Deterministic Boltzmann Machines:
Learning Instabilities and Hardware

Implications
by

Roland Schneider

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba

© 1993

National Library
of Canada

Acquisitions and

Bibliotheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario}

Your file Votre référence

Qur file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Nila thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

i5BN 8-315-81812-3

,’?)
Name Ketwwo 5&.,::%70 &1 Ere

Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

CRGINEERW & — S LECTRINIES ArD ECCcTihiche O|s|4&| &
: SUBJECT TERM SUBJECT CODE
Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS Psychologycvreeerrenianinns 0525 PHILOSOPHY, RELIGION AND ANCIENt ..o 0579
Architecturec..ocooenruimainicnn 0729 Reading0535 THEOLOGY Medieval0581
Art History0377 Religious0527 Philosonh 0427 Modern0582
Cinema ... 0900 Sciences 0714 RGP oo Black0328
Dance0378 Secondary0533 aneral 0318 ACan .o 0331
Fine Artscoven... ..0357 Social Sciences0534 Biblical Stodias i 0321 Asia, Australia and Oceania 0332
Information Science 0723 Sociology ol ...0340 Clar 0319 Canadianc.cocoeveiveinnnnn. 0334
Journalism0391 Special0529 Histc?y o 0320 European..... ..0335
Library Science0399 Teacher Training ...0530 Philog h 0322 Latin American . ..0336
Mass Communications0708 Technol:égk;\0710 Theolo phy 0469 Middle Eastern . ..0333
MusiC .o ..0413 Tests and Measurements0288 GY o ' United States0337
Sﬁeech Communication . ..0459 Vocationalc.ccoucercrniccnicn 0747 SOCIAL SCIENCES History of Science0585
Theatercocovviciivieieneiecneeees 0465 American stdieS 0323 GW 0398
LANGUAGE, LITERATURE AND Anthropolog Political Science
EDUCATION LINGUISTICS : Archceo()gy 0324 Generalccoonienrrennes 0615
Generaloovveeireerernnes 0515 Lanauaae Cultural 0326 International Law and
Administration 0514 Bode 0679 Phveical 0327 Relafionsoocoorerere. 0616
Adult and Continuing ..0516 Ancient 0289 Busine)sls Adm : Public Administration0617
Agricultural0517 Linguisf 0290 General 0310 Recreationc........ ..0814
Art ..0273 Modern .. 0291 Accounting 0272 Social Work ... 0452
Bilingual and Multicultural ..0282 Literature Bankin 0770 Sociology
BUSINESS ...ovoovriarcinnnens ..0688 General 0401 Mana gemenr 0454 Generalccoveeiiernenieneneane 0626
Community College0275 Classical 0294 Mcrke?in 0338 Crimino]ogﬂ' and Penology ... 0627
Curriculum and Instruction .0727 Commurative 0265 Conadian Sh?dles 0385 Demographyi.ccoeeuce. 0938
Early Childhood 0518 Modiova 0207 Eeomapan OIUGIES o Ethnic and Raciol Studies0631
Elementary0524 Modern .. " 4008 General 0501 Individual and Family
FINANCe ..ovuoveiecriccriccenn ..0277 Alfrican . 0316 Aariedltural 0503 Studies «..oooceriierrnrrinans 0628
Guidance and Counseling ..0519 American. " 0591 "0505 Industrial and Labor
Health oo ..0680 Asian 0305 - 0508 Relationsccveerennirnnnn 0629
Higher0745 Canadian {English ..0352 istory | 0509 Public and Social Weltare 0630
History of0520 Canadian Fregnch) ' " 0355 0510 Social Structure and
Home Economics ..0278 Enalish ' 0593 Theo 0511 Developmentccce..
Industrialeeorerniecnes ..0521 Ge?'mcn.i.c. """"""" 031 Folklore v 0358 Theory and Methods .
Lcn?]ucge and Literature ..0279 Latin American 0312 Geoaranhy "0366 Transportation
Mathematics0280 Middle Eastern .. 0315 Gerognforl)oy“ 0351 Urban and Regional Planning ... 0999
USIC oo ..0522 Romance 0313 History GY serssersnnees Women's Studiesc.ceeeneee 0453
Philosophy of 0998 Slavic and East European0314 General ..o 0578
YSICAl e 0523
THE SCIE
BIOLOGICAL SCIENCES Speech Pathology 0460 Engineerin
riculture oxicology ENEITH ...ocvrecrerecoireencecens
Agricul Toxicol 0383 G 0537
General ..o 0473 Home Economics Aerospace0538
AGronomycocceeninis 0285 Agricultural0539
A?\ilmc! Culture and 0475 PHYSICAL SCIENCES g&ulomc?ﬁvz[a . 822(1)
Utrtion L. . iomedical
Animal Pathologyc.concce.. 0476 E‘;re S::Iences Chemical0542
Food Science and egns ol 0485 Civil v ..0543
Technologycccoceivrinnn 0359 eozoology . Aen_erclxt """ 0740 Electronics and Electrical 0544
Forestry and Wildlife ..0478 Pa ynolog}y Agrllcu‘ Url 0486 Heat and Thermodynamics ... 0348
Plant Culture0479 Physical Geography0368 B.nog'hcq - 0487 Hydraulic ..o, 0545
Plant Pathology ..0480 Physical Oceanography 0415 ; rochemisiry "0488 Industrial .. .
Plant Physiology0817 'i}or anic ... 0738 Marinec.....
Range Management ..0777 HEALTH AND ENVIRONMENTAL OUC ear . 0490 Materials Science
_ Wood Technology 0746 SCIENCES Phrc?l?n:c‘:cé 0491 Mechanical
B'Ol%?y | 0306 Environmental Sciences 0768 Physical 0494 m§19||urgy
Aen;aro 0306 Health Sciences PoY;/me : 0495 Nlm}ng
B.nu omy. - - Generaloovevrvrrrene 0566 Radiation 0754 uclear ...
jostatistics ..0308 diol ! Packaging
Bot 0309 Audiology0300 Mathematics . .0405 P
O i:ny 0370 Chemot erapy 0992 Physics efroleum T
Ee T 037 Dentistry 0567 General 0605 gcmtcr)éqn Municipal ..
Eco ogyl 0353 Education ... 0350 Acoustics .. 10986 G ysLem CIENCE ...
Gf'm";.o ogy - 0389 Hospital Management.......... 0769 Astronomy a Oeotec'. no ORQV """ P
L.ene ['CS 0793 Human Development0758 Astrophysics 0606 o Pet‘.'c l]c_msh es]ecrc :
'W“OQ?gr """ 0470 Immunclogyc..... ...0982 Atmospheric Science. .0608 os.ics ei n? o9y - -
mlc[ro 1[0 ogy 049 Medicine and Surgery 0564 Aomie - oTEEE 8748 Textile Technology ...
N cianea™ “ 0317 Mental Hedlth ... 0347 Electronics and Electricity 0607 PSYCHOLOGY
eurosaenci... 041 Nursing ... 0569 Elementary Particles ong I
g\cec_mlograp Y . 813% Nutrifion 0570 High ENBIGY v.rroroevr e 0798 (BBehnerp e 82%}1
RATRCOTY - " 085] Obstetrics and Gyt ..0380 Fluid and Plasma .. .0759 Clineapre 0892
aaiation - Occupational Health cnd9 Molecular ... 0609 N -
Veterinary Science ..0778 Therapy 0354 Noclear 0810 Developmental ..0620
. Z}]oo[ogy 0472 Ophthalmolo 0381 Opics .. 0759 [Exc?enrantal . 82%3
:opGysrcs | 0784 Pathology ... 0571 Rediation 0756 F? usmc[. ~0¢24
ENEra) ... 070 Pharmacolog 0419 Solid State . 0611 l'ei.rscgn!c lfy..l.... .
Medical ..o, Pharmacy . 0572 Stafistics .. 0463 Physiological0989
Ph sicclc>flher 0382 . Lo Psychobiclogy . - 0349
EARTH SCIENCES Pubke Healh 0573 Applied Sciences Psychometrics0632
Biogeochemistryovviuerrennn. 0425 Radiclogy 0574 Applied Mechanics 0346 SOCIAl e 0451
Geochemistry ..o.ovveeececnnencene 0996 Recreatian . " 0575 Computer SCIENCEvvoveenrerna. 0984

DETERMINISTIC BOLTZMANN MACHINES:
LEARNING INSTABILITIES AND HARDWARE

TMPLICATIONS
BY

ROLAND SCHNEIDER

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial
fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

© 1993

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or
sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and
to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this
thesis. ' '

The author reserves other publications rights, and neither the thesis nor extensive extracts from it

may be printed or otherwise reproduced without the author’s permission.

Abstract

The deterministic Boltzmann machine (DBM) neural network architecture was originally
derived from the stochastic Boltzmann machine (BM) by substituting the expected values
of unit activations for the stochastic activations of the BM. Our simulations show that
the DBM, unlike the BM, exhibits unstable behavior such as oscillation during learning
and hypersensitivity to small perturbations of the weights or other network parameters.
While other researchers have encountered similar oscillatory behavior, it has never been
satisfactorily analyzed.

It is shown that this unstable behavior is the result of over-parameterization (excessive
freedom in the weights), which leads to continuous instead of isolated optimal weight so-
lution sets. Because the optimal weight solution sets are continuous, the weights are free
to drift without correction from the learning algorithm until two minima in the network
energy function are of equal depth and a gross output error occurs. The subsequent cor-
rection and later recurrence of these gross errors appears as a series of narrow spikes in the
output error of the network. The DBM learning algorithm is incapable of preventing this
oscillation because it uses only the final output error of the network to adjust the weights,
and the output error is zero for an optimal weight set until a gross error occurs.

The existence of multiple minima in the DBM energy function, and the resulting be-
havior, is shown to be analogous to prematurely terminating the statistics gathering period
in a BM. Since the required period increases with the size of the BM, and the DBM is
analogous to an infinite-sized BM, simply increasing the size of the DBM network will not
prevent the oscillatory DBM behavior.

Various issues relating to the implementation of DBMs using non-ideal analog hardware,
and their relationship to the weight drift problem, are also explored. It is found that only
non-ideal behaviors that cause the weight values to drift, most notably weight decay, have
a significant effect on network performance, and that there is no threshold below which
these behaviors can be tolerated. Other non-ideal analog behaviors, such as component

non-linearities, do not seriously degrade network performance.

Acknowledgements

I would like to thank my advisor, Dr. Howard Card, for his help and support during the
course of this thesis. I would also like to thank my brother, Christian Schneider, for his
work in hardware implementations and many useful discussions.

Financial support from Micronet and the Natural Sciences and Engineering Research
Council, and equipment donations from the Canadian Microelectronics Corporation are

gratefully acknowledged.

Contents

1 Introduction
1.1 Neuronsin VLSI
1.2 Learning Instability
1.3 Overview . . . L e e e e
2 Theoretical Background
2.1 Imtroduction e e
2.2 Overview of the BM and the DBM [
2.3 Boltzmann Machine Theory
2.3.1 Boltzmann Machine Activation Dynamics
2.3.2 Boltzmann Machine Learning
2.3.3 Boltzmann Machine Pattern Associators
2.3.4 Local minima in weight space
2.4 Deterministic Boltzmann Machine Theory
2.5 Appendix: Relative Entropy L o o
3 Simulation
3.1 Imtroduction
3.2 Details of the DBM Simulation Algorithm
3.3 Simulation Parameters e
3.4

Choice of Problems 0 e

N

No RN N« N =]

10
12

19
19
22

CONTENTS

3.5 Testing Process e
3.5.1 Learning Plots
3.52 Emergy Plots
3.5.3 Weight Plots e
3.6 Simulation Results L
3.6.1 Exclusive Or
4 Analysis of a Small DBM
4.1 Introduction L e e
4.2 Network Configuration o
4.3 Network Analysis
4.3.1 Effects of Different Solutions
4.4 Learning
441 Weight Decay e
4.5 Solutions L
4.6 Discussion L. PP
5 The Boltzmann Machine Revisited
5.1 Introduction o o e e e
5.2 A Small Boltzmann Machine
5.3 Expanding the Network
5.4 DIsCussion oo e e
6 Hardware Issues
6.1 Introduction e
6.2 Non-ideal analog behavior o oo
6.2.1 Multipliers e
6.2.2 Add/Subtract Unit oot
6.2.3 Weight Decay o . e
6.2.4 Weight Saturation

ii

30
30
31
34
36
36

42
42
46
48
53
55
58
60
65

69
69
70
74
80

CONTENTS iii

6.2.5 Noise 100

6.3 Discussion 101

7 Learning Analog Values 102
7.1 Introduction 102
7.2 Network Configuration 103
7.3 Observed Behavior 103
7.3.1 Geometric Annealing 103

7.4 Activation Dynamics 105
7.5 Discussiono 108

8 Conclusion 109
8.1 Learning Instability 109
8.2 HardwarelIssues 111

8.3 Future Work, 111

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6

Example network configuration 7
Schematic representation of unit input.. 8
Plot of equation (2.5) at T'=1. 11
tanh gain curves L L 21
Galland vs. geometric annealing, 27
Network for 4-2-4 encoder. 29
Sample learning performance plot. e e e e 31
Energy contour plot 32
Energy surface cross section L. 33
A cross section of a 10 dimensional energy surface 34
Example of a Hinton diagram 35
Training a big network with a random problem 37
XOR learning performance 38
Performance on various sizes of n-bit parity problems 39
Oscillation in learning 43
Learning with n =0.0005 44
Learning withn=0.02. 45
Configuration of a small DBM network 46
Symmetric weight set for XOR L. 49
Plot of 0F/Oas e 50

v

LIST OF FIGURES v

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

The components of 0F/3az 51
we and we forarangeof wy 53
The effect of changing wy, oL 56
W, as a function of wp near Wy =Wy .« e 56
The effect of weight decay 59
Learning test, 2 X 1 X 1 network, =002 61
Learning test, no annealing 62
Learning test, weight decay 63
Learning test, weight decay, no annealing 64
Learning test, n = 0.1 66
Calculated values for wg and we . . . o o v o o o 72
Boltzmann input averagingunit L. L. 73
Output of a BM network with weight w, =0.750 73
Output of a BM network with weight w, =0.400 74
Expanded Boltzmann machine R 76
Expanded Boltzmann machine weight set. 77
Output of various sizes of expanded Boltzmann machines 78
DBM energy function for weights usedin BM 79
Comparison of time averaged vs. space averaged outputs. 79
An analog synapse Lo e e 83
Measured output of a CMOS Gilbert multiplier 84
Gilbert multiplier schematic 85
Learning with a nonlinear multiplier 86
Effective learning rate multiplier 88
Learning with add/subtract unit offsets, .. 92
Weights generated by add/subtract unit offsets 93

Add/subtract offsets and learning thresholds 94

LIST OF FIGURES vi

6.9

6.10
6.11
6.12
6.13
6.14
6.15

7.1
7.2
7.3
7.4
7.5

Weight decay in a4-2-4dencoder. 94
Learning with weight decay, 4 x 5 x 1 network, d =1x10"% 95
Learning with weight decay, 4 x 4 X 1 network, d =1x 1075 96
Learning XOR with a weight limit 98
Learning XOR with a weight limit (extra hidden unit) 98
Saturated weight set L 99
Learning with Gaussian noise 100
Unsettled analog outputs, 104
Analog free energy function Lo 104
Analog performance L 105
Settling passes 106

Effect of applying CHL when not at equilibrium 107

Glossary

activation

BM

basin hopping

bias unit

clamped

The level of activity of a unit. Corresponds to the firing rate of a bio-

logical neuron.
A stochastic Boltzmann machine.

Basin hopping is a phenomenon that occurs when a DBM network has
two energy minima of equal depth to choose from when it is settling, and
randomly chooses one or the other. One minimum typically corresponds

to a correct answer, and the other to a gross error.

A unit whose activation is permanently clamped at 1.0 in order to provide

a bias or threshold to the other units in the network.

When a unit is held to a fixed externally applied activation value.

continuous solution A continuous range of optimal weight sets, any of which result in an

CHL

DBM

diameter

arbitrarily small output error.

Contrastive Hebbian Learning is the learning procedure used in a deter-
ministic Boltzmann machine. The CHL rule is the mathematical formula

used to update the weights.
A deterministic Boltzmann machine.

(of optimal weight set), is the minimum weight change required to pro-

duce a gross error. The diameter of the weight set is denoted d(W™).

vii

GLOSSARY viii

epoch A single pass through the entire training set. An epoch is the basic unit
of time during training.
error spikes Brief gross errors that appear as narrow spikes in a plot of the mean

squared error during learning.

free unit A unit that is not clamped. The hidden and output units are usually free,

while the input units are clamped.

gross error A large output error that results in a network output having the wrong

sign, usually due to basin hopping.

hidden unit A unit that is neither an input nor an output, and is never clamped.

Hidden units are not visible outside the network.

input unit A unit that is always clamped to an externally supplied activation level,

serving as an input to the network.

isolated solution An optimal weight set that is a single fixed point in weight space. See

also continuous solution.

learning The process of adjusting the weights to reduce the output error of the

network to as low a value as possible.

learning multiplier The electronic circuit responsible for calculating the product of two

unit activations during learning.

learning problem A combination of the set of vectors in the training set, the architecture

of the network, and the learning success criterion.

mean squared error The average of the sum of the squares of the difference between the

network outputs and the vectors in the training set.

non-separable problem A set of input/output vectors in which the outputs cannot be cal-
culated as a linear combination of the inputs. The exclusive or function

is the simplest non-separable problem.

GLOSSARY

ix

optimal weight set A set of weights that allows the network to recall all the vectors in the

output error

output unit

training set with an arbitrary degree of accuracy. (denoted W*)

The difference between the output of the network and the vectors in the

training set.

A unit that serves as an output for the network.

simulated annealing A process of using gradually decreasing levels of random noise to

solution

state

target value

avoid local minima when searching for a global minimum.
An optimal weight set.

The state of a unit is its activation level. The state of the network is the

set of activations of all the units in the network.

The analog value that the network is supposed to reproduce.

thermal equilibrium A condition where the average activations of the units of a stochastic

training set

unclamped

unit

weight

weight decay

Boltzmann machine are no longer changing with time.
The set of input and output vectors used to train the network.

When a unit that is sometimes clamped is released and allowed to settle

with the other free units.

A processing element, typically with a logistic activation function. A

unit corresponds to a neuron in a biological neural network.

The strength of the connection from the output of one unit to the input
of another. A weight corresponds to a synapse in a biological neural

network.

When all the weights in the network decrease in magnitude over time.

weight multiplier The multiplication circuit responsible for calculating the product of a

unit activation and a weight value.

Chapter 1

Introduction

The human brain contains approximately one trillion neurons, interconnected through many
trillions of synapses. When a neuron cell fires, chemicals are released into its synapses to
either excite or inhibit the neurons to which it is connected. Intelligence does not reside in
any single neuron, but in the collection as a whole.

It is the goal of artificial neural network research to create intelligent machines by
assembling large numbers of simple elements, called units, that are modeled after biological
neurons. The units are interconnected by weights that are the analogous to biological
synapses. The strengths, or values, of the weights represent the efficiency of the synapses
and determine how large an effect the activation level, or state, of each unit has on those
to which it is connected.

Just as biological nervous systems have sensory input and motor output neurons, so
artificial neural networks (hereafter referred to as neural networks) have input and output
units. In both biological and artificial neural networks, the majority of the neurons (units)
have no direct connection to the outside world. These are the hidden units, and form
the most vital part of a neural computation system because they give the system the
ability to represent non-separable problems. The process of training, or learning, in a
neural network involves the adjustment of the weights based on the presentation of training

patterns (examples) to the input and output units of the network.

CHAPTER 1. INTRODUCTION 2

Neural network research, in one form or another, has existed for over three decades.
Its popularity has waxed and waned considerably during that time, with a low point in
1969 with the publication of Perceptrons [MP88]. In it, Minsky and Papert showed that
simple networks (with no hidden units), which had been the main focus of research up to
that point, were incapable of representing the entire class of non-separable problems. Al-
though networks with hidden units could represent non-separable problems, there was no
learning algorithm known that could be used to train them. When the back propagation
algorithm [RM87a}, which can use hidden units to learn problems like XOR, became widely
known in 1985, large numbers of researchers once again became interested in neural com-
putation. Many other neural network algorithms have been developed since, but the ability
to use hidden units to represent XOR-like problems has remained as a basic requirement in

order for a neural network algorithm to be considered useful.

1.1 Neurons in VLSI

An important difference between a serial computer éimulation of a neural network model and
the corresponding biological or VLSI hardware system is the cost of sending information over
long distances. Since every location in the memory of a serial computer is directly accessible,
the concept of physical distance between pieces of information does not exist. However, both
VLSI circuits and the cerebral cortex are essentially two-dimensional structures, so there
are substantial costs in both time and space involved in non-local communication.

Our goal is to build highly parallel neural networks in VLSI, so we must limit our-
selves to structures that rely only on local information to accomplish their tasks or face the
prospect of devoting the major portion of our integrated circuits to wires. The Boltzmann
machine [RM87a] is one of a number of neural network models that meet the local commu-
nication requirement. The Boltzmann machine (BM) consists of units whose state switches
stochastically, with a probability determined from the inputs received through the weights
connecting to other units in the network. The BM has a simple learning rule that relies only

on locally available information, making it a natural candidate for VLSI implementation.

CHAPTER 1. INTRODUCTION ' 3

One of the disadvantages of Boltzmann machines is that their units change state stochas-
tically, and must be monitored for long periods of time in order to gather sufficiently reliable
statistics to perform the weight updates needed to train the network. Peterson and An-
derson [PA87] use mean field theory to develop a deterministic version of the Boltzmann
machine that circumvents the long monitoring periods by replacing the stochastic unit ac-
tivations with their expected values.

The deterministic Boltzmann machine (DBM) retains the simplicity of the Boltzmann
machine learning rule and avoids the pitfalls associated with stochastic behavior. Because
of its advantages, the DBM has been used as a replacement for the Boltzmann machine by
a number of researchers [AZL92, BP91, GH90, Hin89, Mov90a, Mov90b).

The goal of our project is to implement the DBM algorithm in analog VLSI hardware in
order to exploit the enormous potential for parallelism in the DBM. However, before the the
hardware can be built, we have to thoroughly understand the behavior of the DBM so that
hardware design efforts can be focused on those issues that seriously affect the performance

of the network.

1.2 Learning Instability

In the course of determining which hardware issues are important, a serious tendency to-
wards instability in the DBM learning process, not evident from previous theoretical treat-
ments, was uncovered. While the effects of this instability are most serious in analog
hardware implementations, there are also ramifications for both serial and parallel digital
implementations of DBM systems.

The root of the instability is shown to lie in the freedom of the weights to drift through
a continuous range of values without affecting the output error of the network. Especially
when combined with unavoidable non-ideal analog hardware behavior like capacitor leakage,
which causes all the weight values to decay towards zero over time, this freedom can cause

the learning process to produce a regular series of narrow error spikes. Even in a digital

CHAPTER 1. INTRODUCTION 4

implementation, there is a tendency for the DBM algorithm to produce only marginally

stable results.

1.3 Overview

The following is a short synopsis of the contents of each chapter of this thesis. The main

results of this work are found in chapters 4, 5, and 6.

Chapter 2: The Boltzmann machine is introduced and its theoretical background is de-

rived. The DBM is then derived by applying the mean field approximation to the BM.

Chapter 3: The experimental process used to determine our results, and the structure
of the simulation software, are described in detail. Simulation results are presented for
various network configurations and learning tasks. The results, particularly the presence
of oscillations during learning, are not consistent with the behavior expected from the
theoretical treatment in chapter 2 and in the literature. The cause of this unexpected

behavior is explained in chapter 4.

Chapter 4: A small DBM learning the XOR problem is investigated analytically to de-
termine the cause of the unanticipated simulation results in chapter 3. For this particular
network, the DBM learning algorithm does not find a unique, isolated, weight set, leaving
the weights free to drift. This drifting causes oscillation during learning, especially in the
presence of weight decay. While the analysis is restricted to a particular network, the be-
havior it predicts (instability, oscillation, and sensitivity to weight decay) are prevalent in

every non-separable problem we have simulated.

Chapter 5: The relationship between the BM and DBM is explored further to determine
if the results derived in chapter 4 are due to a failure of the mean field approximation in
small (less than 10 unit) networks. The behaviors of the BM and DBM converge as the
networks become large (over 100 units). The convergence is not due to an improvement in

the behavior of the DBM, but instead to a deterioration in the behavior of the BM.

CHAPTER 1. INTRODUCTION 5

Chapter 6: Various design issues pertaining to the implementation of DBMs in analog
VLSI are explored, along with their relationship to the findings of chapter 4. The network
is tolerant of most non-ideal hardware behavior, but not at all tolerant of weight decay and

related effects, which cause the weights to drift and result in oscillation.

Chapter 7: It is demonstrated that a DBM can learn to produce certain analog in-
put/output mappings without the normal process of allowing the units to settle to stable

activation values.

Chapter 8: Conclusions and suggestions for further work are presented.

Chapter 2

Theoretical Background

2.1 Introduction

The theoretical background for stochastic and deterministic Boltzmann machines is derived
in this chapter. We first provide an overview of both the BM and DBM network architec-
tures, followed by a theoretical derivation of the BM and its learning algorithm. The DBM

is then derived from the BM by applying mean field theory.

2.2 Overview of the BM and the DBM

As the name implies, deterministic Boltzmann machines [PH89] are a nonstochastic relative
of the Boltzmann machine [AHS85]. The BM represents analog values, whether interpreted
as degrees of certainty, or given other meanings, as the expectation value of a probability
distribution of stochastic binary valued (0,1 or —1,+1) outputs over time. The DBM
represents analog values directly as the activation levels of its units.

Figure 2.1 shows a fully connected BM or DBM. Each unit ¢ assumes an activation value
according to its input. The instantaneous activations are ; = 1 for the BM, ~1 < a; < +1

for the DBM. The activations of all the units together form the state of the network.

CHAPTER 2. THEORETICAL BACKGROUND

Input Hidden Output Bias

Figure 2.1: Example network configuration. The triangles are the units, the circles
are synaptic weights. The vertical lines through the weights represent a distribution
of the unit outputs to the weights. The horizontal lines represent a summation of
the products calculated in the weights. Note the lack of self-connections.

CHAPTER 2. THEORETICAL BACKGROUND 8

> to weights W,

Figure 2.2: Schematic representation of unit input.

The net input to unit 7 is calculated as
net; = Zwijsj', (2.1)
J

where w;; is the weight from unit j to unit i. The calculation of the unit input is shown
schematically in figure 2.2. »

The unit activations are updated according to various algorithms, discussed later, until
they settle to an equilibrium condition (BM), or a stable state (DBM). This settling process
can be viewed as gradient descent in an energy function [AHS85], also discussed later.
Intuitively, one can imagine the settling process as an inertialess marble rolling across a
hilly terrain and eventually coming to rest in a depression on that surface.

A pattern (or vector) is applied to the input or output units of the network by clamping
them to fixed activation values instead of allowing them to settle freely. DBM units are
clamped to a value between +1 and —1, while BM units are clamped to +1 or —1 with a
probability determined by the value being represented.

The process of training the network to produce the desired mapping of input vectors to
output vectors, is called learning. Learning involves adjusting the weights until the network

responds to the application of each input pattern by producing the corresponding desired

CHAPTER 2. THEORETICAL BACKGROUND 9

output pattern on the output units. Weight adjustment is accomplished by the BM or DBM
learning algorithms derived in sections 2.3.2 and 2.4.

Both the BM and the DBM learning algorithms involve repeatedly clamping each input
pattern on the input units and alternately clamping and unclamping the corresponding
output pattern on the output units. The weights are incremented by an amount proportional
to the difference between the products of the activations in the clamped and unclamped
phases of the learning algorithm.

When evaluating how well a network has learned a task, it is important to keep the
learning goals in mind. It is much easier to produce an output with the correct sign, and
perhaps a magnitude greater than some fixed value (digital criterion), than to produce an
exact analog output value (analog criterion). Most of the work in the literature employs
the digital criterion. We use the analog criterion because it allows the network performance
to be evaluated more precisely. Our general philosophy is that if the network is capable of
producing the exact desired analog values, then it should do so. The distinction between
the two criteria becomes less important when we show (in chapter 4) that a DBM exhibits

unstable behavior that causes it to fail both criteria simultaneously.

2.3 Boltzmann Machine Theory

We begin by deriving! the process by which the BM units settle to an equilibrium value.
We then derive the BM learning algorithm for both pattern completion applications, where
the network is required to complete a partial pattern clamped on a subset of its input units,
and for pattern association applications, where there are distinct input and output units

and the network must map an input pattern to an output pattern.

!The derivations in this chapter closely follow [HKP91]. They are included here for reference and to

establish the meanings of the symbols used in later chapters.

CHAPTER 2. THEORETICAL BACKGROUND 10

2.3.1 Boltzmann Machine Activation Dynamics

Consider a network of N units, each of which can assume a value S; = +1. (This is different
from some of the literature where S; € {0,1}.) The units are interconnected through weights,
with w;; representing a weight from the output of unit j to the input of unit i. If the weights
are symmetric (w;; = w;;) then we can assign an energy function (a Lyapunov function) to

the network [PA87]:
1N
F = -3 izjwijSiSj - ;@isi (2.2)

where ©; is a bias or threshold term for unit 7. The bias term can be absorbed into the first
summation by adding one more unit, called the bias unit, with a fixed activation S, = 1

and w;, = O;. (The bias unit is always connected to all the other units.) We then have

1 N
E=-3 z]: w;;5:5; (2.3)

with N one larger than before.

We want to find the set of activations S that minimizes E, because that set is maximally
consistent with the constraints encoded in the weights w;; and with the external constraints
imposed by clamping some of the units to fixed values [AHS85]. We therefore require some
sort of gradient descent on E.

Consider a unit k. The difference in F due to the choice of 5, = —1 as opposed to
S =-+11is

AEy = Els,=—1 — Els,=41 = 2> _ wiiS;,
7

which is just twice the net input to unit k (see equation (2.1)). Therefore, gradient descent

in E is achieved by setting S, = —1 if AE; < 0 and setting Sy = +1 if AE, > 0, or
Sk = sgn(AEy). (2.4)

The network activation settles to a minimum by repeatedly choosing k at random and

applying (2.4) until no more activation changes take place. Stability is guaranteed because

CHAPTER 2. THEORETICAL BACKGROUND 11

Figure 2.3: Plot of equation (2.5) at T' = 1.

we are always descending in E. However, the fixed point reached is usually a local, and not
a global energy minimum.

One way to escape from local minima, and to find the global energy minimum, is to
use simulated annealing [AK89]. Simulated annealing employs the addition of a gradually
decreasing level of random noise to allow the system to make occasional uphill energy moves
to escape from the local minima. Consider setting Sx to +1 with probability P, regardless

of its current state, where P is defined as

1

P = m_1+e—AEk/T'

(2.5)

T is the temperature? parameter that controls the noise level and therefore the likelihood
of uphill energy moves. At T = oo, Pr = 1/2 and Sj is equally likely to be +1 or —1,

regardless of AFEy, so all network states are equally likely.

20f course, T is unrelated to the physical temperature of the network. The term “temperature” is used

because of the analogy to thermal noise in physical systems.

CHAPTER 2. THEORETICAL BACKGROUND 12

As T is reduced, the network states with lower energy begin to dominate, although

uphill moves are still possible at any temperature above T = 0. In the limit,

1 0 if AEL <O

lim P, = =
T—0+ 1+ e~ S8N(AEK)00 1 if AE; >0

Since Py is the probability of setting Sy = +1 and (1 — Py) is the probability of setting

Sk = —1, we have
-1 ifAFEL <0
Sk = = sgn(AEy),
+1 fAFE, >0

which is the same as equation (2.4), as we would expect.
A system updated according to (2.5) at non-zero temperatures eventually reaches ther-
mal equilibrium, and the probability of the various global network states, labeled a, obey

the Boltzmann-Gibbs distribution [HKP91]
e~ E*/T

P =
A

(2.6)

where Z is a normalizing factor, called the partition function, defined as

Z = ZG—EQ/T.
o4
In physics, T is multiplied by Boltzmann’s constant, kg, but we set kg = 1 which
changes the scale of T. Since T does not represent a physical temperature, its scale is
arbitrary.
Thermal equilibrium is eventually reached at any non-zero temperature, but this may

3 With simulated annealing, T is gradually

take a very long time at low temperatures.
reduced while the units are updated using equation (2.5), resulting in the equilibrium state

after a much shorter time.

2.3.2 Boltzmann Machine Learning

The purpose of a Boltzmann machine is to perform either pattern completion or pattern

association. It is well known that a network requires hidden units to represent a pattern set

®Time is normally defined in terms of the number of activation updating passes.

CHAPTER 2. THEORETICAL BACKGROUND 13

that is not linearly separable [MP88]. The learning algorithm, which we will now derive,
must therefore be able to adjust weights connected to the hidden units.

We start by separating the units into visible, with global state «, and hidden, with
global state 3. The complete state of the network is now labeled af. The value of unit i

in global state af3 is Sf’ﬁ. P8 is the probability of finding the network in state af3, and is

given by
e—E°P/T
poP = — (2.7)
where
Z =3 BT, (2.8)
aff

Since we cannot actually observe the values of the hidden units, their state is not relevant

to the visible behavior of the network. We are interested only in P*:

o 8 e BT
pPr=3"pr=%" — (2.9)
8 B
with
o l o1 o1
EP = 5 2 wisS; f5eb (2.10)

g
and Z as in (2.8).

We want the network to learn to reproduce the probability distribution of patterns in the
environment on the visible units. Let B* be the probability of pattern « in the environment.
P is the probability of the network producing that same pattern (state) on its visible units.
When P* = R® for all a, the network has learned to reproduce the environment exactly.
When a subset of the visible units is then clamped with a partial pattern, the remaining
units continue to reproduce the now-restricted subset of environmental patterns, and the

network functions as a pattern completion network.

*Later, we will further separate the visible units into input and output for pattern association.

CHAPTER 2. THEORETICAL BACKGROUND 14

In order to teach the network the probability distribution of patterns in the environment,
we first need a measure of the distance® between the probability distribution {R®} in the

environment and {P*}, the probability distribution produced by the network. Consider

€= %:R“log —g; (2.11)

This equation defines the relative entropy [HKP91], a measure of the distance between the
two probability distributions. ¢ > 0 for any {P*} and {R*}, and € = 0 if and only if
P = R for all a. (A proof of this fact is given in the appendix at the end of this chapter.)
We want to minimize ¢ by adjusting the weight set {w;;}. To perform gradient descent

on ¢, the weights must be updated according to

O¢ « 9P o
A = =g = nza: e ouy,’ (2.12)

where 7 is a parameter that controls the learning rate. Note that R® comes from the
environment and does not depend on the weights. Expanding P* according to (2.9) and

(2.10), and differentiating with respect to w;; gives

o afd caf - _opB A A
BP Z {1 (‘91 S] e_EaB/T) _ € E /TZSiMSj#e_Ez\u/T

Ow; 7 Z T Z2 W T
Tp 5050 (S5 ™1T) (Sa, 58, 7 IT)
- TZ N TZ? (2.13)

We now have to simplify equation (2.13). In the first term, we recognize (from equa-

tion (2.7)) that

so the first term simplifies to
1 aB caB paf
= (Z SFSP pe) :
8
The second term can be factored as

1\ [Zpe BT\ [£5,85:8 e BT
<Zf) Z Z ‘

®The distance between two probability distributions is used to quantify how similar they are to each

other.

CHAPTER 2. THEORETICAL BACKGROUND 15

From (2.9) we have
—E*8)T
ZﬁeZ / = po.

The expected value of any quantity X that depends on «, with « occurring with probability
P is
(X)=>_ P*X°,
o3
le) N R
.y 52
ZA;; Si qu Be—-EM [T
Z

= D S8 = (S:S;).
Ap

Putting it all back together and factoring out 1/7 gives

oP* 1 o od ag o |
G = T (Z CHCh SR <Sisj>) . (2.14)
17 ﬁ

Substituting (2.14) into (2.12) gives
Aw; = 23 i (Z 5P 530 paf P"(S»S-))
L T ~ Po 5 1 7 _)

n R B po
T {Zﬁgsz’%}- pef - <Z RQ) (52'5_7')] : (2.15)
@ e
Recognizing that), R* = 1 and distributing 1/P% in the first term of (2.15) gives

o\ ol gap PP
Awyj = o [DR SEPST o — (53-5»} :
@ B

1
T

Using the identity P(af) = P(a)- P(B|a), we can replace P*?/ P> with PPl® giving

Aw;; = % (Z Ry pPlogePgel <51-5j>> .
@ B

PPl is the probability that the hidden units are in state 8 given that the visible units are
in state a. The state of the visible units is “given” when they are clamped to a fixed value.
The sum over the states of the hidden units gives us the expected value of the products of

the activations for each clamped pattern on the visible units, so

CHAPTER 2. THEORETICAL BACKGROUND 16

Aw;j = % (Z R*(S:55)damped — <5i5j>unc1amped> -

Finally, the R* weighted average over the environmental patterns clamped on the visible

units gives (5;5;) the averaged expected value of 5;5;. The weight updating rule is

clamped’

therefore

77 Iy g
Awy = o ((5i5j>cxamped - (Si5j>unclamped) : (2.16)

The Boltzmann machine learning algorithm is:

1. Clamp the visible units to a pattern taken at random from the environment being

learned. Each pattern a should be picked with probability R®.

2. Start with a large value for T (T = Tinjtia) and allow it to decrease slowly while

updating the activations of the units at random using equation (2.5).
3. At T = Thnal, collect statistics on 5;5; over a large number of updates.

4. Repeat steps 1 - 3 a large number of times to calculate the average of the ex-
pected values of 5;5; over the probability distribution in the environment. This gives

(8:55)

clamped’

5. Perform steps 1 ~ 3 again, but do not clamp the visible units. This time only a single
pass through steps 1 — 3 is required because there is no environmental probability

distribution over which to average. This gives (5;5;)unclamped-
6. Update the weights according to (2.16).
7. Repeat steps 1 — 6 until the network is performing satisfactorily.

Note that in the clamped case we are sampling two probability distributions: the vectors
in the environment with probability distribution {R*}, and the states of the hidden units

with probability distribution {PPl¢}. The sampling must be over a sufficiently long period

CHAPTER 2. THEORETICAL BACKGROUND 17

of time to ensure that we have reliable estimates of (5;5;) and can make accurate updates
to the weights.
When the environmental vectors have been perfectly learned, R® = P¢ for all a,

RepBle = paB and <5i5j>clamped = (5:5;) unclamped 80 Aw;; = 0 for all 7, and the weight
updating stops.
A variation on the weight updating algorithm described above can be derived as follows.

Start by rewriting (2.16) as
Awy = > R*Aw

where
(o4 77 o
Awij = T ((Si‘gj>clamped - (Si5j>unclamped> . (217)

Using (2.17), the weights can be updated after statistics have been gathered for each
clamped pattern a instead of accumulating an average over all the patterns to estimate

(5:55)

themselves, which can be a substantial advantage for hardware implementations. The only

clamped" Using this method, averaging over the patterns is performed in the weights
disadvantage of this method is that the result of each weight update affects the next update,
and Awg; becomes time-dependent. We are no longer guaranteed steepest descent in €, but
a low learning rate (small n) minimizes this effect.

Looking at equation (2.16) or (2.17), we see that weight w;; is updated from statistics
gathered solely from units ¢ and j. These are the two units to which w;; is connected,
making the information required for learning local. This leads to a very natural parallel

hardware implementation of the BM, with the learning logic associated with each weight.®

2.3.3 Boltzmann Machine Pattern Associators

A pattern associator maps an input pattern to an output pattern. The visible units must

therefore be divided into an input set, with states v, and an output set, with states &. The

By contrast, back propagation learning requires error derivatives to be propagated through various layers

before the weights can be updated.

CHAPTER 2. THEORETICAL BACKGROUND 18

goal is to train the network to reproduce each output pattern with a probability dependent
on the pattern clamped on the input units. In other words, we want P*I" = Relv In this
case, the distance between the probability distributions can be calculated as

Reh
€= Z,: R ;Ralv log Dok

Going through a derivation similar to the one for the pattern completer in section 2.3.2:

Oe Y Rely gpely
AwZ] - —anij - 'f/;R Xa: Pah 8'(1)2] s
—E°BvT
peh =% ¢ :
3 Z
0P Ty SIS T (e BT) 5, S e
Ow;; B TZ T72 .

Il

(Z Safgysaﬁ'ypozﬁh Po‘h (5 S; >clamped)

and
Aw;; = ‘;7?; (Samsfm pah (Z Pah) clamped)
= %Z (RP(85:85) Pelamped — (5i5; >clamped)
_ %Z " (1575 amped = (555} taampea)
= ‘;7:<—c1amped >clamped)
where (5;5.))clampea 15 averaged with only the input units clamped and mclamped is

averaged with both the input and output units clamped.

Alternatively, as with the pattern completer, weight updates can be performed for each
input pattern, or for each input and each output pattern instead of averaging over all input

and output patterns.

CHAPTER 2. THEORETICAL BACKGROUND 19

2.3.4 Local minima in weight space

Minimizing € by gradient descent makes the implied assumption that € has a unique mini-
mum. If there are local minima, it is possible for Aw;; = 0 for all 4, § while ¢ is still non-zero,
and the network has not learned to generate the environmental probability distributions.

Here we are concerned about a local minimum in weight space, a problem that is not
solved by the simulated annealing process used to reach thermal equilibrium in activation
space. One possible method of avoiding local minima is to add a decreasing level of noise
to the weight updates. Both our simulations and those of other researchers show that this
is rarely necessary.

Updating the weights after each environmental pattern instead of after averaging over
the environment may help avoid local minima in weight space because Awf; {from equa-
tion (2.17) is zero for all & only if the network has learned all the patterns correctly (€ = 0),
while Aw;; (from equation (2.16)) may be zero if a local minimum in € is reached.

While a non-zero Awg; does not guarantee escape from the local minimum, there is a
better chance of escape than when Aw;; = 0. Escape is not guaranteed because the Awy
are approximately averaged over time in the weights, but the time-dependence of Aw; at
least creates an opportunity for escape. This opportunity may be enhanced by applying

heuristics to momentarily increase the learning rate 7.

2.4 Deterministic Boltzmann Machine Theory

One of the most serious shortcomings of Boltzmann machines is that the values of (.5;5;)
during learning, and (S;) during recall, must be estimated by averaging over a period of
time. Recall that “time” is measured in terms of the number of activation update cycles
of the units in the network. These updates consume real time in both simulations and
hardware implementations. Another problem is that the estimates of (5;) and (S5;5;) are

necessarily noisy, unless averaging is performed over an infinitely long period of time.

CHAPTER 2. THEORETICAL BACKGROUND 20

Since the network inputs and outputs are all expressed as expected values, it makes
intuitive sense to replace the stochastic binary valued (41) units with continuous valued
units having an activation level ax = (Si). Mean field theory tells us that this approximation
is valid if the number of units in the network is large.

From equation (2.5) we have

ay = Z Sy Py
Sp=x%1

2
1+ e-AE/T 1

AFE,.
= t
anh(a)

= tanh <%netk)

where

net, = Zwki(&')
7

= Zwkia,’.‘
7

Similarly, (5:5;) is expressed as a;a;. Now there is no longer anything random in the
network, and the temperature parameter controls the steepness, or “gain” of the tanh(-)
function instead of a noise level (see figure 2.4). The free energy [HKP91] in this network

is given by

1+ a; l4a 1-—q 1—a;
F:—E aiajwij+TZ[5 -log 5 + 5 -log 5 }
i<J 7

The DBM learning rule, also referred to as the contrastive Hebbian learning rule (CHL),

is carried over directly from the BM (except that no averaging is required):

Awy = n(dfaf - a;a;),

CHAPTER 2. THEORETICAL BACKGROUND 21

0.5 oo FRRUROS S R oo b A A e

Unit activation
(=)
|

W05 e AU

Net input A

Figure 2.4: tanh(-) gain function for various values of the temperature parameter

T. Higher temperatures result in flatter gain curves.

where dj is the activation of unit 7 at equilibrium’ when the output units are clamped,
and &; is the activation of unit ¢ at equilibrium when the output units are unclamped
(" indicates equilibrium). The reader is referred to [PA87] for a more formal derivation.

It is important to realize that replacing the stochastic BM activations .S; with their
expected values, a;, is strictly valid only when the number of units in the network approaches
infinity. If there are enough units, the contribution of each individual unit to the inputs of
the other units becomes negligible, and the instantaneous activation values can be ignored.
However, the DBM learning algorithm has also been derived without reference to the BM
at all [Mov90b] by minimizing the difference between the free energy F' when the network

output units are clamped and when they are unclamped. Other researchers [PH89, Mov90b]

have reported good results with small (N = 10) networks.

"Equilibrium has a new meaning in the DBM. It is now the final, stable deterministic state to which the

network settles at the final annealing temperature, Ty,

CHAPTER 2. THEORETICAL BACKGROUND

2.5 Appendix: Relative Entropy

22

To show that ¢ as defined in equation (2.11) is a valid measure of the distance between the

environmental and network probability distributions, we have to prove that ¢ > 0 for all

probability distributions, and that € = 0 only when the distributions {P*} and {R"} are

identical.
First, we prove that

1
I >1-—
ogzr > .

or

1
f(:v):logw—1+;20.

The extrema of f(z) occur when %%—l = 0. Performing the differentiation, we get

d

1 1
—flz)==--==0=2=1.
z z

22

Taking the second derivative of f(2) and evaluating at z = 1, we obtain
2
——f(@))e=1 = =272+ 273 pm; = 1> 0,
therefore z = 1 is a minimum of f and f(1)=0so f(z) >0
Substituting z = R%/P* and multiplying by R* gives
pPe R«
0'1 o > [g 1 IR
R%log w2 > R*(1 - 57)

and

Ot

e:ZR“logPa > ZR"l——G)
= Z(Ra P)
= ZR“—ZP‘*
- i1

= 0

(2.18)

s0 € > 0. The left and right hand sides of (2.18) are equal only forz = R*/P* = 1,s0¢ =0

if and only if P* = R* for all c.

Chapter 3

Simulation

3.1 Introduction

The behavior of a DBM is difficult to characterize analytically because it is a multi-layer,
non-linear, recurrent network. Therefore, simulation of a DBM on a digital computer is the
preferred method of determining network behavior. A simulator, consisting of about 11 500
lines of C code, was developed to test various network configurations, learning tasks, and
the effects of non-ideal behavior in hardware implementations.

There are many variations of the simulation algorithm and the network parameters, any
of which can change the observed behavior of the network. Although we explored many
of these variations, the guiding principle was to restrict the simulations to features that
can be readily implemented in a highly parallel manner in hardware. Additionally, the
simulations were limited to pattern associators, where an input pattern is mapped to an

output pattern.

3.2 Details of the DBM Simulation Algorithm

The following is an overview of the DBM simulation algorithm. The many options and

variables that model non-ideal behavior, used to explore the effects of implementing a

23

CHAPTER 3. SIMULATION 24

DBM in analog hardware, are not described here. The relevant parameters are mentioned
later (chapter 6) when the effects of non-ideal components are discussed.

The following is a high-level pseudo-code representation of the simulation algorithm and
is sufficient to allow the pertinent details of the simulation to be extracted and the results

in this work to be duplicated.

Learning

The learning algorithm and its variations are described below. Underlined steps are de-
scribed in more detail in following sections. Note that the symbol &; represents the activa-
tion of unit ¢ after annealing, when the network is in thermal equilibrium. (Equilibrium is

the stable resting state in a DBM)

repeat a fixed number of times or until eFFor < MinError
for each training pattern
Unclamp output units
Clamp input pattern on input units

Anneal network giving activation vector &~

Compare output to desired output and compute error
Clamp desired output pattern on output units

Anneal network giving activation vector &%

Compute weight change for all weights in the network using
Awy; =y (aFaf - a7a7)
Update the weights

There are a number of common variations possible in this learning algorithm:

1. Either the clamped or unclamped phase may be performed first. The choice of which
phase is performed first does not have much effect unless either (a) a low initial
annealing temperature is used (or no annealing is performed at all); or (b) the weights
are updated after each phase instead of after each pattern or after each pass through

the entire set of training data.

CHAPTER 3. SIMULATION . 25

In case (a), the order is important because the network will tend to remain “stuck”
in the energy minimum it settled to in the previous clamped phase. In case (b), the
order determines if the positive or negative half of the CHL updating rule is performed

first.

2. The training patterns may be presented in a fixed or a random order. Random order
is preferable from a theoretical viewpoint, but results in a noisy error. If a fixed order
is used, it is best to arrange the order so as to avoid long runs of the same input or
output value for a single unit. This decreases the potential of time dependent biasing

effects.

3. Weights may be updated after each phase (clamped or unclamped), after each pattern,
or after each epoch. Updating after each epoch is preferable for stability, but hard to

implement in analog hardware because it requires storage of intermediate results.

4. Weight updates may be by Aw;; or by nsgn(Aw;;) (Manhattan learning). Some
researchers have reported good results with Manhattan learning [PH89] and it has

some advantages in hardware implementations [Sch91].

5. Error can be computed during learning or as a separate test after each epoch. Testing
after each epoch is more representative of a real applications environment, but can

mask the learning oscillation described in chapter 4.

Anneal Network

Two different annealing schedules are available. The first is standard geometric anneal-
ing [PH89], the second is a slightly modified version of an improved schedule developed
by Galland [Gal]. In the following description, log(Tratio) is a logarithm, base Traijo, and

(Tratio)™ is Tratjo Taised to the power n.

CHAPTER 3. SIMULATION 26

Geometric annealing (parameters: Tinitial, Tfinal, n5teps):

1
. T nsteps—
calculate temperature ratio: Tyt = (Tﬁﬂﬁl—) feps—i

initial

for n = 0 to nsteps — 1

T = Tinisial - T,

ratio

update activations for new temperature T

Galland annealing (pa’ra‘meterS: Tiru'tiala Tﬁnala TratiOa Terror):
calculate number of annealing steps: nsteps = log(Tratio) (Tﬁ:ﬁ%@)
calculate residual temp: Tresia = (Tinitial — Thinat)(Tratio) 526751
for n = 0 to nsteps — 1
T = (Tinitial - Tﬁnal)T;—;ﬁo + Tﬁnal - Tresid

update activations for new temperature T

The advantage of Galland’s annealing schedule is that there are more temperature steps
taken in the critical temperature range (phase transition) where the unit outputs converge
to their final values (see figure 3.1).

A new annealing procedure is described in [AZL92]. It uses a wvolatility measure, com-
puted as

0= Yd,
to measure the degree to which the unit activations have settled near +1. The annealing
temperature steps are adjusted so that steps in g are not larger than a predetermined value.
Alternatively, the temperature is adjusted to keep ¢ at a constant value without annealing.

The volatility based annealing procedure is not easily implementable in analog hardware
because it requires storage of activation values from the previous temperature step so that
the current temperature step can be rerun with a smaller step size if the change in ¢ is too
large. The second approach, where g is kept constant, has the disadvantage that the value

of ¢ required for proper operation is highly problem dependent. "

CHAPTER 3. SIMULATION 27

50 ..
—— Qalland annealing
— — — Geometric annealing
40 b g R R RS NSRRI SIS
2
230
o
@
Q.
520 B ST PO ST SOOI
’_.
10 (.
== :
H . R —_‘_.\——__..:
0 T T T T T T v T v T T T Y 1
0 20 40 60 80 100 120 140

Settling passes

Figure 3.1: Comparison of Galland’s annealing schedule with geometric annealing.
Galland’s technique has more temperature steps (smooth curve) in the critical range
of temperatures where the activations are settling to their final values. (between
T=1and T =5)

Update Activations

First, calculate the net input to a unit:
net; = Zwi]‘a]‘,
J
and then update the unit activation asynchronously, using
net;
a; = tanh (—T—l> .

The order of unit update may be deterministic or random.
Alternatively, we can use synchronous updating, where all the activations are pre-
computed and then simultaneously updated using
al™ = (1 - 7)al + 7 tanh (%ﬁj ,
where the superscript ¢ indicates a time index and 7 is the synchronous time step. 7 acts
as a damping factor to make the network settle more reliably and is picked as a number

somewhat less than one (usually 7 = 0.8).

CHAPTER 3. SIMULATION 28

When using geometric annealing, there are typically many activation updating passes
at each temperature. With Galland annealing, there are many more temperature steps, so

only a single pass is normally used at each temperature.

3.3 Simulation Parameters

All simulations in this work were performed with the following choice of parameters unless
otherwise indicated. An experiment was rerun with different parameters whenever there

was any concern that a result might be an artifact of a particular choice of parameters.

Parameter
Annealing type
Tinitial

Thnal

Tratio

Terror

nsteps

passes per temperature
activation updating
r

initial weights
error calculation

weight updates

Ui

Value

Galland

50

1

0.9

1x10™

124

1

synchronous

0.8

random (-2.0, 2.0)
during training
after each pattern

0.00001 to 0.1

Reason for choice

better results than geometric annealing
high enough to give initial a; ~ 0
arbitrary, simplifies calculations

produces moderate number of T steps

- a small error value

calculated

standard for Galland annealing
reduces randomness in results

a number slightly less than 1.0
large enough values for good results
oscillation details observable

easy hardware implementation

highly variable depending on problem

3.4 Choice of Problems

The performance of a neural network depends on the learning task with which it is presented
and the structure of the interconnections among the units. We define a problem as the set

of vectors to be learned together with the pattern of connections between the units in the

CHAPTER 3. SIMULATION 29

Input Hidden Output

Figure 3.2: Network configuration for the 4-2-4 encoder problem. Notice that the
four input and output units are connected only through the two hidden units.

network. For most simulations, a fully connected network, where every unit is connected to
every other unit, was used. This is the most general case, and gives the network the most
freedom in choosing the weights to solve the problem. The various unit configurations used

here are described with the notation
input X hidden x output

where input, hidden, and output are the number of each type of unit. In addition, all
networks have a bias unit that is permanently set to an activation level of +1. All networks
are fully connected unless otherwise noted.

One interesting problem, the 4-2-4 encoder, requires a special network with no in-
put/output connections (see figure 3.2). The goal of the encoder is to map a one-of-four
input to an identical output, and to force the network to communicate the one-of-four value
through only two intermediate units. While the one-of-four to one-of-four input/output
mapping is not in itself very interesting, the 4-2-4 encoder does demonstrate that a DBM
network can learn to encode an internal representation of an external stimulus on the hidden

units. The 4-2-4 encoder will be examined further in chapter 6.

CHAPTER 3. SIMULATION 30

The most important feature of neural network algorithms like CHL is that they are
capable of discovering how to use the hidden units in the network to solve a problem.
Because hidden units are only needed for problems that are not linearly separable, most
of the simulations conducted are of non-separable problems. The simplest non-separable
problem is exclusive or (XOR). When the XOR problem is extended to n bits, it becomes
n-bit parity, which is computed as the XOR of each successive bit. Most simulations in this

work use a two-input XOR because it represents the simplest non-trivial problem.

3.5 Testing Process

The initial weight set can have a significant effect on the outcome of a network simulation.
In order to avoid a bias due to a particular set of initial weights, five separate simulation runs
are performed for each experiment, each starting with a different set of random weights. The
same five sets of initial weights are used for all experiments that use the same sized network
so that results can be compared directly, without the complicating factor of additional

randomness introduced by different sets of initial weights.

3.5.1 Learning Plots

The mean squared error is recorded during training as a measure of the performance of the
network. Mean squared error is a measure of the difference between the actual and desired

output of the network. It is defined as

n m T Y2
MSE = r=1 Zj:l(aj - tj) ’

n-m

where n is the number of vectors, m is the number of output units, a; is the equilibrium
value of output unit j when with vector 7 clamped on the inputs, and ¢} is the desired
(target) value of output j for input vector 7.

For “binary” problems, where the target values consist of only a single positive and a
single negative value, such as £0.4, the “fraction correct” statistic is also recorded. In such

cases, an output is considered “correct” as long as it has the correct sign, which often occurs

CHAPTER 3. SIMULATION , 31

Fraction correct

-

e

Mean squared error

T

— ; —
2000 2500 3000 3500 4000 4500

Learning epochs
Figure 3.3: Sample learning performance plot.

long before the analog MSE measure becomes small. An output vector is considered correct
only if the signs of all the output units match the signs of the training values. (Only a
single output unit is used in most of our tests.)

Figure 3.3 shows a typical plot of learning performémce. The horizontal axis represents
the number of passes through the training set, or epochs, while the vertical axes indicate
the mean squared error, plotted on a log scale, and the percentage of correctly recalled

vectors. The cause of the narrow error spikes will be explained in chapter 4.

3.5.2 Energy Plots

If a network has only two free units (one hidden and one output) the free energy of the
network can be plotted for all activations of the free units for a single input vector. The

energy function

14 a; 1+ q; 1—aqa 1—a;
F:—Za;ajwij-}-TZ[5 -log 5 + 7 -log 5
i<y i

can be represented as a contour plot as shown in figure 3.4. The energy contour plot has

two shortcomings:

CHAPTER 3. SIMULATION

.:.:-:.:.‘.'.’-‘.:.

Figure 3.4: A contour plot of the energy surface for a one hidden unit, one output
unit network. The horizontal axis represents the activation of the output unit, from
—1 to +1. The vertical axis represents the activation of the hidden unit from —1
to +1. Depth is indicated by shading, with black being the deepest. (Note: the
“depth” is clipped to 6% of its highest value in order to make the interesting regions
around the minima visible.)

32

CHAPTER 3. SIMULATION 33

-1.05

Free energy

u
oy
[6,]

-1.2

-1.25 B B R e T O SO S S
-1 -0.8 0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 1
Output unit activation

Figure 3.5: A cross section of the free energy contour plot in figure 3.4 along the
deepest part of the valley between the two minima.

1. It is very difficult to determine precise values of F' from the shading. A three-

dimensional perspective plot is no better.

2. The contour plot can only represent two indepehdent variables, so it is only usable

for networks with two free units.

The obvious solution to the first problem is to view a “slice” through the energy surface
as a standard cartesian plot. The difficulty with this approach is that the precise location
at which to take the slice is hard to determine. In most cases, we are interested mainly
in the depth of the minima and the profile of the valley connecting them. Therefore, we
have developed an alternate way of representing the energy function — an output unit is
clamped to successive values in its activation range from —1 to +1 and the remaining free
units are allowed to settle using the standard annealing procedure. The result is shown in
figure 3.5.

The same technique can be applied to networks with more than two free units, but the
results must be interpreted with care because of the possible existence of other minima. The
technique generally works because the clamped output unit severely restricts the freedom

of the other units, so a good approximation of a two dimensional cross section of a multi-

CHAPTER 3. SIMULATION 34

4 gy
~ ¥ o
i 1 3

Free energy

3
L]
1

-7.65 ———— e ———— .
-1 0.8 0.6 0.4 -0.2 0 02 0.4 0.6 0.8 1
Output unit activation

Figure 3.6: Two dimensional cross section of a 10 dimensional energy surface. Note
the sharp corner between the two minima, indicating a switch between minima in
the hidden units.

dimensional surface is produced near the minima. However, the valley between the minima
often features a sharp corner, indicating a jump between minima internal to the hidden

units! (see figure 3.6).

3.5.3 Weight Plots

A special program was used to allow weight values to be observed during simulation, with
positive weight values drawn as green squares and negative ones as red squares. The inten-
sity of the color indicated the strength of the weight. To avoid having to reproduce color
here, we use a Hinton diagram [AHS85] (see figure 3.7). FEach weight is represented by a
square, and its position in the matrix indicates the units to which it is connected. The hor-
izontal dimension is “from”, the vertical is “to”. The size of a square indicates the relative
value of the weight — white is positive, black is negative. A solid gray square indicates a

zero, or near-zero, weight.

'1f there is more than one output, the unclamped output unit(s) may also be involved in the transfer to

a new minimum.

CHAPTER 3. SIMULATION

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.7: A Hinton diagram of a 2 x 9 x 1 network. Horizontal axis is “from”

)

vertical axis is “to”. Units 0 and 1 are inputs, units 2 through 10 are hidden, unit 11
is the output, and unit 12 is the bias unit.

CHAPTER 3. SIMULATION 36

3.6 Simulation Results

The first simulations were performed on an arbitrarily chosen non-separable problem. The
mean squared error and fraction correct were averaged over ten learning epochs and the re-
sults plotted. Performance appeared fairly good,-but never quite reached perfection (results
are not plotted here).

When the averaging was removed, it became apparent that what seemed like a small,
slightly noisy background error was actually long periods of 100% correct performance
punctuated by a regular pattern of narrow error spikes. Although the average error per-
formance was good, the observed error spikes were inconsistent with proofs iri the litera-
ture [Hin89] that showed that the CHL learning algorithm performed steepest descent in
weight space and should therefore settle to a stable minimum error value. Other researchers
[Mov90b, BP91] have also observed these error spikes under various conditions. A long series
of experiments employing variations of the learning algorithm, as described in the previous
section, generated varied results, but did not completely eliminate the periodic error spikes.

One of the peculiarities of this series of expefimeﬁts is that a change to a simulation
parameter rarely had a predictable effect. Every parameter change, and every different
set of starting weights, produced a different result, but in a seemingly random way. For
example, a small learning rate 7 is expected to make the learning process slow and stable,

but the effect is often to make it slow and unstable (See figure 3.8).

3.6.1 Exclusive Or

Since success with the initial problem was elusive, the learning task was simplified to a two
bit exclusive or. Separable problems like a logical “and” were also tried, but they were
learned perfectly almost immediately, and, since they require no hidden units, are generally
considered uninteresting. Moderate-sized networks are used in these experiments because

it is well known that the mean field approximation on which the DBM is based only holds

CHAPTER 3. SIMULATION

Number correct

Mean squared error

T T T T
4000 5000 6000 7000 8000
Learning epochs

Y T T

T
9000

Number correct

Mean squared error

T ; ; 7
1500 2000 2500 3000 3500

Learning epochs

Figure 3.8: Learning test of a 6 x 10 x 1 network mapping 64 6-bit input vectors
to a random 1-bit output. The experiments are identical, except that the top one
used a learning rate of 7 = 0.001 while the bottom one used = 0.05. Although the
error performance is not very good in either case, there is significantly less oscillation
when the higher learning rate is used. Note: “number correct” refers to the number
of output vectors with the correct sign (maximum 64).

CHAPTER 3. SIMULATION 38

10°

Py
<
~

syl

-
Q
S

for il

Mean squared error
—
Q
L=

—
<
@

ronnd

T T T ¥

T T
14000 16000

107° T s y l T n — T
2000 4000 6000 8000 10000 12000
Learning epochs

i i
18000 20000

o

Figure 3.9: Performance of a 2 x 9 x 1 network learning XOR.

if there are a large number of free units [PH89]. Generally, a 13 unit network (10 free units)
is used.?

By choosing the learning rate carefully, and using initial weights in the correct range,
it is possible to achieve what seems like reasonable learning performance (see figure 3.9).
The error spikes are less frequent than before and they appear to die out over time. Still,
their existence is not really consistent with what is expected of the learning algorithm.
Simulations of n-bit parity problems produce similar results (see figure 3.10).

By carefully examining the weight values before and after each error spike, we determined
that very small weight changes are sufficient to cause a gross error® in the network output,
and that the spikes are created by tiny weight changes in the course of the training process,
usually when weight adjustments due to presentation of one pattern cause recall of another
pattern to fail. This led to an investigation of the amount of weight variation a network

can tolerate without making an error after it has learned its task perfectly.

2Ten free units is not enough for the mean field approximation to be completely accurate, but other

researchers have reported good results with networks of this size.
3A gross error is defined as a large jump in the mean squared error corresponding one or more output

units settling to an activation with the wrong sign.

CHAPTER 3. SIMULATION

Error

Error

T
10000 12000 14000 16000 18000 20000

1015 : : :
T ¥ I 4 T v I
0 2000 4000 6000 8000
Learning epochs

Figure 3.10: From bottom to top: DBM performance on 2, 3, 4, and 5 bit parity
problems. In each case, there were as many hidden units as input bits, the learn-
ing rate was 77 = 0.01 and weight decay of d = 0.0001, d = 0.00005, d = 0.000025,
d = 0.0000125 respectively was applied after 6000 training epochs. (Decay must de-
crease as the number of input patterns is increased because decay is per pattern,
and we want to compare results on a per epoch basis. The training patterns were
presented in random order for the first 5000 epochs, after which they were presented
in deterministic order.

39

CHAPTER 3. SIMULATION 40

In the case of the network of figure 3.9, some weights can only tolerate a change of
3 x 1075, or 0.01% of their value before the network makes a gross error. Other networks
have been found to be even more sensitive. A requirement for such a high degree of precision
makes it necessary to use digital hardware when implementing a DBM. (further discussion
in chapter 6)

Another surprising observation is that the network is extremely sensitive to the parame-
ters of the annealing schedule. In the network above (figure 3.8), changing the temperature
ratio from Tratio = 0.9 to Tratio = 0.889 (a change of 1.2%) is enough to cause the network
to make gross recall errors. This change reduces the number of annealing steps from 124 to
111, which should not be significant. Stranger still, many weight sets have been found to
be sensitive to an improvement (higher Ti,,) in the annealing schedule, where more and
smaller steps are taken. A network can be successfully trained with a wide range of different
annealing parameters, and performs well as long as it is tested with the same parameters
it has been trained with, but fails if they are varied even slightly.

Looking at the energy functions of these networks, it becomes apparent that the energy
minima corresponding to the correct and incorréct outputs are of almost exactly equal
depth. In some cases, the incorrect minimum is actually deeper than the correct one, but,
as long as the annealing parameters are left unchanged, the network recalls the output
patterns correctly.

Since one of our goals is to create an analog hardware implementation of a DBM,
such requirements for extreme precision are both perplexing and disheartening. Even more
perplexing is that some of the experiments produced much better results, with little or
no oscillation and little sensitivity to the choice of annealing parameters or small weight
perturbations. It seemed that some combinations of starting weights and simulation pa-
rameters produced good results, while others did not, but there was no obvious pattern
that could lead to a recipe for consistently good results. Clearly, something was lacking in

our understanding.

CHAPTER 3. SIMULATION 41

It is evident that simulation alone is not an adequate tool to understand what is hap-
pening. The minimal form of a network capable of representing XOR is two inputs, one
hidden unit, one output unit, and one bias unit. Much of the behavior observed in the larger
networks carries over into the small one, but the small network behaves in a more orderly
way because there are only seven independent weights for the learning algorithm to mod-
ify. Such a simple network has the advantage that it can be simulated rapidly, but, more
importantly, it can be analyzed mathematically to determine the cause of the error spikes.

Chapter 4 describes this analysis and resolves the puzzling behavior described here.

Chapter 4

Analysis of a Small DBM

4.1 Introduction

Deterministic Boltzmann machines have usually been analyzed by simulation. Unfortu-
nately, some of the behavior observed during simulation is apparently inconsistent with
the results of the mathematical derivation of the DBM in chapter 2 and the literature
[Hin89, PAS8T].

The most striking anomaly is the tendency for the DBM output to become unstable duz-
ing learning (see figure 4.1). Since the DBM learning algorithm performs gradient descent,
oscillation after successful learning is troubling and cannot be ignored. Even if we allow for
the possible deleterious effect of updating the weights after each vector is presented instead
of averaging the weight update over all the vectors in the environment (as required by the
theory), the oscillation is still puzzling. The error spikes in figure 4.1 are very narrow, and
can be suppressed in a software simulation simply by averaging the output over time, but
this merely covers up an effect that, according to theory, simply should not occur.

The network in figure 4.1 is too large to analyze conveniently in closed form. Therefore,
we now move on to a simpler network with a single hidden unit and a single output unit.

Figure 4.2 shows the learning curve of such a network with a low learning rate. Note that

42

CHAPTER 4. ANALYSIS OF A SMALL DBM 43

N
|

Averaged error

o

Mean squared error

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Learning epochs

.5
0

Figure 4.1: This is an example of oscillation in learning. A 2 x 6 x 2 network was
used. The outputs were XOR/XNOR, with target values of £0.9. Note the average
error is barely affected by the spikes, especially when the error axis is plotted on a
linear instead of logarithmic scale. Learning rate n = 0.0001.

the oscillation stops part way through the learning process, but, as we shall see, this does
not guarantee a stable network.

Close observation of the weights during oscillation in the 2 x 6 x 2 network of figure 4.1
reveals that the difference between the weight values that produce a correct answer and a
gross error is very small. By manually varying the value of a single weight in the network of
figure 4.2, we can confirm that this network is extremely sensitive to small weight changes.
A change of about 1.3% in one weight is enough to generate gross errors. Instead of a
gradual degradation in the accuracy of the network output, the answer suddenly jumps
from a value of —0.4 to +0.6. Not all weight solution sets for this problem exhibit such an
extreme sensitivity to small weight perturbations, so this behavior cannot be inherent to
the network architecture or to the problem being learned, but must be a function of this
particular set of learned weights.

Simulation reveals that the use of a moderately high learning rate (7) tends to cause
some initial oscillation during learning but results in a far more stable weight set than a

low learning rate (see figure 4.3). This observation flies in the face of conventional wisdom

CHAPTER 4. ANALYSIS OF A SMALL DBM 44

10° 3

—

Q
[
i

Y
Q
[S

Mean squared error
3
(=23

-1.05

-
pry

Free energy
o

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 08 1
Output unit activation

Figure 4.2: Top: Learning test, 2 x 1 x 1 network, n = 0.0005
Bottom: Free energy through valley between minima, pattern 0. Note the almost
equal depth of the minima.

CHAPTER 4. ANALYSIS OF A SMALL DBM

3

L gl

e
Q
[

1 sl

-
Q
S

Mean squared error
3
(]

EEERTI

108

et
] 100 200 300 400 500 600 700 800 900 1000
Learning epochs

-1.05

-
—_

Free energy
o

-1.25 R ————]
-1 0.8 0.6 0.4 0.2 0 02 0.4 0.6 08 1
Output unit activation

Figure 4.3: Top: Learning test, 2 x 1 x 1 network, n = 0.02
Bottom: Free energy through valley between minima, pattern 0. Compare the
relative depth of the minima here to those in figure 4.2.

45

CHAPTER 4. ANALYSIS OF A SMALL DBM 46

1

[—0

0 1 2 3 4
e NN N
Input Hid Out Bias

Figure 4.4: DBM network configuration used in this analysis. Triangles are units.
Circles are weights.

in numerical simulation, where “go slow” is the standard prescription for a stable, smooth,
gradient descent,! at the cost of increased simulation time.

The plot of the DBM energy shows that the two energy minima in figure 4.2 are of
almost equal depth, while the negative minimum in figure 4.3 is substantially deeper than
the positive one. The simulated annealing algorithm ensures that the network always settles
in the deepest minimum. If some perturbation, such as a small weight change, shifts the
balance between the near equal-depth minima, an incorrect output is produced. If this
error is then corrected by the learning algorithm, narrow error spikes, like the ones in
figure 4.1, are generated. A proper gradient descent learning algorithm should not exhibit
this behavior.

Clearly, our understanding of DBM learning has been incomplete. In this chapter, we

analyze a very small DBM in order to explain these phenomena.

4.2 Network Configuration

A fully-connected five unit 2 x 1 x 1 DBM network is used in this analysis (see figure 4.4).

Weights are constrained to be symmetric (w;; = w;;). Unit activations are calculated by

'The number of significant figures in the computer’s floating point representation must be taken into

account when determining the minimum step size. Roundoff problems have been ruled out here.

CHAPTER 4. ANALYSIS OF A SMALL DBM 47

1
a; = tanh (T ;wijaj) (4.1)

where a; is the activation of unit 7, w;; is the weight from unit j to unit 7, and T is an
adjustable parameter (temperature) used in a simulated annealing process to aid in network
relaxation. It has been shown [PA87] that this network settles to a minimum of the mean
field free energy:

F=FE-TH,

which expands to

14 a; 1+a; 1-a 1-a;
F=- Zaiajwij + TZ [—; -log ; + 5 -log 5] . (4.2)
i<y :

The network is trained by clamping the input pattern on the inputs and the desired
output pattern on the outputs and allowing the network to settle, giving the vector of
activations 8*. The outputs are then unclamped and the network is allowed to settle again,
giving &~. The weights are updated according to the contrastive Hebbian learning (CHL)

rule

Aw;; = n(afal - a; ay). (4.3)

The following training patterns are used in the analysis presented here:

ap | @ as

-1 -1} -04
-1]1+41}| +04
+1 -1 +04
+1 (41| -04

This is a simple two-input XOR problem. The £0.4 learning target values are used instead

of £1.0 to avoid problems with infinite weights.?

*The activation function of a DBM is tanh(net;/T), which reaches £1.0 only when net;/T — co. This

either requires infinite weights or a zero annealing temperature, neither of which is desirable.

CHAPTER 4. ANALYSIS OF A SMALL DBM 48

4.3 Network Analysis

It is possible to study the behavior of a network with a single hidden unit analytically to
gain further insight into its properties. For now, we are interested only in the activation
dynamics during recall, not in the learning process. We want to calculate the set of weights
required for the network to recall all the training vectors with arbitrary accuracy. We call
this an optimal weight set, denoted W*.

We know that the network settles to a minimum of the mean field free energy F (equa-
tion 4.2). The minima must be zeros of the derivative of F. Taking partial derivatives with
respect to a; and ag, the activations of the two free (hidden and output) units, and keeping

in mind that the weights are symmetric, we obtain

oF
Pa, — w2000 — W2101 — W33 — Woq + T - atanh(az),
az
oF
55’*3— = —W30ap — W3101 — W32a3 — Wagq + T - atanh(ag,). (44)

Solving 0F/daz = 0 for as gives

Woplp + WorG1 + W32a3 + w24J
b

ao = tanh [T

which is the activation level the hidden unit (unit 2) settles to for any given inputs ag and

a; and a given activation of the output unit, az. Substituting into (4.4) we get

or
8(13

Waodg + wo1ay + wazaz + w24]
T
—wgyg + T - atanh(as). (4.5)

— W30l — W3101 — W32 tanh [

Unfortunately, 0F/0as = 0 cannot be solved for a3 analytically, but the roots can be
found numerically, and the equation can be inspected to ascertain certain properties.

The set of weight values the network learns during a simulation depends on the initial
weights, the learning rate, and various other network parameters. Since all the final weight
sets produce equally accurate answers during testing, there are obviously many different

weight solutions to the XOR problem being learned.

CHAPTER 4. ANALYSIS OF A SMALL DBM 49

0 1 2 3 4

Figure 4.5: A symmetric set of weights that solves the XOR problem. Units 0 and
1 are inputs, unit 2 is a hidden unit, unit 3 is the output, unit 4 is the bias unit.

Inspection of the final weight values in one simulation showed that, in one such optimal
weight set, wzo & —ws3; &~ wsg and wyg & —wo; & wyy. The only remaining weight, wag,
was different from any of these (see figure 4.5). Using these constraints, equation (4.5)
can be simplified by defining wa, ws, and w, as the three distinct weight magnitudes and

making the following substitutions:

CHAPTER 4. ANALYSIS OF A SMALL DBM 50

1.5_ s A SRREREECTIEERES ARREEEEAARLEEE e, [ESSRERRRRLEREE SIEERERCEITIE

085 i

dF/da,

05— f R ST PO

-1 -0.8 0.6 04 02 0 02 0.4 0.6 08 1
Activation a,

Figure 4.6: Plot of 8F/Jasz (equation 4.6) for typical weights w, = 0.482,
wy = 0.648, w, = 1.131, and inputs a9 = +1, a; = 1. T = 1.

W3p = W3 = Wq
W31 = W13 = —Wq
W34 = W43 = Wq
W20 = Wo2 = —Wh
W21 = Wiz = Wp
W4 = Wy = —Wp

W23 = W3z = We.

Substituting into (4.5), we get

oF —wp(ag — a3 + 1) + weaz

Pas = —wq(ag — ay + 1) — w.tanh T + T -atanh(az). (4.6)

This equation is plotted in figure 4.6 for a weight set typical of most simulation runs. Notice
that 0F/daz has only one zero, at ag = +0.4, so the energy function F has only a single
minimum at the desired answer. As we will see later, F' can have two minima, which makes

it possible to settle to the wrong answer.

CHAPTER 4. ANALYSIS OF A SMALL DBM 51

: tanh part
i ——— atanh part

function value

Activation a,

Figure 4.7: Plot of the components of 8F/8as (equation 4.6) for the same param-
eters as in figure 4.6. Note that the tanh function is negative (upside-down) and
shifted up and to the left.

Looking at equation (4.6), we see that it is composed of two parts: a hyperbolic arc-
tangent function, independent of input or weight yalue;s, and a hyperbolic tangent that is
shifted up, down, left, and right by changing the inputs ag and a;. The amount of shift
depends on the weights w, and w,. The height and width of the hyperbolic tangent are
determined by w..

To find the weight values for which the network accurately produces the desired outputs
in response to the four XOR input patterns, we substitute the values of the XOR vectors
for ag, a;, and a3 into equation (4.6) and require 8F/daz = 0 for each case. Let 4; be
the output target activation (A; = 0.4 in our simulations), and arbitrarily set Tsna = 1, the
final temperature used during annealing.

case qg = —~1,a; = —1 = a3 = —Ay:
— we — wetanh(—wy — weAy) + atanh(—A4;) = 0 (4.7)
case ag = —1, a3 = +1 = az = +A;:

w, — we tanh(wy + w.A;) + atanh(A;) = 0 (4.8)

CHAPTER 4. ANALYSIS OF A SMALL DBM 52
case ag = +1,a; = -1 = a3 = +A4;:
— 3w, — we tanh(—=3wy + w.A;) + atanh(A4;) = 0 (4.9)

case ap = +1, a1 = +1 = a3 = —A;:

— Wo — wetanh(—wy — weAe) + atanh(—4;) = 0 (4.10)
Equations (4.7) and (4.10) are identical, and, because tanh(z) = —tanh(—z) and
atanh(z) = —atanh(—z), equation (4.8) is just (4.7) multiplied by —1. This leaves us

with two equations (4.7 and 4.9) in the three unknowns w,, wy, and w,. Solving (4.7) for
w, gives

w, = w, tanh(wy + weA;) — atanh(A;). (4.11)

Substituting (4.11) into (4.9) gives
we - (tanh(3w, — weAr) — 3 - tanh(wy + we4;)) + 4 - atanh(A4,) = 0. (4.12)

Equation (4.12) cannot be solved for w;, or w, analytically, but its roots can be found
numerically. Taking w, > 0 as the independent variable, we see that the equation has two
roots. If wy > 1, w, can be either negative and approximately proportional to wp, or it can

be positive, with a limiting value of

lim w. = 2-atanh(A4;). (4.13)

WhH—r OO

The negative root is discarded because it represents an energy maximum at the desired
output A, instead of a minimum.

Substituting the value of w, into (4.11), we get
wq = atanh(A,) (4.14)

Note that the signs of wy and w, can be changed, giving an equivalent solution with the
meaning of the hidden unit inverted. The values of w, and w, are plotted for a range of w;

in figure 4.8.

CHAPTER 4. ANALYSIS OF A SMALL DBM 53

1'2_ B S R L e Senneenr e 0‘5
: : : H B W,
7 T W
1.15 4 ‘:'--——...__.._?_“*u"_"ﬁ‘—
i : : : : : - 0.4
11 s L
1,05 - eoveeenes i NG b - 03
£ : : 4 : -F
1 — PR x _0.2
0.85 - - [................... r
1 : ' 5 : : - 0.1
0.9 L T
0.85 ; i . ; ; , 7 0
0 0.5 1 15 2 25 3

Figure 4.8: Plot of values for weights w, and w, for a range of wy. Any of this
family of optimal weights have minima at a3 = +A, or az = — A, as appropriate for
the inputs (A, = 0.4 for this plot).

4.3.1 Effects of Different Solutions

It has been shown here that there is not just one, but a continuous range of optimal weight
sets that produce an energy minimum at the desired output unit activation +4; or —A,.
If visualized in three dimensions in variables w,, ws, and w, this range of weight sets
appears as a curve. A particular optimal weight set is a single point on this curve. Other
weight configurations, such as the one with the meaning of the hidden unit reversed, would
appear as distinct curves. We define such a group of weight sets as a continuous solution, as
opposed to an isolated solution, where the optimal weight set is not continuously variable.

Two important questions arise:
1. Are all the optimal weight sets making up a continuous solution equally good?
2. Which optimal weight set does the CHL learning algorithm produce?

To answer the first question, we must decide on a qualitative measure of the desirability
of a particular weight set. Since any optimal weight set produces energy minima arbitrarily

close to the desired values, the output error is zero in each case and cannot serve as a metric.

CHAPTER 4. ANALYSIS OF A SMALL DBM 54

Instead, reliability is chosen as the performance measure. Reliability can be broken down

into three components:

1. The network should tolerate small changes in the weights without producing large
changes in the output values. At the very least, the output values should not easily
change sign (a gross error). If a gross error is due to the output settling to the wrong
energy minimum, this is also referred to as basin hopping. We define the diameter
of the optimal weight set, d(W*), as the minimum change in a weight required to
produce an output with the wrong sign. We generally want d(W™) to be as large as

possible.

2. The network should be insensitive to variations in the annealing schedule used during
settling. Annealing is needed only if there are spurious local minima in the free energy
function of the network. The network becomes sensitive to the annealing schedule as

spurious minima approach the depth of the desired global minimum.

3. The network should be able to continue learning even after some pre-determined
error criterion has been reached. Continued learning is necessary in analog hardware
implementations to maintain the charge on the weight-storage capacitors, and also for

situations where the network is supposed to track changes in an evolving environment.

In general, the most reliable networks are the ones that have only a single energy min-
imum, and the most unreliable are those with multiple, nearly equal depth minima.® One
problem with near equal depth minima is that a small weight perturbation can make the
spurious minimum deeper than the desired one, leading to basin hopping and a gross error.
The perturbation may be the result of either the learning procedure itself, as illustrated in
figure 4.1, or due to weight drift or noise.

The other problem caused by near equal depth minima is that a very thorough, and

therefore slow, annealing schedule is required to choose between almost indistinguishable

®There are a maximum of two minima in the simple 2 x 1 x 1 network analyzed here.

CHAPTER 4. ANALYSIS OF A SMALL DBM 55

minima. As we will see later, using a slow annealing schedule during learning is actually
counterproductive.

We divide the weight sets in a continuous solution into three classes: stable solutions,
where there is only one energy minimum; meta-stable solutions, where there is a spurious lo-
cal energy minimum; and unstable solutions, where the annealing process (with a particular
set of annealing parameters) cannot correctly distinguish between the minima. Annealing
is unnecessary for a stable solution set.

A stable solution results as w, — co. This can be verified by substituting (4.13)

and (4.14) into (4.6). Because ag is a finite number, (4.6) becomes

F
(;97 = —atanh(A;) - (a0 — a1 + 1) + 2 - atanh(A;) - sgn(ao — a1 + 1) + T - atanh(as) (4.15)
3
where
-1 ifa<0
sgn(z) = 0 ifz=0
+1 ifz>0

which obviously has only a single zero as a3 varies: for fixed inputs ag and aj.

Figure 4.9 shows how the derivative 9F/das responds to changing the weights. The
critical point after which the free energy has only a single minimum is w, = 0.48 in this
case. When wy > 0.48, we have a stable solution; when it is less, we either have a meta-
stable or an unstable solution depending on how close the two minima are to the same
depth.

The minima are of equal depth when w, = wy. The correct minimum is deepest as long as
w, < wp. Looking at figure 4.10, we see that the solution becomes unstable around wy = 0.3.
As the weight set approaches the transition from meta-stable to unstable, d(W*) — 0, and

the network becomes extremely sensitive to small weight perturbations.

4.4 Learning

The weight change determined by the CHL weight updating rule, equation (4.3), is con-

trolled by the difference between the clamped and unclamped activations of the units.

CHAPTER 4. ANALYSIS OF A SMALL DBM

U]

oooo
R8s

0.6 0.4 0.2 0 0.2 0.4 06 08
Output unit activation (a,)

Figure 4.9: The effect of changing w; (and w, and w, according to equations (4.11)
and (4.12)). A; = 0.4, desired output as = —A, for this plot. Notice that F/fas
has three zeros for w, = 0.46, corresponding to two minima in the energy function.

0.6... REEEREEERLI ; e A

05
0.4
2'0.3
0.2

0.1

0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5

Figure 4.10: w, as a function of w; near w, = wy. We have a correct answer as
long as wy < wy.

56

CHAPTER 4. ANALYSIS OF A SMALL DBM 57

Except for a few unlikely, degenerate cases, if the clamped and unclamped output activa-
tions match, so do the clamped and unclamped hidden unit activations. Therefore, it is the
mismatch in the output activations that drives the weight updates during learning.

For the case of a 2 x 1 x 1 network learning XOR, we have shown that there is a contin-
uous range of optimal weight sets that produce equally accurate outputs. Once the weights
have been adjusted to produce a zero-error output, no further learning takes place. There
is nothing in the CHL learning algorithm that causes it to produce a stable weight set —
once the desired output is produced, there is no longer any information on how to further
evolve the weight set. The final resting point on the solution curve is determined by the
random starting weight set in combination with all the simulation parameters. All aspects
of the simulation including variations in the algorithm affect the outcome, but they do so
in an essentially random way.

If alow learning rate is used, the most common final weight configuration is very near the
d(W*) = 0 point, with the desired global minimum only minutely lower than the spurious
minimum for each input vector (see figure 4.2). This makes the network very sensitive to
small weight perturbations or changes in the annealing schedule. In fact, even the small
weight adjustments caused by continued learning (if the network has not yet reached exactly
zero error) may cause a gross error, leading to the learning oscillation observed earlier.

The size of the neighborhood d(W*) tends to be proportional to the learning rate 7
because the learning steps that cause the error spikes are proportional to 7, and a step
proportional to 7 is taken every time an error spike occurs. The network eventually settles
far enough from the d(W*) = 0 point to prevent further error spikes. This is why the error
spikes tend to die out as learning continues, and also why networks learning with a large n

show less oscillatory behavior than those with a small 7.

CHAPTER 4. ANALYSIS OF A SMALL DBM 58

4.4.1 Weight Decay

Weight decay is an unavoidable feature of analog weight storage capacitors. A common
model of weight decay is an exponential drift towards zero. For each weight w;; in the

network,

wifl = d - w}; (4.16)

where d < 1 is the decay factor and the superscript represents the simulation time index.
Consider what happens when all the weights in the network analyzed in section 4.3 decay.
In the three-dimensional visualization of the continuous solution described previously, this
is equivalent to moving on a straight line from a point on the solution curve toward the
origin.

We saw in section 4.3.1 that if wy is large to start with (stable solution set), changing it
has little effect on the activations of the units. Changing w, and w, changes the location of
the energy minimum. If the CHL learning algorithm is applied to the decayed weights, w,
and w, are adjusted to move the minimum back to +£A4;. If the decayed wy is still large, the
hidden unit still acts as a +1 step function, so there is no change in w, due to re-learning
after the decay.

Eventually, w, decays until it is no longer large, and the solution set enters the meta-
stable range. The decay process continues, with d(W™) becoming smaller and smaller, until
the spurious minimum is the same depth as the desired minimum (d(W*) = 0) and the
network makes a mistake (see figure 4.11). At this point, the clamped and unclamped
network outputs are no longer the same, and the CHL rule causes a large change in the
weights, resulting in a correct output again. The decay process repeats, and the network
oscillates. The oscillation frequency is roughly proportional to the the decay rate and
inversely proportional to 7, but there is no threshold below which decay can be tolerated.

Weight decay will be discussed again in chapter 6.

CHAPTER 4. ANALYSIS OF A SMALL DBM

10°

)

102

Lo trad

1074

3t 1inul

Error

10

10

L

1010 T T T , T . T . — ;
0 5 10 15 20 25 30 35
Number of epochs (1000’s)

Figure 4.11: The effect of slow weight decay on a network starting with a “good”
solution. The relatively high analog error is due to the weight decay. Notice that
the error level is essentially constant until the moment when oscillation begins. The
digital error (sign of the output) remains zero until the point where the network
begins to oscillate. Note that equations (4.11) and (4.12) no longer hold after onset
of oscillation, and therefore wy no longer represents the weight set after that point.
(n=0.01,d=1.0x 107°)

59

CHAPTER 4. ANALYSIS OF A SMALL DBM 60

4.5 Solutions

The reason that the CHL algorithm cannot deal with weight decay, or with other related
behavior, such as hypersensitivity to weight perturbations, is that learning is based only on
the final activations of the units after settling. If a thorough annealing schedule is used,
only the location of the deepest energy minimum is used in adjusting the weights. The
existence, or development (through weight decay), of a spurious minimum goes undetected
until it approaches the depth of the desired minimum and causes a mismatch between the
clamped and unclamped outputs.

One solution to this problem is to dispense with annealing entirely during learning and
start the units at random activations, apply an input or input/output pattern, and then
settle using a damped updating rule with no annealing. Because this causes the network to
randomly settle into the spurious minima in the unclamped phase, the weights are adjusted
until those minima disappear. The possibility of becoming trapped in any shallow spurious
minima that may remain or form later is avoided by using normal annealing during recall
operations. ‘

Our simulations have shown that this procedure works well for small networks, reliably
producing single-minimum energy functions. See figure 4.12 for an example. Figure 4.13
shows that further improvements can be achieved by reducing the number of settling passes
at each temperature. Figures 4.14 and 4.15 show how disabling annealing also improves the
problems associated with weight decay. Unfortunately, while this technique is promising for
small networks, it often causes learning to fail completely in larger networks, likely due to
the large number of spurious minima a large network can contain. When a solution is found
in a large network, it has good, single-minimum energy functions, but the procedure has
too low a success rate to be practical. The procedure is in any case sub-optimal because,
while the solutions it produces are reasonably good, they are still far from the ideal wy — oo
result determined previously.

Another possible solution comes from the observation that “large weights are good.”

By using a reverse weight decay procedure where d > 1.0 in equation (4.16), unconstrained

CHAPTER

10°
102
10
10°%

108

Mean squared error

1010

1012

-1

-1.05

—_
.

Free energy
&

-1.2

4. ANALYSIS OF A SMALL DBM

(BRI EINEITT |

Laund

1 d

JuTIm|

el

T T T Y T

T ;
4000 5000 6000
Learning epochs

T

T T T T T |
2000 3000 7000 8000 9000 10000

T T T T T T T 1

N B e NS
-1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
Output unit activation

Figure 4.12: Top: Learning test, 2 x 1 x 1 network, n = 0.02, no annealing, 50

settling passes per input pattern. Note log scale on error axis — noise in error is over

a fairly small range. The error does not represent oscillation or basin hopping.
Bottom: Free energy through valley between minima, pattern 0. Compare with

figure 4.3 on page 45. Notice that there is only a single minimum in the energy

function.

61

CHAPTER

10°

102

104

10°®

Mean squared error

108

101

Free energy

4. ANALYSIS OF A SMALL DBM

ot o osrevend 4oyl

r ot sinnt

Ll

—
4000 5000 6000 7000 8000 8000
Learning epochs

e e

T
0 1000 2000 3000

— T T
-1 -0.8 -0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 1
Output unit activation

Figure 4.13: Top: Learning test, 2 x 1 x 1 network, n = 0.02, no annealing, 12

settling passes per input pattern. The error is noisy but exhibits no basin hopping.
Bottom: Free energy through valley between minima, pattern 0. Note absence of

any hint of a second energy minimum.

62

CHAPTER 4. ANALYSIS OF A SMALL DBM 63

"
Q

-
Q
o

Mean squared etror
S
s Q
om n

—
S
A3

pory

e
Lol
wn

wt—
0 200 400 600 800 1000 1200
Learning epochs

T
1400

Free energy

-1 -0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 08 1
Output unit activation

Figure 4.14: Top: Learning test, 2 x 1 x 1 network, 7 = 0.02, weight decay
d = 0.0002, normal annealing. The large error swings are due to basing hopping.
Bottom: Free energy through valley between minima, pattern 0. Note the spurious

local minimum.

CHAPTER 4. ANALYSIS OF A SMALL DBM

Mean squared error

1038 +—o—— e ——
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Learning epochs

Free energy
o

,.¢
oo
» &

L e e e e L e e e B S
-1 -0.8 0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Output unit activation

Figure 4.15: Top: Learning test, 2 x 1 x 1 network, n = 0.02, weight decay
(d = 0.0002), no annealing, 12 settling passes (Compare with figure 4.14. Note the
lack of basin hopping here.)

Bottom: Free energy through valley between minima, pattern 0.

64

CHAPTER 4. ANALYSIS OF A SMALL DBM 65

weights like wy drift toward infinity (or the weight limit), resulting in very good solutions.
Unfortunately, once again, this procedure is unstable for larger networks, and it is ques-
tionable whether large weights would be beneficial in all problems.

The most useful technique for avoiding the instability problem is to choose the learning
rate very carefully. A high learning rate has a beneficial effect because it causes the network
to take a large, although random, leap into the stable part of the solution space, where it
can then settle to a good, single energy minimum, solution (see figure 4.16). The problem
is that the best learning rate depends on the problem being learned as well as the initial
weights, and is therefore difficult to determine a priori. Also, our simulations show that
the choice of the learning rate becomes more critical in a larger network where the solution
space has more dimensions. It may be possible to develop an automatic heuristic technique
for adjusting the learning rate, but this has not been explored. High learning rates do not
have a beneficial effect on weight decay related problems, other than that they decrease
the oscillation frequency. Adjusting the learning rate is therefore an unsatisfactory solution
because it is not a general solution that works in every case.

Other approaches, including using low-initial-temperature annealing schedules, learning
with annealing at first and later disabling it to attempt to remove spurious minima, and

other variations have been tried without great success.

4.6 Discussion

The weight drift problem presented here is a fundamental property of the DBM itself.
While there are ad hoc fixes in particular situations, a general solution remains elusive.
The root of the problem is the existence of spurious local minima, and the inability of
the learning algorithm to detect and remove them, even when the network is capable of
producing single-minimum energy functions.

An important caveat to the analysis here is that the simple two-input XOR problem
is by no means representative of “real” applications. However, it is the simplest problem

requiring hidden units, and the problem that led to the demise of the original perceptron

CHAPTER 4. ANALYSIS OF A SMALL DBM

10°

102

RS AT |

104

10°®

10

Mean squared error

Lol

1010

1072 e S S S S S S S E—
0 100 200 300 400 500 600 700 800 900 1000
Learning epochs

-1.1

Free energy
o

-1.3 e T —
-1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 08 1
Output unit activation

Figure 4.16: Top: Learning test, 2 x 1 x 1 network, n = 0.1. The high learning
rate produces good results quickly in a small network.
Bottom: Free energy through valley between minima.

66

CHAPTER 4. ANALYSIS OF A SMALL DBM 67

[MP88]. There are some problems that have isolated solution sets and are immune to the
difficulties described here. The 4-2-4 encoder is an example of a problem with a partially
isolated solution set. It is used in chapter 6 to demonstrate that the CHL algorithm can
deal with weight decay when the output error rises gradually as the weights decay.

There is the hope that “real” problems will tend to have isolated weight sets, unlike
XOR and n-bit parity, but it is far from clear whether a system that fails on small problems
will succeed on large ones. It is of some significance that almost every problem we have
simulated, from the simple XOR, to n-bit parity, to randomly generated mappings, on a
wide range of network sizes and connection patterns, has proven to be prone to instability
from weight decay.

Unless a better learning algorithm is found, there is always the concern that some small
(XOR-like) part of a large network may exhibit the behavior described here. This will
cause the entire network to fail to learn its task reliably, or, because of weight decay or
other effects, fail some time after learning successfully.

Another caveat is the definition of “success” in a learning task. One of the strengths
of neural networks is that they are able to deal with éelf—contradictory input data, where
100% correct learning is by definition not possible. The level of accuracy and reliability in
the network outputs required for “success” is then necessarily lower, and the effects of the
behavior described here may be entirely submerged in the errors produced by the nature of
the problem itself.

The question of whether or not the DBM algorithm functions properly cannot be an-
swered without reference to the implementation of the network and the performance required
for a particular application. If the goal is to find a set of weights that allow the network to
perform within a certain predefined error criterion, and to terminate the learning process at
that point, the DBM algorithm certainly works. On the other hand, if the goal is to build
a DBM using analog VLSI hardware, with the requirement that the learning algorithm
generate and maintain a stable solution in the presence of weight decay, our analysis shows

that the DBM algorithm is not usable. In between these two extremes are the applications

CHAPTER 4. ANALYSIS OF A SMALL DBM 68

where occasional errors can be tolerated, or where the error rate inherent in the problem is

large enough to make the weight-drift-related error negligible.

Chapter 5

The Boltzmann Machine Revisited

5.1 Introduction

If it is viewed as a non-linear analog feedback network, the existence of a double-minimum
energy function in the deterministic Boltzmann machine analyzed in the previous chapter
seems to make sense. However, since the DBM .is, in effect, a model of the stochastic
Boltzmann machine (BM), the meaning of the second minimum is unclear.

A BM has many local energy minima in its activation space, and moves among them
with a probability determined by their relative energies [AHS85]. At thermal equilibrium,
there can be only one average value for the output of a BM, corresponding to the global min-
imum in the DBM. What then does the meta-stable local minimum discussed in chapter 4
represent?

One answer is that mean field theory does not hold for small networks, and therefore
no analogy is expected. Does this mean that the problem described in chapter 4 disappears
in larger networks, where the DBM approximation of the BM becomes more exact? It will
be argued here that it does not. While the networks do become equivalent as the network
size approaches infinity, the behavior of the DBM does not improve, instead, the behavior

of the BM deteriorates.

69

CHAPTER 5. THE BOLTZMANN MACHINE REVISITED 70

5.2 A Small Boltzmann Machine

A stochastic Boltzmann machine can be analyzed in much the same way as the DBM was in
the previous chapter. We again use a five-unit 2 x 1 x 1 network (figure 4.4). The problem
to be learned is exclusive or, as in the DBM analysis. Because of the analogy between the

two types of networks, we make the same weight symmetry assumptions:

W30 = W3 = W,
W31 = Wiz = —W,
W34 = W43 = Wy
W20 = Wo2 = —Wp
W21 = Wi2 = Wp
W24 = Wy = —Wp
Wa3z = W32 = W,

By performing the above substitutions, the Boltzinann machine energy equation (eq. 2.2)

can be rewritten as
E=- [wa53(50 - 51 + 1) + w552(~50 + 5 - 1) + wchSg] . (5.1)

The energy of all sixteen states of the network can be evaluated in terms of w,, wp, and
we. So and 57 are the states of the inputs, S5 is the state of the hidden unit, and S5 is the

state of the output.

CHAPTER 5. THE BOLTZMANN MACHINE REVISITED 71

state (afBy) So S7 S, S Energy
0 -1 -1 -1 -1 By = w, — wy — w,
1 -1 -1 -1 +1 FEi = —-w, —wp + w,
2 -1 -1 41 -1 Fy = wy + wy + w,
? ’ (5.2)
3 -1 -1 +1 41 Es = —w, + wp — w,
4 -1 41 -1 -1 Fy = —w, + wy — w,
15 +1 +1 +1 +1 Eys= ~w, + wy — w,
From equation (2.6) we know
=BT
PeBY — ,
Z

where
7= BT,

afy

In order to produce the desired probability distributions on the outputs given the input

v, we need (.53)” as follows:

(S3)™1 = —04
(S3)7 bt = 404
(Ss)th~t = 404
(Saythtl = 04

We calculate the expected value (S3)” for each input state v as
(S3)7 = > Sy pehh, (5.3)
aff
There are four states af for each input state y corresponding to the four values of S5, S3.
Equation (5.3) can be expanded as

—e~Bo y e=EB1 _ g=E2 4 o—Es

-1,-1 _
<53> T e—Eo +e Bl LB 4 o Fs (5‘4)

CHAPTER 5. THE BOLTZMANN MACHINE REVISITED

Figure 5.1: Calculated values for weights w, and w, for different values of w, in
a one hidden unit, one output unit BM implementing an XOR function with +0.4
average outputs.

—e~Es + e Fs _ ¢—Es + e~ E1

53 -1,+1 _
< > e——E4 + e*‘Es + e_ES .+. e_ET
<S >+1’_1 _ —e—Es + €~E'g — e~ FEwo + e—En
3 e~FEs 4 e~Eo 4 e—FE1w0 4 ¢—En
-Ei3 —E3 —FEi4 —Eis
1,+1 —e +e —€ +e€
(53>+ + —

e‘—El2 + e_E13 + e_E14 + e_Els

72

Substituting for the energies from (5.2), we find that the expressions for (S3)~1~1 and

(83)T1*1 are identical and that (§3)~1+! = —(S3)*1=1. We therefore have two equations

in the three unknowns w,, ws, and w,. Solving equations (5.6) and (5.7) numerically with w;

as the independent variable, as we did for the DBM, we get the results plotted in figure 5.1.

As with the DBM, there is an entire range of solutions that produce exactly the same

(time-averaged) output values. Unlike the DBM, however, the solutions do not extend to

wp = 0, and there is no degradation in reliability when moving from one solution to another.

The behavior of the BM is different from the equivalent DBM because the mean field

approximation does not hold for small numbers of units. This is not surprising, since the

CHAPTER 5. THE BOLTZMANN MACHINE REVISITED 73

| stochastic
unit

other
units

e Z #1 time average > output

Figure 5.2: A unit with a time-averaging function on its input. The time averaging
function could simply be a low-pass filter

0.1 4

©

o

o
i

S
N
I}

025 o e e

034k SR e e e S SR R—

Average output value

=)
&
1

oI B PO SR AR ARt ARhs A AL BRAAe Y M

-0.45 T ; . ; T ; . ; . — ; :
0 50 100 150 200 - 250 300 350 400
Input averaging period

Figure 5.3: Time averaged output of a BM network with weights w, = 0.488,
wp = 0.750, we = 1.098 (a fairly “good” DBM weight set). The output is averaged
over 200000 cycles.

probability of setting 5; to £1 in a BM depends on the instantaneous activation of every
other unit in the network for a BM, and the ezpected value of the activation in a DBM.
Consider a network with units like the one shown in figure 5.2. This is a standard
BM network with a time averaging function on the input of each unit. Figure 5.3 shows
the average output of a BM with weights set to values calculated for a DBM according to
equations (4.11) and (4.12) for different input averaging periods. Notice that the average

output approaches the desired —0.4 value as the averaging period increases.

CHAPTER 5. THE BOLTZMANN MACHINE REVISITED 74

08

o
o

o
»

o
o

o

Average output value

0.6 ~+———————————
0 100 200 300 400 500 600 700 800 900 1000
Input averaging period

Figure 5.4: Time averaged output of a BM network with weights w, = 0.383,
wp = 0.400, we = 1.157 (A less “good” weight set than in figure 5.3). The output is
averaged over 200000 cycles. Notice the unreliability of the network output.

Comparing figures 5.3 and 5.4, we see that the network output becomes less reliable
for a less “good” set of weights (in the sense of section 4.3.1). In figure 5.4, the output
sometimes settles into the local positive minimum‘inst.ead of the global negative one.

As the input averaging period is increased, the time-averaged BM output becomes the
same as that of a DBM with the same weights. This occurs because the DBM activation
function is identical to the expected value of the BM activation. After all, this is how the
DBM was derived. When the net input to each unit is averaged over a long enough period

of time, it approximates the expected value, and the networks are equivalent.

5.3 Expanding the Network

There is an alternate way to generate an approximation to an expected value for the inputs
in a BM. Consider the simple one-hidden, one-output unit network used in the previous
analysis (page 70). Expanding equation (2.1) for the output unit, we get the net input to
the output unit:

nety = weS0 — weS1 + we + w55,

CHAPTER 5. THE BOLTZMANN MACHINE REVISITED 75

Now replace the hidden unit (unit 2) with n hidden units, and replace the output unit
(unit 3) with n output units. All the weights from the inputs and bias unit are replicated,
and the hidden and output units are interconnected with weight w’ = w./n. Each hidden
unit is connected to each output unit and vise versa, but neither the hidden nor the output
unit sets are internally connected (see figure 5.5 and figure 5.6). The net input to each
output unit ¢ is then

wC
net; = weSo—waS1+we+ Y, —85;
j€hidden

2259

= WSy — w51 + we + w, rt

The contribution of the hidden unit to the net input has been averaged over n identical
but stochastically varying units. The input to the hidden units similarly includes the average
of the output units. Instead of the average over time in the previous analysis, we now have
an average over many units at each point in time. The averages are approximations of the

expected values in the original one-hidden, one-output unit network:

chi S
n
. Sz.
Zze;)lut <33>

We can see the effect of changing the network size by varying n, the number of hidden
and output units, and taking the network output to be the average over the n output
units. The results are shown in figure 5.7. Notice that the average of the network outputs
appears to oscillate between two stable values: —0.4 and +0.65. These correspond to the
global and local minima of the DBM energy function for the set of weights in this example
(see figure 5.8). Figure 5.9 verifies that the time average of a single output unit is a close
approximation to the instantaneous average over all the output units.

As the network becomes larger, the frequency of the oscillations decreases. Recall that

this is stochastic Boltzmann machine with a deterministic Boltzmann machine weight set.

CHAPTER 5. THE BOLTZMANN MACHINE REVISITED

hidden

Figure 5.5: A Boltzmann machine with the hidden and output units each replicated
n times. In this diagram, the circles represent the units and the lines represent the
weights. There are no interconnections between the hidden units or between the
output units. The bias unit has been omitted for clarity.

76

CHAPTER 5. THE BOLTZMANN MACHINE REVISITED

IEENN. =
EEEER s

5 6 7 8 91011121314 1516 17 18 1920 21 22

Figure 5.6: Weight set of an expanded Boltzmann machine with n = 10. Units 0
and 1 are inputs, units 2 to 11 are hidden, units 12 to 21 are output, and unit 22 is
the bias unit.

7

CHAPTER 5. THE BOLTZMANN MACHINE REVISITED

Passes (1000’s)

Figure 5.7: Output of a Boltzmann machine with replicated hidden and out-
put units. Output values are averaged over all output units and then smoothed
by averaging over 50 time steps. Network sizes are, from top to bottom, n =
50, 100, 150,200, 250, 500. Weights are w, = 0.327, wy = 0.330, w, = 1.143.

CHAPTER 5. THE BOLTZMANN MACHINE REVISITED

-1.41

-1.42

Free energy
&

S

-1.48 — T ————— r
-1 0.8 -0.6 0.4 0.2 0 02 0.4 0.6 0.8 1
Output unit activation

Figure 5.8: Cross section of energy minimum valley of DBM network with
wa = 0.327, wpy = 0.330, w, = 1.143. (The same weight values used to generate fig-

ure 5.7)

8 10 12 14 16 18 20
Passes (1000’s)

Figure 5.9: Comparison of output of a single unit averaged over time and the
instantaneous average of all output units in an n = 150 network. The top trace is
the activation of a single output unit, averaged over 50 passes. The bottom trace is
the average over all the output units with no smoothing.

79

CHAPTER 5. THE BOLTZMANN MACHINE REVISITED 80

The average output value should be near zero in all cases. All 22" states of the network are
possible, but those sets of states resulting in the two dominant average output values are
strongly favored, and the network spends long periods of time in one or the other of these
two sets of states, with relatively rapid transitions between them.

In order to see the true near-zero time-average output of the network, it becomes neces-
sary to observe it for increasingly longer periods of time as the number of units is increased.
If the observation (statistics gathering) period is too short, we will get a false impression
of the actual behavior of the network. For example, if the n = 200 case in figure 5.7 is
observed for the first 2000 update passes, the conclusion is that the average output value
is —0.4. If weight updates during learning are based on such false information, and —0.4 is
indeed the value the network is supposed to learn, then the weights are not changed when
they should be. In effect, the other (meta-stable) state is not observed in this case because
the observation period is truncated prematurely.

Thus, the local minimum in the DBM energy function results from the second, partially
stable activation set in a large BM. Put another way, the second energy minimum in the
DBM is analogous to observing the BM network fér too short a period of time.

The DBM activations represent the expected values of the BM activations. The only
way to achieve a perfect calculation of the expected value from observation is to average over
an infinite number of units. The DBM therefore, is equivalent to the BM of figure 5.5 with
n = c0. To avoid the problem of local minima in the DBM energy function thus requires
observation of the BM over an infinite period of time, which is impossible. In other words,
the local minimum problem is a fundamental characteristic of the DBM, not an artifact of
the mean field approximation applied to a network that is too small, and we cannot expect

improvement simply from increased network size.

5.4 Discussion

The simple XOR problem explored here is quite artificial, as is the method used to expand

the size of the BM. Whether the same behavior predicted and simulated here would be

CHAPTER 5. THE BOLTZMANN MACHINE REVISITED 81

encountered in a “real” DBM problem, where the network actually learns the weight set
on its own, is a matter for debate, although our simulations have not been promising. In
a real (finite) BM, it is always possible to avoid the local minimum problem by collecting
statistics over a sufficiently long period of time. Judging from the simulations performed
here (figure 5.7), that period increases rapidly with increasing network size.

Using a short statistics gathering period during learning causes the network to adjust the
weights according to incorrect statistics. If a learning step is based on statistics gathered
while the network is in the spurious set of states, the resulting large weight adjustment
decreases the likelihood of that set of states. This is analogous to disabling annealing
during learning in a DBM and allowing the network to occasionally settle in a local energy
minimum. DBM simulations have shown that while disabling annealing is effective in a
small network, it results in unstable behavior in a larger network with a more complex
learning task.

There are two conclusions to be drawn from this analysis:

1. It is important to ensure that a sufficiently long statistics gathering period is used as

the size of a Boltzmann machine increases.

2. Simply increasing the size of a DBM does not ameliorate the problem of spurious

minima and unstable learning presented in chapter 4.

Chapter 6

Hardware Issues

6.1 Introduction

One of the most inviting features of deterministic Boltzmann machines is the possibility of
implementing their simple, local learning rule in a massively parallel architecture. However,
as a network with N units contains N? weights, the weights and associated circuitry (the
synapses) must necessarily be small and simple, and may consequently exhibit behavior far
removed from ideal mathematical models.

In digital implementations, the number of bits used to store the weights is limited. Be-
cause digital multipliers will tend to be fixed rather than floating point, both the resolution
and the dynamic range of the weights is severely restricted. In an analog system, the weight
resolution is limited by noise and parasitic effects, and weight values stored as voltages on
capacitors are subject to decay over time. In addition, analog multipliers saturate and have
zero offset problems.

One of the features of neural networks is that they not only learn to represent some fea-
tures of their environment, but are also able to learn to compensate for internal problems. In
this chapter, we explore which non-ideal analog hardware characteristics are automatically

dealt with by the learning algorithm and which seriously degrade network performance.

82

CHAPTER 6. HARDWARE ISSUES 83

learning multiplier

:

i}

OO0

unit j weight muttiplier unit i

}
!

Figure 6.1: A single analog synapse consists of two multipliers, weight storage, and
a weight add/subtract circuit.

The goal is to focus hardware design efforts on the important issues and to let the learning

algorithm deal with the rest.

6.2 Non-ideal analog behavior

Figure 6.1 shows the components of an analog synapse. Ideally, the multipliers would
perform true multiplication operations, the weight storage would hold any value with infinite
precision for an infinitely long time, and the add/subtract circuit would update the weight
values accurately by any desired amount. The only non-linear component in the network
would be the logistic unit activation function itself.

In reality, nothing is linear, and saturation and zero offsets are prevalent in all compo-
nents. We now explore a number of sources of error and their effect on the performance of

the network.

CHAPTER 6. HARDWARE ISSUES 84

5 -
=3
- S v <o S ol ARSI e i e S
T T R R N~ ol SRS N U S S
B o e T I N T
220 A T T e e e e S—— T
25 T T T T T T T T T 1
-1.0 -0.8 -0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
V, (Volts)

Figure 6.2: Measured values from a CMOS implementation of a Gilbert multiplier
[Sch91]. Each trace represents an input (V2) step of 0.2V from Vo = —0.8V to
Vo = 40.8V.

6.2.1 Multipliers

The Gilbert multiplier is a convenient, compact circuit for multiplying two analog val-
ues [Mea88]. Figure 6.2 shows the measured characteristic of a real Gilbert multiplier

[Sch91], shown schematically in figure 6.3. Three features are immediately obvious:

1. The multiplier characteristic saturates in both inputs and is substantially non-linear

any significant distance from zero.

2. There is a zero offset; that is, the output is not zero when one or both of the inputs

are zero. Also, the sign of the output may be wrong for small input values.

3. The characteristic is unbalanced in that the V5 = +0.8 and V, = —0.8 traces are not

exact mirror images of each other. This is not the same as the offset problem.
For simulation purposes, the multiplier was modeled by the function
mult(V1, V2) = ¢ tanh(8V; — Op) tanh(AV, — 0,) + O, (6.1)

where ¢ adjusts the function range, § and A adjust the degree of nonlinearity in the two

inputs, and Og, O,, and O, adjust the offsets.

CHAPTER 6. HARDWARE ISSUES

o R - vdd

Ve M4 Ms|p- vy | | Vox d[M6 M7l Ve,

> Vour
Isum

REF

L v ey
i T s

Vss

VYCL N X Isum

Vs

Figure 6.3: Schematic circuit diagram of an analog CMOS Gilbert multiplier (taken
from [Sch91]). A Gilbert multiplier multiplies the differences of two pairs of voltages.
Vi=Ver~Wn and Vo =V, — Virer.

CHAPTER 6. HARDWARE ISSUES 86

300 g ST EERTTPRR S ST RTREE -
: : : : : : nonlinear multiplier
: : i | ==~ ideal mutiplier
10-2.: ..
= 3
g]
@
T 10* 3
I 3
© h :
3 N SO
8 el
pis 10-6_g -~ -s.._‘~§§
[\ 3 S~——
D 1 : H Te—ieo :
= E Tee-el
TN s SR S U T D S e
3 a4 —
] [e
w0t
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Leaming epochs

Figure 6.4: Learning results for a 4 x 5 x 1 network learning 4-bit parity using the
model in equation (6.1) for the weight multiplier with the model parameters set to
match the measured multiplier characteristic in figure 6.2. The error values in both
traces are acceptably small.

Non-ideal Weight Multiplier

Figure 6.4 shows the learning behavior of a 4 x5x 1 network on a 4-bit parity problem where
the weight multiplier has been replaced by the model in equation (6.1) with parameters set
to match the measured multiplier characteristic in figure 6.2. The parameters are shown

below. Both the original value of each parameter and its scaled value (for use in simulation)

are shown.
Parameter Value Sim. value Calculation
¢ 29 x 107% 2.8 calculated so the mult. 2 x 1 gives 2
0 1.7 0.68 weight range —2 to +2 maps to £0.8 V
A 1.35 1.08 act. range —1 to +1 maps to £0.8V
Oy 0.017 0.0068
Oax 0.017 0.0136

o, -1x107% -0.1

CHAPTER 6. HARDWARE ISSUES 87

Performance is not seriously degraded by the non-ideal multiplier characteristic, but
learning slows down. Other tests using more severely nonlinear multiplications show that
most of the degradation that does occur is due to a change in the effective learning rate,
and that the learning rate 5 can be adjusted to counteract this effect.

It is not hard to see why the network can deal with the non-ideal behavior of the weight
multiplier. The effect of the non-linearity is that net;, the input to unit 1, is no longer the
sum of the w;;a; terms, but the sum of a ‘squashed’ version of these.

The process of learning can be viewed as adjusting the equilibrium activations of the
units by modifying the weights connected to their inputs. To see how the effective learning
rate is changed by the nonlinear multiplier, consider the effect of a weight change dw;; on

d;, the equilibrium activation of unit 7. For ideal multipliers, at equilibrium

net; = Zwikék’ (6'2)
k
and
aa; . .
Jws, = f'(neti)aj. (6.3)

In the nonlinear case (ignoring offsets because they don’t affect the learning rate),
a; = fi(net;),

net; = Z(ﬁtanh(c’?wik) tanh(Ady),
k

and
aa; 1w @0 tanh(Ad;)
— Py N 4
(971)2']‘ f (ne 1) cosh2(9wij) (6)

If the units are producing the same outputs in the ideal and nonlinear cases, then their
inputs are also the same and we can neglect the difference between net; and net. Equations
(6.3) and (6.4) then differ by the factor

@0 tanh(Ad;)
cosh?(fw;;)d;

(6.5)

CHAPTER 6. HARDWARE ISSUES 88

coooo
OO HNNO
<L <

LI R T}

08 ool

o

Learning rate multiplier

Figure 6.5: Effective learning rate multiplier (equation 6.5) with the model param-
eters set to match the measured multiplier characteristic in figure 6.2. Note that the
activations and weights are expressed as voltages, and that the maximum learning

rate factor of one is arbitrary.

which reaches a maximum value of ¢\ at w;; = 0, 4; = 0 and decays to zero as the
activation &; or weight w;; increase in magnitude (see figure 6.5). The effective learning
rate, determined by the anticipated change in &; when w;; changes, therefore varies with
both the weight and activation values. While this is undesirable, the effect can be dealt with
by choosing the voltage and current ranges in the network so that the multipliers stay in
their relatively linear central region, and adjusting 7 to achieve the desired average effective
learning rate.

The zero offset in the multiplier does not cause a problem because its effect is merely the
addition of a constant term to the net; summation in equation (6.2). This is mathematically
identical to the effect of the bias unit, so the learning rule adjusts the weights connecting
the bias unit to the other units to compensate for the offset.

The unbalanced nature of the multiplier was not modeled, but is not expected to have
much of an effect since it simply changes the effective learning rate slightly as a function of

the activation a; and the weight w;;.

CHAPTER 6. HARDWARE ISSUES ’ 89

It is evident that deficiencies in the weight multipliers do not have much impact on
the performance of a DBM. This is not surprising since the learning procedure adjusts
activations by adjusting the net inputs to the units, automatically compensating for offsets
and nonlinearities in the weight multipliers. As long as the weight multipliers are monotonic,

weight changes are always in a direction that decreases error, and the network functions

properly.

Non-ideal Learning Multiplier

The function of the learning multiplier is to calculate the product of the activations &; and

d; so that the weight w;; can be updated according to
Awy; = n(afal - a7ay). (6.6)

The learning multiplier suffers from the same three problems as the weight multiplier, but
the effects on network performance are different. Using the model in (6.1), equation (6.6)

becomes

Awy = 7((¢tanh(9a] — Op)tanh(Ai} — 04) + 0,)
(Adj = 01)+ 0y))
ne (tanh(8a} — Op) tanh(Ai} ~ 0,) — tanh(a; — Og) tanh(Ad; — Oy)

— (¢ tanh(6d; — Op) tanh

The offset O, is not a problem as it is canceled by the subtraction,! and ¢ is absorbed
into the learning rate. The tanh(-) functions distort the size of the weight adjustment steps.
Since the functions are monotonic, the sign of Aw;; is the same as in the ideal case and the

major effect is that learning progresses at a different rate.

Tt is assumed that there is only one learning multiplier per weight. If there are separate learning
multipliers for the clamped and unclamped phases, then the offsets do not cancel, and the effect is the same

as an offset in the add/subtract unit (discussed later).

CHAPTER 6. HARDWARE ISSUES 90

6.2.2 Add/Subtract Unit

The add/subtract unit is responsible for calculating the weight change Aw;; from the differ-
ence of the products of the clamped and unclamped activations and adding it to the weight
wij. Typically, analog weights are stored as charge on a capacitor, so the add /subtract unit
either adds or removes charge to or from the capacitor. (In reality, part of the function of
the add/subtract unit can be performed by the Gilbert multiplier circuit.)

It is notoriously difficult to make an ideal analog add/subtract unit, as the amount of
charge added to or removed from the capacitor should be independent of the current weight
value (capacitor voltage). This means the add/subtract unit must be an ideal current
source. Because it is not, weight steps towards zero are larger than steps away from zero. It
is easier to build a circuit which adds or subtracts a constant amount of charge to or from the
capacitor, depending only on the sign of c"z;-*'&j — &; ;. This is called Manhattan learning
[PH89, Sch91]. In general, the exact size of the weight steps is not of great importance so
long as the steps are small.

A common deficiency of the add/subtract unit is the addition of a small offset to the
result. Consider the weight updating rule (equation 6.6) where there is an offset of § in the
subtraction operation:

Aw;; = n(éf&j — ;a5 + 6ij).

Without the offset, learning is complete (weight changes stop) when the clamped and un-

clamped activations match (é?&f = d; dj‘) and Aw;; = 0. Now, however,

Aw,-j = 0 when fi;*_lij + (5,‘_7' = Elz_(vl]_
Assume unit j is an input, which is always clamped (&j = &; = d;), and unit 7 is an output.
Then, after learning is complete,
&z— — ZLJ é’zv + 61.7
a;
5 .
= a4 (6.7)

CHAPTER 6. HARDWARE ISSUES 91

We would therefore expect an error of 6;;/d; in the output &; (the output during recall)
when learning is complete. However, consider the effect of another input unit, k, with
b = 0:

Aw;p =0 when é?é}f =a; d;

or, since d&; = 4 = dg, the final value after learning is

v —_

a7 = af (6.8)

1

which contradicts (6.7).

Does this mean that the weight values oscillate up and down while attempting to satisfy
both (6.7) and (6.8)7 Unfortunately not. Weight w;; appears only in equation (6.7), while
w; appears only in equation (6.8), so the two weights do not directly compete with each
other. Instead, both w;; and w;) continuously increase in magnitude, one positively and one
negatively, to infinity (or saturation) in an attempt to cancel each other’s effects on &;. In
simulation, it is typically weights from the hidden units that counteract the 6;; mismatch.

The weight saturation effect is not really a problem as long as the network is performing
correctly. Rather, it is a symptom of weight drift in a continuous solution set. The CHL
algorithm counteracts any moderate weight drift caused by an offset in the add/subtract
circuit as long as there is a gradual degradation in performance with changing weights (W*
is isolated) If the solution set is continuous, however, we can expect saturated weights, basin
hopping, and oscillation (see figures 6.6 and 6.7).

Typically, each add/subtract unit attached to each weight in the network has a random
mismatch due to variation among devices, superimposed on a global mismatch due to fab-
rication process variations. This does nothing to improve the situation. Because of these
variations, it is impossible to build a perfectly balanced analog add/subtract unit, and any
offset, no matter how small, eventually leads to oscillation in a continuous weight set.

It beneficial to introduce a learning threshold in some cases. This prevents any weight
update if Aw;; < Awrpy, where Awrp is a threshold value chosen to be somewhat larger
than the largest 6;;. This threshold prevents the slow but continuous weight drift due to an

add/subtract unit offset, at the cost of a somewhat higher residual error (see figure 6.8).

CHAPTER 6. HARDWARE ISSUES 92

— With offsets
— —— With no offsets

Mean squared error

T T T

—
1800 2000

107 oroe————
0 200 400 600 800 1000 1200
Learning epochs

T T
1400 1600

Figure 6.6: Training results with random add/subtract offsets in the range —0.001
to 0.001, learning rate n = 0.1, weights limited to 2.0. Notice the slower learning
and oscillation in the trial with offsets.

6.2.3 Weight Decay

If weight values are stored as a voltage on a capacitor, charge leaks to ground at a rate
proportional to the voltage on each capacitor, leadiﬁg to an exponential decay of the weights
towards zero.? In a CMOS implementation, the leakage is towards the substrate voltage —
the most negative voltage on the chip. Thus the weights tend to drift towards their most
negative value.

The effect of weight decay is in many ways similar to the effect of the offset in the
add/subtract unit described above. One difference is that whereas the offset can be in any
direction, decay is always towards the origin or towards some other single value. Again, if
the solution set is isolated, the learning algorithm compensates for moderate decay rates,
and the effect is merely an increase in the residual error.

Figure 6.9 shows the effect of weight decay in a 4-2-4 encoder. The 4-2-4 encoder
is interesting because, unlike the XOR and parity problems, the restricted architecture of

the encoder allows the learning algorithm to compensate for weight decay. In this case,

?This assumes a ground-referenced weight value, but the argument holds in any case.

CHAPTER 6. HARDWARE ISSUES

10

Figure 6.7: Weight values for the same network as figure 6.6. The horizontal axis
1s ‘From’, the vertical is “To’. The first four units are inputs, followed by 5 hidden
units, one output unit, and the bias unit. Note the small (useful) weight values
connecting to the output (row 9).

93

CHAPTER 6. HARDWARE ISSUES 94

10°

No thresholding

— — — Threshold = 0.0001

—
(o]

PRI I RTYT)
N g

-
<
~

L

FRrwRIT |

Mean squared error
3 3
- [~

sl

-
Q
<»

U S S RN p—
8000 10000 12000 14000 16000
Learning epochs

10 +—— e —

T]
0 2000 4000 6000 18000 20000

Figure 6.8: The effect of a learning threshold on a network with add/subtract unit
offsets. Because learning is disabled if the weight change is below the threshold, the
effect of the offset (eventual oscillation) is prevented at the cost of some residual
error. For this trial, offset varies randomly between £0.002, threshold is 0.0001.

S]
ke 3 :
@] :
g 106'5‘
o 3 .
(2] J B
e 7 :
23 |

1072 T " T - i ~ T , —

0 500 1000 1500 2000 2500

Leaming/decay cycles

Figure 6.9: Effects of various levels of weight decay on a 4-2-4 encoder problem.
Each step represents an increased level of weight decay, starting at d = 0.0001,
followed by d = 0.0002, d = 0.0004, etc. up to d = 0.0256. The learning algorithm
is able to handle decay rates up to about d = 0.0064, which represents about 13%
of the n = 0.05 learning rate.

CHAPTER 6. HARDWARE ISSUES 95

OV g BRI fre e e s e

-
Q
rrvd p oy

ol

Mean squared error

L

PRI

I
1800 2000

10 SN S S S S S S
0 200 400 600 800 1000 1200 1400 1600
Learning epochs

T T

Figure 6.10: The effect of weight decay on learning performance for a 4 x 5 x 1
network learning a 4-bit parity problem. For this test, = 0.1,d =1 x 10~* (decay
is 0.1% of the learning rate).

the solution set is not isolated, but it is bounded below (towards the origin). This makes
the encoder immune to weight decay but not to add/subtract unit offsets. If the solution
set is continuous and unbounded, weight decay causes oscillation to occur (see figures 6.10
and 6.11).

The oscillation procedure in a continuous solution set is as follows:

1. The weights start at some learned value and decay towards the origin with the CHL
procedure making small weight adjustments to keep the error low. The general drift

is toward the origin.

2. The weight set reaches the point where d(W*) = 0 and no further weight decay is
possible without the network making a large error. This is the point where two

energy minima in the network are of equal depth.

3. The weights continue to decay and the network makes a large error by basin hopping

into the wrong energy minimum.

CHAPTER 6. HARDWARE ISSUES 96

10°

Lyl

iy
<
[

o rsaul

-
Q
S

IEWRTII

Mean squared error
—h
Q
D
|

108

FENRR I

D R B S R A
4000 5000 6000 7000
Leaming cycles

1010 : :
——— i
0 1000 2000 3000

| S S S
8000 9000 10000

Figure 6.11: The effect of weight decay after correct learning for a 4 x 4 x 1 net-
work learning a 4-bit parity problem. Decay is turned on at 2000 epochs. For this
test, 7 =0.1, d = 1 x 107° (decay is 0.01% of the learning rate).

4. The CHL algorithm makes a large weight adjustment to correct the error, moving the

weight set well away from the d(W™) = 0 point.
5. The entire process repeats from step 1.

As mentioned in chapter 4, keeping the weight decay rate and add/subtract offsets to a
minimum decreases the frequency of oscillation because it slows the drift toward d(W*) = 0.
Using a large learning rate further improves the situation by making the weight step taken
in response to an error as large as possible, giving the weights a greater distance to drift
before the next error occurs. There does not appear to be a complete solution to weight

drift problems in continuous solution sets.

CHAPTER 6. HARDWARE ISSUES 97

6.2.4 Weight Saturation®

When a weight value is represented as an analog voltage stored on a capacitor, there is a
limited range of values it can assume. The absolute upper and lower bounds are determined
by the supply voltages, but the need to stay within the linear portion of the multiplier
characteristic determines the practical weight limits. The design of the multipliers, as well
as the multiplier control voltages, finally determines the scaling of the voltages to effective
weight values.

The need to limit the effect of noise in the circuit requires the use of as wide a voltage
range as possible in the weight storage capacitor. This leads to the possibility of weight
saturation, where the learning algorithm is no longer able to increase the magnitude of a
weight.

Whether or not weight saturation affects the performance of the network depends on the
problem being learned and on the severity of the saturation. If the network has sufficient
free parameters to compensate for the saturation of one or more weights, the effect is
usually an increase in training time, but the final error performance does not deteriorate
(see figure 6.12).

If the network is given more freedom in choosing the weights through the addition of
extra hidden units, it can tolerate more severe weight limits (see figure 6.13). Figure 6.14
shows that most of the weights in the severely limited network of figure 6.13 have saturated.
Weight saturation is not a serious problem as long as the network retains enough freedom to
compensate for the saturated weights. Fortunately, the scaling of the weights in a hardware
implementation can be controlled relatively easily by adjusting the unit activation gain
function,* which must be variable to implement simulated annealing. At the final annealing
temperature, the net input to all units is scaled by 1/Tgna, so the weight range can be

adjusted to optimize the saturation/noise tradeoff simply by varying Thnal.

®Weight saturation, or “clipping” is discussed in (HKP91] for dynamical Hopfield networks with a given
set of weights. In a Hopfleld network, the effect is a reduction in the capacity of the network. We want
instead to find its effect on learningin a DBM

*a; = tanh((1/T) 3 wisa;). Changing T effectively scales all the wij.

CHAPTER 6. HARDWARE ISSUES 98

No weight limit
——— Weight limit = 1.1

Mean squared error
s a
(-] [+

1010
» : Vo
10‘ e ariaeaeiaaaey .
: : ‘ :
1074 o ; ; . ; . . ; ; ; ; ' ; . : : :
0 500 1000 1500 2000 2500 3000 3500 4000

Learning epochs

Figure 6.12: Performance of a 2 x 1 x 1 network on an XOR problem. Weight
limit is set at 1.1. The maximum weight size in the unlimited network is 1.15. The
tolerated saturation is small and learning is greatly slowed because of the small
number of adjustable parameters in this network.

No weight limit
——— Weight limit= 0.8
—-—-~ Weight limit = 0.6

iy
Q
©

Mean squared error
3
3

] T I T l
1500 2000 2500
Learning epochs

Figure 6.13: Performance of a 2 x 2 x 1 network on an XOR problem. Weight limit
is set at 0.8 and 0.6. The maximum weight size in the unlimited network is 0.95.
This network has one more hidden unit than the one in figure 6.12.

CHAPTER 6. HARDWARE ISSUES

0 1 5

Figure 6.14: Weight set for the network of figure 6.13 with a weight limit of 0.6.
The solid white and solid black weights are all saturated at 40.6.

99

CHAPTER 6. HARDWARE ISSUES 100

0.1% Gaussian noise
i} —=—~—Nonoise

poewd s gl g

Mean squared error
3
&
1ol

Ll

1010 T | . , T : — e
0 100 200 300 400 500 600 700 800 800 1000
Learning epochs

Figure 6.15: The effect of learning noise on a 2x 1x1 network on the XOR problem.
Learning rate is 7 = 0.05, noise is Gaussian with an amplitude of 5 x 10~5.

6.2.5 Noise

No analog system is free from noise. Noise levels can be controlled through careful design,
but some noise is inevitable. The effect of noise in-the weight multiplier, input summation,
and unit activation function is a noisy error in the network outputs. If there are multiple
minima of near equal depth in the energy function, the network may jump or settle into
spurious minima, resulting in incorrect answers and an unreliable network. This effect is
not remedied by averaging, but the learning algorithm may remove the spurious minima.
Simulations show that the minima are removed in small networks, while larger ones tend
to become unstable.

Noise in the learning circuitry has a different effect. It causes weight adjustments of the
wrong size or even of the wrong sign. If the noise level is significant as compared to the
learning rate, training is severely affected. In most cases, the effect of noise is an increase

in the residual error that cannot be removed by averaging (see figure 6.15).

CHAPTER 6. HARDWARE ISSUES 101

6.3 Discussion

Determining the effect of non-ideal hardware behavior is difficult. It appears that a DBM
can tolerate moderate levels of most hardware deficiencies if the problem being learned has
isolated solutions. Conversely, a network learning a problem that has a continuous solution
set, like XOR, cannot tolerate even minuscule levels of weight decay and add/subtract
offsets® in the learning circuitry.

As a general rule, weight decay and add/subtract offsets should be kept to a minimum.
This lowers residual error rates in networks that have isolated solution sets and minimizes
the oscillation frequency in networks that have continuous solution sets. It is also useful to

use as large a learning rate as possible in order to decrease the oscillation frequency.

®unless learning thresholds are used. See section 6.2.2.

Chapter 7

Learning Analog Values

7.1 Introduction

Deterministic Boltzmann machines normally learn by adjusting the minima of an energy
surface so that the unit activations relax to a desired output pattern given a particular input
stimulus. In this chapter it is shown that a DBM can learn to adjust its settling dynamics
so that desired analog outputs are produced without ever reaching an energy minimum.

For some types of problems, it is desirable for a DBM to generate continuous analog
rather than digital output values in response to analog input patterns. While a digital
output is considered “correct” as long as it is on the proper side of some threshold. Analog
outputs must match their teaching patterns to within some application-dependent perfor-
mance criterion to be useful.

When an input pattern is applied to a digital-output DBM, the energy minima of the
network change so that the outputs settle to the values learned during training, or at least
to the right side of the threshold. Since an analog problem has a continuous, and therefore
infinite, set of input and output vectors, the locations of the energy minima would have to

be continuously adjustable. Simulations show that this does not happen.

102

CHAPTER 7. LEARNING ANALOG VALUES 103

7.2 Network Configuration

A fully-connected eleven unit 2 x 6 x 2 DBM network is used in these experiments. The two
outputs are always complements of each other in the training set, so there is effectively only
a single output. Weights are constrained to be symmetric (w;; = wj;). Except as noted, all

simulation procedures are the same as in the experiments of previous chapters.

7.3 Observed Behavior

The network is trained with an analog version of a 2-input XOR problem. The training set
consisted of an 11 x 11 array of analog input/output pairs generated by the function

P(z,y) = ("B*y)Q;(Hy)Z (7.1)

where z and y are the two inputs, ranging from —1 to 41, and P is the output, also ranging
from —1 to +1.

After the network had been trained for 6000 epochs with Teror = 0.0001 and another
1000 epochs with Topor = 0.00002, it was tested and th-e activation values during annealing
recorded. The results for two different input vectors are shown in figure 7.1.

Looking at the energy surface in figure 7.2, it is obvious that neither of the test cases
settles to the stable energy minimum at a,,, = 0.64. However, the network has learned
to produce outputs close to the training values by adjusting the activation dynamics so
that the activations are correct at the end of the finite number of annealing/settling passes
allowed in this simulation. If the network were given more time to settle, the output would
eventually reach 0.64 for both test cases. (Actually, the energy minimum is not exactly the

same for both cases, but it is very close.)

7.3.1 Geometric Annealing

The same experiment was performed for a network trained with a geometric annealing
schedule and multiple-pass asynchronous activation updating at each temperature (see fig-

ure 7.3). The mean squared error only decreases to its minimum value after the network

CHAPTER 7. LEARNING ANALOG VALUES 104
04 e e e e s _.50
Output{x=0.4, y=-0.8) : :
4 ——— Output(x=0.8, y=0.2) : : : |
—-—-- Temperature :

Output activation (a,,)
<)
[\V]
Temperature

o
=N

o
@

Synchronous updates

Figure 7.1: Tests of two training patterns after 7000 training epochs. The outputs
have not settled for either test case, but the results are correct to within 4% of the

=£1 unit range.

AT

J .

b ~

N
!

N
[}
]

785 o SR LSRR b FSRRRT S - T

Free energy

N
F-N
1

-7.45

-7.5

-7.55 B A B S . :
-1 08 06 04 02 0 0.2 0.4 0.6 08 1
Output activation (a,,)

Figure 7.2: Network free energy as a function of output activation. Produced
by holding output unit activation at points between ~1 and +1 and allowing the

network to settle.

CHAPTER 7. LEARNING ANALOG VALUES 105
030_ PR — 10()%
2 : o - 80%
o . f: : z : :
o : : : : : o
=] N : : . . @
g 020 : ; : : : 6
3 - - e d
80,15+ f : : f f 2
o : : : ; : c
1\ A a0% £
3 0.10 - >3 : : : z é i @
= | e : : : : : : L
0.05 | §*TF: e
1N ot
0.00 T = o (o
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Training Epochs

Figure 7.3: Performance of a network using a 10 step geometric annealing sched-
ule with Tinjiial = 20, Tgpar = 1, and 100 passes allowed at each temperature.
Error measures the distance between the network outputs and the training values.
Unsettled is the fraction of the input patterns for which the network did not reach

a final, stable, energy minimum.

has adjusted its dynamics so that it fails to settle on almost all of the input patterns. Con-

versely, the “Fraction Correct” (in the table below), which measures whether or not the

output pattern has the correct sign, barely increases after 2000 training epochs. Figure 7.4

shows how the network dynamics change as the network is trained.

Epochs MSE Fraction Correct Not Settled
2000 0.0837 79% 38%
10000 0.0078 80% 96%
20000 0.0058 82% 96%

7.4 Activation Dynamics

The activation updating rule is

I3

a

(1 - 7)a + 7 tanh (%netf) .

(7.2)

CHAPTER 7. LEARNING ANALOG VALUES 106

OASO e e TR o SR .

2000 training cycles §: : :
4 =~ = 10000 training cycles | : : :
— === 20000 training cycles | : : :
040_ oo i TITITIITITIITLL Lol e e
EOSO"‘
o : :
R L T R P A : s
® S : :
.‘g Q20 et L \N
Q e TR
< - v, : ~a _-
- e DNy
B_‘_ 0.10 - T Al e TTONNG
= Gl =TT
o) 1 L
0'00._. ...
0.10 e e e e]
0 20 40 60 80 100 120 140 160 180 200

Annealing/Settling Passes

Figure 7.4: Annealing/relaxation dynamics for the network of figure 7.3 using test
pattern £ = —~0.4, y = 0.2, P(z,y) = 0.1 after different amounts of training. The
2000 cycle case settles to a stable state while the later cases do not. The 20000 cycle
case settles to a value very close to the training data.

The differential equation solved by (7.2) is

% =7(—a; + f;(net-i)) (7.3)
where f;(-) = tanh(-) is the sigmoid unit transfer function.

Normally, the activations are updated until they settle to an equilibrium condition where
fi(nveti) = a; and da;/dt = 0. Movellan [Mov90b] derives the contrastive Hebbian learning
(CHL) procedure from this equilibrium condition.

The question arises: what happens if, after a fixed number of annealing/settling passes,
the network fails to reach equilibrium and the CHL procedure is applied anyway? Imagine a
case where the the final unclamped state (vector of activations) is &~ and the final clamped
state is a*, neither being at equilibrium. See figure 7.5 for an illustration (“indicates the
final non-equilibrium state). The vectors &~ and at are likely to be close together because

some learning has already taken place. They will usually at least have the same sign. The

CHL weight updating rule is

-+

Aw;; = n(a;*aj —a;a;).

CHAPTER 7. LEARNING ANALOG VALUES 107

Assume Ezj_

F increased F decreased

T
& /
L L clamped

unclamped

Activation dynamics

Figure 7.5: Effect of applying CHL when not at equilibrium
~ &} = &} near a*. We then have

Awij = naj(a] —a;),
net; + Anet; = Z(wif + Aw;;)a;,

net; + Anet;

H
&
<
+
=
]
ST
—
o
4t
!
8
=
[

T
If aj ~ a7 then

net; + Anet; = Y wia; + (aF — a7)(n) Y (8;)%
j j

Anet; = (& —a7)n)y (a;)> (7.4)

Replacing net; in (7.3) with the updated net input, we obtain

da; da; L. _ .
5 + A—EZ— = 1(—a; + fi(net; + Anet;)). (7.5)

Since f;(-) is a monotonically increasing function, Ada;/dt, the change in the slope of the

activation dynamics due to the weight update, always has the same sign as Anet;, the

change in the net input to unit i. Now, if & < & and da;/0t < 0, as in figure 7.5,

t

Anet; > 0 so Ada;/0t > 0, and the network dynamics slow down so that @ is closer to

@} after the fixed number of settling passes, and the network error performance increases.

CHAPTER 7. LEARNING ANALOG VALUES 108

A similar argument can be made for cases where da;/0t > 0 or a; > &f, always adjusting
the network dynamics so that @ moves closer to @;.

Note that @ is a clamped value if unit 7 is an output, so the change in network dynamics
does not affect sz" at all. Even for a hidden unit, the clamped outputs cause unit i to settle

rapidly near @} despite the modified network dynamics.

7.5 Discussion

It has been shown that a DBM can learn to recall analog input/output mappings without
settling into energy minima. It is interesting that the arguments presented here do not
apply only to analog problems, but also to discrete ones, where the desired outputs are a
few distinct values instead of a continuous range. In fact, the behavior described here has
been observed when a network was trained with analog input patterns and discrete output
patterns, although less frequently than with analog outputs. In applications where only two
discrete output values are required (the binary case), only the sign of the output need be
correct. However, looking at figure 7.1, we can see thét the output would have the wrong
sign if the network were allowed to settle completely.

It might be argued that learning by adjustment of the network dynamics results from an
inadequate annealing schedule or from an insufficient number of passes through the network
to achieve reliable relaxation. This is not the case. In experiments where the network is
allowed a large number of settling passes at each temperature, the learning process simply
slowed down the dynamics until all the allowed passes are used up.

This type of analog learning mechanism only applies to network input/output relation-
ships that are continuous and smooth. It does not apply to arbitrary analog problems.

Learning by adjustment of network dynamics is possible when a DBM is implemented
using a digital computer because a repeatable annealing/relaxation schedule is easily pro-
duced. However, in an analog VLSI implementation, where the network may settle in
less than a microsecond, it is unlikely that the annealing/settling time can be controlled

accurately enough to allow the network to learn by this method.

Chapter 8

Conclusion

8.1 Learning Instability

The analyses in chapters 4 and 5 are restricted to a very specific problem and network

configuration. The following results have been demonstrated:

1. There exist a continuous range of optimal weight sets solving the XOR problem on a

single hidden, single output unit deterministic Boltzmann machine network.

2. Since every point in the continuous solution set is optimal, meaning that the outputs
of the network exactly match all the training patterns, the CHL learning algorithm
cannot distinguish one ideal weight set from another. Therefore, the weights are free
to drift to a point where there are two equal-depth energy minima and d(W*) = 0,
causing small weight perturbations to generate gross output errors as the network

randomly settles to one of the two minima.

3. The weight drift phenomenon is not due to failure of the mean field approximation
for small sized networks. It is possible to construct a stochastic Boltzmann machine
that exhibits behavior equivalent to basin hopping in the DBM as the BM approaches
infinite size. This implies that DBM behavior cannot be expected to improve with

increases in network size, and that the BM statistics gathering period must be in-

109

CHAPTER 8. CONCLUSION 110

creased as the size of the BM increases to avoid behavior analogous to the basin

hopping observed in the DBM.

The most frequently encountered manifestations of these findings are error spikes in
a DBM learning curve in the latter part of the learning process after the initial random
hunting behavior but before the weights have settled down to their final optimal values. In
simulation, it may not be obvious that there is a problem because the spikes tend to die out
as the weight set is optimized. If learning is arbitrarily terminated when a predetermined
performance criterion is reached, the occurrence of further spikes is prevented. The error
spikes can also be suppressed by other ad hoc fixes, such as adjusting the learning rate and
other network parameters, but there does not appear to be a reliable general solution.

Weight drift is of particular concern in analog hardware implementations of DBMs,
where weight decay and learning offsets cannot be entirely eliminated. As there is no
threshold level of weight decay that is tolerated, there is no way to eliminate occasional
error spikes in an analog system.

Although the existence of continuous solution sets .has been conclusively demonstrated
only for the 2-bit XOR case on a 2 x 1 X 1 network, the behaviors predicted, namely sen-
sitivity to weight perturbations, decay, and offsets, have been observed in simulation of
XOR on larger networks, as well as in n-bit parity and other problems on various sizes of
networks. These results lead to the hypothesis that this is not a problem unique to XOR,
or even to n-bit parity, but one that is common to many DBM applications.

At the root of the problem is under-constraint of the weight set and the number of ad-
justable parameters (weights) generally increases as the square of the number of units. It is
therefore suspected that these problems will grow worse on still larger! networks (attempt-
ing larger problems). At some point, error spikes during learning may grow so prevalent

that it becomes difficult to learn a large task completely, even on digital hardware.

labove the size which can be conveniently simulated, but which are of most interest for hardware

implementations.

CHAPTER 8. CONCLUSION _ 111

There are tasks, such as learning overlapping Gaussians, where the training set is self
contradictory, and 100% correct performance is not even theoretically possible. It has not
been determined whether weight drift increases the error rate in such cases, or whether any

such increase would be significant compared to the error inherent in the problem.

8.2 Hardware Issues

It has been determined that a DBM network is able to tolerate moderate amounts of most
non-ideal behavior, with the exception of weight decay and weight update offsets (without
thresholding), as mentioned above.

In particular, most deficiencies in the weight multiplier, input addition, and unit ac-
tivation function are well tolerated because the learning algorithm easily compensates for
them. Essentially, the learning algorithm cannot determine whether the activation of a unit
needs to be adjusted because of an incorrect weight value, or because of non-ideal analog
circuitry. As long as a weight adjustment moves the activation in the anticipated direction,
the network performs well. o

DBM networks are particularly sensitive to non-ideal behavior in the learning and weight
storage circuitry because it directly affects the ability of the network to make the required
weight adjustments. Most serious are offsets in the weight update circuit and weight decay.
The lack of a threshold level of allowable decay or offset makes these problems persistent.
It is possible to minimize the frequency of error spikes by minimizing offset and decay, and
by using a fairly high learning rate to ensure that large weight steps are taken whenever an

error occurs.

8.3 Future Work

It would be useful to characterize the types of learning tasks and network architectures that

lead to continuous solution sets, and therefore to all the problems discussed above. The goal

CHAPTER 8. CONCLUSION 112

would be to develop a modified learning rule, or some form of restriction on the network
weights, that creates isolated optimal weight sets.

Another outstanding issue is whether weight drift effects cause increased error rates in
real, noisy, self-contradictory problems. It is our belief from simulations that they do, but
this has not been proven.

Further characterization of hardware design issues is probably best left until the weight
drift problem has been resolved, since isolated solution sets would automatically solve the
most serious hardware problems, namely weight decay and add/subtract offsets. It is also
very difficult to quantitatively evaluate the consequences of hardware design tradeoffs when
the network is as unstable as most of those simulated in this thesis.

The most desirable property of the DBM nerual network architecture is its simple, local,
learning rule. This makes it an ideal candidate for use in highly parallel digital, analog, or
mixed VLSI hardware. If a way can be found to reliably generate isolated weight solution
sets, most of the outstanding hardware design issues will be automatically solved. It would
then be possible to build truely large neural network systems with many thousands of units

and apply it to real-world problems.

Bibliography

[AA90]

[AAJ90]

[AdF91]

[AHSS5)]

[AK89]

[AZL92]

[BP91]

[Cho86]

[Dor80]

Robert B. Allen and Joshua Alspector. Learning stable states in stochastic

asymmetric networks. IEEE Transactions on Neural Networks, 1(2), June 1990.

Joshua Alspector, Robert B. Allen, and Anthony Jayakumar. Relaxation net-
works for large supervised learning problems. In Proceedings of NIPS-90, in

press, 1990.

Bruno Apolloni and Diego de Falco. Learning by asymmetric parallel Boltzmann

machines. IEEE Transactions On Neural Networks, 2(1), January 1991.

David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning

algorithm for Boltzmann machines. Cognitive Science, 9:147-169, 1985.

Emile Aarts and Jan Korst. Simulated Annealing and Boltzmann Machines.

John Wiley and Sons, 1989.

Joshua Alspector, Torsten Zeppenfeld, and Stephan Luna. A volatility measure

for annealing in feedback neural networks. Neural Computation, 4:191-195, 1992.

Pierre Baldi and Fernando Pineda. Contrastive learning and neural oscillations.

Neural Computation, 3:526-545, 1991,

Debashish Chowdhury. sz’nv Glasses and Other Frustrated Systems. World Sci-
entific Publishing Company, 1986.

Richard C. Dorf. Modern Control Systems. Addison-Wesley, 1980.

113

BIBLIOGRAPHY 114

[Gal]

[GH90]

[Hin87]

[Hin89]

[HKP91]

[Hop84]

[Hop88]

[HP&7]

[KS85]

[Liv91]

[Ma85]

Conrad Galland. Personal communication.

Conrad C. Galland and Geoffrey E. Hinton. Deterministic Boltzmann learning in
networks with asymmetric connectivity. In Connectionist Models: Proceedings
of the 1990 Summer School, pages 3-9, San Mateo, California, 1990. Morgan

Kaufmann Publishers, Inc.

Geoffry E. Hinton. Connectionist learning procedures. Published in the journal

Artificial Intelligence, December 1987.

Geoffry E. Hinton. Deterministic Boltzmann learning performs steepest descent

in weight-space. Neural Computation, 1(1), 1989.

J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural Com-
putation. Addison-Wesley Publishing Co., 1991.

John J. Hopfield. Neurons with graded response have collective computational
properties like those of two-state neurons. Proc. Natl. Acad. Sci., 81:3088-3092,
1984.

John J. Hopfield. Artificial neural networks. IEEE Circuits and Devices Maga-

zine, September 1988.

Geoffry E. Hinton and David C. Plaut. Using fast weights to deblur old memories.

In Proceedings of the Cognitive Sciences Conference, Seattle, Washington, 1987.

Eric R. Kandel and James H. Schwartz. Principles of Neural Science. Elsevier

Science Publishing Co., 1985.

Mike Livesey. Clamping in Boltzmann machines. Neural Computation, 3:402-

408, 1991.

Shang-Keng Ma. Statistical Mechanics. World Scientific Publishing Company,
1985.

BIBLIOGRAPHY 115

[MC89]

[Mea88]

[Mov90a)]

[Mov90b]

[MPSS]

[MRSS]

[PAS7)

[PFTV8S]

[PHS89]

[RM87a]

[RMS87b]

Gagan Mirchandani and Wei Cao. On hidden nodes for neural nets. IEFF
Transactions on Circuits and Systems, 36(5):661-664, May 1989.

Carver A. Mead. Analog VLSI and Neural Systems. Reading: Addison-Wesley,
1988.

Javier R. Movellan. Contrastive Hebbian learning in interactive networks. Con-

nectionists Mailing List, April 1990.

Javier R. Movellan. Contrastive Hebbian learning in the continuous Hopfield
model. In Connectionist Models: Proceedings of the 1990 Summer School, pages
10-17, San Mateo, California, 1990. Morgan Kaufmann Publishers, Inc.

Marvin L. Minsky and Seymour A. Papert. Perceptrons. MIT Press, Cambridge,
Massachusetts, 1988,

James L. McClelland and David E. Rumelhart. FEzplorations in Parallel Dis-
tributed Processing. MIT Press, Cambridge, Massachusetts, 1988.

Carsten Peterson and James R. Anderson. A mean field theory learning algo-

rithm for neural networks. Complez Systems, 1:995-1019, 1987.

William H. Press, Brian P. Flannery, Saul A. Teukolsy, and William T. Vetter-
ling. Numerical Recipes in C. Cambridge University Press, 1988.

Carsten Peterson and Eric Hartman. Explorations of the mean field learning

algorithm. Neural Networks, 2:475-494, 1989.

David E. Rumelhart and James L. McClelland. Parallel Distributed Processing:
Ezxplorations in the Microstructure of cognition - Foundations, volume 1. MIT

Press, Cambridge, Massachusetts, 1987.

David E. Rumelhart and James L. McClelland. Parallel Distributed Processing:
FEzplorations in the Microstructure of cognition - Psychological and Biological

Models, volume 2. MIT Press, Cambridge, Massachusetts, 1987.

BIBLIOGRAPHY 116

[Sch91] Christian Schneider. Analog CMOS Circuits for Artificial Neural Networks. PhD
thesis, University of Manitoba, 1991,

[SSC90] Christian Schneider, Roland Schneider, and Howard Card. Analog cmos synapse
with in situ hebbian learning. In Proceedings of CCVLSI’90, Ottawa, Ontario,
Canada, 1990.

[YK89] C. H. Youn and S. C. Kak. Continuous unlearning in neural networks. Electronics

Letters, 25(3), February 1989.

