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ABSTRACT

The study of a bilinear hysteretic system subiected to statjon-

ary random excitation in the highly nonlinear region with special regard

to the system's energy loss behavioris presented. Traditional methods

such as the treatment of a system as an equivalent linear system with

viscous dampìng have been avoided. Recognizìng the fact that the energy

loss parameter of an hysteretic system is response dependent, the power

ratio is introduced ai a measure of loss. The power ratio is defined as

the true power dissipation to the apparent power supplied to the system,

thus involving the forcing function and the response in its definition.

As only a ratio of power is involved, it may be applìed with equal

validity to linear and nonlinear systems to express a measure of loss

similar to that of the damping ratio.

The relationship between the power ratio and damping ratio is

first established with the aid of several linear systems. Results for

a nonlinear nonhysteretic system are given to show that useful results

can be obtained in a strongly nonl inear case with known viscous damping'

Theoretical results are validated with resuìts from a physical model '

The essence of hysteresis is djscussed using an isolated bilinear

hysteretic element, In this case, dìsplacement is the input and the re-

storing force of the element is the response. Theoreticaì results of

power ratio are shown val idated by means of both a physìcaì -analog model

and a dìgitaì simulation program. Plots of power ratìo versus different

elenent paraneters and input parameters are presented for periodic and
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random input waveforms. The dependence of the hysteretic eìement upon

the forn factor of the input dispìacement waveform is indicated' The

meaning of power ratio as a lost effectjveness factor is also establ ished.

Extension of the hysteretic element to include a single mass, thus

forming a singìe degree of freedom biìinear hysteretic system is made.

The input quantity in this case is the force actìng on the mass. Plots

of power ratio obtained by dìgìtat simuìation of the system are presented'

Owing to the addition of an inertia force, the effect of force waveform

dependency is less significant. In this case, a peak power ratio is

obtained which corresponds to resonance of the system. It is shown that

the natural frequency of the small amplitude response has a significant

effect on the performance of a system subiected to narrow-band excitation.

For broad-band excitation, this effect is less pronounced.

The work outlined in this thesis exþlored the energy loss behavior

of a biì inear hysteretic mechanism with the use of power ratio, over a

wide range of input and output parameters, Such a mechanism governs the

performance of a system under structural overload, hence, the under-

standing of the hysteretic mechanism may find application in the design

of force ìimiting and ìoss producing elements in civil engineering

structures, Such elements may be instaìled at sujtable locations to

provìde controllable and self repairing yielding. In this way' maior

damage in the structure may be avoided.
. i:':l:':



CHAPTER I

I NTRODUCTION

I.] INTRODUCTION

In structural dynanics the three elements which govern the per-

formance of a system are mass, stiffness and damping, The mass (inertia)

and stiffness (elastic) elements alone permit¡ the storage of energy in

kinetic and potential form and the process of exchange between these two

forms of energy under dynamic conditions is the basis of much of our

understanding of vibrating systems. This exchange of energy is, of course,

loss-less and the totaì energy in the vibrating system at any time will
depend solely on the amount gained from an externaì source. The addit-
'ion of damping elements a'llows us to account for energy loss from the

systen and brings the analysis into accord with the physical behavior of

linear vibrating structural systems. Energy loss may take pìace through

'losses into the surrounding medium (ambient damping), internal damping

(material damping) and friction at connections (interface damping). While

the properties of the mass and stiffness elements of a system can be

estimated readily from a knowledge of geometrical configuration, material

properties and system natural frequencies, the property of the energy

loss element is not so clear-cut and is stilI the subject of extensive

investigation [1 ,2 ,3] .

Most anaìytical work in stfuctural dynamics has assumed the

systems to be linear so that the principle of superposition is valid and

modaì analysis of multi-degree of freedom systems can be performed. In



line with these assumptions, the damping elements are often ascribed the

"linear viscous" form in which the velocity in an element ìs proportional

to the force applied to that element. This idealization offers great

mathematical simplicity and, in most cases, gives a satisfactory des-

cription of the performance of a system as long as the ampìitude of

vibration is smail. In civil engineering, cases of severe excitation

such as earthquake, blast and wind, occur and a structure may be driven

beyond its linear 'l imit at ìarge ampiitudes of víbration. Such nonlinear

behavior may be due to the nonlinear stress-strain relationship of the

material , or a similar phenomenon arising from Coulomb friction between

sììding surfaces, Furthering the understanding of the behavior of

structures under such nonlinear conditions is the pnimary objectìve of

the work reported in this thesis.

If the nonlinearity in the structure is small, the system can be

modelled adequately as an equivaìent linear system havìng "equivalent

viscous damping" [2,4,5], As the degree of nonlinearity increases,

viscous damping aìone can no longer describe the energy-loss mechanisn

of the system because energy loss due to hysteresis becomes significant.

Hysteresis is an energy-loss mechanism which depends on. the past

history of the system. Hysteresìs may be due to the presence of Coulomb

friction in the system, or it may be due to the elasto-plastic behavior

of the material in the system. One simplified model of hysteresis and

one which al lows adequate description of this effect is bilinear hystere-

sis (Fjgure l.l). This bilinear model is a good approximation to the

energy loss behaviorin many civil engineering structures during over-

'load [4].



Restorì ng Force g (y,! )

Displac ement y

Figure ì.1 Restoring Force-Dispiacement Relationship
of a Bilìnear Hysteretic Element

,t:,.',.;:'
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Figure l.l shows the restoring force g of a bilinear hysteretic

element versus displacement y. The nature of bilinear hysteresis is

such that the restoring force-dispìacement slope relationships will

aìways be either k or kq, The sìope k corresponds to a non-yielding

state whereas ko corresponds to a yieldìng state. l,Jhich of these

two slopes holds under any circumstances depends solely on whether 'local

yield has been or is about to be exceeded, The particular startìng point

for either sìope wìll depend entireìy on the past history of yielding.

Accordingly, the element is nonelastic and a loop is described for a

complete cycle of,oscillati9n, This ìoop is cal led the hysteretic ìoop.

It is interesting to note that the amount of energy dissipated by the

element over the cycle is proportional to the area enclosed within the

hysteretic loop. Hence, the energy loss in an hysteretic element depends

upon how it is forced, All these properties of hysteresis, namely,

history dependency, force dependency and the ability to dìssipate energy,

together with the invaì idity of the principle of superposition, make the

study of hysteretic system both stìmulating and fascìnating.

This thesis presents the study of a bil inear hysteretic system in

the highly nonlinear region wìth special regard to the system's energy

'I oss behavior,

I.2 OUTLINE OF METHODS OF ANALYSIS IN STRUCTURAL DYNAMICS

ì.2(ì) Linear Systems

Perhaps the best known and simplest

dynamics is the analysis of a ìumped-mass,

of freedom (l-DoF) I inear system subjected

kind of problem in structura'l

vi scously damped, one degree

to deterministic ìoading, The

l::!:,:L
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approaches for solving this problem, one in the tjme domain and one in

the frequency domain, are standard [6,7,8,9], In the time domain, the

response (such as displacement) of the system to a unit impuìse, gener-

ally referred to as the unit- impulse response functìon, is first
established, The system displacement responses are then evaluated by

using the Duhamel Ìntegraì, which is the convolution of the forcing

function and the conesponding unit-impuìse response function. In the

frequency doma i n . approach , the forcing function is first resolved into

an infinite sum of harmonic components, The displacement of the system

to a unit harmonic component, called the complex frequency response

function, is then established. The system displacement responses are

obtained by integrating the product of the harmonic force component and

the complex frequency response function, over the entire frequency range.

In both of the above approaches, the integration processes are

possible because the principle of superposition hoids. If the system is

strictly linear 
'but 

has n degrees of freedom (n-D0F), it can be

treated, through proper transformation of coordinates, as n, indepen-

dent, ì-D0F systems, provided that the system exhibits a Rayìeigh type

of viscous damping [6].

In many cases, such as wind and earthquake ìoading, the assumption

of periodic forcing is unsatisfactory and interest turns to the analysìs

of lineaì systems subject to random loading. In these cases, system:

responses are also random and statisticai descriptions of the loading

and responses are more neanìngfu1 than time-history descriptions, The

approprìate statistical descriptions and the techniques for deriving them

are well documented [6,.l0,]1,12,.l3,14], and, hence, only one example is
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given here to illustrate these techniques, The chosen example is that

of the mean square dispìacement response to statjonary random excitation,

usìng both time domajn and frequency domain approaches.

In the time domain, the autocomelation of dispìacement, defined

as the expected value of the product of displacement at zero time delay

and the dispìacement after deìay of .r seconds, is obtained by applying

the Duhamel integral twice and taking the expected value of the resulting
'integral . The autocomelation of displacement is then expressed in terms

of the autocorrelation of the forcing function and the unit-impulse re-

sponse function of the system. By setting r to zero in the expressìon

for the autocorrelation of tlre displacement and integrating twice over the

entire time domain, the mean square displacement is obtained,

In the frequency domain approach, the displacement autocorrelation

function is decomposed into an infinite sum of frequency components, the

ampìitude of which is called the displacement power spectral density. The

dìsplacernent power spectral density and the autocorrelation function forrn

a Fourier transform pair []0]. The former, and hence the latter quan-

tity, can be expressed i'n terms of the cornplex frequency response func-

tion and the power spectraì density of the forcing function, The mean

square.displacement is obtained by setting 'r to zero in the expression

for the displacement autocomelation and integrating over the entire

frequency domai n.

In addition to the direct process of determining the response of

a system from knowìedge of its passive parameters and the forcing to

which it is subjected, attention has also been given to determining system

parameters from measured responses to known forcing functions [15,ì6].



:rl::!1g.xir.ir..,J

-7-

Interest in this inverse problem stems mainly frorn the lack of knowledge

of the contribution made by the many and varied forms of damping mechan-

isms that exist in a typical civil engineering structure. As wjth the

direct probìem, the inverse solutions rnay be obta.ined us.ing either the

time domain or the frequency domaìn approach.

In the frequency domain approach It7,18,i9], response data are

measured for a collectìon of frequency points. The system parameters

are then evaluated by processing these response measurements, one data

poìnt at a time, together with the known system data, using a recursive
'least square t.echnìque. In the time domain approach, the response

measurements for some time points are taken, the system parameters are

then obtained by processing these response data, one data point at a

time, together with the known system data, using either the recursive

least square technique [20], or the maximum liketihood technique [2'l].
In employing the least squares technique, approprìate weìghting matrices

nny be incorporated into the least square algorithm to account for the

random nature of test data and the structural model parameters [15].

These techniques involve very large data processing t.ime if a ìarge

collection of data points are taken.

ì.2(ii) Nonlinear Systems

From the foregoìng résum6 of techniques for analyzing the vibra-

tion of Iinear structures, the main difficulty in attempt.ing similar

analysis for nonìinear structures becomes clêar, namely, that the super-

posìtion theorem is violated. The ramifications of this violation are,

firstly, that the total response of a structure cannot be obtained as a

summation of responses to different forcing functions, and, secondly, that
t¡i;t1,:1',,.
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the analysis of multìdegree of freedom systems cannot employ modal tech-

niques. Another difficulty in attempting a linear approach for nonlinear

structures is the assumption of viscous damping. Viscous damping is

described usualìy by the viscous damping ratio, which is obtained by

comparing the energy ìoss in a cycìe with the peak potentiai energy

stored in the system during that cycle. From the performance point of

view, the damping ratjo is a very important parameter in Iinear struc-

tures because it is this ratio which governs the maximum response of a

structure. However, the damping ratio is a constant derived from the

parameters of a iinear system, hence its applìcatìon in nonlinear hyster-

etic structures is lìmited because the energy loss parameters in such

structures are response dependent.

If the excitation is determjnistic, a nonììnear structure can be

anaìyzed usìng either the step-by-step numericaì integration [6,7] or

the graphicaì method [7,22]. Step-by-step numenical ìntegration is a

wideìy used technique in solving nonlinear deterministic problems in

civiì engineering, hence, only this method is iliustrated here,

The essence of step-by-step numerìcaì integration is the approx-

imation of the nonlinear system as a sequence of successively changing

iìnear systems, eäch existìng for an equal time step, The system non-

'I inearity is accounted for by using new properties to correspond with

the deformed state at the beginning of each time step, Dynamic equiìi-

brium is established at the beginning of the time step and the motion of

the system durìng the time step is evaluated on the basis of an assumed

response mechanism. The responses computed at the end of a time step

are used as initial conditions for the next step, thus the process can
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be continued step-by-step for any desired time. This technique deals

with all kinds of nonlinearities and gives satìsfactory results providing

the time step ìs small enough to account for the rate of variation of

Ioading, noni inear damping and stiffness properties. In generai, the

variation of naterial property is not a critical factorin choosing the

'integration time step; if a sìgnificant sudden change takes place, as in

the yieiding of a hysteretic spring, a special subdivided time step may

be'introduced to treat this effect accurateìy. It is found that the

time step needs to be much smaller than the vibration period of the

system if stable results are to be obtained,

The step-by-step and graphical methods depend upon having a de-

terministic forcing of the system, Hence, the search for methods of

anaìyzing nonl inear systems subjected to random excitation becomes im-

portant when earthquake and similar 'l oadings are of interest. Unfortun-

ately, there appears to be no widely accepted method of analysis in this

area which is at all comparable to that developed.for the anaìysis of

ìinear systems. While the techniques for analyzing these nonlinear systems

are not yet welì deveìoped, there are several approaches available which

can treat a smal l class of problems quite adequately. They are, the

Fokker-Planck equation, the perturbation method, the power balance method

and the equiva'lent linearization approach.

In applyìng the Fokker-Planck equation i23,131 , an exact solution

can be obtained for a nonlinear nonhysteretìc system in which the damping

forces are proportìonal to the velocity. The excitation needs to be a

Gaussian white noise. If alI of these conditions are satisfied, the

solution to the Fokker-Planck equation gives the transitional probability
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density function of the velocity and displacement responses. Various

response statistics such as the mean square displacenent and the freq-

uency of crossing of the displacement across a certain level can be de-

termined. Hovrever, the restoring force needs to be a single-valued

function of the displacement, hence, this approach cannot be used to

treat an hySteretic system.

In the perturbation approach 124,25,22,.l31, the dispìacement re-

sponse is represented as an expansion in powers of a parameter e (assumed

smalt), whìch specifies the size of the nonlinearity of the system, Sub-

stitutìng the assumed expansion into the equôtion of motion of the system

and equating coefficients of Iike powers of e yìelds a.set of Iinear

differential equations for the terms in the assumed expansion. A first-
order approximation is obtained by neglecting terms of order e2 and higher

in the expansìon, hence, only two I inear dìfferential equations need be

considered. Response statistics of the nonlinear system are obtained

from the cross statistics of the linear differentiai equations, This

approach is restricted to a weakly nonlinear system. Also, the system

must contain some finite value of viscous damping to make the solution

of the first linear .differentiaì equatìon bounded.

The power balance approach 126,27,28f , on the other hand, involves

a balance of power supplied to the system by the environment and power

dissipated in hysteresis effects. The average power input can be readiìy

evaluated [26] for Gaussian, white, broad-band random forcìng. The hys-

teretic power dissipation is obtained by muìtiplying the average energy

dissìpation per cycle (area within the hysteretic loop) and the average

frequency of the response displacement waveform which is restricted to

be a Gaussian narrow-band process with Rayìeigh distribution of peaks,
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The mean square djsplacement can then be evaluated from the power balance

equati on.

The equivalent Iinearization approach 14,5,29,30,321 is perhaps

the nost commonly used among the approximate methods of analyzing non-

linear structural systems to random excitations. in [4,5], the method

of equivalent linearization of Krylov and Bogoliubov [43] is extended to

deal with statjonary Gaussian excitation. The nonlinear hysteretic system

is rewritten as a iinear system having equivaìent viscous damping and

stiffness parameters. These parameters are chosen to minimize the mean

square difference between the nonlinear and Iinear equations. The motion

must be narrow-band with Rayleigh distribution of peaks, so that only

lightiy damped and weakly nonlinear system can be considered. Alterna-

tively, an equivalent f inear system may be chosen such that some

statistical measures between the nonl inear and the equivalent linear

system are matched. In [29], methods of matching displacement, matching

velocity, matching dispìacement and velocjty, and matching response power

spectraì density àre proposed, Highly nonlinear systems may be considered

but it appears that different eguivalent linear systems are found when

different response statistics are considered.

Most work to date in nonl jnear structuraì dynamics assumes the

displacement response of the system to Gaussian excitation to be narrow-

band, Gaussianly distributed with Rayleigh distribution of peaks; These

assumptions become progressively less acceptable as any system is driven

into the highly nonl inear response regime, The displacement response in

such a highìy nonl inear system wilì in general be non-Gaussian and will

cover a bandwidth in excess of the excitation bandwidth. Hence, the ex-

,,.,,:;.:.
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isting methods mentioned are inadequate for the treatment of highly non-

linear systems. FilIing this gap in the field of structural dynamics

is, of course, a major undertaking and contributions from many sources

will be required. Most notably, it is felt that contributions which help

to break free from "linear" or "near I inear" thìnking will be most fruit-
ful in filling this gap. The purpose of the present work, then, is to
consider particular problems such as the energy loss b.ehavior of a bi-

ìinear hysteretic system, without placing constraints on its degree of

nonl i neari ty ,

The consideration of power in structural dynamìc systems ìs not

net,l. l'lany investigators [33,34,35,36,37] have employed the concept of

average power in the evaluation of power flow between resonators. The

evaluation of mean square dìsplacement from a knowledge of the power

balance in the system was done in 126,271. In [38]' a procedure was

formuiated for the evaluation of mean square responses when completè

system information and average power.input are known. All the above work

involves the . cons i derati on of power or mean square responses. However,

these quantìtìès have not been employed in defining the energy-ìoss

property of a nonlinear system. One of the features offered as new in

the present work is the introduction of power ratio as an energy loss

effectiveness factor in structuraì systems. Power ratio is obtained by

companing the average power dìssipation to the apparent power input to

the system, and, hence, it performs a role similar to that of the damping

rati o ,
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CHAPTER II

ANALYSIS OF VISCOUS DAMPING IN LINEAR

SYSTEMS USING POWER EQUATIONS

2.1 INTRODUCTION

To gaìn famiìiarity with the use of power in considering struc-

tural systems, several linear systems with viscous damping were first
investigated. In each case, the forcing of the system was assuned to

be a random time function. This work offered some interesting insìghts

into the use of the power method generaìly and, in particular, laid the

groundwork for the validation of power ratio in the assessnent of linear

and non l i near vibrating systems.

2.2 GENERAL POl¡lER EQUATIONS

Consider an n-D0F ìinear system as shown

is an ideal ization of the shear structure shown

equatìon of motjon of this system is

1n

tn

Figure 2. ì (a) which

Figure 2..l(b). The

[m]{v} + [c]{i} + [k]{v} = {p} , (z.l)

where [m], [c] and [k] are the system's (nxn) mass, viscous damping and

stiffness matrices respectiveìy. The {y}, {j,} ana {y} are the (nx1)

dispìacement, velocity and acceleration vector, and {p} is a (nxl) load

vector. Postmultiplying each term of equation (2,.l) by the row vector

{j'}r (superscrjpt T denotes transposition) and taking expected value

(ensemble average) of the entire ensembìe, equation (2.1) becomes



(a) Ideaì ization
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Figure 2.ì Muìti-Degree of Freedom Linear System
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ln]Elvi'rl + [c]E[yi'r] + [k]E[yyt] = E[pi'r] , (2.2)

where E denotes expected value; Elylirl , Eliirl , tlyyr], and E[pyr] are

the system's (n x n) zero-lag covariance matrices. If the loading vector

is restricted to be stationary and ergodic, so then are the responses

tlzl, Hence, replacìng the expected values in equation (2.2) by the

time averages, equation (2.2) becomes

t'ltvfll + tcll--vFl + tkl tvirl = tptE '
where 

- 
denotes a time average quantity.

(2.3)

Each term in equation (2.3) has the dimension of power, hence,

equation (2.3) ìs refemed to as the power equatìon of the system. If
the excitation force {p} is assumed to act on one mass üren } (Sn+l)t

n¡easurements are requìred to form the mean product matrices ffi,
t¡trtq, ivyÐ and [pir]. If [m] and [k] in equation (2.¡) are known then

[c] can be evaluated if iyirl is nonsinguìar.

In many circumstances jt is desirable to eliminate dispìacement {y}

as quantities to be measured, because the d i rect .mea surernent of displace-

rnent in full scale structure i5 impracticable (see Appendix A). Hence,

premultipìying equation (2.3) by Ik]-I (assuming the inverse exists) ,

adding to the resuìting equation ìts transposed equation and using the

relations' 
tvlrr = - [Fr] ,

¡;Yr1 =-tty.f,

t As a result of stationarity [ O], tyttf ana þ.iE are anti- slmmetrical
and each contains n(n - Il /2 dÍstinct el-ements. ffill is slmmetrÍcal
and contaÍns î(.n+l-l/2 distinct elements. [eÍT] contains n distinct
elements -
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equation ( 2.3) becomes

tkl-l tcltlrl + tlÌ-ltcltkl-' = [r<]-'tit=rl * ¡r;pî-1¡r1-'

- tkl-'tmlit-Fl - ¡r;3;r1¡mltkJ-t (2.4)

Since the matrix [yyr] is eliminated, the required number of measure-

ments are reduced to n(n+l). [c] is symmmetricai and generally con-

tains n(n+ l)/2 unknowns. The resultant matrix on each side of equa-

tion (2.4) is also synmetrical so that n(n+1)/2 índependent linear

equatìons can be obtained for the evaluation of [c],
A precìse evaluation of tijtrl may prove difficult in practice be-

cause of possible phase shift errors between the acceieration and the

derived velocíty (see Appendix A), but the need to evaluate these

quantities can be avoided by reformulating the equations of motion into

the modal power equati:ons.

2.3 MODAL POl¡lER EQUATIONS

2.3(ì ) Broad-band Excitation

Consider the equations of motion as given by equation (2.t), and

let

{y} = [o]{Y} , (2.5)

be the expression which transforms the generalized coordinates {Y} of

the system to the geometrical displacement coordinates {y}. [O] is the

undamped free vibration mode shape matrìx, Substituting equation (2.5)

and its derivatives into equation (2,i), premultiplyìng the resultant

eqauation by [O]r, and assuming the dampìng to be Rayleìgh [6], the

folìowing modal equaitons are obtained.
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Mi Yi + C1 Yi + Kt Yi = Pi , i=l,n ,

where

tMl = tolrtmltol, tcl = [o]r[c][o] and

tKl = tolrtkl[O] are diagonal generalized mass, damping and

sti ffness matrices, respectively, and

(2.6)

{P} = [o]r{p} , (2.7)

is the generalized load vector.

Multiplying equation (2.6) by ti and taking time averages, the

modal dampings are given as

-..--i.

c.'=Lþ, i=r,n (2.8)-v?
a

If the excitation acts onìy on the r-th mass then, in the geome-

tric coordinates, the modaì damping C1 is

ci= , (i,j,k=l,n), (2.e)

where [rP] = [O]-t. If the damping is not Rayleigh, then the matrix [C]

will not be diagonal and the Ci as given by equation (2.9) is the

'equivalent' modal damping coefficient which causes the same amount of

dissìpation as the original mode.

The modal dampÌng of equation (2,9) depends only on the matrices

tiÍrl an¿ [-pfl], the number of measurements required ìs reduced signi-

ficantly to n(n+3)/2. As wilì be seen in the next sub-section, the

number of measurements may further be reduced by exciting a particular

mode of the system.

ÇElEri
J?-;'l,*qE
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2.3 (ii ) Band-Limited Excitation

For an n-DoF systen, assume that the system has n distinct modes

with modal frequencies fr, f2, ..., fi, ... fn as shown in Figure 2,2.

Suppose that the system is excited by a force p which has a frequency

bandwidthf, 
^f, 

centered at the i-th modal frequency, fi, such that 
^f

does not envelop the frequency bands of other modes. This can be con-

sidered as an i-th mode excitation. Hence, if the excitation force p

acts only on the r-th mass, then from equation (2.5) and (2.7),

r¡=þ¡iYi land , I (2.ì0)

-fPi =Ori p¡ 
|J

By introducìng equation (2.10) and its derivative in equatìon (2.8) ,

the modal damping of the i-th mode becomes

n -, zPtYrcr=o,ij- (z.il)

In equation (2.ìl), p, y, ls the mean power and f is th" rean

square veìocity measured at the location of the forcing. Each value of

modal damping depends onìy on two measurements,

It has been shown that structural damping can be evaluated by

using various forms of the power equations. All assume stationary

ergodic forcing functions. The first of the formualations, equation

(2.3), alìows the complete damping matrix to be determined but requires

t *. ,ot.. is assumed to be ideally filtêred so that there is no frequency
component outside 

^f.
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Figure 2.2 System Response Versus Frequency for a

Linear System With Distinct Modes
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the evaìuatìon of a large number of covariances. Displacement measure-

ments are also required, The second, equation (2.4), eliminates the

need for displacement measurements but still relies upon the evaluation

of a ìarge number of covariances, and the matrix lyyt which is very

sensitive to measurement errors. The third, equation (2.8), el iminates

the evaluation ot [ÏiT| but y.ields only the modal damping if the modes

are distinct, otherwise it yields 'equ.ivaìent, modaì damping. The ìast,
equation (2'11)' needs only the variance and power measurements for the

evaluation of the modal damping, but can be applied meaningfuì1y on.ly to

d system which has distinct modes.

2.4 EXPERIMENTAL SET-UP AND DISCUSSIONS

A 3-DOF structural model was constructed and a computer simulation

program for linear systems compiìed to vai idate the results of this
chapter. Photographs of the model and the measuring system are shown in

Figures .2.3 and 2.4. Further reference is made to the model and to the

.linear simulation program in Appendixes A and B respectively.

The work presented in this chapter offers an alternatjve to the

evaluation of viscous damping parameters in linear systems. what makes it
different from other:work is the use of power and mean square measurements.

It was undertaken to provide a workìng knowìedge of the use of power

measurement methods in Iinear structural systems from which a sound start
ìnto the consideration of nonlinear structural systems might be made. For

this reason, the practical vatidation of the theoretical results in this
chapter was not prosecuted with the compìeteness that might be sought in

a primary investigation. Nevertheless, for the exper.iments and digital




































































































































































































































































