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Abstract

This thesis reports on research undertaken in the area of microwave tomography (MWT)
where the goal is to find the dielectric profile of an object of interest using microwave mea-
surements collected outside the object. The main focus of this research is on the develop-
ment of inversion algorithms which solve the electromagnetic inverse scattering problem
associated with MWT. These algorithms must deal with two different aspects of the inverse
problem: its nonlinearity and ill-posedness. After providing an overview of some of the
different possible formulations in terms of a nonlinear optimization problem, details on the
use of the Gauss-Newton inversion algorithm which solves this problem are given. Various
regularization techniques for the Gauss-Newton inversionalgorithm are studied and classi-
fied. It is shown that these regularization techniques can beviewed from within a single
consistent framework after applying some modifications. Within the framework of the two-
dimensional MWT problem, the inversion of transverse magnetic and transverse electric
data sets are considered and compared in terms of computational complexity, image quality
and convergence rate.

A new solution to the contrast source inversion formulationof the microwave tomography
problem for the case where the MWT chamber consists of a circular conductive enclosure
is introduced. This solution is based on expressing the unknowns of the problem as trun-
cated eigenfunction expansions corresponding to the Helmholtz operator for a homogeneous
background medium with appropriate boundary conditions imposed at the chamber walls.

The MWT problem is also formulated for MWT chambers made of conducting cylinders of
arbitrary shapes. A Gauss-Newton inversion algorithm is utilized to invert the data collected
in such configurations. It is then shown that collecting microwave scattered-field data inside
MWT setups with different boundary conditions can provide a robust set of useful informa-
tion for the reconstruction of the dielectric profile. To produce good quality reconstructions,
the amount of data collected under each boundary condition can be relatively small if the
number of different boundary condition configurations is sufficiently high. This leads to a
novel MWT setup wherein a rotatable conductive triangular enclosure is used to generate
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scattered-field data. Antenna arrays, with as few as only four elements, that are fixed with
respect to the object of interest can provide sufficient datato give good reconstructions, if
the triangular enclosure is rotated a sufficient number of times.

Preliminary results of using the algorithms presented herein on data collected using two dif-
ferent MWT prototypes currently under development by the University of Manitoba’s Elec-
tromagnetic Imaging Group are reported. Using the current open-region MWT prototype,
an experimental resolution study using the Gauss-Newton inversion method was performed
using various cylindrical targets. Results of this resolution study are reported herein and the
separation resolution limit of this system is quantified.



Contributions

This thesis reports on contributions made by the author in the area of microwave tomography
over a period of several years. As the research was conductedwithin a larger research
group setting, the author’s own particular contributions are here listed and briefly described.
In addition, a list of publications directly related to these contributions can be found in
Appendix A.

• Achieving an understanding of, and clarifying, the nonlinear inverse problem and
completing a comparison of state-of-the-art inversion techniques (completed with
Colin Gilmore).

• Classification of different regularization techniques for the Gauss-Newton inversion
method and showing that all of these regularization techniques can be viewed from
within a single consistent framework after applying some modifications.

• Adapting the normalized cumulative periodogram regularization parameter choice
method, originally developed for linear inverse problems,for the MWT problem.

• Comparing the two-dimensional transverse magnetic and transverse electric inversions
for the open-region configuration and showing that the transverse electric inversion,
which utilizes both rectangular components of the electricvector at each receiver posi-
tion, can result in more accurate reconstruction than the transverse magnetic inversion
when utilizing near-field scattering data collected using only a few transmitters and
receivers.

• Introducing a new contrast source inversion formulation for microwave tomography
inside a circular conductive enclosure which is based on expressing the unknowns
as truncated eigenfunction expansions corresponding to the Helmholtz operator in a
homogeneous background medium.
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• Utilizing the weightedL2 norm total variation multiplicative regularized Gauss-
Newton inversion algorithm, originally developed for low-frequency deep electromag-
netic geophysical measurements, for microwave biomedicalimaging, and comparing
it to other forms of regularized Gauss-Newton inversion algorithms. Based on this
algorithm, a pre-scaled multiplicative regularized Gauss-Newton inversion algorithm
was introduced.

• Development of a fast and efficient image enhancement technique for the MWT prob-
lem.

• Formulation of the microwave tomography problem inside conducting enclosures of
arbitrary shapes and performing initial synthetic inversions for such systems (com-
pleted with Amer Zakaria and Colin Gilmore), and developmentof an inversion al-
gorithm to simultaneously invert the microwave data collected in MWT setups with
different boundary conditions.

• Proposing a novel microwave tomography setup wherein a rotatable conductive trian-
gular enclosure is used to generate electromagnetic scattering data.

• Testing of a wide-band experimental open-region microwavetomography system
(completed with Colin Gilmore, Amer Zakaria, Cam Kaye and Majid Ostadrahimi),
and performing a resolution study using this system (completed with Colin Gilmore
and Amer Zakaria).

• Preliminary testing of a microwave tomography system with conductive enclosure
(completed with Amer Zakaria, Cam Kaye and Colin Gilmore).

As far as the implementation of the algorithms is concerned,all the inversion algorithms and
regularization methods were implemented by the author. Allof the utilized forward solvers,
except the finite element method1, were implemented by the author.

1 The utilized finite element method was implemented by Amer Zakaria.



Symbols and Acronyms

Herein, we provide some general remarks as well as a list of commonly used symbols and
acronyms.

• Position vectors: position vectors are denoted by bold lowercase letters;e.g., p, q, q′,
r, andr′.

• Functions: vector-valued functions are denoted by bold uppercase letters such as
E(q), E inc(q), andEscat(p). Scalar-valued functions are represented by uppercase
letters, such asEx(q), lowercase letters, such asb(q), or Greek letters, such asχ(q),
ψ(q); all of which are non-bold letters.

• Matrices: matrices are denoted by underlined uppercase bold letterssuch asJ andΣ.

• Vectors: vectors are denoted by underlined (non-bold) letters suchasg andd. Dis-
cretized forms of functions will also be represented by vectors. For example, the vec-
tor χ represents the discretized form of the functionχ(q), or the vectorEscat denotes
the discrete form of the functionEscat(q).

• Cost-functionals: the cost-functionals which mapL2 spaces of complex (or real)
functions into real numbers are denoted byC, which may come with different super-
scripts, such asCLS andCMR. The discrete forms of these cost-functionals which map
complex (or real) vectors into real numbers are denoted byF with appropriate super-
scripts. Thus,FLS andFMR denote the discrete forms ofCLS andCMR respectively.

Corresponding to a non-holomorphic cost-functional mapping L2 spaces of complex
functions into real numbers, sayC(χ), we consider a new cost-functional which is
denoted byC̃(χ, χ∗). The cost-functional̃C(χ, χ∗), which treats the complex quantity
χ and its complex conjugateχ∗ as two independent quantities, satisfiesC̃(χ, χ∗) =
C(χ). We also use this notation in the discrete domain. Thus, corresponding to
the cost-functionalF(χ), we consider the cost-functional̃F(χ, χ∗) which satisfies
F̃(χ, χ∗) = F(χ).
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Symbol Description

x̂, ŷ, ẑ Unit vectors alongx, y andz directions.

j Imaginary unit (j2 = −1).

D Imaging domain.

L2(D) L2 space of functions defined onD.

〈 . , . 〉D Inner product defined onD.

S Measurement domain.

L2(S) L2 space of functions defined onS.

〈 . , . 〉S Inner product defined onS.

p Position vector in the measurement domainS.

q Position vector in the imaging domainD.
¯̄G Dyadic Green’s function of the background medium.

kb Wavenumber of the background medium.

λb Wavelength of the background medium.

E inc Incident electric field (electric field in the absence of the object of interest).

E Total electric field (electric field in the presence of the object of interest).

Escat Scattered electric field.

Escat
meas Measured scattered electric field on the measurement domainS.

(.)a Adjoint operator.

(.)∗ Complex conjugate operator.

(.)T Transposition operator.

(.)H Hermitian operator (complex conjugate transpose).

(.)−1 Inverse operator.

Re Real part operator.

Im Imaginary part operator.

∇ Gradient operator.

∇· Divergence operator.

∇× Curl operator.

∇2 Laplacian operator.

χ Electric contrast of the object of interest.

εr Relative complex permittivity of the object of interest.

εb Relative complex permittivity of the background medium.
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Acronym Description

MWT Microwave tomography.

OI Object of interest (object being imaged).

TE Transverse electric.

TM Transverse magnetic.

PEC Perfect electric conductor.

GNI Gauss-Newton inversion.

MR-GNI Multiplicative regularized Gauss-Newton inversion.

CSI Contrast source inversion.

MR-CSI Multiplicative regularized contrast source inversion.

BA Born approximation.

BIM Born iterative method.

DBIM Distorted Born iterative method.

MGM Modified gradient method.

SVD Singular value decomposition.

TSVD Truncated singular value decomposition.

CG Conjugate gradient.

CGLS Conjugate gradient least squares.

1D One-dimensional.

2D Two-dimensional.

3D Three-dimensional.

NCP Normalized cumulative periodogram.

GCV Generalized cross-validation.

MRI Magnetic resonance imaging.

CT Computed tomography.

SNR Signal-to-noise ratio.
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1

Introduction

For a long time mathematicians felt that ill-posed problemscannot describe real
phenomena and objects. However, we shall show in the present book that the
class of ill-posed problems includes many classical mathematical problems and,
most significantly, that such problems have important applications(Tikhonov
and Arsenin [1]).

This thesis presents research work in the area of microwave tomography. In microwave

tomography, which is one form of the electromagnetic inverse scattering problem, the ob-

jective is to determine the dielectric profile and/or magnetic profile of the Object of Interest

(OI) from microwave measurements collected outside the OI.In this chapter, we first briefly

review the concept of inverse problems. The electromagnetic inverse scattering and mi-

crowave tomography are described. Finally, the outline of this thesis is presented.
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1.1 Inverse problems

Inverse problemsdeal with determining the internal characteristic(s) of a physical system

from the system’s output behavior. This is in contrast toforward problems, or sometimes

calleddirect problems, where one tries to find the output behavior of a physical system given

the internal structure thereof. There are several areas of science where inverse problems

arise such as electromagnetic scattering, image restoration, computed tomography, remote

sensing, acoustics, geophysics, astrometry,etc. For example, inx-ray computed tomogra-

phy, one is interested to findx-ray attenuation coefficients (internal characteristics)within a

cross section of the human body (physical system) by scanning the body with narrowx-ray

beams and measuring the loss of intensity at detectors placed on the opposite side of the

source and outside the body (system’s output behavior).

Inverse problems tend to be ill-posed problems in the sense of Hadamard’s characterization.

In 1923, he introduced three criteria for a problem to be well-posed. Violation of any of

these criteria makes the problem ill-posed.

DEFINITION 1.1 Hadamard’s three criteria for a well-posed problem.

1. The solution exists. (Existence)

2. The solution is unique. (Uniqueness)

3. The solution depends continuously on the given data. (Stability)

Hadamard thought that ill-posed problems arise when the system under study is not physical

or is mathematically modeled in a wrong way. However, nowadays, it is well-known that a

correctly-modeled physical problem can be ill-posed. For many practical inverse problems,

such as the one considered in this thesis, the existence of a solution is not an issue (given
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a reasonable amount of sufficiently accurate measured data)as we usually try to find the

internal properties of anexistingobject of interest. The uniqueness and stability then remain

as the two main challenges for the solution of inverse problems.

It was in 1963 that Tikhonov introduced his method to treat the ill-posedness of inverse

problems. His method, known as Tikhonov regularization, inspired mathematicians to study

the theoretical background of inverse problems and developalgorithms to treat their ill-

posedness.

1.2 Electromagnetic inverse scattering

In electromagnetic inverse scattering, one tries to infer the location, shape and dielectric

(or/and magnetic properties) of the Object of Interest (OI)using electromagnetic wave-field

measurements collected outside the OI. There are many applications for the electromagnetic

inverse scattering problem, including industrial non-destructive testing [2, 3], geophysical

surveys [4, 5], through-wall imaging [6] and medical imaging [7, 8]. The common feature

between all these applications is that an electromagnetic source irradiates the OI. The interior

characteristic of the OI is then to be found from exterior measurements.

Different applications of the electromagnetic inverse scattering problem are mainly distin-

guished by the frequency of operation and the data collection procedure. Frequencies uti-

lized for this problem range from1 Hz to optical frequencies. Data collection can also be

performed in different ways. For example, to image the earth’s shallow interior three differ-

ent configurations may be used [9, 10]: (i) surface methods, (ii ) borehole (logging) methods

and (iii ) surface-borehole methods. In surface methods, the transmitters/receivers are moved

along the earth’s surface and probe downward into the earth.In borehole methods, devices

called sondes are moved along a hole that is drilled into the earth. The surface-borehole
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methods are hybrid methods which place transmitters/receivers both on the surface and in

boreholes.

1.3 Microwave tomography

In this thesis, we consider the microwave frequency range. We therefore refer to the electro-

magnetic inverse scattering problem within this frequencyrange as microwave tomography

(MWT). In MWT, the OI is successively irradiated by some known incident electromag-

netic waves originating from different transmitter positions. Due to the difference between

the dielectric/magnetic properties of the OI and those of the known background medium,

a scattered electromagnetic field, corresponding to each incident field, will arise which is

then measured outside the OI and used to find the shape, location and dielectric/magnetic

properties of the OI.

There are many applications for MWT, including industrial non-destructive testing [2, 3],

medical imaging [7, 8, 11], and through-wall imaging [6]. The medical imaging applications

of MWT is of particular interest as it has been demonstrated that MWT can be useful for

breast cancer imaging [8, 12, 13], brain imaging [14], diagnosis of lung cancer, bone imaging

[15], and the detection of ischemia in different parts of thebody [16]. A general review of

different biomedical applications of MWT can be found in [17]. The basic idea behind

MWT as a biomedical imaging modality lies in the fact that the dielectric properties of the

human body are known to vary significantly between a number oftissue types (e.g., fat,

bone, muscle) and more importantly, between healthy and malignant tissues [18] over the

microwave frequency range. This highlights MWT’s great potential as a cancer diagnostic

tool. The potential advantages of MWT for biomedical applications are many, including

(i) its relatively low cost and portability, (ii ) its use of safe non-ionizing radiation, and (iii ) its
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ability, without contrast agents, to create quantitative images of living tissue as a way of

identifying physiological conditions of those tissues. These allow the possibility of early

detection of disease via strategic frequent monitoring of tissue. Probably, the main challenge

to make MWT a competitive biomedical imaging modality is its lower resolution compared

to Magnetic Resonance Imaging (MRI) andx-ray CT.

The MWT problem is mathematically formulated as a nonlinear ill-posed problem. Re-

search on biomedical microwave tomography that has made useof linearizing assumptions

about the wave-propagation within the breast shows that using direct-ray and linear scatter-

ing models that ignore higher-order effects, while providing some useful qualitative images,

cannot quantitatively reconstruct the bulk-electrical parameters [19, 20, 21, 22]. Thus, accu-

rate quantitative MWT requires the use of the full nonlinear formulation. On the other hand,

it is well-known that the MWT problem is ill-posed in the senseof Hadamard [23, 24, 25].

Therefore, the solution to the mathematical problem is not guaranteed to be unique for most

measurement configurations and does not depend continuously on the measured data (in-

stability) [26]. The ill-posedness is usually treated by employing different regularization

techniques.

In most applications and research works, including this thesis, it is assumed that that the

OI and the background medium are non-magnetic. Thus, it is only the dielectric profile of

the OI which is to be found.1 The MWT problem can be formulated in the time domain or

the frequency domain. In this thesis, we consider the frequency-domain formulation of the

MWT problem.

We also define two terms, namelyreconstructionand inversion. These two terms are used

interchangeably within this thesis and have the following meaning: “determination of the

1 It should be noted that the simultaneous determination of the dielectric and magnetic properties of a
magnetic OI has been reported, but only in very few publications [27, 28].
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shape, location and dielectric properties of the OI using microwave measurements collected

outside the OI.”

1.4 Outline of the thesis

Most parts of this thesis consist of a summary of the results published in different journals

and conference proceedings. The list of these publicationshas been provided in Appendix A.

In Chapter 2, we provide the notation that is used in this thesis. The mathematical formula-

tion of the MWT problem based on its integral-equation formulation is also presented using

operator notation. Using this mathematical formulation, we define the forward and inverse

problems associated with MWT.

In Chapter 3, we cast the MWT problem as an optimization problemwherein an appropriate

cost-functional is to be minimized. Within this framework,we briefly study two different

classes of optimization methods which are distinguished bytheir use (or, lack of use) of a

forward solver.

In Chapter 4, we present the formulation of the Gauss-Newton inversion algorithm without

considering any regularization terms. The formulation is first presented in the continuous

domain and then the discretized form thereof is introduced.

Chapter 5 completes Chapter 4 by applying different regularization methods to the Gauss-

Newton inversion algorithm. These regularization methodsare studied and classified into

two main categories. We show that these two regularization strategies can be viewed from

a single consistent framework. We also consider incorporation of a priori information to

regularization terms. This chapter ends with introducing an image enhancement technique
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to suppress possible spurious oscillations in the final image obtained from the Gauss-Newton

inversion method.

In Chapter 6, we compare the Transverse Magnetic (TM) inversion with the Transverse

Electric (TE) inversion both in the near-field and the far-field. This includes a comparison

of the computational complexity, image quality and convergence rate.

A new contrast source inversion algorithm which uses eigenfunction expansions of the un-

knowns is presented in Chapter 7 for the reconstruction of thecomplex dielectric profile

inside a circular conductive enclosure. Orthonormal eigenfunction expansions associated

with the Helmholtz operator for a homogeneous medium and Dirichlet boundary conditions

are used to effectively discretize all the operators in the cost-functional.

In Chapter 8, we present a novel microwave tomography setup wherein several conductive

enclosures of different shapes or a rotatable conductive triangular enclosure are used to

generate electromagnetic scattering data. For the rotatable conductive enclosure, the data

are collected at each static position of the enclosure usinga minimal antenna array having

as few as only four co-resident elements. The antenna array remains fixed with respect to

the target being imaged and only the boundary of the conductive enclosure is rotated.

Chapter 9 provides an overview of two different microwave tomography prototypes cur-

rently under development in our research group. Preliminary inversion results are shown

with microwave data collected with 24 co-resident antennas. A resolution study based on

the results obtained from our microwave tomography system with plexiglass casing is also

presented.

In Chapter 10, we conclude this thesis and provide an outline of future work which one

might follow.



2

Problem Statement

Pure mathematics is, in its way, the poetry of logical ideas(Albert Einstein1).

In this chapter, we present the mathematical formulation ofthe MWT problem based on

the integral-equation formulation of electromagnetic inverse scattering using operator no-

tation. We will also consider the mathematical formulationof the MWT problem using

its differential-equation formulation in Chapter 7. Withinthis thesis, we consider the tomo-

graphic2 configuration where the Object of Interest (OI) can be considered a two-dimensional

(2D) object or the imaging is performed on a 2D slice of a three-dimensional (3D) object.

In the framework of 2D inversion algorithms, we consider twodifferent polarizations for

illuminating the OI. In the Transverse Magnetic (TM) polarization, the OI is illuminated

with the electric field perpendicular to the transverse plane of the OI which is to be imaged.

1 Letter to the Editor (in a tribute to Emmy Noether),The New York Times, May 5, 1935.
2 Tomography is derived from the Greek wordtomowhich means “a slice”.
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In the 2D Transverse Electric (TE) polarization, the OI is illuminated with the electric field

in the transverse plane to be imaged. It should be noted that the TE polarization can be

studied using a single magnetic field component perpendicular to the cross section which is

to be imaged. However, we do not use the magnetic field formulation for the inversion as

it has been shown in [29] that the TE inversion using the electric field formulation is more

stable and has better performance than that using the magnetic field formulation.

Although researchers have developed full-vectorial 3D inversion algorithms,e.g. [30, 27,

31], the 2D inversion algorithms considered in this thesis are also very important because

of their use in existing experimental systems. This is due tothe fact that current near-field

MWT systems have no, or limited, capability of collecting vectorial field data. For example,

in the state-of-the-art MWT system developed at Dartmouth College for breast cancer imag-

ing, the data is collected in seven different planes and a 2D TM inversion algorithm is used

to invert the data [12]. The usefulness of this 2D TM assumption for biomedical imaging has

been verified in [32]. To the best of the author’s knowledge, there is currently no near-field

TE MWT system or a near-field 3D MWT system capable of collectingall three components

of the field.

In this thesis, we consider the microwave tomography problem in the frequency-domain

where time-harmonic fields are used to interrogate the OI. Thus, a time factor ofe−jωt is

implicitly assumed wherej2 = −1, and symbolsω andt represent the radial frequency of

the utilized field and time respectively.3

3 We will later use ‘t’ as an index to show the number of the active transmitter; seeChapter 3.
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2.1 Notation

Consider a bounded imaging domainD ⊂ R
2 containing a non-magnetic OI and a mea-

surement domainS ⊂ R
2 outside of the object of interest (see figure 2.1). We assume that

the x − y plane representsR2. Let p, q, r, andr′ denote position vectors in thex − y

plane. Throughout this thesis, we assumep ∈ S andq ∈ D. The position vectorsr and

r′ are chosen to be arbitrary vectors inR
2. The imaging domainD is immersed in a known

non-magnetic homogeneous background medium. Therefore, the relative permittivity and

the dyadic Green’s function of the background medium are known and denoted byεb and

¯̄G(r, r′), respectively. The dyadic Green’s function represents thepoint-source solution for

the electromagnetic wave equation in the background medium[33]. Denoting the unit vec-

tors along thex, y, andz directions byx̂, ŷ, andẑ respectively, the dyadic Green’s function

for the background medium,̄̄G(r, r′), is given as [34],

¯̄G(r, r′) =















( ¯̄I2 − 1
k2

b

∇r∇r′)g(r, r′) TE polarization

g(r, r′)ẑẑ TM polarization

(2.1)

The wavenumber of the background medium,kb, can be written ask2
b = ω2µ0ε0εb whereµ0

andε0 are the permeability and permittivity of free-space. The dyad ¯̄I2 = x̂x̂ + ŷŷ is the

2D identity dyad andg(r, r′) is the 2D scalar Green’s function for the homogeneous back-

ground. The 2D scalar Green’s function may be written asg(r, r′) = j
4
H1

0 (kb |r − r′|)

whereH1
0 (.) denotes the zeroth-order Hankel function of the first kind. The symbol∇ rep-

resents the gradient operator which is taken with respect tothe subscript coordinates. In

contrast to the TM illumination wherē̄G(r, r′) consists of only one component, the dyadic

Green’s function for the TE case consists of four components; namely,Gxxx̂x̂, Gxyx̂ŷ,

Gyxŷx̂, andGyyŷŷ.
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Fig. 2.1: Geometrical model of the microwave tomography problem. Tx and Rx represent the trans-
mitting and receiving antennas respectively. The domainD, which contains the object of
interest, is the imaging domain. The domainS, which contains the transmitting and receiv-
ing antennas, is the measurement domain and is outside of the object of interest. These two
domains are assumed to be in thex − y plane.

To formulate the microwave tomography problem, we define three forms of the electric

field: namely the incident, total, and scattered electric field. The incident electric fieldE inc

is defined as the electric field in the absence of the OI whereasthe total electric fieldE is

defined as the electric field in the presence of the OI. The scattered electric fieldEscat is then

defined as the difference between the total and incident electric fields:

Escat , E − E inc. (2.2)

The incident electric field can be represented by two rectangular components in the TE case,

and only one component in the TM case. That is,

E inc =















E inc
x x̂+ E inc

y ŷ TE polarization

E inc
z ẑ TM polarization

(2.3)

It should be noted that the 2D assumption means that when the OI is illuminated by TM
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waves, the total and scattered electric fields will also onlyhave âz component. On the other

hand, when the OI is illuminated by TE waves, the total and scattered electric fields will only

havex̂ andŷ components. As the formulation of the problem within this thesis is based on

the electric field (not magnetic field), we will refer toelectric fieldas justfield when there is

no ambiguity.

The complex electric contrast function is defined as

χ(q) ,
εr(q) − εb

εb
(2.4)

where εr(q) is the relative complex permittivity at the pointq ∈ D. In general, these

permittivities are complex so as to model lossy materials. The relative complex permittivity

of the OI may then be written as

εr(q) = ε′(q) + jε′′(q) = ε′(q) + j
σ(q)

ωε0
(2.5)

whereε′(q) andσ(q) represent the (real) relative permittivity and the conductivity of the OI

at the angular frequencyω respectively. The unknown to be determined is taken to be either

the contrast or the relative complex permittivity of the OI.

2.2 Operator definition

We denote theL2 space of complex vectorial functions defined onD by L2(D) and theL2

space of complex vectorial functions defined onS by L2(S). The norm and inner product

onL2(D) andL2(S) are defined as

‖X‖D = 〈X,X〉1/2D and 〈X1,X2〉D =

∫

D

X1(q) · X∗
2(q)dq (2.6)
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and

‖Y ‖S = 〈Y ,Y 〉1/2S and 〈Y 1,Y 2〉S =

∫

S

Y 1(p) · Y ∗
2(p)dp (2.7)

where the superscript∗ denotes the complex conjugate operator and ‘· ’ represents the dot-

product. TheL2 space of complex scalar functions defined onD are also denoted byL2(D)

with the norm and inner product defined as

‖x‖D = 〈x, x〉1/2D and 〈x1, x2〉D =

∫

D

x1(q)x∗2(q)dq. (2.8)

AssumingΨ ∈ L2(D), we define the linear operatorGS : L2(D) → L2(S) as

GS(Ψ) = k2
b

∫

D

¯̄G(p, q) · Ψ(q)dq, (2.9)

and the linear operatorGD : L2(D) → L2(D) as

GD(Ψ) = k2
b

∫

D

¯̄G(q, q′) · Ψ(q′)dq′. (2.10)

Both integrals, (2.9) and (2.10), are taken over the domainD, but GS(Ψ) ∈ L2(S) and

GD(Ψ) ∈ L2(D).

AssumingΦ ∈ L2(D) andΓ ∈ L2(S), the adjoint operatorsGaS : L2(S) → L2(D) and

GaD : L2(D) → L2(D) (the superscript ‘a’ denotes the adjoint operator) are defined using

the following relations

〈Γ,GS(Ψ)〉S = 〈GaS(Γ),Ψ〉D , (2.11)

〈Φ,GD(Ψ)〉D = 〈GaD(Φ),Ψ〉D . (2.12)
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Using (2.9), (2.10), (2.11) and (2.12), it is straightforward to show that

GaS(Γ) = (k2
b )

∗

∫

S

¯̄G∗(q,p) · Γ(p)dp, (2.13)

GaD(Φ) = (k2
b )

∗

∫

D

¯̄G∗(q, q′) · Φ(q′)dq′. (2.14)

We also define the linear operatorGϕD : L2(D) → L2(D) as

GϕD(Ψ) = k2
b

∫

D

¯̄G(q, q′) · Ψ(q′)ϕ(q′)dq′, (2.15)

where the scalar functionϕ is inL2(D). It is also straightforward to show that(GϕD)a = ϕ∗GaD
whereGaD is given in (2.14).

2.3 Formulation of the problem

In this section, we first present two important equations of the electromagnetic scattering

problem, namely the data and domain equations, using the operators defined in Section 2.2.

The derivation of these equations can be found in [35]. Based on these two equations, we

will define the forward and inverse scattering problems.
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2.3.1 Data and domain equations

The scattered electric field on the measurement domainS due to a contrast functionχ and

an incident fieldE inc can be written as

Escat(p) = GS(χE). (2.16)

This equation is usually referred as thedata equation. The total electric field,E, within the

imaging domainD, can be found via

E(q) = E inc(q) + GD(χE). (2.17)

This equation is usually referred as thedomain equation. Note that the domain equation

governs the wave process within the imaging domainD whereas the data equation gives the

scattered field onS for a given contrast function and total field insideD.

Using the operator defined in (2.15), the domain equation maybe re-written as

(I − GχD) (E) = E inc (q) (2.18)

whereI denotes the identity operator. Therefore, the total field inside the imaging domain

D can be written as

E(q) = E(χ) = (I − GχD)−1(E inc) (2.19)

whereE is a mapping fromL2(D) to L2(D) and the superscript ‘−1’ denotes the inverse

operator.
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Using (2.19), equation (2.16) can be re-written as

Escat(p) = Escat(χ) = GS

[

χ (I − GχD)−1 (
E inc

)

]

. (2.20)

As can be seen from (2.20),Escat is a nonlinear mapping fromL2(D) toL2(S).

Based on these equations, we now briefly explain the forward and inverse scattering prob-

lems. Although the focus of this thesis is on the inverse scattering problem, the forward

scattering problem is also important as solving the inversescattering problem requires solv-

ing several forward scattering problems either explicitlyor implicitly.

2.3.2 Forward scattering problem

In the forward problem, the goal is to find the scattered electric field Escat on the measure-

ment domainS for a known contrast functionχ, which is immersed in a known background,

and a given incident fieldE inc. This can be achieved by first finding the total fieldE in the

imaging domainD and then calculating the scattered electric field onS from (2.16). The

electric fieldE within the imaging domain, for knownχ andE inc functions as well as the

known operatorGχD, may be found by solving the integral equation given in (2.18). This can

be accomplished by minimizing the cost–functionalCFWD : L2(D) → R overE, where

CFWD(E) =
1

∥

∥E inc
∥

∥

2

D

∥

∥E inc − (I − GχD) (E)
∥

∥

2

D
. (2.21)

This cost-functional can be minimized using numerical techniques such as the Conjugate

Gradient (CG) algorithm where the total field at themth iteration is updated as

Em+1 = Em + βmdm, (2.22)
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dm is the conjugate gradient direction andβm ∈ R represents its weight. The CG algorithm

may be accelerated by the Fast Fourier Transform (FFT) [36, 37] and the marching-on-in-

source-position technique [38]. The closed-form expressions fordm andβm as well as a

brief description of the utilized marching-on-in-source-position technique can be found in

Appendix B.

It should be noted that this formulation of the forward scattering problem is based on the

integral equation formulation. The forward scattering problem can also be formulated based

on the partial differential equation formulation of the scattering problem. In Chapter 8, we

have used a forward solver which is based on the partial differential equation formulation of

the forward scattering problem.

2.3.3 Inverse scattering problem

In the inverse scattering problem, the goal is to find the electric contrastχ(q) in the imaging

domainD from the field measurements on the measurement domainS. Denoting the mea-

sured scattered field onS by Escat
meas(p) and noting (2.20), the contrastχ(q) is to be found

from

Escat
meas(p) = GS

[

χ (I − GχD)−1 (
E inc

)

]

. (2.23)

It should be noted that the incident electric fieldE inc is assumed to be known (or approxi-

mately known). However, the operatorGχD is unknown as the contrastχ is unknown. Differ-

ent methods for solving (2.23) will be discussed in Chapter 3.
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Microwave Tomography Algorithms

Can one hear the shape of a drum?(Mark Kac [39])

In MWT, which is an inverse scattering problem, the OI is successively interrogated with

a number of known incident fieldsE inc
t , wheret = 1, · · · , Tx. Interaction of the incident

field E inc
t with the OI results in the total fieldEt. The total and incident electric fields are

then measured by some receiver antennas located onS. Thus, the scattered electric field,

Escat
meas,t, is known at the receiver positions onS. The goal is to find the electric contrastχ

in a bounded imaging domainD, which contains the OI, from the measured scattered fields

Escat
meas,t onS.

Two approaches based on the formulation of the problem usingtwo different cost-functionals

have been successfully used to solve the MWT problem. The firstapproach, which includes

the Gauss-Newton Inversion (GNI) method, uses the conventional cost-functional which is



3.1 The first approach 19

based on the difference between the measured and predicted scattered data for a particular

choice of the material parameters; see for example [40, 41, 42, 30, 43, 12, 4, 44, 45, 46]. The

conventional cost-functional is usually augmented by an appropriate regularization term.

The second approach, which includes the Modified Gradient Method (MGM) [47] and the

Contrast Source Inversion (CSI) method [48], uses the same conventional cost-functional,

formulated in terms of the so-called contrast sources, in the case of CSI, added to an error

functional involving the domain equation, (2.17), which relates the fields inside the imaging

domain to the contrast of the unknown OI. As will be seen, the first approach requires an ap-

propriate solver to solve the forward scattering problem, (2.18), for different incident fields

and predicted contrasts. However, the second approach avoids solving the forward scatter-

ing problem but requires much more iterations to converge compared to the first approach.

These two approaches are now explained.

3.1 The first approach

In this first approach, the MWT problem is formulated as the minimization overχ of the

Least-Squares (LS) data misfit cost-functionalCLS : L2(D) → R,

CLS(χ) =

Tx
∑

t=1

∥

∥Escat
t − Escat

meas,t

∥

∥

2

S

Tx
∑

t=1

∥

∥Escat
meas,t

∥

∥

2

S

=

Tx
∑

t=1

∥

∥Escat
t (χ) − Escat

meas,t

∥

∥

2

S

Tx
∑

t=1

∥

∥Escat
meas,t

∥

∥

2

S

(3.1)

whereEscat
t = Escat

t (χ) is the simulated scattered field at the observation points correspond-

ing to the predicted contrastχ and thetth transmitter. The nonlinear operatorEscat
t : L2(D) →

L2(S) is given in (2.20) whereE inc needs to be replaced byE inc
t . Using (2.20), the above
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cost-functional can be re-written as

CLS(χ) =

Tx
∑

t=1

∥

∥

∥
GS

[

χ (I − GχD)−1 (E inc
t )
]

− Escat
meas,t

∥

∥

∥

2

S

Tx
∑

t=1

∥

∥Escat
meas,t

∥

∥

2

S

. (3.2)

This cost-functional is nonlinear with respect to the unknown contrastχ, and is ill-posed

[26]. Thus, an appropriate regularization technique needsto be utilized to handle the ill-

posedness of the problem.

3.1.1 Born approximation

When the electric contrast or the size of the OI is small, one may use the well-known Born

Approximation (BA) to simplify (3.2). This approximation assumes

(I − GχD)−1 ≈ I, (3.3)

which is equivalent to assuming that the total field inside the imaging domain is equal to

the incident field inside the imaging domain. Using this approximation, the nonlinear cost–

functionalCLS is linearized as

CLS,BA(χ) =

Tx
∑

t=1

∥

∥GS(χE inc
t ) − Escat

meas,t

∥

∥

2

S

Tx
∑

t=1

∥

∥Escat
meas,t

∥

∥

2

S

. (3.4)

The contrast functionχ is then be found by minimizing (3.4) overχ. Although now linear,

this remains an ill-posed problem.
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Another popular approximation is the Rytov approximation [49]. A significant improve-

ment in the Born approximation can be achieved by employing extended Born approxi-

mation whose computational cost is very close to that of the Born approximation [50]. It

should be noted that the first iteration of most nonlinear microwave tomography algorithms

within the first approach, if started with the zero initial guess, such as the ones presented in

Sections 3.1.2 and 3.1.3, results in a predicted contrast which is equivalent to the contrast

obtained via Born approximation.

3.1.2 The Born iterative method

The Born Iterative Method (BIM) [51] iteratively updates the contrastχ based on better

approximations of the total field inside the imaging domain.At thenth iteration of the BIM,

the operator(I − GχD)−1 is approximated as

(I − GχD)−1 ≈ (I − Gχn

D )−1 (3.5)

whereχn is the contrast obtained at the previous iteration of the BIM.The contrast at thenth

iteration of the BIM is found by minimizing the cost-functional CLS,BIM (χ):

χn+1 = arg min
χ

{

CLS,BIM (χ)
}

= arg min
χ























Tx
∑

t=1

∥

∥

∥GS

[

χ (I − Gχn

D )−1 (E inc
t )
]

− Escat
meas,t

∥

∥

∥

2

S

Tx
∑

t=1

∥

∥Escat
meas,t

∥

∥

2

S























.

(3.6)

Due to the ill-posedness of the problem, the above cost-functional needs to be regularized be-

fore minimization. We have studied the regularization of (3.6) in the framework of Tikhonov

regularization in conjunction with the Normalized Cumulative Periodogram (NCP) regular-
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ization parameter-choice method to determine an appropriate regularization weight [52, 53].

The initial guess of the BIM algorithm is usually chosen to beχ1 = 0. In this case, the

first iteration of the BIM is equivalent to the contrast obtained under the Born approxima-

tion. Note that at each iteration of the BIM, a forward solver needs to be called to calculate

(I − Gχn

D )−1 (
E inc
t

)

for different incident fields.

3.1.3 Various Newton-type algorithms

In Newton-type algorithms, the nonlinear cost-functionalCLS(χ), which is usually aug-

mented by some regularization terms, is iteratively approximated with a quadratic form

at the contrast obtained from the previous iteration. The stationary point of the quadratic

model, or some approximation thereof, is then chosen as the next iterate. The contrast at the

nth iteration is updated as

χn+1 = χn + νn∆χn. (3.7)

where∆χn is the correction andνn ∈ R
+ is an appropriate step-length to enforce the re-

duction of the cost-functional. Some of the utilized Newton-type inversion algorithms in-

clude the Newton-Kantorovich (NK) [54], Distorted Born Iterative Method (DBIM) [40,

55], Gauss-Newton Inversion (GNI) [56, 57, 58, 59, 4, 30], quasi-Newton method [42],

Levenberg-Marquardt method [46] and the modified Newton method [45]. It can be shown

that some of these methods are equivalent if utilizing similar regularization techniques [60,

58].

As for the BIM, it can be shown that these techniques effectively attempt to approximate

the operator(I − GχD)−1. Within this class of inversion algorithms, the GNI method and the

DBIM have been used in the research presented here. The GNI method will be explained

in Chapter 4. The regularization methods in conjunction withthe GNI method are studied



3.2 The second approach 23

in Chapter 5. Our specific implementation of the DBIM, which we refer to as the enhanced

DBIM, is outlined in [55], but is not considered herein.

3.1.4 Global optimization techniques

Some global optimization techniques such as genetic algorithms [43] and simulated anneal-

ing [61], in conjunction with Tikhonov regularization, have also been used to minimize the

nonlinear cost-functionalCLS(χ). A thorough overview of different stochastic optimization

methods applied to the MWT problem is provided in [62]. The computational complexity of

these methods is much more than that of the local optimization techniques. Thus, these meth-

ods, in their current state of development, may not be appropriate for this computationally-

demanding problem. They are not considered in this thesis.

3.2 The second approach

The first approach formulates the optimization problem in terms of the unknown contrast.

However, these methods require the solution to several forward scattering problems., which

means applying(I − Gχn

D )−1 on the incident fields originating from different transmitters.

This step imposes a large computational burden on the algorithm.

In the second approach, the optimization problem is formulated in terms of the unknown

contrast and the unknown total fields (or the unknown contrast sources which will be ex-

plained below). Noting that the total field inside the imaging domain changes with respect

to each transmitter, the number of unknown quantities can become extremely large. How-

ever, using this formulation the solution to the forward scattering problem is avoided.
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Two different updating schemes within this approach have been suggested. In the first

scheme [63], the contrast and the total fields correspondingto each transmitter are updated

simultaneously (as one unknown vector in the discrete domain). In the second scheme,e.g.,

see [47, 48], the contrast and the total fields (or the contrast sources) are treated separately.

That is, when optimizing over the total fields (or the contrast sources), the contrast is as-

sumed to be known and when optimizing over the contrast, the total fields (or the contrast

sources) are assumed to be known. The Modified Gradient Method (MGM) [47] and the

Contrast Source Inversion (CSI) method [48] are the two well-known methods within the

second updating scheme. As the CSI method is more computationally efficient than the ex-

isting methods within this approach [64], we briefly explainthe CSI method for this class of

inversion algorithms.

The CSI method formulates the MWT problem in terms of the contrast χ and contrast

sources, defined asW (q) = χ(q)E(q). Multiplying both sides of (2.17) by the contrast

function, we have

W = χE inc + χGD(W ). (3.8)

The data equation (2.16) is re-written as,

Escat = GS(W ). (3.9)
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In the CSI method the cost-functional,CCSI : L2(D) × L2(D)Tx → R,

CCSI(χ,W 1, · · · ,W t, · · · ,W Tx
) =

Tx
∑

t=1

∥

∥Escat
meas,t − GS(W t)

∥

∥

2

S

Tx
∑

t=1

∥

∥Escat
meas,t

∥

∥

2

S

+

Tx
∑

t=1

∥

∥χE inc
t − W t + χGD(W t)

∥

∥

2

D

Tx
∑

t=1

∥

∥χE inc
t

∥

∥

2

D

(3.10)

is minimized via the formation of two interlaced sequences of the unknowns: a sequence

of estimates of the contrast{χn(q)} which is interlaced with a sequence of estimates of the

contrast sources{W t,n(q)}. For every step of the CSI method, each sequence is updated

via a single step of the CG minimization algorithm while assuming that the other unknown

is a constant. We note that the first term of the CSI functional deals with (3.9) in whichEscat

is replaced byEscat
measwhereas the second term incorporates (3.8). The CSI method isusually

regularized with the weightedL2-norm total variation multiplicative regularizer [11]. The

inversion method is then referred as the MR-CSI method.

It should be noted that MGM is very similar to the CSI method. Inthe MGM, the fields

and the contrast are updated as opposed to the contrast sources and the contrast in the CSI

method. In addition, the Born and the extended Born approximations can also be formulated

within the framework of the CSI algorithm [65, 66]. We will consider the CSI formulation

of the MWT problem in Chapter 7.
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(a) Re(εr) True (b) Im(εr) True

(c) Re(εr) MR-CSI (d) Im(εr) MR-CSI

(e) Re(εr) Enhanced DBIM (f) Im(εr) Enhanced DBIM

(g) Re(εr) Cross Section (h) Im(εr) Cross Section

Fig. 3.1:Synthetic leg data set (TM illumination). (a)-(b) The exact relative complex permittiv-
ities, (c)-(d) the MR-CSI reconstruction, (e)-(f) the enhanced DBIMreconstruction, and
(g)-(h) 2D cross section alongy = 0 of the ideal (black dash-dot line), MR-CSI (red dashed
line) and DBIM (blue solid line). The frequency used wasf = 1.5 GHz.
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Fig. 3.2:Synthetic leg data set (TM illumination). (a)-(b) Born approximation reconstruction, and
(c)-(d) the BIM reconstruction. The frequency used wasf = 1.5 GHz.

3.3 Inversion results

As in the rest of this thesis, we will not consider the Born approximation and the BIM, it is

instructive to compare their performances with two state-of-the-art algorithms, namely the

MR-CSI method and the enhanced DBIM. The details of the enhancedDBIM are outlined

in [55].

While the ultimate test of any inversion algorithm must involve experimentally collected

scattering data, it is very useful for comparison purposes to have a synthetic data set where

the true contrast is known. Towards this end, we have createda synthetic model of a leg,

shown in figure 3.1 (a)-(b). Permittivity values for the model were taken from published
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values on human tissue [67]. The model consists of a bone (comprised of a marrow core,

εr = 5.5 + j0.55 surrounded by cortical bone,εr = 12.6 + j2.4), which is inside of a

large mass of muscle (εr = 54.8 + j13.0), surrounded by skin (εr = 39.4 + j12.9). Data

were generated for the model based on a frequency of1.5 GHz, with 30 transmitters and

30 receivers evenly spaced on a circle of radius15 cm. The forward solver utilized a grid

of 100 × 100 cells on a10 cm× 10 cm grid. The inversions were performed on a grid of

100 × 100 cells on a10.2 cm× 10.2 cm grid (thus, avoiding the so-called inverse crime

[68]). The ‘leg’ is immersed in a lossless background mediumwith εb = 77.3. To every

measurement,3% noise was artificially added using the formula given in [65].

The MR-CSI reconstruction is shown in figure 3.1 (c)-(d), and the enhanced DBIM recon-

struction is given in figure 3.1 (e)-(f). A 2D cross section ofthey = 0 line for all three plots

is shown in figure 3.1 (g)-(h). The two reconstructions are remarkably similar, which can be

seen particularly clearly in the 2D cross section plots. Neither algorithm accurately resolves

the skin, which is not surprising because the skin is approximately1.5 mm, or≈ (1/20) of

the wavelength in the background medium. The only significant differences between the two

results are in the marrow core of the bone, where the CSI seems to ‘find’ an inhomogeneity

associated with the marrow bone, while the DBIM reconstruction provides only a smooth

region for the whole bone. However, the permittivity value obtained by the CSI method

for the marrow bone is not correct, whereas the DBIM reconstruction for the marrow bone

is closer the true value. In [55], we have compared the performance of these two methods

over a wide range of data sets: noisy synthetic data, free-space far-field data, and near-field

water-submerged data. In these cases, the inversion results were remarkably similar.

The inversion of this data set using the Born approximation and the BIM are shown in

figure 3.2. As can be seen, these two methods fail to accurately reconstruct the synthetic leg

model.
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The Gauss-Newton Inversion Algorithm

I keep the subject constantly before me and wait till the first dawning open little
by little into the full light(Isaac Newton1).

As mentioned in Chapter 3, the data misfit cost-functional (3.1) is nonlinear with respect to

the contrastχ. To treat the nonlinearity of the problem, iterative techniques are used. In

this chapter, we present the mathematical formulation of one of these iterative techniques,

namely, the Gauss-Newton Inversion (GNI) method. As for most iterative algorithms for the

MWT problem, this inversion algorithm requires that appropriate regularization techniques

be used. These will be discussed in Chapter 5.

The GNI method is based on the Newton optimization [69] wherethe nonlinear cost-

functional at the current iteration is approximated with a quadratic form. The stationary

1 in Newton Tercentenary Celebrations, July 15-19, 1946 by The Royal Society of London for the Improve-
ment of Natural Knowledge.
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point of the quadratic model is then chosen as the next iterate. In GNI, the cost-functional

is the data misfitCLS(χ), (3.1), which is usually augmented by an appropriate regularization

term. To describe the general formulation of the GNI method,we denote the cost-functional

C(χ) : L2(D) → R to be either the data misfit cost-functionalCLS(χ) or a regularized form

thereof.

The cost-functionalC(χ) is not analytic in the complex domain; thus, it is not complex

differentiable. To handle this problem, we use Wirtinger calculus [70, 71, 72, 73] where

we consider the cost-functional̃C(χ, χ∗) such thatC̃(χ, χ∗) = C(χ) (see Appendix C for

more discussion). Therefore, minimizingC(χ) will be equivalent to minimizingC̃(χ, χ∗).

According to Wirtinger calculus,̃C(χ, χ∗) is analytic with respect toχ for fixed χ∗ and is

analytic with respect toχ∗ for fixedχ. Therefore, one can formally define the derivatives of

C̃ with respect toχ andχ∗ by treating them as two independent functions. Therefore, at the

nth iteration of the GNI algorithm, where the known predicted contrast isχn, C(χn + ∆χn)

may be approximated by the quadratic model

C(χn)+







∂C̃
∂χ
|χ=χn

∂C̃
∂χ∗ |χ=χn







T 





∆χn

∆χ∗
n






+

1

2













∂2C̃
∂χ∂χ

|χ=χn

∂2C̃
∂χ∂χ∗ |χ=χn

∂2C̃
∂χ∗∂χ

|χ=χn

∂2C̃
∂χ∗∂χ∗ |χ=χn













∆χn

∆χ∗
n













T 





∆χn

∆χ∗
n






,

(4.1)

where the superscript ‘T ’ denotes the transposition operator. The correction∆χn is found

for the minimum of the quadratic model, (4.1). Thus, the correction satisfies







∂2C̃
∂χ∂χ

|χ=χn

∂2C̃
∂χ∂χ∗ |χ=χn

∂2C̃
∂χ∗∂χ

|χ=χn

∂2C̃
∂χ∗∂χ∗ |χ=χn













∆χn

∆χ∗
n






= −







∂C̃
∂χ
|χ=χn

∂C̃
∂χ∗ |χ=χn






. (4.2)

The contrast is then updated asχn+1 = χn + νn∆χn where the step-lengthνn will be

explained in Section 4.3. Note that∂C̃
∂χ
|χ=χn

and ∂C̃
∂χ∗ |χ=χn

, which represent linear mappings
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from L2(D) to C, are the derivatives of̃C(χ) with respect toχ andχ∗ at χ = χn. Thus,

∂C̃
∂χ
|χ=χn

(∆χn) is the result of operating∂C̃
∂χ
|χ=χn

: L2(D) → C on ∆χn ∈ L2(D). The

second-order derivatives in (4.1) are linear mappings fromL2(D) toZ whereZ is the space

of all linear operators fromL2(D) to C.

As the cost-functional̃C involves the data misfit cost-functionalCLS which requires the op-

eratorEscat, the derivative operators in (4.2) will all be dependent on the derivatives ofEscat

with respect to the contrast. The approximation within the GNI method is that the derivative

operators required in (4.2) are calculated by ignoring the second derivative ofEscat, (2.20),

with respect to the contrast; thus, avoiding its computational cost. That is, the scattered field

due to the contrastχn+∆χn is approximated by the first two terms of the Taylor’s expansion

[30],

Escat(χn + ∆χn) ≈ Escat(χn) +
∂Escat

∂χ
|χ=χn

(∆χn). (4.3)

The operator∂E
scat

∂χ
|χ=χn

, which is a linear mapping fromL2(D) to L2(S), is the derivative

of Escat with respect toχ at χ = χn. Thus, ∂E
scat

∂χ
|χ=χn

(∆χn) is the result of operating

∂Escat

∂χ
|χ=χn

: L2(D) → L2(S) on∆χn ∈ L2(D).

As will be seen in Section 4.1.2, whenC(χ) is chosen to beCLS(χ), the operators∂
2C̃

∂χ∂χ
|χ=χn

and ∂2C̃
∂χ∗∂χ∗ |χ=χn

are ignored under the approximation (4.3). It should be noted that we will

also consider optimizingC(χ) overχR andχI in Sections 5.6.2 and D.5.

4.1 Required derivatives for the non-regularized GNI method

We now show the required derivatives for the Gauss-Newton inversion method for the case

whenC(χ) is chosen to beCLS(χ), (3.1). That is, the cost-functional to be minimized is

the data misfit cost-functional, without any regularization terms. Similar to the procedure
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explained at the beginning of this chapter, we consider the cost-functionalC̃LS(χ, χ∗) such

that C̃LS(χ, χ∗) = CLS(χ). Noting that the derivatives of the data misfit cost-functional are

dependent on the derivatives of the scattered field operator, Escat, we first present the first

derivative ofEscat with respect to the contrast. We then briefly explain why calculating the

second derivative ofEscatwith respect to the contrast, which is ignored in the GNI method, is

computationally expensive. Finally, the required derivatives of the data misfit cost-functional

will be given. The derivation of these derivatives can be found in Appendix D.

In Chapter 5, we will consider the GNI method when the data misfit cost-functional is aug-

mented by some appropriate regularization terms.

4.1.1 Derivative of the scattered field with respect to the contrast

Herein, we assume that thetth transmitter is active. As mentioned earlier, the derivative

∂Escat
t

∂χ
|χ=χn

is a linear operator fromL2(D) to L2(S). This derivative operator, when operat-

ing onψ, can be written as (see Section D.1)

∂Escat
t

∂χ
|χ=χn

(ψ) = k2
b

∫

D

ψ(q)Et(q;χn) · ¯̄Ginh(q,p;χn)dq (4.4)

whereψ is an arbitrary function inL2(D) and ¯̄Ginh(q,p;χn) is the Green’s function when

the background medium is assumed to beχn. This Green’s function is sometimes referred

to as the distorted or inhomogeneous Green’s function with respect to the contrastχn. The

field Et(q;χn) is the total field inside the imaging domainD in the presence ofχn when the

tth transmitter is active.

As will be seen, the GNI algorithm also requires the adjoint of ∂Escat
t

∂χ
|χ=χn

. AssumingΓ is an
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arbitrary vector function inL2(S), the adjoint operator may be written as

(

∂Escat
t

∂χ
|χ=χn

)a

(Γ) =
(

k2
b

)∗
[Et(q;χn)]

∗ ·
∫

S

[

¯̄Ginh(q,p;χn)
]∗

· Γ(p)dp. (4.5)

Despite the fact that the second derivative of the scatteredfield with respect to the contrast

is neglected in the GNI method, see (4.3), we show the second derivative operator to briefly

explain why its calculation is computationally expensive.The second derivative operator

∂2Escat
t

∂χ2 |χ=χn
is a linear mapping fromL2(D) to the space of linear operators which map from

L2(D) toL2(S). Assumingψ ∈ L2(D) andϕ ∈ L2(D), the second derivative operator may

be written as (see Section D.1)

[

∂2Escat
t

∂χ2
|χ=χn

(ϕ)

]

(ψ) = k2
b

∫

D

ϕ(q)

[

∂Et
∂χ

|χ=χn
(ψ) · ¯̄Ginh(q,p;χn) +

Et(q;χn) ·
∂ ¯̄Ginh(q,p;χ)

∂χ
|χ=χn

(ψ)

]

dq (4.6)

The operatorEt is given in (2.19) whereE inc needs to be replaced byE inc
t . The calcula-

tion of this second derivative is very computationally expensive. To show this, consider

∂Et

∂χ
|χ=χn

(ψ) in the integrand of (4.6). Similar to the derivation of∂E
scat
t

∂χ
|χ=χn

, see Ap-

pendix D,∂Et

∂χ
|χ=χn

(ψ) may be derived as

∂Et
∂χ

|χ=χn
(ψ) = k2

b

∫

D

ψ(q′)Et(q
′;χn) · ¯̄Ginh(q′, q;χn)dq

′ (4.7)

whereq andq′ are both in the imaging domainD. Therefore, calculating (4.7) requires that

the excitation be placed in differentq, or q′, which are both inside the imaging domain. In

the discrete form of the problem where the 2D imaging domain is discretized intoN pulse

basis functions, this results in solving the forward problemN times per GNI iteration.
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4.1.2 Required derivatives for the data misfit cost-functional

We show the first and second derivatives ofC̃LS(χ, χ∗) with respect toχ andχ∗ which are

required in (4.2). As derived in Appendix D, the first derivatives can be written as

∂C̃LS

∂χ∗
|χ=χn

(ψ∗) =

〈

ηS

Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a

(Escat
t (χn) − Escat

meas,t), ψ

〉

D

, (4.8)

and
∂C̃LS

∂χ
|χ=χn

(ψ) =

[

∂C̃LS

∂χ∗
|χ=χn

(ψ∗)

]∗

. (4.9)

The normalization factorηS is given as

ηS =

[

Tx
∑

t=1

∥

∥Escat
meas,t

∥

∥

2

S

]−1

. (4.10)

The second derivatives are derived as as,

[

∂2C̃LS

∂χ∗∂χ
|χ=χn

(ϕ)

]

(ψ∗) =

〈

ηS

Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a [
∂Escat

t

∂χ
|χ=χn

]

(ϕ), ψ

〉

D

, (4.11)

[

∂2C̃LS

∂χ∂χ
|χ=χn

(ϕ)

]

(ψ) =

〈

ηS

Tx
∑

t=1

{[

∂2Escat
t

∂χ2
|χ=χn

(ϕ)

]a
(

Escat
t (χn) − Escat

meas,t

)

}∗

, ψ∗

〉

D

,

(4.12)

[

∂2C̃LS

∂χ∂χ∗
|χ=χn

(ϕ∗)

]

(ψ) =

{[

∂2C̃LS

∂χ∗∂χ
|χ=χn

(ϕ)

]

(ψ∗)

}∗

, (4.13)

and
[

∂2C̃LS

∂χ∗∂χ∗
|χ=χn

(ϕ∗)

]

(ψ∗) =

{[

∂2C̃LS

∂χ∂χ
|χ=χn

(ϕ)

]

(ψ)

}∗

. (4.14)
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Utilizing (4.8) and (4.9), the second term of (4.1), whenC(χ) = CLS(χ), will be

Re

〈

2ηS

Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a
(

Escat
t (χn) − Escat

meas,t

)

,∆χn

〉

D

. (4.15)

Also, utilizing (4.11), (4.12), (4.13), and (4.14), the third term of (4.1), whenC(χ) = CLS(χ),

will be

Re

〈

2ηS

Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a [
∂Escat

t

∂χ
|χ=χn

]

(∆χn),∆χn

〉

D

+

Re

〈

2ηS

Tx
∑

t=1

[

∂2Escat
t

∂χ2
|χ=χn

(∆χn)

]a
(

Escat
t (χn) − Escat

meas,t

)

,∆χ∗
n

〉

D

. (4.16)

As can be seen both (4.15) and (4.16) are real numbers. This isconsistent with the fact that

CLS is a mapping fromL2(D) to R.

4.2 Finding the correction in the non-regularized GNI method

Herein, we assume that the cost-functional to be minimized is the data misfit cost-functional

CLS (without any regularization terms). Noting that the secondderivative of the scattered

field will be avoided in the Gauss-Newton inversion method, see (4.3), the derivatives∂
2C̃LS

∂χ∂χ
,

(4.12), and ∂2C̃LS

∂χ∗∂χ∗ , (4.14), are ignored. Ignoring these derivatives and noting (4.2), it is

straightforward to see that∆χn can be found by satisfying

∂2C̃LS

∂χ∗∂χ
|χ=χn

(∆χn) = −∂C̃
LS

∂χ∗
|χ=χn

. (4.17)

As can be seen both the left-hand and right-hand sides of (4.17) represent linear operators

which mapL2(D) to C. This means that for an arbitraryψ ∈ L2(D), the correction must
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satisfy
[

∂2C̃LS

∂χ∗∂χ
|χ=χn

(∆χn)

]

(ψ∗) = −
[

∂C̃LS

∂χ∗
|χ=χn

]

(ψ∗). (4.18)

Using (4.8) and (4.11), equation (4.18) may be written as

〈

ηS

Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a [
∂Escat

t

∂χ
|χ=χn

]

(∆χn), ψ

〉

D

=

〈

−ηS
Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a

(Escat
t (χn) − Escat

meas,t), ψ

〉

D

. (4.19)

Therefore, the correction∆χn can be found from

Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a [
∂Escat

t

∂χ
|χ=χn

]

(∆χn) = −
Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a

(Escat
t (χn) − Escat

meas,t).

(4.20)

It should be noted that for the case whereC(χ) is an augmented form ofCLS(χ) by an

appropriate regularization term, the regularization termwill also contribute in finding the

correction. This will be explained in the Chapter 5.

4.3 Step-length

Having found the correction∆χn, the contrast is updated as

χn+1 = χn + νn∆χn (4.21)

whereνn is an appropriate step-length chosen to enforce the reduction of the cost-functional.

We note that∆χn is a descent direction for the quadratic form of the cost-functional; not

necessarily for the cost-functional itself. In fact, if thequadratic model is not a good approx-

imation to the cost-functional, the correction may lead to an increase in the cost-functional.
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That’s why some form of line search algorithm is required to enforce the reduction of the

cost-functional at each iteration. Formally,νn can be found from the following minimization

νn = arg min
ν

{C(χn + ν∆χn)} . (4.22)

This minimization can be done using different nonlinear optimization routines. However,

due to the fact that these techniques require several cost-functional evaluation and noting

that evaluating the cost-functional is very expensive2, such optimization techniques will be

very computationally expensive. Therefore, we adopt a linesearch algorithm described in

[4, 45]. In this line search algorithm, we start with the fullstep,i.e. νn = 1, and check

whether it satisfies,

C(χn + νn∆χn) ≤ C(χn) + βνnδCn (4.23)

whereβ is a small positive number3 andδCn is the decrease rate ofC(χ) atχn in the direction

of ∆χn. If νn satisfies (4.23), we choose it as an appropriate step-length; otherwise we

reduce the step-size along∆χn until we find aνn which satisfies (4.23). In this procedure,

the functiong(ν) , C(χn + ν∆χn) is approximated by a quadratic expression in terms of

ν and a new candidate for the step-length is then found by minimizing this quadratic form.

As in [4], the minimum possible value forν is set to0.1. If the step-length becomes less

than0.1, we chooseν = 0.1 and terminate the line-search algorithm. The details of this

algorithm can be found in [45].

2 Note that evaluating the cost-functional for each guess of the step-length requires calling the forward
solverTx times to calculateEscat

t
(χn + νn∆χn) for t = 1, · · · , Tx.

3 In our implementation, it is set to be10−4.
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4.4 Termination criteria for the GNI method

The inversion algorithm terminates if one of the following three conditions is satisfied:(i) the

cost-functionalC(χ) is less than a prescribed error,(ii) the difference between two successive

C(χ) becomes less than a prescribed value, or(iii) the total number of iterations exceeds a

prescribed maximum.

4.5 Discretization

Due to the fact that the number of measurements,i.e., the data obtained with an actual

MWT system, is limited and that the inversion algorithm needsto be implemented using a

computer, we discretize the problem. The discretization is, in fact, a projection from the

continuous domain to a finite dimensional discrete domain.

We discretize the imaging domainD into N cells using 2D pulse basis functions. Thus,

the contrast function is represented by the complex vectorχ ∈ C
N . We also assume that

the number of measured data isM . Thus, the measured scattered data on the discrete mea-

surement domainS is denoted by the complex vectorEscat
meas∈ C

M . The vectorEscat
measis the

stacked version of the measured scattered fields for each transmitter. That is,

Escat
meas=

























Escat
meas,1

...

Escat
meas,t

...

Escat
meas,Tx

























M×1

(4.24)
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Assuming that thetth transmitter is active, the simulated scattered field corresponding to the

predicted contrast at thenth iteration of the GNI algorithm,χ
n
, is denoted byEscat

t,n which is

the discretized form ofEscat
t (χn). The vectorEscat

n ∈ C
M is then formed by stackingEscat

t,n .

That is,

Escat
n =

























Escat
1,n

...

Escat
t,n

...

Escat
Tx,n

























M×1

(4.25)

Assuming that thetth transmitter is active, we define the matrixJ t,n at thenth iteration of the

GNI algorithm which contains the derivative of the scattered field vectorEscat with respect

to χ evaluated atχ = χ
n
. That is,J t,n represents the discrete form of∂E

scat
t

∂χ
|χ=χn

. The

matrixJn ∈ C
M×N is then formed by stackingJ t,n matrices (t = 1, · · · , Tx). We will refer

to Jn as the Jacobian matrix. Each row of the Jacobian matrix corresponds to a particular

receiver location, say,p and a particular polarization along some direction, say,τ̂ and a

particular transmitter, say, thetth transmitter. That is, one row for each individual datum of

the collected data. The ordering of the rows will obviously depend on the ordering of this

data, but theith element in such a row will correspond to the derivative of this scattered field

with respect to[χ]i, theith element of the vectorχ. From (4.4), this element may be found

by

k2
b

∫

D

Πi(q)Et(q;χn) · ¯̄Ginh(q,p;χn) · τ̂ dq. (4.26)

whereΠi(q) is the 2D pulse function which is equal1 at theith voxel of the imaging domain

and0 otherwise. For our cases, the polarization directionτ̂ is considered to be either̂x or ŷ

in the TE case and̂z in the TM case.
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That being said, the discrete form of (4.20), may be written as

JH
n Jn∆χn = JH

n dn (4.27)

where the superscript ‘H ’ denotes the Hermitian operator (complex conjugate transpose).

The vectordn ∈ C
M is the discrepancy between the measured data and the simulated data

corresponding toχ
n
; i.e.,

dn = −
(

Escat
n − Escat

meas

)

. (4.28)

It should also be noted that the solution to (4.27) can be considered as the solution to the

minimization,

∆χ
n

= arg min
∆χ

∥

∥Jn∆χ− dn
∥

∥

2
. (4.29)

The discretized form of the cost-functionalCLS will be denoted byFLS. Thus,

FLS(χ
n
) =

∥

∥Escat
n − Escat

meas

∥

∥

2

∥

∥Escat
meas

∥

∥

2 (4.30)

where‖.‖ denotes theL2-norm onC
M .

In this thesis, we show inversion results from experimentaldata sets as well as synthetic data

sets. To all synthetic data sets, unless otherwise stated,3% noise was artificially added using

the formula [65]

Escat
meas,t = Escat,fwd

t +max
[

∀t Escat,fwd
t

] η√
2
(ϑ1 + jϑ2) (4.31)

whereEscat,fwd
t is the scattered field on the measurement domain obtained by the utilized

forward solver,ϑ1 andϑ2 are two real vectors whose elements are uniformly distributed

zero-mean random numbers between−1 and1, andη = 0.03. The noisy dataEscat
meas,t is then
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used to test inversion algorithms against synthetic data sets. To avoid inverse crime [68],

the discretization used in the utilized inversion algorithms to invertEscat
meas,t is chosen to be

different than the discretization used in the forward solver to generateEscat,fwd
t .

Finally, we note that there are different ways to discretizethe problem. Mostly, in this

thesis, we use 2D pulse functions to discretize the contrastfunction. Discretization may also

be achieved using other methods, such as the eigenfunctionsfor the problem, see Chapter 7,

and triangular meshes [12].



5

Regularization

Nonlinear ill-posed problems constitute a much broader area[compared to lin-
ear ill-posed problems], and their numerical treatment is often specialized to
the particular application.(Per Christian Hansen [74])

In this chapter, we present different methods to treat the ill-posedness of the microwave to-

mography problem in the framework of the Gauss-Newton inversion method. These methods

are referred to as regularization methods and they need to beutilized to stabilize the solution

by adding constraints to the data misfit cost-functional that thereby reduce the influence of

errors and noise. The art of regularization lies in two areas: (i) applying the right kind of

regularization which may depend on the computational resources and the availablea priori

information, and (ii ) applying the right amount (weight) of regularization which depends

on the noise level in the collected data. In the microwave tomography problem, where the

nonlinearity is treated by iterative techniques such as theGauss-Newton inversion method,
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the regularization weight at each iteration may also dependon how far the predicted solution

at the current iterate is from the expected solution.

In the first part of this chapter, we classify different regularization methods for the GNI

method into two strategies. These two strategies may be distinguished by the type of the

cost-functional to be minimized. In the first strategy, the cost-functional to be minimized is

the data misfit functionalCLS, (3.1), which is ill-posed [40, 75, 41, 12, 54, 46, 44]. Due tothis

ill-posedness, we need to regularize (4.2) at each iteration of the GNI method. In the second

strategy, the cost-functionalCLS is first regularized and the GNI method is then applied to

the regularized cost-functional [38, 30, 4, 76, 45]. Therefore, equation (4.2) does not need

to be regularized throughout different GNI iterations. In each regularization method that is

discussed the regularization weight is either explicitly chosen or is implicit to the method.

The basic idea behind the appropriate regularization weight for the GNI method is that the

regularization weight should be large in early GNI iterations where the predicted solution

is far from the true solution and should gradually decrease as the algorithm gets closer to

the true solution. We refer to this idea asadaptiveregularization [77, 27]. Throughout this

chapter, we denote thepositiveparameterα as the regularization parameter which (partially)

governs the regularization weight.

In the second part of this chapter, we consider incorporation of a priori information to reg-

ularization terms. This chapter ends with introducing an image enhancement technique to

suppress possible spurious oscillations in the final image obtained from the Gauss-Newton

inversion method. We now start the first part of this chapter by explaining the two regular-

ization strategies, mentioned above, in more details.
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5.1 The first strategy

This strategy chooses the data misfitCLS, (3.1), as the cost-functional to be minimized.

Therefore, in the discrete domain, satisfying (4.2) will beequivalent to the minimization

(4.29). It is well-known that the matrixJn is an ill-conditioned matrix, making (4.29) a

discrete linear ill-posed problem which needs to be regularized.1 There are two published

general approaches for regularizing (4.29) in the electromagnetic inverse scattering case:

penalty and projection methods.

5.1.1 Penalty methods

Tikhonov regularization [1] is probably the most popular penalty method where the regular-

ized solution of (4.29) is found from the minimization [40, 75, 41, 46, 54]

∆χ
n

= arg min
∆χ

{

∥

∥Jn∆χ− dn
∥

∥

2
+ αnΩ(∆χ)

}

. (5.1)

The regularization termΩ(∆χ) is usually chosen to be in the form of anL2-norm, making

(5.1) a least squares minimization. Herein, we assumeΩ(∆χ) =
∥

∥R∆χ
∥

∥

2
whereR is

an appropriate matrix whose nullspace intersects trivially with that of Jn; thus, ensuring

a unique solution for (5.1). In this case, (5.1) can be written as a damped least squares

minimization

∆χ
n

= arg min
∆χ

∥

∥

∥

∥

∥

∥

∥







Jn

√
αnR






∆χ−







dn

0







∥

∥

∥

∥

∥

∥

∥

2

(5.2)

1 We note that the minimization (4.29) is the result of the discretization of a Fredholm integral equation of
the first kind. It is well-known that the discretized form of aFredholm integral equation of the first kind results
in a discrete ill-posed problem [23].
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Fig. 5.1: (a) TheL-curve and (b) the NCP plot.

where0 is the zero vector of appropriate size. The minimization (5.2) is equivalent to

(JH
n Jn + αnR

HR)∆χ
n

= JH
n dn. (5.3)

In this case, the weight of the regularization is determinedby the positive parameterαn

which needs to be chosen at each GNI iteration. This weight isusually determined using

either one of the standard regularization parameter-choice methods [23] or anad hoctech-

nique [75, 41, 46, 54]. The standard regularization parameter-choice methods, such as the

L-curve [78, 79], the Generalized Cross-Validation (GCV) [80], [54, 46], and the Normal-

ized Cumulative Periodogram (NCP) [81, 82, 53, 52] methods, can be very computationally

expensive and may also fail in choosing an appropriate regularization weight. For example,

the GCV functional may become very flat so that locating its minimum, which corresponds

to an appropriate regularization parameter, will be numerically difficult [78].

To show one example of how these standard regularization parameter-choice methods choose

an appropriate regularization parameterαn, we have shown theL-curve and NCP at one it-

eration of a MWT problem, described in [52], in figure 5.1. To construct theL-curve, see
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figure 5.1 (a), we have solved (5.3) for100 differentα whenR is chosen to be the identity

matrixI. Thus, the discreteL-curve consists of100 points. The vertical axis in figure 5.1 (a)

is the solution norm,
∥

∥

∥∆χ
n

∥

∥

∥, for different choices ofαn, whereas the horizontal axis is the

residual norm,
∥

∥

∥
Jn∆χn − dn

∥

∥

∥
, for different choices ofαn. If the value ofαn is chosen to

be too large, the residual norm will be large while having a small solution norm. This results

in an over-regularized solution. On the other hand, if the value of α is chosen to be too

small, the solution norm will be large while having the residual norm small. This results in

an under-regularized solution. To balance these two norms,it is suggested by Hansen [83]

that one chooses the regularization parameter which corresponds to the corner of this curve.

We have also shown the NCP parameter-choice method for the same problem in figure 5.1 (b).

The main idea behind the NCP method is to choose the largestαn that makesJn∆χn − dn,

look like white noise. This can be done by starting with a large αn for which the residual

vector,Jn∆χn − dn, does not look like white noise. According to the NCP parameter-

choice method, if thisαn is chosen as the regularization parameter, the solution will be an

over-regularized solution. We then reduceα until the first instance where we have a resid-

ual vector that looks like white noise. Here, “looks like white noise” is defined using the

Kolmogorov-Smirnov (KS) limits. The metric that is used to see if the residual “looks” like

white noise is that the NCP ofJn∆χn − dn fits between the KS limits which are bounds

around a straight line. The largestαn for which the NCP fits between the KS limits is consid-

ered to be an appropriate regularization parameter. At thispoint, if we decreaseαn further,

the NCP will be still between the KS limits. However, the solution is more likely to be

unstable (under-regularized solution).

Regarding the use of standard regularization parameter-choice methods such as theL-curve,

NCP and GCV methods within the first regularization strategy, it should be noted that these

methods have been developed for linear inverse problems where the discrete Picard condition



5.1 The first strategy 47

[84] is satisfied for the underlying unperturbed problem [23], [83]. We have provided a

mathematical discussion of why standard regularization parameter-choice methods may fail

for the microwave tomography problem in [53] (in the framework of the NCP parameter-

choice method). However, they may not be appropriate for nonlinear inverse scattering

problems, especially when the initial guess to the GNI algorithm is very far from the true

solution [46].

Thead hoctechniques are usually faster but are dependent on the noiselevel of the measured

data. Therefore, they may need to be modified for different microwave tomography systems.

However, it is easier to incorporate adaptive regularization usingad hoctechniques as com-

pared to the standard regularization parameter-choice methods. For example, in [41], the

regularization parameterαn is chosen to be proportional to‖dn‖2. That is, the regularization

weight decreases during the GNI iterations; thus providingthe adaptive regularization.

We note that the penalty termΩ(∆χ
n
) can have other forms such as theL1-norm total vari-

ation or maximum entropy [45]. It should also be mentioned that this type of regularization,

whenR is chosen to be the identity matrixI, may be viewed as the Levenberg-Marquardt

approach [46, 85, 69] where the matrixJH
n Jn is augmented byαnI.

5.1.2 Projection methods

Projection methods attempt to regularize (4.29) by projecting it onto a subspace having a

basis that can be used to represent the solution∆χ
n

with sufficient accuracy while maintain-

ing the stability. The projection may be achieved by Krylov subspace methods such as the

Conjugate Gradient Least Squares (CGLS) or Least Squares withQR factorization (LSQR)

methods [86, 74], [12], [87]: at thekth iteration of the Krylov subspace methods, the solution
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Fig. 5.2: The semi-convergence behavior of the CGLS scheme applied to an ill-posedproblem. The
vertical axis shows the normalized error between the true solution and the reconstructed
solution. The horizontal axis shows the number of CGLS iterations (from1 to 300).

is restricted to lie in

∆χ(k)

n
∈ Kk(J

H
n Jn,J

H
n dn) (5.4)

whereKk is thek-dimensional Krylov subspace defined byJn anddn. The Krylov subspace

algorithms, when applied to an ill-posed system of equations, exhibit asemi-convergencebe-

havior [88, 74]. That is, they improve the solution at their early iterations, where the solution

space is restricted to a Krylov subspace of small dimension,however, they start deteriorat-

ing the solution by inverting the noise in later iterations.Therefore, the stopping iterationk

plays the role of the regularization parameter: the fewer the iterations, the stronger the regu-

larization. To demonstrate this semi-convergence behavior, we have shown the performance

of the CGLS algorithm applied to a standard linear ill-posed problem, known as the Satellite

problem [89] developed at the US Air Force Phillips Laboratory, in figure 5.2. The vertical

axis shows the normalized error between the reconstructed solution and the true solution.

The horizontal axis shows the number of CGLS iterations (from1 to 300). As can be seen,

the normalized error between the reconstructed solution and the true solution decreases at

early CGLS iterations. After iteration54, which would be the ideal stopping iteration, the

normalized error starts increasing. It should be noted thatthis plot cannot be used to find the
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stopping iteration in reality. This is due to the fact that the true solution, based on which the

plot shown in figure 5.2 is made, is to be found and thus, is not available. The stopping it-

eration is usually determined using either standard regularization parameter-choice methods

such as theL-curve method [90] or by somead hoctechniques [12, 87].

As in penalty methods, adaptive regularization is difficultto incorporate in the standard

regularization parameter-choice methods whereas they canbe easily incorporated into the

ad hoctechniques. For example in [12, 57], anad hoctechnique has been used to determine

the regularization weight in the CGLS scheme where the stopping iteration is chosen to be

small in early GNI iterations and then increases in later GNIiterations. Considering that

the smaller the stopping iteration, the stronger the regularization, thisad hoctechnique is an

attempt at adaptive regularization for the GNI method.

The projection can also be achieved by the Truncated Singular Value Decomposition (TSVD)

where the unknown∆χ
n

is projected onto the subspace spanned by the first few right singu-

lar vectors of the matrixJn [91, 74, 92]. Writing the Singular Value Decomposition (SVD)

of the matrixJn asJn = U S V H , the regularized solution of (4.29) using the TSVD

method can be written as

∆χ
n

=
k
∑

i=1

uHi dn
si

vi (5.5)

where the left singular vectorui and the right singular vectorvi are theith column of the or-

thonormal matricesU andV , respectively. The singular valuesi is theith diagonal element

of the matrixS. In (5.5), the integerk, which determines the dimension of the subspace

spanned by the right singular vectorsvi, is the regularization parameter: the smaller the

k, the stronger the regularization. It should be mentioned that in (5.5), we have assumed

that the singular valuessi are ordered in a non-increasing sequence;i.e., si ≥ si+1 ≥ 0.

Similar to Krylov subspace regularization methods, the regularization parameterk may be

determined from standard regularization parameter-choice methods orad hoctechniques.
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5.2 The second strategy

In the second strategy, the nonlinear ill-posed cost-functional CLS, (3.1), is first regularized

and then the GNI method is applied to the regularized cost-functional. Therefore, equation

(4.2) does not need to be regularized throughout the GNI iterations. At least, three different

methods for regularizing the cost-functionalCLS for the GNI method have been reported in

the literature. These are additive, multiplicative, and additive-multiplicative regularization.

5.2.1 Additive regularization

In this case,CLS is regularized by an additive term (see for example, [76, 38]):

C(χ) = CLS(χ) + αCAR(χ) (5.6)

whereCAR is an appropriate additive regularizer. The regularizerCAR is usually chosen to be

theL2-norm total variation of the contrast which is written as

CAR(χ) =
1

A

∫

D

|∇χ(q)|2 dq (5.7)

whereA is the area (or volume, in the case of three-dimensional imaging) of D and∇

denotes the spatial gradient operator. To handle the fact that the cost-functionalCAR(χ) is

not holomorphic inχ, we use the Wirtinger calculus as before. Thus, we consider the cost-

functionalC̃AR(χ, χ∗) which satisfies̃CAR(χ, χ∗) = CAR(χ) (see Chapter 4 and Appendix C

for more discussion). The cost-functionalC̃AR(χ, χ∗) is holomorphic inχ for fixedχ∗ and

holomorphic inχ∗ for fixedχ. Thus, the following formal derivative operators can be derived
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for this regularizer (see Section D.3 for the proof)

∂C̃AR

∂χ∗
|χ=χn

(ψ∗) =

{

∂C̃AR

∂χ
|χ=χn

(ψ)

}∗

=

〈

− 1

A
∇2χn, ψ

〉

D

, (5.8)

[

∂2C̃AR

∂χ∗∂χ
|χ=χn

(ϕ)

]

(ψ∗) =

{[

∂2C̃AR

∂χ∂χ∗
|χ=χn

(ϕ∗)

]

(ψ)

}∗

=

〈

− 1

A
∇2ϕ, ψ

〉

D

, (5.9)

and
[

∂2C̃AR

∂χ∂χ
|χ=χn

(ϕ)

]

(ψ) =

{[

∂2C̃AR

∂χ∗∂χ∗
|χ=χn

(ϕ∗)

]

(ψ∗)

}∗

= 0. (5.10)

where∇2 denotes the Laplacian operator andψ andϕ are two arbitrary functions inL2(D).

Noting (4.2), and considering (5.10) as well as utilizing the GNI approximation (which

results in ignoring∂
2C̃LS

∂χ∂χ
and ∂2C̃LS

∂χ∗∂χ∗ ), the correction∆χn may be found by satisfying

[

∂2C̃LS

∂χ∗∂χ
|χ=χn

+ α
∂2C̃AR

∂χ∗∂χ
|χ=χn

]

(∆χn) = −∂C̃
LS

∂χ∗
|χ=χn

− α
∂C̃AR

∂χ∗
|χ=χn

. (5.11)

Utilizing (5.8), (5.9), (4.8), and (4.11), the above equation results in the following equation

ηS

Tx
∑

t=1

[[

∂Escat
t

∂χ
|χ=χn

]a [
∂Escat

t

∂χ
|χ=χn

]

− α

A
∇2

]

(∆χn) =

−ηS
Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a

(Escat
t (χn) − Escat

meas,t) +
α

A
∇2χn. (5.12)

Thus, using this specific regularizer, the correction vector in the discrete domain at thenth

iteration is found by solving

(JH
n Jn − γΣ)∆χ

n
= JH

n dn + γΣχ
n

(5.13)

where the matrixΣ is the discrete representation of the1
A
∇2 operator. The positive param-
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eterγ is equal toα/ηS . In this case, the regularization weight remains constant throughout

different GNI iterations, as both the matrixΣ and its coefficientγ remain constant through-

out different GNI iterations. Therefore, this regularization type will not provide adaptive

regularization unless the user changes the regularizationweight manually. In this case, the

parameterα is usually chosen viaad hoctechniques [76, 38]. It should also be mentioned

that this regularization method favors smooth solutions due to the presence of the matrixΣ

in (5.13) which provides Laplacian regularization. We alsonote that the matrixΣ is imple-

mented by assuming that its argument vanishes on the boundary of the imaging domain;i.e.,

utilizing Dirichlet conditions [93] (see (D.43) and its related discussion). Under this zero

boundary condition, the matrixΣ has no nullspace [94, pg. 102]; thus providing a unique

solution for (5.13).

5.2.2 Multiplicative regularization

In this case, the cost-functionalCLS is regularized with a multiplicative term. That is, at the

nth iteration of the GNI algorithm, we minimize ([4, 56, 45])

Cn(χ) = CLS(χ)CMR
n (χ). (5.14)

Here, we consider the multiplicative regularizerCMR
n as the weightedL2-norm total variation

of the unknown contrast, defined as [4, 56]

CMR
n (χ) =

∫

D

b2n(q)(|∇χ(q)|2 + α2
n)dq (5.15)

where

bn(q) , A− 1

2 (|∇χn(q)|2 + α2
n)

− 1

2 . (5.16)
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The choice of the positive parameterα2
n is explained below. For the regularizer (5.15), it can

be shown that (see Section D.3)

∂C̃MR
n

∂χ∗
|χ=χn

(ψ∗) =

{

∂C̃MR
n

∂χ
|χ=χn

(ψ)

}∗

=
〈

−∇ · (b2n∇χn), ψ
〉

D
, (5.17)

[

∂2C̃MR
n

∂χ∗∂χ
|χ=χn

(ϕ)

]

(ψ∗) =

{[

∂2C̃MR
n

∂χ∂χ∗
|χ=χn

(ϕ∗)

]

(ψ)

}∗

=
〈

−∇ · (b2n∇ϕ), ψ
〉

D
, (5.18)

[

∂2C̃MR
n

∂χ∂χ
(ϕ)

]

(ψ) =

{[

∂2C̃MR
n

∂χ∗∂χ∗
(ϕ∗)

]

(ψ∗)

}∗

= 0, (5.19)

where ‘∇·’ represents the divergence operator andC̃MR
n (χ, χ∗) = CMR

n (χ). Using this mul-

tiplicative regularizer, the correction in the discrete domain can then be found by solving

(JH
n Jn − βnLn)∆χn = JH

n dn + βnLnχn (5.20)

whereLn represents the discrete form of the∇ · (b2n∇) operator andβn = ‖dn‖2. The posi-

tive parameterα2
n is chosen to beFLS(χ

n
)/∆A where∆A is the area of a single cell in the

discretized domainD.2 The operatorLn, which changes throughout the GNI iterations, pro-

vides an edge-preserving regularization. That is, if one specific region of the reconstructed

χn is homogeneous, the weightb2n will be almost constant for that region. Therefore, the op-

eratorLn will be approximately equal tob2n∇2 which favors smooth solutions. On the other

hand, if there is a discontinuity (edge) at some region ofχn, the correspondingb2n for that

region will be small. Thus, the discontinuity will not be smoothed out and will be preserved.

The regularization operatorLn may be considered as a weighted Laplacian regularizer. A

detailed explanation about weighted Laplacian regularizers can be found in [95]. It has been

shown in [96, Section 3.5] and [97] that the nullspace ofLn is spanned by a constant vec-

2 Note thatFLS(χ
n
) is the discrete form ofCLS(χn); see (4.30).
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tor. Noting that the nullspace ofJH
n Jn contains high-frequent components [23, 82], the

nullspace ofLn andJH
n Jn intersect trivially; thus, ensuring a unique solution for (5.20).

This multiplicative regularizationautomaticallydetermines the regularization weight which

is governed by the discrepancy between the measured data andthe simulated data corre-

sponding toχ
n
. As can be seen from (5.20), the weight of the operatorLn depends on

‖dn‖2 which provides adaptive regularization. That is, if the predicted solution is far from

the true solution, the regularization weight is high. When the predicted solution gets closer to

the true solution, theL2-norm of the discrepancydn decreases; thus decreasing the regular-

ization weight. In addition to the weightedL2-norm total variation form, the multiplicative

regularization term may be used in the forms of the standardL2-norm [45] and theL2-norm

total variation (not weighted) [4]. As opposed to the weightedL2-norm total variation mul-

tiplicative regularizer, see (5.15), these two forms of themultiplicative regularizer do not

have the edge-preserving characteristic and will not be discussed in this thesis.

Throughout this thesis, we will refer to the GNI algorithm with the weightedL2-norm total

variation Multiplicative Regularizer (MR) as the MR-GNI method.

5.2.3 Additive-multiplicative regularization

In this case, we regularizeCLS, (3.1), as [30, 59]

C(χ) = CLS(χ)
[

1 + αCAR(χ)
]

. (5.21)

ChoosingCAR as in (5.7), the correction in the discrete domain can be found by solving

(JH
n Jn − λnΣ)∆χ

n
= JH

n dn + λnΣχn (5.22)
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where3

λn =
α ‖dn‖2

1 + αFAR(χ
n
)
. (5.23)

This regularization favors smooth solution due to the presence of the matrixΣ in (5.22).

Unlike the additive regularization, see (5.13), the weightof the regularization is not constant

but changes throughout the GNI iterations. As can be seen from (5.22), the regularization

weight governed by the positive parameterλn decreases when the algorithm gets closer to

the true solution. However, the user is still required to setthe positive parameterα at the be-

ginning of the GNI algorithm. The algorithm then provides adaptive regularization based on

the givenα. It should be pointed out that this regularization can be viewed as a multiplicative

regularization where the regularizer is1+αCAR(χ) or as an additive regularization where the

regularizer isCLS(χ)CAR(χ). As explained in Section 5.2.1, the nullspace ofJH
n Jn − λnΣ

is trivial; thus, ensuring a unique solution for (5.22).

5.3 Consistent framework and discussion

Considering that the contrastχ(q) is zero on the boundary ofD, it can be shown that the

operatorsΣ andLn are self-adjoint and negative definite (see Appendix E for the proof).

Therefore, the operatorsΣ andLn can be represented by−AHA and−BH
n Bn respectively

(for example, using Cholesky decomposition [98, Section 4.2]). Using this notation, the

correction vector∆χ
n

in (5.13), (5.20), and (5.22) can be written, respectively,as

(JH
n Jn + γAHA)∆χ

n
= JH

n dn − γAHAχ
n
, (5.24)

(JH
n Jn + βnB

H
n Bn)∆χn = JH

n dn − βnB
H
n Bnχn, (5.25)

3 As mentioned in Section ‘Symbols and Acronyms’,FAR(χ
n
) represents the discrete form ofCAR(χn).



5.3 Consistent framework and discussion 56

(JH
n Jn + λnA

HA)∆χ
n

= JH
n dn − λnA

HAχ
n
. (5.26)

Now, if we consider the penalty termΩ(∆χ) in (5.1) as
∥

∥

∥R(∆χ+ χ
n
)
∥

∥

∥

2

, the correction

corresponding to (5.1) can be written as

∆χ
n

= arg min
∆χ

∥

∥

∥

∥

∥

∥

∥







Jn

√
αnR






∆χ−







dn

−√
αnRχn







∥

∥

∥

∥

∥

∥

∥

2

(5.27)

which is equivalent to solving

(JH
n Jn + αnR

HR)∆χ
n

= JH
n dn − αnR

HRχ
n
. (5.28)

It can be easily seen that by choosingR equal toA, andαn equal to eitherγ or λn, the

penalty method applied to (4.29) is equivalent to the additive or additive-multiplicative reg-

ularization applied to the data misfitCLS. Also, by varyingR throughout the GNI iterations

and choosing it to beBn at thenth GNI iteration and settingαn equal toβn, the penalty

method applied to (4.29) will be equivalent to the multiplicative regularization applied to

CLS.

It can be shown that Krylov subspace regularization provides similar results to TSVD reg-

ularization [94, pg. 50], [74, pg. 146] due to the similaritybetween the Krylov subspace

basis and the SVD basis. It can also be shown that the effect ofTSVD regularization is very

similar to that of Tikhonov regularization whenΩ(∆χ) =
∥

∥∆χ
∥

∥

2
[94, pg. 13], [23], [83].

Therefore, assuming appropriate regularization weight, Krylov subspace regularization and

the TSVD regularization methods applied to (4.29) produce results which closely follow the
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Tikhonov solution

∆χ
n

= arg min
∆χ

{

∥

∥Jn∆χ− dn
∥

∥

2
+ αn

∥

∥∆χ
∥

∥

2
}

. (5.29)

Now, assumingΩ(∆χ) in (5.1) to be
∥

∥

∥R(∆χ+ χ
n
)
∥

∥

∥

2

and substitutingy = R(∆χ + χ
n
),

the Tikhonov functional in (5.1) can be written as

y
n

= arg min
y

{

∥

∥

∥J̃ny − d̃n

∥

∥

∥

2

+ αn
∥

∥y
∥

∥

2
}

(5.30)

whereJ̃n = JnR
−1 andd̃n = dn + Jnχn. Note that, here, we have implicitly assumed that

the inverse of the regularization matrixR exists, which is not always true. Having foundy
n

from (5.30), the correction∆χ
n

can be found by solving the well-posed system of equations

R∆χ
n

= y
n
− Rχ

n
. (5.31)

Using the aforementioned similarity between the Tikhonov regularization and Krylov sub-

space regularization as well as the TSVD regularization, the regularized solutiony
n

obtained

from (5.30) will be similar to the regularized solution obtained by applying Krylov subspace

regularization or the TSVD method to

J̃nyn = d̃n. (5.32)

Therefore, if we apply Krylov subspace regularization or the TSVD method to (5.32) to

obtainy
n
, and then find∆χ

n
from (5.31), the resulting∆χ

n
will be similar to the Tikhonov

solution whenΩ(∆χ
n
) is chosen to be

∥

∥

∥
R(∆χ

n
+ χ

n
)
∥

∥

∥

2

which satisfies (5.28). Therefore,

the TSVD and Krylov subspace regularization methods can be viewed in the same form as

(5.24), (5.25), (5.26) and (5.28) by applying them to (5.32)rather than (4.29).
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It should be noted that these regularization methods, if modified as explained above, can all

be applied from this framework and they will result in the same ∆χ
n

for the appropriate

choice of the regularization operator and its weight. However, their application will differ

in some important aspects such as the computational complexity. For example, although

Krylov subspace regularization and TSVD methods, applied to (4.29), will result in similar

solutions, the computational complexity of Krylov subspace regularization is significantly

less than that of the TSVD method. A more detailed computational complexity analysis of

the regularization techniques considered here are described next in Section 5.4.

Among the regularization methods considered here, the additive-multiplicative and multi-

plicative regularization methodsautomaticallyadjust the regularization weight and provide

adaptive regularization throughout the GNI iterations. Asopposed to other regularization

methods considered herein, the multiplicative regularization automaticallychanges the reg-

ularization operator,Ln, during the GNI iterations. This will result in an edge-preserving

regularization if the multiplicative regularizer is chosen as the weightedL2-norm total vari-

ation of the unknown contrast.

5.4 Computational complexity analysis

To compare the computational complexity of the regularization techniques considered in this

chapter, we utilize the conventions introduced in Section 4.5. Thus,Jn ∈ C
M×N and the

calculation of bothJnr (r ∈ C
N ) andJH

n s (s ∈ C
M ) requiresMN operations. The compu-

tational complexity of the CGLS and LSQR methods, as two Krylov subspace regularization

schemes, is2k × (MN) when applied to (4.29) (k is the dimension of the projection). Note

that the CGLS and LSQR methods require two matrix-vector multiplications in each itera-

tion. Ask is usually chosen to be a very small integer, this regularization technique can be



5.4 Computational complexity analysis 59

computationally attractive. The TSVD approach is computationally expensive as finding the

SVD of the matrixJn in (4.29) requiresO(MN2) operations ifM ≥ N orO(M2N) when

M ≤ N [90]. This can make the TSVD algorithm impractical for large-scale problems.

It should also be noted that the TSVD method requires the explicit form of the matrixJn

for performing the SVD. However, the other regularization methods discussed herein only

require the definition of the matrixJn as a ‘black-box’ operator which implements two ma-

trix vector multiplications: (i) Jnr and (ii ) JH
n s. This can be very important in large-scale

problems when the calculation of the explicit form of the Jacobian matrix is not feasible.

Comparing (5.3), (5.13), (5.20) and (5.22), it can be concluded that the computational com-

plexity of the penalty methods and the methods which belong to the second strategy is very

close. The main difference between these methods lies in thecomputational cost of multi-

plying RHR, Σ andLn by an arbitrary vector of the proper size. Specifically, the matrix

Σ is a symmetric Block Toeplitz with Toeplitz Blocks [94, pg. 100] and its matrix-vector

multiplication can be accelerated by the Fast Fourier Transform (FFT). Therefore, the com-

putational complexity ofΣ∆χ
n

can be ignored compared to that ofJH
n J∆χ

n
. Using this

approximation, the computational cost for finding the correction from (5.13) and (5.22) is

about2P × (2MN) operations whereP is the number of Conjugate Gradient (CG) itera-

tions required for convergence (assuming that the CG method is used for solving (5.13) and

(5.22)). Note that each iteration of the CG algorithm requires two matrix-vector multiplica-

tions and we have assumed thatJn is only available as a ‘black-box’ operator. Therefore, it

can be easily seen that the computational complexity of the Krylov subspace regularization

applied to (4.29) is much less than that of the penalty methods as well as the methods of the

second strategy due to the fact that usuallyk � P . However, it should be noted that the

computational complexity of the Krylov subspace regularization techniques will increase

drastically when applied to (5.32) as the operation of the matricesJ̃n andJ̃
H

n on arbitrary

vectors of correct size is expensive due to the presence ofR−1 in the definition of the matrix
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J̃n. If the methods of the first strategy utilize a standard regularization parameter-choice

method, such as theL-curve algorithm or the GCV method, the computational cost ofthese

algorithms needs to be considered in the overall computational cost of the regularization

technique.

5.5 Comparison between different inversion results

Different regularization methods in conjunction with the Gauss-Newton inversion method

for electromagnetic inverse scattering problems were studied and classified into two cate-

gories. It was shown that all of these regularization methods can be viewed from within

a single consistent framework after applying some modifications. This framework helps

to clarify the function of these regularization and may leadto future advances. Although,

these regularization methods, after applying the modifications explained in Section (5.3),

can result in the same reconstruction, it is instructive to compare their performance in their

standard forms;i.e., without applying any modifications to them. In this section, we com-

pare the performance of the GNI algorithm using different regularization techniques against

two experimental data sets; one assuming the TM polarization and the other assuming the

TE polarization.

5.5.1 UPC Barcelona experimental data set

The Universitat Polit̀ecnica de Catalunya (UPC) Barcelona data set was collected using a

near-field2.33 GHz microwave scanner system which consists of64 water-immersed anten-

nas equispaced on a12.5 cm-radius circular array [99]. In their system, for each case of

using one of the64 antennas as a sole transmitter, field data is collected usingonly the33

antennas positioned in front of the transmitting antenna. The measured data is then cali-
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Fig. 5.3: UPC experimental data set: reconstructed relative complex permittivity of a real human
forearm (BRAGREG data set) using (a)-(b): MR-GNI, (c)-(d): GNIwith the additive-
multiplicativeL2-norm total variation regularizer, (e)-(f): GNI with the additiveL2-norm
total variation regularizer, (g)-(h): GNI with the identity Tikhonov regularizer, and (i)-
(j): GNI with Krylov subspace regularization
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brated such that a line source perpendicular to the imaging domain can be used to model

the incident field insideD (2D-TM assumption). The data collection tank is filled with a

background solution of water, having relative permittivity εb = 77.3+ j8.66 at2.33 GHz. In

this thesis, we consider two targets from this data set; namely, BRAGREG and FANCENT.

In this section, we invert the BRAGREG data set (data file: BRAGREG.ASC) which is col-

lected from a real human forearm. The inversion results are constrained to lie within the

region defined by0 ≤ Re(εr) ≤ 80 and0 ≤ Im(εr) ≤ 20, as in [11]. We consider the imag-

ing domainD to be a0.094 m×0.094 m square discretized into60×60 pulse basis functions

and start the MR-GNI algorithm, explained in Section 5.2.2, with χ = 0. The reconstruction

of this target using the MR-GNI method after 13 iterations is shown in figure 5.3 (a)-(b). The

overall structure of the forearm can be seen in the images of the real and imaginary parts of

the complex permittivity. The MR-GNI inversion is very similar to the MR-CSI reconstruc-

tion of this target [11]. The expected relative permittivities are approximately54 + j11 for

muscle and12+ j2.5 for bones atf = 2.33 GHz according to [100]. Similar to the MR-CSI

reconstruction of this target [11], the complex permittivity of the muscle is reconstructed

well. However, the reconstructed real and imaginary parts of the bone complex permittivity

are higher than their expected values due to the low dynamic range of the collected data

[101, 11] as well as the use of the 2D-TM approximation for what is really a 3D problem.

It should be noted that the contribution to the measured scattered field arising from within

the bones is very small due to the high reflection coefficient at the bone–muscle boundary.

The reconstruction of this target using GNI in conjunction with some other regularization

techniques namely additive-multiplicativeL2-norm total variation (Section 5.2.3), additive

L2-norm total variation (Section 5.2.1), Tikhonov withR = I (Section 5.1.1), and Krylov

subspace (Section 5.1.2) regularizers, is shown in figure 5.3 (c)-(j). Comparing the GNI

reconstructions of this target using different regularization methods, the edge-preserving

characteristic of the utilized weightedL2-norm total variation multiplicative regularizer can
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Fig. 5.4: FoamTwinDieltarget from Institut Fresnel second experimental data set.

clearly be seen.

5.5.2 Institut Fresnel second experimental data set

For the second Institut Fresnel experimental data set [102], the transmitting and receiving an-

tennas are both wide-band ridged horn antennas and are located on a circle of radius1.67 m.

This data set is collected from four different targets; namely, FoamDielInt, FoamDielExt,

FoamTwinDiel, andFoamMetExt. These targets are all long circular cylinders and have no

variations in the longitudinal direction. Both TE and TM polarizations are measured for each

target and the background medium is free space. TheFoamDielIntandFoamDielExtdata

sets are collected using8 transmitters and241 receivers per transmitter. TheFoamTwinDiel

andFoamMetExtdata sets are collected using18 transmitters and241 receivers per trans-

mitter. TheFoamDielInt, FoamDielExt, andFoamTwinDieldata sets are collected for9 fre-

quencies from2 GHz to10 GHz, in 1 GHz step. TheFoamMetExtdata set is collected for

17 frequencies from2 GHz to18 GHz, in1 GHz step. The measured data is then calibrated

such that the horn transmitting and receiving antennas can be approximated by magnetic

line sources in the TE case and electric line sources in the TMcase [103]. In this the-

sis, we consider the inversion from all of these data sets. Inthis section, we consider the

FoamTwinDieltarget shown in figure 5.4 from which a TE data set has been collected (data
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file: FoamDielExtTE.exp). The frequency of operation is chosen to bef = 6 GHz. The

inversion of this data set using the GNI method using different regularization methods is

shown in figure 5.5. Similar to the inversion of the human forearm data set, the reconstruc-

tion using the MR-GNI method outperforms the other reconstruction results.

5.6 Incorporatinga priori information into the regularizer

Sometimes, there may bea priori information about the OI which can be incorporated into

the inversion algorithm. One way to incorporatea priori information into the inversion

algorithm is to include it in the regularizer. In this section, we consider two types ofa priori

information about the OI. In the first case, the goal is to find the shape and location of an

OI which consists of some homogeneous objects with known permittivities. This problem

is sometimes referred as shape and location reconstruction. The second case deals witha

priori information about the average expected ratio between the real and imaginary parts of

the OI’s contrast.

5.6.1 Shape and location reconstruction

For binary location and shape reconstruction, where one is interested to find the shape and

location of a homogeneous target with a known contrastχh, Crocco and Isernia [104] intro-

duced an additive regularizer for the CSI algorithm which pushes each pixel in the imaging

domain to have a contrast equal to either zero orχh. It should be noted thatχh is not a func-

tion but a constant,χh ∈ C. Allowing the inversion algorithm to converge to a zero contrast

is important as part of the imaging domain which is not occupied by the OI has the contrast

of zero;i.e., χ(q ∈ D − OI) = 0. The weight of this additive regularizer was chosen using

anad hocalgorithm which does not provide an adaptive regularization [104]. Based on this
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Fig. 5.5: Institut Fresnel experimental TE data set (FoamTwinDiel target): reconstructed con-
trast at the frequency of6 GHz using (a)-(b): MR-GNI, (c)-(d): GNI with the additive-
multiplicativeL2-norm total variation regularizer, (e)-(f): GNI with the additiveL2-norm
total variation regularizer, (g)-(h): GNI with the identity Tikhonov regularizer, and (i)-
(j): GNI with Krylov subspace regularization
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Fig. 5.6: SyntheticE-target data set (I) with TM illumination: (collected atf = 1.5 GHz) (a)-(b) true
object, (c)-(d) shape and location reconstruction by assumingχh1 = 0 andχh2 = 0.40 −
j0.013, and (e)-(f) the MR-GNI reconstruction (without shape and location reconstruction).
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Fig. 5.7: Institut Fresnel experimental TE data set (f = 6 GHz): (a) FoamDielInt target, (b)-
(c) shape and location reconstruction of theFoamDielInt target (assumingχh1 = 0,
χh2 = 0.45, andχh3 = 2).

algorithm, Abubakar and van den Berg [105] introduced a multiplicative regularizer which

can provide an adaptive regularization in the framework of the CSI algorithm. They also

extended their algorithm for the case when there are severalhomogeneous targets inside the

imaging domain. That is, it is more than a binary inversion algorithm which is only capable

of reconstructing the shape and location of one homogeneoustarget. Based on [105], we

introduce a GNI algorithm for shape and location reconstruction. As will be seen below,

the proposed GNI algorithm is capable of incorporatinga priori information about several

homogeneous targets insideD.

In the GNI method for shape and location reconstruction, thecost-functional to be mini-
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mized at thenth iteration of the algorithm is

Cn(χ) = CLS(χ)CMR,hom
n (χ). (5.33)

The multiplicative regularizerCMR,hom
n is given as

CMR,hom
n (χ) =

1

A

∫

D

L
∏

l=1

∣

∣χ(q) − χhl
∣

∣

2
+ α2

n
∣

∣χn(q) − χhl
∣

∣

2
+ α2

n

dq (5.34)

whereχhl ∈ C is thelth known homogeneous contrast in the imaging domain. The positive

parameterα2
n is chosen to beCLS(χn). The required derivatives for this regularizer to be used

in the framework of the GNI method can be written as (see Section D.4 for the derivations)

∂C̃MR,hom
n

∂χ∗
(ψ∗) =

{

∂C̃MR,hom
n

∂χ
(ψ)

}∗

=

〈

1

A

L
∑

l=1

ξ2
l,n

(

χn − χhl
)

, ψ

〉

D

, (5.35)

[

∂2C̃MR,hom
n

∂χ∗∂χ
|χ=χn

(ϕ)

]

(ψ∗) =

{[

∂2C̃MR,hom
n

∂χ∂χ∗
|χ=χn

(ϕ∗)

]

(ψ)

}∗

=

〈

1

A

L
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ξ2
l,nϕ, ψ

〉

D

,

(5.36)

and,

[

∂2C̃MR,hom
n

∂χ∂χ
|χ=χn

(ϕ)

]

(ψ) =

{[

∂2C̃MR,hom
n

∂χ∗∂χ∗
|χ=χn

(ϕ∗)

]

(ψ∗)

}∗

= 0, (5.37)

whereC̃MR,hom
n (χ, χ∗) = CMR,hom

n (χ) and

ξl,n(q) ,

(

∣

∣χn(q) − χhl
∣

∣

2
+ α2

n

)− 1

2

. (5.38)

Thus, the correction in the discrete domain can be found by satisfying

(JH
n Jn + βn

L
∑

l=1

Dl,n)∆χn = JH
n dn − βn

L
∑

l=1

Dl,n(χn − χhl e) (5.39)
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wheree ∈ C
N is a vector of all ones. The matrixDl,n ∈ C

N×N is a diagonal matrix whose

diagonal elements are given as

Dl,n = diag

(

1

A
ξ2

l,n

)

, (5.40)

whereξ2

l,n
∈ C

N is the discretized form ofξ2
l,n(q). The regularization weightβn is also

‖dn‖2.

Using this GNI algorithm, we show two different inversions;one with the TM polarization

and the other with the TE polarization. For the first example,we consider a synthetic data set

which we refer to as the syntheticE-target data set (I). The target, shown in figure 5.6 (a)-(b),

has the same geometry as the target used in [106] for a resolution test study. The relative

complex permittivity of the target is32.7 + j1.28 and that of the background medium is

23.4 + j1.13. At the frequency of1.5 GHz, the OI is illuminated by16 transmitters, which

are electric line sources (TM illumination) and equally spaced on a circle of radius0.1 m.

The scattered field data is collected at16 receivers per transmitter. We then add3% noise to

this synthetically collected data set (according to (4.31)). The inversion is then performed

on a different grid and using another discretization compared to the ones used to collect

the synthetic data set (to avoid the inverse crime). For the inversion algorithm, we utilize

two different values forχh; namelyχh1 = 0 andχh2 = 0.40 − j0.013. We note thatχh2 is

the contrast corresponding to the relative complex perimittivity of the OI. Using these two

values forχh, the shape and location inversion of this target is shown in figure 5.6 (c)-(d)

which shows an accurate reconstruction of the target’s shape and location. We have also

shown the MR-GNI reconstruction of this target, which is ablind inversion of this data set,

in figure 5.6 (e)-(f).

The first example is the inversion of theFoamDielInttarget from the Institut Fresnel second

TE experimental data set explained in Section 5.5.2. The target, shown in figure 5.7 (a),



5.6 Incorporating a priori information into the regularizer 70

consists of two cylinders with contrasts ofχ = 0.45± 0.15 and2± 0.3. Thus, the inversion

algorithm utilizes three different values forχh; namely,χh1 = 0, χh2 = 0.45, andχh3 = 2.

Using these three differentχh, the GNI algorithm converged in8 iterations and the inversion

results are shown in figure 5.7 (b)-(c). As can be seen, the algorithm accurately reconstructs

the shape and location of the two homogeneous objects.

5.6.2 Pre-scaled Gauss-Newton inversion algorithm

In some applications such as biomedical imaging, the magnitude of the real and imaginary

parts of the expected contrast can be considerably out of balance [107]. Usually, it is the real

part of the contrast which is much larger than the imaginary part of the contrast. Therefore,

the inversion algorithm will inadvertently favor the reconstruction of the real part over that of

the imaginary part. This usually results in an oscillatory reconstruction in the reconstructed

imaginary part of the contrast. To enhance the imaginary-part reconstruction for these cases,

Meaneyet. al. have suggested a pre-scaled Gauss-Newton inversion algorithm based on

Tikhonov regularization which balances the reconstruction of the real and imaginary parts

of the contrast by introducing a variable for the scaled realpart of the contrast and optimizing

with respect to this scaled real part and the imaginary part of the contrast.

Inspired by the work of Meaneyet. al. [107], we present a pre-scaled multiplicative reg-

ularized Gauss-Newton inversion method. We accomplish this by introducing the cost-

functional

C(χR, χI) = CLS(χR, χI)CMR,scaled(χR, χI). (5.41)

Note thatCLS(χR, χI) is just CLS(χ) whenχ = χR + jχI . The multiplicative regularizer
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Fig. 5.8: Inversion of the syntheticE-target data set II with TM illumination (collected atf =
2 GHz) using (a)-(b) MR-GNI, (c)-(d) pre-scaled MR-GNI withQ = 20, (e)-(f) pre-scaled
MR-GNI with Q = 40, and (g)-(h) pre-scaled MR-GNI withQ = 60.
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Fig. 5.9: The schematic of the FANCENT phantom from UPC Barcelona experimental data set.

CMR,scaled(χR, χI) at thenth iteration of the algorithm is given as

CMR,scaled
n (χR, χI) =

1

A

∫

D

|∇χR|2 +Q2 |∇χI |2 + α2
n

|∇χR,n|2 +Q2 |∇χI,n|2 + α2
n

dq (5.42)

whereχR,n andχI,n are the real and imaginary parts of the known predicted contrast at

the nth iteration of the GNI algorithm. The positive parameterα2
n is chosen in the same

way presented in Section 5.2.2. The positive real parameterQ ∈ R
+ is selected based on

the average expected ratio between the real part and imaginary part of the OI’s expected

contrast. As can be seen, the weight of|∇χI | is chosen to beQ times more than that of

|∇χR|. WhenQ is chosen to be1, CMR,scaled
n will be the same asCMR

n given in (5.15).

As in the procedure explained in Chapter 4, which was to find∆χ and∆χ∗, the correction

∆χR,n and∆χI,n may be found by satisfying







∂2C
∂χR∂χR

|χ=χn

∂2C
∂χR∂χI

|χ=χn

∂2C
∂χI∂χR

|χ=χn

∂2C
∂χI∂χI

|χ=χn













∆χR,n

∆χI,n






= −







∂C
∂χR

|χ=χn

∂C
∂χI

|χ=χn






(5.43)

whereχn = χR,n + jχI,n. Similar to the work of Meaneyet. al. [107] which introduces

a dummy variable to balance the average magnitude of the realand imaginary parts of the

contrast when solving for∆χR,n and∆χI,n, we introduce the variableχscaled
R = χR/Q; thus,
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balancing the average magnitude ofχscaled
R andχI . We, therefore, optimize overχscaled

R and

χI . In other words, instead of satisfying (5.43), we satisfy







Q2 ∂2C
∂χR∂χR

|χ=χn
Q ∂2C
∂χR∂χI

|χ=χn

Q ∂2C
∂χI∂χR

|χ=χn

∂2C
∂χI∂χI

|χ=χn













∆χscaled
R,n

∆χI,n






= −







Q ∂C
∂χR

|χ=χn

∂C
∂χI

|χ=χn






. (5.44)

After finding∆χscaled
R,n , and∆χI,n from the above equation, the real and imaginary parts of the

contrast is updated in the form ofχR,n+1 = χR,n + αn∆χR,n andχI,n+1 = χI,n + αn∆χI,n

whereαn is an appropriate step-length and∆χR,n = Q∆χscaled
R,n .

The derivative operators required for solving (5.44) are derived in Section D.5. Noting that

the operator∂
2Escat

t

∂χ2 is neglected in the GNI method, the discrete form of (5.44) will be







Q2Re
(

JH
n Jn

)

− βnQ
2
L

scaled
n −QIm

(

JH
n Jn

)

QIm
(

JH
n Jn

)

Re
(

JH
n Jn

)

−Q2βnL
scaled
n













∆χscaled
R,n

∆χ
I,n






=







QRe
(

JH
n dn

)

+QβnL
scaled
n χ

R,n

Im
(

JH
n dn

)

+Q2βnL
scaled
n χ

I,n






, (5.45)

whereβ2
n = ‖dn‖2. The operatorLscaled

n is the discrete form of the operator∇·
[

(bscaled
n )2 ∇

]

where

bscaled
n (q) , A− 1

2 (|∇χR,n(q)|2 +Q2 |∇χI,n(q)|2 + α2
n)

− 1

2 . (5.46)

We note that whenQ = 1, solving (5.45) is equivalent to solving (5.20), the problem for-

mulated in terms of∆χ and∆χ∗. This can be easily seen by multiplying the second row

of (5.45) byj and adding that to the first row of (5.45), and is a verificationthat optimizing

overχR andχI is equivalent of that overχ andχ∗.

Using the proposed pre-scaled MR-GNI, we show the inversion of two different data sets.
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Fig. 5.10: Reconstructed relative complex permittivity of the FANCENT phantom from UPC
Barcelona experimental data set (TM illumination) using (a)-(b) MR-GNI, (c)-(d) pre-
scaled MR-GNI withQ = 2, (e)-(f) pre-scaled MR-GNI withQ = 5, (g)-(h) pre-scaled
MR-GNI with Q = 10, and (i)-(j) pre-scaled MR-GNI withQ = 20.
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The first one is the synthetic data set collected from theE-target atf = 2 GHz using the

same procedure explained in Section 5.6.1. We refer to this data set as the syntheticE-

target data set (II). The inversion of this data set using theMR-GNI, which is explained in

Section 5.2.2 and is equivalent to the proposed pre-scaled MR-GNI method withQ = 1,

is shown in figure 5.8 (a)-(b). As can be seen, the imaginary-part reconstruction is very

oscillatory. We now use the pre-scaled MR-GNI method with three different values ofQ;

namelyQ = 20,Q = 40, andQ = 60. As can be seen in figure 5.8 (c)-(h), all of these three

pre-scaled inversions are successful in reconstructing the imaginary part of the contrast. We

note that the true ratio between the real and imaginary partsof the OI’s contrast is about40

(see Section 5.6.1).

As another example, we consider the FANCENT phantom from the UPC Barcelona ex-

perimental data set which is calibrated for the TM polarization. The UPC MWT system

was explained in Section 5.5.1. The FANCENT phantom is shown in figure 5.9. The in-

version results are constrained to lie within the region defined by0 ≤ Re(εr) ≤ 80 and

0 ≤ Im(εr) ≤ 20, as in [11]. The MR-GNI inversion of this data set is shown in fig-

ure 5.10 (a)-(b). Although the real-part reconstruction issatisfactory, the imaginary-part

reconstruction is very oscillatory. We now use the pre-scaled MR-GNI method with four dif-

ferent values forQ. As can be seen, havingQ equal to2, 5, and10 improves the imaginary-

part reconstruction compared to the MR-GNI reconstruction.However, increasingQ to 20

starts deteriorating the reconstruction. We note that the ratio between the real and imaginary

parts of the contrast is about9.5 in 96% ethyl alcohol and1.7 in 4% ethyl alcohol.
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5.7 An image enhancement algorithm

After the GNI method converges to a final solution (image), say χ̂, this final reconstruction

can still be enhanced using a post-processing image enhancement algorithm. Although this

topic is not related to the regularization of the data misfit cost-functional, it is presented in

this chapter as it is based on the weightedL2-norm total variation multiplicative regulariza-

tion. Inspired by the work of Abubakaret. al. on a deblurring algorithm for linear inverse

problems [108], we enhance the final reconstruction of the GNI method by the weightedL2-

norm total variation multiplicative regularizer. We accomplish this by first approximating

the nonlinear operatorEscat
t , (2.20), with the linear operatorKt defined as

Kt(χ) = GS

[

χ
(

I − Gχ̂D
)−1

(

E inc
t

)

]

= GS [χEt(χ̂)] = GS

(

χE
χ̂
t

)

(5.47)

whereE
χ̂
t = Et(χ̂) is the known total field insideD due to the known contrast̂χ when the

tth transmitter is active. We then construct the linear cost-functionalCLin as

CLin(χ) = ηS

Tx
∑

t=1

∥

∥Kt(χ) − Escat
meas,t

∥

∥

2

S
(5.48)

This cost-functional is then regularized as

C(χ) = C lin(χ)CR(χ). (5.49)

This multiplicatively regularized cost-functionalC(χ) is minimized using the Conjugate

Gradient (CG) method over the contrastχ where the initial guess to the CG algorithm is

the final reconstruction from the GNI method;i.e., χ̂. At themth iteration of the CG method,
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Fig. 5.11: Real human forearm: (a)-(b) reconstruction using the GNI-CGLS methodand (c)-(d) its
corresponding enhanced reconstruction.

whereχm is known, the multiplicative regularizer is given by

CR
m(χ) =

1

A

∫

D

|∇χ(q)|2 + δ2
m+1

|∇χm(q)|2 + δ2
m

dq (5.50)

To ensure the convexity of the cost-functional (5.49), the positive parameterδ2
m+1 is chosen

to be [108],

δ2
m+1 =

1

2

‖bm∇χm‖2
D

‖bm‖2
D

(5.51)

wherebm , A− 1

2 (|∇χm|2 + δ2
m)−

1

2 .
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In the discrete domain, the contrast vector is updated as

χ
m+1

=















χ̂ m = 0

χ
m

+ αmvm m ≥ 1

(5.52)

wherevm is the CG direction at themth iteration of the image enhancement algorithm and

αm is a real number (step-length). The CG directionvm can be found from [109]

vm =















g
1

m = 1

g
m

+
‖g

m
‖2

∥

∥

∥g
m−1

∥

∥

∥

2 vm−1 m ≥ 2
(5.53)

whereg
m

(gradient) is the maximum rate of change in the cost-functional, (5.49), at the

mth iteration. It is well-known that it is the derivative with respect toχ∗ which defines the

maximum rate of change [71]. In the continuous domain, this derivative may be found as

∂C̃
∂χ∗

|χ=χm
(ψ∗) =

〈

ηSCR
m(χm)

Tx
∑

t=1

Ka
t

(

Kt(χm) − Escat
meas,t

)

− C lin(χm)Lmχm, ψ
〉

D

(5.54)

whereLmχm = ∇ · (b2m∇χm) and C̃(χ, χ∗) = C(χ). Thus, in the discrete domain, the

gradientg
m

will be

g
m

= ηSFR
m(χ

m
)KH(K χ

m
− Escat

meas) −F lin(χ
m

)Lmχm (5.55)

whereK ∈ C
M×N is the matrix which represents the discrete forms ofKt operators and

Lm is the discrete form ofLm. The cost-functionalsFR
m(χ

m
) andF lin(χ

m
) are also the

discrete forms ofCR
m(χm) andC lin(χm) respectively. The closed-form expression for the

step-lengthαm can be found in [108]. As in [108], the enhancement procedureterminates

when the normalized difference between two successive enhanced contrasts becomes less
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Fig. 5.12: (a)-(b) Reconstruction of the human forearm at the5th iteration of the GNI-CGLS method
and (c)-(d) its corresponding enhanced reconstruction.

than a prescribed tolerance:
‖χm+1 − χm‖2

D

‖χm+1‖2
D

< tol. (5.56)

In our implementation, the prescribed tolerance, tol, is set to be10−6.

To show the performance of this enhancement algorithm, we consider two different experi-

mental data sets; one with the TM polarization and the other one with the TE polarization.

In both cases, we start the inversion algorithm withχ = 0. For the inversion algorithm, we

utilize the GNI algorithm equipped with the CGLS regularization technique. We refer to

this algorithm, which is explained in Section 5.1.2, as the GNI-CGLS method. The stopping

iteration of the CGLS regularization scheme is chosen using the ad hoc two-step proce-

dure outlined in [12]. The GNI-CGLS and the enhancement algorithms were run as Matlab
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scripts on quad-core2.66 GHz machine. The utilized forward solver in the GNI method is

a Method of Moments (MoM) solver which utilizes the CG method accelerated by the Fast

Fourier Transform (FFT) [37] and the marching-on-in-source-position technique [38].

We apply the GNI-CGLS algorithm to the real human forearm dataset which was described

in Section 5.5.1. The GNI-CGLS algorithm converged after24 iterations and the data misfit

CLS at the last iteration was4.7%. The inversion result using the GNI-CGLS algorithm

is shown in figure 5.11 (a)-(b)4 where the reconstruction results are very oscillatory. The

enhancement algorithm was then applied to this reconstruction which took312 CG iterations

applied to (5.49). The computation times were31 minutes for the GNI-CGLS method and4

minutes for the enhancement algorithm.

The enhanced reconstruction, shown in figure 5.11 (c)-(d), shows the overall structure of

the arm as well as the positions of the two bones clearly. It can easily be seen that the

utilized enhancement suppresses the spurious oscillations in the original reconstruction and

also preserves the edges of the two bones. The reconstructedpermittivity for the muscle

tissue is close to the expected value; however, the reconstructed permittivity of the bones is

higher than the expected value.

The data misfitCLS for the enhanced reconstructed contrast is5.2% which is slightly larger

than the data misfit corresponding to the GNI-CGLS reconstructed contrast. This may seem

surprising at first, but it is well-known that if inversion algorithms converge to where the

data misfit is below the noise level, then the convergence is probably to the wrong local

minimum. That is, a smaller data misfit cost-functionalCLS does not necessarily mean a

better reconstruction as the data misfit should not become smaller than the noise level of the

calibrated measured data (Morozov discrepancy principle [110]). Due to several sources of

error in the calibrated measured data such as modeling the horn antennas by line sources,

4 This is the same reconstruction as the one shown in figure 5.3 (i)-(j).
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Fig. 5.13: (a) FoamDielExttarget (b) TE inversion of theFoamDielExt(real part) using the GNI-
CGLS method, and (b) its corresponding enhanced reconstruction.

possible temperature shifts and the actual measurement noise, it is not easy, if not impossible,

to find the noise level of the calibrated measured data.

To show the performance of the enhancement algorithm when the GNI-CGLS algorithm is

not completely converged, we consider the reconstructed contrast at the5th iteration of the

GNI-CGLS algorithm whose correspondingCLS is 20%. The reconstructed contrast at this

iteration has been shown in figure 5.12 (a)-(b). We took this contrast to bêχ in (5.47) and

constructed its corresponding matrixK. The enhancement algorithm was then performed

which took105 CG iterations. The enhanced contrast corresponding to this choice of χ̂

is shown in figure 5.12 (c)-(d). It can be seen that the MR enhancement also successfully

improves this contrast which is not the final converged solution of the GNI-CGLS method.
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Finally, we consider theFoamDielExttarget, shown in figure 5.13 (a), from the Institut

Fresnel second TE experimental data set. This data set was described in Section 5.5.2. The

GNI-CGLS inversion of this multiple-frequency TE data set converged after24 iterations

where the real part of the reconstructed permittivity is shown in figure 5.13 (b). We have used

a frequency-hopping technique as outline in [111] to utilize the scattering data collected at9

different frequencies. With the frequency-hopping technique, the data from each frequency

are inverted independently, and the solution from the lowerfrequency is used as the initial

guess for the next higher frequency. Within this thesis, we refer to this form of inverting

multiple frequency data as the multiple-frequency reconstruction5. The imaginary part of

the reconstructed permittivity (not shown here) is very small indicating a lossless object.

The data misfitCLS for the final reconstruction at10 GHz is4.3%. The enhancement of this

reconstruction, which took74 CG iterations applied to (5.49), is shown in figure 5.13 (c).

The computation times were2 hours and57 minutes for the GNI-CGLS algorithm and4

minutes for the enhancement. The data misfit for the enhancedrconstruction at10 GHz is

4.1%. For this target, both reconstructions are very good due to having a high signal to noise

ratio in the measured data as well as utilizing multiple-frequency data in the inversion.

In Section 8.2, we also show the performance of this enhancement whenχ̂ is the final recon-

struction from the MR-GNI algorithm. As will be seen there, the enhancement algorithm

still improves the final reconstruction of the MR-GNI method.

5 Another form of inverting multiple frequency data is to invert the data from all frequencies simultaneously
[112].



6

TM Versus TE Inversion

I remember my first look at the great treatise of Maxwell’s when Iwas a young
man... I saw that it was great, greater and greatest, with prodigious possibilities
in its power... I was determined to master the book and set to work. I was very
ignorant. I had no knowledge of mathematical analysis (having learned only
school algebra and trigonometry which I had largely forgotten) and thus my
work was laid out for me. It took me several years before I could understand as
much as I possibly could. Then I set Maxwell aside and followed my own course.
And I progressed much more quickly... It will be understood that I preach the
gospel according to my interpretation of Maxwell.(Oliver Heaviside [113])

Several 2D Transverse Magnetic (TM) inversion algorithms have been tested against exper-

imental data whereas only a few 2D Transverse Electric (TE) inversion methods have been

investigated experimentally. The 2D TM problem can be formulated as a scalar problem

for a single electric field component. This is not the case for2D TE problems where two

electric field components in the transverse plane need to be taken into account in the for-

mulation and this results in a more complex (i.e., vectorial) formulation compared to the
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TM case. It should be noted that TE problems can also be formulated as scalar problems

for a single magnetic field component. However, for the TE inversion, it has been shown in

[29] that inverting the integral equation for the two electric field components is more stable

and has better performance than inverting the integral equation of the single magnetic field

component.

From a physical perspective, the TE-polarized case includes polarization charges at dielec-

tric discontinuities, which are difficult to model numerically [114]. On the other hand, TE-

polarized data may contain more useful information about the object of interest as it is based

on two different components of the electric field as opposed to one in the TM-polarized case.

Note that these two polarizations are physically uncoupled: they provide independent infor-

mation about the object being imaged. This fact can be used toimprove the reconstruction

in tomographic configurations by either simultaneously inverting TE and TM data [115] or

using a cascaded TE-TM algorithm [116, 117].

There are only a few reports on the inversion of TE experimental data (using any method).

In the special edition of the journalInverse Problemsdedicated to inversions of the first

Fresnel data set [118], only two papers dealt with the singleTE case data that was provided:

the first one [119] was concerned with determining the shape of the conducting u-shaped

scatterer and the second one [103] used the MR-CSI method to reconstruct the dielectric

contrast of this scatterer. In the second special edition ofInverse Problemsdedicated to

the second Fresnel data set [102, 120], which includes TE andTM data for four targets,

only two contributions addressed the TE-polarized data: the first one [112] applied the MR-

CSI method to reconstruct the constitutive parameters of allthe targets in the data set and

in the second contribution [121], a TM inversion algorithm based on the Diagonal Tensor

Approximation and the Contrast Source Inversion method (DTA-CSI) was applied to invert

the TE-polarized data. This last contribution uses acalibrationof the TE data in a way that,
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according to the authors, allows the use of the scalar TM inversion algorithm. In addition, a

2D TE bi-conjugate gradient inversion method is used in [117] to reconstruct buried objects

from experimental TE scattering data. In [122] an iterativemulti-scaling approach was

applied to the single u-shaped metal target case from the first Fresnel data set, in both TE and

TM illuminations. Most recently, a TE stochastic inversionalgorithm which utilizesa priori

information about the object of interest has been used to reconstruct the second Fresnel data

set [123].

In this chapter, the GNI method is applied to the complete second TE Fresnel experimental

data set which are combinations of lossless dielectric and metallic cylinders. As the Fres-

nel data contains only far-field scattering data, we also show the performance of the TE

inversion against near-field synthetic scattering data. These TE inversions are compared

with the TM inversions of the same targets. The motivation for moving to the near-field

is that it is postulated that the independent information available in the near-field TE data

may results in better images compared to the near-field TM case. This does not hold in the

far-field, because in the far-field assumingE = Eϕϕ̂, whereE denotes the electric field

andϕ̂ is the unit vector in theϕ direction (figure 2.1), is a good approximation for the TE

case. We note that the scalar componentEϕ is simple to measure. In the near-field such

an approximation is not valid and therefore two orthogonal field components need to be

measured independently. This is difficult in practice and isone reason why 2D TE near-

field microwave tomography systems have not been constructed. It should be noted that the

two orthogonal electric field components of TE near-field configurations can be extracted

by measuring the single magnetic field component and then taking the derivative thereof.

To compute an accurate derivative, magnetic field measurements must be performed in close

proximities, which can cause difficulties in microwave tomography systems with co-resident

antenna arrays (e.g., coupling between the co-resident antennas [124]). However, in TE far-

field configurations, one can measure the single magnetic field component and then use a
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plane-wave approximation in order to extract the electric field from the magnetic field.

The main contribution of this chapter is to provide a quantitative comparison of TE and TM

inversions of synthetic and experimental data sets for various cases including near-field and

far-field imaging. This includes a comparison of computational complexity, image quality

and convergence rate. The result of the TE versus TM investigation presented in this chapter

may be useful for justifying the added cost of TE tomography systems.

6.1 Theoretical computational complexity analysis

Before presenting inversion results, a description of the per-iteration computational com-

plexity of the utilized TE and TM GNI algorithms is now given.We consider the GNI

method with the additive-multiplicative regularization as explained in Section 5.2.3. The

following conventions are used: the total number of receiver positions is denoted byRx, and

the number of receiver positions per transmitter byR. The number of CG iterations required

for the TE and TM forward solvers are denoted byFTE andFTM, respectively. The number

of CG iterations to find the Gauss-Newton correction in the TE and TM cases are denoted

by PTE andPTM, respectively.

6.1.1 Jacobian matrix

As mentioned in Section 4.5, each row of the Jacobian matrixJn corresponds to the deriva-

tives of the scattered field over the pixels of the imaging domain for a particular receiver

located at, say,p and a particular polarization along some direction, say,τ̂ and a particular

transmitter, say, thetth transmitter as given in (4.26).
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Finding the distorted dyadic Green’s function for theRx different receiver positions requires

calling the forward solver2Rx times in the TE case andRx times in the TM case. This is

due to the fact that two different polarizations should be considered in the TE illumination

while only one polarization is needed for the TM illumination. The computational cost of

findingEt(q;χn) for different transmitter locations isTx calls of the forward solver for both

TE and TM cases as the TE-polarized data is calibrated (or synthetically created) using an

infinite magnetic line source directed in̂z direction.

In our implementation, the elements of the matrixJn, as given in (4.26), are not found

explicitly because we only need to do the right matrix-vector multiplication usingJn and

JH
n , see for example (5.22). Therefore, the integration and thedot-productEt · ¯̄Ginh, required

in (4.26), is computed whenJn (or JH
n ) operate on a vector and will be considered in the

computational complexity of finding the correction.

6.1.2 The correction

Solving∆χ
n

in (5.22) using CG requires multiplyingJH
n Jn by a vector and this requires

approximately8RTxN multiplications in the TE case and2RTxN multiplications in the TM

case. This can be explained as follows: in the TE case, the multiplication of the Jacobian

matrixJn with a vectorr ∈ C
N×1 can be written as,

Jn r =







Ginh
xx,n(Ex,n � r) + Ginh

yx,n(Ey,n � r)

Ginh
xy,n(Ex,n � r) + Ginh

yy,n(Ey,n � r)






, (6.1)

and in the TM case as

Jn r = Ginh
zz,n(Ez,n � r), (6.2)
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whereGinh
ςη,n represents the matrix form of thêςη̂-component of the distorted dyadic Green’s

function andEς,n denotes the vector form of thêς-component of the total field within the

imaging domain. BothGinh
ςη,n andEς,n correspond to the predicted contrastχ

n
. The oper-

ation� denotes the elementwise product (Hadamard product) of two conforming vectors.

Using (6.1) and (6.2), it can be concluded that the matrix-vector multiplicationJn r requires

approximately4RTxN operations in the TE case andRxTxN operations in the TM case. The

same conclusion can be drawn for multiplying the matrixJH
n by an arbitrary vector of the

correct size. Therefore, the computational cost of calculating JH
n Jn∆χn, as required in

(5.22), is about8RTxN in the TE case and2RTxN in the TM case.

The matrixΣ for a rectangular imaging domain is a symmetric Block Toeplitz matrix with

Toeplitz Blocks [94, pg. 100], so its multiplication with a vector can be accelerated using

the FFT; thus, the computational cost ofΣ∆χ
n

is neglected compared to that ofJH
n Jn∆χn.

Therefore, the computational cost for finding the Gauss–Newton correction is about2PTE ×

(8RTxN) for the TE case and2PTM × (2RTxN) for the TM case. Note that each iteration

of the CG algorithm requires two matrix-vector multiplications. AssumingPTE ≈ PTM, the

computational complexity of finding the correction in the TEcase is almost four times more

than that in the TM case.

6.1.3 The forward solver

In both the TE and TM polarization solutions, we employ a CG-FFT forward solver as

explained in [59]. The discretization procedure used in theTE forward solver has been

described in Appendix F. A comparison between the computational complexity of the TE

CG-FFT and TM CG-FFT forward solvers is provided in [59]. As discussed in [59], it can be

shown that the per-iteration computational complexity of the TE CG-FFT algorithm, utilized

in the forward solver, is approximately twice that of the TM case.



6.1 Theoretical computational complexity analysis 89

6.1.4 Line search

The computational cost of the utilized line search algorithm is approximately equal to that

of evaluatingF(χ
n

+ νn∆χn) for the known background Green’s function and this is equal

to calling the forward solverTx times for both TE and TM cases. We note thatF(χ) is the

discrete form ofC(χ) given in (5.21) in the case of additive-multiplicative regularization.

As mentioned earlier, if the full step satisfies the condition (4.23), we choose it as an ap-

propriate step-length. From our experience with the regularized cost-functional (5.21) (as

well as (5.14)), the full step mostly satisfies the condition(4.23); therefore, very few calls

to this line search algorithm are made in the cases that we have run. This can be explained

as follows. In the Gauss-Newton optimization, the correction ∆χ
n

may lead to an increase

in the cost-functional if (i) JH
n Jn − λnΣ, see (5.22), is not positive-definite, or (ii ) the

quadratic model of the nonlinear regularized cost-functional F(χ) at χ
n

is not agoodap-

proximation toF(χ) [42]. As pointed out in Section 5.3, the matrixJH
n Jn−λnΣ is positive

definite. Moreover, due to the use of adaptive regularization, the regularization weightλn

is maximum at early GNI iterations where the predicted contrast can be very far from the

true solution. Thus, at early GNI iterations, the quadraticmodel ofF(χ) is dominated by

that of the regularizer. Noting that the regularizer is anL2-norm, the quadratic model of the

regularized cost-functional has a good chance to be a good approximation ofF(χ) at early

GNI iterations. As the algorithm gets closer to the true solution, the regularization weight

λn is lessened. Thus, the quadratic model of the regularized cost-functional is dominated

by that of the data misfit functional. Due to the fact that the predicted contrast is close to

the true solution, the quadratic model of the regularized cost-functional has a good chance

to be a good approximation ofF(χ). Therefore, the use of adaptive regularization will usu-

ally make the quadratic model of the regularized cost-functional be a good approximation to

F(χ).
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Fig. 6.1: The exact contrast of the scatterer for the synthetic test case (concentric squares)

6.2 Inversion results

The inversion results from both synthetic and experimentaldata are now shown. To be able

to compare the TE inversion with the TM inversion, we introduce an image error cost–

functional defined as,

M(χ) =

∥

∥χ− χtrue
∥

∥

2

∥

∥χtrue
∥

∥

2 (6.3)

whereχ is the final reconstruction,χtrue is the true contrast and‖.‖ denotes theL2-norm on

C
N . For the experimental data,χtrue is created according to the geometrical configurations

and the average permittivity of the object being imaged. Forthe synthetic data, as the data

is generated on a different grid than the one used in the GNI algorithm (to avoid an inverse

crime), the image error cost–functional (6.3) is calculated by interpolating onto a finer and

finer mesh until the calculated norm converges. For the synthetic data sets, all parameters of

the forward solver are kept the same for the TE and TM polarizations. We have also added

3% RMS additive white noise to the synthetic data set using the formula (4.31).
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Fig. 6.2: Inversion of the concentric squares synthetic data set using the GNI method with additive-
multiplicative regularization (the first scenario:Tx = 10 andR = Rx = 10) (a)-(b) TE
case, (c)-(d) TM case, and (e)-(f) cross-section atx = 0.
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6.2.1 Synthetic data: concentric squares

We consider a similar test case which has been used in [48, 125, 29]. The scatterer con-

sists of two concentric squares with an inner square having dimension ofλb × λb (λb is the

wavelength in the background medium) with a contrast of0.3 + j0.4. The inner square is

surrounded by an exterior square having sides of2λb and contrastχ = 0.6+ j0.2. The exact

contrast profile is shown in figure 6.1. The frequency of operation is chosen to be1 GHz

and free space is assumed for the background medium. The imaging domainD consists of

a square having sides of3λb. We consider three different scenarios for collecting the data.

In the first scenario, we choose10 transmitters and10 receivers (Rx = R = 10) on the mea-

surement circleS and in the second scenario, we choose30 transmitters and30 receivers

(Rx = R = 30) on S. Therefore, the length of the vectorEmeas in the second scenario

is 9 times that ofEmeas in the first scenario. In these two scenarios, the transmitters and

receivers are placed evenly on the measurement circleS of radius2.33λb = 70 cm. In the

third scenario, we choose10 transmitters and10 receivers (Rx = R = 10) evenly placed on

the measurement circleS of radius10λb = 300 cm. The forward data is then generated on

a grid of30 × 30 for both TE and TM polarizations. The transmitters for the TEand TM

cases are the magnetic line source and electric line source respectively. For the TE case,Ex

andEy components are collected at the receiver positions whereasin the TM case, theEz

component is collected. We will note that the syntheticallycollected data in the first and

second scenarios may be considered as the near-field data whereas the collected data in the

third scenario is at far-field.

For the first scenario, the TE and TM inversions are shown in figure 6.2. As can be seen,

both TE and TM inversions provide good reconstructions for the real part of the contrast

profile. However, the TM inversion is not successful in reconstructing the imaginary part

of the contrast: the inner square is unresolved in the imaginary part of the TM inversion.



6.2 Inversion results 93

x [m]

y 
[m

]

−0.4 −0.2 0 0.2 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Re(χ)

x [m]

y 
[m

]

−0.4 −0.2 0 0.2 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Im(χ)

x [m]

y 
[m

]

−0.4 −0.2 0 0.2 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Re(χ)

x [m]

y 
[m

]

−0.4 −0.2 0 0.2 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

(d) Im(χ)

−0.4 −0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y [m]

R
ea

l p
ar

t o
f t

he
 c

on
tr

as
t

TM inversion
TE inversion
True profile

(e) Re(χ)

−0.4 −0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

y [m]

Im
ag

in
ar

y 
pa

rt
 o

f t
he

 c
on

tr
as

t

TM inversion
TE inversion
True profile

(f) Im(χ)

Fig. 6.3: Inversion of the concentric squares synthetic data set using the GNI method with additive-
multiplicative regularization (the second scenario:Tx = 30 andR = Rx = 30) (a)-(b) TE
case, (c)-(d) TM case, and (e)-(f) cross-section atx = 0.
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It should be noted that when the number of transmitters/receivers was decreased to8, the

TE inversion also failed (not shown here) in reconstructingthis target. The TE and TM

inversions for the second scenario are shown in figure 6.3. Inthis case, both TE and TM

inversions are successful in reconstructing the real and imaginary parts of the contrast. For

the third scenario which utilizes the same number of transmitters and receivers as in the first

scenario but located in far-field, the TE and TM inversions are shown in figure 6.4. In this

case, the TE and TM inversions are very similar. The number ofGNI iterations utilized to

reconstruct this target and the value ofM(χ) in these three different scenarios are given in

Table 6.1 and Table 6.2.

That the TE inversion outperforms the TM inversion in the first scenario is probably due to

the fact that the TE near-field data contains more information than the TM near-field data

(the length of the vectorEscat
meas in the TE case is twice that in the TM case). Noting that

the measurement circleS is in the near-field for this test case, it is expected thatEscat
meas,x

andEscat
meas,y provide non-redundant information. However, when the number of transmitters

and receivers increases in the second scenario, the TM scattering data provides sufficient

information to reconstruct the object with a reasonable accuracy while the TE inversion also

provides a good reconstruction in this case. Comparing the inversion results for the first and

third scenarios, we speculate that the TE far-field data doesnot provide extra information

compared to the TM far-field data.

6.2.2 SyntheticE-target data set (III)

Next, we consider the E-target with the same geometry as described in Section 5.6.1. How-

ever, we choose the relative complex permittivity of the target to be70 + j17 and that of the

background medium to be77.5 + j20. At a frequency of0.9 GHz, the OI is illuminated by

16 transmitters, which are magnetic line sources (in the TE case) and electric line sources (in
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Fig. 6.4: Inversion of the concentric squares synthetic data set using the GNI method with additive-
multiplicative regularization (the third scenario:Tx = 10 and R = Rx = 10 and the
transmitters/receivers are located in far-field) (a)-(b) TE case, (c)-(d) TM case, and (e)-
(f) cross-section atx = 0.
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Fig. 6.5: Synthetic E-target data set (III) (collected atf = 0.9 GHz) (a)-(b) true profile, (c)-(d) TE
inversion, and (e)-(f) TM inversion.
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the TM case) and equally spaced on a circle of radius0.1 m. The scattered field data along

bothx andy directions in the TE case and alongz direction in the TM case is collected at

16 receivers per transmitter. We then add3% noise to this synthetically collected data set

according to [65]. We refer to this data set as syntheticE-target data set (III). We note that

both the geometry of the target and the relative complex permittivities of and the background

medium and target as well as the frequency of operation are the same as thosed used in [106]

for a resolution test study. The TE and TM data sets are collected using16 transmitters and

16 receivers. The inversion of this data set using the Binary GNIalgorithm1, explained in

Section 5.6.1, is shown in figure 6.5. As can be seen, the TE inversion outperforms the TM

inversion in reconstructing this complicated target. The number of GNI iterations utilized

to reconstruct this target and the value ofM(χ) in both polarizations are given in Table 6.1

and Table 6.2.

6.2.3 Experimental data: the second Fresnel data set

The second Fresnel data set was explained in Section 5.5.2. We have shown the multiple-

frequency inversion for all Fresnel targets in both TE and TMpolarizations in [59]. For

the multiple-frequency reconstruction, we have used the GNI method in conjunction with

the frequency-hopping technique presented in [111]. The number of GNI iterations required

for the convergence and the value ofM(χ) for all Fresnel targets in both polarizations are

given in Tables 6.1 and 6.2. Table 6.1 shows a faster convergence for the TE inversion of

the Fresnel targets. The value of the image error cost–functional shows a relatively similar

reconstructions for the TE and TM inversions.

In this section, we only show the inversion of two Fresnel targets:FoamDielExtandFoam-

MetExt. TheFoamDielExttarget is shown in figure 5.13(a). The inversion of the data set

1 We have utilized two different values forχh (see (5.34)); namelyχh
1

= 0 andχh
2

= −0.1 − j0.013.
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Fig. 6.6: FoamDielExtreconstruction (a)-(b) TE case (c)-(d) TM case

collected from this target in both polarizations is shown infigure 6.6. As can be seen, the

reconstructed imaginary parts of both TE and TM inversions are small which indicates that

the target is lossless. TheFoamMetExttarget is shown in 6.7. For this target, which consists

of a metallic cylinder and a lossless dielectric cylinder, we have limited the maximum value

of the imaginary part to be 4 atf = 2 GHz as otherwise the imaginary part of the metal

cylinder will become too high (on the order of 200), making the convergence of the forward

solver difficult. Therefore, if the imaginary part of the contrast of this target becomes more

than four, it is set to four. The inversion of the data set collected from this target is shown

in figure 6.8. As can be seen, the shape of the dielectric cylinder is reconstructed well in the

TE case whereas its shape in the proximity of the metallic cylinder is not reconstructed in

the TM case. Also, for both polarizations the reconstructedreal part of the metallic cylinder

is close to zero whereas the imaginary part is indicated to bean object of high loss.
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Fig. 6.7: TheFoamMetExttarget.

We have also investigated the single-frequency inversion of the experimental Fresnel data

for both polarizations atf = 6 GHz [59]. For example for theFoamTwinDieltarget, shown

in figure 5.4. The TE inversion algorithm converged after7 iterations for the TE case and

25 iterations for the TM case. The data misfitFLS for the first iteration was0.3803 for the

TE case and0.3809 for the TM case. However, in the final reconstruction, the data misfit

reduced to0.0285 for the TE case and0.0266 for the TM case. The data misfit for different

iterations of the inversion algorithm,i.e., the GNI method with the additive-multiplicative

regularization, for both TE and TM inversions is shown in figure 6.9(a). To check the sen-

sitivity of this convergence rate for another regularization method, we have also shown the

convergence of the GNI method with the Krylov subspace (CGLS)regularization method in

figure 6.9(b). In addition, to check the sensitivity of the convergence rate to the line search

algorithm described in Section 4.3, we have also used another line search technique. This

line search algorithm uses the Matlab functionfminsearchwhich is based on the simplex

method [126]. As opposed to the line search algorithm presented in Section 4.3, this method

does not require the derivative of the cost-functional. Theconvergence of the GNI method

with the CGLS regularization technique equipped with this line search algorithm applied to

FoamTwinDiel data set atf = 6 GHz is shown in figure 6.9(c).

As far as the computational complexity of the TE and TM inversions is concerned, the
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Fig. 6.8: FoamMetExtreconstruction (a)-(b) TE case (c)-(d) TM case

inversion codes have been written in object-oriented Matlab and all the computations are

performed on a computer with a quad-core2.66 GHz Intel processor and2 GB of RAM. As

an example, we consider theFoamDielInt target whereT = 8, Rx = 360, R = 241 and

N = 3600. In the first GNI iteration atf = 2 GHz we haveFTE = 12 andPTE = 50 for

the TE case whereas in the TM case,FTM = 9 andPTM = 48. Finding the Gauss-Newton

correction took about320 sec for the TE case and79 sec for the TM case. That is, finding

the correction in the TE case is about4 times more expensive than that in the TM case which

matches the expected theoretical ratio. Also, for each transmitter, the forward solver took

about0.99 sec in the TE case and0.31 sec in the TM case showing that the per-iteration

computational complexity of the TE forward solver is about2.4 times more than that of the

TM case which is very close to the approximate theoretical ratio. Also, in the inversion of

theFoamDielInttarget, the line search algorithm was called once for each frequency in both
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Fig. 6.9: The data misfitFLS for the single-frequency inversion of theFoamTwinDiel target at
f = 6 GHz: (a) GNI with additive-multiplicative regularization equipped with the line
search algorithm explained in Section 4.3, (b) GNI with CGLS regularization equipped with
the line search algorithm explained in Section 4.3, and (c) GNI with CGLS regularization
equipped with the simplex line-search method.

polarizations.

The computational cost can be significantly alleviated by using the marching-on-in-source-

position technique [38], [30] which essentially reducesFTE andFTM. For example, in the

first GNI iteration for theFoamDielInt target atf = 2 GHz, it took about691 sec for the

TE case and114 sec for the TM case to find the inhomogeneous Green’s functionwithout

using the marching-on-in-source-position technique. However, the update procedure took

just295 sec for the TE case and53 sec for the TM case when this technique was used.

It is important to note that for experimental tomographic systems where the receiver posi-
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tions are the same as transmitter positions, which is the case for most practical microwave

imaging systems currently in existence, computational savings can be made in updating the

Green’s function of the inhomogeneous background using thealready updated total field

corresponding to each transmitter.

6.3 Discussion and summary of results

For all Fresnel targets, the TE and TM inversions are very similar. This is probably due to the

fact that the measured data is collected in the far-field where only one scalar field component

is required to represent the electric field vector:Emeas
ϕ in the TE case andEmeas

z in the TM

case. Thus, in the far-field, splittingEmeas
ϕ into Emeas

x andEmeas
y does not provide more

information than the TM case. In the first scenario of the synthetic test case, whereTx = 10

andRx = R = 10 and the collected data is in the near-field, the TE inversion provides

more accurate reconstruction compared to the TM inversion.This is likely due to the fact

thatEmeas
x andEmeas

y provide non-redundant information for the TE inversion whereas the

TM inversion only utilizes theEmeas
z field. However, when the number of transmitters and

receivers increases to30 for the same test case, the TE and TM inversions provide similar

results which verifies the fact that the TM inversion lacked enough information compared to

the TE case whenTx = Rx = R = 10. Keeping the number of transmitters and receivers

as in the first scenario but placing them in the far-field (the third scenario), the TE and TM

inversions result in a similar reconstruction. This is consistent with the similar performance

of TE and TM inversions of Fresnel data set. In addition for the syntheticE-target data set

(III), whereTx = 16 andRx = R = 16, the binary TE near-field inversion outperformed the

binary TM near-field inversion.

In all cases considered in this chapter, the TE inversion requires the same or a fewer number
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Tab. 6.1:Number of GNI iterations required for the convergence (multiple-frequency inversion)

Target TE case TM case

Concentric squares (1st scenario) 6 6

Concentric squares (2nd scenario) 8 8

Concentric squares (3rd scenario) 5 6

E-target 4 4

FoamDielInt 14 21

FoamDielExt 15 27

FoamTwinDiel 19 36

FoamMetExt 19 25

FoamTwinDiel(f = 6 GHz) 7 25

of iterations than the TM inversion to converge. The same observation has been reported in

[122] where the TE Iterative Multi-Scaling Approach (IMSA)converged faster than the TM

IMSA when the signal to noise ratio of the collected data was low. Also, in [127], it has been

theoretically speculated that the TE inversion has a lower degree of nonlinearity compared

to the TM case which may result in a faster convergence in the TE case. In addition, the

actual computational cost of the TE and TM inversions were very close to the approximate

theoretical ones presented in Section 6.1.

To verify these results using another regularization technique, we have also inverted these

data sets using the CGLS regularization scheme. The conclusion from the inversion results

obtained from the GNI-CGLS method is consistent with that obtained from the GNI method

with the additive-multiplicative regularizer. We have also used another line search algorithm

which is a derivative-free method which resulted in a similar convergence compared to the

derivative-based line search method.

Considering all this numerical data, we speculate that the ultimate performance and conver-

gence of the GNI algorithm applied to these data sets are highly dependent on the informa-

tion content of the field, irrespective of the regularization and line search strategies. Thus,
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Tab. 6.2:Image error cost–functionalM(χ)

Target TE case TM case

Concentric squares (1st scenario) 0.10 0.15

Concentric squares (2nd scenario) 0.06 0.05

Concentric squares (3rd scenario) 0.14 0.16

E-target 0.13 0.18

FoamDielInt 0.13 0.14

FoamDielExt 0.16 0.18

FoamTwinDiel 0.20 0.18

FoamMetExt 0.23 0.29

FoamTwinDiel(f = 6 GHz) 0.22 0.20

the TE inversion, which utilizes both rectangular components of the electric vector at each

receiver position, may result in more accurate reconstruction than the TM inversion when

utilizing near-field scattering data collected using only afew transmitters and receivers.
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Eigenfunction Contrast Source Inversion

Wir müssen wissen. Wir werden wissen.Translation:We must know. We will
know. (David Hilbert [128]1, who was the first to use the German word ‘eigen’
to address eigenvalues and eigenvectors).

In most MWT systems that have been developed for biomedical applications the OI and the

antennas are contained within an enclosed chamber made froma dielectric material such

as plexiglass [129, 76, 130, 131, 132]. The chamber is used tocontain a matching fluid to

improve the coupling of the microwave energy into the OI. Most of the MWT algorithms

used to invert data from these systems assume that the matching fluid extends to infinity,

not to the boundary of the casing. This approximation is adequate when the losses of the

matching medium are sufficiently large that little or no energy that reaches the boundary

of the chamber makes it back to the antennas. To make such an approximation work, the

1 Hilbert addressed the Society of German Scientists and Physicians by this quote in the fall of 1930. This
quote can also be read on his tombstone.
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antennas need to be placed close to the OI and away from the boundary, or they need to be

directive antennas that direct the main energy towards the OI (e.g., an open-ended waveguide

approach).

Recently, researchers have considered the MWT problem when the chamber surrounding

the antennas and the OI is made of metallic material (e.g., we use a stainless steel cham-

ber). Various potential advantages to using a conductive chamber with alossless(or a

low-loss) matching medium include advantages related to the inversion algorithms which

must be used for these systems as well as to practical data collection advantages such as

better Signal-to-Noise Ratios (SNR) [133, 134, 135]. The latter is particularly important as

it has been suggested in [106, 136] that the true resolution limit for MWT is governed by

the achievable SNR of the measurements and not the wavelength. To invert the microwave

measurements collected inside a metallic enclosure, researchers have implemented different

algorithms which take the metallic casing into account. In [137], a calibration technique

was proposed which when applied to the measured data collected inside a circular metallic

enclosure allows it to be used by standard inversion algorithms that assume an unbounded

matching medium. The proposed calibration technique is based on the reciprocity of the

fields inside a circular metallic enclosure and those in an open-space system. It is currently

unclear whether such a calibration procedure removes information from the data. In [42],

a quasi-Newton inversion algorithm in conjunction with an embedding technique has been

used to take into account the circular metallic enclosure. An integral equation formulation of

the MR-CSI method was used in [134] that uses the Green’s function of the metallic cavity.

An inversion algorithm, based on CG minimization in conjunction with the Finite Element

Method (FEM) forward solver was used in [138]. A Gauss-Newton inversion algorithm with

a FEM forward solver to calculate the Jacobian matrix was used in [135] to invert the data

collected in conducting cylinders of arbitrary shapes (which will be explained in the next

chapter). To the best of our knowledge, all of these inversion algorithms have been applied
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only to synthetically collected data.

More recently, an inversion algorithm, based on the CG algorithm and a Zernike polynomial

representation of the unknown dielectric properties of theOI, was tested against experi-

mentally collected data from the MWT system currently under development at the Institut

Fresnel [139]. This system operates at434 MHz and is enclosed by a circular metallic cas-

ing of radius27.6 cm. In addition, the role of different design parameters in MWT systems

with electrically conducting enclosures has been studied in [133] through the singular value

expansion of the integral operator mapping the contrast sources inside the OI to the mea-

surement domain outside the OI.

In this chapter, we introduce a new method of solving the Contrast Source Inversion (CSI)

formulation of the electromagnetic inverse problem using the spectral decomposition of the

appropriate boundary value problem applicable to the conductive enclosure MWT setup.

From a mathematical perspective, one immediate advantage of using a conductive enclosure

setup is that the associated boundary value problem for the electric field is well approxi-

mated by the Helmholtz operator in a finite domain which is terminated by Perfect Electric

Conductor (PEC) boundary conditions (i.e., homogeneous Dirichlet boundary conditions).

This boundary value problem has a discrete set of eigenvalues, i.e., a discrete spectrum,

with a complete set of eigenfunctions that is usually used toexpand the electromagnetic

field within the domain. Thus, the Helmholtz operator applied to the field represented as an

eigenfunction expansion can be replaced by a correspondingeigenfunction expansion where

the corresponding eigenvalue replaces the operator operating on each eigenfunction in the

expansion. Similarly, the inverse Helmholtz operator for such a boundary value problem has

the same eigenfunctions but with eigenvalues that are the reciprocal of those for the forward

operator. In the CSI functional defined for the electromagnetic inverse problem the inverse

Helmholtz operator is applied to the so-called contrast sources, defined to be the product
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Fig. 7.1: Microwave tomography system enclosed by a circular PEC enclosureΓ (red circle) of
radiusa. The cross section of the enclosure, which is the imaging domain, is denoted by
D. The measurement domain (blue dotted circle), which is outside the object of interest, is
denoted byS.

of the total field and the contrast [48, 11, 112, 103]. Taking advantage of the well-known

spectral decomposition of the Helmholtz operator within a circular boundary supporting ho-

mogeneous Dirichlet boundary conditions, we herein introduce the appropriate eigenfunc-

tion expansions for the unknowns in the CSI method, the contrast and the contrast sources.

This effectively discretizes all the operators in the CSI functional with the result that the

optimization problem becomes one of minimizing the CSI functional over the coefficients

of these eigenfunction expansions. One unique result of using the eigenfunction expansion

for the unknowns is that the imaging domain becomes the wholeinterior domain of the con-

ductive enclosure. This is in contrast to the traditional form of the CSI algorithm where the

unknown contrast is discretized into pulse basis functions.
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7.1 Formulation

We consider a PEC enclosure with boundary denoted asΓ of circular cross-section having

radiusa. The interior volume of the enclosure is denoted byD which will also denote the

imaging domain. The formulation is given for 2D fields; thus,we assume that the domainD

is located in thex − y plane. Inside the enclosure, which will contain the OI, we assume a

known homogeneous background medium having a, possibly complex, relative permittivity

εb. The geometrical model of the microwave tomography system is shown in figure 7.1. We

also consider the position vectorr which is inD.

In this chapter, we assume a 2D TM model where the electric field is represented by the

single longitudinal componentE = Eẑ. Thus, in this chapter, we refer to the electric

field by its scalar componentE. The physics of the problem can be modeled using various

forms of the Helmholtz equation forE. To aid in the formulation we define the Helmholtz

differential operator in a homogeneous background medium,Hb : L2(D) → L2(D), as

Hb(ζ) , ∇2ζ(r) + k2
bζ(r) (7.1)

where∇2 denotes the Laplacian operator with respect to the coordinater.

In the MWT problem considered herein, the OI is successively illuminated by known inci-

dent fieldsEinc
t , (t = 1, 2, · · · , Tx). Each incident field is produced by a source functionSt,

and the field itself satisfies the inhomogeneous Helmholtz equation

Hb(E
inc
t ) = −St(r), (7.2)
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with Dirichlet boundary condition

E inc
t (r ∈ Γ) = 0. (7.3)

When the OI is present, this same source produces the total field Et. The scattered field

will then beEscat
t , Et − E inc

t . It is easily shown that the scattered field satisfies the same

Helmholtz differential equation but with the source function replaced byk2
bχ(r)Et(r). That

is, the scattered field satisfies

Hb(E
scat
t ) = −k2

bχ(r)Et(r), (7.4)

with the same homogeneous boundary condition,

Escat
t (r ∈ Γ) = 0. (7.5)

The inverse problem is defined as that of finding the electric contrastχ(r) from measurement

data, which consists of the scattered field on the measurement domainS, located outside the

OI. The scattered field data is obtained from appropriately calibrated measurements of the

total and incident fields at the same location. In this chapter, we consider the CSI method to

solve the inverse scattering problem. We now give a brief overview of the Contrast Source

Inversion (CSI) formulation as applied to the enclosed region inverse problem. As men-

tioned in Section 3.2, the CSI method [48, 11, 112, 103] casts the MWT problem as an

optimization problem over the contrastχ and a new variable called the contrast sourcewt,

defined aswt(r) , χ(r)Et(r). These variables are solved for iteratively by minimizing the

specially formulated CSI functional using the CG method. The CSI functional is formulated

via the inverse operator corresponding to the problem formulation previously described.
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That is, from (7.4), the scattered field corresponding to thetth transmitter may be written as

Escat
t (r) = H−1

b (−k2
bwt), (7.6)

whereH−1
b denotes the inverse of the Helmholtz operatorHb and includes the boundary

conditionEscat
t (r ∈ Γ) = 0.

At the nth iteration of the CSI method, the cost–functionalCn : L2(D) × L2(D)Tx → R is

given by [140]

Cn(χ,wt) = CS(wt) + CD,n(χ,wt) =
∑

t

∥

∥Escat
meas,t −MS,tH−1

b (−k2
bwt)

∥

∥

2

S
∑

t

∥

∥Escat
meas,t

∥

∥

2

S

+

∑

t

∥

∥χE inc
t − wt + χH−1

b (−k2
bwt)

∥

∥

2

D
∑

t

∥

∥χn−1E
inc
t

∥

∥

2

D

(7.7)

whereEscat
meas,t denotes the measured scattered field andMS,t represents the characteristic op-

erator which selects the measurement points onS; both corresponding to thetth transmitter.

Note that information gathered from different transmitters is incorporated into the functional

by summing over the transmitters. The second term of the cost-functionalCn, i.e. CD,n, may

be regarded as the Maxwell regularizer [27] which is introduced to handle the ill-posedness

of the problem.

The cost-functionalCn(χ,wt) is iteratively minimized via the formation of two interlaced

sequences: a sequence of contrast estimates{χn} computed in an interlaced fashion with

a sequence of contrast source estimates{wt,n}. That is, at each iteration, each unknown is

updated using a single step of the CG algorithm while assumingthat the other unknown is

constant. Note that the CSI functional is quite general, but aform of the inverse operator

H−1
b which is amenable to mathematical manipulation (e.g., the derivative of functional is

required for the implementation of the CG optimization), andwhich lends itself to efficient

and accurate computation is required. There are many ways toformulate this operator which



7.2 Eigenfunction contrast source inversion 112

meets these requirements. Integral equation methods and the inverse of finite-difference

discretization have been used (see, for example, [48, 112, 103] for integral equation for-

mulations in unbounded domains, [140] for a novel use of the inverse of a finite-difference

discretization, and [134] for an integral equation formulation applicable to the PEC-enclosed

problem).

7.2 Eigenfunction contrast source inversion

The inverse operatorH−1
b for the PEC-enclosed-region problem can be expressed using the

eigenfunction expansion of the boundary-value problem that has been defined. Using polar

coordinatesr(ρ, θ), the orthonormal eigenfunctions ofHb which satisfy the homogeneous

Dirichlet boundary condition onΓ (ρ = a) may be written as

ψmp(r) =
1

√

Nmp

Jm(
xmpρ

a
) cos(mθ), (7.8)

ϕmp(r) =
1

√

Nmp

Jm(
xmpρ

a
) sin(mθ), (7.9)

wherexmp represents thepth zero (p ∈ N) of themth-order Bessel function of the first kind,

Jm wherem ∈ N ∪ {0}. The normalization constantsNmp can be easily calculated as

Nmp =















πa2J2
m+1(xmp) m = 0

πa2

2
J2
m+1(xmp) otherwise

(7.10)

The eigenvalues, each of multiplicity two, corresponding to ψmp andϕmp are

λmp = k2
b − (

xmp
a

)2. (7.11)
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The completeness of the eigenfunctions allows us to expressboth the contrast,χ(r), and the

contrast source functions,wt(r), inside the bounded domainD as eigenfunction expansions:

χ(r) =
∑

m,p

γmpψmp(r) + µmpϕmp(r) (7.12)

and

wt(r) =
∑

m,p

αmp,tψmp(r) + βmp,tϕm,p(r) (7.13)

whereγmp, µmp, αmp,t andβmp,t are the unknown coefficients to be determined. Note that a

double summation is required for these eigenfunction expansions, as compared to the single

summation used in the Singular Value Expansion (SVE) given by [133] and the Zernike

expansion used by [139].

A useful property of the eigenfunctionsψmp andϕmp for the operatorHb is that they are

also the eigenfunctions of the inverse operatorH−1
b , but the corresponding eigenvalues for

the eigenfunctions ofH−1
b areλ−1

mp. Using this property along with (7.13), allows us to

express (7.6) as

Escat
t (r) = H−1

b (−k2
bwt) = −k2

b

∑

m,p

λ−1
mp [αmp,tψmp(r) + βmp,tϕmp(r)] , (7.14)

and the scattered field on the measurement domain as

Escat
t (r ∈ S) = MS,tH−1

b (−k2
bwt)

= −k2
b

∑

m,p

λ−1
mp [αmp,tMS,tψmp(r) + βmp,tMS,tϕmp(r)] . (7.15)

The incident field atr is now assumed to be that of a line source located atrt and can
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therefore be written as

E inc
t (r) = E inc(r; rt) = H−1

b [−1

ρ
δ(ρ− ρt)δ(θ − θt)] (7.16)

whereδ represents the Dirac delta function. Using an eigenfunction expansion for the Dirac

delta function, the incident field may be written as an eigenfunction expansion with known

coefficients:

E inc
t (r) = −

∑

m,p

λ−1
mp [ψmp(r)ψmp(rt) + ϕmp(r)ϕmp(rt)] . (7.17)

It should be noted that (7.17) is not a convergent series whenr = rt [141], which reflects

the singularity at the source point.

In the above analysis, we have implicitly assumed thatλmp 6= 0. This assumption is always

valid when the background medium is lossy. However,λmp may become zero for lossless

backgrounds. This case has been discussed in [133] and a procedure to treat this problem

has been proposed.

7.3 Discretizing the CSI functional using the eigenfunction expansions

We now introduce truncated eigenfunction expansions for the contrast, contrast sources, and

incident fields into the CSI functional by assumingm = 0, · · · ,M−1 andp = 1, · · · , P for

each of the expansions. The measured data corresponding to the tth transmitter is denoted

as the vectorEscat
meas,t ∈ C

R, whereR is the number of receivers, chosen to be constant for

each transmitter. The unknown vectorat ∈ C
2MP contains the coefficientsαmp,t andβmp,t

and the unknown vectorb ∈ C
2MP containsγmp andµmp. In order to evaluate the norms

involved in the Maxwell regularizer termCD,n we choose to discretize the domainD in a
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uniform rectangular grid. The number of discretized pointswithin D is denoted byQ. With

this notation, matricesZt ∈ C
R×2MP and F ∈ C

Q×2MP are introduced in such a way

thatZtat andF at represent the discrete representation ofMS,tH−1
b (−k2

bwt), (7.15), and

H−1
b (−k2

bwt), (7.14), respectively.

It should be noted that it is only in this chapter where we useM to imply the orders of Bessel

functions used in the expansions. In other chapters, we useM as the number of measured

data.

We also consider the matrixB ∈ R
Q×2MP such thatB b represents the discrete form of

the contrast functionχ, given in (7.12). The vectoruinc
t ∈ C

Q includes the incident field

corresponding to thetth transmitter,E inc
t , at theQ discrete points insideD. To avoid the

singularity of the incident field at the transmitting antenna location, theQ discretization

points are chosen so as to not be collocated with the transmitter locations.

Using these discretized operators and vectors, the cost-functionalCn(χ,wt), (7.7), can be

rewritten as

Fn(b, at) = FS(at) + FD,n(b, at) = ηS
∑

t

∥

∥Escat
meas,t − Ztat

∥

∥

2
+

ηD,n
∑

t

∥

∥uinc
t � (B b) − B at + (B b) � (F at)

∥

∥

2
(7.18)

The weightsηS andηD,n are given by

ηS = (
∑

t

∥

∥Escat
meas,t

∥

∥

2
)−1, (7.19)

and

ηD,n = (
∑

t

∥

∥uinc
t � (B bn−1)

∥

∥

2
)−1, (7.20)

where� denotes the Hadamard,i.e. elementwise, product of two vectors of the same size.
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The cost-functionalFn(b, at) is then minimized iteratively overb andat. Each iteration

of the inversion algorithm consists of two parts: (i) updatingat by minimizingFn(b, at)

assumingb = bn−1, and (ii ) updatingb by minimizingFn(b, at) assumingat = at,n.

It should be noted that choosing the number of eigenfunctions in the expansion,M ×P , can

be considered a form of projection-based regularization [58], see Section 5.1.2, where the

unknown functions are projected into the subspace spanned by the chosen eigenfunctions.

But, as compared to projection-based regularization methods which have been utilized in

the framework of the Gauss-Newton inversion method,e.g., Truncated Singular Value De-

composition (TSVD) and Krylov subspace regularization methods (see Section 5.1.2 and

references therein), the stability of the eigenfunction CSImethod is not very sensitive to

the choice ofM andP which defines the subspace dimension. This is probably due to

the presence of the Maxwell regularizer in the CSI functionalwhich provides another level

of regularization. In fact, the overall regularization associated with the eigenfunction CSI

method can be considered a hybrid regularization [90, 88] where a Tikhonov-based regular-

ization (i.e., the Maxwell regularizer) and a projection-based regularization (i.e., truncating

the number of eigenfunctions) are utilized together.

As discussed in Appendix C, the cost-functionalFS is not holomorphic inat and the cost-

functionalFD is not holomorphic inat andb. To handle this problem, we use the Wirtinger

calculus where we consider the cost-functionalsF̃S(at, a
∗
t ) andF̃D(b, b∗, at, a

∗
t ). These two

cost-functionals satisfỹFS(at, a
∗
t ) = F(at) and F̃D(b, b∗, at, a

∗
t ) = FD(b, at). The cost-

functionalF̃S is holomorphic inat for fixed a∗t and vice versa. The cost-functionalF̃D is

holomorphic inb for fixed b∗ (and vice versa), and is holomorphic inat for fixed a∗t (and

vice versa).
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7.4 Updating procedure

We now show howat andb are updated in the proposed CSI method.

7.4.1 Updatingat

Assuming thatat andb at the(n − 1)th iteration of the algorithm,i.e. at,n−1 andbn−1, are

known, we updateat as

at,n = at,n−1 + ςnvt,n (7.21)

whereςn ∈ R is the step size. The empirically modified Polak-Ribière CG directionvt,n is

given by [64]

vt,n =















0 n = 0

g
t,n

+
Re
{

∑

t g
H

t,n
(g

t,n
−g

t,n−1
)
}

∑

t g
H
t,n−1

g
t,n−1

vt,n−1 otherwise

(7.22)

whereg
t,n

is the direction of the maximum rate of change inFn(b, at) with respect toat

evaluated atat,n−1 and the superscriptH denotes the Hermitian operator. As shown in [71],

it is the derivative with respect toa∗t which determines the direction of the maximum rate of

change ofFn(b, at). Therefore,

g
t,n

=
∂F̃S

∂a∗t
|at,n−1

+
∂F̃D,n

∂a∗t
|bn−1

,at,n−1
(7.23)

The derivative∂F̃S/∂a
∗
t |at,n−1

is given by

∂F̃S

∂a∗t
|at,n−1

= −ηSZH
t (Escat

meas,t − Zt at,n−1). (7.24)
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The derivative∂F̃D,n/∂a
∗
t |bn−1

,at,n−1
can be written as

∂F̃D,n

∂a∗t
|bn−1

,at,n−1
= −ηD,nBHdt,n−1 + ηD,nF

H((B bn−1)
∗ � dt,n−1) (7.25)

where

dt,n−1 = uinc
t � (B bn−1) − B at,n−1 + (B bn−1) � (F at,n−1). (7.26)

The step-lengthςn is found by the minimization

ςn = arg min
ς

{

FS(at,n−1 + ςvt,n−1) + FD,n(bn−1, at,n−1 + ςvt,n−1)
}

(7.27)

which results in

ςn = −
Re
{

∑

t g
H
t,n
vt,n

}

ηS
∑

t

∥

∥Ztvt,n
∥

∥

2
+ ηD,n

∑

t

∥

∥−B vt,n + (B bn−1) � (F vt,n)
∥

∥

2 . (7.28)

7.4.2 Updatingb

Assumingat,n is known, we minimizeFn(b, at) with respect tob. Noting thatFS(at) does

not depend onb, the vectorb at thenth iteration of the CSI algorithm may be found as

B bn = arg min
B b

FD,n(b, at,n)

= arg min
B b

ηD,n

{

∥

∥(B b) � (uinc
t + F at,n) − B at,n

∥

∥

2
}

. (7.29)

The vectorB bn can then be obtained as

B bn = [
∑

t

u∗t,n � (B at,n)] � [
∑

t

u∗t,n � ut,n] (7.30)
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whereut,n = uinc
t + F at,n and� represents the elementwise division (Hadamard division)

between two vectors of the same size. It should be noted that finding bn from B bn is not

necessary as updatingat requiresB b, notb.

7.4.3 Initial guess forat

The CSI algorithm requires an initial guess forat andb at the beginning of the algorithm.

One method might be to assume a zero initial guess forat as well asb and then updateat

using the steepest-descent algorithm (which is traditionally the first step of any conjugate

gradient algorithm). If this route is followed then a choicewould need to be made on the

normalization termηD,n which is undefined at the first step for this choice of initial guess.

One approach might be to use prior information on the value ofthe contrast to provide a non-

zeroB b. Alternatively, one could ignore the Maxwell regularizer,by assumingηD,n = 0,

and minimize the data-error functional,FS(at), on its own, using perhaps, a single step in

the steepest descent direction.

The method that we choose allows some flexibility in that thisdata-error functional mini-

mization is approached using Krylov subspace regularization. Explicitly, the initial guess

for at may be found by

at,0 = arg min
at

{

∥

∥Escat
meas,t − Zat

∥

∥

2
}

(7.31)

subject to a Krylov subspace regularization technique,e.g. the Conjugate Gradient Least

Squares (CGLS) method [86]. These iterative algorithms, when applied to an ill-posed sys-

tem of equations like (7.31), exhibit asemi-convergencebehavior [88]. That is, they improve

the solution at their early iterations, where the solution space is restricted to a Krylov sub-

space of small dimension. However, they start deteriorating the solution by inverting the
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noise – in our case, the noise inEscat
meas,t – in later iterations. An appropriately regularized

solution can therefore be obtained by early termination of the utilized Krylov subspace al-

gorithm when the dimension of the subspace is large enough toproduce a good regularized

solution and small enough to suppress the effect of noise. Therefore, the iteration at which

the algorithm is stopped plays the role of the regularization parameter for this type of regu-

larization: the fewer the iterations, the stronger the regularization.

To findat,0, we utilize the CGLS algorithm as the Krylov subspace regularization and choose

the maximum possible regularization weight of this regularization. That is, only one iteration

of the CGLS algorithm is applied to the least squares problemZtat = Escat
meas,t. The initial

guess to the CGLS method is considered to be the zero vector of appropriate size. Therefore,

the regularized solutionat,0 will be at,0 = ξtht whereht is the CG direction at the first

iteration of the CGLS algorithm (that is, the steepest descent direction) applied toZtat =

Escat
meas,t andξt is the CGLS step size. Findinght andξt, the regularized solutionat,0 can be

written as

at,0 =

∥

∥ZH
t E

scat
meas,t

∥

∥

2

∥

∥ZtZ
H
t E

scat
meas,t

∥

∥

2ZH
t E

scat
meas,t. (7.32)

We note that (7.32) is equivalent with the backpropagation solution, given in [48, 11]. The

formulation as a Krylov subspace regularized minimizationof the data-error functional gives

us the option of performing more than the first steepest-descent step. Unfortunately, finding

the optimum stopping iteration in these methods is difficultand, because we rely on the

Maxwell regularizer, we have found that there is no need to use more than the first few

steps of the Krylov-based method to obtain the initial valueof at. In fact, in all the results

presented herein, only the first step is used, because no advantage was gained in using more

than the first step. Having foundat,0, the vectorB b0 can be found from (7.30).
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Fig. 7.2:Exact relative permittivity for the concentric squares data set.

7.5 Inversion results

In this section, we show inversion results for two syntheticdata sets. All synthetic data sets

have been created with a frequency-domain Finite Element Method (FEM) forward solver.

To all synthetic data sets,3% noise was added using the formula (4.31). The noisy data

Escat
meas,t is then used to test the inversion algorithm against three synthetic data sets. To show

the robustness of the inversion algorithm with respect to the noise levelη, see (4.31), we

also show inversion results of the second data set whenη is chosen to be0.15 and0.25.

We avoid frequencies associated with the zero eigenvalue since at such frequencies the in-

verse operatorH−1
b does not exist. That is, no resonant frequencies have been chosen. In ad-

dition, all examples are run with no prior information and the only constraint imposed on the

contrast is that the corresponding relative permittivity should be physical (i.e., the real part of

the relative permittivity is kept greater than one, and the imaginary part is kept non-negative).

In all inversions considered herein, unless otherwise stated, we assumeM = P = 30. Uti-

lizing M = P = 30, i.e., projecting the unknown contrast into900 eigenfunctions, provides

stable solutions for the data sets considered herein. Increasing the number of eigenfunctions

toM = P = 40 andM = P = 50 results in very similar reconstructions compared to the

results obtained usingM = P = 30. However, the inversion results start to deteriorate when
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(a) Recons.Re(εr) (M = P = 10)
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(c) Recons.Re(εr) (M = P = 20)
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(d) Recons.Im(εr) (M = P = 20)
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(e) Recons.Re(εr) (M = P = 30)
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(f) Recons.Im(εr) (M = P = 30)
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(g) Direct Expan.Re(εr)
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(h) Direct Expan.Im(εr)

Fig. 7.3:Concentric squares data set (a)-(b) eigenfunction CSI reconstruction whenM = P = 10,
(c)-(d) eigenfunction CSI reconstruction whenM = P = 20, (e)-(f) eigenfunction CSI
reconstruction whenM = P = 30, and (g)-(h) direct eigenfunction expansion of the exact
dielectric profile of the object of interest (M = P = 30).



7.5 Inversion results 123

M andP are chosen to be more than50. For the first data set, we show the performance of

the eigenfunction CSI method using five different sets of values forM andP .

In all synthetic data sets considered herein, we show thedirect eigenfunction expansion for

the exact dielectric profile of the OI (forM = P = 30) which is obtained from the expansion

(7.12) with coefficients computed by taking the inner product of the exact contrast with the

expansion. We call this direct expansion the theoretical limit for the method given the chosen

number of eigenfunction terms. We also define the error between the direct expansion and

the reconstructed expansion as

EE =

∥

∥εMP − εdMP

∥

∥

∥

∥εdMP

∥

∥

(7.33)

whereεMP andεdMP are the reconstructed and direct eigenfunction expansionsof the rela-

tive permittivity respectively. Thiseigenfunction error, EE, is most easily computed using

Parseval’s theorem.

For the targets considered in this chapter, we also show the inversion results from the scat-

tering data collected in an open-region background using the integral-equation based CSI

method [48]. We refer to this algorithm as the IE-CSI method. In all of these open-region

reconstructions, we have used the same transmitters and receivers as used in the eigenfunc-

tion CSI method. We have also usedη = 0.03, see (4.31), to generate noisy scattering data

for the open-region cases.

7.5.1 Synthetic data set I: concentric squares

For the first numerical example, we consider the OI to be two concentric squares. This

target has been used in other publications such as [48, 125, 29, 134]. The inner square
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(a) Recons.Re(εr) (M = P = 50)
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(b) Recons.Im(εr) (M = P = 50)
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(c) Recons.Re(εr) (M = P = 70)
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(d) Recons.Im(εr) (M = P = 70)

Fig. 7.4:Concentric squares data set: (a)-(b) eigenfunction CSI reconstruction whenM = P = 50,
and (c)-(d) eigenfunction CSI reconstruction whenM = P = 70.

has dimension ofλb × λb (λb is the wavelength in the background medium) with a relative

permittivity of 1.6 + j0.2. The inner square is surrounded by an exterior square having

sides of2λb and relative permittivity of1.3 + j0.4. The OI is surrounded by a circular PEC

cylinder of radius3λb. The exact permittivity profile is shown in figure 7.2. The frequency

of operation is chosen to be1 GHz and the relative permittivity of the background medium

is assumed to beεb = 1; thusλb = 0.3 m. The OI is illuminated by30 transmitters evenly

spaced on a circle of radius2.33λb. The data is then collected using40 transmitters evenly

spaced on a circle of radius2.17λb.

The inversion algorithm is tested against this data set in five different cases distinguished by

the number of eigenfunctions used: (i) 100 (M = P = 10), (ii ) 400 (M = P = 20), (iii )

900 (M = P = 30), (iv) 2500 (M = P = 50), and (v) 4900 (M = P = 70). The inver-

sion result for the first case is shown in figure 7.3(a)-(b) where it can be seen that the two
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(b) Recons.Im(εr)

Fig. 7.5:Concentric squares data set: open-region IE-CSI reconstruction. The imaging domain is a
0.9 m× 0.9 m square.

concentric squares are not resolved. Increasing the numberof eigenfunctions in the second

case to400, the algorithm does a good job of resolving the two squares and reconstructs

their complex relative permittivities as shown in figures 7.3(c)-(d). In the third case, shown

in figure 7.3(e)-(f), the edges of the squares are sharper compared to the second case. The

direct eigenfunction expansion for the exact dielectric profile of the OI (forM = P = 30)

is shown in figure 7.3(g)-(h) where the correspondingEE is 0.03. Increasing the number

of eigenfunctions in the fourth case to2500, the reconstruction result, see figure 7.4(a)-(b),

remained similar to theM = P = 30 case. However, the inversion results start to deteri-

orate whenM andP are chosen to be more than50. In figure 7.4(c)-(d), we have shown

the inversion result for the fifth case (M = P = 70) where the inversion algorithm cannot

produce an acceptable reconstruction for the OI. The computational time of the eigenfunc-

tion CSI method for theM = P = 30 case was1.36 seconds per CSI iteration (23 minutes

in total) on a2.66 GHz machine. The open-region reconstruction of this targetusing the

IE-CSI method is shown in figure 7.5.
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Fig. 7.6:Synthetic data set II (a)-(b) exact relative permittivity of the object of interest (c)-(d) eigen-
function CSI reconstruction, (e)-(f) direct eigenfunction expansionof the exact dielectric
profile of the object of interest (M = P = 30), and (g)-(h) open-region reconstruction
of the object of interest using the IE-CSI method. For the eigenfunction CSI method, the
imaging domain is the whole interior of the metallic enclosure whereas for the open-region
IE-CSI method, it is a0.136 m× 0.136 m square.
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Fig. 7.7:Eigenfunction CSI reconstruction of the synthetic data set II with (a)-(b)15% noise (η =
0.15), and (c)-(d)25% noise (η = 0.25).

7.5.2 Synthetic data set II: circular targets with lossy background

We consider an OI which consists of three circular regions. Two of these circular regions

have the same radius of0.015 m and their relative complex permittivities are40 + j10 and

30 + j15. These two circular regions are surrounded by another circular region with radius

of 0.06 m and relative permittivity of12. The OI is immersed in a lossy background and

enclosed by a circular PEC enclosure of radius0.12 m. The object of interest is successively

irradiated by32 transmitters evenly spaced on a circle of radius0.1 m. The data is collected

using32 receivers per transmitter where the receiver locations arethe same as the transmitter

locations. The frequency of operation is chosen to be1 GHz at which the complex permit-

tivity of the background medium is23.4 + j1.13. The OI is shown in figure 7.6(a)-(b)

and the reconstructed permittivity using eigenfunction contrast source inversion method is
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shown in figure 7.6(c)-(d). The direct eigenfunction expansion for the exact dielectric profile

of the OI (forM = P = 30) is shown in figure 7.6(e)-(f) where the correspondingEE is

0.11. The computational time for this target was1.90 seconds (21 minutes in total) on a

2.66 GHz machine. The open-region reconstruction for this target is shown in figure 7.6(g)-

(h). To show the robustness of the eigenfunction CSI algorithm with respect to the noise

level, the inversion results of this target when the noise level is 15% and25% are shown in

figure 7.7(a)-(b) and figure 7.7(c)-(d) respectively.
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A Novel Microwave Tomography System

The theory I propose may therefore be called a theory of the Electromagnetic
Field, because it has to do with the space in the neighborhood of the electric or
magnetic bodies, and it may be called a Dynamical Theory, because it assumes
that in that space there is matter in motion, by which the observed electromag-
netic phenomena are produced.(James Clerk Maxwell [142]1).

Contributions to microwave tomography have been made in all aspects of the technology,

especially the development of improved inverse algorithms; e.g., [12, 11, 30, 40, 56]. Dur-

ing the past two decades, the actual physical setup used to collect the required electromag-

netic scattering data has not undergone much innovation, other than the diverse antenna or

transducer systems that have been reported;e.g., [129, 85, 99, 143, 131, 130, 144, 145].

Obtaining good images from MWT requires the accurate collection of a substantial amount

of electromagnetic scattering data, which, for efficiency,is best performed using a relatively

1 The original set of Maxwell’s equations, which utilizes theconcept of displacement current, first appeared
in this paper.
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large number of co-resident antennas. In the systems described in [129, 145] the number

of elements in the arrays range from16 to 24 where small monopoles or Vivaldi antennas

have been used. The large arrays facilitate gathering bistatic scattering data at many angles

without mechanically repositioning the antennas. The antenna elements themselves are typ-

ically not taken fully into account in the electromagnetic system model of the associated

nonlinear optimization problem, although this is an important consideration in achieving

good images (cf. the antenna compensation schemes in [124]). Including the antennas in the

system model is a way of reducing the modeling error that exists between the numerical sys-

tem model and the actual system from which data is collected.Modeling error also occurs

when assuming a homogeneous unbounded domain for the systemmodel because Boundary

Conditions (BCs) for a dielectric discontinuity are actually required to properly account for

the finite extent of the matching-fluid region.

Both the antenna and the BC modeling errors can be reduced by theuse of a lossy matching-

fluid of sufficiently high loss such that electromagnetic energy returning from the boundary

or any passive antenna to any receiving antenna is not appreciable. Although this may reduce

the modeling errors, the net effect of using a lossy matchingfluid in MWT systems may be to

reduce the accuracy of the complex permittivity profile reconstructions because the addition

of any loss reduces the dynamic range and achievable signal-to-noise ratio (SNR) of the

system. To achieve as much accuracy and resolution as possible from an MWT system it is

important to not rely on matching fluid loss to diminish both types of modeling errors (loss

should only be used to reduce the contrast so as to allow more energy to penetrate the target).

Thus, unless a complex system model is to be used—one which accurately models the co-

resident antennas as well as the boundaries of the system—the only way to reduce modeling

error is to either (i) incorporate specialized calibration techniques for the measured data, or

(ii ) construct MWT systems that retain the capacity to provide large amounts of independent

scattered field data but can be modeled accurately and efficiently.
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The purpose of this chapter is to propose a novel MWT system within a rotatable conductive

enclosure that uses a minimal antenna array which isfixedwith respect to the target being

imaged. Scattered-field data is obtained by taking bistaticmeasurements between each pair

of elements of the fixed array at several different static positions of the rotatable enclosure.

The inverse problem is formulated for the transverse magnetic (TM) 2D case and the enclo-

sure is chosen to have a triangular shape. Although it is not easily shown with numerical

experiments using synthetic data, the practical implementation of this system should reduce

both types of modeling error: the BCs at the conductive-enclosure boundary are easily mod-

eled and the antenna modeling error will be minimized because, as will be shown, small

arrays with as few as four elements can be used.

The shape of the enclosure is chosen to be triangular becauseit is the polygon that allows

the greatest number of fixed-angle step-rotations before producing a redundant configura-

tion. We note that recently, Wadbro and Berggren have considered MWT in a rotating

metallic hexagonal-shaped container where the object of interest is illuminated by waveg-

uides connected to each side of the metallic container [146]. The container, along with the

waveguides, can then be rotated to collect more scattering data and the topology optimiza-

tion techniques were used to invert the data [146]. At each rotation such a system produces

the identical incident field with respect to the boundary of the enclosure because the sources

(i.e., the waveguides) remain fixed with respect to the boundary. In the system described

here, each rotation of the boundary produces a different incident field with respect to the

boundary.

From a theoretical perspective, the first question to answeris: Can MWT systems with dif-

ferent BCs provide non-redundant scattering information about the OI?This question will

be answered in Section 8.1. The proposed system is then explained in Section 8.2.
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(c) Open-region case (d) Square PEC-enclosed-region
case

(e) Triangular PEC-enclosed-region
case

Fig. 8.1: Synthetic data set: (a)-(b) exact relative permittivity, (c) configuration for the open-region
case, (d) configuration for the square PEC-enclosed-region case (The red square is the PEC
enclosure), and (e) configuration for the triangular PEC-enclosed-region case (The red equi-
lateral triangle is the PEC enclosure).

8.1 Different BCs for MWT

As mentioned earlier, in most MWT systems currently in existence [129, 76, 130, 131, 144,

145], the OI and the antennas are contained within an enclosed chamber, usually made from

a dielectric material such as plexiglass. The dielectric chamber is usually filled with a lossy

matching fluid. Most MWT algorithms used to invert data from these systems assume that

the matching fluid extends to infinity, not to the boundary of the dielectric casing. That is,

they assume that the scattering data is collected in a homogeneous embedding. In other

words, the BC for the problem will be the Sommerfeld radiationcondition. We will refer to
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the scattering data collected in such systems as the open-region scattering data.

More recently, researchers have considered MWT in a metalliccasing where the OI and the

antennas are enclosed by a circular metallic enclosure [133, 134, 147, 42, 138, 139, 148].

We have also considered microwave tomography inside conducting cylinders of arbitrary

shapes [135]. The use of conducting enclosures imposes a zero boundary condition for the

total field which can be easily modeled within the utilized inversion algorithm. We will refer

to the scattering data collected in such systems as the PEC-enclosed-region scattering data.

In this section, we show inversion results from the open-region and PEC-enclosed-region

scattering data. For the PEC-enclosed-region scattering data, we consider PEC enclosures

of different shapes. The utilized inversion algorithm is the MR-GNI, which has been ex-

plained in Section 5.2.2. As mentioned in Chapter 4, calculation of the Jacobian matrix and

the simulated scattered field require repeated forward solver calls. For the open-region case,

we utilize the method of moments (MoM) with the conjugate gradient algorithm accelerated

by the fast Fourier transform (CG-FFT). The CG-FFT forward solver is also accelerated by

employing the marching-on-in-source-position technique. Motivated by the desire to model

arbitrary PEC boundaries with both straight and curved edges, we utilize a finite element

method (FEM) based on triangular elements for the PEC-enclosed embedding. The FEM

provides an accurate and fast forward solver, and in fact, iseasier to implement with a PEC

boundary than with absorbing boundary conditions, which are required for a homogeneous

embedding. As the FEM mesh is based on triangles, and the inverse solver based on rect-

angular pulse-basis functions, we interpolate as requiredbetween the two meshes with a

bi-linear interpolation algorithm [135].

We consider the target described in Section 7.5.2, and take three different configurations

for collecting the scattering data; namely, open-region, square PEC-enclosed-region, and

equilateral triangular PEC-enclosed-region. In all these three cases, the transmitters and
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Fig. 8.2: 1st scenario:7 transmitters and7 receivers (a)-(b) inversion of the scattering data collected
in the open-region embedding, (c)-(d) inversion of the scattering data collected in the square
PEC-enclosed embedding, and (e)-(f) inversion of the scattering data collected inside the
equilateral PEC-enclosed embedding.
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receivers are evenly spaced on a circle of radius0.1 m and the frequency of operation is

1 GHz. The target and these three configurations are shown in figure 8.1.

Two different scenarios are used to collect the scattering data. In the first scenario, we utilize

7 transmitters and7 receivers for collecting the scattering data on the measurement circle.

To all these synthetic data sets,3% noise was added using the formula (4.31). The inversion

results for these three cases are shown in figure 8.2. As can beseen, all these three inversions

result in similar poor reconstructions.

That these reconstructions are very similar gives rise to the following question:do these

three scattering data sets, which are collected under different BCs, provide similar infor-

mation about the OI?To answer this question, we have developed an inversion algorithm

to simultaneously invert the scattering data collected in different configurations. For exam-

ple, for the case where there are two sets of scattering data,one collected in an open-region

configuration and the other one in a PEC-enclosed-region configuration, we construct the

following cost-functional,

Cn(χ) =
1

2

[

CLS
open(χ) + CLS

pec(χ)
]

CMR
n (χ) (8.1)

This cost-functional is minimized using the GNI method. Thesubscriptn denotes thenth

iteration of the GNI method, andCLS
openandCLS

pec represent the data misfit cost-functional, see

(3.1), for the open-region and PEC-enclosed-region cases respectively. The regularizerCMR
n

is given in (5.15) and the steering parameterδ2
n, in the discrete domain, is given as

δ2
n =

1

2

FLS
open(χn) + FLS

pec(χn)

∆A
. (8.2)

whereχ
n

is the known contrast vector at thenth iteration of the algorithm. Recall that

FLS
open(χn) andFLS

pec(χn) are the discrete forms ofCLS
open(χn) andCLS

pec(χn). The contrast is then
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updated in the form ofχ
n+1

= χ
n

+ νn∆χn whereνn is the step-length and the correction

∆χ
n

is found by solving

(

AH
n An − βnLn

)

∆χ
n

= AH
n d

open,pec
n + βnLnχn. (8.3)

The complex matrixAn is constructed as

An =







√
ηS,openJopen,n

√
ηS,pec Jpec,n






(8.4)

whereJopen,n andJpec,n are the Jacobian matrices for the open-region and PEC-enclosed-

region cases at thenth iteration of the algorithm respectively. The normalization factors for

the open-region and PEC-enclosed-region scattering data,ηS,open andηS,pec, are also given

in (4.10). The vectordopen,pec
n is given as

dn =







dopen,n

dpec,n






=







Escat
open,n − Escat

meas,open

Escat
pec,n − Escat

meas,pec






(8.5)

whereEscat
open,n andEscat

pec,n are the complex vectors containing the simulated scatteredfield at

the observation points corresponding to the predicted contrastχ
n

for the open-region and

PEC-enclosed-region cases. The complex vectorsEscat
meas,openandEscat

meas,pecrepresent the mea-

sured data for the open-region and PEC-enclosed-region cases. The discrete regularization

operatorLn has been described in Section 5.2.2. The weight of this regularization,i.e., βn,

will be

βn = FLS
open(χn) + FLS

pec(χn). (8.6)

Using this inversion algorithm, we simultaneously invert the three data sets described above

(where7 transmitters/receivers are used). In figure 8.3, we show thesimultaneous inver-
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Fig. 8.3: 1st scenario:7 transmitters and7 receivers; simultaneous inversion of (a)-(b) scattering
data collected in the open-region and square PEC-enclosed region configurations, (c)-(d)
scattering data collected in the open-region and triangular PEC-enclosed region configura-
tions, and (e)-(f) scattering data collected in the square PEC-enclosed region and triangular
PEC-enclosed region configurations.
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Fig. 8.4: 2nd scenario:16 transmitters and16 receivers (a)-(b) inversion of the scattering data col-
lected in the open-region embedding, (c)-(d) inversion of the scattering data collected in the
square PEC-enclosed embedding, and (e)-(f) inversion of the scattering data collected in the
triangular PEC-enclosed embedding.
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Fig. 8.5: 2nd scenario:16 transmitters and16 receivers; simultaneous inversion of (a)-(b) scat-
tering data collected in the open-region and square PEC-enclosed regionconfigurations,
(c)-(d) scattering data collected in the open-region and triangular PEC-enclosed region con-
figurations, and (e)-(f) scattering data collected in the square PEC-enclosed and triangular
PEC-enclosed region configurations.
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sion of (i) open-region and square PEC-enclosed-region scattering data, (ii ) open-region and

triangular PEC-enclosed-region scattering data, and (iii ) square PEC-enclosed-region and

triangular PEC-enclosed-region scattering data. As can be seen, the simultaneous inversion

results are very close to the true profile. Comparing figure 8.3and figure 8.2, it can be

easily seen that the simultaneous inversion has resulted ina more accurate reconstruction

compared to the separate inversions of each data set. That being said, and noting that these

data sets are distinguished by their corresponding BCs, it canbe concluded that these three

BCs have provided non-redundant information about the OI.

We now consider the second scenario for collecting the scattering data in these three con-

figurations, where we increase the number of transmitters/receivers to16. Again,3% noise

is added to each data set. The inversion of each data set is shown in figure 8.4. The simul-

taneous inversion of these data sets are shown in figure 8.5. In this scenario, the separate

inversion of each data set and the simultaneous inversions result in similar reconstruction.

From these two scenarios and other similar inversion results (not shown here), it can be

concluded that MWT systems with different BCs, at least when utilizing very few transmit-

ters and receivers, provides non-redundant information for the reconstruction. We note that

the necessary condition to obtain non-redundant information is to use a lossless or low-loss

background medium to not suppress the reflection from the PECenclosure.

8.2 MWT system using a rotatable conductive enclosure

Based on the idea that collecting scattering data using few transceivers and under different

BCs yields different usable information, we now consider a rotatable equilateral triangular

metallic casing,Γ, which encloses the OI and a few transceivers, see figure 8.6.The OI

is located in the bounded imaging domainD ⊂ R
2. The transceivers are located on the
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Fig. 8.6: The geometrical configuration of the MWT problem with a rotatable conductive triangu-
lar enclosure. The red equilateral triangle,4ABC, represents the metallic casing, which
encloses the imaging domainD and the measurement domainS. The dotted black circle
is the circumscribing circle of the triangle. The triangular enclosure can rotate on within a
circumscribing circle forθ degrees whereθ ∈ [0◦, 120◦).

measurement domainS ⊂ R
2, which is outside the OI. We assume that the metallic casing is

a PEC and is filled with a lossless or low-loss matching fluid with a known relative complex

permittivity of εb. To obtain more scattering data by changing the BCs of the MWT system,

the enclosureΓ is rotated at anglesθl ∈ [0◦, 120◦), l = 1, · · · , L, with respect to the fixedD

and fixedS as depicted in figure 8.6. At thelth configuration of the enclosureΓ, the OI is

successively illuminated by some incident electric field,E inc
l,t wheret denotes the transmitter

index (t = 1, · · · , Tx). Interaction of the incident field with the OI results in thetotal field

El,t. Note that the field obtained depends not only on the transmitter location, but also on

the orientation of the enclosure. The total and incident electric fields are then measured

by the receiver antennas located onS. Thus, the scattered field at the observation points,

contaminated by measurement noise, is known and denoted byEscat
meas,l,t.



8.2 MWT system using a rotatable conductive enclosure 142

x [m]

y 
[m

]

 

 

−0.05 0 0.05

−0.06

−0.04

−0.02

0

0.02

0.04

0.06 5

10

15

20

25

30

35

40

45

(a) Re(εr)

x [m]

y 
[m

]

 

 

−0.05 0 0.05

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

5

10

15

20

(b) Im(εr)

Fig. 8.7: Synthetic data set (f = 1 GHz). (a)-(b) Reconstructed relative complex permittivity when
the scattering data is collected inside the rotatable triangular conductive enclosure using4
transmitters and4 receivers and12 rotations of the enclosure.

The MWT problem may then be formulated as the minimization over χ of the following

nonlinear least-squares data misfit cost-functional

CROT(χ) =
1

L

L
∑

l=1

CLS
l (χ) =

1

L

L
∑

l=1

ηS,l

Tx
∑

t=1

∥

∥Escat
l,t − Escat

meas,l,t

∥

∥

2

S
(8.7)

whereEscat
l,t is the simulated scattered field onS due to a predicted contrastχ when thetth

transmitter is active at thelth configuration of the triangular enclosure. That is,Escat
l,t (p) =

Escat
l,t (χ). The operatorEscat

l,t is given in (2.20) where the incident field needs to be replaced

with the incident field when thetth transmitter is active at thelth configuration of the trian-

gular enclosure;i.e., E inc
l,t . The normalization factor is given by

ηS,l =

(

Tx
∑

t=1

∥

∥Escat
meas,l,t

∥

∥

2

S

)−1

. (8.8)

We regularize (8.7) by the weightedL2-norm total variation multiplicative regularizer,CMR(χ),

given in (5.15). Thus, at thenth iteration of the inversion algorithm, we minimize the regu-
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Fig. 8.8: SyntheticE-target data set (II) (a)-(b) true relative complex permittivity profile of the tar-
get (c)-(d) reconstructed relative complex permittivity when the scatteringdata is collected
inside the rotating triangular conducting enclosure using6 transmitters and6 receivers and
48 rotations of the enclosure (e)-(f) reconstructed relative complex permittivity when the
scattering data is collected in the open-region embedding using16 transmitters and16 re-
ceivers.
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larized cost-functional

Cn(χ) = CROT(χ)CMR
n (χ). (8.9)

The positive parameterδ2
n in (5.15) is chosen to beFROT(χ

n
)/∆A whereFROT(χ

n
) is the

discrete form ofCROT(χn). The contrast vector is then updated in the form ofχ
n+1

= χ
n
+

νn∆χn where∆χ
n

is the correction andνn is an appropriate step length at thenth iteration

of the algorithm. The correction vector∆χ
n

is then found by solving

[(

L
∑

l=1

ηS,l J
H
l,n J l,n

)

− βnLn

]

∆χ
n

=

(

L
∑

l=1

ηS,l J
H
l,n dl,n

)

+ βnLnχn (8.10)

whereLn is given in Section 5.2.2. The matrixJ l,n is the Jacobian matrix corresponding

to the lth rotation of the enclosure and at thenth iteration of the inversion algorithm. The

weightβn is equal toL×FROT(χ
n
). The discrepancy vectordl,n is

dl,n = −
(

Escat
l,n − Escat

meas,l

)

. (8.11)

To calculate the Jacobian matricesJ l,n and the simulated scattered fieldEscat
l,n , we utilize a

finite element method (FEM) [135].

Inversion results are shown for two synthetic data sets thathave been created with a frequency-

domain FEM forward solver. To all synthetic data sets,3% noise was added using the

formula (4.31). In both cases, we use the equilateral triangular PEC enclosure shown in

figure 8.6 and assume that the radius of the circumscribing circle of the triangle is0.24 m.

The radius of the measurement circleS, see figure 8.6 is chosen to be0.1 m for both data

sets. We assume that the relative complex permittivity of the matching fluid is23.4 + j1.13.

The first synthetic data set is collected from the target described in Section 7.5.2, which is

also used in Section 8.1 and shown in figure 8.1 (a)-(b). Similar to the inversion results
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shown in Section 8.1, the frequency of operation is chosen tobe1 GHz. We consider only

4 transmitters and4 receivers per transmitter which are evenly spaced onS. Therefore,

for the lth rotation of the PEC enclosure, we haveEscat
meas,l ∈ C

16. The PEC enclosure is

rotated12 times (L = 12) with a step of15◦. Therefore, the number of measured data

will be 12 × 16 = 192. The inversion of this scattering data, which is collected in the

rotatable PEC enclosure, is shown in figure 8.7. The inversion of the scattering data collected

from the same target in the open-region configuration using16 transmitters and16 receivers

(Escat
meas ∈ C

256) is shown in figure 8.4 (a)-(b). As can be seen, the reconstruction inside

the rotating PEC enclosure with only4 transceivers and the reconstruction inside the open-

region configurations with16 transceivers are very similar for this target and both provide

a reasonable reconstruction for both the real and imaginaryparts of the target’s relative

complex permittivity.

Finally, we consider the syntheticE-target data set (II) described in Section 5.6.2. The target

is shown in figure 8.8 (a)-(b). To collect scattered field data, we consider6 transmitters and

6 receivers per transmitter; thus,Escat
meas,l ∈ C

36. The PEC enclosure is then rotated48 times

with a step of2.5◦; thus, providing48× 36 = 1728 scattering measurements. The inversion

of the scattering data collected inside the rotating PEC enclosure is shown in figure 8.8 (c)-

(d), while the inversion of the scattering data collected inthe open-region embedding using

16 transmitters and16 receivers is shown in figure 8.8 (e)-(f). In both cases, the real part of

the permittivity is reconstructed well but the imaginary part is poorly reconstructed. This is

due to the fact the imaginary part of the contrast is much smaller than the real part of the

contrast (the contrast of the target is about0.40 − j0.01). To get a better reconstruction for

this target, we apply the image enhancement method, presented in Section 5.7, to the final

reconstructions of both reconstructions. The enhanced reconstructions for both cases are

shown in figure 8.9.
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Fig. 8.9: SyntheticE-target data set (II); Reconstruction results after applying the enhancement al-
gorithm inside (a)-(b) the rotatable triangular conductive enclosure with6 transmitters and6
receivers and48 rotations, and (c)-(d) the open-region embedding with16 transmitters and
16 receivers.

A better imaginary-part reconstruction can be achieved by utilizing a priori information

about the expected ratio between the real and imaginary parts of the target’s contrast as

outlined in Section 5.6.2. Considering this ratio asQ = 40, the reconstructions of both data

sets, shown in figure 8.10, become very similar and satisfactory.

Using these two data sets, the possibility of imaging insidea rotatable triangular conductive

enclosure using a minimal antenna array having as few as onlyfour or six co-resident ele-

ments has been demonstrated for the 2D TM case. This study mayresult in the development

of MWT systems which introduce less modeling error to MWT algorithms compared to the

existing MWT systems while maintaining the ability to collect sufficient scattering infor-

mation about the OI. Considering that the modeling error can be thought of as part of the
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Fig. 8.10: SyntheticE-target data set (II): pre-scaled GNI withQ = 40 (a)-(b) inversion inside
the rotatable triangular conductive enclosure with6 transmitters and6 receivers and48
rotations of the enclosure, and (c)-(d) inversion inside the open-region embedding with16
transmitters and16 receivers.

manifest noise, and noting that the achievable resolution limit is affected by the signal-to-

noise ratio [106, 136], the proposed MWT system may offer an enhanced spatial resolution

over the existing MWT systems.
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University of Manitoba MWT Systems

One day sir, you may tax it.(Michael Faraday in reply to British Chancellor of
the Exchequer when asked of the practical value of electricity in 1850) [149, pg.
56].

Our research group at the University of Manitoba has constructed a microwave tomography

prototype with a plexiglass casing [145], as well as a prototype with a metallic casing [150].

At the current state of development, the background medium,in both systems, is free-space

and the inversion is performed under the 2D TM assumption. Thus, we assumeEscat
meas,t =

Escat
meas,tẑ andE inc

t = E inc
t ẑ. We note that for our MWT systems, we have utilized a frequency

selection procedure to determine the optimum operational frequency(ies) of the systems.

This frequency selection procedure is not part of this thesis and will not be explained here

but can be found in [145] for the MWT system with plexiglass casing and in [151, 152] for

the MWT system with metallic casing.
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9.1 MWT system with plexiglass casing

A photograph of the current prototype is shown in figure 9.1. We have employed a two-port

Agilent 8363B PNA-Series Network Analyzer (NA) as our microwave source and receiver,

capable of producing measurements at discrete frequenciesor sweeps within the required

frequencies at an approximate system dynamic range of 122 dB(an additional 15 dB of

dynamic range is available using the configurable test set).The NA is connected to the

antennas with a 2×24 cross-bar mechanical switch (Agilent 87050A-K24), which provides

isolation of greater than95 dB over the frequency range of interest. Twenty-four antennas

are arranged at even intervals of15◦ in a circular array at the midpoint height along the inside

of a plexiglass cylinder. The cylinder has a radius of≈ 22 cm, is 50.8 cm tall and is water-

tight, allowing it to be filled with a matching liquid (not utilized in this work). The future

use of a matching fluid may necessitate even higher isolationthan95 dB, and a re-design

of the switch, but solutions to this do exist;e.g., see [153]. For use with certain classes of

test targets, there is also a motor assembly located underneath the cylinder support structure

that consists of two precision stepper motors arranged to provide accurate positioning of the

target within the chamber. The test target may be placed on a plastic platform mounted on a

central nylon pillar protruding from a water-tight, sealedhole in the center of the cylinder’s

bottom boundary, and can be rotated360◦ (at increments smaller than1◦ if needed). A

vertical movement range for the pillar of roughly 15 cm is also accommodated by the motor

assembly to provide full 3D positioning of the target through the 2D plane of the antenna

array.

Communication between the NA, switch, and the controlling computer is accomplished

through the General Purpose Interface Bus (GPIB), operating via a GPIB-Ethernet hub. The

data acquisition process is entirely automated. A full measurement at a single frequency,

(23× 24 = 552 data points) takes less than 1 minute (this time depends highly on the sweep
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Fig. 9.1:The University of Manitoba microwave tomography prototype with plexiglass casing. The
24 Vivaldi antennas are connected to a network analyzer via a 2×24 switch. At the current
state of development, the background medium is air.

time utilized for the NA). It is possible to further reduce this time, which will ultimately be

limited by the stabilization time of the mechanical switch.

9.1.1 Co-resident antennas

For this system, we utilize Vivaldi antennas [154], which have been specifically designed and

improved for this near-field microwave tomography system [155]. The design bandwidth of

the antennas is from3 GHz to 10 GHz, although in practice we have found them to have

a usableS11 from 2 GHz to 10 GHz. They utilize a double-layer construction which sig-

nificantly reduces the cross-polarization level of the radiation pattern [155]. This is critical

to the use of the 2D TM assumption about the wave propagation in the chamber, as anten-

nas which create and detectx andy polarized fields would seriously degrade the resulting

images. A picture of one of the antennas is shown in figure 9.2.

It is further desirable that these antennas have a radiationpattern as similar as possible to an
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Fig. 9.2:Close-up of one of the double layered Vivaldi antennas used in the University of Manitoba’s
microwave tomography system with plexiglass casing. The two layers are heldtogether
with Teflon screws.

ideal 2D electric line source ideal radiator, as this is the assumed source for the inversion al-

gorithms used throughout. A detailed description of the antenna gain pattern and beamwidth

can be found in [145]. We note that the antennas are more directive than a true 2D electric

line source. While this runs counter to the incident field assumption, it minimizes the cou-

pling between the nearest non-active antennas to the active(transmitting) antenna, which is

also a problem for the inversion process [145].

9.1.2 Data collection and calibration

As the utilized MWT inversion algorithms require scattered field measurements, and any

physical system is only capable of detecting the total field,the raw data are first collected for

the MWT system with no scatterer present. This data, labeled the ‘incident’ measurement,

is then subtracted from all the subsequent data to produce the scattered field data.

The scattered data must then be calibrated. There are two purposes for the calibration:

(i) to convert theS21 values measured by the NA into field values needed by the inversion

algorithms, and (ii ) to eliminate and compensate for as many measurement errorsas possible.

To perform the calibration, we first measure scattered data from a metallic cylinder with a

known radius placed in the middle of the chamber. Assuming that thetth transmitter is
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active, we denote the measuredS parameters asSscat,known
21,t . Next, the scattering experiment

is repeated, but with the unknown target present. TheseS parameters are denotedSscat,OI
21,t .

Assuming a 2D line source generated incident field, we further denote the analytic scattered

fields from the known metallic cylinder asEscat,known
t which may be calculated using the

formula given in [156].

Finally, the calibrated measured fields,Escat
meas,t, for the unknown target are calculated by

Escat
meas,t =

Escat,known
t

Sscat,known
21,t

Sscat,OI
21,t . (9.1)

This method of calibration will eliminate any errors which are constant over the twoS21

measurements. Examples of these types of ‘removable’ errors include cable losses and phase

shifts, or mis-matches at connectors. However, there are other factors in the measurement

which are not constant between the two measurements, and thus not entirely removed via

the above calibration object. For example, the antenna factor is not guaranteed to be the

same for the known and unknown measurements (as the system isoperating in the near-

field). Another error which is not entirely compensated for is the antenna coupling, as the

coupling will change when different scatterers are presentin the chamber. For these reasons,

the known object should be as similar as possible to the expected class of unknown target.

While some MWT systems utilize the ‘known’ object to be the empty chamber (i.e., the

incident measurement is utilized),e.g., see [153, 130] and Section 9.3.1, we have found that

the use of a metallic cylinder calibration object improves the inversion results for our system

with plexiglass casing [145]. A well-characterized penetrable scatter used for calibration

would eliminate more systematic errors, and provide even better imaging results, but due to

the ease of characterization we have utilized a metallic cylinder [145].
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Fig. 9.3:Scatterer #1: dielectric phantom target consisting of nylon and wooden cylinders.

9.1.3 Inversion results from our MWT system with plexiglass casing

For all reconstructions presented herein, the only constraint on the minimization utilized

was to keep the reconstructed relative complex permittivity within physical ranges (i.e.,

Re(εr) ≥ 1 and Im(εr) ≥ 0). This was accomplished by over-writing the values at the end

of each iteration in the inversion process if these constraints were violated. In this section,

we consider two phantoms which will be explained below.

For the first phantom experiment, we utilize a circular nylon-66 cylinder with a diameter of

3.8 cm (1.5 inches) and an (approximately) square cross-section wooden block. We refer

to this target as Scatterer #1. With the Agilent 85070E dielectric probe kit, we measured

the wood to have a contrast ofχwood ≈ 1.0 + j0.2 at 3 GHz. As the nylon-66 cylinder

is too small for accurate bulk-material measurement, we utilize the published contrast of

χnyl = 2.0 + j0.03 at3 GHz [156].

The target was placed in the chamber, as shown in figure 9.3, with an air background and

23 × 24 measurements were taken for the frequencies of3 GHz and6 GHz. The single-

frequency3 GHz reconstruction from the enhanced DBIM [55] is shown in figure 9.4 (a)-

(b), and the frequency-hopping based [111] reconstructionof the two frequencies is shown

in figure 9.4 (c)-(d). We note that the off-axis rotation of the wood in all reconstructions
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Fig. 9.4: Scatterer #1: (a)-(b) single-frequency reconstruction at3 GHz, and (c)-(d) multiple-
frequency reconstruction at3 GHz and6 GHz (using the frequency-hopping technique).

reflects the physical orientation of the wood for the measurement. We also note that the

enhanced-DBIM inversion is very similar to the MR-GNI reconstruction (not shown here)

of this target. The details of the enhanced DBIM can be found in[55].

For the3 GHz reconstruction, figure 9.4 (a)-(b), we note that the realpart of the contrast

shows the overall structure of the targets quite well, but the reconstruction for nylon is 20%

low: Re(χ) = 1.6 instead of the expected value ofRe(χnyl) = 2.0. For the wooden object,

the real part of the contrast is reconstructed as≈ 1.1, within 10%, and the reconstruction

shows a homogeneous region (which is what we expect). For theimaginary part of the

reconstruction at3 GHz, we note that the presence of the two distinct objects is clear, but the

imaginary part of the nylon is overestimated (Im(χ) ≈ 0.6, when it should be Im(χnyl) =

0.03). Further, the imaginary part of the contrast for the woodenobject is not homogeneous,
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Fig. 9.5:Scatterer #2: dielectric phantom target consisting of PVC and nylon cylinders. The separa-
tion between the cylinders was 1 cm.

although the expected value of Im(χ) = 0.2 is achieved in the center.

For the multiple-frequency reconstruction at3 GHz and6 GHz, figure 9.4 (c)-(d), the con-

trast of the nylon is closer to the expected value than for thesingle-frequency case for the

imaginary part (Im(χ) ≈ 0.45). For the wood, the real part is again accurate (roughly the

same as for the3 GHz reconstruction). The edges of the objects are visible inthe imaginary

part of the reconstructed contrast, and the interior of the wood is more homogeneous, but

the edges of the wood show some overshoot (in one particular spot, Im(χ) ≈ 0.4 when the

expected value is0.2).

The second scatterer, to which we refer as Scatterer #2, consists of the same nylon cylinder,

but this time combined with a hollow Poly-Vinyl-Chloride (PVC) cylinder. A photograph of

the phantom is shown in figure 9.5. The thickness of the PVC cylinder is≈ 0.6 cm, and it

has a radius of≈ 6.5 cm. The permittivity of the PVC cylinder was not measured, because

the thin width of the cylinder wall would make the measurements invalid (the measurement

would require a larger mass of PVC). However, published values [157] give the contrast

of PVC at 3 GHz asχPVC ≈ 1.5 + j0.01. For this phantom, data were collected at3,

4.5 and 6 GHz. The reconstructions of this phantom at3 GHz, as well as the multiple-

frequency reconstructions, using the enhanced DBIM are shown in figure 9.6. The3 GHz
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Fig. 9.6:Scatterer #2: (a)-(b) single-frequency reconstruction at3 GHz, and (c)-(d) multiple-
frequency reconstruction at3 GHz,4.5 GHz, and6 GHz (using the frequency-hopping tech-
nique).

reconstruction (figure 9.6 (a)-(b)) overestimates the realpart of the contrast for the nylon

(2.2 instead of 2.0). The thickness of the PVC is estimated tobe too wide (≈ 1.7 cm

instead of0.6 cm). In the imaginary part of3 GHz reconstruction, the overall structure of

the phantom is not visible. This is mostly due to the large artifact in the center of the PVC

pipe. The value of Im(χ) for the nylon is0.2, but the edges are blurred. The multiple-

frequency reconstruction, figure 9.6 (c)-(d), shows the object clearly in the real part of the

reconstruction, but the contrast of nylon cylinder is slightly overshot. The real part of the

PVC pipe reconstruction is thinner and closer to the actual size (≈ 1.2 cm). In the imaginary

part of the reconstruction, the nylon’s shape is not recognizable, and the value is overshot.

Additionally, the imaginary part of the PVC pipe’s shape does not follow the entire way

around the cylinder.
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In both phantoms, the multiple-frequency reconstructionswere an improvement over the

single-frequency case. This is particularly apparent in the imaginary part of the permittiv-

ity of Scatterer#2. As expected through the use of higher-frequency data the multiple-

frequency reconstructions had less blurred edges. As well,in Scatterer#2, the multiple-

frequency reconstruction clearly shows that two distinct objects are present, and the separa-

tion of the two objects is (arguably) visible (the physical separation was1 cm, orλb/5 where

λb is the wavelength of the background medium (air) at the highest frequency).

In general, the exact contrast values were not obtained. We suspect that these errors in the

reconstructions are primarily due to the large amount of measurement noise and modeling

error caused by the mutual coupling of the antennas. Other sources of error, such as the

assumption of a 2D line source based incident field are probably also a factor. We expect

that when the MWT system is filled with a lossy matching fluid theantenna coupling will

become significantly less noticeable due to losses in the fluid.

9.2 Resolution

Perhaps the largest remaining challenge to make MWT a competitive biomedical imaging

modality is to improve the achievable resolution over what has been reported for current

state-of-the-art MWT systems, making it more comparable to MRI, ultrasound, andx-ray

CT. The lower resolution of MWT is directly linked to the relatively larger wavelengths

being used to interrogate the object of interest. There is, however, no known theoretical

limit to the spatial resolution obtainable from MWT; image resolution as low as1/6 of a

wavelength has been obtained for near-field imaging systems[158] and it has been sug-

gested that the true resolution limit is governed by the achievable signal-to-noise ratio of the

measurements [136], and not the wavelength (c.f., low-frequency impedance tomography
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Fig. 9.7:The MWT system with2 nylon cylinders for the resolution test.

systems [159]).

As the resolution limit for MWT technology is not currently known, and the future success

of MWT depends upon improving the resolution performance of such systems, having a

means of comparing the performance of different MWT systems (including the utilized data

acquisition techniques, measurement calibration methods, and imaging algorithms) is im-

portant to the on-going research effort in this area. In thissection, we quantify the resolution

performance of our air-filled MWT system with plexiglass casing by using a series of well-

defined simple experiments designed to reveal theseparation resolutionlimit of the system.

The concept of separation resolution, though not identifiedas such, has been used before by

other investigators as an indicator of their systems’ performance and therefore allows for a

direct comparison between systems. We show that the achievable separation resolution is

much smaller than a half-wavelength, the Rayleigh limit, andis much better than previously

published results. Some of the deficiencies in using the separation resolution as a way of

measuring systems’ expected resolution performance are discussed and exemplified by ex-

amining images of more complicated targets. In the light of such examples, the scattering

mechanisms responsible for the non-applicability of the concept are reviewed, but it is con-

cluded that, lacking other well-defined indicators of resolution performance applicable to

MWT, using separation resolution provides a good initial metric of system performance.
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9.2.1 Separation resolution

In any imaging technology, resolution is an ambiguous concept. Classically, it refers to the

ability of the imaging system to resolve two ‘point’ targetsthat produce a scattered field of

equal intensity. The resolution limit can be defined using Rayleigh’s criterion [160], where

two targets are considered resolved if the maximum value of the scattered spatial wave-

form pattern due to one target is at, or farther away than, thefirst minimum in the scattered

waveform pattern of the other target [161]. Resolution beyond this limit is referred to as

super-resolution [160, 162]. In inverse scattering problems the Rayleigh (or base) resolu-

tion criterion may be generated via a linearization (i.e., Born approximation) of the inverse

scattering problem for idealized point targets. After the linearization of the inverse scatter-

ing problem, and using the Rayleigh criterion, the theoretically best possible resolution is

λb/2 in the far-field andλb/4 in the near-field [158], whereλb is the wavelength in the

background medium, depending upon the transmitter/receiver configuration. In these lin-

earization techniques, resolution beyondλb/2 is made possible by the collection and use of

evanescent waves when the transmitters/receivers are located in the near-field [158].

The use of nonlinear inverse scattering algorithms, which take into account multiple scat-

tering events and penetration into a target, can improve resolution beyond these limits and

can be even further improved through the placement of the transmit/receive elements in

the near-field. However, with a nonlinear inversion algorithm a ‘point’ target is no longer

readily defined and imaged theoretically, thus some other target must be utilized. Some

authors [162, 106] have resorted to the use of canonical circular targets, with maximum

resolution defined as the minimum detectable separation between the two targets. We refer

to this type of resolution with canonical targets asseparation resolution. It is the nature

of the nonlinear inverse scattering problem that no absolute (target-independent) resolution

limit is definable; the resolution limit achieved is only applicable to those particular targets
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used. However, it does provide some indication of the resolving capabilities of the system,

and provides a quantitative metric to measure system improvements or make comparisons

between systems.

Under this definition, and using a ground-penetrating-radar type data collection scheme, a

resolution of1/10 of a wavelength with synthetic data [163], and a resolution of λb/6 with

experimental data have been reported [162]. For biomedicalapplications, using a circular

data collection configuration in a lossy background environment, a separation resolution of

λb/4 has been reported [106]. Resolution well beyond this level isachievable, as will be

shown herein.

9.2.2 Methods

We now investigate the achievable separation resolution with our MWT system with plexi-

glass casing based on our studies presented in [164]. The frequency of operation is chosen

to be5 GHz at which the wavelength of the background medium (air) isλb = 0.06 m. Sim-

ilar to the work outlined in [162] and [106], we select two canonical targets each consisting

of a nylon-66 cylinder3.81 cm in diameter and44 cm in height, see figure 9.7. At5 GHz,

the nylon has a relative complex permittivity ofεr ≈ 3.0 + j0.03. The contrast will then

beχ ≈ 2.0 + j0.03. Data were collected for24 transmitters with23 receivers operating

for each transmitter (a total of24 × 23 data points). The data were inverted using the MR-

GNI method explained in Section 5.2.2. The onlya-priori information used is to keep the

reconstructed permittivity within physical bounds as denoted in Section 9.1.3.

The target, consisting of the two cylinders, was centered within the imaging system and the

separation of the two cylinders was varied from0 mm (i.e. touching) to10 mm, in 1 mm

steps. To determine the separation resolution limit, a 1D cross-section of the real part of the
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Fig. 9.8:Plot of the resolution ratio,Umin/Umax, for various separations,0 − 10 mm in 1 mm steps,
of the two cylinders.

reconstructed 2D image is taken running through the center of the two cylinders. Defining

Umin as the minimum pixel value on the 1D cross-sectional image between the two targets

andUmax as the first maximum closest to this minimum value, the ratio of the minimum pixel

value to the maximum pixel valueUmin/Umax is generated. Applying the Rayleigh criterion,

if the ratioUmin/Umax is less than0.81 then the cylinders are deemed to be resolved.

To show that the obtained separation resolution limit will depend on the environment sur-

rounding the two targets as well as the targets itself, we consider four more data sets (at

f = 5 GHz). The first three data sets use the same two cylinders placed within a slightly

more complicated environment: the two nylon cylinders (separated by0 mm, 5 mm, and

10 mm) were centered within a hollow PVC cylinder described in Section 9.1.3. Finally,

we consider a phantom made up of Ultra High Molecular Weight (UHMW) polyethylene.

The permittivity of this phantom, at the operating frequency of 5 GHz, was measured to be

εr = 2.54 + j0.014. Noting that the background medium in our MWT system is air, the

contrast of the phantom isχ = 1.54 + j0.014. The geometry of the phantom is the same

as the one shown in figure 6.5 (a)-(b) (but, of course, with a different relative complex per-

mittivity). As can be seen, this phantom has different distances between its details ranging

from 8 mm to20 mm.
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Fig. 9.9:Reconstruction of the two nylon-66 cylinders for0 − 4 mm in1 mm steps.
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Fig. 9.10:Reconstruction of the two nylon-66 cylinders for5 − 9 mm in1 mm steps.
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Fig. 9.11:Reconstruction of the two nylon-66 cylinders with10 mm separation.

9.2.3 Results

The resolution ratioUmin/Umax, corresponding to the two nylon targets, is plotted in fig-

ure 9.8. Reconstructed images of the contrast for0–10 mm in 1 mm step are shown in in

figures 9.9, 9.10, and 9.11. By considering the directly collected data points, the two cylin-

ders are resolved for all separations of2 mm. We estimate a confidence interval of±0.4 mm

due to errors in our positioning system.

The reconstructions of the contrast when the two cylinders (with three different separations)

are embedded in the PVC cylinder is shown in figure 9.12. According to the definition of the

separation resolution used herein, the resolution ratios for these three data sets can be found.

For example for the5 mm separation, the resolution ratio increases to0.52 from a ratio of

0.47 when the cylinders were not embedded, and under the definition of separation resolution

limit used herein, the two cylinders are considered resolved. However, the inclusion of the

PVC cylinder has clearly degraded the overall reconstruction of the nylon cylinders.

The reconstruction of the UHMW polyethylene phantom, usingthe MR-GNI, method is

shown in figure 9.13. As can be seen in this figure, the details in the top-left of this phantom

have not been resolved. We note that the top-left part of the phantom, which has not been

resolved, corresponds to8 mm ≈ λb/8 separation. We also note that the separation of



9.2 Resolution 165

x [m]

y 
[m

]

 

 

−0.05 0 0.05

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

0.5

1

1.5

2

2.5

(a) 0 mm, Re(χ)

x [m]

y 
[m

]

 

 

−0.05 0 0.05

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

0.5

1

1.5

2

2.5

(b) 0 mm, Im(χ)

x [m]

y 
[m

]

 

 

−0.05 0 0.05

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

0.5

1

1.5

2

2.5

(c) 5 mm, Re(χ)

x [m]

y 
[m

]

 

 

−0.05 0 0.05

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

0.5

1

1.5

2

2.5

(d) 5 mm, Im(χ)

x [m]

y 
[m

]

 

 

−0.05 0 0.05

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

0.5

1

1.5

2

2.5

(e) 10 mm, Re(χ)

x [m]

y 
[m

]

 

 

−0.05 0 0.05

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

0.5

1

1.5

2

2.5

(f) 10 mm, Im(χ)

Fig. 9.12:Reconstruction of two nylon-66 cylinders embedded in a larger PVC cylinder. For this
reconstruction, the two cylinders were separated by (a)-(b)0 mm, (c)-(d)5 mm, and (e)-
(f) 10 mm.
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Fig. 9.13:Reconstruction of the UHMW polyethylene phantom.

10 mm = λb/6 has been resolved.

9.2.4 Discussion

According to the results obtained with this experimental setup, a separation resolution of

2 mm has been achieved, which corresponds to a resolution ofλb/30 at 5 GHz. This is a

significant improvement over published experimental results using similar microwave to-

mography systems [162, 106], and highlights the potential for the technology. This high

resolution is achieved through the collection and use of near-field data as well as the use of

a nonlinear inversion algorithm which accounts for multiple scattering.

While we have resolved the targets at a separation of2 mm, an inspection of figure 9.8

shows that the resolution limit should be at an even lower separation. A lower bound on

the limiting separation resolution can be estimated to be1.3 mm or≈ λb/45. This simple

estimate assumes a linear variation in the resolution-ratio between1 mm and2 mm, and no

errors in the positioning of the cylinders.

The use of the Rayleigh resolution criteria is qualitativelysupported by observing the real-

part reconstructions of0 mm and2 mm separation, shown in figure 9.9 (a) and (e). In the
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0 mm reconstruction, the two cylinders are connected with a region of red (a pixel value of

≈ 1.9), while for the separated2 mm reconstruction, the color switches to yellow with a

pixel value of≈ 1.5. We argue that, qualitatively, one would guess that the two cylinders

are separated given the2 mm reconstruction.

As expected, the resolution ratio shown in figure 9.8 reducesmonotonically as the separation

increases. However, it does not start from a value of1.0 when the two cylinders are touching.

This is due to variations in the reconstructed contrast throughout the cylinders, which raises

the maximum pixel value in some regions within the cylinders(see,e.g., the slight rise in

the right cylinder of the0 mm reconstruction).

The reconstructions which include the PVC cylinder (figure 9.12) shows one of the lim-

itations in determining the separation resolution using the simplistic target environments

considered herein. As expected when a PVC cylinder surrounds the target, the ratio of

Umin/Umax increases, which implies a reduction in separation resolution. The inclusion of

the PVC cylinder also degrades the reconstruction of the nylon cylinders, to the point that

they no longer appear as solid targets. The degradation is due to both (i) a loss in the amount

of useful energy interrogating the target (the PVC providesa significant barrier to the wave

which now must pass through the PVC wall twice before being detected by the antennas),

and (ii ) an increase in the amount of multiple scattering present because of the presence of

the surrounding cylinder. The limitations in determining the separation resolution for a more

complicated scatterer can be seen in the reconstruction of the UHMW polyethylene phantom

(figure 9.13), where the separation ofλb/8 was not resolved.

While not the main focus of this section, it is interesting to note that the diameter of the two

nylon cylinders is also reconstructed quite accurately (atleast in the simple case with no

PVC cylinder surrounding the target). For example, in the10 mm separation reconstruction

(figure 9.11) the average reconstructed diameter of the nylon cylinders is3.55 cm (calculated
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using the full-width at half-maximum criteria), an error of≈ 7%, from the true diameter.

9.3 MWT system with metallic casing

In this section, we consider a MWT system where the chamber surrounding the antennas and

the OI is made of metallic material. One of the main potentialadvantages of MWT systems

with metallic casing (over those with dielectric casing) isthe possibility of using low-loss (or,

lossless) matching fluids within them to image the OI. This isimportant as it is expected that

imaging in a low-loss matching fluid offers an enhanced resolution compared to imaging in a

lossy matching fluid due to providing a data set with a better signal-to-noise ratio [106, 136].

Very few inversions from experimentally collected data within MWT systems with metallic

casing have been reported: only from the system currently under development at the Institut

Fresnel [139], and from the system described herein which currently under development at

the University of Manitoba [148] (both make the 2D TM assumption). The results from both

of these systems are not satisfactory when compared to the results obtained from open-region

MWT systems. This will be discussed in more details in Section9.3.2. Also, a MWT system

with a metallic hemisphere was built in the Technical University of Denmark for breast

cancer imaging [165] where, to the best of our knowledge, no inversion of experimental data

has been reported yet.

The University of Manitoba MWT system with metallic casing utilizes the same vector

network analyzer, switch, and data collection process as used in our MWT system with

dielectric casing, but substitutes the plexiglass chamberfor a chamber made of stainless

steel. Prototypes with different cylinder sizes and with a series of antenna types have been

constructed, and data collected from them.
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9.3.1 Inversion results from our MWT systems with metallic casing

In this section, we show some preliminary results from the University of Manitoba MWT

systems with circular metallic casing which is currently under development. The experi-

mental results are preliminary in that no well-establishedtechniques are currently available

for the calibration of data obtained from within conductiveenclosure setups; we simply use

the same calibration technique that was previously used by other researchers for open-region

setups.

The first system is shown in figure 9.14 (a). Twenty-four monopole antennas are arranged

at even intervals of15 degrees in a circular array at the midpoint height along the inside of

a stainless steel cylinder of radius0.224 m, and of height0.508 m. The monopole antennas,

shown in figure 9.14 (b), are simple wires with right-angle bends placed into the female

end of the bulk-head SMA connectors that protrude into the wall of the cylinder. These

monopoles are oriented in the vertical direction, parallelto the cylindrical walls. The dis-

tance of the antennas from the wall of the chamber is only0.01 m. Other resistively loaded

antennas have been investigated for this system, but as the system design is not part of this

thesis, results for only the simple monopoles are shown. Although the stainless steel enclo-

sure is water-tight, allowing it to be filled with a matching liquid, the background medium,

at the current state of development, is air. The OI is the sameblock of wood, described

in Section 9.1.3, withεr ≈ 2 + j0.2 at 1 GHz. The target was placed at the center of the

metallic chamber, shown in figure 9.14 (a), and23 × 24 measurements were taken at this

frequency (23 receivers per transmitter).

As mentioned earlier, the vector network analyzer collectsscattering parameters between

antenna ports. Note that the24 antennas are co-resident during all measurements. As the

imaging algorithm requires scattered field measurements, the data is first collected for the
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(a) Dielectric phantom target inside the
MWT system

(b) Monopole an-
tenna
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Fig. 9.14:Experimental data set (a) the object of interest inside the circular metallic enclosure,
(b) monopole antenna, (c)-(d) eigenfunction CSI reconstruction, and(e)-(f) Gauss-Newton
reconstruction. For the eigenfunction CSI method, the imaging domain is the whole inte-
rior of the metallic enclosure whereas for the Gauss-Newton inversion, it isa0.3 m×0.3 m
square.
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MWT system in the absence of the OI. Assuming that thetth transmitter is active, this data is

labeled theincidentmeasurementS inc
21,t, and consists of23 measurements. We then perform

the same experiment in the presence of the OI. This data set islabeled thetotal measurement

S21,t. The measured incident data is then subtracted from the measured total data and is

denoted by the measuredscattereddata,Sscat
21,t = S21,t − S inc

21,t.

Modeling the incident field in the inversion algorithm byE inc
t given in (7.17), the calibrated

measured scattered fields for the unknown target corresponding to thetth transmitter are

calculated by

Escat
meas,t =

E inc
t

S inc
21,t

Sscat
21,t. (9.2)

whereE inc
t is calculated at the receiver locations. The fieldEscat

meas,t is then used in the in-

version algorithm. The measuredS inc
21,t and the simulatedE inc

t corresponding to the first

transmitter,t = 1, are shown in figure 9.15 at the23 receiver locations. This frequency

was chosen because of the reasonable match between the rawS inc
21 and the analytic incident

field assumed in the inversion model. Although this calibration technique is the one that has

been successfully used to calibrate the Fresnel2001 and2005 data sets [118, 102] (collected

in an anechoic chamber), it is not ideally suited to measurements taken inside conductive

enclosures because the mutual coupling between the co-resident antennas is much greater

than that in open-region systems.

The inversion result using eigenfunction contrast source inversion method, explained in

Chapter 7, is shown in figure 9.14 (c)-(d). As can be seen, the shape of the square wooden

cylinder is not resolved and the reconstructed permittivity is over the measured value. We

note the artifacts due to the presence of the antennas. To check whether the poor inversion

result is due to the use of eigenfunction CSI or the calibratedmeasured data itself, we have

also inverted the calibrated measured data using the GNI algorithm with a FEM forward
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Fig. 9.15:Comparison of the simulated incident field and the measuredS inc
21 for the first transmitter

at the23 receiver locations (a) absolute value, and (b) phase.

(a) Top view (b) Side view

Fig. 9.16:The second MWT system with metallic casing (a) top view (with an OI in the center of the
chamber), and (b) side view.

solver [135].1 The inversion results using the GNI method are shown in figure9.14 (e)-(f).

As can be seen the reconstruction results from the eigenfunction CSI and the GNI method

are very similar.

The second MWT system with metallic casing, shown in figure 9.16, was constructed with

a radius of8.08 cm but having a height of only5.28 cm. In addition, to better approximate

2D line sources, the antennas are fed straight up through thebottom aluminum plate of the

enclosure. Twenty-four threaded holes were tapped at even intervals into the bottom plate

1 As outlined in [135], this GNI algorithm is equipped with theadditive-multiplicative regularization (see
Section 5.2.3). It also uses the image enhancement algorithm (see Section 5.7).



9.3 MWT system with metallic casing 173

(a)

(b)

Fig. 9.17:Example of the FEM mesh for the small-sized MWT system with metallic casing: (a) the
24 antennas are modeled as small PEC cylinders, as shown in (b) the zoomed image.

at a radial offset of1.5 cm from the circular peripheral wall of the enclosure, whereSMA

bulkhead adapters could be screwed in to feed a set of straight loaded antennas (consisting of

the axial-lead 47 resistors). These make-shift resistor “antennas” nearly spanned the entire

5.28 cm height of the cylinder, clipped only about two or three millimeters from shorting

to the metal top plate. The frequency of operation for this system is2.7 GHz. Using this

system, two different data sets were collected from a rectangular homogeneous target of

dimensions2 cm× 6 cm with a height roughly equal to that of the system’s chamber. These

two data sets are distinguished by the position of the targetwithin the chamber. It should

also be noted that the relative complex permittivity of thistarget was measured using the

Agilent 85070E dielectric probe kit to beεr = 2.6 + j0.12 (thus, having the contrast of

χ = 1.6 + j0.12) at the frequency of operation (i.e., 2.7 GHz).
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(a) (b)

Fig. 9.18:The two different positions of the homogeneous scatterer within the MWT system with
metallic enclosure.

For the data sets collected in this system, we have applied both the GNI (in conjunction with

a FEM forward solver) and the eigenfunction CSI methods. Both of these algorithms failed

in inverting the data sets. The reasons for this failure havebeen studied in [151] in which it

was concluded that the strong mutual coupling between co-resident antennas in this small-

sized chamber is one of the main reasons for this failure. We note that the mutual coupling,

which leads to modeling error, has not been modeled in the inversion algorithm.

Having this reason in mind and to somehow model the mutual coupling between the an-

tennas within the inversion algorithm, we attempted to model the co-resident antennas by

constructing an FEM mesh which consists of24 small PEC circles of radius0.26 mm to

represent the24 co-resident antennas2. This FEM mesh has been shown in figure 9.17. Due

to the fact that the small circles representing the antennasare at the exact positions of the

sources/receivers, and that they represent PEC boundaries(where no field may penetrate),

we chose to place the transmitter/receiver points in the inversion algorithmλb/20 ≈ 5 mm

away from the edge of the small PEC circles. This leads to someerrors in the inversion, and

future work will focus on better ways to take the antennas into account. However, as will be

seen, this method provides reasonable inversion results.

2 The radius of these small PEC circles are chosen inad hocway.
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We now show some inversion results from the small-sized MWT system with metallic cas-

ing using the GNI method in conjunction with a FEM forward solver which uses the FEM

mesh with the24 small PEC circles. The first inversion was performed on data collected

with the object shifted toward the left-side of the MWT system’s chamber, as shown in fig-

ure 9.18 (a). The inversion of this data set is shown in figure 9.19 (a)-(b). The inversion

has reproduced the position and overall dimensions of the dielectric target reasonably well,

despite the peculiar deformations near the midpoint of its length and blurred edges around

its perimeter giving the reconstructed rectangular targetmore of an hour-glass shape. These

types of blurred edges can also be seen in the inversion of experimental data from the Institut

Fresnel MWT system with metallic casing [139]. Quantitatively, the real part of the recon-

structed permittivity has undershot the measured value1.6, and the object’s profile appears

lossless, with no imaginary part being produced by the algorithm aside from a few minor

artifacts. The second inversion was performed on data collected with the object rotated ap-

proximately45◦ counter-clockwise from its initial orientation shown in figure 9.16 (a). The

inversion result, shown in figure 9.19 (c)-(d) confirms the algorithm’s ability to track rota-

tional motion of the object. However, the reconstruction ofthe object is not very good as the

edges of the rectangle have not been reconstructed. Also, the reconstructed imaginary-part

of the contrast has an anomaly in the center of the imaging domain.

9.3.2 Discussion

The inversion results of the experimental data sets collected inside the two MWT systems

with metallic casing are not satisfactory3. Based on our experience, we speculate that the

main difficulty with inverting the experimental data from the MWT systems with metallic

casing, when the background medium is air, is due to the high mutual coupling between the

3 We note that the inversion of the synthetic data sets collected inside a metallic chamber was quite success-
ful as shown in Chapters 7 and 8.
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Fig. 9.19:Inversion of the homogeneous target, in two different positions, collectedinside the MWT
system with metallic casing.

co-resident antennas which is not entirely removable by theexisting calibration techniques,

like the one used in here4. The mutual coupling between the co-resident antennas is much

greater in our PEC-enclosed system compared to that present in our plexiglass-enclosed

system. This has been concluded by comparing twoS11 measurements taken in each case: (i)

S11 measurements for a single antenna when no other antennas arepresent in the enclosure,

and (ii ) S11 measurements for the same antenna when the other23 antennas are present in

the enclosure. In the metallic enclosure, theS11 measurements with only one antenna in the

enclosure is quite different from theS11 measurements when all antennas are present in the

chamber. This has been discussed in details in [151, 152]. Due to this, the presence of the

4 We have successfully used the calibration technique used inSection 9.3.1, known asincident-field cali-
bration, for open-region configurations [55, 57]. Other researchers have also successfully used this calibration
technique for MWT systems with dielectric casing [12].
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co-resident antennas substantially changes the input impedance of the transmitting antenna;

thus, it is likely that the field distribution inside the chamber is quite different than that of

an empty 2D metallic enclosure. This results in a large modeling error in the inversion

algorithms developed for inverting the data collected inside the metallic casing, like the

eigenfunction CSI method and the inversion method presentedin [139]. This is due to the

fact that these inversion algorithms implicitly assume that the Green’s function of the actual

MWT system is that of a empty 2D metallic enclosure. However, this implicit assumption is

not an acceptable approximation at all as the mutual coupling between co-resident antennas

changes the Green’s function of the MWT system sufficiently such that it cannot be modeled

with the analytic Green’s function of the empty 2D metallic enclosure5. Although the GNI

method in conjunction with the FEM mesh which consists of thesmall PEC circles can

partially take the mutual coupling between antennas into account, it is far from being a good

model.

To improve the reconstruction results, at least four methods may be fruitful. These are

1. designing a calibration technique which transforms theS21 measurements to field val-

ues in such a way that the mutual effects between co-residentantennas are calibrated

out,

2. implementing an inversion algorithm which can take the antenna into account prop-

erly,

3. decreasing the number of elements in the antenna array (e.g., having only4 antennas),

and
5 It should be noted that in MWT systems with dielectric casing,such approximations are made in the

inversion algorithms. For example, in Dartmouth College MWTsystem [12], the Green’s function of system
is approximated by the 2D Green’s function of a homogeneous background where the water-glycerin matching
fluid extends to infinity. Although these kinds of approximation work well in conjunction with MWT systems
with dielectric casing when a relatively high loss matchingfluid is used, they do not provide meaningful results
in conjunction with our air-filled MWT system with metallic enclosures
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4. utilizing an appropriate lossy matching fluid within the chamber.

All of these methods are now under investigation in our research group and are part of

our planned future work. If the calibration technique mentioned in the first method can

be developed, the eigenfunction CSI method in its current form should result in accurate

reconstructions with the calibrated measured data. If the second method is successful, this

will require utilizing numerical eigenvectors in the eigenfunction CSI method. Also, in this

case, the GNI method with a modified FEM mesh to incorporate the antenna elements may

be used. We note that the rotatable MWT system explained in Chapter 8 is one way to effect

method3. It is also expected that the fourth method,i.e., utilizing a lossy matching fluid,

can provide reasonable results at the expense of losing someSNR due to the presence of the

lossy matching fluid. However, this may not be a good solutionas our main goal is to use a

very low-loss (or, lossless) matching fluid to maintain a good SNR in the collected data.



10

Conclusions and Future Work

... when a traveler reaches a fork in the road, theL1-norm tells him to take
either one way or the other, but theL2-norm instructs him to head off into the
bushes(J. F. Claerbout and F. Muir [166]).

This final chapter summarizes the main results and achievements of this thesis and presents

an outline of the future work which might be fruitful to perform.

10.1 Conclusion

In this thesis, we formulated the MWT problem as an optimization problem. A number of

methods for solving the MWT problem were reviewed. These methods were classified into

two categories distinguished by their use (or, lack of use) of a forward solver.



10.1 Conclusion 180

Treating the ill-posedness of the problem was considered using different regularization tech-

niques in conjunction with the Gauss-Newton inversion algorithm. These regularization

techniques were studied and classified into two categories.The first category consists of the

penalty and projection methods whereas the second categoryconsists of additive, multiplica-

tive and additive-multiplicative regularization techniques. It was shown that these methods

can be viewed from within a single consistent framework after applying some modifications.

This framework helps to clarify the function of these regularization techniques. In addition,

two regularization techniques which can incorporatea priori information about the object

being imaged were presented. An image enhancement algorithm for the final image obtained

from the Gauss-Newton inversion algorithm was introduced.While adding little computa-

tional complexity to the inversion algorithm, this image enhancement algorithm was useful

in removing the spurious oscillations in the final reconstructions obtained from the inversion

method.

The 2D TM and 2D TE inversions for the open-region configuration were compared. It was

concluded that the TE inversion, which utilizes both rectangular components of the electric

vector at each receiver position, can result in more accurate reconstruction than the TM

inversion when utilizing near-field scattering data collected using only a few transmitters

and receivers. This study was a preliminary study to comparethe performance of the scalar

and vectorial inversions and may justify the added cost and complexity of developing MWT

systems capable of collecting vectorial data.

A new eigenfunction CSI method was presented for circular metallic enclosures within the

2D TM framework. This method is based on expressing the unknown contrast and contrast

sources as truncated eigenfunction expansions corresponding to the Helmholtz operator in a

homogeneous background medium. The expansion coefficientsbecome the unknowns in the

inverse problem which is formulated by introducing these eigenfunction expansions into the
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CSI functional. The conjugate gradient technique is used to minimize the functional with

respect to these expansion coefficients.

Using the 2D TM assumption, we successfully used the multiplicative regularized Gauss-

Newton inversion method in conjunction with an FEM forward solver for the MWT problem

inside an arbitrarily-shaped PEC enclosure. It was demonstrated that MWT systems with

PEC enclosures of different shapes may provide non-redundant information about the object

being imaged when the scattered field data is collected usingonly a few transmitters and

receivers in a low-loss (or, lossless) background medium. Based on this observation, we

propose a novel MWT system wherein a rotatable conductive triangular enclosure is used to

generate electromagnetic scattering data that are collected at each static position of the en-

closure using a minimal antenna array having as few as only four co-resident elements. The

antenna array remains fixed with respect to the target being imaged and only the boundary of

the conductive enclosure is rotated. The possibility of imaging in such a system was shown

using some synthetic examples.

We presented our results from the University of Manitoba’s MWT systems. At the current

state of development, the inversion results from the MWT system with plexiglass casing

are reasonable. The resolution of this MWT system was investigated using two cylindrical

nylon targets. At the operating frequency of5 GHz, a separation resolution of2 mm, or

1/30 of the wavelength in the background medium (air), was achieved. Although it is not

a sufficiently robust indicator of the expected resolution obtainable for complex targets, the

achieved separation resolution is significantly better than any of the previously published

resolution limits for similar MWT systems. Also, preliminary results were presented for

our MWT systems with metallic casing. These preliminary inversions showed poor results

for the current system but it is our expectation that there will be much improvement in

obtaining images once appropriate calibration techniquesare implemented or appropriate
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modifications are made in the system design; both of which arepart of the future work.

10.2 Future work

We suggest future work in two main directions. The first one isconcerned with the devel-

opment of inversion algorithms and the second one is concerned with the development of

measurement systems.

10.2.1 Inversion algorithms

In many applications, there isa priori information about the object being imaged. This

information, if incorporated correctly into the inversionalgorithms, can enhance the re-

construction significantly. Most contributions in the areaof inversion algorithms lie in the

development ofblind inversion algorithms where it is assumed that there is noa priori

information about the OI. Thus, there exists significant room for the development of inver-

sion algorithms which are able to properly incorporatea priori information about the OI.

Utilizing this information in the inversion algorithms canpush MWT toward becoming an

independent or complementary medical imaging modality. Toward this end, focusing on a

particular application such as breast cancer imaging may bevery fruitful. For this applica-

tion, Magnetic Resonance Imaging (MRI) has achieved high spatial resolution. However, it

has limited specificity in identifying tumor and benign lesions. On the other hand, MWT

has a limited resolution while having the potential to improve the specificity of breast cancer

imaging due to the difference between the dielectric properties of tumor and benign lesion

within the microwave spectrum. This provides room for development of a hybrid imaging

technique if MRI information can be incorporated within the MWT imaging algorithms. We
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note that this type of imaging has already been started for near-infrared tomography and

MRI [167].

10.2.2 Experimental systems

Microwave tomography systems, currently in existence, have no ability (or, very limited

ability) to collect near-field vectorial data. Thus, MWT algorithms in conjunction with these

systems work within the framework of the 2D TM or 3D scalar assumption. This introduces

modeling error into the utilized inversion algorithm. To reduce this modeling error, effort

needs to be placed on the development of MWT systems that can collect near-field vectorial

data so that a 3D full-vectorial MWT algorithm can be utilizedto invert the collected data

set.

Current state-of-the-art MWT systems utilize lossy matchingfluids so that little or no energy

that reaches the boundary of the system’s chamber makes it back to the antennas. This

simplifies the system’s calibration and makes it possible for MWT algorithms to assume that

the matching fluid extends to infinity, not to the boundary of the system’s casing. However,

the data which are collected in a lossy matching fluid will have a poorer SNR than data

collected in a low-loss (or, lossless) matching fluid. Thus,moving toward MWT systems

which couple the energy into the OI through a low-loss or lossless matching fluid may result

in enhanced imaging. As pointed out in Chapters 7 and 9, we think that this can be achieved

by using a conductive enclosure MWT system. However, as explained in Section 9.3.2, the

appropriate design and calibration of such systems have notbeen investigated yet and are

part of future work.
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B

Forward Scattering Problem

This method will be called the conjugate gradient method or, more briefly, the
cg-method, for reasons which will unfold from the theory developed in later
sections ... The results indicate that the method is very suitable for high speed
machines.(Hestenes and Stiefel [168]).

As explained in Section 2.3.2, the forward scattering problem, when thetth transmitter is

active, may be formulated by minimizing the cost–functional CFWD : L2(D) → R overEt:

CFWD(Et) =
1

∥

∥E inc
t

∥

∥

2

D

∥

∥E inc
t − (I − GχD) (Et)

∥

∥

2

D
. (B.1)

This cost-functional can be minimized using numerical techniques such as the Conjugate

Gradient (CG) algorithm where the total field at themth iteration is updated as

Et,m+1 = Et,m + βt,mdt,m (B.2)
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wheredt,m is the conjugate gradient direction andβt,m ∈ R
+ represents its weight. The

conjugate gradient direction can be found as [109]

dt,m =















gt,1 m = 0

gt,m +
‖gt,m‖2

D

‖gt,m−1‖2

D

dt,m−1 m 6= 0

(B.3)

wheregt,m is the maximum variation ofCFWD with respect toE atEt = Et,m. To findgt,m,

we start with finding the limit

δCFWD(Et)|Et=Et,m
= lim

ε→0

CFWD(Et,m + εΨ) − CFWD(Et,m)

ε
. (B.4)

whereΨ ∈ L2(D). The calculation of the above limit will result in

δCFWD(Et)|Et=Et,m
=

−2Re〈(I − GχD)a (Rt,m),Ψ〉D
∥

∥E inc
t

∥

∥

2

D

(B.5)

where

Rt,m = E inc
t − (I − GχD) (Et,m). (B.6)

From (B.5), it can be seen thatδCFWD(Et)|Et=Et,m
reaches its maximum (considering func-

tionsΨ with identical norms) for

Ψ = gt,m = (I − GχD)a (Rt,m). (B.7)

Using the definition of the adjoint operator, it can be easilyshown that(I − GχD)a = I −

χ∗GaD whereGaD is given in (2.14). Therefore,

gt,m = [I − χ∗GaD] (Rt,m) . (B.8)



Forward Scattering Problem 191

At themth iteration of the CG algorithm, the weightβt,m is found by minimizingCFWD over

βt,m whenEt is substituted byEt,m + βt,mdt,m. The derivative ofCFWD with respect toβt,m

will result in

∂CFWD

∂βm
=
β2
m ‖I − GχD(dt,m)‖2

D
∥

∥E inc
t

∥

∥

2

D

− 2βt,mRe〈Rt,m, (I − GχD) (dt,m)〉D
∥

∥E inc
∥

∥

2

D

. (B.9)

Therefore, the weightβt,m will be

βt,m =
Re〈Rt,m, (I − GχD) (dt,m)〉D

‖I − GχD(dt,m)‖2
D

. (B.10)

In the MWT problem, the OI is irradiated several times with a number of given incident

fields, sayE inc
t (t = 1, . . . , Tx), corresponding to different transmitters around the OI. Most

MWT algorithms require that the forward scattering problem,(B.1), is solved for these dif-

ferent incident fields assuming a known predicted contrastχ. Therefore, having a fast for-

ward solver is crucial. Assuming an unbounded homogeneous background for the MWT

problem, the operations ofGχD and its adjoint on an arbitrary function inL2(D), as required

for minimizing (B.1) using the CG method, can be accelerated using the Fast Fourier Trans-

form (FFT) in the discrete domain due to the convolutional property of the associated integral

equation [36, 37].

Since in practical MWT systems, two successive transmitter positions are usually close,

we can further accelerate the forward solver by using the marching-on-in-source-position

technique [38], [30] which provides a good initial guess forthe CG-FFT algorithm. In our

utilized marching-on-in-source-position technique, theinitial guess of the CG-FFT algo-

rithm for the first three transmitters,t = 1, 2, 3, is simply the incident field corresponding

to those transmitters; that is,Et,0 = E inc
t . Then, an appropriate initial guess for the CG-

FFT algorithm with respect to thetth transmitter (t ≥ 4) is obtained via an extrapolation
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of the fields corresponding to some previous transmitter positions which have been already

calculated. Specifically, the initial guess for the CG-FFT algorithm corresponding totth

transmitter (t ≥ 4) is written as,

Et,0(q) =
3
∑

i=1

aiEt−i(q) (B.11)

whereEt−i(q) is the converged solution of (B.1) with respect to(t − i)th transmitter. A

closed-form expression for the coefficientsai is available such that they minimize the fol-

lowing norm [30]
∥

∥(I − GχD)Et,0 − E inc
t

∥

∥

D
. (B.12)

This completes the brief description of the so-called CG-FFTforward solver and the marching-

on-in-source-position acceleration technique utilized in this research.
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C

Computation of Derivatives Using

Wirtinger Calculus

Nicht einer mystischen Verwendung von
√
−1 hat die Analysis ihre wirklich

bedeutenden Erfolge des letzen Jahrhunderts zu verdanken,sondern dem ganz
natürlichen Umstande, dass man unendlich viel freier in der mathematischen
Bewgung ist, wenn man die Grössen in einer Ebene statt nur in einer Limie
variiren läßt.Translation:Analysis does not owe its really significant successes
of the last century to any mysterious use of

√
−1, but to the quite natural cir-

cumstance that one has infinitely more freedom of mathematical movement if he
lets quantities vary in a plane instead of only on a line.(Leopold Kronecker
[169]).

In many applications, one optimizes a real-valued cost-functional over a complex-valued

vector quantity. The main difficulty in such situations is that any non-constant real-valued

cost-functional is not analytic in the complex domain [71];thus, it is not complex differen-

tiable. One way to handle this problem is to optimize the cost-functional with respect to the

real and imaginary parts of the complex-valued vector. Of course, within the framework of
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this approach, we implicitly assume that the cost-functional is differentiable with respect to

the real and imaginary parts of the complex-valued vector. This type of differentiability is

sometimes referred to as real differentiability [170] (as opposed to complex differentiabil-

ity), and it has been used in microwave tomography by different authors;e.g., see [42, 107].

Another approach to handle this problem is to treat the complex-valued vector and its com-

plex conjugate as two independent vectors over which to perform the optimization. This

method which has been used by different authors [72, 73, 71, 30, 58] makes use of Wirtinger

calculus [70] which provides a way to bypass the strict definition of complex differentia-

bility. In this appendix, we consider the Wirtinger calculus for optimizing a real-valued

cost-functional over a complex vector. We then describe theextension of this calculus for

the infinite-dimensional case.

Let F be a real-valued cost-functional of a complex-valuedN -dimensional vectorχ. That

is, F : C
N → R. Assuming that the cost-functionalF is not constant, it can be easily

verified that the cost-functionalF is not analytic (holomorphic) inχ [71, 170]. Thus, it is

not complex differentiable with respect toχ. It is well-known that a non-holomorphic cost-

functional can be expressed in terms of its complex argumentand the complex conjugate of

the argument [170]1. Thus, we can define the cost-functionalF̃(χ, χ∗) such thatF̃(χ, χ∗) =

F(χ). It can be shown that ifF is real differentiable with respect toχ
R

= Re(χ) and

χ
I

= Im(χ), the real and imaginary parts ofχ, the cost-functional̃F is holomorphic inχ

for fixedχ∗ and holomorphic inχ∗ for fixedχ [170, 171, 71]. Therefore, assuming thatF

is real differentiable, one canformally define two partial derivatives [170]

∂F̃
∂χ

|χ∗=const. (C.1)

1 For example, the non-holomorphic cost-functionalF(χ) =
∥

∥χ
∥

∥

2

can be written as̃F(χ, χ∗) = F(χ) =

(χ∗)T χ.
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and,
∂F̃
∂χ∗

|χ=const. (C.2)

It should be noted that these two derivatives are formal in the sense that one cannot truly

varyχ while keepingχ∗ constant or vice versa.

Using these formal derivatives and noting thatF̃(χ, χ∗) = F(χ), the first differential ofF

can be written as

dF =

[

∂F̃
∂χ

]T

dχ+

[

∂F̃
∂χ∗

]T

dχ∗. (C.3)

Defining the inner product between two complex vectors of thesame size as〈w, v〉 = vHw,

(C.3) may be written as

dF =

〈

∂F̃
∂χ

, dχ∗

〉

+

〈

∂F̃
∂χ∗

, dχ

〉

(C.4)

One important relation between these two formal derivatives is [72, 73, 71]

〈

∂F̃
∂χ

, dχ∗

〉

=

{〈

∂F̃
∂χ∗

, dχ

〉}∗

(C.5)

Using (C.5) and (C.4), the first differential ofF may be written as

dF = 2Re

{〈

∂F̃
∂χ

, dχ∗

〉}

= 2Re

{〈

∂F̃
∂χ∗

, dχ

〉}

. (C.6)

We note that the first differential ofF can also be written in terms of the variations with

respect toχ
R

andχ
I
. That is,

dF =

[

∂F
∂χ

R

]T

Re(dχ)+

[

∂F
∂χ

I

]T

Im(dχ) =

〈

∂F
∂χ

R

,Re(dχ)

〉

+

〈

∂F
∂χ

I

, Im(dχ)

〉

. (C.7)
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Considering (C.7), and noting that (C.6) can be written as

dF =

〈

2Re

{

∂F̃
∂χ∗

}

,Re
{

dχ
}

〉

+

〈

2Im

{

∂F̃
∂χ∗

}

, Im
{

dχ
}

〉

, (C.8)

it can be concluded that

2Re

{

∂F̃
∂χ∗

}

=
∂F
∂χ

R

and, 2Im

{

∂F̃
∂χ∗

}

=
∂F
∂χ

I

. (C.9)

Thus,
∂F̃
∂χ∗

=
1

2

(

∂F
∂χ

R

+ j
∂F
∂χ

I

)

. (C.10)

Using a similar procedure, it can be shown that

∂F̃
∂χ

=
1

2

(

∂F
∂χ

R

− j
∂F
∂χ

I

)

. (C.11)

Within this thesis, we apply the Wirtinger calculus to the infinite-dimensional case where

the cost-functionalC maps the complex functionχ ∈ L2(D) to R. We, therefore, consider

the cost-functional̃C(χ, χ∗) such thatC̃(χ, χ∗) = C(χ). The first variation ofC can then be

written as

δC =
∂C̃
∂χ

(δχ) +
∂C̃
∂χ∗

(δχ∗) (C.12)

The derivative operators∂C̃/∂χ and ∂C̃/∂χ∗ are linear mappings fromL2(D) to C and

satisfy

∂C̃
∂χ

(δχ) =

{

∂C̃
∂χ∗

(δχ∗)

}∗

. (C.13)

Noting (C.13) and (C.12), the first variation ofC can also be written as

δC = 2Re

{

∂C̃
∂χ

(δχ)

}

= 2Re

{

∂C̃
∂χ∗

(δχ∗)

}

. (C.14)
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Sometimes, when we are dealing with nonlinear cost-functionals, it may not be straightfor-

ward to find the cost-functional̃C(χ, χ∗). To find the formal derivative operators in these

situations, we may first find the Gateaux differential [172, pg. 498] of the cost-functionalC

as

δC = lim
ε→0

C(χ+ εδχ) − C(χ)

ε
. (C.15)

The result of the above limit will be of the form

2Re〈f, δχ〉D (C.16)

where the inner product overD is defined in (2.6) andf ∈ L2(D). Thus, the Gateaux

differential can be written as

δC = 〈f, δχ〉D + 〈f ∗, δχ∗〉D . (C.17)

Comparing (C.17) with (C.12), the derivative operators can then be found as

∂C̃
∂χ

(δχ) = 〈f ∗, δχ∗〉D (C.18)

∂C̃
∂χ∗

(δχ∗) = 〈f, δχ〉D (C.19)

Finally, we note that the validity of the Wirtinger calculusis proved in many references for

the univariate and multivariate calculus [70, 71, 72, 73, 170] and is extendable to the infinite

dimensional case where it is sometimes called functional Wirtinger calculus [173].
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D

Required Derivative Operators

Le pŕesent travail est une première tentative pouŕetablir syst́ematiquement
quelques principes fondamentaux du Calcul Fonctionnel et les appliquer ensuite
à certains exemples concrets.Translation:The present work is a first attempt
to systematically establish some basic principles of the Calculus of Function-
als and apply them to some concrete examples.(Maurice Reńe Fŕechet; from
the Introduction of his PhD thesis [174] supervised by Jacques Hadamard and
submitted in1906).

In this Appendix, we derive the required derivative operators utilized in Chapters 4 and 5.

D.1 Derivative of the scattered field with respect to the contrast

Assuming that thetth transmitter is active, the first derivative of the scatteredfield with

respect to the contrastχ, at thenth iteration of the GNI algorithm whereχ = χn, may be
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found via

∂Escat
t

∂χ
|χ=χn

(ψ) = lim
ε→0

Escat
t (χn + εψ) − Escat

t (χn)

ε

= lim
ε→0

Escat
t,χn+εψ(p) − Escat

t,χn
(p)

ε
(D.1)

whereψ ∈ L2(D), ε ∈ R, andEscat
t,χn+εψ(p) andEscat

t,χn
(p) denotes the scattered field on

the measurement domain corresponding toχn + εψ andχn respectively (when thetth trans-

mitter is active). It is well known that the scattered fieldEscat
t,χn

satisfies the vector wave

equation [35]

∇×∇× Escat
t,χn

− k2
bE

scat
t,χn

= k2
bχnEt,χn

(D.2)

where∇× denotes the curl operator andEt,χn
is the total field in the presence of the contrast

χn when thetth transmitter is active. Similar to the above equation,Escat
t,χn+εψ satisfies

∇×∇× Escat
t,χn+εψ − k2

bE
scat
t,χn+εψ = k2

b (χn + εψ)Et,χn+εψ (D.3)

whereEt,χn+εψ is the total field in the presence of the contrastχn + εψ. Subtracting (D.2)

from (D.3), it results in

∇×∇× (Escat
t,χn+εψ − Escat

t,χn
) − k2

b (E
scat
t,χn+εψ − Escat

t,χn
)

= k2
bχn(Et,χn+εψ − Et,χn

) + εk2
bψEt,χn+εψ (D.4)

Noting thatEt,χn+εψ = Escat
t,χn+εψ + E inc

t andEt,χn
= Escat

t,χn
+ E inc

t , (D.4) may be re-written

as

∇×∇× (Escat
t,χn+εψ − Escat

t,χn
) − k2(Escat

t,χn+εψ − Escat
t,χn

) = εk2
bψEt,χn+εψ (D.5)

wherek2 = k2
b (1 + χn) is the wavenumber squared corresponding to the contrastχn. We

now define the inhomogeneous Green’s function which corresponds to the contrastχn. The
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inhomogeneous Green’s function,¯̄Ginh, sometimes referred to as the distorted Green’s func-

tion, satisfies

∇×∇× ¯̄Ginh(r, r′) − k2 ¯̄Ginh(r, r′) = ¯̄Iδ(r − r′) (D.6)

where ¯̄I is the identity dyad,δ(.) represents the Dirac delta function, andr andr′ represent

two arbitrary position vectors. Noting (D.6) and (D.5), it can be concluded that

Escat
t,χn+εψ(p) − Escat

t,χn
(p) = k2

b

∫

D

¯̄Ginh(p, q) · εψ(q)Et,χn+εψ(q)dq. (D.7)

Using (D.7), equation (D.1) may be written as

∂Escat
t

∂χ
|χ=χn

(ψ) = lim
ε→0

k2
b

∫

D
¯̄Ginh(p, q) · εψ(q)Et,χn+εψ(q)dq

ε
(D.8)

Noting (2.19), the field̃E(q) may be written as

Et,χn+εψ(q) = Et(χn + εψ) = Et(χn) +
∂Et
∂χ

|χ=χn
(εψ) + o(‖εψ‖D) =

Et,χn
(q) + ε

∂Et
∂χ

|χ=χn
(ψ) + o(‖εψ‖D) (D.9)

where the little-o notation represents

lim
‖ψ‖

D
→0

o(‖ψ‖D)

‖ψ‖D
= 0. (D.10)

Noting (D.9), equation (D.8) can be simplified to

∂Escat
t

∂χ
|χ=χn

(ψ) = k2
b

∫

D

¯̄Ginh(p, q) · ψ(q)Et,χn
(q)dq. (D.11)

We will note that the generation of the dyadic Green’s function ¯̄Ginh(p, q) as it requires

evaluating the field at the receiver located atp ∈ S for the excitation located atq ∈ D.
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As the number of receivers are usually much less than that of the testing points within the

imaging domain, it is computationally more efficient to formulate the derivative operator in

terms of ¯̄Ginh(q,p). To do so, we use the reciprocity relation

¯̄Ginh(p, q) =
[

¯̄Ginh(q,p)
]T

(D.12)

Using (D.12), the derivative operator, (D.11), may be written as

∂Escat
t

∂χ
|χ=χn

(ψ) = k2
b

∫

D

[

¯̄Ginh(q,p)
]T

· ψ(q)Et,χn
(q)dq (D.13)

Equation (D.13), may be written as

∂Escat
t

∂χ
|χ=χn

(ψ) = k2
b

∫

D

ψ(q)Et,χn
(q) · ¯̄Ginh(q,p)dq (D.14)

For more clarity, we sometimes refer to the distorted Green’s function corresponding toχn

as ¯̄Ginh(q,p;χn) and also writeEt,χn
(q) asEt(q;χn). This completes the derivation of the

operator∂Escat
t /∂χ.

As will be seen in Section D.2, the Gauss-Newton inversion method also requires the adjoint

of the operator∂E
scat

∂χ
. The adjoint operator,

(

∂Escat

∂χ

)a

satisfies

〈

Γ,
∂Escat

t

∂χ
|χ=χn

(ψ)

〉

S

=

〈(

∂Escat
t

∂χ
|χ=χn

)a

(Γ), ψ

〉

D

, (D.15)

whereΓ ∈ L2(S) andψ ∈ L2(D). Using (D.15) and (D.14), it is straightforward to show

that

(

∂Escat
t

∂χ
|χ=χn

)a

(Γ) =
(

k2
b

)∗
[Et,χn

(q)]∗ ·
∫

S

[

¯̄Ginh(q,p)
]∗

· Γ(p)dp (D.16)
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The second derivative of the scattered field with respect to the contrast is ignored to avoid its

computational cost. Although the second derivative is ignored, it will be derived to show why

its calculation is computationally expensive. The second derivative operator∂2Escat
t /∂χ2 is

a linear mapping fromL2(D) to the space of linear operators which map fromL2(D) to

L2(S). denotingψ ∈ L2(D) andϕ ∈ L2(D), the second derivative operator, at thenth

iteration of the algorithm whereχ = χn may be found via

[

∂2Escat
t

∂χ2
|χ=χn

(ϕ)

]

(ψ) = lim
ε→0

∂Escat
t

∂χ
|χ=χn+εψ(ϕ) − ∂Escat

t

∂χ
|χ=χn

(ϕ)

ε
. (D.17)

Using (D.14), equation (D.17) may be written as

[

∂2Escat
t

∂χ2
|χ=χn

(ϕ)

]

(ψ) = lim
ε→0

[

k2
b

∫

D
ϕ(q)Et(q;χn + εψ) · ¯̄Ginh(q,p;χn + εψ)dq

ε
−

k2
b

∫

D
ϕ(q)Et(q;χn) · ¯̄Ginh(q,p;χn)dq

ε

]

(D.18)

whereEt(q;χn + εψ) andEt(q;χn) are the total fields within the imaging domain in the

presence ofχn+εψ andχn respectively. Also,̄̄Ginh(q,p;χn+εψ) and ¯̄Ginh(q,p;χn) are the

dyadic Green’s functions for the inhomogeneous backgroundsχn + εψ andχn respectively.

After making the mathematical calculations and simplifications, (D.18) is simplified to

[

∂2Escat
t

∂χ2
|χ=χn

(ϕ)

]

(ψ) = k2
b

∫

D

ϕ(q)

[

∂Et
∂χ

|χ=χn
(ψ) · ¯̄Ginh(q,p;χn) +

Et(q;χn) ·
∂ ¯̄Ginh(q,p;χ)

∂χ
|χ=χn

(ψ)

]

dq (D.19)

As briefly explained in Chapter 4, the calculation of this second derivative is very computa-

tionally expensive. Thus, it is avoided in the GNI method.
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D.2 Required derivatives for the data misfit cost-functional

Herein, we show the derivation of the required derivatives for the Gauss-Newton inversion

method assuming the cost-functional to be minimized isC(χ) ≡ CLS(χ) where the data

misfit CLS is given in (3.1). As discussed in Appendix C, the cost-functional CLS is not

holomorphic inχ. We, therefore, consider the cost-functionalC̃LS(χ, χ∗) which satisfies

C̃LS(χ, χ∗) = CLS(χ). The cost-functional̃C is holomorphic inχ for fixedχ∗ and vice versa

(see Appendix C for more discussion).

To find the derivatives of̃CLS(χ) with respect toχ andχ∗ atχ = χn, we start with finding

the limit

lim
ε→0

CLS(χn + εψ) − CLS(χn)

ε
=

lim
ε→0

ηS

Tx
∑

t=1

∥

∥Escat
t (χn + εψ) − Escat

meas,t

∥

∥

2

S
−

Tx
∑

t=1

∥

∥Escat
t (χn) − Escat

meas,t

∥

∥

2

S

ε
(D.20)

whereε ∈ R, ψ ∈ L2(D), andηS =

[

Tx
∑

t=1

∥

∥Escat
meas,t

∥

∥

2

S

]−1

. Utilizing the little-o notation,

(D.10), the expression (D.20) can be written as

lim
ε→0

ηS

[

Tx
∑

t=1

∥

∥

∥

∥

Escat
t (χn) + ε

∂Escat
t

∂χ
|χ=χn

(ψ) + o(‖εψ‖D) − Escat
meas,t

∥

∥

∥

∥

2

S

ε
−

Tx
∑

t=1

∥

∥Escat
t (χn) − Escat

meas,t

∥

∥

2

S

ε

]

(D.21)
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The above limit may then be simplified as

2ηS

Tx
∑

t=1

Re

〈

Escat
t (χn) − Escat

meas,t,
∂Escat

t

∂χ
|χ=χn

(ψ)

〉

S

, (D.22)

where ‘Re’ denotes the real-part operator. The above expression can then be written as,

〈

ηS

Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a

(Escat
t (χn) − Escat

meas,t), ψ

〉

D

+

〈

ηS

Tx
∑

t=1

{[

∂Escat
t

∂χ
|χ=χn

]a

(Escat
t (χn) − Escat

meas,t)

}∗

, ψ∗

〉

D

. (D.23)

Considering the definition of the functional derivative [77], [172] and the definition of the

inner product given in (2.8), it can be concluded that

∂C̃LS

∂χ
|χ=χn

(ψ) =

〈

ηS

Tx
∑

t=1

{[

∂Escat
t

∂χ
|χ=χn

]a

(Escat(χn) − Escat
meas,t)

}∗

, ψ∗

〉

D

, (D.24)

and

∂C̃LS

∂χ∗
|χ=χn

(ψ∗) =

〈

ηS

Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a

(Escat
t (χn) − Escat

meas,t), ψ

〉

D

. (D.25)

We note that
∂C̃LS

∂χ∗
|χ=χn

(ψ∗) =

{

∂C̃LS

∂χ
|χ=χn

(ψ)

}∗

. (D.26)

To find
[

∂2C̃LS

∂χ∗∂χ
|χ=χn

(ϕ)
]

(ψ∗) and
[

∂2C̃LS

∂χ∂χ
|χ=χn

(ϕ)
]

(ψ), we start with finding the limit

lim
ε→0

∂C̃LS

∂χ
|χ=χn+εψ(ϕ) − ∂C̃LS

∂χ
|χ=χn

(ϕ)

ε
. (D.27)
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Noting (D.24), the above limit can be written as

lim
ε→0

ηS

Tx
∑

t=1

〈

∂Escat
t

∂χ
|χ=χn+εψ(ϕ), Escat

t (χn + εψ) − Escat
meas,t

〉

S

ε
−

ηS

Tx
∑

t=1

〈

∂Escat
t

∂χ
|χ=χn

(ϕ), Escat
t (χn) − Escat

meas,t

〉

S

ε
. (D.28)

Utilizing (D.10), the above limit can be simplified to

lim
ε→0

ηS

Tx
∑

t=1

〈

∂Escat
t

∂χ
|χ=χn

(ϕ) + ε
∂2Escat

∂χ2
|χ=χn

(ϕ)(ψ), Escat
t (χn) + ε

∂Escat
t

∂χ
(ψ) − Escat

meas,t

〉

S

ε

−
ηS

Tx
∑

t=1

〈

∂Escat
t

∂χ
|χ=χn

(ϕ), Escat
t (χn) − Escat

meas,t

〉

S

ε
.

(D.29)

The above limit will then be

ηS

Tx
∑

t=1

〈

∂Escat
t

∂χ
|χ=χn

(ϕ),
∂Escat

t

∂χ
|χ=χn

(ψ)

〉

S

+

Tx
∑

t=1

ηS

〈[

∂2Escat
t

∂χ2
|χ=χn

(ϕ)

]

(ψ), Escat
t (χn) − Escat

meas,t

〉

S

. (D.30)

Using the definition of the adjoint operator, the above expression may be written as

〈

ηS

Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a [
∂Escat

t

∂χ
|χ=χn

]

(ϕ), ψ

〉

D

+

〈

ηS

Tx
∑

t=1

{[

∂2Escat
t

∂χ2
|χ=χn

(ϕ)

]a
(

Escat
t (χn) − Escat

meas,t

)

}∗

, ψ∗

〉

D

. (D.31)
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Therefore, it can be concluded that

[

∂2C̃LS

∂χ∗∂χ
|χ=χn

(ϕ)

]

(ψ∗) =

〈

ηS

Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a [
∂Escat

t

∂χ
|χ=χn

]

(ϕ), ψ

〉

D

(D.32)

and

[

∂2C̃LS

∂χ∂χ
|χ=χn

(ϕ)

]

(ψ) =

〈

ηS

Tx
∑

t=1

{[

∂2Escat
t

∂χ2
|χ=χn

(ϕ)

]a
(

Escat
t (χn) − Escat

meas,t

)

}∗

, ψ∗

〉

D

(D.33)

To find
[

∂2C̃LS

∂χ∂χ∗ |χ=χn
(ϕ∗)

]

(ψ) and
[

∂2C̃LS

∂χ∗∂χ∗ |χ=χn
(ϕ∗)

]

(ψ∗), we start with finding the limit

lim
ε→0

∂C̃LS

∂χ∗ |χ=χn+εψ(ϕ∗) − ∂C̃LS

∂χ∗ |χ=χn
(ϕ∗)

ε
. (D.34)

Using the same procedure utilized to derive (D.32) and (D.33), we can derive the following

[

∂2C̃LS

∂χ∂χ∗
|χ=χn

(ϕ∗)

]

(ψ) =

{[

∂2C̃LS

∂χ∗∂χ
|χ=χn

(ϕ)

]

(ψ∗)

}∗

(D.35)

and
[

∂2C̃LS

∂χ∗∂χ∗
|χ=χn

(ϕ∗)

]

(ψ∗) =

{[

∂2C̃LS

∂χ∂χ
|χ=χn

(ϕ)

]

(ψ)

}∗

. (D.36)

D.3 Derivatives of theL2-norm total variation regularizer

In this thesis, we have considered two forms of theL2-norm total variation regularizer. The

first one isCAR(χ) which is given in (5.7). The second one,CMR
n (χ), is the weightedL2-

norm total variation regularizer which is given in (5.15). As discussed in Appendix C, we

consider the cost-functional̃CMR
n (χ, χ∗) which satisfies̃CMR

n (χ, χ∗) = CMR
n (χ). To find the
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derivatives ofC̃MR
n (χ) with respect toχ andχ∗, at thenth iteration of the Gauss-Newton

inversion algorithm whereχ = χn, we start with finding the limit

lim
ε→0

CMR
n (χn + εψ) − CMR

n (χn)

ε
(D.37)

Noting thatCMR
n (χ) = ‖bn∇χ‖2

D + α2
n ‖bn‖2

D, the above limit can be written as

lim
ε→0

‖bn∇(χn + εψ)‖2
D + α2

n ‖bn‖2
D − ‖bn∇χn‖2

D − α2
n ‖bn‖2

D

ε
(D.38)

Utilizing (D.10) and noting thatbn is a real function, the above limit can be simplified to

2Re〈bn∇χn, bn∇ψ〉D = 2Re
∫

D

b2n(q)∇χn(q) · ∇ψ∗(q)dq. (D.39)

Noting that

∇ ·
(

(b2n∇χn)ψ∗
)

= ψ∗∇ · (b2n∇χn) + b2n∇χn · ∇ψ∗, (D.40)

where ‘∇·’ denotes the divergence operator, (D.39) may be written as

2Re
∫

D

{

∇ ·
(

(

b2n(q)∇χn(q)
)

ψ∗(q)
)

− ψ∗(q)∇ ·
(

b2n(q)∇χn(q)
)}

dq. (D.41)

Using the divergence theorem [175], the above expression can be written as

2Re

{∫

∂D

(

b2n(q)∇χn(q)
)

ψ∗(q) · ndq −
∫

D

ψ∗(q)∇ ·
(

b2n(q)∇χn(q)
)

dq

}

(D.42)

where∂D denotes the boundary of the imaging domainD, andn is the outward pointing

unit normal vector of the boundary∂D.

In MWT reconstruction algorithms, it is implicitly assumed that the contrast function van-

ishes on the boundary of the imaging domain;χ(q ∈ ∂D) = 0. That is, the permittivity
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at the boundary of the imaging domain is equal to that of the background medium;i.e.,

εr(q ∈ ∂D) = εb. Noting this implicit restriction on the contrast function, the domain of

the cost-functionalCMR
n can be defined more accurately as theL2 space of complex func-

tions defined on the imaging domain,L2(D), which vanish on∂D. Using this definition, the

functionψ also needs to vanish on∂D. Thus,

∫

∂D

(

b2n(q)∇χn(q)
)

ψ∗(q)dq = 0. (D.43)

Noting (D.43), equation (D.42) can be written as

−2Re
∫

D

ψ∗(q)∇ ·
(

b2n(q)∇χn(q)
)

dq = 2Re
〈

−∇ · (b2n∇χn), ψ
〉

D
. (D.44)

Thus,

lim
ε→0

CMR
n (χn + εψ) − CMR

n (χn)

ε
=
〈

−∇ · (b2n∇χn), ψ
〉

D
+
〈[

−∇ · (b2n∇χn)
]∗
, ψ∗
〉

D
.(D.45)

Noting (D.45), the derivative operators may be written as

∂C̃MR
n

∂χ∗
|χ=χn

(ψ∗) =
〈

−∇ · (b2n∇χn), ψ
〉

D
(D.46)

and
∂C̃MR

n

∂χ
|χ=χn

(ψ) =
〈[

−∇ · (b2n∇χn)
]∗
, ψ∗
〉

D
. (D.47)

We note that
∂C̃MR

n

∂χ
|χ=χn

(ψ) =

{

∂CMR

∂χ∗
|χ=χn

(ψ∗)

}∗

. (D.48)

To find the derivatives
[

∂2C̃MR
n

∂χ∗∂χ
|χ=χn

(ϕ)
]

(ψ∗), and
[

∂2C̃MR
n

∂χ∂χ
|χ=χn

(ϕ)
]

(ψ), we start with finding



D.3 Derivatives of theL2-norm total variation regularizer 211

the limit

lim
ε→0

∂C̃MR
n

∂χ
|χ=χn+εψ(ϕ) − ∂C̃MR

n

∂χ
|χ=χn

(ϕ)

ε
(D.49)

Utilizing (D.47) and noting thatb2n is a real function, the above limit may be written as

lim
ε→0

〈−∇ · (b2n∇(χ∗
n + εψ∗)), ϕ∗〉D − 〈−∇ · (b2n∇χ∗

n), ϕ
∗〉D

ε
(D.50)

After mathematical simplifications and noting that the operator ‘Ln , ∇ · (b2n∇)’ is a self

adjoint operator (i.e., Ln = Lan), see Appendix E for the proof, the above limit can be

simplified to

lim
ε→0

∂C̃MR
n

∂χ
|χ=χn+εψ(ϕ) − ∂C̃MR

n

∂χ
|χ=χn

(ϕ)

ε
=
〈

−∇ · (b2n∇ϕ), ψ
〉

D
. (D.51)

Therefore,
[

∂2C̃MR
n

∂χ∗∂χ
(ϕ)

]

(ψ∗) =
〈

−∇ · (b2n∇ϕ), ψ
〉

D
(D.52)

and
[

∂2C̃MR
n

∂χ∂χ
(ϕ)

]

(ψ) = 0. (D.53)

Using the same procedure, it can be concluded that

[

∂2C̃MR
n

∂χ∂χ∗
(ϕ∗)

]

(ψ) =

{[

∂2C̃MR
n

∂χ∗∂χ
(ϕ)

]

(ψ∗)

}∗

(D.54)

and
[

∂2C̃MR
n

∂χ∗∂χ∗
(ϕ)

]

(ψ) =

{[

∂2C̃MR
n

∂χ∂χ
(ϕ)

]

(ψ)

}∗

= 0. (D.55)

Noting thatCAR is a special form ofCMR
n , the derivatives of̃CAR(χ, χ∗) can be derived in a
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similar way. These are

∂C̃AR

∂χ∗
|χ=χn

(ψ∗) =

〈

− 1

A
∇ · (∇χn), ψ

〉

D

=

〈

− 1

A
∇2χn, ψ

〉

D

, (D.56)

∂C̃AR

∂χ
|χ=χn

(ψ) =

{

∂C̃AR

∂χ∗
|χ=χn

(ψ∗)

}∗

, (D.57)

[

∂2C̃AR

∂χ∗∂χ
|χ=χn

(ϕ)

]

(ψ∗) =

〈

− 1

A
∇ · (∇ϕ), ψ

〉

D

=

〈

− 1

A
∇2ϕ, ψ

〉

D

, (D.58)

[

∂2C̃AR

∂χ∂χ∗
|χ=χn

(ϕ∗)

]

(ψ) =

{[

∂2C̃AR

∂χ∗∂χ
|χ=χn

(ϕ)

]

(ψ∗)

}∗

, (D.59)

and
[

∂2C̃AR

∂χ∂χ
|χ=χn

(ϕ)

]

(ψ) =

{[

∂2C̃AR

∂χ∗∂χ∗
|χ=χn

(ϕ∗)

]

(ψ∗)

}∗

= 0, (D.60)

whereA is the area of the imaging domain and∇2 denotes the Laplacian operator.

D.4 Required derivatives for the shape and location reconstruction

In this section, we derive the required derivatives for the multiplicative regularizer given in

(5.34). To find the first derivatives at thenth iteration of the GNI algorithm, we start with

finding the limit

lim
ε→0

CMR,hom
n (χn + εψ) − CMR,hom

n (χn)

ε
. (D.61)
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The above limit can be written as

lim
ε→0

1

Aε

∫

D

L
∏

l=1

ξ2
l,n(q)

(

∣

∣χn(q) + εψ(q) − χhl
∣

∣

2
+ α2

n

)

−

L
∏

l=1

ξ2
l,n(q)

(

∣

∣χn(q) − χhl
∣

∣

2
+ α2

n

)

dq (D.62)

where

ξl,n(q) ,

(

∣

∣χn(q) − χhl
∣

∣

2
+ α2

n

)− 1

2

. (D.63)

Utilizing (D.10), the above limit can be simplified to (the argumentq has been dropped for

simplicity)

lim
ε→0

1

Aε

∫

D

L
∏

l=1

ξ2
l,n

(

2εRe
{(

χn − χhl
)

ψ∗
}

+
∣

∣χn − χhl
∣

∣

2
+ α2

n

)

−

L
∏

l=1

ξ2
l,n

(

∣

∣χn − χhl
∣

∣

2
+ α2

n

)

dq (D.64)

Utilizing (D.10) and after mathematical simplifications, the above limit can be written as

2

A

∫

D

L
∑

l=1



ξ2
l,nRe

{(

χn − χhl
)

ψ∗
}

∏

l′={1,··· ,L}−{l}

{

ξ2
l′,n

(

∣

∣χn − χhl′
∣

∣

2
+ α2

n

)}



 dq. (D.65)

Noting that

ξ2
l′,n

(

∣

∣χn − χhl′
∣

∣

2
+ α2

n

)

= 1, (D.66)

expression (D.65) may be written as

2

A

L
∑

l=1

ξ2
l,nRe

〈

χn − χhl , ψ
〉

D
. (D.67)
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Writing the above limit as

〈

1

A

L
∑

l=1

ξ2
l,n

(

χn − χhl
)

, ψ

〉

D

+

〈

1

A

L
∑

l=1

ξ2
l,n

(

χn − χhl
)∗
, ψ∗

〉

D

, (D.68)

the derivative operators may then be written as

∂C̃MR,hom
n

∂χ
|χ=χn

(ψ) =

〈

1

A

L
∑

l=1

ξ2
l,n

(

χn − χhl
)∗
, ψ∗

〉

D

, (D.69)

and
∂C̃MR,hom

n

∂χ∗
|χ=χn

(ψ∗) =

〈

1

A

L
∑

l=1

ξ2
l,n

(

χn − χhl
)

, ψ

〉

D

. (D.70)

whereC̃MR,hom
n (χ, χ∗) = CMR,hom

n (χ) (see Appendix C for more discussion).

To find the derivatives
[

∂2C̃MR,hom
n

∂χ∗∂χ
|χ=χn

(ϕ)
]

(ψ∗), and
[

∂2C̃MR,hom
n

∂χ∂χ
|χ=χn

(ϕ)
]

(ψ), we start with

finding the limit

lim
ε→0

∂C̃MR,hom
n

∂χ
|χ=χn+εψ(ϕ) − ∂C̃MR

n

∂χ
|χ=χn

(ϕ)

ε
. (D.71)

Utilizing (D.69), the above limit may be written as

lim
ε→0

〈

1
A

L
∑

l=1

ξ2
l,n

(

χn + εψ − χhl
)∗
, ϕ∗

〉

D

−
〈

1
A

L
∑

l=1

ξ2
l,n

(

χn − χhl
)∗
, ϕ∗

〉

D

ε
(D.72)

which can be simplified as
〈

1

A

L
∑

l=1

ξ2
l,nψ

∗, ϕ∗

〉

D

. (D.73)

Writing the above expression as

〈

1

A

L
∑

l=1

ξ2
l,nϕ, ψ

〉

D

, (D.74)
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it can be concluded that

[

∂2C̃MR,hom
n

∂χ∗∂χ
|χ=χn

(ϕ)

]

(ψ∗) =

〈

1

A

L
∑

l=1

ξ2
l,nϕ, ψ

〉

D

, (D.75)

and
[

∂2C̃MR,hom
n

∂χ∂χ
|χ=χn

(ϕ)

]

(ψ) = 0. (D.76)

Using a similar procedure, we can derive

[

∂2C̃MR,hom
n

∂χ∂χ∗
|χ=χn

(ϕ∗)

]

(ψ) =

{[

∂2C̃MR,hom
n

∂χ∗∂χ
|χ=χn

(ϕ)

]

(ψ∗)

}∗

, (D.77)

and
[

∂2C̃MR,hom
n

∂χ∗∂χ∗
|χ=χn

(ϕ∗)

]

(ψ∗) = 0. (D.78)

D.5 Required derivatives with respect to real and imaginary parts of the

contrast

As mentioned in Chapter 4, the derivatives of the cost-functional may be taken with respect

to real and imaginary parts of the contrast;i.e., χR andχI (as opposed toχ andχ∗). To find

the first derivative of the data misfit cost-functional with respect toχR andχI , we may start

with (D.20) and re-write (D.22) as,

Re

〈

2ηS

Tx
∑

t=1

[

∂Escat
t

∂χ
|χ=χn

]a
(

Escat
t (χn) − Escat

meas,t

)

, ψ

〉

D

. (D.79)

Noting that for two complex functions,ϕ andψ, we have

Re〈ϕ, ψ〉D = 〈ϕR, ψR〉D + 〈ϕI , ψI〉D , (D.80)
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The expression (D.79) may then be written as

〈

2ηS

Tx
∑

t=1

Re

{[

∂Escat
t

∂χ
|χ=χn

]a
(

Escat
t (χn) − Escat

meas,t

)

}

, ψR

〉

D

+

〈

2ηS

Tx
∑

t=1

Im

{[

∂Escat
t

∂χ
|χ=χn

]a
(

Escat
t (χn) − Escat

meas,t

)

}

, ψI

〉

D

. (D.81)

Therefore, it can be concluded that

∂CLS

∂χR
|χ=χn

(ψR) =

〈

2ηS

Tx
∑

t=1

Re

{[

∂Escat
t

∂χ
|χ=χn

]a
(

Escat
t (χn) − Escat

meas,t

)

}

, ψR

〉

D

, (D.82)

and

∂CLS

∂χI
|χ=χn

(ψI) =

〈

2ηS

Tx
∑

t=1

Im

{[

∂Escat
t

∂χ
|χ=χn

]a
(

Escat
t (χn) − Escat

meas,t

)

}

, ψI

〉

D

. (D.83)

To find the second derivatives
[

∂2CLS

∂χR∂χI
|χ=χn

(ϕI)
]

(ψR) and
[

∂2CLS

∂χI∂χI
|χ=χn

(ϕI)
]

(ψI), we start

with finding the limit

lim
ε→0

∂CLS

∂χI
|χ=χn+εψ(ϕI) − ∂CLS

∂χI
|χ=χn

(ϕI)

ε
(D.84)

Utilizing (D.83), and the definition of the adjoint operatoras well as noting thatϕI is a real

function, the above limit may be written as

lim
ε→0

2ηS
ε

Tx
∑

t=1

[

Im

〈

Escat
t (χn + εψ) − Escat

meas,t,
∂Escat

t

∂χ
|χ=χn+εψ(ϕI)

〉

D

−

Im

〈

Escat
t (χn) − Escat

meas,t,
∂Escat

t

∂χ
|χ=χn

(ϕI)

〉

D

]

. (D.85)
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After mathematical simplifications and utilizing (D.10), the above limit can be simplified to

2ηS

Tx
∑

t=1

[

− Im

〈[

∂Escat
t

∂χ
|χ=χn

]a [
∂Escat

t

∂χ
|χ=χn

]

(ϕI), ψ

〉

D

+

Im

〈[

∂2Escat
t

∂χ2
|χ=χn

(ϕI)

]a

(Escat
t (χn) − Escat

meas,t), ψ

〉

D

]

. (D.86)

Noting that for two complex functions,ϕ andψ, we have

Im 〈ϕ, ψ〉D = 〈ϕI , ψR〉D − 〈ϕR, ψI〉D , (D.87)

the expression (D.86) may be written as

2ηS
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−Im
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∂Escat
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〉

D

+

〈
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∂Escat

t

∂χ
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〉

D
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〈
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∂2Escat
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(Escat
t (χn) − Escat
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, ψR

〉

D
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〈

−Re
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∂2Escat
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|χ=χn

(ϕI)

]a

(Escat
t (χn) − Escat
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〉

D
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. (D.88)

Therefore,

∂2CLS

∂χR∂χI
|χ=χn

(ϕI)(ψR) =

〈

2ηS

Tx
∑

t=1

Im

{

−
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∂Escat
t
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∂Escat
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〉

D

,(D.89)

and

∂2CLS

∂χI∂χI
|χ=χn

(ϕI)(ψI) =

〈

2ηS

Tx
∑

t=1

Re

{[

∂Escat
t

∂χ
|χ=χn

]a [
∂Escat

t

∂χ
|χ=χn

]

(ϕI) −
[

∂2Escat
t

∂χ2
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(ϕI)
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(Escat
t (χn) − Escat
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〉

D

. (D.90)
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To find the derivatives
[

∂2CLS

∂χI∂χR
|χ=χn

(ϕR)
]

(ψI) and
[

∂2CLS

∂χR∂χR
|χ=χn

(ϕR)
]

(ψR), we start with

finding the limit

lim
ε→0

∂CLS

∂χR
|χ=χn+εψ(ϕR) − ∂CLS

∂χR
|χ=χn

(ϕR)

ε
(D.91)

After mathematical simplifications similar to the ones presented above, the limit (D.91) will

be

2ηS
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[

Re

〈[

∂Escat
t
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|χ=χn
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∂Escat
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]

(ϕR), ψ

〉

D

+

Re

〈[

∂2Escat
t

∂χ2
|χ=χn

(ϕR)

]a

(Escat
t (χn) − Escat

meas,t), ψ

〉

D

]

. (D.92)

Noting (D.92) and utilizing (D.80), it can be concluded that

∂2CLS
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, (D.93)

and

∂2CLS
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(ϕR)(ψR) =

〈

2ηS
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∑
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Re

{[

∂Escat
t

∂χ
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t
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∂2Escat
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.(D.94)

It should also be noted that in the Gauss-Newton inversion method, the operator∂
2Escat

t

∂χ2 is ne-

glected; see (4.3). Thus, (D.89), (D.90), (D.93), and (D.94) can be simplified. For example,

(D.94) will be approximated by

∂2CLS

∂χR∂χR
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(ϕR)(ψR) ≈
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2ηS
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The pre-scaled GNI method, see Section 5.6.2, also requiresthe derivatives ofCMR,scaled
n ,

(5.42) with respect toχR andχI . Using the same procedure explained above, these deriva-

tives may be derived as

∂CMR,scaled
n

∂χR
|χ=χn

(ψR) =
〈

−2∇ ·
[

(bscaled
n )2 ∇χR,n

]

, ψR
〉

D
, (D.96)

∂CMR,scaled
n

∂χI
|χ=χn

(ψI) =
〈

−2Q2∇ ·
[

(bscaled
n )2 ∇χI,n

]

, ψI
〉

D
, (D.97)
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n

∂χRχR
|χ=χn

(ϕR)(ψR) =
〈

−2∇ ·
[

(bscaled
n )2 ∇ϕR

]

, ψR
〉

D
, (D.98)

∂2CMR,scaled
n

∂χIχI
|χ=χn

(ϕI)(ψI) =
〈

−2Q2∇ ·
[

(bscaled
n )2 ∇ϕI

]

, ψI
〉

D
, (D.99)

and
∂2CMR,scaled

n

∂χRχI
|χ=χn

(ϕI)(ψR) =
∂2CMR,scaled

n

∂χIχR
|χ=χn

(ϕR)(ψI) = 0, (D.100)

where

bscaled
n (q) , A− 1

2 (|∇χR,n(q)|2 +Q2 |∇χI,n(q)|2 + α2
n)

− 1

2 . (D.101)
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E

Self-Adjointness and Negative

Definiteness

We are servants rather than masters in mathematics.(Charles Hermite [176] in
whose honor a number of mathematical entities, such as Hermitian matrix, has
been named).

We here prove that the operatorsΣ andLn, which are the discrete forms of1
A
∇2 andLn ,

∇· (b2n∇) respectively, are self-adjoint and negative definite usinga procedure similar to the

standard approach for proving Green’s first and second identities [175, pg. 36].
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E.1 Self-adjointness

Assumingϕ andψ are inL2(D), and lettingb2n be a positive function inL2(D), we may

write,

∇ · (ψ∗b2n∇ϕ) = ψ∗∇ · (b2n∇ϕ) + ∇ψ∗ · b2n∇ϕ (E.1)

Using the divergence theorem and definition of the inner product, we obtain

〈

∇ · (b2n∇ϕ), ψ
〉

D
+

∫

D

b2n∇ψ∗ · ∇ϕdq =

∮

∂D

b2nψ
∗∂ϕ

∂n
dq (E.2)

where∂D denotes the boundary of the imaging domain and the derivative ∂/∂n represents

the outward directed normal derivative on∂D. Interchangingψ∗ andϕ and subtracting, we

have
〈

∇ · (b2n∇ϕ), ψ
〉

D
−
〈

ϕ,∇ · (b2n∇ψ)
〉

D
=

∮

∂D

b2n(ψ
∗∂ϕ

∂n
− ϕ

∂ψ∗

∂n
)dq.

(E.3)

Noting thatϕ andψ vanish on∂D (see the explanation provided in Section D.3), it can be

concluded that
〈

ϕ,∇ · (b2n∇ψ)
〉

D
=
〈

∇ · (b2n∇ϕ), ψ
〉

D
. (E.4)

The equality (E.4) implies that the operatorLn , ∇ · (b2n∇) is self-adjoint.

E.2 Negative definiteness

Lettingϕ = ψ in (E.2) and noting thatψ vanishes on∂D (see the explanation provided in

Section D.3), we have

〈

∇ · (b2n∇ψ), ψ
〉

D
= −

∫

D

b2n |∇ψ|2 dq (E.5)
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Noting that the right hand side of (E.5) is negative, it can beconcluded that the operatorLn
is negative definite.

As the operator1
A
∇2 is a special form ofLn, whenb2n(q) = 1

A
, it is also self-adjoint and

negative definite.
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F

Discretization Procedure for the TE

Forward Solver

The skeptic will say: “It may well be true that this system of equations is rea-
sonable from a logical standpoint. But this does not prove that it corresponds
to nature.” You are right, dear skeptic. Experience alone can decide on truth...
Pure logical thinking cannot yield us any knowledge of the empirical world:
all knowledge of reality starts from experience and ends in it. (Albert Einstein
[177]).

In this Appendix, we describe the discretization procedureused in the Transverse Electric

(TE) forward solver. This discretization is based on what explained in [27]. As noted in

Section 2.3.2, the forward scattering problem is concernedwith solving the domain equation,

(2.17). Before discussing the discretization procedure, wefirst multiply both sides of (2.17)

by the electric contrastχ; thus, we have

W = χE inc + χGD(W ), (F.1)
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where the contrast sourcesW is defined asW , χE. Now, we takeW as the fundamental

unknown of the forward solver. We note that by havingW , we can then findE as

E = E inc + GD(W ). (F.2)

Noting (2.1), (F.1) may be written as

Wκ = χE inc
κ + χ

(

k2
bAκ +Bκ

)

(F.3)

where the subscriptκ denotes the components of the vector-valued functions. That is, κ ∈

{x, y}. The functionsAκ andBκ are given as

Aκ(q) =

∫

D

g(q, q′)Wκ(q
′)dq′, (F.4)

Bκ(q) = κ̂ · (∇q∇q · [Ax(q)x̂+ Ay(q)ŷ]). (F.5)

We assume that the imaging domainD is uniformly discretized intoM × P rectangular

subdomains alongx andy directions. Each rectangular subdomain will then have an area of

∆x× ∆y with center points

(xm, yp) =

(

x 1

2

+ (m− 1

2
)∆x, y 1

2

+ (p− 1

2
)∆y

)

, (F.6)

wherem = 1, · · · ,M andp = 1, · · · , P andx 1

2

andy 1

2

denote the lower bounds inx and

y directions respectively. In each rectangular subdomain, we assume that the contrast is
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constant and equal to the value of the contrast function at the center point. That is,

χm,p = χ(xmx̂+ ypŷ). (F.7)

Similar discretization are also used forWκ, E inc
κ , Aκ, andBκ. Thus, the discrete form of

(F.3) may be written as

Wκ;m,p = χm,pE
inc
κ;m,p + χm,p

(

k2
bAκ;m,p +Bκ;m,p

)

(F.8)

The vectorsBx andBy are computed with finite difference rules as

Bx;m,p =
Ax;m−1,p − 2Ax;m,p + Ax;m+1,p

∆x2
+

Ay;m−1,p−1 − Ay;m−1,p+1 − Ay;m+1,p−1 + Ay;m+1,p+1

4∆x∆y
(F.9)

By;m,p =
Ay;m,p−1 − 2Ay;m,p + Ay;m,p+1

∆y2
+

Ax;m−1,p−1 − Ax;m−1,p+1 − Ax;m+1,p−1 + Ax;m+1,p+1

4∆x∆y
(F.10)

As can be seen in (F.9) and (F.10), calculation of the vectorsBx andBy require the discrete

form ofAx andAy. In order to cope with the singularity of the Green’s function, we use the

method presented in [27, 29, 178] and then compute the integral (F.4) using a midpoint rule.

That is,

Aκ,m,p = ∆x∆y
M
∑

m′=1

P
∑

p′=1

Gm−m′,p−p′Wκ;m′,p′ (F.11)
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wherem = 0, · · · ,M + 1, p = 0, · · · , P + 1 and [29]

Gm−m′,p−p′ =















j
kba
J1

(

1
2
kba
)

H1
0

[

kb

√

(xm − xm′)2 + (yp − yp′)
2

]

(xm, yp) 6= (xm′ , yp′)

j
kba

[

H1
1

(

1
2
kba
)

+ 4j
πkba

]

(xm, yp) = (xm′ , yp′)

(F.12)

The parametera is chosen to bea = min{∆x,∆y}. Finally, it should be noted that (F.9),

(F.10), and (F.11) can be efficiently computed using FFT routines. This completes the dis-

cretization procedure for the utilized TE forward solver.
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