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Abstract

This thesis studies moment properties, applications of combining estimating func-
tions, improved estimation in the presence of structural change, and forecasting, as
well as hypothesis testing of a new class of Generalized Autoregressive Conditional
Heteroscedastic (GARCH) and Random Coefficient Autoregressive (RCA) models
for financial time series data. The autocorrelation structure of the squared process is
derived.

The kurtosis for various classes of GARCH models is also derived. Using the es-
timating function method, the asymptotic correlation between the sample mean and
sample median is used to identify the marginal distribution of the error term in the
class of GARCH models. The methodology has also been illustrated in simulation

studies and with real data examples.

Keywords: Estimating functions, Financial data, Forecasting, Hypothesis testing,

Kurtosis, Model identification, Structural change, Volatility,
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Chapter 1

Introduction

1.1 Motivation

A lot of research in finance is concerned with measuring and managing financial risk.
Portfolio optimization requires maximizing rewards and minimizing risks, the latter
of which are not rewarded equally. The topic of risk management has a long history
in economics. Markowitz (1952) and Tobin (1958) associated risk with the variance
in the value of a portfolio. Sharpe (1964) developed the theory of Capital Asset
Pricing Model (CAPM) which shows that there is a relationship between expected
returns and variance where returns are computed as the logarithm of the price today
divided by the price yesterday. These contributions were recognized by Nobel Prize
committees in 1981 and 1990, respectively.

Black and Scholes (1972) and Merton (1973) developed a model to evaluate the
pricing of options. Call options give the owner the right but not the obligation to
purchase an asset at a particular price at a future date. By purchasing such call
options, the risk of a portfolio can be minimized as the call option offers protection
against loss. The cost of this insurance depends upon the risks and these risks are

quantified by the variance of the asset returns.



1.1.1 Volatility Modeling

Estimates of variance are required to implement the option pricing formulas. Typi-
cally, the square root of the variance, known as volatility is reported. An estimate of
volatility widely in use today is historical volatility. This estimate is calculated as the
sample standard deviation of the returns over a range of time periods. There is no
guidance however, on how to choose the length of time period optimally. Furthermore,
it is not reasonable to assume the volatility calculated based on two different yearly
inter-vals should be equal. From an economics point of view, the time-varying nature
of volatility arises out of changes in economic conditions, reaction to unexpected news
announcements from government agencies, as well as reaction to unexpected world
events.

The class of Autoregressive Conditional Heteroscedastic (ARCH) models proposed
by Engle (1982) provides a class of models for which the time-varying nature of volatil-
ity can be adequately modeled. The conditional heteroscedasticity of the variance of
return series can be seen in the sample autocorrelation function (ACF) plot of the
square of a process. While the return series is an uncorrelated process, its square is
a correlated sequence.

Analysts had also observed that the sample kurtosis of return series is far greater
than the kurtosis implied by a normal distribution. The class of ARCH models is
able to capture the leptokurtic nature of return series.

Heuristically, ARCH models are a generalization of the sample variance in that
they take weighted averages of past squared observations. Bollerslev (1986) proposed

a moving average type generalization of ARCH models to include a weighted average



of past (unobserved) volatilities.

Further generalizations of ARCH models have been proposed by many researchers.
These generalizations were surveyed in Bollerslev, Chou and Kroner (1992), Boller-
slev (1994), Engle (2002) and Engle & Ishida (2002). These extensions recognized
that there may be non-linearity, asymmetry and long-memory present in return se-
ries and that returns can be conditionally non-normal with numerous parametric
and non-parametric distributions. A non-exhaustive list of these extensions includes:
AARCH (Bera and Lee (1990)), APARCH (Ding et al.(1993)), FIGARCH (Boller-
slev and Mikkelsen (1996)), FIEGARCH (Baillie et al.(1996)), STARCH (Lee and
Degennaro (2000)), SWARCH (Fornari and Mele (1997)), GJIR-GARCH (Glosten et
al.(1993)), MARCH (Bollerslev (1987)), QGARCH (Sentana, 1995), NARCH (Hig-
gins and Bera, (1992)), Component ARCH (Ding and Granger (1996)), Asymmetric
Component ARCH (Ding and Granger (1996)), Taylor-Schwert (Schwert (1990)),
TGARCH (Zakoian (1994)), Student-t-GARCH (Bollerslev (1986)), Generalized Ex-

ponential Distribution GARCH (Nelson (1992)).

1.1.2 An Example

In this Section, an illustration of some statistical properties of GARCH models are
given through analysis of Standard and Poor’s 500 Composite Index of daily price
levels from January 2, 1963 through November 23, 2005. The index represents the
bulk of the U.S. equity market and provides a proxy for the U.S. financial history for
this period. All statistics and plots have been generated using the finmetrics module
of S-Plus® 6.2.

In examining the price period before 1987 and from 1987 onwards in Figure 1.1
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Figure 1.1: S&P 500 Index of Price and Returns from 1963 - 1986.

and Figure 1.2, the great growth of equity prices over the period and the subsequent
decline after January 2000 is observed. Economists focus attention on returns as
it is the relative price from the purchase point to the sale point that matters. The
return series is centered around zero throughout the sample period even though prices
are sometimes increasing and sometimes decreasing. The largest negative return
corresponds to the crash of October 1987 (see Figure 1.2). The amplitude of the
returns is changing. The magnitude of the changes is sometimes large and sometimes
small. This is the effect that economists call volatility clustering. There is however
another interesting feature in this graph. It is clear that the volatility is higher when

prices are falling. This is the asymmetric volatility effect that Nelson (1992) described
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Figure 1.2: S&P 500 Index of Price and Returns from 1987 - 2005.

with his Exponential GARCH (EGARCH) model.

Looking at the next sub-period after the 1987 crash in Figure 1.2, the record low
volatility period of the middle 1990’s is observed. This was accompanied by a slow
and steady growth of equity prices. The volatility began to rise reaching very high
levels from 1998 onwards. Looking at the last period since 1998 in Figure 1.2, the
high volatility continues as the market turned down. Only at the end of the sample,
since the official conclusion of the Iraq war does volatility decline.

Sample moments of this data are presented in Table 1.1. The mean is close to
zero relative to the standard deviation for both periods. It is .03% per trading day

or about 7.8% per year. The standard deviation is higher in the 1990s.



Statistic Full | Since 1990
Mean 0.0003 0.0003
Standard Deviation | 0.0094 0.107
Skewness -1.39 -0.101
Kurtosis 40.012 6.75

Table 1.1: Moments of S&P 500 Returns.
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Figure 1.3: Quantile plot of S&P 500 Returns from 1990 - 2005.

The skewness is small throughout. The kurtosis; a measure of the magnitude of
the extreme observations is substantial at 6.8 during the nineties, while for the full
sample it is 40. This is strong evidence that extremes are much larger than would
be expected from a normal random variable. Similar evidence is seen in Figure 1.3,
which is a quantile-quantile plot for the post 1990 data. The autocorrelations of the
return series are non-significant as shown in Figure 1.4 while squared returns(and

absolute returns; not shown here) are significant.
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Figure 1.4: Sample ACF of S&P 500 Returns and the Squared Process Returns from
1990 - 2005.

Parameter | Estimate | Std.Error | t value | Pr(t > |t])
w 5.3x1077 | 0.0015 4.627 < 0.0001
o 0.0057 0.0045 12.678 | < 0.0001
&1 0.9381 0.0049 | 192.064 | < 0.0001

Table 1.2: Parameter Estimates of GARCH(1, 1) model fitted to S&P 500 Returns
(from 1990 - 2005)

The GARCH (1, 1) was fitted to the S&P 500 data using maximum likelihood
estimation. The model and estimation will be more thoroughly discussed in the
following chapter. The parameter estimates are reported in Table 1.2. The bulk of
the information comes from the previous day forecast ( see the estimate of 3;). The

new information (which corresponds to the estimate of ;) changes this a little and

the long run average variance has a very small effect (see the estimate of w). The
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Figure 1.5: S&P 500 Index of returns with estimates of 2 standard deviations fitted
using AR(1) model with GARCH(1, 1) errors.

long run variance is naturally small because of the use of daily data.
To address the question of volatility forecasting for this series, suppose an analyst
proceeds naively by assuming an autoregressive model of order one (AR(1)) for the

return series. That is, let {y;} denote the observed return series and assume
Yo = dyo1 + ey, e~ NID(0,02).

Under this model, conditional on past values, we usually assume that the data are
normally distributed with conditional variance Var(y|yi-1) = o2, where o? is the

variance of the error terms e;. Under this model, the estimate of unconditional vari-

2

g

1— ¢

ance is found by substituting estimated model parameters into Var(y,) =
The ‘prediction’ interval in this case has constant width.

However, an AR(1) model with GARCH (1, 1) errors results in a prediction inter-
val that is changing in a more believable fashion as seen in Figure 1.5. The difference

between these two prediction intervals has important applications in finance.



Consider the following simple example due to Gouriéroux (1997) that illustrates
the importance of moding time-varying volatilit for portfolio theory. Suppose an
investor has a portfolio consisting of exactly two assets: a risk-free asset with constant
return 7¢ and a risky return whose future return is predicted via a prediction interval,
(rit,Tut), where t denotes time. Assume that at the initial date, the whole portfolio
is invested in the risk-free asset. The investor wishes to reallocate his portfolio in
the following manner. Because of transaction costs, he will only change his portfolio
when 7,; > ry. Since this means that the risky asset is more profitable, he will change
his entire portfolio to be reinvested in the risky asset. The portfolio will remain
unchanged until 7, ; < ry, at which time, the entire portfolio will be reinvested in the
risk-free asset, and so on. Clearly, the frequency of the reallocations depends on the
evolution of the lower and upper bounds of the prediction interval. But the predictions
from the model with GARCH errors are more variable. In practice, fitting an AR(1)
model with GARCH errors to the returns would imply more frequent tradings in
order to make profits by exploiting the volatility variations. Another widely used

application of volatility modeling is illustrated in the next Subsection.

1.1.3 Options Pricing

One of the important applications of volatility modeling in finance is in the area of
pricing call options. A call option gives one the right, but not the obligation to buy a
specified number of shares of a certain asset such as a stock at the exercise or strike
price. Option contracts are generally for 100 shares; see Jarrow and Turnbull(2000).
An option has an ezercise date, which is also called the strike date, maturity, or

expiration date. American options may be exercised at any time up to their exercise



date, while European options can only be exercised at their exercise date. In this
thesis, an application of volatility modeling for the pricing of European call options
is considered. From hereon, a call option refers to a European call option.

To clarify the idea behind call options, consider the following example found on
page 258 of Ruppert(2004). Suppose that an investor has purchased a call option of
100 shares of Stock A with an exercise price of $70. At the expiration date, suppose
that stock A is selling at $73. The option allows the investor to purchase 100 shares
for $70 and to immediately sell them for $73, which leaves a net gain of $300 on the
100 shares. However, the net profit is not exactly $300 since the investor had to pay
a premium for the option. For example, if the option cost $2 per share, then the
premium cost $200. Moreover, the investor had to pay $200 upfront only to receive
$300 at the expiration date. Suppose that the expiration date was 3 months after the
purchase date and that the continuously compounded risk-free rate is 6% per annum
or 1.5% for 3 months. Then the dollar value of the investor’s net profit at the time

of purchase is

exp(—0.015)300 — 200 = 95.53
and is

300 — exp(—0.015)200 = 96.98

at the exercise date.

A call is seldom exercised if the exercise price is greater than the price of the stock,
since exercising the option corresponds to buying the stock for more than it would
cost on the market. If a call is not exercised, then the investor only looses the cost of

the premium.

10



The investor could lose money on an option even if it is exercised, because the
amount gained by exercising the option might be less than the premium. In the
example above, if stock A were selling for $71 at the exercise date, then the net gain
at the exercise date would be $100; which is less than the $200 paid for the option.
Even though exercising the option results in a loss in this case, the loss is less than
it would be had the option not been exercised. An option should always be exercised
if the stock’s price on the exercise date exceeds the strike(exercise) price.

The Black-Scholes formula for pricing European call options requires an estimate
of volatility which it assumes is a constant. The classic Black-Scholes formula for a
European call option gives the cost of an option based on the Geometric Brownian

motion model for the log return of stock with price S(¢) at time ¢ as
c(S,t) = S®(d) — Ke " T Y0(d — o/T — t),

where

_ log[S/K]+r(T —t) N oT —t
B oVT —t 2

S(t) = S is the price of the underlying security at time ¢ usually ¢ = 0, K is the

d

strike price, T' is the maturity date, r is the spot rate, ¢ is the volatility (i.e. the
instantaneous standard deviation of the rate of return of the underlying security), and
®(x) is the distribution function of the standard normal variate. The option price
depends on the initial stock price S, strike price K, maturity date 7', spot rate r and
the the ‘unknown’ volatility parameter o and hence the better estimate/forecast of
the volatility will improve the performance of the option pricing formula. The Black-
Scholes formula assumes that both the spot rate r and the volatility ¢ are constant.

Historical volatility has been used to estimate the volatility. In the next Section, we

11



provide an outline of the Thesis.
1.2 Thesis Organization

In Chapter 2, we begin by revisiting the class of ARCH models first introduced by
Engle (1982). Extensions of ARCH models that allow for a time-varying conditional
mean to be specified are proposed and their moment properties are studied. The
class of Random Coefficient Autoregressive (RCA) processes due to Nicholls and
Quinn (1982) parallels the time-varying conditional mean and variance structure of
ARMA models with GARCH errors. We introduce generalizations of the class of
RCA models and study their moment properties. Heinen (2003) introduced the class
of Autoregressive Conditional Poisson (ACP) models that account for discreteness,
autocorrelation and overdispersion of count data such as the daily number of price
change durations of $0.75 on IBM stock. A $0.75 price- change duration is defined as
the time it takes the stock price to move by at least $0.75. The variable of interest
is the daily number of such durations, which is a measure of intradaily volatility.
The class of ACP models is shown to possess properties that parallel those of the
class of GARCH models. We extend the moment property results of the ACP(1,1)
model due to Heinen(2003) to the class of ACP(p,q) models, where p > 1 and ¢ >
1. An extension of Hamilton’s (1989) Markov-switching model is proposed and its
properties are studied. In Chapter 2, we also study a new class of nonlinear GARCH
models developed for the purpose of modeling conditional leverage and conditional
skewness. The Heston and Nandi (2000) GARCH models model the presence of

conditional leverage; whereas the Inverse Gaussian GARCH model of Christoffersen,

12



Heston and Jacobs (2006) models conditional skewness in addition to the presence
of conditional leverage. Model identification for nonlinear GARCH models remains
an open problem. We develop data-driven procedures for identifying this recently
developed class of nonlinear GARCH models. Simulation studies are extensively used
in Chapter 2 in order to illustrate to show that moment properties are useful for the
puropose of volatility model identification.

In Chapter 3, we revisit the theorem on optimal estimating functions for stochastic
processes due to Godambe (1985). We also revisit the theorem on optimal estimating
functions due to Thompson and Thavaneswaran (1999). We show that both theorems
lead to the same optimal estimating function. Godambe’s theorem is used to combine
estimating functions for volatility. The combined estimating functions are shown to
have more information than each of the component estimating functions. The combi-
nation theorem due to Thompson and Thavaneswaran (1999) is used to demonstrate
the usefulness of the correlation between the least squares estimating function and
least absolute deviation estimating function as a GARCH model identification tool.
Applications of combining estimating functions in hypothesis testing problems for
volatility models were also studied.

In Chapter 4, the forecasting problem for stationary processes (such as ARMA
models) with GARCH errors is studied. The forecasting problem for stationary series
in the presence of structural change such as change in the mean or change in the
volatility is also studied. The proposed forcasts which we term improved estimates;
were motivated from the biased minimum mean squared error estimates proposed

by Shalabh (2001). In practice, the biased minimum mean squared error forecasts
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are estimable if all nuisance parameters are known. We derive recursive improved
estimates in the presence of structural change that only require starting values for
nuisance parameters.

In Chapter 5, some of the financial applications of the theoretical results ob-
tained in the previous chapters. The correlation between the LS and LAD estimating
functions as a GARCH model identification tool is extensively studied in simulation
studies and illustrated using real financial data. The superiority of the optimal esti-
mating function approach for hypothesis testing is also demonstrated through some
simulation studies. European call options prices are calculated using historical volatil-
ity and compared to to predicted prices obtained by assuming an adequate GARCH
model for the volatility. Interval estimation of the marginal standard deviation of
GARCH models using nonparametric and parametric bootstrapping is studied in a
preliminary simulation study.

We end with possible extensions for future work. Appendix A contains algorithms
for simulating random variables from an Inverse Gaussian distribution. Appendix B
contains details of the proofs for combining estimating functions for volatility dis-

cussed in Chapter 3.
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Chapter 2

Moment properties of some time
series models

In the introductory chapter, we have introduced several GARCH models for modeling
financial series. Other time series models are also able to capture salient features of
financial series such as time varying conditional variance and leptokurtosis. For a

simple model considered by Gouriéroux (1997) of the form

2
Yo = &1,

where €; is a Gaussian white noise process with variance 0?, we obtain

E(yt) =0
E(y;) = E(e,)E(e}) = 30¢

E(yiye-n) = E(E?—ﬁtg%—h,—ﬁt—h) = E(Et)E(gf-l‘f?—h—ﬁt—h) =0, (h>0)

with p¥ = 0 for & > 0. We see that the process y; is weakly stationary having variance

30f, where as its conditional variance given its past, V(y,|Fi ;) = V(e2 ,&|FY ) =

£}

o2¢t |, depends on the lagged residuals. Since,

n (Qn)l n
B(e") = uqyes” and B) = Ble)E(e!) = 81502
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E(y}) _3150;2
Var(y)]? — 9012

even a simple volatility model y; = €2_,e; with Gaussian error term &, can generate

the kurtosis is given by K = = 35. This clearly shows that

very high peakedness which is very common for financial time series. For the y?

process, y? = e}_,£2, the correlation is given by,
, 1 k=0
py =4¢ 01145 k=1
0 k>2

In contrast, for the process given by Z, = ¢,_,¢,, where &; is an uncorrelated Gaussian

2

2, we have the following:

sequence with mean zero and variance o

E(Zt) = 0,
E(Z}) = Ele_1)E(e) = ot

E(Z)) = B(el1)E(g) = 90;

so that the kurtosis is given by

K2 E(Z, — N)4 _ 9;’? -9
Var(Z))? o8

The autocorrelation Z? of the process is given by

1 k=0
pf=4¢ 025 k=1
0 k>2

Hence, these simple white noise driven models can exhibit leptokurtosis and time-
varying conditional variance observed in financial data.

Recently, Thavaneswaran et al. (2005) have studied the moment properties of
the zero mean GARCH processes. In this chapter, we extend the results of Tha-
vaneswaran et al. (2005) by studying the moment properties such as the autocorre-

lation of the square of GARCH processes and the kurtosis of ARMA(p, ¢) models
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with GARCH(P, Q) errors. The models studied are useful for volatility modeling in
the sense that they are conditionally heteroscedastic and the kurtosis implied by such
models is larger than three. Moment properties are useful for model identification. In
this chapter, the moment properties of two classes two classes of volatility models are
presented. In Section 2.1, moment properties of the class of Random Coefficient Au-
toregressive(RCA) models due to Nicholls and Quinn (1982) are given. The moment
properties of the class of zero-mean ARCH models due to Engle (1982) are studied
in Section 2.2. Moment properties of RCA models extended to have GARCH errors
are studied in Section 2.3.1 and Section 2.3.2, while moment properties of stationary
models with GARCH errors are studied in Section 2.3.3.

Moment properties of Hidden Semimartingale models (HSMs) with GARCH errors
are studied in Section 2.4. The class of HSMs with GARCH errors is an extension
of Hidden Markov Models with autocorrelated errors due to Hamilton (1989). In
Section 2.5, we extend the results on the moment properties of a class of volatility
models for time series of counts proposed by Heinen (2003).

Identification of two classes of non-linear GARCH models are explored in Sec-
tion 2.7.1 and in Section 2.7.3 by using their moment properties. These classes of
non-linear GARCH models can incorporate conditional leverage. In particular, the
class of Inverse Gaussian GARCH models allows for conditional skewness to be mod-
elled, as well. Our main contribution is to use moment properties for the purpose of
model identification.

In the next section, we extend the results on moment properties of RCA models.
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2.1 Random coefficient autoregressive models

Random coefficient autoregressive time series were introduced by Nicholls and Quinn
(1982) and their moment properties have been studied recently by Aue (2004) and
Appadoo, Ghahramani and Thavaneswaran (2005). RCA models exhibiting long
memory properties have been considered in Leipus and Sugailis (2003). A sequence

of random variables {y;} is an RCA(1) time series if it satisfies the equations
Y = (¢ + bt)yt_l + ey te Z,

where Z denotes the set of integers, and

(2) = ~((5)(F 2)) o1

The sequences {b;} and {e;} respectively, are the errors in the model. According
to Nicholls and Quinn (1982), (2.1.2) is a necessary and sufficient condition for the
second order stationarity of {y;}. (2.1.1) also ensures strict stationarity. Moreover,
Feigin and Tweedie (1985) showed that Ey?* < oo for some k > 1 if the moments of

the noise sequences satisfy Fe?* < co and E(¢ + b,)* < 1, for the same k.

2

Let {y:} be a stationary Gaussian linear process with mean zero and variance oy

Then it can easily be shown that the joint moment generating function of the pair

(Y2, Ye—) is given by

1
m(u,v) = E(eWHe-+) = exp <§U§ (v +v* + 2p%uv)> ,
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where o2 = Var(y;) and pj is the autocorrelation function of y;. Since, E [yZyZ ] =
og(1+2(p})?) and Var(y;) = 20, we have

32 _ E[ytzytz—k] - 0-’3 _ ( y)2
pk - 20_4 - pk :
Y

That is, for any stationary Gaussian process {y:}, the autocorrelation of the squared
process {y?} is the square of the autocorrelation of {y,} and hence the autocorrelation
of any stationary Gaussian process {y;} is larger than the autocorrelation of {y?}(i.e
lpr| > p%g). The squared process plays an important role in model identification
(See Thavaneswaran et al. (2005)) and volatility forecasting (See Thavaneswaran,
Appadoo and Peiris (2005)). In the following set of theorems, we study the first four
moments, the autocorrelation structure of the process and its square process.

Part (i) of the following theorem have been derived by Aue (2004). Parts (ii) and

(iii) have been derived by Appadoo, Ghahramani and Thanveswaran (2005).

Theorem 2.1.1 Let {y,} be a RCA(1) time series satisfying conditions (2.1.1) and

(2.1.2), and let v, be its covariance function.

(i) We have

E(yt) = 0,

oe

and the k-th lag autocovariance for y; is given by

k2
v _ ¢"o;
’Yk_l_qﬁg_o_g»

while the autocorrelation for y, is pl = ¢* for all k € Z. That is, the usual

AR(1) process has same autocorrelation as the RCA(1).
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(i) If {b;} and {e.} are normally distributed random variables then the kurtosis K&

of the RCA process {y;} 1s given by

I{(y) — 3(1 _ (Ug + ¢2)2)
1 — (¢* + 64202 + 30¢)’

and for an AR(1) process K reduces to 3.

(iii) The autocorrelation of y? assuming b, and e, are normally distributed is given
by
2 3
oL = (8 +ap)

and for a Gaussian AR(1) process it turns out to be
! 2 v
ol = ¢
Proof. By conditioning on y;,_y, we obtain E(y:) = EE(y]y,—1) = 0, and

Var(y,) = E(Var(ylye-1)) + Var(E(y:|yi-1))
= B(ojyr, + 02) + Var(¢yi-1)

= o+ orB(yi_y) + ¢*Var(y:_1),

so that

2
y Te

Vertw) =% = ot gy

The [-lag autocovariance is

E(yiyi-1) = BE(dy—1ye-1) + E(byi-1yi-1) + Eleyi-1)

W = ¢
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Similarly, the k-th lag autocovariance is,
W= ¢
For the proof of (iii), we have
v = (@ +b)ye1 +ef
B(y) = E((¢+b)yiy) + 6E(( + b.) i sef) + 307 (2.1.3)

E((¢ + be)'vi_1) (¢* + 6¢°0; + 304 ) E(y—,),

and
E((¢ +b)%yiref) = El(¢%€] + 20be] + biel)yr )

= EE((¢%e; + 20bie} + bie})y;[ye-1) = E(($%0% + oj00)yi )

2/ 42 2 Ug
= Ue(¢ +ab)(1_0_2_¢2)
b
_ 0e(8” + )
1—of—¢?

By substitution, we obtain the following results:

4/ 42 2
Ue(¢ +Ub) +30_4

(¢* + 64°0; + 30y)E(yi,) + 6(1 e e

je

&2

RS
l

304(1+ ¢ + o})
(1 -0 — ¢*)(1 — (¢* + 6¢207 + 301))

Hence, the kurtosis is given by

[{(’J) _ 3(1 — (0'? + ¢2)2)
1 — (¢* + 69202 + 30}

We now derive the autocorrelation of y? of the RCA(1) process. Since

E@iviy) = E@yiwis) + Byl yi) + E(elyi,)
= (B} +0p)EW; 1yiy) + 02E(y] L)

21



we obtain

Elytyi
2,2 4 4 -1
v E{ytyt—l} — 0y 9y _ (¢2+0_2)
AT TEW) —ot T T KW-1 b

2
Similarly, the autocorrelation of y? at lag k is given by p;* = (¢? + o2)~.

Note that when 0,=0, the kurtosis of y; in part (iii) reduces to that of a standard

AR(1) process, which is equal to 3. Easy computation shows that Kfﬁ{ < K}(,z’(% A
Consider a more general form of the RCA(1) model of the form
Yt = Oyi-1 + e (2.1.4)

Then the following corollary is true.

Corollary 2.1.1 Let {y;} be a RCA(1) time series of the form 2.1.4 satisfying the
stationarity conditions (2.1.1)-(2.1.2), and let p} denote its autocorrelation function.

Then the following hold.

(i) When 6, = ¢ + b, E(y;) =0, E(y?) = 02/(1 — ¢* — 02), the k-th lag autocorre-

lation for y, is given by pf = (E(¢ + b,))* = ¢F.

(t) When 6, = sgn(b;) where b, ~ (0,03) and sgn(bs) = I,50) — Ipe<oy, (1) 18
the indicator function), then pl = (1 — 2F(0))*, where F is the cumulative
distribution function of b;. Thus, when the coefficient 0, is driven by a binary
random variable {b;} taking values -1 and +1, the autocorrelation of the process

depends on the marginal distribution of {b;}.

(#ii) When 6, = (¢ + |b|*) where b, ~ N(u,0?) then, the autocorrelation is

e (R ()
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where T'(.) is the Gamma function.

Proof: The proof of (i) follows by observing, that

EE(vyi—«l0:) = EE(Owi—1yi-k + eyi—il0:) = EOE(yi—1vi-1)) = E(0)7i_,

so that
. By v . g ) y
o = —-(—7)— - B0 L5 = B, = (B0 = (B(o+ b)) = ¢

For the proof of (i), if we let y; = 6,1 + €; and 6, = sgn(b;) = Ito, >0y = L(b,<0), then
E(6;) = E(sgu(b;)) = P(by > 0) — P(b; < 0) = 1 — 2F(0),

so that p¥ = (1 — 2F(0))*. Part (iii) follows from the fact that for a normal random

th

variable X, having mean 0 and variance ¢ the o absolute moment of X is

et =G ()

2.1.1 Random coefficient autoregressive with moving average
errors

The RCA models with moving average innovation terms are an extension of the clas-
sical RCA model of Nicholls and Quinn (1982). This new formulation was proposed
by Appadoo, Ghahramani and Thavaneswaran (2005). The proof of the moments and
the kurtosis is similar to that of the RCA model discussed in the previous section.
A sequence of random variables {y,} is called an RCA(1)—MA(1) time series if it

satisfies the equations.
Yo = (@+b)yo1 + e+ ey tez, (2.1.5)

such that (2.1.1)-(2.1.2) hold.
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Lemma 2.1.1 Let {y:} be the RCA(1)—MA(1) time series model described by equa-

tion (2.1.5)

E (yt )
v
o/

y

M

and let v) denotes its autocovariance function. Then the following hold.

= 0,

o2(1 + 6?)
1—of—¢?

- ¢7g—17 Ikl > 1a

: 2
= ¢v5 + 007

and the autocorrelation and kurtosis of the process are given by

Y

Pr =

and

1 k=0
b4 (-t =) [k =1
¢ P k| > 1
KW = 31+ ¢* + 7)1 — 0} — ¢?)

I~ (¢" + 6477 + 307)

Proof: The proof is somewhat similar to the proof of Theorem 2.1.1. Some of the

details are as follows.

2
Yy

E(y)

yi =

And,

E(yi) =

= (¢o+ bt)zy?q +2(¢ + by)ye-1(es + 1) + (e; + es_1)?,

= (¢" +0)E(yi ) + (1 +6%)0Z,

(& + b)Yy + 4( + b)y} 1 (e + beuoy)
6(¢ + b0)*yi1(e0 + Be1)® + (6 + be)ye—r(er + Oery)?

(@t + Get_l)‘l.

304(1 + 62)%[1 + (¢* + o?)]
(1= (¢ + a))[1 = (¢* + 69207 + 30}))]
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It is of interest to note that an AR(1) process, an RCA(1) process and an RCA(1)-

MA(1) process have the same autocorrelation structure.

Lemma 2.1.2 For a simple time series model of the form y; = ¢y;_06i_1 + &, where
&, 1s a Gaussian white noise with variance o2, the variance of the process is given by

0.2

Var(yt) 1_—¢20_—2' y

and the kurtosis is given by
4 4
]{(y) — 3[1 B ¢ UE]

(1-3¢cl)
Proof. We obtain
Ely)] = 0 by conditioning,
E[yl] = ¢°E[yl,)o’+ o2 = -1_;‘5)203, assuming stationarity of y,

Elyl] = E[#*y/ .60, +40°y} sel e, + 69 Y oEr 18 + Adysogs- 1€; + €4

= ¢'Ely;_,]30% + 66*Ely; ,lo20? + 307
Now

Ely]] — ¢*Ely,_,)302 = 64°Ely;_,)o? + 302

o?
= { ¢2 2] ol + 307,
6¢%0° + 30d(1 — ¢?0?)
(1- ¢203)[1 — 3¢%a¢]
3021 + ¢*0?]
(1= ¢%02)[1 — 3¢%cY]

Hence, the kurtosis follows.
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Example 2.1.1 Let us consider,
Yr = 9153_1&4—6’25?_2&

where g, is a Gaussian white noise with variance o2. We have

E(y) = 0 (2.1.6)
E(y}) = 0o8(367 + 20,0, + 362)
E(y}) = [315(8] + 03) + 180(630, + 6:03) + 1626262 o }?
so that,
KW E(y — p)* _ [315(01 + 65) + 180(830, + 6:63) + 1620262 o2

[Var(y))? al2(36% + 20,0, + 362)2

(315(6} + 63) + 180(620, + 6,63) + 1626202 ]
(362 + 26,0, + 36%)2

The derivation of the autocorrelation of y; is similar to that for y; in the motivating
examples in the beginning of this chapter due to Gouriéroux (1997) and hence is

omitted. Moreover, for any conditionally Gaussian process of the form,

Y = f(5t~17 C L Ei—k)EL

where f is a measurable function of &;_1,...,&_; and & is a zero mean Gaussian

process, then
E(y}) = EE(Ylyi-1) = E3[EW |yi-1)]* > 3(BE(yE|y-1))* = 3(E(y2))?,

and




2.2 GARCH Models

Consider the general class of GARCH (P, @) model for the time series y;, where

v = Vi, (2.2.1)

P Q
he = w+ > ol + Y Bk (2.2.2)
i=1 g=1

and Z; is a sequence of independent, identically distributed random variables with
zero mean, unit variance. Let u; = y? — h; be the martingale difference and let o2
be the variance of u;. Rearranging terms and by noting that h,_; = yf_j — Uy—j, then

(2.2.1) and (2.2.2) could be written as:

P Q
yv2—u = w+ Z syl + Zﬁjht_j, (2.2.3)
i=1 =1
P Q Q
1- Z a; B — Zﬁij yt2 = w-— Zﬁijut + Uy, (2.2.4)
i=1 j=1 =1
®(B)y? = w+B(Bu. (2.2.5)

R
where, ®(B) = 1 — Z ®B, @ = (as+5), B(B) =1-— XQ: B;B? and R =
max(P, Q). We shallzjrllake the following stationarity assumptioris: 1for y? which has
an ARMA(R, Q) representation. We can view the square of the process as a measure
of variability of the return process. The ARMA representation in terms of y? allows
us to forecast volatility, for example.

Assumption 2.1 All zeroes of the polynomial ®(B) lie outside of the unit circle.

o0
Assumption 2.2 We have Z U? < oo where the Us are obtained from the relation
=0

¥(B) ®(B) = B(B) with ¥(B) = 1+§: v,Bt.

Assumptions 2.1 and 2.2 ensure that the {u;} are uncorrelated with zero mean and
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finite variance and that the y? process is weakly stationary. In this case, the autocor-
relation function of y? will be exactly the same as that for a stationary ARMA(R, Q)
model. For any random variable y with finite fourth moment, the kurtosis is defined
E(y — ) . ) :
y ————= and is denoted by K'¥). If {Z;} is a normal process, then the process
2
[Var(y))
{v:} defined by equations (2.2.1) and (2.2.2) is called a normal GARCH (P, Q) pro-
cess. In order to calculate the GARCH kurtosis in terms of the WU-weights and the

autocorrelation function (ACF) of the squared process, the following theorem given

in Thavaneswaran et al. (2005) will be useful.

Theorem 2.2.1 (i) For the GARCH(P, Q) process specified by (2.2.1) and (2.2.2),
under the stationarity assumptions (2.1)-(2.2) and having finite fourth moment,

the kurtosis KW of the process is given by

K@ — E(Z4) -
Bz - B2 -1 5
2K
(ii) The variance of the y? process is vy —Z U202, oo = M—({i——l—) and p =

S
j

=0

w
E
(yf) 1—(:[)1“‘ _(I)R’

(iti) The kth lag autocovariance of the y? process is
’Yk = 02 Z\I/k+] Js

(iv) The kth-lag autocorrelation is given by

v2 _ Tk
pk - ? %) H
Y 2
DD\
=0
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(v) For a normal GARCH(P, Q) process

3
Eeeaa—
o

j=1

It is of interest to note that Bai, Russell and Tiao (2003) have derived also studied

KW —

the moment properties of GARCH processes. In particular, they have studied the
relationship between the kurtosis of a GARCH process, its excess kurtosis, the kurtosis

of the error term Z; and the ¢-weights.

2.2.1 Special Cases

In the following examples we show that the results for normal GARCH(1, 1), t-
distribution GARCH (1, 1), IGARCH, double-exponential GARCH, GED-GARCH

and Power GARCH are special cases of (2.2.1), (2.2.2) and (2.2.5).
Example 2.2.1 (normal GARCH(1, 1)).

In this example, we show that the results for a normal GARCH(1,1) model and an
ARCH (1) mode] are special cases of Theorem 2.2.1.

For the GARCH (1,1) model, (2.2.4) and (2.2.5) are given by the following:

B = \/h_tZta

he = w+ iy, + Bihey,
Let u, = y? — hy. Then,
i == w+ oy + By, — wea).
This shows that for a GARCH(1, 1) process y;, y? has ARMA(1, 1) representation.
yi — iy — By = w + up — i1,

29



And, (1 - ©,B)y? = w + (1 — iB)uy, where ¥ = a;, ¥y = ai(ar + 6), U3 =

ar(ay + B1)3, ... U, = ag{ag + ﬁl)(j‘l), j > 1and

2
aj

‘I’Q-Za2+a2a+ =1
j; 7 1 l( 1 ﬂl) 1—(a1+ﬁ1)2

By Theorem 2.2.1(iv),

3
1230
j=1

3(1— (0 + 61))
1= (o + 6 — 207

and this turns out to be the same as that given in Bollerslev(1986).

For the ARCH(1) model of the form

Y = \/EZta
o 2
he = w+ oy,

_ .2
u = y; — hy,

if we set 3, = 0 and use the method given earlier in this example, then we obtain

3(1—a?)

KW = .
1—3a?

Example 2.2.2 The t, distribution GARCH model.

For any t-GARCH (P, Q) process driven by a t-distribution with d.f. v > 4, the

" central moment (when r is even) of such a heavy tailed distribution is given by

1.3....(r=1)
v-r)v—r+2)....(v - 2)

v
v—2

pr(ty) = I/%T( , varlt,] = (v > 3) and the kurtosis,
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6
v—4
6
If we assume a t—distribution with v d.f. (v > 5) for Z,then E[Z}] = a7 3 and
v —

K = +3 (v > 5). The r** central moment is zero when  is odd.

using Theorem 2.2.1 we can obtain the kurtosis of the t-GARCH (P, Q) process by
working with a t-distribution standardized to have zero mean and unit variance in
the following manner.

whenever v > 2 and E(Z~t4) =

- = v
Suppose Z; ~ t,. Then E(Zf) T U2 m

whenever v > 4. Consider the standardized random variable Z, = Z}.

Then
—2)2 .. 3(r—2)
E(zs) =Y 4= .
( t) 1/2 E(Zt) l/—4
1— 9%+ o

For a GARCH(1, 1) process, Z \I/;2 = , where &, = oy + 1.
=0

1 -4
Using Theorem 2.2.1, the kurtosis of the t,-distribution GARCH(1, 1) process is

given by the following:

E(Z})
B(Z{) - [BE(Z}) - 1] 32272, 93
3v—-2)/(v—4)
3w=2)/(v=4)-Br-2)/(v —4) - 1J(1 - ¢} + a})/(1 — ¢3)
3(v—2)[1 — (a1 + 1)
(v —4)(1 =26 — B2 - 3(v—2)a2

K% =

Example 2.2.3 The double exponential GARCH model.

For any GARCH(1, 1) process y;, where Z; is an uncorrelated sequence following a

standard double exponential density

1 N
flz)= —e‘ﬁ]*l, —00 < 2 < 00

V2
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[ee]
1- 32+l
using Theorem 2.2.1 and the fact that E(Z}) = 6, and Z vE = 1—1(;—_2—?—1, (@, =
j=1 ot
ap + B1) the kurtosis of the process is
61 — 2
g S (et Br)) (2.2.6)

- 1-— (&1‘*‘,61)2—505%'

Example 2.2.4 The Generalized Error Distribution (GED) GARCH maodel.

Consider a GARCH(1, 1) process that conditionally follows a GED distribution given

by
v = VhZ,
he = w+ iy + Bihi,

where Z; ~ (0,1) has the following density:

- v 1, 2w\ Y2
10 = s = (-2 ) 2= () veo

It is easy to show that F(Z?) = 1 and E(Z}) = —P-%F()S)—/ZV) Then,
v

PA/V)LG/V)L = (en + B1)?]
(CE/WNPL = (o + 51)?] = [A/T(G/v) = (T(3/v))ed”

KW —

It is of interest to note that for v = 1, the kurtosis reduces to the kurtosis of the
double-exponential GARCH(I, 1) model and that for v = 2, the kurtosis reduces to

the kurtosis of the normal-GARCH(1, 1) model.
Example 2.2.5 (Integrated GARCH(IGARCH))

For the IGARCH model considered in He and Terasvirta (1999),
v = Vhi 7, he = ay? | +(1—a)hy, where Z, is a sequence of independent,

identically distributed random variables with zero mean, unit variance and o is a
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E 4
constant 0 < o < 1. Assuming that kg = 1, the kurtosis is given by, K% = ﬁ =
Yi
[0 (KP —1)+1]' K@ where K@) is the kurtosis of the (Z;) process. For more details
on the proof of the kurtosis of the IGARCH process, see Thavaneswaran, Appadoo

and Samanta (2005).
Example 2.2.6 (power GARCH(1, 1))

Consider the power GARCH(1, 1) model given by

b = \/EZt,

hf = w-+ allyt__l\‘s + ﬁlhf?_p (227)

where Z; is an uncorrelated mean zero process with unit variance. Let u; = |y;|° — h¢
be the martingale difference. Then, ®(B)|y|* = w + B(B)u;, where ®(B) = 1 — &, B,
®, = oy + 61, and B(B) = 1 — 3, B. This shows that the power GARCH(1, 1) model
could be represented as an ARMA(1, 1) for |y|°.

In the following example, some of the moment properties of a normal-GARCH(1, 1)

process are illustrated.

Example 2.2.7 In this example, we simulate n = 8000 observations from a normal-

GARCH(1, 1) process with parameters w = 0.01, a; = 0.2 and B, = 0.75.

The sample ACF of the process (shown in Figure 2.1) and its square (shown in Fig-
ure 2.2), illustrate the absence of autocorrelation in the process and the presence of
autocorrelation that does not dampen in the square of the process. Table 2.1 gives the
parameter estimates obtained via maximum likelihood estimation using proc autoreg

and the method of moments using proc arima in SAS®. As the simulated process is
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normal-GARCH(1,1)
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Figure 2.1: Sample ACF of a simulated normal-GARCH(1, 1) process.
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Figure 2.2: Sample ACF of the square of a simulated normal-GARCH(1, 1) process.

a normal-GARCH(1, 1) process, the maximum likelihood estimates(MLEs) will be
efficient. However, the method of moments estimates are appealing as no distribu-
tional assumption is made about the Z; process. The method of moments estimators

of oy and 3y are quite close to the true parameter values; whereas w is overestimated
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by the method of moments estimator. Consequently, the unconditional variance will
be overestimated if we were to use the moments based parameter estimates.

The empirical kurtosis is 4.93 indicating that the class of ARMA models would
not be appropriate for fitting this data. The estimated kurtosis that based on the
normal-GARCH(1, 1) model fit turns out to be 7.82, while the estimated kurtosis that
is found by substituting the method of moments hased parameter estimates is 3.20.
The former estimate explains all of the sample kurtosis whereas the latter estimate
does not fully explain the sample kurtosis. Therefore, identification of the appropriate

error distribution is crucial. In Chapter 3, identification of the error distribution for

a GARCH model will be studied.

Parameter | proc arima | proc autoreg
w = 0.01 0.0165 0.0106
a; =0.2 0.1717 0.1790
By =075 0.7406 0.7676

Table 2.1: Parameter estimates of a simulated normal-GARCH(1, 1) process using
maximum likelihood and method of moments estimation.

In the next example, an application of ARMA models with GARCH errors is

studied.

Example 2.2.8 (S&P 500 Index of Composite Ezcess Returns)

The GARCH(1, 1) model is the most widely used GARCH model for fitting financial
return series (Hansen and Lunde (2004)). Tsay (2001) analysed the S&P 500 Compos-
ite Index of excess returns data by initially fitting an AR(3) model with GARCH(1, 1)
errors. The motivation for fitting an autoregressive component is due to the presence

of the first and third significant lags in the sample partial autocorrelation function
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Figure 2.3: Sample ACF and PACF of S&P 500 data.

(PACF) plot as shown in Figure 2.3. Let {y;} denote the return process and let a,
denote the white noise process in an AR(3) model. The estimated AR(3) model is

given by

Yy — 0.0062 = 0.089(y;—1 — 0.0062) — 0.024(1;—2 — 0.0062) — 0.13(y;—3 — 0.0062) + ay.

The sample ACF of residuals from this fit and their squared process are examined in
Figure 2.4, respectively.

However, upon fitting an AR(3) model with GARCH(1,1) errors, the autoregres-
sive parameters failed to be significant and Tsay selects a GARCH(1, 1) for this data.
The sample ACF of the standardized residuals and squared standardized residuals in
Figure 2.5 reveal that the ARCH effects have been accounted for by the GARCH(1, 1)
fit. Tables 2.2 and 2.3 provide the parameter estimates for an AR(3) model fit and
an AR(3) model with GARCH(1, 1) errors. Table 2.4 gives the parameter estimates

for a mean model with GARCH(1,1) errors. The estimated model is given by
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Figure 2.4: Sample ACF of residuals and squared residuals of AR(3) fit to S&P 500

data.
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Figure 2.5: Sample ACF of residuals and squared residuals of GARCH(1, 1) fit to
S&P 500 data.
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All parameter estimates are significant in this case. The estimated kurtosis assum-
ing a normal-GARCH(1, 1) model is given by K = 11.15 while the sample kurtosis
‘is 12.36 indicating that the normal-GARCH(1, 1) explains most of the leptokurtosis.
This example has motivated us to study how the 1¥-weights of autoregressive models

with GARCH errors depend on the autoregressive parameters.

Parameter | DF | Estimate S.E. t-Value | p-value
1 1 | 0.006159 | 0.001945 | 3.17 0.0016
o1 1 0.08909 | 0.03544 2.51 0.0121
o 1 | -0.02376 | 0.03559 | -0.67 | 0.5046
b3 1 | -0.12297 | 0.03545 | -3.47 | 0.0006

Table 2.2: Parameter Estimates of AR(3) model fit to S&P 500 index of returns.

Parameter | DF | Estimate S.E. t-Value | p-value
L 1 | 0.007474 | 0.001580 4.73 | <.0001
o1 1 -0.0337 0.0385 -0.87 | 0.3819
o 1 0.0312 0.0383 0.82 0.4146
®3 1 0.0101 0.0356 0.28 0.7759
w 1 | 0.0000805 | 0.0000240 | 3.35 0.0008
o 1 0.1200 0.0202 594 | <.0001
51 1 0.8552 0.0196 43.54 | <.0001

Table 2.3: Parameter Estimates of AR(3)/GARCH(1,1) model fit to S&P 500 index
of returns.

Parameter | DF | Estimate S.E. t-Value | p-value
7 1 | 0.007453 | 0.001547 482 | <.0001
w 1 | 0.0000818 | 0.0000238 | 3.44 0.0006
o 1 0.1203 0.0197 6.12 | <.0001
01 1 0.8545 0.0189 45.15 | <.0001

Table 2.4: Parameter Estimates of GARCH(1,1) model fit to S&P 500 index of re-

turns.

38




In the next section, we study a new class of models that are extensions of both the
class of GARCH models and the class of RCA models. All theorems and lemmas in the
following sections have been studied by Appadoo, Ghahramani and Thavaneswaran

(2005).

2.2.2 Random Coefficient ARCH (1) model

By analogy with the RCA models we introduce a class of models which can be viewed
as RCA versions of GARCH models. Consider the ARCH (1) model for the time series

y;, where

v = VhiZ (2.2.8)

hy = w+ (cy+b_1)y>,, (2.2.9)

Zy is a sequence of independently, identically distributed random variables with zero
mean and variance 0% and b, is an uncorrelated sequence with zero mean and variance

2
gy -

Lemma 2.2.1 For the model
Yo = Vhe Zy,  hi=wo+ (o1 +bi1)y?,, where Z, ~ N(0,0%) and is uncorrelated

with b, ~ NID(0,0}), the kurtosis, is given by
3[1 — a?0d) _
[1—30%(af +0})]

K =

Proof: We have y? = h,Z? and E[y?] = E[h]o%.

We now use this relationship to find the expected value of E(h;).
E[h)] = wo + a1 E[y?_,].
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2
Woo
Assuming y; is stationary, E(y?) = 07z

[1 — aloé]
E h2 wg + 2("*)()al‘E(ytz—l)
(A} 1—-30%(a3 +02)
z\&q b
E[ 4] — 30%("‘}(2) + 2a1w0E(yt2—l))
Yi 1 - 30} (at+o})
Hence,

KW — 3(1 - O‘%U%)
1—30}(a?+0})

2.2.3 Two Component Heteroscedastic Normal Mixture

Consider an RCA(1) process with two-component normal mixture innovation terms
given by y; = (¢ + by)yi—1 + e, where {b;} and {e;} are independent two-component
heteroscedastic normal mixtures. That is,

F(b) = w1 $1(bi; 0,0%) + 3 $a(by; 0, 02),

where 7; + 75 = 1 and
fled) = 77 ¢3(e;0,0%) + 5 dules; 0, 03),
where 7] + 75 = 1 and ¢;,¢ = 1,2, 3,4 are normal densities. Then,
(i) E(e) = E(be) = E(ef) = E(b}) = 0,
(ii) Var(e;) = E(ef) = mo; + mo3 and Var(b) = E(b?) = nfo? + a2,
(iil) E(b}) = 3(mof + meo3) and E(ef) = 3(nfos + m30}).

Lemma 2.2.2 Let {y;} be a two-component heteroscedastic normal mizture model,

40

S



then the moments of the mizture driven RCA model, are given by

E(y:) =0,
Var(y) = of = — Bt @210
) = Oynl——gbz—wlo'%—ma%’ o
E(y}) = El@+b)'y +4(d+ b))’y e + 6(d + bi)*yi €] + 4(9 + b)ys-re] + €7,

(2.2.11)

and the kurtosis is given by

W) — E(y:)*
K= Warwr

Proof: E(y:) = EE(y:ly:—1) = 0. Now, the variance of the process is given by

Var(y,) = VE(ylyi-1) + EV (yelye-1)

= "V (y-1) + V(e + V(ye-1)(mo} + ma03)

* 2 * 2
T05 + M0}

1 —¢? —mo? — myod’

since F(y;) = 0 and Var(y;) = E(y?_,). We now outline the proof for the kurtosis

KWof the process ;. Note that E(y,) = 0. We obtain the following result:

yi = [0+ 'y, + 4+ b)Y re + 6(0 + b)) yiref + 4(d + b)yred + €]

E(e)) = 3(nlot+mo}).

We know that E(4(¢ + by)yi-1€3) = 0 since (b;) and (e;) are independent and are

assumed to be Gaussian. Hence,

E[6(¢+b)'yise] = 60"V (ye-1)(n703 + m505) + 6V (yu-1)(mio] + me03)(n} 05 + m305)

= 6V (y-1)(mios + m30%) [¢° + mot + meol] .
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We know that E [4((/’) + bt)syf’_let] = 0 since e; and b, are independent, zero-mean

Gaussian processes. Now

E[(¢+b)'y 1] = EE[(¢+ b)Y 1lye1]
= E(y_,) x B(¢ +b)*
= E(yl,) [¢4 + 6¢?(mo? + my02) + 3(mot + 7T20'§)] }

Assume E(y}) = E(y;_,) and that (y;) is stationary. Then we derive

1
1 — ¢t — 6¢2(m0o? + myo2) — 3(mo} + mo})

E(y) =

X [B(mjos + m304) + 6V (yeo1)(mi0f + m307)(¢° + Mot + meo3)].
and finally the kurtosis is given by using (2.2.10) and (2.2.11).

2.3 Stationary processes with GARCH errors

This section is comprised of two subsections. The class of GARCH models discussed
previously has been extended to a class of volatility models where the conditional
mean, as well as the conditional variance is changing over time. The class of RCA
models have also been extended to include models with time-varying errors such as

the GARCH model.

2.3.1 RCA models with GARCH errors

Theorem 2.3.1 Let {y;} be an RCA(1) time series satisfying conditions (2.1.1) and

(2.1.2). The RCA(1) model is given by
v = (¢+b)yr +el g, (2.3.1)
er ~ N(0,02), b, ~ N(0,02). Then we have the following:
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@ B =0, EGD = | g —orre]

L (B9 )0~ (Ft o))
WK”“( a—imW+m—&>b)

Proof:

E(y)) = E@ynd’) +E(yib)) + E (51-) B (<))

= ¢°E (%24) + o, E (i‘/tz—l) +30°

Thus, assuming y; is stationary we have

2\ _ 30?
E(y) = {(1 —“(¢2+Uf))} (2.3.2)

E(y)) = 6¢°0,E (yi,) + 31502 + 30, E (yi_,) + ¢*E (yi,)
+180503E (ytz—l) + 18‘7?¢2E (y?—l)

and we have

B 9012 35 — 29 (0f + ¢?)
E(y) = <(1——6¢20§—30§“¢4)>< 1 - (0 + ¢?) >

w - Zlil 92" 3520 (0F + %)\ ((L = (¢ +oP))’
= S~ () Cen e ) (o)
<@&Jwﬁ+w»u—wuwm>
(=308 + o) - 39

(2.3.3)

When o7 = 0, the kurtosis of the process y,converge to the one reported by Ghahra-
_ 35 — 29¢2 9

mani and Thavaneswaran(2007), K = W and when o = 0, and ¢ = 0 the

kurtosis of the process y,converge to 35, this result was reported in Appadoo, Ghahra-

mani and Thavenswaran (2005). We have considered a time series model driven by

nonlinear functions of random processes. Such time series are said to have nonlin-

ear structure. Many financial log return time series possess the property where the
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squared log return process has autocorrelations that vanish only very slowly, or do
not even vanish at all, in the limit. This simple model has the ability to model high

volatility in financial time series model.

Theorem 2.3.2 Suppose {y:} is an RCA model with GARCH(1, 1) errors of the

form
yo = (@+b)y1 +e
g = VhZ (2.3.4)

he w + alsf_l + Brhi_y (2.3.5)

Il

where by ~ NID(0, 02)(uncorrelated). Then, we have the following:

(i) E(y;) =0,
(i) E (y7) = m

602(¢® + of) + K9ol(1 — (¢ + 02))

(iti) E (y;) = 1= (2 + 02)][1 — (9" + 64202 + 302)]

(iv) When Zy ~ N(0,1) (uncorrelated), then

31-¢* —ap)2(a +¢*) (1 — (1 + B1)> = 2a2) + (1 — ¢ — o) (1 — (u + 1)?))]

KW —
(1= 6¢%0f — ¢* = 30y)(1 ~ (a1 + B1)? — 2a3)

Proof:
Part (ii) follows from observing that E(y;) = (¢* + 02)E(y2_,) + 02, and by assuming
that y; is stationary.

Part (iii) follows from observing that

E(y}) = E((¢+ b)*yi_y) + E(6(¢ + b)’y7_ie7) +€b),
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and from the fact that E(e}) = K)ol

31— (a1 + B1)?
In particular, where Z; ~ N(0,1), then K© = ] _{ o Eflﬁl) f 1)2]03 and part (iii)
1

follows.
When ¢ = 0 and o? = 0 in Part (iii),

K9 = o i[l(&‘l fg}fﬂ ]QQ% (23.6)

Note: The result given by (2.3.6) has been observed in Thavaneswaran et al.(2005).

When o2 = 0 in K@ of part (iii),

W = ———% 1-¢° [1 = (a1 + B1)?]
K = {(14_(;52)} +3<1+¢2> (1—(C¥1+ﬂ1)2)-—2a§ (2.3.7)

The result given by (2.3.7) has been observed in Ghahramani and Thavaneswaran(2007).

Next, special cases of Theorem 2.3.2 are discussed.

2.3.2 Special Cases of Theorem 2.3.2:

Example 2.3.1 Let {y;} be a Sign RCA-GARCH(1, 1) time series satisfying condi-

tions (2.1.1) and (2.1.2) given by

Yo = (p+b+ Ps)y1 +g, (2.3.8)
where

g = Vi, (2.3.9)

hi = w+ogel |+ Bihiy (2.3.10)

where Z, and by are sequences of independently, identically Gaussian distributed ran-

dom variables with zero mean, variance given by c% and o? respectively,

St = 0 Zf Yt = 0
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w, a1, 1 and ® are real parameters, satisfying the following conditions, w > 0,
a >0, 5 >0. |®| <w. Note: E(s?) =1, and in order to calculate the kurtosis, we
observe that E(s}) = 1. Then, we have the following moment properties

(a) E(ye) =0,

wo?

[1—=(¢*+ap + P)][1 — (o + )’

(b) E(yf) =

(¢c) If {b;} and {e:} are normally distributed random variables then the kurtosis K% of

the process {y:} is given by,

3(1 = (a10% + B1)3)[1 — (¢ + o + B?))?
(1-3aioy = 2010103 — B2)(1 — 6(¢2D2 + D207 + ¢202) — P4 — ¢ — 307)
6 (2% +¢° + 03) [1 = (¢° + 0} + 2?)]

K& =

"= 6(¢%02 + B20p + ¢207) — B4 — ¢ — 307)’
: 2 2 wo}
Some details are as follows. o7 = E(e}) = ——F—.
l—ar— 0
2
E(y;) = BE((¢° + 0 + @5} + 2¢b, + 2¢Ds; + 20bys,)y; ) + 1_202_7'
—or— b
E(y}) = E{(d+b+®s)'yi, +6(¢+ b+ Psy)?yp_je7 + €)'}
B 6(¢* + o + ®*)o?E(y?) + Kot
1—(¢* + 69207 + 30} + 6D%(¢? + o) + D)
And,
]{(y) — 3[(1 _ (alU% + ﬁl)Q]

1-— (O’%Ozl + ,81)2 - 0410'%.

Next, a class of RCA Sign-GARCH Volatility Models is studied.

Example 2.3.2 Consider the GARCH (1, 1) process for the time series v, where

v = (@+b)y-1 +e
& = \/h—tZt

he = w+ (a1 + a1+ Psimr) ey + Prhe-s
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where Zy ~ N(0,0%), by ~ N(0,02) and a; ~ N(0,02).

St = 0 if yv=0
—1 Zf Y < 0
w .
E(h) = since E(s;) =0 (2.3.11)

[1 = (a10% + Bu)]
w?(e%a; + B + 1)

E) = G peom th) el @t a1 o[- Tor =g 2312

wo

Varlv) = T (@1 oD — (@0d + A (2.8.13)
a1 305 2 60% (0} + ¢*) 2
Pl = o e M Tm - seen @ e oy )
(2.3.14)

The kurtosis of the process is given by

KW = 31 — (¢2 + ‘71?)]2[1 - (alU% + 51)2] 4
N -6 (20%a; + B1) — 3042(<I>2 + a2 +02)] (1 — 302} — ¢t — 6¢%07)
6(08 + ¢*)[1 = (¢ +}) 2515)

(1 =30} — ¢* — 6¢%02)
The proof of (2.3.15) parallel the proof of Theorem 2.3.2.
Note that when ¢ =0, ¢, =0, 0, =0, and o, = 1, the kurtosis of the process

converge to the one reported by Thavaneswaran et al.(2005) as follows.

3[1 — (a1 -+ ,61)2]

KW
(1 —_ (Oll + ﬁl)z) — 20&%

> 3. (2.3.16)
2.3.3 ARMA models with GARCH errors

For certain financial return series, the sample ACF of both the series and its square
exhibit significant autocorrelation. In such cases, the time-varying nature of the
conditional mean as well as time-varying conditional variance suggests that fitting

ARMA models with GARCH errors, for example, would be more appropriate than
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fitting zero-mean GARCH models. In this section, we study identification methods

for stationary processes with GARCH errors.

Lemma 2.3.1 For a volatility process of the form

Y= = Gy —p) Felg (2.3.17)

under the stationarity assumptions that |¢| < 1, and the g, symmetric 1.1.d with mean

0, variance o2 and finite eighth moments, then

(a) E(yt—u)2:E_(€t‘l)_E(€_t.)_

(I1-9¢%)
) K = £ [ =)' _ |66 (B (ety) B(eD)” + B(ef ) E(e)(1 = ¢7)
Var(y:)? (1+¢2) (E (52‘_1) E(zs{f’))2 ’

!
(¢c) If we assume that &, ~ 1.1.d.N(0, ¢2), then E[e¥] = 2(2(71)') 02" and hence KW =
!
35 — 29¢?
1+ ¢?

Proof: y, — p = Y22 ¢’a;_; where a; = €7_,5,. Then, E (y, — p)’ = azz¢2j =

=0

2
1i—a&, where 02 = E(e}_)E(e?).

E(y—p)' = ¢'E(y—w)' +6¢°E (y. — p)’ E(cL_)E(e?) + E(e8_,)E(e})

Then,
s 667 (B (b)) E(eD)” + E(e3_)E(e)(1 — ¢?)
Blwe—w) = -6
ww _ Elu-p'] _[66° (B () BD)' + Bl )EED( - ¢)

Var(y,)? (14 ¢?) (E (ef,) E(Eg))Q
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Part (c) follows from the fact that when, Z;, ~ N(0,1), then E[e?"] =
that, E(e}) = 302 and E(e}) = 10508.

Note that when ¢ = 0 in (2.3.17), the kurtosis of the process y; turns out to be
35 as observed in Appadoo, Ghahramani and Thavaneswaran (2005).

The following lemma proved Ghahramani and Thavaneswaran (2007), provides
an identification method for the kurtosis of a weakly stationary process through the
kurtosis of the error term and the ¢-weight representation of the {y:} process. Part
(i) of the following lemma is a well-known result for the ¢-weight representation of

stationary series.

Lemma 2.3.2 Suppose {y:} is a second order linear stationary process having a

MA (moving average) representation of the form

ye—n o= Y e, (2.3.18)
=0

where a; is an uncorrelated noise process with zero mean and with variance o2.

Then the variance and the kurtosis of y; are

(i) Var(y) = ol i zb?- and

7=0
K !f: vi| 65 vt
7=0 i<j
(ii) KW =

)

where K9 is the kurtosis of a; and Z;io ¢3_1 < 0.
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Proof: Part(i) follows from the fact that the a; are uncorrelated.

Part(ii) follows from the fact that

0o 4 o x
B! = 5 (s ) = Elah 3o visaat 3t am
=0 J=0

i<j

(o] o>

3 3
§ wjat—j + E wjat_j
Jj=0 Jj=0

E(ad) 3 0t + 602 5 242
Blu—py DRt O g s

KW —
{E(yt - #)2}2 00 2
o2 3 97
7=0

(2.3.19)

The following theorem due to Ghahramani and Thavaneswaran (2007), extends the
result of Thavaneswaran et al. (2005) for a mean zero GARCH process to a stationary

ARMA(p, q) process with GARCH(P, Q) errors.

Theorem 2.3.3 For any second order stationary process {y:} with GARCH (P, Q)

errors given by
ye—po= > e (2.3.20)
7=0
Er = A/ htZt (2321)

P Q
he = wt Y gl + > Bihe (2.3.22)
i=1 =1

Under suitable stationarity conditions, kurtosis is given by

K© {f: w;*} 163 g2
7=0

i<j

(57

where K& is given by K =

KW

(2.3.23)

B(Z})
E(zh) - [B(Z) -1 3 @2

=0
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Proof: The Proof follows from Lemma 2.3.2 and the fact that a GARCH process
is an uncorrelated process.

Note: For an ARMA(p, ¢) process, when p = 0, ¢ = 0, the theorem provides the
kurtosis of a GARCH(P, Q) process. Moreover, when we set P = 0, and Q = 0, the

theorem provides the kurtosis of an ARMA(p, ¢) process.

2.3.4 Special cases of stationary processes with GARCH er-
rors

In this subsection, we provide the moment properties of special cases of Theorem 2.3.3
that have been observed by Ghahramani and Thavaneswaran (2007).

Case 1: Consider an autoregressive model of the form:

Yy — 1 = O(yo1 — p) + & (2.3.24)
where |@] < 1, &, is a zero mean GARCH(P, Q) process given by expression (2.3.21),

the conditional variance h; is given by (2.3.22) and Z; is an uncorrelated zero mean

sequence with unit variance and finite fourth moment. Let 62 be the variance of {g;}.

o o . 1 0 ) - ¢2

Theni/)j—éj,j;?/)j———1_(]52;;% ¢4 andg;z/)v,b ook
Hence, Var(y,) = %5, and KW = 62 + i +_¢<i52) _where K(©) = E(Z}) _
Bz - B2 ~1| £

If we assume that Z; ~ N(0,1), and P =1 and @ = 1 then the kurtosis of the process

is given by

v 2, 2 3(1— (o0 + B1)%)
R e v R

If we assume that Z; has a t-distribution with v degrees of freedom, then

KW = 1 l6¢2 +(1- ¢2) (( 3(v—2) (1 ~ (oq + 51)2) )]

(1+¢?) 1 -2 — 6%) (v—4) + 3a? (v—2)
(2.3.26)
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Case 2: Consider an ARMA(1, 1) model given by

yr—p = oY1 — p) + & — ey, (2.3.27)

where |¢] < 1, & is given by expression (2.3.9), the conditional variance h, is given

by (2.3.10) and Z, is an uncorrelated zero mean sequence with unit variance and

o0 _ 2
finite fourth moment. Let o2 be the variance of {¢;}. Then, Z Wr = 1—12¢—%;—9,
7=0
it 1 — 4¢%0 + 6¢°6% — 4¢6° + 64 > (p—6)2 (¢p—06)* ¢
4 _ 212 _
ij_ 1_¢4 ’andzwiwj_ 1_¢2+ 1 — ¢2 1_¢4'
7=0 i<y
Hence,
_ 2
Var(y,) = L I 206+ 9) o
(1 - Zi:l (I)i)(l - ¢5 )
and

KW — g© <(1 — 4¢%0 + 6¢0%6% — 446° + 6*)(1 - ¢2)>+6 (1—¢%)(¢—6)* + (¢ — 6)"¢”
(1+¢?)(1 — 240 + 62)? (1+¢%)(1—2¢0 + 622 °

where ®; = a; + 6,1 =1,..., R, and R = max(P, Q).

2.4 Hidden Semimartingale Models(HSM) with GARCH
errors

Following Hamilton (1989) who models changes in regimes via Markov switching, we
consider the situation where the volatility is also changing. Building upon the ideas
developed by Abraham and Thavaneswaran (1991) on state space formulation of non-

linear models to draw optimal inference about the unknown parameters (see Granger
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(1998) for details), we propose the estimating function method based inference for

the proposed HSM of volatilities.

2.4.1 Hidden Semimartingale Models

Consider the random coefficient autoregressive(RCA) model given in Thavaneswaran

and Abraham (1988):
v —Oft FL) = e (2.4.1)

where {6;} is a more general stochastic sequence and f(¢, F¥ ;) is a function of the

past. When 6, is a moving average (MA) sequence of the form
0 = O0+er+e (2.4.2)

where 0;, e; are square integrable independent random variables and {e;} consists
of zero mean square integrable Gaussian random wvariables independent of {e;}. In
this case E(y;|Fy ;) depends on the posterior mean m; = E(g|FY) and variance
Ye = El(e; — my)?|FY) of &. Assume yo = 0, then m; and y, satisfy the following

Kalman-like recursive algorithms,

_ ot f (L) [y — (0 + mea)f (8 FL))

= , 943
t Tt 12 (6 FLy) (02 + 1) (2:43)
and
2 t, Fy_ 4
T S By o (2.4.4)

o2 + f2(t, FY,) (02 +42,)
where v = 02 and mo = 0. Hence, E(y:|F}.,) = (0+mu_1)f(t, FY,) and E(h2|FY) =
o2+ f2(t, FL1)(02 + -1), where hy =y, — E(y;|FY.,), can be calculated recursively.

n
Then the optimal estimating function turns out to be g = Z hiai_; where,
t=2

o - El@hydo) |FL]
T EB[RYFL]
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Thus, the optimal estimate is given by

é\ — Z?:Z a:—lyt
Z?:z a;_ f(t, FY,)

where
o S FL) (U (dmye /d6)
e [‘73 + f? (t7Fty—1) (02 + 'Yt—l)} '

*

Since v, is independent of 8, the relation

dm,  [o2f2(t, FY,)(1 + dmy_1/df)]

o [0+ f2(t, FLy) (02 + %))

can be used to calculate this derivative recursively.
As can be seen from (2.4.3) and (2.4.4), the optimal estimate 6., adopts a weighting
scheme based on 02 and ¢?. The superiority of the optimal estimate over the condi-
tional least squares estimate has been demonstrated in Thavaneswaran and Abraham
(1988). This shows that optimal inference for RCA models and HSM models can
be studied using the estimating function method. Later we show that a GARCH(p,
q) model for y; could be written as an ARMA(r, q) for y? and hence one could
study the optimal inference by combining estimating functions as in Thompson and
Thavaneswaran (1999).

Hamilton (1989) used Markov switching to detect changes between positive and
negative growth periods in the economy, using a Hidden Markov Model (HMM) of

the form
Ye = Ny + €y, (2.4.5)

t=1,...,T, where ¢ is a zero mean ARIMA(r,1,0) process and n; (the trend term)

3

is a random walk with drift that switches between two values oy and o + ;. That
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is,
Ny = Ng—-1 + Qg + CYISt, (246)

t = 1,...,T, depending on whether the unobserved state of the system S; is in
state 1 or state 0. Furthermore, transitions between the states of S; is assumed to be
governed by the Markov process with: p;; = Pr(Siy1 = j|S: = 7). Let the steady-state
probabilities be denoted by m = Pr(S; = 1) and 1 -7 = Pr(S; = 0) respectively. The
following lemma gives the corresponding semimartingale form of the binary process

S;.
Lemma 2.4.1 Let S; be defined as in (2.4.6). Then S; has the following form:
St+1 - = d(St a 7T) + 1/t+1, (247)

where d = Corr(Si41,8:) = pu — por and V; is a semimartingale with E[V;1|S, =

i] =0 and Var[Vi41]S: = 1] = pu(1 — py), 1 = 0, 1.

Proof: Let 7' = (1 — 7 m) and let P denote the transition probability matrix. The

steady-state probability m = E(S;) = Pr(S; = 1) found by solving the Chapman-

. Do

Kolmogorov equations n'P = 7' is 7 = ————. The variance of S; is Var(S,) =
Po1 + P1o

E(S?) — 7% =7(1 — 7).

The correlation between S; and Sy, follows by observing that Cov(S;, Si1) =
E(SSps1) =72 = Pr(S; = 1,541 =1) =72 = Pr(Spp1 = 1|S, = )Pr(Sy = 1) —n2 =
P — T2,

Let Viy1 = Sip1—m—d(Si—m) and let i = 0. Then, E(V;41]S; = 0) = E(Si41]S; =

0)"TF+(Z’/T:]701—‘])01:O.
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Var(Vig1|S: = 0) = Var(Seer — dS|Se = 0) = Var(S1]Se = 0) + d?Var(S]S; =
0) = 2dCou(S41, Sl Sy = 0) = E(S11S: = 0) — E*(S11|S: = 0) = poar(1 — por) =
(1 — poo)poo. Using the same reasoning F(V;11]S; = 1) = 0 and Var(Vi]S; = 1) =
(1 — pu)pur-

It is of interest to note that for the usual continuous space AR(1) process y; —p =

&(yi—1 — 1) + ar, Var(as|yi—1) = o2, that is, a constant.
2.4.2 HSMs with GARCH Errors

Suppose the observed time series is obtained from the process y; = n; +&;, where ¢, is
a zero mean GARCH(p, ¢) process as in (2.3.4), (2.3.5), and n,; (the trend term) is a
semimartingale as in (2.4.6). This model is of interest when the conditional variance
of the series is changing and the trend term switches between two states such as
contraction and expansion in the economy.

In order to calculate the variance and kurtosis for a HSM with GARCH errors in

terms of the 1 weights, we have the following theorem.

Theorem 2.4.1 For the HSM process for trend, specified by (2.4.6), (2.4.7), (2.2.1),
and (2.2.2), under the assumptions of stationarity and finite fourth moment, the
kurtosis K'®) of the process is given by:

B(Zf)

o) K© —
(o) K2 = B — 5@ - 152 o

[.]

L(K® ~1
(b) The variance of the &2 process is 75 = Z 202, where o2 = H%z—l
j=0 j=07j

, R =max(P, Q),
R

and

w
1-P—Dy—---—

pe2 = E(e]) =

(¢) Let jip and o2 denote the mean and variance of n; conditional on ng, respectively.
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t—1
Then i = ng + (ag + wou )t and o2 = aim(l — m)ft + 2Z(t — 5)d].
j=1

(d) When Z; is Gaussian, K ©) and KW are greater than 8.

Proof: Proof of part (a) somewhat parallels the proof of Theorem 2.1 in Tha-
vaneswaran et al.(2005) for kurtosis. Part (b) follows from the ARMA representation
of 2.

The proof of part (c) follows by using the fact that E(S;) = 7 and Var(S;) =
(1 — ) in equation (2.4.6). Then using the fact that n; — ng = apt + chzl Sy
the results for mean and variance follow. We note that since S; was shown to have
an AR(1) representation, the process has autocorrelation function py = d* where
d = p11 — po1- Also, we use the fact that since S; is stationary, VCLT(ZZ:I Si) =
Yot +2(t = 1)pr + 2(t = 2)pa + ... + 2p4_1), where vo = Var(S,).

=1 1 gt
Note 1: ;d]: <1——d —1).

e S (0705020

j=1

Part (d) follows from the fact that for any conditionally Gaussian GARCH process

e 4y _ 4 _ 2 2 _ 2 2 2 2 _
el 1, Bley) = EE(g(lec1) = E3[E(e;le1))” = 3E[E(e{le-1)]" 2 3(B[E(¢7lec-1)])* =
3(E(e7)%)-

In analogy with the RCA example, using the combination theorem given in Thomp-

son and Thavaneswaran (1999), we can make inference about the model parameters.
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2.5 Autoregressive Conditional Poisson(ACP) mod-
els

In this section, some results in Abraham and Thavaneswaran (1991) are extended to
ACP models. The ACP model was introduced by Heinen(2003) to deal with issues
of discreteness, overdispersion and autocorrelation of count data such as the daily
number of price change durations of 0.758 on IBM stock. A 0.75% price- change
duration is defined as the time it takes the stock price to move by at least 0.75%.
The variable of interest is the daily number of such durations, which is a measure of
intradaily volatility ( see Heinen(2003) for details). The result of Heinen(2003) for

ACP (1,1) is extended to ACP(p,q) models, by using a martingale transformation.

2.5.1 Moment properties of ACP models
Let N, denote the time series and let F}¥ denote the o-field generated by observations

up to and including time £. The conditional distribution of N; is assumed to follow a

Poisson distribution,
N,|FN | ~ Poisson () (2.5.1)

with an autoregressive conditional intensity as in the conditional variance in the
GARCH model of Bollerslev(1986) and as in the ACD model of Engle and Rus-

sell(1998):
P q
E[NtlFt[XI] S =wt Z a;Ni—i + Z,ﬁj,ut_j, (2.5.2)
i=1 j=1

for positive a;’s, 3;’s and w. This model is known as the Autoregressive Conditional
Poisson (ACP) model and using a martingale formulation we study its moment prop-

erties.
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Thus, we see that both models specify the conditional distribution of the observed
process given past values and model the conditional mean or conditional variance or
possibly both in a time-varying manner. Let u; = N; — E[N;|FY,] = N; — p; be the
martingale difference and let o2 be the variance of u;. Then (2.5.1) and (2.5.2) could

be written as:

14 q
Ne—u = w+ Y Ny + Z Bi(Ni—j = ue—j),

i=1 j=1

¢(B)N, = w+B(By (2.5.3)

where, ¢(B) = 1 — 21:1 ¢:B", ¢; = (a; + ), B(B) =1- qul B;B* and r = max(p,
i= i=
¢). Under stationarity assumptions similar to Assumptions 2.1 and 2.2 for GARCH
models, N; has an ARMA(r, q) representation.
The wu;s are uncorrelated with mean zero and finite variance and that the N
process is weakly stationary. In this case, the autocorrelation function of N; will be
exactly the same as that for a stationary ARMA(r, q) model. In order to calculate the

moments and autocorrelation function for an ACP process in terms of the 1-weights,

the following theorem will be useful.

Theorem 2.5.1 For the ACP (p, q) process specified by (2.5.1) and (2.5.2), under
the assumption of stationarity, the moments of the process, as well as the autocorre-

lation function and the variance of the l-steps ahead forecast error are given by the

following:
w w
(o) p=E(N;) = = , where = maz(p, q).
LT TP X R N 7-4)
b) The vari th sy =02 Y2 = 2 where p = “ .
(b) The variance of the process is 7y, O'UZ’lZJJ uzwj,w ere i T —

7=0 Jj=0
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Do Wik

(c) The k-lag autocorrelation of Ny is pfcv = = 3
Zj:o (CF
(d) Let e,(l) = Npiy — E(Npyt| FY) be the minimum mean square error l-steps ahead

forecast error. Then the variance of en(l) ts given by Var(e,(l)) = /,Li@b?.
=0
Proof: Part (a) follows from observing
P q
E(N,) = EE(N|FY,) = E() = w + Z%’E(Nt—j) + ZﬁjE(/«Lt—j)-
i=1 =1
Assuming N; is stationary with E(u:) = E(N;) = p, and solving for p, the result
follows.

Part(b) follows from the ARMA representation of N; and by the properties of the
martingale differences uys. Namely, uy = N; — p;, where E(u;) = 0, 02 = E(u?),
pe = E(N,|FY,) and, moreover, o2 = E(N?) — E(u?), Var(N,) = E(u?) — 12 + p.
Thus, E(N?) = E(ug)+p. Finally, 02 = E(u?)+p— E(p?) = p and hence, Var(N,) =
B2e s

Part (c) is due to the moving average(MA) representation of NV;. Part(d) follows
from the fact that for a stationary ARMA process with error variance o2, Var(e,(l)) =
o2(1+ 4?2+ ...+ ,) and since o2 = p.

It is of interest to note that part (a) of Theorem 2.5.1 was previously observed by

Heinen (2003). Parts (b) - (d) are however, new results. Heinen (2003) had previously

observed the special cases of parts (b) and (c) demonstrated in the following example.

Example 2.5.1 In particular, for an ACP(1,1) model,

w

) the unconditional mean is given by E(N;) = p = —————u—_,
(1) gwen by E(Ny) = p ey
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(it) the unconditional variance is equal to

Bl = (on + B) + o)

— 42 =
Var(N;) = o° = = (o + G2 > U

(itt) the unconditional autocorrelation of the ACP(1,1) model is given by

p-101(1 = Br(oq + B1)
1 —(a1+61)? +

pr = (a1 + 1) >

)
L k>1
1

This also holds for all models with mean equation given by (2.5.2), such that

2
b ot

N, I— (a1 +6)*+

(tv) The variance of the l-steps ahead forecast error is given by

Var(en(l)) = 1 <1 Pl e 51)2(1—1)> .

1- (Oél + ,61)2

for 1 > 1. The mean, vartance and autocorrelation function turn out to be the same

ones given by Heinen(2003).

The martingale transformation allows us to extend the result on the autocorrelation

structure without calculating covariances as in Heinen(2003).
2.5.2 Doubly Autoregressive Poisson (DACP) Models

Heinen (2003) extends the ACP model specified by (2.5.1) and (2.5.2) to allow for
conditional over-dispersion using the Double Poisson (DP) distribution (See Efron

(1986) for more details). That is, conditional on the past,
N FYy ~ DP(,7), (2.5.4)

and p is specified as in (2.5.2). Efron (1986) shows that the mean of the Double

Poisson is p; and that the variance is approximately equal to H—t. Let uy = Ny —
Y
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E(N;|FY,) be the martingale difference. Following assumptions similar to those
made for the ACP model in Section 2.5, it is easy to show that the DACP model has
an ARMA representation. Using the ARMA representation, the following theorem
allows us to calculate the mean and variance of the DACP(p, q) model in terms of

1h—weights.

Theorem 2.5.2 For the DACP (p, q) process specified by (2.5.4) and (2.5.2), under
the assumption of stationarity, as well as the autocorrelation function and the variance

of the l-steps ahead forecast error are given by the following:

w w
(a) p= E(Ny) = = , where r = mazx(p, q).
' 1- Z;ng(p’q)(aj + ,Bj) 1- (251 T e T ¢r (
(b) The variance of the process is vy = o> E wjg- = 5— E wf-, where | = T3 _w —5
=0 =0 1 . -
2 oo Vit

(c) The k-lag autocorrelation of Ny is py = =73
2 =0 ¥

(d) Let e,(l) = Nyyy — E(Npyt|FY) be the minimum mean square error l-steps ahead

-1
forecast error. Then the variance of e, (1) is given by Var(en(l)) = K wa
Y
7=0

The proof is similar to the proof of Theorem 2.5.1.
In the next section, volatility model identification using the kurtosis and the au-

tocorrelation structure of the squared process are studied in simulation studies.
2.6 Simulation Studies

In this section, the moment properties of the following volatility models are examined:
normal-GARCH, t-distribution GARCH, and two simple volatility models discussed

in Appadoo, Ghahramani and Thavaneswaran (2005). The comparison will be made
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on the basis of simulating from each process, fitting the corresponding model and
comparing the estimated moments with the empirical moments.

Case 1:(GARCH(1, 1)) In this example, we consider the process

b = \/EZt,

hy = w+ alyt?'_l + Brhi—a,

where Z, ~ NID(0,1) or Z, follows a standardized t-distribution with 5 degrees of
freedom. The model parameters are w = 5.3 x 1077, oy = 0.0057 and B; = 0.9381,
and we generated GARCH(1, 1) processes of size n = 1000, 5000, 10, 000, respectively.
Each simulation was replicated five hundred times. For the normal-GARCH(1, 1)
model, the empirical kurtosis and the estimated model based kurtosis are reported in
Table 2.5. For the t;-GARCH(1, 1) model, the empirical kurtosis and the estimated
model based kurtosis are reported in Table 2.6. For these GARCH(1, 1) models,
the model based kurtosis explains the empirical kurtosis. Furthermore, the estimated

kurtosis is a consistent estimator for the kurtosis parameter in both cases.

Estimator n=1000 n=25000 n = 10,000
KW 3.0132 3.0031 3.0022
(0.0004) (0.00002) (6.31 x 107°)
Empirical kurtosis  2.9885 2.9984 3.0006

(0.02257)  (0.0049)  (0.0027)

Table 2.5: Empirical and estimated model based kurtosis for the normal-
GARCH(1, 1) model in Case 1. The MSE of the estimators appear in parentheses.
K® =3.0020, w= 5.3 x 1077, oy = 0.0057, B; = 0.9381.
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Estimator n=1000 n =>5000 n= 10,000

KW 9.09 9.03 9.02
(0.013)  (0.0017) (0.0008)

Empirical kurtosis 6.09 6.92 7.18

(10.72) (6.24) (5.05)

Table 2.6: Empirical and estimated model based kurtosis for the ts-distribution
GARCH(1, 1) model in Case 1. The MSE of the estimators appear in parenthe-
ses. KW =91 w=53x10"7, oy =0.0057, 5; = 0.9381.

Case 2: Consider the model y; = €Z_;&;, where ¢, is an uncorrelated N(0, 1) sequence.
The moment properties of this model were previously studied in Appadoo, Ghahra-
mani and Thavaneswaran (2005). We generated n = 1000, 5000, 10, 000 realizations
from this model five hundred times and calculated the median sample kurtosis and
median sample first lag autocorrelation of the squared process. The estimate and
its corresponding median absolute deviation(MAD) are reported in Table 2.7. The
median and MAD were chosen as estimators and a measure of spread as the sampling
distribution of ;’571’2 and the empirical kurtosis are skewed. For large sample sizes, /3?2

and the empirical kurtosis are useful for identifying this model.

Estimator ° m=1000 n=5000 n=10,000
[f{ 01175 0.1092  0.1131 0.1195
(0.0735)  (0.0411)  (0.0372)
Estimator K® 7 =1000 n=5000 n=10,000
Empirical kurtosis 35 24.29 29.81 31.25

(19.01)  (10.76) (9.63)

Table 2.7: Sample moments of ,011’2 and K® for the model in Case 2. The MAD of
the estimators appears below in parentheses.

Case 3: Consider the model y; = &;_1&;, where & is an uncorrelated N(0,1) se-
quence. The moment properties of this model were previously studied in Appadoo,

Ghahramani and Thavaneswaran (2005). We generated n = 1000, 5000, 10, 000 real-
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izations from this model and calculated the mean sample kurtosis and sample first
lag autocorrelation of the squared process. The mean value of each estimator and its
corresponding MSE are reported in Table 2.8. As the sample size increases, estimates

of p{g and the empirical kurtosis become useful for identifying this model.

Estimator A n=1000 n=5000 n= 10,000
P 025 0.2400  0.2505 0.2465
(0.0044)  (0.0013)  (0.0005)
Estimator K® 5 =1000 n=>5000 n=10,000
Empirical kurtosis 9 8.46 878 8.92

(2.06)  (0.8456)  (0.4145)

Table 2.8: Sample moment estimates of p‘{z and K@ for the model in Case 3. The
MSE of the estimators appears below in parentheses.

In the next section, we study the moment properties of two recently proposed non-
linear GARCH models. The Heston and Nandi GARCH model and Inverse-Gaussian
GARCH model add flexibility to the class of GARCH models by incorporating condi-
tional leverage in the former model and conditional leverage and conditional skewness

in the latter model.
2.7 Nonlinear GARCH Models

In this section, we study the moment properties of two classes of non-linear GARCH
models. The Heston and Nandi (2000) GARCH (HN-GARCH) model is similar to
the GARCH-in-Mean (GARCH-M) model of Engle, Lilien and Robins (1987) in that
it relates the conditional variance to the return of the process. By fitting a model

where the return is regressed against the conditional variance, the researcher is able
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to test the hypothesis that returns are higher whenever there is increased volatil-
ity. The leverage effect pertains to the concept that an asset’s returns may become
more volatile whenever its price decreases. The Exponential GARCH(E-GARCH)
model due to Nelson(1992) was designed to model the leverage effect. Moreover, it
is possible to fit an E-GARCH in mean or E-GARCH-M model in order to account
for the presence of both conditional leverage and to explain the correlation between
returns and conditional variance. Now call prices are nothing more than discounted
expected payoffs under the risk-neutral measure. Numerically, the expected payoffs
obtained by using the class of linear GARCH models are non-tractible integrals that
have been evaluated using either simulation or through numerical approximation;
(See the NGARCH model of Duan (1995) and Duan and Simonato (2001)). Call
pricing formulas that use the HN-GARCH model for volatility are however, analyt-
ically tractible. It is this tractibility that has rendered the HN-GARCH model to
be widely used. To date, the Heston and Nandi (2000) paper has received over one
thousand citations.

Christoffersen, Heston and Jacobs (2006) extended the HN-GARCH model by
allowing conditional skewness to be modelled as well. Just as with the HN-GARCH
model, the option valuation expression of Christoffersen et al.(2006) is analytically
tractable.

Model identification for the HN-GARCH and IG-GARCH models remains an open
problem. In this section, we provide identification methods that provide researchers
insight as to when a non-linear GARCH model should be fit as opposed to the usual

class of linear GARCH models.
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2.7.1 HN-GARCH(1,1) Models

Consider the Heston & Nandi (2000) GARCH(1,1) (HN-GARCH(1, 1) model given

by the following:

S
log < ;1) = r+ M+ VR (2.7.1)

ht = w-+ Oil(Zt_l — M1V ]'Lt_l)z + ﬁlht—lg (272)

where Z; ~ NID(0,1), r is the risk-free rate and S; is the price of the stock or asset

w + g
L= (B +i01)
The HN-GARCH(1, 1) model does not model conditional skewness but does model

at time t. Assuming stationarity, it is easy to show that E(h;) =

conditional leverage. Let E;_; denote a conditional expectation operator and let
Cov; denote a conditional covariance operator. The conditional skewness of a HN-

GARCH(1,1) process is given by the following:

Ea(ye = Ba()® _ Eea(ye—7m = M)’ Epale]) _ B (W2}

Skew = =
e(ye) hf/Z h?/Q h?/? hf/z

since Z; ~ NI1D(0,1). However, the conditional leverage is non-zero since

Covi(ys, hyr1) = Covi_i(Ahy + \/h_tZt, hev1)
= ACovy_1(hg, hiy1) + Covt_l(\/h_tZt, hit1)
= XCovi_1(h,on(Z; — \/h—t)2 + Biht)
+ Covioy(VheZy, 01(Z — viv/Be)? + Buky)
= ACovi—1(he, Bihe) + a1Coviy (B, Z2 = 21 Zi/hy + 72)]
+ Covimi[VheZi, ar(Z2 = 27V R Ze +72hy) + Buhy)
= =271 Covi_y (v he s, \/h_tZt)

= —2a171ht,
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Model w o1 &) T A
HN-GARCH(1,1) 4.939x107% 1.579x10=¢ 9.062x10=° 7853 -0.5
GARCH(1,1) 4.960x10°7  7.3x1072 0.925 0 -05

Table 2.9: Parameter estimates from a normal-GARCH(1,1) fit and a HN-
GARCH(1,1) fit. The table is adapted from Hsieh and Ritchken (2000).

since E(Z?) = 1.

Example 2.7.1 Comparison of normal-GARCH(1,1) and HN-GARCH(1,1) param-

eter estimates

Table 2.9 (taken from Hsieh and Ritchken (2000)) gives parameter estimates from a

non-zero mean normal-GARCH(1, 1) model fit and a HN-GARCH(1, 1) model fit. The

— -7
estimate of 1/ E(h,) obtained from fitting a normal-GARCH(1, 1) model is \/ 4.960 x 10 =
1—-73x1072%-0.925

0.0157. The estimate of \/ E(h;) obtained from fitting a HN-GARCH(1, 1) model is

= 0.0158.

4.939 x 106 + 1.579 x 10~
1—9.062 x 10-6 — (1.579 x 10-6)(785.32)

The estimates of E/(Et) do not differ, however, the conditional leverage would not
be accounted for by the normal-GARCH(1, 1) model.

It is of interest to note that while a GARCH-in-mean (GARCH-M) model has
the same conditional mean structure as the conditional mean structure of the HN-
GARCH model, neither conditional leverage, nor conditional skewness are modelled
by the GARCH-in-mean model. To see this, consider the GARCH(1,1)-M model for

S

the log return process y; = log <§_> , Where S; represents the stock price at time
-1

68



t, given by the following:

Y = 5\/}7‘_15 + &,
\/h—tZt;

hy = w+ a15t2_1 + Brh—1,

&

where Z, ~ NID(0,1). This model differs from the usual GARCH model in that the
conditional mean is time-varying as E(y|FY ,) = §v/h;. However, the presence of
conditional skewness and conditional leverage are not modelled by the GARCH(1,1)-
M model. Let Skew; denote conditional skewness of the GARCH(1,1)-M process.

Then we have the following:

Ba(ye = Ber(9))° _ Balye = 8vh)* _ Evale]) _ WB(Z}) _ 0
he/? Ry R he/? ’

Skew, =

since Z, ~ N(0,1).
Empirically, the presence of conditional skewness for a volatility process would
be reflected by the presence of significant lags in the sample ACF of plot of the y}

process. The GARCH(1, 1)-M process does not model a conditional leverage effect as

Cov(5\/E; + \/h_tZta hea|FYp)

Covi(ys, hes1)
= Cov(v/hy(6 + Zy), arhy ZE|FY L)

arhyPB(Z3|FL) =0,

Il

since Z; ~ NID(0,1). Empirically, the absence of leverage can be observed by the
lack of significant cross-correlations in the Cross-Correlation Function (CCF) plot

between the observed series and the square of the observed series.
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2.7.2 Simulation Study

We study the consequences of fitting a normal-GARCH(1, 1) model to a HN-GARCH(1, 1)
model in a simulation study. We also simulate from a normal-GARCH(1, 1) process
for comparison purposes. Specifically, 6000 observations are simulated from a normal-
GARCH(1, 1) model with parameters w =5 x 107%, §; = 0.589 and a; = 1.32 x 107°
and 6000 observations are simulated from a HN-GARCH(1,1) model with parame-
ters: w =5x107% B = 0.589, oy = 1.32x 1076, v = 421.39, r = 0.00019, A = 0.205.
These values are the fitted values obtained in Heston and Nandi (2000). The CCF
plot between the normal-GARCH(1, 1) process and its square fails to indicate the
presence of any systematic cross-correlation at the first lag as observed in Figure 2.6.
Hence, there is an absence of conditional leverage in a normal-GARCH(1, 1) model.
On the other hand, just as with linear GARCH models, the sample ACF of the
HN-GARCH(1, 1) process shows no autocorrelation while the sample ACF of its
squared process shows the presence of autocorrelation (See Figure 2.7). The absence
of conditional skewness is demonstrated by the absence of significant autocorrelations
in the sample ACF of the y} process (See Figure 2.8). The CCF plot between the
HN-GARCH(1, 1) series and the squared HN-GARCH(1, 1) series indicates that
these series are negatively correlated and therefore conditional leverage is present
(See Figure 2.9). A normal-GARCH(I, 1) model is fit and the model seems to be
adequate as the Ljung-Box tests of white noise of the standardized residuals and the
of squared standardized residuals have p-values 0.8384 and 0.3472, respectively. For
other diagnostic plots of residuals from the normal-GARCH(1, 1) fit see Figures 2.10

(where the ARCH effects are absent) and Figure 2.11 (where the residuals are normal).
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Cross Correlation
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Figure 2.6: Cross-correlation function between the series and the squared series for
the data simulated from a normal-GARCH(1, 1) model with parameters w = 5x 1076,
B = 0.589, a; = 1.32 x 107°.

However, the CCF plot in Figure 2.12 of the standardized residuals and the squared
standardized residuals indicates that the normal-GARCH(1, 1) is unable to account
for the leverage effect in the simulated HN-GARCH(1, 1) process.

In the next section, the moment properties of another nonlinear GARCH model

are studied.
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ACF of log return process ACF of squared log return process
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Figure 2.7: Sample ACF of log return and squared log return of a HN-GARCH(1, 1)
model with parameters w = 5 x 107%, 8; = 0.589, oy = 1.32 x 1076, v = 421.39,
r = 0.00019, A = 0.205.
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ACF of cube of log-returns
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Figure 2.8: ACF of the cubed series for the data simulated from a HN-GARCH(1, 1)
model with parameters w = 5 x 107%, 8; = 0.589, a; = 1.32 x 107% v = 421.39,
r = 0.00019, A = 0.205.
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Cross Correlation
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Figure 2.9: Cross-correlation function between the series and the squared series for
the data simulated from a HN-GARCH(1,1) model with parameters w = 5 x 1076,
B = 0.589, o = 1.32 x 10~ | v = 421.39, r = 0.00019, X\ = 0.205.
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ACF of std. residuals ACF of squared std. residuals
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Figure 2.10: Sample ACF of the standardized residuals and the squared standardized
residuals of the normal-GARCH(1,1) model fit to the HN-GARCH(1, 1) simulated
data. The data is simulated from a model with parameters w = 5 x 1078, 3; = 0.589,
a; =1.32 x 1078 | v = 421.39, r = 0.00019, X = 0.205.

75



QQ-Piot of Standardized Residuals
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Figure 2.11: QQ-plot of the standardized residuals of normal-GARCH(1, 1) model fit
to the simulated data from a HN-GARCH(1, 1) model with parameters w = 5 x 1075,
B = 0.589, a; = 1.32 x 1076 , v = 421.39, r = 0.00019, A = 0.205. .
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Figure 2.12: Cross-correlation plot of the standardized residuals of normal-
GARCH(1, 1) model fit to the simulated data from a HN-GARCH(1,1) model with
parameters w = 5 x 107°, B, = 0.589, oy = 1.32 x 1075, v = 421.39, = 0.00019,
A= 0.205.
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2.7.3 GARCH models with conditional skewness

In this section, the Inverse Gaussian GARCH (IG-GARCH) model of Christoffersen et
al.(2006) is discussed. The classical inverse Gaussian distribution denoted as IG(u, A)

has the following density.

flzyp, ) = exp (—M) , £>0 (2.7.3)

2mxs 2ul
where 1o > 0 and A > 0. The IG-GARCH model due to Christoffersen et al.(2006)
uses a standardized one-parameter Inverse Gaussian distribution. Details on random
number generation from the one-parameter Inverse Gaussian distribution are given
in Appendix A.1.

The following dynamic model proposed by Christoffersen et al. (2006) specifies

returns on a spot asset price at time ¢, S;, and the conditional variance of return

hiyy

log(Ser1/S:) = 1+ vherr + MYeri (2.7.4)

hept = w+ bhy + cys + ahl [y, (2.7.5)

where, given the available information at time ¢, y;,; has an inverse Gaussian condi-
tional distribution with degrees of freedom parameter &, = k1 /7. 7 is the risk-free
rate.

Neither the normal-GARCH(1,1) model, nor the GARCH(1,1)-M model ade-
quately model a process with time-varying conditional skewness and conditional lever-
age. We simulated 6000 observations from a IG-GARCH(1, 1) process and found that
after fitting a normal-GARCH(1, 1) model to these data, the cross-correlation func-

tion between the residual process and the squared residual process contained signif-

78



icant autocorrelations indicating the presence of conditional leverage. Furthermore,
the sample ACF of the cube of the IG-GARCH(1,1) process contains significant
autocorrelations which indicates the presence of conditional skewness. The model
parameters we used were the following: r = 0.00019, v = 1625, = 6.162 x 1074,
w=23768x10710 b= —-19.33, c = 4.142x 107¢, @ = 2.472x 10”. These model param-
eters are similar to the parameter estimates obtained in the paper by Christoffersen
et al. (2006). We begin by examining the sample ACF of the process and the squared
process in Figure 2.13. Both processes are time-varying. The CCF plot between the
log return process and the squared log return process in Figure 2.14 corroborates this
fact.

A normal-GARCH(1, 1) model is fit to the simulated IG-GARCH(1,1) data and
the adequacy of the fit is examined. This model fails to be adequate as the p-values
of the Box-Ljung test of white noise for the standardized residuals and the squared
standardized residuals are less than 0.001. The non-normality of the residuals is fur-
ther illustrated in their QQ-plot in Figure 2.16. The presence of significant lags in
the sample ACFs of the standardized residuals and the square standardized residuals
in Figure 2.15 again show that the normal-GARCH(1, 1) model fails to provide an
adequate fit for an IG-GARCH(1, 1) process. In addition, the presence of signifi-
cant cross-correlations between the standardized residuals and the squared standard-
ized residuals in Figure 2.17 once again demonstrates that the normal-GARCH(1, 1)
model fails to be adequate for this data.

The presence of significant cross-correlations between the observed log return pro-

cess and the squared log return process suggests a non-linear GARCH model is more
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Model cond’l mean | cond’l variance | cond’l skewness | cond’l leverage
changes changes changes changes
GARCH(1,1) No Yes No No
GARCH(1,1)-M Yes Yes No No
HN-GARCH(1,1) Yes Yes No Yes
IG-GARCH(1,1) Yes Yes Yes Yes

Table 2.10: Characteristics of some linear and nonlinear GARCH models.

appropriate than a linear GARCH model. The presence of significant autocorrela-
tions in the sample ACF of the cube of the process, suggests conditional skewness.
The IG GARCH model nests the HN-GARCH model and should be used to account
for both the presence of conditional skewness and conditional leverage.

Table 2.10 summarizes the difference between linear and non-linear GARCH mod-

els.

2.8 Conclusions

The moment properties of the class of GARCH models and RCA model have been
studied. Moment properties of extensions of GARCH models that allow for time-
varying mean as well as time-varying variance have also been studied. In particular,
for the extended class of GARCH models, the kurtosis of the observed process has been
shown to be related to the kurtosis of the error process. The moment properties of a
new class of models developed for autocorrelated count data have been studied. This
new class of models known as ACP models has been shown to share certain properties
with the class of GARCH models allowing for simplified derivations of the moment
properties derived in Heinen (2003). The moment properties of a volatility model that

accounts for structural change caused by a Markov process have been studied. Using
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Figure 2.13: Sample ACF of log return and squared log return of a IG-GARCH(1,1)
model with parameters r = 0.00019, v = 1625, n = 6.162 x 107, w = 3.768 x 10710,
b= -19.33, c=4.142 x 107%, a = 2.472 x 10".

simulation studies, moment properties have been shown to be useful for GARCH
model identification The sample CCF plot between the lagged log-return process and
the square of the process has been shown to be useful for identifying the presence of
conditional leverage. The sample ACF plot of the cube of the log-return process has
been shown to be useful for identifying the presence of conditional skewness. The
presence of conditional skewness in addition to the presence of conditional leverage
suggests that the IG-GARCH model of Christoffersen et al. (2006) would be more
appropriate than the the usual GARCH model or the HN-GARCH model of Heston

and Nandi (2000).
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Figure 2.14: Cross-correlation function between the series and the squared series for
the data simulated from a IG-GARCH(1,1) model with parameters r = 0.00019,
v = 1625, n = 6.162 x 107, w = 3.768 x 1071% b = —19.33, ¢ = 4.142 x 1076,
a= 2472 x 10"
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ACF of standardized residuals ACF of squared standardized residuals
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Figure 2.15: Sample ACF of the standardized residuals and the squared standardized
residuals of the GARCH(1, 1) model fit to the IG-GARCH(1, 1) simulated data. The
data is simulated from a model with parameters » = 0.00019, v = 1625, n = 6.162 x
1074, w = 3.768 x 10710, b = —19.33, ¢ = 4.142 x 1078, @ = 2.472 x 107.

83



QQ-Plot of Standardized Residuals
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Figure 2.16: QQ-plot of the standardized residuals of the normal-GARCH(1, 1) model
fit to the simulated data from a IG-GARCH(1, 1) model with parameters r = 0.00019,
v = 1625, n = 6.162 x 107, w = 3.768 x 1071°, b = —19.33, ¢ = 4.142 x 1075,
a= 2472 x 10"
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Figure 2.17: Cross-correlation plot of the standardized residuals of GARCH(1, 1)
model fit to the simulated data from a IG-GARCH(1,1) model with parameters r =
0.00019, v = 1625, 7 = 6.162x 1074, w = 3.768 x 1010, b = —19.33, ¢ = 4.142 x 10~°,
a= 2472 x 107.
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Chapter 3

Applications of Combining
Estimating Functions

In this chapter, estimating functions are combined to obtain estimates with smaller
mean square errors. In Section 3.1, we state the Combination theorem due to Thomp-
son and Thavaneswaran (1999) for combining non-orthogonal estimating functions.
In Section 3.2, we develop a GARCH model identification tool based on the theo-
rem in Section 3.1. In Section 3.3, we study the problem of combining estimating
functions for the class of AR(1) processes with GARCH errors and show how as a
result, an improved point estimate of the variability of the log return series may be
obtained. In Section 3.4, we study an application of combining estimating functions
to the hypothesis testing problem for the class of stationary processes with GARCH

errors. We end with concluding remarks in Section 3.5.
3.1 Combination Theorem

The result of Godambe (1999) uses combinations of orthogonal estimating functions.
In this Section, we give some combination results when the components need not be

orthogonal. Consider a probability space (§2, F,P), on which 6 is a real valued random
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variable. An estimating function for 8 is a function g(-, 8) on 2 xR, and it is unbiased
if Eg(-,0(-)) = 0, where ‘-’ represents a generic point of Q. Let ¢1(-, ), g2(-, ) be
fixed unbiased estimating functions having finite and positive variances, and such that
the expectations of 0g; /90 and 0gs/00 are finite, with E[0g;/06] # 0. For example,
g1 and g could be score functions. The following theorem, given in Thompson and
Thavaneswaran(1999), is used to obtain a model identification method for linear and

nonlinear time series in Section 3.2.

Theorem 3.1.1 (Thompson and Thavaneswaran(1999)): In the class of all unbiased

estimating functions

9 =91+ cga,
(i) the function which minimizes Var g is given by
9 =n+C"g
where
C* = =Cov(g1, 92)/Var go

and

0
—g])2 is given by

(it) the function which minimizes Var g/(E] 50

° =g+ C%;

where

E [%%3] Var g — E [%,—1} Cov(gi, 92)
E [%"9—1] Var g — E [%%3] Cov(g1, g2)

C’ =

We now show how to apply the results above to model identification of linear and

nonlinear time series.
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3.2 Model Identification

In this Section, we study GARCH model identification by applying Theorem 3.1.1.
Using Theorem 3.1.1, the correlation between least squares (LS) estimating functions
and least absolute deviation (LAD) estimation functions is obtained and it turns out
to be the asymptotic correlation between the corresponding estimators. The following

example motivates combining estimating functions.

Example 3.2.1 Suppose we want to estimate 0 = E(|Z]), where Z is standard nor-
mal. We generate n iid N(0,1) variables Z1,. .., Zn and compute § = 5" |Z;|/n. But
we know that E(Z?) = 1 and can see easily that § is positively correlated with S22 /n.

Hence the combined estimate is § = 6 — (3" Z2/n—1), where the value of ¢ is chosen
Cou(d, 32 22/n)
Var(3_ Z}/n)

to minimize the variance of 8 and is given by ¢ =

In practice, the value of ¢ can be estimated by regressing |Z;| on Z2. The main
message is that two different measures of variability can be combined to obtain a
better estimate (see Samanta (1985) for details on combining estimates). Rather
than combine estimates, estimating functions will be combined for GARCH model
identification.

Following Thavaneswaran and Ghahramani (2004), we will combine LS and LAD
estimating functions in order to develop an GARCH model identification tool. The
least squares estimating function g; based on X; from a random sample X;,..., X,
from a symmetric population with location parameter # and standard deviation o is

(X —0)

given by ¢1(X;;0) = . The LAD estimating function based on Xj is given by

92(X;;0) = sgn(X; — 0). Then it is easy to show that the correlation, p, between g,
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and gq is

E|X — 0]

g

p = Corr(g, g2) = (3.2.1)

Hence, the estimating function that minimizes Var(g*) according to Theorem 3.1.1

part(a), is given by

g* = ————(XZ _ 6) - psgn(Xi - 9) (322)

Then Var(g*) = (1 — p?), so that Var(g*) is minimized whenever p is maximized. If
we let g1 be the LAD estimating function and let g, be the LS estimating function,
then again Var(g*) = (1 — p*) as well. Hence, the combined estimating function in
(3.2.2) has smaller variance than either the LS estimating function or the LAD esti-
mating function. This in turn implies that the asymptotic variance of the estimator
corresponding to the estimating function in (3.2.2) is less than either the variance of
the least squares estimator or the variance of the LAD estimator, (see Heyde (1997)
for the details of the relationship between the asymptotic properties of the estimates
and the finite sample properties of the estimating functions.)

It is of interest to note that, the correlation between the LS estimating function
and the LAD estimating function has not been studied in the literature. Consider
a random sample of size n drawn from a population having mean p, variance o2,
median v and density f(z). The asymptotic joint distribution of the sample mean X

and the sample median X is given by

A3 )= () )
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Distribution E|X —pl/o
Normal(65,25) 0.797885
i3 0.636620
t4 0.7071068
ts 0.735105
ts 0.750000
t7 0.7592134
tg 0.765466
Logistic(0,1) 0.764304
Double exponential(1) | 0.707107
Uniform(0,1) 0.866025
Beta(2,2) 0.838525
Beta(3,3) 0.826797
Beta(4,4) 0.820313

Table 3.1: Theoretical E|X — u|/o values.

asn — 00, (Ferguson (1999)). Hence, the asymptotic correlation between the sample
mean and sample median is the same as the finite sample correlation between the LS
and LAD estimating functions. The following example illustrates an application of

the result.

Example 3.2.2 : Suppose Xi,...,X, is a random sample from a N(u,c?) popu-
lation. Assume o2 is known and interest centers on estimating . The correlation

between the sample mean and sample median is approximately given by

o 2
Corr(X, X) ~ 1/ 2 = 0.797. (3.2.3)

T

The theoretical E|X — u|/o values have been calculated for a number of distributions
(See Johnson and Kotz (1970)). Table 3.1 provides these values for some symmetric

distributions.
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After a time series model is fit, the moment estimator of p based on the residuals
can be used to identify the error distribution. For example, suppose we decide to
fit a GARCH model to a return series {y;} after inspecting the sample ACF of the

series and the squared series. We can fit a normal-GARCH model as an initial model.

The residuals are given by Zt = ,—‘7{3 where ﬁt =0+ alyf_l + Blht_l represents the
it
estimated conditional variance at time t. The moment estimator of p is given by
Y112 — Z)/n
Sz

p= , where Z and sz denote the sample mean and sample standard
deviation of the residuals, respectively.
p as a GARCH model identification tool is studied using simulation studies in

Chapter 5. The error distribution of GARCH models fit to real financial data is

identified using p in Chapter 5.
3.3 Combining Estimating Functions for Volatility

In this section, we study the problem of improving the estimate of volatility by com-
bining orthogonal estimating functions. Thavaneswaran and Heyde (1999) have com-
pared the information associated with LS and LAD estimating functions for the au-
toregressive parameter of a process {y; } and showed that the LAD estimating function
is more efficient than the ordinary LS estimating function if the distribution of the
error term is such that 4f2(0) > 1/02 where o? is the variance of the error term and
f(z) is the conditional density of y;|y;—1 such that f(0) > 0. Thavaneswaran and
Heyde (1999) have also shown that for heavy tailed distributions, the efficiency of the
estimator can be improved by using the LAD estimating function.

Using the result of Heyde (1997) for an autoregressive process where the condi-
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tional mean and conditional variance are a function of the autoregressive parameter,
we combine LS type and LAD type estimating functions for a class of volatility models
and show that the combined estimating function has more information. The informa-
tion associated with the combined estimating function obtained by non-orthogonal
combination turns out to be the same as the information of the orthogonal combi-
nation in Heyde (1997). We also discuss combining estimating functions for RCA
models.

Following Godambe (1985), we say that any RP? valued function g of the vari-
ates (Y, - - - Y, ) and the parameter 6, satisfying certain regularity conditions such as
square integrable and differentiable in © with nonzero derivative, is called a regular
unbiased estimating function if, Eylg(ys,,...,¥:,)] = 0,0 € ©. Let L be the class of
estimating functions g of the form g, = iati—lhti—l’ where the functions hy, are
such that Eg(hy|Fy, ] =0, =1,...,n) ;:nld at,_, is a function of y;,,...y;,_,. The
following theorem due to Godambe (1985), gives the form of an optimal estimating

function.

Theorem 3.3.1 (Godambe (1985)) In the class L of unbiased estimating functions
g, the optimal estimating function g* is the one which makes the difference Cou(b,b)—

Cou(b*, b*) non-negative definite, where

891" \ dgi1"
b—[ %] Gn, b —[Eae} Gn*

and + denotes the pseudoinverse of a matriz. The optimal estimating function is

given by

fNC . I Oh,
gh =0y, with af_ = [E = } /Elhy by | Fy).

i=1
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The martingale information associated with the optimal estimating function is I- =

ag;,
® (%)

E(g:?)

where the expectation is conditional on the information set.

In what follows, we begin by illustrating how combining estimating functions
improves estimation of the parameter in situations where the variance is a function
of the mean. Next we consider the same set-up for estimating the conditional mean

parameter in an autoregressive model and an autoregressive model with GARCH(1,

1) errors.
Suppose
ye=0+¢e (3.3.1)

where &, = &,(6) are i.i.d with E(e;) = 0 and E(e?) = ¢*(6). Denote 0? = ¢%(d).
Assume E(g}) < 00, 073 E(e}) = v and that 0 ~*E(e}) — 3 = x. Consider the following
elementary estimating functions m,, k; and [; for € given by m; = y; — 6 and k; =

(y, — 0)% — 0% and I, = —sgn(m;). We wish to estimate § on the basis of the sample

Y1, Yn-

It follows from Theorem 3.3.1 that the optimal estimating function based on m, is
. . . o n
givenby M = —— Z my, and the corresponding information is I1g = — - Moreover,
0% = o

2 . n
the optimal estimating function based on k; is given by K = S Z ky and
(K +2)0

4n(5)?
the corresponding information is Iy = (%%——5. In addition, the optimal estimating
K o
n
function based on [; is given by L = —2f(0) th and its information is I 4p =

t=1
4nf?(0). The following theorem gives the form of the combined estimating functions

and the associated information.
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Theorem 3.3.2 (a) For the model described in Equation (3.5.1), the optimal com-
bined estimating function and its information formed by combining m; = y; — 0

and ky = m? — o® are given by the following:

9 00 = sy (1) L0 (s (= 20k

2 -1 .
o  doyn
(Z'L) Ig— <1 /€+2> {ILS-i-IK —0_2(/{_’_2)}.

(b) Assuming e, is symmetric with p.d.f. f(.), and letting p =

E|5t|
g

, then the op-

ttmal estimating function for 6 based on combining the LS and LAD estimating

functions my = y, — 0 and l; = —sgn(m:) and its information are given by the
following:
: (1 +2f(0)op) O'p = f(0)o? + po)
0) = —————l
(1) 9(y;0) = 02 1—p ; f(0)op+1) L

.. 1 4 n
(#) IiLspap) = =) (Is + Ipap + ¥)

Proof: For part (a), we employ the Gram-Schmidt orthogonalization procedure
to find two uncorrelated estimating functions. Consider the elementary estimating
function %, given by

Cov(my, k
Py = ky — —————( ! t)mt = k; — yom,.
Var(my)

Then m; and 1, are uncorrelated zero mean estimating functions with variances o2
and (k + 2 — v%)o*, respectively. Applying Theorem 3.3.1 separately to m, and 1,

the optimal estimating function becomes

), 5le),
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d

Note that E <C§’gt) = —o(y — 20), where ¢ = é. Let g+ = o(20y — (k + 2)m; +
5}

(v — 20)k;. 1t is easy to show that E <5g(;—)t> = 0(4(6)* — 46y + (k5 + 2)) and that

E(g?) = {k +2 — ¥*}0*(4(6)? — 46y + (k + 2)). After some algebra, the optimal

combined estimating function in terms of m; and k; is given by

00 = gy (1~ ags) 1o = (s 2 (= 20k

The martingale information follows from the definition.

For symmetric distributions (with a few exceptions), v = 0 and hence the com-
bination has more information. When ¢; follows a normal distribution, v = 0 and
assuming o%(f) = 62, the information reduces to I(§) = :;—Z Hence, the combined

estimating function has more information.

Cov(my, ;)

Similarly f t (b), by taki =l —
imilarly for part (b), by taking v; = [, V(me)

my = [, + Bmt. The optimal
g

estimating function turns out to be

(85)% o) (%)

9(y;0) = }: Bl? + B "
_ _(1+2f(0)op> [ 2f(0)0®+ po)
- o(1-p?) ;{ tT R F 0o+ 1) lt} (3.3.2)

Note: It is of interest to note that optimal estimating function using Theorem 3.1.1

part (ii), based on m, and [; as in (b), is given by ¢° = g {mt + (—1“—2—(?[(*)72&}
o?(1 - p?
=1

since E <—@%> =-1,F <gg> = —2f(0), E(m?) = 0%, E(1?) = 1 and Cov(my,l;) =

—po. It is easy to show the the estimating function in (3.3.2) satisfies the relation

__(1+27(0)ap)
o?(1 - p?)

In the next section, we discuss combining estimating functions for correlated data.

g°. Hence, both have the same information.
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3.3.1 Autoregressive processes

The following uncorrelated data example, provides the motivation for combining es-

timating functions for autoregressive processes.

Example 3.3.1 Consider the Weighted Least Squares estimation(WLS) problem for

estimating the variance in the linear regression model given by the following:

Y = PBre + ey,

where e; 1s an uncorrelated sequence with zero mean and variance known up to a pa-

rameter o2 that depends on B. That is, Var(e;) = 0?(B)o?, t = 1,...,n. An estimate

of a*(B) is given by

n

Z(yt - @)2

Since 0?(\ﬁ) depends on ,5 through the predicted value, ;, improved estimation of 8

leads to improved estimation of o2(83).

We consider the first order autoregressive process described in Heyde (1997). We
let 0 represent the autogressive parameter as in the example on combining estimating

functions in Heyde (1997). Suppose
Yo = Oy + &, (3.3.3)

where ; = €:(6) are independent and identically distributed with E(e;) = 0, Ee? =

Ele
02 Ee} < 0o. Let 0? = 0?(f) and let p = M Furthermore, assume ¢; have density
o
f(.) where f(0) > 0 and supf(z) < co. Denote the skewness and excess kurtosis of
e by v = 07%Ee} and k = 07*Fe} — 3. We wish to estimate 6 based on the sample
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Consider the following set of elementary estimating functions my, k; and I; for 8
given by m; = y; — 0ys-1, ki = (y; — 0ys-1)? — 02, and [; = —sgn(e,).

Using Theorem 3.3.1, it is easy to show that the optimal estimating functions

T . T
1 2c
corresponding to my, k; and [; are grg = —— Y 1My, G = ———— ky
a2 ; (k + 2)0® tz:;
T
and grap = —2f (O)th, respectively. The martingale informations are I;g =
t=1
N2 4T(6)" 2(0) 82
o~ Zyt~1, Iy = (it )5 and I 4p = 4f(0) Zyt_l, respectively (for the proofs

t=1
see Appendix B.1).

t=1
The following theorem extends the results for an AR(1) process given in (3.3.3).

Theorem 3.3.3 (a) The combined estimating function based on combining the esti-

mating functions m; and k; along with its information are the following:

(i)

1

9(y; 0) = T P (1 - 51 2>_ ;{0(20‘7—(fﬁ+2)yt_1)mt+(yt-w—2d)kt},

where ¢ = do /df,

()

I, = = PN
g o(k+2) Kk+2

x> {((5 + Qo1 — 207)ye-1 + 20(26 — y,_17)} (3.3.4)

t=1
2 -1 . T
Y 4oy
1- I I —————5 19 3.
< I~€+2> { L K 0% (K +2) £ 4 l} (3:3.5)

(b) The combined estimating function based on combining the estimating functions

I

my and l; along with its information are the following:
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(i)

T
9(y;0) = _EZ(Tl——pﬁ z{(l +2£(0)p0)yr—1m + (0p + 2f(0)0? )}
(3.3.6)
(1i)
T
I, = Zyt L1+ 472(0)0? + 4£(0)po). (3.3.7)

Proof: The proof of part (a) is given in Appendix B.1 and Appendix B.2. The proof

of part (b) is given in Appendix B.5.

In the case where (y;) is stationary (|0] < 1) we have

Its ~To™?Ey? =T(1 - 6*)7! as.

and
¥\
I, ~ |1~ I 8.
g ( ’1+2> {Ls+[1(} a.s
as T — oo.
4T (5)*
If on the other hand, |#] > 1, then Ix/I5 = = — 0as T —
(K+2)> ¥ .
5 N -
oo, a.s. Consequently, in the case when |§] > 1, I, ~ (1 — 12> Irs as. as
K

T — oo. Thus, combining gx with grs is advantageous in this latter instance if

v # 0.
We observe that

2

) g
ILAD ~ 4.f (O)T_—m, a.s. as T — oo.

Also, It ~T(1—6*)"'as T — co.
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Hence,

I~ 1 { T 412(0)To? N 4Tf(0)pa} ,

-\l " 1-@& -6
as n — oo. That is, in part (ii) of Theorem 2.2, we have

AT f (O)PU} ,

1
IgN(]_—_—;2_){ILS+ILAD+ 1_92

AT (0)po
1-62

and LAD estimating functions is advantageous in this case.

as T' — oo. Since >0, and (1 — p?)~! > 1, we see that combining the LS

In the next Section, we combine estimating functions for an autoregressive process

with GARCH (P, Q) errors.

3.3.2 Volatility Models

Consider the first order autoregressive process with GARCH(P, Q) errors given by
Y = 9%—1 + &, (338)

where €; = () is a GARCH(P, Q) process. That is,

& = \/E Zy
P Q
he = wt Y aEl i+ Bk,
i=1 j=1
where Z; are independently and identically distributed with E(Z,) = 0, E(Z?) =
0® = ¢*(f). Thus, we have Ee, = 0, E(e2|FY,) = 0®hy, Ee! < co. Denote the
skewness and excess kurtosis of £ conditional on F¥ | by v = ¢=3h,**E (e3|FL,) and
k=0 "h;2E(ef|F{_,) — 3. Let f(.) denote the density of ¢, conditional of F¥_,. We
wish to estimate ¢ based on the sample (y;,0 <t < T).
Let my = (y1 — 0ye-1), ke = {(y+ — Oy-1)® — o*h;} and I, = sgn <—E—t—) . Then

Vhy

the optimal estimating functions corresponding to my, k; and [; are given by , grg =
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T 2 -N\D T 2
1 yia 4T(o) 2 Yi—1
Iis=Y =", Ix=——25, and Ipap = 4f%(0) ) 2L
LS 0_2 ht 3 K (H, 2)0_27 an LAD f ( ) . b

respectively.
The following theorem gives the expression for the optimal combined estimating

function and the corresponding martingale information.

Theorem 3.3.4 For the autoregressive process of order with GARCH(P, Q) errors

given by equation (3.5.8), we have the following:

(a) (i) The optimal combination based on my and k; is given by
1 72 -1 T y
g = - 1] - 25~ — (K t—1
g(LS,K)(E? ) 0’3(}{—}- 2) < (l{—}- 2)) Z {U( o7y (/’»+ 2)\/h_t)mt

i=1
YYi—1 .
— 2k, V.
<m “) }

(%) 9(s k) has martingale information given by

2 -1
g 40
I(LS,K):<1_H+2> {IL3+I1{ fH_;UQZyt 1}

(b) (i) Combining m; and l; optimally gives the following estimating function:

+

T

1 Yg—

J(LS,LAD) = —(1 — ) a;hlt { 1+ 2f(0)po/ he)my + o/ hi(p+ 2f(0)o/h lt}
t=1

(i) g(Ls,Lap) has martingale information given by the following expressions:

Irs,apy

T
> g7, L+ 47 (0)0he + 4 (0)po /)

tz } (3.3.9)

IIM%

1
= 7 {ILS+ILAD+4f
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Proof: Part (a) is proved in Appendix B.3. Some of the details of the proof of
part (b) are provided in Appendix B.6.

The estimate of § can be found by solving the estimating function for 8 iteratively
using the Newton-Raphson procedure. For example, suppose we wished to solve the
equation grsi(¢) = 0 in order to obtain an improved estimate of 6, where ¢ =
(0,w,01,...,0p,B1,...,00,7, ). Starting values for each parameter are required in
order to implement the Newton-Raphson procedure. The conditional least squares
estimate of # can be used as a starting value for 4. The residuals from the fitted model
(where 6 is the conditional least squares estimate) can be used to provide starting
values for the remaining parameters in the following manner. Using the ARMA
representation of the square of the residuals, the conditional least squares estimates
ofw, (1 =1,...,P)and §;(j = 1,...,Q) can be used as the starting values for the
GARCH parameters.

Consequently, an improved estimate of Var(y) is obtained from the improved
estimate of the conditional mean through the expression Var(y;) = ( ;?2’ where

_ ) B

E(ht) —_ AT —~ .
1—-o0%(0)a7 — 6y

In the next Section, combining estimating functions for the class of Random Co-

efficient Autoregressive processes is studied.

3.3.3 Random Coefficient Autoregressive Models

For the random coefficient autoregressive model of order one for the process {y,}.

v = (0+b)yi—1 + e,

101



where {b;} and {e;} are uncorrelated zero mean process with variance o and o2(9),

respectively. Further, denote the skewness and excess kurtosis of {b;} and {¢;} by

o 2E(b) = v, 0 3E(ed) = v, 0y *E(b}) — 3 = ky, and 074 E(e}) — 3 = &, respectively.
Put

my =y — Oys—1 = byy-1 + &
and
ke =mi — (o371 + o).
Then using these elementary estimating function, we can show that M and K are

two estimating functions for estimating 8, where

T

Yi-1
M = - (3.3.10
; oYy + o )
K = i —209 k (3.3.11)
“ yia(ke +2)0) +4y2 10207 + (= +2)0t -

Let f(yi—1) = yi(kp + 2)0f + 492 ,0%02 + (k + 2)o*. These estimating functions
T

2
have martingale information Ij; and Ix given by I, = Z Yi-1

and Igx =
t=1 O-l?y?—l +

o2
a 40?(5)?
tzzl: F(yi-1)
Theorem 3.3.5 The combined estimating function is given by the following:

(:6) = i(l_ (Y3 08 + 0®)? >
I £\ Flyir)(o2y2s + 09)

, respectively.

200

(3.3.12)

{(2057(3/?—1‘71?%4‘037) Yi—1 > n <yt-1(yt3_103’7b+037)
- ¢
Fye-1) o3yl +02)  ofyl, +0? Fye1)(odyi_, + o)

and the information associated with g is given by the following:

T 3 3 3.\2 -1
_ =+
I, = Z (1 - lowzb P 70 > (3.3.13)

f(yt—l)(%yt—l +0?)

t=1
X {402(d)2 + Vi _ 40(0)ye-1 (71007 + US’Y)}
fyemr)  ojyt, + 02 Fye1)(ofyi-, + 0?)
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Proof: Some details of the proof are given in Appendix B.4.

The optimal combined estimating functions contain more information than the
component estimating functions.

Note: Setting 02 = 0 in (3.3.12), we obtain the combined estimating function in
part (a) of Theorem 3.3.3.

In the next Section, hypothesis tests based on combined estimating functions are

studied for the class of stationary processes with GARCH errors.
3.4 Tests for Volatility

Tests for nonlinear time series via estimating functions have been studied by Tha-
vaneswaran (1991), Basawa (1991) and Thavaneswaran and Peiris (1998).(See also
Chapter 9 in Heyde (1997) for more details). We extend the results of Thavaneswaran
and Peiris (1998) to ARMA models with GARCH errors.

For a simple hypothesis which is of special interest for time-series data, say Hy :
0 = 6y against any possible alternative, we propose a test statistic T, based on an

unbiased estimating function g as

T, = (3.4.1)

where ég is the estimate found by solving g(y;#) = 0. The following theorem estab-

lishes the superiority of Godambe’s approach.

Theorem 3.4.1 (Thavaneswaran and Peiris (1998)) The power of a test based on
the optimal estimating function g against a particular alternative is bounded below

by the power of any unbiased estimating function g i.e. Power of Ty~ > Power of T,.
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In the next set of examples, the martingale information of the optimal estimating
function as well as the martingale information of the least squares type estimating
function are derived. Tests based on the aforementioned estimating functions are

derived and compared.

Example 3.4.1 Constder the simple linear regression model through the origin, y; =

Bxy + e, t = 1,...,n. Assume that the errors are independent with E(e;) = 0 and
o? . - Zn_ YTt

Var(e;) = —. The usual least squares estimate of B is 3 = _ﬁ—_Q In contrast, the
T t=1T¢

inequality, (Z xtzl) < foz 1= anf The least squares estimating func-
tion for  is grs = — 3 4y TeMy, where my = y, — Bxy. It is easy to show that the

n 2
no?

weighted least squares estimate of 3 s Bwis = . Using the Cauchy-Schwarz

information associated with least squares estimating function is Irg = while

n 4
t=1%:

the information associated with the optimal estimating function is I,y = >
o

Hence, Its < Iop:.

Example 3.4.2 Consider the autoregressive process y; = 0y, +¢&¢, where &, are i.i.d.

2

with E(e;) = 0 and Var(e;) = —3;—. The conditional least squares estimating function
t—1

is given by gors = — ¥ 1 Yt—1My where my =y, — Oy;_1. The information associated

(Zytz—1>2

with the conditional least squares estimating function is given by Icrs = _(_—ﬁ_z
n—1)o

On the other hand, the optimal estimating function based on elementary estimating

no.3
functions my is given by Gopr = — g;—_%mt, The martingale information associated
Sravty ,
With Gopt 15 Iopt = ia?z_t_*l‘ An application of the Cauchy-Schwarz inequality once

éopt - 90

t S r—
P - 1
opt

again shows that Icrs < L. The test based on the statistic T, s more

powerful.

104



Example 3.4.3 Suppose {y:} is the following autoregressive process:
Yo = 0y + e84 (3.4.2)

where €, are uncorrelated with mean zero and variance 2. The optimal estimating

function in the Godambe(1985) sense based on elementary estimating functions m, =

n
Yi—1

g——gmt. To test Ho : 8 = 0y against H, : 0 # 8y , we propose
o
t=2 €

Yy — Oyp1 is g = —

6—6
the statistic T = 0

VV

where @ is the solution of the optimal estimating equation and

-1
noo9
V= %t:—ﬁl—} . Using a weighted least squares approach, the optimal estimating
o
t=2 7€
2
. . . - yts—l . , . ) _ 93—1 )
UNCtion 1S Gopr = — ——m, with martingale information I,,; = =—. Since
14 306 /4 6
t=2 "€ t=g "€

2
ny_l = ny_lyf_l > (Z yf_l) = ny_l, Iop > I, and the test based on

Z
the statistic T = 24— is more powerful.
/Lot
Example 3.4.4 Consider an AR(1)-GARCH(1,1) model of the form.:
Yo = 0yp1 + & (3.4.3)

where |0] < 1 is a zero-mean GARCH(P, Q) process given by the following:

\/}—L—tZta

& =
P Q
E: 2 } :
ht = w+ aiet_i-i— /tht-—j
i=1 j=1
and Z; is an uncorrelated zero-mean sequence with variance o? = o*(0) and finite

fourth moment. Let o2 be the variance of &;. Using the elementary estimating func-

tions my = y; — O0y,—1, the estimating function based on the least squares approach

n
Yi-1

is g = — 1 oY1y While the optimal estimating function is Jopt = — 2y, -
gy

t=2
Let 0" denote the solution of the equation g, = 0. In testing the hypothesis Hy :
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*

g* — B

VvV

-1
] is more powerful than the test based on the least squares esti-

0 = 0y against H, : 8 # 6y, the test based on the statistic T = where

no o
Yi—1

mating function.

Example 3.4.5 Consider the autoregressive order one process with power GARCH(1,1)

innovations given by
Y = Oyr-1 + & (3.4.4)
where

e = Vi, (3.4.5)

hy = w+ allst—-ll + Brhi_q (346)
- Z| - E|Z
with Z; = LL—-—|—L| Based on the estimating function m; = y; — 0y;_1, the optimal
Var(|Z)
estimating function is gopt = — %_—lmt. Let 0* denote the solution of the equation
t=2 't
gopt = 0. In order to test the hypothesis Hy : 8 = Oy against H, : 6 # 6y, use
.. g* — 0o - %2_1 .
the test statistic T = \/__ where Iopt = —-];——- . The test based on the OPthG,l
Io_p% t=2 t

estimating function is more powerful than the test based on the least squares estimating
function g = 3 1o Y1y

Example 3.4.6 Let y, be a stationary RCA(1) process with normal GARCH(1,1)

errors given by
Y= (0 +b)yi—1 + & (3.4.7)
where
& = Vi, (3.4.8)
hi = w+ el + Bihi, (3.4.9)
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Zy ~ N(0,1)(i.i.d.) and uncorrelated with b, ~ N(0,0%)(i.i.d.). Based on the el-

ementary estimating function my = Yy, — Oyi—1, the optimal estimating function is
n
: Yi-1 2 w
wen b = — —————m; where 0 = ——— . Let §* denote the
given by gt = =0, G oA F T T (a4 B

solution of the optimal estimating function equation g = 0. The test statistic for the

*

g — 6
one-sided test of hypothesis Hy : 6 = 0y against Hy, : 8 # 65 is T = 0
\/ont
n 2
Iope = Z 22%—“1 15 the optimal estimating function information. This test is
t=2 bet—l + Ug

more powerful than the one based on the least squares estimating function given by

where

g=- E?:Q Y110
Example 3.4.7 Consider an AR model with Sign-switching GARCH errors given by
Y = O0yi—1 + &

where

& = Vi (3.4.10)

hy = w+ alef_l + Brhi_1 + ©15:_1 (3411)

Zy ~ N(0,1)(i.i.d.) and S; = Iie50) — I(e,<0). It is easy to show that the optimal

estimating function for 6 is given by g = — —y—;;lmt where my = y; — 0y;_1. Let
t=2 't
0* denote the solution of the optimal estimating function equation g, = 0. The
: . . o —
test statistic for testing Hyo : 6 = 0y against H, : 0 # 6y is T = 22 where

\/ ot

noo9
Iy = [ %] . This test is more powerful than the one based on the least squares
t=2 t

estimating function given by g = —> 1, y—1my.
Example 3.4.8 Consider the autoregressive model with GARCH type innovations
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given by
Ye = Oyi1 + €4,
where

& = \/EZt (3412)

he = w+aigr + e L, 1<0) + Brhio (3.4.13)

where Z, ~ N(0,1)(¢.7.d.) and I denotes an indicator function. Based on the ele-

mentary estimating function m; = y; — 0y,—1 for 6, the optimal estimating function

S Gopt = — %mt while the least squares estimating function based on m, is
t=2 't
g = —> o yi1my. For testing Hy : 8 = 6y against H, : 6 # 8, the test based

*

)
on T =

— 0o . . & ytz—l .
where 8* is the solution of gopr = 0 and I, = === is more
o f Gopt pt {; I,

powerful than the test based on the least squares estimating function.

Following Heyde (1997), we study tests based on combined estimating functions

in Example 3.4.9.

Example 3.4.9 The optimal estimate based on the estimating function in Theorem

3.8.4 part (a) is given by solving the equation grsrx = 0 iteratively. Denote the

optimal estimate by 0*. Then the test statistic based on the optimal estimate for testing

/ot
7\ 467 ot
I, =(1- Ips+ Iy — =3
’ ( M) st I Y

The optimal estimate based on the optimal combined estimating function in The-

Hy: 0 =20y against H, : 0 # 6y is T = where

orem 8.8.4 part (b) is found by iteratively solving the equation g = 0. Denote the root
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of the previous equation by 6. The test statistic becomes T = where

opt

T 9
1
Iopt = 773y | Los + Teap + 4£(0 Zyt }

ﬂ\

t

The power of the test for the autoregressive parameter in an AR(1) model with
GARCH(1,1) errors using the least squares and the optimal estimating functions is

studied in Chapter 5 through simulation studies.

3.5 Conclusions

Applications of combining estimating functions in volatility modeling have been stud-
ied. The correlation between the LS and LAD estimating functions turns out to be
useful for identifying the error distribution in the class of GARCH models. Combined
estimating functions for the class of autoregressive processes with GARCH errors and
the class of RCA volatility models are shown to have more information than the
component estimating functions. By combining estimating functions, an improved
estimate of the conditional mean is obtained leading to an improved estimate of vari-
ance such as E(h;) or E(hFY ;).

Examples of model identification for GARCH models using real financial data will
be given in Chapter 5. The superiority of hypothesis tests for the class of autore-
gressive processes with GARCH errors based on the optimal estimating function over
tests based the least squares estimating function will be demonstrated in simulation
studies in Chapter 5. In the next chapter, the forecasting problem for stationary

processes with GARCH errors is studied.
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Chapter 4
Forecasting for GARCH Models

In this chapter, derivations of forecasts and the forecast error variances for various
classes of ARMA(p, ¢) models with GARCH errors are given. The latter part of this
chapter includes theorems related to volatility estimation in the presence of structural

change. We end with a Conclusions section.

4.1 Forecasting for ARMA Processes with Het-
eroscedastic Errors

Recall the GARCH(P, Q) process ¢; defined as

& = Vh 2 (4.1.1)
P Q

b = wH Y gl + > Bihuy. (4.1.2)
i=1 j=1

The following theorem enables us to calculate the variance of the I-steps ahead forecast

error for a zero mean GARCH(P, Q) process.

Theorem 4.1.1 For the GARCH(P, Q) process specified by (4.1.1) and ({.1.2), un-

der the stationarity assumptions and finite fourth moment, we have the following:

(a) Var(e?) = (K© - 1)[Var(e;)]?. That is, the square of the coefficient of variation

for the squared process €2 is K(€) — 1.
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(b) Let €2(l) be the forecast of €2, based on n observations 1,3, . . .,&,. The l-steps

ahead forecast error variance Var(e,(l)) is given by

( 5 2

B N S > L

Var(en(l)) = 21— R/ (k@ _q] {1 +Y e
Jj=1

S
§=0

Proof: The proof of part (a) follows from the definition of coefficient of variation for

2. The proof of part (b) is given in Thaveneswaran, Appadoo and Peiris (2005).

As we have seen in Chapter 2, the simplest volatility process y; = £2_,¢;, where
gt ~ N(0,02)(i.i.d.) has a kurtosis of 35. This process can be used as the innovation
term in AR(1) and RCA(1) processes to generate volatility models with time-varying
conditional mean and conditional variance. The following lemmas give the variance

of the [-steps ahead forecast error for such processes.

Lemma 4.1.1 For the simple volatility process of the form

Yyo—p = ¢y —p) el e, (4.1.3)
under the stationarity assumptions that || < 1, &, i.i.d N(0,02), then

(a) Letyn(l) be the forecast of ynyi based onn observations y1,ys, . .., yn. Theny,(l) =

p+ ¢y, — 1) and,

(b) the l-steps ahead forecast error variance for the observed process {y;} is Var(e,(1)) =
6N~ 2 ol —¢”
30’5 ;qﬁ 7 = 30’61_7&.
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Lemma 4.1.2 Let {y:} be an RCA(1) process given by

v = (P+b)y1+el e, (4.1.4)

where {&,} and {b;} are uncorrelated zero-mean Gaussian processes with variances o2
and of, respectively. Under the stationarity assumption that ¢? + o2 < 1, we have the

following:
(i) The variance of the l-steps ahead forecast error e, (l) is given by

305(1 — ¢ . 305(1 — ¢
Var(en(1)) = E(ynt — yu(l))* = TU_*(&‘:?%‘%(I +o ) = 1—0_(—(]52%'

For financial time series data, appropriate models of log returns are the ARMA(p,
q) processes with GARCH(P, Q) errors. In this Section, we study the forecasting
problem for stationary ARMA(p, q) processes with GARCH(P, Q) errors. In the
following theorem, we study the second and fourth moment of the [-steps ahead

forecast error of {y,}.

Theorem 4.1.2 For any second order stationary process {y,} with GARCH (P, Q)

errors given by

o= Y PiEe; (4.1.5)
—
& = }'Lt Zt (416)
P Q
ht = w+ Z aief_i + Z,tht_j (417)
=1 j=1
where Z; s an uncorrelated sequence with zero mean and unit variance, we have the

following:
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(a) Under suitable stationarity conditions for a GARCH process (stated in Chapter

2), the kurtosis of the {y:} process is given by

i<

K [f wf} +65 9Py
j=0

KW = 5 (4.1.8)
7=0
where,
E(Z¢
K© = (Z) : (4.1.9)

E(zZf) - [E(Z) - 1] 2 w3
j:
and U;’s are found from the ARMA representation of {£2}.

(b) For the l-steps ahead forecast yn(l), the variance of the forecast error e,(l) =

w -1
2 wh =
1—®; — Oy — ...(I)R];zﬁ]} where R

max(P,Q) and ®; =ca; + s, 1=1,...,R.

Ynsl — yn(l) i3 E[yn+l - yn(l)]2 =

-1 -1 2
(¢) Elys — (D) = o* (K@ SRUREDD wfw?) where ot = ——=——; and
j=0

i<j

where K¢ is given as in part (a).

Proof: Proof of part (a) is given in Chapter 2. Part (b) follows from the fact that
for a stationary ARMA process with error variance Var(e, (1)) = o2(1+¢+-- -2 ),
and the proof of part (c) is similar to that of part (a).

Note: When all the ARMA parameters are zero, then K® turns out to be the
kurtosis of the zero mean GARCH process. When all ®; in the GARCH process are
zero, then K™ turns out to be the kurtosis of the ARMA process. The next set of

examples illustrate Theorem 4.1.2.
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Example 4.1.1 Consider an AR-GARCH model of the form:

Y~ = -1 —p)te (4.1.10)

where |¢p| < 1, {&;} is a zero mean GARCH(P, Q) process given by expression (4.1.1),
the conditional variance h; is given by (4.1.2) and {Z;} is an uncorrelated zero mean

sequence with unit variance and finite fourth moment. Let o2 be the variance of {€,}.

1 ™ 2 — ¢
g ML - Ty

Then v; = ¢7, Z@b]z =
7=0

E(ZY)

2 662 + (1 — 2K ©
Hence, Var(y,) = L, and K@ = ¢°+(1-¢%)

(e) =
1= 5 11 42 , where K

Bz - B2 -1 5 %
From Theorem 4.1.2, when {e;} is a GARCH(P, Q) process,

| , w 1_¢2l
(i) E[yn+l “‘yn(l)] - 1—P;—...Pp1— g2’

and R = max(P, Q).

where &, = o, + G;, 1 = 1,..., R,

(1) Elynit — yn(D)]* (K(E Zz/f‘ + 621/; P ) , where K©) is the kurtosis of

J= i<y

the GARCH(P, @) process, &;.

Example 4.1.2 Consider an ARMA-GARCH model given by
(e — 1) = O(ye-1 — 1) + & — e (4.1.11)

where |¢| < 1, |0] < 1, & is a GARCH process given by (4.1.1) and (4.1.2), Z,

is an uncorrelated zero mean sequence with unit variance and finite fourth mo-

2 : — 2 2¢>9+ 02 <~ 4
ment. Let ¢ be the variance of {g;}. Then, Zzpj = qu =
] =0
1= 4670+ 66°6° — 496" +6" . (6—0? (¢ e) ¢2
1— dwa &¢2+ 1_92521_(;54,Hence,

i<j
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w(l — 246 + 6?)
(1= 3L, @)1~ ¢?)

Var(y:) =

and

KW = K© <(1 —4¢°0 + 6¢°0% — 4¢6° + 6)(1 — ¢2)>+6(1 — 39— 0)* + (¢ — 0)*¢
(1+¢%)(1 —2¢0 + 62)2 (1+ ¢2)(1 — 240 + 62)2

The variance of the [-steps ahead forecast error e,(l) = yn41 — yn(l) is given by

Var(en(l)) = d 1+ (¢ — 6021+ ¢* + ...+ ¢*“"?)]. In addition,
1—-¢;,—...—Pp
-1 1-1
Elyns1 — ya(D]* = o2 <K(€) Ziﬁ; + 62¢3¢?> , where K'® is the kurtosis of the
=0 i<j

GARCH(P, Q) process, &;.

Random coefficient autoregressive (RCA) time series have been introduced by
Nicholls and Quinn (1982) in order to model leptokurtosis and time-varying volatility.
Some of their properties have been recently studied by Appadoo, Ghahramani and
Thavaneswaran (2005). We next consider the forecasting problem for a stationary

RCA(1) model with normal GARCH(1, 1) innovations.

Example 4.1.3 Let {y;} be a stationary RCA(1) process with normal GARCH(1, 1)

errors given by

Yo = (¢ + be)ye—1 + &, (4.1.12)
where

& = Vi, (4.1.13)

he = w+ 0415?_1 + Brhe-1 (4.1.14)
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Zy ~ N(0,1)(i.i.d.) and uncorrelated with by ~ N(0,02)(i.i.d.). Then the variance

w(l = ¢*)
[1—(oq + B}l — % ~0ap)

-1 -1
We also have the following: Elynss — yn(D]* = o* | K© Y+ 6 V2% | where
€ ? try
=0

of the l-steps ahead forecast error is Elyns — ya(1)]? =

ot = w(l = ¢*) ? and K© = 3(1 — (on + Br))?
& ([1 e+ A1 — 2 —ag>> e T SN P |

Example 4.1.4 Consider the AR(1) model with Sign-switching GARCH errors (see

Fornari and Mele (1997)) given by

Yo — 1= P(ye-1 — 1) + &
'U)he'f'e, Ey = \/h_tZt €t|-[t—1 ~ N(O,ht)
P Q m
hi=w+ > aet;+ >, Bihiej+ D Ousiy
i=1 =1 r=1
+1 ’Lf Ey > 0
S = 0 if =0
-1 Zf & < 0
where P, Q and m > 0, w, oy, (i = 1,2,...P), B;,(j =1,2,...Q) and O, (z =

1,2,...m) are real parameters, satisfying w >0, oz >0, §; > 0 and |y, O, < w.
Let uy = € — hy be the martingale difference and let o2 be the variance of us, (4.1.13)

and (4.1.14) could be written as:

®(B)e; = w+B(Blu+ ) Opsi .
=1

where ®(B) = l—i ;B and ®; = (o;+05;) B(B) = 1—% B;B? and R = maz(P, Q)
i=1

i=1

Var(e?) = 3 U202  and Y, U? < oo where the U;-weights are obtained from the
i=0 =0
relation U(B)®(B) = B(B) with ¥(B) = 1-3° U;B". Under the stationarity assump-

=0

tions similar to those given for GARCH models, for the special case of the Gaussian

AR(1) model with Sign-switching GARCH(1, 1) errors, we have the following:
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-1
(i) The variance of the l-steps ahead forecast error is Elyn—yn(1)]* = 7 u)(p Z ¢,
— &

where ®; = oy + By, and

1-1 1-1
(#1) Elyn+i — ya(D]" = o (K(E) Zd}f + 621&?1/)?) , where
=0

i<j
4 _ UJ2 (&) _ [w2(1 + (I)l) + @%(1 - @1)](1 — (I)l)
% = 1 — (a1 4+ 6))? and K = w(1 = 3a2 — B2 — 20101) '

Note: E(e}) = E(h) and E(hy) = w + oy E(]_}) + ®E(sy_1) + B1E(hy_y). Since

w

E(si-1) =0, E(e2) = =3,

where ¢1 = a3 + By

E(h}) = w? + ofE(ey_ ;) + BiE(h? ) + O1E(sy) + 2wy B(e_,) + 2wB E(hi—1) + 2018, E(h_)).

W+ O + 2woldy

Assuming {&;} is stationary and Z; ~ N(0,1), E(h?) = 1307 — 7 — 20,5
- 1~ 171

where

w

o2 =E(e}) = —

£

Example 4.1.5 Consider the autoregressive model with GARCH type innovations

that allow for the effect of a negative shock to be modelled given by

Yo — b= O(Ye—1 — 1) + &4,
where

& = VI, (4.1.15)

hy = w+aier ) +melI(ei; < 0)+ Bk (4.1.16)

in which Z; 1s a sequence of i.i.d. random variables (shocks), with zero mean and
unit variance, and the indicator function I equals I when e, < 0, and 0 otherwise.
Sufficient conditions for positivity of the conditional variance are that w > 0, o > 0,

v >0 and 8 > 0. Then it can be easily shown that
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(i) The variance of the l-steps ahead forecast error is

Bliwrs =) = T o 7 DS”

2

() Elynri—ya()]* = < Z¢4+62w¢>wh(3rea w 55
= I I +51+1§1‘)]
and
2
31— (ar+ B+ 1 ]
K — [ <1 ' 2>

(1 =303 = 397 = B} — 3aum — 20161 — mbB1)

4.1.1 Application to GARCH Forecasts

Accurate forecasts of volatility are needed in various areas of financial time series
modelling and forecasting. For example, the classic Black-Scholes formula for a Euro-
pean call option gives the cost of an option based on the Geometric Brownian motion

model for the stock price S(t) as
c(S,t) = S®(d) — Ke" T ®(d — ov/T — t)

where

log[S/K] + r(T —t) N oVT —t
oVl —t 2

S(t) = S is the price of the underlying security price at time t usually ¢t = 0, KX is

d=

the strike price, T' is the maturity date, r is the spot rate, o is the volatility (i.e. the
instantaneous standard deviation of the rate of return of the underlying security), and
®(x) is the distribution function of the standard normal variate. The option price
depends on the initial stock price S, strike price K, maturity date T, spot rate r
and the the ‘unknown’ volatility parameter o and hence the better estimate/forecast

of the volatility will improve the performance of the option pricing formula. The
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Black-Scholes formula assumes that both the spot rate r and the volatility o are
constant. When these assumptions are false, use of the Black-Scholes formula can
lead to serious errors. For this reason, the use of GARCH models for pricing options
is a promising area of research. (see Ruppert (2004) for a recent survey of pricing
options under generalized GARCH processes). In the following examples, we compute
l-steps ahead forecast standard errors (I = 1,2,3) for log-return series of IBM and
GE stock taken from http://www.gsb.uchicago.edu/fac/ruey.tsay/teaching/fts. All
computations have been carried out using S-Plus©(Insightful Corp., Seattle, WA,
USA) and SAS/ETS®(SAS Institute Inc., Cary, NC, USA) software.

In the following two examples, we show that forecast error variances from autore-
gressive models with GARCH errors may differ from those obtained from the usual

autoregressive models.
Example 4.1.6 (IBM)

Based on examining the sample ACF and PACF of monthly log returns of IBM stock
{y:}, we fit an AR(1) model with normal-GARCH(1, 1) errors. The estimated AR(1)

model with GARCH(1, 1) errors is given by the following:

yr = 0.1429y, 1 + & (4.1.17)
where,

g = Vh % (4.1.18)

hy = 3.515x 107* + 0.0966¢2_; + 0.8224h,_;. (4.1.19)

The estimate of o2 based on the AR(1) model with GARCH(1,1) errors is 6° =

€
» _ 3515x 107
1—é;— 6  1—0.0966 — 0.8224

= 0.1583. The marginal variance is estimated to
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be E(y?) = 0.1616. Using Theorem 4.1.2, the I-steps ahead forecast error standard
errors (I = 1,2,3) are 0.3979, 0.4019 and 0.4020, respectively.

When we fit an AR(1) model of the form y; = 0.0767y;—; + &;, assuming the
conditional variance is a constant, the constant error variance estimate is 62 = 0.0044.
The standard error of the 1,2 and 3-steps ahead forecast standard errors for an AR(1)
fit with constant variance are 0.0663, 0.0665, and 0.0665, respectively.

The forecast standard errors from the AR(1) model with GARCH(1, 1) errors
are larger than forecast standard errors from the Gaussian AR(1) model. Prediction
intervals from the AR(1) model are narrower than the prediction intervals obtained
from the AR(1)/GARCH(1, 1) model. Let us consider the portfolio allocation exam-
ple discussed in Chapter 1 due to Gourieroux (1997). Suppose that an investor has a
portfolio consisting of exactly two assets: a risk-free asset with constant return ry and
a risky return whose future return is predicted via a prediction interval, (ry, 7,),
where ¢ denotes time. Assume that at the initial date, the whole portfolio is invested
in the risk-free asset. The investor wishes to reallocate his portfolio in the following
manner. Because of transaction costs, he will only change his portfolio when r;; > r 2
Since this means that the risky asset is more profitable, he will change his entire port-
folio to be reinvested in the risky asset. The portfolio will remain unchanged until
Tyt < Tr, at which time, the entire portfolio will be reinvested in the risk-free asset,
and so on. For this particular dataset, because the prediction intervals derived from
the Gaussian AR(1) model are narrower, this would mean that the investor would
falsely infer that the risky asset will be more profitable than the risk-free asset as

71 is more likely to exceed 7y, in which case, the investor is more likely to incur
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unnecessary risk, resulting in a loss.
Example 4.1.7 (GE)

We now consider fitting an appropriate model for daily log returns (in percentages) of
GE stock. We fit a AR(1) model to {y;} with t-distribution GARCH(1, 1) errors. The
estimate of the AR parameter is gi; = 0.0363 and its standard error is estimated to be

0.0101. The estimates of the GARCH parameters are @ = 0.02101, &; = 0.0478 and

. 0.02101
B1 = 0.9418, respectively. Based on this model, 52 = 100478 —0.0418 — 2.0276.

Using Theorem 4.1.2, the estimated standard errors of the I-steps ahead (I = 1,2, 3)

forecast errors are 1.4329, 1.4249, and 1.4249, respectively.

It is of interest to note that if we fit an AR(1) model with a constant error variance,
using the estimate of the AR parameter q% = 0.03584, then 62 = 2.0638. The 1,2 and
3-steps ahead forecast standard errors are 1.4366, 1.4375 and 1.4375, respectively.

In the GE example, the forecast standard errors are nearly the same for both the
AR(1) model and the AR(1) model with GARCH(1, 1) errors. This is mainly due
to the large estimate of w. The estimate of w corresponds to the long-run variance
of the return process. When the estimate of the variability in the return process is
large, inferences based on the AR(1) model and the AR(1) model with GARCH errors
are the same. In the next Section, inference for stationary processes with structural

change is discussed.
4.2 Forecasting with Structural Change

Suppose we have observations from a GARCH(p,q) process and the unconditional

mean of y7, o shifts from o to o? at time ¢t = T'+ 1. The following lemmas are
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needed to prove a theorem on the improved estimator of some volatility models in

the presence of structural change.

2

Lemma 4.2.1 (i) The MMSE forecast of yry1 is cj where ¢ = Eﬂ—_—2, and
Y

T

EQZ = u2+ T2

(T+2T-D)pr+2(T = 2)p2+ ...+ 2pr-1) = p° + £2 (4.2.1)

with $2 = Var(§) given by

22— %(T + 2T = D)y + 2T — 2)pa + oo + 2pr1) (4.2.2)
2 252
. . 2, 2 Boy 9 poLg 2
(i1) The MSE is MMSEr =o0° + (l*E—yz)—O' +M2+§% <o’ + %2

Lemma 4.2.2 Suppose that the mean of the stationary series shifts from u to py at

time T'+ 1 and also assume that the autocorrelation structure remains the same after

the shift.

(i) The MMSE estimate of p; is cj where ¢ = %;_/—12, Ey® is asin (4.2.1) and Eg is

as i (4.2.2).

2372
2 “121}

2
. . _ 2 2 -y
(i) The MSE is MMSEr = o +u1(1——-Egz)—0 +g2+2127'

Theorem 4.2.1 : For the GARCH processes described in (2.3.9) and (2.3.10), under

suttable stationarity conditions,
_ _ 1 <L
(a) The improved estimate of 03 = E(y2,,) is cy® where y? = nyz and ¢ =
k=1

[l + ——(K(y;_ l)}_l.
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(b) The MSE of the estimate of 02, cy?, is less than the MSE of the estimate of 72,

of 2.

Proof: The proof of Part (a) follows from the fact that Var(y?) = (K@ ~1)[Var(y))?,
and by the definition of the coefficient of variation. The proof of Part (b) is similar

to the proof for linear time series models.
4.2.1 A Regression Model for a Single Structural Break

Consider the simple linear regression model studied in Pesaran and Timmerman

(2004) of the form

Yer1 = Bizelp<ry + Iusty)Bazy + aypr (4.2.3)

possibly with a shift in its variance from o7 to o2, where I denotes the indicator
function. We know that 8 has changed at T3, our interest lies in forecasting yr.,
given the observations (z:,y:),t=1,2,...,7T.

The problem of the number of observations needed to estimate a model that, when
used to generate forecasts, will minimize the expected mean squared forecast error
has been studied in Pesaran and Timmermann (2004).

Let m denote the starting point of the most recent observations to be used in
estimation for the purpose of forecasting yr.;. Then the least squares estimator (LSE)

can be written as
T -1 T
Pr(m) = (Z m?—l) (Z Ti-1Yt). (4.2.4)
t=m t=m
The forecast of yp.1 is given by g1 = ﬁT(m)xT, with

Br(m) = 0B + (1 = 0m) B2 + vr(m) (4.2.5)
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-1 T T -1 T
where vp(m (Z z;_ 1) (Z Ty-104), and b, = <Z a:t2_1> (Z z;_;). The
t=m t=m t=m

forecast error in the prediction of yr,; will be a function of the data sample used to
estimate 3 and is given by the following' ers1(m) = ary1+0m (82 — B1)zr —vp(m)zo.

And, E[vr(m)?|X7] = (Z T 1> 030 + (1 — 0;)02). The corresponding condi-

tional MSFE becomes Ele%_ ;(m)|zr] = o2 +62,(8; — (Z z;_ 1) 020, +

1 — 0,,)03)]z3. For the proposed the MMSE predictor as Yol = cﬁT m)xp where
21 %7

ﬁzfgﬁj(‘( )> er+1(m) = yri1 — CIBT(m)IT = (62 — CBT(m))QfT + ar41. The corre-

2 .

sponding conditional MSFE becomes El[e2 w(m)zr] = o3 + [B2(1 — W]x’?
EB%(m)

which is smaller than the conditional MSFE of Persaran and Timmerman (2004).
For the model considered in (4.2.3), the estimate of 8, with the starting point m

of the most recent observations can be written as

T -1 T T
= (Z%ﬁl) (Zift—lyt) = knz(zxt—lyt)> (4.2.6)

1 _ 1 1 2
where 'Z“ (Zt =m ¥ )’l"m l"m+1 = Tp-1-

In order to determine m,

Step 1: Recursively calculate Br(m) and k! for each m using Br(m) = Bp(m + 1)+

kmxm—l (ym - xm—lﬁAT(m -+ 1)) .

Step 2: Calculate the improved forecast and the corresponding conditional minimum

mean square error for each m.

Step 3: Select the value of m which minimizes the minimum value given in Step 2 as

the optimal choice of the window.
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Improved estimation requires knowledge of model parameters other than the pa-
rameter of interest. In the next Section, recursive improved estimators are proposed
where only starting values for nuisance parameters are needed in order to estimate

the parameter of interest.

4.2.2 Related Inference Problems

Before discussing improved recursive estimation for time series models, we derive
improved recursive estimates for i.i.d. data in order to motivate recursive estimation

for time series in the presence of structural change.

Example 4.2.1 Let Yy, ..., Y, be ii.d. with E(Y) = p and Var(Y) = o (known).

We have the following:

(i) Let fi, = Yn denote the sample mean based on n observations. The recursive

estimate of the mean based on n -+ 1 observations has the form

. - 1 .
Pntl = Hp + m(yn+1 — fin).

2
Hjﬁ =
5 and v = o/p is the coefficient of variation. The following relations
1+ =

provz%e the recursive tmproved estimate of .

(i) The improved estimate of u given by [, = cpfin, wWhere fin = Yn, Cp =
1

~ ~ Cn+1 -
finsr = un+n'il(Yn+1—un)

(n+1)cy = neyt+1

Proof:  Part (ii) follows from observing the following. The improved estimate
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18 fin = Cpfbn. Then,

fnt1 = Cat1fbnsl
= i+ Yol
= e i + Yol
- nil%:i:_lﬂn %Ynﬂ.

But, (n+ 1)c,1y = ney' + 1. Multiplying by ¢y}, on both sides and rearranging

c n c
terms, we obtain — =1— 2L Then,
e n+1 n+1
~ Cn+1 ~ Cn+1
= (1- by
Hnt1 ( n+1>un n 1 ot

Note: In both instances above, ¢, is a function of unknown model parameters. If
an off-line(non-recursive) estimation procedure were to be used, we would need to
estimate these model parameters from the data as well, adding to the variability
of the paramter estimate. However, with the recursive estimation procedure one
simply needs to provide a starting value for ¢, since the estimate will converge to
the uniformly minimum variance unbiased estimator(UMVUE) as the sample size

increases. c, is chosen to minimize the MSE of the improved estimator. That is,

1 V2 1
EWpi1 —ci)? =01+ =1+ —=1"HY < o?(1 + =
(1 = i)’ = P (14 ~[1+ —]7) S 0*(1+ ),

o

where v = — is the the coeflicient of variation. If v is small then the improvement
7

on the MSE is relatively small. However, if v is large then the improvement can be

significant.

The following theorems give expressions for recursive improved estimates of mean

and variance parameters. The derivation of the proofs is similar to Example 4.2.1
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and will be omitted.

Theorem 4.2.2 Consider the MA(1) model y; — p = a; — fas_,. Interest centers on

recurswely estimating the improved estimate of the mean, u. The improved estimate
12
s given by [, = Cpfin, where ¢, = 7 , p1 is the first lag auto-
# o+ —5ln +2(n = 1)p
correlation of y, and fi, is the sample mean based on n observations. The recursive

relations needed are the following:

Cn+1

fny1 = fin + m(yn-ﬂ - lln) (4'2'7)
-1 n? n+1-+2np (4.2.8)
gl—=1  (n+12[n+2(n—Dp ] -

We can use the first lag autocorrelation of the sample autocorrelation function (ACF)

as a starting value for p;.

Theorem 4.2.3 For a moving average process of order g (MA(q))

Yo —p=a;— a1 — ... 04as_q,

where a; s an uncorrelated zero mean Gaussian process with variance o>. The re-

cursive relations for improved estimates of p in a MA(g) model are given by the

following:
A A Cn N
Hn+1 = Hp+ E‘f{(yrwl - ,U‘n)a
Coip — 1 _ n? n+1+2np+2(n=1)p+...+2(n+1-q)p,
cl—1 (m+12 | n+2n—pr+2n—2p2+...+2(n—q)p, |
In order to obtain starting values for the first ¢ autocorrelations py, .. ., Pq, the first

g sample autocorrelations may be used as estimates.
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Theorem 4.2.4 Consider the AR(1) model
Y — 1= ¢(yt—1 - ,LL) + &, &g~ (0,0’g),lld,t = 1, Lo,
The recursive tmproved estimates of the parameters are given by the following:

(i) The recursive improved estimate of p is given by fi, = cpjin, where ¢, = ;—_ =

42

— L and
Var(g) + 2 "

Var(g) = %%(n +2(n—1)p1 +2(n — 2)py + ... +2pn_1) = p + ¥2.

The recursive relations are the following:

~ S Cnt1 oA

Hn+1 = [Hn + TL_—|— 1(yn+1 /JJn) (429)
et — 1 B n? n+2n—1p+2(n—2)ps+...4+ 201"
=1 (n+12] n+l+2n0m+2(n—Vpa+...+2p,

(ii) Let ¢, denote the conditional least squares estimate (CLS) of ¢ based on a sam-
ple of n observations. The following equations are needed in order to calculate

the recursive estimate of ¢.

én—kl = an, + kn+1yn(yn+1 - anyn) (4210)

kb o= kb4t (4.2.11)

(i) The improved estimate of ¢ based on minimizing the MSE conditional on FY .,
the o—field generated by yi, ..., Yn-1 1S given by <2>n = Co¢n, where én, is the CLS
estimate of ¢ based on a sample of size n and

¢2
o2 (k) g

Cn
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The recursive relations for estimating the improved estimate are the following:

Pnrl = Cne1Bnt (4.2.12)

¢Zn+1 = ¢;n+kn+lyn(yn+l_¢?nyn) (4-2-13)

kot = kit (4.2.14)
~17.—-1 2

_1 _ ik +yn

Cny1 = W’ (4.2.15)

For an AR(1) process, we may estimate ¢ using the first lag autocorrelation of ;.
While ¢, may be a function of unknown parameter values, the recursive estimation
procedure requires only a starting value ¢; be provided and thus, these unknown
quantities do not need to be estimated at each iteration. It is of interest to note that
recursive improved estimation also leads to the Kalman filtering type equations of
Thavaneswaran and Abraham (1988).

The ARMA representation of a GARCH(p,q) y: process in terms of y? allows for

recursive improved estimation in the following Lemma.
Lemma 4.2.3 Consider an ARCH(1) model

Y = \/h_tZt,

he = w+ ¢yl
where Z; s an uncorrelated zero mean process with unit variance.
(1) The following pair of equations can be used to obtain the recursive estimate of

¢:

Grsr = On+ kar192 (1201 — Gnyl)

kapn = Ry +
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(11) Suppose we wish to recursively estimate the improved estimator cp, of ¢, by
¢2
¢ + 0% (Ciea yi1)

denote the estimator of ¢ based on a sample of n observations and found by

minimizing the conditional MSE. Then, ¢, = 7. Let bn

minimizing the conditional MSE. Let ¢3n = cann deonte the improved estimator
based on a random sample of size n. Minimizing the conditional MSE, leads to

the following recursive equations for the improved estimate (ZAS = Cn .

én-i—l = Cn+l¢§n+l (4216)

Gl = n+ knr1YE (Vo) — Puy?) (4.2.17)
—~17.-1 4

-1 . cn kn +yn

Chy1 = W, (4218)

kil = kit 4yt (4.2.19)

Proof: Parts (i) and (ii) follow from the fact that y? has an AR(1) representation.

Suppose we have observations from a GARCH(p,q) process and the unconditional
mean of y?, 0§ shifts from oZ to o? at time ¢t = T+ 1. The following theorem provides

recursive improved estimates of volatility in the presence of structural change.

Theorem 4.2.5 Consider (y;) a GARCH(p,q) process with structural change at time
n+ 1. Denote by 62 an estimate of volatility based on n observations calculated as

1 n
;ny Let 62 = ¢,02 denote the improved estimate of volatility. The following
k=1

relations, allow us to calculate G2, recursively.
A ~ Cn+1 ~
Ope1 = On+ m(yﬁﬂ —63), (4.2.20)
(n+ ety = net+1. (4.2.21)
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Ko 117t
————] where K@ denotes the

Proof: From Theorem 4.2.1, ¢, = [1—{— ”

kurtosis. For a GARCH(p,q) process, Thavaneswaran et al. (2005) and Bollerslev

3(1 = (a1 + 51)?) .
T~ (a1 + B1)? — 222 It is then easy to show that

(n+1)(cit; — 1) = n{c;* — 1) and the recursive relation involving ¢, follows. The

(1986) have shown that KW —

recursive relation involving &2 is due to the fact that 62 = E(2).

The recursive relations lead to the Kalman filter once more as was shown in Tha-
vaneswaran and Abraham (1988). An application of Godambe’s theorem allows us to
calculate recursive improved estimators of the autoregressive parameter in an RCA
model.

Another class of models useful for modeling the time-varying and leptokurtic na-
ture of financial time series is that of RCA models first studied by Nicholls and Quinn
(1982). RCA models are defined by allowing random additive perturbations of the
autoregressive coefficients of linear AR models. For example, an RCA(1) process is

given by
Y = (¢ + b )yr—1 + &, (4.2.22)

where (b;) and (&) are uncorrelated zero mean white noise sequences with variances
of and o2 respectively.

Using the theory of optimal estimating functions for stochastic processes, (See
Theorem 3.3.1), Thavaneswaran and Abraham (1988) showed that the optimal esti-

mate of ¢ is given by

n *
(5 . Zt:Z Ay 1Yt
g = =2 1o
E?:z a_ Y1’

n
~Yi-1 — n % 7 *
. Let byt = 27 ar -1 Then ¢, = ki, Z a1Vt

where a;_; = ——5—;
- 2 2
O¢ + Yi-19% =2
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Theorem 4.2.6 provides the recursive relations for estimating improved estimate
of ¢.
Theorem 4.2.6 Consider the RCA(1) model specified by (4.2.22).

(1) The recursive equations for estimating ¢ are given by the following:

an+1 = an + ankns1(Ynt1 — ¢~>n3/n)

k;il = k;1+a;yn.

(it) Consider the improved estimator of cé defined as the minimizer of the condi-
tional MSE. The estimate of ¢ based on n observations is given by
¢2

n y2 -1
¢2 + L et S
Z TpYp . + 02

t=2

Cp =

The recursive relations for estimating c¢ are the following:

Pl = Cap1fni (4.2.23)
én+1 = ¢;n+a;kn+l(yn+l "‘ényn) (4'2'24)
k,_l -1 *
ety = tnfo Tl (4.2.25)
kn+1
k1 = kb4 ahyn. (4.2.26)

Since @} is a function of ¢2 and o7, these parameters can by estimated from the
data using the method of moments and Theorem 2.1.1, while ¢ can be estimated
using the sample first lag autocorrelation.

Standard errors for recursive improved estimates of volatility based on GARCH
models are more computationally intensive to compute as they require block resam-

pling techniques (See Liu and Singh (1992)). This is the subject of future work.
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4.3. Conclusions

In this chapter, the variance as well as the fourth moment of the I-steps ahead forecast
error have been derived for ARMA(p, q) models with GARCH(P, Q) errors. Our
results extend the results on forecasting for the class of zero-mean GARCH models
derived in Thavaneswaran, Appadoo and Peiris (2005). Moreover, we have demon-
strated the superiority of the AR model with GARCH errors over the usual linear
AR model whenever the estimate of the w is small. In addition, recursive improved
estimation in the presence of structural change has been discussed. In the next chap-
ter, some of the theoretical results derived for volatility modeling and estimation are

illustrated through simulation studies and real financial data.
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Chapter 5

Applications in Finance

This chapter illustrates some of the financial applications of the theoretical results ob-
tained in the previous chapters. The correlation between the LS and LAD estimating
functions as a GARCH model identification tool is extensively studied in simulation
studies and illustrated using real financial data in Section 5.1.1 and Section 5.1.2. In
Section 5.2, the superiority of the optimal estimating function approach for hypothesis
testing is also demonstrated through some simulation studies.

One of the applications of volatility modeling in finance is in the area of pricing call
options for the purpose of risk management. Section 5.3 illustrates an application of
volatility modeling in the area of option pricing. Section 5.4 deals with estimation of
the expected value of the conditional variance, E(h;). All applications are illustrated
with real financial data.

In the next section, we study p, the moment estimator of the correlation between
the LS and LAD estimating functions, as a time series model identification tool in

three different simulation studies.
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5.1 Time Series Model Identification

5.1.1 Simulation Studies

In this subsection, we study / under three different classes of models. The first
class of models is of the form y; = ¢, where ¢; is assumed to follow a parametric
distribution. The second class is that of autoregressive models of order one where
the error distribution is assumed to follow a parametric distribution. Finally, the
third class of models is that of GARCH models with normal, t-distribution or double
exponential errors.

We used S-Plus® software to conduct the simulation studies. In the first simu-
lation study, we have simulated 1000 random samples of size 1000 from a number
of distributions where the theoretical p value is known. In Table 5.1 the average p
statistics and the theoretical p values are given for some distributions. The estimated

statistic appears to be close to the true parameter.

Distribution p p MAD(p)

normal(65,25) 0.797885 | 0.7932454 | 0.0175457
t3 0.636620 | 0.6662141 | 0.06222691
ts 0.7071068 | 0.7021046 | 0.04411666
ts 0.735105 | 0.7400141 | 0.02608555
ts 0.750000 | 0.7457525 | 0.02743061
ty 0.7592134 | 0.7620597 | 0.02229045
ts 0.765466 | 0.7695058 | 0.01874937
Logistic(0,1) 0.764304 | 0.7622757 | 0.02243997
Double exponential(1) | 0.707107 | 0.7065042 | 0.02528356
Uniform(0,1) 0.866025 | 0.8600816 | 0.01228705
Beta(2,2) 0.838525 | 0.8350651 | 0.01326087
Beta(3,3) 0.826797 | 0.819865 | 0.01347214
Beta(4,4) 0.820313 | 0.8128436 | 0.01704931

Table 5.1: Theoretical p values and average estimated p statistics; The data are ran-
dom samples from each population. MAD(p) represents the mean absolute deviation
from p.
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Error Distribn |  p | p (AR) | MAD(AR) | 4 (GARCH) | MAD(GARCH)
N{0,1) 0.797885 | 0.7979 | 0.0025 0.7979 0.0025
s 0.636620 | 0.6451 | 0.0273 0.6436 0.0279
t4 0.707107 | 0.7070 |  0.0109 0.7084 0.0106
s 0.735105 | 0.7356 | 0.0065 0.7354 0.0062
o 0.750000 | 0.7507 | 0.0045 0.7501 0.0048
ty 0.759213 | 0.7590 |  0.0041 0.7591 0.0039
ts 0.765466 | 0.7652 | 0.0037 0.7656 0.0036
d’ble exp’l 0.707107 | 0.7073 |  0.0038 0.7073 0.0038

Table 5.2: Theoretical p values and average estimated p statistics for a simulated
AR(1) process and GARCH (1,1). MAD is the mean absolute deviation from the
true value.

In our second simulation study, we have simulated 500 samples of size 5000 each
from autoregressive processes of order 1 (AR(1)), with different innovation distri-
butions. The autoregressive parameter is set to 0.7. It is hoped that the residuals
obtained after fitting conditional least squares estimates to the model parameters fol-
low the distribution from which the process was simulated from. The p statistics have
been calculated by using the residuals. Table 5.2 presents an average p value along
with the mean absolute deviation and the statistic is close to the true parameter.

In the third study, we have simulated 500 samples of size 5000 each from v, a zero
mean model with GARCH(1, 1) errors assuming each of the following standardized
distributions for Z; in (2.3.9): Gaussian, t3, ty, ts, tg, t7, tg and double exponential(1).
We set the model parameters as w = 5.3 x 1077, a; = 0.0057, 8; = 0.9381. This
study was carried out using the finmetrics module of S-Plus® version 7.0.

For each simulated process, normal-GARCH(1, 1) model was fit and using the

~ A (N VA A
standardized residuals Z; = &, p is estimated as p = 2tz 12 /n

, where Z and
t Sz

sz represent the sample mean and standard deviation of the standardized residuals,

respectively. Ry is the estimated conditional variance at time ¢.
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We have presented the results in Table 5.2. Here, p is close to p as well. Proper
identification also requires and estimated standard error of p and this is the subject
of future work. In each of these studies, we have also reported the mean absolute
deviations. The variablity of p about p is largest for t-distribution GARCH models
where the degrees of freedom is less than five as p is sensitive to extreme observations.
In the next section, we illustrate how p can be used to select the appropriate error

distribution of GARCH(1, 1) models fit to several real datasets.

5.1.2 Examples of GARCH model identification

We illustrate our informal test procedure using financial and biostatistical time series
datasets. We provide descriptions of these datasets in Appendix B.7. The datasets
are typical financial series in that they are leptokurtic (See Table 5.3), uncorrelated
sequences whose square is autocorrelated (See figures in Appendix B.8). For each
dataset, we fit a zero-mean normal GARCH(1, 1) model using S-Plus® software.
Using the residuals from this fit, we calculated an estimate of p = E—l)-(——ﬂ and
used p to identify the distribution of the error term in the GARCH model. The
t-distribution GARCH(1, 1) model is another example of a GARCH model that
is typically fit to log-return series. We also fit a t-distribution GARCH model to
the same dataset where the degrees of freedom of the t-distribution is a parameter
estimated from the data using S-Plus® software. We then rounded off the estimated
degrees of freedom to the nearest integer. Datasets marked with a * can also be fitted
using a normal-GARCH(I, 1) model. Table 5.4 shows that there is good agreement

between the two methods. Jackknife estimates of the standard error of 5 provide

a more rigorous way to ascertain the proper error distribution. Incorporating the
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standard error of p into the GARCH model identification procedure is ongoing and

the subject of future study.

Dataset Empirical Kurtosis | Dataset Empirical Kurtosis
dell.s 4.73 d-ibmln.dat(IBM) 18.22

ford.s 9.15 BMW 10.17

hp.s 8.24 AT&T 27.11
ndx.dat 6.02 Boeing 10.55
siemens 10.75 Caterpillar 6.24
merck.s 8.4 Honeywell 17.17
hkja.dat(Japan) 7.49 Philip Morris 20.04
exch.perc.dat 14.49

Table 5.3: Empirical Kurtosis of several real financial datasets.

Dataset ) Dist'n (implied by p) | Estimated t-GARCH(1, 1)
dell.s* 0.7835 Gaussian tig
ford.s* 0.7596 tr ty
hp.S* 0.7572 t7 t7
ndx.dat* 0.7975 Gaussian tag
siemens 0.72199 ts ts
merck.s* 0.7558 ts tg
hkja.dat(Japan) 0.7586 tr tr
exch.perc.dat 0.7136 ty tq
d-ibmln.dat(IBM)* | 0.7486 ts ts
BMW 0.70497 tq t4
AT&T 0.7256 ts ts
Boeing 0.7303 ts ts
Caterpillar* 0.7448 ts tg
Honeywell 0.7312 ts s
Philip Morris 0.6929 ty t4

Table 5.4: Error distribution identification in financial series.

5.2 Tests for Volatility Models

Consider the problem of hypothesis testing for the autoregressive parameter in an

AR(1) process with GARCH(1,1) errors. Let 6 represent the autoregressive parame-
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ter. We are interested in constructing test-statistics for two-sided tests of the form:
Hy: 0 = 0y against H, : 8 # 8. In Chapter 3, the test based on the optimal estimat-
ing function was theoretically shown to be superior over the test based on the least
squares estimating function.

In each of the following tables, the the test based on the optimal estimating
function method is empirically shown to be superior over the test based on the least
squares estimating function. 1000 samples of size 500 are generated from an AR(1)
model with, normal-GARCH(1, 1), t4-distribution GARCH(1, 1) and ts-distribution
GARCH(I, 1) errors. The GARCH model parameters were w = 0.1, ag = 0.6
and f; = 0.1. The autoregressive parameter of the simulated AR(1)/GARCH(1, 1)
process was selected to be one of the following: 6, = 0.4, 0.5, 0.6 and the autoregressive
parameter ¢ was tested at each of the following: 6y = 0.1,...,0.9. The power of the
least squares estimating function test (power ) and optimal estimating function test
(power,,,) are obtained as the fraction of tests that reject Hy. In the following tables,
the power of the test based on the optimal estimating function is shown to be at least
as large as the power of the test based on the least squares estimating function.

In the next section, an application of GARCH modeling in finance is discussed.

0o powerpg power,, by powerps power,, 0y power,g power,,,

0.1 0975 1.000 0.1  0.999 1.000 0.1 1.000 1.000
0.2  0.702 0.937 0.2  0.966 0.994 0.2 0999 1.000
0.3 0.284 0.438 03 0772 0.942 0.3  0.979 1.000
0.5 0.270 0.408 0.4 0.293 0.427 0.4 0.829 0.971
0.6 0.794 0.960 0.6  0.337 0.426 0.5 0.295 0.442
0.7 0978 1.000 0.7  0.853 0.960 0.7 0.344 0.466
0.8  0.999 1.000 0.8 0.992 1.000 0.8 0924 0.977
0.9 1.000 1.000 0.9 1.000 1.000 0.9 1.000 1.000

8, = 0.4, Z, ~ N(0, 1). 8, =05, Z, ~ N(0,1). 0, = 0.6, Z, ~ N(0,1).
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6o powerps power,, 6o power s power,, 0o  power s power,,

0.1 0910 0.999 0.1  0.985 1.000 0.1 0.997 1.000
0.2 0.643 0.892 0.2 0914 0.998 0.2  0.998 1.000
0.3  0.266 0.349 0.3  0.647 0.915 0.3  0.950 1.000
0.5  0.287 0.344 0.4  0.259 0.370 0.4 0.745 0.921
0.6 0.686 0.909 0.6 0311 0.350 0.5 0.297 0.400
0.7  0.963 1.000 0.7 0734 0.931 0.7 0.334 0.367
0.8 0.996 1.000 0.8  0.983 1.000 0.8  0.866 0.950
0.9 1.000 1.000 0.9  1.000 1.000 0.9  0.998 1.000

0. =04, Z, ~ ts. 0, =05, Z, ~ ta. 0. =06, Z, ~ L1,

bo powerps power,, 6o powerps power,, 0o powerps power,,

0.1 0921 0.998 0.1  0.990 1.000 0.1 0.996 1.000
0.2  0.670 0.915 0.2  0.946 1.000 0.2 0.993 1.000
0.3 0.278 0.350 0.3  0.705 0.942 0.3  0.957 0.999
0.5  0.289 0.394 04 0275 0.380 0.4 0.751 0.951
0.6  0.707 0.911 0.6 0.309 0.376 0.5 0.306 0.366
0.7 0972 1.000 0.7  0.773 0.943 0.7 0.328 0.386
0.8  1.000 1.000 0.8  0.990 1.000 0.8  0.859 0.950
0.9  1.000 1.000 0.9  1.000 1.000 0.9 0.998 1.000

0a = 04, Zt ~ t5. 90. = 05, Zt ~ t5. 90 = 06, Zt ~ t5.

5.3 An Application of Volatility Modeling in Op-
tions Pricing

Call options on eBay?™

stock traded on September 28, 2006 were obtained from
The Wall Street Journal on September 29, 2006. eBay™™ is the registered name of
a popular auction website and its stock is traded on the New York Stock Exchange
(NYSE). The adjusted daily closing stock prices were taken from the Yahoo! finance
website. The call options listed in The Wall Street Journal are American options;
meaning that they can be exercised at any time prior to the exercise date. However, it
has been shown that European and American call options have the same call price (p.
276 in Ruppert (2004)). Hence, we can use the Black-Scholes formula for European

T™

call options to price eBay' " options.
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This section has two subsections. In Section 5.3.1, an adequate model is fit to
eBayT™ daily log returns based on adjusted closing prices from September 24, 1998
until August 31, 2006.

In Section 5.3.2, two different estimates of volatility are obtained and used to
calculate the call prices of eBay?™ stock options traded on September 28, 2006.
The superiority of the GARCH modeling based approach over the use of historical

volatility is demonstrated.

5.3.1 eBay’™ Volatility Modeling

The daily closing price process along with the daily log return process are displayed
in Figure 5.1. There are 1931 observations in the log-return series. The daily log
returns are leptokurtic as the sample kurtosis is 10.99. The sample ACF and of
the daily log returns and the sample ACF of the squared process are displayed in
Figure 5.2. The presence of significant autocorrelations in the squared log return
process indicates the need for fitting a GARCH model. The absence of significant
autocorrelations in the cube of the log return process in Figure 5.3 suggests the
absence of conditional skewness. The lack of systematic cross-correlations in the
sample CCF plot in Figure 5.4 is indicative of the absence of conditional leverage.
Hence, an adequate linear GARCH model will explain the salient features of this
data.

A normal-GARCH(1, 1) model is fit as a starting point. The p statistic (developed
in Chapter 3) was calculated based on the standardized residuals obtained from the
fitted model. Since p = 0.7280944, the error distribution was identified to be a Student

t-distribution with 5 degrees of freedom using Table 3.1 in Chapter 3. The quantile-
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quantile plots of the standardized residuals from a normal-GARCH(1, 1) model and
the ts-distribution GARCH(1, 1) model in Figure 5.5 show that the t-distribution
GARCH(1, 1) model provides a better fit. It is of interest to note that when we fit a ¢-
distribution GARCH(1, 1) model by also estimating the degrees of freedom parameter
v, we obtained ¥ = 5.28 with a standard error of 0.49. Using a Wald-test, we conclude
that 5 is a plausible value for v. We also fit typical GARCH(1, 1) models for this
data and examined the kurtosis of the standardized residuals from each fit. Table 5.5
provides the empirical kurtosis of the standardized residuals from the following fitted
models: normal-GARCH(1, 1), t5-distribution GARCH(1, 1), GED-GARCH(1, 1)
and Laplace-GARCH(1, 1). In comparing these kurtosis values to the kurtosis of the
normal, t5, GED and Laplace density kurtosis values, we see that the ¢-distribution
with 5 degrees of freedom explains 65% of the kurtosis observed in the standardized
residuals, whereas a normal-GARCH(1, 1) fit explains 28% of the kurtosis of the stan-
dardized residuals. We investigated the adequacy of the ¢s-distribution GARCH(1, 1)
further by examining the sample ACF of the squared standardized residuals. As there
are no significant autocorrelations present in the corresponding sample ACF plots in
Figure 5.6, we conclude that a ts-distribution GARCH(1, 1) model is adequate. The
parameter estimates of the fitted ts-distribution GARCH(1, 1) model are reported in
Table 5.6.

—

From the parameter estimates in Table 5.6, the estimate of E(h;) is E(hy) =

2.027 x 106 p—
~ 0.001292164 resulting i — 0.03504 )
1 — 0.03182 — 0.9666 0 resulting in 1/ F(h;) = 0.03594668 as an esti

mate for volatility of eBay™™ daily log returns. In the next section, eBay call options

will be priced and compared using two estimates of volatily: historical volatility and
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Figure 5.1: eBay”™ daily adjusted closing prices and daily log returns.
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Figure 5.3: Sample ACF of cubed eBay”™ daily log returns.
the GARCH based estimate volatility.

5.3.2 Analysis of eBay’™ Call Option Data

On September 28, 2006, eBay”™ closed at $28.36 and the three-month T-bill rate
closed at 4.75%. Assuming 253 trading days per year, the risk-free rate is r =
0.0475/253 = 0.000187747. The sample standard deviation of eBay™ daily log re-
turns is 0.04647978. Call option prices for eBay”™ stock traded on September 28,

2006 are calculated using the sample standard deviation of log returns (or histor-

ical volatility) and an estimate of {/ E ht 1/1 based on fitting the

ts-distribution GARCH(1, 1) model discussed in the previous section. The predicted

call prices reported in Table 5.7 indicate that using the GARCH model based esti-
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Figure 5.4: Sample CCF between eBay”® daily log returns (y;) and 3.

mate of volatility yields improved prediction of the call prices. The same conclusion
can be drawn from Figure 5.7.

The superiority of using a volatility estimate based on GARCH modeling over
the historical volatility based method can further be seen from the p-values of the
following goodness of fit tests. If we view the call prices reported on September 28,
2006 as expected call prices in the goodness of fit framework, and the call prices
obtained by using oy and og from the data as observed call prices, then the x?2
goodness of fit test statistic that measures the deviation of observed prices from
expected prices in each case is 22.36 and 4.23, respectively with 9 degrees of freedom.
The p-value of the test that uses historical volatility (og) is 0.0079; whereas the p-

—

value of the test that uses E(h;)(0o¢g) from the adequate GARCH model is 0.8955.
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Figure 5.5: Quantile-quantile plots of standardized residuals of a normal-
GARCH(1, 1)(left panel) and ts-distribution GARCH(1, 1) model fit to eBay™
daily log returns.
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Distribution Kurtosis sample Kurtosis

ts 9 13.81
N(0,1) 3 10.63
GED 4.94 12.87
Laplace 6 12.97

Table 5.5: Comparison of empirical kurtosis of standardized residuals with implied
kurtosis.

Parameter  Estimate S.E. Statistic  p-value
w 2.027x107% 1.356x10"%  1.494 0.06766
Qi 0.03182 0.006029 5.277 < 0.0001
o 0.9666 0.005759 167.833 < 0.0001

Table 5.6: Parameter estimates from a ts-distribution GARCH(1,1) model fit to
eBay™ daily log returns.

The goodness-of-fit test statistic in historical volatility case is found in Table 5.8,
whereas the goodness-of-fit test statistic for the method that uses GARCH modeling
is found in Table 5.9 for more details about the tests). Using GARCH modeling is

an improvement over using historical volatility in this case.
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K Month of | T (in | Call | B&S price | B&S price
Expiration | days) | Price | oy = 0.0465 | 6 = 0.0359

22.50 Oct 15 5.90 6.13 5.99

25 Oct 15 3.60 4.09 3.78

27.50 Oct 15 1.80 2.50 2.06

27.50 Jan 76 3.20 5.10 4.11

30 Oct 15 0.65 1.40 0.96

30 Nov 35 1.10 2.51 1.81

32.50 Oct 15 0.20 0.72 0.38

32.50 Jan 76 1.10 3.22 2.20

40 Oct 15 0.05 0.07 0.01

42.50 Jan 76 0.10 1.23 0.55

Table 5.7: Call prices and prices determined by the Black-Scholes(B&S) formula for
eBay™™ options on September 28, 2006. K is the exercise price. T is the maturity.
og and 0¢ are the historical volatility and GARCH based volatility, respectively.
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Figure 5.7: Time series plots of observed and predicted eBay”™ call prices.
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Price Expected price O—E (0 - E)?/E

6.13 5.90 0.23 0.00897
4.09 3.60 0.49 0.06669
2.50 1.80 0.7 0.27222
5.10 3.20 1.9 1.12812
1.40 0.65 0.75 0.86538
2.51 1.10 2.12 4.08582
0.72 0.20 0.52 1.35200
3.22 1.10 2.12 4.08582
0.07 0.05 0.02 0.00800
1.23 0.10 1.13 12.76900
Sum 22.36357

Table 5.8: Comparison of prices predicted by using historical volatility(cy).

Price Expected price O—E (O - E)?/E

5.99 5.90 0.09 0.001372
3.78 3.60 0.18 0.009000
2.06 1.80 0.26 0.037556
4.11 3.20 0.91 0.258781
0.96 0.65 0.31 0.147846
1.81 1.10 0.71 0.458273
0.38 0.20 0.18 0.162000
2.20 1.10 1.10 1.100000
0.01 0.05 -0.04 0.032000
0.55 0.10 0.45 2.025000
Sum 4.231829

Table 5.9: Comparison of prices predicted by using GARCH(o¢).
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5.4 Interval Estimation of Volatility

Standard errors for prediction intervals for I-steps ahead forecasts are typically cal-
culated as 2E(hry|F}) even though the [-steps ahead forecast is not normally dis-
tributed. Recently, Pascual et al. (2006) proposed bootstrap prediction intervals for
returns and volatilities in GARCH models. In this section, we propose a bootstrap

based method for obtaining a confidence interval for E(h;) in GARCH models.

5.4.1 Bootstrap Confidence Intervals

Once the error distribution of a GARCH model is identified, the confidence interval
for E(h;) in a GARCH model can be calculated in the following manner.

Without loss of generality, suppose that we are interested in obtaining a confidence
interval for E(h;) in a GARCH(1, 1) model. That is, suppose the observed process is

given by the following:

v = VhZ, (5.4.1)

ht = w+a1yt2_1+ﬁ1ht_1, (542)

where Z; ~ (0,1) is an uncorrelated sequence with density f. Let @, &, and Bl be the
estimated model parameters obtained through conditional least squares. Calculate

the standardized residuals as

Zt = y/ ilt, (5.4.3)

where t = 1,...,n and hy = ——Aw——T is the estimate of E'(h;).
1-61-0
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(i) Obtain B replicates of a random sample Z}, ..., Z*, by resampling Zy,. . Zn,s
B times. From each replicate, obtain a bootstrap sample y5,...,y" using the

following:

¥y = VhiZg (5.4.4)

Ry = G4yt +HRh,, t=1,...,n (5.4.5)

Let bl = hy for each of the B replicates.

(ii) Using each replicate, estimate the GARCH model parameters. Denote the esti-

*

w

mated parameters by w*, of and g} respectively. Calculate E*(ht) = [t
— 0 =M

(iii) Order the estimates of E(h;) in the previous step and use the 2.5% and 97.5%
quantiles of the distribution of estimates of F(h;) to form the 95% confidence

interval for E(h;).

(iv) Taking the square root of endpoints of the interval gives an interval for volatility.

The procedure just described is a non-parametric bootstrap procedure. A para-
metric bootstrap procedure may also be used to calculate a confidence interval for
E(h) in a GARCH process. We modify the nonparametric procedure in the following

manner.

(1) Identify the error distribution of the GARCH process using the procedure de-
scribed in Chapter 3 and estimate the model parameters w, ¢, and S assuming

the identified error distribution.

(ii) Draw a random sample with replacement Z7, ..., Z* from the distribution of Z;.

153



(iii) Let A} = ————TLE———-A— be the estimated E(h;).
1 =& —p

(iv) Obtain B replicates of bootstrap samples of size n using the following:

i = VhiZ] (5.4.6)
Ry = oyt +hh,, t=1,...,n (5.4.7)
(v) Usingyy,...,y:, estimate a GARCH(1, 1) model whose innovations are assumed

to have the density identified in Step (i) and obtain the parameter estimates w*,

*

af and Bf. Calculate the estimate of E(h;) = d

I—af— 6
(vi) Order the estimates of E(h;) in the previous step and use the 2.5% and 97.5%
quantiles of the distribution of estimates of E(h;) to form the 95% confidence

interval for E(hy).

(vii) Take the square root of the endpoints of the interval in the previous step.

5.4.2 Simulation Studies

Asset pricing such as pricing of call options requires knowledge of volatility which is
defined as the standard deviation of (log) returns. We propose a confidence interval for
volatility associated with GARCH models by taking the square root of the endpoints
of the confidence interval for E'(h;) in a GARCH process. To study the small sample
properties of such a procedure, we begin by studying interval estimation for the
population variance of a set of normally distributed data. We study the coverage of
the interval formed by taking the square root of the endpoints as a confidence interval
for the population standard deviation. The following examples motivates our interval

estimation procedure for \/E(h).
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Example 5.4.1 Suppose X1, ..., X, is a random sample from a N(u, c?) population.

The confidence interval for the population variance is given by

(n=1)s* (n—1)s?
Xi/Z,n——l , X?—(Q/Z),n——l ’

where Xi/Q,n—l and X%—(Q/Z),n—l are the upper o/2 and lower 1 — (a/2) percentage

pownts of the chi-square distribution with n — 1 degrees of freedom, respectively. s? is

the sample variance.

Interest centers on obtaining a confidence interval for o, the population standard
deviation. 100 samples of size 1000 were simulated from three different Gaussian dis-
tributions. For each sample, a 95% confidence interval for the population variance is
constructed. The square root of the endpoints of each interval is taken and the frac-
tion of intervals containing the population standard deviation is tallied. The average
coverage along with the standard error of the estimate are tabulated in Table 5.10.
We found that the procedure produces approximate 95% confidence intervals for the
population standard deviation, o.

In the next section, we study the small sample properties of bootstrap based

confidence intervals for volatility.

5.4.3 Interval Estimation of GARCH Volatility

In this subsection, parametric (P) and non-parametric (NP) bootstrap interval esti-
mates of volatility are calculated for a single sample of size n = 5000 drawn from
a normal-ARCH(1), a ¢s-distribution ARCH(1) and a double-exponential ARCH(1)

process with parameters w = 1, and a; = 0.6. All calculations were performed using

S-Plus® software. The marginal variance of the process is E(h) = 1 wa = 2.5.
1
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Sample Size Model Coverage(s.e.)

n N (65,5
100 0.97(0.017)
250 0.97(0.011)
500 0.95(0.0097)
1000 0.96(0.0062)

n N(0,1) Coverage(s.e.)
100 0.95(0.022)
250 0.94(0.015)
500 0.98(0.0063)
1000 0.95(0.0069)

n N(100,15%) Coverage(s.e.)
100 0.96(0.012)
250 0.97(0.011)
500 0.99(0.0044)
1000 0.94(0.0075)

Table 5.10: Confidence intervals for the population standard deviation of a random
sample of Gaussian observations.

80%, 90% and 98% confidence intervals are calculated for E(h;) parameter .
using B = 100, 250, 500, 1000 bootstrap samples in each case. Interval estimates of
volatility can be obtained by taking the square root of the endpoints of the interval
for E(h;). The results are reported in Tables 5.11, 5.12 and 5.13. In one instance,
a negative estimate of E(h;) was obtained. This implies that the procedure needs
to constrain the estimate of c; to lie in (0, 1). The intervals are markedly different;
however the parametric bootstrap estimator of volatility converges faster to the max-
imum likelihood estimate of volatility than the non-parametric bootstrap estimator
as the number of bootstrap samples B increases. Extensive simulation studies are

needed in order to compare the the coverage properties of the nonparametric and

parametric bootstrap intervals.
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B Method  80% C.L 90% C.I 98% C.I. 52
100 P (2.3892 2.8278) (2.3462 2.8855) (2.2412 3.1740) 2.6218
NP (2.1660 2.5623) (2.1450 2.6024) (2.1009 2.8003) 2.3457

250 P (23697 2.8171) (2.3126 2.8775) (2.1769 3.0200) 2.5928
NP (2.1622 2.5437) (2.1133 2.5790) (2.0847 2.6804) 2.3386

500 P (2.3897 2.8082) (2.3325 2.8734) (2.2209 3.0652) 2.5845
NP (2.1551 2.5360) (2.1191 2.6042) (2.0510 2.7210) 2.3311

1000 P (2.3746 2.8141) (2.3275 2.8924) (2.2344 3.0210) 2.5901
NP (21595 2.5351) (21230 2.6109) (2.0641 2.8443) 2.3396

—

Table 5.11: Confidence intervals for E(h;) in a normal-ARCH(1) process. E(h) =
2.6062.

B Method 80% C.L 90% C.I 98% C.L 75
100 P (1.9867 2.8253) (1.8751 3.0385) (-1.8766 3.5793) 2.3445
NP (1.8130 2.4406) (1.7567 2.6873) (1.6336 3.1729) 2.0976

250 P (2.0066 2.7353) (1.9175 3.0398) (1.7945 3.5370) 2.3878
NP (1.7811 2.3162) (1.7376 2.4182) (1.6380 3.0331) 2.0573

500 P (2.0151 2.8546) (1.9308 3.0888) (1.8201 3.7969) 2.3994
NP (1.7797 2.3349) (1.7346 2.5197) (1.6869 3.2392) 2.0613

1000 p (2.0188 2.8475) (1.9404 3.1049) (1.8218 3.6510) 2.3958
NP (1.7903 2.3622) (1.7466 2.5326) (1.6766 3.4470) 2.0878

Table 5.12: Confidence intervals for E(h;) in a ts- distribution ARCH(1) process.
E(h;) = 2.3843.

Example 5.4.2 Interval Estimation for eBay™ Volatility
w

l—a1 -
as (0.0005068, 0.01085). The 90% C.I. for volatility (obtained by taking the square

Using B = 1000 samples, we obtained the 90% C.I. for the E(h,) =

root of the endpoints) is given by (0.02251, 0.1042). “An interval estimate” for the
call price can be obtained by substituting the endpoints of (0.02251, 0.1042) into the

Black-Scholes formula (See Table 5.14).
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B Method  80% C.L. 90% C.L. 98% C.I. 52
100 P (1.7559 2.3672) (1.7034 2.5180) (1.6188 2.6925) 2.0537
NP (1.5913 1.8709) (1.5638 1.9306) (1.5074 2.0670) 1.7378
250 P (1.7898 2.2790) (1.7295 2.3346) (1.5629 2.5748) 2.0222
NP (1.6058 1.8965) (1.5701 1.9880) (1.5213 2.1585) 1.7570
500 P (17978 2.3441) (1.7291 2.4417) (1.6225 2.6400) 2.0440
NP (1.5876 1.8878) (1.5612 1.9379) (1.4893 2.1777) 1.7410
1000 P (1.8053 2.3121) (1.7559 2.4335) (1.6624 2.6498) 2.0546
NP (1.6000 1.8971) (1.5629 1.9702) (1.5003 2.1515) 1.7405

Table 5.13: Confidence intervals for E(h;) in a double-exponential ARCH(1) process.

—

E(hy) = 2.0535.

5.5 Conclusions

The usefulness of the correlation between the LS and LAD estimating functions as a
GARCH model identification tool has been investigated through simulation studies.
An application of GARCH volatility modeling in the area of European call options
pricing has been discussed and has been shown to be superior over the option pricing
formulas that use historical volatility. Comparison with asset pricing formulas that
use implied volatility also needs to be investigated and this is the subject of future
investigation. Parametric and nonparametric bootstrap based interval estimates of
the marginal standard deviation of GARCH models have been proposed. All proce-
dures have been investigated in simulation studies and have been illustrated using

real financial data. The superiority of the optimal estimating function approach for

hypothesis testing has been demonstrated through some simulation studies.
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K Month of | T (in | Call | B&S price B&:S price B&S price
Expiration | days) | Price | g = 0.0359 | 5, = 0.02251 | 5y = 0.1042

22.50 Oct 15 5.90 5.99 5.93 7.68

25 Oct 15 3.60 3.78 3.50 6.19

27.50 Oct 15 1.80 2.06 1.51 4.94

27.50 Jan 76 3.20 4.11 2.85 10.35

30 Oct 15 0.65 0.96 0.42 3.92

30 Nov 35 1.10 1.81 0.93 6.34

32.50 Oct 15 0.20 0.38 0.07 3.09

32.50 Jan 76 1.10 2.20 0.96 8.82

40 Oct 15 0.05 0.01 0.00 1.49

42.50 Jan 76 0.10 0.55 0.06 6.56

Table 5.14: Call prices and prices determined by the Black-Scholes(B&S) formula for
eBay”™ options on September 28, 2006. K is the exercise price. T is the maturity.
o, and oy are the endpoints of the 90% C.I. for 0. G¢ is the GARCH based volatility.
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Chapter 6
Summary & Future Work

In Chapter 2, the cross-correlation function and the sample ACF function have been
shown to be useful for the purpose of identifying the presence of conditional skewness
and conditional leverage, respectively. The inverse Gaussian model of Christoffersen
et al. (2006) is a nonlinear GARCH model that adequately captures conditional
skewness as well as other salient features of the class of linear GARCH models. The
moment properites of nonlinear GARCH models that involve other skewed parametric
distributions is the subject of future research.

In Chapter 2, moment properties of the ACP and the DACP process have been
studied. Markov switching type ACP processes have applications in epidemiology.
For example, by incorporating a Markov-switching structure in the class of ACP
processes for a time series of influenza counts, the presence of epidemics can be
adequately modelled. Moment properties and estimation of such processes using
estimating function methodology is of interest.

In Chapter 3, several applications of combining estimating functions have been
studied. By combining the least squares estimating function and least absolute devi-

ation estimating function, a GARCH model identification technique for models with
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symmetric conditional distributions has been developed. Identification of the class
of linear GARCH models with asymmetric conditional distributions is a possible ex-
tension. The nonlinear time series models in Abraham and Thavaneswaran (1991)
have been extended by combining estimating functions for volatility. The combined
estimating functions have been shown to have larger information than the component
estimating function. Combining estimating functions for non-linear GARCH models
will also be studied.

Tests for non-linear time series via estimating functions have been studied by
Thavaneswaran (1991), Baswa (1991) and Thavaneswaran and Peiris (1998).(See also
Chapter 9 in Heyde (1997) for more details). The results of Thavaneswaran and
Peiris (1998) have been extended to ARMA models with GARCH errors in Chapter
3. Tests for non-linear GARCH models based on estimating functions is a possible
extension.

The filtering problem for linear GARCH models and stochastic volatility models
has been studied by Peiris and Thavaneswaran (2004) by combining estimating func-
tions. The filtering problem for ARMA models with GARCH errors and the class of
non-linear GARCH models using estimating function methodology is an extension of
interest.

In Chapter 5, interval estimation of volatility was studied. In option pricing,
interval estimates of volatility allow the analyst to gauge the sensitivity of call prices to
periods of low and high volatility. Nonparametric and parametric bootstrap interval
estimates have been proposed. The coverage properties of such intervals need to be

studied using simulation studies.
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Appendix A

Some Properties of the Inverse
Gaussian Distribution

A.1 Details in Subsection 2.7.3

The following proposition will be useful in random number generation from an IG (uy \)

distribution.
.y . s MX —#)2 .
Proposition A.1.1 For X ~ IG(u, ), the transformed variable Y? = —ax
7

distributed as a x3.

Proof: The details are provided in Letac et al.(1985).

Remark A.1.1 Chhikara and Folks(1989) provide the algorithm for generating ran-
dom variates from the IG(u,\) distribution in the following manner. Consider the

following variates.

X, = 5‘% [2A + uY? — /DpY? + p2Y1] (A.1.1)
and
2
_ B
=g (A.1.2)
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1. Generate random numbers from the chi-square distribution with one degree of

Sfreedom.

2. For each random value in step 1, compute the smaller root X, given above.

3. Perform a Bernoulli trial with probability of ’success’p = pu/(p + X1).

4. If the trial results in a success, the root X, is chosen for the random observation

from the inverse Gaussian distribution; otherwise the larger root X, is chosen.

> 3 : 2 )\(X — /.L)2 :
Note: The two 'roots’ of the equation Y* = -——#Z—X— are the following:
X, = %[2/\ +uY? = \/IpY? 1 p2Y9)
X, = %[2/\ + uY? + AAuY? + p2Y4)

Simple algebra shows that X; x X, = u? and that X; is the smaller root.
Theorem A.1.1, makes it possible to reduce the number of parameters and to

obtain an inverse Gaussian distribution with a single parameter.

Theorem A.1.1 Suppose X ~ IG(u, ). Let Z = AX/u®. Then Z ~ IG(8,6?)(denoted

by IG(8) from herein) where § = X/p. Furthermore, Z has the following properties:

(1) Z has the following density: f(z;8) = 2i23 exp [—% <\/— - %)J ,
(i) E(Z) =4,
(i11) Var(Z) = 6.

Proof: The details are provided in Chhikara and Folks(1989).
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Remark A.1.2 Since the model by Christoffersen et al.(2006) simulates from the

IG(8) model, we modify X1 and X, in Remark A.1.1 in the following manner:

X, = %[252 +6Y? — VATIY? 1 5277) (A.1.3)
and
52
Y=o (A.1.4)
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Appendix B

Combining Estimating Functions
Proofs in Chapter 3

B.1 Details in Subsection 3.3.1

The estimating functions based separately on m, and &, are

T
K= k
Zyt 177, (h/ + 2) ; 2]
respectively. These were calculated using the following quantities.
8mt 9 y 2
lfﬂ =~y BE(m{|FL,) =0

Thus,

> (St ) I )=~ S,

To calculate K, we need
ok
( a9 17 ) = —206, B(E|FL,) = (x+2)0*

The corresponding martingale informations of M and K follow from the definition.
B.2 Details in Proof of Part (a) of Theorem 3.3.3

Using my = y; — Oy, and k, = m? — o2, Cov(my, k| FY|) = vo. Let

COV(mt, ktlf;y—l)

=k — mMy.
e Ly ™
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Then, ¥; = k; — yo®m; will be uncorrelated with m;. Consider the elementary esti-

mating function g; = m; +1;. Using Theorem 3.3.1, the optimal combination is given

() o8

T
g(_y_;e) = Z (mtlfty_l) Mt (@[’tlfty—l) v

t=1

by the following:

_ _ Y1 (voy1—1 — 200)
B Z{ o? et (n+2—72)04¢t}

t=1

which reduces to part (i) of (a) in Theorem 3.3.3.

Consider the elementary estimating function
gt = 0(207 — (K + 2)ye-1)my + (Y17 — 26)k;.

In order to calculate the martinagle information of the estimating function, we need

0
to compute the conditional expectation of ?9% It is easy to show the following:

a
E <892007mt |.7:tJ 1) = —2007Yi-1

o
E (— — (kK + 2)oys_1m4 Ift 1 = (k+ 2)aytz_1

00

= do(c)?

)
E (&gyt 17&,.7‘} 1) = —200vy7,
E (5—9 — 26k, | 7. 1)
Therefore,
(85” =3 ) o(4(6) ~ 4oyems + (5 + 2,).

In order to calculate E(g?|F}_,), we need the following intermediate calculations.

Var (260ymy|FY,) = 4(6)%0%?

Var (—-U(Ii + 2)yt_1mtlf;y_1) = (k+ 2)2%2—1‘74
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Var (yt—ﬂkt]ff—l) = yi Vo' (k +2)

Var (—20k|FY_,) = 4(6)%0*(k +2)

2Cov (026ymy, —(k + 2)ye1muo|FLy) = —4dooty(k+ 2)ys

QCOV(2U<'77mtayt—1’thff§/—1) = 4067’y

2Cov (026yme, =20k |F{) = —8(d)%c?

2Cov (—(k + 2)y—1my0, —20k|FY)) = 4do'y(k + 2)yi-

2Cov (ys17ke, =20k FY)) = —4ov(k + 2)oty,.

Thus, E(g7|771) = {(k+2) =7*}0*(4(6)* = 46vye-1+ (k+2)y?_, ). The martingale
information of the combined estimating function follows directly from the definition

of martingale information and this reduces to the expression in (3.3.4).

B.3 Details in Proof of Part (a) of Theorem 3.3.4

0
B(55t) = -vins BOmdiL,) = o2

E (%%) = —200h:, E(K}FL,) = (k+ 2)oh?.

Cov(my, k| F,) 1/2
Put th = b = —gimaizry) e = R v me Then, BUAFL,) = (s +

0
2 —v*)c*h? and E (%W_l) = —206h; + Yy_10h?. Using Theorem 3.3.1, the
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optimal combined estimating function is given by the expression in (i) of part(a) in
Theorem 3.3.4.

Let

g = {(20577 — ok + 2)%) ms + (% - 2@—) kt} .

After more algebra,

o +2—72 . P dovye
(ot = P [ 4 (e it - 2 L

Q@ y _ N2 B yt2—1 . Y
E (89 If;-—l) - [4(0) -+ (h + 2)77,: 40’)’ﬁ]

B.4 Details in Subsection 3.3.3

Some of the details are as follows.

om
E (@EI}—ty—l> = —Yi-1

Ok .
E <8—;]]::J_1> = —200

E(”"?Iﬁ—l) = Ugytz—l +0°
E(k}|7,) = Yy (K + 2)o; + 4yt2——10-20-13 + (K +2)0*.

COV(mt, ktlf;y_l) = COV(mt) m?lf;y-—l)
= Cov(ys_1b; + &, th—lb? + 2y-1bigr + Etzlf;y—l)
=y ,Cov(by, b?) + Cov(es, €2)

= Y00+ oy
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B.5 Details in Proof of Part (b) of Theorem 3.3.3

In order to calculate the optimal estimating function, we need the following calcula-

tions.

Bm yQ_ yQ_
B (Gt ) = 2, momdimy = ¥t

ol
E <_8_9t']]?f/_1> = 2f(0)yt_1, E(Z?Iﬂ/—l) — 4f2(0)y£?_1

Cov(mt, ltlf;y.ﬁ = —Y—1p0

Cov(my, l|F)

Put ¢, =1; — E((m?]}';y_l) my. Then, ¥, = I, + yt_lgmt is uncorrelated with m,.

8 t 1
B (G ) =~ 250) + £),

Var(v,btlfty_l) = yf—l(l - /32)-

The optimal combination is given by

d d
[B(Ge) (S

g(g;H) = Z E(mglﬁ/—l) my + EW2F) (0

t=1 t -

= W;LI_TQ) > {—yffzimt - <—1t1p—2)(2f(0) + p/o)wt.}

t=1
After much algebra, this reduces to the expression in (3.3.6).

Let g, be the tth component in g(y; ). It can be shown that

2

a t Y t—
= (55172) = a1+ 410+ 470)
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And,

2
Yi_1

Var(al FLLy) = 5t (1 + 4 (0)po + 4£(0)c%).

So that the martingale information equals

ZEQ (o172 ) e

and this reduces to I, in (3.3.7).

B.6 Details in Proof of Part (b) of Theorem 3.3.4

0
B (G172 = v, BOndIRL) = o*h,

ol
B (Gl ) = 2O, BEFL) =1

Cov(my, 1| FL.1) = por/hy

8 t t—-1 2 2
( vl ) = OV + 2L, BUHRL) = (- 7).

T

2f(0)avhi + p) 1 P
Z zht (1 - p2) 0\/h—t(lt - J\/h_tmt)



Let g, = & S+ 27(0)opv/R)me — ov/ (2 (0)o /B + p)li}.

E Q&W _ Vi L1+ 4£(0)02hy + 4£(0)po/hy)
2071 ) T o2, t )

2

BGVFLY) = Sl + 47 0)0he + 4£(0)po v/l

B.7 Datasets used in Subsection 5.1.2

We illustrate our informal test procedure using several financial datasets. These
are taken from the finmetrics financial analysis module of S-Plus® version 6.2, and

Tsay(2001). We give a brief description of each datasets.

1. bmw represents the daily log returns on BMW share price from 1/2/1973 to
7/23/1996. (Note no trading takes place at the weekend.) The data is supplied

by finmetrics.

2. dell.s is a data set with 1261 values, representing daily stock returns of Dell
Corporation in percentage points from August 24, 1993, to August 19, 1998.

The data is supplied by finmetrics.

3. hp.sis 2000 data points from stocks, representing the daily returns for Hewlett-
Packard(HP) from Feburary 2, 1984, to December 31, 1991. The data is supplied

by finmetrics.

4. siemens represents the daily log returns of Siemens share price from 1/2/1973
to 7/23/1996. Note no trading takes place at the weekend. The data is supplied

by finmetrics.
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10.

11.

merck.s is 2000 data points representing the daily returns of the pharmaceutical
company Merck from Feburary 2, 1984, to December 31, 1991. The data is

supplied by finmetrics.

USCN.FP.lagl represents the one month forward premium between U.S. Dollar
and Canadian Dollar during March 1976 to June 1996. The data is supplied by

finmetrics.

USUK.FP.lag1 represents the one month forward premium between U.S. Dollar
and British Pound during March 1976 to June 1996. The data is supplied by

finmetrics.

hkja.dat represents 491 daily log returns of the Japan market and is taken from

Tsay(2001).

exch.perc.dat represents 10-m log returns of FX (Mark-US) and is taken from

Tsay(2001).

d-tbmin. dat represents Daily log returns of IBM stock and is taken from Tsay(2001).

The following datasets are columns of the dataset DowJones30 representing the
closing prices of thirty stocks in Dow Jones Industrial Average in finmetrics.
This is a daily “timeSeries” object from January 2, 1991 to January 2, 2001,
with thirty columns representing the closing prices of thirty stocks in Dow
Jones Industrial Average including: Alcoa, Inc., AT&T, Boeing, Caterpillar,

Inc., Honeywell, Wal-mart and Philip Morris.
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B.8 Time Series Plots of Datasets in Subsection 5.1.2
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Figure B.1: Daily log returns.
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Figure B.2: Daily log returns.
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Figure B.3: Daily log returns.
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Figure B.4: Daily log returns.
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Figure B.5: Daily log returns.
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Figure B.6: Daily log returns.
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Figure B.7: Daily log returns.
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