and count the probabilities fr from the first attractor's point y(i), from the points J'(j)

in the second attractor that are near it. It is beyond the scope of this work to develop such an

algorithm. It is recommended, however, that this be explored in future work. To assist in this,

App. C, contains the details of the curent developed CP algorithm for the calculation of the

Boltzmann partition l¡as a starting point. (The code in electronic form is also available for

download from www. ee . umanitoba. ca/-lcinsner/proj ects/.)

A consequence, howevet, of (i) the high-embedding dirnensions required for ECG MFA,

and (ii) the central focus of CP in this work, entails that the application of histograrn-based

relative MFA spectra is inappropriate. Thus, at least at the current level of investigation, SQMs

for the convergence of ICA using MFA must focus on relative metrics of scaling spectra such

as Ap [.] and Ç [.]. Further discussion of the application of these metrics will be presented in

ch.6.

40.9 Summary

Ch.4: Scaling - ECG Features

This chapter has presented the background required to define and understand multifrac-

tal features of ECG for the use as SQMs. Attention has focused here on the application of
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correlation-based partitions to reconstructed ECG attractors. (Another time-frequency ap-

proach to ECG MFA is briefly reviewed in App. D, but is not implemented in the experiment

design.) This attractor formalism emphasizes the cyclostationary variability of the ECG dy-

namics.

One contribution of this chapter is its non-conventional approach to the synthesis of MFA

theory. In general, the synthesis of the background is pedagogical and not historical. First,

the scaling properties of general measurement provides a motivation for the consideration of

chancterizing scaling. Second, all discussion of fractal scaling was presented in a measure-

theoretic sense. Third, the concept of MFA was defined as generally as possible through the

scaling exponents of a partition function of a coarse-grained measure. From this perspective,

the similarities and differences of the Rényi and Mandelbrot fractal dirnension spectra are

most clear. Specifically, the Hölder and Mandelbrot entropies are introduced to amplify the

consistent formalism for direct dimension calculations. Fourth, the application of MFA to the

chatacterization of ECG is described in the context of analysis of a reconstructed attractor

from a time series.

Another contribution of this chapter is the derivation of the direct Mandelbrot spectrum

from a corelation-based partition ftrnction. A specific review of the literature to identify this

missing element of MFA theory is included. In the context of the previous background, the

derivation is a simple adaptation to the deflnition of the Hölder and Mandelbrot generalized

enffopies. It is of particular interest that the correlation-based Mandelbrot entropy, 4(u), it

not an explicit shannon entropy (though its histogram counterpart To(e) is).

In practical terms, this chapter contributes to the experimental work the mechanics for

the calculation of a complete correlation-based MFA. Summarized in Table 4.l, these formu-

lae involve the calculation of entropies from point-correlations on the reconstructed attractor.

Ch. 4: Scaling - ECG Features
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Fractal dimensions arc estimated by the slope of a linear scaling region, and not in the limit of

small e.

The second practical contribution of this chapter is the identification of the impofant rel-

ative measures of MFA convergence, Âr l'J (a function), ç t.l (a scalar), and specifically

n* t'l These will be the foundation fclr MFA-based SQMs for the measurement of f'eature

convergence under ICA (namely the MSE error-norm, nr I.], and the CFIE error-norm, Ã* t.l
on p. 304).

The next chapter considers the use of sunogate data techniques to provide an "Occam's

Íazor" for the analysis and interpretation of MFA. Specifically, these surrogate data techniques

are designed to obscure the nonlinear dynamics that are present in the ECG attractor. By

pedorming MFA on the surrogate data, one can begin to develop intuition for the contribution

of nonlinear dynarnics to the scaling of the MFA entropies.

Ch. 4: Scaling - ECG Features
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Table 4.1Practical summary of CP formulae for the estimation of MFA.

Correlation partition (CP) and parameters:

Nw, =2Wr - I
N¡(e) = t E(e- lygr) -J(r)ll).¿-J

U-ù>wt

,,¡r1---!i-
¡¡ - Nwr

p=lu¡(e)li = 1,...,i/; VeÌ

CP partition function and entlopies:

rN
zn@) =fiLul-' yq

l=l

Hq(e) = #bsz¡¡ vq

I S u1l-rl,tG)=-ñLfrtotr, Yq

I Ï,Í-' ( u?\
ra(e) =- ià lt"tld Yq

Direct box-counting scaling estimates:

nu = 
-3(ò 

vqo loge

-YoG)d:# Yq
log €

-Y.,le)Do=-l Yq
log €
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(4.ts7)

(4.158)

(4.lse)

(4.160)

The correlation sum is one value of the cP Boltzmann partition filnction,
particularly easy to calculate since it collapses to the linear form

.N
zç@)'Yzne)t ^= I 

!lu,r.l"t-z N(¡/ _ ¡vwr) 
f_,

2g
= N(¡/ - Nw, à ,Ar,E(e 

- llYcr) - J(l)ll)

(4.t61)

(4.162)

(4.163)

(4.164)

* Here, the estimation modifierland variant modifier:that appear in the chapter text are sup-
pressed.
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5.tr- Overview

This chapter presents a study of surrogate data for the validation of the multifractal features

described in Ch. 4. Sunogate data can improve the interpretation of MFA results substantially,

and thus is a signíficant element in the "proper" application of MFA. By justifying an MFA

through surrogate data, fractal-based SQMs becomes more objective, and their value as per-

formance metrics increases.

To begin the chapter, the origins of surrogate data are reviewed as a means to distin-

guish between stochastic and chaotic deterministic systems (i.e., chaos or noise). Then the

three canonical hypotheses f-or nonlinear surrogate data are reviewed in Sec. 5.3. Included

in Sec. 5.3.4 'are examples of these surrogate moclels on deterministic, stochastic, and natural

HRV data. Section 5.3.5 presents some simple but important considerations about avoiding

periodicity artifacts in the application of surrogate data techniques based on the.fast Fottrier

transþrm (FFT). Since ECGs are clearly quite distinct from canonical stochastic models,

Sec. 5.4 reviews two techniques in the literature that are specifically applicable f'or cyclo-

stationary signals. Using the techniques of App. A, a novel surrogate data approach specific

to synthetic ECG is described in Sec. 5.4.3. Specifically, this approach provides an evaluation

of the influence of HRV on an ECG's MFA. Last, Sec. 5.-5 explains how the surrogate data

models are used in the experimental design fbr the validation of MFA.

Chapter V
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5.2 Time Series Dynamics, lrlull-Hypotheses, and Surrogate
flata

The techniques for multifractal analysis described in the previous chapter are useful in the

characterization of nonlinear systems. There is ambiguity, however, when these techniques

are applied to real data recorded fiom sollrces with unknown dynamics. As estimators, an

MFA using the Rényi fractal dimension spectrum or Mandelbrot singularity spectrum pro-

duces numerical values with very complicated contributions fiom bias and variance. Thus

the interpretation of the MFA values is somewhat circumspect in absolute terms and are best

considered in a relative way. In particular, the MFA dimensions estimated by log-log slopes

require scaling regions where the relationship is linear. In both mathematical and real data,

the linearity of an appropriate scaling region is subject to user interpretation due to either

oscillation or curvature. Some true mathematical multifractals have entropy scaling with dis-

continuities as in Fig.5.1, and the dimension estimates are in fact the average linear slope of

the curve. Here, the correct interpretation is that observed scaling relationships are composed

of a linear baseline with sawtooth-type oscillations, Fig.5.1(b). In other scenarios with dy-

namical data, the 1og-log scaling relationship of entropies is often subject to curvature 11021,

such as shown in Fig. 5.2. Considering these artifacts appear regularly in MFA estimation,

how is one to know whether MFA is an appropriate characterization of the data? Is variability

in the signal from chaotic dynamics, or simply noise corruption? [119]

During the 1990s, this question was posed in earnest, and the dominant solution drew from

the null-hypothesis approach used in statistical inference 1225112261. In statistical inference,

the conformance of any real data to a hypothesized model could be quantified in a statistical

way using (i) a discriminating statistic and (ii) bootstrapping techniques for data resampling,

otherwise known as generating surrogate data. More specifically, any given dataset can be

Ch. 5: Surrogate Data
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Fig. 5.1 Scaling entropy nonlinearities - oscillation: (a) Scaling of quadratic enrropy (H) of
the Cantor set C has oscillatory behaviour because of the "zero-mass" (i.e., deleted) sections
of the fractal. The proper fractal dimension is the slope of a linear fit; (b) The "sawtooth"
residual from the linear fit represents an oscillaÍory lacunarity error.
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Fig. 5.2 Scaling entropy nonlinearities - curvature: Correlation sum scaling of 7-dímensional
reconstructed embedding of the Rössler attractor in chaotic motion (solicl) and the Ikeda at-
tractor (dashed). At leuger scales, both characterizations exhibit curvature, notwithstanding
their noise-free mathernatical origins. In conditions with realistic noise contamination and
uncertain dynamics, curvature effects can become even stronger. (Note the Rössler time series
here is the z-component with control parameter c = 5.0, while the Ikeda trajectory is its real
component with standard parameters.)
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compared (with a discriminating statistic) to a set of "typical realizations" (the surrogate data)

of a particular uninteresting model (the null-hypothesis model). This provides a sratistical

method for the application of Occam's razor to the problem. If the test statistic calculated

from the real data differed "strongly" tiom the distribution of statistics calculated fiom the

surrogate data, then it is "unlikely" that the real data confbrms to the null-hypothesis model.

Under these circumstances, it is reasonable to "reject" the null-hypothesis, which, while not

a proof that the null-hypothesis is false, provides a justification f-or the consideration of more

complex models. A failure to reject the null-hypothesis, on the other hand, does not imply

that the null-hypothesis is true, but simply that the features of the data (specifically, the dis-

criminating statistic) are reasonably expected under the simple model. This could be because

(i) the null-hypothesis model is appropriate, or (ii) the test statistic is not sufficiently discrimi-

nating, In either case, a failure to reject the null-hypothesis demonstrates the f'eature of interest

is present in the context of the null-hypothesis, and more complex models should be consid-

ered unjustified. Further arguments about quantifying the level of inf-erenc e (i.e., the size and

power) of the null-hypothesis test need not be considered f'or this analysis, but may be found

in the 1 iterature [226)1203]120 4).

Theiler et al. considered this approach for the justificarion of nonlinear time series analysis.

Here, the distinction of interest is whether variability in the time series is a result of dynamical

or stochastic influence. Therefore, the generic null-hypothesis in time series analysis concems

stochastic models. For discriminating statistics, the nonlinear features extracted from time

series can be considered. The canonical surrogate data method that is discussed in the next

section describes three Monte-Carlo techniques for "constrained realizations" for nonlinear

time series analysis 1226)17041.

Ch. 5: Surrogate Data
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5.3 Canonical (Linear) Surrogate Ðata Models

The canonical null-hypothesis models f-or nonlinear surrogate data are three stochastic

systems, namely

TYpe-0 surrogate:

T}pe-l surrogate:

ÏYpe-2 surrogate: a static monotonic nonlinear mapping of a time-invariant Gaussian pro-

cess (i.e., warped filtered Gaussian noise).

an iid stochastic process;

For each model, an algorithm is required by which sunogate time series consistent with the

afbrementioned modeìs can be generated, while also preserving the surrogate's "likeness', to

the original data. In its original formulation 12261, these algorithms are Monte-Carlo methods

that generate "constrained realizations", rather then "typical realizations", consistent with the

model. Though the detailed distinction between the rwo is left for rhe reader in 122611204l, rt

suffices to say that the finite "constrained realizations" preserve the likeness of the original fi-

nite time series data better, and do not rely on asymptotic arguments. Therefore, the surrogate

data algorithms are effectively distinguished by which specifìc stochastic f'eature of the origi-

nal time series is chosen to be preserved (the likeness), and what randomization is applied to

destroy any deterministic relationships that exist. In fäct, it becomes very difficult to write in

closed form what the null-hypothesis model class actually is as more general surrogate tech-

niques are considered 12041. Thus the tbcus is on distinguishing the null-hypothesis models

practically by the constraints and randomizations of the techniques instead. According to this

format, the canonical surrogate data algorithms are clistinguished by the following

ÏYpe-O surrogate: preserves the distribution (i.e., statistical rank) andrandomizes time-order;

a time-invariant Gaussian process (i.e., filtered Gaussian noise);

Ch. 5: Surrogate Data
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TVpe-1 surrogate: preserves the power-spectrum (i.e.,Iinear dependencies) and randomizes

phase;

TYpe'2 surrogate: preserves the distribution and power-spectrum while randomizing phase

and time-order.

The algorithms are discussed in greater detail in the following subsections.

5.3.1 TYpe-0Surrogates

The type-0 surrogates of a time series x(n), written n's[x](n), are suffogates under a stochas-

tic iid null-hypothesis. In order to keep the distribution of the surrogates identical to that of

the x(n), they must have the same rank order. This is achieved simply by taking a permutation

of the vaiues of x(n). That is, letting Pm be a perrnutation operator on N elements, where N is

the length of the time series x,

nolxl - Pm { x(n) | n = 1,. . .,N}

5.3.2 Type-l Surrogates

Ch. 5: Surrogate Data

The type- 1 surrogates of a time series .r(rz), writte n tr [x)(n), are surrogates under a stochas-

tic linear Gaussian process null-hypothesis. It is equivalent to linear ciynamics represented in

a stochastically driven linear system, oÍ c¿uto-regressive moving-averuge (ARMA) model. In

order to keep the linear properties of the system the same, the conshaints are applied in the

Fourier domain. Specifically, the power spectrum of the surrogates will be identical to that

of the x(z) (and thus, so is the autocorrelation function). This is achieved by taking an FFT

of the data x(n) and representing it in polar form. Representing its Fourier magnitudes as

lX(¿¿,)l = lT,(a,)l and its phase as exp(i0,,), the common constraint on the surrogates should

be that lf,,u{r,)l = lX(¿¿,,)|. Under the null-hypothesis model, the surrogate's phase gi is
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consistent with a unifbrmly distributed random variable over 10,2r), and several techniques

for randomization have been suggested, First, the original phase sequence {0) can be sim-

ply thrown away and replaced with realizations from a uniform random variable on l0,2tr)

12041. Second, the original phase elements can be randomized by shuffiing the values of g,

12061. In either case, care has to be taken to preserve the skew-symmetry required in the

phase of real valued time series tl81l. A third technique preserves the phase skew-symmetry

in a natural way by considering the phase of a real signal. Here, the Fourier magnitudes

lx(u,)l are matched with the phase exp(i7',) of a type-0 surogate. With all the techniques, the

type-1 sulrogate time series is then defined by the inverse FFT of the element-wise product

lX(u,)lexp(i?i).

In this work, the algorithm of choice uses the third option, matching a surrogate phase to

the natural power spectrum so that the surrogate is defined as

n [xl - f-t l¡xçu,,)lexp(i0,,))

Ch. 5: Surrogate Data

where

X(a,) = f,(au)

Y (u,) = Tn.t,t(Ø r¡ = lY (u,,)l exp(i1,)

A few things should always be considered when the type-1 surïogate algorithm is applied.

First, since the discrete Fourier transform (as an FFT) is applied to the finite time series x(n),

the Fourier representation X(u,,) is actually for the periodic extension of x(n) and not an es-

timate of the Fourier transform. (It is also possible to consider x(n) as wrapped on the unit

circle.) Specifically, windowing is not used to suppress end-point mismatch, since an inverse

FFT is also applied. Therefore, any discontinuity or mismatch at the end-points introduces
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spurious high frequencies into the suffogates. That is, the type- I suffogate technique pre-

serves the frequency contribution of the end point mismatch, but also distributes it throughout

the time series nllxl(n), and does not isolate it as a mismatch at the end-points. When the

end-point mismatch is considerable, this means the sunogates may not properly represent the

linear features of x(n), as usually interpreted in the asymptotic Fourier transform sense. A

discussion on how to rnitigate this problem is presented in a later section of this work.

The second thing to consider with the application of a type-l algorithm is that, irrespective

of the original time-integrated distribution of .x(n), the time-integrated distribution of zr¡ [x] is

essentially Gaussian. This is a result of the inverse FFT operation on random phases, and is

essentially a byproduct of the central limit theorem.

Neither of these two considerations undermines the application of the type-1 algorithm,

however. It simply limits its proper application to signals x(n) that are at least somewhat

consistent with the Gaussian null-hypothesis model. A trivial rejection of this null-hypothesis

(without surogate data) is possible if (i) the time-integrated distribution of x(n) is strongly

non-Gaussian, or (ii) .r(¡z) is too smooth to be drawn from a linear stochastic process. If x@)

is sufficiently nonstationary, however, then rnitigation techniques (such as interval selection)

might be key in reducing the end-point mismatch artifact. Alternatively, an extension to the

suffogate techniqLre could be considered, where only the phases in the higher frequency band

are randomized, thus preserving the low-frequency nonstationary behaviour.

5.3.3 TYpe-2Surrogates

Ch. 5: Sunogate Data

One of the limitations of the type-l surrogates is that the original time series must have

a sufficiently Gaussian time-integrated distribution. Since this applies to only a small class

of interesting signals, it would be suitable to have an algorithm that allows for an arbitrary

distribution (such as with the type-0 sunogates). The type-2 surrogare is a hybrid of both
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the type-O and type-1 algorithms, and theoretically allows for a wide class of distribution.

Suppose a static instantaneous warping function ? : IR r-1 lR, were to map a linear Gaussian

process s(r) into a new process x(t) = ry(s(Ð). Then the time-integrated distribution of .r(r)

would not be Gaussian. Surrogates in this class can be generated by an iterative process of

two stages, where (i) the Fourier magnitudes of the surrogate are constrained to the original

lX(u,)I, and (ii) the rank amplitude values of the suffogate are constrained to the original

values {€,) = sort{"r(n)}. Action (i) is consistent with a type-1 surrogate, while action (ii) is a

constraint equivalent to a type-O sulrogate. This iterative process continues until the reordering

required for rank sorting no longer changes L2021. Details on the convergence properties of

this iterated amplitude ad.justed Fourier Transþrm (IAAFT) technique are discussed in [204].

Once converged, however, there is debate in the literature on which of the two actions

in the algorithm should be performed last. Since the constraints applied by the actions are

"perfect", the real issue here is which of the constraints should accept a residual error. Upon

convergence, the "type-Z.O surrogate" finishes with the amplitude constraint, and thus pre-

serves the distribution of the original data but leaves residual error in the power spectrum.

Otherwise, the "type-2.1 surrogate" can apply the Fourier constraint one final time. Since the

algorithm has converged, the rank order of the sunogate values is unchanged, but their val-

ues may have changed slightly (i.e.within the tolerance produced by its nearest rank values).

Kugiumtzis [12], 19991 characterized some of the differences between the two alternatives.

In general, nonlinear metrics are more sensitive to changes in linear correlations than in distri-

bution 1224). Consequently. with most distinguishing nonlinear statistics, type-2.1sulrogate

data would be the most appropriate.

In this wotk, the type-2.1 algorithrn takes the Foulier magnitudes {lx(¿¿,)l} and the ranked

values (h, . . ., f¡v) of the original data as the constraints . Let z represent the sunogate time
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series of length N, where e is initialized as a type-O surrogate to destroy any dynamics. Then

the FFT of z,

Z(u,) = fr(on)

= lZ(a,)lexp(i1,,)

has its magnitudes replaced by the desired values and is updated in the time clomain, as

Z(u,) <- lX(¿¿,,)l exp(i1,,) 63)

z(n) <- f-t Zça,¡ (5.g)

which reintroduces the linear dynamics of the suffogate model. Then the sunogate amplitudes

z.(n) ¿re rank ordered, achieved by the unique permutation pm., such that

sort(z(l), . . ., z(n)) = Pm,(z(1 ), . . ., z(n))

The surogate amplitudes are then updated by the ranked values of the data,

(z(l),.. . , z(N)) <- Pm,r (€t,. . .,€u)

Ch. 5: Surrogate Data

The process of (5.6)-(5.10) is continued until the Pm, permutation becomes the identity,

at which point the algorithm has converged to the double solution represented by the outputs

of (5.8) and (5.10). Since the type-2.I surrogate is desired, the calculations (5.6)-(5.8) are

performed once again and then the algorithm exits returning nzslxl - z. For long time series

many iterations may be required to achieve convergenc e (e.g., 1600 iterations for 30K points).

5.3.4 Examples of Canonical Surrogates

Three examples representing different levels of dynamics will now be presented. First,

the chaotic trajectory of the Ikeda map (discussed in Ch. 4) will be analyzed,. Although an

(s.5)

(s.6)
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Fig.5.3 Features of a chaotic data sequence: (a) sequence of values tiom the chaotic Ikeda
map exhibit stationary but iregular oscillations; (b) (time-domain) autocorrelation sequence
is statistically constant with non-constant variability; (c) power spectrum (assuming sampling
is at "1 Hz") is statistically fairly constant, with a slight depression on the t0.010.151 Hz
interval; (d) Fourier phase appears as a random variable; (e) time-integrated distribution is
1äirly symmetric, but sub-Gaussian; (Ð return map (lag=l) f'eatures a characteristic nonlinear
pattern.

essentially white process, it has strong nonlinear dynamics. Second, sumogates of a time

series of pink noise will be presented, all of which have an equal lack of dynamics. Last,

the surrogate models are applied to a recording of HRV, whose dynamics, though unknown,

would have a weak nonlinear contribution at best.
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5.3.4.1 lkeda Chaos

The lkeda map was used as an illustration in both Ch. 2 and 4 tor acomplicated nonlinear

dynamical system. The nonlinear recursive equations that define the Ikeda map are written in

(4.95)-(4.96) on p. 188. Here, the real (.r1) component of the Ikecla trajectory for an arbihary

initial condition is analyzed after discarding a transient bufl'er of 2K iterations. 450 points of

an Ikeda trajectory and its basic properties are shown in Fig. 5.3, where it is assumed (since

the trajectory is discrete) that the sampling flequency is i Hz. It can be seen that the trajectory

has an essentially white spectrum, sub-Gaussian time-integrated distribution, and a nonlinear

relationship in the return map (lag=1). The properties of the different surrogate algorithms

can be inferred from the equivalent visualization of their properties shown in Figs. 5.4-5.j .

The type-0 surrogate of Fig. 5.4 has the identical time-integrated clistribution as the origi-

nal signal, and very similar autocorrelation function, power spectrum, anri tburier phase. The

surrogate signal itself appears less oscillatory and slightly more random than the true sig-

nal data, which is clearly distinguished in the randomized and indepencient rerurn map (as

expected f'or an iid model).

The type-1 sunogate of Fig. 5.5 has a more Gaussian time-integrated distribution than the

original signal, but has a very similar autocorrelation function, power spectrum, and fourier

phase. The autocorrelation function and power spectrum in panels (b) and (c) are not point-

by-point exact matches to Fig. 5.3, because these displays better represent the spectral content

of the time series (as an extraction of a larger observation). The autocorrelation sequence in

panel (b) uses the unbiased time domain algorithm, while the power spectrum in panel (c) uses

Hann windowing. Consecluently, the expected contribution of the FFT periodic artifacts are

measured in these panels and point-by-point matches are not expected, even though point-by-

point constraints were applied (to the FFT) in the surrogate algorithm. Notwithstanding these
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Fig. 5.4 Features of a type-0 surogate sequence of the Ikeda mapping: (a) sequence of val-
ues are less oscillatory and more stochastic; (b) (time-domain) autocorrelation sequence is
statistically constant; (c) power spectrum is statistically fairly constant, with no depression;
(d) Fourier phase appears as a random variable; (e) time-integrated distribution is identical to
Fig. 5.3(e); (f) return map (lag=1) appears random and independent (i.e., marginal factoriza-
tion).

poinrby-point differences, panels (b), (c), and (d) of Fig.5.5 preserve the statistical character

of the originals in Fig. 5.3. The return map in panel (e), however, is clearly more stochastic,

Gaussian, and isotropic, in keeping with the Gaussian nature of the linear null-hypothesis

model for this data.

The type-2.O surrogate shown in Fig. 5,6 is very similar in practice to the type-0 model

for the Ikeda data. Again, the distribution is preserved exactly, and the return map appears

stochastic, independent, and non-Gaussian. Compared to Fig. 5,4, however, the properties of
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Fig. 5.5 Features of a type- I surrogate sequence of the Ikeda mapping: (a) sequence of values
is quite like the original; (b) (time-domain) autocorrelation sequence is statistically equiva-
lent to Fig. 5.3(b); (c) power spectrum is is statistically equivalenr ro Fig. 5.3(c); (d) Fourier
phase appears as a random variable; (e) time-integrated distribution is more Gaussian than
the original; (f) return map (lag=1) appears random and more isotropic than either Fig. 5.3 or
Fig.5.4.

panels (b) and (c) are more representative of the var iability in the original data, since a spectral

constraint has been applied.

The strong similarities between the type-2.1 surrogate shown in Fig. 5.'l andits counterpart

in Fig. 5.6 faithfully represents the commonalities in the algorithms. Their differences in panel

(e) also demonstrates the difference induced by the choice of final constraint. Given that the

type-2.0 surrogate gives a very good representation of the (nearly white) Ikeda spectrum, that

algorithm would be preferred since it preserves the time-integrated distribution as well.
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Fig. 5.6 Features of a type-2.O surrogate ssquence of the lkeda mapping: (a) sequence of
values is quite like the original; (b) (time-domain) autocorrelation sequence is sratistically
equivalent (and almost point-wise equal) to Fig. 5.3(b); (c) power spectrum is is statistically
equivalent to Fig. 5.3(c); (d) Fourier phase appears as a random variable; (e) time-integrated
distribution is identical to Fig. 5.3(e); (f) return map (lag=i) appears random but slightly less
independent than Fig. 5.a(fl.
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Fig. 5.T Features of a type-2.1 surogate sequence of the lkeda mapping: (a) sequence of val-
ues is quite like the original and Fig. 5.6; (b) autocorrelation sequence is statistically equiva-
lent (and almost point-wise equal) to Fig. 5.3(b) and corresponds well ro Fig. 5.6(b); (c) power
spectrum is is statistically equivalent to original and has better low frequency matching than
Fig. 5.6(c); (d) Fourier phase appears as a random variable; (e) time-integrated distribution is
slightly less sub-Gaussian than original; (f) return map (lag=1) appears random and consistent
with Fig. 5.6(Ð.
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Fig. 5.8 Features of a pink noise sequence: (a) sequence of values from a linear stochastic
system with power spectrum power-law decay exponent þ = I is more nonstationary and less
rough than white noise; (b) autocorrelation sequence is rather smooth and has a local max-
imum in the neighbourhood of a delay of 140 samples, and negative minima atl0 and,200
samples; (c) power spectrum (assuming sampling is at "1 Hz") is a decay over 20 dB with
statistical fluctuations; (d) Fourier phase appears as a random variable; (e) time-integrated dis-
tribution is zero-mean, unit variance, and mildly sub-Gaussian; (Ð return map (lag=2) exhibits
a correlated scattering.

5.3.4.2 Pink Noise

Sample No

0.15 o.2 0.25 0.3
f [Hz]

_ -_.. .. ._-.._......1.... __............_. i._.._._._____.-_ -L___-......, _..i
300 350 400 450

Ch. 5: Surrogate Data
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As previously mentioned in Ch. 2, any broadspectral behaviour of a signal (e.g., power-law

decay) makes the signal very difficult to segment into fiequency bands. These correlations over

fiequency bands, however, can come from nonlinear or linear dynamics. Coloured noises are

a class of stochastic signals with "linear dynamics" (i.e.,linear dependencies) that produces a

power-law in the power-spectrum. Pink noise has a spectral decay of ø-1, and is common in
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Fig. 5.9 Features of a type-0 surrogate sequence of pink noise: (a) sequence of values are
stationary and more rough; (b) autocorrelation sequence is statistically constant; (c) power
spectrum is statistically constant; (d) Fourier phase appears as a random variable; (e) time-
integrated distribution is identical to Fig. 5.8(e); (f) return map (lag=2) appears random and
independent (i. e., marginal factorization).

biological systems and some relaxation processes tl53l. As shown in Fig. -5.8, pink noise is

mildly non-stationary but fäirly rough. Its power spectrum has a slow decay, dropping about

20dB over 0.5 Hz (where the original series is samplecl at I Hz). The phase is significantly

random and the time-integrated distribution is fairly Gaussian. The return map (lag=2) shows

a strong linear relationship, but a fairly significant scatter and no nonline¿u patterns.

A type-0 surrogate is shown in Fig. 5.9, and the randomizationof amplitudes, while keep-

ing the time-integrated distribution invariant, removes all nonstationarity ancl correlation in

the samples.
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Fig. 5.10 Features of a type-1 sumogate seqLlence of pink noise: (a) sequence of values is quite
like the original; (b) autocorrelation sequence has same smoothness and profile as original;
(c) power spectrum is statistically equivalent to original; (d) Fourier phase appears as a random
variable; (e) time-integrated distribution is statistically equivalent to the original; (f) return
map (1ag=2) appears statistically equivalent to the original.

Since the type-1 null hypothesis model matches the model of the actual pink noise, it is

expected that the type- I surogate of Fig. -5.10 has essentially the same fèatures as the original

signal. As expected, there is a consistent matching in all panels with the features of the original

in Fig. .5.8.

There is little extra benefit with a type-2.0 surrogate, but, as shown in Fig. -5.11, the time-

integrated disrribution of the surrogate exactly matches the original pink noise.

In Fig. 5.12,the features of the type-2.1surrogate show no improvement in reconstruction

of the original features when compared to the type-2.O.
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Fig. 5.11 Features of a type-2.O surrogate sequence of pink noise: (a) sequence of values
is quite like the original; (b) autocorrelation seqllence has same smoothness and profile as
original; (c) power spectrum is statistically equivalent to original; (d) Fourier phase appears
as a random variable; (e) time-integrated distribution is exactly equal to the original; (f) return
map (lag=f) appears staristically equivalent ro the original.
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Fig.5.12 Features of atype-Z.1 surrogate sequence of pink noise: (a) sequence of values is
quite like the original; (b) autocorrelation sequence has same smoothness and similar profile
as original; (c) power spectrum is statistically equivalent to original; (d) Fourier phase appears
as a random variable; (e) time-integrated distribution is better match to the original than the
type-1 surogate; (f) return map (lag=2) appears staristically equivalent ro the original.
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Fig. 5.13 Features of a fetal RR-interval sequence: (a) sequence of RR-interval values ap-
pears somewhat like pink noise; (b) autocorrelation sequence is rather smooth and has a local
minimum at a lag of 50 samples, but has a very constant value overall; (c) power spectrum (as-
suming sampling is at "1 Hz") has a local maximum ar.0.28Hz and a slow decay; (d) Fourier
phase appeals as a random variable; (e) time-integrated distribution is skewed Gaussian; (Ð re-
turn map (lag=2; exhibits a correlated radial scattering.

5.3.4.3 HRV
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Now an example of suffogates from a natural signal is presented. Notwithstanding that a

sequence of RR-intervals is not a trlre time series (the sarne applies to the Ikeda trajectory),

the surrogate data techniques rnay be applied to provide null-hypotheses about the structurc

within the sequence. The more than 400 beats of Fig.5.l3(a) represent the RR-intervals of

an isolated fetal ECG used in the later portions of this work for the generation of fetal ECG.

(This dataset is not, however, directly recorded from fetal ECG since that is unavailable. The
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data is in fact a rescaling of a recorded sequence of adult RR-intervals. In the context here,

this amounts to nothing more than a "linear measurement function", and the dynamics of the

recorded sequence is preserved here,) The sequence exhibits some nonstationary elements

over an otherwise homogeneous pink natLue. The power spectrum of the sequence has a

background of gradual decay with a slight mound at 0.28 Hz. (Of course, the units of Hz

is rather loose in this application, since it is not precisely a time series. More precisely it is

units of "cycles per beat".) The time-integrated distribution is nearly Gaussian, but slightly

skewed. The return map (lag=2), exhibits a linear correlation, but with a greater spread at

higher RR-interval values.

The type-0 sLttrogate of HRV is shown in Fig. 5.14, and the loss of correlation is distinctly

apparent. While the time-integrated distribution is identical, the autocorelation and power

spectrum are flat, and the sequence itself appears more stationary. The return map now ap-

proximates independence (marginal factorization), instead of the correlation of the original.

This type of null-hypothesis can clearly be rejected.

The type-1 sunogate of Fig. -5.5 represents a better null-hypothesis, but it is still not suf-

ficient. The surrogate sequence has a visual likeness to the original, and its power spectl um

is consistent with the local maximum at 0.28 Hz (as expected by design). The autocorïe-

lation over 200 lags is somewhat weaker, however, and the time-integrated distribution has

less skew (which is, of course, expected). The correlation in the return map of panel (e),

however, is clearly less radial and more Gaussian than the original in Fig.5.l3. This type of

null-hypothesis can likely be rejected as well.

An example of a type-2.O sllrrogate for the HRV sequence is shown in Fig.5.16, and

improves the likeness of the surrogate to the original over the type-g suïïogate. In particular, a

proper correlation appeals in the return map, autocorrelation, and power spectrum. However,
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Fig. 5.14 Features of a type-O surrogate sequence of fetal HRV: (a) sequence of values are
stationary and more rough; (b) autocorrelation sequence is statistically constant; (c) power
spectrum is statistically constant; (d) Fouriel phase appears as a random variable; (e) time-
integrated distribution is identical to Fig.5.l3(e); (f) return map (lag=2) appears random and
almost independen t (i. e., rnarginal factori zation).

the variability in the surrogate seqllence itself appears less homogeneous than the original.

(This effect is rather strong in this suTrogate realization, but persists to a lesser degree in other

realizations.) This would represent a good null-hypothesis, specifically because the return

map pattem exhibits a more radial pattern than the type-1 surrogate.

Last, an example of a type-Z.1 sunogate for the HRV sequence is shown in Fig. 5.17. This

sulrogate sequence has the best likeness to the original over all the other types. The autocor-

relation, power spectrum, and return maps appear statistically equivalent. The time-integrated

Ch. 5: Surrogate Data
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Fig. 5.15 Features of a type-1 surrogate sequence of t'etal HRV: (a) sequence of values is
quite like the original; (b) autoconelation sequence has the same smoothness but lower values
than the original; (c) power spectrum is statistically equivalent to original; (cl) Fourier phase
appears as a random variable; (e) time-integrated distribution is less skewed ancl slightly more
sub-Gaussian than the original; (f) return map (lag=2) appears scattered and correlatecl with
no radial effects.

distribution retains its non-Gaussianity, though it is slightly more symmetrical than the orig-

inal. This surrogate would represent an appropriate null-hypothesis to provide context for

nonlinear and multifractal metlics. The discrimination power of a nonlinear statistic, how-

ever, might be low in this case, due to the relatively few points available. The reader would

find that studies of nonlinearity in the HRV literature normally use datasets extending up to 24

hours in length, or about 98K beats, instead of the 450 shown here.
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Clt. 5: Surrosate Data
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Fig. 5.16 Features of a type-2.O surrogate sequence of fetal HRV: (a) sequence of values is
not homogeneolls like the original, but improvss over the type-0 sutrogate; (b) autocorrelation
sequence has same smoothness as the original but has a depression at a delay of 100 beats;
(c) power spectrum is statistically equivalent to original; (d) Fourier phase appears as a random
variable; (e) time-integrated distribution is exactly equal to the original; (f) return map (lag=2)
has a better statistical match to the original over the type-1 surrogate.
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Fig. 5.17 Features of atype-2.1 surrogate sequence of fetal HRV: (a) sequence of values is less
homogeneous than the original, and consistent with a type-2.0 surrogate; (b) autocorrelation
sequence has great match in smoothness and profile to the original; (c) power spectrum is
statistically equivalent to original; (d) Fourier phase appears as a random variable; (e) time-
integrated distribution is statistically equivalent to the original; (f) return map (lag=2) appears
statistically equivalent to the original, including radial effects.
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Fig. 5.18 Features of a smooth time series with endpoint mismatch: (a) sequence of values
is smooth and nonstationary (e.g., representative of a baseline wander) with endpoint mis-
match (circles and dotted); (b) autocorrelation sequence is smooth decay beginning at 30 sam-
ples; (c) Hann filtered power spectrum: power is isolated in low frequencies (below 0.02H2);
(d) Fourier phase appears as a random variable only in low frequencies; (e) time-integrated
distribution is multimodal; (Ð return map (lag=2) has strong cyclic and correlated structure.

5.3.5 Managing Periodicity Artifacts in Tlpe I and 2 Surrogates
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Ch. 5: Surrogate Data

Consider arecorded time series -rr, for rL = 1,...,N. As was mentioned in Sec. 5.3.2,

the use of the unwindowed FFT in the type 1 and 2 surrogate algorithms essentially realizes

the constraint of the original data's linear dynamics on a periodic support. Consequently, the

difference between the first and last point of the time sedes has a significant effect on the

specfral properties of the surrogates. As shown in Fig.5.18 and Fig.5.19, this implies that

smooth time series (e.9., fiom nonlinear dynamical systems) can develop (i) noise-like high

frequency distortion, and (ii) changes to the low frequency profile. Both of these artifacts are

introduced by the delocalization of the characteristic properties of the endpoint mismatch (i.e.,

the discontinuity). In l2rJ4l, Schreiber suggests that these artilacts should be managed by care-

ful selection of a representative time series segment that provides better endpoint matching.
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Fig.5.19 Features oT atype-Z.I surrogate sequence of Fig. 5.18(a) exhibit periodicity arrifàcts:
(a) sequence of values has high fiequency corruption and reduced endpoint mismatch (circles
and dotted); (b) autocorrelation sequence is still smooth, but decay begins at 50 samples;
(c) Hann filtered power spectrum: dominant low frequency band is equivalent to the original,
but high frequency power is increased by over 50 dB; (d) Fourier phase appears as a random
variable, as designed; (e) time-integrated distribution is a strong match to the original; (Ð re-
turn map (lag=2¡ maintains correlation, but increases scatter. Power from periodic endpoint
mismatch artifàct is spread throughout the surrogate.

In effect, Schreiber suggests that the relative power of the endpoint mismatch in amplitude

(i.e., 'Jump") and first derivative (i.e., "slip") be systematically measured and a subinterval of

the data be chosen to minimize these measures. It is the opinion of the author, however, that

the objective of these measures should not be minimization (i.e., a limit to 0), but "typical-

ization". Essentially, the artificial sample interval lx¡v,xr] arising fiom the periodic support

should a priori be 4,pícal of the true time series, not constant. For smooth sequences, such

as in Fig. 5.18, these objectives coincide. For rough sequences such as HRV (Fig. 5.13), how-

ever, typicalization implies that the periodic extension sequence is mole representative of the

actual extension, rather than more smooth. To achieve a measure of typicalization, the jump
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Ch. 5: Surrogate Data

2a - _----

s,l il i

,",*:L- - LJ .,.¡J - '

300 350

1.099ì -0.014: -1.514;l

o24
Amp. farbl

o24
Lag-coord 1

M. Potter

PHD-Sur.Data
-245- September 1-5,2008

Version 1.1.6



FEATURE CONVERGENCE UNDER ICA: FECG

energy proposed by Schreiber 12041

(x, - ,r)'

is compared (i) to the amplitude variance

þz{xnln=I,...,N}

which represents the average internal energy per point (i.e., around the mean), and (ii) to the

distribution of the set of squared-differences

which describes the population of jump energies between natural neighbouls. Thus, if the

correspondence between (5.11), (5.12), and the bulk of (5.13) is strong, there will be few

periodic artifacts, since the transition to the periodic extension of x(n) is indistinguishable

from the properties of the time series itself. If, however, the value (-5.I I ) is not representative

of either(5.12) orthebulkof (5.13) (e.g.,the valueof (5.11)isinrherailof (5.13)),then

subintervals should be analyzed for better correspondence to avoid artifacts.

As an example, Fig. 5.20 shows the application of these metrics to a sequence of RR-

intervals. Suppose it is desired to have a subinterval of about 100 beats for surrogate analysis.

The subinterval of Fig. 5.20(a) marked A yields the analysis of panels (b) and (c), while rhe

subinterval marked B is analyzed in panels (d) and (e). For the two subintervals, panels (b) and

(d) show a histogram estimate of the distribution of (5.13) as well the value of the amplitude

v¿riance (5.I2) (solid line), and the jump energy (5.11) (star) along the horizontal axis. The

comespondence between these values is stronger in panel (d), implying that subinterval B in

Fig. 5.20(a), is less likely to provoke periodicity artifäcts in FFT surrogates. Furthermore, a

demonstration of the cyclic extension of the subintervals is provided in panets (c) and (e).

{ 
¡.1fri = (xn - x,,-t)2 | n = 2,..,, ¡/}
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Fig. 5.20 Measuring typicalization: (a) 450 beats of natural HRV with two subintervals of 100
beats marked A and B; (b) analysis of periodic artifact for subinterval A: the jump eneryy (star')
is above the mean internal energy (line) and in the tail of the distribution of L1Ø): (c) periodic
extension of subinterval A: local neighbourhood of the periodic transition (dashed line) is
distinct; (d) analysis of periodic artifact for subinterval B: the jump energy (star) is near the
mean internal energy (line) and the bulk of the distribution of L2,(n); (c) periodic extension
of subinterval B: the periodic transition (dashed line) neighbourhood blends nicely with the
remainder. Subinterval B is preferred to mitigate periodic artifacts in FFT surogates.

These sequences represent the data constraints applied to the FFT sunogates in practice. If
the behaviour of the neighbourhood of the l00th interbeat numbel (dashed line) is distinct

from the rest of the series, then periodic artifacts should be anticipated. Here, the transition

behaviour of panel (d) appears more visually consistent with the rernainder of the sequence,

in agreement with the analysis of (5. I I )-(5. l3).
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Schreiber has also described a simulated annealing algorithm for surrogate data genera-

tion which has benefits for non-periodic conshaints [200]. Here cost functions based on the

properties of the observed time series are used, and a simulated annealing procedure used to

optimize the cost functions over pairwise permutations of the xn values. In particular, the mean

square error between the (time-domain) autocorrelation functions of the data and the potential

surrogate can be used as a cost function (i.e., panel (b) in the figures of Sec. 5.3.4.3). Since the

autocorrelation functions are calculated over the time samples, no underlying periodic struc-

ture is introduced. By his own admission [204], however, the extra computational intensity

required by this algolithm is only justified when simpler techniques (such as the sub-interval

approach discussed here) cannot be applied.
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Fig.5.2l Features of synthesizedfetalECG: (a) time series is characteristic of ECG waveform
with variability in the interbeat interval (sampled at 500 sps); (b) ECG cyclostarionarity pro-
duces a sequence of decaying harmonics in the autocorrelation sequence; (c) power spectrum
has peaks at fundamental cyclostationary frequency, falloff at 20 Hz, and an inflection point
near 70 Hz; (d) Fourier phase appears as a random valiable; (e) time-integrated distribution
has a strong peak at the baseline and a large tail from the R-wave; (f) return map (lag=1g)
consists of multìple loops induced by the P-, R-, and T-waves as marked. The flow induced by
time ordering is also shown by the arrow.
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5.4.1 Cycle-Shuffie Surrogates

Despite the significance and utility of the canonical surrogate models in general, they rep-

resent poor null-hypothesis alternatives for ECG signals. Clearly a type-0 surogate does not

apply, since the ECG does not have a white spectrum. Neither does a type-l sunogate ap-

pl¡ since the time-integrated distribution of ECG is super-Gaussian. Figure 5.22 shows the
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Fig. 5.22 Features of type-Z.i surrogate of fetal ECG: (a) time series is not cyclostationary,
but exhibits fäst osciliations and irregular spikes; (b) autocorrelation sequence is a very sftong
match to the original; (c) power specÍum is a strong match to the original; (d) Fourier phase
appears as a random variable; (e) time-integrated distribution is a strong match to the original;
(f) return map (lag=18) appears random and independent (marginal factorization) with no
flow.

features of type-2.I surrogate on the synthetic ECG time series of Fig.5.21. As is easily

seen, the high frequency spikes that in natural ECG are restricted to the QRS-complexes are

replicated throughout the surrogate time series. Thus the cyclostationary nature of the signal

is destroyed in the sulrogate model. A more suitable approach for "ECG surrogates" is to

maintain the local determinism of the ECG beat, the cyclostationary regularity, but destroy

the interbeat dynamics, the cyclostationary vzriability, A surrogate approach to cyclic sig-

nals, called cycle-shtffie surrogates (CSS), was proposed by Theiler 1223, (1995)l whereby

the actual cycles in the signal are shuffied just as in a type-1 scenario. ECGs in sinus rhythm
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in this sense are theoretically quite suitable for application, specifically because convenient

breakpoints can be identified (such as the QRS-complex maxima, or the interbeat interval).

Application in practice, however, is subject to certain artifacts. As discussed by Small in [20g,

(2002)1, the CSS algorithm is truly only applicable to stationary and (mosr likely) long rime

series. The fìrst limitation is because a slow drifting amplitude baseline makes it difficult to

join the shuffied cycles and maintain a likeness with the original. Here, the choice is either

(i) not to adjust the baseline heights of the cycles, and thus introduce sharp transitions that

are not present in the original, or (ii) to adjust the baseline heights of the cycles and produce

nonstationary baselines that are not consistent with the original. The second limitation applies

to certain discriminating statistics, such as MFA dimensions based on attractor reconstruction.

This limitation applies because only the neighbourhoods of the cycle transition "cut points"

are actually changed in the attractor. If these neighbourhoods are infrequent in the attractor,

then the MFA dimensions will not discriminate sufficiently between the surrogates and the

originals. By increasing the relative number of cycles in the time series (by increasing embed-

ding dimension of the attractor, reconstruction lag, and by increasing the length of the time

series while lowering its sampling frequency) a better discrimination is possible, but more

likely a diflèrent nonlinear metric should be chosen (1.e., one specifically geared for CSS).

Since this work uses a model fbr synthetic ECG, the nonstationary limitations of the CSS

algorithm are not significant. The features of a synthetic ECG with natural HRV is shown in

Fig. 5.21 and the features of a corresponding CSS are shown in Fig. 5.23. Only two elements

in the features shown could discriminate between the CSS and original. First, note that the

power spectrum decay above 50 Hz is much weaker in the CSS (Fig. 5.23(c)) than in the

original. Second, the dift'erences in the return maps in panels (e) of Fig.5.2l and Fig.5.23

should be considered. These plots are ìdentical for the smaller loops because, at an embedding
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Fig.5.23 Features of fetal ECG CSS: (a) time series is cyclostationary and resembles an ECG
wavefbrm; (b) autocorrelation sequence has slightly stronger harmonics than the original, but
is otherwise a good statistical match; (c) power spectrum has the same fälloff as the original,
but the decay is weaker in higher fiequencies (e.g.,20 dB higher at250 Hz); (d) Fourier phase
appears as a random variable; (e) time-integrated distribution is a strong match to the original;
(f) return map (lag=18) preserves the flow of the original, and the small loops for the P- and
T:waves are identical to the original. Only an induced patchwork effect on the R-wave loop
distinguishes the map from the ori_einal.

dimension of 2 and lag of 18, these points were unaffected by the shuffiing at the R-wave

cut points. However, the broad loop representing the R-wave undergoes a distinct statistical

change fì'om the CSS process. The spread of the band increases and the connection of the loop

decreases, becoming patchwork. In a higher-dimensional embedding space, these changes will

occur on a larger portion of the attractor, but probably not enough to provide discrimination

by MFA. Since the sample lag determines the width of the CSS effect, the 17 distinguishable
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patches in Fig. 5.23(Ð would conespond to the chosen lag of l8 samples. Discontinuities

occur where the samples cross the R-wave fiducial point used for the CSS cut point. (i.e.,The

CSS process with a lag of 18 gives the 2D lag-vector l7 possible phases with the cut point:

namely (R,17), (l+R,16), ,.., (16+R,l) where the letter R represents the position of the R-

wave cut point.) Further experimentation has shown that the number of patches changes with

the lag.

Though often neglected in general because of the difficulties with their application, CSSs

are a suitable null-hypothesis model for evaluating the nonlinear dynamics of the fetal ECG

signals in this work. It is expected, however, that the discrimination context for MFA provided

by CSSs is lirnited because so little of the attractor is affected. On the other hand, a consid-

eration of the MFA of a fetal ECG CSS can essentially evaluate the significance of the fractal

contribution of that piece of the attractor nost influenced by the CSS process. In the remain-

der of this work, this will be the R-wave (because of its implementation convenience). For

future work, however, it is recommended that an analysis be made of the TP-interval, where

the HRV tends to be isolated and the mode of the time-integrated distribution is located.

Now another recent null-hypothesis model for ECG sltrrogates, which more profoundly

changes the statistics of the attractor while preserving its geometry, will be considered.

5.4.2 Pseudo-Periodic Surrogates

Ch. 5: Sun'ogate Data

In general, the failure of the canonical surrogate models with ECG is due to the strong

nuisarce linearities and nonlinearities represented by the geometry of the ECG attractorl.

Here, the interest in surrogate data would be to evaluate the complexity^ of this geometry, (i.e. ,

lln general, note that the stronger the surrogate constraints become, the less likely the algorithm will achieve
them. e.9., The type-0 sun'ogates have the simplest constraints, ancl they also always have the highest quality
representation of the null-hypothesis model.
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the variability of statistics on the manifold itself), and not the underlying manifold looping

(observed in Fig. 5.21(Ð). The regular fèatures of the ECG are direct indicators of nonlin-

ear relationships which are essentially beyond the representation of the canonical surrogate

techniques. These regular features, however, do not present much indication of dynamical

variability, which would be the interest of an MFA. Consequently, it makes sense to redefine

the nuil-hypothesis in order to allow stronger nuisance nonlinearities to account for the attrac-

tor manifold, yet keep it distinct from the dynamical variability. The CSS model, however,

does not fully satisfy this because, though it reproduces the cyclostationary geometry of the

attractor, too little randomization of the variability has been induced.

Another alternative is to consider the underlying nonlinearity of the system uninteresting

if it is periodic. Following this, Small et al. proposed a pseudo-periodic surrogate (PPS)

model 1210, (200I)l which is designed to faithftrlly represent any gross periodic dynamics,

but destroy by randomization all other dynamics. This is accomplished by (i) constructing the

attractor by time delays and (ii) reconstructing a time series from the attractor with a dynamical

noise contribution to destroy dynamics.

Under the null-hypothesis PPS model, a point in the attractor is essentially of the tbrm

J0 = s0 + n0, where the point s6 € IRN" is from periodic dynamics and na is a noise component.

Thus a neighbour, ,r1, of xs is essentially

Ch. 5: Surrogate Data

since the error between s1 ând sç determined by the periodic dynamics must be small, and

thus can be grouped into the noise component n'. This indicates that the null-hypothesis is

effectively invariant to the permutation of local neighbours on the attractor.

In this work, the PPS algorithm is implemented by Small's own Matlab implementation,

and proceeds by permuting the successive points in the trajectory by a local neighbour of the

.[1 = Sl i Ít1 x Sgl- tt'
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attractor, as follows. The time series xj,...,xt1 aÍe reconstructed into an attractor using the

Iag L'n and embedding dimension N,, which is represented as the trajectory s,¿ € Rf;, called

the natural trajectory. The PPS algorithm then defines a surrogctte trajectory z, € Rf; on the

attractor iteratively, element-by-element, using random sampling with replacement scheme

that requires a priori a noise level parameter that tunes the "scale" of the neighbourhood

sampling. First the iterative process defining the surrogate trajectory will be defined, followed

by a discussion on the choice of noise radius, opps.

To begin, the surrogate trajectory is initialized at a random point on the attractor 21. The

iterative construction of the surrogate trajectory begins from the nth point e, as f'ollows. Its

neighbours are weighted according to an exponential probability disfribution, i.¿.

-ll;--- ll

Prr,,(1r) cc exp ll4n l"nll

Øpps

suitably normalized to 1. From this weighted set, the alternative point fr is chosen at random.

According to the naturàl trajectory, ît = xk f'or some k and so has a natural Süccessor r¿a1.

The next element of the surrogate trajectory t,r+r is then defined as the surrogate successol-,

i.e.,

Ch. 5: Surrogate Data

and the algorithm is iterated, rx <- n + 7.

Zn+l ? Xk+l

Once the sulrogate trajectory is completely defined, the surrogate tirne series

n'pp5[-t](n) = eÏzu

is extracted as the first coordinate projection of the surogate trajectory.

Since the PPS process introduces dynamical noise into the surrogate trajectory, any struc-

ture beyond the general geometry (and flow) of the attractor is corrupted. Note the lag em-

bedding of zrpp5[x] does not reproduce the surrogate trajectory z,,from which it was defined,
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and thus its reconstructed attractor is distinct from that of the original series .r,,. Thus any

deterministic nonperiodic intercycle dynamics, such as chaos, that appeared in the original is

reduced in the surrogate. However, it is not only deterministic dynamics that are eliminated in

the surrogate. If the underlying geometry of (5.1 4) had coloured noise, than the PPS will have

whitened the noise, eliminating the stochastic dynamics.

To properly distinguish between the fine scale dynamics and the gross periodicity, howeve¡

the PPS model reqnires the noise radius, Øpp5, to be properly chosen. This value defines

the horizon between the large geometries that are preserved ancl the small dynamics that are

randomized. If the value is too large, the underlying geometry of the attractor will not be

preserved. Whereas if the value is too small, the surrogate is too similar to the original. Small

et al. [210] recommends that øpps be chosen to maximize the number of 2-point intervals

that are coincident between the surrogate series and the original. (That is, øpp5 should be

chosen to maximize the likelihood that the surogate's horizon of predictabiliry is the next

point only.) Their experiments demonstrated that such a value was easily determined, and

provide an algorithm to calculate it from data. Using a shortened sequence of the original time

series (N' = 3000 points), all N'xly'' transition probabilities between the points are calculated.

A bínary search is initiated oil rrpp5 in order to make the average transition probability (average

of the off-diagonals) equal to P = 0.5, which maximizes the probability of a 2-point interval

since Pr(2 pt-interval) = P(l - P). Provided the restricted number of points /y'' covers multiple

periods of the attractor flow, this approach is sullcient. Using a subsequence in the form of

every nth point (for small n, e.g., t't - 2,3) to increase the number of revolutions of the attractor

was tried, but did not improve the performance of the øpp5 selection.

The features of a PPS of the fetal ECG signal of Fig. 5.21 is shown in Fig.5.24. The

times series of the PPS maintains the cyclostationary form of an ECG, with an added noise
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Fig. 5-24 Features of fetal ECG PPS: (a) time series is cyclostationary and resembles an ECG
wavef'orm with a noise component; (b) autocorrelation sequence has slightly stronger har-
monics than the original, but is otherwise a good statistical match; (c) power spectrum has the
same falloff as the original, but has significantly stronger higher frequencies (above 50 Hz);
(d) Fourier phase appears as a random variable; (e) time-integrated distribution is a strong
match to the original; (f) return map (lag=18) preserves the flow of the original, but the loopi
broaden under the stochastíc influence. PPS surrogate is good surrogate model fbr ECG.

component. One could imagine that under the "periodic plus noise" null-hypothesis model,

the time series shown here would be indistinguishable. From the dynamical view, however,

the most important observation of'the time series is that the RR-intervals measurable from the

sunogate are different from the original. Thus the most significant indicator of ECG dynamics

verifies its disruption. The autocorrelation sequence in Fig. 5.24(b) is very similar ro the orig-

inal, but the harmonics appear slightly stronger. Consistent with the observed noise in panel

(a)' the power spectrum in panel (c) has significantly stronger higher frequencies (specifically,
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a white noise floor 45 dB below the peak power). Notwithstanding all the dynamical changes,

the time-integrated distribution of PPS, Fig.5.24(e), is nearly identical to the original. The

changes in the return map clearly indicate the success of the algorithm's design. All the loops

are maintained in Fig. 5.2a(f , but their spread has greatly increased. In particular, the R-wave

loop has widened and lost some defìnition. The squareness of the R-wave is an indication

of the independence of the noise component induced by the PPS model. The changes to the

other loops are significant also, however, which was not achieved through the CSS algorithm.

Considering these results, the PSS model is an important surrogate model tbr the validation of

MFA.

5.4.3 Synthetic ECG: HRV Surrogates

Since this work uses the novel technique for ECG synthesis from RR-intervals, a new and

unusual opportunity fbr surrogate generation is presented: a synthetic ECG based on HRV

sulrogates. By this method, the effect of the HRV properties on the MFA characteization of

the resulting ECG can be analyzed. Considering the synthetic ECG system of App. A as an

operator ECGfm on the sequence of ECG event-intervals I, the HRV-surrogate of the synthetic

ECG time series x = ECGfm(I) is the respective synthetic ECG

¡runv [x] = ECGfm( rztlll)

The features of an HRV-surogate of the fètal ECG signal of Fig. 5.21 is shown in Fig. 5.25.

Since its time series is -eenerated from the same dynamical process as the original, panel (a)

is itself a synthesized ECG signal, but its RR-interval pattern is distinct. The autocorrelation

sequence in panel (b) is very similar to the original, but the harmonics appear slightly stronger.

The remainder of the surrogate's features, including power spectrum, time-integrated distribu-

tion, and return map, are virtually indistinguishable fiom the figures. This is to be anticipatecf,
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Fig. 5.25 Features of fetal ECG HRv-surrogate: (a) time series is a valid ECG waveform;
(b) autoconelation sequence has slightly stronger harmonics than the original, but is otherwise
a good statistical match; (c) power spectrum is a strong match to the original; (d) Fourier phase
appears as a random variable; (e) time-integrated distribution is a strong match to the original;
(f) return map (lag= I8) is virtually indistinguishable from the original.

considering the similarity between the HRV-surrogate process and the source of the original

synthesized fetal ECG signal. The interest, here, is not the gross similarities, but whether any

signif,cant differences can be discerned between them. Since the original signal was defined

from natural HRV while the HRV-surrogate is only stochastic, any distinction between the two

can be considered as evidence of some sensitivity in the characterization to the noniinearity dy-

namics of HRV. This approach to surrogate synthesis considers the ECGsyn dynamical system

effectively as a "nuisance nonlinearity" and can provicie insight into the relative significance

of HRV vs. the ECGsyn synthesis model (4.6) to rhe end resulr.
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With that end in mind, there is another test sequence that can be used to provide some MFA

context for ECG. Using the same ECG synthesis method previously used, an ECG template

can be constructed withotLt HRV. Replacing the RR-interval sequence LRR(n) that defined

the time series x with its constant average 16.RR(n) 'i ¿ {f .nn}, the constant-RR surrogate,

zrnnc[x], can be defined

By removing the HRV from the ECG altogether, another perspective on the relative contribu-

tions of HRV vs. the ECGsyn synthesis model can be analyzed. Unlike the HRV-surrogates,

howevet, this is not a stochastic representation, and therefore the RRC-surrogate is unique and

does not require multipie realizations.

The features of the RRC-surrogate of the f'etal ECG signal of Fig. 5.21 is shown inEig. 5.26.

In panel (a), it is difficult without a direct overlay comparison to see the difference that true

periodicity makes. The autocorrelation sequence in panel (b), however, is easily distinguished

because of the strong regular spikes that occur without decay. The power spectrum at high

fiequencies (i.e., above I20 Hz) is essentially the same as the original. At lower frequencies

however, there is no modulation widening the peaks of the harmonics, and so the harmonic

frequencies dominate the reduced floor. The tirne-integrated distribution of the sumogate,

however, remains essentially unchanged. The return map (lag=18) has very little change to

it except near the origin, where the portion of the manifold representing the TP-interval has

narrowed.

This approach to surrogate synthesis considers the ECGsyn dynamical system as the only

effective source of nonlinearity and can help identify artifacts in the MFA due to the gross

geometry of the attractor manifold alone.

Now the entire complement of surrogate data alternatives has been reviewed. The next

rnnc[¡] 9 nccrm(ro.RÀ)
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4

So
-)

(d) -4

Fig. 5.26 Features of fetal ECG RRc-sunogate: (a) time series is an unusually periodic ECG
waveform; (b) autocorrelation sequence exhibits strong harmonics with no decay; (c) power
spectrum above 120 Hz is a strong match to the original, while strong harmonics dominate a
lowered floor of low frequencies; (d) Fourier phase appears as a random variable; (e) time-
integrated distribution is a strong match ro the original; (f) return map (iag=18) through the
R-wave loop is strong match to the original, but the loop segrnents closest to the origin repre-
senting the TP-interval has a marked narrowing.

section discusses how these techniques are used for the validation of MFA.

0

Sample No.
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5.5 using surrog ate Data Models in MFA validation

The use of surrogate data in the literature is often a form of "sanity check" for the valida-

tion of a fractal dimension. That is, provided the null-hypothesis has been rejected, a nonlinear

dynamical feature (e.g., the correlation dimension) can be considerecl an accurate character-

ization of the dynamics. More elaborate studies, specifìcally of' the surrogate techniques on

known data models, will measure the size and power of the discriminating nonlinear statistic,

which requires the generation of r9 surrogates (at minimum) or more.

This work uses surrogates in the first sense, but in two capacities. First, the basic corre-

lation sum (4. 169) of the surrogate signal is used to iclentify any artifacts limiting the scal-

ing interval. If line¿r (or nonlinear) regions of the correlation sum log-log plot exist in both

stochastic surrogates and fECG, these regions should be excluded fiom the scaling interval,

since they do not represent the dynamical nclnlinear properties of the fECG signal that are to

be featured' Second, once a chosen scaling region has been chosen, the scaling of the MFA

entropies of the suffogates should be examined for comparison to that of the data. The scaling

properties should clearly be different if any credibility is to be applied ro the MFA. In some

circumstances' no linear fit is possible on sunogates. lf it is possible to fit the scaling of the

MFA enrropies of the surrogates (perhaps on a sub-interval), the MFA can be comparecl di-

rectly to the MFA of the data. Hence surïogates are useful in providing context for (i) the

scaling interval, and (ii) a sanity check for the MFA dimensions.

Note when MFA is applied as an SQM fbr the measurement of ICA separation, however,

the sunogate algorithms are not being applied to a synthetic ECG signal, but a mixture of
ECG signals. This implies that CSS and HRV-surrogates are nor directly applicable the way

they are with isolated ECG signals. Thus, at the synthesis level of the experimental method,

these supplementary surrogate algorithms can shed insight on the contribution of the R-wave
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and the HRV to the MFA that is measured. At the SQM tevel of the experimental method,

however, the only surrogate algorithms available fbr analysis are the ry^pe-Z. I (T2 1 ) surrogate

and the PPS.

5.6 Summary

This chapter has presented the background requircd to define and understand surrogate

data f'or the validation of nonlinear f'eatures extracted from a time series. The canonical sur-

rogate data hypotheses and their limitations to cyclostationary time series, such as ECGs,

were described. Alternatives from the literature, including cycle-shuffie surrogates (CSS) and

pseudo-periodic surrogates (PPS), were reviewed. Also, using the new technique for ECG

synthesis provided in App. A, a novel approach to surrogate data f'or ECGs based on HRV

randomization was presented.

This chapter also identified two applications of surïogate data for the upcoming experi-

mental design. First, based on the correlation sum (4.1 69), surrogate data provide context fbr

the selection of scales to be used in MFA. Seconcl, the multifractal scaling entropies of surro-

gate data can assist in identifying a proper scaling region for multifractal characterization and

context for the resulting fractal dimensions.

This concludes the general background required for the description of the thesis experi-

ment. The next chapter defines in more detail the implementations of all the statistical, fractal,

and surrogate techniques as required for the experiment clesign.
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6,1 Overview

This chapter describes the design and implementation of experiments to achieve an analy-

sis of feature convergence under the ICA processing of simulated fetal ECG. It is broken into

several large ideas:

(a) ICA pa-rameterization and convergence profiles;

(b) Features and SQMs;

(c) Signal synthesis; and

Chapter VI

Dnsrcu on ExpERTMENTS

(d) Overall procedure of experiments.

The discussion proceeds by first describing in Sec.6.2.1 the use of convergence profiles and

sampiing of the Stiefel manifold to provide convergence control. Thereafter, the several

classes of features that will be analyzed for convergence are discussed categorically by (i)

simple higher-order statistics (Sec. 6.3), and (ii) nonlinear features (i.e., attactors, MFA, and

surrogates in Sec. 6.4). From these features, the construction of the ICA error space by SQMs

is described in Sec. 6.5. Although the stand alone algorithm fbr sunogate ECG generation is

presented in App. A, a description of the methodology for the synthesis of noise-free ECG

is also discussed. In particular, Sec. 6.6 covers the selection of event-interval templates, the

sampling fiequency fbr the synthesizer, and the length of time series to be analyzed. Finally,

Sec. 6.7 discusses the overall procedure of experiments.
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6.2

6.2.1

Parameterized ICA: Convergence Profiles

Since the goal of this work is to compare the convergence properties of nonlinear t'eatures

under the action of ICA, control over convergence sampling is an important consideration of

this experiment design. To achieve sufficient control over the ICA process, a methodology

co-developed with N. Gadhok 163, (2001)l will be used, whereby the secondary oprimization

component of the ICA algorithm is discarded and replaced by a parameterization oJ'the Stiefel

manfold. That is, the ICA algorithms are represented solely by their cost functio n, f , in
matrix space, but the values of the cost functions need only be evaluated at specified samples

of W on the Stiefel manifold. As discussed in Sec. 3.5.4, a simple approach to parametenzing

the Stiefel manif-old is with Givens angles. Since the consideration of multiple features already

makes the ICA effor space difficult to analyze, only the simplest possible ICA convergence

profile will be used. Thus only two source signals, one maternal and one fetal, are considered,

and consequently, the Stief'el manifold can be parameterized by a single Givens angle 0. By the

geometric character of the ICA degeneracies discussed in Sec. 3.5.4, the angle d, furthermore,

only needs to parameterize an eighth of a circle to find an ICA solution. ìVithout loss of

generality, this will be assumed to be the interval g e [0, nl4] and the optimal solution will be

preserved at (or near) 0 = 0.

Let.r be a sphered linear mixture x(n) = WsMs(n) observed as a time series. Then under

this design, any SQM, f$, can be characterizedby its convergence profile

Convergence Profiles Defined

Ch. 6: Experiment Design

It(0) = l.l(W(0), x)

on the parameterized Stiefel manifold W(0). Examining joint convergence of multiple SeMs,
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FEATURE CONVERGENCE UNDER ICA:

therefore, amounts to the joint evaluation of the parameterized system

[Nr(0),...,$rn(o)]t

while holding the sources s, mixing matrix M, and sphering matrix

To populate the SQM vector, 3 classes of convergence profiles

class to consider are those from the ICA algorithms themselves.

f (W@),x), its convergence profile can be calculated by

z=W(0)WoMs=W(6)x

Nttr(o)Ytk)=r(w@)x)

This approach to representing ICA numerically is slightly unusual, but frames the

algorithms" of ICA in a more theoretical way, and so is consistent with this work's

to bridge theory and practice.

The other classes of convergence profiles to be analyzed against the ICA cost functions are

feature-based SQMs. The implementation of these prof,les will be discussed in Sec. 6.5, after

a discussion of the feature extraction techniques themselves.

6.2.2 ICA Convergence Profiles

W¡ constânt.

are considered.

For an ICA cost

This section presents the objective ftrnctions / that represent the ICA algorithms and,

therefore, reprcsent B-class SQMs of the form ßt/l(0). It is of interest to mention that these

objective functions are rarely presented in the explicit forms used here. Instead, they are

derived very generally (with many unspecified parameters) which then take on specific values

only in the implementation of a practical algorithm. For this work, the default parameter values

used in practice are assumed (unless specified), but they appear in the context of the original

ICA cost function. Four ICA cost functions are considered in this work for their dift-erences

and significance:

(6.2)

The first

function

(6.3)

(6.4)

"practical

objective
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(a) Xinfom ax ll25l (nonlinear maxi mum-likelihood obj ective) ;

(b) FastICA [91] (non-Gaussianity objective);

(c) RADIC N- ll23l (robust marginal maximum-likelihood objective);

(d) MILCA [215] (robust MI maximum-likelihood objective).

6.2.3 Xinfomax Cost Function

The extended-intbmax (Xinfomax) algorithm is based on a maximum-likelihood exten-

sion consistent with the original infomax algorithm l2l, (1995)1. The maximum-likelihood

cost function is formulated as the mutual information of a mixture tiom a parametrically

.formulated non-Gaussian distribution I I 25 ] . Though derived in this parametric context, Xin-

fomax can be considered as a non-pffametric optimization of arbitrary distributions because,

effectively, the cost function acts as a "nonlinear moment" of the arbitrary distribution. This

is consistent with the several levels of approximation that ICA algorithms generally undergo

in their derivation (Sec. 3.5.5),

Let (.) represent the sample mean operator. When expressed with default parameters in

negative log-likelihood form (for consistency with a cost minimization), the Xinfomax cost

function is [125]

Ch. 6: Experiment Design

J-xinromax(w, r) ug 
- tog ldet(w)l - Ë (,o, n (efwx1,z¡, ef4wrl))

j=l

where the nonlinear function r7 (tt(n),fr) is defined piecewise as

(

rt(v¡(n),/.r)'l l 
# "*p ?ivit'¡)sech2 v¡(n)

lffi .^p (-{o;( 
") - D') * ofu,.^p (-}o;( n) + \2)
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Here, the piecewise nonlinearity ryQ¡(n),fti) is based on the kurtosis k = k(Wx) to account

for the proper optimization of both super-, kj u 0, and sub-Gaussian distributions, k; < 0.

Here, (6.6) is a strange formula, but it is consistent with the stochastic natural gradient descent

formula

J=Wx

AW x (t - * tanh(y(n))y' Qt) -y1n¡yrln¡) w

as a final byproduct. The kurtosis switching appears here as the matrix K, which is a diagonal

unitary matrix with entries K.ij = sign fr(yr).

Thus the B-class SQM, l$, drawn from the Xinfomax cost function is algorithmically com-

puted from the sphered observations x(n) as

y(n) <- W(O)x(n) Vn

k e k(y)

z ¡(n) <- r¡(l ¡(n), k¡) Y n, Y I

Ch. 6: Experiment Design

Nxinromax(e) <- - log tcret w(e)t 
å 

(* å'", 
,^ 

)

where the nonlinearity r¡ in the definition of z¡(n) is as defined in (6.6).

implemented in the function ob j ectiveXinfomax. m.

6.2.4 FastICA Cost Function

The FastICA objective is based on maximizing functions that estimate non-Gaussianity of

a single channel by measuring the "norm" of some nonlinear feature with respect to a Gaussian

standard [91], as in

(6.7)

(6.8)

i-FastICA(eTw, r) 5 (<t (o)) - (t (eiw')))'
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Here, observations .r ale assumed to be zero-mean and sphered, and the first term is an equiv-

alent zero-mean sphered Gaussian valiable ç¡. If the nonlineality ry is chosen as a polynomials,

results are equivalent to traditional higher-order cumulants, while in the case of T = lo9fr¡,

using the true source pdf, the result is a true negentropy.

Of the different nonlinearities presented in [91], studies have demonstrated [63] that the

"Gauss" nonlinearity is the most robust and therefore it is considered here. This is the specific

case that sets

rt¡*Ðs - exp (-if *r)
and, therefore, has an insensitivity to large values.

From this, the B-class SQM, N, drawn from the FastICA cost function is algorithmically

computed from the sphered observations x(n) as

Ch. 6: Experiment Design

y(n) <- W(O)x(n) Yn

ñFas'[rcA(o) - - 
ä l+ (* å, 

+,:øt))'

Note that the foremost negative sign in the cost function makes it suitable for minimizatton

(versus a maximal non-Gaussianity measure). This SQM estimate is implemented in the ftrnc-

tion obj ect iveFastICA. m.

6.2.5 Radical Cost Function: Spacings-Estimates for Entropy

Entropy is a very important HOS, and its estimation is a field of research in its own right.

If a model for the statistical distribution is assumed a priori, parametric formulas for the en-

tropy can be used and would typically require the knowledge of certain moments (cf, (3.38)).

Non-parametrtc estimation of the entropy can be approached from several standpoints, and a

survey such as [20, Beirlant et al. (1997)] is recommended. One such approach is the plu¡4-in

(6.14)
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estirnates, whereby a semi-parametric estimate of the pdf "f is made first, and then the in-

tegral of (3.37) is evaluated (either as an analytic function of the resulting pdf formula, or

through numerical integration/quadrature). The pdf estimation technique can range from the

simple (e.g., regular histograms [49, (1989)]) to the complex (e.g., adaptive recursive parti-

tioning [49], adaptive AR-models [23]). Other approaches to entropy estimation can be done

through spacings-estimdtes [20]. These essentially use the characterization of a distribution

by its cdf (c.f.,(3.4)), and can be effective on unidimensional distributions [20, Betrlantet al.

(T991)lll23, Miller and Fisher (2003)1.

The Robust, Accurate, Direct ICA ALgoritlzm (RADICAL) approach to ICA UZ3, (2003)l

is based on a spacings-estimate of the marginal entropies of the datay(n) = Wx(n). A spacings

estimate is based on the properties of the cumulative distributions fïnction (cdf). Specifically,

the property is that the order smrisilcs

z¡Qt') 
o! 

sorry;(n)

roughly represent the inverse of the cdf,

F(zj(n')) = n'lN

Ch. 6: Experiment Design

in a direct way 1201. This is equivalent to the property that the likelihood of an m.-spacing

is expected tobe ml(N+ I ) for any underlying continurous distribution [123]. That is, for a fixed

m, each m-spacing T''l(n') is equally likely and independent of z¿'. From this, an ru-spacings

estimate for the entropy can be estimated as [23, Eq. 8]

V"JQI)Y- ,.¡{n' + m) - 2..¡(n') > o

fr,,,l(y,)gr l- f lon 
N + 17,,t¡r,,

vr/N_m/_)--om\¡\'el

- I (+'. N+t¡
= N-*A^t' - (z¡Qi+ttt)-z'¡(n'))
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If the MI of the data y(n) = V,,lx(n) is considered, then it f-o1lows that

uo¡= 
[å 

F,r,))- Ê(w*)

= 
Ëeo'r)-rogdetw-F(¡)

of which the last term is independent of W. Thus the estimate of a cost function can be made

purely on one dimensional entropy estimates

J'RADICAL(W, r) '-! - log det w . Ë F"'l1efwr;
i=l

From this, the B-class SQM, N, drawn from the RADICAL cost function is algorithmically

computed from the sphered observations x(n) as

y(n) <- W(O)x(n) Yn

Ch. 6: Experiment Design

nnnorcAllg) <-- - log derw +. Ë fr*'tçefwx¡
'l= I

with the entropy estimate FÏ"'t actually simplified from (6.21) by ignoring all common nor-

malization as

N-n

Êtd(y ¡) 
g 

I bg(2.¡(n' + m) - z¡(n'))
n'=I

This SQM estimate is irnplemented in the objectiveRadical.m function.

6.2.6 MILCA Cost Function: Estimating Mutual Information

(6.22)

(6.23)

The previous section presented an application of spacings-estimates to the marginal en-

tropies of the multidimensional system. This is essentially a one dimensional approach, and

it is quite difficult to extend this process to multidimensional supports 1146, Miller (2003)1.

A related approach developed by Grassberger et al. 1215, (2004)) counrs neighbours in the

(6.24)
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Ir*lryvri*7
v(i

Fig. 6.1 Grassberger MI algorithm: Beginning frorn a multidimensional sample y(i), the Kth
nearest-neighbour defines a distance €t'(l(i). This distance defines intervals in each marginal
space, j, and the number of neighbours ãrletKl1i)) in these intervals define the contribution of
that point y(i) to the MI estimate as Il VØ¡çrtutl¡¡)) through the digamma function þ. -rne

algorithm then averages over all i, (6.29).

marginals on spacings defìned by the nearest neighbours in the joint space. Since the be-

haviour of the joint entropy is implicitly included in this technique, it actually estimates the

MI and is distinct from the RADICAL cost function which ignored the joint-entropy term.

Thus, this section primarily presents an estimator of the MII, ñ, as an HOS feature for con-

vergence analysis, but secondarily, also presents an ICA cost function lMtLCA 
t: Ñ.

The Grassberger technique [20, Grassberger et al. (2004)] estimates the average differ-

ence between the sum of the marginal entropies and the joint entropy by a comparison of

nearest-neighbours between the joint-space (N,.-dimensional) and the marginal spaces (Fig. 6.1 ).

That is, the K-th nearest-neighbour f tØ to the point y(l) in the joint space produces a dis-

tance etn(ll = llltlfi)-f(Ðll* which will vary srarisrically for all rhe i = l,...,Npoinrs.

Ch. 6: Experiment Design

Marginal Space
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This variable distance 6t1(1(i) defines, on each marginal axis j, an interval around the marginal

value y;(i). Then, letting nt{etKt{t)) be the number of marginal neighbours in thar interval, i.¿.

îí,çetKtç¡¡ g I e (etn1;; - ly,e) - y,(r)l)
i'*i

it follows that [ 20, F,q. 23) an estimate for the MI can be expressed in the form

ña,->!,trx>+ (N. - r),/(N) * å (>,rr,6n(Ð))) l.zs)

where the digamrna function /'provides the suitable nonlinearity for estimating an HOS. Here,

the properties of fu dlive the statistical average in the final term, while the first t\/o terms

simply reduce the bias from the estimator under the finite number of samples N and parameter

K. A diagram of the algorithmic flow of the MI estimator for a single sample y(r) e RN. is

shown in Fig. 6.1.

A few extra processing steps are also used to assist the speed and quality of the algorithm.

First, the data is translated to make min¡y(l) = 0 (i.e., nonzero-mean). It is also scaled to have

unit variance along each rnarginal. Second, the algorithm spends some overhead to speed up

calculation. The prirnary element here is to use a box-assist technique similar to the one used

in App. C to find the nearest neighbours of point y(l) e R& more easily. Sorted marginal

arrays are also used to identify the neighbours in the marginal spaces. A supplementary over-

head used to speed up calculation is the calculation of ,1.,(¡)tromi = 1 to N (via a recursion

relationship), which is then stored in an array for later use. Third, a small uniform random

variable is added to the input {y} to increase the "continuity" of the distribution. Consequently,

(i) this technique can only provide a fractal analysis if the noise amplitude is set to zero (or

to levels below the scaling region to be studied), and (ii) a non-deterministic element in the

calculation may introduce some small variability in the MI output.

Ch. 6: Experiment Design

(6.28)
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The MI estimator is implemented in t{Ixnyn.m with an underlying C executable and can

be processed without user intervention.

From this, the B-class SQM, f{, drawn tiom the MILCA estimate of MI is algorithmically

computed from the sphered observations x(iz) as

y(n) - W(0)x(n)Yn

NMTLCA(a) ,-,t.l;)+ (N. - r),/(N) * å (if, ut'(r)))J

just as in (6.29). Similar to the other erlgorithms, defäult parameters are used here, which

impliesthatK=6.

This completes a discussion of the measurement of ICA convergence by the ICA objective

functions themselves. The novel component of this experimental work is the comparison of

feature-based SQMs under ICA convergence, which is discussed in the following sections.

6.3 Feature Class 1: Sirnple Statistics

This section describes the implementation of the simple statistical features to be used in the

standardization of signals and the estimation of SQMs (in particular, SQMs based on kurtosis

and mutual information). As described in Ch. 3, all statistical features represent the time-

integrated distribution of the time series x(n) e lR& with samples n = r,...,N,and, hence,

are modelled by iid estimatom. Furthermore, all statistical fèatures can be calculated without

user input.

Ch. 6: Experiment Desi gn
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6.3.1 Second-Order (Nuisance) Statistics and Standardization

As described in Ch. 3, the mean and variance are essentially considered as nuisance param-

eters in ICA. These will be calculated normally for the purposes of standardization. Specifi-

cally, the mean and variance are calculated from the time series x(n) as

1å
ttt(x) = -. ) .x(n)lv z-r

n=1

tz*) =* å þ(ù - î,{yt)'

through calls to the built-in MatIab functions mean.m and var.m under the form var(., L).

Note that the usual unbiased variance estimate is not used here, since no Gaussian modelling

is being considered, only the measurement of moments.

A time series is considered ,standardized if it is zero-mean and unit variance. Any time

series can be standardized by the transformation

Ch. 6: Experiment Design

which is implemented in the standardized.n f'unction,

6.3.2 Second-Order Features

x(n) <-
x(n) - Ã(x)

Two other second-order statistical features are calculated fïom the source estimate frn)

and the original s(n) as introduced in Sec.3.5.7.5. After both signals are standardized, the

cross-conelation index CCI is calculated

t:'7---
^,lttz\x)

fN
ccIGrig,fÎn)s(n)

rt= I

Last, the SNR of the standardized signals is expressed in dB and calculated

SNR-G s) 'i tglog,n ' If=' s'(r¿) 
-""' If=, (1¡n) - s(n))2

(6.32)

(6.33)

M. Potter

PHD-Design

(6.34)

-215 -

(6.3s)

September l -5, 2008

Version 2.3.6

(6.36)



FEATURE CONVERGENCE UNDER ICA: FECG

where the . explicitly identifies the SNR as being standardized by arguments of unit variance.

Standardízation is an important requirement for SNR measurement in consideration of ICA

and its scaling degeneracy (cf , Secs, 3.5.3 and 3.5.1.4).

6.3.3 Higher-OrderFeatures

An estimator for MI has already been presented in Sec. 6.2.6. The remaining higher-order

statistic considered as a time series feature is the kurtosis. This is estimated

1ç*¡ = #[Ë to" -ør'rl') - :

and implemented in kurt . m. This calculation is non-parametric, but may not be robust in

the presence of outliers. Since outlier robustness is not the focus of this thesis, however,

alternatives will not be developed here. Interested readers should consult [63, Gadhok (2007)]

and references.

Now the second class of features for SQM consideration will be presented.

Ch. 6: Experintent Design

6.4 Feature Class 2: Nonlinear Features

A contribution of this work is the consideration of nonlinear tèatures for convergence anal-

ysis. As discussed in Chs. 2 and 4, this is being approached through the MFA of a correlation

partition from a reconstructed attractor. Recall that the benefit of attractor reconstruction is

that the dynamical relationship between points in time can be evaluated through statistical

means. As discussed in Sec. 4.6.1, the ECG attractol is a multidimensional representation of

the underlying dynamics in a unidimensional time series , x(n) for n = 1, . . . , N, constructed

through the lag embedding procedure [219, Takens (1981)]tl97, Yorke er at. (1991)l

N(

,rn.xÀQfi = I., x(n + (i - t)An)
j=l

(6.31)
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where the sample lag Ln and the embedding dimension N, are the embedding parameters to

be determined. This section will describe the practical procedures used to (i) estimate the

embedding parameters l\n, Nrl and construct the attractor

glo!- 
{tttn'u")Qt)l n - 1, . .. , N, 

}

(ii) estirnate the Theiler window W7 for a correlation partition

culate a CP frorn the embedding yla,,rut (c.f,, Table 4.1), and

CP (c.f., Table 4.1).

6.4.1 Sample-Lag

The optimum sample-lag for attractor reconstruction (in nonlinear time series analysis

jargon) is one that.fùlly unJ'olds the attractor. By this, it is meant that too small a sample-lag

forces the attractor manif'old to remain strongly correlated and, hence, bound to a diagonal

of the embedding space. In such conditions, the attractor's pattern and statistics are not fully

expressed. Too large a sample-lag, however, will begin to accentuate curvature and twisting in

the attractor manifold, and, hence, over-fblding confuses the attractor's pattern and statistics.

Figure 6.2 shows the eftèct of changing sample-lag on the two-dimensional projection of (i)

the Rössler attractor and (ii) a synthetic ECG attractor.

In the original (continuous) mathematical theory of Takens, the lag is a nuisance parameter

(i.e., without much effect). The experience of researchers in practice, however, has shown

some numerical significancel, and lag selection is part art as well as science. To properly

unfold the attractor, the rule-of'-thumb is to promote independence and decorrelation between

the lag coordinates (which promotes the attractor away fiom the diagonal), but penalize large

sample-lags (which will over-complicated the manif'old). In the literature, two applications of

Ch. 6: Experiment Design

(6.3e)

(CP) (c..f., Sec. 4.6.2.3), (iii) cal-

(iv) estimate an MFA from the

rcl, 
[108, NTSA (1997)lt2tJ9, Small and Tse (2004)l and references
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Fig. 6.2 Two-dimensional projections of the Rössler attractor (top) and synthetic fetal ECG
(bottom) with different sample lags: (a) too small, (b) ne¿r optimal, and (c) too large. (Here,

the Rössler atffactor is observed under a logarithmic (logz) measurement.)

this rule-of-thumb are common for defining the reconstruction sample-lag. The first uses an

autocorrelation measurement, and the second a measurement of mutual information.

6.4.1.1 Lag by Autocorrelation

c!

È2oo()
I

H'O

024
lag-coord. 1

(c1¡'

-2
ß2)L

-¿

-20
lag-coord. 1

The autocorrelation function of a random signal, R,(tt, t2), was introduced on p. 50. Under

the assumption of a wide-sense stationary process (c..f.,p.51), À" becomes a function only

of the lag t2 - 11. Considering the time series x(n) as an iid process, it follows that the au-

tocorrelation function (2.8) can be estimated at interval samples of the sampling interval as

c!
.rjô
LZ
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t1631

N'(An)9¡¿-^,

where the normalization by N'(Ln) is the unbiased estimate for finite N. Two significant

features of Rr(An) have been considered for estimation of the embedding sample-lag. One

such consideration is the autocorrelation time, À,,,

zn I min ars 
Tin lororl - 

lnroll

By definition, 2,, is the time (in samples) it takes for the autocoffelation function to decay fiom

its maximum at Ln = 0 to exp(- I )R, (0) t I 0Sl. Another consideration for the definition of A¡z

is the first zero of R_,(An)

Both of these conditions fit the rule-of-thumb for unfolding an attractor. Since they both occur

on the downslope from the maximum at zero lag, "large lags" are penalized (i.e., effectively

never considered2). Although the degree of "unfolding" represented by either selection is not

made quantitatively explicit, it has been argued 1224,Theiler et al. ( 1993)lt I 08, NTSA (Igg:.)l

that the presence of strong lineal correlation in an attractor can inhibit the accurate analysis of

nonlinear behaviour. From this standpoint, a zero of R., would stand as the preferred unfolding,

since the linear relationship between the time-integrated distributions of the lag-coordinates is

minimized.

Notwithstanding which R, feature is considered, the estimation of An occurs relative to

the maximum that occurs at zero lag, R"(0), (which is effectively a measurement of the power

2o 9 min arg rl,n lR(Az)l

(6.40)

(6.41)

2Some care, however, must be taken in conditions of white process, where R,(Â¡r) = R'(0) and so both
features are effectively "null". White processes can use An = l.

(6.42)
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(mean energy) in the signal). It is convenient, therefore, to apply the normalization

R-(arz) ,- Rr(Ln)
' R,(0)

so that fIlâX6¡ Rr(Arz) = R*(0) = 1 prior to an analysis of 2,, or the zero À¡.

6.4.1.2 Lag by Mutual Infr¡rmation

Instead of evaluating the autocorrelation of the joint-distribution of lag-coordinates as a

function of the lag, R(An), a supplementary approach to estimate the sample-lag [6] ,Fraser et

aI. (1986)l is to evaluate the Mr, M.,(Ln), of the second-instance distribution

y(,¿)'i I o' 
l

lx@ + Lfll

M.,(Ln)Y- uO@))

and the Grassberger algorithm described previously may be used for the calculation. In all

likelihood, M,(Ln) approaches zero only asymptotically in the infinite limit Ârz -r oo, and

therefore a zeÍo cannot be taken as the determining fèature for A,n. Instead, Fraser and Swin-

ney [61, (1986)] suggest using rhe first minimum of M,(Ln) ro idenrify a,n 13, Ch. 71, (Hence

it is usually presumed that the MI is generally smooth or prohibits the identification of spu-

rious noise minima by denoising to some degree.) As with the autocorrelation technique,

this fbllows the rule-of-thumb of penalizing large lags while increasing the unfolding of the

atfactor in the embedding space. At a local minimum of M,(Ln| it can be argued that the

lag-coordinates are minimally redundant (i.e., asindependent as possible under small changes)

and, thereby, maximally filling the embedding space. Certainly it suits the nature of this work

to consider the HOS of the joint-distribution of the lag coordinates and not only their linear

effects. The nature of the ECG attractor, however, makes things slightly complicated.

(6.44)
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Fig. 6.3 Estimation of fECG embedcling sample-lag: Autocorrelation funcrion R,(An) (dark
solid) and MI M.(Ln) (grey) as a function of the lag Nt. The R., curve has two early zeros
related to the QRS complex (which has an average width of 20 samples). MI decreases steadily
with increasing lag. The lags used for the fECG scatterplots in Fig. 6.2 arc marked (stars).
This work proposes to use the second zero of R., zrs the embeddíng lag fbr fECG attractor
reconstruction.

6.4.1.3 Lag Selectionfor ECG Reconstructiotx

Figure 6.3 shows the concurrent plots of the R_,(An) and, M*(Ln) for a synthetic fECG

signal. As described in [108, NTSA (1997)], the autocorrelation is dominated by the high-

power and short-width QRS-complex. With these two features so linked, it follows that at

26, the first zero of R,(An), the QRS loop is separated well (as in Fig. 6.2(a2)). The smaller

(low-power) waves, however, are still tightly bundled near the baseline and not very well-

expressed. At larger lags, where the M,(An) has decreased, these smaller loops are unfolcled

better, but the QRS loop now begins to overlap itself (as in Fig. 6.2(c2)). With rhis in mind,

this work proposes to use the second zero of the aLûocorrelation.functioft, Àsz, for determining

the embedding sample-lag as ¿ì compromise. This still f'ollows the rule-of-thumb of keeping

0 51015202530
Lag [Sample]

40
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the lag small3, encouraging unfolding, and minimizing linear correlations. [n fact, since the

first two zeros of the autocorrelation occur on the downslope of the MI, this technique should

encourage greater unfblding than the first zero of Rr(Arz). While this technique may not apply

in general to non-ECG signals, it should generalize to other ECG moryhologies (i.e.,lead

configurations) since the expression of the QRS complex persists in all leads (in either a polar

or bipolar f'orm). Further work would be required to establish this as a general principle, but

for the limited purposes of this work (which uses a fixed morphology), ir seems to suffice. The

fECG attractor represented in the bottom images of Fig. 6.2 corresponcl to the values Ln = 4

(left), the second zero of R.,, A.n = 17 (centre), and Ln = 35 (right) respectively. These points

are also identified in Fig. 6.3 (stars).

This autocorrelation-based estimate is implemented in a Matlab program bestecglag.m.

The second zero is identified by being the "first increasing zeto" in R.,(An). This algorithm

iterates until either the clptimum lag is found or it reaches the maximum lag length specified in

the argument. As such, no user intervention is required, but if the algorithm exits unsuccess-

fully (at the maximum 1ag), nothing is assigned and user intervention may be required. The

results of the lag estimate can then be displayed using the Vi ewlagAutoCorr . m function (as

shown in Fig. 6.3).

Remark 6.1. More can be said on the issue of lag-embedcling models, but more complicated

forms f 103, Mees et al. (1998)l[209, Small and Tse (2004)] will not be considered in this work.

These references consider the effect of multiple characteristic times that occur in fiequency-

modulated signals, and therefore would be of interest in the analysis of ECG (c.f , App. A).

Although the embedding dimension is the last significant pararnetel required for the at-

tractor reconstruction, the determination of the Theiler window will be discussecl next, since

Ch.6: Experiment
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Fig. 6.4 The Theiler window for the cyclostationary ECG should exclude members of a single
ECG wave. For the average fECG beat here, aWr - 20(À, + l) is sufficient (as shown).

it will be used in the estimation technique of N,.

6.4.2 Theiler Window

<- \'V.,. 20(/-,,. 1 J -------->

The Theiler window, W7,is a parameter required for the determination of a correlation

partition. Although it would seem out of place to discuss it here (an attractor hasn't been

reconstructed yet!), I4z7 is a time-parameter just like the sample-lag and it will be used tbr

the estimation of N¿ that follows. The minimal principle for choosin g W7 is that the Theiler

window should be at least as long as the autocorrelation decay, wr 2 (2, + 1) or perhaps

largerby anotherfactor. The more complicated bouncls and estimates f'or I4z¡ (such as [1g2,

Provenzale et al. (1992)11108, NTSA (1997)l) can be forsaken here because rhe ECG is a

cyclostationary signal. Here, it simply suffices to use the length of the ECG waves to eliminate

those samples that appear close in time. Essentially, no points within the same wave should

be counted as neighbours. This can be achieved by picking

0 50 1C

Offset from R-wave [Sample]

Ch.6: Ex

I
Wr = i(An(n))

In the case of a synthetic fECG signal used as an example through this section, this amounts

n îr = 100, as shown in Fig. 6.4. For better generalizatron to multiple sampling frequencies,
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FNNs li No FNNs

tllr
tl¡t
I tt I
tllr

Fig. 6.5 The projection of higher-dimensional points onto subspaces introduces the false
neighbour effect.

t- --- - - - ---- - - -t¡---- -- - - - - - - - -l
Attractor not unfolded in lower dimension

this is written in Theiler's product form as

ø'Y1Q, + t)

l¡
lt
lt
ll

which is invariant to sampling frequency. [n this work, the stretch-factor 2 in (6.48) is set to

20 to be consistent with the previous ECG-based estimate (6.41).

Ch. 6: Experiment Design

Rd+/

6.4.3 Embedding Dimension

The estimation of the embedding dimension, Nn, for attractor reconstruction can be ap-

proached in multiple ways. The.false nearest neighbour (FNN) technique [ 14, Kennel er

al. (1992))184llll3, (2002)lU 08, NTSA, Ch. 9l is a common approach which identifies the

significance of embedding dimension to dynamical variables. Essentially, if No is too small,

the observed reconstruction is a projection of the attractor into a smaller embedding space

and therefore parts of the attractor that are actually distant appear overlapping, as shown ín

Fig. 6.5. This can introduce error in statistics and other dynamical character\zations of the

atffactor. The weakness in the FNN methodology, however, is the sensitivity to its parameters

M. Potter

PHD-Design

(6.48)

-284- September 15, 2008

Version 2.3.6



FEATURE CONVERGENCE LINDER ICA: FECG

(e.9., thresholds) and a demonstrated insensitivity to surrogate data randomization 184, Heg-

ger and Kantz (i999)1. A more prirnitive approach to estimating rhe embedding dimension

examines a dimension estimate (such as Dù for saturation as the embedding dimension No

is increased [73, Grassberger et al. (1953)][84]. Here, as wirh FNN, projections introduce

measurable afiifacts in the dimension, which disappear once the attractor is sufficiently em-

bedded. On the other hand, noise signals (and randomized surrogates in particular) should be

distinguishable by their ability to fill the embedding space, and so have a linear relationship

between Dzj e IRN") and N" (with no saturation). Here, since the feature of interest from the

attractor is an MFA, this approach to estimating embedding dimension is also more significant

to the end goal of the f-eature estimation.

Using the convergence of a fractal dimension for the estimation ly'r, however, requires

either (i) many repeated calculations of the dimension for different À/u, or (ii) a paralleliza-

tion to calculate them all at once. Since the underlying complexity of a dimension estimate

(from a correlation partition) is O(N2), repeated calculations are prohibitive (since the pair-

wise comparisons are repeated each time). Hence, parallel methods to estimate the Cp are

preferred. Furthermore, since only one dimension is requiled for convergence analysis over

Nr, the fastest of all dimensions, D2, càír be considered. This means that only the correla-

tion sum Zc, (4.169), is required ancl not a full CP, (4.160). To streamline this calculation

even further, Hegger, Kantz, and Schreiber [83, (1999)] use a random sampling approacha to

reduce the number of comparisons to achieve a given accuracy. This takes advantage of the

propefty that larger scales do not require as many comparisons to achieve reasonable statistics

as the smaller scales. Of course, "large and small scales" vary somewhat with changing em-

bedding dimension (since the mean distance between poinrs increases with N"). The TISEAN

Ch. 6: Experiment Design

aRandom szLmpìing for correlatiotì-sums has been considerecl since 1992 [112, Kernber.et at.l.
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Fig. 6.6 Conelation sum scaling (a) and local gradient (b) for a synthetic fECG signal (dark
solid) with increasing embedding dimension. (The CI curves are essentially monotonic from
top to bottom in panel (a) (bottom to top in panel (b)) with increasing N,.) The CI curves for
a representative T21-surrogate is also shown (grey dashed), identifying the plateau at the right
of panel (a) (spike in panel (b)) as a non-scaling artifact.

package [83] has an algorithmic optimization which (i) uses only a 'osufficient" number of

points to achieve a Zç calculation accuracy at the given scale e(i) and embedding dimension

¡/", (ii) processes the embedding dimensions ín parallel, and (iii) uses a box-assist technique

to find neighbours with greater effrciency. Note that, while useful in this context for Zç, this

randomization technique should not be considered fbr a general MFA (such as the one used in

this work; c.f.,Table.4.1) because small q increases the sensitivity of the entropy to the small

statistics. Thus, in order to achieve accuracy for q < 2, all possible comparisons should be

considered.

The TISEAN estimate is implemented in C as d2 . c to which the author has added a Matlab

Ch. 6: Experiment Design
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Fig. 6.7 Correlation dimension Dz(N,) as a function of embedding dimension N, for a syn-
thetic fECG signal (solid). Saturation occurs for the fECG signal àt N, = 10. The representa-
tiveT2I surrogate (dashed) fiom Fig. 6.6 exceeds the scale of the graph.

interface as d2 . m. The inputs to the algorithm include the time series itself, the sample-

lag, the Theiler window, and the maximum embedding dimension to be considered. The

output from the algorithm is (i) an array of values consisting of the embedding dimension

N,(j), (ii) the scales e(i), and (iii) the correlation sum, Zç(e(i),N,(j)), all of which ¿re stored

for further analysis. In particular, this output can be presented graphically via the function

ViewEdimDims.m, as in Fig.6.6, for a selection of scaling interval. Scaling interuals ate

evident by a clustering of horizontal lines in the lower panel (e.g.,Fig.6.6(b) at -1 on the

horizontal axis), which then translates into a region of linear behaviour in the upper panel

(e.g., Fig.6.6(a)).

Once this interval is selected by visual inspection, it can be added to the function call

to yield a presentation of the linear fit estimate ûW) for that interval. If a saturation can

be determinedby visual inspection of the ît(¡V") overN" plot, Fig.6,7, then the embedding

dimension for MFA can be set to that value using the AssignEdim.m function. The synthetic

fECG signal represented in Fig. 6.7 has an embedding dimension of No = 10.

Having completely determined An and Nu, the finalized attractor is defined by (6.38) to

2 4 6 8 10 12
Edim
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yield the set

flY- lrttn'NÀ(n)ln = 7,. .,N,ì

which is stored as an array of size N, x N". The total number

given by

N,9¡¿-(N,-1)Ln

Remark 6.2. Since the embedding dimension requires user intervention to

(a) determine by visual inspection, and then specify, the scaling interval for12 analysis;

and

(b) determine by visual inspection, and then specify, the embedding dimension;

this t'eature extraction must be separated from other automated elements in the experimental

procedure.

6.4.4 Generating Surrogates

As mentioned in Sec. 5.5, only theTZI and PPS models are applied to generate surrogate

data from the time series.

The T21 sun'ogates are generated from the algorithm of Ch. 5 in a HatIab implementation

by Leontitsis'5 and packaged into the surrogate.m function. Since convergence of the T21

algorithm is very slow under ECG input, the number of allowed iterations was increased to 60

000, though typical runs would terminate ¿nound 2300-8000 iterations.

While aT2l sunogate requires no extra parameters apart from the time series itself, PPS

requires embedding parameters and a PPS noise radius. The embedding parameters are taken

Ch. 6: Experiment Design
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of points in the attractor, Nr, is
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swith some additional cosmetic changes by the author.

M. Potter

PHD-Design
-288- Septernber 15, 2008

Version 2.3.6



FEATURE CONVERGENCE UNDER ICA: FECG

in common from the previous analysis of the observed time series. The noise radius, however,
is estimated internally by the findrho. m utility according ro rhe oprimal model suggested by
Small (c.,f , Ch. 5).

The user can specify the numbe¡ of surrogates to be generated. Since the purpose of the
surrogates here does not include a rigorous statistical analysis, a sample of f'our sunogates
is considered sufficient to identify a surrogate "representative" for comparison to the original
without exhausting memory resources. Experiments indicate that this is sufficient to validate
the selection of scalin_q intervals,

All representatives of the T21 andPPS sunogates to a time series x(n) aregenerated by a
single call to the ThesÍsATTsurr2.m function.

6.4.5 Comelation partition

The calculation of the correlation partition is the most computationally intensive portion of
the MFA routine' A cP is distinct from the more basic correlation sum because the reduction
to a running sum is not possible: the individual contributions frorn each ball centre y(n) e fl
must be kept distinct for calculation with the multiple values of q, (c.f.,Table 4.1). Though
the algorithm for the calculation of the cP, crHptn.m, is rhe subject in depth of App. c, its
use and form are outlined here.

The fundamental atguments passed to the algorithm are the embedded data,fl,,the Theiler
window, and a vector of scales

CIt. 6: Experinent

which is not the scaling interval precisely, but the scales of calculation (which should certainly
include the anticipated scaling interval). The vector É must be provided by user input from the
context of the $ scaling inrerval identified in Sec. 6.4.3.

e=[e(1),...,6(N.)]r
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Fig. 6.8 CP box-assist: A 2D grid of size max¡ e(i) is appliecl ro the firsr two lag-coordinates
of the attractor data. Neighbours on the attractor with distance less than e(i) from the point
y(n) e fr (dark circle) must therefore be inclexecl within the centre box (clark) or one of its
eight neighbours (grey).

Internally, the pairwise comparisons of the CP use a box-assist method on the first two

lag-coordinat"s, {þTo"'*t(i),.r!o"'nt'u)) | .i = r,. . . , N,,} and therefore, some overhead is spent

in identifying the membership of each box. By using the Chebyshev norm, ll.ll-, clistance rela-

tionships across increasing embedcting dimensions are kept simple. By choosing the box width

to be e, - InÍìx¡e(i), all points y(.Ì) e.7{ within e(i) of y(¡z) will be fbund in the neighbouring

boxes to that of (y!^"'ru't, ù, ,-Il"'rì(r)). rnus only the subset of points indexed in rhe box itself

and its 8 neighbours need to be consiclered fbr pairwise analysis, as shown in Fig. 6.g. To

prsserve a benefit to the box-assist overhead, the scale vecrol'e(i) may be reduced by a factor

CIt.6: Experinent
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of 2 tf the attractor is covered by fewer than 9 boxes.

The main loop of the CP algorithm proceeds by:

(a) Considering the point y(ir) e fl, as a centre;

(b) Identifying by the box-assist indexing the possible neighbours of y(n) as a list;

(c) For those neighbours in the list satisfying the Theiler window criterion, calculating as

a vector their distance from the centre point in each embedding dimension i (up to the

maximum);

(d) Then, for each specified scale e(l) and each embedding dimension j, the elements of

the partition affay (i, .i) fbr the point y(n) are incremented if the interpoint distance is

smaller than the specified scale e(i);

(e) Updating to the next centre point, n <- n + l, and repeat the loop until all points are

exhausted.

After the main loop of the algorithm, the integer-valued CP is returned as a Nn x N, x N,

array (i.e., the N,(e) of Table 4. I ) and is normalized to make the true partition (i.e., the t¡(e) of

Table 4.1). To preserve memory, only the f'ull embedding is considered (and not all dimensions

smaller than it) and therefore the final CP, P, is an N, x 1/. array of floating point values. This

calculation is fully automated in the f-unction CIHptn.m, but because of long time series, it

may take a substantial time to complete (e.g.,30 min per time series of 30K points).

A visual representation of the regional properties of the CP is shown in Fig. 6.9, Here, the

projection of the fECG attractor into 3D (shown in perspective) is coloured by the CP values.

Note that the region of minimal CP probability is the R-wave loop while the region of maximal

CP probability is the ST:-interval (at least in this 3D projection from IR.r0). Such an image is

new to the MFA literature.
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Fig. 6.9 ECG attractor CP density: (a) A 3D (perspective) scatterplot of the reconstructed
fECG attractor coloured by the CP probability at scale e = )-{)'1. Note that the R-wave loop is
the region of minimal CP probability while the ST-interval is of maximal CP probability in this

projection from RrO. This image is a novel representation of an attractor. (b) The distribution
of CP probability values at scale e = 2-0't .

6.4.6 Scaling Entropies and MFA Calculation

Ch. 6: Experiment Design

From the CP resulting from the preceding steps, the calculation of the Rényi, Hölder, and

Mandelbrot entropies is then a straightforward application of the formulae from Table 4.1. The

values of the exponent q are set by the user in a vector format. Note that to avoid numerical

instability in the Rényi entropy, it is chosen that q # 1, and a higher density of q-values is

recommended in the l-1,21interval to capture the nonlinearity of the RS and the maximum

of the MS.

Remark 6.3. In order to allow some user directed editing to q, the generalized scaling entropies

themselves are not stored as arrays over e(i) and q(j). Instead, they can be recalculated from

the correlation partition P which remains in memory. Since the CP is of the size À{, x N.,

this is not an efficient use of memory, but the CP is more primitive, and recalculation of the
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FEATURE CONVERGENCE UNDER ICA: FECG

o

I
I

Fig. 6.10 Example of the MFA Scaling Entropies: Simultaneous scaling of (a) Rényi,
(b) Hölder, and (c) Mandelbrot entropies of an fECG attractor (at 500 sps in IRrO with An = 77).
The legend at the left applies to all panels.

generalized scaling entropies with different q is much cheaper than a recalculation of the CP

itself.

Using the scales vector e, the CP,P, and the q-vector as alguments, the ViewEntropy-

Scaling . m function can plot the three scaling entlopies as shown in Fig. 6. 10. The analysis of

these images are an important element of this work, and, therefore, some discussion of these

figures will now be rnade. Note that the legend at the left applies to all panels.

As discussed in Ch. 4, it is expected that the finite size of the attractor introduce a satu-

ration at large scales, while the finite sampling of the attractor or noise floor should induce

a saturation at srnall scales. Here, panel (a) shows the scaling of the Rényi entropies from

large q (top) to small (bottom). Note that saturation does not appear on the right in this im-

age because ffiâx¡ e(i) is sufficiently smaller than the size of the attractor (as required by the

box-assist technique). At the bottom left, the finite sampling saturation affects the entropies

differently depending on 4. Specifically, HnG)|,,, diverges downwards as € --) 0, while

HnG)10., appears concave-up in the same limit. Panel (b) shows the scaling of the Hölder

entropies which ate again ranked flom large q (top) to small (bottom). Again, no saturation is

t") -r6_i -¿u
log 2(r)
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FEATURE CONVERGENCE UNDER ICA: FECG

observed at large scales, but finite sampling saturation flattens out the curves at small scales.

This effect is predominant in the small q entropies (i.e., q < 0), which are more sensitive to

the small probability sections of the attractor. For exampl e, y,, scaling for q = 2 persists along

the interval log, e € [-3,0], while for q - -2, satarafion effects dominate for log, e < -0.8.

Further discussion of the finite sampling effect is discussed later. Panel (c) shows the scaling

of the Mandelbrot entropies. These are loosely ranked by lql, so that mino Tn(e) is achieved at

Q = 0. The dense packing of curves at the bottom is expected by the higher density of 4-values

around zero. Furthermore, the large cl > 0 curves can be distinguished from the q < 0, because

they appear more smooth and do not approach the saturation asymptote at small scales. The

significance of representing all entropies in the same figure is that the user can consider all

entropies simultaneously while determining a scaling region. This step is discussed next.

6ì.4.6.1 Scaling Region

In keeping with the requirement that a scaling region be determined by inspection fl08,

NTSA (1997)1, the user must personally analyzeÍhe generalized scaling entropies f'or a scaling

region with images of the form of Fig.6.10. Through this work, several useful elements have

been identified to provide guidelines for specifyin-e the scaling interval. These elements are

specified in Table 6.1, but, generally speaking, the scaling interval is the largest interval with

a strong linear approximation for q > 0 and as few nonlinear artifacts for q < 0 as considered

reasonable. The application of'these elements to scaling entropies is shown in Fig. 6.1 I for an

fECG attractor and in Fig. 6. 12 for an fECG PPS surrogate.

Once a scaling interval is identified, it can be assigned to the CP using the ViewEntropy-

Scaling.m command. Once assigned. these scaling intervals appear as vertical bars in the

scaling entropy figures (cl, Fig. 6,13).
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FEATURE CONVERGENCE UNDER ICA: FECG

Lower end of scaling region must be greater than the small e crossover point of Hql^inqrt

and H,,l*.-..-, (c1., @ in Fig. 6.1 I and Fig. 6.12);y tm¿ü r/< I

Lower end of scaling region should not be excessively smaller than any turning point of
T,l* . . at small e (c..f., @ in Fig. 6.1 I and Fig.6.12);

Y IMAX ¿1

Table 6.1 Guidelines for Selection of Scaling Interval

Upper end of scaling region should not extend beyond any turning point of T,)q.oat large 6

(cf., @ in Fig. 6.I I and Fig. 6.12);

Upper end of scaling region should not
T.,1...-. . at large e (c.f., @ in Fig. 6.11,t ltr|.axq

Both ends should approximately balance any saturation curvature for Hq, !q, and Tn fot q x
2, if possible.

Ch. 6: Experintent Design
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be excessively larger than any turning point of
and Fig. 6.12);
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Fig. 6.13 MFA Scaling Entropies with Linear Fit over Scaling Interval: Simultaneous scaling
of (a) Rényi, (b) Hölder, and (c) Mandelbrot entropies of an fECG attractor (at 500 sps in )RrO

with À¡z = 17) with scaling interval and best linea¡ fits as marked.
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FEATURE CONVERGENCE UNDER iCA: FECG

6.4.6.2 Slope Estimates and [Jncertainties

Once the scaling interval for a CP has been established, the calculation of both the RS

and MS is a straightforward application of the box-counting formalism to the formulae of Ta-

ble 4' 1. Implemented in the calcMFA. m function, a slope is fitted to the generalized entropies

in the scaling region by minimum-absolute-deviation [180, Num. Rec. (Igg2), g 15.7]. That

is, representing f(l) as the numerator of the box-counting formalism (e.g., -Hr(e(i)) = f(r)

and similarly), the objective function

I l.ttl - Â toe ,f¡) - d"l

is minimized over the parameters d¡ for the samples i in the scaling interval. In particular, the

slope estim ut" fi is returned as the generalized dimension of interest. This is the preferred

fitting mechanism (over the more traditional minimum-squared-error) because it is more ro-

bust to outlier effects introduced by lacunarity or edge saturation. As previously discussed in

Ch.4, however, it is desired to have a measurernent of uncertainty to the slope that provides

context over the multiple value of c1. For example, since saturation artifacts are still strong for

Q = -2 in the scaling region of Fig. 6.13, the "best linear fit" is not as reliable as for Q = Z, and

graphical representation of this imprecision is useful. Once the calcHFA. m function has been

applied to calculate the MFA, a repeat call to ViewEntropyScaling.m includes in the plots

the best straight line estimates, as shown in Fig. 6.1 3, and the variability in the precision of the

fit can be discerned graphically. Quantitatively, relative imprecision in the fit is approached by

estimating it as the slope uncertainty from a minimum-squa-re-error model (cl, [180, Num.

Rec. (i992), $ 15.21). This is somewhat mismatched from the estimate of the slope irself, but

more convenient for irnplementation. The effective uncertainty in the estimated slope fr from

the dataf(l) and loge(i) is of the form 1180, Num. Rec. (1992),F,q. 15.2.201
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Fig. 6.14 Practical MFA spectra of fECG attractor via CP: (a) Rényi fractal dimension spec-
trum, and (b) Mandelbrot fractal singularity spectrum, Note that the uncertainty of the dimen-
sion estimates are nonuniform, and that panel (b) has uncertainties along both axes, Panel (c)
also indicates the scaling r:egions
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a

&,'g I1
i

qi) v- log e(f) - It 
log e(i)

N,,

,* ( I I¡ (r1ii - 1, toe6(i) - A)'ìåcî,=lt=æ)

&)

where, again, the sum is made over all the Nu' samples that are in the scaling interval. By

this formalism, larger ø4 signifies a decreased quality in the linear fit. The visualization of

the MFA spectra, (4.165)-(4.167) inclLrding their uncertainty estimates and their supporring

scaling interval, is provided by ViewAlIMFA.m with results as shown in Fig. 6.14.

To conclude the discussion of feature extraction, a table summarizing the attractor and
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FEATURE CONVERGENCE UNDER ICA: FECG

Feature

Embedding Lag Ln
Embedding Dimension Nu

4-vector
e-vector

Table 6.2 Summary of Practical Nonlinear Features

.....Attractor

Theiler Window W7
Correlation Sum Zç
D2 Scaling Interval
Correlation-Partition P

Symbol

.....Parameters+

MFA Entropies

Fractal

MFA Scaling Interval

q

e

MFA Spectra

MFA Uncertainties

Tlpe Defined

+Thesearenottrulynonlinearfeatures,butparanreters'.quffi

auto
user

MFA features discussed in this section is displayed in Table 6.2.

HoG), yr(e), TnG) auto

2nd zero of R, c.f. Sec. 6.4.1
visual inspection, c.f. $ec.6.4.3

user
user

6.5 SQM Convergence: ICA Error Space

Dn, Ds(a)

c..f. Sec.6.4.6
cf. (6.s1)

auto

auto
user
auto

As descrjbed in Chs. 7 and2, the focus of this thesis is to evaluate feature convergence as

a measure of practical ICA dernixing performance. To accomplish this, the features described

in the previous sections are used to construct feature-based SQMs to complement the usual

variety of SQMs described in Sec. 3.5.1.5 and the ICA cost functions of Sec. 6.2.2. Specifi-

cally using the parameterization of the Stiefel manifold presented in Sec. 6.2.1, these SeMs,

N¡, creâte an ICA error space

(6.48)
(4.169) and Sec. 6.4.3
visual inspection, c.f. 9ec.6.1.3
(4.160) and c.f. Sec. 6.4.5
(4.162)-(4.t64)
visual inspection, c.f, Sec. 6.4.6.1
and Table 6.I
(4.165)-(4. 167) and c.f.
Sec.6.4.6.2

user

auto

auto (6.55) and c.f. Sec.6.4.6.2

in which the convergence relationships of the contributing SQMs can be analyzed.

ü.tr(g), . . ., f$r*(0)] t
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FEATURE CONVERGENCE UNDER ICA: FECG

The calculation of these SQMS will now be described fully.

6.5.1 B-Class SQMs: ICA Cost Functions

B-Class SQMs are those performance measures that can be calculated without using a

priori information. They are represented by the ICA cost functions. In practice, however,

these cost curves are not standardized in any way, making comparison difficult. (That is, they

have both an arbitrary origin and arbitrary scale.) To ease comparison between them, the

minima are translated to 0 and the scale of each SQM is normalized to produce an observed

unit mean. Therefore, all the SQMs defined in (6.12), (6.16), (6.26), and (6.31) are updated

according to

ft/(B;) <- ß/(o;) - mjn ftt(o;)

rs,(g;) <-- N,(€i) 
tN,a å 

N'(r,,))

to be normalized for analysis.

6.5.2 A-Class SQMs

A-Class SQMs are those performance measures that use a priori information. They are cat-

egorized into four sub-classes: matrix SQMs, SOS-SQMs, HOS-SQMs, and nonlinear SeMs.

6.5.2.1 MatrixSub-Class

The matrix sub-class of the A-Class SQMs are those performance measures that are explic-

itly based on the matrix parameters of the fetal ECG simulation: i.e.,the demixing matrix, W;

the sphering matrix, Wot and the mixing matrix M. As presented in Sec. 3.5.7.5, the Amari

performance index (3.86), the matrix Frobenius error MFE (3.103), and the vector norln elTor
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VNE (3.101) are considered in rhis work; t.¿.

ño'(P) '5 ¿.(w(o)rtroM)

Ir"u(d) g 
llwfelwo - M-' ll.

fru*u(g) I llelgfe)wo - M-,)ll

where the VNE is specific to the fetal ECG estimate (consistently preserved in row Z¡ Each of

these SQMs are optimized at a minimum of zero, and they may be considered in their absolute

units. It is also useful, however, to consider them in relative terms by normalizing them against

their sample mean

r,r,.(e;) <- NA.(á) 
tå å 

n^.rr,))

N'*(0,) .- ßMFE(á) 

t+ å 
n*.,re,))

NvNEig;) <- ßvNElo¡ 
t# å 

n"*",r-,)-'

6.5.2.2 SOS Sub-CIas.ç

The SOS sub-class of the A-Class SQMs are those performance measures that explicitly

compare the original s and estimated 3(0) signals using second-order statistics. As presented

in Sec. 3.5.7.5, the standardized signal-to-noise ratio, SNR*, (6.36), and the cross-correlation

index, CCI, (6.35), are considered in this work; i.e.

(6.se)

(6.60)

(6.61)

I''NR.(o) uj 
sNR.(.iÌB), s)

Nt"'(g) 9 ccl¡'qo), s)

where the calculations of SNR. in (6.36) and CCI in (6.35) use rhe properties that both original

fetal ECG time series s and its demixed estimate 3(d) are standardized to unit variance. Note

M. Potter

PHD-Design
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FEATIJRE CONVERGENCE UNDER ICA: FECG

that the SNR diverges to oo as . 0) -+ s , while the CCI increases to l.

6.5.2.3 HOS Sub-Class

The HOS sub-class of the A-Class SQMs ale those performance measures that explicitly

compare the original s and estimated 1(0) signals using higher-order statistics. Three such

measures are considered: (i) the cross-ntutual information (xMI) of the source and the esti-

mate, .rMfi9), s), (ii) the absolute cleviation in the klfftosis (ADK), [O -?Ìrll, ana (iii) rhe

absolute deviatiotz in rhe entropr- (ADE), IBO - tfrll These are, rherefore,

t***,(o) 9 .fr-(frg),,)

NoDK(e)s[Aell-q'll

l,too"(6) g 
ltr¡s1rll - ofrll

where the calculations of ,/vl, k, and H are from (6.29), (6.37), and (6.27) respectively. Note

that, in theory, the xMI diverges to oo as Îd) - ,s, while the ADK and the ADE decrease to

0 in the same limit. Here, it is useful to normalize the absolute deviations by the values of the

original signal's features, as

Ch. 6: Experiment Design

ftoo*(o) <- xADK¡g; (Br,l)-

Noo'(o) .- $ADK(o) (ler'il)-

in order to express the significance of the error in relative terms.

6.5.2.4 Nonlinear Sttb-Class

The nonlinear sub-class of the A-Class SQMs are those performance measures that explic-

itly compare the original nonlinear features of .ç to the estimated signals î(d). Five elements

from the MFA features of Ch. 4 are considered here: the embedding lag À¡2, the embedding

M. Potter

PHD-Design
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dimension N,, the MFA scaling interval, and the two MFA spectra. Since the embedding pa-

rameters are integer-valued, fheir "convelgence" is considered differently from the previous

features. No SQM-type scalar metric is formalized, but clearly consistency in the values is

desired. The MFA scaling interval is also a difficult feature for which to specify a meaning-

ful scalar SQM-type error. Considering this difficulty and the essentially supportive role the

scaling interval has with the MFA spectra, no formal SQM will be applied to the MFA scaling

interval either, but a consideration of its consistency will be made.

The comparison of MFA spectra was addressed in Sec.4.8 by considering L/'-style norrns

on the parametric forms of the spectra over q G.f., @.144) and (4.141)). Two such norms are

implemented: specifically, a Euclidean-style quadratic norm and a Chebyshev-style (maxi-

mum) norm (c.f,, ¡.2 t.l and ,t* I.l fiom Ch. 4). These are refened to collectively as the "MFA

er.ror-norms", and individually as the MSE error-norm and the CHE error-norTn respectively.

Since the estimation of the MFA fractal dimensions include a quantitative measure of un-

certainty calculated from (6.55) (e.5., cù,, c6, ànd ø^), weighted norms are used to incor-

porate this uncertainty in the measurement of MFA matching. Thus the f'our MFA effor-norms

Ch. 6: Experiment Design
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FEATURE CONVERGENCE UNDER ICA: FECG

are defined practically as

¡MFA_MSE-RS(O) 
.j

¡MFA_CHE_RS(0) 
.5 

rnax

l\-
¡v,, ?

'{MFA-MSE-Mr(Ð 

'3

r^ t2

lorø - Dn(s)l

"ww
l^ r

lrutg - Dq(s)l

q

t(

('î,,

l\-
Nr+

¡MFA.cHE.M,(B) e j 
[,r- _Ps*ry{)' .

(6.7s)

The implementation of these MFA feature-based norrns is provided by a Matlab function

MFAdiff .m.

o
,la
t o-/

)+

ã(,
-:-
a'^(
a'

I'c=
L

q,î

-,Q, !

Dq

1)

=.t)

(,ç

I
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))'

ã(

)'''
ì(q
--=-
cil

6.6 Signal Synthesis

t, .ç)

(q,
t
s

In ordel to satisfy the practical analysis of ICA in fetal ECG separation, the development of

significantly novel ECG synthesis rnethods is required. These synthesized signals .r(n) should

represent the relevant features discussed in Sec. 2.5. As described in Sec. 2.6.2.2, this has

been accomplished by the generalization of the Mcshany et al. ECGsyn model Ila0]. The

mo¡phological properties of the ECG are modelled dynamically by bell-shaped features off a

baseline. The multiple amplitudes and widths of these features correspond to the P-, Q-, R-,

S-, and T-waves. Keeping this model of the ECG morphology essentially intact (with only

minor modifications, c.f., Sec. 4.3.2), the dynamical generation approach has been modified
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to fit the beat annotations of an ECG template in the forrn of a sequence of RR-, PR-, and

RT-intervals. Thus the successful generation of a noise-free ECG is characterized by

(a) a beat annotation template of finitely many event-intervals (suitable for maternal or fetal

synthesis);

(b) a sampling frequency; and

(c) morphological modelling parameters (representing v/ave amplitude, width, and phase

position).

The details of this work's contribution to the ECG synthesis model, particularly the inter-

esting developments that identify a proper rnapping from discrete event-intervals to a contin-

uous heart rate, is included in App. A, Moreover, the morphological ECG pammeters which

hereafter are simply used with default values, are described there. Here, the context of the

ECGfm algorithm is assumed, and the discussion will consist of the first two elements men-

tioned above, as follows.

6.6.L fECGEvent-Intervals

Ch. 6: Experiment Design

Event-interval data for maternal ECG signals is freely available online from the Physionet

Physiobank Archive [] but must undergo a selection process befbre being used for synthesis

as shown in Fig.6.l5. The data considered in this study was drawn from the QT database,

and therefore comes in annotated form. A subset of the QT database is, itself, drawn from the

Physiobank Normal Sinus Rhythm database and does not exhibit any significant pathological

rhythm. From this subset of files, records by f'emales at childbearing ages were considered for

analysis. From these recordings, the beat annotations were analyzed by the structanno.m

function for long contiguous segments of clean normal beats (i.e., annotation 'N'). The longest
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Fig. 6.15 Event-Interval Selection Process: The process fbr creating synthetic ECG begins
with extracting event-intervals tiom a subset of the Physiobank QT database.

of these segments were then u:nalyzed for suitable reduction of periodic artifacts according

to the metrics of Ch.5 implemented by the SurrCycleTest.m function. These refined se-

quences of event-intervals were then extracted into a Matlab structure suitable for reconsfruc-

tion by the ECGfm algorithm. From these event-interval structures, then, maternal ECG time

series were constructed with the normal parameters at multiple sampling frequencies.

This (already lengthy) process is not, however, directly capable of providing fetal event-

intervals for fECG synthesis. Since fetal ECG and its properties are efl'ectively absent in the

literature, this work has develop ed an ad hoc strategy which is intended only to be sufficient

to provide a simulated ECG dynamics that is statistically independent (in time-integrated dis-

tribution) from a (more rigorous) maternal sumogate ECG. Specifically, the fetal ECG time

series should maintain ECG morphology, RR-variability, and representative frequencies and

nonlinearities of a true dynamical ECG. To this end, this work made due with what was at

hand and mapped the event-intervals from adult ECG recordings into a suitable fetal ECG

template (c.f.,Fi5.6.16). Reference il96, Nakao et aI. (2007)l provides a plot of an aver-

aged fetal ECG beat extracted from a scalp electrode which can be taken as a target template.

This target would indicate that at a hea¡t rate of about 130 bpur (TT-interval of 450 ms), the

Malernal ECG Synthesis-

lx(n)l

Ch. 6: Experintent Design

Select: Long Sequences
of Normal Beats

Fetal ECG Synthesis

{x(n)l
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PR-interval is approximately 90 ms, and RT:interval is approximately 140 ms, while the QRS

width is approximately 50 ms. Furthermore, though the different data samples are imprecise,

the results of Nakao et al.. suggest that the fetal PR-interval increases with gestational age, and

consequently is under 100 ms for much of fetal observation. In order to maintain HRV in the

fetal ECG, however, a mapping from adult intervals to levels matching the target template is

required. Implemented in the Feta1IntConv.m function, this considers an adult ECG tem-

plate consisting of the event interuals {Anl"'l(r), 6ti'){n),olt(n)l for all beats n and maps them

into a set of intervals {^oi/ì(r¿), Atl{ù,Otft{n)l consistent with a fetal ECG at a mean hearr rate

p\{t in bpm. Multiple QT-correction formulae were evaluated in [] 84, (1990)1, and some of

these tralsformations were considered as prototypes for the conversion of adult intervals to

fetal intervals. With trial and error, it was eventually determined that the mapping

6t! = o'3{t_t -t p{tþ,

where the event-intervals ð¡

(

_ ,,,,, lþ, = þr = 0.92
Þ¡=\

I

(i=Êe=0'80

A^t/ì - ¡ot"'

Ch. 6: Experintent Design

,p'{''
p{l

and

for i e {P,TI are defined as in (4.21), and

i=T

i=P

pg"t = AO¡ (nnt"'tçn¡)

would be sufficient.6 The selection parameters fbr the fetal event-interval templates is shown

in Table 6.3.

6Dìscussion with medical doctors at Winnipeg's Women's Hospital Fetal Assessment Unit neither confirmed
nor denied this claim, since f'etal ECG analysis is not clinically implemented (c.rt, Ch. 2).
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Output Template Source File Beat Sequence ID Index Subset+ Fetal HRV [bpm]
Maternal

M[üaves ]. . mat 16272.pu0 16272_N140 (1:140)

Mtrrlaves2 . mat 16795.pu0 l6795ns_N250 (2:94)
MtrtÏaves3 .mat 16795.puO 16795ns_N250 (118:205)

Table 6.3 Origin of Representative Maternal and Fetal Event-Intervals

FWavesL-L.mat 16795.pu0 16795s_N400 (28:474)
FWaves2-L.mat 16273.pu0 16273_N450 (-5:450)

FI¡lavesl.mat
FWaves2.mat
Flüaves3.mat
Fllaves4.mat
Ftr{aves5.mat

....Fetal-Long

. .. .Fetal - Short

* For the avoiclance of periodic aftifacts uncler T2l surrogates.

Remark 6.4. Since the fetal heart rate is significantly higher than an adult, the fetal ECG has a

shorterbeat length and, consequently, long annotation sequences are required to fill any given

time window. As an example, the graphicerl output of the ViewECGIntervals.m function

applied to the original adult template selected from the 16795.puO dataset and the finalized

fetal representation at 130 bpm is shown in Fig. 6.I 6. Note that the fètal signal of 447 beats

only measures to 206 seconds of ECG signal.

6.6.2 Sampling Frequency

With the event-interval templates finalized as described, the last requirement in this work

for signal synthesis is the sampling frequency for the ECGfm algorithm. Since the objective

here is to enable a bridge between "theoly" and "practice", the sampling frequency should be

chosen in accordance with practical guidelines. Specifically, what sampling frequency would

be used in a device for fetal ECG separation? From the discussion of ECG sampling in Ch.2,

it was identified that a minimum of 500 sps sampling frequency is used in pediatric situations.

16795.puO 16795s_N400
16795.puO 16795s_N400
16795.pu0 16795s_N400
r6273.pu0 16273_N450
16273.pu.} 16273_N450

Ch. 6: Experiment Design

(28: I 89)
(731:313)
(349:474)
(44:187)
(203:338)
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r30
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Consequently, the minimum sampling frequency to be considered here is 500 sps. Is there

benefit, however, to using a higher sampling frequency? V/hile that may be the case in em-

pirical systems (cl, [148, Mochimaru er al. (2004)] and 190, Huang (2004))), it is unlikely

to matter in this work since the source of the noise-free surrogate ECG is a Runge-Kutta so-

lution to a dynamical system (i.e., the Matlab ode45.m algorithm). The Runge-Kutta solver

is a variable step-size algorithm, (controlled by enor tolerances), and not a fixed step algo-

rithm (controlled by integration step size) and therefore it is not clea¡ that a higher sampling

frequency provides more information. In this context, a higher sampling frequency actually

reflects only a more frequent interpolation, and not a finer (or better) calculation. The higher

sampling frequency, of course, extends the Nyquist interval, and broadens the dynamic range

of the spectrum. Spectral features, however, are linear and ale not the target for the SQM

analysis presented here. The rnost obvious outcome of a higher sampling frequency on an

MFA, is the increase in the number of samples and the increased complication of the O(Nz)

MFA calculation it instigates. To verify that a higher sampling frequency is unnecessary for

this work, the scaling intervals of the correlation sum implemented by the fast TISEAN ran-

domization algorithm described in Sec. 6.4.3 were examined for any different behaviour as the

sampling frequency was increased. The correlation sum scaling is shown in Fig.6.17 for the

same representative fetal event-interval template but at a sampling frequency of 500 sps (top)

and 1000 sps (bottom). Little difference is observed between them, and a further analysis of

some surrogates (dashed) did not demonstrate any other changes either. From this it is con-

cluded that a sampling frequency of 500 sps is sufficient for the generation of surrogate ECG

time series from the ECGfm algorithm.

Ch. 6: Experinent Design
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6.6.3 Record Length

Originally, the intent of this work was to use time series lengths that would be as long

as feasibly possible and still within clinical bounds for fetal assessment (e.g., l0 min). Due

to the restricted number of beats available in the representative fetal event-interval templates,

however, only signal lengths of approximately 3 mins were achievable. Even so, it was found

that these recording lengths at 500 sps, when compounded with the multiple levels of ICA

mixing (each yielding a potential fECG) and the necessity of multiple surrogate data signals

of equal length, exceeded the memory capacity of the Hatlab environment used to run the

body of the experiments (1.e., single core Mac G5 at 1.6 GHz with 3GB ram). To eliminate

this complexity, the source signals were considered at a reduced length of about I min.

What are the eftècts of using a shofter time series? At the sampling rate considered, it is

unlikely that ICA is greatly aff'ected by the reduced number of samples. As shown in Table 6.4,

the kurtosis of the two time series are equivalent. Furtherrnore, many of the other preliminary

characteristics for an MFA are equal as well. It is of concern, however, that the number of beats

(or cycles around the ECG attractor) has dropped fiom 400 to 130. The effect on the MFA

scaling entropies is shown in Fig. (r.18. From this fìgure, it can be observed that the fewer

samples has emphasized the small scale saturation in the q < 0 entropies, while the large-4

entropies appear largely unchanged. This is consistent with the interpretation of the fECG

attractor given by Fig. 6.9 and the properties of q. By reclucing the amount of cycles around

the attractor, the low-probability regions of the attractor become more coarsely represented by

the limited sampling, and, hence, the small-q statistics become more statistically sensitive. In

practical ferms, the two scaling regions have coincident lower bounds, even when analyzed

independently (since the main determining fäctor here is thel'arge-q tuming point of T,r, @ in

Fig. 6, I I and Table 6.1).
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Table 6.4 Significant Features of Synthetic ECG Time Series by Length
Feature
Num. Samples lK=10241
Total Time lsl
Number of Beats
Kurtosis
Est. A¡z

D2 Sc. Reg.

D2Calc. Time [s]
Est. N"
MFA Entropies
MFA Scaling Region
MFA Calc. Time [min]

Other non-essential chalacteristics change, (e.g., the äo crossover point @ occurs at larger

e), but the properties of the shorter time series' scaling interval are essentially the same. The

quality of the linear fìt within the scaling interval, however, is markedly different for small 4.

The y, saturation point for Q = -2 happens about 1 octave higher than for the longer time

series, increasing the corruption of the scaling within the marked interval. Consequently the

slope estimate is subject to a larger bias and wider uncertainty (error bar) for the shorter time

series. Since, however, (i) the properties of large c¡ arewell preserved, and (ii) the error bar

serves to identify the poor fit for small r7 relative to large q, a reasonable interpretation of the

MFA can still be estimated from the shorter time series. Simply, the MFA-based SQM should

apply more weight to the positive q elements of the MFA as a result of this limitation in the

experimental platform.

This concludes all discussiou on the synthesis of both the maternal and fetal noise-free

ECG. A representative segment of the final time series is shown in Fig. 6.19.

Long Short
100.4 30.1
205 63
446 r34
5.2 5.3
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Fig. 6.18 Effects to MFA entropy scaling by signal length: The MFA scaling of a synthetic
fetal ECG attractor reconstructed from 3 min (top) and I min (bottom) of signal at 500 sps
(from the event-interval template Ftlavesl.mat). Scaling interval selection is the same, but
quality of the fit for small q degrades for the shofier signal.
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Now that the design of the significant elements in the experimental procedure have been

established, the final structure that binds them together will be presented. In consideration of

the different levels of user intervention required for the calculation of the different features,

the experimental procedure is broken up into a sequence of stages. Consequently, the general

design of the thesis presented in Fig. 1.5 is irnplemented in a hierarchy as shown in Fig. 6.20.

In particular, this figure demonstrates the flow of some of the main features used for SQM

analysis, and roughly identifies the offiine components in grey.
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Fig. 6.19 Source signals for ICA Analysis: Synthetic ECG representing (a) marernal ECG
(derived from an early segment of event-intervals fiom QT record 1,6795.puO) and (b) fetal
ECG (derived from the event-interval template FïüavesL.mat). The full 63 s of time series
has 31K points sampled at 500 sps.
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Fig. 6.20 The experimental method to assess ICA perfonnance by SQM convergence.
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s, Do)

Fig.6.2l The experimental procedure in its sequential form.

6,7.1, Organization of Experiments and Data

(repeat: oriqfecq, estfecq. al'l surroqates
t ropyScaì ì ng . m't

Implementation of the experimental procedure is organized through a Matlab function

that invokes the t¿rsks of each autornated (online) stage of the experiment. The basic operation

of this thesi sbody . m function is summariz.ed in Fig. 6.2 I along with the offiine components

roughly iclentified in grey in Fig. 6.20. OÍtline components are required because of the user

intervention necessary fbr MFA analysis. Data is passed between the stages of the expel'iment

by saving the wclrkspace data to a Matlab . mat file. Within the workspace, data is arranged in

a detailed hierarchy of structures initialized by thesi sbody . m in the Oth stage. Raw features

assiqn MFA scales

Construct SQM matrices
Postprocess SQM leatures
Plot

ewAl lMFA.m lvi ew lt4FA spectra
ViewEntropyScaling.m lview MFA sca.l'ing w/'lines]
i ces.m lextract SQMSI

MFAdiff.m icalc MFA error-norms

vj ew MFA scal i ng
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of the source fetal ECG and its demixing estimates are stored in the structures origfecg and

estfecg respectively. The latter is a vector struct of the same length as the 0 vector assigned

at the primary input. The other significant structures generated by thesisbody.m include

a vector struct of SQMs, and surrogates fbr the source fECG (origsurr) and demixing

estimates (estsurr).

Experiment workspaces are saved in a directory created at the initialization of the Oth stage.

At the beginning of each stage, the workspace of the previous stage is loaded and saved into

a new file indexed by the stage number. A diary of the Matlab console is preserved during

every stage of the procedure and saved in the experiment directory.

The main procedure thesisbody.m and all its invoked functions and scripts were first

designed on a student version of Matlab (v.7r.14), then distributed for compuiing on a single

core Mac G5 at 1.6 GHz with 3GB ram (running Matlab r.2007(b)).

6.7.2 Necessary Input for Stage 0

Ch. 6: Experiment Design

When thesisbody.m is invoked at stage 0 to initialize a new experiment, it is given

an initialization file specifying the specific parameters fbr the experiment. This source file

includes,

(a) A pointer to a source file containing a saved workspace of the noise-free fetal and ma-

ternalECG;

(b) A vector of 4 values for MFA, (this is duplicated in each feature struct and can be

modified later by user intervention);

(c) The value of the Wr stretchfactor 7 lset at 20 for the experiments, here);

(d) A vector of 0 values (in degrees) that param eterize the Stiefel manifold (roughly in the

[0,45] interval);
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(e) Maximum values to consider for the embedding lag A,n (set at 40) and the embedding

dimension N" (set at 12 for the experiments here);

(Ð The number of specimens of each surrogate data type to generate (set at 4 for the exper-

iments here).

Remark 6.5 (Selection of default parameters). Most of the parameters here were selected after

some preliminary experimentation. With many of these variables, it is important to provide

sufficient coverage with as few elements as possible in order to limit experimental burden.

For this reason, the values of 0 are not chosen uniformly, but concentrate in the region of

convergence to the actual solution. To accentuate this in particular, some small values of 0 < 0

were also included in some experiments (e.g., [-5', 30"]). Similarly, the vector of q values is

non-uniform, since large positive values become redundant and large negative values become

dominated by saturation artifacts.

6.7.3 Source Input

Ch. 6: Experiment Design

As described previously, the synthesis of the source time series is generated offiine and

stored as a Matlab . mat workspace prior to the experiment initialization. A list of the avail-

able datasets created by the makesources.m script and their event-interval origins is shown

in Table 6.3. In each file, the time series are in the form of a2 x N matrix,

[ ,, 1,,1 Is(n)=lrr,,,,l forrr=l'""N (6'80)

with the matemal ECG in the row I and the fetal ECG in row 2. As previously discussed in

Prop. 3.26, it is desired that the source signals are standardized to zero-mean and unit variance

(specifically, the fetal ECG time series). Since these properties are not constrained by the
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ECGfm synthesis algorithm, this is enforced by a simple updare with the standardized.m

function in the thesibody . m procedure after being loaded into the experiment workspace.

6.7.4 Signal Mixing

Once loaded and standardizedinto the experiment workspace, the thesisbody.m function

multiplies the sources with a mixing matrix. specifically, the fìxed matrix

'=l; I
is used to cause ¿m appropriate disparity in power in the "observations"

x(n)= Ms(n) forn= 1,...,N

Here the mECG is given an amplitude 5 times larger than the fECG, consistent with exper-

imental observation (but not critically important because of the sphering process to follow).

Note that since there ate no nonzero cross terms in the mixing, no active decorrelation is re-

quired from a sphering stage. Furthermore, since sphering normalizes all channels to unit

variance, it follows that effectively W6M = I to numerical accuracy. This is designed to

make the true post-sphering demixing matrix W known to be the identity. If M did have cross

terms, then the sphering process can introduce a factor that necessitates a non-zero rotation

in W. From the consideration of an ICA profile, this is the most convenient form of mixing

when using non-uniformly distributed sampling of the Stiefel manifold. Notwirhstanding this

design, it is still considered important to practically mix and sphere the data to simulate the

same level of numerical inaccuracy that appears in real systems.

6.7.5 Preprocessing

Ch. 6: Experintent Desi

As it would in a practical ICA system, the data ¡ is then preprocessed for ICA. The pre-

processing action is threefold: (i) standardization to zeÍo mean, (ii) standardization to unit

(6.81)
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variance, and (iii) sphering to identity cov¿uiance. Even though the sources s were standard-

ized to t'ulfìll (i) and (ii), the preprocess . m algorithm includes these actions for portability.

The sphering process is perfclrmed by calculating the covariance matrix as

using division by N since this is not an estimate of a Gaussian covariance. This is then factored

into an eigenvalue decomposition of a unitary matrix W, and a positive diagonal matrix D,

(\ilu, D) = eig(Ð,)

using the Matlab implernentation of the LAPACK DSYEV algorithm in the function eig.m

12201. Since X.. is symmetric and positive definite, this is very efficient. Consequently the

2 x2 covanance matrix is of the form

Ch. 6: Experiment Design

xr = W"DW.l

The sphering matrix is then calculated as

lVo = (fÐ-tw;'

where the square root is performed element-wise in the diagonal matrix D and the matrix

inversions are performed by the Hatlab function inv.m. The data is then sphered by the

transformation

(6.83)

x(n) <- W¡x(n)

and updated to the same variable. As mentioned previously, the choice of mixing matrix

makes the sphered system effectively independent so the practical demixing matrix would be

the identity.

(6.84)
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6.7.6 Parameterized ICA (Stage 0 Loop Begins)

As described in Sec. 6.2.7, the "demixing" portion of the experiment uses a parameteri-

zation of the Stiefel manifold. As such, an algorithmic loop is created here on the values of

á specified in the initialization file. The first action in the loop is to construct the dernixing

matrix as

w <- Gr(o) =

and produce the "demixed estimate"

z(n) <- Wx(n)

cos I sin d

-sin0 cos0

By design of the mixing and preprocessing system, Wlo=o should be close to

next action in the loop is to postprocess the data as discussed next.

6.7.7 Postprocessing (Within Stage 0 Loop)

Ch. 6: Experiment Design

The goal of the postprocessing routine is to standardize the demixing estimates according

to the items in Prop. 3.26. This includes the standardization of the channel mean and variance

as well as standardization of the ICA indeterminacies by setting the orientation that corectly

identifies the "best estimate of the fetal ECG". This proceeds by

(a) removing the mean (if any);

(b) removing the permutation and sign invariance by the CCI;

(c) removing the invariance to scaling by standardizing the variance.

All three actions are packaged into the function postprocess . m which is called in the form

(6.88)

(6.8e)

optimal. The

(e, W) <- postprocess(s, z, W)
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The first action is accomplished by the simple update

1å.o*F ).,2(n)
l=l

z(n) <- z(n) - zo

The most difficult procedure is the second, which matches the fECG estimate with the

original in terms of permutation and sign. As described in Prop. 3.26, this is achieved through

cross-coffelation analysis. The N" x l/. correlation matrixT

C=I z@)sr(n)=lC¡¡l
n=l

is then analyzed to identify the maximal absolute elements per column

t'U) g arg mlx lc,rl = arg max lceil

This can be achieved in vector form using the Matlab call

(m,i') = max abs(C)

Ch. 6: Experintent Design

although the values of m are not used. Then a matrix is defined

u'{ [u¡;]

where

(

,,,., lsignC¡; : i=i'(j)
u¡¡ = i 6.91)

lO : otherwise
t

which has a single nonzel'o element pel column. This signifies that each source s; in s (i.e.,

column i of sr) should be dominated by a single "best estimate" (i.e., row of e) which is

(6.er)

(6.e2)

TAlthough N, = 2 by design in this work, this action is derived in its generality for portability.
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identified by i'(j). In a proper demixing of independent sources, each source should identify a

single and unique estimate and therefore each row of U should have a single non-zero entry.

This can be confirmed experimentally by checking the condition

N,

Ilø,1 =t vi
j=l

which, if rrue, signifies that U is a unitary matrix (and, specifically, lUl is a permutation matrix).

It fbllows that if U satisfies the condition of (6.98), then the update

zr-lJrz

matches each estimate e7 with its dominating source. For this new system,

N

C, = I Ur z(n)sr (n)
n=l

N

= Ut I z@)srQt)
¡t=l

= urc = lCi¡l

Ch. 6: Experiment Design

which implies that the cross conelation is maximal and positive along the diagonal.s This

update makes the estimate z¡ the standardized estimate for,r; according to the principles of

Prop. 3.26. Note that if the condition (6.98) fails, then the demixing solution is so poor that a

"best estimate" cannot be determined. In that case, a warning is issued, and the update (6.99)

is left trivial (i.e.,U = I). Finally, note that in order to maintaín the relationship

(6.e8)

sThis can be observed by the relationship

C'¡¡ = eTtJrCeT = (sign ci,¡)elce¡

= (sign C, ¡)Cr¡ = lcr¡l

which by construction was greater than all ottrer lCi;1.

z=Wx

(6.ee)

M. Potter

PHD-Design

(6.100)

(6.101)

(6.102)

-)¿3-

(6.10s)

(6.103)

(6. r04)

September 15, 2008

Version 2.3.6



FEAIURE CONVERCENCE UNDER ICA: FECG

the update (6.99) must be supplemented with the update

W <- UTW

The final action of the postprocessing module is to standardize the variance of the source

estimates according to Prop. 3.26. (Even though this is unnecessary by account of all the

previous processing, this is included for portability and generality.) This normalization of

amplitude is done by defining the matrix

p'3 [D¡;]

where

(

D,¡Y)rt'{M
lo
I

and performing the updates

7<-Dz

W e- D\{

Ch. 6: Experiment Design

: i= j

: otherwise

These three postprocessing actions ensure that the estimates z¡, ãnd specifically the fECG

estimate ¡2, satisfy the standardization specified in Prop. 3.26. Yenfrcation of proper posfpro-

cessing during experimentation was ensured by analysis of the time series z,z and scatterplots

of z using the presentTSpair. m function.

6.7.8 Automated Feature Extraction and SQMs (End of Stage 0 Loop)

By this point in the stage 0 loop, both the original fECG source time series sz(n) and its

best estimate z,z@) under the demixing of W(g) are well defined. Here the automated statistical

features for SQM analysis are extracted. This includes

(6.106)

(6,107)
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(a) the basic statistics of the demixed system z: the scalar ÑQ), the û(z) andl(z) vecrors,

and the 4 matrix;

(b) the absolute difference in kurtosis, Lk = lk(z) - k(s)|,

(c) the absolute difference in entropy, LH = lH(zù - H(sù!,

(d) the cross-Ml, ñ(rr, rr);

(e) ¿il ICA cost f'unctions, -f, Sec. 6,2.2;

(Ð the cross-correlation, CCI(zz, sù,

(g) rhe API, A.(W(0)WOM);

(h) the standardized signal-to-noise ratio, SNR.(zz, sz);

(i) the matrix Frobenius-error, MFE(W(0)W6 - M-I); and

() the vector norm-error, VNE(W(9)Wo - M-');

Clt. 6 : Experinent Desi gn

where each item is calculated according to their methods described in Sec. 6.5.

This nearly completes the main al-qorithmic loop in stage 0.

6.7.9 Nonlinear Feature Extraction (Stages 0-4)

6.7.9.1 Attactr¡r Preliminaries (Stage 0 - Online)

Prior to the end of stage 0 of thesisbody.m, the automated features fbr nonlinear time

series analysís are calculated. This includes

(a) the autocorrelation time,2,,;

(b) the embedding lag, An;
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(c) the Theiler window, Wr, and

(d) the corelation stxyr, Zç, for embedding dimensions up to the maximal value prescribed

in the initialization over an automated set of scales;

where each item is calculated according to theù'methods described in Sec. 6.4. This completes

stage 0 of an experiment and all variables in the Matlab workspace are saved to the stage 0

storage file.

6;.7.9.2 Attractor Characterization (Stage 1 - Offiine)

As described in Fig. 6.20, and Table 6.2, and Sec.6.4, the nonlinear features require user

intervention for the selection of

(a) the correlation sum scaling interval;

(b) the embedding dimension;

Ch. 6: Experintent Design

(c) the scales fbr MFA calculation; and

(d) the scaling interval for the MFA entropies.

Stage 1 of the experimental procedure occurs offiine during which the user specifies the first

three items from the list above. To proceed, first the stage 0 storage file is loaded. Then,

using the ViewEdimDims.m, VEDtag.m, and ViewAllEdimDims.m tools, the user analyses

the correlation sum of the original and each estimated fECG time series fbr scaling intervals.

Once a suitable scaling interval is iclentified fbr a time series, the user can analyze the conver-

gence of the correlation dimension 1z and assign an embedding dimension for that attractor

reconstruction using As si gnEdim. m.

Once each time series has been assigned a value for Nu, the user must determine a sequence

of scales for MFA calculation. Typically, this is chosen uniformly in a base 2 exponent, as in
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e(i) = es26J for i = l,. . ., N.. The rule of thumb used for the selection of the increment d. is

that ÀL ry 30 over the union of all the observed I scaling intervals. The choice of e6 should

position the selection of scales over the full extent (and a small extra margin) of the union of

all the observed I scaling intervals. Note that oversampling of the scaling interval drastically

increases the memory required for data results since the CP calculated in the next stage ís an

NoxN, array. With the vector of scales e finally determined, it must be assigned to the original

fECG and each fECG estimate using the AssignSca1esC.m function.

This completes the actions required in stage 1 of an experiment and all (updated) variables

in the Matlab workspace are saved to the stage 1 storage file.!)

6.7.9.3 Corcelation Partition and Surrogates (Stage 2 - Online)

Stage 2 of the experimental procedure returns to the online calculation of nonlinear fea-

tures. It accomplishes the actions of

(a) calculating the con elation partition, P , for all the reconstructed attractors of the original

and estimated fetal ECG time series;

(b) generatingTZl and PPS sLlrrogates, if required; and

Ch. 6: Experiment Design

(c) calculating the correlation pa-rtition, P, for all surrogates, if required.

Since these algorithms are the most time-intensive, this stage may take a substantial time for

completion. The stage begins by (i) trying to load any stage 2 storage file that may have been

created (e.9., if the processing requires a restart), and upon failure, (ii) trying to load any stage

1 storage file (e.g., for a fresh start).

eIt is aìso recommended that the user save the workspace periodicalty throughout the stage.

M. Potter

PHD-Design
-327 - September 15,2008

Version 2.3.6



FEATURE CONVERGENCE UNDER ICA: FECG

At the end of (and throughout) the stage, all (updated) variables in the Matlab workspace

are saved to the stage 2 storage file. Note that the size of the stage 2 storage file is much larger

than previous stages because of (i) the large memory required for the CP,P, and (ii) the extra

time series and CPs introduced by the surrogates.

6.7.9.4 MM Entopies and Sca.Iing Interval (Stage 3 - Offiine)

The final stage of nonlinear feature extraction requiring user intervention consists of se-

lecting the scaling intervals tbr the MFA entropies. This must be processed offiine for every

time series; including the original fECG time series, its demixing estimates, and all surrogates.

This is approached in stage 3 by loading the results fiom the stage 2 storage file and sequen-

tially identifying the scaling intervals from the output of the VíewEntropyScaling . m func-

tion as in Fig. 6.1 I . Guidelines f'or the selection of the scaling interval has been described in

Table 6.1. The value fbr the scaling interval is also assigned through the ViewEntropyScal-

ing.m function.

Remark 6.6 (Calculation of MFA Enfropies). An in depth <liscussion of the calculation of MFA

entropies from a CP is presented in Sec. C.4 of App. C. One significant fact to be considered

is that a large CP (of size N,, x N.) generates three lerge arrays (of size N, x N,, x N.) used in

the simultaneous calculation of the three MFA entropies (of size N, x N.). Consequently, this

calculation can be a significant, but temporary, drain on computing memory resources.

Remark 6.7 (Evaluation of Surrogates). The purpose behind generating surrogate data is to

provide a validation of the MFA scaling entropies' scaling interval. Once the scaling of the

surrogates has been evaluated and compared to the actual scaling (c.f,, Figs.6.ll and 6.12),

further processing is not required.

Once all MFA scaling intervals have been processed, all the actions required in stage 3 of

Ch. 6: Experintent Design
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an experiment are complete and all (updated) variables in the Matlab workspace are saved to

the stage 3 storage file.lo

6.7.9.5 MFA Calculation (Stage 4 - Online)

The MFA features of the original and estimated fetal ECG time series, as well as their

surrogates, are frnalized in stage 4 of the thesisbody.m procedure. Here, the MFA scaling

intervals zue applied to the MFA scaling entropies for iinear fitting and slope extraction as

described in Sec.6.4.6.2. Specif,cally, the calcMFA.m f-unction provides for each scaling

entropy and for each value of4:

(a) a slope for the linear fit on the scaling region representing the fractal dimension of that

entropy according to the box-counting formalism;

(b) an error f'or that slope; and

(c) an intercept for the linear fit on the scaling interval.

The intercept is only used for representing the best fit lines in the figures of scaling en-

tropies using the ViewEntropyScaling.m function, as shown in Fig.6.13. At the end of

(and throughout) the stage, all (updated) variables in the }latlab workspace are saved to the

stage 4 storage file.

6.7.I0 SQM Analysis

The final analysis of experiments is performed offiine by assembling the features of the

individual demixing estimates into a matrix fonn for numerical and graphical analysis. Since

these features are stored in various compiicated positions within the structures that orga-

nize the experimental workspace, an extraction tool ices.m is used to simplify this process.

l0lt is also recommencied that the user save the workspace periodicatly throughout the stage.
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The actual feature extraction, SQM processing, and generation of SQM convergence plots

is organized through a series of Matlab scripts calling the ices.m, ViewlagAutoCorr.m,

ViewAllEdimDims.m,ViewEntropyScaling.m,andViewAllMFA.mtools. Specificallythey

analyze the SQMs by sub-class:

(a) ICA cost functions and the Matrix SQM sub-class, (c.f,, CF-liAT-convergence.m);

(b) Statistical A-Class SQMs (including SOS and HOS forms; 6f , ABS-convergence.m);

(c) Nonlinear A-Class SQMs (c.,f , MFA-convergence . m)

and plot the convergence behaviour of multiple experiments concurrently. These scripts pro-

ceed linearly by loading one experiment's workspace, processing the data fully into the con-

vergence figures, and then repeating the procedure with the data fiom another experiment.

A study of tolerances to the diflèrent features extracted is also organized in the Source-

Phase . m script.

6.8 Summary

Ch. 6: Experiment Design

This chapter has presented the technical and organizational aspects of the experiment de-

sign for the evaluation of the convergence of featurc-based SQMs in a simulation of the fetal

ECG separation problem. Specifically, the motivation, design, and implementation of con-

vergence profiles has been finalized. The procedure for the calculation of these profiles from

basic feature extraction, processing, to the SQM error-space vector has been explained with

sufficient depth to facilitate the reproducibility of the work.

A discussion of the ECG synthesis methods - including the limitations and compromises

in the selection of ECG event-intervals, sampling frequency, and recold length - has been
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provided. The nonlinear dynamical properties of the synthesized fetal ECG (including attrac-

tor reconstruction, correlation partition, and MFA features) has been demonstrated. In partic-

ular, the implementation of scalar MFA error-norms for the evaluation of MFA convergence

has contributed to the ICA error space.

In total, the SQM erior space is composed of 5 classes of SQMs:

(a) B-Class: ICA cost functions (FastICA, Xinfornax, RADICAL, and MILCA (also re-

ferred to as jMI));

(b) A-Class: Matrix SQMs (API, MFE, and VNE);

(c) A-Class: SOS-feature-based SQMs (CCI, SNR.);

(d) A-Class: HOS-feature-based SQMs (ADK, ADE, xMI);

(e) A-Class: Nonlinear dynamical feature-based SQMs (Ln, N,,, MFA scaling interval, and

the MSE and CHE MFA error-norms),

whose relationships are analyzed in the next chapter.

Ch. 6: Experintent Design
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The experiments described in the previous chapter have been executed and analyzed fully

for two source datasets. This chapter presents these results and discusses their interpretation

and signif,cance.

Before the in-depth analysis of the fètal ECG simulation convergence profiles, some natu-

ral uncertainties to the simulation are analyzed in Sec. l.2to provide context (i.e., tolerances)

for the convergence analysis of SQMs. In particular, uncertainties due to

(a) the random phase of the recorded signals; and

Chapter VII

Rrsurrs aND DrscussroN

(b) the selection of the MFA scaling entropy scaling interval;

are considered.

Thereafter, the collection of SQMs are analyzed in f'our parts. The first of these, Sec. 7.3,

analyzes the convergence of the fundamental elements of the ICA system: (i) the ICA cost

functions, which represent the B-Class SQMs; and (ii) the matrix sub-class of A-Class SQMs.

Second, the convergence of the second-order measures are 'analyzed in Sec. 7.4. Third, the

higher-order feature-based SQMs are analyzed in Sec. 7.5. This proceeds by first consider-

ing the basic statistical SQMs - the ADK ancl ADE - and also the cross-Ml. Last, Sec. 7.6

presents the study of the convergence of nonlinear dynamical features. This section is con-

sidered in two parts. The first, Sec.7.6.1, studies the effect of mixing on the underlying
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0 2000 4000 6000

Fig. 7.1 Visualization of joint ECG sources for dataset 1: (a) maternal ECG, sr; 0) fetal ECG,
sz; (c) scatterplot visualization of joint distribution.

embedding parameters for attractor definition. Thereafter, the convergence of the fetal ECG

MFA spectra is presented in Sec.7 .6.2.

7 "2 Natural [Jncertainties

Prior to an analysis of the convergence of fetal ECG features, it is useful to establish

benchmarks for interpretation. The following subsections answer specifically:

(a) In the fetal ECG scenario, how accurate is the assumption of independent sources? How

sensitive is it to the (random) relative phase of the ECG oscillators?

5

J

¿

1

0

-1

-2

Sample
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(c)
-2024

Channel 1

(b)

(c)

What precision can be assigned to the HOS estimates of the synthetic f-etal ECG?

What values of MFA error-norm can be considered a match? How sensitive are these

values to the selection of the scaling interval?
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Table 7.1 Practical Source Independence of Analyzed Datasets

Dataset 1 (Mtr{avesL.mat, Ftüavesl.mat) 0.014
Dataset2 (l{ülaves1.mat, Ftr{aves2.mat) 0.001

7.2.I Sourcelndependence

As discussed in Sec.3.5.6, source signals originating from independent systems are not

necessarily independent in the time-integrated sense. which is the basis for ICA. Since the

fetal and maternal ECGs have different mean heart rates and both exhibit HRV the cyclosta-

tionary nature of ECG resn'icts the amount of random dependence that can appear in the joint

time-integrated system. Nonetheless, the following analyzes the second-order and higher-

order dependence that can occul'randomly in their joint system, which will assist in the inter-

pretation of convergence profiles.

Figure 7. I shows a visualization of the joint system for dataset 1. As described by the stan-

dardization procedules ofthe previous chapter, both sources are standardized to zero mean and

unit variance, with the fetal ECG in the second channel. The joint distribution portrayed in

panel (c) appeats at right angles and is well approximated as independent. The dependence

of the joint source systern is considered in Table 7.1 by measurements at the second-order,

õõi(r,, s2), and at the higher-order via the MI, ,û-(,r1, s2). All values are small, but dataset 2

has weaker linear correlation (i.e., smaller CCI), but larger higher-order dependence as mea-

sured by Grassberger's MI estimator. Taking into account that these oscillators are joined at

an arbitrary relative phase, a context for the values of Table 7 .l can be determined by ob-

serving the variability of both measures to a change in phase. To accomplish this, the fetal

ECG time series has been shortened by 700 points (.U@) *- sz?t)), and joined to the ma-

ternal ECG at different phase offsets no, similar to a sliding window analysis. The values of

Dataset CCI(s1, s2) M(st, sz) lnats]

Ch. 7: Experimental Re.sulfs

0.003
0.011
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CCI(sr (n + n),lz@Ð and ,tV'f (s1 (n + n,,), U@Ð of these joint systems from equivalent sources

are plotted inFig.I.2. The phase offset length of 700 samples is equivalent to more than

double the average fetal ECG beat.

The CCI results in Fig. 7 .2(a) fbr the two datasets demonstrate a variability within ã +0.04.

The MI estimates in Fig. 7 .2(b) exhibit variability from -0.01 to 0.025 [nats]. (Note that the

Grassberger estimator can produce small negative values even though the MI is a nonzero

quantity by definition.) The actual estimates fbr the datasets from Table 7.1 appear in the

figures as horizontal lines. This indicates that the estimates of the CCI and MI a¡e subject to a

natural variability of approximately 0.04 for the CCI and 0.02 for the MI. The significance of

these numerical uncertainties under visual inspection of the distribution scatterplot, however,

is relatively small. Note that dataset I (solid) in Fig. 7.2(a) has a maximal correlation and

anticorrelation identified by stars around a phase offset of nn x 400. The joint distributions

of these systems are plotted in Fig. 1.3(b) and (c) next to the actual system in panel (a). No

perceptible rotation is observed between them, but panel (c) has fewer samples appearing in

the first quadrant and more samples appearing in the fourth quadrant. This wouid seem to

indicate that the CCI v¿riability is influenced by the placement of a relatively small subset of

points at large amplitude.

7.2.2 Fetal ECG HOS

Ch. 7 : Experi mental Re.su1r.s

Recall that the higher-order statistics of the fetal ECG have been identified as important

features for convergence consider-ation. To estimate the natural variability anticipated in the

estimation of HOS f'eatures fiom the f.etal ECG time series, a similar study to the one presented

in the previous subsection has been performed. Here, a large sliding window (width - ¡/ -
700) has been applied to the fetal ECG. The kurtosis and the entropy of the windowed time

series has been estimated under an increasing phase offset (from 1 to 700 samples). Shown in
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Fig.7.2 Natural variability in joint statistics due to phase offset of ECG sources: (a) linear
correlation CCI(s1(n + o),lz(n)) of the joint ECG sources of dataset 1 (solid) and dataset2
(dashed) under a phase translation; (b) Estimated dependence M(s{n + o), u@Ð of the joint
ECG sources of dataset 1 (solid) and dataset 2 (dashed) under a phase translation. Actual CCI
and MI values for the datasets (c..f.,Table7.1) are shown as horizontal lines.
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Fig. 7.3 Scatterplot visualization of dataset 1 joint ECG sources at diflerent phase offset corre-
lations: joint systern with (a) no offset, (b) offset producing maximal correlation, and (c) offset
producing maximal anticorrelation. Offsets defining panels (b) and (c) correspond to the stars

in Fig. 7 .2(a). Overail patterns seem similar except for the right hand side of panel (c), which
contributes to fhe anticorelation.
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(a) 0 100 200 300 400 500 600 700

ßig. 7.4 Natural variabiiity in fetal ECG HOS estimates expected from the phase of a ran-
dom window: (a) kurtosis t(¡) of the fetal ECG signal on a very long sliding window for
the two datasets. Variability is about 0.2%o.(b) entropy estinate in units of actual estimate,
ÊGù|fr(tt), of the two f'etal ECG datasets have variability between 0.I4.27o. Both dataset
1 (solid) and dataset 2 (<lashed) are represented and the actual values are represented as hori-
zontal lines.

Fig.7.4, the results indicate that a natural variability of 0.2Vo for the À and 0.1-0.2Vo for the

entropy is expected for this length of fECG time series. The kurtosis is estimated in its natural

unitless form, while the entropy estimate (calculated by the modified Vasicek estimator by

Miller (6.21)) is normalized against the entropy estimate of the original; i.e., as fr(ÐtÊtsr).

The fetal ECG of dataset 2 has a slightly larger kurtosis, but both are highly super-Gaussian.

Since the statistical variabilities are less than a percent, it is likely that demixing enor will

overwhelm any natural variability tiom the phase of the recording itself.

7.2.3 MFA Error-Norms

0 100 200 300 400 500 600 700
Phase Offset [samples]

Ch. 7 : Experi mental Resulfs

The previous quantities have been examined for statistical deviation under the nuisance

parameter of random phase which exists in the acquisition of any random signal. It is not
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feasible to consider the natural uncertainty in the MFA of the reconstructed attractor from

phase because of the time reqr,rired for analysis. In the analysis of the MFA, however, theLe

are other sources of variability. Specifically, the selection of a scaling interval for the MFA

scaling entropies by visual inspection is a source of uncertainty. To determine the effect of the

scaling interval variability on the scalar MFA eruor-norms defined in Sec. 6.5.2.4, the MFA

of the actual fetal ECG source signals have been modified by sli,eht changes to the chosen

scaling interval. Since the conelation partition remains unchanged - only the entropies and

their fìtting need be reevaluated - this is a reasonable analysis. The results that are shown

in Fig. 7.5, demonstrate that the MSE and CHE error-norms behave similarly, but with the

MSE being generally larger. Furthermore, the MSE error-norm returned similar values from

both the Rényi spectrum or the Mandelbrot spectrum, whereas the CHE eror-norm applied

to the MS appears as the most sensitive. In response to the changing scaling interval shown

in panel (c), changes to the MFA spectra by the effor-norms ¿ìre measurable in the range of

2-4. From this, it seems reasonable to allow an MFA eror-norm tolerance of 4-6 as a match

to account for variability introduced by visual inspection.

Now that tolerances have been specified by identifying the natural uncertainties in the HOS

and MFA characterizations of the data, the discussion now proceeds to the convergence of the

fundamental lCA SQMs: namely, the ICA cost functions and the matrix-based SQMs.
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Fig. 7.5 Variability in MFA enor-norms under small changes to scaling interval: (a) MSE-
based MFA error-norm, and (b) CHE-based MFA enor-norm as a function of (c) adjusted
choice of scaling interval for the original source fetal ECG attractors of dataset I (solid) and

dataset 2 (dashed). Both RS and MS spectra arc analyzed as marked. Dataset 1 is most
sensitive to a shortening of the scaling region, while dataset 2 is more robust.
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Fig. 7.6 Convergence of ICA cost f'unctions f'or (a) dataset 1 (solid), and (b) dataset 2 (dashed).

FastICA and Xinfbmax have similar superlinear convergence, while RADICAL and MILCA
have similar sublinear convergence. Panei (c) shows both datasets in the convergence limit.
RADICAL and MILCA have better discrimination in this region. Note that an interpolated
minimum for dataset 1 should appear for non-zero demixing,0 x 0.25". (Note also that all
cost functions are normalized to zero minimum and unit mean; cf , Sec. 6.5.1.)

7.3 Convergence of IC.A Cost Functions and Matrix SQMs
7.3.1 ICA Cost Functions (B-Class)

The normalized convergence profiles of the FastICA, Xinfbmax, RADICAL, and MILCA

SQMs on the two datasets are displayed in Fig. 7.6. From these relationships, it is clear that

FasIICA and Xinfomax have a superliner¿r convergence (i.e., power-law with exponent greater

than 1), while RADICAL and MILCA have an overall sublinear convergence (i.e., exponent

less than 1). For convenience, the former will be identified as the superlinear group, and

the latter as the sublinear group. Examining the profiles in the convergence limit (panel (c)),
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the optimal demixing identified by the minima of the cost functions is not necessarrly zero

as expected. The superlinear group appears symmetric around 0 = 0.25" for both datasets,

but discrimination is difficult because of the small derivatives in this region. The approach

of the sublinear group is effectively linear, however, and consequently a distinct difference in

optimum between the two datasets is perceptible. Dataset 2 (dashed) converges to a demixing

0 x 0, whereas dataset I (solid) converges to positive angle, 0 x 0.25". Notwithstanding that

both of the cost functions in the sublinear group are directly derived from MI formulae, the

consistency of the two different estimates is striking.

The two classes of profiles shown here in Fig.7 .6 will be an important reference for the

remainder of the analysis since it captures the sensitivity of ICA to the independent variable of

these experiments, 0. The significance of 0 from a joint distribution perspective is visualized

in the scatterplots of Figs. LI and 7.8. In particular, panels (c) and (d) from Fig. 7 .7 at 0 = 0o

and 0 = l', respectively, both appear to give reasonable, but imperfect, independence overall.

Explicitly, the horizontal edges of Fig. 1.1(c) do not appear parallel to the frame, while the

vertical edges of Fig. L7(d) are slightly askew. This can be interpreted as an optimal mixing

for the maternal ECG in the former, and an optimal demixing for the fetal ECG in the latter.

The plots of Fig. 7.8, however, display without confusion that 0 = 0 is optimal. Specifically,

even the demixing of f is perceptibly rotated.

7.3.2 Matrix SQMs (A-Class)

Clt. 7: Experitnenfal Results

The matrix SQMs are fundamental metrics of ICA convergence because they characterize

the convergence of the weight matrix W within the optimization space. The normalized API,

MFE, and VNE (channel 2, fetal ECG) are shown in Fig. I .9 for dataset 1 (soiid) and dataset

2 (dashed). The MFE and API both effectively have linear convergence to the optimum. The

VNE, on the other hand, is superlinear when distant from the optimum. In the convergence
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Fig.7.7 Scatterplot visualization of the dataset l joint ICA system estimates at significant
demixing levels: (a) actual sources; (b) demixing estimate at0 = -2'; (c) demixing estimate
at 0 = 0'; (d) demixing estimate at 0 = 1'; (e) demixing estimate at 0 = 3". Panels (b)
and (e) are observably rotated from an optimal. Panels (c) and (d) seem to compromise on the
optimization: the former optimizing the vertical edges, and the latter optimizing the horizontal
edges.
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e=-1

Fig. 7.8 Scatterplot visualization of the dataset 2 joint ICA system estimates at significant
demixing levels: (a) joint system of dataset 2 sources; (b) demixing estimate at 0 - -1";
(c) dernixing estimate at 0 = 0"; (d) dernixing estimate at 0 = l"; (e) demixing estimate at

0 = 3. Panels (b) and (d) seern mildly rotated, while panel (e) is observably rotated from an

optimal.
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Fig.7.9 Convergence of matrix SQMs for (a) dataset 1 (solid), and (b) dataset 2 (dashed).

MFE (v) and API (n) essentially converge linearly in d, while the VNE (a) is superlinear.

Panel (c) shows both datasets in the convergence limit. All SQMs optimize at zero angle for
dataset 2. For dataset 1, VNE optimum for occurs for 0 = 1', while MFE still remains at zero

angle, and the API flattens on the [0,1] interval making an optimum more difficult to interpret.
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limit shown in panel (c), all metrics for dataset 2 (dashed) converge to 0 = 0. For dataset 1

(solid), however, the SQMs disagree about the optimum. The NIMFEI (v) converges to g = 0,

but the l(tvNEl (a) converges to 0 = 1o. The f{tÁ.l in this case (r) actually flattens over the

[0, 1'] interval and does not reach zero. The minimal values for the MFE and VNE are

also both positive, but smaller than the minimum API. Recall that the VNE is the only direct

measure of the fetal dernixing, while the other SQMs measure the joint system. It follows,

therefore, that the disagreement among the metrics over the dataset 1 optimum is consistent

with the observation of the scatterplots in Fig. l.l that 0 = 0 seemed to optimize the maternal

ECG and 0 = \o optimized the fetal ECG.

Comparing the convergence profiles of the matrix SQMs in Fig. 7.9 with those of the ICA

cost functions in Fig. I .6, it is interesting to consider the eft'ect of the original cross-correlation

that existed in the source datasets. Dataset I had a correlation of less thanZVo, which is typical

of the ap to 4Vo tolerance that can be introduced by phase alone, but 10 times larger than that

of dataset 2. These experiments appear to suggest that this difference in random conelation

can complicate the proper convergence of ICA. The ICA estimates are assumed in sphered

form, and, consequently, the demixing is unable to optimize both channels simultaneously if

the random CCI is at the higher end of the tolerance identified in Sec. 1.2. The sensitivity to

this effect is not unifonn, however. The MFE as an A-Class SQM and the superlinear group of

B-Class ICA cost functions seem the least sensitive to this effect. The sublinear group of ICA

cost functions and the API are more sensitive, whereas the VNE is clearly the most affected,

since it measures only the convelgence of the fetal ECG channel.

Ch. 7: Experinental Resulfs
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Fig. 7.10 Convergence of SNR for dataset I (solid) and dataset 2 (dashed): (a) overall profile,;
(b) in the convergence limit. Performance of greater than 20 dB occurs for demixing angle
within +5' of optimum. Optimum f-or dataset I approaches g = 1' while the other approaches
0 = 0. Recall that dataset I started with larger native CCI, while the estimates are constrained
to have none.
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Convergence of Second-Order A-Class Features

The convergence prof,le of the standardized SNR SQM, ¡[sNR.l, is shown in Fig.7.l0.

Continuing the trend of previous SQMs which distinguish between the two datasets, dataset

1 is optimizedat0 = l' while dataset 2 is optimizedat0 = 0. Note that dataset 2 improves

over the quality of dataset 1 by more than 5 dB in the convergence limit, but both exceed,20

dB performance with dernixing angles within 15" of optimum. According to the statement of

Principe et al.l88, (2001)l quoted on p. 136, the threshold for "good separation", therefore,

should be considered to be +5'. A more stringent requirement of 30 dB performance might

require that the demixing angle be roughly within 2' of optimum. In a more realistic fetal

ECG scenario, of course, the added corruption introduced by additional sources and noise

would lower the SNR values observed here, and serve to shrink the interval allowed demixing

values.

Standardized SNR
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Fig. 7.11 Convergence of CCI for dataset 1 (solid) and dataset 2 (dashed): (a) overall profile;
(b) in the convergence limit. Convergence is superlinear but highly insensitive. Discrimination
occurs realistically in the third decimal. optimum for dataset 1 is d = l' while the other is
zeÍo.
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The convergence profile of the correlation SQM, ¡lccrJ, is shown in Fig. 7. I l. As with the

SNR, dataset 1 is optimized at0 = l" while dataset 2 is optìmized,at0 = 0.In contrast to the

SNR, however, the profiles appear of the same quality. Overall, the CCI is a very insensitive

SQM, since separation in the t5' interval is discriminated only within the third decimal (1.e.,

CCI > 0.995). Although, as with the SNR, the characteristic CCI values would likely drop in

situations with more conuptible influences.

In general, the second-order absolute SQMs are sensitive to the initial correlation that can

randomly appear in the joint fetal-maternal system. In this they are best compared to the VNE

in the matrix sub-class. Furthermore, when considered against the two classes of convergence

observed in the ICA cost function SQMs, it is expected that an ICA estimate positioned at

the minimum of the ICA cost functions would be +1" from a SOS A-Class optimum for the

0.
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Fig. 7.L2 Convergence of absolute HOS SQMs for (a) dataset I (solid), and (b) dataset 2
(dashed). Panel (c) shows both datasets in the convergence limit. The kurtosis (¡) converges
much faster than the Shannon entropy (v), (superlinearly to sublinearly respectively). Opri-
mum for dataset 1 is d : I' while the other is zero. This is similar to the second-order A-Class
SQMs and demonstrates a sensitivity to initial correlation in the joint fetal-maternal system.

sublinear group and about t1.5" for the superlinear group. Convergence to that level would

amount to an SNR. performance of greater then 30 dB.
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The convergence of the higher-order statistics are an important point of interest of this

work. The convergence profile of two of the proposed HOS-based SQMs ¿Lre shown in

Fig.7.72:' n'arnely, the ADK (a) and the ADE (v). As described in Sec. 6.5.2.3, these val-

ues are normalized against the actual values of the kurtosis and Shannon entropy of the source

Basic HOS A-Class (ADK and ADE)
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fetal ECG. As with the ICA cost functions, there is a distinctive difference in convergence

rate: superlinear convergence by the kurtosis, and a sublinear convergence by the entropy. In

the convergence limit shown in in panel (c), it is clear that the ADE is optimizedby 0 = 1o for

dataset 1, as was found for the SOS-based SQMs. A stronger magnification can also reveal

that the ADK of the same dataset is optimized for 0 = l" as well. Note, however, that the

slow convergence of the ADE implies that for l/ within t3" from optirnum is only within l07o

accuracy, while the kurtosis is less than 0.67o. Furthermore, this implies by the observations

of the previous sections, that an SNR. of 30 dB only assures an enffopy estimate of 57o ac-

curacy, which is substantially larger than the natural variability in the estimator (which was

less than lVo, c.f., Sec.7 .2). It follows, therefbre, that demixing error is the main contributor

to the estimation of entropy. Considering, also, that the superlinear ICA group (e.9., FastICA

and Xinfomax) has weak sensitivity around the optimum, demixing processes from this class

should have increased variance in entropy estimation, (e.9., l07o of actual). The members of

the sublinear class, however, have stronger sensitivity here, and consequently both kurtosis and

entropy estimation should be reasonably accurate (e.9., < IVo andZVo of actual, respectively).

To compare the superlinear behaviours of the ICA cost fllnctions to that of the kurtosis,

Fig. 7. l3 expresses their joint behaviour parameterized by 9. The relationship is mildly sub-

linear. By examining the convergence behaviour in panel (c), it can be seen that the spreading

effect introduced by the source correlation of dataset I subjects less than 0.5Vo enof to the

kurtosis estimate. Since the CCI observed in dataset I is typical accordin,q to Sec. 7.2, this

would seem to indicate that the kurtosis would be accurate to within lVo stbject to random

correlation in the sources fiom phase matching.

A similar comparison of the sublinear ICA class to the entropy is shown in Fig. 7.14. This

relationship is essentially linear (and not surprising given the relationship of the MI to marginal

Ch. 7 : E xpeú men tal Resu.lrs
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Fig.7.13 ADK relationship to FastICA and Xinfornax for (a) dataset 1 (solid), and (b) dataset

2 (dashed) is rnildly sublinear. Panel (c) shows both datasets in the convergence limit. Dataset

I spreads out wider frorn the convergence point.

entropy). The effect of the source correlation, however, is enhanced here. Specifically, the

optimal ICA solution only makes the kurtosis estimate accurate to just under 27o. This would

appear to be the lower bound on enffopy accuracy due to the random correlation in the sources.

7.5.2 Cross-HOS A-Class (xMI)
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The unconventional use of cross-Ml for an SQM gives the results shown in Fig.7.15. Its

form is surprisingly similar to that of SNR*, but with a shallower peak. This is consistent

with the fact that both the SNR and the cross-Ml diverge to oo if the two signals are identical.

Further study is required to identify whether any further relationship between the second-order

and higher-order SQMs is slgnificant.
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2 (dashed) is roughly linear. Panel (c) shows both datasets in the convergence limit. There is
an offset in their optimal point from the original correlation in the sources of dataset l.
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Fig. 7.15 Convergence of xMI for dataset I (solid) and dataset 2 (dashed): (a) overall pro-
file,; (b) in the convergence lirnit. Optimum for dataset I approaches 0 = i" while the other
approaches 0 = 0. At its best representation, dataset 1 is more independent than dataset2.
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Fig.7.16 Estimation ofembedding lag f'or (a) dataset 1 and (b) dataset 2. Lagis insensitive to
moderate mixing, with A¡z ¡ 18.

7.6

7.6.1

Convergence of l\onlinear Dynamical A-Class Features
Preamble: Attractor Parameters

As described in Sec. 6.4, the embedding lag Ln and the embedding dimension N, are

prerequisites fbr the MFA of a fetal ECG time series or its demixing estimate. The automated

results that determine the embedding lag for the two datasets are shown in Fig.7.16. The

second zero of the autocorrelation was successf'ully def,ned fbr alt mixing angles considered,

and is rather insensitive to moderate levels of mixing.

The embedding dimension is a more complicated f'eature: requiring user interpretation of

(i) a Dz scaling interval, and (ii) a D2 sataration point over increasing embedding dimension.

Both of these eiements are subject to changes under mixing, as is demonsfiated rnFig.7.17

and Fig,7.18. Here, Fig.7.17(a) shows the D2 saturation curves tbr the difr'erent estimates of

dataset 1, as well as the original fetal ECG source (bold). Note that the saturation points vanish

under moderate mixing (0 > 15'), but otherwise are approximateiy determined as 9 or 10. The

scaling intervals of panel (b) also demonstrate that mixing reduces the scaling region in a

rather continuous way. At heavier levels of mixing, however', a true scaling interval becomes

too short for proper identification, and is hence interpreted as a lacunarity effect within the
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Fig. 7.I7 Estimation of embedding dimension for dataset 1: (a) D2 saturation curves, and
(b) their supporting scaling region. At moderate mixing no saturation occurs, and therefore no

dimension is assigned. Otherwise, saturation of estimates is around 9 or 10. Note also that the

scaling interval tends to maximize around 0.
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larger behaviour of the correlation sum. Thus the scaling intervals at moderate mixing are

identified as very large, but no saturation is found. The f'eatures of the embedding dimension

analysis of dataset 2 (displayed in Fig.7.18) are similar, except some saturation points are

identif,ed at N, - 8. The estimated embedding dimension for all demixing estimates of both

datasets ere compiled inTableT .2.

Ch. 7 : Exp eri men ta I Resu/f.s

0t"l -s -4 -3 -2 -t -0.5 0 0.5 | 2 3 4 5 6
Datasetl 9 9 10 i0 I 9 9 9 9 I 9 I 9 9
Dataset2 10 l0 8 I 8 t0 l0 l0 l0 t0 l0 l0 I ll

Table 7.2Determined Embedding Dimensions for Fetal ECG Estimates
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Fig. 7.18 Estimation of embedding dimension for dataset 2: (a) D2 sataration curves, and
(b) their supporting scaling region. At moderate mixing, no saturation occurs, and thereforc
no dimension is assigned. Otherwise, saturation of estimates is around 8-10. Note also that
the scaling interval tends to maximize around 0.5. - 1".
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7.6.2 MFA Convergence

At long last, the thesis question can now be examined. Does the MFA of the ICA estimated

signal converge to that of the original? Figure 7.19 presents the convergence profile of the

MFA error-norms. As with the previous A-Class SQMs, the two datasets behave differently.

V/ith the thresholds determined from Sec. 1.2.3 \ncluded in panels (c) and (d) as horizontal

lines, it appears that dataset 2 (dashed) successfully converges around 0 = 0 in keeping with

the other features previously analyzed. Further details will also be discussed later. In contrast,

however, the profile of dataset 1 (solid) does not cross below the threshold. The origins of this

behaviour will be discussed further in the next subsections by evaluating the MFA and scaling

enh'opies directly. Discussion will focus first on dataset 2, because it is the simpler case.

7.6.3 Dataset 2: MFA Details at Significant 0

The interpretation of dataset 2 is somewhat straightforward. According to the convergence

profile of Fig. 1.19, the demixing estimates of 0 = 0 and 1' should be matching the MFA

spectra of the original. These MFA are shown in Fig. 7 .20. In fact, inspection of these curves

demonstrates that the 0 = 0 estimate is almost a point-by-point reproduction of the original.

The 9 = 1" estimate is slightly ofl-set from the original outside the q e [0,2] interval, but

is within the numerical uncertainties. The estimate at 0 = 3o, meanwhile, only matches the

original within the c¡ e 10,2), and is defined on a shorter scaling region than the original, and

so is correctly identified as a non-match.

A significant element of dataset 2's convergence profile, however, is the drastic difference

in MFA error-norm between 0 - -1" and g = -0.5o. This high measure of disparity is

consistent with the contrasting MFA spectra of Fig. 7.20 they measure. Since the scaling

intervals for the MFA estimation are similar, this is not the source of disparity. Inspection

Ch. 7: Experimental Results

M. Potter

PHD-Results
-356- September 1-5, 2008

Version 1.1.5



FEATURE CONVERGENCE UNDER ICA: FECG

ul
U)

TL

o,
o
L

LU

LL

Ch. 7 : Exp eri men tal Re.su/ts

20

(c)

ul
T
O

tL

0L
-5

Oi'Ê
.o. 1

uJ

tL

1

\\

(d)

(b)

Fig. 7.19 Convergence of MFA error SQMs fbr dataset 1 (solid) and daraset 2 (dashed):
(a) MSE-based MFA eüor-norm applied to both the RS and MS representations (as marked);
(b) as in panel (a), but using the CHE-basecl MFA erïor'-norm; Panels (c) and (d) amplify
the convergence limit fbr the MSE-norm SQM and CHE-norm SQM respectively. Tolerance
levels described in Sec. J.2.3 are plotted as horizontal lines. Dataset 2 converges with a toler-
ance of L0 < 1", while dataset 1 does not converge. Estimated embedding dimensions are in
Table 7.2.
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Fig.7.20 MFA spectra for dataset 2 at significant demixing angles 0: (a) Rényi spectrum;
(b) Mandelbrot spectrum; and (c) scaling interval for the demixing estimates as marked. Ac-
tual MFA of original source fetal ECG is also shown (heavy solid). Scaling intervals match
for all except 0 = 3o. Spectra of 0 = 0, I' match the original, however, the 0 = -lo curve is
quite different. Visual inspection of the curves corresponds to the error-norm estimates.

of the MFA scaling entropies (Figs. 7 .21 and 7.22) conf,rms that, indeed, the slopes of the

entropies are different(cf.,7.22(a) and (c)) and the scaling in each is well-defined. In fact, the

source of this MFA disparity is not in the MFA analysis itself, but a sensitivity to an underlying

change in assigned embedding ditnenston. The N" values included in Tâble 7.2 change from

8 at 0 = -1o to 10 at I = -0.5". In fact, the section of MFA error-norm over 0 e [-3", -1"]
which is intuitively going the wrong way (i.e., increasing instead of decreasing), all have been

embedded in 8 dimensions instead of 10, and, therefore, are not consistent with the original.

This would seem to indicate that embedding dimension has an important effect on the MFA

estimates, even though the feasibility of the ernbedding dimension cannot be determined from

the scaling entropies alone.
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(top row), and its reconstruction at a mixing of 0 = 0' (middle row) and optimal 0 = f
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Fig. 7.23 MFA spectra for dataset 1 at significant demixing angles 0: (a) Rényi spectrum;
(b) Mandelbrot spectrum; and (c) scaling interval for the demixing estimates as marked. Ac-
tual MFA of original source fetal ECG is also shown (heavy solid). Even though scaling
intervals of 0 = 0, 1o correspond to the original scaling region, the MFA curves do not follow
the original. The estimate at 0 = -2o applies to a shorter scaling region and does not match the
original curve but has consistently larger uncertainty that contributes to a smaller effor-norm.

7.6.4 Dataset 1: MFA Details at Significant g

Several features of the convet'gence of dataset I shoutd be addressed. These include (i) an

interpretation for the constant MFA error-norm on the l-1", 2f interval, (ii) an interpretation

for the minimal MFA error-nolm at g = -2, and (iii) an explanation for the lack of conver-

gence' Figure 7.23 shows the MFA spectra from the original source fetal ECG as well as the

demixing estimates at0 = -2,0,1 and 3'(as marked). By inspection of panels (a) and (b), it

is clear that none of the MFA spectra derived from the demixing estimates actually agree with

original. The 0 = 0 and 0 = 7" MFA spectra, however, are overlapping throughout both the RS

and MS. They also have matching scaling regions, as shown in Fig. 7.23(c).It is reasonable,

therefore, to conclude that the MFA estimates do converge to some lintit MFA: the issue is this
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limit MFA is not a match to the oliginal fetal ECG MFA.

Moreover, according to Fig. 7.I9,the minimal MFA error is measured at0 = -2'. Looking

at Fig. J.23,however, this is not a match to the original MFA either, and is also not fitted over

the same scaling region. Consequently, it should not be considered a "best estimate" of the

original MFA; notwithstanding its pref'erred status as the demixing value with minimum MFA

elTor-norm.

Further analysis of the scaling entropies that defined these spectra, shown in Figs. 7 .25 and

'l .26, does not demonstrate anything else remarkable. In particular, the quality of the entropy

scaling of the original, and the 0 = 0 and 0 = 1' demixing estimates seem equivalent. The

quality of the fit on the other demixing estimates is reduced, but is not particularly out of the

ordinary f.or a short scaling region.

In fact, there is one explanation for all three elements observed in the convergence profile

of dataset 1: mismatch in embedding dimension, All the demixed estimates in the convergence

limit had an N" evaluated as 9, whereas the original was determined at 10. Note also, that the

segment of minimal MFA error-norm occurs on g e l-3' , -2") which corresponds to the two

demixing estimates assigned N. = 10 - the same as the original. To verify that this was the

cause of the observed convergence, a second analysis was performed whereby the embedding

dimension of the original fetal ECG source was (artificially) set to 9 to be consistent with

the demixing estimates. (This involved only a recalculation of one correlation partition.) The

convergence profile comparing the MFA to this modif,ed reference is shown (dashed) against

the original dataset 1 profile (solid) in Fig. 7.24. The modification to the embedding dimension

solves the lack of convergence and makes its plofile qualitatively equivalent to the profile of

dataset 2.
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Fig,7.24 Convergence of MFA error SQMs for dataset 1 against the original source reference
(solid) and the modified reference with N, = 9 (dashed): (a) MSE-based MFA error-norm
applied to both the RS and MS representations (as marked); (b) as in panel (a), but using the
CHE-based MFA error-norm; Panels (c) and (d) amplify the convergence limit for the MSE-
norm SQM and CHE-norm SQM respectively. Tolerance levels described in Sec. 7.2.3 are
plotted as horizontal lines. The rnodified dataset converges with a tolerance of A0 < 1.5o.
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7 "7 Discussion
7.7.1 MFA Feature Convergence

MFA convergence requires a more complicated discussion than the other A-Class SQMs

because it represents a vector feature and not a scalar (as CCI, SNR, kurlosis, and entropy

are). As such, it is more diflrcult to express the accuracy of the fèature in concrete numeri-

cal terms (ø.g., as a percent-error). The MFA error-norms that were proposed, however, did

seem successful at guiding insight into the convergence of MFA. Furthermore, the estimates

coming from the RS and the MS spectra are consistent. It is easier, although, to asses MFA

convergence graphically using the Rényi spectrum because (i) the support is common among

the estimates, and (ii) uncertainties are applied to only one axis.

These experiments helped identify a relationship of MFA convergence to the other fea-

tures of interest. Specifically, MFA convergence can be interpreted as a heightened form of

entropy convergence. MFA is a scaling analysis of the entropies of' the attractor distribution.

This work has demonstrated that as the entropy of the time-integrated distibtttion of the fetal

ECG times series converges under demixing (i.e., the ADE), the distributir¡n on the fetal ECG

attrcrctor also converges under demixing (i.e., the MFA spectra). A precise comparison of

the convergence dependencies profiles is hampered by the intermediary step of the (sornewhat

arbitrary) MFA error-norms. The basic interpretation seems to apply, however, that the MFA

and entropy estimation share the properties that: (i) the optimum demixing was sensitive to

the initial source conelation and the effect of sphering; and (ii) a tight interval of convergence

around the optimurn demixing angle is required for accurate estination. Item (i) indicates that

ICA convergence from the joint systenx perspective alone may contribute to bias in the feature

estimates from demixed signals. Item (ii), furthermore, indicates that estimation of MFA or

entropy from a superlinear-class of ICA algorithm may also be subject to higher variance.
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Several unique elements of MFA convergence over basic entropy convergence can aiso be

observed. It is possible that the scaling nature of MFA on the attractor entropy adds extra

sensitivity under moderate mixing because the MFA error-norms grow very quickly outside

the convergence limit. The convergence of MFA overall, however, is distinguished by the sen-

sitivity of the embedding dimension to mixing and its consequent effects in the MFA estimate.

That is, the estimation of the attractor parameters themselves - which define the attractor sup-

port and precede the entropies of the attractor - are the significant contributor of nonlinear

effects in the feature convergence of MFA.

7.7.2 Limitations and Generalization

In order for conclusions from this work to generalize to the broader context of ICA appli-

cation to fetal ECG separation, several limitations of this work must be addressed. These can

be considered in two diflerent categories as discussed below.

7.7.2.1 Fetal ECG Simulation

First, the f'etal ECG simulation in this work has identified that nonzero source cross-

correlation can contribute to bias in the estimation of t'etal ECG f'eatures. Fufthermore, this

cross-coffelation in the sources can originate purely by the random relative phase of the QRS-

complexes of the two ECG time series. A specific study of feature convergence with fixed

time series (and, consequently, fixed f'eatures) at different relative phase should be considered.

In particular, the effect of source corelation on the misspecification of embedding dimension

is of interest.

Second, the fetal ECG simulation in this work used a single ECG morphology. A repeat

study using other ECG rnorphologies can identify whether the SQM convergence profiles

observed here are sensitive to, or consistent with, these changing conditions.
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Third, the MFA of the f-etal ECG was based on attractor reconstruction with traditional

equispaced lag-embedding. Experiments using more advanced embedding approaches should

be considered that better represent more efficiently the nonlinear and scaiing aspects of the

fetal ECG dynamics.

7.7.2.2 General ICA Topics

First, the SQM approach used in this work was simplified by considering only two sources,

and consequently a Stiefel manifold parameterized by a single Givens angle. Studies with

more sources should be designed to observe whether the SQMs become anisotropic as the

Stiefet manifold becomes more complex, or whether scalar relationships can generul\ze to

higher dimensional systems. (e.g., Is it suflìcient to consider convergence against a scalar

measure such as MFE(W(01 ,...,0¡)), or must the entire vector lù,.. .,9;lr be considered?)

Second, the SQM approach in this work identified that a kurtosis estimate is reliable under

the"20 dB SNR" rule of thumb (c.1., [88, (2001)] quoted on p. 136), but the entropy and

the MFA were not. Further experimentation should be applied to determine if the demixing

relationship of SNR changes with increasing complexity of'the Stiefel manitbld, as above.

Specifically, does the convergence of the SNR. feature degrade or perhaps just drop in absolute

vaiue so that the demixing interval of 20 dB shrinks? How does the "20 dB SNR" rule of

thumb apply to the more complicated situations?

Third, the SQM approach used in this work has been made in application to fetal ECG

sepalation. Are the relationships observed here (in pafticular the classification of a sub- and

superlinear ICA cost functions) sensitive to the source kurtosis, just their sign, or is it consis-

tent for other statistics?

Fourth, the SQM approach here has considered feature convergence only in noise-free

situations. Experiments to analyze the eflèct of noise on feature convelgence is required.

Ch. 7 : Experimental Resulfs

M. Potter

PHD-Results

-368- September 15,2008

Version 1.1.5



FEATURE CONVERGENCE LINDER ICA: FECG

7.8 Sumrnary

This chapter has presented the analysis of feature convergence for two runs in a fetal ECG

separation simulation. Using a Stiefel manifold sampling approach to define convergence

profiles, two types of ICA cost function convergence (sublineat and superlinear) have been

identified. Furthermore, the same two types of convergence for HOS and nonlinear dynamical

features were identified. These convergence profiles indicate that kurtosis can be reliably es-

timated from demixed signals produced by either ICA cost function class, but the entropy and

MFA may require the sublinear (Ml-based) ICA cost functions in otder to achieve reliable es-

timation. Some features, such as cross-correlation or embedding lag, are affected only mildly

by mixing, while others, such as embedding dimension, can behave erratically.

Furthermore, differences in the initial source corelation for the experiments indicate that

minor levels of random source correlation can contribute to bias in the feature estimates. the

most significant bias is in the entropy, SNR, and MFA (though the embedding dimension),

though all feature-based SQMs a¡e afl'ected to some degree. MFE is the most ínsensitive SQM

to the effect of random source correlation as it measures the entire demixing system, and not

the features of a single channel.

The MFA erïor-norms defined in Ch. 4 and applied here also successfully provide insight

into MFA convergence. The nonlinear nature of MFA affects convergence through (i) its

naffow convergence region and (ii) a sensitivity to embedding dimension. Provided attractor

estimates remain embedded in the same embedding space, convergence of MFA is related

strongly to the convergence of time-integrated enffopy. Sensitivity of the MFA to embedding

dimension establishes that separation performance of ICA is subject to some complications

when using nonlinear features.
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S.L Conclusions

This work has presented a study of feature convergence f'or simulated fetal electrocardio-

grams (ECG) under the action of independent component analysis (ICA) processing, Specifi-

cally, the convergence of multifractal spectra characterizing the attractors reconstructed from

the fetal ECG estimates was compared to the convergence of second and higher-order statistics

using a Stiefel manifbld sampling approach to define convergence profiles. Results from the

study indicate that

(a) ICA cost function converge in at least two classes: superlinear (Xinfomax and FastICA)

and sublinear (RADICAL and MILCA);

(b) higher-order statistics (HOS) converge in at least two classes; kurtosis converges super-

linearly, while entropy converges sublinearly;

(c) the convergence of the multifractal analysis (MFA) spectra can be intuitively estimated

by MFA error-norms;

(d) the rate of MFA convergence is closer to entropy than kurtosis;

Chapter VIII

Coucr,usIoNs

(e) the estimation of the attractor embedding dimension is subject to nonlinear effects and

subjective measurement: namely, the estimate of N. in the limit of weak mixing is not

necessarily the same as the original source;
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(Ð the fètal ECG MFA spectra (and, consequently, MFA convergence) are sensitive to the

embedding dimension.

These results confirm the original thesis statement that (i) not all ICA cost f'unctions con-

verge at the same rate, and (ii) not all higher-order statistics converge at the same rate. Further-

more, the rates of the two ICA classes effectively match the two classes of HOS convergence.

Consequently, the variance of the sublinear HOS (namely entropy) is expected to be higher

when demixing is provided by the superlinear ICA cost functions as its convergence lags be-

hind. Kurtosis estimates should be reliable under the convergence of either cost function class.

These results also confirm the original thesis statement that (iii) nonlinear dynamical fea-

tures extractecl fiom ICA estimates may not converge to the fèatures of the original indepen-

dent sources because of nonlinear sensitivities; and (iv) traditional bounds using second-order

performance metrics fail to account for sensitivities in some higher-order and dynamical t-ea-

ture extraction. The embedding dimension was found to be a significant nonlinear parameter

that may be consistently estimated in the demixing convergence litnit, yet still be inaccurate to

the value estimated for the original source. Since the MFA spectra are sensitive to the embed-

ding dimension, then, they may converge on demixing to improper spectra. In particular, this

demonstrates that high values of SNR do not necessarily indicate that the MFA of the estimate

is an accurate representation of the original. Consequently, any SOS-based performance rule

(e.g.,"20 dB is satisfäctory") is subject to limited interpretation.

This work has also demonstrated preliminary evidence that random phase correlations in

the sources of the fetal ECG separation problem may affect the perfbrmance of ICA estima-

tion. Specifically, cross-correlation between the sources may be significant enough to prevent

a sphered ICA estimate (i.e., without correlations) to properly estimate both sources simul-

taneously. Experiments indicate that this can introduce bias into features extracted fiom the
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optimized demixing estimates. This bias was most clearly identified in the entropy, but may

also play a role in the changed estimation of the embedding dimension.

Moreover, the novel simulation of the fetal ECG separation problem developed here rep-

resents a sound beginning fbr the analysis of ICA separation in controlled experiments that

bridge the divide between "theory" and "practice". Noise-free ECG signals were synthesized

with morphology, hear-t rate valiability, and dynamical fèatures representative of natural sig-

nals. Thus the generic fÞatures considered for analysis are suitable representatives for the

features in practical situations, unlike the traditional disconnect contained in ICA studies in

the literature.

8"2 Contributions

This work represents the first .feature-based analysis of ICA perfbrmance (i.e., where sig-

nal "quality" is measured generically in a sense beyond simple matrix or power measures).

This novelty is tandem with the introduction of the new ICA en'or-space approach that bridges

"theory" and "practice". This work also clearly demonstrates the complexity involved in main-

taining an expedmental paradigm suitable to connect the two "ends" of engineering. This

work also presents the analyzes of'multitiactal (dynamical scaling) fèature convergence as a

new paradigm for ICA perfbrmance measurement.

Four contributions to science and technology are made with this work. First, the conver-

gence profile methodology for ICA analysis is proposed and demonstrated. Since ICA perfbr-

mance analysis has been restricted in the literature to either (i) power-based, or matrix-based

methods in toy examples, or (ii) subjective analysis in blind situations, this new approach pro-

vokes a new discussion of what separation quality means in theory and practice. In particular,

this work has raised concerns over a non-uniform bias in f'eature estimation occurring from
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random phase coffelations in ECG signals.

Second, the comparative analysis of ICA SQM-convergence establishes the first relation-

ship of multifiactal feature convergence to other ICA convergence measutes. Consequently,

this work has identified specif,c concerrs regarding the variance in the estimation of entropy

or MFA from systems separated by FastICA or Xinfomax.

Third, the direct /(ø) conelation-integral technique is defined, providing an extension to

the canonical theory of multifractal analysis. In particular, the utility of having three simulta-

neous entropies for the selection of an MFA scaling interval has been demonstrated,

Last, the ECGfm suffogate ECG method for ECG synthesis improves the dynamical fi-

detity of the state of the art Oxford ECG dynamical model.

This work also contributes several resources to the research community by

(a) publishing code fbr the generation of surlogate ECG;

(b) publishing code for the calculation of an attractor MFA from a correlation partition;

(c) synthesizinga sllrvey on the fetal ECG separation problem;

(d) synthesizing a historical and geometrical background on ICA; and

Ch.8: Conclusions

(e) synthes izing abackground on multifïactal analysis fiom a measure-theoretic perspective

(that applies to attractor or wavelet methodologies), and the signifìcance of surrogate

data for the validation of multifiactal analysis.

8.3 Lirnitations and Future Work

This work has restricted its focus to an analysis of feature convergence in a two-source

simulation of the fetal ECG separation problem. In order for conclusions from this work to
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generalize to the broader context of ICA application to fetal ECG separation, several limita-

tions of this work must be addressed. These can be considered in two different categories as

discussed below.

8.3.1 Fetal ECG Simulation

First, the fetal ECG simulation in this work has identified that nonzero source cross-

correlation can contribute to bias in the estimation of fetal ECG features. Furthermore, this

cross-corelation in the sources can originate purely by the random relative phase of the QRS-

complexes of the two ECG time series. A specif,c study of feature convergence with fixed

time series (and, consequrently, fixed features) at different relative phase should be considered.

In particular, the effect of source conelation on the misspecification of embedding dimension

is of interest.

Second, the fetal ECG simulation in this work used a single ECG morphology. A repeat

study using other ECG morphologies can identify whether the SQM convergence profiles

observed here are sensitive to, or consistent \ /ith, these changing conditions.

Third, the MFA of the fetal ECG was based on attractor reconstruction with traditional

equispaced lag-embedding. Experiments using more advanced embedding approaches should

be considered that represent the nonlinear and scaling aspects of the fetal ECG dynamics more

efficiently. In particular, the efÏect of the limits on data sampling and record length on practical

signals is of interest. Advanced embedding methods should be considered in the hope that they

may alleviate some of these restrictions and m¿ke the MFA of ECG more practical.

Fourth, it has been conjectured that entropy estimates of fetal ECG signals should have

a higher variance under superlinear ICA ciemixing (i.e., Xinfomax and FastICA) thax sublin-

ear (i.e., RADICAL and MILCA). This behaviour should be confirmed by a study with the

practical lCA optimizations (i.e., complete algorithms and not simply convergence profiles).
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Fifth, the fètal ECG event-intervals Llsed in this work were created by an ad hoc process. It

is recommended that a better source of fetal ECG event-intervals may improve on the practical

MFA modelling of the fètal ECG attractors. Other recommendations for an improved ECG

model are included in App. A.

8.3.2 General ICA Topics

First, the SQM approach used in this work was simplified by considering only two sources,

and consequently a Stiefel manifold parameterized by a single Givens angle. Studies with

more sources should be designed to observe whether the SQMs become anisotropic as the

Stiefel manifold becomes more complex, or whether scalar relationships can gsneralíze to

higher dimensional systems. (e.g., Is it suffìcient to consider convergence against a scalar

measure such as MFE(W(gl ,...,0¡)), or must the entire vector 10t,...,0¡lr be considered?)

Second, the SQM approach in this work identified that a kurlosis estimate is reliable under

the "20 dB SNR" rule of thumb (c.f,, Principe et al. [8tì, (2001)] quoted on p. 136), but the

entropy and the MFA were not. Further experimentation should be applied to determine if the

demixing relationship of SNR changes with increasing complexity of the Stiefel manifbld, as

above. Specifically, does the convergence of the SNR. feature degrade or perhaps just drop in

absoiute value so that the demixing interval of 20 dB shrinks? How does the "20 dB SNR"

rule of thumb apply to the more complicated situations?

Third, the SQM approach used in this work has been made in application to fetal ECG

separation. Are the relationships observed here (in particular the classification of a sub- and

superlinear ICA cost functions) sensitive to the source kurtosis, just their sign, or is it consis-

tent for other statistics?

Fourth, the SQM approach here has considered feature convergence only in noise-free

situations. Experiments to analyze the effect of noise on feature convergence is required.
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Last, the SQM approach here used the ICA cost functions as B-Class SQMs, but were

evaluated under offiine conditions so normalization could be applied. Can other B-Class be

derived (e.g., from the derivatives of ICA cost functions) which measure convergence blindly

but also locally (i.e., well-defined in an online optimization)?
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A..L 0verview

In fulfillment of the fetal ECG simulation requirement of noise-free uncontaminated ECG,

this thesis makes an important contribution to the synthesis of ECG signals with natural HRV.

Given, however, the thesis focus on ICA and its performance measurement (and not the ECG

itself), the details of the novel synthesis technique have been separated from the body of the

thesis. Now, this appendix presents the details of the ECGfm synthesis algorithm for surrogate

ECG.

The significance of the ECGfm algorithrn is it provides a mechanism for converting a

record of ECG RR-intervals into a waveform with ECG ploperties. In this way, an ECG

time series can exhibit either natural or unnatural HRV by design. Since this technique can

synthesize a noise-free representation of any recorded ECG, the author calls this contribution

to the field of ECG synthesis a surrogate ECG, in analogy to the formalisms described in Ch. 5

and its application to the field.

Appendix A

Fig.A..1 The surrogate ECG
time series via two modules:

RR
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The ECGfm system is based on two parts, as shown in Fig.4.1. First, a complete de-

scription of the cyclostationary system will be discussed in Sec. A.2. ln a top down manner,

the entire system and the interface of the modules is overviewed in Sec. A.2.1. The integrator

module is then discussed in Sec. A.2.2 while the lHR-module is described in Sec. 4.2.3. An

interpretation on the significance of IHR to the ECG attractor reconstruction is then presented

in Sec. A.2.4. Specifically, it is discussed how the significant variables in the ECGfm synthesis

process affect the reconstructed attractor, and also how they might contribute to an MFA.

Thereafter, in Sec.4.3, the ECGfm design is discussed in cornparison to the ECGsyn

algorithm 11401. Specifically, a set of experiments for ECG synthesis comparison is estab-

lished, and the practical limitations of the original integrator and IHR-processing modules of

the ECGsyn algorithm are discnssed separately in Sec. A.3.2 and Sec.4.3.3 respectively. It

is also demonstrated how the ECGfm overcomes these response limitations. Last, the most

signiflcant code of the ECGfm algorithm is presented in Sec. 4.4.

4"2
A.2.1

Understanding the ECGfrn Model for Surrogate ECG

The surrogate ECG model is based on the separation of cyclostationarity into conjoined

periodic z(0) and aperiodic 0(t) elements. The continuous periodic form z(0) contains the

characteristic infbrmation of the cyclic regularity, including the amplitude and duration of the

different ECG waves. The aperiodic increasing variable, 0(t), will be responsible fbr repte-

senting cyclic variability and, specifically, HRV.

To visualize the behaviour of the joint system z(t) = z o 0(t), (where o is the functional

composition operator), consider Fig. 4.2. Here, a three-dimensional system of differential

Driven Periodic Systems for Cyclostationarity
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Fig.4.2 The ECGfm/ECGsyn three-dimensional dynamical space. [After t140].1 The vari-
ables -r and y are dummy variables used to define 0 = 0(x,y). However, different degrees

of variability away from strict periodicity in z(0) can be designed by increasing the degrees

of freedom in this three-dimensional motion, (x(0),y(0),2(9)). Dots identify the parametric

angles 9¿ at which the P-,R-, and T-waves occur (as shown).

equations in a cylindrical coordinate frame can represent the ECG signal. The regular peri-

odic features can then be mapped into the 3D space of the model. That is, by introducing

asymmetrically repulsive points on the baseline plane, rnorphological features like the the P-,

QRS-, and T-waves can be modelled in the z(r) time series. The angular position, d¡, of these

repulsive points defines the location in phase of the fiducial extrema of the ECG waves. Here,

0¡ is best indexed by the wave identifiers themselves: namely i e lP, O,R, S, Z]. Thus, as the

system cycles around the origin with positive angular velocity, a(t),the repulsive points (in a

proper positioning) sequentially deflect the systern trajectory from the baseline and influence

the moqphology to coffectly represent sinus rhythm. This is a rather straightforward approach

for the modelling of generic cyclostationary signals as a driven periodic system.

As a parametric oscillator, this ECG model can be tuned for the multiple morphologies that

App. A: Details - Surrogate ECG AIg.
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can appear in vadous ECG leads (or other cyclostationary biological signals [a3]) by adapting

the parameters of the repulsive points. More significant to the current discussion, however,

this approach to ECG synthesis needs ¿r well-defined angular velocity (as a time series). This

angular velocity time series is equivalent philosophically to IHR t1401t1761. The purpose of

the lHR-processing module is to define this IHR signal from an input representing the event-

template of a recorded ECG. In the case of a tachogram input, this defines an IHR signal

consistent with natural HRV. With the addition of the shorter ECG-intervals (e.g., PR- and

RT-intervals) at the input, the IHR signal can also synthesize these elements.

Now that the decomposition of the cyclostationary ECG model has been identified, the

details of the two modules describing the cyclic z(0) and aperiodic 0(r) components will be

presented. First, the cyclic ¿(0) system, equivalent to the integrator module of Fig. A.l, will

be described, under the assumption that 0(/) is already well-defined. Afterwards, the proper

definition of 0(t) fiom an event-interval template is discussed, and is presented in the form

of the .frequency-modulated pha,se interpolation (FMPI) technique. This technique will be

contrasted to spectral or resampling techniques for IHR definition.

4.2.2 Integrator Module

The basic form of the ECGfm integrator module is inspired by, and adapted fiom, the

McSharry et al. model [40]. The final form of the adaptations will be presented here, while

a comparison to the original ECGsyn system will be made in Sec. 4.3.2.

The simplest interpretation to the integrator module would be to consider only one degree

of freedom, whereby the amplitude z(0) in Fig. 4.2 is defined as a fixed periodic function of

one angular variable, 0. A slightly more general model could define z as a static surfäce over

two variables (x,y). Under this generalization the system is allowed to leave the unit circle

trajectory (i.e.,the "the average" behaviour) and explore the surf'ace around it as well. More

App. A: Details - Surrogate ECG Alg.
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Parameter Valuei=P Valuei--Q Valuei =R Valuei =,S Yaluei =Z
9¡ at 60 bpm -7( 13 -r 112 0 n I 12 iT 12

Table A.l Default Values for ECGfmBCGsyn Repellor Properties

variability in the output z(r) morphology could be observed here.

A¡

b¡

The surrogate ECG model goes further, in fact, by going beyond an explicitly defined z

surfàce. Insteacl, the model uses a true three-dimensional cleterministic system (x(t),y(t),2,(t))

with a periodic attractor given by (x, y) in the unit circle and z on the curve of minimum

potential. Thus the "average ECG tlajectory" at the ourput is equivalent to the restricted 1-

dimensional mode1, but at instantaneous times, the model presents more degrees of freedom.

Thus the fundamental motion of the system can be considered as a simple l-dimensional

attractive manifold, but the system is free to indulge in mild dynamical effects, thus adding

morphological variability to the ECG waveforms.

As previously mentioned, the ECG waves are controlled by asymmetric repellors posi-

tioned in the 3D space of Fig. 4.2. These repellors fbr i e {P, Q,R, S, Z} are positionecl on the

unit circle in the ¿ = 0 plane and ale described by the parameters

(a) angular position, 0¡;

1.2

0.25

-5.0
0.10

App. A: Details - Surrogate ECG AIg.

30.0
0.10

-1.5
0.10

(b) signed amplitude, a¡ (i.e., magnitude and direction of deflection); and

(c) width paramefer, b¡.

0.15
0.4

Default values for these parameters are shown in Table 4.1. Note however, that due to the

dependence of the ECG event-intervals to mean heart rate, a correction is made to applied

values of 9¡. That is, to compensate for the nonlinear shortening of the event-intervals with

M. Potter
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increased heart rate, a Bazett-style correction

,_. !
0¡ <- (*æ)' 0i ; i e {P,TI

0n+0n
,_. I

e,<-(ffi)'et ; ielQ,sj

is applied before the initialization of the integrator module, where the mean heart rate po is

measured in bprn.

With these parameters and an IHR time series, c,,,(r), the system of ordinary differential

equations defining the integrator module,

a(x,y)-1- ^[F;¡
O(x,Y) = atan19x)

dx
dr=ox-alt))'
dv

= 
- a),+ a(t)x

at

# = -,r,>Ð",(0o0).^o(-; (ry))- (z - z0(r))

App. A: Details - Su'rogate ECG AIg.

are well-defined. Here, the o subtraction operator is a circular phase subtraction defined as

e e ei'! @ - g) mod 2n. Note that the form of (4.6) accounts for (i) a baseline behaviour

defined by the zo(/) function and (ii) events with a Gaussian profile at the 0¡. For the synthetic

ECG generated in this wolk, the default values of Table A. I and zo = 0 were used.

The system of equatìons above are then integrated from an initial condition using the

Dormand-Prince explicit (4,5)-Runge-Kutta solver [28]. This is a variable step-size algo-

rithm, whose output is then interpolated onto a uniformly sampled time vector with sampling

frequency v,,. As with any dynarnical system, there is a ûransient from the initial condition,

hard-set to [1,0,0.04], until when the trajectory settles onto the attractor (here, limit cycle)

(4.l)
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of the system. To eliminate this transient from the synthetic ECG outpttt, a transient conffol

protocol is enabled, whereby the IHR signal of the first ECG beat drives the system for 20

consecutive repetitions to allow for convergence. The maximum Z¡7 = Ítràxz,(t) over the final

(repeated) beat is then taken for the effective initial condition

which is consistent with beginning the ECG surrogate at the R-wave apex, since 0(0) = 9.

One legacy feature of the ECGfm algorithm is the ability to downsample the returned

time series from the internal sampling frequency v.,¡. The default implementation here is

that the internal sampling will be twice that of the returned time series, vsi = 2v.. At high

sampling frequencies, however, there is limited benefit of an upsampled internal frequency

since it amounts only to more interpolation points being applied to the inegularly sampled

Runge-Kutta solution.

One significant feature of the original ECGsyn algorithrn is a self-annotating mechanism

based on the 3D xyz system of Fig. 4.2. This procedure continues to be implemented in

the ECGfm algorithrn. Essentially, the x1^ coordinates are used to calculate d(r), whereby the

closest sample to á¿ is assigned as the fiducial extrema of that wave i e lP,Q,R,S, f). This is

implemented by assigning a numerical "peak identifier" to each sample of the ECG, 0 for no

peak, and 1 though 5 rnapping to P through T.

Once the peak identifier has established the fiducial markers of the ECG waves, the .r¡r

coordinates of the 3D system are discarded and only the vector of ¿-values is used for the

ECG tirne series itself. The integrator module is thus lesponsible to return (i) the surrogate

ECG amplitudes (fron-r z), (ii) the time vector r,, of the time series, and (iii) the peak malker

vector.

Attention is now turned to the modelling of the IHR time series c,,r(r) used to drive the

(x,), e)lr=o = (1, 0, z,r)

App. A: Details - Strrogate ECG AIg.

(4.7)
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integrator module.

L.2,3 lHR-Processing and FMPI

The fundamental purpose of the integrator module j ust described was to synthesize the reg-

ular f'eatures of an ECG with some molphological allowance of dynamics. The significance

of the lHR-processing module, however, is that it controls the HRV of the synthesized ECG,

since the angular rate r,.r(t) in Fig. 4.2 is equivalent to tHR. Were a constant angular velocity

u(t) = ar¡ to drive the integrator module, a perfectly periodic ECG would result. Thus by

properly introducing nonlinearity into the monotonic continuous function 0(t), realistic cyclo-

stationadty variability can be expressed in z(¿) = 7o 0(t).

The action of the integrator module is thus a kind of frequency-ntodulation (FM), since

the nonlinear components of 9(Ð fi'om natural HRV ale mild. The novel aspect of the ECGfm

suffogate ECG algorithm is that the event-intervals, and specifìcally the RR-intervals that

define HRV, are faithfully reconstructed in the time domain. Given an event-interval template,

such as a tachogram, the FM-variability of the ECG is represented in discrete form. For

use in the integrator module, however, an IHR time series, a(t), should have specificity on

time intervals smaller than the original template. (As an exampie, the IHR derived from a

tachogram An(rz), must be specified at time scales under the average beat.) At these time

scales, the interpolation from discrete inf'ormation to continuous is philosophically ill-posed.

This level of specifìcity is often not required in clinical or spectral analysis, which fbcus on

low-frequency behavìour and windowed-avera_qes over multiple beats. Here, in the modelling

of synthetic ECG, however, it- is necessary fhat u(t) be practically defined on such short time

scales. Thus, some model for IHR must be assumed, but the choice of model should be

justified as much as possible.

To preserve realistic cyclostationarity variability in the continuous time series, a careful

App. A: Detaìls - Surogafe ECG Ale.
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analysis of IHR modelling is required. Some novel possibilities will now be discussed and

evaluated on the simplest form of HRV constraint that can be applied: the conversion of a

tachogram into IHR. First, the context of RR-processing will be demonstrated to be an inter-

polation problem, then several solutions of increasing difficulty will be presented: (i) basic,

(ii) offset piecewise, (iii) Hennite. This analysis will demonstrate that the Hermite solution,

and its generalized form of higher-order frequency-modulated phase-tnterpolation (FMPI),

are the most justified modelling approach to IHR processing. After the implementation of

the Hennite-FMPI model for use with ECG event-interval templates is described, a theoretical

comparison of FMPI to other methods will be presented. Later in this chapter, the superior per-

formance of the FMPI-based system at preserving HRV will be demonstrated in experimental

comparison to other methods.

A.2.3.1 RR-Processing is Interpolation

Consider an ECG signal with R-wave occurrence times tn, t't ) 0. As described in Ch.2,

HRV can be represented as a sequence of RR-intervaLls, Aa(n) - tn - r,,-1 with n ) L Recall,

the tachogram is a sequence of discrete values, Ln(n) vs. /¿, well-ordered by time, but not

uniformly sampled as a time series usually is. For the remainder of this chapter, tachograms

are best considered graphically as a stem series An(n) vs. t,?, which directly uses the known

timing of the events in a causal way.

Recall that the tachogram is a convenient feature of HRV even for lelatively low qual-

ity ECG signals (either in signal to noise ratio, or sampling frequency), because RR-interval

extraction is robust and well-automated tl64ltl09l[137], with a precision determined by the

sampling flequency of the ECG signal [43]. From the chosen cyclostationary representation

of an ECG, every event in z has a position jointly descrjbed by r and 0. The R-waves are

identifiable in time as ,n under usual time-series analysis. They are also identifiable in angle

App. A: Details - Surrogate ECG AIg.
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because they occur at the same angular point in the dynamical space of Fig. 4.2. Including

a measure of revolution, this would mean that the angles 0(t,,) are separated by 2n radians.

Thus, observing a space of d and f, there are a finite number of identified monotonic points

fiom which to define 0(t), as shown in Fig. 4.3(a). That is, the constraint
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The constraint on any model of 0(t) for the driven periodic oscillator is that it must be

monotonic increasing and it must satisfy the known timings of the R-waves. This is essen-

tially an interpolation problem [76]. The resulting interpolated 0(t) fÏnction should also be

differentiable enough so that

cl9(t\,(t) = ï 
(4.9)

is usefully def,ned. Recall that this interpolation is equivalent to defining the IHR through the

relationship

60p"(t) = ja(r)
Ltt

where beats per minltte (bprn) are assllmed as the units of IHR. Of course,

to simply use c,.r(r) in radls or a(t)lZn inHz.

This is the fundamental framework of the frequency-ntodLilated phase-interpolation (FMPÐ

model for the definition of IHR [78]. The event-interval data provides a physical constraint

on an inteqpolation problern. The philosophical ill-posedness of the IHR at small time-scales

appears as the flexibility of interpolation models that can be ascribed to the FMPI solution.

Some examples of FMPI solutions with increasing difficulty will now be presented: (i) basic

piecewise, (ii) offset piecewise, (iii) Hermite interpolation. The fìrst is the simplest choice for

interpolation: a piecewise-linear interpolation between the constraints of Fig. 4.3(a). Adopt-

ing this model, however, necessarily introduces a singularity in a(t) at the /n. Instead, an offset

can be introduced to relocate the discontinuity, as described in the second model. Last, when

discontinuities improperly describe the continuous process to be modelled, Hermite interpo-

lation can ensure a continuous IHR. A visualization of the three clifferent FMPI solutions to a

fixed dataset is shown in Fig. 4.4.

Before going through these solutions in detail, Íhe de facto signal processing model for

IHR is defined [50].

App. A: Details - Surrogate ECG Alg.

(4. r0)
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Fig. 4.4 FMPI solutions to the suriogate ECG problem: (a) Natural RR-interval sequence

from the Physionet NSRD (record 16212); (b) Traditional piecewise-linear interpolation gives

constant IHR on the RR-interval (black), while a generalized phase-offset piecewise-linear

interpolation can be used to create constant IHR throughout a heart cycle (red). Monotonic
Hermite-interpolation methods can provide smooth and continuous IHR (blue dashes); (c) Sur-

rogate ECG signal using the ECGsyn dynamical system for z(0) and the Hermite FMPI for
IHR.

Definition 4.1 (Semicontinuous Tachogram), A semiconti,nuolts tachogram is a piecewise-

constant extension of a tachogram onto the real line. For the dynamical model used here, the

semicontinuous tachogram based an a R-sequence /n is defined as

1234567
Time [s]

in units of rad/s (or sirnply (tn*t - /,,)-r in units of Hz). This approach to an IHR signal dates

back to the original spectral work of DeBoer [52] and Akselrod [24].

Note that, in graphical terms. the semicontinuous tachogram "fills in between" the stem

øscr(/) =
tn - tr-l
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k(\ì

s

lnlerval of constant IHR
..t---..........-..+

series created by a tachoglam (but is not causal because the occuruence of the next R-wave

must be known beforehand, t 1 tr).

A.2.3.2 FMPI: Basic Piecewise Interpolation

The simplest approach to an FMPI solution is to simply apply a basic linear interpolation

on the tachogram constraints

Fig. 4.5 Schematic of 0Q) for the basic piecewise-linear model.

App. A: Details - Surrogate ECG Alg.

tn- |

0(t)=0n=0n+2nn

That is,

and the schematic is shown in Fig. 4.5. The linear interpolation assumes that the rate is con-

stant in between the R-waves. Thus, the basic linea¡ FMPI is equivalent to the semicontinuous

tachogram of (4.1 1) through a simple derivative.

Apart from its simplicity, the basic linear FMPI has two other significant characteristics:

(i) the average rate over the RR-interval is attained at all points in the interval, and (ii) a
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discontinuity in a.,(r) occurs at the /,,. Since this discontinuity is placed at the middle of the

ECG's electrodynamical cycle described in Ch.7, the physiological likelihood of this model is

quite low. Instead, a small adaptation to the piecewise-linear model can be made to reposition

the discontinuity, as described next.

A.2.3.3 FMPI: O.ffset Piecewi.çe InterpoLation

As mentioned, the basic piecewise-linear model has a non-physiological limitation in the

placement of its discontinuity. One approach to address this limitation is to offset the discon-

tinuity so it appears at the onset of the beat (l.e., sinoatrial activation) and not in the middle.

Thus, the solution is to introduce a phase offset 0, with respect to 0p where the discontinuity

occurs. If eo + 0, then the interval of linear interpolation is between new transition times Ç

and Zn*1, where Tu 1t, as shown in Fig.4.6.

The tachogram constraint on the RR-intervals now affects two values of unknown slope,

making a recursive system of eqr"rations to be solved

Fig. 4.6 Schematic of 0(r)
piecewise-linear model.

App. A: Details - Swrogate ECG A1g.
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for the generalized 06 phase-offset

0,J

e;'=h(o*(n) -r-"ê;),)
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where the shorthand 0;1 f"r (#)-'1,, is used. This reduces correctly to the basic model as

0o --+ 0. Note since the measured RR-interval sequence is being interpreted as a moving

average 
"f (#)-' values, (4.1 5), it is expected that these 0;r values have a greater oscillation

than the RR-interval sequence itself. (That is, the RR-interval sequence is a smoothed version

of the caiculated 0-r values.)

The recursive system of (4. I 5) is unstable, however, for 0o ) n. By expressing the system

as a reverse recursion (from end to beginning), stability can be regained in the 0o e (n,Znl

region.

The final form of the phase-offset piecewise-linear IHR interpolation model is formalized

AS

App. A: Details - Surrogate ECG Alg.

60 de
Pr(t) = z" ,tt
de(t) I

-=
dt (¡-t(t)

(l-t (t) = ê;t , Yt e (7,,,7, + ll

where

- -lr,*, + e,o;!, vn

"' - 
lr,, - (zn - o") e;, vn

and, recursively,

e-t _"n

This model overcomes the direct issue of the discontinuity in the basic piecewise model, but

there is no reason why a discontinuity in IHR is required at all. Thus the main approach

t êofr + 1) - (2r - 0")ê;1,)
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of FMPI for a surrogate ECG will look at smooth interpolation schemes, such as the one

described in the next section.

A.2.3.4 FMPI: Monotonic Hermite Interpolation

To ensure a continuous instantaneous rate, a piecewise-cubic monotonic Hermite interpo-

lation 162l can be used as a FMPI solution on (4.8). This approach can be simply evaluated

in Matlab using the pchip mode of interpolation. As opposed to cubic spline interpolation,

this approach is guaranteed to maintain monotonicity (and thus keep 0(r) well-defined). Upon

taking the derivative, the IHR ø(l) is guaranteed to be continuous, but it may have singularities

(i.e., not be smooth) at the interval transitions.

This approach is the foundation of lHR-processing module of the ECGfm algorithm in

order to preserve HRV in the time domain. In order to preserve the time domain reconstruction

of shorter ECG event-intervals, such as the PR- and RT-intervals, extra constraints can be

added to the FMPI interpolation problem, as described next.

A.2.3.5 FMPI: Supporting Shorter Event-lntervals

A true surrogate ECG should be capable of reconstructing all the event-intervals extractable

from a recorded ECG. To this end, the ECGfm algorithm is able to support PR- and RT-

intervals as optional arguments, in addition to the basic tachogram infbrmation. Specifically,

the monotonic Hermite FMPI in the ECGfm algorithrn is applied to the interpolation con-

straints

App. A: Details - Surrogate ECG Alg.

0(t,, + ô¡(n)) = 2nn-t 0¡
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where for i e lP, R,Tl

ðp(n) < 0 ; PR-interval of nth beat (offset to rn)

6n(n) = 0 ; no ofiset to 4¡

õr@) > 0 ; RT-interval of nth beat (offset to r,)

are the time domain offsets provided by the ECG event-inter-val template, and the 0¡ are the

static z(0)-markers for the P-, R-, and T-waves from the ECGfm integrator module (presumed

0p 10,0n=0,and07 > 0). Clearly,(4.21)simplifiesto(4.8)if onlyR-wavesareconsidered:

, e {Ã}.

To accommodate the passing of this ECG template information multiple input options to

the algorithm are allowed. Specifically, the template can be presented as a vector or a Hatlab

structure:

Vecron l¡¡pur- The minimum data requirement is a vector of R-times (in sec-

onds), and the shorter intervals are not constrained. If the R-time vector is given,

an extra calling option may be applied, with which a constant PR-inter"val con-

straint can be given and applied during FM-interpolation. This is satisfactory to

at least model a constant PR-interval independent of HRV which is a good first-

order physiological approximation. The prefèrred fbrm of use for the ECGfm

algorithm, however, is a structure argument because it reduces ambiguity, as de-

scribed next.

Srnucrune lrupur- If a vector input is not given, then the ECGfrn algorithm

expects a l{atIab structure with the subfields:

R: a vector of R-times;

App. A: Details - Surrogate ECG Alg.

(4.22)

RR: a vectol of RR-intervals (only required if R subfield not available);
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r
I lnstantaneous

I 
Rate

Cyclostationary System

Fig.4.7 FMPI defines an instantaneous rate f'or a general cyclostationary model.

u(tI
I

ptr'"ñ;l 
,oilTffiffi-l--l*

PR: a scalar value or vectol of PR-intervals (optional);

a scalar value or vector of RT-intervals (optional).RT:

By convention, all event-intervals must be in seconds and positive. (Note the negative sign

required for óp in (4.2 I ) is internally applied.)

From the data in the input structule fields, the IHR-processing algorithm processes calcu-

lates all the individual t¡(n) and 0¡(n) as necessary, then sorts them into aggregate monotonic

rv¡(n) and 0v¡@) vectors. Then the d vector is inteqpolated via the pchip inte¡polation onto

a unifbrmly sampled time series over the /y¡(n) vector. As described in Sec. A.2.2, the ECG

time series begins with an R-wave (i.e., 0(t) stafis at 0). As a consequence, the first PR in-

terval value is applied at the fìrst opportunity: namely on the .second beat. Note, therefore,

that to properly maintain the correspondence of a data input to a recordecl ECG, some care is

generally required when preparing a multi-structure argument.

A.2.3.6 Generalized FMPI and the IPFM Model

App. A: Details - Surrogate ECG Alg.

t)

FMPI is a general approach to the definition of instantaneous rate for cyclostationary sig-

nals modelled by the system of Fig. 4.7, and extends the techniques presented in U6l,l2l,
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(a)

Fig. 4.8 The IPFM model: (a) Design of an IPFM circuit; (b) IPFM system converts a

continuous-time modulating signal into an impulse train (point process).

and [176]. As it has been described here, FMPI is related to the integraL-pulse frequency-

modulation (IPFM) model t76ltl57l[138]. The IPFM model is often used as a "ratnp-and-

fire" model for biological processes, such as the depolarization of the sinoatrial node U571.

It is also used as a model for the extraction of a point process (event impulse series) from a

continuous signal, e.g., R-wave detection [2] as shown in Fig, 4.8. The latter is essentially

a conversion from continuous ECG (with a well-identified R-wave), into the sequence of R-

wave times /r,.

The IPFM change of variable is often useful when applied to derive approximations in

HRV spectral estimation [157]. The power of the IPFM model is it naturally describes the

cyclic behaviour of the ECG by the relationship between time and an irnaginary phase variable

0. It has been noted by the author 1176), however, that this imaginary phase variable has

important consequence in the context of the sunogate ECGÆCGsyn model: 9(r) is, in fact,

the angular variable of Fig. 4.2.

The goal of synthesizing an ECG with a given tachogram is, in one sense, the "inverse" of

the IPFM point-process model shown in Fig. 4.8(b). Here, a dynamical system as described

in the earlier sections (Fig, 4.2) is used to reconshuct the ECG morphology discarded by the

(b) I

App. A: Details - Surrogate ECG Alg.
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IPFM transformation. (Note this is independent of the biology of the sinoatrial node, and

based solely on the cyclostationarity of the ECG waveform itself. The biological connection

to the pacemaker activity is only necessary when conclusions are to be drawn specifically on

the characteristic behaviour of autonomic influences on HRV.)

The idea of inverting the IPFM model is not a new idea (i.e.,IPFM demodulation). How-

ever, it is usually approached with some underlying assumptions in order to obtain a unique

solution (1.e., bandwidth assumptions that validate the spectral approximations t2051). This is,

in practice, approximate linearized solutions to the nonlinear IPFM system.

By compering Fig. A.B(a) to Fig. 4.7, it is easily determined that IPFM can be considered

a special case of the general cyclostationary systenì to which FMPI applies. While IPFM is

limited to an impulse train outpnt, however, the cyclic decomposition model fbr cyclostation-

ary signals x(t) = z" 0(t) can be widely applied, as shown in Fig. 4.9. For exampie, the FMPI

approach to instantaneous rate also applies to

(a) Non-unifortn .sampling (Fig. 4.9(b)), where sample values x(t) = xn aÍe applied so that

z(0(r)) = 1,, x,,6¡0(t) - Znn;

(b) Sinusoidalfreqttency modulation (Fig.4.9(c)), such as z(O(t)) = cos(9(r) - d);

App. A: Details - Surrogate ECG AIg.

(c) Pulse wtdrh mr¡dularion (Fig. 4.9(d)), sr-rch as ¿(9) = 7((20 mod 2z) - 7( 12), (using the

Heaviside function E);

(d) Cyctosîationary ntoclelling (Fig. 4.9(e)), where z@(t)) = Î gk,Z.,O,à)dt, as was de-

scribed in the preceding sections for ECG or elsewhere [1a0] [43].

Note that the analysis that follows in Sec. 4.3 is based on Fig. 4.9(e), which is effectively

using the cyclic dynamical system of Sec. A.2.2 as z(0) to reconstruct the ECG morphology

discarded in the reduction of an ECG to a tachogram. As was discussed in Sec. 4.2.3, it is
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(a)

App. A: Details - Surrogate ECG AIg.
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Fig.4.9 FMPI universality: FMPI applies to the instantaneous rate inverse problem of diverse

signals including; (a) IPFM, (b) nonuniform sampling, (c) classical fiequency modulation,

(d) pulse width modulation, and (e) cyclostationary modelling, such as ECG synthesis. FMPI
solves f'or a phase function under the common phase constraint that appears down the right
hand column.
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also particularly useful for this case that the FMPI model will accept multiple event-markers

per cycle to preserve the short event-intervals.

By this analysis, therefore, FMPI can be considered a generalized extension to the IPFM

demodulation problern. In contrast to the IPFM demodurlation formulation, a numerical solu-

tion to FMPI requires a choice of interpolation scheme. As mentioned previously, this flexi-

bility is consistent with the ill-posedness of the inverse problern on short-time scales. Since

the defining FMPI constraint is preserved for all interpolation orders, this choice of interpola-

tion order need only be justified based on the solution's utility and physiological credibility,

instead of "colrectness". That is, unique solutions are not available, bur. useful solutions can

be described that provide mathematical insight. The preceding sections present an example of

this, whereby new solutions were derived within the same IPFM context solely on the basis of

the qualitative continuity of the final IHR signal.

It will be shown in the following that FMPI actually improves the time-domain fidelity of

the synthesized ECG to the tsual tachogram resampling techniques [50] for defining IHR.

This is not totally surprising. Han identified as early as 1992 [76] that IHR based on a special

case of FMPI (which inte¡polates than differentiates) yields different results than resampling

methods (which numerically dift-erentiates then interpolates). Furthermore, Mateo, Laguna,

et aI. |381considered the spectral analysis of a potpourri of IHR techniques and determined

that a so-called heart timing signal was the most unbiased. This signal, as it is defined with

an IPFM model, amounts to a high-order spline interpolation of the linear residual of 0(t):

i.e., m(t) = 0(t) - þßt Il78l. The significance of this superiority against the other resampling

interpolation methods, however, was not identified. From consideration of Han et al. and the

argumenrs that follow in Sec. 4,3.3 and in [178, Potter (2008)], it is clear that an IPFM inter-

polation on 6(r), or even its nonlinear residual m(t), capttres the consüaint of the FMPI which
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no interpolation on cumulative differences (i.e., tachograms) ever will. This is significant be-

cause some authors will argue for direct spectral estimation of HRV from tachograms (e.9.,

Lomb-Scargle estimation 144, Clifford (2005)l), but as will be shown in Sec. 4.3.3, even this

makes an invalid assumption regarding the "non-uniforrn sampling" of the tachogram.

L.2.4 System Attractor

Since the reconstruction of an ECG attractor fÏom a time series is f'eatured heavily in

this work, it is of interest to consider the implications of the ECGfm model on this attractor.

By design, ECGfm signals come from the attractor of a driven nonlinear oscillator, Fig. 4.2.

Note that, fiom the equations of motion, the morphological dynamics of surrogate ECG can

be visualized in a three-dimensional system, but the variability dynamics contained in 0(t)

are not represented here at all. IHR is essentially a conjugate variable to the ones depicted.

Meanwhile, the reconstructed attractor is based on lag-embedding of the observed time series

alone, as described in Chs. 4 and 6, and is to be analyzed as a low-dimensional manifold

embedded in a high-dimensional space.

As a consequence of the surrogate ECG technique, the "ECG atttactor" can also be con-

sidered at a conceptual midpoint between these two ends. Consider the images shown in

Fig. 4.10. Here a 2D lag-embedding of the ECGtm time series is enhanced by the IHR vari-

able on the vertical axis. Images here were created by tachograms that increase monotonically

across the normal heart rate range, while PR- and RT:intervals were constrained to constants.

As compared to Fig. A.2,the manifold shown here reduces the morphological variables by one

(and hence introduces false intersections) but realizes one of the conjugate variables instead;

e.g., IHR on the vertical axis. Thus, this representation captures a dynamical relationship

between the angular rate and the ECG morphology as a geometry to the manifold.

By observation of these figures, it is observed that a larger spreading in IHR occurs in the

App. A: Details - Surrogate ECG AIg.
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Fig. 4.10 Visualization of surrogate ECG attlactor support: The interactive dynamics of ECG

moryhology (base plane) and heart rate (vefiical axis) for (a) adult parameters; and (b) fetal

parameters constructs a manifold, observed here in 3D. Thus, the attractor of an observed ECG

can be inter-preted as a specific distribution on this manifold, depending on its IHR properties.
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loop that represents the TP-interval as compared to the "ribboned" structure of the rest of the

trajectory. These images can be interpreted as a projection in 3D of the support of the higher-

dimensional attractor of the sumogate ECG model (with some assumed parameters). That is,

the figures shown here do not capture the weighting or dynamics induced by the tachogram

input, but only the manit'old on which they act. A specific tachogram would constrain the ECG

signal to traverse the shown patterns according to some specific density function. That is, the

dynamics of a specific IHR time series leads to a density feature on the morphologically-based

structure in Fig. 4.10.

Theretbre, an ECG attractor, once fully-reconstructed by lag-embedding, can be consid-

ered as a segment of the unraveled manifold of Fig.A.l0, with a weighting according to its

IHR dynamics. It is the multiscale behaviour of this distribution on this manifold that is be-

ing measured in multifractal analysis. This progression fiom ECG and IHR time series to a

reconstructed attractor equivalent to Fig. A.l0 is shown in Fig. A. I I .

App. A: Details - Surrogate ECG Alg.
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Fig. A..11 Visualization of specific surrogate ECG attractor: (a) synthesized time series which
yields lag-coordinates; (b) its IHR time series; and (c) attractor specific to (a) and (b) recon-
structed in 3D.
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4.3 Changes to the ECGsyn Design

As mentioned in Sec. A.2, the ECGfm algorithm for surrogate ECG synthesis is based on

the ECGsyn model by Mcshany et al.. The following considers the differences that occur

between the two algorithms when they are applied to the same input, and demonstrates the

superior performance of ECGfm at preserving time domain fidelity.

4.3.1 Comparison of Synthesis Behaviours

Here the ECGfm algorithm presented in Sec.4.2 is compared to the ecgsyn24.m algo-

rithm, which is the MlT-based (Clifford, 2005) extension to the original Oxford-MIT ECGsyn

model. The distinction between the original ECGsyn and ecgsyn24.m, is that the former

produced synthetic RR-intervals internally, whereas the latter could also accept RR-intervals

as inputs. (Since the rest of the algorithms are equivalent, they will both still be identified as

ECGsyn hereafter).

A simple exarnple of the clifferent response of the algorithms is shown in Fig. A.12. Here,

a short piecewise-constant square-wave tachogram was presented to the algorithms. There is

considerable amplitude distortion in the ECGsyn response, as well as a lack of time domain

fidelity. The ECGtm approach, however, is more resistant to these artifacts. This is a result

of a few minor changes to the integrator module, and the introduction of FMPI into the IHR-

processing module. The use of FMPI specifically improves the RR-interval fidelity, as well as

the shorter event-interval fidelity. In the fbllowing, these differences between the algorithms

will be addressed in the context of experiments with natural intervals.

A.3.1.1 Experitnents vvith natural intervaLs

App. A: Details - Sun'ogate ECG Alg.

To demonstrate the event-interval response of the ecgsynZ4 . m and surrogate ECG algo-

rithms with natural ECG behaviour, contiguous segments of annotated normal ECG beats in
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Fig. 4.12 ECG synthesis results on square-wave tachogram: (a) ECGsyn algorithm displays

artifàcts in amplitude and time-domain fidelity; (b) ECGfm algorithm eliminates these arti-

facts. R-times tn at the input are identified by dashed vertical lines.

sinus rhythm have been extracted tiom the Physionet QT database 11221168)[1]. It is remarked

that these selected recordings are not necessarily representative of universal HRV behaviour,

but do indeed provide a documented dataset that can be used for the evaluation of ECG synthe-

sis algorithms at the reconstruction of natural ECG behaviour. Figure A.l 3 shows a summary

of the event-intervals for one clf the datasets studied. Here, Fig. 4.1 3(a) shows the tachogram

of 100 consecutive beats drawn from the sel1,6273.puO dataset. The PR- and RT-intervals

for the same ECG is shown as sequenced by beat number in Fig. 4.13(b) and (c) respectively.

These event-interval features ale also collected into a scatterplot in Fig. 4.13(d) as a function

of RR-interval length. Note that the PR- and RT-intervals do not follow a linear relation-

ship with the RR-intervals. In fact, they exhibit very little variability (within the quantization

produced by the 250 Hz sampling rate of the ECG). Thus, as is shown more explicitly by com-

paring the ECG traces of consecutive intervals as shown in Fig. 4.14(a), it is observed that the

App. A: Details - Surrogate ECG Alg.
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Fig.4.13 The event-interval behaviour of 100 beats from a natural sinus rhythm (Physiobank

QT database record se116273.pu0). (a) RR-interval sequence; (b) PR-interval sequence; (c)

RT-interval sequence; (d) relative behaviour of intervals in samples in relationship to HRV
(RR-intervals).

HRV is concentrated into the interbeat interval (i.e., TP-interval). It is on this basis that HRV

has been analyzed in the context of a stochastically driven oscillator I l07l.

Consecutive beats from the synthesized time series ale presented in Fig.4.14 along with

the beats from the original recording they represent. Throughout the remainder of the chapter,

references will be made to the distinct panels in this figure. The impact of these distinctions

best appears when in direct compalison, therefore, they are all presented here against the

natural behaviour.

Now certain details in the ECGfm and ECgsyn integrator modules responsible for changes

in surogate ECG response will be demonstrated.
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Fig. 4.14 Evaluating time domain fidelity of IHR: The variability of 6 consecutive ECG

beats from (a) a natural ECG recording (Physiobank QT database record sell-6273.puO)
with HRV concentrated in the interbeat interval as a template, and equivalent (b) recon-

structed ECG using a TR variant [41], and (c) reconstructed ECG using an IHR fiom cubic-

Hermite FMPI l17c)1. Note the poor alignment of the R- (circles), P- (crosses), and T-waves

(ptusses) in panel (b) with the template, Alignment improves with the FMPI reconstruction

of panel (c).(Differences in gloss morphology are negligible since the morphology of the syn-

thetic models was not tuned to match panel (a)).
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^.3.2 
IntegratorModule

A.3.2.1 Low-Freqttenqt Baseline

The ECG signals from the QT:database analyzed through this work did not exhibit strong

low frequency baseline wander. On this basis, the zo(t) baseline wander term in Sec. A.2.2

defaults to zero. In ECGsyn, this term defaults to a non-zero sinusoid, which complicates

the comparison of the techniques. Thus for all the experiments that follow, the ECGsyn low-

frequency baseline was set to zero for consistency with ECGfm.

A.3.2.2 Anz¡tlitude Cr¡rrection

As presented in Fig. 9 of the original ECGsyn article [140, (2003)], the QRS-amplitude

in the ECGsyn model has a linear relationship to RR-interval. This strong linear coupling

of the amplitude to the RR-interval may seem acceptable under normal HRV conditions (as

[140] argues), but it is also responsible for the sffange amplitude effect in the square wave

response of Fig. 4.12. The origins of this effect is that a lower angular rate a(t) allows the

nonlinear dynamical system of (4.6) more time to respond to the repeliors, and thus leads to

greater deviation fiom the baseline. The ECGfm model compensates for this behaviour by

normalizing the repellor activation in (4.6) with the leading a(r) factor, which is not present

in the ECGsyn equations. This effectively makes the time integral (¿/¡r) of the repellor response

into an angle-integral (d0 = a(t)dt), and hence independent of instantaneous rate. To some

degree, this is likely on over-compensation, as is shown in the amplitude response of natural

ECG and the synthetic ECG methods of Fig. 4.1 5-4. 17.

Throughout these figures, panel (b) shows the scatterplot of the QRs-amplitude, defined

here as the (max,¡1nl x(¡)) - (min,n1¡¡ x(r)) where the small time window ö(R) includes all the

waves of the QRS-complex, in units of its mean as a function of the trailing RR-interval.

App. A: Details - Surrogate ECG Alg.
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Fig. 4.15 Natural QRS amplitude as tïnction of heart rate: (a) Example of ECG time series;

(b) QRS amplitude as a f'unction of the trailing RR-interval (in units of its mean). Note the

statistical spread, but no obvious trend; (c) Since QRS-complex occurs between RR-intervals,

QRS amplitude as a function of preceding and tr:ailing RR-intervals. Note that RR-intervals

are correlated, but amplitude has no obvious trend.

The data for Fig.4.15 is a recorded natural female adult ECG, while A.16 is the ECGsyn-

based surrogate ECG fiom the natural tachogram of the former figure. Likewise, 4.17 is

the ECGfm-based surrogate ECG fiom the same natural tachogrzrm. There is significantly

less variability in the synthesized signals, likely due to the elimination of baseline wander and

noise. The ECGsyn relationship, however, is strongly linear and not consistent with the natural

data. With the modification to the integrator module used in ECGfm, this linear relationship

is eliminated, ets shown in Fig. 4.17.

Panel (c) of these figures also shows the relationship to the preceding RR-interval. No
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Fig. 4.16 ECGsyn QRS amplitude as function of heart rate: (a) Example of time series;

(b) QRS amplitude as a function of the trailing RR-interval (in units of its mean). Note there is

significantly less statistical spread than Fig. A. 15, but there is an obvious linear trend; (c) QRS
amplitude as a function of preceding and trailing RR-intervals provides no extra infonnation.
Again, low-frequency baseline eliminated.

significant additional behaviour is observed, however, since the RR-intervals ate already nat-

urally correlated.

Last, note that by default in the ECGsyn algorithm, the entire time series output of the

nonlinear dynamical system is rescaled just before it is retumed by the algorithm. The goal of

this rescaling is to match the amplitude values of the time series to millivolt values expected

from a recorded ECG. In ECGfm this rescaling is turned off by default since the simulation of

fetal ECG (i) would have different arnplitudes altogether, and (ii) are indeterminate under ICA

anyway. Since the simulation method of this work requires that the signals be preprocessed
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Fig. 4.L7 ECGfm QRS amplitude as function of heart rate: (a) Example of time series;

(b) QRS amplitude as a function of the trailing RR-interval (in units of its mean). Note there

is significantly less statistical spread than Fi-e.4.15, but the linear trend is removed; (c) QRS
amplitude as a function of preceding and trailing RR-intervals provides no extra information.

Again, low-frequency baseline eliminated.

and also postprocessed to a standard variance, the natural range of values produced by the

dynamical system are not a concern.

A.3.2.3 Transient Correction
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As noted in Sec. A.2.2 and Sec. A.2.4, the geometry of the nonlinear dynamical system

limit cycle is dependent on the mean heart rate of the driving a,,(t) signal. This makes any

fixed initial condition to the system unable to be on the attractor in all conditions. Thus the

ECGfm algorithm uses a "transient control" protocol, where a preliminary ECG transient is
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synthesized with a constant tachogram (i.e., a repeated single-beat lHR-profile) and whose

sole pu¡pose is to provide an estimate for an initial condition on the ECGfm attractor for the

given heart rate.

This transient control protocol is novel to the ECGfm algorithm, and is not present in

the ECGsyn algorithm integrator module. Since the ECGsyn algorithm used a fixed initial

condition, it really only is suitable for ECG generation with mean heart rates near 60 bpm.

Very obvious transient behaviour is observed when ECGsyn is applied to fetal rates.
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4.3.3 IHR-processingand RR-IntervalFidelity

As mentioned in Sec. A.2.3, the fundamental purpose of the IHR-processing module is to

generate a continuous IHR time series that can drive the integrator module in such a way as

to be consistent with any discrete event-interval observations prescribed at the input. Thus a

sulogate ECG can be synthesized to fit (i) natural HRV and (ii) natural event-intervals. To

achieve this end, the FMPI technique is userJ to define rr,r(t).

This approach is distinct from the ECGsyn algorithm which is focused on preserving spec-

tral, not time domain, HRV information. As a result, the properties of HRV in surrogate ECGs

by ECGsyn and ECGfm can be drastically different. In 1179, Potter (2008)l and [178, Potter

(2008)1, alguments are presented that identify the improved time domain fidelity that FMPI

provides to the surïogate ECG process. The following sections present the same conclusions

with mostly complementary material.

A.3.3.1 Tachogram Re,sampling and Time-Dontain Fidelity of RR-lntervals

As in Sec. A.7.3, consider the set of R-wave timings /,, of an ECG recording, n > 0. Letting

An(n) - tn - f,,-¡, the ECG's tachogram is then the bounded sequence

App. A: Details - Surrogate ECG AIg.

By convention l52ll24l[ 50], (A.23) is also extended to the similar expression

(t,,,Ln(n));n>1

(n,Lp(n));n>\

which represents a non-uniformly sampled time series. Tachogram rcsampling (TR) is the

technique of applying interpolation methods to (4.24) to get a signal T(rt), from which IHR is

then defined as

u(t¡ =
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The earliest examples of TR consist of a piecewise-constant resampling l52ll24l, whereby

the rate is assumed constant within the event-interval. This is identical to the SCT defined

on page A-12. Linear and higher-order resampling methods are just as simple to apply, but

their final form is less elegant analytically. Usualiy, the higher-order methods are preferred

[150][138], since it is physiologically unlikely thatli(t) be discontinuous. The relative mer-

its and limitations of the various interpolation approaches for HRV resampling have been

addressed by many authors, but mostly in the context of power spectrum analysis. Here, how-

ever, the discussion is limited to the cubic spline interpolation that is used by default in the

ecgsyn24.m algorithrn 141l to be tested.

As mentioned earlier, tachogram resampling ignores the observation made by Han et al.

[76] that differentiation and interpolation are not commutable operators . While this may be

of smaller significance when limited to spectral analysis, it was observed in the test sequence

of Fig. A.I2that time-domain fidelity was an issue, and will now be shown to have significant

impact when using real ECG data.

By applying the ecgsyn? .m algorithm to the extracted real tachogram of Fig. A.i3(a), a

synthetic ECG is generated at250Hzfor testing against the original ECG. (Note that the mor-

phological elements of the model were not tuned during synthesis, and, therefore, differences

in ECG rnorphology are considered inconsequential - only timings of the events are signif-

icant.) Event-intervals of the synthesized time series are then extracted from the (internal)

peak markers identified by the annotating algorithm in Sec. A.2.7. (Note Since the synthe-

sized ECG is annotated differently than the natural ECG, some nominal systematic mismatch

must be tolerated.)

The original event-intervals of the natural ECG template are compared to those of the

ECGsyn reconstrlrction in Fig. A.l4(b) and Fig. 4.18. The mismatch between the 6 R-waves

App. A: Details - Surrogate ECG Alg.
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Fig. 4.18 Errors in reconstructed R-wave positions for 100 natural beats (Physiobank QT
database record sel16273.pu0): (a) As a function of beat number, the R-wave offset in the

ecgsyîz4..m reconstructed time series (squares) and ECGfm (stars); (b) Frequency of R-wave

offsets for the ecgsyn? . m algorithm, and (c) the modified algorithm.

(circles) in the former with the original ECG in Fig.4.14(a) demonstrates the poor time do-

main fidelity of the ecgsyn24 . m algorithm. A global analysis over the entire reconstruction

of 100 beats is further illustrated in Fig. 4.1 8(a) and (b). Here the offset of the reconstructed

R-wave to the original is shown as a function of beat number (black squares). It is observed

that the output R-waves are systematically resolved prematurely (i.e.., negative offset), and

is not simply an accumulation of errors, since the worst offsets occur before beat 30 and

then improves thereafter. In othel experiments, R-waves were premature by up to 80 ms

(se}16795.puO, not shown). A common consequence of the poor time domain fidelity is

that, for long input sequences, more beats are synthesized at the output than is actually pre-

scribed at the input.

The magnitude of this systernatic artifàct, however. is not consistent and depends on the

tachogram input. The practical eft-ect of resampling on the tachogram data does not degrade

time-domain fidelity unifbrmìy. In the experiments shown in Fig.A.l9 (using QT-database

(b)
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Fig. 4.L9 Enors in reconstructed R-wave positions for 100 natural beats (Physiobank QT
database record seLL6272. puO): (a) As a function of beat number, the R-wave offset in the

ecgsyn24.m reconsffucted time series (squares) and ECGfm (stars); (b) Frequency of R-wave

oft'sets for the ecgsynz4 . m algorithm, and (c) the modifìed algorithm.

record t6272.puO), the temporal position of the R-waves were well preserved, in contrast to

the previous figures (using QT-database record 1,6273.puO). For the data shown, all R-waves

in the synthesized ECG were within one sample of the template ECG used fbr input.

It is true that the original ECGsyn algorithm was focused on preserving the spectral be-

haviour of a tachogram, and not its time domain features, These current observations have

shown, in fàct, that the extended ECGsyn algorithm (which accepts a tachogram input with

well-defined time domain features) does not preserve the time domain information of the in-

put tachogram at the output, even though its HRV may be spectrally equivalent. In fact, it

is observed in the following that the RR-interval invariance of the ecgsyn24.m algorithm

performed best when its resulting resampled r,.r(r) time series were close to the FMPI result.

Note that the ecgsyn24.m algorithm applies two processes to the tachogram input to de-

fine the IHR signal. First, cubic-spline TR is used, and, second, an SCT extension is resolved.

Thus the fìnal IHR time series is a step function, but its values are not determined via a process

20
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Fig.4.20 Details of IHR series: Example of good ecgsyn24.m behaviour; (a) Piecewise-

constant IHR time series (dashed) derived from spline-resampled tachogram (solid curve).

Tachogram is identified by stems at R-times tn and amplitude A¡(n). Note how the piecewise-

constant IHR series closely follows the SCT. This supports the global performance estab-

lished in Fig, A. l9; (b) Continuous IHR time series (solid) derived from Hermite FMPI of the

tachogram. Note how it is not an interpolation of the tachogram itself. Tachogram and SCT

are identified as in panel (a).

equivalent to FMPI. Note that many different resampling interpolations are made available in

the responsible algorithm interp-RR.m of the suppofting ECGsyn library, but cubic-splíne

interpolation is the default. Here, the spline interpolation between the tachogram points de-

fines the "instantaneous RR" function, Z(r), which is uniformly sampled. From the resampled

tachogram, an SCT is then reconstructed (i.e., constant values from sample points are extended

throughout the RR-interval). The transition points are determined by a rounding process and

thus may be different from the points of the tachogram itself.

To examine the inner workings of the ECGsyn IHR-process, a visualization of the relevant

IHR signals ale presented in Fig. 4.20. The discrete information of the tachogram appears

there as a stem series at the times r,,, with arnplitudes 2n/An(n). The SCT defined from the

75
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80 85 90

ïime [sì
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tachogram (4.1 l) appears as the step function (grey solid). The solid curve in Fig. 4.20(a) in-

terpolating through the tachogram stemplot is the cubic-spline TR. From this TR a second SCT

(black dashed) is derived as the ECGsyn IHR function. Here, the clashed SCT effectively is in-

distinguishable from the first. The reader should recall that a non-resampled SCT is equivalent

to a basic piecewise-linear FMPI and thus has good time domain f,delity. This correspondence

between the FMPI-based SCT and the TR-based SCT for this tachogram identifìes a reason

for the RR-interval fidelity of Fig. 4.19.

Panel (b) of Fig.4.20 shows how distinct the Hermite FMPI is by comparison. Note

how on every SCT segment, the Hermite-based curve does not interpolate the tachogram, but

instead crosses each segment. According to construction, the area under the smooth curve of

each segment is equal to the area of the SCT rectangle. That is, the area in excess of the SCT

is equal to the area in deficiency, maintaining a unit area constraint tbr every interval.

For comparison, the IHR functions for the dataset with poor fidelity, Fig. A. 18, is now

shown in Fig. A.21. Here, the tachogram stem series and SCT (grey solid) are presented in

all panels, as before. Panel (a) shows a cubic-spline TR (black solid) and its secondary SCT

(black dashed). As can be easily seen, the rounding introcluced by the algorithm changes the

values of the secondary SCT from the one consistent with the tachogram. In particular, the

area under r,.r(t) is not preserved over each interval. Panel (b), which uses linear TR, provides

no improvement. Panel (c) shows the cubic-Hermite FMPI, and as with Fig. 4.20(b), the IHR

time series crosses the SCT, but still preserves the area of every interval.

This conservation of area is critical, since the tachogram acts as an interpolation constraint

on 0(r). Upon difi'erentiation, this becomes an integral constraint on ro(r). Recall that the

SCT assumes the "average rate" throughout the entire interval. According to the mean value

theorem, the property of an FMPI solution is that this average rate must be attained somewhere

App. A: Details - Surrogate ECG Alg.

M. Potter

PHD-App-Surr:.ECC
- A-4t - September 15,2008

Velsion 3.0.8



FEATURE CONVERGENCE UNDER ICA: FECG App. A: Details - Surrogate ECG AIg.

_1

o
*lE
@
!

45
Time [s]

Fig. 4.21 Details of IHR series: Example of poor ecgsyn24 . m behaviour. Tachogram (identí-

fied by stems at R-times f, and amplitude Ln(n)) and SCT (grey solid) are the same in all pan-

els; (a) Piecewise-constant IHR time series (dashed) derivecl fiom spline-resampled tachogram
(solid curve). Note that the dashed IHR series deviates fiom the SCT. This identifies the source

of the poor global performance established in Fig. A.l8; (b) Piecewise-constant IHR time se-

ries (dashed) derived tiom linearly-resampled tachogram (solid curve). Note the deviation
from the SCT persists. This identifies the limited effect of changing resampling algorithms.
(c) Continuous IHR time series (solid) derived fiom Hermite FMPI of the tachogram. Note,
as before, how it is not an interpolation of the tachogram itself. Evaluating this and previous
figures, it is concluded that resampling is to be avoided. FMPI is the best approach to IHR
definition.
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within that interval. That is, an FMPI solution of any order must cross the SCT at least

once per SCT interval. This is the important distinction between FMPI and TR. Tachogram

resampling assumes this point is the end point qf' the interval in all cases, when in fact it

might not be. Note that the SCT is both an FMPI and a TR because it applies the mean

slope to all points, including the endpoints, of the interval. At higher orders, however, the

endpoint assumption of the TR forces (i) the IHR signal to cross the SCT only once, and

(ii) consequently, it violates the area constraint. Now, a TR could in fact match the SCT

constraint if the points of "irregular sampling" were taken to be the crossing points of an

FMPI with the SCT. These are the very points that satisfy the mean value theorem. These

points, however, are not available a priori, and thus TR uses the endpoints and loses time

domain fidelity,

Now the time domain benefit of FMPI over the original ECGsyn techniques is demon-

strated for a tachogram constraint, and thus, HRV. In the fbllowing, the differences in time

domain fidelity on the smaller event-intervals are analyzed.

App. A: Details - Surrogate ECG Alg.
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4.3.4 IHR-processing and Other Event-Interval Fidelity

A.3.4.1 Linear Artifacts in Smaller Event-lntervals

The second artifact that can be improved by FMPI is the time-domain fidelity of the

smaller ECG waves. In comparison to the natural events in Fig.A.l4(a), it is quite clear

from Fig. A.l4(b) that ECGsyn synthesizes the P-waves (crosses) and T-waves (plusses) with

a significantly larger spread.

Note that clinical analysis of ECG event-intervals will focus on elements such as the QT-

interval and the PR-isoelectric segment [69]. For simplicity purposes, however the "retum to

baseline" event is forsaken for the maxima of the waves. By this, then, the PR-interval will

mean the interval length between the fiducial maxima of the P-wave to the fiducial maxima of

the R-wave, and similarly, for the RT:-, RR-, or PP-intervals.

It is well-known that the time taken for ventricular repolafization, expressed by the QT-

interval, is affected by the mean heart rate, and attempts to compensate for this behaviour

using Bazett's formula or others ! 91 have been proposed. These approaches oversimplify

the HRV connection to the QT-interval on a bearby-beat basis, as conìmented in tl9lt50lt4l.

Considering this, the event-interval fidelity of synthetic ECGs should represent the variety

of complex behaviours that have been observed in natural ECGs. This would include the

behaviours in Fig. A.l 3.

Similar to that of Fig. A.1 3, an analysis of the event-intervals synthesized by ECGsyn from

the tachogram of Fig. A. l3(a) is shown in Fig. A.22. Note the linear relationship between the

smaller event interuals and the RR-intervals throughout the figure.

Specifically, the linear relationship in Fig. 4.22(d) is not unexpected, since it was briefly

described in the original paper [140] in the context of the QT-interval. However, this was

considered acceptable following the leasoning of QT-correction. In fact, the analysis presented

App. A: Details - Surrogate ECG Alg.
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Fig. A,.22 The event-interval behaviour of 100 beats synthesized by ECGsyn from the natu-
ral t¿ìchogram sel16273.puO. (a) RR-interval sequence output (circles) and input (dots); (b)

PR-interval sequence; (c) RT-interual sequence; (d) event-interval relationship to HRV: output
ECG RR-intervals (circles), Rl-intervals (squares), and PR-interv¿Lls (crosses), whereas the

event-intervals of the input dataset are marked by dots. There is an artifactual linear relation-
ship at the output.

here demonstrates that it should be considered as an artifact of the modelling process, since

the original ECG may exhibit complex event-interval behaviours such as uncorrelated QT-

variability, or hysteresis. The behaviour of these artifacts clearly indicates that the ECGsyn

model will not correctly transcribe the time domain behaviour of the input ECG at the output.

Experiments with the same dataset above have demonstrated that FMPI on the tachogram,

by itself, does not remedy this problem. PR- and RT- intervals appear linearly related to heart

rate, even with a Hermite-based FMPI scheme. However, this is a simple matter of insufficient

data. By including PR- and RT-intervals at the input, as in (4.21), the FMPI-based IHR signal

can preserue these shorter event-intervals.

The extra constraints provided by the smaller intervals greatly improves the dynamics of

the output event-intervals, as demonstrated by Fig. A.23. A visualization of the improved time

series behaviour of the final synthesized surrogate ECG is shown in Fig. A.l4(c), matching
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Fig. 4.23 The event-interval behaviour of 100 beats synthesized by surrogate ECG from the

natual tachogram se11-6273.puO. (a) RR-intervalsequence output (circles) and input (dots);
(b) PR-interval sequence; (c) RT-interval sequence; (d) event-interval relationship to HRV:
output ECG RR-intervals (circles), RT-intervals (squares), and PR-intervals (crosses), whereas

the event-intervals of the input dataset are marked by dots. By including smaller event-interval
information in FMPI, there is a substantial improvement in interval fidelity.

better the natural behaviour displayed ìn panel (a).

Furthermore, it is interesting to see the effect of the smaller event-intervals on the IHR time

series. As shown in Fig. A.24, the IHR becomes, itself cyclostationary. There is a parametric

artifact in the peaks and valleys, though, because the angular values for the ECGfm model,

the 0¡, are preassigned and not data-driven. Thus the IHR between the P- and R-waves will be

excessively high if lápl is too lalge. (This was not a concern with RR-intervals, because these

must have lengthZn.)

The conclusion to be drawn from these expeliments is that the ECGfm algorithrn has im-

proved the dynamical fidelity of the synthesized ECG as compared to the ECGsyn algorithm.

The time domain event-interval behaviour of the ECGfmÆMPI model matches the original

data without introducing linear artifacts to the interval relationships.
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0.7 u.
20

Fig. 4,.24 Details of IHR series: Example of enhanced Hermite interpolation; Hermite (thick
continuous curve) and linear (thick semicontinuous curve) FMPI time series from natural
tachogram (as in Fig. A.2l (b)). For comparison, the IHR resulting from inclusion of PR- and
RT-intervals with default angular parameters 9¡ is shown (thin curve). Rl: and TR-intervals are

typically concave up, while PR-intervals are typically concave down. Here, the IHR becomes
cyclostationary, but the magnitude of the extrema are excessively influenced by the choice of
0¡.
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.4.,4 ECGfm: Important Code

Though all thesis code is available in electronic form at www. ee . umani toba . ca/ -kinsner /
projects/, Listing I contains the main ECGfm algorithm implemented as a Matlab func-

tion.

Time [s]

1

r function Is,timevector,ihr,Rpeaks] = ECGfm(Rsequence,sfecg,sfint,ti,ai.t
, bi , scaling , method , ihrparam , flag)

% ECGfn: Two-step process to produce a syntåetic ECG fron beat annotations
% s = ECGfn - Use stoc¡¡astic HRy to create Rseque¡ce (]YC?S03 default)
% or s = ECGfn(Rvector) - Fit given vector of R-narkers fin secondsJ
% or s = ECGfn(struct) - Fit given struct of beat annotations lin seconds]

Listing 1 (ECGfm.rn) The Hatlab code of the ECGfrn sunogate ECG algorithm.
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6%

%

tr%

%

ts%

zt%

%

26%
h

36%

ECGfn gives the foLLowing outputs: [s, t,ihr,peaks] = EcGÍn(...)
s; ECG tines series
t: tinepoints of ECG samples
ih¡: instantaneous åeart ¡ate time series
peaks.' ECGsyn $lave category of sanpl,e;

IP,Q,R, S,1] = [1,2,3,4,5], ot]¡erøise 0

r4åere st¡uct åas fields'R' o¡'RR', ('PR' and'RT' optionaT)

EcGfm takes the folfowing inputs:
... = ECGfn([Rin],Isfecs],Isfint],ttil,tail, [bi],Iscalins],[nethod],Iihrparan],U
ihrflag I )

Tl¡ese are (default paraneters values shown in []):
Rjn: vector of input R-¡na¡kers [defauTt ECGSriV.m sy¡thesisJ jn units of tine, or

struct with fields'R'or'RR'('PR'and'RT'optional) in unjts of tine
sfecg: ECG sampling frequency [256 Hertz]
sfint: fnte¡nal sanpTing frequency [2'!sfecg]

Order of extrena.' - see ¡íCTSO3 [P Q R S ÎJ
ti = angles of extrena - see llCTS03 [-70 -15 0 15 ]00J degrees
ai = z-position of extrena - see llCTS03 [1.2 -5 30 -7.5 0.75]
bi = Gaussian width of peaks - see flCTSO3 [0.25 0.f 0.1 0.1 0.4]
scaling.'use default EcGsyÀI.n rescaling [0 (none)]
nethod: interpolation nethod identifier {'linear','hernite' } [hernite]
ihrparan: if nethod == Tinear:

ihrparan = offset for Tinear interpoTations jn unjts of pi (i.e., I
beth'een t and 2) [0 rrlnterp]

: if nethod == hernite: >> PR i¡tervals (sca.Iar or sequence) in units of !
tine [0J

ihrparan = PR jntervaTs (scafar oÍ vector) in units of tine [0]
ihrfTag: prevents numerical integration (ihr only) if set to 'ih¡' t"l

App. A: Detaíls - Surrogate ECG AIg.

NOTE: ECGfn is best used in conjunction with szt.n and structanno.m functions
... = ECGfn(s2t(structanno(.. ,)), Isfecg])

see sZt, structanno

4t%

^
%

%

Copyright (c) 2008 by Hichael Potter:, A17 Rights Reserved
See ¡f. Potter and W. Kjnsner, "Inproved event-inte.rva.l reconstruction in synthetic !

e-1 ectroca¡dio gr ans, "

IEEE Trans Biomed Eng, (accepted llay 21, 2008) .

Contact Ì1. Potter (n.potter@ieee.org)

llodified fron the original ECGSfil.n algorit¡¡m...
Copyright (c) 2003 by Patrick llcsharry & Gari Clifford, A17 Rights Reserved
See IEEE Transactions On BionedicaT Engineering, 50(3), 289-294, Ilarch 20A3.

Contact P. llcSharry (patrick@ncsharry.net) or G. Clifford (gari@mjt.edu)

ecgsyn.n and derivsecgsy¡base.m are free)y avaiLbie fron Physionet -
http://wwtÌ.physionet.org/ - please report any bugs to the autàors above.
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5t%
%

5(r %

%

This program is free software; you can redistribute it and/or nodìfy
it under the ternrs of the GNU General Public License as published by

the Free Software Foundation; ejtåe¡ versio¡ 2 of the License, or
(at your option) any Tater versjon.

This progran is distributed in the hope that it wilL be usefuT,
but ç,IITHOUT ANY WARRANTy; øit¡out even the inplied warranty of
MERCHANTABTLITY or F-ITffI'SS FOR A PARTLCULAR PURPOSE. See t¡e
GNU GeneraL Public License for nore detai-is.

You shouLd have received a copy of the 6lVU Gene¡al PubTic License
along with this progran; if not, write to the Free Softstare
Foundation, Inc., 59 TenpTe Place, suite 330, Boston, llA 02111-1307 I/sÁ

%%%%%%%%%%%%%%% ( 1 ) AÍgunent proc es sing
% set parameter defauft values
RRsrc = " i %defauTt source is a.rgun¡ent

if nargin < L,
RRsrc = 'l'fCTS-defaul-t ' ; %if no Rsequence argunent, use ¡fcrs spectral nodeT

Rsequence = [];
elseif isenpty(Rsequence) I I isscalar(Rsequence) ,

if -isstruct (Rsequence) ,

RRsrc = 'I{CTS-default'; %if Rsequence argunent enpty or integer, use I
¡ICIS spectraf nodel

end
end
if nargin < 2 I I isenpty(sfecg),

sfecg = 256; %deîault sanpTing frequency
end
if nargin < 3 ll isempty(sfint),

sfint = sfecg'!2i %default NDII-sanpling lrequency
end
if nargin < 4 I I isempty(ti),

%PQRST
ti = [-70 -15 0 ].5 100] ; %defauLt ansTes of x-waves

end
if nargin < 5 ll isempty(ai), %zpositionof attÍactot

%PQRST
ai = lt.2 -5 30 -7,5 0.75] i %defauTt anplitude of x-llave point-attractors

end
if nargin <6 I I isempty(bi), % Gaussian width of eacå attractor

%PQRSÎ
bi = [0.25 0.1 0.1 0.1 0.4]; %default ralToff (width) of x-wave point-!

at tractors
end
if nargin <7 I I isempty(scaling),

SCALE = 0; %derauTt ECG scaling is ¡one

'il

App. A: Detaíls - Surrogate ECG Alg.

8l

M. Potter

PHD-App-Surr:ECG
- A-49 - September 15, 2008

Version 3.0.8



FEATURE CONVERGENCE UNDER ICA: FECG

e6 else,
SCALE - scaling;

end
if nargin <8 I I isempty(method),

method='hermite ' ;

lol end
if nargin <9 I I isenpty(ihrparam),

ihrparam=[];
end
if nargin <L0

flag -' ' ;

end

%deternine RR-sequence source / generate if necessary
if isenpty(RRsrc),

RRsrc - 'passed';
elseif strcmp (RRsrc , 'MCTS-default') ,

%IlcSharry et a-Ì. ECGSyÀI. n defaul t paramete¡s
flo = 0.1; fhi = 0.25; flostd = 0.01; fhistd = 0.01; lfhfratio =.1

0.5; samPfreqrr = 1;
%hrnean = 60; h¡std = 1; N=256; %ECGSYN.n default
hrmean = 68; hrstd = 6; %our nodification and beTow

if Rsequence > 0, %i.e., positive sca.lar
N = Rsequence;

else
N = 60 i %our defauLt

end
trr = 1,/sampfreqrr; tstep = l/ srecg; rrmean = (60,/hrmean) ; Nrr = J

2 ^ 
( ceil (Iog2 (N'r rrmean/trr) ) ) ;

RR = RRprocessMCTS(fIo, fhi, flostd, fhistd, lfhfratio, hrmean, .f

hrstd, sampfreqrr , Nrr) ;

Rsequence = cunsum(RR) i %convert jnte¡beat-jnterva-ls to beat-tinepoints
end

App. A: Details - Surrogate ECG AIg.

%some verbose. . .

fid = 1;
fprintf(fid,'\nECGsurrogate.m. .. .\n') ; %

fprintf(fid, 'Using-%s-RR-sequence\n' , RRsrc) ; %

%deternine ihrparan purpose
if strcmp (method , 'hermite ') ,

.g PRints = floor(abs(ihrparani'sfecg));
PRints = ihrparam; %express in

136 elseif strcnp(method, 'Iinear') ,

theta0 = ihrparam; %units of pi
end

%deal r¡ith vector aÍgunent

M. Potter
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rr if -isstruct(Rsequence),
Rsequence.R = Rsequence;

end

%deal with njssing R-sequence fie-ld
r.16 if -isfield(Rsequencê,'R') && isfield(Rsequence,'RR')

Rsequence.R = [0; makeco](cunsum(Rsequence.RR))l ;

end

%%%%%%%%%%%%%%% ( 2 ) Pr e pr o cessÍn g

rsr Rsequence . R = makecol (Rsequence . R) ; %needs vector
N = length(Rsequence.R); %needs vecror
RR = diff(Rsequence.R) i %needs vector
rrmean = nean(RR);
if rrmean > 10,

156

.)

-)

warning ('Rsequence-input-should-be-in-units-of-time. . . not-sampl-es'J
);

disp (' System-is-in-pause . . . -use-<C>-C-to-exit, -o¡-press-any-key-toJ
-continue') ;

pause
end
ti = ti'1pi/180;

rcr %ti(l) %debus

App. A: Details - Surrogate ECG AlS.

% adjust NDl,l-exttena pararneters for nean åeart ¡ate
hrmean = 60/rrmean;
hrfact = sqrt (hrmean/60) ;

16ó hrfact 2 = sqrt (hrf act ) ;

bi = hrfact'!bi ;

ti = lhrfact2 hrfact t hrfact hrfact2l.'.ti;
%ti (L) %debus

% convert X-wave angTes to radians

l7r % check t¡at sfint is an integer nultiple of sfecg
q = round(sfint/sfecg) ;

qd = sfint/sfecg;
ifq-=qd

error ( [' Internal - sampling- frequency- ( sfint ) -must -be-an- integer-J
multiple-' . . .

'of-the-ECG-sampJ.ing-frequency-(sfecg).-Your-current-choices-are:-'
+

176

-)

'sfecg-=-' int2str (sfecg) '-and-sfint-=-' int2str (sfint) ' . 'l ) ;

end

%nore verbose
nrr fprintf(fid,' Approximate-number-of-heart-beats : -%d\n',N) ;

fprintf(fid, 'RR- interval-mean: -%d-s\n' , rrmean) ;

fprintf(fid,' Heart-rate-mean : -%d-bpm\n', hrnean) ;
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rt(, %%%%%%%%%%%%%%%(3) fffR processing using RR¡todu]e.' stage I
%timevectoÍ jnte¡va-Z begins at fjrst R-peak
dt = I/sfint; Nt - floor((Rsequence.R(end)-Rsequence.R(1))/dt)i %needs I

+ vectoÍ
timevector = [0: dt: Nt':-dt] ; %tine vector

t9t %some verbose. . .

fprintf ( fid,' Us ing-%s-IHR- interpol at ion\n', method) ;

disp(' IHR-being-interpolated. . .' ) ;

%instantaneous rÍ and ihr
re6 switch method,

case 'linear' ,

if isempty(theta0),
thetaO = 0;

end
2r)r fprintf(fid, 'Linear-IHR-offset : -%d-pi-radians\n' , theta0) ;

if theta0==0,
Iihr, thetadotinv,Rpeaks] = rrlnterp(Rsequence.R, timevectorJ

r );
elseif thetaO,

Iihr, thetadotinv,Rpeaks] = Offsetlnterp(Rsequence.R,J
+ timevector , theta0) ;

2t)6 end
case 'hernite' ,

%PRints = floor(PRints*sfeca): %conveît ti¡ne into sarrrples

Iihr , thetadotinv , Rpeaks] = Hermitelnterp (Rsequence , timevector , J
+ PRints , ti) ;

end
2rr rrn = 30./ihr i %derivecgsy¡ uses units of sec/pi

disp(' . . . . .IHR-interpolation-done.') ;

if strcnp('ihr' ,fIag) , %on)y fHR required, ignore integrating ECG

%downsanpTe fron sfint to sfecg
216 % --problen with downsanpTing js that Rpeaks is aTready determined at sÍint

%timevectoÍ : tinevector(1: q: end) ;

%ihr = ihr(l:q:end); -
%conplete rest of a¡gunents

s= [] ; %ecs

2zt fprintf(fid , 'ECGsurrogate . m-done . \n') ;

return %exit
end

App. A: Details - Surrogate ECG AIg

%nore verbose, . .

226 fprintf(fid,' Surrogate,ECG-sampled-at-%d-Hz\n', sfecg) ;

fprintf(fid,' Internal-sampling-frequency : -%g\n', sfint) ;

fprintf(fid,' ------P--Q--R--S--T\n' ) ;
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fprintf (fid, 'ti-=- l%L.4f.-%1.4f -%7.4f -%L.4f.-%l.4fl -radians\n' , ti (1) , ti¿
(2),ti(3),ti (4),ti(5)) ;

fprintf(fid,'ai-=-l%g-%g-%g-%g-%gl\n',ai(1),ai(2),ai(3),ai(4),ai(5));
fprintf (fid, 'bi-=-l%g-%g-%g-%S-%S)\n' ,bi (l-) ,bi (2) ,bi (3) ,bi (4) ,bi (5)) ;

%%%%%%%%%%%%%%%(4) ECG Modulation using NDll-nodule: stage 2

TRANSïENTCONTROL = 1; %flag for switcåing pre-convergence on/oÍf
AMPLITUDECORRECTION = L;%nonzeÍo flag turns on HR anpTitude conpensation
if AMPLITUDECORRECTION,

disp('/rìkì'rrktrUsing-amplitude-correction-in-ECGsyn-dynamics I Itr)t:?ìt+< ') '

acorr = 1;
end
if TRANSIENTCONTROL,

% integrate systen using fourtå order Runge-Kutta on

% repeated fi¡st beat for convergence
fprintf ( fid,' Int e grat ing -dynami c al- - sy st em- for- trans i ent - control J

...\n');
x0 = [1,0,0.0a];
Nbeg = 1' Nend = Rpeaks (find(Rpeaks)1, 1, 'first') ) -1 ; %these points J

nark first beat
Nrpt = 20; %number of tines to repeat beat
%now integrate t¡js constant beat nuTtip.le times

IT,X0] = ode45(@derivsecgsynbase, [0 (Nrpt'rNend-1)/sfint],x0, [],J
repmat(rrn(Nbeg:Nend),L,Nrpt), sfint,ti, ai,bi, acorr) ;

% IT,X0] = ode45(Gderivsecgsynbase,[0 20-dt],x0,[],repnat(rrn(1),20,"sfint,1),sfint,J
ti , ai , bi , acorr) ;

fprintf(fid,' . . . . .Transient-control-done.\n') ;

x0 = [1,0,max(X0(end-fix(length(X0) /4) :end, 3))] ;

% xt = Ll,0,nax(X0(end-2*sfint:end,3))l ;

else
x0 = [1 ,0 ,0.04] ; %defafut inirial condition (EcGsyJv.m)

end

241
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:51

% integrate systen usìng fourth order Sunge-Kutta
fprintf ( fid,' Inte grat ing-dynamical- system .

Itimevector , X0l = ode45 (@derivsecgsynbase ,

ti , ai , bi , acorr) ;

fprintf(fid,' . . . . . Dynamical-system-integration-done.\n') ;

261 %%%%%%%%%%%%%%% ( 5 ) Postprocessj¡9
% downsanpTe to required sfecA
X = X0(j.:q:end,:);
timevector = timevector (1: q: end) ;

ihr = ihr(1:q:end);

% extract R-peaks tÍmes
ipeaks = detectpeaks(X, ti, sfecg);
Rpeaks = ipeaks i %find(ipeaks==3); %tenp! do I nanr struct, vector,
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zit % OPTIONALT Sca-iing of output signa-l
if SCALE,
% ScaTe signal to Lie betneen -0.4 and 1.2 nv (Eccsfil.n

di sp ( "' r' *''t ?t EcG- output -us ing - MCTS - s c a1 ing
z = X(:,3);

zi6 zmin = nin(z) ;

zmax = max(z);
Zrange = ZmaX - Zmin;
z = (z - zmin)-* (1 . 6) / zrange -0.4;

else ,

2sr z = X(: ,3) ;

end

s = Z;
fprintf(fíd,' ECGsurrogate.m-done.\n' ) ;

return %--end of nain ¡outi¡e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%v"%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%16%%%

291 %SUBFUNCTÏONS

App. A: Detaíls - Sun'ogate ECG AIg.

%%%%% %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function Iihr , thetadotinv, Rpeaks] = rrlnterp (Rtimes , time) ;

%ny fix of IICTS code

Rtimes = Rtimes -Rtimes (1) ;

thetadotinv2pi = diff([Rtimes]) ;

%create ti¡ne se¡ies -- "tdi" = "theta-dot-inv"
Itdi , Rpeaks] = boxcar(thetadotinv2pi , Rtimes (2: end) , time) ;

Rpeaks = [1, Rpeaks];
thetadotinv = thetadotinv2pi/2;
ihr = 60. /tdi ;

return

deÍau7t)
| | /:**:lì'. t I 'J]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function lihr , thetadotinv , Rpeaksl = Offsetlnterp (Rtimes , time , theta0) ;

%theta9 is in unjts of pi (nunbe¡ between 0 and 2)

if nargin <3,
thetao - 1. 5;

end
N = Iength(Rtimes);
rr1 = makecol (zeros (1 , N+1") ) ;

Rtimes = [0; Rtimes];
rÍ0 = diff(Rtimes);
%initiaTize offset ¡natrix probTen

if thetao .= 1-,

a\ = Z-theta0;
a2 = thetaO;
b - [0; makecol (rr0) ] ;

316
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else ,

a1 = thetaO;
a2 = Z-theta0;
b - l0 ; flipud (makecol çrr0) ) J ;

end
A = diag(a2i'ones(size(rr0)), -1) + diag(a1'1-ones(size(rrl,)),0) ;

el = [1; zeros(N,1)];
%offset natrix solution
temp - aL"(A\el);
%tenp = (A\eI);
rrL = A\b;
free = mean(rr0)/2; %nax likeLihood assunption
if thetaO .= L,

rrL = rrL + free'itemp;
else ,

rr1 = flipud(rr1 + free*temp);
end

136 thetadotinv = rr1;
Tntheta0 = Rtimes + thetaO'rrrL;

%create tine se¡ies -- "tdipi " = "theta -dot-'nv*pi"
if nin(thetadotinv) ) 0, %on7y if jts a true soLution

3rr Itdipi , Disc , Rpeaks] = boxcar (thetadotinv , Tntheta0 , time , Rtímes) ;

ihr = 30. /tdipi ;

Rpeaks = [1; Rpeaks];
e1 se

tdiPi = [] ;

146 Disc=[];
ihr =[];
RPeaks = [] ;

end

l5r f eturn

App. A: Details - Sttrrogate ECG Alg.

Ã ññññhññññññ^ñññ^ññññ^ñ/oñ^/oÃÃñÃññhÃñh^ñhñmññññhñãññÃhñÃñmmãññhhhhñãññãmñññhhññhññññ

function Iihr , thetadotínv , Rpeaks] = Hermitelnterp (Rtimes , time , PRints , ü

thetain);
if -isempty(PRints),

Rtines = Rtimes.R-Rtimes.R(1) ;

Ptheta = thetain(I)/pii %scale ¡adians into units of pi radia¡s (<0)

Iternp,Rpeaks] = boxcar(diff([makeco](Rtimes)l),Rtimes, time) ;

Rpeaks = [1; makecol(Rpeaks)]; %returns peaks if ihr onJy ' is set
if isscalar(PRints)

if PRints==0,
fprintf(' . . . ignoring-PR-interval\n' ) ;

%define R-wave points
fnterptimes = [makecol(Rtimes)]; %Rpeak tine positions in units J

of tine
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166

Interpthetas = 2" [0 : length ( Interptines) - 1] ; %Rpeak theta J

positions in units of pi
else ,

fprintf (' . . . constant-PR-interval : -%d-\n', PRints) ;

%define R-wave points
Rtimes = [makecol(Rtimes)]; %Rpeak tirne posÍtions in units of !

t ime

Rthetas = 2'r [0: length(Rtimes) -1] ; %Rpeak t¡reta positions in !
units of pi

%define P-wave points
Ptimes = Rtimes-PRints i %Ppeak time positions in units of tine
Pthetas = Rthetas+Ptheta i %Ppeak rheta posirio¡s in units of pi
% stack points
Interptimes = [makerow(Ptimes) ; makerow(Rtines)] ;

Interpthetas = [makerow(Pthetas) ; makerow(Rthetas)] ;

% sort points
Interptimes = nakecol (Interptimes (: ) ) ;

Interpthetas = makecol(Interpthetas(:)) ;

%renove early points (negative tine/angIe)
InterPtimes (1) = [] ;

InterPthetas (1) = [] ;

end
eISe %vecto-r PRints

fprintf(' . . . nean-PR-interval : -%d-\n',mean(PRints)) ;

%arrange vector lengtås
Rtimes = makecol(Rtimes) ;

PRints = makecol (PRints) ;

L = min(length(PRints) , length(Rtimes)) ;

Ptimes = Rtimes(1:L)-PRints(1:L) i %Ppeak tine positions in units of.¿
t ine

%deÍine R- ltave points
Rtimes = [0; Rtimes (1: L) ] ; %Rpeak tine positions in units of tine
Rthetas = 2* [0 I length(Rtines) -1] ; %Rpeak theta positions in unÍts of J

pi
%define P-erave points
Pthetas = Rthetas(2: end)+Ptheta i %Ppeak tåeta positions in units of !

pi
% initialize
Interptimes = zeros (2'tL+l- ,1) ;

Interpthetas = zeros(2t'L+1,1) ;

% arrange
Interptimes (2:2: end) = Ptirnes;
Interptimes (L:2: end) = Rtimes;
Interpthetas (2:2: end) = Pthetas ;

Interpthetas(1:2:end) = Rthetas;

3'11

App. A: Details - Surrogate ECG Alg.

19l

396

end
else %st¡uct argunent with enbed.ded interva-is

l()6 l.¿aves = Rtimes;
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if isfield(waves,'R'),
Rtimes = makecol (waves . R-min(waves . R) ) ; %start at R-r,/ave at 0

Rthetas = makecoL (2*-[0: Iength(Rtines) -1] ) ;

Interptimes = Rtimes;
Interpthetas = Rthetas;
naxtíme = Inax (Rtimes) ;

Itemp , Rpeaks] = boxcar (diff( [Rtimes ] ) , Rtimes , time) ;

Rpeaks = [1; makecol(Rpeaks)]; %returns peaks if ihr onty ' js set
else

error (' struct- argument -requi re s-an- " R " -fi eld' ) ;

end
if isfield(waves , 'PR') ,

disp(' . . . constraining-PR-intervals') ;

if isscalar (waves . PR) ,

L = length(Rtimes (2: end)) ;

Ptimes = Rtimes (2:L+ 1) -waves . PR;
Pthetas = Rthetas (2 : L+1) +thetain (l) /pi;

else
L = min(length(Rtimes(2: end)),length(waves.PR)) ;

Ptimes = Rtimes (2:L+ 1) -makecol (waves . PR (1 : L) ) ;

Pthetas = Rthetas (2 : L+1) +thetain (L) /pi;
end
Interptimes = [Interptimes; Ptimes];
Interpthetas = [Interpthetas; Pthetas] ;

maxtime = min(maxtime,Rtimes(L+1)) ;

end
if isfield(waves,'RT'),

disp(' . . . constraining-RT-intervals')
if isscalar (waves . RT) ,

L = length(Rtimes (1: end)) ;

Ttimes = Rtimes (1 : I-¡ +waves . RT;
Tthetas = Rthetas (1: L)+thetain (S) /pi;

else
L = min(length(Rtimes (1: end) ) , length(waves. RT) ) ;

Ttimes = Rtimes(1:L)+makecol(waves.RT(1:L)) ;

Tthetas = Rthetas ( 1 : L) +thetain (5) /pi;
end
Interptimes = [fnterptimes; Ttimes] ;

Interpthetas = [Interpthetas; Tthetas] ;

naxtime = min(maxtime , Ttimes çend)) ;

App. A: Details - Surrogate ECG Alg.

end
mintime = Interptimes (l-) ;

mintheta = Interpthetas (1) ;

fnterptimes = sort (Interptimes) ;

.r5r fnterpthetas = sort (Interpthetas) ;

%crop to appropriate intervaT beg

Interptimes (Interptimes <mintime) = tl ;

Interpthetas(Interpthetascmintheta) = tl ;
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%crop to appropriate interval end

indx = find(Interptimes>maxtime) ;

Interptimes(indx) = tl ;

Interpthetas(indx) = ll;
end
if ismonotonic(Interptimes) && isnonotonic(Interpthetas),

theta = interpl (Interptimes , fnterpthetas , time , 'pchip') ;

ihr = 30/'gradient (theta , time) ;

thetadotinv = tl ;

e1 se
error (' non - monotoni c-hermite -interpolat ion' )

166 end
return;

%%%%%%%%%%%%%%%%%%%%/,%/"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%/.%%%%%%%%%%%%%%%%r.%%%%%%%

function Itseries , Dindx , Rpeaks] = boxcar (values , disct , time , Rtimes) ;

rlt % tY,Cl = BoxCAR(A,D,Ix]);
% cÍeate boxcar (analog) signal Y from constant vaTues A and

% discontinuity tines D against time vector X.

% vector C are the j¡dices to tåe discontinuity Teading edges.

t't6 %CREATED: 2006/03/29 -llichael Potter

App. A: Details - Sttrrogate ECG AIg.

if nargin == 0,
disp(' usage : -Y-=-boxcar(Amp,Disc, IX] )' ) ;

return;
elseif nargin < 4,

Rtines = discti
end

K = length(disct);
if nax(time) > max(disct),

if length(values) < K+1,
disp(' trrlarníng ! -Too-few-amplitude-values !' ) ;

disp (' I gnoring- final -el ement s-of-time-vector' ) ;

% tine(find(tine>nax(disct))) = [];
time(time>nax(disct)) = []; %suggested as faste¡

e Ise
disct (K+1) = max(time)+ePs;

19l

end
end

4e6 N = length(time);
Dindx = ones(1,K);
Rpeaks = ones (size (Rtimes) ) ;

tseries = zeros (size (time) ) ;

j=1; k=1;
5or for i=1: N,

if time (i) > disct (j) , %if pass discontinuity
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Dindx(j)=i-1;
1' = j+L;

end
if time(i) > Rtimes(k),

RPeaks (k) =i - 1 ;

k = k+L;
end
if j > length(values),

pause,'

else ,

tseries(i) = values(j); %cuÍÍent va'lue is value of interval
end

end
5i6 if j <= length(Dindx) ,

Dindx (j : end) = [J i

end
return;

identify discontinuitY
switch to ¡ext inte¡va-l

%if pass Rtine
% identify Rpeak

srr'itch to next beat nunber

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%/.%%%v"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function rr = RRprocessMCTS(flo, fhi, flostd, fhistd, lfhfratio, 't
hrmean, hrstd, sfrr, n)

wL = 2'!pitflo;
wZ = Z*pi'ifhi;
cL = 2'ipit'flostd;
c2 = Zt'pit'fhistd;
sig2 = 1;
sigL = lfhfratio;
rrmean = 60/hrmean;
rrstd = 60.?hrstd/ (hrmeanr'hrmean) ;

df = sfrrln;
w = [0:n-1] "*2'kPi'tdf ;

dwl = w-w1;
dw? = w-w?;

53t

HwL = sigl'?exp(-0. 5'k(dwLlc1)
Hw2 = sig2'rexp(-0. 5'Ì (dw2 / c2)
Hw=HwL+HwZ;
HwO = [Hw(1:n/2); Hw(n/2: -1:

54r Sw = (sf.rr / 2)'i sqrt (Hw0 ) ;

phO = 2'''pi'rrand (n/2- 1 ,1) ;

ph = I 0; phO; 0; -flipud(phO)
SwC = Sw." expçi*ph);

5ró x = (l/n)"real(ifft(SwC));

xstd = std(x);
rat io = rrstd,/xstd ;

M. Potter
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rr=rrmean+x*ratio;
551 f etufn

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function ind = detectpeaks(X, thetap, sfecg)
s56 N = length(X);

irpeaks = zeros(N,1);

theta = atan2 (X(: ,2) ,X(: , 1) ) ;

indO = zeros(N,1);
56r for i=L:N-L

a = ( (theta(i) <= thetap) & (thetâp (= theta(i+1)) );
j = find(a==L);
if -isenpty(j)

d1 = thetap(j) - theta(i);
566 d2 = theta(i+1) - thetap(j);

ifdl<d2
%ind9(i) = j; %orisinal
ind0 (i) = min( j ) ; %MP reduces dual va-lues

else
5it %[j theta(i) thetap ¡heta(i+l)] %debug onTy

%indt(i+1) = j; %originaT
indO (i+1) = min( j) ; %ÌIP reduces dual values

end
end

5'16 end

App. A: Details - Surrogate ECG AIg.

d = ceil (sfecg/94);
d = ûâx(t2 dl);
ind = zeros(N,1);

58r z = X(: ,3) ;

zmin = min(z);
zmax = max(z);
Zext = [zmin zmax zmin zmax zmin];
sext = [1 -]. L -1 1l;

586 for i=L:5
clear indl Z k vmax imax iext;
indl = find(indO==i) i

n = length(indl);
Z = ones(n, 2*d+1)'tzext(i)'ksext(i) ;

ier for j=-d:d
k = find( (1 <= indL+j) & (ind1+j <= N) );
Z(k,d+j+1) = z(ind1(k)+j)'tsext(i) ;

end
fvmax, ivnax] = max(Z,l),2);

5e6 iext = indl + ivnax-d-1;
ind(iext) - i;
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end
return

({r1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dxdt = derivsecgsynbase(t,x,rr,sfint,ti,ai,bi,J
+

606 %

%

%

6lr %

%

6t6

61t %

%

63r %

AMPL ITUDECORRECT ION )
dxdt = derivsecgsyn(t,x, ffag,rr,sampfreq'ti,ai,bi)
ODE fiTe loÍ generating tåe syntàetic ECG

This file provides dxdt = F(t,x) taking input paramters;

rr: rr process
sfint: fnternal sanpling frequency [Hertz]
Order of extretna: IP Q R S IJ
ti = angTes of extrena [radians]
ai = z-position of extÍena
bi = Gaussi an width of peaks

Copyright (c) 2003 by Patrick l|cSharry & Gari CTifford, A17 Rights Rese¡ved

See IEEE Trarsactions On Bionedical- Engineering, 50(3), 289-294, llarch 2003.

Contact P. llcSharry (patrick AT ncsharry DOT net) or
G.D. Cl-ifford (gari AT nit DOT edu)

App. A: Details - Surrogate ECG A

This prograrn is free software; you can ¡edistribute it and,/ot modify

it under t¡e terns of the GÀrU General PubTic license as published by

t¡e F-ree SoÍtwate Foundation; either version 2 of the License, or
(at your option) any lateÍ version.

This progran is distributed i¡ the hope t¡at it wi77 be useful,
but I'|ITHO|T Aily k'ARRAwTY; without even the inplied warranty of
MERCHANTABILITY or FfIMSS FOR A PARTICULAR PURP?SE. See the

6J{U General. PubTic license for nore details.

You shouTd have received a copy of the GNU General PubLic ¿icense

aTong with this progran; if not, write to the Free Softnare
Foundation, fnc., 59 Tenple P7ace, suite 330, Boston, IIA 02711'-1307 USA

ecgsyn.n and its dependents are freely avaiLble fron Physionet -

http://www.physionet.org/ - please Teport any bugs to tåe autào-rs above.

xi = cos(ti);
yi = sín(ti);

(,16 tâ = êtãlt2(x(2),x(1));
r0 = 1;
a0 = 1.0 - sqrt(x(1)^2 + x(2)^2)/r0''
ip = 1+floor(t'ksfint) ;

(>lr 
¡a$ = Pi'lrr (iP) ;

fresp = 0.25;
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zbase = 0; %Íemoved, default osci-llation '0.005'!sin(2"pi'"fJ.esp*t);' to match records !
+ better

616 dxLdt = a0'!x(1) - w0'?x(2);
dxZdt = a0'tx(2) + w0"x(1);

dti = ren(ta - ti, Zt'pí);
dx3dt = - sür(ai.'*dti."exp(-0.5n(dti. /bi¡.^2'r, - 1.0r'(x(3)

if nargín <8,
AMPLITUDECORRECTI0N = 1;

end
if AHPLITUDECORRECTION , %nonzero f-lag turns on HR amplitude conpensation

dxdt = [dx1dt; dx2dt; dx3dt/rr(ip)];
else ,

dxdt = [dxrdt; dx2dt; dx3dt];

A..5 Summary

App. A: Details - Surrogate ECG Alg.

This appendix has covered the details of the novel ECGfm surrogate ECG algorithm used

to synthesize noise-free uncontaminated ECG signals. The technique of using a two-module

cyclostationary decomposition for ECG synthesis has been described. The details of the inte-

grator module, as well as a comparison to the original ECGsyn system have been presented.

The mechanisms of ECGfm's superior performance at reducing amplitude artifacts has been

demonstrated with synthetic and natural tachograms.

As well, considerable attention in this appendix has been made to present FMPI for the

inverse modeiling of instantaneous rate from discrete event-interval measurements. Compa.

isons of FMPI to the IPFM model and tachogram resampling have demonstrated the impor-

tance of this general technique at preserving the time domain characteristics of event-intervals.

Other comparisons have been considered in [78, Potter (2008)]. In particular, experiments

on synthetic and natural tachograms have determined that ECGfm oLltperforms ECGsyn at

zbase);
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preserving the time domain features of a template ECG.

Last, this appendix has demonstrated in Sec. A.2.4 a unique visualization of the ECG

attractors that are fèatured heavily in this work. By using the hidden IHR valiable t.r(r) as an

embedding coordinate of a reconstructed ECG attractor, an interpretation of the sensitivity of

MFA to the distribution of the IHR has been discussed.

Since the ECGfm algorithm described here has made some significant contributions to

ECG modelling, IHR analysis, and the MFA of ECG attractors, there is a considerable amount

of recommended follow up. This includes

(a) further analysis of natural recordings to identify an optimal amplitude correction;

(b) application of the FMPI approach to 3D ECGsyn extensions such the cardiac dipole of

1192, (2001)):

(c) options for the tuning of parameters, similar to [l91, (2001)],

App. A: Details - Surrogate ECG Alg.

(d) confirmation that the MFA of an ECG attractor is independent of recorded lead, and

essentially dependent on the IHR signal;

(e) consideration of analytic differentiation and the development of higher-order monotonic

interpolation methods ; and

(f) coding improvements.

The FMPI model for IHR could also benefit fiom firther comparison to other models of instan-

taneous rate, such as the heart timing signal [139, (2003)], the hean instantaneous frequency

1195, (2004)1, and IPFM dentodulation 1205, (1991)). These comparisons could focus on time

domain, as well as spectral, performance.
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8.L Sumrnary of Table Notation

Experiment types are broken down into three subgroups:

(a) real fECG data, identified by real noÌsy d¿ra (RND);

Appendix B

(b) simulated but not noise-free data, identified by simulated but noisy data (SND) (e.9.,

data is manipulated ECG recordings);

(c) simulated noise-free fECG data, identified by sitnulated noise-free data (SFD) (e.9.,

data is generated from a rnathematical ECG model); and

(d) simulated analytical data, identified by sirnulated analytical data (SAD) (e.9., data is

generated from a (non-ECG) mathematical model).

Multiple datasets will appear with slashes (e.g., SAD/RND). One particular dataset from [51,

(2000)l is used repeatedly and so will be identified by RND¿.

Algorithm types are broken down as:

(a) ACM - adaptive correlation matrix

(b) AF - adaptive fìltering

(c) ANN - artificial neural network

(d) ANC - adaptive noise cancellation

M. Potter
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(e) CDN - chaos denoising

(f) ICA - independent component analysis

(g) PCA - principal component analysis

(h) SVD - singular value decomposition

(i) WT - wavelet transform

Actual aigorithm names may appeff in brackets (e.9., ICA(Xinfomax)), and joint algorithms

can be identified by a hyphen (e.g., WT-ICA). Multiple algorithms will appear with slashes

(e.g.,PCAIICA). If an alternative to a well-known algorithm is proposed and evaluated, it will

be noted by a T (e.9., JADET).

Perf'ormance metrics are broken down as:

(a) API - Amari performance index

(b) ASI - Amari-squared index

(c) CCI - cross-coruelation index

(d) ECG - some ECG-specific measure

App. B: Lit. Summary - Fetal ECG BSS

(e)

(Ð

GAV - Given's angle variance

HOS - higher-order statistics

SNR - signal-to-noise ratio(e)

(h) Viz - visual inspection

Actual performance metric names may appear in brackets (e.g., ECG(QRS "trust factor")).

Multiple metrics will appear with slashes (¿.9., SNRÆCG).
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ß.2 fECG Líterature Summary

Table 8.1: Summary of Literature on Fetal ECG Separation

Repr. Author Year Ref. Exp. Tlpe AIg. flpe Perf. Metric

Widrow ¿¡ al. 1915 12341 RND

Widrow e¡ al. 1982 t58l RND

I

E!
I

þJ
f

Vandewalle er 1981 12281 RND
al.

ANC

Vandewalle e¡

al.

Wooltion et

al.

time- Viz of fetal R-
sequenced waves

ANC

CA
c0

CD

¿¿-
!!(Þ

= 
r.,¡r

È Ì-:t
:-O
tJ oo

Viz of fetal R-
waves

1989 t3ol RND

1990 l24tl SND

SVD

ANC reduces rnaterral contam-
ination

Time sequenced post-
processing of two ANC
channels produce clearer fetal
R-wave contrast

3 thoracic electrodes guaran-

tee mECG cancellation; imple-
mentable batch or online with
equivalent accuracy, changing

abdorninal positions changes

noise in f'etal estimates, not

mECG suppression

Practical irnplementation of
fECG estination is achievable

Effect of adcled noise to beat

averaging in simulated fECG is

characterized for the methods

Conclusions

Continued on Next Page...

Viz of fetal R-
waves

online
SVD

ANC/AF

Signal processing seminal pa-
per for fECG separation

Viz of fetal R-
waves

ECG

Significance

Adaptive filtering post-

processing gives better R-
wave, but not better application

Multiple elecu'ode positions

used; mECG is 3 channel,
while fECG is not

LII
4Þ'1

eF
E1

c)oz
¡n

LIlrzô
r¡

z
U
rn
F
o
P
!l

G'lo

Describes first "real-time sys-

tem" fbr fECG separation

Uses scalp data for fECG sim-

ulation; measures R-wave de-

tectability; methods assumes

fECG and mECG bandwidth is
100 Hz and 25 Hz respectively;
quantitative pert'ormance mea-

srue

w
F
sa
(t)

Þ)

dr
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Author

Schreiber ¿¡ a l. 1996 [201] SND

Kanjllal et at. 1991 [ 106] RND SVD (1 VizlSNR Estimated signals are strongest Time-based approach

channel) periodic SVD contponent

Year Ref. Exp. Tlpe Alg. Tþe Perf. Metric

Schreiber e¡ a/. 1998 [18-5] SND/- CDN/AF
RND

I

IÞ
I

Barros et al.

CDN/AF

Table 8.1 - Continued

2000 [l8] SND(ECG)/- AFÂCA(-
RND(MEG) FastICAi)

De Lathauwer 2000 [-51] SND/-
er al. RND¿

Viz of fetal R- Chaos denoising extracts fECG Embedding approach; charac-

waves better than Wiener filtering teristic SND methodology from
adult ECG databases

(,
@

(D
3<)q'õ

3þ
+NJ

Noô

Khamene ¿l a/. 2000 t1151 SNDI
RND¿/-
RND

Conclusions

Viz of fetal R- Generic approach applies to
wa\¡es any lead; second pass clears

noise from fECG

Nandi e¡ a/. 2000 12431 RND¿

Yiz

Continued on Next. Page. ..

PCA/- VizÆHR
ICA(Comon) detectab ility

Adapting FastlCA rule to con-
verge to periodic components
can isolate ECG from artitãcts;
Weiner initialization increases

stability

Demonstràtes ICA on fECG,
superior to PCA; simulations
demonstrate ICA is robust to
conditions such as twins and

ectopic beats

Significance

WT

Delay is time-based approach;
generality of procedure moti-
vates generality of SQM

Interesting adaptation to in-
clude a priori fECG informa-
tion; particularly significant fbr
evoked responses

Seminal ICA-based fECG ex-

traction; introduces commonly
used dataset; ICA must al-
low mLrlti-channel subspace-

indeterminism

Multiscale approach; does two-
part analysis with SNR mea-

SU[ES

First ICA comparison to ANC

'Tl¡¡
P-
rrl
o
z
tr'P
rdzo
E1

z
l¡f

e)

;
lrl
Õo

SNR/CCWiz WT can be applied successfully
to multiple or single channel
recordings

ANC/-
JADEI

Viz ANC too dependent on elec-
trode position
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Author

Nandi ¿l ¿1.

Mochimaru el
aI.

Year Ref. Exp. Type Alg. Tlpe Perf. Metric

2001 t2441 RND¿

2002 lt41) RND

Muller et al. 2002 il4ll SFD/-
RND¿

I

¡

Ur
I

Jvtten et al. 2003 1232) SND

ANC/-
JADET

V/T

Table 8.1 - Continued

Juttenet aI. 2003 t2301 RND

Viz of fetal R-
waves

Yiz

(t)
(Þ

rd
(D
3

:C]'
:i(D

9:-
:\i
NJ OO

ICA(JADE)/-GAV-
BSS(TDSEP)Bootstrap

clustering

PCAI APII/CCI
sPCA/-
ICA(JADE)

ICA(JADE)/-Viz
ACM

Principe 2003 tl36l

ANC too dependent on elec- Discussion of ANC tap effects
trode position and number of electrodes

Conclusions

High frequency sampling (5-

20 kHz) allows FeCG separa-

tion and identification of some

P and T waves

GAV-Bootstrap can measure

consistency and indicate break-
down of specific ICA assump-
tions

ICA result improved if raw

channels are preprocessed to
reduce dirnensionality

ACM isolates high-frequency
noise better than JADE; WT
denoising efficient in improv-
ing fECG quality; choice of
wavelet needs to be analyzed

FHR detectabiÌity as perfor-
mance measure identifies Intb-
max worst, Mermaid best; Mer-
maid rnore data efficient than
FastICA

Continued on Next Page...

sND/-
RND

Significance

Demonstrates possibilities of
high-sampling WT; first discus-
sion of P and T detectability

Seninal paper on bootstrap-
ping for ICA SQM; analytical
theory

Considers eft'ect of indetermi-
nate number of sources

ICA(Mer- SNR/ECG/Viz
maid/-
Infbmax/-
FastICA)
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rnzo
ln
a-
z
IJ
ln
F
c)
P
.n
ln
c)

Uses Cardoso (ACM) non-iid
approach [69]; I kHz sam-

pling of fECG can visualize P

and T waves

Attempt at practical SQM; dis-
connect between performance

measules in the SND and RND:
doesn't use Xinfoma:r
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Author

Sahambi 2003 t9l SND

Year Ref. Exp. Tlpe AIg. ï]pe Perf. Metric

Muller ¿¡ a/. 2003 Ull SFD/-
RND¿

I

w
I

o\
I

Assaleh ¿ral. 2004 tl ll RND¿ ANN Yiz

ICA(JADE/- SNR/Viz
Comon/-
FastICA/-
lnfbmax)

ICA(JADE)/-GAV-
BSS- Bootstrap
TDSEP clustering

clifÌbrd ¿¡r¡l. 2004 142) sFD (1- CDN/ICA SNFyCCI
channel)

Table 8.1 - Continued
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CD

¿)
cùõ
Y'j
ÈN)

NJ AO

Cliftordet al. 2004 t82l RND

Equivalent performance from
algorithms

Conclusions

Continued on Next Page. ..

ICA(JADE) (non-Gaussianity)
more reliable than TDSEP
(non-whiteness) and SEPA-
GAUS (non-stationarity)

Nonlinear mapping of thoracic
lead into abdominal cancelling
signal

Denoising: ICA of embedding
gives better SNR: CDN gives

better linear correlation; CDN
is better at preserving shape;

ICA is better at preserving R-
wave

Kurtosis and variance can be

eff'ective to identily artifactual
ICA components in 3-channel
ECG; results could be im-
proved by quasiperiodic con-
siderations

Considers added Gaussian
noise; pert'ormance analysis
very weak

Generalizes (non-white) boor
strap to non-Gaussian bootstrap
via additive Gaussian noise;
fixed added noise SNR

Simple, lwo-channel approach;
not tested under generic
noise conditions; theoretical
go-between of CDN and PCA

(Not fECG); comparison of in-
teresting methods

Significance

ICA(JADE) Viz
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frl
ooz
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(Not fECG); simple and effec-

tive experiments; opportunities
with 3-leads only
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Author

Grassberger e/ 2OO4 l2l5) SAD/-
al. RND

Year Ref. Exp. Tlpe Atg. Tlpe Perf. Metric

Sahambi e¡ a/. 2004 tl66l SND ICA(JADE/- SNRyASI
Infomax/-
Comon)

I

cÈ
I{
I

Mochirnaru ¿t 2004 [48] RND
al.

ICA(:) APIÆIOSMI) MI is estimateddirecrly so con-
vergence ls easler to lnterpret;
noise robustness is character-
ized; MILCA and RADICAL
perfomr best; ICA on embed-
ding can resolve components
even further

Foresta et aL. 2005 t60l RND¿

Table B.l - Continued

(n
(D

(D

¿"_gã
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-.NJ
YO
NJ OO

Jatan et al.

Conclusions

PCA-
wT/rcA-
WT

Assaleh e¿ a/. 2005 t l3l

Continued on Next Page...

200s I99l sAD^
SNDA
RND¿

ICA_ ECG
WT(WICA)

Ytz

Additive noise is tolerated as

long as mixing is dominant

P- and T:wave exFaction of
ICA-WT better than PCA-WT
(wavelet-denoising applied)

Slow but reliable; using delay
embedding is superior "in prin-
ciple": can distinguish different
Gaussian signals by their auto-
correlation

Significance

wT-rcA/- ASr
ICA

RND¿

ICA is applied to visually se-

lected subset of wavelet de-
cclrnpositions; evaluates ST
wavefornr by (deflection T)/
(heighr QRS)

ll
LII
ui-
ñ
ooz
Irt

o
r¡zort
z
rff

t)

;
¡Ð
a)
O

Use of coloured noise; example
of 2x2 mixture experiment

Substantial (25 patient) dataset;

high-frequency data

Essentially WT denoising first,
ICA second; demonstrates how
subbands can be used as addi-
tional ICA channels; plenty of
user input, opportunities for au-

tomation

ANN Yiz

ICA in WT domain makes Some good experiments worth
all features super-Gaussian; in- expanding
creased perfbrmance and speed
in noisy conditions

Nonlineal mapping of thoracic Identical to [1 l]
lead into abdominal cancelling
signal
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Author

JuttereÍ al. 2006 t1931 RND¿ ICA(JADE) SNR/ECG

Year Ref. Exp. 1}pe Alg. T]pe Perf. Metric

ILttten et al. 2001 t l92l SFD ICA(JADE) Viz

I

I

æ
I Sato er at. 2001 [196] SND/- ICAI- YizlECG

RND BSSR

Table B.l - Continued
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CDìc
CD

¿*qõ
¿1
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H¡J
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Assaleh

Conclusions

ICA components relate to
vectorcardiogram components ;

best remove baseline wander
and symmetrize against iso-
electric point; maternal ICA
subspace dimensionality can

exceed 3 (Ldl-data is 4)

3D model extends Kahnan
frltering opportunities with
ECCsyn parameterization;
methods can provide interpre-
tations of ICA components

Reference signal guides up-

date: average P-waves can be

extracted

2001 Lrzl sFD/-
RND¿

Significance

First discussion of clinical in-
dices; uses beat averaging to
demonstrate existence resid-
ual tECG t'eatures in all ICA
components (including mater-
nal subspace), which is a pos-

sible ICA SQM

ECGsyn generalized to dipole
model; seminal modelling of
IECG systeml only visual met-
rics

ANN/AF SNRlViz
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z
trl
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Ftuzy ANN improves over
other ANN [13] when fECG
component is weaker

RND includes scalp electrode
during delivery; twin simula-
tion; compares average fECG
beat between estimates and

scalp signal; polar and bipoleLr

ref'erences required

Two components only; no at-

tempt at practical SQM; re-
quires study of robustness (l
dataset only)
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8.3 Surnmary

This appendix has presented a summary of the fECG separation literature in tabular form.

This hopefully contributes a useful resource for the interested readers.

App. B: Lit. Summary - Fetal ECGBSS
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C.L 0verview

AppendÍx C

This appendix provides details and code for (i) the calculation of a correlation parti-

tion (CP), and (ii) the transformation of that CP into the Hölder and Mandelbrot entropies

directly. In fact, the transformation will be described for all three types of entropies, (i.e., H*

T(t, ãnd To). Derivation of the entropies themselves is presented in Sec. 4.1.3.

The next section will deal with the overall design of the algorithm and the modular compo-

nents th¿it are used. Then, Sec. C.2.2 presents the box-assist technique suggested by Kantz et

al,.1108, NTSA, (1991)l to speed up the otherwise O(N\ search for comparisons with neigh-

bours. The code f'or the box assist and the partition calculation itself is provided in Sec. C.3.

Last, Sec. C.4 presents the algorithm for converting the partition function into the MFA scaling

entropies.

C"2 Correlation FartitÍon Algorithm

The calculation of the correlation partition is achieved by the function call

ISout, scales] = CIHptn(data, scal-es, Ttr{, 1ag, emdim, metr, p, verbose)

and proceeds in five steps. The first step is a preprocessing of the algorithm that (i) checks

for correct input and applies optional default values, and (ii) confirms that the choice of scales

M. Potter
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Parameter
Default Value

provided at the input enables the box-assist technique shown in Fig. 6.8. This is implernented

in the Matlab function. The second step is to embed the data into an array for analysis

and create pointers for reading from the array. This is implemented at the beginning of the

ClHptn--rnex. c executable called by the Matlab function. The third step is to establish the

box-assist indexing by passing twice through the data. This is implemented in the C exe-

cutable. The fourth step is the neighbour comparison that assigns integer values to the CP

itself. This is the bulk of the C execurtable, and it is designed to use the box-assist indexing

and process all scales in parallel. The final step is the postprocessing of the CP into the proper

form for the entropy calculation. In par-ticular this involves the normalization of the CP from

integer values into the proper probabilities (i.e., < 1), and restructuring the array. This is

implemented in the final part of the Matlab function.

C.2.1 Function Call and Preprocessing

The minimal call for the calculation of a CP is

ISout, scales] = CIHptn(data, scales)

Table C.1 Defàult Values of CIHptn.m Parameters

W7

I
Ln N, Metric
I max(2, size (data , 2) ) 'che'

App. C: DetaÌls - Direct MS from CP

p
1

Verbosity
0

and the default values fbr the other parameters identified in Table (1.1 are applied during the

preprocessing routine. This can be convenient because the data input can already be in attractor

form as an N, x N" floating point aÍray, or it can be a floating point vector to be lag-embedded

during the algorithm execution.

The length of the data and the scales vector determine the size of the partition array. The

M. Potter
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maximum value of the scales vector

6s = mlx scales(l)

is used to determine the grid-sizing for the box-assist indexing that is applied to the first two

coordinates of the attractor.l To ensure that speed gains will occur, the range of the attractor

(i.e., max-min) is checked to be greater than 9 e x e boxes. If not, then the scales vector is

reduced by a factor of2

scal-es (i ) *- I scales (i)
'¿

until the condition is satisfied.

After some error checks, the main C executable is called. Note, however, that the data is

passed in transposed form to make the observations appear as columns because C is column-

centric. Similarly, the executable output is transposed upon completion.

Furthermore, note that three possible executables can be called, depending on the level

of verbosity desired. The standard C executable has limited standard output (verbose =0),

while the next (verbose=1) writes more to screen, while the highest level (verbose=3) writes

all successful comparisons to a file for debugging purposes. All calculations in this work use

standard (fast) verbosity.

C.2.2 The Box-Assist Technique for Neighbour Comparison

App. C: Details - Direct MS front CP

(c.1)

As mentioned, there are two actions in the C executable that precede the main algorithmic

loop. The first is the usual initialization of variables, pointers, and arrays (and, in particular,

the arrangement of the embedded observations into an array). The second is the preparation

lOne TISEAN irnplementation suggests using the first and last coordinate for box-indexing (i.e., a "wide"
box-assist)insteadof thefirsttwo(i.e.,a"narow"one). Thatisparticularlyefficientif onlytheresultsfbrthe
maximum embedding dimension are desired. If more than one embedding is to be evaluated in parallel, however,
some comparisons will be lost in the smaller embeddings. Consequently, that is not advocated here.

(c.2)
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jh

:o
.li

rji,ì..ì

.:.rr:r"

App. C: Details - Direct MS from CP

fi
t

t+1

Xembed

Fig.C.l Theindexingmethodof theCPbox-assistindexes the2D gridasavector jh. The
elements of this vector point to the fìrst entry of the neighbour list in j ptr fbr that box. The
consecutive elements in jptr point to the location of the neighbours in the observation array.
This mechanism aliows the number of comparisons to be reduced in typical circumstances.

of the box-assist method for neighbour comparisons. The implementation described here is

adapted from the code published in [108, NTSA , (1997)].

As described in Sec. 6.4.5, the box-assist technique assi-ens each embedded point into one

of the boxes covering the attractor in 2D, so that only the points in the neighbouring boxes

are considered for comparison. All other points will necessarily compare to zero. The box-

assist method consists of (i) a mapping function from a 2D grid into an integer, (ii) a vector

of integers the length of the complete 2D grid, and (iii) a vector of integers the length of the

t

l:'¡:'

;t

baseindexfcn
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attractor, as well as the attractor array itself. These elements, along with their relationships,

are visualized in Fig. C.1 as baseindexfcn, jh, jptr, and Xembed.

The function of the jptr vector is to index ali the points in the attractor by the boxes in

which they reside. The function of the j h vector is to map the index of the 2D grid's boxes onto

the jptr vector. This is done practically by identifying the jptr ìocation of the first member

in the chosen box. That is, if j j0 = jh[ j] and j j l = jhI j+i], then all the members of the

attractor array that are in the jth box are indexed by the elements in jptr from position j j0

to j j1-1.

It follows that to find all the neighbours of a point i,

(a) thegrididentity (i0,i1,) of thepointÍisidentifiedbydivisionof itsfirsttwocoordi-

nates by e*;

App. C: Details - Direct MS from CP

(b)

(c)

the baseindexfcn function maps the grid identity (i0, iL) into an index j of jh;

then, for j j initialized to jhUl and incrementing to jhIj+i] -l-, the Theiler window

is checked;

(d) if the Theiler window condition is satisfied, the distance between point i i = j ptr U j l

and point i is calculated;

(e) this distance is checked against all scales: if the (i,ii)-interpoint distance is less than

the scales [m], then the CP entry CP Ii,m] is incremented.

For each point i, the above procedure is repeated fiom b onward fbr each of the neighbour-

ingboxes: (i0-1,i1), (i0+1,i1), (i0,i1-1), (i0,i1+1), (i0-1,i1-1), (i0-1,i1+L)

(i0+1,i1-1),and(i0+1,i1+L).Thereafter,thelooprepeatstbrthenextcentrepoint,í<-

i+1.
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Remark C.1. Note that integer arrays are used here to control the nested indexing of the

box-assist procedure. This f'ollows the original implementation 1108, NTSA (1991)l and re-

duces the complexity required in multilevel pointers. There is a bug, however, in the original

mbaseZ.c code listed in [108] (though the Fortran mbase2.f is accurate). Two passes

through the data are used to properly establish the jh and jptr arrays. On the first pass

through the data the jh entries are used to count the number of points that fäll into each box.

Once finished, by updating jh with its cumulative sum, its entries now point to the last entry

for that box in jptr. The jptr vector is then filled on the second pass, so that

and the value of jhUl is decremented. Care must be taken, howeveL, to decrement properly

so that it fills the vector from 0 to N, - I and points to the coffect index of jptr.2 Once this

second pass is complete, the two box-assist arrays will function as prescribed to reduce point

by point comparisons.

C,2.3 Postprocessing and Output

jptr[jhtj] -11 - i

App. C: Details - Direct MS fiotn CP

The CP is theoretically an 1% x N. x max N, array which is stored as an (N. x max N,) x

N,, wray in the ClHptn-mex. c executable. It is postprocessed by transposition and column

repositioning into an (N,, x N.) x max Nn fbrm. lts integer values are also normalized by the

factor

2The assignment (x't'¡ cannot be replaced by jptrljhtjl--l = i because the decrement is applied only
after the assignment. It is only con'ect if it is applied beforehand as in

jhtil --
jptrljn[j]l = i

which is used here.

N,,-2*W7+7;
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to become actual probabilities. The output returned by CIHptn.m is dependent on the number

of embedding dimensions specified. If N, is a scalar, then the output is CP as an Nn x N. array.

If N. is a vector, then the output is a I'latlab struct of same length as N, with each component

having the CP as a field filled by an Nn x N. array.

C.3 CIHptn: Important Code

Though all thesis code is available in electronic form at www . ee . umani toba . ca/ -kinsner /
pro j ects/, Listing 2 contains the calling function for the ClHptn. m algorithm implemented

in Hatlab. The main calculation of the correlation partition is in Listing 3 on p. C-10 imple-

mented as a Matlab mex-function coded in C. Supporting elements for the correlation parti-

tion engine, including the mbase2 creation of the box-assist affays, is coded in C as Listing 4

on p. C-21 .

App. C: Details - DirectMS from CP

Listing 2 (CIHptn.m) The Matlab code of the CIHptn algorithm for correlation partitions.

r function Iout , sca]es] = ClHptn (data , scales , TW, 1ag , emdim, metr, p, verboseJ
);

6%

%

to%

CIHPTN.n is a fast nex-based calcu.lation of the general
q-based correÌation -integral parti tion.
CIHptn.n requires tåe mex-instalLation provided by "nakeC¡ptn.n"

usage: tS,Ãl = CIHptn(X,8, tTl, tLl, tDl, [metr], tPl, tVl)
output: S is a struct of Tength(endin), with fie.ids S.emdj¡n, S.scales, and

S,Ptn, if emdin is a vecto-r. Otåerr,,¡ise, S js a natÍix equivalent
to the pa¡tition S.Ptn. (see GPA-Ptn.n);
E is a vector of scales (naybe changed fron input E;

input; .X is a natrix of l,l-dinensionaL row observations,'
E is a vector of sca-les,'
I js tùe scaTar vaTue for tåe Tl¡eiJer window (defauTt 1);
L is the scafar vafue for tire elnbeddjng lag (defauTt 1);
D is a vector of enbedding dinensions (defauLt I'I);
netr js a string identifying tåe net-ric to be used, see pdist.n (default'cheJ

P is tfie scala¡ value of the lÍinkowski ('nin') ¡netric order;
y is the sca.lar flag for verbose output: defauTt 0 (none), I (sc¡een), 2 (l

sc¡een & files);

M. Potter
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CIHptn.n - v.1.1
CREATED: 2007-07-20 by Hichae.l Potter
MODIFIED: 2007-08-14 (l'I. Potter) !renoved

new PtnFcn
2007-09-21 (Ì1'. Potter) ladded
2008-01-08 (l'l . Potter) ! added

%argcheck
if nargin < 2,

disp (' usage : - lout, scalesl -=-CIHptn (data, scales, IT], IL], IEdim]
metrl , lpl , Iverbose] ') ;

return
end
if nargin < 3 ll

TW = 1;
end
if nargin < 4 ll

lag = 1'
end
ífnargin<5 ll

emdim = nax(2
end
if nargin < 6 ll

metr = 'che' '

end
ifnargin<7 ll

P = 1;
end
íf nargin < 8 ll

verbose = 0;
end

App. C: Details - Direct MS from CP

the zero-elinination for conpatibility,{ithJ

make co L ini t i aii z ati on

error checks in wrapper

4t

i sempty (Tiù) ,

isempty(Iag),

isenpty(emdim),
, size (data ,2) ) ;

isempty(metr),

isenpty(p),

st %initiaTize
Ns = length(scales);
if isvector(data) ,

data = makecol (data) ;

end

isempty(verbose),

%check bestsca-I e

mindata = mín(data);
maxdata = nax(data);
rangedata = maxdata - mindata;
if isscalar(rangedata),

rangedata = [rangedata rangedata];
end
mdata = size(rangedata,2) ;

6l

, [.t
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numcells = ceil(rangedata(1)/nax(scales))'?ceil(rangedata(mdata) /max(I
scales ) ) ;

66 while numcells < 10,
warning ( ' CIHptn : -max-scale-is-too-large-for-box-assist-method' ) ;

disp(' . . . reducing-scales') ;

scal-es = scales,/2;
numcells = ceil (rangedata (1) /rnax (scales) )'rceil (rangedata (mdata) /J

) max(scales));
7r end

disp(['attractor-covers-',nunZstr(numce1ls),'-ce]1s-at-max-scaIe'l);

%the action
ptn - ClHmexwrapper (data , scales , TI"i, lag , emdirn, metr , p, verbose) ;

t6 Ncorr = size (ptn , 1) -2*Tül+1;
ptn - ptn/Ncorr;

%reorganize data by e¡ldi¡n then scale
out = zeros(sizeçptn)) ;

sr l{emdim = max(emdim) ;

for k=L: Memdin,
out(:, (1:Ns)+(k-1)*Ns) - ptn(:,k+((L:Ns) -L)'?llemdim) ;

end

App. C: Details - Direct MS from CP

86 %reorganize into struct if necessary
temp - out;
out = struct(' emdim', ce11(1, length(emdim)),'scales',ce1l(1, Iength(J

emdim)) , 'Ptn' , ce11 (1, length(emdim))) ;

for k=1.: length (emdim) ,

out (k) . emdim = emdim (k) ;

out(k).scaLes = scaLes;
out (k) . Ptn = tenp (: , (L: Ns) +(emdim(k) - 1) *Ns) 

;

out (k) . Ptn = makecol (numZce11 (out (k) . ptn , 1) ) ;

% Keep zeros vafues - ¡emoyed jn PtnFcn
% % for j =7: Tength(out (k) . Ptn) ,

% % out(k).Ptn{j}(out(k).Ptntj}==0)=tl ' %renove zero val.ues
%% end

end
if length(emdim) --1 ,

out = out (1) . Ptn;
end
return

l0r

function ptn = ClHmexwrapper (data , scales , TW,
if -isinteger(TW),

error(' CIHptn : ClHmexwrapper : InvalidTlf ','
integer ') ;

end
if -isinteger(1ag) ,

106

t
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end
rr if -isinteger(emdim),

error ( 'CIHptn : ClHmexwrapper : InvalidEmdim' , 'variable-" emdim"-must-.!
+ be-an-integer') ;

end
if - i schar (metr) ,

error('CfHptn: CfHmexwrapper: InvalidMetr' , 'variable-"¡netr"-must-be-J
) a-string') ;

u6 end

if verbose == 0,
ptn - CIHptn_mex(data.', scales,Tlrl,1ag, emdim,metr,p) .' i

elseif verbose == 1,
t2t ptn - CIHptn_mexv(data. ' , scales ,TV't,lag, emdim,metr,p) . ' ;

elseif verbose -= 2,
ptn - CfHptn_mexfo(data.',scales,Thi,lag,emdim,metr,p).' i

else
error (' CIHptn : ClHmexwrapper : f nval- idVerbose',' improper-as s i gnment-J

+ to-variable-"verbose "') ;

126 end
return

error('CIHptn: ClHmexwrapper: InvalidLag' , 'variable-"lag"-must-be-an.L
-integer') ;

App. C: Details - Direct MS trom CP

Listing 3 (Cl-Hptn-mex.c) The correlation partition engine Cl_Hptn_mex.c (I{atlab mex-
function coded in C).

* CI_Hptn_nex,c

r Ca.i.culates Heaviside correLation integraT partition betøeen obse¡yatjons,
* HeTper function to CIHptn.n

" This is a IIEX-file for HATLAB.

B '! Created: 2007-05-25 llichael porrer
't DeveLoped fron TISEAN aTgorithns after the IÍATLAB fiÌe pdistnex.cpp (Revision: !

+ 1.1.6.2)

/* $Revision: 2.1 $ $Date: 20t7/07/23
l.l * tfOTE,í Tåis js a "narrow" Ímplernentati on of the TISEA¡I rÍbase routine

* That is, tåe box-assist nethod is applied on the fi¡st and seco¡d
* enbedding di¡nensions. this nay be sLower tåan a "wide" inplenentation,
* but ensures tåat the partitions wiLL be accurate for all- enbedding
* dirne¡sjons 2 and greater (i,e., not the naxinun only).

t8 0/

/'* SRevision: 2.0 .$ $Date: 2007/07/19 *,/
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/* SRevision.' 1.0 S SDate : 2007/05/25 ,t/

//* 1!,tt** *f, *," *a!+:!;L:! 'r:r,t't it:t,t'::Y:! 'tPREÁ¡IBLE & OPTIONS:r¡!'!:Yr: ':'!,! f *t-**:' ¡r¡! +*ãqrr* ** r.f +'r */

23 #include "nex.h"
#include <math.h>
#include <string . h>

/'! Conpil.e options - set with the -D option during nex conpile

* - DEBUGLAYER: [1:6] !restrjcts out code for debugging.
'r 15 uses al7 code.
': !6 reìÍoyes extra fifeout files
*' #define DEBUGLAYER 6
* - verbose: [0,1] lprint extra infornation to terninal
* #define verbose 7

* - FILEOUT: [0,1] !write arrays to fi.ie fo¡ late¡ anaTysis
* #define FILEOUT 1

#include "TiseanPorts . c"

App. C: Details - DirectMS from CP

/*:'*,t'!,r,t¡t:r¡!:t:!'rr!*!rf)!*¡rf,*!!***+HE¿PER FUIVCTIOilSf'ra"****rr'!:t)!:r,rr!¡r:ytrrert:!f'r*****t|//

/" Euciidean interpoint distance't/
void eucdist(const double'ix, const double *y, const int kmax, double

,r d)
{

d -- ssrt (sun((XI-YJ) .^2,2));

int k;
double theSum , compdiff;
const double t'XI 

, "'tt 
'double 't dI ;

58

XI = xi
Yf = yi
df = d;
theSun = 0;
for (k=0; k<kmax; k++, XI++, YI++) { /o sun over nuTtipTe

/*debug: // nexPrintf (""XI =%f\n" , (*XI)) ;

// nexPrintî("'tYI =%f\n" , ("YI)); "/
compdiff - ("Xl)-('*YI) ;

theSum += comPdiff'tcomPdiff ;

'k (df++) = (double) sqrt (theSum) ;
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68 /* Chebychev distance */
void chedist(const double'ix, const double'.y, const int knax, double.f

*d)
J
L

d = nax(abs (XI -xt) , tl ,2) ;

int k;
double theMax,compdiff;
const double *XI 

, *YI;
double r'dI;

XI = xi
yf = yi
dI = d;
thel'lax = 0 ;

for (k=0 ; k<kmax ; k++ , XI ++ , YI ++) { /" nax over nultipTe dinensions */
/" debug: // mexPrintf("xXl =%f\n" , ("il)) ;

// nexPrintf ("trYI =%f\n", (oYI)); ',,/
compdiff = (double) fabs ( ('*XI) - ("YI) ) ;

if (compdiff>theMax)
---+theMax = conpdiff;

* (dI ++) = thelilax ;

]

App. C: Details - DirectMS from CP

/'t llinkowski distance */
void mindist(const double'1'x, const double'ty, const int kmax, const.,

double arg , double 'id)
i

d = su¡n(abs ((fi-Xl)).narg,2).^(1/arg); % llinkowski

int k;
double theSum , compdiff;
double argRecip = L/argi
const double 'kXf , r'YI;
double "dI;

YI = yi
dI = d;
theSum = 0;
fOr (k=0;kckmax;k++,XI++,Yf ++) { ,t* sun over multipTe dinensions r,/

/" debug: // mexPrintf(".,XÏ =%f\n" , ("Xt11 ;

// mexPrintf("':YI =%f\n" , (*YI)); "/
compdiff = (double)fabs (('*XI) -('"YI)) ;

M. Potter
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theSum += (double)pow(compdiff, arg) ;

'T(dI++) = (double)pow(theSum, argRecip) ;

/" naxinun e.Ie¡nent functÍon -
double maxel-ement (const
{

d = nax(abs(XI-XJ), tl,Z);

int i;
const double *XI;
double Y, theMax;

vT _ .,,
^a - À,

theMax = 'ÌXIi /'* start,ltith i = 0',/
XI++;
for (i=1 ; i<m; i++ , XI++) {

f = (,.XI) ;

if (y>theMax) {
---------------- theMax = Y;

]
Ì
return thellax ;

r33

nax(x(:))'t/
double 'rx, const int

App. C: Details - Direct MS front CP

138

m)

/* observation constructor '!/
void ConstrObservationMatrix(const double txin, const

lag, const int n, const int m, double tyout)
{

nap observations into ¡n-djmensional phase space with 7ag Lag

assurning d-dimensional data, gives ¡ obse¡vatjons.
Arranged as n -by- n array,

int i,j,k;
int vbose = 0;
const double 'rx,'"Xf ,'tXf 0 ;

double 'ty;

/'! pointer x ¡uns around getting vaTues È/

x = xin;
y - yout;

M. Potter
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163 mexPrintf(" construct-data-\n")
mexPrintf("value1-=%f\n" , ("x) )
mexPrintf ( " vaIue2-=%f\n", ("x) )
mexPrintf ( " vaJ-ue3-=%f\n", ("x) )
mexPrintf ( " value4-=%f\n", ('*x) )

168 ]

for (j=0; i<n; i++) { /. j counts
d '/

/* pointeÍ XIg noves fron co7 to cof in x-array,'/
XIO = xi
if (vbose) {

x = XI0;
)if (vbose)

tt3 

---r 

mexprintf ("co1_va1ue-=%f\n" , ("x) ) ;

¡XI = XI0;
>k=0; /'t k counts through rows of observation5 = påase space coord,inates 't/

---------------- while (k<m) i
---------------- for (i=0; i<d; i++) { /* ¡ counts through rows of input = data !

è coordinates,t/
i78 ---------------r if (kcm) {

App. C: DetaìLs - Direct MS front CP

----------------

----------------

------)
r83 ---------------- ]

---------à----------------jmexPrintf 
("----transcribed-value-=%f\n", ("x));

x++;

^TT 
,

x++ ;

Ãîï,

---------------- ]
---------------- XI += Iag t'd; /* advance to "Lag" input col.s away,\/
---------------- x = XI;
---------------- ]

rBB )XIO += ¿; /,t next input coJ i; y has advanced by n "/

(^y.) = t"xJi
if (vbose)

through al-l points = co-ls of output/input

ls.l /'t Tagfunction't/
int lagfunction(const int
t
L

int numlag;

numlag=mO/mD;
if (m0 % mD == 0)

numlag - - ;

return numlag;
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//1t*tt***tt***)t:!*:t*:tr!*È*,r**tt*'tù4AINtr*r?itrlrt+rl*!)t)rrtttJ.ttrttttt-**-^r-^.-^+-:-^\*tt//

/'t the gateway function "/
2r)8 void nexFunction(int nlhs, mxArray '!plhs [] , int nrhs, const mxArray 'r.t
+ prhs [] )

t
L

int status , numCoords , nunPoints , numscales , numObs , numlags , J
) numCols;

int lag , Twindow , embeddimmax , *currmatrixdims 
;

int i,j,k,m;
2ti char netric [4];

FILE 'kdistfid;
double '?x, scalarArg;
double *'eDim;

double 'repsvec ,'tepsvecO , t xi , *ptn;
218 mxArray t'Xembed,'?dist;

/r expect caTTing function as "CI-Hptn-nex(data, epsvec ,Twindow,lag,enbeddins,netric,!
- params) " "/

//ù ** * r¡ rt f * tt t * * 't 'r 't rr 
't 't 

)r * )t * * * * * tt ARGUIIE¡ITS ,t,t r! tr * rt * rt * *;! rr + rt:t * 'r * 't * * * r¡ * rI rt * rt//

223 /'t check for propeÍ number of argunents ,'/
if (nrhs<5) {

mexErrMsgldAndTxt ("CI_Hptn_mex : TooFewlnputs ",
" Two-input- argument s-required . " ) ;

] else if(nlhs>1) t
?tB mexErrl'lsgIdAndTxt ("Cl_Hptn_mex: TooManyOutputs",

" Too-many-output-arguments . ") ;

Ì

App. C: Details - DirectMS from CP

/* Check the type of the input array -- only works with doubTe */
233 if ( !mxlsDouble (prhs t0l ) ) {

mexErrMsgldAndTxt ( " CI_Hptn_mex : BadlnputTypê ",
" CI-Hptn-only- support s-real -DOUBLE-data . " ) ;

ì,
J

238 if (verbose) i
mexPrintf ("CI_Hptnmex- [ClHptn-helper-function] . . . \n") ;

mexPrintf ( " -CIHptnmex : - . . . proce s s ing-arguments \n" ) ;

Ì

24.1 /" DeaI with Input Data * /
/" c-reate a pointer to tåe input natrix x,,/

x = mxcetpr (prhs tol ) ;

/" get the dimensjo¡s of the natrix input x ,,/
24s numcoords = mxcetll (prhs [0] ) ;

numPoints = mxGetN (prhs [0] ) ;

mexPrintf ("-Input-numCoords-=%d\n", numCoords) ;
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mexPrint f ( " - Input -numPo int s -=%d\n ", numPo int s ) ;

if (FTLEOUT) {
Write0ut (x, numCoords , numPoints , "DataIn. out") ;

fiTe copy for debugging ",r
x = mxcetpr (prhs [0] ) ;

Ì

/i! Deal, ¡titl¡ scales eps-vector,!/
/" create a pointer to t¡te sca-les vecto-r (eps-vector) */

epsvec = mxcetPr (prhs [ 1] ) ; /" this is a pointer ',/
epsvec0 = epsvec;

nurnScales = mxcetNumber0fElements (prhs [1] ) ;

mexPrintf ( " -Analyzing-%d-scales-concurrently\n", nunscales ) ;

if (verbose) {
mexPrintf("-epsvec (1)-=%f\n" , (*epsvec)) ;

/n Deai ç¡ith Thei L er window 't /
/t Check to make sure the Lag is a ¡eal scalar, ,t/

if (tmxrsDouble(prhs [2]) I I mxlsComplex(prhs [2]) I I mxcetN(prhs.f
[2])"mxGetM(prhsl2l) != 1) {

mexErrMsgTxt ("Twindow-must-be-a-scalar. ") ;

/* c-reate Twindow variable "'/
Twindow = (int) mxGetScalar (prhs [2] )
mexPrintf ("-Twindow-=%d\n", Twindow)

278

Ð

/'! keep a record of first elenent pointer!

/'* write out a text J

/o Deal with lag */
/" Check to nake su¡e tåe 1ag is a real scalar. o/

if (tmxlsDouble(prhsl3l) I I mxlsComplex(prhs[3]) I I mxGetN(prhs.L
[3] ) ''mxGetl{ (prhs [3] ) l= 1) {

mexErrMsgTxt ( " Lag--must-be-a-scalar . ") :

/zt create Lag variable,t,/
Iag - (int)mxGetScalar (prhs [3] ) ;

mexPrintf (" -Iag-=%d\n" , laS) ;

288

Deai with enbedding djmension vector 't/
OnIy care about the naxinun enbedding dinension for this algorithn 'r/
create a pointer to the integer e¡nbeddj¡ns array ,r/

eDim = mxGetPr (prhs [a] ) ;

enbeddimmax = (int) maxelement (eDim , mxGetNumberOfElements (prhs t4l ) )+
;

mexPrintf ( " - embeddimmax-=%d\n", embeddimmax) ;

/,, Deal with the netric,t/
status = mxGetString (prhs [5] , metric ,4) ;

tiis is a pointer r/
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if (verbose) {
mexPrintf("-Calling-%s,distance-metric " , metric) ; ,/" newline is !

observed beTow */
ì
J

2911 /" Deal with extra arg "/
if (nrhs>6 && ! mxlsEmpty (prhs t6l ) ) {

if (mxGetNumberOfEl-ements (prhs [6] ) == 1) { /,, scatar case ."/

scalarArg - (double)nxGetScalar(prhs t6l) ;

Ì else {
303 rnexErrHsgldAndTxt("CI-Hptn-mex:l{ixedfnputTypes",

" A dd i t i on a l- - i np u t - a r g ument s -mu s t - b e - the -J
+ same-cl_ass-as_X. ") ;

ì.)

] else {
scalafArg = 1.0 i /t default ¡linkowski met¡ic is 'taxicab' 't/

308 ]

if (verbose) {
if(strcmp (metric , "min") == 0)

---------------- mexPrint f ( " -with-p - exponent -%f\n ", s caI arAr g ) ;

3t3 else
---------------- mexPrintf ("\n") ;

]

App. C: DetaìLs - Direct MS front CP

//**ù**,r**,t2t rt:t)r'!f,:!f ,!**+******PREP/4RATIONSt:ttt*t' )t*rr*:r't:!r!'r:1 :!r?trr?ltì;trtrt**t 1,"/

3r8 if (DEBUGLAYER > 0) {
if (verbose) {

---------------- nlexPrintf ("-CIHptnmex: -. . . preparing-observation-arrays\n") ;

ì-
J

323 /* PREPARE OBSERVATTON (EHBEDDED) 'IIATRTX */
/'* arrange working natrix as (edims) -by- (nun?bs) // nunobs < nunPoints,t/
numlags = lagfunction(numCoords , embeddimmax) ;

if (verbose) {
__-_+ nle xpr int f (', _numla g s =,%d\n ", numla g s ) ;

328 Ì
numobs = numPoints - numlags * l"g;
if ( numObs " (embeddimmax) >= INT-HAX) {

mexErrlls g I dAndTxt ( " C l_Hptn_rnex : Embedl'latri xTooL arge ",
" Embedded-0bservations-matrix-has-more-ú

â elenents-than-the-maximum-allowed-size-J
+ in-MATLAB. ") ;

333 Ì
if ( numobs < L) {

nexErrMs g I dAndTxt ( " CI_Hptn_mex : Ernb e dMatri xTooSmal 1 ",
" Enbedded-0bservations-matrix-has-no-ü

eLements-with-Iag-settings . " ) ;
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1
J

338 Xembed = mxCreateNumericMatrix(embeddimmax, numObs, mxGetClassIDJ
+ (prhs [0J) , mxREAL);

xi = mxGetPr(Xembed);
if (verbose) {

---------------- currmatrixdims = (int*) mxGetDimensions (prhs t0l ) ;

---------------- lllexPrintf ("-input-díns=-%d-%d\n", ('r'currmatrixdíms++) , ('*J
? currmatrixdims) ) ;

3,r3 Ì
currmatrixdims = (in1 'r'¡ mxGetDimensions (Xenbed) ;

mexPrint f ( " -¡mbedding- i s-%d - dimens i onal - for-%d-po int s \n ", ç*'¿
-l currmatrixdims++), ('*currmatrixdims));

ConstrObservatíonMatrix (x, numcoords , lag , numObs , embeddimmax , .,

+ xi); /* actively fiffs the natrix */
if (FILEOUT) {

3i8 

--åxi 

= mxGetPr (Xembed) ;

¡Writeout(xi, embeddimmax,numobs, "Xembed.out") ; /^* write out a text!
- fiTe copy lor debugging */

¡distfid = fopen ("dist . out " , "w") ;

Ì

App. C: Details - DirectMS from CP

/" PREPARE OUTPUT (PARTTTION) IIATRTX T/

/" arrange output natÍix as (edims-pe¡-epsI /.../ edims-per-epsrV) -by- (t
nunPoints) tu/

numCols = numscales 'r' embeddimmax;
if (numCols " numObs >= INT_Ì,IAX) {

mexErrl{sgIdAndTxt (" CI_Hptn_mex : OutputTooLarge " ,

" Parti ti on-matrix-has -more-element s -than-theú
-maximum-allowed-si ze-in-MATLAB . " ) ;

i
plhs [0] = mxcreateNumericMatrix(numCols, numObs, mxGetClassID(J

) prhs [0] ) , mxREAL) ;

ptn = mxGetPr(pIhs[0]); /'t pointer to output natrix t/
363 if (verbose) {

---------------- currmatrixdims = (int*) mxGetDimensions (p1hs [0] ) ;

------------+llle xPr int f ( " - output - di ms =-%d-%d\n ", ('k c urrmat r i xdims ++), ('* J
+ currmatrixdims) ) ;

ì.)

368 if (DEBUGLAYER > 1) t
---------------- /* PREP¿ÃE TTSEAN BOX-IqSSTST ilETHODS */

) int const Il{ = 100 ;

I int const rI = IM :r Jl¡l ì'r IM i' Il{ ;

---------------- int N jh = (IM) '1- (Il'l) +1 ;

3'13 ---------------- double grideps = maxelement (epsvec , numScales) ;

)int 'r jh, '* jptr;

----------)// 
'r int jhtN jhl; int jptr[nunobs]; */

M. Potter
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---------------- jh = (int'r)mxCalloc(Njh, sizeof(int)) ;

---------------+jptr = (int'*¡mxCalloc (numObs, sizeof(int) ) ;

)if (verbose) {
---------------- mexPrintf ("-CIHptnmex: -. . . preparing-box-assist\n") ;
______) Ì

---------------- xi = mxGetPr(Xembed) ;

---------------- nbase2(numObs, embeddimmax, xi, jh, jptr, grideps, &II , &IM); J
/" ca77 database function */

¡if (DEBUGLAYER > 2) {

_---------------

---)--------------+

-+

.------.-_------

[0] ) ,

---------------- 
j

-.-.--.---------

-)

----------------+
-.---_----------

-.-.------------

à

393

/,' PREPARE FoR ¡fÁrN LjOP */
int jj , kk, jk, boxjj , boxkk, s;
int y;
double '*xj ,'*xj0 , "d, *d0 ,'kptn0 ;

dist = mxcreateNumericMatrix (1 , numcols , mxGetClassID (prhs.l
mxREAL) ; ,/* distance vector ,r/
d = mxGetPr(dist) i /" running pointer through disrance vector ,!,/

xi = mxcetPr(Xembed) ; /'t pointer to position of point xi ,'/
xj = mxcetPr(Xembed); /" pointer to position of point xj */
xjO = xj; /" first e-Zernent in Xenbed (first observation xj) */

App, C: Details - Direct MS Íiom CP

----------------+ /'! f )t * *:( )t:(:!:s:! *,! *:t *,r *,t * * )? 't )t * )t *ü¡AfÀI LOOP * tt * t? 't tt \t * )t )t * * a( trr(:(:( rs * *1t't * t¡ * * * 
'r //

---------------- if (verbose) {
----------------r mexprintf ("-CIHptnmex: -. . . beginning_main-loop\n") ;

4or ---------------- Ì

d0 = d;
ptno = ptn; /+ first ele¡nent in output partition natrix i/

____-_J for (i=0; i<numObs; i++) {
if (verbose) {

.r08 
---------------+ 

mexPrintf("--lnitial-point-xi-=-%d\n",i);

---------------- /* for a-l-l poínts j - use box reducti on of jh and jptr ,'/

----------------ì 
jj = (int)("(xi)/grideps)i /o ...J

4 ide¡tifies tl¡e points row box 't/

--=-+ 

kk = (int) (*(xi+1)/grideps) ; / identifies theJ
+ poÍnts co7 box ,',/

.¡r3 ----------------+ /*' Note: the above is !
¿ a "nartow" box-assist '''/

/* lirst e-7 ement in di s t vector 't/

----------------

--)
-..----------)

neighbouring row boxes */

M. Potter

/*' find conparison worthy points */
for (j=jj-1; j<jj+2; j++) {

PHD-App-Direct CPMS

/'t debug: if (verbose) rnexPrintf("j =%d\n",j); "/
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---------------- for (k=kk-1; k<kk+2; k++) { l" ... andl
+ for neighbouring co7 boxes "/
r8 ---------------- ---------------- /" debug: if (verbose) nexPrintf ("k =%d\n" , k) ; "/

------------)---------------- 

jk = baseindexfcn ( j , k, &II , &It{) ; /" set this!
+ neighbouring box ,'/

---------------- ---------------- for (v=jhljkl; y<jh[jk+1]; y++) { t* and I
+ co¡side¡ al-l points in it't/

---------------- 

------) 

if (fabs( jptrtyl -i) >= Twindow) { t" ... I
+ conside¡ Tvtindow correction 't/
tzl -------------J--------------- ) /" have Íound a comparison worhty point r'/

---------------- ---------------- xj = xjO + jptr[y]'tembeddimmax; /* advance I
+ xj pointer to that cofunn in Xenbed "/

----------)---------------- 
/'! debug: if (verbose) nexPrintf ("Conparison point xj = %d\n",1

- jptr[y]); n/

rz| ---------------- -------------r d = d0 i /t' restart at beginning of dist vector -'/

+ enbeddinmax) '!/

---------------- 

-------å---------------- 
eucdist (xi , xj , (int) enbeddimmax , d) ;

------)---------------- 
else if(strcmp(metric,"min") == 0)

133 

--+---------------- 

---------------- r,ltindist (xi , xj , (int) embeddimmax , scalarArg , d) ;

-)-----=-_----+ 

else if ( strcmp (metric , " che " ) -- 0)
--------------+---------------- -----------+chedist (xi , xj , (int) embeddimmax , d) ;

--)----------------+ 

if (FILEOUT) { /" ¡,/riteout distance yecro-r to file "/
---------------+---------------- ----------------) /" d-dg ; "/

438 _______-__-_____ ____-____,__-___ __9for (m=0; m<embeddimmax; m++, d++) {

---------------)------------)---------------- 
fprintf (distfid ,"%74. t 3e_" ,'.d) ;

----------------j---------------- -----------------)]

---------------- ---------------- ¡fprintf (distfid, "\n");
---------------- ---------------- i

Jj3

-_-_______-__-__ --------------+ if (DEBUGLAyER > 4) {

App. C: Details - DirectMS from CP

if (DEBUGLAYER > 3) {

/+ CalcuTate djstances for aLl embedding dimensjons (Iength J

if (strcmp (metric , "euc") -- 0)

-----)---------------- 

----------------+ / * Cl¡eck di s tances against scal es and sum correTation !
+ integr aI ', /

---------------- ---------------- ---------------- €pSVeC = epSVeC0 i /* restart at first scaie */
r48 ---------------- 

--)-----___+ptn 

- ptn0; /'! ¡estart at fjrst scaTe of point !
+ 7 "/

---------------- ---------------- ¡for (s=0; s<numscales; s++, epsvec++) { /* sun J

+ over scales (slow) 't/
---------------- --------------J---------------- /'! debug: nexPrintf ("eps is currently =%f\n" , (* epsvec))J

. . \l/

---------r---------------- ---------------- d = d0 i /'t restaÍt at beginning of dist vector 't/
---------------, 

-+-----r 

for (m=0; m<embeddimmax; m++, d++, ptn++) { J
) /n suì?? ove¡ enbedding djmensions o/

M. Potter
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453 _--------------- ---------------- 

--_-_-à
---------------- ---------------- ----------)

integraJ */
---------------- 

-----+--------------)___-_-___--_____ ______-+________________ Ì
___)__________-_-___ ________________ ]
---------------- 

-)

---------------- 

----)
---------------- ----------------+

---------------- ---------------- I //* endif of point j Twindow test t/

---)---------------- 

I /* end of point j';/
163 --.----...-.--.-

---)

/* debug: nexPrintf("edin is currently =%d\n",n+1); !

if ("d < t'epsvec) /o Heaviside correLation !

("ptn) += 1;

---------------- Ptn0 +=¡umCol s ;

---------------- j 7" end of nain Toop

---------------- if (verbose) {

j /" orguctAYtR s ':/
/* end of correLation integral update for point j "/

Lt" otnuctAyER 4 */

--------r 

mexPrintf ("-CIHptnmex: _. . . main_loop_completed\n") ;

----------------+ mexPrintf("ClHptnmex:-. . . done.\n") ;
______-_r Ì

I /" end of neighbour

I l* end of neighbour
xi+-embeddimmax ;

App. C: Details - Direct MS front CP

--+Ì /"' DEBU;LAYER 3 */

----------------ì /'!+ mxF¡ee ( jh); ,,/

/,' destroy nenory aLlocations before exit */

- 

/"
j /,, nrnuctAYER 2 ,!/
if (FILEOUT)

¡fclose (distfid) ;

/o- nxDestroyArray(dist); */

/.'
,/'t next

box coi '!/
box row "'/
next point i +/

point i'!/

r83

å

Ì else { /* nrnuctAYqR 1,'/
plhs [0] = mxCreateNumericMatrix (1 , 1 , mxGetClassID (prhs [0] ) , .t

mxREAL);
| ,/'* nnBuctAYER o .r/

¡nxFree (jptr) ; */

mxDestroyArray (Xenbed) ; 't/

Listing 4 (Tiseanpofts.c) Supporting elements ibr
the box-assist components) pofied fiom the Tisean

| /'! PoÍts of Ijsean utilities for fas neighbour searcåing
" created 2007//05/30 by llichaeT Potrer
ù GPL2 ¿icense

r "/

/* I'lrite?ut fcn

M. Potter

PHD-App-Direct CPMS

for debug usage 't/

the correlation partition engine (including
Fortran code [108] into C.

- c-21 - September 1-5,2008

Version 1.0.4



FEATIIRE CONVERGENCE UNDER

void I¡üriteOut(const double 'ry, const int m, const ínt n, const char J
str [] )

e{
int i;
const double 'rx;
FILE *fid;
x = yi
fid = fopen(str,"w");
for (i=0; i<n"n; i++, x++) {

fprintf (fid, "%I4. L3e-" ,'?x) ;

if (iZm -= m-1)
>fprintf(fid, "\n") ;

ì.
J

fclose (fid) ;

t9

/'! Write?ut fcn - for debug usage */
void WriteOutlong(const ínt '!y, const int

str [] )
{

int i;
const int 'rx.
FILE J.fid;
x = yi
fid = fopen(str, "w");
for (i=0; i<n'*m; i++, x++) {

fprintf(fid, "%d-" , "¡¡ '

if (i%m == m-1)
---------------- fprintf (fid, "\n") ;

]
fclose (fid) :

C: Details - DirectMS from CP

/" initialize natrices */
void SetAllValues (int
i

int k;

m, const int n, const char .t

/" XI=xi */
for (k=0; k<kmax ;k++ , x++) { ,t', tlj e.lemenrs in array */

"(x) = y;
I
J

4eÌ

/'t lndexing Íunction for base

int baseindexfcn(int a,
{

ox, const int y, const int kmax)

M. Potter

PHD-App-Direct CPMS

routines */
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51 return (('"IU) "' ((a + ('tII)) %('!Ilt)) + (b + (*II)) %(-* IH));

/ù Tisean port: "nbase2" function for fast
se void mbase2 (const int nmax, const

int jptr [] , const double eps ,

{
/* NITE: Tåis is a "naÍrow" inplementation of the lfsErq¡/ ¡nbase ¡outine

* That is, the box-assist nethod is applied on tàe fi-rst and second

't enbedding di¡nensions. Ihis nay be s.lower than a "wide" inplenentation,
'! but ensu¡es tåat t¡e partitions r+iI.l be accurate for aLl' embedding

't djnensions 2 and greater (i. e., not the naximun only).

int i,n,Njh,BTF;
int vbose = verbose;
const double ':'y1 ,':'y2;
FrLE 'tbif_fid;

FECG

1J

neighbour searcùing - narrow version 't/
int mmax , const double *y , int jh [] ,.1

const int 'k II , const int 'r IM)

/þNOTE no vaiue for id prevents "base" fron being cal-l-ed when nmax =1. CalI function
after enbedding. 't/

/* --FORTR.áIJ

do 10 i=0,in"in
i0 ih(i)=o ù/

C: Details - Direct MS from CP

/ ^* - -cpp
Njh = (int¡ (r'IM) " (*Il{)+L;
/'t initiaTize to zero done at nxCafToc - beTow unnecessary"/

/'* SetÁl I YaI ue s ( jh,0 , N jh) ;
setAllYalue s (jptr, 0, nmax) ;'!/

if (FrLEour) {
if (DEBUGLAYER < 6) {

VJriteOutLong (jh, L, Njh, "jh0. out") ;

copy fot debugging 't/
IltriteOutLong (jptr, 1, nmax, " jptr0' out") ;

copy for debugging 't/
1
J

ì-
J

e4 yL

if

- - FORTRÁN

do 20 n=1,nnax
i =in'* nod ( int (y (n, 1) / eps) +i i,

2t jh(i)=jh(i) +1 "/
--cpp

= yi

(vbose) i
mexPrintf ( "-grideps,=-%f\n", eps) ;

M. Potter

PHD-App-Direct CPMS

/" first point r'/

! nake histogran
in) +nod(int (y (n , nnax) / eps) +ii , in)

/o write out a text fiTe

/"'write out a text fife
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Ì
if (FTLEOUT) {

bif-fid = fopen("bif.
]

for (n=0; n<nmax; n++, y1
y2 = yt+L;

natrix '? /
l0.r

if (FILEOUT) {
---------------- fpri nt f (b i f_f i d, " %d\n ", B IF ) ;

---------------- /t debug: nexPrintf ("y1/eps , y2/eps = %f %f\n" , *y1/eps ,,ty2/eps) ;

BIF = baseindexfcn((int) ('ty1leps), (int) (".y2/eps)

ì.
J

14 if

out", "w");

i
jhIBIF]+=1;

(FILEOUT) {

+= mflâx) {
/" yl is first coord, y2

/"' Note: the above is a

see top't/

if (DEBUGLAYER < 6) {
WriteOutLong (jh, L , Njh, "jh1 . out ") ;

for debugging "/
]

ì.
J

/* -_FORTRÁ¡i

do 30 i=l,im"im
it

App. C: Details - Direct MS from CP

nexPrintf("BIF = %d\n",BIF): 't/

121

for (i=1; i<Njh; i++)
difference "/jhtil += jhIi-1];

if (FILEOUT) {

30

is next in Xenbed !

"narrow" box-assist

, rr, rl{);

jh(i)=jh(i)+jh(i-1)
- -cpp

t29

if (DEBUGLAYER < 6) {
ÌfriteOutlong(jh,1,Njh,"jh2.out"); /'r write out a rext îi7e copy I

for debugging tr/
I
J

Ì
/* --f'oRrR¿¡/

¿o 49 n=(nnax-7)'!id+1,nnax ! îill Tist of poínters
i = in * nod ( int (y (n, 1 ) / ep s ) + i i, in) +no d ( int (y (n, nnax ) / ep s ) + i i, in)
jptr(jh(i))=n

40 jh(i)= jh(i) -1 1!/

/'t --cpp "/
yL = yi
for (n=0; n<nmax; n++) {

yZ = yL + I; /* Note: "narrow" box-assist ,!/
í = baseindexfcn((int)(*y1leps), (int)("y2leps), II, IH);

/'t write out a text fiTe copy !

-J

/* start at 7, not zero because of J

M. Potter
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jhti] --; /'t decrease jt first to keep 0:N-1 indexing r'/
jptrIjhIi]l = n;
/,' jh[i]--; //...not here',/
/* jptr[ù(jh[i])--l = y1; // doesn't work because jt jncre¡nents poast J.

+ assignnent */
r4:r Y 1 += nmax ;

Ì
if (FTLEOUT) {

Write0utlong(jh,1,Njh,"jh3.out"); /," write out a texr fiTe copy for !
- debugging "/

Writeoutlong (jptr ,1 , nmax, "jptr. out") ; /* write out a texr file copy for !
+ debugging,',/
r.re fclose (bif-fid) ;

]

r54 /* Tisean port: "nbase2" functio¡ for fast neighbour searcåing - wide version */
void mbase2wíde(const int nmax, const int nmax, const double *'y, int.t

r jh[], int jptr[], const double eps, const int ',fI, const int *IH)
{
/'t NOTE: Il¡is is a "t¡ide" inpTenentation of the IfSE,4rV nbase routine

': That is, the box-assist nethod is appTied on tåe first and last
¡59 * enbedding di¡nensions. This nay be faster than a "narrow" inpl-enentation,

* but t¡e partitions nay be jnaccurate for afL enbedding dinensions -less
*" than the ntaximun.

App. C: Details - Direct MS trom CP

16r int i,n,Njh,BIF;
int vbose = verbose;
const double 'ryL,"y2i
FrLE *bif_fid;

/'\NOTE no value for id prevents "base" fron being ca77ed when nnax =J. Ca77 function !
+ after enbedding. "/

/'t --FoRrRÁl,i

do 10 i=0,inùin
10 jh(i)=o */

t'11 /'! --Cpp "/
Njh = (int) ('rIM) " ('tIM)+1;
/ù initialize to zero done at nxCaLToc - beJ.ow unnecessaryr,/
/o SetÁllYalues(jh,0,Njh) ;

SetAlLvaLues(jptr ,0,nnax) ; 't/
t'ie if (FILEOUT) {

if (DEBUGLAYER < 6) {
WriteOutlong( jh, L, Njh, " jhO. out") ; /'! write out a text file !

4 copy for debugging */

M. Potter
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WriteOutlong(jptr,1,nmax,"jptr0.out"); /* write out a texr îi1e J
+ copy for debugging */

Ì
r8{ }

/'t --FORTR.A¡i

do 20 n=l,nnax ! nake histogran
i=in'tnod(int (y(n, 1),/eps) +ii , in) +nod(int(y(n, nnax) /eps) +ii , in)

20 jh(i)=jh(i) +1 */
Itrg /o --Cpp "/

y! = y; /,' fi¡st point ,t/

if (vbose) {
mexPrintf ( "- grideps-=-%f\n", eps) ;

re1 i
if (FTLEOUT) {

bif_fid = fopen("bif. out" , "w") ;

]

ree for (n=0; n<nmax; n++, y1 += nmax) {
yZ = yl+mmax - i- ;

Ð Xenbed rnatrix */

App. C: Details - DirectMS from CP

BIF = baseindexfcn((int) ('ty1leps), (int) (t,y2/eps), II, IM);
if (FTLEoUT) {

201 >fprintf(bif_fid , "%d\n" , BIF) ;

----------------+//,t debug: nexprintf("yt/eps, y2/eps = %f %f\n,,,ty7/eps,ty2/eps);

]
jhIBIF]+=i;

2oe ]
if (FTLEOUT) {

if (DEBUGLAYER < 6) {
WriteOutlong(jh,1,Njh, "jhl.out") i /'t srite out a rexr fite copy !

+ for debugging ,t/

Ì
zr4 Ì

/o --FoR?'Ri4.iv

do 30 i=l,in'tin ! accunulate !
r it

30 jh(i)=jh(i)+jh(i-1) ';/
/o --cpp "'/

zie for (i=1.; i<Njhi i++) /t start at t, not zero because of !
- difference t/

jhlil += jhIi-1];
if (FTLEOUT) {

if (DEBUGLAYER < 6) {

nexPrintf("BIF = %d\n" ,BIF): ."/

7" yl is first coord, y2 is last in J

,/" The above is a "wide" box-assist - J

see ¡/ote at top "/

M. Potter
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221

WriteOutLong (jh, 1 , Njh, "jh2 . out") ;

for debugging't/
Ì

- - FOÃ TR¿ÀI

do 40 n= (rnnax - 7) È id+7 , nnax

]

i=in'tnod(int (y(n, 1) /eps) +ii , in) +mod(int(y (n,nnax) /eps)+ii , in)
jpù(jh(i))=n

40 jh(i)=jh(i) -t "/

YI = Y;
for (n=0; n<nmax; n++) {

yZ = y\ + nnax-L; /* Note: "wide" box-assist "/
i = baseindexfcn ( (int) ("y1leps) , (int) (t'y2/ eps) , II , IM) ;

jh ti ] - - ; /'t d.ecrease it first to keep 0iN-1 index ing o/
jptrIjhIi]l - n;
/" jh[i] --; //. . .not here 't/
/o jptr[*(jh[i.])--l = yL; // doesn't work because it increments poast J

- -cpp

239

assjgnment "/
yl +- mmax;

Ì
if (FILEOUT) {

trùriteOutlong(jh,L,Njh,"jh3.out"); /': write out a text fiTe
debugging */

WriteOutlong(jptr,1,nmax,"jptr.out") ; /'! write out a text
debugging */

fclose 6bif-fid) ;

App. C: Details - Direct MS front CP

241

/'t write out a text fiTe copy !

! fill list of pointers

C"4 ConvertÍng the Partition into EntropÍes

As described in Sec. 4.J.3, the novelty of the proposed direct method is that the MS is

calculated directly from the Hölder and Mandelbrot entropies defined in (a.140) and (4.141).

These in turn are calculated fiom the correlation partition. These entropies have similar but

different forms from their histogram partition counterparts (4.125) 'ànd (4.127). In fact, an

analysis of the formulae demonstrates that the both forms of partitions can be harmonized as

M. Potter
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follows. LetZr(e) come from a histogram partitioning with rz active cells. Define

mE

w(.

=Ul't,".,Pn]

=l7t,. .' , Prf

as vectors indexecl by i of length Ne,i¿. Equivalently, for a correlation partitionZ,,(e), define

mr=lÞt,.'.,þNf

w.=[lN,...,IlNl

as vectors indexed by i but of length N, By construction, then

f u.(i) = 1

for both cases. It fbllows that the MS scaling entropies 7 q(q, e) andT r(cl, e) (and the RS scaling

entropy H,,) can be written exclusively and uniformly in terms of these vectors. Specifically,

these are enhanced to three other variables using the vector of q values supplied by the user as

App. C: Details - Direct MS from CP

*ld =*.r@-D

Zlt =2r,.*
i

,Yt =^!) .lZt¿o)

(c.4)

(c.s)

Yq

*Yt Yq

where the "dot-operations" indicate element-wise operations after the MatIab syntax. This

enhancement to correlation partitioning is implemented in the Matlab fïnction PtnFcn.m.

As a consequence of the new vector variables, the definitions of the MFA scaling entropies

Yq

(c.6)

(c.1)

M. Potter

PHD-App-Direct CPMS

(c.8)

(c.e)

(c.10)

(c.11)

(c.12)

- c-28 - September 15,2008

Version 1.0.4



FEATURE CONVERGENCE UNDER ICA: FECG

can be harmonized for both histogram and correlation partitions as

Ho(q,e)- - log zLot .l 0 - Ð Yq

Tq(q,e) =Ðr,. * rt:'t' *logm, Yq
j

Y,,(q, e) =Z*, . +. rt! . *log(m., . * ry\ Vq
i

These are calculated in the RSpectrum.m and calcMSentropies.m functions.

C.5 Summary

This appendix has covered the details of the implementation of the novel direct calculation

of the Mandelbrot spectrum from a correlation partition. This technique was used in this

work for the analysis of MFA f'eature convergence. Explicit descriptions of (i) the box-assist

method fì'om [08], (ii) the definition of the correlation partition, and (iii) the conversion

of the correlation partition into the three scaling entropies has been provided in harmonized

f'orm. The l{atlab and supporting C code has been included in Sec. C.3, but is also available

electronically from !ùI¡/ri'l. ee . umanitoba. ca/-lcinsner/pro j ects/. Note especially that a

bug was identified in the original TISEAN mbase2 . c algorithm [ 08], but is corrected in this

implementation.

The direct calculation of the MS from CP has been verified 1177, Potter and Kinsner

(2007)), and is a tool ready for application in MFA. Future study is recommended, however, of

(i) the significance of the lack of symrnetry in the Mandelbrot entropy, and (ii) the sensitivity

of the MFA spectra to ernbedding dimensions.

App. C: Details - Direct MS from CP

(c.13)

(c.14)

(c.1s)
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D.1- Overview

This appendix covers the background on the wavelet-based approach to time series MFA.

The wavelet-tran,tþrnt modulus-maxinta (WTMM) approach fbr the definition of a mutifiactal

panition function described here was eliminated fiom the experimental procedure to simplify

the scope of the work. It is included for completeness since the background on MFA scaling

in Ch. 4 was designed in such away as to unify the "fractal function" approach of the WTMM

with the traditional attractor-based "fractal density" approach used in Ch. 6 and App. C in a

measure theoretic paradigm.

AppendÍx I)

Wnvpr,nr-Basro MFA

D.2 WTMM: MFA of Fractal Signals

Recall Sec. 4.6. I considered an MFA characterization of ECG via attractor reconstruction.

Here, an alternative method for MFA treats the ECG signal x(r) as a fractal function. As with

all MFA, what is required is a coarse-graining of a measure and a partition function. The

wavelet .formalism directly identifies wavelet cofficients as coarse-grained measures [54,

(1ee1)1.

The contirutous wavelet transþrm (WT) is a well-known signal processing technique [29]

that maps functions in x(Ð € ¿2(R) into a surface W¿lxl(a,r) over IR* x lR.. Defined as the

M. Potter
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Fig. D.l DOG smoothing wavelets: (a) DOG- 7, úq); (b) DOG-2, ús,2.

convolution with a scaled and translated wavelet function rlt, the WT is

w,¡,lx)(a,,) =: [*-ft>,t,(+)-' ro.1)

This has many utilities depending on the form of rlt. The ABM-technique relies on smoothing

wavelets such as derivatives o.f the Gaussian (DOG) function,

App. D: WTMM Review

d' .:
Úsl o 

drrt-'

some of which are shown in Fig. D.I

0
t

For a f,xed a, the curve Wa,lxl@,r) is a smoothed version of the original signal x(t),

Fig. D.2. As such, it contains a lot of redundancy. However, by changing the value of the

scale a, the "window-size", or scale, of the smoothing is changed. This "wavelet zoom"
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feature 1129, Mallat ( I 998)l for functions is very similar in principle to the coarse-graining of

measures by e-coverings. In fact, Mallat and Zhong [31,1992] have demonstrated that the

redundancy of the WT surface could be reduced by looking not on the full support (a, r) e IR+ x

lR, but the support of the WTMM, which contains all the information about the singularities

in the tïnction.r(t), and can often reconstruct the entire signal [l29, Mallat (1998)]. In the

discussions on measure singularitie,r in Ch. 4, Hölder exponents, and theír relationship to

non-differentiability, were discussed. Here, a function-based analog is used to quantify the

non-differentiability of the function .r(t) by the Lipschitz-Hrilder exponerxt, h.

Definition D.l (Lipschitz-Hölder Exponent, h). Let.x(t) be a f'unction on IR. Then.r has a

Lipschitz.-Hölder exponent h(t) at time r if for some polynomial P,(f) and some constant C

Fig. D.2 Wavelet smoothing: (a) signal x(Ð; (b) smoothed by DOG-I WT

2Aó8
Time (s)

6
ïime (s)

App. D: WTMM Review

lx(t + e) - PnQ + 6)l < Cplm't

where n = Lh(t)). Written shorthand, x(t + e) - lrln'Ò
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As observed before in the measure-theoretic case, dilïerentiability and non-diff'erentiability

are quantifìed by this definition of scaling exponent. Note that most of the usual classes of

smooth functions are characterized, by a single Lipschitz-Hölder exponent on their entire sup-

port. If this single value applies everywhere, the spectrum of Lipschitz-Hölder exponents

will be called degenerate. For example, polynomials of order n will have degenerate expo-

nent spectrum equal to h(t) = n for all t. Similarly, smooth functions x(Ð e C"(lR) have

h(t) > n. Analytic functions have a degenerate infinite spectrum, h(t) = oo. That said, non-

differentiability can now be quantified, with such examples as a discontinuity at t, h(t) < 0, or

a Dirac Delta singularity, h(t¡ = - 1 . Integration of a function x has the rather straightforward

property of increasing the exponent by one, h.¡ ,(Í) = hr(t) + 7.

In the presentation of Ch. 4, the MS of a measure was expressed as the curve of Hölder

exponents and Hausdorff dimensions, (a,Ds(u)), where the Hausdorff dimension measures

the equisingular set A,,, D¡(a) = Do(A*). The MS for a function is no different except the

equisingular sets are now defined

App. D: WTMM Review

resulting in a MS, (h,Dy(h)). Since the sets A¡ c IR., it follows thaÍ. Dy(h) < l. The MS of a

function therefbre is expressed in a space like Fig. D.3.

Now the discussion will return to the WTMM in order to describe how the (h, Dy(h))

spectrum can be estimated. As mentioned, the modulus profile of the WT surface is smooth

due to the nature of the smoothing wavelet, but local maxima exist in the modulus profile

related to the singularities in the original signal x, Fig. D.4. By considering only these local

maxima points of the surface, what is observed is the bifurcating "tree-like" effect as the

wavelet scale a becomes finer, Fig. D.4(c). This support is the WTMM-tree, denoted 7'. Note

that at each scale, the WTMM-tree has finitely many branches. That is, for every scale rz,

At, = ltllz(t) = 7x¡
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the WTMM of the WT profile has mapped the signal x(r) into a finite sequence (i,e., e F).

Functionally, this is exactly the same action as the measul'e coarse-graining, Fig. D.4(d). Thus

for the charactenzation of the signal by scaling analysis, all that is required is a Boltzmann

partition function defined from the finite sequences of the WTMM-tree, [ 54, ABM (1991)]

o.2

App. D: WTMM Review

Fig. D.3 The WTMM MS of a function: Ds(h) vs. h.
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zn(x, ct I ò = L lwr¡.x1ça, t¡lq

Then, exactly as in the previous derivation fbr the Hölder and Mandelbrot entropies in

Ch. 4, the (h, Do(h)) relationship can be estimated parametrically by q as [ 1 54, ABM ( 199 1 )]

0.ó
h

h(ct\x t Y lwrlxl(a'Ðlq
loga .Ç. Zs(x,q I a)

te,t @)

Do(q)= : Y lY't'-lxKa'rYl'
tos.e 4 ZBQ,qla)

teTk)

teT(a)

ñoU.U

The above is very similar to the expressions in Ch. 4 for the Boltzmann partition function

from a histogram-based coarse-graining, except now the coarse-graining is parameterized by
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a instead of e. Note however that here the tinte-ordering is an intrinsic element of this scaling

analysis. Time-shuffiing the signal changes the singular nature of the signal completely, since

it is reduced essentially to white noise! Not only that, the MFA scaling by the WTMM t'ormal-

ism is characteristic of a particular time interval. It is of interest for future work to determine

whether the cyclostationary nature of the ECG implies that a WTMM-MFA is essentially in-

variant when applied over many cycles (i.e., is robust to the selection of time-windowing).

D"3 \ryTVIM CalculatÍon

Here a direct technique for multifractal analysis that considers the multifractal singularities

(non-differentiable points) of the time series is consideled, hereafter referred to as the ABM-

technique.

Consider a real signal s. Then the continuous wavelet transform of s,W,¡lsl, is a surface

on IR2

App. D: WTMM Review

w,¡,[sJ@, ù = : f*rft lt, (+).'
characteristic of the special L2 function tlt called the srnootlting waveler. For further coverage

of wavelet theory, the reader is ref'erred to [ 129].

Mallat and Hwang U30,19921 demonstrated that the redundancy of the WT could be re-

duced by looking not on the full support R2, but the support of the wavelet transþrm tnodttlus

maxinta (V/TMM)-tree. The modulus profile of the WT surface is smooth due to the nature

of the smoothing wavelet, but local maxima exist in the modulus profìle related to the singu-

larities in the original signal s. By considering only these local maximapoints of the surface,

what is observed is the bifurcating "tree-like" effect as the wavelet scale a becomes finer. This

WTMM-tree, T, carnes all the information of singularity scaling of the signal ,s, by defining
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a partition function 2,,(a) fromT by l15al[16]

zq(a) = Z(*rt'1ø',Ðl)n

Research 1217, Struzik, (2000)l has shown that local Hölder exponents estimated from the

slope of togrl+Vr¡sl(a,ùlvs. logra is unstable. Thus a global Hölderexponent is measured

fromZ,, by introducing the weights W¡,[sl@,t eT)

from which the global Hölder exponent

wú[s](q,a,t) =

, , \ ,. Zter Wúlsl(q,a,t)loglWr¡s1ça,¡l
i\q) - I'jì r"rrrl

(lwr¡s¡1o,t¡l)n

is caiculated.r Here, the reader should observe that a probability measure (Fig. D.a(d)) has

been created on an unusual bifurcating support (Fig. D.4(c)) using the WTMM-tree.

The Hausdorff dimension of the subset with Hölder exponent h, Ah, is then calculated by

the formula

Zn@)

App. D: WTMM Review

; t eT

related to (D.l I ) by the MS thermodynamic formalism.

Ð.4 Sumrnany

Do@) = ls
. L¡er Wúlsl@,a. r) Iog W,¡[s7(q,a,t)

(D.e)

This appendix briefly introduces the WTMM approach as a convenience to the interested

reader. The WTMM approach to MFA is based on scaling paftitions of modulus maxima co-

efficients from a smoothing wavelet transform. This approach was discarded from the present

work to simplify the scope of the experiments. Research is required, however, to analyze the

log(a)

(D.10)

1 a --+ 0 are the finer scales.
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relationship of the WTMM-approach (which is applied along the time axis) to

attractor approach (which requires an embedding and is applied in phase space).

edge of the author, no connection between the contrasting approaches has been

literature.

App. D: WTMM Review

the traditional

To the knowl-

studied in the
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