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Abstract

Propagation and scattering of free guided \.vaves in laminated composite plates

are investigated with particular reference to ultrasonic nondestructive evaluation

zrrnirt a , ¡ r(NDE) of material properties and flaws.

A stiffness method and an analytical method have been developed to study

u/ave propagation in laminated composite plates. Using these methods, the effects

of interface layers, anisotropy, and layering on dispersion characteristics of free

guided \\¡aves are investigated. It is shorvn that ultrasonic NDE techniques can be

used to characterise material properties of these plates.

As a special case of a wave scattering problem, the problem of reflection of

waves normally incident upon the free edge of a laminated composite plate has been

investigated in detail using least-squares and variational meihods. A wave func-

tion expansion procedure has been used in developing least-squares and variational

methods for this problem. The end resonance for a homogeneous fiber-reinforced

composite plate is reported.

A hybrid method is presented for analyzing scattering of waves by the flaws

in laminated composite plates. The modeling is achieved by dividing the domain

of the plate into two regions: an interior region that consists of the flaws and a

finite region of the plate, around the flaw; and an unbounded exterior region. The

hybrid method combines a finite element formulation in the interior region with

a lvave function representation in the exterior region. The method is illustrated

through solving the problems of scattering by a symmetric normal edge crack and a

centrally located normal matrix crack that grows into delamination. The technique

presented has potential applications in ultrsonic NDE.
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Chapter 1

Introduction

1.1 General

Composite materials are ushering in a nelÃr era for material science and en-

gineering due to their low density, increased service life, and high performance

not obtainable with conventional engineering materials. A composite material is

a combination of two or more constituents u'hich results in a substance having a

potentially nerr/ range of performance characteristics. There are two basic types

of composites, namely, particle-reinforced composites and fi ber-reinforced compos-

ites. Particle reinforced composites are elemental or alloy matrices within which

fine particles of such materials as AI2OB, TnO2, CrzO¡, SiO2, SiC are dispersed.

Fiber-reinforced composites are elemental, alloy or polymeric matrices strength-

ened by random or oriented fibers (fllaments). The contents of this thesis will be

mainly directed towards the oriented fiber-reinforced composites, although some of

the principles to be discussed will have general applicability.

In fiber-reinforced composites, the role of the fibers is to impart the stiffness

and strength characteristics of the fi.bers by being able to carry a major part of the

load in the direction of the fibers. The fibers may be organic or metalic. Examples

of the commonly used fibers are glass, graphite, boron, and aramid (Kevlar). The

diameters of these fibers are typically in the range of 0.008mm to 0.15mm. Generally

the fibers are 10 to 100 times stronger than the matrix. The role of the matrix

is: to maintain alignment of the fi.bers and increase structural stiffness; to provide

adequate transeverse properties perpendicular to the fibers; to act as a load transfer

medium for discontinuous or broken fibers; and to protect the fibers from damage,



mutual abrasion and environmental degradation. The matrix may be organic or

metaiic. Some examples of the matrices are epoxy, polyester, and silicon.

The use of composite materials began with the development and use of fiber-

reinforced plastic composites in the 1940s, when the engineers were iooking for

aiternatives to expensive and scarce steels or alloys. Since then, the military and

a variety of other industries (such as aerospace, marine, automobile, construction)

have developed numerous appiications for composites. Many of these applications

use composites in the form of plates. In the manufacturing process, the continuous

fibers are laid parailel to each other, and then emersed into the matrix to form

a single layer or lamina. Some applications use composites in the form of single

iamina, which are commonly referred to as homogeneous or uniaxiai frber-reinforced

composite plates. For many other appiications, the single layers are hand or machine

bound together with thin resin or plastic bond layers to produce what is known as

Iaminated compos'i,te plates. The present investigation is concerned with such plates.

Almost any number of single layers can be laminated, and the fibers in adjacent

layers can be oriented in differnt directions to suit with the structural requirements.

The composite plates have several advantages over the plates made of conventional

materials. They offer superior strength to weight ratio, and are corrosion-resistant,

thermally insulating, non-magnetic, and dielectric. Another advantage of using

these structural members is the possibilty of tailoring the properties of the fibers for

a particular use. In order to use these stuctural members at their fullest potential,

several problems related to their strength behaviour have to be solved. The strength

of these plates is dependent on the elastic properties of the composite material, and

in addition the presence of flaws or defects in the composite material has a great

influence on the streneth.



L.2 Material Characterisation

Uitrasonic 'waves provide an efrcient means of characterising effective elastic

properties of a composite or a heterogeneous material. Several studies (Datta, 7977;

Read and Ledbetter,I9TT; Berryman, 1980a, 1980b; Datta and Ledbetter, 1983;

Kinra et aI., 1980; Datta et aI., 1984; Ledbetter and Datta, 1984; Varadan et a1.,,

1985; Ledbetter and Datta, 1986; Datta and Ledbetter, 1987; Ledbetter et al.,

1989) shou' that, for long rvave lengths one can predict the effective wave speeds

of plane waves through such a material. At long wave lengths wave speeds are

nondispersive, and hence provide the values for effective elastic properties of the

composite material.

In laminated composite plates, the materiaJ properties of interface bond layers

and laminae are often quite different in bulk from those of manufactured spec-

imens, due to changes induced by the curing process. Thus it is important to

nondestructively characterise these materials in situ. Several uÌtrasonic techniques

are currently availabie for nondestructive evaluation (NDE) of plate-like specimens.

Early techniques used body v¡aves. New techniques employing guided waves a e

under development. There are several advantages in using guided rtraves in the

NDE. First, their dispersive and multimodal nature can be used to generate a large

number of data points in a given frequency range, compared with oniy a few in the

case of body waves. Second, the velocity of guided r¡'aves is very sensitive to the

material properties of the plate. Finally, the velocity of guided waves can be very

accurately measured as a function of frequency.

In order to interpret ultrasonic test results, it is neccessary to have theoretical

predictions for dispersion characteristics of guided 'waves as fuctions of the properties

to be characterised. Comparision of test results with theoretical predictions leads



to determining unknown properties. Dispersion charateristics of guided waves in

an undamaged iaminated composite plate are influenced by many factors, the most

important of which are: interfaces, fiber orientation in each lamina, number of

layers, and effective material properties of each lamina.

Using elasticity equations, dispersion relation for a homogeneous isotropic plate

has been extensively studied by Mindiin (1960). Dispersion characteristics of two- or

three-iayer istropic plates have been analytically investigated by Yu (1960), Jones

(1964), and Lee and Chang (1979). Frequency spectrum for monoclinic crystal

plates has been investigated by Kaul and Mindlin (1962). Recently, Nayfeh and

Chimenti (1989) studied propagation of guided vÍaves in an anisotropic homogeneous

plate in detaii. This study contains a comprehensive survey of the literature on

guided $rave propagation in homogeneous anisotropic plates. Baylis and Green

(1986a, 1986b) and Baylis (1988) investigated analytical dispersion equations for

two- or three-layer transversely isotropic plates.

Several approximate theories have been proposed to derive the dispersion re-

lations in the form of generalized eigenproblems. The most common ones are piate

theories. A list of references on numerous refined plate theories for homogeneous or

laminated media consisting of isotropic or anisotropic materials can be found in Ka-

pania and Raciti (1989), and Librescu and Reddy (1989). Ilowever, plate theories

are cumbersome to use and they do not provide very accurate eigenvalues for wave

velocities. Theories which yield accurate eigenvalues and are computationally very

convenient to use are the theories derived through the stiffness method of analysis.

Dong and his co-r¡'orkers (Dong and Nelson,7972; Dong and Pauiey, 1978; Dong and

Huang, 1985) presented a stiffness method of analysis to study wave propagation in

laminated anisotropic plates. They discretized the plate in thickness direction with

subdivision into mathematical sublayers and used quadratic interpoiation poiyno-



mials that involve only the displacements at the interfaces between sublayers and at

the middle of the sublayers as the generalized coordinates. Since only displacement

continuity is maintained, this method is not very effective for obtaining accurate

wave velocities at high frequencies. Recently, Datta et al. (1988) presented an

approximate stiffness method applicable to a layered anisotropic plate with arbi-

trary number of layers. In this method, the continuity of both displacements and

tractions are maintained. In their analysis, they considered only plane strain and

antiplane strain propagation problems. A comprehensive review of previous work on

guided u,ave propagation in the presence of thin interface bond layers can be found

in Datta et aI. (7990b). In most of these studies, the bond layer is approximated

as a massless spring or a fluid layer that allows jn*p in the displacement keeping

traction continuous. Atiempts at using this spring or slip model to characterise

bond iayer have shown their applicability to a iimited class of bonds. For further

references on previous studies of guided wave dispersion, the reader is referred to

the edited volume of Datta et ø1. (7990a). However, in none of the above studies a

systematic study of effects of interface bond layers, anisotropy, and layering on the

dispersion characteristics of guided waves in a iaminated composite plate has been

reported.

In the studies mentioned above, attention was focussed on free guided waves.

It is noted here that the effect of fluid loading on ultrasonic guided waves has also

been investigated by several authors. References to these can be found in the works

by Rokhlin and Marom (1986), Nayfeh and Chimenti (1988), Pila.rski and Rose

(1988), Chimenti and Nayfeh (1990), and Mal et aI. (7990).

1.3 Flaw Detection

Presence of flaws is a major controliing factor of strength of a iaminated com-



posite plate. These plates have unique failure mechanisms. For example, the bond

between the layers may fail causing delamination or debonding. Similarly, the ma-

trix can have surface cracks. A most likely failure in a cross-ply laminated plate is a

normal matrix crack initiated rvithin an inner layer, extending to the adjacent layers

and then gro'vving into delamination. If the plate is a part of a structural system

that cannot be dismantled, a preferable rn¡ay to fi.nd the nature and existence of a

fl¿1¡' (crack or delamination) is in a nondestructive manner. Recently, it has been

demonstrated by Spetzler and Datta (1990) that detection of flaws in plates can be

carried out using guided ultrasonic \¡/aves. A schematic diagram of a typical ultra-

sonic flaw detector is shown in Figure 1.1. These flaw detection techniques use a

transducer to send ultrasonic waves into the plate. The waves incident on the piate

travel through the plate, and when a flaw is encountered they scatter into reflected

and transmitted signals. Of particular interest is the scattered signal, which reaches

the surface of the plate and is measured by receivers located on the suraface. The

scattered signals carry a substantial amount of information about the size, shape,

and location of the flaw. Ultrasonic fl.aw detection techniques rely on the theoretical

predictions of amplitudes of scattered signals. The nature and the existence of the

flaw is determined by comparing ultrasonic measurements of signal amplitudes with

theoretical predictions. Therefore, it is crucial to have a theoretical model which

can accurately predict the ultrasonic wave scattering b.y flaws.

The free edge of a piate can be considered as a through-thickness crack which

is a special case of a normal edge crack. Thus reflection of waves at the free edge

of a plate can be considered as a special case of a wave scattering problem. Torvik

(1967) treated the free end reflection of a homogeneous isotropic plate by expand-

ing the reflected wave field in wave functions. He determined the amplitudes of

modes, approximately, by using a variational principl". Wu and Plunkett (1967)



also addressed this problem by using a variational principle method and a residual

boundary value minimization method. Gregory and Gladwell (1983) have reported

a detailed investigation of symmetric Rayleigh-Lamb wave reflection at the edge of

a homogeneous isotropic plate bv using the method of projection. However, to our

knowledge, a study of free end reflection of homogeneous anisotropic and laminated

anisotropic plates has not been reported.

Many references on earlier work on problerns of wave scattering by cracks can

be found in the review article by Miklowitz (1960). The edited volume of.Datta et aL

(1990a) is a good source ofreference on current works on rtrave scattering by cracks.

Rokhlin (1980,1981) has analysed the scattering of Lamb waves by a crack parallel

to the surface of a homogeneous isotropic plate using the modified Wiener-Hopf

technique and the method of multiple diffractions. Tan and Auld (1980) investigated

the scattering of Lamb waves by a crack normal to the surface of a homogeneous

isotropic plate using the normal mode variational method. Recently, Achenbach

and his co-workers (Achenbach and Li, 1986; Achenbach and Kitahara, 1986; Angle

and Achenbach, 1987; Mikata and Achenbach, 1988) studied the wave scattering

by a periodic distribution of cracks and cavities in a homogeneous isotropic infinite

solid. However, application of these methods is extremely difficult, if not impossible,

for flaws of arbitrarv shane.

Shah eú al. (7982) and Wong (i985) used a hybrid method combining an ana-

lytical procedure with a finite element method to study the scattering of horizontally

polarzed shear (SH) waves by arbitrarily shaped cracks and cavities located either at

the surface or at a depth in a homogeneous isotropic half-space. Later, Abduljabbar

et al. (7983) extended this hybrid method for the analysis of the scattering of SH

ltraves by arbitrarily shaped flaws in homogeneous isotropic plates. Koshiba eú ø/.

(1984) extended this approach to Lamb wave scattering by flaws in homogeneous



isotropic plates. Recently, Paskaramoorthy et al. (7989) used the hybrid method to

investigate scattering of slow flexural lvaves by a crack in a homogeneous isotropic

plate. Information on wave scattering by flaws in anisotropic plates is very limited.

It is noted here that while this study rvas in progress, three other parallel investi-

gations were underway. In one, Al-Nassar (1990) used the hybrid method to study

Lamb wave scattering by rveldments in isotropic plates. In the second, using the hy-

brid method, Bratton et al. (1990) studied scattering by a normal surface breaking

crack in a homogeneous (uniaxial) fiber-reinforced composite plate. In the other,

Ju et aL (1990) investigated scattering by a interior crack parallel to the surface

of a homogeneous fiber-reinforced plate, using a different technique that combines

finite elements and Green's function integral. Horvever, wave scattering by cracks

and delaminations in laminated composite plates has not been investigated.

L.4 An Overview of the Present Study

The objective of the present study is to investigate propagation and scattering

of free guided waves in laminated composite plates with particular reference to

material characterisation and flaw detection. The analysis is car¡ied out on the

assumption that the lateral dimensions of the plate are very large in comparison to

the thickness of the plate. A stiffness method and an analytical method are used

to study the dispersion characteristics of free guided waves. As a special case of a

scattering problem, the free end reflection problem is investigated in detail using

least-square.s and variational methods. Wave scattering by cracks and delaminations

is studied by extending the hybrid method.

L.4.L Guided'Wave Propagation

The stiffness method used in this studv is an extension of that presented bv



Datta et al. (1988) to the off-axis case where direction of wave propagation is

at an arbitrary angle to the fi.ber direction in each iamina. In this method, the

dynamic behaviour of ihe composite plate is approximated by dividing the plate

into several sublayers and representing the displacement distribution through the

thickness of each sublayer by cubic interpolation polynomials. These polynomial

functions involve a number of discrete generalized coordinates, which are displace-

ments and tractions at the interfaces between the adjoining sublayers. By applying

the l{amilton's principle, the dispersion equation is obtained as a standard alge-

braic eigenvaiue problem. Eigenvalues and eigenvectors of this equation yieid the

frequencies of propagating, nonpropagating, and evanescent modes, and the associ-

ated displacements and tractions at the interfaces.

An efficient method to obtain the exact dispersion characteristics of a plate hav-

ing arbitrary number of anisotropic layers has not been reported in the iiterature.

Although it is possible to obtain, using a propagator matrix approach (see Mal,

1988), exact dispersion equation governing guided v/aves in a layered anisotropic

plates, finding roots of this transcendental equation is quite cumbersome and com-

putationally very expensive. As the number of layers increases, the exact dispersion

reiation becomes extremely complicated and requires robust search techniques in

iocating roots. To circumvent this difficulty, an analytical method that combines

an efficient root locating ,.h"-" is proposed here. In this method, exact d.isper-

sion relation of the layered anisotropic plaie is constructed using the propagator

matrices. Mullers's method as given in Conte and Boor (1972) is then used, in

conjunction with initial guesses obtained from an approximate theory, to obtain

analytical dispersion characteristics.

The accuracy of the stiffness method is demonstrated by comparing the results

rvith analytical results for homogeneous and layered fiber-reinforced piates. The ef-



fect of anisotropy on the dispersion characteristics in a homogeneous frber-reinforced

plate is studied by changing the angle between the fiber direction and the direction

of r.ave propagation. The effect of interface layers is investigated using an actual

modeling approach. In this approach, the interface layer is considered as a sublayer,

thus taking into account both the stiffness and the density of the bond layer. The

results of the interface efects show the possibiiity of using ultrasonic techniques to

characterise bond layer properties and thickness. Finally, the effect of number of

layers on the dispersion characteristics in fiber-reinforced cross-ply laminated plates

is investigated. It is shown that the material properties of a composite plate u'ith a

sufficiently Large number of layers can be charaterised as homogeneous anisotropic

with six elastic constants.

L.4.2 Free End Reflection

A wave function expansion procedure is used to solve the problem of reflection

of waves normally incident upon the free edge of a semi-infinite, laminated composite

plate. The reflected freld consists of a finite number of propagating modes and

an infi.nite number of nonpropagating and evanescent modes. A finite number of

wave functions are superposed to represent the reflected field. The least-squares

and variational principle methods are used to determine the unknown reflected

rvave amplitudes. The numerical results of wave amplitudes and division of energy

among various reflected modes for a homogeneous fiber-reinforced plate and for a

35-layer cross-ply laminated plate are presented. The accuracy of the results are

checked by satisfying the principle of energy conservation. The end resonance for

the homogeneous fiber-reinforced composite plate is also reported.

10



1.4.3 'Wave Scattering by Cracks and Delaminations

In the present study, the hybrid method is extended to the analysis of wave

scattering by flaws in laminated composite plates. The hybrid method combines

finite element formulation in a bounded interior region of the plate with a wave

function expansion representation in the exterior region. Ail the flax's are assumed

to be contained in the bounded region. The two regions a e connected along vertical

boundaries. Continuity conditions for the displacement and interaction forces are

imposed at the nodes lying on the boundaries. This results in a system of linear

equations which is solved for the unknor¡'n wave function amplitudes. These am-

plitudes are used to obtain boundary nodal displacements and in turn to obtain

interior nodal displacements. The hybrid method is iliustrated for the case of scat-

tering by a symmetric normal edge crack and a centrally located normal matrix

crack that grows into delamination. Numerical results of the scattering problem

are presented for an isotropic plate, a homogenous fiber-reinforced plate, and for

8-layer and 35-layer cross-ply laminated plates. The accuracy of the results are

checked by the satisfaction of the reciprocity relations and the principle of energy

conservation. The results of ihis investigation have potential applications in ultra-

sonic nondestructive evaluation.

1.5 Organisation of the Thesis

This thesis is concerned with the investigation of propagation and scattering

of guided waves in laminated composite plates with particular reference to materia"l

characterisation and fl.aw detection. In Chaper 2, the formulation of an analytical

and an approximate v¡ave propagation model is presented. The accuracy of the

approximate model and the numerical results for effects of interface bond layers,

anisotropy, and layering on the dispersion characteristics are discussed in the same

11



chapter. Formulation and discussion of numerical results of the free end reflection

problem are presented in Chapter 3. In Chapter 4, the formulation of the hybrid

method for wave scattering by flaws in laminated composite plates is given. Also

given in the same chapter is the numericai results for scattering by a symmetric

normal edge crack and a normai central crack that grows into delamination. Finally,

conclusions of the research are presented in Chapter 5. Some recommendations for

future vvork are also made in this chapter.
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Chapter 2

Wave Propagation in Laminated

Composite Plates

2.1 General

In this chapter, wave propagation in laminated composite plates is investigated

in detail. As mentioned in Chapter 1, two rÃ¡a\¡e propagation models are developed:

one employing an analytical formulation; and the other employing an approximate

displacement and stress based stiffness method. The main objective of develop-

ing these models is to find the dispersion relations and thereby to study guided

'wave propagation in a laminated composite plate. The effects of interface layers,

anisotropy, and layering are investigated by making use of dispersion characteristics

obtained from these models. Later in this chapter, it is shown that the material

properties of a composite plate with a large number of laminae can be characterised

as homogeneous anisotropic.

2.2 Description of the problem

Time-harmonic elastic \Mave propagation in an infi.nite plate composed of per-

fectly bonded layers with possibly distinct mechanical properties and thickness is

considered. The two faces of the plate z : 0 and z : H are traction-free, and the

global rectangular cartesian coordinate system (trUr") is as shown in Figure 2.7.

The assumed direction of plane wave propagation is æ. Since the plate is infinite in 3r

direction, all field quantities (dispalcements, strains, stresses etc.) are independent

of the g coordinate.

I4



2.3 Analytical Method

In this section, a wave propagation modei based on exact analytical formulation

is deveioped.

2.3.L Governing Equations

Since the concern here is with a plate having a iarge and a varying number of

layers, it will be convenient to resort to an anaJytical technique in which the number

and properties of layers can be arbitrariiy varied rvithout substantially changing the

solution procedure. In the technique adopted here, each layer is divided into several

sublayers so that the total number of sublayers through the thickness , fl, is y'ú. For

simplicity in the analysis, each layer is assumed to have tranversely isotropic mate-

rial properties with the material symmetry axis making an arbitrary angie with the

æ- axis. In general, waves propagating in a direction making an arbitrary angle with

the symmetry axis of each lamina rvill produce a three dimensional wave motion.

Let I denotes time, anð. u(æ,2,t), u(ærz,,t), u(æ,2,ú) denote particle displacement

components in æ, g,, z directions, respectively. Consider the i-th subiayer bounded

by z : z¿ aud z : z,¿+r. A local rectangular cartesian coordinate system (X rY, Z) is

chosen in the z-ih sublayer with the origin in the mid-plane of the sublayer, X- axis

along the material symmetry axis (fiber direction), Z- axts vertically down, and Y-

axis parallel to the plane of the plate. LeLU(X,Y,Z,t),V(X,Y,Z,t),W(X,\',Zrt)

be the displacement components of any particle within the i-th sublayer in X, )',

Z directions, respectively.

The strain-displacement relations within the z-th sublayer in the local coordi-

nate system are given by

AU
exx : 

AX,
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(2.1d)
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(2.11)

u'here €fJ represent strain components.

The stress-strain relation of this sublayer in the local coordinate system is given

by (see Lekhnitskii, 1963)

where arJ a;re the stress components and C¡¡ are the elements of constitutive matrix

for the sublayer. Note that

Czz: Css, Css: Cøs,, Cn: Cn, C++:
(Cr, - Crt)

(2.3 )

Let" 0 be the angle between the global æ- axis and the local X- axis measured

anticlockwise from the global æ- axis. The stress and strain components for the z-th

sublayer in the global (rryr") coordinate system are related by

axx
cyy
azz
cyz
tzx
uxy

cæz

c,,.,

Czz
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cz¿
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exx
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€zz
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where o¿¡ and €ij represent stress and strain components, respectively, in the (*rA, ")
coordinate system and D¿¡ are related lo Ctt by the equations presented in Ap-

pendix A.

In the absence of body forces, the equations of motion in the local coordinate

system are given by

ôoxx ôoxv ôoxz
ox- aY- az

ôoxv }ovy ôovz
ax- aY- az

ôoxz -0ort -ôottðX AY AZ

a2u:P 
6rzt

a2v:P 
6rzt

a2w:P 
6rz t

(2.5a)

(2.5b)

(2.5c)

where p is the density of ihe sublayer under consideratron.

If the direction of the fi.bers in each lamina is aligned with either æ- or g- axis,

then the ï¡ave propagation problem reduces to two uncoupled problems: plane strain

case in which the displacement components are u and ø, and antiplane strain case

where the only nonzero displacement component is 'u. When the wave propagation

occurs along an off-axis direction (i.e. 0 + 0" or 90'), the particie dispalcement

vector will have all three displacement components: 'tL)'u) 1D. In $2.3.2 analysis for

plane strain case is presented. Since the analysis for antiplane strain case is very

similar to the plane strain case, no details of the antiplane strain case are presented

here. Off-axis case is dealt rn'ith in 02.3.3.

2.3.2 Plane Strain case

The nonvanishing displacement components in this case are u(æ,,zrf) and

w(æ,2,ú) in æ and z directions, respectively. The governing equations (2.1), (2.4)

and (2.5) for the i-th sublayer in the global (t,U, r) coordinate system reduce,

T7



respectively, to:

and

where
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(2.6a)

(2.6b)

(2.6c)

(2.7)

(2.8ø)

(2.8b)

eæî

-zz

Note that the analysis presented in this subsection is valid not only for transversely

isotropic material properties but also for orthotropic material properties. In the

latter case' equation (2.3) does not hold and the appropriate material property

transformation equation from Appendix A has to be used.

The appropriate forms for z and u.', which satisfy equations (2.g), are

u: jk(Çt{ + BnT)exp[j(kæ - rt)],

p : (Astf-¿i + tzDl) exp[j(kæ - rt)].

Ol : ø11 cos(s1 z) ¡ a12 sin(s1e),

0i : ø12 cos(s1 ,) - on sin(s1a),

0f : a21 cos(s2z) + azzsin(s2z),

Q; : a22 cos(s2z) - ort sin(s2z),

(2.ea)

(2.eb)

(2.70a)

(2.10ó)

(2.10c)

(2.10d)
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A-

B-

kr'-À7k2-s12
6tsf

k,.'-kt-Êr"r2

(2.71a)

(2.11ô)

(2.73a,b, c)

(2.13d, e)

3t2 , s22

6tk2

kt2(r + Pù - k2ry +11
20t ) (2.72a)

., Drrnl : Du'
^ Drs
Pl- rr )u55

ór:1+H,

rtt:7*\h-6r',

In the above, k is the wavenumber in æ direction; ø is the circular frequency;

j : J 1; and ø11 t &t2 ¡ a2r, and a22 are arbitrary constants for the sublayer. Stress

and displacement components at any point within the sublayer can be expressed

in terms of the four unknown constants ø11 ¡ at2¡ ø21, and azz. By evaluating the

stresses and displacements at z : z¿ ar..d z : zi+r, and by eliminating the four

unknown constants, the following relation can be obtained:

{B¿+r} : lP¿){B;},

pu2

Dss

(2.14)

where

{Bo}t : (u¿ 'IDi uzzi o.,i) . (2.15)

The vector quantity {B¿}, which is unknown yet, represents the displacement and

stress components at z - zi; {Bn+r} represents the same quantities at z : z¿¡¿1
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superscript T denotes the matrix transposel and 14] ir the propagator matrix for

the i-th sublayer. The elements of [P¿] are given in Appendix B.

The global propagator matrix [P] for the entire plate is obtained by the re-

peated application of equation (2.14) as

{B¡o+r} : [P]{81}, (2.16)

where

lpl : lp¡vl[p¡v_,] ...tPi1 ...tprltprl. (2.17)

The repeated application of equation (2.1a) ensures the continuity of the displace-

ment components z and u.t, and stress components c* and the cr, at the inter-

faces between sublayers. Denoting the elements of the 4 by 4 matrix lPl by P,"-

(*rn:7,213,4) and invoking the zero traction conditions at interfaces l and

(¡ú + 1), the following can be obtained from equation (2.16):

f &' Psz

I P"'' Po,
L __

(2.18 )

The exact dispersion equation (frequency equation) for the plate is obtained by

setting the determinant of the coefficient matrix to zero as

{;i }:{B}

(2.1e)

Equation (2.19) can be solved for k, for given u)) ot aiternativeiy, it can be solved

for u, for given k. The details of the method employed to determine the roots of

the dispersion equation rvill be discussed in $2.5.

Once the roots of the dispersion equation are determined, the corresponding

wave functions (displacement and strèss eigenvectors) can be obtained using equa-

tion (2.18) and the successive application of equation (2.14) at interfaces. It should

f(u,k): Pu Psz

Fq P+z -0.
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be noted at this stage that division of layers into sublayers is not required to obtain

the exact dispersion equation but is required to calculate the values of wave funtions

at a sufficiently iarge number of points through the thickness. The usefulness of the

subdivision will be evident in Chapters 3 and 4.

If the problem under consideration is symmetric or antisymmetric, it is possible

to model only the half-thickness of the plate in the analysis. In this case, the

boundary conditions at the middle surface of the plate, z : H 12, ate :

-n t

-n t

Pzt Pzz

P+t P+z

uzÍ -

vzz -

0,

0,

for symmetric problems,

for antisymmetric problems.

(2.20a)

(2.20b)

Application of these boundary conditions in equation (2.16) results in

dispersion equations:

the following

- 0, for symmetric problems, (2.21)

and

Ptz
Ptz - 0, for antisymmetric problems. (2.22)

2.3.3 Off-axis Case

In order to solve the governing equations for this case, it will be neccessary to

manipulate them in such a \¡/ay that tractable differential equations are obtained.

For this purpose, it is conveniènt to carry out the analysis for the z-th sublayer

in ihe local coordinate system first and use appropriate transformations to global

coordinate system later on. In order to uncouple the governing equations, three

potential functions O, Õ, and i[¡ are introduced, as defined below:

Pn
Pst

rr AO
v 

- ¡t. )Or\
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In vieu' of equations (2.1), (2.2), and (2.23),

written as

(2.23b)

(2.23c)

the stress components can be

v-

tr/ _v]

ôü
AZ,
ôv
N.

ôø_-L
aYr
ôo
ôz-

axx : Cu 
aX, * Cn

02ø
cYY : Crt 

AX, ï Css

ozz : Crt 
aX, * Czs

/ a2ø
oy'z : C++ 

\Z Ur, * +

/ a2e-ozx : uuu 
\azax +

oxY : utu 
\, axaY +

/ ara aro\
t__f_l
\ay, az2 ) '

( arø ârv \ / ara
t_-_]__t_l(iqcl_

\âI'r'ôyAZ)'"'"\Ut,
/ Aza â2{, \ / Azef.............'..........___L_r_Lf,__r_

\âI" AYAZ ) ' """ \AZ'
a2v ârü\
an- aYr)'
a2Q azv \__laxaz axa\, )'
azv , aze^ \

ôxaz - aYox )'

a2 a2__L_
ôY2 ' ôZz
on - -ônAyn-"ôyr7zr- AZn'

22

ôrv \
azaY )
arv \

azaY )

(2.2aa)

(2.24b)

Q.2ac)

(2.24d)

(2.2ae)

(2.24Í)

(2.25c)

Substitution of equations (2.23) and(2.24) in equations (2.5), and subsequent alge-

braic manipulation of the resulting equations leads to the following three equations:

A2 â2 / â2 ô2\ ô2oc',fy;(J'o) + (crs + cuu)f1ç,(v'o) + (cl1 ;F - ,;* ) ffi :0 (2.25a)

(crg r cr¡#tv'o) tcss#torÕ) +cssV-a - r#(V2Õ) : s (2.25b)

c++Yaú* (",, # - r#)V2ü: o

where

Y2:

vt4v:



Equation (2.25a) is obtained by partial diferentiation of equation (2.5a) with re-

spect to -X. Equation (2.2'Ðb) is obtained by summation of the partial derivative

of equation (2'5b) with respect to Y, and the partial derivative of equation (2.bc)

u'ith respect f,o Z. The partial derivative of equation (2.bc) with respect to y

substracted from the partial derivative of equation (2.5b) with respe cL to Z, yield.s

equation (2.25c).

It can be seen that equations (2.25a) and (2.25b) are coupled while equation

(2.25c) is independent. The basic unknowns of the problem posed no.w are O, iÞ, and

Ü. Since time-harmonic waves propagating in z direction are considered, the u and

Ú variation of unknown functions can be assumed to be of the form exp[j (kæ - ut)]

(where fr denotes the wavenumber in æ direction). On the other hand, since the

plate is infinite in g direction, unknown functions shouid not have any dependence

on g. Therefore, the appropriate forms for the potential funtions are

O : .fr (Z)exp(jtþ),

þ : fzØ)exp(rú),

ü : .f¡ (Z) exp(jtþ),

where

rþ:kæ-ut:KX+LY-ut,

K:kcosd.

L : ksin0.

In the above, fr@¡, Íz(Z¡, and /3 (Z) are unknown functions; and

sent wavenumbers in x and Y directions, respectively, for the ¿-th

stitution of equations (2.26) in equations (2.2b) results in

/ ¿, \ / ,t2 -\r - trz - )zK, tkz2 )n + 6r(:; _ Lr\ fz:0,\¿2, ' 'u¿ ) \dz. /

(2.26a)

(2.26b)

(2.26c)

(2.27a)

(2.27b)

(2.27c)

K and Z repre-

sublayer. Sub-
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- òz I{'

where

/ d' -,\| *-L-llt+
\eL' /

T

l-x2 *1s,2
L

4..
\ 

- 
-rrtt2 

- ã-,t
v55

/1,
.lu

-.l-Â^ |t -z I to,
\dL'

/1n v33
P2: n t

v55

n.^
1 | vló

-r 
| /.1 )

VJJ

(#-L')

-L')rt:o

fz:o
(2.28b)

(2.28c)

(2.29a,b, c)

(2.29d, e)

(2.30a)

(2.30b)

(2.30c)

(2.37a)

(2.31ó)

(2.31c)

(2.32a)

(2.szb)

(2.33a)

(2.33b)

Irr; - K2) + gz
(d;
\dz'-
1/)2l(-
I \¿z'

rZ\Ll

Lr)

C++
€2: n t

v55
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The solution which satisfies

r¡rhere

equations (2.28) can be written

,f, : 0l(') 1ft(')0f("),

f2:¡G)91(')+0f("),

.f, : f¿;(o),

f¡l(") : ol"r) cos(r1 z) + o\"r) sin(r1Z),

of {"1 : of,"r) cos(r2 z) + 
"\"r) 

sin(r2z),

f¿;(") : o\"r) cos((z) - ot"r) sin((z),

kr'-\zK2-(rr'+L')

pu2
fl-_vòb

ab) -
g(") -

6r(rr,' + L')
kr'-K2-Þz(r2z+L')

rr2 ,T22

T2

6zK2

kr'(r + þz) - K2q2 Ll2
2þ,

,l l*'r, - Irr'(t + gz))' - npr(^rKz - kr2¡çxz - kr'),
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1tlc2--Il'-ezLz

Tz:I*Àzþz-6r',

(2.34)

(2.35)

In equations (2.31), 
"\7), 

ol"r), oll),

sublayer. The superscript (o), used

the off-axis case.

"53) , "51) , und o\i) are arbitrary constants for the
above and in the subsequent analysis, represents

After dropping ihe

local coordinate system

factor exp(j1þ), the displacement and

can no\^¡ be written as

stress components in

U: jK(ql(')+ g(ùg+G)¡,

V : jL(n*(o) + ¿G)g+G1r_ (f^tr+(o),

W : (r2n;{"1 + Aþ)rt0;{"1, - i Ln;G1,,

(2.36ø)

(2.36b)

(2.36c)

cxx :css {[-^ru, * ¿r")1r - 6z)(rr, * ,\J f¿l(,)

* [-^rrz s(o) + (1 - 6r)(,r, + L\]CII(")] , ( z.JTa)
ovy :css 

{ [f t - 6r)K, ¡ ¡(") (2e2r1, - pr(rr, + LrDlnf{"1

* 
ff 

t - 6r)K'Bþ) + 2rrrr, - pr(rr, + r,\] n[r"t _ 2e2j L(eI,,,] ,e.stb)
ozz :css 

{[f t - 6r)K, ¡ ¡(") (ze2L2 - 0z(rr, * r\)7c¿l(,)
+ 

ff 
r - 6r)K'BG) + 2rrL, - Êrçrr, + Lrt] cr¡r"l 1_ 2e2j L(ei,",) , e.BTc)

oyz :Css 
{z¡ t rrÁ")gr-(o) * 2j Lr2er|) ¡ 1ç _ (r)O;(,)} , (z.g;d)

ozx :cssx 
{irr(r '¡ a{')¡0r-(o) + jrz(r + B@)a;(,) + zo;r"11 , e.JTe)

cxy : - CssK {tçt+ ¡@¡9+@ + LG+ B@)nl(") +¡g'r+(")} , es,f)
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where

The next step in the analysis

the local coordinate system to

are defined by

0;(") : o\"r) cos(ri z) - "\1) 
sin(ryz),

0;(") : 
"\Z) 

cos(r2 4 - "11) 
sin(r2z),

0f{"1 : "Íi) cos((z) + o\'r) sin((z),

is to transform the disolacements and stresses from

the slobal coordinate svstem. These transformations

u:rnU lnV,

u: -nU *rnV,

lo:w,

(2.38ø)

(2.38ó)

(2.38c)

(2.3ea)

(2.1eb)

(2.3ec)

Q.a}a)

(2.40b)

Q.a}c)

(2.40d)

Q.a}e)

Q.40 r)

be eliminated by

components o"",

and

oø¿:,n'oxx *n2oyy

css: n2oxx + m2oyy

crs mn(ayy - oxx)

czæ : rmozx * noy z,

cg": -TLCzx I mOYz,

ozz : 6ZZ ¡

respectively, where n't.: siná and n -- cos0.

The six arbitrary constants o\1), ol"r) ,

evaluating the dispiacement components

| 2rnnayy,

- 2rnno1çy,

* (*' - n2)oxv,

(o) lo) (o) (o)
a21' , o'22' , aàt', o'à2' can

'tL) 'ù) 'tr j and the stress
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a,-. o-", ^+ - _ -øúa-ai and z : z¿+7. This leads to

tBÍ?,Ì : [PÍo)]{ al")} (2.41)

where

{aÍù}' : (u¿ a¿ 6zzi ozæi cszi -¿) , (2.42)

defined in Ap-and [P)"'] is the propagator matrix for the i-th sublayer, u,hich is

pendix B.

The global propagator matrix [f{'11 for the entire plate is obtained by the

repeated application of equation (2.41) as

{Bf},i : [r{")11p{')y (2.43)

where

[r{'r1 : ¡rfr1¡r,Ç1,] ...[pj")] ....p;,\ [pÍ,)]. (2.44)

The repeated application of equation (z.al) ensu.res the continuity of the displace-

ment componentsura,, to, and the stress components o.r, czaT c"n at the interfaces

between sublayers. Let the elements of the 6 by 6 matrix [f{"11 be denoted Av p{.i)

(*rn : 7r2, ' ' ' ,6). Invoking the zero traction conditions at the interfaces 1 and

(1ú + 1), the foilowing is obtained from equation (2. \:

(2.45)liil îÉ'i #åil {;i }:{l}
The exact dispersion equation (frequency equation) for the plate is

setting the determinant of the coefficient matrix in equation (2.45) to

P{? P[? PJ,")

PI? Pli) pÍt)

PJí) P{? PJ;)

obtained by

ze10 as

(2.46)rþ)(u,k¡:

27
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As in the plane strain case, if the problem under consideration is symmetric or

antisymmetric, only a half-thickness of the plate is modeled in the analvsis. In this

case, the boundary conditions at the middle surface of the plate, z : H /2, are :

0, for

0, for

0;

0;

orx, :0 I cg, :

n:0

svmmetric probiems, Q.aTa)

antisymmetric problems. (2.47b)

Applying these boundary conditions

are obtained as

in equation (2.43), the dispersion equations

P[? P[? P#)
PJi) P!? pti)
PJi) P[;) PJ;)

- 0, for symmetric problems, (2.48)

and

P{í) P{? pÍ,")

P;? P:? P:;)
PJí) P:? pj;)

- 0, for antisymmetric problems. (2.4e)

2,4 Stiffness Method

Dong and his co-workers (Dong and Nelson , rg72; Dong and pauley, lgzg; Dong

and Huang' 1985) presented a numerical technique applicable for wave propagation

analysis in a layered anisotropic plate. In their technique, thickness variations of

the displacements are approximated by quadratic functions of a thickness variable.

The generalized coordinates in this representation are the displacements at the top,

middle, and bottom of each mathematical layer (sublayer). Datta eú ø/.(1g88) pr.-

sented a stiffness method that employs a higher order polynomial representation

where generalized coordinates are displacements and tractions at the top and bot-

tom of each mathematical layer. In their analysis, oniy plane strain and antiplane
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strain problems rn'ere considered. Herein, this stiffness method is extended to incor-

perate off-axis propagation where direction of wave propagation is at an aribitrary

angle to the fiber direction in each lamina. For convenience, in what follows in
this thesis, the present stiffness method is referred to as stifiness method, / ivhilsi

the method of Dong and his co-workers is referred to as stiffness method,l/. As in

the case of the analytical method presented in $2.3, the stiffness method I starts

with dividing each iayer into several sublayers so that the total number of sublayers

through the thickness of the plate is 1/. For transversely isotropic material proper-

ties, the stress-strain relation within the i-th sublayer is given by equation (2.2) and

equation Q.a) in the local and the global coordinate systems, respectivety. By using

the interpolation polynomials in the z direction, the displacement components can

be approximated as

uinr + ui+tnz i wins I wf,arna,

where rlr¡ TL2r rr3, àfld n4 a;rÊ. cubic polynomials in the local coordinate Z given by

t!, :'U,irLl * u¿+tnz * uin3 I uI+tn+,

'u : uirLr i a¿+tnz * ains * a|+tn+,

nr : |{r - Jrt-r rtr),

n, :Iq(z + Jrt - ,tt),

n, : 
XG - rt - rt2 +,ÌtB),

nn:X(-1 -,ttrt2+rf),

(2.50a)

(2.50å)

(2.50c)

(2.sta)

(2.51b)

(2.51c)

(2.5rd)

v

and
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In the above, ui¡ uit and 'u.r¿ are the values of u, u, and w, respectively, at the i-th
interface. Subscript i + 1 denotes the same quantities at the (z + 1)-th interface.

In addition, ul,' , ri, w|, and ui+t, aî+t, wî+t represent some unknown coefficients

associated with i-th and (z-¡1)-th interfaces, respectively. Using strain_displacement

relations and stress-strain relations along u,ith equation (2.50), stress components

at the sublayer interfaces can be expressed in terms of displacement components

and unknou'n coeffi.cients associated with the interfaces of the sublayer. This a.llou,s

one to determine unknown coefficients as

ui

ui

'tD i

D++ D+s ô-;: 
LXo- L'd- A*,

Dss D+s: 
o'i- Lxi)

: oi _ Dß ôu¿ _ Dse ôa¿

Dsz Dss ôæ D3s ôæ'

L: D++Dsu - D?s;

(2.53a)

(2.53ó)

(2.53c)

where

(2.54)

and y¿, Ti¡ ci are the values of o"', cs., ozz) Íespectively, at the i-th interface. The

corresponding expressions for u|;+t, o|+t, and u|*, are obtained from equations

(2.53) by simply replacing ¿ with i + t.

The equations governing the nodal generalized coordinates u.i),t)i) u)i,t x¿¡ Tà¡

and a¿ (i:7,2,"',¡f + 1) are obtained using the Hamilton's principle. For this

purpose' the Lagrangian L¿ per unit length in the g direction for the z-th sublayer

is written as

T.. -u2- (2.55)

{z}r : (z o -') ,

{e}T : ( e"" €ss €zz ls" 1"" j"s) ,
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and [r] is the constitutive matrix, the elements of vvhich are lhe D¿¡ in equation

(2.4).The overbar and overdot denote, respectively, the complex conjugate and the

derivative with resoect to time.

Using equation (2.50) in strain-displacement rela.tions, and in turn in equation

(2.55), L¿ can be u'ritten as

1f¡Fto: 't J n,'l'l"rl{q'} + {q'}t["r]{d} + {q}t["r]{d'} + {a}t l*){q} - {s'"}t["r]{q"}

- {q"l'l"r){q'} - {q"}t["r]{q} - {ø'}t þrl'{q"} - {q'}"|'nl{q'}

- {q'}t["u]{q} - {ø}tlrr]t{q"} - {ø}t['r]t{q'} - {ø}t le6l{q})d,æ (2.56)

where {q} ir defined

r rT rIql : \ui x¿ ci ui+1 X¿+t ui+t Ti+t u¿+t a¿+t) ,

(2.57)

the primes denote derivatives ivith respect to æ. The matrices [c2], [.r], [-]

[e1] through ["u] are defined in Appendix C.

The Lagrangian for the entire plate is obtained by summation over all the

sublayers, and its first variation leads to an approximate governing equation for

the plate. Arrrrrrrirg the time dependence in the form exp (-jrt), the governing

equation is derived as:

,' (-l]rl{Q"} - Ql{Q'} + tMl{Q})

- (t¿ll{Qn"} + lErl{e"'} + [Er]{Q"} +lnnl{e'} + [Er]{e}) : o. (2.b8)

The generalized displacement-traction vector {Ç} appearing above is the assembly

"f {q} for all sublayers, and the matrices lCtl, 9r), lM), and [81] through [,Ð5]

and

and
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are defined in Appendix C. Note that the matrices [nf] , [Cr), l4r],, [83] and

are symmetric, whereas lci], [82] and [Ea] are antisymmetric. It is seen that

satisfies a fourth order homogeneous ordinary differentiai equation in ¿.

A solution to equation (2.s8) can be assumed in the form

[E']

{Ç}

{8} : {Ço} exp[7 (kn - ut)] (2.5e)

where {Ç6} represents the amplitude vector. Substitution of equation (2.59) into
equation (2.58) leads to the follorving set of linear homogeneous equations to solve

for {Q6}:

(t*n[xr] - jk'lKr) _ kr[Kr] + jklKnl+ t¡rrl) {Ço} : 0 (2.60)

whe¡e [K,] : lÛrl, lKrl : lÐ2l,, [Ksl : [Er] + ,2lc2l, [Kn] : [En] + ,r[Cr],
and fK5] : [Et] - ,'lMl. A nontrivial solution can be obtained by setting the

determinant of the coefficient matrix to zero. This results in the dispersion reiation

to solve for the eigenvalues fr for a given c¿. In other words, k for a given ø is found

by treating equation (2.60) as a fourth order eigenvalue problem in k. Alternativeiv.

equation (2.60) can be written as

([K,]-,'IM,]) {Ço} : 0 (2.61)

where

IKo]: knlK'l - jktlKrl - k,[nr] + jklE\l* [Eu],

lhr À : tMl - ¡ k[cl + k2lc2].

(2.62a)

(2.62b)

This leads to the standard eigenvalue problem for solving u2 f.or a given value of k.

The approximate wave functions are given by the eigenvectors of equation (2.60) or

(2.6r).
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It should be noted that the formu-lation presented in this subsection is also

valid u'hen the sublayers have orthotropic oï e\¡en monoclinic material properties

in the local (X, \', Z) coordinate system. This is due to the fact that: orthotropic

or monoclinic material properties in local coordinate system remain as monoclinic

when transformed into the global (*,y,r) coordinate system; and in equation (2.4)

as well as in the subsequent analysis, material properties appear as monoclinic

in (æryrz) coordinate system. The only requirement is that appropriate materiai

transformation equations should be selected from Appendix A.

Formulation for the analysis of plane strain and the antiplane-strain propaga-

tion problems using this stiffness method is not presented here since these cases

have been well documented by Datta et. al. (1988).

2.5 Roots of Dispersion Equation

Dispersion equations obtained in $2.3 and $2.4 can be solved î.or k, for given ø

or alternatively, they can be solved for u, for a given fr. Due to physical reasons, only

real values are acceptable for o. For a particular value of ø, dispersion equations will

have a finite number of real roots and an infinite number of imaginary and complex

roots fot k. The main interest here is to obtain the frequency spectrum (plot of

frequency vs. 1ïavenumber) or the phase velocity spectrum (plot of phase velocity vs.

frequency) where phase velocity is defined as the ratio u f k. The frequency spectrum

has three different kinds of branches: real, imaginary and complex (for details see

Mindlin, 1960; Datta et a\.,1988) corresponding to real, imaginary, and complex

roots f.ot k, respectively. The reai branches represent the propagating modes which

dominate the dynamic response of the plate. The imaginary and complex branches

represent nonpropagating and evanescent modes, repectively, and these modes decay

with æ.
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Using the stiffness method I, an approximation to the frequency spectrum can

be found. The real branches (dominant modes) of the approximate spectrum can

be easily obtained by solving the standard (first order) eigenvalue problem given

by equation (2.61). A point to be noted here is that for real branches, the matrices

[Ko] and lMr) are real symmetric and positive definite. However, if imaginary and

complex branches of the approximate frequency spectrum are to be obtained, then

the fourth order eigenvalue problem defined in equation (2.60), which involves a

large amount of computer time and core memory, has to be solved.

For a fixed value of either u or k, the exact dispersion equations obtained in $2.3

are transcendental functions of either It, or u. It is possible to find the roots of the

these transcendental equations by some search method (see Press et a1.,1988). This

approach will be computationally formidable since the roots are sparsely scattered.

Herein, Muller's method (see Conte and Boor, 1972) is employed to recover the

exact roots. Approximate roots obtained from the stiffness method I (or II) are

used as initial guesses in the Muller's method. If the roots are required over a given

range of k (or ø), approximate roots from the stiffness methods are required only

at the first step to use as initial guesses. At the next step , k (or ø) is changed by

a small amount and exact dispersion equation is solved taking the exact roots from

the previous step as initial guesses for the current step. The process is repeated

until the range of interest is scanned.

2.6 Numerical Results and Discussion

In this section, the numerical results for dispersion characteristics of homogen-

eous and laminated composite plates made up of aligned continuous fiber-reinforced

material (graphite-epoxy) are presented. On the assumption that the wavelength

is much larger than the fiber diameter and spacing between the fibers, each layer
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(iamina) can be modeled as a transversely isotropic medium with the symmetry

axis aligned *'ith the fiber direction (see Datta et a\.,1984; Ledbetter et a\.,1989).

These transversely isotropic elastic constants used in the computations here are (in

units of 101iN/m2), Ctt:1.6073, Czz:0.1392, Cn:0.0644, C++:0.0350, and

Csu :0.0707. In all numerical results presented in this chapter, the nondimensional

frequency, r¡'avenumber, and phase velocity are defined as

uH
(2.63)o-

respectively. For simplicity, it is assumed in the case of layered plates that all the

lavers are of equal thickness.

2.6.1 Accuracy of Stiffness Method I

The accuracy of the results obtained by the stiffness method I was tested against

the analytical solution for propagation in a homogeneous plate and in several cross-

ply (i.e. adjacent layer fibers are perpendicuiar to each other) plates. For brevity,

only some of the results obtained are presented here. Figure 2.2 shows the results

for a homogeneous graphite-epoxy plate for propagation in the fiber direction (0'

direction). For the discretization in the stiffness method I, 8 sublayers of equal

thickness were used through the half-thickness of the homogeneous plate. Results

for a 3-layer 0" f 90" f0" and 35-layer 0" f 90" f 0" 0" f 90" f 0" cross-ply plates for

propagation in the 45" direction are shown in Figures 2.3 and 2.4, respectively. In

the stifiness method I, each layer of the 3-layer plate was divided into 8 sublayers,

and each layer of the 35-layer plate was treated as a single sublayer. As pointed

out in $2.3, in the analytical method, there is no need to subdivide layers to obtain

dispersion curves (subdivision is required only if values of the wave functions at

discrete points are desired). It is seen from Figures 2.2-2.4 that the stiffness method

'l

, l:-1kH , c:
Csslp Csslp
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I gives results that are in excelient agreement with the analytical solution. In order

to further investigate the accuracy of the stiffness method I, a comparison between

the stiffness methods I and II r'ç'as made. Results from the tu'o stiffness methods,

obtained by varying the number sublayers in the descretization, are given in Tables

2.1 and 2.2, for the cases of homogeneous plate and the 3-layer 0'/90"/0o cross-

pll' plate, respectively. Corresponding analytical results are also reported in these

tables. It is evident from these results that the stiffness method I yields more

accurate results for high frequencies than those yielded by the stiffness method II

for the same number of sublayers. This is not unexpected since the stiffness method

I involves the continuity of both displacements and stresses, whereas the stiffness

method II involves only the continuity of displacements. In the remainder of this

chapter, attention will be focussed mainiy on the dominant branches, namely, real

branches of the frequency spectrum. The stiffness method I will be used to obtain

required resul.ts for the real branches. The reasons for this choice are that the

stiffness method I gives straightforward accurate results (without the need of initial

guesses), and, specially, the real branches can be obtained from the first order

eigenvalue problem defined in equation (2.61).

2.6.2 Anisotropy Effects

The degree of anisotiopy in a fiber-reinforced composite plate depends on the

orientation of the fibers with respect to the direction of wave propagation. In order

to show the effect of anisotropy, the real branches of the frequency spectrum for

the homogeneous plate for various propagation directions are presented in Figures

2.5(a)-(d). The effect of anisotropy on the dispersion characteristics is quite pro-

nounced in these figures. Comparison among parts (u), (b), (c) and (d) of Figure

2.5 shows that phase velocities (slopes of f) vs. 7 plot) increase much more steeply
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u'ith increasing frequency for propagation close to the fiber direction than for prop-

agation close to the normal direction of fi.bers. Figure 2.5(a) shows the strongest

anisotropy while Figure 2.5(d) shows the ieast. The next problem considered was

an angle-ply plate with 0'/2a/0' ply lay-out configuration for propagation in the

a direction. Figures 2.6(a)-(d) show the results of dispersion curves for different

values of a. The effect of ply lay-out configuration and hence the anisotropy on

the dispersion characteristics can be clearly seen in these figures. Figure 2.6(a) is

very close to Figure 2.5(a) and Figure 2.6(d) is close to Figure 2.5(d). This is to

be expected, because the coupling between antiplane and in-plane motions are not

very strong in these cases. It is also seen that the phase velocities decrease with

increasing ply angle, for the same frequency.

2.6.3 Interface Laver Effects

With a t'ielt' to examine the effects of interface layers between adjacent laminae,

some results showing the measurable changes in phase velocity dispersion in a cross-

ply laminated plate are presented next. Figures 2.7-2.L4 show the variations in

phase velocity with frequency in a 19-layer graphite-epoxy cross-piy plate with and

without interface layers. The material properties of the interface bond layer in units

of 101i N/m2 are

Cn : Czz : Css :0.0865,

Cn : Cn : Czz :0.0475,,

C++: Css : Caa :0.0195.

(2.64)

Figures 2.7 and 2.8 are for propagation along the 0" and g0o directions, respec-

tively, when there are no interface layers. Figures 2.9 and 2.10 show the effects of

interface layers when the interface layer thickness is one tenth of a lamina thickness

and the ratio of the densities of a lamina and an interface iaver is 1.5. In order to

ÐF7
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show the effect of density of interface layer, the dispersion curves for a density ratio

of 213 are shown in Figures 2.11 and 2.12. Figures 2.13 and 2.74shorv the effect of

thickness of interface layer.

It is seen from Figurcs 2.7 and 2.8 that, at low frequencies, the dispersion

for propagation along the 0o and g0o directions is the same. However, at high

frequencies the dispersions for propagation in these two directions are quite different.

Comparison of Figures 2.9 and 2.10 u'ith Figures 2.7 and 2.8 shows that the presence

of the interface layers lowers the phase velocities and the cut-off frequencies. This

feature may have important implications on ultrasonic characterisation of interface

bond layers. Figures 2.11 and 2.12 show that raising the density of the interface

layers does not change the dispersion of the fi.rst few modes appreciably. Ilowever,

with increasing frequency the differences between Figures 2.9 and 2.10 and Figures

2.11 and 2.12 become appreciable. Within certain frequency bands, these differences

are quite large. Finall5', a comparison among Figures 2.9r2.I3, and2.74 shows that

increasing the interface layer thickness significantiy lowers the phase velocities and

cut-off frequencies, specially at high frequencies.

2.6.4 Layering Effects

The effect of number of layers on the dispersion behaviour is considered next.

For this prlrpose) dispersion characteristics of graphite-epoxy laminated plates are

investigated. It is assumed that the fibers are oriented at 90" to one another in

adjacent layers and that the layering is symmetric with respect to the midplane

of the plate, thus requiring only half-thickness of the plate to be modeled. Fibers

next to the middle layer are taken to be in 0o direction and therefore, the fibers in

the middle layer are in g0o direction (i.e, 10" 190" l0' I .. . ' . . configuration).

The number of layers (laminae) is varied from 3 to 39. It is found that when



this number is suffi.ciently iarge, the results obtained can be predicted by using an

effective modulus theory (Postma, 1955; }-eo, 1983). This is illustrated in Figures

2.75-2.23. Figures 2.75,2.!7,,2.19, and 2.21 show the variations of phase velocity

u'ith frequency for propagation in the 0" direction in a plate rvith 3r 27,27, anð.

35 layers, respectively. It is seen that the dispersion behavior changes considerably

with the number of layers when the number of layers considered is smali. Ilowever,

as the number of layers becomes sufficientiy large the change is not noticeable except

at high frequencies for higher modes (see Figures 2.19 and 2.27). A similar feature

is seen in Figures 2.76,2.78,2.20,, and 2.22 lor propagation in the 90o direction. It

is also noticed that the dispersion behaviour depicted in Figures 2.27 anà 2.22 for

a 35-layer plate are remarkably close. This suggests that the plate can be modeled

as homogeneous with some effective moduiii. In fact, this is seen from Figure 2.23,

which shows the predictions of dispersion characteristics obtained using effective

modulii calculated in the manner presented by Postma for periodic isotropic layers

and generalized for orthotropic layers by Yeo. For cross-ply plates there are six

independent effective elastic constants. Their expressions are given by

11ev11 
-

2Cn(Cn ¡ Csz) - (Ctt - Crt)' /1e: u22,, (2.65a)

(2.65b)

(2.65c)

(2,65d)

(2.65e)

Q.65r)C++ * Css

where C¿¡ are elastic constants o{ the 0o lamina and Cf¡ are effective elastic modulii

for the entire plate. Thus, using the particular properties consid.ered here, the

effective modulii of the plate in units of 1011 N/m2 are

2Csz

CTs :'rtt'x I Cn) : Cír,

11e
"33 -

11ev'J,2 
-

C3ø: Cøø,

r-\e _ l1ev44 - v55 -

Css,,

4CnCss*(Ct, -Crt)'
4Cst

2C++Css
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(2.66)

The fact that the effective modulus method predicts r¡/ave propagation charac-

teristics quite well for propagation on other directions is seen from Figures2.24-2.28.

Figures 2.24, 2.26, and 2.28 show the results using the layered model calculation

whereas Figures 2.25 and 2.27 show those predicted by the effective modulus model.

Note that Figures 2.24and 2.28 show almost the same behaviour. It should also be

noted that the dispersion behaviour for propagation in the 0" , 22.5",, and 45" are

quite different.

The fact that a thick composite cross-ply plate with sufficiently large number

of layers can be modeied as a homogeneous plate with certain effective properties

is not unexpected. The important observation of this systematic study is that

even though the dispersion of the fi.rst few modes can be predicted by the effective

medium approximation, for this approximation to be valid for higher modes the

piate must have a threshold number of layers.

2.7 Concluding Remarks

A stiffness method based on through-thickness interpolation functions for the

displacements that maintain continuity of displacements and tractions at the inter-

faces between layers has been presented and used to study guided wave propagation

in a laminated composite plate. An analyticai method which uses the prediction

of stiffness method as initial guesses has also been presented. In both methods,

the plate can have arbitrary number of layers with distinct material properties

and thickness. It is shown that the dispersion behaviour predicted by the stiffness

method agree well with the analytical solution.

11ev11

(1evea

0.8732, CTs :0.0668, CÏ,

0.1392, ci+ :0.0468, cåu

: 0.0664,

: 0.0707.
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It is found that measurable changes in phase velocity are caused by interface

layers in laminated composite plates. These changes are quite appreciable at high

frequencies and specially in higher modes r.r'ithin certain frequency bands. Thus

ultrasonic $¡aves may be used to characterise interface bond layer parameters. Ob-

servations made here further suggest that judicious choice of frequency and modes

can be made to obtain optimum results in ultrasonic nondestructive evaluation of

interface bond layer properties.

It is also shown that the number of iayers in a cross-ply laminated plate has a

strong influence on the dispersion characteristics of waves 'n'hen the plate is com-

posed of only a few- layers. Horn'ever, as the number of layers increases, the laminated

plate can be modeled as a homogeneous anisotropic plate. This feature may have

very important significance in ultrasonic characterisation of mechanical properties

in thick laminated composite plates.
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Table 2.1

Comparison among results for frequencies from stiffness method I, stiffness method

II, and analytical method, for propagation in the 45o direction in a homogeneous

graphite-epoxy plate

(real symmetric modes only).

Stiffness
Method M

(lat1:v

^r-t ^f-ll /y':8 1{: 16 Analyticaì

I

1

2

ó
/1r

5

o
II

2.7896
3.6370
4.2288
5.2572
7.0209
7.64LL

10.7008

2.7825
ó.oóDo

4.2257
5.2435
6.9215
I.+t+.7

9.2537

2.7822
3,6366
4.2256
5.2429
6.9185
7.4701
9.2428

2
e
d

4

5

o
t7
I

7822
6366

2256
2429
9184

4699
2477v

2.7822
3.6366
4.2256
5.2429
6.9184
7.4699
9.2417

il

I
2

3

4

5

o

I

2.7983
3.6428
4.2534
,f .ð4Yi
7.3745
8.6396

10.8250

2.7847

3.6371
4.2280
5.2598
6.9792
t.ÐJtÐ

10.0289

2.7824
3.6366
4.2258
5.244L
6.9230
7.4749
9.2751

2.7822
3.6366
4.2256
5.2430
6.9187

7.4703
9.2439

Note : y'ú : Number of sublayers through the half-thickness of the plate
^^, 

rf 1

LV| : lvt)o:e number
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lable 2.2

Comparisor among results for frequencies from stifness rnethod I, stiffness method

II, and analytical method, for propagation in the 45" direction in a 3-Iayer

cross-ply (0"/90"/0") graphite-epoxy plate

(real symmetric modes only).

Stiffness

Method AI
Qatl-r

iT _tlV - rJ ^I-rî N:12 N :24 Analytical

I

1

Ð

ð
Aï
tJ

o

7

8

o

10

2.9338
3.6295
Á A /lq1
=.4=LL

5.7r45
7.0667
8.1816
8.7594

10.5329
10.9447
11.5937

2.9327
3.6283
4.4402
,). I Uðð

7.0584
8.1467
8.7099

10.4341

10.8345
17.4620

2.9326
3.6283
4.4402
5.7086
7.0582
8.1450
8.7073

r0.4298
10.8311

11.4583

2.9326
3.6283
4.4402
ð. fuðo
7.0582
8.1450
8.7072

L0.4297
10.8309

11.4581

2.9326
3.6283
4.4402
5.7086
7.0582
8.1450
8.7072

r0.4297
10.8309
11.4581

II

1
l_

2
e

Å
I

5

o

7

8

0

10

2.94L9
3.6363
+.+orÐ
5.7662
7.1091

8.8619
9.5884

t0.7545
11.2809
t2.2047

2.9336
3.6291
4.44L9
5.7734
7.0638

8.1802
8.7498

t0.4947
10.8839

1r.5234

2.9327

3.6284
4.4403
5.7089
7.0586

8.1475
8.7106

10.4353

10.8351

17.4632

2.9326
3.6283
4.4402
Ð. /uõo
7.0583
8.1451
8.7074

10.4301

10.8312

tl.4584

Note : l{ : Number of sublayers through the half-thickness of the plate
M : Mode number
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Chapter 3

Reflection of Waves at a Free Edge of a

Laminated Composite Plate

3.1 General

The present chapter is concerned with the investigation of the free end reflec-

tion that occurs when a train of waves travelling in a composite plate strikes a

free edge. For simplicity in analysis, attention is confined here only to the time-

harmonic wave ref.ection in plane strain case where the waves are propagating either

along or perpendicular to the fibers. However, theoretically any time variation can

be considered by using the Fourier Transform Technique. The geometry of the

problem considered is depicted in Figure 3.1. When the incident wave strikes the

edge æ : 0, a reflected wave fi.eld will be generated. The reflected fietd consists

of a finite number of propagating modes and an infinite number of nonpropagat-

ing and evanescent modes. A finite number of wave functions are superposed to

represent the reflected wave field. Amplitudes of reflected waves are determined

by satisfying the traction-free edge condition by the least-squares and variational

principle methods. The accuracy of the methods are demonstrated by comparing

the results with existing results for a homogeneous isotropic plate and by satisfying

energy balance. It is shown that for a laminated composite plate, the ieast-squares

method yields anomalous results. Numerical results from the variational principle

method are presented for a homogeneous graphite-epoxy plate and for a 35-layer

cross-ply (90' 10" I ' . . 190" l0'lg0" I ..' 10" 190") laminated graphite-epoxy plate. In

each case, the division of energy among various reflected modes is also presented.

The end resonance is reported for the homogeneous graphite-epoxy plate.
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3.2 Description of the Problem

A time-harmonic plane strain wave excited at æ - *oo, propagates in a semi-

inflnite composite plate in the negative r direction and is incident upon the end

æ :0 (Figure 3.1). The plate is composed of perfectiy bonded iayers rvith possibly

distinct mechanicai properties and thickness. Each layer of the composite plate is

assumed to have orthotropic material properties. The two faces of the plate z : 0

and z: H, ar'd the edge n:0 are traction-free. The incident wave, upon striking

the free end, generates a reflected wave field. The ob.jective is to investigate this

reflected wave field.

3.3 'Wave Functions

Wave functions required for the reflection analysis are obtained by considering

the plane strain wave propagation in the corresponding infinite plate. For this pur-

pose, each layer is divided into several sublayers so that the total number sublayers

through the thickness ,Il, is I{. The nonvanishing displacement components in

the plane strain case are u(ærzrf) and w(rrzrt) in æ and z directions, respectively.

Follo'¡'ing the analysis given in $2.3.2, the dispersion equation governing the plate

modes are obtained from equation (2.i9) as

f @,k) : PnP+z - P32Pa1 - Q. (ó.r /

For a particular value of ø, equation (3.1) will have a finite number of real roots and

an infinite number of imaginary and complex roots for k. As reported by Torvik

(1967), and Gregory and Gladrvell (1983), the admissible k for the reflected wave

field of the semi-infinite plate are those real roots with positive group velocity and

those non-real roots with Im(k) > 0. These conditions ensure ihat the refl.ected

v/aves produce bounded displacement and stress fields throughout the piate. It is
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possible to fi.nd the roots of equation (3.1) bv some search method in a complex wave

number plane. However, this approach *'ill be computationallS' formidable since the

roots are sparcely scattered in the complex k-plane. As mentioned in chapter 2,

Muller's method is employed herein. At the fi.rst step, beginning with the highest

frequenc5' of interest, the plate is divided into a sufficiently large number of sub-

layers and the approximate roots are obtained via stiflness method IL To obtain

approximate roots, stiffness method II is preferred over stiffness method I mainly

due to the fact that, for given ø, stiffness method I involves a fourth order eigen-

value problem whereas stiffness method II involves only a second order eigenvalue

problem. One should note here that a fourth order eigenvalue problem involves a

much larger computer time and core memory than a second order eigenvalue prob-

lem. Those approximate roots lying in the first quadrant of the complex k-plane

are used as initial guesses in Muller's method to recover the analytical roots. At

the next step, ø is decreased by a small amount and equation (3.1) is solved, taking

analytical roots from the previous step as initial guesses for the current step. The

process is repeated until the frequencJ¡ range of interest is scanned. As a check,

at some intermediate frequencies, approximate roots from stiffness method II were

used as initial guesses in Muller's method to obtain exact roots. After obtaining

the wave numbers k, for the frequency range of interest, the sign of the real wave

numbers were adjusted to have positive group velocities.

To express the reflected wave field as a modal sum to satisfy free edge conditions

at æ :0, all the modes corresponding to the roots with small positive imaginary

parts are superposed. Let M be the total number of modes to be used in the

modal expansion and krn be the rn-th root. M number of roots k, ate ordered as

follows: real roots are ordered first in the decreasing order of magnitude. Non-real

roots are ordered next in the ascending order of magnitude of their imaginary parts.
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Traction-free conditions at interface 1 and equation (2.16) give the components of

the zn-th eigenvector at interface 1, as

{8r,,}r:1t -PrrlPr, 0 0). (3.2 )

Then applying equation (2.14) at successive interfaces, the rn -th mode eigenvector

(values of wave function at discrete interfaces) can be obtained, as

{8,,}r : ({8r,.}r {Br,-\1 {B¿,,}r {81ry_¡r¡,,,}1 ) , (g.g)

lvhere

{Borr}T : (u¿rn'tlizn czzitn crri*), i : Ir2r.....',N + 1.

rn:7,2r'..... ,M. (3.4)

'tlitn¡ 'tri¡n¡ rzzirn and c"r¿rn a e components of the r¿-th mode eigenvector at the

i-th interface.

If the problem under consideration is symmetric or antisymmtric, it is possible

to model only half-thickness of the plate to obtain wave functions, after invoking

appropriate boundary conditions at the top and middle surfaces of the plate.

3.4 Reflection Coefficients

Consider the case in which the incident wave is the p-th propagating mode,

corresponding to the wave number ko. After striking the edge æ : 0, a refl,ected

wave field will be generated. The displacement vector corresponding to this wave

field, {qi}, at arbitrary n) ca;rL be approximated by the modal sum of a finite number

of modes M in the form

M
. ?ì çl{ql}: )-,'q,"{q,.)exp(jlr,-æ) n)0, (3.5)

m.:1
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where

A,n : amplitude of the nz-th

r r'l ! ,
tQr"l- \utro 'Irrrn

reflected mode,

'llin¿ 'lI i¡n Uert ¡t)rn 'tt)(N+t)rn) , (3.6)
9n

,-:\ \- ll", . 12 t
/t \t*x'mt I

N+1

(3.7)

In equation (3.5) and in the

been omitted. Equation (3.5)

subsequent analysis, the time factor exp(-jøú) has

gives the reflected wave field at the edge æ : 0 as

In view of equations (2.6), (2.7) and (2.9), the o,,

the z-th sublayer can be expressed as

where

where

and c, d and A1 are as defined in

th mode are known from equation

{qô}: [c]{.4},

(3.e )

(3.10)

component of stresses within

(3.1i)

(3.8)

(3.12)

(3.13)

o¿ø : '; lrrrtoe - cf)u + jkff - Be)a,,1,

(1 -ó')A'?-\rk',
(1 - á, )'3 - 

^1t* 
B.r-

J_

Appendix B. Since u¿,o and

(3.3), equation (3.11) can be
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where [-l7] is the force mode shape matrix rn'hich represents the nodal force mode

shapes at the interfaces, due to stresses c." aÍrd cr". [r.] is a rectangular matrix

of size 2(¡ü + 1) bV M.In constructing the force vector, the consistent load vector

formulation given in Bathe (1982) has been used. The variation of displacements

and stresses within the sublayer is assumed to be linear. The explicit form of [f.] is

given by

(3.15)

where

Í5.T¡. - / Dæ naz\r'rnJ - \-1- .I¡n

cææirn at eachinterface. It shouldbe noted ihat a*

between layers. The force vector at the edge due

formed as

{R'} : -[r]{,4},

is discontinuous at the interfaces

to the reflected field can norv be

(3.14)

(3.77a)

(3.17ó)

2<i<N, (ó.r rcJ

2 < i < N, (3.17d)

(3.17e)

(3.17l)

Fi,.

ptz
- lnt

F:,_

F:,.

F(**r)-,

Tf,Zr(ry+r)'n

:lrr"L:ì,. + oL;),.),

:L!(zo--.,- * a.-2,n),- 6 \""zæ!rn I vz¿'

:\ øLI[ -,r,, + z ol;),.) +

!rr"L!"),- + oLì)ro*rt,.) for

:) {o ",(i-r)m I 20 ",¿,nI

!{ro",0,. * ozæe*t)m) for

: f f "!ïÌ" ,. * zae)rrv+ r; 
",, 

) ,

:f @,"*,n I2a""(N.+r),n ).
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In equations (3.17), "t;ì-"u"d "!jj- (1 < i < 1l+1) denote the rn-th mode normal

stresses in the æ direction just, above and below the ¿-th interface, respectively. If

the adjacent sublayers of the i-th interface have the same material properties , "t:),,
---:l'l L^ -----1 t^ -(-)\¡/1I1 De eqUal IO A;æ.¿nn.

The edge force vector due to incident field can be written as

{Ã'"} - ,4';{F;}, (3.18)

where ,4f is the amplitude of the incident mode and the vector {F;} is obtained

from the p-th column of [-t'], after replacing each æ direction force component by

the negative value of it.

The traction-free edge condition requires that

{fii : {A'} + {Ê'"} : -[f']{/,} + d:}{r, } : {0}.

Subjecting the sum of the squa es of the residuals of {E} to

minimization, the least-squares solution for complex amplitudes can

(3.1e)

a least-squares

be obtained as

A variational solution to

of virtual displacement as in

{A} :1ä [tF]rtrt] tFl'{f;-i. (3.20)

the problem can be obtained by applying the principle

Wu and Plunkett (1967). This results in

(3.21)

field at

á{qì}r{fi} : {0}

where á implies first variation, and {qo} d"ttotes the total displacement

æ :0. It may be noted that {qs} is given by

{qo}:{qð}+{qå"},
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and

á{qo} : á{qð}, (3.23)

where {qå"} ir the displacement vector due to incident field. Substituting equa-

iions (3.19) and (3.23) in equation (3.21), and making use of equation (3.8), the

variational form of the solution is obtained as

uÌ : Á,t ilclrlFf] tcl'{ç}. (3.24)

Once the amplitudes , Arn, are known, the dispiacement and stress freld any-

where in the plate can be determined. The reflection coefficient (normalized ampli-

tude) Ro,n of. the rn-th reflected mode, due to p-th incident mode is defined as

A
n ¿LTn
tçpfrL 

- ¡:_ .- /tttL
(3.25)

3.5 Energy Flux

Reflected energy is carried only by the propagating modes. The instantaneous

value of the energy flux associated with the n-th reflected mode through a plate

cross-sectiôn (per unit length in g direction) located at any æ (r I 0), due to p-th

incident mode is given by

Ion

where

1

2 ftn;,,1' fitn,.\ *
_r1 I
{Ãå,}r fi{ú"}1, L 1n < Np,, (3.26)

{q:"-} : An{q-} expfj(k.æ - ,t)1,

{R',-} : A.{F^} explj(k-æ - ,f )]

(3.28)

(3.2e)
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where {f'.i i. the n-th column of matrix [F]. In equation (3.26), {qi.} and {Ei,}
represent, respectively, the dispalcement vector and the force vector associated with

the n-th reflected mode at a plate cross-section located at æ; and ÀIo. represents the

number of propagating modes in the ¡eflected field. Since derivatives n'ith respect

to time are appearing in equation (3.26), the time factor exp(-jøú) has not been

dropped in equations (3.28) and (3.29). The time-averaged value of the energy flux,

Iln, is obtained by averaging lpn over one cycle. This is given by

(3.30 )

After carrying out the integration in equation (3.30) explicitly, I'on can be written

AS

;i,.tÃ;ll),I)n: -P.e
f-

LA-{r-}'

1 ¡2rluIï^: 2"1, J, Ipndt.

I'; : 
'l'+;l'''so
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where Re[ ] denotes the reai part of the complex quantity inside the square bracket.

In view of equation (3.25), and after some algebraic simplifications, equation (3.31)

can be written as

rÌ'pn
,t2: ul.4)|l- lfup-l '5-, (3.32)

where

d", : Im [{e}t{ø,}1 (3.33)

Irn[ ] appearing in equation (3.33) denotes the imaginary part of the complex quan-

tity inside the square bracket. It is important to note here that Ii.is independent

of, æ. Following a similar approach, the time-averaged value of the energy flux of

the incident wave can be written as

71n<^r--.r. r
(3.31)

(3.34)



Lei Epn be the proportion of incident energy transfered into the n-th reflected

mode. Then

r. - I"-)o. : #. (3.35)

Another useful index is the percentage error in energy balance, e, defined by

fNo, I,: ff l'; -Ë+"1
t-l.LTL:tJ

(3.36)

The principle of energy conservation requires that sum of Ep,, (n -- 7,2r. . ' , Np,)

be unity, namely e should be zero. This condition is used to assess the accuracy of

the analysis presented here.

3.6 Numerical Results and Discussion

In this section, the numerical results of the reflection problem for following four

examples are presented.

Example 1 a homogeneous isotropic plate with Poisson's ratio ¡ n :0.25 . The

incident lvave considered is the first symmetric propagating mode.

Exampie 2 - a homogeneous graphite-epoxy (transversely isotropic) plate with fib-

ers aligned along the æ- axis (0"). See Table 3.1 for material proper-

ties. The incident wave is the first symmetric propagating mode.

a 35-layer graphite-epoxy cross-ply laminated plate with

90" l0'I -.. 190' 10" 190" I ... 10" lg0' configuration. Material proper-

ties are given in Table 3.1. The incident wave is the first symmetric

propagating mode.

Example 3 -

the
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Example 4 - same as example 3, but incident wave is the first antisvmmetric



propagating mode.

Since in each of the above examples, the problem is either symmetric or anti-

symmetric, only half-thickness of the plate was considered in the analysis. In all

four examples, the real branches of the frequency spectrum \4rere plotted to iden-

tify ihe positive group velocity zones. Figure 3.2 show the frequency spectrum for

examples 2-4. The follos'ing nondimensionalization is used for frequency and wave

number throuehout this section:

uHExamplel - f)-
zc¿J ¡,tJ p

where cd.:

^uH

Ir,,
P : shear modulus.

t : l^t"u.

¡ I-

F¡
1/ Iyp

Example 2-4 o-

The total number of sublayers, /f , used to compute the eigenvectors and the

number of modes, M, :used in the modal expansion, play an important role in the

accuracy of the analysis. In order to select a suitable value for ly', the quantity ,Jn

(n : 7,2,. . ' ,l[o") defined in equation (3.33) v¡as computed by increasing the value

of 1ü at a few selected lower, intermediate and higher frequencies in the frequency

range of interest, until converged values were obtained for dr". In this way, -ð[

through the half-thickness was chosen as 50 in examples 1 and 2, and 70 in examples

3 and 4. Thereafter, the reflection problem was solved at the selected frequencies by

the least-squares method [equation (3.20)] and by the variational method [equation

(3.24)], by increasing the number of modes. Tables 3.2 and 3.3 show some of the

results obtained from two methods for percentage error in energy balance, e, and the

modulus of the reflection coefficient of the frrst reflected mode, lËttl. In example

1 at 0 - 4.0, the reflected field consists of 4 symmetric propagating modes; in

example 2 at ll - 4.0, the reflected fi.eid consists of three symmetric propagating



modes; in example 3 at Íì : 5.1, the reflected field consists of three symmetric

propagating modes; and in example 4 at A - 4.0, the reflected fi.eld consists of

three antisymmetric propagating modes. Comparison of the results from the two

methods shor¡'s that the variational method gives ver¡' good energy balance and

convergence of the reflection coeffcient lEtt l, even with a relatively smaller number

of modes. It can be noticed that for the homogeneous plate, there is no noticeabie

difference in the results from the two methods if a sufficiently large number of modes

are taken. For the laminated plate, the results obtained by the least-squares method

are alarming. Even with thirty modes participation, only 50% of the incident mode

energy is reflected back into the plate from the free edge for symmetric incidence,

which is an anomaly. The reason for this anomaly is obvious. Unlike the variational

method which minimizes the energy, the ieast-squares method does not have a

physical basis. In the least-squares method, even though the sum of the squares

of the residuals in {r?} is minimized, the minimized residual sum could be large

resulting in large errors in e. In what follows, oniy the results obtained from the

variational method are presented.

Figure 3.3 shows the comparison of proportion of energy -81", obtained by the

present method with those of Gregory and Gladwell (1983) for an isotropic plate.

The modal expansion consisted of 27 modes. For.the range of fl in Figure 3.3,

lel < 0.18%; it is seen that the comparisonis exceilent. Even though the results for

reflection coefficient l.R11l are not presented here, results were in complete agreement

with those of Gregory and Gladwell (i983). A full discussion on the energy distri-

bution among reflected modes for this case can be found in Gregory and Gladwell

(1e83).

The energy distribution among various reflected propagating modes in example

2 is shown in Figure 3.4. The modal expansion consisted of 21 modes. For the range



0 < f¿ < 2.796 (which is not shorn'n in Figure 3.a), lel was less than 0.05%. For the

range of results presented here. lel < 0.88%. The range 2.797 < f¿ < 2.2041is the

backvvard-wave transmisson region discussed by Meitzler (1965), r¡'here the third

propagating mode has a negative phase velocit¡'. In particular, it was observed that

at the first cut-off frequency f) : 2.2047, only the second mode carries energy; at

the second cut-off frequency {'1, : 3.142, only the first mode carries energy; at the

third cut-off frequency 0 : 6.283, all three modes carry energy and in the range

2.4 < 0 < 5.9, the flrst and third modes share almost the entire reflected energy. In

Figure 3.5(a), the variation of reflection coeflftcient 1fr111 with f] is shown. It can be

seen that lRttl : 1.0 in the range 0 < fl <2.197. Since only one propagating mode

exists in this frequency range, the entire energy is reflected into the first mode,

and therefore, by the energy conservation principle, l.R11l has to be equal to unity.

For 0 > 2.197,l.R11l is oscillatory. After a careful search, it was noted that edge

resonance occurs in the second mode near fl : 2.1520. The variation of reflection

coefficient l.Ri2l near resonant frequency is shownin Figure 3.5(b) . At f¿ :2.7520,

by increasing IttI from 20 to 30, e changed ftom 0.l4Yo to 0.07% and only a 0.77T0

increase in l-R12 | was observed.

The division of energy between various reflected modes for examples 3 and 4

are presented in Figures 3.6 and 3.7, respectively. Figures 3.8(a) and 3.8(b) show

reflection coefficient lÆrtl, for examples 3 and 4 respectively. The first three cut-off

frequencies are f) : 2.204,2.556 and 5.111 for symmetric modes, and 0 : 1.278,

3.834 and 4.408 for antisymmetric modes. The symmetric case consisted of. 22

modes whilst in the antisymmetric case, 21 modes were used. In the frequency

ranges considered, lel < 0.44% for the symmetric case and lel < 0.1870 lor lhe

antisymmetric case. In particular, it is seen from Figures 3.6 and 3.7 that between

the second and third cut-off frequencies, in the symmetric case, energy is shared
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almost entirely between first and third modes, t'hereas in the antisymmetric case,

energy is shared among ail three modes. A ca¡eful search rvas made for the end

resonant frequency in the symmetric case but none could be found.

3.7 Concluding Remarks

A semi-analyticai method employing exact discrete eigenvectors for displace-

ments and stresses has been used to study the guided plane strain wave reflection

at the free edge of a laminated composite plate. Problems were solved by the

least-squares method and the variational method. It is found that the variational

principle method gives very good results. It is shown that the results agree well

with known solutions for homogeneous isotropic plate. Since the exact eigenvectors

are employed, the method is accurate at both low frequencies and high frequen-

cies. Since the least-squa es method gives anomalous results from the point of view

of energy balance, it is concluded that the least-squares method should be used

with caution for the free end reflection problem of layered anisotropic plates. Al-

though the case of wave propagation along a principle direction has been studied,

the method can be easily applied to off-axis propagation.

87



x

z¡

zí+l

H

,z

LAYER

i-TH SUBLAYER r

FREE SURFACE
I NTERFACE

NUMBER

FREE
EDGE

INCIDENT
WAVE

_ ¡+l

N+l
FREE SURFACE

Figure 3.1 : Geometry of the semi-infinite layered plate-

88



ro

9

I
7

6

o5
4

3

2

I

o

to
q

I
7

6
E

4

3

?

I

oö

.Y

(u)

.Y

(b)

Figure 3.2 : Real branches of the frequency spectrum
(a) Homogeneous graphite-epoxy plate,
(b) 35-layer cross-ply (90"/0" I ... 190" 10" 190'/ .-- l0'190")

graphite-epory plate.

t'I -t' - SYMMETRIC

ANTISf MMETRIC

'_- )

/

89



t.2

t.o

o.8

EnO.6

o.4

o.2

o.o

t.2

t.o

o.8

Etn o.6

o.4

o.2

o.o
I

t.48 r.50 t.52 t.54

o

3.O 3.5 4.O

t.56 t.58 t.60

.6 2A 2.5 4.5 5.O
CI

Figure 3.3 : The pro_portions of energ'y 4n u, f,), fo.r the homogeneous isotropic piate,
due to first symmetric incident mode (v - 0.25).

Gregory ond Glodwe
lol3I T4ujt,

¡

a-\"jl v' f,l "¡\\,ill

MODE
MODE
MODE
MODE

.{'x \
./.'''o -_)

{:" - - - *- - - 1- - -*-- -*''

HI

90



Etn

1.2

t.o

o.8

o.6

o.4

o.2

o.o
2.1

t.2

t.o

o.8

En0.6

o.4

o.2

o.o

s6 ?.t97 ?.ts3 2.t99 2.200 2.20t 2.n2 2.2c,s 2.204 2.205

ç¿

n
\

\
I

!,t \

2.O 2.5 3.O 3.5 4.O 4.5 5.O qq 6.O 6.5

o

Figure 3.4 : The proportions of energ'y E1n vs O, for the homogeneous graphite-epoxy
plate, due to first symmetric incident mode.

lvroDE I

MODE 2
MODE 3

I

j

ll
/l/l

\. 
1

\i

91



t.2

t.o

o.8

lÆu lo.G

o.4

o.2

o.o
o.o o.5 l.o t.5 2.o 2.5 3.O 3.5 4.O 4.5

CI

(")'

5.O 5.5 6.0 6.5

2.t525 2. r530 2.r53s

40

35

30

25

lh2l?o
t5

to

5

ot
2.r50s 2.r5ro 2.t5f5 2.t520

o
(b)

Figure 3.5 : The reflection coeficient ll?r,.1 vg 
-CI, for the homogeneous graphite-epoxy

plate, due to first symmelric incident mode
(a) n:1, (b) n - 2.



t.2

t.o

o.8

Eh 0.6

o.4

o.2

o.o
2.1

1.2

t.o

o.8

En0.6

o.4

o.2

o.o

75 zt80

2.O ?.5

2.t85 2.t90

o

3.O 3.5 4.O

2.t95 2.200 2.205

4.5 5.O

ç¿

Figure 3.6 : The pro^portions of ener€l 4n us f), for the 35-layer graphite-epoxy plate,
due to first symmetric incident mode.

MODE I

MODE 2
MODE 3 I

I
{

tl,l
ll

./ |

\r
\t

ï
I

._-\

/,/./¿
-

! '\.
/\.

I

I

^l
lt

\.
\

I
1\

I

93



t.2

t.o

o.8

EuO.6

o.4

o.?

o.o
I

À1ônF ItYrvgL I

r - MODEz
\

MODE 3\
\\\\\

\- t /'-'--\\-- l;t 
-\

\- --- s t.. lÍ

| | 
'----ì..- j -ï'-r- 

- .r'
t.5 z.o 2.5 3.O 3.5 4.O 4.5.o

C¿

Figure 3.7 : The proportions of energy pt'.Yt f), forthe 35-layer graphite'epoxy plate,
due fo first antisymmetric incident mode'

94



li?rt I

t.2

t.o

o.8

o.6

o.4

o.2

o.oo.o o.5 t.o 1.5 2.O 2.5 3.O 3.5 4.O 4.5 5.O 5.5
o

(")

t.2

t.o

o.8

lÃrrlo.e

o.4

o.2

o.o
o.o o.5 I .O | .5 2.O 2.5 3.O 3.5 4.O 4.5

o
(b)

Figure 3.8 : The reflection coeffcient lJ?111 vs O, for the 35-layer graphite-epoxy plate,
(a) due to first symmetric incident mode,
(b) due to fi¡st antisymmetric incident mode.

95



Table 3.1

Elastic sfi.ffnesses of 0o and 90" graphite-epoxy laminae

(Ail stifnesses are in units of 1011 N/-').

Iamina Drt Dss Dr" Dus

0o lamina

90o iamina

1.6073 0.1392 0.0644 0.0707

0.1392 0.1392 0.0692 0.0350
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Table 3.2

Variation of percentage error e in energy balance and reflection coefficient lR11l

witir number of modes, M, for homogeneous graphite-epoxy plate.

Example AI
L lÃ" I

Eq. (3.20) Eq. (3.24) Eq. (3.20) Eq. (3.2a)

Example 1

f,) : 4.0

a

n
T

11

15
10

2T
oÐZr)

25

51.354
2i.505
3.r92
0.982
0.325
0.209
0.155
0.L27

i0.836
1,907
0.062
0.073
0. i40
0.153
0.160
0.164

0.170
0.339
0.477
0.489
0.493

0.493
0.494
0.494

0.245
0.426
0.493
0.494
0.494
0.494
0.494
0.494

Example 2

O :4.0

.)
d

o

8

12

15

20

25
to

76.23r
58.006
44.888

9.TI2
6.423
2.068
7.272
0.499

L7.229
7.023
Ð.YIÐ

u.oÐ4

0.830
0.247
0.223
0.195

0.r22
0.253
U.JIl
u.ooð

0.680
u.ovo
0.702
0.705

0.590
0.621
0.623
0.704
0.704
0.708
0.709
0.709
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Table 3.3

Variation of percentage error e in energy balance and reflection coefficient lA11l

with number of modes, IlrI, for 35-layer graphite-epoxy plate.

Example M
e lA" I

Eq. (3.20) Eq. (3.2a) Eq. (3.20) Eq. (3.2a)

Exarnple 3

0:5.1

D

10

L2

15

18

2L
,ALA

27

30

97.947
91.946
92.265
84.150
70.368

54.948
53.912
54.996
,l r.,),)v
51.519

28.297
19.259

19.892
16.481

4.019

1.669

0.296
0.172
0.005

- 0.001

0.188
0.762
0.109
0.102
0.270
0.436
0.440
0.44r
u.+to
0.477

0.735
0.772
0.807
0.74r
0.796

0.807
0.812
0.8 11

0.809
0.809

Example 4

0:4.0

u

10

12

15

L7

2L

24

27

89.365
75.730

74.344
63.389
Ðv.,)Ðv

23.118
20.463
20.471
20.474

13.817
I r. . u+,f

9.437
o.,l I v

4.778
L.466

0.487

0.388
0.362

0.083
ñ ,L'
0.330
0.469
0.5i1
0.776
0.791

0.792
0.792

u.of+
u.tto
0.786
0.803
0.814
0.827
0.831

0.831
0.831
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Chapter 4

.Wave Scattering by Cracks and Delaminations

in laminated Composite Plates

4,1 General

Defects and material degradation in structures made of composite materials

have become a crucial problem for industries which use high-tech materials. Ul-

trasonic waves provide an eficient means of characterising such flaws. In order

to use ultrasonic techniques to characterise flarn's, it is neccessary to have a broad

understanding of rvave scattering by these flarvs. Scattering by fl.aws in plate-like

structures is a complicated phenomenon and the problem is made more difficult

rvhen the plate is a laminated composite one. In the past, considerable progress

has been made towards understanding wave scattering by flaws in isotropic plates.

However, information on scattering in anisotropic laminated plates is very limited.

In this chapter, wave scattering by flaws in the form of cracks and delaminations in

an infinite laminated composite plate is investigated. The geometry of the probiem

is depicted in Figures 4.7 and 4.2. The wave labeled as incident waae in Figure

4.1 may be thought of as being emitted by a source, which may be a iine load

applied perpendicular to the plate, located at a distance sufficiently far away from

the flaw. Theoretically, any time variation in the incident wave can be considered

using the Fourier Transform Technique. For simplicity, analysis presented here is

restricted to time-harmonic incident rü¡aves. The incident waves propagate along

the plate and strike the flai,r' in the plate resulting in generation of a scattered rvave

field. The scattered field consists of finitely many propagating \ryave modes and

infinitely many nonpropagating and evanescent wave modes. The scattered field

can be separated into reflected and transmitted waves. These waves, whose ampli-



tudes contain information required for characterising the fl.au', can be received by

a transducer for post-processing. A hybrid method is presented in this chapter to

soh'e the scattering problem and thereby to find theoretical numerical relationships

between scattered \\¡a\¡e amplitudes and the parameters of the crack/delamination.

The hybrid method is illustrated for the case of scattering by a symmetric

normal edge crack (Figure  .2@)) and by a centrally located normal matrix crack

that grows into delamination (Figure 4.2(b)). Reciprocity relations associated rvith

the reflection and transmission coefficients and the principle of energy conservation

are used as checks on the numerical accuracies. Numerical results of the scattering

probiem are presented for an isotropic plate, a homogeneous fiber-reinforced plate

and for 8-layer and 35-layer laminated fiber-reinforced composite plates. Of partic-

ular interest are the results showing the dependence of conversion (reflection and

transmission) coefficients on the extent of the delamination into which the normal

central crack grows when it meets the adjacent lamina with 0' fiber direction.

4.2 Description of the Problem

Time-harmonic wave scattering by a flaw (crack/delamination) in an infinite

plate composed of perfectly bonded layers with possibly distinct mechanical proper-

ties and thickness is considered. It is assumed that the flaw is of constant geometry

andof infinitelengthing direction. The twofaces of the plate z:0 and z: H,ar.d

the surfaces of the flaw are traction-free. For simplicity in analysis, each iayer is as-

sumed to have transversely isotropic material properties. A train of time-harmonic

'waves excited at a location sufficiently far away from the flaw, propagates in a di-

rection making an angle 6i- with the negative æ direction and is incident upon the

flaw. The incident lvave) upon striking the fl.aw, generates a scattered wave freld.
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In general, different scattered rn'ave modes propagate in different directions in

æy pIane. Since the waves are propagating in directions making arbitrary a.ngles with

fiber directions, the resulting $¡ave motion, in general, is three dimensional. Denot-

ing the particle displacement components in global T,, U, z directions by u(æ,U, zrt),

o(*,a,zrt), u(æ,grz,t),, respectively, the governing equations that describe wave

motion can be u'ritten as

ôor, , õorn 
ìa*- oo-

ôor, 0oro- -l---l_ôæ 0y

ôor, , ?cs" 
Ia"- ao-

ôor. 02u

A" : P 0r''
ôor, ô2u
-;=- : P *,oz olo

ôor" 02lu'

A" :o 
Ar''

$.7a)

(4.1b)

@.1c)

$.2a)

(4.2b)

$.2c)

(4.2d)

$.2e)

G.2r)

where oij are related to e¿¡ by the constitutive relation givenin equation (2.4), and

€ij are related to displacement components by

Ôu

oæ

Ôa
Èta 

- 
-Ã- t
og
Ôu

'ZZ - ^ ,oz
I

<--4-Yz - .', Igz -L

aI
a--d

2 '--
1
I

-rEv q l¿! -/¿

The boundary conditions of the scattering problem are given by

on the plate surfaces,

tractions on the surface of the flaw: 0.

t01

! (a, * qs\
2\ôz' Ay)
a /d ñ \

!(o"_or\
2\02' 0r)
a /^ ñ \I I Ou , Ou\
t\ô'- ôa)

@.3a)

and

(4.3b)



The main objective here is to find a solution to the boundary value problem

defi.ned in equations (a.1)-(4.3). Since the plate is a laminated one, and in general

the flaw is of arbitrary shape, finding an exact solution to the boundary value

problem at hand is extremely difficult if not impossible. Therefore, an approximate

soiution through a hybrid technique is sought here.

4.3 Hybrid Method

The hybrid method combines finite element formulation in a bounded interior

region of the plate with a r,¡/ave function expansion representation in the exterior

region. The interior region consists of the flarv and a small region of the plate

surrounding the flaw. The regions are connected along vertical boundaries B+ at

æ : r*, and B- at æ : æ- as shown in Figure 4.2. Continuity conditions for the

displacement and interaction forces are imposed at the nodes iving on the bound-

aries. This results in a system of linear equations thai is solved for the unknown

wave function amplitudes. These amplitudes can be used to obtain boundary nodal

displacements and in turn to obtain interior nodal displacements. This enables the

determination of the wave fre1d at any point of interest in the domain of the plate.

It is noted here that the boundaries B* and B- need not be neccessarily vertical.

One can have a boundary of arbitrary choice, however, choice of vertical boundaries

make the algebra and the finite eiement mesh generation simple. In the sequel,

formulation is presented in two parts. In the ensuing $4.4, the plane strain case is

considered. In this case, waves are propagating either along or perpendicular to the

fiber directions, and perpendicular to the axis of fr"awrviz. óío:0o and d for each

layer is equal to either 0o or 90'. Note that the axis of flaw is in g direction. How-

ever, since the orientation of the axis of the flau' is not known a priori it is not, in

general, possible to excite the incident wavein such a \l/ay that /i" : 0o. Therefore,
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it is also necessary to consider a general case u'here ó'" + 0". This general case is

considered in $4.5 wherein, the incident 'wave is propagating in a direction making

an arbitrary angle with the r- axis, and in general the fiber direction in each lamina

may be at an arbitrary angle to the æ- axis. The time factor exp(-jut) is omitted

in what follou's unless othern'ise specificallv mentioned.

4.4 Plane Strain Case

Consider the case in which the incident wave is the p-th propagating mode

corresponding to the wavenumber Ëo, propagating in the negative z direction. The

fibers in each iamina are assumed to be in either r, or E direction. The only nonvan-

ishing particle displacement components in this case are u(æ, z,l) and u(æ, z,t) in æ

and z directions, respectively, and in addition, the field quantities are independent

of a.

4.4.L 'Wave Functions for Exterior Regions

In the exterior regions R+ and R-, the total wave field consists of a scattered

field and the incident field. Since the incident wan'e is propagating either along or

normal to the fiber directions, the resulting scattered rvaves will be propagating in

the positive and negative ¿ directions. The scattered field is represented by wave

functions expansion. Details of the methodology used to obtain wave functions for

a laminated plate for plane strain case can be found in $3.3 of Chapter 3. The

procedure starts with dividing each layer,into several sublayers so that the total

number of sublayers through the thickness of the plate is -l{. \\¡hen the incident

wave strikes the fl.aw, a scattered wave field will be generated. Using the wave

function expansion, the displacement vector of the scattered field, {q}+}, in region
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R+ at arbitrary ¿ can be written as

M

{qå*} : t AI{q^} exp(jkn æ),
ø-1

r¡rhere

æ) æ* (d 4\

where Afi is the amplitude of the nz-th scattered mode in region R+; M is the

total number of modes used in the wave function expansion; and {q,,"} ir the nz-th

mode displacement vector defined in equation (3.6). The procedure for ordering M

number of significant roots k is the same as that described in $3.3. Equation (4.4)

gives the displacement vector of scattered wave field at the nodes on the boundary

ñ-+ll'as

iqå.Ì: [c+]{r+}

{På*} : [¡'+]{D+},

{qå-} : [c-]{r-},

{På-} : lF-l{D-},
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(a.6a)

(4.6b)

(4.ocJ

(4.5)

[+.f/

[G+] in equation (a.5) is a matrixof size 2(/ü+1) bV M. The nodalforce vector at

the boundarv B+ due to scattered field can be formed as

r¡'here [f'+] is the matrix of nodal force mode vectors at the interfaces due to stress

components c,, and o,,. Note that [.F+] : [.F] defined in equation (3.15). Fol-

lowing a simiiar procedure at the boundary B-, the displacement and force vectors

due to scattered field can be obtained as

(a.8ø)

(4.8ó)



respectively. It can be shon'n that [G-] can simply be obtained from [G+] after

replacing each æ direction displacement component by the negative value of it.

Similarly, [F-] can be obtained from [Jr-] after replacing each z direction force

component by the negative value of it. {D-} is given by

{r-}t:(D, D; D; D*) (4.e)

where

D^: A,.exp(-jk*r-), rrL:7r2r...rM (4.10)

in which, A; is the amplitude of r¿-th scattered mode in reeion R-

In a similar manner, the boundary displacement and force vectors for the inci-

dent wave can be constructed as

{qìi+} : A:; {c; } exp(-j,k pæ+),

{qil- i : A:; {G; } exp(-j,b p,- ),

{Pf +i : -A.;{F;} exp(-j& o*+),

{P#-} : Ar;{F; } exp(-jk pæ-),

(a.17a)

(4.11å)

$.tIc)

(4.17d)

where {C;} and {ff } are the p-th column of [G-] and [F-] matrices, respectively;

and ,4f is the amplitude of the incident mode.

4.4.2 Finite Element Model of Interior Region

The interior region R is modeied by finite elements. The crack tip singularity

is modeled using six node quarterpoint triangular crack tip elements proposed by

Barsoum (1976). The crack tip elements are surrounded with a iayer of five node
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elements follorved by conventional four node elements as shorvn in Figure 4.2c. The

layer adjacent to the vertical boundaries B+ and B- consists of five node elements

with the midside node iying on the boundaries. This is done to increase the number

of nodes lying on the boundaries.

The quarterpoint triangular elements have a built-in inverse square root stress

singularity in them. The existence of an inverse square root singularity in the stress

field around the tip of a crack imbedded in a homogeneous medium is well-known

(see Fenner, 1976). Numerous studies on stress singularities at a crack located

betu'een two dissimilar media have been reported in the past (see, for example,

Wiiliams, 1959; Fenner, 1976; Ting and Hoang, 1984; Barsoum, 1988; Im, 1990). It

has been reported that: when a crack is along the interface between two dissimilar

media, the singular behaviour of the crack tip stress remains proportional to inverse

square root of r (the distance from the crack tip) but now has a pronounced os-

cillatory character; and when a crack meets an interface at right angles, the stress

singularity is of the forrn r-P, where p depends on the elastic properties of two

dissimilar media. In Ting and Hoang (1984), it has been shown that for typicai

high modulus graphite-epoxy composites p is close to 0.5 for most combinations of

ply-angles in the two dissimilar materials. The singularity at the tip of the crack

affects only the local stress field near the crack tip. It should be noted here that

the present scattering study is mainly concerned with the determination of far field

(exterior region) scattered wave amplitudes. Therefore, in the present anaiysis, only

the inverse square root singularity is incorporated in the finite element model near

the crack tip.

The displacement vector, {u},at a point within a typical finite element,'e', is
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interpolated from the nodal displacements vector, {g"}, as

{r} : [¡r]{q"} (4.12)

where [,4/] contains interpolation functions (Zienkiewicz,7977). The strain vector,

{e}, at a point are related to displacement field through

{.} : lt'l{¡"} (4.13)

where ftr] is an operator matrix defined as

r+loæ
[¿] : | 0

la
Lâz

In view of equation

displacements as

(4.72), the strain vector can be expressed in terms of nodal

{.} : [B]{q"}

(4 14\

(4.15)

(4.16)

where

0l
IBI

oz Ial
Az)

ñ : Ð li l^.(t+'t¡l{.} - p,'{u}r {") adl- } ltø'l'{r"} + {q,}r{Pe}]

(4.17)

lBl: irlt¡rl

An approximate equation governing the wave motion in the interior region may be

obtained by minimizing the energy functional f. In (z,y,z) caúesian coordinate

system, â (per unit length in g direction) takes the form

where {qs} and {Ps} are, respectively, the nodal displacement vector and interac-

tion force vector (traction vector) corresponding to the nodes lying on the bound-

aries. In equation (4.77), the integral is over the area of element 'e' and f" implies
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summation over all the fi.nite elements. It should be noted here that n is independent

of time f since ;ttrFÐexp(-jøl) is equal to unity. In vierv of equations (4.12)-

(4.16), and after the conventional assembly process in the finite element method,

equation (4.17) can be written as

;, : f,{i,r}'lsl{nri -
1

t [{ø"i'{r'} (4.18)

(4.22)

where

{qr}t : ( {q,}t

fSl : [1{r] -,2¡Mr1:

. .T
tqaj-

lslrl
lSeIl

)

fsrel l
Is""l]

$.7ea)

(4.1eb)

(a.20a)

(4.20b)

$.21a)

(4.21b)

In the above, {q, } ir the nodal displacement vector corresponding to interior nodes;

and [Ka] and [Ma] are) respectively, the global stiffness and mass matrices of the

interior region given by

where U stands for union or assembly, and

[Kr] :u[[k]1,

lMr):u[[-]l 
'

t^
J o.la)'lDllB)dA,

t p[¡r]r lN)dA.
JAC

ikl

l*)

By minimizing the energy functional, one gets the governing equation of motion

of whole interior reqion as

6fr : 61n Ìtlsl{qt} - 6{de}t{P"} : o.
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4.4.3 Global Solution

The global solution is obtained by imposing the folloiving continuity conditions

on displacements and tractions at the mesh boundaries:

{qä}'

tqBÌ-

iPf Ì'
{PË}'

({qil-}'

({qå-}'

({Pf -}'
( {P;-}'

{qË*}'),

iqå*i'),

{P#*}t ) ,

{PË*it ) .

@.23a)

(4.23b)

$.zaa)

(4.24b)

$.zac)

(4.24d)

$.25a)

(4.25b)

(4.26)

{qr}:{qä}+iqå},

iPrÌ:{P#}+{På},

where

In equations (4.23), those quantities on the left hand side of the equal sign are

from interior region while those on the right hand side are from the exterior region.

Using equations (4.5) and (4.8a) in equation (a.23a) and, in turn, in equation (4.22)

results in

lsrrl{qi } + lsre]{qe}

¡G,1r ( lserl{qr 1 + [,seel{øe})

where

tr-, 1-ftc-l tolL"tr-l[0] [c+]

{qr } : - [su] -' [Sie]{qe}.
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Substituting equation

obtains

r¡'here

in which,

[G,]t (tsË"1[c,] - [F,]) ,

({r-}' {r*}') ,

[Õ,]' ({prl - lsËe]iqË]) ,

[See] - [Ser] [5n]-' l,Srel,

[F'-] tOl

tOl [F'*]

(4.27) in (a.25b) and making use of equations (4.23), one

lcr){Dr} : {R,}, (4.28)

lrt 1

Lv 1l

{rr}r
{ßri

Ic* I -LJBBI -
rn l
lñil:

D
.ll,nm 

-

.r
-prn -

Ah
Æ;'
(t;
)ry,
) ,;+r;
l. --7F-'

**P

m: p.

(a.2eø)

(4.zeb)

@.2ec)

(4.30ø)

(4.30å)

$.37a)

(4.31b)

In the above, [C1] is a matrix of size 2M by 2A[. {D-} and {r+} are obtained by

solving the linear system of equations (a.28). Amplitudes ,4"fi and A; are obtained

from equations (4.6c) and (4.10), respectively. {q"} it computed from equation

(4.23a), making use of equations (a.5) and (a.8a). Then, {qt} it given by equation

(4.27).

The reflection coefficiení Rp,o of the rn-ih reflected mode and transmissron

coefficient To,n of the nz-th transmitted mode, due to p-th incident mode, are defined

AS
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4.4.4 Energy Conservation

Reflected and transmitted energy is carried only by the propagating modes.

Follorving the derivation of equation (3.32) in $3.5, the time-averaged value of the

energy flux associated with the n-th reflected propagating mode through the plate

cross section per unit length in g direction, due to p-th incident mode, is given by

Il- :,1 A; l' lRo.l',e *, (4.32)

where

tn : rm ftrt'l'tøl] , (4.33)

in which, ÀIp, represents the number

Similarly, the energy flux of the n-th

be written, respectively, as

of propagating modes

transmitted mode and

in the scattered field.

the incident wave can

I ln : rlA:; l' lro.l',s *,

I'; : ,l'+;l'rto.

$3aa)

(4.34b)

The percentage error ln

(4.35)

Application of the principle of conservation of energy to the close region R bounded

by æ -- æ+, æ : æ-, and top and bottom plate surfaces shows that e should be

zero. This condition is used to assess the numerical accuracy of the analysis.

energy balance, e, is defi.ned as

l- ¡v-" I
._1oo l¡"_f r

rin t-p /-, Q;" + I;") 
|-Pln:11
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4.4.5 Reciprocity Relations

Application of the elastodynamic reciprocity theorem (Achenbach, 1973; Auld,

1973 ; Tan and Auld, 1980) to the region R results in

RpnÇn: RnpÇp,

TpnÇn : TnpÇp,

ç* -- -z{F;}t{q,'}, r 1n < y'{p".

@.36a)

(4.36b)

where

Details of the derivation of equations (a.36) are given in Appendix D.

A close examination of the elements of the matrices [Pr], [G+], [f'+], and [.F'-]

reveals that ç," is related to t9,, by

. - )År9
\7L 

- 
4J v7t. (4.38)

Let Ej. be the proportion of incident energy transfered into the n-th reflected mode.

Then

Similarly,

El*: t+ : wo^f l,

(4.37)

(4.3e)

EIo: t* : B^,Íh' Ø'40)

Equations (4.36), and (4.38)-(4.40) lead to

E;-: E;p. (4.41)
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In a similar manner, it can be shown that, for the transmitted modes,

Eon: Eio' (4 42\

Reciprocity relations in equations (4.36), (4.47), and (4.42) serve as numerical

checks on computations.

4.5 General Case

This case occurs when the incident wave is not propagating in a direction

normal to the axis of the flaw. In addition, the fibers in each lamina may be at

an arbitrary angle to the æ- axis (see Figure 4.1). Thus, the resulting lffave motion

will have all three particle displacement components. In this case, the scattered

'waves are propagating in several directions in æE plane. Direction Oæt in Figure

4.1 represents a typical direction of propagation of a scattered wave mode. Let k(0)

be the wavenumber of the incident wave in the direction of propagation. Thus, k(o)

should be one of the admissible real roots of the dispersion equation for off-axis

propagation case described in $2.3.3. As mentioned in $2.3.3, superscript (o) here

refers to off-axis propagation. Since the flaw extends to infinity in g-direction, no

scattering will occur in that direction. Only the z direction incident wave component

is subjected to scattering by the flaw. Thus, each of the scattered wave modes

will have a constant wavenumber (6 (: kþ)sinþi*) in the negative g direction.

Therefore, for time-harmonic waves, y and f variation can be separated out as

(4.43)

In the subsequent analysis, the common factor exp[-f ((ogl +ut)] is dropped unless

otherwise soecificallv mentioned

{r\.,ï'"'ii }: {i\.,i} 
*n'-" ('u+u'Í))

11ÐJ,I¿)



4.6.L 'Wave Functions for Exterior Regions

The scattered field in the exterior regions R+ and R- is represented by wave

function expansion. As in the plane strain case, wave functions are obtained by

considering the \¡/a\¡e propagation in an infinite plate. The procedure starts s'ith

dividing each layer into severaì subiayers. For the ¿-th sublayer, the wavenumbers

in X and Y directions are, respectively, given by

K\e) - kcos0 * (6 sind, $.aaa)

and

trG) : ksinï - (s cos0, (4.44b)

where ,b nor¡' denotes the æ direction n'avenumber of a typical wave mode, and the

superscript (g) has been used to represent the general case. After a careful exam-

ination of Figure 4.1, one finds that when every wave mode has a predetermined

constant wavenumb"r ((o) in the negative y direction, analytical dispersion equa-

tion can be obtained from equation (2.46) after replacing K by KG) and L by LG).

Thus, the dispersion equation for general case can be written as

l@(r,k7 =
PJí) P:l P[1)

PÍ? PIí) Pß)

PJí) P[i) PJ3)

-0. (4.45)

where P9) ,rpr"sents elements of the global propagator matrix for general case.

P#) "r. obtained frorn P*) after replacing K by KG) and -t by Lk). The prop-

agator matrix [P:t)] for the i-th sublayer is obtained in a similar manner. For a

particular value of ø, transcendental equation (4.45) will have a finite number of

real roots and an infinite number of imaginary and complex roots for k. Roots k
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are found by employing Mullers's method ',t'ith initial guesses obtained via stiffness

method II. The procedure for r¡'avenumber determination and ordering of d[ num-

ber of significant roots k are similar to those given in $3.3. It ma,v be mentioned

here that since (s fixed, orientation of u'in Figure 4.1(b) will vary with different k.

For the general case, equation (2.a3) and (2.a5) take the forms

{B:'1,} : lPjn)l{ sÍn)}, (4.46)

and

respectively. In

componenï,s aL z

t p!í)
) plí)
) p!í)

(4.46), {

iå]] {*i } 
:

øÍùj represents

I p[t

I 
"irL'Jl

equation

-LXdð

{t}
(4.47)

the displacements and stress

{B:n)}' : (t'o û¿ õr"i &rri ûs.i 
"ù¿),

(4.48)

Traction-free conditions at interface 1, and equation (4.47) give the components of

the rn-th mode eigenvector at interface 1, as

{¡Ínj}t:(r pt o o o pz), (4.4e)

where

_ pÍp p[? - pk) pG)
ot - O;nt p;nul - e[nu) el?'

- 
P[') PÍg) - PG) PG)

I" - p[sr) pÍrì - flW'

(4.50ø)

(4.50ó)

It is to be noted that p1 and p2 should be obtained from equations (4.50) for the

m-th root of ft (ie. for k,,n). Then applying equation (4.46) at successive interfaces,
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tnÍ}¡' -- (r,0.,. ãr"i* ã.ri* ãszàm út¿r"), (4.52)

i:1r2r" " ",1/ + 1; rn:7r2r" " " rM.

In the above, ttin, ûirn, and ús¿rn are the displacement components, and ã"¿rn,,

û"ri^, and ãs";rn are the stress components, at the i-th interface corresponding

to the rn-th mode (after suppressing the factor exp[-f((og +øt)]). As mentioned

previously, if the problem under consideration is symmetric or antisymmetric, only

a half-thickness of the plate may be modeled using appropriate boundary conditions

at the middle plane of the plate.

Following the analysis presented in $4.4.1, the dispiacement vectors of the scat-

tered wave field at the boundaries B* and B- can still be represented by equation

(4.5) and (4.8a), respectiveiy, with following modifications: [G+] is now replaced by

tqffi)\l'

the rz-th mode eigenvector

obtained as

tnG)\T - lro(s)rTL"rn J - \tutnz.f

where

where

{qll)} : (îtr,n ûyn ûun

and fG-l is constructed in a simiiar manner.

(values of wave functions at discrete interfaces) can be

ta1ill' lnÍ:)l' {B[flia,¡-]'), (4.51)

(4.53)

úq^*+r¡- ) i (4.54)
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In view

ting details

sublayer can

of equations (2.36),

of algebra, the ã,,

be expressed as

(2.37a), (2.37b), (237r),

and ãrn components of

(2.39), and (2.40), omit-

stresses within the z-th

- l[r1
- lvl (4.55)

In equation (4.55), t'he 2 by 3 matrix lU] is given by

lu) : 17ìl I4')l ¡¿{ø)1-t ¡r lr (4.56)

where [n{ol1 is obtained from [r?] in Appendix B after replacing K by 7çG) ur'¿ ¡'

by Lk); [fz] i, given in Appendix B; and [?"s] and l7,Ðl are defined in Appendix

E. Since ttirr, ûirn, and èrr¿rn for the m-Lh mode are known from equation (4.51),

equation (4.55) can be used to compute Ûr'irn an.d Ûrn¿n at each interface. It should

be noted lhat õrr¿rn and ûrn¿r, are discontinuous at the interfaces between sublayers

of different material properties. The nodal force vectors due to scattered wave field

at the boundaries BÌ and B- are now given, respectively, by equations (a.7) and

(4.8a) where [F+] is replaced by

Í: I
\;.. Í

I ",,\
ì. a', J

l¿r.o f /

where

and [F-] is constructed in a similar manner. The explicit forms of F[f", F:9n ,

"nð, 
F[fl" are given in Appendix F.

LTT



in a similar manner, boundary nodal displacement and force vectors corre-

sponding to the incident I ¡ave are given by equations (4.11).

4.6.2 Finite Element Model of Interior Region

The procedure of finite element formulation for interior region R for general

case is very similar to that of for plane strain case given in $4.4.2. Therefore, no

detailed formulation is presented here. A point to note is ihat operator matrix [.0]

in equation (a.1a) now assumes the form

trl -LUJ -

a
õæ

0

0

0
o
A"

-ih

0

-ih
0
a

ðz
0
â

ðæ

(4.5e)

0

0
B

Bz

i6
B

0c
0

It is interesting to note here that the energy functional , î, for general case is

independent of y and t. This is because terms involving g and t in fr appear as

expl-f ((og + øt)]exp[-r((og + øt)] which is equal to unity. The fact that 'ñ is not

dependent on g reveals that a two dimensional finite element discretization in æz

piane can be carried out.

4.6"3 Global Solution

The global solution is obtained by imposing the continuity of total (incident

plus scattered) displacements and tractions on the boundaries B+ and B-. These

lead to linear aigebraic equations for governing the amplitudes Lfi and ..4,;. Since

formulation is very similar to the plane case given in $4.4.3, no details are produced

here. Note that the final system of linear algebraic equations involve 3ly' equations

as compared tó 2M equations in plane strain case. The reflection and transmission

coefficients are given by equations (a.31).
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4.5.4 Energy Conservation and Reciprocity Relations

A.pplication of the principle of energy conservation to the close volume bounded

by r : t*, fr -- æ-, A : A*, A - g-, and top and bottom plate surfaces shol¡s

that the percentage error in energv balance e defined in equation (a.35) should be

theoretically zero. g+ and g- here denote tu'o arbitrary g-coordinates. Equation

(4.35) phould be used to compute E for general case with the understanding that d,,

in equation (a.33) has to be replaced by

ún:r- l{4r)}'{n*)}] , I1n<¡f-".Y-t (4.60)

The reciprocity relations for transmitted wave fieid are given by equations (4.36b)

and (4.42) where ç,, is now given by

c.-: -z{FÍo)-111n(o)1, I1n<N-,. (4.61)

r¡,here {p:nl- } is the n-th column of [f'(s)-]. Reciprocity relations given in equations

(4.36a) and (4.41) take a slightly different form for general case. Details of this can

be found in Appendix D.

4.6 Numerical Results and Discussion

The hybrid method developed in previous sections is used to obtain numerical

results of the scattering problem for foilowing five examples:

Example 1 - a homogeneous isotropic plate with Poisson's ratio, u : 0.37. The

flaw considered is a symmetric normal edge crack, the geometry of

which is depicted in Figure a.z(a).

Example 2 - a homogeneous graphite-epoxy plate rvith fibers aligned along the

æ-axis (0'). The flaw is a symmetric normal edge crack.
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Example 3

Example 4

Example 5

a 35-layer graphite-epoxy closs-ply laminated plate '*'ith

g0'10" I ... lg0" 10" lg0" I .'. 10" lg0" configuration. The flau' consid-

ered is a symmetric normal edge crack.

an 8-layer graphite-epox)¡ cross-pty laminated plate with

0./g0"/0" lg0" lg0" 10./90"/0' configuration. The flaw considered is

that shown in Figure a.2(b). Note that for this fr.aw b2 is equal to

zero untii blfu is equal to 1.0, and when the normal crack grorvs into

delamination (i.e. ö, > 0) ó is equal lo h * bz.

The configuration of the plate is same as in example 4, but the flaw

considered is a symmetric normal edge crack.

The material properties of graphite-epoxy layers for examples 2-5 are as given rn

$2.6. Since in each of the above examples, the geometry of the plate and flaw is

symmetric rvith respect to the midpiane of the plate, the scattered field consists of

either symmetric or antisymmetric modes depending on whether the incident mode

is a symmetric or an antisymmetric one. Thus oniy half-thickness of the plate need

be modeled in the analysis. The following nondimensionalization has been used for

frequency throughout this section:

uH
Example 1

Exampie 2-5

; P: shear modulus;o-

f¿-

z\útlp
uH

Three checks are made to validate the numerical calculations: (1) for an incident

rvave without any crack in the interior region, the resulting scattered field should

be zero; (2) ihe percentage error in energy balance, e, should be zero; and (3)

the reciprocity relations should be satisfied. These three checks were satisfied with
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negligible errors for the results to be presented in $4.6.1 for plane strain case, and

84.6.2 for general case.

The total number of sublayers, /{, used to compute the wave functions for the

exterior region plays an important role in the accuracy of the analysis. In each of

the examples considered a suitable vaLue for /ü was chosen after computing ,9n by

increasing the value of 1ú at few selected 1ower, intermediate and higher frequencies

in the frequency range of interest, until converged values were obtained for drr. The

finite element mesh was automatically generated rvith arbitrary normalized crack

iength, al@ l2), at normalized crack length increment of.7l20 in exampies 1 and 2,

and 1/35 in examples 3. In example 4, for scattering by the normal central crack,

the fi.nite element mesh was automaticaily generated with arbitrary normalized

crack length, bfby,, at normalized crack length increment of 1/8. To simplify the

automatic generation of the mesh, the finite elements were taken to be rectangular

(except near the crack tip) with equal heights and equal widths.

In order to choose suitable values for the boundary coordinates, fr*, and z-,

numerical results were obtained by increasing the overail width of the mesh, starting

with a smaller width. It was found that any width above a threshold mesh width

can satisfy the three checks mentioned in the previous paragraph with negligibie

errors. However, as the mesh width becomes larger, the number of fi.nite elements

involved also becomes larger thus effectively increasing the number of degrees of

freedoms in the fi.nite element analysis. The mesh boundaries were chosen here as

æ-l@12) - -0.20, and æ* l@12): 0.20 except when blfu is greater than 1'0

in example 4. The interior region enclosed by these mesh boundary coordinates

consisted of 8 columns of finite elements symrnetricaily located about the æ : 0

plane. For the delamination crack (blbt > 1.0 in example 4) ihe mesh boundaries

were chosen aS æ- l@lz) : _7132,, and x,+f (Hlz) : 7132, and there rvere 14
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columns of finite elements symmetrically located about the æ : 0 plane' The

meshes contained: 20 ror¡,s of finite elements in examples 1, 2, and 5; 35 rou's of

fi.nite elements in example 3; and 32 rows of finite elements in example 4' In all fi've

examples, the number of modes , I\[, employed in the wave function expansion were

in the range 15 to 21.

4.6.1 Plane Strain Case

4.6.1.1 Normal Edge Crack

The numerical results of the scattering problem for example 1-3, for plane strain

case are presented in this section. A comparison of numerical results for the reflec-

tion coefficient -R11 due to first symmetric incident mode, with those of Koshiba eú

ø/. (1g8a) for example 1 are shown in Figure 4.3 where Qis rf2, No- it one, and

circles indicate results of Koshiba et al.. The frequency spectrum for this example

can be found. in Mindtin (1960). For the results presented, lel was less than 0'005%'

The excellent comparison of results serves to verify the computer code developed

here to model the scattering problem'

variation of the reflection coeffi.cient -R11 (due to fi.rst symmetric incident mode)

u,ith normalized crack length for l) -- 2.0 in example 2 are shown in Figure 4'4. The

frequency spectrum for this problem was shown in Figure 3.2(a). It can be seen

from the frequency spectrum that at f) : 2.0, the scattered field consists of only one

symmetric propagating mode. For these results, lel was less than 0'006%' Figure 4'5

shows the variation of reflection coefficients with normalized crack iength for Cl : 4.0

in example 2, when the incident mode is the fi,rst symmetric one' At this frequency,

the scattered field consists of three symmetric propagating modes' It was found

ihat lel was less than 0.35%. comparison of Figure 4'4 with Figure 4'5 shows that
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the variation o{ -Rrr is quite difierent in these two cases. This is due to the fact that

at f,) : 2.0 the energy of incident wave is shared by oniy one reflected propagating

mode and one transmitted propagating mode whereas at Í-l : 4.0 the energy of

the incident wave is shared by three reflected and three transmitted propagating

wave modes. It is seen from Figure 4.5 that when the crack length approches the

special case of through-thickness crack (ie. free end reflection), R12 approaches zero

resulting in the reflected energy being shared by only the first and third reflected

propagating modes.

Numerical results of reflection coefficients for example 3 at f,l : I'2 and 2'5,

when the incident mode is the first symmetric mode, are shown in Figures 4'6 and

4.7, respectively. The frequency spectrum for this example was presented in Figure

3.2(b). No, was 1 at 0 - 7.2, and 2 at 0 :2.5. The maximum value of lel was

0.003% at f,l : 1.2 and. 0.0g% at Q : 2.5. In $2'6.4, it was found that when the

number of iayers in a cross-ply laminated plate exceeds a threshold number, the

plate can be modeled, as an effective homogeneous anisotropic plate' This limit

for the graphite-epoxy laminated piate considered here was found to be about 35'

In Figures 4.6 and 4.7, lhe results of reflection coefficient fo¡ this effective plate

are shown by triangles. It can be seen that the results for the effective plate are

in close agreement with the results for the 35-layer plate' Finally, in Figures 4'8

and. 4.9, the results of the reflection coeffi.cients for example 3 at c) : 1'2 and

2.5, when the incident mode is the first antisymmetric mode, are shown' The

scattered field consists of one antisymmetric propagating mode at fl : 1'2 and

two antisymmetric propagating modes at f) : 2.5. For this case, lel was less than

0.20%. corresponding results for the effective plate are also shown in these figures

by triangles. A good agreement can be seen between the results for the effective

plate and 35-layer plate. Figure 4.8 shows that l-Rrr I approaches zero at normaJ'ized
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crack length near 0.74 . At this vaLue of crack length almost all the incident energy

is absorbed. by the fundamental antisymmetric transmitted propagating u'ave. A

comparison of Figures 4.6 and 4.7 u'ith Figures 4.8 and 4.9 shows that the reflection

coefficients of the symmetric incident rn,ave behaves significantly different from those

of the antisymmetric incident wave u'ith the crack length'

An overall observation that can be made from Figures 4.3-4'9 is that the scat-

tered signal amplitudes are quite sensitive to the crack length. Therefore, the results

presented in this section are rather important for ultrasonic nondestructive evalua-

tion of surface breaking cracks in laminated composite plates.

4.6.L.2 Normal central crack Extending to Delamination

Numerical results for scattering by a normal central crack that grou's into delam-

ination are presented in the current section (example 4). The frequency spectrum

for this example is shown in Figure 4.10 where 1: (kH)12. Figures 4.11-4.16 show

the variations in the magnitudes of reflection and transmission coeficients with the

crack length at a normalized,frequency of 4.0. It can be seen from the frequency

spectrum that, at this frequency, there are three symmetric and three antisymrnetric

propagating modes.

Figures 4.7Ir 4.!2, and 4.13 correspond to the first, second, and third symmetric

incident modes, respectively. The maximum value of lel for the results presented in

these figures u,as0.2aTa. It is seen from Figure 4.11 that lT1.l and lP,a-l (n: t,2,3)

are almost not sensitive to the extent of delamination. Figure 4.12 shows that lT22l

and l-Rzzl are the most sensitive to the crack length and lT23l and lR23l are the least

afiected by the extent of the crack. lT2'l and lfur*l (n : I,2) change gradually until

crack is about half way ihrough the thickness of the middle lamina. Then lT22l and
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1,R22 | change quite rapidly as the crack is almost all the way through the middle 90'

lamina. As the crack gror¡¡s into delamination at the interfaces between the middle

(g0.) and adjacent lamina (0"), these coefficients change less rapidly in a linear

manner. lTzrl and lR rl, on the otherhand, tend to decrease reaching a plateau as

the delaminations become ó1 in length. It can be noticed from Figure 4.13 that

l?3,1 and lfur.l (n : 7,,2,3) are not affected much by the crack. A comparison

between Figure 4.11 and 4.12 shows that the behaviour of l?tzl and lRl2lis very

similar to lT21l and l-8211. This is expected from the reciprocity relations between

the pairs (Te*,T-p) and (Rpn,-R,'o) established in $4.4.5'

Figures 4.741 4.I5, and 4.16 correspond to first, second, and third antisymrnetric

incident modes, respectively. For the range of the crack lengths considered in these

figures, lel was less than 0.77%. One can notice from these three figures that, at the

frequency considered here, the antisymrnetric incident modes are not very sensitive

to the normal central crack even when the crack was almost all the way through the

thickness of the middle 90o lamina. However, as the crack Srov/s into delamination,

T1n and, Rtn (n: !,2,3) change rapidly u'ith the extent of the delamination. The

coefficients l/rrl and I,R11l show the most sensitivity to the increasing length of

delamination as seen from Figure 4.14.

Numerical.results of the magnitudes of transmission and reflection coefficients

as a function of frequency for example 4 are presented in Figures 4.77-4.24. For

the results presented in these figures lel was less than 0.27%. Figures 4.77-4.20

correspond to first symmetric incident mode; Figures 4.27 and 4.22 conespond to

second symmetric incident mode; and Figures 4.23 and 4.24 are for third symmetric

incident mode. For the purpose of presentation, two crack lengths have been chosen.

Figures 4.77r 4.7g,,4.27, and 4.23 are for the case where normaL centrai crack has

grown all the way through the thickness of the middle 90o lamina viz. when bf h :
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1.0. Results when the delaminations have become ô1 in length, namely when bf h :

1.5, are shorn,n in Figures 4.I8r 4.20,4.22, and 4'24'

It can be seen from Figurc 4.77 that for the normal central crack, lfi1l and

l-R111 are almost unaffected by the frequency uniit fl is about 3.0' Then these

coeffi-cients change graduaily as f) increases from 3.0 to 4'0' On the other hand, for

the delamination, as seen in Figure 4.18, l?rr I and l,R11l change quite abruptly in the

normalized frequency lange 1.6 - 2.3. This suggests that ultrasonic nondestructive

evaluation in this frequency range wili make it possible to decide whether the normal

central crack has grown into delamination. Furthermore, Figure 4.18 shows that

l?rrl and l-R111 for the delamination are not very sensitive to the frequency as

f) increases from 2.3 to 4.0. It is seen from Figure 4.19 that lfi3l and lr?131 do

not change appreciably with frequency for the normal central crack' However,

l7rzl and l.Rl2lincreases gradually in the normalized frequency range2.6 - 4.0.

A similar trend in l?r.l and lRr^l (n : 2,3) for the delamination can be seen

from Figure 4.20. A comparison between Figures 4.19 and 4.20 shows that l7r'l

and. lRlrl (n -- 2,3) are not sensitive to the crack iength in the frequency range

considered. It can be noticed from Figurcs 4.27 and 4.22 that the most frequency

sensitive coefficients of second symmetric incident mode are lT22l and lB22l in the

normaJ.ized frequency range 3.0 - 4.0. Also it is seen that lft3l and lR13l are

the least sensitive. Moreover, a comparison betrveen Figures 4'21 arrd 4'22 reveals

that lT22l and lÛ22lfor the normal crack (blû:1.0) and the delamination crack

(b16, :1.b) are quite different in the normalized frequency range 3.0 - 4.0. Figures

4.23 and.4.24 show that l?s,l and lEs?¿l (' :1,2,3) are not very much affected

by the frequency. However, among the three scattered propagating modes of third

symmetric incident mode, second mode is the most sensitive one to the frequency

and the crack length.
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4.6.2 General Case

To illustrate the general case, some numerical results for scattering by a symmet-

ric normal edge crack are presented in this section. Note that since the impedance

matrix, [^9], (refer to equation 4.19b) for the generai case is complex, and each node

invoives three degrees of freedom, the core storage requirement for the impedance

matrix is approximately 4.5 times that required for plane strain case with the same

frnite element mesh.

Numerical results for the magnitudes of transmission and reflection coefficients

(lTp*l and lÃe,l), and proportions of transmitted and reflected energies (E; and

E{-) for scattering by a symmetric normal edge crack in a homogeneous graphite -

epoxy plate (example 2) arc presented in Table 4.1. The percentage error in energy

balance, e, is presented aiso in this table. The normalized frequency considered is

2.0. At this frequency, when ï/ave propagation occurs in an uncracked plate in a

direction making an angie 45' with the fiber direction, it is found that the dispersion

equation for the off-axis propagation case (described in $2.3.3) has two real roots

correspond.ing to symmetric modes. The fundamental or the first root (the one

which has the largest magnitude among the real roots) has been considered here.

The numerical value of this root is 2'0377 (: k("))' Part (a) of Table 4'1 corresponds

to 0 :0o and ót" -- 45o. Thus,(o ir equal to 7.4404 (: 2'0371 sin45"). For this

value of (0, the dispersion equation for general case (see equation 4'45) has two real

roots for wavenumber k. These two roots are listed in the second column of part (a)

of Table 4.1. Part (b) of this table is for 0 :22.5' and /i" -- 22.5', thus resulting

in (¡ of 0.7796 (:2.0377 sin22.5'). Corresponding wave numbers of propagating

modes obtained as roots from the dispersion equation for general case are reported

in the second. column of part (b) of Table 4.7. It is seen from Table 4'1 that the

energy balance and the reciprocity between the pairs (E*, E;) is satisfied with
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negligible errors. Part (a) of Table 4.1 shows that the reciprocity between the pair

(E;^, Ej) is satisfied with negligible errors when the fibers are aligned in the æ

d.irection. This is expected from equation (D.35) in Appendix D. It is seen also that

the reflection coefficients are sensitive to the crack length. Note that in both part

(a) and (b) of Table 4.1, for the first symmetric incident mode (p : 1), the incident

ì¡/ave normal is in a direction making 45" with the fiber direction. Thus, for the first

symmetric mode, the results of part (b) can be thought of as those corresponding to

a crack which is oriented (in æg plane) in a 22.5" direction to the orientation of the

crack in part (a). In view of this, a comparison between (a) and (b) parts of Table

4.1 discioses that the reflection and transmission coefficients are quite sensitive to

the orientation of the crack.

Finally, Table 4.2 shows the numerical results for scattering by a symmetric

normal edge crack in an 8-layer 0'/90' 10" 190" 190'f 0'f 90' /0" graphite-epoxy plate

(example 5). The results presented correspond to a normalized frequency of 4.0 and

a normal.ized crack length of 0.5. For wave propagation in the uncracked plate in

a 45" direction to the 0o fibers, off-axis dispersion equation gave the wave number

(f {,1¡ of the fundamental symmetric propagating mode as 4.7557. This resuits in a

(6 of 3.3624 for part (a) and 1.8197 for part (b) of Table 4.2. For these (6 values,

at a normalized frequency of 4.0, the general case dispersion equation leads to two

rea.l roots for part (a) and three real roots for part (b), all of which correspond

to real symmetric propogating modes. These wave numbers (ko) are listed in the

second column of Table 4.2. It can be seen from this table that the energy balance

and. the reciprocity relations among proportions of energy are satisfied with small

errors. Numerical results for l?ril and l-R111 show that these coefficients are very

sensitive to the orientation of the crack (in æy plane).
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4.7 Concluding Remarks

A hybrid method combining the finite element method with wave function ex-

pansion procedure has been presented to study time harmonic wave scattering by

cracks and delaminations in laminated composite plates. The validity of the results

obtained from the hybrid method is established b5' checking the energ¡' balance

and the satisfaction of elastodynamic reciprocity relations. It is shou'n that results

presented here agree well with other reported results for homogeneous isotropic

plate.

It is found that the reflection and transmission coeffi.cients are very sensitive

to the extent and the orientation of the crack, the incident mode number, and the

frequency. The study shows that judicious choice of frequency and incident mode

can be made to obtain optimum results in ultrasonic nondestructive eva-luation of

flarvs. Only a few examples have been chosen to illustrate the applicability of the

hybrid method. The hybrid formulation based finite element code developed here

has the capability to investigate scattering of ultrasonic elastic v¡aves by flaws over

a wide range of the parameters involved. This enables one to perform a deiailed

parametric study of the scattering problem and the results of this study may be

used to interpret ultrasonic test measurements to characterize flaws.

For the sake of simplicity, wave function expansion has been considered for lam-

inated plates having orthotropic or transversely isotropic material properties. Since

wave functions are available for a homogeneous plate possessing general anisotropic

material properties (Nayfeh and Chimenti, 1989), by employing the propagator ma-

trix technique, the present hybrid method can be easily adapted to laminated plates

with laminates of generai anisotropic material properties.
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There a¡e several advantages of the hybrid method:

1. Each lamina of the plate can have arbitrary mechanical properties and thickness.

2. Because the scattered field is expressed in rvave function expansion, an arbi-

trary number of layers can be accommodated v'ithout appreciable increase in

computational time. This is to be contrasted ivith the integral representation

technique using Green's function. In the latter, computational time increases

considerabl¡' with increasing number of laminae because of the time involved in

the computation of the Greents function.

3. The interior region containing the flaw can have quite arbitrary material prop-

erties.

4. The flaw can be quite arbitrar¡' in geometry and in orientation. Also, the

multiple scattering by a cluster of neighbouring flaws can be studied without

much difficulty.

The hybrid method is suited ideally for low frequencies. At high frequencies,

very fine finite element meshes are required to ensure accuracy, thus increasing the

numbe¡ of degrees ol freedoms involved in the analysis.
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Figure 4.2 : Geometry of flaws and details of regions- (a) Normal edge crack in a Plate
i¡1 C""ttJþ Ï"."t"d normal matrix crack extending to delamination

i.úo*o Uy solia and dashed lines) in an 8-layer cross-ply
0" /90" 1 0" 1 90' 1 90' /0'/90" /0' )- plate
c)'A tjpicât ntiit" ólement meéh near the crack tip.
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(c)

Figure 4.2 : Geometry of flaws and detaiis of regions
a) Normal edge crack in a plate
b1 Centrallv "located normal matrix crack extending to delamination
,Éo*o Uy sotid and dashed lines) in an 8-layer cross-ply
0"/90'/0' 190'190" 10" 190" /0') plate
c)'A typicãt fiáit" element mesh near the crack tip.
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Table 4.1

Numerical results for the scattering problem in example 2 aL Q : 2.0

(general case):

(a) 0 :0o, dt" (rvhen p: L):45o, (o : I'4404.

p K,P alH n tÐ |

ItupnI ITP_l F:T t-l

1 t.4404
0.1 1 0.0436 0.9963 0.00 19 0.9926 0.43 %

2 U. U.)UÐ 0.0478 0.0006 0.0006

0.5 1 0.095 1 0.9061 0.0090 0.8211 0.10 T
2 0.7t7 6 0.4094 0.r274 0.0415

2 0.324L
0.i 1 0.0 120 0.0116 0.0006 0.0005 0.u %

2 0.0110 0.9994 0.0001 0.9989

u.ð 1 0.1780 0.1012 0.1279 0.0414 U.UÐ 70

2 0.2641 0.8720 0.0698 0.7603

(b) d : 22.5o, /i' (when p : I) - 22.5o, (o : 0'7796.

2 0.8129

0.1 0.0136 U.UUOÐ 0.0001 0.0002 0.01 %
2 0.0087 n ooo0 0.0000 0.9997

u.Ð 1 0.0240 0.1294 0.0004 0.0819 0.0e %
2 0.5902 0.9175 0.0751 0.8419

Notes : 1) p and ¿ denote the incident and scattered wave node numbers,

respectively.

2) Symmetric incident wave modes have been considered.

p k v̂ "lH
n lR"_l lrP_l

ñI
Don D-^ I-l

1 1.8820

U.I I 0.0092 0.9987 0.0000 0.9975 0.21 %
2 0.0619 0.0325 0.0002 0.0002

0.5 1 0.1051 0.9129 0.0016 0.8334 0.27 Yo

2 1.3568 0.6322 0.0811 0.0818
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Table 4.2

Numerical results for the scattering problem in example 5 at fl : 4.0 and

af H :0.5 (general case):

(a) á (for 0" lamina) - 0o, /i" (when p : 7) - 45o, (o :3.3624'

p k- TL lRu_l lrP.l þpL lel

I 3.3624 1 0.8401 0.4240 0.7058 0.1797 0.04 %
2 0.1432 u.ð / uo 0.0068 0.1081

2 0.6622 I 0.0466 0.1893 0.0066 0.1080 0.25 T
2 0.7370 0.5828 0.5432 0.3397

(b) á (for 0" Iamina) : 22.5o, /i* (when p : I) :22.5o, eo : 1.8197.

p l" TL
ìD I

ltLpnl ITP_l Len tr- t^t
lc I

I 4.3931

1 0.3686 0.3171 0.6417 0.1006
0.02 %2 0.4674 0.0768 0.1640 0.0394

3 0.1963 0.7072 0.0472 0.0073

2 1.9389

1 0.1308 0.5111 0.0121 0.0391
0.08 %2 0.9173 0.8243 0.0970 u.o I vÐ

c)
ù 0.0297 r.3467 0.0002 0.1730

tr) 1.4683

1 0.1726 0.0687 0.2209 0.0074
0.47 %2 0.6732 0.1283 0.5479 0.L725

J 0.0874 0.2032 0.0147 0.0413

Notes , 7) p and n denote the incident and scatteled wave node numbels,

respectively.

2) Svmmetric incident $/ave modes have been considered.
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Chapter 5

Conclusions, and recommendations

for Future Work

5.1 Conclusions

The stiffness method, developed in Chapter 2, can be used to obtain accurate

predictions of theoretical dispersion characteristics that are required for material

characterisation of laminated composite plates with arbitrary number of layers. It is

found that measurable changes in phase velocity are caused by interface bond iayers.

These changes are quite appreciable at high frequencies and specially in higher

modes wiihin certain frequency bands. The present investigation suggests not only

that ultrasonic waves may be used. to characterise interface bond layer properties but

also that judicious choice of frequency and modes may be made to obtain optimum

results in ultrasonic nondestructive evaluation of these properties. The study shows

that anisotropy, caused by the orientation of fibers with respect to the direction of

wave propagation, has a strong influence on dispersion characteristics. It is shown

that the number of layers in a cross-ply laminated plate has a strong influence on the

dispersion characteristics of guided waves 'n'hen the plate is composed of only a few

layers. However, as the number of layers increases, the layering effects diminish,

and when there is a sufficiently large number of layers, the effective mechanical

properties of the cross-ply plate can be characterised as homogeneous anisotropic.

This finding is very important from the point of view of designing thick laminated

composite plates, since the designer can use a homogeneous plate model rather than

a complicated layered plate model.

The semi-analytical method, developed in Chapter 3, can be used to study
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guided plane strain 'ivave reflection at the free edge of a laminated composite plate

with arbitrary number of layers. Alihough the case of refl.ection of waves that

propagate along a principle direction has been studied, the method presented in

this chapter can be easiiy applied to off-axis propagation. It is found that the

variational principle method gives very good results. Since the least-squares method

gives anomalous results form the point of view of energy balance, it is concluded

that the least-squares method should be used with caution for free end reflection

problem of layered anisotropic piates.

The hvbrid method, presented in Chapter 4 to investigate scattering by cracks

and delaminations in the laminated composite plates, has several advantages: each

Iamina of the plate can have arbitrary mechanical properties and thickness; because

the scattered fi.eld is expressed in wave function expansion, an arbitrary number of

layers can be accommodated without appreciable increase in computational time;

the interior region containing the flaw can have quite arbitrary material properties;

the flau' can be arbitrary in geometry and in orientation; and the multiple scat-

tering by a ciuster of neighbouring flaws can be studied without much difficulty.

Although the wave function expansion has been presented for laminated plates

having orthotropic or transversely isotropic lamina properties, the hybrid method

can be easily adapted to suit laminated plates having general anisotropic lamina

properies. It is found that the reflection and transmission coefficients are very sen-

sitive to the extent and the orientation of the flaw, the incident mode number,

and the frequency. The present study enables the experimentalist to make judi-

cious choice of the frequency and the incident mode to obtain optimum results in

ultrasonic nondestructive evaluation of flaws. Futhermore, the hybrid formulation

based frnite element code, developed in the present study, enables one to perform

a detailed parametric study of the scattering problem, and the results of this para-
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metric stud¡' may be used to interpret ultrasonic test measurements thus ieading to

the evaluation of the parameters of the flaw nondestructively. The hybrid method

is idealiS' suited for lou' frequencies. At high frequencies, very fine finite element

meshes have to be used, thus increasing the number of degrees of freedoms invoived

in the analysis. It is noted here that the scattering problem considered in the thesis

is a high¡'idealised one. Therefore, for the technique to be useful for practicai ap-

plications, a considerable amount of experimental work and additional theoretical

study is required.

6.2 Recommendations for Future Work

It is recommended that the theoretical findings of the present study be experi-

mentally validated by carrying out ultrasonic testing of laminated composite plate

specimens. This goal may be acheived by testing specimens rvith accurately knou'n,

material properties and flaw parameters. In the hybrid formulation presented in

Chapter 4, only time harmonic waves have been considered. In addition, it has

been assumed that the source or the transducer which excites guided waves is lo-

cated at a distance far away from the flaw, and the flaw is of infinite length in g

direction. The following recommendations are made for future work for the hybrid

method to be useful for ultrasonic nondestructive evaluation of flaws in iaminated

composite plates:

1. Incorporate transient waves in the hybrid method, by employing the Fourier

Transform Technique. This will permit to investigate the possibiiity of using

the time pulses in ultrasonic nondestructive evaluation.

2. Incorporate a guided wave generating transducer located at an arbitrary dis-

tance from the flarv. This may be possible, by enclosing the flaw and the
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region ioaded by the transducer, by trvo interior regions: one enclosing the

loaded region; and the other enclosing the flar¡'. In between the trvo interior

regions, there is an exterior region u'hich can be modeled by the u'ave function

expansion procedure.

3. Extend the hybrid method to investigate scattering by fi,nite flaws (i.e. 3-

dimensional fl.aws).

The hybrid technique presented in this thesis is a direct method having po-

tentiai applications in determinig fl.aw parameters from ultrasonic measurements.

However, if the number of unknown flau' parameters involved is quite large, ap-

plication of this direct method to quantify unknown parameters may become very

tedious. To circumvent this difrculty it may be necessary to study the inverse

scattering problem. The recent rn'ork by Nishimura and Kobayashi (1991) on SH

problems is a starting point for future research in this direction'
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Appendix A

Expressions for Material Property Transformation

The ¡elations betrveen D¡¡ of. equation (2.4) and C¡¡ of equation (2.2) are given

by

Dn: Cnrna * Csena +z(Cn *2C66)rn'n'* Div

Dn : (Cn + Czz - 4C66)rn2n2 I Cn(rnn + r-n) -l Dir,,

Dn:Cnm2ìCzsnz*Dir,

Dte : l(C,,t - Cn *2?66)rn2 t (Cr, - Cn -2C66)n2f *n-l Diu,

Dzz : Cnna * Czzrna + 2(Cn * 2Cøe)*tn' * Dir,

Dze:Cnn2*Czs'm2*Dir,

Dze : f(Ct, - Cn 12C66)n2 * (Czz - Cll - 2766)rn2l mn -t Di6, (4.1)

Dsz : Css,

Dsa:(Crt-C6)mnlDia,

D++: C+n*2 I Cssnz I Di+,

D+u : (Cnn - C55)rnn * Dir,

Dss : Cssrn2 * C++nz * Dis,

Doe : (Cn -l Czz - 2Cp)rn2n2 * Caa(rn2 - rr2)' + näu,

where rn : cos 0, rz : sin d, and Di; arc as defined below.

(i) Transversely isotropic and orthotropic materials

Di¡ : o' (A.2)

It should be noted that, for orthotropic materials, equation (2.3) does not hold, and

there are no axes of material svmmetrv. Therefore. X axis is chosen in the direction
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of the normal to one of the material planes of symmetry perpendicular to the plane

of the piate. Definition of y and z axes remains unchanged.

(ii) i\4onoclinic materials

Dit: 4(C6m2 * C26n2)rnn,

Diz: -2(Cru - Cza)(*' - nz)rnn,

Dis : 2C36rnn,

Dia: C6rn2(m2 - Zr-r) I Czan2(Jrn2 _ n2),

Diz: -4(C26m2 ï Cy6n2)rnn,

Dit: -2C66mn,

Dia: c26rrf (rn2 - 3rr) t C16n2(3*' - n2), 
(A'3)

Die:Ctu(*'-n'),

Di+: -2C55rnn'

Dis: Cnr(*' - r'),

Dis:2Ca5rnn,

Däa : 2(Cru - C6)mn(*, - rr),

For monoclinic materials, equation (2.3) does not hold, and there are no axes of
material symmetry. However, there exists only one plane of materiai symmetry for
this material' In writing the material property transformation equations, it has

been assumed that the plane of material symmetry is parallel to the plane of the
plate' X axis is chosen in an arbitrary direction iying on the plane of the material
symmetry, and definition of Y and z axes remains unchanged.

1 ta1I¡.7



Appendix B

Expressions for Propagator Matrices

The elements of the propagator matrix [P,] appearing in equation (2.1a) are as

given below.

tp.l -lt xJ -

:'+ ¡ *tO cos(2h.s 1) - "Bcos(2h.s2 )],A1 " I \

: 
ff t-" 1 Ad,sin(2h.sr ) + s2c sin(2hs2)),

: þ "d,lros(2h.s1 ) - cos(2hs2)),
ArL\

: ftirf-si,(l+ L)sin(2 t rr) +s2c(1 -¡ B)sin(2h.s2)1,

: 'Ëf'[-rr(1 + B)sin(2 h"r) +Bs1(1 * .4)sin(2 hsz)],

: oËr*, 
s2[.4(1 * B)cos(2äsr) - (i + ,4)cos(2h.s2)],

n2: 
i:iktcs2(7 t B)sin(2hs) - d'r(1 + ,4)sin(2h.s2)1,

n2: 
ffu2 s,s2(1 -t ,4X1 + B)t- cos(2hs1) + cos(2å.s2)1,

BIcz ,: 
O" [cos(2å.s1) - cos(2hs2)],

: 
#[slABsin(2å.s1 ) - rrsin(2å.s2)],

:'; i rt- B c cos(2rr, ) + d. cos(2tzs2)1,

: o#*'[-s1a(1 
*,4)sin(2ä",) + sz(1 + B)sin(Zhs2)),

Pt+l
nz+ 

|

Pz+ 
¡

P++ J

fPttt'--
I

I 
Pzt

I Pst
I

LP+t

Ptz Pts
Pzz Pzs

Psz Pss

P+z P+s

(8.1)

(8.2)

where

Ptt

Pzt

Pst

P+t

Ptz

Pzz

Pzz

P+z

Pts

Pzs

Pss

P+t
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;bpt+: fiFt, sin(2å.s1) + ABtt sin(2å.s2)],

A
p2+ : 

^ 
,, s2 [- cos(2â", ) + cos(Zh.s2)],

^2D..
ps+ : ?l-tr"sin(2å.s1) + r, Adsin(2hs2)],L.2'

p++ : Tinrrrrl-(1 + A)cos(2hsr) + ¿(r * B) cos(2 h"r)),
tJ2

;- -,,L:^L¡¡¡ YV ltlLII,

" 
: (1 - 6r)k' - þtst2 A,

d:(1 -6òk2B-0tsz2,

Ar : D55 j IcB1s2'ç{ '+a - t¡, (8.3)

Lz: D55jks1s2(AB -r),
, 1/ \n: 

t\z¿+t - z¡).

The propagator matrix lP:")l appearing in equation Q.al is given by

[PJ')] : [E]t",ltäl

cos(2hr1) 0 0 sin(Zhr1) 0 0

0 cos(2hr2) 0 0 sin(Zhr2) 0

0 0 cos(2lt() 0 0 sin(2å.o
- sin(2hr1) 0 0 cos(Zhr1) 0 0

0 - sin(2hr2) 0 0 cos (2hr2) 0

0 0 -sin(2å.() 0 0 cos(zho

(8.4)

where

l.r-1 -t¿tt-
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CssK L
Cssez(L' -

-jL

(8.6)

(8.7)

(8.8)

, (8.9)

(8.10)

(8.1 1 )

(8.12)

f traltall tol It tol 
" 

¡rlislLl '

f tt",l[R]l-'
L tOl

cu, 
f 
{r - 6r)K' - Aþ) þzþr, + Lr) + zAþ) erL'f ,

cuu f{r - 62)K2 Bþ) - pr(rr' + L,) + 2ezL2f .

l

lE):

[ä] :

lrnl-t!, | 
-

L"t -

[E] :

l0l

llT,ltsll-'

I
,',1

lna rL ol
l-n rn 01,
Lo o ij

I C55¡xrr(1 + 1(")) CurjKr2(r + p@¡

| 2C55e2j LrTA@) 2C55e2j Lr2

l_ rtAþ) 7'2

| ¡x iKBþ) o I
I iLtt") iL -e | ,

L firt Rzz 2C55e2 j L( )

Esr

Rtz
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Appendix C

Expressions for Stiffness Matrices

To define the matrices [c2], fca], [rn], and

(2.56) and [C1] ,lCtl,lM), and [.Ð1] through

following matrices are defined first:

[e1] through |ru] appearing in equation

[85] appearing in equation (2.58), the

[¡,r1] : [[//3]

[¡rr] : [ [¡rr]

[ø] : [ [ø1]

[b] : [[ó,]

[d] : [[d,]

[ooo
[1\Ir] :l O 0 0

| -n"Dt" ¡ -nsDsaL Dgg " Dzs

Uúnil ,

l¡iull '

l"r)),

[br]1,

ldrll,

-TL3
0

0

(c.1)

(c.2)

(c.3)

(c.4)

(c.5)

(c.6)

(c.7)

(c.8)

0

0

0

ol
ol,
0J

[¡ru] :
ol

I0 I,
IDss J

¡¿sDqe
A

-¡¿sDes
A
0

ln'
l0
L0

0

TL1

n

0

0

TL1

-nsD+s
nsDss

0

[o'] :

0

0

-nLD+s
A

n'sD++

0

0

0

nzlJSS
A

-n|D+s
lt
0

00
n'. :-t D3g

00
00
00

0

0

ILI

0

0

0

0

0

n|
0
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ló'l :

ld'l :

0

-ÍLsJJ36--D;-
0

0

TLy

(c.e)

(c.10)

(c.11)

(c.12)

(c.13)

(c.14)

(c.15)

(c.16)

(c.17)

(c.18)

(c.1e)

ñ - Í¿sD++
to I-A

-n.I)tr ^'v_ tl
u3s00
00
O -nsD+s-^

-** o

00
00
0 n1 -nt,*R* o

U

0

0
TL3

Dzz

0

00
00
UU

-7¿sD1.s n
Dzs00

0

0

0
_ñ ^ f)^^

Dss
0

0

0

0

0

0

p[r{,]r lNldz,

p[r/,]r lN2ldz,

plNzlr [N2]d,2,

td)'lDlld)d,2,

ld.l'ïDl[b]d,2,

Ld)'lDlla)dz,

[ó]t [D] [b]d.2,

[ó]t[D]la)d,2,,

["]'[¿][a]d,2,
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-rL3 O 
10 0l

0 01.
0 0l
0 0l

The matrices [1üa], [¡/u] ,lor],ló2], and [d2], are obtained from [1{3], lffu], ["t], [ót],

and [d1], respectively, after replacing nlby n2, nsby na, n|by n', andntrby n'n.

Then
nh

r"ù: J_,
fh

l"'l : 
J_^

rh

td: 
J_^

¡h

1",1 : 
J_o

¡h

["ù: 
J_o

îh
l"') : J_,

nh

["d : J_,
fh

l"u1 : 
J_o

¡h
["d : J_,



(c.20)

(c.2i)

(c.22)

(c.23)

(c.24)

(c.25)

(c.26)

(c.27)

lOrj :ull.rl -["rlt] ,L' I

lczi: u [[.r]l '

[E'] :u["']l ,

l+rl: u 
[t"rJ - ["r]t] ,

[Er] :ufl"rl -["n] +[,r]t] ,

lEnl: u llrult - f"u]l ,L' 'J

lE'l :u[["u]l ,

lMl: u [[-]l ,

where U stands for union or assembly.
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Appendix D

Derivation of the Reciprocity Relations

The reciprocit¡' ¡s1.1ions given in equations (4.36), and the reciprocity relations

for general case are derived in this appendix.

The reciprocity relations are derived from the elastodynamic reciprocity theo-

rem (Achenbach, 1973; Auld, 1973; Tan and Auld, 1980) which may be written, in

the absence of body forces, in ihe follou'ing form using tensor notation:

j rlr : t¡A, z (D.1)

where zf and øf* represent the displacements and stresses corresponding to elas-

todymanic state A while ul and af¡" are the displacements and stresses correspond-

ing to elastodynamic state B, in a region V bounded by a surface S. Wave fields

corresponding to both elastodynamic states vary harmonically in time with circular

frequency ø. In writing equation (D.1), Einstein's summation convention of re-

peated indices has been assumed to hold, and the displacement components'u,)'u j'tD

have been representedhy urr'tls1'ttrzt respectively. In the ensuing $D.1, derivation of

reciprocity relations for plane strain case is given. General case is treated in $D.2.

D.1 Plane Strain Case

In order to derive the reciprocity relations, the orthogonality relations among

wave modes have to be established first.

D.1.1 Orthogonality Relations

The orthogonality relations can be derived by applying the reciprocity theorem
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for two different n'ave modes travelling in an infinite laminated composite plate u'ith

no inhomogeneit¡'.

Let V be the region bounded by the planar surfaces æ : ært t : t2, z : 0,

and z - H. Herein, æ1 and t2 àre any two arbitray z coordinates chosen in such

a vi'ay that æ2) æt.The state A is taken to be the field due to -n-th r¡'ave mode

(namely, the field due to the wave travelling in the negative ¿ direction with wave

number k",), and the state B is chosen as thefield due torr¿-th wavemode (namely,

the field due to the wave travelling in the positive ¿ direction with wave number

k,.). The wave fields corresponging to two states can be written as

ul --A--{u--} exp(- jk-æ),

af¡, --+A-*{o-.} exp(- jk"æ),

ul - A,-{u,,} exp(j lc,næ),

ol¡ - A,-{o,.} exp(j k,næ),

(D.2a)

(D.2b)

(D.2c)

(D.2d)

(D.4)

where A,n, {u,*}, and {o,"} represent the amplitude, displacement mode shape

vector, and the mode shape vector of tractions on æ face, respectively, for the rn-

th wave mode; and A-n, {u-n}, and {ø-'} represent the same quantities for the

-n-th wave mode. Application of the reciprocity theorem given in equation (D.1)

to the region V for the states A and B defined in equations (D.2) results in

A,nA-n{exp[j(k,," - k-)*r] - explj(k"" - k^)*r)] 1r : 0 (D.3)

where

Since æ1

t,

,, : 
lo' 

({u,.}'{o-n} - {u-n}r {o,,})d,2.

and æ2 are arbitrary, equation (D.3) leads to the

H
({",,}'{"-.} - {u--}'{o,n})dz :0,

orthogonaüty relation
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In a similar manner, the following orthogonality relations can be derived:

rH
I (",,\'{r-} - {u-}'{o,.})d" : o' (D.6)

Jo
rH

I U"-,.jt{o-,} - {u--}'{o-,.})d'z :0. (D'7)
JO

D.l-.2 Reciprocity Realtions

\Vith a view to derive the reciprocit¡' ¡s1.1ions among conversion coeffi'cients,

the plate with the inhomogeneity is considered next. Choosing \r as the region of

the plate, bounded by the palnar surfaces z:0,, z: H, æ: æJ, and æ: t4

(rr > n*, tE a *-)t state A as the totai field (incident plus scattered) due to -n-th

incident wave mode; and state B as the total field due to -p-th incident wave mode'

equation (D.1) can be written as

12-Is:Q (D.8)

where

- {,o}'{o'})l d",
1",

I

- {"o}'{o"})l ¿".
l,n

¡.H
I- J,

rH
I- lo

I2

Is

({.r" }t{oo}

({.r" }t{oo }

(D.ea)

(D.eb)

(D.10a)

(D.1ob)

, (D.10c)

(D.10d)

The total wave field at

{rro}1"" - A-n

{oA}l : A--
I J lr^

{,rB}l : A-^L J ¡¿3 r

{aB}l : A--
L J l+^ Í

æ3 is given by

l*tl
l{"-"} exp(- jlcnær) + Ð R-n{un}exp(jknæ3)l ,

L s=r I
lMl
l{"-,"} exp(- jk*æ')+ I R-n{on}exp(jknæ3)l ,

L s=r I

lMl
| {"-o} exp(-i koær) + t R,n{u,-} exp(ik,*4)l
Lm=rJ
lMl
| {"-"} exp(-ikoær ) + Ð Re,n{o,.} exp(ik,,q)l
l--,1L 

'tþ- 
L
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where Rnn and Rrrn represent reflection coefficients. The total wave field at n4 can

be written as

M

{"o}l.r: A-nÐT*n{"-n}exp(-jknr'a)', (D'tta)
q:I
M

{"o} i ,, : A-nÐT-n{"--n) exp(- jknæa), (D'11b)
q:7
luI

{""}l "n: 
A-plro*,{"-,',}exp(-jk,-æ+), (D'1ic)

--1

^t!ut

{""}l "o: 
A-o\ro,*{o-',}exp(-jk,næ+), (D'11d)

TrL= !

where Tnn and Torn represent transmission coefficients. Substitution of equations

(D.10) in equation (D.9a), and subsequent simplification of the resulting equation

by making use of the orthogonality reiations given in equations (D.5)-(D.7) leads to

Iz : A-pA-n(Rpnsn - RnpÇp) (D.12)

where Çp and çn are given by

¡H
Ç¡n : ¡ 1{u,-}1{"-,*} - {u-,.}'{a,,})dz, rn: p,fr. (D.13)

Jo

In view of the orthogonality relations, substituion of equations (D.11) into equation

(D.9b) results in

/s : 0. (D'14)

Equations (D.8), (D.12), and (D.14) leads to

RpnÇn: RnpÇp',

which is the reciprocity relation given in equation (4.36a).
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The vectors {z-} and {ø",} can be

{ur"}

{"r"}

the component form asu'ritten in

f ",,,\
\u",- J'
1o,,,,\
\ o"'", I '

-urrn\ur*l'
arr*\

-aar^ J

(D.16a)

(D.16b)

(D.17a)

(D.17b)

(D.18)

(D.1e)

Imagining a wal'e propagating in the negative u direction as being the mirror image

about the plane n : 0 of a wave propagating in the positive æ direction, one finds

ihat {u-,n} and {o-,-} can be written as

{r-,,} : 
{

{"-,-i : {

In view of equations (D.16) and (D.17), ç,,, .ppearing in equation (D.13) take the

form
"HI

Çm :2 | {","}'{o-,,}d'z-
Jo

Approximating the integral in equation (D.18), çm car:' be written

ç,. x -2{F,.}t{q-}

u,here {e;} is the m-th column of [.F-] and {q,",} is the rn-th column of [G+].

The reciprocity relation given in equation (a.36b) can be derived in a similar

manner by applying the reciprocity theorem to the same region V, rvith state A as

the total field due to n-th incident mode and state B as the total field due to -p-th

incident mode. Note that when deriving equation (4.36b), it has been assumed that

the geometry of the inhomogeneity is symmetric with respect to the plane æ :0.
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D.2 General Case

As in the plane strain case, the first step is to derive the orthogonality reiations

among wave modes that exist in an infrnite plate wiih no inhomogeneity.

D.2.L Orthogonality Relations

For convenience in derivation of orthogonality relations, few notations are in-

troduced frrst. Let the wavenumber pair (k,,,(s) denotes a wave mode propagating

in the first quadrant of æy plane. Herein, k,, represents the positive æ direction

wavenumber, and (o (rvhich is fixed) represents the positive 3r direction v/avenum-

ber as opposed to the defi.nition of (6 in Chapter 5. In a similar manner, let the

wavenumber pairs (-k:;,(o), (-k-, -(o), and (Ë|, -(o) d"note the wave modes cor-

responding to second, third, and fourth quadrants of. æy plane, respectively. It

should be mentioned here that if (k-, (o)-th wave mode is an admissible wave mode

(of the dispersion relation of the plate), then (-k,",-(o)-th wave mode, which is

propagating in the opposite direction, is also an adrrissible wave mode. Simiiary, if

(ki,-h)-th wave mode is admissible, then (-ki,(o)-ttr wave mode is also admissi-

ble. This point can be explained by visualising the configuration of the plate with

respect to a new coordinate system that is obtained after rotating the æ,g axes by

180' about the z axis. However, when (k",, (0)-th wave mode is an admissible mode,

then (k,,,-(o)-ttr wave mode is not necessarily an admissible mode. Due to this

reason, a superscript star (-) has been introduced to the æ direction wavenumbers

of wave modes corresponding to second and fourth quadrants of the æg plane. Note

that (lc-, -(o) -th wave mode is admissible when the fibers in each layer are aligned

either in u or g directions. This can be visualized by considering the mirror image

of the plate with respect to the æz plane.
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The orthogonality relations are derived by appiying the reciprocity theorem to

the close region V bounded by the planes z:0, z: H, æ: 17, r: æz¡A: At¡

and y - 92 where fr1. fr2, !1, and !2 e.;re arbitrary coordinates chosen in such a way

that, 12 ) z1 and Az ) Ut State A is taken to be the field due to (-ki,(o)-th *.ve

mode and state B is taken as the field due to (ki,-(o)-th $¡ave mode. Then, the

wave fields due to two states can be written as

U:-

rf '.1

e;

õY,- lK

--A\+n{u\+n} exp[j(-,bi* + hA)),

, n*+ Í{"11"} I--A:- i i;ffii Jexpfi(-kiæ 
+

t*- ( x-ì 1'/t ¿: / \l-- Azn |ur" I exp [J \Krnæ - \oA )),

I f-*-Ì ì. ^*- ) L"mær \ exp[j(fr[* _ (o-n,o I {"å;} l'

(oy)1,

(D.20a)

(D.2ob)

(D.20c)

(D.20d)u)l

where A\+n, {u*-+n}, {o\+^,}, and {o:n^n} represent the amplitude, displacement

mode shape vector, the mode shape vector of tractions on æ face, and the mode

shape vector of tractions on g face, respectively, for the (-k;,(o )-th wave mode; and

Ai*, {"T}, {oî-;},and {"i"n} represent the same quantities for the (kå,-(0)-th

wave mode. Application of the reciprocity theorem to the region V for the states A

and B defined in equations (D.20) results in

{expfj(k}, - ki)*r) - explj(ki" - kÐr')} Inl(ki-,-(o); (-k;,(o)l : 0 (D.21)

where the notation Ial(ki,-(o); (-k:",(6)] has been used to represent the integral

¡H
I (t"T )t{":1"} - {"i|}t{ ci,})dz.

Jo

Since æ1 and n2 are arbitrary, equation (D.21) leads to the orthogonality reiation

Inl(ki-,-(o); (-k;,(o)l : s

184

for ki, + k;. (D.22)



It need.s to be mentioned here that the net contributions from the surface integrals

(see equation (D.1)) on planes A : At and g - !2 arr'olTnt to zero'

In a similarman.ner, choosing state A and B as the fi.elds due to (k-,(o)-th and

(-kr,r-(o)-ttt wave modes, respectively, it can be shorvn that

Inl(-k,", -(o);(k', (o)] : 0 for krn f kn. (D.23)

Adopting a similar approach, the following orthogonality relations can be de-

rived:

I nl(ki-,-(o ) ; (k'' (o )l

Inl(-k" , -(o);(-kå, (o)l

0,

0,

(D.24)

(D.25)

In deriving equation (D.24), state A is chosen as the field due Lo (kn,(o)-th *u.n"

mode and state B is taken as the fleld due to (ki,-(o)-ttt wave mode, whereas in

deriving equation (D.25), state A is chosen as the field due to (-ki'(o)-th wave

mode and state B is taken as the freld due to (-lc,o,,-(o)-ttt wave mode.

D.2.2 Reciprocity Relations

In order to derive the reciprocity relatioot, V is chosen as the region of the

plate surrounding the inhomogeneity, bounded by the planar surfaces z -- 0, z : H,

æ : æs (r, > **),, * : æ+ (æ+ 3 æ-), A : !1, ànd y : A2 (where 3t1 and Uz are

arbitrary, and 92 > gt ). The reciprocity relations among reflection coeffcients can

be derived by choosing state A as the total field due to (-k^,-(o)-ttt incident wave

mode, and state B as the total field due to (-k;,(o)-ttt incident wave mode. Let

Rnn and ?rrq denote the reflection and transmission coefficients, respectively, due to

(-kn,-(o)-ttt incident wave mode; and Rf,,* and T],n denote the same quantities
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due to (-k;,(o)-th incident wave mode. In view of the orthogonalit5' relations

given in equations (D.22)-(D.25), and omitting details of aigebra, application of the

reciprocity theorem to the region V results in the reciprocity relation

R;*çY) - RnoçG)* (D.26)

'nthere

-(9) -57¿

.(g)* -F

I
I

(D.27a)

(D.27b)

In equations (D.27), {"*.}, {r-_-}, {"i-}, and {zi}} denote the displacement

mode shape vectors corresponding to (k-,(o)-th, (-k.,-(o)-th, (k|,'-h)-th, and

(-k;,(o)-tt wave modes, respectively, in an infi.nite plate with no inhomogeneity.

The correspond.ing traction mode shape vectors on æ face are denoted by {øi"}'

{o_-"}, {o},}, and {o\!,}. It should be noted that the net contribution to the

surface integral in equation (D.1) from surfaces 9: Ut and E - E2 becomes zero'

\4/ith a view to approximate the integrals in equations (D.27) to a simple form,

{2f,} and {"L} are written in the component forms as

(D.28a)

(D.28b)

Then, it can be shown that {u- -} and

7u-nj: (D.2ea)

( "t,"){"1}: \:*l
( ol'-

{oL} : \ olp-
I oT"n

{o--,} are given by

f-:iì
\-;*l'
I :i"- I
\ _;y: l
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ln view of equations (D.28) and

written as

Approximating the integral in equation (D.30)' c.ÍJ) can be r¡'ritten

çÍf) = -2{F(ot-}t{nf'}

where {fÁ'l-t is the n-th column of [F(e)-], and {q[f\ is the n-th

for general case. sjn)* .u.r, also be approximated bv a form similar

equation (D.30).

(D.29), çfn) .pp.rring in

¡H
z I {"I}'{o-^,}dz.

Jo

equation (D.27a) can be

(D.30)

(D.31)

column of [G+]

to that given in

Applying the reciprocity theorem to the same region V, with state A as the total

field due to (lcn,(o)-ttt incident mode and state B as the total field due to (-ko,-(o)-

th incident mode, the reciprocity relation among transmission coefficients can be

shown to have the form

Tr-sS) : TnoçLn) (D'32)

where cj') ir given by equation (D.31) with n replaced by p. As in the plane strain

case, when deriving equation (D.32) it has been assumed that the geometry of the

inhomogeneity is symmetric with respect to the plane æ : 0.

When the fibers in each layer are either in ø or g direction, the the reciprocity

relation in equation (D.26) degenerates into

Ro^sf) : R-oçf,n) (D.33)

With equation (D.26) in hand, follou'ing the

tion (4.39) in plane strain case, the reciprocity

procedure adopted to derive eciua-

relation among proportions of re-
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flected energies can be derived as

E;:: E;;' (D.34)

\&hen the fibers in each layer are aligned in either æ or A direction, equation

(D.34) degenerates to

E{-: E}r. (D.35)
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Appendix E

Definition of Matrices ["3] and t4')]

The matri" [?s] appearing in equation (a'56) is given by

tm 1 /1 | ,n' rr2 2mn
fr3j : uuu | -ron n'LrL rn2 - rr2

where

ttt : -ÀzK2 + (1 - 6r)(rr' + L2),

tt2 : -\zK2 Bþ) + (t - 6r)(rr' + L'),

The matri" ["nt"] in equation (a.56) is obtained from

K by 7çk),, and L by I'(s), where lTn(K,I)] is given by

ir' tn ¿rsl

lTn(K, L)) : I tT tzz tzs 
I

Ltil tzz fss J

(8.1)

lTn(K,tr)] after replacing

(8.2)

úre : 0,

t2t : (r - 6r)K' - lgrþr' + L') - 2e2rr21¿G),,

tz2 : (L - 6ùK2 3G) - lgz(r22 + L',) - 2e2r22f , (E.3)

tzs -- -2e2jL(,

f3r : -KL(I+ '4þ)),

ts2: -KL(l + B(")),

ts|: -jKe .
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Appendix F

Expressions for Force ComPonents

The force componen t" r[f,' , F:Pt , und F[fl" appearing in equation (4.58) are

siven below.

r-G)'-|m

pk)u
- ITN

nG),'|rn

pls)*
'am

p,k)u
'am

p{s)'
'am

:)rzaLlì." * ,l;)",),

:lea\,î!,, + ,L;).,),

:l{ra,,r,n * ã,,2^),

: hç o*'rn -,,r,- + 2 Ût;ì,,) +

!e{Iì* + a\;lo*¡,*) ror 2 < i < N,

:| oL|lo -,r,- + zal;), ) +

L;ea1trì,- + ûLnìo*,,>,.) ror z < i < N,

:L¡t{, 
",(¿-t)m 

I 2ã,,¿,n)¡

*(2a,,n,. * ûzæ(i*li*lm) for 2<iis¡r,

(F.1)

o

,[nì ï,,." :+ Gt:L * + 2 oel v ¡,7,.),

,[nì!,r,*:f rt!îÌ" ,* + zet-¿iv+r¡,,,),

,[tì i r,- :\ {u ", *,n * 2õ'"(N'+ r )., )'

In the above, aL;)* anð, Aj), (1 < i < ¡f + 1) denote the rn-th mode normal

stresses in the æ d.irection just, above and below the i-th interface, respectively.

Similarly, ît;)^ ""d 
a\f,),, (1 I i < /ú + 1) denote the rn-th mode shear stresses

in the g direction just, above and below the i-th interface, respectively. If the

adjacent sublayers of the i-th interface have the same material properties , ãL:ì,.

will be equal to al;),,, "nå 
ã.,,f,),, wili be equal t" tl;),,.
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