
Interactive Specification Mining for Debugging
Embedded Software Systems

by

Taha R. Siddiqui

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

July 2017

© Copyright 2017 by Taha R. Siddiqui

Thesis advisor Author

Dr. Hadi Hemmati Taha R. Siddiqui

Interactive Specification Mining for Debugging Embedded

Software Systems

Abstract

Specification mining techniques are typically used to extract the specification of

a software in the absence of (up-to-date) specification documents. Several research

projects have targeted the problem in the past. However, very limited application

of such techniques is observed in industry, due to challenges related to accuracy and

practicality of those techniques. Such specifications are useful for program compre-

hension, testing, and anomaly detection. However, specification mining can also be

used for debugging, where a faulty behavior is abstracted to give developers a con-

text about the bug and help them locating it. In this thesis, I proposed, developed,

and evaluated an interactive semi-automated specification mining approach that not

only helps generating targeted and correct specifications of a system but can also be

used specifically for debugging. The tool users can select relevant state fields and

functions, per issue, interactively, and run the tool on a reported faulty scenario. The

tool generates a state machine that represents the faulty behavior, abstracted with

respect to the users’ inputs. These models are then used to locate the fault’s root

cause for debugging. I have applied the technique and tool on an AutoPilot software

system for UAVs, from Micropilot Inc. I evaluated the approach and tool in a set of

ii

Abstract iii

experiments, based on Micropilot’s actual reported issues. I interviewed Micropilot

developers after they used the tool in an experimental setup for debugging different

real issues and collected their feedback. The results have shown that the approach is

feasible, and brings advantages over only using code-level debugging tools.

Acknowledgments

Firstly, I want to take this opportunity to thank my supervisor, Dr. Hadi Hem-

mati, for his continuous support and guidance for the entire duration of my Master’s

program at the University of Manitoba. I am grateful to the Department of Computer

Science, University of Manitoba for providing me the financial support through Guar-

anteed Funding Package (GFP) so that I could keep my focus on my thesis project

and consider it as a full time job.

Secondly, I would like to thank Mr. Asa Indrabudi from Micropilot Incorporation

for assisting me in understanding the projects and processes at Micropilot Inc.

I would like to thank my co-advisor Dr. Rasit Eskicioglu, and the committee

members, Dr. James Young and Dr. Bob Mcleod for their careful review and valuable

feedback.

iv

Contents

Abstract . ii
Acknowledgments . iv
Table of Contents . vi
List of Figures . vii
List of Tables . viii

1 Introduction 1

2 Motivation and Problem Description 7

3 Literature Review 11
3.1 Specification Mining Techniques . 12

3.1.1 Static Analysis . 12
3.1.2 Dynamic Analysis . 14

Instrumentation . 14
Popular Techniques . 15

3.2 Debugging . 20

4 Methodology 24
4.1 Generating execution traces . 25
4.2 Interactive Merging . 30
4.3 State Machine Presentation . 35

4.3.1 Web Application . 35
Select . 36
Define . 38
Generate . 38

5 Empirical Study 41
5.1 Objective of the Study . 41
5.2 Interview . 42
5.3 Context . 43
5.4 Subjects of Study . 43

v

vi Contents

5.5 Pre-interview Tutorial . 44
5.6 Issues . 45
5.7 Interview Design and Setup . 46

5.7.1 Round 1 . 47
5.7.2 Round 2 . 49
5.7.3 Round 3 . 49

5.8 Questions . 51
5.9 Interview Results . 55

5.9.1 Round 1 . 55
5.9.2 Round 2 . 62
5.9.3 Round 3 . 64
5.9.4 Summary of Interview Results: Answers to RQs 70

5.10 Threats to Validity . 71

6 Conclusion 73
6.1 Limitations . 74
6.2 Future Work . 74

6.2.1 Extended User Study . 75
6.2.2 Fault Augmentation . 75
6.2.3 Potential Improvements . 77

A Profiler 79
A.1 AspectC++ . 79
A.2 Entry and Exit Hook Functions . 82
A.3 Trace Processor . 87

Bibliography 94

List of Figures

2.1 Sample extracted models using existing automated approaches (above)
vs. my interactive approach (below). 10

2.2 Focused state machine on Takeoff . 10
2.3 High-level state machine of a flight 10

4.1 Overview of the proposed interactive specification mining approach . 25
4.2 Example of final state machine with combined constraints 33
4.3 Guards on transitions . 34
4.4 Selection - Select view of the Tool . 36
4.5 Execution - Select view of the Tool 37
4.6 Generate view of the Tool . 38
4.7 Generate view of the Tool . 40

6.1 Overview of Fault Augmentation . 77

vii

List of Tables

4.1 Categories of Merging Constraints . 31

5.1 Demographic Questions . 51
5.2 Round 1 - Issue Specific Questions 52
5.3 Round 1 - General Feedback Questions 52
5.4 Round 2 - General Feedback Questions 53
5.5 Round 3 - Observational Questions 54
5.6 Round 3 - Feedback Questions . 54
5.7 Summarized responses to interview questions. F: Feasibility, E: Effec-

tiveness, U:Usability . 56
5.8 Summarized responses to interview questions. F: Feasibility, E: Effec-

tiveness, U:Usability . 57
5.9 Summarized responses to interview questions in Round 3 (Part 1). F:

Feasibility, E: Effectiveness, U:Usability 65
5.10 Summarized responses to interview questions in Round 3 (Part 2). F:

Feasibility, E: Effectiveness, U:Usability 66

viii

Chapter 1

Introduction

With the increasing applications of Unmanned Air Vehicles (UAVs), e.g., in mili-

tary, cargo, agriculture, and surveillance domains, safety issues related to the opera-

tion of UAVs have become more important than ever. One of the safety considerations

of such systems is their software safety. Aviation software industry observes one of

the highest standards of safety control, where their embedded software systems go

through a set of rigorous standard checks, before entering the commercial market.

It is so because even a short-time failure in an air vehicles controller software could

be life threatening or cause extensive damages. Therefore, it is crucial to verify the

software systems'correctness, robustness and reliability. Federal air certification au-

thorities, such as Transport Canada in Canada and Federal Aviation Authority(FAA)

in the United States, use a standard document, Software Considerations in Airborne

Systems and Equipment Certification (DO-178C), to certify the commercial use of

an airborne software system. One of the very critical features of this document is

making sure that the software has an explicit and a complete set of system-level re-

1

2 Chapter 1: Introduction

quirements that are verified by a set of test cases. However, with the advent of fast

paced programming (such as Agile methods), there is lesser time for the software de-

velopment teams to maintain an up-to-date set of requirement documents. Moreover,

for the companies which are in this business for a long time when the standards were

not strictly defined, attaining this certification is even more costly since they have to

create the requirement for the software that is working fine for decades.

In general, software specifications and requirements are considered very important

during several stages of the software development life cycle. First, they are helpful to

developers for developing the system, for testing it effectively and releasing a foolproof

system. They are also helpful for users(clients) to understand the software.

Although the specifications differ for different kind of users, they are depictions

of the very same system in different level of details. They can even be presented

in different forms; text, figures, formulae, or any other form that can show program

structure, flow, or behaviour easily. However, building specifications (models or doc-

uments) manually and keeping them up-to-date are very costly. Hence, there is a

need for automated techniques for software specification generation.

The area of specification mining is not new and hence there are many studies that

have focused on the problem of automated extraction of software specification as in

[25]. The techniques, in general, apply reverse engineering to abstract specification of

the system from the source code, execution traces, logs files, etc. Broadly speaking,

the techniques can be categorized in either static or dynamic analysis. In static

analysis program artifacts such as source code are analyzed without actual execution,

but real executions are needed to infer the behavior of software in dynamic analysis.

Chapter 1: Introduction 3

While the main application of generating specifications of the system is program

comprehension, they can also be used for other purposes as well, including requirement

document generation, program monitoring, debugging, and automated test genera-

tion. In my research, I have targeted the domain of debugging application with the

help of specification mining, where I exploit the capabilities of execution traces to

collect as much information during an execution, and present it in an abstracted and

organized way for developers to have a consolidated but detailed view of the program.

The application domain of the study is safety critical systems, however, it can be

applied to any real world C/C++ software repository. The research was in collabora-

tion with the industry partner of Software Engineering and Analytics Lab (SEALab);

MicroPilot, Inc., a leading manufacturer of autopilots for Unmanned Aerial Vehicles

(UAV) and Manned Aerial Vehicles (MAV), with a clientele of over 850 in 70 countries

in the area of academic, military and private research. The code base used in this

project UAV autopilot software, working on different kinds of vehicles, including fixed

wing, multi-rotor, blimp and boat, is developed by MicroPilot, Inc. The repositories

are maintained as several Visual Studio solutions, with several modules running as

Visual Studio .NET 2008 and others as Visual Studio .NET 2015.

This study is part of a bigger project that deals with certification of safety criti-

cal systems. The specification mining solution presented in this thesis will help the

company acquiring the certification from different aspects, e.g., requirement genera-

tion, debugging, and model-based testing. However, this thesis focuses only on the

debugging and program comprehension part of the project.

Many studies in the past have proposed automated techniques for specification

4 Chapter 1: Introduction

mining and debugging. In real-world, however, finding the best level of abstraction

and the best perspective for abstraction, automatically, is very hard, if not impos-

sible, due to the required domain knowledge that is very hard to be learned by the

algorithms. Hence, I propose the idea of a semi-automated approach for specification

mining, where the developers specify the perspective (relevant system variables and

methods) and level of abstraction (types of constraints they wish to monitor) for the

abstraction of system behavior from real execution traces. The approach includes

three main steps:

1. Developer selects a list of important fields and functions from an extracted

list, and define the constraints to monitor and generate the states in the state

machine.

2. Selected fields and functions are traced from the real execution of the program.

3. Execution traces are abstracted in the form of state machines using the defined

constraints.

The outcome of this project is a tool developed as a web application. For evalua-

tion purposes, I incorporated the tool with the environment of my subject code-base.

It can also be linked and used with other similar embedded systems with automated

scripts and minimal configuration changes.

Unlike previous techniques, the interactive nature of the approach lets the user

generate state machines of different levels and perspectives, in run-time, using the

same execution traces. For instance, making a high-level state machine for pro-

gram comprehension or zooming into a single high-level state and create a detailed

Chapter 1: Introduction 5

state-machine for debugging purposes, such that just by changing the definition of

constraints, we can obtain different levels of state machines, for different types of

users, from the same execution traces.

To evaluate my technique, I have applied the approach to a case study with

over 1.3 MLOC in a real safety critical industry setting. I also conducted a set of

experiments with eight beginner to expert level developers at the company who were

familiar with the code-base to some extent. Some of them were provided with the

state machines for debugging a set of real bugs, while the others were asked to use

the tool for generating the state machines by themselves and inspect them. This is

explained in more detail in the Empirical Study. During the experiment the subjects

were also observed to analyze the cost/benefit analysis of the approach and the tool,

while after the experiment, they were interviewed to get their perspectives on the

usefulness of the tool in the context of software debugging. The results showed that:

• Abstraction of execution traces generally makes it easier for developers to un-

derstand the problem and to explain it to their peers.

• State machines are helpful in getting the big picture for an execution, which is

useful for the developers to dig in and find the root-cause of an issue.

It should be noted here that the framework is proposed to be used as an additional

tool to the main debugging tool rather than a replacement. The developers stated that

it would be interesting to have another perspective of the execution and if provided

the option they would use it.

The rest of the thesis is divided into the following Chapters.

6 Chapter 1: Introduction

Chapter 2 describes the motivation of this research and also outlines the contri-

bution made in the area of specification mining, which also maps to the limitations

discussed in the same section.

Chapter 3 explains the background of the area of research. It also explains different

kind of inference techniques and reviews the related work in the area of specification

mining that is close to the approach used in this research. It mainly focuses on the

technique that use both functions and data to model a software system. The chapter

also discusses the limitation of each of the related work.

Chapter 4 describes and explains my approach in detail. In this chapter I explain

1) the instrumentation method used, 2) a new novel method of state abstraction and

state merging, and 3) the scale-able tool that bundles everything in this research in

one web application.

Chapter 5 discusses and reports the result of the evaluation of the approach and

the tool that has been performed through a round of experiments and interviews from

professional developers.

Chapter 6 finally provides conclusion, on the basis of evaluation, as an outcome

of this research. This chapter also discusses the limitation of the approach and also

present potential improvements that can be applied to the approach in the future,

and other possible directions for the project.

Chapter 2

Motivation and Problem

Description

In this section, I will explain three main limitations of most existing approaches

for specification mining, which serve as motivation for this project.

1. In most previous approaches, a “state” is either defined as an intermediate state

of the system between two function calls, or by invariants which are automati-

cally generated and are not precise.

2. Most previous approaches, especially those that extract invariants automati-

cally, require a large amount of learning data, e.g., test executions, and hence

are costly in real-world applications.

3. In most previous approaches, it is not possible to extract a partial specification

with a focus on specific aspects of the system, for example the context of a bug.

To explain these limitations, let’s take an example of a generic autopilot software

7

8 Chapter 2: Motivation and Problem Description

and demonstrate the system behavior as depicted by a typical automated specification

mining approach and compare it with my proposed approach.

As shown in the code snippet below, assume that a sequence of functions {accelerate,takeoff}

is called in a loop between the states of Onground and Takenoff. The Onground

state is defined as altitude <0 and Takenoff as altitude≥0. There might be

many function calls that start from Onground but change it to Takenoff. In the

above example, the takeoff function, for instance, is called during the Onground

state without any effect to the state, until the condition speed≥ takeOffSpeed

is true.
1 void main(){
2 while(altitude<desiredAltitude){
3 accelerate();
4 takeOff();
5 }
6 while(!flight_success)
7 fly();
8 while(altitude>0){
9 decelerate();

10 land();
11 }
12 park();
13 }
14 void accelerate(){
15 speed+=SPD_INCREMENT_CONST;
16 }
17 void takeOff(){
18 if(speed>takeoffSpeed)
19 while(altitude<desiredAltitude){
20 altitude+=ALT_INCREMENT_CONST;
21 if(altitude>safeAltForGearRetract)
22 retractLandingGear();
23 }
24 }
25 void decelerate(){
26 speed-=SPD_INCREMENT_CONST;
27 }
28 void land(){
29 if(speed <= landingSpeed)
30 while(altitude>0){
31 altitude-=ALT_INCREMENT_CONST;
32 if(altitude<=safeAltForGearRetract)
33 deployLandingGear();
34 }
35 }

Listing 2.1: Example Code Snippet

Chapter 2: Motivation and Problem Description 9

Following a traditional state merging strategy, the same function calls will be

merged correctly into one transition but there will be two separate states for the

Onground state, one after each call of Takenoff and one after each call of accelerate.

The partial state machine in Fig 2.1 (the one above) shows this merging scenario using

traditional specification mining (where new function calls will result in new states).

To avoid the limitation mentioned above, in this thesis, I have defined an approach

in which a state is defined by a set of user-defined constraints, over system

variables (state fields). Therefore, a new function call will not necessarily affect the

state. Fig 2.1 shows the results of my interactive merging strategy, which is explained

in detail in the methodology section (Section 4). The main idea is to define the states

as above, which reduces the total number of states in the system, and merge the

states based on user-defined constraints. Note that this approach can correctly and

accurately abstract models even from single execution scenario (one focused aspect

of the system), but the invariant-based approaches require several execution results

to be able to infer a pattern (motivation 2).

Finally, with my interactive approach the user can generate focused specifications

(motivation 3). The example state machine shown in Fig 2.2 is generated using a

set of four constraints and the generated state machine focuses only on the “Take

Off” aspect of the flight. However, Fig 2.3 abstracts the same execution trace as a

high-level flow of the execution.

10 Chapter 2: Motivation and Problem Description

Figure 2.1: Sample extracted models using existing automated approaches (above) vs.

my interactive approach (below).

Figure 2.2: Focused state machine on Takeoff

Figure 2.3: High-level state machine of a flight

Chapter 3

Literature Review

There are two methods for program inference to extract program behavior. Active

Inference and Passive Inference. In active inference, some form of validation is re-

quired actively; such as human or test oracles, to execute the tests on the system and

to validate and correct the abstracted models. However, in passive inference, source

code is used to either be analyzed or executed for getting execution logs, which are

used with state merging techniques to generate abstracted program behavior. This

research lies in the area of passive inference, the core of which is state merging algo-

rithm which helps in reducing the number of states in a state machine, hence making

it readable. Hence in this method, I reverse engineer the code base by executing the

code and abstracting execution traces to generate specifications.

In the past, several research projects have worked on the problem of specification

mining through reverse engineering [41; 8; 18]. The two major approaches for this

are static and dynamic analysis. Briefly described, static analysis approaches use the

source code or other artifacts as is, without execution. On the other hand, dynamic

11

12 Chapter 3: Literature Review

analysis approaches work by executing the code and mine the specifications, for in-

stance from execution traces. Mining specification from execution traces typically

requires instrumentation of the source code to get logs from real execution. Several

techniques from both of the approaches are discussed in this section below.

3.1 Specification Mining Techniques

This subsection briefly summarizes the background and related work around dy-

namic specification mining, which is the context of this study.

3.1.1 Static Analysis

In [17], Gruska et al. introduced an approach to mine temporal rules in the form

of Computational Tree Logics (CTL) from program code by static analysis. They

built a prototype named Tikanga which takes program source code and a set of CTL

templates as input for static analysis.

Using intra-procedural static analysis, they first reveal an object usage model that

represents how an object gets used across the whole program. Each of those extracted

models is then represented by a Kripke structure. A model checking procedure checks

the validity of generated CTL formulas from Kripke template. Using concept anal-

ysis technique, they mined each formal argument of a function and associated CTL

formulas that satisfy for object passed as the actual parameter. The final output of

the procedure, CTL formulas can be used to detect potential program anomalies from

most probable to least probable.

In [31], Murali et al. proposed a static analysis approach that extract inter-

Chapter 3: Literature Review 13

procedural path-sensitive constraint repository by analyzing program source code.

The constraint repository contains sequences or chain elements that identify the

precedence relationships. To find frequent patterns in the trace-like chain reposi-

tory of elements they performed a sequence mining operation. The resulting frequent

patterns can be used to detect anomalies in the program.

In [16], Gabel et al. introduced a new technique based on Binary Decision Diagram

(BDD) to mine small size finite state automata efficiently from the program execution

trace. They represented their specification mining approach under a certain setting.

For example, the technique requires a set of particular automata template. For each

given particular template, check all traces of all possible concrete finite state automata

that follow the template that are satisfied by the given traces. They used a BDD-

based approach to speed up the process where they mined small size automata from

traces of sizes up to millions of method calls. Moreover, in [15] they extended their

mining technique by introducing an approach to merge multiple small size finite state

automata to the larger Finite state machine.

In [40] Zhong et al. generated specifications by statically analyzing the program

source code. The specification is in the form of a rule graph instead of Finite State

Automata or sequence diagram. Each node and edge in the rule graph correspond to

method calls and relationships between caller and callee methods respectively.

In the beginning, they started with a set of basic known rule graphs that can

be generated from high-level knowledge about the program under inspection. Static

analysis of the source code produces some new rules (e.g., facts) which are then

combined with basic rule graph. Thus old rule graphs are extended to form new

14 Chapter 3: Literature Review

bigger rule graphs in an interactive manner. In the end, all those rule graphs are

visualized to show the relationships among various methods graphically.

3.1.2 Dynamic Analysis

Dynamic specification mining not only helps modelling behavior of a software sys-

tem, but is also extremely useful for a wide range of software engineering tasks, such

as requirement generation, validation and verification, anomaly detection [35], and

test case generation [34]. The core of the dynamic specification mining lies in exe-

cution traces. They typically consist of sequences of method calls, and other related

information. These sequences can be generated by profiling the program and running

the system with different inputs (different scenarios), the more the better, to cover

the overall behavior of the system. Hence producing correct and valid specification of

the system. Higher coverage of the test inputs generates more accurate and complete

specification models.

Instrumentation

Gathering traces from real program execution is known as “instrumentation”

which is performed by adding extra code in different layers of an application. There

are two main types of instrumentation. One, in which source code is modified directly

to record debugging information at certain locations. Second, in which modification

related to instrumentation is inserted directly into compiled binaries once they are

loaded in the memory. The first type of instrumentation can be further divided into

sub-types where the instrumentation related code is added either 1) in the source

Chapter 3: Literature Review 15

code, 2) at compile time and 3) post link time.

Aspect Oriented Program or AOP, introduced in [20], is a relatively new technique

for instrumentation. It belongs to the compile-time instrumentation and normally is

applied where modifying large code bases to access the underlying properties and

behavior of the program is in-feasible. The technique gives users a way to segregate

the domain/design and debug-related code bases. For instance, several libraries,

including log4net [24] and log4j require logging code to be written inline. Although

logging and tracing are essentially two different forms of information gathering, their

lines of code are generally not related to the domain of the code base it is included

in.

AOP helps in removing the clutter and organizes the instrumentation-related code

outside the original code. This also takes care of the redundant code added

for logging or tracing the application. In theory AOP greatly helps in maintaining

code bases especially in production environments, where development and operations

teams can maintain their own repositories without polluting each others’ code. As-

pectC++ [2] is the language extension of C++ to incorporate AOP with C and C++

code bases. AspectC++ has been tried as one of the options to instrument the code

base AspectC++.

Popular Techniques

In [7], Briand et al. generated program models as UML sequence diagram from

program execution traces. A UML sequence diagram represents objects lifecycle

and activity. It also represents messages for each of the method calls between the

16 Chapter 3: Literature Review

corresponding objects.

They instrumented a java distributed system application using AspectJ (Aspect-

Oriented Language for Java) in a framework to collect execution traces and ana-

lyzed the produced execution trace to form sequence diagrams that emphasize on

the method calls; showing caller, callee, and signature information. The produced

sequence diagram represents branches, loops, and start and end of scenarios.

However, their abstraction procedure is rather high-level and may not be suitable

for extracting in-depth specifications. For example, they mapped concrete numeric

values n to only three abstract states e.g., n<0, n=0, n>0 which does not represent

any business logic of the observed object. Thus, they mapped all concrete states to

some abstract states. To summarize the behavior of a single class they merged all the

object behavior to a single Finite State Machine (a state machine representation with

states, and transitions that fire when certain event of condition trigger) that contains

all object states and transitions.

A Finite State Machine (FSM) [37] is a model that is often used for depicting the

high level behavior of a software system. Different forms of FSM are used for the said

purpose[12]. It consists of a set of states, interconnected by labelled and directioned

transitions. A State in FSM is a unique state of the system at any given point, which

is caused by specific event called Transitions such that FSM looks like a flow in which

program is changing its state from one to another on the application of transitions.

Transitions in FSM are multi-directed; i.e. single transition can result in changing

the state of system from State A to State B and also State B to State A.

Most of model inference techniques, generating Finite State Machines(FSM), begin

Chapter 3: Literature Review 17

by building a Prefix Tree Acceptor (PTA); a tree shaped diagram of interconnected

states showing the flow of a program in terms of method calls. PTA is generated

from concrete execution traces, and contain the exact paths that are acceptable by

the system. Since this step is a mere translation of traces to a tree, it contains a huge

number of states and has recurring behavior all over (no abstraction).

In [10], Dalmeier et al. introduced a prototype called ADABU for JAVA programs

that mines models after classifying all the methods into two categories: Mutator; that

changes the state of an observable object and Inspector; that reveals properties of that

object. Their mining approach dynamically captures the effect of mutator methods of

the object state by calling all possible inspectors before and after calling each mutator.

Therefore, the abstractions are based on the return values of inspectors. My approach

is in line with ADABU, where for any function to be included as a transition, it has

to be a mutator and all the inspectors are associated with states.

The other way of abstraction is through state merging which also reduces the

number of states, still keeping the state machine concise as well. When a state B is

merged with state A, all incoming transitions to B are pointed to A and all outgoing

transitions of B are modified to leave from A. In this way recurring behavior is merged

with in a state machine. Several techniques in the past have applied different ideas

to merge the states. Successful inference of software behavior through a summarized

yet concise model depends upon the validity of the state merging approach used. I

have explained some of these approaches below.

[5]’s k-tails algorithm iteratively merges the pair of states in a state machine, if

they are k-equivalent, until no such pair is remained. K-equivalency here denotes

18 Chapter 3: Literature Review

that both states have same sequence of leaving transitions of length k. The state

machines generated by the above technique depict the program behavior, and apply

merging techniques on a sequence of function calls. However, data constraints are

an important aspect of program behavior and if not included, the inferred program

is deemed incomplete. In this regards, Extended Finite State Machines(EFSM) are

helpful since they annotate the edges in FSM with data constraints valid for that

interaction.

In [38] Walkinshaw et al. presented the QSM technique which used Prince’s blue-

fringe merging algorithm [22] to compute the scores of a state pair and merge the

ones with positive score. It compares two states, incrementing the score for every

overlapping transition label in the suffixes of both states. After merging the state

pairs with positive scores, the technique poses questions to the end user whether the

new paths in the state machines formed due to merging (if any) are valid. If valid it

merges the states and repeats the process on the set of compatible states. However,

the technique restricts the set of pairs that can be merged generalizing lesser number

of states, and also produces a large number of questions for real world programs. It

also becomes invalid if the system have complex data constraints that are affected by

the inputs of transition functions.

In [26], Biermann’s GK-Tail is another abstraction algorithm in which Lorenzi

et. al. adapted the k-tails algorithm and extended finite state machines with infor-

mation of data constraints observed during program interactions. GK-Tail merges

similar states based on state invariants generated by Daikon [13]. Their technique

used a 4 step procedure to generate an EFSM. It starts with merging the input

Chapter 3: Literature Review 19

equivalent traces (sequence of same method calls but different parameter values), and

then uses Daikon to generate predicates from data values in the traces to produce

an initial EFSM with variable constraints. It then merges the equivalent states by

comparing the outgoing transitions of the states augmented with data invariants after

categorizing them in different categories.

Daikon’s invariants can either be a range of values, or relation between different

properties that are helpful in defining behavior of the program with respect to its

properties. However, like other invariant detectors, Daikon operates at the level

of functional granularity, hence it analyses the parameters that are passed to the

functions.

Daikon is a tool for the dynamic detection of likely invariants. It infers invari-

ants by observing the variable values computed over a certain number of program

executions. They can either be single value invariants (a == 1), or relation between

different properties (x = y + z − 1) that are helpful in defining behavior of the pro-

gram with respect to its properties. However, like most invariant detectors, Daikon

operates at the level of functional granularity, hence it analyses the parameters that

are passed to the functions. In [23], Maoz et al. presented another usage of Daikon

in which they generated invariants augmented Live Sequence Charts.

Moreover, in [21], Kim et al. evaluated daikon to report that for different imple-

mentation of a simple add function; one by calling c=add(a,b) and the other by

calling c=a+b, daikon didn’t generate predicates for variables that are not defined as

a parameter of any function, or are not returned in a function. Kim et al. also stated

that it could not handle large applications, which is mostly the case in real world

20 Chapter 3: Literature Review

programs. Moreover, for automated invariant detections, a large number of test cases

or user input is required to come up with useful constraints. Same is true for the

other inference techniques in which a complete test suite is required to generate valid

generalized behavior in order to hold true for any new interaction in the system.

3.2 Debugging

Traditional debugging techniques include logging, assertion, profiling, and break-

points [39]. Logging is performed by printing the program state or general messages

through code instrumentation. Assertions are constraints, that are added to desired

locations in a program, that when become false break the program. Profiling is the

run-time analysis of performance of the program by monitoring its memory, cpu, etc.

usage, which can help in detecting bugs susch as memory leaks, unexpected calls to

functions etc [39]. However, in practice breakpoints are the most common method

for debugging, where the code is paused at the location of a breakpoint and the de-

veloper can inspect the variables and other context information at that instant of

the execution. Effectiveness of breakpoints largely depends on the knowledge of the

developer to put these breakpoints at relevant locations.

Another type of breakpoints is called conditional breakpoint, in which debugger

evaluates the condition containing program variables at the location of breakpoint

and only pauses the execution if it becomes true. However, they make the program

extremely slow due to the reason that conditional breakpoints are not supported by

hardware by default. Debugger processes such breakpoints as normal breakpoints and

evaluates the condition to decide whether it should break of resume operation. More

Chapter 3: Literature Review 21

advanced debugging techniques make use of execution traces to get insight from the

execution of program, which can also be used for monitoring the system in run-time.

This also depends on the level of information available during dynamic analysis to

log in the traces.

Several development framework have logging capabilities which can be used by

developers to log statements in certain events (warning, errors etc). However, the

events are limited and require a lot of developer’s effort to inspect the code looking

at a log statement.

In [33], Spinellis considers execution traces better than application-level logging

for several reasons, especially for the frameworks that lack default logging capabilities,

including the ability to debug the faulty situations in production environment after

a full execution of the program.

As mentioned above, putting debug breakpoint in a program further reduces the

performance of the system, specially when debug conditions are used. This method

is also not feasible in the case of execution of huge programs in which thousands and

millions of interactions are made during a single run. Considering all the drawbacks,

collecting traces during the real execution of program in production environment

seems very practical and opens a wide array of possibilities to present the collected

data in an organized way. Traces are collected by profilers that are hooked with

the program and trigger on certain events of execution, but have similar access to

program objects as the program. And since no change is made to the code, code

access is also not required when collecting traces.

In [28], Maoz proposed the idea of using the abstracted traces as run-time models

22 Chapter 3: Literature Review

when a program is run against a defined high-level model, collecting relevant low-

level data during the execution of the program. Maoz also used the idea of selective

tracing, hence limiting the scope of traces to the scope of the higher-level models.

The presented technique in this paper also uses the same basic idea of limiting the

scope of execution traces to improve the efficiency of the tool and also help developers

to focus on the selected context.

Using the idea, in [36] Vogel et al. proposed mega-models at run-time, a technique

to maintain run-time models of huge software systems, which help with model-driven

environments, when there are multitude of models related to each other.

Another related category of studies is model-based debugging, where the main idea

is automatically generating models from real execution of a program, and identify the

location of the bugs by comparing its expected (given as models) and actual behavior

(extracted) [4]. In [30], Mayer et al. also used the same idea and applied artificial

intelligence techniques on run-time models to automatically report suspected faults

or assumptions in the case of deviating behavior. Other applications of the idea in

the same category are also applied in [14; 29]. In [32], Shang et al. used the same idea

for debugging big data applications, but extracted models from Hadoop framework’s

log files rather than execution traces. However, fully automated techniques are not

generally considered feasible for the real world programs due to a large number of

reported false positives.

Other categories of related work that are slightly more remote and I do not explore

in detail, are extracting models for program comprehension discussed in [9], anomaly

detection based on dynamic analysis presented by [27], and the entire category of

Chapter 3: Literature Review 23

fault localization, a survey of which is presented in [39].

Chapter 4

Methodology

The approach presented in this thesis gives users an interactive semi-automated

technique to extract a focused specification of the system at the right level of details,

in each context. The main idea of the approach is to let the users select the context of

the abstracted state machine. The approach is divided into three steps: 1) Extracting

execution traces, an interactive step to get the user input in terms of important

functions and state fields. The selection helps in selective instrumentation of the

code and get corresponding execution traces. 2) Abstraction and merging of multiple

executions in a concise state machine. 3) Presenting the state machine in a user-

friendly view. An overview of the proposed approach is shown in Fig 4.1, where the

steps are explained in the subsections below. Since the approach is adapted to be

used by an organization, it is bundled into a web application. The details of the web

application will also be explained in this section.

24

Chapter 4: Methodology 25

Figure 4.1: Overview of the proposed interactive specification mining approach

4.1 Generating execution traces

As mentioned in the background, one of the elegant ways of extracting execution

traces is using Aspect Oriented Programming. Appendix A.1 shows more details on

AOP and how we managed to apply that on small code bases. However, due to the

limitations of the discussed tool, aspectC++, in handling complex makefiles and

issues related to the usage of g++ in compiling both C and C++ files, this option

was not feasible, in our context.

Since Micropilot’s code base is maintained as several Microsoft Visual Studio

solutions, our best alternative to AOP was using compiler options for tracing. In this

case, the visual studio compiler options of /GH[1] and /Gh were used for profiling

and instrumentation.

26 Chapter 4: Methodology

Therefore, in step 0 of our approach (Figure 4.1), to enable the above options, the

methods of penter and pexit are hooked to the entry and exit points of all functions

without adding any additional lines of code to the original code-base. Inside the

penter and pexit functions, additional code is added for writing the execution traces.

The code uses the context saved in program registers and manipulates them to obtain

references to functions and fields for tracing. It is implemented as a static library and

its output file is linked to the subject code base. After compiling and linking process,

the instrumentation-related code is inserted directly into the compiled binaries, when

they are loaded in the memory. More details on the penter and pexit functions are

explained in the appendix Entry and Exit Hook Functions.

The instrumentation step has an optional feature of recordings call stack trace. If

the option is ON, one can see the entire call stack trace (all previous function

calls) information by hovering over any transition in the state machine. To implement

this feature, “Stack walking” is used with the help ofDebugHlp.lib to get the

names, line numbers and parameter values of the functions in the stack trace. Since

this is an expensive operation due to the use of the library, the feature is optional.

The hook methods stated above are called on all functions’ entry and exit events.

However, tracing all functions in the code is highly inefficient and costly. Normally,

such functions also include primitive functions like printf and getch. Hence, there is

a need to limit the context of traces by limiting the functions and fields to log.

Therefore, in step 1 of our approach, a static analysis tool is used to read the

raw source files. It extracts a list of global fields and functions and is based on

Exuberant CTAGS presented in [19]. For a given source file, ctags generates a list

Chapter 4: Methodology 27

of tags for all global variables and functions in the code. The tool generates tag files

for each source file in the code-base. It compiles a list of state fields by first analyzing

the fields and structs, and then recursively analyzing the contained properties if they

are structs. It is highly configurable and can be used with any code base of languages

c, c++, java and c#. It was first developed as a c# dynamic library but eventually

the module was incorporated in the main tool to be executed by the web application

on the run.

In step 2, the extracted lists are displayed in an interactive GUI with several

filters. The user selects the context of the state machine by selecting the related

fields and functions with respect to his requirement (e.g., debugging a given bug).

Again, initially developed as a windows application, it was replaced by a web page in

the main tool.

An important feature that was requested by Micropilot developers during the first

round of interviews (See Section 5.7.1), was the automatic selection of both the list

of functions that modify a selected field, and the list of fields that are modified inside

a selected function. Clang C++ parser [[3]] is a well known tool that could help

implementing this. However, the tool requires the code base to be compiled with the

tool (outside visual studio), which is not an option with our code base.

Therefore, a custom mini-parser was developed that parses the files and maintains

a list of all the functions and the fields modified inside them. While parsing a function,

it records all the fields modified within the function. If there are any other function

calls inside the function, it parses those functions and includes the fields modified by

those functions in the same list. By manipulating the list, it also shows the list of

28 Chapter 4: Methodology

functions modifying a field if a field was selected. The lists are used to display the

information as explained in the Select below.

After a selection is made by the user in step 3, references of functions and their

names from the subject program are passed to the profiler (library containing defini-

tion of penter and pexit functions explained above). The code for this is generated

and appended automatically to the main file of the subject code.

In step 3 all the functions in the subject source code are analyzed and made

available for selection regardless of their accessibility in the main file. At this point,

verification of the selection is necessary through compilation. The reasons for this

is that in practice many functions are declared as private by design. In C/C++

code bases, this is done by excluding their declarations from the header files. Since

they are not accessible by the main function, their references can not be obtained

and passed. The user is instructed to remove those functions from the selection in

step 3.1. Once compiled successfully, the subject program can be executed to obtain

execution traces.

In step 4, the tool executes the code-base with a list of given test cases or sce-

narios. Once the code-base is executed the traces are gathered in step 5.

The raw log files of selected traces collected in step 5 can be quite large in real

world programs, due to several function calls that do not affect the selected fields.

To minimize the traces, two options were possible. 1-Only trace those functions that

result in change of state (fields). 2- Trace all the selection functions and then process

the trace file to keep only the functions that affect the selected fields. The former

option is more expensive due to the frequent comparison of state fields in all functions

Chapter 4: Methodology 29

calls. Hence, the latter approach was chosen in step 6.

The change impact analysis of function calls on state fields is performed by trac-

ing the state fields at the entry and exit points of the functions. By comparing the

“before-enter” and “after-exit” values of the fields, it can be determined which func-

tion changed which fields. The comparison is simple for the functions which do not

call any other function. If both values are different, then the effect is produced by this

function. However, for the changes made inside nested calls, there are three possible

scenarios; 1) The change is made by the original function before nested call, 2) The

change is made inside nested function, and 3) The change is made by original function

after nested call. For these scenarios, the information can be obtained by maintaining

a stack of “before-enter” and “after-exit” values and comparing the respective values

to determine which function made the change visible in the state fields. Recursive

calls are made for the functions when the change is made by a nested call. The

scenarios are explained further with examples in appendix Trace Processor.

As mentioned above, the main reason for processing trace files is reducing the trace

file size. Which in my experience reached up to several GBs for single execution, if a

large list of fields and functions are selected. Reducing the size of trace file also reduces

the time taken by the abstractor, explained in the next section. The improvements

had massive effects on the performance of the abstractor, reducing the turn around

time for the developers for analyzing an issue.

30 Chapter 4: Methodology

4.2 Interactive Merging

The approach for state abstraction and merging proposed approach in this thesis is

based on the idea of GK-tail. It differs in the way that instead of generating invariants

for method parameters automatically by Daikon, the users define constraints on the

selected fields (step 7 of Fig 4.1) and the abstractor associates them directly with

states. The constraints are defined using a template selected from list of constraint

templates, which are designed with our industry partner’s consultation, and can be

extended for other application domains.

In practice, the user selects one or many constraint template(s), and define them

using the state field(s). The concrete traces are then abstracted to only show states

that can be uniquely identified using the combination of these constraints. The cur-

rent set of templates are described in the Table 4.1. Each template is explained with

an example based on the example code discussed in Section 2.

Template 1 (ValueChange): This constraint accepts one state field (X). Based

on this constraint, a new state is generated when the system detects a change in the

value of X. This is an important category as most of the state dependent systems

(specially in the embedded software domain) keep track of internal states using sev-

eral fields, where each integral value represents a unique state of the system. The

corresponding example in Table 4.1 shows the states generated due to change in value

of field gear (gear==0 and gear==1).

Template 2 (ComparedWith): This constraint accepts two state fields (X and

Y). Based on this constraint, a new state is generated when the system detects a

change in the relationship between X and Y. For instance, if X and Y are speed and

Chapter 4: Methodology 31

Category Example

ValueChange of X

X comparedWith Y

or constant

X comparedWith a

Range (Y,Z) or

(const,const)

Table 4.1: Categories of Merging Constraints

takeOffSpeed, respectively, there will be three constraints generated as speed <

takeOffSpeed, speed == takeOffSpeed, and speed > takeOffSpeed.

Template 3 (ComparedWith a Range): This constraint accepts three state

fields (X, Y, and Z) and is an extension of previous template. Based on this constraint,

a new state is generated when the system detects a value change of field X against the

interval (Y, Z). Thus the possible states would be: X < Y, X == Y, Y < X < Z, X ==

Z, Z < X. In the example from Table 4.1, altitude is compared with [groundAlt

, safeAltForGearRetract]. Note that, in general, Y in the previous template

and Y and Z in this one can be system variables or constants.

The templates defined above categorize the relations between the selected fields

in the the most basic ways which is normally sufficient. However, the templates are

scale-able and new templates, targeting complex relationships between fields, can be

32 Chapter 4: Methodology

added during maintenance of the system.

As discussed above, the user can define one or multiple constraint(s). There can

also be more than one constraint per field. To abstract state machine from a concrete

trace, the tool reads the concrete execution traces sequentially. For each state it

checks the defined constraints in OR fashion against the current set of values of

the respected fields and determines whether a new state should be generated in the

system. If any of the constraints have changed, a new state is generated. If all the

constraints are the same as the last state generated then a new state is not generated

and abstractor moves ahead. Hence, each selected function call in the trace connect

the transition to A) the same state (loop), B) one of the existing states other than

“self”, or C) newly created state. For A, a loop is showed over the last generated

state. For B, a transition is made to leave from the last generated state and linked to

the existing state. For C, a new state is generated with the transition leaving from

the last generated state.

Extra Template (TraceStates only in Range): Another important prac-

tical feature of my tool in the abstraction step is to setting a limit as an interval

for a state field. The limit is defined the same as other constraints and is called

TraceStates only in Range. This constraint is not an abstraction mechanism

per se, but it helps the extracted state machines to be practical, specially, when using

Template 1 in a debugging application. The constraint sets a limit on a field value

X as a range and only considers parts of the trace for abstraction, where the X is in

the given range. This is helpful in the cases when a frequently changing field needs

to be selected under ValueChange.

Chapter 4: Methodology 33

Figure 4.2: Example of final state machine with combined constraints

Finally, in step 8, all abstracted traces are combined into one state machine. In

fact, it is not one step alone and the state machine is generated gradually when each

concrete trace is abstracted and appended to the existing state machine (starting

from nothing, to one path and finally becoming a full representation of all monitored

traces). After all the abstracted traces are appended to the combined state machines,

the states are iterated and all the states with the same set of constraints are merged.

While merging two states S1 and S2, considering S2 the state to be dissolved, all

the incoming transitions of S1 are now pointed to S1. Similarly, all the outgoing

transitions from S2 are now modified to leave from S1. Eventually, I get the final

abstracted state machine that depicts the combined behavior of the system from the

selected trace files. A sample state machine with the combined constraints of Table

4.1 can be seen in Fig 4.2.

Extra Feature (Composite States): The last practical feature of my tool in

the abstraction step is allowing “Composite States”. Basically, whenever, I abstract

concrete states into higher-level states, I do not discard the low-level states. The tool

allows the user to select a state and zoom in. This lets the user to see all the concrete

34 Chapter 4: Methodology

Figure 4.3: Guards on transitions

states and transitions (actual method calls) within an abstract state. This is the

perfect debugging feature where the user can zoom into the problematic states and

dig into the issue with all execution-level details without being lost with in a detailed

full state machine.

Guards: In the case study, like most real-world embedded C programs, state

fields are maintained globally. Thus, most functions are defined without any parame-

ters or with objects of state fields rather than a list of variables. Hence the guards are

constrained over state fields. Since constraint over state fields are already obtained

from the user, the user is asked to differentiate between state constraints and tran-

sition constraints (guards). The guard constraints do not create new states. They

only show the precondition for a transition and the destination state of the transition

needs to be uniquely identified by other constraint(s). Fig 4.3, shows an example of

guards that are generated in this manner.

Chapter 4: Methodology 35

4.3 State Machine Presentation

In Step 9 of the Fig 4.1, the user is presented with the final abstracted state

machine in an interactive web form, where the user is presented with the abstracted

behavior of the executed scenarios. User can also modify his definition of constraints

and start the process again from Step 7 without performing another execution. Since

the tool is developed as a web application, the abstracted behavior is presented to the

user in a web form. An open source library known as JointJs is used for displaying

state machines in an interactive way where users can move the states and transition

around if any information is hidden (in case of a large number of states). There are

several other features that are available to the user to interact with the state machine

and also to view all the information in a convenient way. The features are explained

in the section below.

4.3.1 Web Application

The tool is developed as a web application due to several reasons. The main

reason is supporting concurrent user, without having to maintain several versions. It

also gives a relatively secure access to the tool from outside company. Finally, it is

platform-independent and provides a user-friendly GUI.

The remaining sections of this chapter explain the individual features of the tool

categorized by the “views”, as follows: 1) Select, 2) Define and 3) Generate; where

all the business logic is maintained at the “business layer”, in the back-end.

36 Chapter 4: Methodology

Figure 4.4: Selection - Select view of the Tool

Select

This view lets the users run the static analysis tool explained in Generating exe-

cution traces. The analysis is divided in four steps. 1) Header files analysis for state

fields extraction, 2) Source files analysis for functions extraction, 3) Using the analysis

from step 2 and reading the respective source files to get the information of starting

and ending line numbers for all functions and 4) Parse the source files to extract the

information of modified fields inside the functions. The operation is slightly expen-

sive, since it logs everything (all fields and functions). Hence the result from each

analysis is stored in a database and loaded when the view is opened. However, now

that this data is recorded in DB, any user can get instant access to the results without

re-running the analyzer. In other word, the expensive execution needs to be repeated

only if the code has changed. As stated above, the view also presents the user two

search-able lists per fields and functions. The lists support keyword search and can

Chapter 4: Methodology 37

Figure 4.5: Execution - Select view of the Tool

also be searched by exact field/function names, file names (where the fields/functions

are defined), by struct names (where the fields are defined), or by the field index (a

standard filed ID used at the company).

By hovering the cursor over any field in its list, a pointer-following tooltip dis-

plays a list of functions the field is modified in. Similarly, hovering pointer over any

function displays a tooltip displaying all the fields the function modifies. Once any

field/function is selected this way, its corresponding list will be updated. The entire

list of selected fields and functions can be saved as SELECTION. A screen-shot of

the tab explained above can be seen in Selection - Select view of the Tool.

In another tab, the user is displayed a drop-down list of SELECTIONs, a drop-

down list of “build configurations” of the subject source code, and a text-box for

“test scenario” or “case id”. After selecting one item from each option, the user can

press the “verify” button which compiles the current selection with code base. If the

compilation fails, the errors are shown in a dialog box which asks the user to remove

certain functions from the selection and try it again. If it succeeds, user can press

the execute button which executes the source code at the server and displays a list

38 Chapter 4: Methodology

Figure 4.6: Generate view of the Tool

of trace files generated during the current execution. The status of the trace files is

updated every two seconds showing their current file sizes and whether they are ready

after a finished execution. Once the trace file(s) is ready, user can move to the next

view to define constraints. A screen-shot of the tab can be seen in Execution - Select

view of the Tool. Names of fields, functions and build configurations are hidden for

confidentiality reason.

Define

This view is to define constraints. On the view load event, it reads all the trace

files in the configured directory and extracts all the state fields. The users can select

a field from the list and a constraint from the predefined list of constraint templates.

They can can add as many constraints in one definition and save it for later reuse. A

screen-shot of the view is shown in Generate view of the Tool.

Generate

The view uses the data saved in the previous views to generate a state machine

from the selected execution trace(s). In a tabbed form view, user is first asked to select

Chapter 4: Methodology 39

the trace file(s) from a list which shows the execution time, platform, dll name and

file size for each trace file found in the configured directory. On selection, only valid

definitions (of the selected trace files) are loaded in a drop-down menu. A definition

is considered valid only if all the properties assigned to its different constraints exist

in the selected trace files. The user can click on generate button after selecting a

definition, which generates and displays the state machine.

As discussed earlier, there are several extra features on top of the basic state ma-

chine presentation, which are briefly explained here: a) displaying constraints (when

hovering the pointer over states, a pointer-following tool-tip shows the respective con-

straints for each state), b) effects of transition (when hovering over a transition, the

state values of the left and right states of the transitions are compared and difference

is reported as the effect of this transitions), and c) the actual values of state fields

(when clicking on a state, all the state fields are shown with their current values,

converted to their units, in the side panel of the view).

Another feature of the tool is to see the possible reasons for a transition. For big

programs in which state fields are maintained globally, most functions are defined

without any parameters or with struct objects of state fields rather than a list of

variables. Hence extracting guards over transitions from function parameters is not

an option. For this purpose, the same list of selected fields is used as explained in the

first subsection. All the fields in the selected trace, that are not included in any of

the constraints, are monitored. Moreover, call stack trace of the function is displayed

on hovering pointer over any of the transitions.

The tool is proposed to be used for debugging. Hence when showing an abstracted

40 Chapter 4: Methodology

Figure 4.7: Generate view of the Tool

state machine, a corresponding un-abstracted version of the trace is also shown below

the abstracted state machine. This figure is a mere translation of the trace file. It

shows a straight flow of the program with the un-merged states linked with the merged

states of the abstracted state machine. When clicking a state in the abstracted state

machine, all the states that are merged into this state are highlighted in the un-

abstracted state machine. On clicking the states in this level, the actual values of the

fields are shown.

The abstracted state machine generated in this view is also highly customize-able.

Managers can use this feature to propose new changes to existing program behavior

by adding new states, adding more transitions from and to existing states, moving

the states all over the view, adjusting the arrows of transitions and editing the names

of transitions etc, and can save after. Saved state machines are showed in a new tab

on this view, clicking on which opens the saved state machine in a new view. The

Generate view is shown in Fig 4.7.

Chapter 5

Empirical Study

5.1 Objective of the Study

The goal of this study is to investigate the feasibility and effectiveness of my

interactive specification mining approach for debugging, in a real-world industrial

setting, and also the usability of the tool from a developers point of view. To achieve

this goal, I have broken it down to four research questions, as follows:

RQ1) Does our interactive specification mining approach correctly extract the

behavior of the running system?

This question verifies that our approach, in general, is sound. Since there is

no correct/reference state machine already in place in our context, the outputs are

verified using developers knowledge.

RQ2) Is selecting the relevant fields, functions, and constraints, interactively by

the developers, feasible?

This is the core assumption of our approach that the semi-automation is feasible,

41

42 Chapter 5: Empirical Study

in this context. Unlike most existing related work in the domain, I do not try to fully

automate the abstraction process and get the information about the aspect and level

of detail of the specification from domain experts. Therefore, the question is whether

the domain experts are able to provide those inputs, in practice?

RQ3) Does the abstracted behaviour provides any extra useful insight compared

to the current state of practice, for debugging?

Assuming the approach is sound (RQ1) and feasible (RQ2), the next question is

whether it provide any extra insight for debugging that the current state of practice

is missing.

RQ4) How easy is to adopt this approach in practice?

Finally, in RQ4, I briefly investigate the applicability and usability of the approach,

in practice.

5.2 Interview

To answer the research questions, a qualitative study was performed by interview-

ing actual developers employed by our industrial partner. A total of three rounds of

experiments were conducted at the company premises. During which, the develop-

ers were allowed access to the source code, a set of test cases, and issues. The test

cases and issues were selected from their bug tracking system. All the issues used

were encountered in the history of the system since a year before the experiment.

The experiment, interview questionnaire and the issues are explained in detail in the

following sub-sections.

Chapter 5: Empirical Study 43

5.3 Context

The study is conducted on a large code-base of a safety critical embedded system

(an autopilot software for UAVs), owned by Micropilot Incorporation, the world leader

in professional autopilots for UAVs and MAVs. The project used for the user study

is an Autopilot System, that is a huge code-base with over 1.3 MLOC in hundreds of

C/C++ source files.

The company is interested in acquiring safety certification (DO-178C) for its Au-

topilot software. One of the main requirements is to have explicit specification of the

system, with trace-ability to source code and test cases, and vice-versa. The company

is also interested in providing a better tool support for monitoring and debugging.

5.4 Subjects of Study

A total of eight developers (subjects) were interviewed in this study. Before the

actual interview, the demographics collected from the developer is summarized as

follows.

Six out of eight interviewees are software developers, one team leader and one

working as a control engineer. One of the developers has a Ph.D., three of them have

Masters degree in Computer Science, while the remaining developers have Bachelors

degree in either Computer Science or Electrical and Computer Engineering. The

total experience of six out of eight developers in the software industry ranged from

one to three years. One developer had five years of experience while the team lead

had 13 years of industrial experience, all with the same company. The subjects’ level

44 Chapter 5: Empirical Study

of familiarity with the software under study (Autopilot) ranged from one to three out

of five (self-evaluated), with the exception of the team leader who had a familiarity

level of five.

A total number of five developers were included in the first round of the experi-

ment. The second round consisted of two developers who had also been the part of

the first round. The third and final round of the experiment was targeted towards

the use of actual tool and three additional developers were used; one of them was a

Ph.D. and the other was the team leader, with the most experience with the code

base.

Both developers included in the second round were also participated in the first

round, the second round was performed 4 months after the first round. Although the

developers had seen the fields, functions and constraints for the issues, it is highly

unlikely that they retained the information.

5.5 Pre-interview Tutorial

Three weeks before the first round of experiments, a short survey of the developers’

knowledge on UML, State machines, and software modeling was completed, where

they were asked whether they were familiar with those concepts. Six out of eight

subjects were familiar with the state machines while two had seldom seen them during

their academic studies. To refresh the background and making sure they are all at

the same level of understanding with state machines in general, a brief tutorial was

presented with the demonstration of the tool.

The tutorial was designed and run by the author and one industry staff (a senior

Chapter 5: Empirical Study 45

developer who helped the author in the design phase of the study and verifying the

outputs, but was not among the subject group). During the tutorial, the subjects were

demonstrated the process of generation of a few example state machines depicting

the general behavior of the autopilot during several aspects of flight (e.g., takeoff,

landing, etc). While showing them the state machines, the functionality of the tool

was also explained. A very brief (5-10 min) training of how to read the output state

machines followed the demonstration. The training focused on viewing information

related to certain parts of the execution, and relate the flow of the state machine

to user’s knowledge of the system. They were also asked if they think the behavior

of Autopilot shown in the sample state machines looks correct or not, where all the

subjects verified the correctness.

5.6 Issues

For the actual interview, 5 real reported issues were used for debugging. Due to

confidentiality reasons, the issues can not be revealed. However, they were selected

with the help of the senior developer (not among subjects), to be representative of

the company’s typical issues.

The selected issues were already resolved. Therefore, they were reintroduced in

multiple clones of the code-base, making 5 buggy versions of the code, where each

version has only one known unresolved issue. All the buggy versions were validated

by the lead developer as having the issues as taken from the bug tracking system.

The main criteria for selecting an issue were a) the bug should be realistically

reproducible in the most recent stable version of the code (e.g., the older versions

46 Chapter 5: Empirical Study

of the code were not executable because of licensing changes of internal tool sets),

b) the subjects must not be involved in resolving the issue, and c) they should be

representative of typical issues encountered in everyday life of the developers in the

company.

Points (a) and (c) were validated by the lead developer and point (b) was first

checked against the history of code changes and involvement of the subjects on the

selected issues and fixes. It was also validated by the senior developer.

The standard practice at the company after resolving an issue is to write a test

case and include it in their regression tester, which can execute test cases on the

code-base to verify the resolution of the issue. Hence the issue tracking system also

contained information about the test cases that would cover the buggy behaviour

and the actual assertions (which would not be known before localizing the defect).

However, to emulate a normal debug scenario, the abstraction tool does not use that

data.

5.7 Interview Design and Setup

As mentioned in the Interview a total of three rounds of experiments were con-

ducted; second round 1 month apart from the first round and third round 2 weeks

apart from the second round. The purpose of Round 1 was to get the feedback on

the approach explained in Chapter 4. Round 2 was performed as a followup round

for Round 1 where feedback for the newly added features (requested in round 1) were

obtained. The last Round 3 of experiments and interviews was performed so that the

users can use the actual tool with real scenarios and provide their feedback.

Chapter 5: Empirical Study 47

5.7.1 Round 1

The first round of experiments was designed to assess the ability of our tool to

abstract the behaviour of a buggy scenario to help for debugging. The subjects

were provided with handouts containing description of five issues/bugs from the issue

tracking system. As discussed, the descriptions did not reveal the fix. Each issue

came with its corresponding faulty and correct state machines representing the code

after the bug fix.

In an ideal situation, the subjects would have been asked to use the tool from

scratch (i.e., in an interactive way to find the best set of fields, functions, and con-

straints) and debug the code with the help of the insights given by the abstracted

state machines. Then this process could be compared with their current debugging

practice in terms of effectiveness and efficiency. However, the setup was deemed ex-

pensive by the company. According to the contact developer, debugging an issue

might take several hours if not days. Therefore, the company could not afford giving

required resources to the research team for such an extensive experiment for several

issues.

Hence, an alternative experiment was designed which still answers the RQs to

some extent. In this setup the subjects were allowed a limited time of maximum 10

minutes per issue. At the end, 10 minutes (plus any leftover from issues times) were

assigned for answering the questionnaire, in a one-to-one interview. The interview

was held at the company premises. The interview time including the experiment was

fixed to one hour per subject. The sessions were recorded and transcribed later.

Given the 10-minute time per issue the core objective of our study was focused,

48 Chapter 5: Empirical Study

which was the feasibility and applicability of the approach. Thus, the subjects were

not asked to fix the buggy code. To save the time, the relevant fields and functions

were selected in the first round with the help of our contact developer, beforehand.

Only the final state machines were provided to the subjects.

Since the selection step was already completed on their behalf. To validate this

feature of our approach, the subjects were provided the list of selected fields and

functions in the handouts. They were also asked if they would have selected the same

fields for the issues.

As already mentioned above, there are two state machines given to the subjects

per issue. These state machines are generated using the execution traces we get

when we run the test cases that are added after the fix, per issue. Running the

actual test cases (containing the test assertions) on the buggy code would result in

a test failure and would reveal the bug. Thus in the experiment, the test cases were

executed without any assertion so that the only differences in behaviour of the buggy

vs. correct state machine are the effects of the bug.

In each session, the subjects were asked to (a) check if they can relate the faulty

and correct behavior in the state machines to the given issue descriptions, (b) explain

the differences in behavior in the two state machines, (c) identify the fields relevant

to the issue, (d) locate the buggy function, and (e) answer some feedback questions

about feasibility of the overall approach, effectiveness of state machines in finding

bugs in general and usability of the tool.

Chapter 5: Empirical Study 49

5.7.2 Round 2

The second round of experiments and interviews was a follow-up to the first one.

It was performed to get feedback on the newly added features that were asked by the

developers in round 1. The two developers from the previous round that asked for

the features were asked to take part in this round in which they were asked to use

the actual tool to debug two issues. Due to time constraints the number of issues

were limited to two. For the first issue, developers were provided an already selected

set of fields and functions, and constraints. Hence, they just had to generate state

machines. A total of three versions were maintained for (one) correct and (two) buggy

code bases. Hence for one issue, they were required to use the tool twice to get buggy

and correct state machine and inspect them as the last round of the experiment.

For the second issue they had to select everything by themselves. The second

issue of round 2 and the entire round 3 were carried out to show the cost/benefit

and feasibility of our approach by asking the interviewees to select the inputs and

constraints. Another point was that since the developers were provided both the

buggy and correct state machines, in round 1 and round 2 (issue 1), the given task

was just a matter of spotting the difference between the two state machines. To

provide a more realistic debugging scenario, in round 2 (issue 2) and round 3, the

developers were asked to identify the location of the bug, without the correct version.

5.7.3 Round 3

The third round of experiments involved two mid-level developers and a team

leader who had not seen the tool before the experiments. For this round, a total of

50 Chapter 5: Empirical Study

five buggy versions of the code base were prepared. Developers were asked to choose

any two of them (after confirming from the bug tracking system that none of the

developers were involved in the resolution of any of the five bugs). They were asked

to find the location of the bug for one issue by their standard practice of debugging

at the company. For the other issue, they were asked to use the tool and find the

location of the bug, in terms of functions. For each bug, the allotted time was kept

half an hour.

After the first half an hour, when the manual debugging period finished, the author

provided a very brief demonstration of the tool, similar to what was demonstrated in

round 1. During this demo the usage of the tool using a general scenario of Takeoff

aspect of the flight was explained. In addition, the tool was demoed for one issue

from the three that were not selected by the developer.

In the final half an hour, the subjects were asked to use the tool by themselves

for debugging the selected issue.

During the sessions, the author observed their manual debugging practice and

categorized it under the Bug Diagnostic Strategies explained in [6]. In addition, the

number of executions performed by the interviewee, manually or by the tool, was

recorded. Finally, the time taken by each execution during each session was recorded.

At the end of interview, they were asked general feedback questions regarding the

tool and the approach. The results from the experiments are reported in the section

below.

Chapter 5: Empirical Study 51

5.8 Questions

All three rounds of interviews were designed in collaboration with the company

team (including a high-level manager). Such that not only they answer the thesis’s

research questions but also assess the relevant questions to the company’s needs and

does not violate the employees rights and privacy.

For the first round, the final questionnaire includes three types of questions: a)

Demographic questions (included in all rounds of interviews), where their answers

are already discussed in the Subject of Study sub-section, b) Questions specific to

debugging an issue, and c) Questions about the overall idea of the tool and general

feedback on its feasibility and usability.

The lists of above questions are provided in Demographic Questions, Round 1 -

Issue Specific Questions and Round 1 - General Feedback Questions.

Q1.1.1 Please state your total industrial experience.

Q1.1.2 Please rate your familiarity with the autopilot code base out of five.

Q1.1.3 What is your current position at micropilot.

Q1.1.4 What is your highest level of education?

Q1.1.5 Are you familiar with state machines in general?

Table 5.1: Demographic Questions

52 Chapter 5: Empirical Study

Q1.2.1
Explain the differences that you notice between the buggy and correct state
machines (e.g.,number of states, sequence of functions, fields changes, etc.)

Q1.2.2

After comparing both state machines, are you able to identify the field(s) that
caused the issue or showed the effect of the issue? After comparing both state
machines, are you able to identify the field(s) that caused the issue or showed
the effect of the issue?

Q1.2.3 Are you able to identify which function caused the issue?

Table 5.2: Round 1 - Issue Specific Questions

Q1.3.1
After looking at the list of functions and fields selected to a given issue, how
difficult do you think it would be if you had to select those inputs for a given
issue?

Q1.3.2
With respect to the selected fields and functions, are the state machines generated
by the system correct? Are they detailed enough? If not, what important
information is missing?

Q1.3.3
For given issues, are the set of selected fields and functions adequate? If you
were selecting the fields by yourself, would you have made any changes to the list
of selected fields and functions?

Q1.3.4
What is your current practice/procedure of debugging the system, when an issue is
reported and assigned to you? Which tool support you have?

Q1.3.5

Assume you select the best set of fields and functions for a certain issue and use
our tool to generate the corresponding state machines. Do you think our tool
would bring any advantage to your current set of debugging/monitoring tools, at
Micropilot Inc.? If so what advantages and if not why?

Q1.3.6
How easy it is to embed this tool into your current frameworks and infrastructure?
Any challenges that you see in making this a part of your tool set?

Q1.3.7
Please provide your feedback about the feasibility, effectiveness, and usability of
this tool and idea.

Table 5.3: Round 1 - General Feedback Questions

Chapter 5: Empirical Study 53

For the second round, the questionnaire included a couple of questions regarding

the new features added; whether they added value to the tool and reduced the chal-

lenges in selecting a set of fields and functions for any generic issue. The questions

are provided in Round 2 - General Feedback Questions.

Q2.1
How difficult was it to select the functions / fields, on a scale of one to ten, for
a given issue?

Q2.2
After selecting the list of fields and functions, on a scale of one to ten, how
difficult was it to come up with the valid constraints with respect to the
scenario?

Q2.3

Do you think the newly added feature in the tool which displays a list of modified
fields in a function automatically when you select that function (similarly, a
list of functions modifying the field automatically load when you select
the field) is advantageous over manually selecting both based on your
knowledge?

Q2.4
How many times, on an average, did you have to repeat the process (select the
fields, functions select constraints generate state machine)to abstract program
behavior according to your need and expectation?

Q2.5 How much time did each go take on an average?

Table 5.4: Round 2 - General Feedback Questions

For the final round, in addition to the observations made during the sessions,

the questionnaire only included question related to the feedback for the tool. The

observations made are provided in Round 3 - Observational Questions, while the

questionnaire for this round is provided in Round 3 - Feedback Questions.

54 Chapter 5: Empirical Study

Q3.1.1
How many times, on an average, did the developers have to repeat the process
(select the fields, functions, select constraints and generate state machine) to
abstract program behavior according to their expectation?

Q3.1.2
How much time did the manual debugging take, and how much time was taken by
each tool run, average if multiple?

Q3.1.3 Which diagnostic strategies were used?

Table 5.5: Round 3 - Observational Questions

Q3.2.1 How difficult was it to select the functions / fields in general on a scale of 1 to 10?

Q3.2.2
After selecting the list of fields and functions, on a scale of 1 to 10 how difficult
was it to come up with the valid constraints with respect to the scenario?

Q3.2.3
What is your current practice/procedure of debugging the system or any other tool
that is handy, when an issue is reported and assigned to you? Which tool support
do you have?

Q3.2.4 How beneficial is using this tool compared to your current practice?

Q3.2.5
How easy is it to embed this tool into your current frameworks and infrastructure?
Any challenges that you see in making this a part of your tool-set? Would you use
it.

Q3.2.6
Please provide your feedback about the feasibility, effectiveness, and usability of
this tool and the idea of using your knowledge to break theissues down to fields
and functions.

Table 5.6: Round 3 - Feedback Questions

Chapter 5: Empirical Study 55

5.9 Interview Results

In this section, I will provide a summary of the answers to all questions by the eight

subjects of the interviews. The questions in this section are indexed as in Demographic

Questions, Round 1 - Issue Specific Questions, Round 1 - General Feedback Questions,

Round 2 - General Feedback Questions, Round 3 - Observational Questions and

Round 3 - Feedback Questions. I will conclude by detailing the responses to my four

research questions on the basis of the interview results.

5.9.1 Round 1

Q1.2.1: Explain the differences that you notice between the buggy and correct

statemachines (e.g.,number of states, sequence of functions, fields changes, etc.)

Answer: Three out of five subjects were easily able to relate the descriptions in

the issue to the behaviour illustrated in the state machines, without my help. They

also stated that the behavior in the correct state machines conforms with the normal

behavior of the program according to their understanding. However, two subjects

were initially guided through the execution flow in the state machine, for the first

issue. However, they managed to analyze the remaining issues without any help.

Q1.2.2: After comparing both state machines, are you able to identify the field(s)

that caused the issue or showed the effect of the issue?After comparing both state

machines, are you able to identify the field(s) that caused the issue or showed the

effect of the issue?

Answer: All subjects were able to identify the fields that were affected by each

issue, from the list of all selected fields in the state machine. The purpose of this

56 Chapter 5: Empirical Study

ID
Subject 1
(Round 1)

Subject 2
(Round 1)

Subject 3
(Round 1,2)

Industry
Experience (yrs)

2 0.9 2.5

Code Base
Experience (/5)

3 2 2

Q1.2.1 all diff. spotted all diff. spotted all diff. spotted
Q1.2.2 5/5 correct fields 4/5 correct fields 4/5 correct fields
Q1.2.3 5/5 correct func. 4/5 correct func. 4/5 correct func.

Q1.3.1 (/5) 2 2 4 if not familiar
Q1.3.2 Correct Correct Correct
Q1.3.3 Adequate Adequate Would add more

Q1.3.4
Reproduce, debug
with Visual Studio

Reproduce, simulate,
debug with Visual
-Studio

Reproduce, debug
with Visual Studio

Q1.3.5 Visual component
Breaking debug
activity to functions
to get starting point

Big picture,
suggests the
functions we
should review

Q1.3.6
Seems usable,
no major problems

Makes debugging
faster, worthy
to get used to

Selecting fields is
easier, coming up
with constraints is
difficult, not hard
to get used to

Q1.3.7 F=9, E=8, U=8 F=7, E=7, U=7 F=9, E=9, U=9
Q2.1 (out of 10) N/A N/A 2
Q2.2 (out of 10) N/A N/A 2

Q2.3 N/A N/A
extremely

advantageous
Q2.4 N/A N/A One
Q2.5 N/A N/A < 10 min

Table 5.7: Summarized responses to interview questions. F: Feasibility, E:
Effectiveness, U:Usability

question is to verify if the subjects would be able to filter the fields, from a bigger list

of selected fields, relevant to each issue.

Q1.2.3: Are you able to identify which function caused the issue?

Chapter 5: Empirical Study 57

ID
Subject 4
(Round 1,2)

Subject 5
(Round 1)

Mapped to
(RQ)

Industry
Experience (yrs)

0.9 1.5 N/A

Code Base
Experience (/5)

2 2 N/A

Q1.2.1 all diff. spotted all diff. spotted RQ1
Q1.2.2 5/5 correct fields 5/5 correct fields RQ3
Q1.2.3 5/5 correct func. 5/5 correct func. RQ3

Q1.3.1 (/5) 2 2 RQ2

Q1.3.2

Missing details
(branching inside
methods, conditions
etc)

Correct RQ1

Q1.3.3 Would add more Would add more RQ2

Q1.3.4
Reproduce, debug
with Visual Studio

Reproduce, debug
with Visual Studio

RQ3

Q1.3.5
Visual component,
suggests the functions
we should review

Somewhat advanta-
-geous, doesn’t state
the line of issue

RQ3

Q1.3.6
Easy to learn
and review

No challenges RQ4

Q1.3.7 F=9, E=6, U=9 F=7, E=9, U=8
RQ2, RQ3,

RQ4
Q2.1 (out of 10) 2 N/A RQ2
Q2.2 (out of 10) 2 N/A RQ2

Q2.3 extremely advantageous N/A RQ3
Q2.4 One N/A N/A
Q2.5 < 10 min N/A N/A

Table 5.8: Summarized responses to interview questions. F: Feasibility, E:
Effectiveness, U:Usability

Answer: Since the subjects were able to identify the the differences in behavior

showed in the state machines, they were able to identify the functions causing ab-

normal behavior. However, the actual function causing the issue in 2 state machines

were not selected, intentionally. For those state machines, three out of five subjects

58 Chapter 5: Empirical Study

stated that they don’t think the function causing the error is included in the state

machines. However, they correctly stated that the issue causing functions were called

inside one of the selected function.

Q1.3.1: After looking at the list of functions and fields selected to a given issue,

how difficult do you think it would be if you had to select those inputs for a given

issue?

Answer: Four out of five subjects graded the difficulty of the process of selecting

the relevant fields and functions with respect to any given issues as two out of five;

one being the easiest and five difficult, whereas one subject commented that if you

are not familiar with the code-base, it will be difficult to select the exact function

but a keyword search can give an idea of where to start. However, the subject also

commented that it is even more difficult to use Visual Studio for debugging the code

if you are not familiar with the code-base, and it becomes a guessing game. Another

interesting suggestion made by the same subject was to prepare a subset of fields and

functions for every aspect of flight (or any other operation) such that if users want

to debug an issue related to, say “landing”, they would just have to select the aspect

rather than a huge list of fields and functions.

Q1.3.2: With respect to the selected fields and functions, are the state machines

generated by the system correct? Are they detailed enough? If not, what important

information is missing?

Answer: Answering the question, three subjects said that they think the state

machines were complete according to their understanding of the system, while two

commented that they look complete but they missed some useful states that are to

Chapter 5: Empirical Study 59

do with functions that are not selected in the first place. Similarly, another subject

commented that selecting fields were not as difficult as selecting functions, where you

can miss important details, if important functions are missing in the state machine.

In other words, the state machines generation is correct from their perspective but

selecting an appropriate set of functions may be difficult in the first try.

A suggestion was also made to include all the important functions, which is im-

practical due to performance degradation and very large output state machines. One

interesting suggestion was to warn the user if the system notices a change in the

fields without any transitions (selected function calls) between them so that the user

can analyze the change and select the relevant functions and repeat the step. An-

other suggestion was adding a new feature to perform more complex operators on the

fields within the state machine, e.g., RADIUS(field1)>field2, which can be part of

my future work.

Q1.3.3: For given issues, are the set of selected fields and functions adequate?

If you were selecting the fields by yourself, would you have made any changes to the

list of selected fields and functions?

Answer: Three subjects stated that they would have selected additional fields

and functions for some of the issues and would omit the irrelevant fields. Two subjects

thought that the selected fields were adequate for them to find the issue. But all of

the subjects were able to identify the issue from the state machines. Therefore, we

can summarize that even when all the relevant fields are not selected, subjects can

still get an idea where something is getting wrong. In addition, since the process

is interactive, users can adjust their selection and try different inputs and see the

60 Chapter 5: Empirical Study

results, immediately.

Q1.3.4: What is your current practice/procedure of debugging the system, when

an issue is reported and assigned to you? Which tool support you have?

Answer: Answering the question, most interviewees responded that when an

issue is assigned to them, they first try to reproduce the issue, as explained in the

description, and run it on the simulator in their in-house tool. Then they move to

Visual Studio, go through the code and use breakpoints to break the executions in

different functions, then they step through the code while inspecting the values of

certain fields.

Q1.3.5: Assume you select the best set of fields and functions for a certain issue

and use our tool to generate the corresponding state machines. Do you think our

tool would bring any advantage to your current set of debugging/monitoring tools, at

Micropilot Inc.? If so what advantages and if not why?

Answer: Answering the question, three out of five subjects said the “visual

representation” of the code made them see the big picture of the execution, they

were able to see where code was branching and they learned something. In addition,

it provided them an organized way to inspect the fields during the execution of the

whole system and gave an idea on which functions to review and in which level of

detail.

Two subjects also added that even incomplete state machines (with missing fields

and functions or wrong level of details) are helpful in that they would have given them

a starting point to debug (finding which functions to put breakpoints at). In addition,

they mentioned that the stack traces that are accessible in the detail (zoom-in) views

Chapter 5: Empirical Study 61

are also helpful for adding the caller functions into the selected function list.

One subject also added that it is easier to explain the functionality of the system

with respect to fields and function calls on the state machine compared to explaining

the source code (i.e., program comprehension application of abstraction).

Another subject state that “if a relevant field is changing too many times, its hard

to debug the function that is changing it. You might miss the important changes that

you are actually interested in when skipping breakpoints. So, it’s interesting to see

how the field changes throughout the execution in the state machine and then go

back to the code to inspect in relevant intervals.”

Q1.3.6: How easy it is to embed this tool into your current frameworks and

infrastructure? Any challenges that you see in making this a part of your tool set?

Answer: Answering the question, all subjects agreed that my tool would be a

valuable addition to their tool-set and will be worthy to adapt to the tool. Similarly,

all subjects thought that the idea was easy enough to be applied and thus is a valuable

addition.

Three subjects said that if the tool was included in their tool-set, they would

adapt easily to it. While two of them mentioned that any new tool is hard to adapt,

in the beginning. However, once they get used to it, it would not be hard to use.

Q1.3.7: Please provide your feedback about the feasibility, effectiveness, and

usability of this tool and idea.

Answer: In the final question, the subjects graded (out of 10) feasibility, effec-

tiveness, and usefulness of the idea and the tool and provided free feedback about the

whole idea.

62 Chapter 5: Empirical Study

The subjects graded the feasibility in the range of 7 to 9, effectiveness in the range

of 5 to 9 and usability in the range of 7 to 9. The grade 5 in effectiveness was given

by one subject (Subject 5), where other feedback were in the range of 7 to 9. The

grade 5 was given because Subject 5 thought that for a subject not much familiar

with the system it would be harder to use it effectively. However, the subject with

more experience and more familiarity with the system (Subject 1 and 3), thought

they will be able to use it effectively and graded effectiveness as 9 and 8 respectively.

All the subjects think the tool is usable and the steps from selecting the fields to

generating state machines were minimal and seemed easy enough and they would be

able to use the tool without much help. A subject, however, suggested that feature to

compare different state machines automatically and highlighting the changed behavior

in one with respect to the other would be advantageous. This feature is indeed in my

future work plan.

5.9.2 Round 2

Q2.1: How difficult was it to select the functions / fields, on a scale of one to

ten, for a given issue?

Answer: Answering Q2.1, both subjects gave the procedure of selecting fields

and functions a difficulty rating of two out of ten; with one being the easiest and ten

the hardest. They stated that the keyword search is very effective in exploring the

relevant fields and functions of an issue. The subjects stated that being the developer

of the system this is the most basic information we can get from them. And even if

a developer might not be familiar with all fields and functions, (s)he can guess their

Chapter 5: Empirical Study 63

names since (s)he is familiar with naming standards followed in the source code for

defining fields and functions.

Q2.2: After selecting the list of fields and functions, on a scale of one to ten, how

difficult was it to come up with the valid constraints with respect to the scenario?

Answer: Answering Q2.2, one of the developers graded the process of selecting

fields under different templates of constraints a difficulty rating of one while the other

graded two; with one being the easiest and ten hardest. The developers stated that

since the fields are already selected by them, they have some idea of how to use them

in a small number of templates.

Q2.3: Do you think the newly added feature in the tool which displays a list of

modified fields in a function automatically when you select that function (similarly,

a list of functions modifying the field automatically load when you select the field) is

advantageous over manually selecting both based on your knowledge?

Answer: Both developers agreed that the feature is very useful and will greatly

help developers once the system is put to use regularly.

Q2.4: How many times, on an average, did you have to repeat the process (se-

lect the fields, functions select constraints generate state machine)to abstract program

behavior according to your need and expectation?

Answer: Both developers used the tool only once for each configuration, per

issue; once for buggy version and once for the correct version as they were satisfied

by the correctness of state machines and could see the symptoms of the issue in the

first run.

Q2.5: How much time did each go take on an average?

64 Chapter 5: Empirical Study

Answer: The total time taken for the selection of fields and functions took less

than a minute. Similarly, the process of defining constraints took less than a minute

where one of the issues selected by the developers required as many as 5 constraints

in one definition. However, the compilation and execution of the source code took

most time which is about 5 minutes. The generation for both issues took less than

a minute, and the subjects were able to spot the issue in under two minutes. Hence,

the total time for one run of an issue took less than 10 minutes.

5.9.3 Round 3

In this round of interviews, as stated above, developers were asked to investigate

two issues each. At the end of each investigation, the developers were asked for

the suspected location of the issue and the important fields involved in the issue.

All developers involved in this round gave correct answers for both sessions; manual

debugging and with my tool. However, following questions were asked to get their

feedback on the tool.

Observational Questions During the interview the following were observed

while the developers were doing their tasks. The observations are provided directly

in the summary table 5.9.

O 3.1.1: How many times, on an average, did the developers have to repeat the

process (select the fields, functions, select constraints and generate state machine) to

abstract program behavior according to their expectation?

Answer: All developers got the expected state machine, that showed their

expected behavior, on the first time. Hence they did not repeat the process. However,

Chapter 5: Empirical Study 65

ID
Subject 6
(Round 3)

Subject 7
(Round 3)

Industry
Experience (yrs)

2 5

Code Base
Experience (/5)

0 2

O3.1.1 1 1

O3.1.2
Manual: 25 min
Tool: 12 min

Manual: 12 min
Tool: 10 min

O3.1.3
Code Comprehension, Forward
Reasoning

Code Comprehension

Q3.2.1 (out of 10) 1 3
Q3.2.2 (out of 10) 1 3

Q3.2.3
Debug. Appr: Code Comprehension,
Forward Reasoning
Toolset: Visual Studio

Debug. Appr:
Code Comprehension,
Forward Reasoning,
Backward Reasoning
Toolset: Visual
Studio

Q3.2.4
Beneficial in identifying location of
bugs in complex scenarios

Beneficial as easily
traces and points to
the location of bug

Q3.2.5 No challenges No challenges
Q3.2.6 F=10, E=9, U=8 F=9, E=8, U=9

Table 5.9: Summarized responses to interview questions in Round 3 (Part 1). F:
Feasibility, E: Effectiveness, U:Usability

for demonstration purposes, as it took around 10 minutes to debug an issue with the

tool, the team lead asked to try another issue and got his expected behavior on the

first time too.

O 3.1.2: How much time did the manual debugging take, and how much time was

taken by each tool run, average if multiple?

Answer: The time taken by developers to manually find the location of the issues

ranged from 10 minutes to 30 minutes (mostly including code review and occasional

66 Chapter 5: Empirical Study

ID
Subject 8
(Round 3)

Mapped To (RQ)
(Round 3)

Industry
Experience (yrs)

13 N/A

Code Base
Experience (/5)

5 N/A

O3.1.1 1 N/A

O3.1.2
Manual: 8 min
Tool: 11 min

N/A

O3.1.3 Backward Reasoning N/A
Q3.2.1 (out of 10) 3 RQ2
Q3.2.2 (out of 10) 3 RQ2

Q3.2.3
Debug. Appr: Offline
Analysis, Input Manipulation
Toolset: Visual Studio, Valgrind

RQ3

Q3.2.4
Beneficial in analyzing system
behavior and verifying effects of
code changes

RQ3

Q3.2.5 Tool Maintenance RQ4
Q3.2.6 F=N/A, E=8, U=8 RQ2, RQ3, RQ4

Table 5.10: Summarized responses to interview questions in Round 3 (Part 2). F:
Feasibility, E: Effectiveness, U:Usability

partial executions). However, the time taken by the same developers for using the

tool ranged from 10 minutes to 12 minutes. Note that this time also includes the full

compilation and execution time of the test cases, which ranged from 4 minutes to 8

minutes per execution.

O 3.1.3: Which diagnostic strategies were used?

Answer: The three developers used a mix of three debugging strategies; Forward

Reasoning, Backward Reasoning and Code Comprehension, as defined in [6]. In

forward reasoning, the developer starts from the starting point of the execution and

move towards the first occurrence of the issue in search of the cause of the issue, while

Chapter 5: Empirical Study 67

executing the source code. However, in backward reasoning, the developer starts from

the first occurrence of the issue and moves backwards to the start of execution while

searching for the cause of the issue. In code comprehension, developer reads through

the code while making an understanding of the source code and try to find the issue

with his mental picture of the code.

Q3.2.1: How difficult was it to select the functions / fields in general on a scale

of 1 to 10?

Answer: Answering to the question, one of the developers graded the process

of selection a difficulty level of one, while the remaining two graded it three out of

ten.

Q3.2.2: After selecting the list of fields and functions, on a scale of 1 to 10 how

difficult was it to come up with the valid constraints with respect to the scenario?

Answer: The grade (one) was selected by all three developers, for this question.

Q3.2.3: What is your current practice/procedure of debugging the system or any

other tool that is handy, when an issue is reported and assigned to you? Which tool

support do you have?

Answer: The answer to the question is divided into two parts; one in which

I observed their practice during the manual debugging session and the other when

they stated their normal debugging practice, dealing with everyday development is-

sues. From my observation, one of the developers used Backward Reasoning by first

reaching to the point where the issue can first be noticed and moving back to the

location of the root cause, gradually. While the other two used Code Comprehension

and Forward Reasoning to reach the location of the bug.

68 Chapter 5: Empirical Study

However, from their responses it was found that more experienced developers typ-

ically uses the debugging strategies of Input Manipulation and Offline Analysis, while

the developers with entry to mid-level experience use a mix of Forward Reasoning,

Backward Reasoning and Code Comprehension strategies while debugging an issue.

In the input manipulation technique for debugging issues, the developer keeps mod-

ifying the input that is producing the wrong result and compare with the expected

output, until he figures out the relation between input and output. In offline analysis,

the developer relies on the post execution data such as log and execution traces to

debug the issue.

Q3.2.4: How beneficial is using this tool compared to your current practice?

Answer: Since the current round of experiment involved developers with more

experience than of the previous rounds, I got more concrete responses to this question

than those in Round 1. The most senior developer said that the tool is useful for

analyzing the behavior of the system and also for verifying the modification done to

the system in subsequent releases. The tasks can be delegated to the developers who

can verify their own changes by this tool. However, he thought that for debugging

purposes, the tool is useful for entry to mid-level developers but may not be useful for

highly experienced developers due to their familiarity with the code base over the tool

(and state machines in general). One developer states that it seems useful as it can

easily point the user to the actual location of the issue (function) to start their further

investigation, and then come back to the tool for a more detailed state machine defined

on the basis of the investigation results. The last developer stated that the tool looks

very beneficial in situations where Backward Reasoning and Forward Reasoning is not

Chapter 5: Empirical Study 69

possible due to the unknown effects of the issue on the system or for more complex

issues. He said that although as opposed to manual debugging it needs a full execution

which takes more time, however he thought that in most situations the tool would take

the developer to the location of the issue quicker than manual debugging practices.

Q3.2.5: How easy is it to embed this tool into your current frameworks and

infrastructure? Any challenges that you see in making this a part of your tool-set?

Would you use it.

Answer: In response to the question, the team leader stated that the biggest

challenge in such tools is the maintenance, which is costly since the actual developers

of such research tools move on. The other two developers stated that with any new

tool there is a learning curve but they see no major issue adapting to this tool once

included in their tool-set.

Q3.2.6: Please provide your feedback about the feasibility, effectiveness, and us-

ability of this tool and the idea of using your knowledge to break the issues down to

fields and functions.

Answer: In response to the question, the team leader stated that he wasn’t sure

about the feasibility of the tool as he has yet to explore it with other issues in the

system. However, he graded the tool 8 for both effectiveness and usability. The

other two developers graded the tool 10,9,8 and 9,8,9 for feasibility, effectiveness and

usability respectively.

70 Chapter 5: Empirical Study

5.9.4 Summary of Interview Results: Answers to RQs

Table 5.7, 5.8 and 5.9 summarize all the 78 answers. The tables also map the

questions to my original RQs.

In light of the feedbacks received from the subjects, I can conclude answers to

my four RQs as explained above. For RQ1, I can safely conclude, after looking at

responses to Q1.2.1 and Q1.3.2 in Table 5.7, that the state machines generated by

my approach are correct and conform with normal program behavior. Responses to

Q1.3.1, Q1.3.3, Q1.3.7, Q2.1, Q2.2, Q3.2.1, Q3.2.2 and Q3.2.6 conclude my RQ2.

In light of the feedback, I can conclude that the main idea of selecting fields and

functions is feasible, since all subjects graded the process of selection of fields and

functions in a range of 1 to 3, and graded the feasibility of the approach in the range

of seven to ten out of ten.

Responses to Q1.2.2, Q1.2.3, Q1.3.4, Q1.3.5, Q1.3.7, Q3.2.3, Q3.2.4 and Q3.2.6

answer my RQ3. From the responses, I found that combining the behavioral model

with abstracted data gathered during real execution of program is useful for debugging

and serves developer in more than program comprehension.

Finally RQ4 is answered by Q1.3.6, Q1.3.7, Q3.2.5 and Q3.2.6. Looking at the

Table 5.7, most subjects didn’t think they would face any trouble if they use the

tool on regular basis. Those who found it difficult said the tool was worthy to learn,

looking at the advantages it has to offer over traditional techniques. The subjects

also think that the idea is effective and the tool is usable for them.

Moreover, as round 3 was specifically designed as a response to the reviews from

the submission, I found that since the developers were also able to find the relevant

Chapter 5: Empirical Study 71

fields and location of the issues with just looking at the buggy state machines, the

results of first round is also valid.

5.10 Threats to Validity

There are several typical threats to the validity of this study. In this section, I

will explain the most important threats and my approach to tackle them.

The tool developed as an outcome of this research is developed, tested and con-

figured by one researcher. There might be some bugs in the tool that are yet to be

found. However, the output of the tool, i.e. the state machines, were constantly vali-

dated by our contact lead developer at the company. Hence, I can safely assume that

the state machines generated by the tool are correct, as pointed out by our contact

lead developer as well as the interviewees.

Another threat to the validity is being too specific to my program under analysis

(Autopilot) and/or the company’s debugging process. However, Autopilot is similar

to any other industry standard safety critical embedded systems. Hence, the idea can

directly be applied to any other system maintaining global state fields with very little

modification in the supporting tool. In addition, the company’s debugging process is

very typical and not specific to this company at all.

The bugs used in this study are real bugs from the history of the software that

are selected with the help of our industry partner to be representative of their typical

bugs. However, they can also be reasonably generalized to a broader context, since my

approach is not designed for a specific domain’s bugs. The state machines however,

work on the function call level. Thus, the smallest unit that I can localize the bug is

72 Chapter 5: Empirical Study

the last function in a call stack that contains the bug.

Another validity threat is to do with generalization of the interview results. Ide-

ally, more subjects should have been interviewed. Given that the interviews are

expensive for the company, there is a plan to have a more extensive study with stu-

dents.

Chapter 6

Conclusion

Fully automated specification mining techniques have been studied in literature

for many years but they have not been used in industry much yet. One of the main

reasons is that it is hard for the automated abstraction techniques to generate models

in the exact level of details that the user needs. Moreover, while passive inference

techniques use program execution traces to infer its behavior, a diverse set of test

cases or scenarios are required to capture a complete state machine. Active inference

techniques come to help here by tackling the limitation by asking queries, but since

they require extensive involvement of domain experts, the maintenance of such is a

concern for companies who have limited resources.

In this thesis, I proposed an interactive approach for specification mining, where

the domain knowledge of the users and their required level of details are collected as

inputs in the form of fields and functions which is a basic knowledge developers are

supposed to have while working on any code base. The tool is focused on debugging

application of specification mining and let the users to easily change the perspective

73

74 Chapter 6: Conclusion

and or level of details by selecting different fields to monitor and constraints to use.

Our approach has been verified in a full size industry setting and its evaluation in

terms of a series of interviews confirmed its feasibility and usefulness, compared to

the current state of practice, in debugging. Although developed in collaboration with

Micropilot, the tool is highly configurable to be used with any code base developed

in c/c++ and maintained as Visual Studio project.

6.1 Limitations

Since the approach is fully dependent on state fields, one of the limitations of the

approach is that it can only be applied to embedded systems that either maintain their

fields globally, or use struct instances to maintain state fields and pass its reference

around to maintain state fields.

Another partial limitation of the tool is that it needs the subject code base to be

maintained as a Visual Studio project as its profiler depends on debugging switches

that are configurable with Visual Studio. However, the limitation can be overcome by

segregating the profiler from the tool and traces can be fed manually to the abstractor

rather than through an automated process.

6.2 Future Work

We are planning to take at elast two directions in our future work as follows:

Chapter 6: Conclusion 75

6.2.1 Extended User Study

One of the future directions for the project is extending the user study and eval-

uations, in terms of number of participants and more issues per user. As this is not

feasible with company employees due to cost associated with the interviews, a sec-

ondary, more extensive, user study is scheduled in near future, where we interview

students on a dummy project (a Tetris game is selected).

Since the tool has been developed as a configurable system which can be hooked

up with any Visual Studio solution, we can replicate it using open source subject

projects with student participants.

We plan to have a more in-depth evaluation of the tool, where the participant

debug more issues with different levels of difficulties.

6.2.2 Fault Augmentation

Augmenting the state machine with more bug related information is very useful

for the developers and testers to look at the specification model of a system and easily

understand what parts or which kind of scenarios are more error-prone. This high-

level idea of augmenting state machines with fault information is similar to defect

prediction studies, where one links a bug tracking system with the corresponding

version control system to identify files or modules that had the most defects in the

past and past faults are analyzed automatically. An overview of the methodology can

be viewed in Figure 6.1. In a nutshell, the process is divided in to following steps.

Extract Failing Test Cases

In this step, I look in the bug tracking history to find the faults previously en-

76 Chapter 6: Conclusion

countered in the system. I gather the last n test cases with true failures.

Finding corresponding versions

For this step, I link the source code versions to the faults based on their timestamps

in the version control and defect tracking systems.

Executing the test cases on their corresponding versions

In this step, I perform step 1 of my main proposed methodology to extract the

execution traces of the failing test cases, by running them on their corresponding

versions that they originally failed on.

Abstracting and merging failing behavior into failing state machines

In this step, I abstract and merge the failing test cases traces, similar to what was

explained in the previous section. This is done individually per test case, so that we

have a state machine (lets call them failing state machines) for each failing test cases.

Maintaining a counter for failing states and transitions

Finally, I compare the states and transitions in the failing state machines and

the correct state machine (generated by abstracting the current set of passing tests’

execution traces). There is a historical failure counter (HFC) assigned to each model

entity (state and transition) in the original state machine. HFC of an entity is equal

to the number of times the same entity has been in the failing state machines. For

instance, if we see the same state A of the original state machine in 5 failing state

machines, HFC of state A is 5. This counter will be used as a representation of how

likely this state or transition was to contribute to a failing scenario. According to [11]

and other defect prediction studies, this is also a good predictor of future failures.

This direction has already been started and we have some progress. The fault

Chapter 6: Conclusion 77

Figure 6.1: Overview of Fault Augmentation

augmentation is already implemented. However, the initial findings on applying the

feature with the real issues reported many false positives, since most failing and

passing test cases share many common behaviours. So more work on this direction is

needed.

6.2.3 Potential Improvements

Defining more templates for the abstractor The tool can be improved to

capture more detailed requirements by defining more templates for constraints gen-

eration. Currently users are asked to define constraints related to one, two or three

state fields, while the tool limiting the observed relationship to “less than”, “equal

to” and “greater than”. More templates can be developed where users enter more

complex constraints and apply mathematical and statistical operations, including ad-

78 Chapter 6: Conclusion

dition of more relationships and complex equations of fields involving n number of

fields in one template.

Regression Anomaly Detection Moreover, a potential future direction for the

research project is automatic comparison of behavioral models that could help even

more in debugging processes. For instance, for regression testing, the tool could be

automated to generate and compare the state machines, automatically, whenever a

new check-in event is triggered (in the version control system). This would help the

users in verifying the effect of their modification after each check-in, as a precaution in

case the changes from one user conflict with the changes from another, and changing

the expected behavior of the system, and would also help in timely updating of

behavioral models of the system.

Appendix A

Profiler

A.1 AspectC++

AspectC++ [2] is the language extension of C++ to incorporate AOP with C and

C++ code bases. Despite the limited online support available for the tool at the time,

it was incorporated successfully with a few open source projects that were obtained

from GIT. AspectC++ would also work with small modules of Micropilot code base.

Listing A.1 provides an example of a dummy source file including aspects. However,

on trying aspectC++ with the Micropilot’s huge code base of the Autopilot project,

the compiler couldn’t compile the weaved code, even with the help of makefiles that

were already created by the company. The reason found for this after investigation

was that after weaving aspects in the code base, its compiler (ag++) compiles both

C and C++ code files with g++ command. In practice, g++ can compile both c

and c++ programs. However, possibly due to implicit pointer casts or C-99 style

initialization of structs, the actual C files in the Micropilot’s code base could only

79

80 Appendix A: Profiler

be compiled with gcc command. This was also validated by our contact person at

Micropilot.
1 #ifndef __trace_ah__
2 #define __trace_ah__
3 #include <cstdio>
4 #include <iostream>
5 #include <fstream>
6 #include <string>
7 #include <vector>
8 #include <sstream>
9 using namespace std;

10

11 aspect trace {
12 int depth=-1;
13 advice execution ("% ...::%(...)" && !"% ...::%(void)") : before ()
14 {
15 stringstream ssSt;
16 stringstream ssDfn;
17 std::ofstream outfile;
18 outfile.open("out.txt", std::ios_base::app);
19 //outfile << "Data";
20 depth++;
21 /**************INDENTATION*****************/
22 //for(int i=0;i<depth;i++)
23 // outfile << "\t";
24 /**************INDENTATION*****************/
25 outfile << "Entering;" << JoinPoint::signature() << ";(";
26 for (unsigned i = 0; i < JoinPoint::args(); i++) //printvalue(tjp->

arg(i), JoinPoint::argtype(i)); //THIS WAS IN THEIR GUIDE BUT NOT
WORKING

27 {
28 if(strcmp(JoinPoint::argtype(i),"i") == 0 || strcmp(JoinPoint::

argtype(i),"l") == 0)
29 {
30 outfile << *(int *)tjp->arg(i);
31 //printf("%d", *(int *)tjp->arg(i));
32 if(i+1 < JoinPoint::args())
33 outfile << ",";
34 }
35 else if(strcmp(JoinPoint::argtype(i),"c") == 0)
36 {
37 outfile << *(char *)tjp->arg(i);
38 //printf("%c", *(char *)tjp->arg(i));
39 if(i+1 < JoinPoint::args())
40 outfile << ",";
41 }
42

43 else
44 {
45 outfile << "datatype=" << JoinPoint::argtype(i);
46 if(i+1 < JoinPoint::args())
47 outfile << ",";
48 }
49 }
50 outfile << ");";
51 /*************GLOBAL VARIABLES******************/
52 outfile << variableInTheSubjectCodeBase;
53 /*************GLOBAL VARIABLES******************/

Appendix A: Profiler 81

54 outfile << JoinPoint::filename() << endl;
55 }
56 advice execution ("% ...::%(void)") : before ()
57 {
58 std::ofstream outfile;
59 outfile.open("out.txt", std::ios_base::app);
60 depth++;
61 /**************INDENTATION*****************/
62 //for(int i=0;i<depth;i++)
63 // outfile << "\t";
64 /**************INDENTATION*****************/
65 outfile << "Entering;" << JoinPoint::signature() << ";;;;";
66 /*************GLOBAL VARIABLES******************/
67 outfile << variableInTheSubjectCodeBase;
68 /*************GLOBAL VARIABLES******************/
69 outfile << JoinPoint::filename() << endl;
70 }
71 advice execution("% ...::%(...)" && !"void ...::%(...)") : after()
72 {
73 stringstream ssSt;
74 stringstream ssDfn;
75 std::ofstream outfile;
76 outfile.open("out.txt", std::ios_base::app);
77 JoinPoint::Result res = *tjp->result();
78 /**************INDENTATION*****************/
79 //for(int i=0;i<depth;i++)
80 // outfile << "\t";
81 /**************INDENTATION*****************/
82 outfile << "Exiting;" << tjp->signature()<< ";"<< res << ";;;";
83 /*************GLOBAL VARIABLES******************/
84 outfile << variableInTheSubjectCodeBase;
85 /*************GLOBAL VARIABLES******************/
86 outfile << JoinPoint::filename() << endl;
87 depth--;
88 }
89 advice execution("void ...::%(...)") : after()
90 {
91 stringstream ssSt;
92 stringstream ssDfn;
93 std::ofstream outfile;
94 outfile.open("out.txt", std::ios_base::app);
95 /**************INDENTATION*****************/
96 //for(int i=0;i<depth;i++)
97 // outfile << "\t";
98 /**************INDENTATION*****************/
99 outfile << "Exiting;" << tjp->signature() << ";;;;";

100 /*************GLOBAL VARIABLES******************/
101 outfile << variableInTheSubjectCodeBase;
102 /*************GLOBAL VARIABLES******************/
103 outfile << JoinPoint::filename() << endl;
104 depth--;
105 }
106 };
107 #endif

Listing A.1: sample aspect source code for execution tracing

82 Appendix A: Profiler

A.2 Entry and Exit Hook Functions

As mentioned in the section 4.1 the references of entered and exited functions

and their arguments are extracted from the registers by manipulating the program

context in the registers. The functions are defined in a c++ library project, which

can be linked with any c/c++ project to obtain execution traces.

Listing A.2 shows the corresponding source code. The manipulation starts by

pushing all the registers to the stack. Then the stack pointer is moved by 32 bytes to

address the newly added data. Finally, the function that receives the stack pointer in

its first argument is called. The top of the stack contains the address to the current

line of code (in the subject code’s function that is just entered). Since the subject

function is just entered, and the instruction calling the function is 5 bytes long, this

amount can be subtracted from the value at the top of stack to get the address of the

current function call.

The values of the function parameters can also be accessed in a similar way. For

parameter i of the function, if the parameter is a numeric or character value, the

value is stored at location [2 + i] of the stack. If the parameter is a pointer (for

instance, string or instance of a struct), its reference is stored in the given location

which can be used to print the value of the parameter.
1 extern "C" __declspec(naked) void __cdecl _penter()
2 {
3 _asm
4 {
5 pushad // save all general purpose registers
6 mov eax, esp // current stack pointer
7 add eax, 32 // calculate the pointer to the return address

by adding 4*8 bytes. (8 register values are pushed onto stack which
must be skipped)

8 push eax // push pointer to return address as parameter
to EnterFunc

9

10 call EnterFunc
11

Appendix A: Profiler 83

12 popad // restore general purpose registers
13 ret // start executing original function
14 }
15 }
16

17

18 extern "C" __declspec(naked) void __cdecl _pexit()
19 {
20 _asm
21 {
22 pushad // save all general purpose registers
23 mov eax, esp // current stack pointer
24 add eax, 32 // calculate the pointer to the return address

by adding 4*8 bytes. (8 register values are pushed onto stack which
must be skipped)

25 push eax // push pointer to return address as parameter
to ExitFunc

26

27 call ExitFunc
28

29 popad // restore general purpose registers
30 ret // start executing original function
31 }
32 }

Listing A.2: penter and pexit function definitions

In addition to the references to the selected function, references to three more

functions are passed in step 3 of Figure 4.1. The purpose of these references are to,

(1)-indicate where tracing should start, (2)-obtain the reference to the state struct

instance and (3)-indicate the end of execution. The reason for this is explained below.

The print statements for state fields are automatically generated by the static analysis

tool explained in section 4.1 and appended to the profiler. The profiler is then hooked

to the solution through an automated script and both projects are compiled.

Referring to the Listing A.3 and the function references explained in the above

text, when the subject program is executed, the reference to the function (1) at the

entry point indicates the starting point of the execution and the tracing starts here.

For every following function entry, the EnterFunc function inside the profiler is called

with the current stack pointer. The address of the function is searched inside the

list passed to the profiler in step 3. If it exists, the function is traced. Similarly, on

84 Appendix A: Profiler

entering the function whose reference is contained in the second additional reference

(2), the reference to the global instance of struct is saved. In fact, the referenced

function is called with the struct instance as one of its arguments. The saved reference

to the instance is used by the PrintStateFields function to print the values. The

library maintains a buffer of 100KB of trace lines before writing to the file which

reduced the system interrupts and optimizes the performance of the profiler. The

buffer size can be increased in configuration to further optimize the profiler in the

cases when a large number of functions are selected. If the execution is finished and

the buffer still has some data, the reference to the last of the additional functions

helps the profiler in dumping the remaining lines of traces to the trace file.

On the invocation of ExitFunc, the address in the stack pointer refers to the last

line of the function exiting in the subject code base, where its information is not

readily available. However, to trace the function name we need the address to the

first line of function which is also passed from the main file. One possible solution

for this is getting the size of each function on the run-time and subtracting it from

the address of last line. The option works for most cases since the static analyzer can

take care of the order of the functions they are declared at. However, it doesn’t work

if there are declarations of structs or enumerations between function declarations.

The alternative approach is using the DebugHlp library which is shipped with

all versions of Windows. Using the SymFromAddr function from the mentioned

library, one can get the name of the symbol from its address, for a function or a

struct instance. However, since this is a debug library, and although the library can

be used with release mode binaries, function calls to this library are expensive and

Appendix A: Profiler 85

can affect the performance of the original execution. Hence, calls to this function

need to be optimized by only calling it once for any function called in the subject

program, including the primitive functions such as printf, scanf etc. Please refer to

the ExitFunc method in Listing A.3 to view the optimized code. Another limitation

of the DebugHlp library is that it is not thread safe. Hence if an application is

multithreaded, the above profiler will only generate complete execution traces of the

first thread while the remaining traces will only contain entry method lines.
1

2 bool startTracing = false;
3 HANDLE process;
4 state_struct * address = 0;
5 char traceFile[200] = "C:\\Automated-Traces\\Configuration-Date-

ExecutionScenario.log";
6

7 void _stdcall ExitFunc0(unsigned * stack)
8 {
9 if(startTracing){

10 if (IsExistInIgnoringReferenceList(stack[0]))
11 return;
12 SYMBOL_INFO * mysymbol;
13 Signature * f = FuncTable;
14 bool found = false;
15 while (f->function)
16 {
17 if (f->endAddress != NULL && (void *)stack[0] == f->endAddress)
18 {
19 found = true;
20 linesBuffer = linesBuffer + "Exiting " + f->name + ";\n";
21 if (address != 0)
22 PrintStateFields(0);
23 break;
24 }
25 f++;
26 }
27

28 if (found)
29 return;
30 mysymbol = (SYMBOL_INFO *)calloc(sizeof(SYMBOL_INFO) + 256 * sizeof(

char), 1);
31 mysymbol->MaxNameLen = 255; mysymbol->SizeOfStruct = sizeof(

SYMBOL_INFO);
32 SymFromAddr(process, (DWORD64)((void *)stack[0]), 0, mysymbol);
33 char temp[MAX_TEMP_LENGTH];
34 strcpy_s(temp, "

");
35 wsprintf(temp, "%s", mysymbol->Name);
36 if (my_strstr(mysymbol->Name, "std:") || my_strstr(mysymbol->Name, "

el:") || my_strstr(mysymbol->Name, "printf") || my_strstr(mysymbol->
Name, "scanf")){

37 insertReferenceToIgnore(stack[0]);
38 return;

86 Appendix A: Profiler

39 }
40 f = FuncTable;
41 if (mysymbol->Name[0] != ’\0’)
42 while (f->function)
43 {
44 if (mystrcmp(f->name, temp))
45 {
46 found = true;
47 f->endAddress = (void *)stack[0];
48 linesBuffer = linesBuffer + "Exiting " + f->name + ";\n";
49 if (address != 0)
50 PrintStateFields(0);
51 break;
52 }
53 f++;
54 }
55 if (!found)
56 {
57 insertReferenceToIgnore(stack[0]);
58 }
59 free(mysymbol);
60 }
61 }
62

63 void _stdcall EnterFunc0(unsigned * stack)
64 {
65 if (ProcessDetachReference == (void *)(stack[0] - 5))
66 {
67 WriteToFile(true);
68 }
69

70 if (isFirstLoad && initFunctionReference == (void *)(stack[0] - 5))
71 {
72 process = GetCurrentProcess();
73 SymInitialize(process, NULL, TRUE);
74 isFirstLoad = false;
75 FILE * pFile = fopen(traceFile, "w+");
76 time_t now = time(0);
77 tm* localtm = localtime(&now);
78 fwrite("Start Time: ", sizeof(char), 12, pFile);
79 fwrite(asctime(localtm), sizeof(char), strlen(asctime(localtm)),

pFile);
80 fwrite("\n", sizeof(char), 1, pFile);
81 fclose(pFile);
82 startTracing = true;
83 return;
84 }
85 if (once && stateFieldsInitReference == (void *)(stack[0] - 5))
86 {
87 address = (ac_state *)stack[2];
88 once = false;
89 }
90 if (startTracing) {
91 void * pCaller = (void *)(stack[0] - 5); // the instruction for

calling _penter is 5 bytes long
92 Signature * funct = FuncTable;
93 while (funct->function != NULL)
94 {
95 if ((void *)(stack[0] - 5) == funct->function)
96 {
97 if (address != 0)

Appendix A: Profiler 87

98 PrintStateFields();
99 linesBuffer = linesBuffer + "Entering " + funct->name + ";\n";

break;
100

101 }
102 funct++;
103 }
104 }
105 }
106

107 void PrintStateFields()
108 {
109 linesBuffer = linesBuffer + "field1=" + std::to_string(((state_struct

*)address)->field1) + ";";
110 linesBuffer = linesBuffer + "field2=" + std::to_string(((state_struct

*)address)->field2) + ";";
111 linesBuffer = linesBuffer + "\n";
112 WriteToFile(false);
113 }

Listing A.3: EnterFunc and ExitFunc function definitions

A.3 Trace Processor

Listing A.4 demonstrates the scenarios encountered when processing a trace file in

step 6. The first scenario can be seen in the trace from line 1 to 8. While processing

the trace file, Function1 is pushed to stack on reading Entering Function1, with the

state values in the line before. Then Function2 is pushed with the values on Entering

Function2. On reading Exiting Function2, Function2 is popped from the stack after

comparing the field. Since the values of state fields in the lines after Exiting Function2

and before Entering Function2 are the same, Function2 is not moved to the processed

trace file. While reading Exiting Function1 at line 7, Stack is popped and “before

enter Function1” and “after exit Function1” values are compared. Since the values

are different, Function1 is recorded in the processed trace file with the the modified

values. Similarly, for second scenario from line 9 to 16, when popping Function2

the values at line 11 and 14 are compared. Since they are different, Function2 is

88 Appendix A: Profiler

recorded in the processed trace file. The third scenario can be seen from line 17 to

24. Processing this scenario, Function1 will be recorded in the processed trace file as

the one responsible for the changes made to the state fields.
1 field1=0, field2= 0
2 Entering Function1;
3 field1=1, field2= 1
4 Entering Function2;
5 Exiting Function2;
6 field1=1, field2= 1
7 Exiting Function1;
8 field1=1, field2= 1
9 field1=1, field2= 1

10 Entering Function1;
11 field1=1, field2= 1
12 Entering Function2;
13 Exiting Function2;
14 field1=2, field2= 2
15 Exiting Function1;
16 field1=2, field2= 2
17 field1=2, field2= 2
18 Entering Function1;
19 field1=2, field2= 2
20 Entering Function2;
21 Exiting Function2;
22 field1=2, field2= 2
23 Exiting Function1;
24 field1=3, field2= 3

Listing A.4: Sample Trace

Bibliography

[1] GH. https://msdn.microsoft.com/en-us/library/xc11y76y.

aspx. Last accessed 2016-05-16.

[2] AspectC++. https://www.aspectc.org/. Last accessed 2016-05-07.

[3] clang. https://clang.llvm.org/. Last accessed 2017-05-16.

[4] Z. A. Al-Sharif. An Extensible Debugging Architecture Based on a Hybrid De-

bugging Framework. PhD thesis, University of Idaho, 2009.

[5] A. W. Biermann and J. A. Feldman. On the Synthesis of Finite-state Machines

from Samples of Their Behavior. IEEE transactions on Computers, 100(6):592–

597, 1972.

[6] M. Böhme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and A. Zeller.

Where is the Bug and How is it Fixed? An Experiment with Practitioners.

In Proceedings of the 11th Joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, ESEC/FSE 2017, pages 1–11, 2017.

[7] L. C. Briand, Y. Labiche, and J. Leduc. Toward the Reverse Engineering of

89

https://msdn.microsoft.com/en-us/library/xc11y76y.aspx
https://msdn.microsoft.com/en-us/library/xc11y76y.aspx
https://www.aspectc.org/
https://clang.llvm.org/

90 Bibliography

Uml Sequence Diagrams for Distributed Java Software. IEEE Transactions on

Software Engineering, 32(9):642–663, Sep 2006.

[8] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot. Modisco: A Model Driven

Reverse Engineering Framework. Information and Software Technology, 56(8):

1012–1032, Aug 2014.

[9] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and R. Koschke. A Sys-

tematic Survey of Program Comprehension Through Dynamic Analysis. IEEE

Transactions on Software Engineering, 35(5):684–702, Sep 2009.

[10] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller. Mining object behavior

with adabu. In Proceedings of the 2006 international workshop on Dynamic

systems analysis, pages 17–24. ACM, May 2006.

[11] M. D’Ambros, M. Lanza, and R. Robbes. An Extensive Comparison of Bug

Prediction Approaches. In Mining Software Repositories (MSR), 2010 7th IEEE

Working Conference on, pages 31–41. IEEE, May 2010.

[12] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko. Fsm-

based Conformance Testing Methods: A Survey Annotated with Experimental

Evaluation. Information and Software Technology, 52(12):1286–1297, May 2010.

[13] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,

and C. Xiao. The Daikon System for Dynamic Detection of Likely Invariants.

Science of Computer Programming, 69(1):35–45, Dec 2007.

Bibliography 91

[14] G. Friedrich, M. Stumptner, and F. Wotawa. Model-based Diagnosis of Hardware

Designs. Artificial Intelligence, 111(1):3–39, Jul 1999.

[15] M. Gabel and Z. Su. Javert: Fully Automatic Mining of General Temporal

Properties from Dynamic Traces. In Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of software engineering, pages 339–

349. ACM, Nov 2008.

[16] M. Gabel and Z. Su. Symbolic Mining of Temporal Specifications. In Proceedings

of the 30th international conference on Software engineering, pages 51–60. ACM,

May 2008.

[17] N. Gruska, A. Wasylkowski, and A. Zeller. Learning from 6,000 projects:

Lightweight Cross-Project Anomaly Detection. In Proceedings of the 19th in-

ternational symposium on Software testing and analysis, pages 119–130. ACM,

Jul 2010.

[18] S. Hassan, U. Qamar, T. Hassan, and M. Waqas. Software Reverse Engineering

to Requirement Engineering for Evolution of Legacy System. In IT Convergence

and Security (ICITCS), 2015 5th International Conference on, pages 1–4. IEEE,

Aug 2015.

[19] D. Hiebert. Exuberant ctags, 1999.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,

and J. Irwin. Aspect-Oriented Programming. ECOOP’97Object-oriented pro-

gramming, pages 220–242, 1997.

92 Bibliography

[21] M. Kim and A. Petersen. An Evaluation of Daikon: A Dynamic Invariant De-

tector, 2004.

[22] K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the sbbadingo one

dfa learning competition and a new evidence-driven state merging algorithm. In

International Colloquium on Grammatical Inference, pages 1–12. Springer, 1998.

[23] D. Lo and S. Maoz. Scenario-based and Value-based Specification Mining: Better

Together. Automated Software Engineering, 19(4):423–458, Dec 2012.

[24] D. Lo, S.-C. Khoo, J. Han, and C. Liu. log4Net. https://logging.apache.

org/log4net/. Last accessed 2017-06-15.

[25] D. Lo, S.-C. Khoo, J. Han, and C. Liu. Mining Software Specifications: Method-

ologies and Applications. CRC Press, May 2011.

[26] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic Generation of Software Be-

havioral Models. In Proceedings of the 30th international conference on Software

engineering, pages 501–510. ACM, May 2008.

[27] H. Malik, H. Hemmati, and A. E. Hassan. Automatic Detection of Performance

Deviations in the Load Testing of Large Scale Systems. In Proceedings of the

2013 International Conference on Software Engineering, pages 1012–1021. IEEE

Press, May 2013.

[28] S. Maoz. Using Model-based Traces as Runtime Models. Computer, 42(10), Oct

2009.

https://logging.apache.org/log4net/
https://logging.apache.org/log4net/

Bibliography 93

[29] C. Mateis, M. Stumptner, and F. Wotawa. Modeling Java Programs for Diag-

nosis. In Proceedings of the 14th European Conference on Artificial Intelligence,

pages 171–175. IOS Press, Aug 2000.

[30] W. Mayer and M. Stumptner. Model-based Debugging–state of the Art and

Future Challenges. Electronic Notes in Theoretical Computer Science, 174(4):

61–82, May 2007.

[31] M. K. Ramanathan, A. Grama, and S. Jagannathan. Static Specification In-

ference Using Predicate Mining. In ACM SIGPLAN Notices, volume 42, pages

123–134. ACM, Jun 2007.

[32] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and P. Martin.

Assisting Developers of Big Data Analytics Applications When Deploying on

Hadoop Clouds. In Proceedings of the 2013 International Conference on Software

Engineering, pages 402–411. IEEE Press, May 2013.

[33] D. Spinellis. Effective debugging. 2017.

[34] R. Taylor, M. Hall, K. Bogdanov, and J. Derrick. Using Behaviour Inference

to Optimise Regression Test Sets. In IFIP International Conference on Testing

Software and Systems, pages 184–199. Springer, 2012.

[35] A. Valdes and K. Skinner. Adaptive, Model-based Monitoring for Cyber Attack

Detection. In International Workshop on Recent Advances in Intrusion Detec-

tion, pages 80–93. Springer, Aug 2000.

94 Bibliography

[36] T. Vogel, A. Seibel, and H. Giese. Toward Megamodels at Runtime. In Pro-

ceedings of the 5th International Workshop on Models@ run. time at the 13th

IEEE/ACM International Conference on Model Driven Engineering Languages

and Systems (MoDELS 2010), Oslo, Norway, volume 641, pages 13–24, 2010.

[37] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme. Modeling Software

with Finite State Machines: A Practical Approach. CRC Press, 2006.

[38] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. Salahuddin. Reverse En-

gineering State Machines by Interactive Grammar Inference. In Reverse Engi-

neering, 2007. WCRE 2007. 14th Working Conference on, pages 209–218. IEEE,

October 2007.

[39] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on software

fault localization. IEEE Transactions on Software Engineering, 42(8):707–740,

Aug 2016.

[40] H. Zhong, L. Zhang, and H. Mei. Inferring Specifications of Object Oriented Apis

from Api Source Code. In Software Engineering Conference, 2008. APSEC’08.

15th Asia-Pacific, pages 221–228. IEEE, Dec 2008.

[41] T. Ziadi, C. Henard, M. Papadakis, M. Ziane, and Y. Le Traon. Towards a

Language-Independent Approach for Reverse-Engineering of Software Product

Lines. In Proceedings of the 29th Annual ACM Symposium on Applied Comput-

ing, pages 1064–1071. ACM, Mar 2014.

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Problem Description
	Literature Review
	Specification Mining Techniques
	Static Analysis
	Dynamic Analysis
	Instrumentation
	Popular Techniques

	Debugging

	Methodology
	Generating execution traces
	Interactive Merging
	State Machine Presentation
	Web Application
	Select
	Define
	Generate

	Empirical Study
	Objective of the Study
	Interview
	Context
	Subjects of Study
	Pre-interview Tutorial
	Issues
	Interview Design and Setup
	Round 1
	Round 2
	Round 3

	Questions
	Interview Results
	Round 1
	Round 2
	Round 3
	Summary of Interview Results: Answers to RQs

	Threats to Validity

	Conclusion
	Limitations
	Future Work
	Extended User Study
	Fault Augmentation
	Potential Improvements

	Profiler
	AspectC++
	Entry and Exit Hook Functions
	Trace Processor

	Bibliography

