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The deterministic Boltzmann machine (DBM) neural network architecture was originally

derived from the stochastic Boltzmann machine (BM) by substituting the expected values

of unit activations for the stochastic activations of the BM. Our simulations show that

the DBM, unlike the BM, exhibits unstable behavior such as oscillation during learning

and hypersensitivity to small perturbations of the weights or other network parameters.

While other researchers have encountered similar oscìllatory behavior, it has never been

satisfactorily analyzed,

It is shown that this unstable behavior is the result of over-parameterization (excessive

freedom in the weights), which leads to continuous instead of isolated optimal weight so-

lution sets. Because the optimal weight solution sets are continuous, the weights are free

to drift without correction from the learning algorithm until two minima in the netrvork

energy function are of equal depth and a gross output error occurs, The subsequent cor-

rection and later recurrence of these gross errors appears as a series of narrorv spikes in the

output error of the network. The DBM learning algorithm is incapable of preventing this

oscillation because it uses only the final output error of the network to adjust the weights,

and the output error is zero for an optimal weight set until a gross error occurs.

The existence of multiple minima in the DBM energy functiolr, and the resulting be-

havior, is shown to be analogous to prematurely terminating the statistics gathering period

in a BM. Since the required period increases with the size of the BM, and the DBN4 is

analogous to an inflnite-sized BM, simply increasing the size of the DBM netrvork will not

prevent the oscillatory DBM behavior.

Various issues relating to the implementation of DBMs using non-ideal analog hardware,

and their relationship to the rveight drift problem, are also explored. It is found that onlv

non-ideal behaviors that cause the weight values to drift, most notably weight decay. have

a significant efect on network performance, and that there is no threshold belorv which

these behaviors can be tolerated. Other non-ideal analog behaviors, such as component

non-linearities, do not seriously degrade netrvork performance.

Abstract
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Gåossery

activation The level of activity of a unit. Corresponds to the firing rate of a bio-

logical neuron.

BM

basin hopping Basin hopping is a phenomenon that occurs wiren a DBM network has

two energy minima, of equal depth to choose from when it is settLing, and

randomly cirooses one or the other. One minimum typicalJy corresponds

to a correct answer, and the other to a gross error.

bias unit A unit whose actàuationis permanently clamped at 1.0 in order to provide

a bias or threshold to the other units in the network.

clamped When a unit is held to a fixed externally applied actiuation value.

continuous solution A continuous range ol optintal weight sefs, any of which result in an

arbitrarily small output error.

CHL Contrastive Hebbian Learning is the learning procedure used in a deter-

ministic Boltzmann machine. The CHL rule is the mathematical formula

used to update the weights.

A stochastic Boltzmann machine.

DBM

diameter (of optimal weight sef), is the minimum weight change required to pro-

duce a gross error. The diameter of the rveight set is denoted d(\M-).

vii

A deterministic Boltzmann machine.



GLOSSARY

epoch A single pass through the entire training -çeú. An epocir is tire basic unit

of time during training.

error spikes Brief gross errors that appear as narrow spikes in a plot of. fhe ntean

squared error dtring learning.

free unit A unit that is not clamped. The hiddenand output units are usually free,

while the input units are clamped.

gross error A large output error that results in a network output having the wrong

sign, usually due to basin hopping.

hidden unit A unit that is neither an input nor an output, and is never clanzped.

Hidden units are not visible outside the network.

input unit A unit that is always clamped to an externaiiy suppLied activation level,

serving as an input to the network,

isolated solution An optinzal weight sel that is a single fixed point in weight space. See

also continuous solution.

learning The process of adjusting the weights to reduce the output error of the

network to as low a value as possible.

learning multiplier The electronic circuit responsible for calculating the product of trvo

unit activations during learning.

rearnins probrem j ;""îJ:;l ;: 
jï:ïï- :-::: i:,:ï: 

n:o' 
"'''[he 

archi'iec'iure

mean squared error The average of the sum of the squares of the difference between the

network outputs and the vectors in the training set.

non-separable problem A set of input/output vectors in which the outputs cannot be cal-

cuiated as a linear combination of the inputs. The exclusive or function

is the simplest non-separable problem.

v11t



GLOSSARY

optimal weight set A set of weights that allows the netrvork to recall all the vectors in the

training set with an arbitra,ry degree of accurac\'. (denoted W-)

output error The dìfference between the output of the network and the vectors in the

training set.

output unit A unit that serves as an output for the network.

simulated annealing A process of using gradually decreasing levels of random noise to

avoid local minima when searching for a global minimum.

solution An optinzal weight set.

state The state of a unit is its activation level. The state of the network is the

set of activations of all the units in the network.

target value The analog value that the network is supposed to reproduce.

thermal equilibrium A condition where the average activations of the units of a stochastic

Boltzmann machine are no longer changing with time.

training set The set of input and output vectors used to train the network.

unclamped When a unit that is sometimes clantped is released and allowed to settle

with the other free units.

unit A processing element, typically with a logistic activation function. A

unit corresponds to a neuron in a biological neural network.

weigh'1 
i:iHi';'i::;ï:::;ï:,1;:;ï::i;ï;"ffii:"ä;
network.

weight decay When all the weights in the network decrease in magnitude over time.

weight multiplier The multiplication circuit responsible for calculating the product of a

unit activation and a weight value.

IX



Claap6er &

äaaËnodt.s *tÄcrz

The human brain contains approximately one trillion neurorls, interconnected through many

trilLioirs of synapses. When a neuron cell fires, chemicals are released into its synapses to

either excite or inhibit the neurons to which it is connected. Intelligence does not reside in

any single neuron, but in the collection as a whole.

It is the goal of artificial neural network research to create intelligent machines by

assembling large numbers of simple elements, called units, Lhat are modeled after bioiogical

neurorìs. The units are interconnected by weights that are the analogous to biological

synapses. The strengúås, or ualues, of the weights represent the efficiencv of the synapses

and determine how large an effect the activation level, or state, of each unit has on those

to which it is connected.

Just as biological nervous systems have sensory input and motor output neurons, so

artificial neural networks (hereafter referred to as neural networks) have input and output

units. In both biological and artificial neural networks, the majority of the neurons (units)

have no direct connection to the outside rvorld. These are the hidden units, and form

the most vital part of a neural computation system because they give the system the

ability to represent non-separable problems. The process of training, or learning, \n a

neural network involves the adjustment of the rveights based on the presentation of training

patterns (examples) to the input a,nd output units of the network.

1



CHAPTER 1. INTRODUCTION

Neural netrvork research, in one form or another, has existed for over three deca,des.

Its popularity has waxed and rvaned considerably during that time, with a low point in

1969 with the publication of Perceptrons [MP88]. In it, Minsky and Papert showed that

simple networks (with no hidden units), which had been the main focus of research up to

that point, were incapable of representing the entire class of non-separabÌe problems. Al-

though networks with hidden :units could represent non-separable problems, there was no

learning algorithm known that could be used to train them. When the back propagation

algorithm [RM87a], which con use hidden units to learn problems like XOR, became widely

known in 1985, large numbers of researchers once again became interested in neural com-

putation. Many other neural network algorithms have been developed since, but the ability

to use hidden units to represent XOR-like problems has remained as a basic requirement in

order for a neural network algorithm to be considered useful.

1-.1- Neurons in Vtr SI

An important diference between a serial computer simulation of a neural network model and

the corresponding biological or VLSI hardware system is the cost of sending information over

long distances. Since every location in the memory of a seriaÌ computer is directly accessible,

the concept of physical distance betrveen pieces of information does not exist. However, both

VLSI circuits and the cerebral cortex are essentially two-dimensional structures, so there

are substantial costs in both time and space involved in non-local communication.

Our goal is to build highly parallel neural networks in VLSI, so we must Limit our-

selves to structures that rely onlv on local information to accomplish their tasks or face the

prospect of devoting the major portion of our integrated circuits to wires. The Boltzmann

machine [RM87a] is one of a number of neural network models that meet the local conìmu-

nication requirement. The Boltzmann machine (BM) consists of units whose state switches

stochastically, with a probabiüty determined from the inputs received through the weights

connecting to other units in the netivork. The BM has a simple learning rule that reLies only

on locally available information, making it a natural candidate for VLSI implementation.
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One of tlie disadvantages of Boltzmann machines is that their units change state stocha,s-

tically, and must be monitored for long periods of time in order to gather sufficiently reliabie

statistics to perform the weight updates needed to train the network. Peterson and An-

derson [P487] use mean field theory to develop a deterministic version of the Boltzmann

machine that circumvents the long monitoring periods by replacing the stochastic unit ac-

tivations with their expected values.

The deterministic Boltzmann machine (DBM) retains the simplicity of the Boltzmann

machine learning rule and avoids the pitfalls associated with stochastic behavior. Because

of its advantages, the DBM has been used as a replacement for the Boltzmann machine by

a number of researchers [AZLg2,8P91, GH90, Hin89, Mov90a, Movg0b].

The goal of our project is to implement the DBM algorithm in analog VLSI hardware in

order to exploit the enormous potential for parallelism in the DBN4. However, before the the

hardware can be built, we have to thoroughly understand the behavior of the DBM so that

hardware design efforts can be focused on those issues that seriously affect the perfornance

of the network.

L"2 l,earning Instabitity

In the course of determining which hardware issues are important, a serious tendencv to-

wards instability in the DBM learning process, not evident from previous theoretical treat-

ments, was uncovered. While the effects of this instability are most serious in analog

hardware implementations, there are also ramifications for both serial and parallel digital

implementations of DBM systems.

The root of the instability is shown to lie in the freedom of the weights to drift through

a continuous range of values without affecting the output error of the network. Especially

when combined with unavoidable non-ideal analog hardware behavior like capacitor leakage,

which causes all the weight values to decay torvards zero over time, this freedom can cause

the learning process to produce a regular series of narrow error spikes. Even in a digital
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implementation, there is a tendency for the DBlt¡I algorithrl to produce

stabie results.

1-.3 Overview

The following is a short synopsis of the contents of each chapter of this thesis. The main

results of this work are found in chapters 4, 5, and 6.

Chapter 2: The Boltzmann machine is introduced and its theoretica,l ba,ckground is de-

rived. The DBM is then derived by applying the mean field approximation to the BN4.

Chapter 3: The experimental process used to determine our results, and the structure

of the simulation software, are described in detail. Simulation resuits are presented for

various network configurations and learning tasks. The results, particularly the presence

of osciliations during learning, are not consistent with the behavior expected from the

theoretical treatment in chapter 2 and in the litera,ture. The cause of this unexpected

behavior is explained in chapter 4.

Chapter 4: A small DBM learning the XOR problem is investigated analytically to de-

termine the cause of the unanticipated simulation results in chapter 3. For this particular

network, the DBM learning algorithm does not find a unique, isolated, weight set, leaving

the weights free to drift. This drifting causes oscillation during learning, especially in the

presence of weight decay. While the analysis is restricted to a particular network, the be-

havior it predicts (instability, oscillation, and sensitivity to weight decav) are prevalent in

every non-separable problem we have simulated.

Chapter 5: The relationship between the BM and DBM is explored further to determine

if the results derived in chapter 4 are due to a failure of the mean field approximation in

small (less than 10 unit) networks. The behaviors of the BM and DBN4 converge as the

networks become large (over 100 units). The convergence is not due to an improvement in

the behavior of the DBM, but instead to a deterioration in the behavior of the BM.

4

only malginally
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Chapter 6: Various design issues pertaining to the implementation of DBIvIs in analog

VLSI are explored, along with their relationship to the findings of chapter 4. The network

is tolerant of most non-ideal hardware behavior, but not at all tolerant of weight decay and

related effects, which cause the weights to drift and result in oscillation.

Chapter 7: It is demonstrated that a DBM can learn to produce certain analog in-

put/output mappings without the normal process of allowing the units to settle to stable

activation values.

Chapter 8: Conclusions and suggestions for further work are presented.



Chapter 2

Kåaeoretåaaå ffi ackgrc>?-ãxad

2.L Introduction

The theoretical background for stocirastic and deterministic Boltzmann ma,chines is derived

in this chapter. We first provide an overvierv of both the BM and DBM network architec-

tures, followed by a theoretical derivation of the BM and its learning algorithm. The DBM

is then derived from the BM by applying mean field theory.

2.2 ûverview of the BM and the DBM

As the name implies, deterministic Boltzmann machines [PH89] are a nonstochastic reÌative

of the Boltzmann machine IAHS85]. The BM represents anaLog va,lues, whether interpreted

as degrees of certainty, or given other meanings, as the expectation value of a probability

distribution of stochastic binary valued (0,1 or -1, +1) outputs over time. The DBM

represents analog values directly as the activation levels of its units.

Figure 2.1 shows a fully connected BM or DBM. Each unit i assumes an activation value

according to its input. The instantaneous activations are 5; = *1 for the BM, -1 ( o; < +1

for the DBM. The activations of all the units together form the state of the network.
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Input

Figure 2.1: Example network configuration. The triangles are the units, the circles

are synaptic weights. The vertical lines through the weights represent a distribution
of the unit outputs to the weights. The horizontal lines represent a sumrnation of
the products calculated in the weights. Note the lack of self-connections.

Hidden
\-/ \_/
Output Bias
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The net input to unit i is calculated as

where w¿¡ is the weight from unit j to unit i. The calculation of the unit input is shown

schematically in figure 2.2.

The unit activatious are upda,ted according to various algorithms, discussed later, until

they settle to an equilibrium condition (BM), or a stable state (DBN4). This settling process

can be viewed as gradient descent in an energy function [AHS85], also discussed later.

Intuitively, one can imagine the settling process as an inertialess marble rolling across a

hilly terrain and eventually coming to rest in a depression on that surface.

A pattern (or vector) is applied to the input or output units of the network by clamping

them to fixed activation values instead of allowing them to settle freely. DBM units are

clamped to a value between *1 and -1, while BM units are clamped to *1 or -1 with a

probability determined by the value being represented.

The process of training the network to produce the desired mapping of input vectors to

output vectots, is called learning. Learning involves adjusting the weights until the netrvork

responds to the application of each input pattern by producing the corresponding desired

Figure 2.2: Schematic representation of unit input

net¿ - Lro¡S¡,
j

to weights Wn,

(2.1)
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output pattern on the output units. Weight adjustment is accomplished by the Btr{ or DB\,,I

learning algorithms derived in sections 2.3.2 and 2.4.

Both the BM and the DBM learning algorithms involve repeatedly clamping each input

pattern on the input units and alternately clamping and unclamping the corresponding

output pattern on the output units. The weights are incremented by an amount proportional

to the difference between the products of the activations in the clamped and unclamped

phases of the learning algorithm.

When evaluating horv well a netrvork has learned a task, it is important to keep the

learning goals in mind. It is much easier to produce an output with the correct sign, and

perhaps a magnitude greater than some fixed value (digital criterion), than to produce an

exact analog output value (analog criterion). Most of the work in the literature employs

the digital criterion. We use the analog criterion because it alìows the network performance

to be evaluated more precisely. Our general philosophy is that if the network is capable of

producing the exact desired analog values, then it should do so. The distinction between

the trvo criteria becomes less important when rve shorv.(in chapter 4) that a DBM exhibits

unstable behavior that causes it to fail both criteria simultaneouslv.

2.3 Boltzmann Machine Theory

We begin by derivingl the process by which the BM units settle to an equiLibrium value.

We then derive the BN{ learning algorithm for both pattern completion applications, where

the network is required to complete a partial pattern clamped on a subset of its input units,

and for pattern association applications, where there are distinct input and output units

and the network must map an input pattern to an output pattern.

rThe derivations in this chapter closely follow [Hl(P91]. They are included he¡e for refe¡ence and to

establish the meanings of the symbols used in later chapters.
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2.3.L Boltzmann Machine Activation Dynamics

Consider anetwork of N units, each of which can assume a value 5, = f 1. (This is different

from some of the literature where ^9; e { 0, i } .) The units are interconnected through weights,

witir to;¡ representing a weight from the output of unit j to the input of unit i. If the weights

are symmetric (ur;¡ = u j;) then we can assign an energy function (a Lyapunov function) to

the network [P,{87]:

where O¡ is a bias or thresliold term for unit i. The bias term can be absorbed into the first

summation by adding one more unit, called Lhe bias urzzl, with a fixed activation 5¡ = 1

and tl¿6 = O¿. (The bias unit is always connected to all the other units.) W" then have

1N
E - -!T w¿¡s;s¡ - Ðo's,

r'J 1

with 1ú one larger than before.

We want to find the set of activations S that minimizes E, because that set is maximallSr

consistent with the constraints encoded in the weights w;¡ and with the external constraints

imposed by clamping some of the units to fixed values [AHS85]. \Ä/e therefore require some

sort of gradient descent on E.

Consider a unit È. The difference in E due to the choice of 5¡ = -1 as opposed to

5¿=*1 is

LE*- Elsr=-t -Els¡,=+r =2Ðwk;S¿,

which is just twice the net input to unit ,b (see equation f) rll Therefore, gradient descent

in -Ð is achieved by setting,9¡ = -1 if AEr < 0 and setting 5¡ : f1 if AEr ) 0, or

5r = sgn(AEr-). (2.4)

10

1N
E _ _:y w¿¡S;S¡

1,J

The network activation settles to a minimum by repeatedly choosing È at random and

applying (2.4) until no more activation changes take place. Stability is guaranteed because

(2.2)

(2.3)
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we are always descending in Æ. Horvever, the fixed point reached is usually a local, and not

a global energy minimum.

One way to esca,pe from local minima, and to find the globaì energy minimum, is to

use simulated annealing [AI{89]. Simulated annealing employs the addition of a gradually

decreasing level of random noise to allorv the system to make occasional uphill energy moves

to escape from the local minima. Consider setting .9¡ to f 1 with probabitity P¡ regardless

of its current state, rvhere P¡ is defined as

Figure 2.3: Plot of equation (2.5) at T = 1.

0
ÁË*

11
l.t

7 is the tentperature2 parameter that controls the noise level and

of uphill energy moves. At ? : æ, Pk = Il2 and ^9¡ is equally

regardless of A,E¡, so all network states are equally likely.

2Of course, T is unrelated to the physical temperature of the network. The term "temperature" is used

because of the ana-logy to thermal noise in physical systems.

p,- IrK- 
I+e-LEklT' (2.5 )

therefore the likelihood

ükely to be *1 or -1,
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As 7 is reduced, the netrvork states with lorver energy begin to dominate,

uphill moves are still possible at any temperature above 7 = 0. In the limit,

Since P¡ is the probability of setting 5¡ = *1

S¡ = -1, we have

| -t ira¿r.<oc,_) .' 
=sgn(AE¡).""- 

ì. *t if aE*>o
which is the same as equation (2.4), as we would expect.

A system updated according to (2.5) at non-zero temperatures

mal equilibrium, and the probability of the various global network

the Boltzmann-Gibbs distribution IHKP91]

lim P¿ -?*0* 1 f ¿-sgn(aEr)'oo

Io if aE¡
:l

lr irarr
and (1 - P¡) is

wlrere Z is a normalizing factor, called the partition fwtctiort. defined as

Z = Ðe-E" lr '

In physics, ? is multiplied by Boltzmann's constant, å6, but we set kp = 7 which

changes the scale of 7. Since ? does not represent a physical temperature, its scale is

arbitrary.

Thermal equilibrium is eventually reached at any non-zero temperature, but this may

take a very long time at low temperatures.3 With simulated annealing, ? is gradually

reduced while the units are updated using equation (2.5), resulting in the equilibrium state

after a much shorter time.

2.3.2 Eoltzmann Machine Learning

I2

althougir

<0

>0

the probability of setting

^-Ea /TPtf>a--

Z

eventually reaches

states, labeled c,

The purpose of a Boitzmann machine is to perform either pattern completion or pattern

association. It is well known that a network requires hidden units to represent a pa,ttern set

3Time is normally defined in te¡ms of the number o{ activation updating pa-sses

tirer-

obey

(2.6)
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that is not linearly separable [MP88]. The iearning algorithm, which we will norv derive,

must therefore be able to adjust weights connected to the hidden units.

We start by separating the units into visible, with global state a, and hidden, with

global state B.a The complete state of the network is now labeled aB. The value of unit i

in global state aB is SiB. P"þ is the probability of finding the network in state aB, and is

given by

where

Since we cannot actually observe the values of the hidden units, their

to the visible behavior of the network. We are interested only in P":

with

P"P - "-8"ß 
¡T

and Z as in (2.8).

z - \- o-E"Blr- Zr'
aß

We want the network to learn to reproduce the probability distribution of patterns in the

environment on the visible units. Let -R" be the probability of pattern a in the environment.

Po is the probability of the network producing that same pattern (state) on its visible units.

When Po = Ro for all a, the network has learned to reproduce the environment exactly.

When a subset of the visible units is then clamped with a partial pattern, the remaining

units continue to reproduce the now-restricted subset of environmental patterns, and the

network functions as a pattern completion network.

13

Po= Lp"o
p

EoP - -if ',¡sîPsîP2? 'J I

I,J

_\--/-
p

_E'B ITe

(2.8)

state is not relevant

nLater, we will furthe¡ separate the visible units into input and output for pattern association.

(2.7)

(2.s)

(2.10)
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In order to teach the network the probability distribution of patterns in the environment,

we first need a measure of the distances between tlie probability distribution {,R"i in the

environment and {P"}, the probability distribution produced by the network. Consider

This equation defines the relatiue entropy [HKP91], a measure of the distance between the

two probability distributions. e ) 0 for any {P.} and {,R"}, and e = 0 if and only if
Po = Ro for all CI. (A proof of this fact is given in the appendix at the end of this chapter.)

We want to minimize e by adjusting the weight set {to;r}. To perform gradient descent

on e, the weights must be updated according to

swii -rh =,1Ð *!:ffi, e.r2)

where 4 is a parameter tha,t controls the iearning rate. Note that -Ro comes from the

environment and does not depend on the weights. Expanding Po according to (2.9) and

(2.10), and differentiating w.ith respect to tr;, gives

6 = Ð R"rosff.

aP"
=6w;i

\Ve now have to simplify

tion (2.7)) thar

+lt(#"E"pF)-e

t4

ÐB si7 s7o 
"-E"e 

¡r' (Ðo "-""u 
t,7

so the first term simplifies to

1

r
The second term can be factored as

(2.11)

TZ

equation (2.13).

caß t¡
Jr

-8"þ lT

sThe distance between two probability distributions is used to quantify horv similar they are to each

othe¡.

z2

T22

in the first term, we recognize (from

: PaA

qì¡' qÀ¡' I\-- "¿ " s _E^t'lT I,-e'I?TIÀ¡r -l

(Ð^, s,ì'sj'"

(Ð'r",or"o)

-n^rlr)
(2.13)

equa-

)
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From (2.9) we have

The expected value

P" is

BACT{GROUND

of any quantity

Putting it all back together and factoring out 1/7 gives

2'" =l l¡- si. sio r'ø - P" (^ços,))6w;j , \?", 
"r ,"'"r, 

)
Substituting (2il) into (2.12) gives

Lp e-8"Ê lr 
-z

X that depends

Ð^, s!'slu"-E\t ¡r

6wi) = i+ *Y (+trttropoo -p'(s,si))

= : [r *f sißs7ßr,o- lf "") 
qr,r,¡l (2 ib),l?P"? "r - \" "/' ")

Recognizing that LoR = 1 and distributing 1lP" in the first term of (2.15) gives

6wii +l; R*¡ s:o sîo'#- ts,s,)], L"

Using the identity P("þ) = P(a) . P(þlù,we can replace po? 
¡ 
p" with PÉlo, giving

6wij + (y,R't pBt" sïP sïo - tr,rr))'t \7 P 'l

Pþl'is the probability that the hidden units arein stateB given that the visible units are

in state o. The state of the visible units is "given" when they are clamped to a fixed value.

The sum over the states of the hidden units gives us the expected value of the products of

the activations for each clamped pattern on the visible units, so

(x) =

Po.

on a, rvith

Z

Ð
PO XO,

= Ð s,lrs.i, pÀ, = (s;.1¡),
ÀtL

occurring with probabiLity

15

(2.r4)



CHAPTER 2, THEORETICAL BACIiGROLTND

Finally, the -R" weighted average over the environmental patterns clamped on the visible

units gives (&Ð"t^-o"¿, the averagecl expected value of 5¡5r. Tlie weight updating rule is

therefore

Lw;j + (ç A"(.9;.9¡)!¡.mped - (5;si)u,'.r-,.""0)

6wii # (trÐ",amped - (5;57).,,,.r.*p"a)

The Boltzmann machine learning algorithm is:

1. Clamp the visible units

learned. Each pattern a

2. Start with a large vaiue

updating the activations

3. At T = Tñ,'a, collect statistics on 5;5, over a large number of updates.

4. Repeat steps 1 - 3 a large number of

pected values of 5;.9¡ over the probability

ßßJ\ e Jt cralnÞeo

to a pattern taken at random from the environment being

should be picked with probability ,R".

for T (T = finitiat) and allorv it to decrease slowly rvhile

of the units at random using equation (2.5).

5. Perform steps 1 - 3 again, but do not clamp the visible units. This time only a single

pass through steps i - 3 is required because there is no environmental probability

distribution over which to average. This gives (5¡57),rr,.t.-p"a.

6. Update the weights according to (2.16).

r6

7. Repeat steps 1 - 6 until the netrvork is performing satisfactorily.

Note that in the clamped case we are sampling two probability distributions: the vectors

in the environment with probability distribution {,R"}, and the states of the hidden units

with probability distribution {Pß1"}. The sampling must be over a sufficiently long period

(2.16)

times to calculate the average of the ex-

distribution in the environment. This gives
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of time to ensute that we have reliable estimates of (5;5'3) and can make accurate updates

to the weights.

When the environmental vectors have been perfectly learned, Ro : Po for al1 a,

Pap?la - Poß, ana þ-lSr,ftamped = (5;5¡),-.lamped so Âtu¿, = 0 for alJ. i, j and the weight

updating stops.

A variation on the weight updating algorithm described above can be derived as follorvs.

Start by rewriting (2.16) as

Swit \ a" nr7,

where

Using (2.I7), the weights can be updated after statistics have been gathered for each

clamped pattern a instead of accumulating an average over all the patterns to estimate

tXSr).r"*o"0. Using this method, averaging over the patterns is performed in the u,eights

themselves, which can be a substantial advantage ior halclware implementations. Tire oniy

disadvantage of this method is that the result of each weight update affects the next update,

and A'wl¡ becomes time-dependent. We are no longer guaranteed steepest descent in e , but

a low learning rate (small 4) minimizes this effect.

Looking at equation (2.16) or (2.17), we see that weight tu¿¡ is updated from statistics

gathered solely from units i and 7. These are the two units to which wij is connected.

making the information required for learning local. This leads to a very natural parallel

hardware implementation of the BM, with the learning logic associated with each weight.6

2.3.3 Boltzmann Machine Fattern Associators

Lul, = I (<t,t,ltamped - (^9¿,9;)*.r"-p"a) .

17

A pattern associator maps an input pattern to an output pattern. The visible units must

therefore be divided into an input set, with states 7, and an output set, with states a. The
6By contrast, back propagation ìearning requires erro¡ derivatives to be propagated through various layers

befo¡e the weights can be updated.

(2.r7)
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goal is to train the network to reproduce eacli output pattern with a probability dependent

on the pattern clamped on the input units. In other words, rve rvant Poh =,R"lr. In this

case, the distance between the probability distributions can be calculated as

€ : Ð,R', t a"lt tos #.', ? " Pot^'

Going through a derivation similar to the one for the

^ÔeAt ;,; = -Tt-." , ¿wii

0P"lt
6wii TZ

= * lf g!Þt goßt poßtt, \?'
and

ÐB SiP'S;Þt 
"-E"ol 

¡r

= nÐA'I

P"á -

pattern completer in section 2.3.2:

Rol't APol^r

Ow;i =

1a

^-8"Êt /I'

T
D

18

p;n

)

l+w (Ð ""'' Ðrio' 
rio' # -

Au)i.i

(Ðo "-""0'' 
lr) Lv glut gÀn 

"-Ptu^' 
f r

T22
\

- P"lr15¡^97)],",,'o"0 | ,

/

l+ "" (I o"''t,t¡s;)ål*o"¿ - (s;s,)l¡.,,o"¿)

lÐ ^'' 
(tlt l'"*p"a - (s;sr)3'*o"o)

1

fi ioal.ramped - F-,srl,.*o"o)

where (S.S¡)a.r"o.o is averaged with only the input units clamped ana (.9,5)t.-p"d is

averaged with both the input and output units clamped.

Alternatively, as with the pattern completer, weight updates can be performed for each

input pattern, or for each input and each output pattern instead of averaging over all input

and output patterns.

(Ð""'') (sos;)]r"-o.o)
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2.3.4 Local minima in weight space

Minimizing e by gradient descent makes the implied assumption that e has a unique mini-

mum. If there are local minima, it is possible for A,u;¡ = 0 for all i, j while e is still non-zero,

and the network has not learned to generate the environmental probability distributions.

Here we are concerned about a local minimum in weight space, a problem that is not

solved by the simulated annealing process used to reach thermal equilibrium in activation

space. One possible method of avoiding local minima is to add a decreasing level of noise

to the weight updates. Both our simulations and those of other researchers shorv that this

is rarely necessary.

Updating the weights after each environmental pattern instead of after averaging over

the environment may help avoìd local minima in rveight space because Au.'¡] from eclua-

tion (2.17)is zero for all a only if the netrvork has learned ail the patterns correctly (e = 0),

while Ato;; (from equation (2.16)) may be zero if a local minimum in e is reached.

While a non-zero Aur,l does not guarantee escape from the local minimum, there is a

better chance of escape than when ¡wii 0. Escape is not guaranteed because the Atu,]

are approximately averaged over time in the weights, but the time-dependence of Atrfi at

least creates an opportunity for escape. This opportunity may be enhanced by applying

heuristics to momentarily increase the learning ra,te 4.

2.4 Ðeterministic Boltzrnann Machine T'heory

19

One of the most serious shortcomings of Boltzmann machines is that the values of (,9;,9;)

during learning, and (5;) during recall, must be estimated by averaging over a period of

time. Recall that "time" is measured in terms of the number of activation update cycles

of the units in the network. These updates consume real Lime in both simulations and

hardware implementations. Another problem is that the estimates of (5;) and (5;5¡) are

necessarily noisy, unless averaging is performed over an infinitely long period of time.
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Since the network inputs and outputs are all expressed as expected values, it makes

intuitive sense to replace the stochastic binary valued (*i) units with continuous valued

units having an activation level ø¡ = (5¡). Mean field theory tells us that this approximation

is valid if the number of units in the network is large.

From equation (2.5) we have

where

o,k = I S*p*
S¡=41

2
= I ¡ ¿-anr¡r

. / LE*'='""n(;ff)
= tu,,r, (]r"ru)\r

Similarly, (5¿Si) is expressed a.s &iaj. Norv there is no longer anything random in the

network, and the temperature parameter controls the st,eeprress, ot' "gain" of the tanh(.)

function instead of a noise level (see figure 2.a). The free energy [HKP91] in this network

is given by

F - -lo;o¡*;¡* rÐ l+.",slj-ai ++.ro* t - o'] 
.

20

net¡ = | u'¡;(51)
i

= I z,¡¿a¿.

i

The DBM learning rule, also referred to as the contrastive Hebbian iearning rule (CHL),

is carried over directly from the BM (except that no averaging is required):

6wit n(äTä'I - di ëLj ),
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Figure 2.4: tanh(') gain function fo¡ various values of the temperature parameter
7. Higìrer temperatures result in flatter gain curves.

where äf is the activation of unit r, at equilibriumT rvhen the output units are clamped,

and äo is the activation of unit i at equilibrium when the output units are unclamped

(" indicates equilibrium). The reader is referred to [P487] for a more formal derivation.

It is important to realize that replacing the stochastic BM activations 5; with their

expected values, ø;, is strictly valid only when tlie number of units in the network approaches

infinity. If there are enough units, the contribution of each individuai unit to the inputs of

the other units becomes negligible, and the instantaneous activation values can be ignored.

Howevet, the DBM learning aigorithm has also been derived rvithout reference to the BN{

at all [Mov90b] by minimizing the difference between the free energy F when the netrvork

output units are clamped and when they are unclamped. Other researchers [PH89, Mov90b]

have reported good results with small (li r 10) networks.

-1 01
Net input

21

TEquilibrium has a new meaning in the DBM. It is now the final, stable deterministic state to which the

network settles at the finaì annealing temperature, ?6r.¡.
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2.5 Appendix: Relative Ðntropy

To show that e as defined in equation (2.11)is a valid measure of the distance betrveen the

environmental and network probability distributions, we have to prove that e ) 0 for all

probability distributions, and that e = 0 only when the distributions {P"} and {-Ro} are

identical.

First, we prove that

OI

f þ) =logz - r + I > o.r
The extrema of /(r) occur when %P = 0. Performing the differentiation, we get

firø=i- 4=o+r-r.
Taking the second derivative of /(z ) and e'u'aluating at ¿ = 1, rve obtain

d2

OJf(¿)l'=r = -r-2 + 2r-31,:t= 1 ) 0,

therefore ¿ : 1 is a minimum of / and /(1) = 0 so /(r) > 0.

Substituting r : Ro lP" and multiplying by À" gives

.Ro log '; ,-A"(1 - #)
and

logr ) 1- 1
r

22

= Ð("" 
_ P")

= Ia" _Ðp"

= 1-1

=0

so e ) 0. The left and right hand sides of (2.18) are equal only for x = R l P" : 1, so e : 0

if and only if Po = Ro for all a.

. = Ð R"r)sff

(2.18)
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3.1- lntroduction

The behavior of a DBM is difficult to characterize analytically because it is a multi-layer,

non-linear, recurrent network. Therefore, simulation of a DBM on a digital computer is the

preferred method of determining network behavior. A simulator. consisting of about 11500

lìnes of C code, was developed to test various network configurations, learning tasks, and

the effects of non-ideal behavior in hardrvare implementa,tions.

There are many variations of the simulation algorithm and the network parameters, any

of which can change the observed behavior of the network. Although we explored many

of these variations, the guiding principle was to restrict the simulations to features that

can be readily implemented in a highly parallel manner in Ìiardrvare. Additionaily, the

simulations were limited to pattern associators, where an input pattern is ma,pped to an

output pattern.

3.2 Ðetails of the DEVI Simulation Algorithrn

The following is an overview of the DBM simulation algorithm. The many options and

variables that model non-ideal behavior, used to explore the effects of implementing a

ot
LÙ
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DBM in analog hardware, are not described here. The relevant parameters are mentioned

later (chapter 6) when the efects of non-ideal components are discussed.

The following is a high-level pseudo-code representation of the sirnulation algorithm and

is sufficient to allow the pertinent details of the simulation to be extracted and the results

in this work to be duplicated.

Learning

The learning algorithm and its variations are described below. Underlined steps are de-

scribed in more detail in foìJowing sections. Note that the symbol ät represents the activa-

tion of unit i after annealing, rvhen the network is in thermal equilibriurn. (Equilìbriurn is

the stable resting state in a DBlt4)

repeat a fixed number of times or until error 1 MinÛrror

for each training pattern

Unclamp output units

Clamp input pattern on input units

Anneal netrvork giving activation vector ä-

Compare output to desired output and compute error

Clamp desired output pattern on output units

Anneal network giving activation vector ä*

Compute weight change for all weights in the network using

6wii n (a!a¡ - á, âj)
Update the weights

24

There are a number of common variations possible in this learning algorithm:

l. Either the clamped or unclamped phase may be performed first. The choice of which

phase is performed first does not have much effect unless either (a) a low initial

annealing temperature is used (or no annealing is performed at all); oi (b) the weights

are updated after each phase instead of after each pattern or after each pass through

the entire set of training data.
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In case (a), the order is important because the network will tend to remain "stuck"

in the energy minimum it settled to in the previous clamped phase. In case (b), the

order determines if the positive or negative half of the CHL updating rule is perfomred

first.

2. The training

is preferable

is used, it is

output value

effects.

3. Weights may

or after each

implement in

patterns may be presented in a fixed or a random order. Random order

from a theoretical viewpoint, but results in a noisy error. If a fixed order

best to arrange the order so as to avoid long runs of the same input or

for a single unit. This decreases the potential of time dependent biasing

4. Weight updates may be by Lw¡¡ or by 4sgn(Atr;¡) (Manhattan learning). Some

researchers have reported good results rvith Ndanhattan learning [PH89] and it has

some advantages in hardrvare implementations [Schg1].

be updated after each pha,se (clamped or unclamped), after each pattern,

epoch. Updating after each epoch is preferable for stabilty, but hard to

analog hardware because it requires storage of intermediate resuits.

5. Error can be computed during learning or as a separate test after each epoch. Testing

after each epoch is more representative of a real applications environment, but can

mask the learning oscillation described in chapter 4.

25

Anneal Network

Two different annealing schedules are available. The flrst is standard geometric anneal-

ing [PH89], the second is a slightly modified version of an improved schedule developed

by Galland [Gal]. In the following description, log(T..rio) is a logarithm, base fl-"¿¡o, and

(4"u")" is ?..rio raised to the power r¿.
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Geometric annealing (parameters: frrr¡¡;.i, T¡r¡, nsteps):

calculate temperature ratio: latio = (#)*Êh=

forn:0tonsteps-I

7 = 4.ritia 'T!^t¡o

update activations for new temperature ?

Galland annealing (parameters: fi.riti.t, ?final, ?ratio, ?"r.or)'

calculate number of annealing steps: nsteps = log(r,^,io) (E;*¡frl

calculate residual temp: 4esid = (l¡ri.l - ?n"aXZ.atio)'sreps-1

forn = 0Ionsteps-I

The advanta,ge of Galland's annealìng schedule is that there are more temperature steps

taken in the critical temperature range (phase transition) rvhere the unit outputs converge

to their final values (see figure 3.1).

A new annealing procedure is described 1n IAZLT2]. It uses a uolatility measure, com-

puted as

q = #Ðo?,
to measure the degree to which the unit activations have settled near :E1. The annealing

temperature steps are adjusted so that steps in q are not larger than a predetermined value.

Alternatively, the temperature is adjusted to keep q at a constant value without annealing.

The volatility based annealìng procedure is not easily implementable in analog hardware

because it requires storage of activation values from the previous temperature step so that

the current temperature step can be rerun with a smaller step size if the change in q is too

large. The second approach, where q is kept constant, has the disadvantage that the value

of g required for proper operation is highly problem dependent.

? = (n.';ti.l - Tn""t)T!^¡¡o * ?n'^t - 4esid

update activations for nerv temperature T

26
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Figure 3'1: Compa¡ison of Galland's annealing schedule with geometric annealing.
Galland's technique has more temperature steps (smooth curve) in the critical range
of temperatures where the activations are settling to their final values. (between
?=1andT-5)

Update Activations

- 

Galland annealing
--- Georetricannealing

First, calculate the net input to a unit:

TL€t¿ =\roiot,
J

and then update the unit activation asynchronously, using

øi = tanh (ry\
\T )

60 80
Settling passes
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The order of unit update may be deterministic or random.

Alterna,tively, we can use synchronous updating, where all the activations are pre-

computed and then simultaneously updated using

where the superscript f

as a damping factor to

somewhat less than one

ol+' = (t - r)al* ¡ tanh (#) ,

indicates a time index and r is the synchronous time

make the network settle more reliabl-v and is picked

(usually l. = 0.8).

step. r acts

as a number
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When using geometric annealing, there are typically

at each temperature. With Galland annealing, there are

only a single pass is normally used at each temperature.

3.3 Simulation Farameters

All simulations in this work were performed with the following choice of parameters unless

otherwise indicated. An experiment was rerun with different parameters whenever there

was any concern that a result might be an artifact of a particular choice of parameters.

Parameter

Annealing type

?-lnitial

Tfi..,.1

Tratio

T"r.o.

nsteps

passes per temperature

activation updating

T

initial weights

error calculation

weight updates

n

28

many activation updating passes

rnarì.y more temperature steps, so

Value

Gailand

50

1

0.9

1 x 10-a

124

1

synchronous

0.8

random (-2.0, 2.0)

during training

after each pattern

0.00001 to 0.1

Reason for choice

better results than geometric annealing

high enough to give initial a¿ = 0

arbitrary, simplifies calculations

produces moderate number of ? steps

a small error value

calculated

standard for Galland annealing

reduces randomness in resuits

a numbe¡ süghtly less than 1.0

large enough values for good results

oscillation details observable

easy hardware implementation

highly variable depending on problern

3.4 Choice of Frot¡lems

The performance of a neural network depends on the learning task with which it is presented

and the structure of the interconnections among the units. \Aie define a problen'r, as the set

of vectors to be learned together with the pattern of connections between the units in the
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Figure 3.2: Network configuration for the 4-2-4 e¡rcoder problem. Notice that the
four input and output units are connected onìy through the trvo hidden units.

netrvork. For most simulations, a fully connected network, where every unit is connected to

every other unit, was used. This is the most geireral case, and gives the network the most

freedom in choosing the weights to solve the problem. The various unit configurations used

here are described with the notation

inputxhiddenxoutput

where input, l-r.idden, and output are the number of each type of unit. In addition. all

networks have a bias unit that is perrnanently set to an activation level of +1. All networks

are fully connected unless otherwise noted.

One interesting problem, the 4-2-4 encoder, requires a special network rvith no in-

put/output connections (see figure 3.2). The goal of the encoder is to map a one-of-four

input to an identical output, and to force the netrvork to communicate the one-of-four vaiue

through only two intermediate units. While the one-of-four to one-of-four input/output

mapping is not in itself very interesting, the 4-2-4 encoder does demonstrate that a DBN{

network can learn to encode an internal representation of an external stimulus on the hidden

units. The 4-2-4 encoder will be examined further in chapter 6.

29

Oulput
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The most important feature of neural netrvork algorithrns tike CHL is that they are

capable of discovering how to use the hidden units in the network to solve a problem.

Because hidden units are only needed for problems that are not linearly separable, most

of the simulations conducted are of non-separable problems. The simplest non-separable

problem is exclusive or (XOR). When the XOR problem is extended to n bits, it becomes

n-bit parity, which is computed as the XOR of each successive bit. Most simuiations in this

work use a two-input XOR because it represents the simplest non-trivial problem.

3.5 Testing Frocess

The initial weight set can have a significant effect on the outcome of a network simulation.

In order to avoid a bias due to a particulal set of initial weights, five separate simulation runs

are performed for each experiment, each starting with a different set of random weights. The

same five sets of initial weights are used for all experiments that use th.e same sized network

so that results can be compared directly, without the complicating factor of additional

randomness introduced by different sets of initial weights.

3.5.1 Learning Plots

The mean squared error is recorded during training as a measure of the performance of the

network. Mean squared error is a measure of the difference between the actual and desired

output of the network, It is defined as

30

n. Tn

where n is the number of vectors, m is the number of output units, ä] is the equilibrium

value of output unit 7 when with vector r clamped on the inputs, and t] is the desired

(target) value of output j for input vector r.

For "binary" problems, where the target values consist of only a single positive and a,

single negative value, such as *0.4, the "fraction correct" statistic is also recorded. Iü suclr

cases, an output is considered "correct" as long as it has the correct sign, which often occurs

MSE =
I,T=tÐTr(ö'tr - tÐ'
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long before the analog lt{SE measure becomes small. An output vector is considered correct

onlv if the signs of all the output units match the signs of the training values. (Only a.

single output unit is used in most of our tests.)

Figure 3.3 shows a typicai plot of learning performance. The liorizontal axis represents

the number of passes through the training set, or epochs, while the vertical axes indicate

the mean squared error) plotted on a log scale, and the percentage of correctly recalled

vectors. The cause of the narrow error spikes ivill be explained in chapter 4.

Figure 3.3: Sample learning performance plot.

1500 2000 2500 3000
Learning epochs

3.5.2 Energy Plots

If a network has only two free units (one hidden and one output) the free energy of the

network can be plotted for all activations of the free units for a single input vector. The

energy function

F - _Ðoooi,,i *r)l+ ''o* t 
T 

o' ++ r"s L-'']
i<jiL

can be represented as a contour plot as shorvn in figure 3.4. The energy contour plot has

two shortcomings:

31
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Figure 3.4: A contour plot of the energy surface for a one hidden unit, one output
unit network. The horizontal axis represents the activation of the output unit, from

-l to *1. The vertical axis represents the activation of the hidden unit from -1
to *1. Depth is indicated by shading, with black being the deepest. (Note: the
"depth" is clipped to 6Vo of its highest value in order to make the interesting regions
around the minima visible.)
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Figure 3.5: A cross section of the f¡ee energy contou¡ plot in figure 3.4 along the
deepest part of the valley between the two minima.

1. It is very difficult to determine precise values of f'from the shading. A three-

dimensional perspective plot is no better.

2. The contour piot can only represent two independent variables, so it is only usable

for networks with two free units.

The obvious solution to the first problem is to view a, "slice" through the energy surface

as a standard cartesian plot. The difficulty with this approach is that the precise location

at which to take the slice is hard to determine. In most cases, we are interested mainly

in the depth of the minima and the profile of the valley connecting them. Therefore, rve

have developed an alternate way of representing the energy function - an output unit is

clamped to successive values in its activation range fron -1 to *1 and the remaining free

units are allowed to settle using the standard annealing procedure. The result is shown in

figure 3.5.

The same technique can be applied to networks with more than two free units, but the

results must be interpreted with care because of the possible existence of other minima. The

technique generaily works because the clamped output unit severely restricts the freedom

of the other units, so a good approximation of a two dimensional cross section of a multi-

4.2 0 .0.2

Output unit activation

'JJ
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-o.2 0 0.2
Output unit activation

Figure 3.6: Two dinrensional cross section of a 10 dimensional energy surface. Note
the sharp corner betwee¡r the two minima, indicating a switch between minima in
the hidden units.

dimensional surface is produced near the minima. However, the valley between the minima

often features a sharp corner) indicating a jump between minima internal to the hidden

unitsl (see figure 3.6).

3.5.3 Weight Plots

A special program was used to allow weight values to be observed during simulation, witir

positive weight values drawn as green squares and negative ones as red squares. The iliten-

sity of the color indicated the strength of the weight. To avoid having to reproduce color

here, we use a Hinton diagram [AHS85] (see figure 3.7). Each weight is represented by a

square, and its position in the matrix indicates the units to which it is connected. The hor-

izontal dimension is "from", the vertical is "to". The size of a square indicates the relative

value of the weight - white is positive, black is negative. A solid gray square indicates a

zero, or near-zero, weight.

iIf there is more than one output, the unclamped output unit(s) may also be invoìved in the transfer to

a new minimum.
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Figure 3,7: A. Hinton diagram of a2 x 9 x 1 network. Horizontal axis is "from",
veriical axis is "to". Units 0 and 1 are inputs, units 2 through 10 are hidden, unit 11

is the output, and unit 12 is the bias unit.
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3.6 Simulation El.esults

The first simulations were performed on an arbitrarily chosen non-separable problem. The

mean squared error and fraction correct were averaged over ten learning epochs and the re-

sults plotted. Performance appeared fairly good,.but never quite reached perfection (results

are not plotted here).

When the averaging was removed, it became apparent that what seemed like a small,

slightly noisy background error was actually long periods of 100% correct performance

punctuated by a regular pattern of narrorv error spikes. Although the auerage error per-

formance was good, the observed error spikes were inconsistent with proofs in the litera-

ture [Hin89] that shorved that the CHL learning algorithm performed steepest descent in

weight space and should therefore settle to a stable minimum error value. Other researchers

[Mov90b, BPg1] have also observed these error spikes under various conditions. A long series

of experiments employing variations of the ìearning algorithrl, as described in the previous

section, genera,ted varied results, but did not completely eLiminate the periodic error spikes.

One of the pecuLiarities of this series of experiments is that a cllange to a simula,tion

parameter rarely had a predictable effect. Ðvery parameter change, and every different

set of starting weights, produced a different result, but in a seeminglv random wav. For

example, a small learning rate q is expected to make the learning process slow and sta,ble,

but the effect is often to make it slow and unstable (See figure 3.8).

3.6.1 Exclusive Or

36

Since success with the initial problem was elusive, the learning task was simplified to a trvo

bit exclusive or. Separable problems like a logical "and" were also tried, but they were

learned perfectly almost immediately, and, since they require no hidden units, are generally

considered uninteresting. Moderate-sized networks are used in these experiments because

it is well known that the mean field approximation on which the DBM is based only holds
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Figure 3.8: Learning test of a 6 x 10 x 1 network mapping 64 6-bit input vectors
to a random 1-bit output. The experiments are identical, except that the top one
used a learning rate of T = 0.001 while the bottom one used ? = 0.05. Although the
error performance is not very good in either case, there is significantly less oscillation
when the higher learning rate is used. Note: "number correct" refers to the number
of output vectors with the correct sign (maximum 64).
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if therearea,largenumberoffreeunits[PH89]. Generally,al3unitnetrvork(l0freeunits)

is used.2

By choosing the learning rate carefully, and using initial weights in the correct range,

it is possible to achieve what seems like reasonable learning performance (see figure 3.9).

The error spikes are less frequent than before and they appear to die out over time. Still,

their existence is not really consistent with what is expected of the learning algorithm.

Simulations of n-bit parity problems produce similar results (see figure 3.10).

By carefully examining the weight values before and after each error spike, we determined

that very small weight changes are sufficient to cause a gross errof in the network output,

and that the spikes are created by tiny rveight changes in the course of the training process,

usually when weight adjustments due to presentation of one pattern cause recall of another

pattern to fail. This led to an investigation of the amount of weight variation a netrvork

can tolerate without making an error after it has learned its task perfectly.

2Ten f¡ee units is not enough for the mean field approximation to be completely accurate, but other

¡esearchers have reported good results with networks of this size.
3A gtost error is defrned as a large jump in the mean squared error corresponding one or more output

units settling to an activation with the wrong sign,

Figure 3.9: Performance of a 2 x I x 1 network learning XOR.

80OO 10000 12WO 1zlo00 16000 18OOO 2OOOO

Learning epochs
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Figure 3.10: From bottom to top: DBM performance on 2,3,4, and b bit parity
problems. In each case, there were as many hidden units as input bits, the learn-
ing rate was ? - 0.01 and weight decay of d= 0.0001, d= 0.00005, d= 0.00002b,
d = 0.0000125 respectively was applied after 6000 training epochs. (Decay must de-

crease as the number of input patterns is increased because decay is per pattern,
and we want to compare results on a per epoch basis. The training patterns were
presented in random o¡der for the first 5000 epochs, after which they were presented
in deterministic order.

8000 r0000 12000 14000 16000 18000 20000
Learning epochs
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In the case of the network of figure 3.9, some weights can only tolerate a change of

3 x 10-5, or 0.01% of their value before the network makes a gross error'. Other networks

have been found to be even more sensitive. A requirement for such a high degree of precision

makes it necessary to use digital hardware when implementing a DBM. (further discussion

in chapter 6)

Another surprising observation is that the network is extremely sensitive to the parame-

ters of the annealing schedule. In the network above (figure 3.8), changing the temperature

ratio from 4atio = 0.9 to 4atio = 0.889 (a change of I.2%) is enough to cause the network

to make gross recall errors. This change reduces the number of annealing steps from 124 to

111, which should not be significant. Stranger stili, many weight sets have been found to

be sensitive to an improuemenl (higher 4.rio) in the annealìng schedule, where more and

smaller steps are taken. A network can be successfully trained with a wide range of different

annealing parameters, and performs well as long as it is tested with the same parameters

it has been trained with, but fails if they are varied even slightly.

Looking at the energy functions of these netrvorks, it becomes apparent that the energy

minima corresponding to the correct a,nd incorrect outputs are of almost exactly equal

depth. In some cases, the incorrect minimum is actually deeper than the correct one, but,

as long as the annealing parameters are left unchanged, the network recalls the output

patterns correctly.

Since one of our goals is to create an analog hardware implementation of a DBN4,

such requirements for extreme precision are botli perplexing and disheartening. Even nore

perplexing is that some of the experiments produced much better results, with üttle or

no oscillation and little sensitivity to the choice of annealing parameters or small weight

perturbations. It seemed that some combinations of starting weights and simulation pa-

rameters produced good results, while others did not, but there was no obvious pattern

that could lead to a recipe for consistently good results. Clearly, something was lacking in

our understanding.
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It is evident that simulation alone is not an adequate tool to understand rvhat is hap-

pening. The minimal form of a network capable of representing XOR is two inputs, one

hidden unit, one output unit, and one bias unit. Much of the behavior observed in the larger

networks carries over into the small one, but the small network behaves in a more orderlv

way because there are only seven independent weights for the learning algorithm to mod-

ify. Such a simple network has the advantage that it can be simulated rapidly, but, more

importantly, it can be analyzed mathematically to determine the cause of the error spikes.

Chapter 4 describes this analysis and resolves the p'tzzhng behavior described here.

4t



Chapter 4

Åslaåysås q)fl a Ssaeaåå Ðffi1v4

4"3, ïntroduction

Deterministic Boltzmann machines have usually been anal.yzed by simulation. Unfortu-

nately, some of the behavior observed during simulation is apparently inconsistent with

the results of the ma,thematical derivation of the DBM in chapter 2 and the literature

[Hin89, PA87].

The most striking anomaly is the tendency for the DBM output to become unstable dur-

ing learning (see figure 4.1). Since the DBM learning algorithm performs gradient descent,

oscillation after successful iearning is troubLing and cannot be ignored. Even if rve allow for

the possible deleterious effect of updating the rveights after each vector is presented instead

of averaging the weight update over all the vectors in the environment (as required by the

theory), the oscillation is still puzzlsng. The error spikes in figure 4.1 are very narrow, and

can be suppressed in a software simulation simply by averaging the output over time, but

this merely covers up an effect that, according to theory, simply should not occur.

The network in figure 4.1 is too large to analyze conveniently in closed form. Therefore.

we now move on to a simpler network with a single hidden unit and a single output unit.

Figure 4.2 shows the learning curve of such a netrvork ivith a low learning rate. Note that
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Figure 4.1: This is an example of oscillation in learni ng. A, 2 x 6 x 2 network was

used. The outputs were XOR/XNOR, with target values of 10.9. Note the auert,ge

error is barely aflected by the spikes, especially when the error axis is plotted on a
linear instead of logarithmic scale. Learning rate 4 - 0.0001.

the oscillation stops part way through the learning process, but, as we shall see, this does

not guarantee a stable network.

Close observation of the weights during oscillation in the 2x6x 2 network of figure 4.1

reveals that the difference between the weight values that produce a correct answer and a

gross elror is very small. By manually varying the value of a single weight in the network of

figure 4.2, we can confirm that this network is extremely sensitive to small weight changes.

A change of about I.370 in one weigirt is enough to generate gross errors. Instead of a

gradual degradation in the accuracy of the network output, the answer suddenly junps

from a value of -0.4 to *0.6. Not o// weight solution sets for this problem exhibit such an

extreme sensitivity to small weight perturbations) so this behavior cannot be inherent to

the network architecture or to the problem being learned, but must be a function of this

particular set of learned weights.

Simulation reveals that the use of a moderately high learning rate (4) tends to cause

some initial oscillation during learning but results in a far more stable weight set than a

low learning rate (see figure 4.3). This observation flies in the face of conventional w'isdom

8000 10000 12000 14000 16000 18000
Learning epochs
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Figure 4.2: Top: Learning test, 2 x I x 1 network, 4 = 0.0005

Bottom: Free energy through valley between minima, pattern 0. Note the almost
equal depth of the minima.
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Figure 4.4: DBM network configuration used in this analysis. Triangles are units.
Circles are weights.

in numerical simulation, rvhere "go slol" is the standard prescription for a stable, smooth,

gradient descent,l at the cost of increased simulation time.

The plot of the DBN{ energy shows that the two energ.y minima in figure 4.2 are of

almost equal depth, while the negative minimum in figure 4.3 is substantially deeper than

the positive one. The simulated annealìng algorithm ensures that the netrvork always settles

in the deepest minimum. If some perturbation, such as a small weight change, shifts the

balance between the near equal-depth minima, an incorrect output is produced. If this

error is then corrected by the learning algorithm) narrow error spikes, like the ones in

figure 4.1, are generated. A proper gradient descent learning algorithm should not exhibit

this behavior.

Clearly, our undetstanding of DBI\4 learning has been incomplete. In this chapter, we

analyze a very small DBM in order to explain these phenomena.

4"2 Network Configuration

01
Input

2

Hid

.f

Out

4

Bias
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A fully-connected five unit 2 x 7 x 1 DBM network is used in this analysis (see figure 4.4).

Weights are constrained to be symmetric (w;¡ = wji).Unit activations are calculated by

,Th"@ecomputer,sfloatingpointrepresentationmustbetakeninto

account when determining the minimum step size. Roundoff problems have been ruled out here.
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r¿; = tanh

where ø; is the activation of unit i, w;¡ is

adjustable parameter (temperature) used in

relaxation. It has been shown [P487] that

field free energy:

F_

which expands to

OF A STTITALL DBM

(+l ',j"j)

The network is trained by clamping the input pattern on the inputs and the desired

output pattern on the outputs and allowing the netrvork to settle, giving the vector of

activations ä+. The outputs are then unclamped and the network is allowed to settle again,

giving ä-. The weights are updated according to the contrastive Hebbian learning (CHL)

rule

F - -D*o,o,,,, *r+l+.nsllli ++ ,"n+]

the weight from unit j to unit i, and 7 is an

a simulated annealing process to aid in network

this network settles to a minimum of the mean

E_TH,

6wii ,t(õtIõ'l - äi ãL; ).

The following training patterns are used in the analysis presented here:

47

(4.1)

This is a simple two-input XOR problem. The t0.4learning target values are used instead

of *1.0 to avoid problems with infinite weights.2

2The activation function of a DBM is tanh(nel;/T), which reaches

either requires infinite weights or a zero annealing temperature, neither

A6

-1 I -1 ll -0.4

A1

-1 I +t ll +0.¿

(4.2)

&3

+1 | -1 ll +0.4

+1 I +1 ll -0.4

(4.3 )

*1.0 onìy when net¡fT * co. This

of which is desi¡able.
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4"3 Network Analysis

It is possible to study the behavior of a network with a single hidden unit analyticaliy to

gain further insight into its properties. For now, we are interested only in the activation

dynamics during recall, not in the learning process. We want to calculate the set of weights

required for the network to recall all the training vectors with arbitrary accuracy. We call

this an optimal weight seú, denoted \M*.

We know that the network settles to a minimum of the mean field free energy I (equa-

lion 4.2). The minima must be zeros of the derivative of I. Taking partial derivatives rvith

respect to a2 and ø3, the activations of the trvo free (hidden and output) units, and keeping

in mind that the weights are symmetric, we obtain

AF
A- = -uzoao - u2tat - uzzaz - uzq * T' atanh(a2),

ÔF

Ao, = -1þ3oao - w3ta7 - w3za2 - usq* 7' atanh(ø3)'

Solving 0Fl0a2 = 0 for ¿2 gives

¿¿z = tanh

which is the activation ievel the h

ø1 and a given activation of the o

48

AFr
ã* = -?l;soco -'tD3tat - wsztanh 

l-

-wes l7 .atanh(a3).

Unfortunately, ðFl0a3 = 0 cannot be solved for ø3 analytically, but the roots can be

found numerically, and the equation can be inspected to ascertain certain properties.

The set of weight values the network learns during a simulation depends on the initial

weights, the learning rate, and various other network parameters. Since all the final weight

sets produce equally accurate answers during testing, there are obviously many different

weight solutions to the XOR problem being learned.

I

id

ut

lIZOao I uZtat I UzZ(Iz I wzs

den unit (unit 2) settles to for any given inputs rzs and

put unit, ø3. Substituting into (4.4) we get

T l,

uzoao I uztat I

(4.4)

T
uzz&s I wzql

-l
(4.5)
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Figure 4.5: Asymmetric set of weights that solves the XoR problem. Units 0 and
1 are inputs, unit 2 is a hidden unit, unit 3 is the output, unit 4 is the bias unit.

Inspection of the final weight values in one simulation shorved thal, in one such optimal

weiglrt set, tr3e N -w3t x u3q and t 2s N -u2t x u2,t. The only remaining weight, u,32,

was different from any of these (see figure 4.5). Using these constraints, equation (4.5)

can be simplified by defining u)o, 'tÐb, and tu" as the three distinct weight magnitudes a¡d

making the follorving substitutions:

rffi
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Figure 4.6: Plot of ôFlôas (equation 4.6) for typical weights u)o=0.482,
ur¿ = 0.648, tr. = 1.131, and inputs os: f 1, et = -7, T = 1.

-o.2 0 0.2
Activation a"
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w30

IJJ3t

u3q

wzo

u2t

lxzq

?Dzz

Substituting into (4.5), we get

# = -uo(ao-at*r)- w,tanh f-u¿(ûo-ar-* 
1)+tr"atl *t.atanh(a3). (4.6)das L T I -------'\*L

This equation is plotted in figure 4.6 for a weight set typical of most simulation runs. Notice

that 0Fl0a3 has only one zero, at as - *0.4, so the energy function f' has only a single

minimum at the desired answer. As rve will see later, F can have two minima, which makes

it possible to settle to the wrong answer.

uo3 = uo

1D73 = -Uo

u43 = 'lra

wo2 = -wb

'l0l2 = Wb

w42 = -wb

u\z = uc.
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Figure 4.7: Plot of the components of ôFlôa3 (equation 4.6) for the same param-
eters as in figure 4.6. Note that the tanh function is negative (upside-down) and
shifted up and to the left.

Looking at equa,tion (4.6), we see that it is composed of two parts: a hyperbolic arc-

tangent function, independent of input or weight values, and a hyperbolic tangent that is

shifted up, down, left, and right by changing the inputs 06 and a1. The amount of shift

depends on the weights wo and tu6. The height and width of the hyperbolic tangent are

determined by ,".
To find the weight values for which the network accurately produces the desired outputs

in response to the four XOR input patterns, we substitute the values of the XOR vectors

for øs, a,1, and ø3 into equation (a.6) and require }Flôas = 0 for each case. Let ,4i be

the output target activation (A, = 0.4 in our simulations), and arbitrarily set ?6r,.¡ = 1, the

final temperature used during annealing.

câ,s€ ¿g - -1, at = -7 + aZ -- -At'

,l:nh";_l
:l--- aranËpartl
:/l::/::/

-o.2 0
Activation q
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ua - uctanh(-tu6 - w"At) * atanh(-,4¿) = 0

câs€ a6 - -1, a1 = !7 è as = {47:

wa - uctanh(tr6 + w"At) * atanh(,4,) : g

(4.7)

(4.8)



CHAPTER 4. ANALYSIS OF A SMALL DBA4

CaS€ øs = *1,

CâS€ o¡ = +1,

a7=-1 +ø3-lAt:

- 3wo - tu. tanh(- 3wt + w"At) * atanh(A¿ ) = Q

ø1 = fl l as= -1r'

Equations (4.7) and (4.10) are identical, and, because tanh(r)

atanh(z) - -atanh(-r), equarion ( .B) is jusr (+.2) multiplied by

with two equa,tions (4.7 and 4.9) in the three unknowns wo, 106, and

tuo gives

ua = uc tanh(æ6 I w"A¿) - atanh(Á1).

Substituting (a.11) into (4.9) gives

- 'tDa - tr" tanh(-ua - w"At) * atanh(-,4r) : 0

Equation (4.12) cannot be solved for u6 or u. analytically, but its roots can be founcl

numerically. Taking tu¡ ) 0 as the independent variable, w'e see that the equation has trvo

roots' If u.'¿ ) 1, tu" can be either nega,tive and approxima,tely proportionalto w6, or it can

be positive, with a limiting value of

tu" . (tanir(3w6 - w"A¡) - 3 . tanh(uru * w"Ar))* 4 . atanli( Aù = 0.

52

The negative root is discarded because it represents

output A¿, instead of a minimum.

Substituting the value of trr" into (4.11), we get

w" = af,anh(At)

(4.10)

: - tanh(-z) and

-1. This ieaves us

ti.,.. Solving (4.7) for

(4.11)

(4.e)

Note that the signs of to6 and u)c cat be changed, giving an

meaning of the hidden unit inverted. The values of wo and w,

in figure 4.8.

^.-lim^ u. = 2.atanh(-4¿).
Uö+Co

(4.r2)

an erÌergy maxtmum

(4.13)

at the desired

(4. i4)

equivalent solution with the

are plotted for a range of u'6
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Figure 4.8: Plot of values for weights wo and u. for a range of tl6. Any of this
family of optimal weights have minima at a3 - +At or az = -At as appropriate for
the inputs (4 = 0.4 for this plot).

4.3.1 Effects of Different Solutions

It has been shown here that there is not just one, but a corÌtinuous range of optimal weight

sets that produce an energy rninimum at the desired output unit act.ivation *A¿ or -A1.
If visualized in three dimensions in variables 'u)a, ubt and ?rc, this range of weight sets

appears as a curve. A particular optimal weight set is a, single point on this curve. Other

weight configurations, such as the one with the meaning of the hidden unit reversed, would

appear as distinct curves. We define such a group of weight sets as a continuous solution, as

opposed Lo an isolated solution, where the optimal weight set is not continuously variable.

Two important questions arise:

1. Are all the optimal weight sets making up a continuous solution equally good?

2. Which optimal weight set does the CHL learning algorithm produce?

1.5
wb

53

To answer the first question, we must decide on a qualitative measure of the desirability

of a particular weight set. Since any optimal weight set produces energy minima arbitrarily

close to the desired values, the output error is zero in each case and cannot serve as a metric.
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Instead, reliability is chosen as the performance measure. Reliability can be broken dorvn

into three components:

1. The network should tolerate small changes in the weights without producing large

changes in the output values. At the very least, the output va,lues should not easily

change sign (a gross error). If a gross error is due to the output settüng to the rvrong

energy minimum, this is also referred to as basin hopping. We define the diameter

of the optimal weight set, d(W-), as the minimum change in a weight required to

produce an output rvith the wrong sign. We generally want d(W*) to be as large as

possible.

2. The network should be insensitive to variations in the annealing schedule used during

settling. Annealing is needed only if there are spurious local minima in the free energy

function of the network. The network becomes sensitive to the annealing schedule as

spurious minima approach the depth of the desired global minimum.

3. The netrvork should be able to continue learniirg even after some pre-determined

error criterion has been reached. Continued learning is necessary in analog harchvare

implementations to maititaiu the charge on the weight-storage capacitors, and also for

situations where the netrvork is supposed to track changes in an evoiving environment.

In general, the most reliabie netrvorks are the ones that have only a single energy min-

imum, and the most unreLiable are those with multiple, nearly equal depth minima.3 One

problem with near equal depth minima is that a small weight perturbation can make the

spurious minimum deeper than the desired one, leading to basin hopping and a gross erroï.

The perturbation may be the result of either the learning procedure itself, as illustrated i1

figure 4.1, or due to weight drift or noise.

The other problem caused by near equal depth minima is that a very thorough, and

therefore slow, annealing schedule is required to choose between almost indistinguishable

54

3There are a maximum of two minima in the simpìe 2 x 7 x 1 netwo¡k analyzed here.
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minima. As we will see later, using a slorv annealing schedule during learning is actually

counterproductive.

We divide the weight sets in a continuous solution into three classes: stable -solutions,

where there is only one energy minimum; meta-stable solutions, rvhere there is a spurious lo-

cal energy minimum; and unstable solutions, where the annealing process (with a particular

set of annealing parameters) cannot correctly distinguish between the minima. Annealing

is unnecessary for a stable solution set.

A stable solution results as ü)ó---+ oo. This can be verified by substituting (a.13)

and (a.1a) into (4.6). Because a3 is a finire number, (4.6) becomes

OF
ã;-:-atanh(,A¿)'(oo-ør*1)*2'atanh(A¿)'sgn(ø6-atlr)+T.atanh(ø3) (4.15)ods

where
( -t if ¡<o

,gn1t.¡ =] o if¿=o
I

[+1 if r>o
rvhich obviously has only a single zero as a3 varies for fixed inputs øs and a1.

Figure 4,9 shorvs horv the derivative ôFl0as responds to changing the weights. The

critical point after which the free energy has only a single minimum is tr,6 = 0.4g in this

case. When ur6 ) 0.48, we have a, stable solution; when it is less, we either have a meta-

stable or an unsta,ble solution depending on how close the trvo minima are to tire same

depth.

55

The minima are of equal depth when æo = to¿. The correct minimum is deepest as long as

wa 1 ub. Looking at figure 4.10, we see that the solution becomes unstable around ut = 0.J.

As the weight set approaches the transition from meta-stable to unstable, d(\Ãy'.) * 0, a¡d

the network becomes extremely sensitive to small weight perturbations.

4"4 l,earning

The weight change determined by

trolled by the difference between

the

the

CHL weight updating rule, equation (4.3), is con-

clamped and unclamped activations of the units.
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Except for a, few uniikeiy, degenerate cases, if the clamped and unclamped output

tions match, so do the clamped and unclamped hidden unit activations. Therefore,

mismatch in the output activations that drives the weight updates during learning.

For the case of a2 x I x 1 network learning XOR, we have shown that there is a contin-

uous range of optimal weight sets that produce equally accurate outputs. Once the weights

have been adjusted to produce a zero-error output, no further learning takes place. There

is nothing in the CHL learning algorithm that causes it to produce a stable weight set -
once the desired output is produced, there is no longer any information on how to further

evolve the weight set. The final resting point on the solution curve is determined by the

random starting weight set in combination with all the simulation parameters. All aspects

of the simulation including variations in the algorithm affect the outcome, but they do so

in an essentially random way.

If a low learning rate is used, the most common final weight configuration is very near the

d(\M.) = 0 point, with the desired global minimum only minutely lower than the spurious

minimum for each input vector (see figure a.2). This makes the network very sensitive to

small weight perturbations or changes in the annealìng schedule. In fact, eve¡ the smali

weight adjustments ca,used by continued learning (if the netrvork has not yet reached exactly

zero error) may cause a, gross error, leading to the learning oscillation observed earlier.

The size of the neighborhood d(W") tends to be proportional to the learning rate 4

because the learning steps that cause the error spikes are proportional to 4, and a step

proportionalto r7 is taken every time an error spike occurs. The network eventually settles

far enough from the d(\M") = 0 point to prevent further error spikes. This is why the error

spikes tend to die out as learning continues, and also why networks learning with a large 4

show less oscillatory behavior than those with a small 17.

57
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it is the
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4.4.L Weight Decay

Weight decay is an unavoidable feature of analog weight storage

model of weight decay is an exponential drift torvards zero. For

network,

,:l' = ¿. wli

wlrere d < 1 is the decay factor and the superscript represents the simulation time index.

Consider what happens when all the weights in the network analyzed in section 4.3 decay.

In the three-dimensional visualization of the continuous solution described previously, this

is equivalent to moving on a straight line from a point on the solution curve toward the

origin.

We saw in section 4.3.1 that if u6 is large to start witir (stable solution set), changing it
has little efect on the activations of the units. Changing wo and tu" changes the location of

the energy minimum. If the CHL learning algorithm is applied to the decayed weights, tuo

and ar" are adjusted to move the minimum back to IA¿. If the decayed ø6 is still large, the

hidden unit still acts as a *1 step function, so there is no changein w6 due to re-learning

after the decay.

Eventually, tl6 decays until it is no longer large, and the solution set enters the meta-

stable range. The decay process continues, rvith d('W-) becoming smaller and smaller, until

the spurious minimum is the same depth as the desired minimum (d(.W.) : 0) and the

network makes a mistake (see figure 4.71,). At this point, the clamped and unclamped

network outputs are no longer the same, and the CHL rule causes a large change in the

weights, resulting in a correct output again. The decay process repeats, and the network

oscillates. The oscillation frequency is roughly proportional to the the decay rate and

inversely proportional to r¡, but there is no threshold belorv which decay can be tolerated.

Weight decay will be discussed again in chapter 6.

capacitors. A common

each weight tl;, in the

(4.16)
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Figure 4.11: The effect of slow weight decay on a network starting with a ,'good"

solution. The relatively high analog erro¡ is due to the weight decay. Notice that
the error ìevel is essentially constant until the moment when oscillation begins. The
digital error (sign of the output) remains zero until the point where the netwo¡k
begins to oscillate. Note tliat equafions (4.11) and (4.12) no longer hoìd after onset
ofoscillation, and therefore ?rò no longer represents the weight set after that point.
(4=0.01, d=I.0 x 10-5)
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4.5 Solutions

The reason that the CHL algorithm cannot deal with rveight decay, or with other reìated

behavior, such as hypersensitivity to weight perturbations, is that learning is based only on

the f'nal activations of the units after settling. If a thorough annealing schedule is used,

only the location of the deepest energy minimum is used in adjusting the weights. The

existence, or development (through weight decay), of a spurious minimum goes undetected

until it approaches the depth of the desired minimum and causes a mismatch between the

clamped and unclamped outputs.

One solution to this probiem is to dispense rvith annealing entirely during learning and

start the units at random activations, apply an input or input/output pattern, and then

settle using a damped updating rule with no annealing. Because this causes the netrvork to

randomly settle into the spurious minima in the unclamped phase, the weights are adjusted

until those minima disappear. The possibiiity of becoming trapped in any shallow spurious

minima that may remain or form iater is avoided by using normal annealing during recall

operations.

Our simulations have shown that tliis procedure works well for small netrvorks, reliably

producing single-minimum energy functions. See figure 4.72 for an example. Figure 4.13

shows that further improvements can be achieved by reducing the number of settling passes

at each temperature. Figures 4.14 and 4.15 show how disabling annealing also improves the

problems associated with weight decay. Unfortunately, while this technique is promising for

small networks, it often causes learning to fail completely in larger networks, likely due to

the large number of spurious minima a large network can contain. When a solution is found

in a large network, it has good, single-minimum energ)' functions, but the procedure has

too low a success rate to be practical. The procedure is in any case sub-optimal because,

while the solutions it produces are reasonably good, they are still far from the ideal t¿'¡ -' oo

result determined previously.

Another possible solution comes from the observa,tion that "large weights are good."

By using a, reverse weight decay procedure where d > 1.0 in equation (4.16), unconstrained
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Figure 4.L2t Top: Learning test,2 x 1x l netrvork, q = 0.02, no annealing,50
settling passes per input pattern. Note log scale on error axis - noise in erro¡ is over
a fairly small range. The error does not represent oscillation or basin hopping.
Bottom: Free energy through valley between minima, pattern 0. Compare with
figure 4.3 on page 45. Notice that there is only a single minimum in the energy
function.
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Figure 4.1-3: Top: Learning test,2 x 1x l network, rÌ = 0.02, no annealing, 12

settling passes per input pattern. The error is noisy but exhibits no basin hopping.
Bottom: Free energy through valley between minima, pattern 0. Note absence of
any hint of a second energy minimum.
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weights like tu¿ drift torvard infinity (or the weight limit), resulting in very good solutions.

Unfortunately, once again, this procedure is unstable for larger networks, and it is ques-

tionable whether large weights would be beneficial in all probiems.

The most useful technique for avoiding the instability problem is to choose the learning

rate very carefully. A high learning rate has a beneflcial effect because it causes the network

to take a large, although random, leap into the stable part of the solution space, where it

can then settle to a good, single energy minimum, solution (see figure 4.16). The problem

is that the best learning rate depends on the problem being learned as well as the initial

rveights, and is therefore difficult to determine a, priori. Also, our simulations show that

the choice of the learning rate becomes more critical in a larger network where the solution

space has more dimensions. It may be possible to develop an automatic heuristic technique

for adjusting the learning rate, but this has not been explored. High learning rates do not

have a beneficial effect on weight decay related problems, other than that they decrease

the oscillation frequency. Adjusting the learning rate is therefore an unsatisfactory solution

because it is not a general solution that works in every case.

Other approaches, including using low-initial-temperature annealing schedules, learning

with annealing at first and later disabling it to attempt to remove spurious minima, and

other variations have been tried without great success.

4.6 Ðiscussion

65

The weight drift problem presented here is a fundanental property of the DBM itself.

While there are ad hoc fixes in particular situations, a general solution remains elusive.

The root of the problem is the existence of spurious local minima, and the inability of

the learning algorithm to detect and remove them, even when the network is capabÌe of

producing single-minimum energy functions.

An important caveat to the analysis here is that the simple two-input XOR problem

is by no means representative of "real" applications. However, it is the simplest problem

requiring hidden units, and the problem that led to the demise of the original perceptron
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[MP88]. There are some problems that have isolated solution sets and are immune to the

difficulties described here. The 4-2-4 encoder is an example of a problem with a partially

isolated solution set. It is used in chapter 6 to demonstrate that the CHL algorithm can

deal with weight decay when the output error rises gradualìy as the weights decay.

There is the hope that "real" problems will tend to have isolated weight sets, unlike

XOR and n-bit parity, but it is far from clear whether a system that fails on small problems

will succeed on large ones. It is of some significance that almost every problem we have

simula,ted, from the simple XOR, to n-bit parity, to randomly generated mappings, on a

wide range of netrvork sizes and connection patterns, has proven to be prone to instability

from weight decay.

IJnless a better learning algorithm is found, there is always the concern that some small

(XOR-like) part of a large network may exhibit the behavior described here. This rvill

cause the entire network to fail to learn its task reliably, or, because of weight decay or

other effects, fail some time after learning successfully.

Another caveat is the definition of "success" in a iearning task. One of the strengths

of neural networks is that they are able to deal witir self-contradictory input data. rvhere

100% correct leariring is by definition not possible. The level of accuracy and reliability in

the network outputs required for "success" is then necessarily lower, and the effects of the

behavior described here may be entirely submerged in the errors produced by the nature of

the problem itself.

The question of whether or not the DBN4 algorithm functions properly cannot be an-

swered without reference to the implementation of the network and the performance required

for a particular application. If the goal is to find a set of weights that allow the network to

perform within a certain predeflned error criterion, and to terminate the iearning process at

that point, the DBM algorithm certainly works. On the other hand, if the goal is to build

a DBM using analog VLSI hardware, with the requirement that the learning algorithm

generate and maintain a stable solution in the presence of weight decay, our analysis shows

that the DBM algorithm is not usable. In between these two extremes are the applications
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where occasional errors can be tolerated, or rvhere the error ra,te inherent in the problem is

large enough to make the weight-drift-related error negligible.
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5.1- Introduction

If it is viewed as a, non-[near analog feedback netrvork, the existence of a double-minimum

energy function in the deterministic Boltzmann machine analyzed in the previous chapter

seems to make sense. However, since the DBM is, in effect, a model of the stochastic

Boltzmann machine (BM), the meaning of the second minimum is unclear.

A BM has many local energy minima in its activation space, and moves among them

with a probabilitv determined by their relative energies IAHS85]. At thermal equilibrium,

there can be only one average value for the output of a BM, corresponding to the global min-

imum in the DBM. What then does tite meta-stable local minimum discussed in chapter 4

represent ?

One answer is that mean field theory does not hold for small networks, and therefore

no analogy is expected. Does this mean that the problem described in chapter 4 disappears

in larger networks, where the DBM approximation of the BM becomes more exact? It will

be argued here that it does not. While the networks do become equivalent as the network

size approaches infinity, the behavior of the DBM does not improve, instead, the behavior

of the BM deteriorates.
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5.2 A Small tsoltzmann IVlachine

A stochastic Boltzmann machine can be analyzed in much the same way as the DBM was in

tlre previous chapter. We again use a five-uniI 2 x 1 x 1 network (figure a.a). The problem

to be learned is exclusive or, as in the DBlr4 analysis. Because of the analogy between the

two types of networks, we make the same weight symmetry assumptions:

By performing the above substitutions, the Boltzmann ma,chine energy equation (eq. 2.2)

can be rewritten as

wso =

u31

WO3 = 10o

wl3: -uo

u43 = ua

uo2 = -wb

urz = wb

u42 = -wb

u32 = u.

u3+

w20

wzt

uzq

w23

E - - [,u"53(56 - 5r * I)IuaSz(-S0* 5r - 1)+ u,S2S3). (b.1)

Tlre energy of all sixteen states of the network can be evaluated in terms of wo, ?o6, and

w". So and ^9i are the states of the inputs, 52 is the state of the hidden unit, and ^9a is the

state of the output.
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state (aB7) ,50 5r Sz 5s Energy

0 -1 -1 -I -1 Eo = wo - lnb -'u)c

1 -i -1 -1 +1 Et=-1Do-1xb*u"
2 -I -1 +1 -1 Ez=wo|ua*w,

(5.2)
3 -1 -1 +1 +1 E3=-woIwb-w.
4 -1 +t -1 -1 E4=-wo*wb-w.

15 +1 +1 +1 +i Ets = -wo * 1!b - ?Dc

From equation (2.6) we knorv

r>aþt - 
e-EoP1 lr

Z,
where

Z =Ðe-EoB'lr.
aþt

In order to produce the desired probability distributions on the outputs given the input

7, we need (53)" as folloivs:

(5.¡-t '-t = -o '4

(5t¡-t'+t = +o'4

(5r¡+t'-i = +o'4

(5t¡+t'+t = -o'4

77

We calculate the expected value (.93)1 for each input state 7 as

(5s)" = | S3P"olt.
aB

There are four states aB for each input state 7 corresponding to the four values of .92,5e.

Equation (S.e) can be expanded as

(5r¡-t'-t =-t -e-Eo I e-Et - e-Ez t e-Ez

e-Eo +e-Et +e-Ê, +e-Et

(5.3)

(5.4)
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Figure 5.1: Calculated values for weights uro and tl, for different values of tr,,6 in
a one hidden unit, one output u¡rit Btr{ implementing an XoR function with *0.4
average outputs.

Substituting for the energies from (5.2), rve find that the expressions for (53)-1,-1 and

(5r¡+t'+t are identical and that (5.¡-t'+t = -(5r)+i'-1. We therefore have two equations

in the three unknowns ?ra, ?06, and u.'.. Soiving equations (5.6)and (5.7)numerically with 116

as the independent variable, as we did for the DBM, we get the results plotted in figure 5.1.

As with the DBM, there is an entire range of solutions that produce exactly the same

(time-averaged) output values. Unlike the DBM, however, the solutions do not extend to

tub = 0, and there is no degradation in reliability rvhen moving from one solution to another.

The behavior of the BM is different from the equivalent DBM because the mean field

approximation does not hold for small numbers of units. This is not surprising, since the

(5r¡-t '+t

(5.)+t'-t

wb
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(5r¡+t'+t =

_e-Eo*e-Er_e-Eule-Ez

-

e-bn *e-Eu +e-Eu +e-8,
_e-Ee I e-Es _ e-Ero * e-En
e-be*e-Esle-En+e-Ett

_e-Erz le-En _e-Ern *e-Et,
e*Et, + e-Ett + e-Etn + e-Ett

(5.5)

(5.6 )

(b./)
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F igure 5.2: A unit with a time-averaging function on its input. The time averaging
function could simply be a low-pass filter
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-0.45

Figure 5.3: Time averaged output of a BM network with weighis tro - 0.488,
ut = 0.750, u" = 1.098 (a fairly "good" DBM weight set). The output is averaged

over 200 000 cycles.

probability of setting 5; to t1 in a BM depends on the instantaneozs activation of every

other unit in the network for a BM, and the erpected ualue of the actjvation in a DBN4.

Consider a netrvork with units like the one shown in figure 5.2. This is a standard

BM network with a time averaging function on the input of each unit. Figure 5.3 shows

the average output of a BM with weights set to values calculated for a DBM according to

equations (4.11) and, (a.72) for different input averaging periods. Notice that the average

output approaches the desired -0.4 value as the averaging period increases.
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Figure 5.4: Time averaged output of a BM network with weights u.,o - 0.38J,
ø¡ = 0.400, uc= 1.157 (A less "good" weight set than in figure 5.3). The output is
averaged over 200 000 cycles. Notice the unreliability of the network output.

Comparing figures 5.3 and 5.4, rve see that the netrvork output becomes less reliable

for a less "good" set of weights (in the sense of section 4.3.i). In figure 5.4, the output

sometimes settles into the local positive minimum instead of the global negative one.

As the input averaging period is increased, the time-averaged BM output becomes the

same as that of a DBM with the same weights. This occurs because the DBM activation

function is identical to the expected value of the BM activation. After all, this is how the

DBM was derived. When the net input to each unit is averaged over a long enough period

of time, it approximates the expected value, and the netrvorks are equivalent.

5.3 Ðxpanding the Network

300 400 500 600 700
lnput averaging period

74

There is an alternate way to generate an approximation to an expected value for the inputs

in a BM. Consider the simple one-hidden, one-output unit network used in the previous

analysis (pug" 70). Expanding equation (2.1) for the output unit, we get the net input to

the output unit:

nets - woSo - woSt I wo I wrS'2.
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Now repiace the iridden unit (unit 2) with n liidden units, a,nd replace the output unit

(unit 3) with n output units. All the weights from the inputs and bias unit are replicated,

and tlie lridden and output units are interconnected with weight uL= w"ln Each hidden

unit is connected to each output unit and vise versa, but neither the hidden nor the output

unit sets are internally connected (see figure 5.5 and figure 5.6). The net input to each

output unit i is then

The contribution of the hidden unit to the net input has been averaged over n identical

but stochastically varying units. The input to the hidden units similarly includes the average

of the output units. Instead of the average over time in the previous analysis, we now have

an average over many units at each point in time. The averages are approximations of the

expected values in the original one-hidden, one-output unit network:

net; = uoSo - woSl t wo I

Ð; S¡
= 'lDoJO - ua'Jt -l lDa t UcL.

n

75

We can see the effect of changing the network size by varying n, the number of hidden

and output units, and taking the network output to be the average over the n output

units. The results are shown in figure 5.7. Notice that the average of the network outputs

appears to oscilate between two stable vaiues: -0.4 and +0.65. These correspond to tire

global and local minima of the DBM energy function for the set of weights in this example

(see flgure 5.8). Figure 5.9 verifies that the time average of a single output unit is a close

approximation to the instantaneous average over all the output units.

As the network becomes larger, the frequency of the oscillations decreases. Recall that

this is stochastic Boltzmann machine with a deterministic Boltzrnann machine rveight set.

r€hidden

'!9s,
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D;.n'a 5,

n
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Figure 5.5: A Boltzmann machine with the hidden and output units each repìicated
n times. In this diagram, the circles represent the units and the lines represent the
weights. There are no interconnections between the hidden units or between the

output units. The bias unit has been ornitted for clarity.
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Figure 5.6: Weight set of an expanded Boltzmann machine with n = 10. Units 0

and 1 a¡e inputs, units 2 to 11 are hidden, units 12 to 21 are output, and unit 22 is
the bias unit.
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Figure 5.7: Output of a Boltzmann machine with replicated hidden and out-
put units. Output values are averaged over all output units and then smoothed
by averaging over 50 time steps. Netwo¡k sizes are, from top to bottom, n =
50, 100, 150,200,250,500. Weights ate wa = 0.327, tu¡ = 0.330, w, = 7.143.
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Figure 5.9: Comparison of output of a single unit averaged over time and the
instantaneous average of all output units in an n = 150 network. The top trace is
the activation of a single output unit, averaged over 50 passes. The bottom trace is
the average ove¡ all the output units with no smoothing.

810 1

Passes (1000's)
10 12



CHAPTER 5. THE BOLTZMANN MACHINE REVISITED

The average output value should be near zero in all cases. An 22" states of the network are

possible, but those sets of states resulting in the two dominant average output values are

strongly favored, and the network spends long periods of time in one or the other of these

two sets of states, with relatively rapid transitions between them.

In order to see the true near-zero time-average output of the network, it becomes neces-

sary to observe it for increasingly longer periods of time as the number of units is increased.

If the observation (statistics gathering) period is too short, we rvill get a false impression

of the actual behavior of the network. For example, if the n = 200 case in flgure 5.7 is

observed for the first 2000 update passes, the conclusion is that the aveïage output value

is -0.4. If weight updates during learning are based on such false information, and -0.4 is

indeed the value the network is supposed to learn, then the weights are not changed when

they should be. In effect, the other (meta-stable) state is not observed in this case because

the observation period is truncated prematurely.

Thus, the local minimum in the DBM energy function results from the second, partialìy

stable activation set in a large BM. Put another way, the second energy minimum in the

DBM is analogous to observing the BM network for too short a period of time.

The DBI4 activations represent the expected values of the BM activations. The oniy

way to achieve a perfect calculation of the expected value from observa,tion is to average over

an infi,nite number of units. The DBM therefore, is equivalent to the BM of figure 5.5 with

r¿ = oo. To avoid the problem of local minima in the DBM energy function thus requires

observation of the BM over an infinite period of time, which is impossible. In other words,

the local minimum problem is a fundamental characteristic of the DBM, not an artifact of

the mean field approximation applied to a network that is too small, and we cannot expect

improvement simply from increased network size.

5"4 Iliscussion
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The simple XOR problem explored here is quite artificial, as is the method used to expand

the size of the BM. Whether the same behavior predicted and simulated here would be
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encountered in a "real" DBM problem, where the network actually learns the weight set

on its own, is a matter for debate, although our simulations have not been promising. I1

a real (finite) BM, it is always possible to avoid the local minimum problem by collecting

statjstics over a sufficiently long period of time. Judging from the simulations performed

here (figure 5.7), that period increases rapidly with increasing network size.

Using a short statistics gathering period during learning causes the network to adjust the

weights according to incorrect statistics. If a learning step is based on statistics ga,thered

while the network is in the spurious set of states, the resulting large weight adjustment

decteases the ükelihood of that set of sta,tes. This is analogous to disabling annealing

during learning in a DBM and allowing the network to occasionally settle in a local energy

minimum. DBM simulations have shown that wliile disabling anneaLing is effective in a

small network, it results in unstable behavior in a iarger network with a more complex

learning task.

There are two conclusions to be drawn from this anaiysis:

1' It is important to ensure that a sufficiently long statistics gathering period is used as

the size of a Boltzmann machine increases.

2. Simply increasing the size of a DBM does not ameliorate the problem of spurious

minima and unstable learning presented in chapter 4.
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6.tr- ïntnoduction

One of the most inviting features of deterministic Boltzmann machines is the possibility of

implementing their simple, local Ìearning rule in a massively parallel architecture. However,

as a network with lf units contains N2 weights, the weights and associated circuitry (the

synapses) must necessarily be small and simple, and may consequently exhibit behavior far

removed from ideal mathematical models.

In digital implementations, the number of bits used to store the weights is limited. Be-

cause digital multipliers will tend to be fixed rather than floating point, both the resolution

and the dynamic rarìge of the weights is severely restricted, In an analog system, the weight

resolution is limited by noise and parasitic effects, and weight values stored as voltages on

capacitors are subject to decay over time. In addition, analog multipliers saturate and have

zero offset problems.

One of the features of neural networks is that they not only learn to represent some fea-

tures of their environment, but are a.lso able to learn to compensate for internal problems. In

this chapter, we explore which non-ideal analog hardware characteristics are automatically

dealt with by the learning algorithm and which seriously degrade network performance.
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learning mulliplier

Figure 6.1: A single analog synapse consists of two multipliers, weight storage, and
a weight add/subtract circuit.

The goal is to focus hardware design efforts on the imþortant issues and to let the learning

algorithm deal with the rest.

o--o*o

6.2 Non-ideal analog behavior

un¡t I

Figure 6.1 shows the components of an analog synapse. Ideaily, the multipliers would

perform true multiplication operations, the weight storage would hold any value with infinite

precision for an infinitely long time, and the add/subtract circuit would update the weight

values accurately by any desired amount. The only non-linear component in the network

would be the logistic unit activation function itself.

In reality, nothing is Linear, and saturation and zero offsets are prevalent in all conrpo-

nents. We now explore a number of sources of error and their effect on the performance of

the network.

83
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Figure 6.2: Measured values frorr a CMOS implementation of a Gilbert multiplier

[Sch9i] . Each trace represents an input (72) step of 0.2V frorn V2 = -0.8V to
I/z = *0.8\¡.

6.2.1 Multipliers

The Gilbert multiplier is a convenient, compact circuit for multiplying two analog val-

ues [Mea88]. Figure 6.2 shorvs the measured characteristic of a real Gilbert multiplier

[Sch91], shown schematically in figure 6.3. Three features a,re immediately obvious:

1. The multiplier characteristìc saturates in both inputs and is substantially non-Linear

any significant distance from zero.

2. There is a zero offset; that is, the output is not zero rvhen one or both of tire inputs

are zero. Also, the sign of the output may be wrong for small input values.

3. The characteristic is unbalanced in that the V2 = +0.8 and V2 = -0.8 traces are not

exact mirror images of each other. This is not the same as the offset problem.

For simulation purposes, the multiplier was modeled by the function

Ð.2 0.0 0.2
V'' (Volts)

84

0.4 0.8

mult(V1 ,Vz) = þtanh(î\r, - Oe) tanh(Àlz2 - O >,) + Oy (6.1)

where / adjusts the function range, 0 and À adjust the degree of nonlinearity in the trvo

inputs, and Os, O¡, and O, adjust the offsets.

1.0
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þ uu*
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vu* !

Figure 6.3: Schematic circuit diagram of an analog CMOS Gilbert multiplier (taken
from [Sch91]). A Gilbert multiplier multiplies the diferences of two pairs of voltages.
Vt = Vct - Vuw and V2 - Vj -V¡nnr.
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Figure 6.4: Learning results for a 4 x 5 x 1 network learning 4-bit parity using the
model in equation (6.i) for the weight multiplier with the model parameters set to
match the measured multiplier characteristic in figure 6.2. The error values in both
traces are acceptably small.

Non-ideal Weight Multiplier

- 

nonl¡near multiplier
--- ¡deal multiplþr

Figure 6.4 shows the learning behavior of a 4x5 x 1 netrvork on a 4-bit parity problem where

the weight multiplier has been replaced by the model in equation (6.1) with parameters set

to match the measured multiplier characteristic in figure 6.2. The parameters are shown

below. Both the original value of ea,ch parameter and its scaled value (for use in simulation)

are shown.

4000 5000 6000
Leaming epochs
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Parameter

ó

0

À

Oe

Os

oa

Value

29 x 10-6

1.7

1.35

0.017

0.017

-1 x 10-6

Sim. value Calculation

2.8 calculated so the mult. 2 x 1 gives 2

0.68 weight range -2 to f 2 maps to *0.8 V

1.08 act. range -1 to f 1 maps to t0.8 V

0.0068

0.0136

-0.1
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Performance is not seriously degraded by tlie non-ideal multiplier characteristic, but

learning slows down. Other tests using more severely nonlinear multiplications show that

most of the degradation that does occur is due to a change in the effective learning rate,

and that the learning rate q can be adjusted to counteract this effect.

It is not hard to see why the network can deal with the non-ideal behavior of the weight

multiplier. The effect of the non-linearity is that net;,the input to unit i, is no longer the

sum of the w;¡a¡ terms, but the sum of a'squashed'version of these.

The process of learning can be viewed as adjusting the equilibrium activations of the

units by modifying the rveights connected to their inputs. To see horv the effective learuing

rate is changed by the nonlinear multiplier, consider the effect of a weight change d,w¿¡ on

ä;, the equilibrium activation of unit i. For ideal multipliers, at equilibrium

and

In the nonlinear case (ignoring offsets because they don't affect the learning rate),

äi = f¡(neti),

87

á,¿ = f;(net¿),

,\-neli - Lw;ra*,
Æ

Oa;

uwii

and

lui = f 
,trrt: tóo 

tu\^h(Àä¡) 
.6w;j J \'-"-¡' 

coshz(0w¡¡)'

If the units are producing the same outputs in the ideal and nonlinear

inputs are also the same and we can neglect the difference between net; and

(6.3) and (6.4) then differ by the factor

@d tanh(Àör)

neti - f dtanh(du;¡)tanh(Àä¡),
À

(6.2)

(6.3 )

coshz(0w;,)ã.¡

(6.4)

cases, then their

nefi. Equations

(6.5)
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Figure 6.5: Effective learning rate multiplier (equation 6.5) with tlie model param-
eters set to match the measured multiplier characteristic in figure 6.2. Note that the
activations and weights are expressed as voltages, and that the maximum learning
rate factor of one is arbitrary.

which reaches a maximum value of $0), at wij 0, áj - 0 and decays to zero as the

activation ä, or rveight u;; increase in magnitude (see figure 6.5). The effective learning

rate, determined by the anticipated change in ä¿ when tr;¡ changes, therefore varies with

both the weight aud activation values. While this is undesirable, the effect can be dealt with

by choosing the voltage and current ranges in the network so that the multipliers stay in

their relatively Linear central region, and adjusting 4 to achieve the desired average effective

learning rate.

The zero offset in the multiplier does not cause a problem because its effect is merely the

addition of a constant term to the r¿€li summation in equation (6.2). This is mathematicalll.

identical to the effect of the bias unit, so the learning rule adjusts the weights connecting

the bias unit to the other units to compensate for the offset.

The unbalanced nature of the multiplìer was not modeled, but is not expected to have

much of an efect since it simply changes the effective learning rate slightly as a function of

the activation ø, and the weight to;¡.

0
a, (volts)

88
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It is evident that deficiencies in the weight multipliers do not have much impact on

the performance of a DBM. This is not surprising since the learning procedure adjusts

activations by adjusting the net inputs to the units, automatically compensating for offsets

and nonlinearities in the weight multipliers. As long as the weight multipliers are monotonic,

weight changes are always in a direction that decreases error, and the network functions

properly.

Non-ideal Learning Multiplier

The function of the learning multiplier is to calculate the product of the activations ä; and

ä¡ so that the weight uij can be updated according to

The learning

the effects on

becomes

6wü =

multiplier suffers from the

network performance are

I ((dtanr'10äI - oa)tanh(Àärt

- (@tanh(dä¿ - Oe) tanh(Àäi

nö (tanhla! - Ot)tanh(Àãrt -

89

The offset O, is not a problem as it is canceled by the subtraction,l and @ is absorbed

intothelearningrate. Thetanh(.)functionsdistortthesizeoftheweightadjustmentsteps.

Since the functions are monotonic, the sign of Atl;¡ is the same as in the ideal case and the

major effect is that learning progresses at a different rate.

same three problems as the weight multiplier, but

different. Using the model in (6.i), equation (6.6)

rlt is assum"d that there is only one learning multiplier per weight. If there

multipliers fo¡ the clamped and unclamped phases, then the offsets do not cancel, and

as an offset in the add/subtract unit (discussed Ìater).

- O.r) *
_o¡)r

ot)-ï

oo)

où)

anh(dðo

(6.6)

- Oe)tanh(Àär. - Or))

are separate learning

the effect is the same
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6.2.2 Add/Subtract Unit

The add/subtract unit is responsible for calculating the weight change Atr;; from the differ-

ence of the products of the clamped and unclamped activations and adding it to the weight

tr¿¡. Typically, analog weights are stored as charge on a capacitor, so the add/subtract unit

either adds or removes charge to or from the capacitor. (In reality, part of the function of

the add/subtract unit can be performed by the Gilbert multiplier circuit.)

It is notoriously difficult to make an ideal analog add/subtract unit, as the amount of

charge added to or removed from the capacitor should be independent of the current weight

value (capacitor voltage). This means the add/subtract unit must be an ideal current

source. Because it is not, weight steps towards zero are larger than steps away from zero. It
is easier to build a circuit lvhich adds or subtracts a constanl amount of charge to or from the

capacitor, depending only on the sign of a!al - äi ãt;. This is called Manhattan learning

[PH89, Sch91]. In general, the exa,ct size of the weight steps is not of great irnportance so

long as the steps are small.

A common deficiency of the add/subtract unit is the addition of a small offset to

result. Consider the weight updating rule (equation 6.6) rvhere there is an offset of ó in

subtraction operation:

6wii q(äTäl - äi ä; + ó,/).

Without the offset, learning is complete (weight changes stop) when the clamped and un-

clamped activations match (älã'I = äi õ',j) and Aæ¿, = 0. Now, however,

A,w;¡ = 0 when ä! äI + 6;¡ = ä¿ ër¡ .

90

Assume unit j is an input, which is always clamped (äf : ä¡ = ä¡), and unit i is an output.

Then, after learning is complete,

the

the

(6.7)
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We would therefore expect ail error of 6;¡läi in the output ä, (the output during recall)

when learning is complete. However, consider the effect of another input unit, fr, with

6¿t = 0:

Lw* - 0 when a! af = a; a;
.-+ot, since õLi = äk = äÈ, the final value after learning is

ái =á!

which contradicts (6.7).

Does this mean that the weight values oscillate up and down while atternpting to satisfy

both (6.7) and (6.8)? Unfortunately not. Weight ?rij appears only in equation (6.7), while

?riÀ appears only in equation (6.8), so the two weights do not directly compete with each

other. Instead, both u.r;¡ and u.,¿¡ continuously increase in magnitude, one positively and one

negatively, to infinity (or saturation) in an attempt to cancel each other's effects on ä¿. In

simulation, it is typicaliy weights from the hidden units that counteract the ó;, mismatch.

The weight saturation effect is not really a problern as long as the network is perfornling

correctly. Rather, it is a symptom of weight drift in a continuous solution set. The CHL

algorithm counteracts any moderate weiglit drift caused by an offset in the add/subtract

circuit as long as there is a gradual degradation in performance with changing weights (W"

is isolated) if the solution set is continuous, however, we can expect saturated weights, basin

hopping, and oscillation (see figures 6.6 and 6.7).

Typically, each add/subtract unit attached to each weight in the network has a random

mismatch due to variation among devices, superimposed on a global mismatch due to fab-

rication process variations. This does nothing to improve the situation. Because of these

variations, it is impossible to build a perfectly balanced analog add/subtract unit, and ang

offset, no matter how small, eventually lea,ds to oscillation in a continuous weight set.

It beneficial to introduce a iearning threshold in some cases, This prevents any weight

update if Lw;¡ 1 Lw7¡¡, where Lwrn is a threshold value chosen to be somervhat larger

than the largest á;r. This threshold prevents the slow but continuous weight drift due to an

add/subtract unit oflset, at the cost of a somewhat higher residual error (see figure 6.8).

(6.8)
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Figure 6.6: Training results with random add/subtract offsets in the range -0.001
to 0.001, ìearning rate 11 - 0.1, weights limited to *2.0. Notice the slower learning
and oscillation in the trial with offsets.

6.2.3 \Meight Decay

If weight values are stored as a volta,ge on a capacitor, charge leaks to ground at a rate

proportional to the voltage on ea,ch capacitor, leading to an exponential decay of the weights

towards zero.2 in a CMOS implementation, the leakage is towards the substrate voltage -
the most negative voltage on the chip. Thus the weights tend to drift towards their most

negative value.

The effect of weight decay is in many ways similar to the effect of the offset in the

add/subtract unit described above. One difference is that whereas the ofset can be in any

direction, decay is always towa¡ds the origin or towards some other single value. Again, if
the solution set is isolated, the learning algorithm compensates for moderate decay rates,

and the effect is merely an increase in the residual error.

Figure 6.9 shows the effect of weight decay in a 4-2-4 encoder. The 4-2-4 encoder

is interesting because, unlike the XOR and parity problems, the restricted architecture of

the encoder allows the learning algorithm to compensate for weight decay. In this case,

800 1000 1200 1400
Learning epochs

92

I 600 1 800

zThis assum"s a ground-referenced rveight vaìue, but the argument holds in an)¡ case
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Figure 6.8: The effect of alearning threshold on anetrvork with add/subtract unit
offsets. Because learning is disabled if the weight cbange is below the threshold, the
effect of the offset (eventual oscillation) is prevented at the cost of solle ¡esidual
er¡or. For this trial, offset varies randomly between +0.002, threshold is 0.0001.

10'2

ot <n'4c,'"
!
(I)

I to''o
al,

S to't

8000 10000 12000 14000 16000 18000
Leaming epochs

94

Figure 6.9: Eflects of various ìevels of weight decay on a 4-2-4 encoder problem.
Each step represents an increased leveì of weight decay, starting at d = 0.0001,
foìlowed by d = 0.0002, d = 0.0004, etc. up to d = 0.0256. The learning algorithm
is able to handle decay rates up to about d = 0.0064, which represents about 1B%

of the 4 = 0.05 learning rate.

1000 1500
Leaming/decay cycles
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Figure 6.10: The effect of weight decay on learning performance for a 4 x 5 x 1

network learning a 4-bit parity problem. For this test, ? = 0.1, d- I x l0-a (decay
is 0.1% of the learning rate).

the solution set is not isolated, but it is bounded below (towards the origin). This makes

the encoder immune to weight decay but not to add/subtract unit offsets. If the solution

set is continuous and unbounded, weight decay causes oscillation to occur (see figures 6.10

and 6.11).

The oscillation procedure in a continuous solutiou set is as follows:

800 1000 1200 1400
Learning epochs

1. The weights start at some learned value and decay towards the origin with the CHL

procedure making small weight adjustments to keep the error low. The general drift

is toward the origin.

95

2. The weight set reaches the point where d(W.) = 0 and no further weight decay is

possible without the network making a large error. This is the point where trvo

energy minima in the network are of equal depth.

3. The weights continue to decay and the network makes a large error by basin hopping

into the wrong energy minimum.
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Figure 6.11: The effect of weight decay after correct learning fo¡ a 4 x 4 x 1 net-
work learning a 4-bit parity problem. Decay is turned on at 2000 epochs. For this
test, 4 = 0.1, d = 1 x 10-5 (decay is 0.01% of the learning rate).

4. The CHL algorithm makes a large weight adjustment to correct the error. moving the

weight set well away from the d(W.) = 0 point.

5. The entire process repeats from step 1.

As mentioned in chapter 4, keeping the rveight decay rate and add/subtract offsets to a

minimum decreases thefrequency of oscillation because it slows the drift toward d(W") = g.

Using a large learning rate further improves the situation by making the weight step taken

in response to an error as large as possible, giving the rveights a greater distance to drift

before the next errot occurs. There does not appear to be a complete solution to weight

drift problems in continuous solution sets.

4000 5000 6000
Leaming cycles
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6.2.4 Weight Saturation3

When a weight value is represented as an analog voltage stored on a capacitor, there is a

limited range of values it can assume. The absolute upper and lower bounds are determined

by the supply voltages, but the need to stay within the Linear portion of the multiplier

characteristic determines the practical weight ljmits. The design of the multiplìers, as well

as the multiplier control voltages, finally determines the scaling of the voltages to effective

weight values.

The need to fimit the effect of noise in the circuit requires the use of as wide a voltage

range as possible in the weight storage capacitor. This leads to the possibiüty of rveight

saturation, where the learning algorithm is no longer able to increase the magnitude of a

weight.

Whether or not weight saturation affects the performance of the network depends on the

problem being learned and on the severity of the saturation. If the network has sufficient

free parameters to compensate for the saturation of one or more weights, the effect is

usually an increase in training time, but the final error performance does not deteriora,te

(see figure 6.12).

If the network is given more freedom in choosing the weights through the addition of

extra hidden units, it can tolerate more severe weight limits (see figure 6.13). Figure 6.14

shows that most of the weights in the severely limited network of figure 6.13 have saturated.

Weight saturation is not a serious problem as long as the network retains enough freedom to

compensate for the saturated weights. Fortunately, the scaling of the weights in a hardware

implementation can be controlled relativeiy easily by adjusting the unit activation gain

function,4 which must be variable to implement simulated anneaLing. At the final annealing

temperature, the net input to all units is scaled by IIT¡r¡, so the weight range can be

adjusted to optimize the saturation/noise tradeoff simply by varying ?6,r¡.

97

3Weight saturation, or "clipping" is discussed in [HKP91] for dynamical Hopfield networks with a given

set of weights. In a Hopfield network, the efect is a reduction in the ca.pacity of the network. We want

instead to find its efect on learning in a DBM
aa;: tanh((1 lT)Ðut¡tas).Changing ? efectively scales all the u.,,r.
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Figure 6.12: Perfo¡nlance of a 2 x 1 x 1 netrvork on an XOR problem. Weight
limit is set at 1.1. The maximurnweight size in tlie unlimited network is 1.15. The
tole¡ated saturation is srnall and learning is grea.tly slowed because of tlie small
number of adjustabìe parameters in this network.
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Figure 6.13: Performance of a2x 2 x 1 network on an xoR problem. weight lirnit
is set at 0.8 and 0.6. The maximum weight size in the unlimited ¡retrvork is 0.95.

This network has one more hidden unit than the one in figure 6.i2.
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Figure 6.15: The effect of learning noise on a 2 x 1 x 1 netrvork on the XOR problem.
Learning rate is ? = 0.05, noise is Gaussian with an arnplitude of 5 x 10-5.

6.2.5 Noise

No analog system is free from noise. Noise levels can be controlled through careful design,

but some noise is inevitable. The effect of noise in the weight multiplier, input summation,

and unit activation function is a noisy error in the network outputs. If there are multiple

minima of near equal depth in the energy function, the network may jump or settle into

spurious minima, resulting in incorrect answers and an unreliable network. This effect is

not remedied by averaging, but the learning algorithm may remove the spurious minima.

Simulations show that the minima are removed in small networks, while larger ones tend

to become unstable.

Noise in the learning circuitry has a diferent effect. It causes weight adjustments of the

wrong size or even of the wrong sign. If the noise ievel is significant as compared to the

learning rate, training is severely affected. In most cases, the effect of noise is an increase

in the residual error that cannot be removed by averaging (see figure 6.1b).

- 

0.1% Gauss¡an no¡se

--- Nonobe
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6.3 Ðiscussior¡

Determining the effect of non-ideal hardware behavior is difficult. It appears that a DBM

can tolerate moderate levels of most hardware deficiencies if the problem being learned has

isolated solutions. Conversely, a network learning a problem that has a continuous solution

set, lìke XOR, cannot tolerate even minuscule levels of weight decay and add/subtract

offsetss in the learning circuitry.

As a general rule, weight decay and add/subtract offsets should be kept to a minimum.

This lowers residual ertor rates in networks that have isolated solution sets and minimizes

the oscillation frequency in networks that have continuous solution sets. It is also useful to

use as large a learning rate as possible in order to decrease the oscillation frequenc.y.

101

5unless learning thresholds are used. See section 6.2.2
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7.L Introduction

Deterministic Boltzmann machines normally learn by adjusting the minima of an energv

surface so that the unit activations relax to a desi¡ed output pattern given a particular input

stimulus. In this chapter it is sirowu that a DBM can learn to adjust its settling dynanzics

so that desired analog outputs are produced without ever reaching an energy minimum.

For some types of problems, it is desirable for a DBM to generate continuous analog

rather than digital output values in response to analog input patterns. While a digital

output is considered "correct" as long as it is on the proper side of some threshold. Analog

outputs must match their teaching patterns to within some application-dependent perfor-

mance criterion to be useful.

When an input pattern is appüed to a digital-output DBI\4, the energy minima of the

network change so that the outputs settle to the values learned during training, or at least

to the right side of the threshold. Since an analog problem has a continuous) and therefore

infinite, set of input and output vectots, the locations of the energy minima would have to

be continuously adjustable. Simulations shorv that this does not happen.

r02
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7 "2 Netwonk Configuratioil

A fully-connected eleven unit 2 x6x2 DBM network is used in these experiments. The trvo

outputs are always complements of each other in the training set, so there is effectively only

a single output. Weights are constrained to be symmetric (ta¡¡ : uj;). Except as noted, all

simulation procedures are the same as in the experiments of previous chapters.

7.3 Obsenved Behavior

The network is trained with an analog version of a 2-input XOR problem. The training set

consisted of an 11 x 11 array of analog input/output pairs generated by the function

where z and y are the two inputs, ranging from -1 to f 1, and

from -1 to f1.
After the network had been trajned for 6000 epochs with ?i.,.o. = 0.0001 and another

1000 epochs with 4..o. = 0.00002, it was tested and the activation values during annealiirg

recorded. The results for two different input vectors are shown in figure 7.1.

Looking at the energy surface in figure 7.2, it is obvious that neither of the test cases

settles to the stable energy minimum at, aou¿ = 0.64. However, the network has learned

to produce outputs close to the training values by adjusting the activation dynamics so

that the activations are correct at tlie end of the finite number of annealing/settling passes

allowed in this simulation. If the network were given more time to settle, the output would

eventually reach 0.64 for both test cases. (Actualiy, the energy minimum is not exactly the

same for both cases, but it is very close.)

7.3.L Geometric Annealing

P(r,s) =

103

@*u)'-@+ù2
4

(7.1)

P is the output, also ranging

The same experiment was performed for a network trained with a geometric annealing

schedule and multiple-pass asynchronous activation updating at each temperature (see fig-

ure 7.3). The mean squared error only decreases to its rninimum value after the network



CHAPTER 7. LEARNING ANALOG VALUES

0.4

o.2

go
oE
(g

.> -o.2
()
(ú

åo.¿
o

-o.6

-0.8

- 

Outpul(x4.4, y=-0.8)

--- Output(x4.8,y=0.2)
- -'- TemÞ€ralure

Figure 7.L¡ Tests of two training patterns after 7000 training epochs. The outputs
have not setlled for either test case, but the results a¡e correct to within 4Yo of the
*1 unit range.

-7.15

-7.2

-7.25

Þ -7.3
o
5 -z.gs
oo
t -t.t

-7.45

-7.5

-7.55

60 80
Synchronous updates

104

(¡)

30=
(õ
(¡)oc

20b
t--

.r/ ìi-::---* ,

/ . , -i-

Figure 7.2: Network free energy as a function of output activation. Produced
by holding output unit activation at points between -1 and *1 and allowing the
network to settle.

-0.4 -o.2 0 0.2
Output activation (qr)

- 

x=0.4, Y=-0.8
--- x=0.8,y=0.2

\i:/ : _\\: _,/

:

t
....,i

t:t:
'1 .i

0.8



CHAPTER 7. IÐARNING ANALOG VALUES

0.30

I
b 0.20

Þ
E
$ o.rsu
al,

c
$ o.ro

Figure 7.3: Performance of a network using a 10 step geometric annealing sched-
ule with Initial = 20, ?6',u1 = 1, and 100 passes allowed at each temperature.
Error measìrres the distance between the network outputs and the training values.
Unsetlled is the fraction of the input patterns for which the network did not reach
a final, stable, energy minimum.

has adjusted its dynamics so that it fails to settle on almost all of the input patterns. Con-

versely, the "Fraction Correct" (in the table below), which measures whether or not the

output pattern has the correct sign, barely increases after 2000 training epochs. Figure 7.4

shows how the network dynamics change as the network is trained.

l00O 20OO 3OOO ¿IOOO SOOO 6000 TOOO B0OO 9OOO

Training Epochs
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7.4 Activation Ðynamícs

Epochs MSE

2000 0.0837

10000 0.0078

20000 0.0058

The activation updating rule is

al+l = 1t

1 0000

Fraction Correct

79%

80%

82%

Not Settled

38%

e6%

96%

- ,)olf r tanh (Lr"":) (7.2)
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Figure 7.4: Annealing/relaxation dynamics for the network of figure 7.3 using test
pattern r - -0.4, y = 0.2, P(r,y) = 0.1 afier diferent amounts of training. The
2000 cycle case settles to astal¡le state while the later cases do not. The 20000 cycle
case settles to a value very close to the training data.

The differential equation solved by (7.2) is

da¿

i = ,(-a; + f¿(net¿)) (7.3)

wlrere f;O : tanh(') is the sigmoid unit transfer function.

Normally, the activations are updated until they settle to an equilibrium condition where

f;@let;) = ä; and da;ldt = 0. Movellan [Movg0b] derives the contrastive Hebbian learning

(CHL) procedure from this equilibrium condìtion.

The question arises: what happens if, after a fixed number of annealing/settling passes,

the network fails to reach equilibrium and the CHL procedure is applied anyway? Imagine a

case where the the final unclamped state (vector of activations) is â- and the final clamped

state is ã+, neither being at equilibrium. See figure 7.5 for an illustration (-indicates the

final non-equilibrium state). The vectors ã- and ã+ are likely to be close together because

some learning has already taken place. They will usually at least have the same sign. The

CHL weight updating rule is

6w;i n@l"I - a; a¡).

60 80 100 120 140
Annealin g/Settling Passes
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Figure 7.5: Effect of applying CHL when not at equilibrium

reased

l

=ãr near ã+. We then have

If õL¡ x ãr+ then

6wii

n1t¿ * Lnet¡

nþt¿ + A,net¡

net; * Anet¿ = Ð.,¡õt¡ + ("! - a¿ )h)Ð@¡)r,
jj

A,net; = (õ.! - a¿ )q)|:,ø)'.
J

Replacing net; in (7.3) with the updated net input, we obtain

da, da,' + A--' - ,(-a;* f;(net¿ * A,net;)).dt dt

F(";)

t07

Activation dynamics

--L, -Lqai\ai

Ð(,0,j

Ð[.,¡j

-ai),
* Lw;¡)ã¡,

. --L¡-I+ qeI.\ai - a; )Jat.

Since fi(.) is a monotonically increasing function, A,0a¿f 0t, the change in the slope of the

activation dynamics due to the weight update, always has the same sign as Anef;, the

change in the net input to unit i. Now, if "i < "! and ôa;lôt ( 0, as in figure 7.5,

Lnet¿ ) 0 so LÔa¿l0t ) 0, and the network dynamics slow down so that ão is closer to

a! after the fixed number of settling passes, and the netrvork error performance increases.

(7.4)

(7.5)
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A similar argument can be made for cases where 0a¿lôt

the network dynamics so tha,t ã, moves closer to øf .

Note that õf is a clamped value if unit i is an output, so the change in network dynamics

does not affect õ,t at all. Even for a hidden unit, the clamped outputs cause unit i to settle

rapidly near ãf despite the modified network dynamics.

7 "5 Ðiscussion

It has been shown that a DBI,{ can learn to recall analog input/output mappings without

settling into energy minima. It is interesting that the arguments presented here do not

apply only to analog problems, but also to discrete ones, where the desired outputs are a

few distinct values instead of a continuous range. In fact, the behavior described here has

been observed when a network was trained with analog input patterns and discrete output

patterns, although less frequently than with analog outputs. In applications where only trvo

discrete output values are required (the binary case), only the sign of the output need be

correct. However, looking at figure 7.1, we can see that the output would have the wïotìg

sign if the netrvork were allorved to settle completely.

It might be argued that learning by adjustment of the netrvork dynamics results from an

inadequate annealing schedule or from an insufficient number of passes through the network

to achieve reliable relaxation. This is not the case. In experiments where the network is

ailowed a large number of settling passes at each temperature, the learning process simply

slowed down the dynamics until all the allowed passes are used up.

This type of analog learning mechanism only applies to network input/output relation-

ships that are continuous and smooth. It does not apply to arbitrary analog problems.

Learning by adjustment of network dynamics is possible when a DBM is implemented

using a digital computer because a repeatable annealing/relaxation schedule is easily pro-

duced. However, in an analog VLSI implementation, where the network may settle in

less than a microsecond, it is unlikely that the annealing/settling time can be controlled

accurately enougir to allow the network to learn by this method.
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8.1 Learning trnstability

The analyses in chapters 4 and 5 are restricted to a very specific problem and network

configuration. The following results have been demonstrated:

1. There exist a continuous range of optimal weight sets solving the XOR problem on a

single hidden, single output unit deterministic Boltzmann machine network.

2. Since every point in the continuous solution set is optimal, meaning that the outputs

of the network exactly match all the training patterns, the CHL learning algorithm

cannot distinguish one ideal weight set from another. Therefore, the weights are free

to drift to a point where there are two equal-depth energy minima and d(\M.) : 0,

causing small weight perturbations to generate gross output errors as the network

randomly settles to one of the two minima.

3. The weight drift phenomenon is not due to failure of the mean field approximation

for smali sized networks. It is possible to construct a stochastic Boltzmann machine

that exhibits behavior equivalent to basin hopping in the DBM as the BM approaches

infinite size. This implies that DBM behavior cannot be expected to improve with

increases in network size, and that the BM statistics gathering period must be in-
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creased as tììe size of the BM increases to avoid behavior a,nalogous to the basin

hopping observed in the DBM.

The most frequently encountered manifestations of these findings are error spikes in

a DBM learning curve in the latter part of the learning process after the initial random

hunting behavior but before the weights have settled dorvn to their final optimal values. In

simulation, it may not be obvious that there is a problem because the spikes tend to die out

as the weight set is optimized. If learning is arbitrarily terminated when a predetermined

performance criterion is reached, the occurrence of further spikes is prevented. The error

spikes can also be suppressed by other ad hoc flxes, such as adjusting the learning rate and

other netrvork parameters, but there does not appear to be a reliable general solution.

Weight drift is of particular concern in analog hardware implementations of DBMs,

where weight decay and learning offsets cannot be entirely eliminated. As there is no

threshold level of weight decay that is tolera,ted, there is no way to eliminate occasional

error spikes in an analog system.

Atthough the existence of continuous solution sets has been conclusively demonstrated

only for the 2-bit XOR case on a 2 x 1 x 1 network, the behaviors predicted, namely sen-

sitivity to weight perturbations, decay, and offsets, have been observed in simulation of

XOR on larger networks, as well as in n-bit parity and other problems on various sizes of

networks. These results lead to the hypothesis that this is not a problem unique to XOR,

or even to n-bit parity, but one that is common to many DBM applications.

At the root of the problem is under-constraint of the weight set and the number of ad-

justable parameters (weights) generally increases as the square of the number of units. It is

therefore suspected that these problems will grow worse on still largerl networks (attempt-

ing larger problems). At some point, error spikes during learning may grow so prevalent

that it becomes difficult to learn a large task completeÌy, even on digital hardware.

ntlysimulated,butwhichareofmostinte¡estforhardware

impìement ations.
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There are tasks, such as learning overlapping Gaussians, where the training set is

contradictory, and 100% correct performance is not even theoretically possible. It has

been determined whether weight drift increases the error rate in such cases, or whether

such increase would be significant compared to the error inherent in the problem.

8.2 F{ardware Tssues

It has been determined that a DBM network is able to toierate moderate amounts of most

non-ideal behavior, with the exception of weight decay and weight update offsets (without

thresholding), as mentioned above.

In particular, most deficiencies in the weight multiplier, input addition, and unit ac-

tivation function are well tolerated because the learning algorithm easily compensates for

them. Essentially, the learning algorithm cannot determine whether the activation of a unit

needs to be adjusted beca,use of an incorrect rveight value, or because of non-ideal analog

circuitry. As long as a weight adjustment moves the activation in the anticipated direction,

the network performs well.

DBM networks are particularly sensitive to non-ideal behavior in the learning and weight

storage circuitry because it directly affects the ability of the network to make the required

weight adjustments. Most serious are offsets in the weight update circuit and weight decay.

The lack of a threshold level of allowable decay or offset makes these problems persistent.

It is possible to minimize the frequency of error spikes by minimizing offset and decay, and

by using a fairly high learning rate to ensure that large weight steps are taken whenever au

error occurs.

8.3 F\-lttrre Work

11i

self

not

any

It would be useful to characterize the types of learning tasks and network architectures that

Iead to continuous solution sets, and therefore to all the problems discussed above. The goal
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would be to develop a modifìed learning rule, or some form

weights, that creates isolated optimal weight sets.

Another outstanding issue is whether weight drift effects

real, noisy, self-contradictory problems. It is our beüef from

this has not been proven.

Further characterization of hardware design issues is probably best left until the weight

drift problem has been resolved, since isolated solution sets would automa,tically solve the

most serious hardware problems, namely weight decay and add/subtract offsets. It is also

very difficult to quantitatively evaluate the consequences of hardware design tradeoffs when

the network is as unstable as most of those simulated in this thesis.

The most desirable property of the DBM nerual network architecture is its simple, local.

learning rule. This makes it an ideal candidate for use in highly parallel digital, analog, or

mixed VLSI hardware. If a way can be found to reliably generate isolated weight solution

sets, most of the outstanding hardware design issues will be automatically solved. It would

then be possible to build truelv large neural network systems ivith many thousands of units

and apply it to real-world problems.

of restriction on

cause increased error rates in

simulations that they do, but
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