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10 my wife, who, at the prime of her life,
married not only a man of many weaknesses,

but a thesis as well.



ABSTRACT

Independent component analysis (ICA) is a revolutionary class of algorithms for
the blind separation of independent sources from an instantaneous mixture. In theory, ICA
is stronger than classical approaches to signal demixing because ICA is higher-order, non-
parametric, and data-driven. The application of ICA to electrophysiological systems is of
particular interest, and the fetal electrocardiogram (ECG) separation problem is a specific
example that has been longstanding in the literature. Research in ICA, however, has not
provided a definition of performance measurement that is consistent with both ICA theory
and practice. In particular, the practical performance measures of classical signal processing
are limited by being second-order and model-driven. Since traditional measures do not apply,
how can a signal recovered blindly through ICA processing be measured for accuracy?

This thesis proposes that feature convergence be used as a practical measure of ICA sep-
aration performance. Arguments in principle are made regarding the significance of this ap-
proach to signal processing. Using a novel simulation of the fetal ECG separation problem,
an experimental study of feature convergence for the measurement of separation quality is
also presented. In particular, this experiment is designed to investigate the relationships of
nonlinear and higher-order convergence measures to the fundamental converging elements of
ICA optimization (i.e., cost functions and wei ght matrices). Results demonstrate that (1) two
categories of convergence apply to ICA cost functions (sub- and superlinear), (ii) two simi-
lar categories of convergencé apply higher-order features (entropy and kurtosis), and (iii) the

convergence of nonlinear dynamical features is similar to entropy but is sensitive to nonlinear
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effects through the embedding dimension. In particular, these results demonstrate that demix-
ing levels equivalent to 20 dB signal-to-noise ratio (SNR) can be identified with a statistical
match of signal kurtosis, but is insufficient for the estimation of entropy or nonlinear fea-
tures (i.e., multifractal spectra). Furthermore, preliminary results indicate that random phase
correlation in the source signals can introduce bias in most feature estimation.

This thesis presents several novel contributions, including: (i) a discussion of ICA per-
formance using convergence profiles; (i) an analysis of multifractal feature convergence un-
der ICA; (iii) an improved model for the synthesis of ECG from beat annotations; and (iv)
a technique for the direct calculation of the multifractal spectrum of scaling indices from a

correlation partition.
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Chapter I

INTRODUCTION

In theory, there is no difference between theory and practice.
But, in practice, there is.

—Jan L. A. van de Snepscheut

1.1 Motivation

The difference between theory and application is often a challenging problem in the design
of signal acquisition and processing systems. Specifically, practical systems that deal with the
classic problem of noninvasively acquiring, processing, and interpreting in vivo biological
signals are subject to that challenge, and must undergo theoretical and practical scrutiny. The
class of body surface potentials (BSP) is a broad class of practical biomedical signals used
in current medical practice. These signals are recordings of electrical potentials at the skin
surface, such as: the electromyogram (EMG) concentrating on muscle tissue; the electroen-
cephalogram (EEG) concentrating on the skull; and the electrocardiogram (ECG) concentrat-
ing on the the thorax. The BSP methodology is a convenient method for clinical study of
internal systems since the non-invasive nature of these recordings is beneficial to the health
and comfort of the patient. The BSPs, however, also share the drawback of measuring the
electrophysiological activity of their respective internal sources (the muscles, the brain, and
the heart) only indirectly, and are subject to the signal-mixing problem. Though the biochemi-

cal reactions producing electric currents are independent and separately localized, they are all
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transported to the skin surface and recorded at the electrodes in a mixture. This signal-mixing
problem is a common issue in applications involving indirect measurement techniques. The
acquired many-sensor signals are composed of multiple source components and affected by
an indirect mixing channel. To analyze the properties of the original sources, therefore, one
must counteract the mixing channel by performing signal separation.

There is a long history of signal separation approaches in signal processing. Classical
signal separation theory is focused primarily on the conceptualization of signals in Fourier-
space: i.e., power distributions over frequency bands. If the sources dominate different regions
of frequency (spectral regions), then separation can be accomplished by filtering the acquired
signal to the appropriate bandwidth. For this reason, the application of electrophysiology
analysis has matured in spite of the signal-mixing problem. The ECG is primarily a recording
of the heart because, in practice, the geometrical proximity of the sensors to the heart, the
frequency-dependent conductance of the body, and the absolute amplitudes of the heart sig-
nals make them relatively dominant at the sensors. Likewise for the EEG and EMG signals.
Over time, the utility of the classical theory of “power-distribution” (i.e., Fourier decompo-
sition) has been enhanced with modern extensions, such as time-frequency decompositions.
These extensions have resulted with practical signal-separation techniques such as decorrela-
tion, radar, and denoising. Notwithstanding these advances, the foundation of classical signal
processing remains rooted in distributions of power, and the signal-mixing problem is over-
come by power separability.

New solutions to the signal-mixing dilemma, however, have been proposed recently that
relax the assumptions made in classical signal processing. These new solutions are based on
a theory of statistics and not power, and have the potential to radically change the practice of

signal separation. As a new theory, however, there must also a potential for new discrepancies
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Statistical Signal Processing

Gaussian Non-Gaussian
Distributions Distributions
Power / Variance HOS
PCA Separation ICA Separation

Fig. 1.1 The development of “intelligent” signal processing.

between theory and practice.

1.2 Problem Definition

This new theory for signal separation revolutionizes the statistical assumptions commonly
used in engineering: it allows for non-Gaussian distributions and statistics. In its broad-
est form, this development in signal processing has been coined “intelligent signal process-
ing” (ISP) [80, Haykin (2001)], since the methodologies are flexible, and thus effectively
“smart” by adapting to the arbitrary distribution of the data. That is, the Gaussian-based
model-driven approach of a century of signal processing is replaced by an adaptive, data-
driven approach. This extension beyond the physical, analytical, historical, and computational
elegance of the Gaussian model has been a very difficult challenge, only recently empowered
by pioneering minds, soft computing paradigms, and vigorous computer technology.

The power-based solutions of classical signal processing can be considered optimal in a
Gaussian sense, since power is essentially a second-order statistic (i.e., variance). The tools of

ISP are, consequently, the higher-order statistics (HOS), Fig. 1.1. It is this new theory of HOS
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that requires evaluation in practical application. Since the underlying assumptions of classical
theory have been questioned, and new approaches developed, the research community must
also address the new challenges of applying these approaches in practice, since the classical
theory and common experience no longer apply.

To address the signal-mixing problem in particular, a class of ISP techniques structured
on HOS-based transformations have been proposed called independent component analy-
sis (ICA). ICA is a theoretical extension to a foundation in traditional signal processing:
namely, principal component analysis (PCA). PCA is a linear transformation which takes the
data to orthogonal output components of maximum variance (i.e., second-order statistics, or
power). In the context of the signal-mixing problem when localized and uncorrelated sources
are observed as a mixture through a linear instantaneous mixing channel, PCA is optimum in
the sense of signal-to-noise ratio. ICA, however, is based on new and different assumptions.
Here, the channel model is equivalent, but ICA takes the data into maximally independent
output components, Fig. 1.2, in the presence of higher-order statistics. Specifically, while
PCA is blind to HOS, ICA uses the HOS present in the observed distributions to adapt its
linear transformation to account for “higher-order correlations” in the mixture. Considerable
interest has been shown in ICA, since it is adaptive to the HOS in the unknown sources non-
parametrically, and therefore it offers a means of achieving blind source separation (BSS).
That is, the processing of a linear mixture of unknown sources (either time signals or images)
into separate sources can be done without first modelling the unknown sources parametrically.

While the ISP paradigm breakthrough has spawned a rapid development of BSS signal-
demixing algorithms, the study of the performance of these algorithms has remained relatively
unchanged from the classical approach. Primarily, the evaluation of an ICA algorithm pro-

ceeds in two parts: (i) by theoretically or empirically evaluating the algorithm applied to a
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Max. Independence

Fig. 1.2 PCA and ICA separation achieve different output components.

simple (non-blind) signal model; and (ii) by applying the algorithm to actual (blind) data for
subjective evaluation. In the second part, numerical measures are very difficult to apply, given
that the sources are not available for analysis. In the first part, the primary tools for mea-
suring ICA accuracy is either: (i) signal-to-noise ratio (SNR), or (ii) Amari’s performance
index (API), which is a recent confusion-matrix-based separation measure that matches the

ICA conditions. Apparently, it has not concerned the researchers in the field that
(a) SNR is power-based and inconsistent with the ISP paradigm;

(b) Amari’s performance index, while theoretically consistent with ISP, provides little prac-

tical insight into the accuracy of feature extraction from the ICA output; and

(c) The relationship between the theoretical analysis and the practical application in the

two-part evaluation scheme is often very weak.

These three limitations are persistent in the literature, and demonstrates a compelling need to
re-evaluate the concept of meaningful performance measures in the context of ISP in general,
and specifically, ICA. Otherwise, beyond any power-based characterization, the accuracy of
solutions to signal-mixing problems will be in question. Thus, it is critical that researchers
make headway in the use of signal processing quality measures that are meaningful in the

application of ISP. In particular, the distinction between the relevance of the separation quality
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measure in theory, its relevance in practice, and its relationship to other practical quality
measures is significant.

As described more fully in the next section, this work attempts to evaluate the connection
between the traditional ICA metrics (e.g., SNR, API) that are applied in non-blind theoretical
settings to the features which would be extracted in practical cases (i.e., BSS). In doing this,
an evaluation of the theoretical and practical measures of separation quality can be provoked,

and the analysis of an advancing technology can, itself, advance.

1.3 Research Questions

The effect of ICA in practice has been demonstrated in a multiple areas of image and signal
processing, including BSP processing [104, (2000)][51, (2000)][174, (2001)]. As described
in the last section, however, the literature exhibits several different approaches to performance
quantification, but none consider the connection between the two disjoint parts of ICA papers
in a practical way. In effect, the evaluation of ICA in practice is disjoint from the evaluation of
ICA in theory. This work is interested in exploring this unresolved issue in ICA performance
analysis. What connections can be made between the traditional metrics of ICA performance,
which are limited to known trials, and the accuracy of ICA processing in a BSS application?

Some mitigating factors are known to affect the direct connection between theory and
practice. The HOS on which ICA is based are known to be susceptible to outliers in the
data [93][63]. What influence can be expected, then, from observations contaminated with
observation noise? Furthermore, what effect can be expected on the features that a signal
processing system extracts from the output signal? While a subjective evaluation of output
features is common, can this effect of ICA be measured quantitatively?

To evaluate the possibilities for feature-based separation quality metrics (SQM), feature
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convergence under ICA optimization is analyzed here in an empirical experiment. This ex-
periment is designed to reduce the disparity between theory and practice in the context of the
chosen test case of fetal ECG separation from an abdominal BSP [51]. This signal separation
test case, demonstrated in Fig. 1.3, has been a problem of significant interest for many years
in the signal processing community [234, (1975)][228, (1987)][201, (1996)][51, (2000)]. Itis

a particularly suitable benchmark test case for the desired ICA analysis since:
(a) The desired source signals are nonstationary;
(b) The desired source signals occupy similar bandwidth;
(c) The desired source signals are from the same class of sources (same type and function);
(d) Models are available for synthesizing the desired source signals [140, (2003)];

(e) Source separation has never been successful to the point of developing a clinical practice

of fetal ECG analysis from (electrical) abdominal signals;

(f) Traditional metrics are limited in significance, and the utility of nonlinear dynamical

metrics has been established [207, (2000)][211, (2002)][90, (2004)].

ICA involves a theory of mathematical approximations, and, in practice, can also be sen-
sitive to data error. Can ICA, therefore, be considered robust enough to be an effective and
reliable processor for electrophysiological recordings? Will SNR-alone imply convergence of
non-power-based features? Is it possible to successfully identify a “separation outlier” (i.e.,
an unsuccesstul feature representation)? Within the context of fetal ECG separation, this work
addresses these questions in a scoped sense.

Of course, some features of practical interest are specific to each application (e.g., ECG

analysis). Generic signal processing features with universal applicability, however, are used
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often in engineering (e.g., SNR). To maintain a feasible complexity of research, the focus of
feature convergence under ICA processing in this work is restricted to generic signal process-
ing features. In particular, a specific class of nonlinear features that are known to characterize
nonlinear dynamics, multifractal features, will be analyzed for convergence. Since this class
of features is nonlinear, it is not intuitively clear how they will converge under ICA separation.

Thus, the thesis question for this work is formalized as

What measure of ICA performance can uniformly assure safe multifractal feature

characterization of a fetal ECG?

1.4 Thesis Statement

This thesis demonstrates that (i) not all ICA cost functions converge at the same rate,
(i1) not all higher-order statistics converge at the same rate, (iii) nonlinear dynamical features
extracted from ICA estimates may not converge to the features of the original independent
sources because of nonlinear sensitivities; and (iv) traditional bounds using second-order per-
formance metrics fail to account for sensitivities in some higher-order and dynamical feature
extraction.

This is accomplished in an ICA simulation of Fig. 1.3(c) by measuring the convergence
of statistical and multifractal scaling features extracted from an ICA separated signal to those
features extracted from the known independent source.

Furthermore, by demonstrating that the scaling features do not converge uniformly with
the other metrics, it is concluded that ICA convergence alone is not sufficient to validate any

scaling feature extraction from signals processed by ICA.
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1.5 Thesis Objectives
1.5.1 Grand Objectives

As explained, this thesis is interested in validating predefined ICA processes in a context
that bridges engineering theory and practice. From the signal processing point of view, the
most important elements in practice are the features extracted from the signals. Simply put,
it is the practical feature quality of the output signals that matters, and compromised feature
quality is the most concerning issue. Thus the objective here is to evaluate signal feature
convergence as a measure of ICA performance.

Moreover, it was mentioned that features in practice can very often be application specific,
(e.g., clinical features in the cardiological analysis of ECG do not apply to colour images).
In general theory, signal processing is limited by the restricted meaning of “feature quality”
found in mathematical measures. Here, the convergence of generic features that have shown
to be useful in the study of natural signals are analyzed; these include statistical, information-
theoretic, and multifractal dynamical scaling features. This choice of features is consistent
with the history of research on the characterization of natural signal “feature quality” at the
University of Manitoba Signal and Data Compression Laboratory.

Considering the nature of these grand objectives, this work is, therefore, not a true “biomed-
ical engineering” thesis. This work is not intended to examine deeply the ECG signals them-
selves, or try to satisfy a physician directly. A biomedical thesis would directly focus on the
development of “important component analysis”, Fig. 1.4. Instead of attempting to design yet
another “new ICA algorithm for fetal ECG separation”, the objective here is to consider how
such an algorithm should be evaluated. It is an objective of this work to identify the engineer-
ing limitations of ICA in signal processing applications, and the limitations of methods that

evaluate ICA. This work will introduce a novel approach to the evaluation of ICA algorithms,
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Fig. 1.4 The emphasis of this thesis is from the perspective of signal processing, and not
biomedical engineering.

and demonstrate the complexities involved in “bridging theory and practice”.
Notwithstanding the caveats above, this research also establishes a necessary groundwork
for the maturation of ICA separation from an exploratory research initiative into a signal pro-
cessing module available for use in the processing routines of intelligent clinical devices. In
expectation of increasing social emphasis on medical screening, this analysis of ICA in.an
ECG context can contribute to proposed designs of intelligent and autonomic [95] ambula-
tory diagnostic assistants. Considering these objectives, it is then necessary to place some

significance on proper ECG dynamics for both the analysis and simulation of ECG.
1.5.2 Method Objectives

The objective of the chosen methodology is to apply a scientific approach to the analysis
of the feature convergence of ICA separated signals. For this analysis, independent noise-free
uncontaminated signals modelling ECG behaviours are simulated and then mixed linearly for
ICA processing, as shown in Fig. 1.5. Although it is not the predominant goal of this work to

develop new dynamical models for the ECG, a requirement for these simulated ECG signals
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Fig. 1.5 The experimental method to assess ICA performance.

is that they exhibit dynamical fidelity to natural ECG (e.g., regular morphology, statistical
variability, attractors, and scaling). A simulation of a simple fetal ECG system is designed to
represent the mixing of abdominal ECG. The complexity of this mixing model is kept quite
low in order to concentrate on the signals themselves and the features to be analyzed. In fact,
the demixing introduced by multiple ICA algorithms (as measured by the convergence of their
cost functions), will be compared by parameterizing the ICA demixing matrix.

To study the effect of ICA, the separation performance is measured by several simultaneous
separation-quality metrics (SQM): (i) A-Class SQMs based on a priori knowledge of the
independent signals, and (ii) B-Class SQMs based only on the observed (BSP) data at hand:
namely, the ICA cost function itself. The mutual relationship of the SQMs define an ICA
“error-space” from different statistical, fractal, and signal features characteristic of the BSP
data. Patterns can determine the relationship between A-Class errors and B-Class errors and
identify non-convergence. Specifically, the multifractal (dynamical scaling) characterization
of the ECG attractor reconstruction is used as one feature-based SQM. The objectives for the

analysis of the ICA error-space specifically include:

(a) To determine if ICA can recover the HOS of the original source from its BSP (A-Class
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convergence);

(b) To determine if ICA can recover the multifractal characterization of the original source

from its BSP (A-Class convergence).
1.5.3 Novelty and Contributions

This work represents the first feature-based analysis of ICA performance (i.e., where signal
quality is measured generically in a sense beyond simple matrix or power measures). This nov-
elty is tandem with the introduction of the new ICA error-space approach that bridges “theory”
and “practice”. This work also clearly demonstrates the complexity involved in maintaining
an experimental paradigm suitable to connect the two “ends” of engineering. Furthermore,
this work presents the analysis of multifractal (dynamical scaling) feature convergence as a
new paradigm for ICA performance measurement.

Four contributions to science and technology are made with this work. First, the conver-
gence profile methodology for ICA analysis is proposed and demonstrated, provoking a new
discussion of what separation quality means in theory and practice. Second, the compara-
tive analysis of ICA SQM-convergence establishes the first relationship of multifractal feature
convergence to other ICA convergence measures. Third, the direct f(«) correlation-integral
technique is defined, providing an extension to the canonical theory of multifractal analysis.
Last, the surrogate ECG methéd for ECG synthesis improves the dynamical fidelity of the
state of the art Oxford ECG dynamical model.

This work also contributes several resources to the community by (i) publishing code for
the generation of surrogate ECG, (ii) publishing code for the calculation of an attractor mul-
tifractal analysis from a correlation partition, (iii) synthesizing a historical and geometrical

background on ICA, (iv) synthesizing a survey on the fetal ECG separation problem, and (v)
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synthesizing a background on multifractal analysis from a measure-theoretic perspective (that
applies to attractor or wavelet methodologies), and the significance of surrogate data for the

validation of multifractal analysis.

1.6 Thesis Organization

The remainder of this thesis is organized into three groups of material: (i) four chapters on
background theory; (ii) three chapters on experimental design, results, and conclusions, and
(iii) appendices with details on the experimental techniques used in the thesis.

The first chapter on background, Ch. 2, scopes the fundamentals of signal processing and
biomedical engineering into the experimental requirements for the objectives outlined in the
last section. In particular, the limitations of signal-to-noise ratio as a quality measure is ad-
dressed, the biological facts and features of fetal ECG are reviewed, and the approaches to
the mathematical characterization and synthesis of ECG signals are considered. This chapter
provides the greater context of the mathematical studies of features that follow.

The second background chapter, Ch. 3, is a mathematical study of higher-order statistics
for the definition of SQMs and the theory of ICA signal separation. Rényi generalized en-
tropies are presented in Sec. 3.4.7 as an extension to the traditional Shannon formula. The
significance of non-Gaussianity and the details of ICA as an extension of PCA is presented
in Sec. 3.5. Furthermore, the fundamental construction of ICA algorithms is described, with
specific attention to the significance of ICA cost functions and the geometry of matrix space
under the ICA degeneracies.

Then Ch. 4 presents a measure-theoretic approach to multifractal scaling analysis. In par-
ticular, procedures for (i) reconstructing fractal attractors, and (ii) characterizing them using

the Rényi fractal dimension spectrum and Mandelbrot singularity spectrum are described. The
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novel extension of multifractal theory, the direct f(«) correlation-integral technique, is defined
in Sec. 4.7.3.

The final background chapter, Ch. 5, presents the theory of surrogate data for the validation
of multifractal analysis. Surrogate data provides an important context in the analysis of fractal
attractors, and, by extension, a context for the novel ECG synthesis algorithm. The difficulties
that can arise in the interpretation of multifractal analysis are discussed.

The first of the experimental chapters is Ch. 6, in which the design of experiments and
implementation is presented. The experiments are focused on the characterization of fractal
attractors from a simulated ECG time series. Here, the techniques and procedures for the
synthesis and analysis of the fetal ECG separation simulation are described. Specifically, this
includes a discussion of how the statistical and fractal features identified in the background
chapters are used to implement the SQM error-space. The details of the ECG synthesis method
are left for a more complete discussion in App. A.

Results from the experiments that demonstrate a non-uniform convergence among HOS
and multifractal features are discussed in Ch. 7.

Conclusions are finalized in Ch. 8.

Several appendices are also included to expand on some of the ancillary theory or im-
plementation details of the thesis. Details of the newly developed surrogate ECG model are
presented in App. A. A survey of the literature examining the fetal ECG separation problem
is presented in tabular form in App. B. Details of the implementation for the calculation of the
correlation partition of Sec. 4.6.1 is presented in App. C. Moreover, details on a novel unified
algorithm for the direct calculation of all multifractal entropies is included in Sec. C.4. Last,
an introduction to the wavelet-based approach of multifractal analysis which was considered

for (but ultimately dropped from) the experimental method is preserved in App. D, since it
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represents a notable and harmonized extension to Ch. 4. To save paper, only select code for
the most significant routines in the implementation of experiments is included as text in the

appendices. Complete code does appear as an appendix in electronic form on CD versions of

the thesis.
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Chapter II

BACKGROUND ON THE PROCESSING,
ANALYSIS, AND MobpELLING OF ECG

2.1 Overview

As stated in the previous chapter, this thesis studies the performance of ICA at blind source
separation using generic feature-based metrics. Therefore, it is necessary (Fig. 1.5) to (i) sim-
ulate the chosen biomedical test case in controlled experiments, and (ii) extract features on
which to design ICA performance metrics, the SQMs. Specifications of these simulations and
features are required, and should be “as simple as possible, but no simpler”!. This chapter
reviews the fundamentals in signal processing and biology for sufficient specifications for the

experimental design. In particular,
(a) The deficiencies of signal-to-noise ratio as an SQM will be identified;

(b) The biological origins of the ECG will be surveyed to identify appropriate ECG features
for (i) SQM feature extraction, and (ii) the modelling of noise-free uncontaminated

ECG;

(c) The biomedical engineering background on the chosen test case, feral ECG (fECG)

separation is presented; and

! Albert Einstein
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(d) Some necessary background in general signal processing and data acquisition is final-

ized.

Note that the “SQM-friendly” ECG features that are identified in this chapter will be given a
more rigorous mathematical treatment in the subsequent chapters. Furthermore, only the basic
principles of the chosen ECG model will be presented here. The details of the ECG synthesis
algorithm will be relegated to App. A. Beyond this chapter, there will be no further discussion
of ECG biology or fetal ECG signal acquisition.

This chapter will proceed in the following order:
(a) Discussions of signal-to-noise ratio as the prototypical generic SQM and its deficiencies;
(b) The physiology behind heart function, heart rate, and ECG electrophysiology;
(c) Fetal electrocardiography (including the acquisition process);
(d) Paradigms for analytical ECG characterization; and
(e) The modelling and simulation of the fetal ECG problem.

The final two items, in particular, involve the discussion of how to analyze and model
ECG signals for feature extraction and the problem of abdominal BSP simulation . It will be
demonstrated that, for this purpose, dynamical features are generic, yet complex enough to be
physiologically relevant and still within the scope of this thesis. Also, specific properties of
the fetal ECG separation problem will be identified that will validate the assumptions required

in the ICA approach (subsequently discussed in Ch. 3).
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2.2 Significance and Deficiencies of Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is the prototypical generic measure of performance in signal
processing. It is used in image processing, communications, audio processing, and instrumen-
tation. (It is especially significant in audio processing where average power on a logarithmic
scale is perceived as loudness.) Its universal importance is a consequence of its simplicity and
the traditional noise models that are assumed.

As it is based on a quadratic measure of error, SNR is related to the natural Euclidean L?
and I* metrics. As a ratio, SNR measures the relative contribution of average energy (power)
from the unwanted noise. So why not simply use SNR to measure the quality of ICA signal
separation? The truth about SNR is that, due to its simplicity, it is universally applicable, but
not universally significant. There are two compelling reasons to consider SQMs beyond SNR
alone: (i) the significance of higher-order statistics in intelligent signal processing; and (ii) the
limitations of global metrics.

It is easy to show that sum-of-squared-error (and thus SNR) is the optimal maximum-
likelihood solution in the case of zero-mean Gaussian noise [180, Ch. 15][198, Ch. 9]. Fur-
thermore, the spread of the distribution, and often the distribution itself, can be completely
characterized by the SNR or noise power among a fixed class of zero-mean noise models.
Thus, SNR is a useful tool to compare noises from the same model (e.g., Gaussian to Gaus-
sian), but not as significant when comparing noise from different models (e.g., Gaussian to
shot, white to correlated). The fundamental concept, here, is that for SNR to be uniquely
significant, the class of noise models must be chosen a priori. However, as was discussed in
the previous chapter, the goal of intelligent signal processing is to shun a priori models and

let the data itself influence the technique. Why should SNR be considered a sufficient metric,

M. Potter - 19 - September 15, 2008
PHD-Sig.Proc.Background Version 5.2.3



FEATURE CONVERGENCE UNDER ICA: FECG Ch. 2: ECG Processing, Analysis, and Modelling

27.3dB
27.3dB

PSNR
PSNR

@ Original: framed baboon (b) Compressed: JPEG (@ Restructured: repositioned
Q=25 jpeg noise
T 20
o
. ol
_8’ 0 lﬁﬁﬂmu..

0 100 200

G

log 2(Freq)
—t N
[=] [=)
27.3dB
27.3dB

4
4

0 1l
0 100 200 g Z
T 20 4 2
i
o
(d) g’ Oo l‘ml:‘_rgg,ﬂ ..................... é 6[‘) ,,,,,, J (e) 3 : ¥ (f) E :
Error: Compressed Error: Restructured

Absolute Error

Fig. 2.1 SNR global invariance: (a) Original raster image (classic test image); (b) JPEG com-
pressed form of panel (a); (c) An image constructed by locally resorting the JPEG compression
error of panel (b); (d) Global error histogram common to panels (e) and (f); (¢) Absolute error
of panel (b); (f) Absolute error of panel (c); Images in (b) and (c) have identical signal-to-noise
ratio with respect to (a) and identical peak-signal-to-noise ratio since the errors are globally
equivalent. Perceptual image quality is distinguishable, however, because of the significant
difference in local error behaviour.

then, when the noise is not restricted to a Gaussian model? If higher-order statistics are con-
sidered relevant for signal separation, they must also be considered relevant for signal quality.
Notwithstanding this observation, SNR or its equivalent is still the most predominant quality
metric used in the ICA literature.

The second reason to consider SQMs beyond SNR, is that SNR is a global metric, which
means it is insensitive to some non-statistical properties of noise, such as “local structure”. As
an example, consider Fig. 2.1 which demonstrates the impact of the local structure in noise

on image perception. The two noisy images in panels (b) and (c) have the exact same global
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noise statistics (as displayed in panel (d)). Even though they have the same SNR, panel (c)
is perceptively of lower quality. Only the organization in the local structure of the noise is
different, since the error of panel (c) has been sorted into a more uniform gradient (as shown
in panel (f)), instead of the scattered distribution of the original compression error (shown in
panel (e)). Thus it is observed that “signal quality” (here, image perception quality) has some
properties in practice that are not well represented by SNR.

Since there is a motivation to consider “signal quality” for measuring ICA separation
performance, SQMs should consider the signal’s other features that are useful in the signal
processing paradigm. In the remainder of this chapter, the properties of ECG signals are
surveyed so that generic data-driven features can be determined for SQMs. Some awkward
ECG-specific metrics for the quality measurement of practical fetal ECG separation have been
developed in several papers [136][196], but these are not applicable to general ICA SQM anal-
ysis. These will not be pursued, because, as mentioned in the previous chapter, it is the goal

of this work to use the fetal ECG benchmark only as a specific test case for general methods.

2.3 Heart Physiology and Function

Now the biomedical context for the required elements of this work will be reviewed. In
order for this work to be considered data-driven, it is important to consider the systematic
origins of the electrical signals under study. This will proceed in two sections. First, in
Sec. 2.3.1, the function and coupling of the heart at the system level will be described and
the equivalent behaviour of the fetal and adult heart will be demonstrated. This justifies the
use of a single model for the synthesis of both the fetal and maternal uncontaminated ECG.
Second, in Sec. 2.3.2, an overview of the origins of cardiac bioelectricity at the cell and fibre

level will be presented. This is a source of important features for both the feature extraction
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and synthesis modules of the chosen experimental method.
2.3.1 Adult and Fetal Heart Function

The heart serves as the hydrodynamic pump of the body and is a vital function for both
adult and fetal humans. The contraction of the blood chambers in the heart pushes blood
through the vascular network carrying oxygen, nutrients, waste, and cells throughout the en-
tire body. The heart is both a mechanical and electrical oscillator. It contracts mechanically
to create vascular flow, then restores itself to a preparation state, before pushing again. This
mechanical behaviour of the heart muscle is controlled by oscillating electrical signals among
the heart cells, to be discussed in the next subsection. The oscillation of this joint-system is
not independent of other systems. The electrical behaviour is specifically influenced by the
autonomic nervous system as it coordinates the mechanical cycle (via the vagal and sympa-
thetic nerves) with the rest of the autonomic functions [183]. Consequently, the vascular and
electrical cycles of the heart, dynamically coupled to the oxygenation systems (i.e., pulmonary
or umbilical), are not perfectly periodic. Specifically, the coordination of the heart cycle rate
with oxygen level is clinically known as the sinus arrhythmia. In a post-natal system, this is
the observation that the heart cycles will speed up on inhalation (i.e., high levels of oxygen
in the lungs) and slow down on exhalation (Jow levels, respectively). In a fetal system (pre-
natal), oxygen is acquired from a hand-off with the mother’s blood in the placenta. Here, it
is observed that the fetal heart beats slower during a constriction of the umbilical cord [142],
thus reducing its connection to the oxygen supply in the placenta. Even though it indirectly
uses the maternal circulation as the introductory system of oxygen (and nutrients, and also the
depository of waste), the fetus maintains its own independent circulatory system and its heart
coordinates with its perceived oxygen flow.

The heart is the first functioning organ of the fetus to develop, even though it is in a
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primitive state. After 21-22 days of gestation (post-ovulation), the embryo has two primitive
heart tubes that merge into a single tubal heart. At this stage, the cardiomyocytes become
capable of beating [227]. Once the vascular circuit is completed, the heart begins beating
and pumping blood. This involves the activation of myosin and actin in the presence of Ca**
[227]. During this stage of development the fetal heart is beating and pushing blood, but the
heart cells are still immature and have a less-organized structure than a mature heart. With
development, the cells become larger in size, and come under increasing levels of tension
[227]. As they grow, the cellular system of Ca®* pumps and myosin myofibrils become more
complex, until these structures eventually become the dominant feature in the mature cardiac
cell.

By the fifth week of gestational development, Fig. 2.2, the fetal cardiovascular system is
fully functional, but its regulating mechanisms and vascular structure differ from an adult sys-
tem. At this stage the fetal heart is only a tube and does not have four separate chambers. It
is “looped” and asymmetrical, reminiscent of the vascular position of the mature heart. As
the fetal heart continues growing through cell division, walls begin to extend into the heart
tube to separate what will become the four heart chambers [227]. In the adult system, the
left and right systems of the heart act in series with equivalent stroke volume. They differ,
however, in the pressures at which they act (low-pressure into the lungs, high pressure into the
vascular circulation system). In the fetal system, the subsections of the fetal heart and the fetal
vasculature operate in parallel. An adult has separate deoxygenated venal and oxygenated ar-
terial flows, whereas the fetal vascular system has oxygenated and deoxygenated blood mixed
throughout. A series of shunts in the fetal vascular pathways direct the deoxygenated blood
to both the umbilical and body system, and reduce the blood flow to the lungs. Similarly oxy-

genated blood from the umbilical system is shunted to all vascular systems, including back to
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Fig. 2.2 Timeline of fetal development: Specifically, the cardiac conduction system is fully
developed by week 16.

the placenta [227]. About 40% of the fetal blood flow from the heart goes through the um-
bilical system [189]. These vascular differences, however, affect only the flow of the blood,
and not the electrical oscillation of the heart that is described in Sec. 2.3.2. By the 16th week
of gestation, the conduction system of the heart is functionally mature [240, Wood and Huhta
(1999)]. Significantly, the mother’s heart is not responsible for fetal circulation and the two
hearts conduct, contract, and beat independently. As a result of this analysis of heart function,
the systematic and electrical function of the fetal and post-natal systems are sufficiently com-
parable that the same model for ECG synthesis and the same ECG features for SQM analysis
can be used for both systems.

As above, the fetal ECG and maternal ECG can be considered the results of equivalent
processes and use the same ECG synthesis model for the simulations, though parameters of
the models must be different. One such parameter to consider is heart rate. As mentioned,
the fetal heart rate is much higher than that of an adult. The average baseline (resting) heart
rate of an adult male is near 70 beats per minute (bpm), and near 75 bpm for a female [237].
Baseline heart rates lower than 60 bpm or higher than 100 bpm are considered exceptional and
are clinically termed bradycardia and tachycardia respectively [69]. Of course, heart rate is

time-varying; that is, the cardiac system characteristically changes over time. It is therefore
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Fig. 2.3 Normal heart rates for adult and fetal function.

natural (and not unhealthy) for tachycardia to occur during exercise, and bradycardia to occur
during sleep.

In contrast, fetal baseline heart rates are much faster, and change over the course of fetal
development as the nervous system’s control on the heart’s pacemaker increases. From the
fifth week of gestation, the heart rate increases until a maximum average of 180 bpm in weeks
8 to 10. [240] Fetal heart rate begins to decrease in the later stages as the nervous systems
establishes control over the sinoatrial node [227]. (Fetal heart rate is, thus, approximately 140
bpm in the 18th-24th weeks, and 130 bpm at term (37 weeks) [240].) From 16 weeks on, fetal
baseline heart rate is considered healthy in the interval 100-180 bpm [199]. In clinical terms,
then, fetal bradycardia and tachycardia are defined as a baseline heart rate less than, or greater
than, respectively, that interval. Fetal heart rates in unhealthy situations can go higher than
300 bpm [64]. There is also a strong relationship between structural heart disease and fetal
bradycardia [46].

For a comparison of the values of the heart rate between adult and fetus, and their intervals
of health, see Fig. 2.3. Thus, in synthesizing ECG time series for abdominal BSP simulation,
the mean heart rates are significant parameters for consideration.

The following section presents the electrophysiology of the ECG process that can be con-

sidered common to adult and fetal heart function (after 16 weeks of gestation). An analysis of
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the origins of the ECG signals will serve to help derive features required for the ECG synthesis

model as well as SQM definition.
2.3.2 ECG Electrophysiology

As mentioned earlier, the mechanical action of the heart is triggered through a spontaneous
electrochemical process native to the heart and regulated by electrochemical influences from
the vagal (accelerator) and sympathetic (brake) nervous system. First, the electro-cellular
properties are surveyed. Then the coupling of the cells and the nervous regulation of the heart
rate is discussed.

The cardiac cells are a unique class of modified muscle cells. As with other muscle and
nerve cells, a cardiac cell fulfills its electrical function as a result of an action potential. A
cardiac activation potential is distinguished from other muscle and nerve action potentials
because of its long response (150-300 milliseconds (ms) compared to 1 ms for other fibres)
[183]. The cardiac cell has a natural distribution of heavy ions throughout its structure that
maintains a non-zero resting transmembrane potential across its cell wall. An action potential
occurs when the transmembrane potential changes as the distribution of ions (up to 10 ions
[67, pg. 61]) is disrupted by their flow across the cell membrane. The two most significant ions
in cardiac function are Na* which is the first and fastest action, and Ca®*, which, while the
secondary and slower action, is that which initiates muscle contraction. The action potential
consists of a depolarization, when the transmembrane potential changes from its non-zero
resting state, and a repolarization, when the potential returns to its resting state. The action
potential of any cell is dynamically native and self-consistent [67][66], but can be stimulated
by the behaviour of neighbouring cells. In general, this is to mean neighbouring cardiac
cells, but also applies to neighbouring nerve cells or pacemaking electrodes where they are

established. Heart cells are rather inhomogeneous in the details of their different activation
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Fig. 2.4 The activation potentials of heart cells by fibre category. (from Morgan, Clinical
Anesthesiology, 3rd ed., 2002, [151]. Copyright McGraw-Hill. Used by permission.)

potentials depending on their position in the electrocardiac structure, as shown in Fig. 2.4
Each type of cell is slightly different in its natural (autonomic) rhythm, refractory period, and
pacemaking abilities. However, the coupling of the cells promotes a 1:1 phase lock with the
fastest autonomic pacemaker in the network [67, pg. 135]. This resulting coupling is called
sinus rhythm, with well defined depolarization waves and repolarization waves that move
spatially over time through the heart’s conduction network from a single pacemaking site.
The collective effect of these directed wavefronts are macroscopic electrical current vectors

through the cellular mass of the heart.
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As mentioned before, the rate of cardiac oscillation is determined by the fastest pacemaker
in the network, the sinoatrial node. As shown in the diagram of heart’s conduction system in
Fig. 2.5, this area is in the upper right atrium, . The depolarization wavefront then moves
through the heart as depicted by the arrows in Fig. 2.5. The atria (upper chambers of the heart)
are electrically connected and depolarize together, @, with the wavefront moving at a slow rate
(0.4 m/s [152]). The ventricles (lower chambers) are electrically isolated from the atria except
at a special junction between the right atrium and ventrical, the atrioventricular node, 3. A
collection of internodal pathways connect the sinoatrial node to the atrioventricular node so
stimulation arrives before the general atrial depolarization wavefront. The special fibres of the
atrioventricular node are designed to restrict ion flow and delay the conduction of the electrical
impulse to the ventricles by about 9 ms. This allows for the depolarization and mechanical
contraction of the atria before the ventricles are stimulated. Ventricular stimulation begins
once a bundle of fibres, known as the Bundle of His, carry the potential impulse, @, to the
bottom of the heart in two branches. These fibres conduct very fast (2 m/s [152]), and then
repetitivley subdivide into the so-called Purkinje fibres. These fibres deliver the stimulus to
the ventricular muscle mass, (®, and the depolarization wave then starts moving through the
ventricles from bottom to top. The mechanical contraction of the heart cells occurs after the
depolarization wave has moved through the muscle mass, under the (depolarized) presence of
the calcium ion.

After the mechanical contraction, repolarization of the heart proceeds in a similar fashion.
However, atrial repolarization and ventricular depolarization occur concurrently. This tends
to obscure any remote observation of atrial repolarization, since the ventricles have (i) more
mass, and (ii) less activation delay, resulting in a stronger signal.

By this description, therefore, it is observed that each normal heart cycle is the result of
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Left Atrium

Sinoatrial Node
Left Ventricle

, Bundle Branchas

Purkinje Fibres

Fig. 2.5 The electrical anatomy of the heart. Modified from “Heart 3.tiff”, P. Cull, ed., The
Sourcebook of Medical Illustration: The Parthenon Publishing Group, 1989, Online. Avail-
able as of Oct. 2007 at http://msjensen.education.umn.edu/Webanatomy/image_
database/Cardiovascular/heart-conduction.tif Copyright-free for educational use.
a massively coupled electrochemical cascade of cellular potential elements elaborately dis-
tributed through the anatomy of the heart. There is a regular structure common to the cycle,
induced by the structural synchronization of the cardiac network. There is also a variability
in the heart cycle as the sinoatrial node responds to the electrochemical influence of the sym-
pathetic and vagal nervous system. The presence of nerve cells at the sinoatrial node is an
important contributor to the changing heart rate of the developing fetus.

The global cyclic regularity and cyclic variability observed in the ECG is familiar to a
class of nonlinear oscillators, as demonstrated in Fig. 2.6. The origins of the ECG signal is

therefore analogous to snowflake growth or the dripping of water droplets: basic principles

M. Potter - 29 - September 15, 2008
PHD-Sig.Proc.Background Version 5.2.3



FEATURE CONVERGENCE UNDER ICA: FECG Ch. 2: ECG Processing, Analysis, and Modelling

1.34; 22 o I
: N L ,
1.24 e e
0 18 . ¢ s :
2114 = 3 Lo
& : 8. 1.6 e ; o :
ooy o
S : B i.4- RS :
Q B : L
tl) 0.9 : 8| 1.9. PR . :
= o L
S os. g . L ;
074! 0.84 .
0.6 0.6 R
N - D g
4. 0.6 ¢, 05 U ‘ T ‘
0\0 % RN 1 . WA
%, X, 1 \\. . : e T

v T, 15 B ,—/‘-’1” 05
% e
a < Iy 1.5
(@) (b %) 2 ey

Lag-coord 2 [arb] Lag-coord 2 [arb}

Fig. 2.6 Pseudoperiodic phase-space patterns of nonlinear oscillators: (a) Rossler oscillator
(a=b=0.1,c=13); (b) Phase space of real ECG data.

of stimulation and coupling create similar but non-identical structures. Sinus rhythm is reg-
ular, and near periodic, but each cycle is a unique response to the current conditions of the
cascade, as suggested by the resulting “thick curve” shown at the bottom right of Fig. 2.4. As
mentioned, this description of the heart’s electrical behaviour is suitable for both the fetus and

adult.

In the next section the theory and practice of fetal electrocardiography is discussed. This

includes:
(a) A historical review of fetal electrocardiography; and

(b) Principles of filtering and sampling for the acquisition of the ECG.
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2.4 Fetal Electrocardiography
2.4.1 Signal Acquisition

The ECG is a collection of signals made from the body at large that are dominated by the
electrical impulse originating from the activation potential wavefront in the heart, as described
in the previous section. The fetal ECG can be taken from the skin of the fetus only by an in-
vasion of the womb and the fetal sack. This is done, for example, during labor to monitor
fetal distress [142]. Alternatively, a BSP can be taken over the mother’s abdomen as shown in
Fig. 2.7(a). This method leaves the fetal sack undisturbed and can be done throughout preg-
nancy and fetal development. This indirect method introduces an artifact from the mother’s
heart — effectively measuring her ECG as well, Fig. 2.7(b). Experimentally proposed as early
as 1906 (by Cramer, [241]), fetal electrocardiology went through a period of research in the
1950s and ’60s. Since the 1970s, it has been considered a benchmark separation problem in
signal processing research [234, (1975)]1[228, (1987)][201, (1996)][51, (2000)]. The interest
in the problem comes jointly from the significance of the source signals (and possible clinical

benefit to pre-natal monitoring), as well as the difficulty of the problem due to the
(a) Unwanted signal sources (i.e., noisy conditions);
(b) Reversal of power dominance (i.e., the unwanted mother’s ECG is dominant);
(c) Nonstationarity of the source signals; and
(d) Broad and similar bandwidth of the source signals.

Source separation attempts have never been successful to the point of developing a com-
mon clinical practice of fetal ECG analysis from abdominal signals (since the finer features

of the fetal ECG are hidden). Instead, obstetric practice currently relies almost purely on
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echocardiography in the form of (i) infrequent monitoring of the heartbeat by stethoscope,
(ii) brief continuous or intermittent monitoring of the heartbeat by Doppler ultrasound, and
(iii) infrequent Doppler ultrasound images and movies to analyze cardiac structure and func-
tion [188]. For these reasons, fetal ECG separation from abdominal signals remains an in-
triguing benchmark for signal processing methods, and an open field for developments in new
screening techniques. As a field of research in fetal cardiology, Wood and Huhta (1999) [240,

p. 8171 have characterized fetal electrocardiography as follows:

Electrocardiographic recordings of the fetal heart would be ideal to differentiate
the various patterns of arrhythmias, but to date, transabdominal recordings are un-
able to reliably show fetal atrial P-wave morphology and the use of scalp electrode

electrocardiography is only available at the time of delivery.

The BSP electrodes placed on the maternal abdomen are steel plates with low resistance
which contact the skin through a sticky electrolyte paste. While electrode placement is stan-
dardized in adult electrocardiography, there is no standard electrode placement for abdominal
fetal ECG. The raw analog electrical signal picked up at the electrodes is then guided by wires
to the ECG recorder unit. At the recorder, there is an analog processor to define ECG leads.
These leads are virtual wires that define the signals against standardized references and gain.
Many lead configurations for adult cardiology have been developed. Two common types of
leads are bipolar leads where the signal is taken as the difference between two electrodes (e.g.,
Einthoven leads), or unipolar leads where the signal is taken from a reference ground system
(e.g., aVr lead) [69]. The signals at the ECG recorder unit are then scaled by amplifiers (i.e.,
gain), low-pass filtered for discretization, and sampled using a sample-and-hold methodology
and quantized [181]. This is a critical stage of the ECG acquisition. There is no universal

standard for ECG digitization, and therefore care must be made in correctly cataloging for any
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Fig. 2.7 The abdominal fetal ECG: (a) A rough schematic of electrodes that capture an fECG
without disturbing the womb (After [234]); (b) the resulting waveform in a single lead with
both the maternal and fetal QRS peaks with amplitude ratio = 5.

record:
(a) The gain;
(b) The quantization depth and range;
(c) The cut-off frequency of the analog-to-digital low-pass filter; and
(d) The sampling rate.

The gain is important for correlating the quantization step to real units. Clipping occurs if

the gain does not balance with the quantizer range. Amplitude resolution is based on the
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quantization depth (i.e., number of bits) as well as an optimized use of the quantizer range. The
following section now discusses the principle that governs the cut-off frequency and sampling

rate.

2.4.2 ECG Sampling and Non-Bandlimited Signals
2.4.2.1 Basic Sampling Theory

Now, some general principles of discretization are briefly discussed. First, the definition

of an important logarithmic unit for spectral measurement is given.

Definition 2.1 (Decibel, dB [81]). A decibel (dB) is a logarithmic unit of quantity. Let u be a

variable (on a typical linear scale). Then
u [dB] = 101log,, u. @20
The quantity 3 dB becomes important since it approximates a doubling; i.e., 2-u — u+3 [dB].

(A note about nomenclature: v will be used in this subsection for an analog (linear) fre-
quency on R.)

The faithful conversion of analog signals into a time series is driven by the Shannon-
Whittaker sampling theorem [163]. Underlying this fundamental theorem, however, lies the
assumption that the analog signal at hand is bandlimited. That is, it is assumed that there exists
an analog frequency v, above which the power spectrum is zero. (Alternatively, it can be said
that the signal has finite spectral support on [—vg, vy].)

This description is impossible in practice, however, because only signals of infinite time
duration can be bandlimited [163]. In practice, therefore, this condition is relaxed into signals
with separable spectrum, as shown in Fig. 2.8. Here, the spectrum is separable into two

distinct regions, a passband and a stopband. The spectral values in the stopband will, in
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Fig. 2.8 Bandlimited signals in practice: Effectively bandlimited signals are separable into a
passband and a stopband. A non-zero noise floor is present in the stopband, but the traditional
concave-down skirt is well characterized by 3 dB cutoff frequency (solid). In contrast, a
power-law spectral decay (dashed) is heavy-tailed and therefore is poorly represented by a 3
dB passband only.

fact, be non-zero (in opposition to the theory), but will act in all practicality as a noise floor.
The noise floor, in most circumstances, is of sufficiently smaller amplitude to be considered
negligible. The property of all classical signals (or linear filter response) is that some spectral
transition, called a skirt, can be defined between the dominant passband (low frequencies)
and the stopband (noise floor). Thus the class of “effectively bandlimited” signals are those
with a well-defined spectral skirt that separates the analog spectrum. For convenience, the
location of the spectral skirt’s cut-off frequency, vy, is traditionally defined as the crossing
point 3 dB lower than the maximum spectral power in the passband (i.e., “max—3dB”), as
shown in Fig. 2.8. Effectively, this considers high frequencies “negligible” if they are less
than one half the maximum power. This provides the usual signal processing definition of
signal bandwidth [163].

In the discretization of an effectively bandlimited signal, two important considerations
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include: (i) the sampling frequency, and (ii) the cut-off frequency of the analog pre-filter. The
sampling rate of the recorder, v, determines the resolution in time of the time series, and the
extent of its spectral content. The time series will demonstrate only those frequencies in the
Nyquist interval of [—v,/ 2, vs/2]. Purity against anti-aliasing in the time series is provided by
the recorder’s analog filter and its cut-off frequency, vy. According to the sampling theorem,
the time series correctly preserves the time/frequency structure of the original bandlimited
analog signal within the Nyquist interval, or more accurately, below the cut-off frequency.
Thus if the sampling frequency is chosen high enough such that the cut-off filter extends
beyond the natural skirt of the signal’s spectrum, no loss occurs in the conversion to a time
series.

Note: the spectra of real-valued time series can be represented in Fourier space by conjugate-
symmetric distributions of complex coefficients over the Nyquist interval, or equivalently, by
(i) an even distribution of magnitude and (ii) an odd distribution of phase over the Nyquist
interval [181]. All spectral images will use this symmetry and be simplified without loss of

generality to show the positive Nyquist interval only.
2.4.2.2 ECG Sampling Theory

Next the general principles of Nyquist sampling are applied to the discretization of ECG
and fetal ECG. A clear discussion on the non-bandlimited spectral nature of ECGs and its
consequences is considered.

At issue with the sampling of ECGs is the Nyquist assumption of an effectively bandlim-
ited analog signal. As discussed in the previous section, this is equivalent to a “spectrally
separable” signal. Clearly, some signals, like sinusoidal signals, are easily separable. Others,

like white noise, are not separable and, therefore, not effectively bandlimited. While white
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noise and bandlimited signals may cover all traditional classes of signals, in reality other be-
haviours occur that must be considered. One such class is observed in Fig. 2.8, where a slow
decay in the spectrum (dashed) complicates the usual theory. While the spectrum in the stop-
band is consistently below the max—3dB threshold, there is still a significant contribution to
the overall distribution in the stopband. This would seem to violate its traditional classification

as “negligible frequencies”. To fill the theoretical gap, the definition below is offered.

Definition 2.2 (Broadspectral Signal). A broadspectral signal is a signal x(¢) for which a
3 dB spectral cut-off changes severely the morphology, features, or structures of the signal.
To clarify, let S(v) be the spectrum of x(f). Furthermore, let vy be the frequency at which the

Fourier (power) spectrum last falls beyond 3 dB below the maximum amplitude; i.e.,

VO:sup{veR+

Sv) = —;-mgx S(v’)} 2.2)

Define a bandlimited version of the original signal y(r) = H,,x(¢), where H,, is a low-pass
filter operator with cut-off frequency vy. If y(¢) is a poor approximation to x(t), then x(z) is

broadspectral.

In dealing with previously sampled signals, the test of (2.2) can be used, as long as only
the Nyquist interval is required. That is, substituting w € [-v,/2,v/2] for v € R in (2.2) can
be done as long as vy is less than the cut-off frequency of the sampling filter.

According to this signal-processing definition, it can be observed from Fig. 2.9 on p. 38
that an ECG from the Physionet Normal Sinus Rhythm Database (NSRD) is broadspectral,
since its bandlimited form becomes too smooth to accurately represent the edges of an ECG
waveform.

What constitutes, then, an appropriate sampling rate v, for a broadspectral signal, if higher

M. Potter -37- September 15, 2008
PHD-Sig.Proc.Background Version 5.2.3



Ch. 2: ECG Processing, Analysis, and Modelling

FEATURE CONVERGENCE UNDER ICA: FECG

"pueqssed oy} ur uonnqrusip uuojiun e se sreadde oseyd ot Jey) 910N "eseyd (J) pue wnnoads ST (9) YIm SILISS o)

e (p) se w0} pajiwif-pueq syt ‘oseyd (0) pue wnioads

(zH) boai4 (zH) bayy
09 0s 617 0e 0C ol 0 09 0s ov o¢ 074 Ot 0
. ; : n : ) c . . : : : .
&g
o8
— &
O~
S
> w
(s) swit}
vl Zl oL 8 9 % 4 0
C 1 ] T T T I T Joo-
0
L -160
L -1
B I | ! ! 9t
(zH) boi4 (ZH) bai4
09 Qs or 0¢ 0c Ot 0
o =z T ONl
g 8
LU
38
[N
(s} sw)
4! 4} ot 8 9 1% Z 0]
C ] 1 1 1 1 I I Joo-
i i i | ! 710
L ! —G'0
L -l
C L { ! | ! 9L

SI (Q) Y S3LISS 9w (TYSN (B) Ue :[enoadspeorq st DOF 6°7 “S1d

(gp) Qsd (@io) ‘27201 QRSN t (gp) asd
(ZHO1) SSOMOT CL2Qt QRISN
(ZHOL) ssodman

‘20291 QeSN

@) ‘72291 QRSN

September 15, 2008

— 38 —

M. Potter

Version 5.2.3

PHD-Sig.Proc.Background



FEATURE CONVERGENCE UNDER ICA: FECG Ch. 2: ECG Processing, Analysis, and Modelling

(a) ()]

Optimal 250 Hz

Nyquist Nyquist
Frequency Frequency

Iog2 S
log, S (w)

T
I
!
I
I
I
I
t
t
!
]
I
f
I
I
I
]
t
f
f
I
t

log,® log,(@)

Fig. 2.10 Limitations of common ECG sampling: (a) idealized spectrum of a broadspectral
signal with optimal sampling rate/Nyquist frequency in log-log scale; (b) spectrum of actual
ECG in log-log scale.

frequency components are important? Broadspectral signals are conjectured to have an opti- -
mal sampling rate obtained where the analog spectrum S(v) reaches the noise floor, as demon-
strated in Fig. 2.10(a). At higher frequencies the signal is buried in noise, but all lower fre-
quencies are significant. However, no recording is available in public databases such as the
NSRD with high enough sampling frequency to observe the noise floor knee. The clinically
used sampling rates have been determined through qualitative (visual) analysis of the ECG
waveforms and the conditions of acquisition [186, Rijnbeek et al. (2001)]. As a result, no
digitized ECG time series contains all of the spectral information available. This can be ob-
served in the log-log spectrum of Fig. 2.10(b). Limitations of ECG feature analysis may occur

because of this missing information [90].

M. Potter -39~ September 15, 2008
PHD-Sig.Proc.Background Version 5.2.3



FEATURE CONVERGENCE UNDER ICA: FECG Ch. 2: ECG Processing, Analysis, and Modelling

2.4.2.3 ECG Sampling Practice

The practice of ECG sampling is determined mostly by the clinical context involved, rather
than any information-theoretic or signal processing considerations as just discussed. Typically,
the sampling rate is chosen as small as possible, within the constraints that the time series mor-
phology is qualitatively still clinically useful. For long-term recordings (e.g., 24-hour Holter
monitoring), sampling at 125 samples per second (sps) will be considered acceptable since
HRV and the presence of abnormal beats are usually studied. Vectorcardiographic studies,
which provide a more detailed representation of cardiac conduction, are more likely to be
sampled above 300 sps.

This work must also consider adaptations to the data acquisition practice in response to the
special characteristics of fetal ECG. No clinical standards exist, yet it is recommended that a
sampling frequency of 500-1000 sps be used for pediatric signal acquisition (again, measured
qualitatively) [186, Rijnbeek et al. (2001)]. Since fetal heart rate typically exceeds that in
pediatrics (c.f., Sec. 2.3.1), at least that much should be considered for fetal ECG acquisition.
Furthermore, since the maternal ECG is dominant and the fetal ECG is much weaker, it should
be expected that the usual quantizer gain would suffice, but a greater quantizer dynamic range
would be required to capture the effects of fetal ECG.

The Physionet (Physiobank) ECG Archive [1] has signals with sampling frequency ranging
from 128 to 360 sps, and quantization from 8 bits to 12 bits, depending mostly on length and
clinical use. The abdominal maternal ECG used by De Lathauwer et al. [51, (2000)] in Fig. 2.7

was sampled at 500 sps.
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2.5 Paradigms for Analytical Feature Characterization of
ECG

Body surface potentials like the ECG are very important electrophysiological recordings
because, with enough clinical experience, they can provide information about the dysfunc-
tion of major internal systems without an invasive procedure. Clinical experience is defined
here as the development of a “process of heuristic pattern recognition” [27, 1997] over a large
high-dimensional space. It is the goal of the engineer to extend this qualitative process by
designing a more quantitative pattern recognition process. This allows modern computers to
participate in the theory and practice of ECG feature characterization, which is called “analyt-
ical feature characterization” in this work. Now, a discussion on several reasonable paradigms

for developing analytical ECG characterizations will be presented.

2.5.1 ECG Morphology and Dynamics
2.5.1.1 Clinical Morphologies

As was analyzed through the previous section, the two important elements of the ECG are
cyclic regularity and cyclic variability. The important features of clinical practice are regu-
lar morphological features of the ECG cycle, termed waves, because they can be identified
with the electrophysiological behaviour of the excitation wavefront of the heart explained in
Sec. 2.3.2. A typical example of such waves, labelled as (uppercase and/or lowercase [69])
P,Q.R,S, and T, are shown in Fig. 2.11. The deflection (i.e., direction and amplitude) of these
waves are different, however, depending on the ECG lead being analyzed. As such, the mor-
phological features of an ECG lead are relative waveform features of the excitation wavefront.
Each lead creates an orientation vector against which the wavefront is measured. If the wave-
front moves parallel to the lead vector, than a positive wave is observed. If it moves antiparal-

lel, a negative wave is observed, and under perpendicular motion, the wavefront produces no
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Fig. 2.11 The PQRST waveform of an ECG cycle.

wave in the lead at all. To observe the heart’s electrophysiological function, a clinician notes
the pattern of these waves (i) in time duration, (ii) in amplitude and form, and (iii) across
the multiple leads [69, Goldberger (1999)]. As such, they perform a morphological analy-
sis on a high-dimensional time series to discern system function using the power of clinical
experience.

The first feature of the ECG cycle is the P-wave, which corresponds to the depolarization
wavefront through the atria. It has a small amplitude and short width. The QRS-complex is
the largest and most singular event in the ECG cycle. This corresponds to the large depolar-
ization wavefront in the ventricular muscle (depicted as @ in Fig. 2.5). Between the P and
QRS-complex is a short isoelectric segment as the depolarization is constrained through the
atrioventricular node and Bundle of His. After the QRS-complex, a normally isoelectric seg-

ment occurs as the ventricular cells stay at the plateau of the activation potential. Lastly, the
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Table 2.1 Average ECG Waveform Properties

Wave Duration [ms] Amplitude [mV]
P-wave 60-80 0.1-0.2
PQ-segment 60-80 isoelectric
QRS-complex 80-100 1
ST-segment 100-120 isoelectrict
T-wave 120-160 0.1-0.3

¥ Normal healthy function

T-wave is a small wave matched with the repolarization (relaxation) of the ventricular mass.
(A “U-wave” is also sometimes discussed, but is rarely observed in standard ECGs.) These
features identify a single cycle in the ECG (and consequently a single beat in the cardiovas-
cular dynamics) and their properties are summarized in Table 2.1 [183, Rangayyan (2001)].
Each ECG cycle is very similar, but not identical. In particular the length and amplitude of any
wave can vary, and the baseline amplitude, or average amplitude through the cycle, can drift.
There are also many finer structures in the waveform that are not used in clinical analysis, but

may contain information for automated feature classification.
2.5.1.2 ECG Cyclostationarity

Now, the cyclic variability of the ECG is analyzed, beginning with some more definitions.

Definition 2.3 (Cyclostationary [183]). A signal x(¢) is cyclostationary if it can be segmented

into rhythmic cycles (or beats) of finite nominal mean length.

It follows from the definition that any periodic analog signal becomes cyclostationary
when discretized. (Discrete periodic signals are a small subclass of discretized periodic ana-
log signals [181].) Another example of a cyclostationary signal would be the frequency-
modulation of a periodic carrier signal. Since the ECG has a well-defined beat of bounded

length, normal ECGs are cyclostationary, as well.
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Definition 2.4 (RR-interval [69]). The RR-interval is defined as the time duration between
consecutive R-peaks (maximum positive deflection of QRS-complex) as shown in Fig. 2.12(a).
(Note: some techniques use specific fiducial interpolation methods to reduce sampling jitter

in RR-interval measurement.) RR-intervals are a measure of ECG cyclostationary variability.

The RR-interval, as a feature of cyclic variability, is very robust to (i) additive noise, and
(ii) the low sampling frequency observed in clinical recordings. Some of the properties of
natural RR-interval variability are shown in Fig. 2.12(b)-(d). Panel (b) shows how the RR-
variability appears when comparing the morphology of consecutive beats of natural ECG.
Panel (c) shows the trace of sequence of RR-intervals, or tachogram, which can demonstrate
nonstationary behaviour. Quantization errors in the tachogram are inversely proportional to
the ECG sampling frequency and autocorrelated.

The mean heart rate in bpm, py, as used in clinical practice, is calculated from the mean
RR-interval Az using

&
Ar

where Z; is measured over a 10 minute window [128]. (Note that the proportionality between

Po (2.3)

heart rate and an RR-interval in (2.3) is only true for scalars (i.e., mean rates, and not in-
stantaneous rates) because of the nonlinear nature of the reciprocal. Further details about the
interrelationship of heart rate and RR-intervals can be found in App. A.) That the RR-intervals
are not constant implies a heart rate variability (HRV). Note that, in clinical research, there
is a demonstrated relationship between HRV and adult health [98][97][172], while in obstet-
tic practice, the patterns of fetal HRV are one of several clinical markers used to determine
fetal distress [128]. HRV patterns in adult or fetal practice are typically measured from mean
heart rates over small sliding windows (e.g., 4-6 beats) [69][128]. However, the preferred

form for studying HRYV in this work will be tachograms of the form shown in Fig. 2.12(c); i.e.,
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Fig. 2.12 RR-intervals measure cyclostationary variability; (a) the RR-interval definition;
(b) RR variability in consecutive beats from an NSRD record; (c) extracted sequence of natural
RR-intervals; (d) distribution of RR-intervals under 2 s.
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RR-variability and not “rate variability” itself, though HRV will be used indiscriminantly for

either quanitity.
2.5.1.3 Clinical and Analytical Characterization of Cyclostationarity

The cyclostationarity of the ECG is the dominant attribute that makes it suitable to clinical
interpretation (i.e., the patterns of regularity and variability in the morphological “waves”). In
this way, the patterns of the waves can be connected to physiological interpretations of the in-
ternal processes of the ECG (i.e., the excitation propagation of Sec. 2.3.2). Clinical experience
amounts to the inference drawn from an analysis of the high-dimensional cyclostationary mor-
phological patterns of multi-lead ECGs to the conceptual description of the internal cardiac
system. The clinical analysis of HRV patterns has proven to be a more difficult characteriza-
tion problem, with significant ambiguity and variation to interpretation [128, SOGC (2002)].
This is a considerable challenge to clinical practice, but is in keeping with the subtlety of the
properties that HRV represents (e.g., autonomic control, nervous influence).

Unlike the clinician, the engineer would prefer to use quantitative features that describe the
physical processes of the system. What class of quantitative features should be considered?
Figure 2.13 displays a cross-section of modelling classes with increasing complexity that can
be considered: (i) morphological features, (ii) dynamical features, and (iii) physiological de-
scriptive features.

The simplest model to consider would be morphological features (left side of Fig. 2.13).
A limitation to a purely morphological characterization, however, is that no connection be-
tween the regularity and variability in the ECG process is characterized. The morphological
behaviours are essentially considered in isolation of any physiological function or process it
may represent. An added complication also arises because the morphological features of the

ECG waves are dependent on the lead geometry, and therefore may not properly characterize

M. Potter -~ 46 — September 15, 2008
PHD-Sig.Proc.Background Version 5.2.3



FEATURE CONVERGENCE UNDER ICA: FECG Ch. 2: ECG Processing, Analysis, and Modelling

Heart

Morphological Dynamical Descriptive
Model Model Model
(signal shape) (systematic behaviour) (physi?logy)

I
e e e e e e > ECG @ - = = = = — = |

>

Fig. 2.13 The levels of ECG modelling. Dynamics-driven features will be used in this thesis.

Increasing Model Complexity

the results frofn unstandardized abdominal ECG recordings. Furthermore, while it is true that
the statistics and morphologies are the only significant elements for the ICA process, this work
is interested in evaluating more than just statistical features for convergence.

However, to represent the physiological inference used in clinical experience quantitatively
involves a difficult and exhaustive analysis to create a descriptive model of the heart (right side
of Fig. 2.13). Here, the features could be physiologically significant (such as calculating a
“complete heart-block coefficient”), but would also be highly specialized to ECG signals, and
would not be applicable across signal processing in general. Essentially, this type of model is
a biomedical engineering problem, and is well beyond the scope of this thesis and its goal to
analyze ICA performance metrics.

As shown in Fig. 2.13, dynamical features are an important compromise because (i) they
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support the signal morphology, yet capture some intrinsic relational structure; and (ii) do so
without requiring a full descriptive model. With the origins of the signal in physiological cas-
cades over many scales, and the connection to nonlinear oscillators demonstrated previously
in Fig. 2.6, this suggests nonlinear models and complexity characterizations could be useful
and sufficient. Thus, this work is justified to focus on using generic dynamical features from
signal processing that can characterize, in part, the inner workings of a system that produces
simultaneous regularity and variability.

In the next section, the generic signal processing models available for ECG feature extrac-
tion are presented. The models surveyed will provide the required dynamics, morphology, and

inherent variability (at reasonable model complexity).

2.5.2 Mathematical Context of ECG Dynamics and Modelling

2.5.2.1 Signal Processing Basics

As was identified in the preceding section, the ECG is a cyclostationary signal with well-
defined average morphology. This morphology, though, is dependent on the geometry of the
sensors used to acquire the ECG signal. The cyclostationary variability in the ECG signal was
also identified as a significant feature driven by the dynamics of the ECG. Now the analytical
characterization of the identified morphology and dynamics are analyzed in the context of
available mathematical models.

The most general description of an ECG signal is as a random signal.

Definition 2.5 (Random Signal). A random signal is a random process for which each realiza-
tion is in a family of Lebesgue square-integrable functions [22]; i.e., a subset of L?. A random

time series has realizations in families of square-summable sequences, 2.

Since the recording process inherently has some a priori uncertainty (otherwise taking a
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measurement provides no information), the ECG acquisition process is essentially a random
process.

The realization, x, of a random signal is the rawest form available to mathematically char-
acterize a random signal in the signal processing paradigm. Typically, feature extraction, or
the calculation of a quantitative descriptor of the realization, is an essential step for practical

mathematical modelling.

Definition 2.6 (Signal Feature). A feature of a signal is a characteristic quantitative variable
or function onto which the family of random signals can be mapped. The set of all features

describes the feature space for the random signals.

The purpose of feature extraction and the feature space is to provide a venue for analytical
characterization of the random signal. Here, the patterns and structure of feature space are
analyzed in order to determine distinguishable elements (i.e., class identification). Depending
on the context, the characterization of feature space may be a straightforward application of
an a priori model (i.e., Shannon communications), or a result from a data-driven process, such
as supervised or unsupervised learning. A fully characterized feature space is then able to be
used for the purposes of classification. Conceptually, classification is a segmentation of the
feature space into different classes, but, practically, it appears as a mapping of a random signal
realization onto a label. A well-designed feature extraction greatly reduces the dimensionality
of the feature space compared to the raw realizations of the random signals without com-
promising the performance of the classification mapping. The author calls this property the
efficiency of the feature extraction. For example, for a signal class in /*(N) (e.g., a time series),
a feature g : I2(N) — R? is efficient. Good feature extraction enables proper classification with

simpler mathematical structures.
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2.5.2.2 Statistical Models

One large class of features is the statistical features, or statistics, of a random signal x.
These are the quantities (or functions) resulting from the nth-instance joint probability distri-

bution functions (pdf), written f, of the random signal:

n=1 3 ‘f(-x’ t)
n=2 ;  flxt;x,b0)
2.4

n 5 f(xl,zl;---;xn’fn)

where the realization x(f) takes a possible amplitude x; at time instance ;.
A full second-order characterization of the random signal requires knowledge of these
distributions up to n = 2. Common second-order statistical features of a random signal include

[165, Ch. 9]:
(a) The mean function, u;(r) = k xf(x,t)dx;
(b) The variance function, u>(2) = [ (x — i ()2 f(x, 1) dx;
(c) The autocorrelation function, R(#y,1,) = f fR2 X1 X2 f(x1, 115 X2, 12) dXx1dxy; and
(d) The autocovariance function, C(t), 1) = R(t}, 1) — 1 (¢ (12).

As can be observed from (2.4), a complete statistical characterization of a random signal

is not efficient in the general case; e.g.,
{xy e P®)) o { fr, 1. 520 1) € LR =1,..., 00} (2.5)

Only when a symmetry exists can a statistical characterization be efficient.

M. Potter -50- September 15, 2008
PHD-Sig.Proc.Background Version 5.2.3



FEATURE CONVERGENCE UNDER ICA: FECG Ch. 2: ECG Processing, Analysis, and Modelling

Two important statistical feature symmetries that allow for efficiency are stationarity and

time-independence.

Definition 2.7 (Stationarity). A random signal is stationary if all its statistical properties are

time-invariant (i.e., invariant with respect to translation in time). That is,

n=1; Jx0=fxr+1) Yo
n=2 ; FOatisxa, ) = f(xr,f + By X2, 12 + 1) Vi
(2.6)
n 5 f(xh[l;- . ;xn,tn) - f(X],l‘] F o5 X by IO) Vf()
Stationarity implies, in particular, the second-order conditions [165, Ch. 9]
fx 0 = f(x) .7
R(t1,0) =Rt — 1) . (2.8)

That is, the amplitudes are identically distributed (id), and the autocorrelation is only lag-
dependent. 1f the two conditions (2.7) and (2.8) are met, the random signal is said to be
wide-sense stationary, irrespective of the behaviour of higher-order statistics. Second-order
assumptions like wide-sense stationarity are significant models in the theory of traditional

signal processing.

Definition 2.8 (Time-independence). A random signal is time-independent if the nth-instance

joint pdfs factorize over time. That is,

fGLts X ty) = ﬂf(xi,t,-) Yn. 2.9
i=1

This means that the amplitude at time #; has no bearing at all on the amplitude at time #, > ¢,

and the random signal is completely characterized by the single-instance pdf f(x, ).
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Fig. 2.14 The difference between (a) stationary statistics that are invariant over changing trans-
lations in time, and (b) time-independent statistics that are invariant over changing differences
in time.

A random signal with time-independence up to second-instance is called an uncorrelated
or white process. This occurs iff the autocovariance is zero except at identical times. (If the
random signal is zero-mean, this is also equivalent to an impulse autocorrelation function.)

Stationarity and time-independence are complementary stochastic symmetries of random
signals. Stationarity is an invariance of statistics with respect to changing translations in time,
whereas time-independence is an invariance of statistics with respect to changing differences
in time, as shown in Fig. 2.14.

A stationary and time-independent random signal is written independent and identically

distributed (iid). This is one of the most tractable non-Gaussian models for a random signal.

The class of iid signals are useful because their statistical representation reduces, essentially,
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to f(x); i.e.,
Fon s s xmt) = [ £ va. (2.10)
i=1

According to the definition used here, then, iid variables have an efficient statistical character-

ization.
2.5.2.3 Deterministic Models

Notwithstanding their efficient representation, iid random signals have no dynamical or
cyclostationary structure, and are not good models of ECG signals (c.f., Fig. 2.11). So a
complementary analysis can be considered: random signals with complete time-dependence.
These deterministic models of a random signal assume that a future amplitude is directly
related to a present amplitude through some evolutionary mechanism of states. That is, for the
realization x(z) indexed by £, there exists a state vector v(z; {) (of countably many components)

and an evolution operator @ which satisfies
v(t';0) = O, 0);¢,t) where ¢ >t 2.11)

and from which x, = x(v(t;;{)) at time #, can be derived from x; = x(v(#;;{)) at time #;.
From the stochastic perspective, a deterministic random signal has completely degenerate nth-

instance pdfs, so that, using the Dirac delta “function” 6.,

Fantise ) = fan) - | | detx = x @t 0)) (2.12)

i=2

and all the stochastic nature of the signal is in the single-instance, or initial conditions, of
the signal. (Contrast the deterministic symmetry defined in (2.12) with the time-independent
symmetry defined in (2.9).)

An example of a deterministic random signal is x() = sin(wt + 6). For a single real-

ization indexed by ¢, the signal is a well-behaved deterministic function, with state vector
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v = [t,6(0)]T. The intrinsic uncertainty in this random signal is the value of the phase, 8({).
For this example, it is feasible that a regression on past points could estimate the intrinsic
uncertainty of the random signal (i.e., the phase) and the future amplitudes of the signal could
then be predicted.

Thus, deterministic signals are characterized by the full set of (i) the evolution opera-
tor, and (ii) the initial state of the system. In some situations (c.f., the example above), the
evolution operator or equivalent can be “fitted” from predictable data. This approach to char-
acterizing deterministic systems is very limited, however, and rather naive given the natural
cyclostationarity variability that occurs in the ECG [107, Kantz and Schreiber (1998)]. Pre-
dictability, however, is not equivalent to determinism, and therefore there are other means to
characterize deterministic dynamical systems.

It has become a fact of modern computer culture that deterministic chaos can result from
simple nonlinear systems. Figure 2.15 shows the time series resulting from a deterministic

system with state v = [r, x(0), 7] T and evolution operator described by the equation
xn)=r{l-xtn-1) x(n-1) 2.13)

with parameters r = 3.997, x(0) = 0.5, and n = 0, ...,255. No simple regression on the time
series (Fig. 2.15(a)) will uncover any state or evolution operator. However, the dependent
nature of the time evolution can be seen from the constrained pattern in the next-amplitude
map (Fig. 2.15(b)). The uncertainty, or lack of predictability, in deterministic chaos is a result
of the incomplete specification of the infinitely precise elements in the state vector, and the
“stretch-and-fold” dynamics of the nonlinear evolution operator [3, Addison (1997)]. This
can be interpreted in information-theoretic terms as an information loss that occurs as the less
significant bits of the current state vector become important bits in the next state. Future states,

therefore, are dependent on information that is, essentially, beyond the current precision.
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Fig. 2.15 The deterministic chaos of the logistic equation: (a) The time series of the logistic
equation; and, (b) The next-amplitude map.

It is very difficult to characterize a deterministic nonlinear family of random signals ex-
hibiting such a short horizon of predictability by estimating an evolution operator and the ini-
tial conditions from data. Instead, the strange attractor of the nonlinear dynamics is extracted
as a feature and characterized.

The strange attractor is the highly complicated subset of states to which the evolution op-
erator draws a large segment of initial conditions. This subset of initial states is called the
basin of attraction for the attractor. The attractor is stable, in the sense that any deviation
from the attractor returns to the attractor. The evolution operator, however, does not draw the
system into a single state, but a complex ergodic topology of many states. This is in contrast
with the attractors of linear deterministic systems which are topologically simple: either point
attractors (e.g., damped harmonic oscillator), or cyclic attractors (e.g., damped-driven har-
monic oscillator)[3]. Nonlinear dynamical systems, with these “strange” attractors, produce
observations with the simultaneous, and seemingly contradictory, properties of equivalence

and uniqueness:

Equivalence All initial conditions within the basin of attraction relax onto the attractor, and,
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once there, the gross properties of their subsequent trajectory are necessarily equivalent

and characteristic of the attractor topology (e.g., the ergodic probability density);

Uniqueness Every observed trajectory on the attractor is unique at the smallest scale, similar
to snowflake phenomena. Even close initial conditions in the basin of attraction will

diverge at a fast rate, reducing the horizon of predictability.

Given these two properties of observed attractors, quantitative measures for attractor char-
acterization focus on how the natural measure on the ergodic topology of the system attrac-
tor has a significant distribution (or geometry) over different topological scales [222, Theiler
(1990)]. Simple attractors must lose complexity at smaller scales (e.g., reducing to manifolds
or points). The strange attractor, however, must remain complex — even at extremely small
scales — in order to support unique trajectories within an invariant bounded distribution. Thus,
the complexity of the strange attractor scaling, measured through mulsifractal analysis (MFA)
[75, (1986)] [167, (1987)] is an important feature of the nonlinear dynamics of a random
signal.

MFA measures the “scaling” (or power-law relationships) in highly singular objects with
regularized complexity at every scale. An MFA of ECG for the purpose of signal compres-
sion has been studied by Huang and Kinsner in [90, (2004)]. They, as well as others [211,
Small (2002)], have demonstrated the applicability of MFA of ECG signals by attractor re-
construction. This analysis of ECG feature characterization will be pursued in Ch. 4, since it
is a generic dynamical signal processing analysis consistent with the cyclostationary form of
ECG and its cyclic regularity and variability. As a nonlinear feature of the time series, MFA

is a nontrivial feature of interest for an SQM convergence measure.
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2.5.2.4 Chosen ECG Feature Model

The above has provided a reasonable justification for the restriction of random signal ECG
models to the class of deterministic nonlinear families. This class of signals provides the
joint properties of deterministic regularity and variability useful for ECG feature extraction
(Fig. 2.16). This class of signals is also consistent with the treatment of biological dynamics
as nonlinear oscillators (c.f., [66, Glass (1983)][96, Glass (1992)]). It has been suggested by
these laboratory experiments that the variable phase lock observed in biological systems may
be consistent with deterministic dynamical models. Other experiments have demonstrated that
the “quasiperiodic phase lock”™ (i.e., aperiodicity) in ECG may be consistent with deterministic
dynamical unpredictability [67, Glass (1988)][110, Kaplan (1994)]{242, Small (1999)]. This

chosen class of signals for analytical ECG characterization:

(a) Reduces the inefficient feature representation of the ECG as a dependent, non-stationary,

and non-Gaussian random signal; and

(b) Avoids a detailed physiological approach to the ECG signal (as in Fig. 2.13), requiring
(1) state vectors such as action potentials of individual cardiac cells, and (ii) dynamical
relationships such as the highly complicated cardiac geometry. Such a nearly intractable

model is outside the scope of this thesis.

With this restricted class of random signals identified, the next section examines the appli-

cation of this signal class to the fetal ECG simulation problem.
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Fig. 2.16 Cyclic regularity and variability of natural ECG: (a) Morphological regularity and
variability in consecutive beats from an NSRD times series; (b) Phase space representation of
the ECG’s regularity and variability.

2.6 BSP Mixing and Dynamical Modelling of ECG Signals

The simulation of the fetal ECG signal-mixing problem requires a discussion of (i) the
characteristic mixing of an abdominal BSP, and (ii) the noise-free uncontaminated ECG mod-
elling of the fetal and maternal ECG signals. These ideas are developed in the following

subsections.
2.6.1 Instantaneous Linear Mixing Channel

Body tissue is composed mostly of water and has been proven experimentally to conduct
electrical currents as a resistive volume conductor [26, Briller ez al. (1966)]. This conductivity
is nonuniform, especially considering the gas-filled areas (lower conductivity) of the lungs
and blood-filled areas (higher conductivity) around the heart [170, Plonsey (1969)]. However,
the electrical properties of conductive media generally supports the additivity of signals, and
since the goal is not to try to recreate the internal electrical signals from the BSP (the inverse

problem of cardiology), the inhomogeneous effects of the body tissue are irrelevant as long
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as they are natural to the problem. Simply put, any time-varying artifacts in conductivity are
considered part of the BSP signal, and is inconsequential to the signal-mixing problem.

More importantly, the additivity of the signals at the sensors are subject to delays intro-
duced by conduction through the body. Again, frequency dependent delays at the electrodes
due to the filtering of the body is considered native and a property of the BSP signals. How-
ever, geometry dependent delays are an important consideration in the signal-mixing problem.
These, however, are of such small magnitude that all electrodes are effectively acquiring the
fetal and maternal ECGs in simultaneous frames. Considering the upper bound represented
by conductivity at the speed of light in water, delays would be less than 1.33/c = 4.4 x 107°
s/m, [238] resulting in delays no greater than 10 nanoseconds across the human body. Since
kiloHertz sampling intervals are still orders of magnitude greater than these geometric delays,
no effects are measurable.

According to these arguments, a BSP signal u;(¢) recorded in the presence of two hearts
independently and simultaneously generating action potentials in the mother’s thorax can then

be modelled with the simultaneous and additive (linear) equation
() = m; Ty (1) + m " s(0) (2.14)

where the index i indicates the coefficients m; change with the leads (e.g., placement of the
electrodes) and the vectors sy (1) and sg(r) represent isolated “uncontaminated” ECG signals
from the maternal heart and the fetal heart respectively. These vectors are traditionally mod-
elled as three-dimensional in the clinical literature, equivalent to the remote observation of a

dipole representation of the cardiac wavefront [69, Goldberger (1999)]{170, Plonsey (1969)].
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Thus, the fundamental equation of the abdominal ECG u(#) can be written in matrix form

sm(f)
u(® =M/ sp(t) (2.15)
artifacts
Here, the mixing matrix M is fundamentally due to the geometry of the electrodes and the
positioning of the fetus within the womb. Therefore, as long as the fetus is not changing its
orientation, M can be considered time-invariant during the signal acquisition [51, De Lath-
auwer (2000)]. It is again important to note that the signals sy (#) and sg(¢) are not the poten-
tials within the hearts’ mass (or at their outer membrane), but rather the characteristic BSP of
an independent system — an “uncontaminated ECG”. Models for synthesizing a noise-free

uncontaminated ECG are discussed next.
2.6.2 Uncontaminated ECG

The present study of separation performance in the fetal ECG mixing problem requires
controlled simulations. As such, signals that represent “uncontaminated” ECG over many

cycles are required. This is formalized as a definition.

Definition 2.9 (Uncontaminated ECG). For the purposes of this thesis, an uncontaminated

ECG is any noise-free in vivo BSP originating from heart electrophysiology alone.
2.6.2.1 Forward Problem Models

It is impossible to actually record an uncontaminated ECG (even if noise were allowed).
This is because it is impossible to stop all other bioelectrical sources in vivo while the heart
continues to function normally in isolation. Since there is no empirical solution to the uncon-
taminated ECG dilemma, mathematical solutions can be drawn from the forward problem in

electrocardiology (which is a specific field of electrophysiological study) instead.
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Here, source currents at the cell and tissue level are assumed in the mathematical model,
and then minute electromagnetic currents are perpetuated through the body channel model
where they assimilate into a measurable current at the body surface. The success of forward
problem calculations rest on the accurate modelling of the source currents and body channel,
not to mention rigorous and highly demanding computation. The ECG, for the purposes of
this present study, reflects the properties of both the cardiac electricity and the body tissue (as
a volume conductor).

In a previous study of forward problem solutions presented in the literature, Huang and
Kinsner [90, (2004)] identified the work of Sachse er al. [190, (1998)] as a state of the art
model to the forward problem. This group created a three-dimensional computer model of
both heart and torso from the magnetic resonance imaging (MRI) dataset of the National
Library of Medicine “Virtual Man” project [159]. From this high-resolution digital model
(1/9 mm?® per voxel), they applied a texture analysis to determine anisotropy in the conduc-
tive fibres. Lastly, they applied a cellular automaton model to generate the cellular currents,
propagating the currents through the three-dimensional model to a BSP map.

This process correctly idealizes the acquisition of an uncontaminated ECG, having no
interference from other sources, and the Sachse er al. result of a simulated bipolar lead is
shown in Fig. 2.17. This model tries very hard to accurately represent the properties of the
electric channel, and also tries to preserve a cellular model for the source currents. However,
it only models the physiological origins of a single cycle, and not the dynamics of many cycles
as is required for this work. Perhaps with future research, the model will account for more
dynamical complexity. The current benefit of this model to this research is a verification of

the ECG features in Fig. 2.11 without electrical signatures from other sources.
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Fig. 2.17 A cycle of uncontaminated ECG from the Sachse et al. forward
problem model. (From [233, (1998)]. Public Domain.)

2.6.2.2 ECGsyn Model and Extensions

Another recent model for the synthesis of uncontaminated ECG has been developed from
a dynamical perspective. McSharry er al. [140, (2003)] have presented a nonlinear dynamical
model for ECG simulation, called ECGsyn. This model is designed to recreate the morpho-
logical features of an ECG beat and also imitate the spectrum and statistics of the HRV. By
first generating a random sequence of instantaneous heart rates with a specified spectrum, as
shown in Fig. 2.18(a), a three-dimensional system of stochastic differential equations is in-
tegrated using a Runge-Kutta technique (Fig. 2.18(b)), and then projected down to generate
a one-dimensional time series representing an ECG (Fig. 2.18(c)). The morphological and
statistical features of the ECGsyn output can be influenced by the design parameters of the

model. The considerable benefit of this model is that it provides a sequence of multiple beats
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with a dynamical interrelationship, which imitates the real effect in the heart. In contrast with
Fig. 2.17, however, there is no physiological motivation in this morphological design, (i.e., no
remote sensing of an activation potential wave).

For the purposes of this thesis, the work of McSharry et al. has been generalized in two
ways to address limitations in the original model as discussed in App. A.

First, the stochastic RR-interval synthesizer has been eliminated, since there is some evi-
dence that HRV exhibits nonlinear effects and may not be just simple stochasticity [107, Kantz
and Schreiber (1998)][97, Ivanov et al. (1999)]. Instead, the algorithm has been modified to
accept the RR-interval sequence as an argument, as shown in Fig. 2.19 and described in [175,
Potter (2005)]. In this way, the natural variability properties of a real cyclostationary ECG
can be expressed in the synthesized time series. RR-intervals are available directly from the
Physionet databank or can be extracted from maintained ECG recordings, such as those in
the NSRD. Since fetal RR-intervals are not available for use with the modified algorithm (c.f,,
Sec. 2.4), an NSRD sequence of RR-intervals is rescaled into the range of fetal heart rate for
fetal ECG synthesis.

Second, the module that transcribes the RR-interval sequence into an instantaneous an-
gular velocity (Fig. 2.18(b), equivalent to instantaneous heart rate (IHR)), has been modified
to keep RR-intervals invariant and preserve PR- and RT-intervals (Fig. 2.19(b)). As exhibited
in the natural ECG of Fig. 2.16(a), the cyclic variability tends to be concentrated in the inter-
beat (TP-) interval (i.e., after the ventricular-repolarization and before the sinoatrial excitation)
[107, Kantz and Schreiber (1998)]. With the modifications described in App. A, a surrogate
ECG can be synthesized to reflect these natural variabilities. The cyclic regularity and vari-
ability of the surrogate ECG is shown in Fig. 2.20 (c.f., Fig. 2.16 for comparison). The time

series representation of a natural ECG and its surrogate ECG are shown in Fig. 2.21. From
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Fig. 2.18 The ECGsyn model: A random HRV sequence, panel (), is generated and applied
to a three-dimensional stochastic differential equation, panel (b) (after [140, (2003)]). A time
series is created from the z-component of panel (b), which has a realistic beat morphology,
panel (c).
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Fig. 2.19 Modifications to the ECGsyn model: (a) Original McSharry et al. model [140,
(2003)]; (b) the new model uses natural RR-interval recordings and a modified RR-IHR algo-
rithm.

this comparison, it is clear that the surrogate ECG represents an idealized recording from the
same dynamical process as the natural ECG, but possibly from a different lead configuration.

The end result of the proposed synthesis model is an isolated noise-free simulation of a
single ECG lead in the desired sampling frequency and quantized to IEEE double floating-
point values. This model represents an important contribution to the state of the art in ECG
modelling, but details of the surrogate ECG method will be left for App. A, since these details
are not directly related to the analysis of ICA performance metrics. One further limitation that
this thesis will not address at all, is the limitation of the model to produce a single lead ECG.
As a single lead, many of the morphological parameters lack any physiological context. Other
researchers have extended the model to the 3D-dipole context [192, Sameni et al. (2007)],
but this is considered a biomedical engineering problem and beyond the scope of the thesis

presented here.

2.7 Summary

This chapter has synthesized the relevant principles in (i) general signal processing and

(i1) ECG biomedical engineering for the study of ICA at fetal ECG separation using generic
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Fig. 2.20 Cyclic regularity and variability of dynamical ECG model: (a) Realistic morphology
and variability in time series beats; (b) Phase space representation of cyclic regularity and

variability.
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Fig. 2.21 Surrogate ECG results: (a) Dataset of actual NSRD ECG; (b) Synthesized surrogate
ECG with the same event-interval dynamics. This surrogate ECG represents an idealized
ECG from the same dynamical process as panel (a) but measured from a different lead (and

thus with different morphologies and statistics).
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feature-based performance metrics. The specifications for the experimental design identified
here are intended to be “as simple as possible, but no simpler”. That is, the background is
sufficient to motivate and define the simulation and feature characterization to follow.

First, signal-to-noise ratio has been identified as an insufficient SQM because it is insen-
sitive to (i) HOS, and (ii) local distribution effects. Thus other generic features should be
considered for the SQMs.

Second, the biological origins of the ECG were surveyed to identify appropriate ECG
features for SQM feature extraction and the modelling of noise-free uncontaminated ECG.
The physiology behind heart function, and ECG electrophysiology identified that the same
model for synthesis can be used in fetal and maternal cases, as long as heart rate can be set to
the correct values.

Third, the mathematical context for ICA separation has been established. The linear mix-
ing assumption for the fetal ECG signal-mixing problem has been validated. This is required
specifically for the ICA assumptions to be discussed in Ch. 3.5. The clinical history and chal-
lenges of fetal electrocardiography has been described. A minimum sampling frequency of
500 sps has been identified, but not from a signal processing paradigm. Further experimental
study would be required to validate the proposed means of identifying sampling frequency for
broadspectral signals. These arguments complete the discussion of fetal ECG signal acquisi-
tion for the remainder of this work.

Fourth, it was demonstrated that ECGs have both a deterministic cyclic regularity and an
intrinsic cyclic variability. The clinical features of ECGs were discussed, but the mathematical
characterization of ECGs using both deterministic and stochastic random signal models were
chosen for their universality. RR-intervals were presented as an important feature of ECG

cyclostationary variability. It was demonstrated that a nonlinear dynamical paradigm would
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acceptably represent both features. Therefore this paradigm will be applied in the analytical
feature characterization of this work. Dynamical features are generic, yet complex enough to
be physiologically relevant and still within the scope of this thesis. In particular, the statis-
tics of the signal (stochastic) or the characterization of the attractor (deterministic) can be
emphasized as appropriate for SQMs.

Last, the nonlinear dynamical paradigm has presented a means to synthesize a noise-free
uncontaminated maternal and fetal ECG. A morphologically-inspired dynamical system is
chosen to emulate the cyclic variability and regularity of an ECG time series over many Cy-
cles. Natural ECG-intervals extracted from recordings are used as an integral part of the
simulation method in order to preserve natural HRV in the synthesized ECG. Although the
basic principles of the chosen ECG model have been presented here, the complete details of
the ECG synthesis algorithm can be found in App. A.

With the mathematical context for analytical feature characterization established, the “SQM-
friendly” ECG features that have been identified in this chapter will now be given a more rig-
orous mathematical treatment. Statistical features for SQMs, as well as for the definition of
ICA, will be presented in the next chapter. Attractor characterization by multifractal analysis
will be discussed in Ch. 4. The final chapter of the background will be Ch. 5, which will

present the theory and application of surrogate data for the validation of multifractal analysis.
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Chapter III

STtupY OF STATISTICS FOR ECG FEATURES
AND BLIND SOURCE SEPARATION

3.1 Overview
This chapter presents a study of
(a) the statistical features of ECGs for the definition of statistics-based SQMs, and
(b) the theory behind ICA separation.

It will begin with an introduction to the ECG distributions that will be characterized. In partic-
ular, their distinction from a random process is clarified, and their visualization and modelling
is introduced. Thereafter, the definition and significance of statistical moments and cumulants
as general features of uni- and multidimensional pdfs are reviewed. In particular, the higher-
order statistics are distinguished from the more common second-order statistics. Next, the
mathematical backbone behind ICA is reviewed in Sec. 3.4: namely the statistical indepen-
dence of a joint distribution. Independence is then characterized in terms of pdf visualization,
moments, and entropies. The mdst significant definition here will be the mutual information
of a joint pdf. Also of interest, a generalization to (Shannon) entropies, called the Rényi gen-
eralized entropies are discussed, which will prove useful for Ch. 4. As a statistical feature,

these entropies are introduced here.
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Section 3.5 then presents the specific background on independent component analysis.
First, a historical review of the ICA literature is presented to orient the reader with the con-
tributors and developments in ICA’s short history. (For a literature survey specific to the
application of fetal ECG separation, including ICA techniques, see App. B.) Thereafter, in
keeping with the signal processing paradigm of this work, the classical principal component
analysis is reviewed (Sec. 3.5.2), from which ICA itself is formulated as a higher-order exten-
sion (Sec. 3.5.3). Theorem 3.22 in Sec. 3.5.3 reviews the seminal characterization of an ICA
process and the degeneracies that must exist in an ICA solution. This is discussed further in
Sec. 3.5.4, where the geometrical context of optimization over matrices is analyzed and some
visualization of the ICA process in matrix space is presented. These geometrical features
of ICA are significant in the state of the art ICA techniques. The application of the general
ICA theory to the derivation of specific algorithms (Infomax and FastICA) is then exempli-
fied in Sec. 3.5.5. Further considerations of how the general theory applies to practical data is
discussed in Sec. 3.5.6.

The last element of ICA background is a section reviewing the performance metrics used in
the literature to evaluate ICA separation (Sec. 3.5.7). Here it is shown how the indeterminacies
of ICA must be considered in ICA separation quality metrics, and also that the majority of
published metrics are second-order with only indirect consideration of higher-order features.
From these, a methodology is proposed for this work to standardize the ICA indeterminacies,

and a collection of interesting elements for convergence analysis is identified.

3.2 ECG Distributions

Statistics are tools used to characterize distributions. In the event that this is the distribu-

tion of a stochastic phenomenon, statistics are the complete characterization of the system. A
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distribution, more generally, is just a multiplicity of a variable and occurs even for determinis-
tic (non-stochastic) phenomena. As discussed in Ch. 2, deterministic systems simply require
more for a complete characterization.

In this section, three questions about the application of statistics to ECG will be addressed.
First, what are the ECG distributions being characterized, and how are they distinct from en-
semble statistics? Second, how can these distributions be visualized? Third, what approaches

are there for modelling these distributions?
3.2.1 Ensemble vs. Time-Integrated Distributions

In the last chapter, it was demonstrated that a random signal is the broadest general class
for ECG characterization. That is, any ECG signal is a member of an ensemble of square-
integrable functions. As such, the ECG process can be characterized by a distribution over an
ensemble {x(r) € L*(R)}: that is, an ensemble distribution of time-functions. For the charac-
terization of a recorded ECG signal, however, this is no longer the case, since one realization,
x(1), has already been instantiated (or extracted) from the ECG ensemble. A characteriza-
tion of a single ECG recording by “statistics”, therefore, is not in reference to the ensemble
multiplicity.

Here, the time-integrated distributions of the signal is the source of the statistical char-
acterization. Moreover, since a multichannel recording of a BSP is being considered, it is a
multidimensional distribution from the observed signal, x(7). The dimension, or number of
channels, of these signals will be noted by N.. Thus the time-integrated distribution is from
the ensemble of vectors {x(t) eRY|te R} indexed by their time coordinate .

This does not imply that ECG signals are stationary, time-independent, or stochastic as
defined in the previous chapter. Neither is it saying that the time-integrated distribution of one

ECG recording must be characteristic of an entire ensemble of ECGs. This demonstrates only
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that the multiplicity is taken over time instances, and, at most, one need only treat distributions
over N_-dimensions. A statistical distribution f will be identified with a V.-dimensional signal
x using the expression “distributed as”, x — f. Furthermore, the distribution f is directly
related to a unique random variable uc R(RN), where R(RY) is the set of all random variables
over R¥., It follows from this formal connection that the statistical characterization of the
signal x and the random varjable u are identical, since they share the same distribution f.
Therefore, one can characterize “random variables” in this chapter without signal processing
consequence. These variables can be distinguished phenomenologically, however, since u is
random while x need not be. (Further discussion of this association can be found in the chapter
on surrogate data, Ch. 5.)

(Note: The definition of stationarity for a time series is therefore somewhat different from
the corresponding definition for a random signal, since, again, there is no ensemble. A time
series is considered stationary when the time-integrated distributions of a sliding interval of |
data are invariant. Apart from truly stochastic and iid signals, stationarity is uncommon.)

Using time-integrated distributions is perfectly consistent with the signal separation of

instantaneously mixed sampled ECGs sampled at sampling frequency v,. Since
x()=Ms(r), Vie{n;'|n=0. N-1} 3.1)

time integration results in two data sets, {x} and {s}, related by a fixed matrix M. The or-
dering of these data sets is not important, as long as the matching between the instantaneous
vector-couples is maintained; i.e., (3.1) holds true and M is constant. Although any time-
shuffling of x(¢) is no longer a meaningful ECG signal, the matrix M and the distributions of
the components are all invariant, and ICA focuses on estimating M~ from these distributions.

This study now proceeds by discussing the two approaches to the modelling of an ECG

distribution.
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3.2.2 Parametric vs. Non-parametric Modelling

The statistical characterization of an ECG is a feature mapping the samples from the ECG
signal {x(z,)} into a representation of the time-integrated distribution, f. This statistical mod-
elling is organized into two broad classes: parametric, and non-parametric modelling.

Parametric modelling consists of mapping the statistical samples into some finite set of
parameters that tune an a priori model to the data. In signal processing this approach is
very common because the Gaussian model is chosen a priori to represent the statistics. The
goal of parametric modelling is to estimate these parameters in an optimum way given the
model. Optimality of these estimators is classically measured by considering bias and variance
[198]. A complete parametric statistical characterization then amounts to a calculation of the
minimum-variance unbiased estimator (MVUB) for the model from the samples.

The benefit of a parametric model is its simplicity and efficiency with finite data [198].
The risk with any parametric modelling, however, is that model mismatch introduces a sys-
tematic bias that is inconsistent with the actual data. If the underlying distribution of the data
is represented poorly by the chosen model, the calculated parameters will not optimally char-
acterize f. Moreover, while the parameters still represent some statistical feature of the data,
the significance of their interpretation is lost.

Systematic bias can be avoided by using a non-parametric approach to distribution mod-
elling. Instead of being model-driven, these techniques are data-driven, and more consistent
with the objectives of ICA. The two most common non-parametric approaches to distribution
modelling are (i) statistical moments, and (ii) kernel density estimation.

Moments are similar in spirit to the MVUB estimators in parametric modelling (and under
certain conditions MVUB estimators can be moments). They are features calculated directly

from the samples which represent some property of the underlying distribution. They are
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universal, however, and not optimized to a particular distribution. Since moments, and specif-
ically higher-order moments, are significant to ICA, they will be examined more deeply later
on in this chapter.

Kernel density estimation assumes a small kernel of probability should be assigned to
the region surrounding an observed sample [25]. The aggregation of these kernels provide
an estimate of the complete distribution. This approach to distribution modelling requires a
choice of mathematical kernel and its properties. The most important property of the kernel is
the smoothing parameter, which assigns the spread of the kernel around the observed sample.

The price that generally comes with non-parametric modelling is an increase in systematic
variance as compared to parametric modelling. That is, the consistency of modelling results
from different instances of finite data is decreased.

This study now proceeds by discussing the visualization of these distributions, and then
their characterization by moments and entropy. Then independence and both PCA and ICA

will be developed.
3.2.3 ECG Distribution Visualization

Visualization is key to understanding the behaviour of distributions intuitively, and it will
prove useful in the interpretation of ICA. The following defines four types of distribution

visualization techniques.

Definition 3.1 (Scatterplot). A scatterplot is the most raw form of distribution visualization.
A finite dataset {x(z,,) eR¥|t,eR, n=1,...,N } drawn from the given distribution is then
presented by individually marking the data points in R¥. As such, visualization can only
occur unaided for N. = 1 and 2. Using perspective-based projection, N. = 3 can also be

drawn on the page and occasionally proves useful.
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Definition 3.2 (Intensityplot). An intensityplot is a slightly more processed form of distribu-
tion realization. This expresses the behaviour of the distribution function f by approximating
it with pixel colourings scaled to the amplitude of the distribution. This correctly represents
the mapping nature of the distribution, and can be efficiently visualized for N, = 2. Estimating
an intensityplot from real data can be done using histogram, nearest-neighbour, or other non-
parametric techniques [25]. In black and white printing, these plots can provide little detail,

and will be used only infrequently in this thesis.

Definition 3.3 (Densityplot). A densityplot is the formal visualization of a distribution’s den-
sity function, f : R¥ — R. This is best accomplished for one-dimensional variables N, = 1,
though for N, = 2 some perspective-based projections are useful. Estimating the values of a
distribution from real data can be accomplished by the same non-parametric estimation meth-
ods as for the intensityplot. The densityplot is the most natural form of visualization of an

analytic distribution formula.
In particular, a technique to be used repeatedly will now be formalized in a definition.

Definition 3.4 (Histogram). A histogram is a piecewise-constant non-parametric estimate of
a distribution density from a finite data set in R™ calculated from non-overlapping volume
elements. Here,

Ni(x)
N V,'(X)

fx) = (3.2)

where N;(x) is the number of data points in the cell i containing x and having volume V;(x).
For normalization, N = }}; N;, which is the size of the data set. If the volumes of all cells are

identical, V; = V, then the histogram is called regular.

Figure 3.1 demonstrates the various visualizations of Gaussian noise in different dimen-

sions. The (fetal ECG) abdominal BSP data from de Lathauwer ez al. (2000) [51] is visualized
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as time-integrated BSP distributions in Fig. 3.2.

3.3 Moments

Now, the characterization of distributions by moments is discussed. As described in Ch. 2,
moment-based characterizations of a distribution are divided into two categories: (i) second-
order moments, and (ii) higher-order moments. The second-order statistics capture the basic
idea of a distribution’s location and spread. Higher-order statistics measure different properties
of a distribution’s shape.

Before continuing, a few definitions are recalled. Here, for simplicity, distributions will
be treated as random variables. Unidimensional random variables will be represented by an

underscore x, while (multidimensional) random vectors appear bold as well, x.

Definition 3.5 (Expectation). Let u be random vector in R, written uce RRM). The expec-

tation of a function g : R% — R with respect to u is

&lsw) = f () f(w)du (3.3)
RN

where u - f. In general, one may view the expectation as an operator & {-} on the argument
with respect to the random variable. If g is a vector function, g : R™ > R then the

expectation is taken component-wise to produce a unique vector & {g(u)}.

Definition 3.6 (Cumulative Distribution Function). The cumulative distribution function (cdf)

of a one-dimensional random variable u is the function

F(u) = fu fw'ydu (3.4)

where u — f.
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Fig. 3.1 The various visualizations of distributions: (a) 1-D Gaussian scatterplot; (b) 1-D
Gaussian histogram and densityplot; (¢) 2-D Gaussian scatterplot; (d) 2-D Gaussian intensity-
plot; (e) 2-D Gaussian histogram; (f) 2-d Gaussian densityplot; (g) 3-D Gaussian scatterplot.
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Fig. 3.2 Various visualizations of time-integrated BSP distributions of the de Lathauwer et
al. data set [51] : (a) 1-D scatterplot (channel 2); (b) 1-D histogram (channel 2); (c) 2-D
scatterplot (channels 2 and 3); (d) 2-D intensityplot (channels 2 and 3); (e) 2-D histogram
(channels 2 and 3); (f) 3-D scatterplot (channels 2, 3 and 7).
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3.3.1 Second-Order Moments

The second-order statistics capture the basic idea of a distribution’s location and spread.
Now, statistical moments are tensor representations of distributions. Most familiar to the

reader will be the central moments of a one-dimensional distribution, given by
m=8lu 5 m=E{w-my}, Vo>l (3.5)

where & {-} is the expectation operator. Then y; and p, are the mean and variance of the distri-
bution. Also, being that they are achieved by polynomials of degree less than or equal to two,
these statistics are called second-order moments. These two numbers roughly capture the main
ideas of a distribution: (i) a (central) location, and (ii) a spread of values around the centre. (In
effect, a second-order characterization is akin to representing all distributions by the interval
[t — 2, p1 + +/uo].) Alternatively, raw moments about the origin can be calculated from
simple polynomial functions, & {g"}. These, however, make for a more difficult interpretation,
except for the raw second-order moment (which represents the energy of the signal).
Moments of multidimensional random vectors become more complicated, being not scalars,

but tensors of order n equal to the order of the polynomial. It suffices, therefore, that the
second-order moments of random vectors can be described by vectors (tensors of order 1) and

matrices (tensors of order 2). For the random vector # = [u,,.. ., y_N_]T, these are the mean
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vector u, and covariance matrix X, defined as

u:a@%igﬁqmm% (3.6)
L=&{w-mu-m"| (3.7)
(1 — € p)? o (- el u, — ey 1)
) f (g — e, ) —€fp) ... (uz— e p)(uy, — ey pr) .
RNe :
(u, — ey ) — el ) (un, — ey )

From the above, it is clear that T is symmetric (i.e., 2T = ) and positive definite [40].

In a scatterplot, the nonzero mean vector of a unimodal distribution can usually be iden-
tified as an offset from the origin, as is shown in Fig. 3.3(a) for the case of a 2-dimensional
Gaussian. The diagonal elements of the covariance matrix give an idea of the spread of the dis-
tribution in space. In particular, the larger the element is, the farther the spread along that axis.
For off-diagonal elements, the sign denotes a linear correlation in the spread of the distribution
along those axes, as shown in Fig. 3.3(b).

It will be very common in the remainder of this thesis to assume that the distributions are
zero-mean. This is true without any loss in generality, since any distributed vector # can be

centralized to

=u-&fu (3.8)

which has zero mean. This thesis will continue to use the notation  for centralized variables.

Acquired BSPs are very likely to have non-zero mean. It would appear appropriate for
the baseline as defined in Ch. 2 to be the mean. However, it is not. The baseline is the most
frequent value attained in the BSP (the mode), and therefore strongly influences the mean, but

the large values that occur during the waves also influence the result, as shown in Fig. 3.4.
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Fig. 3.3 Second-order moments: (a) the mean of a 2-D Gaussian distribution (u = [0.5, 1]);
and (b) the spread of a 2-D Gaussian with X = [1,-1;-1,2].

As such an appropriately centralized BSP will often have a non-zero baseline. It is important
that, in the processing of the BSPs into fetal and maternal ECG estimates, the mean of the
joint system be removed before processing. It is a simple process to reintroduce after the ICA
processing is complete. Without loss of generality, this thesis will use centralized data in the

performance analysis of ICA.

3.3.2 Higher-Order Moments

3.3.2.1 Omne-Dimensional Case

The higher-order moments (u,, 1 > 2) characterize quantitatively the properties of # - f
other than location and spread: in effect, the “shape” of f. The central moments are known,
however, to be inefficient scalar characterizers of even the simplest distributions. For example,
it can be shown (as done in Stuart and Ord [218, Sec. 3.4 (1994)]) that the Gaussian distribu-
tion g(uy, 42), has diverging even moments, i.e., (y; — oo as k increases. (Since the Gaussian

is symmetric about zero, all odd moments vanish, uy,-; = 0.) Given the special distinction
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Fig. 3.4 Means of the time-integrated BSP distributions of the de Lathauwer et al. data
set [51] : (a) 1-D histogram (channel 2) has estimated mean p¢ = 0.026; (b) 2-D scat-
terplot (channels 2 and 3) has estimated mean g = [0.026, —0.199] and covariance X =
[88.8, —68.6; —68.6, 329.4].

of the Gaussian distribution in statistical theory and engineering applications, therefore, pref-
erence is given to other (more complicated) moment parameters that represent the Gaussian
compactly. A set of parameters called the cumulants of the distribution, «;, in effect, are the
standardized higher-order moments [218]. These are rather cumbersomely defined as the ith
Taylor coefficient of log ¥ (f), where # (f) is the Fourier transform of f(u) (called the char-
acteristic function of the distribution). Using these parameters the Gaussian distribution is
compactly represented with only two non-zero moments: «; = u; and k; = up = %, which are
the usual mean and variance.

Thus, following the tradition of ICA theory, higher-order moments implicitly assumes a
cumulant system, though for any finite moment order, HOSs can be expressed combinatorially
and calculated in terms of the central moments. (Note, therefore, that as the moment order
increases, the cumulant expression in terms of central moments becomes more complicated.)

One similar property of cumulants and central moments is that all odd moments are zero if the
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Fig. 3.5 Kurtosis: three distributions of equivalent variance. The Gaussian
pdf is overlayed by a super-Gaussian (k > 0) and sub-Gaussian (k < 0) pdf,

distribution f is symmetric, [218] i.e.,
f)=f(=x)Vx = u,=«,=0, Ynodd (3.9

Therefore, the first symmetric measure of non-Gaussianity by HOSs is «4. Termed the unnor-

malized kurtosis, k' = kg, it is expressed in central moments by the formula [218]
K = pg = 3(p) (3.10)

The kurtosis is related to the sharpness in a unimodal distribution, as shown in the densityplots
of Fig. 3.5. Distributions with positive kurtosis tend to be sharply peaked unimodal curves
with heavy tails, and are called super-Gaussian. Negative kurtosis means a flatter (or often
multimodal) distribution with thin tails. Distributions of this type are called sub-Gaussian.
The kurtosis can also be expressed in a unitless normalized form,

& (')

k(u) = -3 (3.11)

2
&)
3.3.2.2 Mulridimensional Case

Multivariate extensions to these HOS definitions and principals are essential for ICA.

These are quite standard and straightforward, guarding, as noted before, that higher-order
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moments require tensor analysis in the multidimensional case. Of equivalent distinction to
the kurtosis as the first symmetric measure of non-Gaussianity, the centralized random vector

u=1[u,...,uy 17 now has a 4-th order (cross) cumulant tensor [218]

o

omel® = E{BTT T - ), 6T & (T ) G.12)

WXz

where the sum is over all distinct combinations. For u € N,, this makes an N, X N, X N, X N,
array. From this, one can observe that the unnormalized kurtosis &’ (3.10) is the special case
of the fourth-order auto-cumulant, i.e., the diagonal tensor elements where w = x = y = z. As

