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Abstract

Spectral methods for solving partial differential equations (PDEs) depict a high order
of convergence, which is exponential when the solution is analytic. However, their
applications to time-dependent PDEs typically enforce a finite difference scheme in
time. The slower decay of error in time overwhelms the super-algebraic convergence
of error in space. A relatively new class of techniques is space-time spectral methods
converging spectrally in both space and time. We devise and analyze a space-time
spectral method for the Stokes problem. The main objectives of the research are
estimating the condition number of the global spectral operators and proving the
spectral convergence of this scheme in space and time. Numerical experiments of
this scheme verify the theoretical results. Furthermore, we discuss two space-time
spectral methods for the Navier-Stokes problem.

The discrete systems resulting from classical space-time spectral methods are
dense, ill-conditioned, and coupled in all time steps. A new class of spectral meth-
ods, called the ultraspherical spectral (US) methods, are applied to time-dependent
PDEs, which along with spectral convergence, lead to the resultant discrete systems
constituting sparse and well-conditioned matrices.

Additionally, we join the long tradition of estimating the eigenvalues of a sum
of two symmetric matrices, say P + @, in terms of the eigenvalues of P and ().
We derive two new lower bounds on Ay, (P + @) in terms of the minimum positive
eigenvalues of P and (). The bounds incorporate geometric information by utilizing
the Friedrichs angles between certain subspaces. Such estimates lead to new lower
bounds on the minimum singular value of some full-rank block matrices in terms of

the minimum positive singular value of their subblocks.
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Introduction

The numerical methods seeking the solution to a differential equation in terms of
a series of known, smooth functions are called spectral methods. They have been
influential in the field because of their easier implementation and super-algebraic con-
vergence rate, which is exponential when the solution is analytic. This phenomenon
of convergence is referred to as spectral convergence. Most spectral methods for time-
dependent partial differential equations (PDEs) consider a finite difference scheme in
time. The problem with such an implementation is that the error in time dominates
the spectral convergence in space resulting in a low order convergence overall.

A series of recent studies has employed spectral methods to linear time dependent
PDEs, demonstrating spectral convergence in both space and time. In [92], a space-
time spectral method was proposed for the heat equation, which was analyzed in
[65], [66]. Furthermore, these schemes were applied to other linear PDEs in [67]. In
this thesis, this work is continued to analyze the space-time spectral methods to the
Stokes problem, which leads to a saddle point problem. Furthermore, we devised
two space-time spectral methods for one of the most significant non-linear PDEs,
the Navier-Stokes problem, by virtue of schemes described in [I2]. Such schemes

employ spectral collocation in time, which leads to a system coupled in all times



with dense matrices.

The ultraspherical spectral methods represent a recent class of spectral method
which lead to linear systems with sparse and well-conditioned matrices. In [74],
two numerical experiments were described for the time dependent PDEs by using
Chebfun. To illuminate this uncharted area, we examine space-time spectral methods
schemes for linear PDEs by using the US method in both space and time. The linear
systems arising from these schemes are sparse and lead to block almost banded global
space-time spectral operators. Due to this special structure, a parallel-in-time solver
for space time spectral methods now seem to be a foremost area of research.

While estimating the 2-norm condition number for the space-time spectral meth-
ods for the Stokes problem, we encountered the problem of estimating the minimum
eigenvalue of a sum of two positive semi-definite (PSD) matrices thrice. Seminal con-
tributions have been made on estimating the spectrum of a sum of two symmetric
matrices, most well known being Weyl’s inequalities, proofs for Horn’s conjecture,
arithmetic-geometric mean inequality for matrices, etc. A closer look to the litera-
ture, however, reveals a gap that they fail to provide a positive lower bound on the
minimum eigenvalue, Apin (P + @), when P + @ is SPD and P and @) are singular
PSD matrices. The recurrence of this problem in the earlier chapters of this thesis
gave us the rigor to approach it. Thus, two positive lower bounds on Ay, (P + Q)
were derived, which further lead to lower bounds on the minimum singular value of
some full rank block matrices up to the size 2 x 2. This is the principal aim of this
thesis. The remainder of the document is arranged as follows.

In Chapter [2, we present the necessary mathematical preliminaries, and briefly
review the literature in order to ground this work in context.

In Chapter [3, our focus is on developing and analyzing the space-time spectral
methods for the Stokes problem. This problem is challenging to solve because it

requires several prerequisites results, including studying the components of a spectral



method for the Stokes problem in the steady-state and estimating the 2-norm of a
pseudospectral derivative matrix. They further involve approximating the spectrum
and singular values of a saddle point matrix, which is solvable to some extent, whereas
some of the observations motivate subsequent chapters.

In Chapter [ we implement two space-time spectral methods on the Navier-
Stokes problem. Numerical experiments verify the spectral convergence in both
space and time.

In Chapter [f] our attention diverts to curating and investigating the spectral
problem of sum of two PSD matrices. Although a myriad of results address this
problem, our target is an improvement over a lower bound on the minimum eigen-
value for a specific case. Moreover, they aid in deriving more results on the minimum
singular value of some full-rank matrices.

In Chapter [0 we implement the US method in both space and time, fulfilling
desirable properties of sparse and well-structured linear systems. Thus, they elim-
inate the major drawback of space-time spectral methods by permitting a parallel
solver. Here space-time US methods for the heat, Schrodinger, and wave equations
are devised.

This thesis concludes in Chapter [7] with discussions of future directions.

Some alternative proofs for results used in this thesis are given in Appendix [A]

for the interested reader.



Background

The fundamental concepts of a topic serve as the foundation on which one builds
new results. This chapter summarizes the consequential results on some topics that,
in conjunction, serve as a core for this thesis, such as classical linear algebra, angle

between subspace, orthogonal polynomials, and spectral methods.

2.1 Fundamentals of linear algebra

A viewpoint of a matriz that facilitates the development and understanding of nu-
merical algorithms is provided by a block matriz. Partitioning a matrix results in a
block matrix whose elements are themselves matrices, which are called submatrices
or sublocks (or simply as blocks). Suppose that matrices A and B are partitioned

into blocks as follows,

All Al? Alr Bll B12 Blt
A= A21 A22 o A2r and B — B21 BQ2 B2t
Asl AS2 Asr Brl BT‘2 Brt




If the pairs (A, Byj) are conformable, then A and B are said to be conformably
partitioned. For such matrices, the product AB is formed by combining the blocks
exactly the same way as the scalars are combined in ordinary matrix multiplication.
That is, the (7, j)-block in AB is A1 By + AipBsj + ... + Ay Byj.

Another primary concept is that of a vector space. Recall that the trivial subspace
of a vector space V contains only the zero vector, otherwise it is called as a non-
trivial subspace. Let V be a non-trivial vector space, a basis for V' is defined to be
a linearly independent set B < V' such that span(B) = V. Moreover, the number of
vectors in any basis for V' is the dimension of a vector space V and is denoted by
dim V. For two vector spaces U and V such that U < V, dimU < dimV, and if
dimU =dimV then U = V. If X and Y are subspaces of a vector space V', then the
sumof X and Yis, X +Y ={zr+y|ze X,ye Y} and X +Y is again a subspace
of V', so that

dim(X +Y)=dimX +dimY —dim(X nY). (2.1.1)

Subspaces X , Y of a vector space V are said to be complementary whenever V =
X +Y and X nY =0, in which case V is said to be the direct sum of X and Y, and
this is denoted by writing V' = X @Y. For a vector space V with subspaces X,Y

having respective bases Bx and By , the following statements are equivalent.
. V=XaY.
2. For each v € V, there are unique vectors z € X and y € Y such that v = z 4+ y.
3. Bx n By = ¢ and Bx u By is a basis for V.

A norm for a vector space V is a function |- | : V' — R that satisfies the following

conditions:
l. |z =0and ||z]| =0 < 2 =0, forall z e V.

2. ||kz| = |k||z| for all ke R, z € V.



3. |z +yl <zl + ly], for all z,y e V.

Throughout this thesis, a column vector x of size nx 1 is denoted by x = [x1;z2;...;2,] €
R™, whereas the row vector of size 1 x n is represented by x = [x1, 23, ..., x,]. The

p-norm of vector z is defined as follows,

n P
|||, = (Z; \xi]p) , for 1 < p < oo, and |z = 1122)%\331] (2.1.2)

Also, for convenience, |z| will denote the euclidean norm of x, which is defined as
n

lz| = |z|2 = Zx? A significant property of vector norms is the parallelogram
i—1
tdentity which states that for all x,y €V,

o+ yl* + o — ylI* = 2 (J=I* + ly]*) - (2.1.3)

We define the standard inner product on R", for vectors x = [x1;22;...;2,],y =
[Y1;92; .- yn] € R as (z,y) = Zn:xzyl = 2"y, where 27 = [21,7,...,2,]. More-
over, x and y are said to be orthé?onal to each other whenever (z,y) = 0. A subset
M = {vy,vq,...,0,} of R" is said to be an orthogonal set if the vectors in M are
pairwise orthogonal, that is, (v;,v;) = 0 for ¢ # j and 1 < 4,57 < r. Moreover,
M is called as an orthonormal set of vectors it is an orthogonal set and satisfies
the condition that (v;,v;) = 1 or |v;| = 1 for all 1 < i < r. An orthogonal matriz
@ € R™™" is a matrix whose rows and columns are all mutually orthonormal, thus
satisy QTQ = I, = QQ".

For a subspace M < R", the orthogonal complement M* of M is defined to
be the set of all vectors in R™ that are orthogonal to every vector in M. That is,
Mt ={zeV](m,x) =0,Vme M}, then R* = M®M* and dim M+ = n—dim M.
Also, M+ = M.

Proposition 2.1.1 (Orthogonality of subspaces, see [68]). Let M and N be subspaces



of R™, then
1. M < N implies Nt < M*.
2. (M + N)t =M+t~ Nt
3. (M nN)t=Mt+ Nt

Assume V = X @Y and v = z + y, for unique x € X and y € Y, the projection
operator P on V is defined so that the projection of V onto X along Y is Pv = x,
whereas (I — P)v = y describes the projection of V' onto Y along X. Moreover, a
linear operator P on a vector space V is a projection if and only if P? = P. Let
V=R"=X®Y, B ={x,z9,...,2.} and By = {Yr+1,Yr+2,---,Yn} be a basis for
the subspace X and Y of R", respectlvely Then B = B; U Bs is a basis for R", thus

z € R™ can be expressed as z = ZCW% + Z b;y;, where a;,b; € R for 1 <i <r
i=1 i=r+1

and r + 1 < j < n. Then, projection of z onto X along Y is Pv = Z a;x; and the
i=1

projection of z onto Y along X is Z biy; = v — Pv = (I — P)v. In order to get a
1=r+1
matrix form of P, define B = [x1,Z9, ..., Tr, Yrs1, - - -, Yn] € R™*™, which is a matrix

whose columns form a basis for V. Then, the matrix form of projections is given as

follows

The formulation is a result of the observations that I = B~!'B implies B~ 'a; = e;,

B ly;=e¢;,foralll<i<randr+1<j<n. Thus,Pv=Za,-xi=ZaiBei+

2 b;B(0). The matrix formulation for P implies the expression for I — P.
i=r+1

2.1.1 Results from matrix analysis

This section reviews the literature related to matrix analysis. Over time, an extensive

literature has developed on this topic, we review some concepts that are imperative

7



for the results deduced in the later chapters. Firstly, recall that the maximal number
of linearly independent columns of a matrix A € R™*" is called rank of A, and it is

denoted by rank(A).
Proposition 2.1.2 (Properties of rank, see [44]). Let A € R™*", then

1. rank(A) < min{m,n}, and a matriz that has rank min{m,n} is said to have

full rank; otherwise the matriz is rank deficient.
2. rank(A) = 0 if and only if A = O.
3. rank(A) = rank(AT) = rank(AT A) = rank(AAT).
4. rank(A 4+ B) < rank(A) + rank(B).
5. rank(AB) < min{rank(A), rank(B)}.

The range space of a matrix A € R™*" is defined to be the subspace R(A) =
{Az | x € R"} € R™. Similarly, the range of AT is the subspace of R™ defined by

n

R(AT) = {ATy|ly e R™} < R™. Since Ax = 2 a;z;, where a; are columns of A and z;
are components of x for 1 <14 < n, so that :1;::1 [z1; 295 .. .5 2,], thus R(A) is a linear
combination of columns of A and is also called as the column space of A. Similarly,
R(AT) is called as row space of A. Also, the set N(A) = {x e R"| Az = 0} = R"
is called the null space of A. In other words, N'(A) is simply the set of all solutions
to the homogeneous system Az = 0. The set N(AT) = {y e R™ | ATy = 0} = R™

is called the left-hand null space of A because it is the set of all solutions to the

left-hand homogeneous system y” A = 07"

Proposition 2.1.3 (Properties of range and null spaces, see [68]). Let A € R™*"
and r = rank(A), then

1. N(A) = {0} if and only if r = n.

2. N(AT) = {0} if and only if r = m.



3. dimR(A) = r = dim R(AT),
J. dimN(A) =n—r.
5. dim R(A) + dim N (A) = n.
6. dim R(AT) = 1.
7. dimN(AT) = m — r.
8. R(ATA) = R(AT).
9. R(AAT) = R(A).
10. N(ATA) = N(A).
11. N(AAT) = N(AT).
12. N(A)* = R(AT).
13. R" = R(AT) @ N'(A).
14. N(A+ B) = N(A) n N(B).

Next, we introduce the concept of a matriz norm. It is denoted by | - | is a

function from R™*™ — [0, o) satisfying the following properties,
1. |[A] =0, for all Ae R™*" and |A| =0 if and only if A = O.
2. ||aA| = |a|||A], for all « € R and A € R™*™.
3. |[A+ B| < ||A| + | B, for all A, B e R™*™.

4. |AB| < ||A|| B, for all A, B € R™™ with m = n.



Every vector norm |- | induces a matrix norm. We say that || - |, : R™*" — [0, )

is the matrix norm induced by | - || and | - ||, such that
|Az|
[Alnmy = sup S = sup | Az,
zeR™\{0} HxH(n) zeR™
Il ¢y =1

for all A e R™*"™. Moreover, for a vector x € R” and matrix A € R™*",

[AZ ][y < [ Al gnmy 1] ) -

However, not all matrix norms are induced by vector norms. An example of such

a matrix norm is the Frobenius matriz norm, defined as |Alp =

A e R™™  The matrix norm induced by the p-norm of a vector is called as the
matriz p-norm, and is denoted by | - |,. Throughout this thesis, we denote the
matrix 2-norm as | - |. Other useful p-norms are 1-norm and co-norm of matrices,

defined as follows for matrices A € R™*",

|All; = the maximum absolute column sum of A,

|All = the maximum absolute row sum of A.

Another useful inequality between matrix norms is |A|y < A/|A]1|A]«,, which is a
special case of the Hdlder’s inequality.

A particular type of projection operator will play a significant role in performing
analysis in this thesis, thus we conclude this section by discussing orthogonal projec-
tions. Recall that any subspace M of R™ allows the decomposition R” = M @ M*.
The projection operator P onto M along M* is called an orthogonal projection. In

this case, V = R(P) ® N'(P), where N'(P)* = R(P).

Definition 2.1.4. (Orthogonal projection, see [34]) Let U < R™ be a subspace. A

10



matrix P € R™™" is the orthogonal projection onto U if R(P) = U, P?> = P, and

PT = P. Moreover, if v € R", then Px e U and (I — P)z e Ut. Also, |P| = 1.

The Kronecker product of the matrices A = [a;;] € R™*" and B = [b;;] € RP*? is

denoted by A ® B and is defined to be the block matrix

allB algB e alnB
A ® B_ ang a22B . agnB c ]Rmpan.
amB ameB ... am.B

It satisfies the properties (A ® B)T = AT ® BT, and (A® B)(C ® D) = AC® BD,
where C' € R™*", D € R?*. Let rank(A) = rq, rank(B) = rq, then rank(A ® B) =
rank(B® A) = riry. If A e R™™ and B € R™*" are invertible, then (A® B)™! =
A1 ® B7!. Also, the direct sum of A e R™™ and B € RP*Y is defined as A® B =
[49]eR™P*m+4 Thus, A@® B is a block diagonal matrix the main diagonal blocks
of which are matrices A and B. Alternatively, a block diagonal square matrix A the
main diagonal blocks of which are matrices square matrices Ay, ..., Ay is indicated
as diag(Aj, ..., Ax). In particular, if all the main diagonal blocks are scalars, it is a

diagonal matrix.

2.1.2 Spectrum of a matrix

The characteristic polynomial ¢(A,t) of A e R"™™™ is det(tl, — A), for t € C. We call
aroot X\ of ¢(A,t) as an eigenvalue of A. The algebraic multiplicity of an eigenvalue
A of A refers to the multiplicity A as a root of the characteristic polynomial of A. We
say that A is a simple eigenvalue of A if its algebraic multiplicity is one. We call the
set of eigenvalues of A the spectrum of A, denoted A(A). For an eigenvalue \ of A,
any non-zero vector w € R"™ such that Aw = A\w is called an eigenvector associated

to A, and we call the vector space of all eigenvectors corresponding A the eigenspace

11



of the eigenvalue .

Theorem 2.1.5 (Spectral decomposition, see [44]). Let A € R™"™ be a square
matriz with n linearly independent eigenvectors pi,...,pn. Then A can be fac-

tored as A = PDP~!, where the columns of P are the eigenvectors pi,...,p, and

D = diag(A1, ..., A\n).

If the spectral decomposition of a square matrix A exists as described above then
we say that A is diagonalizable. Moroever, every symmetric matrix is orthogonally
diagonalizable. Let M € R™ ™ be a symmetric matrix, then it is orthogonally diag-
onalized as M = QDQT, where () is an orthogonal matrix whose columns are the
orthonormal eigenvectors for M and D = diag(\1,...,\,), A\; € R. Another result
of great importance is the following, which estimates the spectrum of sum of two

symmetric matrices as seen in [43), p. 239].

Theorem 2.1.6 (Weyl’s inequalities, see [43]). If A and E are n x n real symmetric

matrices, then

Me(A) + M(E) S M(A+ E) < Me(A) + M (E), 1<k<n.

A symmetric matrix with non-negative eigenvalues is called positive semidefinite
(PSD) matrix, and with positive eigenvalues is called positive definite (SPD) matrix.

The following properties are valuable for our work.

Theorem 2.1.7 (Properties of eigenvalues of a matrix, see [41]). Let A € R™*", and
A=A == M\ (A) be the eigenvalues of A.

TA TA
x mcmd)\n(A)z min — 7

1. If A tric then A\ (A) = :
'f A is symmetric then A\ (A) max zeRM\{0} T

zeR"M\{0} 2Tz

2. Let A; € R"*™ and A € R™™ is a block diagonal matriz, so that A = (—szlAi,
k
then A(A) = JA(A).
i=1

12



3. Let A e R™" be block upper triangular matriz so that,

An A . Ay
A A22 ce Agk

Then rank(A) >

-

-
I
—

rank(Ay), and A(A) = LkJA(Am)

4. Let Be R™ ™ [f AN(A) = {\1,..., \n} and A(B) = {1, -, ftm}, then A(A®

B) = {\ip;, 1 <i<n,1<j<m}, including algebraic multiplicities.

5. Let B € R™™ X e A(A) with a corresponding eigenvector x € R™ and p €
A(B) with a corresponding eigenvector y € R™, then X\ + u is an eigenvalue of
I, ® A+ B®I, for which y®x is a corresponding eigenvector. Or, A(I,,® A+

B®I,) ={\i+u; |1 <i<n,1<j<m} including algebraic multiplicities.

2.1.3 Singular value decomposition

The concept of spectral decomposition of a matrix is not applicable to a large class
of matrices such as rectangular matrices. Thus, singular value decomposition plays
a vital role. Let A € R™*"™ then the singular value decomposition of A is given as
A =UXVT, where U € R™™ and V € R™*" are orthogonal matrices and 3 € R™*"
is a diagonal matrix with non-increasing singular values o1 > 02 > ... = Ominfmn}-
The columns of U are known as left singular vectors, while the columns of V' are

known as right singular vectors.

Theorem 2.1.8 (Properties of singular values of a matrix, see [41]). Let A € R™*™,

rank(A) =r, and 01 = 09 = ... = Ominfmny = 0 be singular values of A.
1. omin(A) =0, >0and o; =0, forallT +1<i<n.
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| Az
zeR™\{(0} |||

| Az|
min .
zeR7\(0} [z

2. Omax(A) =

3. Umin{m,n} (A) =

4. 0i(A) = 0;(AT) = A/ N(ATA) = \/N(AAT), for all 1 < i < min{m,n}.
5. Gua(A) = A
6. Omin(A) =AY, if m=n=r.

7. Let A; € R™>*" qnd A € R™" is a block diagonal matriz, so that A = ®F_, A;,
then o(A) = Ule o(4A;).

8. Let A e R™" and define the symmetric matricx B = (AOT g) e Rmtmmtn The

eigenvalues of B are +01(A), ..., *0minmn}(A) along with |m — n| zeros.
9. If m=mn and X\ € A(A), then opin(A) < [N < omax(A).

10. Let B € RP*? and rank(B) = s. The positive singular values of A® B are
{o0;(A)o;(B):1<i<r1<j<s}, including multiplicities. Zero is a singular

value of A® B with multiplicity min{mp, nq} — rs.

2.1.4 Condition number

The condition number of a matrix A € R"*" is a measure of the extent to which
the relative error in the input is magnified to cause relative error in the output. It
indicates how difficult it is to solve numerically the linear system Az = b, where
x,b e R™. The problem is said to be ill-conditioned if the condition number is large
depending on the precision, i.e., the number of digits, in the calculation. Some
consequences of which include, the numerical solution is susceptible to round-off
errors during the Gaussian elimination process and an iterative solution to the system

is most likely to be slowly converging. Let us derive the expression for it, to this
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end, let ¢ be the error in b. Assuming that A is a non-singular matrix, the error in
the solution # = A71b is A7'e. The maximum of the ratio of the relative error in

the solution to the relative error in b defines the condition number of A, as follows

A=t ol
A) =
w(4) mi‘u( el A1)

N (\A‘le\> (IAbI)
= max max —_
ceR™\{0} [ beR™\(0} \ ||b]

[A= 1AL

Thus, the condition number of a non-singular matrix A is defined as x(A) =

A
JA[[AY = Umax((A)). Furthermore, the spectral condition number of a non-singular
Omin
: nxXn j _ ‘)\‘max(A)
matrix A € R"*" is defined as kg,(A) = Mo (A) where |A|max(A) and |A|min(A)

represent the maximum and minimum absolute value of eigenvalues of A, respec-
tively. Let A € A(A), since omin(A) < |A] < Omax(A4), thus ke(A) < k(A), and
ksp(A) = K(A) when A is a normal matrix. The spectral condition number is widely
used because it is usually easier to estimate. It is also useful for the analysis of
preconditioned systems. Consider A and M to be SPD matrices, then Theorem
4.10 in [64] gives that ry (M 1A) = k(M ~'A), where ky(B) = |B|y| B~y with
|2|as := V2T Mz. Hence the spectral condition number of the preconditioned matrix

M~1A is the same as its M-norm condition number.

2.2 Angles between subspaces

In previous sections, we discussed the concepts of subspaces, including a pair of
orthogonal subspaces and complementary subspaces. In general, consider that we
are studying a problem involving two non-trivial subspaces of R, which requires us to
somehow gauge the separation between them. One way to compute that is to measure

the angle between them. A quote by C. Meyer is, “There is just too much wiggle
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room in higher dimensions to make any one definition completely satisfying, and the
correct definition usually varies with the specific application under consideration.”
The suitable angle for question considered in Chapter [5| of this thesis is the principal
angle between subspaces.

In 1875, Jordan introduced the concept of principal angles and vectors, see [51].

It has been discussed in [34, 24, 68].

Definition 2.2.1 (Principal angles, see [32]). Let U,V < R" be subspaces with
p = dim(U) = dim(V) = ¢ > 1. The principal angles 0 < 0; < 0y < ... <0, < §
between U and V are recursively defined for k =1,2,...,q by

cos(0y) = max_|ulv| = uj vy, (2.2.1)

uelU, veV
lu|=[v|=1

subject to the constraints

ulu=0, viv=0 i=12... k-1

The vectors {uy, ..., ug}, {v1,..., v} are called principal vectors of the pair of spaces.

The principal angles are uniquely defined, while the principal vectors are not.
Note that vectors {u;}?_; and {v;}’, are orthonormal, so that vlu; = d;; cos6; for
1 < i < q. Also, by definition it is observed that {v;}{_, is an orthonormal basis for V'
or R(v1,va,...,0) = V,and UnR*(uy, us, ..., ug) LV or {u;}}_, is orthogonal to
V. So that, {u;}}_; is an orthonormal basis of U such that its satisfies the following

biorthogonality relation holds,

= ) (2.2.2)
ij=1 0 0

i

p.q diag(COS 917 ..., CO8S GQ) O
{uij]

The angle 6, is also called the minimal principal angle. The minimal angle between
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non-zero subspaces U,V < R" is defined as the number 6, € [07 g], so that

coS Opin = Inax lvT . (2.2.3)
Jul=Jo|=1

The following properties of the minimal principal angle make it useful.

Proposition 2.2.2 (Properties of the minimal angle, see [68]). Let O, be the min-

imal angle between non-zero subspaces U,V < R"™, then
1. Oin = 0 if and only if U n'V # {0}.

2. Opin = g if and only of U L V.

3. let 0L, denote the minimal angle between U+ and V. If U@V = R", then
emiﬂ = ertin'

4. U andV are complementary subspaces if and only if Py — Py is invertible, where
Py, P, € R™"™ are orthogonal projectors onto R(U), R(V), respectively, and in

this case Sin Oyin = Omin(P1 — P2).

The first property of the above implies that 0,,;, = 0 when U NV # {0}, although
U# V. Infact,if 0 < 6; < 7, for 1 <4 < min{dim U, dim V'}, represent the principal
angles between U,V < R" such that dim(U n V') = k, then 6; = 0, for all 1 <7 < k,
and 0,1 > 0 if it exists. This is explained by the following.

The principal angles and vectors lead to natural subspace decompositions of U
and V. Assume that p = dimU > dimV = ¢, k = dim(U n V'), and the principal
angle distribution is such that 0; = 0, for 1 <i <k, 0 < Op11 < ... <Oy, < 5, and
O =75, forallk+r+1<i<gq.

Note that k,» > 0, and k + r < ¢q. Let us consider the set of principal vec-

tor corresponding to the set principal angles for U as U; = [uy,ug, ..., u], Us =

[Wes1s - Uktr], Us = [Uggrs1,-.-,Uq], and the remaining basis vectors of U as
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Uy = [ug+1,- .-, up|. Similarly, define the set of principal vectors for V as Vi = Uy,
Vo = [Uks1s-- - Uksr), and V3 = [Ukiri1,...,0]. According to Definition m,
R(U;) L R(U;) and R(V;) L R(V;), for i # j, thus the following orthogonal decom-

postion of U and V' are obtained:

U =R(U) ®R(Uz) ® R(Us) ®R(Us),
V =R(U) ®R(Va) @ R(V3).

Also, eq. (2.2.2) implies that R(U;) L R(V;) for i # j, R(Us) LV, R(Us) LV, and

k+r
R(V3) L U. Let u = Z a;u; € R(Us), where a; € R, and assume that v 1 R(V3),
i=k+1
then 0 = vau = aj;cosf;, implying a; = 0 for all £+ 1 < j < k + r. Hence,
u = 0, therefore there is no non-trivial vector in U, is orthogonal to V5. Thus, these

subspaces give the following decomposition for U + V' and R",

U+V =R(U)®RUs, Vo) ®@R(Us) @ R(U,) ®R(V3),

R" = R(U;) ® R(Us, Vo) ® R(Us) @ R(Uy) @ R(V3) ® (U + V)~

Another expression is obtained from the facts that U n'V = R(U;), U n V*+ =
R(Us) @ R(Uy), Ut AV = R(V3), and U+ n V+ = (U + V)L, Thus, [32] provides

the following decompositions,

U=UnV)®OR(Uy)® U nVH),
V=UnV)ORW)® U V),
U+V=(UnV)ORU, V)@ U NVH® UL V),

R'=(UnV)ORU, V) DU NVHOUnV)® (U n V).

The above decompositions facilitate the proof of the following significant result.
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Theorem 2.2.3 (See [98,32]). Let U,V < R" be subspaces such that p = dim(U) >
dim(V) = ¢ = 1, with k = dim(U n V), n; = dim(U n V1), ny = dim(U+ n V)
and nz = dim(U+ A V1), Let 0; be the principal angles between U and V', defined by
, and let v be the number of angles 0; such that 0 < 0; < 5. If P,Q € R"*" are

orthogonal projections onto R(U), R(V'), respectively, then the following statements
hold:

1. Subspaces U and V' are in generic position, that is, k = ny = ny = ng = 0 if

and only if k=0,p=q=1r and n = 2r.
2. P+ Q is non-singular if and only if ng = 0.
3. P — Q is non-singular if and only if k = nz = 0.
4. 0(P+ Q) ={2, 1+ cos(Opri)(i=1,...,7), 1y 40, Ons}-
5. 0(P— Q) = {1y 4ny,8(0h1)y(i = 1,...,7), Opny }-

The concept of angles between subspaces of a Hilbert space is described in [26].
The Friedrichs angle between the subspaces M and N of a Hilbert space H is the
angle a(M, N) in [0, 5] whose cosine is given by

o(M,N) = sup{|(z,y)| [re M n (M A N)", |yl <Lye Nn (M n N |y| <1},

and the minimal angle between the subspaces M and N is the angle ao(M, N) in

[0, 5] whose cosine is defined by
co(M, N) = sup{|(z,y)| [z € M, |z| <1,y e N, [y| <1}.

The two definitions are different except for the case M n N = {0} when they clearly

agree. A notable property of the Friedrichs angle is ¢(M, N) < 1 or a > 0 if and only
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if M + N is closed. In this thesis, we work in finite dimensions, thus the following

definition of the Friedrichs angle is used.

Definition 2.2.4. (Friedrichs angle, see [26]) The angle 6 € (0,%] between sub-

spaces U,V < R", whose cosine is defined by
cosOp :i=sup {[{z,p)| |[reUn(UnV) |z <L yeVn(UnV) |yl <1},

is called the Friedrichs angle.

The following is a short list of properties of the Friedrichs angle, which will be

used later to prove some results in this thesis.

Proposition 2.2.5 (Properties of Friedrichs angle, see [31]). Let U,V < R™ be
subspaces, as defined in Theorem [2.2.5. Let P, Q be orthogonal projections onto U
and V', respectively, and let O denote the Friedrichs angle between subspaces U and

V', then the following results hold.
1.0p =6 (Un(UnV)5LVA(UANV)).
2. 0p = 0.(U,V) if and only if U n'V = {0}.
3. 0p =60, (UVAUNV)) =6, (Un(UnV)5LV).
4. costp = [PQ—Pynv.
5. 0p = 011 (U, V), whenver 0y, exists.

See [26], p. 110] for the first four properties of the above Proposition. A proof of
Property [4]is also provided in [20, p. 1430], which along with |PQ—Py~v| = cos Ok,
proved in [32, p. 245], implies Property Several more interesting results on the

Friedrichs angle are stated in [31) p. 242].
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We would like to emphasize that Property [ is often missed in the standard
references. Another simple proof for which can also be derived from [20], it men-
tions on Page 1129 that cosfp = m Moreover, Page 1419 defines
Amin(H) =: sin*(ay), furthermore a; = 611, as seen on Page 1142. Therefore,

cosfOp = /1 —sin?0,.1 = cosby.1, hence the result. Note that, in this proof we

have adapted the notations from the paper to facilitate easier understanding.

2.3 Orthogonal polynomials

Orthogonal polynomials play the role of building blocks in designing spectral meth-
ods, so it is necessary to discuss them. Given an open interval I := (a,b), where
-0 < a < b < oo, and a weight function w such that w(z) > 0, for all z € I and
w € L'(I), two functions f and g are said to be orthogonal to each other in L?(a,b)
or orthogonal with respect to w if Jb f(x)g(z)w(z)dr = 0. An algebraic polynomial
of degree n is denoted by p,(z) = an” + 12"t + ...+ T + co,where {¢;} are
real constants, and ¢,, # 0 is the leading coefficient of p,. A sequence of polynomials

{pn}r_, with deg(p,) = n is said to be orthogonal if

f pn(ZE)pm(I)w<I‘)dl’ = 6mn'7m

a

where 7, = SZ p2(x)w(z)dx is nonzero, and §,,, is the Kronecker delta.

The most widely used orthogonal polynomials are the classical orthogonal poly-
nomials. They consist of Jacobi for finite interval or —o0 < a,b < o0, Hermite for
infinite interval or ¢ = —o0 and b = o0, and Laguerre polynomials for semi-infinite
intervals. As we are dealing with finite intervals in this thesis, we elaborate the
foremost.

The Jacobi polynomials, denoted by J*#(z), are orthogonal with respect to the
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Jacobi weight function w®?(z) := (1 — 2)%(1 + z)? over I := (-1, 1), so that

b
f TP (@) 5 (2)w™ (2)dx = Sy,

a

where 728 = SZ(Jg’ﬂ(a:))2wa’B(x)dx. The weight function w®? belongs to L'(I) if
and only if o, 3 > —1, thus it is assumed throughout. The Jacobi polynomial J#

is a solution of the second order linear homogeneous differential equation
(1-2*)y" +(B—a—(a+B+2)2)y +nn+a+p+1)y=0.

Also, the square of its norm, that is, v is given as follows

af 208+ Tn+a+1)I(n+ B +1)
T mta+B+1l TDnta+B+ )l

The polynomials have the symmetry relation J\®#(—z) = (=1)"J%)(2); thus

n

the terminal values are J(*? (1) = ("**) and J{*# (1) = (=1)"("*").
When o = 8 = 0, the Jacobi polynomials J2°(z) are called Legendre polynomials
and are denoted by L,(x), for all n = 0. Thus, they are polynomials defined as an

orthogonal system with respect to the weight function w(x) = 1 over the interval

[—1,1]. That is, L,(z) is a polynomial of degree n, such that

2
—— -
2n+1

fl Lo () Lo(2) d =

Patently, the Legendre polynomials have definite parity. That is, they are even
or odd, according to L,(—z) = (—=1)"L,(z). Also, L,(1) = 1 and L,(—1) = (—=1)™.

Another useful property is that they have zero average for all n > 1, that is,

1
f L,(x)dx =0 forn > 1,
-1
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which follows from considering the orthogonality relation with Lo(z) = 1.

1

11

For a = 8 = —%, the Jacobi polynomials, J, 2* 2(x), are called Chebyshev poly-
nomials and are denoted by T, (x), for n = 0. Thus, they are polynomials defined as
an orthogonal system with respect to the weight function w(x) = ——— over the

V1—2a22

interval (—1,1). That is, T,,(x) is a polynomial of degree n, such that

0 if n #m,
! dx
T, T /s = i = =
J—l (aj) (33) m < (0 if n m 0,
5 if n=m=#0.

They also satisfy the properties, T,,(—z) = (—=1)"T,,(x), T,,(1) = 1, and T,,(—1) =
(—=1)", for n > 0.

One of the most significant applications of orthogonal polynomials is approxima-
tion of analytic functions. Consider the set {¢,(x)}>_, of orthogonal polynomials on

(—1,1), so that ¢,(z) is of degree n. Let u be an analytic function on (—1,1), then

0

u(r) = Z U ().

k=0

The above expression of u(z) in terms of the orthogonal basis polynomials is the
fundamental result for spectral methods for solving PDEs numerically. In practice,
it is undesirable to deal with an infinite number of modes wu;, thus an approximate
u(z) is considered. Such an approximation for u is given by its truncated series,
given as Il,u(z) = Zn: ur¢r(z), which is a polynomial of degree n. This technique
of considering a ﬁnil‘ég Onumber of terms from the series expression for u(zx), is called
as truncation. Many types of spectral methods, such as spectral coefficient, spectral
Galerkin, ultraspherical spectral methods, etc., use this technique.

Another technique of approximating an analytic function in terms of a polynomial

of degree n is called interpolation. For any analytic function u(x) in (—1,1), denote
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the interpolant of u by Z,u, which is defined as the unique polynomial of degree n
such that (Z,u) (z;) = u(x;), where z; € (—1,1) for 0 < j < n. By uniqueness of
an interpolating polynomial, a convenient expression is the Lagrange interpolating
polynomial of w on the nodes z;, 0 < j < n. That is, (Z,u) (x) = Z u(z;)l(x),
3=0
7 (z— ) , o _
where (;(x) = H — = for 0 < 5 < n. This unique polynomial can also be
o (@5 — )

J

derived in terms of classical orthogonal polynomials, such as in [64) p. 249], Legendre
interpolant is alternatively defined as Z,u(x) = 2 Uy L (x), with @y = 7[u, Li]m,

k=0

where 7, = k4 0.5 for 0 < k < n—1and 7, = 0.5n. Also, [+, -], represent the
discrete L? inner product. Similarly, an expression for the Chebyshev interpolant of

u is obtained in [64] p. 258].

Theorem 2.3.1 (Error in approximation, see [64]). Let u be an analytic function in
(—=1,1), ¢ and C be some positive constants, then the following are simplified forms

for the stated errors:

1. the Legendre truncation error is given as ||u — I ulo < ce™ ™.

2. the Legendre interpolation error is given as |u — Zoulo < ce™©"
3. the Chebysheuv truncation error is given as |u — ,ufo, < ce”"
4. the Chebyshev interpolation error is given as |u — Z,ullo,, < ce™ ™.

An excellent collection of recent applications of orthogonal polynomial is provided

in [73].

2.4 Spectral methods

Spectral method is a fairly common term which may refer to various types of methods,

but we refer to the ones that solve partial differential equations (PDEs) numerically.
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Some well known classes of methods for solving PDEs include finite difference meth-
ods and finite elements methods (FEM), but the fastest converging methods belong
to the class of spectral methods. They are quite similar to the FEM, both of them are
based on approximating solutions by certain basis functions. They differ from each
other in that FEM uses local basis functions, i.e., with a smaller support than the en-
tire domain, whereas spectral methods use global basis functions living on the entire
domain. If the solution is analytic, then spectral method converges exponentially
quickly, which is called spectral convergence.

A considerable body of literature on spectral methods exists, including [64, [74]
80, 95, 94, B6]. A major drawback is that spectral methods are more difficult to
apply on non-regular domains, whereas FEM is quite flexible and widely used in
engineering and many other scientific studies. Progress is being made in recent years
to incorporate spectral methods to a more general setting, such as problems with
solutions containing discontinuities or on a more general domain. In general, the
matrices arising from finite difference and finite element methods are sparse, whereas
classical spectral methods lead to dense and ill-conditioned matrices. We continue
by describing two well-known classifications of spectral methods, by considering a

basic example of solving a Poisson problem given as follows:

—u'(x) = f(z), we(-11),

u(+1) = 0.

2.4.1 Spectral Galerkin methods

1
For 0 < j < N — 2, define the basis functions ¢; = ———= (L; — L;4+2). Since

VAj + 6

Li(£1) = (£1)’, these basis functions satisfy the boundary conditions. Define the

Galerkin subspace Vi, = span{¢;(z), 0 < j < N — 2}, where {¢;}7~, is an L*
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orthonormal basis. The Galerkin solution is defined as

N-2

un = ) uid5(x),

7=0

so that it satisfies the following Galerkin equations arising from the weak form of

the Poisson problem,

Zuz dx—J f(@)pj(x)dx, j=0,..,n—2,

- j_1f<x>¢j<x>da:

where the last equality is obtained by using the recurrence relation, for all 7 > 0,

Liy = o) +3) (L; +2 L;) Thus, yielding the approximate solution uy. See [64], for a
proof of convergence which states that if the exact solution u € Hj(—1,1)nH*(—1,1)

then [|u —uplo < n"%uls, s = 1.

2.4.2 Spectral collocation methods

For 0 < j < N, let z; denote the Legendre Gauss-Lobatto nodes, which are the zeros

of (1 — z?)L\(z) written in ascending order, i.e., =1 = g < 7y < ... < 7y = 1.
N

Define the Lagrange basis functions ¢;(z) € Py, where ¢;(z) = H w, for all
oo (@ — n)
k]

0 < j < N. Furthermore, consider the approximate solution

N
up = Z uil;(x)
i=0

Since ¢;(xj) = 0,5, it follows that u; = u(x;), for all 0 < j < N. Thus, u(£l) =0

gives ug = uy = 0. For the remaining samples, the Poisson equation collocated at
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x = x; leads to the following

—u"(z;) = f(z;), 1<j<N-L

Define Dy, to be a (N + 1) x (N + 1) matrix, so that d;; = £(x;), for 0 <4,j < N,
also known as the pseudospectral Legendre Gauss-Lobatto derivative matriz, then [64]

the above equation can be written as the following linear system

—[Dj]wy, = £,

where u;, = [u(z1);u(z);...;u(xy_1)] and £, = [f(z1); f(x2);...; f(zn_1)]. Also,
[64, p. 267] states that if w € Hi(—1,1) n H*(—1,1), then for any positive integer
N, |lu — upllo < en™®||ulls, s = 1. Therefore, proving a super-algebraic decay in error
and implying spectral convergence.

There are several other spectral methods originating by incorporating various

properties of orthogonal polynomials.
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The Stokes problem

The Stokes equations are a linearized version of the Navier-Stokes equations and
model incompressible viscous fluid flow with low Reynold’s number. Several spectral
methods, exhibiting exponential decay in error when the solution is analytic, are
known to solve the steady-state Stokes problem numerically. A common strategy
to solve such a problem in the time-dependent case involves extending the spectral
scheme in spatial derivatives by implementing a low-order finite difference scheme
for the time derivatives. We implement and analyze a space-time spectral method
for the Stokes problem, which converges exponentially in both space and time. This
numerical scheme imposes spectral collocation in time and the Py — Py_o spectral
Galerkin scheme in space by using a recombined Legendre polynomial basis, result-
ing in a global spectral operator that is a saddle point matrix. The main objectives
of the research are estimating the condition number of the global spectral operators
and proving the spectral convergence of this scheme in space and time. The analysis
is not quite complete because two of the estimates are based on numerical evidence.
However, some intermediate results, such as the 2-norm of the pseudospectral Cheby-
shev derivative matrix as well as condition number of the mass matrix and discrete

Laplacian for a recombined Legendre basis, are proved to obtain the aforementioned
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findings. Numerical experiments of this scheme verify the theoretical results.

3.1 Introduction

One of the topics investigated extensively in fluid dynamics is devising numerical
schemes to solve the Stokes problem. The type of flow for which Reynold’s number
is low, say R. « 1, i.e., the fluid velocity is extremely small, or the viscosity is
very large, or an infinitesimal length scale is considered, is called the Stokes flow
(or creeping flow). This type of flow is evident in many cases, such as swimming
of a microorganism, flow of lava, flow of polymers, etc. The equations of motion
for Stokes flow are called the Stokes equations, which along with suitable boundary
and initial conditions are termed as the Stokes problem. In steady state, that is,

independent of time, it is given as

~Au+Vp=finQ:=(-1,1)%
V-u=0inQ, (3.1.1)

u =0 on 0,

2

where velocity field and pressure are denoted by u = [u;v] € V := (H}(2))? and

pe L3(Q) := {q e L*(Q) ‘ Soa= 0}, respectively. It is defined in unsteady state as

w—Au+Vp=finQ; :=Qx(-1,1),
V-u=0in Qt,
(3.1.2)
u=0o0n0d2x(-1,1),

ll(i[’,y7 _1) = uO(xvy) in Q)

where u(-,t) € (Hy(Q))?, p(-,t) € L3(R2), and ug € (H3(Q2))%

In [12], the authors describe three spectral methods for solving the Stokes prob-
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lem. The first method is called single grid scheme, a collocation type using the same
degree of polynomials for velocity and pressure; however, it provides spurious modes
for pressure and, hence, is not used. The second method, the Py — Py_s scheme, is
a mixed spectral Galerkin scheme that uses polynomials of degree N for velocity and
N —2 for pressure. The third one, the staggered grid scheme, is a spectral collocation
method that uses staggered grids for velocity and pressure. In this research work, the
last two methods will be applied. For all three methods, the inf-sup condition is not
bounded independently of the discretization parameter of the scheme that decreases
the accuracy of the error for pressure, which has been improved in [13] by proposing
smaller discrete spaces for pressure.

In the past few years, space-time spectral methods, exhibiting spectral conver-
gence in both space and time, are being used to solve time-dependent PDEs. A
set practice was to implement a low-order finite difference approximation of the
time derivative, which does not give spectral convergence for the whole scheme due
to the dominance of the time discretization error. See [62, B9] for such schemes
for linear PDEs, [69, 03, [19, [7, 18] and the references therein for problems re-
lated to the Stokes problem. Growing appeals for faster convergence in time gen-
erated this class of space-time spectral methods, some references for which are
[0, 7, 187, (38, 81, [89L [88, ©0, O], 63, 10T, T00]. A space-time spectral collocation
method given in [92] was analyzed in [65] and [66] for Legendre and Chebyshev poly-
nomials, respectively, based on which schemes for some linear PDEs were analyzed
in [67], which serves as the motivation for this paper.

The aim of this work is to perform a condition number estimate for spectral
method for the steady Stokes equations, and propose and analyze a space-time spec-
tral method for the Stokes problem based upon an Py — Py_5 scheme; Stokes equa-
tions are more difficult to handle because it is a system of PDEs possessing different

spaces for velocity and pressure. Thus, it requires the analysis for various terms ap-

30



pearing in the discrete problem, which includes proving condition number estimates
for stiffness matrix, mass matrix and discrete Laplacian for a recombined Legendre
basis derived in [79]. We also prove an estimate for the maximum singular value
or the 2-norm for the Chebyshev-Gauss-Lobatto pseudospectral derivative matrix.
This matrix is non-symmetric with an indefinite symmetric part, which makes the
analysis more challenging. We believe our analysis of spectral convergence of the
unsteady Stokes equations is new. We have also laid the ground work for a condi-
tion number estimate of the global space-time operator. A shortcoming of using this
scheme is that it does not allow time stepping, the unknowns for all time need to
be solved simultaneously. However, far fewer number of unknowns are required in
comparison to finite difference discretizations in time. The results of the numerical
experiments found clear support for the spectral convergence for these schemes for
less than 20 spectral modes in each dimension.

This chapter is structured as follows. In Section [3.2] we define the notations
being used in this chapter, define the spatial basis, and derive Proposition [3.2.4] In
Section [3.3] we implement the Py — Py_s scheme by using a recombined Legendre
polynomial basis for the steady Stokes problem and prove the condition number
estimates for the scheme in Sections [3.3.1] and [3.3.2] respectively. We extend the

Py — Pn_5 scheme to the unsteady Stokes problem by using the Chebyshev Gauss-

Lobatto collocation in time in Section [3.4.1 Moreover, in Sections [3.4.2] and [3.4.3]

we respectively prove the condition number estimates and spectral convergence in

space and time.

3.2 Notations and fundamentals

We begin by summarizing some of the notations. Throughout this chapter, the

discretization parameter is denoted by N, besides ¢ and C' denote some positive
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constants independent of N. For an n x n matrix M, let M] denote the n x (n — 1)
matrix obtained from M by deleting the first column, [M denote the (n — 1) x n
matrix obtained from M by deleting the first row, [M] denote the (n — 1) x (n — 1)
matrix obtained from M by deleting the first column and row, and [M] denote the
(n —2) x (n —2) matrix obtained from M by deleting the first and last columns and
rows. The spectrum of M is denoted by A(M).

Let Py be the space of polynomials of degree less than or equal to N, and Py
denote the polynomials in Py that vanish at the end points z = +1. Let P,, ,,

be the space of polynomials of degree less than equal to ni,ns for z, y dimensions,

0
n1,n2

receptively and P =P,, »n, "V, ie., they vanish on 0Q2. Let P, ,,, m be the space

of polynomials of degree less than equal to ny, ny for x, y dimensions and degree less

0

than equal to m in time. Moreover, define P . .

as the polynomials in Py, 5, m
that vanish on the boundary of the spatial domain Q.

The norm of p € L3(Q) is given as,

1

o= | [ 2]

and the inner product on the space LZ(Q) is defined to be the same as that for L?(2),

which is defined as

(ﬂm—Lf@M@M, f.ge ().

Finally, for our convenience we define the square of 2-norm of Legendre polyno-
2

2N +1

Now, we are ready to present some definitions that are the core of the spectral

mials Ly of degree N, as vy =

methods for the Stokes problem. The following definitions are given in [80, p. 145—

146]. The first one defines the spatial basis for velocities.

Definition 3.2.1 (Recombined Legendre functions, see [80]). For some i € N u {0},
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define the recombined Legendre functions satisfying homogeneous Dirichlet boundary

condition as

¢i(z) == Li(x) — Liya(x), xe|-1,1].
Therefore, ¢;(+1) = 0 implying ¢; € PY,.

Definition 3.2.2 (Stiffness Matrix, see [80]). The stiffness matriz, denoted by S,

for the recombined Legendre basis functions ¢;, is defined as
1
siim— | oh@)os(@)dz.
~1
It is a diagonal matrix with entries given as follows,

Definition 3.2.3 (Mass Matrix, see [80]). The mass matriz, denoted by M, for the

recombined Legendre basis functions ¢;, is defined as

1
mjp = 1 oj(x)pr(x)d.

It is a symmetric pentadiagonal matrix whose non-zero elements are given as follows,

2 N 2 L
) j = )
mjj, = 2k +21 2k +5 (3.2‘2)
- =k + 2.
2k + 5 J "

Finally, we derive the following result for assistance in analysis performed in the

next sections.

Proposition 3.2.4. The matriz R, defined by r,,; = SilLi(a:)gb’m(x)dx, and the
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matriz () defined by q,; 1= Sl_l Lj(x)pn(x)dz, satisfy

—In+2; ] =n+ 27

where v; = | L;|3 = fori=0,1,....

20+1

Proof. Since ¢, = Ly, — Ly10,
1 1
i = | L@l @)ds = | L@ L) - Lol
-1 -1
Using the recurrence relation,
(2n + 1) Ly(z) = Liyy(x) — Ly, y(2),  neN,

the expression for r,,; becomes,

1
ri = —(2m + 3) f Li(2) Lons (2)dz — —(2m + 3)
—1
Similarly,

1
s = | Li@Lao) =~ Lusalo))de = G100 = Bipetusa
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3.3 Steady state

The Stokes problem in steady state is given by (3.1.1]), which on further simplification

is expressed as:

—Au+p, = f1in Q, (3.3.1a)
—Av +p, = foin Q, (3.3.1b)
Uy + v, = 0in Q, (3.3.1c)

u =20, v=0on 0. (3.3.1d)

3.3.1 Discretization

We implement the Py — Py_o scheme (a mized spectral Galerkin scheme) described

n [12], by defining an approzimation for variables as follows:

N—2N—2
u(r,y) = uidi(2)9;(y) € P(]JV,Na
i=0 j=0
N—2N—2
v(z,y) = vii0i(x)P;(y) € P?v,zv’
i=0 j=0
N—2 N—2
p(z,y) = pijLi(x)L;(y) € Pn_on—2 0 LE(R),
=0 iig:'>oo

so that §,p = 0, i.e., it has zero average, since Sil Li(z)dz = 0 for all i € N and
Lo(z) = 1 thus pgg is considered to be zero. Moreover, it is essential to implement
this condition as states that p € L3(1).

Define ¥ = (N — 1)?, the number of unknowns for u and v each, and p =
(N —1)? — 1, the number of unknowns for p. The total number of unknowns in the
discrete Stokes equations are 20 + p = 3(N — 1)? — 1.

Define the discrete unknowns as up = [ugo; U105 - - - ; UN—2,0; Uo1; - - - ; UN—2 N—2] €

R similarly define v, € R"*!, and pj, = [p10; P20; - - - ; PN—2.0; Po1; - - - ; PN—2.N—2] €
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Re*L. Given the function fi(x,y) analytic in Q, a forward discrete Legendre trans-

form implies,

N—-2N—
fil,y) ~ ZZ k=1,2.

Define Fi, = [ foo; floi i fho0s foii -3 [Ran_o] € RV for k= 1,2.
Consider (3.3.1a]), then its weak form for 0 < m,n < N — 2, is given as follows

(= Av+ po, dm(2)dn () = (f1, dm(2)0n(y)). (3.3.2)

Let us simplify the left hand side (LHS) of the above equation as follows,

(— Au, 0 (7)Pn(y)) — (0, D () D0 (y))

N—-2N-2

= 3 3wl o@60) = 6@ ) on2)on)

=0 j=
N—2 N-2

- Z Z pZJ(L (1), B (%) 00 (y))

The matrix form of the LHS of (3.3.2)), for all 0 < m,n < N — 2, becomes
(M®S+SQM)u, — (Q® R)]pn,

where S = [Sz’j]7 M = [mij], Q = [Qij]a and R = [Tz’j]a for 0 < Z7j < N -2 AISO, the
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RHS of ([3.3.2) is approximated by f; as follows

D) 3 L)L), On()0n(0)
-2 5 A L@@ | Liwew)
= Y Y f szqnj

Thus, the matrix form the RHS of (3.3.2)), for all 0 < m,n < N — 2, becomes

Q®Q)F

Therefore, the equation ((3.3.1a)) implies

(M®S+S®Mu,— (QK®R)|pr =(Q&Q) F. (3.3.3)

Similarly, the equation (3.3.1b)) implies

(M®S+5®Mu, — (RRQ)pr = (Q® Q) F. (3.3.4)

Finally, the weak form of (3.3.1c|), for 0 < m,n < N —2 and m + n > 0, is given as

0 = (us + vy, Lin(@) Lu(y)) = (v, Lin(2) L (y)) + (vy, Lin(2) L (y))

N—2 N-2 N—2 N—2
= >0 > uig(¢(@)(y), Lm + ] Z v (64(2)0;(y), L () Ln(y))
=0 7=0 1=0 j=
N—2N-2 1
- i O (o)t 6, L)y
i=0 j=0 -1 -1
N—2N-2 1 1
" v [t Ludy [ 6w Lawiy
i=0 j=0 -1 -1
N—2N-2 N—2N—-2
= - Ui Timjn VijqimT jn
=0 j=0 =0 j5=0
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N—-2N-2

N—-2N—
Z Z_: ij mzqn] B Z Z Uquz n]7

=0 j=

which yields the following matrix form,
—[(Q"®R") up — [(R"®Q") vw = Opy1. (3.3.5)
Thus, eqgs. (3.3.3)) to (3.3.5) together form the following discrete Stokes problem,

(MRS +S@M)up, — (QRR)|pr, = (Q®Q) F,
(M@S+S@M)v, — (RRQ)Ipn = (Q®Q) Fy,

—[(Q"®R")up, — [(R"®@Q")un = O

When written in matrix form, it gives the following saddle point linear system,

MS+SQM Oy.v —(Q®R)| up (Q®Q)F
Oy.9 M®S+SM —(R®Q)] v, | = (QRQ)F,
_[(QT ® RT) _[(RT ® QT) Op,so Pn O@J

Thus, the global spectral operator of discrete Stokes problem becomes,

G = e R20+0)x(20+0) (3.3.6)
BT 0O,

where, A = A® A e R?"*?7 that is,

A Oy e
A= , with A= M®S+S®MeR>™, (3.3.7)

019’79 A
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and

B = e R?¢ with B, = — (Q®R)], B = — (R®Q)] e R”*?.  (3.3.8)
By

Note that although for (3.1.1)) the velocity u is divergence-free or V- u = 0, that

is not the case for the approximate solution obtained from the Py — Py_s scheme.

Observe that this method implements the weak form of (3.3.1d)) for the approximate

solution of velocity u = [u,v]|T given as uy,vy € P 5 as follows,

(qn—2,un, +vn,) =0, (3.3.9)

forall gn_o € Pn_o nv—2. Thus, uy, vy are not divergence free, however, all divergence-
free polynomials in P?Vy  satisfy the above equation. For more details, see [12] p. 416].

This is not a major drawback as it is overpowered by the property that this
scheme eliminates the presence of any spurious modes on pressure. A function gy_s €

Py_on—2n L3(92) is called a spurious mode if it satisfies the following condition:

(gn—2, un, + ’UNy) =0,

for all uy, vy € Py . If such a polynomial gy_; exists then the solution for pressure
is not unique, since for every solution py_o, the polynomial py_s + gy_o will also be
a solution. Thus, it is imperative to not have any spurious modes. For this scheme,
Theorem 25.1 given in [I2] states that the set of spurious modes for this scheme is

equal to {0}, thus there are no spurious modes. Hence, the following inf-sup condition

holds,

(v - UN, QN) c
in = )
qNEPN_2, N—2nLZ(Q) vne]P’?\,’N ||UNH1 HQNHO VN
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which by Theorem 23.8 in [I2] implies the uniqueness of solution for the discrete
Stokes problem obtained by the Py — Py_s scheme.
As stated on [12, p. 424], the following are the main features of this scheme for

the Stokes problem:
1. the velocity is not exactly divergence-free,
2. this method is a spectral-Galerkin scheme,
3. there are no spurious modes for pressure;

4. the best constant of the inf-sup condition on the pressure is of order N -3

3.3.2 Analysis

In this section, we estimate the condition number of the global matrix G for the
discretized steady Stokes problem given by . Since G is a symmetric saddle
point matrix with a SPD leading block and full rank matrix B, finding the bounds
for spectrum of G is facilitated by the theory of spectrum of a symmetric saddle point
matrix with the desired properties. This analysis requires bounds on the spectrum

of the sub-blocks of GG, thus we proceed as follows.

Lemma 3.3.1. For N > 2, let S € RN=UDxWN=1) pe the stiffness matriz defined by

2N -1
(13.2.1), then it is SPD with Apin(S) = 6 and Apax(S) = 4N =2, thus k(S) = 5

Proof. By (3.2.1)), S is a diagonal matrix with entries sg, = 4k+6 for 0 <k < N -2,
thus Apin(S) = 6 and Apax(S) = 4N — 2. Since the stiffness matrix S is an SPD, its

condition number is k(S) = Z‘“f"‘((g)) = ’;‘"f"‘((g)) = 482 O

The following results give optimal condition number estimate for the mass ma-
trix and discrete Laplacian matrix in two dimensions for the recombined Legendre

basis considered in this scheme, derived in [80] for Dirichlet boundary conditions.
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These results appear to be new. The optimality of these estimates is evident from

Figures and [3.1D]

1005 | 1 0 T
\\\\\
10 10 :‘\‘ \B\\\E\E\
10016 + i ‘*\\é \D\&\E
10 sl e . ey ]
(a) Maximum eigenvalue. (b) Minimum eigenvalue.
Figure 3.1: Spectrum of M.
Lemma 3.3.2. For N > 4, let M € RN=UDXWN=1 pe the mass matriz defined by
(3.2.2)). Then, it is SPD and ﬁ < A(M) < C, thus k(M) < cN3.
N—2
Proof. Let u(x) = Z w;¢;(x) € Py, where ¢; represent recombined Legendre basis
i=0
functions and define wuy, := [ug; ui;...;uny_o] € RW-Ux1 Then

= [ atwar= [ (JVZ ¢> - NZ NZ [ s

i=0
by using the definition of entries of the mass matrix,

N—-2N-2

|ullz = Z Z wiumi; = up Muy,.

i=0 j=0

Hence M is SPD, for any z € RW=U>1\{0}  the bounds on the eigenvalues of M by

estimating 2 Mz are derived as follows.

N—-2N-2

.CIZ‘TM.’L' = Z Z LMy 5

i=0 j=0
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(by using (3.2.2)

TiTit2

- ) (3.3.10)
21+ 5

N-2 N—-4
= Z T; My + 2 Z TiTi42M5 542
=0 =0
N-2 N—-4
1 1
=2 : + —4
ot <2i+1 2¢+5) 2
ST Z el il
S a2+ 1 2z+5 2 +5
N—-2 1 N—-4
<2) @ (1+-)+2 il|z;
St (143) +5 2 lls
12 N-2 4 N—4 N—4
i=0 i=0 i=0
N—-2 N-2 N-2
< 12 x7 + : x; = 16 ;.
5 =0 5 =0 5 =0

Hence, 2" Mz < C||z|3, therefore A\pax (M) < C.

Note that

N—-4
4
=0

By using the above in (3.3.10)),

xz+2 |xz||xz+2|
2 + 5 2 2045

—4

[zl
-

22+1 22+5> Z 20+5
—

)

(20 +1)(2i + 5)?

42

szl V2t +9 ]xl| ‘.Z'i+2’
2 2@4—5 =  2i+5 V20 +9
2 — 2/L+9 l+2
22—1—5 (20 + 5)? (2@+9
2i+9)z? & a?
22 ( i+ )xz 722 Li
2i 2@4—5 ~ (2i+5) “ (20 +5)
(20 +9) 1
2z+1 2z+5 C(20+5)2  (2i+5)
x?



)\max M
Thus Apin (M) = % and k(M) = >\mm((]\/[>) < eN3. O

The following result provides a sharp condition number estimate for A, as shown

in Figures and [3.2h]

il L L L L L L L L 2l L L L L L L L L
1008 1009 10 10! 1012 1013 1044 1015 1016 1008 1009 10 10! 1012 108 1044 100 1016

(a) Maximum eigenvalue. (b) Minimum eigenvalue.

Figure 3.2: Spectrum of A.

Theorem 3.3.3. For N > 4, let the discrete Laplacian A be defined by (3.3.7)), then
c

Nz < A(A) < CON, thus k(A) < cN3.

Proof. Since A € R"*? and is defined as A = M ® S + S ® M. Note that it is SPD,
as both M and S are SPD, hence Theorem yields

/\max(A) < /\max(M® S) + )\maX(S® M)

= /\max(M))‘max<S) + /\max(S))‘max(M) = 2)‘max(M)>‘max(S)a

where we get the last equality by Result ] of Theorem 2.1.7 Thus, Lemmas [3.3.1
and give Apax(A) < C(AN —2) < CN.
The definition of S and M, given by the equations (3.2.1]) and ([3.2.2]) respectively,

implies that A € RV*? is a symmetric block matrix, with non-zero 0, 2 and —2 block
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diagonals. Its blocks are defined by

siiM +m;;S j=F,
Ap=14" " (3.3.11)

mij j=k+2,

for0 < j,k < N. Letx = [zo;21;...; 2n_2] € R7N{0}, where z; = [20;27;. .. ;:L’N’Q] €

ROV-Dx1 for each 0 <i < N — 1.

N-2N-—
T A, _ [T T T T 4
T Ar = [z ,af, ... 2 4] A ZZ x; Aijx;
N-2 N-2N-2
T T
i=0 i=0 j=0
J#i

(as A is symmetric and has non-zero 2, -2 block diagonals)

N-2 N—14
= Z I‘ZTA“IZ + 2 Z ZL‘zTAm‘_i_QCEi_;,_Q (by using 3311)
i=0 i=0
N-2 N—4
= sz (siM +myS) x; + 2 Z :CiTmngStz
=0 i=0
N—2 9 9 N—4
T |4 -
= | (40 +6) M + + Sla;+2 ‘ ST,
o [(Z ) [2¢+1 2i+5] ]x ;21+5x’ T2
(by using (EZT) snd (Z))
N-2 N-2 2 2 N—4
= 45+ 6)xT Ma; + xlSx; +2 TSxiis.
i:O(Z Jai Mz ;)lQiJrl 22—}—5] v ;)22,%% Tit2
N—2N-2 ‘
As zf Mx; = Z Z zFmy;xl, then (3.3.10) gives
k=0 j=0

T J\2 J..J+2
T ME ;)(x) l2]+1 2]+5] ;)2j+5xx
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and similarly

N-2

w} S; = Z( )2 (45 +6),

=0
—2
rlSwiy =Z (47 + 6) 2] ,,.

The above three equations imply

N—-2 N-2 9 N—
TAr = 4i 4+ 6 )2
T Az ;(@ );}(wz) 2711 2j+5 wlx
N—-2 9 2 N—-2 N— N—
(45 +6) (45 + 6
+2:0 |:2Z+1 22+5]Z( ) J+ — oy ]+ ) Lit2;
N—2N-2
: 1 1 1 1
=2 | (4i+6 45 +6
i_oj;(a:z) [(z+ )[2j+1+2j+5]+(3+ )[2i+1+2i+5H
—4]VZ2(42+6)N4 L alpd T — Si ¥ Tl
=0 j:02]+5 =0 j=0
N—-2N-2
: 1 1 1 1
=2 N2 | (4i + 6 1i46
iz0 ~:0($Z) [(H )[2j+1+2j+5]+(‘7+ )[2@'+1+2z+5”
Y i)y 4<¢2J—WI>< 1) )
=0 j=0 2]+5 \/m
4N—2(4'+6)N4 V2i +9lzi] | (il
4T 4\ i V2i 19
(as for a,b > 0, a® + b* = 2ab)
N—-2N-2
: 1 1 1 1
> 2 D2 | (4i+6 4j + 6
iOZ;)(a:Z) [(z+ )[2j+1+2j+5]+(3+ )[22,+1+2Z_+5”

& a2+ 9 (272
—2 2, (4i+6) [ (2j +5)2 (2j+9)]

& o | (2i+9)(2))? | (2),,)?
—2), (4 +6) [ (20 + 5)? +(2¢+9)]

(by changing variable of summation)
> 2 (z])? | (4i + 6) - + (45 +6) S
e ‘ 27+1 2j+5 20+1 2i+5
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N—4 : N-2 o j
1 2t +9 ; )2

T QI T . T SR
= \2i+1  (2045)? , 2i+1

( 1 1 2j +9 ) . +NZ4 16(a))?
] ' 2 = (27 +1)(25 +5)2

+ D) '. +2N2_2(4 +6) le ! ! 2049 ) (i
a2+ 1 J 2%+1  2i+5 (2it52) "
—4

The above expression consists of six double summations, we split them into the
combination of i = 0, 1, 2 <t < N—4and ¢ = N — 3, N — 2. This partitions
each double summation into three parts and thus a total of eighteen double summa-
tions. On combining nine double summations from the first double summation to

the respective nine from the second one, we get the following nine terms, precisely

9
2" Az =23 S, (3.3.12)
=1
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11 i ‘ 1 1 27 +9
51222(1i) [(4Z+6) (2j+1+2j+5_(2j+5>2>

i=0j=0
1 1 2t 4+ 9
47 +6 - 3.3.13
4+ )(2i+1+2i+5 (2i+5)2)]’ ( )
N—4 1 . .
- : 1 1 2j+9 16(47 + 6)
Sy = (z])? [(42 +6) ( - + — S — > 4+ _ ’
i—2 ;) 2j+1 2j+5 (2j+5)2) (2 +1)(2i 4 5)?
(3.3.14)
N-2 1 . .
j , 1 1 27+9 45 + 6
S = )7 | (4i+6 — 3.3.15
3 i:N_?)Z%(xz) [(H )<2j+1+2j+5 (2j+5)2) 2i+1]’ ( )

S4§:Ni(mf)2l( 164 + 6) +(4j+6)< L, 1 20+ 9 )]

2j +1)(2j +5)? 2i+1  2+5 (2i+5)?

1=0 j=2
(3.3.16)
N—4 N—4 . )
j 16(47 + 6) 16(45 + 6)
% = 0 + , 3.3.17
| ; ;2 ) l(% +1)(25 +5)2 (20 +1)(2i +5)2 ( )
N—2 N-4 ) .
j 16(47 + 6) 475 + 6
S = o + : 3.3.18
" i=N-3 ]Zzz @) l(2j +1)(25 +5)% 2+ 1] ( )
1 N-2 . )
o |4+ 6 1 1 2 +9
N o 4 - 3.1
S, ;j;g(wz) [2j+ . + (47 +6) <2¢+ R (2¢+5)2)] . (3.3.19)
N—4 N-—2 . ,
L [4i+6 16(4
Ss = (wf)z[ = 16(47 + 6) 2], (3.3.20)
i=2 j=N—3 27 +1 (2Z + 1)(22 + 5)
and, finally
22 Ni S [4i+6 4546 1)
S = (x7) [ - + — ] ) 3.3.21
i=N—3 j=N—3 27+1  20+1

We claim that all of the above nine terms are bound below by 5.
First of all, the sum S, given by (3.3.13)), contains only constants independent of N
and thus implies

(). (3.3.22)

51>NLZ

i=0j

[\

1 1
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For the second one, (3.3.14)) yields

1 1 2j +9
+ = Yy
2j+1 2j+5 (2j+5)?

> Y YU+ 06 (55 s e )

. + 5 e
2j+1 2j+5 (2j+5)2

(note that, terms are constants independent of N)

c N—4 1 )
> 5 D). (3.3.23)
i=2 j=0
Then (3.3.15)) gives,
N-2 .
; 1 1 27+9
Sy = ) (46 + 6 < : + = — = )
’ i_NngO( ) ) 2j+1 2j+5 (2 +5)?
N— 1 .
; 1 1 274+9
> x524(N—3+6<. T )
i_Nng;)( ) ) +6) 2j+1 2j+5 (25+5)
N-2 1 ) c N-2 1 )
> cN D)= 2 D). (3.3.24)
i=N—33j=0 i=N—3j=0

Note that the term Sy, given by the equation (3.3.16)), is similar to the term S5,
given by the equation (3.3.14)), and therefore

Sy > CZI] (x])2. (3.3.25)

Since for any i,j € N, 2j < (2j + 1) < (25 + 5) holds, thus

16(4i+6) _ 16-4i _ i
(27 +1)(25 +5)2 "~ (20)3 ~ ¥

and using the above relation in the equation (3.3.17) gives the following expression

Sy > Nf Nf(xg)? Ug + 273] | (3.3.26)

i=2 j=2
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At this stage, we need to prove that for all i, e Nand 2 <i,j < N —4,

1 7 c
‘73 + 3 > Vo (3.3.27)
To this end, we define the function
T Y
and minimize it over the domain 0y := 2 < z,y < N — 4. The boundary of the

domain is given by I'y := Ufn:l I',,, where

Fli l‘=2,

We first find the critical points of f, as follows

1 3y
0= fx(may) = E - ?7

this implies, 3y* = z* and since f is a symmetric function about x and y, hence
fy = 0 gives 3z = y*. Solving these two equations, we get z* = 9x*, and thus z = 0,
which further gives y = 0. Hence the critical point is origin, which lies outside of
the domain and is thus rejected. Let us now estimate the minimum of f on the
boundary I'y. On I'y, we minimize

2

ai(y) == f(2,y) = gt

)
= 3.3.29
87 ( )
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for 2 < y < N — 4. The critical points of ¢g; are

which implies y* = 2% - 3, thus y> = 224/3 and y = +2+/3, for which we reject the
negative which lies outside of the domain of g;. The possible points of minimum in

domain are y = 0,2 - v/3, N — 4, at which ¢; attains the following values

1
gl<2) = 57
203) = 2
91( ) = 33
2 (N—4) N—-4 _ ¢
N —4) = > > —.
gW-d)=m—m*t g~ N?
Thus ¢1(y) = 5. Moreover, on I'; we have minimize
(V-4 y
= f(N—-14 = 3.3.30
92(y) == f( . Y) R gy ( )
for 2 < y < N — 4. The critical points of g, are
3(N —4) 1
0=4g\(y) = —
g1<y) y4 + (N - 4)37

which implies y* = 3(N — 4)*, thus 32 = (N — 4)%V/3 and y = +(N — 4)+v/3. Both
of the critical points lie outside of the domain. The possible points of minimum in
domain are y = 0, N — 4, at which g, attains the following values

N -4 2 c

>
N—4)3 = N¥
_(N-9)  (N-4) 2 c

C C

Hence it is concluded that go(y) > 7=. The bounds for g; and g, imply that f > &

50



on I'y and I's. Since the function f is symmetric about z and y, we get f > & on

I't and hence on (U, as it does not possess any critical point in ;. By using this

result we obtain the result (3.3.27)), applying which on the inequality (3.3.26)) gives

(z)2. (3.3.31)

5 > N=2 N‘4( j>249 +6 Ni N_4(xi)24(2) +6
s 5 o2+ 1 Ml o Y2+ 1
N—-2 N—-4 - 14 c ]\72—2 Nz—jl -
> (@) e———— > — (a1)?. (3.3.32)
S 20N-2)+17~ N? & =

Thus, the bound is true for Sg. On observing the term S7; and Sy, defined by ({3.3.19))

and (3.3.20)) respectively, it is deduced that they are respecticely similar to the terms
S5 and Sg, defined by (3.3.15]) and ((3.3.18]) respectively, and hence

Srz >N (@), (3.3.33)
i=0 j=N—3
c N—4 N-2 )
Sg = — (z1)2. (3.3.34)
1=2 j=N-3

Since for any 7,5 € N,




Note that

N—2+N—3_(N—2)2+(N—3)2> c
N-3 N-2  (N-3)(N-2) =~ N?

which implies
N—2 2

So = 1 _Z PEHE (3.3.35)

i=N—3j=N-3

Thus, the results (3.3.22))-(3.3.25)) and (3.3.31))-(3.3.35)), in (3.3.12)),

2C N—-2
TAr > 5 )
=0

N-2 c
Z (27)* = ﬁiETﬂ%

7=0

hence the Rayleigh quotient of the matrix A is bounded below by ¢/N?, for all

x € R"!, which leads us to the desired result. O
Since A(A® A) = A(A), the above theorem gives the following estimate.

Corollary 3.3.4. For N > 4, the discrete vector Laplacian A defined by (3.3.7)

satisfies % < AA) < ceN, thus k(A) < eN3.

Remark 3.3.5. Note that Theorem [2.1.6] can also be applied for estimating the
Amin(A), however, that does not provide an optimal lower bound. As by reiterating

the process used for estimating Apyax(A),

C

)\min(A) = )\mm(M®S) + )\mln(S®M) = 2)\min(S)>\min(M) > 12@7

whereas Figure suggests the best lower bound of %, thus a detailed analysis

was conducted.

We now proceed to analyze the matrix B, a sub-block of G, which is a rectangular
matrix defined in terms of matrices R and @ given by Proposition [3.2.4] In order to
prove estimates for (G, the bounds on singular values of the matrix B are required,

which are derived by the following results.
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Lemma 3.3.6. Let N > 4, R,Q € RN=DXN-1) 4 defined by Proposition [3.2.4),
then opax(R) =2, omin(R) = 0, 0max(Q) < C and opin(Q) = 5.

Proof. The definition of R implies that RTR is a diagonal matrix with entries
(RTR)oy = 0, and (RTR);; = 4, for 1 < i < N — 2. Therefore, oin(R) = 0

and Opax(R) = A/ Amax(RTR) = /4 = 2.

By definition,
Yis .7 =1,
Qz] = )
—Yi+2, j =1+ 27
where v; = 21% for 0 <14,j < N — 2. Since the 1—norm of a matrix is its maximum

absolute column sum,

1Ql1 = max{vo, 71,272,273, . .., 2YN—2}

=Y = 2.

Also, the maximum absolute row sum, [Q|, = max{yo + V2,71 + V¥3,---,IN-a +

YN—2,VN-3, VN—2} = Yo + V2 =2+ % = 15—2, hence

12
@) = 101 < VIQRIQL = /2 2

We now estimate oy, (Q) = [|Q7'3". It is easily verified that Q~' is upper
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triangular and is non-zero along every other diagonal:

%' 0 %t 0 ot 0

-1

w0yt 0y

w0 ot 0
. ERNflfoli

1
)

Label the columns of Q! as Cp, C,...,Cn_s. Note that the maximum absolute

column sum of Q! is attained at either Cy_3 or Cy_s, denoted by Scy_s O Scy s,

respectively, and are given as follows,

1¥21 1 : i Py :
D=6 72 IVisodd, Dud Va1, N s odd,
Scy_s N Sen_s s
ZZL:?J Yair1, IV is even, Zﬁjj Yo', N is even.
Since s s o
1=~ =571 55, 572
1 2(2 1 1
— = @)+1_1 (4 + 1) < cN?,
=0 72 =0 2 =0

N-3
and similarly, ZZL:(Q) : 72,1“ < ¢N?, it follows that |Q7!||; < cN2.
L [N _iJ, thus

For 0 < i < N — 2, the absolute sum of the ith row of Q7! is ol e

1 _ L
N E 0<ieN—2 il 2 0<i<N—2 ; 0<i<N-2

22 o ]
1 {NJ :2(N_2>+1V;Z| < cN2.

a YN-2

2 2

]

Therefore, Q2 < 4/[|Q1]Q e < VeN? - eN2 = ¢N?, hence the result.

Lemma 3.3.7. For N > 4, the matriz B € R?*"*% defined by (3.3.6) is full rank,
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that is, rank(B) = @, and % <o(B) <C.

Proof. Let R; be the rows of B for 1 < 7 < 29. On exchanging Rjy_1) with
Ryi14e—1y(v—1), forall 1 < k < N —2, the first p rows of B form an upper triangular
matrix of size p x o with non-zero diagonal entries, hence rank(B) = p.

We now estimate the singular values of B, which are the square-root of the
eigenvalues of BT B € R®*¢. Note that rank(BTB) = rank(B) = g, and B'B =
BT By + BI'B;. So we consider the blocks By and Bs.

Since B; = —Q®R] and By = —R®Q)], that is, their first column is deleted, which
only contains zero, therefore rank(B) = rank(B;) = rank(Q)rank(R) = (N—1)(N —
2) < p. Thus, B; are rank deficient, so that oy, (B;) = 0 for i = 1,2. Furthermore,
o(B;) = 0(Q) x o(R), so Lemma implies that opax(B;) = Tmax(R)Omax (Q) <
2C', for i = 1,2. Therefore, by Theorem

Amax (BT B) < Amax (B B1) 4 Amax (BI By) = By) + 02, (Bs) < 4C? + 4C?,

max (

thus, omax(B) < C. However, Theorem [2.1.6] gives a trivial bound for the minimum
singular value of B, but we need a positive value as BT B is full rank. To this end,
we do a detailed analysis as follows.

Let ay; := (QTQ);; and B;; := (RTR);j, where 0 < 4,5 < N — 2. Note that QTQ

is a symmetric matrix, so that for 0 < 1,7 < N — 2

-

71'27 Z:]:()?la

ai; = (QTQ)i; = { 292, 2<i=j<N-2,

—ViVite, J=1+2.
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Since Lemma |3.3.6{ implies that o, (Q) = for y e RV-1\{0}

]\727
. N—2 N-2 N-2 N-4
WCUTZU <y'Q"Qy = Z Z Yitu;y; = Z i (yi)? + 2 Z Qiir2YiYiva-  (3.3.36)
=0 j= =0 =0

Recall that RTR is a diagonal matrix, with 8p0 = 0, and B;; =4 for 1 <i < N — 2.
By a direct calculation, BT B = [QTQ® RT R+ RTR®QT(Q], that is, delete the first

row and first column, then the (7, j)-th block of BT B is given as

-

ag[RT R, i=j=0,
OZZ'Z'RTR+4QTQ, 1<Z=]<N—2,
(BTB)Z'J‘ =X
o[ RT R, i=0,j=2,
aiiJFQRTR, 1<Z<N—4,jzz+2
Let x = [zo;21;...;05_2] € RP\{0}, where 2 = [z};22;... ;20 7%] € RV~2 and
w; = [2% 2. ;2N 2 e RV for 1 <i < N — 2, then
N—2
e"BTBr = Y «l (BT B)j; + 2 Z (BT B);i 042
=0 =0

N—2
= 28 ago[ RT R)wo + Z TauR"R + QT Q)x; + 208 ags[RT R -
o1
N—4
+ 2 Z r] o RN RT; o

i=1

N-2 N-2 N-2 N-2
_ )2 7\2 T AT
= Qo Z + Oéu 4(x))” + Z Biz; Q° Qu;
7j=1 = 7j=1 i=1
N-2N-2 N—4 N-2
0 T J J nd
+ 2002 zo([R" R)gjxy + 2 Z Qg2 Z Axlxl,,
=1 j=0 i=1 =1
N-2 N-2 N-2 N-2
_ )2 T AT
= Qg 4( + 7 4(x])? + dx; Q" Qux;
j=1 i=1 j=1 i1
N— N—4 N-2
+ 200 Z 4x0x2 + 2 Z QG i42 Z 43:131:”2
7j=1 i=1 7j=1

26



N-2 [N-2 ' N—4 o N—-2
=4 2 (Z Oé”(ZFZ)2 -+ 2 Z Oéi’iJFQJZgSL’ngQ) + 2 4LU,LTQTQ;UZ
i=1

1=0 =0

—[ydede pd. e
Define &; = [x); 215235 ... ;N _s], then

N-—
+"BT Bz = 4 Z rTQE; + Z 427 QT Qu;
a

N-2 N—2
c c
>do ) G 6 g >l (by (3-3.36))
J=1 i=1
o N-2N-2 ¢ No2N-2
=4y (@) + 45 («])?
Nt Jj=1 1i=0 N4 i=1 j=0
C N—2 c N-2 N—-2
Jj=1 i=1 j=1
o N2 ) o N-2N-2 , de o
=4 (0)” + 4— (z])" = Nt T
Jj=1 i=1 j=0
Thus, Apin(B"B) > N —» which implies that oy (B) > % O

The above estimates are observed in Figures [3.3a] and [3.3bl In order to get

> (D)
10° \\\\ _
- \\\‘&
e .
10 \\ﬁ\
10 e ~o
L
10 I \\
10 " "*.\\K o)
10958 “‘Y)' Y
105
10' 10 10 10 10 10 10 10 10 10 1()‘” 10 10 10 10° 10 10 10 10
N N
(a) Maximum singular value. (b) Minimum singular value.

Figure 3.3: Singular values of B.

estimates on the singular values of the global spectral operator G, we need the

following result that gives the spectrum of a symmetric saddle point matrix.
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Theorem 3.3.8 (Sce [3]). Let X = (4B, such that B € R™" is full rank and its

Schur complement BA™'B” is SPD, then

Y A, 1+4/1+4%
) u Mn,/,l/l— b
1 A1 1 Am 2
5(1+4/1+4£> 5(””“‘%7)

(3.3.37)

AX)

where 0 < p, < ... < pp denote the eigenvalues of A and 0 < X\, < ... < A\ are the

eigenvalues of BA~'BT .

In order to use the above result, we need to estimate the spectrum of the Schur
complement for the discrete Stokes problem in steady state, with coefficient matrix
(3-3.6), defined as Y, = BT A™!'B. Let us first introduce the Schur complement
for the continuous Stokes problem, which is known as the Uzawa pressure operator,
denoted by Y : L3(Q) — L3(9), is defined as T := V- A7V, It is a self-adjoint,
bounded, coercive and hence a bijective operator with Ay (T) = 1. Also, A™1 :
(H71(Q2))*> — V denotes the inverse Laplacian. Let u e (H~1(Q))?, we say Aty =

veVif

Av = in €,

v = 0 on 0f).

Note that A is the vector Laplacian as v € V' is a vector having two components.

From [12, p. 422], the following inf-sup condition holds for the Py — Py_5 scheme

. (V-un,qn) ¢
inf sup > ,
INEPN_2, N—2nL2(Q) vn€PY ”UNHl HQNHO VN

which, as stated in [28, p. 173], is equivalent to

. q¢"BT A7 Bq c
inf - > ,
qeR#\0 g Mq vV N
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or

T
q Thq c
inf 3.3.38
qeRK’\O Mg ~ N ( )
N—2 N—2
Here ¢ is the vector of coefficients of gy = Z Z ¢ijLi(z)L;(y) , and 9 is the
= 3,
mass matrix, so that
N-2 N-2 N-2 N-— 95
T 2 mn T
Mg = = i74mn )
¢"Mq = lqn|s Z ; mz_ =z qjq 2H12m+1 =q"[r®7]q
+

where (7);; = 22@54:1 for 0 < 4,5 < N —2. Since 7 is a diagonal matrix, then 9 =

[T ® 7] is diagonal and m + n,i + j > 0,

c

9 2
Auin) = (Ly-2,Ly-2)’ = [ 5o | = —
() = (L2, Liv—2) (2(N—2)+1) N2

Figure verifies ([3.3.38)), whereas the following result is depicted by Figure .

(3.3.39)

10-08F TE s

N

S L L L L L L L L L L L L L L L
1008 100810%91009 101 101051011 1011210210129 101310151014 10141015 1015 1(

§16

10709 |

107t

1012 F

10-13 F

1014 |

10-15 |

L
100

L L
1012 1013

N

L
1014

L
1012

L
1016

(a) Maximum eigenvalue. (b) Minimum eigenvalue.

Figure 3.4: Spectrum of 9 Y},.

Theorem 3.3.9. For given N > 4, Ao (M17T,) <1
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N—-2 N-2

Proof. For some p = Z Z pijLi(z)L;(y) € Pn_an—o N L5(Q),
i=0 j=0
i+7>0

(Tp,p) = (V- A“V(Z

*? MZ
is,

For 0 < i+ jand 0 < i,j < N — 2, define w? = A™'V(L;(z)L;(y)), and w =
N-2 N—
Z Z w" so that the above problem becomes

(Tp,p) = (V- w,p) = (wy,,p) + (wa,,p), (3.3.40)

and let w9 = [wij; wY | and w = [wy,ws]. By definition, w¥ is the solution of the

following problem

At =V (Lilx) Ly(y)) in .

w" = 0on 09,

which is equivalent to the following two problems

Aw{ = L(z)L;(y) in Q, Awy = Li(z)L(y) in €,
B and B (3.3.41)
wy = 0on 09, wy = 0on 0.

Let us solve the first one by using the recombined Legendre basis functions, by
N—2N—2

considering w? Z Z w on(y) and let w? n be the vector of coefficients
m=0 n=0

of wy. For 0 <r,s < N — 2,

(Awl ) 7“( ) - (L/ qb?“( )¢s(y))

iy _
_Ath = _Rm’Qsja
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hence Awi{ n = RiQs; and similarly, Aw;{ p = Qrilts; for 0 <r,s <N — 2, thus

N—2 N—2  N-2 N-2
Awl =A 2 2 pijwi{h = 2 2 Dij szg = Q@ R)]ph = _Blph7
i=0  j=0 i=0  j=0
i+5>0 i+5>0
wy —A~'Bypy,
similarly, Awy = —Bsp,, hence w = = , which leads us to
Wa — A7 Bypy,

evaluating the ﬁnal step (13.3.40)).

2N
Since w; = Z Z wy) i oi(x)p;(y),

(w,.7) - Z D pun 3y 3% (00), (@6, 0), L)L)

+n0

= p£[<QT @ R")-wy = pi.(—B{ ) (=A™ B1)p, = pj B A Bipy.

Similarly, (ws,,p) = p} B3 A~ Bopy, thus (3.3.40) gives (Tp,p) = pt BT A™'Bipy +

pr By A7 Bopy = pi BT A~ Bpy, = pf Thpr, and (p, p) = pf Mpy, therefore

(Yp,p)
@ (@:p)

Amax (M) = sup pgThph = sup
phER@\O ph mph pGPN,ZN,QﬁLg

(Tp,p) _ Ao (T) = 1.

< sup
p€L2 (p p)
O
Figure presents the numerical results for the following result.
Lemma 3.3.10. For given N = 4, A\pin(Yh) = % and Amin(Th) < cAmin(A).
Proof. Since T is symmetric,
rr o
Amin(Th) = inf L2 P =0 (3.3.42)
peRo\0 pTp  pTp
P Thp p"Mp

> inf
peRo\0 pTMNp peRW\O pT'p
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(a) Minimum eigenvalue of Y. (b) Convergence.

Figure 3.5: Numerical results for global operators of the steady Stokes problem.

c Cc

C
> o= (by (3-3.39))

Moreover, by (13.3.42))

T T
Nn(Tn) < sup D10y PO
min h p T T

pere\0 PP Mp  peRe\0 plp

2 2 c
<1 <2(N—2)+1> =2 (by Theorem and eq. (3.3.39))

C)\rnin (A) .

N

[]

The above results aid us to prove our main goal of this section, that is, an
optimal bound for the condition number of the global spectral operator G for the

steady Stokes problem, as seen in Figures [3.6al and [3.6b

Theorem 3.3.11. For N =4, let G be defined by (3.3.6), then % < o(G) < cN?,

and k(G) < cN*.

0,8

Proof. Note that G = [é o ] + [BOT of,p] =: G + Gg, thus it is a sum of two

62



= .\;(‘(7)
-N3
o \\\gij;; -
e
0t e ﬁs\g\ﬂ\ e
. S\E\S\B\& N
o \S\S\t
10+ e q
104 o )
o T IS I 00T 10 10 0T 10 10 10 B 10 10 10 10 10 10 101 10 S 10955 1099 1009 107 101 101 1005 1012 1072 1015 101 100 1015 1005 1015 101
N N
(a) Maximum eigenvalue of G. (b) Minimum eigenvalue of G.
Figure 3.6: Spectrum of G.
symmetric matrices. Hence, by Theorem [2.1.6
Amax (G) € Anax(G1) + Amax(G2), (3.3.43)

Since Apax(G1) = Amax(A), and Apax(G2) = omax(B) by Result |8 of Theorem m
Hence, by applying these results to (3.3.43)), Anax(G) < Anax(A) + Amax(B) < ¢N +
¢ < ¢N, by Corollary 3.3.4) and Lemma [3.3.7]

Now, it remains to estimate the absolute minimum value of the eigenvalues of G,

denoted by |A|min(G), for which Theorem [3.3.§] gives,

)‘min T
Ain(@) > min g Awin(A). 1 ( 4};) () ) [
Py )
and by Lemma [3.3.10} ’\/\f:;(&)) < ¢, leading to 3 (1 +4/1+ %) < ¢, thus
>\rnin T
1 ( 4};) (T = c)\min(Th).
! (1 +4/1+ W)
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Hence, the minimum absolute value of eigenvalues of G satisfies,

. . C C C
M min(G) = min {Amin(A), cAmin(T1)} > min {W ﬁ} - =

[Almax (&)

Since K/(G) = W

, therefore k(G) < ¢N - N® = cN*. O

To summarize, for the Stokes problem in the steady state given by , we
implemented the proposed Py — Py_s scheme in space by using a recombined Leg-
endre basis functions on MATLAB®, see [52]. Take fi, f> so that the exact solu-
tions are u(x,y) = (cos(mz) + 1) sin(27y), v(z,y) = (0.5) sin(wz)(1 — cos(27y)), and
p(z,y) = sin(mz) cos(my), thus the boundary conditions are satisfied. It can easily
be implemented for Py — Py_s scheme with a recombined Chebyshev basis in space
as mentioned in [80]. The spectral convergence of the Py — Py_» scheme was proved

in [12], and is evident from Figure [3.5b]

3.4 Unsteady state

Consider the unsteady Stokes problem, given by equation (3.1.2), which on further

simplification is expressed as:

uy — Au + py = f1in Qy, (3.4.1a)

v — Av+p, = foin Q, (3.4.1Db)

Up + v, = 0in Q x (—1,1), (3.4.1c)

u(z,y, —1) = wo(z,y), v(z,y,—1) = vo(x,y) in €, (3.4.1d)

u=0,v=00n00x(—1,1).

We extend the Py — Py _ scheme of the last section to the unsteady case by applying

Chebyshev Gauss-Lobatto spectral collocation in time. These particular polynomial
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bases are chosen for simplicity of analysis of this scheme. In practice, Chebyshev
recombined basis given in [80, p. 149] or Jacobi collocation can be chosen in place of
Legendre recombined basis or Chebyshev collocation, respectively, without any diffi-
culties. The goal is to show spectral convergence of a space-time spectral method and
a condition number estimate of the scheme. The analysis of the latter is incomplete

because two of the estimates are based on numerical evidence.

3.4.1 Discretization

For given N > 4, consider the Chebyshev Gauss-Lobatto nodes t; for 0 < k < N,
so that g = —1 and ¢ty = 1. Let ¢, denote the Lagrange basis polynomials for #,
therefore ¢ (t;) = dx; for 0 < k,j < N. Let D denote the Chebyshev Gauss-Lobatto
pseudospectral derivative matrix of size (N4 1) x (N +1). For this scheme, we define

an approximation for the velocity u, v and the pressure p as follows,

N—-2N-2 N

(ZL‘ yv Z Z uz]kqbz )gk( ) (J)VN,N>
i=0 j=0 k=0
N—-2N-2 N

(l’ y,t Z Uuk¢z )gk( ) ?VN,N7 (342)
i=0 j=0 k=0
N-2 N-2 N

pn(z,y,t Z pijrLi(x)Lj(y)l(t) € Pn_gn—2 N
1=0 j= OkZO
i+j

The number of unknowns for uy and vy each are N1, and the number of unknowns
for py are Ngp. The total number of unknowns in the discrete Stokes equations is
2NY+Np = 3N(N—1)2—N. Define the discrete unknowns as uj, = [up;u2;...;ud |,
where uf, = [0 U104} - UN—200 U010 - - - UN—2,N—2.], similarly define vy, pp,. Let
k=1,2 and t = t,, for a given fy(x,y,t) so that fr(z,y,t,) is analytic in Q for all

1 < r < N, it can be approximated by a truncated Legendre series expansion as
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follows,

N—2N-2
k,r
filz,y,t,) ~ fk T, y) Z Z fij Li(@) Ly (y)-
=0 j5=0
1. 2. . TN r k,r. k. k,r k,r. k,r
We define Fy, = [F; Fis ... Fy' |, where = [007 105~ JN=205Jo1 i3 JN-2,N— 2]
forall k=1,2and 1 <r < N.
Let us begin with the initial condition u(z,y, —1) = (:L’ Y). Assume that trun-
N—2N-2
cated Legendre series gives ug(z,y) Z Z u”qbZ Z Z uUL
=0 j=0 =0 j=0
then
N-2N-2 N N—2N-2
Z Z uljk¢l( ) Z u sz
1=0 j=0 k=0 =0 j=0
N-2N-2 N —2N-2
Z szQb Z Z u ¢z
i=0 j=0 k=0 i=0 j=0
which gives ;o = ”, for all 0 < <N —2.
Let uop, = [Ug,(); (S ) P U8,1§ o US)V—Z,N—Q]' Since ¢; = L; — L; 19, it follows

that

Z Z = Lita(2))(L;(y) — Ljsa(y)) = Z Z wy; Li(2) Li(y),

thus (L ® L)ug; = u;, where L is an (N + 1) x (N — 1) Toeplitz matrix and is given

as follows:

10 -1

L= . (3.4.3)
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Similarly, vg, is obtained.
Now, the LHS of the weak form of (3.4.1a)) collocated at time ¢t = ¢,, for 1 <r <

N,and 0 < m,n < N — 2, is equal to

(ut('rv 7t1")7¢m( ) ( )) —|—(—Au(:c y7 ) ¢m( ) n(y)) _(p(xvyvtr)7¢;n(x>¢n(y>)
Z D uiir(i(2)05(8), ()0 (1)) i (t)

+ ug(0i(2)95(y), () 0n (1)) o ()
‘|‘ Z z]’r‘( A sz )¢J(y))a¢m(x)¢n(y>)
2 Pigr (L) Ly (), 6, (1) 00 ()

whereas, the RHS is equal to

(fi(2,y. 1), m(2)6n () = | FE(Li(2) Ly (y), b (@) n(y))-

In order to write the discrete weak form of (3.4.1a)), described above, in matrix form,

we need the following definition.

Definition 3.4.1 (Chebyshev Gauss-Lobatto pseudospectral derivative matrix, see
[64, B0]). For N > 4, let x; be the Chebyshev Gauss-Lobatto quadrature nodes,
defined as x; = — cos(%; Dfor0<i<N. Letég=céy=2and¢;=1forl <i<

N — 1. The Chebyshev Gauss-Lobatto pseudospectral derivative matriz is defined as
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D := [d; jlo<ij<n+1, Where dy j = () given as follows in [80, p. 109].

2N? +1
_ — k=0
6 k; A7 j )
Gl , 0<k#j<N,
ko = < Cj<xk - xj) (344)
Tk .
2 1<k=j<N-1,
2(21—3:%)
2N 1
S k=j=N

Additionally, we define dgj, := [dyo; doo; . . . ; dno] € RY*Y which is the first column

of D, except the entry dgg. Then, a matrix form of becomes,
([D]@M + In®A)up + (In® By)pr = (Iy ® Q) F1 — dop, ® (Mugp,).
Similarly, a matrix form of is given as
([D]@M + IN® A) vy + (IN® By)pr = (In ® Q) F1 — dop, ® (Mugy).

Finally, consider (3.4.1¢|), the following weak form of which collocated at time ¢t = t,.,
forl<r<NandO0<m,n<N-—2withm+n>0,

(ue(,y,80), Lin(2) Ln(y)) + (0 (2,9, 82), Lin () L (y)) = 0

N—-2N— N— _
Z Z ije(05(2)05 (), Lan(2) Lo () + D D" 3o (04(2)05(y), Lan(x) L (y)) = 0,
iZ0 =0 i=0 j=0

which gives the discrete , as

([N®B?)uh+ (IN®Bg) Up, ZONp.
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Consequently, for given N > 4, the discrete unsteady Stokes problem becomes

([DI@M + In ® A)up, + (In ® B1) pp = (1y @ Q) F1 — doi @ (Mugy,)
([D]@M + In® A) v, + (In ® By) pr, = (1ny @ Q) Fy — doj ® (M) (3:4.5)

(In®B]) up + (Iy ® By ) vy, = Opy,

where M = M ® M and Q = () ® (). In matrix form, the discrete unsteady Stokes

problem becomes

[DloM+Iy® A Ono,No IN® DBy | |u 1y ® Q) F; — dop ® (Mugp)
Ong,no [DlOM+INy®A INQBi| |vn| = | Ay ®Q)Fy — dop ® (Mugy,)
In® BT In® By Ongp,Ng Dh Ongp

Thus, the coefficient matrix of the discrete unsteady Stokes problem or the global

space-time spectral operator for the unsteady Stokes problem becomes,

A, B
Gt = ; (346)
BT O
where the sub-blocks are defined as
A=A, @A e RPN with A, = [D] QM + Iy ® A, (3.4.7)
and
_ | ®B L gevoane (3.4.8)
In ® By

Analogous to the steady case, the following are the main features of this scheme for

the unsteady Stokes problem:

1. the velocity is not exactly divergence-free,
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2. this method is a spectral-Galerkin scheme in space and collocation in time;

3. there are no spurious modes for pressure.

3.4.2 Analysis

We now analyze the proposed scheme for the unsteady Stokes problem, with the ob-
jective of formulating a condition number estimate for the global space-time spectral
operator. We begin our analysis by giving the proof of a well-known numerical fact
about the norm of Chebyshev derivative matrix, stated in [22, p. 499] and depicted

by Figure |3.7al
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(a) Maximum singular value of [D]. (b) omin([D] @ MA~L +1).

Figure 3.7: Some singular value estimates for the unsteady Stokes problem.

Lemma 3.4.2. For N > 2, let D € RW+DXWN+D) pe the Chebyshev Gauss-Lobatto

pseudospectral derivate matriz, then |[D]|s < ¢cN2.

Proof. Since |[D]]2 < A/ I[Pl I[D]l|so, We evaluate the maximum absolute row and
column sum of [ D] by using Definition [3.4.1] Let C; and R; denote the absolute sum

of i-th column and i-th row respectively, for 1 < ¢ < N, then

N
Ci = |di| + > |dys]. (3.4.9)
2
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Figure 3.8: Singular values of A,.
Note that
i —T; cos%i - 1
i — 2 = _ 2w\ > 2wt
20 —a3)| 2(1—cos®Z) = 2sin® %
T N ) T
Note that — < — for 1 <7 < —, and since for 0 < z < —,
N 2 2 2
2z .
— <sinz <z, (3.4.10)
T
o . N
which implies for 1 <7 < ox
1 N2
(%)
, T  m(N —1 s )
and for — <i < N —1, N < (N> < 5 by applying (3.4.10))
1 1 1 N?
’dn’<21n27m_2 2(£<N_ ))< 22: 4
sin” 5 sin® (& ) ) (N)
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Also, for i = N, |dyn| = %{f“ < cN? thusforall 1 <i< N,

|dii| < eNZ. (3.4.11)
For a fixed 1 < j < N,
( 1)7,+]
dii| = _—
Z’ il = Z &j(xi — ;)
z;ﬁj z;ﬁj
X1
<2
i; |z — ;]
i#]
Y 1
<2 :
¢=Z1 ‘cos & — cos ”—]é
i#j
_ i 1
N G+i)m o (G=iw |
3;} ’sm o sin gt

Forl<i<j_1 = <U=0m_ g by applying (3-4.10)

sin ((j —i)ﬂ) -9

2N N

Forj+1<i<N, % < - U ;]\;)W g which along with (3.4.10) implies

U= g (—W) < —(j;]\f)ﬂ,

sin ((] 2—]\;)7)‘ _ sin ((j 2—]\;')7)

as |[j—i| =—(j—1i) and

72



1 N

n— < — thus
g (V97 j =il

2N

therefore, for all i # j and 1 < i < N, implies

N 1
Z-Zl ‘dl_]’ Zzl S ( j + Z )' ‘
i#] 1#]

Since (5 + z)% < g implies 1 < N — j, split the above sum as follows

N N—j 1 N 1

Dldil < N — +N )] —

L (J+i)m\|,. . T I AV LY

=1 =1 sin [ ~———— )| |7 — i =N—j+1 |sin [ ~——— || |j — i
2N 7] 2N

1#] 1#]
—: NS, + NS,. (3.4.12)

For Si: Note that 1 <i < N — j gives % < ( ;]\?)W < g, by applying ((3.4.10))

gin (U™ 20+ g)m  (i4])
2N T 2N N

which implies

| 2
as |j—i| <7+ 7 and z::n2:6
For Sy :Since N—j+1<i< Nyields N+1<i+j<2N-—-1,as1+j =2N
= j = N, which does not hold since ¢ # j. Therefore, % <
(2N—(i+j))7r<(2N—1)7r

ON < 5N < g, so by using ((3.4.10))

an (G20 _ g (O D) 2N = (et s _ N (i)

if and only if ¢

2N -

2N N ’

=
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therefore

N
1
Sy < N — —
l'_NZ:j+1 |j _Z|(2N - (7’ +]))
i%)

N N
1 2,2 2

it o
<N ———— < N/ ——=—N.
Z Z (2N — (i +j))? 6 6 6

—
i=N—j+1 lj — i=N—j+1

1#£] 1#]
N ﬂ_Q
Thus, | |dy| < 2N2E < eN2.
i=N—j+1
i#]

By using the results of the above two cases along with (3.4.12)), 21{1 |dij| < cN?,
i#j

which along with (3.4.11)) in (3.4.9)) yields C; < ¢N?, for all 1 <i < N. Hence,
_ ‘ 2
IO = max C; <cN-.

Similarly, [[D]]« = maxi<;<y R; < ¢N?, which gives the desired result. O

Remark 3.4.3. The above proof is easily extended to prove that o (D) < ¢N?,

since we only need to add the contribution of |dg;| < ¢N? to each C;.

The analysis of the unsteady Stokes problem is much harder than in the steady
state because of the presence of the Chebyshev derivative matrix D, which is a non-
symmetric matrix with an indefinite symmetric part. These properties are inherited
by the leading block A; of the global space-time spectral operator GG;. There are no
results in the literature for approximating spectrum of a saddle point matrix with
the leading block of the form A;. Several results exist for estimating the spectrum of
a symmetric saddle point matrix, thus creating scope for approximating the singular
values of Gy, as they are the square-root of the eigenvalues of GI G;. However, the
parameters for such a gram matrix could be difficult to analyze, thus we refer to the

following result which is derived in Chapter [5]
Theorem 3.4.4 (See Corollary [5.6.6). For a non-singular saddle point matriz, X =
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[ﬁ, BOT], so that A and B are full rank, [54)] gives the following estimate
Omin(X) = V1 —cos @ - min {omin(A), omin(B)}, (3.4.13)

where 6 is the minimum principal angle between the range space R <[A BT]T> and
R <[B O]T> :
Note that (3.4.13)) on G; gives

Omin(Gt) = V1 — cos€ - min {omin(Ar), Omin(B)} . (3.4.14)

We could not estimate the term +/1 — cosf, for which a numerical evidence Fig-

ure suggests
VI—cosh > — (3.4.15)

>ﬁ'

Another estimate that has been difficult to show is
Omin ([D]@ MA™ +1ony) = a1, (3.4.16)

where 0 < ¢; < 1 is a constant, as portrayed by numerical evidence Figure [3.7h]
In the following result, we provide a condition number estimate for GG; by using

computational and theoretical techniques.

Theorem 3.4.5. For N > 4, let Gy be defined by (3.4.6). Assume eqgs. (3.4.15))
and (3.4.16) hold, then k(G;) < CNS.

Proof. We begin by estimating the maximum singular value of A;,

Tmax(At) = [Ad2 = [[D]@ M + Iy ® Al
< |[[D]® M ® M|z + | In ® A2 (since M = M ®@ M)

= |[D]l2] M]3 + [ A2
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< cN%-c+ceN < ceN?,

which is obtained by using Lemmas |3.3.2| and [3.4.2] and Theorem [3.3.3] It remains

to estimate the minimum singular value of A;.

Omin(Ar) = Tmin (([D1 @ MA™ + Iny) (In ® A))
= Omin ([D] R@MA! + ]N19) Omin (IN ® A)

= C10min (A) )

is obtained by using (3.4.16)), thus Theorem |3.3.3| gives oyin(A;) = %, and o(A; @
o c
Ay) = o(A;) implies oy (Ar) = Nz

Next, we estimate the singular values of B. Since B B = Iy® BT B, Lemmam
gives rank(B” B) = rank(Iy)-rank(BT B) = N -rank(B) = Ngp. Hence, B is full rank.

Also, A(B” B) = A(Iy)A(BTB) = A(B” B), hence o(B) = o(B), thus Lemma [3.3.7]
> =
N2

Finally, for G, by following the proof of (3.3.43]),

implies 0. (B) < ¢ and oy, (B)

Omax(G1) = [|Gill2 < Tmax(Ar) + Omax(B) < eN? + ¢ < eN2.

For the minimum singular value of Gy, egs. (3.4.14) and (3.4.15)) imply

Thus x(G;) = Tmax(Git) < cN°®. O

9 min(Gt)
The above estimate is not sharp, as numerically Figure hints that o, (Gy)
behaves like O (N72%), suggesting k(Gy) ~ O(N*?).
In the unsteady state, we implemented the scheme derived in Section for

the Stokes problem defined by (3.1.2). Based on our interest in analysis, we selected
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Figure 3.9: Singular values of G;.

Chebyshev Gauss-Lobatto collocation in time, which can easily be replaced by other
polynomials. For our implementation on MATLAB®, see [52], we take fi, fa, SO
that the exact solutions are u(x,y,t) = (cos(mz) + 1) sin(27y) sin(0.57t), v(x,y,t) =
(0.5) sin(7x)(1 — cos(2my)) sin(0.57t), p(x,y,t) = sin(wz) cos(my) sin(0.57t), satisfy-
ing the boundary and initial condition. The spectral convergence of this scheme is

easily observed in Figure
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(a) Value of v/1 — cos 6. (b) Convergence.

Figure 3.10: Numerical results for the unsteady Stokes problem.
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3.4.3 Convergence

In this section, we discuss space-time spectral convergence of our method for the
unsteady Stokes problem, as spectral convergence of the Py — Py_s scheme for the
Stokes problem in steady state was proved in [12].

Let || - lo., denote a weighted L? norm defined as

1
2= | [flry,t)———=dadydt.

1£16. = . %

The above norm is designed to incorporate the weight functions for the Legendre
polynomials in space and Chebyshev polynomials in time. Recall that the velocity
obtained by the scheme devised in this section for the unsteady Stokes problem is not
exactly divergence-free, as implied by . Moreover, the uniqueness of solution
for this scheme is a direct consequence of Theorem [3.4.5] thus we prove the following

result infusing the conditions of the aforementioned result.

Theorem 3.4.6. Let u,v, and p be the solution of (3.1.2). Assume u, v, and p are
separately analytic in each variable. Let N = 4 and uy, vy, and py be the solution

of the space-time method, of the form (3.4.2)), with matriz defined by (3.4.6). If
egs. (3.4.15) and (3.4.16) hold, then for a large enough N

0w < N8 N,

Ju —uy ‘O,w + |v —on ‘O,w + lp — pn—2

Proof. Consider the exact solution and its truncation as follows,

0 N—-2N-2
u(iB, Y, t) = Z Z ﬁzg <t>¢z($)¢] (y): HNU = ﬁw (t)éz(w)gbj (y),
i=0 j= =0 5=0
0Jooo N-2 ]j\/fz
o(w,y,1) = 3, 3, Vi(8)ou() 5 (y), Myv = F5(6) i) (1),
1=05=0 =0 j=0
0 N—-2 N-2
p(l‘, Y, t) = Z Z f)l] (t)L,(fL’)L] (y)7 HN_Qp = 151] (t)LZ(I)LJ (y)
i=0 j=0 i=0 j=0
i+5>0 i+5>0
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Let Jyu denote the truncation error in velocity w, that is, Iyu(x,y,t) = (u —
Myu)(x,y,t), similarly, let Iyv and Jy_op denote the truncation error of velocity

v and pressure p, defined as v — I[Iyv and p — [1y_op, respectively.

Define semi-discrete solutions for 2)) representing (|3 as follows

N-2N-2
= 0Dyt 0i(y)
=0 j5=0
N-2N-2
UN = i (1) di(7) P (y)
i=0 j=0
N-2 N-2
PN-2 = pij(t)Li(z) L;(y),
i=0 j=0
i+75>0
where w;;(t Z wijkli(t), and similarly v;;(¢) and p;; are defined, which implies

wij(te) = wijk, vw(tk) = Vijk, and p;;(tx) = pijk, for t, are Chebyshev Gauss-Lobatto
nodes, 1 < k < N. Also, define t, = [t1;t2;...;tn].

Define the error in truncated and approximated solutions as

e“(gs,y,t) = (HNU —UN)([L’,y,t),
e”(x,y,t) = (HNU - UN)(%?/J%

€p($,y,t) = (HN—2P _pN—Q)(xayvt)'

Also, define the error vectors as E* = [EY; EY;. .. EN], BV = [E}; ES; ... EX,
E? = [EV; ES; ... EX], where for 0 <4, < N —2and 1 <k < N, E} = [;(t) —

wijr], Ef = [¥ij(te) — vije], and only E} = [p;;(tx) — pije] is considered along with
the condition ¢ + 5 > 0.

Recall that for given f; in eqgs. (3.4.1a)) and (3.4.1b)), for k = 1,2, so that at time

t =t., fr(x,y,t,) is analytic in €2, then it can be expressed as

N—-2N-2
flz,y, ZZ 5 i) (y), HNf};:ZZ £ i) b5 (y),
i=075=0 =0 j=
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where Ily f; is the truncation for fi and the truncation error is defined as Iy f] =
(fe(z,y,t,) —Unfl) for k=1,2and 1 <r < N.

For w € V, the first equation of the Stokes problem implies that the exact solution
u, p satisfy the following weak form, for all t € (—1,1), thus at time t = ¢;, where

1<k<N

(Ut(ﬂf, Y, tk’)v w) + ( - AU(QE, Y, tk)? ’U)) - (p(iE, Y, tk)a w:(:) = (fl(x7 Y, tk)? ’LU) <3417)
and the approximated solution uy, py_o satisfy

((un)e(z, y,te), wn) + (= Aun (2, y, tr), wn)) — (Pv—2(, ¥, th), (WN)a)

= (Iy ff, wy),

(3.4.18)

for all wy € Py v nV. Subtracting egs. (3.4.17)) and (3.4.18) for all 0 < m,n < N —2

gives

((u—un)e(z,y, th), i (2)Pn(y)) + (= Alu — un) (@, y, 1), dm(T)Pn(y))
— ((p = pv—2) (@, Y, tk), @, (2)n(v)) = ((fr — TN f1) (@, Y, th), Gm(2)n(y))

which gives

(ef'(z,y,th), dm(2)dn(y)) + (— Ae™(z,y, tr), dm(2)dn () — (€7 (2, y, k), &) () Pn(y))
= (INST O (@) 0n(y)) — (Tnvul@, y, t1)e, dm(2)dn(y))

- ( - A(Q?NU)(I, Y, tk)? ¢m(I>¢n(y)) + ((yN—ﬂ))(:pa Y, tk)? gzﬁ;n(x)gbn(y))
(3.4.19)

Define

=2

—2N-2

9(t) = (e"(z,y,1), om(7)Pn(y)) = (05 (£) = i (£)) (9i(2) 05 (), dm () bn(v)),

0 j=0

=
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then (3.4.19) becomes

gl(tk) + ( - Aeu(xa Y, tk)7 gbm(‘r)gbn(y)) - (ep(x, Y, tk)a gb;n(x)gbn(y))
= (nyf;» gbm(m)gbn(y» - ((yNU)t(xv Y, tr), ¢m(x)¢n(y))
— (= A(Ivu)(@,y, t), o (@) Dn(y)) + (Tn—2p) (@, Y, th), 01 (2) P (y)).

(3.4.20)
For any analytic z such that z(—1) = 0, recall the definition of the interpolant
N
Inz(t) = > 2(t)li(t). For 0< k<N -1,

=1

2 (tk) = (Inz) () + &
= ([P (@Zn(2) ()i + &

= ([D] (z(th)))i + &

where €, = (z — Znz)'(t1), according to [78], satisfies

€] < cNZe N, (3.4.21)

0

Since the initial condition is u(z,y — 1) = ue(x,y), recall that f;;(—1) = uijo = uj;,

therefore g(—1) = fy(—1) — ug(—1) = uf; —uy; = 0. Hence, the above expression

implies

g'(tx) = ([Dlg(t)y + €

- ([Dl S () — s t) (61(2)65 1), ¢m<x>¢n<y») e,
k

i=0 j=0

thus (3.4.20)) gives the first (N — 1)? equations for each time step t;, forl < k < N
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and 0 < m,n < N — 2 as follows,

([D]- (e"(2,y.th), dm(2)0n (1)) + (= Ae" (2, y, tr), o (2)Pn(y))
- (€p<w7 Y, tk)> ¢;n(x>¢n(y)) = (nyfa ¢m(x)¢n(y)) - ellc

(3.4.22)
= (Inu)e = A(Inw))(, y, tr), Gm () Pn(y))
+ ((9N72p) (iL‘, Y, tk)a (ﬁ;n(x)gbn(y))
Thus, the (N — 1)? equations together for all time steps 1 < k < N give
([D]@M + Iy ® A) E* + (Iy @ B)) E* = —¢; — R* — RY, (3.4.23)

where we define ¢; = [e];el;...;el], and for 1 <i <2

9

R = [ri(ta);rif(t2); - i (En)]
ri(te) = [(Infi + (Tvu)e — A(Tvw)) (@, y, 1), dm(2)du(y))], 0 <mn < N -2

ry(te) = [((In-2p) (@, 4, 0k), 0 (T)Pn(y))], O <mn< N -2

Similarly, the error equation for the velocity v in matrix form is given as

([D1®@ M + Iy ®A)E* + (Iy ® Bs) E* = —e; — R} — RS, (3.4.24)

where 73(t;) = [(Iv—2p)(®,y, tr), dm(x)Pl (y))], for 0 < m,n < N —2,. The exact
solution u, v satisfy the weak form of the third equation of the Stokes problem, for

all ¢ € L2(Q) and time ¢ = {;,

(¢, uz(z,y,tx)) + (¢, vy(x,y, 1)) =0, (3.4.25)

also, the approximate solutions satisfy the following for all gx_2 € Py_o x_2n L3(9),
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(an—2, (un)a(@, y, tr)) + (anv—2, (vn)y(@, Y, tr)) = 0, (3.4.26)

0 0
for all gv_2 € Py_o n—2n LE(Q). Since ¢ = Z Z GmnLm () Ly (y) so that gn_o =

m=0 n=0
m+n>0

0 0
Z Z GmnLim () Ly, (y), thus by subtracting egs. (3.4.25) and (3.4.26]) for all 0 <

3

,n < N —2 with m +n > 0 and incorporating the truncated solution

= (Lin(2) Lo (), e3(7,y, 1)) — (L) L (y), €y (2, y, )

(3.4.27)
= (Lm(x)LnQ/)a ((gNUJ)m + (gNU)yxma Y, tk))’
Thus, the following linear system is obtained.
(In® B{)E" + (I ® B] )E* = — R}, (3.4.28)

where RS = [rh(t1);r5(t2); .. .;75(tn)], and for 1 < k < N,

ry(te) = —[(Lm(2) L (y), (Tvt)e + (Tnv)y) (2, Y, 1))

where 0 < m,n < N —2,m+n > 0. Thus, egs. (3.4.20)), (3.4.24)) and (3.4.28) imply

Ay Onone IN® By Ev €1 RY RY
Ow,z\m A, Iy ® By E'l=—]e| — vaj _ RS

which is expressed as the following linear system
2
GE=—e— > R,

i=1

First, we estimate |G;F|,. To this end, (3.4.21]) implies ||, < cN2e™N, it remains

83



to estimate the infinity-norm of R; for 1 < ¢ < 2. For R;, note that the non-zero

entries of RY, for 0 < m,n < N — 2, are of the form

(Infi + (Tvu)e — A(Ivw)) (@, y, 1) dmn(2)9n(y))
= (ngfa ¢m(x)¢n(y)) + (((gNU)t(xv Y, tk)7 ¢m<m>¢n<y)) - (A(yNU»(ZEv Y, tk)a ¢m(x)¢n(y))

=: 57+ s1(tk) + sa2(ty).

Firstly, |s¢| < | InfTlolém(z)Pn(y)]o, by Theorem 5.12 in [64, p. 248] for the Leg-

endre truncation error estimate,

|s¢| < ce”ON.

Assume that s (tg) = 2/'(tx), where z(t) = ((Inu)(z, y,t), dm(z)d ( )) for some 0 <
N
n < N —2. The interpolant of z(t) is given as Zy z(t) Z —1)4y(t),

=1

then

s1(tr) = 2'(te) = (Inz) (tr) + ex = ([D] (Tn(2)(th))), + 2(=1)E (tx) + €k

= ([D] - 2(tn)), + 2(=1)fo (k) + ex

N
= dezz(tl) + Z(—l)a)(tk) + Ek,
i=1

where the error |e;| < cN%e N as derived in [78]. To estimate s;(Z;), note that for

2(t) = (Tvu)(@,y, 1), dn(2)60(y)) < | (Tnvu)(z,y,ti)]o < ce™

where we have used Theorem 5.12 in [64] p. 248] for the Legendre truncation error
estimate, i.e., (Iyu)(z,y,t;). Also, z(—1) = ((u — Uyu)(z,y, —1), o (2)dn(y)) <

el (uo — Tyu)(x,y)llo < ce”N. Since |[D]| < e¢N?, thus |dy| < cN?, and diy <
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cN?, therefore |s;(t;,)| < cN3e V.

Since s3(t) = ((Inu)(@,y, tk), =A(dm(2)Pn(y))), thus

[sa(th)] < ¢ (u = Tyu) (z, y, 1) o < ce” M.

Thus, |R%|, < cN3e N + 2ce N < eN3e 9N and similar estimate holds for

3 —CN

RY, hence |Ryq|o < cN2e “N.
For R,, its components consist of as r%, r%, and r5. We estimate the entries of r¥
; 2512 2 2

by using the same Legendre truncation error result, which gives

73 (te)l = [((Tnv—2p) (2, 9, tr), & (2)0u ()] < el (Tn-2p)(,y, ta) | < ce™T,

similar result holds for 73, and finally

Py (te)| = [(Ln (2) L (y), (Invu)e + (Tnv)y) (2,9, )]
< (Lo (@) Ln(y), (Inu) (@, y, )| + [(Lin(2) L, (y), (Tnv) (2, 1))

< | (Iwu) (2,9, )| < ce” N,

C

hence, | Ry < ce”“YN and implying the following estimate

3
GLE o < leloo + )| Riloo < eNPe N, (3.4.29)
=1

The next stage is to estimate the norm of error between the truncated and ap-

proximated solution defined e, e” and eP in the beginning of this proof. Since

¢i = L’L - Li+27
N N

(g, th) = ), ) e La(@) Ly(y),

i=0;=0
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where ¢}, = (L® L) By, 1 <k < N. From (3.4.3), it is easily proved that

1€l < VILRLlw < V2-2=2. (3.4.30)

Let the Chebyshev Gauss-Lobatto quadrature weights be denoted by w; = %,
where dy =2 =dy and d; =1for 1 <i < N —1, and W denote the diagonal matrix

containing the weights, W;; = w;, for 0 < ¢ < N, thus |[W][z < The weighted

£
N

norm of e" is given as

Similarly, the other two error estimates can be derived to get the following

2

el <c| (W@ LeL) B

2
2

lerli., < c| (W)@ I,) 7
’ 2

Define W), = ([W]% ®£®£> @ ([W]% ®£®£> @ ([W]% ®INW), then

1 1 &
Wills < max (W]} @ £® L1 W] @ I la} <

Define [e| = +/[e“[§., + [e*[3. + le?]3., then addition of the three estimates for

weighted norms of e*, e”, and e? yields,

el < c[WhEl,

< ¢ Wil Enl2
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C
< — |G YL |GLE
ﬁNH ¢+ 2| GeE],

Cc
= \/7NHGZIH2\/N(2(N — 12 = DI|GEly (as [z]z < /m|z|e, for any z € R™)

8 —CN
< cN°e ,

the last inequality results from Theorem and eq. (3.4.29). Thus, || < cN8e N,
which yields that for some big enough N, or N > ¢, the error in exact and approxi-

mate solution is

0w +le"]ow + [ Tnv

lu —unlow + v —vnlow + [P — Prv2low < | Tnu 0w
+ HGUHO,w + ”gN—QpHO,w + HepHO,w

< ce”N 1 e

8 —CON
< cN°e .

]

This concludes the proof of the spectral convergence in both space and time of the
Py — Py_5 scheme in space and Chebyshev Gauss-Lobatto collocation in time. Thus,

completing the analysis for a space-time spectral method for the Stokes problem.
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The Navier-Stokes problem

In the former chapter, a space-time spectral method scheme was analyzed for the
Stokes problem, which is a linearized version of the Navier-Stokes problem; momen-
tous to the field of fluid dynamics. Consequently, we extend the Py — Py_2 scheme,
introduced by [12], to the unsteady Navier-Stokes problem. Furthermore, we ex-
tend a staggered grid collocation scheme, derived in [II], to the unsteady Stokes
and Navier-Stokes problems. This collocation scheme is implemented by using the
quadrature nodes, such as the Jacobi Gauss, Jacobi Gauss-Lobatto and Jacobi Gauss
along with = +1. Due to the presence of the staggered grid, we derive the ex-
pression for the pseudo-spectral derivative matrix for the Jacobi Gauss nodes on
a closed interval for the convenience of application. It is an enormous challenge to
analyze the schemes derived in this chapter, thus we only present numerical evidence
of spectral convergence of this scheme in both space and time. However, the numer-
ical experiments are conducted for the Jacobi polynomials J*# for any values of the
parameters, o, § > —1.

The Reynold’s number, denoted by R,., is considered to be equal to one for
all of the problems considered in this chapter. It would be interesting to explore

the the highest Reynolds number flows that can be accurately computed by these
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numerical schemes. This is the limit where computations might be used to predict
the breakdown of a laminar flow into turbulence. Since a spectral method has a
super-algebraic decay in error, we may expect them to work for a flow with much
higher Reynold’s number. However, it is more tedious than it seems as there can be a
problem differentiating between numerical and physical smoothing. High Reynold’s

number flows require an especially accurate estimate of viscous stresses.

4.1 Introduction

The Navier-Stokes equations model the conservation of momentum and conservation
of mass for Newtonian fluids, thus describe the relationship between the velocity,
pressure, temperature, and density of a moving fluid. It is apt to call them the most
consequential problem in fluid dynamics, due to their extensive applications such
as modeling water flow in a pipe, ocean currents, air flow around a wing, weather
etc. Therefore, they help in design process of vehicles and airplanes, the study of
blood flow, area of magneto-hydrodynamics, and in analysis of pollution, among
others. They were derived over decades ranging roughly between 1822 to 1850 by
Claude-Louis Navier and George Gabriel Stokes. The Clay Mathematics Institute
designated the problem of proving the existence and smoothness of a solution of the
Navier-Stokes problem in three dimensions as a Millennium Problem, one of seven
mathematical problems, signifying its immense mathematical interest.

Recall that Q = (—1,1)%, ; = Q x (—1,1), the velocity field and pressure are
denoted by u = [u;v] € V := (H}(Q))? and p € L3(Q) := {qe LQ(Q)‘ $o0= O},

respectively. The Navier-Stokes problem in the unsteady state is stated as follows,

0 0
uﬁ—u—uﬁ-v—u—AzH—pz = fiin Q, (4.1.1a)
ox oy
ov ov )
vt+u%+va—y—Av+py = foin Q, (4.1.1b)
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Uy + v, = 0in €y, (4.1.1¢c)
u=0, v=0on 0,

U(l’,y, _1) = Uo(l',y), U(x>ya _1) = Uo(l’,y) in Q.

Our goal is to devise space-time spectral method schemes for the above problem.
In Section , we extend the Py — Py_s scheme for the Stokes problem to (4.1.1]).
Additionally, a staggered grid collocation scheme using the Jacobi polynomials for the

Stokes problem and the Navier-Stokes problem in the unsteady state are presented

in Sections [4.3.1f and 4.3.2] respectively.

4.2 Mixed spectral Galerkin scheme

The space-time spectral method involving the Py — Py_o scheme, a mixed spec-
tral Galerkin scheme in space and spectral collocation in time, was applied to the
unsteady Stokes problem in Section This section extends the aforementioned
scheme to the unsteady Navier-Stokes problem. Recall the approximation for the

velocities u and v, and pressure p, by (3.4.2)), which is given as follows

N-2N-2 N

un(z,y,t Z Z Z uije®i(2)0;(y)lu(t) € NN,N7
i=0 j=0 k=0
N-2N-2 N

un(z,y,t) = Z vijr¢i(2)d; (y)lk(t) € NN,N?
i=0 j=0 k=0
N-2 N-2 N

pn(z,y,t Z pijiLi(2) L (y) k(1) € Pn—2 N2, N,
i=0 j=0 k=0
i+75>0

along with their corresponding discrete vectors uy, v, and p,. Note that we only
need to discuss the discretization of the non-linear term (u - V)u, which requires the

following matrices:
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1. For a given index 0 < k < N — 2, the matrix 8% € R?*? is defined as
1
Pl = J—1 ¢i(x) ¢ (x) dr(x)d, 0<i,j<N-2 (4.2.1)
2. For a given index 0 < k < N — 2, the matrix TF € R?*? is defined as

1
T = | 6@)g;(@)dn(x)dr,  0<ij<N-2 (4.2.2)
—1

The above matrices are easily calculated by using Definition 3.2.1] that is, ¢; =
L;— Lj.s for j € Nu {0} and the following expression for the triple product of the

Legendre polynomials given in [71],

2
! ik
J Li() Ly (2) Ly () dx = 2 ,
-1 0 0 O

where the special case of 35 symbol, when 2s = i + j + k is even, yields

i jok _(_1)3\/(25—2i)!(25—2j)!(2s—2k)! sl

whereas it is equal to zero whenever ¢ 4+ j + k is odd.
Now, we are ready to discretize the four non-linear terms in (4.1.1]).

U
Term 1: The first non-linear term in (4.1.1a)) is u(a— Its weak form collocated at time
x

t=t.,forl<r<NandO0<m,n<N —2, is given as

0
N = (e (@, 1), 6 (2)00 (),
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Term 2:

which on using the approximation of u defined by ({3.4.2]) becomes equal to

2
[\.’)
=
[\3
2
l\’)
2

—2

1
=y it [ o @on @ [ 0,016,000y

[\DO
T
MO

2»@

MM ;
D7 LD

men
uijruqsrfplq Tj S

.
Il
o

<.
Il
=}
Q
Il
=}
V)
Il
=}

Now, we try to formulate it for a fixed 1 <r < N,and all 0 <m,n < N — 2,
(i)™ (20 @ P)up; (up,) (T @B )ujs -3 (up) (T @ P )i ]
the above (N — 1)% x 1 vector can be written as
N = ([H® (uZ)T)Wlu’,;, (4.2.3)

where we define W; € R?”*Yas s block column matrix with (m,n)-column as

(TP P™) e RV? forall 0 < m,n < N — 2.

0
The second non-linear term in (4.1.1a)) is va—u. Its weak form collocated at
)

time t =t,, for 1 <r < N and 0 <m,n < N — 2, is given as

NP = (0501, )60 (1),

which on using the approximation of u and v defined by (3.4.2)) becomes

1
sz’n’r = A Z Uzjrquf d)z qbq )Qbm( )d:t 1¢j<y>,¢s(y)¢n(y)dy

men
= Uzjruqsr‘ziqmjs
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Term 3:

Term 4:

Now, we try to formulate it for a fixed 1 <r < N,and all 0 < m,n < N — 2,
[(Wh)" (B @ Tu; (v) " (B @ T uzs .5 () (B @ TV )z ]
the above (N — 1) x 1 vector can be written as
Ny = (Iy @ (vj)" ) Waul,, (4.2.4)

where we define W, € R”*? as a block column matrix with (m,n)-column as

(P @T™ e R forall 0 <m,n <N —2.

0
The first non-linear term in (4.1.1b)) is w2 Tts weak form collocated at time

ox

t=t.,forl<r<NandO0<m,n<N —2, is given as

0
N3 = (u (2,9, Gn(@)n (1)),

so similar to (4.2.3)):

N; = (Iy ® (u),)" )Wy (4.2.5)

0
The second non-linear term in (4.1.1b)) is va—v. Its weak form collocated at
)

timet =t,, for 1 <r < N and 0 <m,n < N — 2, is given as

0
N (vaZ«c,y,tr), S ()60 (1)),

so similar to (4.2.4)):

Ny = (Iy @ (v))T) Wao. (4.2.6)

Thus, egs. (4.2.3) and (4.2.4) give the discretization of the non-linear terms in
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,fora111<r<N, and all 0 <m,n < N — 2, as
Wup, W=, (Iy®ul) Wi+ (I, @v]) Wa),

that is, W is a block diagonal matrix. Similarly, eqs. (4.2.5) and (4.2.6) give the
discretization of the non-linear terms in (4.1.1b) for all 1 < r < N, and all 0 <

m,n < N — 2, as Wwuy. Since these terms are non-linear, we implement a simple
fixed point iteration to solve the discrete unsteady Navier-Stokes problem, which is

given by eq. (3.4.5)) and the non-linear terms as follows,

(WED 4 [DIO@M + Iy @ A) ) + (In @ Bi) py” = (1y ®© Q) F1 — D ® Mugn,
(WED 4+ [D] @M + Iy ® A) off + (In ® By) pl) = (1y ® Q) Fy — D ® Mugy,

(Ivn® BY) uh 4 (In® Bj) ¥ =0,
(4.2.7)

where the non-linear term W®*~1 is a block diagonal matrix with NV — 1 blocks with

7

Wk (Iﬁ ® u;';(k*l)> Wi+ (Lg ® vf;(kfl)> W,. Here, uz(kfl) and vz’(k*l) represent
the component of u;, and vy, vectors for time ¢ = ¢; at (k—1)st iteration, for 1 <i < N.
The decay of error in L* norm at the final time step ¢ty = 1 for this scheme is shown
in Figure The schemes described in this chapter are implemented on MATLAB®
and are given in [52]. The iteration is stopped whenever the infinity norm of the
difference of two consecutive iterates is smaller than € = 1072, We take f; and f,

so that the exact solutions are

u(z,y,t) = (cos(mx) + 1) sin(2my) sin(0.57t),
v(x,y,t) = (0.5)sin(mz)(1 — cos(2my)) sin(0.57t), (4.2.8)

p(z,y,t) = sin(mzx) cos(my) sin(0.57t),

satisfying the boundary conditions, and giving initial conditions as u(z,y, —1) and
v(x,y,—1).
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Figure 4.1: Convergence of the unsteady Navier-Stokes problem with the Py — Py_»
scheme.

4.3 Staggered-grid collocation scheme

In [11], the authors presented a collocation scheme for the steady Stokes problem
that employs the use of different grids for velocity and pressure, thus the name
staggered grid. We extend it to the unsteady state by using the Jacobi Gauss-Lobatto
collocation in time. For given N, let Jf{‘/ﬁ denote the Jacobi polynomial of degree N,
orthogonal with respect to the Jacobi weight function w(z) = (1 —z)%(1 +x)”. The

grids for velocity and pressure are defined as follows.
1. The velocity u is defined on E%) ={m, (&) | 0<m,r < N,0<n <N +1}.
2. The velocity v is defined on ES@’ = {((m, &0, &) | 0<SmM<N+1,0<n,r<N}.
3. The pressure p is defined on E%’) ={(Cn, (&) | 1 <myn < N, 1 <r <N},

where {&;}1_, denote the Jacobi-Gauss-Lobatto nodes, {(x}i_; represent the Jacobi-

Gauss nodes, and we additionally define (, = —1 and (1 = 1. Thus, the approxi-
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mations are defined as follows.

=2
s

M=

N
u(x,y,t) = Z wiels (2)p;(y) lr(t) € P(J)V,NH,Na
i=0 j=0 k=0
N+1 N N
vz, y,t) = D0 vikbi(@) G (y)(t) € Py v
i=0 j=0 k=0
N N N
p(e,y,t) = Y > > Pikli(®) € ()0(t) € Py v-1,v-1-

s
Il
—
<
Il
—
B
Il
—

Since the problem definition contains homogeneous boundary conditions, u = 0 on
002 implies Uon, = UNpr = Umor = Un N1, = 0, forall I<m <N -1,1<n <N,
and 0 < r < N. Similarly, v, = Ung10r = Umor = Umny = 0, for all 1 < m < N,
1<n<N-1,and 0 <r < N. Also, pressure needs to have zero average, which is
enforced by setting pi1x = 0, for all time steps 1 < k < N. See Figure for a plot

of the grid of unknowns for the velocities u and v, and pressure p.

oVelocity u
0.83F ¢ o o o o Velocity v |
oPressure p

047 © o o 4 ° o

—047 o

—0.83} ¢ o o o ° oo

o o o o o o o

| | | | |
—0.83 —0.47 0 0.47 0.83

Figure 4.2: Staggered grid of unknowns in x and y axes for N = 6.

Therefore, on incorporating the homogenous boundary conditions and zero aver-

age condition for veloctiy and pressure, respectively, the following variable approxi-
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mations are obtained

N-1 N N
weyt) = 0TS wgeli()s ()0) € By o (43.20)
i=1 j=1k=0
N N-1 N
() = >0 0 D viepi (@) (W) le(t) € PRy v o s (4.3.2b)
i=1 j=1 k=0
N N N
p(x,y,t) = Z Z Z pirLi(®)L;(y) (1) € PN_1v-18-1, (4.3.2¢)

~
Il
—
Il
—_
e
Il
—

<.
+ <.
<.
Vv
N

where 0y, £;,, and pp denote the Lagrange polynomials for {&.}& o, {G}Y,, and
{Ck szJf)l nodes, respectively.

We define the discrete unknowns for the staggered grid scheme as follows.

1. For the velocity u, define u, = [ul:u2; ... ;uN] e RV*V-1 where
uf = (e Uark; - - - 3 UN— 1.0k} Uroks - - -3 UN—1 v k) € RVVTD, I1<k<N
2. For the velocity v, define vy, = [v};v2;.. ;0N ] € RV W=D where
UZ = [v11k; V2185 - - 3 UNLES V12k5 - - - UNN—1k]) € RN(N_1)7 1<k<N.

3. For the pressure p, define p, = [pL; p2;...;pN] e RVO*=D where

N
o
N
2

k . . . . . . N2-1
P = [Do1k; P3ks - - -3 PNAK; Pizks - - -3 DNNg] € R , 1

Let ® represent the Jacobi Gauss-Lobatto pseudo-spectral derivative matrix, the

expression for which is well-known, see [80, p. 89].

Definition 4.3.1 (Jacobi Gauss-Lobatto pseudospectral derivative matrix, see [80]).
For given N, let x; be the Jacobi Gauss-Lobatto quadrature nodes for 0 < i <

N. Let ¢; be the Lagrange polynomials for x;, where 0 < i < N and J(z) :=
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(9xJX,t11’ﬁ "1 (z). The Jacobi Gauss-Lobatto pseudospectral derivative matriz is defined

as ® := (0;7)o<ij<n, Where 0;; = £;(z;) given as follows.
1. For j =0:

a—NN+a+p8+1)
2(8 +2) ’

_ ] GO +2) |
< 2(N + 3+ 1) (1—mz)J(2;), 1<i<N-1,
(—DVT(B+2T(N +a+1)
2 (a+2T(N +3+1)

2. For1<j<N-1I:

( 2(—1)NT(N + B + 1)
T(N)T(B +2)(1 — 2;)(1 + 25)2 T (25)’
(1 —a7)J ()
=4 (- 23)J () (i — ;)
’ a—pF+ (a+ B)z;

20 —=3)
—2I'(N +a +1) _N
| TN+ 2) (T — 22T+ 2)d(z;)

3. For j = N:

[ (—1)M*D(a + 2)I(N + B+ 1) 0
A (B+2)(N +a+1) 7 ’

D(N)T(a + 2
N(N+a+p+1)-p N
| 2(a + 2) ’ LA

Due the presence of staggered grid, the grid for velocity v requires the pseudo-
spectral derivative matrix for {(;}r ;. Such a quadrature employing Gauss quadra-
ture nodes along with the end points is unusual. Thus, we derive the following

expression.
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Definition 4.3.2 (Jacobi Gauss pseudospectral derivative matrix on a closed inter-
val). For given N, let ©g = —1, zy41 = 1 and z; be the Jacobi-Gauss quadrature
nodes for 1 < i < N. Let p; be the Lagrange polynomials for x;, where 0 <i < N+1.
The Jacobi Gauss pseudospectral derivative matriz on a closed interval is defined as

9 = (di,j)OSi,j<N+17 where d@j = p; (.TZ> given as follows.

1. For j =0:
(TP (=1) = 20,J%° (1)
—2J37(—1)
(1 — 2)0,J%" ()
2737 (~1)
Iy’ (1)
[ —2J%7(=1)

)

2. For 1 <j < N:

( —2Jy"(-1)
(1 +2;)2(1 — 2) 0, 8" ()
(1 — 22)0, 3" ()

(1 — 220, Jy" (2)(x; — ;)

, 1# ), 1<i<N

d@j =
a—ﬁ+(a+f—2)xj’ l<i—j<N
—2J%P(1
v (1) —— i=N+L
U (1 +25) (1 — 25)20: Iy ()
3. For j =N+ 1:
( (]CY,B _1
rEi] o
2Jy7(1)
1 A aB..
dins1 = ( +x’)fj‘;JN (x"), 1<i<N,
2J%7 (1)
JEP(1) 4 20,057 (1
N()tyﬂ N()7 i— N +1.
\ 2JN’ (1)

The proof for the derivation of the above formula is not presented here, as it is

similar to that of other pseudospectral derivative matrices discussed in the literature

99



such as [80, 64].

4.3.1 The Stokes problem

The Stokes problem in unsteady state is given by (3.1.2)). Firstly, the initial condition
u(z,y,—1) = uo(x,y) and (4.3.2a) collocated on (&, ¢,) for all 0 < m < N and

0<n<N+1, gives

N-1

N N
2 Zuwk@ (Em )P (G ) le(=1) = uo(&m, Cn)

i=1 j=1k=0

Umno = Uo(fma Cn)a

thus uf) = upg, where ung = [uo(&o, Co); - - - 3 uo(En, Cvat)]-
Similarly, v(z,y, —1) = vo(z, y) and collocated on (¢, &) forall 0 < m <
N +1and 0 <n < N, gives v) = vpg, where upg = [uo(Co,&0); - - -3 uo(Cnrt, EN)]-
Define the collection of boundary and initial nodes as E(()x) = {(£1,¢n,tr) |1 <

n<N1<r < NpO{(&mtLt,)[1<m<N—-1,1<r<N}U{(€mn o —1)|1<

m<N-11<n<N},and ZY = {(+1,&,t,)[1<n<N-1,1<r<N}u

(G £ 1,8) [ 1<m <N, 1<r < NFU{(Gn & 1) |1 <m < N,1<n<N -1}
In order to perform staggered grid collocation on the unsteady Stokes problem,

we need the following interpolation matrices.

1. The pressure derivative interpolation matriz B € RNV is defined as

B = L&), 1<i<N-1, 1

N
.
N
=

(4.3.3)

2. The wvelocity derivative interpolation matriz ¢ € RN~V is defined as follows

Cy=0(G), 1<i<N, 1<j<N-L (4.3.4)
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In this scheme, we perform the following collocation on the Stokes equations egs. ((3.4.1al)
o (BA19),

(ue — Au+p,) (2,9,1) = fr(z,9,1),  (z,y,t) € ZWN\ES, (4.3.5a)
(v — Av+p,) (2,5,1) = fo(z,y,1),  (z,y,1) e ZV\EY, (4.3.5b)
(e +v,) (2,9.8) =0, (z,y,1) e Y. (4.3.5¢)

Consider (4.3.5a]) for some l<m < N—-1,1<n<N,and 1<r <N

Z umnkgl gr Z uznreﬂ Sm Z um]?"p Z pznr'gl gm) f1(€m7Cna€r)
7=1
N 2
Z umnkgk gr Z uznreﬂ Sm Z m]rp] Z pznr'gl gm) f1(€m7Cna€r)
k=1 i=1 j=1
z+n>2

— Uo (§m7 Cn)a)(ér)

By (4.3.3), Definitions [4.3.1]and [4.3.2] the above equation gives the following matrix

form,

Riup + (In @ (In @ B)]) pr = fin — don & Uno, (4.3.6)

where

A = D)@ Inv-1) + IN2 ® (D] + INn®[2°] ® In-1.

Similarly, (4.3.5bf) gives,

Rovp + (In @ (B ® In)]) pr = for — on @ vno, (4.3.7)
where
Ry = [D] ® Inv—1) + Inv— 1)®[QH+IN®[[QQH®IN
Finally, eqgs. a,ndmforsomel n<N. m+n>2 andl <r<N
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gives
N—

N-1
Z uznr@({m Z m]r£/ Cn - 7
i=1

which in matrix form becomes

([N®[([N®¢))uh+ ([N®[(¢®[N)) Vp = 0. (438)

On using eqgs. (4.3.6) to (4.3.8), we obtain the following discrete unsteady Stokes

problem,

Riup + (In @ (In @ B)]) pr = fin — don ® Uno,
vy + (In Q@ (B R In)]) pr = fon — Von & Vo,

UINn@[Un®E))up + (In®[(E® In)) v = O.

The spectral convergence for this scheme is evident from Figure [4.3] which depicts
the decay of error in L* norm at the final time step ¢y = 1 for this scheme is shown in
Figure 1.3l We take f; and f, so that the exact solutions are the functions defined
by . They satisfy the boundary conditions and produce initial conditions
as u(x,y,—1) and v(x,y,—1). An efficient way of solving such linear systems is
by implementing Uzawa algorithms and augmented Lagrangian Uzawa methods for

solving saddle point problems.

4.3.2 The Navier-Stokes problem

Let us extend the staggered grid collocation scheme to the unsteady Navier-Stokes

problem as follows.

0 u
Yot Au o) (2, y,t) = fi(z,y,t), (x,y,t) € HN)\H (4.3.9a)

Uy + U=
(ur + u s o

102



10t

—a- Error for velocity u
—— Error for velocity v | |
——Error for pressure p

1004

error

Figure 4.3: Convergence for the unsteady Stokes problem by staggered grid colloca-

tion scheme in space and collocation in time with o = —0.5 and § = 1.5.
ov ov =W\ =)
(Ut_‘_u% +’Uaiy —AU—pr)(iE,y,t) = fg(ﬂf,y,t), (l‘,y,t) € =N \‘:0 ) (439b)
(uﬂﬁ + Uy)(x7 Y, t) = 07 (:C7 Y, t) € E’S\I])) (4390)

Again, we only need to discuss the discretization of the non-linear term (u - V)u,

which requires the following matrices:

1. The Lobatto-Gauss bases interpolation matriz 4 € RV*N=1 is defined as

Ui = £;(4), I<i<N,1<j<N-1. (4.3.10)

2. The Gauss-Lobatto bases interpolation matriz 20 € RN~V is defined as

W, = p;(&), 1<i<N-1,1<j<N. (4.3.11)

Now, we discretize the four non-linear terms in (4.3.9).

0
Term 1: The first non-linear term in (4.3.9a)) is ua—u Its collocation on (&, (s, &) €
x

E%)\Eéz), thatis, for I<m < N —1,1<n < N,and 1 <r < N along with
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Term 2:

Term 3:

[323) gives,
N-—1
Umnr Z uzan;(ﬁm)
i=1

In matrix form, by Definition [£.3.1] the above equation is written as
diag(up,) - (In2 @ [D]). (4.3.12)

0
The second non-linear term in (4.3.9al) is va—u. Its collocation on (&, n, &) €
Y

—(z) —.(w

ZEN\Zy s thatis, for I<m < N—-1,1<n<N,and 1 <r < N along with

egs. (4.3.2al) and (4.3.2b)) gives,

N N— N
Z Z VP (En) () D o0 (G)-

j=1

In matrix form, by Definition [4.3.2] eqs. (4.3.10]) and (4.3.11]), the above equa-

tion becomes

diag (In @ U W)vy,) - (IN®[Z2] ® In-1) - (4.3.13)

0

The first non-linear term in (4.3.9b)) is ua—v Its collocation on ((p,&n, &) €
T

”(y)\HO ,that is, for 1< m < N, 1 <n < N —1,and 1 <r < N along with

egs. (4.3.2al) and (4.3.2b)) gives,

N-1

N
Z Z 1JT Cm p] gn Z/Uzm‘p Cm .

In matrix form, by Definition [4.3.2} egs. (4.3.10]) and (4.3.11)), the above equa-

tion becomes

diag (I ® W huy,) - (Inv-1) ® [Z]) - (4.3.14)
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0
Term 4: The second non-linear term in (4.3.9b)) is 022 Tts collocation on (Cmy&ns &) €

dy
=WN\EW thatis, for l<m < N,1<n<N-—1,and 1 <r < N along with

(4.3.2b)) gives,

N-1

Umnr Z Umjrgg' (6”)

j=1

In matrix form, by Definition [£.3.T] the above equation becomes
diag(vy) - (INn® [D] ® In) . (4.3.15)

Since the terms derived above are non-linear, we implement a simple fixed point

iteration to set, thus (4.2.7) and the non-linear terms eqs. (4.3.12)) to (4.3.15) yield

the following discrete unsteady Navier-Stokes problem,

<‘ﬁ§’“) + ﬂl) up ™ 4+ (I ® (v @ B)) pi™Y = fuin — don © o,
(‘ﬁék) + 2(2) Y L (In® (B IN)]) o = for — don ® Vo,

(Iv® [y @) uy ™ + (In@[(€® 1)) vy " = O,
where the matrices are defined as follows

A = D] Inwv-1) + In2 @ [D*] + In ® [2°] @ In—1,
Ay = [D]® Inv_1) + Inv-1) @ [2°] + Iy ® [D?] ® I,
n® = diagm (In2 @ [9]) + diag ((Iy @ 4@ W)l ) - (In @ [Z] @ Iy-1).

N — diag ((Iv @ W@ Wl ) - (Ivv—1) @ [7]) + diag(v}?) - (In ® [D] & L)

The super-algerbaic decay of error in L* norm at the final time step ty = 1 for this
scheme is shown in Figure [4.4 The iteration is stopped whenever the infinity norm
of the difference of two consecutive iterates is smaller than € = 107!2. We take f;

and fo, so that the exact solutions are functions defined by (4.2.8]). They satisfy the
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—=— Error in velocity u

10t £ —— Error in velocity v |4
——Error in pressure p

Figure 4.4: Convergence for the unsteady Navier-Stokes problem by staggered grid
collocation scheme in space and collocation in time with a = § = 0.

boundary conditions and yield initial conditions as u(z,y,—1) and v(x,y,—1). In
addition to the fixed point iteration being used in case, we can implement other non-
linear solvers such as the Newton’s method, non-linear SOR, non-linear conjugate
gradient, etc. The schemes derives in Sections and considered the Reynold’s
number to be equal to 1. It is of great interest to test the performance of these

schemes for higher and lower Reynold’s number flows.

106



New lower bounds on the

minimum singular value

This chapter is a consequence of the analysis conducted in Chapter [3] in which
estimates for eigenvalue or singular value were derived for some specific matrices.
Such estimates enlightened us with the understanding of structure of matrices to
derive more general results. The study of constraining the eigenvalues of the sum
of two symmetric matrices, say P + @, in terms of the eigenvalues of P and (), has
a long history. It is closely related to estimating a lower bound on the minimum
singular value of a matrix, which has been discussed by a great number of authors.
The question that originated the work presented in this chapter is a basic problem
of classical linear algebra: “Can we derive a positive lower bound on the minimum
eigenvalue, A\yin (P + @), when P + @ is symmetric positive definite with P and @
singular positive semi-definite?”

To the best of our knowledge, no study has yielded a positive lower bound on
Amin (P + Q). According to Sophie Germain, “Algebra is but written geometry and
geometry is but figured algebra.” Omne approach that provides an answer to the

question mentioned above is a geometrical property of fundamental bases of linear
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algebra, the Friedrichs angle between range spaces of matrices P and @). It aids us
to formulate new lower bounds on the minimum eigenvalue of a symmetric positive
definite (SPD) matrix.

We derive two new lower bounds on Ay, (P + @) in terms of the minimum pos-
itive eigenvalues of P and (). The basic result is when P and () are two non-
zero singular positive semi-definite matrices such that P + () is non-singular, then
Amin(P + Q) = (1 — cos 0p) min{A\puin(P), Amin(@)}, where A, represents the mini-
mum positive eigenvalue of the matrix, and 0 is the Friedrichs angle between the
range spaces of P and (). Such estimates lead to new lower bounds on the minimum
singular value of full rank 1 x 2, 2 x 1, and 2 x 2 block matrices. We provide some
examples to further highlight the simplicity of applying the results in comparison to

some existing lower bounds.

5.1 Introduction

The spectral problem of a symmetric matriz sum estimates the eigenvalues of a sum of
two symmetric matrices P+ (@), in terms of the eigenvalues of P and (). Fundamental
results, like Weyl’s inequality in [44) p. 239], and several other works collected in [25],
have addressed this problem. Another substantial contribution is Horn’s conjecture
proved in [55, [56]. The present work is focused on the case when P and @) are sym-
metric positive semi-definite (PSD) matrices, which impacts numerous areas-such
as computational economics, graph theory, perturbation theory, semi-definite pro-
gramming, spectrum of self-adjoint operators, among others. As variance-covariance
matrices are PSD, this problem appears in statistics, and more recently in statistical
machine learning and spectral methods for data science, discussed in [6] and [21],
respectively.

Singular values have been investigated for more than a century. For a square real
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matrix, its minimum singular value is less than or equal to its absolute minimum
eigenvalue. Thus, formulation of a lower bound for the minimum singular value is an
influential problem appearing in several studies including the condition number esti-
mates of a matrix, resonant frequencies, population dynamics, principal component
analysis, etc. Since singular values of a matrix are square-root of eigenvalues of its
corresponding gram matrix, the singular values of a general block matrix are associ-
ated to the spectral problem of a sum of symmetric matrices. Although a myriad of
research has been done on these topics, however, when the symmetric matrices are
both singular PSD, we could not find a result providing a positive lower bound even
if their sum is non-singular.

In practice, we often come across symmetric positive definite (SPD) matrices
represented as a sum of two singular PSD matrices. To illustrate, let us estimate the
minimum singular value of a full rank block column matrix, say A = [ﬁ;] so that
A; and A, are rank deficient. This problem is equivalent to finding the minimum
eigenvalue of ATA = AT A, + AT Ay, an SPD matrix which is a sum of two singular
PSD matrices. We derive a positive lower bound on the minimum singular value of
A in terms of the minimum positive singular values of A; and A, in Corollary
A similar problem was encountered in Lemma [3.3.7]

In this work, we desire a positive lower bound on the minimum eigenvalue of
an SPD matrix P + @), where P, () € R"™™ are PSD matrices. Two positive lower
bounds on the smallest eigenvalue of P + (), framed in terms of the smallest positive

eigenvalues of P and Q, are presented in Theorems [5.4.1) and [5.4.4] These estimates

of the minimum eigenvalue employ the Friedrichs angle between certain subspaces,
i.e., some principal angle between them, as shown in Proposition A notable
application of principal angles is canonical correlations of matrix pairs given in [35],
and in many other areas, namely eigenspaces, functional analysis, matrix perturba-

tion theory, statistics, etc., are found in [57, 86 26], 23], respectively. The spectral
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problem of a sum of two PSD matrices is closely related to the first aforementioned
application of canonical correlations, and its dependence upon the Friedrichs an-
gle elucidates geometric aspects of spectral theory. Moreover, the two new lower

bounds lead to useful outcomes when applied to a 2 x 2 non-singular block matrix

M =[4B]. Note that M7 M can be calculated as follows,

AT CT||A B ATA ATB ctc oD
M™M = = n
BT DT||C D BTA BTB DTC DTD

Also, MTM is a full rank matrix expressed as a sum of two PSD matrices.
Therefore, the above expression admits a lower bound on the minimum singular
value of M, in terms of the minimum positive singular values of its blocks A, B,
C, and D (Theorem [5.6.3). One of these results were used to solve Theorem [3.4.5
Finally, the above expression and M M7 are used again to get two lower bounds on
other singular values of M in Theorem [5.7.2]

This chapter is organized as follows. A brief survey of results related to the ones
derived in this chapter is presented in Section [5.2] and Section describes the
notation and fundamental results used later. In Section [5.4], we prove some new
positive lower bounds on the minimum eigenvalue of a matrix and discuss the origin
of those estimates with the help of some theory and examples in Section [5.5 In
Section [5.6] the new eigenvalue estimates are used to derive new lower bounds on
the minimum singular value of some full rank block matrices. In addition, some
examples and special cases for these results are discussed. Finally, estimates for

some other singular values are mentioned in Section
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5.2 Literature review

There is an abundance of results related to these problems in the literature. We

attempt to summarize some of the existing focal results related to the ones developed

in Sections [5.4] 5.6 and [5.7]

5.2.1 Minimum eigenvalue of sum of two PSD matrices

The problem of estimating a lower bound on the minimum eigenvalue of sum of
two PSD matrices has been investigated for many years. One of the most funda-
mental results is Weyl’s inequalities given by Theorem [2.1.6] and more generally by
Theorem [5.3.3] which estimates the eigenvalues of a sum of symmetric matrices.

R. Bhatia and F. Kittaneh established a lower bound on eigenvalues of sum of
two PSD matrices (Theorem [5.3.5)). They posed the question of a generalization of
arithmetic-geometric mean inequality in [16], which stated that for two PSD matrices
P.Q e R™™ N\(P+ Q) = 2/0;(PQ), for all j = 1,2,...,n. It was proved by S.
Drury in [27]. However, all these results give a trivial lower bound for the case in
which P + @ is non-singular, and both P and @) are rank deficient. Some additional

properties for sum of two symmetric matrices are listed in [59)].

5.2.2 Spectrum of saddle point matrices

One of the most commonly seen 2 x 2 block matrices of the form M = [ BAQT 13(1; ], where

A € R™™ and one or both of By, By € R™*™ are non-zero, is called a saddle point
matriz. See [8], for a good survey of results on saddle point matrices. In particular,
see Theorem 3.5 in [8, p. 21|, which estimates the spectrum for the case when A is
SPD, By = B, is full rank, and C' = O. A noteworthy improvement was presented in
the form of Theorem 1 in [4, p. 341] with a positive or negative semi-definite matrix

C, also mentioned as Theorem [3.3.8] However, it can be difficult to estimate the
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parameters defined in this theorem while being applied to some gram matrix of 2 x 2
block matrix. Another applicable result for the spectrum of a preconditioned saddle
point matrix can be found in [83].

To formulate the spectrum of a more generalized saddle point matrix, several
advancements have been considered, such as defining B = BT = — B, in [9, 10, 82, 2].
Another step forward was to have a symmetric indefinite leading block A. The
first of such case was proved in [37], by imposing the condition that A is SPD on
N(B), which was eliminated in [5]. Recently, in [45], A has been considered to be
a non-symmetric matrix with a positive definite symmetric part with C' = O, which

originates from discretized Navier-Stokes equations.

5.2.3 Lower bound on the minimum singular value

Several techniques are reported in the literature for formulating a lower bound on
the minimum singular value of a particular type of matrices; however, we attempt to
mention seminal contributions to this problem for a general non-singular matrix. An
initial result for the special case of diagonally dominant matrices is derived in [96],
and for a non-singular matrix a consequential approach is Gerschgorin-type lower
bounds formulated in 76, [48]. The results evolved gradually into several stronger
versions, as seen in [49] [60, 50, T05]. Also, [42] devised a lower bound in terms of
the determinant, the 2-norms of the rows, and columns of the matrix. Some later
advancements of this result include [102} 104], 61] and the references therein.

It is well-known that for a 2 x 2 block matrix, the maximum singular value is
bounded above by 2-norm of the matrix consisting of 2-norms of its blocks, see

Theorem 1(f) in [85], p. 2630]. Thus, for X € R™*™,

A B IAl- 1Bl
X = o Xl s
C D

Icl 1]
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Since Tpmin(X) = Omax(X 1)L, so on applying this result to X! calculated in
terms of its blocks, an estimate of oy, (X) is obtained. One drawback of this method
is that the expression for X! can be quite problematic.

Another estimate was given in [97] for a block matrix with non-singular diagonal
blocks, which proved by using a block matrix technique that o, (X) = 09(X°),
where X'¢ represents the block comparison matrix of X', which results in a trivial

lower bound when X¢ is singular.

5.3 Notations and fundamentals

We now summarize the notation used in this paper. Let A € R™*" be a symmetric
positive semi-definite (PSD) matrix and recall that A(A) denote the spectrum of
A, that is, the set of eigenvalue of A. Also, p(A) denote the spectral radius of A.
If » = rank(A), then its eigenvalues \j(A) = X2(A) = ... = N\, (A), are such that

AM>0and \; =0forallr+1<i<n.

Definition 5.3.1 (Minimum positive eigenvalue). Let A € R™*™ be a PSD matrix

of rank r < n, define the minimum positive eigenvalue of A as

AM(A), ifA#O,
)\min(A) =

o0, if A=0.

For a matrix A € R™*", recall that rank(A) = rank(A”A) = rank(AAT). The
set of singular values of A is denoted by o(A). Let r = rank(A), then its singular
values 01(A) = 02(A) = ... = Omin(mqn)(A) are such that 0,(A) > 0 and o; = 0 for

all 7 + 1 <@ < min(m, n).

Definition 5.3.2 (Minimum positive singular value). Let A € R™*" of rank r < n,
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define the minimum positive singular value of A as

o, (A), it A+O,
Umin(A) =

o0, if A=0.

The above expressions for Ay, and oy, are defined for the convenience of nota-
tion for results derived in the next sections and their value is set as infinity for zero
matrices to ignore the zeros while calculating the minimum as it was required by the
formulations derived for zero matrices.

The Weyl’s inequalities are one the most consequential result providing a solution

to the spectral problem of a symmetric matriz sum. s

Theorem 5.3.3 (Weyl’s inequalities, see [43]). Let A, B € R™*" be symmetric ma-

trices, then for every pair of integers j, k such that 1 < j,k <nand j+k<n+1,

Ajsk-1(A + B) < Aj(A) + Ak(B),

and for every pair integers such that 1 < j,k<nand j+k>n+1,

Ajin(A + B) = A(A) + Au(B).

Another result which is significant to our analysis is the spectrum of product of

two rectangular matrices, given in [103], p. 57] and stated as follows.

Lemma 5.3.4 (Spectrum of product of matrices, see [103]). Let A € R™*" B €
R™ ™. Then AB and BA have the same non-zero eigenvalues (multiplicities counted).

If m = n, then eigenvalues of AB and BA are the same.

Finally, we state the following estimate on some eigenvalues of sum of two PSD
matrices is given in [14, p. 904] and [I5]. It will be used to give a simpler proof for

lower bound on some singular values.
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Theorem 5.3.5 (See [15]). Let A € R™" and B € R™", then

20;(ABT) < \j(ATA+ B"B), j=1,2,...,min(¢,m,n).

In addition to the results mentioned in the previous section, we need The-

orems [2.1.7], 2.1.8] and 2.2.3] Definitions and and Propositions
and [2.2.5] An alternative proof for two of these results are given in Appendix [A]

5.4 Minimum eigenvalue estimates

In this section, we derive some new lower bounds on the minimum eigenvalue of
a non-singular sum of two singular PSD matrices. As discussed in Section [5.1], a
positive lower bound on the minimum eigenvalue of a non-singular sum of two PSD
matrices, say P, € R"*" is the key tool for the development of a positive lower
bound on the minimum singular value of some full rank block matrices. Note that
N(P) n N(Q) = {0} when P + @ is SPD, however, the range spaces of P and Q)
may intersect. Let k = dim(R(P) nR(Q)), then the first k principal angles between
R(P) and R(Q) vanish: 6; = 0 for i = 1,2,..., k. Therefore, if 65, exists then
it could contribute in estimating the minimum eigenvalue of P + () in terms of the
minimum positive eigenvalues of P and (). Even when 6, does not exist, this idea
serves as a motivation for the following theorem for a pair of two PSD matrices with

a non-singular sum.

Theorem 5.4.1. Let P, Q) € R™*™ be PSD matrices of rank p, q < n, respectively, so

that P + @ is non-singular. Then

Amin(P + Q) > C(P7 Q) min {)‘min(P)a Amin(Q)} )
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where ¢(P, Q) is defined by

2, r=0,p+q=2n,

o(P,Q) =11, r=20,p+q<2n, (5.4.1)

1 —cos(brs1), 7T>0,
\

where k =p+q—mn, 0<0; <0< ... <0Oninpg < 5 represent the principal angles
between R(P), R(Q) = R", and r is the number of angles 0; so that 0 < 0; < 7, for

1 < i < min(p,q).

Proof. Since P, () are PSD matrices, there exist matrices o7, € RP*" and ) € R1*"
so that

P = e%17—”d17 Q = ’%T'%

Moreover, N'(P) = N () and N (Q) = N (). Define M; := R(P) = R(PT) =
N(P)t = N(a4)t and similarly define My := R(Q) = N(ah)*t. Let P, e R
be the orthogonal projection on M;, for i = 1,2. Therefore, R(FP;) = M, and
R(I — P) = M} = N(4) for i = 1,2. The variational characterization of the

smallest eigenvalue of a symmetric matrix implies

- vt ol ahx + 27 oy oty

xeulél\{o} |z|?

)\min<P + Q) =
Since any x € R"\{0} can be represented as x = (I — P;)x + P;x, for i = 1,2, thus

o' ! dx = [ (I~ P)a + Pia)]' [#((I — P)a + Pa)]
= (4 Pi)" (o P) (as (I — Pz € N())

= (P)" o oi(Pyw),
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therefore,

din(P+ Q) = inf D18 A A (Pr2) + (Por)” oy (o)
min 2eR™\ {0} ’Qf|2

. (5.4.2)

Note that the minimum positive eigenvalue of 7.« is identified by the variational

characterization as follows,

Tt o,
/\min(ﬁ/iT;z/i) = inf T B
eeN(a)t  |x|?

Since for any z € R"\{0}, P,x € M; = N'(«)*, therefore the above expression gives

(Pe)" " A Pit) = An (" )| P,

hence (5.4.2)) provides the following estimate

)‘min(%T%”Plx’? + )‘min(%T%)|P2x|2

)\min P > I f
(P+Q) xeﬂl&g\{o} |z|?
. 2 . 2
_ 1nf )\mln(P)|P1x| + A11r11n<C2)|-F)2I| (543)
zeR™\{0} | |2
, Piz|? + |Pyx|?
> min {)\min(P),)\mm(Q)}xERn\{o} | Prz| WJ > |
=: min {A\pnin (P), Amin(@)} xeﬂi&{{o} Alx), (5.4.4)

where A(z) := , for z € R™\{0}. Since the parallelogram identity for

inner-product spaces states that

1
|P11]|2 + |P2{L'|2 = 5 [|(P1 + PQ)I|2 + |<P1 - PQ)(L’|2:| s (545)
leading to a lower bound,
: 1 2 2
xe]llQI’}{‘{O} A(QZ’) = 5 [Umin(Pl + PQ) + Umin(Pl - PQ)] ) (546>
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hence the set of singular values of P, + P, need to be analyzed. To this end, note

that Mt n My = N(P) n N(Q) = {0}, as

reNP)AN@Q) < (P+Qx=0 < x=0,

since P + @) is non-singular. Also, Proposition [2.1.1] gives

M, + M, = (M} n M)+ = {0} =R",

consequently, Theorem [2.2.3| gives the set of singular values of P, + P, as

o(PL+ Py) = {2, 1+ cos(Opyi) (i =1,...,7), Lnysnsts

(5.4.7)
G(Pl - PZ) = {1n1+7L2vsin(0k+i)2(i = 17 o ,7“), Ok}a
where,
ny = dim(M; n My) =p—k —r,
nyg = dim(M;" n My) = q—k —r, (5.4.8)

ns = dim(M;- n My) = 0,

n=ny+ny+k+2r=p+q—=k.

Let us estimate ((5.4.6]), thus (5.4.4]) in terms of the following cases.
Case 1: Suppose r = 0. Note that (5.4.8) implies ny = p—k, ny = ¢ — k for this
case. Firstly, consider k£ = 0 and n; = ny = 0, then (5.4.8]) implies p = ¢ = 0, thus

P =@ = O. This is rejected, since P + () is non-singular.

For k = 0 and ny+ny > 0, (5.4.7) and (5.4.8)) yield o(Py + P) = {1, 40} = {10},
hence (j5.4.6|) gives

: 1 2 27 _
xeﬂg{{o}A(m) >3 [17+1%] = 1. (5.4.9)
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For k > 0 and ny = ny = 0, (5.4.8)) implies that k = p = ¢ = n or both P and @
are non-singular. Therefore, M; = My = R™, hence ([5.4.4)) gives

o + 2

inf A(x)= inf =2. (5.4.10)

zeR™\{0} zeR7\(0}  |x|?

For k,ny > 0, and ny = 0, (5.4.8) results in p = n and q = k, that is, My < M; =
R™ or () is non-singular. Hence, ([5.4.4) becomes

2 P 2
zeRm\{0} zeR™\{0} |z|?
Similarly, for k,n, > 0 and n; = 0, the same lower bound as above is derived

which also coincides with (5.4.9)). Finally, consider k,ni,ns > 0, since dim(M; N
M,) = k > 0, therefore M; n M, is a non-trivial subspace. Thus, by Lemma
N (P, — Py) = M n My is non-trivial implying P; — P, is singular which will give a

weaker result. In order to improve it, we define My := My n (M; n M)+, then

dim(Ms) = n — dim(Mj")
=n —dim(M; + M, 0 M,) (by Proposition [2.1.1)

=n—(n—q)—k=q—k,

or dim(Mj) = ¢ — k = ny > 0, thus it is a non-trivial subspace. Let P3 and Py
be the orthogonal projections onto the subspace M3 and some subspace U of R",

respectively. The following was proved in [20, p. 1429],

PS = F)Mgrw(er\Mg)l
= Pri, Povy ama)t

= PM2 (I - PM10M2)
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= PM2 - PMQPMlﬁMQ

:PQ_PMlﬁM27

or Py = Py A, + P3, which implies for any x € R"\{0},

PQ.CE = lemng + ng. (5411)

By definition, M; n My and M3 are mutually orthogonal subspaces. Therefore, for
any x € R"\{0},

|Pyx|? = | Py s, + | Paz|?, (5.4.12)
and (5.4.4) becomes

|Piz)? + | Pagy s ] + | Py]?

i 20 = ol 22
2 2

o RaP P
2eR7\{0} EE
1 . |(P1+P3)$|2+|(P1—P3)l‘|2

=5 by (45
2 xeﬂlxg\m} |22 (by )
|

> 5 [ohin(Pr+ Py) + 07, (P = Py)]. (5.4.13)

By Theorem [2.2.3]

U(Pl + P3) = {2157 1+ COS(CY]*C_H-)(Z' =1,... 7T)7 17, 45 0ﬁ3}7
(5.4.14)

U(Pl - P3) = {1ﬁ1+ﬁ27Sin(aE+i)2(i =1,... ’T>’ Ofc+ﬁ3}’

where 0 < oy < a2 < ... < Omin(pg—k) < 5 represent the principal angles between

3
the subspaces M; and Msj, and r is the number of principal angles that satisfy

0 < a; < 5. Observe that r is the same number for M; and M, by (2.2.1]), or see
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[32, p. 231] for more details. Thus, r = 0 and ([5.4.8) gives the following parameters

k= dim(M; A M) = dim(M; n (My A (My A Ma)b)) =0,

ﬁ1 =P ]% —r=p,
(5.4.15)

ng=(q—k)—k—r=q-F,

s=n—-p—(q—k)+k=n—(p+q—Fk)=0.

Hence, omin(P1 + P3) = 1, therefore implies that xeﬂ%%{{o}A(x) > 1, which
coincides with .

In conclusion, for r = 0 and p + ¢ < 2n, Apin(P + @) = min {Apnin (P), Amin(Q)}
holds, or ¢(P,Q) = 1. Whereas, for r = 0 and p 4+ ¢ = 2n, \un(P + Q) =
2 min {A\pin(P), Amin (@)} holds, or ¢(P, Q) = 2.

Case 2: Suppose r > 0. For k£ = 0 and any nq,n, > 0, implies that
Omin(P1 + P2) =1 —cosf; and oy, (P — Py) = sinfy. By ,

inf A(z) >

1 2 | 2
seitfy 5 [(1 — cos6)? + sin® 6 |

=1—cosb,.

Therefore, gives Apin(P 4+ @) = (1 — cos 61) min{ A\yin(P), Amin(@)}-

For k > 0 and ny,ny = 0, thus M; n M, is non-trivial. Consider the subspaces
My and M3, as defined earlier for k,ni,ny > 0 in Case 1. Note that Mj is always
non-trivial, as ny,ny = 0, implies p > k +r and ¢ > k + r, thus dim M3 =
q—k =r>0. Also, the set of parameters for M; and M3 are given by and
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r > 0 as follows,
k

dlm(M1 M Mg) = 0,

p—k—r=p-r,

ny
(5.4.16)

Py=(q—kK)—k—r=q—k—r,
fis=n—p—(qg—k)+k=0.
Let 0r be the Friedrichs angle between M; and Ms, then by Property |3 of Proposi-

tion m, it is equal to the minimal angle between M; and M3 in (5.4.14)), that is,

ap = QF = 9k+1, (5417)

where the last equality follows by Property [5|of Proposition [2.2.5] Therefore, (5.4.14)
implies that o (Py + P3) = 1 —cosag = 1 — cos by, 1 and opin (P — P3) = sinag =

sin 01, so (5.4.13) yields

: 1 :
a:e]ll%{}{{o} Az) = 3 [(1 — cos 1) + sin® Oy |
=1 —cos 1. (5.4.18)

Thus, (5.4.4) implies Ayin (P+Q) = (1—c08 0y41) min {A\pin (P), Amin(@)}, or ¢(P, Q) =

1 — cos @1, which is consistent for » > 0 and k£ = 0. O

Remark 5.4.2. Recall that 0., is the Friedrichs angle between R(P) and R(Q)
as stated in Property [0 of Proposition 2.2.5 It can be easily calculated by using
a result by A. Bjorck and G. Golub given in [I7]. Let Q; € R™*? and Qo € R™*?
represent a orthogonal bases for R(P) and R(Q), respectively. Define M = QT(Q,,
then cos 6y, = op(M), for k =1,2,...,q. Consider the reduced SVD of M =YX ZT,
then ¥ = diag{oy,09,...,0,} gives the principal angles between R(A) and R(B),
moreover, the principal vectors (uy,vy) corresponding to the principal angles 6, are

given by the columns of the matrices U = Q1Y and V = Q2.
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Definition of the measure ¢(P, @), given by (5.4.1)), is also applicable to rectan-

gular matrices as stated below.

Proposition 5.4.3. For distinct non-zero matrices A € R"*P, B € R"*¢
1. ¢(A,B) = ¢(AAT, BBT).
2. ¢(A,B) = c¢(B,A).
3. ¢(A,Ong) = 1.

4. ¢(A,B) = 1 — cosOp, when both A, B are rank-deficient, where Op is the
Friedrichs angle between R(A) and R(B).

The following result is derived to complete the analysis of A\, (P + @), the two
PSD matrices with a non-singular sum. The new result reduces to Theorem [2.1.6
when at least one of P and @) is SPD. However, the result may be weaker or stronger

than the estimate given by Theorem |5.4.1]

Theorem 5.4.4. Let P,) € R™*"™ be PSD matrices of rank p,q < n, respectively, so

that P + @ is non-singular, then

Amin(P + Q) = (P, Q),

where, forr =0

a-, p=n,q <n,

b27 p<n,qg=mn,
(P, Q) = 4

a2+b2a pP=4qg=n,

min {a? b}, otherwise,

\
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and for r > 0,

Y(P,Q) := [a +b? — ;(a + b)\/(a + 0)2 — dabsin® Oy 44

1
- §|a — b|\/(a — b)? + 4absin? Qkﬂ},

wherea—m b—mk p+tq—m,0<01 <02 <...<bninpg <3

represent the principal angles between R(P),R(Q) < R", and r is the number of

principal angles 0; so that 0 < 6; < 7, for 1 <i < min(p, q).

Proof. Define M; := R(P), My := R(Q) and P, € R™™" to be the orthogonal
projection onto M;, for i = 1,2. On following the proof of Theorem [5.4.1] (|5.4.3])

gives

Amin(P)|PLa]? + Amin(Q) | Poz|?

zeR™\{0} |z|?
2 P 2 b2 P 2

_ gy Ol £ U] (5.4.19)
zeR™\{0} |z|?
I [(aPy + bPy)x|? + |(aPy — bPy)x|?

=5 _inf by (4.5
2 xeﬂlxg\m} |2 (by )
1

=5 2 [ mln(a’Pl + bPQ) mm(apl - bP2>] (5420)

The results given in [32], p. 247] and [32], p. 234-235] give the following expression,
aP, +bP, = Zdiag ((a + b)Iy,aS + bE(0py)(i = 1,...,7),al,,,bl,,, On,) Z7,

where Z is an orthogonal matrix, S = [§§], E(f) = [ o0 cos05in0] and the

expressions for k,ny,ng, n3,n are given by (5.4.8). Thus, the set of singular values
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of aP; + bP, are

o(aPy + bP) = {; l(a+ b) £ \/(a + b)2 — 4absin® H,M] (i=1,...,7),

(a’ + b)k7 ap,, bn27 07L3}7
(5.4.21)

1
o(aP, —bP,) = {2 [\/(a —b)2 + 4absin® Oy, £ |a — b|} (i=1,...,7),

|0, - blkaan1abn27 Ong}y

resulting in the following cases.

Case 1: Suppose r = 0, then (5.4.8) yields ny = p — k and ny = ¢ — k for
this case. Firstly, consider £ = n; = 0 and ny > 0, then implies p = 0 and
q =n. Thus, P = O and P + @) = (@ is non-singular. Therefore, leads to
Amin(P + Q) = Auin(Q) = b%. Similarly, Q = O for k = ny = 0 and n; > 0, thus
Amin(P + Q) = Amin(P) = a®,

For k£ = 0 and ny,ny > 0, gives opin(aPy £ bP,) = min{a,b}. Thus,
(5.4.20) gives Amin(P + Q) = min{a?, b?}.

For k > 0 and n; = ny = 0, implies k = p = ¢ = n, that is, both P and
Q) are non-singular. By , Omin(@Py +bPy) = a + b, oin(aPy — bP,) = |a — 1|,
therefore gives

[(a+0)*+ (a—b)?] =a® + V.

1
)\min(P + Q) = 5

For k,ny > 0 and ny = 0, (5.4.8) gives p = k and ¢ = n, which imply M; € M, = R",
or () is non-singular. Thus, (5.4.19) becomes

= 62 = Amin(Q)v

a?|Prx|* + b2z
Amin (P + Q) = inf
( @) xeulg%\{o} |z|?

similarly k,m; > 0 and ny = 0 gives Apin(P + Q) = a* = Apin(P). Finally, consider

125



k,ni,ms > 0, since dim(M; n My) = k > 0, then M; n Ms is a non-trivial subspace.

Consider Mz = My n (M; n Ma)* # {0} as defined in the proof of Theorem [5.4.1]

then (5.4.12)) in (5.4.19) gives

a®|Pyx|? + 0| Pury o] + 02| Paa|?

Amin(P + @) = inf

zeR™\{0} |z|?
2 2 2 2
2eR\ {0} 2?
1. [(aP; + bP3)z|? + [(aPy — bPs)x|?
= iof by (45
9 weRm\ {0} BE (by (5.4.5))
1
= B [Jrzlin(apl +bP3) + opy, (a Py — bP:s)] . (5.4.22)

The set of singular values of aP; + bP; are given by ([5.4.21)) as follows

o(aP; + bPy) = {; [(a +8) %4/ (a +b)? — dabsin? a%ﬂ} Gi=1,...,r),

(a + b)fg? a”fL1 ) bﬁza 0'713 }7
(5.4.23)

1
o(aP; — bP3) = {2 l\/(a — )% + 4absin® g, ; + |a — b|] (i=1,...,7),

|a’ - blfcva’ﬁubﬁwoﬁg}v

where the parameters are the same as (5.4.15) with » = 0. Thus, oy (aPy + 0P3) =

min{a, b}. By (5.4.22), Auin(P + Q) = min{a?, b*}.
Case 2: Suppose r > 0. Then for £ = 0 and ny,ns = 0, by (5.4.21))

Omin(aPy + bP5) = l(a +b) — \/(a + b)2 — 4absin? 91] ,

l\/(a —b)2 + 4absin® 0, — |a — b|] :

amm(apl — bpg) =

N = DN =

Thus, ((5.4.20) gives

1 .
laQ + b — i(a + b)\/(a + b)2 — 4absin® 0,

N | —

AInin(-F) + Q) =
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1
- §|a - b|\/(a — b)2 + 4absin? 91].

For k > 0 and ny,ny = 0, (5.4.16), (5.4.17)), and ([5.4.23) yield

Omin(aPy + bP3) = l(a +b) + \/(a + b)2 — 4absin® 6’k+1] ,

O'min<aP1 — ng) =

N — N~

l\/(a —b)2 + 4absin® Oy, — |a — b|] :

hence ([5.4.22)) implies

1
Amin(P + Q) = [a2 +b? — 5(& + b)\/(a + 0)2 — dabsin? O 44

N | —

1
— §|a — b|\/(a — b)? + 4absin? 9k+1].

]

In the proofs of Theorems [5.4.1]and |5.4.4} a technique similar to the case of £ = 0

and nq,no > 0 can be applied to the cases k =n; =0 and ny > 0, and k = ny =0

and ny; > 0, to get another positive lower bound; however, they turn out to be weaker

than the stated results. On combining Theorems [5.4.1| and [5.4.4], another positive

lower bound on Ay, (P + Q) is given as follows.

Corollary 5.4.5. Let P,Q) € R™™™ be PSD matrices of rank p,q < n, respectively,

so that P + @ is non-singular. Then

)\min<P + Q) = max [C(P; Q) min {)‘min(P)a )‘min(Q>} 7¢<P7 Q)] .

Example 5.4.6. Here, we consider four pairs of PSD matrices P, ), so that P + Q)

is SPD, to present simple illustrations of the above results. The exact value of

Amin (P + Q) is compared with the lower bounds given by Theorems [5.4.1| and [5.4.4}

The existing results in the literature give a trivial lower bound. See Remark
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for the definition of matrix M used in these examples.

1. Let P = diag(5,0,0), @ = diag(0,4,9), so that rank P = 1 and rank @ = 2,
and P + Q = diag (5, 4,9) is SPD. Note that R(P) = R(Q)*, thus k = = 0

and p+q = 3 < 6, so that ¢(P,Q) = 1 and thus, Theorems[5.4.1and [5.4.4] give

the same lower bound 4 = A\, (P + Q) = 4.

2. Let P = diag(1,1,0), @ = diag(0,1,3), so that rank P = rank ) = 2, and
P + @ = diag(1,2,3) is SPD. Note that principal angles between R(P) and

R(Q) are 6 = 0 and 6, = 7, so that k = 1, r = 0 and p + ¢ = 4 < 6, thus

¢(P,Q) = 1. Therefore, Theorems |5.4.1| and |5.4.4] give the same lower bound,

that is, 1 = Apn(P+ Q) =>1-1=1.

2 2
3. Let P = , @ = diag(6,0), so that they are PSD with rank P =

2 2

8 2
rank@ =1 and P+ Q) = is SPD. Since the eigen-decomposition of

2 2
T T V1L -
P = EANE" and Q = IQI", where & = %° and A = diag(4,0),
1 1
1
we get M = ‘f[l 1] = g Note that £ = 0 and r > 0, thus
0

cos by = opax(M) = % and Theorem [5.4.1|implies that 1.3944 ~ A (P+Q) >

(1-— g) -4 ~ 1.1716, which is stronger than the lower bound obtained by ap-

plying Theorem |5.4.4] Apin(P + Q) = 1.1270. Thus, Corollary gives the
former result, that is, A (P + Q) = 1.1716.

12
4. Let P = diag(10,5,0), Q = 3 9 |, so that rank P = rank Q = 2, and

9 27
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22

P+Q = 8 9 |. Note that £k =r =1 > 0, so we use orthonormal bases
9 27
0 1
0 0 0 1
for P and @ to find M = L ol = . Thus, ¢(P,Q) =
01 0|V L g
3 0 \/ﬁ
V10
1—cosby =1— \/%. Therefore, Theorem [5.4.1| implies that 4.4137 ~ Ay (P +
Q)= (1- \/%—0) -5 ~ 3.4189, which is weaker than the lower bound obtained

by applying Theorem [5.4.4] Apin(P + Q) = 3.7770. Thus, Corollary gives

5.5 Importance of the Friedrichs angle

Although the Friedrichs angle is a vital quantity for studying the interaction be-
tween two given subspaces, its presence in the expression for lower bounds given by
Theorems and limits its application as it could be difficult to evaluate it.
In this section, we discuss an observation that indicated the presence of some angle
in these estimates, its role in determining the interaction between certain subspaces,

and our choice of subspaces in the proof of Theorem [5.4.1]

5.5.1 Motivation

An intuition for the presence of some angle came from the following toy example
which we solved using the techniques of calculus.

Consider the following pair of matrices

6 0
P = and ) = , then P+ Q) =
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Note that P and () are matrices of rank 1, whereas P + () is non-singular. By a
direct calculation, we see that the bases for R(P) is {[1;1]} and R(Q) is [1;0], thus
c(P,Q) =1 —cosbupn = 1 —cos § ~ 0.2929.

Define P, P, € R**? to be orthogonal projections onto R(P) and R(Q), respec-
tively. Let us evaluate the expression of inf gz oy A(z), defined by (5.4.4)), explicitly.

Clearly, for z € R,

1|21+ 22 Ty
Plx:i , P2q;:

1+ o 0

Then, inf g2 A(z) = inf g2 5(21 + 22)* + 23. By using calculus, this value is also
z|=1

|z|=1

1
equal to 0.2929 suggesting 1 — —.

V2

5.5.2 A special case

Here we discuss the need of distinguishing the case r = 0 from r > 0 in Theo-
rems [5.4.1] and Note that » = 0 means the principal angles between M; and
M, are either 0 or 2. Recall that n; = dim(M; n M3), ny = dim(M{- n M),
nsy = dim(Mi- n M3-) = 0, and M; + M, = R". On substituting 7 = 0 in (5.4.8)), we

get ny = p—k, ng = ¢ — k, so we need to analyze eight cases as follows.

H

K
S
)

Interpretation ‘ ‘

M1:M2:OOI‘P:Q:0
My =0QorP=0
My=0or Q=0
M,y =M2l7e.g. P=[10]7Q=[01]
My = My = R"”, or both P and ) are non-singular
My € My = R” or @ is non-singular
My € My = R"™ or P is non-singular

MmMﬁ{O}andMg:Mf,e.g.P:[llo],Q:[Oll]

+ 4+ + + oo o o =
+ oo+ + oo
+ o+ o4+ o+ ©

Table 5.1: Cases for r = 0.

130



1. Suppose k =ny =ny = 0. Then p = ¢ =0, or M; and M, are zero subspaces.

Thus, P and () are zero matrices, and we do not consider this case.

2. Suppose k =ny = 0 and ny > 0. Then p = 0, thus M; is a zero subspace and

P is a zero matrix. Therefore, all principal angles between M; and M, are 7.

3. Suppose k = ny = 0 and n; > 0. Then g = 0, thus @) is a zero matrix.

Therefore, all principal angles between M; and M; are 7.

4. Suppose k = 0 and ny,ny > 0. Then n; = p and ny = ¢. Since My n My = {0},
dim(M; n My) = dim(M;), and dim(M,; n Mjt) = dim(Ms), then R" =

My @ My, thus My = M. Therefore, all principal angles between them are 5

5. Suppose k > 0 and ny,ny =0. Then p=q =k, sincen=p+q—Fkorn =k,
thus p = ¢ = n. Therefore, M; = My = R and P, (@ are non-singular. Thus,

all principal angles between them are zero.

6. Suppose k,no > 0 and n;y = 0. Then p = k, and n = p + ¢ — k implies
n =k+q—k, then n = ¢q. Thus, My = R" or () is non-singular and clearly

My < M,. Note that all principal angles are zero in this case as well.

7. Suppose k,n; > 0 and ny = 0. Similarly, to the above case My, < M; = R",

thus P is non-singular and all principal angles are zero in this case as well.

8. Suppose k,ni,ny > 0. This is the most general case for the » = 0 setting.
In this case, there is a non-trivial intersection between the subspaces, that is,
My n My # {0}. Therefore, r = 0 means M3 = Mj, so the first k principal

angles are zero and rest of them are 7.

For cases 5-7, the Friedrichs angle between M; and Ms is 0, so that 6 = 0 which
gives 1 —cosfp = 1 —cos0 = 0. Therefore, we define ¢(P, Q) separately for the cases

r =0 and r > 0 in the proof of the theorem. All the above cases are mentioned in
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Table [5.1, where ‘+’ represents that the corresponding parameter is considered to

be positive.

5.5.3 The choice of subspaces

In this section, we discuss the choice of decomposition , particularly for the
case r, k > 0, which states |Pox|* = | Py, aan|® + |P3x|? = |Pyz|? + | P3x|?.

Note that, this decomposition of M, in terms of M3 and My, is considered for
the case when My = M; n My # {0}. It is because when we try to estimate ,

which is

inf A(z) = L [o7

2 —_
2eRM\ {0} 9 min(P1 + PZ) + Umin(Pl PZ):I )

then since k,r > 0, Property |3| of Theorem implies that P, — P, is singular,

thus

inf A(z) =

2
R\ (0) [0’ (Pl + Pg) + 0] 5

min

(1 —cos 1)’

N = DN -

where the last equality holds by . In order to improve this lower bound, we
consider various combinations of two subspaces to estimate a lower bound on the
infimum of A(z), as defined by (5.4.4). We restrict to two subspaces to facilitate
analysis. The investigation of the case with three subspaces is a topic for future
research. Note that ny,ny > 0 and imply p,q = k + r, thus dim(M3) =
g—k=r>0and dim(M;s) = p—k =r > 0, in other words, M3 and M;5 are non-

trivial whenever 7,k > 0. Since (5.4.12)) gives |Pyz|? = |Pyz|? + | Pyx|?, and similarly,
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|Piz|? = |Pyz|? + | Psx|?, thus the following approaches are established.

Px? + |Pyx|?
inf A(z) = inf |Przf” + | Poal
2eR™\{0} weR™\{0} |z|2
|P1[E|2 + |P4ZL'|2 + |P31’|2
zeR"\ {0} | |2
) |Psz|? + 2| Pyx|? + | Py |?
= inf
zeR™\ {0} |z|?
|P5ZE|2 + |P4l'|2 + |P2I|2
zeR"\ {0} | |2 '

By considering two terms at once in the above set of equations and applying (5.4.5)),

we can get a lower bound in terms of an expression of the form

2
[O_min

(Pi+ Pj) + onn (B = F))]

min

DN | —

where 7 # j.

For subspaces U,V < R", let Py and P, be orthogonal projections onto U and
V', respectively. Properties [2] and [3] of Theorem [2.2.3] imply that Py + Py is non-
singular if and only if dim(U* n V+) = 0, and Py — Py is non-singular if and only if
dim(UnV) = dim(U*~V*) = 0. Therefore, we construct Table[5.2} which describes

the sum and difference of two orthogonal projections P;, for 1 <i < 5. Since n = p

H U V dim(UnV) dim(Ut V1 Conclusion H
M, Msj 0 0 both P; + P3 are non-singular
M, M,y k n—op both P, + P, are singular
My My k n—q both P, + P, are singular
My Ms 0 0 both P, + P5 are non-singular
Mz My 0 n—q both Ps + P, are singular
Ms Ms 0 k both P3; + Ps5 are singular
M, Msy 0 n—p both Py + P5 are singular

Table 5.2: Combinations of two subspaces.

or n = q occur when r = 0 as discussed in the cases 5-7 of the last section, therefore

n—p,n—q > 0 whenever r, k > 0. Thus, only two of the combinations, M; and Mj,
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and My and M;, give non-singular sum and difference of their orthogonal projections,
that is, providing a non-trivial lower bound for both sum and difference of their
orthogonal projections. The proof of Theorem is completed by considering M,
and M;. It is easy to see that if we consider M, and M5, then on following the proof

to analyze
Psz|? + | Pyz|?
inf Az) > (P + [Py
weR™\{0} 2eR™\{0} |z|?

Y

we get the exact same lower bound as M; and My, that is,
inf A(zx) >1—cosOp =1—cosbi1,

zeR™\{0}

which is optimal for our analysis.

5.6 Minimum singular value estimates

In this second, we use Theorems [5.4.1}and [5.4.4] for formulating new lower bounds on

the minimum singular value of full rank 1x 2, 2x 1, and 2 x 2 matrices in terms of the

minimum positive singular value of their sub-blocks. For convenience of notation,

define the function ¥ for matrices A € R"*P, B € R"*¢:

= \/4(AAT, BBT), (5.6.1)

where 1 is defined by Theorem [5.4.4] Note that ¢(AAT, BBT) is a function defined
in terms of @ = A/ Amin(AAT) = 0pin(A), b = A/ Amin(BBT) = 0min(B), and principal
angles between R(AAT) = R(A) and R(BBT) = R(B). Thus, ¥(A4, B) is a function
defined in terms of positive singular values of A and B, and principal angles between
R(A) and R(B).

A positive lower bound, defined by Corollary could be useful in several

circumstances, such as for a full rank block 2 x 1 matrix, with rank deficient sub-

134



blocks. Hence, the following applications to full rank block column and block row

matriz are presented.

Corollary 5.6.1. Form = n, let A = [fx ] e R™™ be full rank, then

Omin(A4) = max l\/C(A1T7 ADYmin {omin (A1), omin(A2)}, \IJ(AIT, Ag)] .

Proof. Since A is a full rank matrix, 02, (A) = M\(ATA) = A\uin(ATA; + AT Ay),

thus Corollary implies

oain(A) = max [c(A] Ay, AJ As) min {0, (A1), 0pi (A2) } o (AT Ay, AT A5)],

min min

which gives the desired result after applying Property (1| of Proposition [5.4.3| and
Equation (5.6.1)). m

Corollary 5.6.2. Form < n, let A = lAl AQ] € R™*™ be full rank, then

Tmin(A) = max [« /e(Ay, Ag) min {Tmin(A1), Tmin(As)} , U(Ay, AQ)] .

After securing the above lower bounds, our subsequent aim is to extend them to
a non-singular 2 x 2 block matriz. While it could be tedious to estimate the singular
values of 2 x 2 block matrices, it is easier to find the singular values of its blocks
which are of smaller size. Thus, another significant application of Theorems [5.4.1
and is the following result, which give four estimates on the minimum singular

value of a non-singular matrix.

Theorem 5.6.3. For a non-singular matrix

A — ERHX’H,’
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where A1y € RPF Ayy € R, for 1 < p,q, k,¢ < n, the following hold

Omin(A) = V1 — cos O - min {omin ([A11, A12]) , Omin ([A21, A22])}, (5.6.2a)
Trin(A) = W ([AU, A" [Aa, AQQ]T) , (5.6.2b)

Omin(A) = V1 — cos @ - min {ry, 75}, (5.6.2¢c)
where

r1 := max [¢; min {omin(A11), Omin(A12)}, U (411, A12)],

9 := max [ min {opmin(A21), Omin(Aa2)}, U (Aay, Aso)],

where ¢1 = A/c(A11, A1a), ca = A/c(Aa1, Agg), and 0 € (O, g] is the minimum princi-

pal angle between R ([AH, AlQ]T) ,R ([Agl, A22]T) < R™. Moreover,
Omin(A) = V1 — cos@ - min {cy, ca} -  min {omin(Aij)} - (5.6.3)
SXAVES

Proof. Since Ay € RP*F Agy € R then p+q=n=k+/(. Let Ry = [An A12] €

RP*™ and Ry = lAzl A22] e R?7*™ then by a direct calculation

R
ATA = lRlT Rg] = R Ry + Ry Ry. (5.6.4)
Ry

Note that rank(R;) < p and rank(R») < ¢, thus rank(R;) +rank(Rs) < p+q = n,

also

rank(R;) + rank(R,) = rank(R] R;) + rank(R% R»)
> rank(R{ Ry + R} Ry)

= rank(A”A) = rank(A) = n.
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Therefore, rank(R;) + rank(R;) = n, which implies that rank(R;) = p and
rank(Ry) = ¢, that is, Ry and Ry are full rank matrices. And, ATA is an SPD
matrix expressed a sum of two singular PSD matrices, thus by Theorem [5.4.1

Ur2r1in<A) = )‘min(ATA)
= C(R{Rl, RgRg) min {)\min(R,{Rl); )\min(Rng)}

min min

= c(R], Ry)min {02, (R1), 0% (R2)} (5.6.5)

where the last equality results from Property [1] of Proposition [5.4.3] Let 6 be the
minimum principal angle between R(RY) and R(RY). Since A is non-singular,
gives N(Ry) n N(Ry) = {0}, thus Proposition implies R(RT) + R(RY) =
N(R)*T + N(Ry)*t = (N(Ry) n N(Rp))* = {0} = R™. Therefore,

dim(R(RT) n R(RY)) = dim(R(RT)) + dim(R(RY)) — dim(R(RT) + R(RY))
= rank(R;) + rank(Ry) — dim(R")

=p+q—n=0,

or, R(RT) nR(RY) = {0}. Hence, R® = R(RT)®R(RY), that is, R(RT) and R(RY)
are complementary subspaces, thus by Lemma 0 < 6 < %, which implies if

r = 0then 6 = 7. Therefore, (5.4.1)) can simply be expressed as c(RT,RY) = 1—cos 0,

thus (5.6.5)) yields

orim(A) = (1 —cos@)min {02, (R1), 00 (R2)}

min min » ¥ min

which leads to (5.6.2a)). Also, applying Theorem [5.4.4] to (5.6.4) implies

orin(A) = Auin (R{ R1 + Ry Ro) = (R{ Ri, Ry Rs) ,

min
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which by (5.6.1)) gives ((5.6.2b)). Since R; has full rank, Corollary for estimating

omin(R1) leads to
Umin(R1) = max [Cl min {Umin(All)a Umin(Au)} v (An, Am)] =T,

where ¢; = 4/c(Ai1, A12). Similarly, a lower bound on o, (Rs) is

Umin(R2) = max [62 min {Umin(A21)7 Umin(A22)} ) v (A21, A22)] =:T9,

where ¢y = 4/c(As1, Ags), and hence ((5.6.2a)) is expressed as
Omin(A) = V1 —cosf - min {ry,ra},
which on further simplification gives,

Omin(A) = V1 — cos 0 - min [c; min {omin(A11), Omin (A1)},
Co Min {Umin(Am), Umin(A22)}]
> /1 — cos@ - min {¢1, ¢5} - min {omin(Ay)} -
<i,5<
]

AS Tmin(A) = omin(AT), the above estimates yield the following result framed in

terms of block columns of A.

Corollary 5.6.4. For a non-singular matriz

A = All A12 c Rnxn’

A21 A22
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where Ay € RP*F | Agy e R for 1 < p,q, k,l <n,

Omin(A) = V1 = cos§ - min {own ([431]) 0w ([43 ]} (5.6.6a)
omin(4) = ([a0 ], [42]) . (5.6.6b)

Omin(A) = V1 — cos @ - min {s, 55},
where

S1 = Imax [Cl min {Umin(A11)7 Umin(A21)} s \\J (Afl, Agl)] ,

So = Inax [CQ min {Umin(A12)7 O'min(AQQ)} y L (A{Q, Ag;)] y

where ¢; = /c(AT}, AS)), o = \/c(Aly, AL,), and 6 € (0, 2] is the minimum princi-
pal angle between R ([ﬁ; ]) , R ([‘jg ]) c R"™. Moreover,

Omin(A) = VI —cos§ - min {er, e} - min {00 (Ay)} .
BXVES

Remark 5.6.5. The estimate given by (5.6.2a)) is stronger than (5.6.2d)) and (5.6.3)),
however, the sharpness of ([5.6.2b]) varies for different matrices (see Example [5.6.10)).

The inequality gives a lower bound on the minimum singular value of a non-
singular 2 x 2 block matrix in terms of the minimum positive singular value of its
blocks. The estimates from Theorem and Corollary may differ, so in
practice, one may use the maximum of all of the bounds obtained from both of

them. A MATLAB® implementation for any 2 x 2 block matrix is given in [53].

Now, we simplify Theorem for the special case of a saddle point matrix as

follows.
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Corollary 5.6.6. For a non-singular saddle point matrix

A B

M = c R(ern)x(ern)’

BT O
where A € R™*™ is non-singular and B € R™*™ is full rank,
Omin(M) = V1 — cos @ - min {opmin(A), Omin(B)},

where 0 is the minimum principal angle between R ([A, B]T) and R ([BT,O0]").

Proof. Since M is non-singular, according to ([5.6.2al),

Oumin(M) = V1 — cos§ - min {omin([4, B]), omu([B",0])} .

Since 02 ([A, B]) = A ([A4, B][4, B]") = Auin(AAT + BBT) > ¢2. (A), and simi-
larly o2, ([B*,0]) = 02,,(B), hence the desired result. O

Example 5.6.7 (Block diagonal matriz). For a non-singular block diagonal matrix

D =[49%], use (5.6.2a) to get
Umin(D) = m min {O-min([Av O]), Umin([Oa B])} )

where 6 is the minimum angle between R ([A,O]") and R ([O, B]"). Note that
Omin([4, O]) = omin(A) and 0, ([0, B]) = omin(B), and it is straightforward to see
that 6 = 7. Therefore, the result becomes oy (D) = min {owin(A), omin(B)}. In

fact, this inequality is an equality, thus the lower bound is sharp. Similar results can

be obtained for a non-singular block anti-diagonal square matrix.

Example 5.6.8 (Block triangular matriz). For a non-singular block upper triangular
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matrix U = [‘%l ﬁ;z ], the most simplified result of Theorem is given by ((5.6.3)):
Jmin(U) =V 1 —cosf- @%%{Cz} - min {Omin (All) » Omin (A12) » Omin (O) > Omin (A22>} )

where 6 is the minimum angle between R ([A11, 412]") and R ([0, As]?), 1 =
c(Aq1, Ag), and ¢y = 1/c(0O, Asy) = 1 = ¢ by Property 3| of Proposition m
Als0, 0nin(O) = o0 by Definition [5.3.2] Hence,

Umin(U) =V 1 —cosf - Ct- min {Umin(All)a Umin(AIQ); O'min(Agg)} . (567)

Similarly, an estimate for a non-singular block lower triangular matrix can be derived.
When every block is a square matrix, then [14, p. 352] gives the following expres-
sion
— A AL ARAy |
O Ay
whose maximum singular value is (0uwin(U))”'. This task could be challenging to

perform due to the presence of the term Ay’ A12A45; . Note that the blocks need not

to be square for ((5.6.7)).
10 0 0

Let us consider U = | 4 2 0|, then [105] gives oyin(U) = 1.7087. Whereas, on

1 16
placing the partitions on U to make it a 2 x 2 block matrix so that its (1, 1) block is

either of size 2x 1 or 2x 2, ((5.6.2b]) gives a stronger result 1.7473 < 1.8285 ~ 0,in (U).

A MATLAB® implementation is given in [53].

Example 5.6.9. Here, we explain the use of the new lower bounds with the help of
two 2 x 2 block matrices denoted by A, where its (4, j)-th block is denoted by A;;
and its i-th block row is denoted by R;, where 1 < i,j < 2. Also, M represents the

matrix defined in Remark [5.4.2] Most of the existing results do not provide a bound
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in terms of the blocks of the matrices considered in this example.

0 0|0 1
0 1]10 0
1. Consider A = | ——————— | which is non-singular such that its every block

0 0j1 0

1 0{0 O
is singular. Note that O'min(_A) = 1 = 0min(Aij) = omin(R). It is straight

forward to see that a basis for R(RT) is {{0 1 0 0]", [00 0 1]7} and for R(R?)
is {[1000]",[0010]"}. Since§ = Z orr =0, implies 1 = oyin(A) >
(1 —0)-min{1,1} = 1, and yields 1 = opin(A4) = 4/min{1,1} = 1.
Moreover, the same result is obtained on applying , as r = 0 for both
the pairs Ay; and Ay, for i = 1,2, thus 1 = oin(A4) = (1 —0) min{1,1} = 1. In
order to use (5.6.3)), note that a basis for R(A11), R(As1) is {[0 1]7}, and for
R(A12), R(Az) is {[10]7}, therefore ¢; = ¢, = 1. Thus, this inequality yields
1 = opin(A) = (1 — 0)min{1, 1} min{1,1,1,1} = 1.

1 0|1
2. Consider A = 0 —11|1 |, which is a non-singular non-symmetric saddle
1 010
point matrix with an indefinite matrix as its leading block. For using (5.6.2al),
1
1 1 2 1
M—% V3 V3 oWV3 0 2% ‘/g.Thus,cosﬁzamaX(M)z\/gm
1 1 0 1
0

0.8165. Therefore, this inequality implies 0.4450 ~ opin(A4) = /1 — 0.8165 -
min{l,1} ~ 0.4284. Moreover, the same lower bound is obtained on apply-
ing other results. Since k = rank(RY) + rank(RY) — 3 = 0, and r = 1 with
cos # derived as above, implies oyin(A) = \/ 3 [2 - \/m] =
v/1—0.8165 ~ 0.4284. Also, (5.6.2d) results in opi(A) = 4/1—0.8165 -
min{1, 1} ~ 0.4284. For using , observe that ¢; = ¢co = 1 and o (Aqp) =

X

1, omin(A12) = V2, Omin(Ag1) = 1 and oy (Ag) = 0. Therefore, the inequal-

142



ity gives

0.4450 ~ pin(A) = v/1 — 0.8165-min{1, 1}-min{min{1, v/2}, min{1, c0}} ~ 0.4284.

10

T T
—=Omin(A)

theorem 5.6.3 on A

— | . —&—theorem 5.6.3 on A

100 |-

10°2 lﬂ““ m‘u.z 10‘0.{ 10‘0.;\ 10‘0" m‘n.n ldnf lﬂ‘“'?‘ ld"" 161 ld“ lﬂ‘“ 10‘1.3 10‘“
t: parameter
(a) Graph for Theorem
10! T T T T T T T T

T T
) ]

corollary 5.6.4 on A
s —&-corollary 5.6.4 on A

100

1000 10°% 109% 1091 105 109% 107 109° 10% 100 104 10\Z 101° 10
t: parameter

(b) Graph for Corollary [5.6.4]

Figure 5.1: Estimates of op,,(A) for Example |5.6.10}

Example 5.6.10. Let us consider two different partitions on the same matrix as

follows,

t110 0 t{10 O
A=1|3|2 -2 |, A=13]92 —9 |, wheret=1,2,...,30.

210 6 210 6

Figure [5.1] displays the result of best lower bounds from Theorem [5.6.3] and Corol-
lary for both partitions, along with the exact value of oy, (A).
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Figure shows that Theorem provides a decent estimate of o, (A). The
best lower bound on oy, (A) is given by for t = 1, and by for t =
2,3,...30. For A, the largest lower bound is given by fort=1,2,...5, and
by fort =6,7,...,30. On increasing the value of ¢, the lower bound obtained
from improves up to t = 18, for which the absolute error in approximation
for A is 0.008452 and for A is 0.008389. The results from A appear to be overall
sharper than A. Thus, the sharpness of results may vary for distinct partitions of
the same matrix.

Similarly, the trends for Corollary [5.6.4are depicted by Figure[5.1b] It is observed
that Corollary gives identical results for both matrix A and A. The minimum
absolute error in approximation is 0.01469, which occurs when ¢t = 18. The best
lower bound is given by the first inequality of Corollary for all ¢ except for
t = 1, for which it was obtained from the second inequality of Corollary [5.6.4] A

MATLAB® implementation is given in [53].

Example 5.6.11. (M- and H-matrices) The following matrices are considered in

[70]7

8 —2 —1 7 -3 -2 -5 2 —4
A=|-5 7 =3|, B=|-2 5 -1, C=1|3 -6 —2f,
~3 -4 5 -3 -4 9 -1 —4 -8

where A and B are M-matrices and C' is an H-matrix, for which upper bounds on
the minimum singular values were devised. We calculate the best lower bounds
secured from Theorem and Corollary in Table through a MATLAB®
implementation given in [53]. In Table [5.3] the size leading block refers to the size
of (1,1) block of the matrix specifying the partition being placed, and more than
one partition means that the same lower bound is obtained in all cases. It is evident

that our results provide a good estimate for M- and H-matrices.
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H Matrix  on;m Best lower bound  Size of leading block H

A 0.7744 H.6.6a)):0.7354 1x2o0r2x2
B 1.8830 5.6.6a)):1.5855 1x2o0r2x2
C 0.9015 5.6.6a)):0.8770 1xlor2xl1

Table 5.3: Lower bounds for M- and H- matrices.

Example 5.6.12. In this example, we compare our results to some well-known
existing results that give a lower bound on the minimum singular value of a matrix.
The following matrices are strictly diagonally dominant (SDD) matrices, for which

several lower bounds were analyzed in [70],

10 1 1 10 1 1 10 1 1 10 1 1
D=1 20 1|, E=11 20 1|, F=|1 20 1|,G=110 20 1
1 1 30 10 1 30 20 1 30 20 1 30

Also, some lower bounds for following matrices were compared in [61],

320 2 -1 0 5 00 4 00
H=1|19 5|, I=2 1 0|, J=|-4 9 4|, K=]|-1 50
05 7 -4 —4 5 -1 79 0 5 4

The third column of Table [5.4] states the best among all lower bounds evaluated
for the above matrices in [70, [6I]. The findings mentioned in Table indicate
that the results obtained from Theorem and Corollary provide a sharper
lower bound on the minimum singular value of all SDD matrices considered in [70],
albeit they may not be optimal for all SDD matrices. A MATLAB® implementation
is given in [53]. In the above examples, we have listed the partitions that lead to best
estimates, which may not be feasible if the matrix is large. Based on our numerical
experiments, choosing the leading block of the matrix to be a square matrix of a

suitable size often results in a partition that gives fine results.
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H Matrix  op;n  Existing New Result Size of leading block H

D 9.8608  9.6389 5.6.2b)):9.6932 1 x2o0r2x1or2x?2
E 9.0409 8.0731 5.6.2b)):8.1814 2xlor2x2
F 7.6233  5.6070 0.6.2a)):6.0553 Ixlorlx?2
G 6.7547  5.2107 5.6.2a]):5.2728 Ixlorlx?2
H 1.9619 1.4142 5.6.6b[):1.8651 Ixlor2xl1
1 1.0677  0.7898 0.6.2a)):0.8996 IxTlorlx?2
J 3.0786  2.2303 0.6.2b]):2.8220 IxTlorlx?2
K 2.5146  2.2170 0.6.6b):2.3847 IxTlor2xl

Table 5.4: Comparison of new lower bounds with the existing results.
5.7 Some singular value estimates

After discussing lower bounds on the minimum singular value of a non-singular 2 x 2
block matrix, we divert our attention to constructing a lower bound on some other
singular values. One such bounds is Theorem [5.7.1] stated as follows, which was

given in [40].

Theorem 5.7.1 (See [40]). Let A;; € R™*™ fori,j =1,2, and

A — All A12 7

A21 AQQ

then

g;(A) = \/QUJ' (A AT, + Ay AL, j=1,2,...,min(m,n).

In the following theorem, we provide a simpler proof for two lower bounds similar

to estimate provided by Theorem with more general sizes for its sub-blocks.

Theorem 5.7.2. For a block matrix
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where Ay € R™¢ and Asy € R™ P, then

Uj(A) = \/2Uj (AIIA%—’I + A12A§2)7 .7 = 17 2a S 7min(m7 n, 0+ p)7

also,

0,(A) = /20, (AT, A + A Ap).  j=1,2,....min(m + n.(,p).

Proof. Let Ry = lAH Au] and Ry = lAm A22], so that A = [g;] For j =
1,2,...,min(m + n, 0 + p), 03(A) = N\;(A"A) = X\;(R{ Ry + R} R,). Therefore, by

Y

theorem [5.3.5) for j = 1,2,... min(m,n,? + p)

O'Q(A) = 20](R1Rg) = 20‘j (AnAng + A12Agg> .

J

Also, let ¢y = [ﬁ;] and Cy = [ﬁ;z], so that A = [Cl C’Q], then 0']2-(14) =
N(AAT) = X (CLCY + C5CY), for j = 1,2,...,min(m + n,¢ + p). Therefore, by

theorem [5.3.5) for j = 1,2,... , min(m + n,{, p)
UJQ(A) = 20'](0?02) = 20’j (A{1A12 + AglAzg) .
Corollary 5.7.3. For a saddle point matrix

A B

BT O
where A € R™*™ is non-singular and B € R™*™ is full rank,

0;(M) =4/20; (AB), j=1,2,...,min(m,n).
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To summarize, we formulated the lower bounds on Ay, (P + @), for PSD ma-

trices P,Q € R™ described by Theorems [5.4.1] and [5.4.4, which are sharp for the

case of R(P) n R(Q) = {0}. These gave lower bounds on the minimum singular
value of some full rank matrices given in Corollaries and [5.6.2) Theorem
and Corollary [5.6.4] Finally, an improvement on lower bounds on some other singu-
lar values were derived by Theorem [5.7.2] which concludes our analysis for general

matrices.
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Ultraspherical spectral methods in

space and time

In Chapter [3, we analyzed a space-time spectral method for the Stokes problem,
which utilizes collocation in time. A major disadvantage of such a scheme is that
the resulting linear system is dense and is difficult to solve in parallel. We try
to formulate space-time spectral methods leading to sparse linear systems, paving
the way for robust numerical methods for solving time-dependent PDEs, possessing
spectral convergence in both space and time.

In 2013, S. Olver and A. Townsend introduced a new class of spectral meth-
ods in [74], called the ultraspherical spectral (US) methods, which portray spec-
tral convergence for analytic solutions, and the resultant discrete systems consti-
tute sparse and well-conditioned matrices. However, the linear systems are non-
symmetric for self-adjoint problems; [I] presents a technique on symmetrizing such
schemes. Some authors have driven the further development of the US methods, such
as [94] 84] 18, 30, [75], 29]. We explore the capabilities of the US method for solving
unsteady problems. Firstly, we introduce the US method and analyze their per-

formance for some ordinary differential equations. We proceed to design numerical
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schemes for solving some time-dependent linear PDEs by utilizing the ultraspherical
spectral method in both space and time. This chapter is concluded by discussing
the scope of designing a robust solver for the schemes arising from the US method

in space and time.

6.1 Introduction

Classical spectral methods converge spectrally, but they lead to dense and ill-conditioned
matrices. The ultraspherical spectral methods exhibit spectral convergence and lead
to almost banded and well-conditioned matrices. This new class of spectral method
was developed in [74], which results from changing the basis of the solution by uti-
lizing a differentiation expression for the ultraspherical polynomials defined later in
this section.

In Chapter [2] we defined the Chebyshev polynomials, which are also termed as
the Chebyshev polynomial of the first kind. Furthermore, the Chebyshev polynomial
of the second kind are denoted by C{V(x) or U,(z), where the former notation will

be used in this work. They are the solution of the following problem:
(1—2?)y" =32y +n(n+2)y =0, ve(-1,1), Vn=01,...,

and are orthogonal with respect to the L?, ,(—1,1) inner product with weight

w22 (z) = /1 — 22, that is,

w\»—t

1
w?2’

J CW(2)OW (2)v/1 — 22dz = gamn

Moreover, they serve as a tool for demonstrating the ultraspherical spectral method
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for a first order ODE. For z € [—1, 1], consider
u'(x) + a(z)u(z) = f(z),

c [-1,1] - C, f:[-1,1] - C

with boundary condition u(—1) = ¢, where a :

are continuous functions of bounded variation. Therefore, there exists a unique

continuously differentiable solution. Let us consider the solution

u(z) = > wpTi(w),

where the coefficients satisfy

_ 2= (T u@Ti(z) (6.1.1)

T 1 V1 —a2

U
Since the derivative of the Chebyshev polynomial is given as,

(1)
dT, ECyZ,, k=1,
It (6.1.2)
0 k= 0.

Thus,
u'(z) = Z kukC,g_l(x).
k=1

In matrix form, the coefficients are given as

01 Uo
0 2 (51

D(]ll:
0 3 U9

The sparse matrix Dy is called the differentiation operator. Expressing a(x) in terms
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0
of its Chebyshev series, i.e., a(x Z a;T;(z), we obtain
7=0

0 o0
where the coefficients ¢ are given as
QoUug + = Z aug, k=20

o = 24

1 1< 1<
— Y ap_u + aoup + = ) QUi + = > aepu, k=1,
2§ k—1U + GoUy 2;zz+k 2;}”’“’

In matrix form, ¢ = My[a]u, where

2&0 ay a9 as ... 0 0 0 0
M [ ] 1 aq 2&0 aq as . N a1 Qo a3 Q4
olal = 5
2 .
as a1 2a9 a1 - as as a4 as

The above Toeplitz plus an almost Hankel matrix Mo[a] is called the multiplication
operator. We expressed u(z Z uTr(z). Practically, we cannot find infinite
number of coefficients. T herefore We truncate the series and approximate u(z) ~
Z uTi(x), i.e., we find n coefficients.

Since a(x) is a continuous function with bounded variation, it has a unique rep-
resentation as a uniformly convergent Chebyshev expansion. Therefore, for all € > 0

there exists M (e) € N such that for all m > M

Z CLka

k=0

m—
Thus, we truncate the series expansion for a, i.e., a(x Z apTy(z). Therefore,
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for the infinite matrix My[a], terms a; = 0 for i = m, hence it is a banded matrix.
If n > m, then we will consider an n x n sub-matrix of My[a] which will also be
banded.

The following is a relationship between the Chebyshev polynomial of first and

second type,

\

Then we can express u(x) in terms of its series of Chebyshev polynomials of second

type as,

= 1 1
x) = Z uTi(x) = (ug - 2u2> 001) Z 3 (Up — Ups2 C’k ( ).
k=0

Hence, O coefficients of u are Sou, where

&
|
N | —
N[
Do

N[
N[

The above banded and sparse matrix Sy is called the conversion operator.

The discrete version of the operator, % + a(z), is given as
L:= Do + S()M()[CL],

o0
which corresponds to the second kind Chebyshev series of u(x). Define f = Z frTi(x)

k=0
and f as the vector of coefficients f, for all 0 < k£ < co. Thus, the differential equa-

b
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tion, without its boundary conditions, is given as
Lu = Sof

Note that this is an infinite system. In order to truncate this system to order n, we

define a projection operator as, P, = [L,|O] We truncate the differentiation

nxoo’
operator to a system of order n as, P,DyPT. The operator Dy is hence recovered
for the considered modes, but with the last row containing all zeros. Henceforth,

we swap the first row with the last row of the system P,LPZL. Since the boundary

condition is u(—1) = ¢,

c=u(-1) = Y wTi(-1) = X (~1)fu.

Therefore, we impose the boundary condition in the first row, hence the discrete

form of the problem is given as

Ug
Tg(—l) Tl(—]_> e Tn_l(—l) U1l C
Au = _
P, 1 LPT : (Pn,lSOPg) (P,f)
Un—1
n—1
On solving this system we get the approximate solution: Z upTy(x).
k=0

A similar approach is used for the higher order ordinary differential equations
by using wltraspherical polynomials, also known as Gegenbauer polynomials, which
are represented as CM(z), for # € [-1,1]. Forn = 0,1,... and A > 0, CW, is the

solution of the Gegenbauer differential equation:

(1 —2)%y" — 2X + Dy’ +n(n +2X\)y = 0.
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They are a family of polynomials orthogonal with respect to the weight
_1
(1 — xz))\ 2.

They can also be generated by the following recurrence relation:

o™ () = 2z,

1
CPh(a) = = [Qx(n FA-1DCW — (n42x— 2)07931]  ¥nel.

For the case A\ = 1, we recover the Chebyshev polynomials of second kind. For
1

the case A = 2 C,E,)‘) reduce to the Legendre polynomials. We use them only for

A =0,1,... and normalize the leading coefficient so that

2F (\
V() = ]i')kxk +OE Y,

(A+k—1)!
e IR

where (-), denotes the Pochhammer symbol defined by (\), =

This process can be generalized to higher order differential equations of the form,

S04 _ ey weo1g

dz?
with some N € N number of general boundary conditions

Bu = c.

As the first order differentiation resulted in a linear combination C'") functions, sim-
ilarly, higher order differentiation results in higher order ultraspherical polynomials.

0¢]
We begin by considering the solution of the higher order ODE as u(z) = Z uTi ().
k=0
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Asfor A >1

Then for A € N,

du(x &
dx(/\) _ 2)\ 1 Z ukck )\

(6.1.3)

In matrix form, the coefficients are given as Dyu. Thus, the A-order differentiation

operator for the Chebyshev series of the first kind is given as

A+ 1
Dy =221 A= 1)!

A+ 2

where the first A entries in the first row of D, are zero. A conversion relationship

between C™ and C*Y for A e N is given as,

(Y=o k=2

() _ (A+1)
Ck < /\+1 1 5 k - 1,
oY, k=0

Then, the conversion operator that converts the coefficients of C™

CO+1 i denoted by Sy and is given as

A
1 A2
A _A
A1 X+3
Sy =
A A
A+2 A4
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a()u® (z) = i (i S agerjncd(k 25 + 5 — k:)uk) CY (@),

j=0 \k=0 s=max(0,k—j)

where

ik I A28 ()20, Ais (N (k= 25)!
S T A s Sl — )k — 8)] (Myeres (2N )jrrmss

Thus the multiplication operator for the product of C™ series is given as

k
./\/l)\[CL]jJC = Z &2s+j—k0?(k> 28 +j — k)uk

s=max(0,k—j)
The differential operator can be represented as

N—-1
L:= My[a"]Dy + > Snor ... SAMA[a]Da + Sy - .. SaMola’].

A=1

This system is expressed in terms of coefficients of C™Y) series, thus the coefficients
of the Chebyshev series of f must be converted. The discrete form of the concerned

higher order problem can be written as

Uo
BP}; Ui (¢
Anu = = s
Pan»CPTZ; 7>an‘SNfl .. SOf
Up—1
n—1
yielding the approximate solution of the problem: Z wTr(x).
k=0
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6.2 Some linear ODEs

In [74, p. 479], the following right-preconditioner was defined for a discrete linear

ODE of order d > 1 with the leading coefficient aq4(x) = 1,

d times

= L di 1 1
—m 1ag R I

1

R T

IS

The space (3 < C* is defined as the Hilbert space with norm

a0
Jufe = \/Z jur|*(k + 1)2 < 0,
k=0

where A = D — 1, D, ..., so that D =1 for Dirichlet boundary conditions, and each
additional derivative used in the boundary condition will increase D by one. In
[74, p. 480], the condition number of a discrete linear ODE right-preconditioned by
R, = P.RPL, that is, A, R, is O(1). Out of curiosity, in this section we derive the
spectral and 2-norm condition number of discrete linear ODEs obtained by applying

the ultraspherical spectral method.

6.2.1 First order

Let us first consider solving the most basic problem, that is, first order problem by

using the US method, given as follows

(6.2.1)
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N
Let u(x) = Z uTy(x), then the boundary condition stated above implies
k=0

D Ti(—1) = > ug(—1)F = 0. (6.2.2)

k=0

Recall (6.1.2)), then (6.2.1]) gives,

N R N—-1 .
M Ti(@) = f) = > O (@)
k=0 k=0
N—1
M ku G (@) = D) P ()
k=1 k=0
N—-1 N—-1
(k + Dups O (2) = Y CM ()
k=0 k=0

Comparing the coefficients of C,gl)(x) gives (k + Dugyr = fi, for 0 < k < N — 1,

which along with (6.2.2)) gives the following linear system,

1 -1 1 -1 ... (—1)N U 0
1 U1 fo
2 U2 S
= . (6.2.3)
3 U3 fa
N _
L J (N+1)x(N+1) _UN_ (N+1)x1 _fN 1_ (N+1)x1

written as Aju, = fp, with A; € RVFUX(V+D) defined as the coefficient matrix of

the above system. Now, we derive a condition number estimate for this system.

Theorem 6.2.1. For N >4, let A; be defined by (6.2.3)). Then, k(A1) < cN and
K(Al) < cN.

Proof. Note that A; is an upper triangular matrix, therefore its eigenvalues are its
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diagonal entries. Clearly, Apin(A1) = 1 and Ay (A1) = N, thus

Amax (A N
/ﬂ]sp(Al) = )\(<1411>) = T = N

For deriving the 2-norm condition number estimate, note that the first row of A;
gives | A1 = (N +1). Also, | A1 = (N + 1), is achieved by the (N + 1)st column
of A; Thus,

AL < A/ A1 ALl = (N +1) < eN. (6.2.4)

It is easily derived that the inverse of A is the following matrix.

1 1 —271 371 . (—)N-IN-!
1
27! 1 BllxN

N—l
| Jd(N+1)x(N+1)

In order to estimate oyay(A1), let us consider the gram matrix of A;*,

G = A TA
1 1 B
BT D, D,
1 0
[ o
Bf D}
= CIey +D,.

Thus, & is the sum of two symmetric matrices given above. Since Lemma, |5.3.4] im-
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plies that the non-zero eigenvalues of C{'C; and C,C{ are equal, we get the following

result.

Thus, Amax(CTC1) = Amax (C1CT) <1+ %2, leading to the following.

)\maX(GI) < /\max(clTCl> + Amax(gl)

2

<1+%+>\max(D1)2
7'('2 7T2
=14 —+1=2+4—.
6 6

Finally, A7 = v/ Amax(61) < 4/2 + %2 = ¢, which along with (6.2.4]) gives x(A;) =

[ A AT < eN. 0

This method depicts spectral convergence, as seen in Figure [6.2a] The schemes
derived in this chapter are implemented on julia. We take f so that the exact solution
is given by

u(z) = sin(mzx), (6.2.5)

which satisfies the boundary condition. Moreover, he singular value estimates for A;
are sharp as seen in Figures and [6.1D]
Now, consider the same first order ODFE, with another boundary condition, de-

fined as follows.

w(z) = f(z), we(-1,1) (6.2.6)
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(a) Maximum singular value. (b) Minimum singular value.

Figure 6.1: The first order ODE with boundary condition u(—1) = 0.

N
Consider the approximate solution as a(z) = Z urTr(x), then the boundary condi-
k=0

tion stated above implies

D upT(1) = Y ue = 0. (6.2.7)

On following the same procedure as before for (6.2.1]), the following linear system is

obtained by using (k + 1)ugy1 = fr, for 0 < k < N + 1,

1111 ... 1 Ug 0
1 Uy Jo
2 u f
S (6.2.8)
3 u3 /2
N _
: Jvnyxven LV | /-1

N+1)x(N+1)

which we write as yup = f, where 2, € R is the coefficient matrix of

the above system.
Theorem 6.2.2. For N > 4, let 2, be defined by (6.2.8). Then, k(A1) < ¢N and
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/6(911) < cN.

Proof. Since 2l; is an upper triangular matrix,

Amax(B1) N
fap (W) = 50 ((Qlll; = =N

On following the proof of Theorem [6.2.1] ||| < ¢N. Also, it is easy to see that

1 -1 -2t =371 ... —N"!

1
271

3—1

Nfl
L d (N+1)x(N+1)

Thus, following the same procedure as before, A7 < 4/2 + %2. Thus,
R(2) = [ |2 < e

[]

This method achieves spectral convergence, as seen in Figure [6.2b] We take f so
that the exact solution is defined by (6.2.5)), which satisfies the boundary condition.

The singular value estimates for A; are sharp as seen in Figures [6.3a] and [6.3b]

6.2.2 Poisson problem

In this section, we consider the one-dimensional Poisson problem:
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Figure 6.2: Convergence of the US method for the first order ODE.
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Figure 6.3: The first order ODE with boundary condition u(1) = 0.

N
Consider the approximate solution Z u Ty (), the boundary condition u(—1) = 0,
k=0
gives
N N
D Ti(—1) = > ug(—1)F = 0. (6.2.9)
k=0 k=0

Also, the boundary condition u(1) = 0 gives

DwTi(1) = > uy = 0. (6.2.10)



Now, we discretize the ODE, —u” = f by using eqgs. (6.1.2) and (6.1.3] - ) for A =1, as

follows
N N N—-2
DT (x) = f2) = > [0 (@)
k=0 k=0
N d . N-2 )
= D hu O (2) = 3 i (@)
k=1 k=0
N ) N—-2 )
Y kw20, (2) = Y /O (2)
k=2 k=0
N-2 N-=-2
= 3 2k + 2 () = D) RO ().
k=0 k=0

Comparison of coefficients of C’,gQ) (x) yields —2(k + 2)ugio = fg, for 0 < k < N — 2,

giving the following linear system:

1 11 -1 1 (=D [, | [ 0 |
1 1 1 1 1 ... 1 Uy 0
—4 U2 Jo
—6 us = h ;
—8 Uy f2
: 2N Wi ven) LN vy | 2 | (N+1)x1
(6.2.11)

which we rewrite as Asuy, = fj,.

Theorem 6.2.3. For N > 4, let Ay be defined by (6.2.11). Then, rsy(Ag) < cN

and Kk(Az) < cN

Proof. Note that A, is a block upper triangular matrix, when partitioned as follows.

A B
AQZI
C
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Thus, eigenvalues of A, are the eigenvalues of its diagonal blocks, that is, A(Ay) =

A(A) U A(C). By a direct calculation, A(A) = 2248 — 1 + 1j and A(C) =

2

{—4,—6,-8,...,—2N}. Therefore, A(Ay) = {1+7,—4,—6,—8,..., 2N}, |A|min(As2)
|)‘|maX(~A2) 2N
2 and |[A|pax(A2) = 2N, th ap(Ag) = ——————> = — = /2N.
\/7811 | | ( 2) us K’P( 2) ’)\’min(AQ) \/E \/7

Now, we estimate the 2-norm condition number of A,. To this end, note that

Azl = 2N and |Az|; = 2N + 2, which are achieved by (N + 1)st row and column,

respectively. Thus, |Asls < /[ Azlli[ Az = A/AN(N +1) < cN.
In order to estimate the minimum singular value of A,, we calculate Ay'. It is

straightforward to see that for an even N > 4,

05 05| 47t 8! o (2N)t
—0.5 0.5 (i . (2N —=2)7!
—4-1
Ayt = 67!
-8
—(2N)~
= 4 (N+1)x(N+1)
and for an odd N > 4,
05 05| 47! gt ... 2N -2)7!
—0.5 0.5 67! . (2N)~!
—4-1
Ayt = 67
81
—(2N)!
| 4 (N+1)x(N+1)
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For any N > 4, let

E2><2 F2><n—1

A2_1 =

9

Gn—lxn—l

then its corresponding gram matrix is denoted by &5 and is simplified as follows.

T 4-1 ET 0 T
Gyi=A" A = E F|+ =:H " H + &.
FT G?
Thus G, is the sum of two symmetric matrices defined by the above equation. Now,

the non-zero eigenvalues of H' H and HH?' are equal, so we analyze HHT = EET +

FFT which is facilitated by first calculating the spectrum of EET and FFT. Since

EET 05 0
0 0.5

hence A(EET) = {0.5}, and it remains to estimate the spectrum of FFT. For an

even N > 4,

_ 4_1 _
6—1
871
41 81 . (2N)~!
FFT = 10—1
61 10! (2N —2)7!
(2N —2)7!
(2N)~!

I Iz

N

S (2(20 4 1)
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¥ 1
Thus, for an even N > 4, A(FF") = 2(41)’2, Z (2(2i +1))2 », whereas for an
i=1

=1

|z

odd N >4,

N-1

2 (2020 +1))77

N-1

=

Thus, for an odd N > 4, A(FFT) = Z (41)72, Z (2(2i + 1))~ ». Note that for

i=1 i=1

both case of even and odd N > 4, both of the summations in the spectrum of FEFT
00 2 2

are less than or equal to Zi_2 = %, we get that A\ (FEFT) < %, for all N > 4.
i=1

Therefore,

)\max(GZ) < Amax(HTH) + )\max<6)
= Amax(HHT) + Apax (G?)
< Anax(EE") + Apax(FFT) + 472
2 ™2 9

T
<054 —+472=—4 .
6 6 16

2
9
Since [ Ay = v/ Auae(S2) < «/% + 25 = o Thus, x(Ay) = [ Ao 45" < eN. O

The spectral convergence of this method is evident in Figure [6.4) whereas the

sharpness of the bounds is portrayed by Figures [6.5a] and [6.5b] For its numerical

implementation on julia, we take f so that the exact solution is defined by (6.2.5)),

which satisfies the boundary condition.

6.2.3 Biharmonic problem

Finally, we consider the biharmonic problem:
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Figure 6.5: The Poisson problem in one-dimension
u(+1) =0,
u(tl) =a€eR
N
Consider the discrete solution: u(z) = Z uTi(z),. The boundary conditions
k=0

u(+1) = 0 yield the following two equations,
N

up(£1)F = 0.
k=0
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For k > 1, T)(£1) = kC\Y, (£1) = k- (£1)*L(k — 1 + 1) = k2(+1)*!, thus the

boundary conditions u'(+1) = a give the following two equations,

Z +1 k+1k2

k=0 k=0
N 3 . N
2k aCica (+) = f(o)
=1
N (2)
a2 .
kZ ku2—-=(x) = f(x)
=2
N (3)
ac .
2 k—3
’;kqu -2 o (x) = f(z)
N ~
D ku2? 2300, (2) = f(x)
k=4
N— N—4
Z Wk + DupaC (@) = Y £.C0(2).
k=0 k=0

Comparing coefficients of C,gl) (7), yields 23-3!- (k+4)up g = fr, for 0 < k < N—4,

which leads to the following linear system

1 -1 1 -1| 1 1 (LY | |
1111 1 I 1 u
0 01 -22 2| g 52 L (“1)NHIN2 g
001 2 2| @ 2 ... N’ ”

2% .31 4 w |

2%.31.5 us
23.31. N UN

i dvenyx(veny b (6_5.2.12)
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which we rewrite as Asuy, = fj,.

Theorem 6.2.4. For N > 4, let Ay be defined by eq. (6.2.12). Then, rep(Asg) < cN
and r(Ay) < cN*.

Proof. Note that A4 is a block upper triangular matrix, with the following partition

A B
C

Ay =:

A straightforward calculation gives A(A) = {11.5250,0.9259 + 1.0498:¢,0.9259 —
1.0498¢, —6.3768}, thus the set of absolute value of eigenvalues of A is |A|(A) =
{11.5250,1.3998,1.3998,6.3768}. Thus, A(A4) = {11.5250,0.9259+1.0498i, —6.3768, 2°-
31-4,...,2%.31- N}. Therefore, |A|min(As) = 6.3768 and |\ |max(As) = 23-3!- N, thus
oy Pl 231N

= < cN.
Now, we estimate the 2-norm condition number of A4. For estimating oyax(A4),

[ Amin (As) 6.3768

note that |Asfy =1+ 1+ N2+ N?2+2-31-N=2+2N?+2-3!- N < ¢cN? and

| A4foo = 22{1 2 = NNFDENHD) N3, Therefore,

6

| Adl < A/ Adl1[Ad]loe < VNS = eN?P.

Finally, we estimate on(Ay4), by utilizing the expression for A", given as follows:

st E|F
G

171



where its blocks are defined as follows:

0.5 0.5
—0.5624 0.5625

0 0

for an even N > 4,

0.125 —0.125

—0.0625 —0.0625

—0.125

0.0625 —00625 0.0625

[ (22-1) 0 (32-1)
23314 23316
1 521 7?-1
F 0 23315 [ 8 1] 0 23317 [ 8 1]
B —922 0 —32
23314 23316
52—1
0 23315 0

for an odd N > 4,

[ (22-1) 0 (32-1)
23314 23316

23315

F =
_22 0 _32
23314 23316
52—1
0 23315 0

and for all N > 4,

23314

1

1 52—1 72_q
0 [8 _1] 0 233!7[8 _1]

7?-1
23317

23315

23316
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0.125
0.0625
0
1 [(N—1)2—1 _ 1]
2331(N—1) 8
0
(N—-1)2-1
2331(N—1)
|51
PN T 0
N2—
0w |5
|5
N1 0
N2—-1
0 233IN
1
233IN |

_1]




For any N > 4, denote the gram matrix of A;' as &, and simplify it as follows.

Sy =ATAY

= H'H + &.

Thus, G, is the sum of two symmetric matrices given above. Now, non-zero eigen-

values of H'H and HHTare equal, so we analyze HHT = EET +

FFT. Since

A(EET) = {0.0060,0.0293,0.5332,0.6502}, thus A\p.(EET) = 0.6502. It remains to

estimate Apay (FFT), consequently, for any N > 4, we define FF7T as follows.

FFT = + 4,
where
[ (212
% (5 0 0 0
N1y [ @irn?o1 2
i pElE S 0
D= (233[)2 L%J i4
0 0 >ils e 0
[ ((2i+1)271)2
| 0 0 0 >3 SN ToTEa)
and,
(O
Ql:
§° 0

Furthermore, the expression for § for any N > 4 is given as

1) *(° — 1)
— PP M 0
— ; 2 _
8 - (233|)2 1 (2i+18)271 ((27/ + ;) 1_1)
===
0 Zz=§ (2i+1)2
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Since ® and 2 are symmetric,

)\max(FFT) < )\max(g) + )\max(gl)'

N

Note that ® is a diagonal matrix and its eigenvalues are bounded above by Z it <
i=1

cN? | thus Apax (D) < eN3.

Note that the maximum eigenvalue of 2 is 0p,.x(§). As § is diagonal, its singular
N

values are its absolute diagonal entries, which are bounded above by Z i2 < cN?,
i=1

thus Apax () < ¢N3. Hence, A\pax (FFT) < ¢N3, giving
)\max(64) < )\max(HTH> + )\max(ﬁ)
= Anax(HH") 4 Anax (G?)
< Amax (EET) + Apax (FFT) + (23314) 72

< 0.6502 + eN? + (2%314) 72

Now, HAZIH = \/)\max(GQ) < VeN3 = eN'5, Thus,
K(Ag) = |Ad]| ALY < eN?PNT2 = eN*

]

The spectral convergence of this method is shown in Figure [6.60 We take f so
that the exact solution is defined by (/6.2.5]), which satisfies the boundary condition.
The bounds on the singular values of A4 are evident from Figures and [6.7D]

6.3 Time-dependent PDEs

In this section, we extend the ultraspherical spectral method to unsteady problems.

In order to analyze the linear systems arising from unsteady problems, the following
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Figure 6.6: Convergence of the US method for the biharmonic equation in one-

dimension.
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(a) Maximum singular value. (b) Minimum singular value.

Figure 6.7: The Biharmonic problem in one-dimension.

results will be required.

Lemma 6.3.1. Let U,V € R"™™ and W € R™™ be diagonalizable, then A(I,, @ U +
WRV) = AU + \V), where \; € A(W) for 1 <k <m.

Proof. Let A=1, QU + W®V and W = XDX !, where D is diagonal. Then,
A=(X®L)I,U +DRV)(X®IL,)™",

therefore A(A) = A(L, QU + D®V). Note that the eigenvectors of I, U + DV
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have the form e; ® x, where e; are elementary basis vectors of R™ and x € R". Then
I, QU +DRV)(e;®x) =¢; ® (U + \V)x),

hence the result. OJ

The above lemma is a result which is often used in practice. The following result

was a conjecture for many decades, until it was proved in [67].

Lemma 6.3.2 (See [67]). Let N = 1. Then the real part of every eigenvalue of the
pseudospectral Chebyshev derivative matriz [ D] is larger than some positive constant

independent of N.

6.3.1 Heat equation

Consider the linear heat equation,
Uy — Uge = f(2,t) on (—1,1)%, (6.3.1)

with boundary conditions u(+1,¢) = 0 and initial condition u(z, —1) = wuy(z). We
seek a numerical solution, a polynomial of degree N, at t = 1.

In [30], the authors presented a simpler way of discretizing the Poisson problem
to avoid boundary bordering to implement homogeneous boundary conditions at the
end points * = +1. They are hard-coded by including a factor of (1 — z?) in the
basis. Furthermore, the ultraspherical polynomials, say ¢;(z), are carefully chosen
so that the following expression can be expressed in terms of ¢;(z).

702 (1= a%0,(@) = (1 = 22)0](x) — dad)(a) ~ 205 (0).

In [72, Chap. 18], it is given that the normalized ultraspherical polynomial, denoted
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by 5(%)(35) = ﬁc(%)(:p) of degree j = 0, satisfies the second-order
’ G+DGE+2) 7 7 ’

differential equation, see [72, Table 18.8.1]

(1— 230 () — 220 (2) + G+ 3) 0P (@) =0, we[-1,1].

J

In particular, this means that oS (x) is an eigenfunction of the differential operator

~

(1= @) = -G +3+ 28 @), j=0.

J

~(3
Thus, the appropriate choice is ¢; = 0;2)

Note that [72, (18.9.8)] for A = 1
~(3

implies that o7 (z) is a scalar multiple of the recombined Legendre basis L; — L.

Therefore, the derivative matriz is a diagonal matrix with entries, ®,, = —(j(j +

3) +2). We denote ® = —D and prove the following result.
Lemma 6.3.3. For N =4, M\pax (D) < eN? and M\pin(D) = ¢ .

Proof. Since ® is a diagonal matrix of size (N + 1) x (N + 1),

Amax(D) = max (j(j + 3) +2)) < cN?,

0<j<N

Amin (D) = min (j(j +3) +2)) = c.

0<j<N

]

Define M to be the matrix that represents multiplication by (1 — x?) in the Cc3)
basis. Since the recurrence relation for the unnormalized ultraspherical polynomials,

C3), is given by [72, (18.9.7) & (18.9.8)],

(1— 230 () = —(2) + 1)(27 + 3)(2) +5)(2) + DC2)(x)

— 22 +3)01 (@) + (2 + 5)C ) (@),
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Thus, M is symmetric with non-zero main diagonals and 2 and —2 diagonals, defined

as follows.
2 +1)(J +2) k=
27+ 1)(25 +5)’ ’
Mjy, = @i+ DEi+5) vy (6.3.2)
—1 (7 +4)(25 + 3) k=42

(27 +3)(2j5 +5) J'25+7) 7

N+1)x(N+1)

We prove the following bounds on the spectrum of M e R( , which were

observed through numerical experiments depicted in Figures and [6.8D]

107t ~~

L L L L L L L L L sl L L L L L L L L
1008 1009 10 100t 1012 1013 1044 1012 10%6 1008 1009 10 10! 1012 108 104 1015 1016
N N

(a) Maximum eigenvalue. (b) Minimum eigenvalue.

Figure 6.8: Bounds for the spectrum of M.

C

Lemma 6.3.4. For N > 4, Apax(M) < ¢ and Apin(M) = N7

Proof. Let x € RY*1\{0}, since M is symmetric, its eigenvalues are estimated as

follows.

N N
2T Mz = Z Z TiMyj T

iijfO
N—2
= Z x?mﬂ +2 Z LjLj+2Mj,5+2 (by (3.2.2))
N N-— : iy
:Z 2+ 1)(j +2) Z Tj%jto (7 +4HN25 + 3) (6.3.3)
=2+ (2j +5) = (27 +3)(2) +5) JU 27 +7) o
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=0
—2

2%

> o (j +4)
Z Z LI 91 3) (2 + 5)
i T4 <3 Z z?, (6.3.4)

HM

where the last inequality is achieved by applying the Cauchy Schwarz inequality.
Thus, Anax(M) < C. Note that

o wTe (j +4)!(2j + 3)
ZZ (2j+3)(2j+5)\/ 125+ 7)
ZW“ G +2)2 + 9zl VG +3)0 + )|zl
A/ (27 +3) - (25 +5) V(25 +7)(25 +9)

(G + 1)+ 2)(2) +9)|z;? +N2 (G +3)(j + 4)|7j10/?
(27 4+ 3) - (25 +5)? (27 +7)(25 4+ 9)

N— 2

(.7 + 1) +2)(2) +9)a?
RSB

- (27 2
<2+ 10 +2) ((2j+3>. 2157 (25 +3)(2) +5)) i

oD+ 2)45 +14)
BED Yy er e

)
/\‘i‘
o
~—
—

7=0
thus by (6:3:3),
N :
1 (45 + 14)
o' Mz > 2 (j+1)(]+2)< : : — : )IQ-
]2_10 (275 +1)(2j+5) (25+3)(25+5)2)
N 9 .
242%2- , 4 +.12‘7+1. 3
= (27 +1)(25 + 3)(25 +5)
N : 2
1
242%2- (i+1)

4725 + 1)(25 + 3)(2) +5)?

-
> 3 L%

hence the desired result. O
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First Scheme: US in both space and time

We first formulate an ultraspherical scheme in space and time for the heat equation,

that is, we consider the approximate solution as follows
N N 3)
~ ZZ (1 = 230 (@) Ly(t),  (w,1) € (—1,1)%, (6.3.5)
j: k=0

where Ly (z) represent the Legendre polynomial of degree k. Recall that C(2)(z) are

the Legendre polynomials. Thus, we have the following relation by (66.1.3),

d d (3)
_ 2 ; .
S = o w =B, k=1

This allows us to find the discretization of the heat equation as follows. We begin

with the projected initial condition:

7=0k=0 7=0
SRy NCPRNIR SIPNE)
DD (1= 2?) G5 () = Y uC (w)
7=0 k=0 =0
Define uy, = [ugo; u10; - - - ; UNo; Uo1; - - - ; UNN] € ROV gy [ud; ul; .. ;ul] €
R(N-&-l)xl’ and
P = [1 11 ... (—1)N] e RIV+D,

then the initial condition gives

(% ® M) Up = Uph- (636)
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1
Now, recall (6.1.4)), which for A =  gives the conversion operator for converting C](?)

or L; basis to C(2). We denote it by § 1 and it is given as follows,

1
L =3

1 _1

3 7

S) = ' 1 ' 1 e RIVHDx(N+1), (6.3.7)
2N-3 T 2N+1
1
2N—1
1
i 2N+1 |

Let us now discretize the heat equation uy — u,, = f(z,t) as follows,

=
1=
I
<
Bl
VRS
—
—_
|
8
N2
X
Nlw
a5
S~—
b{
o~
=
|
VRS
—
—
|
S
N2
X
Nl
w5
S~—
~_
~
Bl
=
S~—
~_
I
g
8
=

7=0k=0
N N-1 N(é) (3) N N N(ﬁ) 5
3 3 il = a0 @0 @) + 2 Y G +3) + 298 @) Lu(t) = a0,
7=0 k=0 7=0k=0
where

3
On changing the basis in time from L to 0,52) in the second summation of the above

equation, the following linear system is obtained,

(J@M-FS%@@)Uh:fh:
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where J is a 1-diagonal matrix, defined as,

J— S e RIVFDx(N+1)

and fi = [foo; fi0; - -5 favoi fors- - ] € ROVHDHL,
Now, we need to incorporate the initial conditions. Multiplying (6.3.6) by €,+1 ®
Ini1, where e,4; = [0;0;...;1] € RW*Ux1 " and adding or subtracting it to the

above equation, we obtain the following discrete heat equation,
<(J + en+1@) ® M+ Sé ® @) Uup = fh + (en—i-l &® ]N+1)uoh- (638)

This scheme portrays spectral convergence in both space and time, as seen in Fig-
ures and [6.9D] for ‘—” and ‘+’ sign, respectively. All the schemes in this section
are also implemented on julfa. For both of these schemes, we take f so that the
exact solution is

u(zw,y,t) = e’ sin(rt), (6.3.9)

satisfying the boundary conditions, and giving initial condition as u(z,y,—1) =
e~ !sin(rz). Denote coefficient matrix of the system given in ([6.3.8)), by considering

‘+7 sign, i.e., the global space-time spectral operator for the heat equation, by A; =

(J+ e, 18) @M + S1®@De RWNVHD*x(N+1)* - Pigures 6.10a and [6.10b| suggest that

the 2-norm condition number of Ay, x(Ap) < e¢N3, for all 6 < N < 50. Note that it

is sufficient to consider N < 50, because typically for us N < 20.

Remark 6.3.5. Note that for the case of a k-th order ODE and discretization

parameter n = N + 1, we get a n — k x n order linear system and define the first k&
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b o Error | |

(a) Considering ‘—’ sign. (b) Considering ‘+’ sign.

Figure 6.9: Convergence of the US method in space and time for the heat equation.
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(a) Maximum singular value.

Figure 6.10: Bounds for singular values of Aj,.

{ L L L L L L L L L L L L L
1008 1009 10! 101 1012 1013 104 10 1016 10 109 10 1011 1012 1018 1014 1010

(b) Minimum singular value.

L
1016

rows as the boundary condition to get a square linear system of order n. However,

for the case of a time-dependent PDE such as (6.3.8)), the equation u; — u,, =

on (x,t) € (—1,1)? returns a square linear system of order (N + 1)2.

f(z,t)

Moreover,

the initial condition u(x, —1) = ug(z) implies (6.3.6]), which is (N + 1) equations in

(N + 1)? unknowns. Thus, we add or subtract their contribution to the last row of

all zeros of J, which generates the last (N + 1) rows (containing all zeros) of the

term corresponding to the discretization of wuy, i.e., J® M.
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Second scheme: Collocation in time and US in space

In this section, we present another scheme for solving the heat equation, given by
(6.3.1]), demonstrating spectral convergence in both space and time. In this method,
we incorporate the US method in space and collocation in time, by defining an

approximation for u as follows,

= Y up(t =D @)0(), (@ 1)e (—1,1)2 (6.3.10)

7=0k=0

where 5'](%) are the rescaled ultraspherical polynomials of order % as defined in this
section and ¢, represents the Lagrange polynomial of degree N + 1 for the Chebyshev
Gauss-Lobatto nodes given by ¢, = cos W, for 0 < k < N. Note that we
considered these nodes for convenience of analysis. In practice, any other Gauss

quadrature nodes can be used. Substituting the approximate solution (6.3.10]) to

yields,
Z Z o <(1 — a?) Nj(%)(x)%(t) — ((1 — 172)5](g)<x)> ﬁk(ﬂ) = f(x,1).

On collocating at time ¢t = ¢,,, for 1 <m < N,

-
M=

<

I
o
ey

I
o

wie (1 — )0 (@) (1) — ((1 —a?) "]@(:r)) Sm) = F(. )

(1= 2D @) 1) + (GG +3) + DED (@)m) = F(2, 1)

-
M=

<
Il
=}
Eo
Il
_

N
For 1 <k < N, let f(z,te) = > f5C1(2), and define f, = [f: 2.5 £),
=0

where fF = [fF; f:...; f&]. Thus, definition of M € RIN+I*(N+1) and D e RIV+Dx(N+1)
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give the following discrete heat equation
([P1®M + In ®@D)up, = fir — don @ (Muop) - (6.3.11)

Denote coefficient matrix of the above system, i.e., the global space-time spectral
operator for the heat equation, by o, = [D]®@ M + Iy ® ® € RVNOHFXNIN+L - Oy
next goal is to prove a spectral condition number estimate for «7,, which is given by

the following result.
Theorem 6.3.6. Let N > 4, then kg,(4,) < cN?.

Proof. Observe that, Lemma 1| gives A(a,) Uk (A 4+ A\ M). Let X €
A([D]) € C, and M and ® are SPD, with the latter diagonal. For some z € RV,

so that |z| = 1, the absolute value of the eigenvalues can be estimated as follows.

2"Dx + Aa" Mz| = [(2" Dz + RX - 2" M) +i- S\ (27 Mz)|
> (2" Dz + RN - 2T M)
=2"Dx + R\ 2T Mz

= )\m1n<©) + C)\min(M)

thus |Almin(An) = ¢. Also, since [A([D])] < omax([D]),

12T D2 + A" M| < Mnax (D) + Tmax ([D]) Amax (M)

< eN? +eN? € cN2

implying [A|max(9%) < ¢N?, hence, kg,(9%,) < cN2 O

This scheme converges spectrally in both space and time, which is verified by re-

sult of a numerical experiment shown in Figure [6.11a, For this scheme, we take f so
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that the exact solution is defined by ((6.3.9)), which satisfies the boundary conditions,

and giving initial condition as u(x,y,—1). Note that the sharpness of estimates de-

rived in the above result is evident from Figures [6.12a] and [6.12b] and is a sharp

estimate for the 2-norm condition number estimate for «7,, k(2%,), as given by Fig-

ure [6.11bl

10

10?

‘(i 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

100 1019 100 1041 1042 1042 1048 108 108 10MF 1010 1045 1016
N

N

(a) Convergence. (b) 2-norm condition number of .o7,.

Figure 6.11: The US method in both space and collocation in time for the heat
equation.
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Figure 6.12: Bounds for absolute value of eigenvalues of .7,.
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6.3.2 Schrodinger equation

The linear Schrodinger equation is

U — Mgy = f(x,1), (2,1) € (—1,1)% (6.3.12)

with boundary conditions u(£1,t) = 0 and initial condition u(z, —1) = ug(x). Here
i=+/—1.

The two space-time spectral method schemes for the Schrondinger equation are
analogous to the ones derived for the heat equation in the previous section. However,
the presence of i = 4/—1, motivates our interest in analyzing the schemes for the

Schrodinger equation.

First Scheme: US in both space and time

The approximation of u given by (6.3.5) in (6.3.12)) leads to the following discrete

Schrodinger equation,

((J te, 1 8)Q M+ iS% ®©> up = frn + (€n41 @ Ing1)Uoh,

where the constituting matrices and vectors are the same as those defined for (|6.3.8)).
These schemes demonstrate spectral convergence in both space and time as seen in
Figure [6.13b] For both of these schemes, we take f so that the exact solution is
defined by , which satisfies the boundary conditions, and gives initial condition

as u(z,y,—1). Define the global space-time spectral operator A := (J + e,11.%8) ®

M+iS1®@De€ RNV+D*x(N+1)* * Bigyres |6.14a] and [6.14b| suggest that the condition

number of A, k(A,) < cN35, for all 6 < N < 40.
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(a) Considering ‘—’ sign.

(b) Considering ‘+’ sign.

Figure 6.13: Convergence of the US method in both space and time for the
Schrodinger equation.
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(b) Minimum singular value.

Figure 6.14: Bounds for singular values of A,.

Second scheme: Collocation in time and US in space

For this scheme, the approximation of u defined by (6.3.10)) in (6.3.12)) yields the

following discrete Schrodinger equation,

([D]@M—i—@[zv@@)uh = fh—d0h®(Mu0h),

where the constituting matrices and vectors are the same as those defined for (6.3.11)).

The spectral convergence in space and time for this scheme is evident from Fig-



ure . For this scheme, we take f so that the exact solution is defined by ,
which satisfies the boundary conditions, and gives initial condition as u(z,y, —1). De-
fine the global space-time spectral operator for this scheme as &7, = [D]QM +ily®D €
CNW+DXN(N+1) - Similar to the case of the heat equation, this scheme is slightly bet-
ter conditioned than the previous one for the Schrodinger equation, as Figure

suggests that r(,) < cN?3, as compared to k(A,) < cN35.
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(a) Convergence. (b) 2-norm condition number of 7.

Figure 6.15: The US method in both space and collocation in time for the Schréodinger
equation.

6.3.3 Wave equation

Consider the linear wave equation,

U = Uge + f(2, 1), on (—1,1)% (6.3.13)

with boundary conditions u(+1,¢) = 0 and initial conditions u(z, —1) = wup(z) and

w(z, —1) = uy(x).
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First Scheme: US in both space and time

We first formulate an ultraspherical in space and time scheme for the wave equation,
that is, we consider the approximate solution as defined by (/6.3.5)). Since the wave

equation has second-order partial derivative w.r.t. time (¢), (6.1.3)) implies,

d2
and — Ly (t) = 0 for k = 0,1. This allows us to find the discretization of the wave

dt?
equation as follows. The first initial condition is obtained analogously as (6.3.6)),
thus

(@@ M) Up = Uoh- (6314)

Since w(z, —1) = uy(x),

7=0k=1 j=0
N N-1 k N
-k +1)(k+2 ~(2) ~(3)
I A ENT e
7=0 k=0 Joury
Define up = [ugo; w10; - - - ; uno; uor; - - - ;unn| € RWVHDIXL gy, = [ud;uls. .. ;ul] €
R(N-&-l)xl) and
N(N +1
B=10 1 -3 6 —-10 ... (_1>N—1¥ e RIXWV+D)

then the initial condition gives

(,@t@)M) Up = Ulh- (6315)
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3
Now, recall (6.1.4)), which for A = 2 gives the conversion operator for converting C](?)

basis to C](%) . We denote it by & 3 and it is given as follows,

_3
1 7
3 _1
5 3
3 _3
7 11
Ss = e RIVFDX(N+1), (6.3.16)
2
_3 __3
2N—-1 2N+3
_3
2N+1
_3
| 2N+3 |

Let us now discretize the wave equation uy — u,, = f(x,t) as follows.

5
On changing the basis in time from Ly to C’,Ef) in the second summation of the above

equation, the following linear system is obtained,

<j®M+S%S%®@> up = fn,
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where J is a 1-diagonal matrix, defined as,

0 0 3
00 3
T = R e RV+)x(N+1).
0 0 3
0 O
0
and fi, = [foo: fo;- -3 fvo; fors - fun] € RVFDX1 - Now, we need to incorporate

the initial conditions by using eqgs. (6.3.14]) and (6.3.15)) and e ® I 1, defined as

On-12 e RIV+Dx2,

Iz
and adding or subtracting their contribution above equation, we obtain the following

discrete wave equation,
(T £e2,)®M + 535, ®D) w, = fi £ (6® In1)on, (6.3.17)

where A, := [;5; ] and vy, 1= [ 4" ]. These scheme converge spectrally in both space
and time as seen in Figure [6.16] For both of these schemes, we take f so that the
exact solution is defined by , which satisfies the boundary conditions, and
gives initial conditions as u(x,y, —1) and w(x,y, —1).

Consider with ‘4’ sign, that is, define the global space-time spectral op-
erator A, = (J +eB)@ M + S35, ®D € RWV+D*x(N+1)? - Op observing the growth
and decay of the maximum and minimum singular values of A,, from Figures

and [6.17b] respectively, it is deduced that x(A,) < cN%, for 6 < N < 40.
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(a) Considering ‘—’ sign. (b) Considering ‘+’ sign.

Figure 6.16: Convergence of the US method in both space and time for the wave
equation.
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(a) Maximum singular value. (b) Minimum singular value.

Figure 6.17: Bounds for singular values of A,,.

Second scheme: Collocation in time and US in space

Now, we present another scheme for solving the wave equation, given by ,
demonstrating spectral convergence in both space and time. In this method, we
incorporate the US method in space and collocation in time, by defining an approx-
imation for u as (6.3.10]). Since thisNequation has second order derivative w.r.t time,

al ~(3 ~(3
we also define v(x,t) = uy(x,t) ~ Z Z vie(1 — 2?) J(-Q)(:I;)Ek(t), where C](-Q) and ¢;
=0 k=0
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are the same as (6.3.10). Thus, the initial condition u(x, —1) = ug(x) implies

—~
=
S
o
|
N
I
1=
<
SO
NPIY
[w
S

N N s
Z Z w(l — :132)03(-5

j=0k=0 Jj=0
N SCTNIR QWP E)
D ujo(1 =)0 (x) = > u)Ci* (x)
j=0 J=0
Define uf) = [ugo; u10; ... uno] € RV and ug, = [ud;ul;. .. ;ul] € RYFD | then
the above equation gives
Mul) = ugp. (6.3.18)
Similarly, define vh = [Uoo, vi0; - - s vno] € RVFY and uyy, = [ud;ul;. .. uk] € RWVHD,
so that u(x Z . Then, the second initial condition w;(z, —1) = uy(x)
gives B
Mvy = uyp,. (6.3.19)

Now, consider v(z,t) = uy(x,t), and collocate it on t = t,,, for some 1 < m < N.
Recall that {t,,}~_, represent the Chebyshev Gauss-Lobatto nodes. Then, approxi-

mation of v and v = u; imply,

M\CA!
w

ZZu]kl—x ZZvjkl—x §)( Vo (tm) = 0,

j=0k=0 Jj=0k=0

or
N N n N n
ZZ ujr(1 — 2*)C 2 Z%ml—l‘ 2(m):O.
J=0k=0 J=0
Rearranging,
SRy 2 5 3) N ~(3) N ()
2 2 wk(1=2?) G52 (@)l (bn) = D v0im(1=2) O3 (@) = = D wjo(1=2%) O ()6 (tm),
7=0k=1 j=0 j=0
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which yields the following linear system

([D1® Ins1)un = vn — dop ® uy, (6.3.20)
where dg, represents the 0O-th column of the matrix D, v, = [vi;v3;...;0)] €
RVYVHD - with Uili = [vok; vik; - .. uNk] € RWVD for 1 < k < N. Now, we dis-

cretize the equation uy — u., = f(x,t), or vy — uy, = f(x,t), by collocating it at

time t = t,,, as follows,

ShY ~(3) N ()
D2 i1 = 2O (@) G () = Y ujm (1= 2%) G (1)) = f (0, tm)
=0 k=0 20
Shy () - ~(2)
D 2 vkl =) O (@), () + D wim(§ (G +3) +2)C5 () = f(x, 1)
j=0k=1 Jj=0
s (3)
— Y w1 = 2?)C3% () (to),
=0
giving the following linear system,
([D]1® M)vy, + (In @ D)uy, = fi, — don @ M},
where uy, = [u};u?;. . ud] € RYWVHD with uf = [uor; uig; . . . ;une] € RYHY | for

1 <k < N. From egs. (6.3.18) to (6.3.20)), the above equation becomes,

([DP @M + Iy ®D) up, = fr — don @ (uor) — [D]don ® urn,

which represents the wave equation in discrete form. This scheme converges spec-
trally in both space and time as seen in Figure [6.18al For this scheme, we take f so
that the exact solution is defined by , which satisfies the boundary conditions,
and gives initial conditions as u(z,y, —1) and us(x,y,—1). Also, see Figure

for an estimate on condition number of the global space-time spectral operator for
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this scheme, defined as 7, = ([D]? @ M + Iy @ ®) € RVWFUXNWV+D) "¢ g inferred

that x(,) < ¢N*, which is the same order as that of the previous scheme.

100 F
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(a) Convergence. (b) 2-norm condition number of .27,

Figure 6.18: The US method in both space and collocation in time for the wave
equation.

To summarize this section, we observe that the US method in space and time
leads to sparse linear systems which are easier to formulate. However, incorporating
spectral collocation in time and the US method in space gives better conditioned

systems.

6.4 A fast solver for the space-time US method

The US method in space and time are revolutionary, as they lead to sparse global
space time spectral operator. For instance, let us compare the spy graphs of the
global space-time spectral operators. Figure[6.19]is the spy graph for .7,, defined by
, for N =9, which results on applying the US method in space and spectral
collocation in time for solving the heat equation. The density of pseudospectral
derivative matrix [D] makes <, dense as well. Whereas, the spy graph of A; for
N =9, defined by and obtained on employing the US method in both space

and time, is given by Figure is visibly sparse. Note that the initial condition

196



at the bottom of the global spectral operator. This can be easily moved to the top
by using the QR decomposition of J + e, 14, defined by . Note that it is
simply a permutation of rows, as a simple adjustment gives, J + €,,18 = Qn Ry,
where
S I L I
1 Oni1 In

Define Q;, = (Qf ® Iny1), then Qp A, = Ry @ M + QfS’% ®®, which is now a block
almost banded structure as seen in Figure [6.20b]

Similarly, Figure shows the sparsity of A,,, defined by for N = 9.
For A, € RWV+D*x(N+1)? " we perform the same procedure as J + €%y = QuRu,

where

B

On-12 3In—

Define Q,, = (QL ® Iny1), then Q, A, = R, ® M + QgS%S% ®D. Figure
shows that its structure is also now similar to that of Qj.Aj,, that is, a block almost
banded structure.

Thus, the US method in space and time yield a block almost banded structure
which can be easily exploited for solving these linear systems in parallel, thus con-
structing parallel-in-time (PinT) solvers. We introduce one of the simpler iterative
techniques from [99], for solving tridiagonal linear systems in parallel. Note that the
discrete heat equation allows the decomposition of A, = L + D + U, where D, L
and U represent the block diagonal, block strictly lower and strictly upper triangu-
lar parts of Aj, respectively. Since they are sparse, thus A, can also be solved in
parallel by using the hybrid blocked iterative solving algorithm (HBISA) given in

[99, p. 1770]. However, for schemes arising from the US method in both space and
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time such an algorithm generally leads to an iteration matrix with spectral radius
greater than unity, thus implying divergence.

Our another aim is to formulate another direct parallel solver by using the specific
structure of the matrices arising from applying the US method in both space and
time. A step in this direction is to use ParaDIAG algorithm described in [33], which
can be modified for the linear systems generated by the US method in space and
time. To this end, let us consider the following linear system for sparse matrices
A, B,C,DeR"™™

(A®C + B® D)up = f, (6.4.1)

where uy,, fn € R xn? represent the discrete unknown vector and discrete forcing
term vector. Numerical experiments imply that A and B for such linear systems
possess a generalized eigenvalue decomposition AV = BV A4 p), where Ay p) is a

diagonal matrix and V' is invertible which transforms (6.4.1]) to the following

(Aap) ®C + 1, Dy, = (V'BT' QL) f,

where v, = (V' ® I, )uy, thus resulting in a block diagonal linear system which can

be solved in parallel for (v,)1 4 knmtkn, where 0 < k < (n—1). Finally, up, = (V®I,)vy.

60 o
70 fog

80 fogn

90

Figure 6.19: Spy graph of <, for the heat equation with the US method in space
and spectral collocation in time and N = 9.
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(a) Ap

nz = 664

(b) QnAy

Figure 6.20: Spy graphs for the heat equation with the US method in both space
and time and N = 9.
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Figure 6.21: Spy graphs for the wave equation with the US method in space and

time and N = 9.
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Concluding remarks and future

directions

In this chapter, we briefly describe some extensions of the work completed in Chap-
ters [BHGL

In Chapter [3] we devised a space-time spectral method for the Stokes problem,
which implements the Py — Py_s scheme in space and spectral collocation in time.
For simplicity of analysis, a recombined Legendre basis was considered in space
and Chebyshev collocation was used in time. Note that, this scheme can easily be
adapted to other orthogonal polynomial bases. A drawback of this scheme is that
all time steps are coupled in the global spectral operator. Despite the limitations
these methods are valuable in light of spectral convergence in both space and time,
requiring far less number of unknowns for a highly accurate solution.

While voyaging through the goal of proving a condition number estimate for the
global space-time spectral operator G, for the unsteady Stokes problem, the first
milestone was proving a condition number estimate for the Py — Py_o scheme ap-
plied to the case independent of time, that is, in steady state. To this end, we

proved estimates for the stiffness matrix, mass matrix, and the Laplacian in two di-
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mension for a recombined Legendre basis functions, stated in form of Lemmas
and [3.3.2] and Theorem [3.3.3] respectively. Other intermediate results include es-
timates for the discrete gradient matrix B and the Schur complement Y,. Con-
sequently, Theorem [3.3.11| proved the optimal condition number estimates for the
sub-block appearing in the global spectral operator for the Stokes problem in steady
state.

For the next step, the analysis of the scheme in unsteady state required a new
estimate of maximum singular value (or 2-norm) of the Chebyshev derivative matrix,
proved in Lemma [3.4.2] which was observed in existing literature through numerical
experiments. The condition number estimate of the global space-time operator is
still incomplete because we relied on numerical results for two estimates, namely
eqs. and . Nevertheless, we paved a proof for the minimum sin-
gular value of a non-symmetric saddle point matrix. This chapter was concluded
with a proof of spectral convergence of this scheme in space and time is given in
Theorem [3.4.6], which appears to be new. All of these results are verified through
numerical experiments.

Recently, [46] present spectral distributions of the saddle point matrices arising
from the discretization and linearization of the Navier—Stokes equations, where the
leading block is nonsymmetric with a positive definite symmetric part. The global
space-time spectral operator of the scheme analyzed in Theorem [3.4.5| is a non-
symmetric saddle point matrix, so that the symmetric part of its leading block A;
is indefinite. As far as we know, there are no results in literature that estimates
the spectrum of such a matrix, thus problem highlights a potential linear algebra
problem. Approximations on the spectrum of this special case of a saddle point
matrix will be significant for deriving spectral condition number for such schemes
as seen in [67], which in turn is useful for the analysis of preconditioned systems as

discussed in Section 2.1.4
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Research Direction 1. Sharper estimates for the spectrum of a saddle point matrix
X = [g BOT ], where A € R™*" is non-symmetric matrix with an indefinite symmetric

part and B € R™*" is full rank.

Since the linear systems arising from space-time spectral methods are coupled
at all times, a subsequent objective is to tailor the scheme as parallel in time. Al-
though the Chebyshev derivative matrix [D] is responsible for the dense nature of
the discrete Stokes problem, however, it is diagonalizable and ParaDIAG algorithms
mentioned in [33] result in a convenient parallel solver numerically. Albeit it is a
tough task to formulate it theoretically, that is, to find an explicit expression of
spectral decomposition of [D]. This problem can perhaps be more well-defined by

considering exploring a suitable preconditioner which may resolve this issue.

Research Direction 2. Formulate a parallel-in-time (PinT) scheme for the linear

system arising from spectral collocation in time.

In Chapter [4] we extended the Py — Py_s from [I2] scheme in space and colloca-
tion in time from Section to the Navier-Stokes problem in Section 4.2] Further-
more, in Section [4.3], we applied a staggered grid collocation scheme in space, given in
[11], and spectral collocation in time to both the unsteady Stokes and Navier-Stokes
problem. Numerical experiments for all of these schemes validate a super-algebraic

decay in error in L® norm for the solution evaluated at the final time step, ty = 1.

Research Direction 3. Study and estimate the high limit of the Reynold’s number
for the Py — Pn_o and staggered grid collocation schemes described in Sections

and [4.3] respectively, for the unsteady Stokes and Navier-Stokes problems.

In Chapter |5, we derived two new lower bounds on the minimum eigenvalue of

a non-singular sum of two PSD matrices in form of Theorems [5.4.1] and [5.4.4], that

is, Amin(P + @), where P and @ are PSD and P + @ is SPD. To our knowledge,

this is the first report of a positive lower bound for this case despite being a topic of
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historic concern. These bounds incorporate the Friedrichs angle between the range
spaces R(P) and R(Q). These findings provide a basis for lower bounds on the min-
imum singular value of some full rank block matrices presented in Corollaries [5.6.]]
and [5.6.2] Theorem [5.6.3] and Corollary[5.6.4] Broadly translated our work indicates
that the minimum singular value of a non-singular matrix can be derived in terms of
its constituting matrices, P and @) for P+ (), or submatrices for block matrices even
if they are singular. Importantly, by utilizing the projection on range spaces, the key
component for bringing the minimum positive singular value of rank-deficient ma-
trices into play. This may be considered a promising aspect of studying the singular

values of matrices with a geometric approach.

The lower bounds described by Theorems [5.4.1] and [5.4.4] are sharp for the case

of R(P) n R(Q) = {0}, so that the parameter £k = 0. However, there is a scope
for improvement in these results for the case when r,k > 0. It may be possible
to incorporate Py~ in to improve the lower bound. In Example |5.6.10
it was observed that changing the partition of a matrix changes the lower bounds
given by Theorem and Corollary[5.6.4 Thus, one can try to determine the best
partition for a certain class of matrices yielding optimal estimates on the minimum
singular value. Some techniques exist for calculating the principal angles between
two subspaces, see [58]. A more efficient algorithm can be designed for calculating
the Friedrichs angle between two subspaces. Since it is defined for subspaces of a
Hilbert space in Definition [2.2.4] it may allow us to extend the main results to a more

general setting. This discussion is summarized in form of the following pointers.

Research Direction 4. Improve the results for the sum of two PSD matrices with

a non-trivial intersection of their range spaces.

Research Direction 5. Determine a criteria for achieving an optimal partition
for matrices yielding optimal estimates of the minimum singular value, as different

partitions of a matrix yield different estimates.
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Research Direction 6. Extend Theorems [5.4.1| and [5.4.4] to self-adjoint operators

on a separable Hilbert space.

Research Direction 7. Devise a computational or theoretical procedure for calcu-

lating the Friedrichs angle between the range spaces of any two given matrices.

In Chapter [6] we implemented the US method in space and time for the heat,
Schrodinger, and wave equations. Additionally, we imposed the US method in space
and spectral collocation in time to collate the merits and demerits of employing the
two schemes. This experiment adds to a growing corpus of research showing the
effectiveness of the US methods and promise a state-of-art scheme for solving time
dependent PDEs. As Section indicates that we can fruitfully explore a PinT
solver by exploiting the sparse block almost banded structure of the schemes arising
from the US method in space and time. Thus, a number of recommendations for

future research are given as follows.

Research Direction 8. Prove an estimate on 2-norm condition number of the heat,

Schrodinger, and wave equations.

Research Direction 9. Devise a space-time US method for solving linear PDEs

such as Airy, beam and Stokes problem.

Research Direction 10. Prove the spectral convergence of the US method in both

space and time for linear time dependent PDEs.

Research Direction 11. Design a PinT solver for the numerical schemes resulting

on employing the US method in space and time for linear time dependent PDEs.
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Appendix A

Alternative proofs

The results mentioned in this chapter were derived prior to coming across [32] and

solely relying on knowledge from [6§].

A.1 Difference of orthogonal projections

The following is a simpler proof for the expression for the null space of difference of

two projections onto subspaces U,V < R" spanning R", that is, R" = U + V.

Lemma A.1.1. Let U,V < R" be subspaces so that R* = U + V. If P, P, e R**"

are orthogonal projections onto U and V', respectively, then N (P, — Py) = U n'V.

Proof. Let x € UV, then Pix = z and Pyx = x, thus (P, — P)x = 0, which implies
r € N(Py — P). Therefore, U nV € N (P, — P).

Let z € N(P, — P,) € R", then Pz = Pyx. Let B = {£,&,...,&) be a
basis of U n V. Consequently, we define By = {&1,..., &, Orsty- - Py )y By =
{&1, .. &y Wkt -, Unyt as bases of U, V| respectively. Since z € N (P, — P,) <

R™ = U + V, there exist some scalars a;, b;, where 1 < ¢ < ny, k+ 1 < j < ng, such
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that

n2

k ni
=Y abi+ ), wdi+ ), b,
i=1

i=k+1 i=k+1
k ni
Plx - Zazgz + Z az(bza
i=k+1
k
Px = Zazﬁ + Z bi;.
i=1 i=k+1

Thus, Pix = Px implies

1

> aigi = 2 biys € (U\V) n (V\U) = {0},

i=k+1 i=k+1

k
thuS$=Zai§ieUmV. Hence, N (P, — P,) cUNnV. O

i=1

A.2 A result on complementary subspaces

The following is a simpler proof for the minimum singular value of the sum of two

orthogonal projections onto complementary subspaces R, Ry € R™.

Lemma A.2.1. Let Ry, Ry € R" be two complementary subspaces, that is, R" =

Ri®R,, then ¢(RT, RT) = 1—cos 6, where 0 is the minimum principal angle between

R(RT) and R(RY).

Proof. Let P; € R™" be orthogonal projections onto the subspaces R(RY) for i =
1,2. In order to prove that c(RT, RT) = 1 — cos 6, it suffices to prove that, for any

reR" x#0,
|Piz|? + | Pyx|?
||

> 1 — cos®.
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By Property [4] of Proposition [2.2.2

min (P — Py)x|

zeR™MFT ||
x#0

= Opmin(P1 — P2) = sin 6.

Therefore, for z € R™\{0}, |(P, — P»)z|* = sin?(0)|z|?, or

(P, — Py)? = sin?(0)1

Note that,

(Ph+P—1)?= (P +P—1)(P,+P—1)
=P P~ P+ PP —P+1
=I1— (PP — PP~ PP, + Py
=1— (P, — P)?
< (1 —sin?(6))1 = cos*(0)1.

Thus,
—cos(0)l < P+ P, — 1 <cos(0)1,
or

(1 —cos(9))I <P+ P, <(1+cos(0))].

Therefore, for z € R™\{0},

|(PL + Py)x|* = (1 — cos(0))?|z|>.
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By the parallelogram law and using the above inequality with (A.2.1]),

]Plyc|2 + ‘P2$’2 = (|P1:1: + sz\z + |Pix — PQJZ\Q)

1
2
; ((1 = cos(8))* + sin*(6)) |z|?

; (1 + cos?(9) — 2cos(6) + sin(9)) [z

= (1 — cos(0)) |z|>.
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