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ABSTRACT

The Padova model, describing # N VN scattering, is discussed in a new partition
notation and a new approximation scheme is proposed. The resulting equations are re-
cast in a standard AGS-form with the inclusion of correction terms to the two-cluster
effective potential. These correction terms describe the explicit degree of freedom for
one pion. [t is shown that one set of correction terms can be interpreted as three-
nucleon corrections of the Tucson-Melbourne type. A second set of correction terms
is discovered that was previously not included in three-nucleon force calculations. In
order to investigate the effect of the correction terms a one-dimensional system is de-
veloped that mimics standard two-nucleon physics. The corresponding three-nucleon
system is investigated in respect to the 1 D-triton binding energy. It is demonstrated
that the TM-type correction terms depend significantly on an adjustable parameter.
The range of the effect on the 1 D-triton binding energy makes it possible to correct
the underbinding discovered in the standard calculation. However, it is also shown
that the new type of correction terms has a non-negligible effect on the 1D-triton
binding energy. Therefore, the adjustment parameter should take this effect into

account when gauged to the 1D-triton binding energy.



Chapter 1

INTRODUCTION

Human thought is so primitive, it’s looked upon as an infectious disease in some
of the better galaries. That kind of makes you proud, doesn’t it?
Kay (Men In Black)

1.1 Why Few-Body Systems in the year 2000?

Few-nucleon systems have played an important role from the very beginning of nuclear
theory studies, because they describe the simplest non-trivial problems in nuclear
physics. All models are based on some idealized concepts with rather limited degrees
of freedom. In respect to a field theoretical approach, even the simplest nuclear
systems require an infinite number of degrees of freedom. This fact probably leads
some nuclear theorists with a field theoretical background to believe that Few Body
physics is at the end of its useful lifespan. Of course in light of all this, one has to ask
why then is a PhD thesis in Few Body Physics of interest in the year 2000. The short
answer to this question must be that it is still the best theory around to describe
nuclear processes involving three or more nucleons. To my knowledge, calculations
based on Few-Body models are still the dominant source for reasonable results in
descriptions of scattering processes with more than two nucleons, the triton binding

energy or the Ay-puzzle. I would agree that the usefulness of Few Body physics is
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about to end, if there would be no problem in the calculations and no improvements
needed to be found.

However, this is not the case, because we still have unsolved problems like the A4,
puzzle, or even something presumably simple as the triton binding energy. Unless
we decide to ignore these problems or wait for the arrival of some new model able
to solve them, we should use Few Body models to increase our understanding of the
underlying physics. Furthermore, recent applications of Few-Body models in sub-
hadronic physics opened another exciting application to this field. Taking all this
into account, I believe that Few-Body Physics is still an exciting area that can help
understand the physical world better.

Surprisingly, the development of the basic Few-Body models was completed in a
span of ten years. It started with Faddeev’s [Fad65] first introduction of a mathe-
matical description of the three-body problem in the year 1965. Yakubovsky [Yak67]
extended the model to systems that have more than three particles in 1967 and at
the same time Alt, Grassberger and Sandhas [AGS67] gave an equivalent description
of Faddeev’s original model. They based their model on the quasiparticle formal-
ism introduced earlier by Weinberg [Wei63a, Wei63b, Wei64] and used in a practical
approximation by Lovelace [Lov64]. Immediately following their three-body paper,
Grassberger and Sandhas [GS67] also gave a description of the N-particle problem.
The AGS system, which can be found in a comprehensive form in a paper by Sand-
has [SanT2], describes the non-relativistic three-nucleon problem and still remains the
model of choice in modern few-body calculations. It is also the starting point for this
thesis and I present the model briefly in Chapter 2.

There were only three major improvements of the model. First, the introduction
of relativistic equations using the Bethe-Salpeter equation and Blanckenbecler-Sugar
reduction. Also, several attempts were given to describe an extension of the Faddeev-
AGS system to the # VN system, which I show in more detail later in this introduction.

Recently, there also were improvements in including Coulomb forces into the model.



All these improvements were rather successful, but so far they still can not completely
explain the aforementioned problems. In this thesis I restrict myself to the non-
relativistic models without Coulomb forces and show how one dynamical pion can
be included in the three nucleon system. In the next sections I show some relevant

developments in the last 25 years.

1.2 Development of high precision NN-potentials

The fundamental input of the model is the nucleon-nucleon interaction and the early
models were purely phenomenological in nature. Two typical representatives of that
type of potentials are the Reid soft core [Rei68] and Hamada-Johnston [HJ62] poten-
tials. A particulary interesting and simple set of potentials were given by Malfliet and
Tjon [MT68]. Their potentials only included S-wave interactions and they used local
two-particle interactions to solve the Faddeev equations. The MT-potentials were
given as the sum of two Yukawa potentials [Yuk33], one attractive and on repulsive.
The nucleon-nucleon scattering is the first obvious place where improvements in the
calculations can be achieved. Therefore, it is not surprising that considerable progress
has been made in the description of nuclear forces since the early potentials. The first
advancement was the introduction of One Boson Exchange Potentials (OBEP). where
heavier mesons than the pion where included in the exchange processes. A typical
early potential of this type is the Bryan-Scott potential [BS69] and it presented a
vast improvement over the earlier OPEP models. Nevertheless, potentials of this
type still have conceptual problems like the introduction of the o-boson in the mass
range of 500-700 MeV. The most modern potential of this type is the Nijmegen po-
tential [NRd78], which shows exactly the same problems as the older Bryan-Scott
potential. It can therefore be assumed that the inclusion of an increased number of
heavier mesons can not solve the problems associated with the potentials.

One major draw-back of the OBEPs was the fact that they did not allow the ex-



change of two or more mesons at the same time. This problem led to the introduction
of the Paris potential [LLR*80], which included the 27-exchange explicitly into the
model with OPE and w exchange terms. They also had to introduce a phenomenolog-
ical term describing the short range (r < 1.5 fm) behaviour and were able to describe
the 2/V problems quite well. The Bonn potential [MHEST], which was based on field
theory and did not introduce the phenomenological short range term, was the next
improvement in the potentials. It has 12 parameters, namely the coupling constants
and cut-off masses of the meson-nucleon vertices involved and a very good description
of the N N-observables up to 300MeV was achieved.

All these models are considered earlier models, because they pre-date the extensive
N N-analysis given by the Nijmegen group [SKRdS93] in the early 90’s. All the models
following this research effort and using the results obtained with it are called high-
precision potentials and it is required that they fit the NN-data with #t% =~ 1. The
Nijmegen group gave the first three high-precision potentials, namely Nijmegen 93,
Nijmegen [ and Nijmegen II [SKTdS94]. The Argonne group gave the Vg potential
[WSS95] and the Bonn-group gave the CD-Bonn [MSS96] potential, both of which also

have a =X— ~ 1. All the high-precision potentials have approximately 45 parameters

datum

that need to be adjusted in order to achieve this high precision. However, it should be
apparent that the more parameters have to be fixed, the less fundamental physics can
be seen in the process. A very good review on the nuclear forces and nuclear structure

was recently given in an invited talk at the Nuclear Structure ‘98 conference by R.

Machleidt [Mac98].

1.3 Three-nucleon forces

Unfortunately, the apparent success of the high-precision potentials did not translate
directly into success for three-body calculations. It turned out that the potentials

underbind the triton considerably and have trouble describing the vector analyzing
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powers. Already in the early days it was recognized that the few-body problem
could allow for the existence of so-called three-body forces, for example Gloeckle
[Glo83][pp.118] already indicated this possibility in his textbook. Several groups
pursued the concept of three-nucleon forces in the hope of finding the solutions to
the apparent discrepancies in the 3/N-calculations. Probably the first three-nucleon
force diagram was given by Fujita and Miyazawa [FM57] in 1957 and it is still the
archetype of most three-nucleon forces. It is true that modern three-nucleon forces
(3NF) are more sophisticated, include more types of mesons and are generally derived
from more extensive theories, but the essence still remains the same. We always have
the exchange of mesons between two nucleons, where something happens between the
exchanged meson and the third nucleon. In the most complicated cases the meson even
can change before it is absorbed at the second nucleon. Figure [1.1] shows the generic
form of three-nucleon force diagrams due to meson exchange and the Fujita-Miyazawa

type diagram with the forward propagating delta isobar. A more recent off-shoot of

-0

Figure 1.1: The generic form of three-nucleon force diagrams based on meson exchange
and the Fujita-Miyazawa type representative of this class. The blob in the generic
diagram can represent complicated processes.

the Fujita-Miyazawa 3NF is given by the Urbana-Argonne model [CPWS83], which is
also based on A isobars. The second approach used to find 3NF is based on chiral
symmetries and the earliest of these is the Yang model [Yan74]. In this approach is
one model based on chiral perturbation theory, the Texas model [Ov92, van94], as
well as two models based on relativistic field theory, the Brazil [CDRS83, Rob87] and
the Ruhrpot model [EG96]. Furthermore, the Tucson-Melbourne [CSM*79] model



was also based on chiral constraints using PCAC and current algebra. Recently, it
was argued that chiral perturbation theory leads to corrections in the original set
of Tucson-Melbourne diagrams [FHv99]. At the present time, efforts are under way
to develop a unified model describing the different 3NF and two good reviews were
recently given by Friar [Fri99, Fri00]. Even though the modern 3NF are derived
from different theories, they all depend on a similar set of diagrams. The only real
difference is in the set of strength parameters used within the different models and
a clear review on the status of these parameter values is given by Kamada, Hueber
and Nogga [KHN99, FHv99]. Since the three-nucleon forces are not derived directly
from the model used in the calculations, one has to be careful not to introduce terms
that are already taken care of by that model, like iterated OPEPs [CF86]. Also, most
models assume some type of cancellation between terms and I discuss the importance
of the cancellations in more detail in section 3.3 . It is believed that the 3NF can
account for the problems appearing in the triton binding energy calculations, but
unfortunately not for the A, puzzle.

Already in 1994 Saito and Afnan [SA94] challenged the success of the three-nucleon
forces in triton binding energy calculations. They also calculated the triton binding
energy with a two-pion-exchange 3NF and found the effects to be very small. Their
results were questioned because they used separable # N potentials that did not sat-
isfy low energy theorems and did produce soft # VN form factors. However Saito and
Haidenbauer [SH0O0] recently reinvestigated this calculation using an improved meson-
theoretical model for the 7V interaction. The Juelich model [SDHS94, HHH*98] can
not be critized in the same way as the model used in the earlier calculations. Never-
theless, the magnitude of the TM-3NF effects to the triton binding energy remained
very small. In light of this calculation, I believe it is important to question the role of
the 3NF and their present interpretation. One important point that should be made
is the fact that the 3NF are neccessary, because the meson degrees of freedom were

frozen out in the few-body equations. Therefore, it seems only natural to investigate
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what happens if these degrees of freedom explicitly were included into the underly-
ing model. My thesis is investigating this problem by calculating the triton binding

energy in a one-dimensional Toy model.

1.4 Short review of the A, -puzzle

Historically one of the most important problems in N V-scattering is the A,-puzzle in
low-energy scattering. The analyzing power for n — d scattering shows a peak which
is significantly larger than the one found with Faddeev calculations. The discrepancy
can be up to thirty percent at low energy and vanishes completely for energies larger
than 30MeV. A detailed review on the status of the A,-puzzle was recently given by
Knutson [Knu98| at the Groningen Few-Body conference. The three-nucleon forces
were the obvious candidates to resolve this discrepancy, but it turns out that they were
not able to solve this problem. The Brazil and Urbana 3NF introduced an increase
of the peak value into the right direction, but not nearly strong enough to account
for the discrepancy. The Tucson-Melbourne type 3NF even introduced a shift of the
peak value in the wrong direction. At the Autrans Few-Body physics conference in
1999, Hueber [Hue99] argued that it is indeed impossible to find a solution to the
Ay-puzzle with existing 3NF. He proposed that the problem is likely to be solved by
the introduction of a new type of 3NF.

To my knowledge, none of the existing three-nucleon force groups were able to
come up with a new type of 3NF that could solve the A, puzzle without destroying
existing fits to NN-data. However, we (Canton, Melde, Svenne [CMS00]) demon-
strated that the inclusion of an explicit pion degree of freedom into the standard
AGS-equations results in a new set of diagrams. Recently Canton and Schadow
[CS00a] argued that this new set of correction terms could solve the A,-puzzle. In
order to find a definite solution to the A,-puzzle a full calculation using both types of

corrections still has to be performed. Nevertheless, the initial results are very promis-



ing. In this thesis I investigate the roles of these correction terms in a one-dimensional

calculation of the triton binding energy.

1.5 Early xNN models

The most important meson in the two- and three-body interactiouns is the pion and
it seems desirable to find a model that can include this degree of freedom explicitly.
[n the first order, which should be the most dominant, one would like to allow for
the creation of one dynamical pion at a time. This problem was first investigated for
the NV — 7 NN system and Garcilazo and Mizutani [GM90] gave a comprehensive
review on this topic in 1990. Traditionally there are two approaches to give a model
describing the # VN system. Either a two-body model is extended to include reso-
nances, or a three-body-model is extended to allow for creation and destruction of the
pions. The first way Garcilazo and Mizutani call the coupled channel method and is
well described in a paper by Green and Niskanen [GN76]. A hybrid model between
the CCM and PNNA aproaches is given by Poepping, Sauer and Zhang [PSZ87].
They realized that the nucleon is actually the ground state of a composite system
given by the nucleon and the pion. It is therefore possible that the nucleon-nucleon
interaction can go through channels that include the excited states of this composite
system. The resulting set of equations with this method are quite similar to the ones
that were derived with the second approach, which Garcilazo and Mizutani refer to
as the coupled # VN — NN approach (PNNA). However, it should be observed that
while the theory in this paper is well described, the numerical calculations are known
to be wrong. On the other hand, the PNNA starts with the three body scattering
equations of Faddeev [Fad65] or Alt, Grassberger and Sandhas [AGS67]. The first
attempt to solve the problem with this approach was given by Myhrer and Koltun
[MKT73, MK74], who restricted themselves to the elastic md channel. However, their

findings in the resonance region turned out to be not satisfactory and improvements of



the model were necessary. One problem lies in the existence of the channel #d — NV,
because it allows for the explicit destruction of the pion on the deuteron. Therefore,
in the elastic 7d scattering system one has to include the possibility of an intermedi-
ate state without any pions. Afnan and Thomas [AT74] used the Bound state picture
to incorporate the NV intermediate state without losing the requirement of parti-
cle number conservation necessary for the Faddeev-AGS systems. Essentially, they
treated the NV intermediate state as a bound state of the nucleon and pion in the
7N Py, partial wave, where the binding energy is equal to the pion mass.

However, it became apparent that this method is troubled by the fact that the
two nucleons in the intermediate state are not the same. One of them is a composite
body made up by a pion-nucleon cluster, called N’. The other is a elementary nucleon
without a pion associated to it, called N. The trouble arises because N can only
absorb a pion, but not emit it, and N’ can only emit a pion, but not absorb it. Since
the two nucleons are clearly distinguishable by this connection to the pion creation
and absorption processes, the Pauli principle is broken. The only way out of this
problem seems to be that we assume the nucleon to be a superposition of states given
in the infinite dimensional Fock space describing all bound states with an arbitrary
number of pions present. Clearly, this would lead far away from the original starting
point, where the three particles are conserved.

Fortunately, Rinat [Rin77] and Mizutani and Koltun [MK77] derived an equivalent
set of equations starting with different techniques that do not use the Bound state
picture. However, it turned out that their system is still not fully coupled, because of
the form of equations describing the VN sub system. These equations did not have
any contributions from diagrams with an intermediate # VNV state. The fully coupled
two- and three-particle equations were independently given by Thomas and Rinat
[TR79] and Avishai and Mizutani [AMT79]. Both papers also explicitly addressed the
two- and three-body unitarity of the resulting models. Finally, Afnan and Blankleider

[ABS80] derived a set of coupled integral equations using a time ordered diagrammatic
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method. Since this model was the starting point for the extensions to the #NNVN

system discussed in this thesis I describe this model in more detail.

1.6 Short review of the Afnan-Blankleider model

In 1980 Afnan and Blankleider [ABS0] derived the prototype of equations describing
the # NV system used later to derive a description of the t NN N system. The main
difference between this description and the earlier ones by Avishai and Mizutani
[AMT79] is the inclusion of a # N interaction. They claim that this inclusion leads to
a fully dressed system without changing the basic structure of the equations. They
employed a diagrammatic classification scheme utilizing the last (first) cut lemmas in
an old fashioned time ordered field theory. The lemmas are used to expose first the
two-body and then the three-body unitarity cuts. The first cut leads to a Lippmann-
Schwinger type structure for the N NV system. However, already at this stage a delicate
problem with propagator dressing arises. Depending on the position of the cuts Afnan
and Blankleider classified the diagrams into reducible and irreducible cuts. They are
classified depending on the connected or disconnected nature of the parts split off by
the cut. The careful implementation of these procedures seemingly leads to a fully
dressed LS-equation with an effective NV V-potential. The next step is to invoke the
last (first) cut lemma again and expose the three-body unitarity cuts. Obviously,
these cuts can only be found in the parts of the diagrams that do not have already at
least one two-body cut. In other words, these cuts have to be found in the potential
terms of the LS-type equation. This cut procedure also exposes parts of diagrams that
actually have a two-nucleon in-going and a two-nucleon plus one pion out-going state
(and vice versa). In a first approximation, these creation (destruction) vertices can
be given by the creation of a pion from either one of the nucleons. However, the form
factors at this point are not fully dressed and one has to employ the classification into

reducible and irreducible diagrams again. Nevertheless, careful classification removes
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this problem and leads to an AGS-type description of the 7 N N system.

Already in 1985 Sauer, Sawicki and Furni [SSF83] showed a nucleon-renormalization
problem with this approach, but the criticism went largely unnoticed. In 1994
Kvinikhidze and Blankleider [KB94, BK94] addressed this problem. At that time
they realized that the unitary NNV — # NV approach has problems on grounds of an
overcounting due to the particular use of the last cut lemma. In particular, they
found diagrams that do not have an unique last cut, which indeed would be trouble-
some. [t is noteworthy that the diagrams in question must have two pions in flight
concurrently in order to see this problem. In a theory that truncates the Hilbert
space at one dynamical pion this type of diagram would be rather hard to generate.
It is true that in general the second pion could be part of pion exchange that occurs
in the potential that acts between the two nucleons. However, in a non-relativistic
theory that is truncated at the one degree of freedom for the pion the diagrams in
question should not be of any consequence. At this point it should be also clear that
there is a delicate interplay between the truncation and the relativistic corrections
to a non-relativistic theory. For the same reason as in the 3NF the corrections are
generated explicitly by the truncation. Kvinikhidze and Blankleider argued that it is
crucial to dismiss the unitary model altogether and devised a new theory based on
convolution integrals. On the other hand, Phillips and Afnan [PA97] argued that the
diagrammatic method can be adjusted to avoid the overcounting problem and found

an equivalent set of equations.

1.7 Development of tNNN models

I demonstrated in the last section that the development of the m/NN theories is far
from being trivial. The # NN N system turned out to be even more complicated due to
the addition of another nucleon. The chain of partition formalism has to be employed

and the cut structures are even more complicated. A first attempt describing this



problem was given by Avishai and Mizutani [AM80a, AMS80b, AMS82, AMS3], but
the description is rather complicated. Cattapan, Canton and Svenne [CCS93] also
attempted to generalize the AB unitary model and not suprisingly discovered similar
problems with the cut structure. In 1994 Canton and Cattapan [CC94a, CC94b]
gave the first in a series of papers where they developed a # NN N theory from a
generalization of the Grassberger-Sandhas-Yakubovsky formalism. The problem is
to find a connection between the NN N and # NNVN sectors in a physically sound
way. They also argued that the equations are connected after three iterations, but
overlooked a set of graphs that spoiled connectivity. In 1997 they proposed some
approximate schemes that were to take care of these unfavourable diagrams. However,
in 1998 Canton {Can98] devised a new model that was not plagued by all the problems
of the previous attempts. It was based on sound physical assumptions and turned
out be connected and of a very simple nature. Recently, we (Canton, Melde, Svenne)
[CMSO00] gave an approximation to this model that aliowed us to recover diagrams in
the 3N problem that can be identified with diagrams given by 3NF. In addition we
get a diagram that is previously assumed to be cancelled completely in 3NF models.
[ show the derivation of the Padova model and the approximation scheme in detail
in Chapters 2 and 3. In Chapters 4 and 5 I develop a one-dimensional Toy model
for the NNV system, which is embedded into the 3NV system in chapter 6. Finally,
in chapter 7 I show how the corrections due to the pion dynamics affect the triton
binding energy in the one-dimensional model. Chapter 8 gives the conclusion and
outlook and the Appendix includes the core codes of the calculations and a section

on Jacobil-momenta.
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Chapter 2

ALGEBRAIC INCLUSION OF THE PION DYNAMICS
INTO THE AGS-FORMALISM

If you build it, he will come
W. P. Rinsella

2.1 The four-body scattering problem

In this section [ give a brief review of the traditional four-body problem in a formu-
lation that is easily generalized to the more complicated 7 VNN scattering problem.
The derivation of the multi-particle AGS theory follows closely the derivation given

by Canton and Cattapan [CC94a, CC94b]. Generally the starting point is the four

body Lippmann-Schwinger equation
T = VI + VGoT|* (2.1)

Here VGoT|* means that all the operators on the left of the |* are in the 4-body
space and therefore Gy is the 4-body free resolvent operator in the 4-body space.
The idea of Alt, Grassberger and Sandhas (AGS) [AGS67, San72] was to introduce
channel equations and channel transition operators in a way that they can be recast
into a super Lippmann-Schwinger equation for the V = 3 case and Grassberger and
Sandhas [GS67, San74, San75] extended the theory to the N > 3 case. The first

step is the splitting of the potential V into two-body interactions expressing it as the
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sum of all two-body potentials present, with A denoting the pair of bodies involved
in the interaction (here, I use the term “bodies” to denote both clusters and particles
and it can easily be seen that the bodies on this level are particles). The splitting of
the potential is defined by the expression

Vit= E val* (2.

A

(]
N
~—

Before describing the channel LS-equations I should mention that the index A is
given by the six possible partitions of 4 particles into three clusters. The channel
equations can now be described by the following expression, which is just the two-

particle Lippmann-Schwinger equation expressed in the 4-particle space
tal' = val' + vaGotal* (2.3)

The T-matrix is determined by coupling all the channels and introducing the new
channel transition operators U4g|*. The amplitude T|* can be rewritten using the
ansatz:
Tr{ = Z t_4|4 -+ Z t_.-;GoU_;;BGotqu (24)
A AB
Following the same arguments as in the traditional AGS-theory this yields the equa-

tions for the transition operators

o
or
~—

_ 4 - L g
Uagl' = 6'515.48[ + Y bactcGolcs (2.
C

These equations do not reduce the problem to an effective two-body equation and
the same trick has to be used again. It is therefore necessary to recast eq.(2.5) into a

Lippmann-Schwinger form on the three-body level
T1® = VP + VG T (2.6)
This is achieved by the following definitions for the three body operators

TP = Uasl* (2.7)



VF = Gg'6as|" (2.8)
Gol3 = GOtAGOJAB“‘ (2.9)

Analogously to the [* in eq.(2.1), here |*> means the operators on the left of it are in
the three-body space. The operator U/4g|* describes the transition from a three-body
partition to another three-body partition. The partition A’ is a two-body partition,
which is included in the partition A4, if A’ can break up into A by breaking just one
cluster. Later, in the extended model in which one particle is a pion, A’ has a slightly
different meaning. However, for now A’ defines simply the chain-of-partitions in the
standard 4-body problem. A short review of this notation is given in Adhikari and
Kowalski [AK91, pp.251-252] and a detailed review is given in the first of a series of

papers by Cattapan and Vanzani [CV83, CV84, CVS85].

Table 2.1: The Yakubovsky chain space. The table denotes the six dimensional space
spanned by the possible three-body clusters, as defined in the column labels. The
matrix elements denote all two-body clusters that can break up into either three-
nucleon cluster describing the particular matrix element.

a = (bc)ad | b = (ac)bd | c = (ab)ed | @ = (ad)be | 8 = (bd)ac | v = (cd)ab
al| d.od d d o a’ a
b d o, 6. d d o o b
c d’ d ~ . d c c ~'
« o b’ c o\ b, c b
Jé] a’ Jou d c g'.a.c a’
¥ a’ b ~' o a' ~,a', b

Table [2.1] shows all possible three body transitions and the allowed two-body

transitions common to both three-body transitions involved, where the primed vari-
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ables denotes the set of two-body partitions
(abe)d =d' (dab)e= (bc)(ad) =o'
H* = (dac)b="¥b (ac)(bd) =4 ;, (2.10)
(dbc)a = a’ (abd) (cd) =+
The chain-of-partitions are described by the usual notation ad’, but table [2.1] already
gives the chains in more detail. The unusual notation (singling out one of the four
particles, d) will prove very convenient when [ generalize to the # N NV N system, where
particle d will be identified with the pion. The important observation in this table
is that all off-diagonal elements have a unique contribution from the two-body sub-
space. It is again possible to split the potential in 3-body space, which has only
off-diagonal elements, in the following unique way
VP = 24: (var) a (2.11)
The terms (var) 45 are only non-zero when the implicit chain relations are satisfied,
namely partitions A, B both have to be obtainable by the break-up of A’. The new

set of channel equations in respect to the two-body partitions A’ is defined by
(ta)ap = (var)ap + D (War)ac (Go)ep (ta)pg (2.12)
¢.D

where

(Go) 4g = GotaGodap (2.13)

This complicated looking free propagator denotes the free propagation of three bodies,
one of which is a composite body. The delta function can be inserted explicitly to get

the more familiar form
(t.—i')AB = (UA’)AB + Z ('UA’)AC GotcGo (tA')CB (2.14)
c

Because this split is unique and complete the same AGS formalism can be used again

on this sub-level. The channel transition equations on the two-body sub-level are



found with the fundamental Ansatz

3 A i - -4
(Tl )AB = Z (tA’)AB + Z (tA’)AC (GO)CD (U-A’B’)DE (GG)EF (t.-i')FB (2-10)
Iy : A8’
It is again possible to rewrite this equation and give an explicit expression for the

new channel transition operators

(Uarg) 4 = (Go)ap darp + ; Sarcr (ter) ac (Go)ep (Ucrsr)pg (2.16)

c.D
These equations act in the three-body subspace and all operators are defined in this
sub-space. This solves the problem algebraically, because it can be shown that the
equations are connected. It should be noted that, depending on the A’, the equations

are either 3 x 3 or 2 x 2 matrix equations. In the next section [ argue that eq.(2.16)

can be generalized to the w/V VN scattering problem.

2.2 The Padova coupling formalism

In this section I show that it is possible to generalize the traditional AGS formalism
to include explicitly one pion degree of freedom. This generalization is by no means
trivial and care must be taken to include a physically sound coupling between the pion
and no-pion sectors. The first section defines a new notation that allows investigation
of the coupling scheme in more detail than the usual few-body chain labels. In the
second section the notation is used to describe the explicit coupling between pion
and no-pion sectors and the corresponding generalized AGS equations are given. In
the following sections a practical approximation scheme is defined and the algebraic

implications for the three-body problem with one pion degree of freedom are discussed.

2.2.1 The aNNN partition notation

In this section I define the notation that is used in the derivation of the proposed

model for the 1NN N scattering problem. There are four particles in the system,
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three nucleons denoted by the indices a,b,c and one pion denoted by the index =.
These particles are allowed to form clusters and the pion itself does not have to be
conserved. The partitions with three clusters are given by the seven unprimed indices
a,b,c,a,,v,7. Here, the indices a,b, c denote the following three-cluster partitions
a(bc)w, (ac)bm, (ab)cr respectively. Namely, the pion is a spectator and the nucleon-
nucleon cluster is denoted by the unique spectator nucleon. The indices a, 3, denote
the three-cluster partitions (aw)bc, a(b7)c, ab(cr) respectively. Once again the pion is
always present, but this time it appears in a @V cluster and the partition is denoted
by the unique nucleon in the cluster. This notation is very similar to the one used
earlier, because the nucleon d is replaced by the always present pion 7. This covers
all possible three-cluster partitions when the pion is present. The last three-cluster
partition is given by a, b, ¢ where the pion is missing and this partition is denoted by
the index 7 (no pion).

The two-cluster partitions are differentiated from the three-cluster partitions by

the use of a prime.The set of possible three cluster partitions is given by
H} =[A,B,C,7] = [a,b,c,a,8,%.7]. (2.17)

Since every element in this set denotes a three-cluster partition it is possible to find
exactly three different two-cluster partitions for each one of them. However, it is only
possible to have ten distinct two-body clusters, namely

(abc) w =7" (mab)c=c (bc)(am)=a" (ab)c=7

HE = (mac)b=1b" (ac)(br) =08 (ac)b=1"¥"}, (2.18)
(mbc)a =a’' (ab) (cm) =+" (be)a=a’

where a, b, c, ™ again denotes the nucleons and the pion respectively. The two body

cluster notation is given by the primed symbols and the bar again denotes no-pion

states. The notation is very suggestive and allows an easy interpretation of the

equations in the proposed model.
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2.2.2 The coupling between the pion and no-pion sectors

et ey

In the last section I introduced a new notation for the possible three and two-body
partitions and it is evident that two-body partitions can break up into a multitude
of three-body partitions. This is a well known fact from the four-body scattering
problem and it is necessary to define chain-of-partitions. In general, the four-body
problem has 18 chains and connectivity of the AGS-equations can be achieved. The
reason for this connectivity is intimately coupled to the structure of the two-body
partitions. Unlike in the three-body case, where only one type of two-body partitions
exists (one two-particle cluster and one free particle), in this case two distinct types
of partitioning exist. The partitions are either 3 + 1 or 2+ 2 and they give distinctive
channel equations, because one has three and the other has two chains associated
with it. In the four-body problem it is a nice feature that there is no coupling
between these two types of chains. This allows the definition of channel equations
on the two-body sub-level in order to solve the system. The # VN N system is more
complicated, because the pion and no-pion systems have to be coupled in a physically
sound way. This problem was first investigated in a paper by Cattapan, Canton
and Svenne [CCS93| by generalizing the Thomas-Rinat-Afnan-Blankleider-Avishai-
Mizutani (TRABAM) [AT74, Rin77, MK77, TR79, AM79, AB80] equations for the
7NN problem. In subsequent papers Cattapan and Canton [CC94a, CC94b, CC97]
addressed open problems of the proposed model and recently Canton[Can98] was able
to give a model that solved all the aforementioned problems. In this thesis I use the
same model in a slightly different notation.

In the system in question everything is assumed to be dressed, i.e. the nucleon
and the creation/destruction vertices. All partitions are just groupings and not nec-
essarily bound states and the pion can not be created into a nucleon-pion group from
the same nucleon, because this constitutes the dressing of the vertex. This also is

the reason that in the three-body partitions no coupling exists between the pion and



no-pion sectors. Furthermore, the clusterings a’, o', @ are asymptotically not distin-
guishable since, asymptotically, the pion may be associated with the single nucleon,
the two-nucleon cluster, or be absent. This means that arbitrary transitions between
the aforementioned clusters are allowed without changing the pole structure of the
underlying equations. Therefore the system describing this channel is already a cou-
pled system. However, the AGS formalism demands that the transition between a’
and o’ does not occur directly, because they represent uncoupled channels. Therefore,

a two-body channel equation for the 7 /VN NV system can be defined in the following

way
tal® = val> + vaGot | (2.19)
where
((ta)aaws (Cadasas (Ea)gaas
tal’ = (ta)arsas (ta)ason (Ea)aass (2.20)
\ (t.-'\’)a'f—.—.a'a (tA’)a'fr,a'B (tA')a'x—,a'a-
((U.‘l')a':’l,a’B 0 (U.4’)a'.4,a'17—
val = 0 (Var)arsas (Pa)araas (2.21)
\ (va)zrzarB ("'A’)a'f,a's (var)grsars
(UA')a'A,a’B GotsGo 0 (var)pra,a0% 9o
varGol® = 0 (va)oraarp GotBGo  (Var)araarz G0 (2.22)

(var)grz orp GotBGo  (Var)grz og GotBGo  (Var)ziz oz 90

Here the A’ has a different meaning than in the standard four-body problem, because
it simply denotes the channels, which in this case are given by coupled systems (thus,
A’ plays a similar role as that of s in [Can98]). It is noteworthy that this system
collapses to the uncoupled Sandhas system if the coupling between the pion and no-
pion sector is set equal to zero and the no-pion sector is ignored. Consequently, this
channel equation algebraically makes sense.

The explicit expressions for the operators in the above equation are given by

(va)wawn = Go' (Sa'),w (2.23)



(UA')Q'A,G’B = Ga’l (Sa;) 1B (2.24)
(va )z re = Var (2.25)

which defines the usual particle conserving interactions in the three and four particle

system and

(wa)gras = -2 fi(6w),, (2:26)
i=o,3,7

wa)waws = 2 f(84) (2.27)
i=ca,3,v

which defines the general form of the creation and destruction vertices. The anti-delta
functions have to satisfy the chain-relations in addition to the anti delta-relations.
This means that the anti-delta in eq.(2.26) for example is zero, unless the two indices
1,a are both contained in A’ and not equal to each other. The f; are the usual
elementary vertices, but with the notation of the partitions denoting a pion-nucleon
clustering. The elementary vertex is acting on the same nucleon that defines this
particular partition. This choice appears to be rather arbitrary, but it guarantues
that there is one nucleon that never connects to the other two, therefore, defining the
channel. It is helpful to write down the explicit terms for the creation/destruction
operators in respect to the usual elementary vertices f,. The anti-delta function also

includes the chain restrictions and the following explicit terms are found
('U:'V)&'i',a'a = fﬁ + f“( (2“)‘8)

The chain relations require ¢ = a,3,% and : = (,~ and the anti-delta function has

no effect. Another set of terms is given by
(v.—'{’)alﬁ-,a'ﬁ = .ﬁ‘{ (2.29)

Again, the chain relations require ¢ = a, 3, and 7 = 3, 7, but this time 3 is excluded
because of the anti-delta function. The channel A’ also includes the following three

terms in a similar way

(’04 )a. 'Tal /—fﬁ (?"30)
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(UA' a@'rala fa (2'31)
(U-“')&’:'r,a'a =0 (2.32)
These definitions are also given in a diagrammatic form in figures [2.1,2.2] and it is

clear that these vertices are more complicated than the simple creation/destruction

vertices f,, fg, f, themselves.  Correspondingly, similar expressions for the inter-

a a

.t b
NI L

Figure 2.1: The creation vertex (var)yz ., = fs + f4- The vertical bars denote bare
partitions and should not be interpreted as interactions. The pion is absorbed on the
nucleons ¢ and b respectively.

)\ \
W L

b
. :
Figure 2.2: The destruction vertices (var)yzop = fo (1) (Va)gzgn, = fo (2).

(Va)wzan = fa (3) and (var)zz 4 = 0 (4). As argued in the thesis the last ver-
tex is identically zero due to the vertex dressing.

actions in the other two channels B’,C’ can be given and in general the channel-

interactions in chain space are given by table [2.2] (see end of this chapter).



It is also possible to describe the interaction term in the complete chain space,
which is made up by the sum of the interactions in the three channels A’, B’,C’ and
the interaction in the pion-spectator channel n’. The chain-space interactions for the
three channels, where the pion is not a spectator, are shown in table [2.3] (see end of
this chapter). The case were the pion is a spectator is usually treated separately with
standard three-body techniques. The tables [2.2,2.3] show that the channel splitting
is not as simple as in the standard AGS case. However it is also apparent that the
suggested splitting does indeed add up to the expected format, namely the standard
AGS format in the pion sector, the typical three-body contributions in the no-pion
sector and the expected contributions in the connecting sectors. The connecting
sectors show that the pion can come from any one nucleon, unless it is partitioned
with one nucleon in which case it can only come from any one of the remaining two.
In table [2.3] this can be seen, because the sectors connecting the no-pion partitions
to the partitions a, b, c have contributions from all three nucleons and the sectors
connecting the no-pion partitions to the partitions «,3,v have only contributions
from the remaining two nucleons that do not take part in the partition. It should
be noted that the T-matrix also has contributions from the transitions a’a’, &/a’, ...,
which are identically zero in the channel potentials. This is not an unfamiliar result,
because in the standard AGS theory it is also possible to get contributions from
transitions between the 242 and 341 partitions. However in the AGS theory it is not
possible to get these contributions from a direct transition, or in other words from
the driving terms of the LS-equations. In the next section [ introduce the channel
transition operators of the two-body partitions, which lead to the final set of algebraic

equations of the proposed connected kernel model.

2.2.3 The channel transition operators of the two-body sub-space

In the last step of this procedure I define the channel transition operators with the

usual Ansatz defined in AGS-systems and solve for them accordingly. The Ansatz is



that the sum of all channels plus the sum of all channel transitions gives the total

T-matrix, which gives

T|3 = Z t:.ll + Z t._ings)[jleBlG(()s)t‘.{I (2-33)
Al

A"B’
where the summation over the A’ involves implicitly a summation over the corre-
sponding intra-channel partitions a’,a’.@’. Solving for the transition operator (U 4 5/)
is somewhat tricky, because of the amount of chains involved. It is a rather lengthy,
but not too complicted calculation. At this point the newly developed notation does
not appear to be simpler than the original notation used by Canton [Can98]. Admit-
tedly, the new notation is rather complicated, but unfortunately so is the underlying
system. The problem lies in the fact that the number of explicit elements in the ma-
trices is reduced, which means that the elements now span a bigger subspace than the
previous ones. In essence, the four particle space, which was given previously by four
elements, is combined into one element. A new partition has to be introduced that
denotes the two possible two-cluster partitions «’, o’ in one partition index. Unfortu-
nately, there is only so much information that can be described by one partition index
before it looses its simplicity. Therefore, I define the generic two-cluster partitions
a', & to describe the set of two-cluster partitions of the four body space belonging
to channel A’, namely «’,«’. The two generic partitions with the hat can be used
interchangeably, because they describe the same set. With these definitions and the

corresponding ones for the channels B’, C’ the transition operator is described by the

equation
((U4’Bl)d'.4,5’3 (L’rA’B’)&'A,E'i—) _ ((Got_4G05.‘lB)—l (S,-‘l'B' + 5.4'315:&:51) 0
(L[.—'\’B')a,lﬁ—'[;/B (U'.‘l'B’)"f-y-'i— 0 (go)—l gA’B’

Y ( (5.4@ + 5,4/0'3&'&') (tc')sa,50¢ GotcGo (SA'C' + 5A'c'5&'af) (tc)oa oz go)
ce darcr (tc!) gz 50 GotcGo Sarcr (1) zz oz G0

&I,."l
y ((UC'B')ac,G'B (UC'B')E’A,E"E)

(Uc'B)orps (Uc'B)aspr

)



(2.34)

and this forms the formal solution to the problem. However, it should be mentioned
that solving for the transition operator is not a trivial task. The channel transition
operator (Uasg/) is defined in the seven dimensional space given by the three-cluster
partitions. Therefore, one has to add up the contributions to the matrices from the
given channels on the left and the right of the transition operator. When solving
for the transition operators the unusual delta function (5,413: + 5,1:3:5&,5,) appears.
It appears due to the fact that in the derivation equivalent terms on the left hand
side of the equation are collected and therefore these terms are missing on the right
bhand side. Either two distinct channels are given in the definition of the transition
operator, which is described by the case d.4:5/, or the same channel is used twice,
which is described by the case dirg. However, in the second case the left most
channel elements in question have to be different, namely 5&,5, must be satisifed. The
&'d’ denote two possible two-cluster partitions in the four-particle space that belong
to channel B’, namely they both can be b’ or 3’ .

[t turns out that this set of equations is indeed connected after a finite number
of iterations, which has to be true for any reasonable theory of this type. It should
be kept in mind that the operators in this equation are themselves highly non-trivial
and that the system is therefore highly complicated. Especially the channel equations
should be treated with care, because they already represent matrix equations describ-
ing the coupled set of two-body partitions A’. The advantages of the new notation are
displayed in the three tables, because of the rather simple form of the possible chains
in respect to the new notation. It is also possible to show directly the connectedness

of the equation by explicitly investigating all possible chains.



2.3 Quasiparticle formalism

The paper of Canton [Can98] also includes making quasiparticle approximations at
the three-cluster and two-cluster levels. Since this is also needed in this work, to arrive
at a practical approximation scheme (next chapter), I here review the quasiparticle
method. Traditionally the Quasiparticle formalism corresponds to the separable ex-
pansion method developed by Weinberg [Wei63a, Wei63b, Wei64, SWW64] in a series
of papers. For a comprehensive description of this theory I refer to Weinberg’s lec-
tures [Wei65]. The expansion is given in respect to the so called Weinberg states,
but I shall denote all possible expansion methods as quasiparticle formalisms, as long
as they correctly describe the pole structure of the underlying t-matrices. For a col-
lection of different possible expansion methods I refer to the book by Adhikari and
Kowalski [pp.149-169] [AK91]. In this section I assume that [ have a valid expansion
method, but the type of method is unspecified. In general, if a separable expansion of
the potential is given, an explicit solution of the t-matrix can be found. For simplicity,

I also restrict myself to rank one expansions and the t-matrix is then given by
3 o <
ta(z) =]A® (2)) 7 () (A¥) (5))| (2.35)

The explicit form of the 7 and the form factors depends on the specifics of the ex-
pansion method. Also, the t-matrix is a two-body t-matrix embedded in the four
body space and therefore the spectators could be split off. However, I come back to
this point in the 1-D Toy model in chapter 5 and for now assume simply that the
form factors and 7’s in question can be found. For simplification of the notation the

following short hand for the form factors is defined
|4®) (2)) = |4) (2.36)

This definition should be no problem, because A denotes a set of three-cluster parti-

tions in the four body space. It is clear that the model can have two distinct types



of form factors, namely the ones corresponding to a NN cluster and the ones cor-
responding to a @V cluster. In the new notation the NV cluster embedded in the
four-body space is denoted by a, the corresponding 7V cluster by a and the set of
the two is denoted by A. This distinction of the cluster types becomes important in
section 3.2 when the practical approximation scheme is introduced. Furthermore, it
is obvious that form factors of this kind can only exist in the four body space and
not in the three nucleon space. I show that this does not pose any problems, because
the t-matrix that is approximated by the quasiparticle terms appears only in the four
body part of the three-cluster Green’s function.

The first step in the formalism is to insert the quasiparticle ¢-matrix into the
final set of equations derived in the last section. At this point there is no notational
advantage to the matrix notation due to the complexity of the matrices involved.
Therefore, the result of the calculation for the four components is given explicitly,
which gives an equivalent set of equations to the ones previously given by Canton

[Can98]. The quasiparticle channel transition equations for the Padova model are

therefore

(Uars)arazn = (GolA) Ta (Al Gobap) ™" (Sarm + Sarpidyy)

+ Z (SA'C' + 5‘4’0’56’6’) (tC' )5’,{,5’7’,— 9o (C[C'B')E’Tr,[;’B

Cc’.é
+ > (Bwc+ 5A,C,S&,é,) (tc') s ame GolC) 1 (C| Go (Uor) 3¢ 35 (2.37)
cey.C
(U‘VB’)&’:?,!;’B =+ Z 5-4'0’ (tC’)E'f-,E'Fr Yo (UC'B')E’T:,B’B
Cl
Z S.—’l’C' (tC')EI%';’IC GO IC) TC (Cl GO (UC'B,).?IC‘EIB (2-38)
c'éy.C

(U—'{IB’)&I}I’SI—K =+ Z (SA'C’ + 5.4’C'S(Z'6’) (tC' )EIA'Elﬁ'. go (LIC'B’)E 757
cré

> (5‘4101 + 5,1'0'5&'&') (tc)aase GolC) e (ClGo (Ueip)srcprr (2.39)

c'.éA8.C
(UA‘B')EI.,—,‘EI;, =+ Z SA’C’ (tC' )E’T’r,E’ﬁ' go (L[C’B')E'ﬁ,glﬁ-
C’
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(go)-—l SA’B’ + Z 8.416‘! (tc')E’i;’/’C GO IC) TC <Cl GQ (Uv 'B'):/'C,E'Fr (2.40)

céAC
Up to this point the derivation is straightforward and the character of the equations
did not change substantially from the equations derived in the last section.

The next step is to fold the equations between appropriate states in order to get
the explicit matrix elements. The states in question are given by the expressions
Go |A) and in the case of Weinberg states, where |A) = V, |¢.4), |#4) is given by the
two-body bound state. At this point I do not consider the actual interpretation of
these terms and simply perform the folding. The resulting equation is given by the

expression
Xap =GO Aup + 3 AwerxcG®Xcrp (2.41)
Cl
with the definitions

(.’3.4!3:)&,‘4 B = 6_43 (5_413: + 5“1'5'5&‘5’) (2.42)
(AA’B')&IA 5= =0 (2_43)
(A"‘ls’)aq—r b'B = 0 (2.44)
(AA’B') aw e Sap (2.45)
and S
g _ [T4048 O ) 2.46)
0 go
and o) o)
Ta)ara,60 L ar)gs. a'E _
X4 = ( 1,6'B A ) (2.4()
(x-“')&’z?,d'a (2-4’)5'7?,&',%

and correspondingly the expression for X 4g.. These definitions are quite easily seen
in the matrix form of the equations as derived in the last section. There seems to
be a double contribution of 45, because this term appears in the new delta function
and the quasiparticle three-cluster Green’s function. However, careful calculations

show that these two terms indeed appear explicitly, one deriving from the original




definition of the three-cluster Green’s function and one from the folding. The explicit

expression for the components of these two operators are given by

(za)sase = (AlGo (t4r)ara,5: Go |B) (2.48)
(37.4’):2'_4,&'17— = (AI GD (t-4')&'A,&’r'r (2>49)
(1’-4’)5'7?,&'3 = (t-4')&'77-,&'5 Go ]B> (2.50)
(x-4')&’ﬁ,a’i = (t:’l')a'i—,a’ﬁ (2'51)
and
(XA'B’)a'A,b"B = (4l Go (UA'B')a'A.z;'B Go |B> (2.52)
(‘X’A'B')&’A.E'Tr = (A|Go (UA'B')a'A,EIz— (2.53)
(‘X:l'B')alﬁyng = (UA’B’ 5'1—?,5'8 GO IB) (2-54)
(Xa)azpe = (Uas)yrps (2.55)

As I mentioned before the folding terms only appear in the four-body components of
the system, denoted by A, B. The last three equations show the terms that connect the
pion and no-pion sectors and describe the three-nucleon sector. It is straightforward
to show that the subsystem amplitudes are also governed by a quasiparticle equation

using the same folding procedure. The result is given by
X4 =24 + 204G x 0 (2.36)

with

[0
(i}
|
o

Z4 =

( (3.4’)a'.4,a'3 (3.4’)5'.4,5'7?) ¢
("-'A')a'r.-,a'B (3.4’)71'71—,&'7?

(AlGo |B) (8a)yrar (5r) . (Al Go (va)yrg s )

( (v-4')&’7?,d'8 Go | B) Var

(2.58)

The components in the second matrix follow directly from the initial definition of the

channel potential terms, as described in the last section. There the definition was
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given in a more explicit component form distinguishing explicitly between the chains
involving the @’ and the o’ partitions. The off-diagonal terms in these partitions a’a’
and o’a’ were shown to be zero, which are accounted for by the introduction of the
new delta function (d4s);,5.- Again, the delta function requires that both &’ and &
have to be contained in A’ and have to be equal. Obviously, this also guarantues that
they both run only over partitions a’, a’.

The next step is to introduce another separable expansion, this time on the two-

cluster level. The four sub-amplitudes of the system are defined in the separable

form
(Ta)pams = [(AVh) 7D (AN (2.59)
Ta)paae = [(A)E) P (a2 2.60
a’A,a&'w
(Ta)amas = [(AVEH) 78 (AN (2.61)
a'w.a'B T
(@a)geze = |(AVGL) 7 ((A)E) (2.62)

Again. the separable approximation can be achieved by introducing an expansion of
the potential in the two-cluster channels and subsequently solving for the channel
t-matrix. However, since the channel equations are given by a coupled system, the
form factors are multi-dimensional. The explicit form of these new form factors is far
from being trivial and in the next chapter I give an approximation scheme exactly
on these form factors. Without an approximation scheme one would have to solve
the complicated channel equations directly, which is rather difficult. At this point [
assume that it is possible to find an expansion method and the corresponding two-
cluster 7 and form factors. It should be evident that for the case 7’ there are only
contributions from the four body sector, defined by the first equation. Now the
same procedure as on the three-cluster level is performed. Namely, the quasiparticle

expression is inserted and folded with the corresponding form factors. This gives the
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final quasiparticle equation

{2) (2) 2 2 2 ¢
x0, =28, +ZZ§)C D x, (2.63)
with the definitions
g@ = (2.64)
Z&%’B. = <A'(2)l GOA 4B iB'(2)> (2.65)

0o |(BY) Sum + 3 (A0,

Ibl,

ra (B2 (B + Sl

and the quasiparticle two-cluster amplitude

X8, = (.,4'(2>| G® X 5G| B (2.66)
Aarin o [(Bgn) + Z( Nek| T4 (Xa)arason 78 |[(B)ig)

b’B

+ 3 (AL T4 (Xar)araor 90 | (Bfin +2<(
@’ A

- 2
‘X-‘")a #i'B TB I(B[)gllg

Equation (2.63) is similar to the type of equation introduced by Lovelace [Lov64],
which is a connected LS-type equation for the standard 3V problem with separable
potentials. It is clear that the additional pion makes the set of equations more compli-
cated. Nevertheless, the overall structure is of the same type as the original Lovelace
equation. Before [ attempt to solve this system, I introduce one more approximation

on the second level of the separable expansion.



Table 2.2: Chain-space contributions to the effective potential from channel A’: The
first row in every element denotes the possible two-cluster transitions that are possible
in the give three-cluster transition element. The empty rows and columns show that
the cannel A’ does not contribute to these three-cluster transition elements. The
second row in the table denotes the explicit contributions to the effective potential
for the given two-cluster transitions

a blc| « B8 ~ T
a odd | dd | dd a'a
GE)_I G(Tl Gé)—l fo + fa: fa
b
c
a aa’ o'a
Got 0
8 a'ad a'a aa
Gg' Gy'! f
v aa ad a'a
Gg' Go' fo
©| a'a,a'a aa |ad'a | ad a'a
A+ R 0 | /2| f

a = (bc)am,b = (ac)br, c = (ab)er o = (aw)be, 8 = (bw)ac, v = (cw)ad, T = abe
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Table 2.3: Chain-space contributions to the effective potential from channels A B, C"

a = (bc)ar

b= (ac)br | c = (ab)er | a=(ar)bc | B = (bm)ac | v = (cm)ab i = abe
a oo’ a'a a'a a'a
G;! Gy ¢! Jp + Jy. Jo
b b'%l ﬂ})ﬂl b};'l [;,lbl' glbl .
Gy! Gy! Gy! Ja+ Jv, 15
P Py ctl ¢ C)l ,YI ‘)': Py é’, ,// &
Gy Gy Gy Jo + 5, [y
a ada’ o'y c'c cc o'y od Yy, e
Gg! Gy' . Gy! Gy 0, fy,Jp
ﬂ a’al ﬂlﬂl Clcl clcl alal al(-’/‘ [’I’)I' c’él
-1 - -g— -1 -1
Glu / ?lobll GIO Il Cb;'lobl [N} Go I':/;-y ;?I’Ifal =
~y a'a ¥y aa aa W, y'¢
Gy Gy Gg'! Gy Gy Jpsfu0
#| dda'a | YV, 00 | @&y |ad, bV, dc {ad, VA |add B, dy | dd Vb o0
A+Af 1 8+n 818+ o £1,0, 1} [ 08,0 | va, g
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Chapter 3

PRACTICAL APPROXIMATION SCHEME AND
THREE-NUCLEON FORCES

[ choose a block of marble and chop off whatever [ don’t need

Francois-Auguste Rodin

3.1 Practical Approximation scheme for Lovelace-type equations

In the last chapter I re-derived a quasiparticle description for the algebraic model that
gave a set of connected Lovelace type equations. I already mentioned that the second
level of separable expansion is not trivial and I show in this section how one can find
a first approximated form for this problem. Like in any other separable expansion
method the problem lies in the solution of the channel equations. Approximating the
potentials by separable potentials allows one to solve the channel equations analyti-
cally. This approach is rather difficult in the present case due to the complexity of
the channel equations. However, we recently gave an approximation that makes it
possible to find the form factors for this expansion in a fairly direct way [CMS00].
Obviously, this can only give an approximated expression for the form factors. Never-
theless, the simplicity of the procedure outweighs this defect and significant correction
terms to the standard three-nucleon AGS problem are found. For later research it is
also clear at which points the approximations can be improved to higher order effects,

but in this thesis [ am only interested in the first order effects.
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The main problem is to solve the channel equation on the two-cluster level
X4 =2Z4 +24G% x4 (3.1)

In order to describe the approximation scheme in a clear way [ first write eq. (3.1) in
more detail. The dynamical equations of the sub-amplitudes in component form are

given by the set of equations

(Ta)aaans = (AlGo|B)dasdss + (Al Go(fa)sazs o (IE') e 4 A
+ Z (‘AI GO IC) g.AGJE’E'TC (:Z:A')Ei’c,d’B (3-2)

a'.C
(1'.4’)@;7,&/3 = (fj\')a,; VB + VA’QO (xz’ﬁ,é’B)

el

+ (f.g')m. v G lC) e (Ta)wc ap (3.3)
ac '

(:EA’)&'A al® (Al Go (f.-i’)&f_.-;,aff.— + (Al Go (f.-i')a'..(va'ﬁ Jo (I.—‘l')&'ﬁ,&’ﬁ

+ ) dacdana (Al Go [C) T (zar)pic arz (34)
inc

(Ta)arar = Va+Vago (‘L'A')a':‘r,a'r‘r

+ 2 (‘fjl')a',—.—'arc GO IC) TCc (IA’);;_'C'&:,—? (3.5)

Using this set of equations an approximation scheme can be developed that allows
for the two-body form factors to be calculated. However, for the channel =’ the set

collapses to the equation
(x”' )r’A,r'E = ('4[ GU [B) 545 + Z SAC <‘4| GO IC> C (-Tr’)h-lc;'ﬁlg (3-6)
c

due to the inclusion principles. This is a standard Faddeev-type equation and can be

solved directly for the quasiparticle form factors
(=)&) = 1='4) (3.7)

The left hand side indicates that the approximated form factor is actually an exact

result given by the Faddeev components of this channel.
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The approximated form factors for the remaining channels A’, B, C’ can be found
starting from eq.(3.5). This equation describes the behaviour in the three-nucleon
sector and consists of a standard LS-equation for the cluster, given by the first two
terms on the right-hand side, and a correction term. The potential in the LS-part
is the standard static V.V potential, including the OPEP part. The correction term
describes one pion dynamics in the 2.,V subsystem and it is clear that this dynamics
does not connect in any way to the spectator nucleon. Therefore, this term describes
the disconnected dispersive effects to the 3V dynamics that originate in the 2.V dy-
namics. [t is straightforward to solve the standard VN problem given by the first
two terms. Furthermore, it is known that in first approximation the LS-equation
describes the NN problem quite well. Therefore, it is reasonable to approximate the
correction term by zero. This is physically sound, because the approximation terms
should not contribute in a dominant form to the NN problem, otherwise standard
nuclear physics would not be a good approximation to nuclear dynamics.

The approximation scheme results in an elastic channel (NN) N for the 3V prob-
lem, because the pion dynamics are explicitly ignored. Of course, there is still pion-
exchange in the potential, but this is a static effect due to the phenomenological
potential, not due to the dynamics of the system. Now this channel can be treated
with the techniques used in standard 3V AGS-type models. The approximated chan-

nel equation is now given by
(53‘4’)515,@5 = Va4 + Vago (:E}')a'ﬁ,a'i- (3.8)
and the quasiparticle t-matrix component for this channel is
(@) ars o = |&'7) 75 (@7 (3.9)
The form factors in this equation can easily be obtained using any of the valid ex-
pansion methods. Also, it is noteworthy that there is a strong resemblance between

these form factors and the ones used in the first level of the quasiparticle approxima-

tion. They both come from solving a two-body problem, but in the A’ channel for



example the three-cluster form factor can have the N7 contribution ]am ( :)> and the
NN contribution |a(3) (::)> These two form factors are two-body form factors with
two spectators split off. On the other hand, the three-nucleon form factor in the A’
channel |@’'%) only can have a NNV cluster, identical to the cluster in the three-cluster
system, but only one spectator is split off. In other words, the three-cluster form

factor 'a(3) (:)> and the three-nucleon form factor |@’#) come from the same separable

approximation. The proposed approximation requires

(55.4')&'77-,&',—7 ~ (‘%A’)&':‘.—,a'ﬁ = |a'7) ﬁ({%) (a'® (3.10)
and consequently
[(AN5)) =~ [@'7) (3.11)
and
T Y R (3.12)

This gives the approximated component of the two-cluster quasiparticle form factor
and the approximated 7 in the three-nucleon space. As [ mentioned before, neglecting
the pion dynamics on this level is a good approximation due to the success of standard
nuclear physics. However, it is not a good approximation to neglect the pion dynamics
in the four particle sectors of this system. This means that the remaining form factors
in the separable expansion on the two-cluster level cannot be ignored. In order to
define an approximation to these remaining form factors I investigate eq.(3.4). The
first and third term in this equation do not depend on the 3N pole structure, which

leads to the choice of the remaining, dominant, term for the approximated quasi-

particle equation
("EA')&'.-{,&':? = (Al Go (f-‘l’)a'_.x,a'i Yo (l'.—'l’)a_lA,a'ﬁ (3-13)

Contrary to the approximation in the three-nucleon sector which was based on physi-

cal grounds, this approximation is valid on mathematical grounds. Using the approx-
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imation for the respective two-cluster quasiparticle channel component vields

(Z4)araze = [(AV50) T ((ANEL] % (Al Go () g s 0 l@7) 7D (@7 (3.14)
and by direct comparison
|(A)2,) % (4] Go (Fa)gras 9017 (3.15)

At first glance it appears that the pion sector form factor is given by a scalar product,
which is strange. However, a closer inspection shows that this term is not a scalar
product, because the bra of this term lives in the three-cluster space while the ket
lives in the two-cluster space. For a scalar product the bra and ket would have to
live in the same cluster space. Therefore, these terms indeed define a transformation
from a three-cluster to a two-cluster space, which is exactly what the form factors are
designed to do.

This defines all the ket components of the approximated two-cluster quasiparticle
form factors. In order actually to give an expression for the corresponding t-matrix
the bra components of the form factors also need to be defined. These components

can be constructed by taking the adjoints, which yields
(A5 ~ (@'7| (3.16)

and
(8| ~ @7l (1), ,,, GolA) (3.17)

This is the end of the approximation and I am now in a position to consider explicit

calculations. However, it is noteworthy that due to the explicit definition of the

creation/destruction vectors following relation is true
[(49E)) = (al Go (far) e ars 90 [@'7) = 0 (3.18)

The fact that this equation holds true is because the relation (fa/),n sz = 0 is a

property of the original set of algebraic equations. This introduces a whole set of
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simplifications in the calculations as I show in a later section. [ also argue how the
driving term in the Lovelace-type equation can be interpreted in order to recover
corrections to the standard 3NV AGS system. However, first the equations can be

simplified even more by projecting out the closed pionic channels.

3.2 Projecting out the pionic channels

In general, the Padova model describes the pion-three-nucleon system, but in this
thesis I am only investigating the triton binding energy. This means that the pionic
channels of the Padova model are closed and a projection procedure due to Feshbach
[Fes62] can be applied. In this section, I outline the projection procedure and show
the result for the channels with no free pions. The starting point of the projection

procedure is the two-cluster Lippmann-Schwinger equation (2.63)
(2) _ (2 2 2) y(2 :
Xy = 240+ 5 28068 X8, (3.19)

Next, [ define two projection operators @ and P, which project onto the free pion and
no-free pion channels respectively. With these projection operators the LS-equation

can be rewritten in the form

QX{hQ = Qz0hQ (3-20)
- 2
+30 (@240 005/ QX5 + QZie PGS PXCIpQ)
QxP.p = g‘i)B,P (3.21)

+Z(sz GEQxE% P+ QZY. PGE PX s P)
PXCL0 = ng’-:g,@ (3.22)
+ 3 (PZ:Q080X 0 + PZ{L PGS PX @)

PZ‘%’B,P (3.23)
+ Z (PZEL, Q68 QX P + PZEL. PGE PX(,. P)

PxL P
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Only the last one of these equations represents an open channel and we can ignore the
other three. However, the kernel of the last equation includes a term that depends on
Q- éz,)B,P - In order to replace this dependence I solve the second equation in respect

to this term, which yields
(2 2 2 2 2 2 2 :
QXTsP=(1+QZ .’B,Qgg)) (Q z38L. P+ Z Qz3., PGP, g.g,p) (3.24)
and the zeroth order contribution gives the approximation
2 (2 2 (2 2 2 o=
QxL.p (024,’5.13 + Z Qz%.pc@p Xg,g,P) (3.25)
This approximation makes sense, because we want to retain only the lowest order
terms that connect to explicit pion-channels. The ignored terms all would introduce
higher iterations of the pionic channels. Now [ substitute this term into the no-free

pion sector equation (3.24) and replace the pionic channel by the corresponding =’

(recall also eq.(2.64)), which gives
PxP.p = pPzQ. P+ 2 Pz P px2., P (3.26)
+PZ3 0 “’Q ZOP+Y Pz PQz8). P2 P X, P
CI
This equation can now be rearranged to give an effective LS-equation with a modified
driving term
PXCLp = Pz0L P+ P22 .0 BQz%, P (3.27)
+ Z (PzSL. P+ PZELQ-PQZEL P) T PXE, P

Using the usual definition A’ = A’, B’,C" for the channels without a free pion this

equation can also be given in the simplified form

A2 _ () (2) (2) 7(2) (2 L Z@) (2572 @ x@ 39
XA’BI Z4IBI Z1I 4 7T Z,..IBI + Z (Z4ICI 41 r 1” Z ’C') XC'B/ (3'-8)

Therefore, I am left with a LS-type equation that has a modified driving term. In

the next section I investigate the driving term and show how some of the terms can

be interpreted as 3NF terms.
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3.3 The approximation scheme and 3N-force diagrams

In this section I argue how the approximation scheme can be used to find correction
terms to the standard 3N-AGS type potentials. In order to see this, I interpret the
driving term of the quasiparticle equation in more detail using the approximated form
factors. I already mentioned that the driving term does not contribute at all to the
case w'w’ due to the inclusion principles. Furthermore, in the modified LS-equation [
derived in the last section the pion-sector was projected out, which also means that
this case is not included. Therefore, the only following three distinct cases are left to

interpret:

1. both channels are not #’ and equal. The representative case Z.r 4/ is shown

o

both channels are not @’ and they are not equal to each other. the representative

case Z g 1s shown

3. one of the channels is 7', the other is not. The representative case Z,. is shown

The first observation is that the first two cases can only contribute to Z?')B' and the

last case only contributes to Z Eiz,)r,TS)Z_(jl);,. In the next two subsections I investigate

exactly these two cases.

3.3.1 Clontributions to the driving term from Zfiz,)é,
The approximated general form of the driving term in the case that A’ # =’ and

B' # 7' is given by the expression

7 ~ (@7 go [B'7) Sarp (3.29)
+ >0 (@70 (fh),, .., GolA) Ta{AlGo (far)iags 9o [B7) (Sarmr + Sarmdsg)
b, A o
In case 2, where A’ # B’, only the first of the delta-functions in the second term sur-

vives. Also, B’ and A’ have three common three-cluster break-ups, namely «a, 3, and



there is a unique contribution to each of these from the two-cluster partitions in the
respective channels. Taking all the inclusion principles into account and substituting
the explicit expressions for the complicated creation/destruction operators therefore

leads to the equation
25 ~ (@7 go |B'7) + (@71 90f1Go |7) 7 (7] Gofugo |B'F) (3.30)

The first term describes the standard AGS-type driving terms and the second term
describes corrections to the off-diagonal components of the driving term. The off-
diagonal correction terms of the effective potential are also shown in a diagrammatic

way in figure [3.1]. The middle structure of this graph describing the pion behaviour

Ao

Figure 3.1: The diagrammatic representation of the off-diagonal correction term
(a'=| gong() [v) = (7| Go fago ‘b’ﬁ) to the effective potential. The inside structure of
the diagram is of the same type as Fujita-Miyazawa

is the same as the 3NF graphs based on the Fujita-Miyazawa model. The pion is
created on one nucleon, interacts with a second nucleon and finally is absorbed on
the third nucleon. In my calculations this part of the diagram is replaced by the
one-dimensional equivalent to the Tucson-Melbourne form of a static 3NF correction.
However, the fact that a diagram describing a behaviour similar to modern 3NF is
recovered already constitutes an interesting result.

In case 1, where B’ = A’, only the second term of eq.(3.29) survives and only the

part in respect to the second delta function is non-zero. Since in that case the two
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partitions have to be unequal, one of them has to be a’ and the other o’ or vice versa.
The possible chains have only one common three-cluster matrix element, namely a7
and therefore only the following terms survive after the explicit expression for the

complicated creation/destruction operators are inserted

2§ ~ (@7 g0 (f§ + £)Gola) 72 (al Gofago |F7) (3.31)
+(a'7| go fGo |a) 7 (a| Go(fs + f+)90 lB’ﬁ->

These contributions are the diagonal correction terms and they can be represented
by four distinct diagrams. In figures [3.2,3.3] the topologically different diagrams
are shown. It should be clear that the standard AGS-system has no contributions
to the diagonal parts of the driving terms. Therefore, it is valid to interpret these

terms as corrections. The corresponding set of diagrams does not appear in modern

Figure 3.2: The diagrammatic representation of the diagonal correction term to the
effective potential (@'7| go f1Go |a) 7. (a| Gofsg0 lb’f‘r>.

3NF, because it is assumed that these terms already are completely described by the
underlying theory. However, [ show that the cancellation that is usually assumed is

not complete and yields a rather strong effect that should not be neglected.
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Figure 3.3: The diagram corresponding to the diagonal correction term to the effective
potential (@7 go f1Go [a) 7 (a] Gofago [I'7).

3.3.2 Contributions to the driving term from iji-;,

Case 3, where a free pion exists in an intermediate state, is described by a somewhat

different equation, namely
Z8, = 3" 7' A) Ta (Al Go (fa) s g5 90 |TF) (3.32)
at A

Imposing all the inclusion principles and inserting all the explicit expressions then

leads to the equation
7D = |7'a) 1 (a] Go(fa + f+)90 |@'F) + |7'a) 7 (a] Go fago |@'7) (3.33)

This correction term is due to the coupling with the pionic sector, which was projected
out by the Feshbach procedure. In fig [3.4] one diagram contributing to this correction
term is shown. The total contribution to this correction term is the sum of all diagrams
of this type, where the pion can connect any incoming with any outgoing nucleon line.
This type of correction is another 3NF correction to the effective potential of the 3.V
bound state problem. However, in this thesis I restrict myself to the investigation of
the first two types of correction terms in a simple 1D model. The effect of this last
type of corrections should be investigated in subsequent research efforts, but for now
I do not discuss them further in any detail.

These are now all types of correction terms appearing in the approximated system.



Figure 3.4: The diagram correction term Z’; g =L .E?)Z T, 5 that appears because

the mesonic channels were projected out by the Feshbach procedure.

Consequently, the modified driving term can be given by the expression
Zyg = Zi‘%' + 25+ Z—1’B’ (3.34)

where the first term is defined by the standard AGS-type driving terms
Z3E = (@7 g0 [b7) 845 (3.35)

The second term is defined by the terms of the first two cases that do not belong

to Z _’:,%S, and the third term is defined by contributions due to the connection to the

pionic channels.
(3.36)

2)
Z{{'B’ = Z4l rTEf Z‘:Br

The next step in thesis is the derivation of a one-dimensional Toy model in order to

investigate the dynamical properties of this system numerically.
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Chapter 4

ONE-DIMENSIONAL TOY-MODEL FOR THE
NN-SYSTEM

Technology is the knack of so arranging the world that we do not experience it

Maz Frisch

4.1 Schroedinger description of the NN Toy-model

The two-body problem is an essential input into the approximated quasiparticle equa-
tions as [ have shown in the last chapter. In this chapter [ describe the one-dimensional
Toy-model for the NN problem and derive the corresponding Lippmann-Schwinger
representation. [ also derive the general form of the NN Toy-potential to be used in
the model. In the first part I describe the model in the Schroedinger representation
and subsequently derive the general Lippmann-Schwinger form. I choose to do this
in coordinate space in order to include the boundary conditions in a transparent way.
In the second part [ derive the general form of the potential also in coordinate space,
which gives a potential that can be compared directly to the coordinate behaviour
expected from a “nuclear” potential.

In the first step the quantum mechanical two-body problem for scattering on a

line needs to be derived. The Hamiltonian for this problem given a potential V' (for
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example, see Messiah [Mes76]) has the form

h? h?
Vi—5—=V2+V(r,m) (4.1)

2m1 ng

h=—

where V; are the two derivatives in respect to the coordinates of the particles and m;
are the two masses. In the one-dimensional case one would not explicitly need the V,
which is an inherently three-dimensional symbol. However, in staying with the V it
is easier to compare the derivation with the well-known three-dimensional one. The
problem in question is described by the Schroedinger equation of this system, which

is given by the expression

h\I’ (7‘1,7’2) = E\Il (T'I,T'g) (4.2)

I assume that the potential is translationally invariant and that it is possible to
separate out the center of mass motion, because it is a free motion. The transformed

Schroedinger equation is then given by

L o2 Llge_ EV(T)] ®(r,R) = 2 E®(r,R) (4.3)
m; + mo R L r 52 J * - ﬁ2 ' -*
with R being the center of mass, r = r; — r; being the relative coordinate and

p = ;272 being the reduced mass. This equation is separable and can be written as

®(r,R)=¢(r)o(R) (4.4)

which separates the equation in the following way

2(my + my)

Vio(R) + X (5 pyo(r) =0 (4.5)
V3 () + 25 (B = V)i (r) = 0 (4.6)

where E; is the constant of separation given by the total energy of the two particles
in the C.M system. However, in eq.(4.5) the second term vanishes and the center
of mass is simply given by a motionless point. All the information of the scattering

system is given by the wave function of the two-body system % (r). The indices 7,1
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are now being dropped and the one-dimensional Schroedinger equation describing the

two body scattering system can be given by the equation
52
[‘TV2 + VJ b = E (4.7)

[t is apparent from this equation that the units of the potential have to be same as
the units of the Hamiltonian, namely the units of an energy E. The next step is
the derivation of the Lippmann-Schwinger representation for eq.(4.7) including the
boundary conditions that still have to be defined. It is noteworthy that the derivation
of eq.(4.7) did not yet take into account that the system is solely living on the line
and therefore is a more general result than actually needed. The restriction of the

system to the line is important when the boundary conditions are defined.

4.2 Derivation of the LS-equation in the two-body Toy-model

In this section I derive the Lippmann-Schwinger equation for the 1 D-scattering sys-
tem. This task is done using the Green’s function method, which is described later in
this section. However, it is convenient to give another simple transformation in order

to simplify eq.(4.7) and find the equation

(V2 + k?] b= U (4.8)
with the definitions
2ulb
k? = —7 (4.9)
and
2uV
U= _2‘2— (4.10)

The Green’s function method constructs solutions to eq.(4.8) by the use of the Green’s

function G (k,r,r') which is a solution of the equation

[V2+ k2| G (k1) =6 (r — 1) (4.11)
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It can be easily shown that the expression
Gpare (1) = / G (k"YU (r') ¢ (") dr (4.12)

solves eq.(4.8). Furthermore, it is clear that U has units of fm =2, which means the
Green’s function has to have units of fm. In order to see that this is indeed a solution

eq.(4.8) is expanded in the following way
[V +&] e = [6(¢r—r U ei) dr

(V2 + & v (r) = [V* +#7] / G (k,r, YU (') & (') dr' (4.13)
where the operator in the square brackets is taken outside the integral, because it
does not depend on the integration variable. This shows that eq.(4.12) indeed gives a
particular solution of eq.(4.8). The general solution is given by the particular solution

plus a solution of the homogeneous equation
[V2+ k2] (r) =0 (4.14)
namely
b (r) = & (r) +/G(k,r, rYU (') % (') dr’ (4.15)

The next step is to include the boundary conditions, which is done by an appropriate
definition of the Green’s function. At this point it is important that the system is
restricted to the line, because it defines the boundary conditions. From the theory of
differential equations it is clear that the solutions of the homogeneous equation are

represented by the plane waves
@:(r) — .46“:" + Be—ikr (4‘16)
Since the plane waves form a complete orthonormal set, they can be used as a basis.

According to the theory of Fourier transforms the particular solution is expanded in

respect to the plane waves in the following way

bpare (r) = [ A(K) ™ dl (4.17)



This yields for the Schroedinger equation, using the property of the particular solution

given in eq.(4.12), the equation
U(r)w(r) = [V + 4] / A (') e*rdk! (4.18)

However, the plane waves are eigenstates of the differential operator with eigenvalues

—k"? and interchanging the operator and the integration gives the expression
U6 () = [ [~k2+£2] A(K) e dr (4.19)

Next, the expression is multiplied by e~*"" and integrated over r in order to make

use of the orthonormality of the plane wave states. This calculation yields
JuE vy e™rdr= [ [k + k2] AK) / e/ K" dr k! (4.20)

and expressing the r-integration with the corresponding delta-function and subsequent

use of the delta-function vields
/ U(r)w(r) e ™ dr = (27) [k? — k] AK") (4.21)

This expression can be used in turn to define the Fourier coefficients of the particular

solution as

1
(27) [ — 7]

Therefore, the expansion of the particular solution given in eq.(4.17) may now be

AK) =

fU@ ey e®rar (4.22)

written explicitly as

1 ! ’ ry ik (r—r' T <
toore (1) = o5 [ gy [ U (B () Xk (4.23)

Identifying this expression with eq.(4.12) finally gives an expression for the Green’s

function, which is given by

’ 1 1 k' (r—r' ’ 5
G'(k,r T‘):—/mek( )dk (4.24)



At this point it would appear that this derivation was in vain, because the integral
that defines the Green’s function actuaily does not exist due to the poles on the real
line. However, I use the trick of slightly deforming the contour around the poles and
give a slightly different set of Green'’s functions (for example, see Merzbacher[Mer70,
pp-223] or Itzykson and Zuber{IZ80, pp.32]). Obviously this new set can not be seen as
solutions to eq.(4.11), but the integrals are now explicitly solvable. It is a well known
procedure to take the limit of the contour deformation to zero after integration and to
recover the solution sought in the beginning. The contour deformation can be done
in a number of different ways and it is seen that the different choices correspond to
different boundary conditions.

The first deformation that defines the new Green’s function is described by the

equation

Goe(byrir) = ——— / T 1 e tr=r") gf! (4.25)

T 2r k? —ie]
This is a Fourier-integral and it is exactly solvable using the theory of residues. The

theory requires to distinguish between two different cases (see Fischer [FK88, pp.569].

1. The case r > r’, when the contour is closed with a large semi-circle through
the upper half plane. This contour encloses the pole in the positive half plane,
namely the pole at &' = +Vk2 +1is = + (A: + %) which by the use of residues

vields the following result for the new Green’s function
G-/{\-e (kv r, 7‘,) = 2wiRes (f+’+\/k'2 +$€) (4.26)

with

1 1 T
(Y — — k' (r—r') 497
D Ry (4:27)

Calculating the residue explicitly gives (using Maple V)
i ei(r—r')\/k2+is

A A N __ _ - -
et = s et

(4.28)
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and taking the limit yields the Green’s function
s S i(r—r')k
G} (k,ry 1) = =25

5k (4.29)

The case r < r’, when the contour is closed with a large semi-circle through
the lower half plane. This contour encloses the pole in the negative half plane,
namely the pole at &' = —V/k?2 +1e = — (/z+ %) which vields the following

result for the new Green’s function using the properties for Fourier-integrals
Gy (k.r.r') = —2miRes (f*, ~Vk? + ic) (4.30)

Again calculating the residue yields this time

i e—i(r—r’)\/kz-f—is

G:—s (1‘7~ r, 1") = —5 \/m (431)

and again taking the limits gives

W (kv r) = _iﬂ:,)_k (4.32)
+ + 2 A S 4

The Green'’s functions have the expected units, which is a good test of the calculation.

[t should be pointed out that the two exponents of the different cases have the opposite

sign, which is important in the inclusion of the boundary conditions. The solution

tion

for this wave function is therefore given by the expression

r +oo
o (r) = &(r) +/_m Gh, (k") U () 4 () dr'+/ G (kyr, Y U (') b (r') dr’

(4.33)

However,the inhomogeneous term is given by a plane wave, which results in the equa-

b (r) = Ae*" 4 Be kT (4.34)

r +co
+ [ Gtk UGS d + [ Gy (k) U () 6 () i’



Inserting the original expressions and the appropriate Green’s functions gives

o (r) = Ae* + Be ™" (4.35)

A ([ e v ineeyar) e ([T (hw () drt) e

The corresponding terms in this equation are now collected, which yields
o(r) = [ -k ( I TR () 4 (1) dr’)] eirt (4.36)

[ fizgz (/ e Y (1) )& (') dr )] —irk

In order to incorporate the boundary conditions in a meaningful way the coeflicients
A, B have to be choosen. The solutions are compared with the asymptotic states,
which is done by taking the limits » — +oo (for example, see Bolle et. al. [BGWS83]).
This procedure allows for two distinct choices in a physically meaningful way. The

first choice is A =1, B = 0 which yields

—co thkr 2-[1, oo u- —irk oy
Wi () = e = ([T (1) g () dr) e (4.37)
=S} K +eo —trlky s o0 ’ ’ irk A 2Q
G (r) = [1-m(/® e~k (r)¢_(r)ctr>]e ‘ (4.38)

This represents a plane wave incoming from the right and reflected and transmitted
waves travelling left and right respectively. The second choiceis given by A =0,B =1

and vields the solutions
. 3 +co o .
b3 (r) = e~k _ ,;T“L ( / =RV () b (1) dr') ek (4.39)
i +oo ., _
11)2_00 (7‘) — []_ - _Z_ét_ (/ e k‘,{ (7") ¢Y (7’,) (17‘,)] e—u'k (4.40)
hek \J-oo
This case represents a plane wave incident from the left and transmitted and reflected

waves travelling left and right respectively. The fact that this is indeed one solution

for the one-dimensional scattering, becomes obvious when the asymptotic states are

written the following way

Pro(r) = @ 4 s (k) e (4.41)



b (r) = sy (k)e™™ (4.42)
V7O (r) = spp(k)e”TF (4.43)
VP (r) = e " 45y (k)eTF (4.44)
with the definitions
L” +ee ir'k ’ ’ ! A A%
s (k) = —24 (]_co e AV(r)l,b(r)dr) (4.45)
3 +co . s
s (k) = [1—}%( f e“'rkV(r’)z__/J(r')dr')] (4.46)
i,u- oo —ir'ky s 7 ’ / AT
sa (k) = —ETk(/_oo e “V(r)zj;(r)c[r) (4.47)
Mo
s22 (k) = [1—,%( f e"‘fV(r')L,f,-(r')dr')} (4.48)

This yields the general scattering solution for the +ie correction.
The solutions for the case of the —ie correction result from the following Green’s

function

v ! 1 1 ik (r—r"y y1.0
G_e(k,r,r') = —2?/ - +i€]e r=r) dk (4.49)

The Fourier-integrals are solved again with the residue theorem and two cases result.

1. The case r > r’, when the contour is closed in the upper half. This time the
contour encloses the pole in the negative half plane, namely &' = —Vk? — i¢,

which yields the following result for the Green’s function
G2, (k,r,v") = 2wiRes (f", —Vk? — -55) (4.50)

with

— N 1 L ek (r—r") 4 =
fm )= —?_'2_7;[[312 — k2 + ie]e (4.51)

Calculating the residue explicitly gives

i e—i(r-—r’)\/kz-is

’!/—\s (k' r, T") = 5 Ifz e (45'

and taking the limit yields the Green’s function

s —i(r—r)k
1€ -
:_)-—k——— (4.03)

-~

(V)
~—

A (k,r, ') =



2. The case r < 7/, when the contour is closed in the lower half plane. This

encloses the pole in the positive half, namely &' = \/k? — 7 which yvields the

Green’s function

GY, (k,r,r") = —2miRes (f~,Vk? = ic) (4.54)

and taking the residue gives

; eilr—r WK =i

2

p k2 — s

(4.55

—

GY,(k,r.7") =

o]

which gives after taking the limit
i(r—r')k

k

1€

GY (k,r,r') = 5 (4.56)

Once again, following a similar argument, this gives a solution for the wave function,

but this time it is given by the equation

o, (r) = [A + éﬁ‘—k ( / T iy (') (') dr')} e'*r (4.37)

i/" r irf'ky, o0 ’ —tkr
+[B+m([me+ LV(T‘)‘(_l’I(T‘,)dT‘)]C k

Once again, the result allows two different choices for the constants A, B. The choice
A = 0. B = | gives the solutions ®% (r) and the choice A = 1, B = 0 gives ®7 (r).

The corresponding asymptotic states are then given by

B (r) = Fip(k)e* +e7H (4.58)
O (r) = &y (k)e”* (4.59)
B0 (r) = &y (k)T (4.60)
DI (r) = 5y (k) e ™ (4.61)

with the definitions

, teo ir'k / / ! 5
suk) = o ([ eV e ) (4.62)
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S (k) = [1 + % ( /_ :° TRy () o () dr’)] (4.63)
Sa (k) = [1+,;ik( / :° =RV (r) o () dr')] (4.64)
k) = ([T e () ) (4.65)

This second set of functions describes a recombination process, which is highly im-
probable and therefore generally neglected. This completes the definition of my 1 — D
toy model and in the next section I find a potential that resembles nuclear physics at

least in a first approximation.

4.3 General form of the potential for the LS-equation

In the last sections [ derived an integral representation for the one-dimensional scat-
tering problem, but so far I have not specified the potential that appears in the
Hamiltonian. In this section I give a detailed discussion on the form of this potential
from a meson theoretical point of view first suggested by Yukawa [Yuk35].

However, it is necessary to make a preliminary remark on the potential due to the
omitted constraints used in the derivation. The potential has to be of a special type
in order for the derivation to be valid, namely it has to be a potential belonging to
the Faddeev-class. This class is defined by the constraint

+co
/(1+|x|)|v'(x)|da,- < oo (4.66)

“oo
and the proposed potential has to satisfy this constraint, which, it turns out, it does.
In order to derive the potential for the scattering model the free meson field needs to
be given. The meson is intrinsically a relativistic particle and therefore a relativistic
description should be used. The commonly used description is the Klein-Gordon

equation (see Messiah [Mes76, p. 67])

[cizaf -Vi+ (mh"c)z] w(z) =0 (4.67)




where again in the one-dimensional case the V operators are actually total derivatives

in respect to the variable z. In order to find the potential the static approximation

for this equation is used, which gives

[v2 - (%) 2] % (z) =0 (4.68)

The important assumption is that the source for the pion is given by the nucleons

and therefore include a source term in the static meson field in the following way

[~V +&2] ¢ (2) = p (o) (4.69)
where
k= mgc (4.70)

The source has to be given as a confined small, but extended function with the
same dimensional properties as the nucleon, restricted to one dimension. This is not
immediately an easy task, but this problem is discussed later. The main interest here
is a point source in order to recover the Green’s function description. The Green’s

function for this system is defined by
[V? = k2| G (kr,z — 2') = 8 (z — @) (4.71)

where the Green’s function is assumed to be translationally invariant. A solution for

the meson field is then given by the formal expression
& (z) = / G (ko2 — 2') p (27) d2' (4.72)

which means it remains to find the explicit form for the Green’s function and the
source term. The Green’s function can again be found using the theory of Fourier

transformations, which gives

-+.
g A _ _ ’ —ikL (I—x')dkl 4.7:
G (krs ———\/_.i o (keo k') € (4.73)
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Inserting this expression into the Green’s function eq.(4.71) and performing the op-
eration yields

2

it

+oo +co
1 ~ T ' ol ’
o [ [P~ 2] G e R ek, = L [ etk (a7

where the properties of the delta function and their representation are used (see Mes-

siah [Mes76, p.422]). Comparing the integrands gives the Green’s function equation

in k--space, namely

[~ (KL)? = 2] G (ki K = —m (4.73)
or in other words
= . ! — ]' R 2 .2 -1 -
G (ki k) = —== [—(kL)? — £2] (4.76)

In order to give the Green’s function in coordinate space it is substituted back into
g P

the definition for the Fourier transform, which vields
400
v ‘ L 2 217V ikt (z—2') g1t —_
G (hmyz — ') = —5= | [+(K})? + k2] e*=C=dk, (4.77)

Koy

—0o
This integral can be solved using the theorem of residues, because there are no poles

in the denominator. Again, the two Green’s functions depend on the sign of z — 2/,

namely
edkg(r—x')
G} (ke —2) = S — (4.78)
ekg(z:—:z:')
GY (koo —3') = —S— (4.79)

Therefore, the meson field coming from the nucleon source is given by the expression

o
—co

é(z) = L l:/ e~ k=== (2") dx’ +/ek’(”_r')p (z") dr'} (4.80)

Recombining the integrals therefore leaves me with the expression

[o o]

¢ () =—£: / e *==1p (') dz’ (4.81)

—00




The explicit expression for the nucleon source at the position z, is defined by the

equation
=z

e B~ (4.82)

P(z) = 3p-
bt 44

This results in the following expression for the meson field

>

, f el ,
¢(z) =~z [ ¢TI g (4.83)

and one integration remains. In order to simplify the integration the following defi-

nitions are given

—b

X = 3 (4.84)
2a

a = kg (4.83)
1

b = — 4.86
Br (4.86)

These definitions are used to give the equation
+00
6(z) = xf [ el —algy (4.87)
-0

In order to solve this integral two cases have to be considered, namely z, > z and

z; < z. The first case ; > z gives the following split for the integral

z +o0

£
¢ (z) = xf {/ gaE==") bz =) ! +/e—°(rl_"')"b(r"”‘)clz' + / e~ F =2)=b(z"=2) !
xr

=00 ]

(4.88)
The integrations are rather lengthy, but straightforward, and the result is given by

the expression
2
ol (z) = Y;szi (ae_b(r‘—z) - be‘“(r"“’)) (4.89)

The second case z; < z works similarly and gives the result

2f
Ir — —b(z—z) _ —a(z—z1) 4
¢ (z) = Xoo (ae ) — be ) (4.90)
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Combining the two cases gives for the meson field the following expression

'?'f —bjz—x; —alzr—z;
o (z) = X5 (ae l==zil _ pe—el E) (4.91)

Consequently, the N N-potential is described by

[ o]

V(o) = [ 0@)m(z)de (4.92)

hate =]

or more explicitly

b 2 [o.e] (o 0]
Vi(z,z,) = ng—éﬁ [a / e ble—Tilg=ble—z2lyy _ g / eelz=zlgblz=m2l ) (4.93)

—oco
where the normalization of the nucleon source has been taken into account. The

integration can be performed explicitly and the first term in this equation is giveu by

bf2 T
Ve (2, z2) =Xa—§‘_f—b2 / e tlE—milgmalz=z2lyy (4.94)

—QQ

Again, calculation of this integral requires to consider two cases. First, the integration

for the case z; > z2, which yields

: of* | 7 7 T .
‘/Ib (:El: 2:2) =y a f !:/ e-b(.r[—.r+.r2—.r)dx +/e-—b(xl—r+z—r?_)d$ + /e—b(z—.~1+x—r2)dx
g ) I

a2 — b2
—0co
(4.95)
and performing the integrations results in the expression
] abf? /1 bl 2

W (z1,2) = X2 2 <E+($1"$2)> e~bE=z2) (4.96)

Second, the case z; < z, gives equivalently

abf? /1
V21> (z1,T9) = Xa_"%_{ (5 + (z5 — 1.1)) e bz2—=1) (4.97)

Combining the two cases results in the equation

X abf? /1 —blear N
Vb (2:1,.’122) = X;z—;f‘?)? (Z + I-’Ez — 1‘1[) e blrz—z1] (49b)
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The second term in the integrand

B2 f2 = .
Ve (z1,22) = ~X7 ] ezl g—blz=z2l g (4.99)

is calculated following similar arguments as the ones used for the first term, which

gives the expression

52 9 b

b? 2a 2
a? — b2 (a? — b2)

—alzz —z1|
o e le2 (4.100)

Ve (z1,22) = —xf*— ezt gy 2

Adding up all the terms describes the final expression for the N N-potential in the

one dimensional case, namely

ab 1 :-:.)b —b|zp—x] 2 2[)3
a? — b? (3+|x2—:z:l -a2—62)e TS ((12—62)2{3

—afrz~zy|

V (z1,22) = xf?
(4.101)

which is equal to the equation

—b? 1 2b 2b°
. — f2 _ _ —blzy—z| _ =7 _-alza—z
V(zy,z2) = f 50 — 2 [(E-sz Ty — —b2> e T +a(a2 _bz)e ’ 1]
(4.102)
In the case that the nucleon radius goes to zero this potential collapses to the form
—a|za—z|
e

Vey=o (21,22) = —f?—~——— (4.103)

a

or more explicitly
e‘kRIZZ—rII

Vey=o (Z1,22) = —fz'—k—— (4.104)
This is the potential used in the Toy model in the k-space and the form of the potential

is the one generally expected for a model of the given type. The units of this potential
have to be MeV in order to have a consistent theory. However, k. has units of fm=!,

which requires that the coupling constant has the units

= [Mev} (4.105)

fm
Also, the potential is used in the center of mass system, which requires to express the

potential in respect to the relative position. The potential V' in standard units in the



center of mass system is therefore given by the equation

ﬁ 2 me
o= S mp (4.106)

MxC

with the overall units of MeV, which is also exactly as expected. Therefore, I devised
a one-dimensional model for the two-nucleon scattering and the corresponding NV V-
potential. In the next section I use this potential to find the bound states of the given

system numerically.
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Chapter 5

THE 2N TOY-MODEL BOUND STATE PROBLEM

The creator of the universe works in mysterious ways. Bul he uses a base ten
counting system and likes round numbers.

Scott Adams (Dilbert)

5.1 Integral representation for the 2N Toy-model bound state problem

In the last section I derived a description for the Yukawa type NN-potential in one
dimension for the Toy model. This potential is the equivalent to the 3D Yukawa

potential, which usually is o "_:r. However, even though the 1D potential only

shows an exponential behaviour, I use the expressions Yukawa and Malfliet-Tjon type
for the 1D potentials. In this section I prepare the Toy-model in order to calculate
the form factors needed for the separable expansion. Since [ am only interested in
the bound state problem and not the scattering problem, I choose the unitary pole
approximation (UPA) as expansion method. The UPA and its validity is documented
in detail in a review by Levinger [Lev74] and for more information I refer to the
literature [Har70, PS77, CHSS1].

In order to give the UPA the two-body bound state problem has to be solved and
it is given by the homogeneous part of the t-matrix Lippmann-Schwinger equation.
In order to find the strength factors of the potentials to give the right 2-body bound

state energy Sturmian functions are introduced. Sturmian functions are often used
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for separable expansions of the T-matrix and the scattering problem due their explicit
dependence on the energy. However, I use the sturmian procedure only to find the
bound states and refer for more information on Sturmians and their applications to
the literature [Rot62, Raw82, CCP88, RC90, CR91, DCPA94].

The goal in this section is to develop an integral representation of the relevant
operator equations and then to prepare the equations for numerical calculations, which
are performed afterwards. Once the bound states are found the UPA is implemented,
which is done in the subsequent section. In this thesis I restrict myself to the use of
two simple potentials, a one term attractive potential V] and a two term potential
V2, which is made up of an attractive and a repulsive part of the Yukawa type. Since
the potential V; is a special case of potential V5, where the repulsion is zero, I show
the convergence behaviour for the potential V5 only. In general, the functions are

satisfying the operator equation
VGoV [tbs) =nV [s) (5.1)

The momentum state representation of these equations can be found most easily by
projecting onto the momentum eigenstates and inserting identities expressed in the

appropriate momentum state basis. This procedure yields the integral representation

/ / (k| VK'Y (K| Go k7Y (K| V K™Y (K™ | bs) di!dk" dk" = / K|V K (K | s) di'
(5.2)
The operators are described in the k-space with k given in units of fm~!. In this

notation the wave function is given by
(k| $s) = s (k) (5.3)

and the integral equation has to be solved in order to find the explicit expressions for
the wave functions. The potential in & space is given by the Fourier transform of the

potential in standard units, as defined in the last section. The function in the center
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of mass coordinate space is

e"alrl

V(z',z) = (/| Viz) = 6 (2 — ") f* " (5.4)
and the Fourier transform is given by the explicit calculation of the expression
K|V k) = / K | &Y (Z|V |z) (z | k) dzd’ (5.5)
The calculation is straightforward and yields
I _gp e 1, 2 1
kl ATAR —ik!z 2 thx _ 5.
(K'|V k) /——-\/2?6 f—a Werii dz o SRTTXs: (5.6)

and the overall dimensions of the potential are MeV — fm. The Sturmian function
is defined by an integral equation with integration over &. Therefore, the right hand
side of the Sturmian equation has the units MeV — fm from the potential and fm="
from the integration. The remaining units, besides the wave function, therefore are
MeV. The left hand side must have a similar behaviour and the three k£ integrations
introduce units of fm™2 and the two potentials introduce units of MeV? — fm?2.
Consequently, the Green’s function has to have units of frn/MeV in order to have a

consistent model. The Green’s function in k-space is given naturally by the expression
P g xXp

5 (k' — k)
n_ h2k2
2p

Gk k E) = (5.7)

and indeed the Green’s function has the expected units. Inserting the expression into

the Sturmian equations gives the following result
/U(k,lc’, E) s (K')dk' :/V(k,k’) bs (k') di! (5.8)
where the new function U is given by
U kK, E) = [V (k,0)Go(a, B)V (a: k) dg (5.9)

In this equation the diagonal character of the Green’s function has been implemented,

which reduced the integrations by one variable. For numerical analysis it is helpful
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to write the integral equation in dimensionless variables. This is achieved by the

coordinate transformation u = 2£ = £ which introduces a Jacobi factor in the

integration measure dk = Zzdu = adu. The following integral equation for the

dimensionless wave function is the result of the coordinate transformation

/U (u, ', E)¥ (u') adu’ = / V (u,u) ¥ (u') adu’ (5.10)
where
U(u,u', E) = / V(u,u”) Go (u", E)V (u",u') adu” (5.11)
and
2 1
V{u,u)={@|V]u) = f 5 (5.12)

7Tal + (v —u)

The Green’s function in the same variables is given by

. 2p 1 -
G(u,E) = i — (5.13)
& {m=c)

and consequently the U in dimensionless variables is

2 2 \?2 1 1 1
U(w'su, E) = £ 2 d 2) / Z 2B 2 sadu”
(mee)’ \ma2) J 1+ @ —u")’ gty = ()" 1+ (v —u)
(5.14)

Because the [/ plays the same role as the potential on the left hand side the units of

U and V must be the same, which indeed they are. With the definitions

N 1 -
V(u._u ) = m (0-10)
and
1 1 1

du" (5-16)

U@ u, E =/ .
e B = o w — e B — @y T+ (v — )

the integral equation is given by the expression

. 2 2 -
- ( F) / t‘f(u,u',E)w(u')adu':—.f—aw [V @) @)ade’ (5.17)

('rn,l,c)2 _‘17(1.2



67

This equation is simplified even further and the final equation to solve is

2uc*hc f*?

(mxc?)’ =

/ U (u,o, E) o (u') du’ = / V(u,u's E) o () do (5.13)

This equation is dimensionless and it remains to develop a code for this system for
numerical analysis. The only variables in this system are the eigenvalue, the coupling
constant and the energy. The Sturmian procedure fixes the eigenvalue to be one for
bound states and the energy of the bound state is —2.225MeV as for the V.V problem
in 3D, where the bound state is the deuteron. This in turn should give the value for
the coupling constant.

In the next section [ describe the numerical solution of the Sturmian integral

equation and fix the variables in order to describe nuclear physics.

5.2 Numerical solution of the 2N bound state problem

In the last section I described the Sturmian procedure and found an integral equation
in order to find the states necessary for a separable expansion of the T-matrix. It
is now necessary to develop a numerical procedure that allows the calculation of the
integral equation. With the numerical solution the remaining constants are fixed so
that the Toy-model resembles nuclear physics. In this section [ show how the integral
equation can be transformed into a generalized eigenvalue equation using quadratures
[LP97, PTVF92|. In the given system this procedure has to be used twice, first in order
to find a numerical description of the { and second to find a numerical description
of the integral equation. The operator U was given by the expression

1 1 1

1+ (u —u”)? F"%E —u 1+ (u —u)?

U(u,u', E) :/ du” (5.19)

and the integral is calculated numerically using any quadrature. However, the choice
of the particular procedure is important in order to find a satisfactory convergence of

the numerical method. For now, I assume that the quadrature in question converges
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and the discretization is possible. In this case the integral can be given by

U xi-,I"E =
(zi: 25, E) ;14-(3:;—3:1:)2{325_"’%1+($’°—1’f)2

where the z; are the mesh points of the quadrature and the w; the corresponding

weights. The numerical code for this integration is given by the subroutine ‘Colonel’
given in the appendix and it returns all matrix elements of I/ for the potential V5.
The potential V] can be handled with the same routine, if the relative strength factor

is set to zero. The integral equation
x—/U (u, v, E)Y¢ (W' k) du’ = r]/‘/ u,u’, EY o (u', k) du (5.21)

is discretized over the same mesh points, which yields the generalized eigenvalue

problem

-~\—z:U(x1 z;. EYw;v (z;) = nZV(a,, zj)wj (z5) (5.22)

Due to the weight factors the two matrices in thxs generalized eigenvalue problem
are obviously not symmetric if they include the weights. However, the weights are
associated with the vectors of the generalized eigenvalue problem and it remains to

solve the following system
2 ~ -~ -~
—,\'f U(E)Y =nVy (5.23)

i

where

& = Dy (5-24)
and D, is the diagonal matrix with the appropriate weights. The two matrices in this
generalized eigenvalue problem are now both symmetric. Furthermore, for negative
E they are both real and without singularities, which simplifies the calculations.
However, the matrices are not sign definite, which is clear under the presence of a
repulsive contribution as in the Malfliet-Tjon type potential V;. In the Yukawa type
potential V| all entries in the matrices have the same sign and for appropriate grids
they are even sign-definite, but all grids lose these properties at large N due to tail-

contributions. Therefore, it is necessary to give a detailed convergence discussion
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and show that the system converges long before it breaks down. Realistic nuclear
potentials have a repulsive character at small separation distances and consequently I
choose the more general case of the Malfliet-Tjon type potential for the calculations.
In conclusion, a routine for the generalized eigenvalue problem has to be developed,
where both matrices are real, symmetric and without singularities.

In the calculations I use the following numerical values

e The pion mass mc? = 134.9766 MeV
e The nucleon mass uc® = 938.271998 M eV

e The Planck factor hc = 197.3269600M eV — fm

Also. the appropriate routines from the IMSL library [IMS] are used in the calcu-
lations. It turns out that a strength factor of f2/m = 2.114450 is needed for the
Yukawa type potential in order to get an eigenvalue of one for the largest eigenvalue
at —2.225M eV . Similarly, the Malfliet-Tjon type potential requires a strength factor
f?/m = 10.09496 and a relative repulsion of 4.57000 with a nuclear radius of 0.700 fm
as repulsive range parameter. In figure [5.1] the energy dependence of the first two
eigenvalues of the Yukawa system is shown. It is apparent that only the largest
eigenvalue actually can take on the value one. Therefore the system has exactly one
bound state. All other eigenvalues for the Yukawa type potential are even smaller
than the second one and can be neglected. However, in nuclear physics it is also
known that there should be another bound state just above zero energy and in order
to account for this behaviour [ postulate that my second eigenvalue should approach
the value one at zero energy. This second requirement allows the determination of
a second strength factor, which fixes the repulsive character of a Malfliet-Tjon type
potential. In figure [5.2] the energy dependence of the three largest eigenvalues of a
Malfliet-Tjon type potential is shown. The largest eigenvalue again describes a bound

state with the right energy and a second bound state nearly appears at zero energy.
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Figure 5.1: Energy dependence of the two largest eigenvalues of the Sturmian system
with the Yukawa-type potential

It is important though that the eigenvalue actually does not take on the the value
one before it crosses zero. It is also apparent that the third eigenvalue is actually
negative and comes from the strong repulsive core of the Malifliet-Tjon type poten-

tial. Therefore, the Malfliet-Tjon type potential should give a better description of

oigenvaluo
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45 - 35 a 25 2 -1.5 -t Q5 [}
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Figure 5.2: Energy dependence of the largest three eigenvalues for the Sturmian
system with the Malfliet-Tjon type potential

the nuclear system than the Yukawa type potential. The two potentials are given in



figures [5.3, 5.4] and the potentials indeed show the expected behaviour in coordinate

space. As I mentioned before I only have to show a detailed convergence discus-
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Figure 5.4: Malfliet-Tjon type potential in coordinate space

sion with the Malfliet-Tjon type potential. The Yukawa-type potential has the same
type of convergence behaviour and the same calculations can be performed with the
code choosing a zero repulsion strength. In figure [5.5] it is shown that the largest

eigenvalue at the bound state energy converges rapidly and I choose the system to
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Figure 5.5: Convergence behaviour in respect to number of quadrature points for the
largest Eigenvalue at —2.22M eV with the Malfliet-Tjon type potential

be stable at 41 quadrature points. [ should mention that these convergence tests
have been performed throughout the calculations and the system remained stable at
41 quadrature points. For completeness, I show in fig.[5.2] the bound states for the
Yukawa and the Malfliet-Tjon type potential and they do indeed show the expected

behaviour. Having found the bound state of the system I now proceed to give the

02l 2 : L 1 s
4 8

Figure 5.6: 1D deuteron type bound state in dimensionless variables

UPA, which is the input for the 1-D AGS system.



5.3 Unitary Pole Approximation of the 1-D Toy model

In the last section I defined the input potentials for the 10 NN problem and found
the only eigenstate of the system. Because only one bound state exists, I choose the
unitary pole approximation as the rank-one separable expansion method of choice.
This is certainly not the most elegant method available, but its simplicity helps to
pinpoint the sources of corrections in the calculations. Up to this point I always
assumed that it is possible to find a separable expansion, which gives the following

form for the separable t-matrix

ta (2) = |a) a (2) {a] (5.23)
with
ra(z) = (A —(al Go (2) @) (5.26)

[t now remains to apply the UPA in order to find the explicit expressions for the form
factors and the propagators. So far I have given no restrictions on the form factors
and consequently they could depend directly on the energy = like in the Sturmian
expansion. The UPA is an expansion in respect to the energy independent form

factor |a), which satisfies the form factor equation
la (Eg)) =1 (Eg) VGo(Es) x (Es)) (5.27)

The eigenvalue nn(Fg) is naturally equal to one as shown in the last section. Also
it should be clear from the sturmian procedure that the form factor is given by the
following definition

la(Ep)) =V [¥s) (5-28)
where |¥g) is the normalized bound state wave function. However, the UPA form

factor has to be normalized in the following way

(al Go (Es) la) = 1 (5.29)
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in order to have the right pole behaviour for the t-matrix. Namely, the t-matrix
has to have a pole at the binding energy of the deuteron. The normalization of the
form factors is explicitly done by the code in the appendix. The rest of this section
is a rather technical expose on the behaviour of the form factors, but it helps to
understand their properties in more detail. In fig.[5.7] the first two attractive form

factors are shown while in fig.[5.8] first two repulsive form factors are shown.
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Figure 5.7: The first two normalized attractive form factors for the UPA

(Mav.1m)'?

Figure 5.8: The first two repulsive normalized form factors for the UPA

The behaviour of the two form factors belonging to the largest eigenvalues in




respect to their signs is very similar to the one observed by Harms [Har70] in the 3D
case. It is quite surprising that the 1D system behaves so similar to the one described
by Harms. This similarity is even more exemplified in the behaviour of the t-matrices,
which is described by Harms in the same paper and reviewed by Levinger [Lev74]. In
fig.[5.9] three diagonal elements of the t-matrix are shown with the same energy units

used by Harms (s = 41.46MeV). The behaviour of the diagonal t-matrices is again

{MaVim)

Figure 5.9: The diagonal t-matrices for three energies using Harms’ units

the same as the one observed by Harms. The same similarity is also shown in the
off-diagonal form factors as can be seen in fig.[5.10], which describes the behaviour
of t-matrices that are not far off the diagonal. For completeness, fig.[5.11] shows the
off-diagonal t-matrices that are far away from the diagonal with the same energy.
In order to use the UPA as input into the three-body equations the 2N-UPA has
to be embedded into the 3V space. This procedure is well known for any separable
expansion and involves simply a shift in the energy variable. This shift occurs, because
the three-body operator is given in respect to the total energy including the energy of
the spectator. Therefore, this energy has to be subtracted in order to get the energy

of the clustered 2V sub-system, which yields in general

2
te (2) = |a) 7 (z - 2—‘§V[—) (a] (5.30)
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Figure 5.10: The off diagonal t-matrices close to the diagonal with energy 0.5s
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Figure 5.11: The off diagonal t-matrices far away from the diagonal with energy 0.5s
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For now, I simply give this result and the next section the 1-D AGS system is sym-
metrized and the UPA is incorporated. Once the final form of the resulting effective

two-body Lovelace type equation is found I proceed in calculating the 3V binding

energies.



Chapter 6

ONE-DIMENSIONAL TOY MODEL FOR THE
STANDARD 3N-SYSTEM

A common mistake that people make when trying to design something foolproof is

to underestimate the ingenuity of complete fools

Douglas Adams

6.1 FEmbedding of the 2N t-matrices into the 3N space

In the last chapter I defined a 1-D Toy model for the two-nucleon scattering problem
and applied it to find the strength factors of the Malfliet-Tjon type potential. The 2V
problem is now the input for the channel equations and behaves exactly the same,
except that [ have an energy shift due to the spectator nucleon. In this section [
describe the embedding of the 2V problem into the 3V space explicitly and in the
next section I show the symmetrization of the 1-D AGS-equations.

The channel equation of the standard 3N systems are the main interest in this

section and they are given by the expression

tar (:) = Vg’ + Varga (.:.‘) Vg’ (6.1)

or in a different representation by the expression

tar (2) = var + vargo (2) tar (2) (6.2)



All channels are conveniently expressed in their natural set of Jacobi-coordinates
|par, qar). which are explained in more detail in the appendix A. In order to see the
effects of the spectator nucleons the relevant terms are given explicitly. The channel

potential in its natural Jacobi coordinates is given by
(pars | var P52 G3r) = 8 (qar — @) (Pw| D [P (6.3)

where Tz denotes the 2N potential as defined in the standard two-body problem.
The observed split occurs, because the channel potential is only defined in respect to
the relative coordinate of the two nucleons in the cluster, namely ps. The Green’s
functions can be given following a similar argument, but the energy of the spectator
nucleon has to be subtracted from the three-nucleon energy = in order to get the

energy of the cluster system. For the channel Green’s function this yields

’ ~ ﬁ2q§, /
(Par, qa'l 9o (2) |P5r- @) = 6 (qar — @) (Par| G | = — 577 | IP&r) (6.4)
2 Mz
and the free Green’s function is given by
’ ’ 4 qa’ —q:i’)é‘(pﬁ’ _'p:i') =
(Pars qar| 9o (=) [PZrs qfr) = ( A2q? 72p? (6.5)

<72y, 2t

The channel t-matrix also follows these arguments and the result is the following

expression
. R
(pars Qo () [Pl ) = 8 (a — al) (ol B ( - ;7) ) (66)

which evidently also displays the energy shift due to the presence of the spectator
nucleon. In the two-body case a separable expansion method for the t-matrix is used
and results in a similar expression for the separable t-matrix in the three body space.

The separable t-matrix has the same type of energy shift and is given by

’ - ~ ﬁ'qg’ 4 ! lod
(Pars qar| 3 (2) |Plrs @) = (Pary qar| @) Far [ 2 — - (@ |pgrras) (6.7)
.2./‘/151

where the form factor does not depend on the inter-cluster momentum, which becomes

important later. I am now in the position to describe a symmetrization procedure

and an integral representation of the symmetrized system.
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6.2 Symmetrization of the AGS-equations

In nuclear physics, the nucleons are treated as identical particles, which introduces a
formal simplification in the AGS-equations. In general the nucleons are fermions and
the AGS-equations should be anti-symmetrized. However, for simplicity I choose to
symmetrize the system instead. This choice is made also, because the “nucleons” in
the 1D system are spinless and therefore behave like bosons. I could have included
a spin degree of freedom, by using helicity states, but choose not to do that in this
first model calculation. The choice of helicity for the spin equivalent in a 3D system
without partial wave analysis is described in a recent paper by Fachruddin, Elster
and Gloeckle [FEGO00]. Including the helicity into the 1 D-system should be seen as a
research topic worth pursuing in the future. Nevertheless, I should get some insight on
the importance of the correction terms with the 1 D-system, even without the helicity
component. Next I show how the standard AGS-equation can be symmetrized.

The standard three-body AGS-equation is given by the expression
U&'(‘,: = g&lglga-l + Z S&IEItE’gOUEIEI (6.8)

where the @,b,& and the Green’s function gy indicate that the system is in the
three-nucleon only space. In the standard three body problem no connection to the
pion space is given, but for reasons of clarity I keep the notation. In order to have
a symmetrized system, the input t-matrix {z already has to be symmetrized. The
UPA shown in the last chapter takes care of this symmetrization explicitly, because
only the symmetric bound state is used in the separable expansion. Now, the AGS-
equation describes two distinct cases, the direct scattering where the incoming and
outgoing channels are the same, and the rearrangement scattering where they are not.
The direct scattering is described by the diagonal elements and the rearrangement
scattering by the off-diagonal elements of the AGS-operator U. However, in standard
three-body AGS-models all channels are asymptotically the same and should be in-

distinguishable. Therefore, the form factors in the separable expansion should be the
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same for each channel. The standard AGS-equations in separable form is given by

the expression
(@] 9oUsirgo [b') = (@1 90 [B') 8w + 2 bwer (@] 90 [€) 7= (] 9oUewso[6)  (69)

This expression is derived by inserting the separable expansion for the t-matrix and
folding the equation between the form factors of the clusters. It is important to note
that this equation does not yet depend explicitly on the inter-cluster momenta and
this fact allows for the derivation of an integral representation. Furthermore, the
equation is of the same form as the well known Lovelace equation and can be given

in the abbreviated form

‘Y&'f—)’ = Zatgr + Z Zalal're/_x-&fgr (6.10)

with
.’Yalgl = (C_ZII gOUaIEIgD |5’> (6.11)

and
Zoy = (@] go [p') &zrp (6.12)

However, in the case of three identical particles, not all of these operators are indepen-
dent. On the other hand, they are also not all identical due to the anti-delta function.
The proposed symmetrization procedure follows naturally the Lovelace procedure and
starts with the known constraints.

All channels described by the partitions @, b, & describe the same physical sit-
uation, namely one two-particle cluster and one particle far away from the cluster.
Therefore the t-matrices for these situations should be the same and in the separable

expansion, therefore, also the corresponding 7’s should be the same, which yields
TET, =T, =T, (6.13)

The effective potential term naturally displays that all diagonal elements are zero,

while all off-diagonal elements are the same. in the correction terms contributions



to the diagonal terms can exist. However, the symmetrization procedure can readily
be generalized to that case. In order to stay close to Lovelace’s original procedure, I

continue to treat the diagonal terms as zero for now. In this spirit, the two classes

are written in the following way
ZP = Zzpg = Zpy = Zoy =0 (6.14)
and
ZN = Zpy = Zow = Zyg = Zyo = Loy = Zap (6.15)
The Lovelace equations behave in a similar way and also have two distinct classes,

given by the diagonal and the off-diagonal elements. The diagonal elements are ex-

plicitly given by the definition
XP = Xpa = Xzp = Xsw (6.16)
and the off-diagonal elements by the definition
XN =X = Xag = Xz = X = Xop = Xop (6.17)
With these definitions it is straightforward to show that the symmetrized Lovelace
system is given by the following set of equations
XP = 2ZzN-x¥ (6.18)
XN = ZN 4 ZNr XN 4 ZNrXP (6.19)
This is a coupled set of integral equations and the next step is to decouple the equa-
tions. In order to decouple the system two new operators are defined. namely
X = XP4ax¥ (6.20)
Y = XP—_xV (6.21)
which lead to the decoupled Lovelace set of equations
X = 2Z¥4+2ZNrXx (6.22)
Y = —ZN-2Z%ry (6.23)



83

Lovelace already showed that the second set of equations is not contributing to phys-

ical processes, which means only the following equation has to be solved
X =2ZN 4+2ZVrX (6.24)

[ should mention again that the symmetrized Lovelace equations that include the pion-
dynamics are somewhat different, because they have contributions to the diagonal
terms of the effective potential. However, the resulting complication is taken care of
in the treatment of the diagonal terms. Therefore, [ concentrate on the standard case
for now and give the corresponding integral representation.

I already stated that the given set of equations does not explicitly depend on the
inter-momentum variables gz and I furthermore observe that our final symmetrized
equation has the form of an effective Lippmann-Schwinger equation. In order to
give this equation in momentum representation [ have to sandwich between intra-
momentum states and insert intra-momentum identities, which gives the following

integral equation

(garl X (=) laz) = 2(qa’| Z(2)lgz) (6.25)

¢ ” (r"q:'z"’)2 " e / ’”
+2 [ (aud 221l 7 (= — GEL) (1% (2 e

Introducing the explicit expressions for the effective potential and the propagator and
inserting appropriate identities into the effective potential, using Jacobi-momentum
eigenstates, vields
Zay = f (qa| (xar | PR 40} (P gl 90 1PFY» 457) (PR, a5 | X&) La) S dpl d i dpy dag!
(6.26)
This term simplifies using some well known relations. First of all, the form factors in

momentum representation are given by the expression

(garl (xar | P7> 45) = 6 (qa — 4z) & (P2) (6.27)
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and using the eigenvalues for the g the Green’s operator is replaced by its eigenvalue

representation, which gives

PiQa | DY a5
ZE'S’ = /Xa’ (pa’) <‘ (ﬁ ”,) (Z ",)2 / b’ (pb')a ’b'dp dp,” (6'28)
E +ic— AT P

However, the overlap of the Jacobi-momenta is given by the expression

(P @ | Py a5) = 6 (a5 — @ (pF 4")) 8 (P — P (PE/. 4™)) (6-29)
1, 3
=4 (q-f +ry + ,q;'/) g (pf-z" +5P5 — 7%

which in turn reduces the effective potential term to the expression

X (340 + a) xo (—at — La)

(fq”’) (ﬁq" +fiq”’) (r’iq;’,)z a’b’
2my 2my 2my

(6.30)

Z—rb_l =

a

E + iz —
At this point the explicit Jacobi-sets are ignored, because all channels are the same.
Again it is clear that the diagonal elements of the effective potential are zero. This

means the final expression for the effective potential is given by

. x*(fa+ ) x (¢~ id)
ZN(q,¢,E +is) = (6.31)
b b . &2 2 (fi +h 1)2 (ﬁ, /)2
E4ie — 570 — S5 — S

For bound state problems, which are restricted to negative energies, the potential
terms do not have any poles. Consequently, the term te, which is introduced to avoid
any poles on the real line, can be eliminated. Now it is possible to develop a numerical
code for these terms, which are used as input in the effective two-body calculation.
The propagator follows directly from the explicit form of the separable expansion and
depends on the choice of form factors. However, in general the propagator has the

form
1

T2 (2) = (AL — (a,’l go (z)|@’))

and in the UPA the parameter A is fixed to one, while the quadratic form is equal to

(6.32)

one for z = Epg, the deuteron bound state energy. This means that the propagator

has a singularity at the deuteron bound state energy, as is expected.



6.3 Numerical treatment of the one-dimensional 3N-AGS system

In the last section I symmetrized the 1-D AGS-system and gave an integral repre-
sentation. In order to solve this integral equation numerically I need to perform
two calculations first, namely | need to find an explicit representation for the effec-
tive potential and the quadratic form appearing in the propagator. Once these two
expressions are calcuated they can be inserted into the homogeneous part of the ef-
fective Lippmann-Schwinger equation. The Sturmian procedure is then used to find
the corresponding bound state energy. The energy shifts in the operators due to the
spectators require the use a spline procedure in order to evaluate the form factors
on the new grid points. This is a technical complication that can be dealt with.
The main pitfall is the use of a wrong set of variables and it is important to specify
the same set of variables as the ones defined in the calcuation of the form factors.
For these reasons a concise discussion of the 3N Sturmian problem is given and the
transformations to appropriate variables are shown.

The Sturmian problem is again described by the generalized eigenvalue problem

of the LS-kernel, which is given by the expression

[Ur(a.q. EY¥r (¢, Eydd = [ Z¥ (a,4) ¥z (. E) dg’ (6:33)
with
: Z(a.4"E)Z(¢" 4. E) , .
UT (q? q * E) = 2 "2 dq (6'34)
/1~<a16’o (= = 55) la)

However, the form of the denominator of the kernel does not depend on the specific set
of variables and there is no numerical advantage to any one set. The effective potential
on the other hand does have a preferred set of variables, because the denominator
has units of MeV. In order to get a dimensionless form of the effective form factor
I choose to use the same set of variables as the ones used in the 2N calculations.
Namely, the momentum transformation u = Z is used, which also introduces the

integration measure dg = adu. In order to get the dimensionless version of the
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generalized eigenvalue problem the relations between the operators in dimensionless
and dimensional variables have to be described. These relations are already known
for the potential V, the Green’s function and the wave function of the 2V problem.
The only really difficult relation is the one for the form factors and it is shown how

to get this relation in detail. The form factor in g-space is defined by the expression

x(a) = [V(9,4)6 ) dg (6.35)

which evidently has the units MeV — fmz. The normalized form factor on the other

hand is given by
f ‘/- (Q? q,) LI) (q,) dq’ (6.36)

VI x (@) Go(q, Eg) x (q) dg

which has the appropriate units of (MeV — fm)% in order to expand the t-matrix.

X (q) =

Next a coordinate transformation is performed on the un-normalized form factor in

order to get the equivalent expression in respect to the dimensionless variables

, ¢ ) am
x (¢g) = raz./‘ (u,u) adu’ (6.37)
or in other words
[} f2
=X (v) = x(g) (6.38)
Taz

In this expression all units are collected in the overall constant and they are given

t - . . . -
by MeV — fm2. The normalized form factor in dimensionless variables can now be
given by the expression

> 1% u,u 2 o g’
LIV (u,w) L (6.39)

J_’*'\/(mc) I x () Go (w) x (u) adu

x(q)=

or in other words

- mc
X (q) = e (u) (6.40)

where again all the dimensions are collected in the overall constant. Now the 3NV

<>

operators are described in dimensionless variables using the appropriate coordinate



transformations. The effective potential is written in the following way

2 o ’ L ~ | G4
. mc 2 Ut pu) x(—3u —u
ZN(q,q,E)=( 5 ) £ il )x( ) 2 (6.41)
Zpa (mc) E' - = (u2 —(u+u)" —(u) )
or in other words
ZN(q,q¢,E) = 22‘\’ (u,u', E) (6.42)

where the effective potential in dimensionless variables is defined by the previous

equation. The propagator in dimensionless variables is given by the expression

™ (u, E) = (1 -—/ = ) ‘g(-u')—\;?(u')( ,)2(lu') (6.43)

and can be used in any given valid set of variables directly. Inserting these expres-

sions in the kernel equation and performing the coordinate transformation on the

integration variable yields
Ur(q.4,E) / ZN (u,u", EY T (W, E) ZN (W, u', E) adu” (6.44)

It should be clear that the kernel again has the same units as the effective potential,
which is exactly what is expected. Once this operator is calculated, it is used as input
in the generalized eigenvalue equation describing the Triton bound state problem in

dimensionless variables

——/UT(U u', E) lpj:/(_u’) adu’ = éij (u,u', E) \D—I\'/(_;iadu' (6.45)

This equation can be simplified even further to the expression
/ Ur (u, o', E) U (u') du’ = / Zr (u, o, E) Up (') dud! (6.46)

which is now ready for numerical analysis. In the appendix B the code “tritonmain.f”
is included, which is the core code for the calculations. I performed the calculations
again with a 41 point Gauss-Legendre quadrature and the convergence of the eigen-

value is striking as can be seen in fig.[6.1]. The behaviour for the eigenvalues of the



Figure 6.1: Convergence of the largest eigenvalue for the sturmian system at the triton

binding energy

Figure 6.2: The energy dependence of the eigenvalues for the Triton GEV with the
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sturmian system with the Yukawa-type potential in respect to the energy is given in
fig.[6.2]. The bound state appears at —8.01MeV and the second largest eigenvalue is
negative. [t is surprising that the second largest eigenvalue is actually negative con-
sidering that the Yukawa has only positive eigenvalues. Nevertheless, it is explained
by the fact the the effective potential of the 3V case is not as simple as the Yukawa-
type potential of the 2V case. The crossing of the second largest eigenvalue at —1 is
of no importance.

The system using the Malfliet-Tjon type potential is strikingly similar, as can be

seen in fig.[6.3]. Here the bound state appears at an energy of —-7.277TM eV . There also

oigonysluo

Figure 6.3: The energy dependence of the eigenvalues for the Triton GEV with the
Malfliet-Tjon potential

is a difference in the shape of the corresponding solutions of the BS quasiparticle prob-
lem, in the inter-cluster momentum ¢ (in shorthand, I call this the g-eigenfunction)
as can be seen in fig.[6.4]. While the Yukawa type potential produces a wave func-
tion that is sign definite, the Malfliet-Tjon type potential produces two knots in the
tail and a negative contribution at intermediate momenta. This behaviour can be
attributed to the repulsive contribution from the Malfliet-Tjon type potential and is
expected. This result is the benchmark for my investigation of the correction terms

in the Padova model, which is done in the next chapter.
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Figure 6.4: The g-eigenfunctions of the bound state problem for the Yukawa type and
Malfliet-Tjon type potentials
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Chapter 7

THE PION DYNAMICS CORRECTIONS TO THE
STANDARD 3N-SYSTEM IN THE 1-D TOY MODEL

[ am a great believer in luck, and I find the harder [ work the more [ have of it

Stephen Leacock

7.1 Off-diagonal correction terms to the effective potential Z . g:

In the quasiparticle approximation scheme [ already argued that the pion dynamics
introduces corrections to the effective potential. In this section I show how these
correction terms can be incorporated in a first approximation. The explicit form of

the off-diagonal correction terms is given by
ZAF"‘g' = (a'#| QOngO (7} 7 (¥ Go fago I5’77’> (7.1)

This type of correction terms is equivalent to the type of diagrams used in 3NF’s
based on the Fujita-Miyazawa model. [t is not a trivial task to actually find an
explicit algebraic expression for these terms that are suitable for numerical analysis.
The reasons for these difficulties are that both a three and a four body system have
to be considered. Furthermore, the # N t-matrix and the incoming and outgoing form
factors are given in different partitions.

These diagrams include a part that is explicitly given by modern 3NF. Instead of

developing a dynamical description of the pion dynamics, it is possible to replace a



part of the correction term by a static 3NF term. In order to do this, the contact
term of the Tucson-Melbourne 3NF adjusted for the one-dimensional model is used.
[ follow the form of the TM 3NF given by Friar, Hueber and van Kolck [FHv99], but
since the 1D Toy model is based on a one-dimensional coupling to spinless nucleons,
the overall constants are slightly different. In the same set of variables as the ones

used in the standard AGS calculations, the TM 3NF type potential is given by

Vq(*i)[: f2 F'NN(Q2 ;VN ((Q’ 22
(™) (@2 + =) (@7 + =)™

where @ is the pion momentum in the center of mass system. Furthermore,the vertex

function FZyy (@?) is assumed to be equal to one, which gives

W= T (o7 (73)

The strength constant a;, has units of fm~"! in order to get the right units for the

off-diagonal correction terms.
Even though only the contact term of the TM 3NF is investigated in this thesis
the results should help to understand the pion dynamics better. The correction term

for the effective potential itself can now be given in respect to this 3NF term in the

form
X (Pa) e x (P}) / -
Z =/ dp.d 4
TM _ (21‘})2 — (,;pd)z TM(Q Q) o (ﬁqé)z ~ (ﬁpg)z Pa Py (7.4)
e Ha 2.M 21y

In order to solve the integrals the pion momenta are expressed in respect to the Jacobi-
momenta of the incoming and outgoing three-nucleon system. The pion momenta are
given in respect to the Jacobi-momenta that couple to the nucleon on which the
pion is created last. Due to the odd man out notation, this set of Jacobi-momenta
is simply defined by the index of the coupling constant describing the creation and
destruction of the pion on the particular nucleon. In this case, the pion momentum @

is defined in respect to the Jacobi-momenta g, ¢;, which define the Jacobi-momenta
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on the left and right of the vertex. Since momentum conservation on that vertex has

to be satisfied the pion momentum is simply

~1
(S]]
~—

Q=q—q (7.

Similarly, the second pion line is absorbed on nucleon ¢ and the momentum is defined
by the expression

Q' =¢—q (7.6)
However, the pion momenta have to be given in respect to the Jacobi-momenta of
the in-going and out-going states, which are given by the sets p,,q. and p;,q. In
other words, it is necessary to find appropriate transformations in order to express
the variables ¢/ and g in respect to a suitable set of Jacobi-momenta. Finding the

transformations is straightforward and is shown in appendix A, they are given by

1 -

% = Pa — 54a (7.7)
s / l ’ ~

9% =Py~ 5% (7.8)

The pion momenta in respect to the same set of Jacobi variables that is used in the

integration are therefore given by

1 .
Q=Pa— 5% —a (7.9)

1 -
Q=q+p+54 (7.10)

Consequently, the TM 3NF contribution to the off diagonal correction term of the

effective potential is described by

. aLf? X (pa) 1 -
Vv = 3 > (7.11)
7 (ﬁ. i (ﬁ a) ’ 2 m2¢e2
(7) E - 23% - 2;:;‘, ((Pa - %f[a - Qb) + = )

1 4 ,
x (Ph) dpadp,

2 2 2 r\2
((Qa +p,+5q5) + —"igzé) g (ta) _ (tn)

2M, 2uy
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It is clear that the expression depends on the same two variables as the off-diagonal
terms in the standard AGS effective potential, namely q,,q;. Therefore, the integra-
tion can be perfomed numerically and the constant a; can be adjusted. However,
the potential is given in the same type of variables as used in the standard 3N AGS
calculation and consequently a coordinate transformation to the same coordinates
u, u’ has to be performed. The normalized form factors in dimensionless variables are
given by the expression
m

<€ .- o
X (pa) = ﬁX(ua) (7.12)

and the TM 3NF in dimensionless variables is described by

arff m: \>1 (2u\* [ op
ZT‘W = lf = a_‘{ —m,% /Z'{}x\[ (ﬂaauavag7uz) azd&adﬁ; (7‘13)

(7)) \V2ua
where
748 ~ ~7 X(&a) 1 -
Z’II'}AJ (uﬂvua’ubsugp) = 2 -2 ((.14)
e TN R (R Y
1 x ()

X N AL 2—“E——‘“—(u’)2—(ﬁ'2
(ua + uy, + —2-ub) +1) m2 M \Yh b

Collecting the variables in the same way as in the standard AGS yields the following

expression for the dimensionless off-diagonal correction terms

2
ms 2u 4 J IS R
ZTM:( .)r ) —Zrym = —Z1Mm (7.15)
Vpa] m2 a
where
2 9
- a f* 2u ~ . - - . ~
Zrw = T i / Zrar (g, g, Ty, 1)) digdi, (7.16)
! kg

This allows for the calculation of the off-diagonal correction terms which are then in-
cluded in the Triton calculation. However, the explicit expression for the constant a;
is still not defined. In order to define this parameter in a consistent way a comparison
with the previously defined 1D scattering equations is made. The transmission coef-

ficients are now playing the same role as the scattering amplitudes, which are used in



the original 3D Tucson-Melbourne definition. However, the transmission coefficient

in respect to the t-matrix is given in the following way

2w, , o
512(‘3)=—ﬁT:t(P,P,E) (7.17)

The definition for the a; is now using the scattering threshold expression for the NV
t-matrix and assuming that it is hundred times larger than the corresponding =NV
t-matrix in that range. This is a reasonable assumption, because at the scattering
threshold in the 3D case only s-wave scattering is allowed and the two scattering
amplitudes are related to each other by a factor of roughly 100, see Ericson and
Weise [EWSS]. The coeflicient a, is therefore defined by the expression

2mu
=

t(p=0,p =0,E =0) (7.18)

a; =

which is dimensionally exactly the required form. This definition is not the same
definition as in the 3D TM-definitions, because the 1D case is fundamentally different
from the 3D case. However, the terms can be interpreted as the equivalent of the
TM-force terms in the one-dimensional model. I show the explicit effect of these terms

in detail in section 7.3 together with the diagonal correction terms.

7.2 Diagonal correction terms to the effective potential Z,: 4

In addition to the off-diagonal correction terms I also have a set of diagonal cor-
rection terms. These terms do not appear in the Tucson-Melbourne 3NF, because
they are assumed to be taken care of completely by the underlying AGS-model. In
order to avoid overcounting I have to subtract the separable potential describing bo-
son exchange type diagrams from the corresponding NN t-matrix before calculating
the correction terms. This procedure is described in a recent paper by Canton and
Schadow [CS00b], which I follow in the definition of the diagonal correction terms. I

have argued in a previous section that the diagonal correction terms are given by the
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expression

ZZa = (@F|gof}+ f1Gola) 7 (al Gofago |@'F) (7.19)
+(@'7| 9o f1Go |a) 7. (a] Go f5s + fr90 |@'F)

This expression is similar to the off-diagonal one in respect to the fact that it is
possible to introduce a static term replacing part of the expression. It is possible to

rewrite this expression in the following form

220 = (@7 0oVi¥ela') + (@] gVl e la'm) (7.20)

i (FL ___i[go 31\{90 la 7‘—) + (a, Tlgo‘/&vgo [a "’)

where
Vil = fiGola) 1 (a] Gofa (7.21)
The integral representation in the appropriate Jacobi coordinates is given by
Ziw = f (afa()pa (np )2 (V:W + Vo Ve + ‘/;rsfrv) (7.22)
E — T2M
x (P2) ,
XE _ (hqr)Z . (ﬁpl)2 pddpa
2M 2u

The terms V24’ can again be given in a similar way as the corresponding off-diagonal
terms, namely the product of two vertices, the meson propagators in the static ap-
proximation and what happens in between. However, this time the dynamical term

contributing to the diagonal correction is given by

[ ke ~ 2 he
3N [ et (4) ’ q. (4) ~ s
vV @ (Q) - Twa GO (p q) ta (Pa,Pw 21‘4 ) C (P (I) wf ((....3)
where
2.2
Q2+ ==f (7.24)

52

and where the relativistic pion energy is given by the expression

= (heQ)? + m2ct (7.25)
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The square roots come from the normalization of the pion fields as observed in a second
quantization procedure, see for example in Mandl and Shaw [MS84]. Furthermore,
since the pion in flight does not interact with the nucleons, only one pion momentum
is relevant, namely

Q=q—q, (7.26)
The two Green’s functions depend on the same variable ¢, which is due to the fact
that while the pion is in flight the relative momentum can change from p to p’, but
the total momentum stays conserved. Therefore, since only the total momentum of
the two nucleons involved in the scattering contributes to the definition of ¢, the
momentum ¢ stays the same until the pion is absorbed again. Also, in this definition
all nucleon recoil terms are ignored. Furthermore, the definitions of the renormalized
vertex functions and the static approximation of the Green’s function in the # VNV
case recover the original expression of the OPEP potential. The four-body Green’s

functions are generally given by the expression

1
GV (pq) = ——— (7.27)
E — % -_ Eqw — W
However, the static approximation
2 2 2 2
ExP L W)« (7.28)

2u 2M T 2 2M

gives for both Greens functions the simpler expression

?! 1 .
G (p,g) = —— (7.29)

™

Since [ used the static approximation, the terms now define the static contribution

to the diagonal correction terms, which are given by

R 2 ]' ry / qc2; b
Vo = {‘:Wta (pa,pa, — 5 — ficww) (7.30)

T

where the fic factor is incorporated into the pion energy of the Green’s functions

2,2
we =1/Q2+ mﬁ”f (7.31)
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Also, I set w = w,, because the renormalization comes from the same pion field as the
pion field observed in the propagation. The pion momentum in this case is simply
given by

Q=¢—gq (7.32)
because it describes the momentum transferred in the process. The transition ampli-
tude has be adjusted to ensure that no terms are introduced that are already taken
care of by the standard AGS theory. Therefore, I exclude all the terms that describe
a one-pion exchange and subtract explicitly the separable version of the attractive

potential. This vields for the subtracted t-matrix the expression

A q it
to | Pas Doy E =ty | Pa,pl, E — =2 = — v (pa, P, 7.3

(p Par b — 507 ) (p P E— 507 ) v (Parpy)  (7.33)

which in dimensionless variables is given by
¢

ta (pa: Pas E - IM Cwﬂ) = ({-34)

(TI’I.ﬂ-C)2 . 2[«6 Ha 2 Lt ~ 1 attr attr o

——an X (ua) Ta mE —_ ?‘-/T lla) — mwc ('Ll ) (’Ll (ua)

The final expression for this part of the diagonal static correction in dimensionless

variables is now

2 3 ta Qg gy =y 2“ Ba (7,)° — ——

T (mac)’ 2 wy

where the ‘hat’ means the dimensionless t-matrix. The other three terms have to be
calculated the same way which yields the following expression for the static contribu-

tion to the diagonal correction terms

v _ £ P 1 (B (g B () )
o ™ (er) K L:'J,‘?’r B

g (=~ =1 2 _ Ba [,,0\2 __ 24a ~
te (ua, U, (—TQ?‘E i ('lta) ——mxcw,,)

+
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The correction terms are again given by the integrated form, which is in dimensionless

variables given by

1f2 2h X (U, ~
ZA[),A' — __.f;_ c / 5 X(u ) V:'Mv (7 3-)

S X
a7 (mgc)® mza B —3r (uq)? — (@g)?

X (i) ~ g
du.du
p) 2 Gle
——nf%‘; E — & (uy)” —(a})

I am now in a position to calculate the triton binding energy in the one-dimensional

system with the correction terms of Tucson-Melbourne type and the “new” type of

diagonal correction terms.

7.3 Effect of the correction terms on the triton

In the last two sections I developed the correction terms for the effective potential and
described them in a form suitable for calculations. The code for the calculations is
given in the appendix B and in this section [ describe the detailed results of these cal-
culations. [ expect the Tucson-Melbourne type correction terms to give the dominant
contribution to the corrections, because the original Tucson-Melbourne 3NF showed
some success. The modern 3NF’s are usually introduced with some parameters that
have to be adjusted and in the given model the adjustable parameter is obviously the
strength parameter between the NV and =V threshold scattering t-matrix. Accord-
ing to Ericson and Weise [EW88][p.16] the two scattering lengths relate to each other
by a factor of one hundred and I used this to gauge my corrections terms. The result-
ing binding energy for the triton with this strength factor is —8.17MeV compared to
the previous value of —7.28 M eV without any correction. However, the strength factor
is an adjustable parameter and it is important to investigate the effect of varying this
parameter. In fig.[7.3] it is evident that the triton binding energy calculated with the
TM 3NF depends rather strongly on the particular choice of the strength parameter. [
do see the expected asymptotic behaviour for small values of the strength parameters,

but the convergence to the binding energy without any TM 3NF corrections is slow.
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Figure 7.1: Dependence of Triton binding energy on the value of the TM 3NF strength
parameter.

This means that this effect is certainly non-negligible. However, it is also clear that
the effect of these terms is rather large for larger values of the strength factors. This
means that if the 7V scattering length is too close to the NN scattering length at
threshold, the effect on the binding energy would be comparable to the corresponding
effect due to the 2V force. In that case nuclear physics as it is known today would
not exist. This gives a physically reasonable range for the strength parameter, or at
least an upper limit.

The next step is to include the diagonal correction terms into the calculation.
Unlike the off-diagonal correction terms, the diagonal ones do not have an adjustable
parameter. I calculated the triton binding energy again, this time inlcuding the TM
3NF with the parameter adjusted by 0.01 and including the diagonal correction terms.
I observe another shift in the triton binding energy, which now is equal to —8.49MeV.
However, the fact that the triton binding energy is so close to the actual experimental

value of —8.48MeV should not be given to much weight. After all, the model only
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describes a spinless, one-dimensional and symmetrized system. However, it turns out
that compared to the correction of the one-dimensional TM 3NF adjusted by the
parameter value 0.01, the additional shift in the triton binding energy due to the
diagonal term is about thirty percent of the one due to the TM 3NF alone. This
means that, if the diagonal terms would be ignored and the TM 3NF adjusted to
recover the triton binding energy, the TM 3NF would be thirty percent too strong.

For completeness, [ show in Figures [7.2,7.3] what effect the correction terms have

on the g-eigenfunctions. I observe that the correction terms essentially “flatten”
14 T T Y T - T
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Figure 7.2: The g-eigenfunctions at an energy of —8.48MeV. The three graphs
describe the eigenfunctions for the uncorrected version, the version with the TM 3NF
correction and the version with both corrections.

the normalized g-eigenfunctions. I should note that the three g-eigenfunctions are

calculated at the same energy, namely —8.49MeV .
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Chapter 8

SUMMARY AND CONCLUSION

I don’t know why I did it, I don’t know why I enjoyed it,
and [ don’t know why I'll do it again

Bart Simpson

8.1 The Padova model

In this thesis [ demonstrated that it is possible to include one pion degree of freedom
into a standard 3V system. The Padova model, describing the 7 NNV system, was
shown in section 2. I argued that it is possible to find a physically sound coupling
between the pion and no-pion sectors and consequently to define a AGS type system
describing the # VNN system. Canton [Can98] already showed in the original paper
that the resulting theory is connected and I did not repeat these arguments in this
thesis. Furthermore, I want to stress that the Padova model is not plagued by the same
problems observed in the earlier TRABAM-type # NNV models. However, the channel
equations of the Padova model on the two-cluster sub-level are rather complicated.
They are given by a coupled matrix equation and it is not an easy task to actually
find a solution to these ecuations.

I also showed that it is possible to introduce approximations that are given on
physical grounds in order to simplify the channel equations. The quasiparticle ap-

proximation leads to a Lovelace type structure for the Padova equations. Further-
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more, [ argued that it is reasonable to ignore some terms in the channel equations on
physical grounds. This allowed me to find directly a separable solution to the two-
cluster channel equations of the Padova model. Freezing out the pionic channels in
the Lovelace-type Padova equations using the Feshbach procedure resulted in a new
system describing the 3.V problem. The system differed from the standard ones in the
fact that the explicit pion degrees of freedom show up in correction terms to the stan-
dard effective potential of the two-cluster Lippmann-Schwinger type equation. One
type of correction term, which allowed for the propagation of a pion in the presence
of a three-cluster interaction was not investigated in this thesis. It should be checked

in future research efforts if this type of correction terms produces a non-negligible

effect.

8.2 Three-nucleon forces

The other two types of correction terms were investigated in more detail in this the-
sis. [ demonstrated that one type could be interpreted as the equivalent to correction
terms described by modern three-nucleon forces. In particular, [ argued that part
of the diagram describing this type of correction terms could be interpreted directly
as the equivalent of a static Fujita-Mivazwa force diagram. In this thesis I replaced
this part of the diagram by the corresponding static approximation. Nevertheless, I
believe it could be of interest to investigate this type of correction terms in a fully
dynamic description instead. This type of description would introduce an energy shift
in the #/V t-matrix due to the spectator nucleons and it could be interesting to see
if this energy shift reduces the effect of the correction terms. This investigation also
could help to decide if the three-nucleon force effects are actually small as argued
by Afnan, Saito and Haidenbauer [SA94, SH00]. However, besides this already thor-
oughly investigated type of correction term, I also showed that another type should

be of interest. In most cases of three-nucleon force descriptions the correction terms



are not based on a Faddeev-Yakubovsky theory. This means the underlying theory is
not the same as the model that is used in subsequent calculations. This introduced a
new problem because it is important the correction terms do not produce any terms
that are already taken care of by the model used in the calculations. This last type of
diagrams is commonly ignored because it is assumed that it is already taken care of
by the AGS-model. However, I argued that the terms, which incidentally in this case
are a result of the underlying model itself, should not be completely cancelled. In the
one-dimensional Toy calculation this cancellation was shown to be indeed rather in-
complete. I believe the described model could show some interesting results in actual

three-dimensional calculations (and indeed already has [CS00b, CS00a}).

8.3 The Padova model applied to a one-dimensional system

I also developed a one-dimensional system that was able to mimic, at least in a
first approximation, nuclear physics. The system was used to test the effects of the
correction terms due to the pionic degree of freedom in a triton binding energy cal-
culation. Without any correction terms, the one-dimensional system had a triton
bound state energy of —7.27MeV. This means the system clearly underbinds the
triton whose binding energy should be —8.48MeV | in common with results obtained
in full 3D-calculations using realistic NV N-interactions. The Tucson-Melbourne type
correction term in the one-dimensional model introduced a correction in the right
direction. However, the magnitude of the effect depends rather strongly on a free
parameter used to adjust the relative strength between NN and 7V threshold scat-
tering. At the strength parameter usually used for s-wave threshold scattering in
three-dimensions the effect of the correction term pushed the triton binding energy
to —8.17M eV, clearly closer to the experimental value. Nevertheless, the strong de-
pendence on the strength parameter makes it hard to pin-point the exact size of the

effect. In the Tucson-Melbourne approach this strong dependence does not really
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matter too much, because obtaining a fit to the triton binding energy actually would
be used to adjust the strength parameter.

However, I also showed that the second type of correction terms also introduces a
non-negligible effect. At least in the symmetrized, one-dimensional. spinless model the
effect is rather large, namely around thirty percent of the TM-type effect. The effect
itself does not depend on any adjustable parameter and therefore can not be made
small enough to vanish by fiddling with the parameter. The additional correction
terms pushed the triton binding energy to —8.49MeV, but this value should not
be taken too literally. First of all, the underlying Toy-model only describes nuclear
physics in a first approximation and second the choice of the strength parameter
value has to be seen as a lucky guess. [ already mentioned that a slight change in this
parameter has a rather significant effect in the binding energy, which consequently
would move the total effect in the same direction. However, it can be argued that
the relative effect between the diagonal and the TM-type corrections is rather large.
Consequently, if this behaviour translates to the three-dimensional case, then the
present choice of parameters for the TM-type three-nucleon forces should yield a

force of this type that is too strong.

8.4 OQutlook

In conclusion, it is possible to introduce one pion degree of freedom into a standard
three-nucleon problem. Furthermore, the present use of three-nucleon forces seems
to neglect an important type of corrections. [ believe the role of the dynamical pion
degrees of freedom is not yet completely understood and more work needs to be done
in this field. I also hope to have shown that the field of Few Body physics is still alive
and well and could contribute to our understanding of the nuclear world for years to

come.
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Appendix A

JACOBI-COORDINATES OF THE SYSTEM IN
MOMENTUM SPACE

In this section [ investigate the description of the algebraic model in respect to
the momentum space. This will be achieved by introducing the concept of Jacobi-
coordinates and show their explicit realization in the given chains. Every chain will
have a natural realization in respect to the Jacobi-coordinates and it will be necessary
also to describe the transformations between the sets. It should be clear already that
there is an intimate relationship between the new chain-notation and the Jacobi coor-
dinates of the respective chain. This means the new notation not only allows for the
description of the algebraic model, but also is extremely helpful in the representation
of the model.

The role of the pion is special in the system and this fact has to be taken into
account explicitly when defining the Jacobi-coordinates. The Jacobi-coordinates in
the three-nucleon space already play a central role in the development of the Jacobi-

coordinates of the # VNN system, because the form the basis of the generalization.

A.1 Jacobi-coordinates for the NNN sub-space

In order to be able to find a generalization of the Jacobi-coordinates to the T VNN
system, it is crucial that I give a clear description of the 3.V Jacobi-coordinates first.
The problem of finding a suitable set of coordinate transformations is a long stand-
ing one and several different definitions were given in the past. Probably the most

commonly used system is the one described by Schmid and Zimmermann {SZ74],
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Gloeckle [Glo83] and Adhikari and Kowalski [AK91] (SZGAK). However, in the ma-
trix description the transformation matrix between the natural momenta k; and the
Jacobi-coordinates has a determinant of —1. Even though the resulting transforma-
tion matrices between the different sets of Jacobi-momenta have determinants of +1,
I find this a mathematically strange definition.

Another description given by Lovelace [Lov64] which does not have this initial
problem, but Lovelace included the reduced masses into the definition of the Jacobi-
coordinates. This procedure is not widely and does not give any advantages in the
specific problem, which is why I also do not use this type of definition. However, Gar-
cilazo and Mizutani [GM90] (LGM) also gave a definition for the Jacobi-coordinates
that has a determinant of +1 for the defining matrices. They used the Lovelace ap-
proach, but without the inclusion of the reduced masses into the definition of the
Jacobi-momenta. This type of Jacobi-coordinates would be my prefered choice, but
for reasons of tradition rather than aesthetics I define the Jacobi coordinates in the
commonly used way according to SZGAK.

In the three particle space described by the momenta of the three particles k,, &y, k.
I now define three Jacobi momenta. The first momentum is given by the relative
momentum between two of the particles and I use the odd man out notation. Namely,
the Jacobi-momentum p/, is given by the relative momentum between the two particles
b,c. At this point I have to make a choice in the sign of the relative momentum and
decide to use a cyclic permutation in the momenta. There are three possible choices
for the first Jacobi-momentum and they all can be derived by cyclic permutation of

the indices in the defining equation

, 1
p.=— -
m, + m,

(mckb - mckc) (Al)

It is evident that the three momenta are ordered in a cyclic permutation of a, b, c as
required. The prime in the Jacobi-momentum is only important for the generalization

of this system to the T NN N case. If [ do not intend to make this generalization, the
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prime could be omitted altogether. Up to this point I follow the usual convention used
in all definition of Jacobi-momenta described earlier (except Lovelace). However, the
SZGAK choice differs from the LGM choice in the next step when defining the second
Jacobi momentum. I need to find the relative momentum between the center of mass
motion of the first two particles used in the first Jacobi momentum and the third
particle. Again, there is a choice of sign and I use the SZGAK choice, which always

subtracts the center of mass of the first two particles from the third one, namely

1
L— my +m.) k m by + k A 9D
9a a i 5 } . (( b C) 1"‘1 a (,"b LC)) (‘ "")

The choice of this sign gives a determinant —1 for the transformation matrix and the
remaining two Jacobi-momenta of the second type can be given by cyclic permutation
of the indices. The last Jacobi-momentum is given by the total momentum of the
system and simply yields

P =ky+ky+ k. (A.3)
which is the same for all three sets of Jacobi-momenta. This defines the system of
Jacobi-momenta in the 3V space. However, it is possible to give a matrix notation
for this transformation, which allows for an easy computation of more complicated

transformations. The transformations in matrix form are given by the general expres-

sion
Pa = T& v (.A.“’l‘)
with ) .
0 m. __my
my+me mytme
T& — mp+me _ Ma —_— Ma (Ao5)
mp+ma+me mytma+me myt+mat+me
1 1 1 ]

The index @ is already in preparation for the generalization to the # NN N system.
It should be evident that this transformation matrix again has a determinant of —1

and the transformation matrices for the other two sets of Jacobi-momenta follow the



same procedure. What [ gained with this matrix notation is an easy way to find
the transformation between two different sets of Jacobi-momenta. [ simply have to
transform one set of Jacobi-momenta back to the original set of particle momenta
using the inverse transformation and then transform the set into the required one. In

other words I simply have to give the expression

P, = T,T; 5, (A.6)
where I define
gl e el
Tos =T:T; ' = ~1 — g 0 (A.7)
0 0 1

It is clear from this transformation matrix that the total momentum of th system is
conserved and all transformation between different Jacobi-momenta can be given in
the same way. The determinant of this type of transformations between different sets
of Jacobi-momenta is +1. Furthermore, this general procedure also applies to the
more complicated # VN N system and [ only need to find the transformation matrices

between the different sets of Jacobi momenta and the original particle momenta.

A.2 Jacobi-coordinates for the # NN N sub-space

The Jacobi-momenta in the # N VN system are more complicated, because of several
reasons. The fact that they are defined in a four body system already introduces the
complication due to the variety of possible chains. Furthermore, since [ have the pion
as the fourth particle I also require that the deletion of the pion should recover one of
the three-body Jacobi-momenta described in the last section. Another requirement is
that I always want to have a determinant of —1 for any of the defining transformation
matrices introduced. In this section [ define all transformation matrices between the

Jacobi-momenta of given chains and the original particle momenta that have the
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three-particle system a as a subsystem. The transformations that have the systems
b, as subsystems can be given in an equivalent manner.

The chain of partition systems in the four-body space naturally fall into two
categories, chains of the 3 + 1 type and chains of the 2 + 2 type. First I investigate
the chains of the 3 + 1 type, which again fall into two categories, the one where the
pion is coupled last and the one where it is not. If the pion is coupled last, I only have

one chain that has the system a as a subsystem, namely the chain 7’'a. I define the

transformation matrix for the Jacobi-momenta describing this chain in the following

way
[ 0 s e 0
my+me mp+me
mp+me . mg _ My O
me+mag+m me+me+m Mp+Magt+me
Tory = ot e otme (A.8)
m - T - m - mpy+ma+me
Mat+mptmetme Mai-Mptmetms: matmp+me+mz Ma+Mp+met+mx
1 1 1 1 ]

It is straightforward to see that this transformation matrix has determinant —1 and
the subsystem @ as required by the definition. In the case that the pion is not coupled
last, [ have again two possibilities, it can be coupled first or second. If it is coupled
first I have three possible chains with the subsystem @, namely a’a, a’beta, a’y. I only
show the transformation of one of these chains explicitly, because the other two can be

given accordingly. [ define the Jacobi-transformation for the chain a’y by the matrix

-

TTL = — M
0 O mx=+me mz+me
0 m-+m, _ me _ mp
Mx+Me+my me+mMec+mp Mmetme+my
Ta”y = € i (A-g)
Mztmetmp _ mg _ ma _ mg
Ma+mp+me+mzx Ma+mp+metmae Mg+mp+mect+mx Ma+my+me+ms=
1 1 1 1

-

Again, this matrix has determinant —1 and the reduces to the tranformation matrix

of the subsystem a, if I delete the pion from the system. The last possibility of chains
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in the 3 4+ 1 is when the pion is the coupled in the second step, which is given by the

chain a’a. I define the transformation matrix for this chain by the the expression

0 o — 0
mp+me me+me
0 _ ma _ me mp+me
mx+mec+my Met+mc+my Me+me+my
Mme+me+mp —_ Ma _ Ma _ Me
Mma+mp+me+me mag+mp+metms Ma+mp+met+m= Ma+Mp+met+me

1 1 1 1 ]

(A.10)

The sign for the Jacobi momentum that couples the pion follows directly from the

determinant, which is again —1. The only two chains of the 2 + 2 type that have a

as a subsystem are &’a,o’a and they are defined in following way

-

T =

and

Toe =

0 M~ — mp 0
mp+me my+me
Mma Ma
Mx+mg 0 0 Me++Mga
mp+me — me+mg _ m-4mg mp+me
Mma+mp+met+mz Ma+mp+metms= Mg+mp+me+mz Ma+mp+me+mzx
1 1 1 1
me Ma
max+m, 0 0 me+tmge
0 ML~ . mh 0
my+me my+me
mey+me _ Mme+mMa _ Mme+ma mp+me
mat+mpt+me+mz Mma+mpy+me+me Mma+mp+me+mz  Met+mptmetms
1 1 1 1

4

(A.11)

(A.12)

With this set of definitions it is easy to find transformations between different sets of

Jacobi-momenta the same way as in the 3V case.

A.3 Examples of transformations between different Jacobi-coordinates

In this section I simply show some of the Jacobi-transformations. I start with the

transformations in the three-nucleon system first and continue with the ones in the



7NN N system. In the transformations it is already assumed that the three nucleons

have the same mass, namely m, = my; = m. = m. The transformations used in the

3V system are

and

-

-

L

—1/2 3/4
-1 -1/2
0 0
—1/2 -3/4
1 —1/2
0 0

The transformations in the 3.V« are of the following type

Trrpary =

—_ —1
Trr’a,b’*y - Tﬂ"aTbl—, -

T,

-1
Tl =

-

_ -1 _
by = Tary Tk =

1/2
~1/3
1

0

—~1/2

—1/3

_1/')

m.«r-i-m

_1/.) 3m+me

“ m.4+2m

2m43m 1 /9 3m+m=
1/3 im=t3m /3 3mims
KL Mz
mx+m mz+2m
0 0
—1/9 9 3mtme
1/ m4—+m l/ met2m
— Zmz+3m 3m4m=
1/3 me=+m /3 me+2m
___m=x m
Me+m mz4+2m
0 0
0 0
_ m mz2+4dm-m+3m?2
mz+2m (mg-i-21n)2
m
—1 T mzt+2m
0 0

(A.13)

(A.14)

(A.15)

(A.16)
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These few examples should show how easy it is to find any transformation between
different sets of Jacobi-momenta with this procedure. It is even easier, if Maple V is
utilized, because besides calculating all the matrices Maple V also allows the output
to be of either Latex or even FORTRAN readable format. In the fully dynamical

treatment of the correction terms this should be an invaluable simplification.



Appendix B

FORTRAN CODES

B.1 Fortran code for the kernel of the 2N integral equation

SUBROUTINE TO CALCULATE THE ARGUMENTS OF THE GENRALIZED

EIGERVALUE PROBLEM DEFINING THE STURMIAN SYSTEM

THE OUTPUT IS THE KERNEL AND THE POTENTIAL WITH THEIR NATURAL SIGNS.
IN OTHER WORDS THE ATTRACTIVE PARTS HAVE A EEGATIVE SIGN ATTACHED

a o o o o

FINAL VERSION AS OF DEC 22/2000

SUBRQUTINE COLONEL(MC,HBAR,MUC,QX,Q¥,LDA,N,E,REP ,RN,ARG,RARG)

IMPLICIT REAL#8(A-H,0-2)

REAL*8 QX(LDA) ,QW(LDA) ,E,REP,RN R, X ,VA,VR,VAP,VRP
REAL»8 ARG(LDA,LDA) ,RARG(LDA,LDA),NC,MUC,HBAR
REAL+8 RANGE ,GCONS ,SUM,POT,GF

c PARAMETER (MC=134.9766D0)

PARAMETER (HBAR=197 .32D0)

C PARAMETER (MUC=938.271998D0/2 .000000D0)
POT(R,X)=1.000000D0/ (R+Xss2)
GF(E,X)=1.000000D0/ (E-X#*%2)
GCONS=2.00000D0*NUC/ (MC*»2)

(o} write(6,*)GCONS, ’Gecons’ ,MC,HUC
RANGE=(HBAR/ (RNsMC)) ¢2

c write(6,s) 'Range’ ,RANGE

DO 10 I=1,K
DO 20 J=1.,X

SUM=0.0DO

D3 30 K=1,K
VA=POT(1.000000D0,QX(I)-QX(K))
VAP=POT(1.000000D0,3X{(K)-QX(J))
VR=RNsPOT(RARGE ,QX(I)-QX(K))
VRP=RNsPOT(RANGE,QX(K)-QX(J))
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SUM=SUM+ (-VA+REPsVR) *GF (E#+GCONS ,QX(K))
1 =(-VAP+REPsVRP)=Qu(K)
o WRITE(6,%) 'SUN’, SUM
30 CONTINUE
ARG(I,J)=sSUM
RARG(I,J)=-PCGT(1.000000D0,QX(I)-QX(J))

1 +REP«REPOT(RABGE,QX(I)-QX(J))
c WRITE(6,%)’COL’, ARG, ’col2’,RARG
20 CONTINUE
10 CONTINUE
RETURN
END

B.2 The Code for the triton calculations

This code is still rather rough and is the core code used in all the calculations shown
in the thesis. It allows for different choices depending on the desired calculations.
The extended code, which is not shown here because it is even more complicated,

also includes several test on symmetries of the potentials, expected pole structure

and other similar tests.

PROGRAM TRITONSTATE
IMPLICLIT REAL*8(A~-H,0-2)
INTEGER N,¥FIX

PARAMETER(LDA=50,LDEVEC=LDA)

REAL#*8 CHI ,REP,RN,E,E1,PICONS

REAL#8 QW (LDA) ,QX(LDA) ,ARG(LDA,LDA),RARG(LDA,LDA)
REAL#8 ARGNORM,BETA(CLDA) ,ALPH,BET

REAL*8 HBAR,MC,MUC, DEUT(LDA)

REAL#*8 FORMFAC(LDA),NORM,SUM1,SUN

COMPLEX#*16 ALPHACLDA) ,EVAL(LDA) ,EVEC(LDEVEC,LDA)
REAL*8 POTSEP(LDA,LDA),TSEP(LDA,LDA) ,FORMATTR(LDA)
REAL*8 QWI(LDA) ,QXICLDA),ACONS,QUAD

REAL*#8 XVEC(LDA),VALUE(LDA) ,XVEC1(LDA) ,AVALUE(LDA,LDA)
REAL#*8 MXVEC(LDA,LDA) ,MXVEC1(LDA,LDA) ,MVALUEL (LDA ,LDA)
REAL#8 VALUE1(LDA) ,ZEFF (LDA,LDA) ,ZENOM(LDA,LDA) ,QUAD1 (LDA)
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COMPLEX#*16 ZALPHA(LDA) ,ZEVAL(LDA) ,ZEVEC(LDEVEC,LDA)
REAL*8 ZETA(LDA) ,ZARG(LDA,LDA) , TAUNGN(LDA,LDA) ,TRISTATE(LDA)
REAL*8 DEUTDIM(LDA) ,FORMFACDIN(LDA) ,TSEPDIM(LDA,LDA)
REAL*8 POTSEPDIM(LDA,LDA) ,ZEFFDIM(LDA,LDA)

REAL*8 ZK2(LDA,LDA,LDA) ,ZK3(LDA,LDA ,LDA)

REAL*3 POTSEPY(LDA,LDA) ,OMEGA(LDA,LDA) ,0MEGADIM(LDA,LDA)
REAL*8 QUAD3(LDA,LDA,LDA)

REAL*8 TAUDIAG(LDA,LDA)

REAL#8 ZD1(LDA) ,ZDIAG(LDA,LDA)

REAL#*8 Z0D1(LDA,LDA) ,ZOD2C(LDA,LDA) ,ZOD(LDA,LDA) ,ZA
REAL*8 TRISTATEDIM(LDA) ,ZDR1(LDA)

REAL#*8 GREEN3(LDA,LDA)

OPEN(9,FILE="POTSEPY.DAT" ,STATUS="NEW")
OPEN(9,FILE="POTSEPY.DAT" ,STATUS="CLD")

PICDBS=3.141592654D0
HBAR=197 .3269600D0
MC=134.9766D0

MUC=938 .271998D0/2 .00000D0

ZA=-8.93909D-02/100.0D0
ZA=0.0D0
For comparison with Levinger and Harms use these units for the

energy of the t-matrix, etc.

Harms’ units

E1=-0.5D0*41 .46D0

Malfliet-Tjon
E1=-7.277D0
MT+TN
E1=-8.166D0
MT+TM+DIAG
E1=-8.493D0
Yukawa
E1=-8.001D0
Deuteron
E1=-~2.225D0
E1=0.000D0

Set the number of Gauss points

=41
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DO 5 ¥=41,L,2
QXZ=(W+1)/2
INEIGH = 1
ALPH = 0.0D0
BET = 0.0D0

EFIX =0
Get points and weights from GQRUL

CALL DGQRUL (N, IWEIGH, ALPH, BET, NFIX, QXFIX, QXI, QWI)
Scale the Gauss points to the real line
D0 10 I=1,K¥

QX(I)=1.2D0+QXI(I)/(1.0D0-QXI(L)»*2)

QW (I)=1.2D0* ({1.0D0+QXI(I)»*2)/(1.0DO-QXI(I)se2)+»2)sQWI(I)

WRITE(6,+)QX(I),Qu(I)
CONTINUE

Define the deuteror binding energy

E=-2.2250000D0

For Yukawa take zero repulsion and chi=2.114450D0
For MT take Rep=4.57DO,RE=0.7D0,Chi=10.09496D0

REP=0.0D0O
REP=4.57000D0

RE=0.7000D0

CHI=10.09496D0
CHI=2.1175D0

The subroutine to define the matrices of the generalized EV-problem

CALL COLONEL (MC,HBAR,MUC,QX,QW,LDA,N,E,REP,RN,ARG,RARG)

Define the overall constant in the G-EV problem

this corrsponds to equation 4.124 in thesis

ARGNORM=2.0DOsMUCsHBAR/NCe+3
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25
20

30

35

37

39

C

DO 20 I=1.,K
DO 25 J=1,N
ARG(I,J)=CHI*ARGNORN®ARG(I,J)
CONTINVE
CONTINUE

Find the eigenvalues and eigenstates in dimensionless variables

CALL DGVCRG (N,ARG,LDA,RARG,LDA,ALPHA,BETA,EVEC,LDEVEC)
Compute eigenvalues
b0 30 I=1, ¥
EVAL{I) = ALPKA(I)/BETA(I)
WRITE(6,#)I ,EVAL(I)
WRITE(6,*)QX(I) ,REAL(EVEC(I,1))/Q¥(I)
CONTINUE

Compute performance index

PI = DGPIRG(N,N,ARG,LDA,RARG,LDA,ALPHA ,BETA ,EVEC,LDEVEC)
WRITE(6,»)N ,REAL(EVAL(1})
po 35 I=1.,K
DEUT(I)=REAL(EVEC(I,1))/Q¥{(D)

COETINUE

Bormalize the dimensionless wave functions

SUN=0.0DO

DO 37 I=1,K
SUM=SUM+DEUT (I)»#2eQW (I)
CONTINUE

DNORM=DSQRT(SUM)

DO 39 I=1,X
DEUT(I)=DEUT(I)/DNORM
DEUTDIM(I)=SQRT(MC/HBAR)sDEUT(I)
WRITE(6,*) @X(I),DEUT(I)
COETINUVE

WRITE(6,*)X ,DEUT(QXZ) ,DEUTDIN(QXZ)
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QO Q0 0 o

42

40

45

47

Find the form factors in dimensionless variables.

The overall dimensions remain sqrt(MeV-fm), collected in the overall

constant in front of the normalized dimensional form factor

DO 40 I=1,NK
SUN1=0.0DO
DO 42 J=1.¥
SUM1=SUML+(RARG(I,J)*DEUT(J)+Qu(J})
CONTINUE
FORMFAC(I)=SUM1
WRITE(6,s) QX(I),FORNFAC(I)
CONTINUVE

Normalize the form factors in dimensionless variables.

The dimensions are re-—introduced in the overall constant

SUM=0.0DO
ACONS=2 .ODOsHUC/NCee?2

DO 45 M=1,X
SUN=SUM+ (FORMFAC(N) *+2) QW (M) /(ACONS*E-QX (M) s+2)
CONTINVE

NORM=DSQRT (-SUN)
WRITE(6,+)NORNM, 'Borm’

DO 47 N=1,K
READ(S,*) FORMATTR(M)
FQRMFAC(M)=FORMFAC (M) /NQRM
FORMFACDIM(M)=CHI/SQRT(MC/HBAR) «FORMFAC(M)

WRITE(6,)QX(M) ,FORMATTR(M) ,FGRMFAC(M)

CONTINUE

CLOSE(9,STATUS="KEEP")

WRITE(6,*)N ,FORMFAC(QXZ)

for completeness we give the explicit numerical description

for the separable t-matrix and potential. If interest is only in

3X calculations, this can be skipped. On loop is explcitly given

for the calculation of the FORMATTR terms
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SUM=0.0D0
c DO 50 M=1,QXZ2-1
DO SO0 M=1.¥
SUN=SUN+(FORNFAC(M)+»2) «QW (M) / (ACONS+E1L-QX (M) ¢»2)
50 CONTIRUE

QUAD=SUNM
[ WRITE(6,s) *QUAD’,QUAD ,BORNss2
c SUM=QUAD
c DO 150 M=QXZ+1.,X
c SUM=SUR+(FORNFAC(M)++2)*QW(N)/(ACONS+EL-QX (N)*s2)
c WRITE(6,%)N, 'den’ ,SUM

c 150 CONTINUE

c QUAD=SUNM
c
c WRITE(6,%) *QUADL?,QUAD,EORMss2
DO 51 M=t %
c WRITE(6,*)M,QX(M)
DO 55 K=1.8§

POTSEP (M,K)=-FORMFAC (M) sFORNFAC (K)
POTSEPDIM(M,K)=MCsHBAR/ (2 .ODO*NUC) +PATSEP(M,K)
TSEP (M ,K)=-FORMFAC(M)*FORNFAC(K) /(1 .0DO+QUAD)
TSEPDIM(M,K)=NC*HBAR/ (2 .0DO+MUC) sTSEP (M ,K)
55 CONTINUE
c WRITE(6,*)QX(M) ,POTSEPY(M M)
51  CONTINUE

Cc The constant for the TM terms is given by the following
c AZ1=~2«PICONS*MUC/HBAR®+2+TSEPDIN(QXZ,QX2)

c WRITE(6,*)*AZ’,QX(QX2) ,AZ1

c Return to 3§ problem

c Spline the form factors

DO 60 L=1,N
DO 62 M=1,K
XVEC(M)=QX(M)+Qx(L)/2.0D0
XVEC1(M)=-QX(N)/2.0D0-QX(L)
c WRITE(6,*)XVEC(M) ,XVEC1 (M)



62

63
60

QO O Q

a

(2]

a a o o

72
70

CONTINUE

Compute cubic spline interpolant

CALL DCSIEZ (¥, QX, FORNFAC, N, XVEC, VALUE)
CALL DCSIEZ (K, QX, FORMFAC, N, XVEC1, VALUE1)

DO 63 K=1,K
MVALUE(L ,M)=VALUE (M)
MXVEC(L,M)=XVEC(M)
MVALUEL (L ,M)=VALUE1(W)
MXVEC1 (L ,M)=XVEC1 (M)
CONTINUE
CONTINUE

Tests for the splired form factors

DO 65 L=1,K
DO 67 N=1,N
WRITE(6,*)NVALUE(L,N) ,MVALUEL(M,L)
CONTINUE
WRITE(6,s)NXVEC1(L,10) ,MVALUE1(L,10)
CONTINUE

Calculate the kernel ZEFF in dimensionless variables
Again, ve have a constant ¢ith dimensions and including the

dimension already present from the form factors, ZEFFDIM has

units of fm.

DO 70 L=1.,K
DO 72 M=1,§

ZNOM(M,L)=ACONSE1-0.5D0* ((QX(M))e»2+(QX(M)+QX(L) )*#2+(QX (L)) *s2)
ZEFF(M,L)=NVALUE(M,L)*MVALUE1(M,L)/ZNOM(M,L)
ZEFFDIM(M,L)=HBAR/MCsZEFF(M,L)

WRITE(6,s)MXVEC(L,R) ,ZEFF(L M)
CONTINUE
CONTINUE

the off diagonal correction terms are computed in the 100 routirnes

DO 170 L=1,N
DO 171 M=1,K
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172
171
170

177

176
175

181
180

222
220

GREEN3(L,M)=(ACONS*E1-3 .0D0O/4.0DOs(X (M) ss2-QX (L) #+2)

write(6,s)L,N,GREEB3(L N)

DO 172 K=1,K

ZK2(L,N ,K)=1.0D0/((QX(L)-QX(M)/2.0DO-QX(K))s#2+1)
ZK3(L,M,K)=1.0D0/ ((QX(K)>+QX(L)+QX(N)/2.0D0) *#2+1)

COSTINUE

CONTINUE

CONTINUE

DO 175 L=1,N
D3 176 H=1,K
SUN=0.0DO
SUM1=0.0D0
DO 177 K=1 X
SUNM=SUN+FORMFAC (K) /GREEB3(K,L)*ZK2(K,L M)
SUM1=SUM1+FORMFAC(K) /GREEN3(K ,M)*ZK3(K,M L)
CONTINUE
ZoDp1 (L,M)=SUA
Z0D2(M,L)=SuUm1
CONTINUE
COBTINUE
ZODCONS=CHI*2 .ODO+*NUCsHBARss2/(NCs24)
WRITE(6,=)’ZODCONS’ ,ZODCONS
DO 180 L=1.,X
DO 181 M=1,X
20D (L ,M)=Z0D1(L ,M)*Z0D2(N,L)
ZEFF(L,M)=2.0DO* (ZEFF(L ,M)+ZA*Z0ODCONS*Z0D(L ,M))
erite(6,s)L,M,20D(L,N)
CONTINUE
CONTINUE

the diagonal correction terms are given in the 200 routines

The pion energy/momentum in dimensionless variables

DO 220 L=1.K
DO 222 M=1,8
OMEGA (L ,M)=DSQRT((QX (L) -QX (M) )*#2+1.0D0)
OMEGADIM(L,M)=MC/HBAR®CMEGA(L ,N)
WRITE(6,+)L,H,0MEGA(L M)
CONTINUE
CONTINUE

1

35



Cc The Tau term in the separable potential, note the negative value

DO 225 L=1,N
DO 227 M=t K
SUN=0.0D0
DO 230 K=1,K
QUAD3(K,L,N)=1.0D0/ (ACONS®E1-QX(K) ¢#2
C -3.0D0/4.0D0*QX(L)*#2-2.0DOsNUC/NC*ONEGA(L ,M))
SUM=SUM+FORMFAC (K) s»2sQW (K) *QUAD3(K,L M)

c write(6,s)L,NM,K,SUN
230 CONTINUE
TAUDIAG(L,M)=-1.0D0/ (1.0DO+SUN)
c WRITE(6,s)L ,H, TAUDIAG(L M)
227 CONTINUE

225 CONTINUE

The integral over the terms depending on the integration variables

for the separable t-matrix.

Note the square of the form factor, one comes from the t-matrix and

Q O o

and one from the ZOD term.

DO 240 L=1,¥
SUM=0.0D0
DO 242 M=1,%
SUM=SUM+FORMFAC(M)**2+QW (M) /GREEN3(M,L)
242 CONTINUE
ZD1 (L)=SUN
c WRITE(6,s)L,ZD1(L)
240 CONTINUE

DO 250 L=1,K
DO 252 M=1,N
ZDIAG(L,M)=ZD1 (L) »ZD1 (M) sTAUDIAG(L M)
c WRITE(6,*)L,M,ZDIAGIET(L,M)
252 CONTINUE
250 CONTINUE

o The corresponding integral to 240 for the separable potential of
c the attractive part only. Note the minus sign coming from the

c negative strength factor of the potential, which yields a plus

c sign in the "subtracting terms 270/272". Also, this time

c we have a multiplication of the formfactor coming from Z0D and
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266

272
270

282
280

QO 0 O O O

3]

c 77

cC7s

a formattr coming form the separable potential

DO 266 L=1.X
SUM=0.0DC
DD 268 M=1,X
SUM=SUM+FORRATTR(M)sFORMFAC(N)*QW(M)/GREEN3(M,L)
CONTINVE
ZDR1(L)=SUNM
write(6,e)QK(L),ZD1(L),ZDR1(L),ZD1(L)-ZDR1 (L)
CONTINUE

Dad 270 L=1,§
DO 272 K=1.,08
ZDIAG(L ,M)=ZDIAG(L ,M)+ZDR1(L)*ZDR1 (M)
WRITE(6,*)L,M,ZDIAG(L,M)
CONTINUE
CONTINUE

Bring the terms to the same units as used in the previous effective

potentials

ZDIAGCONS=CHI®2.0DOsHBAR/{NCs*2%1_0DC)
write(6,%)ZDIAGCONS
D0 280 L=1,K
DO 282 M=1.,K
ZEFF(L,M)=2EFF (L ,M)+ZDIAGCONSs (ZDIAG(L,M)+ZDIAG(M,L))
C /(CMEGA(L,M)=»s3)
write(6,)L ,N,ZDIAG(L,N) ,Z2DIAG(M,L)
CONTINUE
CONTINUE

Tests for ZEFF

po 75 L=1,K
D0 77 H=1,%
WRITE(6,s) *ZEOM’ ,ZNOM(N,L)-ZNOM(L M) M, L
WRITE(6,)2EFF(L,12)-2EFF(12,L) ,L N, *test’
WRITE(6,) ZEFF(M,L)-ZEFF(L,M) ,ZEFF(M,L) «ZEFF(L,M) ,L M
WRITE(6,*)MXVEC(M,L) ,ZEFF(M,L) ,N,L
CONTINUE
WRITE(6,s)MXVEC(21,L),2EFF(21,L)
CONTINUE
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Calculate the quadratic form in the propagator tau

Note that Quad is dimensionless.

DO 80 M=1.K
SUN=0_0DO
DO 82 L=1,K
TAUNOM (M ,L)=(ACOES®E1-3.0D0/4 _0DOsQX (M) »2~-QX (L) s»2)
SUM=SUM+ (FORMFAC(L)*#*2) +QW (L) /TAUNON(N,L)
c WRITE(6,s)N, *den’ ,SUN
82 CONTINUE
QUADL (M)=SUM

Test that we have right normalization with E1=-2.225D0. We

expect to see the value -1.0D0 for the midpoint.

Q o o a

WRITE(6,*)QUADLI(N)
80 CONTINUE

a

define the RHS kernel U for the generalized EV-problem.

Note that U has the proper units of fm.

DO 90 M=1.,K
DO 92 L=1.,X

SUM=0.0DO0

00 93 J=1,W
c WRITE(6,+)SUN,J,L N

SUM=SUM+ZEFF(M,J)sZEFF(J,L)sQW(J)/(1.0DO+QUAD1(J))

c write(6,¢)J,L M, ,SUN
93 CONTINUE

ZARG(M,L)=-SUM

92 CONTINUE
90 CONTINUE

Tests for ZARG, symmetries, etc.

DO 95 K=1.,8
DO 97 L=1,K
c WRITE(6,%)ZARG(M,L)~ZARG(L, M) M L
c WRITE(6,¢)ZARG(M,L)

97 COETINUE
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Q o 0

1]

100

110

115

CONTINUE

Solve the triton generalized EV problem

INEIGH = 1
ALPHE = 0.0DO
BET = 0.0DO
EFIX =0

CALL DGVCRG (N,ZARG,LDA,ZEFF,LDA,ZALPHA,Z2ETA,ZEVEC,LDEVEC)
Compute eigenvalues
DO 100 I=1,N
ZEVAL(I) = ZALPHA(I)/ZETA(I)

Check eigenvalues

WRITE(6,%)I,ZEVAL(I)
WRITE(6,#)QX(I),REAL(ZEVEC(I,1))/Qu(T)
TRISTATE(I)=REAL(ZEVEC(I,1))/QW(I)
CONTINUE

Normalize the triton wave function

SUM=0.0D0

DO 110 I=1,X
SUM=SUM+TRISTATE(I)**2sQW(I)
CONTINUE

THGRM=DSQRT(SUM)

DO 115 I=1,X
TRISTATE(I)=TRISTATE(I)/TNORM
TRISTATEDIM(I)=SQRT(MC/HBAR) s TRISTATE(I)
WRITE(6,%)QX(I),TRISTATE(I)
CONTINUE

Things to test and play with

WRITE(6,*)N ,REAL(ZEVAL(1)) ,REAL(ZEVAL(2)) ,REAL(ZEVAL(3))
WRITE(6,«)N,REAL(ZEVAL(1))
WRITE(6,+)N, TRISTATE (QX2) ,QX(QX2)
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5 CONTINUE
END





