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Abstract

This thesis reports on research undertaken in the area obwage tomography (MWT)
where the goal is to find the dielectric profile of an objectraérest using microwave mea-
surements collected outside the object. The main focusi®féisearch is on the develop-
ment of inversion algorithms which solve the electromaignietlverse scattering problem
associated with MWT. These algorithms must deal with twoed#ht aspects of the inverse
problem: its nonlinearity and ill-posedness. After pranglian overview of some of the
different possible formulations in terms of a nonlinearimiation problem, details on the
use of the Gauss-Newton inversion algorithm which solvesgtoblem are given. Various
regularization techniques for the Gauss-Newton inveraigorithm are studied and classi-
fied. It is shown that these regularization techniques cawmidaged from within a single
consistent framework after applying some modificationsthiithe framework of the two-
dimensional MWT problem, the inversion of transverse magreatd transverse electric
data sets are considered and compared in terms of commatiatiemplexity, image quality
and convergence rate.

A new solution to the contrast source inversion formulatéthe microwave tomography
problem for the case where the MWT chamber consists of a aeir@anductive enclosure
is introduced. This solution is based on expressing the awhke of the problem as trun-
cated eigenfunction expansions corresponding to the Hatmbperator for a homogeneous
background medium with appropriate boundary conditiorzosed at the chamber walls.

The MWT problem is also formulated for MWT chambers made of catidg cylinders of
arbitrary shapes. A Gauss-Newton inversion algorithmiieet to invert the data collected
in such configurations. It is then shown that collecting imiave scattered-field data inside
MWT setups with different boundary conditions can providelaust set of useful informa-
tion for the reconstruction of the dielectric profile. To guze good quality reconstructions,
the amount of data collected under each boundary condiiorbe relatively small if the
number of different boundary condition configurations iffisiently high. This leads to a
novel MWT setup wherein a rotatable conductive triangulari@sure is used to generate



scattered-field data. Antenna arrays, with as few as only ét®ments, that are fixed with
respect to the object of interest can provide sufficient tagive good reconstructions, if
the triangular enclosure is rotated a sufficient numbemogs.

Preliminary results of using the algorithms presentedihene data collected using two dif-
ferent MWT prototypes currently under development by theversity of Manitoba’s Elec-
tromagnetic Imaging Group are reported. Using the curresheregion MWT prototype,
an experimental resolution study using the Gauss-Newtmrsion method was performed
using various cylindrical targets. Results of this resolustudy are reported herein and the
separation resolution limit of this system is quantified.



Contributions

This thesis reports on contributions made by the authordmtka of microwave tomography
over a period of several years. As the research was condudthoh a larger research

group setting, the author’s own particular contributioresizere listed and briefly described.
In addition, a list of publications directly related to tkesontributions can be found in
AppendiXA.

e Achieving an understanding of, and clarifying, the nordin@verse problem and
completing a comparison of state-of-the-art inversiorhiégues (completed with
Colin Gilmore).

¢ Classification of different regularization techniques floe IGauss-Newton inversion
method and showing that all of these regularization tealesgcan be viewed from
within a single consistent framework after applying somelifications.

e Adapting the normalized cumulative periodogram reguédran parameter choice
method, originally developed for linear inverse problefosthe MWT problem.

e Comparing the two-dimensional transverse magnetic andvesigse electric inversions
for the open-region configuration and showing that the wrarse electric inversion,
which utilizes both rectangular components of the eleg®itor at each receiver posi-
tion, can result in more accurate reconstruction than trestrerse magnetic inversion
when utilizing near-field scattering data collected usinty@ few transmitters and
receivers.

e Introducing a new contrast source inversion formulationnfacrowave tomography
inside a circular conductive enclosure which is based omesging the unknowns
as truncated eigenfunction expansions correspondingetéiéimholtz operator in a
homogeneous background medium.



e Utilizing the weightedL? norm total variation multiplicative regularized Gauss-
Newton inversion algorithm, originally developed for Idvequency deep electromag-
netic geophysical measurements, for microwave biomeditading, and comparing
it to other forms of regularized Gauss-Newton inversioroatgms. Based on this
algorithm, a pre-scaled multiplicative regularized Galigsvton inversion algorithm
was introduced.

e Development of a fast and efficient image enhancement teohrior the MWT prob-
lem.

e Formulation of the microwave tomography problem insidedrarting enclosures of
arbitrary shapes and performing initial synthetic invensi for such systems (com-
pleted with Amer Zakaria and Colin Gilmore), and developnmafran inversion al-
gorithm to simultaneously invert the microwave data cadan MWT setups with
different boundary conditions.

e Proposing a novel microwave tomography setup wherein gatgtconductive trian-
gular enclosure is used to generate electromagnetic sngttiata.

e Testing of a wide-band experimental open-region microwraography system
(completed with Colin Gilmore, Amer Zakaria, Cam Kaye and Ma&jistadrahimi),
and performing a resolution study using this system (coteglavith Colin Gilmore
and Amer Zakaria).

e Preliminary testing of a microwave tomography system wibinductive enclosure
(completed with Amer Zakaria, Cam Kaye and Colin Gilmore).

As far as the implementation of the algorithms is concera#dhe inversion algorithms and
regularization methods were implemented by the authorof#tte utilized forward solvers,
except the finite element mettihavere implemented by the author.

1 The utilized finite element method was implemented by AmésZia.



Symbols and Acronyms

Herein, we provide some general remarks as well as a listrmhoonly used symbols and
acronyms.

e Position vectors position vectors are denoted by bold lowercase leteegs;p, q, ¢/,
r, andr’.

e Functions: vector-valued functions are denoted by bold uppercasers¢esuch as
E(q), E™(q), and E***{(p). Scalar-valued functions are represented by uppercase
letters, such a&,(q), lowercase letters, such &gy), or Greek letters, such agq),

1(q); all of which are non-bold letters.

e Matrices: matrices are denoted by underlined uppercase bold Istiefsas/ andX.

e \ectors: vectors are denoted by underlined (non-bold) letters sisghandd. Dis-
cretized forms of functions will also be represented by eextFor example, the vec-
tor y represents the discretized form of the functjpfy), or the vectorZ*® denotes
the discrete form of the functioB***{q).

e Cost-functionals the cost-functionals which map? spaces of complex (or real)
functions into real numbers are denotedyywhich may come with different super-
scripts, such ag'S andCMR. The discrete forms of these cost-functionals which map
complex (or real) vectors into real numbers are denoted lwith appropriate super-
scripts. ThusF1S and FMR denote the discrete forms 6f° andCMR respectively.

Corresponding to a non-holomorphic cost-functional maggdih spaces of complex
functions into real numbers, s#&(y), we consider a new cost-functional which is
denoted byC(, x*). The cost-functionaf(y, x*), which treats the complex quantity
x and its complex conjugatg* as two independent quantities, satistfés(,x*) =
C(x). We also use this notation in the discrete domain. Thus,esponding to
the cost-functionalF(x), we consider the cost-functionéT(X, X*) which satisfies

Fx:x") =F)-



Vi

Symbol Description

T,1, 2 Unit vectors along:, y andz directions.

j Imaginary unit 2 = —1).

D Imaging domain.

L*(D) L? space of functions defined dn.

(., )p Inner product defined op.

S Measurement domain.

L*(S) L? space of functions defined ¢h

(., )s Inner product defined oSf.

p Position vector in the measurement dom&in

q Position vector in the imaging domain.

G Dyadic Green'’s function of the background medium.

ky Wavenumber of the background medium.

Ap Wavelength of the background medium.

E™° Incident electric field (electric field in the absence of thgeat of interest).
E Total electric field (electric field in the presence of theaalbjof interest).
Es& Scattered electric field.

EXa Measured scattered electric field on the measurement da$nain
() Adjoint operator.

() Complex conjugate operator.

()T Transposition operator.

() Hermitian operator (complex conjugate transpose).

()7t Inverse operator.

Re Real part operator.

Im Imaginary part operator.

\Y Gradient operator.

V- Divergence operator.

V x Curl operator.

\% Laplacian operator.

X Electric contrast of the object of interest.

Relative complex permittivity of the object of interest.
Relative complex permittivity of the background medium.
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Acronym Description

MWT Microwave tomography.

Ol Object of interest (object being imaged).
TE Transverse electric.

™ Transverse magnetic.

PEC Perfect electric conductor.

GNI Gauss-Newton inversion.

MR-GNI Multiplicative regularized Gauss-Newton inversion.
CsSl Contrast source inversion.

MR-CSI Multiplicative regularized contrast source inversion.
BA Born approximation.

BIM Born iterative method.

DBIM Distorted Born iterative method.

MGM Modified gradient method.

SVvD Singular value decomposition.

TSVD Truncated singular value decomposition.
CG Conjugate gradient.

CGLS Conjugate gradient least squares.

1D One-dimensional.

2D Two-dimensional.

3D Three-dimensional.

NCP Normalized cumulative periodogram.
GCV Generalized cross-validation.

MRI Magnetic resonance imaging.

CT Computed tomography.

SNR Signal-to-noise ratio.
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Introduction

For a long time mathematicians felt that ill-posed probleraanot describe real
phenomena and objects. However, we shall show in the presekttbat the
class of ill-posed problems includes many classical ma#tiead problems and,
most significantly, that such problems have important aapibns(Tikhonov
and Arsenin([L1]).

This thesis presents research work in the area of micron@avedraphy. In microwave
tomography, which is one form of the electromagnetic ineessattering problem, the ob-
jective is to determine the dielectric profile and/or magnptofile of the Object of Interest
(Ol) from microwave measurements collected outside thérQhis chapter, we first briefly
review the concept of inverse problems. The electromagneterse scattering and mi-

crowave tomography are described. Finally, the outlindsfthesis is presented.
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1.1 Inverse problems

Inverse problemsleal with determining the internal characteristic(s) ofhggcal system
from the system’s output behavior. This is in contrastavard problemsor sometimes
calleddirect problemswhere one tries to find the output behavior of a physicaksysiven
the internal structure thereof. There are several areasi®fice where inverse problems
arise such as electromagnetic scattering, image resioratomputed tomography, remote
sensing, acoustics, geophysics, astrometity, For example, inc-ray computed tomogra-
phy, one is interested to fincray attenuation coefficients (internal characteristigigin a
cross section of the human body (physical system) by scgrthenbody with narrow-ray
beams and measuring the loss of intensity at detectorslacehe opposite side of the

source and outside the body (system’s output behavior).

Inverse problems tend to be ill-posed problems in the sendadamard’s characterization.
In 1923, he introduced three criteria for a problem to be \pelled. Violation of any of

these criteria makes the problem ill-posed.

DEFINITION 1.1 Hadamard’s three criteria for a well-posed problem.

1. The solution exists. (Existence)
2. The solution is unigue. (Uniqueness)

3. The solution depends continuously on the given data. (8yabi

Hadamard thought that ill-posed problems arise when thesysnder study is not physical
or is mathematically modeled in a wrong way. However, nowadd is well-known that a
correctly-modeled physical problem can be ill-posed. Fanynpractical inverse problems,

such as the one considered in this thesis, the existenceadfitos is not an issue (given



1.2 Electromagnetic inverse scattering 3

a reasonable amount of sufficiently accurate measured datae usually try to find the
internal properties of aexistingobject of interest. The uniqueness and stability then remai

as the two main challenges for the solution of inverse proble

It was in 1963 that Tikhonov introduced his method to tre&t thposedness of inverse
problems. His method, known as Tikhonov regularizatiogpired mathematicians to study
the theoretical background of inverse problems and devalgprithms to treat their ill-

posedness.

1.2 Electromagnetic inverse scattering

In electromagnetic inverse scattering, one tries to infierlbcation, shape and dielectric
(or/and magnetic properties) of the Object of Interest (@ihg electromagnetic wave-field
measurements collected outside the Ol. There are manycapphs for the electromagnetic
inverse scattering problem, including industrial nontdegive testing![2] 3], geophysical
surveys[[4| 5], through-wall imagin@![6] and medical imagid,8]. The common feature
between all these applications is that an electromagratics irradiates the Ol. The interior

characteristic of the Ol is then to be found from exterior sugaments.

Different applications of the electromagnetic inversettecang problem are mainly distin-
guished by the frequency of operation and the data collegifocedure. Frequencies uti-
lized for this problem range frorh Hz to optical frequencies. Data collection can also be
performed in different ways. For example, to image the éasthallow interior three differ-
ent configurations may be used[[9] 10).gurface methodsii§ borehole (logging) methods
and i) surface-borehole methods. In surface methods, the tittessireceivers are moved
along the earth’s surface and probe downward into the elrthorehole methods, devices

called sondes are moved along a hole that is drilled into #rthe The surface-borehole
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methods are hybrid methods which place transmittersirereboth on the surface and in

boreholes.

1.3 Microwave tomography

In this thesis, we consider the microwave frequency rangeth&tefore refer to the electro-
magnetic inverse scattering problem within this frequeraryge as microwave tomography
(MWT). In MWT, the Ol is successively irradiated by some knowgident electromag-
netic waves originating from different transmitter pasis. Due to the difference between
the dielectric/magnetic properties of the Ol and those efkhown background medium,
a scattered electromagnetic field, corresponding to eamtiant field, will arise which is
then measured outside the Ol and used to find the shape,doaatd dielectric/magnetic

properties of the Ol.

There are many applications for MWT, including industriahrestructive testing [2,] 3],
medical imaging [7,/8, 11], and through-wall imaging [6].€limedical imaging applications
of MWT is of particular interest as it has been demonstratetl MWW T can be useful for
breast cancer imaging![8,112,/13], brain imaging [14], d@gis of lung cancer, bone imaging
[15], and the detection of ischemia in different parts of bloely [16]. A general review of
different biomedical applications of MWT can be found Iin![17The basic idea behind
MWT as a biomedical imaging modality lies in the fact that theettric properties of the
human body are known to vary significantly between a numbedisetie typesd.g, fat,
bone, muscle) and more importantly, between healthy andynaait tissues [18] over the
microwave frequency range. This highlights MWT’s great ptitd as a cancer diagnostic
tool. The potential advantages of MWT for biomedical apgiaas are many, including

(i) its relatively low cost and portabilityiji{ its use of safe non-ionizing radiation, anid)(its
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ability, without contrast agents, to create quantitativeges of living tissue as a way of
identifying physiological conditions of those tissues.e$h allow the possibility of early
detection of disease via strategic frequent monitoringsstie. Probably, the main challenge
to make MWT a competitive biomedical imaging modality is aa/&r resolution compared

to Magnetic Resonance Imaging (MRI) andgay CT.

The MWT problem is mathematically formulated as a nonlindlgsased problem. Re-
search on biomedical microwave tomography that has madefusearizing assumptions
about the wave-propagation within the breast shows thagudirect-ray and linear scatter-
ing models that ignore higher-order effects, while pravgdsome useful qualitative images,
cannot quantitatively reconstruct the bulk-electricagpaeters/[19, 20, 21, 22]. Thus, accu-
rate quantitative MWT requires the use of the full nonlineanfulation. On the other hand,
it is well-known that the MWT problem is ill-posed in the seddHadamard/[23, 24, 25].
Therefore, the solution to the mathematical problem is nargnteed to be unique for most
measurement configurations and does not depend contiyuonghe measured data (in-
stability) [26]. The ill-posedness is usually treated bypéwging different regularization

techniques.

In most applications and research works, including thisithat is assumed that that the
Ol and the background medium are non-magnetic. Thus, itlistbe dielectric profile of
the Ol which is to be founQ.The MWT problem can be formulated in the time domain or
the frequency domain. In this thesis, we consider the frequelomain formulation of the

MWT problem.

We also define two terms, namafyconstructionandinversion These two terms are used

interchangeably within this thesis and have the followingaming: “determination of the

11t should be noted that the simultaneous determination efdielectric and magnetic properties of a
magnetic Ol has been reported, but only in very few publcei27/ 28].
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shape, location and dielectric properties of the Ol usingrowvave measurements collected

outside the OI.”

1.4 Outline of the thesis

Most parts of this thesis consist of a summary of the resulb8ighed in different journals

and conference proceedings. The list of these publicatiaa®een provided in Appendix A.

In Chaptef 2, we provide the notation that is used in this thédie mathematical formula-
tion of the MWT problem based on its integral-equation foratioi is also presented using
operator notation. Using this mathematical formulatiom, define the forward and inverse

problems associated with MWT.

In Chaptef B, we cast the MWT problem as an optimization prolvierein an appropriate
cost-functional is to be minimized. Within this frameworke briefly study two different
classes of optimization methods which are distinguishethby use (or, lack of use) of a

forward solver.

In Chaptef ¥, we present the formulation of the Gauss-Newtegrsion algorithm without
considering any regularization terms. The formulationrist foresented in the continuous

domain and then the discretized form thereof is introduced.

Chaptef_ b completes Chaptier 4 by applying different regudéids methods to the Gauss-
Newton inversion algorithm. These regularization methasstudied and classified into
two main categories. We show that these two regularizatiategies can be viewed from
a single consistent framework. We also consider incorporaif a priori information to

regularization terms. This chapter ends with introducingnraage enhancement technique
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to suppress possible spurious oscillations in the final eaddained from the Gauss-Newton

inversion method.

In Chapter .6, we compare the Transverse Magnetic (TM) inversiith the Transverse
Electric (TE) inversion both in the near-field and the falefieThis includes a comparison

of the computational complexity, image quality and coneace rate.

A new contrast source inversion algorithm which uses eigaetfon expansions of the un-
knowns is presented in Chaptiér 7 for the reconstruction ottmeplex dielectric profile
inside a circular conductive enclosure. Orthonormal digieetion expansions associated
with the Helmholtz operator for a homogeneous medium anitidét boundary conditions

are used to effectively discretize all the operators in the-functional.

In Chaptef 8, we present a novel microwave tomography set@peirhseveral conductive
enclosures of different shapes or a rotatable conductisegular enclosure are used to
generate electromagnetic scattering data. For the ré¢atanductive enclosure, the data
are collected at each static position of the enclosure wsimgnimal antenna array having
as few as only four co-resident elements. The antenna aeragins fixed with respect to

the target being imaged and only the boundary of the congreticlosure is rotated.

Chapter ® provides an overview of two different microwave egnaphy prototypes cur-
rently under development in our research group. Prelingimarersion results are shown
with microwave data collected with 24 co-resident antenmasesolution study based on
the results obtained from our microwave tomography systétm plexiglass casing is also

presented.

In Chapte 1D, we conclude this thesis and provide an outlirfatare work which one

might follow.



Problem Statement

Pure mathematics is, in its way, the poetry of logical idgalbert Einsteiﬂ).

In this chapter, we present the mathematical formulatiothefMWT problem based on
the integral-equation formulation of electromagneticeirse scattering using operator no-
tation. We will also consider the mathematical formulatmnthe MWT problem using
its differential-equation formulation in Chapiér 7. Withhis thesis, we consider the tomo-
graphiQ configuration where the Object of Interest (Ol) can be carsid a two-dimensional

(2D) object or the imaging is performed on a 2D slice of a thdgeensional (3D) object.

In the framework of 2D inversion algorithms, we consider twhifferent polarizations for
illuminating the OI. In the Transverse Magnetic (TM) potation, the Ol is illuminated

with the electric field perpendicular to the transverse @lafithe Ol which is to be imaged.

1 Letter to the Editor (in a tribute to Emmy NoetheFhe New York Time#ay 5, 1935.
2 Tomography is derived from the Greek wammowhich means “a slice”.



In the 2D Transverse Electric (TE) polarization, the Ol igritinated with the electric field
in the transverse plane to be imaged. It should be noted lteal E polarization can be
studied using a single magnetic field component perperatitalthe cross section which is
to be imaged. However, we do not use the magnetic field fortonldor the inversion as
it has been shown in [29] that the TE inversion using the gtetield formulation is more

stable and has better performance than that using the mafjekt formulation.

Although researchers have developed full-vectorial 3ziswn algorithmse.g. [30, 27,
31], the 2D inversion algorithms considered in this thesesaso very important because
of their use in existing experimental systems. This is duiaédfact that current near-field
MWT systems have no, or limited, capability of collecting tee@l field data. For example,
in the state-of-the-art MWT system developed at Dartmoutte@elfor breast cancer imag-
ing, the data is collected in seven different planes and a BDnversion algorithm is used
to invert the datg [12]. The usefulness of this 2D TM assuompiior biomedical imaging has
been verified in[[32]. To the best of the author’s knowledber¢ is currently no near-field
TE MWT system or a near-field 3D MWT system capable of collectiththree components
of the field.

In this thesis, we consider the microwave tomography probie the frequency-domain
where time-harmonic fields are used to interrogate the QlsTh time factor of—7«? is
implicitly assumed wherg? = —1, and symbolsy andt represent the radial frequency of

the utilized field and time respectively.

3 We will later use t' as an index to show the number of the active transmitter GleapteB.
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2.1 Notation

Consider a bounded imaging domdih C R? containing a non-magnetic Ol and a mea-
surement domais C R? outside of the object of interest (see figlre 2.1). We assiate t
the x — y plane represent®?. Let p, q, », andr’ denote position vectors in the — y
plane. Throughout this thesis, we assume S andqg € D. The position vectors and

r’ are chosen to be arbitrary vectorsRA. The imaging domaifD is immersed in a known
non-magnetic homogeneous background medium. Therefwagetative permittivity and
the dyadic Green’s function of the background medium arevknand denoted by, and
(:}’(r, r’), respectively. The dyadic Green’s function representptiet-source solution for
the electromagnetic wave equation in the background me{B8in Denoting the unit vec-
tors along ther, y, andz directions byz, y, andz respectively, the dyadic Green’s function

for the background mediung(r, r'), is given as[[34],

(I, — évrvw)g(’r, r') TE polarization

Glr,r') = (2.1)

g(r,r")2z TM polarization

The wavenumber of the background mediug,can be written ag? = w?pgeoe, Wherepg
ande¢, are the permeability and permittivity of free-space. Thad:lfiz = 22 + gy Is the

2D identity dyad and(r, r’) is the 2D scalar Green'’s function for the homogeneous back-
ground. The 2D scalar Green’s function may be writtey@sr’) = 2H¢ (ky|r — 7))
whereH; (.) denotes the zeroth-order Hankel function of the first kinlde $ymbolV rep-
resents the gradient operator which is taken with respetitdsubscript coordinates. In
contrast to the TM illumination wher@(r, r’) consists of only one component, the dyadic
Green’s function for the TE case consists of four componemésnely, G, 22, G,,29,

Gy, andGy,3y.
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Fig. 2.1: Geometrical model of the microwave tomography problem. Tx and Rx remtréeetrans-
mitting and receiving antennas respectively. The dordainvhich contains the object of
interest, is the imaging domain. The dom&lypwhich contains the transmitting and receiv-
ing antennas, is the measurement domain and is outside of the object oftintéese two
domains are assumed to be in the y plane.

To formulate the microwave tomography problem, we defineghiorms of the electric
field: namely the incident, total, and scattered electridfi#he incident electric field=™®
is defined as the electric field in the absence of the Ol wheheatotal electric fieldE is
defined as the electric field in the presence of the Ol. Theeseatelectric field2>®is then

defined as the difference between the total and incidentreldields:
Escaté E . Einc. (22)

The incident electric field can be represented by two rect@ngomponents in the TE case,

and only one component in the TM case. That is,

, EX°i + Ej  TE polarization
En — (2.3)

Encz TM polarization

It should be noted that the 2D assumption means that when lthe illuminated by TM
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waves, the total and scattered electric fields will also dwalye a2 component. On the other
hand, when the Ol is illuminated by TE waves, the total anttsczd electric fields will only
havez andy components. As the formulation of the problem within thiedis is based on
the electric field (not magnetic field), we will refer étectric fieldas justfield when there is

no ambiguity.
The complex electric contrast function is defined as

&)~ (2.4)

€p

x(q) =

wheree,(q) is the relative complex permittivity at the poigt € D. In general, these
permittivities are complex so as to model lossy materialg felative complex permittivity

of the Ol may then be written as

e-(q) =€(q) +je"(q) = €(q) +ji)<_go> (2.5)

wheree'(q) ando(q) represent the (real) relative permittivity and the conwhitgtof the Ol
at the angular frequency respectively. The unknown to be determined is taken to Ibeeit

the contrast or the relative complex permittivity of the Ol.

2.2 Operator definition

We denote the.? space of complex vectorial functions defined®rby L?(D) and theL?
space of complex vectorial functions defined®my L?(S). The norm and inner product

on L?(D) andL?(S) are defined as

1Xlp = (X, X)¥42 and (X, X»), = /D X\ (q) - X3(q)dq (2.6)
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and

I¥]s = (V. Y)Y and (V. ¥) s = / Y.(p) - Yi(p)dp 2.7)

where the superscriptdenotes the complex conjugate operator and fepresents the dot-
product. Thel? space of complex scalar functions defined®are also denoted b§?*(D)

with the norm and inner product defined as

lellp = (2. 2) 4% and (zy, 23 = / o(q)7}(@)dg. (2.8)
D

Assuming® € L?(D), we define the linear operatgk : L?(D) — L*(S) as

Gs(T) = 2 / G(p.q) - ¥(q)da. (2.9)

D

and the linear operatdly : L*(D) — L*(D) as

Gp (W) = K /D Gla.q) - ¥(q)dq. (2.10)

Both integrals, [[219) and(2.110), are taken over the dor@ibut Gs(¥) € L?*(S) and
Gp(¥) € L*(D).

Assuming® € L*(D) andT € L*(S), the adjoint operator§% : L*(S) — L*(D) and
G% : L*(D) — L*(D) (the superscriptd’ denotes the adjoint operator) are defined using
the following relations

<F7 gS(\I’»S = <gg(r)v ‘II>D ) (211)

(@, gD(\II»D = <g%(@), ‘I’>D' (2.12)
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Using [2.9), [2.10)[(2.11) anf (2]12), it is straightford/éo show that

gs(T) = (/f?)*/sé*(q,p) -T'(p)dp, (2.13)
Gp(®) = (kf)*A@*(q,q’)-Q(q’)dq’- (2.14)

We also define the linear opera®f : L*(D) — L*(D) as

Q1

Ga (W) = k2 / (0.4) - ¥(q)o(q)dq (2.15)

D

where the scalar functiopis in L?(D). Itis also straightforward to show th@i5)* = ©*G%

wheregG$, is given in [2.14).

2.3 Formulation of the problem

In this section, we first present two important equationshef électromagnetic scattering
problem, namely the data and domain equations, using thatmpe defined in Sectidn 2.2.
The derivation of these equations can be found in [35]. Basetth@se two equations, we

will define the forward and inverse scattering problems.
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2.3.1 Data and domain equations

The scattered electric field on the measurement dofiaoe to a contrast functiog and

an incident fieldE™ can be written as

E**{(p) = Gs(xE). (2.16)

This equation is usually referred as tti@ta equation The total electric fieldE, within the

imaging domairD, can be found via

E(q) = E™(q) + Gp(XE). (2.17)

This equation is usually referred as tdemain equation Note that the domain equation
governs the wave process within the imaging donfamwhereas the data equation gives the

scattered field o for a given contrast function and total field insithe

Using the operator defined in_(2]15), the domain equation nea-written as

(T -G%) (E)=E"™(q) (2.18)

whereZ denotes the identity operator. Therefore, the total fiesidie the imaging domain

D can be written as

E(q) =£(x) = (Z - Gp) '(E™) (2.19)

where& is a mapping fromZ.?(D) to L?(D) and the superscript-1’ denotes the inverse

operator.
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Using (2.19), equationn (2.16) can be re-written as
Escat<p) _ gscat(X) _ gS [X (Z o g%)fl (Einc)] ' (2.20)

As can be seen frori (ZR@is a nonlinear mapping from?(D) to L*(S).

Based on these equations, we now briefly explain the forwaddrarerse scattering prob-
lems. Although the focus of this thesis is on the inverseteday problem, the forward
scattering problem is also important as solving the invecsdtering problem requires solv-

ing several forward scattering problems either expliasttymplicitly.

2.3.2 Forward scattering problem

In the forward problem, the goal is to find the scattered gketield E5°* on the measure-
ment domairS for a known contrast functiog, which is immersed in a known background,
and a given incident field™. This can be achieved by first finding the total fididin the
imaging domairD and then calculating the scattered electric fieldSofrom (2.16). The
electric field E within the imaging domain, for knowg and E™ functions as well as the
known operatog5, may be found by solving the integral equation giveriin (. T®is can

be accomplished by minimizing the cost—functiod®{'’® : L*(D) — R over E, where

CWO(E) = —— | E™ — (T - G%) (B)|. (2.21)

B inc
1B,

This cost-functional can be minimized using numerical teghes such as the Conjugate

Gradient (CG) algorithm where the total field at th& iteration is updated as

Epi1 = Ep + Bondn, (2.22)
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d,, is the conjugate gradient direction afig € R represents its weight. The CG algorithm
may be accelerated by the Fast Fourier Transform (FFET) [BpaBd the marching-on-in-
source-position technique [38]. The closed-form expmessiord,, and3,, as well as a
brief description of the utilized marching-on-in-soungesition technique can be found in

AppendixB.

It should be noted that this formulation of the forward se@tty problem is based on the
integral equation formulation. The forward scatteringlgpeon can also be formulated based
on the partial differential equation formulation of the beeng problem. In Chaptéld 8, we
have used a forward solver which is based on the partialrdifteal equation formulation of

the forward scattering problem.

2.3.3 Inverse scattering problem

In the inverse scattering problem, the goal is to find thetgéecontrasty(q) in the imaging
domainD from the field measurements on the measurement dosaidenoting the mea-
sured scattered field afi by Eq2(p) and noting[(2.20), the contragtq) is to be found

from

Ereadp) = Gs [x (T-65)" (Ei”C)] . (2.23)

It should be noted that the incident electric figltf® is assumed to be known (or approxi-
mately known). However, the operai@}, is unknown as the contragtis unknown. Differ-

ent methods for solving (2.23) will be discussed in Chdpter 3.



Microwave Tomography Algorithms

Can one hear the shape of a drurMark Kac [39])

In MWT, which is an inverse scattering problem, the Ol is sgsoely interrogated with
a number of known incident fieldB"™, wheret = 1,--- , T,. Interaction of the incident
field E'™ with the Ol results in the total field,. The total and incident electric fields are
then measured by some receiver antennas locate$l orhus, the scattered electric field,
Eﬁfg‘;st, is known at the receiver positions ¢h The goal is to find the electric contragt

in a bounded imaging domaif, which contains the Ol, from the measured scattered fields

Escatst onS.

mea

Two approaches based on the formulation of the problem waiodifferent cost-functionals
have been successfully used to solve the MWT problem. Thefimtoach, which includes

the Gauss-Newton Inversion (GNI) method, uses the corveaiticost-functional which is
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based on the difference between the measured and predictttdred data for a particular
choice of the material parameters; see for example [40,21B301 43| 12,4, 44, 45, 46]. The
conventional cost-functional is usually augmented by gor@griate regularization term.
The second approach, which includes the Modified Gradierihde(MGM) [47] and the
Contrast Source Inversion (CSI) methdd][48], uses the same=ntianal cost-functional,
formulated in terms of the so-called contrast sources,erctse of CSI, added to an error
functional involving the domain equatiof, (2117), whickates the fields inside the imaging
domain to the contrast of the unknown OI. As will be seen, tts &ipproach requires an ap-
propriate solver to solve the forward scattering problé€il ), for different incident fields
and predicted contrasts. However, the second approactisasolving the forward scatter-
ing problem but requires much more iterations to convergepared to the first approach.

These two approaches are now explained.

3.1 The first approach

In this first approach, the MWT problem is formulated as theimimation overy of the

Least-Squares (LS) data misfit cost-functiofa : L?(D) — R,

53

Ts
S llm mmll Y e - Bl
_ =1

CHS(x) = = ==
Z 1B, |1 S| B
t=1 t=1

(3.1)

where B3 = £5%(y) is the simulated scattered field at the observation pointespond-
ing to the predicted contrastand the'' transmitter. The nonlinear operatg®: L?(D) —
L2(S) is given in [2.2D) whereE™ needs to be replaced ™. Using [2.20), the above



3.1 The first approach 20

cost-functional can be re-written as

3 Gs [x(z— 63)" (B1)] - B

CS(x) = = - : (3.2)
> B
t=1

This cost-functional is nonlinear with respect to the unknaontrasty, and is ill-posed
[26]. Thus, an appropriate regularization technique neéedse utilized to handle the ill-

posedness of the problem.

3.1.1 Born approximation

When the electric contrast or the size of the Ol is small, ong nsa the well-known Born

Approximation (BA) to simplify [(3.2). This approximatiorssumes
(T-6y) "' ~T, (3.3)

which is equivalent to assuming that the total field inside ithaging domain is equal to
the incident field inside the imaging domain. Using this agpnation, the nonlinear cost—

functionalC'S is linearized as

Ty . N
D I9s(XET©) — Byl
t=1

CLS’BA(X) — o
> 1B
t=1

(3.4)

The contrast functiory is then be found by minimizind_(3.4) ovegr. Although now linear,

this remains an ill-posed problem.
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Another popular approximation is the Rytov approximatiof][4A significant improve-
ment in the Born approximation can be achieved by employirigreled Born approxi-
mation whose computational cost is very close to that of thenBgproximation([50]. It
should be noted that the first iteration of most nonlinearanwave tomography algorithms
within the first approach, if started with the zero initialegs, such as the ones presented in
Sectiong 3.112 arld 3.1.3, results in a predicted contragtw equivalent to the contrast

obtained via Born approximation.

3.1.2 The Born iterative method

The Born lterative Method (BIM) [51] iteratively updates thentrasty based on better
approximations of the total field inside the imaging domainthe »™" iteration of the BIM,

the operatofZ — G}) " is approximated as
(T-6%) " ~(T-65)" (3.5)

wherey,, is the contrast obtained at the previous iteration of the BINk contrast at the™

iteration of the BIM is found by minimizing the cost-functiarC->B™ (y):
Xn\—1 inc scat 2
‘QS [X (I - gD ) (Et )] - Emea$t

;
Ty )
> sl
t=1

i

t=1

Xn4+1 = argmin {CLS’B'M (X)} = arg min
X

(3.6)

Due to the ill-posedness of the problem, the above costtifumad needs to be regularized be-
fore minimization. We have studied the regularizatiori o8} the framework of Tikhonov

regularization in conjunction with the Normalized CumutatPeriodogram (NCP) regular-
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ization parameter-choice method to determine an apptemegularization weight [52, 53].
The initial guess of the BIM algorithm is usually chosen toyhe= 0. In this case, the
first iteration of the BIM is equivalent to the contrast ob&drnunder the Born approxima-
tion. Note that at each iteration of the BIM, a forward solveeds to be called to calculate

(Z — G5)~" (EP™) for different incident fields.

3.1.3 \Various Newton-type algorithms

In Newton-type algorithms, the nonlinear cost-functiofiaf(y), which is usually aug-
mented by some regularization terms, is iteratively apipnaxed with a quadratic form
at the contrast obtained from the previous iteration. Th&éstary point of the quadratic
model, or some approximation thereof, is then chosen asgktaterate. The contrast at the

n'" iteration is updated as

Xntl = Xn + VnAXn- (3.7)

whereAy,, is the correction and, € R* is an appropriate step-length to enforce the re-
duction of the cost-functional. Some of the utilized Newtgpe inversion algorithms in-
clude the Newton-Kantorovich (NK) [54], Distorted Born k¢ive Method (DBIM) [40,
55], Gauss-Newton Inversion (GNI) [56, 57,158, 59, 4, 30]agjtNewton method [42],
Levenberg-Marquardt method [46] and the modified Newtorhoe{45]. It can be shown
that some of these methods are equivalent if utilizing sinmégularization techniquels 60,

58].

As for the BIM, it can be shown that these techniques effelgtisétempt to approximate
the operatofZ — G35)~'. Within this class of inversion algorithms, the GNI methodi dhe
DBIM have been used in the research presented here. The GNbdeill be explained

in Chaptef 4. The regularization methods in conjunction \theh GNI method are studied
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in Chaptefb. Our specific implementation of the DBIM, which wéer to as the enhanced

DBIM, is outlined in [55], but is not considered herein.

3.1.4 Global optimization techniques

Some global optimization techniques such as genetic dtgosi [43] and simulated anneal-
ing [61], in conjunction with Tikhonov regularization, healso been used to minimize the
nonlinear cost-functional*S(). A thorough overview of different stochastic optimization
methods applied to the MWT problem is provided in/[62]. The patational complexity of
these methods is much more than that of the local optimizégichniques. Thus, these meth-
ods, in their current state of development, may not be apjatapfor this computationally-

demanding problem. They are not considered in this thesis.

3.2 The second approach

The first approach formulates the optimization problem rmgeof the unknown contrast.
However, these methods require the solution to severaki@hscattering problems., which
means applyingZ — g;gn)—l on the incident fields originating from different transrart.

This step imposes a large computational burden on the #iguori

In the second approach, the optimization problem is fortedlan terms of the unknown
contrast and the unknown total fields (or the unknown cohsasrces which will be ex-
plained below). Noting that the total field inside the imagdomain changes with respect
to each transmitter, the number of unknown quantities caorbe extremely large. How-

ever, using this formulation the solution to the forwardtssrang problem is avoided.
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Two different updating schemes within this approach havenbguggested. In the first
schemel][63], the contrast and the total fields corresportdiegch transmitter are updated
simultaneously (as one unknown vector in the discrete domhi the second scheme.g,
see [47| 48], the contrast and the total fields (or the conséagces) are treated separately.
That is, when optimizing over the total fields (or the corttsmurces), the contrast is as-
sumed to be known and when optimizing over the contrast,dta fields (or the contrast
sources) are assumed to be known. The Modified Gradient Mt&GM) [47] and the
Contrast Source Inversion (CSI) method![48] are the two wedivkn methods within the
second updating scheme. As the CSI method is more compulyi@fficient than the ex-
isting methods within this approadh [64], we briefly expltie CSI method for this class of

inversion algorithms.

The CSI method formulates the MWT problem in terms of the caehttaand contrast
sources, defined 8/ (q) = x(q)E(q). Multiplying both sides of[(2.17) by the contrast
function, we have

W = xE"™ + xGp(W). (3.8)

The data equation (2.1L6) is re-written as,

E* = Gs(W). (3.9)
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In the CSI method the cost-functionéls' : L*(D) x L?(D)*> — R,

Ty
Z HErSTg:getmt - gS(Wt)HZ
COO Wy W W) = T T
> 1B
t=1

T,
Z HXETC - W+ XgD(Wt)||2D
= (3.10)

T,
i 2
Inc

> B

t=1

is minimized via the formation of two interlaced sequenckethe unknowns: a sequence

of estimates of the contra§k,,(q)} which is interlaced with a sequence of estimates of the
contrast source§W, ,,(q)}. For every step of the CSI method, each sequence is updated
via a single step of the CG minimization algorithm while asgwygrthat the other unknown

is a constant. We note that the first term of the CSI functiogalsiwith [3.9) in whichE s

is replaced by whereas the second term incorporafes| (3.8). The CSI methustialy

regularized with the weightefi>-norm total variation multiplicative regularizer [11]. &h

inversion method is then referred as the MR-CSI method.

It should be noted that MGM is very similar to the CSI method.tHea MGM, the fields
and the contrast are updated as opposed to the contrases@und the contrast in the CSI
method. In addition, the Born and the extended Born approxamsitan also be formulated
within the framework of the CSI algorithm [65, 166]. We will csider the CSI formulation

of the MWT problem in Chaptér 7.
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Fig. 3.1:Synthetic leg data set (TM illumination). (a)-(b) The exact relative compkxmiitiv-
ities, (c)-(d) the MR-CSI reconstruction, (e)-(f) the enhanced DB&donstruction, and
(9)-(h) 2D cross section along= 0 of the ideal (black dash-dot line), MR-CSI (red dashed
line) and DBIM (blue solid line). The frequency used was- 1.5 GHz.
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Fig. 3.2:Synthetic leg data set (TM illumination). (a)-(b) Born approximation recontbon, and
(c)-(d) the BIM reconstruction. The frequency used wias 1.5 GHz.

3.3 Inversion results

As in the rest of this thesis, we will not consider the Born appnation and the BIM, it is
instructive to compare their performances with two stdtéie-art algorithms, namely the

MR-CSI method and the enhanced DBIM. The details of the enhab&ill are outlined
in [55].

While the ultimate test of any inversion algorithm must imelexperimentally collected
scattering data, it is very useful for comparison purposdsate a synthetic data set where
the true contrast is known. Towards this end, we have creamathetic model of a leg,

shown in figurd_311 (a)-(b). Permittivity values for the mbdere taken from published
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values on human tissue [67]. The model consists of a bonefgsed of a marrow core,
e, = 5.5 + j0.55 surrounded by cortical bone, = 12.6 + j2.4), which is inside of a
large mass of muscle,( = 54.8 + 713.0), surrounded by skinef = 39.4 + j12.9). Data
were generated for the model based on a frequendy50BHz, with 30 transmitters and
30 receivers evenly spaced on a circle of radiGsm. The forward solver utilized a grid
of 100 x 100 cells on al0 cm x 10 cm grid. The inversions were performed on a grid of
100 x 100 cells on a10.2 cm x 10.2 cm grid (thus, avoiding the so-called inverse crime
[68]). The ‘leg’ is immersed in a lossless background medwith ¢, = 77.3. To every

measuremeng’% noise was artificially added using the formula givertin [65].

The MR-CSI reconstruction is shown in figure]3.1 (c)-(d), areléhhanced DBIM recon-
struction is given in figure_3l1 (e)-(f). A 2D cross sectiorttudy = 0 line for all three plots
is shown in figuré 311 (g)-(h). The two reconstructions areakably similar, which can be
seen particularly clearly in the 2D cross section plotstiNgialgorithm accurately resolves
the skin, which is not surprising because the skin is appraly1.5 mm, or~ (1/20) of
the wavelength in the background medium. The only signifidéferences between the two
results are in the marrow core of the bone, where the CSI seeffisd’ an inhomogeneity
associated with the marrow bone, while the DBIM reconstanctirovides only a smooth
region for the whole bone. However, the permittivity valuganed by the CSI method
for the marrow bone is not correct, whereas the DBIM reconsitn for the marrow bone
is closer the true value. In [55], we have compared the padioce of these two methods
over a wide range of data sets: noisy synthetic data, fraeesfar-field data, and near-field

water-submerged data. In these cases, the inversiongeserie remarkably similar.

The inversion of this data set using the Born approximatioth twe BIM are shown in
figure[3.2. As can be seen, these two methods fail to accyratsbnstruct the synthetic leg

model.



The Gauss-Newton Inversion Algorithm

| keep the subject constantly before me and wait till the fiastriing open little
by little into the full light(Isaac Newtdﬂ).

As mentioned in Chaptét 3, the data misfit cost-functiondl)(. nonlinear with respect to
the contrasty. To treat the nonlinearity of the problem, iterative teciugs are used. In
this chapter, we present the mathematical formulation ef @iithese iterative techniques,
namely, the Gauss-Newton Inversion (GNI) method. As fortritegative algorithms for the

MWT problem, this inversion algorithm requires that appraj@ regularization techniques

be used. These will be discussed in Chappter 5.

The GNI method is based on the Newton optimizationl [69] whéee nonlinear cost-

functional at the current iteration is approximated withuadyatic form. The stationary

1in Newton Tercentenary Celebratigrlily 15-19, 1946 by The Royal Society of London for the Invexo
ment of Natural Knowledge.
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point of the quadratic model is then chosen as the next &etatGNI, the cost-functional
is the data misfi€*S(x), (3.1), which is usually augmented by an appropriate reguaition
term. To describe the general formulation of the GNI methegldenote the cost-functional
C(x) : L*(D) — R to be either the data misfit cost-functiori&f () or a regularized form

thereof.

The cost-functional(y) is not analytic in the complex domain; thus, it is not complex
differentiable. To handle this problem, we use Wirtingelcakus [70, 71) 72, 73] where
we consider the cost-functiondly, x*) such thatC(y, x*) = C(x) (see AppendiX T for
more discussion). Therefore, minimizidgy) will be equivalent to minimizing: (x, x*).
According to Wirtinger calculus;(, x*) is analytic with respect tq for fixed y* and is
analytic with respect tq* for fixed x. Therefore, one can formally define the derivatives of
C with respect toy andy* by treating them as two independent functions. Therefdrénea
n' iteration of the GNI algorithm, where the known predictedttast isy,,, C(x, + Ax,)

may be approximated by the quadratic model

T T
ac 826 626
C( )+ &|X=Xn AXTL +1 8X6X‘X:Xn 8X8X*_ X=Xn Axn AXTL
. oc Ax* 2 _o%C | 9%C A Av* ’
™ Ix=xn Xn A X IXZXn By ax* IX=Xn Xn Xn

(4.1)
where the superscripf” denotes the transposition operator. The correctlop, is found

for the minimum of the quadratic moddl, (#.1). Thus, the ection satisfies

25 275
o l=x O X=X Axn %‘x=x
IxIx n Ox9x n _ _ | 9 n (4.2)
24 2.5 5
P N i S AX: 2=
Ox*Ox ' X=Xn  Ox*Ox* IX=Xn n Ix* IX=Xn

The contrast is then updated &s:1 = x» + v»Ax, Where the step-length, will be

explained in Section 4.3. Note th%]xzh andg"—g x=x.» Which represent linear mappings
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from L?(D) to C, are the derivatives af() with respect toy and y* at y = x,. Thus,
g—§|X:Xn(AXn) is the result of operatin§§|X:Xn : L*(D) — ConAy, € L*(D). The
second-order derivatives in(4.1) are linear mappings ff3(D) to Z whereZ is the space

of all linear operators froni?(D) to C.

As the cost-functional involves the data misfit cost-function@}® which requires the op-
erator£s° the derivative operators ih (4.2) will all be dependenttwa derivatives of s
with respect to the contrast. The approximation within tid @ethod is that the derivative
operators required i _(4.2) are calculated by ignoring tremed derivative o£s® (Z.20),
with respect to the contrast; thus, avoiding its computeticost. That is, the scattered field
due to the contrast, + Ay, is approximated by the first two terms of the Taylor’'s expansi
[30],

a scat

E%xn + Axn) = E5%(xn) + 8—X|x=xn

(Axn)~ (4.3)

The operator%‘lxzm, which is a linear mapping fromi?(D) to L*(S), is the derivative

of £ with respect toy at y = x.. Thus, %{m x=xn (Axn) is the result of operating

e vmxn : LA(D) — L(8) on Ax,, € L*(D).

As will be seen in Section 4.1.2, whélty) is chosen to b€-3(x), the operator%iz—g;JX:Xn

and%&kZM are ignored under the approximatign (4.3). It should bedttat we will

also consider optimizing () overxr andy; in Section$5.6]2 arid D.5.

4.1 Required derivatives for the non-regularized GNI method

We now show the required derivatives for the Gauss-Newteergion method for the case
whenC(y) is chosen to b&€“S(y), (81). That is, the cost-functional to be minimized is

the data misfit cost-functional, without any regularizatterms. Similar to the procedure
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explained at the beginning of this chapter, we consider gs¢-functionalC'S(y, x*) such
thatC'S(y, x*) = CS(x). Noting that the derivatives of the data misfit cost-funatibare
dependent on the derivatives of the scattered field ope&itt we first present the first
derivative of£sc@ with respect to the contrast. We then briefly explain why wialting the
second derivative afS*with respect to the contrast, which is ignored in the GNI rodtlis
computationally expensive. Finally, the required denixexs of the data misfit cost-functional

will be given. The derivation of these derivatives can benfbin AppendixXD.

In Chaptei 5, we will consider the GNI method when the data trisft-functional is aug-

mented by some appropriate regularization terms.

4.1.1 Derivative of the scattered field with respect to thetiast

Herein, we assume that th® transmitter is active. As mentioned earlier, the deriativ

ag;scat
ox X=Xn

ing ont, can be written as (see SectlonD.1)

is a linear operator fronk?(D) to L?(S). This derivative operator, when operat-

8 gfcat

Sl 0 =8 [ v Bua ) - G a.pix)dg (a.)

wherey is an arbitrary function inL2(D) andG"™(q, p: x») is the Green’s function when
the background medium is assumed toyhe This Green’s function is sometimes referred
to as the distorted or inhomogeneous Green’s function \espect to the contragt,. The
field E,(q; x,) is the total field inside the imaging domafnin the presence of,, when the

M transmitter is active.

As will be seen, the GNI algorithm also requires the adjofrﬁ—iéc—atb(:xﬂ. Assumingl is an
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arbitrary vector function iL?(S), the adjoint operator may be written as

*

(agj:atb( xn)a (F) = (k;g)* [Et(q; Xn)]* . /S [éinh<q7p; Xn) . F(p)dp. (4.5)

Despite the fact that the second derivative of the scattiee&tiwith respect to the contrast
is neglected in the GNI method, sée {4.3), we show the secerihtive operator to briefly

explain why its calculation is computationally expensivEhe second derivative operator
825%])( . IS @ linear mapping froni?(D) to the space of linear operators which map from
L*(D) to L*(S). Assumingy € L*(D) andy € L*(D), the second derivative operator may

be written as (see Sectibn D.1)

anscat .2 a(c/'t =ih .
o) ) =8 [ ol0)| G0 G a i) +
~inh .
E(q; xn) - MIX%W) dq (4.6)

ox

The operato€, is given in [Z.19) whereZ™™ needs to be replaced y™. The calcula-
tion of this second derivative is very computationally exgee. To show this, consider
%:|, .. (1) in the integrand of[(4l6). Similar to the derivation 8f-|,_, . see Ap-

pendiXD, 3% |,—,, () may be derived as

o0& in
um<—m/w NEi(ds xn) - ™', g: xo)dd @.7)

whereq andq’ are both in the imaging domaif. Therefore, calculating (4.7) requires that
the excitation be placed in differegt or ¢’, which are both inside the imaging domain. In
the discrete form of the problem where the 2D imaging domautiscretized intaV pulse

basis functions, this results in solving the forward prabl¥ times per GNI iteration.
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4.1.2 Required derivatives for the data misfit cost-functlon

We show the first and second derivativeséb?(x, x*) with respect toy and x* which are

required in[(4.R). As derived in AppendiX D, the first derivas can be written as

8CLS agscat a
W|X Xn </)7$ Z |: |X Xn:| (gtscat(xn Eﬁfeaést> ¢> 5 (48)
D

and .
O a4 = [%f(| o *>] . @s)
The normalization factors is given as
Tw -1
o= |l (410
t=1

The second derivatives are derived as as,

82 C LS gscat o gscat
[aX*aX‘X xn (P ] <7782[ = Xn:| [ Dx = Xn:| (90)7¢> , (411)

D

a?cLS anscat a *
lﬁxﬁx‘x Xn( ] <USZ{{ |x xn(ﬂp)} (gtscat(Xn Efrz::;st)} 77/1*> )

412

[ 92Cts . 920Ls * *
aXaX |X Xn( )] (w) {[ax*ax‘x Xn( )] (1/1 )} ) (413)

and

aQCLS . . 82cLS *
S (¢ >] (") = {[axaxrx o (¢ >] w)} . (4.14)
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Utilizing (4.8) and [4.P), the second term bf (4.1), wiiEry) = C-S(x), will be
agscat a ;
Re 27732 ] o) - B ) (4.15)
D

Also, utilizing (4.11), [4.12) [{4.13), and(4/14), therthterm of [4.1), whe@ (x) = C-S(y),

will be

agscat a 8gscat
Re<27782 |: |x= X'n} {ﬁb{x”} (AXn>7AXn> +

D

anscat a X
Re 27732[ o |x=xn ( Axn)} (&% xn) — Exgast) » AX5 ) - (4.16)
D

As can be seen both (4]15) anhd (4.16) are real numbers. Ttussstent with the fact that
CS is a mapping from.?(D) to R.

4.2 Finding the correction in the non-regularized GNI method

Herein, we assume that the cost-functional to be minimigela data misfit cost-functional
CS (without any regularization terms). Noting that the secdedvative of the scattered
field will be avoided in the Gauss-Newton inversion methee, [.8), the derivative%j%,
@4.12), anddii%i*, (4.14), are ignored. Ignoring these derivatives and gofth2), it is

straightforward to see thaty,, can be found by satisfying

82CLS acLS

8X*8X|X Xn( XTL) - aX |X Xn* (4'17)

As can be seen both the left-hand and right-hand sid€s _of(4epresent linear operators

which mapZ?(D) to C. This means that for an arbitraty € L?*(D), the correction must
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satisfy
[ aQC LS

o acLS
Sy (A m] () = - [

5 e ] ). (4.18)

Using (4.8) and(4.11), equatidn (4118) may be written as

gscat agscat
<7752 { |x Xn:| {8—X|X Xn v¢>
T gscat a
Z[ e | (€0 - R ) (4.19)

Therefore, the correctioA y,, can be found from

Tx Tx

(c/’scat B) 5scat 5] gscat a
Z{ B = Xn:| [ dx = Xn:| (Axn) = _Z{ Bx = Xn:| (£ xn) — E?ncgést)
=1 t=1

(4.20)

It should be noted that for the case whélg) is an augmented form af5(y) by an
appropriate regularization term, the regularization tevithalso contribute in finding the

correction. This will be explained in the Chapiér 5.

4.3 Step-length

Having found the correctiony,,, the contrast is updated as

Xni1 = Xn + UnAXn (4.21)

wherey,, is an appropriate step-length chosen to enforce the restuatithe cost-functional.
We note thatAy,, is a descent direction for the quadratic form of the costfiamal; not
necessarily for the cost-functional itself. In fact, if tipgadratic model is not a good approx-

imation to the cost-functional, the correction may leadriorerease in the cost-functional.
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That's why some form of line search algorithm is required nfoece the reduction of the

cost-functional at each iteration. Formally, can be found from the following minimization
vy, = argmin {C(x» + vAxn)}- (4.22)

This minimization can be done using different nonlineariraation routines. However,
due to the fact that these techniques require several gostibnal evaluation and noting
that evaluating the cost-functional is very exper&i\wch optimization techniques will be
very computationally expensive. Therefore, we adopt adearch algorithm described in
[4,145]. In this line search algorithm, we start with the fslep,i.e. v, = 1, and check
whether it satisfies,

C(Xn + VnAxn) < C(Xn) + BrndC, (4.23)

whereg is a small positive numtganddcn is the decrease rate 6f ) aty,, in the direction

of Ay,. If v, satisfies[(4.23), we choose it as an appropriate step-lgottlerwise we
reduce the step-size alodyy,, until we find av,, which satisfies[(4.23). In this procedure,
the functiong(v) = C(x. + vAy,,) is approximated by a quadratic expression in terms of
v and a new candidate for the step-length is then found by namign this quadratic form.
As in [4], the minimum possible value for is set t00.1. If the step-length becomes less
than0.1, we chooser = 0.1 and terminate the line-search algorithm. The details & thi

algorithm can be found in [45].

2 Note that evaluating the cost-functional for each guessefstep-length requires calling the forward
solverT, times to calculat&€®®(y,, + v, Ax,) fort =1,--- | T,.
3 In our implementation, it is set to e —*.
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4.4 Termination criteria for the GNI method

The inversion algorithm terminates if one of the followihgde conditions is satisfie(i) the
cost-functional () is less than a prescribed err(i) the difference between two successive
C(x) becomes less than a prescribed valugjiprthe total number of iterations exceeds a

prescribed maximum.

4.5 Discretization

Due to the fact that the number of measurements, the data obtained with an actual
MWT system, is limited and that the inversion algorithm netdse implemented using a
computer, we discretize the problem. The discretizatiomigact, a projection from the

continuous domain to a finite dimensional discrete domain.

We discretize the imaging domaif into N cells using 2D pulse basis functions. Thus,
the contrast function is represented by the complex vegter C». We also assume that
the number of measured datalis. Thus, the measured scattered data on the discrete mea-
surement domaits is denoted by the complex vectaFs € CM. The vectorE %L is the

stacked version of the measured scattered fields for eardntitier. That is,

Escat

measl

Eneas= | B (4.24)

Zmeast

ESCat
—=measl/ 1oy
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Assuming that the!" transmitter is active, the simulated scattered field cpording to the
predicted contrast at the" iteration of the GNI algorithmy , is denoted bﬂjﬁ"‘which is

the discretized form of*°3{y,,). The vectorE3® ¢ CM is then formed by stacking*.

t,n "
That is,

scat
El,n

B | pea (4.25)

—=t,n

B2 v
Assuming that thé" transmitter is active, we define the matdlx,, at then™ iteration of the
GNI algorithm which contains the derivative of the scattifield vector 25 with respect
to x evaluated aty = x . Thatis,J,, represents the discrete form ggijt|xzxn_ The
matrix.J,, € C**" is then formed by stackind, , matrices{=1,--- , T;). We will refer
to J,, as the Jacobian matrix. Each row of the Jacobian matrix sporeds to a particular
receiver location, sayp and a particular polarization along some direction, sagnd a
particular transmitter, say, th# transmitter. That is, one row for each individual datum of
the collected data. The ordering of the rows will obviousgpdnd on the ordering of this
data, but the™" element in such a row will correspond to the derivative of Sdattered field
with respect tdx/;, the:" element of the vectoy. From [4.4), this element may be found
by

i [ M@Bi(aix) - G™a.pix,) - e (4.26)

wherell’(q) is the 2D pulse function which is equiht thei™ voxel of the imaging domain
and0 otherwise. For our cases, the polarization directios considered to be eitheéror

in the TE case and in the TM case.
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That being said, the discrete form bf(4.20), may be written a
JIJ Ay =J0d, (4.27)

where the superscriptf’ denotes the Hermitian operator (complex conjugate trassp
The vectord, € CM is the discrepancy between the measured data and the sihdlata
corresponding o ; e,

d, = — (B~ Exndad - (4.28)

It should also be noted that the solution [to (4.27) can beidered as the solution to the
minimization,

Ax = argmin HlnAX — c_lnuz . (4.29)
X, Ay X

The discretized form of the cost-functior@® will be denoted byF'S. Thus,

oscat _ EscatJ ’ 2
=n

=mea

fLS(Xn) - H ‘EscaISHZ

—=mea

(4.30)

where||.|| denotes thé.>-norm onCM.

In this thesis, we show inversion results from experimettdigh sets as well as synthetic data
sets. To all synthetic data sets, unless otherwise stiftedpise was artificially added using

the formulal[65]
Eitha = B+ maa [ B4 (0, + ) (4.31)

where E5°™d s the scattered field on the measurement domain obtainedebytilized
forward solver,J, andd, are two real vectors whose elements are uniformly disteitbut

zero-mean random numbers betweehand1, andy = 0.03. The noisy datd; e, is then
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used to test inversion algorithms against synthetic data S avoid inverse crime [68],
the discretization used in the utilized inversion algarithto invertEZ32  is chosen to be

-~ meast

different than the discretization used in the forward soteegeneratgzset™d

Finally, we note that there are different ways to discrettze problem. Mostly, in this
thesis, we use 2D pulse functions to discretize the corfrastion. Discretization may also
be achieved using other methods, such as the eigenfunétiotie problem, see Chapftér 7,

and triangular meshels [12].



Reqularization

Nonlinear ill-posed problems constitute a much broader goeempared to lin-
ear ill-posed problems], and their numerical treatment fen specialized to
the particular application(Per Christian Hansen [74])

In this chapter, we present different methods to treat th@ogedness of the microwave to-
mography problem in the framework of the Gauss-Newton sieermethod. These methods
are referred to as regularization methods and they needutlized to stabilize the solution
by adding constraints to the data misfit cost-functional thareby reduce the influence of
errors and noise. The art of regularization lies in two arégsapplying the right kind of
regularization which may depend on the computational nessuand the availabke priori
information, andi{) applying the right amount (weight) of regularization winidepends
on the noise level in the collected data. In the microwaveognmaphy problem, where the

nonlinearity is treated by iterative techniques such as3hess-Newton inversion method,
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the regularization weight at each iteration may also deperftbw far the predicted solution

at the current iterate is from the expected solution.

In the first part of this chapter, we classify different reggidation methods for the GNI
method into two strategies. These two strategies may bmglisshed by the type of the
cost-functional to be minimized. In the first strategy, tstefunctional to be minimized is
the data misfit functional'®, (3.1), which is ill-posed [40, 75, 41, 12,154 46] 44]. Duéis
ill-posedness, we need to regularize [4.2) at each iterafithe GNI method. In the second
strategy, the cost-functiondts is first regularized and the GNI method is then applied to
the regularized cost-functional [38,!30, 4] 76} 45]. Theref equation(4]2) does not need
to be regularized throughout different GNI iterations. &tle regularization method that is
discussed the regularization weight is either explicitiyp®en or is implicit to the method.
The basic idea behind the appropriate regularization wéayithe GNI method is that the
regularization weight should be large in early GNI iteraiavhere the predicted solution
is far from the true solution and should gradually decreastha algorithm gets closer to
the true solution. We refer to this idea adaptiveregularization([717, 27]. Throughout this
chapter, we denote tlpositiveparameter as the regularization parameter which (partially)

governs the regularization weight.

In the second part of this chapter, we consider incorpanaifa priori information to reg-
ularization terms. This chapter ends with introducing aage enhancement technique to
suppress possible spurious oscillations in the final imdgaioed from the Gauss-Newton
inversion method. We now start the first part of this chapyeexplaining the two regular-

ization strategies, mentioned above, in more details.
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5.1 The first strategy

This strategy chooses the data miglif, (3.1), as the cost-functional to be minimized.
Therefore, in the discrete domain, satisfyifig (4.2) will dgivalent to the minimization
(4.29). It is well-known that the matri¥,, is an ill-conditioned matrix, making (4.29) a
discrete linear ill-posed problem which needs to be regaﬁdH There are two published
general approaches for regulariziig (4.29) in the elecagmetic inverse scattering case:

penalty and projection methods.

5.1.1 Penalty methods

Tikhonov regularization 1] is probably the most populanaky method where the regular-

ized solution of[(4.29) is found from the minimizatidn [4®, 41,46/ 54]
Ay = argmin{HinAx—c_lnHz+anQ(Ax)}. (5.1)

The regularization term(Ay) is usually chosen to be in the form of d&3-norm, making
(5.1) a least squares minimization. Herein, we asstrfidy) = HEAXHQ where R is
an appropriate matrix whose nullspace intersects trwiaith that of J,; thus, ensuring

a unique solution for[(511). In this casé, (5.1) can be wriths a damped least squares

minimization )
ln C—lTL
Ax = argmin Ax — (5.2)
2\ varR 0

1 We note that the minimizatioh (4.29) is the result of the ditization of a Fredholm integral equation of
the first kind. It is well-known that the discretized form ofeedholm integral equation of the first kind results
in a discrete ill-posed problern [23].
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Fig. 5.1: (a) TheL-curve and (b) the NCP plot.

where( is the zero vector of appropriate size. The minimizatio@)% equivalent to
(LI, +onRYR) A = J1d,. (5.3)

In this case, the weight of the regularization is determibgdhe positive parameter,,
which needs to be chosen at each GNI iteration. This weighsislly determined using
either one of the standard regularization parameter-ehmiethods [23] or aad hoctech-
nique [75)/41] 46, 54]. The standard regularization paramgtoice methods, such as the
L-curve [78, 79], the Generalized Cross-Validation (GCV) [§64,/46], and the Normal-
ized Cumulative Periodogram (NCP) [81) 82| 53, 52] methods peavery computationally
expensive and may also fail in choosing an appropriate aggakion weight. For example,
the GCV functional may become very flat so that locating itsimimm, which corresponds

to an appropriate regularization parameter, will be nucadl difficult [78].

To show one example of how these standard regularizati@npeter-choice methods choose
an appropriate regularization parameigr we have shown the-curve and NCP at one it-

eration of a MWT problem, described in [52], in figurel5.1. Tastouct theL-curve, see
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figure[5.1 (a), we have solved (5.3) ftb0 differenta when R is chosen to be the identity
matrix I. Thus, the discretk-curve consists of00 points. The vertical axis in figute 5.1 (a)
is the solution normH Aan, for different choices of,,, whereas the horizontal axis is the

residual norm”inAXn —d, ||, for different choices oty,. If the value of«,, is chosen to

be too large, the residual norm will be large while having alésolution norm. This results
in an over-regularized solution. On the other hand, if thieie/af o is chosen to be too
small, the solution norm will be large while having the resiinorm small. This results in
an under-regularized solution. To balance these two natnsssuggested by Hansen [83]

that one chooses the regularization parameter which gonels to the corner of this curve.

We have also shown the NCP parameter-choice method for treematlem in figuré 511 (b).
The main idea behind the NCP method is to choose the largesiat makes/, Ay —d,,,
look like white noise. This can be done by starting with adatig for which the residual
vector,J,Ax — d,, does not look like white noise. According to the NCP paramete
choice method, if thisy, is chosen as the regularization parameter, the solutidroeian
over-regularized solution. We then redueentil the first instance where we have a resid-
ual vector that looks like white noise. Here, “looks like wehnoise” is defined using the
Kolmogorov-Smirnov (KS) limits. The metric that is used &esf the residual “looks” like
white noise is that the NCP of, Ay — d, fits between the KS limits which are bounds
around a straight line. The largest for which the NCP fits between the KS limits is consid-
ered to be an appropriate regularization parameter. Afpibiist, if we decrease,, further,
the NCP will be still between the KS limits. However, the smatis more likely to be

unstable (under-regularized solution).

Regarding the use of standard regularization parametecehwethods such as thecurve,
NCP and GCV methods within the first regularization strateagshould be noted that these

methods have been developed for linear inverse problemeiie discrete Picard condition
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[84] is satisfied for the underlying unperturbed problem][283]. We have provided a
mathematical discussion of why standard regularizatioampater-choice methods may fail
for the microwave tomography problem in [53] (in the framekof the NCP parameter-
choice method). However, they may not be appropriate folimear inverse scattering
problems, especially when the initial guess to the GNI alfgor is very far from the true

solution [46].

Thead hoctechniques are usually faster but are dependent on thelpee®f the measured
data. Therefore, they may need to be modified for differentomwave tomography systems.
However, it is easier to incorporate adaptive regulamratisingad hoctechniques as com-
pared to the standard regularization parameter-choiceodst For example, in [41], the
regularization parameter, is chosen to be proportional ﬁ@_ln||2- That is, the regularization

weight decreases during the GNI iterations; thus providiggadaptive regularization.

We note that the penalty terfd( Ax ) can have other forms such as thenorm total vari-
ation or maximum entropy [45]. It should also be mentioned this type of regularization,
when R is chosen to be the identity matrix may be viewed as the Levenberg-Marquardt

approach([4€, 85, 69] where the matd¥'J, is augmented by, I.

5.1.2 Projection methods

Projection methods attempt to regularize (4.29) by prajecit onto a subspace having a
basis that can be used to represent the soluii&rl] with sufficient accuracy while maintain-
ing the stability. The projection may be achieved by Krylolspace methods such as the
Conjugate Gradient Least Squares (CGLS) or Least SquareQWRittactorization (LSQR)

methods([86, 74]/T12]187]: at thie" iteration of the Krylov subspace methods, the solution
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Fig. 5.2: The semi-convergence behavior of the CGLS scheme applied to an ill-posgldm. The
vertical axis shows the normalized error between the true solution and dbesteucted
solution. The horizontal axis shows the number of CGLS iterations (frémrB00).

is restricted to lie in

AW e Kp(L) L, Il d,) (5.4)

wherefCy, is thek-dimensional Krylov subspace defined by andd,,. The Krylov subspace
algorithms, when applied to an ill-posed system of equatierhibit asemi-convergendeae-
havior [88/74]. That s, they improve the solution at theirlg iterations, where the solution
space is restricted to a Krylov subspace of small dimen$iowgver, they start deteriorat-
ing the solution by inverting the noise in later iteratiom$erefore, the stopping iteratidgn
plays the role of the regularization parameter: the feweiitrations, the stronger the regu-
larization. To demonstrate this semi-convergence behavehave shown the performance
of the CGLS algorithm applied to a standard linear ill-poseabfem, known as the Satellite
problem [89] developed at the US Air Force Phillips Laborgtin figure[5.2. The vertical
axis shows the normalized error between the reconstructetich and the true solution.
The horizontal axis shows the number of CGLS iterations (ftaim300). As can be seen,
the normalized error between the reconstructed solutiontlaa true solution decreases at
early CGLS iterations. After iteratiobd, which would be the ideal stopping iteration, the

normalized error starts increasing. It should be notedtthaplot cannot be used to find the
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stopping iteration in reality. This is due to the fact that thue solution, based on which the
plot shown in figuré 5]2 is made, is to be found and thus, is vaiable. The stopping it-
eration is usually determined using either standard regal@gon parameter-choice methods

such as thé&-curve method [90] or by somed hoctechniques [12, 87].

As in penalty methods, adaptive regularization is diffidoltincorporate in the standard
regularization parameter-choice methods whereas thepeaasily incorporated into the
ad hoctechniques. For example in [12,/57], ad hoctechnique has been used to determine
the regularization weight in the CGLS scheme where the shgpiperation is chosen to be
small in early GNI iterations and then increases in later @Gétations. Considering that
the smaller the stopping iteration, the stronger the regualon, thisad hoctechnique is an

attempt at adaptive regularization for the GNI method.

The projection can also be achieved by the Truncated Singalae Decomposition (TSVD)
where the unknowrhx is projected onto the subspace spanned by the first few figdt-s
lar vectors of the matri¥, [91),[74,92]. Writing the Singular Value Decomposition (SVD)
of the matrixJ, asJ, = U S V¥, the regularized solution of {4.29) using the TSVD

method can be written as
Uu

Ay = ; %@_‘”yi (5.5)
where the left singular vectar, and the right singular vecter, are thei™" column of the or-
thonormal matrice§/ andV, respectively. The singular valueis the:™ diagonal element
of the matrixS. In (6.8), the integek, which determines the dimension of the subspace
spanned by the right singular vectars is the regularization parameter: the smaller the
k, the stronger the regularization. It should be mentioned ith (5.5), we have assumed
that the singular values; are ordered in a non-increasing sequenee; s; > s;.1 > 0.
Similar to Krylov subspace regularization methods, thell@gzation parameter may be

determined from standard regularization parameter-ehmiethods oad hoctechniques.



5.2 The second strategy 50

5.2 The second strategy

In the second strategy, the nonlinear ill-posed cost-fanat CS, (3.1), is first regularized
and then the GNI method is applied to the regularized casttfonal. Therefore, equation
(4.2) does not need to be regularized throughout the GNititars. At least, three different
methods for regularizing the cost-functior@&f for the GNI method have been reported in

the literature. These are additive, multiplicative, andie-multiplicative regularization.

5.2.1 Additive regularization

In this caseC"S is regularized by an additive term (see for example, [76):38]
C(x) = C3(x) + aC*(x) (5.6)

whereC”R is an appropriate additive regularizer. The regulariZétis usually chosen to be

the L2-norm total variation of the contrast which is written as

1

(0 = [ I9xta)f* da 57)

where A is the area (or volume, in the case of three-dimensional imgagf D and V
denotes the spatial gradient operator. To handle the fatthie cost-functional”R(y) is
not holomorphic iny, we use the Wirtinger calculus as before. Thus, we consiiecdost-
functionalC*R(y, x*) which satisfie€”R (y, x*) = C*R(x) (see Chaptérl4 and Appendix C
for more discussion). The cost-functior{&lR(X, x*) is holomorphic iny for fixed x* and

holomorphic iny* for fixed x. Thus, the following formal derivative operators can bewet
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for this regularizer (see Sectiobn .3 for the proof)

OCAR OCAR " 1
W’X xn<¢*) { DX ’X Xn( )} :<_ZV2me> ) (5.8)

D

D

a2cAR aQCAR ) * -
[8)(8)(|X xn (¥ )] (W) = {[ax*ax x=xa (9 )] (v )} =0. (5.10)

whereV? denotes the Laplacian operator andndy are two arbitrary functions ifi?(D).

anAR . a2cAR * 1 )
[ax*ax|x xn (9 )] (¢7) = { [aXaX |x=xa (0 )] (@b)} = <_ZV 9071/1> ) (5.9)

and

Noting (4.2), and considering (5110) as well as utilizing t8NI approximation (which

results in ignorin@idi%i and d?;%s ), the correctiom\y,, may be found by satisfying

2LS 2 AAR 5LS 5AR
[a % 82C - ac ac (5.11)

- A n) = R
aX*aX|X Xn aa *a |X Xn] ( X ) 8X ’X =Xn -« aX |X Xn*

Utilizing (6.8), (5.9), [(4.8), and_(4.11), the above eqoatiesults in the following equation

gscat 8€scat o
TISZ |:|: 8X |X Xn:| |: 8X |X Xn:| _Zv2:| (AX’”> -

t=1

gscat a " o 9
_7782 [ = Xn:| (gtscat(Xn Eﬁgéaast) + Zv Xn- (5.12)

Thus, using this specific regularizer, the correction veirtdhe discrete domain at the"

iteration is found by solving
(LT, —v2)Ax, = I]d, +7Zx, (5.13)

where the matrix2 is the discrete representation of tﬁ;ﬁQ operator. The positive param-
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etery is equal too/ns. In this case, the regularization weight remains constaoughout
different GNI iterations, as both the mat&xand its coefficienty remain constant through-
out different GNI iterations. Therefore, this regularinattype will not provide adaptive
regularization unless the user changes the regularizatgght manually. In this case, the
parametery is usually chosen viad hoctechniques|[7€, 38]. It should also be mentioned
that this regularization method favors smooth solutiors tuthe presence of the matx

in (5.13) which provides Laplacian regularization. We aiste that the matri is imple-
mented by assuming that its argument vanishes on the bouofidre imaging domain;e.,
utilizing Dirichlet conditions[[93] (sed (D.43) and its adéd discussion). Under this zero

boundary condition, the matriX: has no nullspace [94, pg. 102]; thus providing a unique

solution for [5.1B).

5.2.2 Multiplicative regularization

In this case, the cost-function@}® is regularized with a multiplicative term. That is, at the

n'" iteration of the GNI algorithm, we minimize ([4, 56,145])
Cn(x) = C00CT ()- (5.14)

Here, we consider the multiplicative regulariz#® as the weighted>-norm total variation

of the unknown contrast, defined asl[4} 56]

CVR () = /D B (@) (IVx(@) +a2)dg (5.15)

where

bu(q) 2 A3 (|Vxu(q)]” + a?) 72, (5.16)
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The choice of the positive parameter is explained below. For the regularizer (5.15), it can
be shown that (see Section D.3)
aéMR aéMR

a—x*’x=xn<¢*) = {W‘xam(?ﬂ)} = <—V : (biVXn)>w>Da (5.17)

92CMR 1 . 92CMR . o ,

Sy w):{lmmw >] <¢>} = (-V-(3V¢), ¥)p. (5.18)
[ 92CMR oemR 1
kxr (90)] W:{[ax*ax*(@ >] <w>} ~0, (5.19)

where V-’ represents the divergence operator & (x, x*) = CMR(x). Using this mul-

tiplicative regularizer, the correction in the discreterdon can then be found by solving

whereL, represents the discrete form of tRle (b2V) operator and, = ||d,,||*>. The posi-

tive parametery;, is chosen to beé="S(y )/AA whereAA is the area of a single cell in the
discretized domai® 1 The operatoL,,, which changes throughout the GNI iterations, pro-
vides an edge-preserving regularization. That is, if orexije region of the reconstructed
X~ IS homogeneous, the weighft will be almost constant for that region. Therefore, the op-
eratorL,, will be approximately equal t6? V2 which favors smooth solutions. On the other
hand, if there is a discontinuity (edge) at some region ofthe corresponding? for that
region will be small. Thus, the discontinuity will not be satbed out and will be preserved.
The regularization operata, may be considered as a weighted Laplacian regularizer. A

detailed explanation about weighted Laplacian regulesizan be found ir [95]. It has been

shown in [96, Section 3.5] and [97] that the nullspace&Cqfis spanned by a constant vec-

2 Note thatF"S(x ) is the discrete form of"S(x,); see[4.3D).
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tor. Noting that the nullspace of”J  contains high-frequent components][23] 82], the

nullspace ofC,, and.J”.J, intersect trivially; thus, ensuring a unique solution 6120).

This multiplicative regularizatioautomaticallydetermines the regularization weight which
is governed by the discrepancy between the measured datthersimulated data corre-
sponding toy . As can be seen fronl_(5.20), the weight of the oper@lprdepends on
|, ||> which provides adaptive regularization. That is, if thediceed solution is far from
the true solution, the regularization weight is high. Whenghedicted solution gets closer to
the true solution, thé>-norm of the discrepanay, decreases; thus decreasing the regular-
ization weight. In addition to the weightdd’-norm total variation form, the multiplicative
regularization term may be used in the forms of the standandorm [45] and thel.2-norm
total variation (not weighted) [4]. As opposed to the weeght?-norm total variation mul-
tiplicative regularizer, seé_(5.115), these two forms of mdtiplicative regularizer do not

have the edge-preserving characteristic and will not beugdesed in this thesis.

Throughout this thesis, we will refer to the GNI algorithmthvthe weighted.?-norm total

variation Multiplicative Regularizer (MR) as the MR-GNI metho

5.2.3 Additive-multiplicative regularization
In this case, we regulariz&-S, (3.1), as/[30, 59]
C(x) = C=(x) [1+ aC™R(x)] . (5.21)
ChoosingC”R as in [5.T), the correction in the discrete domain can beddaynsolving

(I, = ME)Ax, = I3 d, + \Zx, (5.22)
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wherg

L aldl?
" L+ aFAR(x )

(5.23)

This regularization favors smooth solution due to the preseof the matrixX in (5.22).
Unlike the additive regularization, sdée (5.13), the weigftthe regularization is not constant
but changes throughout the GNI iterations. As can be seem 022), the regularization
weight governed by the positive parametgrdecreases when the algorithm gets closer to
the true solution. However, the user is still required talsetpositive parameter at the be-
ginning of the GNI algorithm. The algorithm then providesptive regularization based on
the given. It should be pointed out that this regularization can beveas a multiplicative
regularization where the regularizenis-aC*R () or as an additive regularization where the
regularizer isC-S(x)C*R(x). As explained in Section 5.2.1, the nullspacel§fJ, — A\, 2

is trivial; thus, ensuring a unique solution for (5.22).

5.3 Consistent framework and discussion

Considering that the contragtq) is zero on the boundary @, it can be shown that the
operatorsX and £, are self-adjoint and negative definite (see Appendix E fergfoof).
Therefore, the operatoBs andL,, can be represented byA” A and—ﬁf B, respectively

(for example, using Cholesky decomposition![98, Sectio)4.Psing this notation, the

correction vecton\y in (5.13), [5.20), and (5.22) can be written, respectivady,

(L)L, +vA"A)Ayx = Jl'd, —vA" Ax (5.24)

3 As mentioned in Section ‘Symbols and Acronym@{m(xn) represents the discrete form@f= (x,,).
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(LT, +MATA) Ay = J)d, — XA A . (5.26)

2
Now, if we consider the penalty ter@d(Ay) in (5.1) asHI_%(AXJan) , the correction

corresponding td(511) can be written as

2

J d

Ay, = argmin " Ax — - (5.27)
Ax Vo, R — /anﬁxn
which is equivalent to solving
(J7 T, +a,RTR)Ax = Jd, — a,R"Ry . (5.28)

It can be easily seen that by choosiRyequal toA, and«,, equal to eithery or )\, the
penalty method applied tb (4.129) is equivalent to the adelibr additive-multiplicative reg-
ularization applied to the data misfitS. Also, by varyingR throughout the GNI iterations
and choosing it to béB,, at then™ GNI iteration and settingy, equal to3,, the penalty
method applied td (4.29) will be equivalent to the multiptige regularization applied to
CLs.

It can be shown that Krylov subspace regularization pravglmilar results to TSVD reg-
ularization [94, pg. 50],[[74, pg. 146] due to the similarigtween the Krylov subspace
basis and the SVD basis. It can also be shown that the effd@&@dD regularization is very
similar to that of Tikhonov regularization wheéh(Ay) = HAXH2 [94, pg. 13],[23], [83].
Therefore, assuming appropriate regularization weighgld¢ subspace regularization and

the TSVD regularization methods applied[fo (4.29) prodeselts which closely follow the
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Tikhonov solution
A, = argmin { [ £,Ax — d,||* + o [|Ax]*} . (5.29)

2
Now, assuming2(Ay) in G.1) to beHE(AXJr Xn)H and substituting = R(Ax + x ),

the Tikhonov functional in((5]1) can be written as

J.y—d,

Y, = afgmym{\ o ||QHQ} (5.30)

Wherein =J R! and@n =d,+dJ,x, - Note that, here, we have implicitly assumed that
the inverse of the regularization matd exists, which is not always true. Having fougg

from (5.30), the correctiomxn can be found by solving the well-posed system of equations
RAx, =y, Rx,. (5.31)

Using the aforementioned similarity between the Tikhoneyutarization and Krylov sub-
space regularization as well as the TSVD regularizatiaayegularized solutiop obtained
from (5.30) will be similar to the regularized solution oiotad by applying Krylov subspace

regularization or the TSVD method to
Jy =d, (5.32)

Therefore, if we apply Krylov subspace regularization a& #5VD method to[(5.32) to

obtainy , and then find\x from (5.31), the resulting\x will be similar to the Tikhonov
2

solution wher2(Ay ) is chosen to b‘HE(A&L +Xx,,) H which satisfies[(5.28). Therefore,

the TSVD and Krylov subspace regularization methods candwed in the same form as

(B.23), [5.25),[(5.26) and (5.28) by applying them[fo (b.22her than[(4.29).



5.4 Computational complexity analysis 58

It should be noted that these regularization methods, ififisadas explained above, can all
be applied from this framework and they will result in the safy for the appropriate
choice of the regularization operator and its weight. Havetheir application will differ
in some important aspects such as the computational coitypldsor example, although
Krylov subspace regularization and TSVD methods, appbe@iZ9), will result in similar
solutions, the computational complexity of Krylov subspaegularization is significantly
less than that of the TSVD method. A more detailed computatioomplexity analysis of

the regularization techniques considered here are descnibxt in Sectioh 514.

Among the regularization methods considered here, thdieelanultiplicative and multi-
plicative regularization methodsitomaticallyadjust the regularization weight and provide
adaptive regularization throughout the GNI iterations. ofsposed to other regularization
methods considered herein, the multiplicative reguléiopesautomaticallychanges the reg-
ularization operatorL,,, during the GNI iterations. This will result in an edge-pasng
regularization if the multiplicative regularizer is chosas the weighted?-norm total vari-

ation of the unknown contrast.

5.4 Computational complexity analysis

To compare the computational complexity of the regulaidretechniques considered in this
chapter, we utilize the conventions introduced in Sedfigh Zhus,J, € CY*¥ and the
calculation of bothJ, r (r € CV) andJ" s (s € CM) requiresM N operations. The compu-
tational complexity of the CGLS and LSQR methods, as two Krgiabspace regularization
schemes, ik x (M N) when applied to[(4.29)is the dimension of the projection). Note
that the CGLS and LSQR methods require two matrix-vectoriplidations in each itera-

tion. Ask is usually chosen to be a very small integer, this regulaamaechnique can be
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computationally attractive. The TSVD approach is compaitetily expensive as finding the
SVD of the matrixJ , in (4.29) require®) (M N?) operations ifA/ > N or O(M?N) when
M < N [90]. This can make the TSVD algorithm impractical for laigmEale problems.
It should also be noted that the TSVD method requires thea@xfsrm of the matrixJ,,
for performing the SVD. However, the other regularizatioathods discussed herein only
require the definition of the matriX,, as a ‘black-box’ operator which implements two ma-
trix vector multiplications: i) J,r and i) Js. This can be very important in large-scale

problems when the calculation of the explicit form of theal@ian matrix is not feasible.

Comparing[(5.8),[(5.13)._(5.20) arild (5.22), it can be cormiLithat the computational com-
plexity of the penalty methods and the methods which belorigeé second strategy is very
close. The main difference between these methods lies inamputational cost of multi-
plying R” R, ¥ and £, by an arbitrary vector of the proper size. Specifically, thetnx

X is a symmetric Block Toeplitz with Toeplitz Blocks [94, pg. 1G@hd its matrix-vector
multiplication can be accelerated by the Fast Fourier Toans(FFT). Therefore, the com-
putational complexity oAy can be ignored compared to that@fiAKn. Using this
approximation, the computational cost for finding the cctiom from (5.18) and[(5.22) is
about2P x (2M N) operations wheré is the number of Conjugate Gradient (CG) itera-
tions required for convergence (assuming that the CG methosiad for solvind (5.13) and
(5.22)). Note that each iteration of the CG algorithm recgifreo matrix-vector multiplica-
tions and we have assumed tbiatis only available as a ‘black-box’ operator. Therefore, it
can be easily seen that the computational complexity of ttydol{ subspace regularization
applied to[(4.2B) is much less than that of the penalty metlasdvell as the methods of the
second strategy due to the fact that usuallg P. However, it should be noted that the
computational complexity of the Krylov subspace regukian techniques will increase
drastically when applied t6_(5.82) as the operation of th&rioes.J , andlf on arbitrary

vectors of correct size is expensive due to the presenge bin the definition of the matrix
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J,,. If the methods of the first strategy utilize a standard rageation parameter-choice
method, such as tHe-curve algorithm or the GCV method, the computational coshese
algorithms needs to be considered in the overall compunalioost of the regularization

technique.

5.5 Comparison between different inversion results

Different regularization methods in conjunction with thauss-Newton inversion method
for electromagnetic inverse scattering problems wereiatlidnd classified into two cate-
gories. It was shown that all of these regularization metshcah be viewed from within
a single consistent framework after applying some modiboat This framework helps
to clarify the function of these regularization and may léaduture advances. Although,
these regularization methods, after applying the modiéoatexplained in Section (5.3),
can result in the same reconstruction, it is instructivecimpare their performance in their
standard formsi.e., without applying any modifications to them. In this sectiae com-
pare the performance of the GNI algorithm using differegutarization techniques against
two experimental data sets; one assuming the TM polarizaia the other assuming the

TE polarization.

5.5.1 UPC Barcelona experimental data set

The Universitat Polécnica de Catalunya (UPC) Barcelona data set was collected asin
near-field2.33 GHz microwave scanner system which consist&4ofvater-immersed anten-
nas equispaced onl1&.5 cm-radius circular array [99]. In their system, for eachecaé
using one of th&4 antennas as a sole transmitter, field data is collected wsitygthe 33

antennas positioned in front of the transmitting antennbe measured data is then cali-
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Fig. 5.3: UPC experimental data set: reconstructed relative complex permittivity adlénoenan
forearm (BRAGREG data set) using (a)-(b): MR-GNI, (c)-(d): Ghith the additive-
multiplicative L?-norm total variation regularizer, (e)-(f): GNI with the additi¥é-norm
total variation regularizer, (g)-(h): GNI with the identity Tikhonov regidar, and (i)-
(1): GNI with Krylov subspace regularization
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brated such that a line source perpendicular to the imagimgath can be used to model
the incident field insidéD (2D-TM assumption). The data collection tank is filled with a
background solution of water, having relative permityivdg = 77.3 + 58.66 at2.33 GHz. In
this thesis, we consider two targets from this data set; halBRAGREG and FANCENT.
In this section, we invert the BRAGREG data set (data file: BRAGRE&Awhich is col-
lected from a real human forearm. The inversion results anstcained to lie within the
region defined by) < Re(e,) < 80 and0 < Im(e,) < 20, as in [11]. We consider the imag-
ing domainD to be a).094 mx 0.094 m square discretized inti) x 60 pulse basis functions
and start the MR-GNI algorithm, explained in Secfion 5.2.2hw = 0. The reconstruction
of this target using the MR-GNI method after 13 iterationsigven in figurd 5.8 (a)-(b). The
overall structure of the forearm can be seen in the imagdaseafdal and imaginary parts of
the complex permittivity. The MR-GNI inversion is very si@ilto the MR-CSI reconstruc-
tion of this target/[11]. The expected relative permitiedt are approximately4 + ;11 for
muscle and 2 + ;2.5 for bones aff = 2.33 GHz according to [100]. Similar to the MR-CSI
reconstruction of this target [11], the complex permit§ivof the muscle is reconstructed
well. However, the reconstructed real and imaginary pdrtsebone complex permittivity
are higher than their expected values due to the low dynaamge of the collected data
[101,/11] as well as the use of the 2D-TM approximation for iikaeally a 3D problem.
It should be noted that the contribution to the measuredeseat field arising from within
the bones is very small due to the high reflection coefficiétihe@ bone—muscle boundary.
The reconstruction of this target using GNI in conjunctiohveome other regularization
techniques namely additive-multiplicativeé-norm total variation (Section 5.2.3), additive
L?-norm total variation (Sectidn 5.2.1), Tikhonov wifd = I (Sectiof5.1.11), and Krylov
subspace (Sectidn 5.1.2) regularizers, is shown in figled-(j). Comparing the GNI
reconstructions of this target using different regular@a methods, the edge-preserving

characteristic of the utilized weightdcf-norm total variation multiplicative regularizer can
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Fig. 5.4: FoamTwinDieltarget from Institut Fresnel second experimental data set.

clearly be seen.

5.5.2 Institut Fresnel second experimental data set

For the second Institut Fresnel experimental data set [1l02}ransmitting and receiving an-
tennas are both wide-band ridged horn antennas and aredomag circle of radius.67 m.
This data set is collected from four different targets; niggmmiéoamDiellnt FoamDielExt
FoamTwinDie] andFoamMetExt These targets are all long circular cylinders and have no
variations in the longitudinal direction. Both TE and TM padations are measured for each
target and the background medium is free space. FoaenDiellntand FoamDielExtdata
sets are collected usirdgtransmitters and41 receivers per transmitter. Tli®amTwinDiel
and FoamMetExtdata sets are collected usihg§ transmitters an@41 receivers per trans-
mitter. TheFoamDiellnt FoamDielExt andFoamTwinDieldata sets are collected fdifre-
guencies fron2 GHz to 10 GHz, in1 GHz step. Thd~oamMetExtdata set is collected for
17 frequencies fron2 GHz to 18 GHz, in1 GHz step. The measured data is then calibrated
such that the horn transmitting and receiving antennas eaapproximated by magnetic
line sources in the TE case and electric line sources in thecasé [[103]. In this the-
sis, we consider the inversion from all of these data setghignsection, we consider the

FoamTwinDieltarget shown in figure 5.4 from which a TE data set has beeaatell (data
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file: FoamDielEXtTE.exp). The frequency of operation iss#to bef = 6 GHz. The
inversion of this data set using the GNI method using difieregularization methods is
shown in figuré 55. Similar to the inversion of the human #one data set, the reconstruc-

tion using the MR-GNI method outperforms the other recomsion results.

5.6 Incorporating priori information into the regularizer

Sometimes, there may laepriori information about the Ol which can be incorporated into
the inversion algorithm. One way to incorporatepriori information into the inversion
algorithm is to include it in the regularizer. In this sectjove consider two types af priori
information about the OI. In the first case, the goal is to fimel $hape and location of an
Ol which consists of some homogeneous objects with knowmipirities. This problem

is sometimes referred as shape and location reconstruclioa second case deals widh
priori information about the average expected ratio between #leng imaginary parts of

the Ol's contrast.

5.6.1 Shape and location reconstruction

For binary location and shape reconstruction, where ongésasted to find the shape and
location of a homogeneous target with a known contyastCrocco and Isernia[104] intro-
duced an additive regularizer for the CSI algorithm whichhmsseach pixel in the imaging
domain to have a contrast equal to either zerg’orit should be noted that”" is not a func-
tion but a constanty” € C. Allowing the inversion algorithm to converge to a zero cast

is important as part of the imaging domain which is not ocedgiy the Ol has the contrast
of zero;i.e, x(g € D — Ol) = 0. The weight of this additive regularizer was chosen using

anad hocalgorithm which does not provide an adaptive regularizefi®4]. Based on this
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Fig. 5.5: Institut Fresnel experimental TE data s€bdmTwinDieltarget): reconstructed con-
trast at the frequency df GHz using (a)-(b): MR-GNI, (c)-(d): GNI with the additive-
multiplicative L2-norm total variation regularizer, (e)-(f): GNI with the additiZ&-norm
total variation regularizer, (g)-(h): GNI with the identity Tikhonov regidar, and (i)-
()): GNI with Krylov subspace regularization
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(c) shape and location reconstruction of theamDielint target (assumingy? = 0,
x4 = 0.45, andx? = 2).

algorithm, Abubakar and van den Berg [105] introduced a miligttive regularizer which
can provide an adaptive regularization in the frameworkhef €SI algorithm. They also
extended their algorithm for the case when there are sewerabgeneous targets inside the
imaging domain. That s, it is more than a binary inversiagoathm which is only capable
of reconstructing the shape and location of one homogentogst. Based on [105], we
introduce a GNI algorithm for shape and location reconsibac As will be seen below,
the proposed GNI algorithm is capable of incorpora@ngriori information about several

homogeneous targets insife

In the GNI method for shape and location reconstruction,ctbe-functional to be mini-
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mized at thex!" iteration of the algorithm is
Ca(x) = C-(0)CHR™M(x). (5.33)

The multiplicative regularizegM?"°™ s given as
L 2
CMR,hom(X) _ 1 ’X(q) - X?’ + O[?L

— ~ (5.34)
AJp i xn(@) — XP|" + a2

wherey! € C is the/™ known homogeneous contrast in the imaging domain. Theip®sit
parametet.? is chosen to b€-S(,,). The required derivatives for this regularizer to be used

in the framework of the GNI method can be written as (see 8&&@i4 for the derivations)

SMR,hom
ac™

. aéTIEL/IR,hom * 1 L , )

aQCNTI\L/IR,hom o aQCTnLAR hom ) * B 1 L ,
lwkm(@] (v*) = {[ I |x=xn (¢ )] (¢)} = <A ;fl,n%@b D,
(5.36)
and,
6ZCNMR’h0m a2c~7l\l/IR,hom . . * B
Whe,-ec~7|l/lR,hom(X7 X*) _ C7l\l/|R,hom(X) and
&nlq) = (!Xn(q) — x|+ oai>_§ . (5.38)

Thus, the correction in the discrete domain can be found tisfgiag

L

L
(JET, +8.> D, )Ax, =JIfd, —8,> D, (x, —x'e) (5.39)
=1

= =1
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wheree € C" is a vector of all ones. The matri®, , € C"*" is a diagonal matrix whose
diagonal elements are given as
D, =dia L £2
=Zln — g A

2[n

) , (5.40)

wheregfn € CV is the discretized form offn(q). The regularization weighg, is also

Id,II”

Using this GNI algorithm, we show two different inversiomsie with the TM polarization
and the other with the TE polarization. For the first exampkeconsider a synthetic data set
which we refer to as the synthefictarget data set (1). The target, shown in figure 5.6 (a)-(b),
has the same geometry as the target used in [106] for a resotest study. The relative
complex permittivity of the target i82.7 + j1.28 and that of the background medium is
23.4 + j1.13. At the frequency ofl .5 GHz, the Ol is illuminated by 6 transmitters, which
are electric line sources (TM illumination) and equally sp@& on a circle of radiug.1 m.
The scattered field data is collectedi &treceivers per transmitter. We then &¥d noise to
this synthetically collected data set (according(fo (4.3The inversion is then performed
on a different grid and using another discretization corgao the ones used to collect
the synthetic data set (to avoid the inverse crime). Forrlaersion algorithm, we utilize
two different values for”; namelyy? = 0 andy? = 0.40 — j0.013. We note that? is
the contrast corresponding to the relative complex petiiitit of the Ol. Using these two
values fory”, the shape and location inversion of this target is showngiwré[5.6 (c)-(d)
which shows an accurate reconstruction of the target'seslaap location. We have also
shown the MR-GNI reconstruction of this target, which isliad inversion of this data set,

in figure[5.6 (e)-(f).

The first example is the inversion of tkeamDiellnttarget from the Institut Fresnel second

TE experimental data set explained in Secfion 5.5.2. Thgetashown in figur€ 517 (a),
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consists of two cylinders with contrasts pf= 0.45 + 0.15 and2 + 0.3. Thus, the inversion
algorithm utilizes three different values fqf; namely,x" = 0, x% = 0.45, andx? = 2.
Using these three different*, the GNI algorithm converged ihiterations and the inversion
results are shown in figuke 5.7 (b)-(c). As can be seen, tharitign accurately reconstructs

the shape and location of the two homogeneous objects.

5.6.2 Pre-scaled Gauss-Newton inversion algorithm

In some applications such as biomedical imaging, the magdaiof the real and imaginary
parts of the expected contrast can be considerably outahbal107]. Usually, itis the real

part of the contrast which is much larger than the imaginany pf the contrast. Therefore,
the inversion algorithm will inadvertently favor the restruction of the real part over that of
the imaginary part. This usually results in an oscillat@ganstruction in the reconstructed
imaginary part of the contrast. To enhance the imaginaryrpaonstruction for these cases,
Meaneyet. al. have suggested a pre-scaled Gauss-Newton inversiontalgobased on

Tikhonov regularization which balances the reconstructibthe real and imaginary parts
of the contrast by introducing a variable for the scaledpeat of the contrast and optimizing

with respect to this scaled real part and the imaginary gafteocontrast.

Inspired by the work of Meanegt. al. [107], we present a pre-scaled multiplicative reg-
ularized Gauss-Newton inversion method. We accomplish i introducing the cost-

functional

C(X}% XI) = CLS(XR7 XI)CMR'ScaIed(XRy XI)- (5.41)

Note thatC'S(yg, x;) is justCtS(x) wheny = xgr + jx;. The multiplicative regularizer
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Fig. 5.9: The schematic of the FANCENT phantom from UPC Barcelona experimesiaiset.

CMRscaleqy ) at then' iteration of the algorithm is given as

1 Vxr|* + Q| Vil + o2
CMR,ScalectXR7 XI) _ | XR’ + Q | XI| + ay, dq (542)
" A Jp Vxral” + Q2| Vxral” + a2

where xr,, andy;, are the real and imaginary parts of the known predicted aehtit

the n™" iteration of the GNI algorithm. The positive parametér is chosen in the same
way presented in Section 5.2.2. The positive real paranigterR* is selected based on
the average expected ratio between the real part and intggoaat of the Ol's expected
contrast. As can be seen, the weight|ofy;| is chosen to bé&) times more than that of

|Vxr|. WhenQ is chosen to be, CMRscaledwjil| be the same agMR given in [5.15).

As in the procedure explained in Chagtér 4, which was to findand Ay *, the correction

Axrn, andAy;,, may be found by satisfying

9%c o%c

ac
Gxrds =X xpons oo | [ BXEn || a e (5.43)
92C | 92¢ | A £|
Ox1OxR ' X=Xn  Ox10x1 IXTXn XL Oxp X=Xn

wherey,, = xgn + JjX1.n- Similar to the work of Meanegt. al. [107] which introduces
a dummy variable to balance the average magnitude of thenebimaginary parts of the

contrast when solving fo\ y z , andAx;.,, we introduce the variablgs@®d= y /Q; thus,
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balancing the average magnitudex§f®dand ;. We, therefore, optimize overis@edand

xz- In other words, instead of satisfyirig (5143), we satisfy

2_ 9% a%c scaled oc
Q OXROXR ’X =Xn Q8XR8XI ’X =Xn AX _ Q3XR |X:X” (5.44)
9%C 9%C
anlaXR |x=xn x10x1 lx=xn AXrn 3)(1 |x Xn

After finding Ax$:2°} andA,, from the above equation, the real and imaginary parts of the
contrast is updated in the form 9k ,,+1 = Xrn + ¥ AXR, ANAX 741 = X100 + W AXT S

whereq,, is an appropriate step-length and  ,, = QAxsca'eO!

The derivative operators required for solving (5.44) anéved in Sectio D.b. Noting that
the operatm%t is neglected in the GNI method, the discrete forni of (b.44)) lvei

Q2Re(lnHin) _ BnQQQZCmed _le (igin) szciled
QIm (lﬁlim) Re(lfin) _ Q2ﬂnézcaled AX]’TL

QRe(J11d,) + QB.L™Y
im (27d,) + Q*0.LY,

, (5.49)

wheres? = ||d,||*. The operatoL3*@*is the discrete form of the operat®r- [(55¥¢9? V|

where

bicalectq) A Ai%(|vXR,n(Q)’2 +Q2 |VX1,n(Q)!2 _i_ai)*%, (5.46)

We note that whei) = 1, solving [5.45) is equivalent to solving_(5]20), the prabléor-
mulated in terms ofAxy and Ax*. This can be easily seen by multiplying the second row
of (5.45) by;j and adding that to the first row df (5145), and is a verificattuat optimizing

overy i andy; is equivalent of that ovey andy*.

Using the proposed pre-scaled MR-GNI, we show the inversidwo different data sets.
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Fig. 5.10: Reconstructed relative complex permittivity of the FANCENT phantom fromCUP
Barcelona experimental data set (TM illumination) using (a)-(b) MR-GK)};(d) pre-
scaled MR-GNI withQ = 2, (e)-(f) pre-scaled MR-GNI witlQ = 5, (g)-(h) pre-scaled
MR-GNI with @ = 10, and (i)-(j) pre-scaled MR-GNI witl§) = 20.
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The first one is the synthetic data set collected fromBkarget atf = 2 GHz using the
same procedure explained in Section 5.6.1. We refer to diis st as the synthetie:
target data set (ll). The inversion of this data set usingMReGNI, which is explained in
Section 5.2.2 and is equivalent to the proposed pre-scaRdaM| method withQ) = 1,

is shown in figurd 518 (a)-(b). As can be seen, the imaginary4@construction is very
oscillatory. We now use the pre-scaled MR-GNI method witle¢hdifferent values of);
namely@ = 20, @ = 40, and@ = 60. As can be seen in figure 5.8 (c)-(h), all of these three
pre-scaled inversions are successful in reconstructegriginary part of the contrast. We
note that the true ratio between the real and imaginary péitge Ol's contrast is about)

(see Section 5.6.1).

As another example, we consider the FANCENT phantom from tR€ Barcelona ex-
perimental data set which is calibrated for the TM polar@at The UPC MWT system
was explained in Sectidn 5.5.1. The FANCENT phantom is showiigure[5.9. The in-
version results are constrained to lie within the regionrgefiby0 < Re(e,) < 80 and

0 < Im(e,) < 20, as in [11]. The MR-GNI inversion of this data set is shown in fig
ure[5.10 (a)-(b). Although the real-part reconstructiosasisfactory, the imaginary-part
reconstruction is very oscillatory. We now use the preest8R-GNI method with four dif-
ferent values for). As can be seen, havirfg equal to2, 5, and10 improves the imaginary-
part reconstruction compared to the MR-GNI reconstructidowever, increasing) to 20
starts deteriorating the reconstruction. We note thatdtie between the real and imaginary

parts of the contrast is abo@t in 96% ethyl alcohol and.7 in 4% ethyl alcohol.
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5.7 Animage enhancement algorithm

After the GNI method converges to a final solution (imagey, gathis final reconstruction
can still be enhanced using a post-processing image enimantalgorithm. Although this
topic is not related to the regularization of the data migigtefunctional, it is presented in
this chapter as it is based on the weighféehorm total variation multiplicative regulariza-
tion. Inspired by the work of Abubakat. al. on a deblurring algorithm for linear inverse
problems[[108], we enhance the final reconstruction of thé B&thod by the weighted?-
norm total variation multiplicative regularizer. We acaalish this by first approximating

the nonlinear operat@®*®, (2.20), with the linear operatdt; defined as
¢\ 1 inc ~ X
Ki(x) = Gs [X (I - Q%é) (E, )} = Gs X&) = s (XEi‘> (5.47)

where E} = £,(%) is the known total field insidé® due to the known contrast when the

" transmitter is active. We then construct the linear costfionalC'" as
T,
i 2
CHM() =ns > [|Ke(x) — By (5.48)
t=1
This cost-functional is then regularized as
C(x) = C™(X)CR(x)- (5.49)

This multiplicatively regularized cost-functionél(y) is minimized using the Conjugate
Gradient (CG) method over the contrasivhere the initial guess to the CG algorithm is

the final reconstruction from the GNI methadt, ¢. At them™ iteration of the CG method,
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Fig. 5.11: Real human forearm: (a)-(b) reconstruction using the GNI-CGLS methddc)-(d) its
corresponding enhanced reconstruction.

wherey,, is known, the multiplicative regularizer is given by

1 [ IVde)P + 8,

CR =
n0) = L Fom@P + o

(5.50)

To ensure the convexity of the cost-functiorial (5.49), tbsitve parametes?, ., is chosen

to be [108],
2 1 [[bm VX1

2 =i AnD (5.51)
2 bl

whereb,, 2 A~z (|Vyn|> + 62,) 2.
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In the discrete domain, the contrast vector is updated as

X m =20
- (5.52)

Xerl -
X, +apy, m>1

whereu,, is the CG direction at the:™ iteration of the image enhancement algorithm and

o, 1S a real number (step-length). The CG directigncan be found from [109]

9, m=1

U = il (5:53)
g -+ i 3. m > 2

m 9 m—1
Zm—1

whereg  (gradient) is the maximum rate of change in the cost-funetio(5.49), at the
m™ iteration. It is well-known that it is the derivative withgpect toy* which defines the

maximum rate of change [V1]. In the continuous domain, teisvdtive may be found as

aC . L |
8_X* X:Xm(’l?D ) = <77$C§z(Xm) Z,C? (}Ct(Xm) - Eﬁ?:;st) —chn (Xm)»cme, 77/1> (5.54)
t=1 D
where L, x,m = V - (02, Vxm) andC(x, x*) = C(x). Thus, in the discrete domain, the

gradienty will be

g =nsFa(x JK"(Kx —Exad—F"(x )Lnx, (5.55)

where K ¢ CM*¥ is the matrix which represents the discrete formgCpfoperators and
L, is the discrete form of,,. The cost-functionals¥%(x ) and 7" (x, ) are also the
discrete forms of’R (x,,) andC'™(y,,) respectively. The closed-form expression for the
step-lengthy,,, can be found in[[108]. As in_[108], the enhancement procetknmainates

when the normalized difference between two successiveneslacontrasts becomes less
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Fig. 5.12: (a)-(b) Reconstruction of the human forearm atileteration of the GNI-CGLS method
and (c)-(d) its corresponding enhanced reconstruction.

than a prescribed tolerance:
2
||Xm+1 - Xm”p

mlD < tol, (5.56)
[ Xm+1llp

In our implementation, the prescribed tolerance, tol, issbe10-.

To show the performance of this enhancement algorithm, wsider two different experi-
mental data sets; one with the TM polarization and the otherwith the TE polarization.
In both cases, we start the inversion algorithm with- 0. For the inversion algorithm, we
utilize the GNI algorithm equipped with the CGLS regulariaattechnique. We refer to
this algorithm, which is explained in Section 5]1.2, as tl-GGLS method. The stopping
iteration of the CGLS regularization scheme is chosen udiegtl hoctwo-step proce-

dure outlined in[[12]. The GNI-CGLS and the enhancement élgos were run as Matlab
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scripts on quad-cor2.66 GHz machine. The utilized forward solver in the GNI method is
a Method of Moments (MoM) solver which utilizes the CG methodealerated by the Fast

Fourier Transform (FFT) [37] and the marching-on-in-sedposition technique [38].

We apply the GNI-CGLS algorithm to the real human forearm datavhich was described

in Sectiori 5.5.1. The GNI-CGLS algorithm converged afteiterations and the data misfit
C'S at the last iteration wag.7%. The inversion result using the GNI-CGLS algorithm
is shown in figuré 5.11 (a)-(ﬂ)/vhere the reconstruction results are very oscillatory. The
enhancement algorithm was then applied to this recongirnuathich took312 CG iterations
applied to[(5.49). The computation times wa8teminutes for the GNI-CGLS method and

minutes for the enhancement algorithm.

The enhanced reconstruction, shown in figure J5.11 (c)-fws the overall structure of
the arm as well as the positions of the two bones clearly. nteasily be seen that the
utilized enhancement suppresses the spurious oscikaitiaihe original reconstruction and
also preserves the edges of the two bones. The reconstipetedttivity for the muscle

tissue is close to the expected value; however, the recmstt permittivity of the bones is

higher than the expected value.

The data misfit’*S for the enhanced reconstructed contrast ¥ which is slightly larger
than the data misfit corresponding to the GNI-CGLS recontducontrast. This may seem
surprising at first, but it is well-known that if inversiongairithms converge to where the
data misfit is below the noise level, then the convergenceabgbly to the wrong local
minimum. That is, a smaller data misfit cost-functiodaf does not necessarily mean a
better reconstruction as the data misfit should not beconadlesnthan the noise level of the
calibrated measured data (Morozov discrepancy princlil€]). Due to several sources of

error in the calibrated measured data such as modeling timeamdennas by line sources,

4 This is the same reconstruction as the one shown in figure)s(j3. (
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Fig. 5.13: (a) FoamDielExttarget (b) TE inversion of theoamDielExt(real part) using the GNI-
CGLS method, and (b) its corresponding enhanced reconstruction.

possible temperature shifts and the actual measuremesd, mas not easy, if not impossible,

to find the noise level of the calibrated measured data.

To show the performance of the enhancement algorithm wreGNI-CGLS algorithm is
not completely converged, we consider the reconstructattast at thes™ iteration of the
GNI-CGLS algorithm whose correspondid$® is 20%. The reconstructed contrast at this
iteration has been shown in figure 5.12 (a)-(b). We took thigmst to bey in (5.47) and
constructed its corresponding matd«. The enhancement algorithm was then performed
which took 105 CG iterations. The enhanced contrast corresponding to Huge of y

is shown in figuré 5.12 (c)-(d). It can be seen that the MR eod@ent also successfully

improves this contrast which is not the final converged smhubf the GNI-CGLS method.
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Finally, we consider th&oamDielExttarget, shown in figure_ 5.13 (a), from the Institut
Fresnel second TE experimental data set. This data set weashkdl in Section 5.5.2. The
GNI-CGLS inversion of this multiple-frequency TE data sehwerged afteR4 iterations
where the real part of the reconstructed permittivity issman figure5.18 (b). We have used
a frequency-hopping technique as outline_ in [111] to wtilize scattering data collectedat
different frequencies. With the frequency-hopping teghei the data from each frequency
are inverted independently, and the solution from the Idinexjuency is used as the initial
guess for the next higher frequency. Within this thesis, &ferrto this form of inverting
multiple frequency data as the multiple-frequency reaoiesiord. The imaginary part of
the reconstructed permittivity (not shown here) is very kmaicating a lossless object.
The data misfit’"S for the final reconstruction a0 GHz is4.3%. The enhancement of this
reconstruction, which took4 CG iterations applied td (5.49), is shown in figlre 5.13 (c).
The computation times werz hours and57 minutes for the GNI-CGLS algorithm and
minutes for the enhancement. The data misfit for the enhamoedtruction a0 GHz is
4.1%. For this target, both reconstructions are very good dua¥oly a high signal to noise

ratio in the measured data as well as utilizing multipletfrency data in the inversion.

In Sectior 8.2, we also show the performance of this enhaectwheny is the final recon-
struction from the MR-GNI algorithm. As will be seen theree tsnhancement algorithm

still improves the final reconstruction of the MR-GNI method.

5 Another form of inverting multiple frequency data is to inthe data from all frequencies simultaneously
[112].



TM Versus TE Inversion

I remember my first look at the great treatise of Maxwell's whem$ a young
man... | saw that it was great, greater and greatest, with ggamis possibilities
in its power... | was determined to master the book and set to.wavks very
ignorant. | had no knowledge of mathematical analysis (hg@arned only
school algebra and trigopnometry which | had largely forgajtend thus my
work was laid out for me. It took me several years before | conlteustand as
much as | possibly could. Then | set Maxwell aside and followedwmn course.
And | progressed much more quickly... It will be understoat thpreach the
gospel according to my interpretation of MaxwélDliver Heaviside[[113])

Several 2D Transverse Magnetic (TM) inversion algorithragehbeen tested against exper-
imental data whereas only a few 2D Transverse Electric (lrsion methods have been
investigated experimentally. The 2D TM problem can be fdated as a scalar problem
for a single electric field component. This is not the case2fdrTE problems where two
electric field components in the transverse plane need takentinto account in the for-

mulation and this results in a more complex( vectorial) formulation compared to the
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TM case. It should be noted that TE problems can also be fatedlas scalar problems
for a single magnetic field component. However, for the TEIBion, it has been shown in
[29] that inverting the integral equation for the two eléctreld components is more stable
and has better performance than inverting the integraltequaf the single magnetic field

component.

From a physical perspective, the TE-polarized case inslpdéarization charges at dielec-
tric discontinuities, which are difficult to model numetigg114]. On the other hand, TE-

polarized data may contain more useful information abaeitthject of interest as it is based
on two different components of the electric field as opposeaxht in the TM-polarized case.
Note that these two polarizations are physically uncoupleely provide independent infor-

mation about the object being imaged. This fact can be usedgmve the reconstruction

in tomographic configurations by either simultaneouslemivng TE and TM datd [115] or

using a cascaded TE-TM algorithm [116, 117].

There are only a few reports on the inversion of TE experiadegdta (using any method).
In the special edition of the journéihverse Problemsledicated to inversions of the first
Fresnel data set [118], only two papers dealt with the sim§lease data that was provided:
the first one([119] was concerned with determining the shdgkeoconducting u-shaped
scatterer and the second one [103] used the MR-CSI method dosteact the dielectric
contrast of this scatterer. In the second special editiomedrse Problemsledicated to
the second Fresnel data set [102,/120], which includes TETMhdiata for four targets,
only two contributions addressed the TE-polarized datfitst one[[112] applied the MR-
CSI method to reconstruct the constitutive parameters dhaltargets in the data set and
in the second contribution [121], a TM inversion algorithasbd on the Diagonal Tensor
Approximation and the Contrast Source Inversion method (ITH) was applied to invert

the TE-polarized data. This last contribution usesibration of the TE data in a way that,
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according to the authors, allows the use of the scalar TMrgiwe algorithm. In addition, a
2D TE bi-conjugate gradient inversion method is used in[[1d Teconstruct buried objects
from experimental TE scattering data. [n [122] an iteratmelti-scaling approach was
applied to the single u-shaped metal target case from thé&fesnel data set, in both TE and
TM illuminations. Most recently, a TE stochastic inversadgorithm which utilizes priori
information about the object of interest has been used tntuct the second Fresnel data

set [123].

In this chapter, the GNI method is applied to the completersed E Fresnel experimental
data set which are combinations of lossless dielectric agtliic cylinders. As the Fres-
nel data contains only far-field scattering data, we alsavsthe performance of the TE
inversion against near-field synthetic scattering dataes€hTE inversions are compared
with the TM inversions of the same targets. The motivationrffmving to the near-field
is that it is postulated that the independent informatioailabsle in the near-field TE data
may results in better images compared to the near-field TM.cHsis does not hold in the
far-field, because in the far-field assumiby= E,o, where E denotes the electric field
and¢ is the unit vector in the> direction (figurd 2.11), is a good approximation for the TE
case. We note that the scalar compongptis simple to measure. In the near-field such
an approximation is not valid and therefore two orthogorellfcomponents need to be
measured independently. This is difficult in practice andns reason why 2D TE near-
field microwave tomography systems have not been consttulttshould be noted that the
two orthogonal electric field components of TE near-fieldfamations can be extracted
by measuring the single magnetic field component and thengdhke derivative thereof.
To compute an accurate derivative, magnetic field measursmeust be performed in close
proximities, which can cause difficulties in microwave tagraphy systems with co-resident
antenna arrays(g, coupling between the co-resident antennas|[124]). Hokvev@ E far-

field configurations, one can measure the single magnetet dmhponent and then use a
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plane-wave approximation in order to extract the electeldffrom the magnetic field.

The main contribution of this chapter is to provide a quatitie comparison of TE and TM
inversions of synthetic and experimental data sets foouarcases including near-field and
far-field imaging. This includes a comparison of computaiacomplexity, image quality
and convergence rate. The result of the TE versus TM inwstig presented in this chapter

may be useful for justifying the added cost of TE tomograpjstems.

6.1 Theoretical computational complexity analysis

Before presenting inversion results, a description of theitpeation computational com-
plexity of the utilized TE and TM GNI algorithms is now giveriVe consider the GNI

method with the additive-multiplicative regularizatios explained in Section 5.2.3. The
following conventions are used: the total number of reagigsitions is denoted b,., and

the number of receiver positions per transmittefbyl he number of CG iterations required
for the TE and TM forward solvers are denoted By and Fry, respectively. The number
of CG iterations to find the Gauss-Newton correction in the m& &M cases are denoted

by Pre and Pry, respectively.

6.1.1 Jacobian matrix

As mentioned in Sectidn 4.5, each row of the Jacobian mdtrigorresponds to the deriva-
tives of the scattered field over the pixels of the imaging dionfor a particular receiver
located at, sayy and a particular polarization along some direction, $agnd a particular

transmitter, say, th&" transmitter as given i (4.26).
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Finding the distorted dyadic Green’s function for thgdifferent receiver positions requires
calling the forward solve2 R, times in the TE case anfl, times in the TM case. This is
due to the fact that two different polarizations should bestdered in the TE illumination
while only one polarization is needed for the TM illuminatioThe computational cost of
finding E,(q; x,.) for different transmitter locations i&, calls of the forward solver for both
TE and TM cases as the TE-polarized data is calibrated (dhetioally created) using an

infinite magnetic line source directed irdirection.

In our implementation, the elements of the matiix, as given in[(4.26), are not found
explicitly because we only need to do the right matrix-vectultiplication usingJ,, and
J! see for examplé(5.22). Therefore, the integration anddiiroducte, - G™, required

in (4.28), is computed whed,, (or J') operate on a vector and will be considered in the

computational complexity of finding the correction.

6.1.2 The correction

Solving Ax, in (5.22) using CG requires multiplyind”.J, by a vector and this requires
approximately\8 R7,, N multiplications in the TE case arxkT,, N multiplications in the TM
case. This can be explained as follows: in the TE case, thapiedtion of the Jacobian

matrix J,, with a vectorr € CV*! can be written as,

G (E,,or)+Gm (E,,Or)

—=zxT,n ==yx,n

G (E,,or)+Gn (E,,Or)

—TY,n —Yyy,n

I

1=
I

, (6.1)

and in the TM case as

J,r=G" (E,,or), (6.2)

Fzzmn
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WhereQL’};]n represents the matrix form of tig-component of the distorted dyadic Green’s
function andE_,, denotes the vector form of thiecomponent of the total field within the
imaging domain. Botlgig’};jn andE_,, correspond to the predicted contrast The oper-
ation ® denotes the elementwise product (Hadamard product) of bméocming vectors.
Using [6.1) and(6]2), it can be concluded that the matritatemultiplicationJ,, r requires
approximatelyl RT,, N operations in the TE case a7, N operations in the TM case. The
same conclusion can be drawn for multiplying the magf{k by an arbitrary vector of the
correct size. Therefore, the computational cost of cal'mgalfinAxn, as required in

(5.22), is abou8RT, N in the TE case an?lRT, N in the TM case.

The matrixX for a rectangular imaging domain is a symmetric Block Toepfiatrix with
Toeplitz Blocks [94, pg. 100], so its multiplication with acter can be accelerated using
the FFT; thus, the computational cos@ﬁxn is neglected compared to thatbf .J DAX, -
Therefore, the computational cost for finding the Gauss-thieworrection is about Prg x
(8RT,N) for the TE case andPry x (2RT,N) for the TM case. Note that each iteration
of the CG algorithm requires two matrix-vector multiplicats. Assuming”rg =~ Prv, the
computational complexity of finding the correction in the @&se is almost four times more

than that in the TM case.

6.1.3 The forward solver

In both the TE and TM polarization solutions, we employ a CG-Férward solver as
explained in[[59]. The discretization procedure used in TReforward solver has been
described in Appendik]F. A comparison between the commutaticomplexity of the TE
CG-FFT and TM CG-FFT forward solvers is providedin|[59]. Asadissed in[[59], it can be
shown that the per-iteration computational complexityhef TE CG-FFT algorithm, utilized

in the forward solver, is approximately twice that of the Thke.
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6.1.4 Line search

The computational cost of the utilized line search algamiis approximately equal to that
of evaluating?-"(xn + VnAXn) for the known background Green’s function and this is equal
to calling the forward solver’, times for both TE and TM cases. We note tifdty) is the
discrete form ofC () given in (5.21) in the case of additive-multiplicative réyization.
As mentioned earlier, if the full step satisfies the condit{d.23), we choose it as an ap-
propriate step-length. From our experience with the regqdd cost-functional(5.21) (as
well as [5.14)), the full step mostly satisfies the conditfd?3); therefore, very few calls
to this line search algorithm are made in the cases that we e This can be explained
as follows. In the Gauss-Newton optimization, the corcm:ﬂ;zn may lead to an increase
in the cost-functional ifijf J7.J, — )\,X, see [5.2R), is not positive-definite, dr)(the
quadratic model of the nonlinear regularized cost-fumald-(y) at X,, is not agood ap-
proximation toF () [42]. As pointed out in Sectidn 3.3, the matdX’J — \,X is positive
definite. Moreover, due to the use of adaptive regularinatibe regularization weight,

is maximum at early GNI iterations where the predicted asttcan be very far from the
true solution. Thus, at early GNI iterations, the quadratadel of 7 () is dominated by
that of the regularizer. Noting that the regularizer isz&@morm, the quadratic model of the
regularized cost-functional has a good chance to be a gqmwximation of 7 (x) at early
GNI iterations. As the algorithm gets closer to the true oty the regularization weight
A, is lessened. Thus, the quadratic model of the regularizetifaactional is dominated
by that of the data misfit functional. Due to the fact that tihedgcted contrast is close to
the true solution, the quadratic model of the regularizest-banctional has a good chance
to be a good approximation d¢f(x). Therefore, the use of adaptive regularization will usu-

ally make the quadratic model of the regularized cost-fioned be a good approximation to

F(x).
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Fig. 6.1: The exact contrast of the scatterer for the synthetic test case (toocguares)

6.2 Inversion results

The inversion results from both synthetic and experimestaih are now shown. To be able
to compare the TE inversion with the TM inversion, we introgan image error cost—

functional defined as, )

= x|

M(x) I (6.3)

T e
wherey is the final reconstruction,"™® is the true contrast arifl|| denotes the.>-norm on
C™. For the experimental datg,"*® is created according to the geometrical configurations
and the average permittivity of the object being imaged. tRersynthetic data, as the data
is generated on a different grid than the one used in the Gidiridthm (to avoid an inverse
crime), the image error cost—functional (6.3) is calcuddtg interpolating onto a finer and
finer mesh until the calculated norm converges. For the syigtdata sets, all parameters of
the forward solver are kept the same for the TE and TM polaarza. We have also added

3% RMS additive white noise to the synthetic data set using thadita (4.31).
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Fig. 6.2: Inversion of the concentric squares synthetic data set using the GNI dnettioadditive-
multiplicative regularization (the first scenarié, = 10 andR = R, = 10) (a)-(b) TE
case, (c)-(d) TM case, and (e)-(f) cross-section at 0.
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6.2.1 Synthetic data: concentric squares

We consider a similar test case which has been used in [48/2E25 The scatterer con-
sists of two concentric squares with an inner square havimgrmkion of\, x A, (), is the
wavelength in the background medium) with a contrast.8f+ ;j0.4. The inner square is
surrounded by an exterior square having sides\gfand contrasf = 0.6 + j0.2. The exact
contrast profile is shown in figufe 6.1. The frequency of opemnas chosen to bé GHz
and free space is assumed for the background medium. ThénigndgmainD consists of
a square having sides 8#,. We consider three different scenarios for collecting thtad
In the first scenario, we chooge transmitters and0 receivers £, = R = 10) on the mea-
surement circleS and in the second scenario, we cho88dransmitters and0 receivers
(R, = R = 30) onS. Therefore, the length of the vect@™*®°in the second scenario
is 9 times that ofE™***in the first scenario. In these two scenarios, the transmitiad
receivers are placed evenly on the measurement eéderadius2.33)\, = 70 cm. In the
third scenario, we choosé transmitters and0 receivers &, = R = 10) evenly placed on
the measurement circle of radius10)\, = 300 cm. The forward data is then generated on
a grid of 30 x 30 for both TE and TM polarizations. The transmitters for the &l TM
cases are the magnetic line source and electric line soespectively. For the TE casg,
and E, components are collected at the receiver positions whenethe TM case, thev,
component is collected. We will note that the syntheticaliylected data in the first and
second scenarios may be considered as the near-field dateastiee collected data in the

third scenario is at far-field.

For the first scenario, the TE and TM inversions are shown urdi@.2. As can be seen,
both TE and TM inversions provide good reconstructions lier teal part of the contrast
profile. However, the TM inversion is not successful in restamcting the imaginary part

of the contrast: the inner square is unresolved in the inzagipart of the TM inversion.
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Fig. 6.3: Inversion of the concentric squares synthetic data set using the GNI dnettioadditive-
multiplicative regularization (the second scenafig:= 30 andR = R, = 30) (a)-(b) TE
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It should be noted that when the number of transmittersirereewas decreased & the
TE inversion also failed (not shown here) in reconstructing target. The TE and TM
inversions for the second scenario are shown in figure 6.3hisncase, both TE and TM
inversions are successful in reconstructing the real aadjimary parts of the contrast. For
the third scenario which utilizes the same number of tratiemiand receivers as in the first
scenario but located in far-field, the TE and TM inversiors strown in figuré 614. In this
case, the TE and TM inversions are very similar. The numb& N iterations utilized to
reconstruct this target and the value/ef(x) in these three different scenarios are given in

Table[6.1 and Table @.2.

That the TE inversion outperforms the TM inversion in thetfacenario is probably due to
the fact that the TE near-field data contains more informati@n the TM near-field data
(the length of the vectoE 2 in the TE case is twice that in the TM case). Noting that
the measurement circl§ is in the near-field for this test case, it is expected g,
andﬂfncg‘;sy provide non-redundant information. However, when the neindb transmitters
and receivers increases in the second scenario, the TMesogtdata provides sufficient
information to reconstruct the object with a reasonabl@ssy while the TE inversion also
provides a good reconstruction in this case. Comparing tresion results for the first and
third scenarios, we speculate that the TE far-field data doegrovide extra information

compared to the TM far-field data.

6.2.2 Syntheti&-target data set (1ll)

Next, we consider the E-target with the same geometry asitdedan Section 5.6/1. How-
ever, we choose the relative complex permittivity of thgéarto ber0 + ;17 and that of the
background medium to b&r.5 + j20. At a frequency 0).9 GHz, the Ol is illuminated by

16 transmitters, which are magnetic line sources (in the TE)carsd electric line sources (in
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Fig. 6.5: Synthetic E-target data set (Ill) (collectedfat= 0.9 GHz) (a)-(b) true profile, (c)-(d) TE

inversion, and (e)-(f) TM inversion.
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the TM case) and equally spaced on a circle of raditisn. The scattered field data along
both x andy directions in the TE case and alonglirection in the TM case is collected at
16 receivers per transmitter. We then atld noise to this synthetically collected data set
according to[[65]. We refer to this data set as synthettarget data set (Ill). We note that
both the geometry of the target and the relative complex pvities of and the background
medium and target as well as the frequency of operation aredime as thosed used/in [106]
for a resolution test study. The TE and TM data sets are ¢eleesingl 6 transmitters and
16 receivers. The inversion of this data set using the Binary gld)rithnm, explained in
Sectior5.611, is shown in figure 6.5. As can be seen, the Tétsion outperforms the T™M
inversion in reconstructing this complicated target. Thenber of GNI iterations utilized
to reconstruct this target and the value/df(y ) in both polarizations are given in Talle 6.1

and Tablé 6.12.

6.2.3 Experimental data: the second Fresnel data set

The second Fresnel data set was explained in Sdctior 5.%22hawe shown the multiple-
frequency inversion for all Fresnel targets in both TE and pdfarizations in[[59]. For
the multiple-frequency reconstruction, we have used thé @&thod in conjunction with
the frequency-hopping technique presented inl[111]. Tmelb=xr of GNI iterations required
for the convergence and the value.bf() for all Fresnel targets in both polarizations are
given in Tables 6]1 and 6.2. Talile 6.1 shows a faster corveegf®r the TE inversion of
the Fresnel targets. The value of the image error cost-+hmadtshows a relatively similar

reconstructions for the TE and TM inversions.

In this section, we only show the inversion of two Fresneaje#s: FoamDielExtand Foam-

MetExt The FoamDielExttarget is shown in figure 5.13(a). The inversion of the data se

1 We have utilized two different values fa* (see[(5.3%)); namely” = 0 andy? = —0.1 — j0.013.
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Fig. 6.6: FoamDielExtreconstruction (a)-(b) TE case (c)-(d) TM case

collected from this target in both polarizations is showrfigure[6.6. As can be seen, the
reconstructed imaginary parts of both TE and TM inversiaressanall which indicates that
the target is lossless. Ti@amMetExtarget is shown ib 617. For this target, which consists
of a metallic cylinder and a lossless dielectric cylindeg, ave limited the maximum value
of the imaginary part to be 4 gt = 2 GHz as otherwise the imaginary part of the metal
cylinder will become too high (on the order of 200), making tonvergence of the forward
solver difficult. Therefore, if the imaginary part of the ¢@st of this target becomes more
than four, it is set to four. The inversion of the data setexd#td from this target is shown
in figure[6.8. As can be seen, the shape of the dielectricastirs reconstructed well in the
TE case whereas its shape in the proximity of the metalli;ydgr is not reconstructed in
the TM case. Also, for both polarizations the reconstrucged part of the metallic cylinder

is close to zero whereas the imaginary part is indicated tanba&bject of high loss.
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Fig. 6.7: TheFoamMetExtarget.

We have also investigated the single-frequency inversidheexperimental Fresnel data
for both polarizations af = 6 GHz [59]. For example for thBoamTwinDieltarget, shown
in figure[5.4. The TE inversion algorithm converged afteterations for the TE case and
25 iterations for the TM case. The data misfit® for the first iteration wa$.3803 for the
TE case and.3809 for the TM case. However, in the final reconstruction, thexdatsfit
reduced td).0285 for the TE case and.0266 for the TM case. The data misfit for different
iterations of the inversion algorithnmge., the GNI method with the additive-multiplicative
regularization, for both TE and TM inversions is shown in fgf6.9(a). To check the sen-
sitivity of this convergence rate for another regulari@atmethod, we have also shown the
convergence of the GNI method with the Krylov subspace (CGeylarization method in
figure[6.9(b). In addition, to check the sensitivity of theneergence rate to the line search
algorithm described in Sectidn 4.3, we have also used anbitieesearch technique. This
line search algorithm uses the Matlab functimmnsearchwhich is based on the simplex
method[[126]. As opposed to the line search algorithm pteskin Sectiof 4]3, this method
does not require the derivative of the cost-functional. ¢twevergence of the GNI method
with the CGLS regularization technique equipped with tme Isearch algorithm applied to
FoamTwinDiel data set gt = 6 GHz is shown in figuré 619(c).

As far as the computational complexity of the TE and TM inw@s is concerned, the
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Fig. 6.8: FoamMetExteconstruction (a)-(b) TE case (c)-(d) TM case

inversion codes have been written in object-oriented Ndadlad all the computations are
performed on a computer with a quad-caré6 GHz Intel processor an2iGB of RAM. As

an example, we consider tff®@ambDiellnttarget wherel’ = 8, R, = 360, R = 241 and

N = 3600. In the first GNI iteration aff = 2 GHz we haveFre = 12 and Prg = 50 for
the TE case whereas in the TM caggy = 9 and Pry = 48. Finding the Gauss-Newton
correction took about20 sec for the TE case an® sec for the TM case. That is, finding
the correction in the TE case is abdutmes more expensive than that in the TM case which
matches the expected theoretical ratio. Also, for eachsingter, the forward solver took
about0.99 sec in the TE case ar@31 sec in the TM case showing that the per-iteration
computational complexity of the TE forward solver is abdttimes more than that of the
TM case which is very close to the approximate theoretidab.rahlso, in the inversion of

theFoamDiellnttarget, the line search algorithm was called once for eajutncy in both
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the line search algorithm explained in Section 4.3, and (c) GNI with CGLSaggation
equipped with the simplex line-search method.

polarizations.

The computational cost can be significantly alleviated bgagithe marching-on-in-source-
position technique [38]) [30] which essentially redudgs and Fry. For example, in the
first GNI iteration for theFoamDiellnttarget atf = 2 GHz, it took abouit91 sec for the
TE case and 14 sec for the TM case to find the inhomogeneous Green’s funetitrout
using the marching-on-in-source-position technique. elwv, the update procedure took

just 295 sec for the TE case aniid sec for the TM case when this technique was used.

It is important to note that for experimental tomographisteyns where the receiver posi-
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tions are the same as transmitter positions, which is the foasmost practical microwave
imaging systems currently in existence, computationahggvcan be made in updating the
Green’s function of the inhomogeneous background usingabieady updated total field

corresponding to each transmitter.

6.3 Discussion and summary of results

For all Fresnel targets, the TE and TM inversions are verylain his is probably due to the
fact that the measured data is collected in the far-field esbaty one scalar field component
is required to represent the electric field vectff**in the TE case and***in the TM
case. Thus, in the far-field, splitting?**into £;7'°* and £** does not provide more
information than the TM case. In the first scenario of the lsgtit test case, whefe, = 10
and R, = R = 10 and the collected data is in the near-field, the TE inversiaviges
more accurate reconstruction compared to the TM inversidms is likely due to the fact
that E7"***and E;*** provide non-redundant information for the TE inversion véses the
TM inversion only utilizes theZ"*?*field. However, when the number of transmitters and
receivers increases 89 for the same test case, the TE and TM inversions provide aimil
results which verifies the fact that the TM inversion lackadwgh information compared to
the TE case wheit, = R, = R = 10. Keeping the number of transmitters and receivers
as in the first scenario but placing them in the far-field (thiedtscenario), the TE and TM
inversions result in a similar reconstruction. This is d¢st@nt with the similar performance
of TE and TM inversions of Fresnel data set. In addition far slgntheticE-target data set
(1), whereT, = 16 andR, = R = 16, the binary TE near-field inversion outperformed the

binary TM near-field inversion.

In all cases considered in this chapter, the TE inversionireg the same or a fewer number
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Tab. 6.1:Number of GNI iterations required for the convergence (multiple-frequémversion)
Target TE case TM case

Concentric squares (1st scenario) 6 6
Concentric squares (2nd scenario) 8 8
Concentric squares (3rd scenario) 5 6
E-target 4 4
FoamDielint 14 21
FoamDielExt 15 27
FoamTwinDiel 19 36
FoamMetExt 19 25
FoamTwinDiel(f = 6 GHz) 7 25

of iterations than the TM inversion to converge. The samedasion has been reported in
[122] where the TE lterative Multi-Scaling Approach (IMSégnverged faster than the TM
IMSA when the signal to noise ratio of the collected data was Also, in [127], it has been
theoretically speculated that the TE inversion has a lowegree of nonlinearity compared
to the TM case which may result in a faster convergence in thedse. In addition, the
actual computational cost of the TE and TM inversions werg ese to the approximate

theoretical ones presented in Secfion 6.1.

To verify these results using another regularization tephey we have also inverted these
data sets using the CGLS regularization scheme. The coagléreim the inversion results
obtained from the GNI-CGLS method is consistent with thaaotgtd from the GNI method
with the additive-multiplicative regularizer. We haveaissed another line search algorithm
which is a derivative-free method which resulted in a similanvergence compared to the

derivative-based line search method.

Considering all this numerical data, we speculate that ttieatle performance and conver-
gence of the GNI algorithm applied to these data sets ardyhitgpendent on the informa-

tion content of the field, irrespective of the regularizatand line search strategies. Thus,
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Tab. 6.2:Image error cost—functiona¥ ()

Target TE case TM case
Concentric squares (1st scenario) 0.10 0.15
Concentric squares (2nd scenario) 0.06 0.05
Concentric squares (3rd scenario) 0.14 0.16
E-target 0.13 0.18
FoamDielint 0.13 0.14
FoamDielExt 0.16 0.18
FoamTwinDiel 0.20 0.18
FoamMetExt 0.23 0.29
FoamTwinDiel(f = 6 GHz) 0.22 0.20

the TE inversion, which utilizes both rectangular compdser the electric vector at each
receiver position, may result in more accurate reconstmd¢han the TM inversion when

utilizing near-field scattering data collected using onfgw transmitters and receivers.



Eigenfunction Contrast Source Inversion

Wir missen wissen. Wir werden wissélranslation:We must know. We will
know. (David Hilbert [128, who was the first to use the German word ‘eigen’
to address eigenvalues and eigenvectors).

In most MWT systems that have been developed for biomedigaicapions the Ol and the
antennas are contained within an enclosed chamber madeafrdigiectric material such
as plexiglass [129, 76, 180, 131, 132]. The chamber is usedrtain a matching fluid to
improve the coupling of the microwave energy into the Ol. Mafsthe MWT algorithms
used to invert data from these systems assume that the mgtithid extends to infinity,
not to the boundary of the casing. This approximation is adegywhen the losses of the
matching medium are sufficiently large that little or no gyethat reaches the boundary

of the chamber makes it back to the antennas. To make suchpaoxapation work, the

1 Hilbert addressed the Society of German Scientists andiggs by this quote in the fall of 1930. This
quote can also be read on his tombstone.
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antennas need to be placed close to the Ol and away from tmeléigu or they need to be
directive antennas that direct the main energy towards tlje.@, an open-ended waveguide

approach).

Recently, researchers have considered the MWT problem wieeohidimber surrounding
the antennas and the Ol is made of metallic mateda),(we use a stainless steel cham-
ber). Various potential advantages to using a conductiantier with alossless(or a
low-loss) matching medium include advantages related eéartbersion algorithms which
must be used for these systems as well as to practical ddéextomh advantages such as
better Signal-to-Noise Ratios (SNR) [133, 134,1135]. Thesta#t particularly important as
it has been suggested in [106, 136] that the true resoluitioih for MWT is governed by
the achievable SNR of the measurements and not the wavielefginvert the microwave
measurements collected inside a metallic enclosure, neds&a have implemented different
algorithms which take the metallic casing into account. [187], a calibration technique
was proposed which when applied to the measured data @all@tdide a circular metallic
enclosure allows it to be used by standard inversion algostthat assume an unbounded
matching medium. The proposed calibration technique igdas the reciprocity of the
fields inside a circular metallic enclosure and those in aanegpace system. It is currently
unclear whether such a calibration procedure removesnrgton from the data. 1 [42],
a quasi-Newton inversion algorithm in conjunction with anlbeedding technique has been
used to take into account the circular metallic enclosureindegral equation formulation of
the MR-CSI method was used in [134] that uses the Green’s famofithe metallic cavity.
An inversion algorithm, based on CG minimization in conjumctwith the Finite Element
Method (FEM) forward solver was used in [138]. A Gauss-Newtwersion algorithm with

a FEM forward solver to calculate the Jacobian matrix wasl is¢135] to invert the data
collected in conducting cylinders of arbitrary shapes @hhwill be explained in the next

chapter). To the best of our knowledge, all of these inversigorithms have been applied
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only to synthetically collected data.

More recently, an inversion algorithm, based on the CG algaorand a Zernike polynomial
representation of the unknown dielectric properties of @ewas tested against experi-
mentally collected data from the MWT system currently undaretbpment at the Institut
Fresnell[139]. This system operatestat MHz and is enclosed by a circular metallic cas-
ing of radius27.6 cm. In addition, the role of different design parameters WWsystems
with electrically conducting enclosures has been studidii33] through the singular value
expansion of the integral operator mapping the contrastcesunside the Ol to the mea-

surement domain outside the Ol.

In this chapter, we introduce a new method of solving the Gattsource Inversion (CSI)
formulation of the electromagnetic inverse problem ushegpectral decomposition of the
appropriate boundary value problem applicable to the caoindienclosure MWT setup.
From a mathematical perspective, one immediate advanfageng a conductive enclosure
setup is that the associated boundary value problem forldutrie field is well approxi-
mated by the Helmholtz operator in a finite domain which isnieated by Perfect Electric
Conductor (PEC) boundary conditionse(, homogeneous Dirichlet boundary conditions).
This boundary value problem has a discrete set of eigernvalee a discrete spectrum,
with a complete set of eigenfunctions that is usually usedxjpand the electromagnetic
field within the domain. Thus, the Helmholtz operator apptie the field represented as an
eigenfunction expansion can be replaced by a correspoediegfunction expansion where
the corresponding eigenvalue replaces the operator apgi@ each eigenfunction in the
expansion. Similarly, the inverse Helmholtz operator fartsa boundary value problem has
the same eigenfunctions but with eigenvalues that are tueroeal of those for the forward
operator. In the CSI functional defined for the electromagneterse problem the inverse

Helmholtz operator is applied to the so-called contrasts) defined to be the product
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radiusa. The cross section of the enclosure, which is the imaging domain, is denpted b
D. The measurement domain (blue dotted circle), which is outside the objededst) is
denoted bys.
of the total field and the contrast [48,]11, 112, 1103]. Takidgeetage of the well-known
spectral decomposition of the Helmholtz operator withireutar boundary supporting ho-
mogeneous Dirichlet boundary conditions, we herein intoedthe appropriate eigenfunc-
tion expansions for the unknowns in the CSI method, the ceihérad the contrast sources.
This effectively discretizes all the operators in the CSiclional with the result that the
optimization problem becomes one of minimizing the CSI fior@l over the coefficients
of these eigenfunction expansions. One unique result afusie eigenfunction expansion
for the unknowns is that the imaging domain becomes the whtdeior domain of the con-

ductive enclosure. This is in contrast to the traditionahf@f the CSI algorithm where the

unknown contrast is discretized into pulse basis functions
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7.1 Formulation

We consider a PEC enclosure with boundary denotdd afscircular cross-section having
radiusa. The interior volume of the enclosure is denotedIbyvhich will also denote the
imaging domain. The formulation is given for 2D fields; thwg assume that the domain
is located in ther — y plane. Inside the enclosure, which will contain the Ol, weuase a
known homogeneous background medium having a, possiblplesnrelative permittivity
€p. The geometrical model of the microwave tomography systeshown in figuré 711. We

also consider the position vectemwhich is inD.

In this chapter, we assume a 2D TM model where the electrid f&etepresented by the
single longitudinal componenE = EZ. Thus, in this chapter, we refer to the electric
field by its scalar componetf. The physics of the problem can be modeled using various
forms of the Helmholtz equation fdr. To aid in the formulation we define the Helmholtz

differential operator in a homogeneous background meditm, L?(D) — L?*(D), as

M, (C) = V2C(r) + ki¢(r) (7.1)

whereV? denotes the Laplacian operator with respect to the coaetina

In the MWT problem considered herein, the Ol is successiVklgninated by known inci-
dent fieldsEi", (t = 1,2,--- ,T,). Each incident field is produced by a source functipn

and the field itself satisfies the inhomogeneous Helmholizagion

Hy(Ef) = —Si(r), (7.2)
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with Dirichlet boundary condition

EM(reT) =0. (7.3)

When the Ol is present, this same source produces the tothlAjel The scattered field
will then be E5® £ E, — EI". |t is easily shown that the scattered field satisfies the same
Helmholtz differential equation but with the source funeatreplaced by:?x (r)E;(r). That

is, the scattered field satisfies

Hy(EF*) = —kix(r) E(r), (7.4)

with the same homogeneous boundary condition,

By € T) = 0. (7.5)

The inverse problem is defined as that of finding the electntrasty () from measurement
data, which consists of the scattered field on the measutetoemainsS, located outside the
Ol. The scattered field data is obtained from appropriataliprated measurements of the
total and incident fields at the same location. In this chapte consider the CSI method to
solve the inverse scattering problem. We now give a briefwoges of the Contrast Source
Inversion (CSI) formulation as applied to the enclosed megiverse problem. As men-
tioned in Sectiorh_3]2, the CSI methad [48] 11, 1112,1103] cdstsMWT problem as an
optimization problem over the contragtand a new variable called the contrast sourge
defined asu,(r) £ x(r)E,(r). These variables are solved for iteratively by minimizing t
specially formulated CSI functional using the CG method. Thef@&tional is formulated

via the inverse operator corresponding to the problem ftatimn previously described.
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That is, from [7.4), the scattered field corresponding tatheansmitter may be written as
ESr) = H, (~ k), (7.6)

whereH, ! denotes the inverse of the Helmholtz operatyrand includes the boundary

condition E5°%(r € T') = 0.

At the n'" iteration of the CSI method, the cost—functiofgl: L?(D) x L*(D)% — R is
given by [140]

Cn(Xa wt) = CS(wt) + CD,n(X: wt) =
5|1 Eity — Mo (Rans | [l — w5 ()|
|| Bl e xna B,

whereE; %, denotes the measured scattered field &g, represents the characteristic op-
erator which selects the measurement point$pinoth corresponding to th& transmitter.
Note that information gathered from different transmatsrincorporated into the functional
by summing over the transmitters. The second term of thefaostionalC,,, i.e. Cp ,,, may
be regarded as the Maxwell regularizer|[27] which is intrmetito handle the ill-posedness

of the problem.

The cost-functional’,,(x, w;) is iteratively minimized via the formation of two interlate
sequences: a sequence of contrast estimfatgs computed in an interlaced fashion with
a sequence of contrast source estimates,}. That is, at each iteration, each unknown is
updated using a single step of the CG algorithm while assuthiaigthe other unknown is
constant. Note that the CSI functional is quite general, tatria of the inverse operator
H, ' which is amenable to mathematical manipulatierg( the derivative of functional is
required for the implementation of the CG optimization), avidch lends itself to efficient

and accurate computation is required. There are many wdgstalate this operator which
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meets these requirements. Integral equation methods anihérse of finite-difference
discretization have been used (see, for example, [48,[103), fbr integral equation for-
mulations in unbounded domains, [140] for a novel use of hirerse of a finite-difference
discretization, and [134] for an integral equation forntigia applicable to the PEC-enclosed

problem).

7.2 Eigenfunction contrast source inversion

The inverse operatd, ' for the PEC-enclosed-region problem can be expressed using t
eigenfunction expansion of the boundary-value problerhliha been defined. Using polar
coordinates-(p, #), the orthonormal eigenfunctions &f, which satisfy the homogeneous

Dirichlet boundary condition oft (p = a) may be written as

(1) =~ T () (), (7.8)

V/Now @

L (5P Gin(mo), (7.9)

Pmp(T) = \/N_mp 4

wherexr,,, represents thg™ zero € N) of them'™-order Bessel function of the first kind,

J» wherem € N U {0}. The normalization constanfs,,, can be easily calculated as

7@ I 1 (Tmp) M =0

Nomp = (7.10)
%ﬁjgl-i-l(xmp) OtherW|Se

The eigenvalues, each of multiplicity two, correspondimg,, andey,,,, are

Tm
Ap = K = (Z22)°, (7.12)
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The completeness of the eigenfunctions allows us to exp@bshe contrasty(r), and the

contrast source functionsy (), inside the bounded domaihas eigenfunction expansions:

x(r) = Z’Vmpwmp(r) + HimpPmyp(T) (7.12)
and
We(r) = Y gV (1) + B o p (1) (7.13)

Wherey,.p, ftmp, mp @andps,,, ; are the unknown coefficients to be determined. Note that a
double summation is required for these eigenfunction esipas, as compared to the single
summation used in the Singular Value Expansion (SVE) giwefllB3] and the Zernike

expansion used by [139].

A useful property of the eigenfunctions,,, andy,,, for the operatof, is that they are
also the eigenfunctions of the inverse operatgr', but the corresponding eigenvalues for
the eigenfunctions ot{, ' are Ay Using this property along witi{7Z.13), allows us to

express[(7]6) as
E3*(r) = Wy (= kiw) = —k; D Ay [0t (1) + Brpapup(P)], - (7.14)
m,p
and the scattered field on the measurement domain as
EX¥recS) = MS,tHgl(—kgwt)

= —k; Z )\;“10 [t M WVmp(T) + Brp s Ms spmp(T)] . (7.15)

m?p

The incident field at~ is now assumed to be that of a line source located, &tnd can
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therefore be written as
. . 1
E[(r) = E™(r;r) = Hb_l[—;fS(P — pe)0(0 — 0,)] (7.16)

whereos represents the Dirac delta function. Using an eigenfunatigansion for the Dirac
delta function, the incident field may be written as an eiganfion expansion with known

coefficients:

Ejtnc(r) == Z )‘;zi) [rmp (7)) UVinp(T4) + Prrp () i (74)] - (7.17)

It should be noted that (7.1L7) is not a convergent series whenr, [141], which reflects

the singularity at the source point.

In the above analysis, we have implicitly assumed #at # 0. This assumption is always
valid when the background medium is lossy. However, may become zero for lossless
backgrounds. This case has been discussed in [133] and edpirecto treat this problem

has been proposed.

7.3 Discretizing the CSI functional using the eigenfunction expansions

We now introduce truncated eigenfunction expansions ®ctntrast, contrast sources, and
incident fields into the CSI functional by assuming=0,--- ,M —1landp=1,--- , P for
each of the expansions. The measured data correspondihg #& transmitter is denoted
as the vectoZ;o, € C¥, whereR is the number of receivers, chosen to be constant for
each transmitter. The unknown vectgre C**” contains the coefficients,,,, and3,,, .

and the unknown vectdr € C*** containsy,,, and u,,,. In order to evaluate the norms

involved in the Maxwell regularizer teriip ,, we choose to discretize the domdhnin a
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uniform rectangular grid. The number of discretized powmithin D is denoted by). With
this notation, matriceZ, € CH*?MF and F € C@*2MF gare introduced in such a way
that Z,a, and F q, represent the discrete representatiooVf ;' (—kZw;), (Z.15), and
H, ' (—k2w,), (T13), respectively.

It should be noted that it is only in this chapter where we s imply the orders of Bessel
functions used in the expansions. In other chapters, wéllises the number of measured

data.

We also consider the matriB € R?*2MP gych thatB b represents the discrete form of
the contrast functiory, given in [Z.12). The vector™ € C¥ includes the incident field
corresponding to thé" transmitter, EI"°, at the( discrete points insid®. To avoid the
singularity of the incident field at the transmitting antarincation, thel) discretization

points are chosen so as to not be collocated with the trategrtotations.

Using these discretized operators and vectors, the costifmalC, (x, w;), (Z.4), can be

rewritten as

Falb,a;) = Fs(a;) + Fpu(b, ay) = s Z HErSr(m::;st - ZtQt”z +
t

Mow Y |[ul®® (Bb) — Ba,+ (Bb)® (Fa)| (7.18)
t
The weights)s andnp ,, are given by
ns = (O [|Esa ), (7.19)
t

and

moa = (3 |[ul®® (B b, )|, (7.20)

where® denotes the Hadamaride. elementwise, product of two vectors of the same size.
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The cost-functionalf,, (b, a,) is then minimized iteratively ovel andga,. Each iteration
of the inversion algorithm consists of two parts$) @pdatinga, by minimizing %, (b, a,)

assuming = b

T

_1» and (i) updatingb by minimizing 7, (b, a,) assumingz, = a, ,,.

It should be noted that choosing the number of eigenfunsiiothe expansion}/ x P, can
be considered a form of projection-based regularizafi@j, [See Sectioh 5.1.2, where the
unknown functions are projected into the subspace spanndaelchosen eigenfunctions.
But, as compared to projection-based regularization mestidgdch have been utilized in
the framework of the Gauss-Newton inversion methmd, Truncated Singular Value De-
composition (TSVD) and Krylov subspace regularization hmods (see Sectidn 5.1.2 and
references therein), the stability of the eigenfunction @®thod is not very sensitive to
the choice ofM and P which defines the subspace dimension. This is probably due to
the presence of the Maxwell regularizer in the CSI functiamaich provides another level
of regularization. In fact, the overall regularization @sated with the eigenfunction CSI
method can be considered a hybrid regularization/ [90, 8&revla Tikhonov-based regular-
ization (.e., the Maxwell regularizer) and a projection-based regmédion {.e., truncating

the number of eigenfunctions) are utilized together.

As discussed in Appendix|C, the cost-functiot/l is not holomorphic ire, and the cost-
functional Fp is not holomorphic iz, andb. To handle this problem, we use the Wirtinger
calculus where we consider the cost-functio@$gt,g:) andfp(lg, b*, a,,a;). These two
cost-functionals satisfs(a,,a’) = F(a,) and Fp(b,b*,a,,a’) = Fp(b,a,). The cost-
functional Fs is holomorphic ina, for fixed o and vice versa. The cost-functiona}, is
holomorphic inp for fixed b* (and vice versa), and is holomorphic dn for fixed a; (and

vice versa).
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7.4 Updating procedure

We now show how, andb are updated in the proposed CSI method.

7.4.1 Updating,

Assuming thatz, andb at the(n — 1) iteration of the algorithmi.e. a,,, andp, ,, are
known, we update, as

Qt,n = Qt,n—l + gnyt,n (721)

whereg, € R is the step size. The empirically modified Polak-Riei CG direction, ,, is

given by [64]

0 n=20
Ytn = (7.22)
Re{ S 80} v otherwise
gt,n Ztgfnflgt,n—l Ztn—1

whereg, is the direction of the maximum rate of change/n(b, ¢,) with respect to,
evaluated at, ,, , and the superscrigi denotes the Hermitian operator. As showrLin [71],
it is the derivative with respect ig which determines the direction of the maximum rate of

change ofF,, (b, a,). Therefore,

0Fs 0Fp.n
9yn = 3—@@,”4 3—@;@”71@,&,”,1 (7.23)
The derivative)Fs/da; |, ., is given by
0Fs
%bt’"*l = —Ust{(Efncé";st - Z, Qt,n—l)- (7.24)
=t
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The derivatived Fp,, /0a; |y, .4, ., Canbe written as

l’gt,n

OFpn

8@2‘ ‘Qn—lrﬂz,n—1

= —UD,nEHC_Zt,nq + WD,nEH«E Qn_l)* © C_it,n—l)

where

C_lt,n—l = gitnc © (E Z_)n—l) - Egt,n—l + (E én—l) © (E Qt,n—l)'

The step-lengthk,, is found by the minimization
S = arg min { Fs (a1 + V1) + Fon(booy; Gyt + Ssn) }

which results in

Re { Zt anﬂt,n}

Sn =

7.4.2 Updating

15 S | Zwinl|” + 100 4 || -B vy + (Bb,_y) © (F v,

(7.25)

(7.26)

(7.27)

(7.28)

Assumingg, ,, is known, we minimizeF, (b, a,) with respect ta. Noting that¥s(a,) does

not depend o, the vecton at then!™ iteration of the CSI algorithm may be found as

Bb, = arg min Fon(b,a;,)

= argr%iilnp,n {”(Eb) ®© (@iﬁnc +EQt,n) - EQt,nHQ} :

The vectorB b,, can then be obtained as

Bb, =) u,0(Ba,)]o> u,ou,
t t

(7.29)

(7.30)
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whereu,,, = u{™® + F q,, and® represents the elementwise division (Hadamard division)
between two vectors of the same size. It should be noted tigin§ b, from B b, is not

necessary as updatiag requiresB b, notb.

7.4.3 Initial guess fod,

The CSI algorithm requires an initial guess tgrandb at the beginning of the algorithm.
One method might be to assume a zero initial guesg fais well ash and then update,
using the steepest-descent algorithm (which is traditipribe first step of any conjugate
gradient algorithm). If this route is followed then a choweuld need to be made on the
normalization termp ,, which is undefined at the first step for this choice of initiakgs.
One approach might be to use prior information on the valube€ontrast to provide a non-
zero B b. Alternatively, one could ignore the Maxwell regularizly, assuming;p,, = 0,
and minimize the data-error functionas(a,), on its own, using perhaps, a single step in

the steepest descent direction.

The method that we choose allows some flexibility in that tasa-error functional mini-
mization is approached using Krylov subspace regulagmatExplicitly, the initial guess

for a, may be found by
0, = argmin { || B35, — Za,|*} (7.31)

subject to a Krylov subspace regularization technicug, the Conjugate Gradient Least
Squares (CGLS) method [86]. These iterative algorithms rvapplied to an ill-posed sys-
tem of equations likd (7.31), exhibitsgmi-convergendeehavior[[88]. That is, they improve
the solution at their early iterations, where the solutipace is restricted to a Krylov sub-

space of small dimension. However, they start deteriagdtie solution by inverting the
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noise — in our case, the noiseﬁﬁjgg —in later iterations. An appropriately regularized

solution can therefore be obtained by early terminatiorheftilized Krylov subspace al-
gorithm when the dimension of the subspace is large enougfottuce a good regularized
solution and small enough to suppress the effect of noiserefbre, the iteration at which
the algorithm is stopped plays the role of the regularizaiarameter for this type of regu-

larization: the fewer the iterations, the stronger the lagzation.

Tofindg, o, we utilize the CGLS algorithm as the Krylov subspace regzagion and choose
the maximum possible regularization weight of this regaktron. That s, only one iteration
of the CGLS algorithm is applied to the least squares probtenm = Ef,fj;st. The initial
guess to the CGLS method is considered to be the zero vectppajriate size. Therefore,
the regularized solution, , will be a,, = :h, whereh, is the CG direction at the first
iteration of the CGLS algorithm (that is, the steepest ddsdreaction) applied taZ,a, =

—mea

Eras andg, is the CGLS step size. Findirlg andé;, the regularized solutioa, , can be

written as )
ZHEscat
o= e B 7y, 732
L&y Emeast

We note that[(7.32) is equivalent with the backpropagatauat®n, given in [48| 11]. The
formulation as a Krylov subspace regularized minimizatbthe data-error functional gives
us the option of performing more than the first steepestatgstep. Unfortunately, finding
the optimum stopping iteration in these methods is diffieuitl, because we rely on the
Maxwell regularizer, we have found that there is no need ®msre than the first few
steps of the Krylov-based method to obtain the initial vadbie,. In fact, in all the results
presented herein, only the first step is used, because natageawas gained in using more

than the first step. Having found ,, the vectorB b, can be found froni(7.30).
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Fig. 7.2:Exact relative permittivity for the concentric squares data set.

7.5 Inversion results

In this section, we show inversion results for two synthdtta sets. All synthetic data sets
have been created with a frequency-domain Finite Elemenihdde(FEM) forward solver.

To all synthetic data set8% noise was added using the formula (4.31). The noisy data
Efncg‘;st is then used to test the inversion algorithm against thrathsyic data sets. To show

the robustness of the inversion algorithm with respect éortbise level), see [(4.311), we

also show inversion results of the second data set whechosen to be.15 and0.25.

We avoid frequencies associated with the zero eigenvahee sit such frequencies the in-
verse operatat, ' does not exist. That is, no resonant frequencies have beseichin ad-
dition, all examples are run with no prior information and tnly constraint imposed on the
contrast s that the corresponding relative permittivitgeld be physicali(e., the real part of
the relative permittivity is kept greater than one, and thaginary part is kept non-negative).
In all inversions considered herein, unless otherwisedfate assume/ = P = 30. Uti-
lizing M = P = 30, i.e, projecting the unknown contrast in#00 eigenfunctions, provides
stable solutions for the data sets considered herein.dsitrg the number of eigenfunctions
toM = P = 40andM = P = 50 results in very similar reconstructions compared to the

results obtained usinyy/ = P = 30. However, the inversion results start to deteriorate when
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Fig. 7.3:Concentric squares data set (a)-(b) eigenfunction CSI reconstiwetien = P = 10,
(c)-(d) eigenfunction CSI reconstruction whah = P = 20, (e)-(f) eigenfunction CSI
reconstruction whed/ = P = 30, and (g)-(h) direct eigenfunction expansion of the exact
dielectric profile of the object of interest{ = P = 30).
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M and P are chosen to be more thaf. For the first data set, we show the performance of

the eigenfunction CSI method using five different sets of eslior \/ and P.

In all synthetic data sets considered herein, we showlitieet eigenfunction expansion for
the exact dielectric profile of the Ol (fdr/ = P = 30) which is obtained from the expansion
(7.12) with coefficients computed by taking the inner prddifdche exact contrast with the
expansion. We call this direct expansion the theoretioat for the method given the chosen
number of eigenfunction terms. We also define the error batvilee direct expansion and

the reconstructed expansion as

d
HWP - 6MP”

B

(7.33)

wheree, p anded, , are the reconstructed and direct eigenfunction expansibtie rela-
tive permittivity respectively. Thigigenfunction error EE, is most easily computed using

Parseval’s theorem.

For the targets considered in this chapter, we also showntlegsion results from the scat-
tering data collected in an open-region background usiegritegral-equation based CSI
method [48]. We refer to this algorithm as the IE-CSI methadall of these open-region
reconstructions, we have used the same transmitters agigtlgecas used in the eigenfunc-
tion CSI method. We have also used= 0.03, seel(4.31), to generate noisy scattering data

for the open-region cases.

7.5.1 Synthetic data set I: concentric squares

For the first numerical example, we consider the Ol to be twaceatric squares. This

target has been used in other publications such_as [48,[ 258.32]. The inner square
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Fig. 7.4:Concentric squares data set: (a)-(b) eigenfunction CSI reconstiwetienM = P = 50,

and (c)-(d) eigenfunction CSI reconstruction whigh= P = 70.
has dimension ok, x A, (\, is the wavelength in the background medium) with a relative
permittivity of 1.6 + j0.2. The inner square is surrounded by an exterior square having
sides of2)\, and relative permittivity ofi.3 + j0.4. The Ol is surrounded by a circular PEC
cylinder of radius3)\,. The exact permittivity profile is shown in figure 7.2. Thequency
of operation is chosen to deGHz and the relative permittivity of the background medium
is assumed to be, = 1; thus), = 0.3 m. The Ol is illuminated by0 transmitters evenly
spaced on a circle of radi®s33),. The data is then collected usidg transmitters evenly

spaced on a circle of radi@s17\,.

The inversion algorithm is tested against this data set endifferent cases distinguished by
the number of eigenfunctions used) (00 (M = P = 10), (ii) 400 (M = P = 20), (iii)
900 (M = P = 30), (iv) 2500 (M = P = 50), and {) 4900 (M = P = 70). The inver-

sion result for the first case is shown in figlrel 7.3(a)-(b) iehiecan be seen that the two



7.5 Inversion results 125

-0.8 . -0.8

-0.6

-0.4

-0.2

y [m

0.2

0.4

0.6

0.8 0.8

-05 0 05 -05 0 0.5
x [m x [

(a) ReconsRe(e,) (b) ReconsIm(e,)

Fig. 7.5:Concentric squares data set: open-region IE-CSI reconstructianinfdging domain is a
0.9 m x 0.9 m square.
concentric squares are not resolved. Increasing the nuofl@égenfunctions in the second
case to400, the algorithm does a good job of resolving the two squaresraoconstructs
their complex relative permittivities as shown in figure3(é)-(d). In the third case, shown
in figure[7.3(e)-(f), the edges of the squares are sharpepad to the second case. The
direct eigenfunction expansion for the exact dielectrafipg of the Ol (forM = P = 30)
is shown in figuré_713(g)-(h) where the correspondi\ is 0.03. Increasing the number
of eigenfunctions in the fourth case 2600, the reconstruction result, see figlrel 7.4(a)-(b),
remained similar to thé/ = P = 30 case. However, the inversion results start to deteri-
orate when)/ and P are chosen to be more thaf. In figure[7.4(c)-(d), we have shown
the inversion result for the fifth casé/ = P = 70) where the inversion algorithm cannot
produce an acceptable reconstruction for the Ol. The caatipnil time of the eigenfunc-
tion CSI method for thé/ = P = 30 case wad.36 seconds per CSl iteratiof minutes
in total) on a2.66 GHz machine. The open-region reconstruction of this tangetg the

IE-CSI method is shown in figufe 7.5.
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Fig. 7.6:Synthetic data set Il (a)-(b) exact relative permittivity of the object ofrege(c)-(d) eigen-
function CSI reconstruction, (e)-(f) direct eigenfunction expansibthe exact dielectric
profile of the object of interest\( = P = 30), and (g)-(h) open-region reconstruction
of the object of interest using the IE-CSI method. For the eigenfunctidm@&®hod, the
imaging domain is the whole interior of the metallic enclosure whereas for theregém
IE-CSI method, it is &.136 m x 0.136 m square.
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Fig. 7.7:Eigenfunction CSI reconstruction of the synthetic data set Il with (a)-§) noise ¢ =
0.15), and (c)-(d)25% noise ¢ = 0.25).

7.5.2 Synthetic data set Il: circular targets with lossykgaound

We consider an Ol which consists of three circular regionso of these circular regions
have the same radius 6f015 m and their relative complex permittivities ate + 710 and

30 + 715. These two circular regions are surrounded by anotherlaircegion with radius

of 0.06 m and relative permittivity ofi2. The Ol is immersed in a lossy background and
enclosed by a circular PEC enclosure of radiud® m. The object of interest is successively
irradiated by32 transmitters evenly spaced on a circle of radiusm. The data is collected
using32 receivers per transmitter where the receiver locationth@esame as the transmitter
locations. The frequency of operation is chosen td &Hz at which the complex permit-
tivity of the background medium i23.4 + j1.13. The Ol is shown in figuré_71.6(a)-(b)

and the reconstructed permittivity using eigenfunctiontcast source inversion method is
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shown in figuré 7J6(c)-(d). The direct eigenfunction expaméor the exact dielectric profile
of the Ol (for M = P = 30) is shown in figuré 716(e)-(f) where the correspondii§ is
0.11. The computational time for this target wa90 seconds1 minutes in total) on a
2.66 GHz machine. The open-region reconstruction for this tasgghown in figuré 716(g)-
(h). To show the robustness of the eigenfunction CSI algoritfith respect to the noise
level, the inversion results of this target when the noiselles 15% and25% are shown in

figure[7.7(a)-(b) and figuife_7.7(c)-(d) respectively.



A Novel Microwave Tomography System

The theory | propose may therefore be called a theory of tleetEimagnetic
Field, because it has to do with the space in the neighborhddecelectric or
magnetic bodies, and it may be called a Dynamical Theoryabee it assumes
that in that space there is matter in motion, by which the olrsgelectromag-
netic phenomena are producgdames Clerk Maxwell [14@].

Contributions to microwave tomography have been made insagkets of the technology,
especially the development of improved inverse algoritheng, [12,/11, 30/ 40, 56]. Dur-
ing the past two decades, the actual physical setup usedléctabe required electromag-
netic scattering data has not undergone much innovatibey ¢than the diverse antenna or
transducer systems that have been reporeegl, [129,185,99] 143, 131, 130, 144, 145].
Obtaining good images from MWT requires the accurate catleaif a substantial amount

of electromagnetic scattering data, which, for efficiemgaest performed using a relatively

1 The original set of Maxwell's equations, which utilizes ttancept of displacement current, first appeared
in this paper.
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large number of co-resident antennas. In the systems tedcin [129) 145] the number
of elements in the arrays range frar to 24 where small monopoles or Vivaldi antennas
have been used. The large arrays facilitate gatheringtisistzattering data at many angles
without mechanically repositioning the antennas. Therardeslements themselves are typ-
ically not taken fully into account in the electromagnetystem model of the associated
nonlinear optimization problem, although this is an impattconsideration in achieving
good imagesdf. the antenna compensation schemes in/[124]). Includingritenaas in the
system model is a way of reducing the modeling error thatekistween the numerical sys-
tem model and the actual system from which data is colled#ateling error also occurs
when assuming a homogeneous unbounded domain for the sysidai because Boundary
Conditions (BCs) for a dielectric discontinuity are actuatyguired to properly account for

the finite extent of the matching-fluid region.

Both the antenna and the BC modeling errors can be reduced hgehe a lossy matching-
fluid of sufficiently high loss such that electromagneticrggeeturning from the boundary
or any passive antenna to any receiving antenna is not apptecAlthough this may reduce
the modeling errors, the net effect of using a lossy matctingin MWT systems may be to
reduce the accuracy of the complex permittivity profile restauctions because the addition
of any loss reduces the dynamic range and achievable sigmalise ratio (SNR) of the
system. To achieve as much accuracy and resolution as [gofsim an MWT system it is
important to not rely on matching fluid loss to diminish bogpes of modeling errors (loss
should only be used to reduce the contrast so as to allow mergeto penetrate the target).
Thus, unless a complex system model is to be used—one whiciiaaely models the co-
resident antennas as well as the boundaries of the systeamsrijrway to reduce modeling
error is to eitherif) incorporate specialized calibration techniques for tleasured data, or
(i) construct MWT systems that retain the capacity to providgdamounts of independent

scattered field data but can be modeled accurately and afficie
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The purpose of this chapter is to propose a novel MWT systehimét rotatable conductive
enclosure that uses a minimal antenna array whidixésl with respect to the target being
imaged. Scattered-field data is obtained by taking bistaasurements between each pair
of elements of the fixed array at several different statigtjprss of the rotatable enclosure.
The inverse problem is formulated for the transverse mag(iEv) 2D case and the enclo-
sure is chosen to have a triangular shape. Although it is asityeshown with numerical
experiments using synthetic data, the practical impleatent of this system should reduce
both types of modeling error: the BCs at the conductive-enc®Boundary are easily mod-
eled and the antenna modeling error will be minimized besaas will be shown, small

arrays with as few as four elements can be used.

The shape of the enclosure is chosen to be triangular bedasgbe polygon that allows
the greatest number of fixed-angle step-rotations befardyming a redundant configura-
tion. We note that recently, Wadbro and Berggren have coresid®IWT in a rotating
metallic hexagonal-shaped container where the objecttefast is illuminated by waveg-
uides connected to each side of the metallic container [T86¢ container, along with the
waveguides, can then be rotated to collect more scatteatggahd the topology optimiza-
tion techniques were used to invert the data [146]. At eatdtiom such a system produces
the identical incident field with respect to the boundaryhaf €nclosure because the sources
(i.e., the waveguides) remain fixed with respect to the boundarythé system described
here, each rotation of the boundary produces a differemtent field with respect to the

boundary.

From a theoretical perspective, the first question to angsve&tan MWT systems with dif-
ferent BCs provide non-redundant scattering informatioonwtithe OI?This question will

be answered in Section 8.1. The proposed system is thenmglia Section 8]2.
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Fig. 8.1: Synthetic data set: (a)-(b) exact relative permittivity, (c) configuratarrttie open-region
case, (d) configuration for the square PEC-enclosed-region Theadd square is the PEC
enclosure), and (e) configuration for the triangular PEC-encloggdrrease (The red equi-
lateral triangle is the PEC enclosure).

8.1 Different BCs for MWT

As mentioned earlier, in most MWT systems currently in exisee[129] 76, 130, 131, 144,
145], the Ol and the antennas are contained within an eretldssmber, usually made from
a dielectric material such as plexiglass. The dielectranaber is usually filled with a lossy
matching fluid. Most MWT algorithms used to invert data froragl systems assume that
the matching fluid extends to infinity, not to the boundaryhsf tielectric casing. That is,
they assume that the scattering data is collected in a hamoge embedding. In other

words, the BC for the problem will be the Sommerfeld radiatondition. We will refer to
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the scattering data collected in such systems as the og@mrscattering data.

More recently, researchers have considered MWT in a metaliing where the Ol and the
antennas are enclosed by a circular metallic enclosure [M33[147| 42, 138, 139, 148].
We have also considered microwave tomography inside cdimgducylinders of arbitrary
shapes [135]. The use of conducting enclosures impose®daandary condition for the
total field which can be easily modeled within the utilizeddarsion algorithm. We will refer
to the scattering data collected in such systems as the P&lGsed-region scattering data.
In this section, we show inversion results from the openere@nd PEC-enclosed-region
scattering data. For the PEC-enclosed-region scatteritagy @& consider PEC enclosures
of different shapes. The utilized inversion algorithm is R-GNI, which has been ex-
plained in Sectioh 5.212. As mentioned in Chapler 4, calmnaif the Jacobian matrix and
the simulated scattered field require repeated forwardescohdls. For the open-region case,
we utilize the method of moments (MoM) with the conjugatedigat algorithm accelerated
by the fast Fourier transform (CG-FFT). The CG-FFT forward/ispls also accelerated by
employing the marching-on-in-source-position techniduetivated by the desire to model
arbitrary PEC boundaries with both straight and curved gdge utilize a finite element
method (FEM) based on triangular elements for the PEC-eadlembedding. The FEM
provides an accurate and fast forward solver, and in fae&gasser to implement with a PEC
boundary than with absorbing boundary conditions, whi@raguired for a homogeneous
embedding. As the FEM mesh is based on triangles, and thesengelver based on rect-
angular pulse-basis functions, we interpolate as requstdieen the two meshes with a

bi-linear interpolation algorithm [135].

We consider the target described in Secfion 7.5.2, and take different configurations
for collecting the scattering data; namely, open-regiquase PEC-enclosed-region, and

equilateral triangular PEC-enclosed-region. In all thésed cases, the transmitters and
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Fig. 8.2: 1st scenario? transmitters and receivers (a)-(b) inversion of the scattering data collected
in the open-region embedding, (c)-(d) inversion of the scattering ddéctan in the square
PEC-enclosed embedding, and (e)-(f) inversion of the scattering diéated inside the
equilateral PEC-enclosed embedding.
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receivers are evenly spaced on a circle of radiusm and the frequency of operation is

1 GHz. The target and these three configurations are showruref1.

Two different scenarios are used to collect the scatteratg.dn the first scenario, we utilize

7 transmitters and receivers for collecting the scattering data on the measemné circle.

To all these synthetic data se$y noise was added using the formula (4.31). The inversion
results for these three cases are shown in figuie 8.2. As ceaelne all these three inversions

result in similar poor reconstructions.

That these reconstructions are very similar gives rise éofdflowing question:do these
three scattering data sets, which are collected under dffeBCs, provide similar infor-
mation about the OlTo answer this question, we have developed an inversiorritigo
to simultaneously invert the scattering data collectedffier@nt configurations. For exam-
ple, for the case where there are two sets of scattering aa¢ecollected in an open-region
configuration and the other one in a PEC-enclosed-regiongioation, we construct the

following cost-functional,

CalX) = 5 [C88ur) + C530)] CUR(x) 8.1)

This cost-functional is minimized using the GNI method. Bubscript, denotes the™"
iteration of the GNI method, ar(C!;lfen and(,’lgg’C represent the data misfit cost-functional, see
(3.1), for the open-region and PEC-enclosed-region caseectvely. The regulariz¢R

is given in [5.15) and the steering parameterin the discrete domain, is given as

o 1T + PR

n=5 A (8.2)

where X, is the known contrast vector at thd" iteration of the algorithm. Recall that

FoperdX,,) @ndFp3(x ) are the discrete forms 6§, (x.) andCps(x.). The contrast is then
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updated in the form oXnH =X, T vy, wherev, is the step-length and the correction

Ay is found by solving
(AVA, - B,L,) Ax, = AP+ B, L, x . (8.3)
The complex matrix4,, is constructed as

4 _ | VisevenTopenn (8.4)

£2n
/1S pec lpeqn

whereJ e, andJ

Jhecn, are the Jacobian matrices for the open-region and PEC-euklos

region cases at the" iteration of the algorithm respectively. The normalizatfactors for
the open-region and PEC-enclosed-region scattering gatge, andns pec, are also given

; open,pec; ;
in (4.10). The vectod’ is given as

scat scat
B dopenn . Eopenn - Emeas,open 85
- B scat scat (8.5)
C_lpeqn Epe(;n - Emeas,pec

whereE5s,, and Eyes, are the complex vectors containing the simulated scatféletat
the observation points corresponding to the predictedrasty for the open-region and
PEC-enclosed-region cases. The complex ve@ﬁjgsloperandﬁfncjgspegepresent the mea-
sured data for the open-region and PEC-enclosed-regios.cabe discrete regularization
operatorL,, has been described in Section 5.2.2. The weight of this agigation,i.e., 5,

will be

Br = fér?en(Xn) + f‘;l)_esc<xn) (8.6)

Using this inversion algorithm, we simultaneously invée three data sets described above

(where7 transmitters/receivers are used). In figurd 8.3, we showvsitiheltaneous inver-
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Fig. 8.3: 1st scenario:7 transmitters and receivers; simultaneous inversion of (a)-(b) scattering
data collected in the open-region and square PEC-enclosed regiogwatibns, (c)-(d)
scattering data collected in the open-region and triangular PEC-enckgied configura-
tions, and (e)-(f) scattering data collected in the square PEC-enclegiet iand triangular
PEC-enclosed region configurations.



8.1 Different BCs for MWT 138

45 20
-0.06 -0.06
40
-0.04 -0.04
35 15
~0.02 30 -0.02
25
10
20
o M
- N
0.04 10
0.06 5

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 -0.05

y[m]
o

y[m]

o

x [m] X [m]
(@) Re(e,) (b) Im(e;)
45 20
-0.06 © -0.06 18
-0.04 35 -0.04 16
14
-0.02 30 -0.02
12
E o E 10
= 20 =
8
0.02
- - 6
0.04 10 4
0.06 5 2
-006 -0.04 -0.02 0 002 004 006 -006 -0.04 -0.02 0 002 004 006
x [m] x[m]
(c) Re(er) (d) Im(e;)
45 20
-0.06 0 -0.06 18
-0.04 35 -0.04 16
14
-0.02 30 -0.02
12
E o B 10
[ ] .
0.02
- ; °
0.04 10 4
0.06 5 2
0
-006 -0.04 -0.02 0 002 004 006 ~0.06 -0.04 -0.02 o 002 004 006
x[m]
(e) Re(e,) 0] Im(er)

Fig. 8.4: 2nd scenariol6 transmitters and6 receivers (a)-(b) inversion of the scattering data col-
lected in the open-region embedding, (c)-(d) inversion of the scattesitagotllected in the
square PEC-enclosed embedding, and (e)-(f) inversion of the $egttietta collected in the
triangular PEC-enclosed embedding.
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Fig. 8.5: 2nd scenario: 16 transmitters and 6 receivers; simultaneous inversion of (a)-(b) scat-
tering data collected in the open-region and square PEC-enclosed wmgifigurations,
(c)-(d) scattering data collected in the open-region and triangular PEBsed region con-
figurations, and (e)-(f) scattering data collected in the square PEGsedcand triangular
PEC-enclosed region configurations.
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sion of () open-region and square PEC-enclosed-region scatteriag(popen-region and

triangular PEC-enclosed-region scattering data, @ndsguare PEC-enclosed-region and
triangular PEC-enclosed-region scattering data. As cae®e, $he simultaneous inversion
results are very close to the true profile. Comparing figurea®@® figure 8.2, it can be

easily seen that the simultaneous inversion has resultadnre accurate reconstruction
compared to the separate inversions of each data set. Tihgtdad, and noting that these
data sets are distinguished by their corresponding BCs, ibeatoncluded that these three

BCs have provided non-redundant information about the Ol.

We now consider the second scenatrio for collecting the extiat data in these three con-
figurations, where we increase the number of transmitesrsivers tol6. Again, 3% noise
is added to each data set. The inversion of each data setismshdigure[8.4. The simul-
taneous inversion of these data sets are shown in figure 8.thisl scenario, the separate

inversion of each data set and the simultaneous inversgsutiin similar reconstruction.

From these two scenarios and other similar inversion regatt shown here), it can be
concluded that MWT systems with different BCs, at least whdizimg very few transmit-

ters and receivers, provides non-redundant informatiothi® reconstruction. We note that
the necessary condition to obtain non-redundant infolgnas to use a lossless or low-loss

background medium to not suppress the reflection from the &tesure.

8.2 MWT system using a rotatable conductive enclosure

Based on the idea that collecting scattering data using @wsteivers and under different
BCs yields different usable information, we now consider ataiile equilateral triangular
metallic casingI', which encloses the Ol and a few transceivers, see figure 6. Ol

is located in the bounded imaging domdnc R2 The transceivers are located on the
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Fig. 8.6: The geometrical configuration of the MWT problem with a rotatable condeit¢timngu-
lar enclosure. The red equilateral triangle ABC, represents the metallic casing, which
encloses the imaging domain and the measurement doman The dotted black circle
is the circumscribing circle of the triangle. The triangular enclosure caterotawithin a
circumscribing circle fof degrees wheré € [0°,120°).

measurement domaih C R?, which is outside the Ol. We assume that the metallic casing i
a PEC and is filled with a lossless or low-loss matching fluithwai known relative complex
permittivity of ¢,. To obtain more scattering data by changing the BCs of the MWiesys
the enclosuré’ is rotated at angle% € [0°,120°),] = 1,--- , L, with respect to the fixe®

and fixedS as depicted in figure 8.6. At th& configuration of the enclosui@, the Ol is
successively illuminated by some incident electric fidifgiff wheret denotes the transmitter
index ¢ = 1,---,T,). Interaction of the incident field with the Ol results in tteeal field
E; ;. Note that the field obtained depends not only on the tratsnidcation, but also on
the orientation of the enclosure. The total and incidenttat=fields are then measured
by the receiver antennas located &n Thus, the scattered field at the observation points,

contaminated by measurement noise, is known and denotﬁlﬁ?@&t.
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Fig. 8.7: Synthetic data setf(= 1 GHz). (a)-(b) Reconstructed relative complex permittivity when
the scattering data is collected inside the rotatable triangular conductiveserelasingt
transmitters and receivers and?2 rotations of the enclosure.

The MWT problem may then be formulated as the minimizatiorr gvef the following

nonlinear least-squares data misfit cost-functional
1 L 1 L Ty
2
() = 7D C00) = 7 > nsa Y [ B B I 8.7)
=1 =1 t=1

where E}¢is the simulated scattered field éhdue to a predicted contragtwhen thet™
transmitter is active at th#" configuration of the triangular enclosure. Thatl;*{p) =
Sffat(x). The operato&‘,’l~°:§""t is given in [2.20) where the incident field needs to be replace
with the incident field when thé" transmitter is active at thi' configuration of the trian-

gular enclosurei;e,, E'l”f The normalization factor is given by

T, —1
sy = (Z IIEfn?;sl,tHZ) : (8.8)
t=1

We regularize[(817) by the weightdd-norm total variation multiplicative regularizet)'? (),

given in [5.15). Thus, at the'" iteration of the inversion algorithm, we minimize the regu-
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Fig. 8.8: SyntheticE-target data set (1) (a)-(b) true relative complex permittivity profile @ thr-
get (c)-(d) reconstructed relative complex permittivity when the scatteiatg is collected
inside the rotating triangular conducting enclosure usitiginsmitters and receivers and
48 rotations of the enclosure (e)-(f) reconstructed relative complex perityitivhen the
scattering data is collected in the open-region embedding usitigansmitters and6 re-
ceivers.
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larized cost-functional

Ca(x) = CRTH)CMR (x). (8.9)

The positive paramete¥. in (5.15) is chosen to b&"T(y )/AA where FR°T(y ) is the
discrete form oR°"(x,,). The contrast vector is then updated in the formyof = x +
VnAXn WhereAxn is the correction and,, is an appropriate step length at thi iteration

of the algorithm. The correction vectdry is then found by solving

L
=1

whereL, is given in Section 5.2]2. The matrix, ,, is the Jacobian matrix corresponding
to the!™ rotation of the enclosure and at th# iteration of the inversion algorithm. The

weight 3, is equal toL x F*°T(x ). The discrepancy vecta ,

dp,=— (E%— Enay) - (8.11)

,n

C at

To calculate the Jacobian matricés, and the simulated scattered figlf,”", we utilize a

finite element method (FEM) [135].

Inversion results are shown for two synthetic data setdwa been created with a frequency-
domain FEM forward solver. To all synthetic data se%, noise was added using the
formula [4.31). In both cases, we use the equilateral triEmngPEC enclosure shown in
figure[8.6 and assume that the radius of the circumscribirdeodf the triangle i$).24 m.
The radius of the measurement cirdesee figuré 816 is chosen to ba m for both data

sets. We assume that the relative complex permittivity efrtfatching fluid i3.4 + j1.13.

The first synthetic data set is collected from the targetnilesd in Sectiorhi 7.512, which is

also used in Sectidn 8.1 and shown in figuré 8.1 (a)-(b). @md the inversion results
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shown in Section 8l1, the frequency of operation is chosdretoGHz. We consider only

4 transmitters and receivers per transmitter which are evenly spacedonTherefore,
for the /™ rotation of the PEC enclosure, we hakgs,, € C'°. The PEC enclosure is
rotated12 times (L = 12) with a step of15°. Therefore, the number of measured data
will be 12 x 16 = 192. The inversion of this scattering data, which is collectedhe
rotatable PEC enclosure, is shown in figure 8.7. The inversithe scattering data collected
from the same target in the open-region configuration usingansmitters and6 receivers
(B2 e C*9) is shown in figuré_8]4 (a)-(b). As can be seen, the recortgiruinside
the rotating PEC enclosure with onytransceivers and the reconstruction inside the open-
region configurations with6 transceivers are very similar for this target and both glevi

a reasonable reconstruction for both the real and imagiparts of the target’s relative

complex permittivity.

Finally, we consider the synthetit:target data set (Il) described in Section 5.6.2. The target
is shown in figuré 818 (a)-(b). To collect scattered field data consider transmitters and

6 receivers per transmitter; thuB;e,, € C*. The PEC enclosure is then rotatégitimes
with a step of2.5°; thus, providingi8 x 36 = 1728 scattering measurements. The inversion
of the scattering data collected inside the rotating PEQosnce is shown in figurie 8.8 (c)-
(d), while the inversion of the scattering data collectethm open-region embedding using
16 transmitters and6 receivers is shown in figute 8.8 (e)-(f). In both cases, thépart of
the permittivity is reconstructed well but the imaginarytpa poorly reconstructed. This is
due to the fact the imaginary part of the contrast is much lem#ian the real part of the
contrast (the contrast of the target is abodd — 70.01). To get a better reconstruction for
this target, we apply the image enhancement method, pessenSection 517, to the final

reconstructions of both reconstructions. The enhancashstaictions for both cases are

shown in figuré_8J9.
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Fig. 8.9: SyntheticE-target data set (ll); Reconstruction results after applying the eenaat al-
gorithm inside (a)-(b) the rotatable triangular conductive enclosuregadmsmitters and
receivers and38 rotations, and (c)-(d) the open-region embedding withransmitters and
16 receivers.

A better imaginary-part reconstruction can be achieved tilizing a priori information
about the expected ratio between the real and imaginarg péarthe target's contrast as
outlined in Section 5.612. Considering this ratio(as- 40, the reconstructions of both data

sets, shown in figule 8.1L0, become very similar and satisfact

Using these two data sets, the possibility of imaging insidetatable triangular conductive
enclosure using a minimal antenna array having as few asfouafyor six co-resident ele-
ments has been demonstrated for the 2D TM case. This studyasaly in the development
of MWT systems which introduce less modeling error to MWT ailipons compared to the
existing MWT systems while maintaining the ability to collesufficient scattering infor-

mation about the Ol. Considering that the modeling error aathbught of as part of the



8.2 MWT system using a rotatable conductive enclosure 147

4
35
3
2.5
2
X 15
| 1
0.5
A 0

-0.06

-0.04

-0.02

T
Z o
>
0.02
0.04
0.06
0 -0.05
x [n
(@) Re(e,) (b) Im(e,)
4
-0.06 35
35
- 30
0.04 3
-0.02 25 25
E o 20 E 2
> >
0.02 15 . 15
0.04 10 ! 1
05
0.06 5 .
0
-0.05 0 0.05 -0.05

x[m] X [m]

(c) Re(er) (d) Im(e,)

Fig. 8.10: SyntheticE-target data set (Il): pre-scaled GNI with = 40 (a)-(b) inversion inside
the rotatable triangular conductive enclosure wittransmitters and receivers andi8
rotations of the enclosure, and (c)-(d) inversion inside the openfregitedding with 6
transmitters and6 receivers.

manifest noise, and noting that the achievable resolutioit is affected by the signal-to-
noise ratio[[106, 136], the proposed MWT system may offer drapoed spatial resolution

over the existing MWT systems.



University of Manitoba MWT Systems

One day sir, you may tax i{Michael Faraday in reply to British Chancellor of
the Exchequer when asked of the practical value of elettircil850) [149, pg.
56].

Our research group at the University of Manitoba has cootdia microwave tomography
prototype with a plexiglass casing [145], as well as a pygetwith a metallic casing [150].

At the current state of development, the background mediutygth systems, is free-space
and the inversion is performed under the 2D TM assumptiorusTive assum&; e, =
Ereas? andE™ = Ei'°z. We note that for our MWT systems, we have utilized a frequency
selection procedure to determine the optimum operatiaegjuency(ies) of the systems.
This frequency selection procedure is not part of this thaad will not be explained here

but can be found in_[145] for the MWT system with plexiglassicgsnd in [151| 152] for

the MWT system with metallic casing.
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9.1 MWT system with plexiglass casing

A photograph of the current prototype is shown in figuré 9.&.hafve employed a two-port
Agilent 8363B PNA-Series Network Analyzer (NA) as our mieaye source and receiver,
capable of producing measurements at discrete frequeoci®seeps within the required
frequencies at an approximate system dynamic range of 12@dEdditional 15 dB of
dynamic range is available using the configurable test sBfle NA is connected to the
antennas with a:224 cross-bar mechanical switch (Agilent 87050A-K24), vhpcovides
isolation of greater thaf5 dB over the frequency range of interest. Twenty-four arésnn
are arranged at even intervalsléf in a circular array at the midpoint height along the inside
of a plexiglass cylinder. The cylinder has a radius0£2 cm, is 50.8 cm tall and is water-
tight, allowing it to be filled with a matching liquid (not Uitied in this work). The future
use of a matching fluid may necessitate even higher isol@tian95 dB, and a re-design
of the switch, but solutions to this do exigt,g, see[[153]. For use with certain classes of
test targets, there is also a motor assembly located uratértie cylinder support structure
that consists of two precision stepper motors arrangedavige accurate positioning of the
target within the chamber. The test target may be placed testigpplatform mounted on a
central nylon pillar protruding from a water-tight, sealeule in the center of the cylinder’s
bottom boundary, and can be rotatégD° (at increments smaller thalt if needed). A
vertical movement range for the pillar of roughly 15 cm issedscommodated by the motor
assembly to provide full 3D positioning of the target thrbube 2D plane of the antenna

array.

Communication between the NA, switch, and the controllinghpater is accomplished
through the General Purpose Interface Bus (GPIB), operating GPI1B-Ethernet hub. The
data acquisition process is entirely automated. A full meament at a single frequency,

(23 x 24 = 552 data points) takes less than 1 minute (this time depend$/fogtthe sweep
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Fig. 9.1:The University of Manitoba microwave tomography prototype with plexiglasgga The
24 Vivaldi antennas are connected to a network analyzer viaZd Zwitch. At the current
state of development, the background medium is air.

time utilized for the NA). It is possible to further reducesttime, which will ultimately be

limited by the stabilization time of the mechanical switch.

9.1.1 Co-resident antennas

For this system, we utilize Vivaldi antennas [154], whickébeen specifically designed and
improved for this near-field microwave tomography systeB8]1 The design bandwidth of
the antennas is frorda GHz to 10 GHz, although in practice we have found them to have
a usableS;; from 2 GHz to 10 GHz. They utilize a double-layer construction which sig-
nificantly reduces the cross-polarization level of theatidn pattern[[155]. This is critical
to the use of the 2D TM assumption about the wave propagatitimei chamber, as anten-
nas which create and detectindy polarized fields would seriously degrade the resulting

images. A picture of one of the antennas is shown in figure 9.2.

It is further desirable that these antennas have a radipéitiern as similar as possible to an



9.1 MWT system with plexiglass casing 151

Fig. 9.2:Close-up of one of the double layered Vivaldi antennas used in theetsitiy of Manitoba'’s
microwave tomography system with plexiglass casing. The two layers aredysther
with Teflon screws.

ideal 2D electric line source ideal radiator, as this is t®uaned source for the inversion al-
gorithms used throughout. A detailed description of theané gain pattern and beamwidth
can be found in[[145]. We note that the antennas are moretideban a true 2D electric
line source. While this runs counter to the incident field agstion, it minimizes the cou-
pling between the nearest non-active antennas to the gttivesmitting) antenna, which is

also a problem for the inversion process [145].

9.1.2 Data collection and calibration

As the utilized MWT inversion algorithms require scattereddfimeasurements, and any
physical system is only capable of detecting the total fitble raw data are first collected for
the MWT system with no scatterer present. This data, labéledrcident’ measurement,

is then subtracted from all the subsequent data to prodecsctittered field data.

The scattered data must then be calibrated. There are tww$es for the calibration:
(i) to convert theS,; values measured by the NA into field values needed by thesiorer
algorithms, andi() to eliminate and compensate for as many measurement agpassible.
To perform the calibration, we first measure scattered data & metallic cylinder with a

known radius placed in the middle of the chamber. Assumimqg thet" transmitter is
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active, we denote the measurggarameters a§§§§t'k”°"“ﬁ‘ Next, the scattering experiment

is repeated, but with the unknown target present. Titeparameters are denotééfit'o'.
Assuming a 2D line source generated incident field, we fuidle@ote the analytic scattered
fields from the known metallic cylinder a&S*"k""\which may be calculated using the

formula given in[[156].

Finally, the calibrated measured fieldésncg";st, for the unknown target are calculated by

Escat,known

scat __ t scat,Ol
Emeast ~  oscat,knowr~21,t - (9'1)

21,t

This method of calibration will eliminate any errors whicreaonstant over the tws,;
measurements. Examples of these types of ‘removable’samdiude cable losses and phase
shifts, or mis-matches at connectors. However, there der ddctors in the measurement
which are not constant between the two measurements, aadttientirely removed via
the above calibration object. For example, the antennarfastnot guaranteed to be the
same for the known and unknown measurements (as the systeperating in the near-
field). Another error which is not entirely compensated ®the antenna coupling, as the
coupling will change when different scatterers are presetite chamber. For these reasons,

the known object should be as similar as possible to the ¢éggetass of unknown target.

While some MWT systems utilize the ‘known’ object to be the gmghiamber ite., the
incident measurement is utilizea).g, see [153, 130] and Sectibn 9.8.1, we have found that
the use of a metallic cylinder calibration object improves inversion results for our system
with plexiglass casing [145]. A well-characterized peable scatter used for calibration
would eliminate more systematic errors, and provide evétebenaging results, but due to

the ease of characterization we have utilized a metalliodgl [145].
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Fig. 9.3:Scatterer #1: dielectric phantom target consisting of nylon and woodieeys.

9.1.3 Inversion results from our MWT system with plexiglaasing

For all reconstructions presented herein, the only coimstoa the minimization utilized
was to keep the reconstructed relative complex permigtiwiithin physical rangesi.g.,
Re(e,) > 1 and Imle,.) > 0). This was accomplished by over-writing the values at thet en
of each iteration in the inversion process if these con#savere violated. In this section,

we consider two phantoms which will be explained below.

For the first phantom experiment, we utilize a circular ny&ghcylinder with a diameter of
3.8 cm (1.5 inches) and an (approximately) square cross-section woblbek. We refer

to this target as Scatterer #1. With the Agilent 85070E dieile probe kit, we measured
the wood to have a contrast gf°°d ~ 1.0 + j0.2 at 3 GHz. As the nylon-66 cylinder
is too small for accurate bulk-material measurement, wee@tthe published contrast of

™' = 2.0 + 50.03 at3 GHz [156].

The target was placed in the chamber, as shown in figute 9tB,amiair background and
23 x 24 measurements were taken for the frequencie3 @Hz and6 GHz. The single-
frequency3 GHz reconstruction from the enhanced DBIM[55] is shown inifed8.4 (a)-
(b), and the frequency-hopping basked [111] reconstruaifdhe two frequencies is shown

in figure[9.4 (c)-(d). We note that the off-axis rotation oétwood in all reconstructions
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Fig. 9.4: Scatterer #1: (a)-(b) single-frequency reconstructior8 &Hz, and (c)-(d) multiple-
frequency reconstruction atGHz andé GHz (using the frequency-hopping technique).

reflects the physical orientation of the wood for the measerd. We also note that the

enhanced-DBIM inversion is very similar to the MR-GNI recauastion (not shown here)

of this target. The details of the enhanced DBIM can be fourj85h

For the3 GHz reconstruction, figure 9.4 (a)-(b), we note that the pzat of the contrast
shows the overall structure of the targets quite well, betréconstruction for nylon is 20%
low: Re(x) = 1.6 instead of the expected value BE(y™') = 2.0. For the wooden object,
the real part of the contrast is reconstructedvas.1, within 10%, and the reconstruction
shows a homogeneous region (which is what we expect). Fomthginary part of the
reconstruction at GHz, we note that the presence of the two distinct objecte&ar dut the
imaginary part of the nylon is overestimated (b0 ~ 0.6, when it should be Iify™') =

0.03). Further, the imaginary part of the contrast for the woodleject is not homogeneous,
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Fig. 9.5:Scatterer #2: dielectric phantom target consisting of PVC and nylon cytindée separa-
tion between the cylinders was 1 cm.

although the expected value of () = 0.2 is achieved in the center.

For the multiple-frequency reconstruction3aGHz and6 GHz, figureg 9.4 (c)-(d), the con-
trast of the nylon is closer to the expected value than foisthgle-frequency case for the
imaginary part (Iny) ~ 0.45). For the wood, the real part is again accurate (roughly the
same as for the GHz reconstruction). The edges of the objects are visibleanmaginary
part of the reconstructed contrast, and the interior of tbedMs more homogeneous, but
the edges of the wood show some overshoot (in one particoddy n(y) ~ 0.4 when the

expected value i8.2).

The second scatterer, to which we refer as Scatterer #2ist®@p$the same nylon cylinder,
but this time combined with a hollow Poly-Vinyl-Chloride (Y cylinder. A photograph of
the phantom is shown in figute 9.5. The thickness of the PV@dgt is~ 0.6 cm, and it
has a radius of 6.5 cm. The permittivity of the PVC cylinder was not measured;chuese
the thin width of the cylinder wall would make the measureta@mvalid (the measurement
would require a larger mass of PVC). However, published wa[d&7] give the contrast
of PVC at3 GHz asx"V® ~ 1.5 + ;j0.01. For this phantom, data were collected3at
4.5 and 6 GHz. The reconstructions of this phantom3aBHz, as well as the multiple-

frequency reconstructions, using the enhanced DBIM are slioigure[9.6. The3 GHz
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Fig. 9.6:Scatterer #2: (a)-(b) single-frequency reconstructior3 &Hz, and (c)-(d) multiple-
frequency reconstruction atGHz,4.5 GHz, ands GHz (using the frequency-hopping tech-
nique).

reconstruction (figure_9.6 (a)-(b)) overestimates the peal of the contrast for the nylon

(2.2 instead of 2.0). The thickness of the PVC is estimatedetdoo wide §& 1.7 cm

instead of0.6 cm). In the imaginary part 0 GHz reconstruction, the overall structure of

the phantom is not visible. This is mostly due to the largdaattin the center of the PVC
pipe. The value of Irfi) for the nylon is0.2, but the edges are blurred. The multiple-
frequency reconstruction, figure .6 (c)-(d), shows thectbglearly in the real part of the
reconstruction, but the contrast of nylon cylinder is diglovershot. The real part of the

PVC pipe reconstruction is thinner and closer to the acigal(sz 1.2 cm). In the imaginary

part of the reconstruction, the nylon’s shape is not recapie, and the value is overshot.

Additionally, the imaginary part of the PVC pipe’s shape slo®t follow the entire way

around the cylinder.
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In both phantoms, the multiple-frequency reconstructimese an improvement over the
single-frequency case. This is particularly apparent enithaginary part of the permittiv-
ity of Scatterer#2. As expected through the use of higher-frequency data tH&phed
frequency reconstructions had less blurred edges. As imeBcatterer#2, the multiple-
frequency reconstruction clearly shows that two distifgeots are present, and the separa-
tion of the two objects is (arguably) visible (the physiagparation was cm, or\,/5 where

Ay IS the wavelength of the background medium (air) at the ragfiequency).

In general, the exact contrast values were not obtained. Udfeest that these errors in the
reconstructions are primarily due to the large amount ofsmeament noise and modeling
error caused by the mutual coupling of the antennas. Otheces of error, such as the
assumption of a 2D line source based incident field are piplzddo a factor. We expect

that when the MWT system is filled with a lossy matching fluid #meenna coupling will

become significantly less noticeable due to losses in the. flui

9.2 Resolution

Perhaps the largest remaining challenge to make MWT a cotiwpdiiomedical imaging
modality is to improve the achievable resolution over whas$ been reported for current
state-of-the-art MWT systems, making it more comparable RI,Miltrasound, and-ray
CT. The lower resolution of MWT is directly linked to the relatly larger wavelengths
being used to interrogate the object of interest. Thereasjeler, no known theoretical
limit to the spatial resolution obtainable from MWT; imageseition as low ad /6 of a
wavelength has been obtained for near-field imaging sysféb8 and it has been sug-
gested that the true resolution limit is governed by theex@ble signal-to-noise ratio of the

measurements [136], and not the wavelength, (low-frequency impedance tomography
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Fig. 9.7: The MWT system witl2 nylon cylinders for the resolution test.

systems([159]).

As the resolution limit for MWT technology is not currently éawn, and the future success
of MWT depends upon improving the resolution performanceushssystems, having a
means of comparing the performance of different MWT systentduding the utilized data
acquisition techniques, measurement calibration metharat$ imaging algorithms) is im-
portant to the on-going research effort in this area. Ingkigion, we quantify the resolution
performance of our air-filled MWT system with plexiglass casby using a series of well-
defined simple experiments designed to reveaktparation resolutiofimit of the system.
The concept of separation resolution, though not identdgeduch, has been used before by
other investigators as an indicator of their systems’ perémce and therefore allows for a
direct comparison between systems. We show that the adieesaparation resolution is
much smaller than a half-wavelength, the Rayleigh limit, snrduch better than previously
published results. Some of the deficiencies in using theragpa resolution as a way of
measuring systems’ expected resolution performance acesied and exemplified by ex-
amining images of more complicated targets. In the lightumhsexamples, the scattering
mechanisms responsible for the non-applicability of thecept are reviewed, but it is con-
cluded that, lacking other well-defined indicators of resioh performance applicable to

MWT, using separation resolution provides a good initialnoeif system performance.
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9.2.1 Separation resolution

In any imaging technology, resolution is an ambiguous cptid€lassically, it refers to the
ability of the imaging system to resolve two ‘point’ targéhiat produce a scattered field of
equal intensity. The resolution limit can be defined usingl&gi’s criterion [160], where
two targets are considered resolved if the maximum valudefscattered spatial wave-
form pattern due to one target is at, or farther away thanfitsieminimum in the scattered
waveform pattern of the other target [161]. Resolution béytins limit is referred to as
super-resolution [160, 162]. In inverse scattering protdeéhe Rayleigh (or base) resolu-
tion criterion may be generated via a linearizatioa.(Born approximation) of the inverse
scattering problem for idealized point targets. After tinearization of the inverse scatter-
ing problem, and using the Rayleigh criterion, the theoadliicoest possible resolution is
Xp/2 in the far-field and\,/4 in the near-field[[158], wherg, is the wavelength in the
background medium, depending upon the transmitter/rece@nfiguration. In these lin-
earization techniques, resolution beyond2 is made possible by the collection and use of

evanescent waves when the transmitters/receivers artedbicethe near-field [158].

The use of nonlinear inverse scattering algorithms, whade into account multiple scat-
tering events and penetration into a target, can improva@utsn beyond these limits and
can be even further improved through the placement of thestné@/receive elements in
the near-field. However, with a nonlinear inversion aldorita ‘point’ target is no longer
readily defined and imaged theoretically, thus some othgetanust be utilized. Some
authors [[162| 106] have resorted to the use of canonicallair¢argets, with maximum
resolution defined as the minimum detectable separationdeet the two targets. We refer
to this type of resolution with canonical targetsseparation resolution It is the nature
of the nonlinear inverse scattering problem that no absdlarget-independent) resolution

limit is definable; the resolution limit achieved is only dippble to those particular targets
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used. However, it does provide some indication of the résgleapabilities of the system,
and provides a quantitative metric to measure system ingonewnts or make comparisons

between systems.

Under this definition, and using a ground-penetrating+rayl@e data collection scheme, a
resolution of1 /10 of a wavelength with synthetic dafa [163], and a resolutibn,@g6 with
experimental data have been reporied [162]. For biomedjgalications, using a circular
data collection configuration in a lossy background envitent, a separation resolution of
Ap/4 has been reported [106]. Resolution well beyond this levaklsevable, as will be

shown herein.

9.2.2 Methods

We now investigate the achievable separation resolutioim exir MWT system with plexi-
glass casing based on our studies presented in [164]. Theeiney of operation is chosen
to beb GHz at which the wavelength of the background medium (aik), is- 0.06 m. Sim-

ilar to the work outlined in[[162] and [106], we select two oaital targets each consisting
of a nylon-66 cylindei3.81 cm in diameter and4 cm in height, see figufe 9.7. AtGHz,
the nylon has a relative complex permittivity f ~ 3.0 4+ j0.03. The contrast will then
be y ~ 2.0 + j0.03. Data were collected fa24 transmitters with23 receivers operating
for each transmitter (a total @ft x 23 data points). The data were inverted using the MR-
GNI method explained in Sectign 5.2.2. The oahpriori information used is to keep the

reconstructed permittivity within physical bounds as dedan Sectiof 9.1]3.

The target, consisting of the two cylinders, was centeraliwihe imaging system and the
separation of the two cylinders was varied frormm (.e. touching) to10 mm, in 1 mm

steps. To determine the separation resolution limit, a d3ssection of the real part of the
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Fig. 9.8:Plot of the resolution ratio/min/Umax, for various separation§,— 10 mm in 1 mm steps,
of the two cylinders.

reconstructed 2D image is taken running through the ceffitireadtwo cylinders. Defining

Unin @s the minimum pixel value on the 1D cross-sectional imagedsn the two targets

andU,,,.x as the first maximum closest to this minimum value, the rdttb®@minimum pixel

value to the maximum pixel valug,,;, /Un..x IS generated. Applying the Rayleigh criterion,

if the ratio Uy,in /Unax IS less thari).81 then the cylinders are deemed to be resolved.

To show that the obtained separation resolution limit wdpdnd on the environment sur-
rounding the two targets as well as the targets itself, wesiden four more data sets (at
f = 5 GHz). The first three data sets use the same two cylinderggladhin a slightly
more complicated environment: the two nylon cylinders é&afed by0 mm, 5 mm, and
10 mm) were centered within a hollow PVC cylinder described étt®n[9.1.8. Finally,
we consider a phantom made up of Ultra High Molecular Weigii{W) polyethylene.
The permittivity of this phantom, at the operating frequeot5 GHz, was measured to be
e, = 2.54 + j0.014. Noting that the background medium in our MWT system is ak, th
contrast of the phantom ig = 1.54 4 j0.014. The geometry of the phantom is the same
as the one shown in figure 6.5 (a)-(b) (but, of course, withfferdint relative complex per-
mittivity). As can be seen, this phantom has different disés between its details ranging

from 8 mm to20 mm.
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Fig. 9.9:Reconstruction of the two nylon-66 cylinders for- 4 mm in1 mm steps.
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Fig. 9.10:Reconstruction of the two nylon-66 cylinders for- 9 mm in 1 mm steps.
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Fig. 9.11:Reconstruction of the two nylon-66 cylinders with mm separation.

9.2.3 Results

The resolution ratid/,,,;, /Unax, cOrresponding to the two nylon targets, is plotted in fig-
ure[9.8. Reconstructed images of the contrastfd mm in 1 mm step are shown in in
figured9.9[ 9.70, arild 9.11. By considering the directly ctdlé data points, the two cylin-
ders are resolved for all separation2ahm. We estimate a confidence intervated.4 mm

due to errors in our positioning system.

The reconstructions of the contrast when the two cylindeiththree different separations)
are embedded in the PVC cylinder is shown in figure9.12. Adiogrto the definition of the
separation resolution used herein, the resolution ratiothese three data sets can be found.
For example for thé mm separation, the resolution ratio increase8.5@ from a ratio of
0.47 when the cylinders were not embedded, and under the defimti®eparation resolution
limit used herein, the two cylinders are considered resbl\owever, the inclusion of the

PVC cylinder has clearly degraded the overall reconswuaati the nylon cylinders.

The reconstruction of the UHMW polyethylene phantom, ugimg MR-GNI, method is
shown in figuré 9.13. As can be seen in this figure, the detatlsd top-left of this phantom
have not been resolved. We note that the top-left part of Hamiom, which has not been

resolved, corresponds tomm =~ J,/8 separation. We also note that the separation of
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Fig. 9.12:Reconstruction of two nylon-66 cylinders embedded in a larger PVC cylinéer this
reconstruction, the two cylinders were separated by (a)+thjn, (c)-(d)5 mm, and (e)-
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Fig. 9.13:Reconstruction of the UHMW polyethylene phantom.

10 mm = ), /6 has been resolved.

9.2.4 Discussion

According to the results obtained with this experimentaligea separation resolution of
2 mm has been achieved, which corresponds to a resolutiop/80 at 5 GHz. This is a
significant improvement over published experimental tssusing similar microwave to-
mography systems [162, 106], and highlights the potentiatlie technology. This high
resolution is achieved through the collection and use of-fielal data as well as the use of

a nonlinear inversion algorithm which accounts for muéiptattering.

While we have resolved the targets at a separatiod mfm, an inspection of figure 9.8
shows that the resolution limit should be at an even lowearsgn. A lower bound on
the limiting separation resolution can be estimated td.Benm or~ \,/45. This simple
estimate assumes a linear variation in the resolution-tstweenl mm and2 mm, and no

errors in the positioning of the cylinders.

The use of the Rayleigh resolution criteria is qualitativ&lypported by observing the real-

part reconstructions df mm and2 mm separation, shown in figure 9.9 (a) and (e). In the
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0 mm reconstruction, the two cylinders are connected withgaoreof red (a pixel value of
~ 1.9), while for the separated mm reconstruction, the color switches to yellow with a
pixel value of~ 1.5. We argue that, qualitatively, one would guess that the tyimaers

are separated given tRanm reconstruction.

As expected, the resolution ratio shown in figure 9.8 redoga@sotonically as the separation
increases. However, it does not start from a value@¥hen the two cylinders are touching.
This is due to variations in the reconstructed contrastutinout the cylinders, which raises
the maximum pixel value in some regions within the cylind@ese,e.g, the slight rise in

the right cylinder of thé) mm reconstruction).

The reconstructions which include the PVC cylinder (figur€29 shows one of the lim-
itations in determining the separation resolution using shmplistic target environments
considered herein. As expected when a PVC cylinder sursotimel target, the ratio of
Unin/Unax inCreases, which implies a reduction in separation reolutThe inclusion of
the PVC cylinder also degrades the reconstruction of themgylinders, to the point that
they no longer appear as solid targets. The degradatioreisodapth {) a loss in the amount
of useful energy interrogating the target (the PVC proviasegynificant barrier to the wave
which now must pass through the PVC wall twice before beingated by the antennas),
and i) an increase in the amount of multiple scattering presecdie of the presence of
the surrounding cylinder. The limitations in determinihg separation resolution for a more
complicated scatterer can be seen in the reconstructidre dfHMW polyethylene phantom

(figure[9.1B), where the separation)gf/8 was not resolved.

While not the main focus of this section, it is interesting tdenthat the diameter of the two
nylon cylinders is also reconstructed quite accuratelygast in the simple case with no
PVC cylinder surrounding the target). For example, inthenm separation reconstruction

(figure[9.11) the average reconstructed diameter of thexgylinders is3.55 cm (calculated
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using the full-width at half-maximum criteria), an error=f7%, from the true diameter.

9.3 MWT system with metallic casing

In this section, we consider a MWT system where the chambeswutling the antennas and
the Ol is made of metallic material. One of the main poteratthlantages of MWT systems
with metallic casing (over those with dielectric casinghis possibility of using low-loss (or,
lossless) matching fluids within them to image the Ol. Thisigortant as it is expected that
imaging in a low-loss matching fluid offers an enhanced rgswi compared to imaging in a
lossy matching fluid due to providing a data set with a bettgrad-to-noise ratio [106, 136].
Very few inversions from experimentally collected datahmtMWT systems with metallic
casing have been reported: only from the system currentigiudevelopment at the Institut
Fresnell[139], and from the system described herein whictently under development at
the University of Manitoba [148] (both make the 2D TM assuimpt The results from both
of these systems are not satisfactory when compared toghksebtained from open-region
MWT systems. This will be discussed in more details in Se@&8®2. Also, a MWT system
with a metallic hemisphere was built in the Technical Unsitgr of Denmark for breast
cancer imaging [165] where, to the best of our knowledgenwersion of experimental data

has been reported yet.

The University of Manitoba MWT system with metallic casinglinés the same vector
network analyzer, switch, and data collection process ad us our MWT system with
dielectric casing, but substitutes the plexiglass chanifiea chamber made of stainless
steel. Prototypes with different cylinder sizes and witledes of antenna types have been

constructed, and data collected from them.
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9.3.1 Inversion results from our MWT systems with metallisiog

In this section, we show some preliminary results from thévehsity of Manitoba MWT

systems with circular metallic casing which is currentlydandevelopment. The experi-
mental results are preliminary in that no well-establistesdhniques are currently available
for the calibration of data obtained from within conductamclosure setups; we simply use
the same calibration technique that was previously usedh®r cesearchers for open-region

setups.

The first system is shown in figure 9114 (a). Twenty-four mailemntennas are arranged
at even intervals of5 degrees in a circular array at the midpoint height alongisa&le of

a stainless steel cylinder of radio£24 m, and of height.508 m. The monopole antennas,
shown in figurd_9.14 (b), are simple wires with right-angled placed into the female
end of the bulk-head SMA connectors that protrude into thi efahe cylinder. These
monopoles are oriented in the vertical direction, paratiehe cylindrical walls. The dis-
tance of the antennas from the wall of the chamber is 6rily m. Other resistively loaded
antennas have been investigated for this system, but agstensdesign is not part of this
thesis, results for only the simple monopoles are showrhodigh the stainless steel enclo-
sure is water-tight, allowing it to be filled with a matchinguid, the background medium,
at the current state of development, is air. The Ol is the salmek of wood, described
in Section 9.1.8, witk, ~ 2 + j0.2 at 1 GHz. The target was placed at the center of the
metallic chamber, shown in figufe 9114 (a), @&&dx 24 measurements were taken at this

frequency 23 receivers per transmitter).

As mentioned earlier, the vector network analyzer collsctttering parameters between
antenna ports. Note that ti2d antennas are co-resident during all measurements. As the

imaging algorithm requires scattered field measurememsgata is first collected for the
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Fig. 9.14:Experimental data set (a) the object of interest inside the circular metalliostine,
(b) monopole antenna, (c)-(d) eigenfunction CSI reconstruction(edpd) Gauss-Newton
reconstruction. For the eigenfunction CSI method, the imaging domain is thie wite-
rior of the metallic enclosure whereas for the Gauss-Newton inversiom®(t3smx 0.3 m
square.
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MWT system in the absence of the Ol. Assuming thatthiansmitter is active, this data is
labeled théncidentmeasurement}},, and consists af3 measurements. We then perform
the same experiment in the presence of the Ol. This datalsdigked theotal measurement
So14. The measured incident data is then subtracted from theurezhsotal data and is

denoted by the measuredattereddata, 555 = S, — S;”ft.

Modeling the incident field in the inversion algorithm By given in [7.17), the calibrated
measured scattered fields for the unknown target corresmprd thet™ transmitter are

calculated by

Escat o Elifnc ngit (92)

meast Sinc
21t

where E} is calculated at the receiver locations. The figlgf2, is then used in the in-
version algorithm. The measuredy’, and the simulateds"® corresponding to the first
transmitter,t = 1, are shown in figuré 9.15 at ti¥3 receiver locations. This frequency
was chosen because of the reasonable match between tiséirand the analytic incident
field assumed in the inversion model. Although this calibratechnique is the one that has
been successfully used to calibrate the Fre2o@l and2005 data sets [118, 102] (collected
in an anechoic chamber), it is not ideally suited to measargstaken inside conductive
enclosures because the mutual coupling between the aerésantennas is much greater

than that in open-region systems.

The inversion result using eigenfunction contrast sounsersion method, explained in
ChaptefV, is shown in figute 9]14 (c)-(d). As can be seen, thpeshbf the square wooden
cylinder is not resolved and the reconstructed permiytigtover the measured value. We
note the artifacts due to the presence of the antennas. & efesther the poor inversion
result is due to the use of eigenfunction CSI or the calibratedsured data itself, we have

also inverted the calibrated measured data using the GNFidigh with a FEM forward
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Fig. 9.15:Comparison of the simulated incident field and the measﬂ"g%d‘or the first transmitter
at the23 receiver locations (a) absolute value, and (b) phase.

-

(a) Top view (b) Side view

Fig. 9.16:The second MWT system with metallic casing (a) top view (with an Ol in the cefitbeo
chamber), and (b) side view.

solver [EEH The inversion results using the GNI method are shown in figuté (e)-(f).

As can be seen the reconstruction results from the eigetidmn€SI and the GNI method

are very similar.

The second MWT system with metallic casing, shown in figuré9ulas constructed with
a radius of8.08 cm but having a height of only.28 cm. In addition, to better approximate
2D line sources, the antennas are fed straight up throughattem aluminum plate of the

enclosure. Twenty-four threaded holes were tapped at etervals into the bottom plate

1 As outlined in [135], this GNI algorithm is equipped with thdditive-multiplicative regularization (see
Sectior5.213). It also uses the image enhancement algo(itbe Section 5.7).
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(b)

Fig. 9.17:Example of the FEM mesh for the small-sized MWT system with metallic casing: (a) the
24 antennas are modeled as small PEC cylinders, as shown in (b) the zoomed imag
at a radial offset ofi..5 cm from the circular peripheral wall of the enclosure, whShA
bulkhead adapters could be screwed in to feed a set of sttaagted antennas (consisting of
the axial-lead 47 resistors). These make-shift resistorelanas” nearly spanned the entire
5.28 cm height of the cylinder, clipped only about two or threelimiéters from shorting
to the metal top plate. The frequency of operation for thistay is2.7 GHz. Using this
system, two different data sets were collected from a rectian homogeneous target of
dimension2 cm x 6 cm with a height roughly equal to that of the system’s chambleese
two data sets are distinguished by the position of the tamitein the chamber. It should
also be noted that the relative complex permittivity of ttasget was measured using the
Agilent 85070E dielectric probe kit to be = 2.6 + j0.12 (thus, having the contrast of

x = 1.6 + j0.12) at the frequency of operationd., 2.7 GHz).
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(a) (b)

Fig. 9.18:The two different positions of the homogeneous scatterer within the MWiEmsywith
metallic enclosure.

For the data sets collected in this system, we have appligothbe GNI (in conjunction with
a FEM forward solver) and the eigenfunction CSI methods. Bbthese algorithms failed
in inverting the data sets. The reasons for this failure teaen studied i [151] in which it
was concluded that the strong mutual coupling between sidest antennas in this small-
sized chamber is one of the main reasons for this failure. ¥t that the mutual coupling,

which leads to modeling error, has not been modeled in thersion algorithm.

Having this reason in mind and to somehow model the mutuabloay between the an-
tennas within the inversion algorithm, we attempted to nhélae co-resident antennas by
constructing an FEM mesh which consists2dfsmall PEC circles of radiu8.26 mm to
represent the4 co-resident antenr%sThis FEM mesh has been shown in figure 9.17. Due
to the fact that the small circles representing the antearast the exact positions of the
sources/receivers, and that they represent PEC boundatiese no field may penetrate),
we chose to place the transmitter/receiver points in thergien algorithm\,/20 ~ 5 mm
away from the edge of the small PEC circles. This leads to samoes in the inversion, and
future work will focus on better ways to take the antennas aticount. However, as will be

seen, this method provides reasonable inversion results.

2 The radius of these small PEC circles are chosetihocway.
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We now show some inversion results from the small-sized MWSEesy with metallic cas-
ing using the GNI method in conjunction with a FEM forwardwaslwhich uses the FEM
mesh with the24 small PEC circles. The first inversion was performed on datected
with the object shifted toward the left-side of the MWT sys®ohamber, as shown in fig-
ure[9.18 (a). The inversion of this data set is shown in figui® %a)-(b). The inversion
has reproduced the position and overall dimensions of thledtric target reasonably well,
despite the peculiar deformations near the midpoint ofeitgth and blurred edges around
its perimeter giving the reconstructed rectangular tamgmte of an hour-glass shape. These
types of blurred edges can also be seen in the inversion efiexpntal data from the Institut
Fresnel MWT system with metallic casing [139]. Quantitdivéhe real part of the recon-
structed permittivity has undershot the measured valéieand the object’s profile appears
lossless, with no imaginary part being produced by the @lgoraside from a few minor
artifacts. The second inversion was performed on dataateliewith the object rotated ap-
proximately45° counter-clockwise from its initial orientation shown indig[9.16 (a). The
inversion result, shown in figute 9119 (c)-(d) confirms thgoaithm’s ability to track rota-
tional motion of the object. However, the reconstructiothef object is not very good as the
edges of the rectangle have not been reconstructed. Alseetonstructed imaginary-part

of the contrast has an anomaly in the center of the imagingadom

9.3.2 Discussion

The inversion results of the experimental data sets cekkertside the two MWT systems
with metallic casing are not satisfactgryBased on our experience, we speculate that the
main difficulty with inverting the experimental data frometMWT systems with metallic

casing, when the background medium is air, is due to the higfuahcoupling between the

3 We note that the inversion of the synthetic data sets celtticiside a metallic chamber was quite success-
ful as shown in Chapte[s 7 ahH 8.
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Fig. 9.19:Inversion of the homogeneous target, in two different positions, colléctéde the MWT
system with metallic casing.
co-resident antennas which is not entirely removable bye#ing calibration techniques,
like the one used in heHeThe mutual coupling between the co-resident antennas éhmu
greater in our PEC-enclosed system compared to that presentr iplexiglass-enclosed
system. This has been concluded by comparingdyyaneasurements taken in each cage: (
S11 measurements for a single antenna when no other antennaieaeat in the enclosure,
and i) S;; measurements for the same antenna when the dghantennas are present in
the enclosure. In the metallic enclosure, fig¢ measurements with only one antenna in the
enclosure is quite different from thg; measurements when all antennas are present in the

chamber. This has been discussed in details in/[151, 152. tBthis, the presence of the

4We have successfully used the calibration technique us&edatior{ 9.3.11, known ascident-field cali-
bration, for open-region configurations [55,157]. Other researchawre also successfully used this calibration
technique for MWT systems with dielectric casingl[12].
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co-resident antennas substantially changes the inputdamoe of the transmitting antenna,;
thus, it is likely that the field distribution inside the chiaen is quite different than that of
an empty 2D metallic enclosure. This results in a large modegrror in the inversion
algorithms developed for inverting the data collecteddasihe metallic casing, like the
eigenfunction CSI method and the inversion method preseantfB9]. This is due to the
fact that these inversion algorithms implicitly assume tha Green’s function of the actual
MWT system is that of a empty 2D metallic enclosure. Howeves, implicit assumption is
not an acceptable approximation at all as the mutual cogipl@tween co-resident antennas
changes the Green’s function of the MWT system sufficientghdhat it cannot be modeled
with the analytic Green’s function of the empty 2D metalliu:msur. Although the GNI
method in conjunction with the FEM mesh which consists of shwall PEC circles can
partially take the mutual coupling between antennas intoaat, it is far from being a good

model.

To improve the reconstruction results, at least four methrody be fruitful. These are

1. designing a calibration technique which transformsfhyaneasurements to field val-
ues in such a way that the mutual effects between co-resate@nnas are calibrated

out,

2. implementing an inversion algorithm which can take th&ana into account prop-

erly,

3. decreasing the number of elements in the antenna agyh@ving only4 antennas),

and

51t should be noted that in MWT systems with dielectric casisgch approximations are made in the
inversion algorithms. For example, in Dartmouth College M#yEtem[[12], the Green’s function of system
is approximated by the 2D Green’s function of a homogeneaakdround where the water-glycerin matching
fluid extends to infinity. Although these kinds of approxiroatwork well in conjunction with MWT systems
with dielectric casing when a relatively high loss matcHingd is used, they do not provide meaningful results
in conjunction with our air-filled MWT system with metallic elosures
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4. utilizing an appropriate lossy matching fluid within tHeaenber.

All of these methods are now under investigation in our resegroup and are part of
our planned future work. If the calibration technique meméd in the first method can
be developed, the eigenfunction CSI method in its curremhfehould result in accurate
reconstructions with the calibrated measured data. If ¢ieersd method is successful, this
will require utilizing numerical eigenvectors in the eigenction CSI method. Also, in this

case, the GNI method with a modified FEM mesh to incorporateatitenna elements may
be used. We note that the rotatable MWT system explained int€t&s one way to effect

method3. It is also expected that the fourth methae,, utilizing a lossy matching fluid,

can provide reasonable results at the expense of losing SbiRadue to the presence of the
lossy matching fluid. However, this may not be a good solusi®ur main goal is to use a

very low-loss (or, lossless) matching fluid to maintain ady&NR in the collected data.
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Conclusions and Future Work

. when a traveler reaches a fork in the road, thenorm tells him to take
either one way or the other, but tHé&-norm instructs him to head off into the
bushegJ. F. Claerbout and F. Muir [166]).

This final chapter summarizes the main results and achiewsméthis thesis and presents

an outline of the future work which might be fruitful to perfo.

10.1 Conclusion

In this thesis, we formulated the MWT problem as an optima@aproblem. A number of
methods for solving the MWT problem were reviewed. These pusthwere classified into

two categories distinguished by their use (or, lack of u$@)forward solver.
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Treating the ill-posedness of the problem was considered asfferent regularization tech-
nigues in conjunction with the Gauss-Newton inversion atgm. These regularization
techniques were studied and classified into two categoriesfirst category consists of the
penalty and projection methods whereas the second categosysts of additive, multiplica-
tive and additive-multiplicative regularization techaes. It was shown that these methods
can be viewed from within a single consistent frameworkrafflying some modifications.
This framework helps to clarify the function of these regiziation techniques. In addition,
two regularization techniques which can incorporateriori information about the object
being imaged were presented. An image enhancement algdottihe final image obtained
from the Gauss-Newton inversion algorithm was introduda#hile adding little computa-
tional complexity to the inversion algorithm, this imageéhancement algorithm was useful
in removing the spurious oscillations in the final recondinns obtained from the inversion

method.

The 2D TM and 2D TE inversions for the open-region configoratvere compared. It was
concluded that the TE inversion, which utilizes both regtdar components of the electric
vector at each receiver position, can result in more acewextonstruction than the TM
inversion when utilizing near-field scattering data cdlelcusing only a few transmitters
and receivers. This study was a preliminary study to comihe@erformance of the scalar
and vectorial inversions and may justify the added cost anapiexity of developing MWT

systems capable of collecting vectorial data.

A new eigenfunction CSI method was presented for circulaattieenclosures within the

2D TM framework. This method is based on expressing the unkraontrast and contrast
sources as truncated eigenfunction expansions corresptocthe Helmholtz operator in a
homogeneous background medium. The expansion coeffitientsne the unknowns in the

inverse problem which is formulated by introducing theggerfunction expansions into the
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CSI functional. The conjugate gradient technique is useditonmize the functional with

respect to these expansion coefficients.

Using the 2D TM assumption, we successfully used the midépVe regularized Gauss-
Newton inversion method in conjunction with an FEM forwaotver for the MWT problem
inside an arbitrarily-shaped PEC enclosure. It was dematest that MWT systems with
PEC enclosures of different shapes may provide non-recuimtfarmation about the object
being imaged when the scattered field data is collected wsihga few transmitters and
receivers in a low-loss (or, lossless) background mediunse8an this observation, we
propose a novel MWT system wherein a rotatable conductiaaduilar enclosure is used to
generate electromagnetic scattering data that are eadlextteach static position of the en-
closure using a minimal antenna array having as few as onlydo-resident elements. The
antenna array remains fixed with respect to the target baiaged and only the boundary of
the conductive enclosure is rotated. The possibility ofging in such a system was shown

using some synthetic examples.

We presented our results from the University of Manitoba®/Msystems. At the current
state of development, the inversion results from the MWTesystvith plexiglass casing
are reasonable. The resolution of this MWT system was iny&&td using two cylindrical
nylon targets. At the operating frequency ®GHz, a separation resolution 8fmm, or
1/30 of the wavelength in the background medium (air), was a@ue\Although it is not
a sufficiently robust indicator of the expected resolutibtamable for complex targets, the
achieved separation resolution is significantly bettenthay of the previously published
resolution limits for similar MWT systems. Also, prelimiryaresults were presented for
our MWT systems with metallic casing. These preliminary msi@s showed poor results
for the current system but it is our expectation that ther g much improvement in

obtaining images once appropriate calibration technigwesmplemented or appropriate
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modifications are made in the system design; both of whiclpareof the future work.

10.2 Future work

We suggest future work in two main directions. The first oneascerned with the devel-
opment of inversion algorithms and the second one is cordewith the development of

measurement systems.

10.2.1 Inversion algorithms

In many applications, there & priori information about the object being imaged. This
information, if incorporated correctly into the inversiatgorithms, can enhance the re-
construction significantly. Most contributions in the acganversion algorithms lie in the
development oblind inversion algorithms where it is assumed that there isanmiori
information about the OIl. Thus, there exists significantmdor the development of inver-
sion algorithms which are able to properly incorporatpriori information about the OI.
Utilizing this information in the inversion algorithms c@oush MWT toward becoming an
independent or complementary medical imaging modalityvakd this end, focusing on a
particular application such as breast cancer imaging mayebefruitful. For this applica-
tion, Magnetic Resonance Imaging (MRI) has achieved highapasolution. However, it
has limited specificity in identifying tumor and benign l@ss. On the other hand, MWT
has a limited resolution while having the potential to immrthe specificity of breast cancer
imaging due to the difference between the dielectric priggenof tumor and benign lesion
within the microwave spectrum. This provides room for depetent of a hybrid imaging

technique if MRI information can be incorporated within th&NI imaging algorithms. We
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note that this type of imaging has already been started far-inérared tomography and

MRI [167].

10.2.2 Experimental systems

Microwave tomography systems, currently in existence ehaw ability (or, very limited
ability) to collect near-field vectorial data. Thus, MWT atgloms in conjunction with these
systems work within the framework of the 2D TM or 3D scalamasption. This introduces
modeling error into the utilized inversion algorithm. Taluee this modeling error, effort
needs to be placed on the development of MWT systems that dantawear-field vectorial
data so that a 3D full-vectorial MWT algorithm can be utilizednvert the collected data

set.

Current state-of-the-art MWT systems utilize lossy matcliimgs so that little or no energy
that reaches the boundary of the system’s chamber makeskittbahe antennas. This
simplifies the system’s calibration and makes it possibl&fd/T algorithms to assume that
the matching fluid extends to infinity, not to the boundarytaf system'’s casing. However,
the data which are collected in a lossy matching fluid will dv@apoorer SNR than data
collected in a low-loss (or, lossless) matching fluid. Thusying toward MWT systems
which couple the energy into the Ol through a low-loss orlessmatching fluid may result
in enhanced imaging. As pointed out in Chaplers 7[and 9, we that this can be achieved
by using a conductive enclosure MWT system. However, as iqalan Section 9.3]2, the
appropriate design and calibration of such systems haveew®t investigated yet and are

part of future work.
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Forward Scattering Problem

This method will be called the conjugate gradient method orenbriefly, the
cg-method, for reasons which will unfold from the theory depetl in later
sections ... The results indicate that the method is venmglsiai for high speed
machines(Hestenes and Stiefel [168]).

As explained in Sectioh 2.3.2, the forward scattering mohlwhen the™ transmitter is

active, may be formulated by minimizing the cost—functia®@'® : L?(D) — R over E;:

1 .
CPO(B,) = T |EM — (T - G%) (Ey)|5. (B.1)
t llp

This cost-functional can be minimized using numerical teghes such as the Conjugate

Gradient (CG) algorithm where the total field at th& iteration is updated as

Et,m—i—l = Et,m + ﬁt,mdt,m (BZ)
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whered, ,, is the conjugate gradient direction angd,, € R* represents its weight. The

conjugate gradient direction can be found as [109]

gt m =0
dt,m = (83)

2
Gim + ’”gfﬂ—mHDdt’m_l m#0

2
‘gt,mfl ||D

whereg, ,, is the maximum variation af™'® with respect tat at E, = E, ,,. Tofindg, ,,,

we start with finding the limit
FWD E ¥ — FWD E
(SCFWD(Et) |Et:Et7m — hm C ( t,m + € ) C ( t,m) ) (B4)

e—0 €

where® € L?(D). The calculation of the above limit will result in

—2Re((Z — G3)" (Rym), ¥)
C™"°(E))|p=p,,, = ||Eﬁ‘° ' D (B.5)
t

Iz
D

where

R, = E™ — (T —-G}%)(E.n). (B.6)

From [B.5), it can be seen thé€™°(E,)|,—g, . reaches its maximum (considering func-

tions ¥ with identical norms) for
V=g,,=Z-05)" (Rim). (B.7)

Using the definition of the adjoint operator, it can be eashpwn thatZ — G%)* = 7 —

XG4 whereGy, is given in [2.14). Therefore,

Gim = L = X'Gp] (Rim) .- (B.8)
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At the m™ iteration of the CG algorithm, the weight,,,, is found by minimizingC™P over
Bi..m WhenE;, is substituted byE, ,,, + (3, nd;... The derivative o€™WP with respect to3, ,,,

will result in

HCFWD ) 2 11 Z — G5 ()5 ~ 2B,mRe(Rym, (T = G) (dim))py

. ; (B.9)
O 1B, 1™
Therefore, the weight, ,,, will be
_ X
ﬁt,m _ Re<Rt,m7 (I gD) (dt,m)>D ) (BlO)

IZ — G5(dem)15

In the MWT problem, the Ol is irradiated several times with anter of given incident
fields, sayEifnC (t=1,...,T,), corresponding to different transmitters around the CdsM
MWT algorithms require that the forward scattering probléBl), is solved for these dif-
ferent incident fields assuming a known predicted contyastherefore, having a fast for-
ward solver is crucial. Assuming an unbounded homogeneacdkgbound for the MWT
problem, the operations ¢}, and its adjoint on an arbitrary function it¥(D), as required
for minimizing (B.1) using the CG method, can be accelerat@tjute Fast Fourier Trans-
form (FFT) in the discrete domain due to the convolutionaperty of the associated integral

equation[[36, 37].

Since in practical MWT systems, two successive transmitbsitipns are usually close,
we can further accelerate the forward solver by using thechmag-on-in-source-position
techniquel[38],[[30] which provides a good initial guessttoe CG-FFT algorithm. In our
utilized marching-on-in-source-position technique, thigal guess of the CG-FFT algo-
rithm for the first three transmitters,= 1, 2, 3, is simply the incident field corresponding
to those transmitters; that i%;,, = E™. Then, an appropriate initial guess for the CG-

FFT algorithm with respect to thé" transmitter { > 4) is obtained via an extrapolation
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of the fields corresponding to some previous transmitteitipas which have been already
calculated. Specifically, the initial guess for the CG-FFgoaithm corresponding te™"

transmitter { > 4) is written as,
3
Eio(q) = Z a; B i(q) (B.11)
=1

where E,_;(q) is the converged solution of (B.1) with respect(to— i)™ transmitter. A
closed-form expression for the coefficiemtsis available such that they minimize the fol-
lowing norm [30]

|(Z — G3)Ero — EY® (B.12)

Ip-

This completes the brief description of the so-called CG-feffWard solver and the marching-

on-in-source-position acceleration technique utilizethis research.
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Computation of Derivatives Using

Wirtinger Calculus

Nicht einer mystischen Verwendung voh-1 hat die Analysis ihre wirklich
bedeutenden Erfolge des letzen Jahrhunderts zu verdas@&erdern dem ganz
natirlichen Umstande, dass man unendlich viel freier in derheatatischen
Bewgung ist, wenn man die &sen in einer Ebene statt nur in einer Limie
variiren laf3t. Translation:Analysis does not owe its really significant successes
of the last century to any mysterious use\6f 1, but to the quite natural cir-
cumstance that one has infinitely more freedom of matheatatiovement if he
lets quantities vary in a plane instead of only on a lifeéeopold Kronecker
[169]).

In many applications, one optimizes a real-valued costtfanal over a complex-valued
vector quantity. The main difficulty in such situations istlany non-constant real-valued
cost-functional is not analytic in the complex domain! [7b}s, it is not complex differen-
tiable. One way to handle this problem is to optimize the-€asttional with respect to the

real and imaginary parts of the complex-valued vector. @Qfse, within the framework of
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this approach, we implicitly assume that the cost-funeias differentiable with respect to
the real and imaginary parts of the complex-valued vectbis Type of differentiability is
sometimes referred to as real differentiability [170] (aposed to complex differentiabil-

ity), and it has been used in microwave tomography by diffeagithorse.g, see([42, 107].

Another approach to handle this problem is to treat the ceraphlued vector and its com-
plex conjugate as two independent vectors over which tooparthe optimization. This
method which has been used by different authors [72, 73,0068 makes use of Wirtinger
calculus [70] which provides a way to bypass the strict definiof complex differentia-
bility. In this appendix, we consider the Wirtinger calcsilfor optimizing a real-valued
cost-functional over a complex vector. We then describeettiension of this calculus for

the infinite-dimensional case.

Let 7 be a real-valued cost-functional of a complex-valuédlimensional vectog. That
is, F : C¥ — R. Assuming that the cost-functiondl is not constant, it can be easily
verified that the cost-functiona is not analytic (holomorphic) iy [71,[170]. Thus, itis
not complex differentiable with respect o It is well-known that a non-holomorphic cost-
functional can be expressed in terms of its complex arguarethithe complex conjugate of
the argument[170] Thus, we can define the cost-functioa:"a(lx, X*) such thaﬂt"(x, X)) =
F(x). It can be shown that ifF is real differentiable with respect tp, = Re(y) and
X, = Im(x), the real and imaginary parts gf the cost-functionalF is holomorphic iny
for fixed x* and holomorphic inx* for fixed x [170,[171] 71]. Therefore, assuming tifat
is real differentiable, one caormally define two partial derivatives [170]

OF
3X |X*:const. (C- 1)

! For example, the non-holomorphic cost-functiofdly) = HK”Z can be written as (x, x*) = F(x) =
) x
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and,
OF

a - ’ =const.
aX* X

(C.2)

It should be noted that these two derivatives are formal ensbnse that one cannot truly

vary x while keepingy* constant or vice versa.

Using these formal derivatives and noting tlﬂ%(tx, X*) = F(x), the first differential ofF

can be written as

ox ox*

7 - [ai] it laf" ] i €3

Defining the inner product between two complex vectors oftmae size a&w, v) = v7 w,

dF = %,dx* + a—}_,dx (C.4)
ox = ox* =

One important relation between these two formal derivatige72, 73| 71]

OF . OF ’
Gaolgay e

Using (C.5) and[(Cl4), the first differential f may be written as

7 = gRe{<£dX*>} - zRe{<£dX>}. €

We note that the first differential oF can also be written in terms of the variations with

(C.3) may be written as

respect toy , andy,. Thatis,

37?] Im(dx) = <§%,Re(dx)>+<§7f,lm(dx)>. (C.7)

AT LR =1

T

OF

2R
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Considering[(Cl7), and noting that (C.6) can be written as

dF = <2Re{g—;} ,Re{dx}> + <2Im {g—;} ,Im {dx}> : (C.8)

it can be concluded that

2Re 0F :0_]-“ and, 2Ilm 0F :a—j:. (C.9)
ox* 8&% ox* 6&1
Thus,
OF 1 (0F  OF
=—|=—+Jj= . C.10
ax* 2<5xR j%) €19

Using a similar procedure, it can be shown that

8]—"_1(0]—" .8]:). c11)

o 2\0x, 0y,
Within this thesis, we apply the Wirtinger calculus to thénne-dimensional case where
the cost-functional’ maps the complex functiop € L?(D) to R. We, therefore, consider
the cost-functional’(y, x*) such that(x, x*) = C(x). The first variation of’ can then be
written as i i
_ac ac

(0x") (C.12)

The derivative operator8C /9y and dC/dx* are linear mappings froni?(D) to C and

% (5x) = { oc (5x*)} . (€.13)

Noting (C.13) and(C.12), the first variation @fcan also be written as

oC aoC
5C = 2Re{a—x(5><)} = 2Re{a—x*(5x*)} . (C.14)

satisfy
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Sometimes, when we are dealing with nonlinear cost-funati it may not be straightfor-
ward to find the cost-functional(y, y*). To find the formal derivative operators in these

situations, we may first find the Gateaux differential [17@., $98] of the cost-functional

as
5 = lim Clhc+ e0x) =€) (C.15)

€— €

The result of the above limit will be of the form
2Re(f,0X)p (C.16)

where the inner product oveP is defined in[(Z6) and” € L*(D). Thus, the Gateaux

differential can be written as

0C = (f,0x)p + (70X )p - (C.17)

Comparing[(C.17) with[{C.12), the derivative operators can theefound as

aC
550 = (10X 19
S (OV) = (.50 (€19

Finally, we note that the validity of the Wirtinger calculissproved in many references for
the univariate and multivariate calculus [70] [71,[72,/73]Bhd is extendable to the infinite

dimensional case where it is sometimes called functionatiMgier calculus([173].
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Required Derivative Operators

Le présent travail est une pregre tentative pouretablir sysématiquement
guelques principes fondamentaux du Calcul Fonctionnebkadpgliquer ensuite
a certains exemples concret$ranslation: The present work is a first attempt
to systematically establish some basic principles of the@as of Function-
als and apply them to some concrete examp(&faurice Reg Fiechet; from
the Introduction of his PhD thesis [174] supervised by Jasgdadamard and

submitted in1906).

In this Appendix, we derive the required derivative operatdilized in Chapterisi4 and 5.

D.1 Derivative of the scattered field with respect to the contrast

Assuming that the" transmitter is active, the first derivative of the scattefiett with

respect to the contrast, at then™ iteration of the GNI algorithm wherg = y,,, may be
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found via
8gscat ) 5scat(Xn + Ew) _ gSCﬁI(Xn>
a—;|X:Xn(77D) = 1{% : c :
EScat _ pscat
_ 11_1)% tyXn+ey (p)€ t,Xn <p> (D 1)

wherey € L*(D), e € R, and E},  (p) and E{S (p) denotes the scattered field on
the measurement domain corresponding,o- e» andy,, respectively (when th&" trans-
mitter is active). It is well known that the scattered fie‘.lzjf;: satisfies the vector wave
equation[[35]

V x V x Ejggf — kaff;:L = kixnE¢., (D.2)

whereV x denotes the curl operator aif] ,, is the total field in the presence of the contrast

X» When thei™ transmitter is active. Similar to the above equatiBiy: |, satisfies
V XV x E?g?vt-&-ew - kl?E;C)?:L—I—ew = kg(Xn + 61/J>Et7Xn+5'¢1 (DS)

whereE, ,, 1., is the total field in the presence of the contrgst+ e). Subtracting[(D.R)
from (D.3), it results in

= kl?Xn(Et,Xn-l—ﬂﬂ - EtaX'n) + 6kg¢Et7Xn+€w (D'4)
Noting thatE, ey = Ei% ., + EY°andE,,, = B + EV°, (D.4) may be re-written
as

VXV x (BT o — BN — (B o — BiS) = kg By e (D.5)

wherek? = k2(1 + x,,) is the wavenumber squared corresponding to the congrastVe

now define the inhomogeneous Green’s function which coomdpto the contrast,. The
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inhomogeneous Green’s functiaB™, sometimes referred to as the distorted Green’s func-

tion, satisfies

V x V x GM(r,7') — B2G™(r ') = I5(r — 1) (D.6)

where! is the identity dyads (.) represents the Dirac delta function, andndr’ represent

two arbitrary position vectors. Noting (D.6) arid (D.5), #cbe concluded that
ESS u(p) — B3 (p) = ki / G™(p, q) - t)(q) By, +e0(q)dg. (D.7)
D

Using (D.7), equatiori(DI1) may be written as

scat k2 éinh 5 E . d
O ) =l Jp G™(P, @) - (@) By rc0(q)dg (D.8)
ox " e—0 €
Noting (Z.19), the fieldZ(q) may be written as
0&,
Eiy,+e(q) = E(Xn + €) = E(xn) + @uzxn(ew) +o(llevllp) =
o0&
E;,.(q) + Ea_Xt|x:><n (¥) +o(l[e]l) (D.9)
where the littlee notation represents
o Uls) _ (D.10)
[ S
Noting (D.9), equationi (D]8) can be simplified to
oEse s [ Ginh
W|x:xn(1/’) = Ky ; G"™(p,q) - ¥(q)Eyy, (q)dg. (D.11)

We will note that the generation of the dyadic Green’s fureti™(p, q) as it requires

evaluating the field at the receiver locatedpat S for the excitation located aj € D.
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As the number of receivers are usually much less than thdieofeisting points within the
imaging domain, it is computationally more efficient to farate the derivative operator in

terms ofC:}"‘h(q, p). To do so, we use the reciprocity relation
~inh ~inh r
G"™(p,q) = [G (q,p)} (D.12)

Using [D.12), the derivative operatdr, (Dl11), may be \eriths

agscat

ol ) =1 [ [6™a.p)] vla B @) (0.13)

Equation [[D.1IB), may be written as

HEScat _
Sl ) =1 [ 0@ Bus, (@) GCa,pda (0.14)

For more clarity, we sometimes refer to the distorted Gieniction corresponding tQ,,
asé‘”h(q,p; X») and also writeF, ., (q) asE,(q; x,,). This completes the derivation of the

operatorfE> @Y d.

As will be seen in Sectidn D..2, the Gauss-Newton inversiothotkalso requires the adjoint

of the operatoPS—. The adjoint operator(%j satisfies

agscat agscat a
=t | ={ = _ r D.15
FEE o) () @), e

whereT' € L?(S) andy € L*(D). Using [D.I5) and(D.14), it is straightforward to show

that

(%t|><x")a (L) = (k)" [Brx. (@] - /S G™(q,p)] " T(p)dp (D.16)
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The second derivative of the scattered field with respedta@ontrast is ignored to avoid its
computational cost. Although the second derivative isgdpit will be derived to show why
its calculation is computationally expensive. The secoervdtive operatop*E£52Y 9y ? is

a linear mapping fron?.?(D) to the space of linear operators which map fréd{D) to
L%*(S). denotingyy € L*(D) andy € L*(D), the second derivative operator, at thte

iteration of the algorithm wherg = y,, may be found via

8gscat agscat
: |x=xn+ew(90> - |x Xn (‘P)

e xnwﬂ (1) = lim —2 . (D17)

e—0 €

anSC&t
{ ox?

Using (D.13), equation (D.17) may be written as

|: 82 gscat

[k [ (@B Xn + ) - G™(q, P X + €tb)dg
i b9 () = i | 2

€

k2 [ 0(@)Ei(q; xn) - G™(q, p; xn)dq
€

(D.18)

whereE;(q; x, + €¢) and E,(q; x,,) are the total fields within the imaging domain in the
presence of,, + e andy,, respectively. AlsoG™(q, p; y, + ) andG™(q, p; x.) are the

dyadic Green’s functions for the inhomogeneous backgreynd- ey andy,, respectively.

After making the mathematical calculations and simplifmad, [D.18) is simplified to

anscat .2 a(c/'t =ih .
o) ) =8 [ ol)| G0 G a i) +
~inh .
By PO )ldg  (©.19)

x

As briefly explained in Chaptét 4, the calculation of this setderivative is very computa-

tionally expensive. Thus, it is avoided in the GNI method.
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D.2 Required derivatives for the data misfit cost-functional

Herein, we show the derivation of the required derivativastiie Gauss-Newton inversion
method assuming the cost-functional to be minimized(ig) = CS(x) where the data
misfit C*S is given in [3.1). As discussed in AppendiX C, the cost-fuorai C-° is not
holomorphic iny. We, therefore, consider the cost-functioﬁ?é?(x,x*) which satisfies
C'S(x, x*) = C*S(x). The cost-functional is holomorphic in for fixed x* and vice versa

(see Appendik C for more discussion).

To find the derivatives onfLS(X) with respect toy andx* at y = x,,, we start with finding

the limit
lim CLS(Xn + 6730) - CLS(Xn) _
e—0 €
Tx ) Ty )
2 + ev) — Brga s = D 1€0n) — Erdasills
11_1,}(]). nNs t=1 - t=1 (D.20)

T, -1

wheree € R, ¢ € L*(D), andns = | > HEﬁggstHZ] . Utilizing the little-o notation,
t=1

(D.10), the expression (D.R0) can be written as

T 2

sca 0EF™ scat
E £ (xn) +€—ax ly=xn (V) +o(||€¥]|p) — Eneas:
. t=1 S
113%773 - —

Ts
S e ) — B

€

(D.21)
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The above limit may then be simplified as

QUSZRe £ xn) — Ercass —5— x =xn (V) ) (D.22)
t=1

S

where ‘Re’ denotes the real-part operator. The above expresan then be written as,

gscat a
<77$Z{ |x= Xn:| (E7%(xn) — Esr#:;st) ¢> +
D
scat a *
<77$Z{[85 |x= xn} (E7%(xn) — E%Cé’*ést)} ,w*> : (D.23)
D

Considering the definition of the functional derivative![/[I72] and the definition of the

inner product given in_(218), it can be concluded that

aéLS gscat a . *
W’X:Xn s Z { { ‘x Xn:| (Sscat(Xn Eifgast)} XA ) (D.24)

D

and

acs gscat ’ sca scat
W’X Xn 7752 ’X =Xn (gt t(Xn Emeast) (G : (D.25)
D

We note that i}
8018 . 8cLS
ax* |X:Xn (¢ ) { ax |X Xn ( ) } . (D26)

To find g}j*C(;i’X . (@] (1*) and [%‘gﬁu:x” (gp)} (1), we start with finding the limit

BCLS . 8CLS
lim |X Xn+ew(90> |x Xn (90) (D.27)

e—0 €
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Noting (D.24), the above limit can be written as

agscat scat
Z < ) xmxn e (#): Exn + €10) — Emeast>
X S

liny s ‘ -
T
[l 863C3t
5 (T el %0 - Bl )
ns =L S (D.28)

€

Utilizing (D.10), the above limit can be simplified to

a gscat 82 (c;scat a gscat
s < e @)+ 2 )W), %) + & <w>—ES°a‘>
Z Dx X=X Y2 X=X t Bx meast s

. t=1
lim
e—0 6

agscat "
s Z < ‘x Xn agtscat(Xn Eﬁfl::ast>
S

€

(D.29)
The above limit will then be
(c;scat agscat
n52< ora (9 a4+
T a2gscat "
Zns<[ e (9)] (00, 870 - B, ) (0.30)
S

Using the definition of the adjoint operator, the above esgig may be written as

gscat agscat
<77«SZ{ Bx = Xn:| [ DX = Xn:| <¢)>¢> +

t=1 D

<Wst2{{825$cat|x Xn<<,o>r<€f°a‘<xn E%:;St>}*,w*> . (D.31)

1 D
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Therefore, it can be concluded that

82 CLS gscat o gscat
[aX*aX|X xn () ] <77$Z{ dx = Xn:| [ Ox = Xn:| (‘P)a¢> (D.32)

D

and

a2cLS a2€scat a *
lamu e >] - <nsz{[ ee9)] (E0) - BE) | ,w*>
t=1 D
(D.33)

To find [gigs = (go*)} (1)) and[d‘fcdj [ (go*)} (1*), we start with finding the limit

BCLS ) BCLS *
i 2 ’x xn+ew<90 ) ’x xn<90 ) (D.34)

e—0 €

Using the same procedure utilized to derive (ID.32) and ()88 can derive the following

o%Cts . B 920Ls * *
[axax ‘X Xn ( )] (w) { [ax*ax|x Xn ( ) (iﬁ )} (D35)
and *
9%Cts . . [[ocs
[aX*aX =xn (0 )] (V") = { [8X8X|X o (@ )] (w)} . (D.36)

D.3 Derivatives of thd.?-norm total variation regularizer

In this thesis, we have considered two forms of fienorm total variation regularizer. The
first one isCAR(y) which is given in[[5J7). The second on@R(y), is the weighted.?-
norm total variation regularizer which is given [n_(5.15)s Miscussed in Appendix C, we

consider the cost-functiond|'R(y, x*) which satisfieMR(y, x*) = CMR(x). To find the
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derivatives ofCMR(y) with respect toy and y*, at then! iteration of the Gauss-Newton

inversion algorithm wherg = y,,, we start with finding the limit

MR _ (MR

li (D.37)
e—0 €
Noting thatCMR(x) = [|b,Vx||5 + o2 ||ba||, the above limit can be written as
2 2 2 2 9 2
i 100V O + )l + a3 [[Ballp = 102V Xallp — a3 [[Ballp (D.38)

e—0 €

Utilizing (D.10) and noting thak,, is a real function, the above limit can be simplified to

2Re (b, VX0, by Vb)), = 2Re /D b2 (q)Vxa(q) - VI* (q)dq. (D.39)

Noting that
e ((bivxn)w) — "V - (BVx) + b2V, - VA, (D.40)

where V-’ denotes the divergence operatér, (0.39) may be written as

Re [ {v- ((2@V(@)0(@) '@ - (B@Vnla) }da.  ©4D

Using the divergence theorem [175], the above expressiobeavritten as

re{ [ (@@ Vi@)e @) nia [ (@9 (R@Vn(@)id} (042

wheredD denotes the boundary of the imaging dom&nandn is the outward pointing

unit normal vector of the boundatyD.

In MWT reconstruction algorithms, it is implicitly assumduht the contrast function van-

ishes on the boundary of the imaging domajitg € 0D) = 0. That is, the permittivity
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at the boundary of the imaging domain is equal to that of thekdgpaound mediumj.e.,

e-(q € 0D) = ¢, Noting this implicit restriction on the contrast functiohe domain of
the cost-functionalMR can be defined more accurately as fitespace of complex func-
tions defined on the imaging domaik?(D), which vanish ordD. Using this definition, the

function also needs to vanish @D. Thus,
/a (0@ Vxa(9)v" (9)dg = 0. (D.43)
Noting (D.43), equatiorL(D.42) can be written as
~2Re [ 6" (@V- (B Vn@)da = Re(~V - (V) 0),.  (0.44)

Thus,

MR _ MR
€e— €

Y (T (V)0 + ([T (V)] ) 4D.45)

Noting (D.45), the derivative operators may be written as

aéMR
a—;*|x=xn(w*) = <—V : (bivXn)u ¢>D (D.46)
and
OCMR .
ﬁ‘X:X'n (w) = <[—V ) (bivXn)} >w*>p‘ (D.47)
We note that
aéMR acMR *
- | _ Y* . D.48
S b ) = { G b0} (0.4

Tofind the derlvatlves% |X n (gp)] (¥*), and[%u:x”(g@)} (v), we start with finding
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the limit ) )
8CMR 8CMR
lim O ’x=xn+ew(90) ~ Tox |X:Xn (©)

e—0 €

(D.49)

Utilizing (D-47) and noting thak? is a real function, the above limit may be written as

Y B0+ ), ey — (- (R ¢

e—0 €

(D.50)

After mathematical simplifications and noting that the aper‘C,, = V - (b2V)' is a self

adjoint operatori(e, £, = L%), see Appendix_E for the proof, the above limit can be

simplified to
B e () — 2 ()
lig —* — = (=V - (B}V9), 1), - (D.51)

Therefore,

a2éMR

ax*gx(sa) (W*) = (=V - (02Ve),¥), (D.52)
and

§2CMR

Using the same procedure, it can be concluded that

lgi%”x*<¢*>] )= { lging@o)] w*)} ©54
and ) ~ *
[aaxfgx*w)] <w>:{lifgx (90)] <w>} ~0. 0.55)

Noting thatC”R is a special form oEMR, the derivatives oE”R(y, x*) can be derived in a
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similar way. These are
OCAR 1 1
) = (V- (Vxv) = (—1¥w) . (@56
ox* XX A . A >
9CAR OCAR ) *
W’X:Xn(w> = {8—X*‘x=xn(w )} ) (D.57)
O?CAR 1 1
S b @) @)= (49 (Val0) (- Vu) . (@59
[8)( oy * A . A .
92CPR ) 92CPR ) ¥
[WR:xn(@ )] (¥) = { [mkzm(@)] (v )} ; (D.59)
and
92CPR 920PR . . ¥
lmhxn(@] () = { lwkm(@ )] (v )} =0, (D.60)

whereA is the area of the imaging domain awd denotes the Laplacian operator.

D.4 Required derivatives for the shape and location reconstruction

In this section, we derive the required derivatives for thétiplicative regularizer given in

(5.32). To find the first derivatives at thd iteration of the GNI algorithm, we start with

finding the limit

L CHRRy 4 ey) — CMRION(y )
e—0 €

(D.61)



D.4 Required derivatives for the shape and location reconstiction 213

The above limit can be written as

[T¢(@ (Ionle) = Xt +a2) da (D.62)

where

Enlq) & (!xn(q) X Ozi)_g : (D.63)

Utilizing (D.10), the above limit can be simplified to (thegamentqg has been dropped for

simplicity)
limi/ HQQ <2€Re{(xn — X?) ¢*} + ‘Xn - XHQ + a2) —
e—0 AE > o N n
L
[T¢t (b —xi[ +a2)da  (©64)
=1

Utilizing (D.10) and after mathematical simplificationBetabove limit can be written as

g ai)} dg. (D.65)
=1 U'={1, ,L}~{i}

1 /Dilsane{(xan} T e (ot

Noting that

& . (\xn — X

4 ai) — 1, (D.66)

expression(D.65) may be written as

9 L
vl > &Re(xn — XYy - (D.67)
=1
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Writing the above limit as

L L
<%Z§ﬁn(xn—xf‘),w> +<%Z€l2,n(Xn_X?)*a¢*> : (D.68)
=1 D =1 D

the derivative operators may then be written as

8éMR,hom

e (¥) < AZan =X)L >D, (D.69)

and
acMR hom

L
) |x Xn Yr) = <% 251271 (Xn - th) >1/1> . (D.70)
X =1 D

whereCMRMom(y y*) = cMRhom(y ) (see Appendik C for more discussion).

aQCMR ,hom

To find the derlvatlves{wlx Xn(go)} ("), and[ = Xn(go)] (v), we start with

finding the limit

8CMR ,hom

B acbe
lim |x xn+e¢(90) |x Xn (90) (D.71)

e—0 €

Utilizing (D.69), the above limit may be written as

L
<%Z£ﬁn¢*,¢*> . (D.73)
D

Eln ¢> ; (D.74)
D
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it can be concluded that

82CNTI\1/IR,hom . 1 L )
[W’X:Xn<¢)] (V") = <Z lzlgl,n9071/)>py (D.75)
and
82c~7l\l/IR,hom
[WR—)@(S@)] (¥) = 0. (D.76)

Using a similar procedure, we can derive
a2é7ll/lR,hom . 02C~MR’hom ) *
[ aXaX*_|x:xn(90 )] (¢) = { [W|x><n(9@)] (¥ )} , (D.77)

and
a2c~MR,h0m
ox*Ox*

|x=xn(90*)] (") = 0. (D.78)
D.5 Required derivatives with respect to real and imaginary parts of the

contrast

As mentioned in Chaptét 4, the derivatives of the cost-fameti may be taken with respect
to real and imaginary parts of the contrass;, xr andy; (as opposed tg andx*). To find

the first derivative of the data misfit cost-functional widspect toyr andy;, we may start
with (D.20) and re-write[{D.22) as,
Ty agtscat a "
Re( 2ns ) {W|X_Xn:| (E2%(xn) — Enmeas) ¥ ) - (D.79)
t=1 D

Noting that for two complex functions; and«, we have

Re<907¢>D = <¢37¢R>D + <90[7¢I>D7 (D80)
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The expressior (D.79) may then be written as

T agscat a .
2nsZRe{[ = xn} (E7%(xn) Eﬁfé‘ast)}m +

D

- agscat ‘ scal scat
<2773 Z Im { [ |X Xn:| (gt '(Xn Emeast)} 7¢I> . (D-81)

D

Therefore, it can be concluded that

oC LS = 85 oo ‘ scal scat
OX |X Xn wR ZnSZRe |X Xn (gt KXTL Emeast) ¢R ) (D82)

D

and

aCLS T agscat a ;
|x Xn 7701 27752'”‘ {{ |x Xn:| (Stscat(Xn Efr(\::ast)} ¢I . (D-83)

D

To find the second derivative{%fRC—aL;]X:Xn(gol)} (YR) and[aicai’x xn(sof)} (¢r), we start
with finding the limit

LS LS
lim %’X=xn+ew(9@l> - %’x=xn(90l)

e—0 €

(D.84)

Utilizing (D.83), and the definition of the adjoint operat® well as noting thap; is a real

function, the above limit may be written as

2773 8gscat
iy 25 3 [m (&2, + )~ B, Bt -

e—0 €
t=1 D

I gsca Escat agscat D 85
m t t(Xn meast > ) |X Xn (901) . ( . )
X D
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After mathematical simplifications and utilizing (Dl10hetabove limit can be simplified to

883Cat 863Cat
27732{ <{ ay = xl} [W'X xl} (901)a¢>p+

aQ(c:scat a
'm<[ B2 [x= Xn(w)} (E7°%(xn) — Ereast); w> } (D.86)
D

Noting that for two complex functiong; andv), we have

m <907 w>D = <90[7 wR>D - <90R7 wI>D > (D87)

the expressiori (D.86) may be written as

8gscat 8gscat
27782 [<—Im{{—x |x Xn} [ Dx |x Xn:| SOI ;¢R> +
D

Re agtscat| agscat| SO +
ax X=Xn aX X=Xn 1 >

aQSScat a X
<|m{{ a2 |x= xn<901)] (&:scat(Xn Eﬁfl:gast 7¢R>
D

_.l_
(Re{ |G evcton)| et - B ) | @39
D

Therefore,

aZCLS agscat agscat
W|x o (01) (V) = <277$Z|m{ [ = xn] [ By = xn] (er) +

|:82550at

i hena(en)| (E%0) — B | v ) (0.89)

and

82 CLS gscat o 5scat
aX aX |X Xn (901 @Z)I <277$ZR8{|: Xn:| |: aX |XXn:| (90]) -

aQSScat ‘ sca scat
3X ’X Xn(SOI (815 t(Xn Emeast) ¢I : (D90)
D
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To find the derlvatlves{d e m(@R)] (¥r) and[ai‘jd;|x w(0r)| (¥r), we start with

finding the limit
LS LS
. gc |x:xn+ew(90R)_gc |x:xn(90R)
hm XR XR

(D.91)

e—0 €

After mathematical simplifications similar to the ones preed above, the limit(D.91) will

be
agscat agscat
27782 {Re<{ |x xn] { Dx |x xn] (©r), 1/]> +
D
anscat a
Re<[ B2 = Xn(ng):| (E7%(xn) — Ereast); w> } (D.92)
D

Noting (D.92) and utilizing[(D.80), it can be concluded that

a2cLS z agscat a agscat
DR = <2”SZ'”‘H o [Tochon] 000+

82(S’S(Iat a ;
l 2 |x Xn(SOR):| (&tscat(Xn Esr;ncgast)} ¢I>D,(D-93)

and

aZCLS Sscat agscat
W'X xn(PR)(VR) = <27ISZR9{{ = Xn:| { x = Xn:| (pr) +

82 (c/‘scat
{ ox?

ealn)]| (€%00) - B5t) b ovn) (.04
D
It should also be noted that in the Gauss-Newton inversiahoade the operato?;f(—?;at is ne-

glected; sed (413). Thus, (DI89), (D.90). (D.93), dnd (P& be simplified. For example,
(D.93) will be approximated by

achS agscat agscat
W'X xn(PR)(VR) ~ <27ISZR9{{ |x= xn] {W'X xn] (@R)}>¢R>(D-95)

D
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The pre-scaled GNI method, see Secfion 5.6.2, also regthiesderivatives ofZMR-scaled
(5.42) with respect tq r andy;. Using the same procedure explained above, these deriva-

tives may be derived as
acMR,scaIed

o e (Vr) = (—2V - [(555¥°9% VX R  YUR)p (D.96)

acMR scaled

| (U1) = (=2Q°V - [0 VX1 %1 (D.97)

2 MR,scaled
a2

scaled 2
“onvre e (r)(Vr) = (29 (00759 Veor] wm)p,  (D-98)

2 "MR,scaled
o2V

W\x=xn(<ﬂ1)(%) = (=2Q°V - (579 Veor ]| r) (D.99)
and
aQCMR,scaled aQCMR,scaled
n _ _ _ =0, D.100
i he (1) (¥R) = 5l (PR () (D.100)
where

b q) 2 A2 (|Vxnn(a)]” + Q* [Vxra(@) +a2) 2. (D.101)
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Self-Adjointness and Negative

Definiteness

We are servants rather than masters in mathemagiCharles Hermite [176] in
whose honor a number of mathematical entities, such as Hammatrix, has
been named).

We here prove that the operatasand £,,, which are the discrete forms éfW andz, &
V - (b2 V) respectively, are self-adjoint and negative definite usipgocedure similar to the

standard approach for proving Green'’s first and seconditeen|[175, pg. 36].
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E.1 Self-adjointness

Assumingy and+ are in L?(D), and lettingb? be a positive function ir.?(D), we may
write,

V(@0 Ve) =9V - (5, V) + VY™ - bV (E.1)

Using the divergence theorem and definition of the inner pcgdve obtain

0
(V- (290) )y + [ V0 Voda = § 107 dq E2)
D oD n

wheredD denotes the boundary of the imaging domain and the derd/étivn represents
the outward directed normal derivative 6®. Interchanging)* andy and subtracting, we

have
(V- (02V9),0) = (0, V- (2V)),, =

Oy W*
2 * 2
fgb 98— 0% g

Noting thaty and vanish ondD (see the explanation provided in Section]D.3), it can be

(E.3)

concluded that

(0, V- (B2V)) = (V- (B2V),0), . (E.4)

The equality[(EJ4) implies that the operatdy = V - (b2V) is self-adjoint.

E.2 Negative definiteness

Letting ¢ = v in (E.2) and noting that) vanishes oD (see the explanation provided in
Sectiori D.B), we have

(V- (12V9), ), = — /D B [Vl dg (E.5)
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Noting that the right hand side df (E.5) is negative, it cartbecluded that the operatd,

IS negative definite.

As the operato%VQ is a special form ofZ,,, whenb?(q) = %, it is also self-adjoint and

negative definite.
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Discretization Procedure for the TE

Forward Solver

The skeptic will say: “It may well be true that this system ofans is rea-
sonable from a logical standpoint. But this does not prow thcorresponds
to nature.” You are right, dear skeptic. Experience alone dacide on truth...
Pure logical thinking cannot yield us any knowledge of the ieng world:
all knowledge of reality starts from experience and ends.ifAtbert Einstein
[177]).

In this Appendix, we describe the discretization procediwsed in the Transverse Electric
(TE) forward solver. This discretization is based on whailaxed in [27]. As noted in
Section 2.3.2, the forward scattering problem is concewitidsolving the domain equation,
(2.11). Before discussing the discretization procedurdijnsemultiply both sides of(2.17)

by the electric contrast; thus, we have

W = XE"™ + xGp(W), (F.1)
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where the contrast sourc¥¥ is defined ad¥ = y E. Now, we takeWW as the fundamental

unknown of the forward solver. We note that by havidg, we can then find as

E=E"™+Gp(W). (F.2)

Noting (2.1), [El) may be written as
W, = xEr®+ x (kjA. + By) (F.3)

where the subscript denotes the components of the vector-valued functionst i$ha €

{z,y}. The functions4,, and B, are given as

Ax(q) = /D 9(q, 4" \W(q')dq', (F.4)

Bi(q) = k- (VqVq - [Ax(q@)T + Ay(q)7])- (F.5)

We assume that the imaging domdnis uniformly discretized intal/ x P rectangular
subdomains along andy directions. Each rectangular subdomain will then have aa af

Ax x Ay with center points

() = (13 + (m = A0y + (= ). =6)

wherem =1,--- ,Mandp=1,--- ,P andx% andy% denote the lower bounds inand

y directions respectively. In each rectangular subdomag assume that the contrast is
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constant and equal to the value of the contrast functioneatéimter point. That is,

Xm,p = X(xmj + yp@) (F7)

Similar discretization are also used far,, EL”C, A,, andB,. Thus, the discrete form of

(E.3) may be written as
Wmm,p = Xm,pEfigfn,p + Xm,p (kZAmm,p + Bﬁ;m,p) (F-8)

The vectorsB, and B, are computed with finite difference rules as

Aw;m—l,p - 2Ax;m7p + Ax;m+1,p

Buimp = A +
Ay;mfl,pfl _ Ay;mfl,pﬂ — Ay;mﬂ,pfl + Ay;m+1,p+1 (F 9)
4AxAy '
By'mp _ Ay;m,p—l _ 2Ay;m7p + Ay;m,p+1 +
ym, Ayz
A:c;m—Lp—l - Ax;m—l,p—‘rl - Ax;m—i—l,p—l + Ax;m-l—l,p—i—l (F 10)

4AzAy

As can be seen in (F.9) arid (B 10), calculation of the vedigrand B, require the discrete
form of A, andA,. In order to cope with the singularity of the Green'’s funatiove use the
method presented in [27,129, 178] and then compute the &it@gd) using a midpoint rule.

That is,
M P
Awmp = AzlAy E , E :gmfm’,pfp/wﬂ;mﬁp’ (F.11)

m/=1p'=1
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wherem =0,--- , M +1,p=0,--- , P+ 1and [29]

i (3hva) Hy {kb\/(fﬁm — )’ + W = Up)* | (@s Yp) # (T, )

G- p—p =

kz;a |:H11 (%kba’) + ﬂiiai| (.Tm, yp) = (xm’>yp’)
(F.12)

The parametes is chosen to be = min{Az, Ay}. Finally, it should be noted thdt (F.9),
(E10), and[(E.11) can be efficiently computed using FFTinest This completes the dis-

cretization procedure for the utilized TE forward solver.
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