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Dedication
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Abstract

This thesis studies mornent properties, applications of combining estimating func-

tions, improved estimation in the presence of structural change, and forecasting, as

well as hypothesis testing of a new class of Generalized Autoregressive Conditional

Heteroscedastic (GARCH) and Random Coefficient Autoregressive (RCA) models

for financial time series data. The autocorrelation structure of the squared process is

derived.

The kurtosis for various classes of GARCH models is also derived. Using the es-

tirnating function method, the asymptotic correlation between the sample mean and

sample median is used to identify the marginal distribution of the error term in the

class of GARCH lnodels. The methodology has also been illustrated in simulation

studies and with real data examples.

Keywords: Estimating functions, Financial data, Forecasting, Hypothesis testing,

Kurtosis, Model identifrcation, Structural change, Volatility,
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Chapter 1

fntroduction

1.1 Motivation

A lot of research in finance is concerned with measuring and managing financial risk.

Portfolio optimization requires maximizing rewards and minimizing risks, the latter

of which are not rewarded equally. The topic of risk management has a long history

in economics. Markowitz (1952) and Tobin (1958) associated risk with the variance

in the value of a portfolio. Sharpe (1964) developed the theory of CapitaÌ Asset

Pricing iVfodel (CAPM) which shows that there is a relationship between expected

returns and variance where returns are computed as the logarithm of the price today

divided by the price yesterday. These contributions were recognized by Nobel Prize

committees in 1981 and 1990, respectively.

Black and Scholes (L972) and Merton (1973) developed a model to evaluate the

pricing of options. Call options give the owner the right but not the obligation to

purchase an asset at a particular price at a future date. By purchasing such call

options, the risk of a portfolio can be minimized as the call option offers protection

against loss. The cost of this insurance depends upon the risks and these risks are

quantified bv the variance of the asset returns.



1.1.1 Volatility Modeling

Estimates of variauce are required to impÌement the option pricing formulas. Typi-

cally. tlre sçluare root of the variance, known as uoLatility is reported. An estimate of

volatilit)'widely in use today is hi,stori,cal uolati.li,ty. This estimate is calculated as the

sample standard deviation of the returns over a range of time periods. There is no

guidauce hol\'et er, on how to choose the length of time period optimally. Fnrthermore,

it is not reasonable to assume the volatility calculated based on two different yearly

intelvals should be equal. Fr'om an economics point of view, the time-varying nature

of volatility arises out of changes in economic conditions, reaction to unexpected news

annoutlcements from government agencies, as well as reaction to unexpected world

events.

The class of Ar,rtoregressive Conditional Heteroscedastic (ARCH) models proposed

b1' Btt*t" (1982) provides a class of models for which the time-varying nature of volatil-

it1, stt be adequately modeled. The conditional heteroscedasticity of tire variance of

return series can be seen in the sample autocorrelation function (ACF) plot of the

sqrlare of a process. While the return series is an uncorrelated process, its square is

a correlated sequence.

Analysts had also observed that the sample lcurtosis of return series is far greater

than the kurtosis implied by a norrnal distribution. The class of ARCH models is

able to capture the leptohurtic nature of return series.

Heuristically, AR,CH rnodels ale a generalization of the sample variance in that

they talce weighted averages of past squared observations. Bollerslev (1986) proposed

a moving average type generalization of ARCH models to include a r,veighted âverage



of past (unobserved) volatilities.

Furtìrer generalizations of ARCH models have been proposed by many researchers.

These generaìiza,tions \l¡ere surveyed in Bollerslev, Chou and Kroner (1992), Boller-

slev (1994), Engle (2002) and Engle & Ishida (2002). These extensions recognized

that there may be non-linearity, asymmetry and long-memory present in return se-

lies and that returns can be conditionally non-normal with numerous parametlic

and non-parametric distributions. A non-exhaustive list of these extensions includes:

AARCH (Bera and Lee (1990)), APARCH (Ding et al.(1993)), FIGARCH (Bolter-

slev and lVlikkelsen (1996)), FIEGARCH (Baillie et al.(1996)), STARCH (Lee and

Degennaro (2000)), SWARCH (Fornari and Mele (1997)), GJR-GARCH (Glosten et

al.(1993)), N4ARCH (Bollerslev (1987)), QGARCH (Sentana, 1995), NARCH (Hig-

gins and Bela, (1992)), Component ARCH (Ding and Granger (19g6)), Asymmetric

Component ARCH (Ding and Granger (i996)), Taylor-Schwert (Schwert (1990)),

TGARCH (Zakoian (1994)), Student-t-GARCH (Bollerslev (1936)), Generalized Ex-

ponential Distribution GARCH (Nelson (i992)).

I.L.z An Example

In this Section, an illustration of some statistical properties of GARCH rnodels are

given through analysis of Standard and Poor's 500 Composite Index of daily price

Ievels frotn January 2, 1963 through November 23, 2005. The index represents the

bulh of the IJ.S. equitv market and provides a proxy for the U.S. financial history for

tlris period. AII statistics and plots have been generated using the fi"ntnetrics module

of S-Plus@ 6.2.

Iu examining the price period before 1987 and from 1987 onwards in Figure 1.1



S&P 500 lndex Closing Prices: Jan.3, 1963 - Dec.31, 1986

S&P 500 lndex Log Reiurns: Jan.3, 1963 - Dec.31, 1986

Figure 1.1: S&P 500 Index of Price and Returns from 1963 - 1986.

and Figure I.2,the great growth of equity prices over the period and the suìrsequent

clecline after January 2000 is observed. Economists focus attention on returns as

it is the rela,tive price from the purchase point to the sale point that matters. The

leturn series is centered âround zero throughout the sample period even thor-rgh prices

are sometimes increasing and sometimes decreasing. The largest negative return

corresponds to the crash of October 1987 (see Figure 1.2). The amplitude of the

returus is changing. The magnitude of the changes is sometimes large and sometimes

small. This is the effect that economists call uolati,litE clustering. There is however

anothet interesting featrire in this graph. It is clear that the volatility is higher when

prices are falling. This is the asymmetric volatility effect that Nelson (1992) desclibed
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S&P 500 lndex Closing Prices: Jan. 2, 1987 - Nov. B, 2005

o
N

oo

oo

S&P 500 lndex Log Returns: Jan.2,1987 - Nov. B, 2005

Figure 1.2: S&P 500 Index of Price and Returns from 1987 - 200b.

with his Exponential GARCH (EGARCH) model.

Looking at the next sub-period after the 1987 crash in Figure 1.2, the record lo'"v

volatility period of the middle 1990's is observed. This was accompanied by a sio\,v

and steady growth of equity prices. The volatility began to rise reaching very high

levels fiom 1998 onr¡'ards. Loohing at the last period since 1998 in Figure 1.2, the

high volatiiity continues as the market turned down. Only at the end of the sample,

since the official conclusion of the Iraq war does voÌatility decline.

Sample rnoments of this data are presented in Table 1.1. The mean is close to

zero relative to the standard deviation for both periods. It is .03% per trading day

or about 7.8To per year. The standard deviation is higher in the 1990's.
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Statistic Full Since 1990

N{ean

Standard Deviation
Skewness
Kurtosis

0.0003

0.0094
-1.39
40.0r2

0.0003

0.107

-0.101
6.75

Table 1.1: IVfoments of S&P 500 Returns.

o8t

.0.20 -0.15 -0.10 -0.05 0.0 0.05

Normal Quantile

Figr"rre 1.3: Quantile plot of S&P 500 Returns frorn 1990 - 200b.

The slçewness is small throughout. The kurtosis; a measure of the magnitude of

the extreme observations is substantial at 6.8 during the nineties, while for the fult

sample it is 40. This is strong evidence that extremes are much larger than would

lte expected from a normal random variable. Similar evidence is seen in I'igure 1.3,

rvhich is a quantile-quantile plot for the post 1990 data. The autocorrelations of the

return series are non-signifrcant as shown in Figure 1.4 while squared returns(and

absolute returns; not shown here) are significant.
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Series : spreturn4
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Series : spreturn4^2

Figure 1.4: Sample ACF of S&P 500 Returns and the Squared Process Returns fïom
1990 - 2005.

Parameter Estimate Std.Error t value Pr(t > ltl)
u)

cY1

t3,

5.3 x 10-'
0.0057
0.9381

0.0015

0.0045

0.0049

4.627

\2.678
r92.064

< 0.0001

< 0.0001

< 0.0001

Table 1.2: Parameter Estimates of GARCH(1, 1) model fitted to S&P 500 Returns
(fì-om 1990 - 2005)

The GARCH (1, 1) was fitted to the S&P 500 data using rnaxirnum til<elihood

estimation. The model and estimation will be more thoroughly discussed in the

follorving chapter. The parameter estimates are reported in Table 1.2. The bulk of

the information comes from the previous day forecast ( see the estimate of p1). The

new information (which corresponds to the estimate of a1) changes this a little and

the long run a\¡erage variance has a very small effect (see the estimate of ø). The
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Figure 1.5: S&P 500 Index of returns with estimates of 2 standard deviations fltted
using AR(1) model u'ith GARCH(1, 1) errors.

Iong run variance is naturally small because of the use of daily data.

To address the question of volatility forecasting for this series, suppose an analyst

proceeds naively by assuming an autoregressive model of order one (AR(1)) for the

return series. That is, let {y¿} denote the observed return series and assume

At: ÓUt-t I et, e¿ - NID(0,o!).

Under this rnodeÌ, conditional on past values, we usually assume that the data are

nornrally distributed with conditional variance Var(y¿ly¿-l) : ol, where oj is the

variauce of the error tertns e¿. Under this model, the estimate of unconditional vari-

õ2
ance is fonnd by substituting estimated model parameters into Var(yr) : ;3¡.I_Q"

The 'prediction' interval in this case has constant width.

Hou'ever. an AR(1) model with GARCH (1, 1) errors results in a prediction inter-

val tìrat is changing in a tnore believable fashion as seen in Figure 1.5. The difference

J¡et"r'een these two prediction intervals has irnportant applications in finance.



Consider the following simpie example drie to Gouriéroux (1997) that illustrates

the importance of moding time-varying volatilit for portfolio theory. Suppose an

investor has a portfolio consisting of exactìy two assets: a risk-free asset with constant

return r¡ and a risky return whose future return is predicted via a prediction intelval,

(rr,t,ru,t), where ú denotes time. Assume that at the initial date, the whole portfolio

is invested in the risk-free asset. The investor wishes to reallocate his portfolio in

the following manner. Because of transaction costs, he wiil only change his portfblio

u'hen r¿,¿ ) r¡. Since this rneans that the risky asset is mole profitable, lie wiìi change

his entire portfolio to be reinvested in the risky asset. The portfolio will remain

unchanged until r.u,¿ 1 r ¡ , al which time, the entire portfolio will be reinvested in the

rish-fiee asset, and so or. Clearly, the frequency of the reallocations depends on the

evolution of the Iower and upper bounds of the prediction interval. But the predictions

from the model with GARCH errors are Írore variable. In practice, fitting an AR(1)

model u'ith GARCH errors to the returns would imply more frequent tradings in

order to make profits by exploiting the volatility variations. Another widely used

application of volatility modeling is illustrated in the next Subsection.

1.1.3 Options Pricing

One of the itlportant applications of volatility modeling in finance is in the area of

plicing call options. A call option gives one the right, but not the obligation to buy a

specified nttmber of shares of a certain asset such as a stoch at the ererc'ise or strzlce

price. Option contracts are generally for 100 shares; see Jarrow and Turnbull(2000).

An option has an erercise date, which is aiso calÌed the strike d,ate, maturi,ty, or

erp'irat'iorr, date. American options ìnay be exercised at any time up to their exercise



date. u'hile Buropean options can only be exercised at their exercise date. In this

thesis, an application of volatility modeling for the pricing of European call options

is considered. Ilom hereon, a call option refers to a European call option.

To clarify the idea beliind call options, consider the following example found on

page 258 of Ruppert(2004). Suppose that an investor has purchased a call option of

100 shares of Stock A with an exercise price of $70. At the expiration date, suppose

that stock A is selling at $73. The option allows the investor to purchase 100 shares

for $70 and to immediately sell them for $73, which leaves a net gain of $300 on the

100 shares. However, the net profit is not exactly $300 since the investor had to pay

a premium for the option. For exarnple, if the option cost $2 per share, then the

premium cost $200. Nzloreover, the investor had to pay $200 upfront only to receive

$300 at the expiration date. Suppose that the expiration date '"vas 3 months after the

purchase date and that the continuously compounded risk-free rate is 6% per annum

or LSVo for 3 months. Then the dollar value of the investor's net profit at the time

of purchase is

exp(-0.015)300 - 200 : 95.53

and is

300 - exp(-0.015)200 : 96.98

at the exercise date.

A call is seÌdom exercised if the exercise price is greater than the price of the stock,

since exercising the option corresponds to buying the stock for more than it would

cost on the narlçet. If a call is not exercised, then the investor only looses the cost of

the premium.

10



The investor could lose money on an option even if it is exercised, because the

amonnt gained by exercising the option might be less than the premium. In the

example above, if stock A u'ere selling for $71 at the exercise date. then the net gain

at the exercise date would be $100; which is less than the $200 paid for the option.

Even though exercising the option results in a loss in this case, the loss is less than

it would be had the option not been exercised. An option should a,iways be exercised

if the stock's price on the exercise date exceeds the striì<e(exercise) price.

The Black-Scholes formula for pricing European call options requires an estimate

of volatility which it assumes is a constant. The classic Black-Scholes formula fbr a

European call option gives the cost of an option based on the Geometric Brownian

m.otion model. for the log return of stock with price S(l) at time ú as

c(,s,r) : .9Õ(d) - 6"-r(r-tlo(¿ - ot/l'- t),

where

, IoglS I Kl + r(T - ¿) o,/T - t
u.: ------------È ,- - -- 

, 
,

S(ú) : ,S is the price of the underlying security at time ú usually t : 0,I{ is the

strike price, 7 is the maturity date, r is the spot rate, o is the volatility (i.e. the

insta,ntaneous standard deviation of the rate of return of the underlying security), and

<Þ(z) is the distriltution function of the standard normal variate. The option price

depends on the initial stock price ,S, strike price ,I{, maturity date T, spot rate r and

the the 'ttnknowtt' volatility parameter ø and hence the better estimate/forecast of

tlie volatility will irnprove the performance of the option pricing formula. The Black-

Scholes formula assumes that both the spot rate r and the volatility o are constant.

Historical volatility has beeu used to estimate the volatility. In the next Section, we

1i



provide an outline of the Thesis.

L.2 Thesis Organization

In Chapter 2, we begin by revisiting the class of ARCH models first introduced by

Engle (1982). Extensions of ARCH models that allow for a time-varying conditional

mean to be specified are proposed and their moment properties are studied. The

class of Random Coeffrcient Autoregressive (RCA) processes due to Nicholls and

Quinn (1982) parallels the time-varying conditional mean and variance structure of

ARNIA models with GARCH errors. We introduce generalizations of the class of

RCA models and study their moment properties. Heinen (2003) introduced the class

of Ar-rtoregressive Conditional Poisson (ACP) models that account for discreteness,

autocorrelation and overdispersion of count data such as the daily number of price

change durations of $0.75 on IBN4 stock. A $0.75 price- change dulation is defined as

the time it takes the stock price to move by at least $0.75. The variable of interest

is the daily number of such durations, which is a measure of intradaily volatility.

The class of ACP models is shown to possess properties that parallel those of the

class of GARCH models. We extend the moment property results of the ACP(1,1)

model due to Heinen(2003) to the class of ACP(p,q) rnodels, where p > l and q >

1. An extension of Hamilton's (1989) Marhov-switching model is proposed and its

properties are studied. In Chapter 2, we also study a nev/ class of nonlinear GARCH

models developed for the purpose of modeling conditional leverage and conditional

sheu'ness. The Heston and Nandi (2000) GARCH models model the presence of

conditional leverage; whereas the Inverse Gaussian GARCH model of Christoffersen,

72



Heston and Jacobs (2006) models conditional skewness in addition to the presence

of conditional leverage. N4odel identification for nonlinear GARCH models remains

an open problem. \A/e develop data-driven procedures for identifying this recently

developed class of nonlineal GARCH models. Simulatron studies are ext,ensively used

in Cìrapter 2 in order to iÌlustrate to show that moment properties are useful for the

puropose of volatility model identifrcation.

In CÌrapter 3, we revisit the theorem on optimal estimating functions for stochastic

processes due to Godambe (1985). We also revisit the theorem on optimal estimating

functions due to Thompson and Thavaneswaran (i999). We show that both theorems

lead to the same optimal estimating function. Godambe's theorem is used to combine

estinrating functions for volatility. The combined estirnating functions are shown to

have more information than each of the component estimating functions. The combi

nation theorem due to Thompson and Thavaneswaran (1999) is used to demonstrate

the usefulness of the correlation between the least squares estimating ftrnction and

Ieast absolute deviation estimating function as a GARCH model identification tool.

Applications of combining estimating functions in hypothesis testing problems for

volatility models were also studied.

In Chapter 4, the forecasting problem for stationary processes (such as ARIvIA

models) i¡'ith GARCH errors is studied. The forecasting problem for stationarv series

in the presence of structural change such as change in the mean or change in the

volatilit5' is also studied. The proposed forcasts which we term improued estirnates;

were motivated frorn the biased rninimum mean squared error estimates proposed

by Shalabh (2001). In practice, the biased minimum mean squared error forecasts

13



are estimable if all nuisance parameters are knolvn. We derive recursive improved

estimates in the presence of structural change that only require starting values for'

nnisance pararneters.

In Chapter 5, some of the financial applications of the theoretical results ob-

tained in the previous chapters. The correlation between the LS and LAD estimating

functions as a GARCH model identification tool is extensively studied in simulation

studies and illustrated using real financial data. The superiority of the optimal esti-

mating function approach for hypothesis testing is also demonstrated through some

sitnulation studies. European call options prices are calcuLated using historical volatil-

ity and compared to to predicted prices obtained by assuming an adequate GARCH

model for the volatility. Interval estimation of the marginal standard deviation of

GARCH modeÌs using nonparametric and parametric bootstrapping is studied in a

preliminary simulation study.

We end with possible extensions for future work. Appendix A contains algorithms

for simulating random variables fron an Inverse Gaussian distribution. Appendix B

contains details of the proofs for combining estimating functions for volatility dis-

cussed in Chapter 3.

14



Chapter 2

Moment properties of some time
series models

In the introductory chapter, we have introduced several GARCH modeìs for modeling

financial series. Other time series models are also able to capture salient features of

financial series such as time varying conditional variance and leptokurtosis. For a

simple model considered by Gouriéroux (1997) of the form

t
Yt è t-lèt,

u'here e¿ is a Gaussian white noise process with variance o2r, we obtain

E(v,) : o

ø(yÐ n(ef_,)n(ef ) :3"f

Ð(yryt-n) : E(e!-re¿e!-,,,-r6¿-r) : E(e¿)Ð(e?-f?_t,_t€r-r) : 0, (h > 0)

wittr pl : 0 for k > 0. We see that the process y¿ is weakly stationary having variance

3af , where as its conditional variance given its past, Y(y¿lîl-r) : V(r?-, e¿lF!-r) :

o'rl-r, depends on the lagged residuals. Since,

E(r\") : ffir?" ancl E(aî) :E(sf-1)E(6Í ) : Jrtolz,

15



tlre kurtosis is given by l{tu) : ,=-,u('j),,u: 
tlt?j' :35. This clearly shows that" lV ar(yt))'z 9oJ'

even a simple volatility llodel ljt : €?-f t with Gaussian error term e¿ can generate

very high peakedness .,vhich is very common for financial time series. For the yrz

process) a? : ,t-re?, the correlation is given by,

( t Æ:o
pou":10.114b fu:1

I o k>2.

Itr contrast, for the process given by Z¿: €¡-1€¡, where e¿ is an uncorrelated Gaussian

sequence with mean zero and variance o!, we have the following:

E(zò o,

Ð(z?) : E(e?_)E(€?): ol

E(zî) E(€f_1)E(sÍ) : eo:,

so tha,t the kurtosis is given by

¡¡(z) _ E(Zt - P)a - 
9o,t 

- n
(Var(Z¿))2 o!

The autocorrelation Zl of the process is given by

( t a:o
pn': { o.zs a:1

I o k>2.

Hence, these simple white noise driven models can exhibit ieptokurtosis and time-

varying conditional variance observed in financiai data.

Recently, Thavatteswaran et al. (2005) have studied the moment properties of

the zero mean GARCH processes. In this chapter, we extend the results of Tha-

vaneswaran et al. (2005) by studying the moment properties such as the autocorre-

Iation of the squâre of GARCH processes and the kurtosis of ARMA(p, q) models

16



witli GARCH(P, Q) errors. The models studied are useful for volatility modeling in

the sense that they are conditionally heteroscedastic and the kurtosis implied by such

models is larger than three. Moment properties are useful for model identifrcation. In

this chapter, the moment properties of two classes two classes of volatility models are

presented. In Section 2.1, moment properties of the class of Random Coefflcient Au-

toregressive(RcA) models due to Nicholls and Quinn (1982) are given. The moment

properties of the class of zero-nlean ARCH models due to trngle (1982) are studied

in Section 2.2. N¡ioment properties of RCA rnodels extended to have GARCH errors

are studied in Section 2.3.1 and Section 2.3.2, while moment properties of stationary

models with GARCH errors are studied in Section 2.3.3.

N4oment properties of Hidden Semimartingale models (HSiVIs) with GARCH errors

are stndied in Section 2.4. The class of HSN4s with GARCH errors is an extension

of Hidden l\4arkov \4odels with autocorrel.ated errors due to Hamilton (1989). In

Section 2.5, we extend the results on the moment properties of a class of volatiÌity

models for time series of counts proposed by Heinen (2003).

Iclentification of two classes of non-Ìinear GARCH rnodels are explored in Sec-

tion 2.7.1 and in Section 2.7.3 by using their rnoment properties. These cìasses of

non-iineal GARCH models can incorporate conditional leverage. In particular, the

class of Inverse Gaussian GARCH models allows for conditional skewness to be mod-

elled, as r.r'eÌl. Our main contribution is to use moment properties for the purpose of

model identification.

In the next section, we extend the results on moment properties of RCA models.

L7



2.L Random coefficient autoregressive models

Ranclom coeffrcient autoregressive time series were introduced by Nicholls and Quinn

(1982) and their rnornent properties have been studied recently by Aue (200a) and

Appadoo, Ghahramani and Thavaneswaran (2005). RCA models exhibiting long

rnernory properties have been considered in Leipus and Sugailis (2003). A sequence

of random variables {y,} Ir an RCA(I) time series if it satisfies the equations

?)t : (Ó*bt)Yr-t+ et t€ Z,

-"vhere Z denotes the set of integers, and

(::) ñ "((3) (;' lz

ó'+oî
))

- erp (Ir", f"' + u2 + zo'*rr)) 
,

(2.1.1)

(2.1.2)

The sequences {å¿} and {e¿} respectivel¡ are the errors in the model. According

to Nicholls and Quinn (1982), (2.1.2) is a necessary and sufficient condition for the

second order stationality of {yr} (2.1.1) also ensures strict stationarity. Moreover,

Feigiri and Tweedie (1985) showed that Eyzrk < oo for some k > 1 if the moments of

tlre noise sequences satisfy E"?* < co and E(ó+br)"u a 1, for the same fr.

Let {y¿} be a stationary Gaussian linear process with mean zero and vartance ofi.

Then it cau easily be shown that the joint moment generating function of the pair

(yr,yr-*) is given by

m(tt, u) - E(euut+uut-t¡

18



where ol: Var(y¿) and pl is the autocorrelation function of y¿. Since, n la7u1-u) :

ol(t + 2(p')') and v ar(y!) : 2ol, we have

^r, _ Ely7y1-*l - ol _ ( ^a\zI'u - 2oi -\Pt;)

That is, for any stationary Gaussian process {yr}, the autocorrelation ofthe squared

process {y7} ¡" the square ofthe autocorrelation of {y¿} and hence the autocorrelation

of any stationary Gaussian process {yr} ir larger than the autocorrelation of {y7}(¡."
,2

lp;íl > pii ) The squared process plays an important role in model identification

(See Thavaneswaran et al. (2005)) and volatility forecasting (See Thavaneswaran,

Appadoo and Peiris (2005)). In the following set of theorems) we study the first four

monfents, the autocorrelation structure of the process and its square process.

Part (i) of the following theorem have been derived by Aue (2004). Parts (ii) and

(iii) liave been derived by Appadoo, Ghahramani and Thanveswaran (2005).

Theorem 2.L.I Let {yt} lt" a RCA(I) t'ime series sati,sfyi,ng cond,itions (2.1.1) and,

(2 1.2), and let fu be zts couariance function.

(i,) IAe h.aue

E(Y,) o,

-2ntu?) : t-# _2,L - \y - ub

and tlte k-th Lag autocouariance for y¿ i,s gzuen by

^ lt ó*oZ
tR r-ó2-oî'

wlti,le tÌte autocorrelation for yt is pï,: þk for all k e Z. That,is, the usual

AR(I) process has same autocorrelat'ion as the RCA(1).

19



(zz) IJ {b1} and {e¿} are normøIly clistributed, random uarzables tl¿en th,e kurtos'is K@)

of the RCA process {yr) i,s gi,uen by

r¿tu\ _ 3(t-(o!+ó')')r\ - r-(ô4+\ózo'zb+W'

and for an AR(I) process ytu) ,¿¿u¿¿s to 3.

(zi.i.) Th.e autocorrelati.on of y! assumi,ng b¿ and e¿ ar€ norntally di,stri,buted is gi,uen

by

P'u':(ó'+o?)r

and for a Gauss'ictn AR(I) process'it turns out to be

PI' : Ó'u'

Proof. By conditioning on At-t, wE obtain E(yt) : EE(Arlar-r): 0, and

Var(y¿) : E(Yar(y¿ly¡-t)) + Var(E(y¿ly¿-1))

: E(oîy\_, + o!) + Var(þy¿-1)

: o! + olø(y,1,) + þ2Yar(y¿-),

so that

Var(Y¿) :'y&: -1-(t-o3-ó")

The l-lag autocovariance is

E(yryt-t) : E(óat-ßt-r) + Ð(btyt-ryt-t) t E("rAr-r)

"'/1 : Óú

20



Similarly, the k-th lag autocovariance is,

^,v - sk^,aIk - \y lo'

For the proof of (iii), u'e have

a': l(Ó + br)v'-, + e')n

B(yÍ) : B((d + b,)nyt_r) + 6E((d + b¿)2yl_rez,) + zo! (2.1 3)

B((d + bònaf) : (ga + a62ol + 3oî)E(yî_1),

and

o((d + b,)'a?_r"?) El@""? + 2þb¡e! + ble'zr)y'z,_r)

: EE((þ2e! + 2þb¿e! + ule2r7y'zr-rlar-r) : E((ó'"? + olo!)y!_r¡

: o3@' + oî),, o! 
.,

\r-o3-ó2)
ot(óz + ozb)

1-ol-qz'
By substitution, we obtain tire following results:

ø(ai) : (6a + a62o! + rot)E(af-,¡ + a$$)S + zo2
¡r - u¡, - (y )

:

Hence, the l<urtosis is given by

r¿(v) _ 3(t-(o!+ó2)')l\-@

We nor,v derive the autocorrelation of y! of the RCA(1) process. Since

n(a|y?_r) : ø(ó?y\_ry?_) + øçu'z,y!_ra?_t) + E(ely!_r)

: (þ? + oÐn(y?_,y?_) + o?E(y?_k)
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we obtain

ñt r 2,1 
-n4^y2 

LLAtUi-tt -u
'-L n(yf) _ ol

nla?v?-,1

^ -r
-u

I<k) - 1
: (ó' + o'o¡

Sinrilarly, the autocorrelation of y2, at lag ,k is given by puo? : (ó' + oî)o

Note that when o6:Q, the kurtosis of y¿ in part (iii) reduces to that of a standard

AR(l) process, which is equal to 3. Easy computation shows ttrat lff{ < K['Jo

Consider a more general form of the RCA(1) model of the form

y¡:0¿y¿-1 le¿.

Then the following corollary is true.

(2.r.4)

Corollary 2.7.7 Let {Ut} b, a RCA(I) time serzes of tÌt"e t'orm 2.1.1 sati,sfying the

stationarity condztions (2 I 1)-(2 1.2), and let puu denote'its autocorrelatzon Junction.

Tl¿en, the followi.ng h.old.

(i) When 0t: ó I b¿, E(y¿) :0, E(y?) : "|lQ - ó2 - o2o), tlte k-th lag autocorre-

Iation for y¡ is gzuen by pux: (E(ó -f bt))k : 4n.

(iz) When 0t : s9n(bt) wh,ere b¿ - (0, ofi) and sgn(b¿) : 1(¿,ro) - I(0,.0), (11¡ is

the zndzcator function), tlten pI: Q - 2F(0))r', where F is the cumulatiue

dzstrzbutzon functzon of b¡. Thus, when the coefficzent 0¡. ,is drzuen bg a binary

rar¡Åom uarzabLe {b¿} takzng ualues -1 and *1, the autocorrelati,on of th,e process

depends on the rnarg'inal dzstrzbution of {bt}.

(zi.i,) When ù: (ó + lbrl") where bt - N(p,o!) then, the autocorrelatzon is

". / (2 "'" ' " Å:

pi: to* t{f ls+)) ,

\' 1/r -\ 2 )/1
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where l(.) zs th.e Gamma funct'ion.

Proof: The proof of (i) follows by observing, that

EÐ(y¿y¡-¡,10¡) : EE(?¿y¡-yy¡-x * etAt-xl1t) : E(0tÐ(at-gt-n)) : Ð(0t)^å-,

so that

,, E(Ét)l\-, ' tt

pi: _u : E(O,)T : Ð@òp'x-,: (E(p,))u : (E(ó * b¿))Ä : ¿r'Io 10

For the proof of (ii), if we let Ut:?tUt-t f e¿ and d¿: sgn(b¿) :116,>o) -11a,q6¡, then

E(á¿) : E(sgn(b¿)) : P(bt> 0) - P(b' <0) : t - 2F(0),

so tlrat pux: (I -2F(q)k. Part (iii) follows from the fact that for a normal ranclon'r

variable X, having mean 0 and variance o2 the a¿i' absolute moment of X is

Etxt" _eo2irfsjfl
1/r \2 )

2.Il Random coefficient autoregressive with moving average
errors

The RCA models with moving average innovation terms are an extension of the clas-

sical RCA model of Nicholls and Quinn (1982). This new formula,tion was proposed

by Appadoo, Ghahramani and Thavaneswaran (2005). The proof of the mollents and

the liurtosis is similar to that of the RCA model discussed in the previous section.

A sequence of random variables {y,} l. called an RCA(1)-IVIA(1) time series if it

satisfies the equations.

Ut : (Ó+bt)Yr-rle¿*0e¡-7 teZ,

such that (2.1.1)-(2.1.2) hoìd.

(2.1.5)



Lemma 2.7.7 Let {At} U" the RCA(l)-MA(I) t'ime series model descrzbed by equa-

tzon (2.1.5) andletfo denotes'its autocouariance functzon. Then the folLowing ltoLd.

and the autocorrelatzon and kurtos'is of the process are gi,uen by

( 1 k:0
1t J, %O-oî-ór) lÆl :r¡,u-l r*r*0r,

lóo'u-r'" lkl >1

and

E(ar)

^,uIO

^,ytk

^,Ut1

Proof: The

details are as

v?

ntu7)

^.4gt

0,

oZG + 02)

I-o!-62'
ótur-t, lkl > 1,

ôú + 0o?,

(ó + b,)'a?-, + 2(ó + b¿)y¿-¡(e¿-t 0e¿-7) * (", + 0"r-r)' ,

&>2 + oî) ø(y7) + Q + o2)o?,

(ó + ur¡n r¡-, + a(ó + br)' al-r(e¿ + 0e¿-1)

6(d + b')'v1-r@r r 0e¿-1)2 + (ó + br)ar-r(e,t 0e¿-)3

(e, + 0er-r)4.

so!(r+oz)zlt+(ó'+"Ðl
J - @' + "î)lU - (þn + 6þ2o20 * 3øoa)l

rz(tt\ s(t + þ2 + o'6)Q - o3 - ór).l\'"':@

proof is somewhat similar to the proof of Theorern 2.1.1

follows.

Some of the

+

+

And,

E(vl) :
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It is of interest to note that an AR(i) process, an RCA(I) process and an RCA(i)-

N4A(1) process have the same autocorrelation structure.

Lemma 2.1.2 For a szmple time seri,es modeL of the f orm At : óllçz€t-t * Et, wh,ere

e¿ is a Gaussian white no'ise with uari,ance o!, the uariance of the process zs gzuen by

_2

Var(Y¿): u'= 
='r - Ó2o?'

and the kurtos'is zs gzuen by

r¿tu)_3lI-þao!)rr - O -i6a;j

Proof. We obtain

EIYì : o bYconditioning'

nlu?l ó'nlyT-rlo3 * o! : -4, -, assuming stationarity of y¿' L - Q"o!'

nlyil : Elónyï-ru\-1-t Aþ3yl-"el-rs, * 6ó'a7-rr7-re? + Aôat-zer-re! + ell

: þ4 Ely!_À3o! + A6'n¡y!_rl"r,"? + 3o!

Now

nlyil - ô4 E[yî_rßo|' : 6ó2 ElyT_z]o! + zo!

r_2r
aþ'z|-.s-l"!+z"!,' Ll - ó'"!l e e)

Dt .41 6ó'ol + 3o!(1 - ó'"?)"LatJ 
Q _ þ2o2,)lt _3ón"!l

: sollt + ó2o?)
(t-þ2o!)[t-sôaot)

Hence, the l<urtosis follows.
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Example 2.1..L Let us consider,

at 7pl-p¿ -t 02tl-2e¿

wÌtere e¿ is a Gauss'ian wh'ite noi,se w'ith uariance o!. We haue

E(yr) 0 (2.1 6)

a(a7) : 
"!çsol 

+ 20fi2 + 3o'zr)

ø(y'l) [315(0Í + 0Ð + rB0(010, + 0ú3) + ß2e2,01 )o!'z

so that,

r.,tu) E(y - t")n _ [315(á1 + 0$) + rB0(0102 + 010Ð + 1620101)o!,r\- V*aP -

:l [315(p1 + 0$) + r}}(ele, + 0103) + 1620?03

(s?l + z0r0z + 303)2 |

The derivation of the autocorrelation of y¿ is similar to that for y¿ in the motivating

examples in the beginning of this chapter due to Gouriéroux (1997) and hence is

omitted. Nloreover, for any conditionally Gar"rssian process of the form,

at: f(ert,".e¿-r.)er

wlrere / is a measurable function of e¿-1, ...,lt-k and e¿ is a zero mean Gaussian

process, then

n(y'|) : EE(yîly,-ù : E3lE(y|ly,-r)l' > J(EE(a?ly,_))' :3(E(aï)",

and

¡1,, - P^!,!)^.t.
b\aí )"
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2.2 GARCH Models

Consider the general class of GARCH (P, Q) model for the time series y¿, where

r;-
\./ lltLt,

PQ
: , + I a¿u?-¿+\Þiht-i

At

h,
j=r

and Z¿ is a sequence of independent, identically distributed random variables with

zero mean) unit variance. Let ut : A? - h¿ be the martingale difference and Iel o2,

be the va,riance of z¿. Rearranging terms and by noting lha| h¿-¡ : U7_¡ - z¿-r, then

(2.2.I) and (2.2.2) could be written as:

Pa
y7 - t',. :, + t s¿u\_¿+Ðpjht-j,

(2.2 r)

(2.2 2)

(2.2.3)

(2.2.4)

(2.2 5)

rP
lr-fa;Bi-I u
I ¿=1

j:r
a

"-t Ê¡Bitt¡+t-t¿,
j=t

u + p(B)u¿.
þ',,u'f'r

o@)v?

RA
where, Õ(B) : I -I QoB', Õ¿ : (a, -r þ¿), P(B) : 1 -t B¡Bi and R :

j:1
max(P, 8) W" shall make the following stationarity assumptions for yf which has

an ARIVIA( R, Q) representation. We cau view the square of the process as a measure

of variabiÌity of the return process. The ARMA representation in terms of yr2 allows

us to forecast volatility, for example.

Assumption 2.t AII zeroes of the polynomial Õ(B) lie outside of the unit circle.

Assumptio n 2.2 Wettu,r. i ü7 < oo where the üis are obtainecl from the relation
i=o 

æ

\P(B) o(B) : p(B) with v(B) : 1+Iü¿B'.
i:r

Assumptions 2.1 and 2.2 ensure that the {u¿} are uncorrelated with zero mean and
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finite variance and that the y! process is weakly stationary. In this case, the autocor-

relation function of gf will be exactly the same as that for a stationary ARN4A(R,Q)

model. For any random variable g with finite fourth moment, the kurtosis is defined

, E(v - t")n¡t "ffi and is denoted ¡ry 1(tu). If {Zù is a normal process, then the process

{y¿} defined by equations (2.2.I) and (2.2.2) is called a normal GARCH (P,Q) pro-

cess. Iu order to calculate the GARCH kurtosis in terms of the V-weights and the

autocorreiation function (ACF) of the squared process, the folÌowing theorem given

in Thavaneswaran et al. (2005) will be useful.

Theorem 2.2.1 (z) For the GARCH(P,Q) process speci,fi,edby (2.2.1) and, (2.2.2),

under the stat'ionarity assumptions (2.1)-(2 2) and" hauzng fini,te fourth mornent,

the kurtoszs y(u) o¡ the process zs gi,uen by

¡¡@) :
E(Zî)

oo)
E(zî)-tU(zi)-11 Dü?

J:t)

(zi.) The uariance of the y! process i,s $':iV?oZ,j=o

E(vï : 1-.Þr-...-(ÞR'

('izi.) Th.e kth lag autocouariance of the yl process is

^,y,"ti : o1Ðv¡.".¡Ü7,
.?:0

(i.u) Tlze ktlz-lag autocorrelatzon zs gi,uen by

ol,
p2(K@) _ 7)

and ¡t -oo

\- rr¡?
.¿r^J
j=0

^,y2 I 
üu*¡v¡

^u' /À l=o
tt'x -3 -----E--t'/ð \- rr?

/- -l
j:0
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(u) For a normal GARCH(P, Q) process

r¿0) - 
3

t\ 
- _ ,

L - 2Lv3
j:r

It is of interest to note that Bai, Russell and Tiao (2003) have derived also studied

the moment properties of GARCH processes. In particular, they have studied the

relationship between the lçurtosis of a GARCH process, its excess kurtosis, the kurtosis

of the error terr-n Z¿ and the Ty'-weights.

2.2.L Special Cases

In the follou'ing examples we show that the results for normal GARCH(1, 1), t-

distribution GARCH (1, 1), IGARCH, double-exponentiaÌ GARCH, GED-GARCH

and Power GARCH are special cases of (2.2.I), (2.2.2) and (2.2.5).

Exarnple 2.2.L (normal GARCH(I, I))

In this example, we show that the results for a norrnal GARCH(I,1) model and an

AR.CH (1) modeÌ are special cases of Theorem 2.2.1.

For the GARCH (1,1) model, (2.2.4) and (2.2.5) are given by the follor,ving:

/, -Ut \/ fttLt,

ht a + a1y!-r -t þtht-t.,

Let u"¿ : y? - lr¿. Then,

y7 - ut: u * ata\-t + þr(a?-, - ut-t).

Tlris shou's that for a GARCH(1, 1) process At, U? has ARI\{A(1, 1) representation.

a? - oraT-, * þg?-t : a * LL¿ - B1u¿-1,



And, (1 - ArB)y| : a * (I - p1B)u¿, where ür : ûr, üz : ar(at -f þt), ús :

a1(o1 I þr)',... ú¡ : a1(a1 -l P)(i-r),7 ) 1 and

Ë *; : a? + o?(o' + þ,)' + : ---4
.7:1

By Theorem 2.2.I(iv),

1-("r+l3t)2'

v(ù 3
æ

r - 2DV,jj:r
3(1 -(ar+Ér)2)

1- ("r + l3t)2 -2o?'

and this turns out to be the same as that given in Bollerslev(1986)

For the ARCH(1) model of the form

'!/t Jlrrzr,

h, : alaly!-r,

c, ,rtLl Yl. tþt)

if we set l3t : 0 and use the metÌrod given earlier in this exarnpìe, then we obtain

r¿e)_S(t-af)
1-3af

Example 2.2.2 Th,e t, dzstri,bution GARCH rnodel.

For any t-GARCH (P, Q) process driven by a t-distribution with d.f. u > 4, the

r¿i' central moment (when r is even) of such a heavy taiÌecl distribution is given by

u,(t,): ,à'- ---1'3" " 
(r - t) -, varfú"1 -! ^ @ > B) and the kurtosis,(v - r)(u - r +2)....(u -2))'*^:"t u -2 \"
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6I{ : -: " + 3 (u > 5). The r¿l' central moment is zero when r is octcl.u-4 
,.

If we assume at-distributionwith z d.1. (u l5) for Z¿,then Elzll: --: . +3 andL L) u-4

nsing Theorem 2.2.I we can obtain the kurtosis of the I-GARCH (P, Q) process by

u'orlçing lvith a t-distribution standardized to have zero mean and unit variance in

the follorving rnanner.

c..2
Suppose 2¿ - t,. Then EQI) : :LÁwhenever u ) 2 and, E(Zi) :, l,',u-z '"_ J1-4)(u-2)

lt'

u,henever u ) 4. Consider the standardized random variable Zt : \ I "' 2r.UU

Then

F( z4\ - Q - 2)' Ft -4\ - 
3(u - 2)D\Lt): ¡ o\Lt): u_4

For a GARCH(I, t) process, Ë *; :' -.9j!u*?, where Þ1: .,1* p1.

j=o t-Qí

Using Theorem 2.2.7, the kurtosis of the ú,-distribution GARCH(1,1) process

given by the foÌlowing:

E(Zî)y@) :

:

E(zî) - lE(zî) - rl DË, v3

3(u-2)lQ-+)
3(u - 2) I (u * 4) - l3(, - z) I (, - 4) - 1l (1 - ó? + 

"T I 0 - ó?)
3(u-2)lr-(at+þt)21

(u - +)(t - 2atþt - p?) - 3(u - 2)al'

I

{(-\- '-r/21r1l\z): /-e'',, -ñ<Z<oOvz

Example 2.2.3 The double erponent'ial GARCH mod,eL.

For any GARCH(I, 1) process y¿ where Z¿ is an uncorreiated sequence following a

standard double exponential density

.1 I



nsing Theorem2.2.rand the fact that E(Zî):6, ancl Ë*;: 
t 

, 
*jt 

å"?, (Õr:
,:l I-q,í

at * þt) the kurtosis of the process is

--,,,ì 6[1 - (al + l3t)'lÃ \yr _ 
-___- , (2.2.6)1-(ot +í3t)2-5o?'

Example 2.2.4 The Generali.zed Error Dzstrzbutzon (GED) GARCH model.

Consider a GARCH(1,1) process that conditionally follows a GÐD distribution given

by

llt : {n, z,

ht a+a1y!-rtl3tht-t,

u'lrere 4 - (0,1) has the following density:

f (z\: 
-

r\ / 
^2\ ^hrcø "*, (-;t"t)l"), ^ 

: (T:##)''', u ) o

It is easy to show that E(z!):1 and E(z!\ _ l(rlu)l(1l.ò. 
Then,''t ) - Qelu))z

Fçtu) : t (t I u)t (s l r)11 - (o, + 0r)')
(t(slu))'zlt - ("' + þ,)')-lt(1lu)t(\lu) - (t(3lu)),)"?'

It is of interest to note that for L, : 7, the l<urtosis reduces to the kurtosis of the

dor"rble-exponential GARCH(I,1) model and that for u :2, the kurtosis reduces to

the kurtosis of the normal-GARCH(l,1) modeÌ.

Example 2.2.5 (Intesrated, GARCH (IGARCH) )

Fol the IGARCH model considered in He and Terasvirta (1999),

At : tfiiZt, h, : aU?-t+ (1 - a)hr-t, where Z¿ is asequence of incìependent,

identically distributed random variables with zero mean, unit variance and a is a



constant 0 ( a ( 1. Assuming that ho : I,the kurtosis is given by. ft\v) : JÞlL -
lE(ví)l'

@21yrzl -1)+ I)tKQl, r,vhere KQ) isthe kurtosis of the (Z¿) process. For rnole cletails

on the proof of the lçurtosis of the IGARCH process, see Thavaneswaran) Appadoo

and Samanta (2005).

Example 2.2.6 (power GARCH(I, 1))

Consider the power GARCH(I, 1) modei given by

ft ,z
V tLtzJt)

aiallar-rlorþrh6r-r,hf (2 2.7)

u'lrere Z¡ ís an uncorrelated mean zero process with unit variance. Let u¿ : ly¿16 - h!

be tlre martingale difference. Then, Õ(B)lyrlu : u I p(B)u, where O(B) : 1 - Õ18,

(Þr : ar *,61, arìd P(B):I - &8. This shows that the power GARCH(I,1) model

could be represented as an ARMA(I, 1) Lor ly¿16.

In the following example, some of the rnoment properties of a normal-GARCH(1, 1)

process ale iliustrated.

Example 2.2.7 In thi,s erample, we s'imulate n:8000 obseruations from a normal-

GARCH(I, I) process with ytarameters a : 0.01, at : 0.2 and, [3t : 0.75.

The sample ACF of the process (shown in Figure 2.1) and its square (shown in Fig-

we2.2), illustrate the absence of autocorrelation in the process and the presence of

aritocorrelation that does not dampen in the square of the process. Table 2.1 gives the

paratrreter estimates obtained via maximum likelihood estimation using proc autoreg

and the method of moments using proc arima in SAS@. As the simulated process is

.1.'l



normaI-GARCH(1 ,1)

15

Lag

Figure 2.1: Sarnple ACF of a simulated norrnal-GARCH(1, 1) process.

normaI-GARCH(1, 1 ) squared

15

Lag

Figure 2.2: Sample ACF of the square of a simulated normal-GARCH(1,1) process.

a nolmal-GARCH(1, 1) process, the maximum likelihood estimates(NflEs) will be

efficient. However, the method of moments estimates are appealing as no distribu-

tional assumption is made about the Z¡ process. The method of moments estimators

of a1 and B1 are quite ciose to the true parameter values; whereas ø is overestimated

O

q

Lo
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by the method of moments estimator. Consequentl¡ the unconditional variance will

be overestimated if we were to use the moments based parameter estimates.

The empirical kurtosis is 4.93 indicating that the class of ARMA models would

not be appropriate for frtting this data. The estimated kurtosis that based on the

nortrral-GAROH(1, 1) model fit turns out to be 7 .82, while the estimated kurtosis that

is found by substituting the method of rnoments based parameter estimates is 3.20.

The former estimate explains all of the sampie kurtosis whereas the latter estimate

does not fully explain the sarnple kurtosis. Therefore, identification of the appropriate

error distril¡ution is crucial. In Chapter 3, identification of the error distribution for

a GARCH rnodel will be studied.

Parameter proc arlma proc autoreg
ø : 0.01
at :0.2
ßt:0.75

0.0165
0.r7r7
0.7406

0.0106
0.1790

0.7676

Tal¡le 2.1: Parameter estimates of a simulated normaÌ-GARCH(l, 1) process using
maximum likelihood and method of moments estimation.

In the next example, an application of ARN¡IA models with GARCH errors is

studied.

Example 2.2.8 (SüP 500 Inder of Composi,te Ercess Returns)

The GARCH(1,1) model is the rnost widely used GARCH model for fitting financial

return series (Hanseu and Lunde (2004)). Tsay (200i) analysed the S&P 500 Cornpos-

ite Index of excess returns data by initially frtting an AR(3) model with GARCH(1, 1)

errors. The motivation for fitting an autoregressive cornponent is due to the presence

of the first and third significant lags in the sample partiai autocorrelation function



Series : spsOO.dat

15

Ser¡es : spSOO.dat

Figure 2.3: Sample ACF and PACF of S&P 500 data.

(PACF) plot as shown in Figure 2.3. Lel {y¿} denote the return process and let ø¿

denote the white noise process in an AR(3) model. The estimated AR(3) modei is

given by

y¡- 0.0062:0.089(y¿-1 - 0.0062) -0.024(y¿_2-0.0062) - 0.13(y¿_3 - 0.0062) * ø¿.

The sample ACF of residuals frorn this fit and their squared process are examined iu

Figule 2.4, respectively.

However, upon fitting an AR(3) model with GARCH(i,1) errors) the autoregres-

sive parameters failed to be significant and Tsay selects a GARCH(1, 1) for this data.

The sample ACF of the standardized residuals and squared standardized residuals in

Figure 2.5 reveal that the ARCH effects have been accounted for by the GARCH(1, 1)

fit. Tables 2.2 and 2.3 provide the parameter estimates for an AR(3) model fit and

an AR(3) model with GARCH(1, 1) errors. Table 2.4 gives the parameter estimates

for a mean model with GARCH(I,1) errors. The estimated model is given bv

<À

€

36



Series : out2

10 15 20 25
Lôo

Series : out2^2

15 20 25

Figure 2.4: Sample ACF of residuals and squared residuals of AR(3) fit to S&P 500
data.

Series : resid

t

9=

510152025
LãO

Series : resid^2

r0 1s 20 25
Lns

Figure 2.5: Sample ACF of residuals and squared residuals of GARCH(I, 1) fit to
S&P 500 data.

At : 0.0075*e¿,

€¿: r/tazr,

lz, : 0.000082 * 0.r2el_r+ 0.851¿¿-r.

a-
.-)t



All parameter estimates are significant in this case. The estimated kurtosis assum-

ing a normal-GARCH(1,1) model is given by 6(ul : 11.15 while the sample hurtosis

is 12.36 indicating that the normal-GARCH(1, 1) explains most of the leptokurtosis.

This exarnple has motivated us to study how the r/-weights of autoregressive models

rvith GARCH errors depend on the autoregressive parameters.

Pa,rameter DF Estimate s.tr. t-Value p-value

l_L

ó,
óz
ós

1

1

1

1

0.006159

0.08909

-0.02376
-0.12297

0.001945

0.03544

0.03559

0.03545

3.77
o <1

-0.67

-3.47

0.0016
0.0121

0.5046

0.0006

Table 2.2: Paratneter Estimates of AR(3) model fit to S&P 500 index of returns

Parameter DF Estirnate S.B. t-Value p-value

11

ó,
ó,
ós
u)

Q.7

þt

1

1

1

1

1

1

1

0.007474
-0.0337
0.0312

0.0101
0.0000805

0.1200
0.8552

0.00i580
0.0385

0.0383
0.0356

0.0000240

0.0202
0.0196

4.73

-0.87
0.82

0.28
D CtÙ.JJ

5.94
43.54

<.0001
0.3819

0.4146
0.7759

0.0008

<.0001
<.0001

Table 2.3: Parameter
of returns.

Estimates of AR(3)/GARCH(1,1) modet fit to S&P b00 index

Parameter DF Estimate s.tr. t-VaÌue p-value

I,L

a
01
D
PI

1

1

1

1

0.007453

0.0000818
0.1203

0.8545

0.001547

0.0000238
0.0197
0.0189

4.82

3.44
6.r2

45.15

<.0001
0.0006

<.0001
<.0001

Table 2.4: Parameter Estimates of GARCH(I,1) model fit to S&P b00 index of re-
turns.
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In the next section, we study a new class of models that are extensions of both the

class of GARCH models and the class of RCA models. AIi theorems and lemmas in the

follor,ving sections have been studied by Appadoo, Ghahramani and Thavanesu,aran

(2005).

2.2.2 Random Coefficient ARCH (1) model

By analogy with the RCA models we introduce a class of models which can be viewed

as RCA versions of GARCH models. Consider the ARCH (1) model for the time series

y¿, u'here

Ut:

LtLt

t/ntzt

a -t (q * br-t)y\-r,

(2.2.8)

(2.2.e)

Z¿ ís a sequence of independently, identically distributed random variables with zero

meatr and variance o2, alnd b¿ is an uncorrelated sequence with zero mean ancl variance

o!,

Lemma 2.2.I For the mod,el

yt: t/ht Zt, 14: u)of ("r + bt-t)y?-t, where Zt - N(0,o2r) and'is uncorrelated"

wi.th bt - N I D(0, ofi), the kurtos'is, zs gzuen by

¡¿r¡À Zlt - al,o[]
- 

[1 - Jo,r(a! + ",)]

Proof: We irave y7 : htZ? and Ely?: Elh¿)ozr.

We norv use this relationship to find the expected value of E(h¿).

Elhi: ao + aê[y\-].



Asstrrning y¿ is station ary, E(yl) : ,. *-!oo'z -¡t - u1o2r]

Ett 21 afi + 2asa1U(A?-r)
" L'"Lt r - Jo[(al + oil '

Elail:

Hence,

Soar(uf + 2apsÛ(y!-r))
l-3oar(al+o!)

r¿e) _ 3(t-alolr)
a\ I-3oar(a!+"î)

2.2.3 Two Component Heteroscedastic Normal Mixture

Consider an RCA(1) process with two-component uormal mixture innovation terms

given by yt: (ó * bt)yt-t * e¿, where {b¿} and {e¿} are independent two-component

h.eteroscedastic normal mixtures. That is,

f (lrt) : r t ólbt; o , ol) + rz óz(bt; o, o'r) ,

utlrere 7r1 * 7r2: 1 and

.f (",.) : ,rióz(er;O, ø!) + rió+@r;0,o2),

u'hete ri + r): 1 and ó¿,'i: I,2,3,4 are norrnal densities. Then,

(i) E(e¿) : E(bt) : E("1): B(bl) : 0,

(r\ var(e¿): E("7): rp? t r2ol and var(b'): ø(b?) -- rîo3rr[of;,

(iii) E(bÍ) :3(trpl + r2o$) and E(ef) : 3(niot + rio[).

Lemma 2.2.2 Let {yt} b, a two-cornponent heteroscedast'ic normal mzrture mod,el,
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then the moments of the mirture driuen RCA model, are g'iuen by

E(a,) :0,
-+-2 , -+-2

Itar(y¡) : 02 : 
ttlu3-r'tt2u4

I-ó2-r9?-rzo3,' (2 2.r0)

n(vî) : øl@ + b,)nvt-, + 4(ö + b¿)3v!-re¡+ 6(d + b¿)2v!-re! + 4(ó + b¡)v¡-p! + efl,

(2 2.rr)

and the kurtos'is i,s gzuen by

¡z(tù E(Yr)nr\ - va.lY,)Y

Proof: E(yt) : EE(yrlar-t): 0. Now, the variance of the process is given by

Var(y¡) VE(y'lyr-t) + EV(y'lyr-')

: ó'V(yr-r) +V(e¡) +V(y¿_)(nro', + nro'r)

rio! + riol
1- ó' - rp? - rzo3,'

since E(y¿) : 0 and Var(y¿) : E(a?-r). We now outline the proof for the lçurtosis

Ktu)of the process y¿. Note that E(y¿):0. We obtain the following result:

vi : l@+br)nvt-r+ a(ó*b¿)3vl-re¡+6(d +b¿)zyl-re! + 4(þ+b¿)y¿ael + ell

øþT) : 3(rio!+trgol).

\Ä/e kuos' thar E(a(þ + b¿)y¡*p!) : 0 since (b¿) and (e¿) are independent ancl are

assumed to be Gaussian. Hence,

n la@ + b¿)2y2r-re2rl : 6ó'v (yr-r)(trio2, + r[,ol) + 6v (y¡-1)(tr1ol + r2ol)(trio! + r]o'zn)

: 6v (y¿-)(ni"! + ";"1) ló' + nto', + r2ol) .
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\4¡e know lhat E l+@ + br)tyl-r"tl : 0 since €¿ and b¿ are inclepencìent) zero-mea¡

Gaussian processes. Now

E l(0 * b,)nyl_rl : Eø l@ + b,)nyî_rly,-r]

: n(a\_r) x E(ó ¡ b,)n

E(yî-r) lón + aó'ç"'o! + nrol) + 3(trpl + r2o$)l

Assume n(yî) : E(aî-r) and that (y,) it stationary. Then we derive

ø(aÐ : I - ó4 - 6þ2(trpl + r2ol) - S(trpf + r2o$)

x ls(zriø$ + riof) + 6V(at-)(trio2, + "i"ï@' -t rpl + r2ol)1.

and finally the kurtosis is given by using (2.2.10) and (2.2.11).

2.3 Stationary processes \Ãiith GARCFI errors

This section is comprised of two subsections. The class of GARCH models discussed

previously ha.s l¡een extended to a class of volatility models where the conditional

rrean) as r'vell as the conditional variance is changing over time. The class of RCA

models have also been extended to include models with time-varying errors such as

the GARCH model.

2.3.I RCA models with GARCH errors

Theorem 2.3.t Let{ar} U" an RCA(I) time series satisfging cond,it'ions (P.1.1) anct

(2.1.2) Tlte RCA(1) mod,el zs gzuen by

ut : (Ó + bt) art * €?-f ,

e¿ - /V(0, oZ), b, - //(0, o!). Then we h.aue the following.

(2.3. 1)
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+ "Ð)
ë'+ o

lo6-

o'

-(

dL

@1-

)) (1

t_
Lt

þ'

E (y?) :

s-29(o2o+

0,

(c

(o) E(v') :

(b) Ktu) :

I,
2\\
r))

(t - 3ozoQþ', + 
"',) - Ón) )

Proof:

n (a?) n (a7-,ó') + n (u?-'b?) + B (ei) n (ei)

: ó'n (u?_r) + olo (y7) +so|

Thus, assuming y¿ is stationary we have

t-r"fl
n (yi) : tC-_ËT;Ðl

n(yi) : 6þ2 olg (uî_r) + 3rso!2 + Jof E (yL,) + ón n (aî_r)

+rlo2oo!E (a?_r) + tso!þz8 (a?_r)

and we have

n@Ð (ffi)eåW)

(2.3 2)

y\ù : !þL:( go:', 
\(ss-zg(ot+Ó'z)\ 1(t -(d'?+oí))'?\,\ . 

Et r : \6 ) \-r _6i4¡ ) \-- sa- 1

( (ss - zs (oî + ô'z)) (t - (ó'z + o'z))\: \ 1 (233)

When oî:0, the kurtosis of the process y¿converge to the one reportecl by Ghahra-

nrani ancl Thavaneswaran(2007), 1çtu) : tl.-,'9,!r' 
ancl when o'Ê : 0, and, þ: 0 the

Q+Ò',)
kurtosis of the process y¿converge to 35, this result was reported in Appadoo, Ghahra-

rnani and Thavenswaran (2005). We have considered a time series model driven by

nonlinear fttnctions of random processes. Such time series are said to have nonlin-

ear structure. Many financial log return time series possess the property where the
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squared log retuln process has autocorrelations that vanish only very slowly, or do

not even vanish at all, in the limit. This simple model has the ability to rnodel high

volatility in flnancial time series nodel.

Theorem 2.3.2 Suppose {y¿} is an RCA model wi,th GARCH(I, 7) errors of ttte

Jorm

Ut : (Ö + br) ut-t * €t

€¿ Jn,z, (2.8.4)

hL a+ap!_r*ptht-t (2.3.b)

wlzere bt - NID(0,of;)(uncorrelated). Then, we ltaue the following:

(i') E(v¿) :0,

(ti) E (y?) : o?

(t-ó'-"3)
6o!(ó'+ ol) + Kc)o!(I - (ó'+ 

"?))/;i;) tr /r,a\ : 
vv6\Y I völ I ¡\ vt\r \Y/ I vål/

\"""/ " \at / 11 (,A2 r ^2\ll't (.k4 t A)-2-2 r e-2\lI - @' + "î)ll1- (ón + 6þ2ol + Bo!)l'

(i,u) Wlten Zt - N(0,1) (uncorrelated), then

r¿o) _ [s(t - ó' - oî)lz(o3 + ö')(1 - (o, + þr)' - z"?)+ (1 - ó, - or)(I- (", +,6,)r)llr\ -l 
)

Proof:

Part (ii) folloi,vs from observing that E(aù : @2 + ol)nçy?_r) + o!, and by assuming

that y¡ is stationa,ry.

Part (iii) follows from observing that

E(aÐ : ø((ö + b,)nat) + E(6(ë + b¡)zyl_rel) + rt),
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3[1 -(a1 +þt)')
and part (iii)1- ("r + þt)2 -2o?

ytu) 3[1 -(a1 +þ')2]
(2 3.6)

(1 -("' +þt)2)-2o?

Note: The result given by (2.3.6) has been observed in Thavanes\Maran et al.(2005).

and fronr the fact that E(ef) - FçG)o+.

In particular, where Zt - N(0,1), the11 7¡(')

follows.

When Ó:0 and of;: 0 in Part (iii),

^ [t- ,z
¿L V ILtLtl

hL: aIe-ÉZt-t-fþth;t

Wlren o3 : 0 in 6(v) of part (iii),

¡çtu) t ll .'(#)ffi
The result given by (2.3.7) has been observed in Ghahramani and Thavaneswaran(2007).

Next, special cases of Theorem 2.3.2 are discr"rssed.

2.3.2 Special Cases of Theorern 2.3.2:

Example 2.3.L Let {At} U" a S,ign RCA-GARCH(7, 7) time series sati,sfying condz-

ti.ons (2.1.1) and (2.1 2) gzuen bu

Ut : (Ó+bt* Õs¿)?Jt-t1 et (2 3.8)

wltere

(2.3.7)

(2 3.e)

(2.3.10)

where Z¿ and b¿ are sequences of i,ndependently, identr,cally Gauss'ian distributed ran-

dorn uariables wi,th zero rnean, uariance gzuen by o22 and o2o respectiuely,

( *t if u,>o
sr:( 0 Lf Ut:O

[ -t if a,<o
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e, er, & and (p are real parameters, sat'isfying the following cond'itions, a ) 0,

ar ) 0, h> 0. lÕl < r. Note: E(szr) : 1, and i'n order to calculate tlt'e kurtoszs, we

obserue that E(s!) :7. Then, we haue the following moment propert'ies

(a) E(vr) : s,

/h) tr(,,2\- ao2z
\"./ " \vt, J _ (ó, + o2o + Or)l[1 _ (o, + þt))),

(") If {b¡} and {e ¿} are normally di,stri,buted randorn uariables then the kurtoszs 6(u) o¡

the process {ar} ¿t gzuen bg,

3(r - (a1o2, + þr)')l - (ó' + ol + A2))2

(\ -3aloa, -2ar7rozz- P?)(1-6(þzçz +Qzol+ þro?) - Õ4 - ón -J"î)
- 6(¿p2 + ó2 + oî)lt - (ô2 + oî + Q2))

(1 - 6(d'zÕ2 + Þzof; + Ó'oî)- 04 - Óa - 3ot)'

.._2
Some details are as foÌlows. o! : øçe!¡ : -u " -r-at-þt'

, ,_2
n(y]): E((ó'+b! +Þ2s! +2óU+2þQs¡+2Þb¿s¡)y!_r) +;-::¿- .L-at-Þt

ø(yî) E {fø+U+Þ")nyî-r+ 6(d *bt*Þs¿)zy!-re! + e!}

And,

6(ó' + o2o + rnz)olø(aï + KG) o!
r - (ón + 6þ2o! + 3of + 6Þz(42 + o2) + Aa)'

3[(1 - (oro'"+þr)']
7ç@) :

I-(o2"a1 +0t)2-ap2z

Next, a class of RCA Sign-GARCH Volatility Models is studied.

Example 2.3.2 Consi,der the GARCH (1, 1) process for the time series g¡, where

Ut: (Ôrbt)atq+et

Jn'2,

u -l (q t at-t * Õs¿-1) €?q + l3rhr-,

Çt

h,
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where Zt - N(0,o22),

( +t ,'f
s¿:{ o if

It -1 ,f

ö¿ - N(0, ol) and at - N(0,o2).

At)0
llt:0
At 10

E (hr)

E (h?)

a: . . ^ ..r since E(s,) :g
lr_(a1oi+1t)l

(2 3.11)

V ar(y¡)

ø laîl

uz(ozrat+&+7) ./r?rr\
11- 0r (2o2 \z'¿'L¿)

Øa2z

J - @, + oî))lt - (ap2" + þr)l
óoz nlnl +

6oL @3 + ó2)
(r-3of-ó4-6ó'13) (r - 3of - ó4 - 6þ,o') lt - (ó, + 

"Ð)

The kurtosts of the process zs giuen by

3[1 - (ó, + ",)],[7 - (a¡o22 + l3r)21

(2 3 13)

(E lh'l)"

(2.3.r4)

ú - þ, (2o2ra1 + þt) - 3oar(a2 + al + o?)l(r - Bo[ - 6+

6 (ol + ó') l1 - (ó' + "')l@

_+
- 6ó2o7,) '

(2.3.15)

The proof of (2.3.15) parallel the proof of Theorem 2.3.2.

Note that when 4! : 6, orr:0, co:0, and or: 1, the l<urtosis of the process

converge to the one reported by Thavaneswaran et al.(2005) as follows.

7çtu)

2.3.3

3[1 -(c1 +l3t)'] >3. (2.3.16)
(1 -(o' +þt)2)-2o?

ARMA models with GARCH errors

For certain frnancial return series, the sample ACF of both the series and its square

exhibit signiflcant autocorrelation. In such cases, the time-varying nature of the

conditional ìrean âs well as time-varying conditional variance suggests that fitting

ARN{A models with GARCH errors, for example, would be more appropriate than
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fitting zero-mean GARCH models. In this section, we study identification methods

for stationary processes with GARCH errors.

Lemma 2.3.I For a uolatili,ty process of the t'orm

(2 3 17)

under th,e stat'ionarzty assumptzons that ldl < 1, and the e¿ symmetric i..i..d w,ith. mean

0, uariance o! and fi,ni,te eighth rnoments, then

,. \ n t. ,2 n (ef-r) nþ!)
(a) n\ut-tt) : 

1t_61 '

/h) K(u) _ E \fu, - t")ol _ lsO'z 
(n (eî_r) n¡ï)'z + nG?_r)n4Ð\ - ør)l

v ar(y¿)z L f r + ôz) (n (r,l_) ø(r?))' I '

(r) ff we assun'Le tltat e¿ - ¿.i.d.N(0,o!), then Elr?"1: !9!o'n and,ltence K(ù :
35-29ô2 

ç \t clt L¿r 2"(nl¡-

1+ ó,

Proof: '!tt- l-r: DËo üar-¡ where a¡: €!-f¿. Then, E(yr- lr)' : t'"Ðó'i :
,, j=o

,:t-, where o?": E(el_r)E(r?)
r-rV

E (y, - tt)n : ónE (y, - t")n + 6ó,8 (u, - tt)' E(€î_r)E(rï + ø(el-r)nþ!)

Then,

ñ / r4n tut - tt) : 
aÔ'z (n (eî-') ø(eÐ)7-! Pþ?ì,GÐQ - ø'z)

0-ó")(r-ón)

E 1fu, - t")n) luø' (n (rî-,) nGÐ)' + nlel-,)ø(ef)(t - þ,)
(I + ô') (n (ri-,) nGÐ)' 

I

V ar(y¿)2
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Palt (c) follows from the fact that when, Zt - N(0,1), then Elr?"): !9!o3'. SotLJ Z"(nl)"

thar, E(e!) :3ot and ø(e!) : t05af .

Note that when þ : 0 in (2.3.1'7), the kurtosis of the process y¿ t,rns out to be

35 as observed in Appadoo, Ghahramani and ThavanesiÃ/aran (2005).

The following lemma proved Ghahramani and Thavanes\Maran (2007), provides

an identification method for the kurtosis of a weakly stationary process through the

l<urtosis of the error tetm and the T/-weight representation of the {y¿i process. Part

(i) of the following lemma is a well-known result for the r/-weight representation of

stationary series.

Lemma 2.3.2 Suppose {y¡} 'is a second order I'inear stationary process h.auzng a

AtlA(mouzng auerage) representati,on of th.e form

At- Lr : lrÞ¡or-i, (2.3.18)
j:o

wh,ere a¿ 'is an uncorrelated noise process w'ith zero mean and, wth uarzance ol.

Then the uariance and the kurtos'is of y¿ are

co

(z) Var(y¡) : oZÐ tÞl and

(i,z) Iç@t

j:0

[- I -K@ lD_,þîl + 6':,þ?,þ?
LJ:u J '<t

(¿")'

where ¡ç@) ¿t the kurtoszs of a¡ andÐîorþî . *.
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Proof: Part(i)

Part(ii) follows

E(ar-p)n : E

follows from the fact that lhe a¿ are uncorrelated.

from the fact that

/æ \n oo æ foo
(Ð',t"",-t ) : "@Ð\,*j 

+a"2D,,1?',13 ++t 
I I {,1 o,-¡

\ ¡:o / ¡:o i<i L¡:o

E(yt - tt)n
n@t)Ð4;l+aolD,þ7,þ?

j=0 i< j

{E(v, - t')'}'
(2.3.1e)

The foliowing theorem due to Ghahramani and Thavaneswaran (2007), extends the

result of Thavanes\\¡aran et al. (2005) for a mean zero GARCH process to a stationary

AR\44(p, q) process with GARCH(P, Q) errors.

Theorem 2.3.3 For any second order stat'ionary process {yr} wi,th GARCH (P,Q)

errors gzuen by

ytu)

("zirt)'

U+-U

€¿

ht

Under sui.table

y@)

stationarzty cond'it'ions, kurtos'is i,s giuen bg

[- 'l -tçt'r I D,lil + 6D,þ7',þ?
Li=o I ¿.¡

l'Þi',-i
j:0
/--

t/ lltZt
PQ

, + I a¿e?_¿+lÞih,-i
i:7 .i=I

E(ZÍ)

(2.3.20)

(2.3.21)

(2.3 22)

(2.3.23)

(îrt
\i=o

y(e) : _

E(zî) - lÐ(zf)
co

- 1l \- \T/2^) lr - 1

+lrl,i"l-¡
j:0

where KG) ¿s gi.uen by
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Proof: The Proof foilows from Lemrna2.3.2 and the fact that a GARCH process

is an uncorrelated process.

Note: For an ARMA(p, q) process, when ?:0, Q:0, the theorem provides the

kurtosis of a GARCH(P,Q) process. Nloreover, when we set P : 0, and Q : 0, the

theorem provides the kurtosis of an ARMA(p, q) process.

2.3.4 Special cases of stationary processes \Mith GARCH er-
rors

In this subsection, we provide the moment properties of special cases of Theorem 2.3.3

that lrave been observed by Ghahramani and Thavaneswaran (2007).

Case 1: Consider an autoregressive model of the form:

(2.3.24)

lr'lrere ldl < 1, e¿ is a zero mean GARCH(P, Q) process given by expression (2.3.2I),

the conditional variance å¿ is given by (2.3.22) and Z¿ is an uncorrelated zero rnean

sequence with unit variance and finite fourth rloment. Let o! be the variance of {e¿}.

1 1 ó'Tlren y',, : d,Llf : ' \-,/,4 - 
=- 

an<ì f rtt?rttZ - a-1 I_ó2,2'r I_ö4 -?r¿Yj 0_ór)0_óo)j=o j:0 L<J

E(Z!)

E(zf)-lÛ(zÐ-11 Dü;
j=0

(2.3.25)

If we assume that Zt - N(0,1), and P : I and Q : 1 then the kurtosis of the process

is given by

y(u):i@þr,*G-ö,) (*)]
If r've assurne that Z¡ has a ú-distribution with u degrees of freedom, then

1çtu): î+Ð[ur,*0-ó,)( )]
(2.3.26)
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Case 2; Consider an ARN4A(1, 1) model given by

at - Lr ô(yt-, - p) + t¿ - 0€¿-1, (2.3.27)

where lól < I, e¿ is given by expression (2.3.9), the conditional variance å¿ is given

by (2.3.10) and Z¿ is an uncorreìated zero mearl sequence with unit variance and

finitefourthmoment.Leto!bethevarianceof{e¿}.Then'îr::#,
Á' L-8"

i-: : W. "",r Ë tr?,t? : +# . +#fuj=o ' i<j
Hence,

V ar(yr) : a(L-250+02)
(1 - Dl, a)Q - ó',)'

and

ytu) :",', (
(r-ó4)(ó-0)2+@-q4ó,

(1 + d,)(1 - 2ó0 + 02)2 )

r'vhere Þ¿ : a¿-l 13¿, i- 1,...,-R, and À : max(P,8).

2.4 Hidden Semimartingale Models(HSM) with GARCH
errors

Following Hamilton (1989) who models changes in regimes via Markov switching, we

consider the situation where the volatility is also changing. Buitding upon the ideas

developed by Abraham and Thavanesv/aran (1991) on state space forrnulation of non-

linear models to draw optirnal inference about the unknown parameters (see Granger
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(1998) for details)) we propose the estimating function method based inference

the proposed HSM of volatiiities.

2.4.1 Hidden Semimartingale Models

Consider the random. coefficient autoregressive(RCA) mode] given in Thavaneswaran

and Abraham (1988):

y¿ - 0¿f (t, F!-r) : €¡ (2.4.1)

r.vhere {d¿i is a more general stochastic sequence and /(ú,4'_r) ir a function of the

past. When 0¡ is a moving average (MA) sequence of the form

0t : 0+e¡*€t-t" (2.4.2)

rvhere d¿, e¡ ã,re square integrable independent random variables and {e¿} consists

of zero mean square integrable Gøuss'ian randorn uariables independent of {e¿}. In

this case n@rlpl-r) depends on the posterior rr€âil rrù¿ : E(€tlFY) and variance

'yt : E[(et - mt)2lf{) of er. Assume Ao : 0, then m¿ and y¿ satisfy the following

Kalman-like recursive algorithms,

(2.4.3)

(2.4.4)

and

^. __2It - ue -
f2(t, Fl-r)o!

oZ + f2 (t,F!_r) (o? + t?_r)

where % : o? and ms : 0. Hence , E(ytlFlì : (0 +m¿-1)f (t, F{_r) aîd E(h?l4y) :

o! + ¡2(t, pl-r)(o'" * 7,-r), where ht: Ut- E(yrlF!_r), can be calculatecl recursively.

Then the optimal estimating function turns out to be 9i : Ë htai-twhere,

E l(du d0) lFy_r)--EWIJ-
53
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Thus, the optimal estirnate is given bv

în: DT:"ai-ta,
Ð7:r"i-rf (t, F{-r)

where

f (t, Fl) Q + @m¿-11d0))

l"? + f, (t, Fl_r) (o? + t,-r)l

Since 7¿ is independent of d, the relation

l"?f'(t, Fl-r)Q + dmp/d0))

lo! + f, (t, Fl-r) ("? + t,-r)l

can be used to calculate this derivative recursively.

As can be seen from (2.4.3) anð, (2.4.a), the optimal estimate â, adopts a weighting

scheme based on ø.2 and o!. The superiority of the optimal estimate over the concli-

tional least squares estimate has been demonstrated in Thavaneswaran and Abraham

(1988). This shows that optimal inference for RCA models and HSTVI models can

be studied using the estimating function method. Later we show that a GARCH(p,

q) model for y¿ could be written as an ARMA(., q) for y2, and hence one coulcì

study the optimal inference by combining estimating functions as in Thompson and

Thavaneswaran (1999).

Hamilton (1989) used lvlarkov switching to detect changes between positive ancl

negative growth periods in the economy, using a Hidden Niarkov Nlodel (HMM) of

the form

!¡ : rL¡ * €¡, (2.4.5)

t: I,.. . , Z, wheLe e¿ is a zero mean ARIlvlA(r,1,0) process and n¿ (the trend term)

is a landom walk with drift that switches between two values os and a6 * a1. That

dm,

-:-d,0



lSt

r4: T4-r f ao * ar^9¿, (2.4.6)

t -- I,...,T, depending on whether the unobserved state of the system ,S¿ is in

state 1 or state 0. Furthermore, transitions between the states of 
^9¿ 

is assumed to be

governed by the Markov process with: p¿, : Pr(S¿¡1 : jlSt : i). Let the steady-state

probalriÌitiesbedenotedbyzr : Pr(S¿:1) and 7-n: Pr(S¿:0) respectively. The

follorving lemma gives the corresponding semimartingale form of the binary process

st.

Lemma 2.4.7 Let S¿ be defined as ,in (2 1, 6) Th,en S¿ has tl¿e following form:

S,*r-r:d(St-r)+V¿¡1, (2.4.7)

where d: Corr(St+l,,S¿) : pn - pü and,V¿ is a sem,imart'ingale wr,th EIV*rlSr:

i] : 0 and V arlV¿*tlSr : i] : prr(I - p¿¿),'i : 0,1.

Proof: Let ¡r': (1 * r r)' and let P denote the transition probability matrix. The

steady-state probability 7r : E(^9,) : Pr(S¿ : 1) found by solving the Chapman-

Kolmogorov equations r'P : n' is r : ., Pl' . The variance of S¿ is Var(S¿) :
Pot I Pn

E(S?) - 12 : r(I - r).

The correlation between ,9¿ and ,9¿..1 follows by observing that Cou(S¿,Sr*r) :

E(SrSr*r) -'rT2: Pr(S¡:1,S¿+r - 1)- 12: Pr(St+r:1lS¿: i)Pr(S¿ :I)-n2:

l)¡7r - 1T2 .

LetV¿¡1: S¿+r -r-d(S¡-a) andletz:0. Then, E(V+rlSr:0) : E(Sr+rlSr:

0)-"Id,n:Por-Por:0.
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o)

(1

(1

Var(V¿a1lS, : 0) : Var(S¿¡1 - dstl&: 0) : Var(S¿¡11S, : 0) + dzVar(S¿lSt :

-2dCou(S¡*r,S,lS, - 0) : E(S?*rlS,:0) - E'(Sr*rlS,:0) :por(1 -por) :

-poo)poo.Using the same reasoning E(V*rlSr:1) :0 and Var(V¿¡1lSr: 1) :

- Pn)Pt'

It is of interest to note that for the usual continuous space AR(1) process At- þ:

ó(Ut-, - I,L) + a¿, Var(a¿lyr-t) : ol, that is, a constant.

2.4.2 HSMs with GARCH Errors

Snppose the observed time series is obtained from the process Ut: rLt*e¿, where e¿ is

a.zero mean GARCH(7:, q) process as in (2.3.4), (2.3.5), andn¡ (the trend term) is a

senritrrartingale as ín Q.a.6). This model is of interest when the conditional variance

of the series is changing and the trend term switches between two states such as

contraction and expansion in the economy.

In order to calculate the variance and kurtosis for a HSM with GARCH errors in

terms of the ry' weights, we have the following theorem.

Theorem 2.4.7 For the HSM process for trend, speczfiedbg (2.1.6), (2.1r.7), (Z Z 1),

and (2.2.2), under th,e assumptzons of stati,onari.ty and f,nite fourtlt mornent, the

kurtos'is KG) of tlte process is giuen by:

(a) NG) : E(Zî)
E (2,^) - tE (zî) - r)DË|,þ'¡',

(b)rheuar,ianceofthee!processzs1fi":f,ü,,,,whereo|:&Wo,o
j=o /Jj=o v/ j

¡-tr, : E(el.)
1 - Õr - Õ2 -...- (ÞR'

.R: max(P, Q),

(c) Let p.i and o2* denote the mean and uariance of n¿ condi,ti,onal orlTLs, respectzuely
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t-1
Th.en ¡-ti:no:_ (as+7ra1)t and,ol: a?r(I-r)lt+2t(ú - j)d.il

j:r

(d) When Z¿'is Gaussian, KG) or¿ 6tu) are greater than 3.

Proof: Proof of part (a) somewhat parallels the proof of Theorem 2.1 in Tha-

vaneswaran et al.(2005) for kurtosis. Part (b) follows from the ARMA representation

ejor €i.

The proof of part (c) follows by using the fact that B(S¿) : Tr and Var(Sr) :

,r(7 - n) in equation (2.4.6). Then using the fact that n¿ - rL¡ : ast I ù1Di=, S*

the results for rnean and variance follow. We note that since S, *as shown to have

an AR(1) representation, the process has autocorrelation function px : dk where

1o(t + 2(t

Note

Note 2:

- r)p' + 2(
¿-1

L: \ai :
J:T

t-l /
Yi¿i:(
i=I \

d: pr, - pot. Also, we use the fact that since ^9¿ is stationary, Var(ltr:rS*) :

t - 2)p, + ... + 2pt-t), where % -* Var(S¡).

/r-dt \t__11.
\1-d /

-¿d¿-1(1 -d) +(1 -d¿)\
Q-dY )

Part (d) follows from the fact that for any conditionally Gaussian GARCH process

etlFf-t, nGÐ : EE(elle¿-1) : EzlE(ellrr,t)l' :3ElU(e2rler-r))' /s@ln@llr,-,)l)' :
z(E(e!)'z).

in analogy with the RCA example, using the combination theorem given in Thomp-

son and Thavaneswaran (1999), we can make inference about the model parameters.
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2.5 Autoregressive Conditional Poisson(AcP) mod-
els

In this section, some results in Abraham and Thavaneswaran (1991) are extended to

ACP models. The ACP model was introduced by Heinen(2003) to deal with issues

of discreteness, overdispersion and autocorrelation of count data such as the daily

nurnber of price change durations of 0.75$ on IBM stock. A 0.75$ price- change

duration is defined as the time it takes the stock price to move by at least 0.75$.

The variable of interest is the daily number of such durations, which is a measure of

intradaily volatility (see Heinen(2003) for details). The result of Heinen(2003) for

ACP (1,1) is extended to ACP(p,g) models, by using a martingale transformation.

2.5J Moment properties of ACP models

Let N¿ denote the time series and let FrN denote the ø-field generated by observations

up to and including time ú. The conditional distribution of 1y'¿ is assumed to follow a

Poisson distribution,

¡f, 
I 
f,{ t - Poisson(/-¿¿) (2.5.1)

lvith an autoregressive conditional intensity as in the conditional variance in the

GARCH model of Bollerslev(1986) and as in the ACD model of Engle and Rus-

sell(1998):

(2.5.2)
t:1

for positive a¡'s, p¡'s and ø. This model is known as the Autoregressive Conditional

Poisson (ACP) model and using a martingale formulation we study its moment prop-

erties.

Etlrr,|F,ry,] : þt: , *Ð,a¿Nt-¿ +f Þ,ur-,,



Nt - ut :, +Ða¿Nt-¿+\Þi(Nt-j - ut-j),
i:7 j:r

ó(B)Nr: a+B(B)u¿

where, ó(B):1-i ôrB', ô¿:(ar+þ¿), P(B):1-É

Thus, \ve see that both models specify the conditional distribution of the observed

process given past values and model the conditional mean or conditional variauce or

possibly both in a time-varyiug manner. Let, u¿: ¡y'¿ - Bll/rlFrryt] : ¡úú - ¡;¿ be the

rnartingale difference and let ol be the variance of u¿. Then (2.5.1) and (2.5.2) could

be written as:

q). Under stationarity assumptions sirnilar to Assrimptions 2.1

models, 1/¿ has an ARMA(I, q) representation.

(2.5.3)

B¿Biandr:max(p)

and 2.2 for GARCH

The zis are uncorrelated with mean zero and finite variance and that the 1/¿

process is weakly stationary. In this case, the autocorrelation function of N¿ will be

exactÌy the same as that for a stationary ARMA(r, q) rnodel. In orcler to calculate the

moments and autocorrelation function for an ACP process in terms of the ry'-weights,

the following theorem will be useful.

Theorem 2.5.7 For the ACP (p, q) process speczf.ed by (2.5.1) and (2 5.2), under

the assuntpti,on of statzonartty, the moments of the process, as uell as tlte autocorre-

Iati.on functzon o,nd tl¿e uariance of the l-steps ahead forecast error are gi,uen by tlte

followi,ng:

(o) p: E(N,)
r -tit'(,',)(o¡ + þi) r-ó,,-"'-ö, ,wherer:mar(p,q).

(b) The uariance of the process zs 7fl : "?îrþ 
: pîü, where ¡,t :

j:0 j=o

i.=1
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(c) The k-lag autocorrelat'ion of N¿ i,s oY :D?:':X'þt
2-¡:o V¡

(d) Let e.(I) : Nn+t - E(N,+tlfd) be the minimurTL rnel,n square error l-s.teps ahead,

¿- I

forecast error. Then tl¿e uariance of e,(t) i;s gi;uenbyVar(e.(t)) : lrL,rl?
j:o

Proof: Part (a) follows from observing

E(¡/,) :EE(¡i¿lF¿{,) : E(lr,) :u* I"ru(t-¡) +I0¡Ð0"r-¡)
j:1 j:1

Assunring N¿ is stationary with E(pt) : E(Nr) : ¡-r,, and solving f.or ¡.t,, the result

folÌows.

Part(b) follou's from the ARlvlA representation of N¿ and by the properties of the

martingale differences uls. Namely, ?L¿: l{, - ¡.r¿, where E(u¿) :0, ol: E("?),

pt: E(NtlF¿{1) and, moreover, "l: ø1w!) - n0"ï,Var(N¿): E(pÐ - þP + p.

ThLrs, E(Nf ) : n}"?)*¡r. Finatly, o?.: E(pÐ+ p- ø0tÐ: p and hence, Var(Nr) :
\-æ t)

F L¡=oVj.

Part (c) is due to the moving average(N4A) representation of l/¿. Part(d) fbllows

from the fact that for a stationary ARMA process with error variance ol, V ar(e.(L)) :

o'z"(t + rþ? + ... + rþ7ì and since o? : p.

It is of interest to note that part (a) of Theorem 2.5.1 was previously observed by

Heinen (2003). Parts (b) - (d) are however, new results. Heinen (2003) had previously

observed the special cases of parts (b) and (c) demonstrated in the following example.

Example 2.5.! In particular, for an ACP0,1) model,

(i) the uncondi.tional mean i.s gi.uen by E(N¡) : lr:

60

1-(or*þt)'



(ä) the unconditional uariance is equal to

Var(N¡):02:ffir-r,

(äi) the uncondit'ional autocorrelatzon of tlte ACP0,7) model i,s gi,uen by

p{ : (a,* o,ru-,7!6ffifl,, k> r

Thzs also Ìtolds for alL rnodels with mean equat'ion gi.uen by (2.5.2), such that

Pt- a?

¡/, 1-("r+l3t)2+a?'

(iu) The uariance of th.e l-steps ah,ead forecast erroris gi,uen by

/ _ ^,r1 
_ (ar + 0r)2(¿-r)\Var(e"(L)):p(I\ - *'-T=T;r + PJ¡- )

for I > I. The mean, uariance and autocorrelat'ion functzon turn out to be tlte same

ones g'iuen by Heinen(2003).

The martingale transformation allows us to extend the result on the autocorrelation

structure without calculating covariances as in Heinen(2003).

2.5.2 Doubly Autoregressive Poisson (DACP) Models

Heinen (2003) extends the ACP model specified by (2.5.1) and (2.5.2) to allow for

conditional over-dispersion using the Double Poisson (DP) distribution (See Efron

(1986) for more details). That is, conditiona,l on the past,

¡rl,1ril, - DP(pt,t), (2.5.4)

and ¡.t¡ is specified as in (2.5.2). Efron (1986) shows that the mean of the Double

Poisson is ¡;¿ ancl that the variance is approximately equal to þ. Let u¿ : ¡y'¿ -1

61



E(N,lFr{r) be the martingale difference. Following assumptions similar to those

made for the ACP model in Section 2.5,ft is easy to show that the DACP model has

an ARIVIA representation. Using the ARMA representation, the following theorem

allows us to calcuÌate the mean and variance of the DACP(p, q) model in terms of

y'r-weights.

Theorem 2.5.2 For the DACP (p, q) process speczf,edby (2.5.1 and (2.5.2), under

th,e assumptzon of statzonarity, as well as the autocorrelatzon functzon and the uariance

of the l-steps ahead forecast error are gi,uen by the following:

(o) tt: E(Nt) :
r -Ðl:3'('")(o¡+ þ¡) 7- ór-...- ó,'

where r: mar(p,q).

(b) The uariance of the process zs 7fl : o',Ðrþ3 : :Ðrü, where ¡-t :
J=o ' .i=o

(c) Th,e k-lag autocorrelation of N¿ i,s p{ : DËo'þ¡*u'þ¡
SOO t,
lJj=O Y j

(d) Let e,(l): N'+t- E(N".+rlFl) be the m,inirnummean squ(Lre errorl-steps ah.ead,

I_I

forecast error. Th.en tl¿e uariance of e,,(t) ,is g,iuen byVar(e,(I)) : 4 f ø?-Yu
' j:0

The proof is similar to the proof of Theorern 2.5.1.

In the next section, volatility model identification using the kurtosis and the au-

tocorrelatiou structure of the squared process are studied in simulation studies.

2.6 Simulation Studies

In this section, the moment properties of the following volatility models are examined:

normal-GARCH, t-distribution GARCH, and two simple volatilit¡' models discussed

in Appadoo, Ghahratlani and Thavaneswaran (2005). The comparison witl be made

r-Q,'-"'-ô,

62



on the basis of sinulating from each process) fitting the corresponding model

comparing the estimated moments with the empirical moments.

Case 1:(GARCH(1, 1)) In this example, we consider the process

: ,/h, zr,

a+a¡yl-r*/tht-t,

where Zt - N ID(0,1) or Z¿ follows a standardized ú-distribution with 5 degrees of

freedom. The model parameters are a :5.3 x 10-7, ar : 0.0057 and Ér : 0.9381,

and r,ve generated GARCH(1, 1) processes of size n : 1000, 5000, 10, 000, respectively.

EacÌr simuÌation was replicated five hundred times. For the normal-GARCH(1, 1)

model, the empirical kurtosis and the estimated model based kurtosis are reported in

Table 2.5. For tire ¿5-GARCH(1, 1) model, the empirical kurtosis and the estimated

model based kurtosis are reported in Table 2.6. For these GARCH(1, 1) rnodels,

the model based kurtosis explains the empirical kurtosis. Furthermore, the estimated

kurtosis is a consistent estimator for the kurtosis parameter in both cases.

Estimator n:1000 n:5000 n:10,000
11tu) 3.0132 3.0031 3.0022

(0.0004) (0.00002) (6.31 x 10-6)
Empirical kurtosis 2.9885 2.9984 3.0006

(0.02257) (o.o04e) (0.0027)

Table 2.5: Empirical and
GARCH(1, 1) model in Case
y(u) :3.0020, w :5.J x 10-7

and

Ut

ht

estimated model based kurtosis for the normal-
1. The MSE of the estimators appeil in parentheses.

, (tt:0.0057, p1 : 0.9381.
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Estimator n:1000 n:5000 n:10,000
9.09 9.03 9.02

(0.013) (0.0017) (0.0008)
6.09 6.92

(10.72) (6.24)

Table 2.6: Empirical and estimated model based kurtosis for the ú5-distribution
GARCH(I, 1) model in Case 1. The MSE of the estimators appeff in parenthe-
..r. ¡1(u) - 9.1, a : S.Z x 10-7, ar : 0.0057, þt:0.93g1.

Case 2: Consider the model At : €?-.et, where e¿ is an uncorrelated N(0, 1) sequence.

The moment properties of this model were previously studied in Appadoo, Ghahra-

mani and Thava,neswaran (2005). We generated n : 1000,5000,10,000 realizations

frorn this model five hundred times and calculated the median sample kurtosis and

rnedian sample first lag autocorrelation of the squared process. The estimate and

its corresponding median absolute deviation(MAD) are reported in Table 2.7, The

median and NIAD were chosen as estimators and a measure of spread as the sampling

clistribntion of þvr' anc), the empirical kurtosis are skewed.. For large sample sizes, þur'

and the empirical l<urtosis are useful for identifying this model.

Estirnator p! n:1000 n:5000 n:10,000
0.1175 0.1092 0.1131 0.1i95

(0.0735) (0.0411) (0.0372)
Estimator K\a) n:1000 n:5000 n:10.000

Empirical kurtosis 35

ytu)

Empirical kurtosis 7.r8
(5.05)

pi

24.29 29.8I
(1e.01) (10.76)

3r.25
(e.63)

Tab\e2.7: SarnpÌe moments of p!r' and. Kfu) for the moclel in Case 2. The NIAD of
the estimators appears below in parentheses.

Case 3: Consider the model Ut : €t-t€t, where e¿ is an uncorrelated N(0,1) se-

qlrence. The moment properties of this model were previously studied in Appadoo,

Ghahramani and Thavaneswaran (2005). We generated n : 1000,5000, 10,000 real-
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izations from this model and calculated the mean sarrple kurtosis and sample first

lag autocorrelation of the squared process. The mean value of each estimator and its

corresponding MSE are reported in Table 2.8. As the sample size increases, estimates

of. pur" and. the empirical lcurtosis become usefui for iclentifying this mocìel.

Estirnator pur- n:1000 n:5000 n:10,000yl /ú - avvv tú 
- 

¿vww ,, 
- 

lv) www

pi 0.25 0.2400 0.2505 0.2465
(0.0044) (0.0013) (0.0005)

Empirical kurtosis I 8.46 8.78 8.92
(2.06) (0.8456) (0.4145)

Tabìe 2.8: Sample moment estimates of p!' anc). y@) ¡o, the moclel in Case 3. The
I\4Str of the estimators appears below in parentheses.

In the next sectiou, we study the moment properties of two recently proposed non-

linear GARCH models. The Heston and Nandi GARCH model and Inverse-Gaussian

GARCH model add flexibility to the class of GARCH models by incorporating condi-

tional leverage in the forrner model and conditional leverage and conditional skewness

in the latter model.

2.7 Nonlinear GARCH Models

In this section, we study the moment properties of two classes of non-linear GARCH

models. The Heston and Nandi (2000) GARCH (H\I-GARCH) model is similar to

the GARCH-in-N4ean (GARCH-IvI) model of Engle, Lilien and Robins (1987) in that

it relates the conditional variance to the return of the process. By fitting a rnodel

r'vhere the return is regressed against the conditional variance, the researcher is able
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to test the hypothesis that returns are higher whenever there is increased volatil-

ity. The leuerage effect pertains to the concept that an asset's returns may becorne

rnore voiatile whenever its price decreases. The Exponential GARCH(E-GARCH)

model due to Nelson(1992) was designed to model the leverage effect. N4oreover, it

is possible to fit an E-GARCH in mean or E-GARCH-M model in order to account

for the presence of both conditional leverage and to explain the correlation between

returns and conditional variance. Now call prices are nothing more than discounted

expected payoffs under the risk-neutral measure. Numerically, the expected payoffs

obtained by using the class of linear GARCH models are non-tractible integrals that

have been evaÌuated using either simulation or through numerical approximation;

(See the NGAR.CH model of Duan (1995) and Duan and Simonato (200i)). Call

pricing formulas that use the HN-GARCH model for volatility are however, analyt-

ically tractible. It is this tractibility that has rendered the HN-GARCH model to

be widely used. To date, the Heston and Nandi (2000) paper has received over one

thousand citations.

Christoffersen, Heston and Jacobs (2006) extended the HN-GARCH model by

allowing conditional skewness to be modelled as well. Just as with the HN-GARCH

tnodel, the option valuation expression of Christoffersen et al.(2006) is analytically

tractable.

À4odel identification for the HN-GARCH and IG-GARCH rnodeÌs remains an open

problem. In this section, we provide identification methods that provide researchers

insight as to when a non-linear GARCH model should be fit as opposed to the usual

class of linear GARCH models.
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2.7.I HN-GARCH(1, 1) Models

Consider the Heston & Nandi (2000) GARCH(I,1) (HN-GARCH(I,1) model given

by the following:

. /Sr"t \t"*(r,) rrÀh¿+JhtT (2.Tr)

h, a -t a.(Z¿-t - -ytJn*r)' I þtht-t, (2.2.2)

where Zt - N I D(0, 1), r is the risk-free rate and ,S¿ is the price of the stock or asset

at tirne ú. Assunring stationarity, it is easy to show that E(å.¿) : ; 7;l .o'u ,.1 - (,tlt +'Yiat)

The HN-GARCH(1, 1) rrodeÌ does not model conditional skewness but does model

conditional leverage. Let E¡-1 denote a conditional expectation operator and let

Cov¿ denote a conditional covariance operator. The conditional skewness of a HN-

GARCH(1,1) process is given by the following:

.1_ ___ / ., Er-r(y, - Er-r(yr))3 Er-t(y¿ - r - Àh¡)3 Er-r(ul) Er-r(h3r/'zZl)
òKew¿(v¿) -----dr- ---Er- -E- : 

--¡r---,-. 
: r.

since Z¿ - NID(0,1). However, the conditional leverage is non-zero since

Cov¿(y¿,h¡¡1) : Cov¿-1(Àh¿ + \EtZt,ht+)

: ÀCov¿-1 (hr,hr*) + Cov¿-1jf h¡Zr,hrnt)

: ÀCov¿-1(h¿,ay(Z¡ - 'n\ñ)z + þthù

+ Cov¿-1 (Jhrzr, at(Zt - nJlù' + þth)

: À[Cov¿-1(å¿ , prhr) * alCov¿-1 (hr, Z7 - 2yZ¿1/la + 7?)]

+ Cov¿-1 ¡1/ nrzr, 
"r(Z? - zlrf hrz, + .y?hr) + l3thr)

: -2a111Covr-rç1/hrzr, Jnrz¡

: -2a111h¡,
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iVlodel Q1 1t
HN-GARCH(1,1) 4.939x10-b 1.579x10-b 9.062x10-b 785.3 -0.5
GARCH(I,1) 4.960x10-7 7.3x10-2 0.925 0 -0.5

Table 2.9: Parameter estimates from a normal-GARCH(1,1) frt and a HN-
GARCH(1,1) fit. The table is adapted from Hsieh and Ritchken (2000).

since E(ZI) : 1.

Example 2.7.L Comparison of normal-GARCH(l,I) and HN-GARCH(1,I) param-

eter est'imates

Table 2.9 (taken from Hsieh and Ritchken (2000)) gives parameter estimates from a

non-zero nrean nornal-GARCH(l, 1) model fit and a Hlrl-GARCH(l, 1) modet fit. The

| 4960 " 10-estimateor1fE(h,)obtairledfrornfittirrgatrortna1-GARCH(1'1)mocleIt'/fu:

0.0157. The estimat 
" 

ot 1[ffi obtained from fitting a HN-GARCH(1,1) moclel is

I +.gg9 v 1g-o + 1's79 x 10-6./ _nn1Éo

! t - 9.062 x 10-6 - (1.b79 x 10-6)(z8b.sr)

t^
TIre estimates of I n(nt) do not differ, however, the conditional leverage wor-rld not

be accounted for by the normal-GARCH(l,1) model.

It is of interest to note that while a GARCH-in-mean (GARCH-M) rnodel has

the same conditional mean structure as the conditional mean structure of the HN-

GARCH model, neither conditional leverage, nor conditional skewness are modelled

by the GARCH-in-rrean model. To see this, consider the GARCH(1,1)-M modet for

the log return process At : Iog(*) , where ,9¿ represents the stock price at time

D
P1
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ú, given by the following:

At

€+

hL

61/ h, + er,

f 42,,

a*a1e!-r*þtht-t,

where 4 - N I D(0, 1). This model differs from the usual GARCH model in that the

conditional mean is time-varying as E(y¿lfï-r) : 6t/ñ. However, the presence of

conditional slçewness and conditionaÌ Ìeverage are not modelled by the GARCH(1,1)-

N4 model. Let Skew¿ denote conditional skewness of the GARCH(I,1)-lVI process.

Then we have the following:

cr-^... - 
E,-t(a,-lLr@ùt 

-EL-t(vL-ð\/ht)3 -E,-r(rî) -n?/2nØl) -nvrrv,r / h3/z h?/, ht/, h?./, - u'

s\nce Z¿ - ¡ú(0,1).

Empirically, the presence of conditional skewness for a volatility process would

be reflected by the presence of significant lags in the sample ACF of plot of the yr3

process. The GARCH(1,1)-lvl process does not modei a conditional leverage efiect as

Cov¿(y¿,h¿*1) : Cov@ffi + 1/t4zr, hr*rlTl-r)

cov(f 4@ -t Zt),a1tr¡Z!lF{_r)

: 
"rnt,/, 

nlzflE!_r) : 0,

since Z¡, - N1D(0,1). Empirically, the absence of leverage can be observed by the

Iack of significant cross-correlations in the Cross-Correlation Function (CCF) plot

between the observed series and the sqliare of the observed series.
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2.7.2 Simulation Study

\A/e study the consequences of fltting a normal-GARCH(1, 1) model to a HN-GARCH(1, 1)

model in a simulation study. We also simuiate from a normal-GARCH(l,1) process

for comparisorl purposes. Specifically, 6000 observations are simulated frorn a normal-

GARCH(1,1) modelwithparametersø:5x 10-6, Ér:0.589 and a1 :L32 x 10-6

and 6000 oìrservations are simulated from a HN-GARCH(1,1) model with parame-

ters: ø :5 x 10-6, Ér :0.589, at: I.32 x 10-6, 'y:42I.39, r:0.00019, À:0.205.

These val.ues are the fitted values obtained in Heston and Nandi (2000). The CCF

plot between the normal-GARCH(1, 1) process and its square fails to indicate the

presence of any systematic cross-correlation at the first lag as observed in Figure 2.6.

Hence, there is an absence of conditional leverage in a normal-GARCH(1, 1) modei.

On the other hand, just as with linear GARCH models, the sample ACF of the

HN-GARCH(1, 1) process shows no autocorrelation while the sarnple ACF of its

squared process shows the presence of autocorrelation (See Figure 2.7). The absence

of conditional skewness is demonstrated by the absence of significant autocorrelations

in the sample ACF of fhe y! process (See Figure 2.8). The CCF plot between the

HN-GARCH(i, 1) series and the squared HN-GARCH(I, 1) series indicates that

these series are negatively correlated and therefore conditional leverage is present

(See Figure 2.9). A normal-GARCH(1, 1) model is fit and the model seems to be

adequate as the Ljung-Box tests of white noise of the standardized residuals and the

of squared standardized residuals have p-values 0.8384 and 0.3472, respectively. For

other diagnostic plots of residuals from the normal-GARCH(1, 1) fit see Figures 2.10

(where the ARCH effects are absent) and Figure 2.11 (where the residuals are normal).
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Cross Correlat¡on

0204060
Lags

Figure 2.6: Cross-correlation function between the series and the squared series for
the data simulated from a norrnal-GARCH(l,1) model with pararneters ø : 5 x 10-6

,6r : 0.589, at:7.32 x 10-6.

However, the CCF plot in Figure 2.12 of the standardized residuals and the squared

standardized residuals indicates that the normal-GARCH(1,1) is unable to account

for the leverage effect in the simulated HN-GARCH(1,1) process.

In the next section, the mornent properties of another nonlinear GARCH model

are studied.
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ACF of log return process ACF of squared log return process

I

Figure 2.7: Sample ACF of log return and squared log return of a HN-GARCH(1,1)
modelwithparametersØ:5x 10-u, þ,:0.589, at:7.32 x 10-6, -,1 :421.39,
r:0.00019,À:0.205.
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ACF of cube of log-returns
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Figure 2.8: ACF of the cubed series for the data simulated from a HN-GARCH(1, 1)
nrodelwithpararnetersø:5 x I}-u, þr:0.589, at.:7.32 x 10-6, j:427.39,
r:0.00019,À:0.205.
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Cross Correlation

tr

0204060
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Figure 2.9; Cross-correlation function between the series and the squared series for
tlre data simulated from a HN-GARCH(I, 1) model with parameters a : 5 x 10-6

,6r : 0.589, at:7.32 x 10-6 ,'y :421.39, r : 0.00019, À : 0.205.
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ACF of std. residuals ACF of squared std. residuals
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Figure 2.10: Sample ACF of the standardized residuals and the squared standardized
residuals of the rormal-GARCH(1,1) model fit to the HN-GARCH(1,1) simulated
data. The data is simulated from a model with parameters c{., : 5 x 10-6, ,6r : 0.589,
cvt : I.32 x 10-6 , j : 42I.39, r : 0.00019, À : 0.205.
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QQ-Plot of Standardized Residuals
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Figure 2.11: QQ-plot of the standardized residuals of normal-GARCH(1,1) modet fit
to the simulated data from a HN-GARCH(1,1) model with parameters c{, : 5 x 10-6

,6r:0.589, at:I.32 x 10-6 ,i:427.39, r:0.00019, À:0.205..
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Cross Correlation
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Figure 2.I2: Cross-correlation plot of the standardized residuals of normal-
GARCH(1,1) model fit to the simulated data from a HN-GARCH(1,1) moctel with
parameters a : 5 x 10-6, Éi : 0.589, et : 1.32 x 10-6, ? : 42L39,r : 0.0001g,
À : 0.205.
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2.7.3 GARCH models with conditional skewness

In this section, the Inverse Gaussian GARCH (IG-GARCH) model of Christoffersen et

al.(2006) is discussed. The classical inverse Gaussian distribution denoted as IG(¡.t., À)

has the following density.

r@; t", Ð : #"", (-+{), r > o

where ¡.t > 0 and À > 0. The IG-GARCH model due to Christoffersen et al.(2006)

Lrses a standardized one-parameter Inverse Gaussian distribution. Details on random

number generation from the one-parameter Inverse Gaussian distribution are given

in Appendix A'.1.

The following dynatnic rnodel proposed by Christoffersen et al. (2006) specifies

returns on a spot asset price at time ú, ^9¿, and the conditional variance of return

ht+t:

(2.7.3)

(2.7.4)

(2.7.5)

loS(,S,*r/S,) : r * uh¿¡1 I rlyt+t

h*t : a*bht+cy1+"h?ly,

rvhere, given the available information at time t, At+t has an inverse Gaussian condi-

tional distribution with degrees of freedom parameter ô¿+ r : hr*, I ,l' . r is the risk-free

rate.

Neither the normal-GARCH(l,1) model, nor the GARCH(I,1)-Vi model ade-

quately model a process with time-varying conditional skewness and conditional lever-

age. We sirnulated 6000 observations from a IG-GARCH(I, 1) process and found that

after fitting a normal-GARCH(1,1) model to these data, the cross-correlation func-

tion between the residual process and the squared residual process contained signif-



icant autocorrelations indicating the presence of conditional leverage. Furthermore,

the sample ACF of the cube of the iG-GARCH(1,1) process contains significant

autocorrelations which indicates the presence of conditional skewness. The model

parameters we used were the following: r : 0.00019, u : 7625, r7 : 6.162 x 10-4,

a : 3]68x 10-10, b : -19.33, c : 4.I42x 10-6, a : 2.472x 107. These model param-

eters are similar to the parameter estimates obtained in the paper by Christoffersen

et al. (2006). W" begin by examining the sample ACF of the process and the squared

process in Figure 2.13. Both processes are time-varying. The CCF plot between the

log return process and the squared log return process in Figure 2.74 conoborates this

fact.

A normal-GARCH(1,1) model is fit to the simulated IG-GARCH(1,1) data and

the adequacy of the fit is examined. This model fails to be adequate as the p-vaiues

of the Box-Ljung test of white noise for the standardized residuals and the squared

standardized residuals are less than 0.001. The non-normality of the residuals is fur-

ther iìlustrated in their QQ-plot in Figure 2.16. The presence of significant lags in

the sample ACFs of the standardized residuals and the square standardized residuais

in Figure 2.15 again show that the normal-GARCH(1,1) model fails to provide an

adequate fit for an IG-GARCH(1, 1) process. In addition, the presence of signifi-

cant cross-correlations between the standardized residuals and the squared standard-

ized residuals in Figure 2.I7 once again demonstrates that the norrnal-GARCH(1, 1)

model fails to be adequate for this data.

The presence of significant cross-correlations between the observed log return pro-

cess and the squared log return process suggests a non-linear GARCH model is more
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Modei cond'l mean
changes

cond'l variance
chanqes

cond'l skewness
changes

cond'l leverage
changes

GARCH(1,1)
GARCH(1,1)-NI
HN-GARCH(1,1)
IG-GARCH(1,1)

No
Yes

Yes

Yes

Yes

Yes

Yes

Yes

No
No
No
Yes

No
lVo

Yes

Yes

Table 2.10: Characteristics of some linear and nonlinear GARCH models.

appropriate than a linear GARCH model. The presence of significant autocorrela-

tions in the sample ACF of the cube of the process, suggests conditional skewness.

The IG GARCH model nests the HN-GARCH model and should be used to account

for both the presence of conditional skewness and conditional leverage.

Table 2.10 summarizes the difference between linear and non-iinear GARCH mod-

els.

2.8 Conclusions

The moment properties of the class of GARCH models and RCA model have been

stridied. Nzloment properties of extensions of GARCH models that allow for time-

varying mean as weli as time-varying variance have also been studied. In particular,

for the extended class of GARCH models, the kurtosis of the observed process has been

shown to be related to the kurtosis of the error process. The moment properties of a

new class of models developed for autocorrelated count data have been studied. This

new class of models known as ACP models has been shown to share certain properties

with the class of GARCH models allowing for simplified derivations of the moment

ploperties derived in Heinen (2003). The moment properties of a voiatility model that

accounts for structurai change caused by a lvlarkov process have been studied. Using
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ACF of log return process ACF of squared log return process

20

Lag

Figure 2.13: Sample ACF of log return and squared log return of a IG-GARCH(1,1)
model with parameters r : 0.00019, u : 1625, n : 6.162x 10-4, a : 3.768 x 10-10,
b : -19.33, c : 4.1.42 x 10-6, a : 2.472x 107.

simulation studies, moment properties have been shown to be useful for GARCH

model identification The sample CCF plot between tlie lagged log-return process and

the square of the process has been shown to be useful for identifying the presence of

conditionaÌ leverage. The sampìe ACF plot of the cube of the log-return process has

been shown to be useful for identifying the presence of conditional slcewness. The

presence of conditional skewness in addition to the preserìce of conditional leverage

suggests that the IG-GARCH model of Christoffersen et al. (2006) would be more

appropriate than the the usual GARCH model or the HN-GARCH model of Heston

and Nandi (2000).

r0 20 30

Lag
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Cross Correlat¡on

0204060

Figure 2.14: Cross-correlation function between the series and the squared series for
the data simulated from a IG-GARCH(1,1) model with parameters r : 0.0001g,
u : 1625, T:6.762 x 10-4, u:3.768 x 10-10, b: -1g.33, c:4.142 x 10-6,
a -- 2.472 x 107.
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ACF of standardized residuals ACF of squared standardized residuals
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Figure 2.15: Sample ACF of the standardized residuaÌs and the squared standardized
residuals of the GARCH(I, 1) model fit to the IG-GARCH(I,1) simuiated data. The
data is simulated from a model with parameters r : 0.00019, u : 1625, T :6.762 x
10-a, a: 3.768 x 10-10, b : -19.33, c:4.142 x 10-6, a:2.472 x 107.
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QQ-Plot of Standardized Residuals
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Figure 2.16: QQ-plot of the standardized residuals of the normal-GARCH(1, 1) model
fit to the simulated data from a IG-GARCH(I, i) model with parameters r : 0.00019,
u : 1625, \ :6.162 x 10-4, ø : 3.768 x 10-10, b: -19.33, c: 4.142 x 10-6,
a:2.472 x 107.
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Cross Correlation
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Figure 2.17: Cross-correlation plot of the standardized residuals of GARCH(1,1)
model fit to the simulated data from a IG-GARCH(I,1) model with parameters r :
0.00019, u : 1625, T : 6.I62x 10-4, u : 3.768x 10-10, b : -19.33, c : 4.I42x 10-6,
a:2.472 x 107.
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Chapter 3

Applications of Combining
trstimating F\rnctions

In this chapter, estimating functions are combined to obtain estimates with smaller

rrean square errors. In Section 3.1, we state the Combination theorem due to Thomp-

son and Thavaneswaran (1999) for combining non-orthogonal estimating functions.

in Section 3.2, we develop a GARCH model identification tool based on the theo-

rem in Section 3.1. In Section 3.3, we study the problem of combining estimating

functions for the class of AR(1) processes with GARCH errors and show how as a

result, an improved point estimate of the variability of the log return series may be

obtained. In Section 3.4, we study an application of combining estinating functions

to the hypothesis testing problem for the class of stationary processes with GARCH

errors, We end with concluding rernarks in Section 3.5.

3.1 Combination Theorern

The result of Godambe (1999) uses combinations of orthogonal estimating functions.

In this Section, we give some combination results when the components need not be

ortlrogonal. Consider a probability space (Q, F ,P), on which d is a real valued random
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variable. An estimating function for á is a function g(.,0) on f) x R, and it is unbiased

if Eg(',á( )) : 0, where ''' represents a generic point of ,Q. Let gr(', 0), g2(, e) be

fixed unbiased estimating functions having finite and positive variances, and such that

the expectations of ôg100 and ð92f 00 are finite, with ElôhlA0l10. For example,

p1 and p2 could be score functions. The following theorem, given in Thompson and

Thavaneswaran(1999), is used to obtain a model identification method for linear and

nonlinear time series in Section 3.2.

Theorem S.L.L (Th.onlpsonandTh,auaneswaran(1999)): Intheclassof allunbi,ased

estzmatzng functzons

9:gttcgz'

@ th.e functi.on whi,ch m,'in'im'izes Var g zs gi,uen bg

*,^*9 :9t+\' 9z

wh,ere

C* : -Cov(g1,92)fVar 92

and

(zz) the functzon whi,ch m'in'imizes Var g l@l$])z is gi,uen by

go: gtICog,

where

¡:o _ " lu#l Yar s1 - t lg;l cov(s1, s,)

" lu#lYar s2 - " lufî) cov(s, s2)

We now show how to apply the results above to model identification of linear and

nonlinear time series.
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3.2 Model Identification

In this Section, we study GARCH model identifrcation by applying Theorem 3.1.1.

Using Theorem 3.1.1, the correlation between least squares (LS) estimating functions

and least absolute deviation (LAD) estimation functions is obtained and it turns out

to be the asyrnptotic correlation between the corresponding estimators. The following

example motivates combining estirnating functions.

Example 3.2.I Suppose ue want to estzmate 0: E(lZl), wh,ere Z zs standard nor-

rnal. We generaten i.i.d, N(0,I) uari,ables Zt,...,Zn and, computee:ylz,lln. But

we know that E(Zl) : I and, can see easzly that ê i,s positi,uely correlated, wi.thl Z? l"

Hence tl¿e cornltzned, estint ate i.s 0 : e - ,(D Z? l" - I), where the ualue of c is chosen

to minimize the uariance of 0 and. is siuen by c: A#È##

In practice, the value of c can be estimated by regressing lZ¿l on Z!. The main

message is that two different measures of variabiiity can be combined to obtain a

better estimate (see Samanta (1985) for details on combining estimates). Rather

than combine estimates, estimating functions will be combined for GARCH model

identifrcation.

Following Thavaneswaran and Ghahramani (2004), we will combine LS and LAD

estimating functions in order to develop an GARCH model identifrcation tool. The

least squares estimating function 91 ba,sed on X¿ from a random sample Xr, . . . , X,,

from a symmetric population with location parameter g and standard deviation o is

given by ht(X¿;e¡:(x¿ - 0). 
The LAD estimating function basecl on xi is given by

o

gz(Xúd) : sgn(Xn - d). Then it is easy to show that the correlation, p, between 91
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and 92 is

P: Corr(g1,92):"# (3.2.1)

Hence, the estimating function that minimizes Var(g") according to Theorern 3.1.1

part(a), is given by

(x, - 0\
s": Y - psgn(X¿-?). (3.2.2)

o

Then Var(g.) : (1 - p2), so that Var(g.) is minimized whenever p is rnaximized. If

we let 91 be the LAD estimating function and let 92 be the LS estimating function,

then again Var(g.) : (1 - p') as well. Hence, the combined estimating function in

(3.2.2) has smaller variance than either the LS estimating function or the LAD esti-

mating function. This in turn implies that the asymptotic variance of the estimator

corresponding to the estimating function in (3.2.2) is less than either the variance of

the least squares estimator or the variance of the LAD estimator, (see Heyde (1997)

for the details of the relationship between the asymptotic properties of the estimates

and the finite sample properties of the estimating functions.)

It is of interest to note that, the correlation between the LS estimating ftrnction

and the LAD estimating function has not been studied in the literature. Consider

a random sample of size n drawn from a population having mean É¿, variance ø2,

median u and density /(r). The asyrnptotic joint distribution of the sample mean X

allcl the sarnple meclian -t is given by

))i) -, N (( r, ), ( "' ",r,n;)(!2)Í 
(,Ðr"(
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Distribution Elx - pllo
Normal(65,25)
¿3

ta

L5

LF)

t7

¿8

Logistic(0,1)
Double exponential(1)
Uniform(0,1)
Bela(2,2)
Beta(3,3)
Beta(4,4)

0.797885

0.636620

0.7071068

0.735105

0.750000

0.7592134
0.765466

0.764304
0.707r07
0.866025

0.838525

0.826797
0.820313

Table 3.1: Theoretical EIX - pl/a values.

as n ------+ oo, (Ferguson (1999)). Hence, the asymptotic correlation between the sample

mean and sample median is the same as the flnite sample correiation between the LS

and LAD estimating functions. The following example illustrates an application of

the resul.t.

Example 3.2.2 : Suppose Xt,...,X,'is a random sample from a N(p",o2) popu-

Iation. Assume o2 'i,s known and 'interest centers on estimatzng ¡t. The correlation

between tlte sample mean and" sample rned'ian 'is approrimately gi,uen by

Corr(X, X) x : 0.797. (3.2.3)

The theoretical EIX - pllo values have been calculated for a number of distributions

(See Johnson and Kotz (1970)). Table 3.1 provides these values for some symmetric

distributions.
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After a time series model is fit, the moment estimator of p based on the residuals

can lte used to identify the error distribution. For exampÌe, suppose we decide to

fit a GARCH modeÌ to a return series {y¿} after inspecting the sample ACF of the

series and the squared series. We can fit a normal-GARCH model as an initial model.

The resicluals are giveu by 2, : I *h"r" À, : û ï ãg?-r * îrhr-, represents the
lt't

estimated conditional variauce at time ú. The moment estimator of p is given by

-ì Di:rlz' - Zll"
, where Z and s7 denote the sample mean and sample standard

S2

deviation of the residuals, respectively.

1 ^ u GARCH model identification tool is studied using sirnulation studies in

Chapter 5. The error distribution of GARCH models fit to real fi.nancial data is

identified using p in Chapter 5.

3.3 Combining Estimating Functions for Volatility

In this section, we study the problem of improving the estimate of volatility by com-

bining orthogonal estimating functions. Thavaneswaran and Heyde (1999) have com-

pared the information associated with LS and LAD estimating functions for the au-

toregressive parameter of a process {y¿} and showed that the LAD estimating function

is more efficient than the ordinary LS estimating function if the distribution of the

error term is such that 4/2(0) > Ilo'where o2 is the variance of the error term and

/(z) is the conditional density of ytlyt-r such that /(0) > 0. Thavaneswaran and

Heyde (1999) have also shown that for heavy tailed distributions, the efficiency of the

estimator can be improved by using the LAD estimating function.

iJsing the result of Heyde (1997) for an autoregressive process where the condi-

91



tional mean and conditional variance are a function of the autoregressive parameter,

r've combine LS type alid LAD type estimating functions for a class of volatility models

and show that the combined estimating function has more information. The informa-

tion associated with the combined estimating function obtained by non-orthogonal

combination turns out to be the same as the information of the orthogonal combi-

nation in Heyde (1997). We also discuss combining estimating functions for RCA

models.

Following Godambe (1985), we say that any Rp valued function g of the vari-

ates (y¿. ,...Uu) and the parameter d, satisfying certain regularity conditions such as

square integrable and differentiable in O with nonzero derivative, is called a regular

nnbiased estitnating function ii, E6[g(y¡,,...,yt.)]: 0,0 € O. Let tr be the class of

estimating functions g of the form g, : Ë aü-rhtn-r, where the functions ñ,¿, are
i:1

such that Eelhtnlfi,_,] :0, (i,:\,...,n) anda¿r_, is a functionof y¿r,...gt¿_,. The

foilowing theorem due to Godambe (1985), gives the form of an optimal estimating

ftrnction.

Theorem 3.3.1, (Godambe (t?AS)) In the cLass L of unbi,ased estzmatzng functzons

g, tÌr.e optzmal estimating functzon g* i,s th.e one whi,ch møkes the di,fference Cou(b,b)-

Cou(b*, b*) non-neg ati.ue def.ni.te, where

, l-ôg^f* ,. l^õgi1*o: 
lo æ) 9,, o : 

lo Arl n"*

and + denotes the pseudoznuerse of a matrir. The optzmal estzmating functzon is

gzuen by

s; : f oI,-,hr,, wi,th ai -, : I u*1 I Eþuhl,lFt,l.
i='t 

¿i-r L A0 l'
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The rnartingale informat'ion associated with the opti.mal estzmatzng function is In^ :
n ( agi,\
"\ae)
+wheretheerpectat,ion'iscondztzonalontheznformatzonset.

E(si")

In what follows, we begin by illustrating how combining estimating functions

improves estimation of the parameter in situations where the variance is a function

of the mean. Next we consider the same set-up for estimating the conditional mean

pararneter in an autoregressive model and an autoregressive model with GARCH(1,

1) errors.

Suppose

Y¿:0+e¿ (3.3.1)

r¡'ir.ere et : et(O) are i.i.d with E(e¿) : 0 and E(u?) : o'(0).Denote o2 : o2(g).

Assume E(tî) < æ, o-3Ð(ei) : f and that o-aE(ef)-3: n. Consider the following

eiementary estimating functions mt, kt and l¿ for d given by *, : Ut - 0 and k¿ :

(at - 0)' - o2 and Lt : -sgn(mr). Wu wish to estimate d on the basis of the sample

Urr " ' rUrr'

It follows from Theorem 3.3.1 that the optimal estimating function based on rri¿ is
'r tt

given by M : -+Ð*r,and the corresponclinginformation is I¿s : + Moreover,O"? " o¿t:7 
n

the optimal estimating function based on k¿ is given by K : _ -- !o-- | k, ancl
\K+ ¿)o" 

-
the corresponcìing information is 1¡ç : ,!\(il'-u In adcìition, the optimal estimating

\tí +'¿)o' 
n

function based on l¿ is given by L: -2f(0)D,, and its information is I74p:
t:L

4nf2(0). The following theorem gives the form of the combined estimating ftrnctions

and the associated information.
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Theorem 3.3.2 (a) For the model described zn Equatzon (3 3.1), th,e optimal corn-

bined estzmati,ng functzon and zts znformatzon formed by combining rftt : At - 0

and, k¡ - m! - o2 a,re gi,uen by the followi.ng:

(¿) s(y;E : 
"è¡ø(t 

- ;fi) 
-' 

f,r"rrui - G + 2))rn¡ + (^t - 2ò)kù,

(iz) Is : (, -ii) {,,, * ,,, 
4o1n I

\ K+z/ t t'(6+ÐJ

(b) Assumi.ng e¿'is symmetric wi.th p.d,.f. f (.), and, Ietti.ng ,: +,then the op-

tzmal estzntatzng functzon for 0 based on comb'in'ing tÌte LS and LAD esti,ntating

functi.ons rÍLt : Ut - 0 and lt : -sgn(m¿) and zts znformat'ion are gi,uen bg the

followi.ng:

(¿) g(y;e¡ : -9 ilplp) i f Qf Q)o2 + po) t,) ,

"T - p\ k\ '* 1z¡ço¡r* ¡ " , '

(ä') I6s,uo) : -- 
l- 

Q¡s -t I¡¡¡ ' af (o)np'

U-p-) )-r-)

Proof: For part (a), we employ the Gram-Schmidt orthogonalization procedure

to find two uncortelated estimating functions. Consider the elernentary estimating

ftinction ry'¿ given by

Cov(zn¿, À¿)
'lþt : fit- - il TIL¿ : lí¿ - 1oTnt.

v ar \rn¡ )

Then rn¿ and tþ¿ are uÌlcorrelated zero mean estimating functions with variances o2

and (rc +2 - 1')oo, respectively. Applying Theorem 3.3.1 separately to m¿ and tþ¡,

the optimal estimating function becomes

"'(#) å'(#)g(y;o):Ðffi*'+Iffi,r',
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Notethat ,(#): -o(^/ -2o),where ò:#.Lets¿: o(2o^t-(o+ 2)rn1-r

(7 - 2o)k¡. It is easy to show that ,Ð (+\ : o(4(o)2 - 4o.y+ (n + 2)) and that" \." .,

E(g?) : {n + 2 - 12}oa(+(o)' - Ao.y + (rc + 2)). After some algebra, the optimai

combined estimating function in terms of rn¿ and k¿ is given by

I , o r -1 n

gfu;0): 
=r= 

(t - -:t- ) !t"t, o-y - (ñ + 2))m¿+ (r - 2ò)kù.¿\? ' o"lñ+2) \ rc+2/ i=r

The martingale information follows from the definition.

For symmetric distributions (with a few exceptions), 7 : 0 and hence the com-

bination has more information. When e¿ follows a normal distribution, 7 : 0 and

assunring o2(0¡ : 02,lhe information reduces to I(0) : # Hence, the combined

estirnating function has more information.

Sirnilariy for part (ìr), by taking 1þt:' Cou(m¿'L¿),'- ffii^t: tt* l*r. The optimal

estimating function turns out to be

s@;o):

+iwå{-,.rffi#}"} (3.3 2)

Note: It is of interest to note that optirnal estimating function using Theorem 3.1.1

part (ii), based onrr¿ancl l¿ as in (b), is given by go : 
Ð{*r.ffiffrr}

sirrce.E (W) - -1, " (#) : -2r(q, n@): o2, E(t?): l and cou(m¿,r,):

-po. It is easy to show the the estimating function in (3.3.2) satisfies the relation

(1+ zf (0)op)s: -ffiqo' Hence' both have the same information'

In the next section, we discuss combining estimating functions for correlated data.
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3.3.1 Autoregressive processes

The following uncorreiated data exarnple, provides the motivation for combining es-

timating functions for autoregressive processes.

Example 3.3.1 Consi,der the Wei,ghted Least Squøres est'imat'ion(WLs) problem for

esti.mati,ng the uariance zn the I'inear regress'ion mod,el giuen by the followinq;

y¡:pr¿*e¡,

where e¡ 'is an uncorrelated sequence w'ith zero mean and uariance known up to a pa-

rarneter o2 that depends on p. That i,s, Var(e¿): o2(þ)o?, t: I,...,n. An estimate

of "'(þ) zs gi.uen by

Ðfu'- î')'
f=1o'(þ):

Snce ã@) d,epencls on þ through the

Ieads to 'improued est'imat'ion of o2 @).

n*2
predzcted ualue, {¿, 'improued estzmatzon of lj

We consider the first order autoregressive process described in Heyde (i997). We

Iet d represent the autogressive pararneter as in the example on combining estimating

functions in Heyde (1997). Suppose

y¿:0!¿-11€¿, (3.3.3)

where e¿ : e¡(0) are independent and identically distributed with E(e¿) : 0, Ee\ :

o2, Eef( oo. Let o2 : o.(0)ancl let, : ul:tl 
Furthermore) assume e¿ have density

o

/(.) where /(0) > 0 and supf (r) ( oo. Denote the skewness and excess kurtosis of

e by 1 : o-3Ue? and rc : o-aÛet - 3. We wish to estimate d based on the sample

(ar,o<t<T)



Consider the following set of elementary estirnating functions rnt, kt and l¡ for 0

given by rnt: gt - ?Ur-r, kt: (h - 7Ar-t)' - o2, and ¿¿ : -sgn(€¿).

Using Theorem 3.3.1, it is easy to show that the optimal estimating functions

1 T o: T
corresponclinglo rn¡, k¿ ancl l¿ are g¡s : -;ÐAr-r*r, Sn : - ç*fuÐk,

T

anc). g;¡p : -2f (O)Lrr, respectively. The martingale informations are I¿s :
f

"-'fu!-r, Ix : H ancl I7¡p: +f2(0)ir?-r,respectivety (for the proofstfí+ ¿)o-t=l ' t:l
see Appendix 8.1).

The following theorem extends the results for an AR(l) process given in (3.3.3).

Theorem 3.3.3 (a) The cornbzned estzmatzng functi,on based on cornbznzng the esti,-

matzng functzons m¿ and" k¡ along wi,th i,ts informatzon are the following:

(r)

'| ^\ ' / ,- ii) -' 
fpqrrl-@+2)y¿-t)mrr(at-n-2o)ktj,g(Y;o):"'("a.4( rc+2/ ?.

where o: dold0,

(¿i.)

I! 
"¿tÐ('-*) 

'

T

* ! {{(" -r 2)a,-, - 2ot)ar-, + 2o(2o - y;.y)} (3.3 4)
t:7

/ n . -l f 
,1 )^, T I

? - :n)' {'," 
.t rx - ffiÐ,,-,} (3 3 5)

(b) Th,e combi,ned estimat'ing function based on combi,ni,ng the esti.matzng functzons

rn¿ and" l¿ along with i,ts znformatzon are the followi.ng:
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(i,)

1:
s@;0) Itlt +2f (O)po)yt-rmt* @p+2f (0)o\1,)

(3.3.6)

(ü)

ra
In: 

æ(t _ pr)L-y1-r\ + 4f29)o2 + af Q)po). (3.3.7)

Proof: The proof of part (a) is given in Appendix 8.1 and Appendix 8.2. The proof

of pa,rt (b) is given in Appendix 8.5.

In the case where (y,) i. stationary (l9l < 1) we have

Irs - To-2nyl: T(1 - o2)-r a.s.

and

/ -2 \-1
In - lt -, _¡) {ttt ¡ Ix} a.s.

\ t1,-f z)

as 7 ---+ co.

If on the other hand,l0l > 1, then Ix/Irc : , !^T9--)' , --- 0 as ?---
(rc + 2) Ði=,ai_,

€, a.s. Consequently, in the case whe' ldl > 1, ln - (r- -ft ) 
-' 

,", a.s. as\ ñ+ z/
T -- æ. Thus, cornbining g¡ç with g¿s is advantageous in this latter instance if

1#0.

We observe that

^2Ir¿.n - 4f "(0) I _ ,,2, a.s. as T -' oo.

Also, .I¿s - T(1 - 0')-' as ? -' oo.
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Hence,

r^, 1 I r _4f2Q)To2,+r¡Q¡po\'e''q1_p1\r_Br* 1_g, + 1_g, ¡,
as r¿ --+ co. That is, in part (ii) of Theorem 2.2, we have

Ir- ^ 
I 
^{r"r' 

t ' arf(o)Po)
\L-p-) ¡. 

t,LAD+ r_ 0, J'

as ? ---+ oo. Since ryY > 0, ancl (t - ozS-r > 1, we see that combining the LS

and LAD estirnating functions is advantageous in this case.

In the next Section, we combine estirnating functions for an autoregressive process

with GARCH (P, Q) errors.

3.3.2 Volatility Models

Consider the first order autoregressive process with GARCH(P, Q) errors given by

y¡: 0y¿-1 * e¡,

where et: et(0) is a GARCH(P, Q) process. That is,

€¡ ,/k z,
Pa

hL : r+ t a¿e?_¿+Dpjht-j,
j:r

where Z¿ are independently and identically distributed with E(Z¡) : 0, E(27) :

o2 : o2(0). Thus, we have Ee, - 0, E(e!lî!_r): o,hr, Eef < æ. Denote the

sl<ewness and excess kurtosis of e conditional on 4_rby 1 : oih;3/2 øçel1q_r¡ ana

o: o-nh;'nltlftì - 3. Let /(.) denote the density of e¿ conditional of F!_r. We

wish to estimate d based on the sample (y¿,0 ( t <T).

Let m¿ : (y, - 1Ar-t), h: {(at - 0Ar_r)' - ozht} and l¿ : sgn

the optimal estimating functions corresponding to rn¿, k¿ and l¿ are gi

(3.3.8)

ld rhen

ven by , gLS:
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-:iLÌ*,, nn : -*i: and s¡¡p : 2f (0)fr,,respectivety. Theo' ? h, 'u' "" (n + 2)o3 u*, h, r:r
martingale information of these are

T t ^,2 À'f'I )-\2 T o

rrc :ÐiT,,,, : ffi, and, rtan : 4r,(o)Ð+,
t=l

respectively.

The following theorem gives the expression for the optimal cornbined estimating

function and the corresponding martingale information.

Theorem 3.3.4 For th.e autoregress'iue process of order wi,th GARCH(P, Q) errors

gzuen by equat'ion (3 3.8), we haue th,e followi.ng:

(o) (i) The optimal cornbination based on m¿ and" k¿ zs gzuen by

e1rs,x¡(v;'): #rÐ(t-#) 'å 
{"rru^,-(rc+ 

z)ft)m,

+ H-za)n,\
(ä) gf"s,t l has mart'ingaLe'informatzon gi,uen by

r6s,x1: (' - *)-' {n" 
.t rx - #.-*nfl}

(b) (i.) Combi.n'ing m¿ and L¿ optzmally gzues th,e followi.ng estimati,ng function;

e6s,ren¡ : -F+nn{tt * zf (o)pof h¿)^, + o1/n,çp + 2f (0)o\/ht)It}

(ä) g<"t,"oo¡ has martzngale znformat'ion giuen by the followi,ng erpress?,ons:

I1rs,r r ,T ^''
AD) : Al_øÐ#,U + Afz9)ozht + af (0)po1/h,)

1 f ,. - r- .- r,t!(^\^$ u,t-t ì ,' "(r _ p,) ì..,, 
* Itap * +f (o)pÐñi¡Ì (3 3 e)
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Proof: Part (a) is proved in Appendix 8.3. Some of the details of the proof of

part (b) are provided in Appendix 8.6.

The estimate of 0 can be found by solving the estirnating function for d iteratively

using the Newton-Raphson procedure. For example, suppose we wished to solve the

equation Sß,x(Ó) : 0 in order to obtain an improved estimate of d, where @ :

(0,a,a1,...,dp, {\,. .., þe,^/ ,rc)'. Starting values for each parameter are required in

order to implement the Newton-Raphson procedure. The conditional least squares

estimate of.0 can be used as a starting value for 0. The residuals from the fitted model

(where â ir th" conditional least squares estimate) can be used to provide starting

values for the remaining parameters in the following manner. Using the AR\¡IA

representation of the square of the residuals, the conditional least squares estimates

of a, a¿(t - 1,...,P) and þ¡(j:1,...,Q) can be used as thestartingvalues for the

GARCH parameters.

Consequently, au irnproved estimate of Var(y¡) is obtained from the improved

estimate of the conclitional mean through the expression Vlòrr) : U(n! 
, where

1 - 02'

B(ht) :
7-o2"(0)ff-p1

In the next Section, combining estimating functions for the class of Random Co-

efficient Autoregressive processes is studied.

3.3.3 Random Coefficient Autoregressive Models

For the random coeffrcìent autoregressive model oforder one for the process {y¿}.

Ut : (0 + b¿)y¿-1+ e¡,
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where {b¿} and {e¿} are uncorrelated zero mean process with variance o! and o'(0),

respectively. Further, denote the skewness and excess kurtosis of {b¿} and {e¿} by

o;38(b?) -.yt,, o-38(rl) : 1, o;4n(Uf)-3: Ka, and o-aE(ef)-3: rc, respectively.

Put

rnt -- At - ?yt-r: btArt t et

and

kt: m? - ("îa7-, + o',).

Then using these elementary estimating function, we can show that M and K are

two estimating functions for estimating d, where

T

M -Y -n!t-t-^,uL_l oËyí_r + o'

T
r,, \- -2oo/, '

? yî-r(n¡, + 2)ol-t 4y!-ro2ol + (ru + 2)oa'"t

(3.3.10)

(3.3. 1i )

Let f (y¿-1) : Uî_t@u + z)ot t 4y2r_ro2o3 + @ * 2)oa. These estimating functions
T

have nrartingale inform ation I¡a and 16 given by lr, : tÞ-;Y+= anc). Iy :
T , ,,,\, 

t--rvbvl-l I w

- 
4o'lol'

) 

-, 

resPectivelY.
f, I\Ut-r)

Theorem 3.3.5 The comb'ined esti.mati.ng functi,on i.s gi.uen by the followzng:

s(a;o) : ilt - -la?-'?Í^r::o'ù',1-'r \!-t- / 
í \- f (v'-r)(oîa\-, + "') )

x {(ffi - æ#.a) ^, * (ffi - #;) *},
and the znformatzon assoc'iated wi.th g 'is gi,uen by the followi,ng:

(3 3.12)

(3.3.13)
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Proof : Some details of the proof are given in Appendix 8.4.

The optimal combined estirnating functions contain more information than the

component estimating functions.

Note: Setting of; :0 in (3.3.12), we obtain the combined estimating fu'ction in

part (a) of Theorem 3.3.3.

In the next Section, hypothesis tests based on combined estimating functions are

studied for the class of stationary processes with GARCH errors.

3.4 Tests for Volatility

Tests for nonlinear time series via estimating functions have been studied bv Tha-

vaneswaran (1991), Basawa (1991) and Thavaneswaran and Peiris (1998),(See also

Chapter 9 in Heyde (1997) for more details). We extend the results of Thavaneswaran

and Peiris (1998) to ARIVIA models with GARCH errors.

For a simple hypothesis which is of special interest for time-series data, say 11¡ :

0 : 0o against any possible alternative, we propose a test statistic 7, based on an

unbiased estimating function g as

n -B^t:-'9 /111 t

Vtn
(3.4.1)

where 9n is the estitnate found by solving g(y;0): 0. The following theorem estab-

Iishes the superiority of Godambe's approach.

Theorem 3.a.L (Th,auanesuzran and Peins (199s)) The power of a test based on

the opti,mal esti,mating functi,on gi agai,nst a part'icular alternat'iue i,s bounded below

by thepower of any unbi.ased estzmating functi,on g i,.e. Power of T¡ ) Pouer of To.
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In the next set of examples, the martingale inforrnation of the optimal estimating

function as well as the martingale information of the least squares type estimating

function are derived. Tests based on the aforementioned estimating ftrnctions are

derived and compared.

Example 3.4.7 Conszder the szmple linear regress'ion model through the origin, yt:

þr, + €t, t : 1,..., n. Assurne that the errors are'independent wi,th E(er) : 0 and

õ2 ^ \-t
Var(e¿) : \ The usual least squares estimate of p is P : ?t;'yt?. In contrast, theïí Lt:=trí
wezghted.Ieast squares est'imate of B i,s þ*", :++ Using the Cauchy-Schwarz

lrt=7 *t

i.nequality, (I"l.t;' a f "îÐr - nr,rt The leøst squares estzmatzng func-

tzon for t3 is gt,s : - DL, r¿m¿, where rlt : Ut - þrr. It i,s easy to show that tt¿e

\rn 12
i.nforrnati.on associated wi.th, Least squares estzmatzng functzon is I¡s : 4J={! wh|te

TLot
\-n t4

the information associated wi,th, the optimaL estzmatzng function i.s loo¿ - lJt=l*L.

Hence, I;s 1 lor¿.

Example 3.4.2 Conszder the autoregressiue process Ut : ?At-t*et, where €¿ are ,i.'i.d,.

ñ2
wi,tlt. E(e¿):0 and Var(e¿): ;-. The condi,ti,onal least squares estirnatzng functi,on

Ui-t

zs gzuen bA gc"t: -D]:zAt-fnt whererrt: At-7yr-t. The,inforrnation o,ssoc,iated,

wi.tÌt, the cond,ttzonal least squares est'imating functi,on 'is gi.uen bA Icrc - 
(Dy?rr)l^
\n - L)o"

On the other hand, the optirnal esti,matzng functzon based on elementary estimating
n 

^,3

functions m¿ is g'iuen bU gopt: - t T*r. The marti.ngale znforrnation assoc,iated,
t:2

\rn o,4

with goo¿'is Ioo¡ - 4J=2!J). An applicati,on of th,e Cauchy-Schwarz znequality once
o'¿

agøzn shows th,at Icrs 1 Iopt. The test based on the stati,sti.c Topt :

powerful.

9opt - 0o

r-,
V'oPt

xs mo.e
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Example 3.4.3 Suppose {y¿} i.s the followi.ng autoregressiue process:

at: ?at-t * el.--,e¡ (3.4.2)

where €.t are uncorrelated wi,th rnean zero and uariance o2,. The optimal estzmatzng

functzon i,n tlte Godambe(1985) sense based on elementary esttrnating funct'ions m¡:
A f,*+*, To test Hs : 0 : 0o aga'inst Ho: 0 I 0o , we proposeAt - UAt-t xS I - /r 3õ6

¿ _a ¿

0_A^
the statisticf :"--# wÌtere0 istlte solutzon of tlre optzmal estimøti,ng equat'ion and,

v- approach, the opti,mal estzmating

functzon'is eopt : ÐYfi*, 
,ttn

2 
",4marti.ngale znforrnatzon lont : )- lj. Sznce

€¡

ht

luî-r: t v?-ra\-, a \EÑ: t u?-t, Iopt ) In and' ttte test based, on

the statistzc T :0a* ,is more powerful.

t,;;,
Example 3.4.4 Cons'ider an AR(1)-GARCH(1,1) model of the Jorm:

y¡ : 0g¿-1* e¿ (3.4.3)

where l9l < f is a zero-rnean GARCH(P, Q) process gi,uenby the following:

/, -: \/ lrtLt,
Pa

: r+to,¿e?-¿+| pjh._j
J:T

and Z¡ 'is an uncorrelated zero-n'Lean sequence wzth uariance 02 : o2(0) and fi,nite

fourth moment. Let o! be the uariønce of e¿. Using the elementary esti,mati,ng func-

t'ions m1 : Ut - îAr-t, th.e esti,mati,ng functi.on based on the least squares approach

'is g : -Di--rUt-{rlt wlti.le the opti.rnal estimating functi,on is gopt: - i T^r.
7-z o'nt

Let 0* denote the solutzon of the equat'ion gopt:0. In testzng the hypothesis Hs:
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0 : 0o øga'inst Ho : 0 I 0o, the test based on the stati,sti'c T

f n t -l-1

V : lf Ç | * more powerful tl¿an the test based, on the
I u O"fL+ ILt=2 " I

matzng functzon.

0*-00
,/v

Ieast squares esti,-

Example 3.4.5 Consi.der the autoregress'iue order one process wzth power GARCH(IJ)

'innouat'ions gzuen by

y¡:0y¿-¡le¿ (3.4.4)

uhere

- lz,l - El7 |

with 4 : fp. Based, on the esti.mati,ng functi,on rftt : ?Jt-Iyr-r, the optr.mal" {v ar(lz¿l) 
n

estimatzng functzon is gopt: - t 4l^r. Let 0* d,enote th.e solution of the equati,on
ã tr¿

gopt : 0. In order to test th,e hypotheszs Hs : 0 : 0s agai,nst Ho : 0 f 0s, use

tl¿e test stati.sti.c f : 0:+ 
where lopt : li +l . Tl¿e test basert on the opti,mat

tlt;,I 17- '' )
est'imat'ing functi,on'is more powerful than the test based on the least squares estzmating

functi,on 9 : Di:zUt-{nt.

Example 3.4.6 Let y¿ be a stati,onary RCA(I) process wi.th normal GARCH(I,I)

errors giuen bg

/-È€¡ \/ lltLt,

ht: a*c'1ltr-rl+þrht-t

gt : (0 * bt)yt_t -t et

€¿ : 
^/trzr,

fu: a*a1el-1-fþtht-t,

(3.4.5)

(3.4 6)

(3.4.7)

(3.4.8)

(3.4.e)

where
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Zt - N(0,\)(i.i.d.) and uncorrelated wi.th b¿ - 1/(0, oÐ(i.i.d.). Based on the el-

ementary estzmatzng functzon rrLt : Ut - îAt-t, the optzmal esti,rnati,ng functzon is

å'!tt-t.,agiuen by gopt : - ) , ¡#mt where oí : . ,ur r. Let 0* denote the.
¡-^oiAí-r+o'E - I-\at+h)-^ oiaí_r + o.E

solution of the optzrnal estimatzng functi,on equat'ion g : 0. The test stati.sti.c for the

one-si,d,ed, test of hypothesi,s Hs : 0 : 0s aga'inst Ho : 0 I 0o is T : ry where

l,;,1
t-l t,? lIott: l) -¡-íEj-l i,s the optimal est'imating functi,on tnformation. TÌ¿is test zs' l-r- oíUí-t * 

"í )
more powerful than tlte one based on the least squz,res estimating functi,on gzuen by

DT:zu'-tm''

Example 3.4.7 Consider an AR model wi,th Si,gn-swi.tchi.ng GARCH errors gzuen by

y¿: 0y¿-1 * e¡

where

€¿ : t/nrz,

ht : a -f a1e|-, i þtht¡* OrS¿-r

(3.4.10)

(3 4.11)

Zt - N(0,1)(i.i.d.) and S¿: 11e,>0) - 11,,<o¡. It is easy to show tl¿at ttte optzmal

esti.mating functi,on for 0 i,s gi,uen by g - -f,+*, where rlt : At - 0y¿-7. Let

-r4 
h¿

0* denote the soltúi,on of the opti,mal estimating functzon equation gopt : 0. The

test stati,sti.c for testzng Ho : 0 : go against Ho : 0 I 0s i.s T : 0:= 
wherel,-r

f ' ",2 1 
Vton'

Iopt: l) , 
= 

| . fnlt tust i.s more powerful tÌ¿an the one based, on the 1east squares'lulL, 
ILt=2 " )

estimati.ng function gzuen by g - -D!:zAr-tmt.

Example 3.4.8 Consi,der the autoregress'iue rnodel ui,tlt GARCH type 'innouations
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gzuen by

where

y¿: 0y¡-1 I e¿,

/, -€¿ : 1/ lI¿L¿

ht a I a1e!-r+yel-rIç,_,<o) t þtht-t

(3.4.r2)

(3.4.13)

wÌtere Zt - N(0,I)(i.i.d.) and I denotes an'ind'icator functi,on. Based on the ele-

mentarA estzmatzng functzon nlt : At - îyt-, for 0, the optr,mal estzrnatzng functzon

å v,-'is gopt
11,+}_,)

g - -DT=zAr-tm¿. For testi.ng Hs:0 :0o agai,nst Ho'.0 l0o, tlte test based,

0*_00 f n ..2 I
on'1' :

,/V ""'" "r roPL 
l"- h, )

powerful than the test based on the least squares est'imøting function.

Following Heyde (1997), we study tests based on combined estimating functions

in Example 3.4.9.

Example 3.4.9 The opti,mal estimate based on th,e esti,rnattng functi,on in Theorem

3.3.1 part (o) u gzuen by solui.ng the equati,on grs,x :0 iteratzuel7. Denote the

opti'mal est'imate by 0* . Then the test stati,sti,c based on the opttmal est'imate for testzng

H6: 0 : 0s aga'¿nst Ho: 0 I 0s is T : l= where

tlt;l

r.p, : (, - *)-' ['," 
r rx - #hnn)

The opttmal estzmate based on the opti,mal combzned estzmatzng functi.on in TÌte-

orem 3.3.1 part (b) is found by zterati.uely soluing the equati.on 9 :0. Denote the root
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of the preu'ious equation Uy 0. The test statzsti,c becomes T - 
0 - 0o 

where

l,;t
topt :+-- frr, * Iun i +f(o)pi +lo' - (1 - ,\ l'"" ' -,_ lE)

The power of the test for the autoregressive parameter in an AR(1) model with

GARCH(1,1) errors using the least squares and the optimal estimating functions is

studied in Chapter 5 through simulation studies.

3.5 Conclusrons

Applications of combiuing estimating functions in volatility modeling have been stud-

ied. The correlation between the LS and LAD estimating functions turns out to be

useful for identifying the error distribution in the class of GARCH models. Combined

estimating functions for the class of autoregressive processes with GARCH errors and

the class of RCA volatility models are shown to have more information than the

cotnponent estimating functions. By combining estimating functions, an improved

estimate of the conditional mean is obtained leading to an improved estimate of var!

ance such as E(h¿) or E(h¿1fl-r).

Exampìes of model identification for GARCH models using real financial data witl

be given in Chapter 5. The superiority of hypothesis tests for the class of autore-

gressive processes with GARCH errors based on the optimal estimating ftrnction over

tests based the least squares estimating function will be demonstrated in simulation

studies in Chapter 5. In the next chapter, the forecasting problem for stationary

processes with GARCH errors is studied.
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Chapter 4

Forecastitrg for GARCH Models

In this chapter, derivations of forecasts and the forecast error variances for various

classes of ARMA(p, q) modeÌs with GARCH errors are given. The latter part of this

chapter includes theorems related to volatility estimation in the presence of structural

change. We end with a Conclusions section.

4.L Forecasting for ARMA Processes with Het-
eroscedastic Errors

Recall the GARCH(P, Q) process e¿ defined as

- ,/n, z,
PQ

: r+tc,¿e]-¿+DpjhFj.
i=l j=I

The following theorem enables us to calculate the variance of the l-steps ahead forecast

error for a zero nean GARCH(P, Ç) process.

Theorem 4.1..1 Forthe GARCH(P, Q) process speci,fiedbA G.1.1) and (1.1.2), un-

der the statzonari,ty assumpt'ions and fi,ni,te four"th moment, we haue th"e followi,ng:

(a) Var(e!): (KG) -7)lVar(e¿)12. That i,s, the square of the coffici,ent of uariation

for tlte squared process el 'i,s K@ - t.

€¡

ht

(4.1.1)

(4.1.2)
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(b) Letez"(l) be the forecast of ez^+t based onn obseruat'ioîts €1,€2t...,en. Thel-steps

ahead forecast error uør'ianceVar(e,,(l)) i,s gi.uen by

V ar(e,,(I)) :
a \'

-Ol-Õr--On/
æ

\- v?
./¿'l
j:o

('

['.Ð.']
¡tr{') - il

Proof: The proof of part (a) follows from the definition of coefficient of variation for

el. lne proof of part (b) is given in Thaveneswaran, Appadoo and Peiris (2005).

As we have seen in Chapter 2, the simplest volatility process At : €|_.rt, where

e¿ - 1y'(0, o!)(l.l.a.) has a kurtosis of 35. This process can be used as the innovation

term in AR(1) and RCA(1) processes to generate volatility models with tirne-varying

couditional mean and conditional variance. The following lemmas give the variance

of the l-steps ahead forecast error for such processes.

Lemma 4.1.L For tlte sirnple uolatili,ty process of the form

Ut- þ : ó(yr_, - p,) + €\_ft (4.1.3)

under the stationarity assurnpti,ons that lól < I, e¿ z.i,.d N(0,o!), then

(a) Lety"(I)beth,eforecastofAn+¿basedonnobseruatiorlSUt,Az,...,Un.Theny^(L):

p + öt(U. - ¡-r.) and,

(b) the l-steps ah,ead forecast error uariance f or the obserued process {y¿} i,s Var(e,(l))
¿-l t t2I3":t a'zi:3oi.=ir.
j:o
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Lemma 4.L.2 Let {At} b" an RCA(I) process gzuen by

at (ó + bt)ar-, + ez,-re¿, (4.r.4)

wh,ere {e¿} and {b¡} are uncorrelated, zero-mean Gauss'ian processes wi,th uanances o!

and of;, respecti.uely. Under the stati.onari,ty assumpti,on that ó2 + o3 < 7, we ltaue the

folLowzng:

(i.) The uariance of the l-steps ahead forecast error en(I) i,s gi,uen by

var(e.(t)) : E(an+t - a*(t)), :ffPrrr(l + .. . i þz(t-t¡, :ffft

For financial time series data, appropriate models of log returns are the ARMA(p,

q) processes with GARCH(P, Q) errors. In this Section, we study the forecasting

problem for stationary ARNzIA(p, q) processes with GARCH(P, Q) errors. In the

follolving theorem, we study the second and fourth moment of the l-steps ahead

forecast error of {y¿}.

Theorem 4.1.2 For any second order stationarE process {Ur} with GARCH (P, Q)

errors gzuen by

ir,,,-,
J:0

Jn, z,
PQ

" + t a¿e?-¿+ÐPjhFj
j:1

where Z¿ 'is an uncorrelated sequence with zero mean and un'it aari,ance,

followi,ng:

Ut- l-t :

t"-
t Lt.

(4.1.5)

(4.1.6)

(4.1.7)

we haue the
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(a) Under suitable stationarzty condzt'ions for a GARCH process

2), the lcurtosis of th.e {y¿} process zs gzuen by

the uariance of the forecast

Drþ?...Õ¿ fu't'

Áreo;-

(stated i,n Chapter

(4.1.8)

(4.1.e)

error en(l)

wl¿ere R

¡{tu) :

where,

6G)
E(zr^)

E(zt) -t\(zî)- rl Ë vr,
j:o

and ú ¡'s are found from the ARMA representation of {e2r}.

[- -l 
-r((') lD *îl *6D,þ?,þi

Lj:o J ¿<¡

(b) For the l-steps ahead forecast y^(l),

An+r - y.(I) is EltJ^+L - y.(I)12 :

max(P, Q) and Q¿: d¿ I B¿, 'i : 7,.

/ t-t
(c) Ekt.*t - a,(t)ln : o! I KG) D ú1 +

\ i=o

where KG) zs g'iuen as i,n part (a).

1-Õr-Q2-
..,R.

I-7 \
6D ,þ?,þi I whe

i<j /

tJ2
and

('

Proof: Proof of part (a) is given in Chapter 2. Part (b) follows from the fact that

for a stationary ARN4A process with error variance Var(e"(l)) : o!(L+þl+. ..+rþ7_r),

and the proof of part (c) is similar to that of part (a).

Note: When all the ARMA parameters are zero) 1¡s¡ lf(u) turns out to be the

kurtosis of the zero mean GARCH process. When all Õ¿ in the GARCH process are

zero, then 7ç(v) 1¡¡¡s out to be the kurtosis of the ARMA process. The next set of

examples illustrate Theorem 4.1.2.

R \2
- E 

t',)
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Example 4.L.1 Cons'ider an AR-GARCH model of the form:

Ut-p: ó(Ar-,-lt)-let (4.1.10)

wherelöl < I, {tr} i,s a zero mean GARCH(P, Q) process giuenby erpress'ion (/r.1.1),

the condztzonal uariance h¿ is gzuen by (/, 1 2) and {Z¿} is an uncorrelated zero mean

sequence wi.th unzt uariance and f.ni,te fourth moment. Let o! be the uariance of {et}

rhen{i: ó', Ë ,þi: Ì ó, rrdiv'?l] : T#Gøj:o i<j

Hence, var(y¡) : 3 -, a2¿ y@) - 
6Ó2 + G - -q2)NG), where yG) :I-ô' t+ó,

From Th.eorem 1.1.2, when {e¡} i,s a GARCH(P, Q) process,

E(Zî)

E(zt)-lÐ(zî)-rl
æ
\- ùr?
¿J'1

J=U

and R: max(P, Q).

(ä) Ely,¡¿ - a.U.)ln : o1 (Nu'îf:* u t ,þ?rþ1\ , where K(') is the kurtosis of
\ ;=' -ti /

the GARCH(P, Q) proc€,ss, €¿.

(i) Ely**, - a.(I)l' : Q 7-6zt
1-Or_-ÕÆ7-ó2', wh,ere Þ¿ : di * 0¿, 'i : I,...,R,

Example 4.L.2 Cons'ider an ARMA-GARCH model gzuen by

(Ar_ p) : ófur_, _ u) + e¿_ 0e¡_1

where ldl < 1, l9l < 1, e¿ is a GARCH process given by (4.1.1) and

is an uncorrelated zero mean sequence with unit variance and finite

Then, îq:\#!
t:n

(4.1.11)

(4.1.2), Zt

fourth mo-

Ð'ti:
j=o

Hence,

TT4



V ar(yt) : u(I-2ó0+02)
(1 - D3, Þo)(r - ó")',

and

vtu) - o61 ( 0 - aÖ30 + 6Ô202 - 4Ó03 + ?a)(t

\ (t + d'?)(t - 2óo + o2)2

- ø,)) +o
(t - ón)(ö - 0)' + (ô - 0)nó'

(r+ó2)(r-2ó0+02),

The variance of the l-steps ahead forecast error e,(l) : Un+r - A"(l) is given by

var(e,(I)): 1_Õ=-,u"[r + (d -0)'(r+ó'+...+ó'('-'))] Lr acìctition,

/ I-r t-7 \
Ela*+t - a.(L)ln : o: (K(')t ,1,1 + 6r.rp?rt? ) , *h"r" K(') is the kurtosis of the\ ;ró
GARCH(P, Q) process, e¿.

Random coefficient autoregressive (RCA) time series have been introduced by

Nicholis and Quinn (1982) in order to model leptokurtosis and time-varying volatiìity.

Some of their properties have been recently studied by Appadoo, Ghahramani and

Thavaneswaran (2005). We next consider the forecasting problem for a stationary

RCA(I) model with normal GARCH(1, 1) innovations.

Example 4.7.3 Let {At} U" a stat'ionary RCA(1) process wi,th normat GARCH(1, 1)

errors gzuen by

Ut: (Ó I b¿)Y¡-1 + e¿, (4.r.r2)

wl¿ere

€¿

ht

1/hrzr,

u+a6!-r*l3tht-t

(4.1.13)

(4.r.r4)
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Zt - N(0,I)(i.i.d.) a,nd uncorrelated wi,th b¿ - //(0, o'zo)(t..1,.d.). Then tlte uariance

of tlre t-steps ahead, forecast erroris ElU.+t - y,(I)l' : ,a , '(\- = ,Ó") = ,-L 
t1_; ("' + erl(1 - ó: - "3)

We also haue the following: ElU,,+t - a*Q)ln : "! (K(') t ,þ1 + 6Ðr¿?rp?\ ,n"r"
\ ¿:o i<i /

3(1 -(a1 +l3r))'
[1 - (o' + [3t)z -2"?]

Example 4.I.4 Consi,der tlte AR(1) model wi,th Si,gn-swi,tchi,ng GARCH errors (see

Fornari and MeIe (1997)) gi.uen by

At - Lr : ó(At_t - lr) -t et

where, er: JfiZ¿ erllt-t - ¡/(0, å¿)

ParrL
h, :, + | a¿el-, + D þ¡hr-¡f ! O"s¿-"

i:l t:l r:l

( +t i.f e¿>o
s¿:{ o i.f €¿:o

[ -r i.f e¿ <o
where P, Q and m t 0, u, ai,(i, : I,2,...P), þ¡,(j :7,2,...Q) and O",(z :

7,2,...m) øre real parameters, satzsfyzng w ) 0, a¿ ) 0, þ¡ 2 0 and I D"O"l < r.

Let u¡ - e! - h¿ be the martingale di,fference and let ol be the uariance of u¿, (4.1.15)

and (1.1.11) could be written øs:

Þ@)e'z, a+ p(B)u¿+f o"",-"

Ra
whereQ(B):1-t Þ¡Bi andÞ¡: (a¿+þ¿) P(B):1-D B¡Bi andR: mar(P,Q)

i=1 j=1

Var(el) : i *7oZ ora i V7 < - where the ú¿-wezghts are obtained, from the
i:0 i.:o

relatzon U/(B)Õ(B) : P(B) withú(B): 1-D ú¿Bi. (Jnderthe statzonarity assump-
i=0

ttons szmzLar to those gr.uen for GARCH rnodels, for the speci.al case of the Gauss'ian

AR(1) model wi.th. Si.gn-swi.tch,zng GARCH(1, 1) errors, we haue the follouing:
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L-1

(i) The uariance of th.e |-steps ahead, f orecast error i.s Elyn*¿-y.(t)1, : #c,' L ört ,

' j:0
wh,ere (Þr : 0r I 131, and,

/ t-r ¿-t \
(ä) E[y.¡¡ - y.(I)]o : o: Uf(') t ,Þl + aD,rt?rþ? | , wt,ere

\ ¡=o ¡<i /
nn _ ,' nn,t KG) _ [u2(1 + or)+ o?(1 - or)](1 - {,1)
" E 

[1 - (", + 0r)], ,r(7 - 3o? - 13? - 2orþr)

Note: E(e!) : E(hr) and E(h¿) : u * a1Û(ezr_r) + ÕE(s¿-1) + Pfi(fu_t). Si,nce

E(sr-r) : O, E(e?) : " 
Y 

^, wl¿ere Qt : at I þt.r-9)r

E (h7) : o2 t al ø çef_ r¡ + p? E (h?_ t) + oi n lsi_ ) + 2a a1 E (r?_ r) + 2a Bfi (h¿_ y) + 2a7 p7 E (h?_ r).

Assumi'ng{e¿}lsstat,ionaryand'Z¿-ly'(0'I),E(h?):ffiwhere

o?:E(e?\: ' .c \ r/ 1-Õ,

Example 4.L.5 Consider the autoregress'iue model with GARCH type 'innouøt'ions

that allow for the effect of a negatiue sh.ock to be modelled gi,uen by

where

Ut-þ:ó(A'-t-tt)iet,

/--€¿ : \/ fltZt,

ht : a I alel_r+ 1e!_rI(e,-, < 0) -f þtht-t

(4.1.15)

(4.1.16)

zn which' Z¿ r,s a sequence of i.i.d. random uar-tables (shocks), w,ith zero mean and

un'it uariance, and the i,nd,i,cator functzon I equals I when 6¿_r ( 0, and 0 oth,erwise.

Suffici,ent condztions t'or posi,ti,ui,ty of tlte condztzonal uariance are thata ) 0, a ) 0,

7 ) 0 and P > 0. Then it can be easi,Iy shown that
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(i) The uariance of the l-steps ahead forecast erroris

(,'¿)

I_7

E[u.+t - a.(t)]' : ;@rÏp, +x¡Ðf",

Elana-uu(r)lo : ,! (ou,)ir:* u Ë ,þ?,þ3\ where o! :
\ ¡=o i<i /

and

a2

ft - ("' -r þt +Tl)''

t[r-(o,* o,*T)"f
- tt? - P? - 3ar7r - 2ar7t - xßr)

to GARCH Forecasts4.L.7 Application

Accurate forecasts of volatility are needed in various areas of financial time series

modelling and forecasting. For example, the classic Black-Scholes formula for a Euro-

pean call option gives the cost of an option based on the Geometric Brownian motion

model for the stock price S(ú) as

c(S, t) : .9O(d) - 1¡"-r(r-tlO(¿ - o,/f - t7

where

" _IoglSlKl + rQ - t), o'/T - t
ov/T= 2

S(¿) : ,9 is the price of the underlying security price at time ú usually ú : 0, K is

the strike price, 7 is the maturity date, r is the spot rate, a is the volatility (i.e. the

instantaneous standard deviation of the rate of return of the underlying security), and

Õ(z) is the distribution function of the standard normal variate. The option price

depends on the initial stock price ^9, strike price K, maturity date ?, spot rate r

and the the 'unknown' volatiiity parameter o and hence the better estimate/forecast

of the volatility will improve the performânce of the option pricing formula. The
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Black-Scholes formula assumes that both the spot rate r and the volatility o are

constant. When these assumptions are false, use of the Black-Scholes formula can

lead to serious errors. For this reason) the use of GARCH models for pricing options

is a promising area of research. (see Ruppert (2004) for a recent survey of pricing

options under generalized GARCH processes). In the following examples, we compute

l-steps ahead forecast standard errors (l : 1,2,3) for log-return series of IBM and

GB stock taken from http://www.gsb.uchicago.edu/fac/ruey.tsay/teaching/fts. Atl

computations have been carried out using S-Plus@(Insightful Corp., Seattle, WA,

USA) and SAS/ETS@(SAS Institute Inc., Cary, NC, USA) sofbware.

In the foliowing two examples) we show that forecast error variances from autore-

gressive models with GARCH errors may differ from those obtained from the usual

autoregressive models.

Example 4.L.6 (IBM)

Based on examining the sample ACF and PACF of monthly log returns of IBM stock

{y,}, *" fit an AR(1) model with normal-GARCH(1,1) errors. The estimatecl AR(1)

model with GARCH(I,1) errors is given by the following:

At:0.I429At-tl€t

where,

/--€¡ : 1/ IL¿ L¿

fu: 3.515x10-a

(4.1.r7)

+ 0.0966ef- r + 0.8224hFr.

(4.1.18)

(4.1.1e)

The estimat e of o2, based on the

ù 3.515 x 10-a

AR(1) model with GARCH(I, i) errors is ã! :

: 0.1583. The marginal variance is estimated to
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be E(y!): 0.1616. Using Theorem 4.7.2, the l-steps ahead forecast er¡or stanclard

errors (l : 1,2,3) are 0.3979, 0.4019 and 0.4020, respectively.

When we fit an AR(1) model of the form y¿ : 0.0767yt-:, I e¿, assuming the

conditional variance is a constant, the constant error variance estimate is õ! :0.0044.

The standard error of the 1,2 and 3-steps ahead forecast standard errors for an AR(1)

flt with constant variance are 0.0663, 0.0665, and 0.0665, respectively.

The forecast standard errors from the AR(1) model with GARCH(1, 1) errors

are larger than forecast standard errors from the Gaussian AR(l) model. Prediction

intervals from the AR(1) model are narrower than the prediction intervals obtained

from the AR(1)/GARCH(1, 1) model. Let us consider the portfolio allocation exam-

ple discussed in Chapter 1 due to Gourieroux (1997). Suppose that an investor has a

portfolio consisting of exactly two assets: a risk-free asset with constant return r¡ and

a risky return whose future return is predicted via a prediction interval, (r¿,¡, ru,¿),

where ú denotes time. Assume that at the initial date, the whole portfolio is invested

in the risk-free asset. The investor wishes to reallocate his portfolio in the fotlowing

trranner. Because of transaction costs, he will only change his portfolio wheu r¿,¿ ) r'¡.

Since this means that the risky asset is more profitable, he will change his entire port-

folio to be reinvested in the risky asset. The portfolio will remain unchanged until

ru,¡ 1r¡t at which time, the entire portfolio will be reinvested in the risk-free asset,

and so on. For this particular dataset, because the prediction intervals derived from

the Gaussian AR(l) model are narrower, this would mean that the investor would

falsely infer that the risky asset will be more profitable than the risk-free asset as

r¿,¿ is more likely to exceed r¡, in which case, the investor is more likely to incur
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unnecessary risk, resulting in a loss.

Example 4.L.7 (GE)

We now consider fitting an appropriate model for daily log returns (in percentages) of

GE stock. We fit a AR(1) model to {yr} with t-distribution GARCH(1,1) errors. The

estimate of the AR paratneter is / : 0.0363 ancl its standarcl error is estimatecl to be

0.0101. The estimates of the GARCH parameters are r) :0.02101, cûr : 0.0478 and

p, : o.g+tg, respectively. Based on this model, o7 : ----!!?]tJ- :2.0276.--^-*--' "€ 
1 - 0.0478 - 0.9418

Using Theorem 4.I.2, the estimated standard errors of the l-steps ahead (l : I,2,3)

forecast errors are I.4329,7.4249, and L4249, respectively.

It is of interest to note that if we fi.t an AR(1) model with a constant error variance,

nsing the estimate of the AR parameter $:0.03584, then ô,2 : 2.0638. The 1,2 and

3-steps ahead forecast standard errors are 1.4366, L4375 and 1.4375, respectively.

In the GE example, the forecast standard errors are nearly the same for both the

AR(1) model and the AR(1) model with GARCH(I, 1) errors. This is mainly due

to the large estimate of ø. The estimate of ø corresponds to the long-run variance

of the return process. When the estimate of the variability in the return process is

large, inferences based on the AR(i) model and the AR(i) model with GARCH errors

are the same. In the next Section, inference for stationary processes with structural

change is discussed.

4.2 Forecasting with Structural Change

Suppose we have observations from a GARCH(p,q) process and the unconditional

mean of A?, "3 
shifts from o2o to o2, at time t : T + 1. The following lemmas are
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needed to prove a theorem on the improved estimator of some volatility models in

the presence of structural change.

Lernrna 4.2.L (i) The MMSE forecast of yr+t i,s cy where c: fi, ord,

Ey' : u'+þ{f +2(T -I)p,,+2Q -2)pr+... + 2pr-r) : t)2 +Ð? (4.2.r)

wi'th Ð1, : V ar(A) gzuen by

rz : 1!çr + 2Q - r)p, + 2(T - 2)pr+ ... + 2pr-r) (4.2.2)-a T'2

(zz) Tlte MSE i,s MMSE,T: o2 * p'Q - Ll: t' * !, Ð? ' ' -o- *zl 
: o- i p, +*n < o- + L't'

Lemma 4.2.2 Suppose that the mean of the stationary series shifts from ¡-t. to ¡.t7 at

tzme T * 7 and also assume that the autocorrelat'ion structure rerna'ins the same after

the shift.

(i) The MMSE est'imate of ¡.t1 i,s cy wh.ere 
" 
: ffi, Ey2 is as i.n (1.2.1) andD2o zs

LA"

as i.n (1.2.2).

(iz) The MSE i,s MMSET-: 02 * p?(r - *l: o, * -ü-.Dy l,r- -D|u

Theorem 4.2.r : For the GARCH processes descnbedin (2.3.9) and (2.s.10), under

suzt ab I e st øtz o n arity co n d'it'i on s,

(a) The 'improued estirnate of ol : E(yTì is cy2 where y2

¡ ¡y{u) _ 1)l -'
11 --L \ / 

|L^' r l

,T: i>,rz
,b:1

andc:
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(b) TlteMSEof theestzmateof o!,cya,i,slessthanttteMsEof th,eestzmateof y2,

of o?

Proof: Theproof of Part (a)foìlowsfromthefactthat Var(y!): 1lf{v)-t¡lVar(y¡))2,

and by the definition of the coefficient of variation. The proof of Part (b) is similar

to the proof for linear time series models.

4.2.I A Regression Model for a Single Structural Break

Consider the simple linear regression model studied in Pesaran and Timmerman

(2004) of the forrn

Ut+t: B1r¡Ip3r) * Iç2rr¡]zxt I at+t (4.2.3)

possibly with a shift in its variance frorn øf to o2r, where 1 denotes the inclicator

function. We know thaí B has changed at T|, our interest lies in forecasting y7-.1

given the observations (rt,yt),t : I,2, . . . ,T.

The problem of the number of observations needed to estimate a model that, when

used to generate forecasts, will minimize the expected mean squared forecast error

has been studied in Pesaran and Timmermann (2004).

Let m denote the starting point of the most recent observations to be used in

estimation for the purpose of forecastin E Ur+t .Then the least squares estimator (LSE)

can be written as

þr(*) : (4.2.4)

The forecast of y7¡1is given by ûr*r: þr(m)rr, with

þr(*) : 0n þt + (1 - 0*)þz + ur(m)

(å"a,)-'(f,,-,,,)

1.)ÐIL¿

(4.2.5)



/T \-r " /T \_1 T1

where ur(m): lf "î-, ) (Ir,-ro,) , and.0-: lf rT-, ) (f 
"?-,). The

\u " - I \u \z_¿ " 'l \z¿ .-t/
\t=m / t:m \¿:m / t=m

forecast error in the prediction of y2a1 will be a function of the data sample used to

estimate p and is given by the following: er+t(m) : aT+7 + 0^(p, - þr)r, - u7(m)r7.
/ T 1-l

And,, EluT(*)'lXr): ( f "?_, ) @?0,,+ (1 - O*)"3). The corresponding concli-\¿=- /
/ T 1 -l

tional MSFE becomes Ele'zr*r(rn)l"rf : ol+e'z^@r- þ)'rT+ t(I"i_, ) @?e^+\¿=- /
(1 * O*)ol)lu!.. For the proposecl the MMSE predictor as ar+t : cþr(m)r7 where

^ þrEþr(m)c : -----------, er+t(^) : Ur+t - cp7(m)ry : (þz - cp7(m))r7 I ar+t.The corre-nþl(^) ¡r\ / r \/-¿ -¡-¡\"'/

sponding conclitional MSFE becomes E[e?r*r(m)lrr] : o'z, + ll:l30 - @!+(*),)'p,
øþ4(^)

which is srnaller than the conditional MSFE of Persaran and Timrnerman (2004).

For the model considered in (4.2.3), the estimate of p2 with the starting point m

of the most recent observatioÌrs can be written as

/T ¡-1 T T

þ"(^): (Ð"?-,,) (Ð",-rr,¡ - u",(nrt-ßt), (4.2.6)

/^\
where lr;t : ( tl=,, r?-rl,k;,' - ki,\t: r|_t.

\/
ln order to determine nz,

Step 1: Recursively calculate þr(*) and k;l for each rn using l3r(*): þr(*+ 1)+
/^\

k*r,,-r( y,, - r^tþr(m + 1) ).\/

Step 2: Calculate the improved forecast and the corresponding conditional minimum

mearl square error for each r¿.

Step 3: Select the value of rn which minimizes the minirnum value given in Step 2 as

the optimal choice of the window.

t24



hnproved estimation requires knowledge of model parameters other than the pa-

rameter of interest. In the next Section) recursive improved estimators are proposed

where only starting values for nuisance parameters are needed in order to estimate

the parameter of interest.

4.2.2 Related Inference Problems

Before discussing improved recursive estimation for time series models, we derive

improved recursive estimates for i.i.d. data in order to motivate recursive estimation

for time series in the presence of structural change.

Example 4.2.L Let Y, . . . ,Yn be i..i..d. wi.th E(Y) : ¡1. and V ar(Y) : o2 (lcnown).

We haue the followi.ng:

(i.) Let þn : An denote the sample mean based on n obseruations. The recursiue

est'imate of th,e mean based on n * I obseruat'ions has the form

ú,,+t : t, + -!-(h*, - t",).n+ r

..2

(i.z) The 'improued, est'imate of ¡t" gi,uen bA ttn : c,lln where þn : An, ,n : !- :
LU;.

1,
--F 

and u : o lp i.s the coeffici.ent of uariat'ion. The followi,ng relations

1+-
n

proui,de the recurs'iue'improued esti,mate of ¡t.

þn+t : ît" + #i(Y.*, - t".)

(n+l)c;lt: nc;r+L

Proof: Part (zi.) follows from obseruzng the following. The zm,proued esti.mate
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i,s ¡-tn: cnþ,. Then,

þn+7 :

But, (n + 1)c,],

ternls, we obtaxn

cn+tún+t

Cn*L

- 
lnþLn -l- In+lj

TLT I

!*br;'t', * Y"+rl
TLf I

n Cn+t ^ Cn+l

n+r;u"+ffih+t.
:nc;t+L
Cn+I fr

cn n+\

Itn+l -

Multiplying bA ",I, on both sides and rearranging

, Cn+I: I - 

-. 

Lfi,en,.n+I

lt - ""*' I îr^ + cn*' v. ..
I n+l)*n' n+1rn+r'

Note: In both instances above, c?¿ is a function of unknown model parameters. If

an off-1ine(non-recursive) estimation procedure were to be used, we would need to

estimate these model parameters from the data as well, adding to the variability

of the paramter estimate. However, with the recursive estimation procedure one

simply needs to provide a starting value for c, since the estimate will converge to

the uniformly minimum variance unbiased estimator(UMvuE) as the sample size

increases. c, is chosen to rninimize the MSE of the improved estimator. That is,

1 ,,2 1E(a,+t _ cy)z : o2(r+ :[1 + ;]-r) < 
"r1t + ;),

where u : o 
is the the coefficient of variation. If u is small then the improvementp

on the NzISE is relatively small. However, if o is large then the improvement can be

significant.

The following theorems give expressions for recursive improved estimates of mean

and variance pararneters. The derivation of the proofs is similar to Ðxample 4.2.1
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and wiil be omitted.

Theorem 4.2.2 Consi,der the MA(I) model At - þ: at 7at_t. Interest centers on

recurs'iuely estzrnati,ng the 'improued estimate of th,e n'Lean, ¡t. The i,rnproued estimate

i,s giuen bA t". : cnþn, where cn : 

- 

P2

u, *Tlr. * 4n - thrl' Pt 'is the fi'rst las auto-

correlat'ion of y¿ and ¡t, i,s the sample mean based on n obseruat'ions. The recursiue

relat'ions needed are tÍte followi.ng:

, Cn¡_l / ^ \
lJn+7 : F" -l- 

- 
(Un+t - lJn)n+ r

..-1 1 ,c"it-I n' I nII*2nø 1

c;r -I (n+r)z ln+2(n-I)pr)'

(4.2.7)

(4.2.8)

We can use the first lag autocorrelation of the sample autocorrelation function (ACF)

as a starting value for p1.

Theorem 4.2.3 For a mouing auerage process of order q (MA(q))

At- Lt: at ?tat_t- ...0,,ar_q,

where a¿ 'is an uncorrelated, zero mean Gauss'ian process wi,th uariance

cursdue relat'ions for i,mproued estimates of p in a MA(q) model are

followi.ng:

Cn+7
þn+t : lt,r+*(n+ I

of;. The re-

giuen by the

c,Ir-r :_tcrr- - r

Un+r - þn),

* I -t 2np7 + 2(n - I)p, + ... + 2(n +1-q)p
(n + I)2 L n + 2(n - 1)pt + 2(n - 2)p2 + . t 2(" - q)p,

n2 l-_t
+1)'L

In order to obtain starting values for the frrst g autocorrelations p1, . . . , pq, the flrst

q sample autocorrelations may be used as estimates.
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Theorem 4.2.4 Conszder th.e AR(1) rnodel

ut - I,r: ó(ar-r - tù r et, e¿ - (0, o!),1.1.d.,t :7,. . .,n.

The recurs'iue 'improued est'imates of th,e parameters are g'iuen by the followi,ng:

(i.) The recurs'iue 'improued, est'imate of ¡1. i,s gzuen by þn : cn LI2

LL.z 
"o 

,'o'u"u 

tSLLTILULe ol p '¿s gl'uerL oa þLn: cnllnt wnere c": 
EYz 

:

varfi ¡ ,¡' a"d

Var(g) : #@ + 2(n - r)p, + 2(n - 2)pr+ ... + 2p,-r) : ¡,,,2 + Dl.

Th.e recurs'iue relat'ions are the following:

þ"+t

^- 1 1Ln+l - r

-l 
1Çn -r

^ Cn+7
lt"+::]-(Un+t-îtn)n+ r

Ón|_kn+ßn(U*+t-ô.a,)

I--r t.,2t'n I Un'

nz ln+2(n- I)pr+2(n-2)pr+... + 2p^-rf-'
@+úL l

(4.2.e)

(4.2.10)

(4.2.rr)

(iz) Let þ,, denote the conditzonal least squz,res estimate (CLS) of þ based on a sarn-

ple of n obseruat'ions. The following equati,ons are needed 'in order to calculate

the recurs'iae estr,mate o.f þ.

I
9n*l

, _tk,ir

(äi) The'improued est'imate of þ based on m'inim,izi,ng the MSE cond,i,tzonal on F!_r,

the o-f,eld generated by yr, . . . tUn-t zs gzuen by ó. : cn$n, where $. .i,s the CLS

esttmate of þ based on a sample of size n and

o? (Ði:ra|-,)-' + ó'

I2B

ótcn:



The recurs'iue

ô,,+t

79nII

t--ltun+1

-1
"n+1

relat'ions for esti,rnating th.e

Cn+Iõn+7

õn]_kn+tAn(A,*t-ó,y,)

k;' + a'.

c;lk;r + yl
k-r' + aZ '

improued, est'imate are the foLlowi.ng:

(4.2.r2)

(4.2.13)

(4.2.r4)

(4.2.15)

For an AR(1) process, \Me may estimate þ using the first lag autocorrelation of y¿.

While cn may be a function of unknolvn parameter values, the recursive estimation

procedure requires only a starting value c1 be provided and thus, these unknown

quantities do not need to be estimated at each iteration. It is of interest to note that

recursive improved estimation also leads to the Kalman flltering type equations of

Thavaneswaran and Abraham (1988).

The ARNIA representation of a GARCH(p,q) at process in terms of yr2 allows for

recursive improved estimation in the following Lemma.

Lemma 4.2.3 Cons'ider an ARCH(1) model

/--
Ut : t/ htZt,

ht : u+óA\-t,

where Z¡ 'is an uncorrelated zero nlean process wzth unit uariance.

(i) The followi,ng pai,r of equat'ions can be used to obtain the recurs'iue estzrnate of

þ:

f
VnIT

k"Ït

õn + k,*ry' (y',*, - ô"a'.)

k;' + vî.

T29



(i.i) Suppose we w'ish to recursiuely esti.mate the i.mproued estimator cþ, of þ, b'g

mini.mizing the cond,itzonal MSE. Then, cn : +. Let ó
ó'+ o2,(Di:ryt)-'

denote the estimator of þ based on a sample of n obseruat'ions and found b'g

mznzmizing th.e condztional MSE. Let $^: cnõn d.eonte the 'improued, estimator

based on a random sampLe of si,ze n. Mi,nimi,zi.ng the condi,ti.onal MSE, Ieads to

the followi,ng recurs'iue equat'ions for the improued. estzmate ó: ,.ó.

J.
9n+l

7
Vn*7

-1cn+r

kil'

1.w n]_7

(n + I)c;j,

1Cn*l9n*I

Ón I kn+ú12 (a'.*, - ó"y'.)

c;rk;\ + yl
k;' + al, )

k;' + vl.

^rCn+7,t^.oi+ +(ai*, - ã2*),
TLt L

1-ncn'I I.

(4.2.16)

(4.2.17)

(4.2.18)

(4.2.re)

Proof: Parts (i) and (ii) follow from the fact that yl has an AR(1) representation,

Suppose we have observations from a GARCH(p,q) process and the unconditional

rnean of y? , o'o shifts from o! to ol at time t : T * 1. The following theorem provides

recursive improved estimates of volatility in the presence of structural change.

Theorem 4.2.5 Consi,der (y¿) a GARCH(p,q) process wzth structural change at ttme

n i I. Denote by o2. an est'imate of uolati.li.ty based on n obseruat'ions calculated, as

1fl

;Ðrl^ Let ãl : cnõ2n d,enote the zmproued, estzmate of uolati,h,ty. The followi,ng
k=I

relat'ions, allow us to calculate ol, recursi,uely.

(4.2.20)

(4.2.2r)
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. _ _1

Proof: From Theo rem 4.2.!, cn : It n "t" - t | *n"r. 7ç(r) ¿"r,o¡es theLnl
kurtosis. For a GARCH(p,q) process) Thavaneswaran et al. (2005) and Bollerslev

(1986) have shown ¡¡u¡ 7ç(u) : ,t9- ?'^tf)'^) u. It is then easy to show tharI-(al+p1)'-¿aí

(n + t)(cll, - 1) : n(ci' - 1) and the recursive relation involving c, follows. The

recursive relation involving âfr is due to the fact that õ'": E(y|).

The recursive relations lead to the Kalman filter once more as was shown in Tha-

vaneswaran and Abraharn (1988). An application of Godambe's theorem allows us to

calculate recursive improved estimators of the autoregressive parameter in an RCA

rnodel.

Another class of models useful for modeling the time-varying and leptokurtic na-

ture of financial time series is that of RCA models frrst studied by Nicholls and Quinn

(1982). RCA models are defined by allowing random additive perturbations of the

autoregressive coefficients of linear AR models. For example, an RCA(I) process is

given by

at: (Ö I b¿)Y¿-1 + e¿, (4.2.22)

where (ö¿) and (e¿) are uncorrelated zero mean white noise sequences with variances

o! and ør2 respectively.

Using the theory of optimal estimating functions for stochastic processes, (See

Theorem 3.3.1), Thavaneswaran and Abraham (1988) showed that the optimal esti-

mate of / is given by

Di:rai-ru'
Ði=zai-rar-t'

: Di=rai-tAt-t.Then @" : lt, )_ ai_ßt.
+-D
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Theorem 4.2.6 provides the recursive relations for estimating improved estimate

of þ.

Theorem 4.2.6 Conszder the RCA(1) model speczf,ed by (1.2.22).

(z) fhe recurs'iue equat'ions for estzmatzng þ are gi,uen by the following:

(i.i,) Consi,der tlte improued est'imator of cþ def,ned as the m,inim,izer of the condi-

tzonal MSE. Tlte est'imate of c based on n obseruations zs gzuen by

n\2

'Ít / n ^.2 \-1 
'

ó,+(¡ vrr ì

\-'t o?u1-' * 
"'" )

The recurs'iue relat'ions for estitnating cþ are th.e followi.ng:

Ón+I

Qn+t

^-lun+1

k"],

cn.+tõn+t

Ó.+ o;k.*r(a^+t - ó.u,)

k;'";' * o!,a.
--___¡=i--

'ùn+ 1

k;r + aiy..

(4.2.23)

(4.2.24)

(4.2.25)

(4.2.26)

Since ø| is a function of o! and o26, these parameters can by estimated from the

data using tÌre method of moments and Theorem 2.1.1, while / can be estimated

using the sarnple first lag autocorrelation.

Standard errors for recursive improved estimates of volatility based on GARCH

models are more computationally intensive to compute as they require block resam-

pling techniques (See Liu and Singh (1992)). This is the subject of future work.
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4.3. Conclusions

In this chapter, the variance as well as the fourth moment of the l-steps ahead forecast

error have been derived for ARMA(p, q) models with GARCH(P, Q) errors. Our

results extend the results on forecasting for the class of zero-mean GARCH models

derived in Thavaneswaran) Appadoo and Peiris (2005). Moreover, we have demon-

strated the superiority of the AR model with GARCH errors over the usual iinear

AR model whenever the estimate of the ø is small. In addition, recursive improved

estimation in the preserlce of structural change has been discussed. In the next chap-

tet, some of the theoretical results derived for volatility modeling and estimation are

illustrated through simulation studies and real financial data.
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Chapter 5

Applications in Finance

This chapter illustrates some of the financial applications of the theoretical results ob-

tained in the previous chapters. The correlation between the LS and LAD estimating

functions as a GARCH model identification tool is extensively studied in simulation

studies and illustrated using real financial data in Section 5.1.1 and Section 5.1.2. In

Section 5.2, the superiority of the optimal estimating function approach for hypothesis

testing is also demonstrated through some simulation studies.

One of the applications of volatility modeling in fi.nance is in the area of pricing cail

options for the purpose of risk management. Section 5.3 illustrates an application of

volatility modeling in the area of option pricing. Section 5.4 deais with estimation of

the expected value of the conditional variance, E(hr). AII applications are illustrated

with real financial data.

In the next section, we study p', the moment estimator of the correlation between

the LS and LAD estimating functions, as a time series model identification tool in

three different simulation studies.
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5.1 Time Series Model ldentification

5.1.1 Simulation Studies

In this subsection, we study p under three different classes of models. The first

ciass of models is of the form y¿ : 6¿, where e¿ is assumed to follow a parametric

distribution. The second class is that of autoregressive models of order one where

the error distribution is assumed to follow a parametric distribution. Finally, the

third class of models is that of GARCH modeÌs with normal, t-distribution or double

exponential errors.

We used S-PIus@ software to conduct the simulation studies. In the fi.rst simu-

Iatiou study, we have simulated 1000 random samples of size 1000 from a number

of distributions where the theoretical p value is known. In Table 5.1 the average þ

statistics and the theoretical p values are given for some distributions. The estimated

statistic appears to be close to the true parameter.

Distribution p p MAD(p)
normal(65,25)
L3

L4

t5

t6

t7

úg

Logistic(0,1)
Double exponential(1)
Uniform(0,1)
Beta(Z,2)
Beta(3,3)
Beta(4,4)

0.797885

0.636620
0.7071068
0.735105
0.750000

0.7592134
0.765466

0.764304
0.707107
0.866025

0.838525
0.826797
0.820313

0.7932454
0.666274r
0.7021046
0.7400141
0.7457525
0.7620597
0.7695058
0.7622757
0.7065042
0.8600816

0.8350651
0.819865

0.8128436

0.0r75457
0.0622269r
0.04411666
0.02608555
0.02743067
0.02229045
0.01874937
0.02243997
0.02528356
0.01228705
0.01326087
0.01347274
0.01704931

Table 5.1: Theoretical p values and
dom samples from each population.
from p.

average estimated p statistics; The data are ran-
MAD(r) represents the mean absolute deviation
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Error Distrib'n p þ (AR) MAD(AR) p (GARCH) MAD GARCH)
N(0, i)
ts

ta

t5

L6

t7

ts

d'ble exp'l

0.797885

0.636620
0.707707
0.735105
0.750000
0.759273
0.765466
0.707707

0.7979
0.645i
0.7070
0.7356

0.7507
0.7590
0.7652

0.7073

0.0025

0.0273

0.0109
0.0065

0.0045
0.0041
0.0037

0.0038

0.7979
0.6436

0.7084

0.7354
0.7501

0.7591

0.7656
0.7073

0.0025

0.0279
0.0106

0.0062

0.0048

0.0039
0.0036
0.0038

Table 5.2: Theoretical p values and average estimated p statistics for a simulated
AR(l) process and GARCH (1,1). MAD is the mean absolute deviation from the
true value.

In our second simulation study, we have simulated 500 samples of size 5000 each

from autoregressive processes of order 1 (AR(l)), with different innovation distri-

butions. The autoregressive parameter is set to 0.7. It is hoped that the residuals

obtained after fitting conditional least squares estimates to the model parameters fol-

Iow the distribution from which the process was simulated from. The p statistics have

been calcuÌated by using the residuals. Table 5.2 presents an average p value along

with the mean absolute deviation and the statistic is close to the true parameter.

In the third study, we have simulated 500 samples of size 5000 each from y¿, a. zero

mean model with GARCH(I, 1) errors assuming each of the following standardized

distributions for Z¿ in (2.3.9): Gaussian, ts, t4, t5, t6, t7, ts and double exponential(1).

We set the model parameters as c¿, : 5.3 x 10-7, ar : 0.0057, l3t :0.9381. This

study was carried out using lhe fi.nrnetnics module of S-Plus@ version 7.0.

For each simuìated process, normal-GARCH(1, 1) model was fit and using the

stanclardized residuals 2r:*,p is estimatecì as p _ Dl:tlzt- Zlln, 
where Z anc)

hs2
s7 represent the sample mean and standard deviation of the standardized residuals,

respectively. 1, ir the estimated conditional variance at time ú.
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We have presented the results in Table 5.2. Here, / is close to p as welÌ. Proper

identification also requires and estimated standard error of P and this is the subject

of future work. In each of these studies, we have also reported the mean absolute

deviations. The variablity of p about p is largest for ú-distribution GARCH models

where the degrees of freedom is less than five as p is sensitive to extreme observations.

In the next section, we illustrate how p can be used to select the appropriate error

distribution of GARCH(1, 1) models fit to several real datasets.

5.L.2 Examples of GARCH model identification

We illustrate our iuformal test procedure using financial and biostatistical time series

datasets. We provide descriptions of these datasets in Appendix B.7. The datasets

are typical financial series in that they are leptokurtic (See Table 5.3), uncorrelated

sequences whose square is autocorrelated (See fi.gures in Appendix 8.8). For each

dataset, we fit a zero-mean normal GARCH(I, 1) model using ^g-Plus@ software.

Using the residuals from this flt, we calculatecl an estimate of p : EIX - dl 
un.ì

o

used p to identify the distribution of the error term in the GARCH model. The

t-distribution GARCH(I, 1) model is another example of a GARCH model that

is typically fit to log-return series. We aìso fit a t-distribution GARCH model to

the same dataset where the degrees of freedom of the t-distribution is a parameter

estimated from the data using S-PIus@ software. We then rounded off the estimatecl

degrees of freedom to the nearest integer. Datasets marked with a x can also be frtted

using a normal-GARCH(l, 1) model. Table 5.4 shows that there is goocl agreement

between the two methods. Jackknife estimates of the standard error of p provide

a more rigorous way to ascertain the proper error distribution. Incorporating the
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standard error of p into the GARCH model identification procedure is ongoing and

the subject of future study.

Dataset Empirical Kurtosis Dataset Empirical Kurtosis
dell.s
ford.s
hp.s
ndx.dat
siemens

merck.s
hkja.dat(Japan)
exch.perc.dat

4.73

9.15
8.24
6.02

r0.75
8.4

7.49

t4.49

d-ibmln.dat(IBM)
BMW
AT&T
Boeing
Caterpillar
Honeywell
Philip Morris

78.22

10.17

27.TI
10.55

6.24

17.r7
20.04

Table 5.3: Empirical Kurtosis of several real financial datasets.

5.2 Tests for Volatility Models

Consider the problem of hypothesis testing for the autoregressive parameter in an

AR(i) process with GARCH(1,1) errors. Let á represent the autoregressive parame-

Dataset p Dist'n (implied by p) Estimated I-GARCH(I, 1)
dell.s*
ford.s*
hp.s"
ndx.dat*
siemens

mercl<.s*

0.7835
0.7596

0.7572

0.7975
0.72199
0.7558

Gaussian
t7

t7

Gaussian

t6

L72

t7

t7

129

Ls

L6

hkja.dat(Japan)
exch.perc.dat

0.7586
0.7136

t7
+
L4

t
L7

u4

d-ibmln.dat(IBM)-
BMW
AT&T

0.7486
0.70497
0.7256

t6

ta

L5

L6

t'4

t5

Boeing
Caterpillar*
Honeywell
Philip Morris

0.7303

0.7448
0.7312
0.6929

Ls

ub

+
L5

I
L4

t5

L6

t5

L4

Table 5.4: Error distribution identification in flnancial series.
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ter. We are interested in constructing test-statistics for two-sided tests of the form:

H6 : 0: do against, Ho: 0 I 0o.In Chapter 3, the test based on the optimal estimat-

ing function was theoretically shown to be superior over the test based on the least

squares estirnating function.

In each of the following tables, the the test based on the optimal estimating

function method is empirically shown to be superior over the test based on the least

squares estimating function. 1000 samples of size 500 are generated from an AR(1)

rnodel with, normal-GARCH(1, 1), úa-distribution GARCH(1, 1) and ú5-distribution

GARCH(i, 1) errors. The GARCH model parameters v/ere r,,, - 0.1, ar : 0.6

and p1: 0.1. The autoregressive parameter of the simulated AR(l)/GARCH(1, 1)

process was selected to be one of the following: 0o - 0.4,0.5, 0.6 and the autoregressive

parameter d was tested at each of the following: áe : 0.1,. . . ,0.9. The power of the

least squares estimating function tesl (p6ùèr¿s) and optimal estimating function test

(7t6îer"rr) are obtained as the fraction of tests that reject I1o. In the following tables,

the power of the test based on the optimal estimating function is shown to be at least

as large as the power of the test based on the least squares estimating function.

In the next section, an application of GARCH modeling in finance is discussed.

-:-

0o plwirrc p6ûèror, 0o p6õèr", p6ùèror,
0.1 0.975 1.000 0.1 0.999 1.000
0.2 0.702 0.937 0.2 0.966 0.994
0.3 0.284 0.438 0.3 0.772 0.942
0.5 0.270 0.408 0.4 0.293 0.427
0.6 0.794 0.960 0.6 0.337 0.426
0.7 0.978 1.000 0.7 0.853 0.960
0.8 0.999 1.000 0.8 0.992 i.000
0.9 1.000 1.000 0.9 1.000 1.000

0o:0.4, Zt - N(0,I). W 0o:0.6, 4 - N(0,I).

0o p6õèr rc p6îeror,
0.1 1.000 1.000
0.2 0.999 1.000
0.3 0.979 1.000
0.4 0.829 0.971
0.5 0.295 0.442
0.7 0.344 0.466
0.8 0.924 0.977
0.9 1.000 1.000
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0o 'power LS power 0o p6ùèrrs It6ùèro,, 0o p6õèrrc p6ùèro,,
0.1 0.910
0.2 0.643
0.3 0.266

0.5 0.287
0.6 0.686

0.7 0.963

0.8 0.996
0.9 1.000

0.1 0.985
0.2 0.914
0.3 0.647

0.4 0.259
0.6 0.311

0.7 0.734

0.8 0.983
0.9 1.000

0.1 0.997
0.2 0.998
0.3 0.950

0.4 0.745
0.5 0.297
0.7 0.334
0.8 0.866
0.9 0.998

0.999
0.892
0.349

0.344
0.909

1.000

1.000
1.000

1.000
0.998
0.915

0.370

0.350

0.931

1.000
1.000

1.000
1.000
1.000

0.92r
0.400

0.367
0.950

1.000
0o: 0.4, Zt - t¿. 0o: 0.5, Zt - tq. 0o: 0.6, Zt - ts.

0s 0o p6îer 
", 

p6ùèro,,power LS power 0s p6ûèr 7s p6ùer or,
0.1
0.2

0.3

0.5
0.6

0.7

0.8

0.9

0.92r
0.670

0.278
0.289

0.707
0.972
1.000

1.000

0.998

0.915

0.350

0.394
0.911

1.000

1.000
1.000

0.1

0.2

0.3

0.4
U. t)

0.7

0.8
0.9

0.990
0.946

0.705

0.275

0.309

0.773

0.990
1.000

1.000

1.000

0.942
0.380

0.376

0.943

i.000
1.000

0.1
0.2

0.3

0.4
0.5

0.7

0.8
0.9

0.996 1.000
0.993 1.000
0.957 0.999
0.751 0.951
0.306 0.366
0.328 0.386
0.859 0.950
0.998 1.000

0n: 0.4, Zt - ts. 0o:0.5, Zt - ts. 0o : 0.6, Zt - ts.

5.3 An Application of Volatility Modeling in Op-
tions Pricing

CalÌ options on eBay"Àa stock traded on September 28,2006 were obtainecl from

The wall Street Journal on September 29, 2006. eBayr^r is the registered name of

a popular auction website and its stock is traded on the New York Stock Exchange

(NYSE). The adjusted daily closing stock prices were taken from the Yahoo! finance

website. The call options listed in Th.e Wall Street Jour-nal are American options;

meaning that they cau be exercised at any time prior to the exercise date. However, it

has been shown that European and American call options have the same call price (p.

276 in Ruppert (2004)). Hence, we can use the Black-Schoies formula for European

call options to price eBayr^a options.
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This section has two subsections. In Section 5.3.1, an adequate model is fit to

eBayTNr daity log returns based on adjusted closing prices from September 24, 1998

until August 31, 2006.

In Section 5.3.2, two different estimates of volatility are obtained and used to

calculate the call prices of eBayTM stock options traded on September 28, 2006.

The superiority of the GARCH modeling based approach over the use of historical

volatility is dernonstrated.

5.3.1 eB,ayr^a Volatility Modeling

The daily closing price process along with the daily log return process are dispiayed

in Figure 5.1. There are 1931 observations in the log-return series. The daily Ìog

retutns are leptokurtic as the sample kurtosis is 10.99. The sample ACF and of

the daily log returns and the sample ACF of the squared process are displayed in

Figure 5.2. The presence of significant autocorrelations in the squared log return

process indicates the need for fitting a GARCH model. The absence of significant

autocorrelations in the cube of the log return process in Figure 5.3 suggests the

abseuce of conditional skewness. The lack of systematic cross-correlations in the

sample CCF plot in Figure 5.4 is indicative of the absence of conditional leverage.

Hence, an adequate linear GARCH model wiÌl explain the saiient features of this

data.

A normal-GARCH(1, 1) model is fit as a starting point. The p'statistic (developed

in Chapter 3) was calculated based on the standardized residuals obtained from the

fitted rnodel. Since 1 : 0.7280944, the error distribution was identified to be a Student

t-distribution with 5 degrees of freedom using Table 3.1 in Chapter 3. The quantiìe-
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quantile plots of the standardized residuals from a normal-GARCH(1, 1) model and

the ú5-distribution GARCH(1, 1) rnodel in Figure 5.5 show that the t-distribution

GARCH(1, 1) model provides a better fit. It is of interest to note that when we fit a ú-

distribution GARCH(1, 1) model by also estimating the degrees of freedom parameter

z, we obtainedî :5.28 with a standard error of 0.49. Using a Wald-test, we conclude

that 5 is a plausible val.ue for ¡u. We also fit typical GARCH(I, 1) models for this

data and examined the kurtosis of the standardized residuals from each fit. Table 5.5

provides the empirical kurtosis of the standardized residuals from the following fitted

models: normal-GARCH(1, 1), ¿5-distribution GARCH(1, t), GED-GARCH(1, 1)

and Laplace-GARCH(1, 1). In comparing these kurtosis values to the kurtosis of the

normal, ú5, GED and Laplace density kurtosis values, we see that the ú-distribution

with 5 degrees of freedom explains 65% of the kurtosis observed in the standardizecl

residuals, whereas a normal-GARCH(1, 1) fit explains2BVo of the kurtosis of the stan-

dardized residuals. We investigated the adequacy of the ú5-distribution GARCH(1, 1)

further by examining the sarnple ACF of the squared standardized residuals. As there

are no significant autocorrelations present in the corresponding sample ACF plots in

Figure 5.6, we conclude that a ú5-distribution GARCH(I, 1) model is adequate. The

parameter estimates of the fitted ús-distribution GARCH(1, 1) model are reported in

Table 5.6.

From the parameter estimates in Table 5.6, the estimate of E(h¿) is ø@¡ :
2.027 x 10-6 t- ^-

1 _ 0J31g2 _ 09666 
: 0.001292164 resulting in V E(hù : 0.03594668 as an esti-

mate for volatility of eBay"¡/ daily log returns. In the next section, eBay call options

will be priced and compared using two estimates of volatily: historical volatility ancl
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Figure 5.3: Sample ACF of cubed eBayrM daily log returns.

the GARCH based estimate voiatility.

5.3.2 Analysis of eBayTM Call Option Data

On Septetnber 28, 2006, eBay?¡¿ closed at $28.36 ancl the three-month T-biil rate

closed at 4.75%. Assuming 253 trading days per year, the risk-free rate is r :

0.04751253 : 0.000187747. The sample standard deviation of eBayTM daily iog re-

turns is 0.04647978. Call option prices for eBayTM stock traded on September 28,

2006 are calculated using the sample standard deviation of log returns (or histor-

ú5-distribution GARCH(1, 1) model discussed in the previous section. The predicted

call prices reported in Table 5.7 indicate that using the GARCH modei based est!

c

q
o

q
o

o

c!
o

q
o
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Cross Correlation

Figure 5.4: Sample CCF between eBay"^a daily ìog returns (y¡) and y!.

mate of volatility yields improved prediction of the call prices. The same conclusion

can be drawn frorn Figure 5.7.

The superiority of using a volatility estimate based on GARCH modeling over

the historical volatility based rnethod can further be seen from the p-values of the

following goodness of fit tests. If we view the call prices reported on September 28,

2006 as expected call prices in the goodness of fit framework, and the call prices

obtained by using op a.nd o5r from the data as observed call prices, then the X2

goodness of fit test statistic that measures the deviation of observed prices from

expected prices in each case is 22.36 and 4.23, respectivelywith g degrees of freedom.

The p-value of the test that uses historical volatility (on) is 0.0079; whereas the p-

value of the test that uses l@171o61from the adequate GARCH moclel is 0.895b.
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Distribution Kurtosis sampleKurtosis
t5 I 13.81

¡/(0,1) 3 10.63
GED 4.94 12.87

Laplace 6 12.97

Table 5.5: Comparison of empirical kurtosis of standardized residuals with implied
kurtosis.

Parameter Estimate S.E. Statistic p-value
a 2.027 xI}-ö 1.356 x 10-6 1.494 0.06766
a1 0.03182 0.006029 5.277 < 0.0001

l\ 0.9666 0.005759 167.833 < 0.0001

Table 5.6: Parameter estimates from a ú5-distribution GARCH(I, i) model fit to
eBayTra daily log returns.

The goodness-of-fit test statistic in historical volatitity case is found in Table 5.8,

whereas the goodness-of-fit test statistic for the method that uses GARCH rnodeliug

is found in Table 5.9 for more details about the tests). Using GARCH modeling is

an improvement over using historical volatility in this case.
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2.50
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15

76

B&S price
âc : 0.0359

5.99

3.78
2.06

4.7I
0.96
1.81

0.38

2.20

0.01
0.55

Table 5.7: Call prices and prices determined by the Black-Scholes(B&S) formula for
eBay"¡a options on September 28, 2006. 1{ is the exercise price. ? is the rnaturity.
õn andõç ate the historical volatility and GARCH based volatility, respectively.
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Figure 5.7: Time series plots of observed and predicted eBayrM call prices.
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Price Expected price O-E (O - E)2lE
0.23
0.49

0.7

1.9

0.75
2.L2

0.52
2.12

0.02

1.13
Sum 22.36357

Table 5.8: comparison of prices predicted by using historical volatility(ø¡¡).

Price Expected price O-E (O - E)2lE

6.13

4.09
2.50

5.10
1.40

2.57

0.72

3.22

0.07
r.23

5.90

3.60

1.80

3.20
0.65
1.10

0.20
i.10
0.05

0. i0

0.00897
0.06669

0.27222

T.I2B72
0.86538

4.08582

1.35200

4.08582

0.00800

72.76900

5.99

3.78

2.06

4.7r
0.96
1.81

0.38

2.20

0.01

0.55

5.90

3.60

1.80

3.20
0.65

1.10

0.20
1.10

0.05
0.10

0.09

0.18

0.26

0.91
0.31

0.71
0.18

1.10

-0.04
0.45

0.001372
0.009000

0.037556
0.258781

0.r47846
0.458273
0.162000
1.100000

0.032000
2.025000

Srrm 4.231829

Table 5.9: Comparison of prices predicted by using GARCH(a6).
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5.4 Interval Estimation of Volatility

Standard errors for prediction iutervals for l-steps ahead forecasts are typically cal-

culated as 2E(h7*¿lF$) even though the l-steps ahead forecast is not normally clis-

tributed. Recently, Pascual et al. (2006) proposed bootstrap prediction intervals for

teturus and volatilities in GARCH models. In this section, we propose a bootstrap

based method for obtaining a confidence interval ror E(h¿) in GARCH models.

5.4.L Bootstrap Confidence fntervals

Once the error distribution of a GARCH model is identified, the confidence interval

for E(lt¡) in a GARCH model can be calculated in the following manner.

Without loss of generality, suppose that we are interested in obtaining a confidence

interval for E(h¿) in a GARCH(I, 1) model. That is, suppose the observed. process is

given by the following:

Ut

ht

n--: \/ flt Lt'

: a+a1yl-rIþthtt,

(5.4.1)

(5.4.2)

where 4 - (0,1) is an uncorrelated sequence with density f . LeL ù, ãt, and p1 be the

estimated rnodel paratneters obtained through conditional least squares. Calculate

the standardized residuals as

2, : Urllfir, (5.4.3)

whele t:7,...,n and. îr, : ---! ^ is the estimate of E(hr).I-ù-þt
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(i) ObtainBreplicatesof arandomsample Zi,...,Zi",by resampling 2r,...,2n,

B times. From each replicate, obtain a bootstrap sample yi,...,31i using the

following:

Ut:

hi

Juz;

ù + aLai3t + þthi-r, t:1,...,n.

(5.4.4)

(5.4.5)

(ii )

(iii)

Let h.l : Âr for each of the B replicates.

Using each replicate, estimate the GARCH model parameters. Denote the esti-

mated parameters by r*,al ancl Bi respectively. Calculate ø"(hr) : --*-r_rJ1_p1

order the estimates of E(h¿) in the previous step and use the 2.57o and.gT.5%

quantiles of the distribution of estimates of E(h¿) to form the g5% confidence

interval f.or E(h¿).

(iv) Taking the square root of endpoints of the interval gives an interval for volatility.

The procedure just described is a non-parametric bootstrap procedure. A para-

metric bootstrap procedure may also be used to calculate a confidence interval for

E(lz¿) in a GARCH process. We modify the nonparametric procedure in the following

mannel.

(i) Identify the error distribution of the GARCH process using the proceclure de-

scribed in Chapter 3 and estimate the model parameters a, d, and. p assuming

the identifled error distribution.

(ii) Draw a random sample with replacement 2i,... , Zlfrom the distribution of. Z¡.
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(iii) Let hî: . -l-----o be the estimatecl E(hr).
r-at-þt

(iv) Obtain B replicates of bootstrap samples of size n using the following:

t/uz; (5.4.6)

(5.4.7): ù + eßî\+ þrhî-r, t : I,...,n

Using yi,. . ., y|, estimate a GARCH(1, 1) model whose innovations are assumed

to have the density identified in Step (i) and obtain the parameter estimates ø*,

ai and Bf . Calculate the estimate of E(h¿) : ---!-r-ut-Pt

order the estimates of ð(å¿) in the previous step and use the 2.5% and gT.5%

qnantiles of the distribution of estimates of E(h¿) to form the g5% confidence

interval for E(h¡).

(vii) Take the square root of the endpoints of the interval in the previous step.

5.4.2 Sirnulation Studies

Asset pricing such as pricing of call options requires knowledge of volatility which is

defined as the standard deviation of (iog) returns. We propose a confidence interval for

volatility associated with GARCH models by taking the square root of the endpoints

of the confidence interval f.or E(h¡) in a GARCH process. To study the small sample

properties of such a procedure, we begin by studying interval estimation for the

population variance of a set of normally distributed data. We study the coverage of

the interval formed by taking the square root ofthe endpoints as a confidence interval

for the popuiation standard deviation. The following examples motivates our interval

estimation proceclure for JE(h).

ai

hi

(v.)

(ui)
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Example 5.4.1 Suppose X1,. . ., Xn'is a random sample from a N (p, o') population.

Th.e conf,dence 'interual for the populati.on uariance is giuen by

(@--t)*,9-t)"').
\ Xãur,"-r Xi-ø/z¡,"-t /

where X?o/2,,,-t ønd y2r-ro,r),n_t are the upper af2 and, lower I - ("lZ) percentøge

poznts of the chi-square distributi,on wi,th n - r degrees of freedom, respect,iuely. s2 is

the sample uariance.

Interest centers on obtaining a confidence interval for ø, the population standard

deviation. 100 samples of size 1000 were simulated from three different Gaussian dis-

tributions. For each satnple, a 95% confi.dence interval for the population variance is

constructed. The square root of the endpoints of each interval is taken and the frac-

tion of intervals containing the population standard deviation is tallied. The average

coverage along with the standard error of the estirnate are tabulated in Table 5.10.

We found that the procedure produces approximate 95% confidence intervals for the

population standard deviation, ø.

In the next section) we study the small sample properties of bootstrap basecì

confidence intervals for volatility.

5.4.3 Interval Estimation of GARCH Volatility

In this strbsection, parametric (P) and non-parl,rneúnc (NP) bootstrap interval esti-

mates of volatiiity are calculated for a single sample of size n : 5000 drawn from

a normal-AROH(1), a ú5-distribution ARCH(1) and a double-exponential ARCH(1)

process with parameters ø : 1, and ar : 0.6. All calculations were performed using

S-Ptus@ software. The marginal variance of the process is E(h¡) : . ' : 2.5.l-or
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100

250
500
1000

0.e7(0.017)
0.e7(0.011)
0.s5(0.00e7)
0.e6(0.0062)

¡/(0, 1) Coverage(s.e.)
100

250
500
1000

0.e5(0.022)
0.e4(0.015)
0.e8(0.0063)
0.e5(0.006e)

n ¡/(100,15 ) Coverage(s.e.)
100

250
500

1000

0.e6(0.012)
0.e7(0.011)
0.ee(0.0044)
0.e4(0.0075)

Table 5.10: Confldence intervals for the population standard deviation of a random
sample of Gaussian observations.

B0%, g0% and 98% conficlence intervals are calculated for E(l'r¿) parameter . 'r-0r
using B : 100,250,500, 1000 bootstrap samples in each case. Interval estimates of

volatility can be obtained by taking the square root of the endpoints of the interval

f.or E(lz¿). The results are reported in Tables 5.11,5.12 and 5.13. In one instance,

a negative estimate of E(h¿) was obtained. This implies that the procedure neecls

to constrain the estimate of a1 to lie in (0, 1).The intervals are markedly difierent;

however the parametric bootstrap estimator of volatility converges faster to the max-

imum likelihood estimate of volatility than the non-parametric bootstrap estimator

as the number of bootstrap samples B increases. Extensive simulation studies are

needed in order to compare the the coverage properties of the nonparametric and

parametric bootstrap intervals.
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500

1000

(2.3892
(2.1660

(2.36e7
(2.7622

(2.38e7
(2.155i

(2.3746
(2.r5s5

2.8278
2.5623)

2.817r)
2.5437)

2.8082)
2.5360)

2.8147)
2.5351)

(2.3462
(2.1450

(2.3726
(2.1 133

(2.3325
(2.11e1

(2.3275
(2.t230

2.8855)
2.6024)

2.8775)
2.57s0)

2.8734)
2.6042)

2.8e24)

2.2472
(2.100e

(2.176e
(2.0847

(2.220s
(2.0510

(2.2344

3.r740)
2.8003)

3.0200)
2.6804)

3.0652)
2.7210)

3.0210)
2.8443)

2.6218
2.3457

2.5928
2.3386

2.5845
2.3311

2.5901
2.3396

P
NP

P
NP

P

NP

P

NP

Table 5.11: Confrdence intervals for
2.6062.

2.6\09 2.0647

E(h¿) in a normal-ARCH(1) process. E(h,)

500

1000

lVfethod
(1.e867 2.8253) (1.8751 3.0385) (-1.8766 357eÐ 23445

NP (1.8130 2.4406) (1.7567 2.6873) (1.6336 3.r72e) 2.0s76

P (2.0066 2.7353) (1.e175 3.03e8) (r.7s45 3.5370) 2.3878
NP (1.7811 2.3162) (r.7376 2.4182) (1.6380 3.0331) 2.0573

P (2.0151 2.8546) (1.e308 3.0888) (1.8201 3.7e69) 2.3ss4
NP (r.77s7 2.334s) (r.7346 2.51s7) (1.686e 3.23s2) 2.0613

P (2.0188 2.8475) (r.e404 3.i04e) (1.8218 3.6510) 2.3e58
NP (1.?103 r.36rr)

Table 5.12: Confidence intervals for E(h¡) in a ú5- distribution ARCH(1) pïocess.
E(ht) :2.3843.

Example 5.4.2 Interual Esti,mati,on for eBafM Volatitity

iJsing B : 1000 samples, we obtained the g0% C.I. for the E(h¿) : . 'r-at-þt
as (0.0005068,0.01085). The 90% CJ. for volatility (obtained by taking the square

root of the endpoints) is given by (0.02251,0.7042). "An interval estimate" for the

call price can be obtained by substituting the endpoints of (0.02251, 0.1042) into the

Black-Scholes formuia (See Table 5.14).
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1.7559 2.3672) (1.7034 2.5180) (1.6188 2.6925) 2.0537

250

NP (1.5913 1.8709) (1.5638 1.9306) (r.5074 2.0670) r.7378

P (1.78e8 2.27e0) (7.72s5 2.3346) (1.562e 2.5748) 2.0222
NP (1.6058 1.8e65) (1.5701 i.9880) (1.5213 2.i585) 7.7570

P (1.7s78 2.3441) (r.72sr 2.4417) (1.6225 2.6400) 2.0440
NP (1.5876 1.8378) (1.5612 1.e37e) (1.48e3 2.1777) 7.74r0

P (1.8053 2.3r2r) (1.755e 2.4335) (r.6624 2.64e8) 2.0546.\-'-----.".-.,/
NP (1.6000 1.8971) (1.5629 r.9702) (1.5003 2.1515) 1.7405

Table 5.13: Confidence intervals for E(h¿) in a double-exponentiat ARCH(1) process.

E(ht) :2.0535.

5.5 Conclusions

The usefulness of the correlation between the LS and LAD estimating functions as a

GARCH model identifrcation tool has been investigated through simulation studies.

An application of GARCH volatility modeling in the area of European call options

pricing has been discussed and has been shown to be superior over the option pricing

formulas that use historical volatility. Comparison with asset pricing formulas that

use implied volatility also needs to be investigated and this is the subject of future

investigation. Parametric and nonparametric bootstrap based interval estimates of

the marginal standard deviation of GARCH models have been proposed. All proce-

dures have been investigated in simulation studies and have been illustrated using

real financial data. The superiority of the optimai estirnating function approach for

hypothesis testing has been demonstrated through some simulation studies.

1000
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Month of
Expiration

B&S price
Gt :0.0225I

price
:0.1042
7.68

6.19

4.94
i0.35
3.92

6.34

3.09
8.82

r.49
6.56

Table 5 14: Cali prices and prices determined by the Black-Scholes(B&S) formula for
eBayrM options on September 28, 2006. K is the exercise price. ? is the maturity.
õ 7 and õu are the endpoints of the g0% C J. for o . õç is the GARCH based volatility.

K

22.50
o(

27.50

27.50

30

30

32.50
32.50
40
42.50

Oct
Oct
Jan
Oct
Nov
Oct
Jan
Oct
Jan

5.90

3.60

1.80

3.20

0.65
1.10

0.20
1. 10

0.05

0.10

5.99

3.78

2.06

4.77

0.96

].B1
0.38
2.20

0.01
0.55

5.93

3.50

1.51

2.85

0.42

0.93

0.07
0.96

0.00
0.06

15

15

15

76

15
t-()J

15

76

15

76
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Chapter 6

Summary k F\rture \Mork

In Chapter 2, the cross-correlation function and the sample ACF function have been

shown to be useful for the purpose of identifying the presence of conditional skewness

and conditional leverage, respectively. The inverse Gaussian model of Christofiersel

et al. (2006) is a nonlinear GARCH model that adequately captures conclitional

skewness as weil as other salient features of the class of linear GARCH moclels. The

moment properites of nonlinear GARCH models that involve other skewed parametric

distributions is the subject of future research.

In Chapter 2, moment properties of the ACP and the DACP process have been

studied. IVlarkov switching type ACP processes have applications in epidemiology.

For example, by incorporating a Markov-switching structure in the class of ACP

processes for a time series of influenza counts, the presence of epidemics can be

adequately modelled. Moment properties and estimation of such processes using

estimating function methodoìogy is of interest.

In Chapter 3, several applications of combining estimating functions have been

studied. By combining the least squares estimating function and least absolute devi-

ation estimating function, a GARCH model identification technique for models with
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symmetric conditional distributions has been developed. Identification of the class

of linear GARCH models with asymmetric conditional distributions is a possible ex-

tension. The nonlinear time series models in Abraham and Thavaneswaran (1991)

have been extended by combining estimating functions for volatility. The combined

estimating functions have been shown to have larger information than the component

estimating function. Combining estimating functions f.or non-l,ine¿r GARCH moclels

wiil also be studied.

Tests for non-linear time series via estimating functions have been studied by

Thavaneswaran (1991), Baswa (1991) and Thavaneswaran and Peiris (t998).(See aiso

Chapter 9 in Heyde (1997) for more details). The results of Thavaneswaran and

Peiris (1998) have been extended to ARMA models with GARCH errors in Chapter

3. Tests for non-I'ine¿r GARCH models based on estimating functions is a possible

extension.

The filtering problem for linear GARCH models and stochastic volatility moclels

has been studied ìty Peiris and Thavaneswaran (2004) by cornbining estimating func-

tions. The filtering problern for ARMA nodels with GARCH errors and the class of

non-l'inear GARCH models using estimating function methodology is an extension of

interest.

In Chapter 5, interval estimation of volatiÌity was studied. In option pricing,

interval estimates of volatility allow the analyst to gauge the sensitivity of call prices to

periods of low and high volatility. Nonparametric and parametric bootstrap interval

estimates have been proposed. The coverage properties of such intervals need to be

studied using simulation studies.
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Appendix A

Some Properties of the fnverse
Gaussian l)istribution

,A'.1 Details in Subsection 2.7.3

The following proposition will be useful in random number generation from an IG(¡t, À)

distribution.

Proposition 4.1.1 For X - IG(p, À), the transformed, uari,abley, - 
À(X :-tt)' n,p'x

di,stri,buted as a yl.

Proof: The details are provided in Letac et al.(1g85).

Remark 4.1.1 Chhi,kara and Folks(1989) prouide the algorzthm for generating ran-

dorn uariates from the IG(¡.t,À) di,stri,buti,on in the followi,ng rno,nner. Consi,d,er the

followi,ng uariates.

x, : #lzÀ + ¡_ty2 - {4^py, +æy4l (A.1.1)

and

LLz
7\O _ _-"x\ (4.1.2)
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L. Generate random numbers from the ch'i-square distribution with one degree of

freedom.

2. For each, random uaLue in step 1, cornpute the smaller root X1 g'iuen aboue.

3. Perform a Bernoulli trial wi,th probabi,lity of 'success'p: lll0r + Xr).

l. If the trzal results'in a success, the root Xy 'is cltosen for the random obseruøt'ion

from the 'inuerse Gauss'ian dzstrzbutzon; otherwzse the larger root X2 ,is chosen.

Note: The two 'roots' of the equation y' : ^(4;-;:)' are the following;

x., : Llzs + tty' - Jr^pyr+ tt y^l- 2^'

x2 *lzs + py, + ,/+>,t,v, + try^l- 2^'

Sirnple algebra shows that X1 x X2: ¡1,2 and that X1 is the smaller root.

Theorem 4.1.1, makes it possible to reduce the number of parameters and to

obtain an inverse Gaussian distribution with a single parameter.

Theorem 4.1.1 SupposeX - IG(p.,À). LetZ: ÀXlp2. ThenZ - IG(6,62)(d,enoted

by IG(6) from herein) where 6 : Àlrr. Furtlt"ermore, z has the following properties:

(i) z has the fottowins density: f (r;6): #.* [-å (O - #)],
(¿z) E(Z) : 6,

(i.zi) Var(Z) : 6.

Proof: The details are provided in Chhikara and Folks(1989).
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Remark 4.L.2 Si'nce the rnodel by Christoffersen et al.(2006) s,imulates frorn the

Ic(6) rnodel, we modi,fy x1 and, x2 i,n Rernark A.1.1 i,nthe followi,ng rnanner:

x,: 
fiPaz + 6Y2 - J46-ryTæY1 (4.1.3)

and

ò"Xr-"xr (A.1.4)
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Appendix B

Combining Estimatitrg F\rnctions
Proofs in Chapter 3

8.1 Details in Subsection 3.3.1

The estimating functions based separately or rrL¿ and k¿ are

¡"t: -\f,r,-,*,, N: -rfufo,,
t:1 \ ' /- t:l

respectively. These were calculated using the following quantities.

" (#,4-,) : -ut-t ,E (*?trt-,) : o'.

Thus,

i" (*14-,) F (*?14-,)l-,*, : - +f ,,-,^,
Ú:1 \ / ' t-_1

To calculate 1(, we need

, (*lq-,) - -2oo, E (k?l+y-r) : (n + 2)oa
\," /

The corresponding martingale informations of M and K follow from the definition.

8.2 Details in Proof of Part (a) of Theorem B.B.B

Using rlt : Ut - 1yr-, and k¿ * ml - o2, Cov(mr,krlFlì : 7o3. Let

'rb, : k, - 
cov(rn¿' klq-') ^YL - 'vt va4mrq; m*
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Then, tþt : kt - ^yo3rnt will be uncorrelated with rn¿. Consider the elementary esti-

mating function gt: rrlt*ry'¿. Using Theorem 3.3.1, the optimal combination is given

by the following:

T

o@;0): Ð{"#:H*'.ffir'lt.r
f

Ð{T*,* n@ff-ffi,,}
which reduces to part (i) of (a) in Theorem 3.3.3.

Consider the eiementary estimating function

g¿: o(2o1- (o + 2)yr_r)^, * (yr_r.y - 2o)h.

In order to calculate the martinagle information of the estimating function, we neecl

to compute the conclitional expectation of H "is 
easy to show the following:

E(a \
y6g2oolmtlri-t ) 

: -2oo'Yut-t

/ã \
u 

\*- 
(rc+ 2)oy¿-1m¡IFY-, 

) 
: (n+2)oyl-,

, (fir*,rk,lq-,) : -2oo1y!-,

E(l-2oA:,lrv.\ =

\ðd-zoktlFi-1 ) 
: 4o(o)z

Therefore,

" (*14-,) : o(4(o)2 -  ota,-,,+ (rc + z)a1-).

In order to calculate E(g714ì, we need the following intermecliate calculations.

Yar (2oo1n'ttlft) : 4(o)2oa12

Var (-o(rc + 2)y¿-1m¡lfl-r) : (rc + 2)2y2,_roa
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Yar (yt-nkrlft) : yzr-r1zoa(rc + 2)

Yar (-zokrlry) : +(o)2oa(rc + z)

2Cov (o2o1Tnt, -(K * 2)y¿-1m¡ol4) -4ooa1(n t 2)yr_,

2Cov (2oo1mt,At-nktlF{-t) : 4oao13y¿-1

2Cov (o2o7m¿, -2ok¿lî!-r) : -8(o)2oa12

2Cov (-(rc *2)oy¿-1mr,ar-nkrl4-r) : -2(rc+2)f onA?_,

2Cov (-(rc -t 2)y¡-1m¿o, -2öklq_) : 4ooa1(rc * 2),yr-,

2Cov (ut-r14, -2òk¡F{-) : -4o{n r 2)oayr-r.

Thus, n Ø? l|4ì : {(rc + 2) - f } o4 (t (a)' - 4o.yy r_ r + (n + 2)y!J ). The marringare

information of the combined estimating function follows directly from the clefinition

of martingale infonnation and this reduces to the expression in (3.3.a).

8.3 Details in Proof of Part (a) of Theorern 8.8.4

" (W) : -at-t, ø(*7lr{-,) : o2h?.

" (#) - -2ooh¿, E(k714-): (rc * z)oah!.

Pú tþ¿ - kt - ffiWffLt : kt - lohl/'*r. Then, E(rþ?lq-r): (rc *
2-f)oah! and E (#rr t) : -2ooht+'yyt-tohîl'. uri,'g Theorem 8.3.1, rhe
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optimal cotnbined estimating function is given by the expression in (i) of part(a) in

Theorem 3.3.4.

Let

( ( ,oo, - o(n+ 2)4=\ *, * ( tY'-' - za\ r,l .

't:1\ \ 'r/hr/ \r/h¿ /")
After more algebra,

"(H,r!-,) 
: w(Ð'+ (n+ q+ - n ",ft1

8.4 Details in Subsection 3.3.3

Some of the details are as follows.

,(#vy-,): -e,-,

'(#,q_,) 
: _zoo

ø(^?lr!_,):o3u7_r+o,

E(k714ì : uî-r(na + z)of + 4y!-ro2 o! + (n + 2)oa.

Cov(m¿, nrlfï-r) : Cov(m4,*?14_r)

Cov (y¿-1b¡ + er, y!_rbf t 2y¡- 1b¿e ¡ +,\lEi_r)

: y,3-rOov(ó¿, b!) + Cov(e¡,el)

: al-plla + ot''t'
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8.5 Details in Proof of Part (b) of Theorem 3.3.3

In order to calculate the optimal estimating function, we need the foilowing calcula-

tions.

" (fftn-,) : #, Eþn?t*v-) : #

Cov(m¡,LtlFiì: -At;po

Put g¡ - Lt - ##rn¿. Then, tþt: lt + ar-rl^ris uncorrelated with rn¿.

" (fftrt-,) 
: -r?-,12¡10¡ + !)

var(þ¿lf!_1) : y\-r\ - p').

The optimal combination is given by

s(y;o): Ð{"ffi*,.ffir,\
L:l 

l. 
Lt- L-L/ -\Ytt- t-L,t 

)

: 
"¿-øÐ{ 

T*'- ¡!r1QrQ)* ot")'þ'}

After much algebra, this reduces to the expression in (3.3.6).

Let g¡ be the úth component in g(y;0).It can be shown that

ø (ffitrl-,) : #fru+ Ato)po + 4r2(o)o2}

" (ffiW-,) : rf ço¡r,-,, E(¿?lFi-) : +f'(o)v?-,.
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And,

Yar(s¿lïl-r¡ : -4-t-Q + 4f (o)po + 4f2Q)o\.o"\r - p" )

So that the martingale information equals

¡'' (H,*-,) EbTtFi-)t-'

and this reduces to In in (3.3.7).

8.6 Details in Proof of Part (b) of Theorem 3 .5.4

, (fflt-,) : -r,-, , E(*?trï-,): o'h,.

ø (ffiw-,) : rr1o¡r,-,, EQTtq-) : r.

Cou(m¿,ttlftì : poJh,

út:It- -Ç*,o t/ ltt

" (ffivL,) : trr{o )oJ-n, + ò#, E(,þ?tq-) : (t - p').

T
^ \-- ut_t ... , (zf (o)ot/fi * p) yr_, ,, p ,y: ) ,---lj-trø¡ -r 

-------F\¿¿ 

- -------ttLt)" ? o,h, (I - pr) or/n, ol ht
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Let s¿: ftU, + zf (o)op{h,)*, - oln,ele)"Jn, + p)t,}.

fil + 4f (o)o2ht + 4f (Qpof-h,lu(ffit+,):

.)

EG?W-,) : ffilt + 4f (o)ozht + +f (0)poJ-41

8.7 Datasets used in Subsection 5.L.2

We iliustrate our informal test procedure using several financial datasets. These

are taken from the fi,nmetrics financial analysis module of S-PIus@ version 6.2, and

Tsay(2001). We give a brief description of each datasets.

I. brn'w represents the daily log returns on BMW share price from 7/2llg73 to

712311996. (Note no trading takes place at the weekend.) The data is suppiied

by finmetri,cs.

2. dell.s is a data set with 1261 values, representing daily stock returns of Dell

corporation in percentage points from August 24, rggï, to August lg, 1gg8.

The data is supplied by f,nmetrics.

3. hp.s is 2000 data points from stocks, representing the daily returns for Hewlett-

Packard(HP) from Feburary 2, rg94, to December 31, 19g1. The clata is supplied

by fi"nmetri,cs.

4. s'iemens represents the daily log returns of Siemens share price fromIl2llg73

fo 7 12311996. Note no trading takes place at the weekend. The data is supplied

by finmetrics.
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5. merck.s is 2000 data points representing the daily returns of the pharmaceuticaÌ

company N4erck from Feburary 2, 1984, to December 31, 1991. The data is

supplied by finmetri.cs.

6. USCN.FP.lagl represents the one month forward premium between U.S. Dollar

and Canadian Dollar during March 1976 to June 1gg6. The data is supplied by

f,nmetrics.

7. USUK.FP.Iøg7 represents the one month forward premium between U.S. Dollar

and British Pound during March 1976 to June 1gg6. The data is supplied by

fi,nmetrics.

B. hkja.dat represents 491 daily log returns of the Japan market and is taken from

Tsay(2001).

9. erch..perc.dat represents 10-m log returns of FX (Mark-US) and is taken from

Tsay(2001).

I0. d-i'bmln daf represents Daily log returns of IBM stock and is taken from Tsay(200i ).

11. The following datasets are columns of the dataset DowJones70 representing the

closing prices of thirty stocks in Dow Jones Industrial Average in finmetncs.

This is a daily "timeseries" object from January 2, rggT to January 2, 200r,

with thirty columns representing the closing prices of thirty stocks in Dow

Jones Industrial Average including: Alcoa, Inc., AT&T, Boeing, caterpillar,

Inc., Honeywell, Wal-mart and Philip Morris.

183



Daily Stock Retums of HP

B.8 Time Series Plots of Datasets in Subsection 5.I.2
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Figure 8.1: Daily log returns.
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Daily Log Retums on B[4W Share Pr¡ce
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Figure 8.2: Daily log returns.
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Daily Log Retums on B[4W Share Price
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Figure 8.4: Daily log returns.

187



o
d

Daily log returns of Alcoa

1 991 1 995 1 999

Daily log returns of Japan Stock lndex

Series : l.morris^2

0 '10 20 30
Lag

Series : l.alco^2

10 20 30

Lag

Series : jp^2

Daily log returns of Philip Monis Series : l.morris

Ir)
(.1

ci

I
O-
<à

I
o

q
o

uO*<;

I
o

ci

r
9o\cj

o
ci

q
o

I
Or<o

q
a

q
o

I
OT
<ci

ci

I 9994 00Â 10 20 30
Lag

Series : l.alco

10 20 30
Lag

Series :jp

ci

r
Oç
<ci

o
o

@

@

N

o

0 100 200 300 400 500 510152025
Lag

Figure 8.5: Daily log returns.

510152025
Lag

188



q

q
o

q
o

I
O

o

q
o

q
o

q

q
o

q
o

tr()
<f

o

.!
o

c
o

o

o

o
N

q

@
o

q
o

u
o
<1

o

N
d

q

q

o
o

q
o

I
O
<v

o

oi

q
o

Daily log returns of IBM

0 2000 4000 6000 8000

Series :dibm

010203040
Lag

Series :ford.s

Series :dibm^2

010203040
Lag

Series :ford.s^2

0t02030
Lag

n
:

ro

d

tr)

ci

10 20 30
Lag

Figure 8.6: Daily log returns.

DaÌly Stock Returns of FoRD

Q2 Q2 Q2 Q2 Q1
1984 1986 1988 1990

189



Daìly Returns of DELL
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