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ABSTRACT

The need for the study of the effects of discontinuity on a

surface waveguide is given. A brief discussion of previous investigations

including their disadvantages and linitations when applied to the problen

of a slab waveguide discontinuity is outlined, after which tt^ro new tech-

niques for soLutions are presented. The first proposed technique is based

on the Wiener-Hopf technique, where the lrtiener-Hopf equations of the

dielectric slab waveguide are derived for both TE and T1{ incidence by

applying the Fourier transfor:n to the wave equations, together with the

proper boundary conditions. Because of the conplicated functions in-

volved, the factorizations and decompositions are obtained numerically

by applying Lee-lvfittra and Noble techniques. The Èransform equaËíon

can Ëhen be separated into t¡^7o ParÈs, regular in Ëhe upper and lower

hal-ves of the transform planerwhich are set equal Eo zeîo afËer assumÍng an

algebraic asymptotic behaviour of the transforned field. A second tech-

nique which is based on the residue-calculus and is sonewhat more general

than the Wiener-Hopf is also given. The unknown fieLds on both sides of

the junction at the discontinuity are expanded in terns of surface htave

and radiation nodes after which, foLlowing the node matching technique,

two sinultaneous equations for the unknown rnode anplitudes are obtained.

With a properly constructed function together with the assunption of

algebraic behaviour of the field, these equations are solved by an applic-

ation of residue-calculus. Sinple expressions for the reflection coef-

ficient, the transnitted pohrer and radiation loss are then obtained.

Nunerical. results are given for special cases leading to a discussion

of the methods and their applications. The accuracy of the resul.ts is



confirned by good agreement with the available data frorn Marcuse, for

sinple cases, and with those obtained by the reciprocity theoren and the

application of Kayts technique, for nore general cases.
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CHAPTER 1

INTRODUCTION

A definition of a surface wave is given by Barlow and Brown as

the wave that propagates along an interface between two different media

without radiation; such radiation being construed to mean energy conver-

ted fron surface wave field to some other forms tl]. If the two nedia

concerned have finite losges, the energy flowing along the interface

must supply those losses as well as the transrnitted power. This does not

invalidate the description of the surface wave, since the radiation is

construed to mean energy absorbed from the wave independent of the sup-

porting media. The inportant characteristic of a surface wave field is

that its tangential components to the supporting surface will always decay

with distance al{Iay from the surface. Three distinctive forms of a surface

wave [1] which are usually the subject of study are:

(i) the inhomogeneous plane wave supported by a flat surface, some:

times ca11ed the Zenneck wave,

(ii) the inhomogeneoús radial cylindrical wave, also supported by a flat

surface and sometimes described as the radial form of a Zenneck

wave,

(iii) the axial cylindrical wave associated h'ith a surface of circular

profile in the transverse plane and referred to as the Somnerfeld-

Goubau wave.

In order to establish these pure surface waves, the supporting

surface must be straight in the propagating direction of surface waves.

Any curvature or taper in the direction of propagation of wave will alrvays

lr:.i:tìl '.:i
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introduce radiation and cause a departure from the pure-surface wave '''"

field Í2,3f, These effects are also introduced by any sudden discon-

tinuity or wa11 distortion [4,5] along the length of the supporting sur-

face in the propagating flirection.

For engineering applications, surface wave structures can be , ,

used as transmission lines 16] to provide neans for transmitting inform-

ation from point to point like trunk lines of hollow waveguides. They

have advantages and potential applications in the nillimeter and sub- 
.,,,i,:..
:..: .: -..r

millimeter wavelength regions and in optical communication systerns [7-L2], 
!':'r':::

using fiber optics, in which the construction of a conventional hollow ;.,ir,t,,:.-i' :-'

waveguide is difficult or inpossible. Furthermore, they offer cost-

effectiveso1utionstomanycommunicationprob1emsowingtotheirinher-

ent features,which include wide bandwidth and 1ow loss transmission.
1

Because of the open-boundary characteristic of the surface wave structure, l

it has been applied as a means to provide a continuous access for vehic- 
,

i

ular communications [7], which permits continuous coupling to every 
i

vehicle and every station including the control center. For such applic- i

ations, discontinuities in the supporting surface in the direction of

propagation are undesirable because of the transmission loss thêy intro- ;t 
,: ._:. :

duce due to radiation and reflection. ',..,:..,,

Another application of surface wave structures is ,rtti.e \^Iave

aerials which make use of the radiation property at discontinuities.

With the proper choice of type and location of the discontinuities, the 
¡.j'-

radiation can also be controlled [I3,14].

From these applications, it is clear that a better performance

of the systems can be achieved if the behaviour of the surface wave at

the discontinuities is fully understood. There are three main groups of



discontinuities which are the most common topics of interest, namely:

1. bends

2. variation of surface inpedance of the guiding structure,

which also includes a variation of material properties or

surface deformations

3. the Presence of obstacles.

Each of these discontinuities has been the topic of recent study by nany

investigators [2-5,16], The nain purpose of the present research is to

find new techniques to soLve for a solution of the second type discontin-

uity, and specifically the step discontinuity, in a slab waveguide for

which it appears that alL the previous studies do not lead to a satis-

factory result.

Several techniques have been applied by various investigators 
,

toso1vethistypeofprob1en.ThesurfacewaVeStructuIeunderconsid-
:

eration can, in general, be represented by a surface impedance, dielect- ì

ric slab or a dielectric rod. The rigorouS solution, by comparison, is

easier to obtain for the surface impedance than the dielectric slab while

both are still easier than that of the dielectric rod whichalways involves a 
l.¡,,.r.

more complicated field, i.Ø., hybrid modes. Before presenting new nethods, 
;:,,,,-,:-

the previous techniques will be summarized in order to justify the need '.':'''.''

for the proposed techniques.

Marcuvitzrs rnodal synthesis [15] together with schwingerrs

variational principle, were applied by Angulo [17] to solve for the dif- ¡,iir.'1: .,Í::1

fraction of a surface wave by a semi-infinite dielectric slab, i.ø,, slab

of thickness 2ð. in the region of - æ < z : O which terminates in free

space at z = O. In this technique, the field is expressed as the sun

of discrete modes, satisfying the boundary condition, together with con- ,,,:,.i

tinuous modes, which are combined in pairs in such a way as to obtain



modes satisfying the boundary condition and the condition of orthogonality

with respect to rnodes from a discrete spectrum, It was indicated by

Shevchenko [18] at this point, that if the nodes of the continuous spec-

trun satisfy the radiation condition in the radial direction from the

waveguide before their transformation, then after the transformation they

no longer satisfy this condition. Neither Marcuvitz nor Angulo seem to

have paid attention to this point. Moreover, Angulofs problem cannot be

reduced to the problern of an infinite dielectric slab with a discontinuity

at z = 0 which is being considered in this thesis.

The Wiener-Hopf technique had been applied by Jones [19] for

the problen of the diffraction of a surface hrave by a seni-infinite groun-

ded dielectric s1ab, rvhich was transforned to an approxinately equivalent

problem suitable for this technique by using the approxinate boundary

conditions to replace the original exact boundary conditions, together

with the Fourier transform technique. Again thís problem cannot be re.

duced to the problem of an infinite dielectric slab as rnentioned above.

Kay l20l applied the lViener-Hopf technique to obtain the exact solution

for the problern of scattering at the junction of two surface reactances

and Johansen [21] applied it to the problen of a surface hlave scattering

at the junction of tr.¡o serni-infinite planes joined together by a step.

As pointed out by ltraldron 1221, the concept of surface impedances is

valid only under very restricted circumstances and it is very difficult

or sometines impossible to construct structures which have the prescribed

value of impedance. Thus the solution by Kay is expected to give good

results for a dielectric slab problem under certain specific conditions

which are given later. However, Kayrs technique will be applied to obtain

the results which are compared with those obtained by the proposed tech=

niques.
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By represénting the arbitrary deformations as a succession of

infinitely many infinitesnal steps, Marcuse l23f was able to obtain the

solution for the radiation loss of a slab waveguide due to an abrupt step

or wall distortion. But as pointed out by Collin and Zucker l24l, the

results thus obtained cannot be very accurate, since the steps, if chosen

snall to represent the deformation, are so numerous that they lie in the

near field of each other.

Applying the mode natching technique of the closed waveguide

to the open waveguide, Clarricoats and Sharpe [25] were able to solve for

the scattering at the junction of two planar waveguides under restricted

conditions that rnake the radiation field at the junction negligible. The

closed waveguide approach was also applied by Hu and Bergstein 126l to

solve the problem'of discontinuity in a slab waveguide, Using a

sinilar technique to study the scattering of surface waves at a discon-

tinuity in a planar waveguide, Mahnoud and BeaI l27f converted the result-

ing integral equation into an infinite set of linear algebraic equations, \

which is then solved numerically by truncation. The acceptable solution

for this finite truncated set of equptions nust satisfy an energy-balanced

argument. This procedure for obtaining a solution is time-consuming and,

as pointed out by Rulf [28], it is not necessary that the solution which

satisfies the condition is indeed a good approxirnation of the solution.

The integral equation technique was applied by Hockham and

Sharpe [29] to solve the same problem as that of Clarricoats and Sharpe.

The accuracy of the result depends on a knowledge of the field (which is

generally unknorun) at the plane of discontinuity by approxinating it as

the sun of incident and reflected fields. Rulf [28] also formulated the

problen in a form of an integral equation of a special type (i,¿., the
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.:': : 
t,)

singular integral equation). But since it is difficult to obtain the ':

general solution fron this integral equation, Rulf only gave the solution

for a simple case. Furthermore, the variational approach was applied by

Rozzi [50], to .solve for the step discontinuity in a planar dielectric

'-.,').':waveguide.

As already nentioned, there are three rnain groups of discontin-

. uities which are of particular interest, however this thesis is mainly

confinedtothe problemof the second type discontinuity as they are the 
:,.,,,',,
::1: i: : :ìr

biggest class of the three groups. This type of discontinuity includes ," ''

the termination of a waveguide into another waveguide which is different i-ì..::,
.

in both the material property, (L.ø., different dielectric constant) and

geometry (i.¿., different thicliness), It also includes the problem of 
l
ì

arbitrary deformation of the guiding structure. It is therefore, the 
i

nain purpose of this thesis to present two new techniques, the Wiener-

Hopf and the residue-calculus, to solve for the problen of discontinuity,
i

which involves the change in both the material property and thickness,

on dielectric slab waveguide for single mode operation for both TE and

Tlt{incidence. 
::,

The gener,al theoretical analysis of a dielectric slabwaveguide ',i',' 
,i

t:,.: .....

is given in Chapter 2 rvhich also includes the application of the reciproc- 
,,,.-.,,.1

ity theoren, for the determination of the transnission coefficient at a

discontinuity, and the derivation of the conditions under which Kayrs

analysis can be applied to the problem of a dielectric slab waveguide 
i.,r,.;

discontinuity. 
" :

The detailed theoretical analysis of the lViener-Hopf technique

which includes the derivation of the lViener-Hopf equation for the dielect- i'

rics1abwaveguideisgiveninChapter3,togetherrviththenunerica1
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results. In Chapter 4, the detaiLed analysis of the residue=calculus is

presented. Various numerical exanples of the results are also included.

The general discussion of the techniques and the results are

given in Chapter 5, folLowed by the conclusion and suggestions for future

research.

_¡- a.¡ _-:.: !.- :,i: .:qLiir _.! .r:.:, ' i:\--ri:"-rs::a:
- - - .1r1...j1...
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CHAPTER 2

DIELECTRIC SLAB WAVEGUIDE

2.L INTRODUCTION

A surface wave is defined as the wave that propagates along

an interface between tr^ro different nedia without radiation [1]. The

surface wave field is intimately bound to the surface of the supporting

structure and decays exponentially away fron the surface with the usual

propagation function s-iïz (for 
"jtlt time dependence) along the z-axis

of the stïucture, It is found fron this definition that there exists a

class of open structures, such as a dielectric slab, dielectric-coated

plane, corrugated plane, etc., shown schematically in figure 2.1 which

are capable of supporting the surface wave.

a) Dielectric slab

Conducting surface

b) Dielectric-coated plane

-------Þ z



- 
r.z

c) Corrugated plane

Figure 2.1 Surface hlave structures

The theoretical analysis for the surface vrave supported by

this class of structures can be found in texts which deal with waveguides

or electromagnetic fields such as Collin [31], Barlow and Brown Í321,

Harrington [33], Marcuse [34,35], Kapany and Burke [36], Hessel [56],

Tamir [57], ,Zucker 1241, Arnaud [8] and Walter 1371. However, in this

chapter, only the theoretical analysis of the surface wave supported by

the dielectric slab waveguide is given. This is because the discontin-

uity problen which will bó considered in later chapters is confined to

this type of structure which in turn can give insight into the effects

of discontinuities in more complicated structures. Also included in

this chapter is the application of Kayrs analysis [20] of the scattering

of a surface vrrave by a discontinuity in a supporting reactance surface

to the present problen of dielectric slab, and the application of the

reciprocity theorem [16] for the deternination of the transnission coef-

ficient at the discontinuity. The results obtained frorn these two tech-

niques are then used to check for the accuracy of the proposed novel

techniques in later chapters,



2.2

t0

GUIDED MODES OF SLAB WAVEGUIDES

The configuration of the slab waveguide is given in figure 2.2

The z-axis is the direction along which the wave ís propagating, the

transverse dimension y is assumed of infinite length such that there

is no field variation along y (i.ø., 
+ - 0). Thus, the field of

a slab waveguide can be decomposed into TE and TM rnodes.

- -------------+>z

Figure 2.2 A planar dielectric slab
waveguide

2.2,I TE Modes

By the definition of a

tions under the above restriction

ing field components are H", H*

equations the field cornponents H

EasYâe
H =:¿--¿-ï t¡u àz

.aE
H_JYzruTx

TE mode, E, = 0. From lvfaxwellts equa-

a(L.ø. r -¡iÌr - 0), the only nonvanish-öy

and E--. Furthernore, using lt{axwell I s
v

_ and H__ can be expressed in terns ofzx

(2.2.L)

(2.2.2)
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The E component is obtained fron the solution of the reduced wave
v

equation

â: E-- ð 
2E.,

--5;+ . ;f + e, tfr e, - o 2'2'3)

where e is the dielectric constant of the mediun through which the
T

wave propagates and

ko = oÆouo = # Q.2.4)

With the tine dependence ujt^lt and z dependence "'i\z, 
equation

(2,2.3) is reduced to

.a 2E

:+ * (er k3 - g') Er = Q Q.2.s)
ðx

The solution of this equation will be found separately for the region

inside the slab and the surrounding medium. By applying the boundary

condition which requires the continuity of the tangential field compon-

ents at the interface of the two media, an eigenvalue equation for the

propagation constant of the surface wave mode is obtained. In order to

simplify the treatment, even and odd nodes will be considered separately.

Evøn gwLded TE modu

The mode solution for even modes (Ey is an even function of

x) inside the slabs, l*l . ¿ (onitting "j 
(tltt - Bz) term), is

E = A cos Kx (2.2.6)
v

H = lj,K A sin Kx (2.2.7)
z (¡il0

H = ,ß AcosKx (2,2.8)x û)Þo

where K2 = Ê, k; - ß, (2.2.9)

l:ilar:r,:ì

i tii;;

,t..1
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The field outside the slab, l*l > d is

where ^t = ßt - tl

f, = A cos *u "-v(lxl 
- d) e.z.ro)

v

H" = l.å i* A cos ç¿ "-v(lxl 
- d) Q.z.rr)

H = ;q A cos *u "-v(lxl 
- d) e.2.r2)--x 

r¡Uo

Both K2 and .( can be positive quantities since t, t 1. For positive

value of f2, the fiel-d on the outside of the slab decays with increas-

ing values of l*1. Thus, the condition for a guided surface wave mode

is

Y2 > o (2.2,14)

Applying the boundary condition at x = t d for U, and Hr, the

eigenvalue equation is thus obtained

tanKd = I Q.2.rs)

)dd gwLdød TE modu

The field inside the slab' l*l 4 d' for odd guided waves (t,

is an odd function of x) is given bY

E = A sin Kx (2.2,L6)
v

H, = ;* A cos Kx (2.2.L7)

H = -:Ê- A sin Kx Q.2.LS)x r¡tl o

The field outside the slab, l*l ¡' d, is given by

(2.2.r3)

(2.2.re)

(2.2,20)

'.: :.

,, = Tfo A sin r¿ e-Y(lxl - d)

H = -jY A sin ra s-Y(lxl - d)
z oUo
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H - -ß A sin *¿ "-v(l*l 
- d)

x t¡il0

The constants K and y are given by (2,2.9) and (2'.2,13). By applying

the boundary condition for t, and H, at * - t d, the eigenvalue

_ : -;:_:,:.¡,¡,,,.,equation is obtained 
,:::.:.:.::.:.,;:r:r.:,:

tanKd = -+ e.z.2z)

2.2.2. TM Modes

(2,2.2L)

(2,2.23)

(2.2.24)

Similar to TE modes, the TM modes are obtained by setting

H, = 0, in which case the only non-vanishing field components are Ex,

E- and H-,. The two electric field components can be expressed in termszy
of the H comÞonent as

v
-ðHñ_Jy

"* - t¡e âz

.âH
n_-Jy
'z - ûJE Tx

The H-- component is obtained as a solution of the reduced wave equation Ì

.yIl

a2H
Y , .^ t-2 ¡2t rr - ^ la a ar\

â*, + (Er kã - ß2) Hy = Q (2-2.25)

,¡t'.¡.,]l,'.'.l, '..t;.The solution for n, is determined separately for the region i, '' ,

inside the slab and the surrounding nedium. The resulting field compon- ::ri,f,;,','"'t:',,,;t''.':.

ents rnust satisfy the boundary condition which requires the continuity

of the tangential fietd components at the interface between the two media.

This condition will lead to the eigenvalue equation of TM surface hrave. ::.,. ',,.,.,1
ii :ì,,'-i:.: 1' ;':r,i':

mode.

Even TM modø6

The even TM modes (n, is an even function of x) inside the

slab l*l 4 d, have the following field solutions



I4

H = B cos Kx Q,2,26)
v

! = jK,. BsinKx Q.2.27)z oÊreo

[ = ß, B cos Kx Q.2.28)x r¡ErÊo

where K is the same constant given by (2.2.g).

The field components outside the slab l*l ;' d, are

H-- = Bcos*u"-v(lxl -d) e.2.2s) ,:v:
E = ,x, jll- B cos *u "-v(lxl 

- d) ;::.

-z lxl ¡,Eo >s Kd e r\r^r (2'2'30) 
i:"

! = =E_ B cos au .-v(lxl - d) e.z.sr)X OEO

By applying the boundary condition at' x = t d, the eigenvalue equation

is obtained as

tanKd = +
)dd Tl'l node,6

slab is

The field of the odd TM nodes (H, is an odd function of x) inside the

(2.2.3s)
H,. = BsinKx

I

E - -jk BcosKxz uee^ru

! = ß B sin Kx,,x (¡e e-. ru

(2.2,32)

(2.2.3s)

The field outside the slab is given by 
.,.1 ...
i ::: ,-r'

H = rlr B sin ra s-Y(lxl - d) e.2.s6)-y lxl

r = J+ B sin xa s-Y(lxl - d) e.2.s7)
" 

ttlgq

E* = # B sin *u .-v(lxl - d) (2.2.ss) 
i,;;:i.



The eigenvalue equation is

at x=ld, as

ran Kd = ;+r'
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obtained, after applying the boundary condition

(2.2.3e)

; (kd = to 4) (2.2.40)

by the surface wave mode is given bY

(2.2.4L)

is given by

lH l2 ¿x'y'

Fron these eigenvalue equations (2.2.15) , (2.2 '22) , (2 '2 '32)

and (2.2.39), the propagation constants for each surface wave mode can

be deternined,

Sone interesting features about surface wave modes which should

be nentioned are the non-existence of an infinite number of discrete nodes

of propagation and the concept of cut-off frequency. Because of the first

property, the surface wave modes alone do not form a complete system which

can represent any arbitrary field. The concept of cut-off frequency has

a sornewhat different interpretation fron that of netal (closed boundary)

guides. Above the cut-off frequency,'the dieiectric slab guide propag-

ates unattenuated rnodes, i.ø., I is real. Below the cut-off frequency'

there is attenuated propagation, í.ø., ß is a conplex quantity. The

phase constant of an unattenuated mode lies between the intrinsic phase

constant of the dielectric and that of air, that is,

ko<ß<kd

For the TE case the

p=

power carried

¡6

I t H*dxIvx
J-æ

l@

.| ^ 
larl' ax

TM case it

¡Oß11;Jo ã

1-2

==ß(l)Uo

for the

P=

while
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= + |'u lu--lr¿**--9.- l* lH.-lzax e.z.4z)oeoÊr io '--Y' r¡Eo id 'Y'

2.3 RADIATION MODES OF THE SLAB WAVEGUIDE

Since the discrete surface r^rave rnodes do not form a conplete

system, the radiation phenomena which occur at the discontinuities along

the guide cannot be described by these rnodes alone. To account for the

radiation, a system of lrquasisurface wave modesrr with a continuous spec-

I 
arun is added to a system of discrete surface wave modes which together

form a complete system [18, 34], These quasisurface (radiation)

I *odes also satisfy Maxwellts equations but instead of satisfying the

stringent condition of surface u/ave modes that the field rnust vanish at
:

, infinity, they satisfy a weaker condition that the field only be finite

) at infinity [18, 341.

2.3.1. Even TE Radiation Modes

The field inside the slab l*l . a, is given by

E = Ccosox
v

H = :jo csinox
" trtUo

H-- = -:-q- C cos oxx - ürlo

where o2 = Ê, k; - ß'

(2 .3.r)

(2.3.2)

(2.3.3)

(2 ,3.4)

(2.s.6)

(2.3.7)

while the field outside slab l*l > d is given by

E-_ = ¡"-jolxl *ruiol*l es.s)v

H = x -!.-qn"-jolxl -¡ejPl*ll"z - Til ,u,

H_ = :;9 (r e-jPlxl * F "iPl*llx .ûjUo



L7

where

Applying

x=td

x=-d

p2 = kå*ß2

the boundary conditions

leadto(only x=d is

are identical)

D = I "jpd ¡.o, od

requiring continuity of 8,, and
I

considered since the conditions

(2 ,5.8)

Hat
z

at

(2.s.s)

(2 . 3.10)

(2,3.rI)

(2.3.L2)

(2.3,r3)

(2.3.r4)

(2.3.Ls)

(2.3.16)

between

(2.s.r7)

(2. 3.18)

sin od)

P=D*

where the star superscript denotes the conplex conjugate.

2.3.2 Odd TE Radiation Modes

.o-rþ:

The

E
v

H

H
X

while outside the

E=
v

H=
L

fietd inside the slab l*l . ¿ is given by

- Ce sin ox

Jo^
- 

L-ñ
t¡Uo

-ß

-Ln
tr)U o

slab it

Tfu (DO

P rn-
r¡uo \u o

cos ox

sin ox

is given by

e-jplxl* ro "jol*1,

"-iol*1. ro "jol*1,

H* = # Tfo (Do e-jPl*l* Fo "jPl*ll

After applying the boundary conditions at x = d, the rolation

the constants C0, Ds and Fd is given by

Do = + "jpd¡sino'd+ 
jficosod)

Fo = Dð

¡ìt'i:: rl¡
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2.3.3. Even TM Radiation Modes

N=M*

2.3.4, Odd Tlt{ Radiation Modes

The field inside the slab l*l < d is

H = Lcosöir
v

r_iots = - 
-:- r, sin ox (2.3.20)z @ee^

1lv

-ßE - --= - L cos ox (2.3,2I)x (])Ê En
]1

while the field outside the slab l*l > d is

H_ = ¡a"-jol*l **"jol*l e.s.2z)v

E, =-Tfo#(r',r"-jplxl -ruejpl*ll e.s.2s)

The relatiorr'b"t""en the constants L, M and N is given by

M = + "joa (cos od - j u}. sin od) (2.3.24)

(2.3.re)

(2.3.2s)

(2.3.26)

(2,3.27)

(2.3.28)

The field inside the slab l*l < d is

H-- = Lo sin ox
v

E_ = ;4 Lo cos ox
Z -u u,,il

E L^ sin oxx oErEo u

while outside the slab the field is given by

", = 
Tfu ¡r',ro "-j 

o lx I * No 
"j 

p l* ll (2.3.2s)

E- = + (u^ "-jplxl - No "jpl*ll e.s,so)z .ugo . u
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(2.3 .3r)

(2 .3.32)

(2.3.33)

The relation between constants Lo, Mo and No is given by

Mo

No

L 0 10cl
2"

Mi

(sinsd.j# cosod)

2.4 DISCONTINUITY ON THE SLAB WAVEGUIDE

The configuration of the discontinuity on the slab waveguide

under consideration is shown in figure 2.3 which shows an abrupt termin-

ation of one dielectric waveguide into another guide with different value

of dielectric constant. The thickness of the two guides can either be

the sane or different with dl > dz or dr < ð.2.

_-_-_-___> z

Step discontinuity on a planar dielectric
slab waveguide

t:,'.:.
' ì..':

i:;.::;iliil

Figure 2.3
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2.4.I Transmission Coefficierit by Lorentz Reciprocity Theoren

By applying the Lorentz reciprocity theorem, it was shown by

Barlow and Brown [16] that

where T is the transmission coefficient defined as the ratio of trans-

mitted to incident porr¡er, S denotes the cross-sectional plane at

z = 0, Pr and Pz incident surface wave power traveling on the

left and right hand sides of the surface S, respectively. Ër, Ë, and

fr, ll, are the fields created over S when the surface wave is incident

from the left and right hand sides of S, respectively.

Though equation (2.4.1) has been developed for the problem of

discontinuity of surface wave supportedbyanimpedancesurface, it can also

be applied to the problem of the slab waveguide with the same solutions for

all parameters. Equation (2.4,1) will give the exact solution provided

that all the fields Er, frr, È. and Ãz are known exactly. fn our prob-

lem the fields are approxinated by incident surface r^rave fields. For

TE case hre have, for dr > dz,

T=

4_1r - t6=Þ;F;

4 ßßzt(erz - ,rr) r'o - ß? * ßî]',

r^
J, [Ër x itz - F.z x frr] ' fi' ds (2,4.r)

2 2_2 2 2 2+ ßz - ßr} (ßz - ßr)

(2.4.2)

i:. :.t 1:

{(err - 1) kT

while for dz ì dr

(ß2 + ßr)'z rf ul

(ß, + ßt)'z rf Nf

T=
4 Bßz{(erz - ,rr) k; - g? . g?}' {[rr, - 1) k; - g? * sit'ßl - slt'

(2.4.3)

where F0, Na and M0 are given in Appendix D,



1 I - f vr(ßrlÊr r* Bz/e"r) +vz(ßt/er, + ßz) +vs(ßr + 3z)1r = 4T-16; l^ol l

2l

For TT\'l case ü/e have for dr > dz,

* (tz cos krdz - k1 sin krdz))

(2.4 .4)

where ..

V1 = (kz sin kzdz cos krdz - k¡ cos kzdz sin krdz) U7 - yll tyî * X?l

(2.4.s)

y2 = ûl- yî) ß1 -kf) cos kzdz'{(kr sin krdr - }2 cos krdr)"-Y2(dr -dù 
it't.'

(2.4.6)

v3 = ßî - kîl (tf,.l<17 (yz - yr) cos k1d1 cos k2d2 s-Yz(dr - dz)

c2.4 .7)

while for dz > dr,

1I = 4-T tg; (kå - rll cvl * kå) cyï - til
(2.4.8) i

I

where i

vi = ft|. - yi) (Vf * tll (k2 sin k2d1 cos k1d1 - k1 cos kzdr sin krdr) 
,

(2 .4 .g) t' 
,':tt',,',

vf = ft?- yÎ) ß7 - kf) cos krdr{(k2 sin kzdz ''}1 cos kzdùu-Yr(dz -dr) tl""'''t,''i'

- (kz sin k2d1 - ]¡ cos kzdr) Ì ( 2 '4 'LO)

v! = ßZ - kî) cvi * tå) (yz - yr) cos k1d1 cos kzdz e-Yr(dz - dr) 
l,;:_,r.,(2.4.II) i'':'::'

RrI
2l

lvi(ß z/err* gt/err) * rLrcr/.", + ßr) *.rl(ßz + ßr)
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2,4.2 Applicq@

Kay Í2Ol analyzed the problen of scattering at the junction of

two surface reactances for TIvl incidence and obtained the exact solution

by the Wiener-Hopf technique. As it is known that underarestricted con-

dition the problem of the slab waveguide can also be reduced to the reac-

tance surface problem, yetno one has appliedKayts result to this problern.

Though Kayrs result gives a very accurate solution under a restricted

condition, it can give some insights into the problen. In this section,

it will be shown how this can be done. It is interesting to note that

though Kay analyzed the TM case, with certain nodifications his result

can still be applied for TE incidence. A1so, by conparison with the

residue-calculus technique of Chapter 4, thoughthe condition, given later,

is violated, Kayts formula sti1l provides an acceptable approxination.

R¿pne'sønf.aLLon o ó a die-,L¿c,tttic tLab bA,su4{sacø itnp¿danc¿

The surface inpedance is defined as the ratio of the tangential

cornponent of the electric field to the tangential component of the mag-

netic field in the direction perpendicular to the chosen electric field

1221. This ratio is evaluated at the surface which forms the boundary

of the guiding structure. Before going directly into the dielectric slab

problen, a conducting plane coated with a thin layer of dielectric will

be first considered, following Col1in [31]'

conducting pLane wÌth normalized

Figure 2.4 A dielectric coated

surface impedance

conducting plane

l'::: .1.

z
s
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The TM excitation is first considered,

region, the nagnetic fietd t, can be written as

In a free space

t, = Aexp(jhrx- jßz¡ (2.4.12)

where h? * g" - ki. In the dielectric, the field consists of two r^raves

propagating in the positive and negative x direction, and hence has the

form,

t, = [B expfih2x) + C exp(*jh2x)l e'jï' 0 <x <d (2,4,13)

where h7 * ß" = .rkî. The wave numbers hr and hz and the propaga-

tion constant ß may be found by equating the surface inpedance looking

into dielectric at the dielectric-free space interface. Because the

mathematical relation between E- and H-- is sinilar to that of voltagezy
and current in the transmission line equations, the following equivalent

transmission line circuit is applicable.

Figure 2.5 nsmission line
dielectric coated
ne

a transmission line we

x>d

Fron the equat

zl
- L-Z¡ 1n

l-on

zz

Zg

the

z
S

6"

for

t

)r
t5

:e

hr

lent
tfo
ting

lancr

anÏ

].val
cuit
ducl

nped

:o)t

u].v
rcu
ndu

Lnpr

zol

Equi
cir<
con(

tin

,z/ z

inpu

+ i(z

TA
a
1a

n

1_l

f_l

t:

p

i:

:d

,a

have

(2.4.r4)
/zo) + jz, tan h22



where

where

lem is

22=

For TE

zl 
=

Zg

procedure

(2.4.rs)

(2.4.L6)

(2.4.17)

we have

(2 .4 .rB)

(2.4.re)

(2.4,20)

zs = fiJ6

'oh,

24

by following the

,, * i(zr/zs)tanzz
:-L0 ç2"/zù + jz, tan

slab waveguide

the symmetrical

ko

'oh,eF
excitation,

t

same

h rdl_l
ttrd 

__[
Ln

zL = t¡Uo/hr

22 = oUo/hz

Now consider the

only concerned with

excited in TM

(even) mode).

mode (our prob-

Ì.i:: .

incident wave

Figure 2.6

er1

Surface rvave incidence
on a planar dielectric

at a discontinuity junction
slab waveguide

li::.,1i:,ìr:,

lrjì,"-r',,i...i

l\Iith the symmetrical mode, we have 
", 

varying s¡runetrica11y about the

plane x=0, thus

AH
E"-ã* = Q x=Q
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This inplies that an electric wal1 (E tangential = 0) may be placed along

x = 0, hence the dielectric slab above and below x = 0 is reduced to

the conducting plane coated with a dielectric layer mentioned above. Its

surface impedance can then be obtained fron (2.4,14) with ,, = O. Under

the condition that h2d << l, it can be written as

hr_ (er-1)
z.- = Ç-; j -----;- kodLn Kn - e

And for even TE mode, by using (2,4,18) with

to

z. = 
tlg 

=Ln zoht (er 1) kod

(2.4.2r)

it can be reduced

(2.4.22)

(2.4 ,24)

=co

:j

It should be noted that without the approxination above (2.4.I4) and

(2,4.I8) are equivalent to eigenvalue equations of surface wave modes

for Tn4 and TE modes, respectively.

Following Kayrs analysis, it is required that the surface reac-

tance be independent of wave number h, fron (2.4.2I) anð. (2.4.22) the

slab waveguide will satisfy this requirement if h2d << 1.

From Barlow and Brorun [16], the reflected power, Prf is given

v!(v, - \ù2
(2.4.23)

g1(et * 3z)2

while the

by

D-^rf

transnitted
4

P, (Yt

The radiated power is

P - 1-

pohrer, Pt,

T,\,
+ \z)z

then obtained

P^-Prft

1S

1,]::¡

AS

(2,4.2s)
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2.5 NUMERICAL RESULTS

The transmitted Powers caused by symmetrical steps with

t = 2.56. e = 5,I2 for different ratios of dz/dt are shown in
11'T2

figures 2.7 and 2.8 against kdl for TE and TM incidence, respectiv-

ely. The open circle notation represents the results obtained by apply-

ing the reciprocity theorem using equations (2.4,2) if dr > dz, (2.4.3)
i
if dr < dz for TE incidence and equations (2.4.4) if dr ) dz,

(2.4,8) if dr < d, for TT\4 incidence. The solid circles represent

the results obtained by applying Kayts technique equation (2.4.24) for

both TE and 11,f incidence. The radiation losses of the same cases

are plotted against Kdr in figures 2.9 and 2,L0 fo't TE and Tl'l inci-

dence, respectively, using equations (2,4.23), (2.4.24) and (2.4-25) -

Because it is not possible to obtain the radiated power fron the recip-

rocity theorem since the reflected power is unknown, only the results from

Kayts technique are shown in figures 2,9 and 2.10,
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CHAPTER 3

APPLICATION OF THE WIENER-HOPF TECHNIQUE

3.T INTRODUCTION

. I{aveguide discontinuities such as bends,obstacles, etc., or

changes in the material properties of the guide will always disturb the

guidance of surface waves over the guiding structure. At these discon-

tinuities the incident surface wave rnodes are coupled with other surface 1-',:'

wave modes, thus leading to reflected, transmitted and radiation v/aves. 
'j,,,r. :. ....

îhese effects are important in the applications of dielectric waveguides

in optical fiber communications where the reflection, transmission and

radiation at the discontinuities are inportant in designing and estinat-
l

ing the performance of the system, and also in the design of surface wave
:

antennas, whereby the discontinuities are introduced on the structure to l

yield the desired radiation. 
I

:

The discontinuity considered in this chapter is confined to the

junction of plane dielectric vlaveguides of the same thickness but different

values ofdielectric constants. The general approachto thís type of prob=

lem is to expand the fields on both sides of the junction in terns of

discrete surface wave modes together with a continuous mode spectTum or

pseudonodes as called by Shevchenko [18]. The fields are then matched

at the junction of the discontinuity and with the aid of the orthogonal-

ity property of the fields and certain approximations, the required mode

anplitudes are found. The Wiener-Hopf technique was applied by Kay to

study the scattering at the junction of two surface reactances [20]

Because of tl're configuration of his problem, he was able to obtain the
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exact solution. The geonetry considered here is different from that of

Kay because it also involves the thickness of the slab, but it is still

in that class of the problens which can be solved by the Wiener-Hopf

rechnique Ige] , [39], L441, I45l . To obtain the Wiener-Hopf equation, the

Fourier transform together ürith the boundary and edge conditions are

applied. The key step in deriving the Wiener-Hopf equation is the fact-

orization and decornposition which cannot be found in closed form for our

case, and the techniques as gi-ven by Noble [38], Mittra and Lee t39] ar:e

therefore applied. The final solution contains unknown constants which

can be deternined fron infinite-dimensional simultaneous linear equations.

This implies that the exact solution for this type of problen cannot be

found by this method.

3.2 FORMULATTON OF THE PROBLEM

The configuration of the dielectric slab waveguide r:nder con-

sideration is shown in figure 3.1. It is assurned that the y-dimension

is extended to infinity and all the field conponeñts are independent of
â

the y-coordinate, i.ø., ú = Ot By using the subscripts 1 and 2 to

denote the left and right sides of the junction, the dielectric constants

for the left and right sides are shown as tr, and arr, respectively.

The slab thickness is denoted by 2d while the tine dependence is 
"jt^rt

which is suppressedthroughout. The incident field at the junction will

be either a TE or TM surface wave mode. The for¡nulation for each case

will be given separately and will be restricted to a single node operation.

ri'r
ì;: ì
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(II)

incident field
-----¡>

(III)

(II)

Figure 3.1 Schenatic diagram of a dielectric slab
waveguide

The geometry is subdivided into three regions as shown rn

figure 5.1. Consideration will be confined to even mode excitation,i.ø.,

E (TE) and II_ (fU) components are synmetricaL with respect to z-coordin-vy
ate. For the purpose of fornulation, the free space b¡ave nunber k0

in region II is considered a complex quantitywith very srnall but finite

imaginary part denoted by kT, i.ø.,

ko - kð- jki ; (kåt0, k'o'>0) (s.2.L)

By letting krd tend to zero, the final solution will be reduced to the

solution of the original problem. The solution of the unknorvn field

cornponents is obtained by solr¡ing the two diinensional scalar wave

ec¡uation,

k?o =

r..::r.:1:

à 2ô â2ör+J+
ðx2 ð22 0

havewhere for TE incidence we

(3.2.2)
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E-_=0
v

H = rålEx toui ðz

H = ,._j_rð0'
z tñ-o/ ãî

while for TIvl incidence we have

H=0
v

E* = ,#, ï9

E, = (#)*

(3.2.3a)

(3.2 .3b)

(s.2.3c)

(3.2 .4a)

(s,2.4b)

(3.2 .4e) ,r.,-

The solution is to be obtained subject to the following boundary condi-

tions: -

(I) the tangential field components must be continuous at the

z = 0 plane and at the x = td plane.

(II) as l, I * -, asymptotic value of Q is Èhe propagating

surface wave mode

(III) the field is assumed to have algebraic behaviour at the

edge.

The last condition follows frontheanalysisofCollin [40] for

an array of thin dielectric sheets. This is because the exact field

behaviour for the general dynarnic case relnains unsolved [41]. If we use

the static case to determine the field behaviour at the dielectric edge,

following Anderson and solodukhov [41], the field will have algebraic

behaviour.

The fornulation wiLl be separateLy derived for TE and Tfvl

incidence. The TE node incidence is considered first.

irr-.:' .: -::r :

;'.: r.:-
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3,2.L TE Mode Incidence

In this case, the incident field is U, which is incident

upon the junction of figure 3.1 from the left. The field in the three

regions, as shown in figure 3.1, are then given by

Region I; -d 
=<x _<d , ,:0

The total field Oi is given by

óI _ .T .r,r q * Qi

where the incident field Oi (or uÞ is given by

T

Oi (x,z) = A, cos ßî - ß171/z ¡ "-j 
ßrz

Hence, it can be shown that OI(*,") is the solution of

*4.'-'-C * kior = Qâxz à22

(3.2 .s)

(3.2 ,6)

(3.2.7)

RegionII; l*l >d, --<z<Ø

The total field Ollt*,r) is

Ofrt*,r) = Orr(*,r).O|t(x,z) (3.2.8)

where the incident field OlÏt*,r) is given by 
.¡,,¡.

olrt*,r) Ai 
"(ß1 

- uî)r/2a cos(kf -øl)L/2¿ "-(ß1 
-k\r/2l*1"-jß,, .,,,,,

(3.2 .s)

Hence, it can be shown that OII(*,z) is the solution of

{fl.#*tÊorï = Q (s.z.Lo) 
i.,:¡,:Ðx2 ð2 2 '-e Y 
i ,

RegionIII; -df*<d , ,ì0

The total field OIII(*,") is 
,

'rII'.,r) = Orrl(x,z) (s.z.LL)Qt (x,z] = Q (x,z) ls.¿.LL) 

.,,1
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,...:
' :_ .:.-t:...where OIIÏ(*,r) satisfies the two dinensional wave equation

-a,-o- . "-{;'* r! ôrrl = Q (s,2.Lz)
âxz

In the equations (3.2.5) to (3.2.L2), we define

A, = amplitude of the incident vrave--i 
t'."t" .'-t:

k1 = Æ-' kQ

kz = /€-'ko
; :'l :: '.:i I

ßr = propagation constantof the surface mode along the 
i1,..t,.,0,'
:

z-coordinate satisfying the eigenvalue equation for the :::;,::,

slab waveguide on the left side of the junction, í.ø., ¡'':.¡:''"''';

tan(kl-øllr/za = (ß1 -rf1r/z

iti - sllt/'

Define c, = 6+ jr

Fourier transforming (3,2.7), (3.2.10) and (3.2,I2) yields

(3.2.r4)

# or(o,x) - (a' - kî) ol(s,x) = - 1 [,9, z=0 io,(or)"=o]
/ñ L oL z=o 

(g.2.1s)

# orr¡cr,,*¡ - (clt - kî,) orr¡o,*; = Q (s.2.r6)

¿z -rrr - o . ,- -rrr l- xarrl rrr- I
ãx, e* (o,xl - (o' - kî) olrlto,*¡ = + I clÇl -js(qtcl' - t<!) Q* tcrrxJ = 

ñ L, ðz , 
r=o 

J-.\ï ,r=o 
J,

(3.2.r7)

From the behaviour of OI(*,"), Orr(x,z) and OIrr(*,r) for any given

x as lzl * -, we can deduce that OÏ(o,x) is analytic for r < br

(br = - In(ßr)), and olllto,*) is analytic for r > -bz (bz = - In(ß2)).

Because OIr(*,") * Or(*,") as z -> -@ and OIr(*,") - OIrr(*,") as
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z * tæt hence OIIlcl,xl is analytic in

The solution of (3.2.16) can be

olr¡cr,,*¡ = A(a) "-À* 
* B(a) e

where À = (o' - UlTI/z which indicates that the

branch points at o, = t ko.

If OÏI(o,x) is the solution of the wave equation representing the

electromagnetic fields, it is required that, for any given x and for,

every o in the strip -bz <. < br, OII(o,x) is bounded. This

requirement can be net by letting B(o) = I and selecting the branch

such that Re(À) > 0 for any G as shown in figure 3.2. Hence, (3.2.18)

the strip -b2

found as

Àx

( T ( bt.

(s.2.r8)

solution possesses

(3.2.Ls)

branch

Real

is reduced to

orI (o,*) = A(ei) 
"-À*

which is analytic in the strip -kl' . . . k'J,

Inaginary

Selected

Branch cut

(a) À-plane



Inaginary

Im(À) < 0 Im(),) > 0

branch cu

Im(À) > 0 in(À) < 0
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Real

Figure 3.2

(b) cx,-plane

The selected Rienann sheet of (a) I-plane
(b) o-plane

I ,.: "r:;

L: )..:

By applying the boundary conditions that U, and H* must be continu-

ous at the z = 0 plane, it can be shown that

[oIrI) r=9 = (Or) z=0 
* A, cos (kî - øl)L/2* (3.2.20)

,flur, ^ = (#) ^- jßrAicos(k2 -øl)r/2* (3.2-2r)
z=O z=O

Substituting (3.2 .20) and (3 .2 .2I) in (3 ,2 .17) yields

# olrr[o,*) - (o' - kå) orrf to,*) = *[,9, ,=0-io(or),=o]

J Co, + c,) Ai cos(kf - øl)t/z* (3.2.22)
/zrt

Before attenpting to solve (3.2.15) and (3.2,22), it is known that
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(r) OI(*,") and $$ f*,rl are even continuous functions of x

Thus .[Or (*, z)] z=o and t$C*, "l t

cosine series Í421, í.¿.,

- I [+, -j"(or)"=J = îln fru' ,=o I

can be expanded by the Fourier
z=O

+= *li#l=, costf x) dx

x)

t

k

i

)
lzn ça2 - kZ * t| - gfl

cosh(cx2-Yî)"* .2: eitrf *¡crrf)

-,_ì_u_

(a' - t!¡% sintr çc2 -ul|"a' d 
r,.="0 f"' - t; .ffi

i^ ,' (fl . 3o{l cos($x) G.z.2s)
n=u

(s.2.24)

(3.2.2s)

(3.2.27)

dx

;

ons

,
)'x

r(

+j

l_

2

l
n

cos ¡f

nì1

he solu

(a' '
-----.1--
kf)'' s

tt t 
(o,u

t

h

I
+

+B_tn

^tL-n

Using

T.
Q (o,,

IIÏ
o+(

,d

*lcoI)"=oy'2n ro

1 for

(3.2.23) ,

cos
x)=-

(a'

r
s,x) = fo

L

^t =
0

for (3.2
T'o' (cud)

n=0

(3.2.22) can be

';(tl . j"{
to2 -tf * (T)?l

7,
g!)-' sin (kf - g?

a2 - k!)

4.. lcl +
1'

for

5) and

)-
c n=o

Gî

I
z

.1

'-
d

;,)ßr

i'':::¡,tr:,:;t

-n'r _ Ai(o + ßr) cos(kr2 - g?)" *
^^C 

l- v I ¡ r,d ¿ r õnça2-k7.*rî-eîl
where the primes on o-r¡o,d) and OIII{o,a) denote the partial derivatives

with respect to x evaluated at x = d.

At x = d, (3.2,26) and, (3,2.27) are reduced to

(rI) f [or(*, ,)]','=o a* and flt å*,. ,z)!',lo ð,x are rinire

where



or ¡a,d¡

III
o* (o, d)

gr
0

40

cosh (a' - v?)"a or' ¡o,d1 e'lfA * igfBln'n ' n'
t- L,

(a' - kf )' sinh (a' - kí) 'd [s2-tî *

A, (o + ßr) (kÎ - g?1" ,inçul - ß

cos (nn)
æa¿l

-:L cl n=o

= [orII'(s,d) + j
L1

28)

,l

a

l

(rl1)

(3

1-

?)-'a

lr.3

cosh (o2 -

,ã çu2 -

L

ki)'d

*rf-ß1)
æ er rfA- n'n + j o¿rï)

2
a L

(u2 - yf¡'.

cos (nn) + j

sinh (o2 - k?)'"d

A. (o + 3r1 cos(k!

n=o la' = x3

s1')%a

* ¡l1u )'l

(3.2.2s)
lfiça2-k?*r?-eîl

From the property of the functions on the right-hand side of

(3,2.28) and (3.2.29), (i.ø., that they must be regular in the lower and

upper half planes, respectively) it can be shown that (See Appendix A):

ct é ="o
k, o]' (nr,u) - n, *ltt' (-kr,d)

7-

A.kr(kz - ßr) sin(k! - gï)''d

2(k1 + k2)
+J

zlzn çu, + k2) ftf - g1l4

oI' ¡kr,d1 * tltt' (-kr,d) A.(kz

(3.2.30)

- ßr) sin(kf - gl)"d
^Br0 2j (kr + kz)

(3.2.3L)

(3,2.32)

2,m (\ + kz) ß? - gT'.

For n)1, have

vi o1' (-iY,r,d) -- tr,tltt' {ir;,u)
=-+ (vr, * Yrl)

I
e
n

^At cos fnrl
n

t::::
i: ':'AiYr, (ßi + jvi) GÎ - g?)" sinftf - gi.)"a

:'111,:'

,m løl . ,*u )' - r.î ] (v,, * vi)
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where

nr(ßr * jy;)(tî - ß?)% sin(tî - g?)t"¿

lfi çyn * y;) tßî * ,*u)' - tll
(3.2.33)

(3.2.34a)

(3.2.34b)

Yn = [(+)'-n?f'
vi = [(-u)'-*îf

I

2.I9) with respect to x and letting x = d, it can

[.lt'(o,u) * ,lt'(o,d) ] ","' 
- kîl4a G.z.ss)

be rewritten as

- kf,1"

19) can

ing (3.

t

(-1)

tiat

tha

(a'

3.2.

Differen

be shown

A(q) =

Hence, (

ÏI
o- (o,d) = -J:r:¿ [.]t'(o,d) * tlt' (o,u) ] . tTt (cr,d) (s. 2.36)- (a2 - kf,¡'" L

3.2.2 Derivation of the Wiener-Hopf Equation

The I'üiener-Hopf equation can be obtained from (S .2.28) ,

(3.2.29) and (3.2.36) by applying the follorving borindary conditions:

(I) U, is continuous at the x = d plane. Thus, we have

or (o, ¿) = orr (4, d) i.:':'::;

ì::.: :' :!;

and

= *lF It1t'(o,u) 
* t]t'(o,d) ] - tlt(s,d)

(3.2,37)



a-, 1{;r':.-rìaÌ ;?:,i.:

orrl¡o,d1 = tlt(q,d) + j
A.

l_

(iI) H" is continuous at the x

or'¡o,,d¡ - alt'(o,u)

and

orrr 
I 
(*,d)

From (3.2,37) to

olil to,a) - j

42

7-

cos(kf - gí)'d

'Dn ça - ßr)

- d p1ane. Thus, we have

Ai (ß? - nl)'" cos (kf - g?)'"a

ln ça - ßr)

shown that

(3.2.38)

(3.2.3s)

(s.2.40)

^,3í)" d

40) ,

[.r'

(3.2. it can be

- .ltt(a,d) + j

Equating (3.2,28) to

from (3.2,29) leads,after some

(s,d) * t:tt' (o,d) * j

cos (kf - gl)"a

lzn (o - ßr)

(3.2.4I) and substituting

algebraic manipulation, to

or ¡o,d¡

lVhere

M(cr)

(-1)

çu' - uf;)"

^ ",A. (ß1 -kîl cos(k! -

,/zn ça - ßr)

A.
1

for

the

(3 .2 .4r)

olrr io,a)

relation

æ
2n

=-L d t=o
N(o) o-rt¡cr,d)

'(4 . jor:) H,r(o) er cos(nn)

- M(o) olrr 
I (o,d) + j

A. cos(k! - gl)"d

-J
Ai (ßr + cr)

,ã çu2 - ß1)

+ cos Gî

-k7 +k?

- str%ull
(3.2 .42)

- v?)"a(s' - t<!1t" sintr (a' - t?)"a * (o2 - n1)'" cosh (o,2

(o' - xf,)z lo' - t ?)'" sinh (*2 ^ rt)"a
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Hrql =n. ,
cx2 - kf + ql)'z a.2 - k', * (4u)t

(3.2.44)

while N(o) is given by (3.2.43) with kz replaced by kr. Because of

the cornplexity of M(o) and N(o), the factorizations cannot be found

in closed forms, the technique given by Mittra and Lee [39],Gppendix B);

is applied. After factorization (3.2.42) can be rearranged as

N-(0) ,Tt. z L 
æ

A : .:..i

Mf6- 0' (cr,d) = î q1o;ltr")=- ,'lo 
Hr,(o) t; r; cos(nn) i';l

43

2jcræ. i {¡rõ-l-q@- ,,Io Hn(d) '; tl cos(nn)

. A. cosß1 - g,-)"d l- 1 ( g? - th". 
' Ø-t 

".(o) 
on-(") LTt --Ett

(ßr -* cx) (ß1 - nî)" coth(o2 - Y?)"a

where N+ (q,) , N_ (o) , ttt* (o) and M_ (o) are given in Appendix C.

Defining

R(o) = R*(cr)+R-(o) = ñ;(CI)\-ro ["*t ffi]
3.2.46)

s (*) = s* (*) + s- (o) = ñ;Giñ- (s)- t

(a' - k!-+ kf -

(ßr + o)

îiß

)

@' - v?)'"

M-(c[) rrrr
qrÐ- o^^'(a'd) (3'2'4s)

(cl'-t3+ti-gi

(ßr + a)

(o'-k!+k!-gÎ)
(s.2.47)
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flcor = rÏ-(a) + rl*(o,) = ñ;ro)\F ["=**'] 
G.z-48)

t#(324s)
] 

G.2.so)

t".**ç,=] G2'st)

Tlc"l = {_{o) *rf*ta) = n-ra#-m
1-

The above deconpositions are obtained by applying a theorem itj.',-'

given by Noble tsS]. Again because of the conplexity, they cannot be 
:

determined in closed forms, Substituting (3.2.46) to (3.2,51) into 
,
l

(3.2,45) and applying the Wiener-Hopf technique, both sides can then be 
:

set equal to zero fron the condition at infinity (i,ø., lol * co), obtain- 
ì

i

able fron the edge condition. Thus, we have 
i

i

N (cl) rr . - - ^ 
.) - ^ R :

rai or[o,a¡ - i ¡rl-{a) - t3-(o')] ';tl - å trÎ- - ig-c")l e;rf

î ;- trf-ccu - d-coll elrA cos(nn) î ; t{-cal - T}-ccrll e'rB cos(nn) [,r,,,.,-
n=I rr Jl t n=l - rr ¡l

=j

7-

A. cosfk? - ß?l-'dL t¿

lR_ (cl) - s_ (o) l (3.2,s2)

1

* (+)'o" -u?,

rlCql = 4-(o) + T|*1cr¡ = (o)
ja
IMN, (sÌ

'/n
and

ffi orrrt(o,d) - $ rr9.¡o1 - r¡*(o)l ';rf .- å ,rl. - ig*(o)l 'ðrl -

å j', (4*(o) - rt*(o)) eiff cos(nn) å j, (r1*(o) - if*coll e{ffl cos(nn)

. A, cos(ki - ofl%a
= j: [R+(cr) -s+(0)]

Jñ

:-ì:,.i:.:i

(3.2 ,53) ...,i*" , ._
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Defining

ct(o) = Lu trf-col -r1-(oll ; n = 0, r,2,,..? (3.2.s4)

elCcl = f tff-C"l-f|-Colt ; n = 0, 1,2, (s.2.ss)

cf col = f trf*c"l - rT*t()¿)l ; n = 0, 1, 2, (3.2.s6)

1-' îriiTt - 
,,1, 

tttn

and substituting (3.2.30) to (3.2.ss) into (3.2 ,s2) and (s,2.53) yield, ' '

N_(a) Tr ^ rr - - rrrr
t*-; or'(o,d) - I(trcl(s) - je o(o)) 01'(kr,d) - (k,cl(cr) * j co(o)) oltr'(-kr,d)l 

i

i

(cr)vrï *ct(o)) ol'(-jy,r,d) - (c1(o)yn - ct(o)) .ltt'tjr;,u¡1 
l

(3.2.58) :-::::::1,::;:.:

r Ai l-{trco¡o¡ + i Õ0¡a) (kz - ßr) sin(k! - g?f"a
'?Ç+Y;t: t ã L .

^ ^, "" cclco)Y--õ (0))
cos(kf -ßí)=d(R(o)-S(o))* L - ,=,"-.--

,r=f (Vtr + Vi)

(g, + jv;) (r? - gî)t" sin(r? - ßî)å¿

(ß?*(+)'_rll
and'

ffi orrÏ'go,d) - [kec.(*) - jcf col or'(rkr,d) - (krcl(a) + je o(o)oïrr'(-kr,d)] i"".'',.,'



(kz - ßr) sinft! - g?)"a

çt1 - øT"
L

(kÍ - ß!)"sin(kf

46

¡cf to)v,, - elCcrl) (ßr * jvå)co

+X
n=l

- ß1)"a

(ß1 * (+)' -

(3 .2 .s8) and (3 ,2 . ss) will be further sinplified as

(cr,d) - Fo(cr) oil (kr,d) + co(o) oIIIr(-kz,d)

o]'t-iv,r,a) - ct(o) orrr' (jv;,a11 =

(3.2.se)

P-(0) . ; qlcot
n=1

(3.2.60)

r?l

Equations

N_(c[) rr
Õ^

M (ct)

; trn¡a1
n=1

.:,jir:'

l.: .: .,:

and

ffi orrl'(a,d) - rfcal or'¡k,,d¡ + cf (*) olrr 
I 
(-kz,d)

P. (ct) +
+

; qlcot
n=1 r

(3.2.6L)

;- trf ro) or' (-jy,r,d) - clral orrr ' (jv;,a¡ 1

n=I

where

el (q,) =
?

(krcl(c,) - ¡ef(a))
2 (k1 +

¡trco lo¡

kz)

je o (c))

(3.2.62)

(3.2.63)

(3.2.64)

(3.2.6s)

t.

F0 (cl)

c I (cr)
f

G0 (c)

2(k1 + kz)

Grcl(c) + ief(o))
2(k1 + k2)

(krco¡o¡ + jco(a))
2(k1 + k2)

P. (a)
I

A. l-.r-l= J-lnrL
ßrcl (cr)

cos (k! g?)"a ¡n*(cr) - s+(0))

* jel(o)) (kz - ßr)sinß1 - s?f, a

2(k1 + k2) ß1 - g?)'"
(3.2.66)
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P- (o) cos (kÇ
A.r.r-I= J-llnL

¡trco ¡u1

- g?)%a (R-(c¿)

+ ¡co (a)) (kz - g1)sin(k!

+

l

S- (cr) )

- s?)'"a

rlcot

pt(a)

clcol

ct (a)

of c"l

2(k, + kr) ß1 - ß?)'"

¡clr"tv; * ef to))w
(cn(0)Yå i elc"l lw
¡cf t")vr, - elrollw
(clcolv,, - elco))

(3,2.67)

(3.2.68)

(3.2.69)

(3.2.70)

(3.2.7r)

- grrf" d

(vr, + vi)

¡clto)v,, - ef {o)) (ßr

lzn çyn * Y;) (ßT * (T), _ rîl 
(3.2,72)

(cn(o)yn - e'(o)) (ß, + jvi) ß1 - ß|)%sir, erl - g?)'"a

* jvi) Cti - gîf"sin(kf
jAi

qlial = j Ai

Fron (3.2.60) and (3.2.6t),

involves the constants, OIt

orrrr (jvi,d), n = 1, z, s,

constants are determined.

3.2.3 Solution of the Problem

The unknowns,

orrrr (jvd,d), n = 1, 2,

mined approxinately by

(3.2.61) to rtNtt, L.¿,

lzn çyn * y;) (ß1 * (*u)' - tïl
(3.2.73)

it is evident that the solution of the problen

(kr,d), aI' (-jvrr,a¡, aTtr' (-kr,d) and

The solution is conplete when these

oI' ¡kr,d¡ , o]' [-iv,r,a) , orrr 
t (-kz,d) and

3, in (3.2.60) and (3.2.61) can be deter-

first truncating the infinite sum in (3,2.60) and

r fl = 1, 2, 3, ,..., N. A set of sinultaneous
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linear algebraic equations is then obtained by substituting o = kr,

-jYrr, n = L,2, 3, ...., N in (3.2,60) and by substituting o = -k2,

jYf, n = 1, 2,3,...., N in (3.2.6L). This leads to

l-¡l (tr) -1 rr' N l-

L;*:í 
- tlcn,)_l or'(t,,d) + co(kr) orrr'(-kz,d) - 

":, Lt",n,, 
'

o-r'(-jv,r,d) - c'(tr) orril c:v;,al I = P-(kr) . I- QtG,) g.2.74a)
l-n=l

¡¡_ (- jY-) r r

tìt} or'(-jY",d) - ro(-iYr) o:'(kr,d)

NT;- | rlc-iv,) 01'(-jv,,,al - clr-ivr) .Ttt'
N=I L

r = 1, 2, 3, ...., N.

After the unknowns, ort ¡kr,d1, ot 
t 
(-jyrr,d) ,

orrrr(jvi,a¡ are found by solving the above

eous equations, using (3.2.60) and (3.2,6I)

) tltt'(-nr,u)

N

= P_(-jvr)* rQl(-jv,)
n=l r

(3 ,2,74b)

+ G0 (-iY-
-I

I
tjv;,al 

__1

r = 1, 2, 3, ...., N.

t+g. cic-r,l] orrr'(-kz,d) - rf r-rz) oI'¡k,,d1 - 
"1, [ric-o,l 

.

o]'{-ivn,a) - cf t-rr) orril r:v;,at 
] 

= p*(-kz) . 
"Ï, 

olc-rrl (s.2.24c)

t't*(jvi) _rrr, -.tffi orrr'(jv|,a1 - ritivi) qr'¡k,,d) . cf(jvi) orrrt (-kz,d)

"i, F*(jv|) 
o]'[-iv,,,a) - citiv;l oIrI'riv;,al] = p*(jyi)."lroT(jy;)

(3,2.74d)

olrrf (-kzrd) and

system of linear sinultan-

in
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^ ^,
orr¡o,x¡ = - "t.^ 

- u:';u 
l rl'(o,d) . .ltt'(o,d)

@' - u3)'" L

* . nr(ßÎ - t3)t' "or(tî - ß1)t' ¿

,/n (o - ßr)

and applying the inverse Fourier transform

orr(*,r) = + l- 
+ jro 

at'(o,x1 e-joz do ; Irol . tï (s.2.76), ,m J__+ j.re

After defonning the contour into the upper and lower half planes, the

reflected and transnitted surface waves can, respectively, be represented

by

*ffr, (x,z) = K,. tF:(-ßr) or'¡kr,d¡ - co(-ß,) altt'(-kr,d) +

] " 
(s' - ttþ* (s.z,rs)



s0

Where

while H(0),

The

æ8i*1

,,1, 
(1 + 4)

-., 
ß'u 

æ

"t 
nIT I

n=1

ßrd

cr . ,r-Il"l "j 
*

ß;-k^ ß"(ffy) (-ßz) (1 * Ei) "*ntqo(ßz) - qr(ßz)l

and qr (a) are defined

found fron the inverse

+ jro -jk*(x - d)
F (cr) e

+ jro

(s.2.7s)

(3,2 ,80)

in Appendix C.

transforrn, from (3,2.76)

- ia,z
da ; ltol .t',i

(3,2.8L)

orÏ ¡*, "¡ =

(*1)

ffi ça,2 ^ xl)'"

c[

k

a)

is

I-

Irr (0) , Qo (

far field

where

F (q)

we obtain

(o,d) * altI'(o,d)
jAi (ßl - tfr¡%cos ¡tl-

['r'

t-lli'aI
_tln@-ßr)

(3.2 .82)

t-u2)'"1 (s.2 ,83)= (kã - o')Þ' ; t(ot - tfi)u' = i ßå -

By introducing the polar coordinates shown in figure 3.5 and using the

transformation

- ke sin co

x - kgcosu)

; tr) = 6+ jn

Orr (t, o) = |r
Jp

where the conto'

ïn the trl-p1ane.

F(t) u-jkor cos(trt -

ur of integration in

u) ¿t

(3.2.81) naps

(3 ,2.84)

[3. 2 . 85)

into the contour P

Hr (0)k2 sin
H(0)ki sin

H(O)kr sin kzd

¡¡1(0)kz sin krd
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ks cos trtF(0)

(kor >> 1), we apply the method

(3.2 .86)

steepest descentofFor the

[ 56,43]

F(r) =

far field

to obtain

oI 
r (", e) (3 ,2.87)

cos

sin

3.2.4

Figure 3.3 Po1ar-coordinates at a discontinuity junction
on a dielectric slab waveguide

TM Mode Incidence

The problem is similar to the TE incidence case except that

the incident field is Hy. We can follow the procedure of the TE case,

rvhich after appLying the Wiener-Hopf technique leads to the following

equations for orl ço,d¡ and olll' (a,d):

L_ [cl) r I
K-Gt 0' (a'd) +

4 F(o) "-j(kor 
-þ

e, ri.
tjDo(o) b; - olto) r,J

e
z(#) kr + kz

rt

0

0

r

r

-- rÌ- -: ...
l:.):-'1...
!.:!:;::rj i)i:i:l

or 
t 
¡kr,d¡ +



:.,1::lla¿-3'::.1:i*i,1¿}!{,*¡

s2

l¡Do¡o1 + nolo¡ krJ

e

zlCþ kr + kzl
r1

æ

olrrr(-kz,d) * [' n=0

e
(0"(*) (#) * olca)vi)

r1 ort (- jyrr,a)

@

-T
n=0

cDlcs) - nl(alv,, )
c

r (rl?) vr, + vjJ
r1

e

t (-2, ) vr, * vjl
rt

^ ^LA. cosßÎ - øif a

,ñ
lu_ (0)

A.
I

/n

orlr' (jv;,a¡ = j

e ß,
(Do(s) - jD:(o) kr) (+4 - kz)

11t
e

zu3) k1 + k2l çu1 - ølt"
1t

sin(kf -
7,

Bl)'' a
v_ (c[) l

æ

+rj
n=0

A.t (Dt (o) -
{2n

eß-
n] to) v,r) (+- * j vå)

rr
ßî -oi)%sinctf -øl)"a
e

t(fivr, * viJ ß: -
11

¡llu )' - o?)

(3.2 .88)

and

K*(a) _III' -
qTo1- o;-- (o'd) +

¡5Dj(a) + Dj(cr) krl
e-^

,l%r-n k, + krl

¡¡Dj(o) (þ - of (cr) k,l
, ïr

2Í(:4 k, + krl
Tl

olll' (-kz,d) - ;
n=0

¡Df(cr) (þ * of (')vi¡
ll

r(þ yn + y;l
r1

cos(kf - øl)'.a

or'(-jYn,d)

lu+ (q) - v* (o) J

TI
o' (k'd) +

co

-I
n=0

cñÎco) - oÏcol y,, )
=JoIrIt (iY;,d)

e

r(_-I¿J
fl

¡Df (o) - jDl(s) k,),+ - kz)

A.
1

t7t I L. .j.
i::,:::'¡1
i. ti": r.
l: j. ,Yn + Y;l

A.
1+ =,.

/71

sin (kf - &?)'" a
c

z [ (j¿) t,
"rt ' .: .:..

* krl (kî - g?1
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æ4.
+ r j ' CDlC"l

n=o /n 1 - nlto)v,r) + jY;)
(kî - ßf )%r:.,, ßî - øl)'"att, ß,

(-
ïl

e

I (jz)vn
11

. Y;l ßî - (+)' - sîl

(3. 2 . Be)

where

o'(o) = î t{- col (þ w!- col t
11

e
(J?) wl* t") I

T1

wt- c"l I

oi cat = 3 ¡wl. r"l - w|* co,l l

nlcol

ot(o)

2
d

2

d

t{*c"l

tfrÎ- r"t

(3.2.90a)

(3.2 . eOb)

(3.2.90c)

Ai (ßî - n1)"

(3.2 . eod)

0, 1, 2, 3,

while l,*(cr), L_(cr), K*(cr,), K*(s), U*(cr), U_(cl), V*(cr), V_(o), o{_(a),

wf* {") , *ü_ (o) , t* (") , wT_ (o) , ñT* ¡*1 , w}_ (a) and f* {") are

given in Appendix C.

From equations (3.2.S8) and (3.2.89), it is evident that the

unknown constants, 0rt(kr,d), aI'(-jvrr,a¡; n = r,2, s, r.r..,

orlrl (-kz,d) and orrrt (jvf,a¡, rr = r, 2, s, can be found by the

sarne technique already applied for the TË case. Once these unknown

constants are determined, we apply the inverse Fourier transforn, with

the proper contour deformations for the regions of z < 0 and z ) 0,

to the expression

i.è.

ça' - uf,1"a

orr (o,d) = (-t) e 
-

(o' - lrt)"
l-at' (o, d)

. l_+L",
- (o'- t3)u'*

orlr 
I 

(o,,d)

/ñ

cos fk2 - e"t4
I

-la

(cl-ßr) l"
-l

i:;."-:..:;:I:

:.t. .ì;.:'::1 .::

e*
L2

+J

(3,2.sL)



. cosßî - g?)'.a e(ß? - v"ol%a e-(ß1 -xZ)"* .*rurrrr,z.sz)

and

o+fu{. (x,z) = p:
Tz 7 - x'rl" cos ft! - øf,)'"a

-rþ%* u-ißrz. cos ßî. - g1)"a eß' - u'ù"a 
e

(

ßzJ
(ß

ß7

where Res [or 
t 
(o,,d) ;

residues of oIt ¡o,d)

Applying the

far field is given by

or 
r (t, e)

where

G(a) =
(-1 )

ãl ço"2 - xll%

cos (kf - ß?)"a

nes[Õrrr'(o,d) ;0 =

and nes tolr 
r' (o,d)

and oIII 
t (o,d) at

steepest descent as

(1)

c3,2.s3)

; o = ßz] are the

ß2, respectivel-y.

in TE case, the
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to find the following expressions for the reflected and transnitted waves

s = -ßrJ

at -ßr

method of

(tor - þ

Ai (ß1 - k3)t"

/n

(3,2,94)

(o - ßr) (3, 2 ,95)

3.3 Numerical Results

Figure 3.4 shows the nagnitude of the reflection coefficient at

the discontinuity junction as a function of kdr. The solid circle nota-

tion represents the results obtained by the Wiener-Hopf technique proposed

in this chapter while the solid line represents the results based on the

residue-calculus technique as discussed in the next chapter. The dash
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Lines represent the asymptotic values as obtained fron the consideration

of a nor¡nal plane wave incident at the junction of two dielectric nedia

[53],[54]. The Wiener-Hopf results are obtained by first solving (3.2.74)

for the unknown constants, By substituting these constants in (3,2.77),

the reflected surface wave and the refLection coefficient, which is de-

fined as the ratio of the reflected surface wave to the incident surface

wave, can be found. The ratio of transmitted povler to incident power as

a function of kdr is shown in figure 3.5 using the sane notations as

in figure 3.4, while the open circle notation represents the results by

the reciprocity theoren, The Wiener-Hopf results are again obtained by

first solving (3.2.74) for the unknown constants which are substituted

into (3.2.78) to obtain the transnitted surface u/ave.

Tables (3.1) and (3.2) show the calculated values of the unknown

constants for different kdr. These unknown constants are values of the

partial dêrivative hr.r.t. x of field of region ï in the lower half of

c-plane at kr, - jyrr, n = r,2,3,..r.,. (í.Q-., 0It(kr,d), t1t(-jvrr,a)1

and the partial derivative hr.r.t. x of field of region III in the upper

half of a-planeat -k2, jyri, n=1,2,3,..r.. (L.ø., alttn(-nr,U),

oIII t üvlral¡ . They are found by solving equation (3.2.74) .

:..11i:.

!.J',n

''..-:.

i:,'i
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'oI'(krrd)

TABLE 3.1

Calculated values of unknown constants for

o]'i-iv,,a)

TI
o'(-iY2,d)

-0.1119 x 10-1

REAL

oI'(-iYr,d)

kdr = 0.3

e

orIIr (-kz,d)

0.8117 x 10-3

2.56

-O.2106 x 10-3

oIrI 
t 
(iv1,a¡

IMAGINARY

oIII 
t 
(iv¡,a)

0. 5115 x 10- 3

0.1351 x 10- t

-0,3697 x 10-3

olrrr (iv5,a¡

0.2661 x 10-I

s.12

TE mode with

-0.1879 x 10- I

0.4296 x 10-a

-0.8316 x 10-2

REAL

-0. 1575 x 10- 3

0. 1538 x 10= I
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Calculated values of unknown constants for TE modes with

oI'6k1,d¡

oI' (-iYr,d)
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CHAPTER 4

APPLICATION OF THE RESIDUE-CALCULUS TECHNIQUE

4.I INTRODUCTION

The lViener-Hopf technique as applied in Chapter 3 for solving

the problem of a discontinuity in a dielectric slab waveguide is very

conplicated when dealing with a structuïe with finite thickness. The

solution, which always contains constants satisfying linear algebraic

sfunultaneous equations, cannot be found in closed fonn. The problen

becones more complicated when the dielectric slab waveguide takes on a

more general form, i.ø., different thickness on the left and right sides

of the junction. rt is the purpose of this chapter to present a new

technique based on the residue-ca1cu1us nethod 146-49l to deal with this
more complicated structuTe. It is found that the solution obtained by

this technique, though approximate, is far simpler and nore convenient

to apply.

By the residue-calculus technique, the problem is formulated

based on the mode natching technique similar to the procedure of Marcuse

[4,23] leading to thlo simultaneous equations after applying the boundary

condition at the junction. However, instead of following those tech-

niques previously reported for solving these equations, the residue-

calculus technique is applied. Essentially by this technique, a func-

tion is constructed such that its poles have the same locations and

contributions as those of surface hrave poles while its branch cut inte-
gral is equal to the contribution from the radiated field. This term-

by-teïm comparison then permits the calculation of the unknown quantities.

However, in constructing this function, the fundanental assumption is

' :.-'. :.:.j".'.::: t: I'
i:.:'.:-::i

t,._-..- --
1'- ;.:.: . i'

'¡ il r:r. ¡
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made that the resulting mode amplitudes, when expanded asymptoticalLy,

have the proper algebraic behaviour as shown by Collin [40] for a dif-

ferent problen which also involves a dielectric slab. Consequently, the

entire function involved in the constructed function is simply a constant

which can be found fron the incident field. In order to check for the

accuracy of the results, the reciprocity theorem, as applied by Barlow

and Brovm t16] for the problen of discontinuity in surface impedance, is

used. And by representing ,the slab waveguide by surface inpedance, under

certain conditions, a check based on the application of Kayts result

[20] can also be made.

4.2 FORMULATION OF THE PROBLEM

The configuration of the dielectric slab.waveguide under con-

sideration is shown in figure 4.1. It is assuned that the y-dinension

is extended to infinity and all field components are independent of y,
,âL.Ø., ú = 0, The subscripts 1 and 2 denote the left and right

sides of the discontinuity, respectively, so that the siab thickness

changes fron 2dt to 2dz and the dielectric constant changes from

e_- to e - The formulation is given in detail for the case dr > dzrt 12

and a similar procedure can be used to derive the results for the case

dz > dr. Two cases of incident fields, TE and TM, are forrnulated

separately assuning 
"jt,ltt time dependence which is suppressed through-

out.

," i':

ii:"1{!:::;lj

¡j,

if:

!,
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Ei or Hi

-+z

Figure 4.1 Schematic diagran of a stepped dielectric
slab waveguide.

4.2.r TE Incidence

By using a nodal expansion (involving a single surface wave

node plus psuedosurface or radiation nodes) of the electric field on

each side of the junction and applying the boundary conditions, that the

tangential electric and magnetic field components must be continuous at

z = 0 plane, the two simultaneous equation, fot the unknown mode anpli-

tudes are given by

(4.2.1)

(4.2.2)

L.::.:l

li:l

ui . ri . 
J- 

ulcol uo = E; . 
J- 

ulco,) dp,

-s,Ei * o'Ef

where ,i'r't
v

. 
[ *;(p) dp = -ßz't - [ ,,rlrwr dp,

represent the y-conponents of the incident, reflected
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and transmitted field, respectivel-y, which are given by

={^:

L

Ei=
v

nr{,i tx)

cos (k¡x)

"Yrdr cos (k1d1)

EÏ = A.üt (x)

cos (k2x)

"\zdz cos (k2d2)

krr. - (er rrrkî - 8?,ù4

'(t,z = (ß? ,, - kt)'"

ke = ofioeo =?
^0

and À0 is the free space wavelength.

tion nodes to the left (backward) and

tion, respectively, where

, A" cos (k rx) ,

-ú"(*) = I' [A- sYrdr cos(kra11 s-Yilxl ,r

,

^-Yr lx Ivt

"-Yz 
lx | ,

l*l Í d'

l*l ì d'

l*l Í d'

l*l ì d'

l*l Í dz

l*l 7 d,

(4.2.3a)

(4 .2.3b)

@.2.3c)

(4.2.4)

radia-

junc-

Er=.Av

={^:

where 4., A- and A- are the arnplitudes of the incident, reflectedL'rt
and transmitted surface wave modes, respectively. The propagation con-

stant for the surface wave mode in the longitudinal direction is ß

while in the transverse direction it is denoted by k in the dielectric

waveguide and Y in the surrounding medium. These constants åre related

to one another by the expressions

E;(e) and elCo) are

right (forward) sides of

the

the
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E;(e) = qr (p) ,p'(p)
cos ox

(Ârei P l* I * ¿î 
"-j 

P l* l)

"-jodr 
(cosodl + j sinod 1 )

"-j 
P tdz 

(cos ord2 +
,o?

p, sin ordz)

[:,,,

l*l Í d'

,l*l ìd'
(4.2.s)

(4 ,2.7)

(4.2,8)

I q*(pr) cos orx 
; l*l < dz.. ^alto') = e.(p,) ut(p').=,1 - -'(4.2.6)

r Q.(or) (azejP'l*l *¡i u-jP'l*l)
l*l Ì d,

Here er(O) and er(Ot) are the anplitudes of radiation nodes in the

backward and forward directions and

l:.:: :.'l

i'.: .

1 :.:1:r1.
l--:-:,

A1 =

Lz=

o
p

j

I
T

1

T

and the star superscript denotes the conplex conjugate. The propagation

constants o, p and g are related to one another by

o - (errt|-ßr)%
(4 .2.e)

p = (k6 -g')"

while the relation between o', pr and ßr are stil1 the same as given

above, except that ar, is replaced by arr,

Applying the orthogonaliry condition to (4.2.1) and (4.2.2)

and normalizing the field expressions, í.e.,

rto

I l,pl'¿* - 1 (4,z.ro)
Jo

we obtain after some algebraic manipulation,

f- r-
Fo4i(ßz - ßr) I ûtút* dx + FoAr(ßz + ßr) [- Ut,J,t* u* *^Jo'Jo

i:l:-r::r,':::
i:,tr--;l;i
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roA, (ßz FoAr(ßz - ßr) ütüt* d* *
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Il "o"to' 
(ßz + ß) i;

f6

+ ßr) I {,tüt* d* *
lo

co f-
Jo

.t'J-

. c' I-

f"

where

gration

can be

(ßz - ß)

are given

of (4,2.

dr > de,

r-
.l" 

Frqr(P)

Fs and F1

with the aid

written, for

-6l-+*

| ,1,'(p) ü' dx dp = 232 At G.2.12)
Jo

.in Appendix D. After perforning the inte-

3) to (4.2.9), equations (4.2.11) and (4.2.L2)

AS

%(P) FrNr dP

t(erz -err)kf, -Fî.* ß21(er, -1)k6 *g3-32j(ßz-B)

(4 .2.L3)

qr(P) FrNr do

L l::

..:_

ia...

l" ti

A.A
l- r r '.

(ßz + ßr) (ßz - ßr)

A.A1_T
(ßz- ßr) (ßz ç ßr)

while for dz > dr

A.A1-¿r
G, +Bit' GFEil

A.A1¡r
(ßz - ßr) (ßz + ßr)

tle -e )k2- ï2 11- 0

2 CsB2 A,.

=Q

- 9â * ß2Ìt(er, - 1)k6 * 97 ß2] (ßz + ß)

(4,2,t4)

i:

-0

*cr f
Jo

-a

{(e-T2

Crßz

e"(o) F1M1 dP

t(erz -e"r)kfr -gg* ß2lt(er, -1)kã -ßl* ß2j(ßz -ß)

(4.2.rs)

Cr(o) F1l'l¡ dP

- trr)k8 -ß?.* ß2Ì{(er, - l)kä - ß';* ß2Ì(ßz ' ßI

l:' : ..:: .'

Aa

i::. l._
::l.iii'i.:

(4.2.16)
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at the

where

Sinilar to

junction for

Hi*Hr*yv

the TE case, the folLowing equations are

ï\,1 modes:

r--læ
.J. 

Hicol ao = H; . 
.|" 

ti(p') dp'

[ÇþH]cor ao

obtained

(4.2.r7)

' ßr ,,i ßr ,,ï
%;(.) "r ' {, [Ð 'r

[#u]co')dp'

{fo'";.

tr, (*)

(4.2.r8)

(4.2.rs)={," 

"

={,"

l*l Í dr

l*l > d1

l*l Ídz
et', (x) (4.2.20)

x >dz

By applying the orthogonality property and following the same procedure

as in the TE case, the integral equations containing the unknown node

anplitudes can be obtained fron (4.2.17) and (4,2.L8) as

a) for dr > dz;

AiRo (ßzSo - ßrSr)
t(erz - t.r)kå - 93 * ß?Ìt{err -I)k', * ßL ßîi(ß3 - ßî)

ArRo (ßzSo + ßrSr)
tfe-12 .",)k6 - ßZ * ßfÌ{(err -1)t6 * ßå - ßi}(ßå - ßi)
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l:
qr(P) Rr (ßzTo + ßTr) dp

."r)kfi - ßå * ß2]t(er, - l)kâ * gZ. ^ g2j(93 - 92)t[e-T2

= (4.2.2L)

tfe-TZ

AiRo (ßzSo + ßrSr)
t"r)nå - ß1 * ß!Ì{(e", * 1)k'3 * gl. ß,r}ß7 - ßîi

A"Ro (ßzSo - ßrSr)

tle-f2 ¿ ìk2 -Tt' o
ß? * s?Ì{ {er,

qr(P) Rr (ßzTo

- l)kâ * s7 ßlj(ßl - ßÎ)

- ßTr) dP

l: trr)kã ^ 9L * ßz]t(er, - 1)kä * gî. - g2j(ß7 - ß2)t (e*
L2

=

b) for

z9z Ãt

dz > dri

(4,2.22)

'L le- T2

Ai*o (ßzså - ßrsl)
.r,)k6 - ßZ * ßflt{er, - 1)k6 - ß3. * g?}(9, - ßi)

A"Ro (ßzså * ßrsi)
tr,)kfi " 91 * ßfÌ{[e", - l)kâ - 3Z * g?](gâ - ßîttfe-f2

l:
%(e) Rr(ßzrå + ßrÏ) dp

t(er, - err)kfr - ß? * ßzlt(era l)kã-91+gz¡(gâ-ß2)

AiRo (ßrså * ßrsl)

(4.2.23)

(srz ."r)kâ - g3 * gi (.r, - tlkä ^ gL * ßiÌ(ß; = ßî)

A"Ro (ßzså - grsl)
t(erz - tr,)kô - gf * ßî]{(rr, 1)k6 - gî . g?l(E - gr)
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cr(o) Rr(ßzrå - gri) ¿p

t(rr, - e"r)kf; ^ ß7* 3¿II(er" - l)kã - ß3.* g2jÍgT- g?)

where

given

4.3

(4,2.24)

are

SOLUTTON FOR THE MODE AMPTITUDE

The unknown rnode anplituder er(p) of equations (4.2,L5),

(4,2.!S), (4,2,2I) and, (4.2,23) wilt be derermined by applying the

residue-caLculus nethod. The main step in the residue-calculus nethod

is to construct a complex function f[p), which after being integrated

over the contour in the conplex plane, gives rise to an equation which

is identical to the equation we are attempting to solve. It then becomes

possible to identify the unknowns in the equation with the residues or

value of f(p), thereby extracting the desired solution. rn order to

constïuct the function f(p) the general properties of er(O), sucfr

as its asymptotic behaviour, its poles, etc., have to be known. This

technique will give an exact solution provided thàt att the singularities

of the unknown function, q(O), are known.

From the observation of the previous problens involving surface

wave propagation, it is clear that A. and AI. are related to qr(p) by 
\

familiar relationships similartothose shown by Shevchenko [50],'Hessel [56],

Tamir [57] and Zucker [24] where the general field is expressed by an inte-

gral over the longitudinal wave number ß. By closing the countour in

the upper or lower half planes of ß depending on the region of inteïest,

and using Cauchyrs theoren, such a fieLd expansion nay be separated into

a surface wave field (arising fron surface wave poles in the g-plane)

l:

_ zgz At

the expressions for

in Appendix D.

Ro, Rr, So, Sr, To, Tt, Så, Sl, få, fl

I ì.:: l

.:

:.4:

i ^:.,i':il::::iì
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and a radiation field (branch cut integral in the ß-plane) which is in

the forn of an integral over the transverse I¡Jave number p. Because

this integration is always fron -æ to -, the integrations in (4.2,L3) ,

(4.2',15), (4.2,2I) ar.d (4,2,23) will also be extended to that linit.

This can be done by considering qr(p) as an even function since all

the other quantities in the inteþrandare even functions of p.

4,3,1 Solution for TE Incidence

In order to

the variables p and

eaèh other by (4.2,9),

ten as

solve (4.2.13) by

ß are considered

í.e., p2 = kt -

the residue-calculus technique,

conplex quantities related to

92. Equation (4.2.I3) is rewrit-

co f*2l
J-æ

qr(P) F1N1 dP

t(er, - e"r)kfr - ßZ* ß2lt(er, - 1)kã * g7- ß2j(ßz - ß)

(4 .3.L)

The properties of er(O) should be such that when the contour

is deformed in the lower half of the p-plane, the contribution fron the

poles must cancel the first thro tems and, because the right side of

(4.3,1) is zero, the integraL around the branch cut due to the tern

(ßz - ß) must vanish. To satisfytheserequirernents, qr(p) must con-

tain a tenn which permits removing the branch point singularity fron

the integrand. Another property of er(O) is that it has an algebraic

behaviour at infinity [40], i.ø., %(p) - p-2 as lpl * -. With this

asymptotic behaviour of er(O), the entire function, in the function to

be constructed, is simply a constant which can be found from the inci-

dent field. For sinplicity, we will start fron the $-plane and consider

-0
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the contour integral

f e(s)
1.

This contour integral will then be transformed back to the

the botton sheet of the p-p1ane (Im p < 0) being chosen.

corresponding to this sheet is shown in figure 4.2.

rn(ß)'

Ê- dB
p

p-plane with

The $=plane

Re (ß)

iì'.1;: l- .

1r"..,.

Figure 4.2 ß-plane corresponding to In(p) < 0
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Fron the properties of qr(p), the function f(ß) is con-

structed in the form

L^(1 ^ Ø/ßù(L - ß"ßrTl - 1)n; - ß;ùL - g2/ßf, -ler, - tr,)k;))
r(ß) = ' - (i'; BZBii (i - á78;) -'

(4.3.2)

where Le is a constant to be deternined. After substituting for f(ß),

choosing the contour in the lower lnalf of the ß-plane, and transforning

the. integration along the branch cut into an integral in the p-plane

we obtain

-(col2) [nes{r(ß); - ßr}/{(err - e",)tl - ßÍ + ßl}(er, - r)tå * O! - Of}tOr

Co f-_t2rj J_ -

t.:1+..1

,..

:.

dp-o

(4.3.3)

where

Res{f(ß)i _ßr} = 
[t'o(ßz+ßr){(er, -r)kå+ßå.-.ß1}{ßå- (er, -er,)ki -ß1}gr]

@.3,aa)

i:..:ìr:
| :::

i:-'

[-Lo (ßz - ßr){(.r, - r)kfr + gî- g?}{O! - {e, - rr,)kl - ß1Ìßrl
Res{f(ß); ßrÌ =

12ßzI(e ß? - (.r,
(4.3.4b)

By conparing equations (4,3,3) with (4.3.1), it is found that

the anplitudes of the incident and reflected fields can be obtained fron

the contribution of the poles at -ßr and ßr, respectively. Hence,

the following relations are obtained:

,, - t)kî+. gtr

| : :.

t'
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(4 .3 ,5)

A _ (9,-q,] 
A."r (ßz + ßr) --i (4.3.6)

r,(o) = #ffit 
It3 = {Tf : pz

(4 .3.7)

A. = Ås;,#Eî . r --5-uJ - " ; eäiinre; I - (ßl - 32) (Øz .BI dP
ßz-ßr

(4.3.8)

Using the sarne procedure, the following relations are obtained for the

case dz > dr,

Aa can be found fron equation (4,2.14), as

4.3.2 Solution for TM fncidence

By using the sane procedure as

the following relations are obtained for

_ (ß2-ßr) 
^r - GF-B} ^i

Â = 
Ai , ß3*g? ,^t - ßrct tm

A=Yr f*rl
t¡ßz(32,* ßr)Cr J_ -

, 
(4.3,9)

9r- B
dp

(4.3.10)

in the TE incidence case,

TTvl incidence with dr > dz:

(ßrso - ß1sl)
(ßzSo + ßrSr)

RoAi[{(ßzso)2 * (ßrsr72}/ßz(ßzso + ßrsr)]

A.
l_

A=t tle-T2
i-:

;...

- rr,)ki - gf * ßÎÌ{(er, - I)kå . gT I gli(gî - gT

(4.3.11)
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YrRo (3rso ßrSr) A.
1

rr - t)k2o + gl

(ßrt o/"t, - ß)

e -e Tt' o
ß?. * B',I

f--

while for

dp (4 .3.12)

(4.3.rs)

(ß1 - ß'z) (ßzrolrr + ß)

dz > dr,

A=r
(ßrs; - ßrsl)
TFFF-EFil A.

1

RoAi [{ (ßrs[12 (ß,si12lr/Br(ßrsi * ßlsl)l
r"r)kot - g7 ßflt(er, - 1)k6 -87.-9? G7 - ß?)

YrRo (ß2s; - ßlsl) Ai

nßzt (erz

P = P. -P^-P.'rlnrtt

where P-_ denotes the incident power.
1n

- err)kfr - BZ * ß!lt(er, - 1)k3-ß7*ß?j(st-s?)

i_ (ß1 - ß?) (ß2r$/rl + g¡
tsrrå/rl - ß)

dp

4.3.3 Solution for the Radiated Power

The reflected povler Prf and transnitted power Pt can be

calculated once A, and Aa are found by applying equation (2.2.41)

for the TE case and equation (2.2,42) for the TTvl case' with the norn-

alLzed fields as given by (4.2.I0). The radiated power P, can then be

obtained as

(4.s.r4)

(4.3.1s)
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4 .4 NI.JMERICAL RESULTS

The radiation losses caused by a symmetrical step with the

ratio dz/dt = 0.5 for the case ., = 1,020I are plotted in figures

4.3 and 4.4 as a function of kdr for TE and TM excitations, respect-

ively. The solid lines are the results obtained fron the t"rid.r"-"a1cu1us

technique, based on equations (4.3,6), (4.5.8), (4.3.15) for the TE

case and equations (4.3.11), (4,3,I2), (4.3,15) for the IM case. The

dotted lines are the results fron applying Kayts solution, as explained

in Chapter 2. Also shown in these figures are the results as obtained

by Marcuse [23] using thro different techniques, the perturbation tech-

nique and the nethod of approximation where a large step is approximated

by infinitely nany small steps. These results are given here for compar-

ison purpose. The radiation loss of a symmetrical step as a function of

dz/dt for t, = 1.020L and kdr = 10,0 for TE excitation is shown

in figure 4.5. The solid line is obtained from the residue-calculus

based on equations (4.3.6), (4.3.8), (4.3,15) while the open-circle

symbol represents Marcusers result,

The reflection coefficients at the junction discontinuity with

.r, = 2.56, d2/dr = 1.0 for four different values of €rz are plotted

against kdr in figures 4.6 and 4.7 for TE and TM excitations, re-

spectively. TTre results in figure 4.6 are based on equation (4.3.6)

while figure 4,.7'is based on equation (4.3,11). [It should also be noted

at this point that as d2/d1 =.I, the sane results can be obtained from

equations (4,3.6) and (4.3.9) for the TE case and frorn equations

(4.3.11) and (4.3.15) for the TM case.] For these same cases, the re-

sults for the radiation losses are shown in figures 4.8 for TE excitations

and ,(4. 9) for TM excitation. The results in figure 4 . B are based on equations

ì:r-:l;:" . '
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'(4.3.6), (4.3.8) , (4.3.15) or (4.3.9), (4.3.10) , (4.3,15) while figure 4.9

is basedon'(4.3.11) , (4.3.I2) (4.3.15) or (4.3.13) , (4.3.I4), (4.3.15). The re-

sults for the transnitted power are shown in figure 4.10 for TE excit-

ation based on equation (4.3.8) oÌ (4,3.10) and figure 4.11 for TM

excitation based on equation (4.3,I2) or (4,3.L4),

The reflection coefficients at the discontinuity junction with

e- = 2.56 and e- = 5.L2 for different ratios of dz/dt are plottedl11 T2

against kdr in figures 4.12 and 4.L3 for TE and TM excitations,

respectiveLy. The results in figure 4.I2 are based on equations (4.3,6)

when dz/dt < 1.0 and on (4,3.9) when dz/dt > 1.0, while figure 4.13

is based on (4.3.11) when dz/dt < 1.0 and on (4.3.13) when dz/dt > 1.0,

For these same cases, the results for the radiation losses are shown in

figures 4,14 for TE. excitation and 4.15 for TM excitation. The re-

sults in figure 4.I4 are based on equations (4.3,6), (4.3.8), (4.3.15)

when dz/dt < I .0 and on (4.3. 9) , (4. 3. 10) , (4.3.15) when dzldt > I .0,

while figure 4,15 is based on (4.3.11) , (4.3,12), (4.3.15) when dz/dt <

1.0 and on (4.3.I3), (4,3.14), (4,3.15) when dz/dt > 1.0. The results

for the transrnitted power are shown in figure 4.15, for TE excitation

based on (4.3.8) and (4.3,10) when dz/dt I f .O, and figure 4.L7, for

T1,l excitation based on (4.3.I2) and (4.3.14) when dz/dt I l.O.

The discussion of'these results and conclusions are given in

Chapter 5.

li"i.'.::
i'::,..1'
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CHAPTER 5

DISCUSSION AND CONCLUSION

5.1 INTRODUCTION

The problem of discontinuity on a dielectric slab waveguide has

been studied for both TE and TM excitations. Because of lack of

efficient means to deal with the problem, which generally involves deter-

mining the amount of radiation loss, reflected and transmitted pohrers at

the discontinuity, this thesis proposes two new approaches, the Wiener-

Hopf and the residue-calculus, to effectively determine these quantities.

This study should, therefore, be of interest in designing and evaluating

the performance of systems involving dielectric waveguides, such as used

in optical corununications or surface wave aerial designs. For a better

understanding of the proposed techniques, some inportant features together

with the results are discussed in this chapter.

5.2 DISCUSSION

The accuracy of the proposed techniques, the Wiener-Hopf and

the residue-calculus are checked by conparing the results obtained with

previous results which are available only for simple cases. For nore

general cases, reliable experimental data over the slab discontinuity is

lacking since such experiments are difficult to perform. The results

obtained from the proposed techniques are, therefore, conpared with those it:','.:.,'

obtained by applications of the reciprocity theorern and Kayts analytical

technique. As shown in figures 4.3, 4.4 and 4.s it is clear that when

the residue-calculus nethod is applied to a step discontinuity involving

only a change in slab thickness with the naterial property remaining the , . 
'
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s¿tme on both sides of the junction as considered by lrlarcuse f23f , the

results agree very well with his results, As for the general case of

step discontinuity, which involves both a change in slab thickness as

well as dielectric constant, the results agree with the approxinate re-

sults obtained by applying the reciprocity theotem and Kayr s analytical

technique as shown in figures 4.10, 4,1L, 4.r4, 4.rs,4,16 and 4.L7. The

agreement of these results are acceptable otherwise deviations can be

attributed to the approxinations involved in each technique which are

discussed later. The good agreement between the wiener-Hopf and the

residue-calculus results is confirmed, as expected, in figures 3.4 and

5.5 fron which it appears that the residue-calculus results are more ac-

curate than those obtained by the reciprocity theoren and Kayts analytical

technique. It is also found that as the frequency increases, the refloc-

tion coefficient is obtained by the residue-calculus and lrriener-Hopf

nethods converges to the reflection coefficient of the normal plane wave

incidence at the junction of two media of infinite dimension, as expec-

ted. This is because the dielectric slab will look more like the mediun

of infinite dinension as frequency increases. However, the results are

only presented in the frequency range of single mode operation.

Though the reciprocity theoren and Kayts analytical technique

can be applied to approximately solve the general problen of a dielectric

slab waveguide discontinuity, they have certain linitations as conpared

to the Wiener-Hopf and the residue-calculus rnethods. ïhe linitation of

the reciprocity theorem is that it only provides the answer to the amount

of transrnitted povrer through the junition. Without a knowledge of the.

refLected power at the junction, it is inpossible to determine the power

lost due to radiation. Hence, it is clear that this technique does not
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give a1-1 the answers to the problen. Moreover, the results obtained are

only approxinate since the field at the junction is approxinated by the

incident field. Thus, it is clear fron figures 4.10 and 4.16 that the

accuracy is Lower as either ,"r/.r, or dz/dt is increased. 0n the

other hand, Kayts anaLytical technique can be applied to a dielectric slab

discontinuity which can be satisfactorily represented by a discontinuity

in surface impedance subject to the condition that hzd << I (hz is the

propagation constant aLong the x-axis and d is half the slab thickness).

When this condition is violated, the representation of a dielectric slab

waveguide by surface inpedance is not a satisfactory approxination. Thus,

the results obtained will be appreciably different fron the exact solution.

However, it is found fron the results presented in Chapter 4 dnat the ap-

plication of Kayis analyticaL technique still gives reasonably good ap-

proxinate results for the reflected, transmitted and radiated powers for

nany cases, even though the condition previously nentioned is violated.

The lViener-Hopf and the residue-calculus techniques, on the

contIary, are not subject to those linitations, which restrict the ap-

plications of the previous two techniques. Though the l{iener-Hopf tech-

nique does not give the exact solution to the problem because the sur-

face wave structures considered always have finite thickness, highly ac-

curate results are still obtained by this technique. It can be seen from

the equations (3.2.60), (3.2.61) for TE incidence and (s.2.88), (s.2.89)

for TÏ\'l incidence that the Wiener-Hopf solution contains the unknown

constants which are the solution of linear algebraic simultaneous equa-

tions of infinite dinension. In order to solve these equations for the

unknown constants, they must be first truncated to finite din,ension.

However, the accuracy of the approximated solutions for the reflected,
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transmitted and radiated povlers can always be improved by increasing the

nunber of terns ttNrr in the approxination, Fron the results shown in

Tabres (3.1) and (3.2) it is found that in general the nth constant

rapidly decreases as n increases. This inplies that the convergent

soLution can be obtained by using only a few terns. The radiation pat-

tern can easily be obtained from equarions (3.2.87) and (s.z.g4) for TE

and TM incidence, respectively, Another advantage of this technique

is the possibility of obtaining the diffraction coefficient at the edge

of a dielectric slab of finite thickness by following KelLerls ray tech-

nique [51] and applying equations (3.2.87) and (s.z,g4) for TE and T],t

incidence, respectively.

However, the Wiener-Hopf technique cannot be applied when the

thickness on both sides of the junction is not the sane. rt is found

that the forrnulation for this case by the l4liener-Hopf technique is too

complicated. This disadvantage of the Wiener-Hopf technique led to the

proposal of the residue-calculus technique which can easily be enployed

to formulate such problems. This is then the nost general technique in-

troduced to solve the problen of a dieLectric slab waveguide discontin-

uity [52]. The technique can for instance be applied to the problen of

a step discontinuity which involves both a change in the slab thickness

as well as dielectric constant of the guiding structure. Furthermore,

the soLutions obtained by residue-calculus are in simpler forns than

those based on the Wiener-Hopf method, as shown in (4.5.6), (4.3.8),

(4.'3.9) and (4.3.10) for TE incidence and in (4.S.11), (4.5.I2),

(4,3.13) and (4.3,I4) for TM incidence. ïhis leads to relatively short

cornputer time required by.the residue-calcul-us nethod as compared to the

Wiener-Hopf technique. The najor reason for this difference is the step

involving. factorization and deconposition of the functions, which are

quite complicated in the Wiener-Hopf technique. However, this disadvantage

i.',

t-i.l:ii_ì.r..:l
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can be inproved by further study to somehow perfonn the factorization and

decomposition analyticalLy. The results of the residue-calcuLus method

are highLy accurate as already pointed out, even though the asymptotic

behaviour (i.e., as lpl * *) of the constructed function is assumed

algebraic of the forn p^2 140, 41]. üirhen all the requirements as well

as the proper boundary conditions are net, as given in Chapter 4, the

solution of the residue-caLcuLus rnethod is unique

Examination of the results for the various nurnerical examples

considered reveals different observations for the TE and TIvl incidence

cases.

For the TE case the nunerical results show that the reflection

coefficient always increases with frequency up to a certain value beyond

which it renains almost constant or decreases slowly, When the thickness

on both sides of the junction is the same, the reflection coefficient

always increases when ê", is increased or decreased with respect to

e_ (see figure 4.6). However, the rate of increase with frequency isT1

higher for the ar, t r", case than the ar, . rr, case. The radiated

poüIer always increases when ar, is increased or decreased with respect

to e_- and its rate of decrease with frequency is higher for the e -rI"T2
< e case than thert

i: - .'..:,'-
1...;.iI-

e>e'. Tz Ir case. (see figure 4 .8) .

This behaviour is opposite to that of the transmitted power (see figure

4.10). When an, and .", are kept constant at 2.56 and 5.12, respect-

ively, and the ratios dz/dt are varied, it is found that the reflection

coefficient as well as its rate of increase with frequency is higher for

the higher dz/ü ratios as shown in figure 4.I2. For the case dz/dt

;' 1, the radiated power at Low frequency increases when dz/dt is

increased. The rate of decrease of the radiated pqhrer with frequency is

faster for larger dz/dt ratios as shown in figure 4.I4, For the case

l.,i'1
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d2/d¡ < L, the radiated power at Low frequency increases as dz/dt is

decreased. The rate of decrease of radiated power with frequency is

higher for snall dz/dt ratios. Hence, after a certain frequency, the

radiated porlrer becomes snall-er for smaller dz/dt ratios as shown in

figure 4.L4. This behaviour is opposite to that of the transnitted

power (figure 4,76)

For TM incidence the nunerical examples suggest that the

reflection coefficient always increases with frequency. lVhen the

thickness on both sides of the junction is the sane, the rate of increase

of the reflection coefficient with frequency is higher for .r, , ,r,

case than for t", . tr, case (see figurc 4.7). It is found fron the

behaviour of the radiated power (figure 4,9) , that it increases with

frequency when a", , a", up to a certain value and then d.ecreases,

However, when erz < e1.r, the variation of the radiated power with fre-

quency is quite snall. This is opposite to the behaviour of the transnit-

ted power when srz > e¡r, but the sarne when rrr. ar, (figure 4.11).

By keeping rr, and .r? constant at 2,56 and S.IZ, respectively, while

the ratios dr/dr are varied it is found that the rate of increase of

the reflection coefficient with frequency is higher for the higher dz/dt

ratios (figure 4.13). T?re radiated power, which increases with frequency

up to a certain value then decreases, is greater for the larger ðz/dL

ratios (figure 4.15). This behaviour is opposite to that of the trans-

nitted pov¡er (figure 4.I7) ,

5.3 CONCLUSION

Two new techniques are proposed to solve the problem of discon-

tinuity on the dielectric slab waveguide for single node operation and

for both TE and TM incidence. The wieneroHopf nethod gives a very

. r:i.. Ì-:: ll
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accurate result but takes more computer time than the residue-calculus

nethod and can only be applied when the thickness on both sides of the

junction are the same. The residue-caLculus nethod, on the other hand,

can be applied to a more general class of discontinuities which involves

both a change in thickness as well as the dielectric constant of the

guide.

Exanination of the results reveals that the radiation loss for

the TE incidence always decreases with frequency while for the T1'1

case it increases with frequency up to a certain value then decreases.

This behaviour is oppositè to that of the transmitted power. Thus, for

higher transmitted power through the discontinuity junction it is recom-

nended that, for both TE and TTvl rnodes, the operating frequency should

be close to the value above which the propagation is nultinode but the

latter can also be operated at the frequency close to its cut-off. The

reflected power, on the other hand, is always snall compared. to the trans-

mitted pohter for both TE and Tnl incidence for small step discontinuity.

5.4 SUGGESTIONS FOR FUTURE RESEARCH

As pointed out in the discussion, the factorization and decomp-

osition steps in the ïriiener-Hopf technique aïe perforned numerically,

which takes rather long conputer time. This disadvantage nay be removed

by further research to obtain these steps anatytícalIy. This will also

enable the accuracy check, of the technique, based on the conservation

of energy at the junction.

In this thesis, the emphasis is on finding nehr efficient tech-

niques to solve the problem of one dielectric naveguide terminated by

another dielectric guide. The techniques can then be applied to gener-

ated data in order to find the optinized ratios of ,rr/.r, and dz/dt
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for each type of intended operation (i.ø., antenna or surface waveguide).

Further research, which can also be done by applying the proposed tech-

niques in this thesis, is necessary to solve the problen of inserting a

finite section of one dielectric waveguide into another waveguide. In

principle this can be done by expanding the field in each section of a

dielectric slab waveguide by surface hrave and continuous modes as in

Chapter 4. By applying the boundary conditions and orthogonality.property

at discontinuity junctions, it should be possible to obtain the integral

equations for the unknown mode amplitudes which nay be solved by the

residue-calcu1us nethod. The results of this research, if successful,

should find applications in surface hrave antennas design. It will also

help to explain how energy is radi ateð. at a certain designated point of

discontinuity along the surface waveguide.

It is generally known that dielectric waveguides are in practice

always cylindrical, sinilar to those applied in fiber optic cornmunications.

Further research can, therefore, be done by applying the proposed tech-

niques to the analysis of discontinuities in cylindrical dielectric hrave-

guide.

The diffraction of a plane wave by a thin dielectric half plane

hlas ïecently reported by Anderson [55], basing his analysis on the imped-

ance boundary condition which requires that the dielectric slab be suffic-

iently thin. Thus, his results cannot be applied to a thick dielectric

half plane. However, it seens possible that the application of the

Wiener-Hopf technique to a dielectric slab waveguide discontinuity, Chap-

ter 3, can be nodified to solve for the diffraction of a plane wave by a

thick dielectric half plane. This research, if successful, will give

the nore general optical diffraction coefficient at the dielectric edge

which will be useful in the study of surface hrave antennas.

1- . ." ' .'. :.::
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APPENDIX A

It will be shown in this appendix, rhar I and fl for

n = 0, 1, 2,,.. can be obtained fron ort¡o,d¡ and orrlt(o,d) at

certain points in the o-plane. For convenience, equations (3.2.28) ,,,-',,,,,1

and (3.2.29) are rewritten

_ï_ cosh(o2 -tl)'"aor'¡o,d¡ 2: .;(4+ jofl)
o'(a'd) = - á"lo fficos 

nn 
.,i.,,,,

:'... lliil..-.

(A-1) :

' . ...::::.....

lzn ça2 - kå * kî - ßî)
ollr t*,a) = 

[**tt' 
(a,d) + ¡

Ar (a + ßr) ß1 - ßf )%rin Ar', - øl)"a

cosh(cr,2 -xllAa 2: r;(4+icfl)
ffi'ãr,10 r*.-trr;rlrJz- rf,)'"sin (a' -kîl%a d ,,=o lo' -k1* CËl'l

A.(a + g,1 cosftf - øþA a

cos nfi +
(

j (A-2)lzl ça2 - kt * kî - ßî)

where cr - 1 for n>1n

= + for n=o

The two equations above (A-1) and (A-2) are regular in the Lower and

upper half of o¿ plane satisfying rm(a) : kï and Im(o) ì -ki,, ïespecr-

ively. Let us first consider (A-2) which is regurar in the upper half
of the o-plane. Itis clearthatthe left hand sideisalready regular in

the upper half plane but the right hantl side has poles at cr, = -k2,

jyj, n = 1, 2,3, where y,l = {(i)t - kï4. In order to make rhe

right hand side regular, the residues at these o, nust vanish, thus we

'|f:: j,::i: 
ì

t::. i, r:::.'.:
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have

el cosn

el cos nfiYtn'n
Ai (ßo * jy;) Gl - øl)'" 'inGî - øl)'"a-An'¡T t

n
gr
n

cos

';4 - jt, efrf = i

^Bt='t
nJ ñ ßî. (þ' - uîl

orrr, (iv;,a; n = I, 2, 3, ,.r (A-3)

andfor n=0,

Aiß2 - ßr) sin(kf - øif'a orrr 
t 
(-kz rd)

zlñ çxl - 311',
(A-4)

Following sinilar arguments applying to (A-1) in the lower half plane,

we have for n > 1

'^
er cos n'rTf ' + er cos nrrrnnn'n = or 

t 
[-irrr,ul.Bt

n

andfor n=0,

';4. jrleirf =

Yr, - {(i)

ort¡kr,d)
_-___1-

+

Bl)'"a

(A-s)

(A-6)

(A-7)

where

Solving equations (A-3) gives,

t, .ltt'[ir;,u¡Yr ort'n

_ uljr,

and (A-5)

(-jYrr,a¡s=
n

er
n

COS NTT (Yr, *

Arv,r(ß, * jvi) ß1

Y;)

- g?)" sin(kf -

^BnTt =n

Ørøl*çnT-

-l
d) ' - ui) (v,. * vj)

or' (-jyrr,d) * .1tt' tjr;,u¡

A1(ßr * jvi) ßÎ - g1)'" sinftf ^ øllAa

ffi çyn * y;) (ß1 * (Ë)' - kî)
(A-8)
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Sinilarly solvifig equations (A-4) and (A-6) gives,

. Aik, (k, - ßr) sin(kf
e'fA =00 2(k1 + kr¡ +J

s?)'"

(A-e)

xm ß1 + kr) ftf -

and

r;fl
*m ßr + kz) ß? ^ g?)>"

ur.1' (kr,d) - n,rltr' ¡-k'd) - ølta a

tr'{kr,d) * olrr' ¡-k'd)
@

Ai(k2 - ßr) sinftf -øl)" a
(A-10)
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APPENDIX B

The modified Lee and Mittra factorization formulas [39] are

given in this appendix for ko with the negative imaginary part defined

by

ko = k;-jkf ; kå and klto

Theorem: Let G(a) be an analytic function of cr, (cr = o + jT) and

let it satisfy the following conditions in the strip l.l . ,*,

(a) G(0) is regular in the strip.

(b) G(o) is non-zero and even, that ìs G(-o) = G(+o.) f 0,

(c) G(s) * ,ov "-trlol as lol * -, where v and h are real constanrs.

Furtherrnore, 1et G(a) have the following properties in the upper half
plane T ) -T+. 

,

(a) a finite number-of sinple zeros at o = -E*, where fm(Er) . -r*,
m = I, 2, 3, ...., M.

(b) a finite number of sinple poles at o - -tn, where fn(nn) . -r*,

n=Tr213r....rN.

(c) at nost one branch singularity at o, = -ko in the fonn

y - (at - kîl%.

Then for 0, within the strip, we have

G (o) = G* (cr) G_ (cr)

where G*("_) and G_(c) are non-zero in the upper ('r > -t*) and

Lower ('r < T*) o1Lane, respectively. The expressions for G*(cr) and

G_ (o) are

c*(a) = G-(-G) = lG(') (, - gnJ "',lr,r - *,r, 
"ìr,, 

- ff-t
.. koh hrexpfi;.ilt" (H) +q(a) +;nr(a)l

(B-1)

(B-2)

: 1,.: :,'t--::,::.:'.:
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where

)" wirh the

K(w) .en [,
L

integral is

fr ttc"l +

-k;

f
Jo

the

h
Tr-

Y=(02

q(cl) = -

I
and + inplies that

l
K(w) = -

cn

2
0

in

ej

bran

(k

apr

B(w

Re(

g

Y)

,l
VA

>0

dw

lue.

is chosen (B-3)

(B-4)

(B-s)

(B-8)

- $¡2)

cipal
t)l

B(w) = # In [c(ß)] = Îffi (8-6)

ß - -ßî-*')h = j(w2 -nî)'" (B-7)

vo = lim wB(w)
w+0

X R- = the residue contributions from the poles of B(w) on the pos-nn
itive real axis.



. The factori

applying the theore¡n

M(o) = fvl

u* (cr) = M_ (-cl) =
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APPENDIX C

zations of M(q) and

given in the Appendix

(o) M* (a) ; lt I

l-ñ
I il ---T, (kz - q)

L

are obtained byN(a)

B.

<kil
0

æ

r(1
n=1

.ft,"'

(c-1)

(c-4)

(c-s)

(c-6)

-r -1
að,/nr 

Il

(c-7)

--1
-s-1 .jod/nn Irrn' 

_l

fi'

T-
L/H(o) 

(1

+ qo (d)

-k2 sin k2d + jke cos k2d

- fii%rr -

]-'

cx,--r
E;)

exp (i ¿"c?l

(c-2)

(c-3)

kod dv--=-* J r
¿-fi

where

N, (a)Ì

H (0)

to (o)

ik

_r-- - 
Jo

d
_F_+

1T

(o ¡w) rn [, - o ,--I u"L ßÍ - *')'"-l

ro (w)

wr (w2 + kf,

N (s)

(w2d + (*'/w, - wt) sin wrd cos wrd)

fi(vür 2 sin2wrd + wz cos2wtd)

t-
- k2ì-2

T-
Lt",co) 

(r

--l+ qr(a) II

l.l . ki

(kr - o)
æ

Ii (1 *
n=1

cx,--l- 
-ìßr'- å¡% rtt\0

.. kod 
vdexp [] -Z- * J 1T /n (#)

il.-¡'¡!.i1;:.:ì..:.ì:.tr:,

N (-o)

(c-8)
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where Hr (0)
jko

-kr sin kld + j ke cos k1d

c, (a) = - f: K, (w) zn 0 .Iu"
ß; - *\'" )['

(c-e)

(c -1 o)

(c -11)

(c-12)

Kr (w)

ü¡fr= ¡w2+kf

_d
TI

(w2d + (w2/wrr - wrr) sin wrd cos vùtt4)
n¡w

1,

- rl)'

In general, for electronagnetic field problens the asymptotic behaviour

of factorized functions is algebraic. This implies that M+(o), M_(o),

N+(o,), N-(a) should be multiplied by ex(c) where x(o) is an entire

function which has to be deternined for each case. But for the problens

considered in this thesis, the functions M(o) and N(cr) are very simi-

lar and have the same asymptotic behaviour and moreover, they can always

be encountered in the forms t*l* (o) /N+ (cr,) , M_ (c¿) /N ¡a) and M_ (o) N+ (s) ,

hence, we need not concern ourselves about these entire functions since

they will finally cancel each other.

e (a2 - ut)'" cosh (o2
K(ry) = 12' il

^ tf,)'"a * (a2 k!)% sinn (a' - uzr)>' a

er, (o2 - ki) ça2 - kf,) sinh (o2 - ul)" a

(kz-o) II fr*#Jej
n=1 J'n

=[,

(c-13)

'- -1
c,d,/nn 

I

-]

l'

[r'H,O (, - å)u" c, - Bqr)-' "*p0 T. j +

]-'

¿"c#l
^o

(c-14)

where

+ ez (o)
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jko
H2 (o) -kz sin k2d + ke cos k2d

.,l

-ldW

ßÎ - *\'" )

1e' T2

t-lr-
L

_f*- - 
Jo

K, (w) ln

(c-1s)

(c-16)

(c-2r)

c, (o)

r. (w) =

L(s)

where Hg(o)

qs (cr) =

xr(w) =

w2 = (w2 *Xf,. tl)"

("trr)2 cosz wrd]
(c-17)

(c-18)

d- -+ïI
e- (w2d + (w2/*^ - r,ro) cos wod sin wrd)

Îc ' 2 z¿ 
'

n[w! sin2 wrd +

(o' - kfr¡t" cosh (s' - tl)" a * (o' - tf)t" ,irrh (at - u'r)'" a

ça" - xf,)" ¡a'z - tf) sin ¡a2 - tf)e
I1

(c -1e)

--1
o¿lnn Il'=[,

æ

(kr - o) II
n=1

(t.ü)er

t-_
L/ H3(o) (1

l-r
+ e a 

(o)_[

jko
-k1 sin k1d + ke cos k¡d

-'å,u' ,t cL - -t- ßrJ exp[J

K,(w) {n 
[t ,-; -*f] 

*

kd
0

-+'t
2' S r.(I;it, )

(c-20)

'le- rl

f; (c-22)

d 8", (w2d + (wz/ws - wr) cos wrd sin wrd)
_I¿

fi [w! sinz hr3d + (*rrr) 2 cos2 t^r3d]
(c-23)

* ki - kl)% rc^24)w3 = (w2
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The following deconpositions can be done by applying the theoren 1,38

of Nob1e [38].

u(c,) = u*(o) + u-(0) = L(*-ilg [a;:-
røi - tit% I

.l

L+ (0) K- (o¿)

e ß,(ff* "¡rt

(s' - uf,)" la - ßr)

(c-2s)

(ar-kft+kzr-g|.ltV(cr) = V*(cl) +V-(o)

4c"l = l{* {o) * r,r{_ {")

4r"l = t* t") + wf_ (o) =

,r, (ßî - tfi;% .ori, (s' - kZ)" a

(a'-l<2r+ul - ß?l (a' - rf,¡'" tin(a2 - k?'l'. o

(c-26)

.1
ilõtLrcÖ- ki * (+)'

1

cr2-
(c-27)

(c-28)

(c -2s)

(c-30)

jcr
L. (or) K (G) t^.2

1-Ul, kî * (+)'

{c"l = {*{"1 *{-{o) = 1 (-----r----cL+(s) K_(0) .o, 
_ k! * (4u)t

wlcol = {*c") * wf-ca) = r.-¡#T-¡ar (
o' - k?. * (+)'

t:irìll I
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APPENDIX D

Expressions for Co, Cr, Fo, Fr, Mo, Mr, No, Nr, Ro, Rl, So,

Sr, To , Tt, Så, Si, få; rl
The expressions for Co, Cr, Fo, Fl, Mo, Mr, R0, Rl, So, Sr, ,..: :.:

::::__::_-.:.::

To, Tr, Så, No, Nr, Sl, rå, rl are given by

{(e- 'r,)q-ß;.ßll{r' (D-r) ,, ,^ - 
-12

.,o - \u-¡'' 
.. .-:-.i- .

!: 'i : ,t','''.:;

^ {(.", - r"r) kl - gZ * of}{ter, - 1)k; - gî, g?l , r:i.,,,, ,:cr = -- -' F;M; @-2) 
¡.',',,,..,¡,-:.;,,

Fo = {(¿,*#,u'.#rr,
(D-3)

Fr =
,Tr{@". t"rJ (cos2 Õd1 + ft sin' od¡}'"

M0 = $1 - y?(Vf * t<l){t<z sin kzdr cos k1d1 - kr sin krdr cos kzdr} +

û? - viltti - kî) cos k1d1{(kz sin kzdz ^ }1 cos kzdù"-Yr(dz - dr) - i''t,,',t,,

't,,,' 't',:.

(k2 sin kzdr-yr cos kzdr)Ì + ßî - tilCff + kå) (yz - Yr) cos krdr :':": ::'

cos k2d2 
"-Yr(dz 

- dr)

Mr = (kt - p\0f, * p2) {kz sin kzdr cos od1 - ocos kzdr sin od1} +

ß3 - o\ft| + p2) {Do cosp(dz - dr) - Dr sinp(d2 - dr)

(k2 sin k2d1 cos od1 - o coskzdr sin odr)] * G3. - o2)ß; -

(D-4)

(D-s)
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p\ cos k2d2 {Dz cosp(dz - dr) - DJ sinp(d2 - dr) ] (D-6)

(D-7)

(D-8)

(D-e)

(D-10)

Dz

Ds

D1

- kz sin kzdz cos od1 - ocos k2d2 sin od¡

p cos k2d2 cos od, + 
k'o 

r1r, kzdz sin odr

D3

]2 cos od¡ - Osin od1

P cos od¡ + I sin o¿rp

wî - v? Uî * ki) {kz

03 - v? ß3 - kî) cos

(y2 cos ktdz - k1 sin krdz)]

cos k2d2 
"-Yz(dr 

- dz)

sin k2d2 cos k tdz - k1 cos kzdz sin kidz] +

kzdz{(k1 sin krdr- }2 cos krdl)"-Yz(d1- dz)

* ß1 - kî) 0l * t<l)02 - yr) cos k1d1

N9=

N1 ftî

ûi

* (yz cos od2

(y2 cos od1

p.\g| * Õ2) {kz sin k2d2 cos údz - ocos k2d2 sin od2} +

p\ß: - o2) cos k2d2 {(osin od1 - Y2 cos od1¡e-Y2(dr - dz)

(D-11)

- osin od2)] * (k', - oz)(tz, * o2) cos k2d2 e-yz(dr - dz)

osin od1) (D-12)

2(e e \"- 11 Tz'
Ro

4

{v1

u" 

fu'IvzIu,

od,) 
]'" [d,f',,,,

e*lrr
,t( z

tl * t<l e
* Ît rYr \

Yî *
(D-13)

kÎ
kZ. * .tr, k2+ezI Ît i: :':':,:

f':.,.1:r.'-,

2(e
t-

e l-2
Tct

o2
e -;t1r'

e
1,tT-
\2

R1

cos2 od1 + .DsLn-

(D-14)
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ss = t+ {kz sin kzdz cos k1d2 - k1 cos k2d2 sin krdz} Wi-tilWl*ul]
12

* 02 - yi)ß; - kî) cos k2d2 t(kr sin krdr - y2 cos krdr)"-Yz(dr -dz)

+ (yz cos k1d2 - k¡ sin krdz)Ì + $î - t?lCyî * ki)(yz - yr)

cos k1d1 cos k2d2 
"-Yz(dr 

- dz)l 
¡n-ls)

s1 = t* {k2 sin k2d2 cos krdz - k1 cos kzdz sin krdz} Cy\ -y?l(tl.t<1)
It ,.., , ..,

. + 8?'- "É)ß, - ki) cos k2d2 {(kr sin krdr - }2 cos krdr)"-Yz(dr -dz) ;:r :

11 
f,:._..ì

+ (yz cos k1d2 - k¡ sin krdz)Ì + ßî - kï(,yî * rf)(vz - yr)

cos k1d1 cos k2d2 u-Yz(dr - dz)l (D-16)

l

1To = IJ- {kz sin k2d2 cos 6dz ^ ocos k2d2 sin odz} û} * p\(y| + o2)
T2

* Cú + p2) (k', - o') cos k2d2 {(osin od1 - y2 cos odrls-Yz(dr - dz) 
f

i

+ (yz cos od2 - osin odz)] * ßr - o2) (t|.* o21 cos k2ð,2 s-\z(dt - dz) i.

{y, cos o¿t - * sin odr}l (D-L7) 
¡,,¡r;-,,..r 1 r; ..':''::'.

i '¡:; 1: 

"i 
i

I - ..: .:r.:

Tr = [..- tk2 sin k2d2 cos 6dz - ocos k2d2 sin od2] ty| + p2) tVI * or)
Ï 1 

.,.{
1 ^ ^ ^, f) r \. * 8l * p')(kî - o.2) cos k2d2 {(osin odr - }2 cos od1)s-Yz(d¡ -dz)
1|1

+ (yz cos od2 - osin odz)Ì ! (k2- 02) 8l * o2) cos k2d2 s-Yz(dr - dù il':=-

r-1tyz cos odr - . sin odrÌ]
I1

i::'.:ì : : ' . : .. . :

(D-18)
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S; = t+ {kz sin kzdr cos krdr - k¡ cos kzdr sin krdr} tti-lil(tl+t<17
T2

. + g3 ^ rll tui - kî) cos k1d1 { ßz sin kzdz - yr cos kzdz)
T2

"-Yr(dz 
* dr) - ßz sin kzdr - y¡ cos kzdr)] + ß3 - til Cvi * k7)

(yz - yr) cos k1d1 cos k2d2 
"-Yr 

(dz - dr)l (D-19)

sl = t* {k2 sin k2d1 cos k1d1 - k1 cos kzdr sin krdr} tti-til1l.ull
rl - 

:';;i: :'
+ (yL - Yî) ßî 'kf ) cos krdr {(kz sin kzdz - y1 cos kzdz)"-Y, (dz - dr) '''" ".

l',.-., 
.,

- (kz sink2d1 -yr cos k2d1)Ì+(k! -kî)(vf * k2)92 -yr) ' : '

cos k1d1 cos k2d2 
"-Y1(dz 

- dr)l (D-20) :

T; = t+ {kz sin k2d1 cos od1 - ocos k2d1 sin od1} ß1 -p\û; + p2) 
:--r

1^. J- ß3 - o\0î * p2) {oå cosp(d2 - dr) - Di sinp(d2 - dr) i

Tz

(k2 sin kzdr cos odr - + cos k2d1 sin od1)Ì + ß; - o\ß1 - p\ ,,,'.
It

cos k2d2 {nj cosp(dz - dr) - Dl sinp (dz - dr)}] (D-21) .,',,,,,,,,i

','t.,..' 

ta'

Tl = t* {kz sin k2d1 cos od1 - ocos k2d1 sin od1} ßî - p2)ûî+ p2) i'l'.:'-:']''ì'

l1 t

+ ßî ^ o\ûI + p2) {D; cosp(d2 - dr) - Di sinp(dz - dr)

- (ke sin kzdr cos od.1 - + cos k2d1 sin od1)Ì + G: - o2) ß22 - p\ i¡;:.':o'.'
ft

cos k2d2 {nj cosp(dz - dr) - D! sinp(dz - dr)}l @-22)

D; - k2 sin kzdz cos od¡ - * cos k2d2 sin odl
ft

rD-231
i¡.¡ü:È.=,::;:,i
ilr¡::i:::::'l'il
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(D-24)

(D-2s)

(D-26)

t*:'. . f,.{t: t l

' ^.--

Dl

D;

Då

k^p
p cos k2d2 cos od1 + V- sin kzdz sin odl

11'

Y2 cos od¡ - * sin od1
1t1

p cos õd1 + y^ sin odleoTr'

t. -4.::

t.:'

i._'

¡:
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