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Abstract

Spectral methods for solving partial differential equations (PDEs) depict a high order

of convergence, which is exponential when the solution is analytic. However, their

applications to time-dependent PDEs typically enforce a finite difference scheme in

time. The slower decay of error in time overwhelms the super-algebraic convergence

of error in space. A relatively new class of techniques is space-time spectral methods

converging spectrally in both space and time. We devise and analyze a space-time

spectral method for the Stokes problem. The main objectives of the research are

estimating the condition number of the global spectral operators and proving the

spectral convergence of this scheme in space and time. Numerical experiments of

this scheme verify the theoretical results. Furthermore, we discuss two space-time

spectral methods for the Navier-Stokes problem.

The discrete systems resulting from classical space-time spectral methods are

dense, ill-conditioned, and coupled in all time steps. A new class of spectral meth-

ods, called the ultraspherical spectral (US) methods, are applied to time-dependent

PDEs, which along with spectral convergence, lead to the resultant discrete systems

constituting sparse and well-conditioned matrices.

Additionally, we join the long tradition of estimating the eigenvalues of a sum

of two symmetric matrices, say P ` Q, in terms of the eigenvalues of P and Q.

We derive two new lower bounds on λminpP `Qq in terms of the minimum positive

eigenvalues of P and Q. The bounds incorporate geometric information by utilizing

the Friedrichs angles between certain subspaces. Such estimates lead to new lower

bounds on the minimum singular value of some full-rank block matrices in terms of

the minimum positive singular value of their subblocks.
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1

Introduction

The numerical methods seeking the solution to a differential equation in terms of

a series of known, smooth functions are called spectral methods. They have been

influential in the field because of their easier implementation and super-algebraic con-

vergence rate, which is exponential when the solution is analytic. This phenomenon

of convergence is referred to as spectral convergence. Most spectral methods for time-

dependent partial differential equations (PDEs) consider a finite difference scheme in

time. The problem with such an implementation is that the error in time dominates

the spectral convergence in space resulting in a low order convergence overall.

A series of recent studies has employed spectral methods to linear time dependent

PDEs, demonstrating spectral convergence in both space and time. In [92], a space-

time spectral method was proposed for the heat equation, which was analyzed in

[65, 66]. Furthermore, these schemes were applied to other linear PDEs in [67]. In

this thesis, this work is continued to analyze the space-time spectral methods to the

Stokes problem, which leads to a saddle point problem. Furthermore, we devised

two space-time spectral methods for one of the most significant non-linear PDEs,

the Navier-Stokes problem, by virtue of schemes described in [12]. Such schemes

employ spectral collocation in time, which leads to a system coupled in all times
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with dense matrices.

The ultraspherical spectral methods represent a recent class of spectral method

which lead to linear systems with sparse and well-conditioned matrices. In [74],

two numerical experiments were described for the time dependent PDEs by using

Chebfun. To illuminate this uncharted area, we examine space-time spectral methods

schemes for linear PDEs by using the US method in both space and time. The linear

systems arising from these schemes are sparse and lead to block almost banded global

space-time spectral operators. Due to this special structure, a parallel-in-time solver

for space time spectral methods now seem to be a foremost area of research.

While estimating the 2-norm condition number for the space-time spectral meth-

ods for the Stokes problem, we encountered the problem of estimating the minimum

eigenvalue of a sum of two positive semi-definite (PSD) matrices thrice. Seminal con-

tributions have been made on estimating the spectrum of a sum of two symmetric

matrices, most well known being Weyl’s inequalities, proofs for Horn’s conjecture,

arithmetic-geometric mean inequality for matrices, etc. A closer look to the litera-

ture, however, reveals a gap that they fail to provide a positive lower bound on the

minimum eigenvalue, λminpP ` Qq, when P ` Q is SPD and P and Q are singular

PSD matrices. The recurrence of this problem in the earlier chapters of this thesis

gave us the rigor to approach it. Thus, two positive lower bounds on λminpP ` Qq

were derived, which further lead to lower bounds on the minimum singular value of

some full rank block matrices up to the size 2 ˆ 2. This is the principal aim of this

thesis. The remainder of the document is arranged as follows.

In Chapter 2, we present the necessary mathematical preliminaries, and briefly

review the literature in order to ground this work in context.

In Chapter 3, our focus is on developing and analyzing the space-time spectral

methods for the Stokes problem. This problem is challenging to solve because it

requires several prerequisites results, including studying the components of a spectral

2



method for the Stokes problem in the steady-state and estimating the 2-norm of a

pseudospectral derivative matrix. They further involve approximating the spectrum

and singular values of a saddle point matrix, which is solvable to some extent, whereas

some of the observations motivate subsequent chapters.

In Chapter 4, we implement two space-time spectral methods on the Navier-

Stokes problem. Numerical experiments verify the spectral convergence in both

space and time.

In Chapter 5, our attention diverts to curating and investigating the spectral

problem of sum of two PSD matrices. Although a myriad of results address this

problem, our target is an improvement over a lower bound on the minimum eigen-

value for a specific case. Moreover, they aid in deriving more results on the minimum

singular value of some full-rank matrices.

In Chapter 6, we implement the US method in both space and time, fulfilling

desirable properties of sparse and well-structured linear systems. Thus, they elim-

inate the major drawback of space-time spectral methods by permitting a parallel

solver. Here space-time US methods for the heat, Schrödinger, and wave equations

are devised.

This thesis concludes in Chapter 7 with discussions of future directions.

Some alternative proofs for results used in this thesis are given in Appendix A

for the interested reader.
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2

Background

The fundamental concepts of a topic serve as the foundation on which one builds

new results. This chapter summarizes the consequential results on some topics that,

in conjunction, serve as a core for this thesis, such as classical linear algebra, angle

between subspace, orthogonal polynomials, and spectral methods.

2.1 Fundamentals of linear algebra

A viewpoint of a matrix that facilitates the development and understanding of nu-

merical algorithms is provided by a block matrix. Partitioning a matrix results in a

block matrix whose elements are themselves matrices, which are called submatrices

or sublocks (or simply as blocks). Suppose that matrices A and B are partitioned

into blocks as follows,

A “

»

—

—

—

—

—

—

—

–

A11 A12 . . . A1r

A21 A22 . . . A2r

... ... . . . ...

As1 As2 . . . Asr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and B “

»

—

—

—

—

—

—

—

–

B11 B12 . . . B1t

B21 B22 . . . B2t

... ... . . . ...

Br1 Br2 . . . Brt

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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If the pairs pAik, Bkjq are conformable, then A and B are said to be conformably

partitioned. For such matrices, the product AB is formed by combining the blocks

exactly the same way as the scalars are combined in ordinary matrix multiplication.

That is, the pi, jq-block in AB is Ai1B1j ` Ai2B2j ` . . .` AirBrj.

Another primary concept is that of a vector space. Recall that the trivial subspace

of a vector space V contains only the zero vector, otherwise it is called as a non-

trivial subspace. Let V be a non-trivial vector space, a basis for V is defined to be

a linearly independent set B Ď V such that spanpBq “ V . Moreover, the number of

vectors in any basis for V is the dimension of a vector space V and is denoted by

dim V . For two vector spaces U and V such that U Ď V , dimU ď dim V , and if

dimU “ dim V then U “ V . If X and Y are subspaces of a vector space V , then the

sum of X and Y is, X ` Y “ tx` y | x P X, y P Y u and X ` Y is again a subspace

of V , so that

dimpX ` Y q “ dimX ` dim Y ´ dimpX X Y q. (2.1.1)

Subspaces X , Y of a vector space V are said to be complementary whenever V “

X`Y and XXY “ 0, in which case V is said to be the direct sum of X and Y , and

this is denoted by writing V “ X ‘ Y . For a vector space V with subspaces X, Y

having respective bases BX and BY , the following statements are equivalent.

1. V “ X ‘ Y .

2. For each v P V , there are unique vectors x P X and y P Y such that v “ x` y.

3. BX X BY “ H and BX Y BY is a basis for V .

A norm for a vector space V is a function } ¨ } : V Ñ R that satisfies the following

conditions:

1. }x} ě 0 and }x} “ 0 ô x “ 0, for all x P V .

2. }kx} “ |k|}x} for all k P R, x P V .
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3. }x` y} ď }x} ` }y}, for all x, y P V .

Throughout this thesis, a column vector x of size nˆ1 is denoted by x “ rx1;x2; . . . ;xns P

Rn, whereas the row vector of size 1ˆ n is represented by x “ rx1, x2, . . . , xns. The

p-norm of vector x is defined as follows,

}x}p “

˜

n
ÿ

i“1
|xi|

p

¸
1
p

, for 1 ď p ă 8, and }x}8 “ max
1ďiďn

|xi|. (2.1.2)

Also, for convenience, |x| will denote the euclidean norm of x, which is defined as

|x| “ }x}2 “

d

n
ÿ

i“1
x2
i . A significant property of vector norms is the parallelogram

identity which states that for all x, y P V ,

}x` y}2 ` }x´ y}2 “ 2
`

}x}2 ` }y}2
˘

. (2.1.3)

We define the standard inner product on Rn, for vectors x “ rx1;x2; . . . ;xns, y “

ry1; y2; . . . ; yns P Rn, as px, yq “
n
ÿ

i“1
xiyi “ xTy, where xT “ rx1, x2, . . . , xns. More-

over, x and y are said to be orthogonal to each other whenever px, yq “ 0. A subset

M “ tv1, v2, . . . , vru of Rn is said to be an orthogonal set if the vectors in M are

pairwise orthogonal, that is, pvi, vjq “ 0 for i ‰ j and 1 ď i, j ď r. Moreover,

M is called as an orthonormal set of vectors it is an orthogonal set and satisfies

the condition that pvi, viq “ 1 or |vi| “ 1 for all 1 ď i ď r. An orthogonal matrix

Q P Rnˆn is a matrix whose rows and columns are all mutually orthonormal, thus

satisy QTQ “ In “ QQT .

For a subspace M Ď Rn, the orthogonal complement MK of M is defined to

be the set of all vectors in Rn that are orthogonal to every vector in M . That is,

MK “ tx P V | pm,xq “ 0, @m PMu, then Rn “M‘MK and dimMK “ n´dimM .

Also, MKK “M .

Proposition 2.1.1 (Orthogonality of subspaces, see [68]). LetM and N be subspaces
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of Rn, then

1. M Ď N implies NK ĎMK.

2. pM `NqK “MK XNK.

3. pM XNqK “MK `NK.

Assume V “ X ‘ Y and v “ x ` y, for unique x P X and y P Y , the projection

operator P on V is defined so that the projection of V onto X along Y is Pv “ x,

whereas pI ´ P qv “ y describes the projection of V onto Y along X. Moreover, a

linear operator P on a vector space V is a projection if and only if P 2 “ P . Let

V “ Rn “ X ‘ Y , B1 “ tx1, x2, . . . , xru and B2 “ tyr`1, yr`2, . . . , ynu be a basis for

the subspace X and Y of Rn, respectively. Then B “ B1 YB2 is a basis for Rn, thus

z P Rn can be expressed as z “
r
ÿ

i“1
aixi `

n
ÿ

i“r`1
biyi, where ai, bj P R for 1 ď i ď r

and r ` 1 ď j ď n. Then, projection of z onto X along Y is Pv “
r
ÿ

i“1
aixi and the

projection of z onto Y along X is
n
ÿ

i“r`1
biyi “ v ´ Pv “ pI ´ P qv. In order to get a

matrix form of P , define B “ rx1, x2, . . . , xr, yr`1, . . . , yns P Rnˆn, which is a matrix

whose columns form a basis for V . Then, the matrix form of projections is given as

follows

P “ B

»

—

–

Ir

O

fi

ffi

fl

B´1, pI ´ P q “ B

»

—

–

O

In´r

fi

ffi

fl

B´1.

The formulation is a result of the observations that I “ B´1B implies B´1xi “ ei,

B´1yj “ ej, for all 1 ď i ď r and r ` 1 ď j ď n. Thus, Pv “
r
ÿ

i“1
aixi “

r
ÿ

i“1
aiBei `

n
ÿ

i“r`1
biBp0q. The matrix formulation for P implies the expression for I ´ P .

2.1.1 Results from matrix analysis

This section reviews the literature related to matrix analysis. Over time, an extensive

literature has developed on this topic, we review some concepts that are imperative
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for the results deduced in the later chapters. Firstly, recall that the maximal number

of linearly independent columns of a matrix A P Rmˆn is called rank of A, and it is

denoted by rankpAq.

Proposition 2.1.2 (Properties of rank, see [44]). Let A P Rmˆn, then

1. rankpAq ď mintm,nu, and a matrix that has rank mintm,nu is said to have

full rank; otherwise the matrix is rank deficient.

2. rankpAq “ 0 if and only if A “ O.

3. rankpAq “ rankpAT q “ rankpATAq “ rankpAAT q.

4. rankpA`Bq ď rankpAq ` rankpBq.

5. rankpABq ď mintrankpAq, rankpBqu.

The range space of a matrix A P Rmˆn is defined to be the subspace RpAq “

tAx | x P Rnu Ď Rm. Similarly, the range of AT is the subspace of Rn defined by

RpAT q “ tATy |y P Rmu Ď Rn. Since Ax “
n
ÿ

i“1
aixi, where ai are columns of A and xi

are components of x for 1 ď i ď n, so that x “ rx1;x2; . . . ;xns, thus RpAq is a linear

combination of columns of A and is also called as the column space of A. Similarly,

RpAT q is called as row space of A. Also, the set N pAq “ tx P Rn | Ax “ 0u Ď Rn

is called the null space of A. In other words, N pAq is simply the set of all solutions

to the homogeneous system Ax “ 0. The set N pAT q “ ty P Rm | ATy “ 0u Ď Rm

is called the left-hand null space of A because it is the set of all solutions to the

left-hand homogeneous system yTA “ 0T .

Proposition 2.1.3 (Properties of range and null spaces, see [68]). Let A P Rmˆn

and r “ rankpAq, then

1. N pAq “ t0u if and only if r “ n.

2. N pAT q “ t0u if and only if r “ m.
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3. dim RpAq “ r “ dim RpAT q.

4. dim N pAq “ n´ r.

5. dim RpAq ` dim N pAq “ n.

6. dim RpAT q “ r.

7. dim N pAT q “ m´ r.

8. RpATAq “ RpAT q.

9. RpAAT q “ RpAq.

10. N pATAq “ N pAq.

11. N pAAT q “ N pAT q.

12. N pAqK “ RpAT q.

13. Rn “ RpAT q ‘N pAq.

14. N pA`Bq “ N pAq XN pBq.

Next, we introduce the concept of a matrix norm. It is denoted by } ¨ } is a

function from Rmˆn Ñ r0,8q satisfying the following properties,

1. }A} ě 0, for all A P Rmˆn, and }A} “ 0 if and only if A “ O.

2. }αA} “ |α|}A}, for all α P R and A P Rmˆn.

3. }A`B} ď }A} ` }B}, for all A,B P Rmˆn.

4. }AB} ď }A}}B}, for all A,B P Rmˆn with m “ n.
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Every vector norm | ¨ | induces a matrix norm. We say that } ¨ }pm,nq : Rmˆn Ñ r0,8q

is the matrix norm induced by } ¨ }pmq and } ¨ }pnq, such that

}A}pm,nq “ sup
xPRnzt0u

}Ax}pmq
}x}pnq

“ sup
xPRn

}x}pnq“1

}Ax}pmq,

for all A P Rmˆn. Moreover, for a vector x P Rn and matrix A P Rmˆn,

}Ax}pnq ď }A}pm,nq}x}pmq.

However, not all matrix norms are induced by vector norms. An example of such

a matrix norm is the Frobenius matrix norm, defined as }A}F “

g

f

f

e

m
ÿ

i“1

n
ÿ

j“1
a2
ij, for

A P Rmˆn. The matrix norm induced by the p-norm of a vector is called as the

matrix p-norm, and is denoted by } ¨ }p. Throughout this thesis, we denote the

matrix 2-norm as } ¨ }. Other useful p-norms are 1-norm and 8-norm of matrices,

defined as follows for matrices A P Rmˆn,

}A}1 “ the maximum absolute column sum of A,

}A}8 “ the maximum absolute row sum of A.

Another useful inequality between matrix norms is }A}2 ď
a

}A}1}A}8,, which is a

special case of the Hölder’s inequality.

A particular type of projection operator will play a significant role in performing

analysis in this thesis, thus we conclude this section by discussing orthogonal projec-

tions. Recall that any subspace M of Rn allows the decomposition Rn “ M ‘MK.

The projection operator P onto M along MK is called an orthogonal projection. In

this case, V “ RpP q ‘N pP q, where N pP qK “ RpP q.

Definition 2.1.4. (Orthogonal projection, see [34]) Let U Ď Rn be a subspace. A
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matrix P P Rnˆn is the orthogonal projection onto U if RpP q “ U , P 2 “ P , and

P T “ P . Moreover, if x P Rn, then Px P U and pI ´ P qx P UK. Also, }P } “ 1.

The Kronecker product of the matrices A “ raijs P Rmˆn and B “ rbijs P Rpˆq is

denoted by AbB and is defined to be the block matrix

AbB “

»

—

—

—

—

—

—

—

–

a11B a12B . . . a1nB

a21B a22B . . . a2nB

... ... . . . ...

am1B am2B . . . amnB

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rmpˆnq.

It satisfies the properties pAb BqT “ AT b BT , and pAb BqpC bDq “ AC b BD,

where C P Rnˆr, D P Rqˆs. Let rankpAq “ r1, rankpBq “ r2, then rankpA b Bq “

rankpB b Aq “ r1r2. If A P Rnˆn and B P Rmˆn are invertible, then pA b Bq´1 “

A´1 b B´1. Also, the direct sum of A P Rmˆn and B P Rpˆq is defined as A ‘ B “

r A O
O B s P Rm`pˆn`q. Thus, A‘B is a block diagonal matrix the main diagonal blocks

of which are matrices A and B. Alternatively, a block diagonal square matrix A the

main diagonal blocks of which are matrices square matrices A1, . . . , Ak is indicated

as diagpA1, . . . , Akq. In particular, if all the main diagonal blocks are scalars, it is a

diagonal matrix.

2.1.2 Spectrum of a matrix

The characteristic polynomial φpA, tq of A P Rnˆn is detptIn´Aq, for t P C. We call

a root λ of φpA, tq as an eigenvalue of A. The algebraic multiplicity of an eigenvalue

λ of A refers to the multiplicity λ as a root of the characteristic polynomial of A. We

say that λ is a simple eigenvalue of A if its algebraic multiplicity is one. We call the

set of eigenvalues of A the spectrum of A, denoted ΛpAq. For an eigenvalue λ of A,

any non-zero vector w P Rn such that Aw “ λw is called an eigenvector associated

to λ, and we call the vector space of all eigenvectors corresponding λ the eigenspace
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of the eigenvalue λ.

Theorem 2.1.5 (Spectral decomposition, see [44]). Let A P Rnˆn be a square

matrix with n linearly independent eigenvectors p1, . . . , pn. Then A can be fac-

tored as A “ PDP´1, where the columns of P are the eigenvectors p1, . . . , pn and

D “ diagpλ1, . . . , λnq.

If the spectral decomposition of a square matrix A exists as described above then

we say that A is diagonalizable. Moroever, every symmetric matrix is orthogonally

diagonalizable. Let M P Rnˆn be a symmetric matrix, then it is orthogonally diag-

onalized as M “ QDQT , where Q is an orthogonal matrix whose columns are the

orthonormal eigenvectors for M and D “ diagpλ1, . . . , λnq, λj P R. Another result

of great importance is the following, which estimates the spectrum of sum of two

symmetric matrices as seen in [43, p. 239].

Theorem 2.1.6 (Weyl’s inequalities, see [43]). If A and E are nˆn real symmetric

matrices, then

λkpAq ` λnpEq ď λkpA` Eq ď λkpAq ` λ1pEq, 1 ď k ď n.

A symmetric matrix with non-negative eigenvalues is called positive semidefinite

(PSD) matrix, and with positive eigenvalues is called positive definite (SPD) matrix.

The following properties are valuable for our work.

Theorem 2.1.7 (Properties of eigenvalues of a matrix, see [41]). Let A P Rnˆn, and

λ1 ě λ2 ě . . . ě λnpAq be the eigenvalues of A.

1. If A is symmetric then λ1pAq “ max
xPRnzt0u

xTAx

xTx
and λnpAq “ min

xPRnzt0u

xTAx

xTx
.

2. Let Ai P Rniˆni and A P Rnˆn is a block diagonal matrix, so that A “ ‘ki“1Ai,

then ΛpAq “
k
ď

i“1
ΛpAiq.
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3. Let A P Rnˆn be block upper triangular matrix so that,

A “

»

—

—

—

—

—

—

—

–

A11 A12 . . . A1k

A22 . . . A2k

. . . ...

Akk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Then rankpAq ě
k
ÿ

i“1
rankpAiiq, and ΛpAq “

k
ď

i“1
ΛpAiiq.

4. Let B P Rmˆm. If ΛpAq “ tλ1, . . . , λnu and ΛpBq “ tµ1, . . . , µmu, then ΛpAb

Bq “ tλiµj, 1 ď i ď n, 1 ď j ď mu, including algebraic multiplicities.

5. Let B P Rmˆm, λ P ΛpAq with a corresponding eigenvector x P Rn and µ P

ΛpBq with a corresponding eigenvector y P Rm, then λ` µ is an eigenvalue of

ImbA`BbIn for which ybx is a corresponding eigenvector. Or, ΛpImbA`

B b Inq “ tλi ` µj | 1 ď i ď n, 1 ď j ď mu including algebraic multiplicities.

2.1.3 Singular value decomposition

The concept of spectral decomposition of a matrix is not applicable to a large class

of matrices such as rectangular matrices. Thus, singular value decomposition plays

a vital role. Let A P Rmˆn, then the singular value decomposition of A is given as

A “ UΣV T , where U P Rmˆm and V P Rnˆn are orthogonal matrices and Σ P Rmˆn

is a diagonal matrix with non-increasing singular values σ1 ě σ2 ě . . . ě σmintm,nu.

The columns of U are known as left singular vectors, while the columns of V are

known as right singular vectors.

Theorem 2.1.8 (Properties of singular values of a matrix, see [41]). Let A P Rmˆn,

rankpAq “ r, and σ1 ě σ2 ě . . . ě σmintm,nu ě 0 be singular values of A.

1. σminpAq “ σr ą 0 and σi “ 0, for all r ` 1 ď i ď n.
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2. σmaxpAq “ max
xPRnzt0u

}Ax}

}x}
.

3. σmintm,nupAq “ min
xPRnzt0u

}Ax}

}x}
.

4. σipAq “ σipA
T q “

a

λipATAq “
a

λipAAT q, for all 1 ď i ď mintm,nu.

5. σmaxpAq “ }A}.

6. σminpAq “ }A
´1}´1, if m “ n “ r.

7. Let Ai P Rmiˆni and A P Rmˆn is a block diagonal matrix, so that A “ ‘ki“1Ai,

then σpAq “
Ťk
i“1 σpAiq.

8. Let A P Rmˆn and define the symmetric matrix B “
`

O A
AT O

˘

P Rm`n,m`n. The

eigenvalues of B are ˘σ1pAq, . . . ,˘σmintm,nupAq along with |m´ n| zeros.

9. If m “ n and λ P ΛpAq, then σminpAq ď |λ| ď σmaxpAq.

10. Let B P Rpˆq and rankpBq “ s. The positive singular values of A b B are

tσipAqσjpBq : 1 ď i ď r, 1 ď j ď su, including multiplicities. Zero is a singular

value of AbB with multiplicity mintmp, nqu ´ rs.

2.1.4 Condition number

The condition number of a matrix A P Rnˆn is a measure of the extent to which

the relative error in the input is magnified to cause relative error in the output. It

indicates how difficult it is to solve numerically the linear system Ax “ b, where

x, b P Rn. The problem is said to be ill-conditioned if the condition number is large

depending on the precision, i.e., the number of digits, in the calculation. Some

consequences of which include, the numerical solution is susceptible to round-off

errors during the Gaussian elimination process and an iterative solution to the system

is most likely to be slowly converging. Let us derive the expression for it, to this
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end, let e be the error in b. Assuming that A is a non-singular matrix, the error in

the solution x “ A´1b is A´1e. The maximum of the ratio of the relative error in

the solution to the relative error in b defines the condition number of A, as follows

κpAq :“ max
e,bPRnzt0u

ˆ

}A´1e}

}e}

}b}

}A´1b}

˙

“ max
ePRnzt0u

ˆ

}A´1e}

}e}

˙

max
bPRnzt0u

ˆ

}Ab}

}b}

˙

“
›

›A´1›
› }A}.

Thus, the condition number of a non-singular matrix A is defined as κpAq “

}A}}A´1} “
σmaxpAq

σminpAq
. Furthermore, the spectral condition number of a non-singular

matrix A P Rnˆn is defined as κsppAq “
|λ|maxpAq

|λ|minpAq
, where |λ|maxpAq and |λ|minpAq

represent the maximum and minimum absolute value of eigenvalues of A, respec-

tively. Let λ P ΛpAq, since σminpAq ď |λ| ď σmaxpAq, thus κsppAq ď κpAq, and

κsppAq “ κpAq when A is a normal matrix. The spectral condition number is widely

used because it is usually easier to estimate. It is also useful for the analysis of

preconditioned systems. Consider A and M to be SPD matrices, then Theorem

4.10 in [64] gives that κMpM´1Aq “ κpM´1Aq, where κMpBq “ |B|M |B´1|M with

|x|M :“
?
xTMx. Hence the spectral condition number of the preconditioned matrix

M´1A is the same as its M-norm condition number.

2.2 Angles between subspaces

In previous sections, we discussed the concepts of subspaces, including a pair of

orthogonal subspaces and complementary subspaces. In general, consider that we

are studying a problem involving two non-trivial subspaces of Rn, which requires us to

somehow gauge the separation between them. One way to compute that is to measure

the angle between them. A quote by C. Meyer is, “There is just too much wiggle
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room in higher dimensions to make any one definition completely satisfying, and the

correct definition usually varies with the specific application under consideration.”

The suitable angle for question considered in Chapter 5 of this thesis is the principal

angle between subspaces.

In 1875, Jordan introduced the concept of principal angles and vectors, see [51].

It has been discussed in [34, 24, 68].

Definition 2.2.1 (Principal angles, see [32]). Let U, V Ď Rn be subspaces with

p “ dimpUq ě dimpV q “ q ě 1. The principal angles 0 ď θ1 ď θ2 ď . . . ď θq ď
π
2

between U and V are recursively defined for k “ 1, 2, . . . , q by

cospθkq “ max
uPU, vPV
|u|“|v|“1

|uTv| “ uTk vk, (2.2.1)

subject to the constraints

uTi u “ 0, vTi v “ 0, i “ 1, 2, . . . , k ´ 1.

The vectors tu1, . . . , uqu, tv1, . . . , vqu are called principal vectors of the pair of spaces.

The principal angles are uniquely defined, while the principal vectors are not.

Note that vectors tuiuqi“1 and tviuqi“1 are orthonormal, so that vTi uj “ δij cos θi for

1 ď i ď q. Also, by definition it is observed that tviuqi“1 is an orthonormal basis for V

or Rpv1, v2, . . . , vqq “ V , and UXRKpu1, u2, . . . , uqq K V or tuiupi“q`1 is orthogonal to

V . So that, tuiupi“1 is an orthonormal basis of U such that its satisfies the following

biorthogonality relation holds,

„

uTi vj

p,q

i,j“1
“

»

—

–

diagpcos θ1, . . . , cos θqq 0

0 0

fi

ffi

fl

. (2.2.2)

The angle θ1 is also called the minimal principal angle. The minimal angle between
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non-zero subspaces U, V Ď Rn is defined as the number θmin P
“

0, π2
‰

, so that

cos θmin “ max
uPU, vPV
|u|“|v|“1

|vTu|. (2.2.3)

The following properties of the minimal principal angle make it useful.

Proposition 2.2.2 (Properties of the minimal angle, see [68]). Let θmin be the min-

imal angle between non-zero subspaces U, V Ď Rn, then

1. θmin “ 0 if and only if U X V ‰ t0u.

2. θmin “
π

2 if and only if U K V .

3. let θKmin denote the minimal angle between UK and V K. If U ‘ V “ Rn, then

θmin “ θKmin.

4. U and V are complementary subspaces if and only if P1´P2 is invertible, where

P1, P2 P Rnˆn are orthogonal projectors onto RpUq,RpV q, respectively, and in

this case sin θmin “ σminpP1 ´ P2q.

The first property of the above implies that θmin “ 0 when UXV ‰ t0u, although

U ‰ V . In fact, if 0 ď θi ď
π
2 , for 1 ď i ď mintdimU, dim V u, represent the principal

angles between U, V Ď Rn such that dimpU X V q “ k, then θi “ 0, for all 1 ď i ď k,

and θk`1 ą 0 if it exists. This is explained by the following.

The principal angles and vectors lead to natural subspace decompositions of U

and V . Assume that p “ dimU ě dim V “ q, k “ dimpU X V q, and the principal

angle distribution is such that θi “ 0, for 1 ď i ď k, 0 ă θk`1 ď . . . ď θk`r ď
π
2 , and

θi “
π
2 , for all k ` r ` 1 ď i ď q.

Note that k, r ě 0, and k ` r ď q. Let us consider the set of principal vec-

tor corresponding to the set principal angles for U as U1 “ ru1, u2, . . . , uks, U2 “

ruk`1, . . . , uk`rs, U3 “ ruk`r`1, . . . , uqs, and the remaining basis vectors of U as
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U4 “ ruq`1, . . . , ups. Similarly, define the set of principal vectors for V as V1 “ U1,

V2 “ rvk`1, . . . , vk`rs, and V3 “ rvk`r`1, . . . , vqs. According to Definition 2.2.1,

RpUiq K RpUjq and RpViq K RpVjq, for i ‰ j, thus the following orthogonal decom-

postion of U and V are obtained:

U “ RpU1q ‘RpU2q ‘RpU3q ‘RpU4q,

V “ RpU1q ‘RpV2q ‘RpV3q.

Also, eq. (2.2.2) implies that RpUiq K RpVjq for i ‰ j, RpU3q K V , RpU4q K V , and

RpV3q K U . Let u “
k`r
ÿ

i“k`1
aiui P RpU2q, where ai P R, and assume that u K RpV2q,

then 0 “ vTj u “ aj cos θi, implying aj “ 0 for all k ` 1 ď j ď k ` r. Hence,

u “ 0, therefore there is no non-trivial vector in U2 is orthogonal to V2. Thus, these

subspaces give the following decomposition for U ` V and Rn,

U ` V “ RpU1q ‘RpU2, V2q ‘RpU3q ‘RpU4q ‘RpV3q,

Rn
“ RpU1q ‘RpU2, V2q ‘RpU3q ‘RpU4q ‘RpV3q ‘ pU ` V q

K.

Another expression is obtained from the facts that U X V “ RpU1q, U X V K “

RpU3q ‘RpU4q, UK X V “ RpV3q, and UK X V K “ pU ` V qK. Thus, [32] provides

the following decompositions,

U “ pU X V q ‘RpU2q ‘ pU X V
K
q,

V “ pU X V q ‘RpV2q ‘ pU
K
X V q,

U ` V “ pU X V q ‘RpU2, V2q ‘ pU X V
K
q ‘ pUK X V q,

Rn
“ pU X V q ‘RpU2, V2q ‘ pU X V

K
q ‘ pUK X V q ‘ pUK X V Kq.

The above decompositions facilitate the proof of the following significant result.
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Theorem 2.2.3 (See [98, 32]). Let U, V Ď Rn be subspaces such that p “ dimpUq ě

dimpV q “ q ě 1, with k “ dimpU X V q, n1 “ dimpU X V Kq, n2 “ dimpUK X V q

and n3 “ dimpUKX V Kq. Let θi be the principal angles between U and V , defined by

(2.2.1), and let r be the number of angles θi such that 0 ă θi ă
π
2 . If P ,Q P Rnˆn are

orthogonal projections onto RpUq,RpV q, respectively, then the following statements

hold:

1. Subspaces U and V are in generic position, that is, k “ n1 “ n2 “ n3 “ 0 if

and only if k “ 0, p “ q “ r and n “ 2r.

2. P `Q is non-singular if and only if n3 “ 0.

3. P ´Q is non-singular if and only if k “ n3 “ 0.

4. σpP `Qq “ t2k, 1˘ cospθk`iqpi “ 1, . . . , rq,1n1`n2 ,0n3u.

5. σpP ´Qq “ t1n1`n2 , sinsinsinpθk`iq2pi “ 1, . . . , rq,0k`n3u.

The concept of angles between subspaces of a Hilbert space is described in [26].

The Friedrichs angle between the subspaces M and N of a Hilbert space H is the

angle apM,Nq in r0, π2 s whose cosine is given by

cpM,Nq “ supt|px, yq| |x PM X pM XNqK, }y} ď 1, y P N X pM XNqK, }y} ď 1u,

and the minimal angle between the subspaces M and N is the angle a0pM,Nq in

r0, π2 s whose cosine is defined by

c0pM,Nq “ supt|px, yq| |x PM, }x} ď 1, y P N, }y} ď 1u.

The two definitions are different except for the case M XN “ t0u when they clearly

agree. A notable property of the Friedrichs angle is cpM,Nq ă 1 or a ą 0 if and only
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if M ` N is closed. In this thesis, we work in finite dimensions, thus the following

definition of the Friedrichs angle is used.

Definition 2.2.4. (Friedrichs angle, see [26]) The angle θF P
`

0, π2
‰

between sub-

spaces U, V Ď Rn, whose cosine is defined by

cos θF :“ sup
 

|xx, yy|
ˇ

ˇx P U X pU X V qK, |x| ď 1, y P V X pU X V qK, |y| ď 1
(

,

is called the Friedrichs angle.

The following is a short list of properties of the Friedrichs angle, which will be

used later to prove some results in this thesis.

Proposition 2.2.5 (Properties of Friedrichs angle, see [31]). Let U, V Ď Rn be

subspaces, as defined in Theorem 2.2.3. Let P ,Q be orthogonal projections onto U

and V , respectively, and let θF denote the Friedrichs angle between subspaces U and

V , then the following results hold.

1. θF “ θ1
`

U X pU X V qK, V X pU X V qK
˘

.

2. θF “ θ1pU, V q if and only if U X V “ t0u.

3. θF “ θ1
`

U, V X pU X V qK
˘

“ θ1
`

U X pU X V qK, V
˘

.

4. cos θF “ }PQ´ PUXV }.

5. θF “ θk`1pU, V q, whenver θk`1 exists.

See [26, p. 110] for the first four properties of the above Proposition. A proof of

Property 4 is also provided in [20, p. 1430], which along with }PQ´PUXV } “ cos θk`1,

proved in [32, p. 245], implies Property 5. Several more interesting results on the

Friedrichs angle are stated in [31, p. 242].
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We would like to emphasize that Property 5 is often missed in the standard

references. Another simple proof for which can also be derived from [20], it men-

tions on Page 1129 that cos θF “
a

1´ λminpHq. Moreover, Page 1419 defines

λminpHq “: sin2pα1q, furthermore α1 “ θk`1, as seen on Page 1142. Therefore,

cos θF “
a

1´ sin2 θk`1 “ cos θk`1, hence the result. Note that, in this proof we

have adapted the notations from the paper to facilitate easier understanding.

2.3 Orthogonal polynomials

Orthogonal polynomials play the role of building blocks in designing spectral meth-

ods, so it is necessary to discuss them. Given an open interval I :“ pa, bq, where

´8 ď a ă b ď 8, and a weight function ω such that ωpxq ą 0, for all x P I and

ω P L1pIq, two functions f and g are said to be orthogonal to each other in L2
ωpa, bq

or orthogonal with respect to ω if
ż b

a

fpxqgpxqωpxqdx “ 0. An algebraic polynomial

of degree n is denoted by pnpxq “ cnx
n ` cn´1x

n´1 ` . . . ` c1x ` c0,where tciu are

real constants, and cn ‰ 0 is the leading coefficient of pn. A sequence of polynomials

tpnu
8
n“0 with degppnq “ n is said to be orthogonal if

ż b

a

pnpxqpmpxqωpxqdx “ δmnγn,

where γn “
şb

a
p2
npxqωpxqdx is nonzero, and δmn is the Kronecker delta.

The most widely used orthogonal polynomials are the classical orthogonal poly-

nomials. They consist of Jacobi for finite interval or ´8 ă a, b ă 8, Hermite for

infinite interval or a “ ´8 and b “ 8, and Laguerre polynomials for semi-infinite

intervals. As we are dealing with finite intervals in this thesis, we elaborate the

foremost.

The Jacobi polynomials, denoted by Jα,βn pxq, are orthogonal with respect to the
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Jacobi weight function ωα,βpxq :“ p1´ xqαp1` xqβ over I :“ p´1, 1q, so that

ż b

a

Jα,βn pxqJα,βm pxqωα,βpxqdx “ δmnγ
α,β
n ,

where γα,βn “
şb

a
pJα,βn pxqq2ωα,βpxqdx. The weight function ωα,β belongs to L1pIq if

and only if α, β ą ´1, thus it is assumed throughout. The Jacobi polynomial Jα,βn

is a solution of the second order linear homogeneous differential equation

`

1´ x2˘ y2 ` pβ ´ α ´ pα ` β ` 2qxqy1 ` npn` α ` β ` 1qy “ 0.

Also, the square of its norm, that is, γα,βn is given as follows

γα,βn “
2α`β`1

2n` α ` β ` 1
Γpn` α ` 1qΓpn` β ` 1q

Γpn` α ` β ` 1qn! .

The polynomials have the symmetry relation J pα,βqn p´zq “ p´1qnJ pβ,αqn pzq; thus

the terminal values are J pα,βqn p1q “
`

n`α
n

˘

and J pα,βqn p´1q “ p´1qn
`

n`β
n

˘

.

When α “ β “ 0, the Jacobi polynomials J0,0
n pxq are called Legendre polynomials

and are denoted by Lnpxq, for all n ě 0. Thus, they are polynomials defined as an

orthogonal system with respect to the weight function ωpxq “ 1 over the interval

r´1, 1s. That is, Lnpxq is a polynomial of degree n, such that

ż 1

´1
LmpxqLnpxq dx “

2
2n` 1δmn.

Patently, the Legendre polynomials have definite parity. That is, they are even

or odd, according to Lnp´xq “ p´1qnLnpxq . Also, Lnp1q “ 1 and Lnp´1q “ p´1qn.

Another useful property is that they have zero average for all n ě 1, that is,

ż 1

´1
Lnpxq dx “ 0 for n ě 1,
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which follows from considering the orthogonality relation with L0pxq “ 1.

For α “ β “ ´1
2 , the Jacobi polynomials, J´

1
2 ,´

1
2

n pxq, are called Chebyshev poly-

nomials and are denoted by Tnpxq, for n ě 0. Thus, they are polynomials defined as

an orthogonal system with respect to the weight function ωpxq “ 1
?

1´ x2 over the

interval p´1, 1q. That is, Tnpxq is a polynomial of degree n, such that

ż 1

´1
TnpxqTmpxq

dx
?

1´ x2 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if n ‰ m,

π if n “ m “ 0,

π
2 if n “ m ‰ 0.

They also satisfy the properties, Tnp´xq “ p´1qnTnpxq, Tnp1q “ 1, and Tnp´1q “

p´1qn, for n ě 0.

One of the most significant applications of orthogonal polynomials is approxima-

tion of analytic functions. Consider the set tφnpxqu8n“0 of orthogonal polynomials on

p´1, 1q, so that φnpxq is of degree n. Let u be an analytic function on p´1, 1q, then

upxq “
8
ÿ

k“0
ukφkpxq.

The above expression of upxq in terms of the orthogonal basis polynomials is the

fundamental result for spectral methods for solving PDEs numerically. In practice,

it is undesirable to deal with an infinite number of modes uk, thus an approximate

upxq is considered. Such an approximation for u is given by its truncated series,

given as Πnupxq “
n
ÿ

k“0
ukφkpxq, which is a polynomial of degree n. This technique

of considering a finite number of terms from the series expression for upxq, is called

as truncation. Many types of spectral methods, such as spectral coefficient, spectral

Galerkin, ultraspherical spectral methods, etc., use this technique.

Another technique of approximating an analytic function in terms of a polynomial

of degree n is called interpolation. For any analytic function upxq in p´1, 1q, denote
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the interpolant of u by Inu, which is defined as the unique polynomial of degree n

such that pInuq pxjq “ upxjq, where xj P p´1, 1q for 0 ď j ď n. By uniqueness of

an interpolating polynomial, a convenient expression is the Lagrange interpolating

polynomial of u on the nodes xj, 0 ď j ď n. That is, pInuq pxq “
n
ÿ

j“0
upxjq`jpxq,

where `jpxq “
n
ź

k“0
k‰j

px´ xkq

pxj ´ xkq
, for 0 ď j ď n. This unique polynomial can also be

derived in terms of classical orthogonal polynomials, such as in [64, p. 249], Legendre

interpolant is alternatively defined as Inupxq “
n
ÿ

k“0
ũkLkpxq, with ũk “ τkru, Lksm,

where τk “ k ` 0.5 for 0 ď k ď n ´ 1 and τn “ 0.5n. Also, r¨, ¨sn represent the

discrete L2 inner product. Similarly, an expression for the Chebyshev interpolant of

u is obtained in [64, p. 258].

Theorem 2.3.1 (Error in approximation, see [64]). Let u be an analytic function in

p´1, 1q, c and C be some positive constants, then the following are simplified forms

for the stated errors:

1. the Legendre truncation error is given as }u´ Πnu}0 ď ce´Cn.

2. the Legendre interpolation error is given as }u´ Inu}0 ď ce´Cn

3. the Chebyshev truncation error is given as }u´ Πnu}0,ω ď ce´Cn

4. the Chebyshev interpolation error is given as }u´ Inu}0,ω ď ce´Cn.

An excellent collection of recent applications of orthogonal polynomial is provided

in [73].

2.4 Spectral methods

Spectral method is a fairly common term which may refer to various types of methods,

but we refer to the ones that solve partial differential equations (PDEs) numerically.
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Some well known classes of methods for solving PDEs include finite difference meth-

ods and finite elements methods (FEM), but the fastest converging methods belong

to the class of spectral methods. They are quite similar to the FEM, both of them are

based on approximating solutions by certain basis functions. They differ from each

other in that FEM uses local basis functions, i.e., with a smaller support than the en-

tire domain, whereas spectral methods use global basis functions living on the entire

domain. If the solution is analytic, then spectral method converges exponentially

quickly, which is called spectral convergence.

A considerable body of literature on spectral methods exists, including [64, 74,

80, 95, 94, 36]. A major drawback is that spectral methods are more difficult to

apply on non-regular domains, whereas FEM is quite flexible and widely used in

engineering and many other scientific studies. Progress is being made in recent years

to incorporate spectral methods to a more general setting, such as problems with

solutions containing discontinuities or on a more general domain. In general, the

matrices arising from finite difference and finite element methods are sparse, whereas

classical spectral methods lead to dense and ill-conditioned matrices. We continue

by describing two well-known classifications of spectral methods, by considering a

basic example of solving a Poisson problem given as follows:

´u2pxq “ fpxq, x P p´1, 1q,

up˘1q “ 0.

2.4.1 Spectral Galerkin methods

For 0 ď j ď N ´ 2, define the basis functions φj “
1

?
4j ` 6 pLj ´ Lj`2q. Since

Ljp˘1q “ p˘1qj, these basis functions satisfy the boundary conditions. Define the

Galerkin subspace Vh “ spantφjpxq, 0 ď j ď N ´ 2u, where tφju8j“0 is an L2-
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orthonormal basis. The Galerkin solution is defined as

uh “
N´2
ÿ

j“0
ujφjpxq,

so that it satisfies the following Galerkin equations arising from the weak form of

the Poisson problem,

N´2
ÿ

i“0
ui

ż 1

´1
φ1ipxqφ

1
jpxqdx “

ż 1

´1
fpxqφjpxqdx, j “ 0, ..., n´ 2,

uj “

ż 1

´1
fpxqφjpxqdx,

where the last equality is obtained by using the recurrence relation, for all j ě 0,

Lj`1 “
1

p2j`3q

`

L1j`2 ´ L
1
j

˘

. Thus, yielding the approximate solution uh. See [64], for a

proof of convergence which states that if the exact solution u P H1
0 p´1, 1qXHsp´1, 1q

then }u´ uh}0 ď n´s}u}s, s ě 1.

2.4.2 Spectral collocation methods

For 0 ď j ď N , let xj denote the Legendre Gauss-Lobatto nodes, which are the zeros

of p1 ´ x2qL1Npxq written in ascending order, i.e., ´1 “ x0 ď x1 ď . . . ď xN “ 1.

Define the Lagrange basis functions `jpxq P PN , where `jpxq “
N
ź

k“0
k‰j

px´ xkq

pxj ´ xkq
, for all

0 ď j ď N . Furthermore, consider the approximate solution

uh “
N
ÿ

i“0
ui`ipxq.

Since `ipxjq “ δij, it follows that uj “ upxjq, for all 0 ď j ď N . Thus, up˘1q “ 0

gives u0 “ uN “ 0. For the remaining samples, the Poisson equation collocated at
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x “ xj leads to the following

´u2pxjq “ fpxjq, 1 ď j ď N ´ 1.

Define Dh to be a pN ` 1q ˆ pN ` 1q matrix, so that dij “ `1jpxiq, for 0 ď i, j ď N ,

also known as the pseudospectral Legendre Gauss-Lobatto derivative matrix, then [64]

the above equation can be written as the following linear system

´vD2
hwuh “ fh,

where uh “ rupx1q;upx2q; . . . ;upxN´1qs and fh “ rfpx1q; fpx2q; . . . ; fpxN´1qs. Also,

[64, p. 267] states that if u P H1
0 p´1, 1q X Hsp´1, 1q, then for any positive integer

N , }u´ uh}0 ď cn´s}u}s, s ě 1. Therefore, proving a super-algebraic decay in error

and implying spectral convergence.

There are several other spectral methods originating by incorporating various

properties of orthogonal polynomials.
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3

The Stokes problem

The Stokes equations are a linearized version of the Navier-Stokes equations and

model incompressible viscous fluid flow with low Reynold’s number. Several spectral

methods, exhibiting exponential decay in error when the solution is analytic, are

known to solve the steady-state Stokes problem numerically. A common strategy

to solve such a problem in the time-dependent case involves extending the spectral

scheme in spatial derivatives by implementing a low-order finite difference scheme

for the time derivatives. We implement and analyze a space-time spectral method

for the Stokes problem, which converges exponentially in both space and time. This

numerical scheme imposes spectral collocation in time and the PN ´ PN´2 spectral

Galerkin scheme in space by using a recombined Legendre polynomial basis, result-

ing in a global spectral operator that is a saddle point matrix. The main objectives

of the research are estimating the condition number of the global spectral operators

and proving the spectral convergence of this scheme in space and time. The analysis

is not quite complete because two of the estimates are based on numerical evidence.

However, some intermediate results, such as the 2-norm of the pseudospectral Cheby-

shev derivative matrix as well as condition number of the mass matrix and discrete

Laplacian for a recombined Legendre basis, are proved to obtain the aforementioned
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findings. Numerical experiments of this scheme verify the theoretical results.

3.1 Introduction

One of the topics investigated extensively in fluid dynamics is devising numerical

schemes to solve the Stokes problem. The type of flow for which Reynold’s number

is low, say Re ! 1, i.e., the fluid velocity is extremely small, or the viscosity is

very large, or an infinitesimal length scale is considered, is called the Stokes flow

(or creeping flow). This type of flow is evident in many cases, such as swimming

of a microorganism, flow of lava, flow of polymers, etc. The equations of motion

for Stokes flow are called the Stokes equations, which along with suitable boundary

and initial conditions are termed as the Stokes problem. In steady state, that is,

independent of time, it is given as

´∆u`∇p “ f in Ω :“ p´1, 1q2,

∇ ¨ u “ 0 in Ω,

u “ 0 on BΩ,

(3.1.1)

where velocity field and pressure are denoted by u “ ru; vs P V :“ pH1
0 pΩqq2 and

p P L2
0pΩq :“

!

q P L2pΩq
ˇ

ˇ

ˇ

ş

Ω q “ 0
)

, respectively. It is defined in unsteady state as

ut ´∆u`∇p “ f in Ωt :“ Ωˆ p´1, 1q,

∇ ¨ u “ 0 in Ωt,

u “ 0 on BΩˆ p´1, 1q,

upx, y,´1q “ u0px, yq in Ω,

(3.1.2)

where up¨, tq P pH1
0 pΩqq2, pp¨, tq P L2

0pΩq, and u0 P pH
1
0 pΩqq2.

In [12], the authors describe three spectral methods for solving the Stokes prob-
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lem. The first method is called single grid scheme, a collocation type using the same

degree of polynomials for velocity and pressure; however, it provides spurious modes

for pressure and, hence, is not used. The second method, the PN ´ PN´2 scheme, is

a mixed spectral Galerkin scheme that uses polynomials of degree N for velocity and

N´2 for pressure. The third one, the staggered grid scheme, is a spectral collocation

method that uses staggered grids for velocity and pressure. In this research work, the

last two methods will be applied. For all three methods, the inf-sup condition is not

bounded independently of the discretization parameter of the scheme that decreases

the accuracy of the error for pressure, which has been improved in [13] by proposing

smaller discrete spaces for pressure.

In the past few years, space-time spectral methods, exhibiting spectral conver-

gence in both space and time, are being used to solve time-dependent PDEs. A

set practice was to implement a low-order finite difference approximation of the

time derivative, which does not give spectral convergence for the whole scheme due

to the dominance of the time discretization error. See [62, 39] for such schemes

for linear PDEs, [69, 93, 19, 7, 18] and the references therein for problems re-

lated to the Stokes problem. Growing appeals for faster convergence in time gen-

erated this class of space-time spectral methods, some references for which are

[47, 77, 87, 38, 81, 89, 88, 90, 91, 63, 101, 100]. A space-time spectral collocation

method given in [92] was analyzed in [65] and [66] for Legendre and Chebyshev poly-

nomials, respectively, based on which schemes for some linear PDEs were analyzed

in [67], which serves as the motivation for this paper.

The aim of this work is to perform a condition number estimate for spectral

method for the steady Stokes equations, and propose and analyze a space-time spec-

tral method for the Stokes problem based upon an PN ´PN´2 scheme; Stokes equa-

tions are more difficult to handle because it is a system of PDEs possessing different

spaces for velocity and pressure. Thus, it requires the analysis for various terms ap-
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pearing in the discrete problem, which includes proving condition number estimates

for stiffness matrix, mass matrix and discrete Laplacian for a recombined Legendre

basis derived in [79]. We also prove an estimate for the maximum singular value

or the 2-norm for the Chebyshev-Gauss-Lobatto pseudospectral derivative matrix.

This matrix is non-symmetric with an indefinite symmetric part, which makes the

analysis more challenging. We believe our analysis of spectral convergence of the

unsteady Stokes equations is new. We have also laid the ground work for a condi-

tion number estimate of the global space-time operator. A shortcoming of using this

scheme is that it does not allow time stepping, the unknowns for all time need to

be solved simultaneously. However, far fewer number of unknowns are required in

comparison to finite difference discretizations in time. The results of the numerical

experiments found clear support for the spectral convergence for these schemes for

less than 20 spectral modes in each dimension.

This chapter is structured as follows. In Section 3.2, we define the notations

being used in this chapter, define the spatial basis, and derive Proposition 3.2.4. In

Section 3.3, we implement the PN ´ PN´2 scheme by using a recombined Legendre

polynomial basis for the steady Stokes problem and prove the condition number

estimates for the scheme in Sections 3.3.1 and 3.3.2, respectively. We extend the

PN ´ PN´2 scheme to the unsteady Stokes problem by using the Chebyshev Gauss-

Lobatto collocation in time in Section 3.4.1. Moreover, in Sections 3.4.2 and 3.4.3,

we respectively prove the condition number estimates and spectral convergence in

space and time.

3.2 Notations and fundamentals

We begin by summarizing some of the notations. Throughout this chapter, the

discretization parameter is denoted by N , besides c and C denote some positive
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constants independent of N . For an nˆ n matrix M , let M s denote the nˆ pn´ 1q

matrix obtained from M by deleting the first column, rM denote the pn ´ 1q ˆ n

matrix obtained from M by deleting the first row, rrrMsss denote the pn´ 1q ˆ pn´ 1q

matrix obtained from M by deleting the first column and row, and vMw denote the

pn´ 2qˆ pn´ 2q matrix obtained from M by deleting the first and last columns and

rows. The spectrum of M is denoted by ΛpMq.

Let PN be the space of polynomials of degree less than or equal to N , and P 0
N

denote the polynomials in PN that vanish at the end points x “ ˘1. Let Pn1,n2

be the space of polynomials of degree less than equal to n1, n2 for x, y dimensions,

receptively and P0
n1,n2 “ Pn1,n2XV , i.e., they vanish on BΩ. Let Pn1,n2,m be the space

of polynomials of degree less than equal to n1, n2 for x, y dimensions and degree less

than equal to m in time. Moreover, define P0
n1,n2,m as the polynomials in Pn1,n2,m

that vanish on the boundary of the spatial domain Ω.

The norm of p P L2
0pΩq is given as,

}p}0 “

„
ż

Ω
|p|2


1
2

,

and the inner product on the space L2
0pΩq is defined to be the same as that for L2pΩq,

which is defined as

pppf, gqqq “

ż

Ω
fpxqgpxqdx, f, g P L2

pΩq.

Finally, for our convenience we define the square of 2-norm of Legendre polyno-

mials LN of degree N , as γN “
2

2N ` 1 .

Now, we are ready to present some definitions that are the core of the spectral

methods for the Stokes problem. The following definitions are given in [80, p. 145–

146]. The first one defines the spatial basis for velocities.

Definition 3.2.1 (Recombined Legendre functions, see [80]). For some i P NY t0u,
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define the recombined Legendre functions satisfying homogeneous Dirichlet boundary

condition as

φipxq :“ Lipxq ´ Li`2pxq, x P r´1, 1s .

Therefore, φip˘1q “ 0 implying φi P P 0
i`2.

Definition 3.2.2 (Stiffness Matrix, see [80]). The stiffness matrix, denoted by S,

for the recombined Legendre basis functions φi, is defined as

sjk :“ ´
ż 1

´1
φ2kpxqφjpxqdx.

It is a diagonal matrix with entries given as follows,

skk “ p4k ` 6q. (3.2.1)

Definition 3.2.3 (Mass Matrix, see [80]). The mass matrix, denoted by M , for the

recombined Legendre basis functions φi, is defined as

mjk “

ż 1

´1
φjpxqφkpxqdx.

It is a symmetric pentadiagonal matrix whose non-zero elements are given as follows,

mjk “

$

’

’

&

’

’

%

2
2k ` 1 `

2
2k ` 5 , j “ k,

´
2

2k ` 5 , j “ k ` 2.
(3.2.2)

Finally, we derive the following result for assistance in analysis performed in the

next sections.

Proposition 3.2.4. The matrix R, defined by rmi :“
ş1
´1 Lipxqφ

1
mpxqdx, and the
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matrix Q defined by qnj :“
ş1
´1 Ljpxqφnpxqdx, satisfy

rm,m`1 “ ´2, qnj “

$

’

’

&

’

’

%

γn, j “ n,

´γn`2, j “ n` 2,

where γi “ }Li}20 “
2

2i` 1 for i “ 0, 1, . . ..

Proof. Since φm “ Lm ´ Lm`2,

rmi “

ż 1

´1
Lipxqφ

1
mpxqdx “

ż 1

´1
LipxqpL

1
mpxq ´ L

1
m`2pxqqdx.

Using the recurrence relation,

p2n` 1qLnpxq “ L1n`1pxq ´ L
1
n´1pxq, n P N,

the expression for rmi becomes,

rmi “ ´p2m` 3q
ż 1

´1
LipxqLm`1pxqdx “ ´p2m` 3q 2δi,m`1

2m` 3 .

Similarly,

qnj “

ż 1

´1
LjpxqpLnpxq ´ Ln`2pxqqdx “ δj,nγn ´ δj,n`2γn`2.
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3.3 Steady state

The Stokes problem in steady state is given by (3.1.1), which on further simplification

is expressed as:

´∆u` px “ f1 in Ω, (3.3.1a)

´∆v ` py “ f2 in Ω, (3.3.1b)

ux ` vy “ 0 in Ω, (3.3.1c)

u “ 0, v “ 0 on BΩ. (3.3.1d)

3.3.1 Discretization

We implement the PN ´PN´2 scheme (a mixed spectral Galerkin scheme) described

in [12], by defining an approximation for variables as follows:

upx, yq “
N´2
ÿ

i“0

N´2
ÿ

j“0
uijφipxqφjpyq P P0

N,N ,

vpx, yq “
N´2
ÿ

i“0

N´2
ÿ

j“0
vijφipxqφjpyq P P0

N,N ,

ppx, yq “
N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

pijLipxqLjpyq P PN´2,N´2 X L
2
0pΩq,

so that
ş

Ω p “ 0, i.e., it has zero average, since
ş1
´1 Lipxqdx “ 0 for all i P N and

L0pxq “ 1 thus p00 is considered to be zero. Moreover, it is essential to implement

this condition as (3.1.1) states that p P L2
0pΩq.

Define ϑ “ pN ´ 1q2, the number of unknowns for u and v each, and ℘ “

pN ´ 1q2 ´ 1, the number of unknowns for p. The total number of unknowns in the

discrete Stokes equations are 2ϑ` ℘ “ 3pN ´ 1q2 ´ 1.

Define the discrete unknowns as uh “ ru00;u10; . . . ;uN´2,0;u01; . . . ;uN´2,N´2s P

Rϑˆ1, similarly define vh P Rϑˆ1, and ph “ rp10; p20; . . . ; pN´2,0; p01; . . . ; pN´2,N´2s P
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R℘ˆ1. Given the function fkpx, yq analytic in Ω, a forward discrete Legendre trans-

form implies,

fkpx, yq « f̃kpx, yq “
N´2
ÿ

i“0

N´2
ÿ

j“0
fkijLipxqLjpyq, k “ 1, 2.

Define Fk “ rfk00; fk10; . . . ; fkN´2,0; fk01; . . . ; fkN´2,N´2s P Rϑˆ1, for k “ 1, 2.

Consider (3.3.1a), then its weak form for 0 ď m,n ď N ´ 2, is given as follows

ppp ´∆u` px, φmpxqφnpyqqqq “ pppf1, φmpxqφnpyqqqq. (3.3.2)

Let us simplify the left hand side (LHS) of the above equation as follows,

ppp ´∆u, φmpxqφnpyqqqq ´ pppp, φ1mpxqφnpyqqqq

“

N´2
ÿ

i“0

N´2
ÿ

j“0
uijppp ´ φ

2
i pxqφjpyq ´ φipxqφ

2
jpyq, φmpxqφnpyqqqq

´

N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

pijpppLipxqLjpyq, φ
1
mpxqφnpyqqqq

“

N´2
ÿ

i“0

N´2
ÿ

j“0
uij

´

ż 1

´1
´φ2i pxqφmpxqdx

ż 1

´1
φjpyqφnpyqdy `

ż 1

´1
φipxqφmpxqdx

ż 1

´1
´φ2jpyqφnpyqdy

¯

´

N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

pij

ż 1

´1
Lipxqφ

1
mpxqdx

ż 1

´1
Ljpyqφnpyqdy

“

N´2
ÿ

i“0

N´2
ÿ

j“0
uij psmimnj `mmisnjq ´

N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

pijrmiqnj.

The matrix form of the LHS of (3.3.2), for all 0 ď m,n ď N ´ 2, becomes

pM b S ` S bMquh ´ pQbRqsph,

where S “ rsijs, M “ rmijs, Q “ rqijs, and R “ rrijs, for 0 ď i, j ď N ´ 2. Also, the
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RHS of (3.3.2) is approximated by f̃1 as follows

N´2
ÿ

i“0

N´2
ÿ

j“0
fkijpppLipxqLjpyq, φmpxqφnpyqqqq,

“

N´2
ÿ

i“0

N´2
ÿ

j“0
fkij

ż 1

´1
Lipxqφmpxqdx

ż 1

´1
Ljpyqφnpyqdy

“

N´2
ÿ

i“0

N´2
ÿ

j“0
fkijqmiqnj.

Thus, the matrix form the RHS of (3.3.2), for all 0 ď m,n ď N ´ 2, becomes

pQbQqFk.

Therefore, the equation (3.3.1a) implies

pM b S ` S bMquh ´ pQbRqsph “ pQbQqF1. (3.3.3)

Similarly, the equation (3.3.1b) implies

pM b S ` S bMqvh ´ pR bQqsph “ pQbQqF2. (3.3.4)

Finally, the weak form of (3.3.1c), for 0 ď m,n ď N ´ 2 and m` n ą 0, is given as

0 “ pppux ` vy, LmpxqLnpyqqqq “ pppux, LmpxqLnpyqqqq ` pppvy, LmpxqLnpyqqqq

“

N´2
ÿ

i“0

N´2
ÿ

j“0
uijpppφ

1
ipxqφjpyq, LmpxqLnpyqqqq `

N´2
ÿ

i“0

N´2
ÿ

j“0
vijpppφipxqφ

1
jpyq, LmpxqLnpyqqqq

“

N´2
ÿ

i“0

N´2
ÿ

j“0
uij

ż 1

´1
φ1ipxqLmpxqdx

ż 1

´1
φjpyqLnpyqdy

`

N´2
ÿ

i“0

N´2
ÿ

j“0
vij

ż 1

´1
φipyqLmpyqdy

ż 1

´1
φ1jpyqLnpyqdy

“ ´

N´2
ÿ

i“0

N´2
ÿ

j“0
uijrimqjn ´

N´2
ÿ

i“0

N´2
ÿ

j“0
vijqimrjn
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“ ´

N´2
ÿ

i“0

N´2
ÿ

j“0
uijr

T
miq

T
nj ´

N´2
ÿ

i“0

N´2
ÿ

j“0
vijq

T
mir

T
nj,

which yields the following matrix form,

´r
`

QT
bRT

˘

uh ´ r
`

RT
bQT

˘

vh “ O℘,1. (3.3.5)

Thus, eqs. (3.3.3) to (3.3.5) together form the following discrete Stokes problem,

pM b S ` S bMquh ´ pQbRqsph “ pQbQqF1,

pM b S ` S bMqvh ´ pR bQqsph “ pQbQqF2,

´rpQT
bRT

quh ´ rpR
T
bQT

qvh “ O℘,1.

When written in matrix form, it gives the following saddle point linear system,

»

—

—

—

—

–

M b S ` S bM Oϑ,ϑ ´pQbRqs

Oϑ,ϑ M b S ` S bM ´pR bQqs

´rpQT bRT q ´rpRT bQT q O℘,℘

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

uh

vh

ph

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

pQbQqF1

pQbQqF2

O℘,1

fi

ffi

ffi

ffi

ffi

fl

.

Thus, the global spectral operator of discrete Stokes problem becomes,

G “

»

—

–

A B

BT O℘,℘

fi

ffi

fl

P Rp2ϑ`℘qˆp2ϑ`℘q, (3.3.6)

where, A “ A‘ A P R2ϑˆ2ϑ, that is,

A “

»

—

–

A Oϑ,ϑ

Oϑ,ϑ A

fi

ffi

fl

, with A “M b S ` S bM P Rϑˆϑ, (3.3.7)
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and

B “

»

—

–

B1

B2

fi

ffi

fl

P R2ϑˆ℘, with B1 “ ´pQbRqs, B2 “ ´pR bQqs P Rϑˆ℘. (3.3.8)

Note that although for (3.1.1) the velocity u is divergence-free or ∇ ¨u “ 0, that

is not the case for the approximate solution obtained from the PN ´ PN´2 scheme.

Observe that this method implements the weak form of (3.3.1d) for the approximate

solution of velocity u “ ru, vsT given as uN , vN P P0
N,N as follows,

pppqN´2, uNx ` vNyqqq “ 0, (3.3.9)

for all qN´2 P PN´2,N´2. Thus, uN , vN are not divergence free, however, all divergence-

free polynomials in P0
N,N satisfy the above equation. For more details, see [12, p. 416].

This is not a major drawback as it is overpowered by the property that this

scheme eliminates the presence of any spurious modes on pressure. A function qN´2 P

PN´2,N´2 X L
2
0pΩq is called a spurious mode if it satisfies the following condition:

pppqN´2, uNx ` vNyqqq “ 0,

for all uN , vN P P0
N,N . If such a polynomial qN´2 exists then the solution for pressure

is not unique, since for every solution pN´2, the polynomial pN´2˘ qN´2 will also be

a solution. Thus, it is imperative to not have any spurious modes. For this scheme,

Theorem 25.1 given in [12] states that the set of spurious modes for this scheme is

equal to t0u, thus there are no spurious modes. Hence, the following inf-sup condition

holds,

inf
qNPPN´2,N´2XL2

0pΩq
sup

vnPP0
N,N

ppp∇ ¨ vN , qNqqq

}vN}1}qN}0
ě

c
?
N
,
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which by Theorem 23.8 in [12] implies the uniqueness of solution for the discrete

Stokes problem obtained by the PN ´ PN´2 scheme.

As stated on [12, p. 424], the following are the main features of this scheme for

the Stokes problem:

1. the velocity is not exactly divergence-free,

2. this method is a spectral-Galerkin scheme,

3. there are no spurious modes for pressure;

4. the best constant of the inf-sup condition on the pressure is of order N´ 1
2 .

3.3.2 Analysis

In this section, we estimate the condition number of the global matrix G for the

discretized steady Stokes problem given by (3.3.6). Since G is a symmetric saddle

point matrix with a SPD leading block and full rank matrix B, finding the bounds

for spectrum of G is facilitated by the theory of spectrum of a symmetric saddle point

matrix with the desired properties. This analysis requires bounds on the spectrum

of the sub-blocks of G, thus we proceed as follows.

Lemma 3.3.1. For N ě 2, let S P RpN´1qˆpN´1q be the stiffness matrix defined by

(3.2.1), then it is SPD with λminpSq “ 6 and λmaxpSq “ 4N´2, thus κpSq “ 2N ´ 1
3 .

Proof. By (3.2.1), S is a diagonal matrix with entries skk “ 4k`6 for 0 ď k ď N´2,

thus λminpSq “ 6 and λmaxpSq “ 4N ´ 2. Since the stiffness matrix S is an SPD, its

condition number is κpSq “ σmaxpSq
σminpSq

“
λmaxpSq
λminpSq

“ 4N´2
6 .

The following results give optimal condition number estimate for the mass ma-

trix and discrete Laplacian matrix in two dimensions for the recombined Legendre

basis considered in this scheme, derived in [80] for Dirichlet boundary conditions.
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These results appear to be new. The optimality of these estimates is evident from

Figures 3.1a and 3.1b.
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(a) Maximum eigenvalue.

101 102
10´8

10´7

10´6

10´5

10´4

10´3

10´2

10´1

N

λminpMq

N´3

(b) Minimum eigenvalue.

Figure 3.1: Spectrum of M .

Lemma 3.3.2. For N ě 4, let M P RpN´1qˆpN´1q be the mass matrix defined by

(3.2.2). Then, it is SPD and c

N3 ď ΛpMq ď C, thus κpMq ď cN3.

Proof. Let upxq “
N´2
ÿ

i“0
uiφipxq P P0

N , where φi represent recombined Legendre basis

functions and define uh :“ ru0;u1; . . . ;uN´2s P RpN´1qˆ1. Then

}u}20 “

ż 1

´1
upxq2dx “

ż 1

´1

˜

N´2
ÿ

i“0
uiφi

¸2

dx “
N´2
ÿ

i“0

N´2
ÿ

j“0
uiuj

ż 1

´1
φipxqφjpxqdx,

by using the definition of entries of the mass matrix,

}u}20 “
N´2
ÿ

i“0

N´2
ÿ

j“0
uiujmij “ uThMuh.

Hence M is SPD, for any x P RpN´1qˆ1zt0u, the bounds on the eigenvalues of M by

estimating xTMx are derived as follows.

xTMx “
N´2
ÿ

i“0

N´2
ÿ

j“0
ximijxj
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“

N´2
ÿ

i“0
x2
imii ` 2

N´4
ÿ

i“0
xixi`2mi,i`2 (by using (3.2.2))

“ 2
N´2
ÿ

i“0
x2
i

ˆ

1
2i` 1 `

1
2i` 5

˙

´ 4
N´4
ÿ

i“0

xixi`2

2i` 5 , (3.3.10)

ď 2
N´2
ÿ

i“0
x2
i

ˆ

1
2i` 1 `

1
2i` 5

˙

` 4
N´4
ÿ

i“0

|xi||xi`2|

2i` 5

ď 2
N´2
ÿ

i“0
x2
i

ˆ

1` 1
5

˙

`
4
5

N´4
ÿ

i“0
|xi||xi`2|

ď
12
5

N´2
ÿ

i“0
x2
i `

4
5

g

f

f

e

N´4
ÿ

i“0
|xi|2

N´4
ÿ

i“0
|xi`2|2

ď
12
5

N´2
ÿ

i“0
x2
i `

4
5

N´2
ÿ

i“0
x2
i “

16
5

N´2
ÿ

i“0
x2
i .

Hence, xTMx ď C}x}22, therefore λmaxpMq ď C.

Note that

4
N´4
ÿ

i“0

xixi`2

2i` 5 ď 4
N´4
ÿ

i“0

|xi||xi`2|

2i` 5 .

By using the above in (3.3.10),

xTMx ě 2
N´2
ÿ

i“0
x2
i

ˆ

1
2i` 1 `

1
2i` 5

˙

´ 4
N´4
ÿ

i“0

|xi||xi`2|

2i` 5

“ 2
N´2
ÿ

i“0
x2
i

ˆ

1
2i` 1 `

1
2i` 5

˙

´ 4
N´4
ÿ

i“0

?
2i` 9|xi|
2i` 5 ¨

|xi`2|
?

2i` 9

ě 2
N´2
ÿ

i“0
x2
i

ˆ

1
2i` 1 `

1
2i` 5

˙

´ 2
N´4
ÿ

i“0

ˆ

p2i` 9qx2
i

p2i` 5q2 `
x2
i`2

p2i` 9q

˙

“ 2
N´2
ÿ

i“0
x2
i

ˆ

1
2i` 1 `

1
2i` 5

˙

´ 2
N´4
ÿ

i“0

p2i` 9qx2
i

p2i` 5q2 ´ 2
N´2
ÿ

i“2

x2
i

p2i` 5q

ě 2
N´2
ÿ

i“0
x2
i

ˆ

1
2i` 1 `

1
2i` 5 ´

p2i` 9q
p2i` 5q2 ´

1
p2i` 5q

˙

“ 32
N´2
ÿ

i“0
x2
i

ˆ

x2
i

p2i` 1qp2i` 5q2

˙

ě
c

N3 |x|
2
2.
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Thus λminpMq ě
c

N3 and κpMq “ λmaxpMq

λminpMq
ď cN3.

The following result provides a sharp condition number estimate for A, as shown

in Figures 3.2a and 3.2b.
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(a) Maximum eigenvalue.

100.8 100.9 101 101.1 101.2 101.3 101.4 101.5 101.610´2

10´1

100

N

λminpAq

100N´2

(b) Minimum eigenvalue.

Figure 3.2: Spectrum of A.

Theorem 3.3.3. For N ě 4, let the discrete Laplacian A be defined by (3.3.7), then
c

N2 ď ΛpAq ď CN , thus κpAq ď cN3.

Proof. Since A P Rϑˆϑ and is defined as A “M b S ` S bM . Note that it is SPD,

as both M and S are SPD, hence Theorem 2.1.6 yields

λmaxpAq ď λmaxpM b Sq ` λmaxpS bMq

“ λmaxpMqλmaxpSq ` λmaxpSqλmaxpMq “ 2λmaxpMqλmaxpSq,

where we get the last equality by Result 4 of Theorem 2.1.7. Thus, Lemmas 3.3.1

and 3.3.2 give λmaxpAq ď Cp4N ´ 2q ď CN .

The definition of S andM , given by the equations (3.2.1) and (3.2.2) respectively,

implies that A P Rϑˆϑ is a symmetric block matrix, with non-zero 0, 2 and ´2 block
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diagonals. Its blocks are defined by

Ajk “

$

’

’

&

’

’

%

sjjM `mjjS j “ k,

mjkS j “ k ` 2,
(3.3.11)

for 0 ď j, k ď N . Let x “ rx0;x1; . . . ;xN´2s P Rϑˆ1zt0u, where xi “
“

x0
i ;x1

i ; . . . ;xN´2
i

‰

P

RpN´1qˆ1 for each 0 ď i ď N ´ 1.

xTAx “
“

xT0 , x
T
1 , . . . , x

T
N´2

‰

Ax “
N´2
ÿ

i“0

N´2
ÿ

j“0
xTi Aijxj

“

N´2
ÿ

i“0
xTi Aiixi `

N´2
ÿ

i“0

N´2
ÿ

j“0
j‰i

xTi Aijxj

(as A is symmetric and has non-zero 2, -2 block diagonals)

“

N´2
ÿ

i“0
xTi Aiixi ` 2

N´4
ÿ

i“0
xTi Ai,i`2xi`2 (by using (3.3.11))

“

N´2
ÿ

i“0
xTi psiiM `miiSqxi ` 2

N´4
ÿ

i“0
xTi mii`2Sxi`2

“

N´2
ÿ

i“0
xTi

„

p4i` 6qM `

„

2
2i` 1 `

2
2i` 5



S



xi ` 2
N´4
ÿ

i“0

´2
2i` 5x

T
i Sxi`2

(by using (3.2.1) and (3.2.2))

“

N´2
ÿ

i“0
p4i` 6qxTi Mxi `

N´2
ÿ

i“0

„

2
2i` 1 `

2
2i` 5



xTi Sxi ` 2
N´4
ÿ

i“0

´2
2i` 5x

T
i Sxi`2.

As xTi Mxi “
N´2
ÿ

k“0

N´2
ÿ

j“0
xkimkjx

j
i , then (3.3.10) gives

xTi Mxi “
N´2
ÿ

j“0
pxji q

2
„

2
2j ` 1 `

2
2j ` 5



` 2
N´4
ÿ

j“0

´2
2j ` 5x

j
ix
j`2
i ,
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and similarly

xTi Sxi “
N´2
ÿ

j“0
pxji q

2
p4j ` 6q ,

xTi Sxi`2 “

N´2
ÿ

j“0
xji p4j ` 6qxji`2.

The above three equations imply

xTAx “
N´2
ÿ

i“0
p4i` 6q

«

N´2
ÿ

j“0
pxji q

2
„

2
2j ` 1 `

2
2j ` 5



` 2
N´4
ÿ

j“0

´2
2j ` 5x

j
ix
j`2
i

ff

`

N´2
ÿ

i“0

„

2
2i` 1 `

2
2i` 5

N´2
ÿ

j“0
pxji q

2
p4j ` 6q ` 2

N´4
ÿ

i“0

´2
2i` 5

N´2
ÿ

j“0
xji p4j ` 6qxji`2,

“ 2
N´2
ÿ

i“0

N´2
ÿ

j“0
pxji q

2
„

p4i` 6q
„

1
2j ` 1 `

1
2j ` 5



` p4j ` 6q
„

1
2i` 1 `

1
2i` 5



´ 4
N´2
ÿ

i“0
p4i` 6q

N´4
ÿ

j“0

1
2j ` 5x

j
ix
j`2
i ´ 4

N´4
ÿ

i“0

1
2i` 5

N´2
ÿ

j“0
p4j ` 6qxjix

j
i`2,

ě 2
N´2
ÿ

i“0

N´2
ÿ

j“0
pxji q

2
„

p4i` 6q
„

1
2j ` 1 `

1
2j ` 5



` p4j ` 6q
„

1
2i` 1 `

1
2i` 5



´ 4
N´2
ÿ

i“0
p4i` 6q

N´4
ÿ

j“0

˜?
2j ` 9|xji |
2j ` 5

¸˜

|xj`2
i |

?
2j ` 9

¸

´ 4
N´2
ÿ

j“0
p4j ` 6q

N´4
ÿ

i“0

˜?
2i` 9|xji |
2i` 5

¸˜

|xji`2|?
2i` 9

¸

,

(as for a, b ě 0, a2 ` b2 ě 2ab)

ě 2
N´2
ÿ

i“0

N´2
ÿ

j“0
pxji q

2
„

p4i` 6q
„

1
2j ` 1 `

1
2j ` 5



` p4j ` 6q
„

1
2i` 1 `

1
2i` 5



´ 2
N´2
ÿ

i“0
p4i` 6q

N´4
ÿ

j“0

«

p2j ` 9qpxji q2
p2j ` 5q2 `

pxj`2
i q2

p2j ` 9q

ff

´ 2
N´2
ÿ

j“0
p4j ` 6q

N´4
ÿ

i“0

«

p2i` 9qpxji q2
p2i` 5q2 `

pxji`2q
2

p2i` 9q

ff

,

(by changing variable of summation)

ě 2
N´2
ÿ

i“0

N´2
ÿ

j“0
pxji q

2
„

p4i` 6q
„

1
2j ` 1 `

1
2j ` 5



` p4j ` 6q
„

1
2i` 1 `

1
2i` 5
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´ 2
N´2
ÿ

i“0
p4i` 6q

«

N´4
ÿ

j“0

p2j ` 9qpxji q2
p2j ` 5q2 `

N´2
ÿ

j“2

pxji q
2

p2j ` 5q

ff

´ 2
N´2
ÿ

j“0
p4j ` 6q

«

N´4
ÿ

i“0

p2i` 9qpxji q2
p2i` 5q2 `

N´2
ÿ

i“2

pxji q
2

p2i` 5q

ff

,

“ 2
N´2
ÿ

i“0
p4i` 6q

«

1
ÿ

j“0

ˆ

1
2j ` 1 `

1
2j ` 5 ´

2j ` 9
p2j ` 5q2

˙

pxji q
2

`

N´4
ÿ

j“2

ˆ

1
2j ` 1 ´

2j ` 9
p2j ` 5q2

˙

pxji q
2
`

N´2
ÿ

j“N´3

pxji q
2

2j ` 1

ff

` 2
N´2
ÿ

j“0
p4j ` 6q

«

1
ÿ

i“0

ˆ

1
2i` 1 `

1
2i` 5 ´

2i` 9
p2i` 5q2

˙

pxji q
2

`

N´4
ÿ

i“2

ˆ

1
2i` 1 ´

2i` 9
p2i` 5q2

˙

pxji q
2
`

N´2
ÿ

i“N´3

pxji q
2

2i` 1

ff

,

“ 2
N´2
ÿ

i“0
p4i` 6q

«

1
ÿ

j“0

ˆ

1
2j ` 1 `

1
2j ` 5 ´

2j ` 9
p2j ` 5q2

˙

pxji q
2
`

N´4
ÿ

j“2

16pxji q2
p2j ` 1qp2j ` 5q2

`

N´2
ÿ

j“N´3

pxji q
2

2j ` 1

ff

` 2
N´2
ÿ

j“0
p4j ` 6q

«

1
ÿ

i“0

ˆ

1
2i` 1 `

1
2i` 5 ´

2i` 9
p2i` 5q2

˙

pxji q
2

`

N´4
ÿ

i“2

16pxji q2
p2i` 1qp2i` 5q2 `

N´2
ÿ

i“N´3

pxji q
2

2i` 1

ff

.

The above expression consists of six double summations, we split them into the

combination of i “ 0, 1, 2 ď i ď N ´ 4 and i “ N ´ 3, N ´ 2. This partitions

each double summation into three parts and thus a total of eighteen double summa-

tions. On combining nine double summations from the first double summation to

the respective nine from the second one, we get the following nine terms, precisely

xTAx “ 2
9
ÿ

m“1
Sm, (3.3.12)
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where

S1 “

1
ÿ

i“0

1
ÿ

j“0
pxji q

2

«

p4i` 6q
ˆ

1
2j ` 1 `

1
2j ` 5 ´

2j ` 9
p2j ` 5q2

˙

` p4j ` 6q
ˆ

1
2i` 1 `

1
2i` 5 ´

2i` 9
p2i` 5q2

˙

ff

, (3.3.13)

S2 “

N´4
ÿ

i“2

1
ÿ

j“0
pxji q

2
„

p4i` 6q
ˆ

1
2j ` 1 `

1
2j ` 5 ´

2j ` 9
p2j ` 5q2

˙

`
16p4j ` 6q

p2i` 1qp2i` 5q2



,

(3.3.14)

S3 “

N´2
ÿ

i“N´3

1
ÿ

j“0
pxji q

2
„

p4i` 6q
ˆ

1
2j ` 1 `

1
2j ` 5 ´

2j ` 9
p2j ` 5q2

˙

`
4j ` 6
2i` 1



, (3.3.15)

S4 “

1
ÿ

i“0

N´4
ÿ

j“2
pxji q

2
„

16p4i` 6q
p2j ` 1qp2j ` 5q2 ` p4j ` 6q

ˆ

1
2i` 1 `

1
2i` 5 ´

2i` 9
p2i` 5q2

˙

,

(3.3.16)

S5 “

N´4
ÿ

i“2

N´4
ÿ

j“2
pxji q

2
„

16p4i` 6q
p2j ` 1qp2j ` 5q2 `

16p4j ` 6q
p2i` 1qp2i` 5q2



, (3.3.17)

S6 “

N´2
ÿ

i“N´3

N´4
ÿ

j“2
pxji q

2
„

16p4i` 6q
p2j ` 1qp2j ` 5q2 `

4j ` 6
2i` 1



, (3.3.18)

S7 “

1
ÿ

i“0

N´2
ÿ

j“N´3
pxji q

2
„

4i` 6
2j ` 1 ` p4j ` 6q

ˆ

1
2i` 1 `

1
2i` 5 ´

2i` 9
p2i` 5q2

˙

, (3.3.19)

S8 “

N´4
ÿ

i“2

N´2
ÿ

j“N´3
pxji q

2
„

4i` 6
2j ` 1 `

16p4j ` 6q
p2i` 1qp2i` 5q2



, (3.3.20)

and, finally

S9 “

N´2
ÿ

i“N´3

N´2
ÿ

j“N´3
pxji q

2
„

4i` 6
2j ` 1 `

4j ` 6
2i` 1



. (3.3.21)

We claim that all of the above nine terms are bound below by c
N2 .

First of all, the sum S1, given by (3.3.13), contains only constants independent of N

and thus implies

S1 ě
c

N2

1
ÿ

i“0

1
ÿ

j“0
pxji q

2. (3.3.22)
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For the second one, (3.3.14) yields

S2 ě

N´4
ÿ

i“2

1
ÿ

j“0
pxji q

2
p4i` 6q

ˆ

1
2j ` 1 `

1
2j ` 5 ´

2j ` 9
p2j ` 5q2

˙

ě

N´4
ÿ

i“2

1
ÿ

j“0
p4p2q ` 6qpxji q2

ˆ

1
2j ` 1 `

1
2j ` 5 ´

2j ` 9
p2j ` 5q2

˙

,

(note that, terms are constants independent of N)

ě
c

N2

N´4
ÿ

i“2

1
ÿ

j“0
pxji q

2. (3.3.23)

Then (3.3.15) gives,

S3 ě

N´2
ÿ

i“N´3

1
ÿ

j“0
pxji q

2
p4i` 6q

ˆ

1
2j ` 1 `

1
2j ` 5 ´

2j ` 9
p2j ` 5q2

˙

ě

N´2
ÿ

i“N´3

1
ÿ

j“0
pxji q

2
p4pN ´ 3q ` 6q

ˆ

1
2j ` 1 `

1
2j ` 5 ´

2j ` 9
p2j ` 5q2

˙

ě cN
N´2
ÿ

i“N´3

1
ÿ

j“0
pxji q

2
ě

c

N2

N´2
ÿ

i“N´3

1
ÿ

j“0
pxji q

2. (3.3.24)

Note that the term S4, given by the equation (3.3.16), is similar to the term S2,

given by the equation (3.3.14), and therefore

S4 ě
c

N2

1
ÿ

i“0

N´4
ÿ

j“2
pxji q

2. (3.3.25)

Since for any i,j P N, 2j ď p2j ` 1q ď p2j ` 5q holds, thus

16p4i` 6q
p2j ` 1qp2j ` 5q2 ě

16 ¨ 4i
p2iq3 ě

i

j3 ,

and using the above relation in the equation (3.3.17) gives the following expression

S5 ě

N´4
ÿ

i“2

N´4
ÿ

j“2
pxji q

2
„

i

j3 `
j

i3



. (3.3.26)
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At this stage, we need to prove that for all i, j P N and 2 ď i, j ď N ´ 4,

i

j3 `
j

i3
ě

c

N2 . (3.3.27)

To this end, we define the function

fpx, yq :“ x

y3 `
y

x3 , (3.3.28)

and minimize it over the domain Ωf :“ 2 ď x, y ď N ´ 4. The boundary of the

domain is given by Γf :“
Ť4
m“1 Γm, where

Γ1 : x “ 2,

Γ2 : x “ N ´ 4,

Γ3 : y “ 2,

Γ4 : y “ N ´ 4.

We first find the critical points of f , as follows

0 “ fxpx, yq “
1
y3 ´

3y
x4 ,

this implies, 3y4 “ x4 and since f is a symmetric function about x and y, hence

fy “ 0 gives 3x4 “ y4. Solving these two equations, we get x4 “ 9x4, and thus x “ 0,

which further gives y “ 0. Hence the critical point is origin, which lies outside of

the domain and is thus rejected. Let us now estimate the minimum of f on the

boundary Γf . On Γ1, we minimize

g1pyq :“ fp2, yq “ 2
y3 `

y

8 , (3.3.29)
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for 2 ď y ď N ´ 4. The critical points of g1 are

0 “ g11pyq “ ´
6
y4 `

1
8 ,

which implies y4 “ 24 ¨ 3, thus y2 “ 22
?

3 and y “ ˘2 4
?

3, for which we reject the

negative which lies outside of the domain of g1. The possible points of minimum in

domain are y “ 0, 2 ¨ 4
?

3, N ´ 4, at which g1 attains the following values

g1p2q “
1
2 ,

g1p2 4
?

3q “ 4

c

1
33 ,

g1pN ´ 4q “ 2
pN ´ 4q3 `

pN ´ 4q
8 ě

N ´ 4
8 ě

c

N2 .

Thus g1pyq ě
c
N2 . Moreover, on Γ2 we have minimize

g2pyq :“ fpN ´ 4, yq “ pN ´ 4q
y3 `

y

pN ´ 4q4 , (3.3.30)

for 2 ď y ď N ´ 4. The critical points of g2 are

0 “ g11pyq “ ´
3pN ´ 4q

y4 `
1

pN ´ 4q3 ,

which implies y4 “ 3pN ´ 4q4, thus y2 “ pN ´ 4q2
?

3 and y “ ˘pN ´ 4q 4
?

3. Both

of the critical points lie outside of the domain. The possible points of minimum in

domain are y “ 0, N ´ 4, at which g2 attains the following values

g2p2q “
N ´ 4

8 `
2

pN ´ 4q3 ě
c

N2 ,

g2pN ´ 4q “ pN ´ 4q
pN ´ 4q3 `

pN ´ 4q
pN ´ 4q3 “

2
pN ´ 4q2 ě

c

N2 .

Hence it is concluded that g2pyq ě
c
N2 . The bounds for g1 and g2 imply that f ě c

N2
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on Γ1 and Γ2. Since the function f is symmetric about x and y, we get f ě c
N2 on

Γf and hence on Ωf , as it does not possess any critical point in Ωf . By using this

result we obtain the result (3.3.27), applying which on the inequality (3.3.26) gives

S5 ě
c

N2

N´4
ÿ

i“2

N´4
ÿ

j“2
pxji q

2. (3.3.31)

Looking forward at the term S6, given by (3.3.18),

S6 ě

N´2
ÿ

i“N´3

N´4
ÿ

j“2
pxji q

2 4j ` 6
2i` 1 ě

N´2
ÿ

i“N´3

N´4
ÿ

j“2
pxji q

2 4p2q ` 6
2i` 1

ě

N´2
ÿ

i“N´3

N´4
ÿ

j“2
pxji q

2 14
2pN ´ 2q ` 1 ě

c

N2

N´2
ÿ

i“N´3

N´4
ÿ

j“2
pxji q

2. (3.3.32)

Thus, the bound is true for S6. On observing the term S7 and S8, defined by (3.3.19)

and (3.3.20) respectively, it is deduced that they are respecticely similar to the terms

S3 and S6, defined by (3.3.15) and (3.3.18) respectively, and hence

S7 ě
c

N2

1
ÿ

i“0

N´2
ÿ

j“N´3
pxji q

2, (3.3.33)

S8 ě
c

N2

N´4
ÿ

i“2

N´2
ÿ

j“N´3
pxji q

2. (3.3.34)

Since for any i,j P N,
4i` 6
2j ` 1 ě

4i
2j ě

i

j
,

and using it in the term S9, defined by (3.3.21), yields

S9 ě

N´2
ÿ

i“N´3

N´2
ÿ

j“N´3
pxji q

2
„

i

j
`
j

i



,

“

N´2
ÿ

i“N´3
pxN´3

i q
2
„

i

N ´ 3 `
N ´ 3
i



`

N´2
ÿ

i“N´3
pxN´2

i q
2
„

i

N ´ 2 `
N ´ 2
i



,

“ 2pxN´3
N´3q

2
`

„

N ´ 2
N ´ 3 `

N ´ 3
N ´ 2



pxN´3
N´2q

2
`

„

N ´ 3
N ´ 2 `

N ´ 2
N ´ 3



pxN´2
N´3q

2
` 2pxN´2

N´2q
2.
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Note that
N ´ 2
N ´ 3 `

N ´ 3
N ´ 2 “

pN ´ 2q2 ` pN ´ 3q2
pN ´ 3qpN ´ 2q ě

c

N2 ,

which implies

S9 ě
c

N2

N´2
ÿ

i“N´3

N´2
ÿ

j“N´3
pxji q

2. (3.3.35)

Thus, the results (3.3.22)-(3.3.25) and (3.3.31)-(3.3.35), in (3.3.12),

xTAx ě
2c
N2

N´2
ÿ

i“0

N´2
ÿ

j“0
pxji q

2
“

c

N2x
Tx,

hence the Rayleigh quotient of the matrix A is bounded below by c{N2, for all

x P Rϑˆ1, which leads us to the desired result.

Since ΛpA‘ Aq “ ΛpAq, the above theorem gives the following estimate.

Corollary 3.3.4. For N ě 4, the discrete vector Laplacian A defined by (3.3.7)

satisfies c

N2 ď λpAq ď cN , thus κpAq ď cN3.

Remark 3.3.5. Note that Theorem 2.1.6 can also be applied for estimating the

λminpAq, however, that does not provide an optimal lower bound. As by reiterating

the process used for estimating λmaxpAq,

λminpAq ě λminpM b Sq ` λminpS bMq “ 2λminpSqλminpMq ě 12 c

N3 ,

whereas Figure 3.2b suggests the best lower bound of c
N2 , thus a detailed analysis

was conducted.

We now proceed to analyze the matrix B, a sub-block of G, which is a rectangular

matrix defined in terms of matrices R and Q given by Proposition 3.2.4. In order to

prove estimates for G, the bounds on singular values of the matrix B are required,

which are derived by the following results.
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Lemma 3.3.6. Let N ě 4, R,Q P RpN´1qˆpN´1q be defined by Proposition 3.2.4,

then σmaxpRq “ 2, σminpRq “ 0, σmaxpQq ď C and σminpQq ě
c
N2 .

Proof. The definition of R implies that RTR is a diagonal matrix with entries

pRTRq00 “ 0, and pRTRqii “ 4, for 1 ď i ď N ´ 2. Therefore, σminpRq “ 0

and σmaxpRq “
a

λmaxpRTRq “
?

4 “ 2.

By definition,

Qij “

$

’

’

&

’

’

%

γi, j “ i,

´γi`2, j “ i` 2,
,

where γi “ 2
2i`1 for 0 ď i, j ď N ´ 2. Since the 1´norm of a matrix is its maximum

absolute column sum,

}Q}1 “ maxtγ0, γ1, 2γ2, 2γ3, . . . , 2γN´2u

“ γ0 “ 2.

Also, the maximum absolute row sum, }Q}8 “ maxtγ0 ` γ2, γ1 ` γ3, . . . , γN´4 `

γN´2, γN´3, γN´2u “ γ0 ` γ2 “ 2` 2
5 “

12
5 , hence

σmaxpQq “ }Q}2 ď
a

}Q}1}Q}8 “

c

2 ¨ 12
5 .

We now estimate σminpQq “ }Q´1}´1
2 . It is easily verified that Q´1 is upper
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triangular and is non-zero along every other diagonal:

Q´1
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

γ´1
0 0 γ´1

0 0 γ´1
0 0 . . .

γ´1
1 0 γ´1

1 0 γ´1
1 . . .

γ´1
2 0 γ´1

2 0 . . .

. . . . . . . . .

γ´1
N´4 0 γ´1

N´4

γ´1
N´3 0

γ´1
N´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P RN´1ˆN´1.

Label the columns of Q´1 as C0, C1, . . . , CN´2. Note that the maximum absolute

column sum of Q´1 is attained at either CN´3 or CN´2, denoted by SCN´3 or SCN´2 ,

respectively, and are given as follows,

SCN´3 “

$

’

’

&

’

’

%

řt
N´2

2 u

i“0 γ´1
2i , N is odd,

řt
N´3

2 u

i“0 γ´1
2i`1, N is even,

SCN´2 “

$

’

’

&

’

’

%

řt
N´3

2 u

i“0 γ´1
2i`1, N is odd,

řt
N´2

2 u

i“0 γ´1
2i , N is even.

Since
t
N´2

2 u
ÿ

i“0

1
γ2i
“

t
N´2

2 u
ÿ

i“0

2p2iq ` 1
2 “

1
2

t
N´2

2 u
ÿ

i“0
p4i` 1q ď cN2,

and similarly,
řt

N´3
2 u

i“0
1

γ2i`1
ď cN2, it follows that }Q´1}1 ď cN2.

For 0 ď i ď N ´ 2, the absolute sum of the ith row of Q´1 is 1
γi

X

N´i
2

\

, thus

}Q´1
}8 “ max

0ďiďN´2

1
γi

Z

N ´ i

2

^

ď max
0ďiďN´2

1
γi

max
0ďiďN´2

Z

N ´ i

2

^

“
1

γN´2

Z

N

2

^

“
2pN ´ 2q ` 1

2

Z

N

2

^

ď cN2.

Therefore, }Q´1}2 ď
a

}Q´1}1}Q´1}8 ď
?
cN2 ¨ cN2 “ cN2, hence the result.

Lemma 3.3.7. For N ě 4, the matrix B P R2ϑˆ℘ defined by (3.3.6) is full rank,
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that is, rankpBq “ ℘, and c

N2 ď σpBq ď C.

Proof. Let Ri be the rows of B for 1 ď i ď 2ϑ. On exchanging RkpN´1q with

Rϑ`1`pk´1qpN´1q, for all 1 ď k ď N´2, the first ℘ rows of B form an upper triangular

matrix of size ℘ˆ ℘ with non-zero diagonal entries, hence rankpBq “ ℘.

We now estimate the singular values of B, which are the square-root of the

eigenvalues of BTB P R℘ˆ℘. Note that rankpBTBq “ rankpBq “ ℘, and BTB “

BT
1 B1 `B

T
2 B2. So we consider the blocks B1 and B2.

SinceB1 “ ´QbRs andB2 “ ´RbQs, that is, their first column is deleted, which

only contains zero, therefore rankpB1q “ rankpB2q “ rankpQqrankpRq “ pN´1qpN´

2q ă ℘. Thus, Bi are rank deficient, so that σminpBiq “ 0 for i “ 1, 2. Furthermore,

σpBiq “ σpQq ˆ σpRq, so Lemma 3.3.6 implies that σmaxpBiq “ σmaxpRqσmaxpQq ď

2C, for i “ 1, 2. Therefore, by Theorem 2.1.6

λmaxpB
TBq ď λmaxpB

T
1 B1q ` λmaxpB

T
2 B2q “ σ2

maxpB1q ` σ
2
maxpB2q ď 4C2

` 4C2,

thus, σmaxpBq ď C. However, Theorem 2.1.6 gives a trivial bound for the minimum

singular value of B, but we need a positive value as BTB is full rank. To this end,

we do a detailed analysis as follows.

Let αij :“ pQTQqij and βij :“ pRTRqij, where 0 ď i, j ď N ´ 2. Note that QTQ

is a symmetric matrix, so that for 0 ď i, j ď N ´ 2

αij “ pQ
TQqij “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

γ2
i , i “ j “ 0, 1,

2γ2
i , 2 ď i “ j ď N ´ 2,

´γiγi`2, j “ i` 2.
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Since Lemma 3.3.6 implies that σminpQq ě
c

N2 , for y P R
N´1zt0u

c

N4y
Ty ď yTQTQy “

N´2
ÿ

i“0

N´2
ÿ

j“0
yiαijyj “

N´2
ÿ

i“0
αiipyiq

2
` 2

N´4
ÿ

i“0
αii`2yiyi`2. (3.3.36)

Recall that RTR is a diagonal matrix, with β00 “ 0, and βii “ 4 for 1 ď i ď N ´ 2.

By a direct calculation, BTB “ rrrQTQbRTR`RTRbQTQsss, that is, delete the first

row and first column, then the pi, jq-th block of BTB is given as

pBTBqij “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

α00rrrR
TRsss, i “ j “ 0,

αiiR
TR ` 4QTQ, 1 ď i “ j ď N ´ 2,

α02rR
TR, i “ 0, j “ 2,

αii`2R
TR, 1 ď i ď N ´ 4, j “ i` 2.

Let x “ rx0;x1; . . . ;xN´2s P R℘zt0u, where x0 “ rx1
0;x2

0; . . . ;xN´2
0 s P RN´2, and

xi “ rx
0
i ;x1

i ; . . . ;xN´2
i s P RN´1 for 1 ď i ď N ´ 2, then

xTBTBx “
N´2
ÿ

i“0
xTi pB

TBqiixi ` 2
N´4
ÿ

i“0
xTi pB

TBqi,i`2xi`2

“ xT0 α00rrrR
TRsssx0 `

N´2
ÿ

i“1
xTi pαiiR

TR ` βiiQ
TQqxi ` 2xT0 α02rR

TR ¨ x2

` 2
N´4
ÿ

i“1
xTi αi,i`2R

TRxi`2

“ α00

N´2
ÿ

j“1
4pxj0q2 `

N´2
ÿ

i“1
αii

N´2
ÿ

j“1
4pxji q2 `

N´2
ÿ

i“1
βiix

T
i Q

TQxi

` 2α02

N´2
ÿ

`“1

N´2
ÿ

j“0
x`0prR

TRq`jx
j
2 ` 2

N´4
ÿ

i“1
αi,i`2

N´2
ÿ

j“1
4xjix

j
i`2

“ α00

N´2
ÿ

j“1
4pxj0q2 `

N´2
ÿ

i“1
αii

N´2
ÿ

j“1
4pxji q2 `

N´2
ÿ

i“1
4xTi QTQxi

` 2α02

N´2
ÿ

j“1
4xj0xj2 ` 2

N´4
ÿ

i“1
αi,i`2

N´2
ÿ

j“1
4xjix

j
i`2

56



“ 4
N´2
ÿ

j“1

˜

N´2
ÿ

i“0
αiipx

j
i q

2
` 2

N´4
ÿ

i“0
αi,i`2x

j
ix
j
i`2

¸

`

N´2
ÿ

i“1
4xTi QTQxi.

Define ξj “ rxj0;xj1;xj2; . . . ;xjN´2s, then

xTBTBx “ 4
N´2
ÿ

j“1
ξTj Q

TQξj `
N´2
ÿ

i“1
4xTi QTQxi

ě 4 c

N4

N´2
ÿ

j“1
ξTj ξj ` 4 c

N4

N´2
ÿ

i“1
xTi xi (by (3.3.36))

“ 4 c

N4

N´2
ÿ

j“1

N´2
ÿ

i“0
pxji q

2
` 4 c

N4

N´2
ÿ

i“1

N´2
ÿ

j“0
pxji q

2

“ 4 c

N4

N´2
ÿ

j“1
pxj0q

2
` 4 c

N4

N´2
ÿ

i“1

˜

px0
i q

2
`

N´2
ÿ

j“1
2pxji q2

¸

ě 4 c

N4

N´2
ÿ

j“1
pxj0q

2
` 4 c

N4

N´2
ÿ

i“1

N´2
ÿ

j“0
pxji q

2
“

4c
N4x

Tx.

Thus, λminpB
TBq ě

c

N4 , which implies that σminpBq ě
c

N2 .

The above estimates are observed in Figures 3.3a and 3.3b. In order to get
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(a) Maximum singular value.
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10´1

100
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10N´2

(b) Minimum singular value.

Figure 3.3: Singular values of B.

estimates on the singular values of the global spectral operator G, we need the

following result that gives the spectrum of a symmetric saddle point matrix.
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Theorem 3.3.8 (See [3]). Let X “
`

A BT
B O

˘

, such that B P Rmˆn is full rank and its

Schur complement BA´1BT is SPD, then

ΛpX q Ď

»

–

´λ1

1
2

´

1`
b

1` 4λ1
µ1

¯ ,
´λm

1
2

´

1`
b

1` 4λm
µn

¯

fi

flY

»

–µn, µ1

1`
b

1` 4λ1
µ1

2

fi

fl ,

(3.3.37)

where 0 ă µn ď . . . ď µ1 denote the eigenvalues of A and 0 ă λm ď . . . ď λ1 are the

eigenvalues of BA´1BT .

In order to use the above result, we need to estimate the spectrum of the Schur

complement for the discrete Stokes problem in steady state, with coefficient matrix

(3.3.6), defined as Υh “ BT A´1B. Let us first introduce the Schur complement

for the continuous Stokes problem, which is known as the Uzawa pressure operator,

denoted by Υ : L2
0pΩq Ñ L2

0pΩq, is defined as Υ :“ ∇ ¨ ∆´1∇. It is a self-adjoint,

bounded, coercive and hence a bijective operator with λmaxpΥq “ 1. Also, ∆´1 :

pH´1pΩqq2 Ñ V denotes the inverse Laplacian. Let u P pH´1pΩqq2, we say ∆´1u “

v P V if

∆v “ u in Ω,

v “ 0 on BΩ.

Note that ∆ is the vector Laplacian as v P V is a vector having two components.

From [12, p. 422], the following inf-sup condition holds for the PN ´ PN´2 scheme

inf
qNPPN´2,N´2XL2

0pΩq
sup

vnPP0
N,N

ppp∇ ¨ vN , qNqqq

}vN}1}qN}0
ě

c
?
N
,

which, as stated in [28, p. 173], is equivalent to

inf
qPR℘z0

d

qTBT A´1Bq

qTMq
ě

c
?
N
,
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or

inf
qPR℘z0

qTΥhq

qTMq
ě

c

N
. (3.3.38)

Here q is the vector of coefficients of qN “

N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

qijLipxqLjpyq , and M is the

mass matrix, so that

qTMq “ }qN}
2
0 “

N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

N´2
ÿ

m“0

N´2
ÿ

n“0
m`ną0

qijqmn
2δij

2i` 1
2δmn

2m` 1 “ qT rτ b τ s q,

where pτqij “ 2δij
2i`1 for 0 ď i, j ď N ´ 2. Since τ is a diagonal matrix, then M “

rτ b τ s is diagonal and m` n, i` j ą 0,

λminpMq “ pppLN´2, LN´2qqq
2
“

ˆ

2
2pN ´ 2q ` 1

˙2

ě
c

N2 (3.3.39)

Figure 3.4b verifies (3.3.38), whereas the following result is depicted by Figure 3.4a.
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(a) Maximum eigenvalue.
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Figure 3.4: Spectrum of M´1 Υh.

Theorem 3.3.9. For given N ě 4, λmaxpM
´1Υhq ď 1.
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Proof. For some p “
N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

pijLipxqLjpyq P PN´2,N´2 X L
2
0pΩq,

pppΥp, pqqq “ ppp∇ ¨∆´1∇p
N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

pijLipxqLjpyqq, pqqq.

For 0 ă i ` j and 0 ď i, j ď N ´ 2, define wij “ ∆´1∇pLipxqLjpyqq, and w “
N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

pijw
ij so that the above problem becomes

pppΥp, pqqq “ ppp∇ ¨ w, pqqq “ pppw1x , pqqq ` pppw2y , pqqq, (3.3.40)

and let wij “
“

wij1 ;wij2
‰

and w “ rw1, w2s. By definition, wij is the solution of the

following problem

∆wij “ ∇ pLipxqLjpyqq in Ω,

wij “ 0 on BΩ,

which is equivalent to the following two problems

∆wij1 “ L1ipxqLjpyq in Ω,

wij1 “ 0 on BΩ,
and

∆wij2 “ LipxqL
1
jpyq in Ω,

wij2 “ 0 on BΩ.
(3.3.41)

Let us solve the first one by using the recombined Legendre basis functions, by

considering wij1 “
N´2
ÿ

m“0

N´2
ÿ

n“0
wijmnφmpxqφnpyq and let wij1,h be the vector of coefficients

of wij1 . For 0 ď r, s ď N ´ 2,

ppp∆wij1 , φrpxqφspyqqqq “ pppL1ipxqLjpyq, φrpxqφspyqqqq

´Awij1,h “ ´RriQsj,

60



hence Awij1,h “ RriQsj and similarly, Awij2,h “ QriRsj for 0 ď r, s ď N ´ 2, thus

Aw1 “ A
N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

pijw
ij
1,h “

N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

pijRriQsj “ pQbRqsph “ ´B1ph,

similarly, Aw2 “ ´B2ph, hence w “

»

—

–

w1

w2

fi

ffi

fl

“

»

—

–

´A´1B1ph

´A´1B2ph

fi

ffi

fl

, which leads us to

evaluating the final step (3.3.40).

Since w1 “

N´2
ÿ

i“0

N´2
ÿ

j“0
pw1qij φipxqφjpyq,

pppw1x , pqqq “
N´2
ÿ

m“0

N´2
ÿ

n“0
m`ną0

pmn

N´2
ÿ

i“0

N´2
ÿ

j“0
pw1qij pφ

1
ipxqφjpyq, LmpxqLnpyqq

“ pTh
“

pQT
bRT

q ¨ w1 “ pTh p´B
T
1 qp´A

´1B1qph “ pThB
T
1 A

´1B1ph.

Similarly, pppw2y , pqqq “ pThB
T
2 A

´1B2ph, thus (3.3.40) gives pppΥp, pqqq “ pThB
T
1 A

´1B1ph `

pThB
T
2 A

´1B2ph “ pThB
T A´1Bph “ pThΥhph, and pppp, pqqq “ pThMph, therefore

λmaxpM
´1Υq “ sup

phPR℘z0

pThΥhph
pThMph

“ sup
pPPN´2,N´2XL2

0pΩq

pppΥp, pqqq
pppp, pqqq

ď sup
pPL2

0pΩq

pppΥp, pqqq
pppp, pqqq

“ λmaxpΥq “ 1.

Figure 3.5a presents the numerical results for the following result.

Lemma 3.3.10. For given N ě 4, λminpΥhq ě
c

N3 and λminpΥhq ď cλminpAq.

Proof. Since Υh is symmetric,

λminpΥhq “ inf
pPR℘z0

pTΥhp

pTMp
¨
pTMp

pTp
(3.3.42)

ě inf
pPR℘z0

pTΥhp

pTMp
¨ inf
pPR℘z0

pTMp

pTp
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Figure 3.5: Numerical results for global operators of the steady Stokes problem.

ě
c

N
¨
c

N2 “
c

N3 . (by (3.3.39))

Moreover, by (3.3.42)

λminpΥhq ď sup
pPR℘z0

pTΥhp

pTMp
¨ inf
pPR℘z0

pTMp

pTp

ď 1 ¨
ˆ

2
2pN ´ 2q ` 1

˙2

“
c

N2 (by Theorem 3.3.9 and eq. (3.3.39))

ď cλminpAq.

The above results aid us to prove our main goal of this section, that is, an

optimal bound for the condition number of the global spectral operator G for the

steady Stokes problem, as seen in Figures 3.6a and 3.6b.

Theorem 3.3.11. For N ě 4, let G be defined by (3.3.6), then c

N2 ď σpGq ď cN2,

and κpGq ď cN4.

Proof. Note that G “
“A O
O O℘,℘

‰

`

”

O B
BT O℘,℘

ı

“: G1 ` G2, thus it is a sum of two
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Figure 3.6: Spectrum of G.

symmetric matrices. Hence, by Theorem 2.1.6

λmaxpGq ď λmaxpG1q ` λmaxpG2q, (3.3.43)

Since λmaxpG1q “ λmaxpAq, and λmaxpG2q “ σmaxpBq by Result 8 of Theorem 2.1.8.

Hence, by applying these results to (3.3.43), λmaxpGq ď λmaxpAq ` λmaxpBq ď cN `

c ď cN , by Corollary 3.3.4 and Lemma 3.3.7.

Now, it remains to estimate the absolute minimum value of the eigenvalues of G,

denoted by |λ|minpGq, for which Theorem 3.3.8 gives,

|λ|minpGq ě min

$

&

%

λminpAq,
λminpΥhq

1
2

´

1`
b

1` 4λminpΥhq
λminpAq

¯

,

.

-

,

and by Lemma 3.3.10, λminpΥhq
λminpAq ď c, leading to 1

2

´

1`
b

1` 4λminpΥhq
λminpAq

¯

ď c, thus

λminpΥhq

1
2

´

1`
b

1` 4λminpΥhq
λminpAq

¯ ě cλminpΥhq.
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Hence, the minimum absolute value of eigenvalues of G satisfies,

|λ|minpGq ě min tλminpAq, cλminpΥhqu ě min
! c

N2 ,
c

N3

)

“
c

N3 .

Since κpGq “ |λ|maxpGq

|λ|minpGq
, therefore κpGq ď cN ¨N3 “ cN4.

To summarize, for the Stokes problem in the steady state given by (3.1.1), we

implemented the proposed PN ´ PN´2 scheme in space by using a recombined Leg-

endre basis functions on Matlab®, see [52]. Take f1, f2 so that the exact solu-

tions are upx, yq “ pcospπxq ` 1q sinp2πyq, vpx, yq “ p0.5q sinpπxqp1´ cosp2πyqq, and

ppx, yq “ sinpπxq cospπyq, thus the boundary conditions are satisfied. It can easily

be implemented for PN ´PN´2 scheme with a recombined Chebyshev basis in space

as mentioned in [80]. The spectral convergence of the PN ´PN´2 scheme was proved

in [12], and is evident from Figure 3.5b.

3.4 Unsteady state

Consider the unsteady Stokes problem, given by equation (3.1.2), which on further

simplification is expressed as:

ut ´∆u` px “ f1 in Ωt, (3.4.1a)

vt ´∆v ` py “ f2 in Ωt, (3.4.1b)

ux ` vy “ 0 in Ωˆ p´1, 1q, (3.4.1c)

upx, y,´1q “ u0px, yq, vpx, y,´1q “ v0px, yq in Ω, (3.4.1d)

u “ 0, v “ 0 on BΩˆ p´1, 1q.

We extend the PN´PN´2 scheme of the last section to the unsteady case by applying

Chebyshev Gauss-Lobatto spectral collocation in time. These particular polynomial
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bases are chosen for simplicity of analysis of this scheme. In practice, Chebyshev

recombined basis given in [80, p. 149] or Jacobi collocation can be chosen in place of

Legendre recombined basis or Chebyshev collocation, respectively, without any diffi-

culties. The goal is to show spectral convergence of a space-time spectral method and

a condition number estimate of the scheme. The analysis of the latter is incomplete

because two of the estimates are based on numerical evidence.

3.4.1 Discretization

For given N ě 4, consider the Chebyshev Gauss-Lobatto nodes tk for 0 ď k ď N ,

so that t0 “ ´1 and tN “ 1. Let `k denote the Lagrange basis polynomials for tk,

therefore `kptjq “ δkj for 0 ď k, j ď N . Let D denote the Chebyshev Gauss-Lobatto

pseudospectral derivative matrix of size pN`1qˆpN`1q. For this scheme, we define

an approximation for the velocity u, v and the pressure p as follows,

uNpx, y, tq “
N´2
ÿ

i“0

N´2
ÿ

j“0

N
ÿ

k“0
uijkφipxqφjpyq`kptq P P0

N,N,N ,

vNpx, y, tq “
N´2
ÿ

i“0

N´2
ÿ

j“0

N
ÿ

k“0
vijkφipxqφjpyq`kptq P P0

N,N,N ,

pNpx, y, tq “
N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

N
ÿ

k“0
pijkLipxqLjpyq`kptq P PN´2,N´2,N .

(3.4.2)

The number of unknowns for uN and vN each are Nϑ, and the number of unknowns

for pN are N℘. The total number of unknowns in the discrete Stokes equations is

2Nϑ`N℘ “ 3NpN´1q2´N . Define the discrete unknowns as uh “ ru1
h;u2

h; . . . ;uNh s,

where u`h “ ru0,0,`;u1,0,`; . . . uN´2,0,`;u0,1,`; . . . uN´2,N´2,`s, similarly define vh, ph. Let

k “ 1, 2 and t “ tr, for a given fkpx, y, tq so that fkpx, y, trq is analytic in Ω for all

1 ď r ď N , it can be approximated by a truncated Legendre series expansion as

65



follows,

fkpx, y, trq « f̃ rk px, yq :“
N´2
ÿ

i“0

N´2
ÿ

j“0
fk,rij LipxqLjpyq.

We define Fk “ rF1
k ; F2

k ; . . . ; FN
k s, where F r

k “

”

k,r
00 ; fk,r10 ; . . . fk,rN´2,0; fk,r01 ; . . . ; fk,rN´2,N´2

ı

,

for all k “ 1, 2 and 1 ď r ď N .

Let us begin with the initial condition upx, y,´1q “ u0px, yq. Assume that trun-

cated Legendre series gives u0px, yq «
N´2
ÿ

i“0

N´2
ÿ

j“0
u0
ijφipxqφjpyq “

N
ÿ

i“0

N
ÿ

j“0
u0
ijLipxqLjpyq,

then

N´2
ÿ

i“0

N´2
ÿ

j“0

N
ÿ

k“0
uijkφipxqφjpyq`kp´1q “

N´2
ÿ

i“0

N´2
ÿ

j“0
u0
ijφipxqφjpyq

N´2
ÿ

i“0

N´2
ÿ

j“0

N
ÿ

k“0
uij0φipxqφjpyqq “

N´2
ÿ

i“0

N´2
ÿ

j“0
u0
ijφipxqφjpyq

which gives uij0 “ u0
ij, for all 0 ď i, j ď N ´ 2.

Let u0h “
“

u0
0,0;u0

1,0; . . . u0
N´2,0;u0

0,1; . . . u0
N´2,N´2

‰

. Since φi “ Li´Li`2, it follows

that

N´2
ÿ

i“0

N´2
ÿ

j“0
u0
ijφipxqφjpyq “

N
ÿ

i“0

N
ÿ

j“0
u0
ijLipxqLjpyq

N´2
ÿ

i“0

N´2
ÿ

j“0
u0
ijpLipxq ´ Li`2pxqqpLjpyq ´ Lj`2pyqq “

N
ÿ

i“0

N
ÿ

j“0
u0
ijLipxqLjpyq,

thus pLbLqu0
ij “ u0

ij, where L is an pN ` 1q ˆ pN ´ 1q Toeplitz matrix and is given

as follows:

L “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 ´1

1 0 ´1
. . . . . . . . .

1 0 ´1

1 0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.4.3)

66



Similarly, v0h is obtained.

Now, the LHS of the weak form of (3.4.1a) collocated at time t “ tr, for 1 ď r ď

N , and 0 ď m,n ď N ´ 2, is equal to

ppputpx, y, trq, φmpxqφnpyqqqq ` ppp ´∆upx, y, trq, φmpxqφnpyqqqq ´ pppppx, y, trq, φ1mpxqφnpyqqqq

“

N´2
ÿ

i“0

N´2
ÿ

j“0

N
ÿ

k“1
uijkpppφipxqφjpyq, φmpxqφnpyqqqq`

1
kptrq

`

N´2
ÿ

i“0

N´2
ÿ

j“0
u0
ijpppφipxqφjpyq, φmpxqφnpyqqqq`

1
0ptrq

`

N´2
ÿ

i“0

N´2
ÿ

j“0
uijrppp ´∆pφipxqφjpyqq, φmpxqφnpyqqqq

´

N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

pijrpppLipxqLjpyq, φ
1
mpxqφnpyqqqq

whereas, the RHS is equal to

pppf1px, y, trq, φmpxqφnpyqqqq “
N´2
ÿ

i“0

N´2
ÿ

j“0
fk,rij pppLipxqLjpyq, φmpxqφnpyqqqq.

In order to write the discrete weak form of (3.4.1a), described above, in matrix form,

we need the following definition.

Definition 3.4.1 (Chebyshev Gauss-Lobatto pseudospectral derivative matrix, see

[64, 80]). For N ě 4, let xi be the Chebyshev Gauss-Lobatto quadrature nodes,

defined as xi “ ´ cospπi
N
q for 0 ď i ď N . Let c̃0 “ c̃N “ 2 and ci “ 1 for 1 ď i ď

N ´ 1. The Chebyshev Gauss-Lobatto pseudospectral derivative matrix is defined as
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D :“ rdi,js0ďi,jďN`1, where dk,j “ `1jpxkq given as follows in [80, p. 109].

dk,j “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

´
2N2 ` 1

6 , j “ k “ 0,
c̃kp´1qk`j
c̃jpxk ´ xjq

, 0 ď k ‰ j ď N,

´
xk

2p1´ x2
kq
, 1 ď k “ j ď N ´ 1,

2N2 ` 1
6 , k “ j “ N.

(3.4.4)

Additionally, we define d0h :“ rd10; d20; . . . ; dN0s P RNˆ1, which is the first column

of D, except the entry d00. Then, a matrix form of (3.4.1a) becomes,

prrrDsss bM` IN b Aquh ` pIN bB1q ph “ p1N bQqF1 ´ d0h b pMu0hq.

Similarly, a matrix form of (3.4.1b) is given as

prrrDsss bM` IN b Aq vh ` pIN bB1q ph “ p1N bQqF1 ´ d0h b pMv0hq.

Finally, consider (3.4.1c), the following weak form of which collocated at time t “ tr,

for 1 ď r ď N and 0 ď m,n ď N ´ 2 with m` n ą 0,

pppuxpx, y, trq, LmpxqLnpyqqqq ` pppvypx, y, trq, LmpxqLnpyqqqq “ 0
N´2
ÿ

i“0

N´2
ÿ

j“0
uijrpppφ

1
ipxqφjpyq, LmpxqLnpyqqqq `

N´2
ÿ

i“0

N´2
ÿ

j“0
vijrpppφipxqφ

1
jpyq, LmpxqLnpyqqqq “ 0,

which gives the discrete (3.4.1c), as

`

IN bB
T
1
˘

uh `
`

IN bB
T
2
˘

vh “ 0N℘.
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Consequently, for given N ě 4, the discrete unsteady Stokes problem becomes

prrrDsss bM` IN b Aquh ` pIN bB1q ph “ p1N bQqF1 ´ d0h b pMu0hq

prrrDsss bM` IN b Aq vh ` pIN bB2q ph “ p1N bQqF2 ´ d0h b pMv0hq

`

IN bB
T
1
˘

uh `
`

IN bB
T
2
˘

vh “ 0N℘,

(3.4.5)

where M “ M bM and Q “ QbQ. In matrix form, the discrete unsteady Stokes

problem becomes

»

—

—

—

—

–

rrrDsss bM` IN b A ONϑ,Nϑ IN bB1

ONϑ,Nϑ rrrDsss bM` IN b A IN bB1

IN bB
T
1 IN bB

T
2 ON℘,N℘

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

uh

vh

ph

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

p1N bQqF1 ´ d0h b pMu0hq

p1N bQqF2 ´ d0h b pMv0hq

0N℘

fi

ffi

ffi

ffi

ffi

fl

.

Thus, the coefficient matrix of the discrete unsteady Stokes problem or the global

space-time spectral operator for the unsteady Stokes problem becomes,

Gt “

»

—

–

At B

BT O

fi

ffi

fl

, (3.4.6)

where the sub-blocks are defined as

At “ At ‘ At P R2Nϑˆ2Nϑ, with At “ rrrDsss bM` IN b A, (3.4.7)

and

B “

»

—

–

IN bB1

IN bB2

fi

ffi

fl

P R2NϑˆN℘. (3.4.8)

Analogous to the steady case, the following are the main features of this scheme for

the unsteady Stokes problem:

1. the velocity is not exactly divergence-free,
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2. this method is a spectral-Galerkin scheme in space and collocation in time;

3. there are no spurious modes for pressure.

3.4.2 Analysis

We now analyze the proposed scheme for the unsteady Stokes problem, with the ob-

jective of formulating a condition number estimate for the global space-time spectral

operator. We begin our analysis by giving the proof of a well-known numerical fact

about the norm of Chebyshev derivative matrix, stated in [22, p. 499] and depicted

by Figure 3.7a.

101 102101

102

103

104

N

σmaxprDsq

N2

(a) Maximum singular value of rrrDsss.

100.8 100.85 100.9 100.95 101 101.05 101.1 101.15 101.2 101.25 101.3 101.35 101.4

10´0.09

10´0.08

10´0.07

10´0.06

10´0.05

10´0.04

10´0.03

10´0.02

10´0.01

100

N

σminprDs bMA´1q

(b) σminprrrDsss bMA´1 ` Iq.

Figure 3.7: Some singular value estimates for the unsteady Stokes problem.

Lemma 3.4.2. For N ě 2, let D P RpN`1qˆpN`1q be the Chebyshev Gauss-Lobatto

pseudospectral derivate matrix, then }rrrDsss}2 ď cN2.

Proof. Since }rrrDsss}2 ď
a

}rrrDsss}1}rrrDsss}8, we evaluate the maximum absolute row and

column sum of rrrDsss by using Definition 3.4.1. Let Ci and Ri denote the absolute sum

of i-th column and i-th row respectively, for 1 ď i ď N , then

Ci “ |dii| `
N
ÿ

i“1
i‰j

|dij|. (3.4.9)
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(b) Minimum singular value.

Figure 3.8: Singular values of At.

Note that

|dii| “

ˇ

ˇ

ˇ

ˇ

´xi
2p1´ x2

i q

ˇ

ˇ

ˇ

ˇ

“
cos πi

N

2
`

1´ cos2 πi
N

˘ ď
1

2 sin2 πi
N

.

Note that πi
N
ď
π

2 for 1 ď i ď
N

2 , and since for 0 ď x ď
π

2 ,

2x
π
ď sin x ď x, (3.4.10)

which implies for 1 ď i ď
N

2 ,

|dii| ď
1

2
` 2
N

˘2 ď
N2

8 ,

and for N2 ă i ď N ´ 1, π
N
ď
πpN ´ iq

N
ă
π

2 , by applying (3.4.10)

|dii| ď
1

2 sin2 πi
N

“
1

2 sin2 ` π
N
pN ´ iq

˘ ď
1

2
` 2
N

˘2 “
N2

4 .
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Also, for i “ N , |dNN | “ 2N2`1
6 ď cN2, thus for all 1 ď i ď N ,

|dii| ď cN2. (3.4.11)

For a fixed 1 ď j ď N ,

N
ÿ

i“1
i‰j

|dij| “
N
ÿ

i“1
i‰j

ˇ

ˇ

ˇ

ˇ

c̃ip´1qi`j
c̃jpxi ´ xjq

ˇ

ˇ

ˇ

ˇ

ď 2
N
ÿ

i“1
i‰j

1
|xi ´ xj|

ď 2
N
ÿ

i“1
i‰j

1
ˇ

ˇcos πi
N
´ cos πj

N

ˇ

ˇ

“

N
ÿ

i“1
i‰j

1
ˇ

ˇ

ˇ
sin pj`iqπ

2N sin pj´iqπ
2N

ˇ

ˇ

ˇ

.

For 1 ď i ď j ´ 1, π

2N ď
pj ´ iqπ

2N ď
π

2 , by applying (3.4.10)

sin
ˆ

pj ´ iqπ

2N

˙

ě
pj ´ iq

N
.

For j ` 1 ď i ď N , π

2N ď ´
pj ´ iqπ

2N ď
π

2 , which along with (3.4.10) implies

´
pj ´ iq

N
ď sin

ˆ

´
pj ´ iqπ

2N

˙

ď ´
pj ´ iqπ

2N ,

as |j ´ i| “ ´pj ´ iq and
ˇ

ˇ

ˇ

ˇ

sin
ˆ

pj ´ iqπ

2N

˙
ˇ

ˇ

ˇ

ˇ

“ ´ sin
ˆ

pj ´ iqπ

2N

˙

,

|pj ´ iq|

N
ď

ˇ

ˇ

ˇ

ˇ

sin
ˆ

pj ´ iqπ

2N

˙ˇ

ˇ

ˇ

ˇ

ď
|pj ´ iq|π

2N ,
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therefore, for all i ‰ j and 1 ď i ď N , implies 1
ˇ

ˇ

ˇ

ˇ

sin
ˆ

pj ´ iqπ

2N

˙
ˇ

ˇ

ˇ

ˇ

ď
N

|j ´ i|
, thus

N
ÿ

i“1
i‰j

|dij| ď N
N
ÿ

i“1
i‰j

1
ˇ

ˇ

ˇ

ˇ

sin
ˆ

pj ` iqπ

2N

˙
ˇ

ˇ

ˇ

ˇ

|j ´ i|

.

Since pj ` iq π2N ď
π

2 implies i ď N ´ j, split the above sum as follows

N
ÿ

i“1
i‰j

|dij| ď N
N´j
ÿ

i“1
i‰j

1
ˇ

ˇ

ˇ

ˇ

sin
ˆ

pj ` iqπ

2N

˙
ˇ

ˇ

ˇ

ˇ

|j ´ i|

`N
N
ÿ

i“N´j`1
i‰j

1
ˇ

ˇ

ˇ

ˇ

sin
ˆ

pj ` iqπ

2N

˙
ˇ

ˇ

ˇ

ˇ

|j ´ i|

“: NS1 `NS2. (3.4.12)

For S1: Note that 1 ď i ď N ´ j gives π

N
ď
pi` jqπ

2N ď
π

2 , by applying (3.4.10)

sin
ˆ

pi` jqπ

2N

˙

ě
2
π

pi` jqπ

2N “
pi` jq

N
,

which implies

S1 ď N
N´j
ÿ

i“1
i‰j

1
pi` jq|j ´ i|

ď N
N´j
ÿ

i“1
i‰j

1
|j ´ i|2

ď N
π2

6 ,

as |j ´ i| ď i` j and
8
ÿ

n“1

1
n2 “

π2

6 .

For S2 : Since N ´ j ` 1 ď i ď N yields N ` 1 ď i ` j ď 2N ´ 1, as i ` j “ 2N

if and only if i “ j “ N , which does not hold since i ‰ j. Therefore, π

2N ď

p2N ´ pi` jqqπ
2N ď

p2N ´ 1qπ
2N ă

π

2 , so by using (3.4.10)

sin
ˆ

pi` jqπ

2N

˙

“ sin
ˆ

p2N ´ pi` jqqπ
2N

˙

ě
2
π

p2N ´ pi` jqqπ
2N “

p2N ´ pi` jqq
N

,
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therefore

S2 ď N
N
ÿ

i“N´j`1
i‰j

1
|j ´ i|p2N ´ pi` jqq

ď N

g

f

f

f

e

N
ÿ

i“N´j`1
i‰j

1
|j ´ i|2

N
ÿ

i“N´j`1
i‰j

1
p2N ´ pi` jqq2 ď N

c

π2

6
π2

6 “
π2

6 N.

Thus,
N
ÿ

i“N´j`1
i‰j

|dij| ď 2N2π
2

6 ď cN2.

By using the results of the above two cases along with (3.4.12),
řN
i“1
i‰j
|dij| ď cN2,

which along with (3.4.11) in (3.4.9) yields Ci ď cN2, for all 1 ď i ď N . Hence,

}rrrDsss}1 “ max
1ďiďN

Ci ď cN2.

Similarly, }rrrDsss}8 “ max1ďiďN Ri ď cN2, which gives the desired result.

Remark 3.4.3. The above proof is easily extended to prove that σmaxpDq ď cN2,

since we only need to add the contribution of |d0,i| ď cN2 to each Ci.

The analysis of the unsteady Stokes problem is much harder than in the steady

state because of the presence of the Chebyshev derivative matrix D, which is a non-

symmetric matrix with an indefinite symmetric part. These properties are inherited

by the leading block At of the global space-time spectral operator Gt. There are no

results in the literature for approximating spectrum of a saddle point matrix with

the leading block of the form At. Several results exist for estimating the spectrum of

a symmetric saddle point matrix, thus creating scope for approximating the singular

values of Gt, as they are the square-root of the eigenvalues of GT
t Gt. However, the

parameters for such a gram matrix could be difficult to analyze, thus we refer to the

following result which is derived in Chapter 5.

Theorem 3.4.4 (See Corollary 5.6.6). For a non-singular saddle point matrix, X “
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“

A BT
B O

‰

, so that A and B are full rank, [54] gives the following estimate

σminpX q ě
?

1´ cos θ ¨min tσminpAq, σminpBqu , (3.4.13)

where θ is the minimum principal angle between the range space R
´

r A BT s
T
¯

and

R
´

r B O s
T
¯

.

Note that (3.4.13) on Gt gives

σminpGtq ě
?

1´ cos θ ¨min tσminpAtq, σminpBqu . (3.4.14)

We could not estimate the term
?

1´ cos θ, for which a numerical evidence Fig-

ure 3.10a suggests
?

1´ cos θ ě c

N2 . (3.4.15)

Another estimate that has been difficult to show is

σmin
`

rrrDsss bM A´1
`I2Nϑ

˘

ě c1, (3.4.16)

where 0 ă c1 ă 1 is a constant, as portrayed by numerical evidence Figure 3.7b.

In the following result, we provide a condition number estimate for Gt by using

computational and theoretical techniques.

Theorem 3.4.5. For N ě 4, let Gt be defined by (3.4.6). Assume eqs. (3.4.15)

and (3.4.16) hold, then κpGtq ď CN6.

Proof. We begin by estimating the maximum singular value of At,

σmaxpAtq “ }At}2 “ }rrrDsss bM` IN b A}2

ď }rrrDsss bM bM}2 ` }IN b A}2 (since M “M bM)

“ }rrrDsss}2}M}
2
2 ` }A}2
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ď cN2
¨ c` cN ď cN2,

which is obtained by using Lemmas 3.3.2 and 3.4.2, and Theorem 3.3.3. It remains

to estimate the minimum singular value of At.

σminpAtq “ σmin
``

rrrDsss bMA´1
` INϑ

˘

pIN b Aq
˘

ě σmin
`

rrrDsss bMA´1
` INϑ

˘

σmin pIN bAq

ě c1σminpAq,

is obtained by using (3.4.16), thus Theorem 3.3.3 gives σminpAtq ě
c

N2 , and σpAt ‘

Atq “ σpAtq implies σminpAtq ě
c

N2 .

Next, we estimate the singular values of B. Since BT B “ INbB
TB, Lemma 3.3.7

gives rankpBT Bq “ rankpINq¨rankpBTBq “ N ¨rankpBq “ N℘. Hence, B is full rank.

Also, ΛpBT Bq “ ΛpINqΛpBTBq “ ΛpBTBq, hence σpBq “ σpBq, thus Lemma 3.3.7

implies σmaxpBq ď c and σminpBq ě
c

N2 .

Finally, for Gt, by following the proof of (3.3.43),

σmaxpGtq “ }Gt}2 ď σmaxpAtq ` σmaxpBq ď cN2
` c ď cN2.

For the minimum singular value of Gt, eqs. (3.4.14) and (3.4.15) imply

σminpGtq ě
c

N2 min
´ c

N2 ,
c

N2

¯

ě
c

N4 .

Thus κpGtq “
σmaxpGtq

σminpGtq
ď cN6.

The above estimate is not sharp, as numerically Figure 3.9b hints that σminpGtq

behaves like O pN´2.5q, suggesting κpGtq « OpN4.5q.

In the unsteady state, we implemented the scheme derived in Section 3.4.1 for

the Stokes problem defined by (3.1.2). Based on our interest in analysis, we selected
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Figure 3.9: Singular values of Gt.

Chebyshev Gauss-Lobatto collocation in time, which can easily be replaced by other

polynomials. For our implementation on Matlab®, see [52], we take f1, f2, so

that the exact solutions are upx, y, tq “ pcospπxq ` 1q sinp2πyq sinp0.5πtq, vpx, y, tq “

p0.5q sinpπxqp1 ´ cosp2πyqq sinp0.5πtq, ppx, y, tq “ sinpπxq cospπyq sinp0.5πtq, satisfy-

ing the boundary and initial condition. The spectral convergence of this scheme is

easily observed in Figure 3.10b.
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(b) Convergence.

Figure 3.10: Numerical results for the unsteady Stokes problem.
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3.4.3 Convergence

In this section, we discuss space-time spectral convergence of our method for the

unsteady Stokes problem, as spectral convergence of the PN ´ PN´2 scheme for the

Stokes problem in steady state was proved in [12].

Let } ¨ }0,ω denote a weighted L2 norm defined as

}f}20,ω “

ż

Ωt
fpx, y, tq

1
?

1´ t2
dxdydt.

The above norm is designed to incorporate the weight functions for the Legendre

polynomials in space and Chebyshev polynomials in time. Recall that the velocity

obtained by the scheme devised in this section for the unsteady Stokes problem is not

exactly divergence-free, as implied by (3.3.9). Moreover, the uniqueness of solution

for this scheme is a direct consequence of Theorem 3.4.5, thus we prove the following

result infusing the conditions of the aforementioned result.

Theorem 3.4.6. Let u, v, and p be the solution of (3.1.2). Assume u, v, and p are

separately analytic in each variable. Let N ě 4 and uN , vN , and pN be the solution

of the space-time method, of the form (3.4.2), with matrix defined by (3.4.6). If

eqs. (3.4.15) and (3.4.16) hold, then for a large enough N

}u´ uN}0,ω ` }v ´ vN}0,ω ` }p´ pN´2}0,ω ď cN8e´CN .

Proof. Consider the exact solution and its truncation as follows,

upx, y, tq “
8
ÿ

i“0

8
ÿ

j“0
ûijptqφipxqφjpyq,

vpx, y, tq “
8
ÿ

i“0

8
ÿ

j“0
v̂ijptqφipxqφjpyq,

ppx, y, tq “
8
ÿ

i“0

8
ÿ

j“0
i`ją0

p̂ijptqLipxqLjpyq,

ΠNu “
N´2
ÿ

i“0

N´2
ÿ

j“0
ûijptqφipxqφjpyq,

ΠNv “
N´2
ÿ

i“0

N´2
ÿ

j“0
v̂ijptqφipxqφjpyq,

ΠN´2p “
N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

p̂ijptqLipxqLjpyq.
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Let TNu denote the truncation error in velocity u, that is, TNupx, y, tq “ pu ´

ΠNuqpx, y, tq, similarly, let TNv and TN´2p denote the truncation error of velocity

v and pressure p, defined as v ´ ΠNv and p´ ΠN´2p, respectively.

Define semi-discrete solutions for (3.1.2) representing (3.4.2) as follows

uN “
N´2
ÿ

i“0

N´2
ÿ

j“0
uijptqφipxqφjpyq,

vN “
N´2
ÿ

i“0

N´2
ÿ

j“0
vijptqφipxqφjpyq,

pN´2 “

N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

pijptqLipxqLjpyq,

where uijptq “
N
ÿ

k“0
uijk`kptq, and similarly vijptq and pij are defined, which implies

uijptkq “ uijk, vijptkq “ vijk, and pijptkq “ pijk, for tk are Chebyshev Gauss-Lobatto

nodes, 1 ď k ď N . Also, define th “ rt1; t2; . . . ; tN s.

Define the error in truncated and approximated solutions as

eupx, y, tq “ pΠNu´ uNqpx, y, tq,

evpx, y, tq “ pΠNv ´ vNqpx, y, tq,

eppx, y, tq “ pΠN´2p´ pN´2qpx, y, tq.

Also, define the error vectors as Eu “ rEu
1 ;Eu

2 ; . . . ;Eu
N s, Ev “ rEv

1 ;Ev
2 ; . . . ;Ev

N s,

Ep “ rEp
1 ;Ep

2 ; . . . ;Ep
N s, where for 0 ď i, j ď N ´ 2 and 1 ď k ď N , Eu

k “ rûijptkq ´

uijks, Ev
k “ rv̂ijptkq ´ vijks, and only Ep

k “ rp̂ijptkq ´ pijks is considered along with

the condition i` j ą 0.

Recall that for given fk in eqs. (3.4.1a) and (3.4.1b), for k “ 1, 2, so that at time

t “ tr, fkpx, y, trq is analytic in Ω, then it can be expressed as

fkpx, y, trq “
8
ÿ

i“0

8
ÿ

j“0
fk,rij φipxqφjpyq, ΠNf

r
k “

N´2
ÿ

i“0

N´2
ÿ

j“0
fk,rij φipxqφjpyq,
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where ΠNf
r
k is the truncation for fk and the truncation error is defined as TNf

r
k “

pfkpx, y, trq ´ ΠNf
r
k q for k “ 1, 2 and 1 ď r ď N .

For w P V , the first equation of the Stokes problem implies that the exact solution

u, p satisfy the following weak form, for all t P p´1, 1q, thus at time t “ tk, where

1 ď k ď N

ppputpx, y, tkq, wqqq ` ppp ´∆upx, y, tkq, wqqq ´ pppppx, y, tkq, wxqqq “ pppf1px, y, tkq, wqqq (3.4.17)

and the approximated solution uN , pN´2 satisfy

ppppuNqtpx, y, tkq, wNqqq ` ppp ´∆uNpx, y, tkq, wNqqqq ´ ppppN´2px, y, tkq, pwNqxqqq

“ pppΠNf
k
1 , wNqqq,

(3.4.18)

for all wN P PN,NXV . Subtracting eqs. (3.4.17) and (3.4.18) for all 0 ď m,n ď N´2

gives

ppppu´ uNqtpx, y, tkq, φmpxqφnpyqqqq ` ppp ´∆pu´ uNqpx, y, tkq, φmpxqφnpyqqqq

´ ppppp´ pN´2qpx, y, tkq, φ
1
mpxqφnpyqqqq “ ppppf1 ´ ΠNf

k
1 qpx, y, tkq, φmpxqφnpyqqqq

which gives

pppeut px, y, tkq, φmpxqφnpyqqqq ` ppp ´∆eupx, y, tkq, φmpxqφnpyqqqq ´ pppeppx, y, tkq, φ1mpxqφnpyqqqq

“ pppTNf
k
1 , φmpxqφnpyqqqq ´ ppppTNupx, y, tkqqt, φmpxqφnpyqqqq

´ ppp ´∆pTNuqpx, y, tkq, φmpxqφnpyqqqq ` ppppTN´2pqpx, y, tkq, φ
1
mpxqφnpyqqqq.

(3.4.19)

Define

gptq “ pppeupx, y, tq, φmpxqφnpyqqqq “
N´2
ÿ

i“0

N´2
ÿ

j“0
pûijptq ´ uijptqq pppφipxqφjpyq, φmpxqφnpyqqqq,
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then (3.4.19) becomes

g1ptkq ` ppp ´∆eupx, y, tkq, φmpxqφnpyqqqq ´ pppeppx, y, tkq, φ1mpxqφnpyqqqq

“ pppTNf
k
1 , φmpxqφnpyqqqq ´ ppppTNuqtpx, y, tkq, φmpxqφnpyqqqq

´ ppp ´∆pTNuqpx, y, tkq, φmpxqφnpyqqqq ` ppppTN´2pqpx, y, tkq, φ
1
mpxqφnpyqqqq.

(3.4.20)

For any analytic z such that zp´1q “ 0, recall the definition of the interpolant

INzptq “
N
ÿ

i“1
zptiq`iptq. For 0 ď k ď N ´ 1,

z1ptkq “ pINzq1 ptkq ` ε̃k

“ prrrDsss pINpzqpthqqqk ` ε̃k

“ prrrDsss pzpthqqqk ` ε̃k,

where ε̃k “ pz ´ INzq1ptkq, according to [78], satisfies

|ε̃k| ď cN2e´CN . (3.4.21)

Since the initial condition is upx, y ´ 1q “ u0px, yq, recall that ûijp´1q “ uij0 “ u0
ij,

therefore gp´1q “ ûijp´1q ´ uijp´1q “ u0
ij ´ u0

ij “ 0. Hence, the above expression

implies

g1ptkq “ prrrDsssgpthqqk ` ε
1
k

“

˜

rrrDsss ¨
N´2
ÿ

i“0

N´2
ÿ

j“0
pûijpthq ´ uijpthqq pppφipxqφjpyq, φmpxqφnpyqqqq

¸

k

` ε1k,

thus (3.4.20) gives the first pN ´ 1q2 equations for each time step tk for1 ď k ď N
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and 0 ď m,n ď N ´ 2 as follows,

prrrDsss ¨ pppeupx, y, thq, φmpxqφnpyqqqqqk ` ppp ´∆eupx, y, tkq, φmpxqφnpyqqqq

´ pppeppx, y, tkq, φ
1
mpxqφnpyqqqq “ pppTNf

k
1 , φmpxqφnpyqqqq ´ ε

1
k

´ pppppTNuqt ´∆pTNuqqpx, y, tkq, φmpxqφnpyqqqq

` ppppTN´2pqpx, y, tkq, φ
1
mpxqφnpyqqqq.

(3.4.22)

Thus, the pN ´ 1q2 equations together for all time steps 1 ď k ď N give

prrrDsss bM` IN bAqEu
` pIN bB1qE

p
“ ´ε1 ´R

u
1 ´R

u
2 , (3.4.23)

where we define ε1 “ rε11; ε12; . . . ; ε1N s, and for 1 ď i ď 2

Ru
i “ rr

u
i pt1q; rui pt2q; . . . ; rui ptNqs ,

ru1 ptkq “ rpppTNf
k
1 ` ppTNuqt ´∆pTNuqqpx, y, tkq, φmpxqφnpyqqqqs, 0 ď m,n ď N ´ 2

ru2 ptkq “ rppppTN´2pqpx, y, tkq, φ
1
mpxqφnpyqqqqs , 0 ď m,n ď N ´ 2.

Similarly, the error equation for the velocity v in matrix form is given as

prrrDsss bM` IN bAqEv
` pIN bB2qE

p
“ ´ε2 ´R

v
1 ´R

v
2, (3.4.24)

where rv2ptkq “ rpppTN´2pqpx, y, tkq, φmpxqφ
1
npyqqqqs, for 0 ď m,n ď N ´ 2,. The exact

solution u, v satisfy the weak form of the third equation of the Stokes problem, for

all q P L2
0pΩq and time t “ tk,

pppq, uxpx, y, tkqqqq ` pppq, vypx, y, tkqqqq “ 0, (3.4.25)

also, the approximate solutions satisfy the following for all qN´2 P PN´2,N´2XL
2
0pΩq,
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pppqN´2, puNqxpx, y, tkqqqq ` pppqN´2, pvNqypx, y, tkqqqq “ 0, (3.4.26)

for all qN´2 P PN´2,N´2XL
2
0pΩq. Since q “

8
ÿ

m“0

8
ÿ

n“0
m`ną0

qmnLmpxqLnpyq so that qN´2 “

8
ÿ

m“0

8
ÿ

n“0
m`ną0

qmnLmpxqLnpyq, thus by subtracting eqs. (3.4.25) and (3.4.26) for all 0 ď

m,n ď N ´ 2 with m` n ą 0 and incorporating the truncated solution

´ pppLmpxqLnpyq, e
u
xpx, y, tkqqqq ´ pppLmpxqLnpyq, e

v
ypx, y, tkqqqq

“ pppLmpxqLnpyq, ppTNuqx ` pTNvqyqpx, y, tkqqqq,

. (3.4.27)

Thus, the following linear system is obtained.

pIN bB
T
1 qE

u
` pIN bB

T
2 qE

v
“ ´Rp

2, (3.4.28)

where Rp
2 “ rr

p
2pt1q; rp2pt2q; . . . ; rp2ptNqs, and for 1 ď k ď N ,

rp2ptkq “ ´rpppLmpxqLnpyq, ppTNuqx ` pTNvqyq px, y, tkqqqqs.

where 0 ď m,n ď N ´ 2,m` n ą 0. Thus, eqs. (3.4.20), (3.4.24) and (3.4.28) imply

»

—

—

—

—

–

At ONϑ,Nϑ IN bB1

ONϑ,Nϑ At IN bB2

IN bB
T
1 IN bB

T
2 O℘,℘

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

Eu

Ev

Ep

fi

ffi

ffi

ffi

ffi

fl

“ ´

»

—

—

—

—

–

ε1

ε2

0

fi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

–

Ru
1

Rv
1

0

fi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

–

Ru
2

Rv
2

Rp
2

fi

ffi

ffi

ffi

ffi

fl

which is expressed as the following linear system

GtE “ ´ε´
2
ÿ

i“1
Ri,

First, we estimate |GtE|8. To this end, (3.4.21) implies |ε|8 ď cN2e´cN , it remains
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to estimate the infinity-norm of Ri for 1 ď i ď 2. For R1, note that the non-zero

entries of Ru
1 , for 0 ď m,n ď N ´ 2, are of the form

pppTNf
k
1 ` ppTNuqt ´∆pTNuqqpx, y, tkq, φmpxqφnpyqqqq

“ pppTNf
k
1 , φmpxqφnpyqqqq ` pppppTNuqtpx, y, tkq, φmpxqφnpyqqqq ´ ppp∆pTNuqqpx, y, tkq, φmpxqφnpyqqqq

“: sf ` s1ptkq ` s2ptkq.

Firstly, |sf | ď }TNf
k
1 }0}φmpxqφnpyq}0, by Theorem 5.12 in [64, p. 248] for the Leg-

endre truncation error estimate,

|sf | ď ce´CN .

Assume that s1ptkq “ z1ptkq, where zptq “ ppppTNuqpx, y, tq, φmpxqφnpyqqqq, for some 0 ď

m,n ď N ´2. The interpolant of zptq is given as INzptq “
N
ÿ

i“1
zptiq`iptq` zp´1q`0ptq,

then

s1ptkq “ z1ptkq “ pINzq1 ptkq ` εk “ prrrDsss pINpzqpthqqqk ` zp´1q`10ptkq ` εk

“ prrrDsss ¨ zpthqqk ` zp´1q`10ptkq ` εk

“

N
ÿ

i“1
dkizptiq ` zp´1q`10ptkq ` εk,

where the error |εk| ď cN2e´CN as derived in [78]. To estimate s1ptkq, note that for

1 ď i ď N ,

zptiq “ ppppTNuqpx, y, tiq, φmpxqφnpyqqqq ď c}pTNuqpx, y, tiq}0 ď ce´CN ,

where we have used Theorem 5.12 in [64, p. 248] for the Legendre truncation error

estimate, i.e., pTNuqpx, y, tiq. Also, zp´1q “ ppppu ´ ΠNuqpx, y,´1q, φmpxqφnpyqqqq ď

c}pu0 ´ ΠNu0qpx, yq}0 ď ce´CN . Since }rrrDsss}8 ď cN2, thus |dki| ď cN2, and dk0 ď
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cN2, therefore |s1ptkq| ď cN3e´CN .

Since s2ptkq “ ppppTNuqpx, y, tkq,´∆pφmpxqφnpyqqqqq, thus

|s2ptkq| ď c}pu´ ΠNuqpx, y, tkq}0 ď ce´CN .

Thus, |Ru
1 |8 ď cN3e´CN ` 2ce´CN ď cN3e´CN , and similar estimate holds for

Rv
1, hence |R1|8 ď cN3e´CN .

For R2, its components consist of as ru2 , rv2 , and r
p
2. We estimate the entries of ru2

by using the same Legendre truncation error result, which gives

|ru2 ptkq| “ |ppppTN´2pqpx, y, tkq, φ
1
mpxqφnpyqqqq| ď c}pTN´2pqpx, y, tkq} ď ce´CN ,

similar result holds for rv2 , and finally

|rp2ptkq| “ |pppLmpxqLnpyq, ppTNuqx ` pTNvqyq px, y, tkqqqq|

ď |pppL1mpxqLnpyq, pTNuqpx, y, tkqqqq| ` |pppLmpxqL
1
npyq, pTNvq px, y, tkqqqq|

ď c} pTNuq px, y, tkq} ď ce´CN ,

hence, |R2|8 ď ce´CN and implying the following estimate

|GtE|8 ď |ε|8 `
3
ÿ

i“1
|Ri|8 ď cN3e´CN . (3.4.29)

The next stage is to estimate the norm of error between the truncated and ap-

proximated solution defined eu, ev and ep in the beginning of this proof. Since

φi “ Li ´ Li`2,

eupx, y, tkq “
N
ÿ

i“0

N
ÿ

j“0
ckijLipxqLjpyq,
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where ckij “ pLb LqEu
k , 1 ď k ď N . From (3.4.3), it is easily proved that

}L}2 ď
a

}L}1}L}8 ď
?

2 ¨ 2 “ 2. (3.4.30)

Let the Chebyshev Gauss-Lobatto quadrature weights be denoted by ωi “
π

Ndi
,

where d0 “ 2 “ dN and di “ 1 for 1 ď i ď N ´ 1, and W denote the diagonal matrix

containing the weights, Wii “ ωi, for 0 ď i ď N , thus }rW s}2 ď c
N
. The weighted

norm of eu is given as

}eu}20,ω “

ż

Ω
|eu|2

1
?

1´ t2
dxdydt

ď c
N
ÿ

i“0

N
ÿ

j“0

N
ÿ

k“1
|ckij|

2ωk

“ c
ˇ

ˇ

ˇ

´

rW s
1
2 b Lb L

¯

Eu
ˇ

ˇ

ˇ

2

2
.

Similarly, the other two error estimates can be derived to get the following

}ev}20,ω ď c
ˇ

ˇ

ˇ

´

rW s
1
2 b Lb L

¯

Ev
ˇ

ˇ

ˇ

2

2

}ep}20,ω ď c
ˇ

ˇ

ˇ

´

rW s
1
2 b IN℘

¯

Ep
ˇ

ˇ

ˇ

2

2

Define Wh “

´

rW s
1
2 b Lb L

¯

‘

´

rW s
1
2 b Lb L

¯

‘

´

rW s
1
2 b IN℘

¯

, then

}Wh}2 ď max
!

}rW s
1
2 b Lb L}2, }rW s

1
2 b IN℘}2

)

ď
c
?
N
.

Define }e} “
a

}eu}20,ω ` }e
v}20,ω ` }e

p}20,ω, then addition of the three estimates for

weighted norms of eu, ev, and ep yields,

}e} ď c |WhE|2

ď c}Wh}2|Eh|2
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ď
c
?
N
}G´1

t }2|GtE|2

ď
c
?
N
}G´1

t }2
a

Np2pN ´ 1q2 ´ 1q|GtE|8 (as |x|2 ď
?
m|x|8, for any x P Rm)

ď cN8e´CN ,

the last inequality results from Theorem 3.4.5 and eq. (3.4.29). Thus, }e} ď cN8e´CN ,

which yields that for some big enough N , or N ą c, the error in exact and approxi-

mate solution is

}u´ uN}0,ω ` }v ´ vN}0,ω ` }p´ pN´2}0,ω ď }TNu}0,ω ` }e
u
}0,ω ` }TNv}0,ω

` }ev}0,ω ` }TN´2p}0,ω ` }e
p
}0,ω

ď ce´CN ` c}e}

ď cN8e´CN .

This concludes the proof of the spectral convergence in both space and time of the

PN´PN´2 scheme in space and Chebyshev Gauss-Lobatto collocation in time. Thus,

completing the analysis for a space-time spectral method for the Stokes problem.
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4

The Navier-Stokes problem

In the former chapter, a space-time spectral method scheme was analyzed for the

Stokes problem, which is a linearized version of the Navier-Stokes problem; momen-

tous to the field of fluid dynamics. Consequently, we extend the PN ´PN´2 scheme,

introduced by [12], to the unsteady Navier-Stokes problem. Furthermore, we ex-

tend a staggered grid collocation scheme, derived in [11], to the unsteady Stokes

and Navier-Stokes problems. This collocation scheme is implemented by using the

quadrature nodes, such as the Jacobi Gauss, Jacobi Gauss-Lobatto and Jacobi Gauss

along with x “ ˘1. Due to the presence of the staggered grid, we derive the ex-

pression for the pseudo-spectral derivative matrix for the Jacobi Gauss nodes on

a closed interval for the convenience of application. It is an enormous challenge to

analyze the schemes derived in this chapter, thus we only present numerical evidence

of spectral convergence of this scheme in both space and time. However, the numer-

ical experiments are conducted for the Jacobi polynomials Jα,β for any values of the

parameters, α, β ą ´1.

The Reynold’s number, denoted by Re, is considered to be equal to one for

all of the problems considered in this chapter. It would be interesting to explore

the the highest Reynolds number flows that can be accurately computed by these
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numerical schemes. This is the limit where computations might be used to predict

the breakdown of a laminar flow into turbulence. Since a spectral method has a

super-algebraic decay in error, we may expect them to work for a flow with much

higher Reynold’s number. However, it is more tedious than it seems as there can be a

problem differentiating between numerical and physical smoothing. High Reynold’s

number flows require an especially accurate estimate of viscous stresses.

4.1 Introduction

The Navier-Stokes equations model the conservation of momentum and conservation

of mass for Newtonian fluids, thus describe the relationship between the velocity,

pressure, temperature, and density of a moving fluid. It is apt to call them the most

consequential problem in fluid dynamics, due to their extensive applications such

as modeling water flow in a pipe, ocean currents, air flow around a wing, weather

etc. Therefore, they help in design process of vehicles and airplanes, the study of

blood flow, area of magneto-hydrodynamics, and in analysis of pollution, among

others. They were derived over decades ranging roughly between 1822 to 1850 by

Claude-Louis Navier and George Gabriel Stokes. The Clay Mathematics Institute

designated the problem of proving the existence and smoothness of a solution of the

Navier-Stokes problem in three dimensions as a Millennium Problem, one of seven

mathematical problems, signifying its immense mathematical interest.

Recall that Ω “ p´1, 1q2, Ωt “ Ω ˆ p´1, 1q, the velocity field and pressure are

denoted by u “ ru; vs P V :“ pH1
0 pΩqq2 and p P L2

0pΩq :“
!

q P L2pΩq
ˇ

ˇ

ˇ

ş

Ω q “ 0
)

,

respectively. The Navier-Stokes problem in the unsteady state is stated as follows,

ut ` u
Bu

Bx
` v

Bu

By
´∆u` px “ f1 in Ωt, (4.1.1a)

vt ` u
Bv

Bx
` v

Bv

By
´∆v ` py “ f2 in Ωt, (4.1.1b)
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ux ` vy “ 0 in Ωt, (4.1.1c)

u “ 0, v “ 0 on BΩ,

upx, y,´1q “ u0px, yq, vpx, y,´1q “ v0px, yq in Ω.

Our goal is to devise space-time spectral method schemes for the above problem.

In Section 4.2, we extend the PN ´ PN´2 scheme for the Stokes problem to (4.1.1).

Additionally, a staggered grid collocation scheme using the Jacobi polynomials for the

Stokes problem and the Navier-Stokes problem in the unsteady state are presented

in Sections 4.3.1 and 4.3.2, respectively.

4.2 Mixed spectral Galerkin scheme

The space-time spectral method involving the PN ´ PN´2 scheme, a mixed spec-

tral Galerkin scheme in space and spectral collocation in time, was applied to the

unsteady Stokes problem in Section 3.4. This section extends the aforementioned

scheme to the unsteady Navier-Stokes problem. Recall the approximation for the

velocities u and v, and pressure p, by (3.4.2), which is given as follows

uNpx, y, tq “
N´2
ÿ

i“0

N´2
ÿ

j“0

N
ÿ

k“0
uijkφipxqφjpyq`kptq P P0

N,N,N ,

vNpx, y, tq “
N´2
ÿ

i“0

N´2
ÿ

j“0

N
ÿ

k“0
vijkφipxqφjpyq`kptq P P0

N,N,N ,

pNpx, y, tq “
N´2
ÿ

i“0

N´2
ÿ

j“0
i`ją0

N
ÿ

k“0
pijkLipxqLjpyq`kptq P PN´2,N´2,N ,

along with their corresponding discrete vectors uh, vh, and ph. Note that we only

need to discuss the discretization of the non-linear term pu ¨∇qu, which requires the

following matrices:
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1. For a given index 0 ď k ď N ´ 2, the matrix Pk P Rϑˆϑ is defined as

Pk
ij “

ż 1

´1
φipxqφ

1
jpxqφkpxqdx, 0 ď i, j ď N ´ 2. (4.2.1)

2. For a given index 0 ď k ď N ´ 2, the matrix Tk P Rϑˆϑ is defined as

Tkij “

ż 1

´1
φipxqφjpxqφkpxqdx, 0 ď i, j ď N ´ 2. (4.2.2)

The above matrices are easily calculated by using Definition 3.2.1, that is, φj “

Lj ´ Lj`2 for j P N Y t0u and the following expression for the triple product of the

Legendre polynomials given in [71],

ż 1

´1
LipxqLjpxqLkpxqdx “ 2

¨

˚

˝

i j k

0 0 0

˛

‹

‚

2

,

where the special case of 3j symbol, when 2s “ i` j ` k is even, yields

¨

˚

˝

i j k

0 0 0

˛

‹

‚

“ p´1qs
d

p2s´ 2iq!p2s´ 2jq!p2s´ 2kq!
p2s` 1q!

s!
ps´ iq!ps´ jq!ps´ kq! ,

whereas it is equal to zero whenever i` j ` k is odd.

Now, we are ready to discretize the four non-linear terms in (4.1.1).

Term 1: The first non-linear term in (4.1.1a) is uBu
Bx

. Its weak form collocated at time

t “ tr, for 1 ď r ď N and 0 ď m,n ď N ´ 2, is given as

Nm,n,r
1 “ pppu

Bu

Bx
px, y, trq, φmpxqφnpyqqqq,
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which on using the approximation of u defined by (3.4.2) becomes equal to

Nm,n,r
1 “

N´2
ÿ

i“0

N´2
ÿ

j“0

N´2
ÿ

q“0

N´2
ÿ

s“0
uijruqsr

ż 1

´1
φipxqφ

1
qpxqφmpxqdx

ż 1

´1
φjpyqφspyqφnpyqdy

“

N´2
ÿ

i“0

N´2
ÿ

j“0

N´2
ÿ

q“0

N´2
ÿ

s“0
uijruqsrP

m
iqT

n
js

“ purhq
T
pTn bPm

qurh.

Now, we try to formulate it for a fixed 1 ď r ď N , and all 0 ď m,n ď N ´ 2,

“

purhq
T
pT0

bP0
qurh; purhqT pT0

bP1
qurh; . . . ; purhqT pTN´2

bPN´2
qurh

‰

,

the above pN ´ 1q2 ˆ 1 vector can be written as

N r
1 “ pIϑ b pu

r
hq
T
qW1u

r
h, (4.2.3)

where we define W1 P Rϑ2ˆϑas s block column matrix with pm,nq-column as

pTn bPmq P Rϑˆϑ, for all 0 ď m,n ď N ´ 2.

Term 2: The second non-linear term in (4.1.1a) is vBu
By

. Its weak form collocated at

time t “ tr, for 1 ď r ď N and 0 ď m,n ď N ´ 2, is given as

Nm,n,r
2 “ pppv

Bu

By
px, y, trq, φmpxqφnpyqqqq,

which on using the approximation of u and v defined by (3.4.2) becomes

Nm,n,r
2 “

N´2
ÿ

i“0

N´2
ÿ

j“0

N´2
ÿ

q“0

N´2
ÿ

s“0
vijruqsr

ż 1

´1
φipxqφqpxqφmpxqdx

ż 1

´1
φjpyq

1φspyqφnpyqdy

“

N´2
ÿ

i“0

N´2
ÿ

j“0

N´2
ÿ

q“0

N´2
ÿ

s“0
vijruqsrT

m
iqP

n
js

“ pvrhq
T
pPn

b Tmqurh.
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Now, we try to formulate it for a fixed 1 ď r ď N , and all 0 ď m,n ď N ´ 2,

“

pvrhq
T
pP0

b T0
qurh; pvrhqT pP0

b T1
qurh; . . . ; pvrhqT pPN´2

b TN´2
qurh

‰

,

the above pN ´ 1q2 ˆ 1 vector can be written as

N r
2 “ pIϑ b pv

r
hq
T
qW2u

r
h, (4.2.4)

where we define W2 P Rϑ2ˆϑ as a block column matrix with pm,nq-column as

pPn b Tm P Rϑˆϑ, for all 0 ď m,n ď N ´ 2.

Term 3: The first non-linear term in (4.1.1b) is uBv
Bx

. Its weak form collocated at time

t “ tr, for 1 ď r ď N and 0 ď m,n ď N ´ 2, is given as

Nm,n,r
3 “ pppu

Bv

Bx
px, y, trq, φmpxqφnpyqqqq,

so similar to (4.2.3):

N r
3 “ pIϑ b pu

r
hq
T
qW1v

r
h. (4.2.5)

Term 4: The second non-linear term in (4.1.1b) is vBv
By

. Its weak form collocated at

time t “ tr, for 1 ď r ď N and 0 ď m,n ď N ´ 2, is given as

Nm,n,r
4 “ pppv

Bv

By
px, y, trq, φmpxqφnpyqqqq,

so similar to (4.2.4):

N r
4 “ pIϑ b pv

r
hq
T
qW2v

r
h. (4.2.6)

Thus, eqs. (4.2.3) and (4.2.4) give the discretization of the non-linear terms in
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(4.1.1a), for all 1 ď r ď N , and all 0 ď m,n ď N ´ 2, as

Wuh, W “ ‘
N
j“1

``

Iϑ b u
j
h

˘

W1 `
`

Iϑ b v
j
h

˘

W2
˘

,

that is, W is a block diagonal matrix. Similarly, eqs. (4.2.5) and (4.2.6) give the

discretization of the non-linear terms in (4.1.1b) for all 1 ď r ď N , and all 0 ď

m,n ď N ´ 2, as Wvh. Since these terms are non-linear, we implement a simple

fixed point iteration to solve the discrete unsteady Navier-Stokes problem, which is

given by eq. (3.4.5) and the non-linear terms as follows,

`

W pk´1q
` rDs bM` IN b A

˘

u
pkq
h ` pIN bB1q p

pkq
h “ p1N bQqF1 ´D bMu0h,

`

W pk´1q
` rDs bM` IN b A

˘

v
pkq
h ` pIN bB2q p

pkq
h “ p1N bQqF2 ´D bMv0h,

`

IN bB
T
1
˘

u
pkq
h `

`

IN bB
T
2
˘

v
pkq
h “ O,

(4.2.7)

where the non-linear term W pk´1q is a block diagonal matrix with N ´ 1 blocks with

W
pk´1q
ii “

´

Iϑ b u
i,pk´1q
h

¯

W1`
´

Iϑ b v
i,pk´1q
h

¯

W2. Here, ui,pk´1q
h and vi,pk´1q

h represent

the component of uh and vh vectors for time t “ ti at pk´1qst iteration, for 1 ď i ď N .

The decay of error in L8 norm at the final time step tN “ 1 for this scheme is shown

in Figure 4.1. The schemes described in this chapter are implemented on Matlab®

and are given in [52]. The iteration is stopped whenever the infinity norm of the

difference of two consecutive iterates is smaller than ε “ 10´12. We take f1 and f2,

so that the exact solutions are

upx, y, tq “ pcospπxq ` 1q sinp2πyq sinp0.5πtq,

vpx, y, tq “ p0.5q sinpπxqp1´ cosp2πyqq sinp0.5πtq,

ppx, y, tq “ sinpπxq cospπyq sinp0.5πtq,

(4.2.8)

satisfying the boundary conditions, and giving initial conditions as upx, y,´1q and

vpx, y,´1q.
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Figure 4.1: Convergence of the unsteady Navier-Stokes problem with the PN ´PN´2
scheme.

4.3 Staggered-grid collocation scheme

In [11], the authors presented a collocation scheme for the steady Stokes problem

that employs the use of different grids for velocity and pressure, thus the name

staggered grid. We extend it to the unsteady state by using the Jacobi Gauss-Lobatto

collocation in time. For given N , let Jα,βN denote the Jacobi polynomial of degree N ,

orthogonal with respect to the Jacobi weight function ωpxq “ p1´ xqαp1` xqβ. The

grids for velocity and pressure are defined as follows.

1. The velocity u is defined on ΞpxqN :“ tpξm, ζn, ξrq | 0 ď m, r ď N, 0 ď n ď N ` 1u .

2. The velocity v is defined on ΞpyqN :“ tpζm, ξn, ξrq | 0 ď m ď N ` 1, 0 ď n, r ď Nu .

3. The pressure p is defined on ΞppqN :“ tpζm, ζn, ξrq | 1 ď m,n ď N, 1 ď r ď Nu ,

where tξkuNk“0 denote the Jacobi-Gauss-Lobatto nodes, tζkuNk“1 represent the Jacobi-

Gauss nodes, and we additionally define ζ0 “ ´1 and ζN`1 “ 1. Thus, the approxi-
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mations are defined as follows.

upx, y, tq “
N
ÿ

i“0

N`1
ÿ

j“0

N
ÿ

k“0
uijk`ipxqpjpyq`kptq P P0

N,N`1,N ,

vpx, y, tq “
N`1
ÿ

i“0

N
ÿ

j“0

N
ÿ

k“0
vijkpipxq`jpyq`kptq P P0

N`1,N,N ,

ppx, y, tq “
N
ÿ

i“1

N
ÿ

j“1

N
ÿ

k“1
pijkLipxqLjpyq`kptq P PN´1,N´1,N´1.

Since the problem definition contains homogeneous boundary conditions, u “ 0 on

BΩ implies u0nr “ uNnr “ um0r “ um,N`1,r “ 0, for all 1 ď m ď N ´ 1, 1 ď n ď N ,

and 0 ď r ď N . Similarly, v0nr “ vN`1,nr “ vm0r “ vmNr “ 0, for all 1 ď m ď N ,

1 ď n ď N ´ 1, and 0 ď r ď N . Also, pressure needs to have zero average, which is

enforced by setting p11k “ 0, for all time steps 1 ď k ď N . See Figure 4.2 for a plot

of the grid of unknowns for the velocities u and v, and pressure p.

´0.83 ´0.47 0 0.47 0.83

´0.83

´0.47

0

0.47

0.83
Velocity u
Velocity v
Pressure p

Figure 4.2: Staggered grid of unknowns in x and y axes for N “ 6.

Therefore, on incorporating the homogenous boundary conditions and zero aver-

age condition for veloctiy and pressure, respectively, the following variable approxi-
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mations are obtained

upx, y, tq “
N´1
ÿ

i“1

N
ÿ

j“1

N
ÿ

k“0
uijk`ipxqpjpyq`kptq P P0

N´2,N´1,N , (4.3.2a)

vpx, y, tq “
N
ÿ

i“1

N´1
ÿ

j“1

N
ÿ

k“0
vijkpipxq`jpyq`kptq P P0

N´1,N´2,N , (4.3.2b)

ppx, y, tq “
N
ÿ

i“1

N
ÿ

j“1
i`ją2

N
ÿ

k“1
pijkLipxqLjpyq`kptq P PN´1,N´1,N´1, (4.3.2c)

where `k,Lk, and pk denote the Lagrange polynomials for tξkuNk“0, tζkuNk“1, and

tζku
N`1
k“0 nodes, respectively.

We define the discrete unknowns for the staggered grid scheme as follows.

1. For the velocity u, define uh “ ru1
h;u2

h; . . . ;uNh s P RN2pN´1q, where

ukh “ ru11k;u21k; . . . ;uN´1,1,k;u12k; . . . ;uN´1,N,ks P RNpN´1q, 1 ď k ď N.

2. For the velocity v, define vh “ rv1
h; v2

h; . . . ; vNh s P RN2pN´1q, where

vkh “ rv11k; v21k; . . . ; vN,1,k; v12k; . . . ; vN,N´1,ks P RNpN´1q, 1 ď k ď N.

3. For the pressure p, define ph “ rp1
h; p2

h; . . . ; pNh s P RNpN2´1q, where

pkh “ rp21k; p31k; . . . ; pN,1,k; p12k; . . . ; pN,N,ks P RN2´1, 1 ď k ď N.

Let D represent the Jacobi Gauss-Lobatto pseudo-spectral derivative matrix, the

expression for which is well-known, see [80, p. 89].

Definition 4.3.1 (Jacobi Gauss-Lobatto pseudospectral derivative matrix, see [80]).

For given N , let xi be the Jacobi Gauss-Lobatto quadrature nodes for 0 ď i ď

N . Let `i be the Lagrange polynomials for xi, where 0 ď i ď N and Jpxq :“
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BxJ
α`1,β`1
N´1 pxq. The Jacobi Gauss-Lobatto pseudospectral derivative matrix is defined

as D :“ pdi,jq0ďi,jďN , where di,j “ `1jpxiq given as follows.

1. For j “ 0:

di,0 “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

α ´NpN ` α ` β ` 1q
2pβ ` 2q , i “ 0,

p´1qN´1ΓpNqΓpβ ` 2q
2ΓpN ` β ` 1q p1´ xiqJpxiq, 1 ď i ď N ´ 1,

p´1qNΓpβ ` 2qΓpN ` α ` 1q
2Γpα ` 2qΓpN ` β ` 1q , i “ N.

2. For 1 ď j ď N ´ 1:

di,j “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

2p´1qNΓpN ` β ` 1q
ΓpNqΓpβ ` 2qp1´ xjqp1` xjq2Jpxjq

, i “ 0,

p1´ x2
i qJpxiq

p1´ x2
jqJpxjqpxi ´ xjq

, i ‰ j, 1 ď i ď N ´ 1,

α ´ β ` pα ` βqxi
2p1´ x2

i q
, 1 ď i “ j ď N ´ 1,

´2ΓpN ` α ` 1q
ΓpNqΓpα ` 2qp1´ xjq2p1` xjqJpxjq

, i “ N.

3. For j “ N :

di,N “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

p´1qN`1Γpα ` 2qΓpN ` β ` 1q
2Γpβ ` 2qΓpN ` α ` 1q , i “ 0,

ΓpNqΓpα ` 2q
2ΓpN ` α ` 1qp1` xiqJpxiq, 1 ď i ď N ´ 1,

NpN ` α ` β ` 1q ´ β
2pα ` 2q , i “ N.

Due the presence of staggered grid, the grid for velocity v requires the pseudo-

spectral derivative matrix for tζkuN`1
k“0 . Such a quadrature employing Gauss quadra-

ture nodes along with the end points is unusual. Thus, we derive the following

expression.
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Definition 4.3.2 (Jacobi Gauss pseudospectral derivative matrix on a closed inter-

val). For given N , let x0 “ ´1, xN`1 “ 1 and xi be the Jacobi-Gauss quadrature

nodes for 1 ď i ď N . Let pi be the Lagrange polynomials for xi, where 0 ď i ď N`1.

The Jacobi Gauss pseudospectral derivative matrix on a closed interval is defined as

D :“ pdi,jq0ďi,jďN`1, where di,j “ p1jpxiq given as follows.

1. For j “ 0:

di,0 “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Jα,βN p´1q ´ 2BxJα,βN p´1q
´2Jα,βN p´1q

, i “ 0,

p1´ xiqBxJα,βN pxiq

2Jα,βN p´1q
, 1 ď i ď N,

Jα,βN p1q
´2Jα,βN p´1q

, i “ N ` 1.

2. For 1 ď j ď N :

di,j “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

´2Jα,βN p´1q
p1` xjq2p1´ xjqBxJα,βN pxjq

, i “ 0,

p1´ x2
i qBxJ

α,β
N pxiq

p1´ x2
jqBxJ

α,β
N pxjqpxi ´ xjq

, i ‰ j, 1 ď i ď N,

α ´ β ` pα ` β ´ 2qxj
2p1´ x2

jq
, 1 ď i “ j ď N,

´2Jα,βN p1q
p1` xjqp1´ xjq2BxJα,βN pxjq

, i “ N ` 1.

3. For j “ N ` 1:

di,N`1 “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Jα,βN p´1q
2Jα,βN p1q

, i “ 0,

p1` xiqBxJα,βN pxiq

2Jα,βN p1q
, 1 ď i ď N,

Jα,βN p1q ` 2BxJα,βN p1q
2Jα,βN p1q

, i “ N ` 1.

The proof for the derivation of the above formula is not presented here, as it is

similar to that of other pseudospectral derivative matrices discussed in the literature
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such as [80, 64].

4.3.1 The Stokes problem

The Stokes problem in unsteady state is given by (3.1.2). Firstly, the initial condition

upx, y,´1q “ u0px, yq and (4.3.2a) collocated on pξm, ζnq for all 0 ď m ď N and

0 ď n ď N ` 1, gives

N´1
ÿ

i“1

N
ÿ

j“1

N
ÿ

k“0
uijk`ipξmqpjpζnq`kp´1q “ u0pξm, ζnq

umn0 “ u0pξm, ζnq,

thus u0
h “ uh0, where uh0 “ ru0pξ0, ζ0q; . . . ;u0pξN , ζN`1qs.

Similarly, vpx, y,´1q “ v0px, yq and (4.3.2b) collocated on pζm, ξnq for all 0 ď m ď

N ` 1 and 0 ď n ď N , gives v0
h “ vh0, where uh0 “ ru0pζ0, ξ0q; . . . ;u0pζN`1, ξNqs.

Define the collection of boundary and initial nodes as Ξpxq0 “ tp˘1, ζn, trq | 1 ď

n ď N, 1 ď r ď Nu Y tpξm,˘1, trq | 1 ď m ď N ´ 1, 1 ď r ď Nu Y tpξm, ζn,´1q | 1 ď

m ď N ´ 1, 1 ď n ď Nu, and Ξpyq0 “ tp˘1, ξn, trq | 1 ď n ď N ´ 1, 1 ď r ď Nu Y

tpζm,˘1, trq | 1 ď m ď N, 1 ď r ď Nu Y tpζm, ξn,´1q | 1 ď m ď N, 1 ď n ď N ´ 1u.

In order to perform staggered grid collocation on the unsteady Stokes problem,

we need the following interpolation matrices.

1. The pressure derivative interpolation matrix B P RN´1ˆN is defined as

Bij “ L1jpξiq, 1 ď i ď N ´ 1, 1 ď j ď N. (4.3.3)

2. The velocity derivative interpolation matrix C P RN´1ˆN is defined as follows

Cij “ `1jpζiq, 1 ď i ď N, 1 ď j ď N ´ 1. (4.3.4)
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In this scheme, we perform the following collocation on the Stokes equations eqs. (3.4.1a)

to (3.4.1c),

put ´∆u` pxq px, y, tq “ f1 px, y, tq , px, y, tq P ΞpxqN zΞ
pxq
0 , (4.3.5a)

pvt ´∆v ` pyq px, y, tq “ f2 px, y, tq , px, y, tq P ΞpyqN zΞ
pyq
0 , (4.3.5b)

pux ` vyq px, y, tq “ 0, px, y, tq P ΞppqN . (4.3.5c)

Consider (4.3.5a) for some 1 ď m ď N ´ 1, 1 ď n ď N , and 1 ď r ď N

N
ÿ

k“0
umnk`

1
kpξrq ´

N´1
ÿ

i“1
uinr`

2
i pξmq ´

N
ÿ

j“1
umjrp

2
jpζnq ´

N
ÿ

i“1
i`ną2

pinrL
1
ipξmq “ f1pξm, ζn, ξrq

N
ÿ

k“1
umnk`

1
kpξrq ´

N´1
ÿ

i“1
uinr`

2
i pξmq ´

N
ÿ

j“1
umjrp

2
jpζnq ´

N
ÿ

i“1
i`ną2

pinrL
1
ipξmq “ f1pξm, ζn, ξrq

´ u0pξm, ζnq`
1
0pξrq.

By (4.3.3), Definitions 4.3.1 and 4.3.2, the above equation gives the following matrix

form,

A1uh ` pIN b pIN bBqsq ph “ f1h ´ d0h b uh0, (4.3.6)

where

A1 “ rDs b INpN´1q ` IN2 b vD2
w ` IN b vD

2
w b IN´1.

Similarly, (4.3.5b) gives,

A2vh ` pIN b pBb INqsq ph “ f2h ´ d0h b vh0, (4.3.7)

where

A2 “ rDs b INpN´1q ` INpN´1q b vD
2
w ` IN b vD

2
w b IN .

Finally, eqs. (4.3.4) and (4.3.5c) for some 1 ď m,n ď N , m` n ą 2, and 1 ď r ď N
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gives

N´1
ÿ

i“1
uinr`

1
ipζmq `

N´1
ÿ

j“1
vmjr`

1
jpζnq “ 0,

which in matrix form becomes

pIN b rpIN b Cqquh ` pIN b rpCb INqq vh “ O. (4.3.8)

On using eqs. (4.3.6) to (4.3.8), we obtain the following discrete unsteady Stokes

problem,

A1uh ` pIN b pIN bBqsq ph “ f1h ´ d0h b uh0,

A2vh ` pIN b pBb INqsq ph “ f2h ´ d0h b vh0,

pIN b rpIN b Cqquh ` pIN b rpCb INqq vh “ O.

The spectral convergence for this scheme is evident from Figure 4.3, which depicts

the decay of error in L8 norm at the final time step tN “ 1 for this scheme is shown in

Figure 4.3. We take f1 and f2, so that the exact solutions are the functions defined

by (4.2.8). They satisfy the boundary conditions and produce initial conditions

as upx, y,´1q and vpx, y,´1q. An efficient way of solving such linear systems is

by implementing Uzawa algorithms and augmented Lagrangian Uzawa methods for

solving saddle point problems.

4.3.2 The Navier-Stokes problem

Let us extend the staggered grid collocation scheme to the unsteady Navier-Stokes

problem as follows.

put ` u
Bu

Bx
` v

Bu

By
´∆u` pxqpx, y, tq “ f1px, y, tq, px, y, tq P ΞpxqN zΞ

pxq
0 (4.3.9a)
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Figure 4.3: Convergence for the unsteady Stokes problem by staggered grid colloca-
tion scheme in space and collocation in time with α “ ´0.5 and β “ 1.5.

pvt ` u
Bv

Bx
` v

Bv

By
´∆v ` pyqpx, y, tq “ f2px, y, tq, px, y, tq P ΞpyqN zΞ

pyq
0 , (4.3.9b)

pux ` vyqpx, y, tq “ 0, px, y, tq P ΞppqN . (4.3.9c)

Again, we only need to discuss the discretization of the non-linear term pu ¨ ∇qu,

which requires the following matrices:

1. The Lobatto-Gauss bases interpolation matrix U P RNˆN´1 is defined as

Uij “ `jpζiq, 1 ď i ď N, 1 ď j ď N ´ 1. (4.3.10)

2. The Gauss-Lobatto bases interpolation matrix W P RN´1ˆN is defined as

Wij “ pjpξiq, 1 ď i ď N ´ 1, 1 ď j ď N. (4.3.11)

Now, we discretize the four non-linear terms in (4.3.9).

Term 1: The first non-linear term in (4.3.9a) is uBu
Bx

. Its collocation on pξm, ζn, ξrq P

ΞpxqN zΞ
pxq
0 , that is, for 1 ď m ď N ´ 1, 1 ď n ď N , and 1 ď r ď N along with
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(4.3.2a) gives,

umnr

N´1
ÿ

i“1
uinr`

1
ipξmq.

In matrix form, by Definition 4.3.1, the above equation is written as

diagpuhq ¨ pIN2 b vDwq . (4.3.12)

Term 2: The second non-linear term in (4.3.9a) is vBu
By

. Its collocation on pξm, ζn, ξrq P

ΞpxqN zΞ
pxq
0 , that is, for 1 ď m ď N ´ 1, 1 ď n ď N , and 1 ď r ď N along with

eqs. (4.3.2a) and (4.3.2b) gives,

N
ÿ

i“1

N´1
ÿ

j“1
vijrpipξmq`jpζnq

N
ÿ

j“1
umjrp

1
jpζnq.

In matrix form, by Definition 4.3.2, eqs. (4.3.10) and (4.3.11), the above equa-

tion becomes

diag ppIN b UbWqvhq ¨ pIN b vDw b IN´1q . (4.3.13)

Term 3: The first non-linear term in (4.3.9b) is uBv
Bx

. Its collocation on pζm, ξn, ξrq P

ΞpyqN zΞ
pyq
0 , that is, for 1 ď m ď N , 1 ď n ď N ´ 1, and 1 ď r ď N along with

eqs. (4.3.2a) and (4.3.2b) gives,

N´1
ÿ

i“1

N
ÿ

j“1
uijr`ipζmqpjpξnq

N
ÿ

i“1
vinrp

1
ipζmq.

In matrix form, by Definition 4.3.2, eqs. (4.3.10) and (4.3.11), the above equa-

tion becomes

diag ppIN bWb Uquhq ¨
`

INpN´1q b vDw
˘

. (4.3.14)
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Term 4: The second non-linear term in (4.3.9b) is vBv
By

. Its collocation on pζm, ξn, ξrq P

ΞpyqN zΞ
pyq
0 , that is, for 1 ď m ď N , 1 ď n ď N ´ 1, and 1 ď r ď N along with

(4.3.2b) gives,

vmnr

N´1
ÿ

j“1
vmjr`

1
jpξnq.

In matrix form, by Definition 4.3.1, the above equation becomes

diagpvhq ¨ pIN b vDw b INq . (4.3.15)

Since the terms derived above are non-linear, we implement a simple fixed point

iteration to set, thus (4.2.7) and the non-linear terms eqs. (4.3.12) to (4.3.15) yield

the following discrete unsteady Navier-Stokes problem,

´

N
pkq
1 ` A1

¯

u
pk`1q
h ` pIN b pIN bBqsq p

pk`1q
h “ f1h ´ d0h b uh0,

´

N
pkq
2 ` A2

¯

v
pk`1q
h ` pIN b pBb INqsq p

pk`1q
h “ f2h ´ d0h b vh0,

pIN b rpIN b Cqqu
pk`1q
h ` pIN b rpCb INqq v

pk`1q
h “ O,

where the matrices are defined as follows

A1 “ rDs b INpN´1q ` IN2 b vD2
w ` IN b vD

2
w b IN´1,

A2 “ rDs b INpN´1q ` INpN´1q b vD
2
w ` IN b vD

2
w b IN ,

N
pkq
1 “ diagpupkqh q ¨ pIN2 b vDwq ` diag

´

pIN b UbWqv
pkq
h

¯

¨ pIN b vDw b IN´1q ,

N
pkq
2 “ diag

´

pIN bWb Uqu
pkq
h

¯

¨
`

INpN´1q b vDw
˘

` diagpvpkqh q ¨ pIN b vDw b INq .

The super-algerbaic decay of error in L8 norm at the final time step tN “ 1 for this

scheme is shown in Figure 4.4. The iteration is stopped whenever the infinity norm

of the difference of two consecutive iterates is smaller than ε “ 10´12. We take f1

and f2, so that the exact solutions are functions defined by (4.2.8). They satisfy the
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Figure 4.4: Convergence for the unsteady Navier-Stokes problem by staggered grid
collocation scheme in space and collocation in time with α “ β “ 0.

boundary conditions and yield initial conditions as upx, y,´1q and vpx, y,´1q. In

addition to the fixed point iteration being used in case, we can implement other non-

linear solvers such as the Newton’s method, non-linear SOR, non-linear conjugate

gradient, etc. The schemes derives in Sections 4.2 and 4.3 considered the Reynold’s

number to be equal to 1. It is of great interest to test the performance of these

schemes for higher and lower Reynold’s number flows.
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5

New lower bounds on the

minimum singular value

This chapter is a consequence of the analysis conducted in Chapter 3, in which

estimates for eigenvalue or singular value were derived for some specific matrices.

Such estimates enlightened us with the understanding of structure of matrices to

derive more general results. The study of constraining the eigenvalues of the sum

of two symmetric matrices, say P `Q, in terms of the eigenvalues of P and Q, has

a long history. It is closely related to estimating a lower bound on the minimum

singular value of a matrix, which has been discussed by a great number of authors.

The question that originated the work presented in this chapter is a basic problem

of classical linear algebra: “Can we derive a positive lower bound on the minimum

eigenvalue, λminpP ` Qq, when P ` Q is symmetric positive definite with P and Q

singular positive semi-definite?”

To the best of our knowledge, no study has yielded a positive lower bound on

λminpP ` Qq. According to Sophie Germain, “Algebra is but written geometry and

geometry is but figured algebra.” One approach that provides an answer to the

question mentioned above is a geometrical property of fundamental bases of linear
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algebra, the Friedrichs angle between range spaces of matrices P and Q. It aids us

to formulate new lower bounds on the minimum eigenvalue of a symmetric positive

definite (SPD) matrix.

We derive two new lower bounds on λminpP `Qq in terms of the minimum pos-

itive eigenvalues of P and Q. The basic result is when P and Q are two non-

zero singular positive semi-definite matrices such that P ` Q is non-singular, then

λminpP ` Qq ě p1 ´ cos θF qmintλminpP q, λminpQqu, where λmin represents the mini-

mum positive eigenvalue of the matrix, and θF is the Friedrichs angle between the

range spaces of P and Q. Such estimates lead to new lower bounds on the minimum

singular value of full rank 1 ˆ 2, 2 ˆ 1, and 2 ˆ 2 block matrices. We provide some

examples to further highlight the simplicity of applying the results in comparison to

some existing lower bounds.

5.1 Introduction

The spectral problem of a symmetric matrix sum estimates the eigenvalues of a sum of

two symmetric matrices P `Q, in terms of the eigenvalues of P and Q. Fundamental

results, like Weyl’s inequality in [44, p. 239], and several other works collected in [25],

have addressed this problem. Another substantial contribution is Horn’s conjecture

proved in [55, 56]. The present work is focused on the case when P and Q are sym-

metric positive semi-definite (PSD) matrices, which impacts numerous areas-such

as computational economics, graph theory, perturbation theory, semi-definite pro-

gramming, spectrum of self-adjoint operators, among others. As variance-covariance

matrices are PSD, this problem appears in statistics, and more recently in statistical

machine learning and spectral methods for data science, discussed in [6] and [21],

respectively.

Singular values have been investigated for more than a century. For a square real
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matrix, its minimum singular value is less than or equal to its absolute minimum

eigenvalue. Thus, formulation of a lower bound for the minimum singular value is an

influential problem appearing in several studies including the condition number esti-

mates of a matrix, resonant frequencies, population dynamics, principal component

analysis, etc. Since singular values of a matrix are square-root of eigenvalues of its

corresponding gram matrix, the singular values of a general block matrix are associ-

ated to the spectral problem of a sum of symmetric matrices. Although a myriad of

research has been done on these topics, however, when the symmetric matrices are

both singular PSD, we could not find a result providing a positive lower bound even

if their sum is non-singular.

In practice, we often come across symmetric positive definite (SPD) matrices

represented as a sum of two singular PSD matrices. To illustrate, let us estimate the

minimum singular value of a full rank block column matrix, say A “
“

A1
A2

‰

so that

A1 and A2 are rank deficient. This problem is equivalent to finding the minimum

eigenvalue of ATA “ AT1A1 ` AT2A2, an SPD matrix which is a sum of two singular

PSD matrices. We derive a positive lower bound on the minimum singular value of

A in terms of the minimum positive singular values of A1 and A2 in Corollary 5.6.1.

A similar problem was encountered in Lemma 3.3.7.

In this work, we desire a positive lower bound on the minimum eigenvalue of

an SPD matrix P ` Q, where P,Q P Rnˆn are PSD matrices. Two positive lower

bounds on the smallest eigenvalue of P `Q, framed in terms of the smallest positive

eigenvalues of P and Q, are presented in Theorems 5.4.1 and 5.4.4. These estimates

of the minimum eigenvalue employ the Friedrichs angle between certain subspaces,

i.e., some principal angle between them, as shown in Proposition 2.2.5. A notable

application of principal angles is canonical correlations of matrix pairs given in [35],

and in many other areas, namely eigenspaces, functional analysis, matrix perturba-

tion theory, statistics, etc., are found in [57, 86, 26, 23], respectively. The spectral
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problem of a sum of two PSD matrices is closely related to the first aforementioned

application of canonical correlations, and its dependence upon the Friedrichs an-

gle elucidates geometric aspects of spectral theory. Moreover, the two new lower

bounds lead to useful outcomes when applied to a 2 ˆ 2 non-singular block matrix

M “ r A B
C D s. Note that MTM can be calculated as follows,

MTM “

»

—

–

AT CT

BT DT

fi

ffi

fl

»

—

–

A B

C D

fi

ffi

fl

“

»

—

–

ATA ATB

BTA BTB

fi

ffi

fl

`

»

—

–

CTC CTD

DTC DTD

fi

ffi

fl

.

Also, MTM is a full rank matrix expressed as a sum of two PSD matrices.

Therefore, the above expression admits a lower bound on the minimum singular

value of M , in terms of the minimum positive singular values of its blocks A, B,

C, and D (Theorem 5.6.3). One of these results were used to solve Theorem 3.4.5.

Finally, the above expression and MMT are used again to get two lower bounds on

other singular values of M in Theorem 5.7.2.

This chapter is organized as follows. A brief survey of results related to the ones

derived in this chapter is presented in Section 5.2, and Section 5.3 describes the

notation and fundamental results used later. In Section 5.4, we prove some new

positive lower bounds on the minimum eigenvalue of a matrix and discuss the origin

of those estimates with the help of some theory and examples in Section 5.5. In

Section 5.6, the new eigenvalue estimates are used to derive new lower bounds on

the minimum singular value of some full rank block matrices. In addition, some

examples and special cases for these results are discussed. Finally, estimates for

some other singular values are mentioned in Section 5.7.
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5.2 Literature review

There is an abundance of results related to these problems in the literature. We

attempt to summarize some of the existing focal results related to the ones developed

in Sections 5.4, 5.6 and 5.7.

5.2.1 Minimum eigenvalue of sum of two PSD matrices

The problem of estimating a lower bound on the minimum eigenvalue of sum of

two PSD matrices has been investigated for many years. One of the most funda-

mental results is Weyl’s inequalities given by Theorem 2.1.6 and more generally by

Theorem 5.3.3, which estimates the eigenvalues of a sum of symmetric matrices.

R. Bhatia and F. Kittaneh established a lower bound on eigenvalues of sum of

two PSD matrices (Theorem 5.3.5). They posed the question of a generalization of

arithmetic-geometric mean inequality in [16], which stated that for two PSD matrices

P,Q P Rnˆn, λjpP ` Qq ě 2
a

σjpPQq, for all j “ 1, 2, . . . , n. It was proved by S.

Drury in [27]. However, all these results give a trivial lower bound for the case in

which P `Q is non-singular, and both P and Q are rank deficient. Some additional

properties for sum of two symmetric matrices are listed in [59].

5.2.2 Spectrum of saddle point matrices

One of the most commonly seen 2ˆ2 block matrices of the formM “
“ A B1
BT2 ´C

‰

, where

A P Rmˆm and one or both of B1, B2 P Rmˆn are non-zero, is called a saddle point

matrix. See [8], for a good survey of results on saddle point matrices. In particular,

see Theorem 3.5 in [8, p. 21], which estimates the spectrum for the case when A is

SPD, B1 “ B2 is full rank, and C “ O. A noteworthy improvement was presented in

the form of Theorem 1 in [4, p. 341] with a positive or negative semi-definite matrix

C, also mentioned as Theorem 3.3.8. However, it can be difficult to estimate the
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parameters defined in this theorem while being applied to some gram matrix of 2ˆ2

block matrix. Another applicable result for the spectrum of a preconditioned saddle

point matrix can be found in [83].

To formulate the spectrum of a more generalized saddle point matrix, several

advancements have been considered, such as defining B “ BT
1 “ ´B2 in [9, 10, 82, 2].

Another step forward was to have a symmetric indefinite leading block A. The

first of such case was proved in [37], by imposing the condition that A is SPD on

N pBq, which was eliminated in [5]. Recently, in [45], A has been considered to be

a non-symmetric matrix with a positive definite symmetric part with C “ O, which

originates from discretized Navier-Stokes equations.

5.2.3 Lower bound on the minimum singular value

Several techniques are reported in the literature for formulating a lower bound on

the minimum singular value of a particular type of matrices; however, we attempt to

mention seminal contributions to this problem for a general non-singular matrix. An

initial result for the special case of diagonally dominant matrices is derived in [96],

and for a non-singular matrix a consequential approach is Gerschgorin-type lower

bounds formulated in [76, 48]. The results evolved gradually into several stronger

versions, as seen in [49, 60, 50, 105]. Also, [42] devised a lower bound in terms of

the determinant, the 2-norms of the rows, and columns of the matrix. Some later

advancements of this result include [102, 104, 61] and the references therein.

It is well-known that for a 2 ˆ 2 block matrix, the maximum singular value is

bounded above by 2-norm of the matrix consisting of 2-norms of its blocks, see

Theorem 1(f) in [85, p. 2630]. Thus, for X P Rnˆn,

X “

»

—

–

A B

C D

fi

ffi

fl

, }X } ď

›

›

›

›

›

›

›

»

—

–

}A} }B}

}C} }D}

fi

ffi

fl

›

›

›

›

›

›

›

.
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Since σminpX q “ σmaxpX´1q´1, so on applying this result to X´1 calculated in

terms of its blocks, an estimate of σminpX q is obtained. One drawback of this method

is that the expression for X´1 can be quite problematic.

Another estimate was given in [97] for a block matrix with non-singular diagonal

blocks, which proved by using a block matrix technique that σminpX q ě σ2pX cq,

where X c represents the block comparison matrix of X , which results in a trivial

lower bound when X c is singular.

5.3 Notations and fundamentals

We now summarize the notation used in this paper. Let A P Rnˆn be a symmetric

positive semi-definite (PSD) matrix and recall that ΛpAq denote the spectrum of

A, that is, the set of eigenvalue of A. Also, ρpAq denote the spectral radius of A.

If r “ rankpAq, then its eigenvalues λ1pAq ě λ2pAq ě . . . ě λnpAq, are such that

λr ą 0 and λi “ 0 for all r ` 1 ď i ď n.

Definition 5.3.1 (Minimum positive eigenvalue). Let A P Rnˆn be a PSD matrix

of rank r ď n, define the minimum positive eigenvalue of A as

λminpAq :“

$

’

’

&

’

’

%

λrpAq, if A ‰ O,

8, if A “ O.

For a matrix A P Rmˆn, recall that rankpAq “ rankpATAq “ rankpAAT q. The

set of singular values of A is denoted by σpAq. Let r “ rankpAq, then its singular

values σ1pAq ě σ2pAq ě . . . ě σminpm,nqpAq are such that σrpAq ą 0 and σi “ 0 for

all r ` 1 ď i ď minpm,nq.

Definition 5.3.2 (Minimum positive singular value). Let A P Rmˆn of rank r ď n,
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define the minimum positive singular value of A as

σminpAq :“

$

’

’

&

’

’

%

σrpAq, if A ‰ O,

8, if A “ O.

The above expressions for λmin and σmin are defined for the convenience of nota-

tion for results derived in the next sections and their value is set as infinity for zero

matrices to ignore the zeros while calculating the minimum as it was required by the

formulations derived for zero matrices.

The Weyl’s inequalities are one the most consequential result providing a solution

to the spectral problem of a symmetric matrix sum. s

Theorem 5.3.3 (Weyl’s inequalities, see [43]). Let A,B P Rnˆn be symmetric ma-

trices, then for every pair of integers j, k such that 1 ď j, k ď n and j ` k ď n` 1,

λj`k´1pA`Bq ď λjpAq ` λkpBq,

and for every pair integers such that 1 ď j, k ď n and j ` k ě n` 1,

λj`k´npA`Bq ě λjpAq ` λkpBq.

Another result which is significant to our analysis is the spectrum of product of

two rectangular matrices, given in [103, p. 57] and stated as follows.

Lemma 5.3.4 (Spectrum of product of matrices, see [103]). Let A P Rmˆn, B P

Rnˆm. Then AB and BA have the same non-zero eigenvalues (multiplicities counted).

If m “ n, then eigenvalues of AB and BA are the same.

Finally, we state the following estimate on some eigenvalues of sum of two PSD

matrices is given in [14, p. 904] and [15]. It will be used to give a simpler proof for

lower bound on some singular values.
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Theorem 5.3.5 (See [15]). Let A P Rmˆn and B P R`ˆn, then

2σjpABT
q ď λjpA

TA`BTBq, j “ 1, 2, . . . ,minp`,m, nq.

In addition to the results mentioned in the previous section, we need The-

orems 2.1.7, 2.1.8 and 2.2.3, Definitions 2.2.1 and 2.2.4, and Propositions 2.2.2

and 2.2.5. An alternative proof for two of these results are given in Appendix A.

5.4 Minimum eigenvalue estimates

In this section, we derive some new lower bounds on the minimum eigenvalue of

a non-singular sum of two singular PSD matrices. As discussed in Section 5.1, a

positive lower bound on the minimum eigenvalue of a non-singular sum of two PSD

matrices, say P,Q P Rnˆn, is the key tool for the development of a positive lower

bound on the minimum singular value of some full rank block matrices. Note that

N pP q X N pQq “ t0u when P ` Q is SPD, however, the range spaces of P and Q

may intersect. Let k “ dimpRpP qXRpQqq, then the first k principal angles between

RpP q and RpQq vanish: θi “ 0 for i “ 1, 2, . . . , k. Therefore, if θk`1 exists then

it could contribute in estimating the minimum eigenvalue of P ` Q in terms of the

minimum positive eigenvalues of P and Q. Even when θk`1 does not exist, this idea

serves as a motivation for the following theorem for a pair of two PSD matrices with

a non-singular sum.

Theorem 5.4.1. Let P,Q P Rnˆn be PSD matrices of rank p, q ď n, respectively, so

that P `Q is non-singular. Then

λminpP `Qq ě cpP,Qqmin tλminpP q, λminpQqu ,
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where cpP,Qq is defined by

cpP,Qq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2, r “ 0, p` q “ 2n,

1, r “ 0, p` q ă 2n,

1´ cospθk`1q, r ą 0,

(5.4.1)

where k “ p` q ´ n, 0 ď θ1 ď θ2 ď . . . ď θminpp,qq ď
π
2 represent the principal angles

between RpP q,RpQq Ď Rn, and r is the number of angles θi so that 0 ă θi ă
π
2 , for

1 ď i ď minpp, qq.

Proof. Since P,Q are PSD matrices, there exist matrices A1 P Rpˆn and A2 P Rqˆn,

so that

P “ A T
1 A1, Q “ A T

2 A2.

Moreover, N pP q “ N pA1q and N pQq “ N pA2q. Define M1 :“ RpP q “ RpP T q “

N pP qK “ N pA1q
K and similarly define M2 :“ RpQq “ N pA2q

K. Let Pi P Rnˆn

be the orthogonal projection on Mi, for i “ 1, 2. Therefore, RpPiq “ Mi and

RpI ´ Piq “ MK
i “ N pAiq for i “ 1, 2. The variational characterization of the

smallest eigenvalue of a symmetric matrix implies

λminpP `Qq “ inf
xPRnzt0u

xTA T
1 A1x` x

TA T
2 A2x

|x|2
.

Since any x P Rnzt0u can be represented as x “ pI ´ Piqx` Pix, for i “ 1, 2, thus

xTA T
i Aix “ rAippI ´ Piqx` Pixqs

T
rAippI ´ Piqx` Pixqs

“ pAiPixq
T
pAiPixq (as pI ´ Piqx P N pAiq)

“ pPixq
TA T

i AipPixq,
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therefore,

λminpP `Qq “ inf
xPRnzt0u

pP1xq
TA T

1 A1pP1xq ` pP2xq
TA T

2 A2pP2xq

|x|2
. (5.4.2)

Note that the minimum positive eigenvalue of A T
i Ai is identified by the variational

characterization as follows,

λminpA
T
i Aiq “ inf

xPN pAiqK

xTA T
i Aix

|x|2
.

Since for any x P Rnzt0u, Pix PMi “ N pAiq
K, therefore the above expression gives

pPixq
TA T

i AipPixq ě λminpA
T
i Aiq|Pix|

2,

hence (5.4.2) provides the following estimate

λminpP `Qq ě inf
xPRnzt0u

λminpA T
1 A1q|P1x|

2 ` λminpA T
2 A2q|P2x|

2

|x|2

“ inf
xPRnzt0u

λminpP q|P1x|
2 ` λminpQq|P2x|

2

|x|2
(5.4.3)

ě min tλminpP q, λminpQqu inf
xPRnzt0u

|P1x|
2 ` |P2x|

2

|x|2

“: min tλminpP q, λminpQqu inf
xPRnzt0u

∆pxq, (5.4.4)

where ∆pxq :“ |P1x|
2 ` |P2x|

2

|x|2
, for x P Rnzt0u. Since the parallelogram identity for

inner-product spaces states that

|P1x|
2
` |P2x|

2
“

1
2
“

|pP1 ` P2qx|
2
` |pP1 ´ P2qx|

2‰ , (5.4.5)

leading to a lower bound,

inf
xPRnzt0u

∆pxq ě 1
2
“

σ2
minpP1 ` P2q ` σ

2
minpP1 ´ P2q

‰

, (5.4.6)
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hence the set of singular values of P1 ˘ P2 need to be analyzed. To this end, note

that MK
1 XM

K
2 “ N pP q XN pQq “ t0u, as

x P N pP q XN pQq ô pP `Qqx “ 0 ô x “ 0,

since P `Q is non-singular. Also, Proposition 2.1.1 gives

M1 `M2 “ pM
K
1 XM

K
2 q
K
“ t0uK “ Rn,

consequently, Theorem 2.2.3 gives the set of singular values of P1 ˘ P2 as

σpP1 ` P2q “ t2k, 1˘ cospθk`iqpi “ 1, . . . , rq,1n1`n2u,

σpP1 ´ P2q “ t1n1`n2 , sinpθk`iqsinpθk`iqsinpθk`iq2pi “ 1, . . . , rq,0ku,
(5.4.7)

where,

k “ dimpM1 XM2q “ dimpM1q ` dimpM2q ´ dimpM1 `M2q “ p` q ´ n,

n1 “ dimpM1 XM
K
2 q “ p´ k ´ r,

n2 “ dimpMK
1 XM2q “ q ´ k ´ r,

n3 “ dimpMK
1 XM

K
2 q “ 0,

n “ n1 ` n2 ` k ` 2r “ p` q ´ k.

(5.4.8)

Let us estimate (5.4.6), thus (5.4.4) in terms of the following cases.

Case 1: Suppose r “ 0. Note that (5.4.8) implies n1 “ p´ k, n2 “ q´ k for this

case. Firstly, consider k “ 0 and n1 “ n2 “ 0, then (5.4.8) implies p “ q “ 0, thus

P “ Q “ O. This is rejected, since P `Q is non-singular.

For k “ 0 and n1`n2 ą 0, (5.4.7) and (5.4.8) yield σpP1˘P2q “ t1n1`n2u “ t1nu,

hence (5.4.6) gives

inf
xPRnzt0u

∆pxq ě 1
2
“

12
` 12‰

“ 1. (5.4.9)
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For k ą 0 and n1 “ n2 “ 0, (5.4.8) implies that k “ p “ q “ n or both P and Q

are non-singular. Therefore, M1 “M2 “ Rn, hence (5.4.4) gives

inf
xPRnzt0u

∆pxq “ inf
xPRnzt0u

|x|2 ` |x|2

|x|2
“ 2. (5.4.10)

For k, n1 ą 0, and n2 “ 0, (5.4.8) results in p “ n and q “ k, that is, M2 ĎM1 “

Rn or Q is non-singular. Hence, (5.4.4) becomes

inf
xPRnzt0u

∆pxq “ inf
xPRnzt0u

|x|2 ` |P2x|
2

|x|2
ě 1.

Similarly, for k, n2 ą 0 and n1 “ 0, the same lower bound as above is derived

which also coincides with (5.4.9). Finally, consider k, n1, n2 ą 0, since dimpM1 X

M2q “ k ą 0, therefore M1 XM2 is a non-trivial subspace. Thus, by Lemma A.1.1,

N pP1 ´ P2q “M1 XM2 is non-trivial implying P1 ´ P2 is singular which will give a

weaker result. In order to improve it, we define M3 :“M2 X pM1 XM2q
K, then

dimpM3q “ n´ dimpMK
3 q

“ n´ dimpMK
2 `M1 XM2q (by Proposition 2.1.1)

“ n´ pn´ dimpM2qq ´ dimpM1 XM2q

“ n´ pn´ qq ´ k “ q ´ k,

or dimpM3q “ q ´ k “ n2 ą 0, thus it is a non-trivial subspace. Let P3 and PU

be the orthogonal projections onto the subspace M3 and some subspace U of Rn,

respectively. The following was proved in [20, p. 1429],

P3 “ PM2XpM1XM2qK

“ PM2PpM1XM2qK

“ PM2 pI ´ PM1XM2q
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“ PM2 ´ PM2PM1XM2

“ P2 ´ PM1XM2 ,

or P2 “ PM1XM2 ` P3, which implies for any x P Rnzt0u,

P2x “ PM1XM2x` P3x. (5.4.11)

By definition, M1 XM2 and M3 are mutually orthogonal subspaces. Therefore, for

any x P Rnzt0u,

|P2x|
2
“ |PM1XM2x|

2
` |P3x|

2, (5.4.12)

and (5.4.4) becomes

inf
xPRnzt0u

∆pxq “ inf
xPRnzt0u

|P1x|
2 ` |PM1XM2x|

2 ` |P3x|
2

|x|2

ě inf
xPRnzt0u

|P1x|
2 ` |P3x|

2

|x|2

“
1
2 inf
xPRnzt0u

|pP1 ` P3qx|
2 ` |pP1 ´ P3qx|

2

|x|2
(by (5.4.5))

ě
1
2
“

σ2
minpP1 ` P3q ` σ

2
minpP1 ´ P3q

‰

. (5.4.13)

By Theorem 2.2.3,

σpP1 ` P3q “ t2k̃, 1˘ cospαk̃`iqpi “ 1, . . . , rq,1ñ1`ñ2 , 0ñ3u,

σpP1 ´ P3q “ t1ñ1`ñ2 , sinpαk̃`iqsinpαk̃`iqsinpαk̃`iq2pi “ 1, . . . , rq,0k̃`ñ3
u,

(5.4.14)

where 0 ď α1 ď α2 ď . . . ď αminpp,q´kq ď
π
2 represent the principal angles between

the subspaces M1 and M3, and r is the number of principal angles that satisfy

0 ă αi ă
π
2 . Observe that r is the same number for M1 and M2 by (2.2.1), or see
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[32, p. 231] for more details. Thus, r “ 0 and (5.4.8) gives the following parameters

k̃ “ dimpM1 XM3q “ dimpM1 X pM2 X pM1 XM2q
K
qq “ 0,

ñ1 “ p´ k̃ ´ r “ p,

ñ2 “ pq ´ kq ´ k̃ ´ r “ q ´ k,

ñ3 “ n´ p´ pq ´ kq ` k̃ “ n´ pp` q ´ kq “ 0.

(5.4.15)

Hence, σminpP1 ˘ P3q “ 1, therefore (5.4.13) implies that inf
xPRnzt0u

∆pxq ě 1, which

coincides with (5.4.9).

In conclusion, for r “ 0 and p ` q ă 2n, λminpP ` Qq ě min tλminpP q, λminpQqu

holds, or cpP,Qq “ 1. Whereas, for r “ 0 and p ` q “ 2n, λminpP ` Qq ě

2 min tλminpP q, λminpQqu holds, or cpP,Qq “ 2.

Case 2: Suppose r ą 0. For k “ 0 and any n1, n2 ě 0, (5.4.7) implies that

σminpP1 ` P2q “ 1´ cos θ1 and σminpP1 ´ P2q “ sin θ1. By (5.4.6),

inf
xPRnzt0u

∆pxq ě 1
2
“

p1´ cos θ1q
2
` sin2 θ1

‰

“ 1´ cos θ1.

Therefore, (5.4.4) gives λminpP `Qq ě p1´ cos θ1qmintλminpP q, λminpQqu.

For k ą 0 and n1, n2 ě 0, thus M1 XM2 is non-trivial. Consider the subspaces

M1 and M3, as defined earlier for k, n1, n2 ą 0 in Case 1. Note that M3 is always

non-trivial, as n1, n2 ě 0, (5.4.8) implies p ě k ` r and q ě k ` r, thus dimM3 “

q ´ k ě r ą 0. Also, the set of parameters for M1 and M3 are given by (5.4.15) and
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r ą 0 as follows,
k̃ “ dimpM1 XM3q “ 0,

ñ1 “ p´ k̃ ´ r “ p´ r,

ñ2 “ pq ´ kq ´ k̃ ´ r “ q ´ k ´ r,

ñ3 “ n´ p´ pq ´ kq ` k̃ “ 0.

(5.4.16)

Let θF be the Friedrichs angle between M1 and M2, then by Property 3 of Proposi-

tion 2.2.5, it is equal to the minimal angle between M1 and M3 in (5.4.14), that is,

α1 “ θF “ θk`1, (5.4.17)

where the last equality follows by Property 5 of Proposition 2.2.5. Therefore, (5.4.14)

implies that σminpP1 ` P3q “ 1´ cosα1 “ 1´ cos θk`1 and σminpP1 ´ P3q “ sinα1 “

sin θk`1, so (5.4.13) yields

inf
xPRnzt0u

∆pxq ě 1
2
“

p1´ cos θk`1q
2
` sin2 θk`1

‰

“ 1´ cos θk`1. (5.4.18)

Thus, (5.4.4) implies λminpP`Qq ě p1´cos θk`1qmin tλminpP q, λminpQqu, or cpP,Qq “

1´ cos θk`1, which is consistent for r ą 0 and k “ 0.

Remark 5.4.2. Recall that θk`1 is the Friedrichs angle between RpP q and RpQq

as stated in Property 5 of Proposition 2.2.5. It can be easily calculated by using

a result by A. Björck and G. Golub given in [17]. Let Q1 P Rnˆp and Q2 P Rnˆq

represent a orthogonal bases for RpP q and RpQq, respectively. Define M “ QT
1Q2,

then cos θk “ σkpMq, for k “ 1, 2, . . . , q. Consider the reduced SVD of M “ Y ΣZT ,

then Σ “ diagtσ1, σ2, . . . , σqu gives the principal angles between RpAq and RpBq,

moreover, the principal vectors puk, vkq corresponding to the principal angles θk are

given by the columns of the matrices U “ Q1Y and V “ Q2Z.
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Definition of the measure cpP,Qq, given by (5.4.1), is also applicable to rectan-

gular matrices as stated below.

Proposition 5.4.3. For distinct non-zero matrices A P Rnˆp, B P Rnˆq

1. cpA,Bq “ cpAAT , BBT q.

2. cpA,Bq “ cpB,Aq.

3. cpA,On,kq “ 1.

4. cpA,Bq “ 1 ´ cos θF , when both A, B are rank-deficient, where θF is the

Friedrichs angle between RpAq and RpBq.

The following result is derived to complete the analysis of λminpP `Qq, the two

PSD matrices with a non-singular sum. The new result reduces to Theorem 2.1.6

when at least one of P and Q is SPD. However, the result may be weaker or stronger

than the estimate given by Theorem 5.4.1.

Theorem 5.4.4. Let P,Q P Rnˆn be PSD matrices of rank p, q ď n, respectively, so

that P `Q is non-singular, then

λminpP `Qq ě ψpP,Qq,

where, for r “ 0

ψpP,Qq :“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

a2, p “ n, q ă n,

b2, p ă n, q “ n,

a2 ` b2, p “ q “ n,

min ta2, b2u , otherwise,
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and for r ą 0,

ψpP,Qq :“ 1
2

„

a2
` b2

´
1
2pa` bq

b

pa` bq2 ´ 4ab sin2 θk`1

´
1
2 |a´ b|

b

pa´ bq2 ` 4ab sin2 θk`1



,

where a “
a

λminpP q, b “
a

λminpQq, k “ p`q´n, 0 ď θ1 ď θ2 ď . . . ď θminpp,qq ď
π
2

represent the principal angles between RpP q,RpQq Ď Rn, and r is the number of

principal angles θi so that 0 ă θi ă
π
2 , for 1 ď i ď minpp, qq.

Proof. Define M1 :“ RpP q, M2 :“ RpQq and Pi P Rnˆn to be the orthogonal

projection onto Mi, for i “ 1, 2. On following the proof of Theorem 5.4.1, (5.4.3)

gives

λminpP `Qq ě inf
xPRnzt0u

λminpP q|P1x|
2 ` λminpQq|P2x|

2

|x|2

“ inf
xPRnzt0u

a2|P1x|
2 ` b2|P2x|

2

|x|2
(5.4.19)

“
1
2 inf
xPRnzt0u

|paP1 ` bP2qx|
2 ` |paP1 ´ bP2qx|

2

|x|2
(by (5.4.5))

ě
1
2
“

σ2
minpaP1 ` bP2q ` σ

2
minpaP1 ´ bP2q

‰

. (5.4.20)

The results given in [32, p. 247] and [32, p. 234-235] give the following expression,

aP1 ` bP2 “ Zdiag ppa` bqIk, aS ` bEpθk`iqpi “ 1, . . . , rq, aIn1 , bIn2 , On3qZ
T ,

where Z is an orthogonal matrix, S “ r 1 0
0 0 s, Epθq “

“

cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

‰

, and the

expressions for k, n1, n2, n3, n are given by (5.4.8). Thus, the set of singular values
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of aP1 ˘ bP2 are

σpaP1 ` bP2q “

"

1
2

„

pa` bq ˘
b

pa` bq2 ´ 4ab sin2 θk`i



pi “ 1, . . . , rq,

pa` bqpa` bqpa` bqk, aaan1 , bbbn2 ,0n3

*

,

σpaP1 ´ bP2q “

"

1
2

„

b

pa´ bq2 ` 4ab sin2 θk`i ˘ |a´ b|



pi “ 1, . . . , rq,

|a´ b||a´ b||a´ b|k, aaan1 , bbbn2 ,0n3

*

,

(5.4.21)

resulting in the following cases.

Case 1: Suppose r “ 0, then (5.4.8) yields n1 “ p ´ k and n2 “ q ´ k for

this case. Firstly, consider k “ n1 “ 0 and n2 ą 0, then (5.4.8) implies p “ 0 and

q “ n. Thus, P “ O and P ` Q “ Q is non-singular. Therefore, (5.4.19) leads to

λminpP ` Qq “ λminpQq “ b2. Similarly, Q “ O for k “ n2 “ 0 and n1 ą 0, thus

λminpP `Qq “ λminpP q “ a2.

For k “ 0 and n1, n2 ą 0, (5.4.21) gives σminpaP1 ˘ bP2q “ minta, bu. Thus,

(5.4.20) gives λminpP `Qq ě minta2, b2u.

For k ą 0 and n1 “ n2 “ 0, (5.4.8) implies k “ p “ q “ n, that is, both P and

Q are non-singular. By (5.4.21), σminpaP1 ` bP2q “ a` b, σminpaP1 ´ bP2q “ |a´ b|,

therefore (5.4.20) gives

λminpP `Qq ě
1
2
“

pa` bq2 ` pa´ bq2
‰

“ a2
` b2.

For k, n2 ą 0 and n1 “ 0, (5.4.8) gives p “ k and q “ n, which implyM1 ĎM2 “ Rn,

or Q is non-singular. Thus, (5.4.19) becomes

λminpP `Qq “ inf
xPRnzt0u

a2|P1x|
2 ` b2|x|2

|x|2
ě b2

“ λminpQq,

similarly k, n1 ą 0 and n2 “ 0 gives λminpP ` Qq ě a2 “ λminpP q. Finally, consider
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k, n1, n2 ą 0, since dimpM1 XM2q “ k ą 0, then M1 XM2 is a non-trivial subspace.

Consider M3 “ M2 X pM1 XM2q
K ‰ t0u as defined in the proof of Theorem 5.4.1,

then (5.4.12) in (5.4.19) gives

λminpP `Qq “ inf
xPRnzt0u

a2|P1x|
2 ` b2|PM1XM2x|

2 ` b2|P3x|
2

|x|2

ě inf
xPRnzt0u

a2|P1x|
2 ` b2|P3x|

2

|x|2

“
1
2 inf
xPRnzt0u

|paP1 ` bP3qx|
2 ` |paP1 ´ bP3qx|

2

|x|2
(by (5.4.5))

ě
1
2
“

σ2
minpaP1 ` bP3q ` σ

2
minpaP1 ´ bP3q

‰

. (5.4.22)

The set of singular values of aP1 ˘ bP3 are given by (5.4.21) as follows

σpaP1 ` bP3q “

"

1
2

„

pa` bq ˘
b

pa` bq2 ´ 4ab sin2 αk̃`i



pi “ 1, . . . , rq,

pa` bqpa` bqpa` bqk̃, aaañ1 , bbbñ2 ,000ñ3

*

,

σpaP1 ´ bP3q “

"

1
2

„

b

pa´ bq2 ` 4ab sin2 αk̃`i ˘ |a´ b|



pi “ 1, . . . , rq,

|a´ b||a´ b||a´ b|k̃, aaañ1 , bbbñ2 ,000ñ3

*

,

(5.4.23)

where the parameters are the same as (5.4.15) with r “ 0. Thus, σminpaP1 ˘ bP3q “

minta, bu. By (5.4.22), λminpP `Qq ě minta2, b2u.

Case 2: Suppose r ą 0. Then for k “ 0 and n1, n2 ě 0, by (5.4.21)

σminpaP1 ` bP2q “
1
2

„

pa` bq ´
b

pa` bq2 ´ 4ab sin2 θ1



,

σminpaP1 ´ bP2q “
1
2

„

b

pa´ bq2 ` 4ab sin2 θ1 ´ |a´ b|



.

Thus, (5.4.20) gives

λminpP `Qq ě
1
2

„

a2
` b2

´
1
2pa` bq

b

pa` bq2 ´ 4ab sin2 θ1
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´
1
2 |a´ b|

b

pa´ bq2 ` 4ab sin2 θ1



.

For k ą 0 and n1, n2 ě 0, (5.4.16), (5.4.17), and (5.4.23) yield

σminpaP1 ` bP3q “
1
2

„

pa` bq `
b

pa` bq2 ´ 4ab sin2 θk`1



,

σminpaP1 ´ bP3q “
1
2

„

b

pa´ bq2 ` 4ab sin2 θk`1 ´ |a´ b|



,

hence (5.4.22) implies

λminpP `Qq ě
1
2

„

a2
` b2

´
1
2pa` bq

b

pa` bq2 ´ 4ab sin2 θk`1

´
1
2 |a´ b|

b

pa´ bq2 ` 4ab sin2 θk`1



.

In the proofs of Theorems 5.4.1 and 5.4.4, a technique similar to the case of k “ 0

and n1, n2 ą 0 can be applied to the cases k “ n1 “ 0 and n2 ą 0, and k “ n2 “ 0

and n1 ą 0, to get another positive lower bound; however, they turn out to be weaker

than the stated results. On combining Theorems 5.4.1 and 5.4.4, another positive

lower bound on λminpP `Qq is given as follows.

Corollary 5.4.5. Let P,Q P Rnˆn be PSD matrices of rank p, q ď n, respectively,

so that P `Q is non-singular. Then

λminpP `Qq ě max rcpP,Qqmin tλminpP q, λminpQqu , ψpP,Qqs .

Example 5.4.6. Here, we consider four pairs of PSD matrices P , Q, so that P `Q

is SPD, to present simple illustrations of the above results. The exact value of

λminpP `Qq is compared with the lower bounds given by Theorems 5.4.1 and 5.4.4.

The existing results in the literature give a trivial lower bound. See Remark 5.4.2
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for the definition of matrix M used in these examples.

1. Let P “ diag p5, 0, 0q, Q “ diag p0, 4, 9q, so that rankP “ 1 and rankQ “ 2,

and P ` Q “ diag p5, 4, 9q is SPD. Note that RpP q “ RpQqK, thus k “ r “ 0

and p` q “ 3 ă 6, so that cpP,Qq “ 1 and thus, Theorems 5.4.1 and 5.4.4 give

the same lower bound 4 “ λminpP `Qq ě 4.

2. Let P “ diag p1, 1, 0q, Q “ diag p0, 1, 3q, so that rankP “ rankQ “ 2, and

P ` Q “ diag p1, 2, 3q is SPD. Note that principal angles between RpP q and

RpQq are θ1 “ 0 and θ2 “
π
2 , so that k “ 1, r “ 0 and p ` q “ 4 ă 6, thus

cpP,Qq “ 1. Therefore, Theorems 5.4.1 and 5.4.4 give the same lower bound,

that is, 1 “ λminpP `Qq ě 1 ¨ 1 “ 1.

3. Let P “

»

—

–

2 2

2 2

fi

ffi

fl

, Q “ diag p6, 0q, so that they are PSD with rankP “

rankQ “ 1 and P ` Q “

»

—

–

8 2

2 2

fi

ffi

fl

is SPD. Since the eigen-decomposition of

P “ EΛET and Q “ IQIT , where E “
?

2
2

»

—

–

1 ´1

1 1

fi

ffi

fl

and Λ “ diag p4, 0q,

we get M “
?

2
2

„

1 1


»

—

–

1

0

fi

ffi

fl

“
?

2
2 . Note that k “ 0 and r ą 0, thus

cos θ1 “ σmaxpMq “
?

2
2 and Theorem 5.4.1 implies that 1.3944 « λminpP`Qq ě

p1´
?

2
2 q ¨ 4 « 1.1716, which is stronger than the lower bound obtained by ap-

plying Theorem 5.4.4, λminpP ` Qq ě 1.1270. Thus, Corollary 5.4.5 gives the

former result, that is, λminpP `Qq ě 1.1716.

4. Let P “ diag p10, 5, 0q, Q “

»

—

—

—

—

–

12

3 9

9 27

fi

ffi

ffi

ffi

ffi

fl

, so that rankP “ rankQ “ 2, and
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P `Q “

»

—

—

—

—

–

22

8 9

9 27

fi

ffi

ffi

ffi

ffi

fl

. Note that k “ r “ 1 ą 0, so we use orthonormal bases

for P and Q to find M “

»

—

–

1 0 0

0 1 0

fi

ffi

fl

»

—

—

—

—

–

0 1
1?
10 0
3?
10 0

fi

ffi

ffi

ffi

ffi

fl

“

»

—

–

0 1
1?
10 0

fi

ffi

fl

. Thus, cpP,Qq “

1´ cos θ2 “ 1´ 1?
10 . Therefore, Theorem 5.4.1 implies that 4.4137 « λminpP `

Qq ě p1 ´ 1?
10q ¨ 5 « 3.4189, which is weaker than the lower bound obtained

by applying Theorem 5.4.4, λminpP `Qq ě 3.7770. Thus, Corollary 5.4.5 gives

λminpP `Qq ě 3.7770.

5.5 Importance of the Friedrichs angle

Although the Friedrichs angle is a vital quantity for studying the interaction be-

tween two given subspaces, its presence in the expression for lower bounds given by

Theorems 5.4.1 and 5.4.4 limits its application as it could be difficult to evaluate it.

In this section, we discuss an observation that indicated the presence of some angle

in these estimates, its role in determining the interaction between certain subspaces,

and our choice of subspaces in the proof of Theorem 5.4.1.

5.5.1 Motivation

An intuition for the presence of some angle came from the following toy example

which we solved using the techniques of calculus.

Consider the following pair of matrices

P “

»

—

–

8 2

2 2

fi

ffi

fl

and Q “

»

—

–

6 0

0 0

fi

ffi

fl

, then P `Q “

»

—

–

8 2

2 2

fi

ffi

fl

.
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Note that P and Q are matrices of rank 1, whereas P ` Q is non-singular. By a

direct calculation, we see that the bases for RpP q is tr1; 1su and RpQq is r1; 0s, thus

cpP,Qq “ 1´ cos θmin “ 1´ cos π
4 « 0.2929.

Define P1, P2 P R2ˆ2 to be orthogonal projections onto RpP q and RpQq, respec-

tively. Let us evaluate the expression of infxPR2zt0u ∆pxq, defined by (5.4.4), explicitly.

Clearly, for x P R2,

P1x “
1
2

»

—

–

x1 ` x2

x1 ` x2

fi

ffi

fl

, P2x “

»

—

–

x1

0

fi

ffi

fl

.

Then, infxPR2
|x|“1

∆pxq “ infxPR2
|x|“1

1
2px1 ` x2q

2 ` x2
2. By using calculus, this value is also

equal to 0.2929 suggesting 1´ 1
?

2
.

5.5.2 A special case

Here we discuss the need of distinguishing the case r “ 0 from r ą 0 in Theo-

rems 5.4.1 and 5.4.4. Note that r “ 0 means the principal angles between M1 and

M2 are either 0 or π
2 . Recall that n1 “ dimpM1 X MK

2 q, n2 “ dimpMK
1 X M2q,

n3 “ dimpMK
1 XM

K
2 q “ 0, and M1 `M2 “ Rn. On substituting r “ 0 in (5.4.8), we

get n1 “ p´ k, n2 “ q ´ k, so we need to analyze eight cases as follows.

k n1 n2 Interpretation
0 0 0 M1 “M2 “ O or P “ Q “ 0
0 0 + M1 “ O or P “ O
0 + 0 M2 “ O or Q “ O
0 + + M1 “MK

2 , e.g. P “ r 1
0 s, Q “ r 0

1 s
+ 0 0 M1 “M2 “ Rn, or both P and Q are non-singular
+ 0 + M1 ĎM2 “ Rn or Q is non-singular
+ + 0 M2 ĎM1 “ Rn or P is non-singular
+ + + M1 XM2 ‰ t0u and M3 “MK

1 , e.g. P “
”

1
1

0

ı

, Q “
”

0
1

1

ı

Table 5.1: Cases for r “ 0.
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1. Suppose k “ n1 “ n2 “ 0. Then p “ q “ 0, or M1 and M2 are zero subspaces.

Thus, P and Q are zero matrices, and we do not consider this case.

2. Suppose k “ n1 “ 0 and n2 ą 0. Then p “ 0, thus M1 is a zero subspace and

P is a zero matrix. Therefore, all principal angles between M1 and M2 are π
2 .

3. Suppose k “ n2 “ 0 and n1 ą 0. Then q “ 0, thus Q is a zero matrix.

Therefore, all principal angles between M1 and M2 are π
2 .

4. Suppose k “ 0 and n1, n2 ą 0. Then n1 “ p and n2 “ q. Since M1XM2 “ t0u,

dimpM1 X MK
2 q “ dimpM1q, and dimpM2 X MK

1 q “ dimpM2q, then Rn “

M1 ‘M2, thus M1 “MK
2 . Therefore, all principal angles between them are π

2 .

5. Suppose k ą 0 and n1, n2 “ 0. Then p “ q “ k, since n “ p` q ´ k or n “ k,

thus p “ q “ n. Therefore, M1 “ M2 “ Rn and P,Q are non-singular. Thus,

all principal angles between them are zero.

6. Suppose k, n2 ą 0 and n1 “ 0. Then p “ k, and n “ p ` q ´ k implies

n “ k ` q ´ k, then n “ q. Thus, M2 “ Rn or Q is non-singular and clearly

M1 ĎM2. Note that all principal angles are zero in this case as well.

7. Suppose k, n1 ą 0 and n2 “ 0. Similarly, to the above case M2 Ď M1 “ Rn,

thus P is non-singular and all principal angles are zero in this case as well.

8. Suppose k, n1, n2 ą 0. This is the most general case for the r “ 0 setting.

In this case, there is a non-trivial intersection between the subspaces, that is,

M1 XM2 ‰ t0u. Therefore, r “ 0 means M3 “ MK
1 , so the first k principal

angles are zero and rest of them are π
2 .

For cases 5-7, the Friedrichs angle between M1 and M2 is 0, so that θF “ 0 which

gives 1´ cos θF “ 1´ cos 0 “ 0. Therefore, we define cpP,Qq separately for the cases

r “ 0 and r ą 0 in the proof of the theorem. All the above cases are mentioned in
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Table 5.1, where ‘`’ represents that the corresponding parameter is considered to

be positive.

5.5.3 The choice of subspaces

In this section, we discuss the choice of decomposition (5.4.12), particularly for the

case r, k ą 0, which states |P2x|
2 “ |PM1XM2x|

2 ` |P3x|
2 “ |P4x|

2 ` |P3x|
2.

Note that, this decomposition of M2, in terms of M3 and M4, is considered for

the case when M4 “ M1 XM2 ‰ t0u. It is because when we try to estimate (5.4.6),

which is

inf
xPRnzt0u

∆pxq ě 1
2
“

σ2
minpP1 ` P2q ` σ

2
minpP1 ´ P2q

‰

,

then since k, r ą 0, Property 3 of Theorem 2.2.3 implies that P1 ´ P2 is singular,

thus

inf
xPRnzt0u

∆pxq ě 1
2
“

σ2
minpP1 ` P2q ` 0

‰

,

“
1
2 p1´ cos θk`1q

2 ,

where the last equality holds by (5.4.7). In order to improve this lower bound, we

consider various combinations of two subspaces to estimate a lower bound on the

infimum of ∆pxq, as defined by (5.4.4). We restrict to two subspaces to facilitate

analysis. The investigation of the case with three subspaces is a topic for future

research. Note that n1, n2 ě 0 and (5.4.8) imply p, q ě k ` r, thus dimpM3q “

q ´ k ě r ą 0 and dimpM5q “ p ´ k ě r ą 0, in other words, M3 and M5 are non-

trivial whenever r, k ą 0. Since (5.4.12) gives |P2x|
2 “ |P4x|

2` |P3x|
2, and similarly,
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|P1x|
2 “ |P4x|

2 ` |P5x|
2, thus the following approaches are established.

inf
xPRnzt0u

∆pxq “ inf
xPRnzt0u

|P1x|
2 ` |P2x|

2

|x|2

“ inf
xPRnzt0u

|P1x|
2 ` |P4x|

2 ` |P3x|
2

|x|2

“ inf
xPRnzt0u

|P5x|
2 ` 2|P4x|

2 ` |P3x|
2

|x|2

“ inf
xPRnzt0u

|P5x|
2 ` |P4x|

2 ` |P2x|
2

|x|2
.

By considering two terms at once in the above set of equations and applying (5.4.5),

we can get a lower bound in terms of an expression of the form

1
2
“

σ2
minpPi ` Pjq ` σ

2
minpPi ´ Pjq

‰

,

where i ‰ j.

For subspaces U, V Ď Rn, let PU and PV be orthogonal projections onto U and

V , respectively. Properties 2 and 3 of Theorem 2.2.3 imply that PU ` PV is non-

singular if and only if dimpUKX V Kq “ 0, and PU ´PV is non-singular if and only if

dimpUXV q “ dimpUKXV Kq “ 0. Therefore, we construct Table 5.2, which describes

the sum and difference of two orthogonal projections Pi, for 1 ď i ď 5. Since n “ p

U V dimpU X V q dimpUK X V Kq Conclusion
M1 M3 0 0 both P1 ˘ P3 are non-singular
M1 M4 k n´ p both P1 ˘ P4 are singular
M2 M4 k n´ q both P2 ˘ P4 are singular
M2 M5 0 0 both P2 ˘ P5 are non-singular
M3 M4 0 n´ q both P3 ˘ P4 are singular
M3 M5 0 k both P3 ˘ P5 are singular
M4 M5 0 n´ p both P4 ˘ P5 are singular

Table 5.2: Combinations of two subspaces.

or n “ q occur when r “ 0 as discussed in the cases 5-7 of the last section, therefore

n´ p, n´ q ą 0 whenever r, k ą 0. Thus, only two of the combinations, M1 and M3,
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andM2 andM5, give non-singular sum and difference of their orthogonal projections,

that is, providing a non-trivial lower bound for both sum and difference of their

orthogonal projections. The proof of Theorem 5.4.1 is completed by considering M1

and M3. It is easy to see that if we consider M2 and M5, then on following the proof

to analyze

inf
xPRnzt0u

∆pxq ě inf
xPRnzt0u

|P5x|
2 ` |P2x|

2

|x|2
,

we get the exact same lower bound as M1 and M4, that is,

inf
xPRnzt0u

∆pxq ě 1´ cos θF “ 1´ cos θk`1,

which is optimal for our analysis.

5.6 Minimum singular value estimates

In this second, we use Theorems 5.4.1 and 5.4.4 for formulating new lower bounds on

the minimum singular value of full rank 1ˆ2, 2ˆ1, and 2ˆ2 matrices in terms of the

minimum positive singular value of their sub-blocks. For convenience of notation,

define the function Ψ for matrices A P Rnˆp, B P Rnˆq:

ΨpA,Bq “
a

ψpAAT , BBT q, (5.6.1)

where ψ is defined by Theorem 5.4.4. Note that ψpAAT , BBT q is a function defined

in terms of a “
a

λminpAAT q “ σminpAq, b “
a

λminpBBT q “ σminpBq, and principal

angles between RpAAT q “ RpAq and RpBBT q “ RpBq. Thus, ΨpA,Bq is a function

defined in terms of positive singular values of A and B, and principal angles between

RpAq and RpBq.

A positive lower bound, defined by Corollary 5.4.5, could be useful in several

circumstances, such as for a full rank block 2 ˆ 1 matrix, with rank deficient sub-
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blocks. Hence, the following applications to full rank block column and block row

matrix are presented.

Corollary 5.6.1. For m ě n, let A “
“

A1
A2

‰

P Rmˆn be full rank, then

σminpAq ě max
„

b

cpAT1 , A
T
2 qmin tσminpA1q, σminpA2qu ,ΨpAT1 , AT2 q



.

Proof. Since A is a full rank matrix, σ2
minpAq “ λnpA

TAq “ λminpA
T
1A1 ` AT2A2q,

thus Corollary 5.4.5 implies

σ2
minpAq ě max

“

cpAT1A1, A
T
2A2qmin

 

σ2
minpA1q, σ

2
minpA2q

(

, ψ
`

AT1A1, A
T
2A2

˘‰

,

which gives the desired result after applying Property 1 of Proposition 5.4.3 and

Equation (5.6.1).

Corollary 5.6.2. For m ď n, let A “
„

A1 A2



P Rmˆn be full rank, then

σminpAq ě max
”

a

cpA1, A2qmin tσminpA1q, σminpA2qu ,ΨpA1, A2q
ı

.

After securing the above lower bounds, our subsequent aim is to extend them to

a non-singular 2ˆ 2 block matrix. While it could be tedious to estimate the singular

values of 2 ˆ 2 block matrices, it is easier to find the singular values of its blocks

which are of smaller size. Thus, another significant application of Theorems 5.4.1

and 5.4.4 is the following result, which give four estimates on the minimum singular

value of a non-singular matrix.

Theorem 5.6.3. For a non-singular matrix

A “

»

—

–

A11 A12

A21 A22

fi

ffi

fl

P Rnˆn,
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where A11 P Rpˆk, A22 P Rqˆ`, for 1 ď p, q, k, ` ď n, the following hold

σminpAq ě
?

1´ cos θ ¨min tσmin prA11, A12sq , σmin prA21, A22squ , (5.6.2a)

σminpAq ě Ψ
´

rA11, A12s
T , rA21, A22s

T
¯

, (5.6.2b)

σminpAq ě
?

1´ cos θ ¨min tr1, r2u , (5.6.2c)

where

r1 :“ max rc1 min tσminpA11q, σminpA12qu ,Ψ pA11, A12qs ,

r2 :“ max rc2 min tσminpA21q, σminpA22qu ,Ψ pA21, A22qs ,

where c1 “
a

cpA11, A12q, c2 “
a

cpA21, A22q, and θ P
`

0, π2
‰

is the minimum princi-

pal angle between R
`

rA11, A12s
T
˘

,R
`

rA21, A22s
T
˘

Ď Rn. Moreover,

σminpAq ě
?

1´ cos θ ¨min tc1, c2u ¨ min
1ďi,jď2

tσminpAijqu . (5.6.3)

Proof. Since A11 P Rpˆk, A22 P Rqˆ`, then p` q “ n “ k` `. Let R1 “

„

A11 A12



P

Rpˆn, and R2 “

„

A21 A22



P Rqˆn, then by a direct calculation

ATA “

„

RT
1 RT

2



»

—

–

R1

R2

fi

ffi

fl

“ RT
1R1 `R

T
2R2. (5.6.4)

Note that rankpR1q ď p and rankpR2q ď q, thus rankpR1q`rankpR2q ď p`q “ n,

also

rankpR1q ` rankpR2q “ rankpRT
1R1q ` rankpRT

2R2q

ě rankpRT
1R1 `R

T
2R2q

“ rankpATAq “ rankpAq “ n.
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Therefore, rankpR1q ` rankpR2q “ n, which implies that rankpR1q “ p and

rankpR2q “ q, that is, R1 and R2 are full rank matrices. And, ATA is an SPD

matrix expressed a sum of two singular PSD matrices, thus by Theorem 5.4.1

σ2
minpAq “ λminpA

TAq

ě cpRT
1R1, R

T
2R2qmin

 

λminpR
T
1R1q, λminpR

T
2R2q

(

“ cpRT
1 , R

T
2 qmin

 

σ2
minpR1q, σ

2
minpR2q

(

, (5.6.5)

where the last equality results from Property 1 of Proposition 5.4.3. Let θ be the

minimum principal angle between RpRT
1 q and RpRT

2 q. Since A is non-singular, (5.6.4)

gives N pR1q X N pR2q “ t0u, thus Proposition 2.1.1 implies RpRT
1 q ` RpRT

2 q “

N pR1q
K `N pR2q

K “ pN pR1q XN pR2qq
K “ t0uK “ Rn. Therefore,

dimpRpRT
1 q XRpRT

2 qq “ dimpRpRT
1 qq ` dimpRpRT

2 qq ´ dimpRpRT
1 q `RpRT

2 qq

“ rankpR1q ` rankpR2q ´ dimpRn
q

“ p` q ´ n “ 0,

or, RpRT
1 qXRpRT

2 q “ t0u. Hence, Rn “ RpRT
1 q‘RpRT

2 q, that is, RpRT
1 q and RpRT

2 q

are complementary subspaces, thus by Lemma A.2.1 0 ă θ ď π
2 , which implies if

r “ 0 then θ “ π
2 . Therefore, (5.4.1) can simply be expressed as cpRT

1 , R
T
2 q “ 1´cos θ,

thus (5.6.5) yields

σ2
minpAq ě p1´ cos θqmin

 

σ2
minpR1q, σ

2
minpR2q

(

,

which leads to (5.6.2a). Also, applying Theorem 5.4.4 to (5.6.4) implies

σ2
minpAq “ λmin

`

RT
1R1 `R

T
2R2

˘

ě ψ
`

RT
1R1, R

T
2R2

˘

,
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which by (5.6.1) gives (5.6.2b). Since R1 has full rank, Corollary 5.6.2 for estimating

σminpR1q leads to

σminpR1q ě max rc1 min tσminpA11q, σminpA12qu ,Ψ pA11, A12qs “: r1,

where c1 “
a

cpA11, A12q. Similarly, a lower bound on σminpR2q is

σminpR2q ě max rc2 min tσminpA21q, σminpA22qu ,Ψ pA21, A22qs “: r2,

where c2 “
a

cpA21, A22q, and hence (5.6.2a) is expressed as

σminpAq ě
?

1´ cos θ ¨min tr1, r2u ,

which on further simplification gives,

σminpAq ě
?

1´ cos θ ¨min rc1 min tσminpA11q, σminpA12qu ,

c2 min tσminpA21q, σminpA22qus

ě
?

1´ cos θ ¨min tc1, c2u ¨ min
1ďi,jď2

tσminpAijqu .

As σminpAq “ σminpA
T q, the above estimates yield the following result framed in

terms of block columns of A.

Corollary 5.6.4. For a non-singular matrix

A “

»

—

–

A11 A12

A21 A22

fi

ffi

fl

P Rnˆn,
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where A11 P Rpˆk, A22 P Rqˆ`, for 1 ď p, q, k, ` ď n,

σminpAq ě
?

1´ cos θ ¨min
 

σmin
`“

A11
A21

‰˘

, σmin
`“

A12
A22

‰˘(

, (5.6.6a)

σminpAq ě Ψ
`“

A11
A21

‰

,
“

A12
A22

‰˘

, (5.6.6b)

σminpAq ě
?

1´ cos θ ¨min ts1, s2u ,

where

s1 :“ max
“

c1 min tσminpA11q, σminpA21qu ,Ψ
`

AT11, A
T
21
˘‰

,

s2 :“ max
“

c2 min tσminpA12q, σminpA22qu ,Ψ
`

AT12, A
T
22
˘‰

,

where c1 “
a

cpAT11, A
T
21q, c2 “

a

cpAT12, A
T
22q, and θ P

`

0, π2
‰

is the minimum princi-

pal angle between R
`“

A11
A21

‰˘

,R
`“

A12
A22

‰˘

Ď Rn. Moreover,

σminpAq ě
?

1´ cos θ ¨min tc1, c2u ¨ min
1ďi,jď2

tσminpAijqu .

Remark 5.6.5. The estimate given by (5.6.2a) is stronger than (5.6.2c) and (5.6.3),

however, the sharpness of (5.6.2b) varies for different matrices (see Example 5.6.10).

The inequality (5.6.3) gives a lower bound on the minimum singular value of a non-

singular 2 ˆ 2 block matrix in terms of the minimum positive singular value of its

blocks. The estimates from Theorem 5.6.3 and Corollary 5.6.4 may differ, so in

practice, one may use the maximum of all of the bounds obtained from both of

them. A Matlab® implementation for any 2ˆ 2 block matrix is given in [53].

Now, we simplify Theorem 5.6.3 for the special case of a saddle point matrix as

follows.
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Corollary 5.6.6. For a non-singular saddle point matrix

M “

»

—

–

A B

BT O

fi

ffi

fl

P Rpm`nqˆpm`nq,

where A P Rmˆm is non-singular and B P Rmˆn is full rank,

σminpMq ě
?

1´ cos θ ¨min tσminpAq, σminpBqu ,

where θ is the minimum principal angle between R
`

rA,BsT
˘

and R
`

rBT , OsT
˘

.

Proof. Since M is non-singular, according to (5.6.2a),

σminpMq ě
?

1´ cos θ ¨min
 

σminprA,Bsq, σminprB
T , Osq

(

.

Since σ2
minprA,Bsq “ λminprA,BsrA,Bs

T q “ λminpAA
T `BBT q ě σ2

minpAq, and simi-

larly σ2
minprB

T , Osq “ σ2
minpBq, hence the desired result.

Example 5.6.7 (Block diagonal matrix). For a non-singular block diagonal matrix

D “
“

A O
O B

‰

, use (5.6.2a) to get

σminpDq ě
?

1´ cos θ ¨min tσminprA,Osq, σminprO,Bsqu ,

where θ is the minimum angle between R
`

rA,OsT
˘

and R
`

rO,BsT
˘

. Note that

σminprA,Osq “ σminpAq and σminprO,Bsq “ σminpBq, and it is straightforward to see

that θ “ π
2 . Therefore, the result becomes σminpDq ě min tσminpAq, σminpBqu. In

fact, this inequality is an equality, thus the lower bound is sharp. Similar results can

be obtained for a non-singular block anti-diagonal square matrix.

Example 5.6.8 (Block triangular matrix). For a non-singular block upper triangular
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matrix U “
“

A11 A12
O A22

‰

, the most simplified result of Theorem 5.6.3 is given by (5.6.3):

σminpUq ě
?

1´ cos θ ¨ min
i“1,2

tciu ¨min tσmin pA11q , σmin pA12q , σmin pOq , σmin pA22qu ,

where θ is the minimum angle between R
`

rA11, A12s
T
˘

and R
`

rO,A22s
T
˘

, c1 “
a

cpA11, A12q, and c2 “
a

cpO,A22q “ 1 ě c1 by Property 3 of Proposition 5.4.3.

Also, σminpOq “ 8 by Definition 5.3.2. Hence,

σminpUq ě
?

1´ cos θ ¨ c1 ¨min tσminpA11q, σminpA12q, σminpA22qu . (5.6.7)

Similarly, an estimate for a non-singular block lower triangular matrix can be derived.

When every block is a square matrix, then [14, p. 352] gives the following expres-

sion

U´1
“

»

—

–

A´1
11 ´A´1

11 A12A
´1
22

O A´1
22

fi

ffi

fl

,

whose maximum singular value is pσminpUqq
´1. This task could be challenging to

perform due to the presence of the term A´1
11 A12A

´1
22 . Note that the blocks need not

to be square for (5.6.7).

Let us consider U “

»

—

—

—

—

–

10 0 0

4 2 0

1 1 6

fi

ffi

ffi

ffi

ffi

fl

, then [105] gives σminpUq ě 1.7087. Whereas, on

placing the partitions on U to make it a 2ˆ 2 block matrix so that its p1, 1q block is

either of size 2ˆ1 or 2ˆ2, (5.6.2b) gives a stronger result 1.7473 ď 1.8285 « σminpUq.

A Matlab® implementation is given in [53].

Example 5.6.9. Here, we explain the use of the new lower bounds with the help of

two 2 ˆ 2 block matrices denoted by A, where its pi, jq-th block is denoted by Aij

and its i-th block row is denoted by Ri, where 1 ď i, j ď 2. Also, M represents the

matrix defined in Remark 5.4.2. Most of the existing results do not provide a bound
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in terms of the blocks of the matrices considered in this example.

1. Consider A “

»

—

—

—

—

—

—

—

–

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

which is non-singular such that its every block

is singular. Note that σminpAq “ 1 “ σminpAijq “ σminpRiq. It is straight

forward to see that a basis for RpRT
1 q is

 

r0 1 0 0sT , r0 0 0 1sT
(

and for RpRT
2 q

is
 

r1 0 0 0sT , r0 0 1 0sT
(

. Since θ “ π
2 or r “ 0, (5.6.2a) implies 1 “ σminpAq ě

p1 ´ 0q ¨ mint1, 1u “ 1, and (5.6.2b) yields 1 “ σminpAq ě
a

mint1, 1u “ 1.

Moreover, the same result is obtained on applying (5.6.2c), as r “ 0 for both

the pairs A1i and A2i for i “ 1, 2, thus 1 “ σminpAq ě p1´ 0qmint1, 1u “ 1. In

order to use (5.6.3), note that a basis for RpA11q,RpA21q is
 

r0 1sT
(

, and for

RpA12q,RpA22q is
 

r1 0sT
(

, therefore c1 “ c2 “ 1. Thus, this inequality yields

1 “ σminpAq ě p1´ 0qmint1, 1umint1, 1, 1, 1u “ 1.

2. Consider A “

»

—

—

—

—

–

1 0 1

0 ´1 1

1 0 0

fi

ffi

ffi

ffi

ffi

fl

, which is a non-singular non-symmetric saddle

point matrix with an indefinite matrix as its leading block. For using (5.6.2a),

M “ 1?
2

»

—

–

1?
3 ´ 1?

3
2?
3

1 1 0

fi

ffi

fl

»

—

—

—

—

–

1

0

0

fi

ffi

ffi

ffi

ffi

fl

“ 1?
2

»

—

–

1?
3

1

fi

ffi

fl

. Thus, cos θ “ σmaxpMq “
b

2
3 «

0.8165. Therefore, this inequality implies 0.4450 « σminpAq ě
?

1´ 0.8165 ¨

mint1, 1u « 0.4284. Moreover, the same lower bound is obtained on apply-

ing other results. Since k “ rankpRT
1 q ` rankpRT

2 q ´ 3 “ 0, and r “ 1 with

cos θ derived as above, (5.6.2b) implies σminpAq ě

c

1
2

”

2´
a

4p1´ sin2 θq
ı

“

?
1´ 0.8165 « 0.4284. Also, (5.6.2c) results in σminpAq ě

?
1´ 0.8165 ¨

mint1, 1u « 0.4284. For using (5.6.3), observe that c1 “ c2 “ 1 and σminpA11q “

1, σminpA12q “
?

2, σminpA21q “ 1 and σminpA22q “ 8. Therefore, the inequal-
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ity gives

0.4450 « σminpAq ě
?

1´ 0.8165¨mint1, 1u¨mintmint1,
?

2u,mint1,8uu « 0.4284.

100.1 100.2 100.3 100.4 100.5 100.6 100.7 100.8 100.9 101 101.1 101.2 101.3 101.410´2

10´1

100

101

t: parameter

σminpAq

theorem 5.6.3 on Ã
theorem 5.6.3 on A

(a) Graph for Theorem 5.6.3.

100.1 100.2 100.3 100.4 100.5 100.6 100.7 100.8 100.9 101 101.1 101.2 101.3 101.410´2

10´1

100

101

t: parameter

σminpAq

corollary 5.6.4 on Ã
corollary 5.6.4 on A

(b) Graph for Corollary 5.6.4.

Figure 5.1: Estimates of σminpAq for Example 5.6.10.

Example 5.6.10. Let us consider two different partitions on the same matrix as

follows,

A “

»

—

—

—

—

–

t 10 0

3 2 ´2

2 0 6

fi

ffi

ffi

ffi

ffi

fl

, Ã “

»

—

—

—

—

–

t 10 0

3 2 ´2

2 0 6

fi

ffi

ffi

ffi

ffi

fl

, where t “ 1, 2, . . . , 30.

Figure 5.1 displays the result of best lower bounds from Theorem 5.6.3 and Corol-

lary 5.6.4 for both partitions, along with the exact value of σminpAq.
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Figure 5.1a shows that Theorem 5.6.3 provides a decent estimate of σminpAq. The

best lower bound on σminpAq is given by (5.6.2b) for t “ 1, and by (5.6.2a) for t “

2, 3, . . . 30. For Ã, the largest lower bound is given by (5.6.2b) for t “ 1, 2, . . . 5, and

by (5.6.2a) for t “ 6, 7, . . . , 30. On increasing the value of t, the lower bound obtained

from (5.6.2a) improves up to t “ 18, for which the absolute error in approximation

for A is 0.008452 and for Ã is 0.008389. The results from Ã appear to be overall

sharper than A. Thus, the sharpness of results may vary for distinct partitions of

the same matrix.

Similarly, the trends for Corollary 5.6.4 are depicted by Figure 5.1b. It is observed

that Corollary 5.6.4 gives identical results for both matrix A and Ã. The minimum

absolute error in approximation is 0.01469, which occurs when t “ 18. The best

lower bound is given by the first inequality of Corollary 5.6.4 for all t except for

t “ 1, for which it was obtained from the second inequality of Corollary 5.6.4. A

Matlab® implementation is given in [53].

Example 5.6.11. (M- and H-matrices) The following matrices are considered in

[70],

A “

»

—

—

—

—

–

8 ´2 ´1

´5 7 ´3

´3 ´4 5

fi

ffi

ffi

ffi

ffi

fl

, B “

»

—

—

—

—

–

7 ´3 ´2

´2 5 ´1

´3 ´4 9

fi

ffi

ffi

ffi

ffi

fl

, C “

»

—

—

—

—

–

´5 2 ´4

3 ´6 ´2

´1 ´4 ´8

fi

ffi

ffi

ffi

ffi

fl

,

where A and B are M-matrices and C is an H-matrix, for which upper bounds on

the minimum singular values were devised. We calculate the best lower bounds

secured from Theorem 5.6.3 and Corollary 5.6.4 in Table 5.3 through a Matlab®

implementation given in [53]. In Table 5.3, the size leading block refers to the size

of p1, 1q block of the matrix specifying the partition being placed, and more than

one partition means that the same lower bound is obtained in all cases. It is evident

that our results provide a good estimate for M- and H-matrices.
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Matrix σmin Best lower bound Size of leading block
A 0.7744 (5.6.6a):0.7354 1ˆ 2 or 2ˆ 2
B 1.8830 (5.6.6a):1.5855 1ˆ 2 or 2ˆ 2
C 0.9015 (5.6.6a):0.8770 1ˆ 1 or 2ˆ 1

Table 5.3: Lower bounds for M- and H- matrices.

Example 5.6.12. In this example, we compare our results to some well-known

existing results that give a lower bound on the minimum singular value of a matrix.

The following matrices are strictly diagonally dominant (SDD) matrices, for which

several lower bounds were analyzed in [70],

D “

»

—

—

—

—

–

10 1 1

1 20 1

1 1 30

fi

ffi

ffi

ffi

ffi

fl

, E “

»

—

—

—

—

–

10 1 1

1 20 1

10 1 30

fi

ffi

ffi

ffi

ffi

fl

, F “

»

—

—

—

—

–

10 1 1

1 20 1

20 1 30

fi

ffi

ffi

ffi

ffi

fl

, G “

»

—

—

—

—

–

10 1 1

10 20 1

20 1 30

fi

ffi

ffi

ffi

ffi

fl

.

Also, some lower bounds for following matrices were compared in [61],

H “

»

—

—

—

—

–

3 2 0

1 9 5

0 5 7

fi

ffi

ffi

ffi

ffi

fl

, I “

»

—

—

—

—

–

2 ´1 0

2 1 0

´4 ´4 5

fi

ffi

ffi

ffi

ffi

fl

, J “

»

—

—

—

—

–

5 0 0

´4 9 4

´1 7 9

fi

ffi

ffi

ffi

ffi

fl

, K “

»

—

—

—

—

–

4 0 0

´1 5 0

0 5 4

fi

ffi

ffi

ffi

ffi

fl

.

The third column of Table 5.4 states the best among all lower bounds evaluated

for the above matrices in [70, 61]. The findings mentioned in Table 5.4 indicate

that the results obtained from Theorem 5.6.3 and Corollary 5.6.4 provide a sharper

lower bound on the minimum singular value of all SDD matrices considered in [70],

albeit they may not be optimal for all SDD matrices. A Matlab® implementation

is given in [53]. In the above examples, we have listed the partitions that lead to best

estimates, which may not be feasible if the matrix is large. Based on our numerical

experiments, choosing the leading block of the matrix to be a square matrix of a

suitable size often results in a partition that gives fine results.
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Matrix σmin Existing New Result Size of leading block
D 9.8608 9.6389 (5.6.2b):9.6932 1ˆ 2 or 2ˆ 1 or 2ˆ 2
E 9.0409 8.0731 (5.6.2b):8.1814 2ˆ 1 or 2ˆ 2
F 7.6233 5.6070 (5.6.2a):6.0553 1ˆ 1 or 1ˆ 2
G 6.7547 5.2107 (5.6.2a):5.2728 1ˆ 1 or 1ˆ 2
H 1.9619 1.4142 (5.6.6b):1.8651 1ˆ 1 or 2ˆ 1
I 1.0677 0.7898 (5.6.2a):0.8996 1ˆ 1 or 1ˆ 2
J 3.0786 2.2303 (5.6.2b):2.8220 1ˆ 1 or 1ˆ 2
K 2.5146 2.2170 (5.6.6b):2.3847 1ˆ 1 or 2ˆ 1

Table 5.4: Comparison of new lower bounds with the existing results.

5.7 Some singular value estimates

After discussing lower bounds on the minimum singular value of a non-singular 2ˆ2

block matrix, we divert our attention to constructing a lower bound on some other

singular values. One such bounds is Theorem 5.7.1, stated as follows, which was

given in [40].

Theorem 5.7.1 (See [40]). Let Aij P Rmˆn for i, j “ 1, 2, and

A “

»

—

–

A11 A12

A21 A22

fi

ffi

fl

,

then

σjpAq ě
b

2σj pA11AT12 ` A21AT22q, j “ 1, 2, . . . ,minpm,nq.

In the following theorem, we provide a simpler proof for two lower bounds similar

to estimate provided by Theorem 5.7.1 with more general sizes for its sub-blocks.

Theorem 5.7.2. For a block matrix

A “

»

—

–

A11 A12

A21 A22

fi

ffi

fl

,
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where A11 P Rmˆ` and A22 P Rnˆp, then

σjpAq ě
b

2σj pA11AT21 ` A12AT22q, j “ 1, 2, . . . ,minpm,n, `` pq,

also,

σjpAq ě
b

2σj pAT11A12 ` AT21A22q, j “ 1, 2, . . . ,minpm` n, `, pq.

Proof. Let R1 “

„

A11 A12



and R2 “

„

A21 A22



, so that A “
“

R1
R2

‰

. For j “

1, 2, . . . ,minpm ` n, ` ` pq, σ2
j pAq “ λjpA

TAq “ λjpR
T
1R1 ` RT

2R2q. Therefore, by

theorem 5.3.5, for j “ 1, 2, . . . ,minpm,n, `` pq

σ2
j pAq ě 2σjpR1R

T
2 q “ 2σj

`

A11A
T
21 ` A12A

T
22
˘

.

Also, let C1 “
“

A11
A21

‰

and C2 “
“

A12
A22

‰

, so that A “

„

C1 C2



, then σ2
j pAq “

λjpAA
T q “ λjpC1C

T
1 ` C2C

T
2 q, for j “ 1, 2, . . . ,minpm ` n, ` ` pq. Therefore, by

theorem 5.3.5, for j “ 1, 2, . . . ,minpm` n, `, pq

σ2
j pAq ě 2σjpCT

1 C2q “ 2σj
`

AT11A12 ` A
T
21A22

˘

.

Corollary 5.7.3. For a saddle point matrix

M “

»

—

–

A B

BT O

fi

ffi

fl

,

where A P Rmˆm is non-singular and B P Rmˆn is full rank,

σjpMq ě
b

2σj pABq, j “ 1, 2, . . . ,minpm,nq.
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To summarize, we formulated the lower bounds on λminpP ` Qq, for PSD ma-

trices P,Q P Rn described by Theorems 5.4.1 and 5.4.4, which are sharp for the

case of RpP q X RpQq “ t0u. These gave lower bounds on the minimum singular

value of some full rank matrices given in Corollaries 5.6.1 and 5.6.2, Theorem 5.6.3,

and Corollary 5.6.4. Finally, an improvement on lower bounds on some other singu-

lar values were derived by Theorem 5.7.2, which concludes our analysis for general

matrices.
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6

Ultraspherical spectral methods in

space and time

In Chapter 3, we analyzed a space-time spectral method for the Stokes problem,

which utilizes collocation in time. A major disadvantage of such a scheme is that

the resulting linear system is dense and is difficult to solve in parallel. We try

to formulate space-time spectral methods leading to sparse linear systems, paving

the way for robust numerical methods for solving time-dependent PDEs, possessing

spectral convergence in both space and time.

In 2013, S. Olver and A. Townsend introduced a new class of spectral meth-

ods in [74], called the ultraspherical spectral (US) methods, which portray spec-

tral convergence for analytic solutions, and the resultant discrete systems consti-

tute sparse and well-conditioned matrices. However, the linear systems are non-

symmetric for self-adjoint problems; [1] presents a technique on symmetrizing such

schemes. Some authors have driven the further development of the US methods, such

as [94, 84, 18, 30, 75, 29]. We explore the capabilities of the US method for solving

unsteady problems. Firstly, we introduce the US method and analyze their per-

formance for some ordinary differential equations. We proceed to design numerical
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schemes for solving some time-dependent linear PDEs by utilizing the ultraspherical

spectral method in both space and time. This chapter is concluded by discussing

the scope of designing a robust solver for the schemes arising from the US method

in space and time.

6.1 Introduction

Classical spectral methods converge spectrally, but they lead to dense and ill-conditioned

matrices. The ultraspherical spectral methods exhibit spectral convergence and lead

to almost banded and well-conditioned matrices. This new class of spectral method

was developed in [74], which results from changing the basis of the solution by uti-

lizing a differentiation expression for the ultraspherical polynomials defined later in

this section.

In Chapter 2, we defined the Chebyshev polynomials, which are also termed as

the Chebyshev polynomial of the first kind. Furthermore, the Chebyshev polynomial

of the second kind are denoted by Cp1qn pxq or Unpxq, where the former notation will

be used in this work. They are the solution of the following problem:

p1´ x2
qy2 ´ 3xy1 ` npn` 2qy “ 0, x P p´1, 1q, @n “ 0, 1, . . . ,

and are orthogonal with respect to the L2
ω

1
2 ,

1
2
p´1, 1q inner product with weight

ω
1
2 ,

1
2 pxq “

?
1´ x2, that is,

ż 1

´1
Cp1qn pxqC

p1q
m pxq

?
1´ x2dx “

π

2 δmn.

Moreover, they serve as a tool for demonstrating the ultraspherical spectral method
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for a first order ODE. For x P r´1, 1s, consider

u1pxq ` apxqupxq “ fpxq,

with boundary condition up´1q “ c, where a : r´1, 1s Ñ C, f : r´1, 1s Ñ C

are continuous functions of bounded variation. Therefore, there exists a unique

continuously differentiable solution. Let us consider the solution

upxq “
8
ÿ

k“0
ukTkpxq,

where the coefficients satisfy

uk “
2´ δk0

π

ż 1

´1

upxqTkpxq
?

1´ x2 dx. (6.1.1)

Since the derivative of the Chebyshev polynomial is given as,

dTk
dx

“

$

’

’

&

’

’

%

kC
p1q
k´1, k ě 1,

0, k “ 0.
(6.1.2)

Thus,

u1pxq “
8
ÿ

k“1
kukC

p1q
k´1pxq.

In matrix form, the coefficients are given as

D0u “

»

—

—

—

—

—

—

—

–

0 1

0 2

0 3
. . . . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

u0

u1

u2

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The sparse matrix D0 is called the differentiation operator. Expressing apxq in terms
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of its Chebyshev series, i.e., apxq “
8
ÿ

j“0
ajTjpxq, we obtain

apxqupxq “
8
ÿ

j“0

8
ÿ

k“0
ajukTjpxqTkpxq “

8
ÿ

k“0
ckTkpxq,

where the coefficients ck are given as

ck “

$

’

’

’

&

’

’

’

%

a0u0 `
1
2

8
ÿ

l“1
alul, k “ 0

1
2

k´1
ÿ

l“0
ak´lul ` a0uk `

1
2

8
ÿ

l“1
alul`k `

1
2

8
ÿ

l“0
al`kul, k ě 1.

In matrix form, c “ M0rasu, where

M0ras “
1
2

»

—

—

—

—

—

—

—

–

¨

˚

˚

˚

˚

˚

˚

˚

˝

2a0 a1 a2 a3 . . .

a1 2a0 a1 a2
. . .

a2 a1 2a0 a1
. . .

... . . . . . . . . . . . .

˛

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 . . .

a1 a2 a3 a4
...

a2 a3 a4 a5
...

... ... ... ... ...

˛

‹

‹

‹

‹

‹

‹

‹

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The above Toeplitz plus an almost Hankel matrix M0ras is called the multiplication

operator. We expressed upxq “
8
ÿ

k“0
ukTkpxq. Practically, we cannot find infinite

number of coefficients. Therefore, we truncate the series and approximate upxq «
n´1
ÿ

k“0
ukTkpxq, i.e., we find n coefficients.

Since apxq is a continuous function with bounded variation, it has a unique rep-

resentation as a uniformly convergent Chebyshev expansion. Therefore, for all ε ą 0

there exists Mpεq P N such that for all m ěM

ˇ

ˇ

ˇ

ˇ

ˇ

apxq ´
m´1
ÿ

k“0
akTkpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε.

Thus, we truncate the series expansion for a, i.e., apxq «
m´1
ÿ

k“0
akTkpxq. Therefore,
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for the infinite matrix M0ras, terms ai “ 0 for i ě m, hence it is a banded matrix.

If n ą m, then we will consider an n ˆ n sub-matrix of M0ras which will also be

banded.

The following is a relationship between the Chebyshev polynomial of first and

second type,

Tk “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1
2pC

p1q
k ´ C

p1q
k´2q, k ě 2,

1
2C

p1q
1 , k “ 1,

C
p1q
0 , k “ 0.

Then we can express upxq in terms of its series of Chebyshev polynomials of second

type as,

upxq “
8
ÿ

k“0
ukTkpxq “

ˆ

u0 ´
1
2u2

˙

C
p1q
0 pxq `

8
ÿ

k“1

1
2puk ´ uk`2qC

p1q
k pxq.

Hence, Cp1q coefficients of u are S0u, where

S0 “

»

—

—

—

—

—

—

—

–

1 ´1
2

1
2 ´1

2

1
2 ´1

2
. . . . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The above banded and sparse matrix S0 is called the conversion operator.

The discrete version of the operator, d
dx
` apxq, is given as

L :“ D0 ` S0M0ras,

which corresponds to the second kind Chebyshev series of upxq. Define f “
8
ÿ

k“0
fkTkpxq,

and f as the vector of coefficients fk, for all 0 ď k ă 8. Thus, the differential equa-
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tion, without its boundary conditions, is given as

Lu “ S0f .

Note that this is an infinite system. In order to truncate this system to order n, we

define a projection operator as, Pn “ rIn |Osnˆ8. We truncate the differentiation

operator to a system of order n as, PnD0PT
n . The operator D0 is hence recovered

for the considered modes, but with the last row containing all zeros. Henceforth,

we swap the first row with the last row of the system PnLPT
n . Since the boundary

condition is up´1q “ c,

c “ up´1q “
8
ÿ

k“0
ukTkp´1q “

8
ÿ

k“0
p´1qkuk.

Therefore, we impose the boundary condition in the first row, hence the discrete

form of the problem is given as

Anu “

»

—

–

T0p´1q T1p´1q . . . Tn´1p´1q

Pn´1LPT
n

fi

ffi

fl

»

—

—

—

—

—

—

—

–

u0

u1

...

un´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

–

c
`

Pn´1S0PT
n

˘

pPnfq

fi

ffi

fl

.

On solving this system we get the approximate solution:
n´1
ÿ

k“0
ukTkpxq.

A similar approach is used for the higher order ordinary differential equations

by using ultraspherical polynomials, also known as Gegenbauer polynomials, which

are represented as Cpλqpxq, for x P r´1, 1s. For n “ 0, 1, . . . and λ ą 0, Cpλqn , is the

solution of the Gegenbauer differential equation:

p1´ xq2y2 ´ p2λ` 1qxy1 ` npn` 2λqy “ 0.
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They are a family of polynomials orthogonal with respect to the weight

`

1´ x2˘λ´ 1
2 .

They can also be generated by the following recurrence relation:

C
pλq
0 pxq “ 1,

C
pλq
1 pxq “ 2λx,

C
pλq
n`1pxq “

1
n

”

2xpn` λ´ 1qCpλqn ´ pn` 2λ´ 2qCpλqn´1

ı

, @n P N.

For the case λ “ 1, we recover the Chebyshev polynomials of second kind. For

the case λ “ 1
2 , C

pλq
k reduce to the Legendre polynomials. We use them only for

λ “ 0, 1, . . . and normalize the leading coefficient so that

C
pλq
k pxq “

2k pλqk
k ! xk `Opxk´1

q,

where p¨qk denotes the Pochhammer symbol defined by pλqk “
pλ`k´1q !
pλ´1q ! .

This process can be generalized to higher order differential equations of the form,

N
ÿ

λ“0
aλpxq

dλupxq

dxλ
“ f̃pxq, x P r´1, 1s,

with some N P N number of general boundary conditions

Bu “ c.

As the first order differentiation resulted in a linear combination Cp1q functions, sim-

ilarly, higher order differentiation results in higher order ultraspherical polynomials.

We begin by considering the solution of the higher order ODE as upxq “
8
ÿ

k“0
ukTkpxq.
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As for λ ě 1,

dC
pλq
k

dx
“

$

’

’

&

’

’

%

2λCpλ`1q
k´1 , k ě 1,

0, k “ 0.
(6.1.3)

Then for λ P N,
dλupxq

dxλ
“ 2λ´1

pλ´ 1q !
8
ÿ

k“λ

kukC
pλq
k´λpxq.

In matrix form, the coefficients are given as Dλu. Thus, the λ-order differentiation

operator for the Chebyshev series of the first kind is given as

Dλ “ 2λ´1
pλ´ 1q !

»

—

—

—

—

—

—

—

–

0 . . . 0 λ

λ` 1

λ` 2
. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where the first λ entries in the first row of Dλ are zero. A conversion relationship

between Cpλq and Cpλ`1q for λ P N is given as,

C
pλq
k “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

λ
λ`k
pC

pλ`1q
k ´ C

pλ`1q
k´2 q, k ě 2,

λ
λ`1C

pλ`1q
1 , k “ 1,

C
pλ`1q
0 , k “ 0.

Then, the conversion operator that converts the coefficients of Cpλq polynomials to

Cpλ`1q is denoted by Sλ and is given as

Sλ “

»

—

—

—

—

—

—

—

–

1 ´ λ
λ`2

λ
λ`1 ´ λ

λ`3

λ
λ`2 ´ λ

λ`4
. . . . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (6.1.4)
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For apxq “
8
ÿ

j“0
ajC

pλq
j pxq and upλqpxq “

8
ÿ

j“0
ajC

pλq
j pxq,

apxqupλqpxq “
8
ÿ

j“0

˜

8
ÿ

k“0

k
ÿ

s“maxp0,k´jq
a2s`j´kc

λ
s pk, 2s` j ´ kquk

¸

C
pλq
j pxq,

where

cλs pj, kq “
j ` k ` λ´ 2s
j ` k ` λ´ s

pλqspλqj´spλqk´s
s!pj ´ sq!pk ´ sq!

p2λqj`k´s
pλqj`k´s

pj ` k ´ 2sq!
p2λqj`k´2s

.

Thus the multiplication operator for the product of Cpλq series is given as

Mλrasj,k “
k
ÿ

s“maxp0,k´jq
a2s`j´kc

λ
s pk, 2s` j ´ kquk.

The differential operator can be represented as

L :“ MN ra
N
sDN `

N´1
ÿ

λ“1
SN´1 . . .SλMλra

λ
sDλ ` SN´1 . . .S0M0ra

0
s.

This system is expressed in terms of coefficients of CpNq series, thus the coefficients

of the Chebyshev series of f must be converted. The discrete form of the concerned

higher order problem can be written as

Anu “

»

—

–

BPT
n

Pn´KLPT
n

fi

ffi

fl

»

—

—

—

—

—

—

—

–

u0

u1

...

un´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

–

c

Pn´KSN´1 . . .S0f

fi

ffi

fl

,

yielding the approximate solution of the problem:
n´1
ÿ

k“0
ukTkpxq.
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6.2 Some linear ODEs

In [74, p. 479], the following right-preconditioner was defined for a discrete linear

ODE of order d ě 1 with the leading coefficient adpxq “ 1,

R “
1

2d´1pd´ 1q! diag

¨

˝

d times
hkkikkj

1, . . . , 1, 1
d
,

1
d` 1 , . . .

˛

‚.

The space `2
λ Ă C8 is defined as the Hilbert space with norm

}u}`2
λ
“

d

8
ÿ

k“0
|uk|2pk ` 1q2λ ă 8,

where λ “ D ´ 1, D, . . ., so that D “ 1 for Dirichlet boundary conditions, and each

additional derivative used in the boundary condition will increase D by one. In

[74, p. 480], the condition number of a discrete linear ODE right-preconditioned by

Rn “ PnRPT
n , that is, AnRn is Op1q. Out of curiosity, in this section we derive the

spectral and 2-norm condition number of discrete linear ODEs obtained by applying

the ultraspherical spectral method.

6.2.1 First order

Let us first consider solving the most basic problem, that is, first order problem by

using the US method, given as follows

u1pxq “ fpxq, x P p´1, 1q

up´1q “ 0.
(6.2.1)
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Let upxq “
N
ÿ

k“0
ukTkpxq, then the boundary condition stated above implies

N
ÿ

k“0
ukTkp´1q “

N
ÿ

k“0
ukp´1qk “ 0. (6.2.2)

Recall (6.1.2), then (6.2.1) gives,

N
ÿ

k“0
ukT

1
kpxq “ f̃pxq “

N´1
ÿ

k“0
fkC

p1q
k pxq

N
ÿ

k“1
kukC

p1q
k´1pxq “

N´1
ÿ

k“0
fkC

p1q
k pxq

N´1
ÿ

k“0
pk ` 1quk`1C

p1q
k pxq “

N´1
ÿ

k“0
fkC

p1q
k pxq.

Comparing the coefficients of Cp1qk pxq gives pk ` 1quk`1 “ fk, for 0 ď k ď N ´ 1,

which along with (6.2.2) gives the following linear system,

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ´1 1 ´1 . . . p´1qN

1

2

3
. . .

N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆpN`1q

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

u0

u1

u2

u3

...

uN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆ1

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0

f0

f1

f2

...

fN´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆ1

, (6.2.3)

written as A1uh “ fh, with A1 P RpN`1qˆpN`1q defined as the coefficient matrix of

the above system. Now, we derive a condition number estimate for this system.

Theorem 6.2.1. For N ě 4, let A1 be defined by (6.2.3). Then, κsppA1q ď cN and

κpA1q ď cN .

Proof. Note that A1 is an upper triangular matrix, therefore its eigenvalues are its
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diagonal entries. Clearly, λminpA1q “ 1 and λmaxpA1q “ N , thus

κsppA1q “
λmaxpA1q

λminpA1q
“
N

1 “ N.

For deriving the 2-norm condition number estimate, note that the first row of A1

gives }A1}8 “ pN ` 1q. Also, }A1}1 “ pN ` 1q, is achieved by the pN ` 1qst column

of A1 Thus,

}A1} ď
a

}A1}1}A1}8 “ pN ` 1q ď cN. (6.2.4)

It is easily derived that the inverse of A is the following matrix.

A´1
1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 ´2´1 3´1 . . . p´1qN´1N´1

1

2´1

3´1

. . .

N´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆpN`1q

“:

»

—

–

1 B11ˆN

D1NˆN

fi

ffi

fl

.

In order to estimate σmaxpA1q, let us consider the gram matrix of A´1
1 ,

S1 :“ A´T
1 A´1

1

“

»

—

–

1

BT
1 D1

fi

ffi

fl

»

—

–

1 B1

D1

fi

ffi

fl

“

»

—

–

1

BT
1

fi

ffi

fl

„

1 B1



`

»

—

–

0

D2
1

fi

ffi

fl

“: CT
1 C1 `D1.

Thus, S1 is the sum of two symmetric matrices given above. Since Lemma 5.3.4 im-
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plies that the non-zero eigenvalues of CT
1 C1 and C1C

T
1 are equal, we get the following

result.

C1C
T
1 “ 1`B1B

T
1

“ 1` p1` 2´2
` 3´2

` . . .`N´2
q

ď 1`
8
ÿ

i“1
i´2

“ 1` π2

6 .

Thus, λmaxpC
T
1 C1q “ λmaxpC1C

T
1 q ď 1` π2

6 , leading to the following.

λmaxpS1q ď λmaxpC
T
1 C1q ` λmaxpD1q

ď 1` π2

6 ` λmaxpD1q
2

“ 1` π2

6 ` 1 “ 2` π2

6 .

Finally, }A´1
1 } “

a

λmaxpS1q ď

b

2` π2

6 “ c, which along with (6.2.4) gives κpA1q “

}A1}}A´1
1 } ď cN .

This method depicts spectral convergence, as seen in Figure 6.2a. The schemes

derived in this chapter are implemented on ulıa. We take f so that the exact solution

is given by

upxq “ sinpπxq, (6.2.5)

which satisfies the boundary condition. Moreover, he singular value estimates for A1

are sharp as seen in Figures 6.1a and 6.1b.

Now, consider the same first order ODE, with another boundary condition, de-

fined as follows.
u1pxq “ fpxq, x P p´1, 1q

up1q “ 0.
(6.2.6)
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Figure 6.1: The first order ODE with boundary condition up´1q “ 0.

Consider the approximate solution as ũpxq “
N
ÿ

k“0
ukTkpxq, then the boundary condi-

tion stated above implies

N
ÿ

k“0
ukTkp1q “

N
ÿ

k“0
uk “ 0. (6.2.7)

On following the same procedure as before for (6.2.1), the following linear system is

obtained by using pk ` 1quk`1 “ fk, for 0 ď k ď N ` 1,

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 1 1 . . . 1

1

2

3
. . .

N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆpN`1q

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

u0

u1

u2

u3

...

uN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0

f0

f1

f2

...

fN´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (6.2.8)

which we write as A1uh “ fh, where A1 P RpN`1qˆpN`1q is the coefficient matrix of

the above system.

Theorem 6.2.2. For N ě 4, let A1 be defined by (6.2.8). Then, κsppA1q ď cN and
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κpA1q ď cN .

Proof. Since A1 is an upper triangular matrix,

κsppA1q “
λmaxpA1q

λminpA1q
“
N

1 “ N.

On following the proof of Theorem 6.2.1, }A1} ď cN. Also, it is easy to see that

A´1
1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ´1 ´2´1 ´3´1 . . . ´N´1

1

2´1

3´1

. . .

N´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆpN`1q

.

Thus, following the same procedure as before, }A´1
1 } ď

b

2` π2

6 . Thus,

κpA1q “ }A1}}A
´1
1 } ď cN.

This method achieves spectral convergence, as seen in Figure 6.2b. We take f so

that the exact solution is defined by (6.2.5), which satisfies the boundary condition.

The singular value estimates for A1 are sharp as seen in Figures 6.3a and 6.3b.

6.2.2 Poisson problem

In this section, we consider the one-dimensional Poisson problem:

´u2pxq “ fpxq, x P p´1, 1q

up˘1q “ 0.
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(a) With boundary condition up´1q “ 0.
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(b) With boundary condition up1q “ 0.

Figure 6.2: Convergence of the US method for the first order ODE.
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Figure 6.3: The first order ODE with boundary condition up1q “ 0.

Consider the approximate solution
N
ÿ

k“0
ukTkpxq, the boundary condition up´1q “ 0,

gives

N
ÿ

k“0
ukTkp´1q “

N
ÿ

k“0
ukp´1qk “ 0. (6.2.9)

Also, the boundary condition up1q “ 0 gives,

N
ÿ

k“0
ukTkp1q “

N
ÿ

k“0
uk “ 0. (6.2.10)
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Now, we discretize the ODE, ´u2 “ f by using eqs. (6.1.2) and (6.1.3) for λ “ 1, as

follows

´

N
ÿ

k“0
ukT

2
k pxq “ f̃pxq “

N´2
ÿ

k“0
fkC

p2q
k pxq

´

N
ÿ

k“1
kuk

d

dx
C
p1q
k´1pxq “

N´2
ÿ

k“0
fkC

p2q
k pxq

´

N
ÿ

k“2
kuk2Cp2qk´2pxq “

N´2
ÿ

k“0
fkC

p2q
k pxq

´

N´2
ÿ

k“0
2pk ` 2quk`2C

p2q
k pxq “

N´2
ÿ

k“0
fkC

p2q
k pxq.

Comparison of coefficients of Cp2qk pxq yields ´2pk ` 2quk`2 “ fk, for 0 ď k ď N ´ 2,

giving the following linear system:

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ´1 1 ´1 1 . . . p´1qN

1 1 1 1 1 . . . 1

´4

´6

´8
. . .

´2N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆpN`1q

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

u0

u1

u2

u3

u4

...

uN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆ1

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0

0

f0

f1

f2

...

fN´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆ1

,

(6.2.11)

which we rewrite as A2uh “ fh.

Theorem 6.2.3. For N ě 4, let A2 be defined by (6.2.11). Then, κsppA2q ď cN

and κpA2q ď cN .

Proof. Note that A2 is a block upper triangular matrix, when partitioned as follows.

A2 “:

»

—

–

A B

C

fi

ffi

fl

.
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Thus, eigenvalues of A2 are the eigenvalues of its diagonal blocks, that is, ΛpA2q “

ΛpAq Y ΛpCq. By a direct calculation, ΛpAq “ 2˘
?

4´8
2 “ 1 ˘ 1i and ΛpCq “

t´4,´6,´8, . . . ,´2Nu. Therefore, ΛpA2q “ t1˘i,´4,´6,´8, . . . ,´2Nu, |λ|minpA2q “

?
2 and |λ|maxpA2q “ 2N , thus κsppA2q “

|λ|maxpA2q

|λ|minpA2q
“

2N
?

2
“
?

2N.

Now, we estimate the 2-norm condition number of A2. To this end, note that

}A2}8 “ 2N and }A2}1 “ 2N ` 2, which are achieved by pN ` 1qst row and column,

respectively. Thus, }A2}2 ď
a

}A2}1}A2}8 “
a

4NpN ` 1q ď cN .

In order to estimate the minimum singular value of A2, we calculate A´1
2 . It is

straightforward to see that for an even N ě 4,

A´1
2 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0.5 0.5 4´1 8´1 . . . p2Nq´1

´0.5 0.5 6´1 . . . p2N ´ 2q´1

´4´1

´6´1

´8´1

. . .

´p2Nq´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆpN`1q

and for an odd N ě 4,

A´1
2 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0.5 0.5 4´1 8´1 . . . p2N ´ 2q´1

´0.5 0.5 6´1 . . . p2Nq´1

´4´1

´6´1

´8´1

. . .

´p2Nq´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆpN`1q
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For any N ě 4, let

A´1
2 :“

»

—

–

E2ˆ2 F2ˆn´1

Gn´1ˆn´1

fi

ffi

fl

,

then its corresponding gram matrix is denoted by S2 and is simplified as follows.

S2 :“ A´T
2 A´1

2 “

»

—

–

ET

F T

fi

ffi

fl

„

E F



`

»

—

–

0

G2

fi

ffi

fl

“: HTH `G.

Thus S2 is the sum of two symmetric matrices defined by the above equation. Now,

the non-zero eigenvalues of HTH and HHT are equal, so we analyze HHT “ EET `

FF T , which is facilitated by first calculating the spectrum of EET and FF T . Since

EET
“

»

—

–

0.5 0

0 0.5

fi

ffi

fl

,

hence ΛpEET q “ t0.5u, and it remains to estimate the spectrum of FF T . For an

even N ě 4,

FF T
“

»

—

–

4´1 8´1 . . . p2Nq´1

6´1 10´1 . . . p2N ´ 2q´1

fi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

4´1

6´1

8´1

10´1

... ...

p2N ´ 2q´1

p2Nq´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

–

ř

N
2
i“1p4iq´2

ř

N
2 ´1
i“1 p2p2i` 1qq´2

fi

ffi

fl

.
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Thus, for an even N ě 4, ΛpFF T
q “

$

&

%

N
2
ÿ

i“1
p4iq´2,

N
2 ´1
ÿ

i“1
p2p2i` 1qq´2

,

.

-

, whereas for an

odd N ě 4,

FF T
“

»

—

–

ř

N´1
2

i“1 p4iq´2

ř

N´1
2

i“1 p2p2i` 1qq´2

fi

ffi

fl

.

Thus, for an odd N ě 4, ΛpFF T
q “

$

&

%

N´1
2
ÿ

i“1
p4iq´2,

N´1
2
ÿ

i“1
p2p2i` 1qq´2

,

.

-

. Note that for

both case of even and odd N ě 4, both of the summations in the spectrum of FF T

are less than or equal to
8
ÿ

i“1
i´2

“
π2

6 , we get that λmaxpFF
T q ď

π2

6 , for all N ě 4.

Therefore,

λmaxpS2q ď λmaxpH
THq ` λmaxpGq

“ λmaxpHH
T
q ` λmaxpG

2
q

ď λmaxpEE
T
q ` λmaxpFF

T
q ` 4´2

ď 0.5` π2

6 ` 4´2
“
π2

6 `
9
16 .

Since }A´1
2 } “

a

λmaxpS2q ď

c

π2

6 `
9
16 “ c. Thus, κpA2q “ }A2}}A´1

2 } ď cN.

The spectral convergence of this method is evident in Figure 6.4, whereas the

sharpness of the bounds is portrayed by Figures 6.5a and 6.5b. For its numerical

implementation on ulıa, we take f so that the exact solution is defined by (6.2.5),

which satisfies the boundary condition.

6.2.3 Biharmonic problem

Finally, we consider the biharmonic problem:

d4u

dx4 “ f, x P p´1, 1q
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Figure 6.4: Spectral convergence of Poisson problem in one-dimension.
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Figure 6.5: The Poisson problem in one-dimension

up˘1q “ 0,

u1p˘1q “ a P R.

Consider the discrete solution: ũpxq “
N
ÿ

k“0
ukTkpxq,. The boundary conditions

up˘1q “ 0 yield the following two equations,

N
ÿ

k“0
ukp˘1qk “ 0.
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For k ě 1, T 1kp˘1q “ kC
p1q
k´1p˘1q “ k ¨ p˘1qk´1pk ´ 1 ` 1q “ k2p˘1qk`1, thus the

boundary conditions u1p˘1q “ a give the following two equations,

N
ÿ

k“1
ukp˘1qk`1k2

“ a.

As
N
ÿ

k“0
uk
d4Tkpxq

dx4 “ f̃pxq “
N´4
ÿ

k“0
fkC

p4q
k pxq,

N
ÿ

k“1
kuk

d3

dx3C
p1q
k´1pxq “ f̃pxq

N
ÿ

k“2
kuk2

d2C
p2q
k´2

dx2 pxq “ f̃pxq

N
ÿ

k“3
kuk22

¨ 2dC
p3q
k´3
dx

pxq “ f̃pxq

N
ÿ

k“4
kuk23

¨ 2 ¨ 3Cp4qk´4pxq “ f̃pxq

N´4
ÿ

k“0
23
¨ 3!pk ` 4quk`4C

p4q
k pxq “

N´4
ÿ

k“0
fkC

p4q
k pxq.

Comparing coefficients of Cp4qk pxq, yields 23 ¨3!¨pk`4quk`4 “ fk, for 0 ď k ď N´4,

which leads to the following linear system

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ´1 1 ´1 1 ´1 . . . p´1qN

1 1 1 1 1 1 . . . 1

0 1 ´22 32 ´42 52 . . . p´1qN`1N2

0 1 22 32 42 52 . . . N2

23 ¨ 3! ¨ 4

23 ¨ 3! ¨ 5
. . .

23 ¨ 3! ¨N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pN`1qˆpN`1q

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

u0

u1

u2

u3

u4

u5

...

uN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0

0

a

a

f0

f1

...

fN´4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

(6.2.12)
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which we rewrite as A4uh “ fh.

Theorem 6.2.4. For N ě 4, let A4 be defined by eq. (6.2.12). Then, κsppA4q ď cN

and κpA4q ď cN4.

Proof. Note that A4 is a block upper triangular matrix, with the following partition

A4 “:

»

—

–

A B

C

fi

ffi

fl

.

A straightforward calculation gives ΛpAq “ t11.5250, 0.9259 ` 1.0498i, 0.9259 ´

1.0498i,´6.3768u, thus the set of absolute value of eigenvalues of A is |Λ|pAq “

t11.5250, 1.3998, 1.3998, 6.3768u. Thus, ΛpA4q “ t11.5250, 0.9259˘1.0498i,´6.3768, 23¨

3! ¨4, . . . , 23 ¨3! ¨Nu. Therefore, |λ|minpA4q “ 6.3768 and |λ|maxpA4q “ 23 ¨3! ¨N , thus

κsppA4q “
|λ|maxpA4q

|λ|minpA4q
“

23 ¨ 3! ¨N
6.3768 ď cN.

Now, we estimate the 2-norm condition number of A4. For estimating σmaxpA4q,

note that }A4}1 “ 1 ` 1 ` N2 ` N2 ` 2 ¨ 3! ¨ N “ 2 ` 2N2 ` 2 ¨ 3! ¨ N ď cN2, and

}A4}8 “
řN
i“1 i

2 “
NpN`1qp2N`1q

6 ď cN3. Therefore,

}A4} ď
a

}A4}1}A4}8 ď
?
cN5 “ cN2.5.

Finally, we estimate σminpA4q, by utilizing the expression for A´1
4 , given as follows:

A´1
4 :“

»

—

–

E F

G

fi

ffi

fl

,
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where its blocks are defined as follows:

E “

»

—

—

—

—

—

—

—

–

0.5 0.5 0.125 ´0.125

´0.5624 0.5625 ´0.0625 ´0.0625

0 0 ´0.125 0.125

0.0625 ´00625 0.0625 0.0625

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

for an even N ě 4,

F “

»

—

—

—

—

—

—

—

–

p22´1q
233!4 0 p32´1q

233!6 0 . . . 0 pN2 q
2
´1

233!N

0 1
233!5

”

52´1
8 ´ 1

ı

0 1
233!7

”

72´1
8 ´ 1

ı

. . . 1
233!pN´1q

”

pN´1q2´1
8 ´ 1

ı

0
´22

233!4 0 ´32

233!6 0 . . . 0 ´pN2 q
2

233!N

0 52´1
233!5 0 72´1

233!7 . . . pN´1q2´1
233!pN´1q 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

for an odd N ě 4,

F “

»

—

—

—

—

—

—

—

–

p22´1q
233!4 0 p32´1q

233!6 0 . . .
tN2 u

2
´1

233!pN´1q 0

0 1
233!5

”

52´1
8 ´ 1

ı

0 1
233!7

”

72´1
8 ´ 1

ı

. . . 0 1
233!N

”

N2´1
8 ´ 1

ı

´22

233!4 0 ´32

233!6 0 . . .
´tN2 u

2

233!pN´1q 0

0 52´1
233!5 0 72´1

233!7 . . . 0 N2´1
233!N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and for all N ě 4,

H “

»

—

—

—

—

—

—

—

—

—

—

–

1
233!4

1
233!5

1
233!6

. . .
1

233!N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

172



For any N ě 4, denote the gram matrix of A´1
4 as S4 and simplify it as follows.

S4 : “ A´T
4 A´1

4 “

»

—

–

ET

F T

fi

ffi

fl

„

E F



`

»

—

–

0

G2

fi

ffi

fl

“: HTH `G.

Thus, S4 is the sum of two symmetric matrices given above. Now, non-zero eigen-

values of HTH and HHTare equal, so we analyze HHT “ EET ` FF T . Since

ΛpEET q “ t0.0060, 0.0293, 0.5332, 0.6502u, thus λmaxpEE
T q “ 0.6502. It remains to

estimate λmaxpFF
T q, consequently, for any N ě 4, we define FF T as follows.

FF T
“ D` A,

where

D “
1

p233!q2

»

—

—

—

—

—

—

—

—

–

řtN2 u

i“2

´

i2´1
2i

¯2
0 0 0

0
řt

N´1
2 u

i“2

ˆ

p2i`1q2´1
8 ´1
2i`1

˙2

0 0

0 0
řtN2 u

i“2
i4

p2iq2 0

0 0 0
řt

N´1
2 u

i“2
pp2i`1q2´1q

2

64p2i`1q2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and,

A “

»

—

–

O F

FT O

fi

ffi

fl

.

Furthermore, the expression for F for any N ě 4 is given as

F “
1

p233!q2

»

—

—

—

–

´
řtN2 u

i“2
i2pi2 ´ 1q
p2iq2 0

0
řt

N´1
2 u

i“2

p2i`1q2´1
8

¨

˝

p2i` 1q2 ´ 1
8 ´1

˛

‚

p2i`1q2

fi

ffi

ffi

ffi

fl

.
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Since D and A are symmetric,

λmaxpFF
T
q ď λmaxpDq ` λmaxpAq.

Note that D is a diagonal matrix and its eigenvalues are bounded above by
N
ÿ

i“1
i2 ď

cN3, thus λmaxpDq ď cN3.

Note that the maximum eigenvalue of A is σmaxpFq. As F is diagonal, its singular

values are its absolute diagonal entries, which are bounded above by
N
ÿ

i“1
i2 ď cN3,

thus λmaxpAq ď cN3. Hence, λmaxpFF
T q ď cN3, giving

λmaxpS4q ď λmaxpH
THq ` λmaxpGq

“ λmaxpHH
T
q ` λmaxpG

2
q

ď λmaxpEE
T
q ` λmaxpFF

T
q ` p233!4q´2

ď 0.6502` cN3
` p233!4q´2.

Now, }A´1
4 } “

a

λmaxpS2q ď
?
cN3 “ cN1.5. Thus,

κpA4q “ }A4}}A´1
4 } ď cN2.5N1.5

“ cN4.

The spectral convergence of this method is shown in Figure 6.6. We take f so

that the exact solution is defined by (6.2.5), which satisfies the boundary condition.

The bounds on the singular values of A4 are evident from Figures 6.7a and 6.7b.

6.3 Time-dependent PDEs

In this section, we extend the ultraspherical spectral method to unsteady problems.

In order to analyze the linear systems arising from unsteady problems, the following
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100

N

Error

Figure 6.6: Convergence of the US method for the biharmonic equation in one-
dimension.

101.35 101.4 101.45 101.5 101.55 101.6 101.65 101.7 101.75 101.8 101.85 101.9 101.95 102

104

105

N

σmaxpA4q

0.75 ˚N2.5

(a) Maximum singular value.

101.35 101.4 101.45 101.5 101.55 101.6 101.65 101.7 101.75 101.8 101.85 101.9 101.95 102

10´0.6

10´0.5

10´0.4

10´0.3

10´0.2

10´0.1

100

100.1

100.2

100.3

N

σminpA4q

200N´1.5

(b) Minimum singular value.

Figure 6.7: The Biharmonic problem in one-dimension.

results will be required.

Lemma 6.3.1. Let U, V P Rnˆn and W P Rmˆm be diagonalizable, then ΛpImbU `

W b V q “
Ťm
k“1 ΛpU ` λkV q, where λi P ΛpW q for 1 ď k ď m.

Proof. Let A “ Im b U `W b V and W “ XDX´1, where D is diagonal. Then,

A “ pX b InqpIm b U `D b V qpX b Inq
´1,

therefore ΛpAq “ ΛpImbU `DbV q. Note that the eigenvectors of ImbU `DbV
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have the form eib x, where ei are elementary basis vectors of Rm and x P Rn. Then

pIm b U `D b V qpei b xq “ ei b ppU ` λiV qxq ,

hence the result.

The above lemma is a result which is often used in practice. The following result

was a conjecture for many decades, until it was proved in [67].

Lemma 6.3.2 (See [67]). Let N ě 1. Then the real part of every eigenvalue of the

pseudospectral Chebyshev derivative matrix rrrDsss is larger than some positive constant

independent of N .

6.3.1 Heat equation

Consider the linear heat equation,

ut ´ uxx “ fpx, tq on p´1, 1q2, (6.3.1)

with boundary conditions up˘1, tq “ 0 and initial condition upx,´1q “ u0pxq. We

seek a numerical solution, a polynomial of degree N , at t “ 1.

In [30], the authors presented a simpler way of discretizing the Poisson problem

to avoid boundary bordering to implement homogeneous boundary conditions at the

end points x “ ˘1. They are hard-coded by including a factor of p1 ´ x2q in the

basis. Furthermore, the ultraspherical polynomials, say φjpxq, are carefully chosen

so that the following expression can be expressed in terms of φjpxq.

d2

dx2

`

p1´ x2
qφjpxq

˘

“ p1´ x2
qφ2jpxq ´ 4xφ1jpxq ´ 2φjpxq.

In [72, Chap. 18], it is given that the normalized ultraspherical polynomial, denoted
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by rC
p 3

2 q
j pxq “

d

pj ` 3
2q

pj ` 1qpj ` 2qC
p 3

2 q
j pxq, of degree j ě 0, satisfies the second-order

differential equation, see [72, Table 18.8.1]

p1´ x2
q rC

p 3
2 q
2

j pxq ´ 4x rCp
3
2 q
1

j pxq ` jpj ` 3q rCp
3
2 q
j pxq “ 0, x P r´1, 1s.

In particular, this means that rCp
3
2 qpxq is an eigenfunction of the differential operator

d2

dx2

´

p1´ x2
q rC

p 3
2 q
j pxq

¯

“ ´pjpj ` 3q ` 2q rCp
3
2 q
j pxq, j ě 0.

Thus, the appropriate choice is φj “ rC
p 3

2 q
j . Note that [72, (18.9.8)] for λ “ 1

2

implies that rC
p 3

2 q
n pxq is a scalar multiple of the recombined Legendre basis Lj´Lj`2.

Therefore, the derivative matrix is a diagonal matrix with entries, Dj,j “ ´pjpj `

3q ` 2q. We denote D “ ´D and prove the following result.

Lemma 6.3.3. For N ě 4, λmaxpDq ď cN2 and λminpDq ě c .

Proof. Since D is a diagonal matrix of size pN ` 1q ˆ pN ` 1q,

λmaxpDq “ max
0ďjďN

pjpj ` 3q ` 2qq ď cN2,

λminpDq “ min
0ďjďN

pjpj ` 3q ` 2qq ě c.

Define M to be the matrix that represents multiplication by p1´ x2q in the Cp 3
2 q

basis. Since the recurrence relation for the unnormalized ultraspherical polynomials,

Cp
3
2 q, is given by [72, (18.9.7) & (18.9.8)],

p1´ x2
qC

p 3
2 q
j pxq “ ´p2j ` 1qp2j ` 3qp2j ` 5qp2j ` 1qCp

3
2 q
j`2pxq

´ 2p2j ` 3qCp
3
2 qq
j pxq ` p2j ` 5qCp

3
2 q
j´2pxq.
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Thus,M is symmetric with non-zero main diagonals and 2 and ´2 diagonals, defined

as follows.

Mj,k “

$

’

’

’

&

’

’

’

%

2pj ` 1qpj ` 2q
p2j ` 1qp2j ` 5q , k “ j,

´1
p2j ` 3qp2j ` 5q

d

pj ` 4q!p2j ` 3q
j!p2j ` 7q , k “ j ` 2.

(6.3.2)

We prove the following bounds on the spectrum of M P RpN`1qˆpN`1q, which were

observed through numerical experiments depicted in Figures 6.8a and 6.8b.

100.8 100.9 101 101.1 101.2 101.3 101.4 101.5 101.6

10´0.04

10´0.03

10´0.02

10´0.01

100

100.01

100.02

100.03

100.04

N

λmaxpMq

(a) Maximum eigenvalue.

100.8 100.9 101 101.1 101.2 101.3 101.4 101.5 101.610´3

10´2

10´1

N

λminpMq

5N´2

(b) Minimum eigenvalue.

Figure 6.8: Bounds for the spectrum of M .

Lemma 6.3.4. For N ě 4, λmaxpMq ď c and λminpMq ě
c

N2 .

Proof. Let x P RN`1zt0u, since M is symmetric, its eigenvalues are estimated as

follows.

xTMx “
N
ÿ

i“0

N
ÿ

j“0
ximijxj

“

N
ÿ

j“0
x2
jmjj ` 2

N´2
ÿ

j“0
xjxj`2mj,j`2 (by (3.2.2))

“

N
ÿ

j“0
x2
j

2pj ` 1qpj ` 2q
p2j ` 1qp2j ` 5q ´ 2

N´2
ÿ

j“0

xjxj`2

p2j ` 3qp2j ` 5q

d

pj ` 4q!p2j ` 3q
j!p2j ` 7q (6.3.3)
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ď

N
ÿ

j“0
x2
j ` 2

N´2
ÿ

j“0
xjxj`2

pj ` 4q2
p2j ` 3qp2j ` 5q

ď

N
ÿ

j“0
x2
j ` 2

N´2
ÿ

j“0
xjxj`2 ď 3

N
ÿ

j“0
x2
j , (6.3.4)

where the last inequality is achieved by applying the Cauchy Schwarz inequality.

Thus, λmaxpMq ď C. Note that

2
N´2
ÿ

j“0

xjxj`2

p2j ` 3qp2j ` 5q

d

pj ` 4q!p2j ` 3q
j!p2j ` 7q

ď 2
N´2
ÿ

j“0

a

pj ` 1qpj ` 2qp2j ` 9q|xj|
a

p2j ` 3q ¨ p2j ` 5q
¨

a

pj ` 3qpj ` 4q|xj`2|
a

p2j ` 7qp2j ` 9q

ď

N´2
ÿ

j“0

pj ` 1qpj ` 2qp2j ` 9q|xj|2
p2j ` 3q ¨ p2j ` 5q2 `

N´2
ÿ

j“0

pj ` 3qpj ` 4q|xj`2|
2

p2j ` 7qp2j ` 9q

“

N´2
ÿ

j“0

pj ` 1qpj ` 2qp2j ` 9qx2
j

p2j ` 3q ¨ p2j ` 5q2 `

N
ÿ

j“2

pj ` 1qpj ` 2qx2
j

p2j ` 3qp2j ` 5q

ď 2
N
ÿ

j“0
pj ` 1qpj ` 2q

ˆ

p2j ` 9q
p2j ` 3q ¨ p2j ` 5q2 `

1
p2j ` 3qp2j ` 5q

˙

x2
j

“ 2
N
ÿ

j“0

pj ` 1qpj ` 2qp4j ` 14q
p2j ` 3qp2j ` 5q2 x2

j

thus by (6.3.3),

xTMx ě 2
N
ÿ

j“0
pj ` 1qpj ` 2q

ˆ

1
p2j ` 1qp2j ` 5q ´

p4j ` 14q
p2j ` 3qp2j ` 5q2

˙

x2
j

ě 4
N
ÿ

j“0
x2
j

4j2 ` 12j ` 1
p2j ` 1qp2j ` 3qp2j ` 5q2

ě 4
N
ÿ

j“0
x2
j

pi` 1q2
p2j ` 1qp2j ` 3qp2j ` 5q2

ě
c

N2

N
ÿ

j“0
x2
j ,

hence the desired result.
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First Scheme: US in both space and time

We first formulate an ultraspherical scheme in space and time for the heat equation,

that is, we consider the approximate solution as follows

u «
N
ÿ

j“0

N
ÿ

k“0
ujkp1´ x2

q rC
p 3

2 q
j pxqLkptq, px, tq P p´1, 1q2, (6.3.5)

where Lkpxq represent the Legendre polynomial of degree k. Recall that Cp 1
2 qpxq are

the Legendre polynomials. Thus, we have the following relation by (6.1.3),

d

dt
Lkptq “

d

dt
C
p 1

2 q
k ptq “ C

p 3
2 q
k´1ptq, k ě 1.

This allows us to find the discretization of the heat equation as follows. We begin

with the projected initial condition:

N
ÿ

j“0

N
ÿ

k“0
ujkp1´ x2

q rC
p 3

2 q
j pxqLkp´1q “

N
ÿ

j“0
u0
j
rC
p 3

2 q
j pxq,

N
ÿ

j“0

N
ÿ

k“0
p´1qkujkp1´ x2

q rC
p 3

2 q
j pxq “

N
ÿ

j“0
u0
j
rC
p 3

2 q
j pxq.

Define uh “ ru00;u10; . . . ;uN0;u01; . . . ;uNN s P RpN`1q2ˆ1, uoh “ ru0
0;u0

1; . . . ;u0
N s P

RpN`1qˆ1, and

B “

„

1 ´1 1 . . . p´1qN


P R1ˆpN`1q,

then the initial condition gives

pB bMquh “ uoh. (6.3.6)
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Now, recall (6.1.4), which for λ “ 1
2 gives the conversion operator for converting Cp

1
2 q
j

or Lj basis to Cp
3
2 q. We denote it by S 1

2
and it is given as follows,

S 1
2
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ´1
5

1
3 ´1

7
. . . . . .

1
2N´3 ´ 1

2N`1

1
2N´1

1
2N`1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P RpN`1qˆpN`1q. (6.3.7)

Let us now discretize the heat equation ut ´ uxx “ fpx, tq as follows,

N
ÿ

j“0

N
ÿ

k“0
ujk

ˆ

p1´ x2
q rC
p 3

2q
j pxqL1kptq ´

ˆ

p1´ x2
q rC
p 3

2q
j pxq

˙2

Lkptq

˙

“ f̃px, tq

N
ÿ

j“0

N´1
ÿ

k“0
uj,k`1p1´ x2

q rC
p 3

2q
j pxqC

p 3
2 q
k ptq `

N
ÿ

j“0

N
ÿ

k“0
ujkpjpj ` 3q ` 2q rCp

3
2 q
j pxqLkptq “ f̃px, tq,

where

f̃px, tq “
N
ÿ

j“0

N
ÿ

k“0
fjk rC

p 3
2 q
j pxqC

p 3
2 q
k ptq.

On changing the basis in time from Lk to C
p 3

2 q
k in the second summation of the above

equation, the following linear system is obtained,

´

J bM ` S 1
2
bD

¯

uh “ fh,
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where J is a 1-diagonal matrix, defined as,

J “

»

—

—

—

—

—

—

—

—

—

—

–

0 1

0 1
. . . . . .

0 1

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P RpN`1qˆpN`1q,

and fh “ rf00; f10; . . . ; fN,0; f01; . . . ; fNN s P RpN`1q2ˆ1.

Now, we need to incorporate the initial conditions. Multiplying (6.3.6) by en`1b

IN`1, where en`1 “ r0; 0; . . . ; 1s P RpN`1qˆ1, and adding or subtracting it to the

above equation, we obtain the following discrete heat equation,

´

pJ ˘ en`1Bq bM ` S 1
2
bD

¯

uh “ fh ˘ pen`1 b IN`1quoh. (6.3.8)

This scheme portrays spectral convergence in both space and time, as seen in Fig-

ures 6.9a and 6.9b for ‘´’ and ‘`’ sign, respectively. All the schemes in this section

are also implemented on ulıa. For both of these schemes, we take f so that the

exact solution is

upx, y, tq “ et sinpπtq, (6.3.9)

satisfying the boundary conditions, and giving initial condition as upx, y,´1q “

e´1 sinpπxq. Denote coefficient matrix of the system given in (6.3.8), by considering

‘`’ sign, i.e., the global space-time spectral operator for the heat equation, by Ah “

pJ ` en`1Bq bM ` S 1
2
bD P RpN`1q2ˆpN`1q2 . Figures 6.10a and 6.10b suggest that

the 2-norm condition number of Ah, κpAhq ď cN3, for all 6 ď N ď 50. Note that it

is sufficient to consider N ď 50, because typically for us N À 20.

Remark 6.3.5. Note that for the case of a k-th order ODE and discretization

parameter n “ N ` 1, we get a n´ k ˆ n order linear system and define the first k
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Figure 6.9: Convergence of the US method in space and time for the heat equation.
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Figure 6.10: Bounds for singular values of Ah.

rows as the boundary condition to get a square linear system of order n. However,

for the case of a time-dependent PDE such as (6.3.8), the equation ut´uxx “ fpx, tq

on px, tq P p´1, 1q2 returns a square linear system of order pN ` 1q2. Moreover,

the initial condition upx,´1q “ u0pxq implies (6.3.6), which is pN ` 1q equations in

pN ` 1q2 unknowns. Thus, we add or subtract their contribution to the last row of

all zeros of J , which generates the last pN ` 1q rows (containing all zeros) of the

term corresponding to the discretization of ut, i.e., J bM .
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Second scheme: Collocation in time and US in space

In this section, we present another scheme for solving the heat equation, given by

(6.3.1), demonstrating spectral convergence in both space and time. In this method,

we incorporate the US method in space and collocation in time, by defining an

approximation for u as follows,

ũ “
N
ÿ

j“0

N
ÿ

k“0
ujkp1´ x2

q rC
p 3

2q
j pxq`kptq, px, tq P p´1, 1q2, (6.3.10)

where rC
p 3

2 q
j are the rescaled ultraspherical polynomials of order 3

2 as defined in this

section and `k represents the Lagrange polynomial of degree N`1 for the Chebyshev

Gauss-Lobatto nodes given by tk “ cos pN´πqk
N

, for 0 ď k ď N . Note that we

considered these nodes for convenience of analysis. In practice, any other Gauss

quadrature nodes can be used. Substituting the approximate solution (6.3.10) to

(6.3.1) yields,

N
ÿ

j“0

N
ÿ

k“0
ujk

ˆ

p1´ x2
q rC
p 3

2q
j pxq`1kptq ´

ˆ

p1´ x2
q rC
p 3

2q
j pxq

˙2

`kptq

˙

“ f̃px, tq.

On collocating at time t “ tm, for 1 ď m ď N ,

N
ÿ

j“0

N
ÿ

k“0
ujk

`

p1´ x2
q rC
p 3

2q
j pxq`1kptmq ´

ˆ

p1´ x2
q rC
p 3

2q
j pxq

˙2

δkm
˘

“ f̃px, tmq

N
ÿ

j“0

N
ÿ

k“1
ujk

`

p1´ x2
q rC
p 3

2q
j pxq`1kptmq ` pjpj ` 3q ` 2q rCp

3
2 q
j pxqδkm

˘

“ f̃px, tmq

´

N
ÿ

j“0
p1´ x2

quj0C̃
p 3

2q
j pxq`10ptmq.

For 1 ď k ď N , let f̃px, tkq “
N
ÿ

j“0
fkj C̃

p 3
2 q
j pxq, and define fh “ rf 1

h ; f 2
h ; . . . ; fNh s,

where fkh “ rfk0 ; fk2 ; . . . ; fkN s. Thus, definition ofM P RpN`1qˆpN`1q andD P RpN`1qˆpN`1q
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give the following discrete heat equation

prrrDsss bM ` IN bDquh “ fh ´ d0h b pMu0hq . (6.3.11)

Denote coefficient matrix of the above system, i.e., the global space-time spectral

operator for the heat equation, by Ah “ rrrDsss bM ` IN bD P RNpN`1qˆNpN`1q. Our

next goal is to prove a spectral condition number estimate for Ah, which is given by

the following result.

Theorem 6.3.6. Let N ě 4, then κsppAhq ď cN2.

Proof. Observe that, Lemma 6.3.1 gives ΛpAhq “
ŤN
k“1 ΛpD ` λkMq. Let λ P

ΛprrrDsssq Ď C, and M and D are SPD, with the latter diagonal. For some x P RN`1,

so that |x| “ 1, the absolute value of the eigenvalues can be estimated as follows.

|xTDx` λxTMx| “ |pxTDx` <λ ¨ xTMxq ` i ¨ =λ ¨ pxTMxq|

ě |pxTDx` <λ ¨ xTMxq|

“ xTDx` <λ ¨ xTMx

ě λminpDq ` cλminpMq

ě c`
c

N2 ě c,

thus |λ|minpAhq ě c. Also, since |λprrrDsssq| ď σmaxprrrDsssq,

|xTDx` λxTMx| ď λmaxpDq ` σmaxprrrDsssqλmaxpMq

ď cN2
` cN2

ď cN2,

implying |λ|maxpAhq ď cN2, hence, κsppAhq ď cN2.

This scheme converges spectrally in both space and time, which is verified by re-

sult of a numerical experiment shown in Figure 6.11a. For this scheme, we take f so

185



that the exact solution is defined by (6.3.9), which satisfies the boundary conditions,

and giving initial condition as upx, y,´1q. Note that the sharpness of estimates de-

rived in the above result is evident from Figures 6.12a and 6.12b, and is a sharp

estimate for the 2-norm condition number estimate for Ah, κpAhq, as given by Fig-

ure 6.11b.
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(a) Convergence.
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(b) 2-norm condition number of Ah.

Figure 6.11: The US method in both space and collocation in time for the heat
equation.
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Figure 6.12: Bounds for absolute value of eigenvalues of Ah.
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6.3.2 Schrödinger equation

The linear Schrödinger equation is

ut ´ iuxx “ fpx, tq, px, tq P p´1, 1q2, (6.3.12)

with boundary conditions up˘1, tq “ 0 and initial condition upx,´1q “ u0pxq. Here

i “
?
´1.

The two space-time spectral method schemes for the Schröndinger equation are

analogous to the ones derived for the heat equation in the previous section. However,

the presence of i “
?
´1, motivates our interest in analyzing the schemes for the

Schrödinger equation.

First Scheme: US in both space and time

The approximation of u given by (6.3.5) in (6.3.12) leads to the following discrete

Schrödinger equation,

´

pJ ˘ en`1Bq bM ` iS 1
2
bD

¯

uh “ fh ˘ pen`1 b IN`1quoh,

where the constituting matrices and vectors are the same as those defined for (6.3.8).

These schemes demonstrate spectral convergence in both space and time as seen in

Figure 6.13b. For both of these schemes, we take f so that the exact solution is

defined by (6.3.9), which satisfies the boundary conditions, and gives initial condition

as upx, y,´1q. Define the global space-time spectral operator As :“ pJ ˘ en`1Bq b

M ` iS 1
2
bD P RpN`1q2ˆpN`1q2 . Figures 6.14a and 6.14b suggest that the condition

number of As, κpAsq ď cN3.5, for all 6 ď N ď 40.
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Figure 6.13: Convergence of the US method in both space and time for the
Schrödinger equation.
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Figure 6.14: Bounds for singular values of As.

Second scheme: Collocation in time and US in space

For this scheme, the approximation of u defined by (6.3.10) in (6.3.12) yields the

following discrete Schrödinger equation,

prrrDsss bM ` iIN bDquh “ fh ´ d0h b pMu0hq ,

where the constituting matrices and vectors are the same as those defined for (6.3.11).

The spectral convergence in space and time for this scheme is evident from Fig-
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ure 6.15a. For this scheme, we take f so that the exact solution is defined by (6.3.9),

which satisfies the boundary conditions, and gives initial condition as upx, y,´1q. De-

fine the global space-time spectral operator for this scheme as As “ rrrDsssbM`iINbD P

CNpN`1qˆNpN`1q. Similar to the case of the heat equation, this scheme is slightly bet-

ter conditioned than the previous one for the Schrödinger equation, as Figure 6.15b

suggests that κpAsq ď cN2.5, as compared to κpAsq ď cN3.5.
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Figure 6.15: The US method in both space and collocation in time for the Schrödinger
equation.

6.3.3 Wave equation

Consider the linear wave equation,

utt “ uxx ` fpx, tq, on p´1, 1q2, (6.3.13)

with boundary conditions up˘1, tq “ 0 and initial conditions upx,´1q “ u0pxq and

utpx,´1q “ u1pxq.
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First Scheme: US in both space and time

We first formulate an ultraspherical in space and time scheme for the wave equation,

that is, we consider the approximate solution as defined by (6.3.5). Since the wave

equation has second-order partial derivative w.r.t. time (t), (6.1.3) implies,

d2

dt2
Lkptq “ 3Cp

5
2 q
k´2ptq, k ě 2,

and d2

dt2
Lkptq “ 0 for k “ 0, 1. This allows us to find the discretization of the wave

equation as follows. The first initial condition is obtained analogously as (6.3.6),

thus

pB bMquh “ uoh. (6.3.14)

Since utpx,´1q “ u1pxq,

N
ÿ

j“0

N
ÿ

k“1
ujkp1´ x2

q rC
p 3

2 q
j pxqC

p 3
2 q
k´1p´1q “

N
ÿ

j“0
u0
j
rC
p 3

2 q
j pxq,

N
ÿ

j“0

N´1
ÿ

k“0
uj,k`1

p´1qkpk ` 1qpk ` 2q
2 p1´ x2

q rC
p 3

2 q
j pxq “

N
ÿ

j“0
u0
j
rC
p 3

2 q
j pxq.

Define uh “ ru00;u10; . . . ;uN0;u01; . . . ;uNN s P RpN`1q2ˆ1, u1h “ ru1
0;u1

1; . . . ;u1
N s P

RpN`1qˆ1, and

Bt “

„

0 1 ´3 6 ´10 . . . p´1qN´1NpN ` 1q
2



P R1ˆpN`1q,

then the initial condition gives

pBt bMquh “ u1h. (6.3.15)
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Now, recall (6.1.4), which for λ “ 3
2 gives the conversion operator for converting Cp

3
2 q
j

basis to Cp
5
2 q
j . We denote it by S 3

2
and it is given as follows,

S 3
2
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ´3
7

3
5 ´1

3

3
7 ´ 3

11
. . . . . .

3
2N´1 ´ 3

2N`3

3
2N`1

3
2N`3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P RpN`1qˆpN`1q. (6.3.16)

Let us now discretize the wave equation utt ´ uxx “ fpx, tq as follows.

N
ÿ

j“0

N
ÿ

k“0
ujk

ˆ

p1´ x2
q rC
p 3

2q
j pxqL2kptq ´

ˆ

p1´ x2
q rC
p 3

2q
j pxq

˙2

Lkptq

˙

“ f̃px, tq

N
ÿ

j“0

N´2
ÿ

k“0
3uj,k`2p1´ x2

q rC
p 3

2q
j pxqC

p 5
2 q
k ptq `

N
ÿ

j“0

N
ÿ

k“0
ujkpjpj ` 3q ` 2q rCp

3
2 q
j pxqLkptq “ f̃px, tq,

where

f̃px, tq “
N
ÿ

j“0

N
ÿ

k“0
fjk rC

p 3
2 q
j pxqC

p 5
2 q
k ptq.

On changing the basis in time from Lk to C
p 5

2 q
k in the second summation of the above

equation, the following linear system is obtained,

´

J bM ` S 3
2
S 1

2
bD

¯

uh “ fh,
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where J is a 1-diagonal matrix, defined as,

J “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 3

0 0 3
. . . . . .

0 0 3

0 0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P RpN`1qˆpN`1q,

and fh “ rf00; f10; . . . ; fN,0; f01; . . . ; fNN s P RpN`1q2ˆ1. Now, we need to incorporate

the initial conditions by using eqs. (6.3.14) and (6.3.15) and eb IN`1, defined as

e “

»

—

–

ON´1,2

I2,2

fi

ffi

fl

P RpN`1qˆ2,

and adding or subtracting their contribution above equation, we obtain the following

discrete wave equation,

´

pJ ˘ eBwq bM ` S 3
2
S 1

2
bD

¯

uh “ fh ˘ peb IN`1qvh, (6.3.17)

where Bw :“
“

B
Bt

‰

and vh :“ r uohu1h s. These scheme converge spectrally in both space

and time as seen in Figure 6.16. For both of these schemes, we take f so that the

exact solution is defined by (6.3.9), which satisfies the boundary conditions, and

gives initial conditions as upx, y,´1q and utpx, y,´1q.

Consider (6.3.17) with ‘`’ sign, that is, define the global space-time spectral op-

erator Aw “ pJ ` eBqbM `S 3
2
S 1

2
bD P RpN`1q2ˆpN`1q2 . On observing the growth

and decay of the maximum and minimum singular values of Aw from Figures 6.17a

and 6.17b, respectively, it is deduced that κpAwq ď cN4, for 6 ď N ď 40.
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Figure 6.16: Convergence of the US method in both space and time for the wave
equation.
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Figure 6.17: Bounds for singular values of Aw.

Second scheme: Collocation in time and US in space

Now, we present another scheme for solving the wave equation, given by (6.3.13),

demonstrating spectral convergence in both space and time. In this method, we

incorporate the US method in space and collocation in time, by defining an approx-

imation for u as (6.3.10). Since this equation has second order derivative w.r.t time,

we also define vpx, tq “ utpx, tq «
N
ÿ

j“0

N
ÿ

k“0
vjkp1 ´ x2

q rC
p 3

2 q
j pxq`kptq, where rC

p 3
2 q
j and `j
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are the same as (6.3.10). Thus, the initial condition upx,´1q “ u0pxq implies

N
ÿ

j“0

N
ÿ

k“0
ujkp1´ x2

q rC
p 3

2 q
j pxq`kp´1q “

N
ÿ

j“0
u0
j
rC
p 3

2 q
j pxq

N
ÿ

j“0
uj0p1´ x2

q rC
p 3

2 q
j pxq “

N
ÿ

j“0
u0
j
rC
p 3

2 q
j pxq.

Define u0
h “ ru00;u10; . . . ;uN0s P RpN`1q and u0h “ ru0

0;u0
1; . . . ;u0

N s P RpN`1q, then

the above equation gives

Mu0
h “ u0h. (6.3.18)

Similarly, define v0
h “ rv00; v10; . . . ; vN0s P RpN`1q and u1h “ ru

1
0;u1

1; . . . ;u1
N s P RpN`1q,

so that u1pxq «
N
ÿ

j“0
u1
j
rC
p 3

2 q
j pxq. Then, the second initial condition utpx,´1q “ u1pxq

gives

Mv0
h “ u1h. (6.3.19)

Now, consider vpx, tq “ utpx, tq, and collocate it on t “ tm, for some 1 ď m ď N .

Recall that ttmuNm“0 represent the Chebyshev Gauss-Lobatto nodes. Then, approxi-

mation of u and v “ ut imply,

N
ÿ

j“0

N
ÿ

k“0
ujkp1´ x2

q rC
p 3

2 q
j pxq`1kptmq ´

N
ÿ

j“0

N
ÿ

k“0
vjkp1´ x2

q rC
p 3

2 q
j pxq`kptmq “ 0,

or
N
ÿ

j“0

N
ÿ

k“0
ujkp1´ x2

q rC
p 3

2 q
j pxq`1kptmq ´

N
ÿ

j“0
vjmp1´ x2

q rC
p 3

2 q
j pxq “ 0.

Rearranging,

N
ÿ

j“0

N
ÿ

k“1
ujkp1´x2

q rC
p 3

2 q
j pxq`1kptmq´

N
ÿ

j“0
vjmp1´x2

q rC
p 3

2 q
j pxq “ ´

N
ÿ

j“0
uj0p1´x2

q rC
p 3

2 q
j pxq`10ptmq,

194



which yields the following linear system

prrrDsss b IN`1quh “ vh ´ d0h b u
0
h, (6.3.20)

where d0h represents the 0-th column of the matrix D, vh “ rv1
h; v2

h; . . . ; vNh s P

RNpN`1q, with vkh “ rv0k; v1k; . . . ; vNks P RpN`1q, for 1 ď k ď N . Now, we dis-

cretize the equation utt ´ uxx “ fpx, tq, or vt ´ uxx “ fpx, tq, by collocating it at

time t “ tm as follows,

N
ÿ

j“0

N
ÿ

k“0
vjkp1´ x2

q rC
p 3

2 q
j pxq`1kptmq ´

N
ÿ

j“0
ujmpp1´ x2

q rC
p 3

2 q
j pxqq2 “ fpx, tmq

N
ÿ

j“0

N
ÿ

k“1
vjkp1´ x2

q rC
p 3

2 q
j pxq`1kptmq `

N
ÿ

j“0
ujmpjpj ` 3q ` 2q rCp

3
2 q
j pxq “ fpx, tmq

´

N
ÿ

j“0
vj0p1´ x2

q rC
p 3

2 q
j pxq`1kpt0q,

giving the following linear system,

prrrDsss bMqvh ` pIN bDquh “ fh ´ d0h bMv0
h,

where uh “ ru1
h;u2

h; . . . ;uNh s P RNpN`1q, with ukh “ ru0k;u1k; . . . ;uNks P RpN`1q, for

1 ď k ď N . From eqs. (6.3.18) to (6.3.20), the above equation becomes,

`

rrrDsss2 bM ` IN bD
˘

uh “ fh ´ d0h b pu0hq ´ rrrDsssd0h b u1h,

which represents the wave equation in discrete form. This scheme converges spec-

trally in both space and time as seen in Figure 6.18a. For this scheme, we take f so

that the exact solution is defined by (6.3.9), which satisfies the boundary conditions,

and gives initial conditions as upx, y,´1q and utpx, y,´1q. Also, see Figure 6.18b

for an estimate on condition number of the global space-time spectral operator for
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this scheme, defined as Aw “ prrrDsss
2 bM ` IN bDq P RNpN`1qˆNpN`1q. It is inferred

that κpAwq ď cN4, which is the same order as that of the previous scheme.
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(a) Convergence.
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(b) 2-norm condition number of Aw.

Figure 6.18: The US method in both space and collocation in time for the wave
equation.

To summarize this section, we observe that the US method in space and time

leads to sparse linear systems which are easier to formulate. However, incorporating

spectral collocation in time and the US method in space gives better conditioned

systems.

6.4 A fast solver for the space-time US method

The US method in space and time are revolutionary, as they lead to sparse global

space time spectral operator. For instance, let us compare the spy graphs of the

global space-time spectral operators. Figure 6.19 is the spy graph for Ah, defined by

(6.3.11), for N “ 9, which results on applying the US method in space and spectral

collocation in time for solving the heat equation. The density of pseudospectral

derivative matrix rrrDsss makes Ah dense as well. Whereas, the spy graph of Ah for

N “ 9, defined by (6.3.8) and obtained on employing the US method in both space

and time, is given by Figure 6.20a, is visibly sparse. Note that the initial condition
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at the bottom of the global spectral operator. This can be easily moved to the top

by using the QR decomposition of J ` en`1B, defined by (6.3.8). Note that it is

simply a permutation of rows, as a simple adjustment gives, J ` en`1B “ QhRh,

where

Qh “

»

—

–

IN

1

fi

ffi

fl

, Rh “

»

—

–

B

ON,1 IN

fi

ffi

fl

.

Define Qh “ pQ
T
h b IN`1q, then QhAh “ RhbM `QT

hS 1
2
bD, which is now a block

almost banded structure as seen in Figure 6.20b.

Similarly, Figure 6.21a shows the sparsity of Aw, defined by (6.3.17) for N “ 9.

For Aw P RpN`1q2ˆpN`1q2 , we perform the same procedure as J ` eBw “ QwRw,

where

Qw “

»

—

–

IN´1

I2

fi

ffi

fl

, Rw “

»

—

–

Bw

ON´1,2 3IN´1

fi

ffi

fl

.

Define Qw “ pQT
w b IN`1q, then QwAw “ Rw bM ` QT

wS 3
2
S 1

2
b D. Figure 6.21b

shows that its structure is also now similar to that of QhAh, that is, a block almost

banded structure.

Thus, the US method in space and time yield a block almost banded structure

which can be easily exploited for solving these linear systems in parallel, thus con-

structing parallel-in-time (PinT) solvers. We introduce one of the simpler iterative

techniques from [99], for solving tridiagonal linear systems in parallel. Note that the

discrete heat equation allows the decomposition of Ah “ L ` D ` U , where D, L

and U represent the block diagonal, block strictly lower and strictly upper triangu-

lar parts of Ah, respectively. Since they are sparse, thus Ah can also be solved in

parallel by using the hybrid blocked iterative solving algorithm (HBISA) given in

[99, p. 1770]. However, for schemes arising from the US method in both space and
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time such an algorithm generally leads to an iteration matrix with spectral radius

greater than unity, thus implying divergence.

Our another aim is to formulate another direct parallel solver by using the specific

structure of the matrices arising from applying the US method in both space and

time. A step in this direction is to use ParaDIAG algorithm described in [33], which

can be modified for the linear systems generated by the US method in space and

time. To this end, let us consider the following linear system for sparse matrices

A,B,C,D P Rnˆn

pAb C `B bDquh “ fh, (6.4.1)

where uh, fh P Rn2ˆn2 represent the discrete unknown vector and discrete forcing

term vector. Numerical experiments imply that A and B for such linear systems

possess a generalized eigenvalue decomposition AV “ BV ΛpA,Bq, where ΛpA,Bq is a

diagonal matrix and V is invertible which transforms (6.4.1) to the following

pΛpA,Bq b C ` In bDqvh “ pV ´1B´1
b Inqfh,

where vh “ pV ´1b Inquh, thus resulting in a block diagonal linear system which can

be solved in parallel for pvhq1`kn:n`kn, where 0 ď k ď pn´1q. Finally, uh “ pV bInqvh.
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Figure 6.19: Spy graph of Ah for the heat equation with the US method in space
and spectral collocation in time and N “ 9.
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(b) QhAh

Figure 6.20: Spy graphs for the heat equation with the US method in both space
and time and N “ 9.
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Figure 6.21: Spy graphs for the wave equation with the US method in space and
time and N “ 9.
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7

Concluding remarks and future

directions

In this chapter, we briefly describe some extensions of the work completed in Chap-

ters 3–6.

In Chapter 3, we devised a space-time spectral method for the Stokes problem,

which implements the PN ´ PN´2 scheme in space and spectral collocation in time.

For simplicity of analysis, a recombined Legendre basis was considered in space

and Chebyshev collocation was used in time. Note that, this scheme can easily be

adapted to other orthogonal polynomial bases. A drawback of this scheme is that

all time steps are coupled in the global spectral operator. Despite the limitations

these methods are valuable in light of spectral convergence in both space and time,

requiring far less number of unknowns for a highly accurate solution.

While voyaging through the goal of proving a condition number estimate for the

global space-time spectral operator Gt for the unsteady Stokes problem, the first

milestone was proving a condition number estimate for the PN ´ PN´2 scheme ap-

plied to the case independent of time, that is, in steady state. To this end, we

proved estimates for the stiffness matrix, mass matrix, and the Laplacian in two di-
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mension for a recombined Legendre basis functions, stated in form of Lemmas 3.3.1

and 3.3.2, and Theorem 3.3.3, respectively. Other intermediate results include es-

timates for the discrete gradient matrix B and the Schur complement Υh. Con-

sequently, Theorem 3.3.11 proved the optimal condition number estimates for the

sub-block appearing in the global spectral operator for the Stokes problem in steady

state.

For the next step, the analysis of the scheme in unsteady state required a new

estimate of maximum singular value (or 2-norm) of the Chebyshev derivative matrix,

proved in Lemma 3.4.2, which was observed in existing literature through numerical

experiments. The condition number estimate of the global space-time operator is

still incomplete because we relied on numerical results for two estimates, namely

eqs. (3.4.15) and (3.4.16). Nevertheless, we paved a proof for the minimum sin-

gular value of a non-symmetric saddle point matrix. This chapter was concluded

with a proof of spectral convergence of this scheme in space and time is given in

Theorem 3.4.6, which appears to be new. All of these results are verified through

numerical experiments.

Recently, [46] present spectral distributions of the saddle point matrices arising

from the discretization and linearization of the Navier–Stokes equations, where the

leading block is nonsymmetric with a positive definite symmetric part. The global

space-time spectral operator of the scheme analyzed in Theorem 3.4.5 is a non-

symmetric saddle point matrix, so that the symmetric part of its leading block At

is indefinite. As far as we know, there are no results in literature that estimates

the spectrum of such a matrix, thus problem highlights a potential linear algebra

problem. Approximations on the spectrum of this special case of a saddle point

matrix will be significant for deriving spectral condition number for such schemes

as seen in [67], which in turn is useful for the analysis of preconditioned systems as

discussed in Section 2.1.4.
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Research Direction 1. Sharper estimates for the spectrum of a saddle point matrix

X “
“

A BT
B O

‰

, where A P Rnˆn is non-symmetric matrix with an indefinite symmetric

part and B P Rmˆn is full rank.

Since the linear systems arising from space-time spectral methods are coupled

at all times, a subsequent objective is to tailor the scheme as parallel in time. Al-

though the Chebyshev derivative matrix rrrDsss is responsible for the dense nature of

the discrete Stokes problem, however, it is diagonalizable and ParaDIAG algorithms

mentioned in [33] result in a convenient parallel solver numerically. Albeit it is a

tough task to formulate it theoretically, that is, to find an explicit expression of

spectral decomposition of rrrDsss. This problem can perhaps be more well-defined by

considering exploring a suitable preconditioner which may resolve this issue.

Research Direction 2. Formulate a parallel-in-time (PinT) scheme for the linear

system arising from spectral collocation in time.

In Chapter 4, we extended the PN ´PN´2 from [12] scheme in space and colloca-

tion in time from Section 3.4 to the Navier-Stokes problem in Section 4.2. Further-

more, in Section 4.3, we applied a staggered grid collocation scheme in space, given in

[11], and spectral collocation in time to both the unsteady Stokes and Navier-Stokes

problem. Numerical experiments for all of these schemes validate a super-algebraic

decay in error in L8 norm for the solution evaluated at the final time step, tN “ 1.

Research Direction 3. Study and estimate the high limit of the Reynold’s number

for the PN ´ PN´2 and staggered grid collocation schemes described in Sections 4.2

and 4.3, respectively, for the unsteady Stokes and Navier-Stokes problems.

In Chapter 5, we derived two new lower bounds on the minimum eigenvalue of

a non-singular sum of two PSD matrices in form of Theorems 5.4.1 and 5.4.4, that

is, λminpP ` Qq, where P and Q are PSD and P ` Q is SPD. To our knowledge,

this is the first report of a positive lower bound for this case despite being a topic of
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historic concern. These bounds incorporate the Friedrichs angle between the range

spaces RpP q and RpQq. These findings provide a basis for lower bounds on the min-

imum singular value of some full rank block matrices presented in Corollaries 5.6.1

and 5.6.2, Theorem 5.6.3, and Corollary 5.6.4. Broadly translated our work indicates

that the minimum singular value of a non-singular matrix can be derived in terms of

its constituting matrices, P and Q for P `Q, or submatrices for block matrices even

if they are singular. Importantly, by utilizing the projection on range spaces, the key

component for bringing the minimum positive singular value of rank-deficient ma-

trices into play. This may be considered a promising aspect of studying the singular

values of matrices with a geometric approach.

The lower bounds described by Theorems 5.4.1 and 5.4.4 are sharp for the case

of RpP q X RpQq “ t0u, so that the parameter k “ 0. However, there is a scope

for improvement in these results for the case when r, k ą 0. It may be possible

to incorporate PM1XM2 in (5.4.22) to improve the lower bound. In Example 5.6.10,

it was observed that changing the partition of a matrix changes the lower bounds

given by Theorem 5.6.3 and Corollary 5.6.4. Thus, one can try to determine the best

partition for a certain class of matrices yielding optimal estimates on the minimum

singular value. Some techniques exist for calculating the principal angles between

two subspaces, see [58]. A more efficient algorithm can be designed for calculating

the Friedrichs angle between two subspaces. Since it is defined for subspaces of a

Hilbert space in Definition 2.2.4, it may allow us to extend the main results to a more

general setting. This discussion is summarized in form of the following pointers.

Research Direction 4. Improve the results for the sum of two PSD matrices with

a non-trivial intersection of their range spaces.

Research Direction 5. Determine a criteria for achieving an optimal partition

for matrices yielding optimal estimates of the minimum singular value, as different

partitions of a matrix yield different estimates.
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Research Direction 6. Extend Theorems 5.4.1 and 5.4.4 to self-adjoint operators

on a separable Hilbert space.

Research Direction 7. Devise a computational or theoretical procedure for calcu-

lating the Friedrichs angle between the range spaces of any two given matrices.

In Chapter 6, we implemented the US method in space and time for the heat,

Schrödinger, and wave equations. Additionally, we imposed the US method in space

and spectral collocation in time to collate the merits and demerits of employing the

two schemes. This experiment adds to a growing corpus of research showing the

effectiveness of the US methods and promise a state-of-art scheme for solving time

dependent PDEs. As Section 6.4 indicates that we can fruitfully explore a PinT

solver by exploiting the sparse block almost banded structure of the schemes arising

from the US method in space and time. Thus, a number of recommendations for

future research are given as follows.

Research Direction 8. Prove an estimate on 2-norm condition number of the heat,

Schrödinger, and wave equations.

Research Direction 9. Devise a space-time US method for solving linear PDEs

such as Airy, beam and Stokes problem.

Research Direction 10. Prove the spectral convergence of the US method in both

space and time for linear time dependent PDEs.

Research Direction 11. Design a PinT solver for the numerical schemes resulting

on employing the US method in space and time for linear time dependent PDEs.
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Appendix A

Alternative proofs

The results mentioned in this chapter were derived prior to coming across [32] and

solely relying on knowledge from [68].

A.1 Difference of orthogonal projections

The following is a simpler proof for the expression for the null space of difference of

two projections onto subspaces U, V Ď Rn spanning Rn, that is, Rn “ U ` V .

Lemma A.1.1. Let U, V Ď Rn be subspaces so that Rn “ U ` V . If P1, P2 P Rnˆn

are orthogonal projections onto U and V , respectively, then N pP1 ´ P2q “ U X V .

Proof. Let x P UXV , then P1x “ x and P2x “ x, thus pP1´P2qx “ 0, which implies

x P N pP1 ´ P2q. Therefore, U X V Ď N pP1 ´ P2q.

Let x P N pP1 ´ P2q Ď Rn, then P1x “ P2x. Let B “ tξ1, ξ2, . . . , ξku be a

basis of U X V . Consequently, we define BU “ tξ1, . . . , ξk, φk`1, . . . , φn1u, BV “

tξ1, . . . , ξk, ψk`1, . . . , ψn2u as bases of U , V , respectively. Since x P N pP1 ´ P2q Ď

Rn “ U ` V , there exist some scalars ai, bj, where 1 ď i ď n1, k ` 1 ď j ď n2, such
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that

x “
k
ÿ

i“1
aiξi `

n1
ÿ

i“k`1
aiφi `

n2
ÿ

i“k`1
biψi,

P1x “
k
ÿ

i“1
aiξi `

n1
ÿ

i“k`1
aiφi,

P2x “
k
ÿ

i“1
aiξi `

n2
ÿ

i“k`1
biψi.

Thus, P1x “ P2x implies

n1
ÿ

i“k`1
aiφi “

n2
ÿ

i“k`1
biψi P pUzV q X pV zUq “ t0u,

thus x “
k
ÿ

i“1
aiξi P U X V . Hence, N pP1 ´ P2q Ď U X V .

A.2 A result on complementary subspaces

The following is a simpler proof for the minimum singular value of the sum of two

orthogonal projections onto complementary subspaces R1, R2 Ď Rn.

Lemma A.2.1. Let R1, R2 P Rn be two complementary subspaces, that is, Rn “

R1‘R2, then cpRT
1 , R

T
2 q “ 1´cos θ, where θ is the minimum principal angle between

RpRT
1 q and RpRT

2 q.

Proof. Let Pi P Rnˆn, be orthogonal projections onto the subspaces RpRT
i q for i “

1, 2. In order to prove that cpRT
1 , R

T
2 q “ 1 ´ cos θ, it suffices to prove that, for any

x P Rn, x ‰ 0,
|P1x|

2 ` |P2x|
2

|x|2
ě 1´ cos θ.
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By Property 4 of Proposition 2.2.2,

min
xPRm`n
x‰0

|pP1 ´ P2qx|

|x|
“ σminpP1 ´ P2q “ sin θ.

Therefore, for x P Rnzt0u, |pP1 ´ P2qx|
2 ě sin2pθq|x|2, or

pP1 ´ P2q
2
ě sin2

pθqI (A.2.1)

Note that,

pP1 ` P2 ´ Iq
2
“ pP1 ` P2 ´ IqpP1 ` P2 ´ Iq

“ P1P2 ´ P1 ` P2P1 ´ P2 ` I

“ I ´ pP 2
1 ´ P1P2 ´ P2P1 ` P

2
2 q

“ I ´ pP1 ´ P2q
2

ď p1´ sin2
pθqqI “ cos2

pθqI. (by (A.2.1))

Thus,

´ cospθqI ď P1 ` P2 ´ I ď cospθqI,

or

p1´ cospθqqI ď P1 ` P2 ď p1` cospθqqI.

Therefore, for x P Rnzt0u,

|pP1 ` P2qx|
2
ě p1´ cospθqq2|x|2.
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By the parallelogram law and using the above inequality with (A.2.1),

|P1x|
2
` |P2x|

2
“

1
2
`

|P1x` P2x|
2
` |P1x´ P2x|

2˘

ě
1
2
`

p1´ cospθqq2 ` sin2
pθq

˘

|x|2

“
1
2
`

1` cos2
pθq ´ 2 cospθq ` sin2

pθq
˘

|x|2

“ p1´ cospθqq |x|2.
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Index

A
arithmetic-geometric mean inequality 111

B
biharmonic problem 168

C
Chebyshev Gauss-Lobatto pseudospectral

derivate matrix

norm 70

Chebyshev Gauss-Lobatto pseudospectral

derivative matrix 67

Chebyshev polynomials 23

Chebyshev interpolation error 24

Chebyshev truncation error 24

derivative 151

E
eigenvalue 11

eigenvector 11

F
first order ODE 158, 161

Friedrichs angle 122, 129

G
Gauss-Lobatto bases interpolation matrix

103

global space-time spectral operator

heat equation 182, 185

Schrödinger equation 187, 189

unsteady Stokes problem 69

wave equation 192, 195

H
heat equation 176, 180, 184

derivative matrix 177

discrete system 182, 185

I
inverse Laplacian 58

J
Jacobi Gauss pseudospectral derivative

matrix on a closed interval 99

Jacobi Gauss-Lobatto pseudospectral

derivative matrix 98

Jacobi polynomials 21

L
Legendre polynomials 22

Legendre interpolant 24

Legendre interpolation error 24
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Legendre truncation error 24

triple product 91

Lobatto-Gauss bases interpolation matrix

103

lower bound on minimum singular value 134

block column matrix 135

Block diagonal matrix 140

block row matrix 135

Block triangular matrix 140

non-singular matrix 135

saddle point matrix 140

M
matrices

direct sum 11

matrix 4

block diagonal 11

block matrix 4

conformably partitioned 5

blocks 4

characteristic polynomial 11

condition number 14

diagonalizable 12

Frobenius norm 10

Kronecker product 11

left-hand null space 8

norm 9

Hölder’s inequality 10

null space 8

properties 8

orthogonal 6

orthogonally diagonalizable 12

p-norm 10

positive definite or SPD 12

positive semi-definite or PSD) 12

properties of eigenvalues 12

properties of singular values 13

range space 8

properties 8

rank 8

deficient 8

full 8

properties 8

singular value decomposition 13

spectral condition number 15

spectral decomposition 12

Weyl’s inequalities 12

minimum eigenvalue 115

non-singular sum of PSD matrices 115,

123

Minimum positive eigenvalue 113

Minimum positive singular value 113

mixed Galerkin scheme 30, 35

mixed spectral Galerkin scheme 90

discrete Stokes problem 38

discrete unsteady Navier-Stokes

problem 94

discrete unsteady Stokes problem 69

N
Navier-Stokes equations 89

Navier-Stokes problem

unsteady state 89

O
orthogonal polynomials 21

Chebyshev polynomials 23
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classical orthogonal polynomials 21

Error in approximation 24

interpolation 23

Jacobi polynomials 21

Legendre polynomials 22

orthogonal 21

truncation 23

ultraspherical polynomials 154

weight function 21

P
parallelogram identity 6

Poisson problem 163

pressure derivative interpolation matrix 100

S
saddle point matrix 111

Schrödinger equation 187

discrete 187, 188

spectral methods 25

Legendre Gauss-Lobatto nodes 26

pseudospectral Legendre Gauss-Lobatto

derivative matrix 27

spectral convergence 25

spectral problem of a symmetric matrix sum

108, 114

spectrum 11

spectrum of product 114

staggered grid collocation scheme 30, 95

grids for velocity and pressure 95

unsteady Navier-Stokes 102

unsteady Stokes

discrete problem 102

variable approximations 96

Stokes equations 29

Stokes flow 29

Stokes problem 29

B matrix

singular value estimates 54

discrete Laplacian

spectrum 43

discrete vector Laplacian

spectrum 52

mass matrix 33

spectrum 41

recombined Legendre functions 33

spurious modes 39

steady state 29, 35

global spectral operator 38

condition number 62

discrete system 38

discrete unknowns 35

Schur complement 58

variable approximation 35

stiffness matrix 33

spectrum 40

unsteady state 29, 64

approximation 65

condition number 75

discrete problem 69

discrete unknowns 65

global space-time spectral operator 69

space-time spectral convergence 78

U
ultraspherical polynomials 154

ultraspherical spectral method 150
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conversion operator 153, 156

differentiation operator 151, 156

multiplication operator 152, 157

projection operator 154

right-preconditioner 158

unsteady Navier-Stokes

staggered grid collocation scheme

discrete problem 105

Uzawa pressure operator 58

V
vector Laplacian 58

vector space 5

basis 5

column vector 6

dimension 5

direct sum 5

euclidean norm 6

non-trivial 5

norm 5

orthogonal 6

orthogonal projection 10

orthogonal set 6

orthogonality of subspaces 6

orthonormal complement 6

orthonormal set 6

p-norm 6

projection 7

row vector 6

standard inner product 6

subspace

complementary 5

Friedrichs angle 20

principal angles 16

principal vectors 16

subspaces

minimal principal angle 16

sum of subspaces 5

trivial 5

velocity derivative interpolation matrix 100

W

wave equation 189, 193

discrete system 192, 195

Weyl’s inequalities 114

212



References

[1] Jared Lee Aurentz and Richard Mikaël Slevinsky. On symmetrizing the ultra-

spherical spectral method for self-adjoint problems. Journal of Computational

Physics, 410:109383, 2020. 149

[2] O. Axelsson. Unified analysis of preconditioning methods for saddle point

matrices. Numerical Linear Algebra with Applications, 22(2):233–253, Mar

2015. 112

[3] O. Axelsson and M. Neytcheva. Eigenvalue estimates for preconditioned saddle

point matrices. Numerical Linear Algebra with Applications, 13(4):339–360,

May 2006. 58

[4] O. Axelsson and M. Neytcheva. Eigenvalue estimates for preconditioned saddle

point matrices. Numerical Linear Algebra with Applications, 13(4):339–360,

May 2006. 111

[5] Z. Z. Bai. Eigenvalue estimates for saddle point matrices of Hermitian and

indefinite leading blocks. Journal of Computational and Applied Mathematics,

237(1):295–306, Jan 2013. 112

[6] D. Barber. Bayesian Reasoning and Machine Learning. Bayesian Reasoning

and Machine Learning. Cambridge University Press, 2012. 108

[7] Guo Ben-Yu and Li Jian. Fourier-Chebyshev spectral method for the two-

213



dimensional Navier-Stokes equations. SIAM Journal on Numerical Analysis,

33(3):1169–1187, 1996. 30

[8] M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle point

problems. Acta Numerica, 14(123):1–137, 2005. 111

[9] M. Benzi and V. Simoncini. On the eigenvalues of the class of saddle point

matrices. Numerische Mathematik, 103(123):173–196, Mar 2006. 112

[10] L. Bergamaschi. On the eigenvalue distribution of constrained preconditioned

symmetric saddle point matrices. Numerical Linear Algebra with Applications,

19(4):754–772, Aug 2012. 112

[11] Christine Bernardi and Yvon Maday. A collocation method over staggered

grids for the Stokes problem. International Journal for Numerical Methods in

Fluids, 8:537–557, 1988. 88, 95, 202

[12] Christine Bernardi and Yvon Maday. Spectral methods, Techniques of Scien-

tific Computing (Part 2), Handbook of Numerical Analysis Vol. V. Elsevier,

Amsterdam, 1997. 1, 29, 35, 39, 40, 58, 64, 78, 88, 202

[13] Christine Bernardi and Yvon Maday. Uniform inf-sup conditions for the spec-

tral discretization of the Stokes problem. Mathematical Models and Methods

in Applied Sciences, 9(03):395–414, 1999. 30

[14] Dennis S. Bernstein. Scalar, Vector, and Matrix Mathematics: Theory, Facts,

and Formulas - Revised and Expanded Edition. Princeton University Press,

Princeton, NJ, 2018. 114, 141

[15] R. Bhatia and F. Kittaneh. On singular values of product of operators. SIAM

Journal on Matrix Analysis and Applications, 11(2):272–277, April 1990. 114,

115

214



[16] R. Bhatia and F. Kittaneh. The matrix arithmetic-geometric mean inequality

revisited. Linear Algebra and its Applications, 428(123):2177–2191, Feb 2008.

111

[17] A. Björck and G. Golub. Numerical methods for computing angles between

linear subspaces. Mathematics of Computation, 27(123):579–594, July 1973.

122

[18] Nicolas Boullé, Jonasz Słomka, and Alex Townsend. An optimal complexity

spectral method for Navier–Stokes simulations in the ball, 2021. 30, 149

[19] Chaima Bousbiat, Yasmina Daikh, and Sarra Maarouf. Spectral discretiza-

tion of the time-dependent Stokes problem with mixed boundary conditions.

Mathematical Methods in the Applied Sciences, 44(18):14517–14544, 2021. 30

[20] A. Böttcher and I.M. Spitkovsky. A gentle guide to the basics of two projections

theory. Linear Algebra and its Applications, 432(6):1412–1459, 2010. 20, 21,

119

[21] Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Spectral methods for

data science: A statistical perspective. Foundations and Trends in Machine

Learning, 14(5):566–806, 2021. 108

[22] R.M. Corless and N. Fillion. A Graduate Introduction to Numerical Meth-

ods: From the Viewpoint of Backward Error Analysis. SpringerLink: Bücher.

Springer New York, 2013. 70

[23] J. Dauxois and G.M. Nkiet. Canonical analysis of two Euclidean subspaces

and its applications. Linear Algebra and its Applications, 264:355–388, 1997.

Sixth Special Issue on Linear Algebra and Statistics. 109

[24] Chandler Davis and W. M. Kahan. The rotation of eigenvectors by a pertur-

bation. iii. SIAM journal on numerical analysis, 7(1):1–46, 1970. 16

215



[25] Jane M. Day, Wasin So, and Robert C. Thompson. The spectrum of a Her-

mitian matrix sum. Linear Algebra and its Applications, 280:289–332, 1998.

108

[26] Frank Deutsch. The angle between subspaces of a Hilbert space. In S. P.

Singh, editor, Approximation Theory, Wavelets and Applications, pages 107–

130. Springer Netherlands, Dordrecht, 1995. 19, 20, 109

[27] S.W. Drury. On a question of Bhatia and Kittaneh. Linear Algebra and its

Applications, 437(7):1955–1960, Oct 2012. 111

[28] H.C. Elman, D.J. Silvester, and A.J. Wathen. Finite Elements and Fast Itera-

tive Solvers: with Applications in Incompressible Fluid Dynamics: with Appli-

cations in Incompressible Fluid Dynamics. Numerical Mathematics and Scien-

tific Computation. OUP Oxford, 2005. 58

[29] Daniel Fortunato, Nicholas Hale, and Alex Townsend. The ultraspherical spec-

tral element method. Journal of Computational Physics, 436:110087, 2021. 149

[30] Daniel Fortunato and Alex Townsend. Fast Poisson solvers for spectral meth-

ods. IMA Journal of Numerical Analysis, 2019. 149, 176

[31] A. Galántai. Projectors and Projection Methods. Advances in Mathematics.

Springer, Boston, MA, 2004. 20

[32] A. Galántai. Subspaces, angles and pairs of orthogonal projections. Linear and

Multilinear Algebra, 56(3):227–260, May 2008. 16, 18, 19, 20, 121, 124, 205

[33] Martin J. Gander, Jun Liu, Shu-Lin Wu, Xiaoqiang Yue, and Tao Zhou. Para-

DIAG: Parallel-in-Time algorithms based on the diagonalization technique.

May 2020. 198, 202

216



[34] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns

Hopkins University Press, Baltimore, 4th edition, 2013. 10, 16

[35] Gene H. Golub and Hongyuan Zha. The canonical correlations of matrix pairs

and their numerical computation. In Adam Bojanczyk and George Cybenko,

editors, Linear Algebra for Signal Processing, pages 27–49, New York, NY,

1995. Springer New York. 109

[36] David Gottlieb and Steven A. Orszag. Numerical Analysis of Spectral Methods:

Theory and Applications. Society for Industrial and Applied Mathematics,

Philadelphia,Pa., 1977. 25

[37] N.I.M. Gould and V. Simoncini. Spectral analysis of saddle point matrices with

indefinite leading blocks. SIAM Journal on Matrix Analysis and Applications,

31(3):1152–1171, 2010. 112

[38] Ben Yu Guo and Zhong Qing Wang. Legendre–Gauss collocation methods for

ordinary differential equations. Adv. Comput. Math., 30(3):249–280, 2009. 30

[39] J.S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral Methods for Time-

Dependent Problems. Cambridge Monographs on Applied and Computational

Mathematics. Cambridge University Press, 2007. 30

[40] O. Hirzallah. Inequalities for sums and products of operators. Linear Algebra

and its Applications, 407(123):32–42, Sept 1990. 146

[41] L. Hogben. Handbook of Linear Algebra, Second Edition. Discrete Mathematics

and Its Applications. Taylor & Francis, 2013. 12, 13

[42] Y.P. Hong and C.-T. Pan. A lower bound for the smallest singular value.

Linear Algebra and its Applications, 172(123):27–32, July 1992. 112

217



[43] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press,

Cambridge, 2012. 12, 114

[44] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge

University Press, Cambridge, 1991. 8, 12, 108

[45] N. Huang and C.-F. Ma. On the eigenvalues of the saddle point matrices

discretized from Navier-Stokes equations. Numerical Algorithms, 79(1):41–64,

Sept 2018. 112

[46] Na Huang and Chang Feng Ma. On the eigenvalues of the saddle point matrices

discretized from Navier–Stokes equations. Numerical Algorithms, 2018. 201

[47] G. Ierley, B. Spencer, and R. Worthing. Spectral methods in time for a class

of parabolic partial differential equations. Journal of Computational Physics,

102(1):88–97, 1992. 30

[48] C.R. Johnson. A Gersgorin-type lower bound for the smallest singular value.

Linear Algebra and its Applications, 112(123):1–7, Jan 1989. 112

[49] C.R. Johnson and T. Szulc. Further lower bounds for the smallest singular

value. Linear Algebra and its Applications, 272(123):169–179, Mar 1998. 112

[50] C.R. Johnson, T. Szulc, and D. Wojtera-Tyrakowska. Optimal Gersgorin-style

estimation of extremal singular values. Linear Algebra and its Applications,

402(123):46–60, June 2005. 112

[51] Camille Jordan. Essai sur la géométrie à n dimensions. Bulletin de la Société

Mathématique de France, 3:103–174, 1875. 16

[52] Avleen Kaur. https://github.com/avleenk2312/Space-Time-Spectral,

2022. 64, 77, 94

218

https://github.com/avleenk2312/Space-Time-Spectral


[53] Avleen Kaur and S. H. Lui. https://github.com/avleenk2312/lb_

minsingular, 2022. 139, 141, 144, 145

[54] Avleen Kaur and S. H. Lui. New lower bounds on the minimum singular value of

a matrix. https://github.com/avleenk2312/lb_minsingular/blob/main/

Draft.pdf, 2022. 75

[55] Alexander A. Klyachko. Stable bundles, representation theory and hermitian

operators. Selecta Mathematica, New Series, 4:419–445, 1998. 108

[56] Allen Knutson and Terence Tao. Honeycombs and sums of Hermitian matrices.

Notices of the American Mathematical Society, 48(2):175–186, 2001. 108

[57] Andrew Knyazev. Toward the optimal preconditioned eigensolver: Locally

optimal block preconditioned conjugate gradient method. SIAM Journal on

Scientific Computing, 2001. 109

[58] Andrew Knyazev and Merico Argentati. Principal angles between subspaces

in an A-based scalar product: Algorithms and perturbation estimates. SIAM

Journal on Scientific Computing, 23(6):2009–2041, jan 2002. 203

[59] Chi-Kwong Li and Yiu-Tung Poon. Sum of Hermitian matrices with given

eigenvalues: Inertia, rank, and multiple eigenvalues. Canadian Journal of

Mathematics, 62(1):109–132, 2010. 111

[60] L. Li. Estimation for matrix singular value. Computers and Mathematics with

Applications, 37(9):9–15, May 1999. 112

[61] M. Lin and M. Xie. On some lower bounds for smallest singular value of

matrices. Applied Mathematics Letters, 121(123):107411, Nov 2021. 112, 145

[62] Wenjie Liu, Jiebao Sun, and Boying Wu. Galerkin-Chebyshev spectral method

219

https://github.com/avleenk2312/lb_minsingular
https://github.com/avleenk2312/lb_minsingular
https://github.com/avleenk2312/lb_minsingular/blob/main/Draft.pdf
https://github.com/avleenk2312/lb_minsingular/blob/main/Draft.pdf


and block boundary value methods for two-dimensional semilinear parabolic

equations. Numerical Algorithms, 71:437–455, 2016. 30

[63] Wenjie Liu, Boying Wu, and Jiebao Sun. Space-time spectral collocation

method for the one-dimensional Sine-Gordon equation. Numerical Methods

for Partial Differential Equations, 31(3):670–690, 2015. 30

[64] S. H. Lui. Numerical Analysis of Partial Differential Equations. Pure and

Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley,

2012. 15, 24, 25, 26, 27, 67, 84, 100

[65] S. H. Lui. Legendre spectral collocation in space and time for PDEs. Nu-

merische Mathematik, 136:75–99, 2017. 1, 30

[66] S. H. Lui and Sarah Nataj. Chebyshev spectral collocation in space and time

for the heat equation. Elect. Trans. Numer. Anal., 52:295–319, 2020. 1, 30

[67] S.H. Lui and Sarah Nataj. Spectral collocation in space and time for linear

PDEs. Journal of Computational Physics, 424:109843, 2021. 1, 30, 176, 201

[68] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadel-

phia, 1st edition, 2000. 6, 8, 16, 17, 205

[69] Rajat Mittal. A Fourier-Chebyshev spectral collocation method for simulating

flow past spheres and spheroids. International journal for numerical methods

in fluids, 30(7):921–937, 1999. 30

[70] Nenad Morača. Bounds for norms of the matrix inverse and the smallest

singular value. Linear Algebra and its Applications, 2008. 144, 145

[71] Matthew P. O’Donnell and Paul M. Weaver. Rapid analysis of variable stiffness

beams and plates: Legendre polynomial triple-product formulation. Interna-

tional Journal for Numerical Methods in Engineering, 112(1):86–100, 2017. 91

220



[72] Frank W. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark.

NIST Handbook of Mathematical Functions. Cambridge University Press, USA,

1st edition, 2010. 176, 177

[73] Sheehan Olver, Richard Mikaël Slevinsky, and Alex Townsend. Fast algorithms

using orthogonal polynomials. Acta Numerica, 29:573–699, 2020. 24

[74] Sheehan Olver and Alex Townsend. A fast and well-conditioned spectral

method. SIAM Review, 55(3):462–489, 2013. 2, 25, 149, 150, 158

[75] Sheehan Olver, Alex Townsend, and Geoffrey Vasil. A sparse spectral method

on triangles. SIAM Journal on Scientific Computing, 41(6):A3728–A3756,

2019. 149

[76] L. Qi. Some simple estimates for singular value of a matrix. Linear Algebra

and its Applications, 56(123):105–119, Jan 1984. 112

[77] Yonghui Qin and He Ping Ma. Legendre-tau-Galerkin and spectral collocation

method for nonlinear evolution equations. Applied Numerical Mathematics,

153:52–65, 2020. 30

[78] S. C. Reddy and J. A. C. Weideman. The accuracy of the Chebyshev differenc-

ing method for analytic functions. SIAM J. Numer. Anal., 42(5):2176–2187,

2005. 81, 84

[79] Jie Shen. Efficient Chebyshev-Legendre Galerkin Methods for Elliptic Prob-

lems. International Conference on Spectral and High Order Methods, 1996.

31

[80] Jie Shen, Tao Tang, and Li-Lian Wang. Spectral Methods Algorithms, Analysis

and Applications. Springer-Verlag, Berlin Heidelberg, 2011. 25, 32, 33, 40, 64,

65, 67, 68, 97, 100

221



[81] Jie Shen and Li-Lian Wang. Fourierization of the Legendre–Galerkin method

and a new space–time spectral method. Applied Numerical Mathematics,

57(5):710–720, 2007. 30

[82] S.-Q. Shen, L. Jian, W.-D. Bao, and T.-Z Huang. On the eigenvalue distribu-

tion of preconditioned nonsymmetric saddle point matrices. Numerical Linear

Algebra with Applications, 21(4):557–568, Aug 2014. 112

[83] D. Silvester and A. Wathen. Fast iterative solution of stabilised stokes systems,

part ii: Using general block preconditioners. SIAM Journal on Numerical

Analysis, 31(5):1352–1367, Oct 1994. 112

[84] Richard Mikael Slevinsky and Sheehan Olver. A fast and well-conditioned

spectral method for singular integral equations. Journal of Computational

Physics, 332:290–315, 2017. 149

[85] A. Smoktunowicz. Block matrices and symmetric perturbations. Linear Alge-

bra and its Applications, 429(10):2628–2635, 2008. 112

[86] G. W. Stewart and Ji guang Sun. Matrix Perturbation Theory. Computer

Science and Scientific Computing. Elsevier Science, 1990. 109

[87] A. Y. Suhov. A spectral method for the time evolution in parabolic problems.

J. Sci. Comput., 29(2):201–217, 2006. 30

[88] H. Tal-Ezer. Spectral methods in time for hyperbolic equations. SIAM Journal

on Numerical Analysis, 23(1):11–26, 1986. 30

[89] H. Tal-Ezer. Spectral methods in time for parabolic problems. SIAM Journal

on Numerical Analysis, 26(1):1–11, 1989. 30

[90] Jian Guo Tang and He Ping Ma. Single and multi-interval Legendre τ -methods

222



in time for parabolic equations. Advances in Computational Mathematics,

17(4):349–367, 2002. 30

[91] Jian Guo Tang and He Ping Ma. A Legendre spectral method in time for

first-order hyperbolic equations. Applied Numerical Mathematics, 57(1):1–11,

2007. 30

[92] Tao Tang and Xiang Xu. Accuracy enhancement using spectral postprocess-

ing for differential equations and integral equations. In Communications in

Computational Physics, 2009. 1, 30

[93] D. J. Torres and E. A. Coutsias. Pseudospectral solution of the two-dimensional

Navier-Stokes equations in a disk. SIAM Journal on Scientific Computing,

21(1), 9 1999. 30

[94] Alex Townsend and Sheehan Olver. The automatic solution of partial differ-

ential equations using a global spectral method. Journal of Computational

Physics, 299:106–123, 2015. 25, 149

[95] Lloyd N. Trefethen. Spectral Methods in MATLAB. Society for Industrial and

Applied Mathematics, Philadelphia, 2000. 25

[96] J.M. Varah. A lower bound on the smallest singular value of a matrix. Linear

Algebra and its Applications, 11(1):3–5, 1975. 112

[97] C.-L. Wang and S.-J. Zhang. The block lower bounds for the smallest singular

value. International Journal of Computer Mathematics, 82(3):313–319, March

2005. 113

[98] Per Åke Wedin. On angles between subspaces of a finite dimensional inner

product space. In Bo Kågström and Axel Ruhe, editors, Matrix Pencils, pages

263–285, Berlin, Heidelberg, 1983. Springer Berlin Heidelberg. 19

223



[99] Wangdong Yang, Kenli Li, and Keqin Li. A parallel solving method for block-

tridiagonal equations on cpu—gpu heterogeneous computing systems. J. Su-

percomput., 73(5):1760–1781, may 2017. 197

[100] Lijun Yi and Zhongqing Wang. Legendre Gauss type spectral collocation al-

gorithms for nonlinear ordinary partial differential equations. International

Journal of Computer Mathematics, 91(7):1434–1460, 2014. 30

[101] Lijun Yi and Zhongqing Wang. Legendre spectral collocation method for

second-order nonlinear ordinary partial differential equations. Discrete & Con-

tinuous Dynamical Systems–B, 19:299–322, 2014. 30

[102] Y.-S. Yu and D.-H. Gu. A note on a lower bound for the smallest singular

value. Linear Algebra and its Applications, 253(123):25–38, March 1997. 112

[103] Fuzhen Zhang. Matrix Theory, Basic Results and Techniques. Springer, New

York, 2nd edition, 2011. 114

[104] L. Zou. A lower bound for the smallest singular value. Journal of Mathematical

Inequalities, 6(4):625–629, Dec 2012. 112

[105] L. Zou and Y. Jiang. Estimation of the eigenvalues and the smallest singular

value of matrices. Linear Algebra and its Applications, 433(6):1203–1211, Nov

2010. 112, 141

224


	Abstract
	Acknowledgements
	Contributions of Authors
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Background
	Fundamentals of linear algebra
	Results from matrix analysis
	Spectrum of a matrix
	Singular value decomposition
	Condition number

	Angles between subspaces
	Orthogonal polynomials
	Spectral methods
	Spectral Galerkin methods
	Spectral collocation methods


	The Stokes problem
	Introduction
	Notations and fundamentals
	Steady state
	Discretization
	Analysis

	Unsteady state
	Discretization
	Analysis
	Convergence


	The Navier-Stokes problem
	Introduction
	Mixed spectral Galerkin scheme
	Staggered-grid collocation scheme
	The Stokes problem
	The Navier-Stokes problem


	New lower bounds on the minimum singular value
	Introduction
	Literature review
	Minimum eigenvalue of sum of two PSD matrices
	Spectrum of saddle point matrices
	Lower bound on the minimum singular value

	Notations and fundamentals
	Minimum eigenvalue estimates
	Importance of the Friedrichs angle
	Motivation
	A special case
	The choice of subspaces

	Minimum singular value estimates
	Some singular value estimates

	Ultraspherical spectral methods in space and time
	Introduction
	Some linear ODEs
	First order
	Poisson problem
	Biharmonic problem

	Time-dependent PDEs
	Heat equation
	Schrödinger equation
	Wave equation

	A fast solver for the space-time US method

	Concluding remarks and future directions
	Appendices
	Alternative proofs
	Difference of orthogonal projections
	A result on complementary subspaces

	References

