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Abstract

Reliably transferring a quantum state from one location to another, as well as generating

entangled states, are important tasks to achieve in quantum spin systems. The fidelity or

probability of state transfer is a number between 0 and 1 that measures the closeness of

two quantum states.

Fidelity is used to determine the accuracy of quantum state transfer. There are several

interesting phenomena of quantum state transfer defined via fidelity: perfect state transfer,

pretty good state transfer, and fractional revival.

This thesis contains results about the perfect state transfer property of some special

classes of graphs, including Hadamard diagonalizable graphs, weighted paths with loops,

as well as switched and partially switched hypercubes. A correspondence between the

class of graphs that are diagonalizable by a standard Hadamard matrix and the class of

cubelike graphs is given. Sensitivity of fidelity to errors when perfect state transfer occurs

is analysed: if a system admits perfect state transfer at some time t, bounds on fidelity of

state transfer at t+ h for very small h are given, as well as bounds on fidelity of a slightly

perturbed system at time t. Finally, Laplacian fractional revival on graphs is considered;
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in particular the thesis contains a characterization of threshold graphs that admit Laplacian

fractional revival.
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Chapter 1

Introduction

1.1 Physics motivation

In this section, we briefly mention the motivation stemming from physics, as well as re-

lated physics definitions. Physical lab experiments implementing quantum state transfer

protocols are described in e.g. [28, 71]. The work herein describes the notion of quantum

state transfer from a mathematical perspective; this theoretical research plays an impor-

tant role in quantum information transfer. From Section 1.2 onward, the corresponding

definitions and results are stated in a mathematical way.

A spin has two computational basis states: e1 =

[
1
0

]
, e2 =

[
0
1

]
, they form a basis of

the vector space C2, and the general state ϕ of a spin can be represented as a linear super-

position of the two basis vectors: ϕ = αe1 + βe2 with |α|2 + |β|2 = 1. Other orthonormal

basis states can also be used. We say that two quantum states ϕ1 = α1e1 + β1e2 and

10
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ϕ2 = α2e1 + β2e2 are identical up to complex modulus if |α1| = |α2| and |β1| = |β2|. A

quantum system consisting of two spins has four orthonormal basis states: e1, e2, e3, e4 ∈

C4, and the general state ϕ of the system can be written as a linear combination of these

four states: ϕ = α1e1 + α2e2 + α3e3 + α4e4 with |α1|2 + |α2|2 + |α3|2 + |α4|2 = 1. In

general, the state of a quantum spin system with n spins that are usually interacting with

each other can be represented by a unit vector ϕ ∈ C2n .

The HamiltonianH of a quantum system consisting of n spins is a Hermitian operator

on C2n; its spectrum is the set of possible outcomes when one measures the total energy

of the system. Due to its own dynamics, the system evolves according to the Schrödinger

equation [83]:

i~
d

dt
ϕt = Hϕt, (1.1)

where ϕt is the state vector and ~ = h
2π

is the reduced Planck constant.

Transferring a quantum state from one location to another reliably, as well as generat-

ing entangled states, are important tasks to achieve in quantum spin systems. The fidelity

or probability of state transfer measures the closeness of two quantum states, and it is a

number between 0 and 1. By measuring the closeness of the state of spin v at time t = t0

to the state of spin u at time t = 0, fidelity is used to determine the accuracy of quantum

state transfer from spin u to spin v. If this fidelity is 1, it means that the state read out by

the receiver at spin v at time t0 is, with probability equal to one, identical up to complex

modulus to the input state of the sender at time t = 0, and we say there is perfect state

transfer (PST) between the two spins at time t = t0. If for some two spins u and v, there
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is a time sequence {tm}m≥1 such that the fidelity of state transfer between u and v at time

tm approaches 1 as m→∞, we say there is pretty good state transfer (PGST) between u

and v.

If there is a time t such that for any two spins u and v of the system, the fidelity of state

transfer from u to v is a fixed number (independent of u and v), then we say that there is

uniform mixing on the quantum spin system at time t. If there is a time t, and two distinct

spins u and v, such that the fidelity from u to any other spin w (i.e., w 6= u, v) is 0, and

that the fidelity of state transfer from u to v is non-zero, then we say that there is fractional

revival (FR) between the two spins u and v.

Throughout the thesis, for a quantum system of n spins, we focus on the single excita-

tion subspace: an invariant n-subspace (spanned by the standard basis e1, . . . , en ∈ Cn) of

the full 2n-dimensional Hilbert space C2n . In this case, the Hamiltonian reduces to a real

symmetric operator on Cn [31].

We can model a quantum spin system by an undirected weighted graph: assign a vertex

to each spin, and connect two vertices with an edge if and only if the corresponding spins

interact with each other in the quantum system, with the corresponding edge weight equal

to the interaction strength between the two spins. Recently, research has also been done on

PST, PGST and FR in quantum systems (in particular, in quantum spin chains) with added

potentials on their spins, which can be modelled by undirected weighted graphs with loops.

In this work, we use the terms “an undirected weighted graph” and “a quantum system”

interchangeably.
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1.2 Basic notation

In this thesis, we focus on undirected weighted graphs, and use the term graph to refer to

a simple graph, and graph with loops to refer to a multigraph that allows for loops but not

multiple edges. For more information on the basics of graph theory, see [49, 88].

A graph G consists of a vertex set V (G) and an edge set E(G), where an edge is an

unordered pair of distinct vertices of G. If {u, v} is an edge, we say that u and v are

adjacent or that u and v are neighbours.

A graph with loops G consists of a vertex set V (G) and an edge set E(G), where an

edge is an unordered pair of vertices (not necessarily distinct) of G. An edge of the form

{u, u} is called a loop of G, and in this case we say that u is adjacent to itself.

The degree deg(v) of vertex v in an undirected graph (with or without loops) is the

number of edges incident to it, where each loop contributes 2 to its degree.

A weighted graph (with or without loops) is a graph (with or without loops, respec-

tively) with (real) numerical labels/weights on the edges; the label on edge {u, v} is called

the weight of the edge. For a weighted graph with loops, the label on a loop is called the

weight of the loop.

The degree deg(v) of vertex v in an undirected weighted graph (with or without loops)

is the sum of the weights of edges incident to it, where the weight of a loop at vertex v

contributes twice to the degree of that vertex: that is, deg(v) =
∑

u6=v wu,v + 2wv,v, where

wu,v denotes the weight of the edge {u, v}.

A graph is called complete if any two (distinct) vertices are adjacent, and the complete
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graph on n vertices is denoted by Kn. A graph with no edges (but at least one vertex)

is called empty. An empty graph on n vertices is denoted by On. A graph G is called

bipartite if its vertex set can be partitioned into two parts V1 and V2 such that every edge

has one end in V1 and one in V2.

A subgraph of a graph G is a graph Y such that V (Y ) ⊆ V (G), and E(Y ) ⊆ E(G).

If V (Y ) = V (G), we call Y a spanning subgraph of G. A subgraph Y of G is an induced

subgraph if two vertices of V (Y ) are adjacent in Y if and only if they are adjacent in G.

A set of vertices that induces an empty subgraph is called an independent set.

A path of length r from vertex u to vertex v in a graph is a sequence of r + 1 dis-

tinct vertices starting with u and ending with v such that any two consecutive vertices are

adjacent. If between any two vertices, there is a path, then G is connected, otherwise G

is disconnected. The distance dG(u, v) is the length of a shortest path from u to v. Note

that the distance between two vertices is usually considered∞ if there is no path between

them. The diameter of a connected graph G is max{dG(u, v)|u, v ∈ V (G), u 6= v}.

A cycle is a connected graph where every vertex has exactly two neighbours. The

phrase “a cycle in a graph” refers to a subgraph of G that is a cycle. A connected spanning

subgraph with no cycles is called a spanning tree.

Two graphs G and Y are isomorphic if there is a bijection φ from V (G) to V (Y ) such

that u is adjacent to v in G if and only if φ(u) is adjacent to φ(v) in Y . We say that φ

is an isomorphism from G to Y . An isomorphism from a graph G to itself is called an

automorphism of G. A graph G is vertex-transitive if and only if for any two vertices u
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and v of G, there is a graph automorphism φ of G such that φ(u) = v.

A directed graph (digraph)G consists of a vertex set V (G) and an arc setE(G), where

an arc, or a directed edge, is an ordered pair of distinct vertices.

Analogous definitions of subgraphs etc. can be made for a graph with loops.

Throughout, we use e1, . . . , en to denote the standard basis vectors in the n-dimensional

vector space, where for each j = 1, . . . , n, ej = [0, . . . , 0, 1, 0, . . . , 0]T (1 is in the j-th

position), we use Jm,n to denote the all ones matrix of size m×n, we use 1n to denote the

all ones vector of dimension n, and we use In to denote the identity matrix of size n× n.

We denote a m × n zero matrix by 0m,n and the zero vector in Cn by 0n. The set of all

n× n matrices is denoted by Mn.

1.3 Mathematical setup and definitions

Assume that G is a weighted graph with or without loops on n vertices, and label the

vertices of G by integers from 1 to n. The adjacency matrix A(G) = [aj,k]1≤j,k≤n of G is

the n× n matrix

aj,k =

{
wj,k if j and k are adjacent,

0 otherwise,

where wj,k is the weight of the edge between vertices j and k.

If G is an unweighted graph, or simply a graph, then its adjacency matrix is defined as

above, with all (nonzero) weights being equal to 1.

For a weighted or unweighted graph G with or without loops, its degree matrix D(G)
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is a diagonal matrix with its j-th diagonal entry equal to deg(j), the degree of vertex

j. The Laplacian matrix of G is defined as L(G) = D(G) − A(G), where A(G) is the

adjacency matrix, andD(G) is the degree matrix associated toG. Note that bothA(G) and

L(G) are symmetric matrices. Furthermore, the Laplacian matrix L(G) of a weighted or

unweighted graph without loops has 0 as its smallest eigenvalue, with 1, the all 1s vector,

as an associated eigenvector. For a simple graph G, the multiplicity of the eigenvalue 0

of L(G) corresponds to the number of connected components of G. Note that if G has

loops, then L(G) might not have 0 as an eigenvalue – for example, if A(G) =

[
1 1
1 0

]
and

L(G) =

[
2 −1
−1 0

]
.

With the adjacency matrix and Laplacian matrix at hand, we can define two relations

on the vertex set of a weighted or unweighted graph. Assume that G is a weighted or

unweighted graph with or without loops. For any vertex w of G, denote the induced

subgraph ofG on V (G)\{w} byG\w. For two distinct vertices u and v ofG, we say that u

and v are cospectral with respect to the adjacency matrix if A(G\u) and A(G\v) have the

same characteristic polynomial. Similarly we can define cospectral vertices with respect

to the Laplacian matrix if we replace all the adjacency matrices by the corresponding

Laplacian matrices in the above definition.

For any weighted or unweighted graph with or without loops, there is a unique adja-

cency matrix and a unique Laplacian matrix associated to it. Conversely, given a square

matrix B = [bj,k]1≤j,k≤n of size n, we can also associate a unique graph (possibly with

loops) (if B is symmetric) or a unique digraph (if B is not symmetric) to B. Assume the
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rows and columns of B are labelled by 1, . . . , n, and assign one vertex to each of the n

indices. If B is symmetric, we connect vertices j and k in the graph if bj,k 6= 0; if B is

not symmetric, we draw an arc from vertex j to vertex k in the digraph if bj,k 6= 0. The

resulting graph (or digraph) is called the unweighted graph (or digraph) associated to the

matrix B. Note that different square matrices might have the same unweighted graph (or

digraph) with loops associated to them.

A weighted or unweighted graph with or without loops is regular if all its vertices have

the same degree, that is, the degree matrix D is a scalar matrix (a scalar multiple of the

identity matrix), and in this case, we simply call this scalar the degree of the graph.

The matrix exponential of a complex square matrix X , denoted by eX or exp(X), is

given by the power series eX =
∑∞

k=0
Xk

k!
, where X0 is defined to be the identity matrix

of the same size as X .

Proposition 1.3.1. [54, Proposition 2.3] Let X and Y be n × n complex matrices, the

matrix exponential satisfies the following properties.

• e0 = I ,

• eXT
= (eX)T ,

• eX∗ = (eX)∗,

• If Y is invertible, then eY XY
−1

= Y eXY −1,

• If XY = Y X , then eXeY = eX+Y .
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As mentioned in Section 1.1, the Hamiltonian of a system is an operator corresponding

to the total energy of the system, and its spectrum is the set of all possible outcomes if one

measures the total energy of the system. For the one-excitation subspace — the only

situation we consider in this thesis — the Hamiltonian of a system with n spins reduces to

a real symmetric n × n matrix. There are two common types of dynamics for a quantum

system: XY dynamics and Heisenberg dynamics. The Hamiltonians corresponding to

each dynamics are identified in Remark 1.3.2.

Remark 1.3.2. [31, 78] If the quantum system is governed by XY dynamics, then the

adjacency matrix A of the underlying graph (with or without loops) serves as the Hamil-

tonian of the system, and if the system is governed by Heisenberg dynamics, then the

Hamiltonian can be represented by the Laplacian matrix L of the graph (with or without

loops).

Definition 1.3.3. Let G be a weighted graph (with or without loops) with vertices labelled

1, 2, . . . , n, and letH denote its Hamiltonian (a real symmetric operator). LetU(t) = eitH.

Then the fidelity or probability of quantum state transfer from vertex j to vertex k at time

t is

pj,k(t) = |(U(t))j,k|2 = |eTj eitHek|2. (1.2)

Recall that for any real symmetric matrix M of size n × n, there is a real orthogonal

matrix Q = [qj,k] such that QTMQ = Λ for some diagonal matrix Λ = diag (λ1, . . . , λn).
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Then

|eTj eitMek|2 = |eTj eitQΛQT ek|2 = |eTj QeitΛQT ek|2 = |qTj eitΛqk|2 = |
n∑
`=1

eitλ`qj,`qk,`|2,

(1.3)

where qj denotes the j-th column of QT . Applying this to the Hamiltonian H, we get a

direct formula to calculate the fidelity of state transfer.

From the above definition we know that U(t) is a complex symmetric matrix (sinceH

is symmetric), therefore pj,k(t) = pk,j(t) for any time t, that is, for any time t, the fidelity

of state transfer from vertex j to vertex k is the same as the fidelity of state transfer from

vertex k to vertex j. Also U(t)∗U(t) = U(−t)U(t) = U(0) = In implies that U(t) is a

unitary matrix.

Proposition 1.3.4. Let H be the Hamiltonian of a (weighted) graph G, and let U(t) =

eitH. Then U(t) is a unitary symmetric matrix.

The above fact implies that each row and column of U(t) has Euclidean norm 1, hence

the square of the modulus of any entry of U(t) — i.e., fidelity of state transfer — is a

number between 0 and 1. The facts that for any fixed time t,
∑n

k=1 pj,k(t) = 1 and that

pj,k(t) ≥ 0 show that pj,k(t) can be interpreted as the probability that the state at vertex

j at time 0 is transferred to vertex k at time t. In fact, for a given system and any time

t > 0, the matrix of fidelities [pj,k(t)]1≤i,k≤n is a (symmetric) doubly stochastic matrix,

and a discrete time random walk can be associated to it [82]. Based on fidelity, several

phenomena about quantum systems have been defined in the literature. The most special

case occurs when some fidelity equals to 1.
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Definition 1.3.5. Let G be a weighted graph on n vertices. If there is some time t0 > 0

and a vertex j such that pj,j(t0) = 1, then we say that G is periodic at vertex j at time t0.

If there is some time t1 and two distinct vertices j and k such that pj,k(t1) = 1, then we

say that there is perfect state transfer (PST) from vertex j to vertex k at time t1.

If G admits perfect state transfer from vertex j to vertex k at time t1, it means that, up

to a phase factor, the state at vertex k at time t = t1, is identical to the initial state we put

at vertex j at time t = 0. Also note that if G admits perfect state transfer from j to k, then

G is periodic at vertex j and k, as shown in the following proposition.

Proposition 1.3.6. Let G be a (weighted) graph that admits perfect state transfer from

vertex j to vertex k at time t1. Then G is periodic at vertex j (and vertex k) at time 2t1.

Proof. Relabel the vertices of G such that j and k are labelled 1 and 2, respectively. Then

U(t) is a block diagonal matrix, with the first block of the form
[

0 α
α 0

]
for some complex

number α of modulus 1. Therefore U(2t1) = U(t1)U(t1) is also block diagonal with the

first block equal to
[
α2 0
0 α2

]
, from which we can see that G is periodic at the first two

vertices at time 2t1.

Unfortunately, perfect state transfer is not always achievable for some given graph G;

for example, it was found [31] that an unweighted path on n vertices admits PST only

for n = 2, 3 under XY dynamics, and only for n = 2 under Heisenberg dynamics. Also

in practice, to get fidelity 1, the state at vertex k has to be read out at the precise time

t1, but even with lab equipment calibrated to an arbitrary amount of precision, we might
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read out at time t1 + h for small h, for example, h = ±0.00001. Hence in reality, with a

high chance, the fidelity of state transfer at a readout time is just very close to 1, but not

precisely 1. The situation where there is no perfect state transfer, but the fidelity of state

transfer between some pair of vertices can be very close to 1, is also of high importance.

Definition 1.3.7. Let G be a weighted graph (with or without loops) on n vertices. If

there are two distinct vertices j and k, and a time sequence {tm}, such that the sequence

{pj,k(tm)} of fidelities of state transfer between vertices j and k approaches 1 as m→∞,

then we say that there is pretty good state transfer (PGST) from vertex j to vertex k.

Another way to generalize the definition of perfect state transfer is to consider the case

where the fidelity of state transfer at some time t = t2 from vertex j to any other vertex

is 0 apart from some vertex k 6= j and possibly vertex j itself. This means that the initial

state placed at vertex j at time t = 0, is at time t = t2 transferred back to vertex j with

some probability 0 ≤ p < 1, and is transferred to another different fixed vertex k with

probability 0 < 1− p ≤ 1.

Definition 1.3.8. Let G be a weighted graph (with or without loops) on n vertices. If

there are a time t2 and two distinct vertices j, k such that pj,j(t2) + pj,k(t2) = 1 with

pj,k(t2) 6= 0, then we say there is fractional revival (FR) from vertex j to vertex k at time

t2. More generally, if there is a time t3 and a proper subset S ⊂ V (G) (with |S| < n),

such that for any j ∈ S, ` /∈ S, pj,`(t3) = 0, and the unweighted graph associated to

the submatrix U(t3)[S,S] is connected, then we say there is generalized fractional revival
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between vertices in S, where U(t3)[S,S] is the submatrix of entries that lie in the rows and

columns of U(t3) indexed by elements in S.

IfH = A (orH = L) and the system admits PST, PGST or FR, then we say that there

is adjacency (or Laplacian, respectively) PST, PGST or FR, or say that the system admits

adjacency (or Laplacian, respectively) PST, PGST, or FR. If G admits PST with respect

either to A or L, then we say that G admits PST. If G admits PST between vertices j and

k, then we say that {j, k} is a PST vertex pair, or that j and k pair up to have PST.

From Remark 1.3.2 we know that for any real symmetric matrix M , all of whose

off-diagonal entries are non-negative or non-positive, there is an associated system with

positive interaction strength (with positive edge weights) which has M as its Hamilto-

nian under certain dynamics (we are mainly considering the case of positive interaction

strength, although negative strength seems realizable in practice and our results apply to

this case too). The PST, PGST or FR properties of some systems can be seen to be closely

related.

Proposition 1.3.9. (i) For any given a ∈ R, the system with HamiltonianH = M exhibits

PST if and only if the system with Hamiltonian M + aI exhibits PST.

(ii) For any given a ∈ R, the system with Hamiltonian H = M exhibits PST if and

only if the system with Hamiltonian aI −M admits PST.

Proof. Since M and aI commute, eit(M+aI) = eitaeitM , which implies part (i).

For a matrix B = [bj,k], denote by B̄ the matrix
[
bj,k
]

1≤j,k≤n. Part (ii) follows from

the equalities eit(aI−M) = eitae−itM = eita(eitM)∗ = eitaeitM .
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For a d-regular weighted or unweighted graph G on n vertices, from the fact that

L(G) = dIn −A(G), we know that at any time t, for any two vertices j and k, the fidelity

of state transfer between j and k with respect with L(G) is the same as the fidelity of state

transfer between j and k with respect to A(G). This implies the following.

Proposition 1.3.10. Let j and k be vertices of a regular weighted or unweighted graph.

Then there is Laplacian PST, PGST, or FR between j and k if and only if there is adjacency

PST, PGST, or FR between the two vertices.

Proposition 1.3.9 shows that an overall energy shift on the Hamiltonian (from H to

H + aI) does not affect the occurrence or non-occurrence of PST, PGST or FR. The

following remark shows that the same is true for scaling.

Remark 1.3.11. For any nonzero real number a, the system with Hamiltonian H = M

exhibits PST, PGST or FR at time t0 if and only if the system with Hamiltonian H̃ = aM

exhibits PST, PGST or FR at time t0
a

, since eit0(M) = ei
t0
a

(aM) for any time t0 > 0.

We want to transfer information fast. Consider the motivating example of transferring

a quantum state within a quantum computer; for the computer to function efficiently, the

state transfer would need to occur in a matter of nanoseconds. The above remark tells us

that one way to achieve this is to scale the Hamiltonian by a big real number. However,

the off-diagonal entries of M correspond to interaction strengths between quantum spins,

which have an upper bound in order to be realizable in the real design. Therefore we do

not consider the idea of achieving PST at a faster time by scaling the Hamiltonian, but this
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technique is important in the analysis.

1.4 Brief literature review

The early research of quantum state transfer was focused on (unweighted) graphs. Bose

[17] first proposed the use of paths to transfer quantum states for short distance commu-

nication in a physical quantum computing schema. For graphs on n vertices, the path is a

natural graph to consider, and it has the biggest diameter among all connected graphs with

a given number of vertices, which means that in physical applications two spins at the end-

points are the furthest from each other. Christandl, Datta, Ekert and Landahl [31] found

that unweighted paths on n vertices admit adjacency PST only for n ≤ 3, and Laplacian

PST only for n ≤ 2.

To achieve high fidelity of quantum state transfer, we can consider paths that admit

pretty good state transfer or other types of graphs that allow for perfect state transfer. For

pretty good state transfer on paths, a complete characterization of the parameters (length of

the unweighted path) for which there is adjacency PGST between the two end vertices of

the path was given by Godsil, Kirkland, Severini and Smith [47], who showed that PGST

occurs on an unweighted path with n vertices if and only if n+ 1 is either a prime number,

two times a prime number, or a power of two. Later, a complete characterization of pretty

good state transfer on paths between any pair of vertices was given by van Bommel [84]:

pretty good state transfer occurs between vertices j and k on the unweighted path on n
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vertices if and only if (a) j + k = n+ 1, (b)n+ 1 has at most one odd non-trivial divisor,

and (c) if n = 2mr − 1, for r odd and r 6= 1, then j is a multiple of 2m−1.

There are many other families of graphs that admit perfect state transfer. Some ex-

amples are: a family of double-cone non-periodic graphs, certain joins of regular graphs

with K2 or with O2 (see Angels-Canul, Norton, Opperman, Paribello, Russell and Ta-

mon [4, 5]). Also, necessary and sufficient conditions for circulant graphs (Cayley graphs

on the group Zn) to exhibit PST have been given by Bašić [11], and Bašić, Petković, and

Stevanović [13]. The Cartesian product of two graphs both with PST at time t has also

been shown to exhibit PST at time t (Godsil [45], Alvir, Dever, Lovitz, Myer, Tamon, Xu,

and Zhan [2]); in particular the n-fold Cartesian product of K2 with itself (the n-cube)

has PST between its antipodal vertices. For a more general family of graphs — cubelike

graphs — Bernasconi, Godsil and Severini [15] showed that if the sum of all the elements

in the connection set is not 0, then there is PST in that graph at time t = π
2
, and when

the sum is 0, a necessary and sufficient condition for such a graph to admit PST is given

by Cheung and Godsil [29]. However, a path is arguably the simplest graph structure, and

since the graphs would need to be realized physically within a quantum computer, it is de-

sirable to proceed with paths when possible, in order to minimize the amount of physical

and technological resources required, so quantum state transfer on weighted paths (with

or without loops) comes into the picture (we use the term “path” to mean an unweighted

path).

Christandl, Datta, Dorlas, Ekert, Kay and Landahl [30] showed that for the adjacency
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matrix case, PST between the two end vertices of weighted paths (with vertices labelled

1, . . . , n) can be achieved over arbitrarily long distances (arbitrary n) by allowing for

different edge weights; the weights used there to achieve adjacency PST are wj,j+1 =√
j(n− j) for each j ∈ {1, . . . , n− 1}. Another such set for even n is obtained by use of

continued fractions and specially chosen eigenvalues [87]; using dual Hann polynomials,

an edge weights set for a weighted path with loops on n vertices that admits adjacency PST

between the end vertices is realized [1]. The case of other weights remains open. Vinet

and Zhedanov [86] gave an eigenvalue characterization when a weighted path exhibits PST

between its end vertices at a given time. Another way of making use of paths is to add

weighted loops (called potentials in physics) on the vertices of an unweighted path, and

it was believed that paths of arbitrary length n can be made to have PST between the end

vertices by the addition of a set of suitable weighted loops [24, 73, 74]. Very recently (in

2017), Kempton, Lippner and Yau [64] showed that for paths on n > 3 vertices, any addi-

tion of weighted loops on the vertex set of the path does not help with achieving adjacency

PST between the two end vertices. In the PGST setting, the same authors [64] showed

that for any given graph with a pair of cospectral vertices, with a simple modification of

the graph, along with a suitable addition of weighted loops on the vertex set, PGST can be

achieved between the two cospectral vertices; in particular, the addition of a set of suitable

weighted loops on the two end vertices of a path on n vertices yields PGST between the

two end vertices.

As mentioned earlier, to achieve PST, the graph (system) has to be set up according



27

to the parameters (set of fixed edge weights) in reality, and the state needs to be read out

at a particular time. But even with lab equipment calibrated to an arbitrary amount of

precision, the readout time might be t + 0.0001 instead of t for example, and some edge

weight might be w − 0.0001 instead of w. We do not want the fidelity to drop drastically

due to such errors. Bounds on the fidelity for such slightly perturbed systems are needed.

In [59], Kay discusses the very issue of tolerance of a path with respect to timing errors

and with respect to edge weight errors (so-called manufacturing errors). For timing errors,

he derives a simple lower bound based on the squared difference between each eigenvalue

and the smallest eigenvalue, noting that a Hamiltonian with minimal eigenvalue spread

(the distance between the largest eigenvalue and smallest eigenvalue) would optimize the

bound for small perturbations in readout time. For manufacturing errors, Kay finds that

distances between eigenvalues are key, although no bound is given [59]. This sensitivity

analysis was continued by Kirkland [66] through an analysis of the derivatives of the fi-

delity of state transfer with respect to either readout time or the weight wj,k of a fixed edge

{j, k}. Under the hypothesis of perfect state transfer at time t0 between vertices u and v,

closed form expressions for dkpu,v(t)

dtk
at t0 for any k ∈ N were given. Those expressions

then yield an easily computed lower bound on p(t0+h) for any small h. Again it was noted

that minimizing the eigenvalue spread optimizes the bound on the fidelity of state trans-

fer for small perturbations in time. Also expressions for the first two partial derivatives,

∂pu,v(t0)

∂wj,k
and ∂2pu,v(t0)

∂2wj,k
, of pu,v(t) with respect to the edge weight wj,k under the hypothesis

of perfect state transfer between u and v at t0, were produced.
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1.5 Structure of this thesis

In Chapter 2, we provide some graph theory and matrix theory background for this work.

In Chapter 3, we consider a special class of graphs — graphs whose Laplacian matrix is di-

agonalizable by a Hadamard matrix, and obtain a simple spectral characterization for when

such a graph has Laplacian perfect state transfer at time π
2

(since such graphs are regular,

we know there is also adjacency PST at the same time). By using irrational weights in the

“merge” graph operation (defined in Chapter 3), we produce graphs that have PGST from

one vertex to three different vertices. We also prove that the n-cubelike graphs are ex-

actly the family of (unweighted) graphs that are diagonalizable by the standard Hadamard

matrix of order 2n. Furthermore, we study uniform mixing on cubelike graphs and give

a characterization of a particular family of cubelike graphs that admit uniform mixing at

time π
4
. In Chapter 4, we study perfect state transfer on weighted paths with respect to the

Laplacian matrix, and perfect state transfer on weighted paths with (weighted) loops with

respect to the adjacency matrix, by the use of orthogonal polynomials. The main result

is that a weighted path on n ≥ 3 vertices does not admit Laplacian PST between its end

vertices at any time, nor does a special class of weighted symmetric trees between pairs

of mirror-symmetric vertices. For the adjacency PST on a weighted path with or without

loops, a rationality conjecture on the edge weights is given. In Chapter 5, we perform

Godsil-McKay switching on the hypercube to create a new class of graphs that maintain

many of the same properties as the hypercube. In particular, these graphs exhibit adja-

cency (and Laplacian) perfect state transfer between certain pairs of vertices. When PST
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occurs, the sensitivity of fidelity of state transfer with respect to timing errors is given. In

Chapter 6, we analyze the sensitivity of the fidelity of state transfer, when adjacency PST

or Laplacian PST occurs, with respect to small errors in readout time and in edge weights,

and obtain some bounds on the fidelity. In Chapter 7, we consider a different, related, phe-

nomenon — fractional revival — and we find that if there is Laplacian fractional revival

between two vertices j and k, then the two vertices are strongly cospectral with respect to

the Laplacian matrix L. We also give a complete characterization of threshold graphs that

admit Laplacian fractional revival between a subset of two or more vertices. In Chapter 8,

some problems for future study are listed.



Chapter 2

Background

2.1 Some matrix theory results

Recall that a square matrix A is said to be symmetric if AT = A, skew-symmetric if AT =

−A, and orthogonal if ATA = I . A complex square matrix A is said to be Hermitian if

A∗ = A, skew-Hermitian if A∗ = −A, unitary if A∗A = I , and normal if A∗A = AA∗

[56].

2.1.1 Spectral decomposition of a Hermitian matrix

Eigenvalues and eigenvectors play important roles in the analysis of quantum information

transfer. The multiset of all the eigenvalues (counting their multiplicities) of a matrix

B ∈ Mn is called the spectrum of B, denoted by σ(B). Two non-isomorphic graphs

are said to be cospectral with respect to the adjacency matrix (resp. Laplacian matrix)

30
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if the corresponding matrices of the two graphs have the same spectrum. An important

nonnegative number associated to B, called the spectral radius of B, denoted by ρ(B), is

defined as the largest modulus among all the eigenvalues of B, that is, ρ(B) = max{|λ| :

λ ∈ σ(B)}. The spectra of some well-structured graphs are well-known. For example,

the adjacency matrix of the complete graph Kn has only two distinct eigenvalues: n − 1

with multiplicity 1, and −1 with multiplicity n− 1. The Laplacian matrix of Kn also has

exactly two distinct eigenvalues: 0 (simple) and n with multiplicity n − 1. For arbitrary

graphs, there are no direct formulas for all the eigenvalues. The following theorem tells us

some information about where the eigenvalues are located.

Theorem 2.1.1. [56, Chapter 6](Gershgorin Theorem) Let B = [bj,k] ∈Mn, let

R′j(B) =
∑
k 6=j

|bj,k|, j = 1, . . . , n

denote the deleted row sums of B. The eigenvalues of B are in the union of Gershgorin

discs

G(B) = ∪nj=1{z ∈ C : |z − bj,j| ≤ R′j(B)}.

Furthermore, if the union of ` of the n discs that comprise G(B) forms a set G`(B) that is

disjoint from the remaining n − ` discs, then G`(B) contains exactly ` eigenvalues of B,

counted according to their algebraic multiplicities.

For a multiple eigenvalue λ of a diagonalizable matrix B, a list of orthonormal eigen-

vectors that form a basis of the eigenspace associated to the eigenvalue λ is not unique, but
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the orthogonal projection matrix onto each eigenspace is unique. For Hermitian matrices,

we can say more.

Theorem 2.1.2. [44, Chapter 2](Spectral Decomposition) Let M be an n × n Hermitian

matrix. Assume λ1, . . . , λs are all the distinct eigenvalues of M , and for j = 1, . . . , s,

let Ej represent the orthogonal projection matrix onto the eigenspace associated with

eigenvalue λj . Then the spectral decomposition of M is M =
∑s

j=1 λjEj . Furthermore,

the following hold:

1. E2
j = Ej and EjEk = 0 if j 6= k.

2.
∑s

j=1 Ej = In.

3. If f(x) is an analytic function which is defined at each eigenvalue of M , then

f(M) =
∑s

j=1 f(λj)Ej .

In particular, the adjacency matrix and the Laplacian matrix of a real-weighted or un-

weighted graph are real and symmetric, and therefore they have corresponding spectral

decompositions. Assume G is a weighted or unweighted graph; denote its adjacency

matrix by A(G) and Laplacian matrix by L(G). Let M be either A(G) or L(G). As-

sume the spectral decomposition of M is M =
∑s

j=1 λjEj . Let k and ` be two vertices

of G. If (Ej)k,k = (Ej)`,` for each j = 1, . . . , s, then we say k and ` are cospec-

tral with respect to M , and if Ejek = ±Eje` for each j, then we say k and ` are

strongly cospectral with respect to M . Since Ej is a symmetric idempotent, we know

that (Ej)k,k = eTkEjek = eTkEjEjek = eTkE
T
j Ejek = (Ejek)

T (Ejek), and hence strong
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cospectrality implies cospectrality of two vertices. Recall that for an invertible matrix B,

B−1 = 1
det(B)

adj(B), where adj(B) is the adjugate matrix of B. Combining this with

Theorem 2.1.2 (3) for f(x) = 1
λ−x , we have ψ(G\k,λ)

ψ(G,λ)
= ((λI −M)−1)k,k =

∑
j

(Ej)k,k
λ−λj ,

where ψ(G, λ) = det(λI −M) is the characteristic polynomial of M , and ψ(G\k, λ) is

the characteristic polynomial of the submatrix of M obtained from M by deleting the k-th

row and k-th column. Therefore the definition of cospectral vertices is equivalent to the

one given in Section 1.3.

Remark 2.1.3. [46] Making use of the spectral decomposition, we have eitM =
∑s

j=1 e
itλjEj ,

which plays a vital role in the analysis of quantum state transfer. For example, A(K2) =[
0 1
1 0

]
has E1 = 1

2

[
1 −1
−1 1

]
associated to the eigenvalue λ1 = −1, and E2 = 1

2

[
1 1
1 1

]
associated to the eigenvalue λ2 = 1. Therefore eitA(K2) = 1

2

[
eit + e−it eit − e−it
eit − e−it eit + e−it

]
=[

cos(t) i sin(t)
i sin(t) cos(t)

]
.

2.1.2 Matrix norms and some perturbation theory

Recall that for any vector x ∈ Cn, its Euclidean norm ‖x‖2 is defined as ‖x‖2 =
√
x∗x.

Now we introduce the definition of matrix norm and two specific matrix norms.

Definition 2.1.4. [56, Chapter 5] A function |||·||| : Mn → R is a matrix norm if, for all

A,B ∈Mn, and any c ∈ C, it satisfies the following five axioms:

(1) |||A||| ≥ 0 Nonnegative

(1a) |||A||| = 0 if and only if A = 0 Positive

(2) |||cA||| = |c||||A||| Homogeneous
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(3) |||A+B||| ≤ |||A|||+ |||B||| Triangle inequality

(4) |||AB||| ≤ |||A||||||B||| Submultiplicative

The Frobenius norm ‖A‖F and the spectral norm |||A|||2 of a square matrix A are two

commonly used matrix norms, both of which play important roles in the analysis of sensi-

tivity of fidelity of state transfer with respect to edge weights.

Definition 2.1.5. [56, Chapter 5] For a matrixA = [aj,k] of size n×m, its Frobenius norm

(also called the Schur norm) ‖A‖F is defined as

‖A‖F =
√
|Tr(AA∗)| =

√√√√ n∑
j=1

m∑
k=1

|aj,k|2,

where Tr(B) denotes the trace of a square matrix B, and |a| denotes the modulus of the

complex number a.

The spectral norm |||A|||2 of A is defined as

|||A|||2 = σ1(A), the largest singular value of A,

where the singular values of A are the square roots of all the (non-negative) eigenvalues

of AA∗.

For a normal matrix A (that is, AA∗ = A∗A), the singular values of A are the moduli

of the eigenvalues of A, and therefore |||A|||2 = ρ(A) in this case [56, Chapter 5].

Definition 2.1.6. [56, Chapter 5] A matrix norm |||·||| on Mn (resp. a vector norm ‖ · ‖ on

Cn) is said to be unitarily invariant if for any A ∈Mn (resp. any x ∈ Cn) and any unitary

matrix U of size n, |||UA||| = |||A||| = |||AU ||| (resp. ‖Ux‖ = ‖x‖) holds.
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From the above definitions we can see that the Frobenius norm is unitarily invariant

(this can be proved by using the fact that Tr(AB) = Tr(BA) for any matrices A,B such

that the products are defined) and the spectral norm is unitarily invariant (this can be proved

by using the fact that similar matrices have the same spectrum). Also the Euclidean vector

norm ‖ · ‖2 is unitarily invariant.

We also recall some important inequalities between the two matrix norms, the Eu-

clidean norm of vectors, and the maximum modulus of matrix entries.

Theorem 2.1.7. [51, Section 2.3.2] Let A be a real m× n matrix of rank r. Then

max
j,k
|aj,k| ≤ |||A|||2 ≤ ‖A‖F ≤

√
r|||A|||2,

|||A|||2 ≤
√
mn max

j,k
|aj,k|,

|||A|||2 = max
‖x‖2=1

‖Ax‖2, and so ‖Ax‖2 ≤ |||A|||2‖x‖2 for any x ∈ Cn and A ∈Mn.

The matrix exponential plays an important role throughout this thesis. The following

Theorem shows that the power series eA =
∑∞

k=0
1
k!
Ak is well defined for every square

matrix A.

Theorem 2.1.8. [56, Chapter 5] Let A be any matrix of size n×n, and let R be the radius

of convergence of a scalar power series
∑∞

k=0 akz
k. The matrix power series

∑∞
k=0 akA

k

converges if the spectral radius of A satisfies ρ(A) < R. This condition is satisfied if there

is a matrix norm |||·||| on Mn such that |||A||| < R.

For example, A(K2) satisfies (A(K2))2k+1 = A(K2) and (A(K2))2k = I2, therefore

eitA(K2) =
∑∞

j=0
ij

j!
(A(K2))j tj =

∑
j even

(i)j

j!
tjI2+

∑
j odd

(i)j

j!
tjA(K2) =

[
cos t i sin t
i sin t cos t

]
.
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Sometimes we also make use of the inverse function of the exponential function — a

logarithmic function. Given a matrix B, another matrix A is said to be a matrix logarithm

of B if eA = B. It is known that a matrix has a logarithm if and only if it is invertible [55].

In general, a logarithm of a matrix is not unique. The following theorem gives a formula

to compute a (real) logarithm of a matrix that is sufficiently close to the identity matrix.

Theorem 2.1.9. [54, Section 2.3] The function

log(B) =
∞∑
k=1

(−1)k+1 (B − I)k

k
= −

∞∑
k=1

(I −B)k

k

is defined and continuous on the set of all n× n complex matrices B with ‖B − I‖F < 1.

For all B with ‖B − I‖F < 1, elog(B) = B holds.

When a matrix A is perturbed, a matrix function of A may also be perturbed. There is

an important inequality telling us how sensitive the matrix exponential eA is to perturba-

tions in A when A is a normal matrix, in terms of the spectral matrix norm.

Theorem 2.1.10. [51, Chapter 9.3.2] Let A be a normal matrix, E be a matrix of the same

size as A, and t be a positive real number. Then∣∣∣∣∣∣e(A+E)t − eAt
∣∣∣∣∣∣

2

|||eAt|||2
≤ t|||E|||2e

t|||E|||2 .

It is known that all the eigenvalues of a Hermitian matrix are real numbers, so we can

put them in order: letA be a Hermitian matrix, and order its eigenvalues in non-decreasing

order as λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A). We would like to know how the eigenvalues

are influenced if A is perturbed by a Hermitian matrix. In the special case of a rank-one
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Hermitian perturbation of a Hermitian matrix, the following interlacing theorem says that

there is an easy rule to order the eigenvalues of the two matrices together without knowing

the eigenvalues.

Theorem 2.1.11. [56, Chapter 4] Let n ≥ 2, let A ∈Mn be Hermitian, and let z ∈ Cn be

nonzero. Then

λ1(A) ≤ λ1(A+ zz∗) ≤ λ2(A) ≤ λ2(A+ zz∗) ≤ · · · ≤ λn(A) ≤ λn(A+ zz∗).

This theorem does not tell us directly how big |λj(A+ zz∗)− λj(A)| can be. The fol-

lowing bound on the corresponding eigenvalues of two general Hermitian matrices shows

that it is bounded above by z∗z, as for any z ∈ C, |||zz∗|||2 = z∗z.

Theorem 2.1.12. [16, page 101] Assume A and B are two Hermitian matrices of size

n. Let Eig↓(A) (resp. Eig↓(B)) denote a diagonal matrix whose diagonal entries are

eigenvalues of A (resp. B) in non-increasing order. Then

∣∣∣∣∣∣Eig↓(A)− Eig↓(B)
∣∣∣∣∣∣

2
≤ |||A−B|||2.

Sometimes we are also interested in the sensitivity of eigenvectors of a normal matrix

to small perturbations. Assume M is a Hermitian matrix and λ is an eigenvalue of M with

multiplicity r. It is known that there exists a set of r linearly independent eigenvectors of

M associated to λ that depend continuously on entries ofM . To be more specific, we have

the following theorem.

Theorem 2.1.13. [3, 12] Let δ ∈ R, M(δ) be a Hermitian n × n matrix with all its

entries being analytic functions of the parameter δ in some open interval I0 that contains
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δ0, that is, M(δ) can be seen as a function from R to Mn satisfying certain conditions.

Assume that λ1(δ0) is an eigenvalue of M(δ0) of multiplicity r. Then there exist r analytic

functions λ1, . . . , λr: R→ C and r linearly independent analytic vector-valued functions

x1, . . . , xr: R → Cn, such that M(δ)xj(δ) = λj(δ)xj(δ) throughout some open interval

I ⊆ I0 such that δ0 ∈ I and that λ1(δ0) = · · · = λr(δ0).

This theorem tells us that for a Hermitian matrix M , for each of its eigenspaces, we

can find a set of linearly independent vectors in this space that depend continuously on the

entries of M . For eigenvectors associated to distinct eigenvalues of M , we also have some

results. The following are from Bhatia [16]. Given a normal matrix A and a subset S of

C, we use PA(S) to denote the orthogonal projection onto the subspace spanned by the

eigenvectors of A corresponding to those eigenvalues that lie in S. If S1 and S2 are two

disjoint sets, and if E = PA(S1) and F = PA(S2), then E and F are mutually orthogonal,

that is, EF = 0 (the eigenvectors of a normal matrix associated to distinct eigenvalues are

orthogonal to each other). If A and B are two normal matrices, and if E = PA(S1) and

F = PB(S2), then one might expect that if B is close to A and S1 and S2 are far apart,

then E is nearly orthogonal to F . This is made precise in the theorem below.

Theorem 2.1.14. [16, Section 7.3] LetA,B be two normal matrices. Let S1 and S2 be two

subsets of the complex plane that are separated by either an annulus of width δ or a strip

of width δ (there is a set D ⊂ C, which is an annulus or strip of width δ such that S1 and

S2 belong to different connected components of C\D). Let E = PA(S1), F = PB(S2).
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Then for every unitarily invariant matrix norm,

|||EF ||| ≤ 1

δ
|||E(A−B)F ||| ≤ 1

δ
|||A−B|||.

Another way to perturb a matrix is to border it. For a given Hermitian matrix M ,

order its eigenvalues in non-decreasing order as λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M). Then

we have the following Cauchy’s interlacing theorem for a bordered Hermitian matrix,

sometimes called the separation theorem.

Theorem 2.1.15. [56, Chapter 4] Let B be an n × n Hermitian matrix, let y ∈ Cn and

a ∈ R be given. Let A =

[
B y
y∗ a

]
∈Mn+1. Then

λ1(A) ≤ λ1(B) ≤ λ2(A) ≤ · · · ≤ λn(A) ≤ λn(B) ≤ λn+1(A).

2.1.3 Weighted matrix tree theorem

Using the Laplacian matrix of a graph, we can compute the number of spanning trees of

the graph directly.

Theorem 2.1.16. (Kirchhoff’s matrix tree theorem [65][49, Chapter 13]) Let G be a con-

nected graph on n vertices, denote its Laplacian matrix by L, and its number of spanning

trees by t(G).

1. If the eigenvalues of L are λ1 = 0, λ2, . . . , λn (not necessarily distinct), then

t(G) =
λ2 · · ·λn

n
.
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2. For 1 ≤ j ≤ n, let Lj be the reduced Laplacian obtained from L by deleting the j-th

row and j-th column. Then

t(G) = detLj.

Since we are also working on weighted graphs, the following general version of the

theorem is of important use.

Theorem 2.1.17. (Weighted Matrix-Tree Theorem [39]) Let G be a weighted graph, and

let L̂ be its (weighted) Laplacian matrix.

1. If the eigenvalues of L̂ are λ̂1 = 0, λ̂2, . . . , λ̂n (not necessarily distinct), then

∑
T∈Γ(G)

∏
{i,j}∈E(T )

wi,j =
λ̂2 · · · λ̂n

n
,

where Γ(G) is the set of all spanning trees of G and wi,j is the weight of the edge

between vertices i and j in T .

2. For 1 ≤ j ≤ n, let L̂j be the reduced Laplacian obtained from L̂ by deleting the j-th

row and j-th column. Then

∑
T∈Γ(G)

∏
{i,j}∈E(T )

wi,j = detL̂j.

2.1.4 Symmetric functions of eigenvalues and principal minors of a

matrix

First, recall some definitions related to a matrix.
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Definition 2.1.18. [56, Chapter 0] Let A ∈Mn. For subsets α, β ⊂ {1, . . . , n}, we denote

by A[α,β] the submatrix of entries that lie in the rows of A indexed by α and the columns

indexed by β. If α = β, the submatrix A[α] = A[α,α] is a principal submatrix of A. The

determinant of an r × r submatrix of A is called a minor (of size r) of A. If the r × r

submatrix is a principal submatrix, then its determinant is a principal minor (of size r).

Therefore, for a matrix A ∈ Mn, each of its diagonal entries is a minor of A, and the

determinant of A is a minor of A (of size n). As we know, for a given matrix A of size

n × n, its trace is the sum of all its eigenvalues and its determinant is the product of all

its eigenvalues. In fact, there are more relations between the symmetric functions of the

eigenvalues of A and the principal minors of A.

Definition 2.1.19. [56, Chapter 1] Let A ∈Mn. The sum of all its principal minors of size

k (there are
(
n
k

)
of them) is denoted by Ek(A).

The k-th elementary symmetric function of n complex numbers λ1, . . . , λn, k ≤ n, is

Sk(λ1, . . . , λn) =
∑

1≤i1<···<ik≤n

k∏
j=1

λij

Notice that the sum above has
(
n
k

)
summands. If A ∈ Mn and λ1, . . . , λn are its eigenval-

ues, we define Sk(A) = Sk(λ1, . . . , λn).

Theorem 2.1.20. [56, Chapter 1] Let A ∈ Mn. Then Sk(A) = Ek(A) for each k =

1, . . . , n.
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2.2 Some graph operations

Recall that in this thesis, we refer to an undirected unweighted graph as a graph, and an

undirected weighted graph as a weighted graph. Let G = (V,E) denote the graph with

vertex set V and edge set E. Then the complement Gc of G is the graph that has the same

vertex set as G, and two vertices of Gc are adjacent if and only if they are not adjacent in

G.

Definition 2.2.1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with disjoint vertex

sets. Then

1. The union G1 ∪ G2 of G1 and G2 is the graph with vertex set V1 ∪ V2 and edge set

E1 ∪ E2, i.e., G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

2. The joinG1∨G2 ofG1 andG2 isG1∨G2 = (Gc
1∪Gc

2)c, which is the graph obtained

by first taking the union of G1 with G2, and then connecting every vertex of G1 to

every vertex of G2.

3. The Cartesian product G1�G2 of G1 and G2 is the graph with vertex set V1 × V2,

and two vertices (u1, u2) and (v1, v2) are adjacent to each other if and only if one of

the following two is true,

(a) u1 = v1, and u2 and v2 are adjacent in the graph G2, or

(b) u2 = v2, and u1 and v1 are adjacent in the graph G1.
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One can also define the Cartesian product of weighted graphs G1 and G2 by defining

(i) the weight of the edges between (u1, u2) and (u1, v2) in G1�G2 to be the same as the

weight between u2 and v2 in G2, and (ii) the weight of the edges between (u1, u2) and

(v1, u2) in G1�G2 to be the same as the weight between u1 and v1 in G1.

For example, the Cartesian product of the complete graph K2 on two vertices with

itself for n times gives us the n-cube (also called a hypercube). The adjacency matrix and

the Laplacian matrix of the resulting graph with respect to each graph operation can be

obtained from the corresponding matrices of the original graphs. Let G be a graph on n

vertices with adjacency matrixA(G) and LaplacianL(G). ThenA(Gc) = Jn,n−In−A(G)

and L(Gc) = nIn − Jn,n −L(G). Furthermore, the eigenvalues and eigenvectors of L(G)

and L(Gc) are related as the following proposition shows.

Proposition 2.2.2. [49, Chapter 13] Let G be a graph on n ≥ 2 vertices. Assume that

the eigenvalues of L(G) are 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G), and that xj is an

eigenvector of L(G) associated to the eigenvalue λj(G). Denote the eigenvalues of L(Gc)

as 0 = λ1(Gc) ≤ λ2(Gc) ≤ · · · ≤ λn(Gc). Then for each j = 2, . . . , n, λj(Gc) =

n−λn+2−j(G), and xn+2−j is an eigenvector ofL(Gc) associated to the eigenvalue λj(Gc).

Before introducing the adjacency matrix for the Cartesian product of two graphs, we

need to review another matrix operation — the tensor product.

Definition 2.2.3. Let A = [aj,k] be an m × n matrix, and B = [br,s] be a p × q matrix.
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Then the tensor product of A with B is the mp× nq block matrix

A⊗B =


a1,1B a1,2B · · · a1,nB

a2,1B a2,2B
. . . a2,nB

...
...

...
...

am,1B am,2B · · · am,nB

 .
Proposition 2.2.4. [57, Chapter 4] The tensor product of matrices satisfies the following

properties.

1. For any m× n matrix A, p× q matrix B, and any α ∈ C, (αA)⊗B = A⊗ (αB).

2. For any matrices A, B and C, (A⊗B)⊗ C = A⊗ (B ⊗ C).

3. For any p × q matrix A, r × s matrix B, q × k matrix C, and s × ` matrix D,

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Theorem 2.2.5. [36, Chapter 2; 40] For i = 1, 2, let Gi be a graph on ni vertices with

adjacency matrix A(Gi) and Laplacian matrix L(Gi). Then the union G1 ∪ G2 has ad-

jacency matrix A(G1 ∪ G2) =

[
A(G1) 0n1,n2

0n2,n1 A(G2)

]
and Laplacian matrix L(G1 ∪ G2) =[

L(G1) 0n1,n2

0n2,n1 L(G2)

]
; the joinG1∨G2 has adjacency matrixA(G1∨G2) =

[
A(G1) Jn1,n2

Jn2,n1 A(G2)

]
and Laplacian matrix L(G1 ∨ G2) =

[
L(G1) + n2In1 −Jn1,n2

−Jn2,n1 L(G2) + n1In2

]
; the Cartesian

product G1�G2 has adjacency matrix A(G1�G2) = A(G1) ⊗ In2 + In1 ⊗ A(G2) and

Laplacian matrix L(G1�G2) = L(G1)⊗ In2 + In1 ⊗ L(G2).

The perfect state transfer property is closed under union as eitA(G1∪G2) =

[
eitA(G1) 0

0 eitA(G2)

]
;

the following theorem shows that a similar result holds for Cartesian product. Note that

the perfect state transfer property is not closed in general under the join operation.
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Theorem 2.2.6. [2, 45] Let M denote the Laplacian matrix or adjacency matrix of a

weighted or unweighted graph. Suppose G is a weighted or unweighted graph on m

vertices and has perfect state transfer at time t between g1 and g2 with respect to M . Sup-

pose Y is a weighted or unweighted graph on n vertices that has perfect state transfer at

time t between y1 and y2 relative to M . Then M(G�Y ) = M(G) ⊗ In + Im ⊗M(Y )

implies that eitM(G�Y ) = eitM(G) ⊗ eitM(Y ). Therefore G�Y has perfect state transfer at

time t between (g1, y1) and (g2, y2) relative to M .

2.3 Partitions of a graph

2.3.1 Equitable partitions of a graph

Suppose that G = (V,E) is a graph on n vertices, and let A(G) denote the adjacency

matrix of G. We review some properties of equitable partitions of V (G) and the charac-

teristic matrix P of the partition. Equitable partitions play an important role in the study

of quantum state transfer with respect to the adjacency matrix.

Definition 2.3.1. [44, Chapter 5] If π = (C1, . . . , Ck) is a partition of V (G), the charac-

teristic matrix P of π is the n× k matrix

Pj` =


1 if vj ∈ C`,

0 otherwise.

If we scale each column of P so that its Euclidean norm is 1, then the resulting matrix is

called the normalized characteristic matrix of the partition π, and is denoted by P̂ .
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Note that P̂ T P̂ = Ik.

Definition 2.3.2. [44, Chapter 5] A partition π = (C1, . . . , Ck) of V (G) is equitable if for

any `, j ∈ {1, . . . , k}, the number of neighbours in C` of a vertex in Cj is the same for all

vertices in Cj .

For each graph with an equitable partition, we can associate a weighted directed graph

to it, called the quotient graph, and a weighted undirected graph to it, called the sym-

metrized quotient graph.

Definition 2.3.3. [8, 44] Given an equitable partition π = (C1, . . . , Ck) of a graph G =

(V,E), let cj` denote the number of edges that join a fixed vertex in Cj to vertices in C`.

Define the quotient G/π of G with respect to π to be the directed integer-weighted graph

that has the cells of π as its vertices, and with an arc of weight cj` going from Cj to C`

for each cj` 6= 0. Define the symmetrized quotient Ĝ/π of G with respect to π to be the

undirected weighted graph that has the cells of π as its vertices, and with an edge of weight

√
cj`c`j between Cj and C` for each cj` 6= 0.

Denote the adjacency matrix of the quotient graph G/π as A(G/π) and the adjacency

matrix of the symmetrized quotient graph Ĝ/π by A(Ĝ/π). Then A(G/π)j,` = cj`, and

A(Ĝ/π)j,` = A(Ĝ/π)`,j =
√
cj`c`j . An equitable partition can be characterized by the re-

lation between the adjacency matrix of the graph and the normalized characteristic matrix

P̂ of the partition.

Proposition 2.3.4. [44, Chapter 5] Let π be a partition of the vertex set of a graph G, with
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characteristic matrix P . If π is equitable then A(G)P = PA(G/π). Conversely, if there

is a matrix B such that A(G)P = PB, then π is an equitable partition and B = A(G/π).

Furthermore, an equitable partition can be characterized by the fact that A commutes

with the matrix P̂ P̂ T , where P̂ is the normalized characteristic matrix of the partition.

Proposition 2.3.5. [46; 49, Chapter 9] Suppose that π = (C1, . . . , Ck) is a partition of

the vertex set of a graph G, and that P̂ is its normalized characteristic matrix. Then the

following are equivalent:

(a) π is equitable.

(b) The column space of P̂ is A(G)-invariant.

(c) There is a matrix B of size k × k such that A(G)P̂ = P̂B.

(d) A and P̂ P̂ T commute.

In the context of quantum state transfer with respect to the adjacency matrix of a graph,

there is a nice connection between a graph G that admits a special equitable partition π of

its vertex set and its symmetrized quotient graph Ĝ/π with respect to π.

Theorem 2.3.6. [8, 26] Let G = (V,E) be a graph with an equitable partition π where

vertices u and v belong to singleton cells. Then, for any time t,

(eitA(G))u,v = (eitA(Ĝ/π)){u},{v}, (2.1)

where {u} represents the singleton cell of π that contains u. Therefore, G admits adja-

cency perfect state transfer (resp. fractional revival) from u to v at time t if and only if the
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symmetrized quotient graph Ĝ/π admits adjacency perfect state transfer (resp. fractional

revival) from {u} to {v} at time t; G admits adjacency PGST between u and v if and only

if Ĝ/π admits adjacency PGST from {u} to {v}.

2.3.2 Godsil-McKay switching

If we have an equitable partition π of a graph G, we can obtain a related symmetrized

quotient graph Ĝ/π, which is usually a weighted graph. There is another type of partition

of the vertex set of a graph, which is closely related to an equitable partition and can be

used to produce a new unweighted graph that is cospectral to the original graph.

Theorem 2.3.7 (Godsil–McKay [48]). Let G be a graph and let π = (C1, C2, · · · , Ck, D)

be a partition of the vertex set V (G). Suppose that, whenever 1 ≤ i, j ≤ k and v ∈ D, we

have:

(a) any two vertices in Ci have the same number of neighbours in Cj , and

(b) v has either 0, ni/2 or ni neighbours in Ci, where ni = |Ci|.

(Note that π restricted on G\D is an equitable partition.) The graph G(π) formed by

local switching in G with respect to π is obtained from G as follows: for each v ∈ D

and 1 ≤ i ≤ k such that v has ni/2 neighbours in Ci, delete the corresponding ni/2

edges and join v instead to the other ni/2 vertices in Ci. Then G(π) and G are cospectral:

for any positive integer r, if we define Q̄r = 2Jr/r − Ir, then the block diagonal matrix

Q = diag (Q̄n1 , Q̄n2 , . . . , Q̄nk , I|D|) satisfies Q2 = I , and QA(G)Q = A(G(π)).



49

2.4 Hadamard matrices and Hadamard diagonalizable graphs

A Hadamard matrix of order n is an n × n matrix H with entries +1 and −1, such that

HHT = nI . Therefore, the inverse of a Hadamard matrix H of order n is H−1 = 1
n
HT .

It is known [53] that if there is a Hadamard matrix of order n > 2, then 4|n.

Since the equality (A⊗B)(C⊗D) = (AC)⊗(BD) holds for any matricesA,B,C and

D such that the operations are defined, we know that the tensor product of two Hadamard

matrices is still a Hadamard matrix. In particular, we can define a sequence of Hadamard

matrices recursively; let

H1 =

[
1 1
1 −1

]
, H2 =

[
H1 H1

H1 −H1

]
= H1⊗H1, . . . , Hn =

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
= H1⊗Hn−1.

This construction gives the standard Hadamard matrix Hn of order 2n.

From the definition of a Hadamard matrix, we know a (1,−1) matrix is a Hadamard

matrix if and only if any two rows ofH are orthogonal, which is true if and only if any two

columns of H are orthogonal. This mutual orthogonality property does not change if we

permute rows or columns or if we multiply some rows or columns by−1. This leads to the

simple but important observation that, given a Hadamard matrix, it is always possible to

permute and sign its rows and columns so that all entries of the first row and all entries of

the first column are 1s. A Hadamard matrix in this form is said to be normalized [85, page

199].

Given a graph G on n vertices with corresponding Laplacian matrix L(G), if we can

write L(G) = 1
n
HΛHT for some Hadamard matrix H and some diagonal matrix Λ, then
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we say that G (or, that L(G)) is Hadamard diagonalizable. Hadamard diagonalizable

graphs have some nice properties.

Theorem 2.4.1. [10, Theorem 5] Let G be a graph on n vertices that is Hadamard diago-

nalizable. Then G is regular and all its Laplacian eigenvalues are even integers.

A slightly stronger result is proved in Section 3.2 (Theorem 3.2.1). The following

result allows us to make use of a more structured Hadamard matrix, namely, a normalized

Hadamard matrix.

Lemma 2.4.2. [10, Lemma 4] A graph G is Hadamard diagonalizable if and only if there

is a normalized Hadamard matrix that diagonalizes L(G).

Thus, there is no loss of generality in assuming that the Laplacian matrix of a Hadamard

diagonalizable graph is in fact diagonalized by a normalized Hadamard matrix. Note that

“normalized” in this setting does not imply scaling H to satisfy |||H||| = 1 for some matrix

norm.

Being diagonalizable by a Hadamard matrix is preserved by many graph operations

that we know.

Lemma 2.4.3 (Lemma 7, 8, [10]). Let G be a Hadamard diagonalizable graph. Then Gc,

G∪G, andG∨G are also Hadamard diagonalizable. If Y is another Hadamard diagonal-

izable graph, then G�Y is also Hadamard diagonalizable. In fact, if G is diagonalizable

by a Hadamard matrix Ĥ and Y is diagonalizable by a Hadamard matrix H̃ , then Gc is
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diagonalizable by Ĥ , G ∪ G and G ∨ G are diagonalizable by
[
Ĥ Ĥ

Ĥ −Ĥ

]
, and G�Y is

diagonalizable by Ĥ ⊗ H̃ .

Note that G∨Y is not necessarily Hadamard diagonalizable even if both G and Y are.

For example, K4 and C4 (a cycle on 4 vertices) are both Hadamard diagonalizable, but

K4 ∨ C4 is not regular, and therefore not Hadamard diagonalizable by Theorem 2.4.1.

2.5 Cubelike graphs

2.5.1 The n-cube

Let K2 denote the complete graph on 2 vertices, which is also called the 1-cube. For any

integer n ≥ 1, the n-cubeQn (also called a hypercube) can be generated with the following

two constructions.

The first construction is to define the graph by giving the vertex set and edge set of

the graph: assigning a vertex to each of the 2n binary strings of length n, connecting two

vertices with an edge if and only if their binary labels differ at exactly one digit.

An equivalent way to define this graph is to use a graph operation, namely, the Carte-

sian product (Section 2.2). Taking the Cartesian product of K2 with itself n times, de-

noted by K�n
2 , also gives the n-cube. The n-cube is n-regular: each vertex has ex-

actly n adjacent vertices.Direct computation (through the spectral decomposition, The-

orem 2.1.2 and Remark 2.1.3, or through the power series formula of matrix exponential,

the paragraph after Theorem 2.1.8) shows that K2 admits perfect state transfer at time π
2
:
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eitA(K2) =

[
cos(t) i sin(t)
i sin(t) cos(t)

]
. From Theorem 2.2.6 we know that, for any positive integer

n ≥ 1, the n-cube exhibits perfect state transfer at time π
2

between any pair of antipodal

vertices (u and u+ 1, where 1 is the all-ones vector, and the sum is performed in Zn2 ).

Remark 2.5.1. Consider the first construction of Qn. Let V1 = {x ∈ Zn2 |wt(x) ≡ 0

(mod 2)} and V2 = {x ∈ Zn2 |wt(x) ≡ 1 (mod 2)}, where wt(x) denotes the number

of nonzero digits of x. Then every edge of Qn has an end in V1 and one end in V2,

which shows that Qn is a bipartite graph. Now order the vertices of Qn according to

the bi-partition V (Qn) = V1 ∪ V2. Then the adjacency matrix is of the form A(Qn) =[
0 B
BT 0

]
for some 2n−1 × 2n−1 matrix B. From [32], we know that the unitary matrix

UQn(t) = eitA(Qn) can be written as UQn(t) =

[
M1(t) iK(t)
iKT (t) M2(t)

]
for some real matrices

M1(t),M2(t) and K(t).

2.5.2 Cayley graphs and cubelike graphs

Hypercubes are highly symmetric structures; in fact, they are vertex-transitive. There

is a more general family of graphs that are vertex-transitive: the Cayley graphs, whose

definition is based on a group.

Definition 2.5.2. [49, Chapter 3] Let G be a group and let C be a subset of G that is closed

under taking inverses and does not contain the identity. Then the Cayley graph G = G(C)

is the graph with vertex set G and edge set {{u, v} : uv−1 ∈ C}, and C is called the

connection set of G.
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Recall that a subset S of a group G is a generating set for G if every element of G can be

written as a product of elements of S. The connectedness of the Cayley graph G = G(C)

can be determined from its connection set C.

Theorem 2.5.3. [49, Chapter 3] The Cayley graph G = G(C) is connected if and only if

C is a generating set for G.

The n-cube is a Cayley graph for the abelian group Zn2 , with connection set C =

{e1, . . . , en}. More generally, any Cayley graph for Zn2 is called an n-cubelike graph. From

the definition we know the Cayley graph G = G(C) is a |C|-regular graph. Furthermore,

as we will see in Corollary 3.6.2 [15], a graph is diagonalizable by a standard Hadamard

matrix if and only if it is a cubelike graph. The following result characterizes PST of

cubelike graphs at time π/2, where the summation is performed in the abelian group Zn2

and 0 is the zero vector in Zn2 .

Theorem 2.5.4. [15, Theorem 1], [29, Theorem 2.3] Let C be a subset of Zn2 and let σ be

the sum of the elements of C. If σ 6= 0, then PST occurs in Zn2 (C) from j to j + σ at time

π/2. If σ = 0, then Zn2 (C) is periodic with period π/2 (that is, Zn2 (C) is periodic at all its

vertices at time π/2).
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2.6 Perfect state transfer

2.6.1 Perfect state transfer and rows of the diagonalization matrix

First recall the Cauchy-Schwarz inequality, which plays an important role in the study of

perfect state transfer.

Theorem 2.6.1. For any two vectors u, v ∈ Cn, the following inequality holds

|u · v|2 ≤ ‖u‖2 · ‖v‖2,

where ‖ · ‖2 denote the Euclidean norm of a vector, and the inner product u · v is u∗v.

Furthermore, equality holds if and only if u and v are linearly dependent.

If G admits PST, then the rows of a real orthogonal matrix Q that diagonalizes the

HamiltonianH need to satisfy some conditions.

Proposition 2.6.2. [60] Suppose that G is a a weighted or unweighted graph with Hamil-

tonian H and that QTHQ = Λ, where Q = [qj,k]1≤j,k≤n is real orthogonal and Λ is

diagonal. Denote the `-th row of Q as qT` . Then G admits PST between vertices j and k at

time t0 if and only if eit0Λqk = eiφqj (or equivalently, qTk e
it0Λ = qTj e

iφ) for some φ ∈ R.

Proof. A weighted graph G with Hamiltonian H admits PST at time t0 > 0 between two

vertices j and k if and only if pj,k(t0) = |eTj eit0Hek|2 = 1. As shown in equations (1.2)

and (1.3), we know that

pj,k(t0) = |qTj eit0Λqk|2 (2.2)
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Since ‖qj‖2 = 1 and ‖eit0Λqk‖2 = 1, Cauchy-Schwarz inequality implies that the value in

equation (2.2) is equal to 1 if and only if eit0Λqk = eiφqj for some φ ∈ R.

In summary, if G admits perfect state transfer between vertices j and k, and Q is a

real orthogonal matrix that diagonalizes the Hamiltonian H of G, then the corresponding

entries in the j-th row and k-th row of Q have the same modulus (in fact they are equal,

or one is the negative of the other, since Q is a real matrix). Furthermore, we need the

eigenvalues and the readout time t0 to work together to adjust the signs of the entries

(eit0Λqk = eiφqj).

2.6.2 A necessary condition on the weights for a weighted path to ex-

hibit PST between the end vertices

Assume G is a weighted path with loops. A necessary and sufficient condition that the

eigenvalues of the adjacency matrix A(G) must satisfy for G to admit adjacency PST

between its end vertices is shown in Section 4.1.3. The following is a necessary condition

that the weights of edges and loops of G must satisfy for G to exhibit PST between its end

vertices.

Lemma 2.6.3. [61] If a weighted path with loops with Hamiltonian

H =



b1 j1 0 · · · 0 0

j1 b2 j2 · · · 0 0

0 j2 b3 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · bn−1 jn−1

0 0 0 · · · jn−1 bn


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admits perfect state transfer between its two end vertices, then the Hamiltonian H must

satisfy j2
` = j2

n−` and b` = bn+1−` for all `. In particular, since we are considering positive

weights, j` = jn−`.

2.6.3 Sensitivity of fidelity of state transfer to changes in time when

PST occurs

Assume a weighted graph G admits PST between vertices u and v at time t = t0. If the

state is read out at vertex v at time t0 + h instead of t0 due to some small errors h in time,

what is the probability that the state read out is the same as the one sent from u (if the state

is read out at time t0, then the probability is 1), or how sensitive is the fidelity of transfer to

changes in the readout time? To answer this question, the derivatives of the fidelity of state

transfer with respect to the readout time have been analyzed [66]. When PST occurs, the

following result provides expressions for the derivatives of the fidelity of transfer between

vertices u and v of all orders in terms of the diagonal entries of powers ofH.

Theorem 2.6.4. [66] Assume a weighted graph G with Hamiltonian H admits PST be-

tween vertices u and v at time t = t0. Denote the fidelity of state transfer pu,v(t) between

vertices u and v by p for short. For each j ∈ N, let w(j) = eTuHjeu, and set w(0) = 1.

Then for each k ∈ N,

dkp

dtk
|t=t0 =

{
(−1)(k (mod 4))/2

∑k
j=0(−1)j

(
k
j

)
w(j)w(k − j), if k is even,

0 if k is odd.
(2.3)
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In particular, if G is an unweighted graph, then d2p
dt2
|t=t0 = −2 deg(u) if H = A(G), as

w(1) = 0 and w(2) = deg(u) in this case, and d2p
dt2
|t=t0 = −2 deg(u) if H = L(G), as

w(1) = deg(u) and w(2) = deg(u)2 + deg(u) in this case.

2.6.4 More properties about perfect state transfer

For a given graph G, if there is PST from vertex j to vertex k at time t0, then there is no

PST from j to any other vertex `(6= k) at time t0 (since each row of eitH has norm 1, where

H is the Hamiltonian of the graph). But is it possible for G to admit PST from vertex j to

vertex k at time t0, and PST from vertex j to vertex ` 6= j, k at a different time t1? That is,

it is possible that pj,k(t1) = 1 and pj,`(t2) = 1 for some three distinct vertices j, k and ` of

the graph G? The following result tells us that the answer is no.

Proposition 2.6.5 ([60]). If a graph admits perfect state transfer from j to k and from j to

`, then k = `.

The proof of the theorem uses the minimum periodicity of a graph at a vertex and the

minimum time for PST at this vertex. Here we give an independent proof without making

use of periodicity.

Alternate proof of Proposition 2.6.5: Without loss of generality we can reindex the

vertices in such a way that it suffices to show that if there is PST from vertex 1 to vertex

2 at time t1, then it is impossible to have PST from vertex 1 to vertex 3 at time t2. We

proceed by contradiction. Let M denote the adjacency matrix or Laplacian matrix of

the graph G on n vertices, and assume it is diagonalized by a real orthogonal matrix
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Q = [qj,k]1≤j,k≤n to Λ = diag (λ1, · · · , λn), that is, QTMQ = Λ. Denote the j-th row of

Q by qTj . Since there is PST from vertex 1 to vertex 2 at time t1, by Proposition 2.6.2, we

have that e−it1Λq1 = e−iθq2 for some θ ∈ R, which is equivalent to

qT1 e
it1Λe−iθ = qT2 . (2.4)

Similarly, the assumption that there is PST from vertex 1 to vertex 3 at time t2 implies that

for some α ∈ R

qT1 e
it2Λe−iα = qT3 . (2.5)

Thus q1,j = 0 if and only if q2,j = 0 (if and only if q3,j = 0), and for each j such that q1,j 6=

0, we have ei(t1λj−θ) = ±1, ei(t2λj−α) = ±1, since q1, q2 and q3 are real vectors. Let S be

the set of indices j (where q1,j 6= 0) such that ei(t1λj−θ) = 1 (that is q1,j = q2,j), and T be

the set of indices j such that ei(t1λj−θ) = −1 (that is q1,j = −q2,j). Then from ‖q1‖ = 1 and

the fact that q1 and q2 are orthogonal to each other, it follows that
∑

j∈S q
2
1,j+

∑
j∈T q

2
1,j = 1

and
∑

j∈S q
2
1,j −

∑
j∈T q

2
1,j = 0, and therefore

∑
j∈S q

2
1,j =

∑
j∈T q

2
1,j = 1/2 with S 6= ∅

and T 6= ∅. Now we show there is some ` ∈ S such that ei(t2λ`−α) = 1. If not, the

equation
∑

j∈S q1,jq3,j = −
∑

j∈S q
2
1,j = −1/2, combined with the fact that q1 and q3 are

orthogonal, would yield
∑

j∈T q1,jq3,j = 1/2. Since
∑

j∈T q
2
1,j = 1/2, and q3,j = ±q1,j

for j ∈ T , it follows that q3,j = q1,j for all j ∈ T , thus q3 = −q2, contradicting the fact

that Q is real orthogonal matrix. So for some ` ∈ S, ei(t1λ`−θ) = ei(t2λ`−α) = 1; that is,

eiθ = eit1λ` and eiα = eit2λ` . Substituting these into equations (2.4) and (2.5), we have

qT1 e
it1Λe−it1λ` = qT2 , qT1 e

it2Λe−it2λ` = qT3 . (2.6)
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For each j ∈ S ∪ T ≡ W , we have t1(λj − λ`) = kjπ, and t2(λj − λ`) = k′jπ for some

integers kj, k′j . For λj = λ`, we have j ∈ S, kj and k′j are both even, and q1,j = q2,j = q3,j .

For λj 6= λ`, in particular for j ∈ T 6= ∅, since the left sides of the two equations (below

equation (2.6)) are not zero, neither are the right sides. Therefore we have kj
k′j

=
kjπ

k′jπ
=

t1(λj−λ`)
t2(λj−λ`)

= t1
t2

, which is a fixed number (independent of j). Since kj and k′j are integers,

the above result is a rational number, say r/s for some relatively prime integers r and s.

Therefore k′j = kjs/r. Since k′j is an integer, r|kjs, and since r and s are relatively prime,

we have r|kj . Note that for j ∈ S, kj is an even integer, and for j ∈ T , kj is an odd

integer. Since T is not empty, we know r is an odd integer. If s is even, then k′j is even for

all j ∈ W , which combined with equation (2.6) implies q1,je
it2λje−it2λ` = q1,je

ik′jπ = q3,j

for j ∈ W , and therefore q1 = q3, a contradiction. Thus s is odd, but this implies that

kj and k′j have the same parity for each j ∈ W . Again from equation (2.6), we obtain

q2 = q3, which is impossible in a real orthogonal matrix. Therefore there is no PST from

one vertex to several different vertices. �



Chapter 3

Perfect quantum state transfer using

Hadamard diagonalizable graphs

In this chapter, we focus on quantum state transfer under Laplacian dynamics, and on

a specific class of graphs — graphs whose Laplacian matrix can be diagonalized by a

Hadamard matrix. As mentioned in Proposition 2.6.2, if there is PST between vertices

j and k of graph G, then for a real orthogonal matrix Q which diagonalizes L(G), the

corresponding entries in its j-row and k-th row are either equal to or are the negative

of each other. Hadamard diagonalizable matrices certainly satisfy this condition for any

pair of vertices, and we just need to make sure that the eigenvalues and readout time

work nicely with the sign between the corresponding entries in the two rows. As we

will see in Theorem 3.2.1, weighted or unweighted Hadamard diagonalizable graphs are

regular, so the results we get here about Laplacian PST (PGST) also hold for adjacency

60
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PST (PGST), as mentioned in Remark 1.3.10. Furthermore, integer-weighted graphs with

Hadamard diagonalizable Laplacian matrix are convenient to work with in our setting

because their spectra consist entirely of even integers (Theorem 3.2.1); consequently the

corresponding graph often exhibits PST between two of its vertices at time t0 = π/2 (see

Theorem 3.2.2 for a more specific statement). This chapter is based on work with Johnston,

Kirkland, Plosker and Storey [58]. The work began when Johnston visited the University

of Manitoba in May 2016 for a one-week period. Storey was Plosker’s undergraduate

student research assistant in Summer 2016.

3.1 Introduction

Let n be a positive integer. Complete graphs K4n are known to be Hadamard diagonal-

izable (provided that there is a Hadamard matrix of that order) [10], but such graphs do

not admit perfect state transfer [18]. There is another family of graphs that are known

to be Hadamard diagonalizable [15]: the cubelike graphs, which have highly symmet-

ric structure and have been relatively well-studied. Complete characterizations of perfect

state transfer properties of cubelike graphs are given [15, 29]. In this chapter, we will

see that cubelike graphs are closely related to standard Hadamard matrices. Hadamard

diagonalizablity is closed under many graph operations such as complement, union, join,

and Cartesian product as mentioned in Lemma 2.4.3. Here we construct another binary
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operation on weighted graphs — the merge operation — under which Hadamard diago-

nalizability is also kept. There is a graph operation closely related to our merge operation

— the “n” operation; perfect state transfer with respect to this operation is studied in [33].

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. If V1 = V2, then G1 n G2 is

the graph with adjacency matrix A(G1 nG2) =

[
A(G1) A(G2)

A(G2) A(G1)

]
. If the edge sets of G1

and G2 are disjoint, then G1 n G2 is a double cover of the graph with adjacency matrix

A(G1) + A(G2).

In this chapter, an eigenvalue characterization of weighted Hadamard diagonalizable

graphs that admit PST at time t = π
2

is given. By Remark 1.3.11, we know that if all the

(integer) weights of an integer-weighted Hadamard diagonalizable graph have a nontrivial

common factor, the characterization can be used to study the PST property of such graphs

at other times as well.

The structure of this chapter is as follows. In Section 3.2, we give a simple eigen-

value characterization for when a weighted Hadamard diagonalizable graph admits perfect

state transfer at time π/2; this characterization allows one to choose correct eigenvalues

to build (weighted, might also have negative weights) Hadamard diagonalizable graphs

having perfect state transfer (Example 3.2.3). In Section 3.3, we observe that Hadamard

diagonalizable graphs that admit PST at time π
2

are not that rare, in the sense that there are

connected unweighted non-bipartite d-regular such graphs on 2k vertices for each positive

integer d satisfying k + 1 ≤ d ≤ 2k − 2. Also we show that the existence of PST is main-

tained under graph complementation and the join operation, if we restrict to the class of
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Hadamard diagonalizable graphs that have PST at time π
2
. In Section 3.4, we introduce the

“merge” operation, a weighted variant of the “n” operation, which takes two graphs with

the same number of vertices as input, and produces a new (larger) graph. In particular,

the merge of two graphs which are diagonalizable by the same Hadamard matrix is still

Hadamard diagonalizable. We also characterize when the merge of two integer-weighted

graphs that are diagonalizable by the same normalized Hadamard matrix exhibits PST. In

Section 3.5, we give some results concerning the optimality in terms of timing errors and

manufacturing (edge weight) errors of Hadamard diagonalizable graphs. We also give an

optimality result, showing that among regular graphs of degree r ≤ 4, the r-cube is the

sparsest Hadamard diagonalizable connected unweighted graph with perfect state transfer

at time π/2. In Section 3.6, we characterize the family of graphs that are diagonalizable by

the standard Hadamard matrix Hn of size 2n for any positive integer n, showing a direct

relationship to cubelike graphs. Further, we study uniform mixing on cubelike graphs,

and for the cubelike graphs that are obtained from the hypercube by adding one or two

more elements in the connection set, we give a characterization of the one or two added

elements when the resulting cubelike graph admits uniform mixing at time π
4
.
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3.2 Eigenvalue characterization of Hadamard diagonal-

izable graphs with PST at time π
2

The following theorem originally appeared in [10], restricted to the case of unweighted

graphs. The version below allows for arbitrary integer edge weights. Although the proof

is almost identical to the unweighted version, we include it here for completeness.

Theorem 3.2.1. [10, Theorem 5] IfG is a weighted or unweighted graph that is Hadamard

diagonalizable, then G is regular; if in addition G is integer-weighted, then all its Lapla-

cian eigenvalues are even integers.

Proof. Without loss of generality we assume that G is a weighted or unweighted graph on

n vertices and that the Laplacian matrix L(G) is diagonalized by a normalized Hadamard

matrix H (Lemma 2.4.2) to a diagonal matrix Λ = diag(λ1, . . . , λn).

First we show thatG is regular. Fix an index j ∈ {1, . . . , n}, and let Sj be the diagonal

matrix with diagonal entries ±1 such that eTj HSj = 1T . Observe that HSj is also a

Hadamard matrix, and that H−1L(G)H = Λ, or equivalently, L(G)H = HΛ implies

that L(G)HSj = HΛSj = HSjΛ. Since the j-th row of HSj is the all-ones vector and

the remaining rows are orthogonal to it, we deduce that HSj1 = nej . Consequently,

neTj L(G)ej = eTj L(G)(HSj1) = eTj (L(G)HSj)1 = eTj (HSjΛ)1 = (eTj HSj)Λ1 =

1TΛ1. Thus, for each j = 1, . . . , n, eTj L(G)ej = 1
n
1TΛ1, so G is regular, as desired.

Now assume in addition that G is integer-weighted; observe that the first column of H

is the all-ones vector, and that it is an eigenvector of L(G) corresponding to the eigenvalue
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0. For any non-zero eigenvalue λj of L(G), the j-th column of H is an eigenvector asso-

ciated to λj . One can split the graph G into two subgraphs, G1 and G2 (with Laplacians

L(G1) and L(G2)), corresponding to the n/2 entries of 1 and the n/2 entries of −1 of

Hej . By applying a permutation similarity if necessary, we find that

[
L(G1) +X1 −R
−RT L(G2) +X2

][
1n

2

−1n
2

]
= λj

[
1n

2

−1n
2

]
,

for some matrices X1, X2, and R. Necessarily X1, X2 are diagonal, and note that X11n
2

=

R1n
2

and X21n
2

= RT1n
2
.

Since λj1n
2

= L(G1)1n
2

+ X11n
2

+ R1n
2

= 2X11n
2
, and since G is integer-weighted

(and therefore all the entries of X1 are integers), we deduce that λj is an even integer.

Hence each eigenvalue of the integer-weighted Laplacian matrix is an even integer.

We now give a precise characterization of the eigenvalues of a weighted Hadamard

diagonalizable graph that exhibits PST at time t0 = π/2. The proof applies a standard

characterization of PST; see Proposition 2.6.2 or [60], for example. Recall that a graph

is Hadamard diagonalizable if and only if it is diagonalizable by a normalized Hadamard

matrix (Theorem 2.4.2).

Theorem 3.2.2. Let G be a weighted Hadamard diagonalizable graph on n vertices. Let

H = [hu,v] be a corresponding normalized Hadamard matrix. Denote the eigenvalues of

the Laplacian matrix L(G) by λ1, · · · , λn, so that L(G)He` = λ`He`, ` = 1, . . . , n. Then

G has PST from vertex j to vertex k at time t0 = π/2 if and only if λ1, . . . , λn are all even
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integers and for each ` = 1, · · · , n, λ` ≡ 1− hj,`hk,` (mod 4).

Proof. Let Λ = diag (λ1, . . . , λn), then L(G) = 1
n
HΛHT , and hence ei(π/2)L(G) =

1
n
Hei(π/2)ΛHT . By Proposition 2.6.2, it follows that G admits PST from vertex j to vertex

k at t0 = π/2 if and only if ei(π/2)ΛHT ej is a scalar multiple of HT ek. Since the first

column of H is the all ones vector 1, i.e. an eigenvector of L(G) corresponding to the

eigenvalue 0, we know that the first entry of ei(π/2)ΛHT ej is ei(π/2)0hj,1 = hj,1 = 1, and

the first entry of HT ek is hk,1 = 1. Thus we deduce that not only is ei(π/2)ΛHT ej a scalar

multiple of HT ek, but that the multiple must be 1, i.e., G admits PST from vertex j to k at

π/2 if and only if

ei(π/2)ΛHT ej = HT ek. (3.1)

Note that this implies that λ1 . . . , λn are all even integers, and that

ei(π/2)λ` =

{
1 if λ` ≡ 0 (mod 4)

−1 if λ` ≡ 2 (mod 4).

Consequently, equation (3.1) holds if and only if, for each ` = 1, · · · , n, if hj,`hk,` = 1 then

λ` ≡ 0 (mod 4), and if hj,`hk,` = −1 then λ` ≡ 2 (mod 4). The conclusion follows.

It is worth noting that Theorem 3.2.2 gives an easy method for creating weighted

Hadamard diagonalizable graphs exhibiting PST, since for any normalized Hadamard ma-

trix H we can choose the eigenvalues in Λ to satisfy the required mod 4 equation for some

two rows j and k of H , and then L(G) = 1
n
HΛHT will necessarily be the Laplacian ma-

trix of some rational-weighted graph (possibly with negative weights) with PST at time

t0 = π/2 (the graph will be integer-weighted provided n divides each entry of HΛHT ).
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Example 3.2.3. Now making use of Theorem 3.2.2, we construct weighted graphs on

4 vertices that admit PST at time π/2 between vertices 1 and 3 and that are diagonal-

izable by the normalized Hadamard matrix H = H2 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

. Note

that h1,1h3,1 = h1,2h3,2 = 1 and h1,3h3,3 = h1,4h3,4 = −1. Now construct a diag-

onal matrix Λ = diag (0, λ2, λ3, λ4) with λ` ≡ 1 − h1,`h3,` (mod 4) for ` = 2, 3, 4.

For example, let Λ = diag (0, 4, 2, 6). We know the weighted graph with Laplacian

L1 = 1
4
HΛHT =


3 −2 −1 0

−2 3 0 −1

−1 0 3 −2

0 −1 −2 3

 is a required weighted graph by Theorem 3.2.2.

Letting Λ = diag (0, 4, 2, 2), we obtain L2 = 1
4
HΛHT ; this is the Laplacian matrix of the

2-cube, which is known to exhibit PST at time π/2. Similarly, letting λ2 = 2 ≡ h1,2h2,2

(mod 4), λ3 = 4 ≡ h1,3h2,3 (mod 4), and λ4 = 6 ≡ h1,4h2,4 (mod 4) yields the Lapla-

cian matrix L3 = 1
4
HΛHT of a weighted Hadamard diagonalizable graph that admits PST

between vertices 1 and 2 at time π/2.

3.3 Existence of Hadamard diagonalizable graphs with

PST

The degree of a Hadamard diagonalizable graph with PST can have a wide range, in the

sense that the corresponding graph can range from very sparse (few edges) to very dense

(many edges).

For each k ≥ 3 and each d with k + 1 ≤ d ≤ 2k − 2, we can construct a graph that is
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d-regular, unweighted, connected, and non-bipartite on 2k vertices, that is diagonalizable

by the standard Hadamard matrix and has PST at time t0 = π/2. This can be done with

cubelike graphs by using the fact that the adjacency matrix of any cubelike graph (and

hence the Laplacian matrix, since cubelike graphs are regular) is diagonalizable by the

standard Hadamard matrix [15] and by using Theorem 2.5.4. To ensure that the cubelike

graph is connected, we just need to make sure that its connection set contains a basis of

Zk2 when considered as a vector space. Let T = {e1, . . . , ek}, where e1, . . . , ek form a

standard basis for Zk2. For d = k+ 1, take the connection set C = T ∪{e1 + e2}. Then the

induced subgraph on vertices 0, e1, e2 and e1 + e2 is K4; hence the corresponding cubelike

graph is not bipartite. Also note that the sum of the elements in C is not 0 for k ≥ 3. For

d > k + 1, select any S such that C ⊆ S, |S| = d and 0 /∈ S. If the sum of all elements

in S is not 0, then the cubelike graph Zk2(S) is a desired graph. On the other hand, if the

sum of all elements in S is 0, then we replace some element c0 from the set S \ C by any

element c1 ∈ Zk2 \ (S ∪ {0}) (this set has cardinality 2k − d − 1 > 0) and form a new

set S1 = (S ∪ {c1})\{c0}. Then S1 has cardinality d and the sum of all its elements is

c = c0 + c1 6= 0. Hence there is PST from u to u + c at time π/2 in the connected (since

S1 is a generating set of the group Zk2) non-bipartite cubelike graph Zk2(S1).

This observation can be stated as follows.

Theorem 3.3.1. Suppose that k ∈ N with k ≥ 3. For each d ∈ N with k+1 ≤ d ≤ 2k−2,

there is a connected, unweighted, non-bipartite graph that is

(1) diagonalizable by the standard Hadamard matrix of order 2k,
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(2) d-regular, and

(3) admits PST between distinct vertices at time t0 = π/2.

Example 3.3.2. Making use of the arguments at the beginning of this section, we can

construct graphs satisfying properties (1), (2), and (3) of Theorem 3.3.1. Consider graphs

on 23 = 8 vertices, and let e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

. The cubelike graph Z3
2(C1)

with C1 = {e1, e2, e3, e1 + e2} is a connected 4-regular (4 elements in the connection set

C1) graph that is diagonalizable by the standard Hadamard matrix H3 (as it is a cubelike

graph) and admits PST at time π
2

(from Theorem 2.5.4 and the fact that the sum of the

elements in the connection set C1 is e3 6= 0). Similarly, the cubelike graph Z3
2(C2) with

C2 = {e1, e2, e3, e1 + e2, e2 + e3} is a required 5-regular graph, the cubelike graph Z3
2(C3)

with C3 = {e1, e2, e3, e1 + e2, e2 + e3, e1 + e2} is a required 6-regular graph, and the

cubelike graph Z3
2(C4) with C4 = {e1, e2, e3, e1 + e2, e2 + e3, e1 + e2, e1 + e2 + e3} is a

required 7-regular graph.

As mentioned in Section 2.2, we know that the union of a graph exhibiting PST with

itself still exhibits PST, which is not true in general for the join operation. In the class

of Hadamard diagonalizable graphs, there are more properties about PST with respect to

these operations. Here, we show that for a graphG on n ≥ 4 vertices that is diagonalizable

by some Hadamard matrix and that has PST at time π/2, both its complement and the join

of G with itself are Hadamard diagonalizable and have PST at time t0 = π/2.

Proposition 3.3.3. Let G be a graph on n ≥ 4 vertices that is diagonalizable by a
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Hadamard matrix H . If G admits perfect state transfer between vertex j to vertex k at

time t0 = π/2, then so does its complement Gc and the join G ∨G.

Proof. Without loss of generality we can assume that H is a normalized Hadamard matrix

(by Lemma 2.4.2). If we denote the eigenvalues of the Laplacian matrix of G by λ1 =

0, λ2, · · · , λn, then from Theorem 3.2.2 we know that for ` = 1, · · · , n, λ` ≡ 1− hj,`hk,`

(mod 4). From Lemma 2.4.3, we know that Gc, G ∪ G, and G ∨ G are all Hadamard

diagonalizable. Combined with Proposition 2.2.2, L(Gc) is diagonalized by the same

Hadamard matrix H to diag (0, n − λ2, · · · , n − λn). Since 1 − hj,`hk,` is either 0 or 2

(mod 4) and n must be a multiple of 4 in order for a Hadamard matrix of order n ≥ 4 to

exist, the eigenvalues 0, n − λ2, . . . , n − λn of Gc satisfy (n − λ`) ≡ −(1 − hj,`hk,`) ≡

1 − hj,`hk,` (mod 4). Again from Theorem 3.2.2, we know that Gc has PST from vertex

j to k at time π/2. The result that Gc admits PST between vertices j and k (and hence so

does the union of Gc with itself) and that Gc∪Gc is Hadamard diagonalizable implies that

G ∨G = (Gc ∪Gc)c also has PST from vertex j to k at time π/2.

3.4 Merge of two weighted graphs

We now introduce a modification of G1 n G2 that, much like G1 n G2, can be used to

construct new graphs with PST from old ones. Suppose that G1 and G2 are two weighted

graphs of order n, with Laplacians L(G1) = D(G1) − A(G1) and L(G2) = D(G2) −

A(G2), respectively. Then we define the merge of G1 and G2 with respect to the weights
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w1 and w2 to be the weighted graph G1 �w1 w2
G2 with Laplacian[

w1L(G1) + w2D(G2) −w2A(G2)

−w2A(G2) w1L(G1) + w2D(G2)

]
.

Note that the merge operation is defined for labelled graphs. Different labelling of G1 or

G2 might produce non-isomorphic G1 �w1 w2
G2.

In the case that w1 = w2 = 1, we denote the merge simply by G1 � G2, and it recovers

G1 nG2.

1

2 3

4

G1

1

2 3

4

G2

1

2 3

4

5

6 7

8

G1 �G2

Figure 3.1: A depiction of two Hadamard diagonalizable graphs (left) with vertex set

{1, . . . , n} and their merge (right). The merge G1 �G2 has vertex set V (G1) ∪ V (G2);

for j, k ≤ n, there is an edge {j, k} and {n+ j, n+ k} in the new graph if and only if G1

had edge {j, k}, and there is an edge {j, n+ k} in the new graph if and only if G2 had

edge {j, k}.

Our definition of the merge is motivated by the following fact.
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Proposition 3.4.1. IfG1 andG2 are both diagonalizable by the same Hadamard matrixH ,

then G1 �w1 w2
G2 is also Hadamard diagonalizable, by the matrix

[
H H
H −H

]
.

While the merge is a bit less intuitive than the other graph operations we saw, it does

have an interpretation in terms of the vertices and edges of the original graphs. Specifically,

if G1 and G2 each have vertices labelled {1, . . . , n}, then G1 �w1 w2
G2 has twice as many

vertices, which we label {1, . . . , 2n}. Furthermore, if G1 has edge {j, k} with weight wj,k

thenG1 �w1 w2
G2 has edges {j, k} and {n+j, n+k}, each with weight w1wj,k. Similarly,

ifG2 has edge {j, k}with weightwj,k thenG1 �w1 w2
G2 has edges {j, n+k} and {k, n+j}

with weight w2wj,k. See Fig. 3.1 for an example in the unweighted case — the Laplacian

matrices corresponding to G1, G2, and G1 �G2 in the example are

L(G1) =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 , L(G2) =


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

 , and

L(G1 �G2) =



4 −1 0 −1 0 −1 −1 0

−1 4 −1 0 −1 0 0 −1

0 −1 4 −1 −1 0 0 −1

−1 0 −1 4 0 −1 −1 0

0 −1 −1 0 4 −1 0 −1

−1 0 0 −1 −1 4 −1 0

−1 0 0 −1 0 −1 4 −1

0 −1 −1 0 −1 0 −1 4


.
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3.4.1 PST property of the merge G1 �w1 w2
G2 when both w1 and w2

are integers

We now describe an exact characterization of when the merge of two integer-weighted

graphs which are diagonalizable by the same normalized Hadamard matrix has PST at

time t0 = π/2. This gives us a wide variety of new graphs with PST; in particular, the

merge operation produces graphs with perfect state transfer in a variety of scenarios. In the

following proof, keep in mind that an integer-weighted Hadamard diagonalizable graph

has only even integer eigenvalues, and therefore (2k)λ ≡ 0 (mod 4) and (2k + 1)λ ≡

−(2k + 1)λ (mod 4) for any eigenvalue λ and any integer k.

Theorem 3.4.2. Suppose G1 and G2 are (labelled) integer-weighted graphs on n ver-

tices, both of which are diagonalizable by the same normalized Hadamard matrix H . Fix

w1, w2 ∈ Z and let L(G1) = d1I − A(G1), L(G2) = d2I − A(G2) be the Laplacian ma-

trices of G1, G2, respectively (for j = 1, 2, dj is the degree of Gj). Then for two integers

w1 and w2, the integer-weighted graph G1 �w1 w2
G2 has PST from vertex j to k, where

j < k, at time t0 = π/2 if and only if one of the following 8 conditions holds:

1. j, k ∈ {1, . . . , n} and

(a) w1 is odd, w2 is even, and G1 has PST from j to k at t0 = π/2, or

(b) w1 and d2 are even, w2 is odd, and G2 has PST from j to k at t0 = π/2, or

(c) w1 andw2 are odd, d2 is even, and the weighted graph with Laplacian L(G1)+

L(G2) has PST from j to k at t0 = π/2;
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2. j, k ∈ {n+ 1, . . . , 2n} and

(a) w1 is odd, w2 is even, and G1 has PST from j − n to k − n at t0 = π/2, or

(b) w1 and d2 are even, w2 is odd, and G2 has PST from j − n to k − n at t0 =

π/2, or

(c) w1 andw2 are odd, d2 is even, and the weighted graph with Laplacian L(G1)+

L(G2) has PST from j − n to k − n at t0 = π/2;

3. j ∈ {1, . . . , n}, k ∈ {n+ 1, . . . , 2n} and

(a) w1 is even, w2 and d2 are odd, and G2 has PST from j to k−n at t0 = π/2, or

(b) w1, w2, and d2 are all odd, and the weighted graph with Laplacian matrix

L(G1) + L(G2) has PST from j to k − n at t0 = π/2.

Proof. Denote the diagonal matrices of eigenvalues for L(G1), L(G2) by Λ1,Λ2, respec-

tively, so that L(Gj) = 1
n
HΛjH

T , j = 1, 2. Then the Laplacian of G1 �w1 w2
G2 is

L(G1 �w1 w2
G2) =

[
w1L(G1) + w2d2I −w2A(G2)
−w2A(G2) w1L(G1) + w2d2I

]
. Further,

L(G1 �w1 w2
G2) =

1

2n

[
H H

H −H

] [
w1Λ1 + w2Λ2 0

0 w1Λ1 − w2Λ2 + 2w2d2I

] [
H H

H −H

]T
.

Denote the eigenvalues of L(G1), L(G2) by λ(1)
` , λ

(2)
` , ` = 1, · · · , n, respectively.

1. Suppose that j, k ∈ {1, · · · , n} and that the weighted graph G1 �w1 w2
G2 admits

PST from vertex j to k at time π/2. Then by Theorem 3.2.2, for each ` = 1, · · · , n,

w1λ
(1)
` + w2λ

(2)
` ≡ (1− hj,`hk,`) (mod 4), and (3.2)
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w1λ
(1)
` − w2λ

(2)
` + 2w2d2 ≡ (1− hj,`hk,`) (mod 4). (3.3)

Summing the above two congruences gives 2w1λ
(1)
` +2w2d2 ≡ 2w2d2 ≡ 0 (mod 4),

where we used the fact that λ(1)
` is an even integer for each ` in the above congruence

equality. Therefore w2d2 is even. Note that if w1 and w2 are both even, then (3.2)

implies that hj,`hk,` = 1 for ` = 1, · · · , n, which is impossible.

Ifw1 is odd andw2 is even, thenw1λ
(1)
` +w2λ

(2)
` ≡ λ

(1)
` (mod 4), and equation (3.2)

simplifies to λ(1)
` ≡ (1− hj,`hk,`) (mod 4), ` = 1, · · · , n. Hence G1 has PST from

j to k by Theorem 3.2.2. Similarly, if w1 is even and w2 is odd, then necessarily d2

is even, and as above it can be shown that G2 has PST from j to k.

If w1 and w2 are both odd, then necessarily d2 is even. In this case, equation (3.2)

gives w1λ
(1)
` + w2λ

(2)
` ≡ λ

(1)
` + λ

(2)
` ≡ (1 − hj,`hk,`) (mod 4), ` = 1, · · · , n. We

deduce that the weighted graph with Laplacian L(G1) +L(G2) has PST from j to k

at time t0 = π/2.

2. If j, k ∈ {n+ 1, · · · , 2n} and the weighted graph G1 �w1 w2
G2 has PST from j to k

at time t0 = π/2, then the conclusions (a), (b), and (c) follow analogously to Case 1

above.

3. Suppose that j ∈ {1, · · · , n}, k ∈ {n + 1, · · · , 2n} and that the weighted graph

G1 �w1 w2
G2 has PST from j to k. Set k̂ = k − n. Then for each ` = 1, · · · , n,

w1λ
(1)
` + w2λ

(2)
` ≡ (1− hj,`hk̂,`) (mod 4), and (3.4)

w1λ
(1)
` − w2λ

(2)
` + 2w2d2 ≡ (1 + hj,`hk̂,`) (mod 4). (3.5)
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Summing equations (3.4) and (3.5), we find that 2w1λ
(1)
` + 2w2d2 ≡ 2 (mod 4) and

hence 2w2d2 ≡ 2 (mod 4). Therefore w2d2 must be odd, i.e., w2 is odd and d2 is

odd. We have the following two cases.

If w1 is even, then (3.4) simplifies to λ(2)
` ≡ (1 − hj,`hk̂,`) (mod 4), ` = 1, · · · , n,

so if w1 is even, and both w2 and d2 are odd, then G2 has PST from j to k̂.

If w1 is odd, then (3.4) simplifies to λ
(1)
` + λ

(2)
` ≡ (1 − hj,`hk̂,`) (mod 4), ` =

1, · · · , n, which shows that the integer-weighted graph with Laplacian L(G1) +

L(G2) has PST from j to k̂.

The converses are straightforward.

Note that when both w1 and w2 are even, the graph G1 �w1 w2
G2 does not admit PST

at time π/2. However, it might have PST at some other time. To see this, we decompose

the two integer weights wj as wj = 2rjbj (for j = 1, 2), where bj are odd integers. Let

r = min(r1, r2). Then the PST property of the graph G1 �w1
2r

w2
2r
G2, which has Laplacian

1
2r
L(G1 �w1 w2

G2), at time π/2 can be determined according to Theorem 3.4.2. In the

case that PST occurs, the graph G1 �w1 w2
G2 would then have PST at time π/2r+1.

Example 3.4.3. Assume that G1 and G2 are two graphs on 2m vertices for m ≥ 2 and

that they are diagonalizable by the same normalized Hadamard matrix. Suppose that G1

admits PST from vertex j to vertex k, and G2 has all its eigenvalues being multiples of

4 and that its degree d2 is odd (for example, a disjoint union of 2m−r copies of K2r for

2 ≤ r ≤ m). Then G1 � G2 has PST from j to k + 2m according to Case 3(b) in
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G1 G2

2

4 1

3 2

4 1

3

Figure 3.2: Without the condition that the two graphs are diagonalizable by the same

normalized Hadamard matrix, Theorem 3.4.2 is not necessarily true

Theorem 3.4.2. Similarly, G2 � G1 has PST from vertex j to k if d1 is even (Case 1(c)),

and it has PST from vertex j to k + 2m if d1 is odd (Case 3(b)).

Theorem 3.4.2 is not necessarily true without the condition that the two graphs are

diagonalizable by the same normalized Hadamard matrix. Let G1 and G2 be two labelled

graphs as shown in Figure 3.2. Then the graph G1 � G2 does not admit PST at time π/2,

though the parameters are set up so that they satisfy 3(b) of Theorem 3.4.2 (but not the

hypothesis of both Laplacians being diagonalizable by the same Hadamard: here G2 is

diagonalizable by the standard Hadamard matrix H2, and G1 is not Hadamard diagonaliz-

able). Thus, unlike a similar result [33, Theorem 5.2] for the “n” operation (which uses

the adjacency matrices), graphs whose Laplacian matrices are not diagonalizable by the

same Hadamard matrix do not necessarily satisfy the conclusion of the theorem. This may

be due to the difference between Laplacian dynamics and adjacency dynamics.

Note that we require the two weighted graphs G1 and G2 in Theorem 3.4.2 to be
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integer-weighted to ensure that all of their Laplacian eigenvalues are even integers. By

checking the proof it can be observed that the conclusion of the theorem still holds if G1

and G2 only have even integer eigenvalues, but are not necessarily integer-weighted.

Example 3.4.4. From Lemma 9 and Proposition 10 [10] we know that there are exactly

4 graphs on 12 vertices that are Hadamard diagonalizable: K12, O12 = Kc
12, K6 ∪ K6,

and K6,6 = (K6 ∪ K6)c. By making use of the fact that the complete graph Kn on

n ≥ 3 vertices does not admit PST, one can conclude that K12 and K6 ∪ K6 do not

admit Laplacian/adjacency PST. Or more generally, using of the idea in the proof of The-

orem 3.2.2, we know that a Hadamard diagonalizable graph admit PST at time t0 if and

only if eit0ΛHT ej = HT ek, where H is a normalized Hadamard matrix that diagonalizes

L(G) to Λ as in Thereom 3.2.2. But the eigenvalues of L(K6,6) are 0 with multiplicity

1, 6 with multiplicity 10, and 12 with multiplicity 1. The above equality does not hold

for any t0. Hence K6,6 does not admit Laplacian PST. Therefore no unweighted graph of

order 12 that is Hadamard diagonalizable exhibits PST. However, it is possible to construct
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weighted graphs of this type. Let G1 be the graph whose Laplacian is

L(G1) =
1

3



18 0 −1 −1 −1 −3 −3 −3 −1 −3 −1 −1

0 18 −1 −1 −1 −3 −3 −3 −1 −3 −1 −1

−1 −1 18 −2 −2 0 −2 0 −2 −2 −4 −2

−1 −1 −2 18 −4 0 0 −2 −2 −2 −2 −2

−1 −1 −2 −4 18 −2 −2 0 −2 0 −2 −2

−3 −3 0 0 −2 18 −2 −2 0 −2 −2 −2

−3 −3 −2 0 −2 −2 18 −2 −2 −2 0 0

−3 −3 0 −2 0 −2 −2 18 −2 −2 −2 0

−1 −1 −2 −2 −2 0 −2 −2 18 0 −2 −4

−3 −3 −2 −2 0 −2 −2 −2 0 18 0 −2

−1 −1 −4 −2 −2 −2 0 −2 −2 0 18 −2

−1 −1 −2 −2 −2 −2 0 0 −4 −2 −2 18



.

Direct computation shows thatL(G1) is Hadamard diagonalizable by the order 12 Hadamard

matrix

H =



1 1 1 1 1 1 1 1 1 1 1 1

1 −1 1 −1 1 1 1 −1 −1 −1 1 −1

1 −1 −1 1 −1 1 1 1 −1 −1 −1 1

1 1 −1 −1 1 −1 1 1 1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1 1 1 −1 −1

1 −1 −1 1 −1 −1 1 −1 1 1 1 −1

1 −1 −1 −1 1 −1 −1 1 −1 1 1 1

1 1 −1 −1 −1 1 −1 −1 1 −1 1 1

1 1 1 −1 −1 −1 1 −1 −1 1 −1 1

1 1 1 1 −1 −1 −1 1 −1 −1 1 −1

1 −1 1 1 1 −1 −1 −1 1 −1 −1 1

1 1 −1 1 1 1 −1 −1 −1 1 −1 −1



.

All the eigenvalues of L(G1) are even integers (which are 0, 4, 8, 8, 8, 8, 6, 6, 6, 6, 6, 6),

and that the (1, 2) entry of ei(π/2)L(G1) is 1, thus showing that G1 exhibits PST between

vertices 1 and 2 at time t0 = π/2. Let G2 = K12, which is Hadamard diagonalizable

by H but does not exhibit PST. As L(G1) and L(G2) only have even integer eigenvalues,
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Case 1(a) of the Theorem 3.4.2 tells us that the weighted graph G1 �5 2 G2 admits PST

from vertex 1 to vertex 2 at time t0 = π/2.

3.4.2 Rational weights or when w1

w2
is rational

We now consider some ways in which our results generalize to the case of Hadamard

diagonalizable graphs with non-integer edge weights. In the case where all of the edge

weights are rational, the idea is rather straightforward.

Proposition 3.4.5. Suppose thatG1 is a rational-weighted Hadamard diagonalizable graph.

Denote by lcm the least common multiple of the denominators of its edge weights, and by

gcd the greatest common divisor of all the new integer edge weights lcm ·w(j, k). Then

G1 admits PST at time t1 = lcm
gcd
· π/2 if and only if the integer-weighted Hadamard diago-

nalizable graph G2 with Laplacian L(G2) = lcm
gcd
L(G1) has PST at time t0 = π/2 between

the same pair of vertices (which can be checked through Theorem 3.4.2).

Proof. The result follows directly from Remark 1.3.11.

Proposition 3.4.5 provides a way to extend Theorem 3.4.2 to a merge with rational

weights. Assume that G1 and G2 are integer-weighted graphs. Assume that w1 and w2 are

two nonzero real numbers such that w1

w2
is rational, say w1

w2
= p

q
for two relatively prime

numbers p and q. Then the PST property of G1 �w1 w2
G2 can be obtained from the PST

property of the merge G1 �p q G2 of G1 and G2 with respect to integer weights p and q, as

L(G1 �w1 w2
G2) = w2

q
L(G1 �p q G2).
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3.4.3 When w1

w2
is irrational

When w1

w2
is irrational, then the merge G1 �w1 w2

G2 of two integer-weighted graphs G1 and

G2 which have some PST properties as in Theorem 3.4.2, exhibits PGST. Before giving

the theorem, we recall the following result about approximating an irrational real number

with a sequence of rational numbers.

Theorem 3.4.6 ([81]). Let o denote the odd integers and e denote the even integers. Then

for every real irrational number w, there are infinitely many relatively prime numbers

p, q with [p, q] in each of the three classes [o, e], [e, o], and [o, o], such that the inequality

|w − p/q| < 1/q2 holds.

LetG1 andG2 be regular graphs on n vertices. For the weighted graphG1 �w1 w2
G2, we

say that it has parameters [w1, w2, d2], where as in Theorem 3.4.2, d2 denotes the degree

of G2. In particular, if w1, w2, and d2 are all odd integers, then we say that the graph

G1 �w1 w2
G2 has type [o, o, o]. Similar notations apply for other possible parities of integers

w1, w2 and d2. We will denote the set of irrational numbers by R\Q.

Theorem 3.4.7. Assume that G1 and G2 are (labelled) integer-weighted graphs on n ver-

tices, both of which are diagonalizable by the same normalized Hadamard matrix H . Let

d2 be the degree of G2. Let L(G1) and L(G2) denote the Laplacian matrices of G1 and

G2, respectively. Suppose that w1 and w2 are nonzero real numbers with w1

w2
∈ R\Q. Let

j, k ∈ {1, . . . , n}.

1. Suppose that G1 has PST from j to k at time π/2. Then G1 �w1 w2
G2 has PGST
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from j to k and from j + n to k + n.

2. Suppose that G2 has PST from j to k at time π/2. If d2 is even, then G1 �w1 w2
G2

has PGST from j to k and from j + n to k + n. If d2 is odd, then G1 �w1 w2
G2 has

PGST from j to k + n and from k to j + n.

3. Suppose that the weighted graph with Laplacian L(G1) + L(G2) has PST from j to

k at time π/2. If d2 is even, then G1 �w1 w2
G2 has PGST from j to k and from j + n

to k + n. If d2 is odd, then G1 �w1 w2
G2 has PGST from j to k + n and from k to

j + n.

Before proving this result, we note that it can alternatively be proved via Kronecker’s

theorem using the techniques from [7]. However, this would require proving that vertices

j and k are strongly cospectral, as well as some knowledge of eigenvalues and eigen-

projection matrices, so we instead give the following proof that is somewhat more self-

contained.

Proof. By the scaling argument as in Remark 1.3.11, it can be assumed that w1 = 1

and w2 ∈ R\Q, since for any non-zero real numbers w1 and w2, L(G1 �w1 w2
G2) =

w1L(G1 �1 w2
w1

G2).

We approximate w2 with fractions p/q such that

|w2 − p/q| < 1/q2. (3.6)

For each such pair of p, q, we denote the weighted graph G1 �1 p/q G2 as G4, and the

weighted graph G1 �0 w2−p/q G2 as G5. In particular, L(G1 �1 w2
G2) = L(G4) + L(G5).



83

Now consider the integer-weighted graph G′4 = G1 �q pG2, then its Laplacian is L(G′4) =

qL(G4) and has parameters [q, p, d2].

There are now a number of cases to consider. If [p, q] is of type [o, e] and d2 is even, the

graph G′4 is of type [e, o, e]. From Theorem 3.4.2 we know, if G2 has PST from j to k at

π/2, then G′4 has PST at π/2 from j to k and from j+n to k+n (Case 1(b), 2(b)). If [p, q]

is of type [o, e] and d2 is odd, then the graph G′4 is of type [e, o, o]. From Theorem 3.4.2

we know that if G2 has PST at π/2 from j to k at π/2, then G′4 has PST at π/2 from j to

k + n and from k to j + n (Case 3(a)).

If [p, q] is of type [e, o], then the weighted graph G′4 is of type [o, e, f ], where f denotes

the parity of d2. From Theorem 3.4.2 we know that if G1 has PST from j to k at π/2, then

G′4 has PST at π/2 from j to k and from j + n to k + n (Case 1(a), 2(a)).

If [p, q] is of type [o, o] and d2 is even, then the graph G′4 is of type [o, o, e]. From

Theorem 3.4.2 we know that if the graph with Laplacian L(G1) + L(G2) has PST from j

to k at π/2, then G′4 has PST from j to k and from j+n to k+n (Case 1(c), 2(c)). If [p, q]

is of type [o, o] and d2 is odd, then the graph G′4 is of type [o, o, o]. From Theorem 3.4.2

we know that if the integer weighted graph with Laplacian L(G1) + L(G2) has PST from

j to k at π/2, then G′4 has PST from j to k + n and from k to j + n (Case 3(b)).

For all the above cases, G4 has PST at time t0 = qπ/2. Next, we make use of the

following result from [52, Theorem 4] (Theorem 6.2.1 in Chapter 6) : Suppose PST occurs

in the graph with Laplacian matrix L between vertices j and k at time t = t0 and assume
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that L̂ = L+ L0 due to a small nonzero edge-weight perturbation L0. Then

1− |eTj eit0L̂ek|2 ≤ 2|||t0L0|||2 + |||t0L0|||22 − |||t0L0|||32. (3.7)

Note that the proof of the above theorem (Theorem 6.2.1) is independent of the results of

Chapter 3. Now, G4 is a graph with PST between vertices u and v at time t0 = qπ
2

, and

L(G1 �1 w2
G2) = L(G4) +L(G5). Then the fidelity of state transfer between the vertices

u and v in G1 �1 w2
G2 satisfies

|eTu e
it0L(G1 �1 w2

G2)ev|2 ≥ 1− 2|||t0L(G5)|||2 − |||t0L(G5)|||22 + |||t0L(G5)|||32

≥ 1− 2q(π/2)|w2 − p/q|cn− (2q(π/2)|w2 − p/q|cn)2

+(2q(π/2)|w2 − p/q|cn)3

≥ 1− 2cnπ/(2q)− (cnπ/(2q))2 + (cnπ/(2q))3,

where c = maxj,k

∣∣∣(L(G2))j,k

∣∣∣, and the last two inequalities come from Theorem 2.1.7

and (3.6), respectively. Since there are infinitely many integers q that satisfy (3.6), the

expression on the right hand side in the above inequality can be made as close to 1 as

possible by taking large enough q, and therefore G1 �w1 w2
G2 admits PGST between

vertices u and v.

3.4.4 An irrational-weighted graph exhibiting PGST from one vertex

to three different vertices

It is known (Proposition 2.6.5) that if there is perfect state transfer from vertex j to vertex

k (6= j) at time t0, and perfect state transfer from vertex j to vertex ` (6= j) at time t1,
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then necessarily k = `. The following example, which is a straightforward consequence

of Theorem 3.4.7, shows that the situation with respect to pretty good state transfer is

markedly different. This is a potentially important application to routing — the task of

choosing between several possible recipients of the state.

Example 3.4.8. Consider the graphs G1, G2 with the following Laplacian matrices (see

Figure 3.3):

L(G1) =



3 −1 −1 0 −1 0 0 0

−1 3 0 −1 0 −1 0 0

−1 0 3 −1 0 0 −1 0

0 −1 −1 3 0 0 0 −1

−1 0 0 0 3 −1 −1 0

0 −1 0 0 −1 3 0 −1

0 0 −1 0 −1 0 3 −1

0 0 0 −1 0 −1 −1 3


,

which has PST at time π/2 for the pairs {1, 8}, {2, 7}, {3, 6}, {4, 5}, and

L(G2) =



3 0 −1 −1 −1 0 0 0

0 3 −1 −1 0 −1 0 0

−1 −1 3 0 0 0 −1 0

−1 −1 0 3 0 0 0 −1

−1 0 0 0 3 0 −1 −1

0 −1 0 0 0 3 −1 −1

0 0 −1 0 −1 −1 3 0

0 0 0 −1 −1 −1 0 3


which has PST at time π/2 for the pairs {1, 6}, {2, 5}, {3, 8}, {4, 7}.
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8 6

G2

Figure 3.3: Graphs G1 and G2

It turns out that the weighted graph with Laplacian L(G1) + L(G2) has PST at time

π/2 between the pairs {1, 3}, {2, 4}, {5, 7}, {6, 8}. From the collection of cases in Theo-

rem 3.4.7, we find that if w1

w2
∈ R\Q, then G1 �w1 w2

G2 has the intriguing property that

there is PGST between the pairs {1, 8}, {1, 11}, {1, 14} (among others).

3.5 Optimality

3.5.1 Timing errors

In [52] (see Chapter 6), the authors analyse the sensitivity of the probability of state trans-

fer in the presence of small perturbations. Bounds on the probability of state transfer with

respect to timing errors and with respect to manufacturing errors are given in the most

general setting where no information is known about the graph in question. Specifically,

suppose that a graph G on n vertices admits Laplacian PST from vertex j to vertex k at
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time t0. Suppose further that there is a small perturbation so that the readout time is in-

stead t0 + h, where |h| < π
λn

with λn being the largest eigenvalue of L(G). Decompose

the Laplacian matrix as L(G) = QΛQT , where Λ = diag (λ1 = 0, λ2, . . . , λn), with

0 = λ1 ≤ λ2 ≤ · · · ≤ λn, and Q is an orthogonal matrix of corresponding eigenvectors.

If qj and qk are the j-th and k-th columns of QT , respectively, then for some θ ∈ R we

have eiθqj = eit0Λqk. Setting B = diag (eihλ1 , . . . , eihλn)eiθ, it follows that the fidelity at

the perturbed time t0 + h is

pj,k(t0 + h) = |eTj ei(t0+h)L(G)ek|2 = |eTj Qei(t0+h)ΛQT ek|2

= |qTj ei(t0+h)Λqk|2 = |qTj eihΛeit0Λqk|2

= |qTj eihΛeiθqj|2 = |qTj Bqj|2.

In the special case that G is diagonalizable by a Hadamard matrix H , Q = 1√
n
H , and we

can say more:

|qTj Bqj| =
1

n

∣∣∣∣∣
n∑
`=1

eihλ`

∣∣∣∣∣ . (3.8)

This suggests that, in order to maximize |qTj Bqj|, the goal should be to make the numbers

eihλ` as closely-spaced on the complex unit circle as possible. This remark is not surprising

but rather confirms the known rule [59] while at the same time providing a more accurate

bound (in fact it is the fidelity) on timing errors for Hadamard diagonalizable graphs.
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3.5.2 Manufacturing errors: sparsity of graphs with PST

It is desirable to minimize the number of edges that need to be engineered in a graph

(so as to minimize manufacturing errors), so one question of interest in the theory of

perfect state transfer is how sparse a graph with perfect state transfer can be. Among the

sparsest known graphs with PST is the r-cube, which has 2r vertices and degree r. We

now show that if we restrict our attention to Hadamard diagonalizable unweighted graphs

with PST, then for r ≤ 4 the r-cube is indeed the sparsest connected graph with PST.

After Theorem 3.6.2 we will see that if we restrict ourselves to graphs diagonalizable by

the standard Hadamard matrix Hr, then the r-cube is indeed the sparsest such graph for

any positive integer r.

Theorem 3.5.1. LetG be a simple, connected, (unweighted) r-regular graph on n vertices.

Suppose further that G is Hadamard diagonalizable, has perfect state transfer at π/2, and

that r ≤ 4. Then n ≤ 2r.

Proof. The result follows by computing some quantities of the form Tr(L(G)k) (k ≥ 0

is an integer) in two different ways. First, let λ1 = 0, . . . , λn denote the eigenvalues of

L(G), then Tr(L(G)k) =
∑n

j=1 λ
k
j . From L(G) = rI − A(G), we know Tr(L(G)) =

rn − Tr(A(G)) and Tr(L(G)2) = r2n − 2rTr(A(G)) + Tr(A(G)2). Since G is a simple

graph, we know that Tr(A(G)) = 0 and it is straightforward to compute Tr(A(G)2) = rn.

Thus we have the following system of equations:

n∑
j=1

λj = Tr(L(G)) = rn and
n∑
j=1

λ2
j = Tr(L(G)2) = rn(r + 1).
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Let cλ denote the multiplicity of λ 6= 0 as an eigenvalue of L(G) (with the convention

that if λ is not an eigenvalue, then cλ = 0). From Theorem 3.2.1 we know that all the

λjs are even integers, and we know by the Gershgorin circle theorem (Theorem 2.1.1) that

0 ≤ λj ≤ 2r for each j. Therefore the above equations tell us that

r∑
j=0

(2j)c2j =
r∑
j=1

(2j)c2j = rn and
r∑
j=0

(2j)2c2j

r∑
j=1

(2j)2c2j = rn(r + 1). (3.9)

If we add in the equation
∑r

j=1 c2j = n − 1 (since 0 is a simple eigenvalue of the Lapla-

cian of a connected graph), then we have a system of 3 linear equations in the variables

n, c2, c4, . . . , c2r. If r ≤ 2 then it is straightforward to solve this system of equations to get

n = 2r. If r = 3 then by adding the equation c2 + c6 = c4 +1 (since by Theorem 3.2.2 and

the fact that any two rows of a Hadamard matrix have half of the corresponding entries

of the same sign, and half of the opposite sign, we know that half of L(G)’s eigenvalues

must belong to each of the two even equivalence class mod 4), we can similarly solve the

system of equations to get n = 8 = 2r.

For the r = 4 case, we use equations (3.9) together with the equation c2 + c6 =

c4 + c8 + 1 (again, because the even eigenvalues are split evenly between the two even

mod 4 equivalence classes). These equations together can be reduced to the system of

equations c2 = 3n/8 − 2, c4 = 3n/8, c6 = n/8 + 2, and c8 = n/8 − 1. To reduce this

system further and get a unique solution, we need to compute Tr(L(G)3) in two different

ways (similar to the way we did at the start of the proof): Tr(L(G)3) =
∑n

j=1 λ
3
j =

r3n − 3r2Tr(A(G)) + 3rTr(A(G)2) − Tr(A(G)3) = r3n + 3r2n − Tr(A(G)3). Since

Tr(A(G)3) ≥ 0 we arrive at the inequality
∑n

j=1 λ
3
j ≤ r2n(r + 3), which is equivalent to
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∑r
j=1(2j)3c2j ≤ r2n(r + 3). Setting r = 4 then gives

8c2 + 64c4 + 216c6 + 512c8 ≤ 112n.

It is then straightforward to substitute the equations c2 = 3n/8 − 2, c4 = 3n/8, c6 =

n/8 + 2, and c8 = n/8− 1 into this inequality to get n ≤ 2r = 16, as desired.

It seems reasonable to believe that Theorem 3.5.1 could be generalized to arbitrary

r, but the method of proof that we used does not seem to generalize in a straightforward

way, as there are no more obvious equations or inequalities involving the c2j’s that we can

use. For example, if we try to extend the proof of Theorem 3.5.1 to the r = 5 case, we

might try computing Tr(L(G)4) in two different ways. However, we then end up with an

equation involving both −Tr(A(G)3) and +Tr(A(G)4), and it is not clear how to bound

such a quantity.

3.6 Cubelike graphs

3.6.1 Characterization of graphs diagonalizable by a standard Hadamard

matrix

It is known that the adjacency matrix of any cubelike graph (and hence the Laplacian

matrix, since cubelike graphs are regular) is diagonalizable by the standard Hadamard

matrix [15]. The following result provides the converse; in the proof, the graph (possibly

containing loops) with adjacency matrix A is denoted by Γ(A) for convenience.
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Lemma 3.6.1. Suppose that k ∈ N and that A is a symmetric (0, 1) matrix that is diago-

nalizable by the standard Hadamard matrix of order 2k. Then

1. A has constant diagonal;

2. if A has zero diagonal then it is the adjacency matrix of a cubelike graph;

3. if A has all ones on the diagonal, then A − I is the adjacency matrix of a cubelike

graph.

Proof. We proceed by induction on k. For k = 1, it is straightforward to see that the (0, 1)

symmetric matrices that are diagonalized by H1 =

[
1 1
1 −1

]
are:

[
0 0
0 0

]
,
[
1 0
0 1

]
,
[
0 1
1 0

]
,[

1 1
1 1

]
. For these matrices, conclusions (1)–(3) follow readily.

Suppose that the result holds for some k ∈ N and that A is diagonalized by the stan-

dard Hadamard matrix Hk+1 =

[
Hk Hk

Hk −Hk

]
of order 2k+1. Partition A accordingly as[

A1 X

XT A2

]
. Then there are diagonal matrices D1, D2 such that[

Hk Hk

Hk −Hk

] [
A1 X

XT A2

] [
Hk Hk

Hk −Hk

]
=

[
D1 O
O D2

]
.

Hence
[
Hk(A1 + A2 +X +XT )Hk Hk(A1 − A2 −X +XT )Hk

Hk(A1 − A2 +X −XT )Hk Hk(A1 + A2 −X −XT )Hk

]
=

[
D1 O
O D2

]
.

We deduce that A1 − A2 = X − XT = O by making use of the (1, 2) and (2, 1) blocks.

Therefore A1 = A2, X = XT , and the (1, 1) and (2, 2) blocks of the above equation

imply that Hk diagonalizes both 2(A1 + X) and 2(A1 − X), and we conclude that Hk

diagonalizes both A1 and X . In particular, the induction hypothesis applies to A1 and X .

Thus A1 has constant diagonal, and so does A (hence Γ(A) is in fact Γ(A1)� Γ(X) if the

diagonal of A1 is 0).
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Suppose that A has zero diagonal. Applying the induction hypothesis to A1, we find

that Γ(A1) is cubelike. LetC1 denote its connection set. Applying the induction hypothesis

to X , either X has zero diagonal and so Γ(X) is a cubelike graph with connection set C2,

say, or Γ(X − I) is a cubelike graph with connection set C̃2. Set C2 = C̃2 ∪ {0} for the

latter case.

We label the vertices of the graph Γ(A) with vectors in Zk+1
2 in increasing lexico-

graphic order if considered as binary numbers. So the first 2k rows/columns of A are

labelled as
[
0
z

]
, where z ∈ Zk2, and the last 2k rows/columns of A are labelled as

[
1
z

]
, where z ∈ Zk2. Now construct the following connection set: C =

{[
0
x

]
, x ∈ C1

}
∪{[

1
y

]
, y ∈ C2

}
. It follows that A is the adjacency matrix of the (k + 1)-cubelike graph

with connection set C.

If A has all ones on the diagonal we proceed as above with A− I .

This establishes the induction steps for (1)–(3).

Note that the above proof shows that the merge of two n-cubelike graphs (both diago-

nalizable by Hn) is a cubelike graph.

Corollary 3.6.2. LetG be an unweighted graph. Then L(G) is diagonalized by a standard

Hadamard matrix if and only if G is a cubelike graph.

Proof. If L(G) is diagonalizable by the standard Hadamard matrix, then in particular G

is regular by Theorem 3.2.1. Hence the adjacency matrix of G is diagonalizable by the
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standard Hadamard matrix, so by Lemma 3.6.1, G is cubelike. Conversely, if G is cube-

like, then it is regular and its adjacency matrix is diagonalizable by the standard Hadamard

matrix [15]. Therefore L(G) is diagonalizable by the standard Hadamard matrix.

The following result gives the PST property of the specially weighted n-cube at time

π/2, generalizing the known fact that the unweighted hypercube graph has PST at time

π/2.

Corollary 3.6.3. Suppose that w1, w2, . . . , wn are nonzero integers, exactly d of which are

odd, and consider the weighted hypercube Cn := (w1K2)�(w2K2)� · · ·�(wnK2). For

each vertex u of Cn, there is a vertex v at distance d from u such that there is perfect state

transfer in Cn from u to v at time t0 = π/2.

It can be proved by induction and Theorem 2.2.5.

3.6.2 Uniform mixing on (n+1)-regular and (n+2)-regular connected

cubelike graphs

The results in this section are independent from the paper [58], and are original to this

thesis.

As mentioned previously, quantum information transfer properties of the n-cube Qn =

K�n
2 are straightforward to check by using the fact that eitA(Qn) = (eitA(K2))⊗n =[
cos(t) i sin(t)

i sin(t) cos(t)

]⊗n
(by Theorem 2.2.6), whereB⊗n denotes the tensor product ofB with
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itself for n times. Apart from PST, PGST, and FR, there is another interesting phenomenon

in quantum information state transfer, called uniform mixing.

Definition 3.6.4. Let G be a graph on n vertices with Hamiltonian H. If there is a time

t such that the fidelity pj,k(t) is the same for any j, k ∈ {1, 2, . . . , n}, then we say that G

admits uniform mixing at time t.

From the fact that U(t) is a unitary matrix, we know that if a graph G on n vertices

admits uniform mixing at time t, then pj,k(t) = 1
n

for all j, k ∈ {1, . . . , n}.

Since cubelike graphs are regular, such graphs admit adjacency uniform mixing if and

only if they admit Laplacian uniform mixing (Proposition 1.3.10). We state our result in

terms of the adjacency matrix without loss of generality. Since ei
π
4
A(Qn) = (ei

π
4
A(K2))⊗n =[

1√
2

i 1√
2

i 1√
2

1√
2

]⊗n
,we know that for any positive integer n, the n-cube admits uniform mixing

at time π
4
. Families of graphs with uniform mixing are known. Cubelike graphs with

uniform mixing at time π
2k

and cubelike graphs with PST at time π
2k

are given in [25]. A

complete characterization of all 2(d+2)-regular Cayley graphs over Zd3 that admit uniform

mixing at time 2π
9

is given [50]; also, for any k ≥ 3, Cayley graphs over Zdq that admit

uniform mixing at a faster time 2π
qk

with q = 3, 4 are constructed.

A connected n-regular cubelike graph G on 2n vertices is isomorphic to the n-cube

Qn, through a bijection between the connection set of G and the connection set C0 of

Qn — namely, the set of standard basis vectors of Zn2 . Without loss of generality, we

consider the n-cubelike graphs obtained from the n-cube by adding some other elements

to the connection set, and characterize when such (n+ 1) or (n+ 2)-regular graphs admit
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uniform mixing at time π
4
.

From [15, 29] we know that for any u = u1u2 · · ·un ∈ Zn2 , the map x 7→ x + u

is an automorphism of Zn2 , and it can be represented by a 2n × 2n permutation matrix

Pu = ⊗nj=1R
ui , where R =

[
0 1
1 0

]
. Note that each row and each column of P has

exactly one 1. Now we index the rows and columns of Pu by the vectors in Zn2 , arranged

in increasing lexicographic order. Assume that the j-th row/column has index x, and the

k-th row/column has index x + u. Then for ej, ek ∈ R2n , we have Puej = ek, Also, for

any u, v ∈ Zn2 , PuPv = Pu+v = PvPu. Furthermore, if C ⊂ Zn2 \ {0} and G is a cubelike

graph with connection setC, thenA(G) =
∑

u∈C Pu, and UG(t) = eitA(G) = eit
∑
u∈C Pu =∏

u∈C e
itPu =

∏
u∈C(cos(t)I + i sin(t)Pu). For any x ∈ Zn2 , let wt(x) denote the number

of 1s in x.

Recall from Remark 2.5.1 that, if we order the vertices of Qn according to the bi-

partition V (Qn) = V1 ∪ V2, then the adjacency matrix is of the form A(Qn) =

[
0 B
BT 0

]
for some 2n−1 × 2n−1 matrix B, and the unitary matrix UQn(t) = eitA(Qn) can be written

as UQn(t) =

[
M1(t) iK(t)
iKT (t) M2(t)

]
for some real matrices M1(t),M2(t) and K(t). Combined

with the fact that Qn admits uniform mixing at time π
4
, we know that all the entries of

UQn(π
4
) are either ± 1

2
n
2

or ± i

2
n
2

, i.e., 2
n
2M1(π

4
), 2

n
2M2(π

4
) and 2

n
2K(π

4
) are all (1,−1)

matrices.

Now we consider adding one extra nonzero element v ∈ Zn2 \ C0 to C0, so we get a

(n+1)-regular graphG1. From the above analysis we know that at time π
4
, the correspond-

ing unitary matrix is UG1(
π
4
) = ei

π
4
A(G1) = ei

π
4 (

∑
u∈C0

Pu+Pv) = ei
π
4 (

∑
u∈C0

Pu)ei
π
4
Pv =
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UQn(π
4
)(cos(π

4
)I+ i sin(π

4
)Pv) =

√
2

2
UQn(π

4
)(I+ iPv). Then G1 admits uniform mixing at

time π
4

if and only if all the entries of 2
n
2UQn(π

4
)(I+iPv) have modulus

√
2, which is true if

and only if all the entries are in the set {1+i, 1−i,−1+i,−1−i}. Since eTj 2
n
2UQn(π

4
)(I+

iPv)ek = 2
n
2

(
eTj UQn(π

4
)ek + ieTj UQn(π

4
)Pvek

)
= 2

n
2

(
eTj UQn(π

4
)ek + ieTj UQn(π

4
)e`
)
, where

if the k-th row/column of Pv has index x then the `-th row/column of Pv has index x+ v,

therefore all the entries of 2
n
2UQn(π

4
)(I + iPv) are in the set {1 + i, 1− i,−1 + i,−1− i}

if and only if the map x 7→ x + v is a bijection of V1 to itself (and a bijection of V2 to

itself) (where V1 = {x ∈ Zn2 | wt(x) ≡ 0 (mod 2)} and V2 = {x ∈ Zn2 | wt(x) ≡ 1

(mod 2)} are the two sets of the bipartition of V (Qn)), which means that G1 is not bi-

partite. From the construction of V1 and V2, we know G1 is not bipartite if and only if

wt(v) ≡ 0 (mod 2). We summarize these observations in the following result.

Proposition 3.6.5. Suppose that we add an extra nonzero element v ∈ Zn2 \C0 to the con-

nection set C0 = {e1, . . . , en} of Qn to get a new cubelike graph G1. Then the following

are equivalent:

• G1 admits uniform mixing at time π
4
,

• G1 is not bipartite,

• wt(v) ≡ 0 (mod 2).

Hence if we add one extra element v to the connection set of a connected n-regular n-

cubelike graph (isomorphic to Qn, but the connection set might not be C0), then the new

graph admits uniform mixing at time π
4

if and only if the resulting graph is not bipartite.
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Example 3.6.6. Adding v = 0101 to the connection set C0 = {e1, e2, e3, e4} of the 4-

cube, gives a non-bipartite 4-cubelike graph that admits uniform mixing at time π
4
, since

wt(v) ≡ 0 (mod 2). Adding u = 1101 to the connection set C0 = {e1, e2, e3, e4} of the

4-cube, gives a bipartite 4-cubelike graph that does not admit uniform mixing at time π
4
,

since wt(u) ≡ 1 (mod 2).

Making use of the fact that cubelike graphs are diagonalizable by the standard Hadamard

matrix, we can get the spectral decomposition of a cubelike graph, and with the method

shown in Remark 2.1.3, we can get a closed form formula for eitA, where A is the adja-

cency matrix of a cubelike graph. This can be used to confirm the above results obtained

from Proposition 3.6.5.

Now we consider adding two extra nonzero elements to the connection set C0 of Qn.

Again we order the vertices of Qn in the increasing lexicographic order of the binary

numbers in Zn2 . Denote the matrix
[
1 i
i 1

]
by F , then UQn(π

4
) = 1

2
n
2

(F⊗n), where F⊗n

denotes the tensor product of F with itself for n times.

Now for u, v ∈ Zn2 , we give a formula for the (u, v)-entry of 2
n
2UQn(π

4
), and for the

(u, v)-entry of the permutation matrix Pw for w ∈ Zn2 . In the following, the sum uj + vj

is performed in Z2, and the sum u+ v is performed in Zn2 . For an integer p, let [p]2 denote

the remainder when p is divided by 2.

Proposition 3.6.7. Let n be a positive integer. For u, v, w ∈ Zn2 , we have 2
n
2 (UQn(π

4
))u,v =

iwt(u+v), and (Pw)u,v = 1 if and only if u+ v = w.
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Proof. When n = 1, for u, v ∈ Z2, the (u, v) entry of F =

[
1 i
i 1

]
is i(−i)[u+v+1]2 , which

satisfies the above formula. For n ≥ 1, assume u = u1u2 · · ·un, v = v1v2 · · · vn, and let

S0 = {j = 1, . . . , n|uj = vj = 0}, S1 = {j = 1, . . . , n|uj = vj = 1}. Then

(
2
n
2

(
UQn

(π
4

)))
u,v

= (F⊗n)u,v

= (i(−i)[u1+v1+1]2)(i(−i)[u2+v2+1]2) · · · (i(−i)[un+vn+1]2)

= in(−i)|S0|+|S1|

= in(−i)n−wt(u+v) (as wt(u+ v) = n− |S0| − |S1|)

= (i(−i))n(−i)−wt(u+v)

= iwt(u+v).

Similarly for Pw = Rw1⊗Rw2⊗· · ·⊗Rwn , we have (Pw)u,v = ([u1 +v1 +w1 +1]2)([u2 +

v2 +w2 +1]2) · · · ([un+vn+wn+1]2), which equal to 1 if and only if [uj+vj+wj]2 = [0]2

for all j = 1, . . . , n, i.e., u+v = w. Therefore for the permutation matrix Pw, and u ∈ Zn2 ,

the only nonzero entry in the u-th row of Pw is the (u, u+ w)-entry.

Now consider adding two nonzero elements u, v ∈ Zn2 \ C0 to the connection set C0

of the n-cube. For two elements u, v ∈ Zn2 , we say the pair (u, v) is of type (a, b, c) for

a, b, c ∈ {0, 1}, if wt(u) ≡ a (mod 2), wt(v) ≡ b (mod 2), [u ∩ v] ≡ c (mod 2), where

[u ∩ v] denotes |{j = 1, . . . , n|uj = vj = 1}|.

Theorem 3.6.8. Assume we get an (n + 2)-regular n-cubelike graph G2 by adding two

nonzero elements u, v ∈ Zn2 \ C0 to the connection set C0 of the n-cube. Then G2 admits
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uniform mixing at time π
4

if and only if (u, v) is of one of the following four types:

(0, 0, 0), (0, 1, 1), (1, 0, 1), and (1, 1, 1).

Proof. We findUG2(
π
4
) = ei

π
4 ((

∑
x∈C0

Px)+Pu+Pv) = ei
π
4 (

∑
x∈C0

Px)ei
π
4
Puei

π
4
Pv = UQn(π

4
)(cos(π

4
)I+

i sin(π
4
)Pu)(cos(π

4
)I+ i sin(π

4
)Pv) = 1

2
UQn(π

4
)(I+ iPu)(I+ iPv) = 1

2
UQn(π

4
)(I−Pu+v +

i(Pu + Pv)). G2 admits uniform mixing at time π
4

if and only if all the entries of UG2(
π
4
)

have modulus 1

2
n
2

, i.e., all the entries of Ũ = 2
n
2UQn(π

4
)(I − Pu+v + i(Pu + Pv)) have

modulus 2, which happens exactly when the entries of Ũ are of the form ±2 or ±2i, since

all the entries of 2
n
2UQn(π

4
) are ±1 or ±i.

Denote the matrix 2
n
2UQn(π

4
) by Û . For x, y ∈ Zn2 , Ũx,y = Ûx,y − (ÛPu+v)x,y +

i(ÛPu)x,y+i(ÛPv)x,y = iwt(x+y)−Ûx,y+u+v+iÛx,y+u+iÛx,y+v = iwt(x+y)−iwt(x+y+u+v)+

i·iwt(x+y+u)+i·iwt(x+y+v) = iwt(w)−iwt(w+u+v)+i·iwt(w+u)+i·iwt(w+v), wherew = x+y.

Using the fact that for any x, y ∈ Zn2 , wt(x + y) = wt(x) + wt(y) − 2[x ∩ y], the above

equation can be rewritten as

Ũx,y = iwt(w) − iwt(w)+wt(u+v)−2[w∩(u+v)] + iwt(w)+wt(u)−2[w∩u]+1 + iwt(w)+wt(v)−2[w∩v]+1

= iwt(w)(1− iwt(u)+wt(v)−2[u∩v]−2([w∩u]+[w∩v]−2[w∩u∩v]) + iwt(u)−2[w∩u]+1 + iwt(v)−2[w∩v]+1)

= iwt(w)(1− iwt(u)+wt(v)−2[u∩v]−2[w∩u]−2[w∩v] + iwt(u)−2[w∩u]+1 + iwt(v)−2[w∩v]+1)

= iwt(w)(1− iwt(u)+wt(v)(−1)[u∩v]+[w∩u]+[w∩v] + iwt(u)+1(−1)[w∩u] + iwt(v)+1(−1)[w∩v]).

Hence G2 admits uniform mixing at time π
4

if and only if a = 1 + iwt(u)+1(−1)[w∩u] +

iwt(v)+1(−1)[w∩v] − iwt(u)+wt(v)(−1)[u∩v]+[w∩u]+[w∩v] has modulus 2 for all w ∈ Zn2 .

• If [u∩v] ≡ 0 (mod 2), then a = 1−iwt(u)+wt(v)(−1)[w∩u]+[w∩v]+iwt(u)+1(−1)[w∩u]+

iwt(v)+1(−1)[w∩v] =
(
1 + iwt(u)+1(−1)[w∩u]

) (
1 + iwt(v)+1(−1)[w∩v]

)
, and |a| = 2 if
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and only if each of the two factors has modulus
√

2, which is true if and only if

wt(u) ≡ 0 (mod 2) and wt(v) ≡ 0 (mod 2). This gives us the type (0, 0, 0).

• If [u∩v] ≡ 1 (mod 2), then a = 1+iwt(u)+wt(v)(−1)[w∩u]+[w∩v]+iwt(u)+1(−1)[w∩u]+

iwt(v)+1(−1)[w∩v] = 2−
(
1− iwt(u)+1(−1)[w∩u]

) (
1− iwt(v)+1(−1)[w∩v]

)
, and |a| =

2 if and only if one of the two factors has modulus 0 or 2, which is true if and only if

wt(u) ≡ 1 (mod 2) or wt(v) ≡ 1 (mod 2). This gives us the three types (0, 1, 1),

(1, 0, 1) and (1, 1, 1).

Example 3.6.9. Adding elements u = 01110 and v = 10010 to the connection set C0 =

{e1, . . . , e5} of the 5-cube produces a 5-cubelike graph that admits uniform mixing at time

π
4
, as [u ∩ v] ≡ 1 (mod 2), wt(u) ≡ 1 (mod 2), wt(v) ≡ 0 (mod 2), and therefore

(u, v) is of type (1, 0, 1). Similarly, adding elements u = 00110 and v = 10110 to the

connection set C0 = {e1, . . . , e5} of the 5-cube produces a 5-cubelike graph that does not

admit uniform mixing at time π
4
, as [u∩ v] ≡ 0 (mod 2), wt(u) ≡ 0 (mod 2), wt(v) ≡ 1

(mod 2), and therefore (u, v) is of type (0, 1, 0).



Chapter 4

Perfect quantum state transfer in

weighted paths with loops using

orthogonal polynomials

Among connected graphs on n vertices, the path is one of the graphs that has a sim-

ple structure, and it realizes the largest possible diameter. As mentioned in Chapter 1,

the unweighted path on n vertices only exhibits adjacency PST for n ≤ 3, and only

exhibits Laplacian PST for n ≤ 2. A natural generalization is to consider weighted

paths. Christandl, Datta, Dorlas, Ekert, Kay and Landahl [30] showed that adjacency PST

can be achieved over arbitrarily long distances by using a specific set of edge weights;

the edge weights they used to achieve adjacency PST from vertex 1 to vertex n were

wj,j+1 =
√
j(n− j) for each j ∈ {1, . . . , n − 1}. Another generalization is to add

101



102

weighted loops on the vertices of an unweighted path. It is true that if there are two non-

adjacent vertices u and v in a graph G such that u and v share the same neighbours, then

adding properly weighted loops on the vertices of G will help achieve PST between u

and v [63]. However, there is no such set of weighted loops to add on the vertices of an

unweighted path on n ≥ 4 vertices to achieve adjacency PST between the end vertices.

A further generalization is to consider weighted paths with weighted loops. Kay

[61] found a necessary and sufficient condition on the eigenvalues for a weighted mirror-

symmetric path with loops to exhibit PST between its end vertices at a given time t0. Given

a set of n distinct real numbers (a real-weighted path has only simple and real eigenvalues)

satisfying certain conditions (for example, to ensure PST for a weighted path), several al-

gorithms exist [37] [43, Chapter 4] [86] for constructing a tridiagonal matrix (correspond-

ing to a weighted path with or without loops) that has those numbers as eigenvalues (and

therefore exhibits PST).

In this chapter, we consider weighted paths on n vertices, with vertex set {1, 2, · · · , n},

from a matrix analysis point of view: weighted paths with loops (potentials) amount to

tridiagonal matrices (a matrixA = [aj,k] is called tridiagonal if aj,k = 0 whenever |j−k| >

1) with certain restrictions (e.g. the diagonal entries of the adjacency matrix of a weighted

path (without loops) are necessarily zero). Any symmetric tridiagonal matrix gives way to

a three-term recurrence relation, and a finite sequence of polynomials defined by a three-

term recurrence relation is a sequence of orthogonal polynomials, so our approach is to

work with the orthogonal polynomials (see Section 4.1.1 for more details) that arise by
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considering the tridiagonal matrix as an operator on the polynomial space.

In Section 4.1, we review some basic results about orthogonal polynomials, three-term

recurrences, and a necessary and sufficient condition on the eigenvalues of a weighted path

with or without loops to exhibit PST between the end vertices at a given time t0. Based

on this, we give some observations to simplify the analysis in the following sections. In

Section 4.2, using an approach similar to that found in [41], we obtain formulas, in terms

of eigenvalues, for the weight of the edge between vertices
⌊
n
2

⌋
and

⌊
n
2

+ 1
⌋

and of the

loop at vertex
⌈
n
2

⌉
. This allows one to determine the “middle” weights of the weighted

path with loops with a given spectrum without the need to calculate all the orthogonal

polynomials or the weights of the inner product. In Section 4.3, we give the main result:

any weighted path on n ≥ 3 vertices does not admit Laplacian PST between the two end

vertices, nor do certain mirror symmetric trees between their symmetric vertex pairs. In

Section 4.4, we propose the following conjecture: weighted paths on at least four vertices

with or without loops must have at least one irrational weight in order to have adjacency

PST between the end vertices at the fixed readout time π; we confirm this conjecture for

n = 4 as well as for n ≡ 3 (mod 8) and for n ≡ 5 (mod 8).

Throughout this chapter, in the setting of adjacency matrices, we consider paths with

or without loops; in the Laplacian matrix setting, we only consider paths without loops.

This chapter is based on work with Kirkland, McLaren, Pereira and Plosker [67]. The

work began when Pereira visited the University of Manitoba in June 2017 for a one-week

period. McLaren was Plosker’s undergraduate student research assistant in Summer 2017.
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4.1 Preliminaries

4.1.1 Orthogonal polynomials and three-term recurrence

In this section, we review some basics about orthogonal polynomials; for more details, see

[44, Chapter 8].

The set of all real polynomials in one real variable forms a vector space P . If µ is a

measure on R such that
∫
x2ndµ < ∞ for all non-negative integers n, then we can define

an inner product on this vector space by (p, q) :=
∫
p(x)q(x)dµ. Given this inner product

we can find an orthogonal basis (pj)j≥0 for P such that pj is a polynomial of degree j. We

say that (pj)j≥0 is a sequence of orthogonal polynomials.

The factors and zeros of each polynomial in a sequence of orthogonal polynomial have

some nice properties.

Theorem 4.1.1 ([44], Lemma 8.1.1). Let (pj)j≥0 be a sequence of orthogonal polynomials.

Suppose that for some n ≥ 0, a polynomial f is a proper factor of pn. If f is nonnegative,

then it must be constant.

Therefore we have the following.

Corollary 4.1.2 ([44], Section 8.1). Let (pj)j≥0 be a sequence of orthogonal polynomials.

Then for any n ≥ 0, all the roots of pn(x) are real, and they are all simple roots.

Orthogonal polynomials are closely related to three-term recurrence relations.
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Theorem 4.1.3 ([44], Theorem 8.2.1). Let (pj)j≥0 be a sequence of monic orthogonal

polynomials and set

aj =
(xpj, pj)

(pj, pj)
, bj =

(pj, pj)

(pj−1, pj−1)
.

Then for all positive integers j,

pj+1(x) = (x− aj)pj(x)− bjpj−1(x). (4.1)

A recurrence of the form

xpj(x) = Bjpj+1(x) + Ajpj(x) + Cjpj−1(x)

with the product BjCj being a positive real number for all j, is known as a three-term

recurrence. If we extend our sequence of orthogonal polynomials by defining p−1 to be

the zero polynomial, then the three-term recurrence in the above theorem holds for all

nonnegative integers j.

On the other hand, three-term recurrence relations also give rise to orthogonal polyno-

mials.

Theorem 4.1.4 ([44], Corollary 8.4.3). A finite sequence of polynomials defined by a three-

term recurrence is a sequence of orthogonal polynomials.

One consequence of Theorem 4.1.3 is the following.

Corollary 4.1.5 ([44], Section 8.2). Let (pj)j≥0 be a sequence of orthogonal polynomials.

Then the polynomials pn+1(x) and pn(x) have no non-trivial common factor, whenever

n ≥ 0.
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The following result connects the adjacency matrix or Laplacian matrix of a weighted

or unweighted path with or without loops to the theory of orthogonal polynomials.

Proposition 4.1.6 ([44], Corollary 8.2.2). The orthogonal polynomial pn+1(x) satisfying

equation (4.1) with p−1 = 0, and p0 = 1 (and j = n) is the characteristic polynomial of

the symmetric matrix

Bn+1 =


a0

√
b1√

b1 a1

√
b2

. . .√
bn−1 an−1

√
bn√

bn an

 .
Proof. We proceed by induction on n. If n ≤ 1, the result is immediate. If n ≥ 1, then we

expand det(xIn+1 −Bn+1) along the last row to obtain

det(xIn+1 −Bn+1) = (x− an) det(xIn −Bn)− bn det(xIn−1 −Bn−1)

= (x− an)pn(x)− bnpn−1(x).

This yields the desired result.

Corollary 4.1.7 ([44], Section 8.2). Let (pj)j≥0 be a sequence of orthogonal polynomials.

The the zeros of pn+1 interlace the zeros of pn for any n > 0.

Proof. From Proposition 4.1.6, we know that the zeros of any orthogonal polynomial are

the eigenvalues of the adjacency matrix of a weighted path with loops. Combining this

fact with Theorem 2.1.15, we obtain the desired result.

Now given the adjacency matrix or Laplacian matrix of a weighted path, we find the

associated finite sequence of orthogonal polynomials, the associated sequence of monic
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orthogonal polynomials, as well as a tridiagonal matrix associated to this finite monic

orthogonal polynomial sequence, then we use them to find the eigenvectors associated to

the two matrices, which will be used to study the quantum state transfer property of paths.

4.1.2 Paths and orthogonal polynomials

Here we focus on two settings: weighted paths governed by Laplacian dynamics, and

weighted paths, that may or may not have loops, governed by adjacency dynamics. In

both settings, the vertices of the path are labelled so that vertex j is adjacent to vertex

j + 1, j = 1, . . . , n − 1. As a result, the Hamiltonian will always be a tridiagonal matrix

of one of the following two forms depending on the dynamics.

A =



q1 r1

r1 q2 r2

r2 q3 r3

. . .
rn−1

rn−1 qn


, L =



q1 −r1

−r1 q2 −r2

−r2 q3 −r3

. . .
−rn−1

−rn−1 qn


,(4.2)

where rj > 0 denotes the weight of the edge between vertex j and j+1. For the adjacency

matrix case, all qj = 0 for (unweighted or weighted) paths without loops. The weight of

the loop at vertex j corresponds a nonzero entry qj . For the Laplacian matrix case, as we

are only considering weighted or unweighted paths (without loops), it follows that q1 = r1,

qj = rj−1 + rj for j = 2, 3, . . . , n− 1, and qn = rn−1.

Expanding det(xIn − A) (or det(xIn − L)) along the last row and making use of

Theorem 4.1.4, we note that both of the two symmetric tridiagonal n× n matrices in (4.2)
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are connected to a set of n orthogonal polynomials via the three-term recurrence given by

pk(x) = (x− qk)pk−1(x)− r2
k−1pk−2(x) for all k ∈ {1, . . . , n}, (4.3)

where pk(x) denotes the characteristic polynomial of the leading principal submatrix of

A or L of size k (note that we have the same recurrence relation for the sequence of

orthogonal polynomials associated to A or L). Further we define p−1(x) = 0 and p0(x) =

1, and denote the eigenvalues of A or L (that is, the roots of pn(x)) by αr, r = 1, . . . , n.

Rearranging equation (4.3), we find that xpk−1(x) = pk(x)+qkpk−1(x)+r2
k−1pk−2(x).

Combined with the fact that p−1(x) = 0 and p0(x) = 1, it follows that (pj(x))j=0,1,...,n is a

sequence of monic orthogonal polynomials and satisfy

xpk−1(x) = pk(x) + qkpk−1(x) + r2
k−1pk−2(x) for k = 0, 1, . . . , n. (4.4)

Consider the matrix

X =



q1 1

r2
1 q2 1

r2
2 q3 1

. . . . . . . . .
r2
n−2 qn−1 1

r2
n−1 qn


. (4.5)

Equation (4.4) implies that the matrix X represents multiplication by x ( mod pn(x)) in
the basis B = {p0(x), . . . , pn−1(x)}:

X


p0(x)
p1(x)

...
pn−1(x)

 ≡ x


p0(x)
p1(x)

...
pn−1(x)

 (mod pn(x)). (4.6)

We note that A is similar to X via QX = AQ where Q = diag (d1, . . . , dn) and
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dj =


1∏j−1
`=1 r`

if j 6= 1,

1 if j = 1.

(4.7)

The matrix L is also similar to X via TX = LT where T = diag (d1, . . . , dn) and

dj =


(−1)j−1∏j−1

`=1 r`
if j 6= 1,

1 if j = 1.

(4.8)

Let M denote the matrix A or L in equation (4.2). From the discussions at the begin-

ning of this section and Corollary 4.1.2, we know that the eigenvalues of M are real and

distinct, since rj > 0 for all j = 1, . . . , n − 1. We then use this distinctness to order the

eigenvalues as follows:

α1 < α2 < · · · < αn. (4.9)

Since X is similar to M , we know that α1, . . . , αn are all the eigenvalues of X . Note that

an eigenvector of X associated to the eigenvalue αj is

wj = [p0(αj), p1(αj), · · · , pn−1(αj)]
T .

This can be verified by computing Xwj , and then using the recurrence relation (4.4) eval-

uated at αj to simplify each term (keep in mind pn(αj) = 0 for j = 1, . . . , n), or we can

use equation (4.6) directly.

Now, let us consider the set of polynomials S = {p̃0(x), . . . , p̃n−1(x)} with p̃k(x) =

dk+1pk(x), where the dks are given by equation (4.7) if we are taking M = A and the dks

are given by equation (4.8) if we are taking M = L. As with the set B, the set S is also
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a basis of the vector space of all polynomials of degree less than n. In the basis S, the

matrix that represents multiplication by the x ( mod pn(x)) is exactly M :

M


p̃0(x)
p̃1(x)

...
p̃n−1(x)

 ≡ x


p̃0(x)
p̃1(x)

...
p̃n−1(x)

 (mod pn(x)).

Let vj = [p̃0(αj), p̃1(αj), . . . , p̃n−1(αj)]
T . Then vj is an eigenvector ofM associated to the

eigenvalue αj , since from M = Q̃XQ̃−1 and Xwj = αjwj , we know that an eigenvector

vj forM corresponding to the eigenvalue αj is vj = Q̃wj = [d1p0(αj), · · · , dnpn−1(αj)]
T ,

with Q̃ = Q if M = A, and Q̃ = T if M = L. Therefore the two vectors vr and vs are

orthogonal to each other for any r 6= s (eigenvectors of a real symmetric matrix associated

to distinct eigenvectors are orthogonal to each other).

Normalizing these vectors, assume the normalization factors are √κj (in fact, κj =

1
vTj vj

), j = 1, . . . , n, respectively, then the matrix V = [
√
κ1v1,

√
κ2v2, . . . ,

√
κnvn] is an

orthogonal matrix, and it diagonalizes the Hamiltonian H = M to the diagonal matrix

Λ = diag (α1, . . . , αn), i.e., V TMV = Λ.

4.1.3 Characterization of the eigenvalues of a weighted path with or

without loops that exhibits PST at time π

Let V and Λ be the two matrices as in the previous section. Recall that V is real orthogonal

and Λ is diagonal such that V TMV = Λ. Denote the `-th row of V by r`, ` = 1, . . . , n.

Proposition 2.6.2 tells us that there is PST between vertex j and k at time t = t0 if and



111

only if rjeit0Λ = eiφrk for some phase factor φ. If pj−1(αr) 6= 0 for r = 1, . . . , n, then the

vector equality can be rewritten as

p̃k−1(αr)

p̃j−1(αr)
= e−iφeit0αr (4.10)

for r = 1, 2, . . . , n. Since the polynomials p̃`(x) are real, it follows that p̃k−1(αr)/p̃j−1(αr) =

±1. In particular, if we consider the case of PST between the end vertices of the corre-

sponding weighted path, i.e., j = 1 and k = n, then, combining the fact that p̃j−1(x) =

p̃0(x) = p0(x) = 1 for all x with the interlacing property of zeros of pn(x) and pn−1(x)

from Corollary 4.1.7, it can be shown [86] that

p̃n−1(αr) = (−1)n+r. (4.11)

Therefore e−iφeit0αr = (−1)n+r. Looking at two neighbouring eigenvalues αr and αr−1,

we can see that eit0(αr−αr−1) = −1 and therefore αr − αr−1 = (2mr + 1)π/t0 for some

nonnegative integer mr [61]. Now we scale the Hamiltonian (A or L depending on the

dynamics) by a factor t0/π so that the PST time is π, and we therefore look at a simpler

expression

αr − αr−1 = 2mr + 1. (4.12)

By Lemma 2.6.3, for a system with symmetric tridiagonal Hamiltonian H = M , if

PST occurs between the end vertices, then M is persymmetric (symmetric about the anti-

diagonal; persymmetric matrices are also called mirror symmetric or Hankel symmetric in

the literature). Combining these results together, we obtain the following result.
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Corollary 4.1.8. A weighted path (with loops) with eigenvalues α1, . . . , αn admits PST

between its end vertices at time π if and only if the Hamiltonian H = M is persymmetric

and the eigenvalues α1, . . . , αn satisfy equation (4.12).

In the case of a weighted path having no loops, the associated graph is then bipartite,

and therefore the eigenvalues of the adjacency matrix (A with q1 = · · · = qn = 0) are

symmetric about zero (Theorem 3.14 [9]). In this case, we give the eigenvalues another

set of labels as follows

−βn
2
< · · · < −β2 < −β1 < 0 < β1 < β2 < · · · < βn

2
, for n even

−βn−1
2
< · · · < −β2 < −β1 < β0 = 0 < β1 < β2 < · · · < βn−1

2
, for n odd (4.13)

(we use zero as the index of the zero eigenvalue in the case that n is odd; zero does not

appear as an eigenvalue in the case when n is even). From now on, when we mention the

eigenvalues as αr, we mean the ones ordered as in (4.9), and when we mention eigenvalues

βr we mean the ones as in (4.13). If n is even then (4.12) and (4.13) yield the fact that

β1 − (−β1) = 2β1 = (2m1 + 1), and therefore β1 = (2m1 + 1)/2. Using this, we find

β2 − β1 = (2m2 + 1)

⇒ β2 = (2m2 + 1) +
(2m1 + 1)

2

=
(4m2 + 2m1 + 3)

2
.

Following this, we see that if n is even, all βr will be odd multiples of 1/2. In fact, one can

easily show by continuing the analysis of βr−βr−1, that βrs alternate between 1 (mod 4)
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times 1/2 and 3 (mod 4) times 1/2 (these give us alternating ±i when considering eiπβr

in the matrix exponential eiπM ). A similar analysis shows that if n is odd, then βrs are

integers, alternating between even and odd (these give us alternating±1 when considering

eiπβr), with β0 = 0. We summarize this in the following remark:

Remark 4.1.9. A weighted mirror-symmetric path without loops exhibits adjacency PST

between its end vertices at time π if and only if its eigenvalues βr adhere to the following

pattern: for n even, βrs alternate between (1 mod 4)× 1/2 and (3 mod 4)× 1/2, while for

n odd, βrs alternate between even and odd integers.

For the adjacency matrix of a weighted path with loops, we can shift all the eigenvalues

(by adding a multiple of the identity matrix) such that the smallest eigenvalue is an integer;

equation (4.12) then tells us that the eigenvalues αjs must alternate between even and

odd. This new weighted path with loops will exhibit PST between its end vertices if

and only if the original one does, by Proposition 1.3.9. Therefore the eigenvalues can

then be assumed to be integers with alternating parity without loss of generality. For a

weighted path without loops, its Laplacian matrix L is positive semi-definite with smallest

eigenvalue 0 (of multiplicity 1, since the graph is connected). Using this together with

equation (4.12), we know that the integer sequence of ordered eigenvalues αr begins with

0 (even number) and then alternates odd, even, odd, ... for all the remaining eigenvalues.

We summarize this in the following remark:

Remark 4.1.10. A weighted mirror-symmetric path with loops (with adjacency matrix

A) exhibits adjacency PST between its end vertices at time π if and only if for some
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scalar matrix aI , the shifted adjacency matrix A + aI has its eigenvalues αr alternating

between odd and even integers (with the odd-indexed eigenvalues being odd integers, and

the even-indexed eigenvalues being even integers). A weighted mirror-symmetric path

with no loops exhibits Laplacian PST between its end vertices at time π, if and only if

the Hamiltonian H = L has its eigenvalues αr alternate between even and odd integers

(starting with the smallest eigenvalue: zero).

Note that for a weighted path with or without loops that admits PST between its end

vertices (not necessarily at time π), we can always scale the Hamiltonian so that PST oc-

curs at time π, and use Remark 4.1.9 and Remark 4.1.10 to obtain a pattern for the eigen-

values of the scaled system, which provides a pattern for the eigenvalues of the original

system.

Now we check the relation of occurrence of PST between internal vertices and between

the two end vertices on a weighted path.

Proposition 4.1.11. For a weighted path with or without loops on n vertices, PST between

vertices 1 and n implies PST between vertices j and n+ 1− j, for each j = 2, . . . , n− 1.

If for some j with 2 ≤ j ≤ n− 1, a weighted mirror-symmetric path on n vertices admits

PST between vertices j and n + 1 − j, and if in addition none of the eigenvectors of

the Hamiltonian H = M has a zero entry in the j–th position (i.e., for the orthogonal

polynomial sequence (p`(x))`=0,1,...,n associated to the tridiagonal matrix M , for each

eigenvalue αr of pn(x), pj−1(αr) 6= 0), then the converse holds.

Proof. We have shown in Section 4.1.2 that an eigenvector vr of M associated to the
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eigenvalue αr is

vr = Qwr (or vr = Twr if M = L)

=

 d1p0(αr)
...

dnpn−1(αr)

 =

 p̃0(αr)
...

p̃n−1(αr)

 . (4.14)

Now, if we assume that there is PST between the end vertices, then M is persymmetric

(Lemma 2.6.3), that is, RMR = M (or RM = MR), where R denotes the reversal

matrix, which has 1s on the anti-diagonal and 0s elsewhere. Now Mvr = αrvr implies

thatM(Rvr) = R(Mvr) = R(αrvr) = αr(Rvr). SinceRvr 6= 0, this means thatRvr is an

eigenvector of M associated to the eigenvalue αr. The facts that αr is a simple eigenvalue

and that ‖Rvr‖2 = ‖vr‖2 imply that Rvr = ±vr. Hence the eigenvectors vr of M are

either symmetric or antisymmetric, i.e (vr)j = ±(vr)n−j+1, j = 1, 2, . . . , n, therefore

either p̃j−1(αr) and p̃n−j(αr) are both zero, or neither of them is zero and for some phase

factor φ̂, as shown in equation (4.10) they satisfy

p̃j−1(αr)

p̃n−j(αr)
=

p̃0(αr)

p̃n−1(αr)
= ei(παr−φ̂) = ±1. (4.15)

The above is valid for all αr and j such that p̃n−j(αr) 6= 0, and the quotients share the same

alternating pattern between 1 and −1 determined by PST between the end vertices; hence

there is perfect state transfer between the vertices j and n+ 1− j (as rjeit0M = eiφ̂rn+1−j

in this case).

The steps above are all reversible under certain conditions: if there is PST between a

pair of inner vertices j and n+ 1− j for some 2 ≤ j ≤ n− 1, and if pj−1(αr) 6= 0 for all

r = 1, . . . , n (and therefore pn−j(αr) 6= 0 as well), then equation (4.15) is true for all αr
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and the given j, and therefore there is PST between the two end vertices.

Referring to the proof of Proposition 4.1.11, we observe in passing that if pj−1(αr) =

pn−j(αr) = 0 for some r, then it does not provide the ei(παr−φ̂) = ±1 constraints on the

eigenvalues needed for PST between end vertices.

The following three sections contain the main results of [67].

4.2 Expressing the weight of the middle edge and of the

middle loop of a weighted persymmetric tridiagonal

matrix in terms of its eigenvalues

Given a set of n eigenvalues (with restrictions given from equation (4.12)), we would like

to reconstruct the adjacency matrix of a weighted mirror-symmetric path with or without

loops, that is guaranteed to have PST between vertices 1 and n. That is, by choosing values

for α1, . . . , αn satisfying Equation (4.12) (these will correspond to the eigenvalues of the

matrix), one can reverse-engineer weighted paths, with or without loops, having PST. We

go through the low-dimensional cases in detail in this section and the next section.

First we state a technical result that is especially helpful in analyzing the eigenvalues

of persymmetric matrices.

Lemma 4.2.1. [22, Lemma 3] Let R be the reversal matrix: the anti-diagonal matrix with

all ones along the antidiagonal.
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1. If n is even, then the persymmetric matrix B =

[
E RCR
C RER

]
and the block diagonal

matrix
[
E −RC 0

0 E +RC

]
are orthogonally similar, where E and C are any n

2
×

n
2

matrices, and R is also n
2
× n

2
.

2. If n is odd, then the persymmetric matrix B =

E x RCR
xT q xTR
C Rx RER

 and the block

diagonal matrix

E −RC 0 0

0 q
√

2xT

0
√

2x E +RC

 are orthogonally similar, where E

and C are any n−1
2
× n−1

2
matrices, R is also n−1

2
× n−1

2
, q ∈ R, and x ∈ Rn−1

2 .

Applying Lemma 4.2.1 to the adjacency matrix of a mirror symmetric weighted path

with or without loops, we can express the weight of the middle edge (and the weight of

the loop on the middle vertex) in terms of the eigenvalues. Let S1 =
∑n

r=1(−1)r+nαr and

S2 =
∑n

r=1(−1)r+nα2
r .

Proposition 4.2.2. Let A be the adjacency matrix of a weighted mirror-symmetric path

with or without loops on n vertices, whose edge weights are as in (4.2). If n is even, then

rn
2

=
S1

2
and qn

2
=

S2

2S1

. If n is odd, then rn−1
2

=

√
S2 − S2

1

2
and qn+1

2
= S1.
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Proof. Suppose n is even. The adjacency matrix

A =



q1 r1

r1 q2 r2

r2 q3 r3

. . .
rn

2
−1 qn

2
rn

2

rn
2

qn
2

rn
2
−1

. . .

r2 q2 r1

r1 q1



(4.16)

can be seen as a block matrixA =

[
E RCR
C RER

]
withE =


q1 r1

r1 q2 r2

. . .
rn

2
−1 qn

2

 andC =


0 0 · · · 0 rn

2

0 0 · · · 0 0
. . .

0 · · · 0 0

. By Lemma 4.2.1, A is orthogonally similar to the block diagonal

matrix with diagonal blocks

B1 =


q1 r1

r1 q2 r2

r2 q3 r3

. . .
rn

2
−1 (qn

2
− rn

2
)

 and B2 =


q1 r1

r1 q2 r2

r2 q3 r3

. . .
rn

2
−1 (qn

2
+ rn

2
)

 .

Note that B2 = B1 + 2rn
2
en

2
eTn

2
. It is a well-known fact that if one perturbs a Hermitian

matrix by a rank-one symmetric matrix, then the original matrix and the perturbed matrix

will have interlacing eigenvalues (Theorem 2.1.11). Since rn
2

is positive, it follows that

B1 has eigenvalues α1, α3, . . . , αn−1 and B2 has eigenvalues α2, α4, . . . , αn, where α1 <

α2 < . . . < αn are all the eigenvalues of A.
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From the fact that the trace of a matrix is the sum of its eigenvalues, we find 2rn
2

=

Tr(B2) − Tr(B1) = S1 and therefore rn
2

=
S1

2
. Now, from the fact that the trace of

the square of a matrix is the sum of the squares of the eigenvalues of the original matrix,

we find that (qn
2

+ rn
2
)2 − (qn

2
− rn

2
)2 = Tr(B2

2) − Tr(B2
1) = S2, which simplifies to

4qn
2
rn

2
= S2. Therefore, qn

2
= S2

2S1
.

Suppose n is odd. The adjacency matrix

A =



q1 r1

r1 q2 r2

r2 q3 r3

. . .
rn−1

2
−1 qn−1

2
rn−1

2

rn−1
2

qn+1
2

rn−1
2

rn−1
2

qn−1
2

rn−1
2
−1

. . .

r2 q2 r1

r1 q1



(4.17)

is orthogonally similar to a block diagonal matrix with diagonal blocks

B1 =


q1 r1

r1 q2 r2

r2 q3 r3

. . .
rn−1

2
−1 qn−1

2

 and B2 =


qn+1

2
0 · · ·

√
2rn−1

2

0
...

B1√
2rn−1

2

 .

(Here, C is a zero matrix.) From Cauchy’s interlacing theorem for a bordered Hermitian

matrix (Theorem 2.1.15), we know the eigenvalues of B1 are α2, α4, . . . , αn−1, and the

eigenvalues of B2 are α1, α3, . . . , αn. A trace argument similar to the even case yields

qn+1
2

= Tr(B2) − Tr(B1) = S1 and q2
n+1
2

+ 4r2
n−1
2

= Tr(B2
2) − Tr(B2

1) = S2. Therefore
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rn−1
2

=

√
S2−S2

1

2
.

Remark 4.2.3. For the Laplacian L of a weighted mirror-symmetric path (without loops)

on n vertices, we have a similar result : if n is even, then rn
2

=
S1

2
and qn

2
=

S2

2S1

; if

n is odd, then rn−1
2

=

√
S2 − S2

1

2
and qn+1

2
= S1. Furthermore, for the even case, from

qn
2

= rn
2
−1+rn

2
, we obtain rn

2
−1 =

S2−S2
1

2S1
. For the odd case, from qn+1

2
= 2rn−1

2
, it follows

that S2 = 2S2
1 .

Example 4.2.4. Using Proposition 4.2.2, we will check what edge weight sets allow a

weighted path on 2 or 3 vertices to admit PST between the end vertices.

For n = 2, Proposition 4.2.2 yields a weighted path with loops having r1 =
α2 − α1

2

and q1 =
α2 + α1

2
. If we consider a weighted path with no loops (and so α1, α2 are

simply −β1, β1 as in (4.13)), the Hamiltonian A reduces to
[

0 β1

β1 0

]
. If 2β1 = 2` + 1

for some nonnegative integer `, then Remark 4.1.9 implies that A admits PST between

the two end vertices at time π, and therefore the unweighted path on two vertices, whose

adjacency matrix is
[
0 1
1 0

]
, admits PST from vertex 1 to vertex 2 at time β1π = 2`+1

2
π

by Remark 1.3.11, which is consistent with literature [45] (the unweighted path P2 admits

adjacency PST at time t0 = π
2
, and therefore also at t = (2` + 1)t0 for any non-negative

integer `). Similarly, for the Laplacian case, since α1 = 0, the Hamiltonian L reduces to

1
2

[
α2 −α2

−α2 α2

]
. Again by Remark 4.1.9, if α2 = 2` + 1 for some nonnegative integer `,

then L admits PST at time π, and the unweighted path on 2 vertices admits Laplacian PST

at time 2`+1
2
π.
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For n = 3, Proposition 4.2.2 implies that a weighted path with loops, whose eigen-

values are α1, α2 and α3, has weights r1 =

√
−2α2

2 + 2α1α2 − 2α1α3 + 2α2α3

2
and

q2 = α1 − α2 + α3. Furthermore, since B1 is simply the 1 × 1 matrix [q1], we can

find q1 via q1 = Tr(B1) = α2.

Under adjacency dynamics, the HamiltonianH = M is

A =

 α2

√
−2α2

2+2α1α2−2α1α3+2α2α3

2
0√

−2α2
2+2α1α2−2α1α3+2α2α3

2
α1 − α2 + α3

√
−2α2

2+2α1α2−2α1α3+2α2α3

2

0

√
−2α2

2+2α1α2−2α1α3+2α2α3

2
α2

 .(4.18)

If we consider a weighted path with no loops (and so α1, α2, α3 are simply −β1, 0, β1),

the adjacency matrix reduces to

A =

 0 β1√
2

0
β1√

2
0 β1√

2

0 β1√
2

0

 . (4.19)

Again by Remark 4.1.9, if β1 is an odd integer, say β1 = 2` + 1 for some nonnegative

integer `, then A admits PST between vertices 1 and 3 at time π. Therefore Remark 1.3.11

implies that the unweighted path on 3 vertices admits adjacency PST at time 2`+1√
2
π, which

is consistent with literature [45] (the unweighted path P3 admits adjacency PST at time

t0 = π√
2
). Similarly for the Laplacian dynamics, from Remark 4.2.3 and the fact that

α1 = 0, we know the Laplacian reduces to

L =


α2 −

√
−2α2

2+2α2α3

2
0

−
√
−2α2

2+2α2α3

2
α3 − α2 −

√
−2α2

2+2α2α3

2

0 −
√
−2α2

2+2α2α3

2
α2

 .
Since there are no loops on the weighted path, we have α2 =

√
−2α2

2+2α2α3

2
and α3 −

α2 =
√
−2α2

2 + 2α2α3. Solving the two equations together, we obtain α3 = 3α2. By
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Remark 4.1.9 (if a weighted path admits Laplacian PST at time π, then its eigenvalues

alternate between even and odd integers), we know that a weighted path (without loops)

on three vertices does not admit Laplacian PST.

4.3 PST between the end vertices of a weighted path fails

for the Laplacian dynamics

The previous example shows that there are no weighted paths on 3 vertices that admit

Laplacian PST between the end vertices. In fact, we have a more general result.

4.3.1 There is no Laplacian PST between the two end vertices of a

weighted path on n ≥ 3 vertices

As discussed in Remark 4.1.10, if there is Laplacian PST at time π between the end vertices

of a weighted path (without loops), then the eigenvalues of the Laplacian are integers and

alternate between even and odd (starting at zero).

Theorem 4.3.1. No weighted (or unweighted) path on n ≥ 3 vertices admits Laplacian

PST between its end vertices.

Proof. Assume a weighted path admits Laplacian PST between its end vertices; by a suit-

able scaling of the Laplacian we can assume that PST occurs at time π. Therefore the

eigenvalues α1 = 0 < α2 < . . . < αn of the Laplacian are all integers and alternate
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between even and odd as mentioned in Remark 4.1.10. We begin with the case when n is

even. The persymmetric Laplacian is of the form

L =



r1 −r1

−r1 r1 + r2 −r2

−r2 r2 + r3 −r3

. . .
−rn

2
−1 rn

2
−1 + rn

2
−rn

2

−rn
2

rn
2
−1 + rn

2
−rn

2
−1

. . .

−r2 r1 + r2 −r1

−r1 r1


(4.20)

with E and C written according to Lemma 4.2.1. Then L is orthogonally similar to

[
B1 0
0 B2

]
, where B1 = E − RC =


r1 −r1

−r1 r1+2 −r2

−r2 r2 + r3 −r3

. . .
−rn

2
−1 (rn

2
−1 + 2rn

2
)

,

andB2 = E+RC =


r1 −r1

−r1 r1+2 −r2

−r2 r2 + r3 −r3

. . .
−rn

2
−1 rn

2
−1

 .Note that the eigenvalues

of B1 are α2, · · · , αn, and the eigenvalues of B2 are α1, · · · , αn−1.

Note that in this setting B2 is the Laplacian matrix for the weighted path G on n
2

vertices with edge weights rj, j = 1, . . . , n
2
− 1. Theorem 2.1.17 (part 2) tells us that

all the principal minors of B2 of size n
2
− 1 are equal, and they are equal to the product

r1r2 · · · rn
2
−1 of all the weights of the weighted path G, as G has only one spanning tree

— itself. Recall that the eigenvalues of the Laplacian matrix B2 are α1 = 0, α3, . . . , αn−1;
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part 1 of Theorem 2.1.17 implies that

n

2
r1r2 · · · rn

2
−1 = α3α5 · · ·αn−1. (4.21)

Now, we compute the determinant of B1. Observe that B1 can be written as B2 +

2rn
2
en

2
eTn

2
, where as observed above, B2 is the Laplacian matrix for a weighted path on

n
2

vertices. Expanding the determinant along the last row (or column), we deduce that

detB1 = detB2 + 2rn
2
c, where c is the leading principal minor of B2 of order n

2
− 1.

Evidently detB2 = 0 (as it is the Laplacian matrix of a weighted path), and in the previous

paragraph we have found that c = r1r2 . . . rn
2
−1; hence detB1 = 2r1r2 · · · rn

2
. Recall the

eigenvalues of B1 are α2, α4, . . . , αn. The fact the product of all the eigenvalues of a

matrix equals the determinant of the matrix implies that

2r1r2 · · · rn
2

= α2α4 · · ·αn. (4.22)

Combining equations (4.21) and (4.22), we find that

2rn
2

=
n
2
α2α4 · · ·αn

α3α5 · · ·αn−1

. (4.23)

Now, 2rn
2

= S1 ∈ Z by Proposition 4.2.2 and the fact that all αjs are integers. The

numerator of the right hand side of equation (4.23) is n
2

times all the odd eigenvalues while

the denominator is the product of all the even eigenvalues. Thus we obtain a factor of 2
n
2
−1

in the denominator, from which it follows that 2
n
2
−1 divides n

2
, which is a contradiction

provided n
2
≥ 3, i.e. provided n ≥ 6.

If n = 4, we have more information about 2r2 = S1 = α4 − α3 + α2 − α1 — it is

an even integer, as α1 = 0 and α3 are even integers, and α2, α4 are odd integers. Then



125

(4.23), which simplifies to 2r2 = 2α2α4

α3
in this case, implies that 4 divides 2, which is a

contradiction. This completes the case of even n.

We now assume n is odd. The Hamiltonian is

L =



r1 −r1

−r1 r1 + r2 −r2

. . .
−rn−1

2
−1 rn−1

2
−1 + rn−1

2
−rn−1

2

−rn−1
2

2rn−1
2

−rn−1
2

−rn−1
2

rn−1
2
−1 + rn−1

2
−rn−1

2
−1

. . .

−r2 r1 + r2 −r1

−r1 r1


,

(4.24)

and again we take E and C = 0n
2
,n
2

as in Lemma 4.2.1. Then L is orthogonally similar

to
[
B1 0
0 B2

]
, where B1 =


r1 −r1

−r1 r1 + r2 −r2

−r2 r2 + r3 −r3

. . .
−rn−1

2
−1 (rn−1

2
−1 + rn−1

2
)

, and

B2 =


2rn−1

2
0 · · ·

√
2rn−1

2

0
...

B1√
2rn−1

2

 .

The eigenvalues ofB1 andB2 interlace, with σ(B1) = {α2, α4, . . . , αn−1} and σ(B2) =

{α1 = 0, α3, . . . , αn}. Now det(B1) yielding r1r2 · · · rn−1
2

= α2α4 · · ·αn−1 (the calcula-

tion is similar to the case of even n), where α2, α4, . . . , αn−1 are the odd eigenvalues of

L. The (1, 1) minor of B2 is just det(B1) = r1r2 · · · rn−1
2

. Now we calculate the other
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principal minors of size n−1
2

of B2. Fix such a minor. If we take the factor
√

2 from the

first row and the first column, then the principal minor that we seek is twice the principal

minor of size n−1
2

of a Laplacian matrix; by the weighted matrix tree theorem, that minor

is equal to the (1,1) minor of the Laplacian, which is det(B1). Therefore the correspond-

ing principal minors of B2 are given by 2 det(B1) = 2r1 · · · rn−1
2

. Again, from the fact

that the sum of all of B2’s principal minors of size n−1
2

is equal to the (n−1
2

)-th elemen-

tary symmetric function of α1, α3, · · · , αn, we find that r1 · · · rn−1
2

+ n−1
2

2r1 · · · rn−1
2

=

nr1 · · · rn−1
2

= α3α5 · · ·αn. Combining this equation with the one for B1, we have

nα2α4 · · ·αn−1 = α3α5 · · ·αn. This is a contradiction, since the left side of the equa-

tion is an odd number, while the right side is an even number.

This completes the case of odd n.

4.3.2 One class of weighted mirror symmetric trees that do not have

Laplacian PST between mirror symmetric vertices

We note that it was recently (in 2015) found [35] that there is no Laplacian PST for (un-

weighted) trees on n ≥ 3 vertices. Theorem 4.3.1 resolves the weighted generalization

for the special case of paths where PST between the end vertices is considered. In fact,

we can generalize Theorem 4.3.1 to a class of weighted trees whose Laplacian matrix is

persymmetric. Such a weighted tree, say Y , can be represented schematically as follows

(see Figure 4.1):
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G G̃
w1

or

G v G̃
w1 w1

Figure 4.1: Symmetric trees

where G is a weighted tree, G̃ is the mirror image of G, and w1 is an edge weight. Exam-

ples of weighted symmetric trees are shown in Figure 4.2.

3 4

1

2

6

5

w1

w2 w2

w3 w3

3 54

1

2

7

6

w1 w1

w2 w2

w3 w3

Figure 4.2: Weighted symmetric trees

The first graph (with a weighted edge connecting a vertex inG to its corresponding ver-

tex in G̃) generalizes weighted paths on even number of vertices, and its Laplacian matrix

is L(Y ) =

[
E RCR
C RER

]
, where E = L(G) + w1en

2
eTn

2
, C is of size n

2
× n

2
, with its (1, n

2
)-

entry equal to −w1, and all the other entries zero. The second graph (with one middle ver-

tex v connected to a vertex inG and to the corresponding vertex in G̃) generalizes weighted

paths on odd number of vertices, and its Laplacian matrix is L(Y ) =

E x 0
xT 2w1 xTR
0 Rx RER

,
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where x =


0
...
0
−w1

 ∈ Rn−1
2 , and E = L(G) + w1en−1

2
eTn−1

2

.

Theorem 4.3.2. Let Y be a weighted mirror symmetric tree on n vertices as in Figure 4.1

(namely, a weighted tree whose Laplacian matrix is persymmetric). If n is even, let B1 =

L(G) + 2w1en
2
eTn

2
and B2 = L(G). If n is odd, let B1 = L(G) + w1en−1

2
eTn−1

2

and

B2 =

[
2w1

√
2xT√

2x L(G) + w1en−1
2
eTn−1

2

]
. Suppose that B1 and B2 can be diagonalized by

some real symmetric matrices Q1 and Q2, respectively, such that for some j <
n+ 1

2
,

neither Q1 nor Q2 contains a zero entry in j-th row. Then the weighted mirror symmetric

tree Y does not admit Laplacian PST between vertex j and its mirror image n + 1 − j.

Therefore, if Q1 contains no zero entries, and Q2 contains no zero entries if n is even and

contains no zero entries apart from the first row if n is odd, then the weighted tree Y does

not admit Laplacian PST between any mirror symmetric vertex pairs.

Proof. By a proper scaling of the Laplacian, we assume that PST occurs at time π. By

Lemma 4.2.1, we know the Laplacian matrix L(Y ) is orthogonally similar to the block

diagonal matrix
[
B1 0
0 B2

]
, and therefore σ(L(Y )) = σ(B1) ∪ σ(B2).

Assume n is even. Observe that if v is an eigenvector of B1 = E − RC = L(G) +

2w1en
2
eTn

2
associated to the eigenvalue λ, i.e., (E−RC)v = λv, then from L(Y )

[
v
−Rv

]
=[

E RCR
C RER

] [
v
−Rv

]
=

[
Ev −RCv
Cv −REv

]
= λ

[
v
−Rv

]
, we know that the antisymmetric vec-

tor
[

v
−Rv

]
is an eigenvector of the Laplacian matrix L(Y ) associated to the eigenvalue λ.

Similarly, if u is the eigenvector of B2 = E+RC = L(G) associated to the eigenvalue µ,
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then the symmetric vector
[
u
Ru

]
is an eigenvector of L(Y ) associated to the eigenvalue µ.

Using all the n/2 orthogonal eigenvectors vk ofB1 and the n/2 orthogonal eigenvectors uk

ofB2, we can form n orthogonal eigenvectors of L(Y ):
[

vk
−Rvk

]
,
[
uk
Ruk

]
, k = 1, . . . , n/2.

Normalize each of them and use them as columns to form a real orthogonal matrix S. Then

S diagonalizes L(Y ); assume that S diagonalizes L(Y ) to Λ. If there is PST between a

vertex j and its mirror image n+ 1− j at time π, then Proposition 2.6.2 implies that

sTj e
iπΛ = eiφsTn+1−j, (4.25)

where sT` is the `-th row of S and φ is some real number. From the fact that the eigenvector

of L(Y ) associated to eigenvalue 0 is symmetric, we know that eiφ = 1. If S does not have

any zero entries in its j-th row, then equation (4.25) implies that the symmetric eigenvec-

tors of L(Y ) (constructed from the eigenvectors of B2) are all associated to even eigen-

values, and the antisymmetric eigenvectors of L(Y ) (constructed from the eigenvectors of

B1) are all associated to odd eigenvalues. Therefore it follows that the eigenvalues of B1

are odd integers and the eigenvalues of B2 are even integers. Since B1 = B2 + 2w1en
2
en

2
,

B1 and B2 are still rank-one perturbations of each other, and therefore their eigenvalues

interlace. Now similar arguments as in Theorem 4.3.1 (if n > 4, we use the arguments in

Theorem 4.3.1, and if n = 4, the graph is just a weighted path, and we use the conclusion

of Theorem 4.3.1) imply that there is no Laplacian PST between the two mirror symmetric

vertices j and n+ 1− j. Therefore, if Q1 and Q2 contain no nonzero entries, then Y does

not admit Laplacian PST between any vertex and its mirror image.
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If n is odd, then the Laplacian matrix of the weighted tree isL(Y ) =

E x 0
xT 2w1 xTR
0 Rx RER

,

where x =
[
0 · · · 0 − w1

]T ∈ Rn−1
2 . As above, we can check that if v is an eigenvector

of B1 = E − RC = L(G) + w1en−1
2
eTn−1

2

associated to the eigenvalue λ, i.e., B1v = λv,

then

 v
0
−Rv

 is an eigenvector of L(Y ) associated to the eigenvalue λ. And if u =

[
a
ũ

]
is

an eigenvector of B2 =

[
2w1

√
2xT√

2x B1

]
associated to the eigenvalue µ, then

 ũ√
2a
Rũ

 is an

eigenvector of L(Y ) associated to the eigenvalue µ. Using the n−1
2

eigenvectors vk of B1

and the n+1
2

eigenvectors u` ofB2, we form n orthogonal eigenvectors of L(Y ):

 vk
0
−Rvk

, ũ`√
2a

Rũ`

 for k = 1, . . . , n−1
2
, ` = 1, . . . , n+1

2
. If Q1 and Q2 do not have any zero entries

in the j-th row for some j < n+1
2

, then with a similar argument as in the even case, we

can see that if there is PST between the vertex j and its mirror image n + 1 − j, then the

eigenvalues of B1 are odd integers, and the eigenvalues of B2 are even integers. Since B2

is a bordered matrix ofB1, their eigenvalues interlace, and the arguments in Theorem 4.3.1

apply here.

Note that Theorem 4.3.2 implies Theorem 4.3.1, as the Laplacian matrixL of a weighted

path on n vertices is diagonalizable by a real orthogonal matrixQ = [akp̃j(αk)], where the

polynomials p̃j(x), j = 0, . . . , n form the sequence of orthogonal polynomials associated

to the tridiagonal matrix L, the αks are the eigenvalues of L (roots of pn(x)), and that each

ak is a nonzero constant scalar for a fixed k. Since each entry akp̃0(αk) = ak in the first

row of Q is nonzero, and the columns of Q are symmetric or antisymmetric eigenvectors
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of L (by Lemma 2.6.3, if a weighted path with loops admits PST between the end ver-

tices, then it is mirror symmetric), Theorem 4.3.2 implies that there is no Laplacian PST

between the end vertices of a weighted path.

Symmetric trees are a special case of graphs with an involution; the PST and PGST

properties of such graphs were studied [64] under adjacency dynamics. The system con-

sidered by Kempton, Lippner and Yau [64] was with potentials (loops), and the results

obtained are independent from the results of this section in a sense that neither implies the

other.

4.4 Adjacency dynamics and a rational weights conjec-

ture

For the rest of this chapter we focus on adjacency dynamics, giving a complete analysis of

the 4× 4 and 5× 5 cases, and proving a more general result motivated by an observation

made in these cases.

Example 4.4.1. For a weighted mirror-symmetric path (with no loops) on 4 vertices, write

the eigenvalues α1, . . . , α4 of the adjacency matrix A as −β2,−β1, β1, β2; then r2 = S1

2
=

β2 − β1. The fact that the product of all the eigenvalues of A equals the determinant of A
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yields r4
1 = det(A) = β2

1β
2
2 , and therefore r1 =

√
β1β2. The Hamiltonian is then

A =


0

√
β1β2 0 0√

β1β2 0 β2 − β1 0

0 β2 − β1 0
√
β1β2

0 0
√
β1β2 0

 . (4.26)

By Remark 4.1.9, the system with Hamiltonian A as in (4.26) admits PST at time π

if and only if 2β1 ≡ 1 (mod 4) and 2β2 ≡ 3 (mod 4) or vice versa. It follows that

r2 = β2 − β1 is an odd integer. However, 4β1β2 ≡ 3 (mod 4), so the quantity is not a

perfect square, and therefore r1 =
√
β1β2 is irrational. There is no nonzero constant κ

for which both κ(β2 − β1) and κ
√
β1β2 are rational (κA has PST at time 1

κ
π). Therefore

no weighted path without loops on four vertices with all weights being rational can have

adjacency PST between the end vertices. In particular, the unweighted path P4 does not

admit adjacency PST. This observation motivates a more general result which we will

present after the analysis of the 5× 5 case.

Example 4.4.2 (5 × 5 Case). For n = 5, we consider weighted mirror-symmetric paths

without loops. The eigenvalues of the adjacency matrix A in this case are −β2 < −β1 <

β0 = 0 < β1 < β2, and the characteristic polynomial of A, expressed in terms of the

eigenvalues, is p5(x) = x(x2 − β2
2)(x2 − β2

1), while direct computation shows that the

characteristic polynomial of A, expressed in terms of the edge weights (i.e., entries of

A), is x(x2 − r2
1)(x2 − (r2

1 + 2r2
2)). Therefore β1 = r1, β2 =

√
r2

1 + 2r2
2, as β1 < β2.

Solving these two equations, we obtain r2
2 =

β2
2−β2

1

2
(in fact we can get r2 directly from



133

Proposition 4.2.2). The Hamiltonian is now

A =



0 β1 0 0 0

β1 0

√
β2
2−β2

1

2
0 0

0

√
β2
2−β2

1

2
0

√
β2
2−β2

1

2
0

0 0

√
β2
2−β2

1

2
0 β1

0 0 0 β1 0


. (4.27)

By Remark 4.1.9, a weighted path with adjacency matrix A as in (4.27) admits PST

between end vertices at time π if and only if β1 is an odd integer, and β2 is an even integer.

This gives us a lot of choices for the edge weight set {r1, r2} of a weighted path on 5

vertices to allow adjacency PST (apart from the
√
j(n− j) ones). As in n = 4 case, the

parity of the two integers β1 and β2 implies that r1 = β1 ∈ Z ⊆ Q, and r2 =

√
β2
2−β2

1

2
/∈ Q.

Hence no weighted path without loops on five vertices with all weights rational admits

adjacency PST between the end vertices, in particular, the unweighted path P5 does not

admit adjacency PST.

Remark 4.4.3. The weighted path on n vertices with edge weights {wj,j+1 =
√
j(n− j)|j =

1, . . . , n − 1} admits adjacency PST between its end vertices [30]. As shown in Exam-

ple 4.4.1 and Example 4.4.2, by choosing proper integers or half integers, we can obtain

many other edge weights set for a weighted path on four or five vertices to exhibit adja-

cency PST between the end vertices.

Theorem 4.3.1 tells us that no weighted path of length at least 3 has Laplacian PST

between its end vertices; however there is a weighted path (with no loops) of any length

that admits adjacency PST between its end vertices [30]. Here we make a conjecture about
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the weights: if all the weights of a weighted path on at least 4 vertices are rational numbers,

then there is no adjacency PST at time π between the end vertices of the path. We confirm

that conjecture in the cases n = 4, n ≡ 3 (mod 8) and n ≡ 5 (mod 8).

Proposition 4.4.4. Suppose that n = 4, or n ≡ 3 (mod 8) or n ≡ 5 (mod 8). If the

weights of a weighted path on n vertices with or without potentials are all rational num-

bers, then there is no adjacency PST between its end vertices at readout time π.

Proof. As discussed in Remark 4.1.10, if a weighted path exhibits PST at time π between

its end vertices, then by performing an overall energy shift if necessary (which does not

change the PST time), we can make all its eigenvalues integers (in particular, with the

smallest one being an odd integer). Then the ordered eigenvalues are of alternating parity.

For n = 3, we know that the weighted path with loops on three vertices with eigenval-

ues α1, α2, α3 has adjacency matrixA as in (4.18), in particular, r1 =

√
−2α2

2+2α1α2−2α1α3+2α2α3

2
=

√
2(α3−α2)(α2−α1)

2
/∈ Q, as α1, α3 are odd, and α2 is even for A to admit PST at time π.

For n = 4, we know the adjacency matrix A =


q1 r1 0 0
r1 q2 r2 0
0 r2 q2 r1

0 0 r1 q1

 is similar to

[
B1 O
O B2

]
, with B1 =

[
q1 r1

r1 q2 − r2

]
, B2 =

[
q1 r1

r1 q2 + r2

]
. As in the proof of Propo-

sition 4.2.2, the eigenvalues of B1 are odd integers α1 and α3, and the eigenvalues of B2

are even integers α2 and α4. In addition, Proposition 4.2.2 says that r2 = S1

2
∈ Q and

q2 = S2

2S1
. Now

det(B1) = q1(q2 − r2)− r2
1 = α1α3 (4.28)

det(B2) = q1(q2 + r2)− r2
1 = α2α4 (4.29)
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Subtracting (4.28) from (4.29) yields q1 = α2α4−α1α3

2r2
= α2α4−α1α3

S1
. Substituting q1, q2 and

r2 back to (4.28) gives that r1 =
√

(α2α4−α1α3)S2−(α2α4+α1α3)S2
1

2S2
1

. We now show that r1 is

irrational by showing that r2
1S

2
1 =

(α2α4−α1α3)S2−(α2α4+α1α3)S2
1

2
is not a perfect square (as

S1 ∈ Z). Rearranging the terms gives

1

2
(α2α4(S2 − S2

1)− α1α3(S2 + S2
1))

= −α2α4(α2
1 + α2

3)− α1α3(α2
2 + α2

4)+

α2α4 × (α1α2 − α1α3 + α1α4 + α2α3 − α2α4 + α3α4)

− α1α3α2α4 + α1α3(α1 + α3)(α2 + α4)− α2
1α

2
3.

(4.30)

From the fact that α1 and α3 are odd integers, and α2 and α4 are even integers, we

know that the first 5 terms in the summand are all divisible by 4, and therefore their sum

is congruent to 0 (mod 4). Since the square α2
1α

2
3 of the odd integer α1α3 is congruent

to 1 (mod 8) (therefore also 1 (mod 4)), it follows that the result in equation (4.30) is

congruent to 3 (mod 4), and hence is not a perfect square. Thus r1 is not rational (while

r2 is), which establishes the result for n = 4. In fact as mentioned in Example 4.4.1, we

can say more in this case: if the weights of a weighted path on 4 vertices are all rational

numbers, then the weighted path does not admit adjacency PST between its end vertices

at any time (not just π).

Next, suppose that n ≥ 5 and n ≡ 3 (mod 8) or n ≡ 5 (mod 8). Observe that

since n is odd, Proposition 4.2.2 implies that rn−1
2

=

√
S2 − S2

1

2
. We claim now that

the quantity S2 − S2
1 is not a perfect square, and so rn−1

2
is irrational. To see this, note

that S2 − S2
1 = −2[

∑
r α

2
2r +

∑
1≤j<k≤n(−1)j+kαjαk], where

∑
r α

2
2r is divisible by 4.
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Consequently, 2
∑

r α
2
2r ≡ 0 (mod 8).

If we show that
∑

1≤j<k≤n(−1)j+kαjαk is odd, then we can conclude that S2 − S2
1

is not a perfect square. To this end, it is enough to count the number of distinct pairs of

odd numbers appearing in the summation. Write n as n = 2m − 1 for some m ∈ Z.

Then there are m odd integers in the set {1, . . . , n}, and the number of distinct odd pairs

is m(m − 1)/2. For n ≡ 3 (mod 8) or n ≡ 5 (mod 8), we have m ≡ 2 (mod 4) or

m ≡ 3 (mod 4), respectively. In either case, m(m − 1)/2 is odd and the claim follows.

Thus S2 − S2
1 is not a perfect square, so rn−1

2
is not rational.



Chapter 5

Switching and partially switching the

hypercube while maintaining perfect

state transfer

The n-cube has a lot of nice properties: it is diagonalizable by the standard Hadamard ma-

trix, with all the eigenvalues being even integers, has Laplacian and adjacency PST at time

π/2 between any pair of antipodal vertices (for each vertex of the n-cube, there is exactly

one vertex at distance n from it, and they are said to be antipodal to each other). The hy-

percubes form a family of highly structured graphs that exhibit PST. As discussed in Sec-

tion 3.3, there are connected d-regular (n-cubelike) graphs on 2n vertices that are diagonal-

izable by the standard Hadamard matrix Hn and exhibit PST for any d ∈ {n, . . . , 2n− 1},

with the PST distance (distance between the sender vertex and the receiver vertex) less

137
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than or equal to n (with equality for the n-cube), but these graphs are more sensitive to

timing errors than the hypercube by Theorem 2.6.4.

One is often interested in sending the state as far as possible along the spin network

(maximizing the PST distance), and ensuring that the state transfer is as insensitive as pos-

sible to errors in the readout time (that is, if a graph exhibits PST at time t = t0, then

one would hope the graph to exhibit near-perfect state transfer at time t = t0 ± ε, for

small ε). Therefore an n-cubelike graph with fewer edges has better PST properties (less

sensitive to readout errors, by Theorem 2.6.4). We will see in Section 5.1, that deleting

edges in the n-cube does not result in connected graphs that are diagonalizable by the stan-

dard Hadamard matrix Hn; this leads us to consider n-regular graphs that can be obtained

from the n-cube by adding and deleting edges. The switched n-cube is one such graph.

Although it turns out not to be Hadamard diagonalizable (see Theorem 5.2.5), it indeed

shares many of the same properties as the n-cube: it is cospectral to the n-cube (they have

the same set of eigenvalues, counting multiplicity), it is n-regular, it exhibits PST at time

π/2, its PST distance is n, and it has the same sensitivity as the n-cube to timing errors

when PST occurs.

Godsil-McKay (GM) switching [48] is a graph operation that perturbs a graph by re-

moving and creating edges based on certain criteria that a partition of the vertex set must

satisfy (see Section 2.3.2 for more precise details); the resulting graph is cospectral to the

original graph but is often non-isomorphic to the original graph. We apply GM switching

to the hypercube as a means of constructing non-isomorphic graphs that have many of the
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same properties of the hypercube, including PST.

In Section 5.1, we give an inductive proof of the fact that no connected proper span-

ning subgraphs of the n-cube are diagonalizable by the standard Hadamard matrix, with-

out using the fact that a graph is diagonalizable by a standard Hadamard matrix if and

only if it is a cubelike graph. In Section 5.2, we use Godsil-McKay switching to con-

struct a graph (the switched n-cube) of order 2n for n > 4 that has many of the same

properties as the n-cube (in particular, it admits PST between certain pair of vertices that

exhibits PST in the n-cube), but is nevertheless non-isomorphic to the n-cube, and is not

Hadamard-diagonalizable. In Section 5.3, we then consider partially switched n-cubes,

which generalize the process of GM switching on the n-cube by considering it as the

Cartesian product of the (n − 4)-cube with the 4-cube, and performing GM switching on

some copies of the 4-cube. These new graphs are not cospectral to the n-cube in general,

but do exhibit PST (though in significantly fewer pairs of vertices). In Section 5.4, we

further generalize this by replacing each copy of the 4-cube by a convex combination of

the 4-cube and the switched 4-cube; we also generalize it to a time-dependent Hamiltonian

(see, e.g. [79]) that alternates between the various graphs considered. We give motivation

as to why these families of graphs might be useful in practice; in particular, we conduct a

sensitivity analysis with respect to readout time errors in Section 5.5.

We state the results in terms of the adjacency matrix. Again, as mentioned in Proposi-

tion 1.3.10, since the graphs we discuss in this chapter are regular, most of the results hold

for the Laplacian matrix. Throughout this chapter, we use Im to denote the identity matrix
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of size m, I(m) to denote the identity matrix of size 2m, Jm to denote the all-ones matrix of

size m×m, J(m) to denote the all-ones matrix of size 2m × 2m, 1m to denote the all-ones

vector of length m, and 1(m) to denote the all-ones vector of length 2m. This chapter is

based on work with Kirkland and Plosker [68], with myself as primary author.

5.1 No connected proper spanning subgraphs of hyper-

cubes are diagonalizable by the standard Hadamard

matrix

By making use of the result that a graph is diagonalizable by the standard Hadamard matrix

if and only if it is a cubelike graph (Corollary 3.6.2), we could prove that deleting edges

in hypercubes (while keeping all the vertices) will not result in connected graphs that are

still diagonalizable by the standard Hadamard matrix. In fact, as a special Cayley graph,

we know that a cubelike graph is connected if and only if its connection set C contains

a basis of Zn2 , viewed as a vector space (Theorem 2.5.3). Since Zn2 is n-dimensional, we

know that a connected n-cubelike graph is regular with degree at least n. Therefore for

any positive integer n, no connected graphs on 2n vertices that have fewer edges than the

n-cube are diagonalizable by the standard Hadamard matrix Hn. So we cannot perturb

the hypercube by deleting edges, without adding edges as well, while still maintaining

PST, connectivity, and diagonalizability by the standard Hadamard matrix. The switched



141

cube discussed in Section 5.2 maintains the same sparsity structure (the same number of

edges) as the n-cube, some PST pairs (though not all), but is not Hadamard diagonalizable

anymore.

Here, without appealing to cubelike graphs, we give an alternate proof of the fact that

removing at least one edge from the n-cube cannot produce a connected graph that is

diagonalizable by the standard Hadamard matrix Hn.

Proposition 5.1.1. No connected proper spanning subgraphs of hypercubes are diagonal-

izable by the standard Hadamard matrix Hn.

Proof. Let Cn denote the adjacency matrix of Qn. We prove by induction on n that any

subgraph of Qn that is diagonalizable by Hn is not connected.

If n = 1, there are no connected proper spanning subgraphs of the 1-cube, and hence

the result holds. Assume the statement is true for n = k − 1, and we show that it is true

for n = k. If we consider the k-cube as the Cartesian product of K2 with the (k−1)-cube,

we know Ck =

[
Ck−1 I(k−1)

I(k−1) Ck−1

]
. Let Y be any proper spanning subgraph of Qk that is

diagonalizable by Hk; denote its adjacency matrix by M . Then M =

[
M1 D
D M2

]
, where

D is a diagonal matrix with the diagonal entries being either 0 or 1, and M1, M2 are both

(symmetric) adjacency matrices of some subgraphs of the (k − 1)-cube. Now

2kH−1
k MHk = HT

kMHk =

[
HT
k−1 HT

k−1

HT
k−1 −HT

k−1

] [
M1 D

D M2

] [
Hk−1 Hk−1

Hk−1 −Hk−1

]
=

[
HT

k−1M1Hk−1 +HT
k−1M2Hk−1 + 2HT

k−1DHk−1 HT
k−1M1Hk−1 −HT

k−1M2Hk−1

HT
k−1M1Hk−1 −HT

k−1M2Hk−1 HT
k−1M1Hk−1 +HT

k−1M2Hk−1 − 2HT
k−1DHk−1

]
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is diagonal. So HT
k−1M1Hk−1 = HT

k−1M2Hk−1, which implies that M1 = M2. There-

fore we can assume M =

[
M1 D

D M1

]
, and hence the equation 2kH−1

k MHk = HT
kMHk

above simplifies to
[
2HT

k−1M1Hk−1 + 2HT
k−1DHk−1 0

0 2HT
k−1M1Hk−1 − 2HT

k−1DHk−1

]
.

Again from the fact that the above matrix is diagonal, we know the matrices 2HT
k−1

M1Hk−1 +2HT
k−1DHk−1 and 2HT

k−1M1Hk−1−2HT
k−1DHk−1 are both diagonal, therefore

HT
k−1M1Hk−1 is diagonal. By the induction assumption, the subgraph G1 with adjacency

matrixM1 ofQk−1 is not connected, therefore neither is Y (which isK2�G1 with possibly

some edges between the two copies of G1 removed).

5.2 A graph cospectral to the n-cube with PST

In this section, we give a cospectal mate of the n-cube that is no longer Hadamard diag-

onalizable, but is n-regular, exhibits PST, and has PST distance n. We will make use of

Godsil-McKay (GM) switching (see Section 2.3.2).

5.2.1 The switched n-cube

In [19, Section 1.8], a cospectral mate of the 4-cube is given; this graph and the 4-cube are

both bipartite, with partition where one of the two parts being

C = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111} (for the 4-cube) or

C ′ = {0000, 0011, 0101, 0110, 1000, 1011, 1101, 1110} (for the cospectral mate),
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and the other class of the vertex set consists of vertices with labels (a, b), where a ∈

{1, 2, 3, 4} indicates the digit position (here we start counting from the right) and b ∈

{0, 1} indicates the binary value at this position. For example, vertex 0101 is adjacent

to (1,1), (2,0), (3,1) and (4,0). The two graphs can be obtained from each other by GM

switching with respect to the neighbourhood of one vertex [19].

Now we show it in detail by using the usual labelling of the 4-cube Q4: binary strings

of length 4 (Section 2.5.1). Partition the vertex set V (Q4) in the following way: vertex

0000 forms C1; vertices that are at distance 2 from vertex 0000 (which are 0011, 0101,

1010, 1100, 1001, and 0110) form C2; vertices that are at distance 3 from vertex 0000

(which are 1110, 1101, 1011, and 0111) form C3; vertex 1111, the only vertex at distance

4 from 0000, forms C4; vertices that are at distance 1 from vertex 0000 (which are 0001,

0010, 0100, and 1000) form D (i.e., this partition is in fact the distance partition with

respect to vertex 0000). Then this partition π satisfies the conditions for GM switching,

and Q
(π)
4 — the local switching of Q4 with respect to π, is the above cospectral mate

of Q4, as Figure 5.1 shows. We call Q(π)
4 the switched 4-cube and denote it as Q̃4. We

order the vertices of Q4 and Q̃4 (from 1 to 16) according to the partition, in the order

C1, D, C2, C3, C4, and in each cell we order the vertices in the increasing lexicographic

order of the binary representations of vertices. Therefore, from top to bottom, and from

left to right, the vertices in Figure 5.1 are 1, 2, 3, 4, 5, 6, 7, 10, 11, 9, 8, 15, 14, 13, 12 and

16 (the adjacency matrix of the switched 4-cube is shown in Lemma 5.2.4 below).

Consider the following recursive way to construct the n-cube Qn: take two disjoint
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4-cube Q4

0000

0001 0010 0100 1000

0011 0101 1010 1100 1001 0110

1110 1101 1011 0111

1111

C2

C1

D

C3

C4

0000

0001 0010 0100 1000

0011 0101 1010 1100 1001

1110 1101 1011 0111

1111

0110

Switched 4-cube Q̃4 = Q
(π)
4

Figure 5.1: Order the vertices of Q4 and Q̃4 so that the order from top to bottom and from

left to right is 1, 2, 3, 4, 5, 6, 7, 10, 11, 9, 8, 15, 14, 13, 12 and 16

copies of the (n − 1)-cube, then connect the corresponding vertices in the two copies to

obtain the n-cube (Qn = K2�Qn−1). Starting with the above 4-cube, we now consider

the 5-cube Q5 = K2�Q4. Partition the vertex set of each of the two copies of the 4-cube

in the above way, i.e., the distance partition on the two induced subgraphs Q4 in Q5; note

that they form a partition, say π1, of the vertex set of the 5-cube, and it is an equitable

partition. If we take the union of the two D cells (i.e., the vertices at the second level in

height starting from the top, as shown in Figure 5.2) of the partition of each copy of Q4 to

form a larger partition cell and keep all the other cells unchanged, we can see that the new

partition π2 of the vertex set of the 5-cube satisfies the GM switching conditions, and the

local switching of Q5 with respect to π2 — the switched 5-cube is shown in Figure 5.3.
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00000

00001 00010 00100 01000

00011 00101 01010 01100 01001 00110

01110 01101 01011 00111

01111

D

10000

10001 10010 10100 11000

10011 10101 11010 11100 11001

11110 11101 11011 10111

11111

10110

Figure 5.2: Applying GM switching to the 5-cube. Note that the edges between the corre-

sponding vertices in the two copies of the 4-cube are omitted.

In general, consider two different partitions of the vertex set of Qn = Qn−4�Q4. We

partition the vertex set of each of the 2n−4 copies of the 4-cube according to π as shown in

Figure 5.1, then the cells C(j)
1 , D(j), C

(j)
2 , C

(j)
3 , C

(j)
4 , j = 1, . . . 2n−4 form a partition of the

vertex set of Qn, where C(j)
1 , D(j), C

(j)
2 , C

(j)
3 , C

(j)
4 is the distance partition of the vertex set

of j-th copy of the 4-cube as shown in Figure 5.1. We denote this partition by π1; it is an

equitable partition of Qn. Now, we take the union of all the 2n−4 D(j) cells to form a new

larger cellD0 = D(1)∪· · ·∪D(2n−4). Then the new partitionD0, C
(j)
1 , C

(j)
2 , C

(j)
3 , C

(j)
4 , j =

1, . . . 2n−4 of V (Qn) satisfies the GM switching conditions, and we denote this partition

by π2.

Remark 5.2.1. Note that for the switched n-cube or a partially switched n-cube that are
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00000

00001 00010 00100 01000

00011 00101 01010 01100 01001 00110

01110 01101 01011 00111

01111

10000

10001 10010 10100 11000

10011 10101 11010 11100 11001

11110 11101 11011 10111

11111

10110

Figure 5.3: The switched 5-cube with edges between corresponding vertices between the

two copies of the switched 4-cube omitted.

discussed in the later part of this chapter, π1 is still equitable and π2 still satisfies the GM

switching conditions.

Using the partition π2 of V (Qn) and applying the GM switching, we can get a cospec-

tral mate — the switched cube of the n-cube — for each n ≥ 4. Denote the switched

n-cube Q(π)
n by Q̃n, the adjacency matrix of Qn by Cn, and the adjacency matrix of Q̃n by

C̃n.

Investigating the construction, we see that Q̃n is the Cartesian product of Qn−4 with

Q̃4 for n > 4. For the n-cube Qn = Qn−4�Q4, or the switched n-cube Q̃n = Qn−4�Q̃4,

we order the vertices of Q4 or Q̃4 as in Figure 5.1, order the vertices of Qn−4 in the
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increasing lexicographic order of their binary representation, and finally order the ver-

tices of the Cartesian products in accordance with the lexicographic ordering, that is,

A(Qn) = A(Qn−4)⊗I(4) +I(n−4)⊗A(Q4) andA(Q̃n) = A(Qn−4)⊗I(4) +I(n−4)⊗A(Q̃4)

(Theorem 2.2.5). In the following, when we say replace some copy of Q4 inside Qn by

Q̃4, Q̃4 is always obtained from Q4 by GM switching with respect to π as in Figure 5.1,

i.e., the distance partition of that 4-cube with respect to vertex x0000, where x ∈ Zn−4
2

indicates which copy this 4-cube is (inside the n-cube).

The non-isomorphism of Q̃n andQn can be seen directly from the fact that they exhibit

different PST properties: namely, they have different numbers of PST vertex pairs, as we

will see in the next section.

5.2.2 PST property and non-Hadamard diagonalizablity of the switched

n-cube

Theorem 5.2.2. For n ≥ 4, exactly half of the vertices of the switched n-cube Q̃n pair up

to have PST between each other at time π/2.

Proof. Since the eigendecomposition of C̃4 (C̃4 is diagonalizable by QH4, where Q is the

similarity matrix between C4 and C̃4 as mentioned in Section 2.3.2) is known in closed

form, we may explicitly compute eiC̃4π/2, also in closed form. From that explicit computa-

tion, we can see that there is PST between vertices 1 and 16, 6 and 11, 7 and 10, 8 and 9 in

Q̃4 at time π/2 (whereas Q4 admits PST between vertices j and 17− j for each j); exactly

half (8 out of 16) of the vertices pair up in Q̃4 to exhibit PST. Recall that the adjacency
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matrix of Q̃n is C̃n = Cn−4 ⊗ I(4) + I(n−4) ⊗ C̃4. Therefore

UQ̃n(π/2) = ei(π/2)C̃n = ei(π/2)(Cn−4⊗I(4)+I(n−4)⊗C̃4)

= ei(π/2)Cn−4⊗I(4)ei(π/2)I(n−4)⊗C̃4 = ei(π/2)Cn−4 ⊗ ei(π/2)C̃4

= i(n−4)


0 0 · · · 0 ei(π/2)C̃4

0 0 · · · ei(π/2)C̃4 0

· · · · · · · · · · · · · · ·
0 ei(π/2)C̃4 · · · 0 0

ei(π/2)C̃4 0 · · · 0 0

 ,

where the third equation is based on the fact that Cn−4 ⊗ I(4) and I(n−4) ⊗ C̃4 commute.

Since half of the rows of ei(π/2)C̃4 have an (off-diagonal) entry with modulus 1 and none

of the diagonal entry have modulus 1, then so is ei(π/2)C̃n , i.e., half of the vertices of Q̃n

pair up to have PST between each other at time π/2.

From the proof of Theorem 5.2.2, it can be checked that in the labeling of vertices as

described at the end of Section 5.2.1, PST in Q̃n is between vertex j + 24m4 + 25m5 +

· · ·+ 2n−1mn−1 and 17− j + 24(1−m4) + 25(1−m5) + · · ·+ 2n−1(1−mn−1), where

mk ∈ {0, 1} for k = 4, . . . , n−1 and j = 1, 6, 7, 8, 9, 10, 11, 16, and PST inQn is between

` and 2n + 1 − ` for each `. We thus make the following remark, implying that the two

graphs Qn and Q̃n are non-isomorphic.

Remark 5.2.3. There are half as many vertex pairs for which PST occurs (at time π/2) in

the switched n-cube as there are in the n-cube, and the PST pairs of the switched n-cube

form a subset of the PST pairs of the n-cube.

The following Hadamard diagonalizable property gives an alternate proof of the fact

that Q̃n is not isomorphic to Qn for n ≥ 4. As a direct consequence, the switched n-cube
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is not Hadamard diagonalizable.

Lemma 5.2.4. The adjacency matrix of the switched 4-cube Q̃4 does not have a (1,−1)-

eigenvector associated to eigenvalue 2.

Proof. The adjacency matrix C̃4 of Q̃4 (with vertices labelled and ordered as in Figure 5.1)

is

C̃4 =



0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0

1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0

0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0

0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0

0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1

0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0



.
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The reduced row echelon form R of C̃4 − 2I(4) is

R =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 1

0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 1

0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 −1

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 −1

0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 −1

0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 −1

0 0 0 0 0 0 0 0 1 0 0 0 −1 −1 0 1

0 0 0 0 0 0 0 0 0 1 0 0 −1 0 −1 1

0 0 0 0 0 0 0 0 0 0 1 0 0 −1 −1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 −2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

Thus we get four linearly independent eigenvectors associated to 2:

v1 = [0, 0, 0,−1, 1, 0, 1, 1,−1,−1, 0, 1,−1, 0, 0, 0]T ,

v2 = [0, 0,−1, 0, 1, 1, 0, 1,−1, 0,−1, 1, 0,−1, 0, 0]T ,

v3 = [0,−1, 0, 0, 1, 1, 1, 0, 0,−1,−1, 1, 0, 0,−1, 0]T ,

v4 = [1, 1, 1, 1,−1,−1,−1,−1, 1, 1, 1,−2, 0, 0, 0,−1].T

Assume v is a (1,−1)-eigenvector of C̃4 associated to eigenvalue 2, then it can be written

as a linear combination of the above four vectors, say v = av1 + bv2 + cv3 + dv4. From

the first two components we have d = ±1 and −c + d = ±1; therefore c = d ± 1 ∈

{0, 2,−2}. But the 15th component inplies c = ±1, hence no linear combination of

the four vectors is a vector that only contains entries 1 or −1. Therefore C̃4 does not

have a (1,−1)-eigenvector associated to eigenvalue 2, and therefore it is not Hadamard
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diagonalizable.

Now we generalize this property to Q̃n.

Theorem 5.2.5. For n ≥ 4, the adjacency matrix C̃n of Q̃n is not Hadamard diagonaliz-

able. In fact, C̃n has only n − 4 linearly independent (1,−1)-eigenvectors associated to

the eigenvalue n− 2.

Proof. We proceed by induction on n. From Lemma 5.2.4, we know that the number of

(1,−1)-eigenvectors of C̃4 associated to eigenvalue 2 is 0, which equals 4 − 4, and the

result is true for n = 4. Assume the result is true for some integer k ≥ 4, that is, C̃k has

exactly k−4 linearly independent (1,−1)-eigenvectors associated to eigenvalue k−2. Let

x =

[
x1

x2

]
be a (1,−1)-eigenvector of C̃k+1 associated to eigenvalue (k+1)−2, where both

x1 and x2 are (1,−1) column vectors of length 2k. Then
[
C̃k I(k)

I(k) C̃k

] [
x1

x2

]
= (k−1)

[
x1

x2

]
.

Therefore C̃kx1 + x2 = (k − 1)x1, and x1 + C̃kx2 = (k − 1)x2, which imply

[
(k − 1)I(k) − C̃k

]
x1 = x2, (5.1)[

(k − 1)I(k) − C̃k
]
x2 = x1. (5.2)

Substituting equation (5.1) into equation (5.2) gives [(k − 1)I(k) − C̃k]2x1 = x1, so [C̃2
k −

2(k − 1)C̃k + (k2 − 2k)I(k)]x1 = 0, i.e., x1 is an eigenvector of C̃2
k − 2(k − 1)C̃k +

(k2 − 2k)I(k) associated to eigenvalue 0. Recall the fact that if the spectrum of C̃k is

σ(C̃k) = {λ1, · · · , λ2k}, then σ(C̃2
k − 2(k− 1)C̃k + (k2− 2k)I(k)) = {λ2

1− 2(k− 1)λ1 +

(k2 − 2k), · · · , λ2
2k
− 2(k − 1)λ2k + (k2 − 2k)}, with each eigenvector of C̃k associated

to eigenvalue λj being an eigenvector of C̃2
k − 2(k − 1)C̃k + (k2 − 2k)I(k) associated
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to eigenvalue λ2
j − 2(k − 1)λj + (k2 − 2k). Therefore for some eigenvalue λ of C̃k,

λ2 − 2(k − 1)λ + (k2 − 2k) = 0 holds, which implies λ = k or λ = k − 2, and every

eigenvector of C̃2
k − 2(k− 1)C̃k + (k2 − 2k)I(k) associated to 0 is a linear combination of

eigenvectors of C̃k associated to k or k− 2. Thus x1 can be expressed as x1 = a1(k) + by,

where y is an eigenvector of C̃k associated to k − 2 and 1(k) is the (unique up to a scalar

multiple) eigenvector of C̃k associated to eigenvalue k. Substituting x1 = a1(k) + by into

(5.1), we have x2 = −a1(k) + by. There are two cases. If a 6= 0, then x1 6= x2 (in fact, x1

and x2 differ in every coordinate); since they are both (1,−1)-vectors, x1 = −x2. Thus

0 = x1 + x2 = a1(k) + by − a1(k) + by = 2by, which implies that b = 0 (since y 6= 0)

and x1 = a1(k). Thus a = ±1, and there is one (1,−1)-eigenvector x0 =

[
1(k)

−1(k)

]
(or its

negative) of C̃k+1 associated to k − 1. If a = 0, then x1 = x2 = by. By the inductive

hypothesis, there are exactly k−4 such linearly independent (1,−1)-eigenvectors by of C̃k

associated to the eigenvalue k−2, and so the vectors
[
by
by

]
form k−4 linearly independent

eigenvectors of C̃k+1 associated to eigenvalue k−1, and they are linearly independent from

x0. Altogether, we have k−4+1 = (k+1)−4 linearly independent (1,−1)-eigenvectors

associated to eigenvalue k− 1. By mathematical induction, the result is true for all n ≥ 4.
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5.3 Partial Switching and PST

In Section 5.2, we explored the application of GM switching to the n-cube to produce the

switched n-cube. In this section, we continue to use the Cartesian product construction

of the n-cube (Qn = Qn−4�Q4) so that the corresponding adjacency matrix is seen to

be a block matrix, with each block of size 16 × 16, and the diagonal blocks are all equal

to the adjacency matrix C4 of Q4. We then perform GM switching to some (but not all)

copies of (the induced subgraph) Q4 (according to partition π of this copy of Q4 as shown

in Figure 5.1) inside the n-cube, i.e., some diagonal blocks of Cn are changed from C4 to

C̃4. We call this a partial switching, and we analyse the PST property of these partially

switched n-cubes.
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5.3.1 Construction

Let n ≥ 4. Let An,1 = Cn be the adjacency matrix of the n-cube, and let An,2 = C̃n be

the adjacency matrix of the switched n-cube, with

A4,1 = C4 =



0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0

1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0

0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0

0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0

0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0

0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1

0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0



, and

A4,2 = C̃4 =



0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0

1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0

0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0

0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0

0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1

0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0



.
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The n-cube Qn, as mentioned earlier, is the graph Qn−4�Q4, with adjacency matrix

An,1 = An−4,1⊗I(4) +I(n−4)⊗A4,1 = diag (A4,1, · · · , A4,1)+An−4,1⊗I(4). For example,

A5,1 =

[
A4,1 I(4)

I(4) A4,1

]
, and A6,1 =


A4,1 I(4) I(4) 0

I(4) A4,1 0 I(4)

I(4) 0 A4,1 I(4)

0 I(4) I(4) A4,1

. For the switched n-cube, we

just need to replace every occurrence of A4,1 with A4,2. Now if we replace some of the

diagonal blocks A4,1 in An,1 by A4,2, we get the adjacency matrix of a partially switched

n-cube. For n = 5, by a simple reordering of the copies of A4,1 and A4,2, it is clear that

A5,3 =

[
A4,1 I(4)

I(4) A4,2

]
and

[
A4,2 I(4)

I(4) A4,1

]
are isomorphic, but they are not isomorphic to the

5-cube or the switched 5-cube (by checking that A5,1 and A5,3 have different spectra or by

the result of Example 5.3.8 in Section 5.3.3 below, which shows that there are fewer ver-

tices inA5,3 than inA5,1 involved in PST). For n = 6, there is a unique (up to isomorphism,

which can be accomplished by reordering the copies ofA4,1 andA4,2) partially switched 6-

cube with exactly one copy of the 4-cube, say A6,3 = diag (A4,1, A4,2, A4,2, A4,2) +A2,1⊗

I(4) and a unique (again, up to isomorphism) partially switched 6-cube with three copies of

the 4-cube, say A6,4 = diag (A4,2, A4,1, A4,1, A4,1) +A2,1⊗ I(4); furthermore, Γ(A6,4) can

be obtained from Γ(A6,3) by performing GM switching with respect to the partition π2, as

described in Section 5.2.1 for a general (switched, partially switched) n-cube, of the vertex

set of Γ(A6,3), where Γ(A) denotes the graph with adjacency matrix A. When there are

two copies ofA4,1 and two copies of A4,2, there are two non-isomorphic partially switched

6-cubes: A6,5 = diag (A4,1, A4,1, A4,2, A4,2) + A2,1 ⊗ I(4), A6,6 = diag (A4,1, A4,2, A4,2,

A4,1) + A2,1 ⊗ I(4), and these two graphs are not even cospectral. For n ≥ 7, there are
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more non-isomorphic partially switched n-cubes.

The partially switched n-cubes are not cospectral to the n-cube in general, but still

exhibit PST (though the number of PST vertex pairs is significantly fewer than that in

the n-cube), and are not cubelike graphs, for the following reason. Consider the binary

labelling of a (switched, partially switched) n-cube: every vertex has a label of the form

xy, where x ∈ Zn−4
2 indicates the different copies of the 4-cube or switched 4-cube, and

y ∈ Z4
2 represents the vertices within each copy. Note that for a fixed vertex v in the

n-cube, any two neighbours of v have exactly one other common neighbour. Since for

any x ∈ Zn−4
2 , the (partial) switching does not change the graph induced by the set of

vertices at distance at most 2 to x1111, any two neighbours of vertex x1111 have exactly

one other common neighbour. Let x take some value such that the corresponding copy

of the 4-cube is a switched one. Then the two neighbours x0100 and x1011 of the vertex

x0011 have two other common neighbours: x1010 and x1001 (see Figure 5.3). Therefore,

there is no isomorphism of a partially switched n-cube that maps vertex x1111 to vertex

x0011, which shows that the graph is not vertex-transitive. Hence it is not a cubelike graph

(as mentioned in Section 2.5.2, cubelike graphs are Cayley graphs, and Cayley graphs are

vertex-transitive).

5.3.2 Some spectral properties of the switched n-cubes

Although partially switched n-cubes are less structured compared to the n-cube and the

switched n-cube, they do share some common eigenvalues and eigenvectors. For example,
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they all have n − 2 as an eigenvalue, and some common eigenvectors associated to this

eigenvalue.

Proposition 5.3.1. For n ≥ 4, the n-cube, switched n-cube, and any partially switched

n-cube have at least n − 3 linearly independent common eigenvectors associated to the

eigenvalue n− 2.

Proof. We prove this by induction. If n = 4, by comparing the reduced row-echelon form

(RREF) of A4,1 − 2I(4) with the RREF of A4,2 − 2I(4), we know that they have exactly

one (up to a scalar multiple) common eigenvector associated to eigenvalue 2, which is

v = [2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, −1,−1,−1, −1,−2]T . Hence the result is true for n = 4.

Assume that it is true for k ≥ 4, and that v(k)
1 , . . . , v

(k)
k−3 is a set of linearly independent

common eigenvectors for the (switched, partially switched) k-cube associated to eigen-

value k − 2. The adjacency matrix of the (switched, partially switched) (k + 1)-cube

can be written as M =

[
M1 I(k)

I(k) M2

]
, where M1 and M2 are the adjacency matrices of

some (switched, partially switched) k-cubes according to the structure of M . By assump-

tion, the above vectors v(k)
j are eigenvectors of M1 and M2 associated to the eigenvalue

k − 2. For j = 1, . . . , k − 3, let v(k+1)
j =

[
v

(k)
j

v
(k)
j

]
, then direct computation shows that

v
(k+1)
1 , . . . , v

(k+1)
k−3 are linearly independent eigenvectors of M associated to the eigenvalue

k − 1 = (k + 1) − 2, and there are k − 3 of them. Also note that 1(k) is a common

eigenvector of the (switched, partially switched) k-cube associated to eigenvalue k. Hence

v
(k+1)
0 =

[
1(k)

−1(k)

]
is an eigenvector of M associated to the eigenvalue k−1 = (k+1)−2.

Combining the above, we get k − 3 + 1 = (k + 1) − 3 linearly independent common
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eigenvectors associated to eigenvalue (k + 1) − 2 of the (switched, partially switched)

(k + 1)-cube. Hence the result is true for any k ≥ 4.

Remark 5.3.2. From the above proof it follows that the vectors a1 ⊗ a2 · · · ⊗ an−4 ⊗

116, where exactly one of a1, . . . , an−4 is
[

1
−1

]
, and the remaining are

[
1
1

]
, are linearly

independent (1,-1) eigenvectors (there are n − 4 of them) associated to eigenvalue n − 2

of the (switched, partially switched) n-cubes. By Theorem 5.2.5 we know that those are

in fact all the (1,−1) eigenvectors of the switched n-cube associated to the eigenvalue

n − 2. (The above theorem also tells us that a (n − 3)-th common eigenvector of the

(switched, partially switched) n-cubes is 1(n−4) ⊗ v, where v is a common eigenvector

of the 4-cube and the switched 4-cube as given at the beginning of the proof.) Similarly,

when there is exactly one
[
1
1

]
and (n − 5) many

[
1
−1

]
in the above tensor product, we

obtain eigenvectors associated to the eigenvalue −(n− 2) of these cubes.

Example 5.3.3. For the n-cube, the switched n-cube, or a partially switched n-cube, some

of their eigenvalues and eigenvectors can be calculated from some matrices of smaller size

(3× 2n−4 instead of 16× 2n−4).
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For the Hadamard matrix

H =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 1 1 −1 −1 1 −1 1 1 −1 −1 −1 1 −1
1 1 −1 1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 −1
1 1 1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 −1 −1
1 1 1 1 −1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1
1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1
1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 1
1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 1
1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1 1
1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 −1 1 −1 −1 1 1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 −1 1 −1 1 −1 1 1 1 −1 1 −1
1 1 −1 −1 −1 −1 −1 1 −1 1 1 1 1 1 −1 −1
1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1



,

direct computation shows that

D = H−1A4,1H = diag (4, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0,−2,−2,−2,−2,−4), and

B = H−1A4,2H =


4 0 0 0 0

0 1
2
J4 X 0 0

0 XT 0 Y 0

0 0 Y T −1
2
J4 0

0 0 0 0 −4

 ,
where the diagonal blocks of B are of size 1, 4, 6, 4, 1, respectively (note that these block

sizes match the multiplicity of the diagonal entries of D), and

X =
1

2


−1 −1 1 −1 1 1

−1 1 −1 1 −1 1

1 −1 −1 1 1 −1

1 1 1 −1 −1 −1

 , Y =
1

2



1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

−1 1 1 −1

−1 1 −1 1

−1 −1 1 1


.

Observe that each block of B (or D) has constant row sums. Consider the partially

switched 5-cube A5,3 =

[
A4,1 I(4)

I(4) A4,2

]
. Then

[
H 0
0 H

]−1

A5,3

[
H 0
0 H

]
=

[
D I(4)

I(4) B

]
=
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A′5,3.

The vectors a = [1,−3, 1, 1]T , b = [1,−1, 1,−1, 1,−1]T , c = [1, 1,−3, 1]T satisfy

Xb = a,XTa = 2b, Y c = 2b, and Y T b = c. Then for scalars x1, . . . , x6, the vector

[0, x1a
T , x2b

T , x3c
T , 0, 0, x4a

T , x5b
T , x6c

T , 0]T is an eigenvector of A′5,3 associated to the

eigenvalue λ if and only if [x1, x2, . . . , x6]T is an eigenvector of T =

[
T1 I3

I3 T2

]
associated

to the eigenvalue λ, where T1 =

2 0 0
0 0 0
0 0 −2

and T2 =

0 1 0
2 0 2
0 1 0

.

Thus the eigenvalues of the 6× 6 matrix T =

[
T1 I3

I3 T2

]
are eigenvalues of the 32× 32

matrix A5,3, and with its eigenvectors we can recover some of the corresponding eigenvec-

tors of A5,3 by using the vectors a, b, c, and the Hadamard matrix H .

We can also make use of other vector triples, e.g.

a = [−3, 1, 1, 1]T , b = [1, 1,−1, 1,−1,−1]T , c = [1, 1, 1,−3]T , or

a = [−1,−1, 3,−1]T , b = [1,−1,−1, 1, 1,−1]T , c = [−1, 3,−1,−1]T ;

the equations above involving multiplications with X , XT , Y , Y T hold for each of the

new vector triples a, b, c. So for any eigenvalue of A5,3 that is also an eigenvalue of T , its

multiplicity is at least 3.

In general, for a (switched, partially switched) n-cube with adjacency matrix M =

diag (M1, · · · ,M2n−4) + Cn−4 ⊗ I(4), where each Mj represents A4,1 or A4,2, using the

the above vectors a, b, and c, we can find some of its eigenvalues from a matrix of size

3× 2n−4, by replacing A4,1 with T1, A4,2 with T2, and I(4) with I3.
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5.3.3 Which vertices maintain PST?

Let S = {1 + 24m4 + · · ·+ 2n−1mn−1, 16 + 24m4 + · · ·+ 2n−1mn−1 |mk ∈ {0, 1} for k =

4, · · · , n − 1}. Note that S is exactly the set of singleton vertices of the partition π1 (end

of Section 5.2.1) of the vertex set Zn2 of the (switched, partially switched) n-cube. We give

two different approaches for the result of PST properties of vertices in S.

Theorem 5.3.4. Let n > 4. Then for any given partially switched n-cube, at least 1/8 of

its vertices pair up to exhibit PST at time π/2. Specifically, for any partially switched n-

cube, all the vertices in the set S above pair up to exhibit PST, with PST between vertices

1+24m4 +25m5 + · · ·+2n−2mn−2 +2n−1mn−1 and 16+24(1−m4)+25(1−m5)+ · · ·+

2n−2(1−mn−2)+2n−1(1−mn−1), where mj ∈ {0, 1} for j = 4, . . . , n−1. Furthermore,

at any time t, the fidelity of state transfer from vertex j ∈ S to any other vertex is the same

for any partially switched n-cube as it is for the n-cube.

First we give a proof by considering the corresponding entries in the unitary matrix

ei(π/2)A, where A is the adjacency matrix of a given partially switched n-cube.

Proof. By direct computation, we know eT1A
k
4,1 = eT1A

k
4,2 for k = 1, 2, 3, 4. SinceA4,1 and

A4,2 have the same minimal polynomial x5 − 20x3 + 64x, we know eT1A
k
4,1 = eT1A

k
4,2 for

any positive integer k, i.e., for any positive integer k, Ak4,1 and Ak4,2 have the same first row.

Similarly, they have the same 16-th row. Therefore, for any list of nonnegative integers



162

j1, j2, · · · , j2s, the matrix Aj14,1A
j2
4,2A

j3
4,1 · · ·A

j2s
4,2 has the same first row as Aj1+···+j2s

4,1 , since

eT1A
j1
4,1A

j2
4,2A

j3
4,1 · · ·A

j2s
4,2 = eT1A

j1
4,2A

j2
4,2A

j3
4,1 · · ·A

j2s
4,2 = eT1A

j1+j2
4,2 Aj34,1 · · ·A

j2s
4,2

= eT1A
j1+j2+j3
4,1 · · ·Aj2s4,2 = · · ·

= eT1A
j1+j2+j3+···+j2s
4,1 .

As mentioned earlier, for n > 4, the adjacency matrix of a partially switched n-cube is

of the form An,p = diag (A4,∗, · · · , A4,∗) + An−4,1 ⊗ I(4), where An−4,1 is the adjacency

matrix of the (n− 4)-cube, and ∗ represents 1 or 2. For any positive integer k, each block

(of size 16 × 16) of the matrix Akn,p is of the form
∑
c(j1, j2, . . . , j2s)A

j1
4,1 A

j2
4,2 · · ·A

j2s
4,2

for some nonnegative integers j1, · · · j2s and some real number c(j1, j2, . . . , j2s), which

has the same first row as
∑
c(j1, j2, . . . , j2s)A

j1+···+j2s
4,1 , the corresponding block in Akn,1.

Therefore eT` A
k
n,p = eT` A

k
n,1 for any ` ∈ {1, 16, 24 + 1, 24 + 16, 25 + 1, 25 + 16, 25 +

24 + 1, 25 + 24 + 16 · · · } = S (these rows correspond to the first and 16-th vertices,

i.e., the two singletons, in each copy of the 4-cube or the switched 4-cube). Hence for

the unitary matrices Un,p(t) = eitAn,p =
∑∞

j=0
(itAn,p)j

j!
for An,p and Un,1(t) = eitAn,1 for

An,1, eT` Un,p(t) = eT` Un,1(t) for any ` ∈ S and any time t. As a result, at any time t,

each of the vertices in the set S has the same probability of state transfer to any other

vertex as it has in the n-cube. In the n-cube, there is PST between any two vertices at

distance n at time t = π/2, which correspond to vertices k and 2n + 1− k in our ordering

of vertices, i.e., |eTkUn,1(π/2)e2n+1−k| = 1. Therefore, in any partially switched n-cube,

there is PST between vertices 1 + 24m4 + 25m5 + · · · + 2n−2mn−2 + 2n−1mn−1 and
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16 + 24(1−m4) + 25(1−m5) + · · · + 2n−2(1−mn−2) + 2n−1(1−mn−1) at time π/2,

where mj ∈ {0, 1} for j = 4, . . . , n− 1.

Now we give a different proof of the PST pair result by using the symmetrized quotient

graph of a partially switched n-cube with respect to the equitable π1 as mentioned in

Remark 5.2.1.

Second proof of Theorem 5.3.4: Consider the equitable partition π1 of V (Qn) and

of the vertex set of the given partially switched n-cube. The two graphs have the same

symmetrized quotient graphs with respect to π1, and every vertex in the set S forms a

singleton cell in both graphs with respect to this partition. Combining the fact that the

n-cube exhibits PST between the antipodal vertices and Theorem 2.3.6, the result follows.

Remark 5.3.5. Using the symmetrized quotient graph of Qn with respect to the equitable

partition π1 approach, we can construct more graphs from Qn with PST between vertices

in the set S. Take the Cartesian product construction of the n-cube: Qn = Qn−4�Q4; to

construct a switched n-cube, for each of the 2n−4 copies of Q4, we either keep it or replace

it by Q̃4. Now if we replace the biregular graph induced on cells D and C2 or the one on

cells C3 and C2 (as shown in Figure 5.1) by any one of the three non-isomorphic biregular

graphs (note that G1 and G3 are not isomorphic, as any two of the vertices {1, 2, 3, 4}

have exactly one common neighbour, which is not true for G3) or their variants obtained

from some reordering of the vertices (G1 is the one for the 4-cube or the switched 4-cube

on cells D and C2) shown in Figure 5.4, the resulting graph still has π1 as an equitable
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partition, and its symmetrized quotient graph with respect to π1 is the same as the one of

Qn with respect to π1, namely Q̂n/π1. Therefore there is still PST between vertices j and

2n + 1 − j for any j ∈ S at time π/2 for such a perturbed n-cube. Note that if we just

consider Q4, by only making use of G1 in Figure 5.4, there are already 6 non-isomophic

graphs (including the 4-cube and the switched 4-cube) on 16 vertices that have π as an

equitable partition, and Q̂4/π as the symmetrized quotient graph. There are 2 of them if

we only make use of G2, and 8 of them if we only use G3. If we consider the n-cube

for n > 4, and replace some copies of Q4 by any variants, then for each resulting graph,

there are some other new non-isomorphic graphs related to it. For example, permuting

the vertices in cell C2 of the 4-cube or its variant but keeping the edges between copies

of Q4 or its variant fixed to the position (not the vertex), gives new graphs. Similarly,

take Qn = Qn−k�Qk for some k > 4, and consider the distance partition π′ of Qk with

respect to vertex x0k (x ∈ Zn−k2 indicate the copies). Replacing copies of Qk by any of its

variants that are on the same vertex set, have π′ as an equitable partition, and with Q̂k/π′

as the symmetrized quotient graph with respect to π′, produces graphs with PST between

the singleton cells of equitable partition of Qn induced by π′ (there are 2n+1−k singleton

cells, forming a subset of S).

Using the approach of checking the entries of eitAn,p and eitAn,1 , we can get information

on fidelity of state transfer between vertex j ∈ S and any other vertices; it is the same

as it is in the n-cube at any time t, which can be calculated easily through eitAn,1 =[
cos t i sin(t)
i sin(t) cos(t)

]⊗n
. On the contrary, the symmetrized quotient graph approach only
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G1 G2 G3

5 6 7 8 9 10

1 2 3 4

5 6 7 8 9 10

1 2 3 4

5 6 7 8 9 10

1 2 3 4

Figure 5.4: Non-isomorphic (3, 2)-biregular graphs on 10 vertices

tells information about fidelity between vertices in S.

Below we conjecture that the lower bound of 1/8 of the vertices in Theorem 5.3.4 is in

fact exact (that is, exactly 1/8 of the vertices of partially switched n-cubes pair up to exhibit

PST at time π/2). As a motivating example, we consider A5,3, the first interesting partially

switched n-cube, and verify that the bound is obtained in this case. The verification process

is rather tedious, but we include the technical details for completeness. The main takeaway

is that the smallest nontrivial example does indeed attain our lower bound.

Assume that G is a graph on n vertices, and its adjacency matrix has spectral decom-

position A(G) =
∑s

r=1 λrEr (Theorem 2.1.2). Then for a given vertex j ∈ V (G), its

characteristic (indicator) vector is ej ∈ Rn. The eigenvalue support of the vertex j (or

of the vector ej) with respect to A(G) is defined to be the set of eigenvalues λr of A(G),

such that Erej 6= 0 [46]. Assume that G is periodic at a vertex j at some time t. Then the

values in the eigenvalue support of vertex j satisfy the following ratio condition.

Theorem 5.3.6. [46, Theorem 3.1] Let G be a graph and j be a vertex in G at which G is

periodic. If θk, θ`, θr, θs are eigenvalues in the support of ej and θr 6= θs, then θk−θ`
θr−θs ∈ Q.
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If a graph G that admits PST between vertices j and k at time t0, then G is periodic at

vertex j (and k) at time 2t0. Therefore if there are two integer eigenvalues in the support

of j, then all the eigenvalues in the support of j are integers.

Proposition 5.3.7. LetG be a graph onm vertices, and j be a vertex ofG. Then the eigen-

value λr of A(G) is in the eigenvalue support of ej if and only if there is an eigenvector v1

of A(G) associated to λr, such that vT1 ej 6= 0.

Proof. For any eigenvector v1 of A(G) associated to λr, we can extend it to v1, v2, . . . , vk

to get a basis of the eigenspace associated to λr, then by the Gram-Schmidt procedure

and normalization, we can get an orthonormal basis w1, . . . , wk of the eigenspace, with

w1 = 1
‖v1‖2v1. NowErej = (w1w

T
1 +w2w

T
2 +· · ·+wkwTk )ej = (wT1 ej)w1+· · ·+(wTk ej)wk

for any vertex j, and Erej = 0 if and only if wT` ej = 0 for all ` = 1, . . . , k, i.e., all the

eigenvectors of A(G) associated to λr have their j-th entry equal to 0. This implies that

for any eigenvalue λr of A(G), if it has a corresponding eigenvector whose j-th entry is

not 0, then λr is in the eigenvalue support of ej (or of vertex j) and vice versa.

We are now in the position to consider the example of A5,3.

Example 5.3.8. Consider A5,3 =

[
A4,1 I(4)

I(4) A4,2

]
, which has λ1 = 5 as a simple eigen-

value, with v1 = 1(5) being a corresponding eigenvector. By direct computation (or Re-

mark 5.3.2), v2 =

[
1(4)

−1(4)

]
is an eigenvector of A5,3 associated to eigenvalue 3. Since all

the entries of v1 and v2 are nonzero, from Proposition 5.3.7, λ1 = 5 and λ2 = 3 are both

in the eigenvalue support of all the vertices.
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Now let p(λ) = −λ6 +11λ4−27λ2 +1 = −(λ3 +λ2−5λ−1)(λ3−λ2−5λ+1). Then

p(λ) has 6 real roots (for example, by the Intermediate Value Theorem p(λ) has a root λ3

in the interval [2.7, 2.8]). Assume the 6 roots are λ3 ≥ · · · ≥ λ8; they are all eigenvalues

of A5,3, and each of them is irrational (non-integer roots of a monic integer-coefficient

polynomial are irrational), with minimal polynomial either (λ3 + λ2 − 5λ − 1) or (λ3 −

λ2 − 5λ + 1). For k = 3, . . . , 8, the eigenvalue λk has an associated eigenvector v(λk) =

[0, a,−3a, a, a, b,−b, b,−b, b,−b, c, c,−3c, c, 0, 0, d,−3d, d, d, e,−e, e,−e, e,−e, d+4, d+

4,−3(d + 4), d + 4, 0]T , where a = 2λk(λ
4
k − 10λ2

k + 17), b = 8λ2
k − 8, c = 2λk(λ

2
k −

5)2, d = 2λ4
k − 12λ2

k − 6, and e = 8λk(λ
2
k − 5). Note that for each j ∈ T :=

{1, 2, . . . , 32}\{1, 16, 17, 32}, the entry v(λk)j is not divisible by the minimal polyno-

mial of λk, and therefore none of these entries are zero. Again from Proposition 5.3.7, for

k = 3, . . . , 8, λk is in the eigenvalue support of each vertex j ∈ T . Now for each j ∈ T ,

λ1 = 5, λ2 = 3, and λ3 /∈ Q are in the eigenvalue support of ej . Since PST between

vertices j and k at time t implies periodicity at vertex j (and k) at time 2t, it follows from

Theorem 5.3.6 that no vertices in the set T exhibit PST. Combining this result with Theo-

rem 5.3.4, we obtain that the set of vertices of A5,3 with PST is exactly {1, 16, 17, 32}.

Conjecture 5.3.9. Let n > 4. For any partially switched n-cube, the set of its vertices that

exhibits PST is exactly the set S we give in Theorem 5.3.4, and therefore exactly 1/8 of the

vertices of a partially switched n-cube pair up to have PST.
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5.4 Other variants

5.4.1 Convex combinations

Up to now, we have been working on unweighted graphs in this chapter. In fact, some

weighted n-cubes obtained from the n-cube and the switched n-cube also admit PST be-

tween certain pair of vertices. We first consider (different) convex combinations of each

4-cube or switched 4-cube block of a partially switched n-cube.

Remark 5.4.1. We can generalize partially switched n-cubes to specially weighted ones.

Consider a convex combination of the 4-cube and the switched 4-cube. The resulting

weighted graph G has adjacency matrix M = pA4,1 + (1 − p)A4,2 for 0 ≤ p ≤ 1. Using

the same techniques as in the proof of Theorem 5.3.4, we can see that there is perfect state

transfer between vertex 1 and vertex 16. Furthermore, by induction we can see that for

the weighted graph F = Qn−4�G with adjacency matrix I(n−4) ⊗M + Cn−4 ⊗ I(4) =

diag (M, · · · ,M) + Cn−4 ⊗ I(4), every vertex in the set S as mentioned in Theorem 5.3.4

is involved in PST. A similar statement holds for the weighted graph F̃ with (nonnegative)

adjacency matrix A = diag (M1,M2, · · · ,M2n−4) + Cn−4 ⊗ I(4), where Mj = pjA4,1 +

(1− pj)A4,2 with 0 ≤ pj ≤ 1 for j = 1, . . . , 2n−4. Note that this new family of weighted

graphs contains all the other cubes as special cases: when p1 = · · · = p2n−4 = 1, we

have the n-cube, where all the vertices pair up to exhibit perfect state transfer; when p1 =

· · · = p2n−4 = 0, we have the switched n-cube, where exactly half of the vertices pair up

to exhibit perfect state transfer; when p1, . . . , pn−4 ∈ {0, 1} and not all of them are equal,
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then we have a partially switched n-cube, and Theorem 5.3.4 gives a list of vertex pairs

having PST.

More generally, we can consider convex combinations of arbitrary graphs on m ver-

tices whose adjacency matrices satisfy some specific conditions for some row.

Proposition 5.4.2. Let G1, G2, . . . , Gk be graphs on m vertices, whose corresponding

adjacency matrices are A(G1), A(G2), . . . , A(Gk), respectively. Suppose that for some

u ∈ {1, . . . ,m}, eTuA(Gr)
j = eTuA(Gs)

j for every positive integer j and any r, s =

1, . . . , k. If there is PST in any one of the k graphs from vertex u to some other vertex v at

time t = t0, then all the other graphs have PST between vertex u and v at time t0, as well

as the weighted graph G with adjacency matrix A = c1A(G1) + · · · + ckA(Gk), where

0 ≤ cr ≤ 1 for r = 1, . . . , k, and c1 + · · ·+ ck = 1.

Proof. The argument is similar to the one given in Remark 5.4.1 as well as the proof of

Theorem 5.3.4. In particular, we note that Aj = (c1A(G1) + · · · + ckA(Gk))
j has the

same u-th row as A(Gr)
j = (c1A(Gr) + · · · + ckA(Gr))

j for any nonnegative integer j

and r = 1, . . . , k.

Corollary 5.4.3. Any convex combination of the n-cube, the switched n-cube, some par-

tially switched n-cube, and the weighted matrices in Remark 5.4.1, has PST between ver-

tices 1 + 24m4 + 25m5 + · · · + 2n−2mn−2 + 2n−1mn−1 and 16 + 24(1 − m4) + 25(1 −

m5) + · · · + 2n−2(1 − mn−2) + 2n−1(1 − mn−1), at time π/2, where mj ∈ {0, 1} for

j = 4, . . . , n− 1.
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Remark 5.4.4. We already know that any convex combination of A4,1 and A4,2 exhibits

PST between vertex 1 and 16. Here we give some spectrum properties of such convex

combinations.

First, using the 4-cube and the switched 4-cube we can construct a family of positive-

weighted cospectral graphs. We know from Section 2.3.2 that there is a symmetric orthog-

onal matrix Q such that QA4,1Q = A4,2, and QA4,2Q = A4,1. Then for any 0 ≤ p ≤ 1,

the weighted graphs with adjacency matrices pA4,1 + (1− p)A4,2 and pA4,2 + (1− p)A4,1,

respectively, are cospectral to each other, and Q is the similarity matrix between the

two adjacency matrices. Equivalently, we can view it in the following way: let C =

1/2A4,1 + 1/2A4,2, E = A4,2 − A4,1, then for any 0 ≤ α ≤ 1/2, the two nonnega-

tive matrices C + αE and C − αE have the same spectrum (indeed, since QCQ = C and

QEQ = −E, we haveQ(C+αE)Q = C−αE). Furthermore, the eigenvalues of C+αE

and C−αE are±4 (with multiplicity 1), ±2 (with multiplicity 1), 0 (with multiplicity 6),

and
√

2 + 8α2 (with multiplicity 3), which can be checked by calculating the ranks of the

corresponding matrices.

Similarly, for the adjacency matrix Cn = I(n−4) ⊗ A4,1 + Cn−4 ⊗ I(4) of Qn, if we

replace the diagonal blocks A4,1 by different convex combinations of A4,1 and A4,2, then
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the nonnegative matrices

diag (p1A4,1 + (1− p1)A4,2, p2A4,1 + (1− p2)A4,2, · · · , p2n−4A4,1 + (1− p2n−4)A4,2)

+ Cn−4 ⊗ I(4) and

diag (p1A4,2 + (1− p1)A4,1, p2A4,2 + (1− p2)A4,1, · · · , p2n−4A4,2 + (1− p2n−4)A4,1)

+ Cn−4 ⊗ I(4)

have the same spectrum (similar through the block diagonal matrix diag (Q,Q, . . . , Q)),

where 0 ≤ pj ≤ 1, j = 1, . . . , 2n−4.

5.4.2 Switching system

As another variant, we consider switching systems where one employs a switching func-

tion to change between systems at particular times (this can be done in the absence of GM

switching—it is a coincidence in naming). For example, one might use the spin network

associated to the hypercube from time t = 0 to time t = t1, then change to the spin network

associated to the switched cube from time t = t1 to time t = t2, change to use a partially

switched hypercube from time t = t2 to time t = t3, and so on, up to time tr = π/2, when

the n-cube, the switched n-cube, and any partially switched n-cube all have PST between

pairs of vertices in the set S (as mentioned at the beginning of Section 5.3.3). We show

that this new system (whose Hamiltonian changes with respect to time) has PST between

vertices in the set S.

The motivation here is overcoming potential stability issues in the lab: spin networks
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are created in the lab with magnets and other devices and may be unstable, especially for

long periods of time. Thus, one might wish to send a state along the first network until one

loses confidence in the stability, then one can change to the second network and continue

sending the state through this “fresh” network while rebooting the first. This would be an

example of a quantum state transfer protocol requiring external modulation; such external

modulation approaches typically increase the effectiveness of the state transfer, but it may

be undesirable to use a protocol that relies heavily on a “hands on” approach. A switching

between closely related graphs, such as between hypercubes, switched hypercubes, and

partially switched hypercubes may be a useful compromise. Our approach is motivated by

switched systems in control theory; see, e.g. [72].

Proposition 5.4.5. Assume r is some positive integer. For j = 1, . . . , r, let Gj be any

of the following: the n-cube, the switched n-cube, a partially switched n-cube, or convex

combinations of the above as described in Corollary 5.4.3. If a quantum state is trans-

ferred through the network G1 for 0 ≤ t ≤ t1, G2 for t1 ≤ t ≤ t2, G3 for t2 ≤ t ≤ t3, . . . ,

Gr for tr−1 ≤ t ≤ tr = π/2, then the quantum system with time-dependent Hamiltonian

Ht is guaranteed to have PST at time π/2 for the vertices in the set S as mentioned in

Theorem 5.3.4.

Further, if for j = 1, . . . , r, Gj is either the n-cube or the switched n-cube, and in

addition at least one Gj is the switched n-cube, then the set of vertices exhibiting PST in

this system is exactly the set of vertices exhibiting PST in the switched n-cube (one half

of all the vertices).
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Proof. We consider the case r = 2, the general case follows from induction. Fix a vertex

` ∈ S. Then

eT` exp (it1A(G1)) exp (i(t− t1)A(G2))

= eT`

∞∑
k=0

(it1)kA(G1)k

k!
exp (i(t− t1)A(G2))

= eT`

∞∑
k=0

(it1)kA(G2)k

k!
exp (i(t− t1)A(G2)) (by Proposition 5.4.2)

= eT` exp (it1A(G2)) exp (i(t− t1)A(G2))

= eT` exp (i(t1 + t− t1)A(G2)) = eT` exp (itA(G2)) .

Thus the problem reduces to finding PST pairs in S for A(G2).

We now analyze the sensitivity of fidelity of state transfer, involving vertices in S =

{1+24m4+· · ·+2n−1mn−1, 16+24m4+· · ·+2n−1mn−1 |mk ∈ {0, 1} for k = 4, · · · , n−

1}, to readout time errors in the above discussed graphs, and find that they all have the

same sensitivity to readout time errors as the original hypercube when PST occurs.

5.5 Sensitivity with respect to readout time errors

Recall S = {1+24m4+· · ·+2n−1mn−1, 16+24m4+· · ·+2n−1mn−1 |mk ∈ {0, 1} for k =

4, · · · , n − 1}. The sensitivity of the probability (fidelity) of state transfer with respect

to readout time is typically analyzed through the first derivative. An analysis of the kth

derivatives (for any k ∈ N) for weighted graphs with PST is given in Theorem 2.6.4. Here,

we consider both the first and second derivatives.



174

Theorem 5.5.1. For any PST pairs in the set S, the fidelity of state transfer between the

two vertices has the same derivatives with respect to time t in the n cube, in the switched

n-cube, in a partially switched n-cube and in the other n-cube variants discussed herein.

Proof. As in Theorem 5.3.4, we have already shown that for any vertex j ∈ S, there is PST

between vertex j and vertex 2n + 1 − j at time π/2 for the (switched, partially switched)

n-cube, and eTj Un,p(t) = eTj Un,1(t) = eTj Un,2(t) for any t > 0. Therefore the fidelity of

state transfer from vertex j to any other vertex k is the same as it is in the n-cube at any

time t. It follows that the three types of n-cubes have the same derivatives with respect to

readout time t at any time. In particular, by Theorem 2.6.4, at time t = π/2, for the PST

vertex pairs in the set S, dp
dt
|t=π

2
= 0, and d2p

dt2
|t=π

2
= −2n, where p is the fidelity of state

transfer at time t between some PST vertex pair in S. Similarly, we can use the proof in

Proposition 5.4.2 to prove this result for convex combinations, and use Proposition 5.4.5

to prove it for the switching system.



Chapter 6

Bounds on fidelity of state transfer

with respect to readout time error or

edge weight errors when PST occurs

Assume a weighted or unweighted graph G with Hamiltonian H exhibits PST at time

t0. As we mentioned, to achieve PST in practice, the state at the receiver needs to be

read out exactly at t0, and the spin system needs to be set up according to the parameters

of G, with the interaction strength between spins j and k exactly the same as the edge

weight between vertices j and k. But there may be small errors (perturbations in these

parameters) in practice. We would like to make sure that even if small perturbations occur,

the probability that the state read out at the receiver is the same (up to a factor) as the state

sent is still very close to 1. Bounds on the fidelity of state transfer of the perturbed system,

175
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where the unperturbed system exhibits PST, are of practical use here.

In this chapter we focus on weighted graphs with PST, and take a mathematical ap-

proach to perturbations which decrease the probability of state transfer. While our ap-

proach is similar in nature to that of Kay [59] and Kirkland [66], it should be noted that

other authors take different approaches. In particular, there have been a number of nu-

merical studies investigating the robustness of fidelity with respect to perturbations (e.g.

[38, 80, 89]). A recent paper of Kay [62] concerns the use of error correcting codes as a

strategy for dealing with imperfections (in contrast, we do not consider encoding/decoding

schemes herein).

The bounds on fidelity with respect to timing errors that we produce (for both the

adjacency and Laplacian cases) look similar and in fact extend the lower bound given by

Kay [59]. Moreover, we give an example where our bound is attained for the adjacency

matrix case, so it cannot be further improved in that setting. Sensitivity with respect to

perturbations in readout time is discussed in Section 6.1. The edge weight results are

more qualitative in nature, not many bounds are known. Here we take several different

approaches to get bounds on the probability of state transfer with respect to edge weight

perturbations, making use of both the spectral and Frobenius norms. Sensitivity of fidelity

to perturbations in edge weights is discussed in Section 6.2.

In this chapter, we consider sensitivity of the fidelity of state transfer to perturbations

in readout time and in edge weight errors, when the unperturbed system exhibits perfect

state transfer. All the results apart from the Laplacian dynamics results (only for weighted
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or unweighted graphs without loops), apply in fact to any Hamiltonian (a real symmetric

matrix), weighted or unweighted graphs with or without loops. This chapter is based

on work with Gordon, Kirkland, Li and Plosker [52]. The work began when Li visited

the University of Manitoba in May 2015 for a one-week period. Gordon was Plosker’s

undergraduate student research assistant in Summer 2015.

6.1 Sensitivity to readout time

6.1.1 Fidelity of state transfer and the numerical range

Suppose G admits PST between vertices j and k at time t0. How sensitive is pj,k(t) to

small changes in time at time t0? We would like pj,k(t0 + h) to be close to pj,k(t0), which

is 1, for small h. First note that we can reorder the vertices of G so that PST occurs

between vertices 1 and 2. Thus we can focus on the (1, 2) entry of eit0H for simplicity and

ease of notation without loss of generality, whereH is the Hamiltonian of G under certain

dynamics (H = A(G) if the system is governed by XY dynamics, and H = L(G) under

Heisenberg dynamics). We also denote the fidelity of state transfer p1,2(t0) as p(t0).

Since H is real symmetric (the adjacency matrix or Laplacian matrix of some undi-

rected weighted graph, possibly with loops), there is a real orthogonal matrix Q that di-

agonalizes H to Λ = diag (λ1, . . . , λn): QTHQ = Λ, where the eigenvalues λjs satisfy

λ1 ≤ λ2 ≤ . . . ≤ λn. Note that the j-th column of Q is an eigenvector of H associated to

eigenvalue λj . Let qT1 = [q1,1, . . . , q1,n] and qT2 = [q2,1, . . . , q2,n] be the first two rows of
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Q, that is, qT1 (resp. qT2 ) is a row vector consisting of the first (resp. the second) entries of

the eigenvectors of H. Then eit0H = Qeit0ΛQT . We are assuming PST between vertices 1

and 2 at time t0, and so by Proposition 2.6.2,

eiθq1 = eit0Λq2 (6.1)

for some θ ∈ R. In particular, for any matrix B̃ ∈Mn and B = B̃eiθ,

|eT1QB̃eit0ΛQT e2| = |qT1 B̃eit0Λq2| = |qT1 B̃eiθq1| = |qT1 Bq1| = |eT1QBQT e1|.

This innocuous observation will allow us to consider the (1, 1) entry of QBQT rather than

the (1, 2) entry of QB̃eit0ΛQT .

The change from the (1, 2) entry to the (1, 1) entry forges the link between the fidelity

of state transfer and the notion of the numerical range of an n× n matrix B, defined by

W (B) = {x∗Bx : x ∈ Cn, x∗x = 1} .

In particular, for any matrix B that is diagonalizable by a real orthogonal matrix Q,

or more generally, by a unitary matrix, W (B) is the convex hull of all the eigenvalues of

B, since W (B) = {x∗Bx |x ∈ Cn, x∗x = 1} = {x∗QΛQTx |x ∈ Cn, x∗x = 1} =

{y∗Λy | y ∈ Cn, y∗y = 1}, as Euclidean norm is unitary invariant, where Λ = QTBQ.

6.1.2 Bounds on fidelity of quantum state transfer

Theorem 6.1.1. Let G be an undirected weighted connected graph with or without loops

that admits perfect state transfer at time t0, and H be its Hamiltonian under certain dy-

namics; that is, p(t0) = 1. Suppose that there is a small perturbation and the readout
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time is t0 + h instead, with |h| < π
λn−λ1 , where, λ1 and λn denote the smallest and largest

eigenvalues of H, respectively. Then the fidelity at the perturbed time t0 + h satisfies the

following lower bound:

p(t0 + h) ≥ 1

4
|eihλ1 + eihλn|2.

Proof. Assume thatH is diagonalized by a real orthogonal matrix Q = [qj,k] to a diagonal

matrix Λ = diag (λ1, . . . , λn). Then

U(t0 + h)1,2 = qT1 e
i(t0+h)Λq2 = qT1 e

ihΛeit0Λq2

= qT1 e
ihΛeiθq1 = qT1 Bq1 ∈ W (B),

(6.2)

withB = diag (eihλ1 , . . . , eihλn)eiθ. Note thatW (B) is the convex hull of {eiθeihλ1 , . . . , eiθeihλn}.

Since |hλn − hλ1| < π, there exists an s ∈ [0, 2π) such that eisB has eigenvalues

eiξ1 , . . . , eiξn with −π/2 < ξ1 ≤ · · · ≤ ξn < π/2 and ξ1 = −ξn. Let eisB = B1 + iB2

such that B1 = B∗1 and B2 = B∗2 (i.e., the Toeplitz decomposition of eisB as the sum of a

Hermitian matrix and a skew-Hermitian matrix [56]; in fact, B1 = 1
2
(eisB + (eisB)∗) =

diag (cos ξ1, . . . , cos ξn) and B2 = 1
2i

(eisB − (eisB)∗) = diag (sin ξ1 . . . , sin ξn)). Then

the eigenvalues of B1 satisfy 0 < cos ξ1 = cos ξn ≤ cos ξj for all j = 2, . . . , n − 1. As a

result, for every unit vector x = [x1, x2, . . . , xn]∗ ∈ Cn,

|x∗Bx| = |x∗eisBx| = |x∗(B1 + iB2)x| ≥ |x∗B1x|

=
∣∣|x1|2 cos ξ1 + · · ·+ |xn|2 cos ξn

∣∣ ≥ cos ξ1 (6.3)

= |eiξ1 + eiξn|/2 = |eihλ1 + eihλn|/2,

where the first inequality comes from the fact that |x∗(B1 + iB2)x| = |
∑

j |xj|2 cos ξj +
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i(
∑

j |xj|2 sin ξj)| ≥ |
∑

j |xj|2 cos ξj| = |x∗B1x|. Thus, every point in W (B) has a

distance larger than |eihλ1 + eihλn|/2 from 0. Consequently,

p(t0 + h) = |U(t0 + h)1,2|2 = |qT1 Bq1|2 (by equation (6.2))

≥ 1

4
|eihλ1 + eihλn|2 (by (6.3))

and the result follows.

In fact, in the above proof, one can get a better estimate of |q∗1Bq1| using the informa-

tion of q1 = [q1,1, . . . , q1,n]T ∈ Rn and B = diag (eihλ1 , . . . , eihλn)eiθ; namely, for any

s ∈ R,

|qT1 Bq1| =

∣∣∣∣∣
n∑
j=1

q2
1,je

i(hλj+θ)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

q2
1,je

ih(λj−s)

∣∣∣∣∣ ≥
∣∣∣∣∣
n∑
j=1

q2
1,j cos(h(λj − s))

∣∣∣∣∣
≥

n∑
j=1

q2
1,j −

h2

2

n∑
j=1

q2
1,j(λj − s)2

= 1− h2

2

n∑
j=1

q2
1,j(λj − s)2,

where the first inequality follows from the fact that cos(x) ≥ 1− x2

2
for any x ∈ R.

In particular, if we let s = λ1 in the above, we obtain p(t0+h) ≥ 1− h2

2

∑n
j=1 q

2
1,j(λj−

λ1)2, a result that is parallel to the bound obtained by Kay [59], without that paper’s extra

hypothesis that the HamiltonianH is persymmetric.
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For general s, the above implies

p(t0)− p(t0 + h) = 1− |qT1 Bq1|2 (by (6.2))

= (1 + |qT1 Mq1|)(1− |qT1 Mq1|)

≤ 2

(
h2

2

n∑
j=1

q2
j1

(λj − s)2

)

= h2

n∑
j=1

q2
j1

(λj − s)2.

We summarize these derivations in the following theorem.

Theorem 6.1.2. Let G be an undirected weighted connected graph with or without loops

that admits perfect state transfer at time t0, and H be its Hamiltonian under certain dy-

namics; that is, p(t0) = 1. Suppose that there is a small perturbation and the readout time

is t0 + h instead, where, for the eigenvalues λ1 ≤ · · · ≤ λn of H, h satisfies |h| < π
λn−λ1 .

Then, for any s ∈ R, the transition probability at the perturbed time has the following

lower bound:

p(t0 + h) ≥ 1− h2

n∑
j=1

q2
1,j(λj − s)2. (6.4)

Theorem 6.1.2 is an improved bound compared to Theorem 6.1.1. Yet direct use of

Theorem 6.1.2 requires one to find all eigenvalues λ1, . . . , λn of the HamiltonianH, while

Theorem 6.1.1 requires only that the smallest and the largest eigenvalues are known. For

large spin systems, Theorem 6.1.1 would then be more practical. However, the follow-

ing consequence of Theorem 6.1.2 yields a lower bound on the fidelity that involves the

physical parameters of the Hamiltonian itself, and does not require any knowledge of the

eigenvalues ofH.
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Corollary 6.1.3. Under the hypotheses of Theorem 6.1.2, we have

p(t0 + h) ≥ 1− h2(eT1H2e1 − (eT1He1)2). (6.5)

Proof. Observe that the quantity 1 − h2
∑n

j=1 q
2
1,j(λj − s)2 in (6.4) is maximized (as a

function of s) when s
∑n

j=1 q
2
1,j =

∑n
j=1 q

2
1,jλj , i.e. when s =

∑n
j=1 q

2
1,jλj = qT1 Λq1 =

eT1QΛQT e1 = eT1He1. The corresponding maximum value is then 1− h2(
∑n

j=1 q
2
1,j(λj −

eT1He1)2) = 1 − h2(
∑n

j=1 q
2
1,jλ

2
j − 2(eT1He1)

∑n
j=1 q

2
1,jλj + (eT1He1)2

∑n
j=1 q

2
1,j) = 1 −

h2
(
eT1H2e1 − (eT1He1)2

)
. Inequality (6.5) now follows readily from Theorem 6.1.2 since

inequality (6.4) is true for any real number s.

Inequality (6.5) of Corollary 6.1.3 is fairly accurate in the following sense. Kirkland

[66] considers the derivatives of p(t) at time t0 under the hypotheses of PST at t0. In

[66, Theorem 2.2], it is shown that all odd order derivatives of p(t) at t0 are zero, while

the second derivative is equal to −2(eT1H2e1 − (eT1He1)2)). From [66, Theorem 2.4], it

follows that the fourth derivative of p at t0 is positive. It now follows that for all h with |h|

sufficiently small, there is a c > 0 such that p(t0+h) = 1−h2(eT1H2e1−(eT1He1)2)+ch4+

O(h6). Recall, if f is a real or complex valued function and g is a real valued function,

then we write f(x) = O(g(x)) as x→ a, if and only if there exist positive numbers δ and

N such that |f(x)| ≤ Ng(x) when 0 < |x − a| < δ. We usually leave x → a unstated if

it is clear from the context. Hence, the above discussion shows that, for small h, the lower

bound of Corollary 6.1.3 is accurate to terms of order h3.



183

6.1.3 The case when the bound in Theorem 6.1.1 is tight for the adja-

cency matrix of a weighted graph

We now consider the case where the bound in Theorem 6.1.1 is obtained when H is the

adjacency matrix A of a connected positive-weighted graph with or without loops. For

concreteness, suppose that A is of order n and that there is perfect state transfer at time t0.

Suppose A is diagonalized by a real orthogonal matrix Q to Λ = diag (λ1, . . . , λn) with

λ ≤ · · · ≤ λn. Suppose further that for some h with |h| < π
λn−λ1 , p(t0) − p(t0 + h) =

1− 1
4
|eihλ1 + eihλn|2. Denote the multiplicity of λ1 by k, and recall that λn, as the Perron

value ofA (that is, the unique maximal eigenvalue as per the Perron-Frobenius theorem), is

necessarily simple, and the Perron vector (an eigenvector associated to the Perron value),

the n-th column of Q, has its entries all positive or all negative. Examining the proof

of Theorem 6.1.1 (in particular, the last inequality in (6.3)), it follows that q1 can only

have nonzero entries in positions corresponding to the eigenvalues λj such that λj = λ1

or λj = λn (that is, λ1, . . . , λk, λn, by assumption). From (6.1) and the fact that q1,n

and q2,n are of the same sign (therefore q2,n = q1,n), as entries of the Perron vector, it

follows that eiθ[q1,1, . . . , q1,k, 0, . . . , 0, q1,n]T = eit0Λ[q2,1, . . . , q2,k, 0, . . . , 0, q1,n]T . From

the facts that the corresponding entries in q1 and q2 are either equal or the negative of

each other, ‖q1‖2 = ‖q2‖2 = 1 and that qT1 q2 = 0, it follows that ei(tλj−θ) = −1 and

therefore q2,j = −q1,j for j = 1, . . . , k, and that q1,n = q2,n ∈ { 1√
2
,− 1√

2
}. Observe

that since every column of Q has Euclidean norm 1, the n–th column of Q has nonzero
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entries only in its first two coordinates, but as a Perron vector for A, it cannot have any

zero entries. We thus deduce that n is 2, Q =

±
 1√

2

− 1√
2

 ,±
 1√

2

1√
2

. Therefore A =

λ1

 1
2
−1

2

−1
2

1
2

 + λ2

1
2

1
2

1
2

1
2

 = 1
2

λ2 + λ1 λ2 − λ1

λ2 − λ1 λ2 + λ1

 by the spectral decomposition of

A. If G doesn’t have loops, A must be a positive scalar multiple of
[
0 1
1 0

]
. If G has loops,

then the weights of loops at the two vertices need to be equal to each other.

Conversely, without loss of generality, we can assume that A is a positive scalar mul-

tiple of
[
0 1
1 0

]
by Proposition 1.3.9, furthermore we assume that A =

[
0 1
1 0

]
by Re-

mark 1.3.11. Then from Remark 2.1.3,

eitA =

[
cos t i sin t

i sin t cos t

]
.

At time t = π
2
, eitA =

[
0 i
i 0

]
and so there is PST (since p1,2(π

2
) = |i|2 = 1). At time π

2
+h,

the (1, 2) entry of ei(
π
2

+h)A is i sin(π
2
+h) = −i cosh = −1

2
(eih+e−ih) = −1

2
(eihλ1+eihλ2),

as λ1 = −1, and λ2 = 1. The bound in Theorem 6.1.1 is attained.

Although Theorem 6.1.1 is true for either adjacency matrices or Laplacians, we can

adapt the techniques of Theorem 6.1.1 slightly to produce an improved bound on the fi-

delity in the setting of the Laplacian matrix of a weighted or unweighted graph without

loops, since we have more information at hand.
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6.1.4 An improved bound in the case of Laplacian matrix of weighted

graphs without loops

Theorem 6.1.4. Let L be the Laplacian matrix of a connected weighted graph on n ≥ 3

vertices. Denote the eigenvalues of L by 0 ≡ λ1 < λ2 ≤ . . . ≤ λn. Suppose that there is

perfect state transfer at time t0; that is, p(t0) = 1. Suppose there is a small timing error,

and the readout time is instead t0 + h, where h satisfies |h| < π
λn

. Then

p(t0 + h) ≥ 1− (n− 1)2(1− cos((λn − λ2)h))

2n2
− (n− 1)(2− cos(λ2h)− cos(λnh))

n2

− (cos(λ2h)− cos(λnh))2

2n2(1− cos((λn − λ2)h)
(6.6)

=

(
(n− 1) sin((λn − λ2)h) + sin(λnh)− sin(λ2h)

)2

2n2(1− cos((λn − λ2)h))
. (6.7)

Proof. Note that the normalised all–ones vector 1√
n
1n is a null vector for L. Assume L is

diagonalized by a real orthogonal matrix Q to Λ = diag (λ1, . . . , λn). Then L = QΛQT

such that q1, the first column of QT , has the form [1/
√
n, x2, . . . , xn]T , where

∑n
j=2 x

2
j =

n−1
n

. Mimicking the proof of Theorem 6.1.1, we find that p(t0 + h) is bounded below by

min
∣∣∣ 1
n

+ z∗diag (eihλ2 , . . . , eihλn)z
∣∣∣2,

where the minimum is taken over all unnormalised z ∈ Rn−1 such that z∗z = n−1
n

. From

elementary geometric considerations (in short, the eihλj are points on the unit circle and so

the minimum will be attained by taking a convex combination of the smallest and largest
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values, namely eihλ2 and eihλn), we find that in fact

min
∣∣∣ 1
n

+ z∗diag (eihλ2 , . . . , eihλn)z
∣∣∣2 =

min
0≤α≤n−1

n

∣∣∣ 1
n

+ αeihλ2 +

(
n− 1

n
− α

)
eihλn

∣∣∣2.
A routine calculus exercise shows that the minimum corresponds to

α = max

{
n− 1

2n
+

cos(hλn)− cos(hλ2)

2n(1− cos(h(λ2 − λn)))
, 0

}
and that the minimum is given by the right hand side of (6.6).

Note that by using the formula for distance between a point and a line in the complex

plane, we get bound (6.7), which is the same as the one in (6.6).

Example 6.1.5. Suppose that n is divisible by 4, and consider the unweighted graph G

on n vertices formed by deleting the edge between vertices 1 and 2 from the complete

graph on n vertices. Note that L(G) has three eigenvalues: λ1 = 0, with corresponding

eigenprojection matrixE1 = 1
n
Jn (where Jn is the all ones matrix of size n×n), λ2 = n−2

with eigenprojection matrix E2 = 1
2
(e1 − e2)(e1 − e2)T , and λ3 = n with eigenprojection

matrix

E3 =

[
n−2
2n
J2 − 1

n
J2,n−2

− 1
n
Jn−2,2 I − 1

n
Jn−2

]
.

It is shown [69] that G admits Laplacian perfect state transfer from vertex 1 to vertex 2 at

time π
2
.

Using the eigenvalues and eigenprojection matrices above, it can be found that for any

h, the fidelity at time π
2

+ h is given by (by Remark 2.1.3)

p
(π

2
+ h
)

=
∣∣∣ 1
n

+
1

2
eih(n−2) +

n− 2

2n
eihn
∣∣∣2.
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This last expression can be simplified to yield

p
(π

2
+ h
)

= 1− n− 2

2n
(1− cos(2h))− 1

n
(1− cos((n− 2)h))

−(n− 2)

n2
(1− cos(nh)).

An uninteresting computation reveals that p(π
2

+ h) exceeds the lower bound of (6.6) in

the amount of

(cos((n− 2)h)− cos(nh) + 1− cos(2h))2

2n2(1− cos(2h))
.

We note in passing that (cos((n−2)h)−cos(nh)+1−cos(2h))2

2n2(1−cos(2h))
is asymptotically equivalent to h2 as

h→ 0.

6.2 Sensitivity of fidelity to edge weights

6.2.1 A bound obtained from sensitivity of a matrix exponential to

small perturbations of a Hermitian matrix

As in Section 6.1, without loss of generality we assume that there is PST between vertices

1 and 2. Here we keep the time constant at t0, and perturb the edge weights.

Denote the (real symmetric) Hamiltonian of a system by H. Suppose (eit0H)1,2 has

modulus 1; that is, the system admits PST between vertices 1 and 2 at time t0. Consider

now a perturbed system with Hamiltonian Ĥ = H+H0, whereH0 is a (symmetric) matrix

representing small perturbations of edge weights. Mathematically, we would like to find
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an upper bound for |(eitH)1,2|2 − |(eit(H+H0))1,2|2 or, when t = t0,

1− |(eit0(H+H0))1,2|2

for a symmetric matrix H and a sufficiently small real symmetric perturbation H0, say,

measured by the spectral norm |||t0H0|||2 or the Frobenius norm ‖t0H0‖F .

Note that the entries of the matrix H0 represent individual edge weight errors, so our

approach allows for individual edge weight perturbations rather than simply an overall

(global) edge weight perturbation (where all edge weights are perturbed by e.g. 0.0001 in

the same direction), or a single edge weight perturbation (where all other edge weights

remain unperturbed); the latter case was the situation considered by Kirkland [66].

We begin with the following.

Theorem 6.2.1. Suppose that perfect state transfer occurs at time t0 for a system with

HamiltonianH, and Ĥ = H+H0, with a nonzero real symmetric perturbationH0, is the

new Hamiltonian. Then

1− |(eit0(H+H0))1,2|2 ≤ 2|||t0H0|||2e
|||t0H0|||2 − |||t0H0|||22e

2|||t0H0|||2

≤ 2|||t0H0|||2 + |||t0H0|||22 − |||t0H0|||32. (6.8)

Proof. Since the HamiltonianH is symmetric, from Theorem 2.1.10, we have

∣∣∣∣∣∣eit0(H+H0) − eit0H
∣∣∣∣∣∣

2
≤ t0|||H0|||2e

t0|||H0|||2
∣∣∣∣∣∣eit0H∣∣∣∣∣∣

2
= t0|||H0|||2e

t0|||H0|||2 ,
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as
∣∣∣∣∣∣eit0H∣∣∣∣∣∣

2
= 1. Consequently, from the triangle inequality and Theorem 2.1.7,

|(eit0H)1,2| − |(eit0(H+H0))1,2| ≤ |(eit0(H+H0) − eit0H)1,2| ≤ max
j,k
|(eit0(H+H0) − eit0H)j,k|

≤
∣∣∣∣∣∣eit0(H+H0) − eit0H

∣∣∣∣∣∣
2
≤ t0|||H0|||2e

t0|||H0|||2 .

Therefore

1− |||t0H0|||2e
|||t0H0|||2 ≤ |(eit0(H+H0))1,2|.

For small enoughH0 such that |||t0H0|||2e|||t0H0|||2 ≤ 1, squaring both sides and rearranging

terms,

1− |(eit0(H+H0))1,2|2 ≤ 2|||t0H0|||2e
|||t0H0|||2 − |||t0H0|||22e

2|||t0H0|||2

= 2|||t0H0|||2(1 +
|||t0H0|||2

1!
+
|||t0H0|||22

2!
+ · · · )

−|||t0H0|||22(1 +
2|||t0H0|||2

1!
+

(2|||t0H0|||2)2

2!
+ · · · )

≤ 2|||t0H0|||2 + |||t0H0|||22 − |||t0H0|||32,

so that (6.8) holds.

We note that the estimate
∣∣∣∣∣∣eit0(H+H0) − eit0H

∣∣∣∣∣∣
2
≤ |||t0H0|||2e|||t0H0|||2 of Theorem 6.2.1

can be reasonably accurate. For example, suppose H = A is the adjacency matrix of a

connected weighted graph with perfect state transfer at time t0. Let v denote the positive

Perron vector of A with norm one, and suppose thatH0 = A0 = εvvT for some small ε >

0. Then
∣∣∣∣∣∣et0(A+A0) − eit0A

∣∣∣∣∣∣
2

= |eit0ε − 1| (using the facts that spectral norm is unitarily

invariant and that if σ(A) = {λ1, . . . , λn} with λn being its Perron-value, then σ(A +

A0) = {λ1, . . . , λn + ε}, and the two matrices have the same corresponding eigenvectors),
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while |||t0A0|||2e|||t0A0|||2 = t0εe
t0ε, so that∣∣∣∣∣∣eit0(A+A0) − eit0A

∣∣∣∣∣∣
2

|||t0A0|||2e|||t0A0|||2
→ 1

as ε→ 0+.

6.2.2 An improved bound for special Hamiltonian H and small per-

turbations

If we have additional information about the Hamiltonian H, we may be able to produce

some better bounds as shown in Theorem 6.2.3 below. Before presenting the theorem, we

require a preliminary proposition which is intuitively clear. Its proof consists of elementary

linear algebra manipulation techniques; we give the proof for completeness.

Proposition 6.2.2. Suppose that the system with HamiltonianH admits perfect state trans-

fer between vertices 1 and 2 at time t0; that is, |(eit0H)1,2| = 1. Then for some θ ∈ R and

a real orthogonal matrix Q̃, t0H = Q̃D̃Q̃T + θI , where

D̃ = πdiag (r1, . . . , r`, r`+1, . . . , rm, rm+1, . . . , rn)

such that r1 ≥ · · · ≥ r` are positive even integers, and r`+1 ≥ · · · ≥ rm are positive odd

integers. Further, the first two rows of Q̃ can be taken to have the form [x1, . . . , xm, 0, . . . , 0]

and [x1, . . . , x`,−x`+1, . . . ,−xm, 0, . . . , 0] satisfying x1, . . . , xm ≥ 0.

Proof. As in Section 6.1, assume H is diagonalized by a real orthogonal matrix Q to a

real diagonal Λ, that is, H = QΛQT . Suppose that the first two rows of Q are qT1 and qT2 .
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Then, by Proposition 2.6.2, PST between vertex 1 and vertex 2 implies that eit0Λq2 = eiθq1

or, equivalently, e−iθeit0Λq2 = q1 (or qT2 e
−iθeit0Λ = qT1 ) for some θ ∈ R. Therefore the

corresponding entries of q1 and q2 have the same absolute value, in particular, the j-th entry

of q1 is zero if and only if the j-th entry of q2 is zero. For a suitable permutation matrix P1

we can replace (Λ, Q) by (P T
1 ΛP1, QP1) so that the zero entries of qT1 P1 all occur in the

last n−m entries, for some 0 < m ≤ n. In this way, we may assume that P T
1 (t0Λ−θI)P1

is a diagonal matrix with diagonal entries of the form s1π, . . . , smπ, ∗, . . . , ∗ for some

integers s1, . . . , sm. The asterisks in the (m+1,m+1) up to (n, n) entries of the diagonal

matrix P T
1 (t0Λ−θI)P1 represent unknown constants, corresponding to the zero entries (if

any) of qT1 P1. We can replace θ by θ− 2sπ for a sufficiently large integer s so that we may

assume that s1, . . . , sm are positive integers.

Next, for a suitable permutation matrix P2 we can replace the pair (P T
1 ΛP1, QP1) by

(P T
2 P

T
1 ΛP1P2, QP1P2), so that P T

2 P
T
1 (t0Λ − θI)P1P2 = πdiag (r1, . . . , rn) with r1 ≥

· · · ≥ r` even, r`+1 ≥ · · · ≥ rm odd, and rm+1, . . . , rn unknown constants; note that

we still have H = (QP1P2)(P T
2 P

T
1 ΛP1P2)(QP1P2)T . Further, we may replace the pair

(P T
2 P

T
1 ΛP1P2, QP1P2) by (SP T

2 P
T
1 ΛP1P2S,QP1P2S) for some diagonal orthogonal ma-

trix S, whose diagonal entries are 1 or −1, such that the first row of QP1P2S, namely

eT1QP1P2S = (x1, . . . , xm, 0, . . . , 0), satisfies x1, . . . , xm > 0. Now rewriting qT2 e
−iθeit0Λ =

eT2Qe
−iθeit0Λ with the new real orthogonal matrix QP1P2S and the new diagonal matrix

SP T
2 P

T
1 ΛP1P2S gives

eT2 (QP1P2S)e−iθeit0SP
T
2 P

T
1 ΛP1P2S = qT2 e

−iθeit0ΛP1P2S = qT1 P1P2S = eT1 (QP1P2S),
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which combined with the fact that P T
2 P

T
1 (t0Λ − θI)P1P2 = πdiag (r1, . . . , rn) with

r1, . . . , r` even, r`+1, . . . , rm odd, and rm+1, . . . , rn unknown, imply that

eT2 (QP1P2S) = [x1, . . . , x`,−x`+1, . . . ,−xm, 0, . . . , 0].

Relabelling D̃ = SP T
2 P

T
1 (t0Λ − θI)P1P2S and Q̃ = QP1P2S for simplicity, the result

now follows.

Theorem 6.2.3. Suppose perfect state transfer occurs at time t0 in a system with n × n

HamiltonianH, and Ĥ = H+H0, with a small nonzero real (symmetric) perturbationH0,

is the new Hamiltonian. Furthermore, assume that the valuem (forH) in Proposition 6.2.2

equals n. Then

1− |(eit0Ĥ)1,2|2 ≤
2‖t0H0‖2

F

(π − |||t0H0|||2)2
+ |||t0H0|||22 +O(|||t0H0|||32).

Proof. Assume t0H = QDQT + θI , with D = D̃ = πdiag (r1, . . . , r`, r`+1, . . . , rm),

Q = Q̃ a real orthogonal matrix as in Proposition 6.2.2, andm = n. Here we drop the tilde

for notational simplicity. Relabel dj = πrj for j = 1, . . . , n, so thatD = diag (d1, . . . , dn)

is such that the first ` entries are even multiples of π and the last n − ` entries are odd

multiples of π. Then eiD = I` ⊕−In−`, denote this matrix by J . Note that J −1 = J .

Suppose that t0(H +H0) = Q̂D̂Q̂T + θI for some real orthogonal matrix Q̂ and the

same θ as in t0H = QDQT + θI . Assume D̂ = diag (d̂1, . . . , d̂n). By a suitable choice of

Q̂, we may assume that there is a permutation matrix P such that both P TDP and P T D̂P
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have diagonal entries arranged in descending order. Then by Theorem 2.1.12,∣∣∣∣∣∣∣∣∣D − D̂∣∣∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣∣∣P TDP − P T D̂P

∣∣∣∣∣∣∣∣∣
2

≤ |||t0H− t0(H +H0)|||2 = |||t0H0|||2,
(6.9)

and hence ∣∣∣∣∣∣∣∣∣eiD − eiD̂∣∣∣∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣∣∣∣D − D̂∣∣∣∣∣∣∣∣∣

2
≤ |||t0H0|||2, (6.10)

where the first inequality comes from the fact that the singular values of a normal matrix

are the moduli of its eigenvalues, and the fact that |eia−eib| ≤ |a−b| for any real numbers

a and b (distance between two points on a unit circle is less than or equal to the length of

the curve on the unit circle between them).

Let V be an orthogonal matrix close to I such that ‖V − I‖F < 1. Then by Theo-

rem 2.1.9, we may write log(V ) as a power series log(V ) = −
∑∞

j=1
1
j
(I − V )j. Setting

K = log(V ), we have eK = V. It follows that I = V V T = eKeK
T

= eK+KT
, where the

last equality comes from the fact that K commutes with KT . We deduce that KT = −K,

i.e. K is skew–symmetric. We will use this idea in what follows.

Recall that Q (resp. Q̂) is a real orthogonal matrix that diagonalizes t0H (resp. t0(H+

H0)) to D + θI (resp. D̂ + θI) as in Proposition 6.2.2 and in Theorem 6.2.3. If H0 is

small, we may assume that the differences between the corresponding eigenvalues and

eigenspaces of t0(H +H0) and t0H are small so that D̂ is close to D, and Q̂TQ is close

to I , by Theorem 2.1.13 and Theorem 2.1.14. As a result, we can write D̂ − D = wD1

and ewK = Q̂TQ for a small positive number w, a diagonal matrix D1 and a matrix K

such that max{|||D1|||2, |||K|||2} = 1 (the norm condition is required so that the terms
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like w3qT1 K
3q1, w3qT1 D

3
1q1 can be lumped into the O(w3) term below). Now we denote

the real orthogonal matrix Q̂ that diagonalizes t0(H +H0) by Qw accordingly, using the

subscript w here to emphasize the dependence on some small positive number w, therefore

QT
w = ewKQT . Note that it is possible that D1 = 0 or K = 0 but not both as H0 6= 0. We

emphasize that K = 1
w

log(Q̂TQ) is skew–symmetric, from the above remark about the

matrix V .

Now t0Ĥ = Q̂(D̂ + θI)Q̂T and Qw = Q̂ imply that t0Ĥ − θI = QwD̂Q
T
w. Using the

power series expansion of eit0Ĥ and the facts that K = −KT , D̂ = D + wD1 and that

QT
w = ewKQT , we get

e−iθeT1 (eit0Ĥ)e2 = eT1 (Qwe
iD̂QT

w)e2

= eT1
[
Q(I + wK +

1

2
w2K2)T eiD(I + iwD1 − w2 1

2
D2

1)(I + wK +
1

2
w2K2)

]
QT e2 +O(w3)

= (QeiDQT )1,2 + weT1Q[KT eiD + eiDiD1 + eiDK]QT e2 +
1

2
w2eT1Q[(KT )2eiD

− eiDD2
1 + eiDK2]QT e2 + w2eT1Q[KT eiDiD1 +KT eiDK + eiDiD1K]QT e2 +O(w3).

Recall that J = eiD = I` ⊕−In−`. By the facts that J q2 = q1 (therefore qT2 = qT1 J and

q2 = J q1), J 2 = I , and qTKq = 0 for any vector q ∈ Rn (since qTKq = (qTKq)T =

qTKT q = −qTKq), we have

e−iθeT1 (eit0Ĥ)e2 = eT1Qwe
iD̂QT

we2 = 1 + w(qT1 K
T q1 + qT2 Kq2) + iwqT1 D1q1 +

1

2
w2qT1 ((KT )2

−D2
1 + JK2J + 2KTJKJ )q1 + iw2qT1 (KTD1 + JD1KJ )q1 +O(w3)

= 1 +
1

2
w2qT1 ((KT )2 −D2

1 + JK2J + 2KTJKJ )q1 + iwqT1 D1q1

+ iw2qT1 (KTD1 +D1JKJ )q1 +O(w3).
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Let x(w) = Re(eT1Qwe
iD̂QT

we2), and y(w) = Im(eT1Qwe
iD̂QT

we2). Then

|eT1 eit0(H+H0)e2|2 − |eT1 eit0He2|2 = |eT1 eit0(H+H0)e2|2 − 1

= x(w)2 + y(w)2 − 1

= w2[qT1 (K2 + JK2J − 2KJKJ −D2
1)q1 + (qT1 D1q1)2] +O(w3)

= −w2
(
‖(KJ − JK)q1‖2

2 + ‖D1q1‖2
2 − (qT1 D1q1)2

)
+O(w3).

(6.11)

For the last equality in the above expression, we use the fact that, although JKJK 6=

KJKJ , it is true that qT1 JKJKq1 = (qT1 JKJKq1)T = qT1 K
TJ TKTJ T q1 = qT1 KJKJ q1,

which is all that is required here.

Now we find a upper bound for w2‖(KJ − JK)q1‖2
2 and for ‖D1q1‖2

2 − (qT1 D1q1)2

from (6.11), separately. We start with the former one. Partition wK in accordance with

J = I` ⊕ −In−` as wK =

[
K11 K12

−KT
12 K22

]
, where K11 is ` × `. Then wKJ − wJK =[

O −2K12

−2KT
12 O

]
and hence

‖(wKJ − wJK)q1‖2
2 ≤ |||wKJ − wJK|||

2
2 = 4|||K12|||22, (6.12)

by the inequality between Euclidean norm of a vector Ax and the spectral norm of matrix

A in Theorem 2.1.7.

Now,

QT
wQ = ewK = I + wK +

(wK)2

2!
+

(wK)3

3!
+ · · · .

So, wK = (QT
wQ − QTQw)/2 + F , where |||F |||2 = O(w3). Partition F in accordance

with J (or wK) as F =

[
F1 F2

F3 F4

]
, then |||Fj|||2 = O(w3) for j = 1, . . . , 4.
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AssumeQT
wQ ≡ V =

[
V11 V12

V21 V22

]
with V11 of size `×`. Then wK = (V −V T )/2+F ,

K12 = (V12 − V T
21)/2 + F2 (with |||F ||| = O(w3), |||F |||2 = O(w3)). Note that V12 and V21

have the same spectral norm and the same Frobenius norm. There are a number of ways

of seeing this; perhaps the simplest is to note that since QT
wQ is orthogonal, it follows that

V11V
T

11 + V12V
T

12 = I and V T
11V11 + V T

21V21 = I; that is, V11V
T

11 = I − V12V
T

12 and V T
11V11 =

I − V T
21V21. Now use the facts that for any A,BT of size m × n, the two matrices AB

and BA have the same set of nonzero eigenvalues and that Tr(AB) = Tr(BA), we know

that V12V
T

12 and V T
21V21 have the same set of nonzero eigenvalues and that Tr(V12V

T
12) =

Tr(V T
21V21), that is,

|||V12|||2 = |||V21|||2, ‖V12‖F = ‖V21‖. (6.13)

Note that

‖t0H0‖2
F = ‖t0(H +H0)− t0H‖2

F = ‖Qw(D̂ + θI)QT
w −Q(D + θI)QT‖2

F

= ‖QwD̂Q
T
w −QDQT‖2

F = ‖D̂V − V D‖2
F

=
∑
j,k

(dk − d̂j)2v2
j,k,

(6.14)

where we obtain the fourth equality by premultiplying by QT
w, postmultiplying by Q, and

using the fact that the Frobenius norm is unitarily invariant.

Now consider indices j and k such that 1 ≤ j ≤ ` < k ≤ n or 1 ≤ k ≤ ` < j ≤ n,
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The reverse triangle inequality gives us

|dk − d̂j| = |dk − dj + dj − d̂j|

≥ |dk − dj| − |dj − d̂j|

≥ π −
∣∣∣∣∣∣∣∣∣D − D̂∣∣∣∣∣∣∣∣∣

2

≥ π − |||t0H0|||2 (by (6.9)).

Now for small enoughH0 such that |||t0H0|||2 < π, continue with (6.14), we have

‖t0H0‖2
F =

∑
j,k

(dk − d̂j)2v2
j,k

≥
∑

1≤j≤`<k≤n

(dk − d̂j)2v2
j,k +

∑
1≤k≤`<j≤n

(dk − d̂j)2v2
j,k

≥ (π − |||t0H0|||2)2(‖V12‖2
F + ‖V21‖2

F ) = 2(π − |||t0H0|||2)2‖V12‖2
F (by (6.13)) .

It follows that

‖V12‖2
F ≤

‖t0H0‖2
F

2(π − |||t0H0|||2)2
.

Combining the facts that K12 = (V12 − V T
21)/2 + F2 (where |||F |||2 = O(w3)), equation

(6.13), and the triangle inequality for matrix norm, we have

|||K12|||2 ≤ (|||V12|||2 + |||V21|||2 +O(w3))/2 = |||V12|||2 +O(w3) ≤ ‖V12‖F +O(w3)

≤ ‖t0H0‖F√
2(π − |||t0H0|||2)

+O(w3), (6.15)

where the second inequality comes from Theorem 2.1.7. As a result, from (6.12) and

(6.15) we have

w2‖(KJ − JK)q1‖2
2 ≤ 4|||K12|||22 ≤

2‖t0H0‖2
F

(π − |||t0H0|||2)2
. (6.16)
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Now we find an upper bound for w2
(
‖D1q1‖2

2 − (qT1 D1q1)2
)

from (6.11). A result

of Mirsky [76] states that for any Hermitian matrix M , the eigenvalue spread for M

(the distance between the largest eigenvalue and smallest eigenvalue of M ) is equal to

2 max |u∗Mv|, where the maximum is taken over all pairs of orthonormal vectors u and v

in Cn. Consequently, for any symmetric matrix S, if {u, v} is an orthonormal set, then

2|u∗Sv| ≤ λn(S)− λ1(S),

where we recall that λ1 is the minimum eigenvalue and λn is the maximum eigenvalue. In

particular, if we set S = wD1, v = q1, and Sq1 = µ1q1 + µ2q for some vector q and real

numbers µ1, µ2, such that {q1, q} is an orthonormal set. Let u = q, then

‖wD1q1‖2
2 − (qT1 wD1q1)2

= (µ1q1 + µ2q)
∗(µ1q1 + µ2q)− (qT1 (µ1q1 + µ2q))

2

= µ2
2 = |qT (wD1)q1|2 ≤ ((λn(wD1)− λ1(wD1))/2)2.

Since D1 is diagonal, its spectral norm is equal to its spectral radius, and combined with

(6.9) we have

((λn(wD1)− λ1(wD1))/2)2 ≤ max
{
|λn(wD1)|2, |λ1(wD1)|2

}
= |||wD1|||22 =

∣∣∣∣∣∣∣∣∣D̂ −D∣∣∣∣∣∣∣∣∣2
2
≤ |||t0H0|||22.

(6.17)

Combining (6.11), (6.16), and (6.17), the theorem follows.

Consider the bounds for 1−
∣∣(eit0(H+H0))1,2

∣∣2 in Theorems 6.2.1 and in Theorem 6.2.3

when the perturbing matrix H0 is small so that |||t0H0|||2 < 1. The upper bound in the
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former result is 2|||t0H0|||2 + |||t0H0|||22 − |||t0H0|||32, while the upper bound in the latter

result is 2‖H0‖2F
(π−|||H0|||2)2

+ |||t0H0|||22 +O(|||t0H0|||32). Thus we find that, neglecting terms of order

|||t0H0|||32, the bound of Theorem 6.2.3 is sharper than that of Theorem 6.2.1 provided that

‖t0H0‖2
F

(π − |||t0H0|||2)2
< |||t0H0|||2. (6.18)

Suppose for concreteness that H0 has rank r. Recalling that ‖t0H0‖2
F ≤ r|||t0H0|||22 from

Theorem 2.1.7, we find that in order for (6.18) to hold, it is sufficient that r|||t0H0|||2 <

(π − |||t0H0|||2)2, or equivalently, that |||t0H0|||2 <
2π+r−

√
4πr+r2

2
. It now follows that for

all sufficiently small H0, the bound of Theorem 6.2.3 is an improvement upon that of

Theorem 6.2.1. Thus, in the case that the more restrictive hypothesis of Theorem 6.2.3

holds, we get a better estimate from Theorem 6.2.3 than from Theorem 6.2.1.

Example 6.2.4. We give a small numerical example illustrating Theorem 6.2.3. Consider

the 10 × 10 symmetric tridiagonal matrix M with mj,j+1 = mj+1,j =
√
j(10− j), j =

1, . . . , 9 and all other entries equal to 0. It is known that M admits perfect state transfer

from 1 to 10 at time t0 = π
2
, with the (1, 10) entry of eit0M equal to i. Now we consider

the perturbing matrix

M0 = 10−5

(
2

π

)
×



0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.533 0 0 0 0

0 0 0 0 0.533 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0


.
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Setting M̂ = M + M0, a couple of MATLAB c© computations yield 1 − |(eit0M̂)1,10|2 ≈

0.02497×10−9 and 2‖M0‖2F
(π−|||t0M0|||2)2

+|||t0M0|||22 ≈ 0.19257×10−9. Therefore the actual fidelity

of state transfer of the perturbed system exceeds the lower bound given by Theorem 6.2.3

approximately by 0.16760× 10−9.



Chapter 7

Fractional revival of threshold graphs

under Laplacian dynamics

Up until now, we have been focusing on perfect state transfer, including the PST properties

of different families of weighted or unweighted graphs with or without loops governed by

different dynamics, and the sensitivity of the fidelity of state transfer to readout time or

to edge weights when PST occurs. We have also seen examples of graphs with PGST, a

generalization of PST, where the fidelity of state transfer between two fixed vertices can

be made arbitrarily close to 1 by taking some specific time sequence, even though it might

not attain 1.

In this chapter, we focus on fractional revival, defined in Definition 1.3.8 in terms of

fidelities. Since pj,k(t) = |(U(t))j,k|2, an equivalent definition can be stated in terms of

the unitary matrix U(t) directly, and we do so here. Given a system G with Hamiltonian

201
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H, consider the unitary matrix U(t) = eitH. If there is some time t2 > 0 and two distinct

vertices j and k, such that U(t2)ej = αej+βek for some α, β ∈ C with β 6= 0 (since U(t2)

is unitary, we know that |α|2 + |β|2 = 1), then we say that there is fractional revival (FR)

from j to k at time t2 (observe that FR generalizes PST). Further, if |α| = |β|, then the

fractional revival is called balanced [26]. More generally, if there is some time t3 > 0 and

a proper subset S of V (G), such that |S| ≥ 3 and that for any vertex j ∈ S, U(t3)j,k = 0 if

k /∈ S, and the unweighted graph associated to the submatrix U(t3)[S,S] is connected, then

we say that there is generalized fractional revival between vertices in S (U(t3)[S,S] is the

submatrix of entries that lie in the rows and columns of U(t3) indexed by elements in S).

Fractional revival between two end vertices of a spin chain (where the underlying graph

is a weighted path with loops) can also be used to transfer quantum states efficiently,

and balanced fractional revival can be used to generate entangled states [14, 61]. For

adjacency fractional revival to occur at the two end vertices of a weighted path with loops,

the spectrum of the Hamiltonian H = A must take the form of a bi-lattice [42]. It is

shown that spin chains with adjacency fractional revival between the end vertices can be

obtained via isospectral deformations of spin chains with PST between the end vertices

(note that a characterization of the spectrum ofH, or a specific edge weights set {wj,j+1 =√
j(n− j) | j = 1, . . . , n − 1}, for a spin chain on n vertices to exhibit PST between

the end vertices is known), and the deformation only changes the middle couplings (also

the weights of the loops on the middle two vertices of the path when n is even) of the

chain with PST between end vertices to get a chain with FR. In [14], a class of cubelike



203

graphs and some weighted graphs obtained from hypercubes are found to exhibit fractional

revival. In [26], some properties of adjacency fractional revival (Hamiltonian H = A) on

general graphs are studied; in particular, a characterization of fractional revival between

cospectral vertices is given.

Not many graphs are known to exhibit fractional revival. Here we focus on Laplacian

dynamics, and characterize the parameters of a family of graphs — threshold graphs —

that admit fractional revival under Laplacian dynamics. With these threshold graphs, we

can produce more graphs with Laplacian fractional revival. Recall that a threshold graph

can be constructed from the one-vertex graph by repeatedly adding a single vertex of two

possible types: an isolated vertex, i.e., a vertex without incident edges, or a dominating

vertex, i.e., a vertex connected to all other vertices. A characterization of PST in threshold

graphs is known (see Theorem 7.1.4 below), and consequently our results on FR in thresh-

old graphs, which rely heavily on techniques from spectral graph theory, can be seen as an

extension of that theorem.

The outline of this chapter is as follows. In Section 7.1, we review almost equitable

partitions of a graph and related results about threshold graphs. In Section 7.2, we consider

Laplacian fractional revival between two vertices of a graph G, where we deduce that the

two vertices are strongly cospectral with respect to L(G). In Section 7.3, we characterize

threshold graphs that admit (generalized) Laplacian fractional revival between a subset of

the vertex set. In Section 7.4, we produce more graphs with Laplacian fractional revival

by making use of threshold graphs.
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This chapter is based on the joint work with Kirkland [70], with myself as primary

author.

7.1 Preliminaries

As described in Section 2.3.1, a partition π = (C1, . . . , Ck) is an equitable partition of a

graph G = (V,E), if and only if,

1. the bipartite graph formed by the edges joining any two distinct cells is semi-regular

(vertices in the same set of the bipartition have the same degree),

2. the induced subgraph of G on each cell Cj of π is a regular graph.

Now with a relaxation of the conditions — only requiring condition (1), we have the

following notion of an almost equitable partition.

Definition 7.1.1 ([23]). For the graph G = (V,E), a partition π = (C1, . . . , Ck) of its

vertex set V , is called an almost equitable partition if ∀j, ` ∈ {1, . . . , k} with j 6= `, the

number of neighbours of a vertex v ∈ Cj has in cell C` does not depend on the choice of

v. The generalized Laplacian matrix L(G)π with respect to the almost equitable partition

π is the k × k matrix such that

L(G)πj,` =

{
−cj` if ` 6= j∑

r 6=j cjr, if ` = j,

where cj` is the number of neighbours that a vertex in cell Cj has in cell C`.
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Proposition 2.3.4 shows that an equitable partition π of a graph G = (V,E) can be

characterized by a relation between the characteristic matrix of the partition π and the

adjacency matrix A(G); similarly, an almost equitable partition of a graph G can be char-

acterized by using its characteristic matrix and the Laplacian matrix of the graph G.

Proposition 7.1.2 ([23]). Let G be a graph, π = (C1, . . . , Ck) a k-partition of V (G) and

P the characteristic matrix of π. Then π is an almost equitable partition if and only if

there is a k × k matrix C such that

L(G)P = PC

If π is an almost equitable k-partition, then C is the generalized Laplacian matrix L(G)π.

Using two graph operations — union and join — introduced in Section 2.2, the follow-

ing characterization of connected threshold graphs can be made, where we recall that Kp

denotes the complete graph on p vertices and Op denotes the empty graph on p vertices.

Proposition 7.1.3 ([69]). Let G be a connected graph on at least two vertices. Then G is

a connected threshold graph if and only if one of the following two conditions is satisfied:

(1) there are indices m1, . . . ,m2k ∈ N with m1 ≥ 2 such that G = ((((Om1 ∨ Km2) ∪

Om3) ∨Km4) · · · ) ∨Km2k
≡ Γ(m1, . . . ,m2k);

(2) there are indices m1, . . . ,m2k+1 ∈ N with m1 ≥ 2 such that G = ((((Km1 ∪ Om2) ∨

Km3) ∪Om4) · · · ) ∨Km2k+1
≡ Γ(m1, . . . ,m2k+1).

Order the vertices of a threshold graphG = Γ(m1, . . . ,m2k) (resp. G = Γ(m1, . . . ,m2k+1))

according to the order they are added in the construction of G, that is, order the first m1
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vertices from Om1 (resp. Km1), then the vertices from Km2 (resp. Om2), and so on. The

Laplacian PST properties of connected threshold graphs are known.

Theorem 7.1.4 ([69]). Let G be a threshold graph. Assume G ≡ Γ(m1, . . . ,mr), where r

is either an even or odd integer. Then there is PST between vertex j and k at time t ∈ [0, π]

if and only if {j, k} = {1, 2} and in addition: t = π/2; m1 = 2; m2 ≡ 2 (mod 4), and

m` ≡ 0 (mod 4) for ` ≥ 3.

In this chapter, subscripts denoting the sizes of matrices and vectors will be suppressed

when they are clear from the context. Eigenvalues are labelled so that the smallest eigen-

value 0 is denoted by λ0.

7.2 Laplacian fractional revival between two vertices

Assume that G is a graph on n vertices and that it admits Laplacian fractional revival

from vertex u to vertex v at time t. Without loss of generality, assume that vertices u

and v are labelled 1 and 2, respectively. Then U(t) = eitL(G) =

[
U1 0
0 U2

]
for some

complex symmetric unitary matrices U1 of size 2 × 2 and U2 of size (n − 2) × (n − 2),

and the union of the spectrum of U1 and the spectrum of U2 gives the spectrum of U(t).

Denote the (j, `) entry of U1 by Uj,`, then for j = 1, 2, eitL(G)ej = U1,je1 + U2,je2. Now

assume that the spectral decomposition of L(G) is L(G) =
∑q

r=0 θrEr with θ0 = 0. Then

eitL(G) =
∑q

r=0 e
itθrEr by Theorem 2.1.2, and eitL(G)eu =

∑q
r=0 e

itθrEreu for any vertex u

ofG. Therefore
∑q

r=0 e
itθrErej = eitL(G)ej = U1,je1 +U2,je2 for j = 1, 2. Premultiplying
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Er on both sides of the equation, combined with the facts that ErE` = δr,`Er, and that

eitL(G) and Er commute, gives eitθrErej = U1,jEre1 + U2,jEre2 for j = 1, 2. Putting

the equations for j = 1 and j = 2 together gives [Ere1 , Ere2](U1 − eitθrI2) = 0n,2

for r = 0, 1, . . . , q. Therefore if Cr = [Ere1 , Ere2] 6= 0n,2, then eitθr is an eigenvalue

of U1, and that any nonzero row of Cr is a real left eigenvector of U1 associated to the

eigenvalue eitθr . In particular, for θ0 = 0, C0 = 1
n
Jn,2 6= 0n,2 (as E0 = 1

n
Jn), and therefore

eitθ0 = eit0 = 1 is an eigenvalue of U1. Furthermore, 1 is a simple eigenvalue of U1, since

the only 2 × 2 diagonalizable matrix that has 1 as a multiple eigenvalue is the identity

matrix I2.

Note that for a complex symmetric matrix, each of its real eigenvectors is a left eigen-

vector at the same time, and the real eigenvectors associated to distinct eigenvalues are

orthogonal. To see this, assume that U is a complex symmetric matrix, with a real eigen-

vector x associated to λ, and a real eigenvector y associated to µ 6= λ. Taking the transpose

of Ux = λx gives xTU = xTUT = (Ux)T = λxT , that is to say, x is also a left eigen-

vector of U . From λxTy = (xTU)y = xT (Uy) = µxTy and λ 6= µ, we conclude that

xTy = 0, i.e., x and y are orthogonal to each other.

Now consider any eigenvalue θr of L(G) such that eitθr is an eigenvalue of U1 (there-

fore any nonzero row of Cr = [Ere1 , Ere2] is a left eigenvector of U1 associated to eitθr).

If eitθr 6= 1, from the facts that U1 is symmetric, Er is a real matrix for r = 0, 1, . . . , q,

and that 12 is an eigenvector of U1 associated to the eigenvalue 0, we know that Cr12 =

[Ere1 , Ere2]12 = 0n, i.e., Ere1 + Ere2 = 0n. Since 1 is a simple eigenvalue of U1, for
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each r ∈ {0, 1, . . . , q} such that eitθr = 1, all the rows of Cr are scalar multiples of 1T2 .

That is to say, [Ere1 , Ere2] = [Ere1 , Ere1], or Ere1 = Ere2. The following theorem

summarizes these observations.

Theorem 7.2.1. If a weighted graph G admits Laplacian fractional revival between two

vertices u and v at time t, then the two vertices u and v are strongly cospectral with

respect to the Laplacian matrix L(G). That is, if the spectral decomposition of L(G) is

L(G) =
∑

r θrEr, then for each r, either Ereu = Erev (if tθr
2π
∈ Z) or Ereu = −Erev (if

tθr
2π

/∈ Z) holds.

While preparing [70], we learned that Chan and Teitelbaum [27] have also proved the

necessity of strong cospectrality of the two vertices for Laplacian FR.

Remark 7.2.2. If a weighted G admits generalized Laplacian fractional revival between

m ≥ 3 vertices at time t, then 1 is not necessary a simple eigenvalue of U1 — the submatrix

of U(t) = eitL(G) corresponding to the m vertices, but if it is, then with a similar argument

as above, we have the following.

Assume that G is a weighted graph that admits generalized Laplacian fractional re-

vival between vertices in S = {1, 2, . . . ,m} ⊂ V (G) at time t, and that U1 = U(t)[S,S] =

(eitL(G))[S,S] has 1 as a simple eigenvalue. Let L(G) =
∑q

r=0 θrEr be the spectral de-

composition of the Laplacian matrix L(G). Then for each r = 0, 1, . . . , q, the vectors

Ere1, Ere2, · · · , Erem are linearly dependent, and either

Ere1 = Ere2 = · · · = Erem if eitθr = 1, or (7.1)
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v1

v3

v6 v5

v4

v2

Figure 7.1: A graph with a vertex involved in fractional revival and generalized fractional

revival at different time

Ere1 + Ere2 + · · ·+ Erem = 0 if eitθr 6= 1. (7.2)

Example 7.2.3. Let G be the graph as shown in Figure 7.1, and write the spectral de-

composition of its Laplacian as L(G) =
∑4

r=0 θrEr, with θ0 = 0, θ1 = 1, θ2 = 3,

θ3 = 4, and θ4 = 5. There is Laplacian fractional revival between vertices v1 and v2, and

generalized fractional revival between vertices {v3, v4, v5, v6} at time 2π
3

. Direct observa-

tion shows that v1 and v2 are strongly cospectral with respect to L(G): Ere1 = Ere2 for

r = 0, 2, Ere1 = −Ere2 for r = 1, 3, and E4e1 = E4e2 = 06, which is in accordance with

Theorem 7.2.1. There is also generalized Laplacian fractional revival between vertices

{v1, v4, v5}, and between vertices {v2, v3, v6} at time π. Since 1 is a simple eigenvalue of

U1 = U(π)[{1,4,5},{1,4,5}], Remark 7.2.2 implies that Ere1 = Ere4 = Ere5 for r = 0, 3

(eiπθr = 1) and that Ere1 + Ere4 + Ere5 = 0 for r = 1, 2, 4 (since eiπθr 6= 1), which can

be confirmed by checking the orthogonal projection matrices Er directly.
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7.3 Laplacian fractional revival in threshold graphs

We will only give detailed consideration to connected threshold graphs of the form Γ(m1,

m2, . . . ,m2k) in this section; note that similar results hold for the connected threshold

graphs Γ(m1,m2, . . . ,m2k,m2k+1), and we state them without proof.

As shown by Kirkland and Severini [69], the Laplacian eigenvalues of the threshold

graph Γ(m1, m2, . . . ,m2k) are:

λ0 = 0,

λj = mj+1 +mj+3 + · · ·+m2k for any odd integer j ∈ {1, . . . , 2k}, and (7.3)

λj = σj +mj+2 + · · ·+m2k for any even integer j ∈ {1, . . . , 2k},

where σj := m1 +m2 + · · ·+mj for j = 1, 2, . . . , 2k. The multiplicity of λj is
1, if j = 0

m1 − 1, if j = 1

mj, otherwise.

The orthogonal idempotents for L(G) corresponding to λ0 = 0, λ = λ1 and λ = λj for

j = 2, 3, . . . , 2k are: E0 = 1
σ2k
Jσ2k ,

E1 =


Im1 − 1

m1
Jm1 0 · · · 0

0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 , and

Ej =


mj

σj−1σj
Jσj−1

− 1
σj
Jσj−1,mj 0σj−1,σ2k−σj

− 1
σj
Jmj ,σj−1

Imj − 1
σj
Jmj 0mj ,σ2k−σj

0σ2k−σj ,σj−1
0σ2k−σj ,mj 0σ2k−σj ,σ2k−σj

 , respectively.

We partition the vertex set of Γ(m1, . . . ,m2k) according to the indices m1,m2, . . . ,m2k;

denote the corresponding cells by C1, C2, . . . , C2k, and denote the partition by π.
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Lemma 7.3.1. If G = Γ(m1, . . . ,m2k) admits Laplacian fractional revival between two

vertices u and v, then u and v belong to the same cells of the partition π.

Proof. From Theorem 7.2.1 we know that if there is Laplacian fractional revival between

two vertices u and v of G = Γ(m1, . . . ,m2k), then the two vertices are strongly cospectral

with respect to L(G). Assume that u ∈ Cj , v ∈ C`, j < `, and that u is the s-th entry

of cell Cj . Then Ejev = 0σ2k and for es ∈ Rmj , Ejeu =
[
eTs − 1

m1
1Tm1

0Tσ2k−m1

]T
if

j = 1; Ejeu =
[
− 1
σj
1Tσj−1

eTs − 1
σj
1Tmj 0Tσ2k−σj

]T
if j > 1. In either case, u and v are

not strongly cospectral with respect to L(G). Therefore u and v must be in the same cell

of the partition π.

Lemma 7.3.2. If G = Γ(m1, . . . ,m2k) admits Laplacian fractional revival between two

vertices u and v, then {u, v} = {1, 2} and m1 = 2.

Proof. From Lemma 7.3.1 we know that vertices u and v are in the same cell of π; as-

sume u, v ∈ Cj , with u being the s-th vertex in Cj , and v the r-th vertex in Cj . Let σ0 =

0, then Ejeu =
[
− 1
σj
1Tσj−1

(es − 1
σj
1mj)

T 0Tσ2k−σj

]T
and Ejev =

[
− 1
σj
1Tσj−1

∣∣ (er
− 1
σj
1mj)

T
∣∣0Tσ2k−σj]T , where es, er ∈ Rmj . By Theorem 7.2.1, Laplacian fractional re-

vival between u and v implies Ejeu = ±Ejev, which is possible only if j = 1 and

σ1 = m1 = 2.

Now we are going to characterize the parameters mj such that Laplacian fractional

revival occurs between vertices 1 and 2 in the graph G = Γ(m1, . . . ,m2k) by using the

spectral decomposition of L(G) shown at the beginning of this section. Since all the
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eigenvalues of L(G) are integers, we know that G is Laplacian periodic at all vertices at

time 2π, i.e. e2πiL(G) is a scalar multiple of the identity matrix (in fact it is the identity

matrix here). In the following we will not consider this case, or any time larger than 2π.

Theorem 7.3.3. The threshold graph G = Γ(m1, . . . ,m2k) admits Laplacian fractional

revival between two vertices u and v at time t if and only if

1. {u, v} = {1, 2} and m1 = 2, and

2. (a) m1
t
π

= 2 t
π
/∈ Z,

(b) (m1 +m2) t
2π
,mj

t
2π
∈ Z for j = 3, . . . , 2k.

Proof. Assume that there is Laplacian fractional revival between vertices u and v at time
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t > 0. Then Lemmas 7.3.1 and 7.3.2 imply that 1.) holds. Using the spectral decomposi-

tion of L(G) we have

(eitL(G))1,1 = eitλ1(1− 1
2
) + eitλ2( m2

σ1σ2
) + eitλ3( m3

σ2σ3
) + · · ·

+eitλ2k−1( m2k−1

σ2k−2σ2k−1
) + eitλ2k( m2k

σ2k−1σ2k
) + 1

σ2k

= eitλ1(1− 1
2
) + eitλ2( 1

σ1
− 1

σ2
) + eitλ3( 1

σ2
− 1

σ3
) + · · ·

+eitλ2k−1( 1
σ2k−2

− 1
σ2k−1

) + eitλ2k( 1
σ2k−1

− 1
σ2k

) + 1
σ2k
,

(eitL(G))1,2 = eitλ1(−1
2
) + eitλ2( m2

σ1σ2
) + eitλ3( m3

σ2σ3
) + · · ·

+eitλ2k−1( m2k−1

σ2k−2σ2k−1
) + eitλ2k( m2k

σ2k−1σ2k
) + 1

σ2k

= eitλ1(−1
2
) + eitλ2( 1

σ1
− 1

σ2
) + eitλ3( 1

σ2
− 1

σ3
) + · · ·

+eitλ2k−1( 1
σ2k−2

− 1
σ2k−1

) + eitλ2k( 1
σ2k−1

− 1
σ2k

) + 1
σ2k
,

(eitL(G))1,w = eitλj(− 1
σj

) + eitλj+1(
mj+1

σjσj+1
) + · · ·+ eitλ2k( m2k

σ2k−1σ2k
) + 1

σ2k

= eitλj(− 1
σj

) + eitλj+1( 1
σj
− 1

σj+1
) + · · ·

+eitλ2k( 1
σ2k−1

− 1
σ2k

) + 1
σ2k

for w ∈ Cjwith j = 2, . . . , 2k.

(7.4)

Since (eitL(G))1,w = 0 for w 6= 1, 2, then considering w ∈ C2k, w ∈ C2k−1, . . . , w ∈

C3, w ∈ C2, we find that tσ2k, tm2k, t(σ2k−2 + m2k), . . . , t(m4 + m6 + . . . + m2k), and

t(σ2 +m4 + . . .+m2k) are all even integer multiples of π, which is equivalent to the fact

that tm2k, tm2k−1, tm2k−2, . . . , tm3, and tσ2 are all even integer multiples of π. In this

case, (7.4) gives

(eitL(G))1,1 =
1

2
eitm2 +

1

2
, and (eitL(G))1,2 = −1

2
eitm2 +

1

2
. (7.5)

Hence, if in addition,
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• tm2 (and therefore tm1 = 2t) is an even integer multiple of π, then the graph G is

periodic at vertex 1 (and vertex 2);

• tm2 (and therefore tm1 = 2t) is an odd integer multiple of π, then the graph G

admits Laplacian perfect state transfer between vertex 1 and 2;

• tm2 (and therefore tm1 = 2t) is not an integer multiple of π, then the graph G

admits Laplacian fractional revival between vertex 1 and 2.

Therefore the conditions are necessary. It is straightforward to show that the conditions

are sufficient.

Similarly to the above, the following can be proved.

Remark 7.3.4. The threshold graph G = Γ(m1, . . . ,m2k,m2k+1) admits Laplacian frac-

tional revival between two vertices u and v at time t if and only if

1. {u, v} = {1, 2} and m1 = 2, and

2. (a) m1
t
π

= 2 t
π
/∈ Z,

(b) (m1 +m2) t
2π
,mj

t
2π
∈ Z for j = 3, . . . , 2k, 2k + 1.

Corollary 7.3.5. There is balanced Laplacian fractional revival between vertices u and v

in the threshold graph G = Γ(m1, . . . ,m2k) at time t if and only if

1. m1 = 2 with {u, v} = {1, 2},

2. t = 2`+1
4
π for some non-negative integer `,
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3. m2 = 2(2s+1)
2`+1

, for the same integer ` as in 2.) above, and for a non-negative integer

s of distinct parity from ` such that (2`+ 1)|(2s+ 1) (in fact when this is true, then

necessarily 2s+1
2`+1
≡ 3 (mod 4)), and

4. mj ≡ 0 (mod 8) for j = 3, . . . , 2k.

Proof. From Theorem 7.3.3, we know that if balanced fractional revival takes place in G

between vertices u and v, then it is between vertices 1 and 2. In this case, Theorem 7.3.3

and equation (7.5) imply that m1 = 2, cos(m2t) = 0, and t(m1 + m2), tm3, . . . , tm2k

are all even integer multiples of π. Therefore tm2 = 2s+1
2
π for some integer s. Since

t(m1 + m2) is an even integer multiple of π, 2t = 2`+1
2
π for some integer `, where ` has

different parity than s. Hence t = 2`+1
4
π andm2 = 2(2s+1)

2`+1
for integers s and `with distinct

parity. Combining with the fact that tmj is an even integer multiple of π for j = 3, . . . , 2k,

we find that mj ≡ 0 (mod 8) for j ≥ 3.

Conversely, if mj ≡ 0 (mod 8) for j ≥ 3, and t = 2`+1
4
π for some integer `, then

mjt = mj
2`+1

4
π is an even integer multiple of π for j ≥ 3. Furthermore, if m2 = 2(2s+1)

2`+1

for an integer s of different parity than ` such that (2` + 1)|(2s + 1), then (m1 + m2)t =

(s+ `+1)π is an even integer multiple of π, and cos(m2t) = cos(2s+1
2
π) = 0. Again from

Theorem 7.3.3 and equation (7.5), we know that there is balanced fractional revival in G

between vertex 1 and 2 at time t.

Remark 7.3.6. There is balanced Laplacian fractional revival between vertices u and v in

the threshold graph G = Γ(m1, . . . ,m2k,m2k+1) at time t, if and only if
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1. m1 = 2 with {u, v} = {1, 2},

2. t = 2`+1
4
π for some non-negative integer `,

3. m2 = 2(2s+1)
2`+1

, for the same integer ` as in 2.), and for a non-negative integer s of

distinct parity from ` such that (2` + 1)|(2s + 1) (in fact when this is true, then

necessarily 2s+1
2`+1
≡ 3 (mod 4)), and

4. mj ≡ 0 (mod 8) for j = 3, . . . , 2k, 2k + 1.

Remark 7.3.7. Since if there is PST between vertices u and v, then u and v are strongly

cospectral [45], the proof of Theorem 7.3.3 can be used to prove Theorem 7.1.4: the

second of the three cases in the proof gives us Theorem 7.1.4.

Now we address generalized Laplacian fractional revival within some subset of vertices

in threshold graphs.

Theorem 7.3.8. Consider the threshold graph G = Γ(m1, . . . ,m2k), and let C`, ` =

1, . . . , 2k denote the cells of the partition π of V (G) according to the parameters m`, ` =

1, . . . , 2k. ThenG admits generalized Laplacian fractional revival between vertices in S ⊂

V (G) at some time t > 0 if and only if, for some integer j < 2k, tm2k, tm2k−1, . . . , tmj+2

and tσj+1 are all even integer multiples of π, while tmj+1 is not. In this case, S =

C1 ∪ · · · ∪ Cj , and G is periodic at all vertices in the cells Cj+1, . . . , C2k.

Proof. Assume G admits generalized Laplacian fractional revival between vertices in S

at time t, with j being the largest number such that S ∩ Cj 6= ∅. Let u be any vertex in
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S ∩ Cj . Now for any w ∈ C`, with ` = j + 1, . . . , 2k,

(eitL(G))u,w = eitλ`(− 1
σ`

) + eitλ`+1( m`+1

σ`σ`+1
) + · · ·+ eitλ2k( m2k

σ2k−1σ2k
) + 1

σ2k

= eitλ`(− 1
σ`

) + eitλ`+1( 1
σ`
− 1

σ`+1
) + · · ·+ eitλ2k( 1

σ2k−1
− 1

σ2k
) + 1

σ2k
;

for any v ∈ C1 ∪ C2 ∪ · · · ∪ Cj with v 6= u,

(eitL(G))u,v = eitλj(− 1

σj
) + eitλj+1(

1

σj
− 1

σj+1

) + · · ·+ eitλ2k(
1

σ2k−1

− 1

σ2k

) +
1

σ2k

,

and for any x ∈ C`, with ` = 1, . . . , 2k,

(eitL(G))x,x = eitλ`(1− 1

σ`
) + eitλ`+1(

1

σ`
− 1

σ`+1

) + · · ·+ eitλ2k(
1

σ2k−1

− 1

σ2k

) +
1

σ2k

.

Since (eitL(G))u,w = 0 for w ∈ C2k, C2k−1, . . . , Cj+1, we find that

tm2k

2π
,
tm2k−1

2π
, . . . ,

tmj+2

2π
,
tσj+1

2π
∈ Z. (7.6)

In this case, for w ∈ Cj+1 ∪ . . . ∪ C2k,

(eitL(G))w,w = 1,

(eitL(G))u,u = eitλj
(

1− 1

σj

)
+

1

σj
, and (7.7)

(eitL(G))u,v = eitλj
(
− 1

σj

)
+

1

σj
for v ∈ C1 ∪ . . . ∪ Cj and v 6= u.

Therefore G is periodic at any vertex w ∈ Cj+1 ∪ . . .∪C2k. The fact that u is involved

in generalized Laplacian fractional revival implies that |(eitL(G))u,u| 6= 1. Combining

with (7.7) and (7.6), we find that tmj+1

2π
/∈ Z (no matter j is even or odd), and therefore

(eitL(G))u,v 6= 0 for any v ∈ C1, . . . , Cj−1, Cj (if (eitL(G))u,u = 0, then σj = 2, j = 1 and

there is Laplacian PST between vertices 1 and 2, which is not the case we are considering).
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Hence S = C1 ∪ . . . ∪ Cj and the conditions are necessary. The other direction follows

readily.

Remark 7.3.9. For the threshold graphG = Γ(m1, . . . ,m2k,m2k+1), letC`, ` = 1, . . . , 2k+

1 denote the cells of the partition π of V (G) according to the parametersm`, ` = 1, . . . , 2k+

1. Then G admits generalized Laplacian fractional revival between vertices in S ⊂ V (G)

at some time t > 0 if and only if, for some integer j < 2k+1, tm2k+1, tm2k, tm2k−1, . . . ,

tmj+2 and tσj+1 are all even integer multiples of π, while tmj+1 is not. In this case, S =

C1∪ · · · ∪Cj , and G is Laplacian periodic at all vertices in the cells Cj+1, . . . , C2k, C2k+1.

Example 7.3.10. Consider the threshold graph G = Γ(2, 2, 2, 2, 4, 4). Direction com-

putation (by the spectral decomposition as in Theorem 2.1.2 and Remark 2.1.3) shows

that there is generalized Laplacian fractional revival between all vertices in the set S =

{1, 2, . . . , 6} at t = π/2. The result is in correspondence with Theorem 7.3.8, since

tm5 = tm6 and tσ4 = 8t are all even integer multiples of π, while tm4 = π is not.

Similarly Γ(3, 1, 4) admits Laplacian fractional revival between the first 4 vertices at time

t = π
4
, and Γ(2, 2, 6, 2, 4, 4) admits Laplacian fractional revival between the first 10 ver-

tices at time t = π
2
.

Remark 7.3.11. Note that Theorem 7.3.8 implies Theorem 7.3.3, but the strong cospec-

trality of the two vertices involved in Laplacian fractional revival makes the proof more

clear as shown in Theorem 7.3.3.
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7.4 Constructing graphs with Laplacian fractional revival

More graphs with Laplacian fractional revival can be obtained from those threshold graphs

that admit Laplacian fractional revival. To construct such graphs, we make use of almost

equitable partitions of a graph. First note that apart from Proposition 7.1.2, there are other

equivalent characterizations of an almost equitable partition of a graph. The proof is essen-

tially the same as that for the characterization of equitable partitions as in Theorem 2.3.5,

but we include it for completeness.

Proposition 7.4.1. Suppose that π = (C1, . . . , Ck) is a partition of the vertices of the

graph G, and that P̂ is its normalized characteristic matrix. Then the following are equiv-

alent:

(a) π is almost equitable.

(b) The column space of P̂ is L(G)-invariant.

(c) There is a k × k matrix B such that L(G)P̂ = P̂B.

(d) L(G) and P̂ P̂ T commute.

Proof. Assume P is the characteristic matrix of the partition π. From Theorem 7.1.2 we

know that π is an almost equitable partition if and only if L(G)P = PL(G)π, i.e., the

column space of P is L(G)-invariant. Since P and P̂ have the same column space, it

follows that (a) and (b) are equivalent.

Since (c) is an equivalent way to say that the column space of P̂ is L(G)-invariant, (b)

and (c) are equivalent. Furthermore, L(G)P̂ = P̂B implies that P̂ TL(G)P̂ = P̂ T P̂B =
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IkB = B, from which we see that the matrix B in (c) is symmetric.

Now if (c) is true, and using the fact that B is symmetric, we have L(G)P̂ P̂ T = P̂BP̂ T =

P̂ (P̂B)T = P̂ (L(G)P̂ )T = P̂ P̂ TL(G), and therefore (c) implies (d).

To prove that (d) implies (b), we note that if L(G) commutes with a matrix S, then the

column space of S is L(G)-invariant. Combined with the fact that P̂ P̂ T and P̂ have the

same column space, we get the desired result.

If a graph G1 admits an equitable partition π1 with vertices u and v being singletons,

then as shown in Theorem 2.3.6, (eitA(G1))u,v = (eit
̂A(G1/π1)){u},{v}, where ̂A(G1/π1) =

P̂ TA(G1)P̂ , with rows and columns indexed by the cells of the partition π1, and it is the

adjacency matrix of the symmetrized quotient graph of G with respect to π1. Now if a

graph G admits an almost equitable partition, then a parallel result holds between L(G)

and L̂(G)π with exactly the same argument, where L̂(G)π = P̂ TL(G)P̂ (note that in

general, L̂(G)π is not the Laplacian matrix of a weighted graph without loops, that is,

generally L̂(G)π1 6= 0).

Theorem 7.4.2. Let G = (V,E) be a graph with an almost equitable partition π, where

two distinct vertices j and ` belong to singleton cells. Let L(G) denote its Laplacian

matrix. Let u, v be either j or ` (introduced to include the four equations about {j, j},

{j, k}, {k, j}, and {k, k} in one, as the following). Then for any time t,

(eitL(G))u,v = (eitL̂(G)π){u},{v},

where {u} and {v} are the corresponding singleton cells of π, and the cells of π are
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used to index rows and columns of L̂(G)π. Therefore, the system with Hamiltonian L(G)

admits fractional revival (resp. perfect state transfer) from j to ` at time t if and only if

the system with Hamiltonian L̂(G)π = P̂ TL(G)P̂ admits fractional revival (resp. perfect

state transfer) from {j} to {`} at time t.

The above result was used in an example in [2]. Similarly, if a graph G admits gen-

eralized Laplacian fractional revival between vertices u1, . . . , um at time t and G has

an almost equitable partition π such that u1 . . . , um are all singletons, then the system

with Hamiltonian L̂(G)π admits generalized Laplacian fractional revival between vertices

{u1}, . . . , {um} at time t. Now we can construct more graphs with (generalized) Laplacian

fractional revival (resp. Laplacian perfect state transfer) from some given graphs.

Corollary 7.4.3. Suppose that a graph G = (V,E) has an almost equitable partition π

of V , with vertices u and v belonging to singleton cells. If there is Laplacian fractional

revival (resp. Laplacian perfect state transfer, Laplacian pretty good state transfer) from

u to v in G, then for any graph Y obtained from G by adding or deleting any collection

of edges within the cells of π, Y also admits Laplacian fractional revival (resp. Laplacian

perfect state transfer, Laplacian pretty good state transfer) from u to v.

Proof. The almost equitable partition π of the vertex set of G is also an almost equitable

partition of V (Y ). From the fact that L̂(Y )π = P̂ TL(Y )P̂ = P̂ TL(G)P̂ = L̂(G)π and

Theorem 7.4.2, the result follows.

Remark 7.4.4. The partition π of a threshold graph according to the parameters mj is
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an (almost) equitable partition, and so is any refinement of this partition. In particular,

for a threshold graph G that admits Laplacian fractional revival at time t, partitioning the

cell C1 = {1, 2} of π into two smaller cells C1,1 = {1} and C1,2 = {2} and keeping

all the other cells unchanged, results in the partition π′, that is still an almost equitable

partition of V (G), but now the two vertices involved in Laplacian fractional revival are

singletons. Therefore, we can produce more graphs with Laplacian fractional revival from

the threshold graph G by adding or deleting edges inside the cells of the partition π′ of

V (G). Similarly, if a threshold graph G admits generalized Laplacian fractional revival

at time t between vertices {1, . . . , `} = C1 ∪ · · · ∪ Cj , where C1, . . . , C2k (C2k+1) are

the cells of the partition π, then the refinement π′′ of π, which partitions C1 ∪ · · · ∪ Cj

into singletons as {1}, . . . , {`} and keeps all the other cells of π unchanged, is still an

almost equitable partition of V (G), but with all the vertices involved in the revival being

singletons. Again, adding or deleting edges inside the cells of the partition π′′ results in

graphs that admit generalized Laplacian fractional revival between vertices {1, . . . , `} at

time t.

Example 7.4.5. For any threshold graph G = Γ(m1, . . . ,m2k) with Laplacian fractional

revival (resp. Laplacian PST, Laplacian PGST), and for any odd integer p > 1, even in-

teger q ≥ 2, the graph Y obtained from G by adding edges in the induced subgraph Omp

on cell Cp or deleting edges in the induced subgraph Kmq on cell Cq of the equitable par-

tition π, still admits Laplacian fractional revival (resp. Laplacian PST, Laplacian PGST)

between the two vertices, by Corollary 7.4.3 and Remark 7.4.4. For example, we know
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without calculations that the complete bipartite graph K2,6 admits Laplacian fractional re-

vival at time π/4 (and admits Laplacian PST at time π/2), since it can be obtained from the

threshold graph O2 ∨K6 (which admits Laplacian fractional revival at time π/4 by Theo-

rem 7.3.3, and which admits Laplacian PST at time π/2 by Theorem 7.1.4) by removing

all the edges inside K6.

Remark 7.4.6. The corresponding results about almost equitable partition of a graph

can be generalized to weighted graphs, in the sense that the Laplacian matrix L(G) of

a weighted graph can be permuted and partitioned into a block matrix, such that all the

off-diagonal blocks have constant row sums, and the corresponding row sums can be as-

signed to cj`.

v1 v2 v3 v4

√
2 1 √

2

Figure 7.2: A weighted path G with adjacency fractional revival between two different

pair of vertices that have one vertex in common

Example 7.4.7. Making use of the graph in Figure 7.1, Theorem 7.4.2, Definition 7.1.1,

and Proposition 1.3.9, we can obtain a weighted path G as shown in Figure 7.2, which

admits adjacency fractional revival between vertices v1 and v4 (also between v2 and v3) at

time t1 = 2π
3

, and adjacency fractional revival between vertices v1 and v3 (also between
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v2 and v4) at time t2 = π. Such a phenomenon cannot occur for perfect state transfer:

if a graph admits perfect state transfer from vertex j to k and from j to `, then k = `

(Proposition 2.6.5).



Chapter 8

Future work

In this chapter, we give a list of problems that are related to the work in this thesis.

As mentioned in Section 3.5.2, we would like to have sparse graphs that admit PST.

From Corollary 3.6.2 and the fact that the n-cube admits PST at time π/2 for any positive

integer n, we know that the n-cube is the sparsest graph that is diagonalizable by the stan-

dard Hadamard matrix Hn. But the standard Hadamard matrix is not the only Hadamard

matrix of order 2n for n > 3, for example, there are 5 non-isomorphic Hadamard matri-

ces of order 16, and there are Hadamard matrices of some other orders apart from powers

of 2, for example, there are 3 non-isomorphic Hadamard matrices of order 20. In The-

orem 3.5.1 we proved that for n ≤ 4, the n-cube is the sparsest connected Hadamard

diagonalizable graphs that admit PST at time π/2. It could be interesting to determine

whether the same result holds for larger n, or to check this sparsity problem among all

Hadamard diagonalizable graphs that have PST (not just at time π/2).
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Problem 1. Is the n-cube the sparsest connected Hadamard diagonalizable graph that

admits PST?

In Section 3.6.2, we characterized n-cubelike graphs of degree (n+ 1) or (n+ 2) that

admit uniform mixing at time π/4. It would be interesting to consider this property for

cubelike graphs of higher degree, or alternatively, for uniform mixing at a general time.

Problem 2. Characterize connected n-cubelike graphs of degree d ≥ n + 3 that admit

uniform mixing at time π/4. Find equivalent conditions for a connected cubelike graph to

admit uniform mixing.

As mentioned in Chapter 4, it is known that the weighted path on n vertices with edge

weights wj,j+1 =
√
j(n− j) for j = 1, . . . , n− 1 admits adjacency PST between its end

vertices, and therefore there is a weighted path that admits PST between its end vertices

for any positive integer n [30]. This set of edge weights is obtained from the symmetrized

quotient graph of the n-cube with respect to the distance partition. Another such set for

even n is obtained by use of continued fractions and specially chosen eigenvalues [87];

using dual Hann polynomials, an edge weights set for a weighted path with loops on n

vertices that admits adjacency PST between the end vertices is realized [1]. We can con-

sider other possibilities for the edge weight set, and some necessary conditions that the

edge weights need to satisfy. For instance, as shown in Example 4.4.1 and Example 4.4.2,

for n = 4 and n = 5, we can produce a lot of weighted paths on n vertices that ad-

mit adjacency PST between the end vertices, by assigning proper eigenvalues to β1 and

β2 according to Remark 4.1.9. For a general n, given a set of n distinct real numbers
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(eigenvalues of any weighted paths are simple) satisfying certain conditions (for example

to ensure PST for a weighted path), several algorithms exist for constructing a persymmet-

ric tridiagonal matrix (corresponding to a weighted path with or without loops) that have

those numbers as eigenvalues (and hence exhibit PST) [37,43,87]; using these algorithms

to write the persymmetric tridiagonal matrix in terms of a given set of eigenvalues satis-

fying Remark 4.1.9 would help us solve the problem, but there is no closed formulas to

write the weights (matrix entries) in terms of eigenvalues for big n. We could also check

other graphs with PST to see whether any of them admit an equitable partition π such that

the symmetrized quotient graph with respect to π is a weighted path without loops.

Problem 3. Find (or characterize) sets of edge weights for a weighted path to admit ad-

jacency PST between the end vertices.

Note that we already proved that no weighted path on n ≥ 3 vertices admits Laplacian

PST between its end vertices in Theorem 4.3.1. Related problems are

Problem 4. Can a weighted path (without loops) admit Laplacian PST between its internal

vertices, or between an internal vertex and an end vertex?

Note that the answers to the above two questions are both yes under adjacency dynam-

ics (a weighted path with adjacency PST between an internal vertex and an end vertex is

constructed by Kay [60]). We have generalized Theorem 4.3.1 to certain weighted mirror

symmetric trees; related future work can be to generalize it to a general weighted tree.

Problem 5. Can a weighted tree on n ≥ 3 vertices admit Laplacian PST?
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There is a conjecture in Chapter 4 on the edge weights of a weighted path with loops

that admits adjacency PST between its end vertices at time π, that is, if all the weights

of a weighted path with loops on at least 4 vertices are rational numbers, then there is no

adjacency PST at time π between the end vertices of the path. We have confirmed the

conjecture in cases n = 4, n ≡ 3 (mod 8), as well as n ≡ 5 (mod 8). Related future

work is to prove this conjecture for other n.

Problem 6. Prove that if all the weights of a weighted path with loops on n ≥ 4 vertices

are rational numbers, then there is no adjacency PST at time π between the end vertices

of the path when n is even or n ≡ ±1 (mod 8).

In Chapter 5, we perform Godsil-McKay switching on the n-cube to obtain the switched

n-cube, and by observation we know that Q̃n = Qn−4�Q̃4. Therefore the properties of

the switched n-cube can be obtained from the (n−4)-cube and the switched 4-cube, or by

the use of the fact that Cn and C̃n are similar through a real symmetric orthogonal matrix

Q. But for a partially switched n-cube, we have much less information. We know that

it shares some common eigenvalues and eigenvectors with the n-cube, but we would like

to know more. Also it seems that the partially switched n-cubes have some non-integer

eigenvalues, but we do not have a general proof yet.

Problem 7. Investigate the spectral properties of partially switched n-cubes.

We have proved that for any partially switched n-cube, at least 1/8 of its vertices pair

up to admit PST, and conjectured that this number is in fact precise.
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Problem 8. Let S = {1 + 24m4 + · · ·+ 2n−1mn−1, 16 + 24m4 + · · ·+ 2n−1mn−1 |mk ∈

{0, 1} for k = 4, · · · , n − 1}. Prove that a vertex j of a partially switched n-cube is

involved in PST if and only if j ∈ S.

In Chapter 6, we have obtained bounds on the probability of state transfer for a per-

turbed system, where either readout time or edge weights are perturbed. We worked in

the most general setting where the adjacency matrix A (or, alternatively, the Laplacian L)

was arbitrary, and the perturbations themselves were arbitrary. More precise bounds can

be obtained by considering more structured perturbations. Furthermore, it would be of

interest to combine readout time errors with edge weight errors to create one bound en-

compassing both types of perturbations. Assume H is the Hamiltonian of a given system

that admits PST at time t0. Due to timing errors, the state is read out at time t0 +h instead.

If there are also edge weight perturbations H0 (so the Hamiltonian is H +H0), we could

in fact see the fidelity of state transfer of the perturbed system (H + H0) read out at the

perturbed time t0 + h as the fidelity of state transfer of the perturbed system with Hamil-

tonian H + (H0 + h
t0

(H +H0)), where H0 + h
t0

(H +H0) is an edge weight perturbation

of the original system, read out at (unperturbed) time t0, thus transforming the problem to

the case when only edge weight errors occur. This can be used to obtain some preliminary

bounds on the fidelity when both types of errors occur.

Problem 9. Find improved bounds on fidelity of state transfer in a perturbed system, where

the unperturbed system (matrix) and the perturbation matrix are more structured, and

where the unperturbed system admits PST.
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Problem 10. For a system that admits PST, find bounds on fidelity in a perturbed system

when both the readout time and edges weights are perturbed.

Also note that our analysis for bounds on fidelity assumed perfect state transfer (PST).

While there are a number of classes of graphs exhibiting PST, it is of interest to allow for

pretty good state transfer (PGST) and perform a similar analysis on sensitivity of fidelity

to readout time and edge weight errors; note that the numerical evidence reported in Ex-

amples 3.16 and 3.17 in [66] suggests that the fidelity may not be so well–behaved under

perturbation of edge weights in the PGST setting.

Problem 11. For a system that admits PGST, find bounds on fidelity when there is readout

time error, or when there are edge weight errors, at a predetermined readout time with

high fidelity.

In Chapter 7, we considered Laplacian fractional revival of a graph, where we showed

that if there is Laplacian fractional revival between two vertices j and k, then the two

vertices are strongly cospectral with respect to the Laplacian matrix L. We can continue

this work with the following problem.

Problem 12. Find some other necessary conditions a graph needs to satisfy to admit

Laplacian fractional revival (apart from strong cospectrality).

For generalized fractional revival, under some special conditions, we have a result

that generalizes the strong cospectrality between the two vertices with FR as mentioned
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in Remark 7.2.2. We have examples that do not satisfy the hypothesis that 1 is a simple

eigenvalue of U1 = U(t)[S,S]. A related future problem can be the following.

Problem 13. Assume a graph G admits generalized Laplacian fractional revival at time t

between the set of vertices S ⊂ V (G) with 2 < |S| < |V (G)|. Investigate what types of

graphs satisfy the condition that 1 is a simple eigenvalue of U(t)[S,S]. Check the Laplacian

fractional revival property of some other family of graphs.

We can start with the class of graphs with only integer Laplacian eigenvalues, of which

threshold graphs are members.
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