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Abstract

Breast cancer (BC) is a complex disease with a high degree of heterogeneity. The
heterogeneity of BC could be detected at different biological levels using a variety of modern
molecular biological techniques. These biotechniques could generate high-throughput and
quantitative measurements, such as gene expression, copy number variation (CNV), DNA
methylation, proteomics measurements, and so on. Meanwhile, the tumor morphology information
obtained from medical images is also worthy of consideration in evaluating the heterogeneity of
BC. Many machine-learning algorithms have been developed to help us to explore the
heterogeneity of cancer from the abovementioned high-dimensional measurements. However,
there are several challenges for characterizing BC heterogeneity based on the multi-modal biodata
using the existing computational data analysis techniques. The first challenge is how to effectively
combine the multi-modal biodata and find comprehensive and interpretable representations from
them. Another challenge is how to address the execution infeasibility caused by the unpaired data
problem (the publicly available datasets have unmatched multi-omics, medical images, and clinical
outcome data). Besides, the model interpretability and privacy issues should also be carefully taken
into consideration in machine learning-based BC research. This thesis aims to explore the BC
heterogeneity using thriving machine-learning algorithms at different data resolutions ranging
from single genomics, multi-genomics, to proteomics and radiogenomics. We have four major
objectives: 1)human epidermal growth factor receptor2 positive/estrogen receptor positive
(HER2+/ER+) BC stratification and prognostic gene signature identification using single genomic
data; 2) BC subtyping using multiple genomics data; 3) Graph neural network (GNN) for BC
hierarchical biological system mapping using graph structured proteomics data; 4) BC prognostic

radiogenomic biomarker identification. This thesis demonstrates the promising applications of

xii



machine learning in deciphering BC heterogeneity at different biological levels. Moreover, the
resulting 15-gene HER2+/ER+ BC gene expression signature, multi-omics-based BC subtypes,
hierarchical biological systems/protein communities, and prognostic radiogenomic biomarkers

have the potential to benefit clinical practice for BC.
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1 Chapter 1: Introduction

Partial of this chapter has been documented into a review paper published: Q Liu, P Hu.

2022. Extendable and explainable deep learning for pan-cancer radiogenomics research. Current

Opinion in Chemical Biology. 66:102111, https://doi.org/10.1016/j.cbpa.2021.102111. (IF:
8.972). I did the literature reviewing, manuscript writing, and manuscript revision with the

guidance from Dr. Pingzhao Hu.

Breast cancer (BC) is the most commonly diagnosed cancer and is one of the leading causes
of cancer death for women worldwide (Van Goethem et al., 2006). According to Canadian Cancer
Statistics 2022, 28,600 Canadian women will be diagnosed with BC, which represents 25% of all
new cancer cases in women. Approximate 5,500 Canadian women will die from BC, which
represents 14% of all cancer deaths in women in 2022 (Canadian Cancer Statistics Advisory
Committee, 2022). The incidence of new BC cases among Canadian women increased between
1984 and 1991. Part of this increase was due to the more frequent use of mammography, which
meant more cases of BC were detected (Canadian Cancer Statistics Advisory Committee, 2022).
However, the incidence rate has fluctuated with an overall slight decline since then. The reasons
for this fluctuation are unknown, but may involve long-term changes in hormonal factors, such as
whether women start menstruating at a young age, breastfeeding, and oral contraceptive utilization

(Canadian Cancer Statistics Advisory Committee, 2022). BC mortality peaked in 1986 and has



been declining since then. The decline in mortality likely reflects the impact of improved BC
screening and treatment (Canadian Cancer Statistics Advisory Committee, 2022).

Screening for BC can help find cancer earlier and save lives. Screening includes self-exam
or having a doctor to exam the breast or having a screening breast mammogram. If a change is
detected in the screen mammogram, a diagnostic mammogram, or ultrasound, or breast MRI will
be used to check more details about the abnormal. But the golden standard of BC diagnosis is the
pathology biopsy. It is the test that removes a small amount of tissue from the suspicious area in
the breast. Then some further examinations, such as Immunohistochemistry (IHC) examination or
other molecular omics measurements, can be performed on the suspicious tissues. Although often
referred to as a single disease, BC is heterogeneous in terms of histology, progression, treatment
response and clinical outcome (Dai et al., 2016). Researchers have made significant efforts to find
biomarkers that can indicate BC progression, or responses to an exposure or intervention. For
example, the hormone receptor (HR) status is the biomarker for BC that is now frequently used in
clinical practice. It can indicate the response of BC patients to certain hormone therapies. However,
this kind of simple biomarker cannot fully represent the heterogeneity of BC. Sometimes patients
with the same HR status still show different prognosis or treatment response. Thus, researchers
want to delve more deeply into BC molecular mechanisms and find better biomarkers for the
patients. A successful case is the Prediction Analysis of Microarray 50 (PAMS50) signature (Parker
et al., 2009), which is the gene expression (transcriptome) patterns of several genes, and can help
predict the chance of metastasis and survival of BC. Now, with the advent of variety of molecular
profiling techniques and machine learning-based data analyzing techniques, people have been

investigating better biomarkers for BC by integrating multiple data sources together. This thesis



aims to explore BC heterogeneity based on multi-omics data and uncover biomarkers using
machine learning methods.

Chapter 1 aims at reviewing related literatures, which have provided guidance for the
research. Section 1.1 introduces BC heterogeneity in perspectives of the subtyping schemes and
existing biomarkers for BC. Section 1.2 describes the limitations of current BC subtyping schemes
and biomarkers as well as the challenges in using machine learning in BC heterogeneity
exploration. Section 1.3 reviews the strategies of solving the challenges mentioned in Section 1.2,
including the approaches to acquire BC multi-omics measurements and the machine learning

methodologies to analyze them.

1.1 BC heterogeneity

BC is a complex disease and has high inter-tumor and intra-tumor heterogeneity that result
from both genetic and non-genetic alterations (Polyak, 2011). Inter-tumor heterogeneity refers to
variances between tumors from different people, while intra-tumor heterogeneity represents
cellular differences within a single tumor of a patient (Polyak, 2011; Martelotto et al., 2014). Intra-
tumor heterogeneity can be further divided into spatial heterogeneity and temporal heterogeneity.
Spatial heterogeneity represents regional histological/genetic/epigenetic differences within a
tumor, while temporal heterogeneity reflects histological/genetic/epigenetic changes of the tumor
at different time points (Martelotto et al., 2014).

BC heterogeneity has become one of the most important and clinically relevant areas of
BC research, as in-depth characterization and understanding of BC heterogeneity are critical for
improving diagnosis, uncovering prognostic and predictive biomarkers, and designing therapeutic

strategies (Koren and Bentires-Alj, 2015). This thesis mainly focuses on exploring BC inter-tumor



heterogeneity. Section 1.1.1 discusses the traditional histopathological staging and grading of BC.
Section 1.1.2 introduces the IHC detected HR biomarkers and subtyping schemes of BC. Section
1.1.3 details the intrinsic BC subtyping scheme and other gene expression-based subtype schemes.
Section 1.1.4 summarizes BC subtyping schemes that involve other data types such as copy
number variations (CNVs). As the intra-tumor heterogeneity is not in the scope of this thesis, it is

not discussed in this chapter.

1.1.1 BC histopathological staging and grading

Traditionally, the histopathological findings have been the main indicators for BC inter-
tumor heterogeneity, which have also acted as the foundation of different BC stratification
schemes. Histologically, BC can arise from epithelial cells in ducts or lobules, leading to ductal or
lobular carcinoma, respectively (Malhotra et al., 2010). Depending on whether the cancer cells are
still only in the epithelial area or have invaded to surrounding areas, cancers can be in situ or
invasive (Malhotra et al., 2010). Around 70~80% invasive breast carcinomas are invasive ductal
carcinoma (Malhotra ef al., 2010). Histopathological staging and grading have a strong impact on
current clinical decision-making in BC. The Tumor, Node, Metastasis (TNM) system is the most
commonly used staging method in the clinic (Paleri et al., 2010). It was originally developed by
Pierre Denoix in the 1940s and 1950s and then edited and organized continuously by the American
Joint Committee on Cancer and the Union for International Cancer Control (Kalli et al., 2018). T
(Tumor) is used to represent the size of the tumor, N (Node) is used to describe nearby (regional)
lymph nodes that are involved, and M (Metastasis) is used to describe whether the cancer has

spread from one part of the body to another(Paleri ez al., 2010). An overall Stage metric that ranges



from 0 to IV is then used to summarize the T, N, M information. The details of the levels of the

metrics T, N, M, and Stage are shown in Table 1-1.

Table 1-1. Tumor (T), Node (N), and Metastasis (M) metrics in TNM staging system.

Metric Category Meaning
TO No evidence of primary tumor.
TX Primary tumor but the size cannot be assessed.
Tis Ductal carcinoma in situ.
T1mi Tumor size is 0, centimetres or less.
Tumor size is more than 0.1 centimetres but not more
Tl than 0.5 centimetres.
T1 Tumor size is more than 0.5 centimetres but not more
Tib than 1 centimetres.
Tumor Tumor size is more than 1 centimetres but not more
(T) the than 2 centimetres.
Tumor size is more than 2 centimetres but no more
12 than 5 centimetres.
T3 Tumor size is more than 5 centimetres.
T4a Tumor has extended to the chest.
T4b Tumor has spread into the skin.
T4 T4c Both T4a and T4b.
Inflammatory carcinoma — the overlying skin is red,
Tad swollen, and painful.
NO There are no cancer cells in any nearby nodes.
Node Lymph nodes cannot be assessed (for example, if they
N) NX

were previously removed).




Cancer cells have spread to the lymph nodes in the

N2a armpit, which are stuck to each other and to other
structures.
N2 Cancer cells have spread to the lymph nodes behind
N2b the breastbone (the internal mammary nodes), which
can be seen on a scan or felt by the doctor. There is no
evidence of cancer cells in lymph nodes in the armpit.
N3 Cancer cells have spread to lymph nodes below the
a
collarbone.
Cancer cells have spread to lymph nodes in the armpit
N3 N3b
and behind the breastbone.
N3 Cancer cells have spread to lymph nodes above the
C
collarbone.
No cancer cells are found in the any distant body parts.
Small numbers of cancer cells are found in blood or
MO ) bone marrow, or cancer cells have spread to lymph
Metastasis cMO(i+) '
nodes away from the armpit, collarbone, and
M)
breastbone.
Mi Cancer cells are found in the distant organs such as
bones, lungs, bran, or liver.
0 Tis, NO, MO
1A T1, NO, MO
I TO, N1mi, MO
IB
T1, N1mi, MO
TO, N1, MO
Stage
A T1, N1, MO
I T2, NO, MO
T2, N1, MO
1B
T3, N1, MO
11 1A T0, N2, MO




T1, N2, MO
T2, N2, MO
T3, N1, MO
T3, N2, MO
T4, N0, MO
1B T4, N1, MO
T4, N2, MO

IIC T, N3, M0

v T,N, M1

*This table is adapted and summarized from Kalli ef al.’s work (Kalli et al., 2018).

Besides the staging, histopathological grading also has a strong impact on current clinical
decision-making in BC (Turashvili and Brogi, 2017). The Nottingham grading is the most widely
used grading method in the clinic (Elston and Ellis, 1991). It was modified from the Bloom-
Richardson BC grading system which was developed 60 years ago (Elston and Ellis, 1991). Three
tumor features are considered to assess the Nottingham grading of BC, namely glandular/tubular
differentiation, nuclear pleomorphism, and mitotic counts. The details of each Nottingham grading

feature and the grade standard based on them are summarized in Table 1-2.

Table 1-2. Summary of the Nottingham grading system for assessing BC histological grade.

Feature Points/grade Meaning
1 Majority of the tumor (>75%) with glandular/tubular
formation.
Glandular/tubul
ancuiartubuiar Moderate degree (10 — 75%) of glandular/tubular
formation . _
differentiation.
3 Little or none (<10%) glandular/tubular differentiation.
1 Small, regular uniform nuclear.




Nuclear
pleomorphism

Moderate increase in nuclear size and variability.

W

Marked nuclear variability.

Mitotic counts

0-9 mitosis observed by a 0.274-millimeter field area Leitz
Ortholux microscope

0-5 mitoses observed by a 0.152-millimeter field area Nikon
Labophot microscope

0-11 mitoses observed by a 0.312-millimeter field area Leitz
Diaplan microscope

10-19 mitoses observed by a 0.274-millimeter field area
Leitz Ortholux microscope

6-10 mitoses observed by a 0.152-millimeter field area
Nikon Labophot microscope

12-22 mitoses observed by a 0.312-millimeter field area
Leitz Diaplan microscope

More than 20 mitoses observed by a 0.274-millimeter field
area Leitz Ortholux microscope

More than 11 mitoses observed by a 0.152-millimeter field
area Nikon Labophot microscope

More than 23 mitoses observed by a 0.312-millimeter field
area Leitz Diaplan microscope

Grade

I

The total points of the above three features are 3-5.

II

The total points of the above three features are 6-7.

III

The total points of the above three features are 8-9.

*This table is adapted and summarized from Elston and Ellis’s work (Elston and Ellis, 1991).

1.1.2 Receptor expression-based BC subtyping

With the development of modern molecular biology techniques, the heterogeneity in BC

has been better recognized through well-established molecular biomarkers, such as estrogen

receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor2 (HER2)

(Harbeck et al., 2019). The expressions of these three receptors are recognized by international

guidelines as prognostic and therapeutic biomarkers for invasive BC and are routinely tested

through THC in clinic practice today. A brief illustration of the National Health Service (NHS)

clinical management guideline for BC is shown in Figure 1-1 to demonstrate the clinical
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applications of both histopathological biomarkers, staging/grading, and the status of the above
mentioned three receptors. According to the standards from American Society of Clinical
Oncology/College of American Pathologist, if any nuclear staining is observed in more than 1%
of the cancer cells (no matter how strong or weak the signal is), the cancer is considered ER-
positive (ER+) and/or PR-positive (PR+). Conversely, if nuclear staining is observed in less than
1% of the cancer cells, the cancer is considered ER-negative (ER-) and PR-negative (PR-) (Weigel
and Dowsett, 2010). About 80% of BCs are ER+ and about 75% are PR+. Approximately 65~75%
of BCs co-express ER and PR (ER+/PR+), 13% are ER+/PR- and only 2% are ER-/PR+ (Harbeck
et al.,2019) (Figure 1-2). For the HER2 status, it can be assessed both by IHC and by the in-situ
hybridization detected amplification of HER2 gene, but the IHC is the most widely used approach
due to its cost-effectiveness. The expression of HER2 protein can be quantified and scored on a
scale of 0-3. If the HER2 protein expression is scored 0 or 1+, the tumor is considered HER2-
negative (HER2-), while if the score is 2+, the tumor is considered equivocal, and if the score is
3+, the tumor is then considered HER2-positive (HER2+) (Wolff et al., 2018). About 15~25% of

BCs are HER2+ (Wolff et al., 2018) (Figure 1-2).
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Figure 1-1. A summary of the National Health Service (NHS) clinical management guideline for BC.
Source is from the National Health Service (NHS) North Cancer Alliance (NCA)

https://www.nhsscotlandnorth.scot/nca/clinical-management-guidelines.

ER+: ~ 80% HER2+: ~ 15-25%

PR+:~ 75%

_e~ (o)
ER+/PR-: ~ 13% ER+/PR+: ~ 65%-75%

Figure 1-2. The Proportions of BC ER, PR, and HER2 subtypes.

Patients that express ER and PR can benefit from endocrine/hormonal therapy targeting
these receptors. For example, ER is a protein inside the cells and can be activated by the hormone
estrogen. Once it is activated, the ER will move into nucleus and bind to DNA to regulate activity
of different genes and then stimulate the proliferation of mammary cells. Besides, the estrogen
metabolism can produce genotoxic waste. These two mechanisms lead to disruption of the cell
cycle, apoptosis, and DNA repair, thus leading to tumorigenesis. ER antagonists such as tamoxifen
can block estrogen activity by competitively binding to ER, thereby preventing cancer cell
proliferation. HER2+ tumors tend to be more aggressive and less responsive to hormonal therapy,
and thus have worse prognosis, but they respond to anti-HER2 therapy (e.g., trastuzumab and

lapatinib) (Dean-Colomb and Esteva, 2008). BCs that do not express ER, PR, and do not over
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express HER2 are called triple-negative BC (TNBC) which account for around 15% of all invasive

BCs and carry the worst prognosis and treatment response (Zagami and Carey, 2022).

1.1.3 Gene expression-based BC subtyping

Gene expression has been used in cancer stratification and gene signature identification
since 1999 (Qian et al., 2021). Gene expression signatures can help improve patient care by
classifying tumors into distinct groups, providing guidance for personalized clinical decisions. In
the past two decades, gene expression pattern that takes several transcriptional variations into
consideration has been used to study BC inter-tumor heterogeneity. Among them, the most widely
established one is the intrinsic classification scheme. It was first proposed in the year of 2000 by
Perou et al., where hierarchical clustering was performed on the expression values of 496 genes
from 42 BC patients and identified four patient clusters: Luminal-like, HER2-enriched, Basal-like,
and Normal-like (Perou et al., 2000). The Luminal-like subtype was named for its high expression
of many luminal epithelial cells, which was further evaluated by IHC using antibodies against the
luminal-like keratins. In contrast, the HER2-enriched BC subtype underexpresses luminal
epithelial genes but overexpresses a subset of genes (including HER2 and GRB7) located in the
HER2 amplicon on chromosome 17q12. Similarly, the Basal-like subtype shows low expression
of luminal epithelial genes but high expression of breast basal epithelial genes, which can be
confirmed by IHC with antibodies against basal keratins. BC samples in Normal-like subtype were
clustered close to the normal breast samples, and they overexpress adipose and basal epithelial
genes but underexpress luminal epithelial genes (Perou et al., 2000). A follow-up study with an
increased sample size (from 42 patients to 84 patients) was published in 2001 by Serlie et al. In

this follow-up study, a similar hierarchical clustering method was used to further divide the
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previous Luminal-like subtypes into Luminal A, Luminal B, and Luminal C subtypes, resulting in
a total of six intrinsic subtypes (Luminal A, Luminal B, Luminal C , HER2-enriched, Basal-like
and Normal-like). Luminal A shows the highest expression of luminal epithelial genes, while
Luminal B and Luminal C show relatively low or moderate luminal epithelial gene expression.
However, Luminal C highly expresses a set of genes of unknown function that are not highly
expressed in Luminal A and Luminal B. Furthermore, this follow-up study found that the mutation
frequency of the TP53 gene is significantly different among the identified intrinsic subtypes (13%
in Luminal A, 71% in HER2-enriched, 82% in Basal-like). The overall survival rates are also
significantly different among the identified intrinsic subtypes (Basel-like and HER2-enriched
shows the worst survival rates) (Serlie et al., 2001). Two years after the first follow-up study,
Serlie et al. published another follow-up study with a total of 115 BC samples. Similar hierarchical
clustering of the expression of 534 genes from these 115 samples revealed five intrinsic subtypes:
Luminal A, Luminal B, HER2-enriched, Basal-like and Normal-like (Luminal C in the previous
version has been removed in this version) (Serlie et al., 2003).

To further evaluate the intrinsic subtyping scheme and translate it into clinical practice,
more studies were conducted to confirm its reproducibility and develop more precise and concise
prediction tools for it (Hu et al., 2006) (Parker et al., 2009). A single sample predictor (SSP)
strategy was proposed in 2006 by Hu ef al. to assign intrinsic subtype labels to incoming new
samples based on the similarity of the expression profiles of the 306 intrinsic genes in the samples
with the centroid of each subtype expression level of these 306 intrinsic genes (Hu et al., 2006).
In 2009, Parker et al. were able to reduce the number of intrinsic genes used in the SSP from 306
genes to 50 genes with comparable assignment accuracy (Parker et al., 2009). This set of 50 genes

was named PAMS50 and significantly reduced the difficulty of the intrinsic subtypes being used in
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clinical assay (Parker et al., 2009). As a matter of course, later the PAMS50 assay was successfully
commercialized and has been commonly used in clinical practice since then. The history of the

intrinsic subtyping scheme is shown in Figure 1-3 timeline.
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Figure 1-3. The history of the intrinsic subtyping scheme development.

In 2007, Herschkowitz et al. identified a new BC subtype, namely Claudin-low, using both
232 human BC samples and 108 mouse BC models (Herschkowitz et al., 2007). The Claudin-low
subtype is an extension of above-described intrinsic subtypes and better represents the
heterogeneity of some Basal-like and Luminal A/Luminal B BCs (Prat and Perou, 2011). Claudin-

low BCs are characterized by the low expression of several Claudin genes involved in tight
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junctions and cell-cell adhesion (Herschkowitz et al., 2007) and have poor prognosis and
intermediate chemotherapy sensitivity (Prat ef al., 2010).

Besides the successful intrinsic subtyping scheme, some other gene expression profile-
based BC subtyping methods were proposed in parallel. For example, using the expression of 706
genes from 99 BC samples, Sotiriou et al. were able to identify six BC subtypes: Luminal-like 1,
Luminal-like 2, Luminal-like 3, Her-2/neu, Basal-like 1, and Basal-like 2 (Sotiriou et al., 2003).
Three versions of Subtype Classification Model (SCM), namely SCMOD1, SCMOD2, and
SCMGENE were released subsequently to assign subtype labels to incoming new BC samples
based on the expression of the 726 genes, 663 genes, and 3 genes, respectively (Haibe-Kains et al.,
2012). However, this BC subtyping system has not been applied into clinical practice. Another
example is the Cartes d’Identit des Tumeurs (CIT) BC classification project, which identified six
BC subtypes (Luminal A, Luminal B, Luminal C, mApo, Basal-like, and Normal-like) based on
expression of 256 genes from 537 BC samples (Gued;j et al., 2012). Both the SCM and CIT
subtyping schemes overlap to some extent with intrinsic subtyping, indicating their similarities

and uniqueness.

1.1.4 Copy number alteration-based BC subtyping

The successful BC intrinsic subtyping scheme, as well as the SCM and CIT BC subtyping
systems were developed based on the gene expression profiles, thus they can only stratify BC
patients into transcriptionally distinct subtypes. However, Gued; ef al. found that each of those six
CIT subtypes shows different CNVs, indicating its ability to capturing BC heterogeneity not only

at the transcription level but also at the alterations of the genome (Guedj et al., 2012). This finding
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inspired researchers to extend their research scope from the well-studied gene expression profiles
to CNV profiles. In 2010, Jonsson and colleagues proposed the first CNV-based BC subtyping
scheme which divided BCs into six genomic subtypes: 17q12, Basal-complex, Luminal-simple,
Luminal-complex, Amplifier, and Mixed (Jonsson et al., 2010). In the same year, Curtis et al.
proposed a subtyping scheme that takes both gene expression and CNV data into consideration
(Curtis et al., 2012). Their data came from the Molecular Taxonomy of BC International
Consortium (METABRIC) project where the DNA and RNA extracted from a large number of BC
samples (997 samples in the discovery set and 995 samples in the validation set) were hybridized
onto the Affymetrix SNP 6.0 and Illumina HT-12 v3 platforms to quantify the CNV and gene
expression. Expression quantitative trait loci (eQTL) analysis was then performed to identify cis
genes that are driven by recurrent CNVs. These cis genes were finally used to divide BCs in the
discovery set into 10 integrative clusters (IntCluster 1 — 10) with different clinical outcomes. And
the result can be reproduced in the validation cohort (Curtis et al., 2012). These 10 IntCluster
subtypes have the below characteristics. IntClustl, 2, 3, 6, 7, and 8 have a significant number of
CNVs, while IntCluster 4 is known as CNV-devoid due to its lower number of CNVs than other
IntClusters. The locus of the HER2 genes and the MYC oncogene are amplified in IntCluster 5
and IntCluster 9, respectively. IntClust10 has high genomic instability (Russnes et al., 2017).
Both the single CNV-based genomic subtypes and gene expression & CNV-based IntClust

subtypes overlap to some extent with the intrinsic subtypes, as shown in Table 1-3.

Table 1-3. The relationship of single CNV-based genomic subtypes and gene expression & CNV-

based IntClust subtypes with the single gene expression-based intrinsic subtypes.

Intrinsic subtypes Genomic subtypes IntClust subtypes
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Luminal-simple, Luminal-complex,
Luminal A IntClust 4, IntClust 9
Amplifier, Mixed

Luminal-simple, Luminal-complex,
Luminal B IntClust 5, IntClust 9
Mixed, Amplifier

HER2-enriched 17q12, Amplifier, Mixed IntClust 5

Basal-like Basal-complex, Amplifier, Mixed IntClust 4, IntClust 10

1.2 Challenges in deciphering BC heterogeneity

Section 1.1 summarizes current research achievements in BC heterogeneity studies. In this
section, the limitations of existing BC subtyping schemes and biomarkers and the challenges in
this field are briefly described. More details of the challenges are further discussed separately in

Chapters 2, 3, 4, and 5.

1.2.1 Substantial heterogeneity in BC subtype

Although existing BC biomarkers and subtyping schemes distinguish the BC well, there is
substantial heterogeneity within each subtype. For example, the TNBCs are observed to share the
lowest similarity with each other than the other IHC defined BC subtypes (Russnes et al., 2017).
To further explore the difference within TNBCs, Lehmann et al. studied 587 TNBC cases and
identified six TNBC subtypes, namely Basal-like 1, Basal-like 2, Immunomodulatory,
Mesenchymal, Mesenchymal stem-like, and Luminal androgen receptor subtypes (Lehmann et al.,
2011). Basal-like 1 TNBCs overexpress genes that are involved in cell cycle and cell division.
They have a very high mutation rate for tumor suppressor genes such as TP53, BRCA1 and

BRCAZ2. While Basal-like 2 TNBCs overexpress genes that are enriched in growth factor signaling
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pathways. As the name suggests, the Immunomodulatory subtype overexpresses genes that are
related to immune functions, and the Mesenchymal and Mesenchymal stem-like subtypes
overexpress genes that are involved in mesenchymal differentiation and epithelial-mesenchymal
transition, etc. Finally, Luminal androgen receptor TNBCs overexpress luminal differentiation and
androgen receptor signaling genes (Lehmann ef al., 2011). This TNBC subtyping scheme was
further evaluated by a study that used the combined gene expression and DNA profiling data from
198 TNBC tumors, where Burstein et al. confirmed four distinct TNBC subtypes: Luminal
androgen receptor, Mesenchymal, Basal-like immune-suppressed, and Basal-like immune-
activated (Burstein et al., 2015). Lehmann ef al. published a follow-up study that refined their
original TNBC molecular subtypes from six to four (Basal-like 1, Basal-like 2, Mesenchymal, and
Luminal androgen receptor subtypes) that are the same as the Burstein et al.’s result (Lehmann et
al., 2016). These four stable TNBC subtypes show distinct prognoses and can represent the
differences in TNBC diagnosis age, grade, local/distance disease progression, etc. (Lehmann et al.,
2016). They also provided potential subtype-specific treatment targets for TNBC (Burstein et al.,
2015).

TNBC has been an active research area because it has the worst survival time and lacks
effective therapies. On the contrary, some other subtypes of BC are understudied. For example, as
illustrated in Figure 1-1, currently all HER2+ BCs are treated in the same way in clinic no matter
whether they co-express ER or not. However, the HER2+/ER+ cases usually have better survival
in the first 5 years after diagnosis but have higher recurrence risk after 5 years compared to
HER2+/ER- (Hwang et al., 2019; Cameron et al., 2017), which may be due to the fact that
sustained ER signalling in HER2+ BCs helps escape the HER2 blockade (Bender and Nahta, 2008;

Gingras et al., 2017). Currently HER2+/ER+ BC is understudied and lacks biomarkers. A better
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understanding of the underlying molecular diversity is important to find new therapy targets for
subtypes such as HER2+/ER+ BCs.

As discussed in the previous section, BCs can be divided into 5 intrinsic subtypes (Luminal
A, Luminal B, HER2-enriched, Basal-like, and Normal-like), but not all HER2+ tumors fall into
the HER2-enriched subtype (Koboldt ez al., 2012). Based on the expression profiles of the intrinsic
genes used for the intrinsic subtyping, Prosigna (rorS) was developed as a gene expression
signature that estimates distant recurrence risk of ER+, PR+, hormone-treated, postmenopausal
women with BC (Joel S. Parker et al., 2009). Besides rorS, there are several other commercialized
BC gene expression signatures, which can be used to estimate different risks for different BC
subgroups. Oncotype DX and EndoPredict are gene signatures that estimate the distant recurrence
in ER+/HER2- and hormone-treated BC from the expression profiles of 21 genes and 11 genes,
separately (Paik et al., 2004; Filipits et al., 2011). PIK3CA-GS was derived from exon 20 (the
kinase domain) mutations and is able to predict PIK3CA mutation status and tamoxifen sensitivity
of ER+/HER2- BC (Loi et al., 2010). MammaPrint (also called GENE70) is a 70-gene expression
signature that could predict the benefit of adjuvant therapy for BC patients under the age of 61
(Joel S. Parker et al., 2009; van 't Veer et al., 2002). Gene progNostic Index Using Subtypes
(GENIUY) is a prognostic gene expression signature applicable for any subtype of BC (Bontempi
et al., 2010). Gene expression Grade Index (GGI) is a 97-gene signature generated from
differentially expressed genes between different histological grades of BC and can estimate the

prognostic and recurrence risks of ER+ BC patients (Sotiriou ef al., 2006). As can be seen above,

there are no such gene signatures that are proposed specifically for HER2+/ER+ BC patients. Thus,
exploring the expression and genomic profiles of HER2+/ER+ BC and generating prognostic and

predictive gene signatures are critical for better HER2+/ER+ BC clinical guidance.
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1.2.2 Integration of BC multi-omics data for understanding BC heterogeneity

In biology, the central dogma model is that DNA is transcribed into mRNA, then translated
to proteins, and finally forms the tumor’s phenotype. Epigenetic changes can boost or interfere
with the transcription of genes. The studies of the whole set of DNAs, epigenetic changes, mRNAs,
and proteins are called genomics, epigenomics, transcriptomics, and proteomics, respectively. The
medical image features extracted from patients’ medical images can reflect phenotypic information
such as morphological or intensity difference of the tumor, which is called radiomics (Lambina et
al., 2012). Multi-omics layers these omics on top of each other and gives us a multidimensional
view of human biology, which can help us discover biomarkers that may be missed if we only

focus on a single view of these omics. Figure 1-4 shows a simplified overview of the multi-omics.
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Figure 1-4. The overview of multi-omics.

As shown by Curtis et al. in their proposed subtyping scheme that takes both gene
expression and CNV data into consideration (Curtis et al., 2012), the heterogeneity of BC could
be better detected using data from different biological levels such as gene expressions, CNVs,
DNA methylations, proteomics measurements, radiomics, and so on. However, majority of
research in BC subtyping are still based on single level of genomic data (Dai et al., 2015) which
may fail to synthesize the inherent information across different levels of genomic data. For this
reason, cancer subtyping using multi-omics data has its advantage in integrating information from
different aspects, leading to a more comprehensive subtyping (Huang et al, 2017). The
advancement of a variety of modern molecular biology techniques has made it possible to build an
integrated framework for BC heterogeneity study (Rappoport et al., 2019), but the problem is how
to effectively integrate/mine multimodal data and preserve cross-level information simultaneously.

According to Fang et al., there exist two kinds of data integration approaches: loose
approach and tight approach (Fang, 2019). For the loose approach, different types of datasets are
first used to build separate models. Then the results from these models are combined in either a
hierarchical, ensemble, or a linear fashion (Thingholm et al., 2016; M. D. Ritchie et al., 2015;
Huang et al., 2017). The advantage of this multi-staged method is its simplicity. However, loose
integration is ineffective in exploring the complicated patterns that arise from combining distinct
types of data (Fang, 2019). Therefore, the tight approach is considered to be more advanced than
the loose method. For the tight approach, all different types of data are combined to fit a single
subtyping model. The easiest way of tight integration is to concatenate all types of normalized data

to establish a large matrix, then input the large matrix directly into the subtyping model (Fang,
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2019; Huang et al., 2017). However, this concatenation method usually ignores the fundamental
complementarity of different types of data (Wang et al., 2014). Therefore, it is suggested to
combine different data sources in a more abstract and practical way (Huang et al., 2017). For
example, we can first extract latent features from different data types and then use classic clustering
algorithms to do subtyping. Examples include iClusterPlus developed by Mo et al. (Mo et al., 2018)
and LR Acluster (low-rank approximation based multi-omics data clustering) developed by Wu et
al. (Wuet al.,2015). Nguyen et al. proposed PINSCluster (Nguyen et al., 2020) to integrate multi-
omics data using cross-type connectivity, which is also a good example of the abstract and tight
data integration methods. A more detailed description and comparison of these methods can be
found in a recent review paper on comprehensively evaluating multi-omics-based cancer subtyping
methods (Duan et al., 2021). Basically, the review concluded that iClusterPlus, LRAcluster, and
PINSCluster show decent and comparable performance but the robustness and computational
efficacy are worse than classical cancer subtyping algorithm Similarity Network Fusion (SNF)
(Wang et al., 2014).

Some mathematic and computational methods were proposed to address this data
combination problem in a more abstract way. The most popular one is the tensor factorization
(Kolda and Bader, 2009). Instead of simply concatenating different omics data to a large two-
dimensional matrix, we can combine them into a three-dimensional tensor with the new dimension
representing data type. This three-dimensional tensor can thus be processed by traditional tensor
factorization algorithms for latent factor extraction. In this way, data across different levels are
integrated and the cross-level information is retained. These integrated factors are then passed on
to downstream subtyping models. Tensor is defined as a high-dimensional data array (Kolda and

Bader, 2009). Tensor decomposition or factorization problem has been studied for many years and
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the algorithms that emerged to solve the problem have been applied in many domains of research
(Kolda and Bader, 2009; Harshman, 1970; Carroll and Chang, 1970). Among those mature tensor
factorization algorithms, canonical decomposition (CANDECOM) (Carroll and Chang, 1970)
and parallel factors (PARAFAC) (Harshman, 1970) are always referred together as CP
(CANDECOM/ PARAFAC) because they both decompose a tensor as a sum of rank-one tensors
(Kiers, 2000; Hitchcock, 1927; MOcks, 1988). A drawback of CP-based tensor factorization is
that a predefined hyperparameter, the rank of the tensor, is needed. However, to determine the rank
of a given tensor is known as a non-deterministic polynomial-time (NP) -hard problem (Hastad,
1990; Hillar and Lim, 2013). There has been no straightforward algorithm for solving this problem
for a long time (Kolda and Bader, 2009) until recently, a Bayesian tensor factorization (BTF)
model was proposed to overcome this difficulty (Tang et al., 2018). BTF takes three steps to
determine the rank of a tensor: a multi-linear model to decompose the given tensor to latent factors;
a high-dimensional variational Bayesian inference method to estimate the posterior distribution of
the decomposed latent factors; and finally a filtering procedure for removing the redundancy
factors (Tang et al., 2018). Factors extracted by BTF have been proved to have better performance
in electroencephalography-based sleep stage classification and seizure detection (Tang et al.,

2018).

1.2.3 Complexity in BC multimodal data analyses

Among the multimodal data in different biological level, the graph structured proteomics
data and medical image data are significantly different from the matrix format genomics,
epigenomics, and transcriptomics data. Thus, new analyzing strategies are needed. Proteomics data

could be modeled as a graph where vertices are proteins, and edges are undirected and weighted

23



connections between the interacting proteins. Graphs have better ability to modelling real-word
entities and their relations. A basic graph that only describes the structural information could be
noted as G(V, E), where V represents the vertex set and £ is the edge set, while an attributed graph
G(V, E, Xy, Xg) could house the node features Xy and edge features Xz as well. CComprehensively
mapping the structure of BC protein communities using this kind of graph structured proteomics
data and identifying potential biomarkers from them are promising approaches for the study of BC
heterogeneity, as it can provide a systematic view of BC proteomics for better understanding
disease mechanisms and can also help identify cumulative mutation/outcome effects on clusters of
proteins/genes rather than individual proteins/genes (Zheng et al., 2021). Currently, the Clique
Extracted Ontology (CliXO) algorithm is widely used in detecting hierarchical communities of a
network (Zheng et al., 2021; Qin et al., 2021). CliXO takes the weighted graph as input, calculates
the maximal cliques, and adds the identified maximal cliques to the ontology as the threshold of
edge weight of this graph (here, the combined GO proximity) is lowered (Kramer et al., 2014).
However, CliXO only considers the edge weights, and it has several hyperparameters that control
the threshold decreasing strategies which need to be pre-specified and tuned manually to achieve
a propitiate decision. Furthermore, CliXO is an unsupervised clustering method that cannot take
critical clinical information such as patients’ prognosis into consideration. Thus, more efficient
and automatic algorithms are needed to address these drawbacks.

Medical images have been extensively used in different phases of BC management due to
their interpretability, real-time monitoring, noninvasive nature (Fass, 2008). In addition, medical
images can capture dynamic and macroscopic information of the entire tumor, which cannot be
captured by molecular omics data because biopsies are usually performed at a specific time on a

small part of tumor tissues. Once its relationship with other molecular omics data and its role in
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BC heterogeneity are studied thoroughly, medical image can serve as both a great resource of
information itself and an important surrogate for molecular information. This brings up two
relatively fresh but important research fields, namely radiomics and radiogenomics.

Radiomics is a research field where high-throughput medical image features are used to
describe disease phenotypes (Lambina et al, 2012). Current radiomic studies face feature
subjectivity and interpretability trade-off issues. Traditional computational engineering methods
usually involve human experts’ pre-processing which introduces subjectivity. Although human
understandable image features such as tumor morphological features and the first-order, second-
order statistic features of the image pixel distribution (Van Griethuysen et al., 2017) could be
generated using the traditional feature engineering methods, they are pre-defined and limited by
human knowledge. Therefore, they may not be able to fully represent the image heterogeneity.
Recently, with the fast development of deep learning techniques, deep learning-based feature
extraction approaches have been widely used in radiomics (Visvikis et al., 2019). Deep learning
is highly flexible and accurate in analyzing multimodal volumetric and dynamic medical images
in a fully automatic and non-linear manner (Nie et al., 2019). but image features extracted by
sophisticated deep learning models are considered to be not human understandable. Therefore, it
is critical to explore potential tools to increase their explainability (Barredo Arrieta et al., 2020).

Combining radiomics with genomics leads to the field of radiogenomics, which has a goal
of noninvasively uncovering the radiogenomic biomarkers that could indicate the heterogeneity of
the disease (Rutman and Kuo, 2009). Besides the challenges in radiomics and genomics,
radiogenomics also faces the unpaired data problem. Most advanced complex models usually have
a huge number of parameters to be optimized. Hence, they require comparable large datasets for

training the parameters (Mikotajczyk and Grochowski, 2018). A small dataset can not only lead
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to inadequate stratification among training, validation, and testing, but also easily encounter
unpaired data problems. The inadequate stratification issue might be solved by data augmentation
(Hussain et al., 2017), but the unpaired data problem might make the entire study infeasible.
Scientific research often compares or associates two or more sets of measured data from the same
set of samples. The data are defined as unpaired data if the sets of data arise from separate
individuals (Jin ef al., 2019; Almahairi ef al., 2018). For example, a dataset may contain genomic
and survival information for a large number of patients, but only a subset of the patients have
medical image data. Due to the small size of the image subset, the patients' prognostic information
may not be adequate to perform survival analysis (e.g., patients with medical images might be all
alive so there is no death event observed in the data). Hence the prognostic values of the image
features could not be evaluated (i.e. the image features cannot be identified as prognostic
biomarkers) (Burnside ef al., 2016a). Effective utilization of the unpaired imaging, genomic, and
clinical data should be considered wisely. To solve the challenge, Gevaert et al. proposed a
leverage strategy (O. Gevaert et al., 2012), where we could first generate radiogenomic correlation
maps between the radiomic features and the genomic features, then the correlation map can be
checked to select correlated genomic features for predicting individual radiomic features. The
well-trained predictive model can be applied to a genomic dataset without paired images but with
sufficient long-term clinical outcome data. This leveraging strategy could be used together with
explainable deep learning techniques to identify deep radiogenomic biomarkers from unpaired

deep image features and clinical outcomes by leveraging the genomic features.

1.3 Solutions
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Section 1.2 discusses some of the current challenges in BC heterogeneity studies. This
section intends to summarize some previous works, which lead to potential strategies in solving
those challenges. Table 1-4 is a high-level summary of the contents to be discussed in this

section.

Table 1-4. Current challenges and potential solutions in deciphering BC heterogeneity.

Heterogeneity | Integration of . )
Challenges within BC BC multi- complexity of BC multimodal
i data
subtypes omics data
Medical
CNVs, Gene | images, CNVs, Granh
Single/multi- Gene expressions, Gene struc tﬁre d
omics data expressions DNA expressions, Foteomics
methylations DNA P
Solutions methylations
Machine .
learning/ Deep learning- Graph
d & Unsupervised Tensor based p
eep . S ) . neural
. clustering Factorization | radiogenomics
learning network
framework
methods

1.3.1 BC multimodal data

As shown in Figure 1-4, the biological information of BC can be captured at different
omics levels. Starting from the genomic level, CNVs are structural variants in the genome that
involve changes of DNA copies in the certain regions (Feuk et al., 2006) (Shlien and Malkin,
2009). These DNA regions are normally larger than one kilobase pairs and may span many
different genes. CNVs can arise by deletions (which can lead to gene copy number loss) or

duplications (which can lead to gene copy number gain). In principle, a gene has two copies in the
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diploid genome of normal human cells, with each copy inherited from each parent. But in cancer
cells, the number of copies of some genes becomes smaller (gene copy number loss) or greater
(gene copy number gain) than two and thus decreases or increases expression of these otherwise
normal genes, respectively. CNVs are considered to be detrimental because they alter gene
expression patterns and thus lead to an imbalance in cell growth and differentiation (Gongalves et
al., 2017). For a long time, microarray-based methods (such as Array Comparative Genomic
Hybridization and Single Nucleotide Polymorphism genotyping arrays) have been used to detect
genome-wide CNV, which are efficient for large CNV detection (Fang and Wang, 2018). As next-
generation sequencing is widely used due to the rapid price decreases, CNV studies are
increasingly using sequencing for detecting small or novel CNVs that array-based methods often
miss (Shen et al., 2019) (Abel and Duncavage, 2013) (Li et al., 2015).

Moving from genomics to epigenomics, DNA methylation is epigenetic modification that
plays an important regulatory role in downstream gene expression (Robertson, 2005). In the human
genome, the promoter regions of many genes contain CpG islands, and these regions contain a
high frequency of CpG sites in which cytosine nucleotides are followed by guanine nucleotides
(Smith and Meissner, 2013). DNA methylation can occur at CpG sites by adding a methyl group
to the C5 position of cytosine in a CpG dinucleotide, forming 5-methylcytosine, a reaction
catalyzed by DNA methyltransferases (Bird, 2002). Methylation of multiple sites within a CpG
island is called hypermethylation. If hypermethylation occurs in the promoter, it eventually leads
to transcriptional silencing of the gene (Jones, 2012) (Domcke et al., 2015) (Blattler and Farnham,
2013). In normal cells, only a few promoter CpG islands are hypermethylated (Robertson, 2005).
However, some cancers may have aberrant promoter CpG island hypermethylation in certain genes.

This aberrant promoter CpG island hypermethylation can lead to inappropriate gene silencing

28



(Jones, 2012) (Chatterjee and Vinson, 2012). If it occurs in a tumor suppressor gene, cancer may
occur. In the past two decades, more than 100 genes have been reported to be transcriptionally
silenced in BC by aberrant CpG island hypermethylation (Khatri ef al., 2012; Jovanovic et al.,
2010; Basse and Arock, 2015; Pasculli et al., 2018). Bisulfite conversion-based methods, such as
[llumina methylation arrays (HumanMethylation450 and HumanMethylation850 arrays), and
whole-genome bisulfite sequencing have been used to detect DNA methylation across the genome,
with the latter being able to assess nearly every methylation status of CpG sites (Gupta et al., 2010;
Wang et al., 2018).

As the result of genetic and epigenetic alterations, abnormal gene expression is one of the
most important cancer mechanisms (Vogelstein ef al., 2013). As described in Section 1.1, gene
expression is the most commonly used data type in the study of BC heterogeneity among other
omics data. As an intermediate stage between DNA and proteins, transcriptome enables
researchers to link a cell's phenotype (or proteome) to its molecular machinery (genome). When it
comes to cancer, studying the transcriptome provides the link between the genetic causes of cancer
and its phenotypic consequences. In just a few years, the key technology for profiling cancer
transcriptomes has convincingly shifted from microarray-based to RNA sequencing-based
technologies (Van den Berge ef al., 2019). For RNA- sequencing, RNA molecules are first
extracted from a sample of interest and then reverse transcribed into cDNA molecules. The cDNA
library is then sequenced to generate millions of short reads. The generated reads can be aligned
by mapping to a reference genome or by de novo assembly (Van den Berge et al., 2019). After
mapping sequence reads to a reference genome, the next step is to quantify transcript-level or gene-
level abundance by assigning mapped reads to specific transcripts or genes (Van den Berge et al.,

2019). The quantified results are combined into an expression matrix with each feature (gene or
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transcript) in a row and each sample in a column, where the values are actual read counts or
estimated abundances. The CNV/DNA methylation/gene expression data are usually in a matrix

format where rows are patients and columns are genes (Figure 1-5).

CNV DNA methylation Gene expression

Patient
Patient
Patient

Figure 1-5. An illustration of the matrix format CNV/DNA methylation/gene expression data.

As the products of gene expression, proteins are the building blocks of all cells in our
bodies. Protein can be represented by its amino acid sequence which can be determined by the
mass spectrometry techniques (Zhang, 2009). However, the function of a protein is largely
determined by its three-dimensional (3D) conformation, thus extracting numeric features that can
represent a protein’s 3D structure is of great value (Fasoulis, 2021). Besides the structure, proteins
also achieve phenotypic function by interactions and associations (Rao et al., 2014). The physical
protein-protein interactions (PPI) are often quantified from purified proteins using techniques such
as two-hybrid systems, mass spectrometry, phage display, and protein chip technology (Zhang,
2009). The purification can be affinity purification, Y2H (yeast 2 hybrid), TAP (tandem affinity
purification) and so on (Zhang, 2009). Proteomic information is essential for deciphering BC
heterogeneity from a systematic perspective. It has become more and more important in BC
functional subtyping, staging, recurrence prediction, and resistance assessment (Neagu et al.,
2021). As mentioned in Section 1.2.3, unlike the matrix format CNV/DNA methylation/gene

expression data (Figure 1-5), proteomic data could be modeled as a graph where vertices are
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proteins, and edges are undirected and weighted connections between the interacting proteins.

Figure 1-6 shows an example of proteomic data in a graph structure.

Xy;:[0.1,0.3,..., 0.1]

X\,:[0.2,0.1,..., 0.5
X£4:[0.5,0.2,...,0.8 vl !

Xy4:[0.5, 0.6,..., 0.9] Xe1y:[0.2,01,.,0.1]

Xe34:(0.5,0.2,...,0.8]

X,5:[0.3, 0.6,..., 0.4]

V/node/protein === E/Edge/PPI

Xy:[1 Node feature vector Xg:[] Edge feature vector

Figure 1-6. An example of attributed graph structure of proteomic data. An attributed graph G(V, E,

Xy, Xg) could represent both the structure information and the node/edge features (X and Xz).

Medical image data are also quite different from the matrix format CNV/DNA
methylation/gene expression data and graph format proteomic data. A two-dimensional (2D)
image is also a matrix but with the rows and columns representing the x-axis (horizontal) and y-
axis (vertical) plane coordinates. Each element in the plane is called a pixel, and the value of the
pixel in position (x, y) represents the intensity of the information captured at the specific coordinate
(x, ¥). Similar to the 2D images, a 3D image has the same format but with an additional axis z.

Figure 1-7 shows examples of a 2D image and a 3D image.
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Figure 1-7. Examples of a 128 x 128 size 2D image and a 128 x 128 x 128 size 3D image.

Currently, there are many medical imaging technologies such as X-ray, Computed
Tomography, Ultrasound, Magnetic Resonance Imaging (MRI), etc. Each type of imaging
technology gives different information about the area of the body being studied. Among these
imaging types, MRI is considered the most complex one (Runge, 2015) and is widely used in BC
radiogenomic studies. MRI machines use very strong magnetic fields and radio waves to make
pictures. During an MRI exam, an electric current is passed through a coil, creating a temporary
change in the magnetic field in the patient. While recovering the changes, radio waves are received
from a transmitter/receiver in the machine and these signals are used to make a digital image of
the area of the body being scanned (Brown et al., 2014). These signals mainly come from protons

in body fat and water molecules (Brown et al., 2014). For some MRI exams, a contrast agent (such
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as gadolinium) is injected into a vein in the patient's arm to change the contrast of the MRI. The

resulting MRI is called dynamic contrast enhanced MRI (DCE-MRI).

1.3.2 Machine learning for understanding BC heterogeneity

Artificial intelligence (Al) is a computer science technique used to train a computer how
to learn, reason, perceive, infer, communicate and make decisions to simulate what humans do
with their intelligence (Moor, 2006). Machine learning is a subfield of Al and is the process by
which a computer learns from its experience and improves its performance over time without
explicitly being programmed (Moor, 2006). A typical machine learning project has four main steps:
data collection, data preparation, model training, and model testing. There are two major
subcategories of machine learning: unsupervised and supervised. Unsupervised machine learning

models look for patterns or trends in unlabeled data. Principal component analysis (PCA), matrix

decomposition (Brunet et al., 2004), and tensor factorization (Kolda and Bader, 2009; Khan and
Ammad-ud-din, 2016) fall into the unsupervised machine learning category. Supervised machine
learning models are trained with labeled data, which allow the models to learn and become more
and more accurate over time. They are carried out frequently in solving data science problems
(Kotsiantis et al., 2006). Examples of supervised machine learning algorithms are linear/logistic
regression, support vector machine (SVM), random forest (RF), supervised deep artificial neural
networks, etc.

Machine learning has been applied to BC studies for decades (Tang et al., 2009).
Unsupervised machine learning methods such as consensus clustering has been used in omics-
based cancer subtyping (Monti et al., 2003). Traditional subtyping methods such as K-mean
(Lloyd, 1982) and hierarchical clustering have some limitations. For K-mean clustering, a
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predefine K, which is the number of clusters, is needed. However, for most of the unsupervised
clustering problems, the number of clusters is unknown. Although hierarchical clustering could
provide us tree-based results, a predefined cut-off point is still needed to decide the number of
clusters. However, CoC is a resampling-based clustering algorithm which could estimate the
number of clusters and obtain robust clustering results according to the consensus among several
clustering runs (Monti et al., 2003; Wilkerson and Hayes, 2010). Several multi-omics data
integration models introduced in Section 1.2.2 such as SNF, CP, BTF, etc. are actually machine
learning based.

Among different types of machine learning, deep learning has become the most popular
learning strategy in recent years due to its excellent performance in many fields such as computer
vision and natural language processing (Lecun ez al., 2015). Deep learning is inspired by the human
brain, in which tremendous amounts of processing nodes are interconnected and organized into
many layers. Each node processes inputs and produces an output that is mapped to the nodes in
next layer. Different nodes would assess the information layer by layer and make a final output
that indicates the label information. Deep learning models vary in terms of input data formats,
processing pipelines, network structures, and learning targets, which result in a series of variations
of deep learning such as deep convolutional neural networks (DCNNs) (Krizhevsky et al., 2017),
deep recurrent neural networks (DRNNSs) (Jozefowicz et al., 2015), deep graph neural networks
(GNNs) (Gori et al., 2005), deep reinforcement learning (Mnih et al., 2015), generative adversarial
networks (GANs) (Goodfellow et al., 2014), etc.

Deep learning has been introduced to BC single omics and multi-omics studies, where the
input of the models could be the omics information, and the output could be a variety of clinical

or biological outcomes depending on the objectives of the studies. Due to the extraordinary success
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of deep learning in solving computer vision tasks, it has been involved in many BC radiogenomics
studies. The first deep learning radiogenomic study of BC was published in 2018 by Yoon et al
(Yoon et al., 2018). The study objective was to predict clinical characteristics such as the tumor
stage, ER, PR, and HER?2 status. They used multimodal three-dimensional MRI data (T1 and T1-
contrast) and 70 risk gene expressions as input. A deep learning model was used to extract radiomic
features and map the extracted radiomic features along with gene expressions to clinical
characteristics (Yoon et al., 2018). Ha and his team published two studies about BC radiogenomics
using deep learning (Ha, Chang, ef al., 2019; Ha, Mutasa, et al., 2019). Manually generated MRI
tumor segments were obtained first, then deep learning was used to map tumor segments to BC
intrinsic subtypes (Luminal A, Luminal B, HER2-enriched, Basal-like) and Oncotype Dx
recurrence risk scores, respectively (Ha, Chang, ef al., 2019; Ha, Mutasa, et al., 2019). Zhu et al.
used pre-trained deep learning models based on ImageNet dataset (Deng et al., 2010) to extract
radiomic features from breast MRI, then input them into a Support Vector Machine (SVM) (Cortes
and Vapnik, 1995) model for final molecular subtypes classification (Zhu et al., 2017). Zhang et
al. applied advanced deep learning techniques to improve breast tumor auto-segmentation, then
extracted several handcraft features from the segments. They claimed these handcraft features
could be applied to classify patients’ intrinsic subtypes (Zhang et al., 2019).

Deep learning is also a good way to analyze the complex graph structured proteomic data.
Recently, graph neural network (GNN) (Gori et al., 2005) has shown great capability in
automatically analyzing biological graphs, and it is also powerful in combining other auxiliary
data sources to achieve best model performance (Long et al., 2020, 2022, 2021). For example,
Yang et al. proposed to use a GNN called signed variational graph autoencoder (S-VGAE) to

predict the interactions between proteins using the protein-protein interaction (PPI) graph (F. Yang
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et al., 2020). This model can effectively take both the graph structure and protein sequence

information into consideration. Similarly, Jha et al. constructed a GNN with graph convolutional

network (GCN) and graph attention network (GAT) techniques to learn integrated protein features

from both the graph structure and the protein sequence information in a PPI graph (Jha et al., 2022).

1.4 Rationale and objectives

Understanding BC heterogeneity is critical to BC management. Although previous studies
have made extraordinary contributions in exploring BC heterogeneity and translating the results
into BC clinic, there are still some key gaps, such as the BC “sub-heterogeneity” (the heterogeneity
within a specific BC subtype), BC cross-level heterogeneity, BC high-throughput data complexity,
etc. Machine learning/deep learning has achieved unprecedented success in many fields, including
human healthcare.

To help human experts explore BC heterogeneity from multi-genomics data and medical
images using machine learning/deep learning, several challenges need to be addressed. The first
challenge is how to effectively combine the multi-modal biodata and find comprehensive
representatives from them. Another challenge is how to address the executional infeasibility
caused by the problem of unpaired data because different subjects may have different modality
data. Currently, the publicly available datasets might be incomplete for us to do an imaging
biomarker-oriented multi-omics study. Besides, the model interpretability and privacy issues
should also be carefully taken into consideration in machine learning-based BC research.

This thesis aims to explore the BC heterogeneity using thriving machine learning/deep
learning algorithms at different levels ranging from single genomics, multi-genomics, to

proteomics and radiogenomics. Chapter 2 aims to stratify HER2+/ER+ BCs and create a
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prognostic and prediction signature using single genomics data (gene expression). We
hypothesized that there are distinct subtypes identifiable in gene expressions in HER2+/ER+ BCs.
We also hypothesis that there are representative genes that can be organized into a gene signature
with prognostic and predictive significance. Chapter 3 aims to stratify BC using multiple genomics
data. We hypothesis that BTF algorithm could learn representations from both gene expression,
CNV, and DNA methylation data which maintains the cross-omics information. We also
hypothesis that the learned features can be used to stratify BC into prognostic significant subtypes
which outperforms single genomics-based BC subtyping. Chapter 4 aims to construct a biological
system hierarchy based on graph structure proteomics data and then identify clinical hotspots from
the hierarchy. We hypothesis that GNN could generate the hierarchical tree with state-of-the-art
performance. We also hypothesis that the minor survival hazard and rare mutation of each gene in
the human genome could be well-studied in biological system levels. Chapter 5 aims to build a
framework for BC prognostic radiogenomic biomarker identification. We hypothesis that the deep
learning-based BC DCE-MRI features can be good surrogates for integrated multiple genomic
information of BC. We also hypothesis that the mediation analysis among multi-omics features,
DCE-MRI features, and clinical outcomes could improve the explainability of the deep learning-

based radiogenomic biomarker identification framework.
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2 Chapter 2: Gene expression based HER2+/ER+ BC

heterogeneity study

2.1 Introduction

In the past, patients with HER2+ tumors had a poor prognosis among all subtypes of
invasive BC. With the development of targeted anti-HER2 therapy, such as trastuzumab and
lapatinib, survival rates for both early- and late-stage HER2+ disease have increased (Rye ef al.,
2018) with varying degrees. Though HER2+ BC is a heterogeneous disease showing different
relapse, survival outcomes, and treatment responses, there are currently no biomarkers to predict
their clinical outcomes (Branddo er al., 2020). Recently, ER status is emerging as a robust
predictive marker within HER2+ BCs. Approximately half of all HER2+ BCs co-express HRs,
namely ER+ and/or PR+ (Gingras et al., 2017). Of HER2+/HR+ BC patients, over 95% are
HER2+/ER+, who usually have better survival in the first 5 years following a diagnosis but have
higher recurrence risk after 5 years compared to those with HER2+/ER- tumors (Hwang ef al.,
2019; Cameron et al., 2017), possibly due to the fact that sustained HR (mainly ER) signalling
helps tumor escape from HER2 blockade (Bender and Nahta, 2008; Gingras et al., 2017). Multiple
studies found that HER2+/ER+ patients treated with anti-HER2 therapy showed
lower pathological complete response (PCR) rates than patients with other types of BCs (Gianni
et al., 2012; Baselga et al., 2012; Carey et al., 2016). Given the predictive value of ER status, it
would be reasonable for the next wave of clinical trials to target HER2+/ER+ and HER2+/ER-
patients separately. As well, the development of new therapeutic strategies is of utmost importance
to overcome the limitations to targeted therapies and improve treatment for HER2+/ER+ BC.

Currently, there is no comprehensive study that focused specifically on HER2+/ER+ BC. Thus, a
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better understanding of the molecular diversity of the ER+/HER2+ BC could pave the way to

breakthroughs in HER2+/ER+ treatments.

Gene expression has been used in cancer stratification and gene signature identification
since 1999 (Qian et al., 2021). Gene expression signatures have been very successful in helping
improve patient care by classifying tumors into distinct groups, providing guidance for
personalized clinical decisions. Molecular classification of BC based on gene expression profiles
has been extensively explored in the past and has been approved to be a good strategy. Several
gene expression based signatures are successfully commercialized such as Prosigna (rorS) (Joel S.
Parker et al., 2009), Oncotype DX, EndoPredict (Paik et al., 2004; Filipits et al., 2011), PIK3CA-
GS (Loi et al., 2010), MammaPrint/GENE70 (Joel S. Parker et al., 2009; van ’t Veer et al., 2002),

GENIUS (Bontempi et al., 2010), GGI (Sotiriou et al., 2006), and so on. However, these gene

signatures were not designed for HER2+/ER+ BC patients. Currently, there is no such gene
signature for HER2+/ER+ BC patients. Thus, exploring the gene expression profiles of
HER2+/ER+ BC and generating prognostic and predictive gene signatures is critical for better

HER2+/ER+ BC clinical guidance.

To better understand the heterogeneity of HER2+/ER+ breast tumors, we sought to
improve the current HER2+/ER+ BC stratification using gene expression profiles, aiming to
identify reproducible HER2+/ER+ BC subgroups with well-established prognostic gene signatures.
We applied unsupervised clustering on Cox regression filtered genes for HER2+/ER+ BC
stratification and subsequently performed genome-wide expression differential analysis between
the identified HER2+/ER+ BC subgroups. A gene expression signature was generated based on

the significant genes in both Cox regression analysis and gene expression differential analysis. A
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supervised subgroup classifier was then trained based on the expression of the proposed gene

signature and validated in two independent HER2+/ER+ BC cohorts.

2.2 Methods

2.2.1 Data sources

An overall workflow of this study is shown in Figure 2-1. The raw read counts of RNA-
sequencing data and clinical information of The Cancer Genome Atlas Breast Invasive Carcinoma
(TCGA-BRCA) cohort (Liu et al., 2018) were downloaded through R package “TCGAbiolinks”
(Colaprico et al., 2016). TCGA-BRCA has 1098 patients, with each having more than 55,368 gene
expression values. After filtering, there are a total of 123 HER2+/ER+ BC patients. The
microarray-based gene expression data of METABRIC cohort (Curtis et al., 2012) and Gene
Expression Omnibus (GEO) (accession number GSE149283) BC cohort (Cecco, 2021) were also
collected. METABRIC provides more than 24,368 gene expression patterns for all 1904 BC
patients, with 104 patients being HER2+/ER+. GSE149283 provides neoadjuvant trastuzumab
therapy response information and 24,352 gene expressions for 18 BC samples. Among these 18

samples, 14 are HER2+/ER+ BCs.
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Figure 2-1. Overall workflow of this study. 15,850 genes are in common among TCGA-BRCA,
METABRIC, and GSE149283 HER2+/ER+ patients. 12,236 of them with at least one count in one sample
are kept and inputted into a Cox regression-based feature selection step which results in 549 significant
genes based on the criteria of p-value < 0.01. Consensus clustering is then performed to stratify TCGA-
BRCA HER2+/ER+ patients based on gene expression profile of these 549 significant genes. Gene
differential analyses are done among the identified subtypes to identify most differentially expressed genes.
Genes that are significant in both Cox regression analysis and gene expression differential analysis are
selected to form the proposed gene signature. Validations of this gene signature are performed on
METABRIC and GSE149283 HER2+/ER+ cohorts. An eXtreme Gradient Boosting (XGBoost) classifier
is trained using the proposed gene signature on TCGA-BRCA data, then applied to assign METABRIC and
GSE149283 BCs into two subgroups. For METABRIC, survival difference of the predicted subgroups is

tested. For GSE149283, the drug response difference between the predicted subgroups is tested.

TCGA-BRCA was used as the discovery data in this study, while METABRIC and
GSE149283 were used for validation. A total of 15,850 common genes present in all three cohorts
was kept. Batch effect removal was performed among TCGA-BRCA, METABRIC and

GSE149283 data using “ComBat_seq()” function in the “sva” R package (Leek JT, Johnson WE,
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Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, 2022). The gene expression data of TCGA-

BRCA and normal samples before and after batch effect removal were visualized using principal

component analysis (PCA) plots (Figure 2-2A). The PCA plots of the expression data from the

three data sets before and after batch effect removal are shown in Figure 2-2B.
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Figure 2-2. PCA plots of the data used in this study. A: The PCA plots of the TCGA-BRCA HER2+/ER+

tumor and normal gene expression data with and without batch effect removal. The batch effect removed

data was used in the gene expression differential analysis between TCGA-BRCA HER2+/ER+ subgroups.

B: The PCA plots of the three HER2+/ER+ datasets with and without batch effect removal. The batch effect

42



removed data were used in training the supervised subgroup classifier and evaluating the proposed 15-gene

signature.

For the TCGA-BRCA data, we removed the genes that consistently have zero counts,
which resulted 12,236 genes left for the following analysis. We first normalized the raw count data
based on Trimmed Mean of M values (TMM) (Robinson and Oshlack, 2010) and then calculated
the log transformed count per million (LogCPM) value using R package “edgR”. We subsequently
performed feature selection using Cox regression model with a cut-off p-value of 0.01. Genes
significant in univariate Cox regression analysis were selected, resulting in 549 survival-associated
genes. TCGA-BRCA also provides the gene expression date of 113 normal adjacent breast tissue
samples. We used this normal expression data as reference for the later gene expression differential

analysis. For GSE149283, the drug response difference between the predicted subgroups is tested.

2.2.2 Unsupervised clustering on discovery data

We used the R package “CancerSubtypes” (Xu et al., 2017) to run the CoC algorithm
(Monti et al., 2003) on the TCGA-BRCA data matrix (549 genes x 123 patients). Traditional
subtyping methods such as K-mean (Lloyd, 1982) and hierarchical clustering have some
limitations. For K-mean clustering, a predefine K, which is the number of clusters, is needed.
However, for most of the unsupervised clustering problems, the number of clusters is unknown.
Although hierarchical clustering could provide us a tree-based results, a predefined cut-off point
is still needed to decide the number of clusters. However, CoC is a resampling-based clustering

algorithm which could estimate the number of clusters and obtain robust clustering results
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according to the consensus among several clustering runs (Monti et al., 2003; Wilkerson and
Hayes, 2010).

In our case, CoC first subsampled the gene expression data matrix for 30 times. Then, non-
negative matrix factorization (NMF) was applied on these 30 sample sets to obtain 30 clustering
results. The maximum number of subtypes (k) was set as 10, which means we could expect up to
10 subtypes during each of the 30 clustering runs. The 30 clustering results for each subtype
number (from 1 to k, which is 10 in our case) were then used to calculate the pairwise consensus
value, which is defined as the probability of two items being clustered together (Monti et al., 2003).
These consensus values formed a consensus matrix for each cluster number. Which means, we
obtained 10 consensus matrices, each one corresponding to a specific number of clusters. In the
end, an agglomerative hierarchical consensus clustering was applied to each of the 10 consensus
matrices, to obtain the final 10 clustering results.

Next, we calculated the silhouette value for each patient, which measures how similar a
sample is to its own cluster compared to other clusters. The silhouette value ranges from -1 to 1
with a high value indicating that the sample is well matched to its own cluster and poorly matched
to other clusters. If most samples have a high positive value, then the clustering configuration is
appropriate. We then did survival analysis to test whether there are survival differences between
the identified subtypes. The result was visualized using the Kaplan-Meier (KM) curve (Kaplan
and Meier, 1958), which is widely used in clinical and healthcare fundamental research. It shows

what the probability of an event (survival) is at a certain time interval.

2.2.3 Gene expression differential analysis for identified subgroups
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We performed the differential analyses of each of the identified subgroups relative to the
normal tissue samples in TCGA-BRCA cohort using R package “limma” (M. E. Ritchie et al.,
2015). We performed differential analyses between the identified HER2+/ER+ subgroups. The
differentially expressed genes of each HER2+/ER+ subgroup versus the normal samples were then
used to perform gene set enrichment analysis (GSEA; detailed below) to explore the enriched
biological pathways. The differentially expressed genes between the identified subgroups were

further used to filter for the genes for gene signature construction.

2.2.4 Gene set enrichment analysis for identified subgroups

GSEA was applied on the differentially expressed genes identified in the previous step,
and only included genes with adjusted p-value less than 0.05 and |logFC| (absolute value of the
log2 transformed fold change) larger than 0.5. We pre-ranked the genes based on their adjusted p-
values in the differential analysis, then inputted them into the GSEA software (Subramanian et al.,

2005).

2.2.5 Gene signature creation and validation

Using eXtreme Gradient Boosting (XGBoost)-based supervised classification, we built a
gene signature from the genes that are significant in both Cox regression analysis and the
expression differential analysis between the identified HER2+/ER+ subgroups. The TCGA-BRCA
data were then used to train and evaluate the XGBoost classifier in a 5-fold cross validation way
using the R package “caret” (Kuhn, 2008). The model’s performance was measured by the area
under of the curve (AUC) of receiver operating characteristic (ROC), accuracy, sensitivity, and

specificity. Shapley Additive Explanation (SHAP) values were calculated to increase the
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interpretability of the XGBoost model (Lundberg and Lee, 2017). A higher SHAP value of a given
feature in the model refers to stronger influence on the model’s decision.

We applied the well-trained XGBoost model to classify the METABRIC and GSE149283
cohorts using the expression profile of the proposed gene signature. Survival analysis and
hierarchical heatmap were also performed to visualize the predicted subgroup on METABRIC.
For GSE149283, we visualized the difference of the neoadjuvant trastuzumab therapy response
between each subgroups using bar plot.

We further checked the uniquely mutated genes in each subgroup for both TCGA-BRCA
cohort and METABRIC cohort using the CBioPortal OncoPrint function (Gao et al., 2013). The
tumor immune estimation resource (TIMER) (Li et al., 2016) quantified abundance of the tumor-
infiltrating lymphocytes (TILs) (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages,
and dendritic cells), the PAMS50 intrinsic subtypes and rorS, GENIUS, GENE70, GGI scores of
each sample in both TCGA-BRCA and METABRIC cohorts were also tested.

The Cancer Dependency Map (DepMap) project provides systematically identified genetic
and pharmacologic dependencies that were measured on CRISPR-Cas9 knockout screened cancer
cell lines (Tsherniak et al., 2017). To extend the cell line DepMap to tumors, Chiu et al. developed
a deep learning model named DeepDep to predict the effect scores of the dependency of interest
(DepOl) from genomics data (Chiu et al., 2021). We applied the well-trained DeepDep on our
HER2+/ER+ BC gene expression data to get the predicted effect score of the DepOls for TCGA-
BRCA and METABRIC cohorts, then checked the difference between the two HER2+/ER+ BC

subtypes.
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2.3 Results

2.3.1 Two distinct subgroups within HER2+/ER+ identified

To stratify TCGA-BRCA HER2+/ER+ patients, we performed CoC on survival significant
genes. We first obtained 549 genes associated with survival outcome according to the genome-
wide univariate Cox regression analysis. When the unsupervised CoC cluster number equals to 2,
we obtained the most significant survival difference (p-value = 0.0021). The consensus matrix
heatmap, silhouette plot, gene expression heatmap, and KM plot are shown in Figure 2-3. We
observed a clear two-cluster pattern on both consensus matrix heatmap (Figure 2-3A) and gene
expression heatmap (Fig. 2-4). The average silhouette value is 0.91, indicating two robust different
subgroups existing in the TCGA-BRCA HER2+/ER+ cohort (Figure 2-3B). Sixty-three patients
were assigned to Subgroup 1, while the other sixty patients were assigned to Subgroup 2. The
survival difference between these two subgroups is significant (p-value = 0.0021). Patients in

Subgroup 2 suffered poor prognosis (Figure 2-3C).
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Figure 2-3. Results of consensus clustering on TCGA-BRCA data. A: Symmetric consensus matrix
hierarchical clustering heatmap for TCGA-BRCA data. Columns and rows are patients. The color
represents the probability that two patients were clustered together. B: Silhouette plot for the TCGA-BRCA
data. Each horizontal line represents a sample, and the length of the line is the silhouette value for the
sample. The color represents different subtypes: red ones are in Subgroup 1, while green ones are in
Subgroup 2. A high value indicates that the sample is well matched to its own cluster and poorly matched

to other clusters. If most samples have a high positive value, then the clustering configuration is appropriate.
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The overall silhouette value is 0.91, which means the clustering is appropriate. C: KM plot of two subgroups

identified by CoC.
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Figure 2-4. TCGA-BRCA gene expression visualization using heatmap. Columns are 123 patients,

while rows are 549 genes. Unsupervised CoC results are shown in the topside bar.

In addition, from the differential analyses between Subgroup 1 versus normal and
Subgroup 2 versus normal (Figure 2-5). Subgroup 2 has more differentially expressed genes than
Subgroup 1 relative to normal. GSEA results (Figure 2-5) based on the two pre-ranked lists of
differentially expressed genes (one list each for Subgroup 1 or Subgroup 2 versus normal) found
that only the Martens Bound by Promyelocytic leukemia (PML) retinoic acid receptor alpha
(RARA) Fusion pathway is significantly downregulated in Subgroup 2 relative to normal (false

positive rate (FDR) = 0.006).
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Figure 2-5. Gene expression differential analysis results of the identified HER2+/ER+ subgroups. A
top: Volcano plot of the gene expression differential analysis between TCGA-BRCA HER2+/ER+
Subgroup 1 and normal samples. The thresholds are highlighted in red lines (|logFC| > 0.5 and adjusted p-
value < 0.05). A bottom: Gene set enrichment analysis (GSEA) result of the differentially expressed genes
in TCGA-BRCA HER2+/ER+ Subgroup 1. B top: Volcano plot of the gene expression differential analysis
between TCGA-BRCA HER2+/ER+ Subgroup 2 and normal samples. The thresholds are highlighted in
red lines ([logFC| > 0.5 and adjusted p-value < 0.05). B bottom: GSEA result of the differentially expressed

genes in TCGA-BRCA HER2+/ER+ Subgroup 2. C: Volcano plot of the gene expression differential
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analysis between TCGA-BRCA HER2+/ER+ Subgroup 1 and Subgroup 2. There are 197 genes that are
differentially expressed based on the significance thresholds highlighting in red lines (JlogFC| > 1 and
adjusted p-value < 0.05). D: The expression profile of the proposed 15-gene signature visualized using

heatmap. Columns are 123 patients, while rows are 15 genes. Subgroup labels are showed on the top bar.

The demographic information and general BC clinical information of the two identified
subgroups for TCGA-BRCA HER2+/ER+ cohort are shown in Table 2-1. Except for age (p-value
=0.0258), no other demographics or clinical differences exist between these two subgroups as the

p-values (student t-test or chi-square test) are > 0.05.

Table 2-1. Demographic and clinical information of the identified HER2+/ER+ subgroups in

TCGA-BRCA cohort.

Subgroup 1 Subgroup 2
p-value
No. patients 63 60
min 34 29
max 88 90
Age 0.02581*
mean 57.13 62.65
Standard deviation 13.67 13.46
T1, Tlb, Tlc 14 10
T2 41 39
T 0.2133
T3 7 7
T4 (T4, T4b) 1 4
NO, NO (i-), NO (it+) 31 23
N1, Nla, N1b 23 19
N N2, N2a 6 11 0.2202
N3, N3a 3 6
NX 0 1
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cMO (i+), MO 50 50
M M1 1 1 0.1991
MX 12 9
I, IA 7 9
IL, ITA, IB 43 28
Stage 1A, IIB, ITIIC 12 21 0.2414
v 1 1
X 0 1
Lumpectomy 8 4
Modified Radical Mastectomy 17 20
Surgery Simple Mastectomy 12 4 0.2650
Other 19 28
Not Available 7 4

The differential analyses of Subgroup 1 versus Subgroup 2 identified 197 genes
differentially expressed (|logFC| > 1 and adjusted p-value < 0.05) (Figure 2-5). Among these 197
differentially expressed genes, 15 overlapped with the 549 survival-associated genes from Cox
regression analyses: TNNI2, CCDC88B, CYBA, ASB2, LTB, S1PR4, PSTPIPI, CD6, CD27,
WNT10A, NAPSB, CD79A4, ADAMTSS, CPNE7, and TPSABI. These 15 genes have both survival
significance and subgroup distinguish significance and constitute the proposed gene signature. In

this way, we decreased the gene number from 549 to 15 for easier application in other datasets.

2.3.2 HER2+/ER2+ BC gene signature development

A supervised classification model (XGBoost) was trained to classify the TCGA-BRCA
HER2+/ER+ patients into the CoC identified two subgroups. The fine-tuning process and 5-fold

cross validated performance of the XGBoost classifier are shown in Table 2-2. The 5-fold cross
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validated AUC, sensitivity, and specificity on TCGA-BRCA data are 0.85, 0.76, and 0.77,
respectively. The importance score of each gene in the XGBoost model are shown in Figure 2-6.

TNNI2 is the most important feature for the model to make the prediction decision.

Table 2-2. Hyperparameter finetuning process and 5-fold cross validated model performance of the

XGBoost classifier.

Learning rate Max depth AUC Sensitivity Specificity

6 0.84 0.78 0.73

8 0.82 0.78 0.75

0.005 10 0.84 0.78 0.75

12 0.82 0.73 0.75

6 0.81 0.76 0.73

8 0.83 0.81 0.75

0.01 10 0.85 0.76 0.77

12 0.83 0.79 0.77

6 0.81 0.79 0.77

8 0.81 0.79 0.73

0.05 10 0.82 0.78 0.72

12 0.79 0.79 0.73

6 0.80 0.78 0.72

8 0.82 0.76 0.75

0.07 10 0.80 0.76 0.75

12 0.80 0.79 0.72

6 0.80 0.78 0.72

0.1 8 0.82 0.79 0.72

) 10 0.80 0.81 0.75

12 0.79 0.81 0.73
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Figure 2-6. The SHAP importance scores of each gene in the XGBoost classifier.

2.3.3 HER2+/ER2+ BC gene signature validation

The well-trained XGBoost classifier was applied to two external datasets: METABRIC and
GSE149283 for validation. The expression profiles of the 15-gene signature on METABRIC
cohort and GSE149283 cohort are presented in Figure 2-7A and Figure 2-7B, respectively. Both
METABRIC and GSE149283 patients assigned in Subgroup 2 showed overall lower expression
values of the 15 gene signature than Subgroup 1, which is similar to that observed in the TCGA-

BRCA cohort.
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For the 104 HER2+/ER+ patients from the METABRIC cohort, 57 were assigned to
Subgroup 1, while 47 were assigned to Subgroup 2 by the XGBoost model. The survival difference
of these two subgroups was significant with Subgroup 2 showing worse survival than Subgroup 1
(Figure 2-7C), which is similar to that observed in the TCGA-BRCA cohort (Figure 2-7C).
However, unlike the TCGA-BRCA cohort findings, there were no significant differences in
demographic or clinical characteristics between these two subgroups (Table 2-3). For the 14
patients in GSE149283, eight patients were in Subgroup 1 and six patients were assigned to
Subgroup 2. According to Figure 2-7D, there is a higher proportion of patients in Subgroup 2
(three out of six) showed partial response to trastuzumab than Subgroup 1 (three out of eight
patients). However, the difference was not significant according to the Fisher’s exact test (p-value

=1, odds ratio = 1.61).
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Figure 2-7. Predicted subgroups of external validation HER2+/ER+ BC cohorts. A: The expression
profile of the proposed 15-gene signature on METABRIC HER2+/ER+ BC cohort. Columns are 104
patients, while rows are 15 genes. The XGBoost predicted subgroup labels are shown in the top side bar.
B: The expression profile of the proposed 15-gene signature on GSE149283 HER2+/ER+ BC cohort.
Columns are 14 patients, and rows are 15 genes. The XGBoost predicted subgroup labels are shown in the
topside bar. C: KM plot of the two subgroups of METABRIC cohort predicted by XGboost. D: The stacked
histogram of the trastuzumab therapy response for the XGBoost predicted subgroups (PCR, pathological

complete response; PPR, pathological partial response; OR, odds ratio).
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Table 2-3. METABRIC demographic information.

Subgroup 1 Subgroup 2
p-value
No. patients 57 47
Min 29 39
Max 87 87
Age 0.1035
Mean 60 64
Standard deviation 13.72 12.20
Min 5 10
Max 70 50
Tumor size 0.1074
Mean 27 23.17
Standard deviation 13.60 7.60
Min 0 0
Max 25 25
Lymph nodes positive 0.0894
Mean 1.83 3.68
Standard deviation 4.61 6.11
1 2 1
2 18 14
Grade 0.2318
3 35 32
Null 2 0
0 15 9
1 14 8
2 13 19
Stage 0.2424
3 2 2
4 1 0
Null 12 9
Chemotherapy (CT) 2 1
Radiotherapy (RT) 4 2
Treatment Hormonotherapy (HT) 12 9 0.2578
CT/RT 3 2
CT/HT 0 3
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CT/HT/RT 5 6
HT/RT 23 21
None 8 3

2.3.4 Computational characterization of the two subgroups (external validation)

Uniquely mutated genes, TILs, PAMS50 subtypes, some other published gene signatures
such as rorS, GENIUS, GENE70, GGI scores, and DepMap dependency were calculated to
characterize the identified two HER2+/ER+ subgroups. We found that there are 1914 mutated
genes in the genome of TCGA-BRCA Subgroup 1 patients that were not observed within Subgroup
2 patients’ genome, while TCGA-BRCA Subgroup 2 patients’ genome have 3,293 mutated genes
that are absent in Subgroup 1°s genome. There are six genes (CDKNIB, PRKCE, ACVRLI, UBRS5,
AGMO, SMARCC2) commonly mutated in both TCGA-BRCA Subgroup 1 and METABRIC
Subgroup 1 (Figure 2-8A top left). While another six common genes (PALLD, DCAF4L2,
MAP3K13, RPGR, SHANK2, FANCA) are altered in both TCGA-BRCA Subgroup 2 and
METABRIC Subgroup 2 (Figure 2-8A bottom left).

The quantified abundance of six immune cell types were estimated using TIMER on both
TCGA-BRCA and METABRIC cohorts to check the TILs difference in two HER2+/ER+
subgroups (Figure 2-8B). The infiltration of dendritic cells, neutrophils, and CD4+ T cells are
significantly lower in TCGA-BRCA Subgroup 2 than in Subgroup 1 (p-values are 0.0009, 0.0500,
and 0.0028, while absolute fold changes are 0.7171, 0.7812, and 0.7132). The combined Subgroup
2 patients (TCGA-BRCA Subgroup 2 plus METABRIC Subgroup 2) also show fewer dendritic

cell (p-value = 0.0026, absolute fold change = 0.8286) and CD4+ T cell infiltrations (p-value =
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0.0016, absolute fold change = 0.7883) than the combined Subgroup 1 patients (TCGA-BRCA
Subgroup 1 plus METABRIC Subgroup 1).

Figure 2-8C and Figure 2-8D are showing the PAMS50 intrinsic subtypes and the published
gene signatures (rorS and GENIUS) of different subgroups in both TCGA-BRCA and
METABRIC cohorts. There is a lower proportion of Normal PAMS50 subtype in TCGA-BRCA
HER2+/ER+ Subgroup 2 compared with TCGA-BRCA HER2+/ER+ Subgroup 1. For
METABRIC, there is a lower proportion of Luminal A type in the HER2+/ER+ Subgroup 2 than
Subgroup 1. TCGA-BRCA HER2+/ER+ Subgroup 2 showed significantly higher intrinsic rorS
score and GENIUS score than Subgroup 1. However, other published gene signatures didn’t show
any difference between the two HER2+/ER+ subgroups in both cohorts. The predicted effect
scores of DepOls are visualized in Figure 2-9. Please be noted that only top 15 DepOls with the
most significant differences between HER2+/ER+ Subgroup 1 and Subgroup 2 are shown in the
heatmaps. As can be seen, there are visible differences in TCGA-BRCA cohort, but not in
METABRIC cohort. TCGA-BRCA HER2+/ER+ Subgroup 1 show lower dependency effect

scores of the top 15 DepOls.
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Figure 2-8. Computational characterization of the HER2+/ER+ subgroups for both TCGA-BRCA
cohort and METABRIC cohort. A top panel: The common genes that are mutated in both TCGA-BRCA
Subgroup 1 and METABRIC Subgroup 1. A bottom panel: The common genes that are altered in both
TCGA-BRCA Subgroup 2 and METABRIC Subgroup 2. B: The TIMER quantified abundances of tumor-
infiltrating lymphocytes for both TCGA-BRCA and METABRIC cohorts. T-test were used to test the
significance of the differences. C: Histograms of the PAMS50 intrinsic subtypes distributions for two
subgroups. D: Density plots of the published gene signatures (rorS, GENIUS, GENE70, GGI) of different

subgroups in both TCGA-BRCA and METABRIC cohorts.
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Figure 2-9. Visualization of the predicted effect scores of the DepOls for TCGA-BRCA and
METABRIC cohorts. Only top 15 DepOIs with most significant differences between HER2+/ER+

Subgroup 1 and Subgroup 2 are shown in the heatmaps.

2.4 Discussion

We have identified a 15-gene expression signature which could stratify HER2+/ER+ BC
patients into two prognostically different subgroups in both unsupervised and supervised manners.
The prognostic difference between the two HER2+/ER+ subgroups was observed in both TCGA-
BRCA and METABRIC cohorts, not confounded by other clinical characteristics, including tumor
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size, grade, or stage. The two subgroups also tend to exhibit difference in terms of their response
to trastuzumab in GSE149283 with 14 samples, suggesting the predictive potential of the proposed
15-gene signature. However, no statistical significance was observed in the GSE149283 cohort,
which might be due to the small sample size (n = 14). Thus, further validation is required once a
large drug response dataset becomes available. According to the GSEA results of the differentially
expressed genes, Martens Bound by PML RARA Fusion pathway was significantly enriched in
Subgroup 2 but not in Subgroup 1. This pathway is a diagnostic marker of the acute promyelocytic
leukemia (Martens et al., 2010) and maybe used as a diagnostic marker for HER2+/ER+ Subgroup
2.

Six genetic alterations were found in Subgroup 1 that were not seen in Subgroup 2. Among
them, UBRS5 amplification was observed in 17% TCGA-BRCA Subgroup 1 patients’ genome and
37% METABRIC Subgroup 1 patients’ genome. UBRS encodes a HECT-domain containing E3
ubiquitin ligase that is involved in regulating DNA damage response, cell cycle, metabolism,
transcription, and apoptosis (Xiang et al., 2022). Multiple studies have demonstrated that elevated
expression of UBRS is implicated in different cancers, including breast and ovarian cancers, and
is closely associated with advanced clinical stage, distant metastasis, and shorter overall survival
in patients (Xiang et al., 2022). UBRS5 exhibits oncogene-like characteristics as it is proposed to
promote breast and ovarian cancer growth and metastasis, which makes it an attractive therapeutic
target for aggressive BC (Song et al., 2020). Our study further suggests that UBRS might offer a
potential way to target HER2+/ER+ Subgroup 1 as it is in Subgroup 1 (17% TCGA-BRCA
HER2+/ER+ BC Subgroup 1 patients; 37% METABRIC HER2+/ER+ BC Subgroup 1 patients)
but not in Subgroup 2. Similarly, several other genetic alterations were unique to Subgroup 2,

including DCAF4L2 amplification (14% TCGA-BRCA HER2+/ER+ BC Subgroup 2 patients; 34%
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METABRIC HER2+/ER+ BC Subgroup 2 patients) and SHANK?2 amplification (25% TCGA-
BRCA HER2+/ER+ BC Subgroup 2 patients; 15% METABRIC HER2+/ER+ BC Subgroup 2
patients). DCAF4L2 belongs to the WD-repeat domain (WDR) protein family, which commonly
functions by mediating protein-protein interactions (Hu et al., 2019). DCAF4L2 overexpression in
human colorectal cancer is associated with a more advanced clinical stage as in lymphatic and
distant metastasis. Moreover, overexpression was also found to promote cell migration, invasion,
and epithelial-mesenchymal-transition (EMT) through activating NFkB signal pathway (Wang et
al., 2016). High expression of DCAF4L2 may be positively associated with poor overall survival
of BC (Hu et al., 2019). However, it remains to be determined how DCAF4L2 is implicated in
HER2+/ER+ BC pathology and whether it could be used as a novel candidate target for
HER2+/ER+ treatment. SHANK? is one of the SHANK family of master scaffolding proteins and
plays important roles in regulating synapse plasticity. The SHANK family proteins were recently
found to be involved in cancer cell invasion (Liu et al., 2021). Methylation of SHANK?2 could
promote BC cell migration through activating endosome focal adhesion kinase FAK signalling
(Liuetal., 2021). FAK is a cytoplasmic protein-tyrosine kinase which is important in cell adhesion,
survival and migration (Alanko and Ivaska, 2016). SHANK?2 methylation was also identified as a
potential biomarker of BC metastasis (Liu ef al., 2021). However, the precise roles of SHANK?2 in
HER2+/ER+ BC have yet to be determined.

The TIMER estimated that tumor infiltrations of two types of immune cells (dendritic cells
and CD4+ T cells) were significantly lower in HER2+/ER+ BC Subgroup 2 than in Subgroup 1.
According to Jin et al., lower tumor infiltration of these two types of immune cells were associated
with worse prognosis (Jin and Hu, 2020), which is consistent with our findings that Subgroup 2

patients have lower TILs and worse prognosis. PAMS50 intrinsic subtypes, the related rorS score,
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and the Genius score also showed different distributions between the two HER2+/ER+ BC
subgroups in TCGA-BRCA cohort, indicating a higher survival risk of Subgroup 2 than Subgroup
1. However, these differences were not observed in METABRIC HER2+/ER+ BC cohort. Other
published gene signatures such as GENE70 and GGI were not significantly different between two
subgroups in both TCGA-BRCA HER2+/ER+ and METABRIC cohorts, suggesting their
unsuitability for HER2+/ER+ BC. DeepDep predicted DepMap dependency scores showed visible
different patterns between the two subgroups in TCGA-BRCA HER2+/ER+ cohort according to
our results, which further confirmed the difference between these two subgroups. However, this
pattern cannot be reproduced in METABRIC HER2+/ER+ cohort.

In summary, we found that some of the differences between the proposed two HER2+/ER+
subgroups were observed in TCGA-BRCA cohort but not in METABRIC cohort, such as the tumor
infiltrations of dendritic and CD4+ T cells, two published gene signatures (rorS and GENIUS),
DeepDep predicted gene dependency scores, etc., possibly due to the different acquisition
technologies used to obtain the raw gene expression data of these two cohorts (Bismeijer ef al.,
2018). TCGA-BRCA gene expression data were obtained through RNA sequencing, while
METABRIC used microarray technology. Another possible reason is that TCGA-BRCA
biospecimens were collected from newly diagnosed patients who had received no prior treatment,
while lymph node-positive METABRIC patients received chemotherapy before the biopsy (Liu et

al., 2018) (Curtis et al., 2012).

2.5 Conclusion

In conclusion, our study is the first to explore the molecular heterogeneity associated with

HER2+/ER+ BCs. We identified and validated the potential subgroups of HER2+/ER+ breast
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tumors with reproducible prognostic and other properties. We provided a well-trained
HER2+/ER+ subgroup classifier to assign new patients to a specific subgroup. We also discussed
potential biological explanations of the identified subgroups and linked it with existing knowledge
of BC. Most important, our findings may provide guidance for future target therapy of the

HER2+/ER+ BC patients.

65



3 Chapter 3: Multi-omics-based tensor subtyping for BC

This chapter is modified from the published paper below. I performed all data analyses,

paper writing and revision.

QO Liu* B Cheng*, Y Jin, P Hu. 2022. Bayesian tensor factorization-drive breast cancer
subtyping by integrating multi-omics data. Journal of Biomedical Informatics. 125:103958,

https://doi.org/10.1016/1.jbi.2021.103958. (IF: 8). *These authors contributed equally to the work.

1 did the data analysis, manuscript writing, and manuscript revision with the assistant from Bowen

Cheng and the guidance from Dr. Pingzhao Hu.

3.1 Introduction

Currently, the majority of research in BC subtyping is still based on individual genomic
datasets, especially gene expression data (Dai et al., 2015). Fruitful achievements are obtained in
gene expression-based subtyping such as the intrinsic classification scheme (Luminal A, Luminal
B, HER2-enriched, Basal-like, and Normal-like) (Joel S. Parker et al., 2009), claudin-low
extension of the intrinsic subtypes (Herschkowitz et al., 2007), CIT subtyping scheme (Luminal
A, Luminal B, Basal-like, and Normal-like) (Gued;j et al, 2012), and so on. Other than gene
expression data, Jonsson et al. proposed an exclusively CNV-based classification scheme to
distinguish six genomic subtypes in BC: 17ql12, Basal-complex, Luminal-simple, Luminal-
complex, Amplifier, and Mixed subtypes (Jonsson et al., 2010). BC subtyping systems like the
above-mentioned ones based on only one data type may fail to synthesize the inherent information
across different levels of genomic data. For this reason, cancer subtyping using multi-omics data

has its advantage in integrating information from different aspects, leading to a more
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comprehensive subtyping (Huang ef al., 2017). For example, Tao et al. developed network-based
algorithms to take advantage of multi-genomic information for studying a variety of cancer types,
such as lung cancer, colon cancer, and rectal cancer (Huang et al., 2015; Huang and Cai, 2016;
Huang et al., 2012). With thousands of BC samples having been extensively studied by a variety
of molecular analyses during the last few decades, it is expected that integration of knowledge
from multiple data types measured from the same individuals could further improve the
performance of BC subtyping in predicting patient outcomes (Rappoport et al., 2019).

According to Fang et al., there exist two kinds of data integration approaches: loose
approach and tight approach (Fang, 2019). For the loose approach, different types of datasets are
used to build separate models. Then the results from these models are combined in either a
hierarchical, ensemble, or a linear fashion (Thingholm et al., 2016; M. D. Ritchie et al., 2015;
Huang et al., 2017). The advantage of this multi-staged method is its simplicity. However, loose
integration is ineffective in exploring the complicated patterns that arise from combining distinct
types of data (Fang, 2019). Therefore, the tight approach is considered to be more advanced than
the loose method. For the tight approach, all different types of data are combined to fit a single
subtyping model. The easiest way of tight integration is to concatenate all types of normalized data
to establish a large matrix, then input the large matrix directly into the subtyping model (Fang,
2019; Huang et al., 2017). However, this concatenation method usually ignores the fundamental
complementarity of different types of data (Wang et al., 2014). Therefore, it is suggested to
combine different data sources in a more abstract and practical way (Huang et al., 2017). A
sophisticated example of combining multiple data in a practical way is the METABRIC project
(Curtis et al., 2012). It proposed a subtyping scheme by combining gene expression and CNV data.

The METABRIC study first identified genes whose expression across breast tumors were driven
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by recurrent CNVs that were cis (within a 3-megabase window surrounding the gene of interest)
using an expression quantitative trait loci analysis. These cis-driven genes were then used to
classify the tumors into 10 integrative cluster subtypes (IntClustl-10) with distinct clinical
outcomes and responses to therapy (Curtis ef al., 2012). Another way of integrating multiple data
in an abstract way is to first extract latent features from different data types and then use classic
clustering algorithms to do subtyping. Examples include SNF (Wang et al., 2014), iClusterPlus
(Mo et al., 2018), LRAcluster (Wu et al., 2015), PINSCluster (Nguyen et al., 2020), etc.

Some mathematic and computational methods were proposed to address this data
combination problem in a more abstract way. The most popular one is the tensor factorization
(Kolda and Bader, 2009). Instead of simply concatenating different omics data to a large two-
dimensional matrix, we can combine them into a three-dimensional tensor with the new dimension
representing data type. This three-dimensional tensor can thus be processed by traditional tensor
factorization algorithms for latent factor extraction. In this way, data across different levels are
integrated and the cross-level information is retained. These integrated factors are then passed on
to downstream subtyping models.

Tensor is defined as a high-dimensional data array (Kolda and Bader, 2009). Tensor
decomposition or factorization problem has been studied for many years and the algorithms that
emerged to solve the problem have been applied in many domains of research (Kolda and Bader,
2009; Harshman, 1970; Carroll and Chang, 1970). Among those mature tensor factorization
algorithms, CP (Carroll and Chang, 1970) (Harshman, 1970) perhaps is the simplest one. It
decomposes a tensor as a sum of rank-one tensors (Kiers, 2000; Hitchcock, 1927; MOcks, 1988).
A drawback of CP-based tensor factorization is that pre-defining the rank of the tensor is a NP-

hard problem (Héstad, 1990; Hillar and Lim, 2013). There was no straightforward algorithm for
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solving this problem for a long time (Kolda and Bader, 2009) until recently, the BTF algorithm
was proposed to overcome this difficulty (Tang et al., 2018). BTF takes three steps to determine
the rank of a tensor: a multi-linear model to decompose the given tensor to latent factors; a high-
dimensional variational Bayesian inference method to estimate the posterior distribution of the
decomposed latent factors; and finally a filtering procedure for removing the redundancy factors
(Tang et al., 2018).

After different levels of omics data are integrated into latent factors, a subtyping model is
needed to identify BC intrinsic subtypes using these latent factors. The problem then becomes
given a matrix with patients in rows and latent factors in columns, to identify the intrinsic clusters
of these patients. CancerSubtypes (Xu ef al., 2017) is an R package for cancer subtyping and is
widely accepted by omics data-based cancer stratifications. It envelopes some classical cancer
subtyping algorithms such as CoC (Monti et al., 2003), SNF (Wang et al., 2014), SNF.CC (an
ensemble method which combines SNF and CoC) (Xu ef al., 2017), Consensus NMF (CNMF)
(Brunet et al., 2004), and so on. CoC is a resampling-based clustering algorithm that intends to
obtain robust data partitions according to the consensus among several clustering runs. It has the
ability of intuitively estimating the number of clusters in a dataset (Monti et al., 2003; Wilkerson
and Hayes, 2010). SNF constructs fused sample-level similarity networks for patient subgrouping
and has been proved to perform well in subclassification of various cancers (Wang et al., 2014).
CNMF incorporates CoC into the traditional NMF (Lee and Seung, 1999) method to stratify
patients in a dimension reduction approach (Brunet et al., 2004). NMF, in its core algorithm, is
similar to the tensor factorization mentioned in the previous paragraph because a matrix can be

considered as a 2D tensor. To this end, involving CNMF as the downstream subtyping method
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after BTF can keep the entire workflow of multi-omics-based cancer subtyping under a uniform
set of theoretical assumptions.

In this study, we propose a new computational subtyping strategy for BC that effectively
interlocks multi-omics, BTF, and CNMF (Figure 3-1). A three-dimensional tensor is constructed
first using the gene expression data, CNV data, and methylation data measured on 762 BC patients
from TCGA-BRCA cohort (Liu et al., 2018). This three-dimensional tensor is then passed on to
BTF for latent factor decomposition. The decomposed factors, which contain the comprehensive
information of the multi-omics data, are assigned to CoC wrapped K-mean clustering for subtype
number determination. Then CNMF is applied for the patient subtype membership assignment.
The identified BC subtypes are evaluated by statistical tests and survival analysis. The proposed
approach is compared with other state-of-the-art methods. More details of these algorithms can be

found in the method section.

70



Gene expression

+ Multi-omics tensor

ient

t

3

P

CNV score

_ DNA methylation
5

Resampling and non-negative
matrix factorization clustering

Consensus matrix

CNMF for subtype membership assignment

]
# x Xg £
£

BTF for latent factor extraction

Bayesian tensor factorization

e A S o&} S "+ Data type-directional
T A factor matrix
; , R

A - Il Ug =

M4 . eE—

Gene-directional
factor matrix
w; Wr

...........

Patient-directional
factor matrix

R

CDF area changing

CC for subtype number determination

Figure 3-1. The overall workflow of the proposed BTF-CNMF method for multi-omics-based BC

subtyping. A three-dimensional multi-omics tensor is constructed by attaching the gene expression data

matrix, CNV data matrix, and methylation data matrix together. This three-dimensional tensor is then

passed on to BTF for latent factors decomposition. BTF automatically choose the best rank (R) of the tensor,

which is controlling the number of latent factors. The patient-directional decomposed factors, which contain

the comprehensive information of multi-omics data, are assigned to CoC algorithm wrapped K-mean

clustering for subtype number determination. The optimum number of subtypes is determined by observing

the dynamic cumulative distribution function (CDF) of the consensus value. The optimum number of

subtypes occurred at the saturation point of CDF area changing plot. Once the number of subtypes is

established, the CNMF is applied for patient subtype membership assignment.

3.2 Materials and method
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3.2.1 Data collection and preprocessing

Three gene-level omics data matrices, copy number variation (~C), gene expression
profiles (~G) and methylation profiles (~M), were downloaded from Xena platform (Goldman et
al., 2020). The upstream bioinformatics pipeline of data retrieval and preprocessing can be found
in TCGA-BRCA (https://www.cancer.gov/tcga.) and Xena (http://xena.ucsc.edu/). The ~C is the
gene-level CNV estimated using gistic2 (Mermel et al., 2011) method, which contains CNV
information for 1080 patients and 24774 genes. The ~G contains gene expressions for 1104
patients and 20530 genes. The ~M contains averaged methylation scores for 790 patients and
24774 genes. The clinical data (~CD) was downloaded from National Cancer Institute Genomic
Data Commons (NCI GDC) (Grossman et al., 2016) and some useful demographical and clinical
information were carefully selected such as patients’ age, tumor stage, IHC biomarker status (ER,
PR, HER2), PAMS50 subtype, and survival information (time to event and event indicator). After
matching all sample IDs in the data sets, removing all-0 samples (the sample with all feature values
are 0) and all-0 features (all samples have 0 value in this specific feature), selecting only top 10
percent of genes with largest coefficient of variation, 4515 genes for 762 patients were kept in the
final matrices (~C), (~G) and (~M). The above-mentioned clinical information of these 762

patients was extracted for further analysis.

3.2.2 BTF for multi-omics data integration

BTF introduces Bayesian inference theory to CP algorithm. Objective of CP, as mentioned
in the introduction, is to decompose a tensor to a sum of several rank-one tensors. In our

implementation the algorithm, CP can be explained by the formula below:
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Equation 3-1
min|(~T) - ~D|
D

Where (~T) = YR, ;@ W,Q%, = [[ﬁ, w,X ]] R is the rank of tensor (~T) built upon
the three processed omics data matrices (~C), (~G) and (~M). (~T) is a three-dimensional tensor
with the size of 762 (number of patients) x 4515 (number of genes) x 3 (number of omics data
types). (~T) is the estimated low rank approximation of (~T). In other words, (~T) approximates
(~T) with a sum of R rank-one tensors (denoted as ., @w, ®x,-, where u,, w,, x, (r=1,2, ... ,R)
stand for non-zero vectors, and the symbol & denotes outer product calculation. These rank-one
tensors can form 3 matrices (l7 W, X ) which act as the extracted latent factors along three
dimensions of the tensor (~T). Among these three latent factor matrices, X is in patient-level and
has a size of 762 (number of patients) X R (rank of the tensor).

As we can see, the rank R is the exact number of latent factors we can extract. If the R is too
small, too much information might be lost during tensor factorization. Whereas if R is too large,
redundant factors might be generated. To overcome this difficulty, Bayesian inference was
introduced to CP for effectively determining a proper rank for a given tensor. The following

formula explains the CP-based BTF used in this study.
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Equation 3-2
(~T) = (~Tyye) + €
Equation 3-3
(~Toue) = Zre1 W ® W, ®x, = [U, W, X]

where (~T) is assumed to be composed of the true tensor (~Tiye), and the noise tensor €; U
represents a latent factor matrix factorized along omics data type direction, which has a size of 3
(number of omics data types) x R, and its r'" column is u,. W and X are the latent factor matrices
factorized along gene-direction and patient-direction, respectively. W has a size of 4515 (number
of genes) x R, while X has a size of 762 (number of patients) x R. They have w; and x; in their r'

column, respectively.

Since the prior knowledge of (~T) is lacking, the non-informative prior distribution of u,,

Wr, Xr, and the elements of € are assumed to be 1.1.d. Gaussian distribution.

ur~ N (0, ou)
wr ~ N (0, ow)
xr ~ N (0, ox)
e~N(0,1)
where € is the element in noise tensor €; A (scalar), oy, ow, and ox (matrices with a size of R x R)

serve as hyperparameters.

Under these assumptions, the conditional probability and the joint distribution of the model
can be derived. Then the Variational Bayesian Inference (Zhao et al., 2015) is incorporated to

iteratively deduce the posterior distribution of latent factor matrices and the hyperparameters using
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the prior distribution and the observed value in (~T). The obtained posterior factor vectors with
small values will be considered as redundant and thus be excluded. In this way, BTF can make
attempts to iteratively optimize the rank when a prior rank is given, while the traditional CP takes
the given initial rank as the final rank (Zhao et al., 2015; Xiong et al., 2010; Harshman, 1970;
Tang et al., 2018). The algorithmic details of the Variational Bayesian Inference technique can be

found in other studies (Zhao et al., 2015; Tang et al., 2018).

TensorBF (Khan and Ammad-ud-din, 2016), which was the first package that enabled
implementation of BTF using the R programming language platform, was used to extract the
proposed multi-omics latent factor matrices. In addition to the original BTF algorithm (Tang et al.,
2018) mentioned above, tensorBF introduces a sparsity parameter to remove redundant factors,
and thus, it can achieve automatic rank optimization. A noiseProb argument of the tensorBF
function is needed to claim the proportion of variance that is expected to be explained with the
factors. In our experiment, the noiseProb was set to (0.5,0.5) which meant 50% of the variance
could be explained by the factors. Another argument is the initial rank K, which influences the
inferenced final rank. We considered the K values of 10, 50, 75, 100, 150, and 200 to fine-tune

this parameter.

3.2.3 BC subtyping problem setting and solving strategy

We considered BC subtyping as a two-stage problem. The first stage was to find out how
many subtypes are in the BC patients, and the second stage was to assign the membership to each
subtype. Only the patient-directional factorized latent matrix X was passed on to the downstream

BC subtyping analysis.
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3.2.3.1 Determine the number of BC subtypes

The number of BC subtypes is always the primary concern in BC subtyping problem. CoC
algorithm (Monti et al., 2003) was used in our study to first determine the number of subtypes
after the integrated multi-omics latent factors were extracted. In our case, CoC first subsampled
the input data matrix X for 50 times. Then, the fast clustering algorithm, K-means (Lloyd, 1982),
was applied on these 50 sample sets to obtain 50 clustering results. The maximum number of
subtypes (k) was set as 10, which meant we could expect up to 10 subtypes during each of the 50
clustering runs. The 50 clustering results for each subtype number (from 1 to &, which is 10 in our
case) were then used to calculate the pairwise consensus values. The consensus value is defined as
the probability of two items being clustered together(Monti ef al., 2003). These consensus values
then formed a consensus matrix for each subtype number. Therefore, we obtained 10 consensus
matrices, each one corresponding to a specific number of subtypes being clustered. In the end, an
agglomerative hierarchical consensus clustering was applied to each of the 10 consensus matrices,
to obtain the final 10 clustering results. Since every number of subtypes between 1 to k were tested
during this procedure, we could use the Consensus Cumulative Distribution Function (CDF) to
show the cumulative distribution of the consensus matrix for each run of clustering algorithm to
decide which number of subtypes is the best. We used ConsensusClusterPlus (Wilkerson and
Hayes, 2010), which is an R package for CoC and its visualization, to plot the CDF against each
number of subtypes. ConsensusClusterPlus’s CDF plot function shows the relative change in area
under the CDF curve comparing the scenarios with increasing numbers of subtypes. If the area
under the CDF curve stops significantly increasing after a certain number of subtypes, we selected

that number of subtypes as the optimum number.
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3.2.3.2 CNMF for BC subtyping

After the number of subtypes was decided, we used CNMF (Brunet et al., 2004) clustering
function in the R’s package “CancerSubtypes” (Xu ef al., 2017) to assign the patients into each
subtype class. Since CoC can wrap any clustering method with its resampling procedure, CNMF
is such an algorithm that wraps NMF with CoC. The NMF algorithm is a low dimensional form

of BTF which can be written as:
Equation 3-4
X = [S,H] = ¥i_; si®hy

Where X is the multi-omics latent factor matrix with a size of 762 (number of patients) x R (rank
ofthe tensor). S and H are two non-negative matrices with sizes of 762 x K and K x R, respectively.
Here K is the predetermined optimum number of subtypes. By updating the S and H iteratively,
the best value for S was obtained which was the subtype indicator we desired to have. Furthermore,
CoC was wrapped outside of the NMF algorithm which made the clustering even more robust.
More details of the optimization and iteration can be found in the original paper of NMF (Lee and
Seung, 1999) and CNMF (Brunet et al., 2004). We name this method as BTF-CNMF. The

implementation of this method can be accessed at https:/github.com/bowencheng-

create/tensorBTF.

3.2.4 Baseline comparisons

The proposed multi-omics BTF-CNMF approach for BC subtyping was compared with other
state-of-the-art work in two ways. The first series of comparisons was the proposed method

compared with the multi-omics-based subtyping models including iClusterPlus (Mo et al., 2018),
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LRAcluster (Wu et al., 2015), PINSCluster (Nguyen et al., 2020), SNF (Wang et al., 2014), and
SNF.CC (Xu et al., 2017). The second series of comparisons was the proposed method compared
with each single omics-based subtyping model CNMF. The iClusterPlus, LRAcluster, and
PINSCluster were implemented using the packages provided by the original studies. The
implementations of SNF, SNF.CC and all single omics-based subtyping CNMF models were based

on the R package “CancerSubtypes” (Xu et al., 2017).

3.2.5 Subtyping validation

3.2.5.1 Simulation analysis

We simulated three omics data for an artificial cohort with 500 subjects using R package
“InterSIM” (Chalise et al., 2016), which is closer to real multi-omics dataset since this package
simulates multiple interrelated data types with realistic intra-and inter-relationships based on the
DNA methylation, mRNA gene expression, and protein expression data from the TCGA ovarian
cancer study. InterSIM generates a predefined number of clusters and associates features to these
clusters by shifting their mean values with a fixed amount. Here, we simulated the three omics
data sets with 2 clusters. The number of features for the simulated methylation, gene expression
and protein expression data are 367, 131 and 160, respectively, which are matched to 130 common
genes in the three omics data sets to build our tensor. Other parameters we set are: the proportion
of samples in the clusters are 0.6 and 0.4; cluster mean shift for gene expression, methylation and
protein expression is 0.2. We also tested this for the cases 0.3, 0.4 and 0.6; proportion of
differentially expressed genes, CpG sites and proteins is 0.2. The rest of the parameters are set as
NULL according to the package’s default.

We then executed the proposed multi-omics BTF-CNMF model and all the baseline models

including multi-omics-based iClusterPlus, PINSPlus, LRAcluster, SNF, and SNF.CC models, as
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well as the three single-data type-based CNMF models using each single omics data as an input
separately. The performance metrics included precision, recall, balanced accuracy, specificity and
silhouette score (Rousseeuw, 1987). The formulas of calculating these metrics were listed in Table

3-1.

Table 3-1. The definition and formula of the model performance metrics used in the simulation

analysis.
Metrics Formula
Precision TP' / (TP + FP?)
Recall TP / (TP + FN?)
Specificity TN*/ (TN + FP)

balanced.accuracy (TP /(TP + EN) + TN /(TN + FP)) / 2 = (Recall + Specificity) / 2

Silhouette (b3-a%) /max (a,b)

'TP: True positive;

2FP: False positive;

FN: False negative;

“TN: True negative.

Sa: average intra-cluster distance i.e the average distance between each point within a
cluster.

®b: average inter-cluster distance i.e the average distance between all clusters.
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3.2.5.2 Survival analysis

Survival analysis was applied to explore the survival differences among the identified
subtypes for the proposed method and the baselines. We performed survival analyses using R’s
“survival” package (Therneau and Grambsch, 2000) and plotted the KM curve (Kaplan and Meier,
1958) using R’s package “ggplot2” (Wickham, 2016). We performed this for overall survival (the
event can be caused by any disease) and disease specific survival (the event is caused by BC),

separately.

3.2.5.3 Demographical and clinical significance of the identified BC subtypes

The demographical and clinical information includes patients’ age of diagnosis, ER status,
PR status, HER2 status, tumor stage, and PAMS50 subtypes. The differences among different
subgroups were tested using either one-way analysis of variance (ANOVA) (for continuous

variable such as age) or chi-square test (for categorical variable such as tumor stage).

3.2.6 Subtype interpretation

3.2.6.1 Gene expression visualization and differential analysis

The full gene expression data including the gene expressions of normal tissue samples were
visualized by t-SNE using R’s “tsne” (Justin Donaldson, 2016) and “ggplot2” package. The
differential analyses were performed using the R’s package “limma”. Six contrasts corresponding
to the six identified subtypes versus the normal tissue samples were created and fitted. The results

were visualized using volcano plots generated by ggplot2.
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3.2.6.2 Gene set enrichment analysis

The identified significant and unique genes in abovementioned six differential analyses
were extracted and ranked according to their adjusted p-values. The ranked gene lists were then
input into the Enrichr software (Chen et al., 2013) for enriched pathway identification. The
significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were

visualized using bar plots.

3.3 Results

3.3.1 Data collection and preprocessing

Three gene-level omics data: gene expression, CNV, and gene methylation, were
downloaded from Xena platform (Goldman et al., 2020). The clinical data were downloaded from
National Cancer Institute Genomic Data Commons (NCI GDC) (Grossman et al., 2016), which
included patients’ demographic information, tumor stage, IHC marker status (ER, PR, HER2),
PAMS50 subtype, and survival information (time to event and event indicator). After samples from
different sources were matched, all-0 samples (the sample with all feature values are 0) and all-0
features (all samples have 0 value in this specific feature) were removed, and the top 10 percent of
genes with the largest coefficient of variation were selected. After filtering and feature selection,

only 4515 genes for 762 patients remained in the final data.

3.3.2 BTF for multi-omics data integration

BTF introduces Bayesian inference theory to the CP algorithm. The objective of CP, as

mentioned in the introduction, is to decompose a tensor to a sum of R rank-one tensors. R is the
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rank of the multi-omics tensor built upon the three processed omics data matrices (Figure 3-1).
The multi-omics tensor is a three-dimensional tensor with the size of 762 (number of patients) x
4515 (Number of genes) x 3 (number of omics data types). Traditional CP algorithm cannot
estimate the rank R, while BTF can find the optimum R when given an initial R to optimize on.
Several initial rank R values were explored, and the optimum posterior rank was found to be 17 as
shown in Figure 3-2A. The decomposed rank-one tensors form 3 new matrices: the data type-
directional factor matrix with the size of 3 (number of data types) x 17 (rank); the gene-directional
factor matrix with the size of 4515 (genes) X 17 (rank); and the patient-directional factor matrix
with the size of 762 (patients) X 17 (rank). The patient-directional factor matrix was interpreted as

the extracted multi-omics latent factors for subsequent clustering.
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Figure 3-2. The identified six BC subtypes using proposed method. Panel A shows the Bayesian
posterior optimized tensor rank against the initial rank. The optimized rank is 17, which means the extracted
patient-directional factor matrix has a size of 762 (patients) x 17. After several resampling and K-mean
clustering for different number of subtypes (2 to10), the probability of two items being clustered together
is stored in a consensus matrix. The relative change in area under CDF curve of the consensus values
against these number of subtypes is shown on Panel B. By observing the saturate point of the plot, we
decide to select 6 as the optimum number of subtypes because the saturation occurs when the number of
subtypes equates to 6. This information acts as a hyperparameter of the following CNMF clustering model
for subtype membership assignment. The clustered CNMF consensus matrix is shown in Panel C with very
clear 6-cluster pattern. Panel D indicates the pair-wise statistical significance of the 6 clusters. Since the p-
values between different pairs of the identified subtypes approach zero (far below the significant threshold
0.05), there is strong evidence to say that the identified subtypes are from different Gaussian distributions.
Panel E shows the clinical characteristic differences of the identified subtypes. The identified subtypes are
different in age, tumor stage, and PAMS50 subtypes. Panel F is the boxplot and barplots for the

abovementioned three significantly differed clinical variables (age, tumor stage, and PAMS50).

3.3.3 BC subtyping

We considered BC subtyping as a two-stage problem. The first stage was to find out how
many subtypes exist in BC patients, and the second stage was to assign the patients to each subtype.
Only the patient-directional latent factor matrix was passed on to the downstream BC subtyping.

The number of subtypes is always the primary concern in the BC subclassification problem.
CoC algorithm (Monti et al., 2003) was used in our study to determine the number of subtypes
after the integrated multi-omics latent factors are extracted. In our case, CoC first subsampled the
above-mentioned patient-directional factor matrix, then applied K-means (Lloyd, 1982) clustering

on these sample sets. A series of subtype numbers were tried during these clustering runs. The
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clustering results for each subtype number were then used to calculate the pairwise consensus
values. The consensus value was defined as the probability of two patients being clustered together
(Monti et al., 2003). These consensus values then form a consensus matrix for each subtype
number. In the end, an agglomerative hierarchical clustering was applied to each of the consensus
matrices to get the final clustering results. Since different numbers of subtypes were tried during
this procedure, the CDF was used to show the cumulative distribution of the consensus matrix at
each run of clustering to decide which number of subtypes is the best (Figure 3-2B). CDF plot
function shows the relative change in area under the CDF curve comparing the scenarios with
increasing number of subtypes. If the area under the CDF curve stops significantly increasing after
a certain number of subtypes, we can say that number of subtypes is the optimum number. In our
case, the optimum number of subtypes was 6 (Figure 3-2B).

After the number of subtypes was decided, we moved on to the next stage—subtype
membership assignment. CNMF (Brunet et al., 2004) clustering combines NMF and CoC. The
NMF algorithm is a low dimensional form of BTF which further decomposes the patient-
directional factor matrix into two non-negative matrices with sizes of 762 (patients) x 6 (subtypes)
and 6 x 17 (tensor rank), respectively. The first non-negative matrix is the subtype membership
indicator. By updating these two non-negative matrices iteratively, the best subtype indicator is
obtained. Besides, the resampling-based consensus clustering built on the NMF algorithm will
make the clustering result even more robust. The clustered consensus matrix of CNMF can be
found in Figure 3-2C. And the unsupervised gene expression t-SNE visualization is shown in

Figure 3-3.
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Statistical significance of the identified subtypes was tested using the hypothesis assumption

and the ratio between the within-cluster sum of squares and the total sum of squares act as the

statistic. Since the p-values between different pairs of the identified subtypes approached zero

(Figure 3-2D), there was strong evidence to reject HO (i.e., the data of the identified subtypes is

from a single Gaussian distribution) and accept H1 (H1: The data of the identified subtypes is from

a mixture of Gaussian distributions). Therefore, we can conclude that the identified subtypes are

valid and real.

The clinical information we collected included patients’ age of diagnosis, ER status, PR

status, HER2 status, tumor stage, and PAMS50 subtypes. These clinical differences among different

subtypes were tested using either one-way Analysis of Variance (ANOVA) (for continuous

variable such as age) or chi-square test (for categorical variable such as tumor stage). As shown in

Figure 3-2E, three significant clinical variables are identified, age, stage, and PAMS50 subtypes.
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The distributions of these three clinical variables are further emphasized in Figure 3-2F. Patients
in subtype 3 have the lowest average age, the highest proportion of X or IV tumor stage, and the

lower proportion of Normal PAMS50 subtype (Figure 3-2F).

3.3.4 Baseline comparison

The proposed multi-omics BTF-CNMF approach for BC subtyping was compared with
other works in two ways. The first series of the comparison is the proposed method versus multi-
omics-based iClusterPlus, PINSPlus, LRAcluster, SNF and SNF.CC. The second series of the
comparison is the proposed method compared with the CNMF model using each single omics data
as an input. Survival analysis is applied to explore the survival differences among the identified
subtypes for the proposed method and the baselines. We do this for overall survival (the event can
be caused by any disease) and disease-specific survival (the event is caused by BC), separately.
Since Duan et al. have shown that the Similarity Network Fusion (SNF) method (Wang et al.,
2014) has relatively more robust and efficient performance than other methods (Duan et al., 2021),
and the real data have no ground truth of the cluster labels, our real data analysis was just focused
on our proposed method and the SNF and SNF.CC methods. For the simulated data analysis, since
we have the ground truth of the cluster labels, we compared the performance of our proposed
method with all suggested methods.

As shown in Table 3-2, generally speaking, the multi-omics -based models (such as BTF-
CNMF, SNF) show better performance to identify the predefined true clusters than those based on
individual omics data. The proposed multi-omics BTF-CNMF approach shows better performance

to identify the predefined true clusters than the baseline methods using either multi-omics or
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single-omics data. We also observed that the performance of the SNF model is better than that of

the iClusterPlus, PINSPlus, LR Acluster methods, which is similar to what Duan et al observed.

Table 3-2. The simulation analysis performance of the proposed method and the baseline methods.

Silhouette Silhouette
Precision | Recall | Accuracy | Specificity
(similarity)’ | (distance)®
Multi BTF-
0.75 0.76 0.76 0.75 0.86 0.05
CNMF'

Multi iClusterPlus 0.52 0.52 0.52 0.52 NA’ 0.01
Multi PINSPlus 0.52 0.52 0.52 0.52 NA 0.02

Delta=0.2
Multi LRAcluster 0.55 0.54 0.54 0.54 NA 0.01

Cluster=2
Multi SNF 0.51 0.51 0.51 0.51 0.23 0.01

Sample=500

Multi SNF.CC 0.51 0.51 0.51 0.51 0.61 0.01
Single CNMF 17 0.52 0.52 0.52 0.52 0.99 0.03
Single CNMF 2° 0.50 0.50 0.50 0.50 0.90 0.02
Single CNMF 3* 0.52 0.53 0.53 0.53 0.98 0.01
Multi BTF-CNMF 0.90 0.91 0.91 0.91 0.86 0.09
Multi iClusterPlus 0.57 0.57 0.57 0.57 NA 0.03
Multi PINSPlus 0.52 0.52 0.52 0.52 NA 0.01

Delta=0.3
Multi LRAcluster 0.55 0.55 0.55 0.55 NA 0.01

Cluster=2
Multi SNF 0.87 0.88 0.88 0.88 0.8 0.08

Sample=500

Multi SNF.CC 0.52 0.52 0.52 0.52 0.66 0.01
Single CNMF 1 0.51 0.51 0.51 0.51 0.97 0.02
Single CNMF 2 0.52 0.52 0.52 0.52 0.95 0.02
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Single CNMF 3 0.52 0.52 0.52 0.52 0 0.01

Multi BTF-CNMF 0.97 0.98 0.54 0.98 0.97 0.13

Multi iClusterPlus 0.58 0.57 0.58 0.57 NA 0.02

Multi PINSPlus 0.53 0.53 0.53 0.53 NA 0.03

Delta=0.4 Multi LR Acluster 0.55 0.54 0.54 0.54 NA 0.01
Cluster=2 Multi SNF 0.95 0.95 0.95 0.95 0.32 0.11
Sample=500 Multi SNF.CC 0.96 0.96 0.96 0.96 0.33 0.08
Single CNMF 1 0.55 0.55 0.55 0.55 0.97 0.01

Single CNMF 2 0.52 0.51 0.51 0.51 0.91 0.01

Single CNMF 3 0.55 0.55 0.55 0.55 0.98 0.03

Multi BTF-CNMF 1 1 1 1 1 0.13

Multi iClusterPlus 0.87 0.87 0.87 0.87 NA 0.08

Multi PINSPlus 1 1 1 1 NA 0.13

Delta=0.6 Multi LRAcluster 1 1 1 1 NA 0.11
Cluster=2 Multi SNF 1 1 1 1 0.53 0.11
Sample=500 Multi SNF.CC 1 1 1 1 0.90 0.11
Single CNMF 1 0.54 0.54 0.54 0.54 0.25 0.01

Single CNMF 2 0.56 0.56 0.56 0.56 0.94 0.03

Single CNMF 3 1 1 1 1 1 0.11

'Multi BTF CNMF: The proposed new approach using the multi-omics (the simulated gene expression

data, DNA methylation data and proteomics data) as input.

*Single CNMF 1: The CNMF approach using only simulated gene expression data as input.

3Single CNMF 2: The CNMF approach using only simulated DNA methylation data as input.
*Single CNMF 3: The CNMF approach using only simulated proteomics data as input.

>Silhouette (similarity): The Silhouette metric calculated based on the similarity/consensus matrix.
®Silhouette (distance): The Silhouette metric calculated based on the distance matrix.

"Not applicable (the number cannot be estimated using the packages).
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Figure 3-4 shows the disease-specific survival analysis results of the proposed method and
the above-mentioned baseline methods. There were significant disease-specific survival
differences among the subtypes identified by the proposed method as shown in Figure 3-4A.
Furthermore, patients in Subtype 3 suffered a worse prognosis compared to other subtypes. While
the subtypes identified by the baseline models showed no significant survival differences (Figure

3-4B-F). The overall survival analysis results showed a similar trend (Figure 3-5).
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Figure 3-4. The disease specific 10-year survival comparison of the proposed method with baseline
methods. Panel A is the disease specific survival plot of the subtypes identified by the proposed multi-
omics BTF-CNMF method. Panel B is the disease specific survival plot of the subtypes identified by the
multi-omics plus BTF plus SNF. Panel C is the disease specific survival plot of the subtypes identified by
the multi-omics plus BTF plus SNF.CC. Panel D is the disease specific survival plot of the subtypes
identified by the BTF-CNMF method with only CNV data as input. Panel E is the disease specific survival
plot of the subtypes identified by the BTF-CNMF method with only gene expression data as input. Panel
F is the disease specific survival plot of the subtypes identified by the BTF-CNMF method with only gene

methylation data as input.
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Figure 3-5. The overall survival comparison of proposed method with baseline methods. Panel A is
the overall survival plot of the subtypes identified by the proposed multi-omics BTF-CNMF method. Panel

B is the overall survival plot of the subtypes identified by the multi-omics plus BTF plus SNF. Panel C is
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the overall survival plot of the subtypes identified by the multi-omics plus BTF plus SNF.CC. Panel D is
the overall survival plot of the subtypes identified by the CNMF method with only CNV data as input.
Panel E is overall survival plot of the subtypes identified by the CNMF method with only gene expression
data as input. Panel F is the overall survival plot of the subtypes identified by the CNMF method with only
gene methylation data as input. Note: the top part from left to right is Panels A, B and C and the bottom

part from left to right is Panels D, E and F.

3.3.5 Subtype interpretation

The identified subtypes were further explored in terms of their gene expression differences
and gene set enrichment differences. We included the gene expressions of 114 normal tissue
samples as a control group. The differential analyses were done between each subtype with the
normal tissue sample group, respectively. The volcano plots of the differential analysis
corresponding to each of the six subtypes compared to the normal samples are shown in Figure 3-
6. We highlighted those genes with the adjusted p-value < 1e-100 and the absolute log2(fold
change) >= 0.585 (1.5-fold change). The details of these highlighted genes for each of the 6
subtypes or clusters (cl- c6) and their comparison (e.g., common ones, unique ones, and the

percentage of unique ones among total) can be found in Appendix A.

93



Subtype 1 vs. Normal Subtype 2 vs. Normal Subtype 3 vs. Normal

-log10(adj.P.Val)
-log10(adj.P.val)
-log10(adj.P.val)

0
logFC

Subtype 4 vs. Normal

-log10(adj.P.Val)
-log10(adj.P.Val)

Figure 3-6. Gene expression differential analysis of the identified six BC subtypes. The results of the
six gene expression differential analyses corresponding to the six subtypes compared to the normal samples,
respectively. Red dots represent the genes with the adjusted p-value < 1e-100 and the log2(fold change) >=
0.585 (1.5-fold change). Yellow dots represent the genes with the adjusted p-value < 1e-100 and the

log2(fold change) <= -0.585 (1.5-fold change).

Differentially expressed genes that were both statistically significant (adjusted p-value <
le-100 and log2(fold change) >= 0.585) and unique to each of the six subtypes were then passed
to GSEA (Chen et al., 2013) to identify which of the KEGG (Ogata et al., 1999) pathways, if any,

the gene sets from different subtypes were enriched in. Please be noted that Subtype 2 and Subtype
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5 did not have unique genes, thus the full gene lists were used for the GSEA for these two subtypes.
The identified pathways significantly enriched in the subtype-specific gene sets are shown in
Figure 3-7.

Subtype 1 Subtype 2
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2 3 a
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0 1 o 1
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Figure 3-7. The bar chart of the top enriched terms in the KEGG library. Colored bars correspond to
enriched KEGG pathways with significant p-values (<0.05). An asterisk (*) next to a p-value indicates the

term also has a significant adjusted p-value (<0.05).

3.4 Discussion
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The proposed BTF-CNMF method is a novel tensor-based integrative clustering approach
and in this study, it successfully identified 6 BC subtypes. These subtypes were significant in terms
of statistical tests, age-specific ANOVA test, tumor stage and PAMS50 subtype-specific chi-square
tests, survival test, and gene expression t-SNE clustering test. On the contrary, all other baseline
methods could not identify subtypes with statistically significant survival patterns. In this sense,
we have shown the advantages of the proposed BTF-CNMF over other baselines.

Patients with Subtype 3 as classified by BTF-CNMF suffered the worst prognosis. Deeper
insights into this observation are provided in this study. From the age-specific ANOVA test and
boxplot, we can see that Subtype 3 has the lowest average age at diagnosis. For BC, young age at
diagnosis is known to be associated with poor prognosis, which is supported by previous research
(Martinez et al., 2019; Johnson et al., 2015; Anders et al., 2008). Our gene expression t-SNE map
showed that patients with Subtype 3 are clustered and present far away from other subtypes, which
also indicated the distinctiveness of Subtype 3. Differentially expressed genes were identified for
each subtype compared to the normal tissue (Appendix A1-6). The significant genes unique to
Subtype 1 were enriched in protein and carbohydrate digestion and absorption pathways as well
as several signalling pathways (Appendix A7). More importantly however, Subtype 1 was
enriched in ABC transporters, which is commonly associated with multi-drug resistant phenotype
in cancer. Subtype 2-associated genes were enriched in several regulatory pathways, such as
Cytokine-cytokine receptor interaction pathway, T cell signaling pathway, Chemokine signaling
pathway. Rheumatoid arthritis, Primary immunodeficiency, and Allograft rejection. Thus, Subtype
2 may be best described as “immune-related” or “inflammatory” subtype. The significantly
enriched pathways for Subtype 3 were the Tryptophan metabolism pathway and Cocaine addiction

pathway. Interestingly, Subtype 3 was also enriched in Glycosaminoglycan and other glycan
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degradation pathways and in addition to being absent in enrichment of adhesion-related pathways
unlike Subtype 1 (Focal adhesion), Subtype 2 (Cell adhesion molecules (CAMs)), and Subtype 4
(CAMs). This suggests that patients classified as Subtype 3 may suffer from metastatic phenotype
more so than other patient groups, due to degradation of extracellular matrix and loss of adhesion.
Many of the pathways enriched in Subtype 4-specific genes were related to metabolism; Hence
Subtype 4 may be best described as the “metabolic” subtype. Some biosynthesis pathways were
identified for Subtype 5 and Subtype 6. In addition, Subtype 6 was enriched in several pathways
involved in water, mineral and vitamin absorption. These different biological pathways may reflect
different characteristics of the identified subtypes. We also observed some common pathways
among different subtypes. As shown in Figure 3-7 for example, calcium signaling pathway is
significantly enriched in Subtype 1 and Subtype 5, CAMs enriched in both Subtype 2 and Subtype
4, cytokine-cytokine receptor interaction enriched in both Subtype 2 and Subtype 6, thyroid
hormone synthesis enriched in Subtype 3 and Subtype 6, phenylalanine metabolism enriched in
Subtype 3, Subtype 4 and Subtype 6, and vitamin digestion and absorption enriched in Subtype 4
and Subtype 6.

Since we only used the patient-directional factorized matrix for the subtyping, we did not
fully utilize the latent information in the other two factorized matrices, such as the data type-
directional matrix with data types by the latent ranks, and the gene-directional matrix with genes
by the latent ranks. In the future, we could explore new approaches that can effectively take
advantage of all the latent information to identify the significant genes or biological pathways for
each of the identified BC subtypes.

This study was focused on developing the innovative unsupervised BTF-CNMF method

for subtyping BCs into prognostically different subgroups. Many other studies have been
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undertaken to identify BC or its subtypes related genes using individual gene expression, CNV,
DNA methylation data or their combinations. In the future it will be interesting to explore how to
apply some of the innovative algorithms to identify subtype-specific genes based on the prognostic

groups identified using our BTF-CNMF method.

3.5 Conclusion

One of the major innovations in our proposed method is that it uses a model-driven
approach to integrate three high-dimensional omics data sets for tumor stratification. Comparing
with other network-based approaches, such as SNF, the model-based method can handle high-
dimensional data directly. Our results have demonstrated that the proposed innovative approach
BTF-CNMF is a promising strategy to efficiently use publicly available multi-omics data to
identify BC subtypes, which is better than other state-of-the-art genomic-based BC subtyping
methods. In addition, our method could be easily transferred to identify subtypes of other complex

diseases or be used in conjunction with other novel downstream subtyping algorithms.
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4 Chapter 4: GNN for BC proteomic heterogeneity study

4.1 Introduction

Genome-wide survival models using multiple types of omics data (gene expression, CNV,
DNA methylation) have identified the prognostic associations of each gene in the human genome
(Smith and Sheltzer, 2022). Cross-omics meta-analysis could cumulate each gene’s prognostic
effects at different biological levels. However, these meta-prognostic significances may still be
small in individual genes. Likewise, although some key driver genes are frequently mutated in the
BC, most low-frequency mutations are likely to be of minor significance (Zheng et al., 2021). In

addition, they could not reflect a global view of the system-level biology of BC (Yang et al., 2014).

Organizing the gene-level survival risks or mutations into gene set level has been very
useful in identifying higher-order systems of genes under high survival or mutation burdens, many
of which would otherwise be missed (Zheng et al., 2021). To do so, an accurate and comprehensive
knowledge map of biological systems needs to be determined first, so that the survival/mutation
burdens of these biological systems can be evaluated later. Biological networks are valuable for
understanding the heterogeneity of BC in a systematic view (Furlong, 2013). Protein-protein
interaction (PPI) networks are a kind of commonly used biological network in BC research (Zheng
et al., 2021). They could be modeled using an affinity graph, where nodes are proteins with their
features, and edges are undirected and weighted connections between the interacted proteins. To
better incorporate the existing knowledge of proteins into the PPI network, their amino acid
sequences can be fed into the graph as node features for creating the comprehensive knowledge
map of biological systems. The biological systems of BC can be defined at a range of biophysical

scales from individual proteins, small groups of proteins to large groups of proteins. Analyzing the
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survival/mutation burdens using only one of these scales could miss survival/mutation burdens at
all others. Zheng et al. integrated large amounts of existing protein-protein association data with
their own generated PPI data of BC and constructed a hierarchical protein system map. They then
developed a group-lasso-based statistical model and successfully identified 395 significant
biological systems under mutation burdens on all scales of the hierarchy which can be used as

clinical biomarkers (Zheng et al., 2021).

A limitation of Zheng ef al.’s work is that the mutations may not have direct clinical
associations. Instead, the gene-level survival risks estimated by Smith and Sheltzer in their
genome-wide survival analyses (Smith and Sheltzer, 2022) are more closely related to patients’
prognosis, thus using this survival information to select biological systems in the hierarchical map
may identify better biomarkers. Another limitation of Zheng et al.’s work is that they used a
tradition topological method called CliXO to construct the hierarchy. CliXO takes the weighted
graph as input, calculates the maximal cliques, and adds the identified maximal cliques to the
ontology as the threshold of edge weight of this graph is lowered (Kramer et al., 2014). Figure 4-
1 explains how CliXO works. Although the CliXO algorithm is widely used in detecting
hierarchical communities of a network (Zheng et al., 2021; Qin et al., 2021), it only considers the
edge weights, and it has several hyperparameters that control the threshold decreasing strategies
which need to be pre-specified and tuned manually to achieve a propitiate decision. More efficient
and automated algorithms are needed to address these drawbacks. Moreover, to better incorporate
the existing knowledge of gene products and their functions into PPI network, the terms in Gene
Ontology (GO) (The Gene Ontology Consortium et al., 2004; Carbon et al., 2021) could be
involved. GO has three branches: Biological Process (BP), Cell Component (CC), and the

Molecular Function (MF). Hence, it is useful to incorporate the extra information of GO into the
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PPI graph for discovering hierarchical functional modules or hierarchical protein community of

BC systematically (Zheng et al., 2021) (Fionda, 2018).
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Figure 4-1. A simple explanation of the CliXO algorithm. The bottom right hierarchy is the final output.
It has 8 proteins (A-H) and 7 biological systems (0-6) with a hierarchical structure. The PPI scores between
each protein pairs are in the first row. As the threshold is decreasing, edges with the scores that is equal to
or larger than the threshold are added to the graph. At each new threshold, maximal cliques identified in
the graph are added to the predicted hierarchy. Eventually, a hierarchical tree is built. It should be noted
that a clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique
are adjacent and a maximal clique is a clique that cannot be extended by including one more adjacent vertex,

meaning it is not a subset of a larger clique.

Recently, GNN has shown great capability in automatically analyzing biological networks
and it is also powerful in combining other auxiliary data sources like the protein sequence to
achieve better model performance (Long et al., 2020, 2022, 2021). GNN could take both the node
features, edge features, and the graph structure into consideration for representation learning. The
node features can be initialed using the protein sequence information, which will be aggregated by
the features of the neighbor nodes in each layer of the GNN and eventually propagated to the final
target. Yang et al. proposed a GNN autoencoder to learn node representations for PPI prediction
and achieved very high accuracy (F. Yang et al., 2020). Likewise, Long et al. used the same
strategy of GNN autoencoder to learn node embeddings and applied the learned embeddings to
drug-target interaction (DTI) and synthetic lethality (SL) predictions (Long ef al., 2022). These
successful studies suggest that GNN can be a potentially useful framework for building clinically

relevant biological systems for BC.

4.2 Materials and methods
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4.2.1 Framework of the meta-survival/mutation enriched hierarchical biological

system detection

We build a GNN-based framework to identify meta-survival/mutation enriched
hierarchical biological systems (Figure 4-2). There are four major steps in the framework: 1) Use
pretrained transformer models to extract features from protein amino acid sequence data; 2)
Combine Zheng et al.’s data (Zheng et al., 2021) and the features generated in the first step to
generate an affinity graph; 3) Use GO terms as label to construct a hierarchical tree of protein
communities/biological systems for BC in a GNN way; 4) Use the group-lasso-based statistical
method called HiSig (Zheng et al., 2021) to pinpoint which BC protein communities/biological
systems are under strong prognostic pressure/mutation burden based on the meta-survival risk
scores and mutation counts. This study could decipher the BC prognostic risk/mutation pressure
that is raised from tumor genomes and gradually converged to their higher-order entities (such as
transcriptome and proteome). The identified protein communities under high prognostic

risk/mutation pressures could be potential biomarkers for BC.
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Figure 4-2. The meta-survival/mutation enriched hierarchical biological system detection
framework. A pre-trained deep learning model was used to extract 1,280 numeric features from the amino
sequence of each protein. These numeric features were stored in the nodes of the graph (a node in the graph
is a protein). The pairwise protein association/interaction information was collected from previously
published evidence (physical interaction evidence, mRNA co-expression, protein co-expression, sequence
similarity, and co-dependence). There pair-wised features were stored in the edges that link two proteins.
The graph was then input into a message passing GNN (MPGNN) block to embed edge features and node
features for new node representations. The learned new node features were then input into a supervised

GNN module to predict the node GO annotations (labels). There are several GNN modules, and each of
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them configured with an aggregation module to aggregate a cluster of nodes identified in current level of
the graph to a new node in the next level of the graph. The new graph was input into another GNN module,
and the procedure was repeated again. Eventually a hierarchical tree of these predicted clusters was

constructed by rearranging the nodes in each level of the graph.

4.2.2 Data sources

There were three data sources used in this study, including protein amino sequence data,
PPI data, GO terms, gene-level meta-survival effects, and gene-level mutation counts. The protein
amino sequence data of 19,035 proteins were downloaded from the Uniport database, which is the
world’s leading high-quality, comprehensive, and freely accessible resource of protein sequences
(Bateman et al., 2021). The PPI data were downloaded from Zheng et al.’s paper. They first
identified 1722 PPIs from BC cell lines (MDA-MB-231, MCF-7, MCF-10A), which were
quantified by mass spectrometry using PPI confidence-scoring algorithms. Then, these
experimental results were integrated with a broad collection of previously identified human PPI
data and other 4 types of protein-protein association evidence, namely mRNA co-expression,
protein co-expression, sequence similarity, and co-dependence. Finally, the combined PPI data
consist of 1.8 x 108 protein pairs. Each protein pair has 5 scores to indicate their associations. The
human GO terms were downloaded from GO database (The Gene Ontology Consortium et al.,
2004). There are 5,764 unique genes with annotated GO terms. The gene-level meta-survival
effects were downloaded from Smith and Sheltzer’s paper (Smith and Sheltzer, 2022). They
constructed Cox regression models for all gene by omics data types and cancer types in TCGA
and found more than 112,000 gene features with significant survival associations. We downloaded
the BC-specific z-scores of these Cox models. Each gene can have 4 different z-scores

corresponding to 4 omics data used in the Cox regressions: CNV z-score, gene expression z-score,
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DNA methylation z-score, and mutation z-score. After matching these data sources, we got the

final graph with 4,968 nodes/genes/proteins, and 710,751 edges/protein pairs.

4.2.3 Protein feature extraction

We utilized a recently published pre-trained deep learning model, Evolutionary Scale
Modeling (ESM)-1b Transformer (Rives et al., 2021), to extract 1,280 numeric features for each
protein in our dataset. ESM-1b is a 33 layers’ Transformer-based deep contextual language model
with approximate 650 million parameters, which was trained on 250 million protein amino
sequences. It has been proved to be able to learn deep representations from proteins with very good
quality (Rives et al., 2021; Mahmud et al., 2021). The protein features generated in the first step

was then used to construct an affinity graph together with the PPI scores from Zheng et al.’s study.

4.2.4 Hierarchical biological system tree construction

GNN-based hierarchical clustering model, such as Hi-Lander, has been proposed to solve
supervised image clustering problem and achieved state-of-the-art performance (Xing et al., 2022).
However, the Hi-Lander model uses & nearest neighbors (k£ -NN) to initial the links/edges of the
graph in different scales in the hierarchy. It cannot take the protein-protein
interactions/associations into consideration, which is the key information for studying biological
systems. To address this problem, we modified the initialization procedure of the first-level graph
of the Hi-Lander and added a message passing GNN (MPGNN) (Gilmer et al., 2017) head for
learning node representations from both node features and edge features. We named the proposed

method as MPGNN-HiLander.
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The graph G, = {V,E, Xy, Xg} generated in section 4.2.2 consisted of both node features
Xy (1,280 ESM-1Db extracted protein features) for 4,968 nodes (V) and edge features Xy (5 types
of protein-protein association scores) for 710,751 edges (E). It was used as the first level of the
graph in our hierarchical clustering framework (Figure 4-1). A clustering function ¢ can take G
as input and output an edge subset E' C E ie., E' = ¢ (G). The resulting graph G' =
{V,E', X} (edge features Xy were embedded into node features X;,, thus were not involved in
second level and above) was then split into connected components, with each corresponding to a
cluster of nodes. Nodes in the same cluster were aggregated using an aggregation function i into
a new node which constructs the next level graph. This single-level clustering and aggregation
operation can be generalized to multiple levels and form the hierarchy eventually. Given a G =
{V,E, Xy}, asequence of graphs G; = {V}, E; , X, } can be generated iteratively, where i = 1 ... |V{]
and [ =1 ..., were iteratively generated using a base cluster function ¢ and an aggregation
function Y. We constructed and realized the clustering function and aggregation function of
second level and beyond using the same loss functions as the Hi-Lander method (Xing et al., 2022).

The data were randomly split into training/validation/test sets in a ratio of 70%:10%:20%.
The model’s performance on the test set was evaluated using three metrics: Pairwise F-score (Fp),
BCubed F-score (Fb), and Normalized Mutual Information (NMI). CliXO (Zheng et al., 2021),
GCN-V (L. Yang et al., 2020), GCN-V+E (L. Yang et al., 2020), and Hi-LANDER (Xing ef al.,
2022) were used as baselines. After the model was well-trained, we applied it to the whole dataset

to generate the biological system hierarchy for downstream analysis.

4.2.5 Clinical hotspot detection
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After the hierarchical tree was built, we applied HiSig algorithm (Equation 4-1) (Xing et

al., 2022) to detect which biological systems are under mutation/survival pressure.
Equation 4-1

y = Iw + Hv
Here, y is the corrected mutation counts or meta-z-score for all genes, / is an identity matrix with
the size of genes by genes. H is a gene by systems matrix. If a gene is a member of a biological
system, the corresponding element in A will be 1, otherwise it will be 0. While w and v are weight
vectors to be estimated.

The corrected mutation counts were calculated as the log transformed observed counts
minus the expected counts. The expected counts were computed using MutSigCV 1.4 with default
settings. It accounts for covariates of mutation tendency, including gene length, mRNA expression
level, replication timing, and trinucleotide context of the mutation, which are integral parts of the
MutSigCV statistical model (Lawrence ef al., 2013) . Meta-z-score was calculated using Equation

4-2.
Equation 4-2

K
i=1 Zi

VK

meta —z =

Where K is the number of platforms, in this case, K =4 (CNV, gene expression, DNA methylation,
mutation). The Z; were calculated by dividing the coefficient § in the Cox regression model
(Equation 4-3) by its standard error. The univariate Cox regression model used to generate the z-

scores could be formulated as follow:
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Equation 4-3
h(t,X) = ho(t)ePX

Where ¢ is the survival time, h(t, X) is the hazard function, hy(t) is the baseline time-dependent

risk of death, X is a time-independent gene feature been tested.

By solving Equation 4-1 in a LASSO regulated way (fit y by optimizing w, v and
maximizing sparsity: ~A(||lw|| + ||v]]), the weight vectors w and v could be estimated under
different A. They model the positive mutation/survival selection pressures on genes and systems,
respectively. We tested 500 different As, which resulted 500 optimal solutions of w and v. Each
biological system ¢ was then assigned a selective pressure S(c) over all As. The selective pressure

S(c) is defined as the maximum fraction of the weight of a biological system ¢ among all weights:
Equation 4-4

ve(A)
ZC’E C vc’(l) + Zg €EG Wg(ﬂ-)

S(c) = max

The statistical significance of the S(c) was tested in a permutation way. First, an empirical P value
was calculated by comparing S(c) of the actual hierarchy against 10,000 random hierarchies in
which the hierarchy structure H is permuted with respect to gene labels (i.e., permuting the rows
in H). Then the false discovery rate (FDR) was calculated using the Benjamini-Hochberg
procedure, and a pre-defined cut-off of FDR< 0.25 was used to select the significant biological

systems (clinical hotspots).

4.2.6 Evaluation of the identified clinical hotspots

109



Since the biological systems were identified from BC cell line data and publicly available
cancer PPI information. To further evaluate their significance in BC cohorts. We checked the
genetic alterations of these biological systems in TCGA-BRCA and METABRIC cohorts using
the CBioPortal OncoPrint function (Gao et al., 2013). The survival difference between the

alternated patients and the non-alternated patients was also evaluated for each biological system.

4.3 Results

The performance of the proposed MPGNN-HiLander and baselines could be found in
Table 4-1. The proposed MPGNN-HiLander achieved comparable performance with HiLander

but had better performance than other baseline models including CliXO.

Table 4-1. GO annotation prediction performance.

Method BP CC MF GO
Fp Fb NMI Fp Fb NMI Fp Fb NMI Fp Fb NMI
CliXO 0.08 0.15 0.51 0.05 0.09 0.49 0.06 0.13 0.59 0.11 0.13 0.57

GCN-V 0.24 0.31 0.66 0.27 0.29 0.69 0.24 0.35 0.60 0.23 0.26 0.59

GCN-V+E 0.24 0.32 0.67 0.31 0.29 0.68 0.28 0.34 0.62 0.24 0.31 0.60

Hi-Lander 0.54 0.49 0.72 0.56 0.59 0.77 0.62 0.55 0.70 0.53 0.56 0.66

MPGNN-

. 0.52 0.50 0.71 0.57 0.59 0.77 0.60 0.55 0.69 0.54 0.56 0.67
HiLander

There were 878 biological systems identified by the well-trained MPGNN-HiLander
model. They formed a 6-layer hierarchy. The detailed information of the hierarchy could be found

in Appendix B. Among the 878 systems, 131 are under significant survival pressure (Appendix
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(), and 60 are under significant mutation pressure (Appendix D) and 16 are under both survival

and mutation pressures. These 16 biological systems are shown in Table 4-2.

Table 4-2. The identified biological systems with both survival and mutation pressures.

Survival mutation
Pressure p-value | FDR | Pressure | p-value FDR

System Genes

MAMLI1,PYGO2,CBLL1,NCOA6,SS18L1,EP400,BCL9,SAP1
30,BCLIL,ARID1A,CITED2,DAZAP2,SS18,ARID1B

ATAD5,RBM44,BRCA2,ICE1,SGO2,BRCA1,CRYBG3,TET]I,
CEP192

BCL3,FBXL19,SET,SMARCA5 MPHOSPH8,NXF1,PAN3,BR
F1,BRD9.,KAT6B,BRPF1,JADE1,KDM5A,BRDI,WWOX,SR
CAP,HNRNPU,KAT8,HMGB1,DPF3,DNMT3B,KMT2E,KMT
2C,PIAS4,KAT2B,ERN2,DPF2,ASH2L ,DGKLERN1,MSH6,K
AT6A,SMARCA1,PHF12,ING4,ING5,HMGB2,PHF20L1,TBC
1D5,ING3,INO80,TIMM50,BOD1L2,CHD4,RIOX2,MCRS1,P
C59 | HF10,SMARCBI1,ING2,L3MBTL1,HNRNPUL1,JADE3,PARP | 0.038839 0.01 0.089610.153701 0.02 0.1418
1,JADE2,CXXC1,DPF1,KDM2B,SCML2,DCLRE1C,CBXS,LI
N28A,BODI1,DBL,CBX3,ECT2,JMJD6,MBTD1,SMARCA2,B
RPF3,CHDS5,KAT7,GLYRI,RFC1,BRD7,NT5DC3,PAXIP1,D
NMT3A,KATS,BRD8,CSNK2B,SMARCA4,LIG3,PRICKLE4,
SETDS,0RC1,CHD3,PHF20,PBRM1,PHF14,ANP32E,KAT2A,
EXOSC10

HNRNPH1,GRPEL2,HNRNPH3,TFAM,ESRP1,GRPEL1,ESR
C175 | P2,GRSFI,METTLI18,HNRNPR,AICF,SYNCRIP,CYB5B,HN 0.003392 0.02 0.1416 10.000985| 0.03 0.2477
RNPF,COQ3,HNRNPH2,TREX1

C198 KMT2D,FLYWCHI1 0.001861 0.02 0.1416]0.000993 | 0.03 0.2477
C243 HSP90AA1,HSP90AB1,PMS1,HSP90B1,MLH]1 0.017458 0.01 0.0896 ] 0.000998 | 0.03 0.2477

MYOIGMYO6,MYO5S5A,MYO1BMYO3B,MYO7B,MYO18A
MYOI9MYOIDMYO3AMYO5B.MYH15,MYOI1A,MYO10

C48 0.004706 0.02 0.141610.007887| 0.02 0.1418

C58 0.014937 0.01 0.0896 10.024231 0.02 0.1418

C356 MYOTAMYH7B,MYOIEMYO9A MYOIF.MYO16.MYOSC 0.002267 0.01 0.089610.001996| 0.03 0.2321
JMYO9B.MYOI1C
ATF6B,ATF6,NFIL3,BACH2,NFE2L2,MYC,BACH1,CREB3,
C375 NFE2L3 NFE2 ATF4 0.009705 0.03 0.2011]0.002925| 0.03 0.2321
C392 POMlZlC,NUPl53,NUP58,111]%{;;0,NUP54,NUP62,POM12l,N 0.0163 0.01 0.089610.001197| 0.03 0.2477
C395 ODF2,CEP83,EEA1,SCLTl,g]é??‘)O,CEPl28,AKAP9,TPR,RA 0.007122 0.01 0.089610.020845| 0.02 0.1418
C416 PHKA1,PHKA2,PHKB 0.007611 0.01 0.0896 10.004959| 0.02 0.1418
C560 1QGAP1,DMD,SYNET,SPTAL SPTBN1 SPTANI,UTRN,FLN 0.047516 0.01 0.0896 10.008456| 0.02 0.1418

A,ACTN4,SYNE2,SPTB,SPTBNS,SPTBN4,SPTBN2

XAB2,TTC30A,MAU2,SART3,PEX5,ANAPC7,EMC2,NAA16

,CRNKL1,PEXSL, TTC37,SF3B1,UTP6,TTC21B,PRPF6,PRPF

C619 | 39,FNTA,ANAPCS5,COPE,NAA25,IFT88,GTF3C3,CTRY,TTC 0.002781 0.01 0.089610.003944 | 0.03 0.2477

30B,TTC8,NAA15,RABGGTA,TTC26,SRP72,CNOT10,TTC2
1A

WASF2,CEP170,RAD21,APBB1IP,PCM1,LEO1,WASF3,INO
80D,EPC2,DROSHA EIF4G3,KANSL2,EPC1,TAF1,KANSL1
C639 | L,GTF2E1,SUPT20H,WNK1,CHTOP,SYNPO2,WBP11,TAF1 0.025465 0.01 0.089610.003139| 0.03 0.2477
L,ATXN7L3,KANSL1,WASF1,EIF4G1,LMO7,SF3B2,AKAP6
,TOB1,HIPK2,MSL2,WASHC1
SPDL1,UGT3A2,0DF2,CEP83,CUBN,RGPD3,FBXL12,EEA1,
CNTRL,ITGBL1,RGPD1,TCF25,COMMD1,LRP6,AMHR2,TG
S1,RGPD4,EIF2AK4,RIPK1,DFFB,CD14,27273 ,RGPD5,CHM
C721 |P7,HPS3,FBX033,VRK2,SWI5,MEPCE,TLR4,HSD17B8,ASC| 0.023813 0.01 0.0896 10.001951 0.03 0.2477
C1,RPA4,RHBDD2,SCLT1,FGL1,NBAS,SPECCIL,CCAR2,G
TF3C4,JARID2,0TULIN,IKBKE,ANAPC4,CCDC68,RAG1,L
ENG8,SNAP47,UBL4A,SSX2IP,CEP290,INCENP,ALS2,FBX
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L15,LRPLINTS8,FGG,LDLR,MTERF4,LRP2,RGPD8,LRP5,F
ANCG,RGPD2,CEP128,IKBKB,VIPAS39,RNF8,CHAF1A,TA
F1A,LAS1L,SPATS2L,ING1,UGT3A1,MCM3AP,AKAP9,PDE
3B,FBXLS8,FBX024,AZ12,CLIP2,CFAP206,TEFM,MAP7,LU
M,RANBP2,TLR2,GRHPR,LRRK2,HSD17B10,INTS10,KNTC
1,FGB,TRAPPC12,GLIPRILLITLNI,VLDLR,DDX20,FBXO3
8,TLR7,TLR1,CTU2,TPR,WDR93,CBR4,TRAF3IP1,FBX048,
FBXL3,TBK1,STN1,NME8,AIMP2,SMG7,RABEP1,FGL2,CG
NL1,LRP1B,FBXO39,RIPK3,TLR6,TLR10,CHUK,WTAP,MA
P3KS5,SPECC1,SMG6,FBXL22,NEK10,LRP8,DTX3L,SHTNI1,
FBXL18

RBM12B,RNASEH2B,LARP7,MTA1,EIF3D,EAF2,POLE3,M
TA3,CC2D2A,EIF2S2, TAF13,SRP9,HYPK,RANBP3,BAZ1A,
NPLOC4,PARP11,INTS12,POLR3G,RBM41,RNPC3,MEAF6,
NECAPI1,THRAP3,TAF12,MIER1,DR1,BCL10,DMAP1,CDC5
L,MKRN3,ARID4B,PIK3C2G,SUPT6H,EAF1,MTA2,PIK3C2
B,CARDS8,RANBP3L,NCOR2,GEMING6,TAF8,POLR2D,MLL
T1,SNUPN,CCNT2,CCDC47,RRP7A,PNN,CDC73,ZMATS5,N
EMF,CPSF4,CCNT1,TEP1,POLR3D,SOCS5,SOCS6,POLR2F,
CREBZF,EHBP1L1,PRIM1,POLR1D,ZC3H13,CLIC6,LIN9,N
PM1,CENPS,ATG3,LIG4,PEA15,RERE,PRPF18,UBAP1,ZCC
HC8,L1TD1,KRIT1,SUB1,TAF7,POLR3GL,MPHOSPH6,TRD
N,TAF9B,CUL7,DNAJC28,PAF1,KAT14,TAF11,NDUFA12,Z
FC3H1,TADA2B,BPTF,HTATSF1,ANAPC15,TAF7L,FBXO2
C829 | ILFBXO8,MEDI18,APOBR,CCNK,BAG6,BAK1,CLNK,SNAP 0.004067 0.02 0.141610.004204 | 0.03 0.2321
C3,PIK3R6,SEM1,PRKAB1,ZNHIT6,PEX13,LARP6,PEX3,RC
OR3,EXD1,KMT2A,BAZ1B,TADA3,MAP4,PKD1L3,RCORI,
BAX,KDM6B,PCP4,LAGE3,RSPH4A ,NACAD,DPY30,CPSF4
L,CHRAC1,NCBP3,PPMIE,SLF1,HDGF,CSTA,RBM28, KMT
2B,PPP2R3A,TIPIN,MIER2,NXF3,NFYB,NXF5,CARD16,CC
DC8,NEDD4,MKS1,MLLT3,NECAP2,BCLAF1,CAT,PIK3C2
A, TRIP4,URI1,SMARCC2,PPP1R15A,FRG1,TAF9,PPP1R8,T
NKS1BP1,ERCC6,BAHD1,SOCS4,ZC3H8,RCOR2,ARID4A,A
NKRA2,PRKAB2,MAPK6,SMARCC1,CEP76,NCOR1,PIK3R
5,TADA2A,CHTF8,MIER3,BCL2L2,PPP4R2,PSMG1,DRAPI,
THGI1L,EZH2,IFT46,LCP2,RSF1,CLNS1A,MCL1,BTF3,BCL2
L1,CRCP,EZH1,MAVS,GTF3C6,SUPT3H,SLF2,BCL2,CULS9,
SMTNLI1

BC patients with genetic alterations in 9 of these biological systems suffered from poor
prognosis than patients without genetic alterations. The 5-year survival differences of METABRIC
patients with and without genetic alterations in the 9 biological systems can be found in Figure 4-
3, and the OncoPrint visualizations of the genetic alterations of some significant biological systems

in METABRIC cohort are shown in Figure 4-4.
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Figure 4-3. Survival differences of METABRIC patients with and without genetic alterations in the

9 biological systems.
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Figure 4-4. Genetic alterations of some significant biological systems in METABRIC cohort.

4.4 Discussion

The proposed GNN-based hierarchical clustering model performed very well on BC graph
structured PPI data. It successfully identified hierarchically structured biologically meaningful
protein systems from protein sequence data, pair-wise protein interaction/association data, and GO
annotation data, which could help us understand the heterogeneity of BC systematically. In
addition, the survival and mutation pressure tests successfully pinpointed several statistically
significant hotspots on the created hierarchy map. Among them, C58 system (ATADS, RBM44,
BRCA2, ICE1, SGO2, BRCA1, CRYBG3, TET1, CEP192) contains BRCA1 and BRCA2, which
are known BC driver genes. They are both tumor suppressor genes, and they code proteins that are
involved in transcription, DNA repair of double-stranded breaks, and recombination. Mutations in
BRCA1 and BRCAZ2 are responsible for more than 40% of inherited BCs (Petrucelli et al., 2022).
Although the mutations in BRCA1 and BRCA2 have long been noticed to play important roles in
BC, they are often missed in previous genome wide analyses because of their rare mutation
frequency in population. We can identify them due to the aggregated effects from other members
in the C58 system, which is exactly what the proposed hierarchical map wants to achieve.
According to the evaluation results on the data from METABRIC, several clinical hotspots have
the potential to be developed as BC prognostic biomarkers (C48, C58, C59, C175, C356, C375,
C619, C639, C721). The 5-year survival differences showed that BC patients with genetic
alterations in METABRIC in these 9 biological systems suffered from poor prognosis than patients

without genetic alterations.
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There are some limitations in this study. First, to match the GO annotations, we
significantly decreased the number of proteins from 19,035 to 4,968 and decreased the number of
pair-wised protein interactions/associations from 1.8 x 108 to 710,751 in the graph. Although this
made the analysis more concise and efficient, some information may be missed. Second, some
visualizations and manual annotations need to be added to the created biological system hierarchy.
More biological evaluations (such as gene set enrichment analysis) may be performed after
visualizations are added. A potential future direction is that more clinically relevant information
such as DepMap dependency score (Tsherniak et al., 2017) and drug response information could

be used to select the hotspots from the hierarchy tree.

4.5 Conclusion

In conclusion, we showed that the GNN model can organize the structured proteomics data
into clinically valuable hierarchies. This kind of biological hierarchy map provides a new
perspective to explore BC heterogeneity. Layers of screening will increase the chance of
identifying the rare mutations and minor survival hazards. The study has promising potential to
map more clinically relevant information to the identified hierarchy to provide different types of

biomarkers for BC.
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5 Chapter 5: BC radiogenomic biomarker discovery

This chapter is modified from the published paper below. I performed all data analyses, paper
writing and revision.
Q Liu, P Hu. 2022. A novel integrative computational framework for breast cancer

radiogenomic biomarker discovery. Computational and Structural Biotechnology Journal.

66:102111, https://doi.org/10.1016/j.csbj.2022.05.031. (IF: 6.155). I did the data analysis,

manuscript writing and revision with the guidance from Dr. Pingzhao Hu.

5.1 Introduction

BC is a solid tumor with very high heterogeneity that comes from a variety of cellular
function gain and loss during the development of the tumor. The widely accepted cancer theory
indicates that there might be ten large biological capabilities acquired during the course of human
tumors (Hanahan and Weinberg, 2011). These abnormal biological capabilities include sustaining
proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative
immortality, inducing angiogenesis, and activating invasion and metastasis, energy metabolism,
evading immune destruction, and tumor microenvironment (Hanahan and Weinberg, 2011). They
influence intermediate phenotypes such as tumor morphology and then eventually change the
clinical outcomes such as overall survival (OS). Therefore, it is critical to characterize the cellular
heterogeneity comprehensively. Meanwhile, the intermediate tumor morphology is also worthy of
consideration in estimating the clinical outcome of patients. The cellular heterogeneity could be
detected in different biological levels using a variety of modern molecular biological techniques
which could generate high-throughput measurements (gene expression, CNV, and DNA

methylation). These measurements contain rich and valuable information about the molecular
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heterogeneity but are hard to be understood directly by human. A lot of computational tools have
been developed to help human experts summarize the heterogeneity of cancer cells from these
high-dimensional molecular biology measurements (Rutman and Kuo, 2009). For example, in
Chapter 3, we have already showed that the BTF features that extracted from multi-omics data
performed very well in BC subtyping.

However, although multi-omic measurements could provide us with rich information about
the cellular tumor heterogeneity, the genomic examination is invasive and sometimes expensive.
In addition, it may not be able to capture the dynamic and macroscopic information of the whole
tumor as the biopsy is often taking at a certain time point on a small bulk of tumor tissue.
Radiomics is a research field where high-throughput medical image features are used to describe
disease phenotypes (Lambina et al., 2012). It could be used as an auxiliary or surrogate of the
multi-genomic analysis. Medical imaging is non-invasive, so it is often used as a disease
monitoring method and thus performed at multiple time points during the course of the BC. And
the imaging region of interest (ROI) usually covers the entire tumor and even the tissues around
the tumor. Current radiomic studies are facing feature subjectivity and interpretability trade-off
issues. Traditional computational engineering methods usually involve human experts’ pre-
processing which introduces the subjectivity. Although human understandable image features such
as tumor morphological features and the first-order, second-order statistic features of the image
pixel distribution (Van Griethuysen et al., 2017) could be generated using the traditional feature
engineering methods, they are pre-defined and limited by human knowledge therefore may not be
able to fully represent the image heterogeneity. Combining radiomics with genomics leads to the
field of radiogenomics, which has a goal of noninvasively uncovering the radiogenomic

biomarkers that could indicate the clinical outcomes of the patients (Rutman and Kuo, 2009).
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Besides the challenges in radiomics and genomics, radiogenomics also faces the unpaired data
problem. Currently, the publicly available BC datasets are usually incomplete to do a biomarker-
oriented radiogenomics study. For example, a dataset may contain medical images and genomics
data for the same patients, which provides us with enough information for feature extraction and
radiogenomic mapping, but the patients’ clinical outcomes might be hard to obtain as this may
need long-term observation. Hence the prognostic significance of the image features could not be
evaluated (i.e. the image features cannot be identified as prognostic biomarkers) (Clark ez al., 2013;
Tomczak et al., 2015). Effective utilization of the unpaired imaging, genomic, and clinical data
should be considered wisely. Recently, with the fast development of deep learning techniques,
deep learning-based feature extraction approaches have been widely used in radiomics (Visvikis
et al., 2019). Deep learning is highly flexible and accurate in analyzing multi-modal volumetric
and dynamic medical images in a fully automatic and non-linear manner (Nie ef al., 2019). But
image features extracted by sophisticated deep learning models are considered not human
understandable. Therefore, it is critical to explore potential tools to increase their explainability
(Barredo Arrieta et al., 2020).

In this study, we propose a deep learning-based radiogenomic framework for prognostic
biomarker identification. Our framework includes the following five modules: a deep learning-
based multi-modal image feature extraction module with build-in saliency maps for the
explanation of the deep learning model; a BTF multi-genomic feature extraction module with
GSEA (Subramanian et al., 2005) to explore the biological meaning of the extracted features; a
radiogenomic leverage module consists of a series of predictive models to impute the unpaired
imaging, genomic, and survival data; a prognostic biomarker identification module which uses

survival analysis to evaluate the prognostic significance of each radiogenomic feature; and a

119



statistic mediation analysis module to provide potential biological causal inference of the identified
prognostic biomarkers. It is expected that the identified radiogenomic biomarkers will have better

prognostic significance than the traditional ones.

5.2 Material and methods

The overall design of this study is shown in Figure 5-1. Single-radiogenomic stage (Figure
5-1A) is a baseline workflow with only gene expression as the genomic data source. This is to test
whether multi-genomic features have better radiogenomic associations than the single-genomic

features. Multi-radiogenomic stage (Figure 5-1B) is the proposed workflow.

5.2.1 Formation of the datasets

Multi-source genomic data (gene expression, CNV, and DNA methylation) are provided
by TCGA-BRCA project (Tomczak et al., 2015). Medical image data, specifically, the 3D DCE-
MRI volumes of a sub-cohort of the BRCA, are collected from The Cancer Imaging Archive
(TCIA) (Clark et al., 2013) platform. Part of these medical images has segmentation labels and 36
traditional semi-auto radiomic (SAR) features provided by the TCIA Breast Phenotype Research
Group (Burnside et al., 2016b). The data of BRCA cohort from both TCGA and TCIA form two
datasets for this study: BRCA single-radiogenomic dataset, and BRCA multi-radiogenomic
dataset. The exact data matching and formation workflow can be found in Figure 5-2. The

demographic information of the sub-cohorts is listed in Table 5-1.
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Figure 5-1. The overall workflow of this study. A deep learning model (3DU-net) was built, trained, and
validated to segment the tumor region from the raw three-dimensional DCE-MRI image. After the 3DU-
net was well-trained, deep learning-based radiomic (DLR) features were extracted from the last hidden
layer in the encoding phase of the model. Gradient-based saliency maps were generated to show the
importance of each input pixel to the 3DU-net in making its segmentation decision. A: Single-
radiogenomic stage. In this stage, we first focus on the paired data (top panel of A). Three-level gene
expression features (197 BC risk gene expressions, 182 KEGG pathway activities, and 6 well-established
BC gene signatures) are generated. Then, lasso models are built to predict each DLR feature and semi-auto
radiomic (SAR) feature using these three-level gene expression features. After the predictive lasso models
are well-trained and validated, we turn to the unpaired data (bottom panel of A). We generate the same
three-level gene expression features using the unpaired data, then we apply the well-trained lasso models
to get the predicted DLR and SAR features. In this way, we could generate the DLR and SAR features for
the 1002 patients without medical images. Then, we performed survival analysis on the predicted DLR and
SAR features. The significant ones are the identified prognostic radiogenomic biomarkers. Mediation
analysis is then performed on these identified radiogenomic biomarkers to gain insight into the potential
biological mechanisms underlying them. B: Multi-radiogenomic stage. In this stage, similar procedures
of the single-radiogenomic stage are performed. We first focus on the paired data (top panel of B). We
perform BTF on the multi-genomic data tensor to extract 17 BTF features. We also run GSEA to identify
the key biological pathway of each BTF feature. These key pathways could explain the key functions of the
identified multi-genomic BTF features. Then we train lasso models to utilize these 17 BTF features for
predicting the DLR and SAR features. After the lasso models are well-trained and well-validated, we turn
to the unpaired data (bottom panel of B). We obtain the BTF features using the multi-genomic data, then
we apply the well-trained lasso models in the previous step to get the predicted DLR and SAR features. In
this way, we could get the DLR and SAR features for the 701 patients without medical images. Then, we

perform survival analysis on the predicted DLR and SAR features. The significant ones are the identified
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radiogenomic biomarkers. Mediation analysis is then performed on each of these identified radiogenomic

biomarkers to gain insights into the potential biological mechanisms of them.

A

The Cancer Genome Atlas
(TCGA-BRCA) 1097 patients

Breast cancer cohort (BRCA)

The Cancer Imaging Archive
(TCIA-BRCA) 137 patients

The Cancer Genome Atlas
(TCGA-BRCA) 1097 patients

Breast cancer cohort (BRCA)

The Cancer Imaging Archive
(TCIA-BRCA) 137 patients

Gene expression « Annotated dynamic

» Gene expression
* Survival information

1093 patients

Unpaired data : 1002 patients
* Gene expression
* With survival difference

« Annotated dynamic

« Segmentation label

contrast-enhanced
Magnetic resonance
images (DCE-MRI)

91 patients

+ Semi-auto features

Paired data : 91 patients

* Gene expression

* Annotated DCE-MRI

* No survival difference (No death)

D

Copy number alteration(CNA)

contrast-enhanced

« Segmentation label

DNA methylation
Survival information

762 patients

Magnetic resonance | * Semi-auto features

images (DCE-MRI)
91 patients

30

Unpaired data: 701 patients
* Gene expression

* Copy number alteration
* Gene methylation

Paired data: 61 patients

* Gene expression

+ Copy number alteration
* Gene methylation

* Annotated DCE-MRI

With survival difference + No survival difference (No death)

BRCA single-radiogenomic dataset BRCA multi-radiogenomic dataset

Figure 5-2. BRCA single- and multi- radiogenomic datasets organization flowcharts. TCGA provides
genomic data and clinical data of a cohort consisting of 1097 BRCA patients. TCIA provides medical
images of a subset of the TCGA-BRCA cohort (137 patients). Four of the 1097 BRCA patients have no
meaningful survival information (death days or last contact days are negative numbers) thus were excluded.
Ninety-one of 137 TCIA patients have annotated dynamic contrast-enhanced magnetic resonance images
(DCE-MRI). A: BRCA single-radiogenomic dataset. One-thousand and ninety-three (1097 - 4) TCGA-
BRCA patients all have gene expression data. Thus, gene expression data were used as baseline single-
genomic information in this study to compare with the multi-genomic information. Those 91 patients with
annotated DCE-MRI are all included in the 1093 TCGA-BRCA patients. This means, 91 patients have
paired gene expression data and annotated image data. However, no survival difference is observed among
these 91 patients, because they were all alive according to the last follow-up. Therefore, we cannot perform
survival analysis using the paired data. The rest of 1002 (1093 - 91) patients only have gene expression data
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(no DCE-MRI data), but there exists survival differences among them. B: BRCA multi-radiogenomic

dataset. Only 762 of the 1093 TCGA-BRCA patients have matched gene expression, CNV, and DNA

methylation data. Sixty-one of those 91 TCIA-BRCA patients with annotated DCE-MRI are included in

the 762 TCGA-BRCA patients with multi-genomic data. This means, 61 patients have paired multi-

genomic data and annotated image data. However, no survival difference is observed among these 61

patients. The rest of 701 (762 - 61) patients only have multi-genomic data (no medical image data), but

there exists survival difference among them.

Table 5-1. Demographics of BRCA sub-cohorts.

Single-radiogenomic dataset

Multi-radiogenomic dataset

Unpaired data Paired data Unpaired data Paired data
Number of patients 1002 91 701 61
=65 329 14 215 8
<65 673 77 486 53
Age at diagnosis Mean 58.9 53.6 583 54.0
Min 26 29 26 29
Max 90 82 90 82
Standard deviation 13.3 11.5 13.2 11.5
I 160 22 107 14
II 561 58 386 39
Stage 111 237 11 187 8
XorIV 33 0 15 0
Other 11 0 6 0
Positive 729 77 499 53
ER Status Negative 224 14 159 8
Not Evaluated 49 0 43 0
Positive 625 72 434 48
Negative 325 19 221 13
PR Status Indeterminate 4 0 2 0
Not Evaluated 48 0 44 0
Positive 150 14 81 7
Negative 512 49 353 34
HER?2 Status Indeterminate 12 0 12 0
Equivocal 157 22 118 18
Not Evaluated/Available 171 6 137 2
LumA 498 63 366 43
LumB 197 11 132 9
Pam50 subtype Her2 78 4 44 1
Basal 178 12 126 7
Normal 39 1 33 1
NA 12 0 0 0
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5.2.2 Explainable deep learning-based image feature extraction

DCE-MRI volumes of the same patients were acquired at different time points with an
interval of dozens of seconds (Gordon et al., 2014). That is where the “dynamic” comes from and
it is a very strong advantage of DCE-MRI. Besides, the number of DCE-MRI volumes (i.e., time
points) varies among patients, depending on the exam pipeline of the imaging institute and the
patient’s individual conditions (such as blood flow velocities). To handle this problem, a multi-
modal three-dimensional deep learning model (Tulder and Bruijne, 2018; Zhang et al., 2018;
Vukoti¢ et al., 2016; Srivastava and Salakhutdinov, 2014) called 3DU-Net (Cigek et al., 2016) was
applied to incorporate DCE-MRI volumes acquired at different time points to extract fused and
dynamic DLR features. The modality of the input was set to the maximum number of volumes a
given patient can have, which is 8. If the given patient has less than 8 DCE-MRI volumes, the
position with absent volume was set to empty. The output of the 3DU-Net is the tumor segments
provided by TCIA Breast Phenotype Research Group (Burnside ez al., 2016b). Two gradient-based
saliency maps (Gradient map (Simonyan et al., 2014) and Gradient*image map (Shrikumar et al.,
2016)) were embedded in the structure of the 3DU-Net to support explaining the segmentation

decision. The detailed model structure of 3DU-Net is shown in Figure 5-3.
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Figure 5-3. The structure of explainable 3DU-Net. The modality of the input is set to 8, which is the
maximum number of volumes a patient can have. If a patient has fewer than 8 DCE-MRI volumes, the
positions with absent volumes are set to empty. The output is the tumor segment annotation. The last hidden
layer of the encoder phase is the DLR features. Two explanation tools (Gradient map and Gradient*image

map) are used to increase the explainability of the 3DU-net.

The number of DLR features was set as 32, which is comparable with the 36 SAR features
provided with the data. The 91 patients with annotated DCE-MRI data were involved in training
and validating the 3DU-net. Patients were randomly split into training set (71 patients), validation
set (10 patients), and test set (10 patients). We did hyperparameter tuning for the 3DU-net on
stride, learning rate, and dropout ratio. The best hyperparameter combination was then used in the
final model. After 1000 epochs, the performance of the segmentation task was measured by Dice
similarity coefficient (DSC). Given a reference segmentation Sisp, the DSC of a predicted

segmentation Spreq is defined as:
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Equation 5-1

leprednslabl

|Spred|+|slab|

DSC =

Then the well-trained 3DU-net was applied to the whole 91 patients for DLR feature extraction.
We then performed pair-wise correlation analysis among all DLR features to see if they are

correlated with each other.

5.2.3 BTF for multi-genomic feature extraction

Using the R package “tensorBF” (Khan and Ammad-ud-din, 2016), we implemented the
BTF algorithm to extract latent factors (patient-directional projection matrix) from the gene
expression, CNV, and DNA methylation data for the 762 patients from TCGA-BRCA. More
details of the BTF algorithm can be found in Chapter 3. We did GSEA using the gene-directional
projection matrix to further explore the potential key biological functions of each latent factor.
Three-level gene expression features were generated as the baseline, including 196 BC risk genes
identified by previous studies (Baxter et al., 2018; Wu et al., 2018), 182 pathway activities
calculated using the Single Sample GSEA (ssGSEA) function (Barbie et al., 2009) which was
implemented in the GenePattern toolkit (Reich et al., 2006), and 6 commercialized BC gene
signatures calculated using R package “genefu” (Gendoo et al., 2016). We then performed pair-
wise correlation analysis among all BTF features and all three-level gene expression features to

see if they are correlated with each other.

5.2.4 Leveraging strategy for radiogenomic feature imputation
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To perform a biomarker-orientated radiogenomic research, ideally, we need to have
matched medical images, genomic profiles, and clinical outcomes measured on the same set of
patients, in which we can first identify radiomic biomarkers associated with clinical outcomes
(e.g., prognosis), then we can associate the radiomic biomarkers with patients’ genomic profiles
to gain insight into their biological mechanisms. However, in the majority of cases, we only have
one or two sets of data sources measured on the same patients. To solve the challenge, we used a
leverage strategy (O. Gevaert et al., 2012). We first focused on the paired part of the radiogenomic
dataset, where we have the paired genomic data and medical image data for 61 patients. we trained
lasso models (Friedman et al., 2009) to predict each radiomic feature y; using the genomic features

x (Equation 5-2, 5-3).
Equation 5-2
Yi= Bo+ B1xin+B2Xipt+ -+ Bgxig + €

Equation 5-3
S . 1
ﬁlasso =arg mgln Zg=15 (Yn — an)z + /‘lZ}q=1|ﬁ]|

The 61 samples were randomly split into training set (43 samples) and test set (18 samples).
Prediction performances were evaluated using Root Mean Square Error (RMSE). Then we turned
to the unpaired part of the radiogenomic dataset, where we only have the genomic data and
patients’ clinical outcomes without medical images for 762 patients. We applied the predictive
models which were well-trained in the previous step to get the predicted radiomic features from
the genomic features. In this way, we could get a completed paired dataset for further analysis. We
also generated radiogenomic correlation maps between the radiomic features and the genomic

features to explore the potential biological explanations for the relationship between them.
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5.2.5 Survival analysis for radiogenomic biomarker identification

We further applied the function “surv_cutpoint” and “surv_categorize” in the R package
“survminer” (Kassambara et al., 2017) to select the optimized cut-off of each radiogenomic feature
to categorize the patients into high and low-risk groups. For each radiogenomic feature, “survminer”
looks for the cut-off where the log-rank test for survival analysis can produce the maximum
statistic (lowest p-value). We classified the patients into the high-risk group and the low-risk group
based on the cut-off for each radiogenomic feature. Then, we utilized the KM plot to show the

survival difference between the high-risk group and the low-risk group.

5.2.6 Mediation analysis

The complexity of deep learning models and their low reproducibility have weakened their
applications in clinical practice (Yan et al., 2020). Hence, to enhance the biological interpretation
of the DLR biomarkers, mediation analysis (MacKinnon et al., 2007) between the genomic
features and the BC prognosis through the identified radiogenomic biomarkers are implemented
to reason on these radiogenomic biomarkers both biologically and statistically. By testing and
estimating the mediation effects of the identified radiogenomic biomarkers on the relationship
between genomic features and patient survival, biological interpretation of these radiogenomic
biomarkers could be well made. We first regressed the survival outcome variable y, against each
genomic feature x; (Equation 5-4). The effect S, is the total (direct and indirect) effect of the
genomic feature on the survival outcome. Then, we regressed the mediator (identified

radiogenomic biomarker) m against x, (Equation 5-5). The effect f; is the effect of a genomic

feature on a mediator. Lastly, we regressed the survival outcome y; against both m and x,

129



(Equation 5-6). B, is the indirect effect of the genomic feature on the survival outcome that
goes through the radiogenomic biomarker. ;. is the direct effect of the genomic feature on the

survival outcome.
Equation 5-4
Vs = BreXg + &
Equation 5-5
m=f.x,+ ¢,
Equation 5-6
Vs = BaeXg + BemeM + &

These mediation analyses are done using R package “mediation” (Tingley et al., 2014).
The significance of the estimated effects was tested and corrected using Benjamini-Hochberg

multiple testing method (Benjamini and Hochberg, 1995).

5.3 Results

5.3.1 Radiomic and genomic features

The hyperparameter tuning for the 3DU-net could be found in Table 5-2. The best
hyperparameter combination was stride = 1, learning rate = 0.001, dropout ratio = 0.2. The
segmentation performance DSC of the well-trained 3DU-net on the test set is 0.44. The explanation
saliency maps are shown in Figure 5-4 and 36 DLR features were extracted from the well-trained
3DU-net. According to the saliency maps, the important pixels fall into and around the tumor

regions, which means our DL model made a certain segmentation decision mainly based on the
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tumor as well as surround-tumor regions. Using BTF algorithm, 17 multi-genomic factors were
acquired. Their key biological functions identified by GSEA are shown in Table 5-3. These key
functions range from cell division, blood vessel formation, immune response, intercellular signal
transmitting, and so on, which quite fit the well-accepted cancer hallmark hypothesis (Hanahan
and Weinberg, 2011). This means that the multi-omics BTF method captures cancer heterogeneity
very well. The pair-wise correlation analysis among radiomic features and genomic features could
be found in Figure 5-5. DLR features and BTF features are less redundant and could capture more

information than SAR features and traditional gene expression features.

Table 5-2. 3DU-net hyperparameters tunning. Bold ones were used in the final model.

Stride | Learning rate Dropout DSC (Validation set) | DSC (Test set)
ratio

1 0.0001 0.2 0.32 Not Applicable (N/A)*
2 0.0001 0.2 0.16 N/A

1 0.001 0.2 0.42 0.44

2 0.001 0.2 0.19 N/A

1 0.005 0.2 0.18 N/A

2 0.005 0.2 0.20 N/A

1 0.0001 0.4 0.28 N/A

2 0.0001 0.4 0.12 N/A

1 0.001 0.4 0.37 N/A

2 0.001 0.4 0.19 N/A

1 0.005 0.4 0.29 N/A

2 0.005 0.4 0.10 N/A

1 0.0001 0.6 0.37 N/A

2 0.0001 0.6 0.18 N/A

1 0.001 0.6 0.20 N/A

2 0.001 0.6 0.11 N/A

1 0.005 0.6 0.31 N/A

2 0.005 0.6 0.17 N/A

*Test set was applied to only the best trained model.
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Figure 5-4. Image data and explanation saliency visualization. The first column is the raw images. The

second column is the predicted tumor segments. The third and fourth columns are two kinds of saliency

map generated using gradient method and gradient*input method separately.

Table 5-3. Key enriched pathways for the multi-genomic Bayesian tensor factors

interaction

BTF Key pathways NES p-value FDR Key pathway genes
Chemokine signaling CXCL5|CXCLI1|CCL8|CXCL3|CCL13[PRKX|CXCLG6|CCL8|CXCL2)
1 N 1.57 0.0059 0.25 CCL5|CCL2|CCL4|CCL25|ADCY3|GNB4|CCL3[RAC2|RELA [PPBP
pathway |CCL23|CCL24[ROCK2[ITK
CCL21|CCL19|CCL14|CXCLI4[IL17B|CXCL2|CD40LG|CXCL12|T
Cvtokine recentor SLP|TNFSF11|CNTFR|CXCL1|CCL5|TPO|CCL23[IL21R|CCLI3|AC
2 Y P 1.96 <0.001 <0.001 | VRLI|JILI2B|CCL11[PDGFRB|CCL2|CD70|CCL16|/CCLI8|CCLAIL

7|CSFIR|TNFSF4[IL1 IRA|CXCL6|CTF1|CXCL3|EPOR[EDA2R|CC
L3
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. ] DNALIIDNAI1[COX7B|CREB3|CLTA|NDUFS3[UQCRC1|COX6A
3 Huntington's disease 2 <0.001 0.0029 1|AP2S1[NDUFA2/COXSBNDUFA7|BBC3
4 Natural killer cell 5 0,001 0.0024 | IFNA7IKIR2DLI[NCRI[ULBP1|ULBP2[RAC2ZAPT0[CD244]VAV
mediated cytotoxcity : : [KIR2DLA4|CD48|GZMB]
s Hematopoietic cell )13 0,001 <0001 | MS4A1|CR2[FCER2/CDS|CD2|CR1|CDIE|CDIB|CDIC|CDIDICSFI
lineage : : : R|CD33|IL7|TPO|CD1A|IL5RA
6 Starch and sucrose -1.93 0.0029 0.03 PYGL|UGT2B10[UGT2BI11
metabolism
] CCNA1JANAPCI10|CCND2|CDKN1BJANAPC7|CDC23[PTTG1|CD
7 Cell cycle 1.83 0.0047 0.08 K1|CDC25C|ESPL I
. . ADHIC|UGT2B11|UGT2B10[UGT1A6JUGT1A7[UGT1A9RPE65|C
8 Retinol metabolism 176 0.0063 0.16 YP1A2|CYP2C19|ADH4[UGTIASJUGT2A1|ALDHIAI
9 Steroid hormone -1.65 0.0011 0.05 UGT2B11|CYP7BI[HSD17B7|CYP11B2|CYP11BI
biosynthesis
0 Leukocyte trans L9 0,001 0.04 MSN|CXCL12|CYBA|CYBBJAM2]MYL2|CTNND1|SIPA1|CLDN2
endothelial migration 2
11__ | VEGF signaling pathway 1.63 0.02 0.22 PTGS2|PLA2G10|CHP2|PLA2GA4EPLA2G2F
OR51V1|OR2W1|OR12D2|OR2T5|OR7D4|OR10G7|OR2A2|PRKX]|
12 Olfactory transduction -1.76 <0.001 0.10 OR10GS8|OR111/GUCA1CJOR14]1|OR10H5|OR11A1|OR13J1|OR10
cl
13 Oocyte meiosis 1.46 0.05 0.39 ADCY8MOS|Y WHAQ|SMC1A|CHP2
B Drug metabolism 53 0,001 <0001 | GSTMIUGT2BI1]UGT2BI0/GSTO2MAOA|GSTM3[UGTIA7|AD
cytochrome ' ' : HIC|UGT1A6|ALDH1A3JUGT1A9JUGTIA10
. DNAIJC6/CBLC|PSD2|CHMP4A[RAB11FIP4|EHD1|HSPA1A|RET]
15 Endocytosis 181 0.0048 0-09 ARF6|CSFIR|VPS37C|AP2S1[RAB11BJARAP3[RABSA
16 A“t‘g;‘r‘e’s’z‘r’lfzfiifg and 1.47 <0.001 0.0097 CD74|HSPA1A[PSME1|HSPA 1B|PSME2|NFYB|HSPA2
Metabolism of UGT2A1|CYP2C9[UGTIA7|UGTIA3[UGTIA5|UGT1AS|GSTM1[U
. Xonobintm )16 0,001 00010 | GTIAIO/GSTA3UGTIA4/CYPIA2IUGTIAIUGTIA9UGTIAGIC
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Figure 5-5. The radiomic feature correlation analysis and genomic feature correlation analysis. A:
The pairwise DLR feature correlations. Columns and rows are 32 DLR features. The darker colors
represent the higher correlations. B: The pairwise SAR feature correlations. Columns and rows are 36
SAR features. The darker colors represent the higher correlations. As we can see, some of the SAR features
are correlated with each other. C: The canonical correlations of the two radiomic feature matrices
(DLR and SAR). The x-axis is the canonical dimensions, while the y-axis is the correlation of the
correlations between the DLR features and SAR features in each dimension. It is telling us, these two feature
matrices are highly correlated with each other, which also means, the DLR features are able to capture the
majority of information that the SAR features captured. D: The scalar plot of the first two dimensions of
DLR features and SAR features. Blue ones are the SAR features, while red ones are the DLR features.
DLR features may capture more information than the SAR features because the red dots are more widely
spread. E: The pairwise BTF multi-genomics feature correlations. Columns and rows are 17 BTF
features. The darker colors represent the higher correlations. F: The pairwise three-level gene expression
feature correlations. Columns and rows are 197 (risk gene expressions) + 182 (pathway activities) + 6
(gene signatures) = 385 gene expression features. The darker colors represent the higher correlations.
According to the results, we could see that BTF features are more independent than the baseline three-level
gene expression features. G: The canonical correlations of the two genomic feature matrices (BTF and
three-level gene expression features). The x-axis is the canonical dimensions, while the y-axis is the
correlation of the correlations between the BTF features and three-level gene expression features in each
dimension. H: The scalar plot of the first two dimensions of BTF features and three-level gene
expression features. Blue ones are the three-level gene expression features, while red ones are the BTF
features. The BTF feature matrix and the three-level gene expression feature matrix are highly correlated
with each other, which also means, the BTF features are able to capture the majority of information that the

three-level gene expression features captured.
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5.3.2 Leveraging strategy for prognostic radiogenomic biomarker identification

The RMSE of the radiogenomic predictive lasso models could be found in Table 5-4 (for
DLR feature prediction) and Table 5-5 (for SAR feature prediction). A lower RMSE means a
better performance. As we can see, the multi-genomic BTF features perform overall better in
predicting the DLR features than the baseline gene expression features. The radiogenomic

correlation maps could be found in Figure 5-6.

Table 5-4. Performance of predictive LASSO models for each DLR feature.

Radiomic Gene expression feature BTF feature
feature RMSE MAE MAPE RMSE MAE MAPE
DLR 1 83.08 68.11 0.4 57.22 35.87 0.75
DLR 2 71.6 4731 0.26 49.81 2736 0.76
DLR 3 65.16 53.33 0.82 21.08 17.65 0.1
DLR 4 60.55 49.51 0.71 22.72 16.18 0.09
DLR 5 61.45 46.26 0.3 16.64 11.69 0.07
DLR_6 60.13 44.88 0.25 28.14 24.48 0.15
DLR_7 53.99 40.35 0.24 50.74 35.39 0.43
DLR_8 54.66 44.39 0.25 53.93 40.58 1
DLR 9 107.26 87.58 436 80.61 60.65 3.52
DLR_10 98.83 79.18 2.85 25.76 25.51 0.13
DLR 11 45.66 34.04 0.23 12.01 12.01 0.06
DLR 12 24.76 17.26 0.12 30.44 13.04 0.12
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DLR_13 27.85 18.32 0.13 30.63 13.29 0.13
DLR_14 27.52 18.57 0.13 33.67 20.68 0.16
DLR 15 104.52 81.16 4.08 69.06 50.32 2.26
DLR_16 89.73 65.58 242 53.86 33.54 1.74
DLR_17 102.34 85.94 0.51 44.35 36.26 0.3
DLR_18 71.37 60.19 0.49 47.01 31.37 0.59
DLR_19 58.2 46.47 0.77 27.88 26.51 0.15
DLR_20 62.56 42.71 0.22 22.39 17.25 0.11
DLR_21 37.11 27.53 0.15 32.35 26.22 0.19
DLR_22 64.53 51.65 0.3 25.29 18.7 0.09
DLR_23 50.77 37.48 0.24 29 23.1 0.15
DLR_24 57.25 45.85 0.27 52.08 33.93 1.14
DLR_25 63.32 49.08 1.14 70.53 38.77 2.57
DLR_26 22.65 17.78 0.1 12.98 9.12 0.05
DLR 27 21.42 12.33 0.09 4.84 4.84 0.02
DLR_28 32.88 16.05 0.17 3.03 3.03 0.02
DLR_29 7.35 5.67 0.03 0.01 0.01 0

DLR_30 17.17 13.57 0.07 2.79 2.79 0.01
DLR_31 60.98 4431 0.95 17.77 16.69 0.09
DLR_32 94.82 76.64 2.78 53.41 41.07 1.59
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Table 5-5. Performance of predictive LASSO models for each SAR feature.

Gene expression features BTF features
RMSE MAE MAPE RMSE MAE MAPE

SAR 1 1.45 1.16 0.79 0.8 0.59 0.27
SAR 2 123.96 105.41 1 131.96 96.43 0.64
SAR 3 0.02 0.02 1.32 0.02 0.02 1.35
SAR 4 0 0 2.1 0 0 0

SAR 5 0.26 0.21 2.79 0.2 0.16 1.43
SAR 6 1.43 1.12 0.81 0.81 0.6 0.31
SAR 7 0.6 0.47 0.45 0.3 0.2 0.17
SAR 8 93.36 72.46 353.62 10.28 4.51 2.17
SAR 9 147.92 128.1 0.93 131.97 131.31 1.47
SAR 10 0.67 0.52 521.79 0.15 0.05 2.98
SAR 11 0.17 0.13 0 0.02 0.01 0

SAR 12 12.71 11.27 0.33 10.46 8.39 0.38
SAR 13 0.08 0.07 0.09 0.07 0.06 0.07
SAR 14 0.17 0.15 0.06 0.18 0.13 0.06
SAR 15 6.13 5.31 0.34 4.59 3.75 0.36
SAR 16 0 0 0.17 0 0 0.09
SAR 17 0.14 0.13 0.02 0.15 0.1 0.02
SAR 18 0.04 0.03 0.09 0.04 0.03 0.07
SAR 19 0.04 0.04 0.27 0.05 0.03 0.17
SAR 20 0.07 0.06 0.08 0.06 0.05 0.06
SAR 21 0.08 0.07 0.09 0.07 0.05 0.06
SAR 22 0.81 0.7 0.02 0.83 0.58 0.02
SAR 23 0.02 0.02 0 0.01 0.01 0
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SAR 24 14.96 12.98 0.05 16.5 11.09 0.04
SAR_25 2.23 1.75 0.02 2.11 1.35 0.02
SAR 26 0.2 0.16 0.23 0.13 0.12 0.18
SAR 27 0.19 0.15 0.28 0.1 0.08 0.14
SAR 28 0.06 0.05 0.24 0.08 0.06 0.24
SAR 29 0 0 1.84 0 0 1.07
SAR_30 0.01 0.01 0.79 0 0 0.44
SAR 31 12321.17 9011.66 6.58 5030.68 3546.42 1.79
SAR 32 11.14 7.73 0.47 6 4.7 0.28
SAR 33 9478.19 6306.81 4.36 4554.12 3011.8 1.26
SAR 34 0.35 0.32 0.36 0.37 0.24 0.28
SAR 35 163.74 92.75 0.93 55.17 43.45 0.59
SAR 36 28.85 20.23 0.87 14.35 11.19 0.43
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Figure 5-6. Radiogenomic correlation maps between the radiomic features and the genomic features.

A: SAR feature-based radiogenomic correlation maps. Rows are 36 SAR features. Columns are different

genomic features (6 gene signature scores, 182 pathway activities, 197 risk gene expressions). B: DLR

feature-based radiogenomic correlation maps. Rows are 32 SAR features. Columns are different

genomic features.

Twenty-three DLR features are significant in the survival analyses, which means we have

identified 23 significant prognostic biomarkers using the proposed method and they have overall

lower log-rank p-values than the SAR features (Figure 5-7A). The KM plots of the most

prognostically significant DLR biomarker (DLR_8) and SAR biomarker (Maximum enhancement)

are shown in Figure 5-7B, C. Table 5-6 is showing the significant results of the mediation analyses.
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The most significant DLR biomarker (DLR _8) is a significant mediator of the BTF_4 (Natural

killer cell mediated cytotoxicity)’s effect on patient survival.

Survival analyses results
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Figure 5-7. Prognostically significant DLR features and SAR features. A: The sorted p-values of
survival analyses. DLR features showed overall lower p-values than SAR features. B: The most

prognostically significant SAR feature. Maximum enhancement has the lowest p-value (2.45e-05) among
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all SAR features in the survival analyses. C: The most prognostically significant DLR feature. DLR-8

has the lowest p-value (5.97¢-06) among all DLR features in the survival analyses.

Table 5-6. The significant results of mediation analyses of the identified biomarkers

Independent variable Mediator | ACME" | ACME_pvalue ADE’ ADE_pvalue TE’ TE_pvalue

Metabolism of xenobiotics

DLR 7 -0.03 0.044 0.21 <2e-16 0.18 0.004
by cytochrome -
BTF_4 DLR_8 30.38 0.05 -118.63 <2e-16 -88.25 0.026
BTF_7 DLR 2 9.00 0.046 -87.52 0.036 -78.53 0.05

*ACME (average causal mediation effects): indirect effect of the IV on the DV that goes through the mediator.
*ADE (average direct effects): direct effect of the IV on the DV.
*TE (total effect): direct and indirect effect of the IV on the DV.

5.4 Discussion

Two advanced mathematical methods, BTF and deep learning, were used to estimate the
multi-level genomic and morphological heterogeneity of BC. BTF plus GSEA successfully
provided us with biologically meaningful multi-genomic features. And their key biological
functions are highly related to the known hallmarks of cancer (Hanahan and Weinberg, 2011),
including signaling, cell cycle, metabolism, and immune related pathways. BTF features are more
advanced than the single-source genomic features because they not only consider multiple
genomic sources, but also consider the interaction between them. Deep learning could extract
image features automatically and objectively but its explainability needs to be increased. The
proposed workflow increased the explainability of the deep learning-based image feature
extraction in two ways, one is by adding two explanation tools into the model structure, the other
is by introducing domain knowledge to support the extracted image features. According to our

experiment, the DLR features performed better than the traditional SAR features, thus, we believe
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once the explainability issue is addressed, deep learning will have a bright future in healthcare data
analyzing.

Leveraging strategy is often seen in the biomedical field (Lonsdale ef al., 2013; Olivier
Gevaert ef al., 2012) because healthcare data are often not easy to get and thus will lead to the
unpaired data problem. This is the first time that the leveraging strategy is being introduced into
DL-based radiogenomics. It successfully solved the unpaired data problem in this case. Taking
advantage of the estimated radiogenomic features which representing the multi-level tumor
heterogeneity, we successfully identified several prognostic biomarkers using the proposed
workflow. The most prognostically significant radiogenomic biomarker has a potential
intermediate effect on the causal relationship between the function of nature killer cells and
patient’s survival time. The identified BC prognostic radiogenomic biomarkers are non-invasive
and effectively representing both medical imaging and multi-genomic information. They are
clinically more feasible because they could be obtained from medical images only, no need to

perform the invasive biopsy.

5.5 Conclusion

In conclusion, we provided a comprehensive radiogenomic workflow which could
overcome major difficulties of current radiogenomic studies. Our experiments showed that the
proposed workflow could identify non-invasive, objective, automatic, integrated, and explainable
BC radiogenomic biomarkers with great prognostic significance compared with the baselines. Our
results also uncover genetic mechanisms regulating clinical phenotypes. Such mechanisms could
promote medical imaging as a non-invasive examination of probing BC molecular status, then

support clinical decisions and ultimately improve patient care.
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6 Chapter 6: Significance, Limitations and Future Directions

Part of this chapter (mainly Section 6.2) is from a published review paper of mine: Q Liu,
P Hu. 2022. Extendable and explainable deep learning for pan-cancer radiogenomics research.

Current Opinion in Chemical Biology. 66:102111, https://doi.org/10.1016/j.cbpa.2021.102111.

(F: 8.972). I did the literature reviewing, manuscript writing, and manuscript revision with the

guidance from Dr. Pingzhao Hu.

6.1 Significance

This thesis aims to explore the BC heterogeneity using machine learning algorithms at
different data resolutions ranging from single genomics, multi-genomics, to proteomics,
radiogenomics. Four independent and coherent studies were conducted and reported in the
Chapters 2-5. The objective of Chapter 2 is to develop a diagnostic and prognostic gene expression
signature for HER2+/ER+ BC, which is a subgroup of BC and has not been well-studied. Chapter
2 is the first to explore the heterogeneity associated with HER2+/ER+ BCs. We identified and
validated two subgroups of HER2+/ER+ breast tumors with reproducible prognostic and other
properties. We also provided a well-trained HER2+/ER+ subgroup classifier to assign new patients
into these two subgroups. Potential biological explanations of the identified subgroups were
discussed to link the subtype information we learned in this study with existing knowledge of BC.
Several machine learning models such as CoC, XGboost, and DeepDep were used in this study,
which confirmed the powerful ability of machine learning to analyze single genomic data. Most
importantly, our findings may provide guidance for future target therapy of the HER2+/ER+ BC

patients.
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The objective of the Chapter 3 is to use integrated multi-genomics data to stratify BC. We
achieved this goal by developing a strategy that combines BTF with CoC. This chapter explored
the possibility of machine learning for multi-genomics data integration and proposed a novel
subtyping scheme for BC. BTF took a tensor that combines different types of omics data as input,
and output learned cross-omics representations directly. The proposed method could be easily
transferred to identify subtypes of other complex diseases or be used in conjunction with other
novel downstream subtyping algorithms.

In Chapter 4, we built a hierarchical tree to represent BC heterogeneity in a systematical
view. GNN was proved to be capable of organizing the structured proteomic data into clinically
valuable hierarchy. The built hierarchy map provided a new perspective to explore BC
heterogeneity. Group-lasso-based layers of screening increased the chance of identifying the
biologically and clinically relevant biological systems with rare mutations and/or minor survival
hazards. Promising potential is foreseen as more clinically relevant information can be mapped to
the identified hierarchy, thereby providing a new type of biomarker for BC.

Chapter 5 extended the multi-genomics by incorporating radiomics into biomarker
discovery. We proposed a BTF and deep learning-based framework with lasso-based leverage
strategy for BC prognostic radiogenomic biomarker identification. The proposed framework
identified non-invasive, objective, automatic, integrated, and explainable BC radiogenomic
biomarkers with significant prognostic significance. The relationship among the heterogeneity of
the genetic mechanisms, the intermediate image phenotypes, and the clinical outcomes were also
explored for BCs. This study could promote medical imaging as a non-invasive examination of
probing BC molecular status, then support clinical decisions and ultimately improve patient care.

Overall, we explored different machine learning algorithms, different data types, different
framework designs, etc. to deepen machine learning’s applications in deciphering BC

heterogeneity at different biological levels.
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6.2 Limitations and future works

The first limitation of the study is that only publicly available data were used, which poses
the unresolvable sample size problem, especially in the Chapter 5 where image data for only 61
patients was available. Similar issues can be seen in the Chapter 2, only 123 samples in TCGA-
BRCA cohort were HER2+/ER+, making the multi-omics-based exploration for HER2+/ER+ BCs
difficult because more samples are needed for capturing the cross-omics relationships. In the
future, further evaluations should be conducted once more samples with high quality omics data
are available. Another limitation is that due to the computational complexity to analyze both the
MRI data and the graph structured proteomic data, we did not use all the available information for
the current analysis. To control the time and cost, we had to sacrifice some information by
compressing the MRI images to a lower resolution. More advanced parallel computing techniques
or super-computing resources are needed to fully utilize the high-dimensional data.

The more challenging part is the biological interpretation of the results from machine
learning/deep learning models, which requires continuous efforts. We partially addressed this issue
by using interpretation tools to link the results to exist knowledge, but more standard explanation
pipelines and quantitative metrics for evaluating the explainability are needed to regulate the use

of complex models in the human healthcare domain.

Chapter 5 solved the unpaired data problem using the leverage strategy proposed by
Gevaert et al. (O. Gevaert et al., 2012). Other strategies such as deep generative model-based
image synthesis can be explored to solve this problem so that the framework could be end-to-end,
and the generated synthetic images could be shared to the public for further analysis without

privacy issues.
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Preclinical tumor models could be considered as a potential tool to validate the identified
deep learning radiogenomic biomarkers. Such biological validation is well applied in some drug
discovery and biomarker identification (Binder et al., 2018). It could provide solid experimental
evidence to gain the trust of clinicians and patients (Bodalal ef al., 2019). Shaikh et al. suggested
to incorporate radiogenomics into existing and future clinical trials, to co-develop radiogenomic

biomarkers for immunotherapy response and prognosis (Shaikh ez al., 2018).

The developed subtyping schemes/machine learning tools and the identified biomarkers
could be archived into a publicly available BC multimodal biomarker bank (BioBank) to support

both the research community and clinic use in the future.
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Appendices

Appendix A: The gene differential expression results for the 6 subtypes and

their overlaps.
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6.50072185

6.5552189
6.49771018
4.93190324
6.61606625
6.47346201
6.15039967

6.7487667
6.57488951
6.24370337
6.14327509
6.07918754

6.4902621
6.67923919
5.88595134
6.07665305

6.2709282
6.66122445

6.7673766

6.8235672
6.36702971
6.36777872
6.29818866
6.20364161

28.3953454
28.3554533
28.3052
28.0957372
27.9534605
27.9279792
279121819
27.8696062
27.8654015
27.8614255
27.8436761
27.7660312
-27.763645
27.684681
-27.560132
27.5040304
27.4969953
27.4826619
27.4361731
27.4052115
-27.342222
27.2999177
-27.200096
27.184446
27.1698495
27.1404543
27.1220971
27.0903783
27.0819006
27.0521545
-27.014064
-26.911207
26.8974197
26.8389211
26.745671
26.6981032
26.6811757
26.6782923
26.6646519
26.6279039
26.6265848
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3.25E-126
5.86E-126
1.23E-125
2.73E-124
2.24E-123
3.26E-123
4.12E-123
7.72E-123
8.22E-123
8.72E-123
1.13E-122
3.57E-122
3.70E-122
1.19E-121
7.48E-121
1.71E-120
1.90E-120
2.35E-120
4.66E-120
7.37E-120
1.87E-119
3.49E-119
1.52E-118
1.92E-118
2.38E-118
3.67E-118
4.81E-118
7.67E-118
8.70E-118
1.35E-117
2.37E-117
1.08E-116
1.32E-116
3.13E-116
1.24E-115
2.49E-115
3.20E-115
3.34E-115
4.08E-115
7.01E-115
7.14E-115

9.12E-124
1.62E-123
3.37E-123
7.36E-122
5.95E-121
8.56E-121
1.07E-120
1.98E-120
2.08E-120
2.18E-120
2.79E-120
8.70E-120
8.90E-120
2.83E-119
1.76E-118
3.98E-118
4.37E-118
5.33E-118
1.05E-117
1.64E-117
4.10E-117
7.58E-117
3.27E-116
4.08E-116
5.01E-116
7.64E-116
9.92E-116
1.57E-115
1.76E-115
2.70E-115
4.69E-115
2.12E-114
2.57E-114
6.03E-114
2.36E-113
4.71E-113
5.99E-113
6.19E-113
7.50E-113
1.28E-112
1.29E-112

277.583941
276.995405
276.254056
273.164624
271.066772
270.691112
270.458228
269.830615
269.768636
269.710029
269.448404
268.304037
268.268878
267.105267
265.270361
264.444031
264.340419
264.129324
263.44471
262.988803
262.0614
261.438649
259.969486
259.739188
259.524405
259.091891
258.821808
258.355177
258.230465
257.792908
257.232669
255.720185
255.517491
254.657564
253.287161
252.588282
252.33961
252.297253
252.096881
251.557125
251.537752



Cé6orf129
MCM2
SGOL1
TYMS

RNASEH2A

CENPL
SPAGS5
HMGAL
Clorfl35
RAPGEF3
PYCRI1
SEMA3G
FzZD4
HSD17B13
KIF15
AOC3
MMRN2
MAD2L1
STIL
GPRIN1
FANCA
EBF1
ACSM5
CENPM
HNI1
GPR172A
VPS72
RFC4
LOC572558
NOSTRIN
ORCIL
KPNA2
ERCC6L
CNIH2
CDT1
DDX39
GPAM
ESPL1
E2F2
Cl6orf75
PEAR1

0.36055007
0.32692152
0.83220629
0.42456125
0.30848706
0.30993058

0.4520607

0.3118396
0.55939432
-0.4559099
0.35636299
-0.5051074
-0.3619879
-1.1817678
0.63628929
-0.4943992
-0.3165011
0.40755648
0.44055476
0.52667621
0.52274704
-0.4816471
-0.9382351
0.67100355
0.32251207
0.29477216
0.20160997
0.27843706
-0.9937113
-0.5645576

0.6416463
0.30879349
0.59097108
0.82005234
0.60849105
0.26964866
-0.4230588
0.60112764
0.59752947
0.47344361
-0.4511954

6.37154955
6.60137228
5.986741
6.47602767
6.49430864
6.30507886
6.47385191
6.6816958
6.0337158
6.3909226
6.69412871
6.46067543
6.62180745
5.27888574
6.22176186
6.556616
6.55425596
6.39085974
6.34512442
6.22642399
6.27992197
6.32928608
5.78556586
6.16264049
6.67601384
6.63841502
6.62099057
6.437178
4.8688959
6.4029238
6.10607762
6.7287381
6.13705386
5.94439043
6.29595265
6.59999891
6.5186204
6.31110809
6.19979158
6.32883909
6.24711804

26.5580988
26.5543871
26.4929768
26.4814469
26.4478955
26.4433194
26.4055886
26.4035634
26.3611652
-26.325326
26.3103838
-26.302276
-26.27885
-26.211129
26.1995742
-26.119101
-26.100328
26.0726632
26.0331316
26.0122299
26.0103397
-25.990705
-25.988921
25.9432707
25.8279662
25.8033788
25.7428847
25.7369093
-25.718994
-25.716599
25.6424957
25.6309811
25.624699
25.6104827
25.60864
25.6009426
-25.591026
25.5764773
25.5663266
25.5478235
-25.544824
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1.96E-114
2.07E-114
5.11E-114
6.05E-114
9.92E-114
1.06E-113
1.85E-113
1.90E-113
3.55E-113
6.02E-113
7.50E-113
8.45E-113
1.19E-112
3.23E-112
3.82E-112
1.25E-111
1.64E-111
247E-111
4.41E-111
6.00E-111
6.17E-111
8.23E-111
8.45E-111
1.65E-110
8.97E-110
1.29E-109
3.13E-109
3.41E-109
4.44E-109
4.60E-109
1.36E-108
1.61E-108
1.77E-108
2.18E-108
2.24E-108
2.51E-108
2.90E-108
3.59E-108
4.16E-108
5.46E-108
5.70E-108

3.50E-112
3.67E-112
8.98E-112
1.06E-111
1.71E-111
1.82E-111
3.14E-111
3.21E-111
5.94E-111
9.98E-111
1.23E-110
1.38E-110
1.93E-110
5.18E-110
6.09E-110
1.97E-109
2.58E-109
3.84E-109
6.81E-109
9.19E-109
9.38E-109
1.24E-108
1.27E-108
2.46E-108
1.32E-107
1.89E-107
4.55E-107
4.93E-107
6.37E-107
6.55E-107
1.93E-106
2.27E-106
2.47E-106
3.02E-106
3.08E-106
3.42E-106
3.93E-106
4.84E-106
5.58E-106
7.26E-106
7.54E-106

250.532033
250.477535
249.575968
249.406723
248.914272
248.847112
248.293408
248.26369
247.641603
247.115848
246.896663
246.777738
246.434158
245.441109
245.271708
244.092133
243.81702
243.411638
242.83247
242.526286
242.4986
242.211013
242.184879
241.516347
239.828431
239.468629
238.583581
238.496174
238.234128
238.199105
237.115481
236.947141
236.855304
236.647488
236.620552
236.508038
236.363087
236.150457
236.002111
235.731721
235.687898



LMNB2
MYOC
THSD1
SPARCLI1
BYSL
CA4
LMODI1
CCT3
LRRC70
DTL
CXorf36
ILF2
CD34
BTNL9
ADRB2
LHFP
FLADI1
MTHFD?2
NFKBIL2
ZNF695
SPC24
PPP1R12B
NKAPL
CAV1
H2AFZ

MMP11
COL10A1
NEK2
KIF4A
PKMYT!
UBE2C
NUF2
IQGAP3
HJURP

0.26581233
-1.4374562
-0.3566395
-0.2949675
0.24229617
-1.6394567
-0.4644862
0.18071817
-0.5071504
0.52667673
-0.3261839
0.17623605
-0.2728433
-0.7931567
-0.6961599
-0.3210609
0.21971698
0.23790772
0.44087917
0.88068756
0.97872536
-0.2524633
-0.7017022
-0.3500515
0.21180123

logFC

0.6733733
0.99582633
0.67743641
0.63546893
0.72943729
0.59459978
0.58628733
0.54061525
0.54836709

6.63829791
5.09969529
6.20983908
6.85298812
6.48816397
5.19276764
6.4816809
6.90816075
5.9750323
6.41790358
6.46536425
6.83967444
6.65777938
6.17418505
6.00473997
6.54996981
6.62432136
6.67896551
6.37964704
5.85716221
5.6453362
6.61356813
5.48110736
6.691822
6.78826193

A2,

AveExpr

6.7487667
6.51546296
6.34404171
6.35962962
6.29174483
6.39652708
6.26557126
6.42188467

6.2629067

25.488974  1.29E-107
-25.471117  1.68E-107
-25.457806  2.04E-107
-25.451535  2.24E-107
254413158  2.60E-107
-25.375984  6.76E-107
-25.330626  1.31E-106

25.329741  1.33E-106
-25.298409  2.10E-106
25.2665558  3.35E-106
-25.240404  4.92E-106
25.2308302  5.66E-106
-25.216625  6.96E-106
-25.178131  1.22E-105
-25.110584  3.28E-105
-25.107822  3.42E-105
25.0243112 1.16E-104
25.0217082  1.20E-104
25.0168834  1.29E-104
25.0036863  1.56E-104
24.9348144 4.28E-104
-24.900979  7.01E-104
-24.873536  1.05E-103
-24.750171  6.32E-103
247431719  7.00E-103

C2 vs Normal

t P.Value
31.2253932 2.11E-144
29.2150533  1.75E-131
28.0868651  3.11E-124
27.8147605 1.74E-122
26.7216471 1.76E-115
25.7035051  5.57E-109
25.7031869  5.60E-109
25.3578077  8.82E-107
25.2934689  2.26E-106

172

1.70E-105
2.19E-105
2.65E-105
2.88E-105
3.33E-105
8.60E-105
1.66E-104
1.67E-104
2.63E-104
4.16E-104
6.06E-104
6.93E-104
8.48E-104
1.48E-103
3.95E-103
4.09E-103
1.38E-102
1.42E-102
1.52E-102
1.83E-102
4.97E-102
8.10E-102
1.20E-101
7.22E-101
7.95E-101

adj.P.Val

4.26E-140
1.77E-127
2.10E-120
8.78E-119
7.12E-112
1.62E-105
1.62E-105
2.23E-103
5.08E-103

234.871925

234.61109
234.416676

234.32509
234.175848
233.221944
232.559904
232.546984

232.08977
231.625032
231.243548
231.103909
230.896724
230.335409
229.350743
229.310489

228.09373
228.055816
227.985539
227.793327
226.790493
226.297996
225.898615
224.104228
224.002477

B

319.130542
289.525858
272.910342
268.906577
252.84918
237.95003
237.945385
232.908133
231.97087



MMP11
NEK2
KIF4A
COL10A1
PKMYT!
UBE2C
UBE2T
NUF2
HJURP
TPX2
CDKN3
AURKA
KIAA0101
PLK]1
CDK1
CEP55
MELK
UHRF1
IQGAP3
ASFIB
SPC25
RRM2
TROAP
ZWINT
TK1
NUSAPI
CPAI
CDCAS
BUBI
CCNB2
SKA3
HMMR
HSD17B6

logFC
0.77261037
0.81821548
0.77389688
1.11791051
0.88261617
0.73712014
0.54600898
0.71638619
0.67985363
0.51127654
0.62539442
0.50020715
0.66541094
0.59417033
0.49385455
0.60912348
0.72961538
0.66819569
0.64030534
0.504523
0.65758991
0.61083023
0.74434932
0.40994012
0.47890787
0.50627032
-1.1457498
0.46545379
0.61322566
0.59559128
0.63500868
0.64673913
0.65249401

A3. C3 vs Normal

AveExpr
6.7487667
6.34404171
6.35962962
6.51546296
6.29174483
6.39652708
6.36588439
6.26557126
6.2629067
6.56774487
6.18240124
6.38487415
6.31068887
6.39482509
6.49757011
6.34298029
6.28831274
6.33767246
6.42188467
6.4165402
6.1274963
6.50072185
6.2219041
6.49771018
6.54806901
6.49254783
4.93190324
6.37108046
6.36316398
6.35844758
6.18963205
6.27443208
6.06502729

t
33.2695166
31.5018717
31.4556046
30.4553824
30.024866
29.5896495
29.2079188
29.1647065
29.1196648
28.8268143
28.6474701
28.568977
28.5182791
28.5107309
28.4905878
28.4046061
28.0530984
27.9566261
27.8897405
27.8116681
27.6914818
27.6627707
27.5543285
27.544744
27.4950488
27.4180455
-27.386726
27.3851105
27.3624385
27.3565354
27.3560537
27.3433046
27.2514245
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P.Value
1.72E-157
3.54E-146
7.02E-146
1.86E-139
1.09E-136
6.83E-134
1.94E-131
3.69E-131
7.18E-131
5.48E-129
7.79E-128
2.49E-127
5.27E-127
5.89E-127
7.94E-127
2.83E-126
5.13E-124
2.13E-123
5.74E-123
1.82E-122
1.07E-121
1.64E-121
8.15E-121
9.38E-121
1.95E-120
6.09E-120
9.68E-120
9.91E-120
1.39E-119
1.51E-119
1.52E-119
1.84E-119
7.13E-119

adj.P.Val
3.47E-153
3.58E-142
4.73E-142
9.40E-136
4.40E-133
2.30E-130
5.62E-128
9.32E-128
1.61E-127
1.11E-125
1.43E-124
4.19E-124
8.20E-124
8.51E-124
1.07E-123
3.58E-123
6.10E-121
2.40E-120
6.11E-120
1.84E-119
1.03E-118
1.51E-118
7.16E-118
7.91E-118
1.58E-117
4.74E-117
7.16E-117
7.16E-117
9.66E-117
9.93E-117
9.93E-117
1.16E-116
4.37E-116

B
349.318131
323.358993
322.677897
307.939993
301.590701
295.170371
289.538714
288.901229
288.236766
283.916966
281.271938
280.114439
279.366872
279.255574
278.958569
277.690873
272.509929
271.088533
270.103209
268.953255
267.183363
266.760626
265.1642
265.023122
264.291695
263.158524
262.697692
262.673925
262.340359
262.253513
262.246426
262.058865
260.707351



CDC25C
KIF2C
ANLN
FOXMI1
DLGAP5
PYCRI1
NDC80
CDCA5
EXO1
CCNBI1
FAMS54A
KIF20A
PTTGI1
CKS2
CDC20
OIP5
NCAPG
EZH2
GTSE1
WDR62
NEIL3
LOC572558
PPAPDCIA
RADS1
KIFCl1
SHCBP1
SPAGS5
BUBIB
GINS1
LMNBI
CDCA3
NCAPH
BIRCS
POCIA
FAMS3D
KIF18B
Cl60rf59
CDC45
PAQR4
SLC35A2
SKA1

0.84226493
0.59580971
0.57520913
0.53887252
0.72000615
0.36259197
0.61799806
0.49025716
0.72286492
0.36505932
0.64605696
0.65562543

0.5310708
0.39587698

0.5831161
0.61969332
0.52879753
0.38596824
0.58177034
0.57590869
0.87778496
-1.0022923
1.24547997

0.5110846
0.50457912
0.54011693
0.43822876
0.57780742
0.41512631
0.36687554
0.53418898
0.52735754
0.71475794
0.36631187
0.61170386
0.70861531
0.57874907
0.74225347
0.37964057
0.19853559
0.62808127

6.03053886
6.37430417
6.46011454
6.49206266
6.27899041
6.69412871
6.26641156
6.4036834
6.21994198
6.54486023
5.97500164
6.38061838
6.358503
6.47078181
6.42480429
6.02364443
6.36860084
6.41056425
6.22876743
6.2419295
5.88302004
4.8688959
5.96498458
6.20782871
6.4348331
6.24370337
6.47385191
6.3426436
6.35418956
6.57488951
6.24280639
6.29985916
6.30609349
6.29818866
6.29439873
6.17840068
6.14327509
6.15982582
6.56718813
6.60419465
6.12435005

27.1864571
27.1655516
27.0246478
26.9403908
26.8543817
26.8401244
26.8043407

26.792163
26.6940669

26.679185
26.5647707
26.5298531
26.3834103
26.3334709
26.2746892
26.2461453
26.1813079
26.1760577

26.104796

26.093691
26.0820218
-26.008773
26.0082303
25.9396466
25.8439254
25.7766646

25.664436
25.6577021
25.6177404
25.4807899
25.4569606
25.4563439
25.3581828
25.3230724
25.3157239
25.2521753

25.195595
25.0286572
25.0022257
24.9644219
24.9237402
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1.86E-118
2.53E-118
2.02E-117
7.01E-117
2.49E-116
3.07E-116
5.21E-116
6.23E-116
2.64E-115
3.29E-115
1.77E-114
2.97E-114
2.56E-113
5.34E-113
1.27E-112
1.93E-112
5.00E-112
5.40E-112
1.54E-111
1.81E-111
2.15E-111
6.31E-111
6.36E-111
1.74E-110
7.10E-110
1.91E-109
9.88E-109
1.09E-108
1.96E-108
1.46E-107
2.07E-107
2.08E-107
8.77E-107
1.47E-106
1.63E-106
4.14E-106
9.47E-106
1.09E-104
1.60E-104
2.77E-104
5.03E-104

1.11E-115
1.46E-115
1.14E-114
3.83E-114
1.33E-113
1.59E-113
2.63E-113
3.07E-113
1.27E-112
1.55E-112
8.16E-112
1.33E-111
1.13E-110
2.30E-110
5.34E-110
7.96E-110
2.02E-109
2.14E-109
5.99E-109
6.92E-109
8.06E-109
2.30E-108
2.30E-108
6.18E-108
2.48E-107
6.53E-107
3.33E-106
3.62E-106
6.39E-106
4.68E-105
6.49E-105
6.49E-105
2.69E-104
4.43E-104
4.86E-104
1.21E-103
2.74E-103
3.09E-102
4.49E-102
7.69E-102
1.37E-101

259.751924
259.444523
257.373137
256.134944
254.871364
254.661944
254.136373

253.95753

252.51716
252.298691

250.61948
250.107157
247.959282
247.227121
246.365524
245.947219
244.997237
244.920325
243.876563
243.713941
243.543065
242.470673
242.462731
241.458985

240.05864
239.075061

237.43467
237.336275
236.752433
234.752559

234.40474
234.395739
232.963462
232451364
232.344197
231.417633
230.592973

228.16155
227.776819

227.22667
226.634793



CENPF
AURKB

MMP11
COL10A1
NEK2
PKMYTI1
PAFAHI1B3
NUF2
IQGAP3
KIF4A
GABRD
RAGIAPI
PPAPDCIA
KIAAO0101
HSD17B6
PAQR4
UBE2T
SPC25
NUAK?2
CPAl
UHRF1
CDC25C
LOC572558
RYR3
HAGHL
Cl60rf59
MRAS
ASFIB
PYCRI1

0.43432926
0.69623516

logFC
0.73449949
1.06113677
0.73439203
0.74770832
0.36863652
0.60911908
0.5688466
0.60913342
0.76114717
0.25301933
1.13978237
0.55335481
0.56702533
0.35714613
0.4351228
0.55108181
0.38110107
-0.9641995
0.54724454
0.70433676
-0.8740794
-0.7150914
0.76237692
0.51414105
-0.2933438
0.40430849
0.30020605

6.63953848
6.18397469

A4

AveExpr
6.7487667
6.51546296
6.34404171
6.29174483
6.58546139
6.26557126
6.42188467
6.35962962
5.94238325
6.6685569
5.96498458
6.31068887
6.06502729
6.56718813
6.36588439
6.1274963
6.28795794
4.93190324
6.33767246
6.03053886
4.8688959
5.66792286
6.14657488
6.14327509
6.54432769
6.4165402
6.69412871

24.862743
24.8308436

t
35.4388219
32.3914358
31.6809678
28.4998931
28.2405352
27.7852574
27.7622291
27.7414519
27.658282
26.8094924
26.6684519
26.5728957
26.5348698
26.3544419
26.0804145
26.0021315
25.9446773
-25.823734
25.6545466
25.4733504
-25.414302
-25.384179
25.3023061
25.0794732
-25.065472
24.9724266
24.8993263
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1.22E-103
1.95E-103

. C4 vs Normal

P.Value
2.81E-171
7.05E-152
2.51E-147
6.92E-127
3.21E-125
2.69E-122
3.78E-122
5.13E-122
1.75E-121
4.83E-116
3.86E-115
1.57E-114
2.76E-114
3.92E-113
2.20E-111
6.96E-111
1.62E-110
9.55E-110
1.14E-108
1.63E-107
3.86E-107
6.00E-107
1.99E-106
5.17E-105
6.34E-105
2.47E-104
7.18E-104

3.30E-101
5.19E-101

adj.P.Val
5.68E-167
7.13E-148
1.70E-143
3.50E-123
1.30E-121
9.06E-119
1.09E-118
1.30E-118
3.94E-118
9.76E-113
7.09E-112
2.65E-111
4.29E-111
5.67E-110
2.97E-108
8.80E-108
1.93E-107
1.07E-106
1.22E-105
1.64E-104
3.72E-104
5.51E-104
1.75E-103
4.36E-102
5.13E-102
1.92E-101
5.38E-101

225.747652
225.283853

B
380.827504
336.357097
325.9195
279.050816
275.229629
268.52571
268.186776
267.880988
266.657079
254.181913
252.112211
250.710585
250.152962
247.508276
243.495529
242.350106
241.50972
239.741448
237.269665
234.624933
233.76364
233.324381
232.130878
228.885531
228.681771
227.328127
226.265233



MMPI11
COLI10A1
NEK2

MMP11
NEK2
KIF4A
PKMYT!
UBE2C
COL10A1
CDC25C
CPAI
TPX2
NUF2
KIAA0101
UBE2T
IQGAP3
AURKA
UHRF1
TROAP
WDR62
PLK]1
SPC25
ASFIB
ZWINT
H2AFY
HJURP
KIF18B
KLHL29
CDK1
SPRY?2

logFC
0.64281301

AS. C5 vs Normal

AveExpr

t

6.7487667 29.3487172

0.97373768 6.51546296
0.642177 6.34404171

logFC
0.7487638
0.78546225
0.72699165
0.86296163
0.70724758
1.01787147
0.85667676
-1.1537892
0.48900849
0.67665076
0.63771252
0.50924388
0.62195186
0.47050197
0.63989399
0.72293385
0.58984453
0.55678826
0.62907828
0.47982884
0.39287645
0.16970158
0.61573708
0.73772643
-0.5566033
0.45093495
-0.4260585

28.126617
26.214521

P.Value
2.42E-132
1.73E-124
3.07E-112

A6. C6 vs Normal

AveExpr
6.7487667
6.34404171
6.35962962
6.29174483
6.39652708
6.51546296
6.03053886
4.93190324
6.56774487
6.26557126
6.31068887
6.36588439
6.42188467
6.38487415
6.33767246
6.2219041
6.2419295
6.39482509
6.1274963
6.4165402
6.49771018
6.82948803
6.2629067
6.17840068
6.12874383
6.49757011
6.35917977

t
34.2479321
32.1216274
31.3868632
31.1820195
30.1561967
29.4546259
29.3713854
-29.294112
29.2860453
29.2602834
29.0309921
28.9354475
28.7751555
28.543669
28.4375825
28.4259605
28.3872284
28.3786032
28.1383935
28.0954484
28.0399905
28.0356749
28.0136575
27.9246126
-27.688655
27.632476
-27.528134
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P.Value
1.00E-163
3.77E-150
1.94E-145
4.00E-144
1.56E-137
5.04E-133
1.73E-132
5.43E-132
6.12E-132
8.96E-132
2.67E-130
1.10E-129
1.18E-128
3.62E-127
1.74E-126
2.06E-126
3.66E-126
4.16E-126
1.45E-124
2.74E-124
6.22E-124
6.63E-124
9.18E-124
3.43E-123
1.12E-121
2.57E-121
1.20E-120

adj.P.Val
4.89E-128
1.75E-120
2.07E-108

adj.P.Val
2.02E-159
3.81E-146
1.31E-141
2.02E-140
6.30E-134
1.70E-129
5.00E-129
1.37E-128
1.37E-128
1.81E-128
4.91E-127
1.85E-126
1.83E-125
5.23E-124
2.34E-123
2.61E-123
4.36E-123
4.67E-123
1.55E-121
2.77E-121
5.99E-121
6.10E-121
8.08E-121
2.89E-120
9.06E-119
2.00E-118
8.98E-118

B

291.357232
273.377356
245.331097

B
363.639627
332.490788
321.679606
318.662492
303.538962
293.188054
291.959832
290.819671
290.700642
290.32053
286.937529
285.527957
283.163368
279.749119
278.18471
278.013338
277.442232
277.315058
273.773915
273.140965
272.323664
272.260067
271.935613
270.623564
267.147945
266.320694
264.784537



PBK
CCNBI1
RYR3
CEP55
DMD
HMMR
NUSAPI1
CDCAS8
RECQL4
TOP2A
Cl6o0rf59
MELK
CKS2
PAFAHI1B3
BUBI
KIF2C
ATP6API
PTTGI1
CDKN?3
NEIL3
CDCA5
FOXMI1
CAV1
POCIA
CAV2
SPAGS
NDC80
HSD17B13
KIFCl1
LOC572558
POLR3K
PYCRI1
TNS1
CCNB2
NCAPG
RADS1
KIF20A
TK1
MYOC
DLGAP5
CCDCo64

0.69952658
0.35372319
-0.8148531
0.55164549
-0.5881811
0.60509492
0.47217928
0.43451727
0.5111195
0.52943269
0.58458493
0.66078787
0.38157976
0.37086187
0.56734767
0.55459651
0.18875755
0.50496059
0.54744984
0.8420171
0.45756995
0.4999091
-0.3522274
0.36109086
-0.3760988
0.42412829
0.57229591
-1.1159058
0.48380318
-0.9545994
0.26413621
0.333798
-0.2638661
0.53681759
0.49685035
0.4826421
0.60528211
0.42589055
-1.3749805
0.65488731
0.54979364

6.25257777
6.54486023
5.66792286
6.34298029
6.34933294
6.27443208
6.49254783
6.37108046
6.38602512
6.66122445
6.14327509
6.28831274
6.47078181
6.58546139
6.36316398
6.37430417
6.85206833
6.358503
6.18240124
5.88302004
6.4036834
6.49206266
6.691822
6.29818866
6.53056101
6.47385191
6.26641156
5.27888574
6.4348331
4.8688959
6.47594938
6.69412871
6.78984699
6.35844758
6.36860084
6.20782871
6.38061838
6.54806901
5.09969529
6.27899041
6.37917025

27.4746462
27.4584617

-27.42096
27.3241751
-27.184529

27.173709
27.1621726
27.1549197
27.1065494
27.0932379
27.0324547
26.9868669
26.9610461
26.9332327
26.8897839

26.859111
26.7828702
26.6464617
26.6366839
26.5752638
26.5610279
26.5468164
-26.521897
26.5146227
-26.391034
26.3834535
26.3658762
-26.358239

26.320945
-26.311778
26.2615854

26.245426
-26.243498
26.1904556
26.1294984
26.0195642
26.0159953
25.9719214
-25.946885
25.9447251
25.8775436
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2.64E-120
3.36E-120
5.84E-120
2.44E-119
1.91E-118
2.24E-118
2.66E-118
2.96E-118
6.05E-118
7.36E-118
1.80E-117
3.53E-117
5.17E-117
7.79E-117
1.48E-116
2.32E-116
7.14E-116
5.33E-115
6.16E-115
1.52E-114
1.88E-114
2.31E-114
3.34E-114
3.71E-114
2.29E-113
2.56E-113
3.31E-113
3.71E-113
6.42E-113
7.35E-113
1.54E-112
1.95E-112
2.01E-112
4.37E-112
1.07E-111
5.39E-111
5.68E-111
1.08E-110
1.57E-110
1.62E-110
4.34E-110

1.91E-117
2.34E-117
3.94E-117
1.59E-116
1.21E-115
1.38E-115
1.58E-115
1.71E-115
3.40E-115
4.02E-115
9.60E-115
1.83E-114
2.61E-114
3.84E-114
7.12E-114
1.09E-113
3.28E-113
2.40E-112
2.71E-112
6.54E-112
7.90E-112
9.54E-112
1.35E-111
1.47E-111
8.90E-111
9.77E-111
1.24E-110
1.36E-110
2.32E-110
2.61E-110
5.36E-110
6.68E-110
6.76E-110
1.45E-109
3.49E-109
1.73E-108
1.79E-108
3.37E-108
4.80E-108
4.88E-108
1.29E-107

263.997219
263.759013
263.207097
261.782953
259.728809
259.569689
259.400035
259.293378
258.582129
258.386414
257.492832
256.822755
256.44327
256.034536
255.396107
254.945463
253.825545
251.822583
251.67905
250.777554
250.568636
250.360089
249.994433
249.887704
248.074832
247.963666
247.705915
247.593929
247.04714
246.912749
246.177011
245.940177
245911924
245.134649
244.241626
242.631729
242.579478
241.9343
241.567865
241.536253
240.553212



FAMI3A
HSD17B6
GINSI1
CDCA3
BIRCS
LYVEI
LOC286367
BUBIB
SKA1
SQLE
MRAS
ADAMTSS5
PPPIRI2B
TRPM3
ARHGAP39
NKAPL
OIP5
GABRD
LRRC3B
ANXAI
CA4
CENPM
GTSEI
DTL

MAZ
KIF23

-0.3325536

0.5816795
0.39322711
0.50896745
0.68006631
-0.7965458
-0.5477514
0.54153052
0.60414267
0.34534635
-0.3140393
-0.5278858
-0.2414478
-0.8585407
0.33308967
-0.6707547
0.56242926
0.73220208
-1.0633462
-0.2875062

-1.517469
0.60528151
0.52289348
0.48725494

0.1926078
0.41787394

6.46929617
6.06502729
6.35418956
6.24280639
6.30609349
6.01919277
5.92333826

6.3426436
6.12435005
6.64626784
6.54432769
6.37270753
6.61356813
4.87826079
6.45196482
5.48110736
6.02364443
5.94238325
5.03805967
6.76618226
5.19276764
6.16264049
6.22876743
6.41790358
6.83363415
6.41583227

-25.835734
25.80477
25.7755278
25.7635191
25.6279551
-25.61967
-25.552824
25.5423668
25.4648099
25.4515955
-25.438108
-25.4327
-25.361606
-25.357373
25.3291117
-25.321165
25.30231
25.2225653
-25.08153
-25.055217
-25.013707
24.9225587
24.9221503
24.8939305
24.8652543
24.7848964
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8.01E-110
1.26E-109
1.94E-109
2.31E-109
1.69E-108
1.90E-108
5.07E-108
5.91E-108
1.84E-107
2.24E-107
2.72E-107
2.95E-107
8.35E-107
8.88E-107
1.34E-106
1.51E-106
1.99E-106
6.38E-106
5.02E-105
7.37E-105
1.35E-104
5.11E-104
5.14E-104
7.76E-104
1.18E-103
3.81E-103

2.35E-107
3.64E-107
5.52E-107
6.49E-107
4.67E-106
5.21E-106
1.37E-105
1.57E-105
4.84E-105
5.80E-105
6.97E-105
7.45E-105
2.08E-104
2.19E-104
3.27E-104
3.63E-104
4.73E-104
1.50E-103
1.17E-102
1.69E-102
3.07E-102
1.14E-101
1.14E-101
1.71E-101
2.57E-101
8.20E-101

239.941601
239.488718
239.061091
238.885499
236.904045
236.783001
235.806531
235.653806
234.521403
234.328511
234.13165
234.052709
233.015307
232.95356
232.541301
232.425397
232.1504
230.987702
228.93278
228.549596
227.945243
226.618756
226.612814
226.202296
225.785219
224.616901



A7. Overlapped genes among the identified subtypes

No. of
Subtypes overlapping Genes
genes
Subtype 1, Subtype 2,
Subtype 3, Subtype 4, 2 NEK2, MMP11
Subtype 5, Subtype 6
Subtype 1, Subtype 2,
Subtype 3, Subtype 4, 4 IQGAP3, KIF4A, NUF2, PKMYT1
Subtype 6
Subtype 2, Subtype 3,
Subtype 4, Subtype 5, 1 COL10A1
Subtype 6
Subtype 1, Subtype 2,
2 UBE2C, HIURP
Subtype 3, Subtype 6
Subtype 1, Subtype 3, 10 CPA1, UHRF1, ASF1B, KIAA0101, CDC25C, SPC25,
Subtype 4, Subtype 6 LOC572558, Cl6orf59, UBE2T, PYCR1
CDK1, TK1, MELK, NEIL3, CEP55, TPX2, POCIA, KIF18B,
ZWINT, CCNB1, NDC80, RADS51, SPAGS, OIP5, HMMR,
Subtype 1, Subtype 3, 39 GTSE1, CDKN3, BUB1, NCAPG, CDCA3, GINS1, WDR62,
Subtype 6 KIFC1, SKA1, PTTG1, TROAP, KIF2C, BIRCS, KIF20A,
CDCAS, PLK1, AURKA, NUSAP1, CKS2, BUB1B, FOXM1,
DLGAPS, CCNB2, CDCAS
Subtype 3, Subtype 4,
P P 1 HSD17B6
Subtype 6
AURKB, SKA3, NCAPH, CDC20, FAM83D, RRM2, SHCBPI,
Subtype 1, Subtype 3 14

LMNBI1, CDC45, EXO1, ANLN, CENPF, FAMS54A, EZH2

179




Subtype 1, Subtype 6

13

NKAPL, TNS1, DTL, TOP2A, RECQL4, PPPIR12B, MYOC,
CAV1, PBK, CA4, CENPM, HSD17B13, KIF23

Subtype 3, Subtype 4

PPAPDCI1A, PAQR4

Subtype 4, Subtype 6

RYR3, PAFAHIB3,GABRD, MRAS

Subtype 1

94/178

HDGF, ESPL1, DONSON, CENPA, ZNF695, CD34, TYMS,
CDTI1, BYSL, GPRIN1, RNASEH2A, CKAP2L, KIF11, MKI67,
CTPS, FAM72B, AOC3, MTHFD2, C160rf75, TNXB, ADRB2,
LRRC70, DEPDC1B, HN1, FANCA, SGOL1, FZD4, SEMA3G,
ORC6L, LDB2, CDCA2, DDX39, HMGA1, CENPL, MMRN2,

PDE2A, NOSTRIN, ASPM, UBE2S, H2AFZ, TUBAIC,

RAPGEF3, E2F1, PEAR1, ORCIL, RFC4, CCNA2, LMODI,
TTK, RAD54L, SPARCLI, BTNL9, ATP1A2, C6orf129, ECE2,
ILF2, CCT3, PSRC1, SDPR, LMNB2, CNIH2, VPS72, MCM2,

Clorf135, KPNA2, TRIP13, MYBL2, LHFP, TACC3, KIF15,

ERCC6L, RCC2, GPR172A, STMN1, TMEM206, MCM10,

THSD1, FAM64A, SPC24, FLADI, STIL, KIF14, TENC],
GPAM, CCNE1, MAD2L1, EBF1, NFKBIL2, ACSM5, DEPDC],
CXorf36, RAD51AP1, E2F2, PRC1

Subtype 3

1/76

SLC35A2

Subtype 4

3/27

RAGIAPI, NUAK2, HAGHL

Subtype 6

18/94

TRPM3, ANXA1, ADAMTS5, POLR3K, CCDC64, ATP6API,
DMD, LOC286367, MAZ, LRRC3B, SPRY2, SQLE,
ARHGAP39, CAV2, FAMI3A, KLHL29, LYVEI, H2AFY
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Appendix B: The data of the 7-layer BC biological system hierarchy.

The first column is the gene name. Second column is the biological systems at the second layer,
third column is the biological system at the third layer, etc.

AICF 175 59 9 11 O|CRLF2 255 37 9 11 O|HYAL2 268 69 9 11 O|NLRP9 358 59 9 11 O0|SDHC 125 73 47 11 0
AAAS 103 133 50 6 1|CRNKL1 619 99 9 11 O|HYOUl1l 245 59 9 11 O|NME8 481 64 9 11 0|SDHD 125 73 47 11 0
AAR2 320 56 26 11 O|CRTAP 400 15 9 11 OJHYPK 247 36 20 11 O|NOB1 194 48 13 5 1|SDR16C5 299 69 9 11 0
AATF 376 79 26 11 O|CRX 11 4 1 11 OfICE1 58 150 52 11 OfNOC2L 620 59 9 11 O|SEC11A 519 118 9 11 0
ABAT 561 59 9 11 O|CRYAA 130 59 9 11 O]ICE2 319 150 52 11 O|NOCAL 360 59 9 11 O|SEC1iC 519 118 9 11 0
ABCA2 517 59 9 11 O|CRYAB 130 59 9 11 0}ID2 373 12 9 11 O|NOD2 358 59 9 11 O|SEC13 25 133 50 6 1
ABCB6 581 59 9 11 O|CRYBG3 58 150 52 11 OfIDH3A 248 59 9 11 O|NOL10 645 79 26 11 O|SEC22B 572 16 26 11 0
ABCB8 581 59 9 11 O|CSDE1 199 125 49 7 1|IDH3B 248 59 9 11 O|NOL11 388 83 26 11 O|SEC23A 520 55 28 5 1
ABCB9 581 59 9 11 O|CSF1 233 75 34 11 0|IDH3G 248 59 9 11 O|NOL6 473 15 9 11 O|SEC23B 520 55 28 5 1
ABCC8 38 69 9 11 O|CSFIR 322 69 9 11 O]IFITM1 68 59 9 11 O|NOLC1 241 135 26 11 O|SEC24A 520 55 28 5 1
ABCC9 38 69 9 11 O0|CSF2 155 150 52 11 OfIFITM2 68 59 9 11 0|NOMO2 593 69 9 11 O|SEC24B 520 55 28 5 1
ABCD4 581 59 9 11 O|CSF2RA 255 37 9 11 O|IFITM3 68 59 9 11 O|NONO 129 55 28 5 1|SEC24C 520 55 28 5 1
ABCGS 168 59 9 11 O|CSF2RB 208 37 9 11 O]IFNL1 382 80 24 11 O|NOP10 340 75 34 11 O|SEC24D 520 55 28 5 1
ABCG8 168 59 9 11 O|CSF3R 158 37 9 11 O]IFNLR1 208 37 9 11 O|NOP14 635 79 26 11 O|SEC31A 328 79 26 11 0
ABHD12 299 69 9 11 O|CSNK1Al 96 59 9 11 O0fIFT122 243 99 9 11 O|NOPS6 377 59 9 11 O|SEC31B 328 79 26 11 0
ABHD6 299 69 9 11 O|CSNKIE 96 59 9 11 O0|IFT140 642 79 26 11 O|NOPS8 377 59 9 11 O|SEC61A1 13 59 9 11 0
ABI1 0 15 9 11 O|CSNK2A1 96 59 9 11 O0}IFT172 243 99 9 11 O|NOP9 620 59 9 11 O|SEC61A2 13 59 9 11 0
ABI2 0 15 9 11 O|CSNK2A2 96 59 9 11 O0|IFT20 233 75 34 11 O|NOS1 49 15 9 11 O|SEC61B 68 59 9 11 0
ABI3 473 15 9 11 O0|CSNK2A3 96 59 9 11 O0fIFT22 509 9 9 11 O|NOTCH1 593 69 9 11 O0|SEC61G 532 59 9 11 0
ABL1 292 15 9 11 O|CSNK2B 59 15 9 11 OfIFT27 250 25 9 11 O|NOTCH2 593 69 9 11 O|SECe3 605 79 26 11 0
ABT1 605 79 26 11 O|CSTA 157 36 20 11 O]IFT43 155 150 52 11 O|NOTCH3 593 69 9 11 O|SECISBP2 521 150 52 11 O
ABTB1 168 59 9 11 O|CSTF1 582 133 50 6 1|IFT46 157 36 20 11 O|NOX1 378 69 9 11 O|SECISBP2L 521 150 52 11 O
ACD 1 46 34 11 O|CSTF2 129 55 28 5 1|IFTS2 143 32 9 11 O|NOX4 378 69 9 11 O|SEH1L 474 108 36 5 1
ACIN1 30 150 52 11 O|CSTF2T 129 55 28 5 1|IFT57 251 16 26 11 O|NOXAl 473 15 9 11 O|SELIL 93 59 9 11 0
ACR 181 17 9 11 O0|CT45A10 131 150 52 11 O|IFT74 251 16 26 11 O|NOXO1 473 15 9 11 O|SELENOS 605 79 26 11 O
ACTAL 2 0 4 10 1|CT45A2 131 150 52 11 O]IFT80 249 99 9 11 O|NPAS2 379 10 9 11 O|SEM1 434 93 20 11 0
ACTA2 2 0 4 10 1|CT45A3 131 150 52 11 OfIFT81 251 16 26 11 O|NPAs4 380 13 3 11 O|SEMG1 522 120 34 11 0
ACTB 2 0 4 10 1|CT45A6 131 150 52 11 O|IFT88 619 99 9 11 O|NPHS2 381 59 9 11 O|SENP2 280 59 9 11 0
ACTC1 2 0 4 10 1|CTBP1 70 22 6 10 1|IGF1 407 106 9 11 O|NPIPAL 331 75 34 11 O|SENP3 280 59 9 11 0
ACTG1 2 0 4 10 1|CTBP2 70 22 6 10 1|IGFIR 170 59 9 11 O|NPLOC4 157 36 20 11 O|SERF1A 523 121 44 11 0
ACTG2 2 0 4 10 1fcTC1 1 46 34 11 O0|IGF2BP1 404 22 6 10 1|NPM1 157 36 20 11 O|SERPINAS 158 37 9 11 0
ACTL10 3 59 9 11 O|CTDNEP1 541 59 9 11 O|IGF2R 64 17 9 11 O|NPPA 382 80 24 11 O|SERPINB6 170 59 9 11 0
ACTLBA 5 59 9 11 0|CTDP1 49 15 9 11 O|IGFALS 221 51 9 11 O|NPPB 382 80 24 11 O|SERPINE1 158 37 9 11 0
ACTL6B 5 59 9 11 O|CTHRC1 79 17 9 11 O0|IGFBP3 252 17 9 11 O|NPPC 382 80 24 11 O|SERPINF2 158 37 9 11 0
ACTL7A 3 59 9 11 0o|CTLA4 515 37 9 11 O0|IGFBPS 252 17 9 11 O|NPR1 170 59 9 11 O|SESN2 34 16 26 11 0
ACTL7B 3 59 9 11 O|CTNNAL 177 141 26 11 O0|IGFBP6 252 17 9 11 O|NPR3 491 69 9 11 O|SESN3 34 16 26 11 0
ACTL8 3 59 9 11 O|CTNNA2 177 141 26 11 O0|IGHMBP2 170 59 9 11 O|NPRL2 383 83 26 11 O|SET 59 15 9 110
ACTN4 560 59 9 11 O|CTNNB1 443 147 49 7 1]IGLL1 238 59 9 11 O|NPRL3 383 83 26 11 O|SETD1A 524 13 3 11 0
ACTR10 245 59 9 11 O|CTNNBIP1 331 75 34 11 O0JIGLLS 238 59 9 11 O|NROB2 385 22 6 10 1|SETD1B 524 13 3 11 0
ACTR1A 4 59 9 11 O|CTNNBL1 443 147 49 7 1|IK 534 79 26 11 O|NR1H2 385 22 6 10 1|SETDS 59 15 9 110
ACTR1B 4 59 9 11 O|CTNND1 421 15 9 11 O]IKBKB 253 64 9 11 O|NR1H3 385 22 6 10 1|SF1 573 15 9 11 0
ACTR2 5 59 9 11 O0|CTR9 619 99 9 11 O]IKBKE 253 64 9 11 O|NR1H4 385 22 6 10 1|SF3A1 573 15 9 11 0
ACTR3 5 59 9 11 0|CTsB 181 17 9 11 O]IKBKG 403 15 9 11 O|NR1lI2 385 22 6 10 1|SF3A2 129 55 28 5 1
ACTR5 245 59 9 11 o0|CTul 283 59 9 11 O0]IKzZF1 254 59 9 11 O|NR2E3 472 22 6 10 1|SF3A3 525 79 26 11 0
ACTR6 245 59 9 11 o0|CTu2 253 64 9 11 O0|IKZF4 254 59 9 11 O|NR3C1l 384 12 9 11 O0|SF3B1 619 99 9 11 0
ACTR8 245 59 9 11 O|CUBN 298 64 9 11 O]IKZF5 617 150 52 11 O|NR3C2 384 12 9 11 O0|SF3B2 639 15 9 11 0
ACVR1 6 1 9 11 ojcuLi 132 59 9 11 OfIL10RB 255 37 9 11 O|NR4AL 385 22 6 10 1|SF3B3 249 99 9 11 0
ACVR1B 6 1 9 11 ojcuL2 132 59 9 11 O]IL11RA 158 37 9 11 O|NR4A2 385 22 6 10 1|SF3B4 547 22 6 10 1
ACVR1C 6 1 9 11 ojcuL3 132 59 9 11 O0}IL12A 155 150 52 11 O|NR4A3 385 22 6 10 1|SF3B5 331 75 34 11 0
ACVR2A 6 1 9 11 O|CUL4A 132 59 9 11 o0]iL12B 255 37 9 11 O|NR5AL 385 22 6 10 1|SF3B6 547 22 6 10 1
ACVR2B 6 1 9 11 o|cuL4B 132 59 9 11 O0]IL12RB1 158 37 9 11 O|NRSA2 385 22 6 10 1|SFPQ 129 55 28 5 1
ACVRL1 6 1 9 11 o|cuLs 132 59 9 11 O0]IL12RB2 158 37 9 11 O|NR6Al 385 22 6 10 1|SFR1 530 150 52 11 0
ADAM10 268 69 9 11 o0|CuL7 418 67 20 11 OfIL13RAL 255 37 9 11 O|NRIP1 386 150 52 11 O|SFTPAl 526 17 9 11 0
ADAMS8 268 69 9 11 0|CUL9 418 67 20 11 OfIL13RA2 255 37 9 11 O|NRP1 593 69 9 11 O|SFTPA2 526 17 9 11 0
ADAR 448 59 9 11 0|CWCl5 534 79 26 11 O0]IL18R1 322 69 9 11 O|NRP2 593 69 9 11 O|SFTPD 526 17 9 11 0
ADCYAP1R1 7 59 9 11 ojcwc22 566 132 0 11 O|IL18RAP 322 69 9 11 O|NRXN2 206 106 9 11 O|SGCA 134 16 26 11 0
ADD1 8 15 9 11 o|jcwcezs 477 144 9 11 O0fIL23A 382 80 24 11 O|NSA2 496 71 21 11 0|SGCB 134 16 26 11 0
ADD2 8 15 9 11 ojcwcez7 437 95 15 5 1}IL23R 208 37 9 11 O|NSFL1C 629 103 33 7 1|SGCD 134 16 26 11 0
ADGRA2 593 69 9 11 O|CWF19L1 133 30 15 5 1]IL27RA 158 37 9 11 O|NSL1 155 150 52 11 O|SGCE 134 16 26 11 0
ADIPOQ 62 17 9 11 O|CWF19L2 605 79 26 11 O]IL2RA 90 37 9 11 O|NSMCE1 124 99 9 11 0|SGCG 134 16 26 11 0
ADNP 617 150 52 11 O|CXADR 322 69 9 11 O0]IL2RB 208 37 9 11 O|NSMCE2 209 99 9 11 O0|SGF29 60 141 26 11 0
ADRA2A 271 59 9 11 O|CXCR4 246 51 9 11 O]IL2RG 255 37 9 11 O|NSMCE3 306 13 3 11 0|sGIP1 49 15 9 11 0
ADRB2 246 51 9 11 O0]CXxXc1 59 15 9 11 OJIL3RA 255 37 9 11 O|NSMCE4A 577 16 26 11 0|SGO2 58 150 52 11 0
ADRB3 221 51 9 11 O|CYBSB 175 59 9 11 O0]IL4R 208 37 9 11 O|NSRP1 477 144 9 11 O|SGTA 527 122 33 7 1
ADRM1 527 122 33 7 1|CYBSR3 378 69 9 11 O]IL5RA 255 37 9 11 O|NSUN3 324 69 9 11 0|SGTB 527 122 33 7 1
ADSL 248 59 9 11 O|CYBA 368 73 47 11 0|IL6 155 150 52 11 OfNSUN4 324 69 9 11 O|SH3GLB1 420 59 9 11 0
AEBP2 524 13 3 11 0|CYBB 378 69 9 11 O]IL6R 158 37 9 11 O|NT5DC3 59 15 9 11 O|SHARPIN 473 15 9 11 0
AFDN 49 15 9 11 ofcvcl 268 69 9 11 O0|IL6ST 255 37 9 11 O|NTN4 289 69 9 11 O|SHC1 374 13 3 11 0
AFF1 9 2 0 11 ojcvecs 636 59 9 11 O]ILDR1 524 13 3 11 OINTNG1 289 69 9 11 O|SHISA7 374 13 3 11 0
AFF3 9 2 0 11 O|CYFIP1 622 141 26 11 O]ILF2 256 55 28 5 1INTNG2 289 69 9 11 O|SHISA9 374 13 3 11 0
AFF4 9 2 0 11 O|CYFIP2 622 141 26 11 O]ILF3 257 55 28 5 1|NTRK1 322 69 9 11 O|SHMT2 561 59 9 11 0
AFG3L2 453 59 9 11 O0|DAB2IP 49 15 9 11 OflILVvBL 561 59 9 11 O|NTRK2 491 69 9 11 0|SHOC2 299 69 9 11 0
AFTPH 654 150 52 11 O|DACH1 11 4 1 11 OJIMMPIL 258 118 9 11 O|NTRK3 491 69 9 11 O|SHPRH 280 59 9 11 0
AGFG1 171 15 9 11 0|DAD1 114 7 9 11 O|IMMP2L 258 118 9 11 O|NUDCD3 321 16 26 11 O|SHTN1 558 64 9 11 0
AGK 299 69 9 11 0|DAG1 134 16 26 11 O)|IMMT 321 16 26 11 O|NUDT21 333 71 21 11 O|SIAH1 49 15 9 11 0
AGL 10 3 27 7 1|DAP3 466 69 9 11 0|IMP3 645 79 26 11 O|NUF2 251 16 26 11 OfSIN3A 537 125 49 7 1
AGO1 170 59 9 11 O|DAPK1 13 59 9 11 0|IMP4 333 71 21 11 O|NUFIP1 524 13 3 11 O|SIN3B 537 125 49 7 1
AGO2 170 59 9 11 O0|DAZAP1 135 55 28 5 1|IMPACT 49 15 9 11 O|NUMAL 101 24 26 11 O|SIPAl 473 15 9 11 0
AGO3 170 59 9 11 O|DAZAP2 48 16 26 11 0|IMPG2 259 150 52 11 O|NUP107 387 81 25 7 1|SIRT1 49 15 9 11 0
AGO4 170 59 9 11 O|DAZL 99 22 6 10 1|INCENP 558 64 9 11 O|NUP133 388 83 26 11 O|SIRT2 49 15 9 11 0

181



AHCTF1
AHI1
AHNAK
AHR
AHRR
AHSP
AICDA
AIM2
AIMP1
AIMP2
AIP
AJUBA
AKAP10
AKAP17A
AKAP4
AKAPS
AKAP6
AKAP7
AKAPSL
AKAP9
AKIRIN2
AKT1
AKT2
AKTIP
ALB
ALG14
ALK
ALS2
ALX4
ALYREF
AMBRA1
AMFR
AMHR2
AMN
AVIN1
ANAPC1
ANAPC10
ANAPC11
ANAPC13
ANAPC15
ANAPC16
ANAPC2
ANAPC4
ANAPC5
ANAPC7
ANG
ANKIB1
ANKRA2
ANKRD1
ANKRD39
ANKRD9
ANO1
ANO2
ANO6
ANP32E
ANXA2
AP1B1
AP1G1
AP1G2
AP1IM1
AP1M2
AP1S1
AP1S2
AP1S3
AP2A1
AP2A2
AP2B1
AP2M1
AP2S1
AP3B1
AP3B2
AP3D1
AP3M1
AP3M2
AP3S1
AP3S2
AP4B1
AP4E1
AP4AM1
AP4S1

388
148
129
379
379
331
358
586
179
481
362
270

630
155
117
639
131
129
395

446

15

83
83
55
10
10
75
59

150
43
64
15
15
15

144

150

150
15

150
55
64

59
59
16
32
69
17
64

55
31

64
16
69
150
69
22
75
93
75
15
64
99
99
80

67
69
69
56
59
59
59
15
89
147
147
147

o0 uun

NNNNN

PR R R R RRRRRRRRRRRRL,RRLRPLRLRELRLREREOOOOO0O0O00000000000RO00O00O0OKFRKEOO0O0000000O0KRrOO000O0000O0KFK OO0 00RO O

DBF4
DBF4B
DBl

DBP
DBT
DCAF1
DCAF10
DCAF11
DCAF12
DCAF13
DCAF15
DCAF16
DCAF17
DCAF4
DCAF4L1
DCAF5
DCAF6
DCAF7
DCAF8
DCHS1
DCLRE1C
DCP2
DCTN1
DCTN2
DCTN3
DCTN4
DCTNS
DCTN6
DCUN1D1
DCUN1D2
DCUN1D3
DCUN1D4
DCUN1D5
DCX
DDA1
DDB1
DDB2
DDIT3
DDOST
DDR1
DDR2
DDX1
DDX17
DDX198B
DDX20
DDX21
DDX23
DDX39B
DDX3X
DDX41
DDX46
DDX5
DDX58
DDX6
DECR1
DEK
DENNDA4C
DEPDC1
DEPDC5
DERL1
DERL2
DERL3
DESI1
DET1
DFFA
DFFB
DGCR8
DGKI
DHDDS
DHRS7B
DHX15
DHX16
DHX29
DHX32
DHX33
DHX35
DHX38
DHX8
DHX9
DIABLO

580
136

59
137
146
649
138
138
140
139
148
331
185
140
140
138
138
474
138

95

483
240
318
318

45
141
141
142
142
142
142
142
403
331
249
140
345
143
170
170
144
161
161
253
144
144
161
161
144
144
161

144
299
241
265

265
111
111
111
541
148

253
448

59

13
299
280
144
280
284
280
280
144
144

338

150 52
150 52
15 9
13 3
34 9
147 49
31 50
31 50
79 26
146 50
83 26
75 34
150 52
79 26
79 26
31 50
31 50
108 36
31 50
59 9
15 9
109 37
16 26
16 26
16 26
83 26
69 9
69 9
57 9
57 9
57 9
57 9
57 9
15 9
75 34
9 9
79 26
75 34
32 9
59 9
59 9
59 9
22 6
22 6
64 9
59 9
59 9
22 6
22 6
59 9
59 9
22 6
15 9
59 9
69 9
135 26
83 26
15 9
83 26
59 9
59 9
59 9
59 9
83 26
75 34
64 9
59 9
15 9
59 9
69 9
59 9
59 9
59 9
59 9
59 9
59 9
59 9
59 9
59 9
73 47

11
11
11
11
11

)

11

11
11
11
11
11

v o

11
11

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
10
10
11
11
11
10
10
11
11
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

O 0O 0000000000000 000000000000O0KFKOO0OKRELEOOORKLEOOOOOOOOO0O0O000000000O0RrROORRLRRLEL,OOOOORORRKEEOOOO O

ING1
ING2
ING3
ING4
ING5
INHA
INHBA
INIP
INO80
INO80B
INO80C
INO8OD
INO8OE
INSC
INSIG1
INSIG2
INSM1
INSR
INSRR
INTS1
INTS10
INTS11
INTS12
INTS13
INTS14
INTS2
INTS3
INTS4
INTSS
INTS6
INTS6L
INTS7
INTS8
INTS9
1PO4
IPO5
1PO7
1QGAP1
IRAK1
IRF4
IRF9
IRS1
IRS2
I1SCU
1SG15
ISL1
ISY1
ITCH
ITFG2
ITGAL
ITGA10
ITGA11
ITGA2
ITGA2B
ITGA3
ITGA4
ITGAS
ITGA6
ITGA7
ITGAS
ITGAS
ITGAD
ITGAE
ITGAL
ITGAM
ITGAV
ITGAX
ITGB1
ITGB2
ITGB3
ITGB4
ITGBS
ITGB6
ITGB7
ITGB8
ITGBL1
ITLN1
ITPR1
ITPR2
ITPR3

191
59
59
59
59

295

407

260
59

428

501

639

524

299

261

261
11

170

170

263

481

127

262

265

265

567
360
264
265
265
123
481
127
266
266
266
560
473
164
164
473
473
371
419
528
605

45
267
267
267
267
267
267
267
267
267
267
267
267
267
267
267

267
267
268
268
268
268
268
268
268
268
298
197
269

269

182

64 9
15 9
15 9
15 9
15 9
106 9
106 9
75 34
15 9
79 26
71 21
15 9
13 3
69 9
7 9
7 9
4 1
59 9
59 9
56 26
64 9
30 15
36 20
83 26
83 26
56 26
83 26
59 9
56 26
83 26
83 26
147 49
64 9
30 15
147 49
147 49
147 49
59 9
15 9
13 3
13 3
15 9
15 9
52 16
59 9
22 6
79 26
59 9
83 26
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
69 9
64 9
64 9
83 26
83 26
83 26

O 0O 0000000000000 0000000000000000000kR,ORLROO0O0O0O0OO0ORRLREEOROODOOOOOO0OORrOOO0O0O0O0O0O0O0000000 0000 O O

NUP153
NUP155
NUP160
NUP188
NUP205
NUP210
NUP210L
NUP214
NUP35
NUP37
NUP43
NUP50
NUP54
NUP58
NUP62
NUP62CL
NUP85
NUP88
NUP93
NUP98
NUPR1
NUS1
NUTF2
NVL
NXF1
NXF3
NXF5
NXT1
NXT2
OBSL1
OCLN
ODF2
OGDH
OGDHL
0GG1
OGT
OLFM2
OLFM3
OLFM4
OLR1
OOEP
ORAI1
ORC1
ORC2
ORC3
ORC4
ORC5
ORC6
ORMDL1
ORMDL2
ORMDL3
0s9
OSGEP
OSMR
0ST4
OSTC
0STM1
OTULIN
0TX2
OXA1L
P2RX1
P2RX6
P3H1
P3H3
P3H4
PAHAL
P4HB
PA2G4
PAAF1
PABPC1
PABPC1L
PABPC3
PABPC4
PABPCAL
PABPC5
PABPN1
PADI4
PAF1
PAFAH1B1
PAFAH1B2

392
388
388
389
389
593
593
390
391
140
140
392
392
392
392
321
387

45
387
392
218
299
394
453

59
393
393
394
394
593
212
395
408
408
166

93

79

79

79

134
68
59

396

397

397

397
82

398

398
252
413
255
368
399
470
253

316
518
518
400
400
400

13
213
124

35
163
163
163
163
163

570
401
434
582
324

83
83
83
82
82
69
69
83
84
79
79
83
83
83
83
16
81
83
81
83
75
69
55
59
15
85
85
55
55
69
58
64
59
59
15
59
17
17
17
37
16
59
15
135
86
86
86
13
62
62
62
17
59
37
73
62
106
64

79
69
69
15
15
15
59
52
99
31
22
22
22
22
22
22
31
141
93
133
69

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

11

11
11
11

11
11
11
11

11

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

11

10
10
10
10
10
10

11
11

11

ORP OORRPREPREPREPRERRLRRELORLROOOOOOOOOOOOOO0O0O00O00000000000000000O0KFROKRKELOOO0OORrOOOROROOO0O0O0O0O0O0O0O0 0000 O O

SKI

SKIL
SKIv2L
SKOR1
SKP1
SKP2
SLA2
SLBP
SLC11A2
SLC12A7
SLC17A6
SLC17A7
SLC18A3
SLC1A2
SLC1A3
SLC1A6
SLC25A4
SLC25A5
SLC25A6
SLC26A6
SLC27A5
SLC3A2
SLC41A1
SLC51A
SLC51B
SLC6A3
SLC6A6
SLC7A1
SLC7A5
SLCOAL
SLC9A3R1
SLF1
SLF2
SLIRP
SLITRKS
SLU7
SLX1A
SLx4
SMAD1
SMAD2
SMAD3
SMAD4
SMADS
SMAD6
SMAD7
SMAD9
SMARCAL
SMARCA2
SMARCA4
SMARCAS
SMARCB1
SMARCC1
SMARCC2
SMARCD1
SMARCD2
SMARCD3
SMARCE1
SMC1A
SMC1B
sSmc2
sSmMc3
SMca
SMC5
SMCé
SMCR8
SMDT1
SMG1
SMG5
SMG6

49
528
528
528

49
529
528
457
233
530

49

11

49
170

11
168
299
552
531

13
111
271
271
299
532
532
532

70

70

70
111
170
642
532
600
233
111
111
111
111

13
403
311
425
533
491
534
473

30
535
535
535
535
535
536
536
535

59

59

59

59

59
344
344
537
537
537
573
283
283
283
283
283
538
538

65
369
263
328
539

15
22
22
22
15
123
22
16
75
150
15

15
59

59
69
129
15
59
59
59
59
69
59
59
59
22
22
22
59
59
79
59

75
59
59
59
59
59
15
67
36
124
69
79
15
150
125
125
125
125
125
15
15
125
15
15
15
15
15
70
70
125
125
125
15
59
59
59
59
59
59
59
35
73
56
79
64

© oo

20
49
49
49

© Voo oo

47
26
26

O 000000000000 RRPRROOOOOOOROORREPREPEPELOOOOOOOOOOOOOOOOOOORKFRKFROOOOOOOOOOOOOOOOOOO0OORr OO R R RO



AP5B1
AP5M1
AP5S1
AP5Z1
APAF1
APBB1IP
APC
APC2
APEX1
APH1A
APH1B
API5
APOA1
APOA2
APOA4
APOAS
APOB
APOBEC1
APOBEC3F
APOBEC3G
APOBR
APOC1
APOC2
APOC3
APOC4
APOE
APOF
APOH
APOL1
APOM
APOO
APOOL
APP
APPBP2
AQP4
AQR

AR
ARCN1
ARF1
ARFGEF1
ARHGAP29
ARHGAP33
ARHGEF2
ARHGEF7
ARID1A
ARID1B
ARID2
ARID4A
ARID4B
ARID5A
ARIH1
ARIH2
ARL6
ARL6IP1
ARMC8
ARNT
ARNT2
ARNTL
ARNTL2
ARPC1A
ARPC1B
ARPC2
ARPC3
ARPC4
ARPC5
ARPCSL
ARVCF
ASB1
ASB12

264

17
349
620

18
639
421
421
123

19

123
20
20
20
20

143

358

358

358

540
20
20
20
20
20

155

102

586

134

125

125

206

196

274

626

385
14

462

567
9

473
49
49
18
48
21
22
22
11
23
23

513

261

299
24
24
24

379
25
25

331

331

331
26
26

421
27
27
27
27
27

253

627
28
29

583

583

583

439

11
11
11
11
11
11
11
11

11
11

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

11
10
10

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

OO0 0000000000000 0O0O0RELOOOO0O00O0O000000000000O0OKRRLRRLOKREOOOO0O0O0O000000000000000O0KRKOO0KRrOO0O0O0O0 0O O

DICER1L
DIS3
DIS3L
DIS3L2
DISC1
DIXDC1
DKC1
DLAT
DLD
DLG1
DLG3
DLG4
DLST
DMAP1
DMD
DMXL1
DMXL2
DNAAF2
DNAH1
DNAH10
DNAH11
DNAH12
DNAH14
DNAH17
DNAH2
DNAH3
DNAHS5
DNAH6
DNAH7
DNAH8
DNAHS
DNAI1
DNAI2
DNAJB11
DNAJC10
DNAIC11
DNAIC15
DNAIC17
DNAIC19
DNAJC28
DNAIC9
DNAL1
DNAL4
DNALI1
DNHD1
DNM1
DNM1L
DNM2
DNM3
DNMT3A
DNMT3B
DNTTIP1
DOCK1
DONSON
DOTI1L
DPF1
DPF2
DPF3
DPH1
DPH2
DPM1
DPM2
DPM3
DPP10
DPP6
DPY30
DPYSL3
DPYSL5
DQX1
DR1
DRAP1
DRC1
DRG1
DROSHA
DSCC1
DSN1
DTL
DTNA
DTNBP1
DTX3L

49

23

23

23
136
403
145
146
147
170
170
170
146
344
560
148
148
586
149
150
150
149
149
150
150
149
150
149
149
150
150
328
328
362
151
152
154
153
154
157
153
299
612
321
149
315
315
315
315

59

59
313
567
155

11

59

59

59
248
502
636
398
398
268
268
157
413
413
284
579
579

60
228
639
229
155
138

23
457
481

15

©

150
15
33
34
59
59
59
59
34
70
59
83
83

150
35
35
35
35
35
35
35
35
35
35
35
35
35
79
79
15
32

118

118

118

118
36

118
69
16
16
35
59
59
59
59
15
15
15
83

150

15
15
15
59
79
59
62
62
69
69
36
59
59
59
36
36
141
59
15
16
150
31

16
64

11
11
11
11
11
11

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

11
11
11

O 00O R OO0O00O0O000O00000000O0000000000000000000000000000000000000000000000000000O0KR OO0 OO0 O O

IVNS1ABP
1ZumMo1
JADE1
JADE2
JADE3
JAK2
JAKMIP1
JAM2
JAM3
JARID2
JAZF1
JCHAIN
JDP2
JMID1C
JMID6
JPH1
JPH2
JPH3
JPH4
JRK
JUN
JUNB
JUND
JUP
KANSL1
KANSL1L
KANSL2
KANSL3
KAT14
KAT2A
KAT2B
KATS
KAT6A
KAT6B
KAT7
KAT8
KATNA1
KATNAL1
KATNAL2
KATNB1
KATNBL1
KBTBD6
KBTBD7
KBTBD8
KCNA1
KCNA2
KCNA3
KCNA4
KCNAS
KCNA6
KCNA7
KCNAB1
KCNAB2
KCNAB3
KCNB1
KCNC1
KCNC2
KCNC3
KCNC4
KCND1
KCND2
KCND3
KCNE1
KCNE2
KCNF1
KCNG1
KCNG2
KCNG3
KCNH1
KCNH2
KCNH4
KCNIP1
KCNIP2
KCNIP3
KCNIP4
KCNJ11
KCNJ14
KCNJ16
KCNJ2
KCNJ3
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59
37
15
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69
16
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69
64
59
75
12
150
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PAFAH1B3
PAGRL
PAIP1
PAKL
PALB2
PAM16
PAN2
PAN3
PANX1
PARD3
PARD3B
PARD6A
PARD6B
PARD6G
PARP1
PARP11
PARP4
PARP9
PAX2
PAXIPL
PBRM1
PBX1
PBX2
PBX3
PBXIP1
PCBP1
PCBP2
PCBP3
PCBP4
PCCA
PCCB
PCF11
PCGF1
PCGF2
PCGF3
PCGF5
PCGF6
PCID2
PCM1
PCNA
PCP4
PCSK9
PCYOX1
PDCD10
PDCD11
PDCD6
PDCD7
PDCL3
PDE3B
PDE4B
PDE4D
PDGFA
PDGFB
PDGFRA
PDGFRB
PDHAL
PDHA2
PDHB
PDHX
PDIA3
PDIAG
PDK1
PDK2
PDLIM1
PDLIM2
PDLIM3
PDLIM4
PDLIMS
PDLIM7
PDP1
PDPR
PDRG1
PDSS1
PDSS2
PDZD11
PDZD7
PEALS
PECAM1
PEF1
PELP1

324
402
115

70
117
154
328

59
299
170
403
403
403
403

59
418
123
358

99

59

59
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233
404
404
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404
636
413
129
405
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454
639
463
406
268
105
457
652
142
339
308
539
271
271
407
407
322
322
408
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248
146
151
151
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438
248
412
419
419
297
403
418
409
326
620

69
56
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22
150
118
79
15
69
59
15
15
15
15
15
67
147
59
22
15
15
22
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75
22
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22
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55
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99
15
102
87
69
26
16
144
57
73
32
64
59
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34
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67
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SMG7
SMN1
SMNDC1
SMTN
SMTNL1
SMTNL2
SMU1
SMURF2
SNAI3
SNAP23
SNAP25
SNAP29
SNAP47
SNAPC1
SNAPC3
SNAPC4
SNAPIN
SNCA
SND1
SNF8
SNIP1
SNRNP200
SNRNP25
SNRNP27
SNRNP35
SNRNP40
SNRNP48
SNRNP70
SNRPA
SNRPAL
SNRPB
SNRPB2
SNRPC
SNRPD1
SNRPD2
SNRPD3
SNRPE
SNRPF
SNRPG
SNRPN
SNTA1L
SNTB1
SNTB2
SNTG1
SNTG2
SNU13
SNUPN
SNW1
SNX1
SNX12
SNX17
SNX2
SNX3
SNX31
SNX4
SNX5
SNX6
SOCs1
S0OCs2
S0OCs3
SOCs4
SOCS5
SOCs6
S0OCs7
SoD1
SORBS1
SOS1
SOST
SOX12
SOX15
SOX17
SOX18
SOX2
SOX4
SOX8
SOX9
SP1

SP3
SPAG1
SPAG4

539

49
605

49
540

49
582
541
270
572
572
572
253
320
418
586
542
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199
124
129
144
405
566
544
646
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544
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299
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302
302
302
302
302
302
546
549
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549
549
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157
534
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374
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271
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362
526
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ASF1B 439 15 9 11 0|DUOX1 156 69 9 11 O0JKCNJ4 274
ASH2L 59 15 9 11 ofbuox2 156 69 9 11 OJKCNJ5 274
ASXL1 30 150 52 11 0|DUSP22 420 59 9 11 O]KCNJe 274
ASXL2 30 150 52 11 oO|bwL1 403 15 9 11 O]KCNJ8 274
ASXL3 33 150 52 11 0|DbYDC2 131 150 52 11 OfKCNK1 271
ATADS 58 150 52 11 O|DYNC1H1 150 35 26 11 O|KCNK2 271
ATF1 556 10 9 11 O|DYNClI1 328 79 26 11 O|KCNK4 271
ATF2 200 12 9 11 O|DYNC12 328 79 26 11 O|KCNKée 271
ATF3 31 12 9 11 O|DYNCiLI1 509 9 9 11 O0|KCNMA1 271
ATF4 375 12 9 11 O|DYNC1LI2 509 9 9 11 O0|KCNMB1 275
ATFS5 32 13 3 11 O|DYNC2H1 150 35 26 11 O|KCNMB2 275
ATF6 375 12 9 11 O|DYNC2LI1 509 9 9 11 O|KCNMB3 275
ATF6B 375 12 9 11 O|DYNLL1 612 16 26 11 O|KCNMB4 275
ATF7 200 12 9 11 O|DYNLL2 612 16 26 11 O|KCNN1 271
ATF71P 33 150 52 11 O|DYNLRB1 15 6 2 10 1|KCNN4 276
ATF71P2 33 150 52 11 O|DYNLRB2 15 6 2 10 1jKCNQ1 271
ATG101 307 75 34 11 O|DYNLT1 612 16 26 11 O|KCNQ2 271
ATG12 405 59 9 11 O|DYNLT3 612 16 26 11 O|KCNQ3 271
ATG13 319 150 52 11 O|DYRK1A 96 59 9 11 O|KCNQ4 271
ATG14 34 16 26 11 O|DYRK2 96 59 9 11 O|KCNQS 271
ATG16L1 450 146 50 6 1|DzZIP1 49 15 9 11 O|KCNS1 276
ATG16L2 35 31 50 6 1|E2F1 588 15 9 11 O|KCNS2 276
ATG3 157 36 20 11 O|E2F2 588 15 9 11 O|KCNS3 276
ATGS 36 20 26 11 OfE2F3 588 15 9 11 O|KCNV2 276
ATM 263 56 26 11 O|E2F4 588 15 9 11 O|KCTD10 277
ATP10A 37 69 9 11 OfE2F5 588 15 9 11 O]KCTD13 277
ATP10B 37 69 9 11 O|E2F6 588 15 9 11 O|KCTD1e 277
ATP10D 37 69 9 11 O|E2F7 49 15 9 11 O0|KCTD17 277
ATP11A 38 69 9 11 O|E2F8 49 15 9 11 O|KCTD2 277
ATP11B 38 69 9 11 O|EAF1 157 36 20 11 O|KCTD5 277
ATP11C 38 69 9 11 OfEAF2 157 36 20 11 O|KDMI1A 23
ATP12A 39 22 6 10 1|EBI3 158 37 9 11 0|KDM1B 105
ATP1A1 39 22 6 10 1|EBNA1BP2 634 79 26 11 O|KDM2B 59
ATP1A2 39 22 6 10 1|ECT2 59 15 9 11 O|KDM3A 49
ATP1A3 39 22 6 10 1|EDA 79 17 9 11 0|KDM3B 319
ATP1A4 39 22 6 10 1|EEAL 395 64 9 11 O|KDMS5A 59
ATP1B1 40 69 9 11 O|EED 642 79 26 11 O|KDM6A 93
ATP1B2 40 69 9 11 OJEEF1A1 353 49 14 5 1|KDMe6B 540
ATP1B3 40 69 9 11 OJEEF1A2 353 49 14 5 1|KDR 322
ATP1B4 40 69 9 11 O|EEF1AKMT3 324 69 9 11 O|KEAP1 168
ATP23 593 69 9 11 O|EEF1B2 107 27 8 2 1|KHDRBS1 278
ATP2A1 39 22 6 10 1|EEF1D 107 27 8 2 1|KHDRBS3 278
ATP2B4 39 22 6 10 1|EEF1E1l 112 32 9 11 O0]KIDINS220 13
ATP4B 40 69 9 11 O|EEF2 228 59 9 11 O|KIF11 280
ATP6AP1 470 106 9 11 O|EEF2KMT 324 69 9 11 OfKIF12 284
ATPBAP1L 470 106 9 11 O|EEFSEC 228 59 9 11 O|KIF13A 279
ATP6AP2 470 106 9 11 O|EFCAB7 326 57 9 11 O|KIF13B 279
ATP6VOAL 41 59 9 11 OJEFL1 228 59 9 11 OKIF14 280
ATP6VOA2 41 59 9 11 O|EFTUD2 228 59 9 11 O|KIF15 280
ATP6VOA4 41 59 9 11 O|EGFR 170 59 9 11 O|KIF16B 279
ATP6VOB 532 59 9 11 O|EHBP1 49 15 9 11 O]KIF17 281
ATP6VOC 532 59 9 11 O|EHBPIiL1 540 36 20 11 O|KIF18A 280
ATP6VOD1 454 99 9 11 OJEID3 577 16 26 11 O|KIF18B 284
ATP6VOD2 454 99 9 11 OJEIF1 432 115 41 10 1|KIF19 284
ATP6VOEL 398 62 18 11 O|EIF1B 432 115 41 10 1|KIF1A 279
ATP6VOE2 398 62 18 11 O|EIF2A 25 133 50 6 1|KIF1B 279
ATP6VIA 315 59 9 11 O|EIF2AK4 253 64 9 11 O]KIF1C 279
ATP6V1B1 315 59 9 11 O|EIF2B1 159 38 10 8 1|KIF20A 282
ATP6V1B2 315 59 9 11 O|EIF2B2 159 38 10 8 1|KIF20B 282
ATP6V1C1 119 141 26 11 O|EIF2B3 642 79 26 11 O|KIF21A 283
ATP6V1C2 119 141 26 11 O|EIF2B4 159 38 10 8 1|KIF21B 283
ATP6VID 605 79 26 11 O|EIF2B5 642 79 26 11 OfKIF22 284
ATP6V1E1 42 99 9 11 O|EIF2s1 179 43 19 5 1|KIF23 280
ATP6V1E2 42 99 9 11 OJEIF2S2 157 36 20 11 O}KIF24 280
ATP6V1F 501 71 21 11 O|EIF2S3 228 59 9 11 O]KIF25 284
ATP6V1G1 42 99 9 11 O|EIF3A 454 99 9 11 O]KIF26A 284
ATPEV1G2 42 99 9 11 OJEIF3B 25 133 50 6 1|KIF26B 284
ATP6V1G3 42 99 9 11 O|EIF3C 454 99 9 11 OfKIF27 280
ATP6V1H 649 147 49 7 1|EIF3CL 454 99 9 11 O|KIF2A 279
ATP8AL 38 69 9 11 O|EIF3D 157 36 20 11 O}KIF2C 281
ATP8A2 38 69 9 11 O|EIF3E 454 99 9 11 O|KIF3A 283
ATP8B1 38 69 9 11 O|EIF3F 165 39 9 11 O|KIF3B 283
ATP8B2 38 69 9 11 O|EIF3G 544 132 0 11 O|KIF3C 283
ATP8B3 37 69 9 11 O|EIF3H 165 39 9 11 O|KIF4A 280
ATP8B4 38 69 9 11 OfEIF3I 641 146 50 6 1|KIF4B 280
ATR 263 56 26 11 O|EIF3) 605 79 26 11 O|KIF5A 283
ATRIP 389 82 26 11 O|EIF3K 454 99 9 11 O]KIFSB 283
ATXN2 524 13 3 11 O|EIF3L 160 99 9 11 OJKIF5C 283
ATXN7 30 150 52 11 O|EIF3M 454 99 9 11 O]KIF6 280
ATXN7L3 639 15 9 11 O|EIF4Al1 161 22 6 10 1|KIF7 284
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PES1
PEX11A
PEX11B
PEX11G
PEX12
PEX13
PEX14
PEX19
PEX2
PEX3
PEX5
PEX5L
PFDN1
PFDN2
PFDN4
PFDN5S
PFDN6
PFKFB1
PFKL
PFKM
PFKP
PGGT1B
PGM5
PHAX
PHB2
PHC1
PHC2
PHC3
PHF10
PHF12
PHF14
PHF20
PHF20L1
PHF21A
PHFS5A
PHKAL
PHKA2
PHKB
PHKG1
PHKG2
PIAS4
PICALM
PIDD1
PIGA
PIGC
PIGH
PIGK
PIGM
PIGP
PIGQ
PIGR
PIGS
PIGT
PIGU
PIGV
PIH1D1
PIH1D2
PIK3C2A
PIK3C2B
PIK3C2G
PIK3C3
PIK3CA
PIK3CB
PIK3CD
PIK3CG
PIK3R1
PIK3R2
PIK3R3
PIK3R4
PIK3RS
PIK3R6
PITX1
PITX2
PIWIL2
PKD1
PKD1L1
PKD1L3
PKD2
PKD2L1
PKN1

605
410
410
410
627

46
411
605
627

46
619
619
412
412
412
412
412
170
413
413
413
123

170

79
16
16
16
82
14
83
79
82
14
99
99
16
16
16
16
16
59
59
59
59
147
59
150
99
10
10
10
15
15
15
15
15
12
75
88
88
88
69
69
15
15
15
69

69
59

62
106
37
32
32

69
16
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67
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59
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37
75
67
59
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SPATS2L
SPC24
SPC25
SPCS1
SPCS2
SPCS3
SPDL1
SPECC1
SPECCIL
SPEN
SPG7
SPHK2
SPI1
SPOP
SPOPL
SPSB1
SPSB2
SPSB3
SPSB4
SPTA1
SPTAN1
SPTB
SPTBN1
SPTBN2
SPTBN4
SPTBNS
SPTLC1
SPTLC2
SPTLC3
SPTSSA
SPTSSB
SRA1
SRCAP
SREBF1
SREBF2
SREK1
SRFBP1
SRP14
SRP19
SRP54
SRP68
SRP72
SRP9
SRPRA
SRPRB
SRRM1
SRRM2
SRRT
SRSF1
SRSF2
SS18
SS18L1
SSB
SSBP3
SSPN
SSR4
SSRP1
SSU72
SSX21P
ST18
STAC3
STAG1
STAG2
STAG3
STAM
STAM2
STAP1
STAT1
STAT2
STAT3
STAT4
STAT5A
STATSB
STAT6
STAU1
STAU2
STIL
STIP1
STK11
STK3

539
233
557
261
457
143
118
558
558
129
453
473
373
168
168
559
559
559
559
560
560
560
560
560
560
560
561
561
561
562
562
321

59
563
563
566
564
501
501
315
454
619
418
565
513
566
566
129
609
609

48

48
544

99
600
134
124
541
118

49
362
567
567
567
568
568
552
569
569
569
569
569
569
569
448
448
319
527
104
283

64
75
16

16
32
64
64
64
55
59
15
12
59
59
31
31
31
31
59
59
59
59
59
59
59
59
59
59
32
32
16
15
15
15
132
150
71
71
59
99
99
67
59
119
132
132
55
132
132
16
16
132
22
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59
64
15
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83
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150
122
25
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AUP1
AURKA
AURKAIP1
AURKB
AURKC
AXIN1
AXIN2
AXL
AZI2
B2M
B3GALT4
B4AGALT1
BoD1
B9D2
BABAM1
BACH1
BACH2
BAD
BAG2
BAG3
BAGS
BAG6
BAHD1
BAIAP2L2
BAK1
BAP1
BARD1
BARX2
BATF
BATF2
BATF3
BAX
BAZ1A
BAZ1B
BAZ2A
BBIP1
BBS1
BBS2
BBS4
BBSS
BBS7
BBS9
BCAS2
BCAS4
BCCIP
BCKDHA
BCKDHB
BCKDK
BCL10
BCL11A
BCL11B
BCL2
BCL2L1
BCL2L11
BCL2L2
BCL3
BCL7A
BCL7B
BCL7C
BCL9
BCLOL
BCLAF1
BCOR
BCR
BCS1L
BDP1
BECN1
BEST1
BEST2
BEST3
BEST4
BET1
BETIL
BEX1
BICD2
BIK
BIN1
BIRC2
BIRC3
BIRCS

221
299
419
419
265
375
375

44
233
321
457

46
540

320

79
59
73
59
59
15
15
59
64
59
51
69
59
59
83
12
12
68
75
16
16
14
36
15
14
15
15

12
123
12
14
36
36
150
75
83
83
59
99
83
83
16
16
56
59
59
147
19

14
14
68
14
15

150

150

150
16
16
36

150
15
59

150
16
58
58
58
58
16
16
75
16
75

147
59
59
59

24
34
26
26
20
20
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EIF4A2
EIF4A3
EIF4B
EIFAE
EIF4E2
EIF4E3
EIF4EBP3
EIF4G1
EIF4G2
EIF4G3
EIF4H
EIFSA
EIF5A2
EIF5AL1
EIF6
ELANE
ELAVL1
ELAVL2
ELAVL3
ELL
ELL2
ELL3
ELMO1
ELOA
ELOB
ELOC
ELOF1
ELOVL6
ELP2
ELP3
ELP4
ELP5
ELP6
EMC1
EMC10
EMC2
EMC3
EMC4
EMC6
EMC7
EMC8
EMC9
EME1
EME2
EMG1
EMID1
EMILIN1
EMILIN2
EML1
EML2
ENC1
ENG
ENO1
ENO2
ENO3
ENO4
ENTHD1
ENY2
EP300
EP400
EPAS1
EPB41
EPB41L2
EPC1
EPC2
EPHAL
EPHA10
EPHA2
EPHA3
EPHA4
EPHAS
EPHA6
EPHA7
EPHAS
EPHB1
EPHB2
EPHB3
EPHB4
EPHB6
EPN1

161
161
129
162
162
162
313
639
567
639
129
504
504
504
501
181
163
163
163
164
164
117
269
524
405
168
507
378

25
636
466

466
424
470
619
398
398
114
143
165
165
586
166
167

79
526
526
642
642
168
252
169
169
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