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The Padova model, describing ii.NNN scattering, is discussed in a new partition 

notation and a new approximation scheme is proposed. The resulting equations are re- 

cast in a standard AGS-form with the inclusion of correction terms to the two-cluster 

effective potential. These correction terms describe the e-xplicit degree of freedom for 

one pion. It is shown that one set of correction terms can be interpreted as three- 

nucleon corrections of the Tucson-Melbourne type. A second set of correction terms 

is discovered t hat was previously not included in t hree-nucleon force calculat ions. In 

order to investigate the effect of the correction terms a one-dimensional system is de- 

veloped t hat mimics s tandard two-aucleon phy-sics. The corresponding t hree-nucleon 

system is investigated in respect to the ID-triton binding energy. It is demonstrateci 

t hat the TM-type correction terms depend significantly on an adj ustable parameter- 

The range of the effect on the 1 D-triton binding energy makes it possible to correct 

the underbinding discovered in the standard calculation. Boivever, it is also shown 

that the new type of correction terrns has a non-negligible effect on the 1 D-triton 

binding energy. Therefore, the adjustment parameter should take t his effect into 

account when gauged to the ID-triton binding energy. 





about to  end, if there would be no problem in the calculations and no improvements 

needed to be found. 

Hovvever, this is not the czse? because we still have unsolved problems like the .il, 

puzzle; or even something presumably simple as the triton binding energy. Unless 

ive decide to ignore these problems or  mait for the arriva1 of some new model able 

to solve them, we should use Few Body models to increase oiir understanding of the 

underlying physics. Furthemore, recent applications of Few-Body models in sub- 

hadronic physics opened another e x i t  ing application to this field. Taking ail this 

into account, 1 believe that Few-Body Physics is still an esciting area that can help 

understand the physical world better. 

Surprisingly, the development of the basic Few-Body models was completed in a 

span of ten years. It started with Faddeev's [Fad65] First introduction of a mathe- 

matical description of the three-body problem in the year 196.5. kakubovsky [Yak671 

extended the model to systems that have more than three particles in 1967 and at 

the same time Mt ,  Grassberger and Sandhas [AGS67] gave an ecluivalent description 

of Faddeev's original model. They based their model on the quasiparticle formal- 

k m  introduced earlier by Weinberg [Wei63a, PVei63b7 FIrei61] and used in a practical 

approximation by Lovelace [Lov64]. hmedia te ly  following their three-body paper, 

Grassberger and Sandhas [GS67] also gave a description of the W-particle problem. 

The AGS system, which can be found in a comprehensive form in a paper by Sand- 

has [San72], describes the non-relativistic t hree-nucleon problem and still remains the 

model of choice in modern few-body calculat ions. It is also the starting point for t his 

thesis and 1 present the model briefly in Chapter 2. 

There ivere only three major improvernents of the model. First, the introduction 

of relat ivist ic equations iising the Bet he-Salpeter equation and B1anckenbecler-Sugar 

reduction. Also, several attempts were given to describe an extension of the Faddeev- 

AGS system to the ;rNN system, which 1 show in more detail later in this introduction. 

Recently, there also were improvements in including Coulomb forces into the model. 



Al1 these improvements were rather successf~1~ but so far they still can not completely 

explain the aforementioned problems. In this thesis 1 restrict myself to the non- 

relativistic models without Coulomb forces and show how one dynamical pion can 

be included in the three nucleon system. In the next sections 1 show some relevant 

developments in the last 25 years. 

1.2 Development of high precisioll NAT-potentials 

The fundamental input of the mode1 is the nucleon-nucleon interaction and the early 

models were purely phenomenological in nature- Two typical ïepresentatives of that 

type of potentials are the Reid soft core [ReiGS] and Hamada-Johnston [H.J63] poten- 

tials. A particulary interesting and simple set of potentials were given by Malfliet and 

Tjon [MTGS]. Their potentials only included S-wave interactions and t hey used local 

two-particle interactions to solve the Faddeev equations- The MT-potentials tvere 

given as the sum of two k-ukawa potentials [Yuk35], one attractive and on repulsive. 

The nucleon-nucleon scattering is the first obvious place where improvements in the 

calculations can be achieved. Therefore, it is not surprising that considerable progress 

has been made in the description of nuclear forces since the early potentials. The first 

advancement ivas the introduction of One Boson Eschange Potent ials (OBEP), where 

heavier mesons than the pion where included in the eschange processes. -4 typical 

early potential of this type is the Bryan-Scott potential [BS69] and it presented a 

vast improvement over the earlier OPEP models. Nevertheless, potentials of this 

type still have conceptual problerns like the introduction of the a-boson in the mass 

range of 500-700 MeV. The most modern potential of this type is the Nijmegen po- 

tential [NRdTS], which shows exactly the same problems as the older Bryan-Scott 

potential. It can therefore be assumed that the inclusion of an increased number of 

heavier mesons can not solve the problems âssociated with the potentials. 

One major draw-back of the OBEPs was the fact that they did not allow the ex- 



change of two or more mesons a t  the same t ime. This problem led to the introduction 

of the Paris potential [LLRtSO], which included the %-exchange explicitly into the 

model with OPE and w exchange terms. They also had to introduce a phenornenolog- 

ical term describing the short range ( r  < 1.5 f m) behaviour and were able to describe 

the 2 N  problems quite well. The Bonn potential [NfHESi], which was based on field 

theory and dicl not introduce the phenomenological short range term, was the next 

improvement in the potentials. It has 1-2 parameters: namely the coupling constants 

and cut-off masses of the meson-nucleon vertices involveci and a very good description 

of the NAM-observables up to  300MeV was achieved. 

Al1 t hese models are considered earlier models, because t hey pre-date the extensive 

NN-analysis given by the Nijmegen group [SIiRdS93] in the early 90's. AU the models 

following this research effort and using the results obtained with it are called high- 

precision potentials and it is required that they fit the NN-data with & 1. The  

Nijmegen group gave the first three high-precision potentials, namely Nijmegen 93: 

Nijmegen I and Nijmegen II [SI<TdS94]. The Argonne group gave the Ks potential 

[WSS95] ancl the Bonn-group gave the CD-Bonn [MSS96] potential, both of which also 

have a & = 1. All the high-precision potentials have approsimately 45 parameters 

that oeed to be adjusted in order to achieve this high precision. However, it should be 

apparent t hat the more parameters have to be fixed, the less fundamental physics can 

be seen in the process. -4 very good review on the nuclear forces ancl nuclear structure 

was recently given in an invited talk at  the .Nuclear St.mcture '98 conference by R. 

Machleidt [MacgS]. 

1.3 Three-nucleon forces 

Unfortunately, the apparent success of the high-precision potentials did not translate 

directly into success for three-body calculations. It turned out that the potentials 

underbind the triton considerably and have trouble describing the vector analyzing 



powers. Already in the early days it was recognized that the few-body problem 

could allow for the existence of secallecl three-body forces, for example Gloeckle 

[GloSd][pp.llS] already indicated this possibility in his textbook. Several groups 

pursued the concept of three-nucleon forces in the hope of finding the solutions to 

the apparent discrepancies in the SN-calculations. Probably the first three-nucleon 

force diagram was given by Fujita and Miyazawa [FMLIJF] in 1957 and it is stili the 

archetype of most three-nucleon forces. It is true t hat modern t hree-nucleon forces 

(3NF) are more sophisticated, include more types of mesons and are generally deriyied 

from more extensive t heories, but the essence still remains the same. We always have 

the eschange of mesons between ttvcr nucleons, where something happens between the 

exchangeci meson and the third nucleon. In the most complicated cases the meson even 

can change before it is absorbed at the second nucleon. Figure [1.1] shows the generic 

form of t hree-nucleon force diagrams due to meson eschange and the Fujita-Miyazawa 

type diagram with the forward propagating delta isobar. A more recent off-shoot of 

Figure 1.1: The generic form of t hree-nucleon force diagrams based on meson exchange 
and the FuJita-Miyazawa type representative of this class. The blob in the generic 
diagram can represent complicated processes. 

the Fujita-Miyazawa 3NF is given by the Urbana-Argonne model [CPWSI], which is 

also based on A isobars. The  second approach used to find :3NF is based on chiral 

symmetries and the earliest of these is the Yang model [Yan71]. In this approach is 

one model based on chiral perturbation theory, the Texas model [Ov92, van941, as 

me11 as two models based on relativistic field theory, the Brazil [CDRS3, Rob871 and 

the Ruhrpot mode1 [EG96]. Furt hermore, the Tucson-Melbourne [CSM+î9] model 



\vas also based on chiral constraints using PCAC and current algebra. Recently, it 

was argued that chiral perturbation theory leads to corrections in the original set 

of T~cson-Melbourne diagrams [FHv99]. At the present time, efforts are under ~ 2 y  

to develop a unified rnodel describing the different 3NF and two good reviews were 

recently given by F r i a  [Frigg, FriOO]. Even though the modem 3NF are derived 

from different theories, they all depend on a similar set of diagrarns. The only real 

difference is in the set of strength parameters used within the different models and 

a clear review on the status of these parameter values is given by Kamada, Hueber 

and Nogga [IiHN99; FHv991. Since the three-nucleon forces are not deriveci directly 

from the model used in the calculations, one has to be careful not to introduce terms 

that are already taken care of by that model, like iterated OPEPs [CFSG]. Also, most 

models assume some type of cancellation between t e m s  and 1 discuss the importance 

of t h e  cancellations in more detail in section 3.3 . It is believed that the 3NF can 

account for the problems appearing in the triton binding energy calc~lat ions~ but 

unfortunately not for the A, puzzle. 

-4lready in 1991 Saito and Afnan [SA941 challengeci the success of the three-nucleon 

forces in triton binding energy calculations. They also calculated the t ritoo binding 

energy with a two-pion-exchange 13NF and found the effects to be very small. Their 

results were cjuestioned because they used separable crN potentials that clid not sat- 

isfy low energy theorems and did produce soft rN!V form factors. However Saito and 

Haidenbauer [SHOO] recently reinvestigated this calculation using an irnproved meson- 

t heoretical model [or the r!V interaction. The Juelich model [SDHS94, HHHC9S] can 

not be critized in the sarne way as the mode1 used in the earlier calcdations. Wever- 

theless, the magnitude of the TM-3NF effects to the triton binding energy remained 

very srnall. In light of this ca l~u la t ion~  1 believe it is important to  question the role of 

the 3 N F  and their present interpretation. One important point that shoulcl be made 

is the fact that the 3NF are neccessary, because the rneson degrees of freedom were 

frozen out in the few-body equations. Therefore, it seems only na turd  to investigate 



what happens if these degrees of freedom explicitly were included into the underly- 

ing model. My thesis is investigating this problem by calculating the triton binding 

energy in a one-dimensional Toy model. 

1.4 Short review of the Ag-puzzle 

Historically one of the most important problems in NN-scattering is the A,-puzzle in 

lorv-energy scattering. The analyzing power for n - d scattering shows a peak which 

is significantl- larger than the one found with Faddeev calculations. The discrepancy 

can be up to thirty percent at low energy and vanishes completely for energies larger 

than 30MeV.  A detailed review on the status of the A,-puzzle was recently given by 

Knut son [IinuSS] at the G roningen Few-Body conference. The t hree-nucleon forces 

were the obvious candidates to resolve this discrepanc_v, but it turns out that t hey were 

not able to solve this problem. The Brazil and Urbana 3MF introduced an increase 

of the peak value into the right direction, but not nearly strong enough to account 

for the discrepancy. The Tucson-Melbourne type 3WF even introduced a shift of the 

peak value in the wrong direction. At the Autrans Few-Body physics conference in 

1999: Hueber [Hue991 argued that it is indeed impossible to find a solution to the 

A,-puzzle with existing 3NF. He proposed that the problem is likely to be solved by 

the introduction of a new type of 3NF. 

To my knowledge, none of the existing three-niicleoo force groups were able to 

corne up with a new type of 3NF that could solve the -4, prizzle without destroying 

existing fits to NN-data. However, we (Canton, Melde, Svenne [CMSOO]) dernon- 

stratecl that the inclusion of an explicit pion degree of freedom into the standard 

AGS-equations results in a new set of diagrams. Recently Canton and Schadow 

[CSOOa] argued that this new set of correction terms could sotve the -4,-puzzle. In 

order to find a definite solution to the -4,-puzzle a full calculation using both types of 

corrections still has to be performed. Nevert heless, the initial results are very promis- 



ing. In this thesis 1 investigate the roles of these correction terms in a one-dimensional 

calculation of the triton binding energy. 

The most important meson in the two- and three-body interactions is the pion and 

it seems desirable to h d  a model that can include this degree of freedom explicitly 

In the first order, cvhich should be the most dominant, one would like to allow for 

the creation OF one dynamical pion at a time. This problem ivas first investigated for 

the N N  - aNN system and Garcilazo and Mizutani [GM90] gave a comprehensive 

review on this topic in 1990. Traditionally there are two approaches to give a mode1 

describing the i rNN system, Either a two-body mode1 is extended to include reso- 

nances, or a three-body-mode1 is extended to allow for creation and destruction of the 

pions. The first way Garcilazo and hfizutani cal1 the coupled channel method and is 

well described in a paper by Green and Niskanen [GN'76]. A hybrid model between 

the CCM and PNNA aproaches is given by Poepping, Sauer and Zhang [PSZSi]. 

They realized that the nucleon is actually the ground state of a composite system 

given by the nucleon and the pion. It is therefore possible that the nucleon-nucleon 

interaction can go through charnels that include the excited states of this composite 

system. The resulting set of equations with this method are quite sirnilar to the ones 

that were derived with the second approach, which Garcilazo and Mizutmi refer to 

as the coupled TNN - N N  approach (PNNA).  However, it should be observed that 

while the theory in this paper is well described, the numerical calculations are known 

to b e  wrong. On the other hand, the P N M  starts with the three body scattering 

equations of Faddeev [Fad65] or Alt, Grassberger and Sandhas [AGS67]. The first 

attempt to solve the problem with this approach was given by Myhrer and Koltun 

[MK73, MIiT41, who restricted themselves to the elastic r d  channel. However, their 

findings in the resonance region turned out to be not satisfactory and improvements of 



the mode1 were necessary. One problern lies in the existence of the charnel r d  - N N ?  

because it allows for the explicit destruction of the pion on the  deuteron. Therefore, 

in the elastic 7id scattering system one has to include the possibility of an intermedi- 

ate state without any pions. Afnan and Thomas [AT741 used the Bound state picture 

to incorporate the NiV intermediate state without losing the requirement of parti- 

cle number conservation necessary for the Faddeev-AGS systems. Essent ially: t hey 

treated the IVN intermediate state as a bound state of the nucleon and pion in the 

nN Pll partial wave, where the binding energy is equal to the pion mass. 

However, it becarne apparent that this method is troubled by the fact that the 

two nucleons in the intermediate state are not the same. One of them is a composite 

body made up by a pion-nucleon cluster, called W .  The other is a elementary nucleon 

without a pion associated to  it, called iV. The trouble aises because N can only 

absorb a pion, but not emit it: and N' can only ernit a pion, but not absorb it. Since 

the two nucIeons are clearly distinguishable by this connection to the pion creation 

and absorption processes, the Pauli principle is broken. The only way out of this 

problem seems to be that we assume the nucleon to be a superposition of states given 

in the infinite dimensional Fock space describing al1 bound states rvith an arbitrary 

number of pions present. Clearly, this would lead far away from the original starting 

point, rvhere the t hree partides are conserved. 

Fortunately, Rinat [RiniTl and Mizutani and Iioltun [MI\'77] derived an equivalent 

set of ecluations starting rvith different techniques that do not use the Bound state 

picture. Hoivever: it turned out that their system is still not f ~ ~ l l y  coupled: because of 

the form of equations describing the LVN sub system. These equations did not have 

any contri butions from diagrarns wi th an intermediate i i N N  state. The fully coupled 

two- and three- article equations were independently given by Thomas and Rinat 

[TRig] and Avishai and Mizutani [AMig]. Both papers aIso explicitly addressed the 

two- and three-body unitarity of the resulting models. FinaUy, -4fnan and Blankleider 

[ABSO] derived a set of coupled integral equations using a time ordered diagrammatic 



method. Since this model was the starting point for the extensions to the Ti-NN-N 

system discussed in this thesis 1 describe this model in more detail. 

1.6 Short review of the Afnan-Blankleider model 

In 1980 Afnan and Blankleider [ABSO] derived the prototype of equations describing 

the nNAr system used Iater to derive a description of the ;rN!V!\i system. The main 

difference betw-een this description and the earlier ones by Pivishai and Mizutani 

[AM791 is the inclusion of a rrN interaction. They daim that this inclusion leads to 

a fully dressed system without changing the basic structure of the equations. They 

employed a diagrammatic classification scheme ut ilizing the last ( firs t ) cut lemmas in 

an old fashioned time ordered field t heory. The lemmas are used to expose first the 

two-bock and then the three-body unitarity cuts. The first cut leads to a Lippmann- 

Schwinger type structure for the iVN system. However, aiready a t  this stage a delicate 

problem mit h propagator dressing arises. Depending on the position of the cuts Afnan 

ancl Blankleider classified the diagrams into reducible and irreducible cuts. They are 

classified clepending on the connected or disconnected nature of the parts split off by 

the cut. The careful implementation of these procedures seemingly Ieads to a Full- 

dressed LS-equation with an effective NN-potential. The next step is to invoke the 

last (first) cut lemma again and expose the three-body unitarity cuts. Obviously~ 

tliese cuts can only be found in the parts of the diagrams that do not have already at 

least one two-body cut. In other cvords, these cuts have to be found in the potential 

terms of the LS-type eyuation. This cut procedure also exposes parts of diagrams that 

actually have a two-nucleon in-going and a two-nucleon plus one pion out-going state 

(and vice versa). In a first approximation, these creation (destruction) vert ices can 

be given by the creation of a pion from either one of the nucleons. However, the form 

factors at this point are not fuliy dressed and one has to employ the classification into 

reducible and irreducible diagrams again. Nevertheless, carefd classification removes 



this problem and leads to an AGS-type description of the îr-NN system. 

Already in 1985 Sauer, Sawicki and Furni [SSFSS] showed a nucleon-renormalizat ion 

problem with this approach, but the criticism went iargely unnoticed. In 1994 

Kvinikhidze and Blanlileider [KB94, BK941 addressed this problem. At that time 

they realized that the unitary !VA; - T N N  approach has problems on grounds of an 

overcounting due to the particular use of the last cut lemma. In particular, they 

found diagrams that do not have an unique last cut, which indeed wodd be trouble- 

some. It is noteworthy that the diagrarns in question must have two pions in flight 

concurrently in order to see this problem. In a theory that truncates the  Hilbert 

çpace at one clynarnicaI pion this type of diagram wouid be rather hard to generate. 

It is true that in general the second pion could be part of pion exchange that occurs 

in the potential that acts between the two nucleons. However, in a non-relativistic 

theory that is truncated at the one degree of freedom for the pion the diagrams in 

question should not be of any conseyuence. At this point it should be also clear that 

there is a delicate interplay between the truncation and the relat ivistic corrections 

to a non-relativistic theory. For the same reason as in the :3NF the corrections are 

generated explicitly by the truncation. Kvinikhidze and Blaakleider argued that it is 

crucial to dismiss the unitary mode1 altogether and devised a new theory based on 

convolution integrals. On the other hand, Phillips and .4fnan [PA971 argued that the 

diagrammatic method can be adjusted to avoid the overcounting problem and found 

an equivalent set of equations. 

1.7 Development of T N N N  models 

1 demonstrated in the last section that the deveIopment of the ;rNN theories is far 

from being trivial. The K N N N  system turned out to be even more complicated due to 

the addition of another nucleon. The chain of partition formalism has to be employed 

and the cut structures are even more complicated. A first attempt describing this 



problem was given by Avishai and Mizutmi [AMSOa, i\&l$Ob, A M S 1 ,  AM83]: but 

the description is rather complicated. Cattapan, Canton and Svenne [CCS93] also 

attempted to generalize the AB unitary model and oot suprisingly discovered simiiar 

problerns with the cut structure. In 1994 Canton and Cattapan [CC94a, CC94bI 

gave the first in a series of papers tvhere they developed a T N N N  theory from a 

generalization of the Grassberger-Sandhas-Yakubovçliy formalism- The problem is 

to find a connection between the N N N  and r N N N  sectors in a physically sound 

way. They also argued that the equations are connected after three iterations, but 

overlooked a set of graphs that spoiled connectivity. Ln 1997 they proposeci some 

approximate schernes that were to take care of these unfavourable diagrams. Horvever, 

in 199s Canton [CanSY] devised a new model that kvas not plagued by al1 the problems 

of the previous attempts. It was based on sound physical assurnptions and turned 

out be connected and of a very simple nature. Recentiy, we (Canton, Melde, Svenne) 

[CMSOO] gave an approximation to  this model that dlowed us to recover diagrams in 

the 3N problem that can be identified with diagrams given by 3NF. In addition we 

get a diagram t hat is previously assumed to be cancelled completely in 3NF models. 

1 show the derivation of the Paciova mode1 and the approximation scheme in detail 

in Chapters '2 and 3. In Chapters 4 and 5 I develop a one-dimensional Toy mode1 

for the NAr system, which is embedded into the 3 N  system in chapter 6. Finally, 

in chapter 7 1 show how the corrections due to the pion dynamics affect the triton 

binding energy in the one-dimensional model. Chapter S gives the conclusion and 

outlook and the Appendix includes the core codes of the calculations and a section 



Chapter 2 

ALGEBRAIC INCLUSION OF THE PION DYNAMICS 

INTO THE AGS-FORMALISM 

If you build it, he will corne 

W- P. fiinsella 

2.1 The four-bodyscatteringproblem 

In this section I give a brief review of the traditional four-body problem in a formu- 

lation that is easily generalized to the more complicated T N N N  scattering problem. 

The derivation of the rnulti-particle AGS t heory follows closely the derivation given 

by Canton and Cattapan [CC94a7 CC94bj. Generally the  starting point is the four 

body Lippmann-Schwinger q u a t  ion 

Here VG~TI' means that all the operators on the left of the l4 are in the Cbody 

space and therefore Go is the 4-body free resolvent operator in the Cbody space. 

The idea of Mt,  Grassberger and Sandhas (AGS) [AGSG'i, San721 was to introduce 

channel ecluations and charinel transition operators in a way that they can be recast 

into a super Lippmann-Schwinger equation for the !V = 3 case and Grassberger and 

Sandhas [GS6'i, Sanï4, San751 extended the theory to the .Ri > 3 case. The first 

step is the splitting of the potential V into twwbody interactions expressing it as the 



sum of al1 two-body potentials present, with A denoting the pair of bodies involved 

in the interaction (here, 1 use the tenn "bodies" to denote both clusters and particles 

and it can easily be seen that the bodies on this level are particles). The splitting of 

the potential is defined by the expression 

VI' = C val4 (1.2) 
A 

Before clescribing the channel LS-equations 1 should mention that the index ,Li is 

given by the six possible partitions of 4 particles into three clustets. The channel 

equations can now be described by the following expression, which is just the two- 

particle Lippmann-Schwinger equation e.xpressed in the 4-particle space 

The T-rnatris is determined by coupling all the channels and introducing the new 

channel transition operators 1': The amplitude TI4 can be rewrit ten using the 

ansatz: 

Following the same arguments as in the traclitional AGS-theory this yields the ecfua- 

tions for the transit ion operators 

These ecpations do not reduce the problem to an effective two-bodj 

(2.5) 

r equation and 

the same trick has to be used again. It is therefore necessary to recast eq.(2.5) into a 

Lippmann-Schwinger form on the t hree-body level 

~1~ = v13 + V G ~ T I ~  (q.6) 

This is achieved by the following definitions for the three body operators 



Analogously to the 1' in eq.(2.1),  here l3 means the operators on the left of it are in 

the three-body space. The operator u-4B 1' describes the transition from a three-body 

partition to another three-body partition. The partition ,il' is a trvo-body partition, 

rvhich is included in the partition -1, if -4' can break up into -4 by breaking just one 

cluster. Later, in the extended mode1 in which one particle is a pion, -4' has a slightl- 

different meaning. Hoivever, for now A' defines simply the chain-of-partitions in the 

standard Cbody problem. A short review of this notation is given in Adhikari and 

Kowalski [.4K917 pp.251-2521 and a detailed review is given in the first o l  a series of 

papers by Cattapan and Vanzani [CVS3: CVS4, CVSJ]. 

Table 2.1: The Iakubovsky chain space. The table denotes the six dimensional space 
spanned by the possible three-body clusters, as defined in the column labels. The 
rnatrix elements denote al1 two-body clusters that can break up into either three- 
nucleon cluster describing the particular matrir element. 

Table [ T l ]  shows a11 possible three body transitions and the allowed two-body 

transitions common to both three-body transitions involvecl, where the primed vari- 
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ables denotes the set of two-body partitions 

(abc) d  = d' (dab) c = c' (bc) (ad)  = a' 

(dac)  b = 6' (ac)  (bd) = ,LI' 

(dbc) a = a' (ab)  (cd)  = 7' 1 
The chain-of-partitions are described by the usual notation aa'; but table [--Il already 

gives the chains in more detail. The unusual notation (singling out one of the four 

particles, d)  will prove very convenient when 1 generalize to the n N N N  system. where 

particle d will be identifiecl with the pion. The important observation in this table 

is that al1 off-diagonal elements have a unique contribution from the two-body sub- 

space. It is again possible to split the potential in %body space, which has only 

off-diagonal elements? in the following unique rvay 

The terms are only non-zero when the implicit chah  relations are satisfied, 

namely partitions A, B both have to be obtainable by the break-up of A'. The new 

set of channel equations in respect to the two-body partitions A' is defined by 

where 

This complicated looking free propagator denotes the free propagation of t hree bodies, 

one of which is a composite body. The delta function can be inserted explicitly to get 

the more familiar form 

Because this split is unique and complete the same AGS formalism can be used again 

on this sub-level. The channel transition equations on the two-body sub-level are 



found wi t h the fundamental Ansatz 

It is again possible to rewrite this equation and give an explicit expression for the 

new channer transition operators 

These equations act in the three-body subspace and ail operators are defined in this 

sub-space. This solves the problem algebraically, because it can be shown that the 

equations are connected. It should be noted that, depending on the -4': the equations 

are eit her 3 x 3 or 2 x 2 matrix eyuations. In the next section 1 argue that ey.('2.16) 

can be generalized to the z-lVNN scattering problem. 

2.2 The Padova coupiing formalism 

In this section 1 show that it is possible to generalize the traditional &4GS fotmalism 

to include explicitly one pion degree of freedom. This generalization is by no means 

trivial and care must be taken to include a physically sound coupling between the pion 

and no-pion sectors. The first section defines a new notation that allows investigation 

of the coupling scheme in more detail than the usual few-body chah  labels. In the 

second section the notation is used to describe the explicit coupling between pion 

and no-pion sectors and the corresponding generalized AGS equations are given. In 

the foI1owing sections a practical approximation scheme is defined and the algebraic 

implications for the three-body problem tvith one pion degree of freedom are discussed. 

2 . 2 .  The î ïNNlV partition notation 

In this section 1 define the notation that is used in the derivation of the proposed 

mode1 for the T N N N  scattering problern. There are four particles in the system, 



three nucleons denoted by the indices a,  b, t and one pion denoted by the index ir. 

These particles are d o w e d  to  forn  clusters and the pion itself does not have to be 

conserved. The partitions with three clusters are given by the seven unprimed indices 

a; 6,  c; a,,B, 7, ir. Here, the indices a;  6; c denote the following three-cluster partitions 

u(bc)ii, (ac)bii; (a6)cs; respectively. Namely, the pion is a spectator and the nucleon- 

nucleoo cluster is denoted by the unique spectator nucleon. The indices a ,  0, denote 

the t hree-cluster partitions (aii)bc. u(bii)c, a b ( m )  respectively. Once again the pion is 

always present, but this time it appears in a irw cluster and the partition is denoted 

by the unique nucleon in the cluster. This notation is very similar to the one used 

earlier, because the nucleon d is replaced by the aIways present pion a. This covers 

al1 possible t hree-cluster partitions when the pion is present . The last t hree-ciuster 

partition is given by a ,  6, c where the pion is missing and this partition is denoted by 

the index Ir (no pion). 

The two-cluster partitions are differentiated from the three-cluster partitions by 

t h e  use of a prime.The set of possible three cluster paxtitions is given by 

Since every element in this set denotes a three-cluster partition it is possible to  find 

exactly three different two-cluster partitions for each one of them. Hoivever, it is only 

possible to have ten distinct two-body clusters, namely 

(abc) ii = irf ( r a b )  c = cf (bc)  (a i i )  = af (ab)  c  = Z 

( i iac)  b = 6' ( a c )  ( 6 7 )  = ,Or ( n c )  b = 6' , 1 (2.18 j 

(iibc) a = a' (ab)  (cir) = y f  (6c) a = ar 

where a, 6, c, ;i again denotes the nucleons and the pion respectively. The two body 

cluster notation is given by the primed symbols and the bar again denotes no-pion 

states. The notation is very suggestive and allows an easy interpretation of the 

equations in the proposed model. 



2.2.2 The coupiing between the pion and no-pion sectors 

In the last section 1 introduced a new notation for the possible three and two-body 

partitions and it is evident that two-body partitions can break up into a multitude 

of three-body partitions. This is a well known fact from the four-body scattering 

problem and it is aecessary to define chain-of-partitions. Ln general, the four-body 

problem has 1S chains and connectivity of the AGS-equations can be achieved. The 

reason for this connectivity is intimately coupled to the structure of the two-body 

partitions. Unlike in the three-body case, where only one type of two-body partitions 

esists (one two-particle cluster and one free particle), in this case two distinct t-ypes 

of partitioning exist. The partitions are either 3 + 1 or 2 + 2 and they give distinctive 

channel equations, because one has three and the other has two chains associated 

with it. In the four-body problem it is a nice feature that there is no coupling 

between these two types of chains. This allows the definition of channel equations 

on the two-body siib-level in order to so1ve the system. The irNAi!V system is more 

complicated, because the pion and no-pion systems have to be couplecl in a physicaily 

sound way. This problern was first investigated in a paper by Cattapan, Canton 

and Svenne [CCS93] by generalizing the Thomas-Rinat-Afnan-Blanlileider-Avishai- 

Mizutani (TRABAM) [ATT74, Rini ï ,  MKï'i: TRï9, AM79, ABSO] equations for the 

ii!V!V problem. In suhsequent papers Cat tapan and Canton [CC94al CC94b, CC971 

addressed open problems of the proposed mode1 and recently Canton[CanSS] kvas able 

to give a mode1 that solved al1 the aforementioned problems. In this thesis 1 use the 

sarne mode1 in a slightly different notation. 

In the system in question everything is assumed to be dressed. i-e. the nucleon 

and the creation/destruction vertices. Al1 partitions are just groupings and not nec- 

essarily bound states and the pion can not be created into a nucleon-pion group from 

the same nucleon, because this constitutes the dressing of the vertex. This also is 

the reason t hat in the three-body partitions no coupling exists between the pion and 



no-pion sectors. Furthermore, the clusterings a', a'; a' are asymptotically not distin- 

pisliable since, asymp totic& the pion may be associated wi t h  the single nucleon? 

the two-nucleon cluster? or be absent - This rneans that arbitrary transitions bettveen 

the aforementioned clusters are ailoived without changing the pole structure of the 

underlying equat ions. Therefore the system describing t his channel is already a cou- 

pled system. However, the AGS formalism demands that the  transition bettveen a' 

and a' does not occur direct ly, because t hey represent uncouplecl channels. Therefore? 

a two-body channel equation for the iriVArN system can be defined in the following 

w ay 
3 tAt l 3  = v-411~ + v . ~ I G ~ ~ ~ ~ ' ~  

0 ( v ~ 4 ' ) a / A , a ' B G ~ l ~ G ~  ( ' v - A ~ ) ~ ' ~ ~ ~ ~ ' ~ ~ o  (2 .22)  

( ~ - 4 ' ) ~ r ~ , ~ r ~  G O ~ B G O   GO^ EGO ( V A ' ) ~ I ~ , ~ ~ ~  go 

Here the -4' has a different meaning than in the standard four-body problem, because 

it simply denotes the channels? which in this case are given by coupled systems (thus? 

A' plays a similar role as that of s in [CanSS]). It is noteworthy that this system 

coIlapses to the uncoupled Sanclhas system if the coupling between the pion and no- 

pion sector is set equal to zero and the no-pion sector is ignored. Consequently, this 

channel equation algebraically makes sense. 

The explicit expressions for the operators in the above equation are given by 



which defines the usual particle conserving interactions in the three and four particle 

system and 

which defines the general form of the creation and destruction vertices. The anti-delta 

Çunctions have to  satisfy the chain-relations in addition to the anti delta-relations. 

This means that the anti-delta in ec1.(2.'26) for example is zero? unless the two indices 

i, a are both contained in A' and not equal to each other. The f; are the usual 

element ary vertices, but with the notation of the partitions denoting a pion-nucleon 

clustering. The elementary vertex is acting on the same nucieon that defines this 

particular partition. This choice appears to be rat her arbitrary, but it guarantues 

that there is one nucleon that never connects to the other trvo, therefore, defining the 

channel. It is helpful to tvrite down the esplicit terms for the creation/destruction 

operators in respect to the usual elementary vertices fa. The anti-delta function also 

includes the chain restrictions and the following explicit terms are found 

The chain relations require u = a : /3, y and i = ,# , and the ant i-delta funct ion has 

no effect. Another set of terms is given by 

Again, the chain relations require a = a, ,O, - j  and i = ,B, y, but this tirne ,B is excluded 

because of the anti-delta h c t i o n .  The channel A' also includes the following three 

terms in a similar way 

(vM),~,,,L, = fi3 (2.30) 



These dehitions are also given in a diagrammatic form in figures p2.1,2.2] and it is 

clear t hat t hese vertices are more complicated t han the simple creation/destruction 

vert ices fa, fa ; f-, t hemselves. Correspondingl- sirnilar expressions for the inter- 

Figure 2.1: The creation vertex ( ~ - ~ t ) , , , , ~ , ~  = fa  + f-,. The vertical bars denote bare 
partitions and should not be interpreted as interactions. The pion is absorbed on the 
nucleons c and 6 respectively. 

Figure 2.2: The destruction vertices ( Z J . ~ ~ ) ~ , ~ , ~ , ~  = f-{ (l),  VA'),^^,^^^, = fa (2): 
(var) ,,,.,,, = fa (3) and ( 2 ~ ~ ~ 3 ) ~ ~ ~  ,di,0 = O (4). AS argued in the thesis the Last ver- 
tex is identically zero due to the vertex dressing. 

actions in the other two channels B',Cf can be given and in general the channel- 

interactions in chain space are given by table [2.2] (see end of this chapter). 



It is also possible to  describe the interaction term in the complete chain space, 

which is made up by the sum of the interactions in the three channels A', B', C' and 

the inteïact ion in the pion-spectator channel nf. The  chain-space interactions for the 

three channels, where the pion is not a spectator, are shown in table '-31 (see end of 

this chapter). The case were the pion is a spectator is usually treated separately with 

standard three-body techniques. The tables [-.2&3] show that the channel splitting 

is not as simple as in the standard AGS case, Hocvever it is also apparent that the 

suggested splitting does indeed add up to the expected format: namely the standard 

AGS format in the pion sector, the typical three-body contributions in the no-pion 

sector and the expected contributions in the connecting sectors. The connecting 

sectors show that the pion can corne from any one nucleon, unless it is partitioned 

with one nucleon in which case it can only corne from any one of the remaining two. 

In table 12-31 this can be seen, because the sectors connecting the no-pion partitions 

to the partitions a? b, c have contributions from al1 three nucieons and the sectors 

connecting the no-pion partitions to the partitions a, $, y have only contributions 

from the rernaining two nucleons that do not take part in the partition. It should 

be noted t hat the T-matrix also has contri but ions from the transit ions a'af, cr'n', . . .: 

which are identically zero in the channel potentials. This is not an unfamiliar resrilt, 

because in the standard .4GS theory it is also possible to get contributions from 

transitions betcveen the 3+3 and 3+1 partitions. However in the AGS theory it is not 

possible to get these contributions from a direct transition, or in other words from 

the driving terms of the LS-equations. In the next section 1 introduce the channel 

transition operators of the two-body partitions: which lead to the final set of algebraic 

equations of the proposed connected kernel model, 

2.2 .3  The channel tmnsition opemtom of the two-body sub-spnce 

In the last step of this procedure 1 define the channel transition operators with the 

usual Ansatz defined in AGS-systems and solve for them accordingly The Ansatz is 



that the sum of al1 channels 

T-matrix, which gives 

~1~ = 

plus the s u m  of all channel transitions gives the total 

where the summation over the A' involves implicitl- a summation over the corre- 

spooding intra-channel partitions a'' a', üf. Solving for the transition operator (Ua4rBr) 

is sornewhat tricky, because of the amount of chahs  involved. It is a rather lengthy, 

but not too complicted calculation. At this point the nervly developed notation does 

not appear to be simpler than the original notation used by Canton [CanSS]. Admit- 

tedl- the new notation is rather complicated, but unfortunately so is the underlying 

systern. The problem lies in the fact that the number of explicit eIements in the ma- 

trices is reduced, which means that the elements now span a bigger subspace than the 

previous ones. In essence, the four particle space, which was given previously by four 

elernents, is combined into one element. A new partition has to  be introduced that 

denotes the two possible two-cluster partitions uf7 a' in one partition index. Unfortu- 

nately, there is only so much information that can be described by one partition index 

befote i t looses its simplicity. Therefore, 1 d e h e  the generic tcvo-cluster partit ions 

â', â' to describe the set of two-cluster partitions of the four body space belonging 

to channel -4'. namely a', a'. The trvo generic partitions with the hat can be used 

interchangeably, because they describe the same set. With these definitions and the 

corresponcling ones for the channels B', Cf the transition operator is described by the 

ecluation 



and this forms the formal solution to the problem. However, it should be mentioned 

that solving for the transition operator is not a trivial task. The channel transition 

operator (u-qtBt) is defined in the seven dimensionai space given by the three-cluster 

partitions. Therefore, one has to  add up the contributions to the matrices from the 

given channels on the left and the right of the transition operator. When solving 

for the transit ion operators the unusual delta function (5.4'8t + appears. 

It appears due to the fact that in the derivation ecpivalent terms on the left hand 

side of the equation are collected and therefore these terms are rnissing on the right 

hand side. Either two distinct channels are given in the definition of the transition 

operator, which is described by the case ZaAtst, or the same chamel is used twice: 

which is described by the case 6;2tBr. However, in the second case the left rnost 

channel elements in question have to be different, namely Sntbt m u t  be satisifed. The 

â'Û denote two possible two-cluster partit ions in the four-part ide space t hat belong 

to channel B': namelÿ they both can be 6' or P' . 
It turns out that this set of equations is indeed connected after a finite number 

of iterations, which has to be true for any reasonable theory of this type. It should 

be kept in mind that the operators in this equation are themselves highly non-trivial 

and t hat the system is therefore highly complicated. Especially the channel equations 

should be treated wit h care, because t hey already represent matrix equations describ- 

ing the coupled set of two-body partitions A'. The advantages of the new notation are 

displayed in the three tables, because of the rather simple form of the possible chains 

in respect to the new notation. It is also possible to show clirectly the connectedness 

of the eyuation by esplicitly investigating al1 possible chains. 



The paper of Canton [CanSS] also includes making quasi part i d e  approximations at 

the three-cluster and two-cluster levels. Since this is also needed in this work, to  arrive 

at a practical approximation scheme (next chapter) , I here review the quasipart icie 

met hod. Tradit ionally the Quasiparticle formalism corresponds to  the separable ex- 

pansion method developed by Weinberg [Wei63a, CVei63b: Wei64, SWW64] in a series 

of papers. For a comprehensive description of this theory 1 refer to  Weinberg's lec- 

tures [SVei65]. The expansion is given in respect to the so called Weinberg states, 

but 1 shall denote al1 possible expansion methods as quasiparticle forrnalismso as long 

as they correctly describe the pole structure of the underlying t-matrices. For a col- 

lection of different possible expansion methods 1 refer to the book by Adhikari and 

Kowalski [pp.149-1691 [AIC91]. In this section 1 assume that 1 have a vatid expansion 

method, but the type of method is unspecified. In general, if a separable expansion of 

the potential is given, an esplicit solution of the t-matris can be found. FOL simplicity, 

1 also restrict myself to rank one expansions and the t-matrix is then given by 

The explicit form of the T and the form factors depends on the specifics of the es- 

pansion method. Also, the t-matrix is a tua-body t-matrix embedded in the four 

body space and therefore the spectators could be split off. Hoivever, 1 come back to 

this point in the 1-D Toy model in chapter 5 and for now assume sirnply that the 

form factors and 7's in question can be found. For simplification of the notation the 

following short hand for the form factors is defbed 

I A ( ~ )  (i)) = 1.4) 

This clefinition should be no problem, because il denotes a set of three-cluster parti- 

tions in the four body space. It is clear that the model can have two distinct types 



of form factors, namely the ones corresponding to a LVN cluster and the ones cor- 

responding to a n N  cluster. In the new notation the N N  cluster embedded in the 

four-body space is denoted by a, the corresponding rN cluster by cr and the set of 

the two is denoted by A. This distinction of the cluster types becomes important in 

section 3 -3 when the pract ical approximation scheme is introduced. Furthemore, it 

is obvious that form factors of this kind can only exist in the four body space and 

not in the three nucleon space. 1 show that this does not pose a -  problems, because 

the t-matrix that is approximated by the quasiparticle terrns appears only in the four 

body part of the t hree-ciuster Green's function. 

The first step in the formalism is to insert the quasiparticle t-matrix into the 

final set of equations derived in the last section. At this point there is no notational 

advantage to the matrix notation due to the complexity of the matrices involveci. 

T herefore, the result of the calculation for the four components is given explicitly, 

which gives an equivalent set of equations to the ones previously given by Canton 

[CangS]. The quasiparticle channel transition equations for the Padova mode1 are 

t herefore 



Up to this point the derivation is straightforward and the character of the equations 

did not change substântially from the equations derived in the last section. 

The nest step is to fold the equations between appropriate states in order to get 

the esplicit rnatrix elements. The states in question are given by the expressions 

Go 1 A) and in the case of Weinberg states, ivhere 1.4) = I/it l&). Ioa) is given by the 

two-body bound state. At this point 1 do not consider the actual interpretatioo of 

these terms and simply perform the folding. The resulting equation is given by the 

expression 

and 

and 

and correspondingly the expression for XaIB!. These definitions are quite easily seen 

in the matrix form of the equations as derived in the last section. There seems to 

be a double contribution of JAB, because this term appears in the new delta function 

and the quasiparticle three-cluster Green's function. However, careful calculations 

show that these two terms indeed appear explicitly, one deriving from the original 



definition of the three-cluster Green's function and one from the folding. The explicit 

expression for the components of these two operators are given by 

and 

As 1 mentioned before the folding terms only appear in the fou-body cornponents of 

the system, denoted by A, B. The last three equations show the terms that connect the 

pion and no-pion sectors and describe the three-nucleoo sector. It is straightforward 

to show that the subsptem amplitudes are also governed by a quasiparticle equation 

usine the same folding procedure. The result is given by 

( A l  G o  IB) ( ~ A J ) , ~ , ~  (Al Go (va), ,,,,,, 
(2.5S) 

VA' 

The components in the second matrix follow directly from the initial definition of the 

channel potential terms, as described in the last section. There the dehi t ion was 



given in a more explicit component f o m  distinguishing explicitly between the c h a h  

involving the af and the a' partitions- The off-diagonal terrns in these partitions a'a' 

and afa' were shown to be zero, which are accounted for by the introduction of the 

new delta function (bar),,,,. Again, the delta function reguires that both âf and a' 
have to be contained in A' and have to be equal. ObviousI_v, this also parantues that 

they both riin only over partitions a', a'. 

The next step is to introduce another separable expansion, this time on the two- 

cluster level. The four sub-amplitudes of the system are defined in the separable 

form 

Again, the separable approximation can be achieved by introducing an expansion of 

the potential in the two-cluster channels and subsequently solving for the channel 

t-matrix. However, since the channel equations are given by a coupled system, the 

form factors are multi-dimensional. The explicit form of these new form factors is far 

from being trivial and in the next chapter 1 give an approximation scheme exactly 

on these form factors. Without an approximation scheme one would have to solve 

the complicated channel equations directly? which is rather difEcult. -4t this point I 

assiime that it is possible to find an espansion method and the corresponding two- 

cluster T and form factors. It should be evident that for the case 7' there are o d y  

contributions from the four body sector, definecl by the first equation. Now the 

same procedure as on the t hree-cluster level is performed. Namely, the quasiparticle 

expression is inserted and folded with the corresponding form factors. This gives the 



final quasiparticle equat ion 

cvi t h the defini tions 

and the quasi particle two-cluster ampli tude 

Equation (2.63) is similar to  the type of equation introduced by Lovelace [LovGI], 

svhich is a connected LÇ-type equation for the standard 3AJ problem with separable 

potentials. It is clear that the addi tional pion makes the set of equations more compli- 

cated. 'eveït heless, the overaII structure is of the same type as the original Lovelace 

equation. Before 1 attempt to solve this system, I introduce one more approximation 

on the second level of the separable expansion. 



Sable 2.2: Chain-space contributions to the effective potential lrom channel A': The 
first row in every element denotes the possible two-cluster transitions that are possible 
in the give three-cluster transition element. The empty r o m  and columns show that 
the canne1 -4' does not contribute to these three-cluster transition elements. The 
second row in the table denotes the explicit contributions to the effective potential 
for the given two-cluster transitions 



Table 2.3: Chain-apace contributions to the effective potential from channels A', B', C" 

c,' 
c'd, ë'y' 

Y 

a' a', 6' b' , i.' c' 

V 

c'c' 



Chapter 3 

PRACTICAL APPROXIMATION SCHEME AND 

THREE-NUCLEON FORCES 

I choose a block of marble and chop off whatever ï don? need 

Francois--4 uguste Rodin 

3.1 Practical Approximation scheme for Lovelace-type equations 

In the last chapter 1 re-derived a ~~uasiparticle description for the algebraic mode1 that 

gave a set of connected Lovelace type equations. 1 already mentioned that the second 

leveI of separable expansion is not trivial and I show in this section how one can find 

a first approximated form for this problem. Like in any other separable elcpansion 

method the problem lies in the solution of the channel ecpations. Appro'cimating the 

potent ials by separable potentials allows one to solve the channel equations anaiyti- 

cally This approach is rather difficult in the present case due to the complesity of 

the channel equations. However: ive recently gave an approximation that makes it 

possible to find the form factors for this expansion in a fairly direct way [CMSOO]. 

Obviously, this can only give an approsimated expression for the form factors. Never- 

t heless, the sirnplicity of the procedure outweighs t his defect and significant correction 

terms to the standard three-nucleon AGS problem are found. For later research it is 

ais0 clear at mhich points the approximations can be improved to higher order efTects, 

but in this thesis I am only interested in the first order effects. 



The main problem is to solve the channel equation on the two-cluster level 

In order to describe the approximation scheme in a clear way 1 first write eq. (3.1) in 

more detail. The dynamical equations of the sub-amplitudes in component form are  

given by the set of equations 

Using this set of equations an approximation scheme can be cleveloped that allows 

for the  two-body form factors to be calculateci. Hoivever, for the channel .nf the set 

collapses to the equation 

due to the inclusion principles. This is a standard Faddeev-type equation and can be 

solved directly for the quasiparticle form factors 

The left hand side indicates that the approximated form factor is actually an exact 

result given by the Faddeev components of this channel. 



The approximated form factors for the remaining channels +4'? Br, C' can be  found 

s tarting from eq.(3.5). This equation describes the behaviour in the three-nucleon 

sector and consists of a standard LS-equation for the cluster, given by the first two 

terms on the right-hand side, and a correction term. The potential in the LS-part 

is the standard static NN potential, including the OPEP part. The correction term 

describes one pion dynamics in the 2 N  subsystem and it is clear that this dynamics 

does not connect in any ma)- to the spectator nucleon. Therefore, this term describes 

the disconnected dispersive effects to the 3 N '  dynarnics that originate in the 2 N  d -  

namics. It is straightforward to solve the standard !VA- problem given by the first 

two terms. Furthemore, it is h o w n  that in first approximation the LS-equation 

describes the NN problem quite well. Therefore, it is reasonable to approsimate the 

correction term by zero. This is physically sound. because the approximation terms 

should not contribute in a dominant form to the N N  problem, othermise standard 

nuclear physics would not be a good approximation to nuclear dynamics. 

The approximation scheme results in an elastic channel (NN) N for the 3 N  prob- 

lem, because the pion clynamics are explicitly ignored. Of course, there is still pion- 

eschange in the potential, but this is a static effect due to the phenomenologicd 

potential, not due to the dynamics of the system. Now this channel can be treated 

mith t h e  techniques used in standard 3N AGS-type models- The approsimated chan- 

ne1 equation is now given by 

and the quasiparticle t-matrix component for this channel is 

The form factors in this equation can easily be obtained using any of the valid es- 

pansion methods. Also, it is noteworthy that there is a strong resemblance between 

these form factors and the ones used in the first level of the quasiparticle approxima- 

tion. They both corne from solving a two-body problem, but in the A' channel for 



exarnple the three-cluster form factor can have the NT contribution Id3) ( r ) )  and the 

iViV contribution Id3) (r)). These tmo form factors are two-body form factors with 

two spectators split off. On the other hand, the three-nucleon form factor in the A' 

channel [af%) only can have a N N  cluster, identical to the cluster in the three-cluster 

system, but only one spectator is split off. In other words? the three-cluster form 

Factor Id3) ( z ) )  and the three-nucleon form factor la'?) corne from the same separable 

approximation. The proposed approximation requires 

and consequently 

and 

This giws the approximated component of the trvo-cluster cluasiparticle form factor 

and the approximated r in the three-nucleon space. As I mentioned before; neglecting 

the pion dynamics on t his Ievel is a good approximation due to the success of standard 

nuclear physics. Hoivever: it is not a goocl approximation to neglect the pion clynamics 

in the four particle sectors of this sÿstem. This means that the remaining form factors 

in the separable expansion on the two-cluster Ievel cannot be ignored. In order to 

define an approximation to these remaining form factors 1 investigate ecl.(:3.4). The 

first and third term in this ecluation do not depend on the 3-V pole structure, which 

leads to the choice of the remaining, dominant, term for the approximated quasi- 

particle equation 

Contrary to the approximation in the three-nucleon sector which was based on physi- 

cal grounds, this approximation is valid on mathematical grounds. Using the approx- 



imation for the respective two-cluster quasiparticle channel component y ields 

and by direct cornparison 

At first glance it appears that the pion sector form factor is given by a scalar product, 

ivhich is strange. However, a closer inspection shows that this terrn is not a scalar 

product, because the bra of this term lives in the three-cluster space while the ket 

[ives in the two-cluster space. For a scaIar product the bra and ket would have to 

Iive in the same cluster space. Therefore, these terms indeed define a transformation 

from a three-cluster to a two-cluster space, which is exactly what the form factors are 

designed to do. 

This defines a11 the ket components of the approximated two-cluster quasi particle 

form factors. In order actually to give an expression for the corresponding t-matrix 

the bra components of the form factors aiso need to be defined. These components 

can be constructed bj- taking the adjoints, which yields 

and 

This is the end of the approsimation and 1 am now in a position to consider explicit 

calculations. However, it is noteworthy that due to the explicit definition of the 

creation/destruction vectors following relation is true 

The fact that this equation holds true is because the relation ( fA~),,,,,,, = O is a 

property of the original set of algebraic equations. This introduces a wbole set of 



simplifications in the calculations as 1 show in a Iater section. I also argue how the 

driving term in the Lovelace-type equation can be interpreted in order to  recover 

corrections to the standard 3N AGS system. However, first the equations can be 

simplified even more by projecting out the closed pionic channels. 

3.2 Pro jecting out the pionic channels 

In general. the Padova model describes the pion-three-nucleon system, but in this 

thesis 1 am only investigating the triton binding energy. This means tiiat the pionic 

channels of the Padova model are closed and a projection procedure due to Feshbach 

[FesG'] can be applied. In this section, 1 outline the projection procedure and show 

the result for the channels with no  free pions. The starting point of the projection 

procedure is the two-cluster Lippmann-Schwinger equation (2.63) 

Nest, I define two projection operators Q and P,  which project onto the free pion and 

no-free pion channels respectively With these projection operators the LS-ecpation 

can be rewritten in the form 



Only the las t one of these equations represents a n  open channel and we can ignore the 

other three. However, the kernel of the last equation includes a term that depends on 

QX~)B, P .  In order to replace this dependence 1 solve the second equation in respect 

to this term: which yields 

ancl the zeroth order contribution gives the approximation 

This approximation makes sense, because ive want to retain on l -  the lowest order 

terms that connect to explicit pion-channels. The ignored terms ail would introduce 

higher iterations of the pionic channels. Now 1 substitute this term into the no-free 

pion sector equation (3.24) and replace the pionic channel by the corresponding n' 

(reca11 also eq. (2.64) ) ; which gives 

This equation can now be rear-ranged to give an effective LS-ecluation with a modified 

driving term 

P X  P = P Z - $ ~ ,  P + PZ-$!,Q~(?)QZ$;~ P 

+ (PZ-$C,  P + P Z - $ ' ~ Q ~ $ ) Q Z $ A ~  P )  r g ) ~ x g B , ~  
C ' 

Using the usual definition -4' = A', B'; C' for the channels without a free pion this 

equation can also be given in the sim~lified form 

Therefore, 1 am left with a LS-type equation that has a modified driving terrn. In 

the next section 1 investigate the driving term and show how some of the terms can 

be interpreted as 3NF terms. 



3.3 The approximation scheme and 3N-force diagrams 

In this section 1 axgue how the approximation scheme can be used to find correction 

terms to  the standard 3N-AGS type potentials. In order to see this, 1 interpret the 

driving term of the quasiparticle equation in more detail using the approximated form 

factors. 1 already mentioned that the clriving term does not contribute at ali to the 

case a'ii' due to the inclusion principles. Furthemore, in the modified LS-equation I 

derived in the last section the pion-sector was projected out, which aIso means that 

this case is not included. Therefore? the only following three distinct cases are left to 

interpret: 

1. both channels are not x' and equal. The representative case Z-4r-41 is shown 

2 .  both channels are not n'and they are not equal toeachother. the representative 

case ZL4IBl is shown 

:3. one of the channels is sr': the other is not. The representative case ZrlAl is shown 

The first observation is that the first two cases can ooly contribute to z-:$, and the 

last case only contributes to z - ~ ~ ~ T $ ) z ~ $ ~ .  In the next two subsectioos I investigâte 

exact Zy t hese t wo cases. 

3.3.1 Contributions to the driving t e m  /rom z-:;, 

The approsimated general form of the ciriving term in the case that A' # ;rf and 

B' # I;' is given by the expression 

In case 3 ,  where A' # B', only the f i s t  of the delta-functions in the second term sur- 

vives. Also, B' and A' have three cornmon three-cluster break-ups, namely a,  ,û, 7 and 



there is a unique contribution to each of these from the two-cluster partitions in the 

respective channels. Taking al1 the inclusion principles into account and substituting 

the explicit expressions for the complicated creation/destmction operators therefore 

leads to the ecjuation 

The first term describes the standard AGS-type driving terms and the second term 

describes corrections to the off-diagonal components of the driving term. The off- 

diagonal correction terms of the effective potential are also shown in a diagrammatic 

way in figure [3 . l ] .  The middle structure of this g a p h  describing the pion behaviour 

Figure 3.1: The diagrammatic representation of the off-diagonal correction term 
(Z'lil fifco II) Ï+ ((7) Go fago 16%) to the effective potential. The inside structure of 
the diagram is of the same type as Fujita-Miyazawa 

is the same as the 3NF graphs based on the Fujita-Miyazawa model. The pion is 

created on one nucleon, interacts with a second nucleon and finally is absorbed on 

the third nucleon. In my calculations this part of the diagram is replaced by the 

one-dimensional equivalent to the Tucson-Melbourne form of a stat ic 3 N F  correction. 

However, the fact that a diagram describing a behaviour similar to modern 3NF is 

recovered already cons titutes an interes t ing result. 

In case 1, where B' = A', only the second term of eq.(3.29) survives and only the 

part in respect to the second delta function is non-zero. Since in that case the two 



partitions have to be unequal, one of them has to be a' and the other a' or vice versa. 

The possible chains have ody one common three-cluster matrix element, namely a? 

and therefore only the following terms survive after the explicit expression for the 

complicated creat ion/des truction operators are inserted 

These contributions are the diagonal correction terms and they can be represented 

by four distinct diagrams. In figures [:3.2,3.3] the topologicaiiy- cliffereut diagrams 

are shown. It shoirld be clear that the standard AGS-system has no contributions 

to the diagonal parts of the clriving terms. Therefore, it is valid to interpret these 

terms as corrections. The correspondhg set of diagrams does not appear in modern 

Figure 3.2: The diagrammatic representation of the diagonal correction term to the 
effective potential (i?iTI go fLC:, la) r, (al Go foga IP?). 

3NF, because it is assumed that these terms already are completely described by the 

rmderlying theory. However, 1 show that the cancellation that  is usually assumed is 

not complete and yields a rather strong effect that should not be neglected. 



Figure 3.3: The diagram corresponding to the diagonal correction term to the effective 
potential ( Z B I  go fhc0 la) r, (a[ &fago lblf). 

Case :3: where a free pion elrists in an intermecliate state, is described by a somewhat 

different ecluat ion, namely 

Imposing a l  the inclusion principles and inserting al1 the esplicit elcpressions then 

leads to the ecluation 

This correction term is due to the coupling with the pionic sectort which was projected 

out by the Feshbach procedure. In fig [3.4] one diagram contributing to this correction 

term is s howu. The total contri but ion to t his correction term is the sum of al1 diagrarns 

of this type, where the pion can connect any incoming with any outgoing nucleon line. 

This type of correction is another 3NF correction to the effective potentiai of the 3 N  

bound state problem. However, in this thesis 1 restrict myself to the investigation of 

the first two types of correction terms in a simple 1D model. The effect of this last 

type of corrections should be investigated in subsequent research efforts, but for now 

1 do not discuss them further in any detail. 

These are now al1 types of correction terms appearing in the approximated system. 



Figure 3.4: The diagram correction term Z->,8, = 2-, , ~ ? ) z " , ~ ,  that appears because 
A iT 

the mesonic channels were projected out by the Feshbach procedure. 

C~nsequently~ the modified driving term can be given by the expression 

where the first term is defined by the standard AGS-type driving terms 

The second term is defined by the terms of the first two cases that do not belong 

to 2'- and the third term is defined by contributions due to the connection to the .AIB' 

pionic channels. 

2'- - - Z-&l lr zrlfiI n (3.36) 

The nest step in thesis is the derivation of a one-dimensional Toy mode1 in order to 

inves t igate the dynamical propert ies of t his system numericall. 



Chapter 4 

ONE-DIMENSIONAL TOY-MODEL FOR THE 

LVN-SY STEM 

Technology is the Xnack of s o  arrancjng the world that -we do not experience il 

Max Frisch 

4.1 Schroedinger description of the N N  Toy-mode1 

The two-body problem is an  essential input into the approximated quasiparticle equa- 

tions as 1 have shown in the last chapter. In this chapter I describe the one-dimensional 

Toy-mode1 for the NN problem and derive the corresponding Lippmann-Schwinger 

representation. I also derive the general form of the  N N  Toy-potential to be used in 

the model. In the first part 1 describe the model in the Schroedinger representation 

and subsequently derive the general Lippmann-Schwinger form. 1 choose to do this 

in coordinate space in order to include the boundary conditions in a transparent way-. 

In the second part 1 derive the general form of the potential also in coordinate space, 

which gives a potential that can be compared direct- to the coordinate behaviour 

espected from a "nuclear" potential. 

In  the first step the quantum mechanical two-body problem for scattering on a 

line needs to be derived. The Hamiltonian for this problem given a potential V (for 



example, see Messiah [Mes76]) has the form 

where V i  are the two derivatives in respect to the coordinates of the particles and mi 

are the two masses. In the one-dimensional case one would not e-xpiicitiy need the V: 

which is an inherently three-dimensional symbol. Horvever, in staying mith the V it 

is easier to compare the derivation with the rvell-known three-dimensional one. The 

problem in question is described by the Schroedinger equation of this system, which 

is given by the expression 

1 assume that the potential is translationally invariant and that it is possible to 

separate out the center of mass motion, because it is a free motion. The  transformed 

Schroedinger equation is then given by 

with R being the center of mass, r = rl - r2 being the relative coordinate and 

mim p = ml+;2 being the reduced mass. This equation is separable and can be written as 

(s (r7 R )  = .J: ( r )  4 ( R )  (4.4) 

which separates the equation in the following way 

Sp 
V:$J ( r )  + 2 (&- - V )  $J ( T )  = O 

where is the constant of separation given by the total energy of the two particles 

in the C.M systcm. However, in eq.(4.5) the second term vanishes and the center 

of mass is simply given by a motionless point. ,411 the information of the scattering 

system is given by the wave function of the two-body system $ (r). The indices r: i 



are now being dropped and the one-dimensional Schroedinger equation describing the 

two body scattering system can be given by the equation 

It is apparent from this equation that the units of the potential have to be same as 

the units of the Hamiltonian, namely the units of an energy E. The next step is 

the derivation of the Lippmann-Schwinger representation for eq.(4.7) including the 

boundary conditions that still have to be defined. It is noteworthy that the derivation 

of eq.(4.C) did not yet take into account that the system is sole- living on the line 

and therefore is a more general result than actually needed. The restriction of the 

system to the line is important when the boundary conditions are defined. 

4.2 Derivation of the LS-equatioo in the two-body Toy-mode1 

In t his section I derive the Lippmann-Schwinger equation for the 1 D-scat tering sys- 

tem. This taslc is done using the Green's function method, mhich is described later in 

this section. However, it is convenient to give another simple transformation in order 

to simplify eq.(4.7) and fincl the equation 

wi t h the defini tions 

and 

The Green's function method constructs solutions to eq.(4.S) by the use of the Green's 

function G (k, r, r') which is a solution of the equation 

[v2 + k2] G (k, r? r') = 6 ( r  - r') 



It can be easily shown that the expression 

solves eq.(4.S). Fucthermore, it is clear that 0- has units of f ~ n - ~ ,  which rneans the 

Green's function has to have units of fm- In order to see that this is indeed a solution 

eq.(4.S) is expanded in the following way 

[v2 + k2] 1C< (r) = [v' + k2] / G (k: r, rt) U (T') + (TI) drr (4.1:3) 

where the operator in the square brackets is taken outside the integral, because it 

does not depend on the integration variable. This shows that ecl.(4.12) indeed gives a 

particular solution of eq.(4.S). The general soIution is given by the particular soIirtion 

plus a solution of the homogeneous eqiiation 

[a2 + k2] Q ( r )  = 0 (4.14) 

The next step is to inchde the boundary conditions, which is done by an appropriate 

definition of the Green's function. At this point it is important that the system is 

restricted to the Iine, becaiise it defines the boundary conditions. From the theory of 

differential equations it is clear that the solutions of the homogeneous equation are 

represented by the plane waves 

Since the plane waves form a complete orthonormal set, they can be used as a basis. 

According to the theory of Fourier transforms the particular solution is espanded in 

respect to the plane waves in the following way 



This yields for the Schroedinger equation, using the property of the particular solution 

given in eq.(l.l'î), the equation 

U ( T )  $J ( r )  = [v2 + k2] / A ( k f )  eikfrdkf 

However: the plane waves are eigenstates of the differential operator wit h eigenalues 

-kt* and interchanging the operator and the integration gives the expression 

West; the expression is multiplieci by e-'"" and integrated over r in order to make 

use of the orthonormality of the plane wave states. This calculation yields 

J 0- ( r )  $ ( r )  e-'""dr = / [-ka + kz] -4 ( k f )  / e'('l-krl)r dr dk' 

and espressing the r-integration with the corresponding delta-function and subsequent 

use of the delta-funct ion yields 

/ u ( r )  + ( r )  e-ik"r dr = ( Z r )  [k2 - V2]  A (k") 

This expression can be used in turn to define the Fourier coefficients of the particular 

solution as 

Therefore, the expansion of the 

tvrit ten explici tly as 

1 F 

part icular solution given in eq.(4.17) may nom be 

(Tt) eiWr-r'I dr~&t (4.23) 

Identifying this expression with eq.(l.l2) finally gives an expression for t h e  Green's 

function, which is given by 



At this point it would appear that this derivation was in vain, because the integral 

that defines the Green's function actuaily does not exist due to the poles on the real 

line. However, 1 use the trick of slightly deforming the contour around the poles and 

give a slightly different set of Green's functions (for erample, see Merzbacher[Mer70, 

pp.2231 or Itzykson and Zuber[IZSO, pp.321). Obviously this new set can not be seen as 

solutions to eq.(4.11), but the integrals are now explicitly solvable. It is a well known 

procedure to take the lirnit of the contour deformation to zero after integration ancl to  

recover the solution sought in the beginning. The contour deformation can be done 

in a number of ciifferent ways and it is seen that the different choices correspond to 

different boundary conditions. 

The first deformation that defines the new Green's fiinction is described by the 

ecluat ion 

This is a Fourier-integral and it is exactly solvable using the theory of residues. The  

theory recluires to distinguish between two different cases (see Fischer [FKSS: pp.569]. 

1. The case r > r', when the contour is closed rvith a large semi-circle through 

the upper half plane. This contour encloses the pole in the positive half plane, 

narnely the pole at  kf  = + Jm = + (k  + k) 2x: which by the use of residues 

yields the following result for the new Green's function 

G:, (k, r, r') = 2îïiRes f + + k2 + Xe ( -1 (4.26) 

with 

Calculating the residue explicitly gives (using Maple V) 



and taking the limit yields the Green's function 

2. The case r < r', ivhen the contour is closed with a large semi-circle through 

the lower half plane. This contour encloses the pole in the negative half plane. 

nâmely the pole nt kf  = -\/= z - (k + s) which yields the foiiorving 

result for the new Green's function using the properties for Fourier-integrals 

G'& ( k .  r: r f )  = -2îïiRes (f+, - d G )  (4.30) 

Again calculating the residue yields t his t ime 

and again taking the limits gives 

The Green's functions have the expected units, which is a good test of the calculation. 

It should be pointed out that the two exponents of the different cases have the opposite 

s i c ,  which is important in the inclusion of the boundary conditions. The solution 

for this wave function is therefore given by the expression 

However,the inhomogeneous term is given by a plane rvave, which results in the equa- 

tion 

+m + jr G:E (k, r, r f )  U ( r f  $ ( T I )  drf + ~ ~ ( k , r , r ' ) ~ ( r ~ ) $ ( r ' ) & ~  
-00 



Inserting the original expressions and the appropriate Green's functions gives 

4 ( r )  = ~ ~ i k r  + B~-&- (4.35) 

The corresponding terrns in this equation are now collected, which yields 

In order to incorporate the boundary conditions in a meaningfui way the coefficients 

-4: B have to be choosen. The solutions are compared with the asymptotic states, 

which is done by taking the linlits r i &cm (for example, see Bolle et. al. [BGFVSS]). 

This procedure allows for tii-O distinct choices in a physicdy meaningful way. The 

first choice is -4 = 1, B = O which yields 

+LcU ( r )  = e r  ( )  (  & 

This represents a plane wave incoming from the right and reAected and transmitted 

waves travelling left and right respectively. The second choice is giwn by A = O, B = 1 

and yields the solutions 

'This case represents a plane wave incident from the left and transmitted and reflected 

waves travelling left and right respectively. The fact that this is indeed one solution 

for the one-dimensional scattering, becomes obvious when the asymptotic states are 

written the following way 



@" (r) = sll (k) eirk 

d;" (T) = ~ 2 2  (k) e-irk 

?q- (r) = 
4'" + ~ 2 1  (k) e"" 

with the definitions 

This yields the general scattering solution for the +ic correction. 

The solutions for the case of the -ic correction result from the following Green's 

function 

G-E (k, r,  r') = -- 
I I  

1 eik'(r-r')  

2îÏ [ k a  - k2 + i ~ ]  
&kt 

The Fourier-integrals are solvecl again wit h the residue theorem and two cases result. 

1. The case r > r', when the contour is closed in the upper half. This time the 

contour encloses the pole in the negative half plane, namel- k' = - 

ivliich yields the following result for the Green's function 

- - d m )  Gts (k: r, r') = PniRes (f (4-50) 

with 
1 1 

Calculating the residue explicitly gives 

and taking the Iimit yields the Green's function 



2. The case r < rf t  when the contour is closed in the lower hdf  plane. This 

encloses the pole in the positive half? narnely kf  = wvhich yields the 

Green's funct ion 

Gxc ( k ,  r: r') = - 2 r i  Res (f - ,  d m )  

and t aking the residue gi ves 

which gives after taking the limit 

Once again, following a similar argument. this gives a solution for the wave fiinction. 

but this time it is given by the equation 

Q2(4 = [ A + &  (l+- - ( . ( )  d T  

Once again; the result allows two different choices for the constants -4, B. The choice 

A = 0' B = 1 gives the solutions ( r )  and the  choice -4 = 1; B = O gives <P: ( r ) .  

The corresponcling asymptotic states are then given by 

with the definitions 



(k) = + & (1: ee irrkv  ( r f )  + ( r f )  drl )1 

This second set of Functions describes a recombination process, which is highly im- 

probable and therefore generally neglected. This completes the deh i t ion  of my 1 - D 

toy mode1 and in the next section I find a potential that resembles nuclear physics at 

least in a first approximation. 

4.3 General form of the potential for the LS-equation 

In the last sections I derived an integral representation for the one-dimensional scat- 

tering problem, but so far 1 have not specified the potential that appears in the 

Hamiltonian. In this section 1 give a detailed discussion on the form of this potential 

from a meson theoretical point of view first suggested by Yukawa [Yuiuk35]. 

Hocvever, it is necessary to make a preliminary remark on the potential due to the 

omi tted constraints used in the clerivation. The potential has to be of a special type 

in order for the derivation to be valid, namely it has to be a potential belonging to 

the Faddeev-class. This c h s  is defined by the constraint 

and the proposed potential has to satisfy this constraint, which, it turns out, it does. 

In order to derive the potential for the scattering mode1 the free meson field needs to 

be given. The meson is intrinsically a relativistic particle and therefore a relativistic 

description should be used. The commonly used description is the Klein-Gordon 

equation (see Messiah [MesiG, p. 671) 

mrc ['g - v2 + (h) *] ?j ( x )  = 0 
c2 



where again in the one-dimensionai case the V operators are actually total derivatives 

in respect to the variable x. In order to h d  the potentid the static approximation 

for this equation is used, which gives 

p - (y) 2] + (1) = 0 

The important assumption is that the source for the pion is given by the nucleons 

and therefore include a source term in the static meson field in the following way 

where 

The source has to be given as a confined small, but extended function with the 

same dimensional properties as the nucleon, restricted to one dimension. This is not 

immecliately an easy task, but this problem is discussed later. The main interest here 

is a point source in order to recover the Green's function description. The Green's 

function for this system is defined by 

where the Green's function is assumed to be translationally invariant. A solution for 

the meson field is then given by the formal expression 

4 (x) = f G, (kT7 z - z') p (z') dz' 

which means it remains to find the erplicit form for the Green's function and the 

source term. The Green's function can again be found using the theory of Fourier 

transformations, which gives 



Inserting this expression into the Green's function eq.(l.71) and performing the op- 

erat ion yields 

where the properties of the delta function and their representation are used (see Mes- 

siah [Mes76, p.4221). Comparing the integrands gives the Green's function equation 

in k,-space, namely 

or in other words 

In order to give the Green's function in coordinate space it is substituted back into 

the definition for the Fourier transforrn? which yields 

This integral can be solved using the t heorem of residues, because there are no poles 

in the denominator. Again, the two Green's functions depend on the sign of z - z': 

namely 

Therefore, the meson field coming from the nucleon source is given by the expression 

C a  

dzt + / p (x') dx' 

Recombining the integrals therefore leaves me with the expression 



The explicit expression for the nucleon source at the position xl is defined by the 

equation 

This results in the following expression for the meson field 

-kZ[x-x'[-&1zJ-zL 1 
cj5 (x) = - iv clz' 

-^O 

ancl one integration remains. In order to sirnplify the integration the following defi- 

nitions are given 

These defini tions are used to give the  equation 

In order to solve this integral two cases have to be consideredo namely xl > x and 

xi < r. The first case sl > z gives the lollorving split for the integral 

The integrat ions are rather lengthy: but straightforward, and the result is given by 

the expression 

The second case xl < x works similarly and gives the result 



Combining the two cases gives for the meson field the following expression 

Consequently, the iVN-potential is describeci by 

or more explicitly 

rvhere the normalization OF the nucleon source has been taken into account. The 

integration can be performed explicitly and the first term in this equation is given by 

-CQ 

Again, calculation of this integral requires to consider two cases. First: the integration 

for the case xi  > xz7 which yields 

and performing the integrations results in the expression 

Second, the case xi < x2 gives ecluivalently 

Combining the two cases results in the equation 



The second term in the integrand 

is calculated following similar arguments as the ones used for the h s t  term, which 

gives the expression 

-4dding up al1 the terms describes the final expression For the NN-potential in the 

one dimensional case: nameiy 

which is equal to the equation 

In the case that the nucleon radius goes to zero this potential collapses to the form 

This is the potential used in the Toy model in the k-space and 

(3.104) 

the form of the potential 

is the one generally espected for a model of the given type. The units of this potential 

have to be M e V  in order to have a consistent theory. However, k, has units of fm-', 

which requires that the coupling constant has the units 

Also, the potential is used in the center of mass system, which requires to e-xpress the 

potential in respect to the relative position. The potential V in standard units in the 



center of mass system is therefore given by the equation 

with the overail uoits of MeV, which is also exactly as expected. Therefore, 1 devised 

a one-dimensional mode1 for the two-nucleon scattering and the corresponding NN- 

potential. In the next section 1 use this potential to find the bound states of the given 

sys tem numericaiiy. 



Chapter 5 

THE 3 N  TOY-MODEL BOUND STATE PROBLEM 

The creator of the uniuerse works in myste~rious -ways. But fie uses a base ten  

counting system and M e s  round numbers. 

Scott Adams (Dilbe rt)  

5.1 Integral representation for the 2 N  Toy-mode1 bound state problem 

In the last section 1 derived a description for the Yukawa type NN-potential in one 

dimension for the Toy model. This potential is the equivalent to the : 3 0  Yukawa 
e-kr 

potential, which usually is oc 7. However, even thoogh the 1D potentid only 

shows an exponential behaviour, 1 use the expressions Yukawa and Malfliet-Tjon type 

for the 1 D  potentials. In this section 1 prepare the Toy-mode1 in order to calculate 

the form factors needed for the separable e'cpansion. Since 1 am only interested in 

the bound state problem and not the scattering problem: 1 choose the unitary pole 

approsimation (UPA) as expansion method. The  UP.4 and its validity is documented 

in cletail in a review by Levinger [Lev74] and for more information 1 refer to  the 

literature [Har'iO, PS77, CHSSL]. 

In order to  give the UPA the two-body bound state problem has to be solved and 

it is given by the homogeneous part of the t-matrix Lippmann-Schwinger equation. 

In order to find the strength factors of the potentials to give the right %body bound 

state energy Sturmian functions are introduced. ' Sturmian functions are often used 



for separable e?rpansions of the T-matrix and the scattering problem due their explicit 

dependence on the energy. However7 1 use the sturmian procedure only to find the 

bound states and refer for more information on Sturmians and their applications to  

the literature [Rot62, Raiv82, CCPS8, RC90, CR91, DCP.4941. 

The goal in this section is to develop an integral representation of the relevant 

operator equations and then to prepare the equations for numerical calculations, which 

are performed afterrvards. Once the bound states are found the UPA is implemented, 

which is done in the  subsequent section. In this thesis 1 restrict myself' to the use of 

two simple potentials, a one term attractive potential 14 and a tivo term potential 

which is made up of an attractive and a repulsive part of the Yuhwa type. Since 

the potential 1;1 is a special case of potential ivhere the repulsion is zero' 1 show 

the convergence behaviour for the potential only. In general, the functions are 

satisfying the operator equation 

The momentum state representation of these equations can be found most easily by 

projecting onto the momenturn eigenstates and insert ing identities espressed in the 

appropriate rnomentum state basis. This procedure yields the integral representation 

The operators are described in the k-space with k given in units of frn-L. In this 

notation the wave function is given by 

and the integral equation has to  be solveci in order to find the explicit expressions for 

the mave functions. The potential in li space is given by the Fourier transform of the 

potential in standard units, as defined in the last section. The function in the center 



of mass coordinate space is 

and the Fourier transform is given by the explicit calculation of the expression 

The calculation is straightforward and yields 

and the overall dimensions of the potential are MeV - fm. The Sturmian function 

is defined by an integral equation with integration over k. Thetefore, the right hand 

side of the Sturmian equation has the units MeV - f m from the potential and f rn-L 

from the integration. The remaining units, besides the wave function, therefore are 

MeV. The left hand side must have a similar behaviour and the three k integrations 

introduce units of fm-3 and the two potentials introduce units of MeV2 - fm2. 

Consecluent ly, the Green's function has to have units of f m/MeV in order to have a 

consistent model. The Green's function in k-space is given naturally by the e'cpression 

6 (k' - k) 
G(k ' , k ,  E )  = hZk2 E - -  

ZP 

and indeed the Green's function has the expected units. Inserting the expression into 

the  Sturmian equations gives the following result 

mhere the new function U is given by 

In this equation the diagonal character of the Green's function has been implemented, 

which reduced the integrations by one variable. For munerical analysis it is helpful 



to write the integral equation in dimensionless vitriables. This is achieved by the 

- -. wliich introduces a Jacobi factor in the coordinate transformation u = - a ' 

integration measure dk = y d u  = adu. The follovring integral equation for the 

dimens ionless 

w here 

wave funct ion is the result of the coordinate transformation 

J U (u ,  ZL', E )  $ (u t )  adu' = 1 V (u. u') + (u ' )  adu' 

Cr (u ,  ut: E )  = V (u,  u") C:, (u", E )  V- (u", u') ach" J 
and 

The Green's function in the same variables is given by 

and consequently the Ci in dimensionless variables is 

(5.14) 

Because the C/ p lay  the same role as the potential on the Ieft hand side the units of 

CI and V must be the same, which indeed they are. With the definitions 

and 

the integral equation is given by the expression 



This equation is simplified even further and the final equation to solve is 

This equatioo is dimensionless and it remains to develop a code for this system for 

numerical analysis. The only variables in this system are the eigenvalue, the coupling 

constant and the energy. The Sturmian procedure fixes the eigenvalue to be one for 

bound states and the energy of the bound state is -'5.225!VleV as for the NA- problem 

in 3 0 :  where the bound state is the deuteron. This in turn should give the value for 

the coupling constant. 

In the next section 1 describe the oumerical solution of the Sturmian integral 

equation and fis the variables in order to describe nuclear physics. 

5.2 Numerical solution of the 2iV bound state problem 

In the last section I described the Sturmian procedure and found an integral equation 

in orcler to find the states necessary for a separable expansion of the T-matris. It 

is now necessary to develop a numerical procedure that ailows the calculation of the 

integral equation. Wit h the nurnerical solution the remaining constants are fixed so 

that the Toy-mode1 resembles nuclear physics. In this section 1 show how the integral 

ecluat ion can be transformed into a generalized eigenvalue eyuat ion using quadratures 

[LP97? PTVFSZ]. In the given system this procedure has to be used trvice? first in order 

to find a numerical description of the O and second to find a numerical descript ion 

of the integral equation. The operator O \vas given by the expression 

and the integral is calculated numerically using any quadrature. Hocvever, the choice 

of the particular procedure is important in orcler to find a satisfactory convergence of 

the numerical method. For now, 1 assume that the quadrature in question converges 



and the discretization is possible. In this case the integral can be given by 

where the z; are the mesh points of the quadrature and the w; the corresponding 

weights. The numerical code for this integrat ion is given by the subroutine 'Colonel' 

given in the appendix and it returns aii matrix elements of Û for the potential V;. 

The potential 1/1 can be handled with the same routine, if the relative strength factor 

is set to zero. The integral ecluation 

is discretized over the same mesh points, which yields the generalized eigenvalue 

pro blem 

f2 -s- C O (xi; xi;.: E )  wj$ (xj) = rl C (xi: xj) u j < l  (xj) ( 5  -22) - 
I' j i 

Due to the weight factors the two matrices in this generalizecl eigenvalue problem 

are obviously not symmetric if they include the weights. However7 the weights are 

associated with the vectors of the generalized eigenvalue problem and it remains to 

solve the following system 

where 
A, 

$ = Du$ (524) 

and D, is the diagonal matrix with the appropriate rwights. The trvo matrices in this 

generalized eigenvalue problem are now both symmetric. Furthermore, for negative 

E t hey are bot h real and \vit hout singularities, which simplifies the calculations. 

However, the matrices are not sign definite, which is clear under the presence of a 

repulsive contribution as in the Malfliet-Tjon type potential h. In the Yukawa type 

potential & a11 entries in the matrices have the same sign and for appropriate grids 

they are even sign-definite, but al1 grids lose these properties at large N due to tail- 

contri but ions. Therefore, it is necessary to give a detailed convergence discussion 



and show that the system converges long before it breaks d o n  Realistk nuclear 

potentials have a repulsive character at small separation distances and consequently 1 

choose the more general case of the Mamet-Tjon type potential for the calculations. 

In conclusion, a routine for the generalized eigenvaiue problem has to be developed, 

where bot h matrices are real, symmetric and without singularities. 

In the calculations 1 use the following numerical values 

a The pion mass mc2 = 134.9766MeV 

a The nucleon mass pz2 = 93S.27199YMeli 

0 The Planck factor tic = 197.3269600MeV - Sm 

- 4 1 ~ 0 ~  the appropriate routines from the IMSL library [IMS] are used in the calcu- 

lations. It turns out that a strength factor of f /j? = 2.114450 is needed for the 

Yukawa type potential in order to get an eigenvalue of one for the largest eigenvalue 

at  -2.225MeV. Similarly, the Malfliet-Tjon type potential requires a strength factor 

f2/ii = 10.09496 and a relative repulsion of 4.57000 with a nuclear radius of 0.700 f m  

as repulsive range parameter. In figure [5.1] the energy dependence of the first two 

eigenvalues of the Yukawa system is shown. It is apparent that only the largest 

eigenvalue actually can take on the value one. Therefore the system has exactly one 

bound state. Al1 other eigenvalues for the Yukawa type potential are even smaller 

than the second one and can be neglectecl. However, in nuclear physics it is also 

known that there shorild be another bound state just above zero energy and in order 

to account for this behaviour I postulate that my second eigenvalue should approach 

the value one a t  zero ene rg .  This second requirement allows the determination of 

a second strength factor, which fixes the repulsive character of a Malfliet-Tjon type 

potential. In figure [S.'] the energy dependence of the  three largest eigenvalues of a 

Malfliet-Tjon type potential is shown. The largest eigenvalue again describes a bound 

state with the right energy and a second bound state nearly appears at zero energy. 



Figure 5.1: Energ). dependence of the two largest eigenvalues of the Sturmian system 
with the Yukawa-type potential 

Tt is important though that the eigenvalue actually does not take on the the value 

one belore it crosses zero. It is also apparent that the third eigenvalue is actually 

negative and cornes from the strong repulsive core of the MaMiet-Tjon type poten- 

tial. Therefore, the Malfliet-Tjon type poteotial should give a better description of 

Figure 5.2: Energy dependence of the largest three eigenvalues for the Sturrnian 
system with the Malfliet-Tjon type potential 

the nuclear systern than the Yukawa type potential. The two potentials are given in 



figüres [5.3, 5-41 and the potentials indeed show the expected behaviour in coordinate 

space. As 1 mentioned before 1 only have to show a detailed convergence discus- 

F i e  5.3: Yukawa type potential in coorclinate space 

Figure 5.4: Malfliet-Tjon type potential in coordinate space 

sion with the Malfliet-Tjon type potential. The Yukawa-type potential has the same 

type of convergence behaviour and the same calculations can be performed with the 

code choosing a zero repulsion strength. In figure [5.5] it is shown that the largest 

eigenvalue at the bound state energy converges rapidly and I choose the system to 



Figure ,525: Convergence behaviour in respect to number of quadrature points for the 
largest Eigenvalue at -222!1*leV with the Malfiiet-Tjon type potential 

be stable at $1 quadrature points. I should mention that these convergence tests 

have been performed throughout the calculations and the system remained stable at 

11 quadrature points. For completeness, 1 show in fig.[5.2] the bound states for the 

Yukawa and the Malfliet-Tjon type potential and they do indeed show the expected 

behaviour. Having found the bound state of the system 1 now proceed to give the 

Figure 5.6: 1D deuteron type bound state in dimensionless variables 

üP.4, which is the input for the 1-D AGS system. 



5.3 Unitary Pole Approximation of the 1 -D Toy mode1 

In the last section I defined the input potentials for the 1D N N  problem and found 

the only eigenstate of the system. Because only one bound state exists, 1 choose the 

unitary pole approximation as the rank-one separable expansion method of choice. 

This is certainly not the most elegant method available, but its simplicity helps to 

pinpoint the sources of corrections in the caiculations. Up to this point 1 always 

assumed that it is possible to find a separable expansion, tvhich gives the following 

form for the separable t-matrix 

wit h 

It now remains to apply the UPA in order to find the e-xplicit expressions for the form 

factors and the propagators. So far 1 have given no restrictions on the form factors 

and consequently th- could depend directly on the energy z iike in the Sturmian 

e'cpansion. The CTPA is an expansion in respect to the energy independent form 

factor la), which satisfies the form factor equation 

The eigenvalue 7 ( E B )  is naturally equal to one as shown in the last section. Also 

it should be clear from the sturmian procedure that the form factor is given by the 

follotving definition 

1. (EB)) = I + B )  (5.28) 

where ( $ J ~ )  is the normalized bound state wave function. Hotvever, the UPA form 

factor has to be normalized in the following way 



in order to have the right pole behaviour for the t-matrix. Namely, the t-rnatrix 

has to have a pole at the binding energy of the deuteron. The normalization of the 

form factors is explicitIy done by the code in the appendix. The rest of this section 

is a rathet technical expose on the behaviour of the f o m  factors. but it helps to 

understand their properties in more detail. In fig.[5.7] the first trvo attractive form 

factors are shown while in fig.[5.8] fist tivo repulsive form factors are shown. 

U 

Figure 5.7: The first two normalized attractive form factors for the UPA 

Figure .5.S: The first two repulsive normalized form factors for the UPA 

The behaviour of the two form factors belonging to the largest eigenvalues in 



respect to their signs is very similar to the one observed by Harms [Har'TO] in the 3 0  

case. It is quite surprising that the 1D system behaves so similar to the one described 

by Harms. This similarity is evea more exemplified in the behaviour of the t-mat rices; 

which is described by Harms in the same paper and reviewed by Levinger [Lev74]. In 

fig. [5-91 t hree diagonal elements of the t-mat r i r  are shown wit h the same energy units 

used by Harrns (s = 41.46MeV). The behaviour of the diagonal t-matrices is again 

Figure 5.9: The diagonal t-matrices for three energies using Harms' units 

the same as the one observed by Harms. The same similarity is also shown in the 

off-diagonal focm factors as can be seen in fig.[s.lO], which describes the behaviour 

of t-matrices that are not far off the diagonal. For completeness, fig.[5.11] shows the 

off-diagonal t-matrices that are far away lrom the diagonal with the same energy. 

In order to use the UP-4 as input into the three-body ecluations the ZN-UPA has 

to be embedded into the 3N space. This procedure is well Iinown for any separable 

expansion and involves simply a shift in the energy variable. This shift occurs, because 

the  t hree-body operator is given in respect to the total energy including the energ); of 

the spectator. Sherefore, this energy has to be subtracted in order to get the energy 

of the clustered 'LN sub-system, which yields in general 



Figure 5.10: The off diagonal t-matrices close to the diagonal with energy 0.5s 

Figure 5-11: The off diagonal t-matrices far away from the diagond with energy 0.5s 



For now, 1 simply give this result and the next section the 1-D AGS system is sym- 

metrized and the UPA is incorporated. Once the final f o m  of the resulting effective 

two-body Lovelace type equation is Found I proceeci in calculating the 3N binding 

energies. 



Chapter 6 

ONE-DIMENSIONAL TOY MODEL FOR THE 

STANDARD 3N-SYSTEM 

A cornmon rnistake that people make when trying to design something foolproof is 

to underestimate the ingenuity of complete fools 

Do uglas Adams 

6.1 Ernbedding of the 21V t-matrices into the 3 N  space 

In t.he last chapter 1 defined a 1-D Toy mode1 for the two-nucleon scattering problem 

and applied it to find the strength factors of the MaHiet-Tjon type potentid. The 2 N  

problem is now the input for the channel equations and behaves exactly the same; 

escept that 1 have an energy shift due to the spectator nucleon. In this section I 

describe the embedding of the 2 N  problem into the 3 N  space explicitly and in the 

nest section 1 show the symmetrization of the 1-D AGS-ecjuations. 

The channel equation of the standârd 3-V systems are the main interest in this 

section ancl they are given by the expression 

or in a different representation by the expression 



A l  channels are conveniently e-upressed in their natural set of Jacobi-coordinates 

[pal ,  qEl), which are explained in more detaii in the appendis A. In order to see the 

eKects of the spectator nucleons the relevant terms are given explicitly. The channel 

potential in its natural Jacobi coordinates is given by 

where &l denotes the 2N potential as defined in the standard t\vo-body problem. 

The observed split occurs, because the channel potential is only defmed in respect to 

the relative coordinate of the two nucleons in the cluster, namely p , ~ .  The Green's 

functions can be given following a similar argument, but the energy of the spectator 

nucleon has to be subtracted from the three-nucleon energy z in order to get the 

e n e r g  of the cluster system. For the channel Green's function this yields 

and the free Green's funct ion is given by 

The channel t-matrix also follows these arguments and the resuIt is the following 

expression 

which evidently also displa-s the energy shift due to the presence of the spectator 

nucleon. In the two-body case a separable expansion method for the t-matrix is used 

and results in a similar espression for the separable t-matrix in the three body space. 

The separable t-matrix has the same type of energy shift and is given by 

where the form factor does not depend on the inter-cluster momentum, which becomes 

important later. 1 am now in the position to describe a symmetrization procedure 

and an integral representation of the symmetrized system. 



6.2 Symmetrization of the AGS-equations 

In nuclear physics, the nucleons are treated as identical particles, which introduces a 

formal simplification in the AGS-equations. In general the nucleons are fermions and 

the AGS-equations should be ant i-symmetrized. However, for simplicity 1 choose to 

symmetrize the system instead. This choice is made also, because the "nucleons" in 

the I D  systern are spinless and thetefore behave Like bosons. 1 could have included 

a spin degree OF freedom, by using helicity states, but choose not to do that in this 

first mode1 calculation. The choice of helicity foc the spin equivalent in a 3 D system 

without partial wave analysis is described in a recent paper by Fachruddin, Elster 

and Gloeckle [FEGOO]. Including the helicity into the ID-system should be seen as a 

research topic worth pursuing in the future. Nevertheless, 1 should get some insight on 

the importance of the correction terms ivith the 1 D-system, even without the helicity 

component. Nest 1 show how the standard AGS-equation can be symmetrized. 

The standard three-body AGS-equation is given by the expression 

where the a', P,  Fr and the Green's function go indicate t hat the system is in the 

three-nucleon only space. In the standard three body problem no connection to the 

pion space is given, but for reasons of clarity I h e p  the notation. In order to have 

a symmetrized system, the input t-matrix tzf already has to be symrnetrized. The 

UPA shown in the last chapter takes care of this symmetrization erplicitly. because 

only the symmetric bound state is used in the separable expansion. Now; the AGS- 

equation describes two distinct cases, the direct scattering where the incorning and 

outgoing channels are the same, and the rearrangement scattering wliere they are not. 

The direct scattering is described by the diagonal elements and the rearrangement 

scattering by the off-diagonal elements of the AGS-operator U .  However, in standard 

three-body AGS-models al1 channels are asymptotically the same and should be in- 

distinguishable. Therefore, the form factors in the separable expansion should be the 



same for each channel. The standard AGS-equations in separable f o m  is given by 

the expression 

This expression is clerived by inserting the separable expansion for the t-matrix and 

folding the equation between the form factors of the clusters. It is important to note 

that this equation does not yet depend explicitIy on the inter-cluster momenta and 

t his fact allows for the derivation of an integral representation. Furt hermore, the 

equation is of the same form as the cvell known Lovelace equation and can be given 

in the abbreviated form 

and 

2- 1 - = (-' 1 90 I Q )  b a r i l  ( 6 -  12) 

However, in the case of three identical particles, not al1 of t hese operators are indepen- 

dent. On the other hand, they are also not al1 identical due to t he  anti-delta function. 

The proposed syrnmetrization procedure follows naturally the Lovelace procedure and 

starts with the knotvn constraints. 

All channels described by the partitions a', 6'; Z' clescribe the same physical sit- 

uation, namely one two-particle cluster and one particle far away from the cluster. 

Therefore the t-matrices for these situations should be the same and in the separable 

expansion? therefore, also the corresponding r's should be the same, which yields 

The effective potential term naturally displays that al1 diagonal elements are zero, 

while al1 off-diagonal elements are the same. in the correction terms contributions 



to the diagonal terms can e'ùst. Hoivever, the ~~ymmetrization procedure can readily 

be generalized to that case. In order to stay close to Lovelace's original procedure, 1 

continue to treat the diagonal terms as zero for now. Ln this spirit, the two classes 

are written in the following way 

and 

2" züfat = & f c f  = Zbtat = ZPC = Z2&t = ZEtbr (6.15) 

The Lovelace equations behave in a sirnilar way and also have two distinct classes, 

given by the diagonal and the off-diagonal elements. The diagonal elements are ex- 

plicitly given by the definition 

and the off-diagonal elements by the definit ion 

Wi th t hese definitions i t is straightforward to show that the symrnetrized Lovelace 

system is given by the following set of equations 

XD = ~ z " ~ x "  - (6.18) 

X" = ZN + Z N ~ S N  + z N r x D  (6.19) 

This is a coupled set of integral equations and the nest step is to decouple the equa- 

tions. In order to decouple the system two new operators are defineci. namely 

which lead to the decoupleci Lovelace set of equations 



Lovelace already showed that the second set of equations is not contributing to phys- 

ical processes, which means only the following equation has to be solved 

1 should mention again that the symmetrized Lovelace equations that include the pion- 

dynamics are somewhat different, because t hey have contributions to the diagonal 

terrns of the effective potentiai. However, the resulting complication is taken care of 

in the t reatment of the diagonal terms. Therefore, 1 concent rate on the standard case 

for now and give the corresponding integral representation- 

1 already stated that the given set of equations does not explicitly depend on the 

inter-rnomentum variables  al and I furthermore observe that our final symmetrized 

equation has the form of an effective Lippmann-Schwinger equation. In order to 

give t bis equation in mornentum representation 1 have to sandwich between intra- 

moment urn states and insert intra-momentum identities, which gives the following 

integral equation 

Int roducing the explicit expressions for the effective potential and the propagator and 

inserting appropriate identities into the effective potential, using Jacobi-momentum 

1 & )  Iqir) ~ E r 6 1 d p ~ r ~ q ~ I d p ~ ' d q ~  

(6.26) 

This term simplifies using some well known relations. First of all, the form factors ia 

moment um representation are given by the expression 



and using the eigenvalues for the go the Green's operator is replaced by its eigenvalue 

representation, which gives 

However, the overlap of the Jacobi-mornenta is giwn by the expression 

whicli in turn reduces the effective potential term to the expression 

At this point the explicit Jacobi-sets are ignorecl, because al1 channels are the same. 

Again it is clear that the diagonal elements of the effective potential are zero. This 

means the final expression for the effective potential is given by 

,ZN (q, qr, E + ic) = 
x- ($q + d )  x (-(7 - id)  

E + iE - h2q2 - (h9+hsr)2  -- (W)' 
2n.I LV 2 m ~  2 m ~  

For bound state problems, which are restricted to negat ive energies. the potent ia1 

terms do not have any poles. Consequently, the term ie, which is introduced to avoid 

any poles on the real line, can be eliniinated. Now it is possible to develop a numerical 

code for these terms, which are used as input in the effective two-body calculation. 

The propagator follows directly from the explicit form of the separable espansion and 

depends on the choice of form factors. However, in general the propagator has the 

form 

( z )  = 
1 

(A-1 - (z'[ g,, (z) 12)) 

and in the UPA the parameter X is fised to one, while the quadratic form is equal to 

one for z = EB, the deuteron bound state energy. This rneans that the propagator 

has a singularity at  the deuteron bouod state energy, as is expected. 



6.3 Numerical treatment of the one-dimensional 3N-AGS system 

In the last section 1 symmetrized the 1-D AGS-system and gave an integral repre- 

sentation. In order to solve this integral equation numericaiiy 1 need to perform 

two calculations first, namely 1 need to find an explicit representation for the effec- 

tive potential and the quadratic form appearing in the propagator. Once these two 

expressions are caicuated they can be inserted into the homogeneous part of the ef- 

fec t ive Lippmann-Schwinger equat ion. The S t urmian procedure is t hen used to find 

the corresponding bouncl state energ- The energy shifts in the operators due to the 

spectators require the use a spline procedure in order to evaluate the form factors 

on the new grid points. This is a technical complication that can be dealt with. 

The main pitfall is the use of a wrong set of variables and it is important to specify 

the same set of variables as the ones defined in the calcuation of the form factors. 

For these reasons a concise discussion of the 3 A Ï  Sturmian problem is given and the 

transformations to appropriate variables are shown. 

The Sturmian problem is again described by the generalized eigenvalue ~roblem 

of the LS-kernel, which is given by the espression 

oi. (q, qf,  E )  = 2 J ( 9 ,  dl: E )  (q", d ,  E )  
1 - (alGo (s - -) In) 

However, the form of the denorninator of the kernel does not depend on the specific set 

of variables and there is no numerical advantage to any one set. The effective potential 

on the other hand does have a preferred set of variables, because the denominator 

has units of MeV.  In order to get a dimensionless form of the effective form factor 

1 choose to use the same set of variables as the ones used in the L N  calculations. 

Namely, the momentum transformation u = a is used, which also introduces the 

integration measure dq = adzi. In order to get the dimensionless version of the 



generalized eigenvalue pro blem the relations between the operators in dimensionless 

and dimensional variables have to be described. These relations are already Iinown 

for the potential V 7  the Green's function and the wave function of the L N  problem- 

The only really difficult relation is the one for the form factors and it is shown host- 

to get this relation in cietail- The form factor in q-space is dehed  by the expression 

which evidently has the units MeV - f mi.  The oormalized form factor on the other 

hand is given by 

which has the appropriate units of (MeV - fm)f in order to  espand the t-rnatrix. 

Nest a coordinate transformation is peïformed on the un-normalized form factor in 

order to get the equivalent expression in respect to the dimensionless variables 

or in other words 

f2 3 (21') x ( q )  = - / G- (u; U r )  - 
7ia2 Ja adut 

In this expression al1 units are collected in the overaIl constant and they are given 

by M e V  - fmf .  The norrnalized form factor in dirnensionless variables can now be 

given by the expression 

or in other words 
rnc 

;Y (q )  = -2 (4 J2jz 

where again al1 the dimensions are collected in the overall constant. Nom* the 3 N  

operators are described in dimensionless variables using the appropriate coordinate 



transformations. The effective potential is writ ten in the folIowing way 

or in other words 

where the effective potent ial in dimensionless variables is defined by the previous 

equation. The propagator in dirnensionless variables is given by the expression 

and can be used in an>- given valid set of variables directly. Inserting these expres- 

sions in the kernel equation and performing the coordinate transformation on the 

integcation variable yields 

It should be clear that the kernel again has the same units as the effective potential, 

which is esactly what is eupected. Once this operator is calcdated, it is used as input 

in the generalized eigenvalue equation describing the Triton bound state problem in 

dirnensionless variables 

This equation can be sirnplified even further to the expression 

which is now reacly for numerical analysis. In the appendix B the code "tritonmain.f3 

is included, which is the core code for the calculations. 1 performed the calculations 

again with a 41 point Gauss-Legendre quadrature and the convergence of the eigen- 

value is striking as can be seen in fig.[6.1]. The behaviour for the eigenvalues of the 



Figure 6.1: Convergence of the largest eigenvalue for the sturmian system at the triton 
binding energy 

- 

- 
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Figure 6.2: The energy dependence of the  eigenvalues for the Triton GEV with the 
Yukawa potential 



sturmian system with the Yukawa-type potential in respect to the energy is given in 

fig.[6.2]. The bound state appears at -S.OlMeV and the second largest eigenvalue is 

negative. It is surprising that the second largest eigenvalue is actually negative con- 

sidering t hat the Yukawa has only positive eigenvalues. Nevert heless, it is explained 

by the fact the the effective poten tial of the 3iV case is not as simple as the Yukawa- 

type potential of the Z N  case. The crossing of the second largest eigenvalue at  -1 is 

of no importance. 

The system using the Walfliet-Tjon type potential is strikingly similar, as can be 

seen in fig.[6.3]. Here the bound state appears at an energy of -7.S'iïMeV. There also 

Figure 6.3: The energy dependence of the eigenvalues for the Triton GEV with the 
Malfliet-Tjon potent ial 

is a difference in the shape of the corresponding solutions of the BS quasiparticle prob- 

lem. in the inter-cluster rnomentum q (in shorthand, 1 cal1 this the q-eigenfunction) 

as can be seen in fig.[6.4]. While the Yukawa type potential produces a wave func- 

tion that is si- definite, the Nfalfliet-Tjon type potential produces two knots in the 

tail and a negative contribution at intermediate momenta. This behaviour can be 

attributed to the repulsive contribution from the hialfliet-Tjon t-ype potential and is 

expected. This result is the benchmark for rny investigation of the correction terms 

in the Padova model, which is done in the next chapter. 



Figure 6.4: The q-eigeafunctions of the bound s ta te  problem for the Yukawa type and 
Malfliet-Tjon type potentials 



Chapter 7 

THE PION DYNAMICS CORRECTIONS TO THE 

STANDARD 3N-SYSTEM IN THE 1-D TOY MODEL 

I am a great belieuer in luck, and I f ind  the harder I work the more I hace af it 

Stephen Leacock 

7.1 Off-diagonal correction terms to the effective potential Z-41B1 

In the  quasiparticle approximation scheme I alreadp argued that the pion dynamics 

introduces corrections to the effective potential. In this section 1 show how these 

correction terms can be incorporated in a first approximation. The explicit form of 

the off-diagonal correction terms is given by 

This type of correction terms is equivalent to the type of diagrams used in 3NF7s 

based on the Fujita-Miyazawa model. It is not a trivial task to actuaiiy find an 

explici t algebraic expression for these terms t hat are suit able for numerical analysis. 

The reasons for these difficulties are that both a three and a four body system have 

to be considered. Furtherrnore, the srN t-matrix and the incoming and outgoing form 

factors are given in different partitions. 

These diagrams include a part that is explicitly given by modern 3NF. Instead of 

developing a dynamicd description of the pion dynamics, it is possible to replace a 



part of the correction term by a static 3NF term. In order to do this, the contact 

term of the Tucson-Melbourne 3NF adjusted for the one-dimensional model is used. 

I follow the form of the TM 3NF given by Friar, Hueber and van KoIcolck [FHv99], but 

since the 1D Toy model is based on a one-dimensional coupiing to spinless nucleons, 

the overali constants are slightly different. In the same set of variables as the ones 

used in the standard AGS calculations, the TM 3NF type ~o ten t i a l  is given by 

where Q is the pion momentum in the center of mass system. Furthermore,the vertex 

function F21viv ( Q 2 )  is assumed to be equal to one, which gives 

The strength constant al has 

off-diagonal correction terms. 

units of fm-' in order to get the right units for the 

Even though only the contact term of the TM 3NF is investigated in this thesis 

the results should help to understand the pion dynamics better. The correction term 

for the effective potential itseif can now be given in respect to this 3NF term in the 

form 

In order to soIve the integrals the pion momenta are expressed in respect to the Jacobi- 

momenta of the incoming and outgoing three-nocleon system. The pion momenta are 

given in respect to the Jacobi-rnomenta that couple to the nucleon on which the 

pion is created last. Due to the odd man out notation, this set of Jacobi-momenta 

is simply defined by the index of the coupling constant describing the creation and 

destruction of the pion on the particulac nucleon. In this case, the pion momentum Q 

is defined in respect to the Jacobi-momenta q b ,  qi, which define the Jacobi-momenta 



on the left and right of the vertex. Since momentum conservation on that vertex has 

to be satisfied the pion momentum is simply 

Similarly, the second pion line is absorbed on nucleon a and the momentum is defined 

by the expression 

Q' = qa .a qi ('7.6) 

I-Iowever, the pion momenta have to be given in respect to the Jacobi-momenta of 

the in-going and out-going states, which are given by the sets pu, qa and p i ,  qi. In 

other rvords, it is necessar- to End appropriate transformations in order to express 

the variables q: and q b  in respect to a suitable set of Jacobi-momenta. Finding the 

transformations is straightforward and is shown in appendin A; they are given by 

The pion momenta in respect to the same set of Jacobi variables that is used in the 

integrat ion are t herefore given b -  

Consequently, the TM 3NF contribution to the off diagonal correction term of the 

effective potential is described by 



It is clear that the expression depends on the same two variables as the off-diagonai 

terms in the standard AGS effective potentid, namely qa,qb- Therefore, the integra- 

tion can be perfomed numericaliy and the constant al can be adjusted. However. 

the potential is given in the same t4pe  of variables as used in the standard 3 N  AGS 

calculation and consequently a coorclinate transformation to the same coordinates 

u ,  u' has to be p e r h e d .  The norrnalized form factors in dimensionless variables are 

given by the e'cpression 

and the TM 3NF in dimensionless variables is described by 

where 

Collecting the variables in the same way as in the standard AGS yields the follorving 

expression For the dimensionless off-diagonal correction terms 

where 

This allows for the calculation of the off-diagonal correction terms 

(7.16) 

which are then in- 

cluded in the Triton calculation. However, the explicit e-pression for the constant al 

is still not defined. In order to define this parameter in a consistent way a comparison 

with the previously defined 1D scattering equations is made. The transmission coef- 

ficients are now playing the same role as the scattering amplitudes, which are used in 



the original 3 D Tucson-Melbourne defînition. However, the transmission 

in respect to the t-matrix is given in the following way 

coefficient 

( u r )  

The definition for the al is now using the scattering threshold expression for the N N  

t-matrix and asswning that it is hunclred times larger than the corresponding lrN 

t-matrix in that range. This is a reasonable assumption, because at the scattering 

threshold in the 3 0  case only s-wave scattering is alloived and the two scattering 

amplitudes are related to each other by a factor of roughly 100, see Ericson and 

Weise [EWSS]. The coefficient ai is therefore defined by the expression 

ivhich is dirnensionally exactly the required form. This definition is not the same 

defini tion as in the :3 D TM-definitions, because the ID case is hndamentally different 

from the 3 0  case. Hoivever, the terms can be interpretecl as the equivalent of the 

TM-force terms in the one-dimensional model. 1 show the explicit effect of these terms 

in detail in section 7.3 together with the diagonal correction tenns. 

7.2 Diagonal correction terms to the effective potentiai 2.41-4t 

In addition to the off-diagonal correction terms 1 also have a set of diagonal cor- 

rection terms. These terms do not appear in the Tucson-Melbourne 3NF, because 

they are assumed to be taken care of completely by the iinderlying AGS-model. In 

order to avoid overcounting 1 have to subtract the separable potential describing bo- 

son exchange type diagrams from the corresponding NN t-matrix before calculating 

the correction terms. This procedure is described in a recent paper by Canton and 

Schadow [CSOOb], which 1 foilow in the definition of the diagonal correction terms. I 

have argued in a previous section that the diagonal correction terms are given by the 



expression 

This expression is similar to the off-diagonal one in respect to the fact that it is 

possible to introduce a static term replacing part of the expression. It is possible to 

rewrite this expression in the following form 

The integral representation in the appropriate Jacobi coordioates is given by 

The terms v'F can again be given in a sirnilar way as the corresponding off-diagonal 

terms, namely the product of two vertices, the meson propagators in the static ap- 

proximation and what happens in between. However, this time the d~narnical terrn 

contributing to the diagonal correction is given by 

where 

and where the relativistic pion energy is given by the expression 



The square roots corne from the normalization of the pion fields as observed in a second 

quantization procedure, see for example in Mandl and Shaw [MSS4]. Furthemore, 

since the pion in flight does not interact with the nucleons, only one pion momentum 

is relevant, namely 

Q = 9 a  - 4; ('7.26) 

The two Green's functions depend on the same variable q: which is due to the fact 

that while the pion is in £iight the relative momentum can change from p to p', but 

the total momentum stays conserveci. Therefore, since only the total momenturn of 

the two nucleons involved in the scattering contributes to  the definition of y, the 

momentum q stays the same until the pion is absorbed again. Also, in this definition 

al1 nucleon recoil terms are ignored. Furt hermore, the definitions of the renormalized 

vertex functions and the static approximation of the Green's function in the lr N N  

case recover the original expression 

functions are generally given by the 

GY (P, q )  

However? the st atic approximation 

of the OPEP potential. The four-body Green's 

gives for both Greens functions the simpler expression 

1 GF) ( p ,  q)  = -- (7.29) 

Since 1 used the static approximation, the terms now define the static contribution 

to the diagonal correction terms, w'nich are given by 

ivhere the Rc factor is incorporated into the pion energy of the Green's functions 



Also, I set w = w,; because the renorrnalization cornes from the sarne pion field as the 

pion field observed in the propagation. The pion momentum in this case is simpiy 

given by 

Q = qa  - s: ( 7 3 2 )  

because it describes the momentum transferred in the process. The transition ampli- 

tude has be adjusted to ensure that no terms are introduced that are already taken 

care of by the standard AGS theory. Therefore? 1 exclude al1 the terms t hat describe 

a one-pion exchanpe and subtract explicitly the separable version of the attractive 

potent ial. This yields for the subtracted t-matrix the expression 

2 2 
G'a 

qa j i w r ) = t a ( p a , p ; 7 ~ - - -  ia ( P d ,  E - - - Fia, - ) v.""' (p., p;)  (7.53) 
2 kf 2 1Cf 

which in dimensionless variables is given by 

The final expression for this part of the diagonal static correction in dimensiodess 

variables is now 

where the 'hat' means the  dimensionless t-matrix- The other three terms have to be 

calculateci the same way which yields the following expression for the static contribu- 

tion to the diagonal correction terms 



The correction terms are again given by the integrated f o m ,  which is in dimensionless 

variables given by 

1 am now in a position to calculate the  triton binding energy in the  one-dimensional 

system with the correction terms of Tucson-Melbourne type and the "new" type of 

diagonal correct ion terms. 

7.3 Effect of the correction terms on the triton 

In the iast two sections 1 developed the correction terms for the effective potential and 

described them in a form suitable for calculations. The code for the calculations is 

given in the appendix B and in this section 1 describe the detailed results of these cal- 

culations. 1 expect the Tucson-Melbourne type correction terrns to  give the dominant 

contribut ion to the corrections, because the original Tucson-Melbourne :3NF showed 

some success. The modern :3NFYs are usually introduced with some parameters that 

have to be adjusted and in the given mode1 the adjustable parameter is obviously the 

s t rength parameter between the iVN and ?;N threshold scat tering t-matrix. Accotd- 

ing to Ericson and Weise [EWSS] [p.16] the two scat tering lengths relate to each other 

by a factor of one hundred and 1 used this to  gauge my corrections terms. The result- 

ing binding energy for the triton with this strength factor is -S.l7MeV compared to 

the previoirs value of -7.2SiWeV without any correction. However, the strength factor 

is an adjustable parameter and it is important to investigate the effect of varying this 

parameter. In fig.['i.3] it is evident that the triton binding energy calculated with the 

T M  3 N F  depends rather strongly on the particular choice of the strength parameter. 1 

do see the expected asymptotic behaviour for small values of the strength parameters, 

but the convergence to the binding energy without any T M  3NF corrections is slow. 





descri bes a spinless, one-dimensional and symmetked system. Kowever, it t u r n s  out 

that compared to the correction of the one-dimensionai TM 3NF adjusted by the 

parameter value 0.01, the additional shift in the triton binding energy due to the 

diagonal term is about thirty percent of the one due to the TM 3NF alone. This 

means that, if the diagonal terms would be ignored and the TM 3NF adjusted to 

recover the triton binding energS;, the TM 3NF would be thirty percent too strong. 

For completeness, 1 show in Figures [7.277.3] what effect the correction terms have 

on the q-eigenfunctions. 1 observe t hat the correction terms essent iaUy "Bat ten" 

F e  7.2: The q-eigenfunctions at an energy of -S.ISMeV. The three graphs 
describe the eigenfunctions for the uncorrected version, the version with the TM 3NF 
correction and the version with both corrections. 

the normalized q-eigenfiinctions. 1 should note that the t hree q-eigenfunct ions are 

calculated at the same energy, namely -8.49MeV. 



Figure 7.3: Behaviour of the q-eigenfunctions of fig.['7.2] in the regions of the first 
minimum and the central peak. 



Chapter 8 

SUMMARY AND CONCLUSION 

I don? know why I did it, I don? hou;  wh y I enjoyed it, 

and I don't kno,w wh y I'II do it again 

Bart Simpson 

8.1 The Padova model 

In this thesis 1 demonstrated that it is possible to include one pion degree of freedom 

into a standard 31V system. The Padova rnodel, clescribing the x N N N  system, kvas 

shown in section 2. 1 argued that it is possible to h d  a physically sound coupling 

between the pion and no-pion sectors and consequently to define a AGS type system 

describing the T N N N  system. Canton [CanSS] already showed in the original paper 

that the resulting theory is comected and 1 did not repeat these arguments in this 

t hesis. F u t  hermore, 1 want to stress t hat the Padova mode1 is not plagued by the same 

problems observed in the earlier TRABAM-type n1V.N models. However? the channel 

equations of the Padova rnodel on the two-cluster sub-level are rather complicated. 

They are given by a coupled matrix ecluation and it is not an easy task to actually 

find a solution to these equations. 

1 also showed that it is possible to introduce approximations that are given on 

physical grounds in order to simplify the channel equations. The quasiparticle ap- 

proximation leads to a Lovelace type structure for the Padova equations. Further- 



more, 1 argued that it is reasonable to ignore some terrns in the channel equations on 

physical grounds. This allowed me to find directly a separable solution to the two- 

duster channel equations of the Padova model. Freezing out the pionic charnels in 

the Lovelacetype Padova equations using the Feshbach procedure resulted in a new 

system describing the 3N probkm. The system difLered €rom the standard ones in the 

fact that the explicit pion degrees of freedom show up in correction terms to the stan- 

dard effective potential of the tivo-cluster Lippmann-Schwinger type equat ion. One 

type of correction t e r q  which ailowed for the propagation of a pion in the presence 

of a three-cluster interaction was not investigated in this thesis. It should be checked 

in future research efforts if this type of correction terrns produces a non-negligible 

effect. 

8.2 Three-nucleon forces 

The other two types of correction terms were investigated in more detail in this the- 

sis. 1 demonstrated that one type could be  interpreted as the equivalent to correction 

terms described by modern three-nucleon Forces. In particular, 1 argued that part 

of the diagram describing t his type of correction terms could be interpreted directiy 

as the equivalent of a static Fujita-Miyazwa force diagram. In this thesis I replaced 

this part of the diagram by the corresponcling static approximation. Nevertheless, 1 

believe it could be of interest to irivestigate this type of correction terms in a fully 

dynamic description instead. This type of description would introduce an energy shift 

in the irN t-matrix due to the spectator nricleons and it could be interesting to see 

if this energy shift reduces the effect of the correction terms. This investigation also 

could help to decide if the three-nucleon force effects are actually small as argued 

by Afnan? Saito and Haidenbauer [SA94, SHOO]. However, besicles this already thor- 

oughly inwstigated type of correction term, 1 also shoived that another t jpe  should 

be of interest. In most cases of three-nucleon force descriptions the correction terms 



are not based on a Faddeev-Yakubovsky theory. This means the underlying theory is 

not the same as the model that is used in subsequent calculations. This introduced a 

new problem because it is important the correction terms do not produce any tenns 

t hat are already taken care of by the model used in the calculations. This last type of 

diagrams is commonly ignored because it is assumed that it is already taken care of 

by the AGS-model. However: 1 argued that the terms: which incidentally in this case 

are a result of the underlying model itse. should not be completely cancelled. Ln the 

one-dimensional Toy calculation this cancellation was shocvn to be indeed rather in- 

complete. 1 believe the described model could show some interesting results in actuaI 

t hree-dimensional calculat ions (and indeed already has [CSOO b, CSOOa]). 

8.3 The Padova model applied to a one-dimensional system 

I also developed a one-dimensional system that was able to mimic, at least in a 

Cirst approximation, nuclear physics. The system was used to test the effects of the 

correction terms due to the pionic degree of freedom in a triton binding energy cal- 

culation. Wit hout any correct ion terms, the one-dimensional system had a triton 

bound state energy of -7.2ïMeV. This means the system clearly underbinds the 

triton cvhose binding enerov should be -S.48MeV, in common with results obtained 

in full 3 D-calculations using realis tic NN-interactions. The Tucson-Melbourne type 

correction term in the one-dimensional model introduced a correction in the right 

direction. However, the magnitude of the effect depends rather strongly on a free 

parameter used to adjust the relative strength between !VN and lrN threshold scat- 

tering. At the strength parameter usually used for s-wave threshold scattering in 

three-dimensions the effect of the correction term pushed the triton binding energy 

to -S. LïlbIeV, clearly closer to the experimental value. Nevertheless, the strong de- 

pendence on the strength parameter makes it hard to pin-point the exact size of the 

effect . In the Tucson-Melbourne approach this s trong dependence does not really 



matter too much, because obtaining a fit to the triton binding energy actually would 

be used to adjust the strength parameter. 

However, 1 also shotved that the second type of correction terms also introduces a 

non-negligible effect . At least in the symmetrized, one-dimensional, spinless mode1 the 

efFect is rather large, namely around thirty percent of the TM-type effect. The effect 

itself does not depend on any adjustable parameter and therefore can not be made 

small enough to vanish by fiddling with the parameter. The additional correction 

terms pushed the triton bincling energy to -8.49!MeV7 but this value should not 

be taken too literally. First of all, the underlying Toy-mode1 only describes nuclear 

physics in a first approximation and second the choice of the strength parameter 

value has to be seen as a lucky guess. 1 aireaciy ment ioned t hat a slight change in t his 

parameter has a rather significant effect in the binding energy, whicli consequently 

would move the total effect in the same direction. However, it can be argued thât 

the relative effect between the diagonal and the TM-type corrections is rather large. 

Consequently, if this behaviour translates to the t hree-dimensional case, then the 

present choice of parameters for the TM-type three-nucleon forces should yield a 

force of this type that is too strong, 

8.4 Outlook 

In conclusion, it is possible to introduce one pion degree of freedom into a standard 

three-nucleon problern. Furthermore, the present use of three-nucleon forces seems 

to neglect an important type of corrections. I believe the role of the clynamical pion 

degrees of freedom is not yet completely understood and more work needs to be done 

in this field. 1 also hope to have shown that the field of Fetv Body physics is still alive 

and well and could contribute to our understanding of the nuclear tvorld for years to 

corne. 
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JACOBI-COORDINATES OF THE SYSTEM IN 

MOMENTUM SPACE 

In this section 1 investigate the description of the algebraic model in respect to 

the momentum space. This will be achieved by introducing the concept of Jacobi- 

coordinates and show their explicit realization in the given chahs. Every chain will 

have a natural realization in respect to the Jacobi-coordinates and it will be necessarj- 

also to describe the transformations between the sets. It should be clear already that 

there is an intimate relationship bettveen the new chain-notation and the Jacobi coor- 

dinates of the respective chain. This means the new notation not only allows for the 

description of the algebraic model, but also is extremely helpful in the representation 

of the model. 

The role of the pion is special in the system and this lact has to be taken into 

account explicit ly when defining the Jacobi-coordinates. The Jacobi-coordiaates in 

the three-nucleon space already play a central role in the development of the Jacobi- 

coordinates of the irNNiV system, because the form the basis of the generalization. 

A.l Jacobi-coordinates for the N N N  su b-space 

In order to be able to find a generalization of the Jacobi-coordinates to the n V N N  

system, it is crucial that 1 give a clear description of the 3N Jacobi-coordinates first. 

The problem of finding a suitable set of coordinate transformations is a long stand- 

ing one and several different definitions were given in the past. Probably the most 

commonly used system is the one described by Schmid and Zimmermann [SZ74], 



Gloeckle [GloSt] and Adhikari and Kowalski [AIX911 (SZGAK). However, in the ma- 

trix description the transformation matrix between the natural momenta ki and the 

Jacobi-coordinates has a determinant of - 1. Even though the resulting transforma- 

t ion matrices between the different sets of Jacobi-momenta have determinants of +l, 

1 find t his a mat hemat ically strange definition. 

.4nother description given by Lovelace [Lov64] ivhich does not have this initial 

problem, but Lovelace included the reduced masses into the definition of the Jacobi- 

coordinates. This procedure is not widely and does not dive any advantages in the 

specific problem, which is why I also do not use this type of definition. However, Gar- 

cilazo and Mizutani [GM90] (LCM) also gave a definition for the dacobi-coordinates 

that has a determinant of +1 for the defining matrices. They used the Lovelace ap- 

proach, but without the inclusion of the reduced masses into the definition of the 

Jacobi-momenta. This type of dacobi-coordinates would be my prefered choice, but 

for reasons of tradition rather than aesthetics 1 define the Jacobi coordinates in the 

comrnonly used way according to SZGAK. 

In t he three particle space described by the momenta of the three particles II-,, kb, kc 

I now define three Jacobi momenta. The first momentum is given by the relative 

moment um between two of the particles and 1 use the odd man out notation. Namely, 

the Jacobi-momentum pa is given by the relative momentum between the two particles 

b, c. -At this point 1 have to make a choice in the sign of the relative momentum and 

decide to use a cyclic in the momenta. There are three possible choices 

for the first Jacobi-momentum and they ail can be derived by cyclic permutation of 

the indices in the defining equation 

(A. 1) 

It is evident that the three momenta are ordered in a cyclic permutation of a ,  b, c as 

required. The prime in the Jacobi-momentum is only important for the generalization 

of this system to the T N N N  case. If 1 do not intend to make this generalization, the 



prime could be omit ted altogether. Up to t his point 1 follorv the usual convention used 

in al1 defini tion of Jacobi-momenta described earlier (excep t Lovelace). However, the 

SZGAK choice differs from the LGM choice in the next step when defining the second 

Jacobi momentum, 1 need to find the relative momentum between the center of mass 

motion of the first ttvo particles used in the first Jacobi momentum and the third 

particle, Again, there is a choice of sign and 1 use the SZGAIi choice, which always 

subtracts the center of mass of the first two pasticles from the third one, narnely 

' - 4, - 

The choice of this s i p  

1 
((mb + m c )  k a  - 

m,+mb+m, 

gives a determinant -1 for the 

remaining t wo Jacobi-moment a of the second type can 

transformation mat rix and the 

be given by cyclic permutation 

OF the indices. The last Jacobi-momentum is given by the total momentum of the 

sys tem and simply yields 

P = ka + kb + kc ( A 4  

whicti is the same for ail three sets of Jacobi-momenta. This defines the system of 

Jacobi-momenta in the 3N space. However, it is possible to give a matrix notation 

for this transformation, which allows for an easy computation of more complicatecl 

transformations. The transformations in matrix f o m  are given by the general espres- 

The index n is already in preparation for the generalization to the iiNi\JN system. 

It should be evident that this transformation matrix again has a determinant of -1 

and the transformation matrices for the other two sets of Jacobi-momenta follow the 



same procedure. What 1 gained with this matrix notation is an easy tvay to find 

the transformation between two difEerent sets of Jacobi-momenta. 1 simply have to 

transform one set of Jacobi-momenta back to the original set of particle momenta 

using the inverse transformation and then transform the set into the required one. In 

other rvords 1 simply have to give the expression 

4 -. 
P. = T~ TC pb 

where 1 define 

It is clear from this transformation matrix that the total momentum of th system is 

conserved and al1 transformation between different Jacobi-momenta can be given in 

the same way. The determinant of this type of transformations between different sets 

of Jacobi-momenta is +l. F~irthermore, this general procedure also applies to the 

more complicated T N N N  system and 1 only need to find the transformation matrices 

bet ween the  different sets of Jacobi momenta and the original particle momenta. 

A.2 Jacobi-coordinates for the n N N N  sub-space 

T11e Jacobi-momenta in the n N N N  system are more complicated, because of several 

reasons. The fact that they are defined in a four body system already introduces the 

complication due to the variety of possible chains- Furthermore, since I have the pion 

as the fourth particle 1 also require that the deletion of the pion should recover one of 

the three-body Jacobi-rnomenta described in the last section. Another requirement is 

tha t  1 always want to have a determinant of -1 for any of the defining transformation 

matrices introduced. In t his section 1 define aU transformation matrices between the 

Jacobi-momenta of given chains and the original particle rnomenta that have the 



three-particle system a as a subsystem. The transformations that have the systems 

6, C as subsystems can be given in an equivalent marner. 

The chain of partition systems in the four-body space naturally faii into two 

categories, chains of the 3 + 1 type and chains of the 2 + 2 type. First I investigate 

the chains of the 3 + 1 type, which again fall into two categories, the one where the 

pion is coupled last and the one where it is not. If the pion is coupled last, I only have 

one chain that has the system â as a subsystem, namely the chain d a .  1 define the 

transformation rnatrix for the Jacobi-momenta describiug this chain in the folloiving 

Et is straightforward to see that this transformation rnatrix has determinant -1 and 

the subsystem ii as required by the definition. In the case that the pion is not coupled 

last, 1 have again two possibilities, it can be coupled first or second. If it is coupled 

first 1 have three possible chains wi th the subsystem a, namely a'a, a'beta, a'-{. 1 only 

show the transformation of one of' these chains e~p l i c i t ly~  because the ot her two can be 

given accordingly. 1 define the Jacobi-transformation for the chah  a'? by the mat ris 

.Again, this matrix has determinant -1 and the reduces to the  tranformation matrix 

of the subsystem à, if 1 delete the pion from the system. The last possibility of chains 



in the 3 + 1 is when the pion is the coupled in the second step, which is given by the 

chain a'a. 1 define the transformation matrix for this chain by the the e-xpression 

The sign for the Jacobi momentum that couples the pion follows directly from the 

determinant, which is again -1. The only two chains of the 2 + 2 type that have ü 

as a subsystem are a'a, <rra and they are defined in foUowing way 

and 

With this set of definitions it is easy to find transformations between different sets of 

Jacobi-momenta the same way as in the 3iV case. 

A.3 Examples of transformations between different Jacobi-coordinates 

In this section 1 simply show some of the Jacobi-transformations. 1 start with the 

transformations in the three-nucleon system first and continue with the ones in the 



nNNN system. In the transformations it is already assumed that the three nucleons 

have the same mass, namely rn, = mb = m, = m. The transformations used in the 

3 X  system are 

and 

The transformations in the 3 N ; ;  are of the following type 

(A. 14) 



These few examples should show how easy it is to End any transformation between 

different sets of Jacobi-rnomenta with this procedure. It is even easier, if Maple V is 

utilized. because besides calculating ail the matrices Maple V also allows the output 

to be of either Latex or even FORTRAN reaciable format. i n  the fully dynamical 

treatment of the correction terms this shoiild be an invaluable simplification. 



Appendix 

FORTRAN CODES 

B.l  Fortran code for the kernel of the 2 N  integral equation 

C SUBROUTIIE TO CALCULATE THE ARGiJRElTS OF THE GEBRALIZED 

C EICEIVALUE PROBLEM DEFIIIIG THE STüi&IIIAI SYSTEII 

C THE OUTPüï IS THE KERIEL ABD THE POTEBTIAL YITH THEIR IATüRAL SIGHS. 

C 5 1  OTHER UORDS THE ATiRACTZVE PARTS HAVE A IECATIVE SIGB ATTACHED 

C FIIAL VERSIOB AS OF DEC 22/2000 

REAL*8 QX(LDA),QY(LDA),E.REP,RI,R,XBVA,VRBVN,VRP 

REAL*8 ARC (LDA, LDA) . RARG (LDA. LDA) , HC, IIUC , HBAR 

REAL*8 RAEGE ,GCOBS .SUR,POT ,GF 

C PARAUETER(iW=134.9766DO) 

C PARAHETER(HBAR=197,32DO) 

C PARA~ETER(HU~938.271998D0/2~000000D0) 

POT(R,X)=l.O00000DO/~R+X**2) 

GF(E,X)=1.OOOOOODO/(E--2) 

CCOIS=~ .OOOOODO+~UC/ (nc-2) 

C ari te(6 ,  +)GCOBS, 'Gcons .RC,RUC 

RAgCE=(HBAR/(M*nC))rr2 

c write(ô,*) 'Range? .RA= 



ÇUI=S(311+C-VA+REP*VB) *GF<E*GCOIS, QX(K) ) 

1 *(-VAP+REP*VRP)*QYCK) 

C YRITE(6,*) 'SUII' . SUiY 

30 COITIIIIE 

ARG ( I , J =Sun 

RARGCI. J>=-P0T~1.000000DO ,QX(I)-QXCJ)) 

1 +REP*~*POT(WGE,QXCI)-QX(J) 

C YRITE(G,*) >COL1, ARC, '~012~ ,RARG 

20 COITINE 

10 COPTIIUE 

R E m %  

EBD 

B.2 The Code for the triton calculations 

This code is still rat her rough and is the core code used in al1 the calculations shown 

in the thesis. It allows for different choices depending on the desired calculations. 

The extended code, which is not showa here because it  is even more complicated, 

also includes several test on symmetries of the potentials, expected pole structure 

and other similar tests. 

PROGRAH TRITOISTATE 

IHPLICIT REAL*8CA-K, O-Z) 

IllTECER I . IFIX 

REAL18 CHI,REP,RI,E.El.PKCOIS 

REAL18 qU(LDA1 ,QX<LDA) ,ARG<WA,LDA> ,RARC(LDA,LDA) 

REAL*8 ARcIORH. BETACLDA) , ALPH. BET 

REAL*8 HBAR, IIC .HUC, DEUT(LDA) 

REAL*8 FORIIFAC(LDA) , IORH ,SüH1 ,SuII 
CORPLEX*lG ALPHACLDA) ,EVAL(LDA) , EVECCLDEVEC ,LDA) 
REALs8 POTSEP(LDA , LDA) , TSEPCLDA , LDA) , FORIIATTR(LDA) 
REAL+8 QYI(LDA),QXI(LDA).ACOIS,QuAD 

REAL*8 XVEC(LDA).VALUE(LDA),XVEC~(LDA),IIVALUE(LDA,LDA) 

REAL*8 MXVEC(LDA ,LDA) ,HXVECl<LDA ,LDA) .IIVALUE~(LDA ,LDA> 

REALe8 VALUE1 (LDA) .ZEFF(LDA ,LDA) .ZIOII(LDA ,LDA) ,QUADL (LDA) 



COUPLEX*I6 ZALPHA (LDA) . ZEVAL(LDA) , ZEVEC(LDEVEC ,LDA) 
REAL*8 ZETA(LDA1, ZARG(LDA,LDA) ,TACITONCLDA ,LDA) ,TRISTA'CE(LDA) 

REAL88 DRITDIII(LDA),FO~FACDIU<LDA>.TSEPDIII(LDA,LDA) 

REAL*8 POTSEPDIU<LDA,I;DA),Z~~III<LDA,LDA) 

REAL88 ZK2<LDA .LDA ,LDA> ,ZKJ<LDA ,LDA ,LM) 

REAL88 POTSEPY(LDA,LDA>,OIIEGA<LDA,LDA),OIEGADII(LDA,LDA) 

REAL*8 QUAD3 (LDA ,6011. LDA) 

REAL.8 TAUDIAG(LDA ,LDA) 

REAL*B ZDL (LDA) .ZDfAC<LDA. LDA) 

REAL*8 ZOD1 (LDA ,LDA) , ZOD2(LDA ,LDA) , ZOD (LDA,LDA) ,ZA 
REAL*8 TIiISTATEDII(LDA> ,?BR1 CLDA) 

REAL*8 CREE13 CLDA. LDA) 

OPE~(9,FILE="POTSEPY.DAT".STATUS="ICEY") 

OPE1 (9, BILE="POTSEPY . DAT" . STANS="OLD" 

ZA=-8.93909D-02/100.ODO 

ZA=O . ODO 
For cornparison with Levinger and Harnis use these  units for the 

energy of the t-matrix, etc- 

H a n n s  ' units 
El=-O.5DO*41.46DO 

M a l f  liet-Tjon 

El=-7.277DO 

UT+TII 

El=-8.166Dû 

MT+TII+DIAG 

El=-8 -493DO 

Yukawa 

El=-8 -001DO 

Deuteron 

El=-2.225M) 

El=0.000DO 

Set the number of Gauss points 



IYEICW = 1 

ALPH = 0-ODO 

BET =O.ODO 

lFIX = O 

C Get  p o i n t s  and  weights  f rom GQRUL 

CALL DCQRUL (I, IUEIGH, ALPH, BET, WIX.  QXFIX. QXK, QUI) 

C S c a l e  the Gauss p o i n t s  t o  t h e  r e a l  l i n e  

C Def ine  the d e u t e r o n  b i n d i n g  e n e r g y  

C For  Yukawa t a k e  z e r o  r e p u l s i o n  a n d  chi=2.114450DO 

C For  MT take Rep=4. SiDO ,RI=O .?Dû ,Chi=lO -09496DO 

C The s u b r o u t i n e  t o  de f ine  t h e  m a t r i c e s  of t h e  g e n e r a ï i z e d  EV-problem 

C Define t h e  o v e r a i l  c o n s t a n t  i n  t h e  G-EV problem 

C this c o r r s p o n d s  t o  e q u a t i o n  4 -124  i n  t h e s i s  



Find the eigenvalues and eigenstates in dimensionless variables 

CALL DCVCRG (I , ARC. LDA. RARG .LDA .ALPHA, BETA, EVEC, LDEVEC) 

Coaapute eigenvalues 

DO 30 I=l. I 

EVAL(1) = ALPKA(I)/BETA(I) 

URITECG ,*) 1 .EVAL(I) 
uRITEC~ ,*)QX(I) ,REIL(EVE;C(I.l) )/QUCI) 

COITIIUE 

Compute performance index 

PI = DGPIRG(I,I.ARC,LDA.RARC.LDA,ALPHA,BETA.EVEC,LDEVEC) 

Eonnalize the dimensionless oave functions 

sun=o. ODO 

DO 39 I=l,l 

DEüT(I)=DEüï(I)/DIORW 

DEüTDIU (1 =SQRT(IiC/HBAR) *DEUTCI 1 

WRITE(6,*) QX(1) ,DEUT<I) 

COPTIIUE 



F i n d  t h e  form f a c t o r s  i n  d i i e n s i o n l e s s  v a r i a b l e s .  

The o v e r a l l  d imens ions  r e d n  sqr t (UeV-fm).  c o l l e c t e d  i n  t h e  o v e r a l l  

c o n s t a n t  i n  f r o n t  o f  t h e  no rna l i zed  d imens iona l  f o r m  f a c t o r  

DO 40 111.1 

sun1=0. ODO 

DO 42 J=1.11 

s v i r l = ~ u r i i + ( ~ A R G ( X ,  J)*DEUT<J) * ~ u ( J >  

C O l T I r n  

FORf iFACCI)  =SUIIL 

Y R I T E ( 6 , * )  Q X ( I )  .FORHFAC<I>  

C O I T I r n  

Hormalize t h e  f o r m  f a c t o r s  i n  d imens ion las s  v a r i a b l e s .  

The d imens ions  a r e  r e - in t roduced  in t h e  o v e r a l l  c o n s t a n t  

SUM=O . ODO 

ACOIS=2.ODO*IIIIC/UC**S 

f o r  comple teness  rie g i v e  t h e  e x p l i c i t  numer ica l  d e s c r i p t i o n  

f o r  t h e  s e p a r a b l e  t-matrir and p o t e n t i a ï .  If i n t e r e s t  is o n l y  i n  

3K c a l c u l a t i o n s .  t h i s  c a n  b e  skipped.  On l o o p  is e x p l c i t l y  g i v e n  

f o r  t h e  c a l c u l a t i o n  o f  t h e  FORRATTR t e n n s  



SuN=O. ODO 

DO 50 H=l,QXZ-1 

DO 50 W 1  ,M 

SUH=SUH+(FORISFAC(H)**~~*QY (II) /(ACOMS*E1-QXCH) **2) 

COITIIUE 

c 150 COITIIUE 

The cons tant  f o r  the TH tarms is g i v e n  by the  f o l l o w i n g  

AZl=-2*PICOIS*IIIIC/HBAR**2*TSEPDIH(QXZ,QXZ) 

YRITE(6 ,*) 'AZY ,qX(QXZ) , A 2 1  

Return to 31 problem 

Spline the  form f a c t o r s  



62 COITIIUE 

Coipute cubic spline interpolant 

CALL DCSIEZ (IV qX. FORIIFAC, H, XVEC, VALUE) 

C Tests for the splined form factors 

C 

C DO 65 L-1 ,a  
C DO 67 U=l,I 

c URITE(~,*)RVALUE<L,II) .HVALUE1(I,L) 

C 67 COITIIUE 

c YRTTE(G,*)~XVECICL,~O) .IIVALüE1(L,10) 

C 65 COITIIUE 

C 

C Calculate the kernel ZEFF in dimensionless variables 

C Again, we have a constant oith dimensions and including the 

C dimension already present from the form factors. ZEFFDIH has 

C units of fin. 

C the off diagonal correction terms are computed in the 100 routines 



DO 175 L=l,I 

DO 176 R=1,1 

SUR=O - ODO 
sm1-o. ODO 

DO 177 K=l ,l 

SUH=SUR+FORNFAC<K) /CREEl3(K, LI *ZK2(K, L ,RI 

s~~=SM~+FOR~~FAC(K)/GREEI~<K,R)*ZK~(K,R ,LI 

177 COlTIIUE 

ZODl(L,R)=SUR 

ZOD2 (R . L)=SUIIl 
176 COlTIIüE 

175 COITIIIIE: 

ZODCOIS=CHI*~-~DO*~~Z~C*HBAR**~/(IC~I~) 

c URITE(G,*)>ZODCOIS>,ZODCOIS 

DO 180 L=l,I 

DO 181 n=i ,r 
ZODCL,R)=ZODl(L,IO*ZOD2(U ,LI 

ZEFF(L,R)=2.0DO*(ZEFF(L,R)+ZA*ZODCO1S*ZOD(L,R)) 

c write(6 ,*)L,U ,ZOD(L.R) 

181 COWTIBUE 

180 COITIlUE 

C the diagonal correction terms are given in the 200 routines 

C The pion energy/momentum in dimensionless variables 

DO 220 L=1 ,I 

DO 222 n = l ,  m 
OHEGA(L,R>=DSQRT((QX(L)-QX(~) )**2+1.0~0) 

OHEGADIH(L,R)=RC/HBAR*OIIEGA(L,R) 

c VRITE(G ,+)L.R.OHEGA(L,R) 

222 COITIIUE 

220 COITIrn 



C The Tau tern in the separable potential. note the negative value 

DO 225 L=l ,M 

DO 227 Il=i ,I 

SUII=O .ODO 

DO 230 K=1, rn 
QUAD~(K.L,R)=~.ODO/(ACOIS*E~-QX(K)**~ 

C - ~ . O D ~ / ~ . ~ D O * Q X C L ) * * ~ - ~ ~ O D O * I R I C / I I C * O ~ ) )  

sUU=S~+FOR~FAC(K)**~*QY(R)*QUAD~(K,L,U) 

c write(G,*)L,H,K,SüR 

230 C O I T I W  

TAUDIAG(L,R)=-l.ODO/(l.ODO+SUR) 

c URITECG ,*)L,H,TAUDIAG(L,II) 

227 COITIIUE 

225 COITIAJE 

C The integral over the tetms depending on the integration variables 

C for the separable t-matru- 

C lote the square of the form factor, one cornes from the t-matrix and 

C and one from the ZOD terni- 

DO 240 L=l,l 

SUH=O. ODO 

DO 242 H=L .I 

sUII=SUII+FORUFAC(H)**~*QU CH)/GREEl3(R ,LI 

242 COITIIUE 

ZDl (L)=SUII 

c URITE(6, *)L,ZDl (L) 

240 COITIIUE 

DO 250 L=L,I 

DO 252 H=1 ,II 

ZDIAC~L,N)=ZD~ CL) *zD1 (U)*TAUDIAG(L,R) 

c URITE(~,*)L,U,ZDIAGI~T(L,U) 

252 COITIIUE 

250 COITIIüE 

C The corresponding integral to 240 for the separable potential of 

c t h e a t t r a c t i v e p a r t o n l y . l o t e t h e r i n u s s i g n c o i i n g f r o m t h e  

c negative strength factor of the potential, ohich yields a plus 

c sign in the "subtracting terms 270/2?2". Also, this tiae 

c rie have a multiplication of the formfactor coming from ZOD and 



a formattr  c o a i n g  forn  t h e  separable  p o t e n t i a l  

DO 266 L=l,I 

SUM=O .ODO 

DO 268 Hz1 ,W 

S~~~=SUH+FO~A~R(~>.FQR~IFIC(M)*~Y(H)/GREEI~(H,L) 

COITIrn 

ZDRl (L)=SUH 

a r i t e  ( 6 ,  )QX<L) ,ZDl CL) , ZDRL(L1, ZDUL) -ZDRl (LI 

COITIIUE 

DO 270 L=l . H 
DO 272 M=l, I 

zDIAG(L ,M)=ZDIAC(L .A)+ZDRl (L)*ZDRl(U) 

wRITE(6,*)L,H,U)IAGCL,R) 

COITIIUE 

COf T I m  

Bring t h e  terms t o  t h e  same u n i t s  a s  used i n  t h e  prev ious  e f f e c t i v e  

p o t e n t i a l s  

zDIAcCO~S=CHI*~.~DO+HBAR/~RC**~*~~OW) 

write (6. *)ZDIAGCOIS 

DO 280 L=l,ll 

DO 282 U=l,H 

ZEFFCL,H)=ZEFF<L,U)+ZDIAGCOIS*(ZDIAG(L,R)+~IAG(M,L)) 

Tests f o r  ZEFF 



Calculate the quadratic f o m  in the propagator tau 

lote that Quad is dimensionless- 

Test that we have right normalitation oith El=-2.225W. Ue 

expect to see the vaïue -1.ODO for the midpoint- 

C define the RHS Lerne1 U for the generalized EV-problem. 

C l o t e  that U has the proper units of fm. 

DO 90 H=l , % 

DO 92 L = l  .l 

SUU=O . ODO 
DO 93 J=l ,n 

c YRITE(G,*)SUH,J,L,Pi 

SUH=SUl!+ZEFFCl!, J)*ZEFFCJ ,L)*qU(J)/(l .ODO+QUADl(J) 1 

c orite(6,*) J,L,M,SUH 

93 C O l T I r n  

C 

C T e s t s  for ZARC, symmetries, etc. 

C 



Solue the triton generalized EV problei  

IUEIGK = 1 

ALPH = O .ODO 

BET =O.ODO 

EFIX = O 

CALL DGVCRG (I,ZARG,LDA.ZEFF,LDA.WLPHA,Z~A,ZEVEC.LDEVEC) 

Compute eigenvalues 

DO 100 I=1,. 

ZEVAt(1) = ZALPHA(I)/ZEXA(I) 

Check eigenvalues 

Iormalize the triton oave function 

Things to  test and p l a y  uith 






