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Abstract

Consider a discrete–time, time–homogeneous Markov chain on states
1, . . . , n whose transition matrix is irreducible. Denote the mean first
passage times by mjk, j, k = 1, . . . , n, and stationary distribution vector
entries by vk, k = 1, . . . , n. A result of Kemeny reveals that the quantity∑n

k=1 mjkvk, which is the expected number of steps needed to arrive at a
randomly chosen destination state starting from state j, is – surprisingly
– independent of the initial state j. In this note, we consider

∑n
k=1 mjkvk

from the perspective of algebraic combinatorics, and provide an intuitive
explanation for its independence on the initial state j. The all minors
matrix tree theorem is the key tool employed.

1 Introduction

Let A be an irreducible row stochastic matrix of order n. Evidently the all
ones vector, 1, is a positive right eigenvector of A corresponding to the eigen-
value 1, and from Perron–Frobenius theory, A also has a positive left eigenvec-
tor corresponding to the (algebraically simple) eigenvalue 1. If we normalise
that left eigenvector, say v, so that its entries sum to 1, then v is known
as the stationary distribution vector for the Markov chain associated with A.
The following argument shows how the entries of v can be written in terms
of determinants. Letting adj(I − A) denote the adjoint of I − A, we have
adj(I−A)(I−A) = (I−A)adj(I−A) = (det(I−A))I = 0. Hence, each column
of adj(I − A) is a scalar multiple of 1, while each row of adj(I − A) is a scalar
multiple of v>. Thus adj(I −A) is a scalar multiple of the matrix 1v>. We now

find that vj =
det(I−A(j))∑n
i=1 det(I−A(i))

, j = 1, . . . , n where for each i = 1, . . . , n, A(i) is

the principal submatrix of A formed by deleting the i–th row and column.
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From the all minors matrix tree theorem [2], det(I −A(j)) can be written as∑
T∈Tj w(T ), where i) Tj is the set of all spanning directed trees in the directed

graph of A (where the loops are ignored) having vertex j as a sink , i.e. all arcs
in the tree are oriented towards vertex j, and ii) for each such directed tree T,
the weight of T, w(T ), is the product of the entries in A that correspond to the

arcs in T . Consequently, vj =

∑
T∈Tj

w(T )∑n
i=1

∑
T∈Ti

w(T ) , j = 1, . . . , n. This result, known

as the Markov chain tree theorem [4], establishes a natural connection between
the combinatorial structure of A and its stationary distribution vector.

The stationary distribution vector represents the long–term behaviour of the
Markov chain associated with A. Indeed, when A is primitive, the iterates of
the Markov chain converge to v, independently of the initial distribution for the
chain. A standard measure of short–term behaviour is provided by the mean
first passage times: given states j, k ∈ {1, . . . , n}, the mean first passage time
from j to k, mj,k, is equal to the expected number of steps for the chain to enter
state k for the first time, given that it started in state j. In particular, for each
j = 1, . . . , n,mjjvj = 1; see [6] for example.

From a remarkable result due to Kemeny [6], it follows that if the eigenvalues
of A are denoted by 1 ≡ λ1, λ2, . . . , λn, then for any j ∈ {1, . . . , n},

n∑
k=1

mjkvk = 1 +

n∑
`=2

1

1− λ`
. (1)

The expression
∑n
`=2

1
1−λ`

is known as Kemeny’s constant for the Markov chain

with transition matrix A. Inspecting (1), we see that Kemeny’s constant may
be interpreted in terms of the expected number of transitions required to reach
a randomly chosen destination state, starting from state j. In particular, (1)
yields the surprising observation that

∑n
k=1mjkvk does not depend on which

initial state j is chosen, and that fact has given rise to the challenge of providing
an intuitive explanation as to why this is the case [5, p. 469]. In [3], the author
uses the maximum principle to explain why

∑n
k=1mjkvk is independent of j,

while [1] presents an argument based on the number of visits to particular states
in order to explain that lack of dependence on j. In this note, we provide a
combinatorial argument to prove that

∑n
k=1mjkvk is independent of j.

2 Kemeny’s constant via combinatorics

In this section we maintain the notation of section 1. Suppose that we have
an index k ∈ {1, . . . , n}; since A is irreducible, I − A(k) is a nonsingular M–
matrix (with positive determinant) from which it follows that (I − A(k))

−1 is
an entrywise nonnegative matrix. Fix an index j ∈ {1, . . . , n}. For any index
k with k 6= j, it is well–known that mjk = e>j (I − A(k))

−11. Consequently,
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mjk =
∑n−1
`=1 (I −A(k))

−1
j` , and so we have

n∑
k=1

mjkvk = 1 +

n∑
k=1

(
n−1∑
`=1

(I −A(k))
−1
j`

)
vk. (2)

Next, we consider the adjoint formula for the inverse. For j, k, ` as above,

it follows that the (j, `) entry of (I − A(k))
−1 is equal to

| det((I−A)(`,k),(j,k))|
det(I−A(k))

,

where for a square matrix X, the notation X(`,k),(j,k) denotes the submatrix of
X formed by deleting rows ` and k, and columns j and k. We remark here
that the absolute value in the numerator of that expression eliminates the need
to keep track of the signs of the cofactors in the expression for the adjoint.
Recalling the formula for vk as a ratio of determinants, we thus find that(

n∑
i=1

det(I −A(i))

)(
n∑
k=1

mjkvk − 1

)
=

n∑
k=1

∑
6̀=k

|det((I −A)(`,k),(j,k))|

 .

(3)
In view of (3), it suffices to show that the value of

∑n
k=1

∑
6̀=k |det((I −

A)(`,k),(j,k))| does not depend on the choice of j.
Fortunately, the all minors matrix tree theorem [2] provides a useful tool for

analysing the expression of interest. Let F denote the collection of spanning
directed forests each of which is a union of exactly two directed trees, both
of which have sinks. For each directed forest F ∈ F , we let w(F ) equal the
product of the weights of the two directed trees of which F is the union (here
we take the convention that if a tree has just one vertex, its weight is 1). We

next identify some useful subsets of F . For each k ∈ {1, . . . , n} we define S(j)k

to be the collection of directed forests in F satisfying the following properties:
a) k is the sink of one of the directed trees in F ; and b) j and k are in different

directed trees in F . We note that necessarily S(k)k = ∅. It now follows from the
all minors matrix tree theorem that for any index ` 6= k, |det((I −A)(`,k),(j,k))|
can be written as |det((I − A)(`,k),(j,k))| =

∑
F∈S(j,`)

k

w(F ), where the sum is

taken over the set S
(j,`)
k consisting of the directed forests in S(j)k such that ` is

the sink in the directed tree containing vertex j. We then find readily that∑
` 6=k

|det((I −A)(`,k),(j,k))| =
∑

F∈S(j)
k

w(F ). (4)

We claim that the sets of directed forests S(j)1 , . . . ,S(j)n comprise a partition
F . To see the claim, first fix a forest F ∈ F and write it as a disjoint union of
two directed trees, T1 and T2. Since F = T1∪T2 is spanning, vertex j is in one of
T1, T2, and without loss of generality we take j ∈ T1. Letting k0 denote the sink

vertex of T2, we see that necessarily, F ∈ S(j)k0
. Hence F ⊆ ∪nk=1S

(j)
k . Further,

for distinct indices k1, k2, we have S(j)k1
∩ S(j)k2

= ∅, since forests in S(j)k1
have k1

as the sink in the directed tree not containing j, while forests in S(j)k2
have k2
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as the sink in the directed tree not containing j. Thus, the sets S(j)1 , . . . ,S(j)n

partition F , as claimed. Consequently,
∑n
k=1(

∑
6̀=k |det((I − A)(`,k),(j,k))|) =∑n

k=1

∑
F∈S(j)

k

w(F ) =
∑
F∈F w(F ). This last summation is clearly independent

of j, as desired.
We now summarise the arguments above, maintaining our earlier notation.

Theorem 1. For each j = 1, . . . , n,

n∑
k=1

mjkvk = 1 +

∑n
k=1

∑
F∈S(j)

k

w(F )∑n
k=1

∑
T∈Tk w(T )

= 1 +

∑
F∈F w(F )∑n

k=1

∑
T∈Tk w(T )

. (5)

In particular,
∑n
k=1mjkvk does not depend on j.

We remark that the equivalence of the first and last members of (5) is known
(see [7]). The contribution of the present article is the equivalence of the first
two members of (5), as well as the combinatorial argument establishing their
independence on j.

Acknowledgement The author’s research is supported in part by NSERC
Discovery Grant RGPIN–2019–05408. The author is grateful to an anonymous
referee, whose comments improved this article.

References

[1] D. Bini, J. Hunter, G. Latouche, B. Meini and P. Taylor, Why is Kemeny’s
constant a constant?, J. Appl. Probab. 55: 1025–1036, 2018.

[2] S. Chaiken, A combinatorial proof of the all minors matrix tree theorem,
SIAM J. Alg. Disc. Meth. 3: 319–329, 1982.

[3] P. Doyle, The Kemeny constant of a Markov chain, ArXiv e–prints,
arXiv:0909.2636v1[math.PR], 2009.

[4] F. Leighton and R. Rivest, Estimating a probability using finite memory,
IEEE Trans. Information Theory 32: 733–742, 1986.

[5] C. Grinstead and J. Snell, Introduction to Probability , AMS, Providence,
1997.

[6] J. Kemeny and J. Snell, Finite Markov Chains, Springer–Verlag, New York,
1976.

[7] S. Kirkland and Z. Zeng, Kemeny’s constant and an analogue of Braess’
paradox for trees, Electronic Journal of Linear Algebra 31 (2016), 444–464.

4


