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ABSTRACT

In this dissertation we have studied the posteriors
of parameters of some well-known distributions under
proper and improper priors. Based on Monte Carlo
studies we have deduced the appropriaté prior and
appropriate loss function on the basis of minimum MSE
criterion from amoﬁg a family of priors and loss
functions.

In Chapter One, we have given a brief intorduction
of Bayesian analysis including different types of priors
developed so far.

In Chapter Two, Bayesian estimators of the Pareto-
parameter, B are obtained under the Natural Conjugate
Prior (NCP), Minimal Information Prior (MIP), and
Jeffreys' Invariant Prior (JIP) using the sguared error
loss (SEL), the logérithmic sguared error loss (LSEL),
and a general loss function (GLF). The properties of
these estimators are discussed. Bayes estimators of
B undef MIP and LSEL appeared intractable; as a result
we used Lindley's (1980) approximate method for the
evaluation of the ratio of integrals for the one parameter
case. Monte Carlo studies showed that the LSEL function
with JIP and NCP give smaller MSE than (i) SEL function
with JIP and NCP or (ii) GLF with JIP and NCP. MIP

with all the three loss functions considered gives larger



MSE. We have also obtained the sampling distributions of
the Bayes estimators under JIP and MIP. Both distri-
butions were found to fit Pearson's type II curve.

In Chapter Three, we.considered the scale parameter
a and shape parameter m of Pearson'svtype VII distribution
under JIP when both the parameters are unknown, and a
family of improper priors proportional to l/at and l/mt
when one of the parameters is assumed known. The type
VII distribution does not belong to the general expo-
nential family. As a result no NCP can be generated
and hence no Bayes estimators of the parameters can be
obtained under NCP. The Bayes estimators of the parameters
under JIP did not take simple form. Lindley's methods
for one and two parameters were used. The estimators
based on the maximum 1likelihood (ML) and the method of
moments (MM) were also obtained. For joint estimation
of a and m, Monte Carlo studies showed that the Bayesian
method led to smaller MSE than the other two. The
goodness of fit for Pearson's type I curve, for both
the sampling distributions of a and m (for joint esti-
mation), were tested by Chi-~square, Cramér von-Mises
and Kolmogorov-Smirnov statistics.

In Chapter Four, we considered the Rayleigh distri-
bution and obtained Bayes estimators of o, 02 and relia-

bility function Ry under JIP and MIP with SEL. Monte



vii.

Carlo studies showed that the MLE of o, 02 and Rt have
slight edge over their Bayesian counterparts. We have
also obtained the equal-tail and Highest Posterior
Density (HPD) credible intervals for o, Rt’ and a
future observation .

Iﬁ Chapter Five, we considered the Bayesian estima-
tors of the parameters ¥ and 02 of a normal distribution
under NCP and using SEL, LSEL and GLF. For estimation of
02, Monte Carlo studies showed that the LSEL results in
a smaller MSE than the GLF and SEL for all combinations
of the prior parameters. Bayes estimates of Yy were found
to be guite robust for the choice of various loss
functions and prior parameters while those of 02 were
less so.

In Chapter Six, we considered the simple regression
model in orthogonal form and obtained the Bayes estimators
of (a,B) and 02 when the prior distributions of o and
B are uniform and that of 02 is inverted gamma. Bayes

estimators of (a,B) in this situation are the same as

the MLE of (a,B). Bayes estimators of (o,B) were also

. . 2
obtained under a bivariate normal prior for (a,B); o
was assumed known. Under the bivariate normal prior for

(¢,B), the Bayes estimators of o and B did not yield
simple form. Lindley's (1980) method was again used.

Monte Carlo studies showed that the Bayes estimators of



viii.
(a¢,B) based on the bivariate normal prior have considerably

lower MSE than their ML counterparts.
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CHAPTER ONE

INTRODUCTION AND SUMMARY

1.1 BAYES' THEOREM

The basic ingredient of Bayesian analysis is Bayes'
Theorem (1763), the first attempt known to us to ration-
alize the process of inductive reasoning. The process of
learning from experience had been in practice from time
immemorial. Bayes' theorem can be used to bring the
class of inductive inferences within the domain of the
theory of probab;lity. A philosophical extension to
Bayes' theorem can be made where probability represents
a degree of belief rather than a relative fregquency of
'success’'. The belief that we have in a proposition
depends on the state of our current information, and is
therefore, in general, always a conditional probability,
conditional on the state of information. As the infor-
mation changes, we revise the degree of belief in the
proposition. This process of revising probabilities
after obtaining new information is the essence of
learning from experience and can be made by using a simple
rule of probability theory, viz., Bayes' theorem. Bayes'
problem was: given a certain data, what is the proba-
bility that a particular type of population might have
given rise to it? Thus, Bayes' theorem is often referred

to as the theorem of inverse probability.
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Consider a set of k mutually exclusive and exhaus-

tive events E_,E

1 2,...,E , of which none has zero proba-

k

bility. Let D be another event which can occur only if

one of the events E.,E_.,...,E

1rE, x occurs; then by the

definition of conditional probability,

P(E.)P(D|E.)
1 1

P(EiID) = , (1.1)
IP(E,)P(D|E,)
1 1
1
for i = 1,2,... orAk.

This formula, known as Bayes' theorem (Mosteller, Rourke
and Thomas (1970)) was proposed by Reverend Thomas Bayes
(1702-1761) and was posthumously published in 1763.
Although (1.1) represents an application of conditional
probability which gives the change in the probability of
Ei with the additional information that D has occurred,
it has far-reaching implications in the development of a
new school of thougﬂt in Statistical Inference, widely
known as the school of BAYESIAN INFERENCE.

In (1.1), P(Ei) is called the prior probability and
P(Ei[D) is called the posterior probability of the event
Ei conditional on the event D.

The equation (1.1) simply represents a conditional
probability — a probébility that the event Ei occurs on
the basis of the prior information about Ei as weli as
information contained in or provided by the event (or

data) D.



1.2 BAYES' THEOREM IN CONJUNCTION WITH LIKELIHOOD FUNCTION

Let x = (x.,x ,...,xn) be a random sample of n obser-

12

vations whose probability density f(x[e) is completely
known excepﬁ it depends oh the parameter 6, where 6 may
be a vectorbor real valued parameteri Let f(x,08) denote
the joint densoty of the random variable x and 6. Then

f(x,0)

g(8)f(x]6)

h(x)T(8]x).
Thus, given the observed data x, the conditional density
of 6 is

g(8)f(x|8)
h (x)

m(8|x)

Also, f(g]G) is a function of & for given x and is called
the likelihood of 6. Denoting f(g[@) by 2(516), the
posterior density of 8 can be written as

T(8]x) « g(8)e(x|o),
that is,

I(6|x) = k-g(6)L(x]e),
where k is a normalizing factor and is given by

kT =fn(el§)de =f g(8)L(x|e)as,
9] 9]

where § is the parameter space.
Hence,
g(8)2(x]8)

nee|x) = (1.2)
fg(e)z(gle)de
9
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where g(6) is the prior density of 6 representing our
knowledge about parameter 6 before the data X are drawn
and the likelihood 2(§|9) representing the information
about © contained in the sample X.

'H(Slg) is known as the posterior density of 6 given
the dafa X, which summarizes all the information we have

about 6.

1.3 INFERENCES ON THE BASIS OF BAYES' THEOREM

The inferences in classical approach are based on
the likelihood function in which a real or vector-valued
parameter 6 is treated strictly as an unknown constant.
On the ofher hand, in Bayesian approach 6 is treated as
a random variable having a probability distribution
representing a formalization of the information on
prior to any experimentation. For example, a quality
control department of an industry may want to know the
process average at the present point in time. The
department knows that the process average is affected
by random factors that cause it to change over time.
Also the past relative frequency distribution over time
of the process average is available to the department.
Thus, the process average at any point in time may be
treated as a random variable and the relative frequency of
the past data may be used as the prior distribution of

the processed average.



The prior information on 6 may be objective (data
based), or subjective (non-data based), or a mixture of
both. The concept of objective probability regquires ideas
of repeated trials and stabilizing of relative frequencies.
If we have enough information available from past records,
then we may set up a data based prior distribution for 8.
However, the most controversial form of the prior is the
subjective prior which takes into account one's degree of
belief about 6 based on personal judgement and experience.
For example, consider the hypothesis that the percentage
of mercury content in pickerel in Lake Winnipeg is p_-
This is an uncertainty and as a result people will have
different opinions regarding this hypothesis. Someone
might believe.one peréon's estimate to be too high or
too low. Through the concept of subjective probability,
it is possible to assign to a hypothesis a probability,
P(H), which will numerically represent a person's degree
of belief about uncertainty. Then an experiment is
undertaken to combine each person's prior probability
with the experimental evidéence. Bayes' theorem allows
us to calculate the conditional probability P (H|DATA)
for each person which is simply the revised belief about

the hypothesis after observing the experimental evidence.



Why Bayesian?

Bayes' theorem provides a formal mechanism by which
prior information about a parameter ® may be combined with
information contained in the data to give the posterior
distribution of 6, which effectively summarizes all the
information_we have about 6.

The Bayesian approach to inference incorporating
prior and sample information is illustrated in Figure 1

(Evans, 1976¢6).

Pre~-sample information on 8 Sample information, X
¥ +
Prior distribution, g(8) Likelihood function,
2(x]|8)

Apply Bayes' Theorem
Posterior distribution, T (8]|x) = g(8)2L(x]8)
Inference
FIGURE 1

Further, given the prior and the likelihood, the
posterior distribution is unique and there is no such
problem as the choice of which statistic to be used, as
occurs in the sampling theory framework.

In the case of a scale parameter 6 (0 < 8 < =), the

Bayesian estimate will always be positive, while in the



sampling theory framework, the estimate for a positive
parameter can be negative. For example, a uniformly
minimum variance unbiased estimator for 92 in N(6,1) is
~2 .2

X - 1/n which may be negative for x < 1/n, a result
which is totally unacceptable.

Bayesian framework is specially suited for dealing
with nuisance parameters. Cohsiderable difficulties
arise in dealing wi£h nuisance parameters using sampling
theory approach. In Bayesian framework one may obtain
the posterior distribution of parameter(s) of interest by
integrating out fhe nuisance parameters.

‘It can be applied to a very wide range of problems
not necessarily restricted to normal family.

It allows explicit use of priors and offers a well

defined and straightforward procedure for analyzing a

problem.

1.4 ATTEMPTS MADE TO OVERCOME 'NOT KNOWING' THE PRIOR

DISTRIBUTIONS

Bayes' theorem has been subjected to extreme criticism
since the time of Bayes. In recent years Bayesian analysis
has gained a much greater applicability in Statistical
Inference. As the use of Bayes' theorem increased, so
did the criticism. The main thrust of the criticism by

the classical theorists, is that it is difficult to



accurately formulate and assess prior densities. Much

work has been done on the problem of 'not knowing' priors,

notably by de Finetti (1964), Jeffreys (1961), Raiffa

and Schlaifer (1961), Edwards, Lindman and Savage (1963),

and éellner (1971) . We consider below‘a few approaches:

(i) The Principle of Stable Estimation or the Principle
of Precise Meésurements:

Thié principle (Edwards, Lindman and Savage (1963)),
states that the posterior distributions derived from
uniform prior densities are adeguate approximations to
the actual posterior distributions. That is, we can
approximate the posterior distribution by the likelihood
function in situations in which the prior g(8) is gently
changing in the region where the likelihood is large and
if g(9) at no other point is of sufficiently great
magnitude as to become appreciable when multiplied by the
likelihood (Box and Tiao (1973)). As a result we may assume
the prior distribution to be uniform if this condition is
attainéd. The principle of stable estimation is useful in
practice since in many experimental situations, the
likelihood is expected to exert a much stronger influence
on the final result fhan the initial opinions, for other-
wise there would be little Jjustification for carrying out

the experiment.



(ii) Jeffreys' Rule of Non-Informative Prior (NIP)

The adoption of improper priors when we know little
about the parameters were justified by Jeffreys (1961)
based on the invariance af the densities under parametric
transformations. The development of invariance property
follows.

If we have no prior knowledge or vague prior knowledge
about the location parameter 6, then we also have vague
prior knowledge about the linear transformation

n(B) = ad + B
where g, B are constants and o # 0. If we take a uniform
density for ¢, then we should also take a uniform priorxr
for n(8) since from the distribution theory if ¢ has a
uniform distribution, then n(8) has also a uniform dis-
tribution if it is a linear function of #§.

Again, if 8 is a scalar parameter, obviously it has
a range 0 to «, and if we have wvague prior knowledge
about 6, then we have also the same vague prior knowledge
about any power trnasformation of the form

pie) = 8%, v # 0.

Also, if log 6 is uniformly distributed, the prior

g(6) = 1/6, then the distribution of y(8) is proportional
to 1/v(6), for () > 0. We show this fact with the
following example:

Suppose

vie) = 8%, v (8) = ve' %,
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|
ot
pt
-

£[y(8)] = £(6) v (8)] % =

Therefore,

fly ()] = 7(6)

Jeffreys'Iﬁvariant Prior (JIP) is defined by
(Jeffreys, 1961)
g(8) = /Lo,
where I(8) i1s Fisher's information about 8 contained in
a single observation. This prior is 'improper' in
the sense

fg(eme 4 1.
Q

When the range of a random variable does not depend upon

the parameter under consideration, Jeffreys' Invariant

Priors (JIP) follow the following working rules:

(i) if the parameter space is the entire real line,
g(8) may be taken to be constant, i.e., to be uniformly
distributed;

(ii) if the parameter space is the non-negative real
line, g(8) may be taken proportional to 1/6, i.e., log §©
to be uniformly distributed.

We will illustrate how to find JIP when X has the

well-known normal probability density function

f(xlu,o) - L exp{— 12 (x—u)z},
Y2m © 20

-0 < wx < ®, = < U < @, o > O;

2
log f(xlu,c) = - % log(27) - log ¢ =- (x-u) ,
20

and
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2 log £ _ 1 . a%109 £ _ _ 1
3y .2 52 .2
3 log £ _ 1 _1 2
30 B s T 3.(x M)
(o]
. (1.3)
2
5" log £ _ 1 _ 3 ... 2
2 2 g ‘*TH
3o o o
2109 £ _ _ 2
duaoo 3 K
[e)
3%10g £ 2 3%10g f 3%10g f) 1
..E———-——-—-———:-——-—, —E-—————:O, -F | — ) = —=
2 2 3oady 2 J 2
90 o du c

Hence, the Fisher's information matrix (Kendall and Stuart,

1973) is given by

2/02 0
I(Urc) = 2
0 l/0

Thus, the joint JIP for (u,0) is given by

1
g(u,o) « lI(u,G>|li = = .
o
If ¢ is Xknown,
2
I(U) = —E[‘B—‘—E—%‘E‘} = .__:.1_'. ,
2
o o]

and

constant.

g = [1an]* =2

Similarly, if py is known,

glo) = |1(o)|*= L.

Bayes and Laplace themselves used uniform priors

in related problems. The weight of the authority of these
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'master minds' has led to the general idea that 'uniform
prior is the answer'. Jeffreys (1961) makes an interesting
comment that there is no more need for this kind of

belief than to say that.an oven which successfully cooked
roast beef once cannot be used for cooking anything but
roast beef,

Why improper priors?

These priors are very convenient for dealing with compli-
cated situations, particularly with nuisance parameters.
They are powerful technigues but indiscriminate use of
them, without a proper understanding of the problem and
information available, may lead to inconsistent and
dubious results (Dawid, Stone and Zidek, 1973).

(iidi) Minimal Information Prior

The main objectives of generating improper or non-
informative priorshare to express ignorance and to obtain
priors which possess certain invariance property. Sometimes,
the second objective 1s in conflict with the first; i.e.,
by insisting on invariance we may face problems in
achieving the objective of expressing ignorance adeqguately.
A solution has been proposed (Zellner, 1971) to this
problem in information theoretic approach — what is
termed as the 'minimal information prior'. These priors
are dependent on a particular parameterization used.
Following Zellner (1971), we develop the technigue of

obtaining a minimal “‘nformation prior (MIP).
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Let f(x‘@) be the probability density function of

X given 0; then define

1_(8) = j}(xle)log{f(xle)}dx

as measuring the information in f(xle). Define
I = ‘fx (8)g(0)ds
X x

as measuring the prior average information in the data,

where g{(8) 1is a proper prior density function.

Let
j&(e)log{g(e)}de

measure the information in the prior g(8). Then
G = ‘flx(é)g(e)de - jé(e)log g(6)dse

represents the gain in information associated with an
observation x over the information in the prior g(9).
The minimal information prior density is defined as one
which maximizes G by varying g(8) subject to

~fg(e)d6 =1,

that is, maximizes

U = [IIX(G)Q(S)dG - fg(e)log g(e)deJ + .\[fg(e)de’ - l]

where A is the Lagrange multiplier.

To maximize U,

0U
_..____—.__:O
3g (8)
gives
Ix(e) -1 - log g(8) + A = 0,
that is,

g(B8) = k exp{Ix(G)}, (1.4 )



k is a normalizing constant.

Consider the density

14.

1 2

f(X[U) = exp{" ::2" {(x-u) }r - < X, U < «,

/2ﬂ

then

r 1 1 2

Ix(u)_— J {f 5 log 27 - 5 (x~u) }f(x!u)dx
1
= -3 (log 271 + 1)

which i1s independent of u.

For proper g(u),

G = - % (log 27 + 1) - jé(u)log g (u)du

is maximized if
j;(u)log g(u)du

is minimized subject to

Jg<u)du = 1.

Thus,
1l + log g(u) + A = 0,
giving,

g(u) = exp{-(1 + x)}

A is Lagrange multiplier,

constant,

which is the same as Jeffreys' NIP.

We again consider the density

£(x|u,0) =

we obtain

1 exp!-
Y271 ©

when both y and ¢ are unknown.

20

1 2
> (x-u) }

Working the same line,
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1
g(U,U)"‘ g ’

i.e., the minimal information prior for p and ¢ shows that
they are independent and p and log 0 are uniformly distri-

buted. While Jeffreys' prior,

g(u,0) = !I<u,o)ll§m —% (1.5)
(¢}

Jeffreys justified this departure keeping the fact in mind
that if p and 0 are known to be independently distributed
then the rule should be applied separately to obtain the
joint priecr, g(u,0) as the product of their marginal
priors, i.e.,

g(u,0) = g(ug(o) = % : (1.6)

(iv) The Natural Conjugate Prior (NCP) Densities

A class of priors was developed by Raiffa and Schlaifer
(1961) for the densities belonging to the general expo-
nential family possessing ;ufficient statistics of fixed
dimensiona1i£y. This family is mathematically tractable
in the sense that it is reasonably easy to obtain a
posterior distribution. It possesses a very interesting
property that the posteriors obtained by using a member
of this class also belongs to the same class. This
property is termed as "closure under sampling" by Wetherill
(1961) .

We now generate an NCP and demonstrate the above

property. Let the distribution of the random variable
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X be binomial with n trials and the probability, 6 of a

"success", and having the likelihood
L(x|8) = (L)68 (1 --8) , x =0,1,2,...,n. (1.7)

The binomial distribution belongs to the general exponential
famiiy and hence to generate NCP we replace all the guantities
in the kernel of (1.7) dependent on the sample by the
parameters a and B, known as prior parameters (Evans,

1976), to obtain the NCP

g8y = 0% t(1-0)B"t, o0 <8 <1; a, B > 0, (1.8)

that is, 8 has apriori a beta distribution with parameters
a and B. The posterior density of 6 given X = X is obtained

by combining (1.8 ) with (1.7 ) and using (1.2) as

a+x=-1 B+n-x-1
meelx) = F— im0
8a+x—l(l_e)6+n~-x-lde
0
- 1 ea+x—l(l_e)8+n—x~l’ 0 < 8 < 1

B(a+x,B+n~x)

which is also a beta distribution with parameters a+x
and B+n-x. Thus, the posterior has the same functional
form as the prior, and hence the beta priors are closed
under sampling.

(v) Exchangeable Prior Distributions

The idea of exchangeability is due to de Finetti

(1964) . It states that the order of occurrence of a
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sequence of events does not affect the probabilities of
happening of the events. The classical theory terms
"random" and "random sample” may be replaced by the terms
"exchangeable" and "exchangeable items". It is easier
to attach the concept of exchangeability to a seguence of
events than the concept of randomness which involves a
condition of independence and such a condition is sometimes
untenable. To clarify the preceding, we consider the following:
Suppose a box contains an unknown number of cold
tablets and an unknown number of identical léoking aspirin
tablets. If we draw the tablets from the box one after
another and replace each tablet after it is drawn, a
classical theorist will say that the probability that
the second téblet is aspirin is independent of the fact
that the first tablet is aspirin. That is, for him the
conditional probability that the second tablet is aspirin
given that the first tablet is aspirin .is exactly the
same as the unconditional probability that the second
tablet is aspirin. The events in a sequence of drawings
are not independent to an exchangeablist, in the sense that
events which have already occurred give evidence about
occurrence of future events. Thus, the deéree of belief
is changed. In this sense, the conditional probability
of the k-th tablet being aspirin given that the type of

the first (k-1) tablets is known, is dependent on the
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proportion of aspirins observed in the first (k-1)
drawings. And that the probability of obtaining an

aspirin in the k-th draw is not dependent on the particular
order in which the aspirins appeared on the first (k-1)
drawings, but how many of them were aspirins;

For any k distinct events, the probability that a
specified r of them occur and (k-r) of them do not occur,
depends only on k and r and these events follow the
binomial likelihood

P(r,k|6) = 0% (1-0)%"F
for some 6, with 6 having a probaiblity distribution,
g(6) on.[0,1] (Lindley, 1972).

Definition: The guantities X_,X ,...,Xn are exchangeable

12

if the probabilities are invariant under permutations of
the suffixes. Lindley and Smith (1972) used this notion
in Bayesian estimaﬁion for the parameters in linear model
in which they described that one way of obtaining an
exchangeable prior, p(6) is to suppose

n

p(6) = fn p (6, |u)ag )

i=1 *
where p(eilu) for each u, and Q(u) are arbitrary probabi-
lity distributions. Hewitt and Savage (1955) showed that
if exchangeability is assumed for every n, then a mixture
is the only way to génerate an exchangeable distribution.
Also that exchangeability implies that the 6's have the
probability structure of a random sample from a distri-

bution.
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As an example, we consider the linear model
E(Y) = A¢ (1.9)

considered by Lindley and Smith (1972), where,

Y = vector of observations
A = known design matrix
6 = vector of parameters.

For simplicity let us suppose that A is a unit matrix,

then

E(yi) = 0., i 1,2,...,n (1.10)

1

and

2
vy N(ei, g )

This model may arise in agricultural experimentation when
vy is observgd on the i-th variety of average yield Gi.
It often seems reasonable to say that there is the same
amount of information about each of the means ei, i.e.,
the joint distribution of fhe means remains invariant
under permutation of the suffixes. In particular, the

prior opinion about 93 is the same as 9 or any other ei;

9"
similarly for pairs, triplets, etc. That is, Gi are
exchangeable.

We note that the exchangeability assumption will not
hold when one or more varieties are controls and the
others are experimental. In such a situation separate
exchangeability assumptions are to be made — one for

within control varieties and another for within experi-

mental varieties.
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In the model (1.9 ), we suppose
E(ei) = U
and
2

ei ~ N(u, j ). (1.11)

Thgt is, apriori the 1linear Structure'for Gi is analogous
to the linear structure assumed for Y- Lindley and Smith
(1972) following i.J. Good, termed ¥ as a hyper-parameter.
Equatioﬁs (1.10) &@nd (1.11l) above constitute a two-stage
model. We can go further by supposing the hyper-parameters
to have a linear structure that will lead to a three-stage
model, and so on. The specification will be complete when
a prior is attached to the ultimate hyper-parameter. In
this example if we consider a two-stage model, then a
prior has to be attached to u.

Assuming vague prior knowledge for u, Lindley (1971)
has obtained the posterior distribution of ei with posterior

mean,

2 2
y, /0" + y,/1
E(0.] ¥) = 5 5
1/67 + 1/t

where

yo = Eyi/n.

Recently, Lindley and Novick (1981) have used the
idea of exchangeability in situations like analysis of
variance and covariance, contingency tables, and calibra-

tion.
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In this dissertation, we have not used exchangeable
prior density but there is enough scope for research
with this prior which we hope to pursue in future.

A Final Note:

The reyiews of Bayesian Statistics by Lindley (1972)
and (1978) give excellent summaries of recent advancement
in this viewpoint.

Lindley (1975) suggested a moratorium on research
for two years so that all of us in the field of statistics

can read de Finetti (1974, 1975).

1.5 OUTLINE OF THE DISSERTATION

This dissertation is concerned with the study of
the posteriors of parameters of some well-known distri-
butions under proper and improper priors. Based on
Monte Carlo studies we have deduced, on the basis of
minimum MSE criterion, the appropriate prior and the
appropriate loss function from among a family of priors
and loss functions.

In Chapter Two we considered the Pareto distribution

with density

B8
f(xleo,g) = ;;ﬁ_’ 0 < B < », 0 < eo < x < .

o ™

This distribution is useful in economics to represent

the distribution of incomes of individuals whose income
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exceeds a certain limit 90. It has also application in
modelling economic problems involving distributions of
incomes. Rodolfo Bonini»(Allais, 1968) extended and
modified Pareto distribution in the analysis of the
distribution of property. This distribution is also
used in the study of size distributions of firms in
economics (Allais, 1968). It will be interesting to
study the behaviour of the Bayes estimator of B as
against the well-known classical estimators. In this
study, we have assumed the threshold parameter 80

known and obtain the Bayes estimator of B under JIP,
MIP, and NCP and a variety of loss functions. Properties
of these estimators are also discussed. Based on a
Monte Carlo study, the sampling distributions of the
Bayes estimators of B under JIP and MIP are obtained.
Appropriate Pearsonian curves are fitted to these
sampling distributions and Chi-square 'goodness of fit'

test performed.
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In Chapter Three, Bayes estimators of the scale
parameter a and shape parameter m in Pearson's type VII

distribution with density

: 23
r
f(x]a,m) = (m) {l + EEJ , —® < x < o, g > 0,
avm T'(m-%) a 1
> —_—
mTa
are obtained. The families of improper priors used
have densities
1 . .
gl(a)cr < t > 0, for estimation of a when m
a
is known
1 . ,
gz(m)<r < t > 0, for estimation of m when a
m

is known

5 |-

gB(a,m)‘OC A , .for estimation of a and m when both
are unknown.
A special case of the family of improper priors is
Jeffreys' Invariant Prior (JIP) when t = 1.

The estimators based on the classical methods,
namely, the method of maximum likelihood and the method
of moménts are obtained. Based on a Monte Carlo study
these estimators are compared with their Bayesian counter-
parts. Appropriate Pearsonian curves are fitted to the
sampling distributions of the Bayesian estimators under
g3(a,m). The Chi-sgquare, Kolmogorov-~Smirnov and Cramer

von Mises goodness of fit tests are performed.
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In Chapter 4, we considered the Rayleigh proba-
bility density function

2
f(xlc) = —% exp(— ~——}, X, 6 > 0
o 20

and obtained the Bayes' estimators of ¢ and reliability
function, Rt' under MIP and JIP. Based on a Monte
Carlo study, these estimators were compared with
their mi and umvu estimators. HPD and egual-tail
credible intervals for ¢ and Rt have been obtained.
We also considered the prediction of a future obser-
vation.

In Chapter 5, we considered NCP for ¢ for the

two parameter normal density

2
f(XIU,O) = 1 exp {- (x-u) }, -~ < x, U < o,

gvam 2

20
g > 0,

and obtained Bayes' estimators using NCP as well as a
family of improper priors for o and u under a variety
of loss functions. Based on a Monte Carlo study, we
compared the estimators and searched for the optimum
loss function which yvields the minimum mean sguare
estimators for all combinations of prior parameters
involved.

In Chapter 6, we considered the model

E(Y|x) = a + B(x-x).
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Bayes estimatorsof (a,B) are obtained when the prior
distributions of o and B are uniform, and that of the
erroxr variance 02 is inverted gamma, and the distribu-
tions are independent. . The case when (a,B) has a
bivariate normal distribution and 62 is known is also
considered. A Monte Carlo study isAused to compare
the Bayes estimators with their maximum likelihood
counterparts.

The programmes used for Monte Carlo studies were
written in Fortran WATFIV. The University of Manitoba
computer facilities were used. These programmes are
available on réquest.

For a variety of reasons not all the priors and
loss functions mentioned were exhausted in this disser-
tation. For example, NCP was not used in the type VII
distribution, since there are no sufficient statistics
for the parameters of this distribution and hence no NCP
can be generated. Again for the estimation of o and B
in the regression model, the logarithmic squared error
loss function cannot be used for obvious reason of
-0 < g, B < o,

In the limited space of this dissertation, 1t was not
possible to use all the possible combinations of loss
functions and priors; as a result, we had to make some
compromise. This also applies to the goodness of fit

tests to the Pearsonian curves, fitted to the sampling
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distributions of the Bayesian estimators in Chapter Two.

One should be careful that a global conclusion can
hardly be made from Monte .Carlo studies no matter how
extensive they are and as such, the conclusions drawn
may.not apply in general.

The priors and loss functions used in this
dissertation for §arious distributions are shown in
Table 1.1.

TABLE 1.1

Priors and Loss Functions Used in This Dissertation

JIP MIP NCP Loss Functions
Pareto v v v SEL, LSEL, GLF
Type VII Y * No suff. SEL (LSEL and GLF
stat. appeared intractable)
Rayleigh Y **  Similar SEL (LSEL and GLF are
to Pareto similar to Pareto)
Normal 4 * ok Y SEL, LSEL, GLF
Regression v * v SEL (LSEL not possible
since =« < g, B < «;
GLF is intractable)

* Reguires more extensive simulation which will be
continued.

il Under independence JIP and MIP are the same.
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CHAPTER TWO
(*)
PARETO DISTRIBUTION

2.0 INTRODUCTION

We consider the Pareto probability density function

gof

o
< < < < < o
X8+l . O B , O 60 x (2.1)

£(x|06 ,8)
O

The Pareto pdf is often used to represent the distribution

of income X above a known income GO. B measures the degree
of ineguality. Zellner (1971) considered the estimation of
B under Jeffreys' invariant prior. In this chapter we will

examine the behaviour of the Bayesian estimator of the shape
parameter B under the Natural Conjugate Prior (NCP), Minimal
Information Prior (MIP) (Zellner, 1971), and a family of
Non-Informative Prior (NIP) distributions of B subject to

a vareity of loss functions. We will further work out a

Monte Carlo study on the sampling distributions of B*, fit
appropriate Pearsonian system of curves to these distributions

and test their goodness of fit.

2.1 DERIVATION OF NCP, MIP, AND JIP FOR THE PARETO-PARAMETER

Let x = (xl,xz,...,xn) be a random sample of size n
from the pdf (2.1). The likelihood function is given by
n
n, nB R+1 B.n
= F=3 B -— .2
2(x]e_,8) 87607/ T x; (g) "exp(-nBc ) (2.2)
i=1
_ . 1/n _ G
where G = (xl Xy ens xn) and c, = log(e ).

o

(*) Part of the results in this chapter have been published
in the Journal of the Society of Management Sciences
and Applied Cybernetics (SCIMA), Vol. 92, No. 1

(Sinha and Howlader (1980)).
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In order to generate the NCP for B, we have to show
that there exists a sufficient statistic. We may express

the likelihood (2.2) as belonging to the general exponential

family by putting

x(g!eo,m = A(B)*B(x)-exp {c(8)-d(x)}
where
A(B) = expinlogB + (nB)logeo},
n
B(x) = exp{— )X lOgX.},
. i
i=1
c(B) = B
and
n
d(x) = - i logxi

n
which implies that I logxi is sufficient for B

(Hogg and Craig, 1978)

We may re-write (2.2) in the form

n exp(—BcO) n
2(x|e _,8) = B {———-—————} (2.3)
~ o) G
and obtain the NCP for B as
c-1

gl(B) = B exp(-pB), p > 0, ¢ > 1 (2.4)

where ¢ and p are the prior parameters.
c
The normalizing constant of (2.4) is F%c)' Thus, the

NCP for the Pareto distribution is a gamma distribution,

G(PIC) .

The MIP (Zellner, 1971) is given by

g,(B) = exp[IX(B)]
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where
1_(8) = . f(xleo,B)log f(x[eo,e)ax
o
o= /b {logB + Blogb - (B+l)logx}f(x|6‘,5)dx
o o) o
o
= logB + Blogeo - (B+1)E(logx)
- - i
= logB + Blogeo (B+l)(1og6O + B)
- logB - = - 1 - log®
= log g ogo .
Thus
g,(B) = Bexp(- £), 0 < B <= (2.5)

Jeffreys' Invariant Prior (JIP) distribution of 8 is
given by

g5 (8) m_]I(B)I%
where I(B) is Fisher's Information matrix, and is obtained as

g5 (B) = , 0‘ < B < =,

Q i

With g3(8) = (B) in (2.4) when ¢ = 0, p = 0.

1

2.2 POSTERIOR DENSITIES OF B UNDER NCP, MIP, AND JIP

Combining (2.3) and (2.4), the Posterior density of
B is given by

c+n~1

mo(8lx.8 ) = k8 exp{-8(nc_+p) ]

where k is a normalizing constant and is given by

P 5]& T (8|x,6 )ap = —Le *t n)
1 ~ o c+n
0 (nco+p)

Thus
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c+n
+
(nco p) c+n-1

mo(Blx,0 ) = e P exp{-B(nc_ + p)} (2.6)

The posterior (2.6) may be seen to be a G(nco+p, c+n) .
From (2.3) and (2.5), we have the Posterior density

of B under MIP,
Bn+lexpf— (nBc_ + ~18~) }
I, (8[x,8 ) = , 0 < B <o, (2.7)

J; 8n+lexP{—(nBco+ %>}ds

We evaluate the denominator by using the modified Bessel
function of the third kind of order v (Exrdelyi, et al,

1953) given by

@ 2
2 _ -v-1 _z a
;; k (az) ~J; t exp{ 5 (£ + —;)}dt (2.8)

where

k (z) = k (z).

v -v
Replacing z, a, Vv in (2.8) respectively by 2nco, (nco)-%
and ~-(n+2) we have from (2.7),
n+2
(nc )
+1 1
I_(Ble ,x) = = 8" texp{-(nBc + )7,
2 o) 5 o B
2k +2{Z(nc ) ° .
o © 0 < B < =, (2.9)
We now consider a family of improper priors
g(B) « —_ , t > 0. (2.10)
t
8
of which JIP is a particular case with t = 1.

Under the prior (2.10) we have the corresponding

posterior density
n-t+1

(nc )
o

T'(n-t+1)

H3(Bl>§) = Bn—texp(-nBco), 0 < B < =,

t < (n+l). (2.11)
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We generated a sample of size n = 100 from the
Pareto-pdf (2.1) with GO = 5000 and B = .7 and plotted
the posterior distribution (2.11) for t = 1,2,3 in
Figure 1. It appears thgt the farther one deviates from

the JIP, the posterior tends to be less and less robust
since the curves corresponding to t = 2 and t = 3 slip

away from B = .7. It is also evident from the fact that
t

as t increases from unity the prior proportional to B8

also increases for B < 1.

2.3 LOSS FUNCTIONS

In making a decision, the consequence of estimating
the true paramefer 8 by a quantity T is measured by the
losé, L(T,e). Since 6 is unknown, the actual loss in any
situation will not be known but T can be determined for

the data 3 = (x,,X%

1 ,...,xn) for which the expected Posterior

2
loss E[L(T,8)|x] is minimized. We consider the following
loss functions:

(1) squared error loss (SEL):

2

L(T,8) = (T-6) (2.12)
which may be used when decisions taken become gradually
more damaging for a larger error in estimating 6 by T, i.e.,
one pays more for a larger erxor. The expected posterior
loss for this loss function 1is

E[L(T,8)]|x] = f(T—e)2H(6|§)de

which is minimized at
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Thus, under SEL, the posterior mean is the point estimator

for ©.
(ii) Logarithmic squared error loss (LSEL):
2
L(T,8) = (logT - logB) , B >0 (2.13)
3L(T,8) _ 2
5T =7 (logT log8) .
3 .
Thus, 3= / L(T,8)1(8]x)a8 = 0, gives
logT - E(log@[g) = 0
or

logT = E(logelg).

In a Bayesian analysis, a loss function represents
a realistic monetary penalty. The loss functions discussed
above may not be appropriate 1in certain situations and
hence other types of loss functions such as those proposed
by Goodman (1960) and used in El-Sayyad (1967) need to be

investigated.

(iii) A general loss function (GLF) of the form

L(T,08) = A(@)(Tm—em)2 (El-sayyad, 1967) (2.14)

where A (6) is a weight function and m may be positive or
£

negative. In this dissertation we will use A(8) = ©

The Bayvesian estimator of 6 is the solution of
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5% f L(T,8)1(6|x)d® = 0
or
Soaey2(r™e™mr™ tne|xrde = o
ox
r™ELA(8) [x] - ELA(8)8T]x] = 0
or |
. {E[A(O)Gm'x]}l/m. (515
E[A(@)[g]
For A(8) = 1, m = 1, we have the SEL estimator.
It is easy. to show that for A(86) = 1, m -~ 0, GLF
tends to LSEL. To prove this, we divide both sides of

2 , . .
(2.14) by m  which will not change the loss since m is a

constant, giving

-1 g'-1,2
L*(T,8) = A(8) (F—= - ——=])
lim(p -1
Using the result mig(g—ﬁ—) = log p, L*(T,0) takes the form
L*¥(T,0) = A(8)(logT - loge)2 (El-Sayvyad, 1967).

2.4 LLOSS FUNCTIONS AND CORRESPONDING ESTIMATORS
It is shown in Section 2.3 that under the Sguared-

Error-Loss (SEL) function, the Bayes estimator for B,
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B* = E(B]x).

Considering the posterior (2.6) under NCP, we have

B =J; snl<sig>de

+
ctn . 1 (2.16)
nc +p c
o o
max—-likelihood estimator (MLE) of B as n = «. The

corresponding posterior variance

vig|x) = —+112

(nco+p)

Similarly, from (2.9), the Bayes estimator of B under MIP

and SEL is 42

’ (nc )
83 = = \r Bn+2exp{—(nc + %)}de
2k . {2(nc ) 71" ©
n+2 o)

o

1
k {2(nc ) *}
1
(nc ) 7|25 °—I. (2.17)
kn+2{2(nco) }

i

Using an asymptotic expansion (Copson, 1971)

_ v-% v=-%
Kk (x) > 2V /n_exp(-v) (2.18)
v v
b4
5
1’1+"2"
gx = {(n+3) exp(-1) N 1
2 c
n+ — (e}

(nc ) (n+2) 2
o

the MLE as n - «© and

var (B|x) = (nco) & - 2

2
1] ¥nsq (@ kn+3(a)-]
n+2 k (a)J

3
where a = 2(nco) .
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The posterior (2.11) yields

-t+
By = 2t (2.19)
3 nc
o
. . -t 4
with posterior var(Blg) = E—E-ig .
' (nc_)

We note that under JIP (t = 1), B§ equals - ; the
c
o

mle of B, and for‘t # 1, B§ > El as n + o,

We now consider the LSEL function and GLF given in
(2.13) and (2.14)Arespectively. Under the LSEL, the Bavyes
estimator of B is T, = explE log(B]g,eo)].

To evaluate E(logB]g,eo) we will use the digamma function,

3
Y (M) = T log T (M) which is extensively tabulated (Abramo-
witz and Stegum, 1964). We have
Y(M)T (M) = 5% (M) =S‘ exp(—u)uM-l(log u) du
0
where
Y(M) = S (M-1)
M-1 v
M-1
= I L+ 9 (2.20)
y=1 "
and -y (1) = —Sﬂ exp(-u)log u du is known as Euler's con-

stant and approximately equals 0.5772.

From the posterior of B under NCP in (2.6), we have
(nc +p)c+n -
] c+n-~-1
E(logﬁlg,eo) = T v ) ‘f (logB)B
0

°exp{—8(nco+p)}d8
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_ 1 j% c+n-1
= T(c+n) J (log w)exp(-w)w dw log(cn_+p)

- 1 fo M-1
= T . (log w)exp(-w)w aw log(nco+p)
= Y (M) - log(nco+p)
where
+ =
B(nco P) w
and
ctn = M.

Thus, the Bayes estimator of B under NCP and LSEL is

N _ exp{yp(mM)}

T
l nc *p
( )

(2.21)

where Yy (M) is given by (2.20).

For positive integral M, using Stirling's approximation

-1
(M) = v2u MM ‘exp(-M), one can easily obtain an asymp-
. . N
totic expression for Tl
log TI'(M) = constant + (M-%)logM - M
U(M) = log M - —— (2.22)
M) = log 2M .
l vl 3
exp{w(M)} = M exp (- EFI-) ~ M-%,

ignoring terms of order % and lower which leads to

TT ~ c+n;% N
nc
o P o

I3

MLE of B as n = =,
Putting ¢ = p = 0 in (2.21), we obtain the Bayes estimator

of B under JIP and LSEL as
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o}
-2

- El = MLE of B as n = o,
o .

o}

Under MIP for B, using the posterior (2.7), we have

- -1
oo (nc )
n+1l o 1
X\ (logB) 8B exp[fnco{8+ ———g———i}ds

0
: - .
%o (nc )
n+1l [¢] 1
g B exp[}nco{8+-—?r——L}dB (2.23)

0

E(logBig,eo) =

We evaluate the ratio of integrals (2.23) by using Lindley's

technigue discussed in Appendix A.l. It follows that
2 4
~ g 1 2 82 ~
= —_ —_— + — + — . .
E(logB[g,Go) logB + 5 [A2 " J 26 L3(B) (2.24)
B 8 .
2 -1 = . . .
where ¢ = --L2 (B) defined in (3a) of Appendix A.1l.

We generate a sample of size 100 from the Pareto pdf (2.1)

it

with 60 = 5000 and B 0.7 which yields G = 22824.23926,

1l

cO = 1.518385, and % 0.658594 ., The log-likelihood and

the differences are shown in Table 2.1.

By interpolation from Table 2.1, Lz(é> = -230.549652
so that 62 = 0.00433746, o = 0.000018814 and
L,(B) = 700.125494. sSubstituting in (2.24), we obtain
log T? = E(logslg,eo) = -0.387463.

Hence, the Bayes estimate of B under MIP and the

LSEL function (2.13) 1is

TT = 0.678777.
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TABLE 2.2
Bayes Estimators Tl Derived Under Different Priors
and the LSEL Function (2.13)
g(B8) Estimator T,
£ M .
NCP Eﬁgiii_ll where P (M) 1is given by (2.20)
nc +p
o
MIP exp E(logB]g,eo) where E(logB]g,eo) is
given by (2.24)
n-1 1
exp{ L = + w(l)}
y=1 "
JIP
nc
o)
It follows from (2.15) that under the GLF

(2.14), Bayes estimator T2 is given by
2+ 1
B(g My, 0 )|/
T, = 7 = (2.25)
E(B |x,0 )
~" "o
Using the natural conjugate prior for B from (2.6), we have
+ +n+2+
E(BR mIX:e ) = I'(c+n+2+m)
~ o 2+m
F(c+n)(nco+p)
and
L +n+
E (B l{ireo) - I'(c+n+4) -
T(c+n)(nco+p)
N .
Thus, the Bayes estimator of B8 under NCP and GLF, T2, is
N L M (ctn+2+em) |t/ (2.26)
2 nco+p T(c+n+4)

For positive integral c, %, m,

. - n+k
mation to n! * exp(-n)n Vom o,

using Stirling's approxi-



lim
n-—>c

Undexr MIP

E(B

and

B8 ]x,0)

Thus from

is
M
T2 =
where g =

Q,+m,

N lim
n+® nc +
o p

1

exp{(~c-n—-28+1) (c+n+2-1)

lim

(1
(1

lim
n->o

= MLE of B,

for B, from

x,0 )
~" o

(2.25) the Bayes estimator of B under MIP and GLF,

1

n—»>«© nc -+
o p

1

c+i+m-%

c+24+m-1
» ST

+

C

1
+

&)

n

n

5 o

c+z-1)c+2’%£}l/m

[GXP(—m)nm(l +

[exp(—c—n—ﬁ—m+l)(c+n+£+m—1)

c+n+£—%]l/m

c+2+m—l)n

n

c+2-11
/{[l + __H_—)

[exp(c+2—l)/exp(c+2—l{}l/m > —=
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Using the asymptotic expansion of k (a) in (2.18),

v
f n+f+m+ % 1/m
TM ~ exp(-1) (n+2+m+2)
2 ne n+i+ —
(n+4+2) B
and
- 1/m
lim _ M _ lim 1 n exp(f+m+2) s
n-—re T2 = exp l)n+m ne L exp(2+2) ] ” c,

MLE of B, independently of m.

Putting ¢ = p = 0 in (2.26), we obtain the Bayes estimator

of B under JIP and GLF, TJ

27 as

2 - 1 [T(n+e+m) 1/m (2
2 nco T(2+n) ) :

For positive integral £, m, again by Stirling's approxi-
mation of ﬁ!,

14 J
im

now T - Ei = MLE of B, independent of m.

o
Further, putting 2 = 0, m = 1 we obtain our earlier
squared-error-loss function estimators Bi, B;,
[gz], _, in (2.16), (2.17) and (2.19).

Bayes estimators of B with NCP, MIP and NIP and
under SEL are presented in Table 2.3. Similarly, Bayes

estimators of B with NCP, MIP and JIP and under GLF are

presented in Table 2.4.

28)
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TABLE 2.4

5 Derived Under Different Priors

and the GLF (2.14f’

g(8)

Estimator T2

NCP

MIP

JIP

=Rl

1 I'{c+n+2+m)
(nco+p) F'(c+n+2)

1
- m
1 K tman (2 where
’ L
(nc );2 kn+l+2(a)_J a = 2(nc )°
o : o
1
m

1 T(n+2%+m)
ncO T'(n+2)
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2.5 MONTE CARLO STUDY
In order to compare the mean-squared-errors (mse)
of the various estimators B*, Tl and T2, 500 (= N)

samples of size 100 (= n)

pdf (2.1) with GO = 5000, B = 0.7. The mean of the N

estimators and the corresponding

(sum of the squares of the N deviations of
the estimators from the true B)

N

mse =

were computed and tabulated. We report the results in

the following tables. Entries in the parentheses indi-

were generated from the Pareto

cate the corresponding mse.
TABLE 2.5
Bi: Bayes Estimates of B Under NCP and SEL
Function (N = 500, n = 100)
P 0 1 2 3 4
c
0] 0.711954 0.706872 0.701862 0.696923 0.692053
(0.005234) (0.004996) (0.004814) (0.004687) (0.004612)
1 0.719074 0.713940 0.708880 0.703892 0.698974
(0.005558) (0.005242) (0.004986) (0.004786) (0.004641)
2 0.726193 0.721009 0.715899 0.710861 0.705895
(0.005983) (0.005590) (0.005258) (0.004984) (0.004767)
3 0.733313 0.728078 0.722917 0.717830 0.712815
(0.006511) (0.006038) (0.005629) (0.005280) (0.004990)
4 0.740433 0.73514¢6 0.729%93¢6 0.724800 0.71973¢6
(0.007142) (0.006588) (0.006099) (0.005674) (0.005309)

An extension of Table 2.5 is given in Appendix A.3.
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Note that for a given ¢, the mse monotonically decreases
as p increases which suggests that for minimum mse-esti-
mator of B the prior g(B) « % exp(-pB), B > 0 with p > ©

and large should be recommended.

TABLE 2.6

Bayes Estimates of B Under SEL Function:

with MIP and JIP (N = 500, n = 100)

MIP 8% JIP B MLE B
0.7262 0.7120 0.7120
(0.0060) (0.0052) (0.0052)

Note that 8; in (2.17) was computed by using the asymp-
totic expansion of kv(a) in (2.18) and B§ is obtained by
putting ¢ = p = 0 in Table 2.5. Comparing the corres-
ponding mean-squared-errors in Table 2.6 it follows that
the estimator based on JIP is more desirable than the one

based on MIP for B.
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Tables 2.7 and 2.8 clearly indicate that under the
GLF (2.14), the mse of Bayes estimators based on JIP in
this study consistently have smaller mse than those
derived with MIP as the prior for B. If MIP is to be

used for B, one should prefer the SEL function to the

class of GLF (2.14).

TABLE 2.7
M
T2: Bayes Estimates of B Under MIP and GLF (2.14) for
Specific Combinations of 2, m (N = 500, n = 100)
m
2 1 2 3
1 0.733319 0.736870 0.740415
(0.006512) (0.006814) (0.007140)
2 0.740438 0.743989 0.747535
(0.007142) (0.007495) (0.007873)
3 0.747558 0.75110¢9 0.754655
(0.007875) (0.008279) (0.008708)
TABLE 2.8
ng Bayes Estimates of B Under JIP and GLF (2.14) for

Specific Combinations of 2, m (N = 500, n = 100)

m
2
I3 1 3
0.719074 0.722625 0.726170
(0.005558) (0.005757) (0.005982)
0.726193 0.729745 0.733290
(0.005983) (0.006234) (0.006509)
0.733313 0.736865 0.740410
(0.006511) (0.006813) (0.007140)
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We find the same trend in Table 2.9 as in Tables

2.5 and 2.7 to 2.8, viz., for a given ¢, the mse

monotonically decreases as‘p increases; thus, for minimum

mse with NCP for B, the recommended prior would be

g(8) « L exp(-pB8),

B8 > 0 and p > 0 and large.

B
TABLE 2.9
N, .
Tl: Bayes Estimates of B under NCP and LSEL
Function (2.13) (N = 500, n = 100)
b
c 0 1 2 3 4
0 0.708398 0.703340 0.698355 0.693441 0.688596
(0.005111) (0.004910) (0.004765) (0.004674) {0.004600)
1 0.715517 0.710409 0.705374 0.700410 0.695517
(0.005384) (0.005106) (0.004888) (0.004724) (0.004614)
2 0.722637 0.717478 0.712392 0.707379 0.702437
(0.005758) (0.005404) (0.005109) (0.004873) (0.004692)
3 0.729756 0.72454¢6 0.719411 0.714349 0.709358
(0.006235) (0.005802) (0.005431) (0.005120) (0.004866)
4 0.736876 0.731615 0.726430 0.721318 0.716278
(0.006814) (0.006300) (0.005852) (0.005465) (0.005138)

Table 2.10 shows
Comparing Tables
yields a smaller
as GLF under JIP

£, m.

M
that Ti has a smaller mse compared to Tl.
2.5, 2.6, 2.9, and 2.10, we find that LSEL
mse compared to the SEL function as well

and NCP for all combinations of ¢, p,
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TABLE 2.10

TT: Bayes Estimates of B Under LSEL Function (2.13)

with JIP and MIP (N = 500, n = 100)

d M
Tl Tl
0.708398 0.734159
(0.005111) (0.006825)
. . £, m _m, 2
For the family of loss functions 2(T,8) = B (T -8 )
. 1 .
and the prior g(B) « B exp(-pB), B > 0 with p > 0 and
large, the combination £ = 1 = m yields the minimum-mse-
estimator of B as shown in Tables 2.11 - 2.19. It further

follows from Tables 2.5 and 2.11 -~ 2.19 that if it is a
question of choice between the SEL function
L(B*,B) = (B*—B)2 and the class of GLF (2.14), one
should use the SEL function which yields uniformly smaller
mse for all combinations of ¢, p, & and m.

The posteriors (2.7) and (2.11) plotted in Figure 2
support the findings in the tables that compared to JIP,

MIP consistently overestimates B.
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TABLES 2.11 - 2.19

Bayes Estimate of B Under NCP and GLF (2.14) for

Specific Combinations of £, m (N = 500, n = 100)

TABLE 2.11: (2 =1, m = 1)

0 1 2 3 4

0.719074 0.713940 0.708880 0.703892 0.698974
(0.005558) (0.005242) (0.004986) (0.004786) (0.004641)

0.726193 0.721009 0.715899 0.710861 0.705895
(0.005983) (0.00559%0) (0.005258) (0.004984) (0.004767)

0.733313 0.728078 0.722917 0.717830 0.712815
(0.006511) (0.006038) (0.005629) (0.005280) (0.004990)

0.740433 ~ 0.735146 0.7299836 0.724800 0.719736
(0.007142) (0.006588) (0.006099) (0.005674) (0.005309)

0.747552 0.742215 0.736955 0.731769 0.726656
(0.007875) (0.007238) (0.006669) (0.006166) (0.005725)

TABLE 2.12: (8 =1, m = 2)

0.722625 0.717466 0.712381 0.707368 0.702426
(0.005757) (0.005403) (0.005109) (0.004873) (0.004692)

0.729745 0.724535 0.718400 0.714337 0.70934¢6
(0.006234) (0.005801) (0.005430) (0.005119) (0.004866)

0.736864 0.731604 0.726418 0.721307 0.716267
(0.006813) (0.006300) (0.005851) (0.005464) (0.005137)

0.743984 0.738672 0.733437 0.728276 0.723188
(0.007495) (0.006899) (0.006371) (0.005907) (0.005505)

0.751103 0.745741 0.740456 0.735245 0.730108
(0.008278) (0.007600) (0.006991) (0.006448) (0.005969)
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TABLE 2.13: (& =1, m = 3)

0] 1 2 3 4
0.726170 0.720986 0.715876 0.710838 0.705872
(0.005982) (0.005588) (0.005257) (0.004983) (0.004767)
0.733290 0.728055 0.722895 0.717808 0.712793
(0.006509) (0.006037) (0.005627) (0.005279) (0.004989)
0.740410 0.735124 0.729913 0.724777 0.719713
(0.007140) (0.006586) (0.006098) (0.005673) (0.005308)
0.747529 0.742193 0.736932 0.731747 0.726634
(0.007872) (0.007236) (0.006667) (0.006164) (0.005724)
0.7546459% 0.749262 0.743951 0.738716 0.733555
(0.008707) (0.007987) (0.007336) (0.006754) (0.006237)

TABLE 2.14: (& = 2, m = 1)
0.726193 0.721009 0.715899 0.710861 0.705895
(0.005983) (0.005590) (0.005258) (0.004984) (0.004767)
0.733313 0.728078 0.722917 0.717830 0.712815
(0.006511) (0.006038) (0.005629) (0.005280) (0.004990)
0.740433 00.735146 0.729936 0.724800 0.719736
(0.007142) (0.006588) (0.006099) (0.005674) (0.005309)
0.747552 0.742215 0.736955 0.731769 0.726656
(0.007875) (0.007238) (0.006669) (0.006166) (0.005725)
0.754672 0.749284 0.743973 0.738738 0.733577
(0.008710) (0.007989) (0.007339) (0.006756) (0.006238)
TABLE 2.15: (g = 2, m = 2)
0.729745 0.728078 0.722917 0.717830 0.712815
(0.006511) (0.006038) (0.005629) (0.005280) (0.0049%0)
0.740433 0.73514¢6 0.729936 0.724800 0.719736
(0.007142) (0.006588) (0.006099) (0.005674) (0.005309)
0.747552 0.742215 0.736955 0.73176% 0.726656
(0.007875) (0.007238) (0.006669) (0.006166) (0.005725)
0.754672 0.749284 0.743973 0.738738 0.733577
(0.008710) (0.007989) (0.007339) (0.006756) (0.006238)
0.761791 0.756353 0.750992 0.745707 0.740497
(0.009647) (0.008841) (0.008108) (0.007444) (0.006848)
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TABLE 2.18: (& = 3, m = 2)

0 1 2 3 4

.736864 0.731604 0.726418 0.721307 0.716267
.006813) (0.006300) (0.005851) (0.005464) (0.005137)

.743984 0.738672 0.733437 0.728276 0.723188
-007495) (0.006899) (0.006371) (0.005907) (0.005505)

.751103 0.745741 0.740456 0.735245 0.730108
.008278) (0.007600) (0.006991) (0.006448) (0.005969)

.758223 0.752810 0.747474 0.742214 0.737029
.009165) (0.008401) (0.007710) (0.007087) (0.006530)

.765343 0.759879 0.754493 0.749184 0.743949
.010153) (0.009304) (0.008528) (0.007824) (0.007188)

TABLE 2.19: (L = 3, m = 3)

.740410 0.735124 0.729913 0.724777 0.719713
.007140) (0.006586) (0.006098) (0.005673) (0.005308)

.747529 0.742193 0.736932 0.731747 0.726634
.007872) (0.007236) (0.006667) (0.006164) (0.005724)

.7546409 0.749262 0.743951 0.738716 0.733555
.008707) (0.007987) (0.007336) (0.006754) (0.006237)

.761769 0.756331 0.750870 0.745686 0.740476
.009644) (0.008838) (0.008105) (0.007442) (0.006846)

.768889 0.763399 0.757989 0.752655 0.7473%¢6
.010684) (0.009791) (0.008973) (0.008228) (0.007552)
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The results of the simulation study as reported in

Tables 2.5 - 2.19 lead to the following recommendations

about the loss functions and priors of B:

TABLE 2.20

Minimum-Mean Sguare-Estimator

Prior g{B): With Increasing Order of
Loss Function MSE
1
SEL NCP gl(B) Y exp(-pB),
B > 0, p > 0 and large
1
Jip g, (B) B
MIP 9,(8) = & exp(- 3)
[GLF] NCP g, (B) « = exp(-pB)
lem:l l 8 !
B >0, p > 0 and large
1
All (%,m) JIp g3(8) B
1
MIP g2(8) B exp (- E)
LSEL NCP and JIP (optimal choice) each

leads to smaller mse estimator

compared to SEL or GLF.
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Except for p > 0 and large in NCP, Jeffreys' invariant
prior g(B) « % vyields smaller mse-estimators for each of
the loss functions and prior distributions under consider-
ation. JIE is specially suited for the LSEL function
(2.13). 1If a choice is to be made between the GLF (2.14)
and LSEL function (2.13), one should choose the latter with
NCP or JIP for B. If one would prefer NCP/MIP, the study
recommends that oneAshould use LSEL/SEL.

Our observations in the Monte Carlo study may be
summarized as follows:

(i) The loss function &(T,B) = (log T - log 8)2
leads to uniformly minimum mse estimators
with JIP and NCP for B for all combinations
of (c,p,%,m) under consideration as against

the corresponding pricrs with SEL and GLF.

(ii) The JIP, which is often objected to on the
grounds that it is 'improper', still leads
to sound results.

(1idi) If one would prefer MIP, the gSEL (2.12) and
GLF (2.14) with 2 = m = 1 are recommended

in that order.
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2.6 SAMPLING DISTRIBUTIONS OF f* WITH JIP AND MIP

The sampling distributions of B* derived under the
SEL function with JIP and MIP for B (N = 500, n = 100)
are represented in the histograms in Figure 3. The

2 2
momental constants and Sl = u3/u§, B = u4/u2 were computed

2
using Sheppard's corrections and the point (81,82) was -
plotted on the chart relating the type of Pearson fre-

guency curve to the value of 81, B (Pearson and Hartley,

2
1966, Vol. 1).
For the sampling distribution of B* with JIP for B,

using Sheppard's corrections we obtain

= 0.00006626

il

'u2 0.00510923, u3 = 0.00003366, My

B1

0.008495, 82 = 2.538173.

The point (81,82) suggests that Pearson's Type I1

curve
I (m+ §>N 2"
f(x) = ———— |1 - 5| , -a <x<a (2.29)
a/ﬁF(m+l) a
should fit the data where
Xx = X - ui = X - 0.7122, X = ¢class mark,
582-9
= = 0.3995939
" T 268y

and

2u. B
a = /——3~3 = 0.236981,
3-82
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Substituting the estimated parameters we obtain

{

2 3.995939
X
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£(x) = 2595.0236[1 - 9To%eTe , (2.30)
-0.2370 < x < 0.2370.
TABLE 2.21
Ordinates of Pearson's Type II Distribution for the
Sampling Distribution of B* with JIP for B8
X b4 f(x) X b4 £f(x)

. 485 -.2272 0.1120 .735 .0228 2500.3615
.495 -.2172 1.7123 . 745 .0328 2402.0053
.505 -.2072 8.0349 .755 .0428 2272.9579
.515 -.1972 23.3292 . 765 .0528 2117.2972
.525 -.1872 52.0736 .775 .0628 1939.9076
.535 ~-.1772 98.3764 .785 0728 1746.2991
.545 -.1672 165.5390 . 795 .0828 1542.3992
.555 -.1572 255.7623 .805 .0928 1334.3242
.565 -.1472 369.9766 .815 .1028 1128.1355
.575 ~-.1372 507.7752 .825 .1128 929.5906
.585 -.1272 667.4371 .835 .1228 743.8971
.595 -.1172 846.0200 .845 .1328 575.4802
.605 -.1072 1039.5107 .855 .1428 427 .7746
.615 -.0972 1243.0184 .865 .1528 303.0540
.625 -.0872 1450.9981 ,.875 .1628 202.3106
.635 -.0772 1657.4910 .885 .1728 125.2000
.645 -.0672 1856.3747 .895 .1828 70.0659
.655 -.0572 2041.6092 .905 .1928 34.0625
.665 -.0472 2207.4738 .915 2028 13.3919
.675 -.0372 2348.7849 .925 .2128 3.6748
.685 -.0272 2461.0895 .935 .2228 0.4756
.695 -.0172 2540.8283 .945 .2328 0.0039
.705 -.0072 2585.4649

.715 .0028 2593.5763

.725 .0128 2564.9036
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TABLE 2.22

Pitting of Pearson's Type II Distribution to the

Sampling Distribution of g* with JIP for g

Class Boundaries Observed Frequencies Expected Freguencies

fo ) fe
< 0.545 o} . 2.64} 5.84
0.545 - 0.565 6 5.20
0.565 - 0.585 11 10.23
0.585 - 0.605 17 16.97
0.605 - 0.625 29 24.88
0.625 - 0.645 33 33.12
0.645 - 0.665 35 40.78
0.665 - 0.685 48 46.89
0.685 - 0.705 51 50.70
0.705 - 0.725 60 51.75
0.725 - 0.745 48 49.89
0.745 - 0.765 42 45.37
0.765 - 0.785 39 38.74
0.785 - 0.805 32 30.83
0.805 - 0.825 14 22.59
0.825 - 0.845 17 14.94
0.845 - 0.865 9 8.63
0.865 - 0.885 7} 4.12)
> 0.885 2 7 1750 287
TOTAL 500 500.02

The expected frequency for each class was computed by
using Simpson's % rule. Consider the class 0.545-0.565.

From Table 2.22:



X

.545

.555

.656

60.

X f(x)
-0.1672 165.5390
-0.1572 255.7623
-0.1472 369.9766

The.expected frequency for the class 0 545 - 0.565 is

given by

0.01
3

Similarly
X

.865

.875

. 885

0.01
3

[f(-0.1672) + 4f(-0.1572) + f(-0.1472)] =

5.20
for the class 0.865 - 0.885;
X f(x)
0.1528 303.0540
0.1628 202.3106
0.1728 125.2000
[£(~-.1528) + 4f(0.1628) + f(0.1728)7] = 4.12.

From Table 2.22 we have

2
X =

2
x (5%

which suggests

bution

8.895

(2.26)

r14)

it
w
o0

that

is a '

of B* in Table 2.22.

bution of B* with MIP for B.

we obtain

with

Vv = 14 degrees of freedom

. 2 . . . .
point on a y -distribution with

degrees of freedom

.685

at 5% level, Pearson's Type II distri-

good' fit to the sampling distribution

We now consider the sampling distri-

Using Sheppard's corrections



=
]

B

it

1 0.008306,

B2

0.00531550, u3

= 0.00003532,

2.58525.

u

61.

= 0.00007305

4

The point (81,82) suggests Pearson's Type II distribution

(2.29) where m = 4.73327,

f(x) = 2567.409914

1

a = 0.257422 and

2
X

0.066266

-0.2574 < x < 0.2574,

The ordinates f (x)

4.73327

(2.31)

and the expected frequencies have been

computed in the following tables.

Ordinates of Pearson's Type II Distribution for the

TABLE 2.23

Sampling Distribution of g* with MIP for g

X x = X - 0.72588 £f(x)
.485 -0.24088 0.133312
.495 -0.23088 1.13543
.505 -0.22088 4.67613
.515 -0.21088 13.29529
.525 -0.20088 30.15873
.535 -0.19088 58.72503
.545 -0.18088 102.38881
.555 -0.17088 164.14265
.565 -0.16088 246.28486
.575 -0.15088 350.19043
.585 -0.14088 476.15432
.595 -0.13088 623.30993
.605 ~-0.12088 789.62140
.615 -0.11088 971.94415
.625 -0.10088 1166.14599
.635 -0.09088 1367.27866
.645 -0.08088 1569.78873
.655 -0.07088 1767.75602
.665 -0.06088 1955.14731
.675 -0.05088 2126.07360



X Xx = X - 0.72588 f{x)

.685 -0.04088 2275.03942
.695 -0.03088 2397.17395
.705 -0.02088 2488.43440
.715 -0.01088 2545.77400
.725 -0.00088 2567.26790
.735 0.00912 2552.19261
. 745 0.01912 2501.05567
.755 0.02912 2415.57487
.765 0.03912 2298.60739
.775 0.04912 2154.03176
. 785 0.05912 1986.58692
. 795 0.06912 1801.67448
.805 0.07912 1605.13186
.815 0.08912 1402.98548
.825 0.09912 1200.19407
.835 0.10912 1005.39347
©.845 0.11912 820.65469
.855 0.12912 651.26727
.865 0.13912 500.55994
.875 0.14912 370.76993
. 885 0.15%912 262.97109
.895 0.16912 177.06915
.905 0.17912 111.86%894
.915 0.18912 65.22303
.925 0.19912 34.23849

934 0.20912 15.56892
. 945 0.21912 5.74123
.955 0.22912 1.51259
.965 0.23912 0.21156
.975 0.24912 0.00551




TABLE 2.24

63.

Fitting of Pearson's Type II Distribution to the

X

Sampling Distribution of B* with MIP for B

Class Boundaries fo fe

< 0.585 10 11.89
0.585 - 0.605 11 12.53
0.605 —AO.625 25 19.48
0.625 - 0.645 29 27.35
0.645 - 0.665 35 35.32
0.665 - 0.685 33 42,45
0.685 - 0.705 51 47 .84
0.705 - 0.725 56 50.80
0.725 - 0.745 60 50.92
0.745 - 0.765 35 48.21
0.765 - 0.785 49 43.00
0.785 ~ 0.805 35 35.99
0.805 - 0.825 25 28.06
0.825 - 0.845 16 20.14
0.845 - 0.865 13 13.09
0.865 - 0.885 S 7.49

> 0.885 8 5.44

TOTAL 500 500
2 - 13.80, v = 14
2(5%,14) = 23.685 which suggests a 'good'

fit.
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CHAPTER THREE

*
PEARSON'S TYPE VII DISTRIBUTION( )

3.0 INTRODUCTION

Estimétion of the parameters in the Pearsonian
system of distributions by the classical approach is
not very sétisfactory. The conventional method of moments,
which equates the sample moments to the population
moments, sometimes gives unrealistic results. The method
of maximum likelihood has rarely been used to estimate the
parameters in this system, possibly because the likeli-
hood equations are not easily solvable unless numerical
methods are employed.

Pearson's type VII is one of the important distri-
butions in the system. The density of this distribution

is given by

2y —m
T {
f(x[a,m) = (m) 1 + 55 ’
a¥m T(m-%) a
-0 < x < ®, a >0, m > % (3.1)

which is related to a number of well known distributions.
It is symmetrical at x = 0, bell-shaped with Bl = 0 and

82 > 3. It resembles a normal distribution;

(*) Some of the results in this chapter have been
pPresented at the Canadian Conference in Applied Statistics

STATISTICS '81 Canada (Montreal, April 29 - May 1, 1981).
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in the normal distribution the expectation of any power
of x is finite but in Type VII the expectation of any
even power > 2m~1 is infinite, where m may or may not be
integral. This is a useful property which makes type VII
a more general model for errors of measurements. A

special case of (3.1) with m = 1 is the Cauchy density

2y -1
_~l_l+.¥_.. a > 0, - < x < o
an 2 ! ! -
a
. 2 1 .
With a~ = v and m = 5 (v+1l) in (3.1) we have Student's

t-distribution with v degrees of freedom with density

V—% X2 -3 (v+1l)
[l+ } r V> 0, -2 < x < =,
-)

B(Z,
25 2

Fisher (1922) has shown that the estimation of the

parameters of a type VII distribution by the method of

moments 1is inefficient except in the region near normality.

The method of moments leads to unacceptable estimators

for any type VII distribution with shape parameter

5 5
m < 5 - Jeffreys (1961) pointed out: "when m < P
the expectation of the fourth moment is infinite. The

actual fourth moment of any set of observations is finite,

and therefore any set of obserxvations derived from such a

law would be interpreted as implying m 2> 5".

Thus, this is a field in which Bayesian method of

estimation of the parameters is of practical importance.
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We will obtain Bayes estimators of the scale parameter
a and shape parameter m in Pearson's type VII distribution
with density given by (3.1). The families of improper

priors we propose to use have densities

gl(a) = —%',' t > 0, fbr estimafion of a when m

is known

g2(m)°C *% , t > 0, for estimation of m when a

is known

gB(a,m)<x e for estimation of a and m when both

are unknown.
A special case of the improper family is Jeffreys'
Invariant Prior (JIP) when t = 1.

The estimators based on the classical methods, namely
the method of maximum likelihood and the method of moments
wlll also be obtained. Based on a Monte Carlo study we
will compare these estimators with their Bayesian counter-
parts. We will also fit appropriate Pearsonian curves to
the sampling distributions of the Bayesian estimators
undef g3(a,m), and test the goodness of fit by chi-square,

Kolmogorov-Smirnov and Cramér-von Mises tests.

3.1 ESTIMATION OF a AND m BY THE CLASSICAL METHODS

Let x = (x,,xX

1 "Xn) be a random sample of size n

2777
from (3.1). The likelihood is given by
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2\—m
T (m) n __n x5
2(x|a,m = B — a Tl o+ (3.2)
/1 T (m-%) i=1 a
L = log &(x|a,m) = - % log m + nllog T (m)

- log T(m-%)] - n log a

2
n X,
- m I log |1 + —=]. (3.3)
2
1 a

Differentiating (3.3) with respect to a, we obtain

2
8L _ _n , 2m ;i
Jda a a 2 2
1l a +x
L
da 0
vields
2
n Xi n
i ;51;5 = 5m - (3.4)

The mle of a is the solution of the equation (3.4) for
known m.

Similarly, differentiating (3.3) w.r.t. m and setting

EE = 0, we obtain
am
R R n ( xi]
nfY(m) - Pp(m=-%)] = £ log|l + — (3.5)
1 a J
"where
_ 98 log T (P)
Y(P) = ‘—*—55"——“

is the digamma function, which can be evaluated by using

the asymptotic formula



1 1
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1
v(P) = log p - 2p +

(Abramowitz and Stegum, 1964).

2 4
12p 120p

252p

I (3.6)

Thus, for known a, mle of m is the solution of the

egquation (3.5).

When a and m are both unknown, mle of a and m are

the solutions of the simultaneous egquations

2
0 Xi n
z = —
1 ;2+x? 2m
i
and
2
R R n xi
nlyY{m) - ¥v(m-%)] = Z log|l + —
1 a

To obtain the solution of (3.7) for a and m,

iterative method.

We wish to find a and m which satisfy

gla,m) = 0
h(a,m) = 0
where
2
(a,m) = L.z, i
glay da a a
AL
h(a,m) = Yl nDl - 52
2
n xi
S. = I
2
1 1 a +x
n ( x?
S. = I log |1 + —
2 2
1 a
D, = ¥(m) - ¥(m-%)

N

(3.7)

we use the

(3.8)

(3.9)
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Suppose we have initial estimates for a and m, namely,

a and m_; then assuming continuity of g(a,m) in the
neighbourhood of (ao,mo) and the existence and continuity
of all derivatives, by Taylor series expansion of (3.8),

we have

gla,m) = g(ao,mo) * 3ala=a o m|a=a

Looking only at the linear terms, we obtain

gla ,m )} + 39 Aa + 22 Am = 0 (3.10)
o o da|a=a omia=a
e} o)
m=m ]m=m
o o
where
2 2 2
+
3g _ a2L n 2m ; xi(3a xi)
- T2 7 2 2
9a da a a  i=1 (a2+xi)
2
ag _2%n _an _2 3 %
am dadm am P21 a’ix?
Aa = a-a
o
Am = m-m
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Similarly, from (3.9)

h(a ,m ) + 2B pra + 2B Am = 0 (3.11)
o o) da|a=a dm|a=a
o o
m=m ) m=m
o - o
where
8 h ] 1
——— - — —;’
™ @[w (m) v (m=3%) ].

In matrix notation, the equations (3.10) and (3.11) may

be written as

39 3g
da dm| {Aa (g\
3h  3n|{Am y
da dm
(5g  2g) 7"
Aa) da am {g]
AmJ 3h  3n| ‘n
da dm

which on simple calculation reduces to

i a2h - a9
5T a.a. - a2
o2 (3.12)
a,g - a.h
Am = 2 L
2183 7 &
where
n 2m 2
a, = 5 - [3a 53 + S4]
a a
2
a, =25
] 1
a, = nly (m) - ¢ (m-%)]
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and
2
n xi
S = X
3 2,2
1 (a " +x7.)
i
2 ]2
n X,
i
S, = I .
4 2
1 a +X?J
i
Finally,
é = a + Aa
o
ﬁ = m + Am.
o

We continue the process till it converges.
The method of moments for type VII distribution leads to

a solution for a and m in terms of population Mo and 82 as

. 21,8,
82—3
r (3.13)
o 582—9
2(82—3)
(Elderton and Johnson (1969)).
In (3.13), if m is known, then 82 is known and as a result

a is a function of M, only. Similarly, if a is known, then

m is a function of M, only. This property is useful in

numerical computations of a and m.

The simultaneous method of moment estimators for

a and m is
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s 2m2b2
b2~3
! (3.14)
. 5b2—9
2(b2—3)
where
Y
2 2
Mo
and
m = k-th sample (corrected) moment.

3.2 DISTRIBUTION FUNCTION OF TYPE VII DISTRIBUTION

When y > 0, the distribution function of type VII

distribution is

Y
F(y) = f(xla,m)dx

3% 2
1 j 1 X
2 aB(m-%,%) |t Y 3| 9%
0 a
2
. X 1 .
Letting 1 + > = 5 » we obtailn
a
3
1 m--—=
1 1 1 -2
F ==+ = - :
) =75 +3 u[ B(m-%,5) 2 (17#) "4z
r.
2
a
where ¥ = ’
a +y
1 3 1 L-1 -1
R m 5 - -
= l — -_— —
> ‘S\o B(moh %) Z (1-2) az

il

st

]
N | 4
]

5

1

Ny

*



Similarly, when y < 0, the distribution

distribution 1is

F(y)

Il

N |+
I
+h
"
>
5
ol
b
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function of type VII

Denoting F(y) by u, since F ~ U(0,1), we have

[
r

which implies

2-2u, vy 2 0
Ir(m—%,%) =
24, y < 0.
Thus, it follows that if
1
O<u<§,
we have
Ir(m—%,%) = 2u and y < 0;
and if
”2—<u<l,

we have

1
1 - '2_ T (m_;frli)r Y



I (m-;ir;i}
r .

= 2

Using the above result,

(1-u)

we generated a sample of size

and

74.

n = 100 from type VII distribution with a = 4.0 and

1.
-0.
-1.

-0

-0.

0

1.

-0

-0.

2

o]

m = 5.5, The observations are:
~-1.59579 2.05225 0.11791
2.36340 -1.81101 -0.93933
~0.51288 1.07251 -1.08069
-0.66230 0.27973 -0.57666
~-0.10558 ~-0.33427 -1.60879
~-1.80244 0.10793 0.69716
-2.01476 0.55922 1.38929
1.72985 1.37682 2.22678
0.79462 0.02846 4.49561
-0.63640 -0.17290 0.47428
-2.47112 1.32663 -1.43906
1.91001 -0.92331 ~-0.40029
0.28463 0.24700 1.49400
-0.67128 -1.41091 0.85193
2.37930 0.42337 0.94249
-2.25304 -1.98386 -~-0.62076
0.80764 1.83338 -0.28171

NO OO O+

50780
10608
89978
.36237
18383

.57065
50133
.02336
79846
.33221

.21186
.03944
.55229
.43047
.05505

.32529
.09435

3.3 DERIVATION OF JIP FOR a AND m

Jeffreys'

given by

g(a,m) «

where

I(a,m)

5
[I(a,m) l

_E{
_E(

Jda

2
d 1o
dm

invariant prior

2
3 lo

g f
2

g £
Jda

(

1.52414 -0.67271
1.11285 -2.46865
.47940
1.
2.

-0.56204
-0.96488
1.58%9883 -

-0.71167
-1.71486 -
0.23044
0.27090
0.50090

.80208
.60243 -
.54978 -
.18907
.20891

.19132 -

JIP) for a and m is

_E 8210g £
dadm

2
[8 log fJ
-B | ——2—
2
om

0

is the Fisher's information matrix based on a single

observation

For the density

(3

-1,

.17098
.35109
.44962
.43497 [ (3.
.91021

.54530
.37178
.32458
.51570
.93837

.71588

88778
54929

(3.16)

15)
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2
o log £ _ 1 _ 2mx2(3a2+x2)
2 ) 2 2
da a a (a2+x )2
leog f _ 8210g £ _ 2x2
dmda dadm 2
ala +x )
2 2
a1 f ] T'(m ! '
29 = - [log{ — 39 = ' (m) - v (n-%)
2 2 T'(m-%) :
am am

where Y (p) is given in (3.6) and w'(p) is the tri-gamma function

can be evaluated by using the asymptotic formula

v (p) = 1 1 1 1 1

+ + - Tt > - + ..
2p 6p 30p 42p 30p

el
N
w
[te)

(3.17)

(Abramowitz and Stegum, 1964).

After some algebra, it can be shown that

(leog £ 2m-1
Bl | =~ %o ——
da . a (m+1)
J(2%10g £) _ 2
dmada an
2
371 £ ' '
E{—-—E%—— =y (m) - ¢ (m-%)
om
Thus,
2m-1 o1
a2(m+l) am
[I(a,m)I =
- - “0p M) - b (meh)
am

Using (3.17),
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lL(m) - IP. {(m-%)

1 1 1 1
={Z =5+ =5 - F ool - {(m-%)
2m 6om ‘30m
1 -2 1 -3
+. 5 (m=3) t e (m=-%) - }
1 1
={;+ 2+l3— LN }—{-l—(l+§—l—
2m 6om 30m m m
+l+ )+———(l+~2+3+—4+ )
2 2 2m 2 3
4m 2m 4 8m
+~l~3(1+—2—3+~——62+——lg+ ) o+ }
6m 4m 8m
= {= + l2+ 13— LI }o- {—+—§—+o(~—§—)}
2m 6m 39m m m
- 1 1
T v ey
m m
Finally,
. 2m - 1 1 1 n-2
[T, m | = 2- > " 22 - 332 ‘Gaxl) (3.18)
a (m+1l)m a m a m
giving
gla,m) « - for large m. (3.19)
! am

That is, apriori a and m are independently distributed,
and that the marginal JIP for a may be taken to be

1
gl(a)<‘ -

and that for m may be taken to be

"1
gZ(H” * m
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3.4 BAYES ESTIMATORS OF a AND m

When m is known the likelihood (3.2) is
;B
fixla,m) = — T |1+ 5| . (3.20)

Let us consider the family of NIP for a with density

el

g, (a) = , t > 0. (3.21)

a

Combining (3.20) and (3.21), the posterior density of a is

( 2y -m
- (n+t) =2 i
m.(alx) = k a 1 1+ —= , a >0 (3.22)
1 = , 2
i=1 a

where k is the constant of proportionality given by

700 n ( X2~ _m
- / - (n+ i
k 1 =i a (n+t) I 1+ —%- da
Jo i=1 a

Using the generated data (3.15), we plotted the density
(3.22) for t = 1 (1) 5 in Figure 1. We note that as
t deviates more and more from JIP (t = 1), the posteriors
appear less and less robust.

Bayes estimator of a under squared error loss function

is given by

2y —m
w - (n+t-1) Xl
a & I 1 + - da
0
a* = E(aig) = L 2 - . (3.23)
- (n-t) *
a II 1 + —% da

When a is known, the likelihood (3.2) is
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L (x| r(m) "2 *i
Xla,m) « m I 1 + ) . (3.24)
1 a

Consider the family of NIP for m with density

. 1
gz(m)‘x X t > 0. (3.25)
m
Combining (3.24) and (3.25), the posterior density of m is
n n o
-t I'(m) i
+ —=
" {r(m—%)} ]
W2(mlx) = N . Xz\_m , m > %, (3.26)
-t I'(m) i
+—_—
i m {F(m—%)} I 1 P dm
5 ' a

Using generated data (3.15), we plotted (3.26) for
t =1 (1) 5 in.Figure 2. We observe the same pattern in
the robustness of the posteriors.

The Bayes estimator of m under squared error loss is

2y-m
o nn X,
i R

m* = E(m|x) = 2 . (3.27)

j& 1n n xzw—m
-t ' (m) i
[T, oo A l —_—
. m {p(m_%)] ? { + = dm

When both a and m are unknown, consider Jeffreys'

invariant prior
1
gla,m) = — . (3.28)
am

Combining the likelihood (3.2) and the prior (3.28),

the joint posterior density of a and m is
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n n [ x2 -n
1 T - +1 i
1 a
m >%, a > 0. (3.29)

Integrating out a from (3.29), we obtain the marginal

posterior density of m as

2
o je} n X
1 [ r'(m) - (n+1) *i
5 m{f'(m 1>} a Tt + = da

[ 2y-m
n n X',
g j { L (m) 1 a—(n+l) I |1+ —= dadm
L n T'(m—- 1)] 1 2

a

ﬂ(mlg) = (3.30)

2
The Bayes estimator of m under squared error loss function
is

=T

dadm

2
SV [t VP - T *i
g § {F(m—%)} a Il + 5
1
—1m

( )
oo | n n
§ {F mz 1 <’:1_<n+l)mml H{l J dadm
o L) f

(3.31)

O
HN;—J

Again, integrating out m from (3.29) and after
obtaining the constant of proportionality, the marginal

posterior density of a is

% n n x2) ™™
S o (1) -1 [ T (m) } 11+ —i am
5 T (m-%) 1 2
il (a]x) = - =
4 ~ o non X2 -m !

g a_(ndf’l)m_l —iiﬂ%— 1+ —= dmda
4 I'(m-3%) 2

0 = a

a > 0. (3.32)
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And the Bayes estimator under squared error loss function

is

“:? .0 -1 T'(m) |7
) " T (m-%)
0 %

s

J—
i_‘
+

’N

N
oy
3
o
o

a* = E(alx) =

- _ _ n n | .
J‘ a (n+l)m 1 {—LLE%~} mli1 + —= dmda
0 '({m-1%) 1 2

8
8

W

(3.33)

The integralsin (3.23), (3.27), (3.31), and (3.33)
appear to be intractable. We will approximate them by
using Lindley's method as discussed in Appendix A.1l.

We denote the logarithm of the joint posterior
density, except the normalizing constant, by A(a,m),
giving

Afa,m) = L(a,m) + p(a,m)

where

I

L(a,m) logarithm of the likelihood (3.2)

i

p(a,m) logarithm of the prior (3.28).
Then, the posterior expectation of m in (3.31) is

approximately

N
w

A

+

= 1
* = ~ =
m E(m!g) m o+ 3 AT 51720712

W
(@}
\S]
(@]
[\

-

) + = A (3.34)

03'02%12"

N

Similarly,

N
w

* = . ~ > —_ —
a Elalx) ~a + 3 ho3Ton * 7 M2T02%01

1 2 1
+ 2A21(T02T20+2T21) + Z A3OT2OT21 (3.35)



where 1's are given by the matrix

-1
527 52
aei 96,26,
Tzo T
X ) o1 T
341 51
3096 2
2°%1 305

All the guantities are to

posterior mode of (a,m).
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12

02

be evaluated at the joint

In order to apply Lindley's method we need to locate

the joint posterior mode of (3.29).
line as for the joint mle of a and m,

equations are:

Working in the same

the iterative

a = a + Aa
o
(3.36)
% = m + Am
o
where Aa, Am are given by equation (3.12) with
2mS
1 n+1l 1
= - = + - -5 - = - +
h - nly (m) Y (m-%) ] S, g 2 3
_ n+1 2m 2
&y T T2 ; (3a 85+ 5))
a a
25, \ , 1
= = — L —
a, — a, nly (m) ¥o(m=%) 3 + —
m
S S and S are defined before.

where Sl' 5 3 4

The Jjoint posterior mode of (3.29)

equations (3.36) and the generated data

using the iterative

(3.15) is
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mo= 4.712
a = 3.474.

We now evaluate

Ala,m) = lQO{logeT(m) - logeF(m~%)} - log m
100 ! x2
- 101 log a - m £ log |1 + —
e 1 e a2

for different values of a and m around their posterior
modes. The wvalues of A{(a,m) are shown in Table 3.1.
Tables 3.2 to 3.5 give the values of the derivatives

A, . (a,m).
1]
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TABLE 3.3

Values

of

A

87.

30

- . 3.274 3.374 3.474 3.574 3.674
4.512
4.612

1.613122 1.613122 1.613122 1.613122 1.613122
4.712

1.496892 .1.496892 1.496892 1.496892 1.496892
4.812
4.912
giving ABO(E,%> = 1.555007.

TABLE 3.4
Values of A02

N & 1 3.274 3.374 3.474 3.574 3.674
4.512 -13.4895014 -11.9402732 -10.5763487
4.612 -13.9851931 ~12.3904622 - -10.9860662
4.712 -14.4808848 -12.8406510 =-11.3957840
4.812 -14.9765763 -13.2908400 =-11.8055017
4.912 -~15.4722682 -13.7410287 -12.2152196

giving Aoz(a,m) =

-12.8406510.



TABLE 3.5

Values of A

88.

03

LT 3274 3.374 3.474 3.574 3.674
4.512 15.492282 13.639245

4.612 15.947309 14.043960

4.712 16.402338 14.448670

4.812 16.857363 14.853383

4,912 17.312395 15.258091
giving AO3(§,§) = 15.425504.

Due to local orthogonality of the parameters (a,m),
Tij in equations (3.34) and (3.35) are zero for i #¥ J.

Also, A21(5,ﬁ) is zero, as a result from (3.34) and

(3.35),

E(m]g)

and

E(a]x)

where

T20

To2
Finally,

m*

*
a

we obtain

Il

i
=]

l
S

12

i
g

2
v

4.7924255,

3.5207773.

il

2
h30T20

2
293702

0.32213384

0.07787767.
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3.5 MONTE CARLO STUDY

We generated 620 samples each of size 100 from a
type VII distribution with a = 4.0 and m = 5.5 to compare
the performance of the various estimators. Since Cauchy
is a particular case of type VII distribution, we expected
that we could be generating a number of samples which
would not satisfy the condition b2 > 3. Finally, we were
left with 400 samples to work with. The mean and mse of
400 estimators under different methods of estimation are
tabulated. The entries in the parentheses represent the mse's.
Comparing Table 3.6, we observe that MLE has minimum MSE
for the estimation of a when m is known as well as for the
estimation of m when a is known than the corresponding
Bayes estimator under JIP (t = 1). But for a more
realistic situation when a and m are both unknown, we observe
in Table 3.7 that, if mse 1s accepted as an index of precision,
‘Bayesian method has the minimum mse compared to the moment

and maximum likelihood methods and hence should be preferred.

3.6 SAMPLING DISTFIBUTIONS OF a* AND m*

The sampling distributions of a* and m* under squared

error loss function and with the prior

(a,m) = L
giay am '
were obtained (N = 400, n = 100) and are represented in

Figures 3 and 4, respectively. The moments, 81 and 82,
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were computed using Sheppard's corrections for grouping
for each of the distributions.

The sampling distribution of a* gives

0.2276007, ' U

Il

M, 3 0.0147733,

It

8 2.8871637.

1

i

0.0172964, B8

The point (81,82) was plotted on the chart relating to the
Pearson's system of curves (Pearson and Hartley, 1966,

Vol. 1) which suggests that Pearson's type I curve

< 1 % 2
- — - = - < <
£f(x) yo{l + al] {l az] ; a; X a,

should fit the sampling distribution of a*, where

mml ™
, = N ) 1
- + + + +1
o ay a m1 m2 B(ml l,m2 )
(ml+m2)

(Elderton and Johnson (1969)), with

- /6 + 381 - 282)

jul
+
o]

It

% /“2 /%Bl(r+2)2+l6(r+l)}

m, and m, are given by

B
% r - 2 + r{r+2) > 1 .
Bl(r+2) + 16(r+1)

If py, is positive, m_., is the positive root.

3 2
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The origin of the curve is at the mode given by

M3 ora2
mode = mean -~ a*

r—-2

=

2

Thus
x = X - mode.

The constants of the curve are found to be

r = 40.4205677, m, = 14.9298006
m, = 23.4907671, a, = 2.4416367
a, = 3.8417070
y_ = 329.0683086, Mode = 2.60604197.
Thus,
£(x) = 329.0683086(1 + 5722%5367)14‘9298006
°(l X )23.4907671’
3.8417070

-2.4416367 < x < 3.8417070.

3.7 TESTS OF GOODNESS OF FIT

2 .
First, we apply the ¥ -goodness of fit. The observed
and expected freguencies are shown in the table below.
The expected frequencies were obtained by using Simpson's

1
3 -rule; for details refer to Chapter Two.



TABLE 3.8
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Class

Boundaries

Observed
Frequencies

Expected
Frequencies

1.30 = 1.
1.55 - 1.
‘l.80 - 2.
2.05 - 2.
2.30 - 2.
2.55 - 2.
2.80 - 3.
3.05 - 3.
3.30 - 3.
3.55 - 3.
3.80 - 4.
4.05 - 4.

55

80

05

30

55

80

05

30

55

80

05

30

2

15

26

49

83

81

65

45

19

12

400

17

15

2.

10.

29.

54

76

80.

66.

43.

22.

400

88

82

18

.86

.08

65

76

58

50

.08

.83

=12.69

. 2
We obtain Y

2
X, 05,5

which suggests

3.46 with 5 degrees of freedom

11.07

a good fit.
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There are some objections to the x2 goodness of fit
tests when parameters are estimated by the method of
moments.

We apply Kolmogorov-Smirnov goodness of fit and
Cramér-Von Mises goodness of fit tests to the sampling
distribution to see 1f it follows a type I curve. For

this purpose the distribution function of a type I curve

is
j& y my y i)
F = — - ———
O(x) yo(l + N ) (l 2 ) ax,
-a 1 2
1
mml )
g = 1 ™ 1
+ + + +1)°
o a1 a2 . )ml m2 B(ml l,m2 1)
1 2
Let
a_+tx
7 = ’ dx = (a_.+a_.)dz
+
al a2 1 2
al+x . .
2
al+a2 al+a2 1 ml al+a2 m2
= f v |l— | % |7/ (1-2) “(a +a,)dz
0 81 a5
al+x i, i Coem
a_.+ta 1 2 1 2
+
) lj 2 m, T, (al a2) 1
- + +
5 ( . )m +m mlam2 B(ml l,m2 1)
My 8
My "
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bl m a_+a
S 2 A m_+1,m_+1
a a ml+m2 a,+x 1 2

I
-+
»
——
=
ft
+
—
&
+
[
[S—

1
+
a;*a,
since
a. +x
1+ <
aa2
and
+
\ml m "2 a_+a T
S I ) 1772 _
a1 a my Hm,

To evaluate the Incomplete beta function IR(p,q),
we will use the approximation

Iglpra) ~ @(zi)

due to Peizer and Pratt (1966) and gquoted in Pearson and

Johnson (1968), where

g-0.5 p-0.5 %
__.__—_—..+ — S
1 + R g(n<l_R)) (1-R) g (7% )
Zi - dl 1
(n + =)R(1-R)
o
a. +x
R = l+a
41792
n=p+gqg-1,

and the function g(u) is defined as



-2 2
g(u) = (1-u) (1 - u” + 2u logeu).
. 1 1
= : = - . + = - + - -
i 1 dl q 0.5 c (n 3)(l R)
approximation
1 R 1-R R-0.5
i = 2: =4, + —= {= - +
* ay 1~ 50 {q P p+q }

approximation.
In the sampling distribution of a*,
p = 15.9298006, g = 24.4907671
n = 39.,4205677
d, = 24.15743377 - 39.75390108(1-R)

1

The test statistic

sup

L=y s o - Fo(x)l

is found to be 0.0229994.

For large n, the critical region is

P(D >z |V/n) = «a
, O a
For o = .05, ZOc = 1.36, giving
> 0.06082) = O. .
P(Dn,.OS ) 05

Thus, we fail to reject the null hypothesis
distribution of a* follows a type I curve.

We now apply the Cramér-Von Mises test
of fit, the test statistic of which is

2 1 21—1]2
12n o (i) 2n :

98.

as a first

as a second

that the sampling

of goodness
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TABLE 3.9

Computation of Empirical Distribution Function,

Sn(x) and Hypothesized Distribution Function, Fo(x)

X X = X—Moqe R : Sn(x) _Fo(x) ]Sn(x)—Fo(x)[
1.45484‘ -1.15120 0.20537 0.0025 0.00352 0.00102
1.51299 -1.09305 0.21463 0.0050 0.00554 0.00054
1.60494 -1.00111. 0.22926 0.0075 0.01068 0.00318
1.64444 -0.96160 0.23555 0.0100 0.01384 0.00384
1.68995 -0.91609 0.24279 0.0125 0.01839 0.00589
3.72604 1.12000 0.56684 0.9925 0.98656 0.00594
3.81177 1.20573 0.58048 0.9950 0.99155 0.00345
3.84481 1.23877 0.58574 0.9975 0.99299 0.00451
4.11223 1.50619 0.62830 1.0000 0.99872 0.00128

Details are shown in Appendix A.2.
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The value of the statistic nwi is found to be 0.03223.
The 5% critical value of the statistic nwi is 0.461

(Conover, 1971), showing the evidence again that the true

distribution function of a* is a type I curve.

The sampling distribution of m¥* gives

I

0.3812276, u

u 0.0760759,

2 3

2.7619320.

i

By

0.1044578, 82

The joint (81,82) again suggests that Pearson's type I
curve should fit the sampling distribution.
The constants of the type I curve, for the sampling

distribution of m*, are

r = 12.5962343 m, = 3.3794380
m, = 7.2167963 a, = 1.5246660
a, = 3.2559270 y_ = 248.0336847
Mode = 3.0388077
giving
x 3.3794380
£(x) = 248.0336847(1 + 1.5246660)
' .2
1 - x )7-2167963

3.2559270
-1.5246660 < x < 3.255%9270.

The observed and expected frequences are shown in Table 3.10.



TABLE 3.10

Observed and Expected Frequencies of the

Sampling Distribution of m*

101.

Class
Boundaries

Observed
Freguencies

Expected
Freguencies

1.75 - 2.00 3 4.97
=25 =21.99

2.00 - 2.25 22 17.02

2.25 - 2.50 29 34.22

2.50 - 2.75 60 50.16

2.75 - 3.00 48 59.83

3.00 - 3.25 64 6l1.21

3.25 - 3.50 54 55.18

3.50 - 3.75 44 44.38

3.75 - 4.09 38 31.95

4.00 - 4.25 21 20.52

4.25 ~ 4.50 8 11.62

4.50 - 4,75 5 5.68

4.75 - 5,00 2 =9 2.32y =8.94

5.00 - 5.25 2 0.94

400 400

We obtain x2 = 9.74 with 7 degrees of freedom.
x?05’7 = 14.07,

suggesting a good fit.



102.

Working in the same line as in Table 3.9, the Kolmo-
gorov~-Smirnov and Cramér-Von Mises statistics under a
null hypothesis of a type I fit for the sampling distri-
bution of m* gave |

D = 0.0241816
n
and
2
nw = 0.02868 .
n

respectively, showing again the evidence in both the tests

that a type I curve is a good fit.

3.8 CONCLUDING REMARKS

For the joint estimation of the parameters a and m,
the Monte Carlo study shows that the Bayesian method is
by far the bést with respect to the mse criterion. But
for single parameter estimation, MLE of a when m is known
as well as MLE of m when a is known have smaller MSE
than their Bayesian counterparts. The method of moments
again proved to be the most inefficient. The sampling
distributions of the Bayesian estimates of a and m both

follow a Pearson's type I curve.
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CHAPTER FOUR

RAYLEIGH DISTRIBUTION

4.0 INTRODUCTION

We considexr the Rayléigh probability density function

(pdf) of the time to failure X as given by

2
f(x|o) = —= exp[— X J x, o > 0. (4.1)
2 2

. o] 20

The mean and variance of the distribution are

2
E(X) = 5 O and Var (X) = 202(1 - EZ]

In an expository paper Siddigui [1962] discussed the
origin and properties of Rayleigh distribution. Polovko
[1968], and Dyer and Whisenand [1973] noted the importance
of this distribution in electrovacuum devices and commu-
nication engineering. Cheng [1980] obtained the optimum
spacing for the asymptotically best linear unbased esti-
mator and an optimgm t-test of the parameter of Rayleigh
distribution based on order statistics selected from

complete and censored samples when the sample size is

large. The instantaneous failure rate
_ £(t]o) _ _t
wie) = 1-F(t][o) 2

is a linearly increasing function of time and this pro-

perty makes the model (4.1) specially suitable for life

testing experiments of components which 'age' with time.

4,1 ESTIMATION OF 02
(1) MLE and UMVUE

It follows from (4.1) that
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2
X 2
) x (2).
o
Given a random sample x = (Xl' .,xn) from the pdf (4.1),
we therefore have
2 n
S 2 2 2
= X (2n), ST = Ix, . (4.1a)
i
o) 1
and
2 .
E[_S—-.:Z—J = 2n. (4.2)
o
The likelihood function
n
n Ix
2-n 1
L(x|o) = [ i x.}(cr ) exp|- == (4.3)
x _ i 2
i=1 20
n
rLx
n 2 1
logz(x|o) = ¥ log x, - n log o -~
X . i 2
i=1 20
log &(x|o) = 0
2
30

yields the maximum likelihood estimator (mle)

~2 S2

0" = —

n

From (4.2),

E(G2) = o2
2 2 1 2. n-1 52 2
g(s IO ) = > a (s7) exp[— 2J, 0 < s < o
I'(n) (207) 20
. 2
- S
E(S) = —"——l”—g—; 82n lexp(* *-5]d82
I'(n) (207) 20
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. 2n+1 5

= L 5 nhf (82) 2 exp[— Sz}dcz
I'(n) (207) o 20

_ I(n+k)

) V2 o.

Using the asymptotic expansion

I'(x+a) a a2+a
ro )y xoe (4.4

we have

E(0) = E(S) . o Linthy) o(l + ~—3).

/‘2—;1‘ /;1‘ F(I’l) 8n

2

Thus the mle of o is unbiased but that of o is unbiased
only asymptotically.

We may write (4.1) as belonging to the general

exponential family,

2
f(x]o) = expilog x - log 02 - X2
20
= explg(x) + g(8) + p(6)k(x)].
2 2, .
Conseqguently, S = in is complete and sufficient by
Lehmann-Scheffé theorem (Hogg and Craig, 1978). If we

can find a function ¢(S2) such that

E[¢(S2)] = 0 ,

2 . . . L .
then ¢(8 ) is the unigque uniformly minimum variance

. . ' 2 ,
unbiased estimator (umvue) of o . From (4.2), we obtain
2
2 S ~2
$(S ) = — = o .
n

We observe that for the Rayleigh distribution the mle

2 . .
and umvue of o© are identical.
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(ii) Bayes' Estimator
. . . 2
We will obtain Bayes' estimators of ¢ and o0 under

Jeffreys' invariant prior (JIP)

p(o) = VI (o)

where

| 2
o) - _E[a log féxlc)}

o0

and the minimal information prior (MIP.

g(o) « exp[Ix<o)]

where

I_(o) = E[log f(x]|o)].

Taking logarithms of (4.1), we have

2
2 X
log £ = log x - log © -
2
20
: lo f = —g - 3X2
2 ERE 4
3o o o
Y SRS I SO S '
2z ~°9 - 2 2 2
o] o o] o
2 6
= - —= 4+ — 4
5 > from (4.2)
o o
- 4
T2
o
= I(0).

Hence

1
p(ag) = 5
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I

- 2
E(log X) gf E_EE%_E exp[— XZ]dx
0

20

<o

1
L[ (5 log 2 + log ¢ + % log ylexp(-y)dy
0

1l

log 2 + log o + = ¥ (1)

NSRFS

where -y (1) is Euler's constant

H
It

E[log f(x]|o)] = % log 2 + log ¢ + % Y(1)

-~ 2 log o - 1.

log (%) + constant.

1 : . . .
The MIP g(0) « p and we note that for Rayleigh distribution
MIP and JIP are identical.

We will consider a family of improper priors
ol0) = + P >0 (4.5)
of which JIP is a particular case when p = 1.

Combining (4.3) and (4.5), the posterior distri-

bution of ¢ is given by

m(o|x) K 2(x|0) glo)

20
where
2
[s0]
2
K_l =f 20 do
2n+p
o o]
2n+p-1
_ 1 _ 2n+p-1 2) 2
=5 Tl 2 )( 2J
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Restoring the normalizing constant we obtain

2n+p-1
82 2 SZ
den exXP |~ 3
_ 20
H(OIE) - 2n+p-1. 2n+p r 0> 0. (4.6)
I(=——)o¢

Under squared error loss function, Bayes estimator

g* = E<0|§>
2n+pfl 5
2 2 S
) pel
_\2 j” 20 402
F<2n+p—l) 2n+p=-2 +1
2 0 2 2
(o)
2n+p-2
_ s T
h 2n+p-
/_fr(__g_%..l.)

Using the expansion (4.4),

og* > = mle of 0 as n - o,

S

V2n
A . . . . 2

Similarly, the posterior distribution of ¢ and the

corresponding Bayes estimators are obtained, viz.,

2n+p-1
2
2 _ 202
MN(c"|x) = Smip Tl (4.7)
2n+p-1 2 2
I (=PRSS (07)
and
*2 52 .2 52
g O = - as n =+ «



Let T

squar

For m

Hence

and

In th

of ¢©

mle a

2
= CS where C is a constant,
e error (mse) estimator of ¢
2
M = E(T - © )2
4
= g - 2C62E(82) +'C2E(S4)
aM . 2 2 4
Yol 0 = -0 E(S7) + CE(S)
2
S8 5t > 0.
3cC
in (mse) estimator T, we have
2
o E(Sz)
C = 0
E(S")
S2
— x{(2n).
o
’7
2
E(S ) = 2n0o , V(SZ) = 4no ,
4 2 2
E(s’) = v(s™) + {E(s™)}
= 4n04(ﬁ+l)
4
c 2ngo _ 1
.{...
anc?(n+1y)  2PF2
e class of estimators, T =

is given by

2
S

2n+2 '

nd umvue

2 .

% - 5
2n

cs2,

109.

be the minimum mean

the min (mse) estimator
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And the Bayes estimator of 02,

2 st
2n+p-3 °

Note that the prior g(o) « —% leads to
o]

* 2
o) = the mle and umvue of ¢

and g(og) = —% yields
o

*2
o

111

2
the min (mse) of o .

4.2 RELIABILITY ESTIMATION

(i) MLE and UMVUE

A well-accepted definition of reliability function
Rt is 'the probability of a device performing its purpose
adeguately for the time intended under the operating

conditions encountered' (Bazovski [19617). This proba-

bility is given by

R, = P(X > t) = | £(x)dx

t

j
¢
t

where f(x) is the pdf of the lifetime X.

For Rayleigh distribution, the reliability function

(4.8)

il

®

w

jge}
——

|

o+
NN

[—7

For the exponential failure time distribution
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1
P(XIO) =5 exp (- f), X, ¢ >0
the reliability function
= exp (- E) (4.9)
Rt b e .

Comparing (4.8) ana (4.9), we observe that for small
values of t, the reliabiity of a Rayleigh component
changes more slowly than that of a component for which
the failure time distribution is exponential with mean

life o (Dyer and Whisenand, [1973]).

(a) Rt = mle of Rt
_ exp[_. _tiJ

252

_ _ nt?
= exp 5|

S

(b)  Following Basu [1964], we obtain it' the umvue of R -
The general method of- finding the umvue of 6 is to
look for an unbiased estimator T(xl'XZ""'Xn) and a

complete sufficient statistic € if one exists. Then

the umvue of 6 is given by

BOT(x oy, ee,x ) [61.
Consider a function T(Xl'XZ""'Xn) such that
T(xl) = 1 if xl >t
= 0 otherwise.
= e > + ° <
ELT(X,)] 1-P(X, > t) 0P (x; t)

= R_.
t



Thus T(xl) is an unbiased estimator of Rt'
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Therefore,

R o= .
R, = E[T(x,)]8] jf(xllg)dxl. (4.10)
t
We write
n 5 ‘n
Ix, = X, + Ix (4.11)
1 2
Let
n n
2 2
Ix, = vy, xl = Yy Ix, = (n—l)y2.
1t 2
Re-write (4.11) as
= — A
v Yy + (n l)y2. (4.12)
%o
We have noted earlier that y = in is complete and
' 1
sufficient. From (4.10), we obtain
R, = X 4.13
R, .[ g(y |y, o)ay, (4.13)
t
52 2
By use of (4.12), (4.11) and using that — X(2n) from
o
(4.1a), the joint density of (yl,yz) is given by
n-2
n-1 vy
(n-1) 2 1
= - + -2
by, y,lo) 2,n T(n-1) °*P 7 lyy + -2y,
(207) 20

Making use of the relationship (4.12), we have the joint

) =

density of 1

(y,y

~2
(n-1)" 1

E(yyrylo) = n (n-1)

F(n—l)(202)

E
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1 -1
El(yIG) = o yn exp(— sz.
I'(n) (207) 20
Hence,
E(y.,y]|o)
g(y lylo') = _l—_____
1 El(y[o)
v n-2
(n-1) [ l}
= — 1] - —= , 0 < < .
v v Yl Yy
From (4.13), we have
y n-2
Yy
~ n-1 1
R, = - —=
t y ”[ (1 y] dyl
t
S2 52 n-2
. b-d f 1 - 2 ds
S2 S2 1
t
t2
- =
S
- n-1 f un—252du
2
S
0
tz n-1
Y P
S
Thus,
n-1
- ( £2)
Rt = [l - *EJ , 0 < t.< g
S (4.
= 0 t > s
Note that
) t2 n-1
- (1 ; }
t 2n32
t2 ~
- exp(- “2J = Rt as n - o,
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(ii) Bayes estimator
R, = exp(— tZJ
- 2
t 20
2
1 t
loglg=) = —
t 20
Substituting
52 - £ 2
2 log(Eil
t
in (4.7), we obtain the posterior distribution of Rt' viz.,
2n+p-1
2
(_S_} ? s? ) 2n+p-3
2 2 2
bt t 1
T(R |x) = smipT (R (log =) ,
I (—————) t
2
0 < Rt < 1 (4.15)

which agrees with Sinha and Guttman [1976] with

{pnéi} {1r§£}
‘t2 t

We have noted earlier that under squared-error loss

function, Bayes estimator 6% = E(Sfi). Hence,
1
1 =ﬁf R T (R, | x)ar
t t £t t
0
2n+p~-1
2
2n+p-1 S2
r<———3——)[-—J
2 2
_ t
h 2n+p-1
2 3 2
S 2n+p-1
__+ ———
[ > 1J T ( 5—)
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= -1 - (4.16)

Comparing (4.14) and (4.16) we observe that ﬁt = 0 for
t > S, which is realistically unacceptable, whereas Bavyes

estimator R% > 0 for all t > 0.

We now obtain the posterior density and Bayes estimator

for a Rayleigh component failure rate, u(t) = —%
o}

. . 2 t . .
Substituting o7 = () in (4.7), the posterior of u(t)
is given by

, et ) 2n+p-3
S S u(t) 2
- expy- ———{u(t)
T{p(t)|x} = 2 2t
- 2n+p=-1 2n+p-1
F(M—*E-*) — 5
(t)
0 < p(t) < =, (4.17)
and the corresponding estimator
2n+p-1
2 _
[5_2__} i 2
* _ (= S u{t)
R yosruy 2n+p 1 j.EXp{ 2t
I 2 ) 2 0
t
2n+p-1
2
*{u(t)} du(t)
(2n+p-1)t
S2
> 1(t) as n > o,
For J1IP,
~ *
ult) = w (t). (4.18)
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A sample of size n = 20 was generated from a Ray-
leigh pdf (4.1) with ¢ = 2 and the posterior distributions
(4.6), (4.7), (4.15) and (4.17) were plotted in Figures
1 to 4 with p = 1, (1), 4. ‘The rPosteriors tend to be less
and less robust as the prior distribution of o deviates

from the JIP.

4.3 SIMULATION

' . 2
In order to compare the Bayes estimators of o, o7,
R(t) and u(t) with their respective mle's N = 500 samples

of size n = 20 were generated from the Rayleigh pdf

(4.1) with o = 2. The average of these estimates and
their mse's are computed. We report the results in the
following table. The entries within the parentheses

represent the corresponding MSE.

TABLE 4.1

Bayes Estimates (*) and mle (") under JIP,

N = 500, n = 20

. ) .
Estimates True Estimator izii”;
Parametef‘x\\\. Value Bayes (*) MLE (")
o 2.0000 2.0295 1.9912 1.05
‘ (0.0557) (0.0529)
2
o 4.0000 4.2291 4.0177 1.17
(1.0125) (0.8667)
R(5) . 0.0439 0.0585 0.0483 1.27
(0.0014) (0.0011)
u{5) 1.2500 1.3128 1.3128 1.00
(0.0998) (0.0998)




117.

SE'l

......................

—Nm g

d0/1 © (0)b ‘ YoiMd
HLlIM 0 40 ¥0i¥31S0od
"NOILNGIYLSIA HOIZTAVY

o

"~ o
.........

- 020

- O0¥'0

-1090

- 080

— 00|

— 02|

101

- 09l

— 08I

- 00¢

L d

—————%(XEQ)QIL&———————



¢ d4dNSHrd4a

118.
¥
N
b
A

089 0¢9 086 0og'S 08t (@17 08¢ og'e 082 0ge 08l
T

16400

—10S1°0

.......................

1

5220
nnnnnnn N ~00g°0

—g2¢e0¢

d2/1 » (0)b° Yoiyd . Host'0
HLIM 30 40 HOIM31S0d , Ry 5250
‘NOILNGIYLSIT . HOIZTAYY

e L1 [} )/ —

= 0090



119.

£ d4dNSI1d
2 A@v Y <«
9’0 HI'0 PANG] oro 800 900 00 200 000
_ aaer T ~ _ | _
062
b 00'G Aﬁ,
00'L
= G erreeiecrerenne
g=d —-— Too.o_w,.w
2=0d ——-m—me ; ey
| =d HJosz2l =
6EV"0 = (3) 4 - =
Ha g =] ﬁ 10075 %
¢-0/1 » (0)b° Hol¥d | /| =
HLIM (4)¥ 40 HOIMALSOd WAl qosw
'NOILNGINLSIA HOIZTAVY i ooz
“ Jog2z
- 0062



120.

v d49no1d

0G2 0¢2 ore 000
{ S
..... -102°0
- 0%'0
Y = d
€=d ——
Q= d e o
| = d
SZ°T = (3)d ~@_NW

d0/1 2. (0)b * Yoiyud
HLIM (4)7 40 YoIY31S0d
"NOILNSIYLSIA HOITTAYY




121.

Based on the above computationé it appears that
the mle of o, 02 and R(5) have a slight edge over their
Bayesian counterparts.

Using the same simulation, the UMVUE of Rt as given
by (4:14) and the corresponding mse were also obtained.
We have R(5) = 0.0448, MSE(~) = 0.0011.

True R(5): R(5): R(5): R*(5):: 0.0439: 0.0448:

0.0483: 0.0583

MSE(~): MSE("): MSE(*):: 0.0011: 0.0011: 0.0014

Thus the UMVUE and MLE of R(5) are equally efficient

and are preferable to the Bayes estimate R*(5).

TABLE 4.2
Bayes Estimates under g(o) « —i-, N = 500, n = 20
gP
p 1 2 3 4
Parameter

o 2.0295 2.0037 1.9788 1.9548
(0.0557) (0.0535) (0.0526) (0.0529)

02 4.2291 4.1207 4.0177 3.9197
(1.0125) (0.9259) (0.8667) (0.8311)

R(5) 0.0585 0.0547 0.0512 0.0479
(0.0014) (0.0012) (0.0011) (0.0009)

u(5) 1.3128 1.3456 1.3784 1.4112
(0.0998) (0.1099) (0.1222) (0.1368)

As expected, the more g(o) deviates from JIp,
Table 4.2 reflects a similar pattern of lack of robustness
of the posterior expectations as evidenced by the

corresponding posteriors plotted in Figures 1 - 4.
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4.4 HPD AND EQUAL~TAIL CREDIBLE INTERVALS

Having obtained the posterior distribution H(G]E),
we ask 'how likely is it that the Parameter O lies within

a specified interval [c ,62]?' It may not be anywhere

1
near certainty but it may not be highly unlikely either.
Suppose we are 100(l-a)% confident that 6 & c, and $ c,-
This is not the same as the classical confidence inter&al
interpretation for 6 where elis a constant and it is
meaningless to make a pProbability statement about a
constant. Bayesians call this interval based on the
posterior distribution a 'credible interval' (Edwards,
Lindman and SaVage [1963]) or 'Bayesian confidence inter-
val' (Lindley [1965]) — an interval within which one
assigns a fixed probability that an uncertain parameter

8 is located.

It seems quite reasonable to reguire that such an
interval should have the féllowing properties:

(a) for a given probability content P, the interval
should be as short as possible;

(B) the posterior density for every point inside the
interval is greater than that for every point out-
side it so that the interval includes more probable
values of the parameter and excludes less probable
values.

Such anbinterval is called the highest posterior

density or HPD-interval (Box and Tiao [1973]).
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As earlier introduced, an interval [cl,c2] is said
to be a 100(1~a)% credible (or Bayesian confidence)
interval for 6 if

)

j‘ M(6]x)d8 = 1 - q. (4.19)
€1
For the shortest credible interval we have to.
minimize I = c, —Acl subject to the condition (4.19)

which reguires

H(Cll§> = T(c,|x). (Evans, 1976) (4.20)

An interval [cl,c2] which simultaneously satisfies
(4.19) and (4.20) is called the 'shortest 100(1-o)s3
credible interval"'.

For unimodal but not necessarily symmetrical pos-
terior density, the shortest credible and the HPD~-
intervals are identical (Evans L1976]) .

In general an HPD intérval satisfying (A) and (B)
has to be obtained numerically using innovative computer
bProgramming, To aveoid laborious computations one may prefer
a 100(1l-a)s equal-tail credible interval [a,b] for 8

given by

T(6]|x)ds =‘[ mee|x)as = &
b

o

For a symmetrical, unimodal posterior distribution,
the HPD, shortest credible and egual-tail credible

intervals are one and the same (Evans, 1976).
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(1) Equal-Tail and HPD Credible Intervals for g and R(t)

We have shown earlier that

2
S 2
— T x (2n)
c
. 2
l-a = P x2 (2n) < =/ < X2(2n)
o o
1-= o =
— 2 2
=p|l—S 5 < ___ 5 (4.21)
2
/xa(2'n) /x (2n)
3 1-
Thus
S S
[ 2 ' 2
JX (2n) /x (2n)
o v o1&
2 2
is the 100(l-a)% equal-tail credible (oxr Bayesian confi-
. 2 o 2
dence) interval for ¢ where S = in and X8(2n) = the
1

upper 1008% point of a X2~distribution with 2n degrees of
freedom.

The posterior distribution of ¢ as given by (4.6)
is unimodal. For the HPD-interval for ¢ we must have

the following equations simultaneously satisfied, viz.,
< < = -
P(HL o} HU) 1 a
T(Hp [x) = T(H, | x)

where HL and HU are the lower and upper 100(l-a)%

HPD-credible limits of o. From (4.21) and(4.6), the

above equations lead to



2 2
P(—S‘-2-<X2(2n) <'S—2} = 1 - «
Hy Hy
2n+1
IS A S R R Y
eXP = 3 22 w2)| T H,
L U

Using the data referred to earlier,

2
s¢ =

n 20, =

150.14349, 2(0.05,40) 55

X

X2(0.95,4O) 26.5093, From (4.21), the

equal~tail 90% credible limits for o are

/150.14349
= 55 o5gs = 1.6410
/150.14349
26.5093 _ 2-3799.

Computations for HL and HU

than those for (H

since
L

(cL,c )

+H
U )

U

equations (4.22) and (4.23)

For the same set of data,
HPD~credible limits

2y

H

2.3336.
U

1.6061,
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(4.22)

(4.23)

we have
.7585,

lower and upper

are a little more involved
must satisfy the
simultaneously.

we obtained the 903

Note that the 90% HPD-interval is shorter than the

corresponding equal-tail credible interval which, of

course, is expected.
From (4.15) it follows that
2S2 2

2

log('R_l) ~ x%(2n).
t t
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Hence 100(1-u)% equal-tail credible limits cL(t) and

cU(t) for the reliability function R(t) are the solutions

of
2
2 2
t U 1~=
2
’ 2
2s 1 2
f*; log {E_TgT} Xa(Zn). (4.25)
t L >

The corresponding HPD-limits HU(t) and HL(t) are the

simultaneous solutions of

2 2
28 1 2 2s 1
(257 n0s (e} < atem < 252 0 [ )] L
t2 HU(t) t2 HL(t)
(4.26)
and 5 5
S S
=t 2t
t (n-1) t (n-1)
= r
{HL<t>} Elog{HL(t)}] {n, ()} Llog{HU(t)}]
(4.27)
Using the data referred to in the preceding at t = 5 we

obtain 90% equal-tail credible limits of R(5) from (4.24)

and (4.25), given by

CU(S) 0.110024, cL(5)

It
o

.009636

and

il

H_(5)

U 0.090624, H_(5)

L

il
(@]

-.003507.

As expected, the HPD-interval is shorter than the

corresponding equal-tail credible interval.
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4.5 PREDICTIVE DISTRIBUTIONS

In recent years much attention has been given to
the prediction problems of the life time models, especially
to the two-parameter (sometimes called '"left truncateg!')
expogential model both in sampling theory and Bayesian
viewpoints (Dunsmore [1974], Likes {1974], Lawless (19777,
Evans and Nigm [1980]). 1In this section we use a
Bayesian approach to the prediction Problem when the
underlying lifetime has a Rayleigh distribution. We

consider the prediction of a future observation.

(1) HPD-Predictive Interval for a Future Observation
Given x = (Xl'XZ""’Xn)’ the conditional joint
density of X 11 and ¢ is
h(xn+l,0f§) =>f(xn+l]0,§)ﬂ(ol§)
= f(x_ . Jorne]x),
since Xn+l 1s independent of X.

From (4.1) and (4.6) with p = 1, we obtain

2 2
_Xn+l _ 52
X 2 2n 2¢g
n+1 20 S e
h(x yolx) = e (4.28)
+1 < 2 -
n o 2n lP(n) G2n+l

We integrate out o from (4.28) to get the predictive

density of xn+1 as



128.

2nX
_ n+1l
X) = 2n (52+X2 )n+l . (4.29)
n+1

H(Xrﬁ-ll

We note that x§+l has an inverted beta distribution,
InBe(l, n, S2).
The inverted beta distribution with Parameters
a, B, and r, o, B, r > 0 denoted InBe(a,B,r), is defined
by the pdf
a-1 B
y r
o+
B(a,B) (y+r)

B

for y >0, a, B, r > 0.
Bayes estimator of Xn+l under sgquared error loss
function is given by

© 2nX2+l
x* = E(x lx) = f 2n = dx
n ~
0

+ + 2 +
n+1 1 (S2+X )n 1 n+1l
n+1

I'(n=%)T (3/2)
" T(n)

Il

The reliability of the predictive density (4.29) is

@ 2nX
R (t) = P(x > t) = [ 2n ntl
X 41 n+l J (82+ 2 )n+l n+1
n t n+1l
t2 -
S

which is precisely the expected value of the reliability
function of the original Rayleigh distribution as obtained

in (4.16) with p = 1.
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The predictive density (4.29) is unimodal, the
100(1-a)% HPD-predictive interval for X 41 has limits

c and <, satisfying the equations

) P(cl < xn+l < c2) =1 - a
ang ) : (4.30)
T(e,|x) = T, |x)
Since
. ~ InBe(l, n, 87)
y Xn+l ' I ! I
2n Jo
3 S 2 cl
T, feylx =n (e 0 |57 = 2 n+1
n+l Xn+l B(l,n)(c1+S )
Similarly,
2n
S 2vY¢c
Hx (c2I§) = 22 n+1
n+1l B(l,n)(c2+S )

Thus, the equations in (4.30) take the form

P(ci <y < cg) =1 - «a
and } (4.31)
+g2 0¥l c
2 - 2
2 - c
cl+S 1
where
2) . f
P < < = I ( x)dy - T ( x)dy.
(c y c2) J y y[~ Y .[ y Yl~ y
2 C2
cl 5

Consider
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(o] (o]
- 1 -(n+
fny(ylg)dy = f 5 (1 + yss?) "D o
5 5 S B(l,n)
¢ ¢l
82
2
S +c
1 n-1
= (1. 1) Z dz = 1 52 (n,1)
0
S +c

Similarly,

oo

fznywlg)dy =1, (n,1)

c
2 2 2
+
S c2

where

p
1 a-1 b-1
I , = — -
p(a b) B (a. D) f.x (1-x) dx
0

Hence, the first equation in (4.31) takes the form

-P(c2

1 <y < cg) = I (n,1) - 1 (n,1).

s 52

2 2 2 2
. + +
S cl S c2
Since beta distribution is not as extensively tabulated
as binomial distribution is (Weintraub [1963]), we use
the relation between the incomplete beta function and

binomial expansion, viz.,



a+b-1

+b-1 i
I_(a,b) = 1 (3TPTh g
b . i

i=a
Thus,
n
2
2 2y _ (8 _ s

Plcy <y < c,) = ( 5 2} { > 3

S +cl

Thus, the 100(l-a)% HPD-predictive interval is the

simultaneous solution of the equations

o) -

S +cl S +c2
and
n+1l

2 C

+
[cz S } _ C2
. 2 y 1

+

cl S

- o

Using the generated data with n =

the solution of (4.32) is

c 0.8903

1

and

9.7457.

0
fl

+
S 02

N

20,

"
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(4.32)

105.14349,
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CHAPTER FIVE

BAYES ESTIMATORS OF THE TWO PARAMETERS

OF A NORMAL DISTRIBUTION

5.0 INTRODUCTION

Bayesian treatment of the variance 02 of a normal
distribution was considered by Goodman (1960) and Evans
(1964). Lindley (1965), Zellner (1971), and Box and
Tiao (1973) consider the normal distribution under
uniform prior. Sinha (1980) also considers the normal
distribution under JIP. In this dissertation we will
consider Bayesian treatment of this distribution under
the Natural Conjugate Priors (NCP) (DeGroot, 1970) for

0 for the two parameter normal density function

1 1 2
£(x|u,0) = —— exp{— 5 (x-u) },
V21 o 20
-~ < x, u < ®©, g > 0 (5.1)

and obtain Bayes estimators for u and 02 under a variety
of toss functions. We will further consider a Monte Carlo
study to compare these estimators and search for the
optimal loss function, if any, which yields minimum mean
squared error estimators for all combinations of the prior

bparameter involved.

5.1 POSTERIOR DISTRIBUTIONS OF u AND g2

We will use the NCP for ¢ given by

2cp/2 exp(-c/oz)
I'(p/2) GPtl

g(oc) =
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and the diffuse prior

g(u) = constant
for yu. In the absence of any prior knowledge about u
and o0, it 1is not unreasohable, at least to start with,
to assume stochastic independence of the parameters
(Box and Tiao, 1973). Our "belief" about the priors
will, of course, be influenced and revised in the light
of the subseqguent éosterior analysis. Thus, the joint

prior of yu and o is

ex (—c/02)
glu,0) = g(u)g(o) « E . (5.2)
p+1l
o]
Given the sample x = (Xl'XZ""'Xn)’ we may write
the likelihood function
-n
2 1 1 2
g(xlu,0%) = |——n exp{— 5 I(x ~u) } (5.3)
VY21 o 20
Combining (5.2) and (5.3), the joint posterior of g and
0 is
H(u,clx) = m———— eXp| - —l--(A + 2¢c + n(u—§)2} (5.4)‘
~ n+p+2 2
— 20
2 -
c
n _ 5 .
where A = I(x,-x) and k is a normalizing constant.

Integrating out u and restoring the normalizing

constant, we have the marginal posterior of o as

4+ -
P__%*l exp{— 5 (A+2C)}
(A+2c) - 20
I(o|x) ,
=~ n+p-3 On+p

n+p-l)2 2

I'( 5
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. . 2
and the marginal posterior of o~ as

n+p-1
(A+2c) 2 ) exp{— ~l§ (A+2c)}
2 2 20 2
T(o™|x) = 1.,(n+p-—].) n+p+l 0 >0 (5.5
2 2 2 )

(o7)

which again is an inverted gamma distribution.

The marginal posterior of u from (5.4) is given by

1
= - OO < [oe]
m(nlx) 7 <y (5.6)
-2 2
1 m (pn-x)
VA B(2, 2)[; + X ]
where
A+2c
A= S m = n+p-1.
We now find the posterior moments. Consider an
inverted gamma pdf
b ~a/x
f(x|a,b) = 2 © X, a, b >0 (5.7)
14 T(b) Xb+l_ 14 7 7
where
a
E(x) =973
a ,r
TR S
- a® ? (x - _2)F ma/x ax
I'(b) 5 b-1 Xb+l
b © r r-k -a/x
a k r a ,k x e
= I (=17 ()« ) dx
- b+1
I'(b) 0 k=0 k" b~-1 <
- (-1yk Ty _at  I(btk-r)
B b+k-
I 4o (-1 a *
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_at o f k r. T(b+k-r)
= T(p) ° (-1) () k
k=0 (b-1)
Thus,
y = a2 : L= 4a3
2 (b-1)%(b-2) > (b-1) 3 (b-2) (b-3)
3a4&b+5)
Mg 7 4
(b-1) (b-2) (b-3) (b-4)
, :
1 3 T2
L (b-3)
"4 3(p+s
B - —— . ) (b"2)
2 2 (b=3) (b-4) °
Ho
Putting
_ A+2c _ n+p-1
a = 5 b = 5

. . 2
for the posterior density of o7 in (5.5), we have

32 (n+p~-5) N

B 0 as n -
1 (n+p—7)2
and
_ 3{n+p+9) (n+p-5) -
By = T(n¥p-7) (n+p-9) 3 as =n >

This implies that

2
(o Ig) > Normality as n - o,

Again, H(ulg) is symmetric in (u-x) about zero, which
implies

-, 2r+
E(u-3) "t 20, r=o0,1,2,..
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- 2T
My o = E(u-x)
1 - 27 - -
= — 11 o f ( -x)2r ta(u-x)?
N B(3, 35) 0 m+1

Putting
- 2 2
(H=-x%) -
A m’
we have
2 A, r=-% A 2
y _ 1 1 (t° =) (—)dt
2r 1 m m+1
/X B(z' 2) 0 tz 2
1+ —
Ly -
tz (r+%)-1 t2
) 2\ F o - d (—)
B m+1
Blgr 30 0 2] 2
1 + —
m
2 m
= oL E) B(r+2, E -r)
"2
r 1 m
_ A P(r+2)T(5 -r)
1 m
F(E)F(E)
Thus
o : 3>\2
Po T om-2 My (m-2) (m-4)
3(m-2) 3(n+p-3)
=3 = = 3 o
1 = O B2 (m-4) (n+p-5) ~ ° @5 n >

showing that

H(u,g) =+ Normality as n - o,
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A random sample of n = 20 was generated from a normal
population with u = 20 and ¢ = 3. The sample gave
- 20 2
X = 20.50139 and A = Z(xi~x) = 173.2500, the posterior
1
2
T(o Ig) was plotted for ¢ = 1, 2, 3, 4 and fixed

P =1 (1) 4 in Figures 1 to 4 angd for p = 1, 2, 3, 4 and
c = l.(l) 4.in Figures 5 to 8. The posteriors of o
appear to be quite robust, almost symmetrical for fixed
P and varying c¢ but less so for fixed c and varying p.
The posteriors of py were found to be very much robust

for variations in both p and c. The graphs came so close
that it was difficult to distinguish among them and

hence are not displayed.

2
5.2 BAYES ESTIMATORS OF p AND o

In this section we will obtain the Bayes estimators
of p and 02 under the loss functions discussed in
Section 2.3. We will also consider the zero-one loss
(20L) function.

The ZOL function is given by

0 Aif |T-8] < a
L(T,efx) =
) 1 if |7-8] > a
and is appropriate when there is loss or no loss if the

error does or does not exceed a certain constant a.
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it

ElL(T,8)|x] = p[|T-8] > a|x]

i

1 - P(T-a £ 6 < T+a)

T+a

=1 - [ melx ae
T-a
which is minimized as
T+a
1= § meelxae
T-a
is maximized. This implies that
I(T+al|x) = I(T-a|x).

If the posterior distribution is unimodal angd
symmetric, the point estimator T is the posterior mode
under ZOL. It may be noted that T is the centre of the
highest posterior density (HPD) interval of length 2a.

. 2 .
Bayes estimator of ¢° under the SEL function (2.12)

e
1l

S UZH(Uzlg)dcz
A .

A+2cC
= — 5.
n+p-3 ( 8)

. . 2 .
The posterior distribution of o° as given by (5.5)

is an inverted gamma which is unimodal but not symmetric.

Under ZOL the estimator T must satisfy H(T+al§) = H(T—a]g).
Let

T - a = 81

T + a = 62

2a = 82 - Sl, 82 = 2a + 61.
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We want a € such that II(8) = I(2a+8), in that case

T = 0+a. We proceed to obtain T by the following iterative

process:

(i) For known values of the prior parameters

A+2cC

r tart i 6 = 8. < =
(c,p) start with 1 mode. ntp+l (known,
: n
since for the given data X, n and A = Z(x—x)2 are.
1
known) .
(ii) Compute n(el) and H(61+2a) for an arbitrary a.

If H(Gl) < H(61+2a), choose a 82 = el+al and if
+ = - .
H(el) > H(Bl 2a), choose a 62 61 61, 61 > 0
(ii4d) Compute H(62) and H(82+2a). 1f H(62) < H(62+2a),

choose a 63 = 92+62 and if H(92) > H(82+2a), choose a

63 = 62-62, 62 > 0.
(iv) Continue till we obtain a ek such that
H(@k) = H(6k+2a) and we have T = 6k+a. For a fairly

symmetrical posterior, as the arbitrary value a

decreases T tends to the posterior mode.

The Bayes estimator of 02 under LSEL (2.13) is

n+p-1 1
S (A+2c) 2 exp{— 5 (A+2c)}
*2 2 2 : 20 2
log o = & log © Sp— nip+l do
I 2 ) 2 2
(o)
Substituting Arle _ g, we have

202
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% ntp-1
*2 1 + - -
log © =§ -——————*—-[log(A 2c)-log qJe qq 2 dg
n+p-1 2
0 I'(—=—)
2
_ A+2c 1 fo -q m-1
= log( > ) T () A log ge “g dg,
putting m = Ei%:i ,
A+2c¢ d
= log( 5 ) - Im log I'(m).
Thus
*2 A+2c¢ d
o = 5 yexp{- i log T(m)}
A+2
= (S5 expl-v(m},
where
a
Y(m) = == log T (m);

dm

the digamma function is extensively tabulated in Abramowitz

and Stegun [19647].

From (2.22),

< 1 - 1
exp{y(m)} = m exp(- 2m) m-=.
Thus
_0*2 ~ BA+2c  A+42c
2m-1 n+p-2
i 2Q
For the GLF, let us choose A(6) = ¢ ;7 then
*
o 2 _ [E(oz(a+6)]g)/(EO2Qf§)]l/B

where
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E (o2 (@FE) [x) =§ 02(0”8)11(02[}5)(302

0
+2 + +p~20-2f- +p-
_ (A c)a Br(n p~-20-28 1)/F(n p l).
2 2 2
Thus,’
1/8
*2 A+2 +p-20-28- +p-2a-~
o = c) T(n p-20 B8 l)/r(n p-2a l) )
2 2 2
Using asymptotic expansion of gamma functions, namely
T'(x+a) a a2-a
-— ~ +
T (x) x (1 2x
(Exdelyi, 1953), the Bayes estimator of 02 under the GLF

takes the form

*2 . ( A+2c yd1 4 B(B+1) 1/8
n+p-2a-1 n+p-2a-1

A+2c B + 1

n+p-2a-1 ‘v T Rip-ze-1)-

If we assume ¢ = 0, p = v-1 in (5.2}, the joint prior of
u and ¢ is g(u,0) = —%~ which is improper. The corresponding
o]

estimators turn out to be

Estimator Loss Function

A

—_— SEL
n+v-4

An estimator T 2

0*2 = I{(T+a) = H(T-a) ZOL
————— toti LSEL
Srv_3 (asymptotically)
A B + 1
R + —— GLF
n+v-2qa~2 (1 n+v—2a—2) .

(asymptotically)
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*2
With suitable choice of v, © under SEL, and LSEL

identify with well-known classical estimators.

For example,

V = 4 under SEL => MLE

V = 3 under LSEL => MLE

§ = 3 under SEL => UMVUE

vV = 2 under LSEL => UMVUE

v = 5 under SEL => min MSE
Vv = 4 under LSEL => min MSE

Bayes estimator of p under SEL function, using (5.6),

is
* = 1 \g\w u au
" - ,/K B(i _Hl) — o m+l )
2" 2 (u-x) %) 2
{l+ 5 }
Let
H=-x — ,_t , du - /—{r_\l, dt
A am ~
1 \gw (;‘ i /% t]
EJ—-
* B2, Bv/n Yo nr1
27 £2] 2
1 + —
: m
= x,
the second integral vanishes, since E(t) = 0. Thus, the

Bayes estimator of yu is independent of the prior parameters
¢ and p, which, of course, is expected since the priors for

¥ and ¢ are independent.
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The Bayes estimator of u under ZOL is also X.
We now apply the loss function GLF (2.14),

L{(T,u) = ua(T8~u8)2

a L . . . .
where u is a positive weight function of p and T(+),
an estimate of yu.
The Bayesian estimate for p is the solution of the

eguation
2 rLr, g |x)du = 0
3T A HX M ’
giving

= (eGP ) e (%)) 118

where
o S
s _ 1 X u
E(u[x) = s L ma 57 du-
2" 2 (u-5) 2| 2
_l + 5
Let
Hox ot , du = /g dt
Y x Ym
]
- A
S‘ 1 \YD {X * t\/:]
E(r ™ |x) = dt
~ 1 m m+1
B(5, ) /A =e 2) 72
1+ r
A
X k-1
S — 2
a 1 3; (s)_s—k(A)Z (t2)
- X +1
B(Z, Iy /% - k m o




k+1
S k t2 2 t2
ey © (—) d{—)
1 s 2_s-%k m
= () A x
B(x, & . 0 mtl
2’ 2 k=0 ( 2] 2
t
[l + —
s k
1 N\ S..2_s-k_ k+1 m-k
- . ATR — .
B(i E) g (k) X ( 5 7 5 ) (5.9)
2’ 27 k=0
Putting s = 1, we have
1 k
1 1.,2_1-k_ x+1 m-k
E (u]x) SIm z () A"x (== =)
2" 20 . k=0
= x
which has been obtained earlier.
Put s = a and s = a+f in (5.9 ) to get E(ualg)
+
and E(pa B!g), respectively.
5.3 MONTE CARLO STUDY
We generated 5000 samples each of size 20 from a
normal distribution with u = 20 and 02 = 9 to compare
the performance of the various estimators. The mean and

mse of 5000 estimators under various loss functions are
computed and tabulated in Tables 5.1 to 5.8. The entries

in the parentheses represent the mse's.
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TABLE 5.1

. 2
Bayes Estimates of ¢~ under Squared Error Loss

Function with n = 20, N = 5000

b 1 2 3
c .
1 9.61l6674 ©.110434 8.654841
(9.933476) (8.584599) (7.854102)
5 9.727773 9.215700 8.754810
(10.083230) (8.619310) (7.795399)
3 9.838876 9.320970 8.854854
(10.257680) (8.676115) (7.756692)
TABLE 5.2
Baves Estimates of 02 under L(T,Uz) = O2a(T8_028)2
with n = 20, N = 5000, o = 1, B = 1
P 1 2 3
c
1 10.822353 -10.185744 9.619869
(15.411305) (12.115766) (9.937095)
5 10.947353 10.303391 9.730980
(15.882518) (12.408605) (10.087190)
3 11.072353 10.421038 ©.842091
(16.384981) (12.729126) (10.261975)
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TABLE 5.3

. 2
Bayes Estimates of 0 under L(T,Gz) = g (T -0 )

with n = 20, N = 5000, ¢ = 1, R = 2

. P ' 1 2 3
c
7 11.569582 10.843552 10.203412
(20.420276) (15.536433) (12.195165)
5 11.703212 10.968797 10.321263
(21.124883) (16.013910) (12.492701)
3 11.836843 11.094042 10.439114
(21.865204) (16.522760) (12.818014)
TABLE 5.4
Bayes Estimates of 02 under L(T,OZ) = O2Q(T —028)2
with n = 20, N = 5000, o = 1, B = 3
p 1 2 3
c
1 12.453705 11.613073 10.879314
(27.938109) (20.749755) (15.749758)
5 12.597548 11.747206 11.004972
(28.952378) (21.468745) (16.237850)
3 12.741390 11.881339 11.130629
(30.008028) (22.223718) (16.757520)
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TABLE 5.5

Bayves Estimates of 02 under L(T,oz) = OZa(TB_028)2

with n = 20, N = 5000, ¢« = 2, B =1

P 1 2 3

C

L 12.368403 11.543843 10.822353
(27.137598) (20.227251) (15.411305)

5 12.511260 11.677176 10.947353
(28.120407) (20.923387) (15.882518)

3 12.654117 11.810510 11.072353
(29.144032) (21.655079) (16.384981)

TABLE 5.6

2
Bayes Estimates of 0 under L(T,OZ) = GZG(TB—O2B)2

with n = 20, N = 5000, o = 2, B = 2

p 1 2 3
C
1 13.359402 12.400077 11.569582
(37.427756) (27.432960) (20.420276)
5 13.513706 12.543299 11.703212
(38.796906) (28.427411) (21.124883)
3 13.668009 = 12.686522 11.836843
(40.213676) (29.462887) (21.865204)
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TABLE 5.7

. . 2
Bayes Estimates of 02 under L(T,Oz) = g oC(TB--CJZZB)Z

with n = 20, N = 5000, a = 3, B = 1

p | 1 2 3
c
1 14.429804 13.319819 12.368403
{50.976697) (36.975188) (27.137598)
5 14.596470 13.473665 12.511260
(52.814410) (38.328032) (28.120407)
3 14.763137 13.627511 12.654117
(54.707677) (39.728213) (29.144032)
TABLE 5.8
. 2 2 2.2
Bayes Estimates of 6 under L(T,0 ) = (log T-log ¢“)
with n = 20, N = 5000
P 1 2 3
c
1 9.110434 8.654841 8.242619
(8.584599) (7.854102) (7.587810)
5 9.215700 8.754810 8.337867
(8.619310) (7.795399) (7.452951)
3 9.320970 ' 8.854854 8.433069
(8.676115) (7.756692) (7.336213)

The Bayes estimators of u are all identical under the
three standard loss functions, namely, x which on simulated
data of 5000 samples each of size 20 is 20.00507 with a
common mse of 0.445827, while the variange of the mle of
u is 02/n = 0.45. It may be noted here that the mle and
the Bayes estimator of u under the standard loss functions

are the same.
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. 2
Table 5.9 shows the Bayes estimates of o0 under

. 2
70L and Table 5.10 gives the modal estimates of ¢

TABLE 5.9

il

Solution of HN(T-a) n(r+a), a = 2, with n = 20, N = 5000

p 1 2 3
C
Ny 8.769383 8.427862 8.114651
(6.441417) (6.166241) (6.142349)
5 8.860092 8.514219 8.197585
(6.409856) (6.080545) (6.005903)
3 8.951001 8.601175 8.280318
(6.392682) (6.003622) (5.885377)
TABLE 5.10
&
Modal Estimator o 2 = —2¥2C  Litn n = 20, N = 5000
n+p+l
p 1 2 3
C
N 8.655662 8.243487 7.868783
(7.856342) (7.590700) (7.674505)
5 8.755662 8.338725 7.959692
(7.797474) (7.455673) (7.477094)
3 8.855662 8.433963 8.050601
(7.758607) (7.338786) (7.296212)
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‘Tables 5.11 to 5.16 show the Bayes estimates of

u under the GLF.

TABLE 5.11

o
Baves Estimates ©of y under L(T,u) = u (T -u )

with n = 20, N = 5000, a =1, B =1

p 1 2 3
C

N 20.041060 20.039794 20.038655
(0.446579) (0.446513) (0.446457)

5 20.041338 20.040058 20.038906
(0.446589) (0.446522) (0.446465)

3 20.041616 20.040321 20.039156
(0.446600) (0.446532) (0.446474)

TABLE 5.12

Bayes Estimates of u undexr L(T,u) = p (T -u-)

with n = 20, N = 5000, o =1, B = 2

P 1 2 3
C

N 20.053049 20.051154 20.049449
(0.447380) (0.447232) (0.447106)

X 20.053465 20.051548 20.049823
(0.447405) (0.447255) (0.447127)

s 20.053881 20.051943 20.050198
(0.447432) (0.447278) (0.447147)
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TABLE 5.13

Bayes Estimates of p under L(T,u) = p (T -u")

with n = 20, N = 5000, o = 1, B = 3

P 1 2 3
c

1 20.065015 20.062492 20.060222
(0.448496) (0.448235) (0.448011)

5 20.065569 20.063017 20.060720
(0.448544) (0.448277) (0.448049)

3 20.066122 20.063542 20.061219
(0.448592) (0.448320) (0.448088)

TABRLE 5.14
, o B B, 2
Baves Estimates of u under L(T,u) = p (T -pu")

with n = 20, N = 5000, o = 2, B =1

p 1 2 3
C

1 20.065046 20.062521 20.060248
(0.448498) (0.448236)  (0.448012)
20.065600 20.063046 20.060747

2 (0.448546) (0.448279) (0.448051)

3 20.066155 20.063572 20.061246
(0.448594) (0.448322) (0.448089)
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TABLE 5.15

Bayes Estimates of p under L(T,u) = ua(TB-uB)2

with n = 20, N = 5000, o = 2, B = 2

P 1 2 3
c
1 20.077009 20.073857 20.071020
(0.449931) (0.449523) (0.449175)
5 20.077701 20.074513 20.071643
(0.450008) (0.449592) (0.449236)
3 20.078393 20.075169 20.072266
(0.450085) (0.449661) (0.449298)
TABLE 5.16
) a, B B, 2
Bayes Estimates of p under L(T,u) = y (T -p")
with n = 20, N = 5000, oo = 3, B = 1
p 1 2 3
c

1 20.088980 20.085201 20.081798
(0.451682) (0.451095) (0.450594)
5 20.089810 20.085987 20.082545
(0.451793) (0.451195) (0.450683)
3 20.090640 20.086773 20.083293
(0.451906) (0.451296) (0.450774)
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CONCLUDING REMARKS

We make the following observations from this study:
From Tables 5.1 and 5.2 to 5.7, it follows that

within the class of loss functions

L(T,8) = SG(T - 07)7,
the sgquared error loss function (a = 0, B = 1)
yields the minimum mse estimates of 02 for all
combinations of (c,p). Further, from Table 5.1,
the mse's are fairly robust for varying c and a
fixed p but less so for varying p and a fixed c,
which supports the observation we made on studying
the graphs of H(ozlg).
From Table 5.8, we observe that the logarithmic

squared error loss function

L(T,8) = (log T - log 8)°2
results in the minimuﬁ mse estimates for all combi-
nations of (c¢,p) compared to the loss functions in
(1) above.

The zero-one loss function

L(T,8) 0 if |7-8] < a

1 if |r-6]| > a

with arbitrary a, the estimate T depvends on the
choice of a. With a = 2 (Table 5.9), we find that
the ZOL estimates have uniformly smaller mse for

all combinations of (c,p) than the modal estimates



l62.

(Table 5.10) or those obtained under the loss functions
in (1) and (2) above. The same pattern was observed
for a = .5, 1.0, and 1.5.

(4) The Bayes estimates of u are guite robust for the
choice of the various loss functions we have con-
éidered while those of 02 are less so (Tables 5.11
to 5.106).

(5) For large n, .the posterior distributions of 02 and

b tend to normality (Section 5.1).
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CHAPTER SIX
ESTIMATION OF REGRESSION PARAMETERS — INDEPENDENT

AND CORRELATED CASES

6.0 INTRODUCTION

In this chapter we will consider the relation

E(Y[x) = o + B(x - x) (6.1)
studying the dependence of the random variable Y on the
non-random variable X. The variation in Y is expected
to be at least partly explained by X, the other part
is due to unobservable random errors assumed to be dis-
tributed as N(0,02).

Tiao and Zellner (1964) considered the Bayesian
analysis of the general regression model

Y = MB + ¢,
where Y is a (gxl) vector of observations, M is a (gxp)
matrix of fixed elements with rank p and B = (81,52,---,8p).
The main objective of their work was t6 develop procedures '
for using information from one sample as prior knowledge
in the analysis of theAnext independent saﬁple. These
two samples were assumed to be independently drawn from
normal populations with unequal variances. Theil (1963)
considered the case within the sampling theory framework,
using prior beliefs about regression coefficients when

the error variance is unknown — requiring a large sample

solution of the problem.
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Some discussion of the Bayesian analyses of the
simple linear regression model using uniform priors
can be seen in Zellner (1971), Jeffreys (1961), and
Lindley (1965). Maddala (1977) considers the Bayesian

analysis of the regression model {(at-a = 0)

under the natural conjugate priors when €, are indepen-
dently and identically distributed normal random variables
. . 2 .

with 0 mean and variance o . He considers the cases
of 0 known and o unknown.

In this dissertation, we will study the posteriors

2 .

of (a,B8,0 ) using the model (6.1), known as the orthogonal

model, under the following situations:

I. When little is known about o, B and o0, Jeffreys
(1961) suggested assuming the prior distribution of

6, B and log g to be locally uniform and independent.

The prior independence of the parameters may be
justified as follows: Since the parameter £ measures the
dependence of Y on X, in the absence of any information
about this dependence, it is not unwise to assume the

prior distribution of B to be constant over the effective
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. . . 2, .
range of the likelihood. Again, ¢~ 1is the variance and
@ is the expectation of Y averaged over the values of X,

i.e.,

E(y. |X).

1
o = -
n i

_ o~ s

The knowledge of the expectation and/or of the variance

of ¥ will not change the knowledge of the dependence of

Y on X which explains the prior independence of o and o .

In this study we will consider the prior distribution of

0 as the inverted gamma density which is also the NCP for ¢
' 2

exp(-c/07)

p+1
g

g(o) « , ¢, p, 0 >0

and treat the uniform prior for ¢ as a special case when
c = p = 0. The joint prior density of (o,B8,0) may be

written as

exp(-c/o2)

gla,B,0) = p+1 (6.2)
o]
where
pl(a) « constant
and
p2(8) « constant.
II. When o and B may not be assumed independent, we will

consider a bivariate normal prior for (a,B)
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and without any loss of generality, we take
E(a) = 0 and E(B) = 0 and
Var (a) = To? Var(B) = TB
and a coefficient of correlation, p between o and g,
2 ; .
0 being assumed known.
ITI. Finally, we will consider a special case of II,

where along. with ua = = 0, we further assume

Mg

6.1 BAYES ESTIMATORS UNDER I

Let x = (xl,x2,...,xn) and y = (yl,y2,...,yn).

The likelihood of y given X is

n 2
2(¥,§lo¢,8,c2) o (02)"n/2exp{— z [yi—u—S(xi—x)]} /202
i=]1

- 2 2
o (02) n/ exp{—[52 + n(a-a)
2
+ S__(B8-b)" 1}, (6.3)
XX
where
v b =5 /S s? = s - s2 /s = Residual S.S
&= Y T Txy  Txx! T Tyy xy’ Txx To

Using Bayes theorem, the likelihood function (6.3)
is combined with the prior density (6.2) to yield a joint
2
posterior density, 7m{o,B,0 Ig,y) for the parameters a,

2 ,
g and o, i.e.,

n+p
- ( +1) 2 2
- S
T(a,8,0%] ., )« (o°) 2 e7¢/0 exp{’ “3]
20
2
n(a—a)zl _ Sxx (B=P)
*@Xpy~ T, exp — I (6.4)
‘ 20 J 20



Integrating out a from (6.4), we have

..(E.E.ii) 2 2
F(B,02|§,¥) o (02) 2 e~ /0 exp{— 52}
20
2
SXX(B—b)
cexp{- ————
202
© n(oa—a)2 02
Using the fact that exp{- -——E-}da =‘/2ﬂ -
- O 20

. 2 .
Integrating out ¢ from (6.5), we have the marginal

posterior of B as

n+p+1
o 5 —(——5——)
ﬂl(BIX,X) o (o) exp{— [2c + S
0 20
2
+ 8 (B-b) ]}doz.
XX
Substituting
2¢c + 52 + S (B—b)2
XX _
2 14
20
2¢ + 52 + S (B-b)2
o = - 5 x5 dy
2y
n+p+1

§) -y 2y 2
nl<sl§,y) « e { > }

2
0 2c+S87+8 (B-Db)
XX

2c+52+S (B—b)2
XX

e dy
2y2

« {2¢c + 52 + s (B-b)2}*%(n+p+l).
AX

Thus,

167.

(6.5)
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-%(n+p-1)
{1 2 (B-b)
2c+S
T (Blx. ¥ - s R
{l + ——— (B-b) } dag
2
- 2c+S
To evaluate the denominator, let
S
—2X_ (B-b) = tan 6
2¢c+S
2
B = 3§i§— tan 6 + b
XX
2
ag = §§i§~ Seczede,
XX
giving
/2
J  seco (n+p-1) 2§+S sec’8a0
-7/2 XK
2c+s? e 2 (Eigli)'z
= Bra— J’ Cos” 6 as
Xxx -T/2
n+p-1
[ T 2TPT
2c+s® A% omy-1. 2, U3 1
= j J sin s Cos®® as
S
xx =T/2

Thus,
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S

1
T (Blx,y) = [
1 ~ ZC+52 B(%, 1‘*123*2_
s -5 {n+p-1)
={1 + -—555 (8-b) 2 . (6.6)

2¢c+S
¢ =p =0 in (6.2) implies that the prior distributions of
2
o, B and log 0  are independent and uniform, i.e.,

g(alsloz)x—;.:' (6.7)
9]

Under (6.7), the posterior density of B is

S 1 S 5 -%(n-1)
wl<sl§,g) = xX {1 + 2% (g-b) } ,
)

and that of

is, as was pointed out by Lindley (1965), a Student's t
with (n-2) degrees of freedom.
Under squared-error loss function, the Bayes estimator

of B is

1
B* = BE(8|x,y) = [—X
b4 1 n+p-2
2¢c+S B(2, 5 )
. s -5 (n+p-1)
«Jﬂ 8{1 A (B—b)z} ag.
—© 2c+S

By the same substitution,
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T/2 2
1 2¢c+8
P - fradheaiii
B T nio 3 b + S tan 6
B (=, —~§——ﬁ -n/2 XX
- +p~
Se 6 (n+p l)Sec26d6

n+p-3

" / 2 1/2 (—E2=2y -1
+
- b + L 2ctS f sinfCos®o 2 ao

1l n+p-2 S
1, ntp-2, |

Xx ~-7/2

= b (6.8)
sincé

m/2 (B3

Sin 8 C0528 = 0,
-T1/2
showing that Bayes estimator of R is independent of the

prior parameters c and p. Integrating out B from (6.5),

\ . 2,
the marginal posterior of ¢° is

_(n+p)
(%) 2 exp{— . (2c+S2)}
2 20
(PAC T Ol n+p
o3 —(“)
X (c%) 2 exp{— - (2c+82)}d02
0 20
n+p-2 _(n+p)
( 2 2 2 2
_ l2cgs J (o )+ - exp{_ (2c+52)}_
r (e 20
(6.9)
Thus,
n+p-2
2y 2 ® e <
e*2 - 5o Ix,y) = [2c+s ] 1 (62) 2
T2 2 P (R¥Pm2) N
[ 2
cexpy—~ —— (2c+S )}dc
S
n+p-2 n+p _
_ [2c+szJ 2 1 { 2 ] 2 P (AR g,
2 I1(n+p—2) 2c+s2 2
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2c+S2 2 - 2c+S2 (6.10)
2 n+p-4 n+p-4 ° :

Integrating out B from (6.4), the joint posterior of a
5 ,
and 0 is

n+p+1

ﬂ(a,02l 2

X,y) « (07) 2 exp{- [2c+52+n(a-a)2]}.

2o (6.11)

Again, integrating out 02 from (6.11), the marginal pos-

terior of o is

~1 -
n 2 2(n+p 1)
1 + — (a-a)
- (le y) = 2c+S
3 C A A N 5 -5 (n+p~-1)
: {l + — (a-a) } da
- 2c+S
_ { n 1
- 1 +p=-2
V2c+s® B(3, EESS

27 2 )

-%(n+p-1)
} (6.12)

u{l + ~—3~5 (c-a)
2¢c+8

Hence, under squared error loss function, the Bayes

estimator 1is

/ n 1
a* = E(alxly) = J
~ L 2 1l n+p-2
2C+S B(2r 2 )
(=%} —%(n+p—l)
°5\ a{l + ——3—3 (a—a)z} da
- 2¢c+8
= a,

as in B*, the Bayes estimator of o is independent of the

prior parameters ¢ and p.
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It may be noted here that under (6.7), the posterior

density of

/n(n—2)

(a-a)
| s

is a Student's-t with (n-2) degrees of freedom (Lindley,

1965).

6.2 BAYES ESTIMATORS UNDER CASE II
2 . .
Assume that ¢ is known and that apriori (a,B) has a
bivariate normal distribution with

My = Mg = 0, V{(a) = Ty V(B) = 1

and coefficient of correlation p, i.e.,

1 1
g(a,B) = eXP{“ 5
V2p VTaTB Vl-D2 2(1-p )
2 2
.[E_ _ _2paB ﬁ_I}, —o < g, B < w, (6.14)

Combining (6.3) and (6.14), the joint posterior density of

a and B 1is

: , ,
T(a,B|x,y) <« exp{— ——~i~5— (%_ _ -2paB %.J}
L 2{1-p7) a VTaTB R

2

°exp{~ 1 rs? 4 n(a-a)? + s (B~b)2]}.
20 XX

Integrating out B from (6.15), we obtain
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® 2(1-07) a /TGTB B
1 2 2 j
=exp{ S [s™ + n(a-a)”® + x (B-b) ]}dBJ/
f L[ exp - [%‘ } iﬁaB * %‘}1
Yo Yo 2(1-p9) a o T8 B

-exp{~ 08?4 n(a-a)? 4 SXX(B—b)2]}dBda}.

(6.16)

Therefore,

o o 2 2
a* = E(alz{[él) = {if OLeXp{— ——-——;‘——5— (%—‘“ - /;2_‘_3_?_8_ + TT—-J}

~® -~ 2{1-p0") o TGTB B
°eXP{‘ E52 + n(oc—a>2 + L (B- b)zj} Bdug/
20 ]
r“’f’ o1 (o2 | _2oas , 82))
PR 5 At )
—%® =-c 2(1-p7) o TaTB g

Similarly, integrating out o from (6.15), we obtain

the posterior density of B and, hence,

1 ( 2 2
B* = E(Bx,y) = [j; j‘ Bexp R S %ﬁ N paf + :

-0 = 2(1_02) { o ‘/TuTB 8

Im
)
| —
S —

°exp{- —lg [82 + n(a—a)2 + SXX(B-b)zj}dudB}/
20
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-exp{— L 52 + n(oc—a)2 + SXX(B—b)2 }dads
(6.18)
The integrals in (6.17) and (6.18) do not seem to take
simple form and we will evaluate them by using Lindley's
(1980) technigqgue.
For two parameter case (see Appendix Al), applying

Lindley's technigue, the equation (6.17) takes the form

. 1 2
* = B + + + -
¢ E(e]x,¥) @ Pa%0 T Pg% * 3E30%;0
3 1 2
= + = +
T2 P21%0% 2 T3 B (0,090, *207,)
N (6.19)
2 “03%12%02" :
Similarly, (6.18) takes the form
B* = E(B]x y) = % + p_0 + p O + L L 02
Xr Y 8%02 «%21 7 2 Y03%02
3 1 2
= = +
T2 112902%0 T 5 T (05,0, + 205)
I N (6.20)
2 “30%21%20 .

~

where & and B are mle of o and B respectively.

Py and DB are the first derivatives of the logarithm

of the joint prior density with respect to a and B8 respec-

tively.
-1
2 2
97 L 0" L
- — i {f ———=2— = 0.
Oij [ aeiaejJ ’ and is equal to 0 i BGiBSj
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i-th derivative with respect to ¢ and j-th

derivative with respect to B of the log-likeli-

hood function.

For ekample,

R e
2
12 2090 8B
From (6.14),
o = - 1
- 2
o 1-p
0 - 1
- 2
B 1-p
pa and pB are to

To work out

a sample from the model

E(Y, |x)
1

il

for o = 5, B

2,

we obtain

T

L <

&

o8

/TaTs)

be evaluated at a and §.

Lindley's method numerically,

o + B(x,—i), i =
i

and ¢©

1,2,...,n

= 5 with the relation

we generate

Y, = 5 + 2(x,-x) + 52,
i i
where
Z ~ N{(O,1).
We take the fixed values of x as 5, 10, 15, 20, 25,
and 30 and generate 5 values of Y for each x to give
n = 30. The generated data are shown in Table 6.1. We

then evaluated the logarithm of the likelihood

except for the normalizing constant,

8 in Table 6.2.

the derivatives L

(6.3)

around mle of a and

Tables 6.3 and 6.4 give the values of

20

and L

02 respectively.
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The above tables show that all the mixed second and
third derivatives are zero and hence, we will use two

one-parameter formulae for E{(a) and E(8) given by

~ 2 1 4
* = ! = —_
Qo E(alx,y) @t 0,00+ 5 Ta0,
. ' (6.21)
: 2 2 1 4
* o= X,V) = + o, + = L
8 E(B|x,v) B+ pgog + 5 L0,
(Lindley, 1980), where
2 -1
= -L = 0.0 7
Oa 50 0.0166775
2 -1
Y = - 2
OB LO2 0.0002286
L =
30 °
L03 = 0
Since L3O' LO3 are zero at joint mle, (6.21) takes the form
~ 2
a¥ = E(a]§,y) = o + pagl
¢ (6.22)
B* = E(B|%,¥) = B + p_o°
~e BB
pa, pB involve the prior parameters Ta’ TB and p. For

reasonable choice of T's and p we can obtain the Bayes

estimator of a and B. For instance, Ta = TB = 1 and
p = .5, give

a* = 5.6773049 ~ 0.1024117 = 5.5748932

B* = 2.1435446 + 0.0002119 = 2.1437565,

Monte Carlo study for o* and B* in (6.22) are shown in

Tables 6.7 to 6.12.
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We note that under uniform and independent prior

for (a,B), P, @and P, in (6.22) are zero, giving

B

o*

il
Q

(6.23)
B* = B

6.3 MONTE CARLO STUDY

In order to compare the performance of the different
estimators, we generated 1000 (N) samples each of size
30 (n) from (6.1) with o« = 5, B = 2 and 6 = 5. The mean
of the estimators and the corresponding MSE (in parentheses)

are shown in the tables below:

TABLE 6.5

MLE (6.23) of o and BR: N = 1000, n = 30

Parameters Estimates

5.0224503
(0.8787140)

1.9956223
(0.0116023)
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TABLE 6.7

Bayes Estimates (6.22) of o under Squared Errxor Loss

B

Function and Different Combination of (TG,T ) and

p= 0.1, N = 1000, n = 30

T B 1 50 100
a

1 4.9412569 4.9383724 4.9382333
(0.8523491) (0.8526887) (0.8527055)
50 5.0212344 5.0208265 5.0208068
(0.8780708) (0.8780526) (0.8780517)
100 5.0219408 5.0216523 5.0216384
(0.8783966) (0.8783832) {(0.8783826)

TABLE 6.8

Bayes Estimates (6.22) of a under Squared Error Loss

Function and Different Combination of (TG,TB) and

p = 0.5, N = 1000, n = 30

T E 1 50 100
[}
L 4.9330139 4.9139762 4.9130577
(0.8441587) (0.8470204) (0.8471769)
56 5.0233540 5.0206616 5.0205317
(0.8779833) (0.8778576) (0.8778519)
oo 5.0235516 5.0216478 5.0215560
(0.8783803) (0.8782891) (0.8782849)




TABLE 6.9
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Bayes Estimates (6.22) of o under Squared Error Loss
Function and Different .Combination of (TG'TB) and
p = 0.9, N = 1000, n = 30

T
T B 1 50 100
a
1 5.0337996 5.6041653 4.5976394
. (0.8778552) (0.8876365) (0.8928288)
50 5.0359198 5.0167900 5.0158671
(0.8764824) (0.8754216) (0.8753889)
100 5.0337996 5.0202728 5.01%6202
(0.8778552) (0.8770869) (0.8770591)

TABLE 6.10

Bayes Estimates (6.22) of B under Squared Error LOSS
Function and Different Combination of (Tu,TB) and
p =.0.1, N = 1000, n = 30

T
T B 1 50 100
o
1 1.9952774 1.9956294 1.9956292
(0.0116002) (0.0116021) (0.0116022)
50 1.9951778 1.9956153 1.9956192
(0.0116010) (0.0116022) (0.0116022)
100 1.9951730 1.9956146 1.8956187
(0.0116011) (0.0116022) (0.0116022)




TABLE 6.11

Bayes Estimates (6.22)

183.

of B under Sguared Error Loss

Function and Different Combination of (Ta,TB) and
p = 0.5, = 1000, n =
T 1 50 100
o
1 1.9957793 1.9957183 1.9956926
(0.0115947) (0.0116014) (0.0116017)
50 1.9951222 1.9956253 1.9956269
(0.0115999) (0.0116021) (0.0116022)
100 1.9950905 1.9956201 1.9956238
(0.0116002) (0.0116021) (0.0116022)

TABLE 6.12

Bayes Estimates (6.22)

of B under Sguared Error Loss

Function and Different Combination of

(TG,TB) and

b = 0.9, = 1000, n =

T 1 50 100

[0}

L 1.9937652 1.9963432 1.9961420
(0.0115947) (0.0115967) (0.0115983)
56 1.9939905 1.99568209 1.9956751
(0.0115922) (0.0116013) (0.0116016)
1.9937652 1.9956511 1.9956526
100 (0.0116015) (0.0116018)

(0.0115947)
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The entries in the principal diagonals of the
Tables 6.7 to 6.12 give the estimates under the priors
in III.

It is apparent from these tables that the estimates
of (a,B8) based on the bivariate normal prior (6.14) have
minimum mse for all combinations of prior wvariances

(t _,T,) and the prior coefficient of correlation, p

a’ B
under consideration, than the ml estimates. The changes
in the values of the estimates and their mse's are very
small for variation in the prior parameters. While the
ml estimators of (a,B) are identical with Bayes estimators
under the prior (6.2), they have uniformly higher mse's

than the Bayesian estimators based on the bivariate

normal prior for (a,B).

6.4 CONCLUSION

Bayes estimators of (a,B) based on the uniform prior
for (a,B) and independent inverted gamma prior for 02 is
independent of the prior parameters c and P, as was
expected. Bayes estimators, in this situation, are
identical with the ml estimators.

For the particular choice of o, B.and 0, the Monte
Carlo study indicateé that the Bayes estimators of (a,B)
based on the bkivariate normal prior have considerably
lower mse than their ml counterparts. Also, the estimators

are very much robust for the choice of the prior parameters

R d .
(Tu T,) and p

B
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APPENDIX A.1l

(1) Lindley's Method for One Parameter Case

Lindley (1980) developed a technique whereby one

may evaluate the ratio of integrals of the form

fw(e)eL(e)de
= L(96) (1)
hfv(e)e dae

where L(®) is the logarithm of the likelihood.

Clearly, 1f w(B) = u(8)-v(8) and v(8) is the prior
density of 6, then I yields the posterior expectation
of u(s).

Expanding w(6) and L(8) by Taylor-series expansion

about é, the mle of 6,

22
L(6) _ 2 - 2 (8-6) °
w(B)e de = [w(e) + (e—e)wl(e) + —v w2<e>
(6-6)° . . ? p
+ 5 w3(6) + ..iJ[exp{L(e) + (G—S)Ll(e)
~o2 ~. 3
(6-0) - (6-8)
57 Lz(e) 3 L3(8) + }] (2)
where
R k
w (8) = 2B
36 =9
k
L, (8) = ° L(]e() .
96 6=0
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It is assumed that w(é) # 0. Clearly, L (é) = 0.

Let

W.(6)=_—"T‘l
+ ‘ w(8)

then the RHS of (2) is

. 5 R - R 22
w(e>eL<e>f [1 + W (8) (6-8) + W,(8) {6-6)

2 21!
a2
(6-6) A
3 L,(8)
~ (8-86) ) 2 2
+W3(e) 31 + ..J e
~ 3 ~ 4
> (6-96) ~ (6-6)
[1 + L3(e) c + L4(6) 2 ]de

2 2.3 ~0 3
z (6-9) 2 (6-86) . (6-8)
+ W2(8) 5 + W3(6) o + L3(6) 3
~4 ~. 4
- ~(8-6) s (8-86) |
+ wl(e)L3(e € + L4(6) 52 Jde' (3)
a2
(e=8)" 1 (4
Using e proportional to a univariate normal
density with variance
o2 = —L;l(é), (3a)

the integrals in (3) involve moments of a univariate

normal density and we have
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w(b)el(®) o7 0[1 + o? W, (8) + ot L. (8)wW. (8)
2 2 2 3 1
04 -~
IR ]

Similarly for the denominator of (1), we have

o 2 4
o L(6) o N o} ~ ~
v(68)e vam G[l + 5 V2(6) + 3 L3(6)V1(6)
04 -
+—8L4(e) ’+ ...]
where
. v, (8)
vV, (8) =
1 v{9)
assuming v(8) # 0, and
o Bkv(é)
v (00 =
38 6=0
Hence, the rétio (1)
w(é) 02 ~ 04 ~ ~ 04 -
v(§) {l + — w2(e) + > L3(6)wl(6) + 5 L4(6) +

2 2 2 3 1
02 . 04 N N 2 ‘]
+ {—5 V2(8) + Y L3(6)Vl(6) + } + ..J
2
w(6) { o -
= > 1 + — {w,(8) - v_(8)}
v(8) 2 2 2

+ =3 L3(6){wl(e) - VvV_(8)} + ... ]. (4)
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Let w(6) = u(8):v(8) where v(0) is the prior density of 6.

~

w_ (B8) = ul(e)v(e) + u(e)vl(e)

w,(8) = uz(e)v(e) + 2ul(9)vl(6) + u(e)v2(e)

W._(8) - v.(8) =

- 2 _ N 1 _ lA (5)
{8) u(b)v (o)

X . u, (6)
W_(8) - Vv_(8) = = . (6)

1 1 u(e)

Let
p(6) = log v (D),

vl(e) = v(@)pl(e). (7)

Substituting (7) in (5),

Substituting (8) and (6) in (4), we obtain

fu(e)vw)e“e’ae
j‘v(e)eL(e)dG

Blu(e)|x]

.~ A o S 2 2
u(8) + — {u2<e) + 2ul(e)pl(e)}
04 o A
+ 3 L3(9)ul(9)

The terms other than the first are referred to as correction

terms.
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Thus, 1f we are interested in the posterior mean of

8, i.e., u(b) = 06, we have ul(e) =1, u2(8) = 0 and
A 2 ~ 04 ~

E(el§) 0+ 070 (8) ¥ =5 L, () (9)

where
~ 9 log g(é)
P (8 = 36
2 -1 =
o7 = —L2 (6)

are evaluated at the mle of 6.

In numerical work, Lindley did not use the differen-
tial calculus tg evaluate Li(e); instead he computed the
log;likelihood function L(8) for a set of values of 8
around mle 6 and used the differences from difference
tables. The relation between the derivative D andgd

difference A is

lim AkL(e)

k
a"L(8) _ -
= I8 = heso k

X (Neilson, 1965)
de (AB)

\

where A6 is the increment angd AkL(e) is the k-th difference.
An alternative approach of evaluating the ratio of
integrals of the form (1) is by denoting
A(B) = L(B) + p(0),
i.e., A(6) is the logarithm of the posterior density of
8 except for the constant of proportionality. Following
the same argument as above and expanding A(8) about the
posterior mode of 6, the posterior mean of 6 is approxi-

mately
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S5 L1, 4
E(B]x) = 8 + 5 A1 (10)
where
6 = posterior mode
2 -1 =
7 = —A2 (6)
and
k. .
Ak(9> _ 9 Aé@)
386

Ak(e) will be evaluated about the posterior mode while

Lk(e) is evaluated about the mle of 6.

The form (10) would be useful in the cases in which
posterior mode is readily available or easier to compute
than the mle 0.

We now apply the method for known cases to see how

gocod the approximation is.

(i) Suppose X ~ N(6,1) and the prior density of 6:

2
e—%(e—u)

g(e) < R - <y, 0 < o,

It is easy to show that the posterior density of

u/n+§ 1/n )

meelx) ~ N(l+l/n " I+1/n

and the posterior mean under squared error loss function

u/n+x - n§+p
1+1/n n+1l

g%

The log-likelihood



where c is a constant independent of §.

Ll(e) = n(x-96), LQ(G) = -n, L3(8) = 0
8 =%, o2 = -n7l(s) =1 .

2 n
Dl(e) = —-(x-u).

Hence, the egquation (9) takes the form

191.

E(8]x) = x - XE o (nzl)xsy
~ n n
- gx - n§+u _ (n—l)§+u7
n+l n
= g% - _E:E__ - g% - 0 1
8 (s 1l) 8 ( 2).
n
Thus, the first term neglected is of order ~%
n
(1i) X ~ b(n,p)
~_x
P n
Let the prior density of P be uniform, i.e., g(p) = con-
stant, then
x — x+1
P n+2
L(p) = ¢c + x logep + (n~x)loge(l—p)
n-x -x n-x
L, (p) = £ - ’ L,(p) = —& -
1~ 2 2 2
. P P p (1-p)
2x 2(n-x) ~ 2n4(n—2x)
L3(p) =37 T3« LB(P) = TS o

P (1-p) xz(n-x)
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The equation

E(p|x)

(ii) Lindley's

192.

2 -1 - x(n-x)
0 - = 27RO
’ o L2 {(p) 3
n
(9) takes the form
X + x2(n—x)2 2n4(n—2x)
n 2n6 xz(n—x)
X n-2x
- + L]
n 2
n
_— X + n~2x _ x+1\
P n 2 vz
n
N 2(n=-2x%)
n? (n+2)

Method for Two~Parameter Case

Notation

8 = (61,62)
33L(9)
Li'k = ————————— , third derivative w.r.t. 6.,
J 360196596k *
Gj and ek.
that is,
3
3"L(9)
L222 = 3 ;, third derivative w.r.t. 62.
a6
2
Lijk are unaffected by permutation of its suffixes.
2
37L(8)
L., = w———— , second derivative w.r.t. 6., and 6 ..
i3 aeiaej 1 J



193.

The Taylor series expansion for L(8§) about @ may be given

by

F == I L. (B)(8.-8.)(6.-8.)
2. . i i 3 Jj

ssr T L, (B)(e, -8 (e B ) (e B ) +
’ i,j,k=1 1] *

Similarly, the Taylor series expansions for w(6) and v(8).

Working in the same line as for one-parameter case,

the numerator of (1),

fw(e)eL<Q)d6 = w(é)eL‘Q)(rl + ot ow. (B)y(e.-b )7
~ ~ L 1 1 1

1 2 A - . “

+ = T W,.(8)(8.-8.)(8.-8.) + '

2 5=1 i3 i 1 ] J _

2
. exp% bX Li.(e)(ei-eine_—e.)J
L, 3=1 b

~

2 -
o[1+l 5 L., (8)(8.-6.)(8.-6.)(6. -0 )
6 i i i 3 | k

L5, k=1 ijk k
1 2 A 2 A 2 3
+ z L (6)Y(8.-06,)(6.~-6.)Y(6. -6_) (6 -6
- . 0"V
24 i,5,k,0=1 ijk2 i i 3 3 k k
+ ...]de, (11)

where
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w, (8) A
W.(8) = —2——, L.(8) =0
1 ~ W(Q) 1 -~

and assumed that w(8) does not vanish. Collecting terms

of like order together, the RHS of (11) is

1 2 . A .
- j’ 7 T Li(8)(0,-0.)(0,-0,)
W(Q) L(Q) e 1,]:1
[ 2 . ) 2 ) )
1 T W ) (8,8 + 2 I L., (8)(8,-8,)
i=1 + i,9,k=1 *7

J 3 k Tk i, 5=1 *J J
2 ) 2 )
+ 1ox W, () (8,-8) I L. (8)(8 -6
6li=1 i,5,k=1 17
. -6 -8 + 6. 12
(6,-8,) (8, -6 rR| 4 (12)

R does not involve W or its derivatives.

Considering

as the kernel of a bivariate normal distribution with

precision matrix having elements —Lij(é), and the wvariance-

covariance matrix,
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321 22, |7
362 96,96, %11 °12
D= - - ,
2°L 5°L 921 %22
96,00, 262

and using the results of the multivariate normal distri-

bution, Anderson (1958, equation (26) of §2.6), namely,

E(6,-8,) = 0, E(6,-8.)(8,-8.) = o,

i i i i 3 J i3
E(Gi—ei)(6j~6j)(8k~6k) = 0,
E(ei—ei)<aj-ej>(ek—ek)(e£-eﬁ) = Oijokﬂ + Oik0j£

9i2%5k”
the integrations in (12) takes the form
L (8) 1 2 .
w(g)e zm)lzl?l1 + = w,.(8)o
2, iy 1]
i,j=1
;2 |
+ = L,. W (o0,.0 _+ 0, 0O, 0. 0. ) 4+ R*
i 2 £ if

6 i,5,k=1 ik ij k& ik j i jk J

(13)
and R* arises from R not involving W or its derivatives.

Similarly, the denominator of (1) is

vig)e™ @ amy %1 4 S ov, (do,.

i, j=1
1 2 ) ]
= + . 4+ 0. 0. + R*#
+ s . jzk—lLijk(e)vz(e) (Gijakl Uikgjz OJ,QO]k)
14 4 -

(14)
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where

D>

“ v,.,(8)
vV,.(8) = —ilr““ .
130" vi(g)

Note that all three terms in the second summation in

(13) are egqual since Li is unaffected by the permu-

Jk
tation of its suffixes. Permuting j and k in the first

term gives

PLigy (W (8D, 50y 40

and then interchanging roles of j and k makes this equal

W 0o, . imi d i .
to ZLijk 3 lkoj2 similarly the second and third terms
This applies to the second summation in (14).

Finally, the ratio of integrals in (1) is appproxi-

mately,
2 2 2
) ~ o
w@ 1y % I OW..(8)o,. + % I L, (8)
v(9) i,9=1 %7 +J i,3,k=1 1
~ 1 2
W, (8)o,. .o 1 + = I Vv..{(8)o
2 ij k¢ 2 i,49=1 ij ij
2 L 17
= T L... (e)v, (8) o
2 i,9,k=1 ijk A ij li
S 2
wi(9) ~ ~
= = 1+% IoW, . (§)-v..(8))o,
V(Q) i,5=1 ij ij i
1 2 ~ " ~
= - +... 15
+ 3 z Lijk(Q)(Wz(Q) VQ(Q)) ijOkQ (15)
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As in one parameter case, it is easy to show that

W2 - V2 = ul/u
and
uij
. o =V,, = —= + .g. + . g, .
Wij Vl] 3 (ulgJ ujgl)/ug

Finally, we obtain (1) as

j’u(g)eL(@no(@)dg/ﬁm@)w@)dg : u(d)

+ 3 s u (B + 29, (Bre. (B, .
2 . ~ 1 J 1]

+§ L., (8)u, (B)

lo..o, .. (16)
Lj,kljk 1 ij k2

The second and third terms are known as correction terms.
, . -2
The first term neglected is O (n ).

If we are interested in the posterior mean of GS,

1 < s < 2, then from (16)

2 2
~ ~ 1 ~
E(B |x) ~8_ + I p.(8)o. + = L (8)o, .o
S s =1 i is 2 i,9, k=1 ijk ij ks
since u{g) = 65 gives
ul(Q) =1
U2(Q) = 0,
u,.(6) =0
ij -~

For X ~ N(U,oz) and under Jeffreys' invariant prior

for o,

[\

*2

o]
0
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Using Lindley's method

2
2 _ 2 S
E(o”[x) = o n(n-2)
= 0*2 + 0(*%)
n

An alternative way of evaluating (lf is denoted by
A(g) = L(B) + p(8),
the logarithm of the posterior density of 8§, except
the normalizing constant and expand A(8) instead of L(8),
about the posterior mode of 9. Following the same

argument as above, the posterior mean of 85, 1 < s < 2,

is
= 1 2 =
87 = E(8_|x) ~8_ + 3 b ()T T
S i,3,k=1 ") J
where és = posterior mode of the s-th parameter, and
Tij are given by '
-1
32 324 ] ]
ae2 881862 [ 11 12
- l =
321 321 LT21 T22
86_96 2
1 882

and all the guantities are to be evaluated at the joint
posterior mode, @.
For type VII distribution

m = 0 (i.e., s = 1)
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. 2
* ~ 1
m = E(mlx) ~m + = r AL t..T
2 i9k=1 ijk ij k1l
= m + = (A, . .1..71 A ._1..1 )
; 2 ij=1 ij31 13 11 ij2 13 21
= l 2
mT iil(AillTilTll M 12751701
+
Mio1TioTyr * hinnTinToy)
- + ES (A T T + A T T A T T
STy Yhyiitiata 112711521 121712711
0210 o1 F AT Ty A 10T01 sy
1T T t 0T 0Toy)
S 1 2 3 1 2
=t o ATy g ATty F T A e T, 2T )
1
2 Pos3Tan o
Using
—3 =A
Alll A30’ A222 03
T12 T Toyr T11 7 To0r Too T To2r
1 2 3 1 2
ot S AT T2 M1Ta07, 5 Mo (Th0T00 Typ)
1
5 ho3To2T12e

Similarly,
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eI 1, 2 3 1 2
a 2t S A3 T AaToaTin T Ay (ToaTyg o210 ,)
1
2 A30 012

If the second and third mixed derivatives are zero

or negligible,

= 1 2
* ~ —_—
m m + 5 A3OT2O
and
< 1 2
* A ol
a a + > A03T02.



APPRENDIX A. 2

201.

Sample No. FO (x) Dn Sample No. FO (x) Dn

1 0.0035157 0.0010157 41 0.0812401 0.0112599

2 0.0055410 0.0005410 42 0.1056272 0.0006272

3 0.0106764 0.0031762 43 0.1057445 0.0017555
4 0.0138433 0.0038433 44 0.1129161 0.002%161

5 0.0183926 0.0058926 45 0.1065284 0.0040284

6 0.0187089° 0.0037089 46 0.1195963 0.0045963

7 0.0190500 0.0015500 47 0.1220076 0.0045076

8 0.0159665 0.0004335 48 0.1273093 0.0073093

9 0.0198867 0.0026133 49 0.1338856 0.0113856
10 0.0214283 0.0035717 50 0.1381915 0.0131915
11 0.0217040 0.0057960 51 0.1417659 0.0142659
12 0.0256500 0.0043500 52 0.1427845 0.0127845
13 0.0257993 0.0067007 53 0.1449732 0.0124732
14 0.0266066 0.0083934 54 0.1488667 0.0138667
15 0.0268463: 0.0106537 55 0.1506227 0.0131227
16 0.0328711 0.0071289 56 0.1536317 0.0136317
17 0.0338303 0.0086697 57 0.1549835 0.0124835
18 0.0368928 0.0081072 58 0.1562855 0.0112855
19 0.0404547 0.0070453 59 0.1636022 0.0161022
20 0.0442766 0.0057234 60 0.1642380 0.0142380
21 0.0449742 0.0075258 61 0.1642919 0.011791¢9
22 0.0449858 0.0100142 62 0.1694649 0.0144649
23 0.0546658 0.0118342 63 0.1747696 0.01726%6
24 0.0468468 0.0131532 64 0.1761673 0.0161673
25 0.0471552 0.0153448 65 0.1781278 0.0155278
26 0.0478761 0.0171239 66 0.178%645 0.0139645
27 0.0563380 0.0111620 67 0.1802092 0.0127092
28 0.0599394 0.0100606 68 0.1834876 0.0134876
29 0.0614459 0.0110541 69 0.1847226 0.0122226
30 0.0623654 0.0126346 70 0.1868037 0.0118037
31 0.0659553 0.0115447 71 0.1937984 0.0162984
32 0.0672731 0.0127269 72 0.1938027 0.0138027
33 0.0714146 0.0110854 73 0.1939073 0.0114073
34 0.0714982 0.0135017 74 0.1971699 0.0121699
35 0.0716407 0.0158593 75 0.2003505 0.0128505
36 0.0828287 0.0071713 76 0.2017199 0.0117199
37 0.0837708 0.0087292 77 0.2052242 0.0127242
38 0.0866263 0.0083737 78 0.2128502 0.0178502
39 0.0871944 0.0103056 79 0.2150518 0.0175518
40 0.0875719 0.0124281 80 0.2188576 0.0188576
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Sample No. Fo(x) Dn Sample No. Fo(x) Dn
81 0.2245925 0.0220925 121 0.3044198 0.0019198
82 0.2279994 0.0229994 122 0.3069517 0.0019517
83 0.2294847 0.0219847 123 0.3075683 0.000683
84 0.2320881 . 0.0220881 124 0.3092059 0.0007941
85 0.2341417 0.0216417 125 0.3105328 0.0019672
86 0.2356749 0.0206749 126 0.3202865 0.0052865
87 0.2367458 0.0192458 127 0.3241293 0.0065293
88 0.2402956 0.0202956 128 0.3247457 0.0047457
89 0.2412129 0.0187129 129 0.3254904 0.0029904
90 0.2431484 0.0181484 130 0.3272295 0.0022295
91 0.2441505 0.0166505 131 0.3328491 0.0053491
92 0.2445074 0.0145074 132 0.3330126 0.0030126
93 0.2471016 0.0146016 133 0.3331809 0.0006809
94 0.2501127 0.0151127 134 0.3365925 0.0015925
95 0.2543882 0.0168882 135 0.3417141 0.0042141
96 0.2559190 0.0159190 136 0.3449517 0.0049517
97 0.2620241 0.0195241 137 0.3464641 0.0039641
98 0.2631393 0.0181393 138 0.3467712 0.0017712
99 0.2636092 0.0161092 139 0.3495864 0.0020864
100 0.2642724 0.0142724 140 0.3504609 0.0004609
101 0.2654969 0.0129969 141 0.3523156 0.0001844
102 0.2665557 0.0115557 142 0.3553945 0.0003945
103 0.2676567 0.0101567 143 0.3614223 0.0038223
104 0.2767125 0.0167125 144 0.3670005 0.0070005
105 0.2776943 0.0151943 145 0.3764848 0.0139848
106 0.2782799 0.0132799 146 0.3782275 0.0132275
107 0.2786090 0.0111090 147 0.3798501 0.0123501
108 0.2810290 0.01102%90 148 0.3846814 0.0146814
109 0.2866665 0.0141665 149 0.3855980 0.0130980
110 0.2898238 0.0148238 150 0.3858136 0.0108136
111 0.2905603 0.0130603 151 0.3888272 0.0113272
112 0.2907652 0.0107652 152 0.3892293 0.0092293
113 0.2908947 0.0083947 153 0.3895865 0.0070865
114 0.2910615 0.0060615 154 0.3913579 0.0063579
115 0.2942501 0.0067501 155 0.3931365 0.0056365
116 0.2994746 0.0094746 156 0.3948342 0.0048342
117 0.2998662 0.0073662 157 0.3977903 0.0052903
118 0.3004278 0.0054278 158 0.3981058 0.0031058
119 0.3012651 0.0037651 159 0.3988128 0.0013128
120 0.3017896 0.00178%96 160 0.4026585 0.0026585
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Sample No. Fo(x) Dn Sample No. Fo(x) Dn
16l 0.4030791 0.0005791 201 0.5094243 0.0069243
162 0.4037060 0.0012940 202 0.5133484 0.0083484
163 0.4037089 0.0037911 203 0.5152620 0.0077620
164 0.0405337 0.0054663 204 0.5158925 0.0058925
165 0.4058686 0.0066314 205 0.5175584 0.0050584
166 0.4078403 0.0071597 206 0.5196161 0.0046161
167 0.4121469 0.0053531 207 0.5225709 0.0050709
168 0.4167129 0.0032871 208 0.5281929 0.0081929
169 0.4178250 0.0046750 209 0.5317260 0.0092260
170 0.4193732 0.0056258 210 0.5347342 0.0097342
171 0.4209239 0.0065761 211 0.5362149% 0.0087149
172 0.4257221 0.004277% 212 0.5377890 0.0077890
173 0.4290001 0.0034999 213 0.5396907 0.0071907
174 0.4303250 0.0046750 214 0.5417909 0.0067909
175 0.4327928 0.0047072 215 0.5428038 0.0053038
176 0.4373702 0.0026298 216 0.5450272 0.0050272
177 0.4391247 0.0033753 217 0.5485203 0.0060203
178 0.4491979 0.0041979 218 0.5493450 0.0043450
179 0.4518848 0.0043848 219 0.5523401 0.0048401
180 0.4546774 0.0046774 220 0.5588662 0.0088662
181 0.4556355 0.0031355 221 0.5626119 0.0101119
182 0.4559420 0.0009420 222 0.5641837 0.0091837
183 0.4622120 0.0047120 223 0.5677715 0.0102715
184 0.4639142 0.0039142 224 0.5727065 0.0127065
185 0.4644565 0.0019565 225 0.5732370 0.0107370
186 0.4682753 0.0052753 226 0.5749108 0.00989108
187 0.4698648 0.0023648 227 0.5787606 0.0112606
188 0.4724046 0.0024046 228 0.5788353 0.0088353
189 0.4743903 0.0018903 229 0.5809619 0.0084619
190 0.4837491 0.0087491 230 0.5834717 0.0084717
191 0.4845458 0.0070458 231 0.5847804 0.0072804
192 0.4872596 0.0072596 232 0.5877081 0.0077081
193 0.4940922 0.0115922 233 0.5877979 0.0052979
194 0.4942332 0.0092332 234 0.5884555 0.0034555
195 0.4946148 0.0071148 235 0.5900311 0.0025311
196 0.4948201 0.0048201 236 0.5917932 0.0017932
197 0.5030714 0.0105714 237 0.5922953 0.0002047
198 0.5045453 0.0095453 238 0.5963668 0.0013668
199 0.5046222 0.0071222 239 0.5970457 0.0004543
200 0.5052192 0.0052192 240 0.5972661 0.0027339



204.

Sample No. F (%) D Sample No. F (x) D
o) n o) n
241 0.5983895 0.0041105 281 0.6968535 0.0056465
242 0.6008054 0.0041946 282 0.6980414 0.0069586
243 0.6063070 0.0011930 283 0.6992188 0.0082812
244 0.6063361 0.0036639 284 0.7032399 0.0067601
245 0.6070373 0.0054627 285 0.7071993 0.0053007
246 0.6072513 0.0077487 286 0.7104792 0.0045208
247 0.6086111 0.0088889 287 0.7147435 0.0027565
248 0.6098490 0.0101510 288 0.7147652 0.0052348
249 0.6103441 0.0121559 289 0.7200382 0.0024618
250 0.6178719 0.0071281 290 0.7201566 0.0048434
251 0.6209279 0.0065721 291 0.7266538 0.0008462
252 0.6211284 0.0088716 292 0.7317853 0.0017853
253 0.6222794 0.0102206 293 0.7320083 0.0004917
254 0.6297374 0.0052626 294 0.7343152 0.0006848
255 0.6313393 0.0061607 295 0.7438764 0.0016236
256 0.6335197 0.0064803 296 0.7362705 0.0037295
257 0.6384551 0.0040449 297 0.7410640 0.0014360
258 0..6419962 0.0030038 298 0.7440907 0.0009093
259 0.6420085 0.0054915 299 0.7460752 0.0014248
260 0.6433911 0.0066089 300 0.7466261 0.0033739
261 0.6435337 0.0089663 301 0.7515113 0.0009887
262 0.6435695 0.0114305 302 0.7526775 0.0023225
263 0.644%9623 0.0125377 303 0.7558809 0.0016191
264 0.6462676 0.0137324 304 0.7565354 0.0034646
265 0.6482838 0.0142162 305 0.7663382 0.0038382
266 0.6569043 0.0080957 306 0.7685265 0.0035265
267 0.6572998 0.0102002 307 0.7685595 0.0010595
268 0.6590119 0.0109881 308 0.7724933 0.0024933
269 0.6623902 0.0101098 309 0.7755067 0.0030067
270 0.6657451 0.0092549 310 0.7758984 0.0008984
271 0.6700020 0.0074980 311 0.7761641 0.0013359%
272 0.6746837 0.0053163 312 0.779539¢9 0.0004601
273 0.6770985 0.0054015 313 9.7803536 0.0021464
274 0.6775931 0.0074069 314 0.7804666 0.0046334
275 0.6790295 0.0084705 315 0.7850998 0.0024002
276 0.6832159 0.0067841 316 0.7857293 0.0042707
277 0.6837620 0.0087380 317 0.7917811 0.0007189
278 0.6887329 0.0062671 318 0.7949117 0.0000883
279 0.6925477 0.0049523 319 0.7970051 0.0004949
280 0.6958687 0.0041313 320 0.7973830 0.0026170



205.

Sample No. Fo(x) Dn Sample No. Fo(x) Dn
321 0.7994036  0.0030964 361 0.8981896 0.0043104
322 0.8057349  0.0007349 362 0.8993798 0.0056202
323 0.8091610 0.0016610 363 0.9069900 0.0005100
324 0.8110680 0.0010680 364 0.9073136 0.0026864
325 0.8148891 0.0023891 365 0.9082895 0.0042105
326 0.8156408 0.0006408 366 0.9086437 0.0063563
327 0.8186834  0.0011834 367 0.9147861 0.0027139
328 0.8188545  0.0011455 368 0.9228775 0.0028775
329 0.8289555  0.0064555 369 0.9309966 0.0084966
330 0.8337360 0.0087360 370 0.9337227 0.0087227
331 0.8362234  0.0087234 371 0.9349351 0.0074351
332 0.8368088 0.0068088 372 0.9367099 0.0067099
333 0.8373189 0.0048189 373 0.9399195 0.0074195
334 0.8376979  0.0026979 374 0.9418746 0.0068746
335 0.8377122  0.0002122 375 0.9428443 0.0053443
336 0.8384657 0.0015343 376 0.9428534 0.0028534
337 0.8385233  0.0039767 377 0.9429186 0.0004186
338 0.8473793  0.0023793 378 0.9429726 0.0020274
339 0.8478281  0.0003281 379 0.9455487 0.0019513
340 0.8540507 0.0040507 380 0.9518900 0.0018900
341 0.8561283  0.0036283 381 0.9525326 0.0000326
342 0.8598576  0.0048576 382 0.9594612 0.0044612
343 0.8599110 0.0024110 383 0.9641373 0.0066373
344 0.8602048  0.0002048 384 0.9659398 0.0059398
345 0.8617998  0.0007002 385 0.9661687 0.0036687
346 0.8628978  0.0021022 386 "0.9684954 0.0034954
347 0.8637082 0.0037918 387 0.9691284 0.0016284
348 0.8641409 0.0058591 388 0.9723981 0.0023981
349 0.8682020 0.0042980 389 0.9740395 0.0015395
350 0.8697443  0.0052557 390 0.9760053 0.0010053
351 0.8701251  0.0073749 391 0.9776249 0.0001249
352 0.8717375 0.0082625 392 0.9788956 0.0011044
353 0.8739559  0.0085441 393 0.9817964 0.0007036
354 0.8876835  (0.0026835 394 0.9827256 0.0022744
355 0.8%12151  0.0037151 395 0.9827616 0.0047383
356 0.8920560  0.0020560 396 0.9865517 0.0034483
357 0.8922736  0.0002264 397 0.9865580 0.0059420
358 0.8929356 0.0020144 398 0.9915465 0.0034535
359 0.8952355  0.0022645 399 0.9929894 0.0045106
360 0.8978117 0.0021883 400 0.9987203 0.0012797
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