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Abstract

Propagation and scattering of free guided waves in laminated composite plates
are investigated with particular reference to ultrasonic nondestructive evaluation
(NDE) of material properties and flaws.

A stiffness method and an analytical method have been developed to study
wave propagation in laminated composite plates. Using these methods, the effects
of interface layers, anisotropy, and layering on dispersion characteristics of free
guided waves are investigated. It is shown that ultrasonic NDE techniques can be
used to characterise material properties of these plates.

As a special case of a wave scattering problem, the problem of reflection of
waves normally incident upon the free edge of a laminated composite plate has been
investigated in detail using least-squares an(i variational methods. A wave func-
tion expansion procedure has been used in developing least-squares and variational
methods for this problem. The end resonance for a homogeneous fiber-reinforced
composite plate is reported.

A hybrid method is presented for analyzing scattering of waves by the flaws
in laminated composite plates. The modeling is achieved by dividing the domain
of the plate into two regions: an interior region that consists of the flaws and a
finite region of the plate around the flaw; and an unbounded exterior region. The
hybrid method combines a finite element formulation in the interior region with
a wave function representation in the exterior region. The method is illustrated
through solving the problems of scattering by a symmetric normal edge crack and a
centrally located normal matrix crack that grows into delamination. The technique

presented has potential applications in ultrsonic NDE.
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Chapter 1

Introduction

1.1 General

Composite materials are ushering in a new era for material science and en-
gineering due to their low density, increased service life, and high performance
not obtainable with conventional engineering materials. A composite material is
a combination of two or more constituents which results in a substance having a
potentially new range of performance characteristics. There are two basic types
of composites, namely, particle-reinforced composites and fiber-reinforced compos-
ites. Particle reinforced composites are elemental or alloy matrices within which
fine particles of such materials as AlsO3, TnO,, CryOg, Si02, SiC are dispersed.
Fiber-reinforced composites are elemental, alloy or polymeric matrices strength-
ened by random or oriented fibers (filaments). The contents of this thesis will be
mainly directed towards the oriented fiber-reinforced composites, although some of

the principles to be discussed will have general applicability.

In fiber-reinforced composites, the role of the fibers is to impart the stiffness
and strength characteristics of the fibers by being able to carry a major part of the
load in the diréction of the fibers. The fibers may be organic or metalic. Examples
of the commonly used fibers are glass, graphite, boron, and aramid (Kevlar). The
diameters of these fibers are typically in the range of 0.008mm to 0.15mm. Generally
the fibers are 10 to 100 times stronger than the matrix. The role of the matrix
is: to maintain alignment of the fibers and increase structural stiffness; to provide
adequate transeverse properties perpendicular to the fibers; to act as a load transfer

medium for discontinuous or broken fibers; and to protect the fibers from damage,



mutual abrasion and environmental degradation. The matrix may be organic or

metalic. Some examples of the matrices are epoxy, polyester, and silicon.

The use of composite materials began with the development and use of fiber-
reinforced plastic composites in the 1940s, when the engineers were looking for
alternatives to expensive and scarce steels or alloys. Since then, the military and
a variety of other industries (such as aerospace, marine, automobile, construction)
have developed numerous applications for composites. Many of these applications
use composites in the form of plates. In the manufacturing process, the continuous
fibers are laid parallel to each other, and then emersed into the matrix to form
a single layer or lamina. Some applications use composites in the form of single
lamina, which are commonly referred to as homogeneous or uniaxial fiber-reinforced
composite plates. For many other applications, the single layers are hand or machine
bound together with thin resin or plastic bond layers to produce what is known as
laminated composite plates. The present investigation is concerned with such plates.
Almost any number of single layers can be laminated, and the fibers in adjacent
layers can be oriented in differnt directions to suit with the structural requirements.
The composite plates have several advantages over the plates made of conventional
materials. They offer superior strength to weight ratio, and are corrosion-resistant,
thermally insulating, non-magnetic, and dielectric. Another advantage of using
these structural members is the possibilty of tailoring the properties of the fibers for
a particular use. In order to use these stuctural members at their fullest potential,
several problems related to their strength behaviour have to be solved. The strength
of these plates is dependent on the elastic properties of the composite material, and
in addition the presence of flaws or defects in the composite material has a great

influence on the strength.



1.2 Material Characterisation

Ultrasonic waves provide an efficient means of characterising effective elastic
properties of a composite or a heterogeneous material. Several studies (Datta, 1977;
Read and Ledbetter, 1977; Berryman, 1980a, 1980b; Datta and Ledbetter, 1983;
Kinra et al., 1980; Datta et al., 1984; Ledbetter and Datta, 1984; Varadan et al.,
1985; Ledbetter and Datta, 1986; Datta and Ledbetter, 1987; Ledbetter et al.,
1989) show that, for long wave lengths one can predict the effective wave speeds
of plane waves 'through such a material. At long wave lengths wave speeds are
nondispersive, and hence provide the values for effective elastic properties of the

composite material.

In laminated composite plates, the material properties of interface bond layers
and laminae are often quite different in bulk from those of manufactured spec-
imens, due to changes induced by the curing process. Thus it is important to
nondestructively characterise these materials in situ. Several ultrasonic techniques
are currently available for nondestructive evaluation (NDE) of plate-like specimens.
Early techniques used body waves. New techniques employing guided waves are
under development. There are several advantages in using guided waves in the
NDE. First, their dispersive and multimodal nature can be used to generate a large
number of data points in a given frequency range, compared with only a few in the
case of body waves. Second, the velocity of guided waves is very sensitive to the
material properties of the plate. Finally, the velocity of guided waves can be very

accurately measured as a function of frequency.

In order to interpret ultrasonic test results, it is neccessary to have theoretical
predictions for dispersion characteristics of guided waves as fuctions of the properties

to be characterised. Comparision of test results with theoretical predictions leads



to determining unknown properties. Dispersion charateristics of guided waves in
an undamaged laminated composite plate are influenced by many factors, the most
important of which are: interfaces, fiber orientation in each lamina, number of

layers, and effective material properties of each lamina.

Using elasticity equations, dispersion relation for a homogeneous isotropic plate
has been extensively studied by Mindlin (1960). Dispersion characteristics of two- or
three-layer istropic plates have been analytically investigated by Yu (1960), Jones
(1964), and Lee and Chang (1979). Frequency spectrum for monoclinic crystal
plates has been investigated by Kaul and Mindlin (1962). Recently, Nayfeh and
Chimenti (1989) studied propagation of guided waves in an anisotropic homogeneous
plate in detail. This study contains a comprehensive survey of the literature on
guided wave propagation in homogeneous anisotropic plates. Baylis and Green
(1986a, 1986b) and Baylis (1988) investigated analytical dispersion equations for

two- or three-layer transversely isotropic plates.

Several approximate theories have been proposed to derive the dispersion re-
lations in the form of generalized eigenproblems. The most common ones are plate
theories. A list of references on numerous refined plate theories for homogeneous or
laminated media consisting of isotropic or anisotropic materials can be found in Ka-
pania and Raciti (19é9), and Librescu and Reddy (1989). However, plate theories
are cumbersome to use and they do not provide very accurate eigenvalues for wave
velocities. Theories which yield accurate eigenvalues and are computationally very
convenient to use are the theories derived through the stiffness method of analysis.
Dong and his co-workers (Dong and Nelson, 1972; Dong and Pauley, 1978; Dong and
Huang, 1985) presented a stiffness method of analysis to study wave propagation in
laminated anisotropic plates. They discretized the plate in thickness direction with

subdivision into mathematical sublayers and used quadratic interpolation polyno-
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mials that involve only the displacements at the interfaces between sublayers and at
the middle of the sublayers as the generalized coordinates. Since only displacement
continuity is maintained, this method is not very effective for obtaining accurate
wave velocities at high frequencies. Recently, Datta et al. (1988) presented an
approximate stiffness method applicable to a layered anisotropic plate with arbi-
trary number of layers. In this method, the continuity of both displacements and
tractions are maintained. In their analysis, they considered only plane strain and
antiplane strain propagation problems. A comprehensive review of previous work on
guided wave propagation in the presence of thin interface bond layers can be found
in Datta et al. (1990b). In most of these studies, the bond layer is approximated
as a massless spring or a fluid layer that allows jump in the displacement keeping
traction continuous. Attempts at using this spring or slip model to characterise
bond layer have shown their applicability to a limited class of bonds. For further
references on previous studies of guided wave dispersion, the reader is referred to
the edited volume of Datta et al. (1990a). However, in none of the above studies a
systematic study of effects of interface bond layers, anisotropy, and layering on the
dispersion characteristics of guided waves in a laminated composite plate has been

reported.

In the studies mentioned above, attention was focussed on free guided waves.
It is noted here that the effect of fluid loading on ultrasonic guided waves has also
been investigated by several authors. References to these can be found in the works
by Rokhlin and Marom (1986), Nayfeh and Chimenti (1988), Pilarski and Rose
(1988), Chimenti and Nayfeh (1990), and Mal et al. (1990).

1.3 Flaw Detection

Presence of flaws is a major controlling factor of strength of a laminated com-



posite plate. These plates have unique failure mechanisms. For example, the bond
between the layers may fail causing delamination or debonding. Similarly, the ma-
trix can have surface cracks. A most likely failure in a cross-ply laminated plate is a
normal matrix crack initiated within an inner layer, extending to the adjacent layers
and then growing into delamination. If the plate is a part of a structural system
that cannot be dismantled, a preferable way to find the nature and existence of a
flaw (crack or delamination) is in a nondestructive manner. Recently, it has been
demonstrated by Spetzler and Datta (1990) that detection of flaws in plates can be
carried out using guided ultrasonic waves. A schematic diagram of a typical ultra-
sonic flaw detector is shown in Figure 1.1. These flaw detection techniques use a
transducer to send ultrasonic waves into the plate. The waves incident on the plate
travel through the plate, and when a flaw is encountered they scatter into reflected
and transmitted signals. Of particular interest is the scattered signal, which reaches
the surface of the plate and is measured by receivers located on the suraface. The
scattered signals carry a substantial amount of information about the size, shape,
and location of the flaw. Ultrasonic flaw detection techniques rely on the theoretical
predictions of amplitudes of scattered signals. The nature and the existence of the
flaw is determined by comparing ultrasonic measurements of signal amplitudes with
theoretical predictions. Therefore, it is crucial to have a theoretical model which

can accurately predict the ultrasonic wave scattering by flaws.

The free edge of a plate can be considered as a through-thickness crack which
is a special case of a normal edge crack. Thus reflection of waves at the free edge
of a plate can be considered as a special case of a wave scattering problem. Torvik
(1967) treated the free end reflection of a homogeneous isotropic plate by expand-
ing the reflected wave field in wave functions. He determined the amplitudes of

modes, approximately, by using a variational principle. Wu and Plunkett (1967)



also addressed this problem by using a variational principle method and a residual
boundary value minimization method. Gregory and Gladwell (1983) have reported
a detailed investigation of symmetric Rayleigh-Lamb wave reflection at the edge of
a homogeneous isotropic plate by using the method of projection. However, to our
knowledge, a study of free end reflection of homogeneous anisotropic and laminated

anisotropic plates has not been reported.

Many references on earlier work on problems of wave scattering by cracks can
be found in the review article by Miklowitz (1960). The edited volume of Datta et al.
(1990a) is a good source of reference on current works on wave scattering by cracks.
Rokhlin (1980,1981) has analysed the scattering of Lamb waves by a crack parallel
to the surface of a homogeneous isotropic plate using the modified Wiener-Hopf
technique and the method of multiple diffractions. Tan and Auld (1980) investigated
the scattering of Lamb waves by a crack normal to the surface of a homogeneous
isotropic plate using the normal mode variational method. Recently, Achenbach
and his co-workers (Achenbach and Li, 1986; Achenbach and Kitahara, 1986; Angle
and Achenbach, 1987; Mikata and Achenbach, 1988) studied the wave scattering
by a periodic distribution of cracks and cavities in a homogeneous isotropic infinite
solid. However, application of these methods is extremely difficult, if not impossible,

for flaws of arbitrary shape.

Shah et al. (1982) and Wong (1985) used a hybrid method combining an ana-
lytical procedure with a finite element method to study the scattering of horizontally
polarzed shear (SH) waves by arbitrarily shaped cracks and cavities located either at
the surface or at a depth in a homogeneous isotropic half-space. Later, Abduljabbar
et al. (1983) extended this hybrid method for the analysis of the scattering of SH
waves by arbitrarily shaped flaws in homogeneous isotropic plates. Koshiba et al.

(1984) extended this approach to Lamb wave scattering by flaws in homogeneous
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isotropic plates. Recently, Paskaramoorthy et al. (1989) used the hybrid method to
investigate scattering of slow flexural waves by a crack in a homogeneous isotropic
plate. Information on wave scattering by flaws in anisotropic plates is very limited.
It is noted here that while this study was in progress, three other parallel investi-
gations were underway. In one, Al-Nassar (1990) used the hybrid method to study
Lamb wave scattering by weldments in isotropic plates. In the second, using the hy-
brid method, Bratton et al. (1990) studied scattering by a normal surface breaking
crack in a homogeneous (uniaxial) fiber-reinforced composite plate. In the other,
Ju et al. (1990) investigated scattering by a interior crack parallel to the surface
of a homogeneous fiber-reinforced plate, using a different technique that combines
finite elements and Green’s function integral. However, wave scattering by cracks

and delaminations in laminated composite plates has not been investigated.

1.4 An Overview of the Present Study

The objective of the present study is to investigate propagation and scattering
of free guided waves in laminated composite plates with particular reference to
material characterisation and flaw detection. The analysis is carried out on the
assumption that the lateral dimensions of the plate are very large in comparison to
the thickness of the plate. A stiffness method and an analytical method are used
to study the dispersion characteristics of free guided waves. As a special case of a
scattering problem, the free end reflection problem is investigated in detail using
least-squares and variational methods. Wave scattering by cracks and delaminations

is studied by extending the hybrid method.

1.4.1 Guided Wave Propagation

The stifflness method used in this study is an extension of that presented by



Datta et al. (1988) to the off-axis case where direction of wave propagation is
at an arbitrary angle to the fiber direction in each lamina. In this method, the
dynamic behaviour of the composite plate is approximated by dividing the plate
into several sublayers and representing the displacement distribution through the
thickness of each sublayer by cubic interpolation polynomials. These polynomial
functions involve a number of discrete generalized coordinates, which are displace-
ments and tractions at the interfaces between the adjoining sublayers. By applying
the Hamilton’s principle, the dispersion equation is obtained as a standard alge-
braic eigenvalue problem. Eigenvalues and eigenvectors of this equation yield the
frequencies of propagating, nonpropagating, and evanescent modes, and the associ-

ated displacements and tractions at the interfaces.

An efficient method to obtain the exact dispersion characteristics of a plate hav-
ing arbitrary number of anisotropic layers has not been reported in the literature.
Although it is possible to obtain, using a propagator matrix approach (see Mal,
1988), exact dispersion equation governing guided waves in a layered anisotropic
plates, finding roots of this transcendental equation is quite cumbersome and com-
putationally very expensive. As the number of layers increases, the exact dispersion
relation becomes extremely complicated and requires robust search techniques in
locating roots. To circumvent this difficulty, an analytical method that combines
an efficient root locating s'cheme is proposed here. In this method, exact disper-
sion relation of the layered anisotropic plate is constructed using the propagator
matrices. Mullers’s method as given in Conte and Boor (1972) is then used, in
conjunction with initial guesses obtained from an approximate theory, to obtain

analytical dispersion characteristics.

The accuracy of the stiffness method is demonstrated by comparing the results

with analytical results for homogeneous and layered fiber-reinforced plates. The ef-
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fect of anisotropy on the dispersion characteristics in a homogeneous fiber-reinforced
plate is studied by changing the angle between the fiber direction and the direction
of wave propagation. The effect of interface layers is investigated using an actual
modeling approach. In this approach, the interface layer is considered as a sublayer,
thus taking into account both the stiffness and the density of the bond layer. The
results of the interface effects show the possibility of using ultrasonic techniques to
characterise bond layer properties and thickness. Finally, the effect of number of
layers on the dispersion characteristics in fiber-reinforced cross-ply laminated plates
is investigated. Tt is shown that the material properties of a composite plate with a
sufficiently large number of layers can be charaterised as homogeneous anisotropic

with six elastic constants.:

1.4.2 Free End Reflection

A wave function expansion procedure is used to solve the problem of reflection
of waves normally incident upon the free edge of a semi-infinite, laminated composite
plate. The reflected field consists of a finite number of propagating modes and
an infinite number of nonpropagating and evanescent modes. A finite number of
wave functions are superposed to represent the reflected field. The least-squares
and variational principle methods are used to determine the unknown reflected
wave amplitudes. The numerical results of wave amplitudes and division of energy
among various reflected modes for a homogeneous fiber-reinforced plate and for a
35-layer cross-ply laminated plate are presented. The accuracy of the results are
checked by satisfying the principle of energy conservation. The end resonance for

the homogeneous fiber-reinforced composite plate is also reported.
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1.4.83 Wave Scattering by Cracks and Delaminations

In the present study, the hybrid method is extended to the analysis of wave
scattering by flaws in laminated composite plates. The hybrid method combines
finite element formulation in a bounded interior region of the plate with a wave
function expansion representation in the exterior region. All the flaws are assumed
to be contained in the bounded region. The two regions are connected along vertical
boundaries. Continuity conditions for the displacement and interaction forces are
imposed at the nodes lying on the boundaries. This results in a system of linear
equations which is solved for the unknown wave function amplitudes. These am-
plitudes are used to obtain boundary nodal displacements and in turn to obtain
interior nodal displacements. The hybrid method is illustrated for the case of scat-
tering by a symmetric normal edge crack and a centrally located normal matrix
crack that grows into delamination. Numerical results of the scattering problem
are presented for an isotropic plate, a homogenous fiber-reinforced plate, and for
8-layer and 35-layer cross-ply laminated plates. The accuracy of the results are
checked by the satisfaction of the reciprocity relations and the principle of energy
conservation. The results of this investigation have potential applications in ultra-

sonic nondestructive evaluation.

1.5 Organisation of the Thesis

This thesis is concerned with the investigation of propagation and scattering
of guided waves in laminated composite plates with particular reference to material
characterisation and flaw detection. In Chaper 2, the formulation of an analytical
and an approximate wave propagation model is presented. The aécura,cy of the
approximate model and the numerical results for effects of interface bond layers,

anisotropy, and layering on the dispersion characteristics are discussed in the same
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chapter. Formulation and discussion of numerical results of the free end reflection
problem are presented in Chapter 3. In Chapter 4, the formulation of the hybrid
method for wave scattering by flaws in laminated composite plates is given. Also
given in the same chapter is the numerical results for scattering by a symmetric
normal edge crack and a normal central crack that grows into delamination. Finally,
conclusions of the research are presented in Chapter 5. Some recommendations for

future work are also made in this chapter.
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Figure 1.1 : Schematic diagram of a typical ultrasonic flaw detector.
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Chapter 2

Wave Propagation in Laminated

Composite Plates

2.1 General

In this chapter, wave propagation in laminated composite plates is investigated
in detail. As mentioned in Chapter 1, two wave propagétion models are developed:
one employing an analytical formulation; and the other employing an approximate
displacement and stress based stiffness method. The main objective of develop-
ing these models is to find the dispersion relations and thereby to study guided
wave propagation in a laminated composite plate. The effects of interface layers,
anisotropy, and layering are investigated by making use of dispersion characteristics
obtained from these models. Later in this chapter, it is shown that the material
properties of a composite plate with a large number of laminae can be characterised

as homogeneous anisotropic.

2.2 Description of the problem

Time-harmonic elastic wave propagation in an infinite plate composed of per-
fectly bonded layers with possibly distinct mechanical properties and thickness is
considered. The two faces of the plate z = 0 and z = H are traction-free, and the
global rectangular cartesian coordinate system (z,y,z) is as shown in Figure 2.1.
The assumed direction of plane wave propagation is z. Since the plate is infinite in y
direction, all field quantities (dispalcements, strains, stresses etc.) are independent

of the y coordinate.
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2.3 Analytical Method

In this section, a wave propagation model based on exact analytical formulation

is developed.

2.3.1 Governing Equations

Since the concern here is with a plate having a large and a varying number of
layers, it will be convenient to resort to an analytical technique in which the number
and properties of layers can be arbitrarily varied without substantially changing the
solution procedure. In the technique adopted here, each layer is divided into several
sublayers so that the total number of sublayers through the thickness , H, is N. For
simplicity in the analysis, each layer is assumed to have tranversely isotropic mate-
rial properties with the material symmetry axis making an arbitrary angle with the
z- axis. In general, waves propagating in a direction making an arbitrary angle with
the symmetry axis of each lamina will produce a three dimensional wave motion.
Let ¢ denotes time, and u(z, z,1), v(z, 2,1), w(z, 2,t) denote particle displacement
components in z, y, z directions, respectively. Consider the ¢-th sublayer bounded
by z = z; and z = z;41. A local rectangular cartesian coordinate system (X,Y, Z) is
chosen in the i-th sublayer with the origin in the mid-plane of the sublayer, X- axis
-along the material symmetry axis (fiber direction), Z- axis vertically down, and Y-
axis parallel to the plane of the plate. Let U(X,Y, Z,t), V(X,Y, Z,t), W(X,Y, Z,1)
be the displacement components of any particle within the :-th sublayerin X, Y,

Z directions, respectively.

The strain-displacement relations within the 2-th sublayer in the local coordi-

nate system are given by

ou

exXx = X (2.1a)
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VY = Sy (2.1b)
€zz = %VZK, (2.1¢)
€yz = %’ryz = ?12- (% + ?}}Ef) ; (2.1d)
€zx = %'YZX = % <g—g— + ng) ; (2.1e)
exy = ';”)’XY = -é— <g§, + g—g) : o (21f)

where €77 represent strain components.

The stress-strain relation of this sublayer in the local coordinate system is given

by (see Lekhnitskii, 1963)

oxXx rCi1 Ciz Ci3 0 0 0 7 (exx )

oyy Cia Ci Caz 0 0 0 Yy

077 - Ci3 Caz Cis3 0 0 0 €72 (2 2)
oyz 0 0 0 Caus 0 0 vz ’
ozx 0 0 0 0 Css 0 YzX

oxy J L 0 0 0 0 0 Ces 4 YXY

where o7 are the stress components and Cry are the elements of constitutive matrix

for the sublayer. Note that

Cos — C
Cig = Cas, Css = Cége, Ci2 = C13, Coa = (222—23) (2.3)

Let 6 be the angle between the global z- axis and the local X- axis measured
anticlockwise from the global z- axis. The stress and strain components for the i-th

sublayer in the global (z,y, z) coordinate system are related by

Ozz ) " D11 Diz Das 0 0 Dig7 ( €z
Tyy Dis Diyz Dy3 0 0 Dy Eyy
02z | _ | D1z Das Dsz 0 0 Dss €2z (2.4)
Oyz 0 0 0 Dy Dy O Yyz '
Ozz 0 0 0 D45 D55 0 Yzz

\ Ozy | Dyg Dag D3¢ O 0 Dged \yzy
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where 0;; and ¢;; represent stress and strain components, respectively, in the (z,y, z)
coordinate system and D;; are related to Cry by the equations presented in Ap-

pendix A.

In the absence of body forces, the equations of motion in the local coordinate

system are given by

Ooxx doxy Ooxz o o*U

ox oy 8z Pam (259

Ooxy  Ooyy | Ooyz = O°V

s jas S = P aa (2.5b)
2

Ooxz  Oovg 4 Bozz _ W (2.5¢)

X Y 8z Par

where p is the density of the sublayer under consideration.

If the direction of the fibers in each lamina is aligned with either z- or y- axis,
then the wave propagation problem reduces to two uncoupled problems: plane strain
case in which the displacement components are v and w, and antiplane strain case
where the only nonzero displacement component is v. When the wave propagation
occurs along an off-axis direction (i.e. § 3 0° or 90°), the particle dispalcement
vector will have all three displacement components: u, v, w. In §2.3.2 analysis for
plane strain case is presented. Since the analysis for antiplane strain case is very

similar to the plane strain case, no details of the antiplane strain case are presented

here. Off-axis case is dealt with in §2.3.3.

2.3.2 Plane Strain case

The nonvanishing displacement components in this case are u(z, z,t) and
w(z,z,t) in = and z directions, respectively. The governing equations (2.1), (2.4)

and (2.5) for the i¢-th sublayer in the global (z,y,z) coordinate system reduce,
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respectively, to:

€xp = g‘;ﬁ, (2.60,)
ow
zZz a3 2 b
€ 5, (2.60)
Oow Ou
Yzz = oz + ‘a, (2.6c)
Ozz Dy Dy O €zz
Ozz = D13 D33 0 €zz 3 (27)
Oz 0 0 D55 Yz
and
00y 00, 0%y
= 2.
Oz 0z P ot2’ (2.80)
2
60'2::: 60';;2 _ pa w. (28[))

Oz Oz 0t2

Note that the analysis presented in this subsection is valid not only for transversely
isotropic material properties but also for orthotropic material properties. In the
latter case, equation (2.3) does not hold and the appropriate material property

transformation equation from Appendix A has to be used.

The appropriate forms for 4 and w, which satisfy equations (2.8), are

u = jR(Q] + BOF ) expj(kz — wt)], (2.9a)
w = (45107 + 5205 )exp[j(kz — wt)]. (2.95)
where
QF = ay; cos(s12) + ays sin(s; z), (2.10a)
0 = a12 cos(s12) — a1 sin(s; 2), (2.100)
Q;’ = ap; cos($22) + as sin(sy2), (2.10¢)
2 = @23 cos(s22) — @y sin(ss 2), (2.104d)
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k12 - )\1k‘2 - 312

A= 2.11
51312 ’ ( CL)
klz — k% — ,31522
B = 2.11b
2 12
512,8.% = k"1 +f) — K £ T , (2.12a)

261
Iy = \/[kzm k(14 61)]° — 4B (Ak? — k?)(k? — ki?),  (2.12b)

D11 D33 D13
A= — = = =14+ —7 2.13a,b
1 Dss 9 ﬂl D55 ) 1 + D55 ’ ( a, 7C)
pw?

m =1+ p — 67, k1= \ (2.13d,e)

Dss

In the above, k£ is the wavenumber in & direction; w is the circular frequency;
j =+/—1; and a11, a2, as1, and ay; are arbitrary constants for the sublayer. Stress
and displacement components at any point within the sublayer can be expressed
in terms of the four unknown constants a11, a1z, @21, and azz. By evaluating the
stresses and displacements at z = 2; and z = 2;41, and by eliminating the four

unknown constants, the following relation can be obtained:

{Bit1} = [P[{B:}, (2.14)
where

{Bi}T = <ui Wi Ozzi Uzzi) . (215)

The vector quantity {B;}, which is unknown yet, represents the displacement and

stress components at z = z;; {B;t1} represents the same quantities at z = z;4;
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superscript T denotes the matrix transpose; and [P;] is the propagator matrix for

the i-th sublayer. The elements of [P;] are given in Appendix B.

The global propagator matrix [P] for the entire plate is obtained by the re-

peated application of equation (2.14) as

{Bn+1} = [PI{B1}, (2.16)

where

[P] = [PN][PN-1] - [Pi] -« [Po][P1]. (2.17)

The repeated application of equation (2.14) ensures the continuity of the displace-
ment components v and w, and stress components o,, and the o, at the inter-
faces between sublayers. Denoting the elements of the 4 by 4 matrix [P] by Ppn»
(m,n = 1,2,3,4) and invoking the zero traction conditions at interfaces 1 and

(N + 1), the following can be obtained from equation (2.16):
P31 Py U1 0
= ) 2.18
A raltn -t 19
The exact dispersion equation (frequency equation) for the plate is obtained by

setting the determinant of the coefficient matrix to zero as

P31 P32

f(w,k):|P41 n|=0. (2.19)

Equation (2.19) can be solved for k, for given w, or alternatively, it can be solved
for w, for given k. The details of the method employed to determine the roots of

the dispersion equation will be discussed in §2.5.

Once the roots of the dispersion equation are determined, the corresponding
wave functions (displacement and stress eigenvectors) can be obtained using equa-

tion (2.18) and the successive application of equation (2.14) at interfaces. It should
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be noted at this stage that division of layers into sublayers is not required to obtain
the exact dispersion equation but is required to calculate the values of wave funtions
at a sufficiently large number of points through the thickness. The usefulness of the

subdivision will be evident in Chapters 3 and 4.

If the problem under consideration is symmetric or antisymmetric, it is possible
to model only the half-thickness of the plate in the analysis. In this case, the
boundary conditions at the middle surface of the plate, z = H/2, are :

w=0 ; o0, =0, forsymmetric problems, (2.20a)

v=0 ; o0,, =0, forantisymmetric problems. (2.200)

Application of these boundary conditions in equation (2.16) results in the following

dispersion equations:

P21 P22 — 0’ for symmetric pI‘ObleIIlS, (2'21)
Py Py

and
Py Py _ 0, for antisymmetric problems. (2.22)
P;;  Psy

2.3.8 Off-axis Case

In order to solve the governing equations for this case, it will be neccessary to
manipulate them in such a way that tractable differential equations are obtained.
For this purpose, it is conveniént to carry out the analysis for the :-th sublayer
in the local coordinate system first and use appropriate transformations to global
coordinate system later on. In order to uncouple the governing equations, three

potential functions @, &, and ¥ are introduced, as defined below:

v=22 (2.23a)



0® oV

V= Fa + 37 (2.23b)
0% 0V
o
W = 57 " 57 (2.23¢)

In view of equations (2.1), (2.2), and (2.23), the stress components can be

written as
0?0 0%® 9%
XX = 0115}*2 + Ci3 <W + 5~Z—5> ) (2.24a)
0?0 0?9 5% 9?d 02T
oYy = 013(753(—2 + Cls <8Yz + 6Y6Z) + Cas <;9—Z—'E - —8—Z~3—?> , (2.24b)

520 e 52U 20 90
772 = C1s g + Cs <8Y2 ” amz) o Cas <52_2 - 5’2_5?) ) (2:24¢)

2 2T U
oyz = Cas <26Y8Z -+ 572 8Y2> , (2.24d)
20 P28 5
7zx = Oss (azax T X6z 8X6Y> ’ (2.24¢)
2% 2T 520
oxy = Uss (axay T oxez T amx) (2.24f)

Substitution of equations (2.23) and (2.24) in equations (2.5), and subsequent alge-

braic manipulation of the resulting equations leads to the following three equations:

8? 0? b? 8%\ 620
Css X (V20) + (Cis + 055)5X2 (V?®) + (C’ugﬁ - P@) Xz = 0 (2.25aq)
62 2 32 2 4 82 2@ _ b
(Cl3+055)aX2(V ®)+0558X2(V @)+C33V @—pa?(v ) =0 (225 )
52 52 ,
C44V4‘I} + <C55“8’"X—2 - pgzi) V \I’ = 0 (2250)
where
H? 0?
2 el — —_—
ve= oYz = 9z>2
o* ot ot
4 _
V' = ove T 25ve82: T aze
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Equation (2.25a) is obtained by partial differentiation of equation (2.5a) with re-
spect to X'. Equation (2.25b) is obtained by summation of the partial derivative
of equation (2.5b) with respect to Y, and the partial derivative of equation (2.5c¢)
with respect to Z. The partial derivative of equation (2.5¢) with respect to ¥
substracted from the partial derivative of equation (2.5b) with respect to Z, yields

equation (2.25c¢).

It can be seen that equations (2.25a) and (2.25b) are coupled while equation
(2.25¢) is independent. The basic unknowns of the problem posed now are ©, ®, and
W. Since time-harmonic waves propagating in z direction are considered, the z and
t variation of unknown functions can be assumed to be of the form explj(ke — wt)]
(where k denotes the wavenumber in @ direction). On the other hand, since the
plate is infinite in y direction, unknown functions should not have any dependence

on y. Therefore, the appropriate forms for the potential funtions are

O = f1(Z) exp(j9), (2.26a)
© = f2(Z) exp(54), (2-260)
U = f3(2)exp(59), (2.26¢)
where
=k —wt=KX + LY —wi, (2.27a)
K =kcosb, (2.27)
L =ksin®. (2.27¢)

In the above, f1(Z), f2(Z), and f3(Z) are unknown functions; and K and L repre-
sent wavenumbers in X and Y directions, respectively, for the i-th sublayer. Sub-

stitution of equations (2.26) in equations (2.25) results in

d’ i
(@—Lz—Aszﬁ-k:f) Ji+ 62 <@—L2> 2 =0, (2.28q)
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2 [ @& 2 2 2 d? 2 d? 2
——52K <de L>f1+[(k2 —K)+ﬁ2<aﬁ—L>:1 <225'—L)f2:0
(2.28b)
2 2 d? 2 d? 2
I:—K 4+ ko +€2<&—Z—2—L>} <"d—Z—2‘—L>f3:O (2286)
where
Cu Cs3 Caq
Ay = — = = = 2.29a,b
2 Css ) 62 Css d €2 Css ’ ( 9(1, 7c)
Cis pw?
by =14+ 222 k=42 2.29d,
? Css 27\ Css (2:29,¢)
The solution which satisfies equations (2.28) can be written as
£ =7 4 pliglo) (2.30a)
f2 = ALQT) L qF ), (2.30b)
fs = 07, (2.30¢)
where
ﬂf(o) = ag ) cos(r1 Z) + a(u) sin(ry Z), (2.31a)
Q;(o) = agl) cos(re Z) + agz) sin(ry Z), (2.31b)
Q;(o) = a,32 cos(CZ) — a31 s1n(CZ) (2.31c)
ko — M K? — (r12 + L?)
Alo) = 2 2 1 .
5207 + L7) , (2.32a)
ko® — K% — Ba(ra? + L?)
(o) _ K2 2\T2
B 5K . (2.320)
ka?(1 - K £T
2= P (Lt Bo) — Kimp £ 15 (2.334)

203
Ty = ﬁK?nz — k2 (14 B2)]” — 48> (M2 K2 = ks?)(K? — ks?), (2.330)

24



b2 K2 2
okl - K e2l” (2.34)

€2

M2 =14 X0 — 6,2, (2.35)

: (e) (o) (o) alo) (o) (o ) : ,
In equations (2.31), @117 Q1975 @31, a3y’ @37, and a3’ are arbitrary constants for the
sublayer. The superscript (o), used above and in the subsequent analysis, represents

the off-axis case.

After dropping the factor exp(j%), the displacement and stress components in

local coordinate system can now be written as

U= 35K 4 Bl)g})), (2.364)
V = L) 1 4000 _ g (2.36b)
W = (r2Q;) 4 4)r () _ FLO;), (2.36¢)

oxx =Css {[-M(z + A1 = §,)(r,2 4 Lz)] Q)

+ [-A2K23<°> (1= 65)(rg? + Lz)] Qj(")} , (2.37a)
ovy =Css {[(1 = 62)K7 + A© (26,42 _ gy (m2 4 Lz))J Qe

+ [(1 = 6)K2B) 4 2e,my% — g, (ry? 4 12 )J 07 _ o, ij;(">} ,(2.37b)
077 =Css {[(1 = 62)K? + 4) (26,12 _ g, (ry2 1 LZ))] Q)

+ [(1 = 6:)K* B 4 26,12 _ g, (p,2 4 12 )J Q7 4 o, ng9§<°>} , (2.37c¢)

ovz =Css {2]Lr1A(°)Q 12500, 05 (12— o2 )05 (")} (2.37d)
ozx =Css K { (1 + 407 4 jry(1 4 Bl (@) 4 LQ;(")} : (2.37¢)
oxy = — Css K {L(1 + A 1 L1+ pe)pFe) jmgL(")} , (2.37f)
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where

07 = ol st 7)o i ),
05 = afy cos(r2Z) — a7 sin(r, 2),

Q;(O) = agi) cos((Z) + ag;) sin((Z),

(2.38a)
(2.38b)

(2.38¢)

The next step in the analysis is to transform the displacements and stresses from

the local coordinate system to the global coordinate system. These transformations

are defined by

u=mU +nV,
v = —nlU +mV,

w =W,
and

2
0zx = mPoxx +nloyy + 2mnoxy,
= n? +m? 2
Oyy = n°0xx + moyy — 2mnoxy,

Oy = mn(O'YY - O'XX) + (m2 - nz)UXYa

Ozz = MOzX +n0YzZ,
Oyz = —Nozx +moyz,
Oz = 0227,

respectively, where m = sin§ and n = cos#.

() (o) (o) (o) (o) (o)

(2.39a)
(2.395)

(2.39c¢)

(2.40a)
(2.40b)
(2.40c)
(2.40d)

(2.40¢)

(2.40f)

The six arbitrary constants ay;’, aj5’, @3y, a5y, @31, a3, can be eliminated by

evaluating the displacement components u, v, w, and the stress components o,
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Oz, Ozy at 2 = 2; and z = z;y;. This leads to

{B} = [P{V){ B} | (2.41)
where
(o)1 T
{Bi } = <'Ll,i Vi Ozzi Ozzi Oyzi Wi ) s (242)

and [Pl-(o)] is the propagator matrix for the i-th sublayer, which is defined in Ap-

pendix B.

The global propagator matrix [P(°)] for the entire plate is obtained by the

repeated application of equation (2.41) as

{B%), .} = [PONB) (2.43)
where
(PO = [PNPS) ) --- [PL]- .. [PSY PL), (2.44)

The repeated application of equation (2.41) ensures the continuity of the displace-
ment components u, v, w, and the stress components o, 0,,, 02y at the interfaces
between sublayers. Let the elements of the 6 by 6 matrix [P(°)] be denoted by P
(myn =1,2,---,6). Invoking the zero traction conditions at the interfaces 1 and

(N + 1), the following is obtained from equation (2.43):

Py PS PR (1w 0
P PO PO {v y=(0)}. (2.45)
o #lp Aol lw ) Lo

The exact dispersion equation (frequency equation) for the plate is obtained by

setting the determinant of the coefficient matrix in equation (2.45) to zero as
PO B
fUw k)= PS PS PR =0 (2.46)
Py P PR
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As in the plane strain case, if the problem under consideration is symmetric or
antisymmetric, only a half-thickness of the plate is modeled in the analysis. In this

case, the boundary conditions at the middle surface of the plate, z = H/2, are :

w=0 ; 0,=0 ; oy, =0, forsymmetric problems, (2.47a)

u=0 ; v=0 i 02z =0, {for antisymmetric problems. (2.47b)

Applying these boundary conditions in equation (2.43), the dispersion equations
are obtained as
b By R
P5(10) Ps(zo) Ps(g) =0, for symmetric problems, (2.48)
P PR Y
and
b R A
Pz(f) Pz(;’) Pz(g) = 0, for antisymmetric problems. (2.49)
Y YR

2.4 Stiffness Method

Dong and his co-workers (Dong and Nelson, 1972; Dong and Pauley, 1978; Dong
and Huang, 1985) presented a numerical technique applicable for wave propagation
analysis in a layered anisotropic plate. In their technique, thickness variations of
the displacements are approximated by quadratic functions of a thickness variable.
The generalized coordinates in this representation are the displacementsl at the top,
middle, and bottom of each mathematical layer (sublayer). Datta et al.(1988) pre-
sented a stiffness method that employs a higher order polynomial representation
where generalized coordinates are displacements and tractions at the top and bot-

tom of each mathematical layer. In their analysis, only plane strain and antiplane
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strain problems were considered. Herein, this stiffness method is extended to incor-
perate off-axis propagation where direction of wave propagation is at an aribitrary
angle to the fiber direction in each lamina. For convenience, in what follows in
this thesis, the present stiffness method is referred to as stiffness method I whilst
the method of Dong and his co-workers is referred to as stiffness method II. As in
the case of the analytical method presented in §2.3, the stiffness method I starts .
with dividing each layer into several sublayers so that the total number of sublayers
through the thickness of the plate is N. For transversely isotropic material proper-
ties, the stress-strain relation within the i-th sublayer is given by equation (2.2) and
equation (2.4) in the local and the global coordinate systems, respectively. By using
the interpolation polynomials in the z direction, the displacement components can

be approximated as

U= Uny + Uir1ng + uing + ULy N, (2.50a)
V= 0ing + viping +ving + ving, (2.500)
W = winy + wipiny + wing + wi N, (2.50¢)

where n1, n2, n3, and n4 are cubic polynomials in the local coordinate Z given by

1
ny = Z(Z — 37 +7°), (2.51a)
1
ny = 2(2 + 37 - 17%), (2.510)
h
ng = 7(1—n—7n"+7°), (2.51¢c)
h
ne = 2 (=1-n+n*+79°), (2.51d)
and
zZ
= —, 2.
n= 7 (2.52)
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In the above, u;, v;, and w; are the values of u, v, and w, respectively, at the i-th
interface. Subscript ¢ + 1 denotes the same quantities at the (¢ + 1)-th interface.
In addition, u}, v}, w!, and ulyq, viiy, wi,, represent some unknown coeficients
associated with i-th and (141)-th interfaces, respectively. Using strain-displacement
relations and stress-strain relations along with equation (2.50), stress components
at the sublayer interfaces can be expressed in terms of displacement components
and unknown coeflicients associated with the interfaces of the sublayer. This allows

one to determine unknown coefficients as

Dy, . Dys Bwi

UPE AN T TR T (2.53a)
CHES %Ti - %1—5%', (2.53b)
RS il v el o (2530
where
A = Dyy D55 — Di;; (2.54)

and x;, 7;, 0; are the values of 7,, Oyz, 0z, Tespectively, at the 2-th interface. The
corresponding expressions for u},;, v}, ;, and w},, are obtained from equations

(2.53) by simply replacing ¢ with 7 + 1.

The equations governing the nodal generalized coordinates Us, Viy Wiy Xiy Ti
and o; (i =1,2,---,N + 1) are obtained using the Hamilton’s principle. For this
purpose, the Lagrangian L; per unit length in the y direction for the i-th sublayer

1s written as

=1 ’ i} {u} — {&a T € ) dz| dz
Li= /[/_h(p{u}{} {}[DJ{})d}d, (255)
where

{u}' =(u v w),

{G}T:<€zz €yy €2z VYyz Vzz ’Yzy>,
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and [D] is the constitutive matrix, the elements of which are the D;; in equation
(2.4). The overbar and overdot denote, respectively, the complex conjugate and the

derivative with respect to time.

Using equation (2.50) in strain-displacement relations, and in turn in equation

(2.55), L; can be written as

=5 JE@Y lea} + 101 ealad + (@ lesl{' + (7 I} — (&) lealta")
— 1"} le2H{'} = {a"Y esl{a} — {7} [e2) {a"} — {2} [eal{a'}
{8 esHa} — {2 [es] ("} — {2} [es] {0’} — {2} "lecl{a} e (2:56)

where {q} is defined as

T
{a}" =(ui xs v 7T Wi 07 Wit Xi+1 Vit1l Titl Wil Oig1),

(2.57)

and the primes denote derivatives with respect to z. The matrices [c2], [c3], [m]

and [e;] through [es] are defined in Appendix C.

The Lagrangian for the entire plate is obtained by summation over all the
sublayers, and its first variation leads to an approximate governing equation for
the plate. Assuming the time dependence in the form exp (—jwt), the governing

equation is derived as:

W (-[C2{Q"} — [C1{Q"} + [M]{Q})
— ([BL{Q7} + [B2HQ"} + [Bs{Q"} + [Esl{Q'} + [Es]{Q}) = 0. (2.58)

The generalized displacement-traction vector {@} appearing above is the assembly

of {g} for all sublayers, and the matrices [Cy], [C2], [M], and [E;] through [Es]
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are defined in Appendix C. Note that the matrices [M], [Cs], [E1], [Es] and [Es)
are symmetric, whereas [C1], [F,] and [E4] are antisymmetric. It is seen that {Q}

satisfies a fourth order homogeneous ordinary differential equation in z.

A solution to equation (2.58) can be assumed in the form

{Q} = {Qo}exp[j(kz — wi)] (2.59)

where {Qo} represents the amplitude vector. Substitution of equation (2.59) into
equation (2.58) leads to the following set of linear homogeneous equations to solve

for {Qo}:
(F*[K1] = jR°[K2) — k(K] + jh[Ka] + [Ks]) {Qo} = 0 (2.60)

where [Ki] = [B1], [K2] = [Bs], [Ks] = [Es] + w?[C,], [Ka] = [Ed] + w?[C],
and [Ks] = [Es] — w?[M]. A nontrivial solution can be obtajned by setting the
determinant of the coefficient matrix to zero. This results in the dispersion relation
to solve for the eigenvalues & for a given w. In other words, k for a given w is found
by treating equation (2.60) as a fourth order eigenvalue problem in k. Alternatively,

equation (2.60) can be written as

(K]~ w?[M,]) {Qo} = 0 (2.61)

where
[Ko] = k*[K:1] — jR*[Ky) — k*[Es] + jk[E4] + [Es), (2.62a)
[M,] = [M] — jk[C1] + E?[Cs]. (2.62b)

This leads to the standard eigenvalue problem for solving w? for a given value of k.
The approximate wave functions are given by the eigenvectors of equation (2.60) or

(2.61).

32



It should be noted that the formulation presented in this subsection is also
valid when the sublayers have orthotropic or even monoclinic material properties
in the local (X,Y,Z) coordinate system. This is due to the fact that: orthotropic
or monoclinic material properties in local coordinate system remain as monoclinic
when transformed into the global (z,y, z) coordinate system; and in equation (2.4)
as well as in the subsequent analysis, material properties appear as monoclinic
in (z,y,2) coordinate system. The only requirement is that appropriate material

transformation equations should be selected from Appendix A.

Formulation for the analysis of plane strain and the antiplane-strain propaga-
tion problems using this stiffness method is not presented here since these cases

have been well documented by Datta et. al. (1988).

2.5 Roots of Dispersion Equation

Dispersion equations obtained in §2.3 and §2.4 can be solved for k, for given w
or alternatively, they can be solved for w, for a given k. Due to physical reasons, only
real values are acceptable for w. For a particular value of w, dispersion equations will
have a finite number of real roots and an infinite number of imaginary and complex
roots for k. The main interest here is to obtain the frequency spectrum (plot of
frequency vs. wavenumber) or the phase velocity spectrum (plot of phase velocity vs.
frequency) where phase velocity is defined as the ratio w /k. The frequency spectrum
has three different kinds of branches: real, imaginary and complex (for details see
Mindlin, 1960; Datta et al., 1988) corresponding to real, imaginary, and complex
roots for k, respectively. The real branches represent the propagating modes'which
dominate the dynamic response of the plate. The imaginary and complex branches
represent nonpropagating and evanescent modes, repectively, and these modes decay

with z.
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Using the stiffness method I, an approximation to the frequency spectrum can
be found. The real branches (dominant modes) of the approximate spectrum can
be easily obtained by solving the standard (first order) eigenvalue problem given
by equation (2.61). A point to be noted here is that for real branches, the matrices
[K,| and [M,] are real symmetric and positive definite. However, if imaginary and
complex branches of the approximate frequency spectrum are to be obtained, then
the fourth order eigenvalue problem defined in equation (2.60), which involves a

large amount of computer time and core memory, has to be solved.

For a fixed value of either w or k, the exact dispersion equations obtained in §2.3
are transcendental functions of either k or w. It is possible to find the roots of the
these transcendental equations by some search method (see Press et al., 1988). This
approach will be computationally formidable since the roots are sparsely scattered.
Herein, Muller’s method (see Conte and Boor, 1972) is employed to recover the
exact roots. Approximate roots obtained from the stiffness method I (or II) are
used as initial guesses in the Muller’s method. If the roots are required over a given
range of k (or w), approximate roots from the stiffness methods are required only
at the first step to use as initial guesses. At the next step , k (or w) is changed by
a small amount and exact dispersion equation is solved taking the exact roots from
the previous step as initial guesses for the current step. The process is repeated

until the range of interest is scanned.

2.6 Numerical Results and Discussion‘

In this section, the numerical results for dispersion characteristics of homogen-
eous and laminated composite plates made up of aligned continuous fiber-reinforced
material (graphite-epoxy) are presented. On the assumption that the wavelength

is much larger than the fiber diameter and spacing between the fibers, each layer
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(lamina) can be modeled as a transversely isotropic medium with the symmetry
axis aligned with the fiber direction (see Datta et al., 1984; Ledbetter et al., 1989).
These transversely isotropic elastic constants used in the computations here are (in
units of 10**N/m?), C11 = 1.6073, C22 = 0.1392, C1» = 0.0644, Csy = 0.0350, and
Css = 0.0707. In all numerical results presented in this chapter, the nondimensional

frequency, wavenumber, and phase velocity are defined as

wH 1 w
Q=22  ,_ipH , C=—2 . (2.63)
24/Css/p 2 k+/Css/p

respectively. For simplicity, it is assumed in the case of layered plates that all the

layers are of equal thickness.

2.6.1 Accuracy of Stiffness Method I

The accuracy of the results obtained by the stiffness method I was tested against
the analytical solution for propagation in a homogeneous plate and in several cross-
ply (i.e. adjacent layer fibers are perpendicular to each other) plates. For brevity,
only some of the results obtained are presented here. Figure 2.2 shows the results
for a homogeneous graphite-epoxy plate for propagation in the fiber direction (0°
direction). For the discretization in the stiffness method I, 8 sublayers of equal
thickness were used through the half-thickness of the homogeneous plate. Results
for a 3-layer 0°/90°/0° and 35-layer 0°/90°/0°------ 0°/90°/0° cross-ply plates for
propagation in the 45° direction are shown in Figures 2.3 and 2.4, respectively. In
the stiffness method I, each layer of the 3-layer plate was divided into 8 sublayers,
and each layer of the 35-layer plate was treated as a single sublayer. As pointed
out in §2.3, in the analytical method, there is no need to subdivide layers to obtain
dispersion curves (subdivision is required only if values of the wave functions at

discrete points are desired). It is seen from Figures 2.2-2.4 that the stiffness method
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I gives results that are in excellent agreement with the analytical solution. In order
to further investigate the accuracy of the stiffness method I, a comparison between
the stiffness methods I and II was made. Results from the two stiffness methods,
obtained by varying the number sublayers in the descretization, are given in Tables
2.1 and 2.2, for the cases of homogeneous plate and the 3-layer 0°/90°/0° cross-
ply plate, respectively. Corresponding analytical results are also reported in these
tables. It is evident from these results that the stiffness method I yields more
accurate results for high frequencies than those yielded by the stiffness method II
for the same number of sublayers. This is not unexpected since the stiffness method
I involves the continuity of both displacements and stresses, whereas the stiffness
method II involves only the continuity of displacements. In the remainder of this
chapter, attention will be focussed mainly on the dominant branches, namely, real
branches of the frequency spectrum. The stiffness method I will be used to obtain
required results for the real branches. The reasons for this choice are that the
stiffness method I gives straightforward accurate results (without the need of initial
guesses), and, specially, the real branches can be obtained from the first order

eigenvalue problem defined in equation (2.61).

2.6.2 Anisotropy Effects

The degree of anisotropy in a fiber-reinforced composite plate depends on the
orientation of the fibers with respect to the direction of wave propagation. In order
to show the effect of anisotropy, the real branches of the frequency spectrum for
the homogeneous plate for various propagation directions are presented in Figures
2.5(a)-(d). The effect of anisotropy on the dispersion characteristics is quite pro-
nounced in these figures. Comparison among parts (a), (b), (c) and (d) of Figure

2.5 shows that phase velocities (slopes of ) vs. v plot) increase much more steeply
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with increasing frequency for propagation close to the fiber direction than for prop-
agation close to the normal direction of fibers. Figure 2.5(a) shows the strongest
anisotropy while Figure 2.5(d) shows the least. The next problem considered was
an angle-ply plate with 0°/2a/0° ply lay-out configuration for propagation in the
o direction. Figures 2.6(a)-(d) show the results of dispersion curves for different
values of a. The effect of ply lay-out configuration and hence the anisotropy on
the dispersion characteristics can be clearly seen in these figures. Figure 2.6(a) is
very close to Figure 2.5(a) and Figure 2.6(d) is close to Figure 2.5(d). This is to
be expected, because the coupling between antiplane and in-plane motions are not
very strong in these cases. It is also seen that the phase velocities decrease with

increasing ply angle, for the same frequency.

2.6.3 Interface Layer Effects

With a view to examine the effects of interface layers between adjacent laminae,
some results showing the measurable changes in phase velocity dispersion in a cross-
ply laminated plate are presented next. Figures 2.7-2.14 show the variations in
phase velocity with frequency in a 19-layer graphite-epoxy cross-ply plate with and
without interface layers. The material properties of the interface bond layer in units

of 10'* N/m? are
C11 = Cyy = C33 = 0.0865,

Cia = Cy3 = Ca3 = 0.0475, (2.64)

Cus = Css = Cge = 0.0195.

Figures 2.7 and 2.8 are for propagation along the 0° and 90° directions, respec-
tively, when there are no interface layers. Figures 2.9 and 2.10 show the effects of
interface layers when the interface layer thickness is one tenth of a lamina thickness

and the ratio of the densities of a lamina and an interface layer is 1.5. In order to
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show the effect of density of interface layer, the dispersion curves for a density ratio
of 2/3 are shown in Figures 2.11 and 2.12. Figures 2.13 and 2.14 show the effect of

thickness of interface layer.

It is seen from Figures 2.7 and 2.8 that, at low frequencies, the dispersion
for propagation along the 0° and 90° directions is the same. However, at high
frequencies the dispersions for propagation in these two directions are quite different.
Comparison of Figures 2.9 and 2.10 with Figures 2.7 and 2.8 shows that the presence
of the interface layers lowers the phase velocities and the cut-off frequencies. This
feature may have important implications on ultrasonic characterisation of interface
bond layers. Figures 2.11 and 2.12 show that raising the density of the interface
layers does not change the dispersion of the first few modes appreciably. However,
with increasing frequency the differences between Figures 2.9 and 2.10 and Figures
2.11 and 2.12 become appreciable. Within certain frequency bands, these differences
are quite large. Finally, a comparison among Figures 2.9, 2.13, and 2.14 shows that
increasing the interface layer thickness significantly lowers the phase velocities and

cut-off frequencies, specially at high frequencies.

2.6.4 Layering Effects

The effect of number of layers on the dispersion behaviour is considered next.
For this purpose, dispersion characteristics of graphite-epoxy laminated plates are
investigated. It is assumed that the fibers are oriented at 90° to one another in
adjacent layers and that the layering is symmetric with respect to the midplane
of the plate, thus requiring only half-thickness of the plate to be modeled. Fibers
next to the middle layer are taken to be in 0° direction and therefore, the fibers in
the middle layer are in 90° direction (i.e. -+---- /0°/90°/0°/ - .... configuration).

The number of layers (laminae) is varied from 3 to 39. It is found that when
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this number is sufficiently large, the results obtained can be predicted by using an
effective modulus theory (Postma, 1955; Yeo, 1983). This is illustrated in Figures
2.15-2.23. Figures 2.15, 2.17, 2.19, and 2.21 show the variations of phase velocity
with frequency for propagation in the 0° direction in a plate with 3, 21, 27, and
35 layers, respectively. It is seen that the dispersion behavior changes considerably
with the number of layers when the number of layers considered is small. However,
as the number of layers becomes sufficiently large the change is not noticeable except
at high frequencies for higher modes (see Figures 2.19 and 2.21). A similar feature
is seen in Figures 2.16, 2.18, 2.20, and 2.22 for propagation in the 90° direction. It
is also noticed that the dispersion behaviour depicted in Figures 2.21 and 2.22 for
a 35-layer plate are remarkably close. This suggests that the plate can be modeled
as homogeneous with some effective modulii. In fact, this is seen from Figure 2.23,
which shows the predictions of dispersion characteristics obtained using effective
modulii calculated in the manner presented by Postma for periodic isotropic layers
and generalized for orthotropic layers by Yeo. For cross-ply plates there are six

independent effective elastic constants. Their expressions are given by

_ 2C33(C11 + Cs3) — (C13 — Ca3)?

cs, = o - G, (2.65a)
1
Is = 5(023 + C13) = O, (2.65b)
Css = Cls, (2.65¢)
_ 2
Cle2 _ 4012033 ‘ZéCm 023) s (2,65d)
33
Cs6 = Ces, (2.65¢)
2C44Css
i = Oy = 2.
22 = C5s Cae & Cas (2.651)

where C;; are elastic constants of the 0° lamina and ij are effective elastic modulii
for the entire plate. Thus, using the particular properties considered here, the

effective modulii of the plate in units of 10** N/m? are
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e =0.8732, C% =0.0668, CF, = 0.0664,
. (2.66)
CS, = 0.1392, Cg, = 0.0468, Cf, = 0.0707.

The fact that the effective modulus method predicts wave propagation charac-
teristics quite well for propagation on other directions is seen from Figures 2.24-2.28.
Figures 2.24, 2.26, and 2.28 show the results using the layered model calculation
whereas Figures 2.25 and 2.27 show those predicted by the effective modulus model.
Note that Figures 2.24 and 2.28 show almost the same behaviour. It should also be
noted that the dispersion behaviour for propagation in the 0°, 22.5°, and 45° are

quite different.

The fact that a thick composite cross-ply plate with sufficiently large number
of layers can be modeled as a homogeneous plate with certain effective properties
is not unexpected. The important observation of this systematic study is that
even though the dispersion of the first few modes can be predicted by the effective
medium approximation, for this approximation to be valid for higher modes the

plate must have a threshold number of layers.

2.7 Concluding Remarks

A stiffness method based on through-thickness interpolation functions for the
displacements that maintain continuity of displacements and tractions at the inter-
faces between layers has been presented and used to study guided wave propagation
in a laminated composite plate. An analytical method which uses the prediction
of stiffness method as initial guesses has also been presented. In both methods,
the plate can have arbitrary number of layers with distinct material properties
and thickness. It is shown that the dispersion behaviour predicted by the stiffness

method agree well with the analytical solution.
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It is found that measurable changes in phase velocity are caused by interface
layers in laminated composite plates. These changes are quite appreciable at high
frequencies and specially in higher modes within certain frequency bands. Thus
ultrasonic waves may be used to characterise interface bond layer parameters. Ob-
servations made here further suggest that judicious choice of frequency and modes
can be made to obtain optimum results in ultrasonic nondestructive evaluation of

interface bond layer properties.

It is also shown that the number of layers in a cross-ply laminated plate has a
strong influence on the dispersion characteristics of waves when the plate is com-
posed of only a few layers. However, as the number of layers increases, the laminated
plate can be modeled as a homogeneous anisotropic plate. This feature may have
very important significance in ultrasonic characterisation of mechanical properties

in thick laminated composite plates.
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Figure 2.3 : Dispersion curves for a 3-layer cross-ply (0°/90°/0°) graphite-epoxy plate,

for propagation in the 45° direction.
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Figure 2.4 : Dispersion curves for a 35-layer cross-ply (0°/90°/0°/------ /0°/90°/0°)

graphite-epoxy plate, for propagation in the 45° direction.
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Figure 2.5 : Dispersion curves for a homogeneous graphite-epoxy plate, for propaga-
tion in the:

a) 5° direction, (b) 30° direction,
c) 60° direction, (d) 85° direction.
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Figure 2.5 : Dispersion curves for a homogeneous graphite-epoxy plate, for propaga-
tion in the:

a) 5° direction, (b) 30° direction,

c) 60° direction, (d) 85° direction.
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Figure 2.6 : Dispersion curves for a 3-layer angle-ply (0°/ 2a/ 0°) graphite-epoxy plate,
for propagation in the « direction:
a = 5°, (b) a = 30°,
c a=60°, (d) o = 85°.
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Figure 2.6 : Dispersion curves for a 3-layer angle-ply (0°/2c;/0°) graphite-epoxy plate,
for propagation in the ¢ direction:

a) a=5°, (b) a = 30°,

c)a=60°  (d) a=285°

49



15

T T T T T T 1

o o 0 N~ W ~t

-

ALIDOT3A ISVHC QIZINVIRYON

147
137
127
117

11 12

10

NORMALIZED FREQUENCY

- /0°/90° /0°)

ply (0°/90°/0°/---

epoxy plate, for propagation in the 0° direction:

Figure 2.7 : Dispersion of waves in a 19-layer cross-
graphite-
Symmet

ric modes - - - - - - ; Antisymmetric modes

50



n

T
~t

T
b2
~—

T
o~

H
-
-~

T
o » o ~ w N ~< g} o~ — o

—~—

ALIDOT3A 3SVHC Q3AZITVNYON

NORMALIZED FREQUENCY

- /0°/90°/0°)

z
o
ot
/d
° @
SEg
=795
o]
224
oo
o 0.8
/.\hr
D
—4
a8
w2
0-2.58
c;m;m
s 80
U Q<
0,
RO ..
TR
B
S,
ot
+2
S q

€poXy p

Figure 2.8 : Dispersion of waves in a 19
graphite-

Symmetric mode

51



15

147
137
12 -
117

107

8_.

7..

5.—

NORMALIZED PHASE VELOCITY

4

37 Y

2.—

0 1 2 3 4 5 6 7 8 s 10 11 12
NORMALIZED FREQUENCY

Figure 2.9 : Dispersion of waves in a 19-layer cross-ply (0°/90°/0°/.----- /0°/90°/0°)
graphite-epoxy plate with interface layers between 0° and 90° layers: The
ratios of the thickness and densities of a layer and an interface are 10 and
1.5, respectively; Propagation is in the 0° direction;

Symmetric modes - - - - - - ; Antisymmetric modes

52



15

147

127

117

10 -

NORMALIZED PHASE VELOCITY

- 0 1 2 3 4 5 B 7 8 - 9 10 "M 12
NORMALIZED FREQUENCY
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Table 2.1
Comparison among results for frequencies from stiffness method I, stiffness method
II, and analytical method, for propagation in the 45° direction in a homogeneous
graphite-epoxy plate

(real symmetric modes only).

Stiffness Qaty=m
Method | M N=2] N=4| N=8] N =16 Analytical
1 2.7896 | 2.7825 | 2.7822 | 2.7822 2.7822
2 3.6370 | 3.6366 | 3.6366 | 3.6366 3.6366
3 4.2288 | 4.2257 | 4.2256 | 4.2256 4.2256
I 4 5.2572 | 5.2435 | 5.2429 | 5.2429 5.2429
5 7.0209 | 6.9215 | 6.9185 | 6.9184 6.9184
6 7.6411 | 7.4743 | 7.4701| 7.4699 7.4699
7 10.7008 | 9.2537 | 9.2428 | 9.2417 9.2417
1 2.7983 | 2.7847 | 2.7824 | 2.7822
2 3.6428 | 3.6371 | 3.6366 | 3.6366
3 4.2534 | 4.2280 | 4.2258 | 4.2256
II 4 55401 | 5.2508 | 5.2441 | 5.2430
5 7.3745 |  6.9792 | 6.9230 | 6.9187
6 8.63906 | 7.5375 | 7.4749 | 7.4703
7 10.8250 | 10.0289 | 9.2751 | 9.2439

Note : N = Number of sublayers through the half-thickness of the plate
M = Mode number
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Table 2.2
Comparison among results for frequencies from stiffness method I, stiffness method
I1, and analytical method, for propagation in the 45° direction in a 3-layer
cross-ply (0°/90°/0°) graphite-epoxy plate

(real symmetric modes only).

Stiffness Qaty=r
Method N =3 N=6 N =12 N = 24 | Analytical
2.9338 2.9327 2.9326 2.9326 2.9326
3.6295 3.6283 3.6283 3.6283 3.6283
4.4421 4.4402 4.4402 4.4402 4.4402
5.7145 5.7088 5.7086 5.7086 5.7086
I 7.0667 7.0584 7.0582 7.0582 7.0582
8.1816 8.1467 8.1450 8.1450 8.1450

8.7594 8.7099 8.7073 8.7072 8.7072
10.5329 10.4341 10.4298 10.4297 10.4297
10.9441 10.8345 10.8311 10.8309 10.8309
11.5937 11.4620 11.4583 11.4581 11.4581

2.9419 2.9336 2.9327 2.9326

3.6363 3.6291 3.6284 3.6283

4.4615 4.4419 4.4403 4.4402

5.7662 5.7134 5.7089 5.7086

7.1091 7.0638 7.0586 7.0583

8.8619 8.1802 8.1475 8.1451

9.5884 8.7498 8.7106 8.7074
10.7545 10.4947 10.4353 10.4301
11.2809 10.8839 10.8351 10.8312
12.2047 11.5234 11.4632 11.4584

II

5O 00 oot o S OO Ot W N

Note : N = Number of sublayers through the half-thickness of the plate
M = Mode number
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Chapter 3

Reflection of Waves at a Free Edge of a

Laminated Composite Plate

3.1 General

The present chapter is concerned with the investigation of the free end reflec-
tion that occurs when a train of waves travelling in a composite plate strikes a
free edge. For simplicity in analysis, attention is confined here only to the time-
harmonic wave reflection in plane strain case where the waves are propagating either
along or perpendicular to the fibers. However, theoretically any time variation can
be considered by using the Fourier Transform Technique. The geometry of the
problem considered is depicted in Figure 3.1. When the incident wave strikes the
edge z = 0, a reflected wave field will be generated. The reflected field consists
of a finite number of propagating modes and an infinite number of nonpropagat-
ing and evanescent modes. A finite number of wave functions are superposed to
represent the reflected wave field. Amplitudes of reflected waves are determined
by satisfying the traction-free edge condition by the least-squares and variational
principle methods. The accuracy of the methods are demonstrated by comparing
the results with existing results for a homogeneous isotropic plate and by satisfying
energy balance. It is shown that for a laminated composite plate, the least-squares
method yields anomalous results. Numerical results from the variational principle
method are presented for a homogeneous graphite-epoxy plate and for a 35-layer
cross-ply (80°/0°/---/90°/0°/90°/--- /0°/90°) laminated graphite-epoxy plate. In
each case, the division of energy among various reflected modes is also presented.

The end resonance is reported for the homogeneous graphite-epoxy plate.
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3.2 Description of the Problem

A time-harmonic plane strain wave excited at z = +o0, propagates in a semi-
infinite composite plate in the negative z direction and is incident upon the end
z = 0 (Figure 3.1). The plate is composed of perfectly bonded layers with possibly
distinct mechanical properties and thickness. Each layer of the composite plate is
assumed touhave orthotropic material properties. The two faces of the plate z = 0
and z = H, and the edge © = 0 are traction-free. The incident wave, upon striking
the free end, generates a reflected wave field. The objective is to investigate this

reflected wave field.

3.3 Wave Functions

Wave functions required for the reflection analysis are obtained by considering
the plane strain wave propagation in the corresponding infinite plate. For this pur-
pose, each layer is divided into several sublayers so that the total number sublayers
through the thickness , H, is N. The nonvanishing displacement components in
the plane strain case are u(z, z,t) and w(z, z,t) in = and z directions, respectively.
Following the analysis given in §2.3.2, the dispersion equation governing the plate

modes are obtained from equation (2.19) as

f(w,k) = Ps1Psz — P32 Py = 0. (3.1)

For a particular value of w, equation (3.1) will have a finite number of real roots and
an infinite number of imaginary and complex roots for k. As reported by Torvik
(1967), and Gregory and Gladwell (1983), the admissible k for the reflected wave
field of the semi-infinite plate are those real roots with positive group velocity and
those non-real roots with Im(k) > 0. These conditions ensure that the reflected

waves produce bounded displacement and stress fields throughout the plate. It is
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possible to find the roots of equation (3.1) by some search method in a complex wave
number plane. However, this approach will be computationally formidable since the
roots are sparcely scattered in the complex k-plane. As mentioned in chapter 2,
Muller’s method is employed herein. At the first step, beginning with the highest
frequency of interest, the plate is divided into a sufficiently large number of sub-
layers and the approximate roots are obtained via stiffness method II. To obtain
approximate roots, stiffiness method II is preferred over stiffness method I mainly
due to the fact that, for given w, stiffness method I involves a fourth order eigen-
value problem whereas stiffness method II involves only a second order eigenvalue
problem. One should note here that a fourth order eigenvalue problem involves a
much larger computer time and core memory than a second order eigenvalue prob-
lem. Those approximate roots lying in the first quadrant of the complex k-plane
are used as initial guesses in Muller’s method to recover the analytical roots. At
the next step, w is decreased by a small amount and equation (3.1) is solved, taking
analytical roots from the previous step as initial guesses for the current step. The
process is repeated until the frequency range of interest is scanned. As a check,
at some intermediate frequencies, approximate roots from stiffness method II were
used as initial guesses in Muller’s method to obtain exact roots. After obtaining
the wave numbers &, for the frequency range of interest, the sign of the real wave

numbers were adjusted to have positive group velocities.

To express the reflected wave field as a modal sum to satisfy free edge conditions
at ¢ = 0, all the modes corresponding to the roots with small positive imaginary
parts are superposed. Let M be the total number of modes to be used in the
modal expansion and k,, be the m-th root. M number of roots k, are ordered as
follows: real roots are ordered first in the decreasing order of magnitude. Non-real

roots are ordered next in the ascending order of magnitude of their imaginary parts.
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Traction-free conditions at interface 1 and equation (2.16) give the components of

the m-th eigenvector at interface 1, as

{Bim}T =(1 —Ps;/Psz 0 0). (3.2)

Then applying equation (2.14) at successive interfaces, the m-th mode eigenvector

(values of wave function at discrete interfaces) can be obtained, as

{Bn}"t = ({Bim}T {Bam}T -+ {Bim}T -+ {Bwvsnm}T), (3:3)
where
{Bim}F = (wim Wim GCazim  Oagim ),  G=1,2, - N +1.
m=1,2,------ M. (3.4)

Uimy Wimy Ozzim aNd O,zim are components of the m-th mode eigenvector at the

i-th interface.

If the problem under consideration is symmetric or antisymmtric, it is possible
to model only half-thickness of the plate to obtain wave functions, after invoking

appropriate boundary conditions at the top and middle surfaces of the plate.

3.4 Reflection Coefficients

Consider the case in which the incident wave is the p-th propagating mode,
corresponding to the wave number k,. After striking the edge z = 0, a reflected
wave fleld will be generated. The displacement vector corresponding to this wave
field, {q% }, at arbitrary z, can be approximated by the modal sum of a finite number

of modes M in the form
M
{Q;} = Z Am{qm} eXP(jkmm) z 20, (3'5)
m=1
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where

A, = amplitude of the m-th reflected mode,
1

{Qm}T = g_ <u1m Wim **° UWim Wim *° UN+1)m w(N-H)m) ) (36)
N+1

gm = \ Z(‘uimlz + ’wimiz)- (3.7)
=1

In equation (3.5) and in the subsequent analysis, the time factor exp(—jwt) has

been omitted. Equation (3.5) gives the reflected wave field at the edge z = 0 as

{5} = [G{4}, (3.8)

where

[G}:[{%} {Q2} """ {‘Zm} """ {91\4}]7 (3-9)
(AT = (A A oo An). (3.10)

In view of equations (2.6), (2.7) and (2.9), the o,, component of stresses within

the i-th sublayer can be expressed as

D .
Oz = A55 [D55(de - cf)u + ]k(f - Be)o'zz] ) (311)
1
where
€ = (1 - 51)/—13? - )\1’{32, (312)

and ¢, d and A; are as defined in Appendix B. Since ui,, and 0., for the m-

th mode are known from equation (3.3), equation (3.11) can be used to compute

78



Ozeim at eachinterface. It should be noted that o, is discontinuous at the interfaces
between layers. The force vector at the edge due to the reflected field can now be

formed as

{/'} = —[Fl{4}, (3.14)

where [F| is the force mode shape matrix which represents the nodal force mode
shapes at the interfaces, due to stresses 0., and o.,. [F] is a rectangular matrix
of size 2(N + 1) by M. In constructing the force vector, the consistent load vector
formulation given in Bathe (1982) has been used. The variation of displacements

and stresses within the sublayer is assumed to be linear. The explicit form of [F] is

given by
[Fl=[{fA} {FR} - {Fmn} oo {Fnm}], (3.15)
where
{Frcr[\z} - <F1mm Flzm Fz:;n F’L%ITL F(z}\f-}-l)m F(zN-f-l)m>’
m=1,2,---,M (3.16)
h _
Frp = (200 + 0020m), (3.17a)
z hl
Flm :_6—(20-221m + C’zz2m)a (317b)
2 Mo (+4) -)
Fim - 6 (G-z::z:(i—l)m + 2dmzim)+
hig (+) L (=) :
E(za—mzim + O-zz(i+1)m) for 2 S ? S N, (3170)
hi_
F:rn = 6 - (sz(i—l)m + 2022im+
h; _
—6—(202m-m + Oa(it1)m) for 2<:1 <N, (3.17d)
z hN + -
F(N+1)m :?(O‘img\/’m + 20_533()N+1)m)> (3176)
z hN
F(N+1)m =—6—(02sz + 20 ,0(N+1)m)- (3.17f)
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(=) andoll) (1 <1 < N+1) denote the m-th mode normal

zTim TTim

In equations (3.17), o
stresses in the z direction just, above and below the ¢-th interface, respectively. If

(+)

the adjacent sublayers of the ¢-th interface have the same material properties, o, _;

(=)

zrim'®

will be equal to o

The edge force vector due to incident field can be written as

(R} = 43{F;),  (318)

where A;n is the amplitude of the incident mode and the vector {F, "} is obtained
from the p-th column of [F], after replacing each z direction force component by

the negative value of it.

The traction-free edge condition requires that

{R} = {R'} + {R"} = —[FI{A} + A7 {F;} = {0}. (3.19)

Subjecting the sum of the squares of the residuals of {R} to a least-squares

minimization, the least-squares solution for complex amplitudes can be obtained as

-1

{4} = 42 [1F]"1F)] 1FIT{F; ) (3.20)

A variational solution to the problem can be obtained by applying the principle

of virtual displacement as in Wu and Plunkett (1967). This results in

6{a@}"{R} = {0} (3.21)

where § implies first variation, and {go} denotes the total displacement field at

z = 0. It may be noted that {go} is given by

{a} = {a:} +{a'}, (3.22)
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and

8{q0} = é{a }, (3.23)

where {gi*} is the displacement vector due to incident field. Substituting equa-
tions (3.19) and (3.23) in equation (3.21), and making use of equation (3.8), the

variational form of the solution is obtained as

-1

{4} = 40 (GI(F)] 1GI"{F ). (3.24)

Once the amplitudes , 4,,, are known, the displacement and stress field any-
where in the plate can be determined. The reflection coefficient (normalized ampli-

tude) Rpm of the m-th reflected mode, due to p-th incident mode is defined as

Rpm =

Lm (3.25)

43

3.5 Energy Flux

Reflected energy is carried only by the propagating modes. The instantaneous
value of the energy flux associated with the n-th reflected mode through a plate
cross-section (per unit length in y direction) located at any z (z > 0), due to p-th

incident mode is given by

T d Tpr 1T d T
IPn =35 Rzn}TE;{Q:rcn} + {R.fcn Ta{%m} ’ I1<n< N:DT? (3'26)

{gzn} = An{gn} explj(knz — wi)], (3.28)
{Rzn} = An{Fn}exp[j(knz — wi)] (3.29)
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where {F,} is the n-th column of matrix [F]. In equation (3.26), {¢7,} and {RZ .}
represent, respectively, the dispalcement vector and the force vector associated with
the n-th reflected mode at a plate cross-section located at z; and N, represents the
number of propagating modes in the reflected field. Since derivatives with respect
to time are appearing in equation (3.26), the time factor exp(—jwt) has not been
dropped in equations (3.28) and (3.29). The time-averaged value of the energy flux,

It ., is obtained by averaging I,, over one cycle. This is given by

pn
1 2m/w
I / Londt. (3.30)
0

P = 27 [w

After carrying out the integration in equation (3.30) explicitly, I}, can be written

as

I, = —Re [4n{Fo}" [Sjwda{ant] 1<n< Ny, (331)

where Re[ | denotes the real part of the complex quantity inside the square bracket.
In view of equation (3.25), and after some algebraic simplifications, equation (3.31)

can be written as
. 2
L, = w]A;nV |Rpn| s 1 <n< Ny, (3.32)
where

¥n =Im [{F.}"{a.}] . (3.33)

Im|[ ] appearingin equation (3.33) denotes the imaginary part of the complex quan-
tity inside the square bracket. It is important to note here that I/, is independent
of z. Following a similar approach, the time-averaged value of the energy flux of

the incident wave can be written as
. . 2
I;,n = w'A;,ni Iy (3.34)
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Let E,, be the proportion of incident energy transfered into the n-th reflected
mode. Then

T
L

Bpn = 22,
p

(3.35)

Another useful index is the percentage error in energy balance, ¢, defined by

N,
100 | =
=2 | 5= D Lnl - (3.36)
P n=1
The principle of energy conservation requires that sum of E,, (n=1,2,---,Np,)

be unity, namely e should be zero. This condition is used to assess the accuracy of

the analysis presented here.

3.6 Numerical Results and Discussion

In this section, the numerical results of the reflection problem for following four

examples are presented.

Example 1 - a homogeneous isotropic plate with Poisson’s ratio , v = 0.25 . The

incident wave considered is the first symmetric propagating mode.

Example 2 - a homogeneous graphite-epoxy (transversely isotropic) plate with fib-
ers aligned along the z- axis (0°). See Table 3.1 for material proper-

ties. The incident wave is the first symmetric propagating mode.

Example 3 - a 35-layer graphite-epoxy cross-ply laminated plate with
90°/0°/---/90°/0°/90°/--- /0°/90° configuration. Material proper-
ties are given in Table 3.1. The incident wave is the first symmetric

propagating mode.

Example 4 - same as example 3, but the incident wave is the first antisymmetric
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propagating mode.

Since in each of the above examples, the problem is either symmetric or anti-
symmetric, only half-thickness of the plate was considered in the analysis. In all
four examples, the real branches of the frequency spectrum were plotted to iden-
tify the positive group velocity zones. Figure 3.2 show the frequency spectrum for
examples 2-4. The following nondimensionalization is used for frequency and wave

number throughout this section:

] 1
Example 1 - Q:—w—ﬁ—r—— , v=—-kH,
2¢car/1/p 2
3u
where cg = \ 7 ;1 = shear modulus.
Example 24 - 0= —22 . _Lig

2/(Dss/p)ge T2

The total number of sublayers, N, used to compute the eigenvectors and the
number of modes, M, used in the modal expansion, play an important role in the
accuracy of the analysis. In order to select a suitable value for N, the quantity 4,
(n=1,2,---, Ny ) defined in equation (3.33) was computed by increasing the value
of N at a few selected lower, intermediate and higher frequencies in the frequency
range of interest, until converged values were obtained for ¥,. In this way, N
through the half-thickness was chosen as 50 in examples 1 and 2, and 70 in examples
3 and 4. Thereafter, the reflection problem was solved at the selected frequencies by
the least-squares method [equation (3.20)] and by the variational method [equation
(3.24)], by increasing the number of modes. Tables 3.2 and 3.3 show some of the
results obtained from two methods for percentage error in energy balance, ¢, and the
modulus of the reflection coefficient of the first reflected mode, |R;;1|. In example
1 at © = 4.0, the reflected field consists of 4 symmetric propagating modes; in

example 2 at ) = 4.0, the reflected field consists of three symmetric propagating
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modes; in example 3 at ) = 5.1, the reflected field consists of three symmetric
propagating modes; and in example 4 at !} = 4.0, the reflected field comnsists of
three antisymmetric propagating modes. Comparison of the results from the two
methods shows that the variational method gives very good energy balance and
convergence of the reflection coeffcient |Ry;|, even with a relatively smaller number
of modes. It can be noticed that for the homogeneous plate, there is no noticeable
difference in the results from the two methods if a sufficiently large number of modes
are taken. For the laminated plate, the results obtained by the least-squares method
are alarming. Even with thirty modes participation, only 50% of the incident mode
energy is reflected back into the plate from the free edge for symmetric incidence,
which is an anomaly. The reason for this anomaly is obvious. Unlike the variational
méthod which minimizes the energy, the least-squares method does not have a
physical basis. In the least-squares method, even though the sum of the squares
of the residuals in {R} is minimized, the minimized residual sum could be large
resulting in large errors in €. In what follows, only the results obtained from the

variational method are presented.

Figure 3.3 shows the comparison of proportion of energy FEi, obtained by the
present method with those of Gregory and Gladwell (1983) for an isotropic plate.
The modal expansion consisted of 21 modes. For the range of Q in Figure 3.3,
le] < 0.18%; it is seen that the comparison is excellent. Even though the results for
reflection coefficient |R1;| are not presented here, results were in complete agreement
with those of Gregory and Gladwell (1983). A full discussion on the energy distri-
bution among reflected modes for this case can be found in Gregory and Gladwell

(1983).

The energy distribution among various reflected propagating modes in example

2 is shown in Figure 3.4. The modal expansion consisted of 21 modes. For the range
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0 < §2 < 2.196 (which is not shown in Figure 3.4), |¢| was less than 0.05%. For the
range of results presented here, |¢| < 0.88%. The range 2.197 < @ < 2.2041 is the
backward-wave transmisson region discussed by Meitzler (1965), where the third
propagating mode has a negative phase velocity. In particular, it was observed that
at the first cut-off frequency Q = 2.2041, only the second mode carries energy; at
the second cut-off frequency Q@ = 3.142, only the first mode carries energy; at the
third cut-off frequency ) = 6.283, all three modes carry energy and in the range
2.4 < Q2 < 5.9, the first and third modes share almost the entire reflected energy. In
Figure 3.5(a), the variation of reflection coeflicient |R;;| with Q is shown. It can be
seen that [R;;| = 1.0 in the range 0 < 2 < 2.197. Since only one propagating mode
exists in this frequency range, the entire energy is reflected into the first mode,
and therefore, by the energy conservation principle, |R;;| has to be equal to unity.
For Q > 2.197, |Ry1] is oscillatory. After a careful search, it was noted that edge
resonance occurs in the second mode near £ = 2.1520. The variation of reflection
coeflicient | Ry, | near resonant frequency is shown in Figure 3.5(b) . At = 2.1520,
by increasing M from 20 to 30, ¢ changed from 0.14% to 0.01% and only a 0.11%

increase in |R13| was observed.

The division of energy between various reflected modes for examples 3 and 4
are presented in Figures 3.6 and 3.7, respectively. Figures 3.8(a) and 3.8(b) show
reflection coefficient |R;1], for examples 3 and 4 respectively. The first three cut-off
frequencies are §) = 2.204, 2.556 and 5.111 for symmetric modes, and ) = 1.278,
3.834 and 4.408 for antisymmetric modes. The symmetric case consisted of 22
modes whilst in the antisymmetric case, 21 modes were used. In the frequency
ranges considered, |¢] < 0.44% for the symmetric case and |e| < 0.18% for the
antisymmetric case. In particular, it is seen from Figures 3.6 and 3.7 that between

the second and third cut-off frequencies, in the symmetric case, energy is shared
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almost entirely between first and third modes, whereas in the antisymmetric case,
energy is shared among all three modes. A careful search was made for the end

resonant frequency in the symmetric case but none could be found.

3.7 Concluding Remarks

A semi-analytical method employing exact discrete eigenvectors for displace-
ments and stresses has been used to study the guided plane strain wave reflection
at the free edge of a laminated composite plate. Problems were solved by the
least-squares method and the variational method. It is found that the variational
principle method gives very good results. It is shown that the results agree well
with known solutions for homogeneous isotropic plate. Since the exact eigenvectors
are employed, the method is accurate at both low frequencies and high frequen-
cies. Since the least-squares method gives anomalous results from the point of view
of energy balance, it is concluded that the least-squares method should be used
with caution for the free end reflection problem of layered anisotropic plates. Al-
though the case of wave propagation along a principle direction has been studied,

the method can be easily applied to off-axis propagation.
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Table 3.1
Elastic sfiffnesses of 0° and 90° graphite-epoxy laminae

(All stiffnesses are in units of 10'* N/m?).

lamina D11 D33 .D13 D55

0° lamina 1.6073 0.1392 0.0644 0.0707

90° lamina | 0.1392 0.1392 0.0692 0.0350
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Table 3.2
Variation of percentage error ¢ in energy balance and reflection coefficient | Ry|

with number of modes, M, for homogeneous graphite-epoxy plate.

2 lRul

Example | M | Eq. (3.20) | Eq. (3.24) | Eq. (3.20) | Eq. (3.24)
4 51.354 10.836 0.170 0.245

7 21.505 1.907 0.339 0.426

11 3.192 0.062 0.477 0.493

Example 1 | 15 0.982 0.073 0.489 0.494
1=4.0 19 0.325 0.140 0.493 0.494

21 0.209 0.153 0.493 0.494

23 0.155 0.160 0.494 0.494

25 0.127 0.164 0.494 0.494

3 76.231 17.229 0.122 0.590

6 58.006 7.023 0.253 0.621

8 44.888 5.915 0.371 0.623

Example 2 | 12 9.112 0.654 0.665 0.704
21=4.0 15 6.423 0.830 0.680 0.704

20 2.068 0.247 0.696 0.708

25 1.212 0.223 0.702 0.709

29 0.499 0.195 0.705 0.709
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Table 3.3

Variation of percentage error ¢ in energy balance and reflection coefficient |R1|

with number of modes, M, for 35-layer graphite-epoxy plate.

[ ]Rlll
Example | M | Eq. (3.20) | Eq. (3.24) | Eq. (3.20) | Eq. (3.24)
3 91.947 28.291 0.188 0.735
6 91.946 19.259 0.162 0.772
10 92.265 19.892 0.109 0.807
Example 3 | 12 84.150 16.481 0.102 0.741
15 70.368 4.019 0.270 0.796
=51 18 54.948 1.669 0.436 0.807
21 53.912 0.296 0.440 0.812
24 54.996 0.172 0.441 0.811
27 51.559 0.005 0.476 0.809
30 51.519 — 0.001 0.477 0.809
3 89.365 13.817 0.083 0.674
6 75.730 11.045 0.242 0.776
10 74.344 9.437 0.330 0.786
Example 4 | 12 63.389 6.579 0.469 0.803
15 59.559 4.778 0.511 0.814
=40 17 23.118 1.466 0.776 0.827
21 20.463 0.487 0.791 0.831
24 20.471 0.388 0.792 0.831
27 20.474 0.362 0.792 0.831
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Chapter 4

Wave Scattering by Cracks and Delaminations

in laminated Composite Plates

4.1 General

Defects and material degradation in structures made of composite materials
have become a crucial problem for industries which use high-tech materials. Ul-
trasonic waves provide an efficient means of characterising such flaws. In order
to use ultrasonic techniques to characterise flaws, it is neccessary to have a broad
understanding of wave scattering by these flaws. Scattering by flaws in plate-like
structures is a complicated phenomenon and the problem is made more difficult
when the plate is a laminated composite one. In the past, considerable progress
has been made towards understanding wave scattering by flaws in isotropic plates.
However, information on scattering in anisotropic laminated plates is very limited.
In this chapter, wave scattering by flaws in the form of cracks and delaminations in
an infinite laminated composite plate is investigated. The geometry of the problem
is depicted in Figures 4.1 and 4.2. The wave labeled as incident wave in Figure
4.1 may be thought of as being emitted by a source, which may be a line load
applied perpendicular to the plate, located at a distance sufficiently far away from
the flaw. Theoretically, any time variation in the incident wave can be considered
using the Fourier Transform Technique. For simplicity, analysis presented here is
restricted to time-harmonic incident waves. The incident waves propagate along
the plate and strike the flaw in the plate resulting in generation of a scattered wave
field. The scattered field consists of finitely many propagating wave modes and
infinitely many nonpropagating and evanescent wave modes. The scattered field

can be separated into reflected and transmitted waves. These waves, whose ampli-
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tudes contain information required for characterising the flaw, can be received by
a transducer for post-processing. A hybrid method is presented in this chapter to
solve the scattering problem and thereby to find theoretical numerical relationships

between scattered wave amplitudes and the parameters of the crack/delamination.

The hybrid method is illustrated for the case of scattering by a symmetric
normal edge crack (Figure 4.2(a)) and by a centrally located normal matrix crack
that grows into delamination (Figure 4.2(b)). Reciprocity relations associated with
the reflection and transmission coeflicients and the principle of energy conservation
are used as checks on the numerical accuracies. Numerical results of the scattering
problem are presented for an isotropic plate, a homogeneous fiber-reinforced plate
and for 8-layer and 35-layer laminated fiber-reinforced composite plates. Of partic-
ular interest are the results showing the dependence of conversion (reflection and
transmission) coeflicients on the extent of the delamination into which the normal

central crack grows when it meets the adjacent lamina with 0° fiber direction.

4.2 Description of the Problem

Time-harmonic wave scattering by a flaw (crack/delamination) in an infinite
plate composed of perfectly bonded layers with possibly distinct mechanical proper-
ties and thickness is considered. It is assumed that the flaw is of constant geometry
and of infinite length in y direction. The two faces of the plate z = 0 and z = H, and
the surfaces of the flaw are traction-free. For simplicity in analysis, each layer is as-
sumed to have transversely isotropic material properties. A train of time-harmonic
waves excited at a location sufficiently far away from the flaw, propagates in a di-
rection making an angle Vd)i” with the negative z direction and is incident upon the

flaw. The incident wave, upon striking the flaw, generates a scattered wave field.
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In general, different scattered wave modes propagate in different directions in

zy plane. Since the waves are propagating in directions making arbitrary angles with

fiber directions, the resulting wave motion, in general, is three dimensional. Denot-

ing the particle displacement components in global z, y, z directions by u(z,y, z,1),

v(z,y,2,t), w(z,y,2,1), respectively, the governing equations that describe wave

motion can be written as

00z N 00zy 00y,  0%u
Oz Oy 8. P
Oogy | Ooyy 0oy, = 0%
Oz + Oy 8-  Foz’
00z N 0oy, | 0o, 0w
8z | ay | 8z e’

(4.1a)
(4.1b)

(4.1¢)

where o;; are related to €;; by the constitutive relation given in equation (2.4), and

¢;; are related to displacement components by

_ Ou
€rz = 8—21}’
Ov
Cyy = 5_y’
Oow
= g
1 1 /0v Ow
eyz:§7yz:§<a—z+'5;>a
1 1 (0u  Ow
€zz:§7zm—§<£+6_m>,
1 1 /0v Ou

The boundary conditions of the scattering problem are given by
Oag = Ouy =0,; =0 on the plate surfaces,
- and

tractions on the surface of the flaw = 0.
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The main objective here is to find a solution to the boundary value problem
defined in equations (4.1)-(4.3). Since the plate is a laminated one, and in general
the flaw is of arbitrary shape, finding an exact solution to the boundary value
problem at hand is extremely difficult if not impossible. Therefore, an approximate

solution through a hybrid technique is sought here.

4.3 Hybrid Method

The hybrid method combines finite element formulation in a bounded interior
region of the plate with a wave function expansion representation in the exterior
region. The interior region consists of the flaw and a small region of the plate
surrounding the flaw. The regions are connected along vertical boundaries B™ at
z =z, and B~ at z = 2~ as shown in Figure 4.2. Continuity conditions for the
displacement and interaction forces are imposed at the nodes lying on the bound-
aries. This results in a system of linear equations that is solved for the unknown
wave function amplitudes. These amplitudes can be used to obtain boundary nodal
displacements and in turn to obtain interior nodal displacements. This enables the
determination of the wave field at any point of interest in the domain of the plate.
It is noted here that the boundaries BT and B~ need not be neccessarily vertical.
One can have a boundary of arbitrary choice, however, choice of vertical boundaries
make the algebra and the finite element mesh generation simple. In the sequel,
formulation is presented in two parts. In the ensuing §4.4, the plane strain case is
considered. In this case, waves are propagating either along or perpendicular to the
fiber directions, and perpendicular to the axis of flaw, viz. ¢'* = 0° and 8 for each
layer is equal to either 0° or 90°. Note that the axis of flaw is in y direction. How-
ever, since the orientation of the axis of the flaw is not known a priori it is not, in

general, possible to excite the incident wave in such a way that ¢'® = 0°. Therefore,
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it is also necessary to consider a general case where ¢'® # 0°. This general case is
considered in §4.5 wherein, the incident wave is propagating in a direction making
an arbitrary angle with the z- axis, and in general the fiber direction in each lamina
may be at an arbitrary angle to the z- axis. The time factor exp(—jwt) is omitted

in what follows unless otherwise specifically mentioned.

4.4 Plane Strain Case

Consider the case in which the incident wave is the p-th propagating mode
corresponding to the wavenumber k,, propagating in the negative z direction. The
fibers in each lamina are assumed to be in either z or y direction. The only nonvan-
ishing particle displacement components in this case are u(z, z,t) and w(z, z,t) in z
and z directions, respectively, and in addition, the field quantities are independent

of y.

4.4.1 Wave Functions for Exterior Regions

In the exterior regions R* and R, the total wave field consists of a scattered
field and the incident field. Since the incident wave is propagating either along or
normal to the fiber directions, the resulting scattered waves will be propagating in
the positive and negative z directions. The scattered field is represented by wave
functions expansion. Details of the methodology used to obtain wave functions for
a laminated plate for plane strain case can be found in §3.3 of Chapter 3. The
procedure starts with dividing each layer into several sublayers so that the total
number of sublayers through the thickness of the plate is N. When the incident
wave strikes the flaw, a scattered wave field will be generated. Using the wave

function expansion, the displacement vector of the scattered field, {¢3*}, in region
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R™ at arbitrary = can be written as

M
{7} =" Al {gn}exp(ikme), z>a" (4.4)

m=1

v
8

where A7 is the amplitude of the m-th scattered mode in region R*; M is the
totai number of modes used in the wave function expansion; and {g¢,,} is the m-th
mode displacement vector defined in equation (3.6). The procedure for ordering M
number of significant roots k is the same as that described in §3.3. Equation (4.4)

gives the displacement vector of scattered wave field at the nodes on the boundary

B+ as
{ez"} = [GTH{D™} (4.5)

where
Gl ={a} {e} - {gm}---+ {am}], (4.6a)
{D*}' =(D{ Df .-+ D} -+ Di), (4.65)
D} = A} exp(jkmz™), m=1,2,---, M. (4.6¢)

[GT] in equation (4.5) is a matrix of size 2(N +1) by M. The nodal force vector at

the boundary B™ due to scattered field can be formed as

{Pg"} = [FTI{D"}, . (4.7)

where [F*] is the matrix of nodal force mode vectors at the interfaces due to stress
components 0y, and o0y,. Note that [FT] = [F] defined in equation (3.15). Fol-
lowing a similar procedure at the boundary B, the displacement and force vectors

due to scattered field can be obtained as
{gg }=[G"H{D™}, (4.8a)
{PE}=[F{D7}, (4.8b)
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respectively. It can be shown that [G~] can simply be obtained from [G*] after
replacing each « direction displacement component by the negative value of it.
Similarly, [FF~] can be obtained from [F*] after replacing each z direction force

component by the negative value of it. {D~} is given by
- T - - - - .
(D7} =(D;f D; -+ Di -+ Dy) (4.9)
where

D, = A exp(—jkmz™), m=1,2,---,M (4.10)

in which, 4 is the amplitude of m-th scattered mode in region R™.

In a similar manner, the boundary displacement and force vectors for the inci-

dent wave can be constructed as

{8} = AZ{G; Yexp(—jkpz™), (4.11a)
{7} = A47{G; Yexp(—jkyz™), (4.110)
{PET} = —AJ{Fy Yexp(—jkpz™), (4.11c)
{PF~} = AR{F;}exp(—jkpz™), (4.11d)

where {G'} and {F} are the p-th column of [G~] and [F~] matrices, respectively;

and Aipn is the amplitude of the incident mode.

4.4.2 Finite Element Model of Interior Region

The interior region R is modeled by finite elements. The crack tip singularity
1s modeled using six node quarterpoint triangular crack tip elements proposed by

Barsoum (1976). The crack tip elements are surrounded with a layer of five node
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elements followed by conventional four node elements as shown in Figure 4.2c. The
layer adjacent to the vertical boundaries BT and B~ consists of five node elements
with the midside node lying on the boundaries. This is done to increase the number

of nodes lying on the boundaries.

The quarterpoint triangular elements have a built-in inverse square root stress
singularity in them. The existence of an inverse square root singularity in the stress
field around the tip of a crack imbedded in a homogeneous medium is well-known
(see Fenner, 1976). Numerous studies on stress singularities at a crack located
between two dissimilar media have been reported in the past (see, for example,
Williams, 1959; Fenner, 1976; Ting and Hoang, 1984; Barsoum, 1988; Im, 1990). It
has been reported that: when a crack is along the interface between two dissimilar
media, the singular behaviour of the crack tip stress remains proportional to inverse
square root of 7 (the distance from the crack tip) but now has a pronounced os-
cillatory character; and when a crack meets an interface at right angles, the stress
singularity is of the form 7~?, where p depends on the elastic properties of two
dissimilar media. In Ting and Hoang (1984), it has been shown that for typical
high modulus graphite-epoxy composites p is close to 0.5 for most combinations of
ply-angles in the two dissimilar materials. The singularity at the tip of the crack
affects only the local stress field near the crack tip. It should be noted here that
the present scattering study is mainly concerned with the determination of far field
(exterior region) scattered wave amplitudes. Therefore, in the present analysis, only
the inverse square root singularity is incorporated in the finite element model near

the crack tip.

The displacement vector, {u}, at a point within a typical finite element, ‘e’, is
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interpolated from the nodal displacements vector, {¢}, as

{u} = [N}{¢"} (4.12)

where [N] contains interpolation functions (Zienkiewicz, 1977). The strain vector,

€}, at a point are related to displacement field through
p g

{e} = [L}{u} (4.13)

where [L] is an operator matrix defined as

2 9
6z
=10 £ (4.14)
8 8
Oz Oz

In view of equation (4.12), the strain vector can be expressed in terms of nodal

displacements as
{e} = [Bl{¢"} (4.15)

where

[B] = [L][N] (4.16)

An approximate equation governing the wave motion in the interior region may be
obtained by minimizing the energy functional #. In (z,y,z) cartesian coordinate

system, 7 (per unit length in y direction) takes the form

=3 (3 (71000 - ot ) da) - 5 {120 (P} + Lan) (o)

2
(4.17)

€

where {gg} and {Pp} are, respectively, the nodal displacement vector and interac-
tion force vector (traction vector) corresponding to the nodes lying on the bound-

aries. In equation (4.17), the integral is over the area of element ‘e’ and ), implies
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summation over all the finite elements. It should be noted here that 7 isindependent
of time ¢ since exp(—jwt)exp(—jwt) is equal to unity. In view of equations (4.12)-
(4.16), and after the conventional assembly process in the finite element method,

equation (4.17) can be written as

# = {an} IS }or} — 5 [{8)T PR} + {as} " {Fe}] (418)

where |
{ar}" = ({a}" {a}") (4.19a)
)= (Ke] - w?ir) = | [0 S]] (4198)

In the above, {g; } is the nodal displacement vector corresponding to interior nodes;
and [Ktr] and [Mr] are, respectively, the global stiffness and mass matrices of the

interior region given by

[Kr] = U[[k]], (4.20a)

[Mr] = U[[m]], (4.200)

where U stands for union or assembly, and

k] = / [BITD)BldA, (4.210)

[m] = / e p[NIT[N)dA. (4.21b)

By minimizing the energy functional, one gets the governing equation of motion

of whole interior region as

8% = 6{gr} " [S{ar} — 6{a} {Ps} = 0. (4.22)
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4.4.3 Global Solution

The global solution is obtained by imposing the following continuity conditions

on displacements and tractions at the mesh boundaries:

{gn} = {a8'} +{aB}, (4.23a)
{Pg} ={P5'} +{Ps}, (4.230)
where
{gg} =g ™" {a™17), (4.24a)
{a}" = {e&x " {8}, (4.24b)
{PRYT = ({PF7}T {7, (4.24¢)
{B3}T = ({P37}T {R"}7). (4.24d)

In equations (4.23), those quantities on the left hand side of the equal sign are
from interior region while those on the right hand side are from the exterior region.

Using equations (4.5) and (4.8a) in equation (4.23a) and, in turn, in equation (4.22)

results in

[Sul{er} + [SeHee} =0, (4.25a)

(G1)" (Serl{a} + [Se){gs}) = [G1]" {PB}, (4.25)
where
_[IG7]  [0]
)= [ 0] [G+ﬂ | (4.26).

Equation (4.25a) gives

{a1} = -5 [SB{gs}- (4.27)
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Substituting equation (4.27) in (4.25b) and making use of equations (4.23), one

obtains
[Ci{D1} = {R:}, (4.28)
where
[C1] = [G1]" ({S8s)iG1] - [F1]), (4.29q)
{D:}" = ({D7}T {D*}T), (4.298)
{R:} = [G1]" ({P&'} — [Sgl{aB}) (4.29¢)
in which,
[Sge] = [SzB] ~ [SB1][Su) " [S1m], (4.30a)

[F=] [0]

[F1] = l: 0] [F*]|" (4.300)

In the above, [C;] is a matrix of size 2M by 2M. {D~} and {D™} are obtained by
solving the linear system of equations (4.28). Amplitudes 4}, and A}, are obtained
from equations (4.6¢c) and (4.10), respectively. {gg} is computed from equation
(4.23a), making use of equations (4.5) and (4.8a). Then, {g;} is given by equation
(4.27).

The reflection coefficient Rp,, of the m-th reflected mode and transmission

coeflicient Ty, of the m-th transmitted mode, due to p-th incident mode, are defined

as

AZ
Bpm = 22, (4.31a)

P

ol m #p
Tom = 4.31b
P Al,,n‘*'A:n_ o ( )
A;n H - p
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4.4.4 Energy Conservation

Reflected and transmitted energy is carried only by the propagating modes.
Following the derivation of equation (3.32) in §3.5, the time-averaged value of the
energy flux associated with the n-th reflected propagating mode through the plate

cross section per unit length in y direction, due to p-th incident mode, is given by
.2 ’
I}, = w|A}]" | Rpn | In, (4.32)
where

9, = Im [{F;}T{gn}} : 1<n< Ny, (4.33)

in which, Ny, represents the number of propagating modes in the scattered field.
Similarly, the energy flux of the n-th transmitted mode and the incident wave can

be written, respectively, as

- in |2
I, = w| A2 || Tpn|* I, (4.34a)

I = w| 4’9, (4.34b)

The percentage error in energy balance, ¢, is defined as

100 &
e= | I - ML+ 1) |- (4.35)
P n=1

Application of the principle of conservation of energy to the close region R bounded
by z =z*, z =z, and top and bottom plate surfaces shows that ¢ should be

3

zero. This condition is used to assess the numerical accuracy of the analysis.
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4.4.5 Reciprocity Relations

Application of the elastodynamic reciprocity theorem (Achenbach, 1973; Auld,
1973 ; Tan and Auld, 1980) to the region R results in

angn = Rnpgp, (436(1,)
Tpngn = Tnpgp, A (4366)

where
= ~2{F Y {aa), 1 <0< Ny (437

Details of the derivation of equations (4.36) are given in Appendix D.

A close examination of the elements of the matrices [P;], [GT], [FT], and [F~]

reveals that ¢, is related to ¥, by

Sn = 2_7'1971, (4.38)

Let E;n be the proportion of incident energy transfered into the n-th reflected mode.

Then
I, d
Er =2 — |R,.|* -2, (4.39)
p I;)n P "911
Similarly,
I+ )
El, = 'I"%E - |Rnp|2;’%. (4.40)

Equations (4.36), and (4.38)-(4.40) lead to

El =E;. (4.41)



In a similar manner, it can be shown that, for the transmitted modes,

E;, =E.. (4.42)

np

Reciprocity relations in equations (4.36), (4.41), and (4.42) serve as numerical

checks on computations.

4.5 General Case

This case occurs when the incident wave is not propagating in a direction
normal to the axis of the flaw. In addition, the fibers in each lamina may be at
an arbitrary angle to the z- axis (see Figure 4.1). Thus, the resulting wave motion
will have all three particle displacement components. In this case, the scattered
waves are propagating in several directions in zy plane. Direction Oz' in Figure
4.1 represents a typical direction of propagation of a scattered wave mode. Let k(®)
be the wavenumber of the incident wave in the direction of propagation. Thus, k(%)
should be one of the admissible real roots of the dispersion equation for off-axis
propagation case described in §2.3.3. As mentioned in §2.3.3, superscript (o) here
refers to off-axis propagation. Since the flaw extends to infinity in y-direction, no
scattering will occur in that direction. Only the z direction incident wave component
is subjected to scattering by the flaw. Thus, each of the scattered wave modes
will have a constant wavenumber {; (= k{°)sin ¢**) in the negative y direction.

Therefore, for time-harmonic waves, y and ¢ variation can be separated out as

u(z,y,z,t) iz, z)
v(z,y,2,t) p =14 9(z,2) pexp[—j(Coy + wi)] (4.43)
w(z,y, z,1) w(z,z)

In the subsequent analysis, the common factor exp[—J({oy + wt)] is dropped unless

otherwise specifically mentioned.
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4.5.1 Wave Functions for Exterior Regions

The scattered field in the exterior regions R* and R~ is represented by wave
function expansion. As in the plane strain case, wave functions are obtained by
considering the wave propagation in an infinite plate. The procedure starts with
dividing each layer into several sublayers. For the i-th sublayer, the wavenumbers

in X and Y directions are, respectively, given by
K9 = kcos+ (osinb, (4.44a)
and

L9 = ksin6 — (g cos ¥, (4.44b)

where k now denotes the z direction wavenumber of a typical wave mode, and the
superscript (g) has been used to represent the general case. After a careful exam-
ination of Figure 4.1, one finds that when every wave mode has a predetermined
constant wavenumber (o) in the negative y direction, analytical dispersion equa-
tion can be obtained from equation (2.46) after replacing K by K(9) and L by L),
Thus, the dispersion equation for general case can be written as
PO P )
FO(w,k)= | P9 pY p&|=0. (4.45)
Y Hp Hp

where P represents elements of the global propagator matrix for general case.
PT(,;q,)L are obtained from ]-"7(,:7.,)L after replacing K by K(9 and L by L{9). The prop-
agator matrix [Pz-(g )] for the i-th sublayer is obtained in a similar manner. For a
particular value of w, transcendental equation (4.45) will have a finite number of

real roots and an infinite number of imaginary and complex roots for k. Roots k
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are found by employing Mullers’s method with initial guesses obtained via stiffness
method II. The procedure for wavenumber determination and ordering of M num-
ber of significant roots k are similar to those given in §3.3. It may be mentioned

here that since (o fixed, orientation of z' in Figure 4.1(b) will vary with different k.

For the general case, equation (2.43) and (2.45) take the forms

{BI)} = [P1{BY, (4.46)
and
P PP PP (4 0
P po plol{s =203, (4.47)
U U 0

respectively. In equation (4.46), {ng)} represents the displacements and stress

components at z = z; as

{ng)}T = <ﬁ'z 'ﬁz a'zzi &zz:i é':l,/z'i wl) 9 (448)

Traction-free conditions at interface 1, and equation (4.47) give the components of

the m-th mode eigenvector at interface 1, as
(9),"
{Bim} =(1 p1 0 0 0 p2), (4.49)

where
_HORp - popp
PP ~ PP
L POED PO
PP - PP PY

(4.50a)

Yot

(4.500)

It is to be noted that p1 and py should be obtained from equations (4.50) for the

m-th root of k (ie. for k,,). Then applying equation (4.46) at successive interfaces,
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the m-th mode eigenvector (values of wave functions at discrete interfaces) can be

obtained as

T T T T T
BEY = (B B2y - (B o (B, ), (48))
where
(BEY = (im bim Grsim Gsaim Gysim i) (452)
m - m m zzwrm ZTITM yzrm wm 9 .
’1::1,2’ ...... ’N+1, m:l’z, ...... ,M_

In the above, @im, Dim, and wW;, are the displacement components, and G;zim,
6 szim, and Gyzim are the stress components, at the i-th interface corresponding
to the m-th mode (after suppressing the factor exp[—j({oy + wt)]). As mentioned
previously, if the problem under consideration is symmetric or antisymmetric, only
a half-thickness of the plate may be modeled using appropriate boundary conditions

at the middle plane of the plate.

Following the analysis presented in §4.4.1, the displacement vectors of the scat-
tered wave field at the boundaries BT and B~ can still be represented by equation

(4.5) and (4.8a), respectively, with following modifications: [G*] is now replaced by

G =[{d} {9} - {¥} - {235 (4.53)

where
T - " N A N N
{qg;‘f)} = <u1m Vim Wim """ Uim Vim Wim -

UNs1ym  O(N+1)m  W(N+1)m ) (4.54)

and [G 7] is constructed in a similar manner.
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In view of equations (2.36), (2.37a), (2.37b), (2.37f), (2.39), and (2.40), omit-
ting details of algebra, the 6., and 6., components of stresses within the i-th

sublayer can be expressed as

In equation (4.55), the 2 by 3 matrix [U] is given by

U] = T[T RO )T (4.56)

where [R(9)] is obtained from [R] in Appendix B after replacing K by K and L
by L(9); [Ty] is given in Appendix B; and [T3] and [Tég)] are defined in Appendix
E. Since @im, Vim, and 6,z5m for the m-th mode are known from equation (4.51),
equation (4.55) can be used to compute Gzzim and Gryim at each interface. It should
be noted that 6zim and dzyim are discontinuous at the interfaces between sublayers
of different material properties. The nodal force vectors due to scattered wave field
at the boundaries BT and B~ are now given, respectively, by equations (4.7) and

(4.8a) where [F*] is replaced by

[F*) = [{F9} {F"} ... {F9} - {FP}], (4.57)
where
(FOY =(F9® play po= ... o= pFov. po-

F(I{T"f'l)m F(I{T—‘f—l)m F(I{T+1)m>’ (458)

o)z plo)y

and [F~] is constructed in a similar manner. The explicit forms of F; ", F;."",

and Fi(ri)z are given in Appendix F.
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In a similar manner, boundary nodal displacement and force vectors corre-

sponding to the incident wave are given by equations (4.11).

4.5.2 Finite Element Model of Interior Region

The procedure of finite element formulation for interior region R for general
case is very similar to that of for plane strain case given in §4.4.2. Therefore, no
detailed formulation is presented here. A point to note is that operator matrix [L]

in equation (4.14) now assumes the form

- 8 -

% 0

0 —7¢Co g

0 0 8
Il = 8z 4.59
[L] 0 LR (4.59)

8 8

=, B

L =760 3% 0

It is interesting to note here that the energy functional, 7, for general case is

independent of y and ¢. This is because terms involving y and ¢ in 7 appear as

exp|—Jj({oy + wt)] exp[—j({oy + wt)] which is equal to unity. The fact that # is not
dependent on y reveals that a two dimensional finite element discretization in zz

plane can be carried out.

4.5.3 Global Seolution

The global solution is obtained by imposing the continuity of total (incident
plus scattered) displacements and tractions on the boundaries Bt and B~. These
lead to linear algebraic equations for governing the amplitudes 4} and A, . Since
formulation is very similar to the plane case given in §4.4.3, no details are produced
here. Note that the final system of linear algebraic equations involve 3M equations
as compared to 2M equations in plane strain case. The reflection and transmission

coeflicients are given by equations (4.31).
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4.5.4 Energy Conservation and Reciprocity Relations

Application of the principle of energy conservation to the close volume bounded
byz=2z",z2=2",y=1vy",y =y, and top and bottom plate surfaces shows
that the percentage error in energy balance ¢ defined in equation (4.35) should be
theoretically zero. y* and y~ here denote two arbitrary y-coordinates. Equation
(4.35) should be used to compute ¢ for general case with the understanding that ¥,

in equation (4.33) has to be replaced by

9, =Tm [{FO} (a0}, 1<n< N, (4.60)

The reciprocity relations for transmitted wave field are given by equations (4.36b)

and (4.42) where ¢, is now given by

6 = —2{FD=1T {9, 1< n< Ny (4.61)

where {F,(,,g)_} is the n-th column of [F(9)~]. Reciprocity relations given in equations
(4.36a) and (4.41) take a slightly different form for general case. Details of this can

be found in Appendix D.

4.6 Numerical Results and Discussion

The hybrid method developed in previous sections is used to obtain numerical

results of the scattering problem for following five examples:

Example 1 - a homogeneous isotropic plate with Poisson’s ratio, v = 0.31. The
flaw considered is a symmetric normal edge crack, the geometry of

which is depicted in Figure 4.2(a).

Example 2 - a homogeneous graphite-epoxy plate with fibers aligned along the

z-axis (0°). The flaw is a symmetric normal edge crack.
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Example 3 - a 35-layer graphite-epoxy cross-ply laminated plate with
90°/0°/ -+ /90°/0°/90°/ --- /0°/90° configuration. The flaw consid-

ered is a symmetric normal edge crack.

Example 4 - an 8-layer graphite-epoxy cross-ply laminated plate with
0°/90°/0°/90°/90°/0°/90°/0° configuration. The flaw considered is
that shown in Figure 4.2(b). Note that for this flaw b, is equal to
zero until b/b; is equal to 1.0, and when the normal crack grows into

delamination (i.e. by > 0) b is equal to by + ba.

Example 5 - The configuration of the plate is same as in example 4, but the flaw

considered is a symmetric normal edge crack.

The material properties of graphite-epoxy layers for examples 2-5 are as given in
§2.6. Since in each of the above examples, the geometry of the plate and flaw is
symmetric with respect to the midplane of the plate, the scattered field consists of
either symmetric or antisymmetric modes depgnding on whether the incident mode
is a symmetric or an antisymmetric one. Thus only half-thickness of the plate need
be modeled in the analysis. The following nondimensionalization has been used for

frequency throughout this section:

wH -
2/ulp
wH

21/Css/p

Examplel - = p = shear modulus;

Example 2-5 - Q=

Three checks are made to validate the numerical calculations: (1) for an incident
wave without any crack in the interior region, the resulting scattered field should
be zero; (2) the percentage error in energy balance, ¢, should be zero; and (3)

the reciprocity relations should be satisfied. These three checks were satisfied with
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negligible errors for the results to be presented in §4.6.1 for plane strain case, and

§4.6.2 for general case.

The total number of sublayers, N, used to compute the wave functions for the
exterior region plays an important role in the accuracy of the analysis. In each of
the examples considered a suitable value for N was chosen after computing ¥ by
increasing the value of N at few selected lower, intermediate and higher frequencies
in the frequency range of interest, until converged values were obtained for 4,. The
finite element mesh was automatically generated with arbitrary normalized crack
length, a/(H/2), at normalized crack length increment of 1/20 in examples 1 and 2,
and 1/35 in examples 3. In example 4, for scattering by the normal central crack,
the finite element mesh was automatically generated with arbitrary normalized
crack length, b/b;, at normalized crack length increment of 1/8. To simplify the
automatic generation of the mesh, the finite elements were taken to be rectangular

(except near the crack tip) with equal heights and equal widths.

In order to choose suitable values for the boundary coordinates, z¥, and =™,
numerical results were obtained by increasing the overall width of the mesh, starting
with a smaller width. It was found that any width above a threshold mesh width
can satisfy the three checks mentioned in the previous paragraph with negligible
errors. However, as the mesh width becomes larger, the number of finite elements
involved also becomes larger thus effectively increasing the number of degrees of
freedoms in the finite element analysis. The mesh boundaries were chosen here as
2= /(H/2) = —0.20, and z*/(H/2) = 0.20 except when b/b; is greater than 1.0
in example 4. The interior region enclosed by these mesh boundary coordinates
consisted of 8 columns of finite elements symmetrically located about the z = 0
plane. For the delamination crack (b/by > 1.0 in example 4) the mesh boundaries

were chosen as = /(H/2) = —7/32, and z*/(H/2) = 7/32, and there were 14
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columns of finite elements symmetrically located about the z = 0 plane. The
meshes contained: 20 rows of finite elements in examples 1, 2, and 5; 35 rows of
finite elements in example 3; and 32 rows of finite elements in example 4. In all five
examples, the number of modes, M, employed in the wave function expansion were

in the range 15 to 21.
4.6.1 Plane Strain Case

4.6.1.1 Normal Edge Crack

The numerical results of the scattering problem for example 1-3, for plane strain
case are presented in this section. A comparison of numerical results for the reflec-
tion coefficient Ry; due to first symmetric incident mode, with those of Koshiba et
al. (1984) for example 1 are shown in Figure 4.3 where Q is 7/2, Ny, is one, and
circles indicate results of Koshiba et al.. The frequency spectrum for this example
can be found in Mindlin (1960). For the results presented, |e| was less than 0.005%.
The excellent comparison of results serves to verify the computer code developed

here to model the scattering problem.

Variation of the reflection coefficient Ry {due to first symmetric incident mode)
with normalized crack length for @ = 2.0 in example 2 are shown in Figure 4.4. The
frequency spectrum for this problem was shown in Figure 3.2(a). It can be seen
from the frequency spectrum that at Q2 = 2.0, the scattered field consists of only one
symmetric propagating mode. For these results, |e| was less than 0.006%. Figure 4.5
shows the variation of reflection coefficients with normalized crack length for = 4.0
in example 2, when the incident mode is the first symmetric one. At this frequency,
the scattered field consists of three symmetric propagating modes. It was found

that |e| was less than 0.35%. Comparison of Figure 4.4 with Figure 4.5 shows that
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the variation of Ry is quite different in these two cases. This is due to the fact that
at Q = 2.0 the energy of incident wave is shared by only one reflected propagating
mode and one transmitted propagating mode whereas at {1 = 4.0 the energy of
the incident wave is shared by three reflected and three transmitted propagating
wave modes. It is seen from Figure 4.5 that when the crack length approches the
special case of through-thickness crack (ie. free end reflection), Ri» approaches zero
resulting in the reflected energy being shared by only the first and third reflected

propagating modes.

Numerical results of reflection coefficients for example 3 at €} = 1.2 and 2.5,
when the incident mode is the first symmetric mode, are shown in Figures 4.6 and
4.7, respectively. The frequency spectrum for this example was presented in Figure
3.2(b). Ny was 1 at @ = 1.2, and 2 at = 2.5. The maximum value of |e] was
0.003% at Q = 1.2 and 0.09% at © = 2.5. In §2.6.4, it was found that when the
number of layers in a cross-ply laminated plate exceeds a threshold number, the
plate can be modeled as an effective homogeneous anisotropic plate. This limit
for the graphite-epoxy laminated plate considered here was found to be about 35.
In Figures 4.6 and 4.7, the results of reflection coefficient for this effective plate
are shown by triangles. It can be seen that the results for the effective plate are
in close agreement with the results for the 35-layer plate. Finally, in Figures 4.8
and 4.9, the results of the reflection coeflicients for example 3 at @ = 1.2 and
2.5, when the incident mode is the first antisymmetric mode, are shown. The
scattered field consists of one antisymmetric propagating mode at ) = 1.2 and
two antisymmetric propagating modes at {1 = 2.5. For this case, |e| was less than
0.20%. Corresponding results for the effective plate are also shown in these figures
by triangles. A good agreement can be seen between the results for the effective

plate and 35-layer plate. Figure 4.8 shows that |R11| approaches zero at normalized
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crack length near 0.74 . At this value of crack length almost all the incident energy
is absorbed by the fundamental antisymmetric transmitted propagating wave. A
comparison of Figures 4.6 and 4.7 with Figures 4.8 and 4.9 shows that the reflection
coefficients of the symmetric incident wave behaves significantly different from those

of the antisymmetric incident wave with the crack length.

An overall observation that can be made from Figures 4.3-4.9 is that the scat-
tered signal amplitudes are quite sensitive to the crack length. Therefore, the results
presented in this section are rather important for ultrasonic nondestructive evalua-

tion of surface breaking cracks in laminated composite plates.

4.6.1.2 Normal Central Crack Extending to Delamination

Numerical results for scattering by a normal central crack that grows into delam-
ination are presented in the current section (example 4). The frequency spectrum
for this example is shown in Figure 4.10 where vy = (kH)/2. Figures 4.11-4.16 show
the variations in the magnitudes of reflection and transmission coefficients with the
crack lehgth at a normalized frequency of 4.0. It can be seen from the frequency
spectrum that, at this frequency, there are three symmetric and three antisymmetric

propagating modes.

Figures 4.11, 4.12, and 4.13 correspond to the first, second, and third symmetric
incident modes, respectively. The maximum value of || for the results presented in
these figures was 0.20%. It is seen from Figure 4.11 that |T1n| and |Ris| (n = 1,2,3)
are almost not senéitive to the extent of delamination. Figure 4.12 shows that |Tz|
and |Rypz| are the most sensitive to the crack length and |T33| and | Ra3| are the least
affected by the extent of the crack. |T3,| and |Ran| (n = 1,2) change gradually until

crack is about half way through the thickness of the middle lamina. Then |T32| and
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|Ra2| change quite rapidly as the crack is almost all the way through the middle 90°
lamina. As the crack grows into delamination at the interfaces between the middle
(90°) and adjacent lamina (0°), these coefficients change less rapidly in a linear
manner. |[Ty;| and |Rs1|, on the otherhand, tend to decrease reaching a plateau as
the delaminations become b; in length. It can be noticed from Figure 4.13 that
|Tsn| and |Rsn| (n = 1,2,3) are not affected much by the crack. A comparison
between Figure 4.11 and 4.12 shows that the behaviour of [T12| and |Ri2| is very
similar to |Ty;| and |Ra1|. This is expected from the reciprocity relations between

the pairs (Tpn, Tnp) and (Rpn, Rnp) established in §4.4.5.

Figures 4.14, 4.15, and 4.16 correspond to first, second, and third antisymmetric
incident modes, respectively. For the range of the crack lengths considered in these
figures, |¢| was less than 0.17%. One can notice from these three figures that, at the
frequency considered here, the antisymmetric incident modes are not very sensitive
to the normal central crack even when the crack was almost all the way through the
thickness of the middle 90° lamina. However, as the crack grows into delamination,
Tin and Ry, (n=1,2,3) change rapidly with the extent of the delamination. The
coefficients |Ty1| and |Ri;| show the most sensitivity to the increasing length of

delamination as seen from Figure 4.14.

Numerical ‘results of the magnitudes of transmission and reflection coefficients
as a function of frequency for example 4 are presented in Figures 4.17-4.24. For
the results presented in these figures |e| was less than 0.21%. Figures 4.17-4.20
correspond to first symmetric incident mode; Figures 4.21 and 4.22 correspond to
second symmetric incident mode; and Figures 4.23 and 4.24 are for third symmetric
incident mode. For the purpose of presentation, two crack lengths have been chosen.
Figures 4.17, 4.19, 4.21, and 4.23 are for the case where normal central crack has

grown all the way through the thickness of the middle 90° lamina viz. when b/b; =
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1.0. Results when the delaminations have become b; in length, namely when b/b; =

1.5, are shown in Figures 4.18, 4.20, 4.22, and 4.24.

Tt can be seen from Figure 4.17 that for the normal central crack, |Ty1| and
|R11| are almost unaffected by the frequency until © is about 3.0. Then these
coefficients change gradually as §) increases from 3.0 to 4.0. On the other hand, for
the delamination, as seen in Figure 4.18, |T11| and |Ri:| change quite abruptly in the
normalized frequency range 1.6 — 2.3. This suggests that ultrasonic nondestructive
evaluation in this frequency range will make it possible to decide whether the normal
central crack has grown into delamination. Furthermore, Figure 4.18 shows that
|Ty1| and ]Rl_l\ for the delamination are not very sensitive to the frequency as
Q increases from 2.3 to 4.0. It is seen from Figure 4.19 that |Tis| and |Ris| do
not change appreciably with frequency for the normal central crack. However,
|Ty2| and |Riz| increases gradually in the normalized frequency range 2.6 — 4.0.
A similar trend in |Tin| and |Rin| (n = 2,3) for the delamination can be seen
from Figure 4.20. A comparison between Figures 4.19 and 4.20 shows that |11,
and |Rin| (n = 2,3) are not sensitive to the crack length in the frequency range
considered. It can be noticed from Figures 4.21 and 4.22 that the most frequency
sensitive coefficients of second symmetric incident mode are |T52| and |[Ra2| in the
normalized frequency range 3.0 — 4.0. Also it is seen that |T13] and |Ris| are
the least sensitive. Moreover, a comparison between Figures 4.21 and 4.22 reveals
that |Thz| and |Rp2| for the normal crack (b/b; = 1.0) and the delamination crack
(b/b; = 1.5) are quite different in the normalized frequency range 3.0 — 4.0. Figures
4.93 and 4.24 show that |T3,| and |Rsn| (n = 1,2,3) are not very much affected
by the frequency. However, among the three scattered propagating modes of third
symmetric incident mode, second mode is the most sensitive one to the frequency

and the crack length.
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4.6.2 General Case

To illustrate the general case, some numerical results for scattering by a symmet-
ric normal edge crack are presented in this section. Note that since the impedance
matrix, [S], (refer to equation 4.19b) for the general case is complex, and each node
involves three degrees of freedom, the core storage requirement for the impedance
matrix is approximately 4.5 times that required for plane strain case with the same

finite element mesh.

Numerical results for the magnitudes of transmission and reflection coeflicients
(|Tpn| and |Rpn|), and proportions of transmitted and reflected energies (E,, and
E;’n) for scattering by a symmetric normal edge crack in a homogeneous graphite -
epoxy plate (example 2) are presented in Table 4.1. The percentage error in energy
balance, ¢, is presented also in this table. The normalized frequency considered is
2.0. At this frequency, when wave propagation occurs in an uncracked plate in a
direction making an angle 45° with the fiber direction, it is found that the dispersion
equation for the off-axis propagation case (described in §2.3.3) has two real roots
corresponding to symmetric modes. The fundamental or the first root (the one
which has the largest magnitude among the real roots) has been considered here.
The numerical value of this root is 2.0371 (= k(°)). Part (a) of Table 4.1 corresponds
to 6 = 0° and ¢ = 45°. Thus, {; is equal to 1.4404 (= 2.0371 sin45°). For this
value of (o, the dispersion equation for general case (see equation 4.45) has two real
roots for wavenumber k. These two roots are listed in the second column of part (a)
of Table 4.1. Part (b) of this table is for § = 22.5° and ¢ = 22.5°, thus resulting
in (o of 0.7796 (= 2.0371 sin22.5°). Corresponding wave numbers of propagating
modes obtained as roots from the dispersion equation for general case are reported
in the second column of part (b) of Table 4.1. It is seen from Table 4.1 that the

energy balance and the reciprocity between the pairs (Epny Erp) is satisfied with

pn?
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negligible errors. Part (a) of Table 4.1 shows that the reciprocity between the pair
(Ef,, Ef,) is satisfied with negligible errors when the fibers are aligned in the z
direction. This is expected from equation (D.35) in Appendix D. It is seen also that
the reflection coefficients are sensitive to the crack length. Note that in both part
(a) and (b) of Table 4.1, for the first symmetric incident mode (p = 1), the incident
wave normal is in a direction making 45° with the fiber direction. Thus, for the first
symmetric mode, the results of part (b) can be thought of as those corresponding to
a crack which is oriented (in zy plane) in a 22.5° direction to the orientation of the
crack in part (a). In view of this, a comparison between (a) and (b) parts of Table

4.1 discloses that the reflection and transmission coefficients are quite sensitive to

the orientation of the crack.

Finally, Table 4.2 shows the numerical results for scattering by a symmetric
normal edge crack in an 8-layer 0°/90°/0°/90°/90°/0°/90°/0° graphite-epoxy plate
(example 5). The results presented correspond to a normalized frequency of 4.0 and
a normalized crack length of 0.5. For wave propagation in the uncracked plate in
a 45° direction to the 0° fibers, off-axis dispersion equation gave the wave number
(k(°)} of the fundamental symmetric propagating mode as 4.7551. This results in a
Co of 3.3624 for part (a) and 1.8197 for part (b) of Table 4.2. For these (o values,
at a normalized frequency of 4.0, the general case dispersion equation leads to two
real roots for part (a) and three real roots for part (b), all of which correspond
to real symmetric propogating modes. These wave numbers (kp) are listed in the
second column of Table 4.2. It can be seen from this table that the energy balance
and the reciprocity relations among proportions of energy are satisfied with small
errors. Numerical results for |Th1] and |Ri1| show that these coeflicients are very

sensitive to the orientation of the crack (in zy plane).
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4.7 Concluding Remarks

A hybrid method combining the finite element method with wave function ex-
pansion procedure has been presented to study time harmonic wave scattering by
cracks and delaminations in laminated composite plates. The validity of the results
obtained from the hybrid method is established by checking the energy balance
and the satisfaction of elastodynamic reciprocity relations. It is shown that results
presented here agree well with other reported results for homogeneous isotropic

plate.

It is found that the reflection and transmission coefficients are very sensitive
to the extent and the orientation of the crack, the incident mode number, and the
frequency. The study shows that judicious choice of frequency and incident mode
can be made to obtain optimum results in ultrasonic nondestructive evaluation of
flaws. Only a few examples have been chosen to illustrate the applicability of the
hybrid method. The hybrid formulation based finite element code developed here
has the capability to investigate scattering of ultrasonic elastic waves by flaws over
a wide range of the parameters involved. Thié enables one to perform a detailed
parametric study of the scattering problem and the results of this study may be

used to interpret ultrasonic test measurements to characterize flaws.

For the sake of simplicity, wave function expansion has been considered for lam-
inated plates having orthotropic or transversely isotropic material properties. Since
wave functions are available for a homogeneous plate possessing general anisotropic
material properties (Nayfeh and Chimenti, 1989), by employing the propagator ma-
trix technique, the present hybrid method can be easily adapted to laminated plates

with laminates of general anisotropic material properties.
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There are several advantages of the hybrid method:

1. Bachlamina of the plate can have arbitrary mechanical properties and thickness.

2. Because the scattered field is expressed in wave function expansion, an arbi-
trary number of layers can be accommodated without appreciable increase in
computational time. This is to be contrasted with the integral representation
technique using Green’s function. In the latter, computational time increases
considerably with increasing number of laminae because of the time involved in

the computation of the Green’s function.

3. The interior region containing the flaw can have quite arbitrary material prop-

erties.

4, The flaw can be quite arbitrary in geometry and in orientation. Also, the
multiple scattering by a cluster of neighbouring flaws can be studied without

much difficulty.

The hybrid method is suited ideally for low frequencies. At high frequencies,
very fine finite element meshes are required to ensure accuracy, thus increasing the

number of degrees of freedoms involved in the analysis.
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Figure 4.2 : Geometry of flaws and details of regions

a% Normal edge crack in a plate

b) Centrally located normal matrix crack extending to delamination
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c) A typical finite element mesh near the crack tip.
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Figure 4.2 : Geometry of flaws and details of regions

a) Normal edge crack in a plate

b) Centrally located normal matrix crack extending to delamination
shown by solid and dashed lines) in an 8-layer cross-ply
0°/90°/0°/90°/90°/0°/90°/0°) plate

c) A typical finite element mesh near the crack tip.
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Figure 4.19 : Variation of |T},| and |R1,| with  for example 4, due to first symmetric
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(a) |T2n] vs Q, (b) |Rza| vs Q.
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Figure 4.23 : Variation of |T3,| and |R3,| with Q for example 4, due to third symmetric
incident mode, when b/b; = 1.0 (plane strain case):
(a) |T3n] vs Q, (b) |R3n] vs Q.

154



LR e e e

0.8 1
n=1
_________ —
0.67 n=23
T35
0.4 7

(b)

Figure 4.24 : Variation ofAT;;nI and |R3,| with § for example 4, due to third symmetric
incident mode, when b/b; = 1.5 (plane strain case)
(a) | T3] vs Q, (b) |Ran| vs Q.

155



Table 4.1
Numerical results for the scattering problem in example 2 at {) = 2.0

(general case):

(a) § = 0°, ¢™ (when p = 1) = 45°, (o = 1.4404.

P _kp a/H | n | |Rpml T E;n E;n le|
0.1 | 110.0436 | 0.9963 | 0.0019 | 0.9926 | 0.43 %
1| 1.4404 2 10.0505 | 0.0478 | 0.0006 | 0.0006
0.5 | 1]0.0951 | 0.9061 | 0.0090 { 0.8211 | 0.10 %
2 1 0.7176 | 0.4094 | 0.1274 | 0.0415
0.1 | 110.0120 | 0.0116 | 0.0006 | 0.0005 | 0.01 %
2 10.3241 2 10.0110 | 0.9994 | 0.0001 | 0.9989
0.5 | 11]0.1780 | 0.1012 | 0.1279 | 0.0414 | 0.05 %
2 10.2641 | 0.8720 | 0.0698 | 0.7603

(b) 6 = 22.5°, ¢ (when p = 1) = 22.5°, (o = 0.7796.

p| ke |a/H|n| Rl | |Tem| | B | B le]

0.1 | 1]0.0092 | 0.9987 | 0.0000 | 0.9975 | 0.21 %

111.8820 2 | 0.0619 | 0.0325 | 0.0002 | 0.0002
0.5 | 11]0.1051 | 0.9129 | 0.0016 | 0.8334 | 0.21 %

2 | 1.3568 | 0.6322 | 0.0811 | 0.0818
0.1 |1]0.0136 | 0.0065 | 0.0001 | 0.0002 | 0.01 %

2] 0.8129 2 | 0.0087 | 0.9999 | 0.0000 | 0.9997
0.5 | 110.0240 | 0.1294 | 0.0004 | 0.0819 | 0.09 %

2 1 0.5902 | 0.9175 | 0.0751 | 0.8419

Notes : 1) p and n denote the incident and scattered wave node numbers,
respectively.

2) Symmetric incident wave modes have been considered.
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Table 4.2
Numerical results for the scattering problem in example 5 at ( = 4.0 and

a/H = 0.5 (general case):

(a) 8 (for 0° lamina) = 0°, ¢ (when p = 1) = 45°, (o = 3.3624.

p ky n | |Rpnl | Ton] E;n E;n le]

0.8401 | 0.4240 | 0.7058 | 0.1797 | 0.04 %
0.1432 | 0.5706 | 0.0068 | 0.1081
0.0466 | 0.1893 | 0.0066 | 0.1080 | 0.25 %
0.7370 | 0.5828 | 0.5432 | 0.3397

1] 3.3624

2 | 0.6622

DN =t | B} =

(b) 6 (for 0° lamina) = 22.5°, ¢'® (when p = 1) = 22.5°, (o = 1.8197.

p| ke |n| [Benl | [Tl | Ej | Epn lel

0.3686 | 0.3171 | 0.6417 | 0.1006
0.4614 | 0.0768 | 0.1640 | 0.0394 | 0.02 %
0.1963 | 0.1072 | 0.0472 | 0.0073
0.1308 | 0.5111 | 0.0121 | 0.0391
0.9173 | 0.8243 | 0.0970 | 0.6795 | 0.08 %
0.0297 | 1.3467 | 0.0002 | 0.1730
0.1726 | 0.0687 | 0.2209 | 0.0074
0.6732 | 0.1283 | 0.5479 | 0.1725 | 0.47 %
0.0874 | 0.2032 | 0.0147 | 0.0413

1| 4.3931

2| 1.9389

3 | 1.4683

W = QDN =] O B

Notes : 1) p and n denote the incident and scattered wave node numbers,
respectively.

2) Symmetric incident wave modes have been considered.
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Chapter 5

Conclusions, and recommendations

for Future Work

5.1 Conclusions

The stiffness method, developed in Chapter 2, can be used to obtain accurate
predictions of theoretical dispersion characteristics that are required for material
characterisation of laminated composite plates with arbitrary number of layers. It is
found that measurable changes in phase velocity are caused by interface bond layers.
These changes are quite appreciable at high frequencies and specially in higher
modes within certain frequency bands. The present investigation suggests not only
that ultrasonic waves may be used to characterise ihterface bond layer properties but
also that judicious choice of frequency and modes may be made to obtain optimum
results in ultrasonic nondestructive evaluation of these properties. The study shows
that anisotropy, caused by the orientation of fibers with respect to the direction of
wave propagation, has a strong influence on dispersion characteristics. It is shown
that the number of layersin a cross-ply laminated plate has a strong influence on the
dispersion characteristics of guided waves when the plate is composed of only a few
layers. However, as the number of layers increases, the layering effects diminish,
and when there is a sufficiently large number of layers, the effective mechanical
properties of the cross-ply plate can be characterised as homogeneous anisotropic.
This finding is very important from the point of view of designing thick laminated
composite plates, since the designer can use a homogeneous plate model rather than

a complicated layered plate model.

The semi-analytical method, developed in Chapter 3, can be used to study
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guided plane strain wave reflection at the free edge of a laminated composite plate
with arbitrary number of layers. Although the case of reflection of waves that
propagate along a principle direction has been studied, the method presented in
this chapter can be easily applied to off-axis propagation. It is found that the
variational principle method gives very good results. Since the least-squares method
gives anomalous results form the point of view of energy balance, it is concluded
that the least-squares method should be used with caution for free end reflection

problem of layered anisotropic plates.

The hybrid method, presented in Chapter 4 to investigate scattering by cracks
and delaminations in the laminated composite plates, has several advantages: each
lamina of the plate can have arbitrary mechanical properties and thickness; because
the scattered field is expressed in wave function expansion, an arbitrary number of
layers can be accommodated without appreciable increase in computational time;
the interior region containing the flaw can have quite arbitrary material properties;
the law can be arbitrary in geometry and in orientation; and the multiple scat-
tering by a cluster of neighbouring flaws can be studied without much difficulty.
Although the wave function expansion has been presented for laminated plates
having orthotropic or transversely isotropic lamina properties, the hybrid method
can be easily adapted to suit lamirllated plates having general anisotropic lamina
properies. It is found that the reflection and transmission coefficients are very sen-
sitive to the extent and the orientation of the flaw, the incident mode number,
and the frequency. The present study enables the experimentalist to make judi-
cious choice of the frequency and the incident mode to obtain optimum results in
ultrasonic nondestructive evaluation of flaws. Futhermore, the hybrid formulation
based finite element code, developed in the present study, enables one to perform

a detailed parametric study of the scattering problem, and the results of this para-
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metric study may be used to interpret ultrasonic test measurements thus leading to
the evaluation of the parameters of the flaw nondestructively. The hybrid method
is ideally suited for low frequencies. At high frequencies, very fine finite element
meshes have to be used, thus increasing the number of degrees of freedoms involved
in the analysis. It is noted here that the scattering problem considered in the thesis
is a highy idealised one. Therefore, for the technique to be useful for practical ap-
plications, a considerable amount of experimental work and additional theoretical

study is required.

5.2 Recommendations for Future Work

It is recommended that the theoretical findings of the present study be experi-
mentally validated by carrying out ultrasonic testing of laminated composite plate
specimens. This goal may be acheived by testing specimens with accurately known,
material properties and flaw parameters. In the hybrid formulation presented in
Chapter 4, only time harmonic waves have been considered. In addition, it has
been assumed that the source or the transducer which excites guided waves is lo-
cated at a distance far away from the flaw, and the flaw is of infinite length in y
direction. The following recommendations are made for future work for the hybrid
method to be useful for ultrasonic nondestructive evaluation of flaws in laminated

composite plates:

1. Incorporate transient waves in the hybrid method, by employing the Fourier
Transform Technique. This will permit to investigate the possibility of using

the time pulses in ultrasonic nondestructive evaluation.

2. Incorporate a guided wave generating transducer located at an arbitrary dis-

tance from the flaw. This may be possible, by enclosing the flaw and the
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region loaded by the transducer, by two interior regions: one enclosing the
loaded region; and the other enclosing the flaw. In between the two interior
regions, there is an exterior region which can be modeled by the wave function

expansion procedure.

3. Extend the hybrid method to investigate scattering by finite flaws (i.e. 3-

dimensional flaws).

The hybrid technique presented in this thesis is a direct method having po-
tential applications in determinig flaw parameters from ultrasonic measurements.
However, if the number of unknown flaw parameters involved is quite large, ap-
plication of this direct method to quantify unknown parameters may become very
tedious. To circumvent this difficulty it may be necessary to study the inverse
scattering problem. The recent work by Nishimura and Kobayashi (1991) on SH

problems is a starting point for future research in this direction.
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Appendix A

Expressions for Material Property Transformation

The relations between D;; of equation (2.4) and Cry of equation (2.2) are given

D1y = Ciim® + Cszn® + 2(C1z + 2Cs6)m?n? + D,

D1z = (C11 + C22 — 4Css)m*n® 4 Cra(m* + n*) + Di,

D3 = Ciam?® + Cogn® + Dis,

D1g = [(Ci2 — C11 + 2Ce6)m” + (Caz — C1z — 2Cs6)n?] mn + Dis,
Dyy = C11n* + Coam®* 4+ 2(C1y + 2Cs6)m®n? + D3,

Dy3 = Ci3n® + Casm?® + Di,

Dsyg = {(012 — Ch1 + 2C¢6)n* 4 (Cay — C1g — 2066)m2] mn + Dy, (A.1)
D33 = Ciss,

D3g = (Ca3 — C13)mn + Di,

Dys = Caam? + Cssn® + D},

Dys = (Csa — Css)mn + Dy,

Dss = Cssm? + Caan® + D5,

Deg = (C11 + Cag — 2C12)m?*n? + Ceg(m? — n2)2 + Dge

where m = cos, n = sinf, and D}; are as defined below.

(i) Transversely isotropic and orthotropic materials

It should be noted that, for orthotropic materials, equation (2.3) does not hold, and

there are no axes of material symmetry. Therefore, X axis is chosen in the direction
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of the normal to one of the material planes of symmetry perpendicular to the plane

of the plate. Definition of ¥ and Z axes remains unchanged.

(ii) Monoclinic materials

D3,
D},
D4
D,
D;,
D3,
D36
D
D3,
D},
D3,

*
Dgq

= 4(Crgm? + Cygn®)mn,
= ~2(C16 — Cag)(m® — n?)mn,
= 2C3¢mn,
= C1gm*(m’ — 3n?) 1 Cyen?(3m? — n?),
= ~4(Cy6m” + C1gn®)mn,
= —2C¢smn,
(A.3)
= Caem?*(m? — 3n?) + Ci6n*(3m? — n?),
= Cs¢(m? — nz),
= —2Cssmmn,
= Cys(m? — n?),
= 2C4smn,

= 2(025 - Cle)mn(m2 - ’I’Lz),

For monoclinic materials, equation (2.3) does not hold, and there are no axes of

material symmetry. However, there exists only one plane of material symmetry for

this material. In writing the material property transformation equations, it has

been assumed that the plane of material symmetry is parallel to the plane of the

plate. X axis is chosen in an arbitrary direction lying on the plane of the material

symmetry, and definition of ¥ and Z axes remains unchanged.
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Appendix B

Expressions for Propagator Matrices

The elements of the propagator matrix [P;] appearing in equation (2.14) are as

given below.

where

P11 =
P21 =
P31 =
Pa1 =
Plvz =
P22 =
P32 =
Pa2 =
P13 =
P23 =

P33 =

Paz =

P11 P12 P13 Pia

[P] = D21 P22 P23 P24 (B.1)
P31 P32 P33 P34
Pa1 P42 P43 Pas

Iis ——jk[d cos(2hs1) — ¢B cos(2hs,)],

1

iss [—s1 Adsin(2hs;) + spcsin(2hs,)],
1
2,

=35 ¢d[cos(2hs1) — cos(2hss )],

Ay

DE,

X =25 jk[—s1d(1 + A)sin(2hs;) + s2¢(1 + B) sin(2hs, )],
1

Dss

——=k*[—s3(1 + B)sin(2hs1) + Bs;(1 + A)sin(2hs,)],

DZS—S-jkslsg[A(l + B)cos(2hs1) — (1 4+ A) cos(2hs3)],
2

B.2)
2 , (
%ﬂjk[cszu 4 B)sin(2hs; ) — dss (1 + A) sin(2hs,)],

%—k23152(1 + A)(1 + B)[— cos(2hs1) + cos(2hs3)],
2

IZC: [cos(2hs1) — cos(2hs, )],

JA’j [s1AB sin(2hs1) — s2 sin(2hs; )],

-Zii:jk[ Beccos(2hsy) + dcos(2hss )],

12515 k?[—s1B(1 + A)sin(2hsy) + s3(1 + B)sin(2hss)),
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in which,

[~

e =% [—s2 sin(2hs; ) + ABs; sin(2hsy)],
2
A
Pos = —A——slsz[— cos(2hsy) + cos(2hss)],
2
D55 . .
P3g = A—[_S2c sin(2hsy) + s1 Adsin(2hssy )],
2
Dss .
Pag = fi]k5132[~(1 + A)cos(2hs;) + A(1 + B) cos(2hss)],
2

c = (1 - 51)]02 - ,31.512/1,
d= (1 - 51)]{}23 — 51522,
2
Ay = DssjkBrs:? (25 AB — 1),
S2
Az = D55jk3182(AB - 1),
1

h= 5 (241 — 2).

(B.3)

The propagator matrix [Pi(o)] appearing in equation (2.41) is given by

where

[P{] = [E|[Ty])[H]

[ cos(2hry) 0 0 sin(2hr ) 0
0 cos(2h7y) 0 0 sin(2hr;)

0 0 cos(2h() 0 0

— sin(2hr;) 0 0 cos(2hry) 0
0 — sin(2hry) 0 0 cos(2hry)

0 0 — sin(2h() 0 0
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(B.4)

0
0
sin(2h()

0 ?

0
cos(2h()
(B.5)




_ | [T2][R]] [0]
E= 1 {[Tﬂ[sﬂ’
_ [[BIR]™ [0]
=" i
m n 0
[TZ] =|-n m 0:] y
0 0 1
[ Cs5jKri(1 + Al®))  CssiKre(1 + B() Css KL
[S} = 205562jLT1A(O) 205562jL7”2 055€2(L2 - 42)
7y A0 T —3L
[ jK  jKB© 0
[R] = | jLAL 4L —¢ ;
| Ra Ry 2Csse25LC

Rs1 = Css [(1 — 5,)K? — Ay (r,2 + L) + 2A<°>52L2] ,

Rsz = Css [(1 — 6)K?B®) — By(ry? + L?) + 2521}] .
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Appendix C

Expressions for Stiffness Matrices

To define the matrices [¢;], [cs], [m], and [e;] through [eg] appearing in equation

(2.56) and [C1], [Cy], [M], and [E;] through [E;] appearing in equation (2.58), the

following matrices are defined first:

[N1] = [[Ns] [Nd]],
[N2] = [[Ns]  [N6]],
la] = [[a1] [a2]],
(6] = [[ba] [ba]],
[d] = [[di] [da]],
0 0 0 0 —n3
[Ns] = [ o 0 0 0
ny n3Dag —n3Dy4s
[Vs] = {o St : naDos
A 1
0 0 0 0
"0 0 0 0
0 0 0 0
@]=]0 =xpe ap o mpe
n’1 n'gffm 0 —ngADqs
0 0 0 0
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3D44 0 —naDas
A A
—nyD

0 yorvun 0

0 0 0

0 0 0
_-nAaD 5 TL1 nEIADrr
0 0 0 —n3 O
0 0 0 0 0O
0 0 0o 0 O
0 =fPss 0 0 0

33

0 0 0 0

0 0
0 0
0 o |, (C.9)
ny — TL% Enfg
0 0
(C.10)

The matrices [N4], [Ne], [az], [b2], and [d2], are obtained from [N3], [Ns], [a1], [b1],

and [d;], respectively, after replacing n; by ne, ns by ns, n} by n) and n} by n}.

Then

S
I
i
o Bad

-

)= [ oI [Valdz,
m= [ Zp[NzF[Nz]dz,
= [ h 4" [D)dldz,
)= [ Z 4" (Dllbldz,
sl = [ 4 [D]feldz,

o

.

(l
—
S a3

3]
[~
[l
I
bal

&
I
— |\
>
=
i
S
=)
QU
\.N

pIN:]T[N:1)dz,

(C.11)
(C.12)
(C.13)
(C.14)
(C.15)
(C.16)
(C.17)
(C.18)

(C.19)



[C2] = U]
[Ey] = U
[Ep] = U

[Es] = U
[Es] = U

[Es] = U[[
[M]=U]|

where U stands for union or assembly.
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Appendix D

Derivation of the Reciprocity Relations

The reciprocity relations given in equations (4.36), and the reciprocity relations

for general case are derived in this appendix.

The reciprocity relations are derived from the elastodynamic reciprocity theo-
rem (Achenbach, 1973; Auld, 1973; Tan and Auld, 1980) which may be written, in

the absence of body forces, in the following form using tensor notation:

ﬁ(u?dfk — u?‘a’?k)nkds =0, . k=2z,y,2 (D.1)

where uf and aj\k represent the displacements and stresses corresponding to elas-

B

todymanic state A while u;

and or?k are the displacements and stresses correspond-
ing to elastodynamic state B, in a region V bounded by a surface S. Wave fields
corresponding to both elastodynamic states vary harmonically in time with circular
frequency w. In writing equation (D.1), Einstein’s summation convention of re-
peated indices has been assumed to hold, and the displacement components u, v, w

have been represented by ug, Uy, u;, respectively. In the ensuing §D.1, derivation of

reciprocity relations for plane strain case is given. General case is treated in §D.2.

D.1 Plane Strain Case

In order to derive the reciprocity relations, the orthogonality relations among

wave modes have to be established first.

D.1.1 Orthogonality Relations

The orthogonality relations can be derived by applying the reciprocity theorem
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for two different wave modes travelling in an infinite laminated composite plate with

no inhomogeneity.

Let V be the region bounded by the planar surfaces ¢ = 21, z = z3, 2 = 0,
and z = H. Herein, z; and z; are any two arbitray z coordinates chosen in such
a way that z, > z;. The state A is taken to be the field due to —n-th wave mode
(namely, the field due to the wave travelling in the negative = direction with wave
number k), and the state B is chosen as the field due to m-th wave mode (namely,
the field due to the wave travelling in the positive z direction with wave number

km). The wave fields corresponging to two states can be written as

uwh —A_n{u_n}exp(—jknz), (D.2a)
of —A_n{o_n}exp(—jknz), (D.2b)
u}ja — Am{um}exp(jkme), (D.2¢)
cr?k —Am{om}exp(kme), (D.2d)

where A, {um}, and {o,} represent the amplitude, displacement mode shape
vector, and the mode shape vector of tractions on z face, respectively, for the m-
th wave mode; and A_,,, {u_,}, and {o_,} represent the same quantities for the
—n-th wave mode. Application of the reciprocity theorem given in equation (D.1)

to the region V for the states A and B defined in equations (D.2) results in
A A_p, {explj(km — kn)z2] — explj(km — kn)z1]} 1 =0 (D.3)
where

H
L= [ Quny oo} ~ {an oDz (D4)

Since z; and z, are arbitrary, equation (D.3) leads to the orthogonality relation
H
/ (fum}T{o—n} = {u_n}T{om})dz = 0, for m#n (D5
0
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In a similar manner, the following orthogonality relations can be derived:

H
/0 () {0} — {un} {om})dz = 0; (D.6)
H
/0 ()T {0} — ) {o-m})dz = 0. (@.7)

D.1.2 Reciprocity Realtions

With a view to derive the reciprocity relations among conversion coeflicients,
the plate with the inhomogeneity is considered next. Choosing V as the region of
the plate, bounded by the palnar surfaces z = 0, z = H, 2 = z3, and 2 = 24
(z3 > z1, z4 < z7); state A as the total field (incident plus scattered) due to -n-th
incident wave mode; and state B as the total field due to -p-th incident wave mode,

equation (D.1) can be written as
where

H
I, = / (B} (o2} — (w2 {oB))|  dz, (D.9%)

T3

H
b= [ @ ety - Y| dn (D.9b)

T4

The total wave field at z3 is given by

r M S

{’UA}I,J3 = A_n [{u_n}exp(—jknzs) + Z Rug{uqtexp(jkozs)|, (D.10a)
- ~ -

| {UA}IM = A_, |{o_n}exp(—jknzs) + Z Rug{og}texp(jkqzs)|, (D.10b)

M
{uP}],, = A—p |{u—p}exp(—jkpzs) + D Rpm{um}exp(ikmes)|, (D-10¢)

L m=1 i J

-

M
{UB}lzs = A_p [{o-p}exp(—kpzs) + Z Rym{om}exp(jkmes)| (D.10d)

L m=1 J
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where R,, and R, represent reflection coefficients. The total wave field at z4 can

be written as

M

{'“A}lu =A-n Z Tng{u—q} exp(—skozs), (D.11a)
qu

{O'A}Iz4 =A_, Z Tro{o—q}exp(—Jkqzs), (D.11b)
P

{uBH24 =A_, Z Tpm{t—m}exp(—jkmtas), (D.11c)
mA;I

{UB}lu =A_, Z Tom{o—m}exp(—jkmzs), (D.11d)

where Tp, and Ty, represent transmission coefficients. Substitution of equations
(D.10) in equation (D.9a), and subsequent simplification of the resulting equation

by making use of the orthogonality relations given in equations (D.5)-(D.7) leads to

Iy = A_pA_n(Rpnsn — Rapsp) (D.12)

where ¢, and ¢, are given by

H
Sm = /(; ({Um}T{o'——m} - {u—m}T{Um})dza m=p,n. (D.13)

In view of the orthogonality relations, substituion of equations (D.11) into equation
(D.9b) results in
Is = 0. (D.14)
Equations (D.8), (D.12), and (D.14) leads to

angn = Rnpgp, (D15)

which is the reciprocity relation given in equation (4.36a).
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The vectors {u,, } and {0} can be written in the component form as

{um} = {u”’“ } , (D.162)

Uzm

Ozzm

{om} = { Team } - (D.16b)

Imagining a wave propagating in the negative z direction as being the mirror image
about the plane z = 0 of a wave propagating in the positive z direction, one finds

that {u_m,} and {c_n} can be written as

Uzm

{u—m}= { e } , (D.17a)
{o-m} = { Tzam } (D.17b)

—Czzm

In view of equations (D.16) and (D.17), sm appearing in equation (D.13) take the

form

H
o =9 /0 ()T {o—m}dz. (D.18)

Approximating the integral in equation (D.18), ¢, can be written as

Sm ~ —2{F} {gm} (D.19)

where {F,>} is the m-th column of [F~] and {gn} is the m-th column of [GT].

The reciprocity relation given in equation (4.36b) can be derived in a similar
manner by applying the reciprocity theorem to the same region V, with state A as
the total field due to n-th incident mode and state B as the total field due to —p-th
incident mode. Note that when deriving equation (4.36b), it has been assumed that

the geometry of the inhomogeneity is symmetric with respect to the plane z = 0.
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D.2 General Case

Asin the plane strain case, the first step is to derive the orthogonality relations

among wave modes that exist in an infinite plate with no inhomogeneity.

D.2.1 Orthogonality Relations

For convenience in derivation of orthogonality relations, few notations are in-
troduced first. Let the wavenumber pair (k,, (o) denotes a wave mode propagating
in the first quadrant of zy plane. Herein, k, represents the positive z direction
wavenumber, and (o (which is fixed) represents the positive y direction wavenum-
ber as opposed to the definition of (; in Chapter 5. In a similar manner, let the
wavenumber pairs (—kZ, (o), (—kn, —(o), and (k}, —(o) denote the wave modes cor-
responding to second, third, and fourth quadrants of zy plane, respectively. It
should be mentioned here that if (k,, (o)-th wave mode is an admissible wave mode
(of the dispersion relation of the plate), then (—k,,—()-th wave mode, which is
propagating in the opposite direction, is also an admissible wave mode. Similary, if
(ki,—Co)-th wave mode is admissible, then (—k;, {¢)-th wave mode is also admissi-
ble. This point can be explained by visualising the configuration of the plate with
respect to a new coordinate system that is obtained after rotating the z,y axes by
180° about the z axis. However, when (k,,{o)-th wave mode is an admissible mode,
then (k,,—(o)-th wave mode is not necessarily an admissible mode. Due to this
reason, a superscript star (*) has been introduced to the ¢ direction wavenumbers
of wave modes corresponding to second and fourth quadrants of the zy plane. Note
that (kn,—(o) -th wave mode is admissible when the fibers in each layer are aligned
either in z or y directions. This can be visualized by considering the mirror image

of the plate with respect to the zz plane.
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The orthogonality relations are derived by applying the reciprocity theorem to
the close region V bounded by the planes 2z =0, 2 = H, z = z1, ¢ = 22, Yy = Y1,
and y = y, where z1, 2, y1, and y, are arbitrary coordinates chosen in such a way
that zo > z; and yo > y;. State A is taken to be the field due to (—k}, {o)-th wave
mode and state B is taken as the field due to (k , —(o)-th wave mode. Then, the

wave fields due to two states can be written as

uf =A™ furh Yexpli(—knz + (o), (D.202)
o At { 1] pemplitotie+ o, (D.20b)
uf — Ar {us Yexpli(k,z — Goy)l, (D.20c)
o8, AL { g::y} } expli(k5z — Cov) (D.20d)

where A*%, {u*h}, {o*%_}, and {07} represent the amplitude, displacement
mode shape vector, the mode shape vector of tractions on z face, and the mode
shape vector of tractions on y face, respectively, for the (—k,, (o )-th wave mode; and
Ax, {ur7}, {0 }and {0}, } represent the same quantities for the (k7,, —Co)-th
wave mode. Application of the reciprocity theorem to the region V for the states A

and B defined in equations (D.20) results in

{exp[j(ky, — by )e2] — expli(ky, — kn)ea]} Ll(kn, —Co)i (—Fns (o)) = 0 (D-21)

where the notation I[(k},, —(o); (—k:,(o)] has been used to represent the integral

H
/0 (Y o™} — )T {ons b ds

Since z; and z, are arbitrary, equation (D.21) leads to the orthogonality relation

Lk, —Co); (—kX, Co)] = 0 for kI # k. (D.22)
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Tt needs to be mentioned here that the net contributions from the surface integrals

(see equation (D.1)) on planes y = y; and y = y2 amount to zero.

In a similar manner, choosing state A and B as the fields due to (kn,(o)-th and

(—km, —Co)-th wave modes, respectively, it can be shown that

I4[(~kma —CO); (knaCO)] =0 for km 7& kn. (D23)

Adopting a similar approach, the following orthogonality relations can be de-

rived:

I‘l[(kjn’_go);(knvc())] = 07 (D24)

Is[(=km; —Co); (—kn,C0)l = 0, (D.25)

In deriving equation (D.24), state A is chosen as the field due to (kn,(o)-th wave
mode and state B is taken as the field due to (k},,—(o)-th wave mode, whereas in
deriving equation (D.25), state A is chosen as the field due to (—ky,(o)-th wave

mode and state B is taken as the field due to (—km, —(o)-th wave mode.

D.2.2 Reciprocity Relations

In order to derive the reciprocity relations,l V is chosen as the region of the
plate surrounding the inhomogeneity, bounded by the planar surfaces z = 0, z = H,
=13 (¢35 >z7),z =24 (3¢ < 27), ¥y = Y1, and y = y» (where y; and y. are
arbitrary, and y2 > y1). The reciprocity relations among reflection coeflcients can
be derived by choosing state A as the total field due to (—kn, —(o)-th incident wave
mode, and state B as the total field due to (—k;, (o )-th incident wave mode. Let
R, and Ty, denote the reflection and transmission coefficients, respectively, due to

(—kn,—Co)-th incident wave mode; and R}, and T, denote the same quantities
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due to (—k;,(o)—th incident wave mode. In view of the orthogonality relations
given in equations (D.22)-(D.25), and omitting details of algebra, application of the

reciprocity theorem to the region V results in the reciprocity relation

REncl®) = Rups#” (D.26)

n

where

o{f) = /0 ) ({'LLZ}T{UIM}—{uZn}T{cr:;c )dz, (D.27a)
gl = /0 ! ({u;_}T{a*_‘;m}~{uf‘;}T{a;; )dz. (D.27b)

In equations (D.27), {u}}, {uZ,}, {v;7}, and {u} denote the displacement
mode shape vectors corresponding to (kn,(o)-th, (—kn,—Co)-th, (k},—Co)-th, and
(—ky,Co)-th wave modes, respectively, in an infinite plate with no inhomogeneity.
The corresponding traction mode shape vectors on z face are denoted by {et.},
{07} {037}, and {07}, }. It should be noted that the net contribution to the

surface integral in equation (D.1) from surfaces y = y; and y = y» becomes zero.

With a view to approximate the integrals in equations (D.27) to a simple form,

{u7} and {0}, } are written in the component forms as

{ufy=< uf, ¢, (D.28a)

{or}=<( ot }- (D.28b)

Then, it can be shown that {u_,} and {¢_,,} are given by

—’u‘:n

{uZ,} =< —ui, ¢ (D.29a)
v,
ot

TN

{0 21 = ot . (D.29Db)

zYyn

—_gt
Ozzn
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In view of equations (D.28) and (D.29), 9 appearing in equation (D.27a) can be

written as

) =9 / H{u;}T{U:m}dz. (D.30)

Approximating the integral in equation (D.30), 9 can be written as

0~ —2{FP7} {0} (D-31)

where {F,(Lg)_} is the n-th column of [F(9)~], and {q%g)} is the n-th column of [G]
(g)*

for general case. ¢;°'" can also be approximated by a form similar to that given in

equation (D.30).

Applying the reciprocity theorem to the same region V, with state A as the total
field due to (kn, o)-th incident mode and state B as the total field due to (—kp, —(o)-
th incident mode, the reciprocity relation among transmission coefficients can be

shown to have the form

Tpnggg) = Tnpgz()g) (D32)

where g:gg) is given by equation (D.31) with n replaced by p. As in the plane strain

case, when deriving equation (D.32) it has been assumed that the geometry of the

inhomogeneity is symmetric with respect to the plane z = 0.

When the fibers in each layer are either in z or y direction, the the reciprocity

relation in equation (D.26) degenerates into

ang.gg) = Rnpgz(,g) (D33)

With equation (D.26) in hand, following the procedure adopted to derive equa-

tion (4.39) in plane strain case, the reciprocity relation among proportions of re-
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flected energies can be derived as

Elr = Efr. (D.34)

When the fibers in each layer are aligned in either z or y direction, equation

(D.34) degenerates to
E} =E, (D.35)
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Appendix E

Definition of Matrices [T3] and [Tég)]

The matrix [T3] appearing in equation (4.56) is given by

J

2 2

(T3] :Css[ m”  nt 2mn 2}. (E.1)

—mn mn m° —n

The matrix [T,l(g)] in equation (4.56) is obtained from [T} (K, L)] after replacing
K by K9, and L by L(9), where [T4(K, L)] is given by

t31 132 133

t11 ti1a  ti13
[T4(K, L)] = {tzl ta2 tza} (E.2)
where

ti1 = =MK% 4+ (1 = 8)(r1% + L?),
t1s = — Ao K2B) 4 (1 — &) (r2? + L?),
t13 =0,
ta1 = (1 — 62)K? = [Ba(r1? + L?) — 26571 2] A,
tay = (1 — 62)K2 B — [By(r9? + L?) — 2e97m57%], (E.3)
123 = —2e23L(,
ts = —KL(1+ A®),
tss = —KL(1 + B(),

t33 = —j K(.
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Appendix F

Expressions for Force Components

The force components Fz-(i)z, Fi(i)y, and Fi(i)z appearing in equation (4.58) are

given below.

FOe M osth) + 6,
For =Rostn) 46,
F9* =%(2&mm + Gazm);
Fr ) 2+
%(25',(6_:;3,,L + &i;()i+1)m) for 2<i¢< N,
R A L
(F.1)
%5( 6 46 iy, for 2<i<N,
Fi(fi.)z Zhigl (6 22(i—1ym + 26 z2im )+
%(2&zzim + G2z(it1)m) for 2<i<N,
F((zgv)-fq)m :ﬁg(&iﬂvm + 2&i;2N+1)m)7
F((]{/')-:;j—l)m :%&(&iﬁvm + 2&:(1:;()N+1)m)7
F((Ig\,)jl)m :%(&221\’"@ + 262N+ 1)m):

(=) and &F) (1 <1 < N + 1) denote the m-th mode normal

In the above, 7 ;.. i

stresses in the z direction just, above and below the i-th interface, respectively.

(=) and ') (1 <i < N +1) denote the m-th mode shear stresses

Similarly, 6, /m 2yim

in the y direction just, above and below the i-th interface, respectively. If the

~(+)

adjacent sublayers of the i-th interface have the same material properties, o,.: .

5(~) will be equal to &)

will be equal to 6,/ 507 zyim

,and 6,0,
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