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ABSTRACT

The need for the study of the effects of discontinuity on a
surface waveguide is given. A brief discussion of previous investigations
including their disadvantages and limitations when applied to the problem
of a slab waveguide discontinuity is outlined, after which two new tech-
niques for solutions are presented. The first proposed technique is based
on the Wiener-Hopf technique, where the Wiener-Hopf equations of the
dielectric slab waveguide are derived for both TE and TM incidence by
applying the Fourier transform to the wave equations, together with the
proper boundary conditions. Because of the complicated functions in-
volved, the factorizations and decompositions are obtained numerically
by applying Lee-Mittra and Noble techniques. The transform equation
can then be separated into two parts, regular in the upper and lower
halves of the transform plane,which are set equal. to zero after assuming an
algebraic asymptotic behaviour of the transformed field. A second tech-
nique which is based on the residue-calculus and is somewhat more general
than the Wiener-Hopf is also given. The unknown fields on both sides of
the junction at the discontinuity are expanded in terms of surface wave
and radiation modes after which, following the mode matching technique,
two simultaneous equations for the unknown mode amplitudes are obtained.
With a properly constructed function together with the assumption of
algebraic behaviour of the field, these equations are solved by an applic-
ation of residue-calculus, Simple expressions for the reflection coef-
ficient, the transmitted power and radiation loss are then obtained.
Numerical results are given for special cases leading to a discussion

of the methods and their applications. The accuracy of the results is
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confirmed by good agreement with the available data from Marcuse, for
simple cases, and with those obtained by the reciprocity theorem and the

application .of Kay's technique, for more general cases,
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CHAPTER 1
INTRODUCTION

A definition of a surface wave is given by Barlow and Brown as
the wave that propagates along an interface between two different media
without radiation; such radiation being construed to mean energy conver-
ted from surface wave field to some other forms [1]. If the two media
concerned have finite losses, the energy flowing along the interface
must supply those losses as well as the transmitted‘power. This does not
invalidate the description of the surface wave, since the radiation is
construed to mean energy absorbed from the wave indeﬁéndent of the sup-
porting media. The important characteristic of a surface Qave field is
that its tangential compbnents to the supporting surface will always decay
with distance away from the surface. Three distinctive forms of a surface
wave [1] which are usually the subject of study are:

(1) the inhomogeneous plane wave supported by a flat surface, some-
times called the Zenneck wave,

(ii) | the inhomogeneous radial cylindrical wave, also supported by a flat
surface and sometimes described as the fadial form of a Zenneck
wave,

(iii) the éxial cylindrical wave associatéd with a surface of circular
profile in the transverse plané and referred to as the Sommerfeld-
Goubau wave,

In order to establish these pure surface waves; the supporting
surface must be straight in the propagating direction of surface waves.

Any curvature or taper in the direction of propagation of wave will always




introduce radiation and cause a departure from the pure-surface wave
field [2,3]. Thése effects are also introduced by any sudden discon-
tinuity or wall distortion [4,5] along the length of the supporting sur-
face in the propagating direction.

For engineering applications, surface wave structures can be
used as transmission lines [6] to provide means for transmitting inform-
atibn from point to point like trunk lines of hollow waveguides. They
have advantages and potential applicatiqns»in the millimeter and sub-
millimeter wavelength regions and in optical communication systems [7-12],
using fiber optics, in which the construction of a conventional hollow
waveguide is difficult or impossible. Furthermore, they offer cost-
effective solutions to many communication problems owing to their inher-
ent features,which include wide bandwidth and low loss transmissiomn.
Because of the open-boundary characteristic of the surface wave structure,
it has been applied as a means to provide a continuous access for vehic-
ular communications [7], which permits continuous coupling to every
vehicle and every station including the control center. For such applic-
ations, discontinuities in the supporting surface in the direction of
propagation are‘undesirable because of the transmission loss they intro-
duce due to radiation and reflection.

'Another app}ication of surface wave structures is suré;ce wave
aerials which make us; of the radiation property at discontinuities.

With the proper choice of type and location of the discontinuities, the
radiation can also be controlled [13,14].

From these applications, it is clear that a better performance

of the systems can be achieved if the behaviour of the surface wave at

the discontinuities is fully understood. There are three main groups of




discontinuities which are the most common topics of interest, namely:
1. bends
2. variation of surface impedance of the guiding structure,
which also includes a variation of material properties or
surface deformations
3. the presence of obstacles.
Each of these discontinuities_has been the topic of recent study by many
investigators [2-5,16], The main purpose of the present research is to
find new techniques to solve for a solution of the second type discontin-
uity, and specifically the step discontinuity, in a slab waveguide for
which it appears that all the previous studies do not lead to a satis-

factory result.

Several techniques have been applied by various investigatbrs
to solve this type of problem. The surface wave structure under consid—
eration can, in genetal, be represented by a surface impedance, dielect-
ric slab or a dielectric rod. The rigorous solution, by comparison, is

easier to obtain for the surface impedance than the dielectric slab while

both are still easier than that of the dielectric rod whichalways involves a

more complicated field, 4.e., hybrid modes. Before presenting new methods,
‘the previous techniques w111 be summarized in order to justify the need
for tﬁe proposed techniques.b

Marcuvitz's modal synthesis [15] together with Schwinger's
variational principle, were applied by Angulo [17] to solve for the dif-
fraction of a surface wave by a semi-infinite dielectric slab, L.e., slab
of thickness 2d in the region of - ® <z <0 which terminates in free
space at z = 0. In this‘technique, the field is expressed as the sum
of dis;rete modes, satisfying the boundary condition, together with con-

tinuous modes, which are combined in pairs in such a way as to obtain




modes satisfying the boundary condition and the condition of orthogonality
with respect to modes from a discrete spectrum, It was indicated by
Shevchenko [18] at this point, that if the modes of the continuous spec-
trum satisfy the radiation condition in the radial direction from the
waveguide before their transformation, then after the transformation they
no longer satisfy this condition. Neither Marcuvitz nor Angulo seem to
have paid attention to this point. Moreover, Angulo's problem cannot be
reduced to thé problem of an infinite dielectric slab with a discontinuity
af z = 0 which is being considered in this thesis.

The Wiener-Hopf technique had been applied by Jones [19] -for
the problem of the diffraction of a surface wave by a semi-infinite groun-
ded dielectric slab, which was transformed to an approximately equivalent
problem suitable for this technique by using the approximate boundary
conditions to replace the original exact boundary conditions, together
with the Fourier transform technique. Again this problem cannot be re=
duced to the problem of aﬁ infinite dielectric slab as mentioned above.
Kay [20] applied the Wiener-Hopf technique to obtain the exact solution
for the problem of scattering at the junction of two surface reactances
and Johansen [21] app1ied it to the problem of a surface wave scattering
at the junction of two semi-infinite planes joined together by a step.
As pointed out by Waldron [22], the concept of surface impedances is
valid only under very restricted circumstances and it is very difficult
or sometimes impossible to construct structures which have the prescribed
value of impedance. Thus the solution by Kay is expected to give good |
results for a dielectric slab problem under certain specific conditions
which are given later. However, Kay's technique will be applied to obtain
the results which are compared with those obtained by the proposed tech-

niques.




By represeénting the arbitrary deformations as a succession of
infinitely many infinitesmal steps, Marcuse [23] was able to obtain the
solution for the radiation loss of a slab waveguide due to an abrupt step
or wall distortion. But as pointed out by Collin and Zucker [24], the

results thus obtained cannot be very accurate, since the steps, if chosen

small to represent the deformation, are so numerous that they lie in the
near field of each other.

Applying the mode matching technique of the closed waveguide

to the open waveguide, Clarricoats and Sharpe [25] were able to solve for

E the scattering at the jﬁnction of two planar waveguides under restricted
conditions that make the radiation field at the junction negligible. The
closed waveguide approach was also applied by Hu and Bergstein [26] to
solve the problem of discontinuity in a slab waveguide. Using a
similar technique to'study the scattering of surface waves at a discon-

tinuity in a planar waveguide, Mahmoud and Beal [27] converted the result-

ing integral equation into an infinite set of linear algebraic equations,
which is then solved numerically by truncation. The acceptable solution
for this finite truncated set of equations must satisfy an energy-balanced

argument. This procedure for obtaining a solution is time-consuming and,

as pointed out by Rulf [28], it is not necessary that the solution which
satisfies the condition.is indeed a good approximation of the solution.
The integral equation technique was applied by Hockham and

Sharpe [29] to solve the same problem as that of Clarricoats and Sharpe.‘

The accuracy of the result depends on a knowledge of the field (which is
generally unknown) at the plane of discontinuity by approximating it as
the sum of incident and reflected fields. Rulf [28] also formulated the

problem in a form of an integral equation of a special type ({.e., the




singulér integral equation). But since it is difficult to obtain the
general solution from this integral equation, Rulf only gave the solution
for a simple case. Furthermore, the variational approach was applied by
Rozzi [30], to solve for the step discohtinuity in a planar dielectric
waveguide.,

Asvalready mentioned,theré are three main groups of discontin-
uities which are of particular interest, however this thesis is mainly
confined to the problem of the second type discontinuity as they are the
biggest class of the three groups. This type of discontinuity includes
the termination of a waveguide into another waveguide which is different
in both the material property, ({.e., different dielectric constant) and
geometry (L.e., different thickness), It also includes the problem of
arbitrary deformation of the guiding structure. It is therefore, the
main purpose of this thesis to present two new techniques, the Wiener-
Hopf and the residue-calculus, to solve for the problem of discontinuity,
which involves the change in both the material property and thickness,
on dielectric slab waveguide for single mode operation for both TE and
TM incidence.

The geneéral theoretical analysis of a dielectric slabwaveguide
is given in Chapter 2 which also includes the application of the reciproc-
ity theorem, for the determination of the transmission coefficient at a
discontinuity, and the derivation of the conditions under which Kay's
analysis can be applied to the problem of a dielectric slab waveguide
discontinuity,

The detailed theoretical analyéis of the Wiener«Hopf technique
which includes the derivation of the Wiener-Hopf equation for the dielect-

ric slab waveguide is given in Chapter 3, together with the numerical




results. In Chapter 4, the detailed analysis of the residue~calculus is

presented. Various numerical examples of the results are also included.
The general discussion of the techniques and the results are

given in Chapter 5, followed by the conclusion and suggestions for future

research.




CHAPTER 2

DIELECTRIC SLAB WAVEGUIDE

2,1 INTRODUCTION

A surface wave is defined as the wave that bropagates along
an interface between two different media without radiation [1]. The
surface wave field is intimately bound to the surface of the supporting
structure and decays exponentially away from the surface with the usual
propagation function e_jBZ (for ejwt time dependence) along the z-axis
of the structure, It is found from this definition that there exists a
class of open structures, such as a dielectric slab, dielectric-coated
plane, corrugated plane, etc., shown schematically in figure 2.1 which

are capable of supporting the surface wave.

F7 T

a) Dielectric slab

~

I 7T

Conducting surface

b) Dielectric-coated plane




plalaili

Y
N

¢) Corrugated plane

Figure 2.1 Surface wave structures

The theoretical analysis for the surface wave supported by
‘this class of structures can be found in texts which deal with waveguides
or electromagnetic fields such as Collin [31], Barlow and Brown [32],
Harringfon [33], Marcuse [34,35], Kapany and Burke [36], Hessel [56],
Tamir [57], Zucker [24], Arnaud [8] and Walter [37]. However, in this
chapter, only the theoretical analysisvof the surface wave supported by
the dielectric slab waveguide is given. This is because the discontin-
uity problem which will be considered in later chapters is confined to
this type of structure which in turn can give insight into the effects
of discontinuities in more complicated structures. Also included in
this chapter is the application of Kay's analysis [20] of the scattering
of a surface wave by_a discontinuity in a supporting reactance surface
to the present problem of dielectric slab, and the application of the
reciprocity theorem [16] for the determination of the transmission coef-
ficient at the discontinuity. The results obtained from these two tech-
niques are then used to check for the accuracy of the proposed novel

techniques in later chapters.
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2.2 GUIDED MODES OF SLAB WAVEGUIDES

The configuration of the slab waveguide is given in figure 2.2
The z-axis is the direction along which thé wave is propagating, the
transverse dimension y 1is assumed of infinite length such that there
is no field variation along y (L.e., %%~ = 0). Thus, the field of

a slab waveguide can be decomposed into TE and TM modes.

€0

S B
( ZI )

y
i

Figure 2.2 A planar dielectric slab
waveguide

2.2,1 TE Modes

By the definition of a TE mode, Ez = 0, From Maxwell's equa-

)

5

ing field components are H_, H, and E_. Furthermore, using Maxwell's
A z’ X y

tions under the above restriction (4L.e., = 0), the only nonvanish-

equations the field components Hz and Hx can be expressed in terms of

E as

He = o7 3 (2.2.1)
j aEy :
HZ = m T)—(_ ' (2.2.2)
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The Ey component is obtained from the solution of the reduced wave

equation

32 E, aZEy \
T + 322 + €, ky Ey = 0 | , (2.2.3)

where €. is the dielectric constant of the medium through which the

wave propagates and

ke = w Vel = %% (2.2.4)
With the time dependence ert and z dependence e_JBZ, equation
(2.2.3) is reduced to
"'c)zEy .
. 5+ (sr ky - B9) Ey = 0 (2.2.5)
x .

The solution of this equation will be found separately for the region

‘inside the slab and the surrounding medium. By applying the boundary

condition which requires the continuity of the tangential field compon-
ents at the interface of the two media, an eigenvalue equation for the

propagation constant of the surface wave mode is obtained. In order to

simplify the treatment, even and odd modes will be considered separately.

Even gulded TE modes

The mode solution for even modes (Ey is an even function of

x) inside the slabs, |[x| < d (omitting o) (Wt - B2) term), is
Ey = A cos Kx o (2.2.6)
H = 23K A sin xx (2.2.7)
Z (1)110 L] v
H, = —.'—@— A cos Kx | (2.2.8)
X WHo .

where K2 = €, k§ - B% | (2.2.9)
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The field outside the slab, |x| > d is

where Y

Both k? and
value of Y2,
ing values of

is

_ Acoskd oYXl - (2.2.10)

_ o o-x 3y -v(Ix| - @

= TET- T A cos Kd e (2.2.11)

- B A cos ka oYXl - | (2.2.12)
wHo .

= B2 - g2 (2.2.13)

o

v2 can be positive quantities since o > 1. For positive

the field on the outside of the slab decays with increas-

|x|. Thus, the condition for a guided surface wave mode

v2 >0 | (2.2.14)

" Applying the boundary condition at x = * d for Ey and HZ, the

eigenvalue equation is thus obtained

tan Kd = %- | (2.2.15)

0dd guided TE modes

The field inside the slab, |x| < d, for odd guided waves (g,

is an odd function of x) is given by

E
y

H

= A sin Kx (2.2,16)
iK '

= —=— A cos Kx 2.2.17
wHo C )

= B A sin xx (2.2.18)
wHe

The field outside the slab, |x| > d, is given by

- T§T’ A sin ka e V(XL - (2.2.19)
_ oY A sinxd YUK - D (2.2.20)
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i« B A sinka e YUxl - (2.2.21)
X WHe

The constants K and 7Y are given by (2.2.9) and (2.2.13). By applying
the boundary condition for Ey and HZ at x = * d, the eigenvalue
equation is obtained

tan Kd = - (2.2.22)

=<|=

2.2.2, TM Modes
Similar to TE modes, the TM modes are obtained by setting
Hz = 0, in which case the only non-vanishing field components are Ex’

Ez and Hy' The two electric field components can be expressed in terms

of the Hy component as

J BHY

EX = EE— B‘Z (2-2.23)
5 oM |

EZ = -(.0? W (2 .2.24)

The Hy component is obtained as a solution of the reduced wave equation

82Hy
2 2 -
ot (e, k2 - B ) Hy = 0 (2.2.25)

The solution for Hy is determined separately for the region
inside the slab and the surrounding medium. The resulting field compon-
ents must satisfy the boundary condition which requires the continuity
of the tangential field components at the interface between the two media.
This condition will lead to the eigenvalue equation of TM surface wave

mode.

Even TM modes

The even TM modes (Hy is an even function of x) inside the

slab |x| < d, have the following field solutions
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Hy = B cos Kx (2.2.26)
E = X . B sin kx (2.2.27)
z WE_E,
T
E B B cos Kx (2.2.28)
X we Eo
T
where K 1is the same constant given by (2.2.9).
The field components outside the slab le > d, are
H, = B cos Kd sYUxl - (2.2.29)
_ox Y (x| - @ -
‘ Ez TET.waO B cos Kd e (2.2.30)
E = B 3coskaeYxl-a (2.2.31)
X wWEyp

By applying the boundary condition at- x = * d, the eigenvalue equation
is obtained as

tan Kd = (2.2.32)

Odd TM modes

" The field of the odd TM modes (Hy is an odd function of -x) inside the

slab is ‘ . (2.2.33)
Hy = B sin Kx '
= ik
EZ we_€, B cos Kx
by
E,L = B B sin Kx: 2.2
x e e (2.2.35)

The field outside the slab is given by

x x| - &)

Ho = o7 B sin kd e Y( (2.2.36)
E, = ZL Bsinkd (x| - @) (2.2.37)
E = £ BsinkdeYUXl - (2.2.38)

X WE,
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The eigenvalue equation is obtained, after applying the boundary condition
at x==%*d, as

tan Kd = (2.2.39)

=K
e.Y

From these eigenvalue equations (2.2.15), (2.2.22), (2.2.32)
and (2.2.39), the propagation constants for each surface wave mode can
be determined,

Some interesting features about surface wave modes which should
be mentioned are the non-existence of an infinite number of discrete modes
of propagation and the concept of cut-off frequency. Because of the first
property, the sﬁrface wave modes alone do not form a complete system which
can represent any arbitrary field. The concept of cut-off frequency has
'a somewhat different interpretation from that of metal (closed boundary)
guides., Above the cut-off frequency,'thé dielectric slab guide propag-
ates unattenuated modes, £{.e., B is real. Below the cut-off frequency,
there is attenuated propagation, £.e., B 1is a complex quantity. The
phase constant of an unattenuated mode lies betﬁeen the intrinsic phase
constant of the dielectric and that of air, that is,

ke <B <Kk (k

d 3

4 = K /E) ‘ (21.2.40)

For the TE case the power carried by the surface wave mode is given by

1 (° ,
P=——J E_ H' dx
2| 5 Y X

i :

£ [ s ax (2.2.41)
8 y

while for the TM case it is giveﬁ by

P =.§J Log |2 ax
w o € y
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d [
- B J |H |2 dx + —2 J |H |2 dx (2.2.42)
weE, S, y wEo J4 y
2.3 RADIATION MODES OF THE SLAB WAVEGUIDE

Since the discrete surface wave modes do not form a complete
system, the radiation phenomena which occur at the discontinuities along
the guide cannot be described by these modes alone. To account for the
radiation, a system of "quasisurface wave modes" with a continuous spec-
trum is added to a system of discrete surface wave modes which together
form a complete system [18, 34], These quasisurface (radiation)
modes also satisfy Maxwell's equations but inétead of satisfying the
stringent condition of surface wave modes that the field must vanish at
infinity, they satisfy a weaker condition that the field only be finite

at infinity [18, 34].

2.3.1. Even TE Radiation Modes

The field inside the slab |[x| <d, is given by

E, = Ccos ox ‘ (2.3.1)
_ -jo .
Hz Bﬁ;- C 51p oxX (2.3.2)
H = %ji-~C cOs oXx (2.3.3)
X wle
where o = €. k2 - g? (2.3.4)

while the field outside slab |x| > d is given by

B, = D cielxl g Jdelx] (2.3.5)
H = X P piflx] | g Jdrlx]

z I—xl— Wil ( e F e ) (23'6)
no = B eielxl g GIPlxy (2.3.7)

X “WHo




where p?
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k3 - B? (2.3.8)

Applying the boundary conditions requiring continuity of Ey and HZ at

X

X

where the star

2.3.2 0dd

Nile)

+ d lead to (only x = d 1is considered since the conditions at

- d are identical)

P (cos od - j g sin od) (2.3.9)

D* (2.3.10)

superscript denotes the complex conjugate.

TE Radiation Modes

The

E
y

H

while outside the

After applying

the constants

Dy

field inside the slab |x| <d is given by

C, sin ox ‘ (2.3.11)
jo 4

T Cy cos Ox (2.3.12)
-8 Cy sin ox (2.3.13)
w0 T

slab it is given by

T%T (Do oirlxl, gy e”’lxl) (2.3.14)
o ~jelx|_ o _ielx]|

o e ~Fpe ) (2.3.15)
=B x g mielxl, g Gdelxly (2.3.16)
Bilo TxT 0 0 | .3.

the boundary conditions at x = d, the relation between

Co, Dy and Fy 1is given by

c

0 i
— ® (sinod + %cos od) (2.3.17)

D} (2.3.18)
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2.3.3. Even TM Radiation Modes

The field inside the slab |x| <d is

H = L cos 6x
Yy
_ 30 1 g
= —= sin ©
Ez WE_E, X
T
_ B
E = L cos ox
X U)ErE 0

while the field outside the slab |x| > d is

i = ue-ielxl jelx]

y

+ N e

E

S SR S (
Z [x| wE o
L-1
The relation between the constants L, M and N

M = %— erd (cos 0d - j 9 sin 0d)
I
T
N = M*¥
2.3.4, Odd TM Radiation Modes

The field inside the slab |x| <d is

H = L, sin Ox
Yy
~3i0
EZ = wejé o €O0s Ox
Ex = S L, sin Ox
w€r€ 0

while outside the slab the field is given by

H = T)—’ET(M0 eIolxl g, SIelxly

. P -jp|x] jplx]
E, e, Mo e - N, e )

M e~jplx| - N ejp|x|)

is given by

(2

(2

(2

(2.

2.

(2

(2.

2.

(2.

(2.

(2.

(2

.3.19)

.3.20)

.3,21)

3.22)

3,23)

.3.24)

3.25)

3.26)
3.27)

3.28)

3.29)

.3.30)
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_ B x -ip|x| jplx]
EX =, T;T- M, e + Nje ) (2.3.31)

The relation between constants Lo, MO and No is given by

L

My = - eI (sin gd + j =9~ cos 0d) (2.3.32)
2 €,.P
N, = Mj (2.3.33)
2.4 'DISCONTINUITY ON THE SLAB WAVEGUIDE

The configuration of the discontinuity on the slab waveguide
under consideration is shown in figure 2.3 which shows an abrupt termin-
ation of one dielectric waveguide into another guide with different value
of dielectric constant. The thickness of the two guides can either be

the same or different with d; > d2 or d; <ds.

L X
incident wave
.——-———,.
|
£ £ %
ri T2
- - & - -~ - — 7
y 2d,
2d; Y

Figure 2.3 Step discontinuity on a planar dielectric
slab waveguide
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2.4.1 Transmission Coefficient by Lorentz Reéciprocity Theorem

By applying the Lorentz reciprocity theorem, it was shown by
Barlow and Brown [16] that

2

1 f [Ey x Hz - E2 x H1] » A1 ds (2.4.1)
S

16 ‘PP,

where T 1is the transmission coefficient defined as the ratio of trans-
mitted to incident pbwer, S dehotes the cross-sectional plane at
z =0, P1 and P2 are the incident surface wave power traveling on the
left and right hand sidés of the surface S, respectively. E1, H; and
Ez, Ho are the fields created over S when the surface wave is incident
from the left and right‘hand sides of S, respectively. |
Though_equation (2.4.1) has been developed for the problem of
discontinuity of surface wave supportédby1n1impedancesurface, it can also
be applied to the problem of the slabwaveguidewith the same solutions for
all parameters. Equation (2.4,1) will give the exact solution provided
that all the fields Ei, Hi, E2 and Hz are known exactly. In our prob-
~ lem the fields are approximated by incident»surface wave fields. For
TE case we have, for .d1 >‘d2,

. (B, + B1)* Fg N7

4 BiBalle, - e, ) Ko - B2 + 81} (e, - 1) K, + B2 - 81} (B - 8D
(2.4.2)
while for d, > d;

T = (B, + B1)® Fy M)

(2.4.3)

where F,, N, and M, are given in Appendix D,

4 BiB2l(e, - €, ) Ky - B2+ B1)° {(e,, - 1) K; - B2 + BI} (B2 - BD)”
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For TM case we have for d; > d»,

T =

where

Vi

Va2

V3

while

where

<
ot
1

<
n

<
i

1 N I: V1(B1/€rl + 62/81'2) +V2(B1/€r1 +B2) +v3(By + 82):[ 2
4 2 2 2 2 2 2
B2 | o (k3 K1) (Ys +k1) (Ys - Y1)
(2.4.4)
(kz sin kpd, cos kida - k; cos koda sin kidz) (Y2 - v2) (v2 + kH)
(2.4.5)
| . . v (d; - dy’
(v2 - v} & - x}) cos kadp {(k1 sin kidi - Y2 cos kidi)e Y2(d1 -d2)
+ (Yz CcOs k1d2 - k1 sin kldz)} (2.4.6)
&% - k2) (2 + kD) (v2 - Y1) cos kidy cos kpdp e 72(1 7 42)
(2.4.7)

for di, > d;,

1
4 B1Ba

(V2 - v (oF + kD) (ke

(v2 - ¥ (k% - k] cos
é.(kz sin kpd; - 7y; cos

(<2 - 13 (% + kD) (v

vi(Bz/e, +Bi/e ) +vi(Ba/e, +B1) +Vs(B2 +31)J
Ro|

(k3 - kD (vi+k2) (v -y

(2.4.8)

sin kzdl cOoSs k1d1 - kl cOos k2d1 sin kldl)

kidi{(k2 sin kada - Y1 cos kpdz)e

kédl)}

- v1) cos k;d; cos kqd, €

(2.4.9)
-Y1(d2 - d1)

(2.4.10)

-Y1(d2 - d1)

(2.4.11)

2
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2.4.2 Application of Kay's Analysis

Kay [20] analyzed the problem of scattering at the junction of
two surface reactances for TM incidence and obtained the exact solution
by the Wiener-Hopf technique. As it is known that under a restricted. con-
dition the problem of the slab waveguide can also be reduced to the reac-
tance surface p?oblan,yetno one has applied Kay's result to this problem.
Though Kay's result gives a very accurate solution under a restricted
condition, it can give some insights into the problem. In this section,
it will be shown how this can be done. It is interesting to note that
though Kay analyzed the TM case, with certain modifications his result
can still be'applied for TE incidence. Also, by comparison with the
residue-calculus technique of Chapter 4, thoughthe condition, given later,

is violated, Kay's formula still provides an acceptable approximation.

Representation of a diefectric sfab by surface impedance

The surface impedance is defined as the ratio of the tangential
component of the electric field to the tangential component'of the mag-
netic field in the direction perpendicular to the chosen electric field
[22]. This ratio is evaluated at the surface which forms the boundary
of the guiding structure. Before going directly into the dielectric slab
problem, a conducting plane coated with a thin layer of dielectric will

be first considered, following Collin [31],

| X

d €
TTTTTTL T TETE T TATE LT TTTE L TETETLATTITITTRRTATRRR O O
conducting plane with normalized surface impedance Z

yt

-z

S

Figure 2.4 A dielectric coated condﬁcting plane
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The TM excitation is first considered. In a free space

region, the magnetic field Hy can be written as

Ho = A exp(jhix - jB2) x>d (2.4.12)

where h? + g% = kﬁ. In the dielectric, the field consists of two waves
propagating in the positive and negative x direction, and hence has the
form,

i Bz

H o= [B exp(jhax) + C exp(~jh2x)] e

0 <x <d (2.4.13)
where hi + B? = erkﬁ. The wave numbers h: and hz and the propaga-
tion constant B may be found by equating the surface impedance'looking
into dielectric at the dielectric-free space interface. Because the
mathematical relation between EZ and Hy is similar to that of voltage

and current in the transmission line equations, the following equivalent

transmission line circuit is applicable.

Figure 2.5 Equivalent transmission line

circuit for a dielectric coated
conducting plane

" From the equationfor the input impedance in a transmission line we have

(2.4.14)

z, z, l:zs + j(z2/zo)tan hzd:[

Zo in  zg (z2/20) +jz  tan had
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where zg = YWUe/Ey (2.4.15)
z h
01

21 = (2.4.16

! K, )
Zoh2

20 = 551‘_0 (2.4.17)

For TE excitation, by following the same procedure we have

A z z_ + j(z,/z,)tan h,d ,
. 2 0 (2.4.18)
Zy in Zy (z5/24) + jz g tan h,d

where Z1 = U.)Llo/hl (2.,4.19)
Zo = U)Uo/hz (2.4.20)

Now consider the slab waveguide excited in TM mode (our prob-

lem is only concerned with the symmetrical (even) mode).

ix
incident wave |
——————— - 8
) r2
€ }
T1 ! - Z
}
2d1 I
Y | 2d,

electric or magnetic wall

Figure 2.6 Surface wave incidence at a discontinuity junction
on a planar dielectric slab waveguide

With the symmetrical mode, we have Hy varying symmetrically about the

plane x = 0, thus
9H
Y

EZ ¢ 3 x

= 0 on x = 0
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This impliesthatznlelectricwéll (E tangential = d) may be placed along
x = 0, hence the dielectric slab above and below x = 0 1is reduced to
the conducting plane coated witha dielectric layer mentioned above. Its
surface impedance can then be obtained from (2.4.14) with zg, = 0. Under

the condition that h,d << 1, it can be written as

h, L (er - 1)
Zin = "k~0"~ J T—" kod (2.4.21)

And for even TE mode, by using (2.4.18) with z, = ®w, it can be reduced

to
Wi o : 3

X oD ol (2.4.22)

z. =
in Zo_hl

It should be noted that without the approximation above (2.4.14) and
(2.4.18) are equivalent to eigenvalue equations of surface wave modes
for ™ and TE modes, respectively,

Following Kay's analysis, it is required that the surface reac-
tance be independent of wave number h,, from (2.4.21) and (2.4.22) the
slab waveguide will satisfy this requirement if h,d << 1.

From Barlow and Brown [16], the reflected power, Prf is given

by 2 2
Yl (Y]_ - YZ)
P = (2.4.23)

rf 2
B2(B1 + B2)
while the transmitted power, Pt’ is
4 Y,Y, ' ’
P, = 2.4.,24
t T O Ev,e (2.4.24)

The radiated power is then obtained as

Pr = 1 - Prf - Pt (2.4.25)
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2.5 NUMERICAL RESULTS

The transmitted powers caused by symmetrical steps with
er1 = 2.56, erz = 5,12 for different ratios of do/d; are shown in
figures 2,7 and 2.8 against kd; for TE and TM incidence, respectiv-
ely. The open circle notation represents the results obtained by apply-
ing the reciprocity theorem using equations (2.4,2) if d, > d2, (2.4.3)
if dy < d2 for TE incidence and equations (2.4.4) if di > da,
(2.4.8) if d, <dy for T incidence. The solid circles represent
the results obtained by applying Kay's technique equétion (2.4.24) for
both TE and T™ incidence. The radiation losses of the same cases
are plotted against Kdi in figures 2.9 and 2,10 for TE and TM inci-
dence, respectively, using equations (2.4.23), (2.4.24) and (2.4.25).
Because it is not possible to obtain the radiated power from the recip-

rocity theorem since the reflected power is unknown, only the results from

Kay's technique are shown in figures 2,9 and 2.10.




o

o

o

1.0

0.8"

0.6

0.4

0.2

%4 - ° -8 (b)_o ,
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Figure 2.7 Transmitted power for TE incidence with €r,= 2.56 and €, 5.12

(a) d /4 = 1.0 (b) d /d = 0.7 (c) d /4 =
2 1 2 1 2 1




o
‘-'.

0.4 }
O O O Reciprocity Theorem
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Figure 2.8 Transmitted power for TM incidence with €r1=~ 2.56 and €p = 5.12
2

(a) d /4 = 1.0 (b) d /d = 2.0
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Figure 2.9 Radiation loss for TE incidence with the same parameters as for Fig. 2.7
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CHAPTER 3

APPLICATION OF THE WIENER-HOPF TECHNIQUE

3.1 INTRODUCTION

Waveguide discontinuities such as bends, obstacles, etc., or
changes in the material properties of the guide will always disturb the
guidance of surface waves over the guiding structure. At these discon-

tinuities the incident surface wave modes are coupled with other surface

wave modes, thus leading to reflected, transmitted and radiation waves.
These effects are importént in the apﬁlications of dielectric waveguides
in optical fiber communications where the reflection, transmission and
radiéﬁion at the discontinuities are important in designing and estimat-
ing the performance of the system, and also in the design of surface wave
antennas, whereby the discontinuities are introduced on the structure to
yield the desired radiation,

The discontinuity considered in this chapter is confined to the
junction of plane dielectric waveguides of the same thickness but different
values of dielectric constants, The general approachto this type of prob-

lem is to expand the fields on both sides of the junction in terms of

discrete surface wave modes together with a continuous mode spectrum or
pseudomodes as called by Shevchenko [18]. The fields are then matched

at the junction of the discontinuity and with the aid of the orthogonal-

ity property of the fields and certain approximations, the required mode
amplitudes are found. The Wiener-Hopf technique was applied by Kay to
study the scattering at the junction of two surface reactances [20].

Because of the configuration of his problem, he was able to obtain the
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exact solution. The geometry considered here is different from that of
Kay because it also involves the thickness of the slab, but it is still
in that class of the problems which can be solved by the Wiener-Hopf
technique [38],[39],[44],[45]. To obtain the Wiener-Hopf equation, the

Fourier transform together with the boundary and edge conditions are

applied. The key step in deriving the Wiener-Hopf equation is the fact-
orization and decomposition which cannot be found in closed form for our
case, and the techniques as given by Noble [38], Mittra and Lee [39] are

therefore applied. The final solution contains unknown constants which

can be determined from infinite-dimensional simultaneous linear equations.
This implies that the exact solution for this type of problem cannot be

found by this method.

3.2 FORMULATION OF THE PROBLEM

The configuration of the dielectric slab waveguide under con-
sideration is shown in figure 3.1. It is assumed that the y-dimension
is extended to infinity and all the field components are independent of
the y-coordinate, £.e., 5%—= 0, By using the subscripts 1 and 2 to

denote the left and right sides of the junction, the dielectric constants

for the left and right sides are shown as €.

and € , respectively.
1 2

The slab thickness is denoted by 2d while the time dependence is ert
which is suppressed throughout. The incident field at the junction will

be either a ‘TE or TM surface wave mode. The formulation for each case

will be given separately and will be restricted to a single mode operation.
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ix

(IT)

incident field

1
/(1)/ \ I
LY ______*_Z'

4

/4%%47:\\\\\ 2d erz
W ki : t

(IT)

Figure 3.1 Schematic diagram of a dielectric slab
waveguide

The geometry is subdivided into three regions as shown in
figure 3.1. Consideration will be confined to even mode excitationm,.t.e.,
(TE) and Hy (TM) components are symmetrical with respect to z-coordin-
ate. For the purpose of formulation, the free space wave number X
in region II is considered a complex quantitywith very small but finite

imaginary part denoted by kY, 4.e.,

kg = k¢

- kg ; ks >0 , ki >0) (3.2.1)
By letting kg tend to zero, the final solution will be reduced to the
solution of the original problem. The solution of the unknown field

components is obtained by solving the two dimensional scalar wave

equation,

QQ
]
-O-
Q
)
-

+ k%2 = 0 (3.2.2)

QL
tad
N
Q
N
[N

where for TE incidence we have
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E = ¢ (s.é.Sa)

4
¢ _
H = ( (3.2.3b)
- i 99
H = (qu) (3.2.3c)

while for T incidence we have

H = ¢ (3.2.4a)
¢,

B, = ( ) (3.2.4b)

E, = ("J) a¢ (3.2.4¢)

The solution is to be obtained subject to the following boundary condi-
tions: .
(1) the tangential field components must be continuous at the
= 0 plane and at the x = *d plane,
(I1) as |z| >« asymptotic value of ¢ is the propagating
surface wave mode.

(III) the field is assumed to have algebraic behaviour at the

edge.

The last condition follows from the analysis of Collin [40] for

an array of thin dielectric sheets, This is because the exact field

behaviour for the general dynamic case remains unsolved [41]. If we use
the static case to determine the field behaviour at the dielectric edge,

following Anderson and Solodukhov [41], the field will have algebraic

behaviour.
The formulation will be separately derived for TE and TM

incidence. The TE mode incidence is considered first.
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3.2.1 TE Mode Incidence

In this case, the incident field is Ey which is incident
upon the junction of figure 3.1 from the left. The field in the three
regions, as shown in figure 3.1, are then given by

Region I; -d <x <d , z <0

-

The total field q{ is given by
+ o] ' (3.2.5)

where the incident field ¢i (orA E;) is given by

q)i (x,2) = A, cos (k2 - g /2 x o IBZ (3.2.6)

Hence, it can be shown that ¢I(x,z) is the solution of

I I
22 2 | I
3;’2 N 3az¢2 + kZg¢l o= 0 (3.2.7)

Region II; |x| >d , - ® <z <=

The total field ¢i1(x,z) is

612 = 9T (x,2) + 05 (x,2) (3.2.8)

where the incident field ¢; (x,z) is given by

1/2d 1/2

: 2 _ 1.2 A _(R2 _12 s
d)::i[.:[(x:z) - Ai e(Bl kO) cos(ki_gi)l/zd e (81 kO) lee JBIZ
(3.2.9)
Hence, it can be shown that ¢II(x,z) is the solution of
11 II |
32¢ 3%¢ 2 JIT  _
nxz " apT t ks ¢ = 0 . | (3.2.10)

Region III; -~d < x<d ., - z>0

The total field ¢£Il(x,z) is

) = o (%) (3.2.11)
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where ¢III(x,z) satisfies the two dimensional wave equation

2 IIT  op,I1I
070 L8702 Gl (3.2.12)

ox2 0z2 2

In the equations (3.2.5) to (3.2.12), we define

Ai = amplitude of the incident wave
k1 = VE * k
T a
k2 = vYE . kO
T :
By = propagation constant of the surface mode along the

z-coordinate satisfying the eigenvalue equation for the
slab waveguide on the left side of the juncfion, L.e.,
tan(? -89 20 = (g2 -1t/

172

- (3.2.13)
k3-89

Define o = o+ 3jT (3.2.14)

Fourier transforming (3.2.7), (3.2.10) and (3.2,12) yields

2 : I '
g ol - (@ - k) elmx) = - [(%’;—) o joc(q»I)Z:O]

21 =
(3.2.15)
éﬁ%— o' (a,x) - (a? - k3) o leo,x = 0 (3.2.16)
d? III II1 _ 1 a¢III . TII
a2 % (O‘fx) - (0f - k) 0 (x) = = [( 520, %0 Dang
(3.2.17)

From the behaviour of ¢I(X,z),'¢II(x,z) and ¢III(x,z) for any given

x as |z| o, we can deduce that @I(a,x) is analytic for T < b,

(by = - In(B1)), and @ 'T(a,x) is analytic for T > -bp (b, = - Im(8,)).

Because ¢II(X,Z) ~ ¢I(x,z) as z » - and ¢II(x,z) ~ ¢III(x,z) as
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z > +», hence @Il(a,x) is analytic in the strip -by < T < b;,
The solution of (3.2,16) can be found as

A

o' (0, %) A@) e + B(a) X (3.2.18)

1/2

where A o= (a? --kz) which indicates that the solution possesses

branch points at o = * k.

If @II(a,x)' is the solution of the wave equation representing the
electromagnetic fields, it is required that, for any given x and for.
every O in the strip —bz < 1T < by, @II(a,x) is bounded. This
requirement can be met by letting B(a) = 0 and selecting the branch
such that Re(A) > 0 for any o as shown in figure 3.2. Hence, (3.2.18)
is réduced to

o x) = A e : | (3.2.19)

which is analytic in the strip ~kg <1< kg.

Imaginary

PO G G U W W W W W W\

e i

At

4 ’
Branch cut ——~4-ﬂ
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y

)

(a) A-plane’
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i Imaginary

!
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|

|

|

Im(A) <O | Im(A) > 0
1
i
-k i
*—,-- —» Real
/LT
branch cut 1 ko
{
i
|
Im(2) >0 ! Im(A) < 0

| .
|
!
|
!

(b) o-plane

Figure 3.2 The selected Riemann sheet of (a) A-plane
(b) ca-plane

By applying the boundary conditions that Ey and HX must be continu-

ous at the 2z = 0 plane, it can be shown that

(6", = D), *+ Ay cos(e? - g1 (3.2.20)
5o 111 2] : 1/2
(J’—az ) T (J)—az) s jB1 Ay cos(k? - B2)7 "x (3.2.21)
z=0 z=0
Substituting (3.2.20) and (3.2.21) in (3,2.17) yields
d2 111 111 1 T T
>z % (@,x) - (a® - k2) ¢ Lex) = ;55 [: Sz i -ja(d )z=0:}
-J 2 241/2
—— (B1 + a) A, cos(k? - B]) " "x (3.2.22)
V21 * ! '

Before attempting to solve (3.2.15) and (3.2.22), it is known that
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I
(D ¢I(x,z) and %%;-(x,z) are even continuous functions of x

d I 2 d a¢I 12 . s
(1D J; ) (x,z)];=0 dx and fo[ Tﬁf{x’z)};=0 dx are finite

q |
Thus [¢I(x,z)] and [gg—{x,z)] can be expanded by the Fourier
A z=0 oz 72=0

cosine series [42], 4L.e.,

I L ’
) N § 2 A . B T
- ;;ii c%%; ~30), ol = % T el (£ + joe)) cos@x) (3.2.23)
2m n=0 .
z=0
where
dasl
A _:l_f c%gfg cos(%%-x) dx (3.2.24)
! var /¢ z=0
d n
fB = __l*J(¢I)Z_0 cos(iglx) dx (3.2.25)
n =
V2m o
aﬁ = 1 for =n>1 ; g; = %— for n=20

Using (3.2.23), the solutions for (3.2.15) and (3.2.22) can be found as

3 I, . A . ~B
2 2472 : t
coshﬁ(q - k1) x ¢ (a:d) o gn(fn + Jafn)

I 2 nTw
¢_(a,x) = % il ey oSCg %)
(0® - k2)* sinh (a? - kP2 n=0 [0* -k} + (P?]
(3.2.26)
' L. L
111 111 CAj (e + 3k - BT sin(k] - 8D
¢, (o,x) = [o,77 (a,d) + ]
/2m (o® - k3 + ki - 8D)
2 2. % . A . B
cosh (@ - k3)72 x L2 . Eﬂ(fn + Jafn)
L, d

i 2
(0 ~ k) sinh (a® -k$)™d n=0 [o® -~ kK3 + (501
i
- A. (¢ + B)) cos(kf - BH=x
cos(%T-x) - : (3.2.27)
vam (0? - k2 + k2 - BY

where the primes on @}(a,d) and @}II(a,d) denote the partial derivatives

with respect to x evaluated at x = d.

At x =d, (3.2,26) and (3.2.27) are reduced to
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o '
. cosh (a® - k2% o' (a,d) , = erEh e joh) |
%" (a,d) = i prai z n v cos (nm)
B (@? - k3)*® sinh (a® - k¥ n=0 [a? - k2 + D
(3.2.28)
i i
111 1" A (o + B) (k] - B]) " sin(k} - BI)™d
®  (a,d) = [ 277 (a,d) + ] " " PR -
/2m (a? - k3 + ki - BD)
1
2 _ 1 2\7% o v reA . B
cosh (o k2) d , %‘ Z e, + Jof)

1 i
@2 - k2)% sinh (0% - k2)%d 9 n=0 [0 - X% + (%%92]
1
A, (@ + By) cos(ki - BI)™d
cos(nm) + j (3.2.29)
21 (0? - k5 + ki - BY)

From the property of the functions on the right-hand side of
(3.2.28) and (3.2.29), (L.e., that they must be regular in the lower and

upper half planes, respectively) it can be shown that (See Appendix A):

' t ) 1
ke 0 (ki,d) - ki 010 (<kp,d)  AkiCka - B1) sin(k} - B3)7d
HEA IR D] +j = ]
’ T 2/2T (ki + ko) (k§ - BD)®
(3.2.30)
t t 1.
g 0 kLd) ¢ 8 (ko) A (K - By) sin(kE - 837

el £, = , — (3.2.31)

2j(ky + k2)

3

2v2m (k; + k2) (ki - BD)

For n > 1, we have

. | L ITT .
Yy o0 (ivp,d) -y @70 (Gv),d)
cos(nm) = C YT +
_ Yot Yq

=

1
£
en

Lo 1
CAY, B+ YD ki - 8D sin(ki - 8])%d
j (3.2.32)

5;[ﬁ+@%2—ﬁ](m+vp
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v . III" .
B o (3vpd) + 07T (), d)
. . _ .
e!' £ cos(nm) = - -
nn o0, * YD)

S L
A (B + FYD (Y - 8D sin(kd - 8%

j T (3.2.33)
2T (v, + ) BT+ G - Kl
where
2 5
Y, = [(%) —k%i{ (3.2.34a)
v nm.z .2 s
vl = [:(d) kz:} .(3.2.34b)

)

Differentiating (3.2.19) with respect to x and letting x = d, it can

be shown that

A = —ED [:@II'(a,d) + @11'(a,d):] (0% - k()% (3.2.35)
(@ - kD L 7

Hence, (3.2.19) can be rewritten as

II

- t ' )
® (0,d) = —CBD [:@II (@,d) + &1 (a,d):] w ol (a,a) © (3.2.36)
- N 2L - + +
(a® - kg)=
3.2.2 Derivation of the Wiener-Hopf Equation

The Wiener-Hopf equation can be obtained from (3.2.28),

(3.2.29) and (3.2,36) by applying the following boundary conditions:
(D Ey is continuous at the x = d plane. Thus, we have

o' (a,d) o' (0, d)

(-1)

(@2 - k%)’

[:¢f1'(a,d) + @iI'(a,d):] - 8. (0,q)
(3.2.37)

and
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1
2 2.7
111 A. cos(ky - By)“°d

+

V2T (o - B1)

(1D HZ ~is continuous at the x = d plane. Thus, we have

ol @,a) = orf(a,d) +j = (3.2.38)

1
o' (e, d) = ol (a,a) - (3.2.39)
and 2 2.% 2 2.5
A-(Bl -k ) COS(kI - Bl) d
o @) = o' @) -5 2 0 (3.2.40)

V2T (o - B1)

From (3.2.37) to (3.2.40), it can be shown that

ol,) = —L 1ol @)+ ol (0,0 +3
B (@®*-k52 | - ‘

21 (o - B1)

1
A, cos(k? - B3)4d

I1I ]
- @ (OL: d) + J
* 2T (@ - By)

Equating (3.2.28) to (3.2.41) and substituting for @.' (0,d)

from (3.2.29) leads,after some algebraic manipulation,to the relation

[¢¢] , ) B '
nEO (fﬁ + jof) H (@) €! cos(nm)

N ol (a,d)

1

1
M(e) o (0,d) + ]

2 2% 2 12.%
A, cos(ki - B})™d :[:1 —.(81-kg)

1 L
A, (BT - kg)*cos (ki - B%)sz

(3.2.41)

]

L
V2T (0 - B8;) (@® -k2)*
i L - i
. A, (By + Q) (k% - B3)?sin(k? - BZ)*d coth (a® -k3)*d
- J - : 1/
v2m(o? - k5 + k2 - g1) (a? - k2)2
. 1 .
+ cos (ki - B3)d (3.2.42)
Where L L L Y
: (@® - k3)° sinh (0% - k3)%d + (0* - k2)? cosh (0® - k3)*d
M(a) = : -

2 23% 2 2 % s 2 2% -
(a® = ko) (@ - k3) ©“ sinh (@ - k3)°d e

e

2 UNVERSR
ffévﬁ (3.2.43jn“f1

§ OF MANITORA y
\x\xwigBRARﬁé #
P st
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1 1
H (o) = - (3.2.44)
" of - ki + (T o -k (P |

while N(a) 1is given by (3.2.43) with ks replaced by k;. Because of

the complexity of M(o) and N(o), the factorizations cannot be found

in closed forms, the technique given by Mittra and Lee [39], (Appendix B);

is applied. After factorization (3.2.42) can be rearranged as

N_(O") 1! 2 1 @ A
e - @D I RmE® [, W % cosemn
2 Ja > B
"I @@ nfo N 5 f costm
1 1
A, cos(ki - B *d 1 (8% - k?)12
+ (o B1) (0(.2

VIT N (@) M_(a) - KD - 8)

1
%

(By -+ a) (BE - 1<§‘)1/2 coth(a? - k3)°d

5 ~
(@® - k3-+ ki - B} (o - k§)? =

(By + ) M (@)

ol (a,a)  (3.2.45)

O - rid-gh | O

where N (o), N_(a), M (o) and M_(a) are given in Appendix C.

Defining

R(a) R (a) + R_(o) L . (B%_kz)l/z
o aj + o = - T
+ - N, (o) M_(a) (@ - Bi1) (@ - kS)/z(q- 81)

(3.2.46)
. (81 + o) (B} - K2 *coth(a? - k§)d
S(a) = S+(OL) + S_(OL) N+(0L) M_(OL) (OLZ _ k% . k-'{— _ B%) (OLZ ~ k%)1/2

(@® - k3 + kI - 8])

By + o) ]
. (3.2.47)
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HE = T (@ + T, ©@ N+'(a)1M_(a) :az - k§1+ (%zj (5.2.48)
() = T?_(a) + T?;(a) = N+(a;ﬂL_(a) ::az : k§1+(2§52:2 (3.2.49)
Tp(0) = Th (@) + Ty, (@) = N+(a)1M“(u) i:az : k%1+ (%992: (3.2.50)
@ = T + e - N+(¢)j°§4_ca) :az «k§1+ (%2: (3.2.51)

The above decompositions are obtained by applying.a theorem -
given by Noble [38]. Again because of the complexity, they canﬁot be
determined in closed forms., Substituting (3.2.46) to (3.2,51) into
(3.2.45) and applying the Wiener-Hopf technique, both sides can then be
set equal to zéro from the condition at infinity (4L.e., |a| + «), obtain-

able from the edge condition. Thus, we have

N.(@ g -
(o) o lo,d) - 2 M@ - (@] e)fh - 2 [T - T e, -
23 @ -1 £ cos( 2 ;o T_(@] ere>
d -, - - Te-(@)] el , cos(mm) - 3 z T.(@) - T,u()] elf cos (nT)
A cos(k? - B%)%d
= J o [R (@) - S_(a)] (3.2,52)
m

and
M, (o) . ' ) )
N, @ o, @) < F @ - T8 fy - § T - T g -
2 (Tha(@) - Tyl R cos 2 3 o T 1gB
d 1 1+ - Ty (0)) erfy cos(nm) - a-nzl (Tye(@) - Tyu(e)) enfn cos (nT)

n=. - :

A; cos(k} - Bf)%d ,
= ] R, (@) - S, ()] (3.2.53)
V2m
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Defining

) = %—[T?_(a) ~Th. @1 3 n o= 0,1, 2, ..., (3.2.54)
@ = 2@ -T@ 5 on o= o0,1,2 ... (3.2.55)
) = %-[T?+(a) -The(@1 ;3 n = 0,1, 2, .... (3.2.56)
M = é-[T?+(a) - Te@] 5 n - 0, 1, 2, vuu. (3.2;57)

and substituting (3.2.30) to (3.2.33) into (3.2.52) and (3.2.53) yields

N_(a) ' - ' _ '
oy O @d - [eC’(@) - @) 8% (ki,d) - (aCl(@) +5 €0(0)) oM (cp,a)]
Crmry - E L@ e o v, - @y, - e o Gy,
n=1
. DA [aCt@) + 3 E) (ko - 8y sin(kd - BHZd
vl B , - +
SARRAY o 2(k1 + k2) (k3 - BY)?

] s o (o) Y, - C_ (@) |
cos(ki - BI)"d (R_(a) - S_(a) + I AR .
n=1 n n

(B + 3¥)) (3 - 8D sin(x} - B‘i‘)%d:'

8+ EP° - kD

(3.2.58)
and

A i3
N, (0) +

III

(,d) = [koCO(0) - GE (@) @7 (k1,d) - (kaCC(a) + 3E0 (0p @

00

1 111!

(-kz,d)]

- I . A -
I [(Ch @) +Ch @) @ (-3vy,d) - (Chloy, -Chi)e, " (v!,d)]

1 A , ks (ki€ () + T2 (a))
. o J';%% cos (k1 - BY) d(R+(a)-s+(gD+- S T )




46

1

G - Ba) sinGi - B%)2d L €y, - Ch@) (Br + 3D
s - 8H* n=1 O * o)

(k3 - 83 %sin(i} - B%)%di}

(3.2.59)
82+ &H° - xh
Equations (3.2.58) and (3.2.59) will be further simplified as
N_(@ g o ey
iy & @ - Pl ol (kid) + 60(@) 9,7 (-kayd) -
- n. v . n II1T' .. , _ e
LOIFN(0) & (-§Y,d) - Gh(@) @, (YLd] = P (@) + I Q(a)
n=1 n=1
(3.2.60)
and
M (o) ' '
ey G - Pl ¢ (L) + 60 0T (kesd) -
z [Fﬁ(a) éf'(—an,d) - G (@) QEII'(jYﬁ,d)] = P (@) + I Qf(u) 2,
n=1 n=1 !
(3.2.61)
where _
. (koCi(0) - 3CL (@)
Fo(o) = S5 (3.2.62) .
. (koCl () - 3C2(0))
F@ = 2(k: + k2) (3.2.63)
. (k1€ () + T2 () -
Go(a) = RSO (3.2.64)
(k,C2 (@) + JC° ()
G'a) = TR (3.2.65)
A, L
P(@) = j —= | cos(k} - B81)%d (R (@) -'S,(0)) +
/2 *
(k1€ (@) +FE2 (@) (ke —Bl)sin(k%-s%f%d:}
— ~ (3.2.66)
2(ky + k) (k] - B1)°
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A, .
P (@) = j—=|costk} - 83)% (R_(0) - S_(&)) +
/2
(ki€ (@) + 3E° (o)) (ke - By) sin (k3 - 83)7%d
- (3.2.67)
2(k; + kp) (ki - B
(€@ + T
Fo(0) = — (Yn“+ YQ;  (3.2.68)
a CRONERR P
F (o) = AR (3.2.69)
n n
(€} (@)Y, - Cr()
G = — (Yn“+ Yﬁ; (3.2.70)
, @y, - )
G (a) = v, + 70 (3.2.71)
" o) R (€ ()Y, - C () (By +3v)) (k% - BD)?sin(k} - 8D)%a
Q (o) = 3 A.
' ' 2T Crg v v 83+ D - i
' (3.2,72)
. o (€, - Ch@) (By + 31 (63 - B3 Psin (k] - 8D
Q@) = J A )

2m (yy ) (B ¢ G - KD
(3.2.73)

From (3.2.60) and (3.2.61), it is evident that the solution of the problem

II1

t t
involves the constants, &' (k;,d), @ (-3Y,,d), 8,1 (-k;,d) and
)
@iII (jYﬁ,d), n=1, 2, 3, ..... The solution is complete when these
constants are determined.
3.2.3 Solution of the Problem
It Iv . ITT!
The unknowns, @~ (k;,d), & (—Jyn,d), ®+ (-k,,d) and

t .
@ill (jYﬁ:d): n=1, 2,3, .,.. in (3.2.60) and (3.2.61) can be deter-

mined approximately by first truncating the infinite sum in (3,2.60) and

(3.2.61) ta "N, 4.e., n=1, 2, 3, ,..., N. A set of simultaneous




48

i
et
Y

linear algebraic equations is then obtained by substituting a

It

1
P

IN]

-3y, n=1,2, 3, ...., N in (3.2,60) and by substituting o

jyﬁ, n=1, 2, 3, ...., N in (3.2.61). This leads to

N ta) It III Nl oa
{:M_(kl) - Ff(kl):} ¢ (ky,d) + GO(ky) .77 (-kp,d) - zl Fo(ky) -

n=

N
(jYﬁ,d):} = P (k) + I Q(k) (3.2.74a)
n=1

IIT
+

It .
" (-3v,,d) - Gl (k) @

N_(-3v.)
M_(-3v,)

It . 0, s I 0, 11"
o (-3Y,,d) - F2(-Jvy) @ (ky,d) + G (-Jv,) o (~kp,d) -
n. . I, . n. . IT1' . . N n. .
F_(-3v.) @0 (-3v,,d) - G_(-3v,) @7 (Ovp.d) | = P_(~Jv,. )+ 2 Q(-3v.)
n=1

(3.2.74b)

M, (o) , | )
I:Biiii;j-+-G2(—k2):} @fII (-k,,d) - Fi(—kz) @f (k,,d) - 21 [:Fz(_kz) .

n=

Iv, . 1 11!, | N a
ol (v, @) - ko) o T Gy | = Pk ¢ I QR(ky)  (3.2.740)
: n=1

M (3v])
' JIITY L RO (5t I 0y 11T ) i
NGvD & Ovpd - FlGv) oo (qud) + G0y o (ke d)

A I L n,. . IIT' . . N .
nzl FoGvp) o (iypd) - 6,0y o Gy | = PLGYD +n§lQ+(JY1;)
(3.2.744)
r = 1, 2, 3, ,..., N
I It . II1!
After the unknowns, " (ky,d), @ («JYn,d), ®+ (-k,,d) and
II1!

®+ (jyﬁ,d) are found by solving the above system of linear simultan-

eous equations, using (3.2.60) and (3.2,61) in
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1
(@® - k3)*d
o) = < | ol a6,
(0® - kg)™ i

L 1 '
A, (B2 -~ k%)? cos(k? - B2 4. 2 28
R b - R S N R 3
!/2—'“' (a - Bl)

and applying the inverse Fourier transform

® + JTo ;
lx,) = L f . !l jaz

do 3  |To| < kY (3.2.76)
V21

(a,x) e
.00+ jTO

After deforming the contour into the upper and lower half planes, the

reflected and transmitted surface waves can, respectively, be represented

by
ORI S (FO(-81) 0" (ky,d) - 6%(-81) o1 (kp,a) +
N n I n ITI!
2 (EP(-81) O (v ,d) - 6Ty ot (L)) +
n=1
¥ (~/Zm)3
P_(—Bl) + Z Q_("B]_)] o 2' 1 5 5 1 *
n=1 cos(ki ~ Bi)=d (BT - ko)
i L .
cos(k? - g2y%q o(BT - K0)°d - (B1 - ki)*x jByz
(3.2.77)
and
1 I t
Vs, (08 = Ky [F20B2) of (i,d) - 62(82) 0,10 (+kp,d) +
Noon I n 111 .
B () o] (ivd) - 68 9,7 Gy + P (8)
n=

1
j V2T cos(kZ - 82)°a e(B§ - k%)%d

N
+ I Q(B2)] - -
n=1 cos(ky - B3Y?d (B2 - k2)?

1
2 22 s v
e~ (B2 = ko) ™x o B2z (3.2.78)
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Where
8,d

o Bi -1 -j —— @ V//*(O)kz sin k,d

R O a7 '__) ] AV ST Fad
k, - B, B,
( - ) 1 - g;? By explq:(B1) - qo(B1)] (3.2.79)
8,d B,d —

K, = ; a1+ jiiﬂal e 7w ; a + 82) eJ —ﬁE~ HOx S%P‘ 2d4
t n=1 an n=1 jYﬁ H1(0)k2 sin kad

B'z - k B _

CPm %) (-B2) (1 - -—) explqo (B2) - q1(82)] . (3.2.80)

while H(0), H;(0), qo(a) and q;(0) are defined in Appendix C.

The far field is found from the inverse transform, from (3.2.76)

® + jTq ~jk_(x - ) - joz
o'l (x,2) = _f F(a) e X T da ;|| < kY
~° + jT
(3.2.81)
where . )
jA, (B2 ~k3) cos (1@~ B2)2d
F(OL) - - (“1) - (OL d) " QIII (oc,d) + 1 _ 1 1 s
21 (a2 -~ k3)? V21 (o - Bi1)
(3.2.82)
L 1 1 '
k, = k2 - 0®)?% ;  [(@® -k3* = j (k§ -a®)7] (3.2,83)

By introducing the polar coordinates shown in figure 3.3 and using the

transformation
o = kysinw ; w = T+ jn
(3.2.84)
k = kp cos w
X
we obtain
o (r,0) = f Fw) e K0T cos(w - 8) 4, (3.2.85)
' P

where the contour of integratidn in (3.2.81) maps into the contour P

in the w-plane.
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where

F(w) = ko coswF(o) (3.2.86)

For the far field (kor >> 1), we apply the method of steepest descent

[56,43] to obtain

jlkor -
21 = EAS LA
oll(r,0) -~ k—o’lr- F(0) e 4 (3.2.87)
X
A
r x-d = 1r cos B
z = 7T sin ©

P

Figure 3.3 Polar-coordinates at a discontinuity junction
on a dielectric slab waveguide

3.2.4 TM Mode Incidence

The problem is similar to the TE incidence case except that
the incident field is Hy' We can follow the procedure of the TE case,
which after applying the Wiener-Hopf technique leads to the following

t ’ 1
equations for @E'(a,d) and @iII (a,d):

€
_T1,
L@ g %@ &0 -0 k1 .
K 2 @d) = = ¢ (ky,d) +
b 2(5239 ki + k2
ri
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€
=N Tro . 1
- ' D '
[3B2(c) + D’ (@) k) ppp 0 OGP @)
€ ®+ ("k2ad) - Z € Q“ (*JYn’d)
T2 ; n=0 T ‘
2[(z) k1 + k2] [ v, * Yﬁ]
r Tl

oo T n 2 2 1/2
(D_(G') - D_(a)Yn ) IIT? Ai COS(kI - 81) d

- L ® 7T (GYr,d) =] [U_(o) -
€ + n -
n=0 T2 V2T
[(g—) Y, * Yl'l]
e T
i
A | € B sin(k? - B®) % 4
V(@] + == (0@ - §D°(®) ky) (EE— - kp) —— 1
2 | T 208 « + k] (k2 - 82?2
T
1 1
w A, e B (k% - B*)%sin(k? - B%)*d
A AL CHO IO 2 gy e
n=0 m T) ) 2 NT 2
[(ql*)Yn +Yr'l] (k1 - (T) - B1)
' (3.2.88)
and
[59(0) 22 - D(a) k]
’a jD 0, - D e
K, (a) <I)111!( 0 + € + 2 @I'(k 0
L+(o¢) + o €, . - 12
2[(*-2‘) ky, + k,]
EI‘],
= ) 22 + D% (o) y!
[JD_E(OL) + D_?_(O(.) k;] 11" o il €. £0Y) It
. -0, (ky,d) - 3 : o (-iv,,d)
=0
20259 &y + k] I v, ]
T T )
o (O™ - D) v, ) A, cos(k?-g2)%d
I + - + n Q{II‘(J'YI'I,d) - i 1 1 [U+(OL) —V+(OL)]
R (AR | v
e 2> 'n Tn
T
R 1
A, e B sin(k? - 82) 24
+ === (02(a) ~ JD%(a) ki) (2 < k) P
Vors €r,

: L
2[(*};2_) k; + kp] (k% - B‘;’)Z
Eri
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p A e B | (k2 - 82)1/2sin(k2 - szl/‘?d
23§ =2 BT - DT ()Y (Y ———— o
=0 2m T T nm 2
" 1, ug?%+muﬁ—(ga—sg
(3.2.89)
where |
' €
D@ = %[w’;_(a) - (2 W) (@] (3.2.90a)
_ N
. |
Die) = =W, (@) - (E—i-z—) Wo, ()] (3.2.90b)
1 .
(o) = 221— [7 (@) - W2 (@] (3.2.90¢)
n 2 n -1
Bl = 20, @ - ), @] (3.2.90d)
n = 0,1, 2, 3, ven

while L, (o), L_(0), K, (o), K (@), U (@), U_(a@), V, (), V_(e), W, (a),

WY, (0), Wy (), Wy, (o), W} (&), W}, (@), Wy (&) and W, (o) are
given in Appendix C.

From equations (3.2.88) and (3.2.89), it is evident that the

unknown constants, oo (k;,d), @f'(—jyn,d); n=1,2, 3, veers,
o1 (k,,d) and o1 (jy!,d), m=1,2,3, ... canbe found by the
same technique already applied for the TE case., Once these unkﬁown
constants are determined, we apply the inverse Fourier transform, with

the proper contour deformations for the regions of z < 0 and z > 0,

to the expression

1
2 2472 .
a“ -k I i1t 3
0 T I R R S R N W Sk
" (a,d) = i = + c +J
(a?® - k3)™* r1 Ty V2T
2 | 2% 2 245
cos(kl - 51) -(0%- ko) “x-
e _ ‘ (3.2.91)

(o - B1)
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to find the following expressions for the reflected and transmitted waves

' -
¢ééF (x,2) = gZE j Res[@f (@,d) ; & = -B,] é 1) e
' 1 (BY -k3)*° cos (k% -B8})%d
i i
« cos(k} - B%)l/zd e(B‘% - k%) “d e'(B% —k%) x e+j512
(3.2.92)
and
' ) ] 1
bqany, (502) = -éZi i Res[o11T' (0,d) 3 0 = 2] ) i
. o T2 (B3 -k2) cos (k3 - B2)*d
1 1 .
. cos(k%-—B%)%d e(B% -kg)d e-(B%-—k%)zx oIBz
| (3.2.93)

t ‘ 1
Where Res[¢' (a,d) ; @ = -8,] and Res[®.'' (0,d) ; a = B,] are the
1 ) t
residues of @f (0.,d) at ~B; and @iII (a,d) at B2, rTespectively.
Applying the method of Steepest descent as in TE case, the

far field is given by

v
. -jkor - )
o lir,0) ~ v f?%--ko cosB G(ko sind) e 4 (3.2.94)
where ' 1 1 |
ol ,a) oM',a) A, (B2-kDH)E
G(o) = 3 - T +j 2
/2T (a? -k2)% €r1 ra V2T
"
cos(k} - BI)<d
. oD (3.2.95)
3.3 . Numerical Results

Figure 3.4 shows the magnitude of the reflection coefficient at
the discontinuity junction as a function of kd;.. The solid circle nota-
tion represents the results obtained by the Wiener-Hopf technique proposed
in this chapter while the solid line represents the results based on the

residue-calculus technique as discussed in the next éhaptere The dash
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lines represent the asymptotic values as obtained from the consideration .
of a normal plane wave incident at the junction of two dielectric media
[53],[54]. The Wiener-Hopf results are obtained by first solving (3.2.74)
for the unknown constants, By substituting these constants in (3.2.77),
the reflected surface wave and the reflection coefficient, which is de-
fined as the ratio of the reflected surface wave to the incident surface
wave, can be found. The ratio of transmitted power to incident power as
a function of kd; is shown in figure 3.5 using the same notations as
invfigure 3.4, while the open circle notation represents the results by
the reciprocity theorem, The Wiener-Hopf results are again ob£ained by
first solving (3.2.74) for the ﬁnknown constants which are substituted
into (3.2.78)4tq'obtaip the transmitted surface wave.

Tables'(s.l) and (3.2) Show the calculated values of the unknown
constants for different kd,. These unknown constants are values of the
partial derivative w.r.t. x of field of‘region I in the lower half of
o-plane at ki, - §Y,, n =1, 2, 3, ..o (oo, O (kp,d), o' (-5v,,4))

‘and the partial derivative w.r.t. x of field of region III in the upper
h §
QIII

half of o-plane at : -k,, jyﬁ, n=1, 2,3, ..... (L.e., N

, t
@fII (jyﬁ,d)). They are found by solving equation (3.2.74).

("kZ:d) "
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TABLE 3.1

Calculated values of unknown constants for

TE mode with
= 2.56 ; € _ = 5.12
2 :
kd1 0.3 kdl = 0.7
REAL IMAGINARY REAL IMAGINARY
' ) - -
'¢f (k1;d) .1119 x 107} 0.1351 x 107! 0.1538 x 107} -0.7617 x 1073
1 : '
@f (-3v1,d) .8117 x 1073 -0.3697 x 1073 0.8802 x 107! 0.8665 x 1072
1 ) .
ot (-3Y2,4) .2106 x 1073 0.4296 x 107* -0.2269 x 1072 -0.1080 x 1072
t
o1’ (-3vs,d) .3115 x 107° -0.1575 x 107° 0.2169 x 1072 -0,2132 x 1072
111! ' -1 . -1
o, (-kz,d) .2661 x 10 0.1281 0.4631 x 10 0,1157
' - -— - -
ot vy, ) .1879 x 107} 0.3558 x 1072 | -0.8816 x 107 0.1897 x 107
t .
@iII (Jvy,d) .8316 x 1072 0.9484 x 107° -0.2777 x 107} 0.2001 x 1072
1 .
ot (51, a) .4691 x 1072 0.7937 x 107* | -0.2017 x 107} 0.2197 x 107°

89S




TABLE 3.2

Calculated values of unknown constants for TE modes with

€., = 2.56 ; e, = 10.24 | _ §
kd, = 0.2 kd, = 0.5 :
REAL IMAGINARY REAL IMAGINARY ?
' _ ) } ) _ :
@f (k1,d) -0.2083 x 107! 10.3283 x 107} 0.6592 x 107! 0.2170 x 107! ;
' - - ‘ ;
ol (-3v1,d)  -0.8640 x 107! | 0.4562 x 107" 0.1209 x 107* -0.1242 x 10°
1 -
@f (-jvz2,d) -0.3990 x 107! 0.1827 x 107} 0.5021 x 107* -0.8448 x 10°°
: : o
I - CC
®" (~jvs,d) -0.8632 x 1072 0.4409 x 1072 0.8585 x 1072 -0.2739 x 1072 : ;
III! -2 : -1 -1
o, (-k2,d) 0.7032 x 10 0.1151 -0.1459 x 10 -0.5578 x 10
CITIY, L, . . .
o (+iy!,d) 0.1923 x 10% 0.1198 0.1667 x 10 -0.4013
+ 1
I, -1 -1 : -1
o Gy!,d) ~0.7179 x 10 0.2336 x 10 0.6309 -0.2751 x 10
+ 2 :
III',, -1 -2 -1
o Gy!,d) 0.1165 x 10 -0.3470 x 10 ~0.5045 -0.5291 x 10
+ 3 :
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CHAPTER 4

APPLICATION OF THE RESIDUE-CALCULUS TECHNIQUE

4.1 INTRODUCTION

The Wiener-Hopf technique as applied in Chapter 3 for solving
the problem of a discontinuity in a dielectric slabvwaveguide is very
complicated when dealing with a structure with finite thickness. The
solution, which always contains coﬁstants satisfying linear algebraic
simultaneous equations, cannot be found in closed form. The problem
becomes more complicated when the dielectrie slab waveguide takes on a
more general form, 4L.e., different thickness on the left and right sides
of the junction. It is the purpose of this chapter to present a new
technique based on the residue-calculus method [46-49] to deal with this
more complicéted structure. It is found that the solution obtained by
this technique, though approximate, is far simpler and more convenient
to apply.

By the residue-calculus technique, the problem is formulated
based on the mode matching technique similar to the procedure of Marcuse
[4,23] leading to two simultaneous equations after applying the boundary
condition at the junction, Héwever, instead of following those tech-
niques previoﬁsly reported for solving these equations, the residue-
calculus technique is applied. Essentially by this technique, a func-
tion is constructed such that its poles have the same locations and
contributions as those of surface wave poles while its branch cut inte-
gral is equal to the contribution from the radiated field. This term-
by-term comparison then permits the calculatioﬁ of the unknown quantities.

However, in constructing this function, the fundamental assumption is




made that the resulting mode amplitudes, when expanded asymptotically,
have the proper algebraic behaviour as shown by Collin [40] for a dif-
ferent problem which also involves a dielectric slab, Consequently, the
entire function involved in the constructed function is simply a constant
which can be foﬁnd from the incident field, In order to check for the
~accuracy of the results, the reciprocity theorem, as applied by Barlow
and Brown [16] for the problem of discontinuity in surface impedance, is
used. And by representing the slab waveguide by surface impedance, under
certain conditions, a check based 6n the application of Kay's result

[20] can also be made.

4.2  FORMULATION OF THE PROBLEM

The configuration of the dielectric slab waveguide under con-
sideration is shown in figure 4.1. It is assumed that the y-dimension

is extended to infinity and all field components are independent of y,

L.e., g%-= 0, The subscripts 1 and 2 denote the left and right

sides of the discontinuity, respectively, so that the slab thickness
changes from 2d; to 2d», and the dielectric constant changes from

Erl to Erg' The formulation is given in detail for the case d; > d;

and a similar procedure can be used to derive the results for the case

d2 > di. Two .cases of incident fields, TE and -TM, are formulated

jwt

separately assuming e time dependence which is suppressed through-

out,
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b X

ri
T2

2d2

2d,

Figure 4.1  Schematic diagram of a stepped dielectric
slab waveguide.

4.2.1 TE Incidence

By using a modal exfansion (involving a single surface wave
mode plus psuedosurface or‘radiation modes) of the electric field on
each side of the junction and applying the boundary conditions, that the
tangential electric and magnetic field components must be continuous at
z=0 plane, the two simultaneous equations for the unknown mode ampli-

tudes are given by

i T *® T t ® t
E + E + E dp = E + E (p") dp' 4.2.1
y y L y(p) p y Jo y(p ) dp ( )
i r [ t [0t
T
-BiE- + BiE + E do = ~B2E- - 'E- (p') dp! 4.2.2
| B1 y B1 y L B y(p) p B2 y L B8 y(o ) dp ( )

e

where E;’r’t represent the y-components of the incident, reflected
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and transmitted field, respectively, which are given by

A; cos (k;x) , Ix| < dy

EL = Ailbl(x) = (4.2.3a)
Y Yid: -Y1|x|

A e cos(kid;) e s x> 4

: Ar cos (k1x) s Ix] < da
E; = Arxpr(x) = | (4.2.3b)

Yid)y ~y1]x|
A e cos(kidi) e > x| > d
A, cos (kz2x) , x| < as
t t ' -

Ey = Atw x) =={ - : (4.2.3¢)

' A eY2dz cos (kady) e—Yz'XI , x| > dp

where Ai’ Ar and At are the émplitudes of the incident, reflected
and transmitted surface wave modes, respectively. The propagation con-
stant for the surface wave mode in the longifudinal directionlis B
while in the transverse direction it is denoted by k in the dielectric

waveguide and Y in the surrounding medium. These constants are related

to one another by the expressions

] i
Ki,2 = ., , ks - BE,2)"
5 .
Yi,2 = (B},2 - k)* (4.2.4)
ko = W/lgEg. = '%%

and Ay is the free space'wavelength. E;(p) and E;(p) are the radia-
tion modes fo the left (backward) and right (forward) sides of the junc-

tion, respectively, where
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q.(P) cos ox , Ixl <y
EL(P) = q.(p) ¥°(p) = . (4.2.5)
Y . iolx| , \* -iplx|
(0 (de??Xaay eTIPIXy x5 g,
qt(p') cos o'x . <
, d
EC(p') = a, (") ¥ (p") . = . x| - (4.2.6)
Y iotlx| . * -je'|x]
9. (P') (Aze +hr e - )
Ix] > dz

Here qr(p) and qt(p‘) are the amplitudes of radiation modes in the

backward and forward directions and

b= 27PN (cosgd; + j g—sinddl) (4.2.7)
-1t t -
Ay = %e P2 (65 atd, + 'g—, sin 0'dy) (4.2.8)

and the star superscript denotes the complex conjugate. The propagation

constants 0, p and B are related to one another by

= 2 _ p2y2
° = (e, ki - 8%

(4.2,9)

©
il

1
(k5 - 8%
while the relation between 0O', p' and B' are still the same as given

. above, except that €r1 is replaced by Erz’

Applying the orthogonality condition to (4.2.1) and (4.2.2)

and normalizing the field expressions,. {.e.,

{oe] .
f lv|2 ax = 1 , O (4.2.10)
o .

we obtain after some algebraic manipulation,

FoA; (B2 - B1) f wiwt* dx + FoA (B2 + B1) J wrwt* dx +
o _ o




1os]

J Fiq.(p) (B2 + B) f ¥* (P wt* dx dp = 0 (4.2.11)
(o] 0

FoA, (B2 + B1) f Wt dax + FoA_(B2 - B1) f Pt ax
(o] (o]

J qur(p) (82 - 6) J lpr(p) wt* dx dp = 282 At (4‘2.12)
(o] o ) |

where Fo and F; are given in Appendix D. After performing the inte-
gration with the aid of (4.2.3) to (4.2.9), equations (4.2.11) and (4.2.12)

can be written, for d; > d;, as

A, Ar _+ 0 qr(p) FiN; dp

1 § .
(Bz+B0) ~ (Bz-B0) L {Ce,, -6, )k - B2 + B2HE, - 1)K3 + B3 - B2J (B2 - B)

= 0 | (4.2.13)

Ai Ar °° qrfp) Fi1N; dp
Co L' {(er2 -, JKZ -z + 52}{@r1 “1)KZ + B2 - B2F (B2 + B)

+

(B2-"B1) ¥ (B2 ¥B1)

= 2 CoBs A, (4.2.14)

while for d, > d;

A, . A 00 qr(p) FiM; dp

A . ,
Bz+B1) © (Ba-Bn & L {(€r2 me. Jk§-Bg+ 62}{(81,2 -L)kE -85+ B2} (B2 - B)

+

= 0 | | (4.2.15)

A, A
1

- qr(p) FiM; dp
+
(B2 -~ B1) (B2 + B1)

o, (G, "5, )55 - B+ BTG, - DKG - B + 671 (Fa + B)

+

= 2 C82 At (4.2.16)
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4,2,2 T Incidence

Simiiar to the

at the junction for TM modes:

i T ® T t ® t
H + H + H dp = H =+ H YY) dp!
y v L) y(p) P y fo y(o ) dp
B, i B T fw B T, B, .
, H = c—t=<H - | —==H(p) dp = —3~
AN O S A N O €., (X
OOB' t
H (p') dp!
f; &,y
where
€r1 IXI < d;
erl(X) =
1 5 IX| > d1
Erz ’ IX' f d,
€, (X =
1 R X > ds

TE case, the following equations are obtained

(4.2.17)

t
+
y

(4.2.18)

(4.2.19)

(4.2.20)

By applying the orthogonality property and following the same procedure

as in the TE case, the integral equations containing the unknown mode

amplitudes can be obtained from (4.2.17) and (4.2.18) as

a) for d; > dos

A Ro (B2So - BiSi)

+

(G, = &, )Ks - B% + BiH{e_ ~DK; + B7 - BLI(BF - BD)

ArRo (B2So + BiS1)

{(e,, - e, )%3 - BZ + B2}{(e, ~1)KZ * BZ - BZJ(BZ - BY)

T2

+
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q,.(P) Ri(B2T¢ + BT1) dp

: {(srz - Erl)k% - B% + BZ}I(erl - 1)k2 +:B% 62}(82 B2)
= 0 (4.2.21)
AiRO (B2So + BiSi)
(e, - €, )k - B2 + BZ}{(e, -~ D)K; + B3 - BZI(B} - BD)
| . A Ro (B2Sq¢ - BiS1)
(e, - €, )%z - Bz + B2}{(e, - 1)KZ + BZ - BZJ(B} - B
q,.(0) Ry (B2To -~ BT1) dp |
TG, ~ e, )%z - Bz + B7H(e, -~ 1)Kz + B - BZJ(F - B)
= 282 At (4.2.22)
b) for d. > dys
| ~ ARg (B2So - BiSI)
(e, - e, 0Kz - BZ + B2}{(e, - 1)K2 - BZ + BYJ (B - BD)
ARe (B2So + BiS1)
(e, - e, )3 - BZ + B3H(e, - 1Dk - B3 + BJ(EZ - BD)
o q.(p) Ry (B2Tg + BT1) dp
{(e,, ~ &, k2 - B2 + B2H{(e, i k2 - Bz + B2}(Bg - B2)
= 0 (4.2.23)
. ) .ARo (5250*‘6151)
Te,, ~ e, )K7 - 62 + B2H(e,, - DKZ - B3 + B2I(BZ - B2)
A_Ro (B2So - B1S1) |
{(er2 - e, kg - B2 + B§}{(sr2 ~1)kZ - BZ + B2}(P3 - BD) +
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a,(p) Ri(B2To - BT1) dp
“E, 0K - B2+ BPH(E,, < DK - By ¥ BET(RE - D)

b

= 2B, A, (4.2.24)

t ! t
where the expressions for Ry, Ri, Sq, Si, Tg, T1, S;, S1, To, Ty are

~given in Appendix D,

4.3 SOLUTION FOR THE MODE AMPLITUDE

The unknown mode amplitudes qr(p)‘ of equations (4.2.13),
(4,2;15), (4.2.21) and (4.2.23) will be determined by applying the
residue-calculus method, The main stép in the residue-calculus method
is to construct a complex function f£(p), which after béing integrated
over the contour in the complex plane, gives rise to an equation which
is identical to the equation we are attempting to solve. It then becomes
possible to identify the unknowns in the equation with the residues or
value of f(p), thereby extracting the desired solution., In order to
cohstrucf'the function f£(p) the general properties of qr(p); such
as its asymptotic behaviour, its poles, etc., have to be known. This"
technique will give an exact solution provided that all the singularities

of the unknown function, qr(p), are known.

From the observation of the previous problems involving surface
wave propagation, it is clear that‘Ai and Ar are related to qr(p) by
familiar relationships similar to those shown by Shevchenko [50], Hessel [56],
Tamir [57] and Zucker [24] where the general field is expressed by an inte-
gral over the longitudinal wave number 8. By closing the countour in
the upper or lower half planes.of B depending on the region of interést,

and using Cauchy's theorem, such a field expansion may be separated into

a surface wave field (arising from surface wave poles in the B-plane)
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and a radiation field (branch cut integral in the B-plane) which is in
the form of an integral over the transverse wave number p. Because

this integration is always from - to «, the integrations in (4.2.13),
(4.2.15), (4.2.21) and (4.2,23) will also be extended to that limit.

This can be done by considering qr(p) as an even function since all

the other quantities in the integrand are even functions of p.

4,3,1 Soélution for TE Incidence

In order to solve (4.2.13) by the residue-calculus technique,

the variables p' and B are considered complex quantities related to

each other by (4.2.9), {.e., p? = kg - B%2. Equation (4.2.13) is rewrit-

ten as

A, A, ¢, a,(0) FiNy dp

(Bz+BD) * Ba-BD) ~ 2 J_w TG, €, ,)KE - B * B2J1 (e, - 1)K} + B3 - BJ (B - B)

- 0 | | (4.3.1)

The properties of qr(p) should be such that when the contour
is deformed in the lower half of the p-plane, the contribution from the

poles must cancel the first two terms and, because the right side of

(4.3.1) is zero, the integral around the branch cut due to the term
(B2 - B) must vanish, To satisfy these requirements, qr(p) must con-=
tain a term which permits removing the branch point singularity from

the integrand. Another property of qr(p) is that it has an algebraic

behaviour at infinity [40], 4.e., q_ () ~ p~2 as |p| > . With this

asymptotic behaviour of qr(p), the entire function, in the function to
be constructed, is simply a constant which can be found from the inci-

dent field, For simplicity, we will start from the B-plane and consider
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the contour integral

§ £(B) 8 dB
c {(er2 - erl)kg - B2 + leﬂ?rl - 1)kZ + B2 - B2}(B2 - B)

This contour integral will then be transformed back to the p-plane with

the bottom sheet of the p-plane (Im p < 0) being chosen. The B-plane

corresponding to this sheet is shown in figure 4.2,

n(B)-

Re(p) > 0

PN Re (B)

Re(p) < 0

«4——~ Branch cut

Figure 4.2 B-plane corresponding to Im(p) < O
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From the propefties of qr(p), the function £f(B) 1is éon»

structed in the form

L0 - B/B (1L - B, - DKL+ BN - BB (e, - &, )KD)
£(B) = (1 + B/B (L - B/B1)

(4.3.2)

where L, 1is a constant to be determined., After substituting for £(B),
choosing the contour in-the lower half of the B-plane, and transforming
the. integration along the branch cut into an integral in the p-plane

we obtain

-(Co/2) [Res{£(B); - B1}/{(e, - €, kb - 8] + BIHE, - ki + 8} - 81118
: (B2 + B1) (Jvu)

(Co/2) [Res{£(B); B}/ {(e, - e ki - By + BIME, - Dk + 67 - BIH(-B1)
(B2 - B1) (Y1)

+

Co J°° f(B) do = 0
2mj | g (e, - €, 0kZ - B2 + B2H (e, - 1)k§ + B - B2J(B2 - B)

(4.3.3)

where

[Lo(B2 +B1) (e, -1)k+B; - BHB; - (e, e, kg - B118,]
[2B2{(c, -DkZ+B3HBE - (e, -€. IkZ}]

ReS{f(B);-—Bl}

(4.3.4a)

[-Lo(B2 - B1){(e, -1)kg+B; - BIIE; - (., -€, 0k - 8118, ]
[2821(e, -1)kZ+BZHBZ - (¢, "Fr1)k5}]

(4.3.4b)

Res{f(B); Bil}

It

By comparing equations (4.3,3) with (4.3.1), it is found that
the amplitudes of the incident and reflected fields can be obtained from
the contribution of the poles at -By and Bi, respectively. Hence,

the following relations are obtained:
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4 A;GydBe {(e, - kg + B7Y 18] - (e, - e )k}
Co(B2 + B1)B2

_ By - By)
r - (B, * B M

£(8)
'ITj FiN;

B:Vk%—pZ

q.(0) =

A_ can be found from equation (4,2.14), as

1 Ai Ar Ain ® Ba - B3

(4.3,5)

(4.3.6)

4.3.7)

t  2CeB: (82-81 Y BB T B2 (B2 + B1)Co [_w (Bf-—BZ)(Bz'*B)

dp

(4.3.8)

Using the same procedure, the following relations are obtained for the

case dz > dl,

(8, - B,)
r - (B2 + B1) A

Ay B2 + g2 A * B, - B

(4.3.9)

4.3.2 Solution for TM Incidence

t ~ BaCi ((82-51)(52'*51)2) " mB2(B2+ B1)Cy [_m (B2 - B2) (B2 +B) do

(4.3.10)

By using the same procedure as in the TE incidence case,

the following relations are obtained for TM incidence with d; > ds:

_ (8,8, ~ B,S)) A
r  (B2So + BiS1) i

RoA; [{(B2S0)® + (B1S1)%}/B2(B2So + B1S1)]

>
It

t = TCe,, - &, )KE - B2 + B2H(e, - k2 + 67 - BZI (B} - BD)

(4.3.11)
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YlRQ (BZSO - BISI) Ai
B2 (B3 - BN (e, - DkZ + B3 - B3H(e,, - €, DKk} - BF + BY)

= (BT, - B)

J—w (B2 - B2) (B2To/T1 + B) de (4.3.12)
while for d; > di,

(B,Sy - B,81)

= ’ A. 4.3.13
Ar T sy v Esp M | (4.3.13)

R A [1(8,80)% + (8,51)°}/8,(8,8; + B,5,)]

t '{(Srz - Erl)kg - BZ + B%H(er'z - D)k - B2 + BII(B} - BD) -
Y,R (BSo - ByS1) A,
mB2l(e,, - €, JkZ - B3 + BYH(e,, - 1DK§ - Bf + BYJ (B} - BY)
® ((B,T/T} = B) .
f L B -BD G By OF ~ (4.5.14)
4.3.3A Solution for the Radiated Power

The reflected power Pr and transmitted power Pt can be

f
calculated once Ar and At are found by applying equation (2.2.41)

for the TE case and equation (2.2,42) for the TM case, with the norm-
alized fields as given by (4.2.10). The radiated power Pr can then be

obtained as

Pr = Pin - Prf - Pt (4.3.15)

where Pin denotes the incident power,
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4.4 NUMERICAL RESULTS

The radiation losses caused by a symmetrical step with the
ratio dz/d: = 0.5 for the case €. = 1.0201 are plotted in figures
4.3 and 4.4 as a function of kdy for TE and TM excitations, respect-
ively. The solid lines are the results obtained from the residue-calculus
technique, based on equations (4.3.6), (4.3.8), (4.3.15) for the TE
case and equations (4.3.11), (4,3.12), (4.3,15) for the TM case, The
dotted lines are the results from applying Kay's solution, as explained
in Chapter 2, Also shown in these figures are the fesults as obtéined
by Marcuse [23] using two different techniques, the perturbation tech-
nique and the method of approximatioﬁ where a large step is approximated
by infinitely many small steps, These results are given here for compar-
ison purpose. The radiation loss of a symmetrical step as a function of
d2/d: for €. = 1.0201 and kdi = 10,0 for TE excitation is shown
in figure 4.5. The solid line is obtained from.the residue-calculus
based on equations (4.3.6), (4.3.8), (4.3.15) while the open-circle
symbol represents Marcuse's result,

The reflection coefficients at the junction discontinuity with
€r, = 2.56, d,/d, = 1.0 for four different values of €., 2are plotted
agéinst kd: in figures 4.6 and 4.7 for TE and TM excitations, re-
speétively. The results in figure 4.6 are based on equation (4.3.6)
while figure 4,7 is based on equation (4.3,11). [It should also be noted
at this point that as d,/d; = 1, the same results can be obtained from
equations (4,3.6) and (4.3.9) for the TE cése and from equations
(4.3,11) and (4.3.13) for the TM case.] For these same cases, the re-
sults for the radiationlosses are shownin figures 4.8 for TE excitations -

and (4.9) for TM excitation. The results in figure 4.8 are based on equations
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(4.3.6), (4.3.8), (4.3.15) or (4.3.9), (4.3.10), (4.3.15) while figure 4.9
is basedon (4.3.11), (4.3.12) (4.3.15) or (4.3.13), (4.3.14), (4.3.15). The re-
sults for the transmitted power are shown in figure 4.10 for TE excit-
ation based on equation (4.3.8) or (4.3.10) and figure 4.11 for TM
excitation based on equation (4.3.12) or (4.3.14).

The reflection coefficients at the discontinuity junction with
€. = 2.56 and €r2'¥ 5.12 fo? different ratios of d,/d; are plotted

I
against kd; in figures 4,12 and 4.13 for TE and TM excitations,

respectively. The results in figure 4.12 are based on equations (4.3.6)

when d»/d; < 1.0 and on (4.3.9) when dp/d; > 1.0, while figure 4.13

is based on (4,3.11) when dz/d; < 1.0 and on (4.3.13) when d»/d; > 1.0,
For these same cases, thé results for the radiation losses are shown in
figures 4.14 for TE. excitation and 4.15 for TM excitation. The re-
sults in figure 4.14 are based on equations (4.3.6), (4.3.8), (4.3.15)

when dz/d; < 1TO‘ and on (4.3.9), (4.3.10), (4.3.15) when d2/d: > 1.0,
while figure 4.15 is based on (4.3.11), (4.3.12), (4.3.15) when d»/d; <
1.0 and on (4.3.13), (4.3.14), (4.3.15) when d2/d1 > 1.0. The results

for the transmitted power are shown in figure 4.15, for TE excitation

based on (4.3.8) and (4.3.10) when dp/d: $ 1.0, and figure 4.17, for

T excitation based on (4.3.12) and (4.3.14) when d2/d1 $ 1.0.

The discussion of these results and conclusions are given in

Chapter 5,
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Figure 4.7 Reflection coefficient for TM incidence with the same

parameters as for Fig. 4.6




05
04
2/P
0.3

0.2

0.1

| | | | | | [ | | ! ] T

02 04 06 0.8 1.0 .2 |.4 l.6 18 20 22 24

) _
Figure 4.8 Radiation loss for TE incidence with the same parameters as for Fig. 4.6

W v e




i

P

N
1'111[111111\4-$

02 04 06 08 10 12 14 16 18 20 22 24
| - kd, | B

Figure 4.9 Radiation loss for TM incidence with the same parameters as for Fig. 4.6 :§




O O O Reciprocity Theorem

£8

Residue calculus

0.2

e ] L 1 1' |
02 . 06 [.O . | 4 [.8 2.2 2.6

kd,

Figure 4.10 Transmitted power for TE incidence with the same parameters

as for Fig. 4.6




P/P,

¥8

O O O Reciprocity Theorem

Residue calculus

[ l l l I I l
0.2 0.6 1.0 .4 .8 22 2.6

kd,

Figure 4.11 Transmitted power for TM incidence with the same parameters

as for Fig. 4.6




0.25

0,20

0.15

0,10

0,05

1 ! ! ! 1 I | | ! kd
0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0
Figure 4.12 Reflection coefficient for TE incidence with er1=2.56 and er2=5.12

(a) dz/d1=0.3 (b).dz/d1=0.7 (C) dz/d1=l.0 (d) dg/d1=’l.5
(e) dy/d;=2.0

S8




)4

A;

0,25

0,20

0.15

0,10

0.05

0.2 0.6 1.0

Figure 4.13 Reflection coefficient for TM incidence with Efi=2'56 and er2=5.12

(a) d,/d1=0.7

1.4

(b) d,/d;=1.0

L
1.8

L
2.2

(C) dz/d1=l.5

.
2.6 3.0

(d) dp/d;=2.0

98




0.5

0.4

;?/E%

0.3 .

0.2

0.1

Residue calculus

o o Kay's formula

] ] ] I 1 ! l

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2,2

figure 4.14 Radiation loss for TE incidence with er1=2.56 and er2=5.12 (a) dp/4d;=1.0
(b) d/d4:=0.7 (c) dp/d,=1.5 ‘




0.5 |

0.2

0.1

(d)

{c)
o Residue calculus
e o o Kay's formula %
(b)
(a)\
] | l | l l | ] | ] | |

0.2 0.4 0.6 0.8 1.0 1.2 14 16 1.8 2.0 2.2 kd,

Figure 4.15 Radiation loss for TM incidence with the same parameters as for Fig.4.13




L0 | o
® ° © e
Ps —
Pin 0.4 i
| 0 0 o . Reciprocity theorem
Residue calculus
0.2 | e o o Kay's formula
| | l | [ 1 1 L | I L ! _|
0.2 0.6 1.0 1.4~ 1.8 2.2 2,06 3.0

kd,

Figure 4.16 Transmitted power for TE incidence with the same parameters as
- for Fig. 4.14




O
ot

p. o]
Pin )
0.4
B . ' O O O Reciprocity theorem
0.2 Residue calculus
® o o Kay's formula
] 1 ! 1 1 | L 1 ! 1 1 1 }
0.2 0.6 1.0 1.4 1.8 2.2 2.5

-1
| | kd, o :
Figure 4.17 Transmitted power for TM incidence with the same parameters

as for Fig. 4.13




91

CHAPTER 5
DISCUSSION AND CONCLUSION

5.1 INTRODUCTION

The problem of discontinuity on a dielectric slab waveguide has
been studied for both TE and TM excitations. Because of lack of
efficient means to deal with the problem, which generally involves deter-
mining the amount of radiation loss, reflected and transmitted powers at
the discontinuity, this thesis proposes two new approaches, the Wiener-
Hopf and the residue-calculus, to effectively determine these quantities,
This study should, therefore, be of interest in designing and evaluating
the performance of systems involving dielectric waveguides, such as used
in optical cqmmunications or surface wave aerial designs. For a better
understanding of the proposed techniques, some important features together

with the results are discussed in this chapter.

5.2 DISCUSSION

.The accuracy of the proposed techniques, the Wiener-Hopf and
the residue-calculus are checked by comparing the results obtained with
previous results which are available only for simple cases. For more
general cases, reliable experimental data over the slab discontinuity is
‘lacking since such experiments are difficult to perform., The results
obtained from the proposed techniques are, therefore, compared with those
obtained by applications of the reciprocity theorem and Kay's analytical
technique. As shown in figures 4.3, 4.4 and 4.5 it is clear that when
the residue-calculus method is applied to a step discontinuity involving

only a change in slab thickness with the material property remaining the
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same on both sides of the junction as considered by Marcuse [23], the
results agree very well with his results, As for the general case of
step discontinuity, which involves both a change in slab thickness as
well as dielectric constant, the results agree with the approximate re-
sults obtained by applying the reciprocity theorem and Kay's analytical
technique as shown in figures 4.10, 4,11, 4.14, 4.15, 4,16 and 4.17. The
agreement of these results are acceptable otherwise deviations can be
attributed to the approximations involved in each technique which are
discuséed later, The good agreement between the Wiener-Hopf and the
residue-calculus results is confirmed, as expected, in figures 3.4 and
3.5 from which it appears that the residue-calculus results are more ac-
curate than those obtained by the reciprocity theorem and Kay's analytical
technique. It is also found fhat as the frequency increases, the reflec-
tion coefficient is obtained by the residue-calculus and Wiener-Hopf
. methods converges to the reflection coefficient of the normal plane wave
incidence at the junction of two media of infinite dimension, as expec-
ted. This is because the dielectric slab will look more like the medium
of infinite dimension as frequency increases. However, the results are
only presented in the ffequency range of single mode operation.

‘Though the reciprocity theorem and Kay's analytical technique
can be applied to approximately solve the general problem of a dielectric
slab waveguide discontinuity, they have certain limitations as compared

to the Wiener-Hopf and the residue-calculus methods, The limitation of

the reciprocity theorem is that it only provides the answer to the amount

of transmitted power through the junction. Without a knowledge of the
reflected power at the junction, it is impossible to determine the power

lost due to radiation. Hence, it is clear that this technique does not
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give all the answers to the problem. Moreover, the results obtained are
only approximate since the field at the junction is approximated by the
incident field, Thus, it is clear from figures 4.10 and 4.16 that the
accuracy is lower as either erzlerl or d,/d; is increased. On the
other hand, Kay's analytical technique can be applied to a dielectric slab
discontinuity which can be satisfactorily represented by a discontinuity
in surface impedance subject to the condition that hyd << 1 (h, is the
propagation constant along the x~axis and d is half the slab thickness).
When this condition is violated, the representation of a dielectric slab
Qaveguide by surface impedance is not a satisfactory approximation. Thus,
the results obtained will be appreciably different from the exact solution.
However, it is found from the results presented in Chapter 4 that the ap-
plication of Kay's analytical technique still give$ reasonably good ap-
proximate results for the reflected, transmitted and radiated powers for
many cases, even though the condition previously mentioned is violated.
The Wiener-Hopf and the residue-calculus techniques, on the
contrary,'are not subject to those limitations, which restrict the ap-
plications of the previous two techniques. Though the Wiener-Hopf tech-
nique does not give the exact solution to the problem because the sur-
face wave structures considered always have finite thickness, highly ac-
curate results are still obtained by this technique. It can be seen from
the equations (3.2.60), (3.2.61) for TE incidence and (3.2.88), (3.2.89)
for T™ incidence that the Wiener-Hopf solﬁtion contains the unknown
constants which aré the solutionof linear algebraic simultaneous equa-
tions of infinite dimension. In order to solve these equations for the
unknown constants, they must be first truncated to finite dimension.

However, the accuracy of the approximated solutions for the reflected,
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transmitted and radiated powers can always be improved by increasing the
number of terms YN" in the approximation., From the results shown in
Tables (3.1) and (3.2) it is found that in general the nth constant
rapidly decreases as n increases. This implies that the convergent
solution can be obtained by using only a few terms. The radiation pat-
tefn-can easily be obtained from equations (3.2.87) and (3.2.94) for TE
and TM incidence, respectively, Another advantage of this technique
is the possibility of obtaining the diffraction coefficient at the edge
of a dielectric slab of finite thickness by following keller‘s ray tech-
nique [51] and applying equations (3.2.87) and (3.2,94) for TE and T™
incidence, respectively,

However, the Wiener-Hopf technique cannot be applied when the

thickness on both sides of the junction is not the same, It is found

that the formulation for this case by the Wiener-Hopf technique is too
complicéted; This disadvantage of the Wiener-Hopf technique led to the
proposal of thé residue-calculus technique which can easily be employed
to formulate such problems. This is then the most general technique in-
troduced to solve the problem of a dielectric slab waveguide discontin-
uity [52]. The technique can for instance be applied to the problem of
a step discontinuity which involves both a change in the slab thickness
~as well as dielectric constant of the guiding structure, Furthermore,
the solutions obtained by residue-calculus are in simpler forms than
those based on the WienerrHopf method, as shown in (4.3.6), (4.3.8),
(4.3.9) and (4.3.10) for TE incidence and in (4.3.11), (4.3.12),
(4.3.13) and (4.3.14) for TM incidence. This leads to relatively short
computer time required by the residue-calculus method as compared to the
Wiener-Hopf technique, The major reason for this difference is fhe step
involving factorization and decomposition of the functions, which are

quite complicated in the Wiener-Hopf technique. However, this disadvantage

“
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can be improved by further study to somehow perform the factorization and-
decomposition analytically. The results of the residue-calculus method
are highly accurate as already pointed out, even though the asymptotic
behaviour ({L.e., as lp| + ©) of the constructed function is assumed
algebraic of the form p~2 [40, 41]. When all the requirements as well
as the proper boundary conditions are met, as given in Chapter 4, the
solution of the residue~calculus method is unique,

Examination of the results for the various numerical examples
considered reveals different observations for the TE and TM incidence
cases.

For the TE case the numerical results sShow that the reflection
coefficient always increases with frequency up to a certain value beyond
which it remains almost constant or decreases slowly. When the thickness
on both sides of the junction is the same, the reflection coefficient
always increases when Erz is increased or decreased with respect to
€. (see figure 4.6). However, the rate of increase with frequency is

I1

higher for the € > ¢ case than the ¢ <€ case., The radiated
‘ T2 T r2 T

power always increases when erz is increased or decreased with respect
to eri and its rate of decrease with frequency is higher for the erz
< g case than the € > g case. (see figure 4.8).

rl T -T2 T
This behaviour is opposite to that of the transmitted power (see figure
4.10). When €, and €. are kept constant at 2.56 and 5.12, respect-
ively, and the ratios d,/d; are varied, it is found that the reflection
coefficient as well as its rate of increase with frequency is higher for
the higher d,/d, ratios as shown in figure 4.12, For the case d,/d;
> 1, the radiated power at low frequency increases when d,/d; is

increased. The rate of decrease of the radiated power with frequency is

faster for larger dz/di1 ratios as shown in figure 4.14, For the case
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dp/d; <1, the rédiated power at low frequency increases as da/d; is
decreased. The rate of decrease of radiated power with frequency is
higher for small dz/d; ratios. Hence, after a certain frequency, the
radiated power becomes smaller for smaller d./d; ratios as shown in
figure 4.14. This behaviour is opposite‘td that of the transmitted
power (figure 4,16).

For TM incidence the numerical examples suggest that the
reflection coefficient aIWays increases with frequency. When the
thickness on both sides of the junction is the same, the rate of increase
of the reflection coefficient with frequency is higher for €r2 > €

T

case than for er2’< srl case (see figure 4.7). It is found from the
behaviour of the radiated power (figure 4.9), that it increases with

frequency when €. > € up to a certain value and then decreases,
» 2

T

s the variation of the radiated power with fre-

However, when ¢ < g
T2 r

quency is quite small. This is opposite to the behaviour of the transmit-
ted power when Srz > €r1’ but the same when Erz < erl (figure 4.11).
By keeping Erl and grg constant at 2.56 and 5.12, respectively, while
the ratios d2/d1 are varied it is found that the rate of increase of'
the reflection coefficient with frequency is higher for the higher 'dz/dl
fatios (figure 4.13). The radiated power, which increases with frequency
up to a certain value then decreases, is greater for the larger d,/d,
ratios (figure 4,15). This behaviour is opposite to that of the trans-

mitted power (figure 4.17),.

5.3 CONCLUSION
Two new techniques are proposed to solve the problem of discon-
tinuity on the dielectric slab waveguide for single mode operation and

for both TE and T™ incidence. The Wiener<Hopf method gives a very
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accurate result but takes more computer time than the residue-calculus
method and can only be applied when the thickness on both sides of the
junction are the same. The residue-calculus method, on the other hand,
can be applied to a more general class of diécontinuities which involves
both a change in thickness as well as the dielectric constant of the
guide.

Examination of the results reveals that the radiation loss for
the TE incidence always decreases with frequency while for the 1TM
case it increases with frequency up to a certain value then decreases.
This behaviour is opposité to that of the transmitted power. Thus, for
higher transmitted power through the discontinuity junction it is recom-
mended that, for both TE and TM modes, the operating frequency should
be close to the value above which the propagation is multimode but the
latter can also be operated at the frequency close to its cut-off. The
reflected power, on the other hand, is always small compared to the trans-

mitted power for both TE and TM incidence for small step discontinuity.

5.4 SUGGESTIONS FOR FUTURE RESEARCH

As pointed out in the discussion, the factorization and decomp-
osition steps in the Wiener-Hopf technique are performed numerically,
which takes rather long computer time. This disadvantage may be removed
by further research to obtéin these steps analytically. This will also
~enable the accuracy check, of the technique, based on the conservation
of energy at the junction.

In this thesis, the emphasis is on finding new efficient tech-
niques to solve the problem of one dielectric waveguide terminated by
another dielectric guide. The techniques can then be applied to gener—-

ated data in order to find the optimized ratios of erz/erl and d./d,
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for each type of intended operation ({.e., antenna or surface waveguide).
Further research, which can also be done by applying the proposed tech-
niques in this thesis, is necessary to solve_the problem of inserting a
finite section of one dielectric waveguide into another waveguide. In
principle this can be done. by expanding the field in each section of a
dielectric slab waveguide by surface wave and continuous modes as in
Chapter 4. By applying the boundary conditions and orthogonality property
at discontinuity junctions, if should be possible to obtain the integral
equations for the unknown mode amplitudes which may be solved by the
residue-calculus method, The results'of this research, if successful,
should find applications in surface wave antennas desigh. It will also
help to explain how energy is radiated at‘a certain designated point of
diScontinuity along the surface waveguide.

It is generally known that dieleétric waveguides aie in practice
always cylindrical, similar to those applied in fiber optic communications,
Further research can, therefore, be done by applying the proposed tech-
niques to the analysis of discontinuities in cylindrical dielectric wave-
guide.

The diffraction of a plane wave by a thin dielectric half plane
was recently reported by Anderson [55], basing his analysis on the imbed—
ance boundary condition which requires that the dielectric slab be suffic-
iently thin. Thus, his result; cannot be applied to a thick dielectric
half plane. However, it seems possible that the application of the
Wiener-Hopf technique to a dielectric slab waveguide discontinuity, Chap-
ter 3, can be modified té solvé for the diffraction of a plane wave by a
thick dielectric half plane. This research, if successful, will give
the more general optical diffraction coefficient at the dielectric eége

which will be useful in the study of surface wave antennas.
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APPENDIX A

It will be shown in this appendix, that fﬁ and fﬁ for

t L
n=20,1, 2, ,.. can be obtained from @I (o,d) and @iII (o,d) at

certain points in the a-plane. For convenience, equations (3.2.28)

and (3.2.29) are rewritten

2 23, 1! fA . B
I cosh (a” - k7)"°d 2_ (a,d) 5 @ eﬁ( n v o fn)
" (a,d) = - -7 I - cos nT

% L
(0% - k]y¥sinh (0% - kP)*d Tn=0 [o* - kI + (P

(A-1)

% e
Aj(o+8,) (k] - BY) *sin(k] - 87) d]

111 III! i
¢, " (a,d) = o7 (0,d) +j - - -
, 21 (0 - k2 + k2 - g2)

, © e'(E + jofd)

- n-n n
+ I X oz, COS nT +
n=0 [a® - k] + 3]

1
cosh (a? - kj)2 d

: L i
(0%- k2)?*sin (a® -k2)2d

E
A (@ + B)) cos(k? - B2)* d
J (A-2)
2m (0? - k2 + k2 - B2y

where eﬁ = 1 for n>1

The two equations above (A-1) and (A-2) are regular in the lower and
upper half of o plane satisfying Im(a) < kg and Imﬂd) > —kg, respect-
ively. Let us first consider (A-2) which is regﬁlar in the upper half

of the a-plane. Itis clear that the left hand side is already regular in
the upper half plane but the right'hand side has poles at a = -kj,

jYﬁ, n=1, 2, 3, ... where Yﬁ = { %;92 - kg}%.. In order to make the

right hand side regular, the residues at these o must vanish, thus we
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have

: L . )
A - g Aj(By + JYD(K] - B sin(k] - 89)*%d
! cosnm - €' cosnmy! £ = j -
n n n n n .

vzm (82 + EP° - k3

ol GyLa) 5 om=1,2,3 ... (&-3)

and for n = 0,

2 p2s II1!

A angd L o Ai0o B SInGE-BR 0 (k) .

800“32800_3 T v 2 (A-4)
2/2m (k% - N2

Following similar arguments applying to (A-1) in the lower half plane,

we have for n > 1

' B I', . -
] t = - -
e COSI”Tfﬁ * gy cosnmy fn " ( Jyn,d) (A-5)
and for n = 0,
t
- ol tk ,d)
0 + Jk1€'f = —‘——2——— (A—6)
_ nm
where 'Yn = {(T) k1}2

Solving equations (A-3) and (A-5) gives,

I . .
( “IYped) -y, 6, Gyl
On + v

11

+

e!' cos nm fA
n n

: s ok . L
DAY, By + YD) (kY - B2)F sin(k} - B])®d
J (A-7)

21 (B + (P - kD (v, + Y

III" .
( Jv,,d) + @7 (Gvph,d)
(Yp + Yp)

-

B
€! cos nm f
n n

1 L
A (B, + jyﬁ)(kg - Bf)z‘sin(kz - B2)d

nm, 2
kh

2T (Y + YN (B + G

(A-8)
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Similarly solvifig equations (A-4) and (A-6) gives,

It II1! . L
crgh o ko (k;,d) -k, & 7" (-k,,d) L Aikl(_kZ ~B,) sin(k?-8%%d
) S
070 2(k, + ko) 2/2m (ki +k,) (k% - B2y
(A-9)
and
t ' L
B ®I (k :d)'*@III (ﬂkz,d) A.(kz..B ) Sin(kf-—Bz)z d
e'f - 1 + 1 1 1 (A-10)
0o 2j(ky + k2)

2721 (ki + k) (K2 - Bf)%
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APPENDIX B

The modified Lee and Mittra factorization formulas [39] are
given in this appendix for k, with the negative imaginary part defined
by

ke = k) - jkm ; k}

and kY >0

Theorem: Let G(o) be an analytic function of a, (o = o+ jT) and
let it 'satisfy the following conditions in the strip |T] < T,!

() G(a) is regular in the strip.

(b) G(a) is non-zero and even, that is G(-a) =G(+a) # O,

@) 6(o) ~ Bo” enlel

as |0| > o, where VvV and h are real constants.
Furthermore, let G(a) have the following properties in the upper half
plane T > =T, |

(a) a finite number of simple zeros at « = -,» where Im(§ ) < -T,

m=1, 2, 3, ...., M,

(b) a finite number of simple poles at « N, where Im(nn) < -T,
n=1,2,3, ...., N.
(c) at most one branch singuiarity at o = -ky in the form
Y= @ - 1%
Then for o within the strip, we have
G(aj = G+(a) G (o) (B-1)

where G+(a) and G_(a) are non-zero -in the upper (1 > —T+) and

lower (T < T+) a—ﬁlane, respectively. The expressions for G+(a) and

G_(a) are
' Vo/2 M N
G, (@) = G_(-a) = /G(0) (1 - iia I( - l&g o(1 - fla'l
¥ ko m=1( gm n=1( Y
k. h : . !
xpli 5=+ 3 2t &0 + q0) + 5 R ()] (8-2)

: n
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where

. _
Y = (0* - k?)* with the branch Re(Y) > 0 is chosen (B-3)

0

-][ Kw) £n | 1 - —2—— | dw
0 (k2 - w?)2

and }- implies that the integral is a principal value.

q(e)

_ h 1 ~ jm

K(W) = -7 'Q?J— [B(W) + B(W e )]
G'(8)

- 4 - W

B(W) - dw ‘Kn [G(B)] - G(B)
L . L

B = -(kj-w)? = jw? -kH*
Vo = lim w B(w)

w->0

z R = the residue contributions from the poles of B(w)

itive real axis.

(B-4)

(B-5)

(B-6)

(B-7)

(B-8)

on the pos-
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APPENDIX C

The factorizations of M(a) and N(a) are obtained by

applying the theorem given in the Appendix B.

M(@) = M_(a) M, (o) ; |t} <y - (C-1)
M@ = M (o B  /sin k,d " 5 ; a1+ .2 )ej ad/nm B .
#1007 e S TI RN 22
o 5 kod . dy
[VH(O (1—1— (1——-) Dexp(G -+ p fn (2 T
" a,(@ | | (c-2)
where -
ik,
B0} = 5, in %ud + K, cos ¥ad (€-3)
q (@) = - j Ko(w) £n | 1 - ~___J2___;_ dw (C-4)
0 0 | (k§ - WZ) 2
: d (w2 + (w?/w' - w') sin w'd cos w'd)
Ko@) = -7+ m(w'2 sin2w'd + w2 cos2w'd) (€-5)
L
wt = (w?+ kg_ - kﬁ) 2 ' (C-6)
N () = N (&) N (@ ; |[t]<ky (€-7)
N ((x) = N (_a) = ﬁ'{__i_n_.ﬁfl_ (k - u) ;Io (1 + ___g'._) ejd’d/nﬂ N .
+ - —J ‘kl }1 n=1 an ’
B ok o, -1 CKd vd
_ffi1(0) a - E;J 1 - By exp(J ——+J (

-1
+ Q1(d):] (C-8)

=1

)
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J Kk, .
vhere Q) = ST simxd + 5 Ky cos kid (C-9)
q (@) = - f Kyw) n | 1 - —2— | aw (C-10)
0 k2 - w?)?
~ d (w?d + (w?/w" - w") sin w'"d cos w"d)
KW = -3+ m(w'"2 sin2 w''d + w2 cos? w'd) (€-11)
2 2 | <% '
w'o= (w? o+ k2 - k2)7 (C-12)

In general, for»electromagnetic field problems the asymptotic behaviour
of factorized functions is algebraic. This implies that M+(a), M (o),
N,(a), N_(a) should be multiplied by ex(a) where x(a) is.an entire
function which has to be determined for each case. But for the problems
considered in this thesis, the functions M(a) and N(d) are very simi-
lar and have the same asymptotic behaviour and moreover, they can always
be encountered in the forms M, (@)/N, (a), M_(a)/N_(@) and M_(a) N, (o),
hence, we need not concern ourselves.about these entire functions since

they will finally cancel each other.

1
¢

1 i 1
e _(a® - k2)* cosh (a* - k2)*d + (a® - k2)? sinh (a? - k2)*® a

K@) = —2 L L L
e, (@% -~ k§)* (a® - k3)? sinh (a® - k2)* d
2 (C-13)
i /erzSin kyd > 0. j ad/nm .
Ky(@ = K (o) = | j o/ —g——(ky-a) I (1+ P © .
A B 2 n=1 n
oY a - 3% a - 27 'k°d+'9’-/&(——°“Y
|V H2(0) ( K, (—82) exp(j — I
-1
+ qz(a):[ (C-14)

where
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H,(0) = ~kz sin kzd + j € Ko cos kad (C-15)
q,@ = - J Ko £ |1 - — | au 16
0 (ki _ WZ) 2
2 2 .
K (W) = - d, &y (wod + (w*/w, - w,) cos .wzd sin w,d)
i " mlwZ sin® w,d + (we_ }? cos? w,d]

? (C-17)
. L |
Wp = (WF o+ k7 - k) (C-18)

L 1 p P
€r, (a?® - k2)* cosh (a2 - ki) 24 + (a2 - kf) % sinh (a2 - kf) 24

i i i
2 _ 1 24y72 2 _ 1,2y72 s 2 _ 1.2y72
erl (a ko) (o kl)_ sin (o k{)=d

(C-19)

- -1
€. sin k.d o .
. 1
L(0) = L_(-0) = | j __EI_T(____ ky -o) T (1 + 2y éd ad/nw .
! n=1 IMn

k d

JHTO) (1 - 2% (1 - 57! TR R T
[: Hy(0) (-3 Q- gD expli 5=+ J - ()
. -,1
+ (@] (c-20)
o 3k, .
where - Hs(0) -k; sin kid + j €, k, cos kid (€-21)
qs(a) = - J Kgw) n |1 - —2—— | aw (C-22)
: 0 (k§ - w2) 2
oy - - a, €, (w2d + (w?/w, - w,) cos w,d sin w,d)
3 T [wg sin2 wsd + (wer1)2 cos2 wsd]
(C-23)

: L
W3 = (wz +, ki - kg) 2 (C~24)
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The following decompositions can be done by applying the theorem 1,3B

of Noble [38].

L@+ U_(@) R DR TR k. 2
g (o) +U (o = - 1 .
+ - L+(O!,) K“(a) (a - Bl) (a2 - kﬁ)/z (a _ Bl) .

U(a)

(C-25)
V(@) = V. (@) +V (o) = 1 €r281 +Q ___ 1 +
) - +( ) - ) - L+(Oﬂ) K—(OL) ( €r1 ) (0!.2 _ k% + k% - B%
€. (8 - koz)l/2 cosh (a? - kg)l/2 d .
C(@? - k2 o+ k2 - B2 (0 - k)% sine? - k2% 4
(C-26)
_ 1 1
W) = WL @ R G (c-27)
' . 1 d
_ . - _ jou : 1 .
W) = W, (@ + W (@ = L (@) K_() (az X2 %}-?) (C-28)
- ' _ 1 1
@ = W@ W@ e G 7Y (c-29)
-Nn - -1 _ j(x 1 -
W) = Wy, () + W, (@ = (c-30)

L () K_(0) (uz Tk @ 7)

*
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APPENDIX D

Expressions for Cqy, C;, Fg, F1, Mg, M;i, Ng, N1, Re, R1, So,
1 t . t
S1, To, T1, So, S1, To; Ti

The expressions for Co, Ci, Fo, F1, Mp, M1, Ry, R1, Syp, Si,

) t t t .
To, Ti, So, No, N1, S1, To, T1 are given by

= 2 2 -
CQ - FONO ] (D 1)

{(e,, - e, )) kg - 85 + BiH(e,, - 1k + B; - B}

,{(erz -e.) K2 - g2+ sf}{(arz - 1K - B2 ¥ 8%}

C: = F oM, (D-2)
Fo = { — 5 (D-3)
= = Y2
(d: + Yl)(dz + Yz)
2 .
Fi = 3¢ 5 - (0-8)
m2{(dy + Yl_z) (cos? od; + g—z— sin? Gd1)}1/2
My = (v2 - v2)(v% + k%) {k2 sin kad; cos kidy - k; sin kid; cos kady} +
;- Yf)(ki - ki) cos kydi{ (ks sin kads ~ Y1 cos kzdz)e_Yl(d2 -4
(ko sin kadi -1 cos kadi)} + (k2 - K2 (y2 + k2) (Y2 - Y1) cos kidy
cos kpdp, e Y1(d2 - d1) | (0-5)
Mp = (k3 - p®)(y2Z + %) {kz sin kod: cos od; - Ocos kpd; sin ody} +

(k2 - 0®) (v + p?) {Do cosp(dz - d1) - Dy sinp(dz - d1) -

(kz sin kady cos 0d; - 0 coskady sin odi)} + (k3 - 0®) (k] -
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Dy

D;

D2

Ds

No

N,

109
p%) cos kady {Dy cosp(dz - d1) - Dy sinp(dz - d1)}

k2 sin kods cos od; - ocos ksds; sin od;
k,o | i

p cos kads cos Od1 + —27-51n kods sin ods

Yz cos ody -~ 0sin od;

Y0 .
p cos od; + —€7-51n od;

(D-6)

(D-7)

(D-8)

(D-9)

'(D-10)

(Y3 - v (v2 + k%) {ks sin kads cos kidz - ki cos kad» sin kid,} +

(Y2 - ¥2) (K2 - k2) cos kadp{(k; sin kidi- Yo cos kydp)e V2(d1- d2)

(Y2 cos kidz - ki sin kid2)} + (kI - k¥) (v + k2)(v2 - v1) cos kidy

cos kod, " Y2(d1 - d2)

2 2

(D-11)

(v, +‘p2.)(y2 + 02)'{k2 sin kpds cos ody - ocos kod, sin od,} +

(v + p?) (k2 - 0®) cos kad, {(0sin od; - y2 cos c‘dl)e"YZ(d1 - d2)
* (y2 cos 0dz - osin 0dz)} + (k2 - 0®)(y2 + 0%) cos kads e Y2 (d1 - d2)
(Y2 cos od; - osin od;) (D-12)
C )2
2(e €
Ty Yo :
(D-13)
P S N L R TP L
2 . 1
e e, 7 e
' A
Z(Erl Erz)
' 1 € 2 2 1L
02 <2 2 -r2 'Y2 +.k2 2
m(e. cos? ody + sin? od;) dy + ( )
{: T er, P2 Y, ki + ez v))

(D-14)
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[El— {kz sin kodo cos k1d2 <« ki cos kodo sin k1d2]’ (Y; ‘Yi) (Y% +k§)

Ty

+ (Y2 - YH K - k%) cos kad» {(k; sin k;d; - Y, cos kldl)e_YZ(dl-dZ)

+ (Y2 cos kidz - ki sin kid2)} + (k2 - k) (v2 + k) (y2 - Y1)
2 1 2 1

cos kjd; cos kpds e Y2(d1 - d2)]

T

(D-15)

[El—- {k; sin kdp cos kidp -~ ki cos kedz sin kida} (v2 -v2) (v2 +k2)

) i ' -Y2(d; -d
+ -E—:!'—- (Y: - 'Y?) (kg - k?) cos kads {(k; sin k;d; - Y2 cos kidi)e l'YZ( 1 2)

Ty '

+ (Y2 cos kidz - k1 sin kid2)} + (k2 - k) (v2 + k¥ (v2 - 1)

cos kidy cos kpd, e v2(d1 - d2)y (D-16)
[El-; {k2 sin kpd, cos od, - ocos kpdz sin odp} (Y2 + pz)(yz + 0%)
Ta

+ (Y2 + p?) (k2 - 0®) cos kod, {(osin od; - y2 cos odl)e—YZ(d1 - d2)

+ (Y2 cos 0dy - Osin odp)} + (k§ - 02)(Y§;+ 62} cos kads e-Yz(dl - d2)

{Y2 cos od; - EEF- sin od;}]

1"1

(D-17)

[~ {k; sin kud, cos 0d, - Ocos kpd, sin odp} (v2 + p2) (y2 + 02)

I

Ty

+ (yz cos od, - osin ody)} + (kz

{y2 cos od; - El—-sin od;}]

T

- 02)(y2 + 0%) cos kyd, e

+ El_ (Y2 + p®) (k2 - 0®) cos kpd, {(osin od; - vy cos cdl)e—YZ(dl -d2)

=y2(dy - d3)

(D-18)
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[~ {kz sin kedy cos kids ~ k; cos ked; sin kyds} V2 =Y (v2 + kD)
Y2

1

€
T2

+

o2 - Y3) (k2 - k?) cos kid; {(k, sin kadz ~ Y1 cos kadp)

eV (42 ~ A1) g, sin kedy - v, cos kad)} + (K2 - K2) (y2 + K2)

(Y2 - Y1) cos kidy cos kqd» eY1(d2 - dl)] (D-19)

[El—-‘{k2 sin kadi cos kidy - ky cos kpdy sin kadi}(v2 - v2) (v2 + k)
T

, . ~ (d, -d
+ (v - ¥2) (&2 - k2) cos kidy {(kz sin keds - v; cos kpdp)e Y1(dz ~d1)

~ (k2 sin kady - v, cos kadi)} + (k3 - k2)(v2 + K2) (v, -~ ¥vy)

cos kyd; cos kpdy e Y1(d2 = di)y (D-20)

[El_. {k, sin kpd; cos od; - ocos kod; sin od;} (k2 - p2) (v2 + p?)
T2

+ L (Z - 0*) (2 + p)) 1D} cosp(dz - d1) - D} sinp(d; - dy)
T2

-~ (k2 sin kod; cos od; - Eg—-cos kzd; sin od;)} + (k; - 02)(k§ - 0%)
T

cos kodz {D, cosp(dz - d1) - D, sinp(dz - d1)}] (D-21)

[El—- {k, sin kaod; cos od; - ocos kpd; sin od,} k2 - p*)(v2 + 0%
T :

+ (k3 = 0*)(v; + p*) {Dy cosp(d, - d1) - D1 sinp(dr - d1)
~ (ke sin kad1 cos 0dy ~ —— cos kpd; sin ody)} + (K2 - 02)(K? - p?)
I

cos kadz {D, cosp(dp - di) - D} sinp(ds - d;)}] (D-22)

ko, sin kads cos od; - Eg_ cos kpd, sin od; ' (D-23)
T
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kzp
P cos kods cos od; + =

sin kzd2 sin od,
T '

o o .
Y, cos od; - = sin ody
r3

Y,0

p cos od; + sin od,

T

(D-24)

(D-25)

(D-26)
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