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ABSTRACT

The study of a bilinear hysteretic system subjected to station-
ary random excitation in the highly nonlinear region with special regard
to the system's energy loss behavior is presented. Traditional methods
such as the treatment of a system as an equivalent 1inear system with
viscous damping have been avoided. Recognizing the fact that therenergy
loss parameter of an hysteretic system is response dependent, the power
ratio is introduced as a measure of Toss. The power ratio is defined as
the true power dissipation to the apparent power suppiied to the system,
thus involving the forcing function and the response in its definition.
As only a ratio of power is involved, it may be applied with equal
validity to Tinear and nonlinear systems to express a measure of loss

simitar to that of the damping ratio.

The relationship between the power ratio and damping ratio is
first established with the aid of several linear systems. Results for
a nonlinear nonhysteretic system are given to show that useful results
can be obtained in a strongly nonlinear case with known viscous damping.
Theoretical results are validated with results from a physical model.

The essence of hysteresis is discussed using an isolated bilinear
hysteretic element. In this case, displacement is the input and the re-
sforing force of the element is the response. Theoretical results of
power ratio are shown validated by means of both a physical-analog model
and a digital simulation program. Plots of power ratio versus different -

element parameters and input parameters are presented for periodic and
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random input waveforms. The dependence of the hysteretic element upon

the form factor of the input displacement waveform is indicated. The

meaning of power ratio as a lost effectiveness factor is also established.

Extension of the hysteretic element to include a single mass, thus
forming a singie degree of freedom bilinear hysteretic system is made.

The input quantity in this case is the force acting on the mass. Plots

of power ratio obtained by digital simulation of the system are presented.

Owing to the addition of an inertia force, the effect of force waveform
dependency is less significant. In this case, a peak power ratio is
obtained which corresponds to resonance of the system. It is shown that

the natural frequency of the small amplitude response has a significant

effect on the performance of a system subjected to narrow-band excitation.

For broad-band excitation, this effect is less pronounced.
The work outlined in this thesis explored the energy loss behavior
of a bilinear hysteretic mechanism with the use of power ratio, over a
wide range of input and output parameters. Such a mechanism governs the.
performance of a system under structural overioad, hence, the under-
.standing of the hysteretic mechanism may find application in the design
of force limiting and loss producing elements in civil engineering
structures. Such elements may be installed at suitable locations to

provide controllable and self repairing yielding. In this way, major

damage in the structure may be avoided.




CHAPTER I

INTRODUCTION

1.1 INTRODUCTION

In structural dynamics the three elements which govern the per-
formance of a system are mass, stiffness and damping. The mass (inertia)
and stiffness (elastic) elements alone permits the storage of energy in
kinetic and potential form and the process of exchange between these two
forms of energy under dynamic conditions is the basis of much of our
understanding of vibrating systems. This exchange of energy is, of course,
loss-less and the total energy in the vibrat}ng system at any time will
depend solely on the amount gained from an external source. The addit-
ion of damping elements allows us to account for energy loss from the
system and brings the analysis into accord with the physical behavior of
finear vibrating structural systems. Energy loss may take place through
losses into the surrounding medium (ambient damping), internal damping
" (material damping) and friction at connections (interface damping). While

the properties of the mass and stiffness elements of a system can be

estimated readily from a knowledge of geometrical configuration, material

properties and system natural frequencies, the property of the energy
loss element is not so clear-cut and is still the subject of extensive
investigation [1,2,3].

Most analytical work in structural dynamics has assumed the
systems to be linear so thaf the principle of superposition is valid and

modal analysis of multi-degree of freedom systems can be performed. In




lTine with these assumptions, the damping elements are often ascribed the

“Tinear viscous" form in which the velocity in an element is proportional
to the force applied to that elément. This idealization offers great
mathematical simplicity and, in most cases, gives a satisfactory des-
cription of the performance of a system as long as the amplitude of
vibration is small. In civil engineering, cases of severe excitation
such as earthquake, blast and wind, occur and a structure may be driven
beyond its Tinear Timit at large amplitudes of vibration. Such nonlinear
behavior may be due to the nonlinear stress-strain relationship of the
material, or a similar phenomenon arising from Coulomb friction between
sliding surfaces. Furthering the understanding of the behavior of
structures under such nonlinear conditions is the primary objective of
the work reported in this thesis.

If the nonlinearity in the structure is small, the system can be
modelled édequately as an equivalent linear system having "equivalent
viscous damping”" [2,4,5]. As the degree of nonlinearity increases,
viscous damping aione can no longer describe the energy-loss mechanism

of the system because energy loss due to hysteresis becomes significant.

Hysteresis is an energy-loss mechanism which depends on the past
“history of the system. Hysteresis may be due to the presence of Coulomb
friction in the system, or it may be due to the elasto-plastic behavior
of the material in the system. One simplified model of hysteresis and
one which allows adegquate description of this effect is bilinear hystere-
sis (Figure 1.1). This bilinear model is a good approximation-to the

energy loss behavior in many civil engineering structures during over-

Toad [4].
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Figure 1.1 Restoring Force-Displacement Relationship
of a Bilinear Hysteretic Element




Figure 1.1 shows the restoring force g of a bilinear hysteretic

element versus displacement y. The nature of bilinear hysteresis is
such that the restoring force-displacement slope relationships will
always be either k or ko. The slope k corresponds to a non-yielding
state whereas ka corresponds to a yielding state. Which of these
two slopes holds under any circumstances depends solely on whether local
yield has been or is about to be exceeded. The particular starting point
for either slope will depend entirely on the past history of yielding.
‘ According?y; the element is nonelastic and a loop is described for a
complete cycle of:oécijjat}gnif This Toop is called the hysteretic loop.
It is interééting to note that the amount of energy dissipated by the
element over the cycle is proportional to the area enclosed within the
hysteretic loop. Hence, the energy Toss in an hysteretic element depends
upon how it is forced. A1l these properties of hysteresis, namely,
history dependency, force dependency and the ability to dissipate energy,
together with the invalidity of the principle of superpositioh, make the
study of hysteretic system both stimulating and fascinating.

This thesis presents the study of a bilinear hysteretic system in
the high]y nonlinear region with special regard to the system's energy

Toss . behavior.

1.2 OQUTLINE OF METHODS OF ANALYSIS IN STRUCTURAL DYNAMICS

1.2(i) Linear Systems

Perhaps the best known and simplest kind of problem in structural
dynamics is the analysis of a lumped-mass, viscously damped, one degree

of freedom (1-DOF) linear system subjected to deterministic loading. The




approaches for solving this problem, one in the time domain and one in

the frequency domain, are standard [6,7,8,9]. In the time domain, the
response (such as displacement) of the system to a unit impulse, gener-
ally referred to as the unit-impulse response function, is first
established. The éystem displacement responses are then evaluated by
using the Duhamel integral, which is the convolution of the forcing
function and the corresponding unit-impulse response function. In the
frequency domain approach, the forcing function is first resolved into
an infinite sum of harmonic components. The displacement of the system
to a unit harmonic component, called the complex freguency response. -
function, is then established. The system displacement responses are
obtained by integrating the product of the harmonic force component and
the complex frequency response function, over the entire frequency range.
In both of the above approaches, the integration processes are
possible because the principle of superposition holds. If the system is
strictly Tinear but has n degrees of freedom (n-DOF), it can be
treated, through proper transformation of coordinates, as n, indepen-

‘dent, 1-DOF systems, provided that the system exhibits a Rayleigh type

of viscous damping [6].

In many cases, such as wind and earthquake loading, the assumption
of periodic forcing is unsatisfactory and interest turns to the analysis

of Tinear systems subject to random loading. In these cases, system:

responses are also random and statistical descriptions of the loading
and responses are more meaningful than time-history descriptions. The
appropriate statistical descriptions and the techniques for deriving them

are well documented [6,10,11,12,13,14], and, hence, only one example is



given here to illustrate these techniques. The chosen example is that

of the mean square displacement response to stationary random excitation,
using both time domain and frequency domain approaches.

In the time domain, the autocorrelation of displacement, defined
as the expected value of the product of displacement at zero time delay
and the displacement after delay of <t seconds, is obtained by appiying
the Duhamel integral twice and taking the expected value of the resuliting
integral. The autocorrelation of displacement js then expressed in terms
of the autocorrelation of the forcing function and the unit-impulse re-
sponse function of the system. By setting T to zero in the expression
for the autocorrelation of the displacement and integrating twice over the
entire time domain, the mean square displacement is obtained.

In the frequency domain approach, the displacement autocorrelation
function {s decomposed into an infinite sum of frequency components, the
amplitude of which is called the displacement power spectral density. The
displacement power spectral density and the autocorrelation function form
a Fourier transform pair [10]. The former, and hence the latter quan-
tity, can be expressed fn terms of the complex frequency response func-
tion and the power spectral density of the forcing function. The mean
square displacement -is obtained by setting <t to zero in the expression
for the displacement autocorrelation and integrating over the entire
frequency domain. |

In addition to the direct process of determining the response of
a system from knowledge of its passive parameters and the forcing to
which it is subjected, attention has also been given to determining system

parameters from measured responses to known forcing functions [15,16].




Interest in this inverse problem stems mainly from the lack of knowledge

of the contribution made by the many and varied forms of damping mechan-
isms that exist in a typical civil engineering structure. As with the
direct problem, the inverse solutions may be obtained using either the
time domain or the frequency domain approach.

In the frequency domain approach [17,18,19], response data are
measured for a collection of frequency points. The system parameters
are then evaluated by processing these response measurements, one data
point at a time, together with the known system data, using a recursive
least square technique. In the time domain approach, the response
measurements for some time points are taken, the system parameters are
then obtained by processing these response data, one data point at a
time, together with the known system data, using either the recursive
Teast square technique [20], or the maximum 1ikelihood technique [21].
In employing the least squares technique, appropriate weighting matrices
may be incorporated into the Teast square a1gorithm to account for the
random nature of test data and the structural model parameters [15].
‘These techniques involve very large data processing time if a large

collection of data points are taken.

1.2(7i) Nonlinear Systems

‘From the foregoing résume of techniques for analyzing the vibra-
tion of Tinear structures, the main difficulty in attempting similar
analysis for nonlinear structures becomes clear, namely, that the super-
position theorem is violated. The ramifications of this violation are,

firstly, that the total response of a structure cannot be obtained as a

summation of responses to different forcing functions, and, secondly, that




the analysis of multidegree of freedom systems cannot employ modal tech-

niques. Another difficulty in attempting a 1inear approach for nonlinear

structures is the assumption of viscous damping. Viscous damping is
described usually by the viscous damping ratio, which is obtained by
comparing the energy loss in a cycle with the peak potential energy
stored in the system during that cycle. From the performance point of
view, the damping ratio is a very important parameter in linear struc-
tures because it is this ratio which governs the maximum response of a

structure. However, the damping ratio is a constant derived from the

parameters of a 1inear'system, hence its application in nonlinear hyster-

etic structures is limited because the energy loss parameters in such
stfuctures are response dependent.

If the excitation is deterministic, a nonlinear structure can be
analyzed using either the step-by-step numerical integration [6,7] or
the graphical method [7,22]. Step-by-stép numerical integration is a
widely used technique in solving nonlinear deterministic problems in
civil engineering, hence, only this method is illustrated here.

The essence of step-by-step numerical integration is the approx-
imation of the nonlinear system as a sequence of successively changing
linear systems, each existing for an equal time step. The system non-
linearity is accounted for by using new properties to correspond with
the deformed state at the beginning of each time step. Dynamic equili-
brium is established at the beginning of the time step and the motion of
the system during the time step is evaluated on the basis of an assumed
response mechanism. The responses computed at the end of a time step

are used as initial conditions for the next step, thus the process can




be continued step-by-step for any desired time. This technique deals

with all kinds of nonlinearities and gives satisfactory results providing
the time step is small enough to account for the rate of variation of
loading, nonlinear damping and stiffness properties. In general, the
variation of material property is not a critical factor in choosing the
integration time step; if a significant sudden change takes place, as in
the yielding of a hysteretic spring, a special subdivided time step may
be “introduced to treat this effect accurately. It is found that the

time step needs to be much smaller than the vibration period of the
system if stable results are to be obtained.

The step-by-step and graphical methods depend upon having a de-
terministic forcing of the system. Hence, the search for methods of
analyzing nonlinear systems subjected to random excitation becomes im-
portant when earthquake and similar loadings are of interest. Unfortun-
ately, there appears to be no widely accepted method of analysis in this
area which is at all comparable to that developed for the analysis of
Tinear systems. While the techniques for analyzing these nonlinear systems
’are not yet well developed, there are several approaches available which
can treat a small class of problems quite adequately. They are, the
Fokker-Planck equation, the perturbation method, the power balance method
and the equivalent linearization approach.

In applying the Fokker-Planck equaiion [23,13], an exact solution
can be obtained for a nonlinear nonhysteretic system in which the damping
forces are proportional to the velocity. The excitation needs to be a
Gaussian white noise. If all of these conditions are satisfied, the

solution to the Fokker-Planck equatﬁon gives the transitional probability




density function of the velocity and displacement responses. Various

response statistics such as the mean square displacement and the freq-
uency of crossing of the displacement across a certain level can be de-
termined. However, the restoring force needs to be a single-valued
function of the displacement, hence, this approach cannot be used to

treat an hySteretic system.

In the perturbation approach [24,25,22,13], the displacement re-
sponse is represented as an ékpansion in powers of a parameter e (assumed
small), which specifies the size of the nonltinearity of the system. Sub-
stituting the assumed expansion into the equation of motion of the system
and equating coefficients of Tike powers of € yields.a set of Tinear
differential equations for the terms in the assumed expansion. A first-
order approximation is obtained by neglecting terms of order &2 and-higher
in the expansion, hence, only two-Tinear differential equations need be
considered. Response.statistics of the nonlinear system are obtained
from the cross statistics of the linear differential equations. This
approach is restricted to a Qeak?y nonlinear system. Also, the system
.must contain some finite value of viscous damping to make the solution
of the first Tinear differential equation bounded.

The power balance approach [26,27,28], on the other hand, involves
a balance of power supplied to the system by the environment and power
dissipated in hysteresis effects. The average power input can be readily
evaluated [26] for Gaussian, white, brdad-band random forcing. The hys-
teretic power dissipation is obtained by multiplying the average energy
dissipation per cycle (area within the hysteretic Toop) and the average
frequency of the response displacement waveform which is restricted to

be a Gaussian narrow-band process with Rayleigh distribution of peaks.




The mean square displacement can then be evaluated from the power balance

equation.

The equivalent linearization approach [4,5,29,30,32] is perhaps
the most commonly used among the approximate methods of analyzing non-
linear structural systems to random excitations. In [4,5], the method
of equivalent linearization of Krylov and Bogoliubov [43] is extended to
deal with ;tationary Gaussian excitation. The nonlinear hysteretic system
is rewritten as a linear system héving equivalent viscous damping and
stiffness parameters. These parameters are chosen to minimize the mean
square difference between the nonlinear and Tinear equations. - The motion
must be narrow-band with Rayleigh distribution of peaks, so that only
Tightly damped and weakly nonlinear system can be considered. Alterna-
tively, an equivalent linear system may be chosen such that some
statistical measures between the nonlinear and the equivalent Tinear
system are matched. In [29], methods of matching displacement, matching
velocity, matching displacement and velocity, and matching response power
spectral density are'proposed. Highly nonlinear systems may be considered
-but it appears that different equivalent linear systems are found when
different response statistics are considered.

Most work to date in nonlinear structural dynamics assumes the
displacement response of the system to Gaussian excitation to be narrow-
band, Gaussianly distributed with Rayleigh distribution of peaks. These
assumptions become progréssiveiy less acceptable as any system is driven
into the highly nonlinear response regime. The displacement response in
such a highly nonlinear system will in general be non-Gaussian and will

cover a bandwidth in excessrof the excitation bandwidth. Hence, the ex-




isting methods mentioned are inadequate for the treatment of highly non-

lTinear systems.. Filling this gap in the field of structural dynamics

is, of course, a major undertaking and contributions from many sources
will be required. Most notably, it is felt that contributions which help
to break free from "linear" or "near Tinear" thinking will be most fruit-
ful in filling this.gap. The purpose of the present work, then, js to

consider particular problems such as the energy loss behavior of a bi-

Tinear hysteretic system, without p]acing constraints on its degree of

nonlinearity.

The consideration of power in structural dynamic systems is not

new. Many investigators [33,34,35,36,37] have employed the concept of

.average power in the evaluation of power fiow between resonators. The

evaluation of mean square displacement from a knowledge of the power
balance in the system was done in [26,27]. 1In [38], a procedure was
formulated for the evaluation of mean square responses when complete

system information and average power input are known. A1l the above work

“involves the.consideration of power or mean square responses. However,

these quantitiés have not been employed in defining the energy-loss
property of a nonlinear system. One of the features offered as new in
the present work is the introduction of power ratio as an energy loss
effectiveness factor in structural systems. Power ratio is obtained by

comparing the average power dissipation to the apparent power input to

the system, and, hence, it performs a role similar to that of the damping

ratio.



CHAPTER II

ANALYSIS OF VISCOUS DAMPING IN LINEAR

SYSTEMS USING POWER EQUATIONS

2.1 INTRODUCTION

To gain familiarity with the use of power in considering struc-
tural systems, several linear systems with viscous damping were first
investigated. In each case, the forcing of the system was assumed to
be a random time function. This work offered some interesting insights
into the use of the power method generally and, in particular, Taid the
groundwork for the validation of power ratio in the assessment of linear

and nonlinear vibrating systems.

2.2 GENERAL POWER EQUATIONS

Consider an n-DOF linear system as shown in Figure 2.1(a) which’
is an idealization of the shear structure shown in Figure 2.1(b). The

~equation of motion of this system is
[m}{y} + [cl{y + [y} = {p} , (2.1)

where [m], [c] and [k] are the system's (nxn) mass, viscous damping and
stiffness matrices respectively. The {y}, {¥y} and {y} are the (nx1)
displacement, velocity and acceleration vector, and {p} is a {nx1) load
vector. Postmultiplying each term of equation (2.1) by the row vector
{737 (superscript T denotes transposition) and taking expected value

(ensemble average) of the entire ensemble, equation (2.1) becomes




IPn:Yn

n

I p| :Yi
m; | ‘

O
b=
x

C; k; oy
I 21¥2
ma
Co ko
m, ]
C| ki

(a) Idealization

E— pn :yn
Kn
’pi aYi
ki |
.a.g,. mo -if.?.
—*Ps»Ys
k2
mi
—» DY,
k|

71777 7777777777

(b) Real Structure (Shear Building)

Figufe 2.1 Multi-Degree of Freedom Linear System




[mIELYYT] + [cIELyyT] + [kIELyyT] = E[pyT] , (2.2)

where E denotes expected vatue; E[¥yT], ELyyT], E[yy®l, and E[pyT] are
the system's (nxn) zero-lag covariance matrices. If the loading vector
is restricted to be stationary and ergodic, so then are the responses
[12]. Hence, replacing the expected values in equation (2.2) by the

time averages, equation (2.2) becomes

[m]Cyy™] + [cllyy™] + [k1 [yy™1 = [py"1 , . (2.3)
where — denotes a time average quantity.

Each term in equation (2.3) has the dimension of power, hence,
equation (2.3) is referred to as the power equation of the system. If

the excitation force {p} is assumed to act on one mass then %—(3n+1)Jr

measurements are required to form the mean product matrices [yyT],

LyyT], [yyT] and [pyT]. If [m] and [k] in equation {(2.3) are known then

[c] can be evaluated if [yyT] is nonsingular.

In many circumstances it is desirable to eliminate d%sp]acement {y}
as quantities to be measured, because the direct measurement of displace-
‘ment in full scale structure is impracticable (see Appendix A). Hence,
premultiplying equation (2.3) by [k]™' (assuming the inverse exists),
adding to the resulting equation its transposed equation and using the

relations,

m"_ms

Lyy™] = - [W71 ,

T As a result of stationarity [40], [yyT] and [¥¥T] are anti-symmetrical
and each contains n{n-1)/2 distinct elements. [y¥T] is symmetrical
and contains n(n+ 1) /2 distinct elements. [pyT] contains n distinct
elements.



equation (2.3) becomes

(k17 [c10yy™] + DyTllelk]™ = [k17 [pyT] + [ypTIikI™

- [k]'l[m3[§9?] - DyyTImI0k]™H . (2.4)

Since the matrix [yyT] is eliminated, the required number of measure-
ments are reduced to n{n+1). [c] is symmmetrical and generally con-
tains n{n+1}/2 unknowns. The resultant matrix on each side of equa-
tion (2.4) is also symmetrical so that n{n+1)/2 independent Tinear

equations can be obtained for the evaluation of [c].

A precise evaluation of [yyT] may prove difficult in practice be-
cause of possible phase shift errors between the acceleration and the
derived velocity {see Appendix A), but the need to evaluate these
quantities can be avoided by reformulating the equations of motion into

the modal power equations.

2.3 MODAL POWER EQUATIONS

'2.3(i) Broad-band Excitation

Consider the equations of motion as given by equation (2.1), and
let
{y} = [ol{¥} (2.5)

be the expression which transforms the generalized coordinates {Y} of
the system to the geometrical displacement coordinates {y}. [4] is the
undamped free vibration mode shape matrix. Substituting equation (2.5)
and its derivatives into equation (2.1), premultiplying the resultant
eqauation by [4]T, and assuming the damping to be Rayleigh [6], the

- following modal equaitons are obtained.



M Y; + C; V5 + Ky Y3 = Py, i=1,n, (2.6)

where

[61"[m1[¢1, [C] = [41"[c1[¢] and

[4]1°[k][¢] are diagonal generalized mass, damping and

[M]
[K]

stiffness matrices, respectively, and

"

P} = [61%{p} , (2.7)

is the generalized load vector.
Multiplying equation (2.6) by Y; and taking time averages, the

modal dampings are given as

C. = —2 _ i=1.n. (2.8)

If the excitation acts only on the r-th mass then, in the geome-

tric coordinates, the modal damping C; is

¢ Z Y

ri Pr3 Yij ¥

i =
T Yon Poy Vo ¥
jk wlj ik Yy Yy

» {1,3,k=1,n) , (2.9)

“where [w] = [¢]°*. IF the damping is not Rayleigh, then the matrix [C]
will not be diagonal and the C; as given by equation (2.9) is the
'equivalent' modal damping coefficient which causes the same amount of

dissipation as the original mode.

The modal damping of equation (2.9) depends only on the matrices

[yyT] and [pyT], the number of measurements required is reduced signi-
ficantly to n(n+3)/2. As will be seen in the next sub-section, the
number of measurements may further be reduced by exciting a particular

mode of the system.



2.3 (i) Band-Limited Excitation

For an n-DOF system, assume that the system has n distinct modes
with modal frequencies f;, f,, ..., f;, ... f,, as shown in Figure 2.2.
Suppose that the system is excited by a force p which has a frequency
bandwidtht, Af, centered at the i-th modal frequency, fi, such that Af
does not envelop the frequency bands of other modes. This can be con-

sidered as an i-th mode excitation. Hence, if the excitation force p

acts only on the r-th mass, then from equation (2.5) and (2.7),

-~

Yr = opi Vi

and

i

= ¢r; Py

(2.10)

o/

By introducing equation (2.10) and its derivative in equation (2.8),

the modal damping of the i-th mode becomes

Py Yy

vz
Yr

(2.11)

C; = ¢ri

In equation (2.11), E;_§; is the mean power and ;E-is the mean
.square velocity measured at the Tocation of the forcing. Each value of
modal damping depends only on two measurements.

It has been shown that structural damping can be evaluated by
using various forms of the power equations. A1l assume stationary
ergodié forcing functions. The first of the formualations, equation

(2.3), allows the complete damping matrix to be determined but requires

t

"The force is assumed to be ideally filtered so that there is no frequency
component outside Af,
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the evaluation of a Targe number of covariances. Displacement measure-
ments are also required. The second, equation (2.4), eliminates the

need for displacement measurements but still relies upon the evaluation

of a large number of covariances, and the matrix [yyT] which is very

sensitive to measurement errors. The third, equation (2.8), eliminates

the evaluation of [yyT], but yields only the modal damping if the modes
are distinct, otherwise it yields 'equivalent' modal damping. The last,
equation (2.11), needs only the variance and power measurements for the
evaluation of the modal damping, but can be applied meaningfully only to

a system which has distinct modes.

2.4 EXPERIMENTAL SET-UP AND DISCUSSIONS

A 3-DOF structural model was constructed and a computer simulation
program for linear systems compiled to validate the results of this
chapter. Photographs of the model and the measuring system are shown in
FigureSlZ.S and 2.4. Further reference is made to the model and to the
linear simulation program in Appendixes A and B respectively.
| The work presented in this chapter offers an alternative to the
evaluation of viscous damping parameters in linear systems. What makes it
different from other work is the use of power and mean square measurements.,
It was undertaken to provide a working knowledge of the use of power
measurement methods in Tinear structural systems from which a sound start
into the consideration of nonlinear structural systems might be made. For
this reason, the practical validation of the theoretical results in this
chapter was not prosecuted with the completeness that might be sought in

a primary investigation. Nevertheless, for the experiments and digital
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simulations that were performed, agreement generally within ten percent
was obtained between the values obtained by the half-power method [6]
and the methods enunciated here. A typical set of results from the

physical model are shown in Table A.1, Appendix A.

A1l of the methods in this chapter permit the calculation of the
viscous damping coefficients in units of mechanical ohms (N.s/m). They
do not, however, give direct insight into the behavior of a structure
when under the influence of external forcing. In Tinear systems the
damping ratio or quality factor have been used to succinctly state the
overall vibrational performance of a structure. These classical measures
for assessing the relationship between the storage and dissipation of
energy require that the structure be linear and that all modes be
separable. The introduction of a measure that is similar in importance
to damping ratio but takes into account the effect of external loading
is clearly required if progress is to be made in understanding and ana-
lyzing strongly nonlinear vibrating systems. The power ratio is sub-

mitted here as such a measure.
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CHAPTER 111

POWER RATIO AS AN ENERGY LOSS
EFFECTIVENESS FACTOR

3.1 INTRODUCTION

The definition of power ratio has its roots in electrical engin-
eering [44] where a similar ratio, called the power factor, has been
defined as the actual power dissipation (average of voltage times
current) to the apparent power (root-mean-square voltage times root-
mean-square current). Hence both are Toss effectiveness factors. The
power ratio is similarly defined but has been given a different name
because it was introduced to deal with random vibration whereas the
power factor was introduced to deal with sinusoidal excitation at one

frequency.

Let p(t) be a random forcing function with zero mean and y(t) be
the velocity response of a system taken at the forcing location. The
power ratio W is defined as

- Efpy]
v/ E[pp] - Y E[yy]

where E[ ] denotes expected values. If both p(t) and ¥(t) can be
assumed to be stationary and ergodic, then the power ratio can be de-

fined as

0

W= —F (3.1)

where the bar (—) denotes time averaging, py is the actual power dissi-
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pation {all sources of power loss included) and v/ pp v yy is the
apparent power supplied to the system (see Appendix C). Interpreted

this way, the power ratio is a normalized factor and it indicates what
proportion of the apparent input power is actually being dissipated.
Hence, it has a meaning simi1arlto that of damping ratio.

From another point of view, the power ratio is the zero-lag corr-
elation coefficient between the forcing function and the velocity. Only
when the velocity is directly proportional to the forcing (as in a pure
viscous damper), has the power ratio.a value of one. When there is no
corretation between the forcing and velocity (as in pure mass or pure
Tinear spring), the power ratio is zero. For all other combinations of
mass, damper, spring (linear or nonlinear), the power ratio has a value

between zero and one.

3.2 LINEAR SYSTEM

Since the viscous damping coefficient (or damping ratio) is a
widely recognized relative Toss parameter in linear systems, the power
ratio is first expressed in terms of the viscous damping coefficient in
order to demonstrate its meaning as a factor which indicates the relative
loss in a system.

Consider a single degree of freedom (1-DOF) system having mass
m, stiffrness k, viscous damping coefficient ¢ and that it is subjected

to a stationary and ergodic forcing p, as shown in Figure 3.1{(a). The
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forcing has a constant power spectral density Spp , central radian fre-
quency w_, and a bandwidth of Aw, as shown in Figure 3.1(b). The

forcing bandwidth Aw is assumed to cover sufficiently the peak response

region of the system curve, which is shown in Figure 3.1{c). It is
shown in Section D.1 of Appendix D that the square of the power ratio,

W2,0f such a system is given by

W2 = (3.2)

dm AT °

where Af = Aw/2w.

The power ratio clearly depends on the bandwidth of forcing. As
the forcing bandwidth Af increases, the effective power dissipation per
unit bandwidth decreases as one would expect.

Equation (3.2) can be readily extended to a multi-degree of free-
dom system. The band-limited excitation of such a system is first
studied.

Consider an n-DOF Tinear system which is subjected to stationary
and ergodic forcing p_. acting on the r-th mass as shown in Figure 3.2(a).
The system has a response-frequency curve as shown in Figure 3.2(b). The
forcing has a constant power spectral density over a bandwidth Af; such
that Af, is centered at the i-th modal frequency fy and it does not en-
velop the frequency band of any other mode. In Appendix D {see Section
D.2) it is demonstrated that the square of the power ratio measured at
the mass at which the forcing is acting is related to the i-th modal

damping C; as
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C.

i

4 Af.

1

W2 =

(3.3)

To use this approach the system must possess distinct modes such
that the excitation of a particular mode does not interfere with other
modes. Equation (3.3) assumes an identity matrix for the generalized mass.

The power ratio can also be related to the damping of various
modes by subjecting the system to a broad-band excitation. Consider again
the n-DOF linear system of Figure 3.2. The stationary and ergodic
forcing, p_, acts on the r-th mass and has a constant power spectral
density over a bandwidth Af, which is broad enough to cover the entire
range of the system response. With reference to Section D.3 of Appendix

D, the square of the power ratio, taken at the r-th mass, is of the form

W2 = —° (3.4)

1
> 1
sy
j*
driving point. Cj is a function of modal damping Cj and is given by

where (g = is the effective damping with respect to the force

cy =Ly cj/¢;j, where L2 = jgl 975 and [¢] is the undamped free vibration
mode shape matrix.

It is interesting to note that C, represents the overall damping
of the system having the dampers C§ in series. The power ratio, in this
case, is the loss effectiveness factor for the entire structure at the
point of forcing. 1In this respect, it is like Lyon's statistical energy
analysis [40] in that it summarizes the relative power loss of all modes
which would otherwise be impossibly complicated to treat separately if

the number of modes is Targe. .
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Using this method, starting with the bandwidth from low frequency
and enveloping one additional modal frequency at a time, it is possible
to calculate modal damping values for as many modes as desired. If the
modes are not distinct, then these values will be 'equivalent' modal

damping values.

3.3 1-DOF NONLINEAR NONHYSTERETIC SYSTEM

Consider a 1-DOF nonlinear nonhysteretic system as shown in
Figure 3.3(a). The system has a mass m, viscous damping coefficient c
and is subjected to a stationary and ergodic forcing p. Without loss
of generality, the nonlinear spring is assumed to exhibit a bilinear re-
storing force g(y}, as shown in Figure 3.3(b). g{y) has a first slope
k,» and beyond the yield point, a second siope (k3+kA). The nonhysteretic
characteristic of the spring is such that the same bilinear path in Fig-
ure 3.3(b) will be followed by all Toading and unloading sequences. The
value of g(y) is known therefore for any value of y. Accbrding]y, no
area is enclosed by the pafh upon loading and unloading, thus defining

the spring as nondissipative.

The equation of motion for this system is
my +cy +gly) =p . (3.5)

The only dissipative element in the system is the viscous damper. g(y)
will not dissipate energy and hence the power ratio of this system is
given by

W2 = = (3.6)
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which is also the expression for a linear system.
To validate the results shown above, experiments were carried out

by using the physical model described in Appendix A.

3.4 NUMERICAL RESULTS AND DISCUSSIONS

To give experimental verification of the methods just enumerated,
both 1-DOF and n-DOF systems are required. To provide these, the 3-DOF
physical model was used either as such or with mass m, blocked, making
it effectively infinite, to yield a 1-DOF system comprising m, and k,
(Figure A.1). This resulted in a system having a natural frequency of
9.3 Hertz and a damping coefficient of 0.06 N-s/m, 0.18 N-s/m, 0.55 N-s/m
or 1.33 N-s/m depending upon the damping switch position 0, 1, 2 or 3
selected (Figure A.2). These damping coefficients were determined by
using the half-power method and are taken as adequate references in the
present work.

In thé first case, the 1-DOF physical model was used to check the
validity of equation (3.2). Measurements of py, pp and yy were taken

’for the different damping settings and for different excitation band-
widths, &f, centered at 9.3 Hertz. The power ratio in each case was
evaluated and equation (3.2} was used to calculate the viscous damping
of the system. These results are given in Table 3.1. It is noted that
the power ratio, which is a measure of dissipation per unit excitation
bandwidth, is not a constant. The product of the power ratio and the
excitation bandwidth is fairly constant, and the viscous damping coeff-
icients evaluated this way are generally accurate to within 10 percent

of the reference values.
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Effective™ DAMPER SWITCH POSITION
Af 1 2 3
(Hertz) c c C
oo sy | (es/m) W (N-s/m)
Reference - 0.18 - 0.55 - 1.33
9.2 0.24 0.19 | 0.40 | 0.53 | 0.66 1.44
13.7 0.20 0.20 | 0.34 0.57 | 0.54 1.44
20.5 0.16 0.19 | 0.28 0.58 | 0.44 1.43
27.9 0.14 0.20 | 0.24 0.58 | 0.38 1.46

*
See Appendix A

TABLE 3.1 Power Ratio and Viscous Damping Coefficients
of a 1-DOF Linear Model




_34-

To validate equation (3.4), the full 3-DOF physical model was
forced at the third mass. The resonant frequencies and undamped free
vibration mode shape matrix are those given by equation (A.1).

First, an experiment was performed with all damper settings in
switch position 1. The three resulting modal damping values (as deter-
mined by half-power method) are given in Table 3.2. When the effective
bandwidth is equal to 30 Hz, the power ratio is found to be 0.0966 and
the square root of the right-hand-side of equation (3.4) is 0.0952, a
difference of about 1.5 percent. When Af is increased to 45 Hz, the
corresponding numbers agree still closer, a result of improving frequency
coverage. |

An experiment was then performed with the setting of damper 1 in
switch position 2, damper 2 in switch position 0, and damper 3 in switch
position 1. In this case, the modal dampings were found to be those
shown in Table 3.2. The results of power ratio and the corresponding
total power loss effect from all modes were found to agree within 1.6
percent. The good agreement obtained in these cases is most likely due

“to the lTow damping\present in the system, and hence the assumption of
separable modes is satisfied,

To validate equation (3.6), a 1-DOF bilinear nonhysteretic model
is required. This was provided by inserting the tip of a thin elastic
rod with stiffness k, into a gap in the mass of the 1-DOF Tinear model.
The mass of rod was assumed to be negligible. When the system response
amplitude is below a certain level, there is no contact between the rod
and the mass, hence, the system remains Tinear with stiffness k,. When

the amplitude exceeds a certain level, the mass and the rod will come
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1st EXPERIMENT - AT11 damper in switch position 1

Cy Co Cs : C 1y
Effective o Y/
(N-s/m) | (N-s/m) | (N-s/m) Af W (4 ¥
. .0952
0.320 1.660 4,130 30 0.0966 0.095
45 0.0775 0.0777
2nd EXPERIMENT - Switch position of dampers:
damper 1:2  damper 2:0  damper 3:1]
30 .0961 0.0946
0.315 1.806 2.627 0
45 0.0768 0.0772

TABLE 3.2 Validation of Equation (3.4)
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into contact and the rod, acting as a cantilever, adds stiffness k, to
the system. Under these conditions, the system stiffness becomes
(kytky)s see Figure 3.3(b).

Two groups of experiments were performed for the bilinear nonhy-
steretic model. The first group of experiments used a rod which gave
3.57 as the ratio of (k,+k;)/k,. Mean square measurements of E}; pp and
yy were taken with damping set first to 0.18 N-s/m and then to 1.33
N-s/m. For each of these settings, three different forcing bandwidths
were selected. The power ratio was evaluated for each case, and the
corresponding viscous damping coefficient was calculated by using equa-
tion (3.6}. The results are given in Table 3.3(a). The second group of
experiments were identical with the first except that (k3+kA)/k3 was set
equal to 1.63. The corresponding results of power ratio and viscous
damping coefficient are given in Table 3.3(b). In both cases, a high
level of excitation was maintained to ensure that the model was driven
significantly into the nonlinear region such that measurement of damping
by the half-power method was not possible.

From Table 3.3, it is noted that the values of power ratio are
not affected significantly by the spring stiffness of the system. This
is due to, firstly, the value of viscous damping coefficient, being a

function of the electro-magnetic property of the model, is invariant to

the change of stiffness. Secondly, the added spring has very small
loss, hence, the values of power ratio are a function of viscous damping
only. The damping coefficients obtained from the power ratio agree with
the reference damping, to within 10 percent. In general, as the system

frequency-response curve becomes less sharply peaked, as in the case of



DAMPER SWITCH POSITION
Effective
Af 1 3
(Hertz) c c

W (N.s/m) W (N-s/m)
Reference - 0.18 - 1.33
20.5 0.16 0.19 0.44 1.43
27.9 0.14 0.20 0.37 . 1.38
45,0 0.11 0.20 0.30 1.46

(a) Strong spring, (k3+kA)/k3 = 3.57

Effective DAMPER SWITCH POSITION
AT 1 3
(Hertz)
C c
W (N-s/m) W (N-S/m)
Reference - 0.18 - 1.33
20.5 6.16 | 0.19 0.45 1f49
27.9 0.14 0.20 0.38 1.45
45.0 G.11 0.20 0.30 1.46

{b) Weak spring, (k3+kA)/k3 = 1.63

TABLE 3.3 Power Ratio and Viscous Damping Coefficients
of a 1-DOF Bilinear Nonhysteretic Model
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a highly damped system, a Targer difference would be expected between
the measured and reference values of viscous damping coefficient. Hence,
the accuracy thus obtained is quite satisfactory although a possible
source of error might be due to the impact which exists between the in-
serted rod and the mass.

The work presented in this chapter deals with linear systems and
a system with a nonlinear, nondissipative spring. Interesting results
are noted. Firstly, the power ratio is the effective dissipation per
unit excitation bandwidth for a system with a sharply peaked fregquency-
response curve. Secondly, the effective damping of the whole structure
with respect to the driving point can be summarized as a combination of
damping from each individual mode. And, lastly, for a system with a
nondissipative spring, it is found that the power ratio is not affected
significantly by the change of system spring stiffness. Although power
ratio may be used in linear systems, it is primarily introduced to deal
with nonlinear systems. Many of its interesting characteristics and
its usefulness as a loss effectiveness factor can be more clearly

visualized when a nonlinear hysteretic element is studied.
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CHAPTER IV

POWER RATIO IN BILINEAR HYSTERETIC ELEMENTS

4.1 INTRODUCTION

It has already been suggested that hysteresis is the Toss mechan-
ism that is of interest when vibrational overload of a structure takes
place and that the power ratio may be a suitable measure of loss effect-
iveness in hysteretically damped systems. Consequently, the power ratio
of a simplified hysteretic element shown in Figure 4.1(a) was studied.
It was studied in isolation first to allow for a full ranging enquiry

free from the complication of inertial forces.

4.2 BILINEAR HYSTERETIC ELEMENTS

The element of Figure 4.1{(a) is assumed to be massless and has a

Coulomb slider which starts to move only at a force level of X (1-o)ky,,

where y is the yield displacement of the element. The corresponding

yield force at y_ is designated as p_. The total restoring force g{y,¥)

of the hysteretic element, when plotted against displacement vy, is
depicted in Figure 4.1(b).

In the present analysis, the input quantity is the displacement y,
which is assumed to have a Gaussian distribution. The output quantity
is the restoring force, the statistical properties of which are unknown.
Since g(y,y) is the only force in the system, it is also referred to as
p(y,¥). In order to obtain an expression for the power ratio, it is

necessary to know the values of E[pp], E[py] and E[yy].



-40-

N
n

AANNNSRNRNRNRNNY

y EEm st
¥ ka
(1-0)k
Coulomb siider
Massless

(a) Idealized Model

i 9(y,y)=ply,y)
y* -
”“"i ,_/;jk()t
-7

Displacement y

(b) Restoring Force Versus Displacement

Figure 4.1 Bilinear Hysteretic E

lement



-47-

An expression for E[pp] can bé readily obtained once the proba-
biTity density function of the restoring force, pr(p), is known. pr(p)
is obtained as follows.

Consider the input process y whose probability density function

pr(y} is given mathematically as

pr{y) = ———e , (4.1)

where o, is the standard deviation or root-mean-square (rms) value of
the displacement [12]. The process y 1is assumed to have zero mean.
pr(y) is sketched as shown in Figure 4.2. Let ¥, be the yield displace-
ment of the hysteretic element and Tet y* be the mean of the peak values
of y which are beyond the yield level Yo (see Appendix E for the
derivation of y* for a Gaussian process). The random process for y

may be represented by an equivalent process (dissipating the same

amount of energy as the original process) wh1ch has a mean y1e1d peak
value of y* and a mean frequency of y1e1d1ng, f* Th1s mean frequency

is equal to the frequency of posqt1ve siope crossing at the level y

and is given by [41]
_yé
202
w2 1% ¥
f o , e . (4.2)

where Oy is the standard deviation of the velocity. Accordingly, the
restoring force may be plotted against y by assuming that y* is the
mean yield peak value, see Figure 4.1(b), and that the mean frequency of the

hysteretic loop is f*. The area enclosed by the Toop is then the amount of
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With this representation of y, the probability density functions

of the restoring force are obtained for the following cases in Appendix
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In equation (4.3) through (4.6), I,, I,, I,, I, and A are given

2% ~3% “y
the following meanings:
I, = - [p/k-y*(1-a)1%/20% , 1, = - [p/k+y*(1-0)]*/20] ,
I, = - [p/k = ¥o(1-0)12/202 , 1_ = - [p/k+yo(1-a)]2/202 ,
and A 1

v oem koy

The mean square value of p can be obtained by taking the second
moment of pr(p), thus

Elpp] =[ p2pr(pldp . (4.7)
limit

where the integration limits of p are shown in equations (4.3) through
(4.6) for different cases.

The term E[py] means the average power dissipation and is eaual to

the area of the loop of Figure 4.1(b) multiplied by the mean yield fre-

quency, hence,

-2

o
2

ZUY

EDpy] = 4 ky,(1-a)y* . g Lo~ (4.8)

2l

The term E[yy] is simply the mean square velocity, thus,
ELyy] = of . (4.9)

The power ratio of the hysteretic element for Gaussian displacement
input may be formed by using equations (4.7) through (4.9) and solving

numerically.



~45-

4.3 NUMERICAL RESULTS AND DISCUSSIONS

The power ratio as derived in the last section for the bilinear
hysteretic element was validated by means of both a physical-analog
model and a digital simulation model.” The physical-analog model is de-
scribed in Appendix 6 and the digital simulation program is described
in Appendix H. The derivations in the last section are referred to as
the computational model.

The elasto-plastic case (a=0) was chosen to compare the results
of the three models because it is a highly nonlinear case. In line with
this thinking, the displacement was chosen as a Tow-pass Gaussian process
(ratio of cut-off frequencies infinite). In the physical-analog model,
it was found that an averaging time of 40 seconds (sampling rate 0.2
second) yielded repeatedly close results for the evaluation of averages.

Hence, this averaging time was employed for the evaluation of by, pp and

yy. Whereas in the digital simulation model, a total of 256 data was
found to give statistical regularity to within 10 percent, although the
results presented here used a total of 1280 data. In the computational
model, Simpson's one-third rule [45] was employed to numerically inte-
grate equations (4.7) and (E.7). An integrafion interval was subdivided

into 20 integration strips and was found to give steady results.

The power ratio obtained from the three models is shown plotted
against different values of a non-dimensional quantity, yO/oy, in Figure
4.3. 1In general, the resulis from the three models agree closely. The
digital simulation results are consistently lower than the results from
the computation model, whereas the results from the physical-analog model
are between those of the other two models. The difference between the com-
putation and simulation results is most 1ikely due to different form factors

of input displacement waveform of the two models. Results beyond yo/cy = 1.6
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cannot be obtained from the physical-analog model because of the 1imita-
tions of the amplifiers used. For high values of yo/cy, the power ratio
tends to zero. This is what one would expect because for large value

of yoloy, there is essentially no yielding (linear system), hence no
power dissipation and the power ratio is zero. At the Tower scale of
yo/cy, the power ratio is around 0.8. At first sight, this result is
quite surprising. The power ratio might be expected to tend to unity as
yolcy becomes smaller and smaller, for the element is yielding and,
hence, dissipating energy virtually all of the time. To investigate
this discrepancy between the expected outcome and the performance of the
models, digital simulation using deterministic waveforms was performed.
The three input displacement waveforms and the resultant steady state
velocity and force waveforms are as shown in Figure 4.4. The simulation
range was limited to small values of yo/oy and 2 cycles (256 data points)
were used in all cases.

In the case of the triangular input waveform, the force and velo-
city waveforms are almost in phase and proportional to each other, and
the calculated power ratio is 0.992. Theoretically, as the value of
yo/cy approaches zero, the force and velocity will be exactly in phase
and a power ratio of one may be expected. With a sinusoidal input wave-
form, the force and velocity are almost in phase, but not proportional
to each other, and the power ratio in this case is 0.905. Finally, a
square input waveform yields a velocity which is zero (except at the
points immediately before and after the zero crossing of displacement),
hence the power ratio is identically zero.

From the above, it is found that the power ratio of an hysteretic
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element is waveform dependent. It may be noted that the power ratio is
unity only when the force is proportional to the velocity, as is the
case of a viscous damper. A clearer insight into the loss behavior of
the bilinear hysteretic element can be obtained by remembering that the
power ratio is simply the zero-lag correlation coefficient between force
and velocity. Thus, taking the case of a sinusoidal input waveform
(Figure 4.4(b)), it may be noted that harmonics higher than the first in the
the force waveform have no correlative equivalent in the velocity wave-
form. From this, it is clear that the power ratio of the hysteretic
element alone is a meésure of its efficiency in converting input motion
to loss and that this efficiency depends upon the form factor of the in-
put displacement waveform, as well as upon yo/oy. This is, of course,
an excellent property of the power ratio, for, as expected, it will
always give the true power ratio for any system containing an hysteretic
element no matter how the system is forced.

Figures 4.5 and 4.6 are b]ots of power ratio for the triangular
and sinusoidal input waveforms, respectively, as computed by the simula-
tion model. Results for different values of yo/cy and o are given.
Figure 4.7 contains the corresponding plots of power ratio for a Gaussian
low-pass input waveform (0-1 Hertz), as obtained from the computational
model. The use of simulation model requires processing of over 256 ran-
dom input data for each value of power ratio; consequently, the computa-
tional model, the accuracy of which has been demonstrated, was used here
for computational efficiency. In altl these plots, when either the value
of o or yo/oy increases (except when yo/oy is small}, the element becomes

more linear, hence the power ratio drops. It is interesting to note that
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Figure 4.5 Plots of Power Ratio--Triangular Input Waveform
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Figure 4.6 Plots of Power Ratio--Sinusoidal Input Waveform
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the values of power ratio are sharply truncated for the triangular and
sinusoidal cases, whereas for the Gaussian case, the power ratio drops
asymptotically to zero.

With reference to Figure 4.7, some interesting features can be
noted in the region where yO/cy is small. These may be best illustrated
with the aid of Figure 4.8(a), which shows the energy storage and dissi-
pation of the bilinear hysteretic model of Figure 4.1{(a) in a quarter
cycle of oscillation. The first spring ko is 1inear, and hence only
stores energy. The second spring (1-0)k is linear for displacement am-
plitude less than Y,» hence stores energy in this region. Beyond Yos
this spring becomes plastic and therefore, only dissipates energy, the
amount of which is equal to the shaded area (y is the maximum displace-
ment amplitude}. Now, consider the case when a equals 0, i.e. when the
first spring does not exist. For small values of yo/cy, as in Figure
4.8(b), there is 1ittle build-up in stored energy, and almost all energy
1s dissipated, hence, the power ratio has a maximum value, see Figure
4.7. Physically, for an elasto-plastic element, there is a lack of

’energy storage which gives rise to central tendency, i.e. there is no
tendency for the element to return to its original configuration. When
the values of o increases, substantially more energy stored is brought
about by the first spring, and if yo/cy is small, as in Figure 4.8(b),
the amount of dissipation is negligible when compared to the huge amount
of storage, hence, the value of power ratio is small. 1In fact, with the
exception for o equals 0, all curves tend to zero power ratio as yo/oy
tends to zero, see Figure 4.7. The large amount of energy storage in-

dicates that there is a strong tendency for the element to return to its
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original position, and there is virtually no dissipation relative to
storage of energy.

In addition to the waveform dependency just described, the power
ratio indicates that the hysteretic element is also bandwidth dependent.
In Figure 4.7, where the cut-off frequency (f1==0 Hz, f,=1 Hz) ratio is
infinite, the power ratio has a maximum value of 0.82 when o equals 0.
In Figure 4.9, in which the cut-off frequency (f, =1 Hz, f,=2 Hz) ratio
is 2, the maximum power ratio increases to 0.87. Finally, for a narrow-
band input process, as in Figure 4.10, in which the cut-off frequency
ratio approaches 1, the maximum power ratio is nearly 0.9, close to the

result of the sinusoidal case (Figure 4.6).

Work was then carried out to study the frequency dependent nature
of the hysteretic element using the computational model with an input
displacement having a Gaussian distribution. The results are graphed
in Figure 4.11 for the case of o equals 0 and yO/Oy equals 0.08. It is
found that the calculated power ratio depends on the ratio of, rather
than the difference in, the cut-off frequencies f, and f, of the input
displacement process. Thus, an input process having cut-off frequencies
1 and 10 Hz and another process having cut-off fregquencies 10 and 100 Hz
will have the same effect on the hysteretic element as far as the value
of power ratio is concerned. Shown in Figure 4.11 is the power ratio
plotted against the number of octaves between f, and f,, which is referred
to as the bandwidth ratio F,, and is mathematically defined as
Tog(f,/f,)/log 2. When F,, tends to zero, the input becomes a narrow-
band process, the power ratio has a value of 0.85, which, for @ equals

0 and yo/oy equals 0.08, agrees with the value given in Figure 4.10.
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When F;, increases, the power ratio drops more or less in a semi bell-
shape fashion. For large values of F,,, the power ratio drops asym-
ptotica]iy: When F,, equals 7, the power ratio is 0.7966; and for a low-
pass process (F;, infinite), the power ratio is 0.7961. This bandwidth
ratio dependency of the bilinear hysteretic element demonstrates once
again, the dependency of the element upon the form factor of the input
displacement waveform. This is because, in practice, the bandwidth ratio
affects the form factor (peak amplitude/r.m.s. amplitude) of a random
process. It is expected that the effect of bandwidth ratio for other
values of a and yo/oy will be similar to that shown in Figure 4.11. The
extensive computations involved in exploring a wide range of these
values, together with the need to expliore other features of the hysteretic
element caused deferral of further investigation of bandwidth ratio
efrects.

Interesting characteristics of a bilinear hysteretic element
such as its waveform and bandwidth ratio dependencies have been inves-
tigated. The study of this nonlinear element is crucial to the under-
standing of hysteresis in general and gives ways to the study of a 1-DOF

hysteretic system.
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CHAPTER V

POWER RATIO IN BILINEAR HYSTERETIC SYSTEMS

5.1 INTRODUCTION

In the investigation of the isolated, bilinear hysteretic element
the form factor of the displacement waveform was clearly an independent
controlled variable. Thus, the behavior of the element with different
form factors could be investigated. When the element forms part of a
vibrating system, however, displacement will, in general, be a dependent
variable. The loss in the system will depend upon the amplitude and
form factor of the displacement across the hysteretic element and, in
turn, the amplitude response to a given forcing will depend upon the
effective loss in the system. This interdependence between the loss
mechanism, forcing and response is the essential problem in studying the
nonlinear structures that are of interest in the present context. To
pursue this study with minimum additional complexities a single mass was
- added to the bilinear hysteretic element and the mass subjected to a

known force, p(t).

5.2 1-DOF SYSTEMS

In the system of Figure 5.1, m, k, o are as previously defined
and their values are assumed to be known. Thus, everything is known ex-
cept the displacement, velocity and acceleration responses of the mass.

The Coulomb slider moves at a force level of + (1-a)ky,, where y_ is the
yield displacement of the system. The total restoring force g(y,y)} of

the hysteretic element is, as before, shown in Figure 4.1(b). The equation
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of motion of this system is

my+aly.y) =p, (5.1)

y == ,I
Ko

AN

(1-a)k

MWV

Coulomb slider

Figure 5.1 Model of a 1-DOF Bilinear Hysteretic System

As before, only average measures of the responses will be dis-
cussed and it is important to note that the probability distributions of
the responses will not in general have the same form as that of the in-

put force.

5.2(1) Theoretical Model

A complete theoretical model of the 1-DOF hysteretic system which
yields a closed form solution is not realizable. To help to further the
investigation, however, a preliminary theoretical model has been produced
on the basis of weak nonlinearity and known hysteretic properties. The
assumption of weak nonlinearity severely limits the applicability of the
model, and the model is presented not as a tool to validate results from
other models, but to offer some insight to the problem and possibly, to
give a basis for further investigation.

It is assumed that the displacement response of the bilinear
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hysteretic system to a Guassianly distributed forcing function is also
Gaussian. This assumption is satisfactory in cases where the root-mean-
square value of the displacement response is small compared with the
yield displacement. Using this assumption, y*, the mean of the peak
values of y which are greater than the yield level Y,» Can be
calculated using the procedure given in Appendix E. The average power

dissipation py, again, can be approximated by equation (4.8) as

-y?
1

RS « 199 252
py = 4 ky,(1-a)y*, o, e ¥ (5.2)

Using equation (5.2), the power ratio W of the bilinear hysteretic system

is given by -y2
1.9 202
4 ky,(1-0)y*.opr 6, e ¥
W= : s
OP . 03',

where o, is the r.m.s. value of the forcing function.

b

By letting g, equal kyo, the power ratio becomes

_yé
- * 2g2
W= g-59-(1-00 Y g Y . (5.3)
T Op Oy

‘The power ratio, then, depends upon three dimensionless parameters, o,

9% Yo + ) 9% . .

a-and 5 - © 1s a sysiem parameter, 5~ is a system and forcing para-
P Y y P
meter, and 89-13 a system and response parameter. Unfortunately, these

Y
. Y . .
parameters are not independent. 59-, being an output parameter, will
y

depend on the other two input parameters. Equation (5.3) will be of more

ty* . . . . Yo
— 1in equation (5.3) is a function of —
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Yo o
value if = can be expressed in terms of o and o
y P

y g
Relationships of an approximate nature between 59-and Eg-and o.
4 p

have been obtained for weakly nonlinear systems [5,24,27]. Unfortunately,
similar relationships for highly nonlinear hysteretic systems were not
available. To obtain such relationships, the probability distributions
and the frequency spectrum of the responses need to be more exactly
derived. This is a major undertaking and contributions from many sources
will be required. For this reason, further study on the theoretical
model was deferred and the simulation of the system of Figure 5.1 was
pertormed on a digital computer so that exploration over a wide range of

system and input parameters could be investigated.

5.2(i1) Simulation Model

A number of advantages were seen in developing a simulation model.
Firstly, it takes relatively less time to develop than a satisfactory
physical model, which is complicated to design and requires extremely
fine workmanship to build. Secondly, the simulation model is an "ideal"
system. And thirdly, with the simulation model, a wide range of para-
meters can be explored. The difficulties inherent in a satisfactory
validation of such a model, however, make the subsequent testing of a
physical model highly desirable.

In the simulation model, the system responses (velocity, displace-
ment and restoring force) are computed using step-by-step numerical in-
tegration [6]. The model is assumed to consist of a sequence of succes-
sively changing linear systems, each existing for an equal time step.

The nonlinearity of the model is accounted for by using new properties

corresponding to the current deformed state at the beginning of each time
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step. Dynamic equilibrium is established at the beginning of the time
step and the motion of the model during the time step is evaluated on

the basis of a linear acceleration mechanism. The responses computed at
the end of a time step are used as initial conditions for the next step,
thus the process can be continued step-by-step for any desired time. A
time step of about one-tenth of the small amplitude vibration period of
the model was used to give stable results [6]. To account for the change
of state in the hysteretic element, a special subdivided time step, found
by trial and error, is introduced to treat this effect accurately. Further
details of this program appear in Appendix I.

Mean values of yy and py (or gy) may be evaluated once the system
responses are known. Values of power ratio can then be found for various
values of the model and forcing parameters. These parameters may be
grouped into three dimensionless variables, namely, a, gﬁ-and a frequency
parameter. In this case force is the controlled input variable and,
hence, 5§~rep1aced §§~used in the hysteretic element investigation. The
frequency parameter includes the forcing frequency parameters (e.g. cut-

‘off frequencies) and the small amplitude natural frequency of the model.

5.3 SIMULATION RESULTS AND DISCUSSIONS

Preliminary investigations were performed using both periodic
(sinusoidal, triangular and square) and random excitation. 1In all cases,
256 input data points were used. Increasing this number by a factor of
eight in a number of test runs produced less than eight percent differ-

ence in the results. Hence, a sample size of 256 was considered adequate
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to explore the form of the response of the 1-DOF hysteretic model.

In the periodic excitation cases, an excitation frequency of
0.078 Hz (8 cycles over 256 input data, sampling rate 0.4 second) was
first selected. A small amplitude natural frequency fo of 0.113 Hz
(k=0.5 N/metre, m=1 kg) was selected for the model such that it is
just higher than the forcing frequency and at the same time, gives a
vibration period at Teast ten times [6] greater than the integration
time step. An integration time step of 0.4 second was chosen equal to
the sampling time for computational efficiency. In the random excita-
tion cases, the frequency range of the forcing spectrum was from 0.09
to 0.23 Hz. The small amplitude natural frequency of the model was first
chosen to be 0.2 Hz (close to the upper cut-off frequency of the forcing).
Again, the integration time step was 0.4 second. Figures 5.2, 5.3, 5.4
and 5.5 are plots of power ratio versus 9o/0ps for a range of values of
o, for sinuscidal, triangular, square and random forcing excitation

respectively.

From Figures 5.2, 5.3 and 5.4, it may be seen that the results for
'the three periodic input waveforms are very similar. This is in sharp
contrast with the results obtained from the pure hysteretic element. This
difference is due to the "smoothing" effect of the mass in converting
force to velocity and displacement. Thus, to a first approximation,
velocity and displacement are sinusoidal in waveform for each of the
three periodic force waveforms used. Consequently, the form factor of
the displacement waveform of the hysteretic element is not much affected
by the changes in forcing waveform. It will be remembered that displace-

ment form factor is significant in determining the Joss effectiveness of
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an hysteretic element.

Another interesting feature of the response of the hysteretic
system to periodic excitations is indicated by the peaks in the power
ratio for certain combinations of o and 29-. This is due to the fact
that the addition of a mass produces a syitem which will store energy
in both kinetic and potential forms. The resonant frequency of the
system is governed not by k directly but by the effective stiffness
which depends upon o and the extent of yielding induced by the applied
force. If the forcing frequency is less than the small amplitude
natural frequency and a less than 0.5, a value of go/cp can be found that
will ”£uhe“ the resonant frequency of the system to coincide with that
of the forcing. Thus a peak in the power ratio curve is produced at
this value of gO/oP by the offsetting effect of two forms of energy
storage. The case of o equals 0.5 is interesting. When the excitation
I is large compared with g,» the system always yields. Hence, the
effective stiffness of the system is ko and the resonant frequency
(v ko/m/27) is found to be 0.079, which is approximately equal to the
'1forcing frequency. Consequently, with o equals 0.5 the system is vir-
tually at resonance and the power ratio is maximum for all values of Oy

that are comparable with, or greater than the yield force 9, (see

Figures 5.2 through 5.4).

For other values of o, it is found that as go/op approaches zero,
the power ratio does not necessary tend to zero. This is again contrary
to the results obtained from an hysteretic element in which the power
ratio tends to zero as yo/oy approaches zero for all values of o except

zero. In the case of a pure hysteretic element, the potential energy will
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dominate as g, become large (yo/oy + 0} for a non-zero, hence the power
ratio will tend to zero. In the case of an hysteretic system, under
similar circumstances both the potential energy and kinetic energy levels
may be Targe depending upon the relationship between the forcing and the
“resonant" frequencies. As a result of the offsetting effect of the

two forms of energy, the total storage energy may not be large. Hence,
the power ratio does not necessarily tend to zero. The results for o
equals zero are not stable in the present case because of the lack of
central tendency,

For o greater than 0.5, the effective resonant frequency of the
system is always less than the forcing frequency. Hence, a peak in the
power ratio is not a result of simple resonance, but corresponds to a
circumstance when the total storage energy is minimum.

Similar curves to those just discussed but for the random forcing
function are shown in Figure 5.5, from which it may be seen that the
peaks of the curves are less sharp. This is because forcing energy is
more evenly distributed among the various frequencies of forcing, hence,
the effective resonance is spread out. As before, the values of power
ratio do not necessarily tend to zero as go/op approaches zero. It is
of interest to note that the power ratio does not seem to be asymptotic
with zero as go/oP tends to infinity, e.g. Figure 5.5. It was thought
that this might be caused by the fact that at Targe values of go/oP the
- system-becomes nearly linear:-and is very 1ightly”damped. Thus, if a peak
in the input spectrum is close in frequency to the resonant frequency of
the system a non-zero power ratio might be expected. To investigate this

effect, a series of simulation runs were performed with the 1-DOF system



Power ratio

~71-

1.0 1
0.9
. T —
Point Gy cp py
1 |5.2813.75] 3.51
0.8 > | o0.8710.50]0.30
3 |o0.53]0.1710.05
4 |0.30]0.06].001
oo
971
0.1 ¢,
2 4 6 8 10 12 14 16 18 20
go/op

Figure 5.5 Plots of Power Ratio--Narrow-Band Excitation, f0=0.2 Hz
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set to o equals 0.99. In this way, a virtually linear, very lightly
damped system is simulated,

In the first exploratory experiment the small amplitude natural
frequency of the system was incremented in small steps from 0.02 Hz to 0.6
Hz and the power ratio determined at each frequency. The results are
shown plotted in Figure 5.6 and, as expected, the system when measured under
these conditions is, in effect, a spectrum analyser. This is confirmed
by reference to Figure 5.7 which shows the spectrum of the narrow-band
forcing as obtained by digital Fourier transformation.

"FromhFigure 5.6 it is clear that with the particular narrow-band
random forcing used, power ratio of approximately zero to 0.4 are to be
expected at high values of go/op. The actual value to be expected will
depend upon the position of the small amplitude natural frequency of
the 1-DOF system. To confirm this, plots similar to that shown in Figure
5.5 were made with the small amplitude natural frequency set to 0.123 Hz
and then to 0.113 Hz. These plots arerpfeseﬁfed4in figurés 5;8-and 5.9
respectively. The plot of Figure 5.5 for which the small amplitude
natural frequencyﬂis 0.2 Hz may also be included in this discussion. In
each of the three cases there is good agreement between the power ratio
indicated at the small amplitude natural frequency (Figure 5.6) and at
large values of go/op (Figures 5.5, 5.8 and 5.9).

Although the power ratio may have a significant value at large
values of go/op, this effect may not have a significant impact on the
general performance of the system because in such cases, the excitation
level is extremely small. In Figures 5.5 agq;S.S, some values of the ex-

citation Tevel Ty velocity Oy and actual power dissipation 5§_are given
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at selected values of go/cp. In both figures, it is noted that at

point 4 {corresponds to large go/cp), the values of Ogs O and py are

P
small compared to those at smaller values of go/op (points 1,2 and 3).
Hence, what proportion of power input is being dissipated at targe

values of go/gp is really immaterial. What is important is that the power
ratio always give the true proportion of power dissipation for any system
no matter how the system is forced.

A last observation on Figures 5.5 and 5.9 is that the values of
power ratio of the latter are consistently lower than those of the former
figure. This may be explained by referring to Figure 5.6. The small
amplitude natural frequency employed in the case of Figure 5.9 is 0.113.
As go/op becoﬁesismaTi thé-system becomes nonlinear, and tﬁe effecfive
resonant frequency will shift to the left into a low energy content part
of the forcing spectrum so that the system has small kinetic energy. The
case of Figure 5.5 has a small amplitude natural frequency of 0.2 Hz and
increasing non-Tinearity will drive the effective resonant frequency into
a region of high energy content. For a certain excitation level of
go/cP or yo/cy, the potential energy in each case will, in general, stay
constant. Hence the case of Figure 5.9 will have more storage energy
and a lower power ratio than the case of Figure 5.5.

The work presented so far deals with periodic excitation and narrow-
band random excitation. To deal with more general random excitation, a
broad-band random excitation is used in the simulation model. The forcing
spectrum as obtained by digital Fourier transformation is shown in Figure
5.10. As in the case of narrow-band excitation, a quasi-Tinear study is

performed on the model to determine the small amplitude natural frequency -
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which will give rise to a peak power ratio or a relatively small power
ratio. It is found in this quasi-linear study that a small amplitude
natural frequency of 0.276 gives rise to a power ratio of 0.015 whereas
a small amplitude natural frequency of 0.366 gives rise to a peak power

ratio of 0.191. Hence, plots of power ratio are drawn using these two

small amplitude natural frequencies, the former case is shown in Figure 5.11

“and the latter case shown in Figure 5.12. 1In Figure 5.11, the power ratio

g
drops to a small value as Eg-becomes large. And in Figure 5.13, the
p

power ratio drops to a higher power ratio, as expected. For value of

g
Eg-be10w 4, the plots in both figure Took similar to each other, except
p bl

that the values of the former plots are consistently a bit lower than the
latter. The similarity is certainly due to similar forcing frequency
coverage in both cases. It is noted that in Figure 5.13, for large values

g
of 89 . the curves cross each other for different values of ¢. This re-

P g
sult is surprising but it is not impossible because as the value of 59
P

increases, the effective resonant frequency shifts to the right and is

approaching the small amplitude natural frequency. In the shifting pro-.

'cess, if there happens to be a high energy content region in the neigh-

borhood of the effective natural frequency, as is in the present case,

then the power ratio will increase. Hence, the higher the value of «,

(more linear system), the more significant the increase in power ratio is.
As mentioned earlier, the portion where 9o/0p 1s Targe in the

power ratio plots does not have much importance as far as the performance

of the system is concerned. The region of high level of excitation

(Qo/op small) is relatively more important when dealing with structural

overload. For these reasons, Figures 5.5 and 5.11 are replotted versus
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Figure 5.11 Plots of Power Ratio--Broad-Band Excitation, fo=0.276 Hz
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Figure 5.12 Plots of Power Ratio--Broad-Band Excitation, f0=0.366 Hz



‘cp/go so that the region corresponds to large excitation level can be

more clearly seen. These plots are shown in Figures 5.13 and 5.14 re-

spectively.
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5.4 CONCLUSIONS AND RECOMMENDATIONS

From the work which forms the basis of this thesis it may be con-
cluded that fhe bilinear hysteretic element can usefully be characterized
by power measurements and in particular that the power ratio is useful in
describing the Toss effectiveness of such an element. Loss effectiveness
is given simply by the ratio of power dissipated to apparent power supp-
Tied to the element. It is shown that, for any given bilinear hysteretic
element, a high degree of Toss effectiveness is obtained at root-mean-square
amplitudes that are in the region of twice the yield displacement. Thus,
it is concluded that any bilinear hysteretic element that might be inclu-
ded in a structure will similarly be most effective as a loss mechanism
over a limited range of .root-mean-square displacement values. The theore-
tical model permits of the calculation of power ratio for a bilinear hys-
teretic element of given properties and for which the displacement is ran-
dom, Gaussianly distributed, of known root-mean-square value.

Although much further investiéation of the hysteretic element is
needed this was deferred in favor of persuing the problem of single degree
of freedom hysteretic system. Here the real problems of dealing with a
strongly nonlinear system emerge from the response dependent nature of the
system parameters. A generally applicable theoretical model has not been
found but a digital computer simulation of the system has enabled explora-
tion of the performance of the system over a wide range of variables.
These results show that the hysteretic single degree of freedom system
has, of course, a forcing frequency dependency in addition to the other
characte}istiés-ethbited by the hyétérefic element alone. This leaves

no doubt that effectiveness of a bilinear hysteretic element in a struc-
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ture will depend upon the relationship between the spectrum of the
forcing and the frequency response of the structure as well as the
forcing amplitude.

Much work remains to be done on the hysteretic element coupled
to Tinear systems. Nevertheless, the start made here is encouraging
in the view that such structures may well be most suited to conditions
where occasional, severe overload must be allowed for. The bilinear
element can provide the two important properties of self-healing and
peak force Timiting. Thus, the design of a structure for severe over-
load might proceed on the basis of Tinear elements calculated to with-
stand the maximum peak force delivered to them through their adjacent
bilinear elements. The power dissipating properties of the bilinear
elements would of course be most important in limiting the power flow
into the linear elements.

Further work proposed to move towards this design goal includes
extension of the work reported here. For example, a systematic explo-
ration of the single degree of freedom simulation model with confirma-
tion from results from the physical model to find optimum performance
is required. Extension of this model to a linear multidegree of free-
dom system driven through a bilinear element will also be required.
Finally, several such linear systems coupled through hysteretic ele-
ments will be investigated. Throughout, a search for better mathema-
tical modelling will be continued.

As an important adjunct to these conceptual and theoretical
developments much work needs to be carried out to establish the ade-

quacy of the bilinear hysteretic element as a model for practical



elements such as sliding steel on concrete surfaces. The techniques
expressed in this thesis will play an important part in the laboratory

investigations of such frictional fuses.
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APPENDIX A

3-DOF LINEAR MODEL AND THE CORRESPONDING MEASURING SYSTEM

A 3-DOF structural model was constructed as shown in Figure A.1.
There are three masses m,, m, and m, which are supported by vertical
ligaments. A pair of hard brass strips, one above the mass and one be-
Tow, are attached to the mass on one end and to a rod on the other end.
The other end of the rod, in turn, is attached to an adjacent mass. The
strips, together with the connecting rods, constitute the spring connec-
tions having stiffress k,, k, and k,, between the masses.

The viscous damping is provided electromagnetically. Consider
coil 1, which is fixed to the frame, the left part of which is inserted
into the air gap between a pair of Tight-weight magnets. These magnets
also form a significant part of mass m,. In previous work [39] it was
shown that such an arrangement provides pure viscous damping of the
motion of the mass m,. The damping constant is given by c={BL)2/R
where B is the magnetic flux density, L is the total Tength of wire of
the coil in the magnetic field, and R is the value of the resistance of
the coil circuit (not shown). Similar damping is provided between masses
m, and m, and between m, and m,. Thus, by varying the value of resistance
in the coil circuit, different values of damping can be achieved through--
out the system. To achieve high levels of damping a negative electrical
resistance must be added to the inherent coil resistance and, hence, an
active circuit (amplifier) is needed [39].

The physical model of Figure A.1 is idealized in the top part of
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Figure A.2 which is a block diagram of the entire measuring system. The
three coils are connected to coil amplifiers A/, A, and A,, respectively.
Each amplifier has a control switch, SW, with which a wide range of
values of damping may be selected+. A stationary random signal is

passed through an adjustable filter and then through the amplifier, Ap,
which generates a current proportional to input voltage. The resulting
current in the forcing coil interacts with the magnetic field and thus
creates an excitation force on m,. The accelerometers a,, a, and a, to-
gether with their associated charge amplifiers give voltage outputs (v§)
proportional to the instantaneous acceleration of the masses. Fach charge
amplifier also contains an integrator so that output voltages (Vi) prop-
ortional to the velocity of the masses are also produced. These voltages
are further amplified to suit the requirements of a multiplier. Similar
amplification is also given to the voltage (VP) which is proportional to
the current in the forcing coil.

A simple switching system allows any pair of voltages to be
simultaneously applied to the multiplier inputs. In addition, the
multiplier has internal switching so that the squaring of a single input
may be performed. Finally, the output of the multiplier is averaged over
time and hence all elements of the matrices f§}§j, f};ﬁj, and fE;fj can be
be switch-selected and evaluated.

In this model, the fundamental measurement of motion is the accel-
eration of each mass with the appropriate velocity and displacement being

derived by single and double integration of the acceleration signal with

switch position 0,1,2 or 3 may be selected which results in an
increasing damping value
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respect to time. Though in a small model such as that used here,
direct measurement of displacement is not difficult, in full scale
structure such direct measurement is very impracticable. Thus it is
felt that dependence upon the measurement of displacement should be
avoided. It should also be mentioned that the analogue integrators
used with the physical model (Figure A.2) have small relative phase
errors between 0.2 Hz and 1 Hz. These phase discrepancies produced
unacceptable errors in the evaluation of f?;Tj and f;;fj. For these
reasons, the validation of the equations (2.3) and (2.4) was performed

by means of computer simulation (Appendix B).

Using this model, force, velocity and acceleration were measured
as voltages generated by or derived from tranducers. It was necessary
therefore, to convert these measurements into their appropriate units by
employing appropriate sensitivity factors. First, the sensitivity of the
accelerometer in each mass was noted (say, s, pC/ms™?), and the sensi-
tivity of each charge amplifier was found to be s, m¥/pC. Each final
stage amplifier has a voltage gain S;. Then the sensitivity of the
acceleration is given by 1/s,s,s, ms */mV or 1000/s,5,5, ms 2/V.

To calibrate the velocities, the model was excited by a sinusoid-
ally varying force having radian frequency w. At the steady state, the
peak acceleration and velocity voltage of each mass were noted. Thus
using the known calibration of each accelerometer, the actual peak
acceleration of each mass was found. The actual peak velocities were
then obtained by dividing the corresponding actual peak acceleration
by w. The sensitivity of velocity was obtained by dividing each actual
velocity by the corresponding peak velecity voltage, having an unit of

A
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To calibrate the force, the model was driven by a relatively high
frequency sinusoidal excitation, say 50 Hz, to ensure that the force
and acceleration were in phase. The peak acceleration and force voltages
were measured for the mass at which the force was acting. The actual
acceleration was obtained by multiplying the peak acceleration voltage
by the sensitivity of acceleration. The actual force was then the pro-
duct of the mass and the actual acceleration. The sensitivity of force
was obtained by dividing the actual forcing by the peak force voltage,
giving the sensitivity in N/V.

During the course of the experiments, caution was exercised to
ensure that no part of the system was overloaded. This was accomplished
by occasionally checking the waveforms of the force, velocity and accel-
eration on the oscilloscope, to make sure that there was no distortion.

The multiplier, being an analogue device, was checked periodically
for calibration accuracy and before each run the zero settings were
checked and adjusted.

It was noted that the input signal band-pass filter of Figure A.2
‘does not have an infinite rate:-of cut-off beyond the cut-off frequencies
as in the case of an ideal filter. In fact, the cut-off rate of the
filter used was 24 dB/octave beyond each cut-off frequency f, and f,,
as shown in Figure A.3. 1In this study, it was then assumed that the
signal was completely cut-off an octave from the cut-off freguencies,
and this assumption was found to give satisfactory results in later work.
Let AF be the filter bandwidth and T. be its central frequency, the
filter signal extends beyond both sides of the bandwidth AF, the amount

of extension is shown in Figure A.3. An effective bandwidth Af is
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Figure A.3 Filter Characteristics

defined as one which will give the same mean square value of signal as
the original filter. If S is the constant spectral density of the

signal, then, Af is given by

1

S Af = ?(fC-E/Z)'PSE'J'%(fC“FE/Z) s

rojw

solving the above equation,

1’.‘

c -

| w

-9 5%
Af = 8 AF +

The physical properties of the model are:-

— - ™~
0.097 O 0
m] = 0 0.098 0 Kg
| 0 0 0.00
[ 553 258 0o ]
[k1= | -258 550 -292| wm |,
K 292 292

{17 = <3.88  10.9 15.3> Hz |, i (A.1)
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1.022 2.467 1.783
and [¢] = 1.963 0.891 -2.357
2.403 -1.919 1.276

where {f} is the resonant frequency vector and [¢] is the undamped free
vibration mode shape matrix.

As an example of how the model was used to compare conventional
methods with the power methods of Chapter II, the results shown in Table
A.1 are included. Here comparison is made between the modal damping
values of the model as determined by the half-power method and by the
modal power equation under broad-band random excitation (Section 2.3(i)).
In this example, all damping control switches were set to position 1.

The modal damping C,, C, and C, as obtained by both method are shown in
Table A.1. Results by both methods agreed generally to within ten per-

cent.

METHOD C, c, C,
Half-power method
{sinusoidal forcing) 0.32 1.66 4.13
Modal power equation
(Broad-band random 0.29 1.69 4,47
forcing)

TABLE A.1 Modal Dampings (N-s/m) of the Linear Model Obtained
by Sinusoidal and Random Excitation
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APPENDIX B

DYNAMIC RESPONSE ANALYSIS AND DAMPING IDENTIFICATION
PROGRAM FOR LINEAR SYSTEMS

A FORTRAN coded program was compiled for the dynamic response
analysis and damping identification of multi-degree of freedom linear
systems. The response analysis part of the program was extracted from
the extended TABS program [42]. The remaining part of this program was
written for the solutioﬁ of viscous damping matrix using equations (2.3)
and (2.4). No limit was imposed on the number of degrees of freedom of
the system, although it mainly depends on the capacity of each computing
installation. External excitations may be in the form of forces acting
on the masses or ground motion in the form of acceleration. The organ-
ization chart of the program is shown in Figure B.1 and the following
is a brief description of each subprogram.

In the MAIN program, control data are read and storage areas are
cfeated for the arrays in the subprograms. It also serves as a link be-
tween the various program segments.

The EARTH subprogram accepts input data for the mass matrix and
the stiffness matrix. It then calls the subprogram EIGEN in which the
modal frequency vector and the free vibration undamped mode shape matrix
are calculated. Control is returned to the EARTH subprogram and damping
values are input either as modal damping ratio or as a damping matrix.
In the latter case, it is assumed that the damping matrix can be un-
coupled by the mode shape matrix, so that uncoupled modal equations can

be obtained.
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Figure B.1 Linear Systems Program Organization Chart
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The subprogram DYNA first calls the GENR subprogram for the pro-
vision of excitation data. Data may be supplied either by the user as
a time series, or it may be generated as a sinusoidal, or normal random
time function (GGNMP subprogram of IMSL is called to generate the random
data). If the excitations are in the form of ground acceleration, the
effective forcing takes the form of {p} = -[m}{1} ¥el{t), where {1} is a
~unit vector and J,(t) is the ground acceleration. Control is returned to
DYNA, and modal response analysis is performed by calling the subprogram
RESP, in which the modal displacement {Y(t)}, velocity {V(t)} and accel-
eration {Y(t)} responses are evaluated for each equal time step using
explicit integration of the Duhamel integral. Control is then transferred
to DYNA and the displacement {y(t)}, velocity {y(t)} and acceleration
{¥(t)} responses are calculated by superimposing the corresponding re-
sponses from all modes.

The AVERG subprogram is called by DYNA to form the time average

quantities of [¥yT1, [¥yT1, [yyT] and [pyT]. Each element of these
matrices is obtained by forming the products of the corresponding func-
‘tions for all time points and dividing the sum of these products by the
number of time points. Control is transferred back to DYNA where the
damping matrix is evaluated using equation (2.3), which is rearranged as

follows.

[c] = ([py™] - [mI[¥yT] - [KILys"D(Dyy=D) " . (B.1)

The quantities on the right hand side of equation (B.1) are known quan-
tities, hence, standard subprograms for the manipulation of matrices are

called to evaluate the right hand side of this equation.
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To evaluate the damping matrix using equation (2.4), it is re-

written as

(k17 ' [eIlyy™] + [yyT1[clkI™" = [d] , (B.2)

where [d] is the resultant matrix of the known right hand side of
equation (2.4). [d]} is symmetrical. In order to solve for [c], equa-
tion (B.2) is rearranged as a set of n(n+1)/2 simultaneous linear

equations, thus

! N 4 N
C11 d}.l
C12 . dlZ
(214 =131 ¢ (B.3)
Cl’il’l dnn
~ \_ /
where <C,,, C, , ... C,>T are the n(n+1)}/2 elements of the symmetrical

[c] matrix. [Z] is a square matrix whose elements are linear combina-

tions of the elements of [k]™* and [¥yT]. <d;;s dy, 5 enes dpp>T s

~the n(n+1)/2 elements of the matrix [d]. A SOLVE subprogram is called

by DYNA to solve the simultaneous equations of equation (B.3).
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APPENDIX C

INTERPRETATIONS OF py AND ¥ pp. Y yy

Consider first a 1-DOF Tinear system subjected to sinusoidal ex-

citation p(t). The equation of motion is
my +cy + ky =p. (€c.1)

Multiplying equation (C.1) throughout by y and taking time
average on each term, one obtains E§_= C ;;Aafter noting that §§~= §§_= 0.
E§'represents the "true" power supplied to the system and is equal to the
actual power dissipation c yy.

By taking the square on both sides of equation (C.1), one obtains,

after taking time averages on each resulting term,
PP =m> Y + c* yy + 2mk Yy + k2 yv . (C.2)
From the harmonic nature of the response, one has y = wpy = m;y,

where Wy, 1s the forcing radian frequency. Making use of this result,

‘equation (C.2) becomes

P = ¢ TF + (mw2-k)? 57 (c.3)

Multiplying both sides of equation (C.3) by §§; the equation becomes

B.9Y = (c99)% + (m 55 wp-k ¥ wp)? . (C.4)
Equation (C.4) shows that the square of the apparent power is equal
to the sum of the square of power dissipation and the square of the power

storage. The power storage is a combination of power due to kinetic and

potential energy.
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Now consider a nonlinear system subjected to stationary random

excitation p{t). The equation of motion is in the form of

my + ¢y + k g(y,y) = p , (C.5)

where g{y,¥) is a bilinear restoring force.
Multiplying equation (C.5) by ¥y and taking time averages on each

resulting term, we have

py = c ¥y + k gly,¥}y . (c.6)
The first term on the right hand side of equation (C.6) is the power
dissipation due to viscous damping, whereas the remaining term represents
power Toss due to hysteresis. Hence, py is the sum of both sources of
power dissipation. -

The term Jﬁﬁﬁ. /rij has the same meaning in nonlinear systems. It

is the total average apparent power supplied to the system.
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APPENDIX D

RELATIONSHIPS BETWEEN POWER RATIO AND VISCOUS
DAMPING COEFFICIENT IN LINEAR SYSTEMS

D.1T 1-DOF SYSTEM

With the system and forcing properties as shown in Figure 3.1, the

mean square forcing can be expressed as

PP = Rypl0) = Sy %%" (D.1)

where Rbp(O) is the zero-lag autocorrelation of the input forcing. RPP

and Spp are a Fourier transform pair.

The mean square velocity of the system is given by [10]
= Spp ‘[m
vy = R.. . 3 2
¥y Ryy(O)—_ i) |[H(jw)|? dw , (D.2)
where Ri§(0) is the zero-lag autocorrelation of the velocity and the
system function H(jw) is given by

H(jw) = ! — . (D.3)
wonm - § {wm - =)

In equation (D.3), j = V-1, c1)0==(k/m)l/2 is the natural frequency of the
system, n=2¢ is the loss factor and &= C/(2wom) is the damping ratio.
[H(Jw)|? is sketched in Figure 3.1{(c). Using equation (D.3), equation

(D.2) leads to

S o
3757=L—ﬁ—f ds . (0.4)

2T 202 2 Z_ 7 27 2
w_nm T+ {w wo)/n w* w2
o



-110-

If the system curve of |H{jw)|? is sharply peaked, then the inte-
grand of equation (D.4) can be simplified by noting that Wt e 2w
[40]. After performing the integration, equation (D.4) Teads to

S
= Pp
.y.y 4LL}OT]1T§2 * (D'S)

The zero-lag correlation between the input force and the response

velocity is
py = Roy(0) = 522 f}ujuudw . (D.6)

Complex integration of equation (D.6) yields

S

Py = s (D.7)

From equations (D.1),(D.5) and (D.7), and noting that AT = Aw/ 2T,

the square of the power ratio is given by

gr = (I U e (D.8)
PP -yy 2Af  4m Af )

D.2 BAND-LIMITED EXCITATION OF n-DOF SYSTEM

For the system as shown in Figure 3.2, the equations of motion in

the generalized coordinates {Y} are given as

Yj + Cj Yj + Kj Yj = Pj s (3=1,m) , | (D.9)

where {Y} is related to the physical displacement coordinates {y} by thé
mode shape matrix [¢] as {y} = [$J{Y}. [C] = [¢]T[c1[¢] and [K] = [&]T
[k]{#] are the generalized diagonal damping and stiffness matrices,

respectively; {P} = [¢]%{p} is the generalized load vector, and [M], the

generalized mass matrix, is normalized as an identity matrix.
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For the particular forcing as described in Section 3.2, it is
basically an i-th mode excitation. Then the system behaves like a 1-DOF
system in the modal sense. Equation (D.8) may then be applied to such a

system:

L (D.10)
PP, . ? 4 AT

1Py - YiYy

where Py = ¢ . p_and ¥ = ¢_, V..

By transforming the left hand side of equation (D.10) back to the
physical coordinates, the square of the power ratio measured at the forcing

point, the r-th mass, is related to the modal damping as

(P_y )? C.
W rr =X (D.11)
4 Af,

PPy - yryr

D.3 BROAD-BAND EXCITATION OF n-DOF SYSTEM

The velocities {y} and loading {p} in the physical coordinates are

related to those. in the generalized coordinates by the mode shape in the

form

- n .
Ve =5k o ¥y (3F1an) (D.12)

r J

and

Py = 4.5 b (3=Tun) . (0.13)

From equations (D.12) and (D.13),

= P1 P2 Pn N .
pryr = (ar—l- or ¢_r2— or ... @:) (¢r1 Yl + ... q)rn Yn)
=PY +PY + + P Y

(D.14)
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Equations (D.1) and (D.7) when written in the generalized coor-

dinates, become

3 Pij/Af , and

7]
1}

P.Y. = S;/4 (j=1,n) , (D.15)

where Sj is the power spectral density of the loading Pj.

Equation (D.15) becomes, after making use of equation (D.13)

——  P.P.

PV, = 3. Do

i3 4 Af rj 4 Af

s (j:],n) . (D.iﬁ)

Backsubstitution of equation (D.16) into equation (D.14) Teads to

- prpr 2
pryr N 4 AF Lr

s (D.17)

h L2 = 3 ¢
where r T 4L Pyrg -

Next consider the formation of jrjr. From equation (D.12), after

Y, 1s given by

noting Yij =0 for j#k,y

— n s
Ye¥y = j§1 ¢ij Yij . (D.18)

By applying equation {D.5) in the modal sense and making use of equation

(D.15), equation (D.5) becomes

e S, P.P

1 J = j j » ':]3n ]
YJYJ 4 w.n., 4 Afw.n. (3 ) (D.19)
377 J7]

where W, and ny are the modal frequency and loss factor respectively of
the j-th mode. By making use of equation (D.13) and noting that

Cj =W, equation (D.19) Teads to



» (J=1,n) . (D.20)

Substituting equation (D.20) into equation (D.18}, the mean square velocity

is expressed as

y
e = (D.21)

From equations (D.17) and (D.21), the square of power ratio at the

tocation of forcing is given by

- 2_ C
w2 - pryr - 4 Zf , (D,22)
pr X yryr
where C = n] s
© 2, 1
J: *
C5
L*C.
and cFr =3
I ¢k,
rj

Equation (D.22) reduces to the form of equation (D.11) when the
excitation is Timited to within the vicinity of the i-th mode. Also, it
reduces to the form of equation (D.8) in the case of a 1-DOF system.

The power ratio thus presented enables one to describe energy 1oss versus

energy supplied for a system with any given bandwidth of excitation.
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APPENDIX E

DERIVATION OF MEAN PEAK VALUES BEYOND
A LEVEL OF y, FOR A GAUSSIAN PROCESS

If y 1is a Gaussian process with zero mean, then the expected
number of peaks {or maxima) per second lying in the interval y, y+dy,

denoted by E[pk], is given by Rice [41]:

-Gilyz
.y~ 3/2 2|6
elpkldy = {20 | gz 21
G33
...yz
2c? G,y
1/2 Y 13
G,,y ( i ) e (1+erf —} dy . (E.1)
127 Y26 [2]G]Gss 1V
- =
OY 0 _Gl:’
where G = | O 0§ 0 s |G] = 0% {¢® c2-0") ,
v ¥
2 2
'-0'}:, 0 G');
G, =02 02, G, =0, G,, = 0> o> and erf is the error function.
v ¥ v vy vy

For a band-pass filter having cut-off frequencies f1 and fz, the

following relationships hold:

f2
j' £ § df
(33 £ .F5 - fS
u% _ (Zﬁ)z 1 - Vo (2 )2[3 ;g___;? = E; , (E.Z)
% ffz £ 5 df 2" h
£
ok 1 £ f2
Y _ el 2 19 -
R CRE N e R (£.3)
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where S is the uniform power spectral density of y.
Using equations (E.2) and (E.3), equation (E.1), after simpli-

fying, becomes

‘F5}’2
"2 205[fs-F,]
E[pk]dy = (g—“)—— J}FS—Fg e Yo OE
Y
—}’2
- 202 1/
F ¥(Fs)
POy e Y1wer 2 gl|dy . (E4)
20y o [2(F 5-F,)]

Equation (E.4) is the expected number of peaks per second lying
in the‘interva1 ¥, ytdy. To obtain the probability density function
of peaks, equation (E.4) must be normalized. This is achieved by dividing
E[pk] by the expected number of peaks per second over the entire domain

of y. This Tatter quantity may be obtained by integrating the expression

C..
of equation (E.4) from y=-e to « and the result is found to be %E‘Ez ,

)1/2 y

and from equation (E.2), it is equal to (F, /2m. Hence, the prob-

ability density function of peaks, for a band-pass process, is

pr(pk) = Z-ELok]_

(F)2 (£:5)

where Efpk] is given by equation (E.4).

Equation (E.5) applies to any frequency range of y. In particu-
lar, if f, is zero in equations (E.2) and (E.3), equation (E.5) then
gives the result for a low-pass process.

For a Raleigh process,

—h
K
w)
[
s

u
F, = (2w)2£5_df = (21)2 1im -
[f%s af Af>o 12

)t 2=,

(¥2]
[
-._'1

-1
i

——

~ro
=
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where fy s the frequency of the narrow-band process. By substituting
these values of F; and F, into equation (E.5), equation (E.5) is reduced
to

-y?

20;
pripk) = L e , (E.6)
02

Y

which is the familiar expression for the distribution of peaks in a

Rayleigh process.

The mean yield peak value may readily be obtained from the prob-

ability density function of peaks, which is as shown in Figure E.1. The

{ Y

pr(pk) r,,__@_

|
|
I
I
I
|
|
|
i
Y

0 Y
Figure E.1 Probability Density Function of Peaks
mean yield peak value y* is given by
fy ypr(pk)dy
.y* = “ - yo . (E'7)

o0

fyo pr(y)dy

The first term of the right hand side of equation (E.7) is the mean yield
peak value referred to y=o0, hence Yo is subtracted from it to give y*.

The integration of equation (E.7) was numerically performed.
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APPENDIX F

PROBABILITY DENSITY FUNCTION OF BILINEAR
HYSTERETIC RESTORING FORCE

The bilinear restoring force is sketched against y as depicted
n Figure F.1. The coordinates of all four vertices, together with the
equations of the four sides of the loop, are labeled as shown. Three
cases arise according to whether Po - kay™ is greater than, equal to, or
less than zero, where P, is the yield force. Figure F.1 belongs to the

first case.

CASE 1 (p, - kay*>0)
Consider a strip of width dp, where the absolute value of p is

tess than (po-kuy*). The probability of p 1lying in the region p to

p+dp is equal to the probability of y 1lying in the two regions of dy,

as shown in Figure F.1. Mathematically,

pr(p)dp = pr(y,)dy, +pr(y,)dy, . (F.1)

By substituting equation (4.1), the expression for pr{y), into equation

(F.1), the latter equation becomes
-yi -y5

202 202
1 4 ¥
pr{p)dp = m——Ee dy, +e dy ]
Y 2T Oy ! 2

The values of Y, and y, can be obtained by solving the equations of the

sides of the loop. By noting that dp/dy1==dp/dy2==k and 9 :=koy, the

O
above equation becomes

-119-
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Pl
*
" I
(y ty*,p, thay*)
p=p *+alky-p ) ko
p0=ky0 ————— 1
!
!
| p=k(y-y*+oy*)
(yy=y*»p -koy*) i K
! Al
, / ' dp
!
/ /i
_hl‘—dyz yo /%‘—;Eyz Y
p=k(yty*-ay*)

- * . *
=y ty*,-p thay*)

p=-p,ta(p tky)

-y ~-y¥ . -
(-yo¥*s-p,-koy*)

Figure F.1  Restoring Force Versus Displacement
(p,-kay*>0)
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-[p/k-y*(1-a)]? -[p/kty*(1-a)]?
202 202
1 v y
prip) = =——1¢ +e } Fo
Y Z2m OPO ( )
|pt<p, - koy* .

By considering a strip dp (not shown in Figure F.1), where the
absolute value of p 1is greater than (pg - koy*), and using the same

procedure as before, pr{(p) in this region becomes

"i:p/k‘.yo(]'a)]z -{p/k+y*(1—o¢)]2
2a% o2 202
( =—~]v—[l Y + ! :’ F.3
prp)_mopoue ) (-3

P, T kay™ [p[>p, - kay™® .

It is interesting to note that an entire loop is prescribed for a
complete cycle, each value of y 1is traversed twice, hence the total

probability of the restoring force

(o0

Po — koy*
f prpldp + 2 j pr(p}dp

P, + kay™ Pg - koy*

is equal to 2. For this reason, pr(p) needs to be normalized. This is

achieved by dividing all expressions of pr(p) by 2. By defining

1 = ~Lp/k-y*(1-0)]2 )
1 20§ ’
1 = zIp/kty*(1-a)]1?
2 203 ’
-[p/k-y (1-0)]?
I, = 2% sy (F.4)
-Lp/k+y (1-a)]2
IL} = 20’2 3
Y
]
and A = — ,
v ew OP
o
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equations (F.2) and (F.3) become

-

I, I
g[e +e "1, |p|<p, - koy*

Ii/g2 1
é—%e YT e ] py tkay*>[p)>pg - kay*t (F.5)

\

CASE 2 (p_ - koy* = 0)

Figure F.2(a) illustrates the second case. By using the proce-

dures described in Case 1, the probability density function of p is

13/0.'.2 12

e +e "], |p|<p0+kuy* . (F.6)

pr(p) = 5 [

CASE 3 (p, - kay*<0)
Similarly from Figure F.2(b), the probability density function of

Py

a 1./a? I./02

g&[e3 te " 1, |pl<-po+kay*

pr{p) = {
: 13/a2

| >
+

1
1
[e e “1 . pytkay*>[p|>-p,tkay* | (F.7)

ﬁygg;jg(E1asto—piéstic case, a = 0)

The above cases deal with all combinations of system parameters
except for a = 0. In this case, a separate evaluation of pr(p) is
required.

Lets consider Figure F.3. Within the region |p|<p,, pr(p) can be

obtained by a procedure similar to that of case 1, thus

I I,
pr{p) = % e’ +e ™1, Ipl<po (F.8)
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(¥ ty*.p, thay*)

|

/ﬁﬁy‘p ;

(-y,ty*»-p,tkoy*)

(-yo—y*,—po-kay*)
(a) P,kay* =0

P i y*

YL ek
(yO ¥*5p~koy*)

(-y,=¥*,-p -koy*)

(b) p,-kay* < ©

Figure F.2 Restoring Force Versus Displacement
(py-kay* < 0)
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y'k

(y,-y*sp,) ’

*
(yty*sp,)

‘

o —— e e e e e

D-f
e
)

p=k(y+y*) ds

p=k(y-y*)

(-yo-¥*s-p,) (y*-¥45-P,)

Figure F.3 Re?toring); Force Versus Displacement
o =10
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At the flat-top region, the probability of p having a value of Py 18
equal to the probability of y having a value in the region from
Y=Yo-¥Y* to y=y,+y*. Mathematically,

Yt y*

prip,) = dy .
Po [y Ly pr(y}dy

o]

Substituting equation (4.1) into the above equation and integrating,

the equation becomes, after normalizing

( ) 1 (yc Y ) (y: Yy )] ( )
feo} 4 /__ P

2 Oy v 2 Oy

where erfc is the complimentary error function. The same expression can
be obtained for pr(-p ). Combining equations (F.8) and (F.9), the

probability density function of p for the elasto-plastic case becomes

7

I I
| Blet ve T, [pl<mo
pr{p) = <»]_ Yooyt Yot y*
E—[erfc { ) - erfc ( 1, p=*p, . (F.10)
\ 2 a, 2 oy,
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APPENDIX G

PHYSTCAL-ANALOG MODEL OF A BILINEAR

HYSTERETIC ELEMENT

A physical-analog model was constructed to validate the theor-
etical results for a bilinear hysteretic element. The block diagram of
this model is shown in Figure G.1. The input signal was provided by a
random signal generator. This signal was fed to an electromagnetic
shaker and the resulting random displacement became the input to the
hysteretic element. A capicitance transducer was installed as shown to
pick up the displacement input voltage signal. This signal was fed to
a solid state»circuit in which the hysteretic effect was produced and
different values of Pg> k and o could be selected. An analog differen-
tiator was also included in this circuit. The outputs of this circuit
were two voltages, one, Vps -proportional to the required bilinear re-
storing force and the other, Vgs proportional to the velocity. The
restoring force signal was further processed in an amplifier to produce
a current, 1P, proportional to the restoring force signal. Thus, a
mechanical hysteretic force was produced by allowing the current to flow
in a coil placed in an electromagnetic field. This force was measured
by a piezoelectric force transducer and the resulting signal passed to
one input of a multiplier and time averager. The velocity signal formed
the other multiplier input. A simple switching arrangement permitted the
quantities E;; pp and §§'to be measured and the power ratio to be
evaluated. It is noted that the power ratio, being a normalized factor,

is dimensionless and calibration of force and velocity is not required.
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. Ve
Hysteretic o
o effect S c>Vy todmz@t1p]1er
circuit . and time
v averager
p force
Amplifier signal
i 4
Magnets s
" 2
‘ [/,
E %
Random V.
signal = Shaker ;;f’- %
generator S L \\
% 2 Force transducer
' Coil

4

Capacitance transducer

Figure G.1 Block Diagram of Physical-Analog Model of
Bilinear Hysteretic Element
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The hysteretic effect circuit is shown in Figure G.2. The input
signal is multiplied by a factor k,, the value of which is controlled by
the variable resistance VRl as shown on the left part of the figure.

The diodes, D, and D,, and the capacitor shown in the central part of
the figure form the hysteresis generating portion of the circuit. A
simplified explanation of the circuit functions is as follows. The out-
put voltage of amplifier A, is a linear version of the voltage, Vs
which, in turn, is proportional to displacement, y. Thus, if the dis-
placement is assumed to be increasing linearly with time the voltage at
the "+ ve" input to amplifier A, will follow providing only that the
total Teakage current on the 2.2 uF capacitor is negligible. Under these
conditions, a straight-line relationship between the output of A, and

the input vy is given with the constant of proportionality k,, being set
by VR1 [similar to A-B, Figure G.3(a)]. As the magnitude of the output
voltage of A, increases, a point is reached where either D, or D, con-
ducts. At this point no further increase in voltage occurs at the out-
put of A, and the 2.2 uF capacitor is charged to the voltage difference
between the switch-on voltage of the diode and the output voltage of A,.
As a result, the output voltage of A, remains constant at the bias
(switch-on) voltage of the diode [similar to B-C, Figure G.3(a)]. If

now the direction of the linearly changing displacement is reversed the
diode ceases to conduct and the straight-line relationship between vy

and the output of A, is re-established [similar to C-D, Figure 6.3(a)].
Thus, so Tong as the bias voltage of either diode is not exceeded, a
straight-Tine relationship (C to E) will be maintained. The diodes are

of course reversely connected and are oppositely biased through ampli-
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e

(b) Additional Linear Stiffness

kOL:kz

{c) Output p-y Relationship

Figure G.3 Generation of Bilinear Hysteretic p-y Relationship
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fiers A, and A,. In this way, the required positive and negative "yield"
points are provided. Control of the "yield" value, py, is given by the
potential divider VR3 connected to the -15 volt supply tine. This central
part of the circuit (Figure G.2) produces the basic hysteretic relation-
ship [Figure G.B(Q)] between displacement, represented by vy, and the
output voltage of A,.

The primary Timitations of this simple circuit are, firstly, it
will not function at extremely low frequencies and secondly, the dynamic
range is Timited by the maximum linear voltage swing permitted by the
operational amplifiers A, and A,. The first of these limitations is
caused by the non-zero discharge rate of the 2.2 WF capacitor caused by
the Teakage resistances of D, and D, and the input circuit of A,. The
time constant was measured and found to be approximately 15 seconds and
hence phase and gain errors are small down to a frequency of 0.1 Hz. The
second Timitation, limited linear voltage swing, set a 1imit on the maxi-
mum range of yielding [B-C, Figure G.3(a)] that could be achieved. This
is the origin of the limitation quoted in Section 4.3.

The relationship between the input, vy and the output of Ay is
hysteretic and of the form shown in Figure G.3(a). To provide a general
bilinear hysteretic mechanism, the original input signé] is multiplied
separately by a factor k,, a value controlled by the variable resistance
YRZ shown on the right part of Figure 6.2. This operation alone, gives
rise to a (p-y) relationship as shown in Figure G.3(b). When this
effect is combined with that from the first stage, a general bilinear
hysteretic mechanism is produced, as shown in Figure G.3(c).

The resulting forcé—dispIacement relationship has a first slope
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of (kl+k2) and a second slope k,. It may readily be seen that in this
case (k1+k2) is equivalent to k and k, equivalent to ka, where k and
¢ are defined in Chapter 4. To provide the required velocity information
the input, Vy s is differentiated with respect to time (using amplifier

A, of Figure G.2) to provide the velocity proportional signal, V§.

To avoid the difficulties associated with excessive gain at
spuriously high frequencies, "roll-off" capacitors were provided on amp-
Tifiers A, and A,. Thus, due to these capacitors, the two amplifiers
have uppér frequency break-points of approximately 300 Hz.

Overall, the circuit of Figure G.2 gave a means of producing an
hysteretic effect which could be controlled over a wide range of para-
meter values by the adjustment of VR1, VR2 and VR3. The useful frequency
range was 0.1 Hz to 30 Hz and when combined in the circuit of Figure G.1
produced a similar, widely controllable, hystertic force. An indication
of the performance of the system just described is given in Figure G.4
which shows an oscillogram of the hysteretic effect produced. In this

case the input, Vo is a random, Gaussian time function.
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Figure G.4 O0Oscillogram of the Hysteretic Effect Produced
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APPENDIX H

DIGITAL SIMULATION PROGRAM OF A BILINEAR
HYSTERETIC ELEMENT

A digital simulation program was written for the evaluation of
the power ratio of a bilinear hysteretic element subjected to excitation
in the form of displacement. The program was coded in BASIC for the
7HP—9830 desk-top computer. To suit the Timited storage capacity of
Vihe HP—§830, disp?aceﬁeﬁtviﬁput data was grouped into a number of re-
cords, each contained a maximum of 256 data. For simplicity of explana-
tion, the processing of only one record of data is presented here.

The flow chart of the program is shown in Figure H.1. The pro-
gram starts by reading the values of the parameters Po» kK and a of the
element, the number of displacement input data N in the record and the
time interval AT between adjacent data. Random displacement input data
must be supplied by the user. Data of sinusoidal, triangular and square
input waveform may be generated as desired. The constant A and B are
defined as shown in Figure H.1.

Description of the program is aided by reference to Figure H.2,
which shows the three deformed states of a bilinear hysteretic element.
The first state is the forward yielding state. Here, the element yields
while the displacement is increasing. The equafion which governs the
force and displacement is p =:Ay+B. The second state is the non-
yielding state in which the equation governing the force and displacement
is p=ky+p, - ky,, where (pl,yl) is an immediate past point on the line

with known coordinates. The third is the backward yielding state, in
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(" starT Af:)
§

READ po,k,o,N,AT
READ OR GENERATE DISPLACEMENT INPUT DATA
A=ka Abbreviations:
: B:pO—AyO yu=(k*y(l—1) -p(I-1}Y +B)/(k-A)
| p(0) = y(O) =0 yg=(kxy(I-1) - p{I-1) - B)/(k-A)

= A*y(I) +B

= Axy(I) - B

= k*y(I) + p(I-1) - kxy{I-1)

P(1)=ksy(1)+p
S:

=
™
>
_{

i

Figure H.1 (a) Flow Chart of Bilinear Hysteretic
Element Simulation Program
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——— FOR
-
1=2 T0 (N-1)

i

|

!

|

| y(1) = [y(I+1) - y(1-1)1/2/T
I Jy =Jd; +p(I)xp(1)
I

I

;

|

I

Jo =dp + y(1)*y(1)
ds =J5 +p(I)*y(1)

o NEXT 1 '1]

W = J,/SQR(J, *J,)

[
PRINT QUANTITIES
AS DESIRED

|

(s )

Figure H.1 (b) Flow Chart of Bilinear Hysteretic Element
SimuTation Program (Continued From Figure H.1(a))
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Restoring Force p

4

State 1: p=Ay+B

™~

y, =(ky,1-p,+B}/(k-A)

0

State 2: p=kytp,;-ky,.

/,._

=

Displacement y

State 2
¥o=(kyi-p1-B)/(k-A)

State 3: p=Ay-B

Figure H.2 Three Deformed States of a Bilinear
Hysteretic Element
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which case the element yields while the displacement is decreasing. The
corresponding equation in this state is p=Ay-B. The displacement co-
ordinate for the point of intersection between the equations of states

1 and 2 is Yo = (ky,-p,#B)/{k - A), and that for the point of intersec-

tion between equations of states 3 and 2 is y2 = (ky1~p1—B)/(k-A).

To start the calculation, it is assumed that the initial values
of displacement y(0) and force p(0) are zero. The first displacement
data y(1) is then examined (see Figure H.1). If y(1) is greater than or
equal to Yo the element will be in the forward yielding state (S=1).
If y(1) is less than or equal to —x), the eiement will be in the back-
ward yielding state (S=3). For other values of y(1), the element will
stay in the non-yielding state (S=2). In each of these cases, the value
of p(1) can be calculated using the value of y{1) and the appropriate
equation of each state. A repetitive Toop is set up to continue the

calculation, starting from the second displacement data.

Consider the I-th cycle of the loop. The value of S for the pre-
vious cycle is examined. For S equals to 1, the previous state of the
element is forward yielding. Hence, if y(I) is greater than y(I-1) the
element will remain in the first state. If y(I) is less than y(I-1) by
more than 2y_, the element will be in the third state. Otherwise, the
element will be in the second state. The value of p(I) is calculated for
the appropriate state and the new value of S is noted.

If the previous value of § is 2, the previous state of the element
s non-yielding. If, in this case, the value of y(I) is greater than or
equal to Y,» the element will be in the first state. If y(I) is less
than Yo+ the element will be in the third state. Otherwise, the element
will remain in the second state. Appropriate values of p(I) and S are

evaluated.
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IT the previous value of S is 3, the previous deformed state of
the element is backward yielding. In this case, if y(I) is less than
y(I-1), the element will remain in the third state. If y(I) is greater
than y(I-1) by 2y, the element will be in the first state. Otherwise,
the element will be in the second state. Appropriate values of p(I) and
S are evaluated.

The same procedure is repeated until all the displacement data
are processed. As a result, values of restoring force correspond to
every value of displacement are found.

The next step is to form the velocity time series from the dis-
placement data. The I-th value of velocity is given by

y(I) = y(I+])é~X%Inl) . By using a repetitive loop for values of I from

2 to (N-1), the velocity time series is obtained. Also, the quantities

J, = Zp(D)«p(I), J, = z9(1)«y(1) and J; = Zp(I)«¥(I) are obtained using

the same loop. The power ratio is given by W = J4/SQR(J,*J,).
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APPENDIX I

DIGITAL SIMULATION PROGRAM OF A BILINEAR
HYSTERETIC SYSTEM
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APPENDIX I

DIGITAL SIMULATION PROGRAM OF A BILINEAR
HYSTERETIC SYSTEM

A digital simulation program was developed for the evaluation of
power ratio of a bilinear hysteretic element coupled to a mass as in
Figure 5.1. This program is thus the extension to the program as de-
scribed in Appendix H for an hysteretic element, adding to it the effect
of a mass. The program was coded in BASIC for the HP-9830 desk-top
computer. As before, forcing input data were grouped into a number of
records, each contained a maximum of 256 data. For simplicity, the
version which processes only one record of data, and in which the inte-
gration time step is equal to the forcing time interval, is presented
here,

The flow chart of the program is shown in Figures I.T through 1.4.
The program starts by reading the values of parameters Pos ks o and m of
- the model, the number of forcing input data N in the record and the time
“interval AT between adjacent data (equals to the integration time step).
Random forcing input data must be supplied by the user. Data of sinu-
soidal, triangular and square input waveform can be generated in the
program as desired. To start the calculation, it is assumed that the
process starts from rest, so that the initial values of displacement,
velocity, restoring force and input forcing are set to zero as shown in
Figure I.1. The model is initially at the non-yielding state, S=2

(refer to Figure H.3, Appendix H for the meanings of Various deformed
states) and the stiffness coefficient is k. A repetitive Toop is estab-

Tished to calculate the system responses in a step-by-step manner.



( sTaRT )

]

READ p,k,o,m,N,AT
READ OR GENERATE FORCING INPUT DATA

f

A=ke, B=p, - Ay,

S=2, K¢ =k
Y, =V, =G, =P(1)=0
Pg=V¥g=Csg =10
y
FOR
I=1 to N-1
1
(I) ,P,=P(I+1), T=AT
» GOSUB 50

NEXT I

—

!

Y, =Y, +AY
Vo=V, +aY
Pg =Py + P %P,
Vo = Vg +V %V,
Cq = Cq T 6%V,

W= Co/SQR(P4xVy)

-

/  PRINT QUANTITIES AS DESIRED /

Figure I.1

v
(, STOP ")

Flow Chart of Bilinear Hysteretic
System Simulation Program



GOSUB 80

T, =T, GOSUB 50
S=1,K¢=4A
G, = Ax{Y +AY) + B

RIGHT-BOTTOM CORNER POINT
Jg=2 GOSUB 70, T, =T,

GOSUB 50,
GI = k*(\'l“!'AY) + Gl - k*Y}_

Yi=Y, +AY ,V, =V, +Ay
Gy = (G, +AxY,-B)/2

Py =T, %{(P,-P,)/T+P
Kp=A,T=T-T,

RIGHT-TOP CORMER POINT
Jg =1, GOSUB 60

T, = T,, GOSUB 50
V, = VAV, Y, = Y, +ay
Gy = A%, +B, K¢ = k

Py = Ty#(Py-P)/T+P,

T=T-T,7T, =T
GOSUB 50

<
Y+ AY

{

GOSUB 80

S=2 , Ko-k
G, = kx(Y +AY) + G, - k*Y

T,=T1, GOSUB 50
S=3,K¢=A
G, = A*(Yl‘l'ﬁ\Y) -B

LEFT-TOP CORNER POINT
Jg=4,GOSUB 70, T =T,

GOSUB 50

Gy = k(Y +Ay) + G, - k*Y,
Y=Y, HAY LV, =V, +AV
G, = (6,+A#Y,+B)/2
Py=Tyx(P,=P, ) /T +P,
Kp=A,T=T-T,

LEFT-BOTTOM CORNER POINT
J, =3 GOSUB 60

T,=T,.GOSUB 50
VSV FAV, Y =Y Ay
G, =AxY, -B, K=k

P, = Tl*(Pz'P1)/T+ P,
T=T-T,,T,=T

GOSUB 50

S=2,Kp=k
Gy = k(Y +AY) + G, - kxY,

¥ = (keY, -6, -B)/{k-)
Yo = (k=Y -G, +B)/(k-A)

Figure 1.2 Flow Chart of Bilinear Hysteretic System Sinmulation
Program {continued from Figure I1.1)
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SUBPROGRAM 50 .- NUMERICAL INTEGRATION

Q3 = 3xM , P3 = 6*M/Tl
Ky = 6%M/T, /T,
Az = (Pl“GJ)/M

AK = Kd + K,

AP =Ty *(Py-P ) /T + V%P, + A *Q,
AY = AP/AK

AV = 3%AY/T, - 34V, - T, %A, /2
RETURN

SUBPROGRAM 60 - LOCATE RIGHT-TOP AND LEFT-BOTTOM STATE-CHANGE
POINTS BY TRIAL AND ERROR

T,=T3=T/2,304=0

]

T, =0.99999+T, , GOSUB 50 , W, =AY

T;=1.00001%T, , GOSUB 50, W, = AY

Ty =T3/2;J9 =dg + 1]

RETURN

Figure 1.3 Flow Chart of Bilinear Hysteretic System Simulation
Program (continued from Figure 1.2)



SUBPROGRAM 70 - LOCATE RIGHT-BOTTOM AND LEFT-TOP STATE-CHANGE
POINTS BY TRIAL AND ERROR

TZ:T3:T/2
Jg = 0

i

T,=T, ,GOSUB 50
:j T3=T3/2,J9:J9+]

R
: Jg =2 AND (Y1+AY)<y£ TRUE

RETURN

SUBPROGRAM 80 - TEST IF REMAINING IM THE YIELDING STATE

T, =0.99999%T
GOSUB 50 , W, = AY
T;=1.00001%T

GOSUB 50 , W, = AY
RETURN

Figure 1.4 Flow Chart of Bilinear Hysteretic System
Simulation Program(continued from Figure I.3)
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Consider the I-th cycle of operation. The values of forcing at
the beginning and the end of the time step are noted. Subprogram 50 is
then called to calculate the incremental displacement AY and velocity
4V for the step [6]. Responses at the end of the time step are obtained
by adding the incremental responses to those at the beginning of the
step. The value of S for the previous cycle is examined.

If the value of S is 1, the previous state of the element is for-
ward yielding. If AY for this step is positive, program control trans-
ferred to step 30, otherwise, control transferred to step 31. At program
step 30, (Figure 1.2}, subprogram 80 is called to test if the forward
yielding state is maintained at the end of the step, i.e. if wl is less
than W, (w1 is AY calculated at T, = 0.99999T and W, is AY calculated at
T, = 1.00001T), then the end of the step remained at state 1. The step
is completed by storing the value of S, the stiffness at the new deformed
state, K@, and the values of restoring force G;’ displacement, Y,, and
velocity, V,. These become the initial values of the next step. Values
of force squared, velocity squared and restoring force times velocity are
calculated and accumulated for each step. If w2 is Tess than wl, then
there is a change of state in this step. Subprogram 60 is called to
Tocate the right-top state-change point (38=1) by trial and error. In
this subprogram, the original time step is halved, and values of W, and
W, are calculated as before. Whether state-change will occur before or
after the present time step depends upon the values of Nl, w2 and J8 and
a quarter (one-eighth,: one-sixteenth and so on for the latter cycles) of
the original time step is either added to or subtracted from the present

time step to form the new time step for the next cycle. The process is
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repeated ten times, and the resulting values of time step is found to

be within 0.3 percent of the true state-change time step. Using the
state-change time just calculated, the forcing and responses at the
state-change point are evaluated. These are then the initial values of
the unfinished time step. Subprogram 50 is called to calculate AY and

AV of the remaining step. 1If Y, +AY is greater than Y (derived from
Figure H.3), then the end of the step will stay at state 2, and the step
| 1s'comp]eted. If Y, +4Y is less than yg, then there is a further change
of state, and subprogram 70 is called to locate the state-change point.
This subprogfam is similar to subprogram 60, it gives the state-change
time after 10 cycles of trial and error operation. The values of

forcing and respohses at the state-change point are evaluated. Subprogram
80 is called to test if the end of the time step stays in the backward
yielding state (state 3), and the process is continued for as many state-
change points as may have in a single time step.

If, for the I-th cycle, the va]ue of S of the previous cycle is
2, program control is transferred to step 36 for AY greater than zero,
'otherwise, control 1is transferred to step 32. As many state-change
points may be located within the time step. Once the end of the time
step is reached, values of responses are recorded as the initial values
of the next cycle.

Similarly, if the value of S of the (I-1)th cycle is 3, program
control is transferred to step 34 for AY less than zero; and transferred
to step 35 otherwise.

After all cycles are completed, the power ratic of the model when

subjected to the given forcing excitation, is given by W = C9/SQR(P9*V9).



