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Introduction.

The study of the spectrum Spec(A) of a commutative ring A with unity, that
is, the set of all prime ideals of A endowed with the so called Zariski topolo-
gy is very important in Algebraic Geomety. The study of Spec(A) as a topo-
logical space is in itself a very interesting subject. One of the key results in
this area is due to Hochster (cf. [Hoc,1]) (Note: All items indicated like this
within square brackets refer to books or papers listed in the bibliography)
where he showed that there exists a category .% of topological spaces called
spectral spaces with spectral maps as morphisms, such that Spec is a full
functor from the category ¥ of commutative rings with unity and ring
homomorphisms as morphisms to the category % of spectral spaces. He
further showed that Spec can be inverted on some subcategories of % but not
on all the subcategories of .% The object of this thesis is to present in detail
the study of spectral spaces, and minspectral spaces and maxspectral
spaces (the latter classes of spaces correspond respectively to the minimal
prime spectra and maximal ideal spectra of commutative rings). For rea-
sons of restricting the length of this thesis the study of other classes of rela-
ted spaces such as Jacobson spectral spaces, Jacobson spaces and Goldman
prime spectra are presented in summary form only.

In chapter 1, section 1, the topological properties of Spec(A) are estab-

lished. Note (1.2.2) shows that Spec(A) is a spectral space in the sense of the
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definition in section 2. In section 2, the study of spectral spaces begins. To
the spectral topology on a spectral spaces there is a related compact (we use
this terminology to indicate Hausdorff quasi-compact) topology called the
patch topology, which is very useful. Proposition (1.2.13) shows how spec-
tral spaces and compact spaces are related. This relationship is so signifi-
cant that the class of compactifiable spaces (which are characterized as
subspaces of compact spaces) has an analogue in the class of spectral
spaces. These are the so called spectralifiable spaces studied in section 3
(cf. (1.3.3)). Theorem (1.3.4) shows that a topological space is spectralifiable
iff it is "spectrally embeddable" in a spectral space.

In chapter 2 our principal object is to show that every spectral space is in-
deed the spectrum of some commutative ring with unity (cf. (2.1.26.1)). In
fact we show that Spec is a full functor from % to .5 (cf. (2.2.1)). The proof of
this fact is very technical and involves the construction of some categories
and functors (cf. from (2.1.1) to (2.1.4) for an overview and also (2.1.28)) and
is presented in section 1. In section 2 we show some applictions in (2.2.1),
(2.2.2) and (2.2.3). A very interesting application is (2.2.10) where we pre-
sent the proof that a topological space is the underlying space of a

prescheme iff it is a locally spectral space.
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In chapter 3, section 1 we study the topological properties of minimal
prime specturm of a commutative ring and (3.2.6) in section 2 provides topo-
logical characterization of such spaces.

Chapter 4 describes the topological properties of the maximal ideal spec-
trum of a commutative ring with unity and (4.2.2) establishes its topological
characterization.

In chapter 5 we present in summary form some further results in the
area relating to the Jacobson ideal spectrum and Goldman ideal spectrum
in section 1 and the answers to the question of compactness of the minimal

prime spectrum is given in section 2.



Section 1. Prime Spectra.

The word "ring" stands for a commutative ring with unity 1.

Definition (1.1.0). — The prime spectrum of a ring A, denoted by Spec(A),
is the set of all proper prime ideals of A endowed with the topology whose
closed sets are the subsets V(E) = {[P] € Spec(A): E c P}, where E is a subset
of A. It is well known that {V(E): E c A} is indeed the set of all closed sub-
sets of a topology on Spec(A). For a prime ideal P of A, we use the notation
[P] when it is thought as a point of the topological space X = Spec(4A), and for
a point x in X, denote x as j, when x is considered as a prime ideal of A. If
E is a singleton set {f}, we use the notation V(f) rather than V({{f}).

The topology thus defined is called the spectral topology or the Zariski
toplogy on Spec(A).

Let A, A' be two rings, h: A - A' a ring homomorphism, and X =
Spec(A), X' = Spec(A"), then the map *h: X' — X from X' into X defined by
([P = [h'l(P‘)] is called the associated map of the homomorphism h.

([Bou,2], II, sec.4, n°3)
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Proposition (1.1.0.1). — The associated map %h: X'— X is continuous.
([Bou,2], II, sec.4, n° 3, Prop.13)

[Pf] Let E be any subset of A; then the subset Ch Y (V(E)) of X' is the set of
prime ideals P' of A' such that E c h™ (P"). This inclusion relation is equi-
valent to h(E) c P', therefore (*h)1(V(E)) = {{P] € X: h(E) c P} = V(W(E)),
that is, the inverse image of any closed subset of X by ?h is closed in X'. H

Definition (1.1.1). — Let rad(E) be the radical of the ideal of A generated
by E, that is, the set of elements f of A such that f*, for some n € N, belongs
to the ideal generated by E. An ideal J of A equal to its own radical, i.e., J =
rad(dJ), is called a radical ideal of A.

Note (1.1.2). — (1) rad(E) = {P: [P]1e V(E)}.

(i) V(0) =X, V(1) = @.

(iii) For subsets E, E' of A, E' ¢ Eimplies V(E) c V(E").

(iv) For any family {E;: i € I} of subsets of A, V(U {Eyie I =VE{E;ie
ID = n{V(E): ie I}, where X{E;: i € I} represents the ideal generated by the
union of E;.

(v) V(E) = V(rad(E)), for any subset E of A.

(vi) V(E) U V(E") = V(EE"), for any subsets E, E' of A.

Let D(E) =X - V(E), for any subset E of A. Then

(vii) D(f) = {[P] € Spec(A): f ¢ P}, for any element f of A.

(viii) D(fg) = D) N D(g), for any elements f, g of A.
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Proposition (1.1.3). — The sets D(f) = {{P] € Spec(A): f ¢ P}, for allfe A,
form an open basis of the spectral topology on X = Spec(A). ([Bou,2], II,
sec.4, n° 3, p.126)

[Pf] Clearly, D(f) is open for any f € A. For any open subset U of X, there
is a subset E of A such that U=X-V(E). By 1.1.2), (iv), U=X-V(E) =X -
NVE): fe E} =u{D): fe E}. B

Proposition (1.1.4). — For any subset Y of X = Spec(A), define I(Y) as n{P:
[P] € Y}. Then

(1) I(@) = A.

(i) ForY,Y cX,YcY implies I(Y) 2 I(Y").

(iii) For any family {Y): A € L} of subsets of X, I(U{Yj: A € L}) = n{I(Y)):A
e L}. ([Bou,2], II, sec.4, n° 3)

Proposition (1.1.5). — Let A be a ring, J an ideal of A and Y a subset of X
= Spec(A).

(i) The set V(J) is closed in X and I(Y) is a radical ideal.

(i1) I(V(J)) is the radical of J, and V(I(Y)) = ClyY, the closure of Y in X.

(iii) The correspondences I and V define order-reversing bijections be-
tween the set of all closed subsets of X and the set of all radical ideals of A

and are inverses to each other. ([Bou,2], II, sec.4, n° 3, Prop.11).
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[Pf] (): By (1.1.0), V({J) is closed in X; since I(Y) = n{P c A: [P] € Y} and
since the radical of I(Y) is the intersection of prime ideals containing I(Y),
I(Y) = rad(I(Y)). B

(i): IV)) = n{P: [Pl e V(J)} =n{P: J c P, P is a prime ideal of A} =
rad(J). Next if a closed set V(E) contains Y, then for any [Pl € Y, E c P.
Thus E c I(Y). Then by (1.1.2), (iii), VA(Y)) < V(E). This shows that
V(I(Y)) is the smallest closed subset of X containing Y, that is, the closure
of Y. 0

(iii): The correspondences V and I are decreasing by (1.1.2), (iii) and
(1.1.4), (ii) respectively. If J is a radical ideal, then I(V(J)) = rad(J) = J; if Y
is a closed subset of X, Y = ClY = V(I(Y)). B

Proposition (1.1.6). — Let {fj : A € L} be a family of elements of A, and let g
€A. Then, D(g) c v {D(f)): A € L} iff there exists an integer n > 0 such that
g" belongs to the ideal generated by f,, that is, g belongs to rad(X{fy: 2 e L}).
([Bou,21,1I, sec.4, n° 3, Cor to Prop.11).

[Pf] The relation D(g) ¢ U{D(f)): A € L} is equivalent to V(g) 2 n[V(£): L e
L} = V(Z{fy: 2 e L}). By applying the correspondence I we have (g) c rad(g)
=I(V(g) cIVZ{f: L e L)) =radC{fH: A e 1}). B

Proposition (1.1.7). — For any ideal J of A, Spec(A/J) is identified cano-

nically to the closed subset V(J) of Spec(A). ([Gro-Die,2], (I, 1.2.4))
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[Pf] There is a canonical bijective correspondence preserving the order
structure of inclusion between the set of ideals (resp. prime ideals) of A/J
and the set of ideals (resp. prime ideals) of A containing J. This corre-
spondence provides what is required. H

Proposition (1.1.8). — Let N be the nilradical (or prime radical in [Lam])
of a ring A (i.e., the set of nilpotent elements of A). Then the topological
spaces Spec(A) and Spec(A/N) are homeomorphic. ([Gro-Die, 1], (I, 1.1.12))

[Pf] Since the nilradical of a ring A is the radical of the zero-ideal,
Spec(A/N) = V(N) = V(rad(0)) = V(0) = Spec(A) by (1.1.7). H

Proposition (1.1.9). — Let [P] € Spec(A). Then CI{{P]} = V(P). The set
{[P]} is closed in Spec(A) iff P is a maximal ideal (in this case [P] is called a
closed point). ([Bou,2], II, sec.4, n° 3, Cor.6 to Prop.11)

[Pf] Since P is prime, I({[P]}) = P. So that by (1.1.5), (ii), CL{{P1} = VI{[PI})
= V(P). It is clear from definition of V(P) that the singleton set {[P]} is closed
in Spec(A) iff P is a maximal ideal of A. B

Proposition (1.1.10). — The prime spectrum X = Spec(A) of a ring A is Ty.
([Gro-Die,1], (I, 1.1.8))

[Pf] Let [P1]1# [Py 1. Then P; #P,. There are two cases possible: in the
case that P; ¢ Py, we have Py ¢ V(P;) = Cl{[P.]}; in the case that P; P2, we

have P, & Pl, then P; ¢ V(P,) = Cl{[P,]}. This proves that Spec(A) is T, B
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Definition (1.1.11). — A ring A is called Noetherian if the ideals in A sa-
tisfy the ascending chain condition, that is, for any ascending chain of
idealsJgcd; c...cd, ... there exists an integer m > 0 such that ifn>m
then J,, =dJ .

A topological space X is called Noetherian if the closed subsets of X satis-
fy the descending chain condition (or equivalently, the open subsets of X sa-
tisfy the ascending chain condition).

Proposition (1.1.11.1). — A ring A is Noetherian iff every ideal of A is
finitely generated. B

Proposition (1.1.11.2). — If every prime ideal of a ring A is finitely gener-
ated, then A is Noetherian. ([Kap], Th.8) H

Note (1.1.12.1). — The converse of (1.1.11.2) need not be true: for example,

a non discrete valuation domain of rank 1 has an infinite ascending chain
of ideals and so is not a Noetherian ring but its prime spectrum is a double-
ton space, and so obviously is a Noetherian space.

Proposition (1.1.11.3). — (i) Every subspace of a Noetherian space is
Noetherian.

(ii) Let {E;:i e I} be a finite cover of a topological space X. If
spaces E; of X are Noetherian, then X is Noetherian. ([Bou,2, II, sec.4, n° 2,

Prop.8)
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[Pf] (i): Let X be a Noetherian space, E a subspace of X, and {Foin=
0,1,2,...} be a descending chain of closed subsets of E. Then for any n, F, =
ClgF, = ClgF N E. {ClxF :n =0,1,2,..} is a descending chain of closed
subsets of X, since F, . C F, implies ClxF, ,; c CIxF, for any n. Since X
is Noetherian, there exists an integer m € N such that n > m implies CIF,
= CIF,,, so with this m, n > m implies F_ = F_, thus E is Noetherian.

@(ii): Let {G,: n = 0,1,2,...} be a descending chain of closed subsets of X. By
hypothesis, for any i € I, there exists an n; € N such that if n > n; then G‘rni
N E; = G, N E;, since {G, " E;: n =0,1,2,...} is a descending chain of closed
subsets of E;. Furthermore since I is finite, there exists m € N such that if
n 2m, then G, N E; = G N E; for any i € I (for example m = max{n;ie I}).
Now {E;: i € I} is a cover of X, so that G,=u{G,NnE;ieI}foranyn=0,1,
2,..., that is, forn >2m, G = G- Thus X is Noetherian. H

Proposition (1.1.11.4). — A topological space X is Noetherian iff every
open subset of X is quasi-compact (that is, for any open cover {Upie I} of X
there exists a finite subset F of I such that {U;: 1 € F} covers X). ([Bou,2], I,
sec.4, n° 2, Prop.9)

[Pf] Suppose X is Noetherian and Y is open in X. Then Y, as a sub-
space, is Noetherian. So we need only to show that X is quasi-compact.

Let {U;:i e I} be an open cover of X, then the set E of finite unions of U,,i

€ I, is nonempty since each U; belongs to this set. Since X is Noetherian
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every ascending chain (with respect to set inclusion) of members of E termi-
nates at some finite stage. Thus every ascending chain has an upper
bound. So that, by Zorn's lemma, there exists a maximal member V =
u{Uj:j € H} of E, where H is a finite subset of I. Thus foranyie I, Vn U;
= U; by the maximality of V. This implies that X = UUpie I =u{VnU;i
el}=Vn(U{U;ie I}) =VnX=V. Therefore X is quasi-compact.

Conversely, suppose that every open subset of X is quasi-compact. Let
{U,:n e N} be an increasing sequence of open subsets of X. The union V of
the U is open and hence quasi-compact; as {U,} is an open covering of V,
there is a finite subfamily of {U,} which is a covering of V and hence V = U,
for some index n, which proves that the sequence {U,} terminates at some
finite stage. H

Proposition (1.1.12). — If a ring A is Noetherian, then Spec(A) is a
Noetherian topological space. ([Bou,2], II, sec.4, Cor.7 to Prop.11)

Note (1.1.12.1). — The converse of (1.1.12) need not be true: for example, a
non discrete valuation domain of rank 1 has an infinite ascending chain of
ideals and so is not a Noetherian ring but its prime spectrum is a doubleton
space, and so obviously is a Noetherian space.

Proposition (1.1.13). — For any f € A, the subset D(f) of Spec(A) is quasi-
compact; in particular, the space Spec(A) = D(1) is quasi-compact. ([Bou,2],

II, sec.4, n° 3, Prop.12)
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[Pf] Since {D(g): g € A} forms an open basis of Spec(A), it suffices to consi-
der the case that an open cover of D(f) is {D(g):ie I, ge A} and show that
there exists a finite subcover. By (1.1.6) D(f) c U{D(gy): i e I} iff f belongs to
the radical ideal rad(X{g;: icI}) generated by {g;: i € I}, that is, there exist
an integer n > 0 and a finite subset H of I such that € rad(3{ giie I,
Then D(f) c U{D(g;): i € H}. This shows that D(f) is quasi-compact. B

Proposition (1.1.14). — Let A, A’ be two rings, h: A — A’ be a ring homo-
morphism, X = Spec(A) and X' = Spec(A") . Then the inverse image of a
quasi-compact open subset Y of X by ?h, the associated map of h, is quasi-
compact (open) in X'.

[Pf] Since Y is quasi-compact, Y can be taken as a finite union of D{),i=
1,...n. So in order to show that (ah)'l(Y) is quasi-compact, it suffices to
show that for any f € A, (ah)'l(D(f)) is quasi-compact. Now in the proof of
(1.1.0.1), we showed (*h)1(V(E)) = V(h(E)) for any subset E of A, therefore
(*h)™(D(®) = D(h(D). This is quasi-compact in X' by (1.1.13). H

Proposition (1.1.15). — Let h be as in (1.1.14). If for each f'e A', there are
a unit u' of A" and an element fin A such that f' = u'(h(f)), then ?h is a ho-
meomorhphism of X' onto 2h(X'). ([Gro-Die,11, (I, 1.2.4))

[Pf] Let E' be a subset of A'. By hypothesis, for each f' € E' there exist fe
A and a unit u' € A' such that f' = u'(h(f)). Since u' is a unit, u'th()) =f' e

P', where P' is a (prime) ideal, is equivalent to h(f) € P'. Thus V(E') =
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V(h(E)), where E = {f € A: there exist a unit u' € A' such that u'h(f) ¢ E'}.
Now we are ready to prove that ®h is injective. Consider two prime ideals
Pl” Py’ of A'. There exist two subsets E;, E, corresponding to Pl', P,' respec-
tively in the manner as above, that is, E; = {fe A: there exists a unitu' € A’
such that u'(h(f)) = f' e Py} and E, = {f e A: there exists a unit u € A' such
that u'th(f) = f' e P,'}.

Since P;' is a prime ideal and u' is invertible u'h((P) P,' is equivalent to
h(f) e P;', so that in fact E; = h"l(Pl'). Similarly, E, = h'l(Pz'). Suppose
®h([P;') = *h([P,D) then h™'(P;") = h''(Py), i.e., E; = By, and so V(P,") =
V(h(E)) = V((Eg)) = V(Py). This implies P;' = Py’ since X' is T;,. Thus *h
is injective.

Finally any closed subset of X' is of the form V(E'), E' c A'. Let E c A be
defined with respect to E' as above. By a routine verification, *h(V(E')) =
V(h1(E)) A 2hX). So that ®h is a closed map. Consequently, it is a ho-
meomorphism of X' onto *h(X'). B

Remark (1.1.15.1). — If h in (1.1.15) above is surjective, then the condition
in (1.1.15) is fufilled when we set the unit u' of A' as the unity of A', and E =
hI(E") for any subset E'of A.

This observation provides another proof of (1.1.8) since the canonical map

h: A — A/N is surjective.
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Definition (1.1.16). — A ring A is called a local ring if A has exactly one
maximal ideal M. Then M is the set of non-invertible elements of A. M is
also the Jacobson radical of A (= de fthe intersection of all maximal ideals of
A).

The quotient field A/M of A by its Jacobson radical (that is, the only maxi-
mal ideal of the local ring A) is called the residue field of A.

Let A be a ring, and S a subset of A closed under multiplication and con-
taining the unity of A. Such an S is called a multiplicative subset of A.

Let us define an equivalence relation ~ on A xS as :(a, s) ~ (a', s') iff
there exists a t € S such that t(a's - s'a) = 0. Then (A x S)/~ is a ring called
the ring of fractions of A with respect to S and is denoted by S'ZA; let us de-
note by a/s the equivalence class of (a, s).

The map i AS' A—STtA sending a to a/l is called the canonical homeo-
morphism and has the following properties:

() for any s € 8,1, g(s) is invertible in SA;

(i) ifi A,S(a) =0 then as = 0 for some s € S;

(iii) every element of STA is of the form i A,S(a)i A’S(s)"lfor some a € A and
se S.

Note (1.1.16.1). —Let g: A — B be a ring homomorphism such that g(s) is
invertible for all s € S. Then there is a unique ring homomorphism f s1A

—>Bsuchthatg= foi AS: (cf. [Ati-Mac], Prop.3.1)
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Note (1.1.16.2). — Let P be a prime ideal, and S = A - P, then S is a multi-
plicative subset of A. Thus we have the ring of fractions S’lA, and we de-
note it by AP. Let s be a nonzero element of A, then S = {s™: n € N}, where N
contains 0, is a multiplicative subset of A, which is denoted by A, instead of
STA. IfAis an integral domain then the canonical homomorphism is in-
jective and if S = A - {0}, then S1A is the field of fractions of A.

Proposition (1.1.16.3). — Let S be a multiplicative subset of a ring A, and
ingtA— S1A be the canonical homomorphism. Then the associated map
3 AS is a homeomorphism of Spec(S‘lA) onto the subspace Y of Spec(A) con-
sisting of prime ideals disjoint from S. ([Bou,2], II, sec.4, n° 3, Cor. to
Prop.13)

[Pf] Since any element of S'lA is of the form i A,S(a)i A’S(s)'l, where a e A
and s € S, our setting satisfies the hypothesis of (1.1.15). Thus 3 AS is a ho-
meomorphism of Spec(S"lA) onto Y = % A,S(Spec(S'lA)). So it remains to
show that any element of Y is a prime ideal which is disjoint from S.

Let P be a proper prime ideal of S7A. By definition i A,S([P]) =[i A,S'I(P)].
Since i A,S 18 a ring homomorphism, for any elements a, b € i A,S'l(P) and c
eAa-be iA,S'l(P) and ca e iA’S'l(P). Ifab e iA’S_l(P) then iA,S(a)iA,S(b) =
iA’S(ab) e P, so iA,S(a) € Por iA,S(b) € P. Thusace iA,S'l(P) orbe iA’S_l(P).

So iA’S"l(P) is a prime ideal of A. If iA,S'l(P) NS #J,thense iA,S'l(P) NS
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implies i A,S(S) is invertible in S'lA; but then1 =1 A,S(S)i A,S(s)'le P, which is
impossible as P is a proper prime ideal. B

Proposition (1.1.16.4). — Let A be a ring, S be a multiplicative set and J be
an ideal of A. If we identify S™J with the ideal generated by J in STA,
then ST(A/0) = STA/STT. ((Bou,2], TI, sec.2, n° 4, p.89) H

Proposition (1.1.16.5). — Let A be a ring, P a prime ideal of A. Then the
ring Ap is local; its maximal ideal is PAp, the ideal generated by the cano-
nical image of P in Ap; its residue field is canonically isomorphic with the
field of fractions of A/P. ([Bou,2], II, sec.3, n° 1, Prop.2)

[Pf] By (1.1.16.3), every prime ideal Q' of AP =StA corresponds bijectively
to a prime ideal P' of A which is disjoint from S = A - P. Then P' is contai-
ned in P. Thus PAp is the maximal ideal of Ap. Therefore Ap is a local
ring with the maximal ideal PAp.

Let f: A — A/P be the canonical surjection. Then f(S) is the set of nonzero
elements of the integral domain A/P. Thus f(S)'1 (A/P) is the field of frac-
tions of A/P, and is identified with S"l(A/P) by the map a/f(s) | — a/s, where
ae AP andse S. Now ST(A/P) is identified with Ap/(PAp) . On the other
hand Ap/(PAp) is the residue field by definition. So we have a canonical
identification between the residue field of A at P and the field of fractions of

A/p. B
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Corollary (1.1.16.6). — Let A be a ring, s an element of A and £ A — A
the canonical map f(a) = a/1, for any a € A. Then 2f: Spec(A,) — Spec(A) is
a homeomorphism from Spec(A,) onto D(s).

[Pf] By (1.1.16.3), ?f is the homeomorphism from Spec(A,) onto the subset
of Spec(A) consisting of prime ideals of A disjoint from the multiplicative
subset generated by s, but this subset of Spec(A) is D(s). H

Definition (1.1.17). — A topological space X is said to be irreducible if very
finite intersection of nonempty open subsets of X is nonempty. A subset E of
X is called irreducible if as a subspace of X it is irreducible. Every maximal
irreducible subset of X is called an irreducible component of X.

Proposition (1.1.17.1). — Let X be a nonempty topological space. Then the
following conditions are equivalent:

(1) X is irreducible;

(ii) every nonempty open subset of X is dense in X;

(iii) every open subset of X is connected. ([Bou,21, II, sec.4, n° 1, Prop.1)

[Pf] () < (ii): A dense subset of X is a subset with which every open sub-
set has nonempty intersection, thus (i) and (i) are equivalent. B

(iii) = (i): Suppose X is not irreducible. Then, there are two nonempty
disjoint open subsets U; and U, of X, and then U; u U, is a disconnected

open subset of X. B
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(i) = (iii): Let U be a disconnected open subset of X, Then U is a union of
two disjoint open subsets U'and U" of U. But since U is open in X, U'and
U" are disjoint open subsets of X, so X is not irreducible. H

Note (1.1.17.2). — Let E be a subset of a topological space X. Then the fol-
lowing are equivalent:

(1) E is irreducible;

(ii) If two open subsets U, V of X meet E (i.e., they have nonempty in-
tersection with E), then U NV also meets E;

(iii) for any two closed subsets F, G of Xif ECF UG thenEcForE c G,
or by finite induction, for a finite family F, Fo,..., F, of closed subsets of X, if
E cUF, then E cF, for some i =1,2,...,n.

Proposition (1.1.17.3). — Let E be a subset of a topological space X. Then E
1 irreducible iff CIE is irreducible. ([Bou,2], II, sec.4, n° 1, Prop.2)

[Pf] An open subset U of X meets E iff U meets CIE, for if U meets CIE
then U is a neighbourhood of each point that belongs to U n CIE in X, thus
U meets E; the other implication is obvious.

Now let U, V be open subsets of X. It is clear that U nV N E # & is equi-
valent to UnV N CIE) =@ . Soby (1.1.17.2), the irreducibility of E is equi-

valent to the irreduciblity of CIE. HE



Chapter 1. Prime spectra and spectral spaces. -16-

Proposition (1.1.17.4). — Let X and Y be topological spaces and f a contin-
uous map of X into Y. If a subset E of X is irreducible, f(E) is irreducible.
([Bou,2], 11, sec.4, n° 1, Prop.4)

[Pf] Let U, V be two open subsets of Y which have nonempty intersection
with f{E). Then f '1(U) and £ 1(V) are open and have nonempty intersection
with E. Since E is irreducible, f '1(U) Nf '1(V )NE # . Thus an element x
in this intersection has its image f{x) in U "'V N f(E), that is, U N V meets
f(E); so that by (1.1.17.2), f(E) is irreducible. B

Proposition (1.1.17.5). — Let U # & be an open subset of a topological space
X. The map o defined by a(V) = ClxV is a bijection of the set of irreducible
subsets of U closed in U onto the set of closed irreducible subsets of X inter-
secting U, and its inverse map B is defined by B(Z) = Z N U. ([Bou,2], II,
sec.4, n° 1, Prop.7)

[Pf] Let V be a closed irreducible subset of U. Since U is open in X, V is
also an irreducible subset of X. Thus its closure ClxV in X is irreducible
subset of X by (1.1.17.3). Conversely, let Z be an irreducible closed subset of
X which meets U. Then Z N U is a nonempty closed irreducible subset of U.
Thus we have two correspondences in both directions.

Let Z be a closed irreducible subset of X, then Z n U if nonempty, is
dense in Z by (1.1.17.1), that is, Cly(Z "nU) =Z. But then Z = Clz;(Zn1U) =

Clx(ZnU)nZ=Clx(Z NnU), since Z is closed in X and Z N U c Z. Therefore
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the composition o - B is the identity map on the set of irreducible closed sub-
sets of X. Let V be a closed irreducible subset of U. Then clearly V = ClxV n
U. So oo is the identity map. B

Proposition (1.1.18). — Let A be a ring. Then a subset Y of Spec(A) is irre-
ducible iff I(Y) = m{jy c A:ye Y}is a prime ideal. ([Bou,2], II, sec.4, n° 3,
Prop.14)

[Pf] At first note that for an element fe A, fe I(Y) is equivalent to Y ¢
V().

Suppose that Y is irreducible. Let f, g € A be two elements such that fg e
I(Y). Then Y ¢ V(fg) = V(f) U V(g). Since Y is irreducible and V(f), V(g)
are closed, Y c V(f) or Y ¢ V(g), that is f € I(Y) or g € I(Y). Thus I(Y) is a
prime ideal.

Conversely suppose I(Y) is prime. Then CIY = V(I(Y)) = CH[I(Y)]}, since
I(Y) being prime implies I({[I(Y)]}) = I(Y). Since the closure of a one-point
set {{I(Y)]} is irreducible, so is ClY, and Y is also irreducible. H

Definition (1.1.18.1). — When CI{[P]}=Y, the point [P] is called a generic
point of Y.

Proposition (1.1.19). The prime spectrum X = Spec(A) of a ring A is irre-
ducible iff the quotient A/N of A by its nilradical N is an integral domain.

([Bow,2], 11, sec.4, n° 3, Cor.1 to Prop.14)
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[Pf] Since I(X) is the radical of the zero ideal (0) which is the nilradical N
of A, X is irreducible iff N is prime by (1.1.18), thus iff A/N is an integral do-
main.

Proposition (1.1.20). — The map o defined by o([P]) = V(P) is a bijection of
X = Spec(A) onto the set of the closed irreducible subspaces of X; in particu-
lar, any irreducible component of a closed subspace Y of X is of the form
V(P), where P is minimal among prime ideals of A which contain I(Y).
([Bou,2], I1, sec.4, n° 8, Cor.2 to Prop.14)

[Pf] For any prime ideal P of A, I(V(P)) = P, that is, V(P) is irreducible by
(1.1.18); we know that V(P) is closed, and V is a bijectién when restricted to
the set of all radical ideals of A by (1.1.5), (iii). In particular, for two dis-
tinct prime ideals P and Q, we have V(P) # V(Q), that is, o is injective. Now
for any closed irreducible subset Y of X, Y = CI(Y) = VI(Y)), since Y is clo-
sed. Furthermore I(Y) is prime since Y is irreducible, that is, Y is an ima-
ge of a prime ideal by the map o, so the map is surjective; therefore o: [P]
| — V(P) is a bijective map of X onto closed irreducible susbspaces of X.

On the other hand, Y o V(P) oV(Q) iff Q 2 P = I(V(P)) o I(Y); thus V(P) is
an irreducible component of Y, i.e., a maximal irreducible subset of Y, iff P

is minimal among the prime ideals that contain I(Y).
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Proposition (1.1.21). — The prime spectrum X = Spec(A) of a ring A is
connected iff 0 and 1 are the only idempotent elements of A. ([Bou,2], II,
sec.4, n° 3, cor.2 to Prop.15)

[Pf] Suppose that X is not connected and is a disjoint union of nonempty
open subsets Y; and Y,. Since Y; and Y, are also closed, there exist two ra-
dical ideals I; and I, such that Y; = V(I;), Y, = V(I,). By hypothesis we
have at first V(I; +I,) = V) nV(Iy) =Y; N Yy =D =V(1), thus there exist
ee Il,, fe I, such that e + f=1 (cf. (1.1.6)); secondly V(I;I,) = V(I;) v V()
=Y; UY, =X = V(0), thus we have some integer n > 0 such that (eH™ = ™f*
= 0. Since V(e") = V(e) and V(") = V(f), V(e"+ ) = V(™) n V() = V(e) N
V() = @ =V(1). So that there exist u, v e A such that ue™ + v{* =1 and then
0 = uv(e"™) = ue"vf® = ue(d - ue™) = ue® - (uen)z, that is, ue™is an idempo-
tent. Similarly, vf"is idempotent. If ue™ = 0, then vf* =1, s0 @ = V(1) =
V™) = Vv) U VE = Viv) u V@) o V(v) UY,, that is, Y, =, a contradic-
tion. If ue™ =1, then by a similar argument, we have the contradiction Y, =
@. Thus ue® is an idempotent different from 0 and 1.

Conversely if there exists an idempotent e distinct from 0 and 1, we get
V)23, VA -e)=J,and V(e) U VA -e)= V(e(l - e)) = V(e - e2) =V(0) =X,
V)N V(A -e)=V(e+1-e)=V(1) =, that is , V(e) and V(1 - e) are disjoint

nonempty clopen subsets of X whose union is X, thus X is not connected. H
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Section 2. Spectral spaces and the patch topology.

Definition (1.2.1). — A topological space X is called spectral if it satisfies the
following four conditions: (i) X is a Ty-space; (ii) X is quasi-compact; (iii) X
has an open basis consisting of quasi-compact open subsets of X: and (iv)
every closed irreducible subset of X has a generic point.

A continuous map between two spectral spaces is called a spectral map
if its inverse image of any quasi-compact open subset is quasi-compact.

A subspace Y of a spectral space X is called a spectral subspace of X if the
inclusion map is spectral. ([Hoc, 1])

Note (1.2.2). — The prime spectrum of a ring is a spectral space (1.1.7)
(for (1)), (1.1.13) (for (ii)) and (1.1.3) (for (iii)), and (1.1.18) (for (iv)); the ass-
ociated map of a ring homomorphism is a spectral map by (1.1.14).

Definition (1.2.3). — By the patch topology we mean the topology defined
on a spectral space X with a subbasis for closed sets consisting of the closed
sets and quasi-compact open subsets in the original space X (or equivalent-
ly, which has the quasi-compact open sets and their complements as an
open subbasis), and the space considered to be a topological space with the
patch topology is denoted by con(X). A subset of X closed in con(X) is called
a patch of X. ([Hoc,1])

Proposition (1.2.4). — The patch topology is compact (that is, Hausdorff

and quasi-compact). ([Hoc,1], Th.1)
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[Pf] Let X be a spectral space. (i) con(X) is Hausdorff: for any distinct
points x, y in X, there is an open neighbourhood U of one of the two points,
say X, not containing the other, y. Since quasi-compact open sets form an
open basis of X, we can take U as quasi-compact open in X, and thus Uis a
clopen neighbourhood of x in con(X) that doesn't contain y. So that we have
an open neighbourhood X - U of y in con(X) that is disjoint from the open
neighbourhood U of x. E

(i) con(X) is quasi-compact: Let % be a maximal family of subbasic closed
subsets of con(X) with (FIP). So # consists of quasi-compact open sets and
closed subsets of X. We plan to show that "%Z# & (then by the Alexander
subbasis theorem, con(X) is quasi-compact). Let % be the subfamily of ¥
consisting of closed sets. Clearly #"has (FIP) and since X is quasi-compact,
F=n?%&. Clearly FisclosedinX. If F ¢ Z then% ' =% v {F} > % consists
of subbasic closed sets of con(X) with (FIP), contradicting the maximality of
Z Thus F € Z. Next we show F is irreducible. Forif F = F UF", F', F" clo-
sedin X, F' = &, F" = &, consider 7 U {F', F"}. This is a family of subbasic
closed subsets of con(X), and strictly contains % If we verify that & u {F',
F"} has (FIP), that will contradict the maximality of % and so it follows that
one of ', F" is empty, and thus F is irreducible.

Let {Uy,...Upl €& - 7% Now Uy n..nU nF=3. Suppose U n..n U,

NF'" =0 (hence Uy n..nU, nF #J). Then we claim that for every
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Vi Vid €7 -7 Vin..nV N F = 2. Now Vin..nV,  nF=JBby
FIP)of Z. Vi "V nF2Vn.nV, NnTU;n...nU,NF and this is
equalto (Vi n..AVynUpn.. AU nFYuVin..aV,nU;n..nU,
NE)=Vin.nVpyn.nUn.nUnFasUn.nU,nF=0.
Thus Vin...nV, nFoV,n..nV, nU;n.. NU, NF #3. This
proves our claim. So F is irreducible. Finally since F is a closed irreducible
subset of the spectral space, F has a (unique) generic point x, i.e., F =
Clx{x}. We show that for each Ue % x e U. Since x € F, clearly x is contai-
ned in every member of " Let Ue #- % Then Uisopenin X, so UNF = Q.
This implies x € U since F = Cl{x}. B

Proposition (1.2.5). — Let X and X' be spectral spaces.

(i) For any spectral subspace Y of X, con(Y) is the subset Y of con(X) with
its subspace topology.

(i) A map f: X — X' is spectral iff it is continuous in both original and
patch topologies.

(iii) For a spectral map f: X — X', f{X) is a patch in X'. ([Hoc,1], p.45)

[Pf] (i) Let Y be a spectral subspace of X. Since the inclusion map is spec-
tral, for any quasi-compact open subset V of X, V N Y is quasi-compact
(open) in Y. Therefore a basis of open sets for Yis (VN Y: V e ¥}, where &
is a basis of open sets for X. So each member of the subbasis of open sets for

con(Y) (which consists of the family of an quasi-compact open subset of Y
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and their complements in Y) can be obtained as S N'Y, where S is quasi-
compact open in X or the complement of a quasi-compact open subset in X.
So con(Y) is the subset Y of con(X) with the induced topology. B

(i1): Let £ X - X'. Let both £ X —» X', and £ con(X) — con(X') be contin-
uous. We show that f: X — X' is spectral. Let U' quasi-compact open in X'.
Since f: X — X' is continuous, f T is open in X. Since U' and its comple-
ment are basic open sets in con(X'), they are both clopen in con(X). There-
fore £ 1(U") is clopen in con(X) as f: con(X) — con(X') is continuous. So that
f 'l(U') is quasi-compact in con(X) and so quasi-compact in X, because X
has a coarser topology than con(X). So f: X — X' is spectral. Conversely let
f: X - X' be spectral. Then f: X — X' is continuous . We check that f:
con(X) — con(X') is continuous. Let F' be a subbasic closed subset of
con(X'). Then F'is either closed in X', so f "1(F") is closed in X or F is quasi-
compact open in X', so f '1(F') is quasi-compact as fis spectral, and thus in
either case f 1(F") is closed in con(X). This shows that f: con(X) — con(X') is
continuous. #

(iii): Let f: X — X' be spectral. Then £ con(X) — con(X') is continuous.
Now con(X) is compact, so that f{X) is compact in con(X'), thus closed in
con(X'). By definition, f{X) is a patch of X'. E

Proposition (1.2.6). — A subspace Y of a spectral space X is a spectral

subspace of X iff it is a patch in X. ([Hoc,1], p.45)
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[Pf] If Y is a spectral subspace of X, then the inclusion map i: Y — X is
spectral and so by (1.2.5), (ii1), it follows that Y is a patch in X.

Conversely, let Y be a patch in X. Since every quasi-compact subset F of
X is closed in the Hausdorff space con(X), F n Y is closed in con(Y) by
(1.2.5), (). So F n'Y is quasi-compact in con(Y) and also in the coarser to-
pology of Y, that is, M =FnYis quasi-compact in Y. Therefore for the
inclusion map i: Y — X, preimages of quasi-compact open subsets are quasi-
compact, that is, i is spectral. Hence Y is a spectral subspace of X. H

Definition. (1.2.6.1). — Let x, y be two points of a topological space X.
Then y (resp. x) is said to be a specialization of x (resp. generalization of y) if
y € Cl{x}. Let Y be a subset of X, then let us denote by sp(Y) (resp. gen(Y))
the set of specializations (resp. generalizations) of all elements of Y, that is,
sp(Y) = {ze X: ze Clfy} for some y € Y}, and gen(Y) = {z € X: y € Cl{z} for
some y € Y}. We note that Y = sp(Y) for any closed Y.

Proposition (1.2.7). — A spectral subspace Y of a spectral space X is clo-
sed iff it is stable under specialization, that is, Y = sp(Y). ([Hoe,1], Cor. to
Th.1)

[Pf] Since obviously CIY o sp(Y), it suffices to show CIY < sp(Y). Let ye
ClY and Z be the family of all quasi-compact open neighbourhoods of y. Let
7=% U {Y}). Then 7’is a family of closed sets of con(X) which has (FIP),

since any neighbourhood of y intersects Y. By the compactness of X, "= Y
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N (NZ) # 3. So there exists an x €Y, such that x e "% that is, y € Cl{x}, so y
e sp(Y). B

Definition (1.2.8). — A topological space is said to be quasi-Hausdorff if
any two distinct points either have disjoint neighbouhoods or are in the clo-
sure of a third point.

Proposition (1.2.8.1). — Every spectral space is quasi-Hausdorff. ([Hoc,1],
Cor. to Th.1, p.45)

[Pf] Let x, y be two points of X, Z, % be the set of all quasi-compact open
neighbourhoods of x, y respectively. If no two neighbourhoods U in Z and
Vin % are disjoint, then % U % is a family of closed sets in con(X) with
(FIP). So there exists a point z € N(% U Wy). Since 7, % are bases of neigh-
bourhoods of x, y respectively, x, y € Cl{z}. B

Definition (1.2.9). — Clearly the class of spectral spaces with spectral
maps as morphisms forms a category, which we denote by %

Proposition (1.2.9.1). —In % arbitrary products, images, inverse limits
and finite coproducts exist and all the underlying spaces are respectively
counterparts in the category .7 of topological spaces with continuous maps
as morphisms. ([Hoc,11, Th.7)

[Pf] The categorical products: Let {X;:i € I} be a family of spectral spaces.

Then it is easy to verify that X = [1{X;: i € I} with the product topology is a
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spectral space, each projection pry: X — X' is spectral and X is the categori-
cal product of the X|'s.

The statement about arbitrary inverse limits immediately follows.

Because images with spectral maps of spectral spaces are patches (cf.
(1.2.5), (iii)) and a subspace is spectral iff it is a patch (cf. (1.2.6)), spectral
images in % are spectral spaces.

Let X4,..., X, be spectral spaces. Let X be the disjoint union of Xiseer X
Then it can be easily shown that X is a spectral space and the inclusion
map ij: XJ — X is spectral for any j = 1,...,, n. It is easy to prove that X is the
coproduct of X;,..., X . H

Remark (1.2.9.2). —If {X;:i € I} is not a finite family of spectral spaces,
the disjoint union X of {X;} need not be spectral. However we shall prove ar-
bitrary coproducts, quotients, and direct limits exist in . in (1.3.5), (1.3.7)
and (1.3.8).

Proposition (1.2.10). — A topological space X is spectral iff X is isomor-
phic to a patch of a product of copies of the topological space W = {0, 1} whose
open sets are &, {0}, and W. ([Hoe,11, Prop.9)

[Pf] At first note that W is spectral with {{0}, W} being the open basis and
{{1}, W} being the set of all closed irreducible subsets.

=: Let V be the set of all spectral maps from X to W, WY be the product

space of copies of W indexed by V, and e: X — WYV defined by ex)(f) = f{x) be
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the evaluation map. Then WV is spectral (because it is a product of spectral
spaces) and e is spectral (because e is continuous with respect to both the or-
iginal and the patch topologies since for any x € X and fe V, (preoe)x) =
f(x), where both prg (the f-th projection map) and f are continuous with re-
spect to the original and patch topologies).

Next, for any two distinct points x, y of X there exists a quasi-compact
open subset U of X which contains one of %, y and not the other, since X is
Ty. Sayxe U,y e U. Define a map f: X - W by f{U) = {0}, iX - U) = {1}.
Then since the only nonempty open sets in W are {0} and W, and f '1({0}) =T,
f ~1(W) = X, fis spectral. And e(x)f) =f(x) =0 #1 = f{y) = e(y)({), thus e(x) #
e(y), that is, e is injective.

Suppose E is a closed subset of X and y € X - E. Define a map f: X - W by
f(E) = {1}, iX - E) = {0}, then a similar argument as above shows that fe V
and f{y) = 0 ¢ {1} = CI(f(E)), that is, V separates points from closed sets. Let x
€ X and U be an open neighbourhood of x in X. Choose f € V such that f(x)
= prde(x)) ¢ CIfiX -U)), and let B ={y wV: pr{y) ¢ CI(fiX - U))}, then e(x)
e Band B = prf'l(W - CI(fiX - U))) is open in WY, Since fix) ¢ CIf(X - U)), we
get CI(fiX - U)) # W, that is, CI(fX - U)) = {1} = filX - U), f(U) = {0}. Thus from
the injectivity of e, it follows obviously that e B n eX)=elB)NX=e
L (prdW - CIX - 1)) = e L (pry2((01)) = £ ™({0)) = U. So by considering e as a

bijection of X onto e(X), we have B N e(X) = e(e'l(B N e(X))) = e(U), that is,
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e(U) is open in e(X). This shows that e is an open map, and consequently e
is a homeomorphism of X onto e(X). As a result, e is a spectral embedding

of X into W". Thus X is isomorphic to the patch e(X)in W". I

&: The converse is immediate from (1.2.6) taking into account that WV is
a spectral space by (1.2.9.1). HE

Proposition (1.2.11). — A topological space is spectral iff it is an inverse li-
mit of finite T, spaces. ([Hoc,1], Prop.10)

[Pf] Obviously any finite T, space is quasi-compact and has an open basis
consisting of quasi-compact open subsets. Let {x1,..., X} = E be a closed ir-
reducible subset of a finite T, space X, and U be the intersection of all the
open subsets of E. Since E is irreducible, U is not empty and is finite. If U
contains more than one point, U cannot satisfy T, separation axiom, thus U
is a singleton and ClzU = E, that is, E has its generic point. It follows that
any finite T, space is spectral. So an inverse limit of finite T, spaces is spec-
tral by (1.2.9.1).

Conversely, let X be a spectral space, then by (1.2.10), X is isomorphic to a
patch of WY. Lete: X — WY be the embedding. We are going to construct
an inverse system (Xg, fS,T; I) relative to the set I, the set of finite subsets of
V ordered by inclusion, such that X = inv.lim Xg. For any S e Ilet ag: wY
— WS be the map such that for any element f e WV, agf) € WS, where f(s) =

ag(f)(s), s e S, i, Og is the coordinate-wise projection. Define fg=0goe, Xg
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=fg(X) and for S, T € I with S ¢ T define fS,T to be the restriction of hS,T to
Xr, where hgp: W' — W is a map such that hg p((wy); ¢ ) = (), ¢ g for
(WieTE WY. Then for any x € X, fg(e(x)) = fS’T(fT(e(X)) for S, T e I with S
cT,and for S, T, Ue Iwith ScTcTU, fS,U = fS,T ° fT,U- Hence X =
inv.lim.(Xg, fS,T; I) and so X is realized as an inverse limit of finite Ty
spaces. E

From the following up to (1.2.14) we generalize the definition of con(X) to
arbitrary T, spaces instead of spectral spaces as we did earlier in (1.2.3)
above.

Definition (1.2.12). —Let X be a Ty space. (i) By con(X) we mean the topo-
logical space whose underlying set is X with topology for which the closed
subsets and the quasi-compact open sets of X form a subbasis for closed
sets. A closed set in con(X) is called a patch in X. (ii) We can define a par-
tial order on X thus: If x, y € X, x <y means y € Cl{x}. (This is indeed a
partial order on X.)

Proposition (1.2.12.1). — If a quasi-compact T, space X has an open basis
consisting of quasi-compact open subsets of X stable under finite intersec-
tion, then the following are equivalent:

(i) X is spectral.

(ii) Every nonempty closed irreducible subset of X has a generic point.
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(iii) If a family of quasi-compact open subsets of a closed subset of X has
(FIP), then it has nonempty intersection.

(iv) con(X) is compact with a basis consisting of clopen subsets.

(v) con(X) is quasi-compact.

(vi) If a family of patches in X has (FIP), then it has nonempty quasi-
compact intersection in X.

(vii) Every closed subspace is quasi-Hausdorff and every lower directed
set has a greatest lower bound in its closure. ([Hoc,1], Prop.6) (Note: The
partially ordered set X is said to be lower directed if for any x, y, there is z €
X such that z <x, y.)

[Pf] (i) < (ii): Obvious by the definition of spectral space (1.2.1). H

(i) = (v): By (1.2.4), we have this implication. B

(v) = (vi): A patch is a closed subset of con(X), so a family of patches with
(FIP) has a nonempty intersection, which is closed in the quasi-compact
space con(X), so is quasi-compact in con(X) and then also in coarser topol-
ogy of X. H

(vi) = (iv): By the Alexander Subbasis Theorem, the assertion (vi) implies
that con(X) is quasi-compact. By hypothesis, X has an open basis & con-
sisting of quasi-compact open subsets of X closed under finite intersection.
Let con(%) be the collection of subsets of X generated by the members of .

and their complements in X under finite intersection. We claim con(.%) is
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a basis for open sets of con(X) and the proof of this claim would establish the
above implication. Let U be open in con(X) and x € U. Then F = X - U is clo-
sed in con(X) and x ¢ F, i.e., Fin.nF oF, x¢ F, for any i, where each
F;is closed in X or a quasi-compact open set in X. So x belongs to an open
subset of U or x belongs to the complement of a quasi-compact open subset of
X contained in U, that is, x belongs to some quasi-compact open subset of X
contained in U (as % is an open basis of X) or x belongs to the complement
of quasi-compact open set of X contained in U. Thus in any case x belongs
to some member of con(# ) contained in U. So con(F ) is a basis for open
sets of con(X). This completes the proof of our claim. It is clear that con(X)
is Hausdorff. So con(X) is compact. #

(iv) = (iii): Let Y be a closed subset of X. Then Y is a patch of X and any
quasi-compact open subset of Y is closed in con(Y). Thus a family of quasi-
compact open subsets of Y is a family of closed subsets of con(Y). If this fa-
mily has (FIP) then it has nonempty intersection. §

(iii) = (ii): Let Y be a nonempty closed irreducible subset of X. Take the
family Zof all the quasi-compact open subsets of Y, then #has (FIP), since
Y is irreducible. Therefore "%= @. If "% contains two distinct points, then
there exists a basic open subset U of X that contains only one of them. But

then U N Y is a basic open subset of Y which is quasi-compact open, and U
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NY ¢ 7 a contradiction since U NY € Z by the definition of % Thus "% re-
duces to a set of one point which is obviously a generic point of Y. §

(i) (equivalently, (ii)) = (vii): Every spectral space X is quasi-Hausdorff by
(1.2.8.1). If Y is a closed subset of X, then Y is a patch in X and so Y is a
spectral subspace of X. Hence Y is quasi-Hausdorff. Let E be a lower direc-
ted set. Let U, V be two relatively open subsets of E. Letxe U,y e V. Then
there exists z € E such that z <x, y, that is x, y € Cl{z}. Thus any neigh-
bourhood of x and y contanins z, so that ze U n V. Therefore E is irreduc-
ible, and so is C1E. Let z( be a generic point of CIE, then obviously E c CIE =
Cl{z}, so that zg is a lower bound of E. If there exists another lower bound
z' of E, then E is contained in Cl{z'}. Then we have Cl{zg} ¢ Cl{z'}, and so z'
<z 0 that is, z; is the greatest lower bound of E. §

(vii) = (ii): Let Y be a nonempty closed irreducible subset of X. Since Y is
closed in X so it is quasi-Hausdorff. Let x, y be any two distinct points of Y.
Since Y is irreducible, x and y have no disjoint open neighbourhoods rela-
tive to Y and hence in X. Since X is quasi-Hausdorff, they are in the closure
of a third point z, that is, x, y € Cl{z}, so that x, y = z. Thus Y is lower direc-
ted, and so by hypothesis, there exists a greatest lower bound zgof YinY =
ClY. Since foranyye Yzy<y, Yc Cl{zy}. Therefore z,is a generic point

of Y. B
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Proposition (1.2.13). — Let X be a compact space, and let %= {UsieIlbea
family of clopen subsets of X. Let X' be the topological space whose under-
lying set is X and with the topology whose open subbasis is 2 Then X' is
spectral iff it is T, in which case X is the patch space of X', that is, X =
con(X'). Conversely, every spectral space arises from its patch space in this
way. ([Hoc,1], Prop.7)

[Pf] Let " be the family of all finite intersections of the members of %
Then any member of 7" is a clopen subset of X, namely, compact open sub-
set of X. Obviously #” is an open basis of X' and the original topology on X is
finer than the topology on X'. So any member of " is quasi-compact open in
X' and X' is quasi-compact. Now if X' is Ty, then it satisfies the hypothesis
of (1.2.12). So in that case if we can show that the patch space of X' is X,
then by (1.2.12), (iv), we know that X' is spectral. But since the patch space
of X' is compact (so Hausdorff) and coarser than the compact (Hausdorff)
topology on X, the patch topology on X' coincides with the topology on X. By
hypothesis, X' is T, and so it follows that X' is spectral and con(X') = X. H

Proposition (1.2.14). — A topological space X' with a basis of quasi-
compact open sets is spectral iff its patch space is compact. ([Hoc,1], Cor. to
Prop.7)

[Pf] If X' is spectral then its patch space is compact by (1.2.4). Converse-

ly, suppose the patch space con(X') is compact. If we show X' is Ty, then by
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taking the family of quasi-compact open subsets of X' as {Ugiie I} in
(1.2.13), we will have shown that X' is spectral.

Take two distinct points x, y of X'. By hypothesis, con(X') is Hausdorff.
So there exists a basic open subset U of con(X') such that x €U, y ¢ U. Uis
a finite intersection of quasi-compact open subsets Ag,...s A of X' and the
complements of quasi-compact open subsets Bgs.-s By of X' So that there
exist A; or Bj such that y ¢ Ajorye X' - Bj. In the first case, x e A,ye A,
and in the second case, x ¢ Bj, ye Bj; thus X is T. &

Definition (1.2.15). — We recall the following definitions:

Let € be a category, A, B, C € Obj(¥¢). 1°) Let f: A —» C, g: B — C morph-
isms. If there exist D € Obj(¥), m;:D — A, Tg: D - Bsuch thatfor; =g o m,
and if there exist U e Obj(%), p;: U — A, py: U — B with fo p; = g o py, then
there is a unique morphism t: U — D such that Pp =7 o t and py =y o t.
Then D is called the fibered product (or pull back) A Xc B of A and B over C.
(It is not difficult to see that D is unique up to "canonical" isomorphism.)

(2°) Let £: C — A, g: C — B be morphisms. If there exist D Obj(©),i; : A
— D, i5: B — D such that i; - f =i, o g and whenever there exist U € Obj(¥),
1 :A—>T,js5: B> Uwith j; o f=j, - g, then there exists a unique morphism
t: D — U such that j; = toil’ j2 =to1iy. Then D is called a fibered sum (or
push out) A +c B of A and B over C. Again it is well known that A +g Bis

unique up to "canonical" isomorphism.
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Note (1.2.15.1). — (i) If A, B and C are rings and u: A - C, v: B — C are
ring homomorphisms, then the ring {(a, b) € A x B: u(@) = v(b)} = A Xo B as
a subring of A x B along with 1, Ty the restrictions of projections of A x B to
A and B, respectively.

(1) If A, B and C are rings and u: C - A, v: C = B are ring homomorph-
isms ,then A+ B=A ®a B.

(iii) If X and Y are topological spaces and Z is a closed subset of Y, oi: Z —
X is a continuous map, then X +; Y = X U, Y, where X U, Y is the quotient
topological space of disjoint sum X + Y of X and Y modulo the equivalence
relation generated by z ~ a(z) for all z € Z (often called attaching space of Y
to X over the closed set Z by the continuous map «, or adjunction space of X
and Y). Let q: X +Y - X U, Y be the quotient map. It is known that: (1°)
qu is a homeomorphism and q(X) is closed in X U, Y; 2° ql (v - z) is a ho-
meomorphism and q(Y - Z) is open in X U, Y.

(iv) Let < be the category of all the preschemes. Let X = Spec(A), Y =
Spec(B), Z = Spec(C), where A, B, C are objects in the category of commuta-
tive rings ¢ and f: C —A, g: C — B are ring homomorphisms, then Spec(A
® B) =X xz Y. ([Harl, chap.III, Th.3.3)

(v) As a special case, we have Spec(A x B) = Spec(A) U Spec(B) (disjoint).
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Proposition (1.2.16). — Let u: A = C, v: B = C be ring homomorphisms
and v surjective. Then Spec(A) +Spec(C) Spec(B) = Spec(A) U, Spec(B), where
o =%u. ([Fonl], Th.1.4)

[Pf] Let U be a spectral space, Py: Spec(B) — U and py: Spec(A) — U be
continuous maps such that p, o Ay = Py © 2u. Then there exist a ring D with
U = Spec(D) and ring homomorphisms £ D — A, g: D — B with ?f = P1> 2o =
Py (as we prove later in Chap.2 the existence of such a ring and homomor-
phisms independently of this theorem). Then we have fou=g.v. So by the
universality property of A x~ B there exists a unique ring homomorphism t:
D - AxzBand 2t: Spec(A Xa B) — Spec(D), that is, Spec(A Xc B) satisfies
the universality property. Thus Spec(A X B) = Spec(A) +Spec(C) Spec(B). So
it sufices to prove that Spec(A X B) = Spec(A) U , Spec(B).

Claim (1.2.16.1). — Let A, B, C, u and v as above, and D = A Xo B. Let u':
D — B, v: D — A be the restrictions to D of the projection maps. Set X =
Spec(A), Y = Spec(B), Z = Spec(C), W = Spec(D), o =2u: Z » X, B = 2v: Z > Y,
o=%"Y > Wandp =4"X > W.

A X
v T \\\1; / l \\oc

D—C, W «—Xuyu,Y «—7Z

u’J« / NT%
B Y
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Then v' is a surjective homomorphism, and so B' = ®v' is a closed em-
bedding (cf. (1.1.15.1) or (1.1.8)).

[Pf] For any a € A, u(a) e C. Since v is surjective by hypothesis, there is
b € B such that v(b) = u(a). Hence (a,b) e A Xo B and v'(a, b) = pr; I pla, b) =
a. Thus v'is surjective. #

Claim (1.2.16.2). — Let b = Ker(v) and d = Ker(v"), then (1°) u/| ad—bis
an isomorphism of modules (subordinate to u': D — B), (2°) the conductor
(is by definition the ideal Ann AB/Mm(f)) for a ring homomorphism f: A —
B, in our case, Annp(B/u'(D)), contains d, and (3°) for every h € d, the cano-
nical homomorphism Dy _, B, is an isomorphism, where Dy, is the ring
of fractions of D with the multiplicative set {h™: n € NJ.

[Pl 1%): v(u'(d)) = uv'(d)) = u(0) = 0. Thus u'(d) cb. Letb e b, then v(b) =
0, so that for any a € ker(u), (a, b) € d, and u'(a, b) = prylpla, b) =b. Thusb
cu'(d), so we have u'(d) =b. Nextletd,d' e d,d =(a, b),d' = (a', b). Sup-
pose u'(d) = u'(d"), thatis, b = prylpla, b) =u'(a, b) = u'(d) =u'(d") =b'. Since
d,d e d=ker(+"), a= prylpa, b) =v'(d) =0 =v'{d") =a'. Hence d =d', and so
u'l 4 is a bijection of d onto b. Obviously it is an isomorphism of modules. B

(2%): Since B/b = B/u'(d), and b = Ann(B/b) 2 Ann(B/u' (D)), u'(d) c
Ann(B/u'(D)). Therefore d ¢ Annp(B/u'(D)). &

(3°): Let ¢y: Dy — Byn) be the map defined by (ph(d/hn) = u'(d)/u'(h)".

Now d < Annp(B/u'(D)) means that for any b e Bandh e d, bu'(h) e u'(D),
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that is, there exists d € D such that bu'th) = u'(d). Let b/u'()™ be an arbi-
trary element of Bu'(h)’ where h € d. Then u'(h)b/u'th)™* = u'(d)/u(h)m+1 €

¢,(Dy). Thus ¢y, is surjective. Let d/h", d/h™ e Dy,. Suppose ¢y,(d/h™)

1l

¢p(d'/h™).  Then by definition, there exists k ¢ N such that 0
w'(W W (D)™ - v u'(d)) = w(dh™* - h**5q). Obviously dn™* -
h™¥ ¢ d since h e d. By (1.2.16.2), u' is bijective when restricted to d, so
dh™m+k _pntkge 0, that is, &/h™ = d/h™ This shows that ¢y, is injective,
and so it is a bijection. It is obviously a ring homomorphism. B

Claim (1.2.16.3). — Let P be a prime ideal of D = A Xg Bwith P 5 d. Then
there exists a unique prime ideal Q of B such that u"l(Q) =PwithQ2b
and Bg =Dp.

[Pf]Let S=D - P, S' = u'(S), then S and S' are multiplicative sets in D and
B respectively. Since P 2 d, there existshe d-P cD - P = S. Note that u'(h)
€ bn S By (1.2.16.2), u' extends to the isomorphism uy: Dy - Bymy By
([Bou,2], II, sec.2, n® 1, Prop.2 and Cor.4 to Prop.2), u'y, can extend to the
isomorphism u'q: D — s by the change of multiplicative sets, where Dy,
is regarded as a subring of S'D. Since Pisa prime ideal of D with P N S =
&, there exists a unique prime ideal P' of S'D such that u'S'l(Q') =P'. Let

Q be the prime ideal of B such that @ = Q' " B. Then Q 3 b. Since u'q is an

extension of the map u/, u"l(Q) = P. Thus there exists a bijective corre-
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spondence between the prime ideals P of D such that P » d and the prime
ideals Q of B suchthat Q 1 b. H

Remark (1.2.16.4). — We know from (1.2.16.1), 2v' is a closed embedding
of Spec(A) to Spec(D) and v is onto by hypothesis so 2v is also a closed em-
bedding. Thus Spec(C) can be identified with the set of all the prime ideals
Q of B such that Q o b = ker(v), that is, a closed subset V(b) of Spec(B). More-
over oo = 2u: Spec(C) — Spec(A) is continuous, so it is meaningful to talk
about Spec(A) Uy Spec(B).

Now we want to show Spec(A X B) = Spec(A) U, Spec(B), that is, we want
to construct a continuous closed bijective map o: Spec(A) U, Spec(B) —
Spec(A xs B).

As Spec(A) Ua, Spec(B) = Spec(A) +Spec(C) Spec(B) and ?u' » %v = &', 8y,
that is, o' o B=D" - &, by the universality of Spec(A) +Spec(C) Spec(B), we
have a unique morphism c: Spec(A) Ug Spec(B) — Spec(Axy B). Note that ¢
is continuous as it is a morphism.

Proposition (1.2.16.5). — o: Spec(A) Ug, Spec(B) — Spec(D) is a bijection.

[Pf] Let P be a prime ideal of D = A Xo B. If P 2 d, then P corresponds to a
unique prime ideal of Spec(A) with respect to the surjective homomorphism
v:D — A (cf. (1.1.7) or (1.1.15.1)), namely V(d) = Spec(D/d) = Spec(A). Now

Spec(C) is identified with a closed subset of Spec(B) as the subspace of all

prime ideals of B which contain b, that is, the kernel of the surjective homo-
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morphism v: B — C. So the set of all prime ideals Q of B such that Q2bis

the open subset Spec(B) - Spec(C). Thus o is the bijection from Spec(B) -

Spec(C) onto the set of all prime ideals P of D such that P 5 d. B

Claim (1.2.16.6). — The map c is a closed map.

[Pf] Let F' be a closed subet in Spec(A) U, Spec(B). Let o(F') = F. We show
that F is closed in Spec(D). Let X = Spec(A), Y = Spec(B), Z = Spec(C), W =
Spec(D). Let ix: X — X +Y and iyt Y — X + Y be the canonical injection, p:
X+Y = XugyY be the quotient map. Let o =2wZ - X, o' = 3: Y o W, B’

=%u': X - W. Then the following diagram commutes:

X
iy / \ Nﬁ'

X +Y—PoXu,Y °— W.

N

Since o = 6 o p o iy, we get /() =iy (p (¢ (F) = iy (P EY) = pLE) A
Y, that is, oc"l(F) is closed in Y, since X + Y is disjoint. Similarly, B'(F) is
closed in X. We need show that if F < W is such that o' \(F) is closed in Y
and B"l(F) is closed in X then F is closed in W. First , since oc"l(F) 18 closed
in Y = Spec(B), o (F) = V(D) for some ideal I of B. Similarly, pL(F) = V(J)
for some ideal J of A. Then we have a ring homomorphism h: A Xa B —

(A/d) x (B/I) composed the canonical injection A Xa B — A x B and the cano-



Section 2. Spectral spaces and the patch topology. -41 -

nical surjection A xB — (A/J) x (B/I). Then *h(Spec((A/J) x (B/I)) =

#h(Spec(A/T) U Spec(B/D)) (disjoint) ¢ W = Spec(A Xa B). Next we show F =
#h(Spec(A/T) U Spec(B/D)). Letx € F. Since W = X U o'(Y), either x e FnX
orx e Frna'(Y) In the first case, B'_I(X) € B"l(F) = V(J), that is, gl 2

J. So h'l(jx) 2 d x I, and x € *h(Spec(A/J)). The steps above can be rever-
sed. In the second case, we have oa"l(x) € oc"l(F) = V(I), that is, j,-1 (x) 2 I,
and so x € *h(Spec(B/I). Again the steps above can be reversed. Therefore
F = *h(Spec(A/J) U *h(Spec(B/1)). Let x € Cl{y}, for some y in F. Then j_ o
jy, ye F. Ify € ®h(Spec(A/)), then jy D> J, and so j, ij Dd. Thusx e F.

Similarly if y € ®h(Spec(B/I)), we obtain x € F. Therefore if x e Cliy} for
some y in F then x € F. Consequently F is closed under specialization and

so by (1.2.7), F is closed in W. B
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Section 3. IQO sets and spectralification.

Definition (1.3.1). — Let X be a topological space. By an IQO set we mean an
open subset U of X such that for any quasi-compact Q of X, Q n U is quasi-
compact.
Remark (1.3.1.1). — Finite unions and finite intersections of IQO sets are
IQO. IfXis quasi-compact then every IQO set of X is quasi-compact open.
Definition (1.3.2). — Let X, Y be topological spaces and f: X — Y contin-
uous. If for any IQO set E of Y, f 1E®) is 1QO in X, then fis called spectral.
Remark (1.3.2.1). — If X, Y are spectral spaces, the above definition of
spectral maps coincides with the concept of spectral maps defined in (1.2.1)
[Pf] Since Y is spectral, Y is quasi-compact. So every IQO set E of Y is
quasicompact open. If f: X — Y is spectral in the sense of (1.2.1), f '1(E) is
quasi-compact open. In order to show that f "N(E) is 1IQO, we must show
that its intersection with any quasi-compact open subset of X is quasi-
compact. In fact we prove that the intersection of any two quasi-compact
open subset of X is quasi-compact open. For if U, V are quasi-compact open
in X, then U, V are patches in the compact patch topology, that is, U, V are
closed in the patch topology. Hence U n V is closed and so compact in
con(X). Therefore U N V is quasi-compact in the (coarser) given topology on

X. Thus fis spectral in the sense of above definition.
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Conversely, let X, Y be spectral, f: X — Y spectral in the sense of the defi-
nition above. Let E be quasi-compact open in Y. By the foregoing argument
which shows that in a spectral space the intersection of any two quasi-
compact open sets is quasi-compact open, E is IQO in Y. Since fis spectral
as in the definition above, f "1(E) is IQO. Since X is spectral, X is quasi-
compact. So by (1.3.1.1), f '1(E) is quasi-compact open in X. Thus f is spec-
tral in the sense of (1.2.1). B

Remark (1.3.2.2). — Let f: X — Y be continuous, and f(X) c U{E;:i =
1,...n}, where E; is quasi-compact open in Y for any i. If for any quasi-
compact open V inY, f 'l(V) is IQO in X, then f is spectral.

[Pf]Let Ebe IQOinY. Then E = U{E; "E:i=1,...,n}, and each E;nEis
quasi-compact open as E is IQO. Thus f 1E) = {f '1(Ei NE);i=1,..n}is
IQO as a finite union of IQO sets (cf. (1.3.1.1)).B

The following is an immediate corollary.

Corollary (1.3.2.3). — Let X, Y be topological spaces, Y spectral and f: X
— Y a continuous map. Then fis spectral if for any quasi-compact open V
inY, £ (V) is IQO in X.

Definition (1.3.3). —Let X, X' be topological spaces and g: X — X' a spec-
tral embedding. Then the pair (X', g) is called a spectralification of X if X'

is spectral and if for any pair (Y, f) of a spectral space Y and a spectral map
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f: X =Y, there is a unique spectral map f': X' — Y such that f=f'og. We
say X is spectralifiable if X has a spectralification (X', g).

Theorem (1.3.4). — The following conditions on a topological space X are
equivalent:

(i) The space X is spectralifiable;

(ii) the space X is T,y and the IQO sets form an open basis;

(iii) the space X is T, and for any closed subset A of X and x € X - A, there
exists a spectral map f: X — W such that f(x) = {0} and f(A) = {1}, where W =
{0, 1} with {0} and W being nonempty open sets;

(iv) the space X can be spectrally embedded in some spectral space.

[Pf] (i) = (iv): Obvious by definition.

(iv) = (ii): Let X be a spectral embedding in a spectral space X'. Since X'
is Ty, X is Ty. Let U be open in X, and x € U. Then the supposition that X'
is spectral implies that there exists a quasi-compact open subset E of X'
such thatxe Eand ENnX c U. By (1.3.1.1), Eis IQO in X'. Since X is spec-
trally embedded in X' the preimage with respect to the embedding of E in X
whichis E n Xis IQO in X. So the IQO sets of X form an open basis.

(ii) = (iii): Let A be closed inX and x ¢ A. So there exists an IQO set U of
X such that x e U c X - A. Note that Un A = . Define f: X — W thus: f(y) =

O0Oifye Uand1ifye¢ U. The quasi-compact open (hence IQO) sets in W are
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<, {0}, W. Since f '1({0}) = U and U is 1QO, it follows that fis spectral, and
fx) = 0, flA) = {1}.

(iii) = (ii): It is enough to show that if U is open in X, and x € U then
there exists an IQO set E in X such thatx e Ec U. If U = X, then there is
nothing to prove as X is IQO and so we need only set E = X. If U ¢ X and x
does not belong to X - U, a closed set of X, there exists a spectral map f: X —
Wsuch that f(x) =0 and f{iX-U)={1). LetE="f "1({0}). As fis spectral, E is
IQO in X, and clearly x € E c U.

(ii) (or equivalently (iii)) = (iv): Let V be the set of all the spectral maps f:
X - W. Let WY be the product of copies of W for each f € V. Since W is
spectral, with the product topology, Wisa spectral space. Let e be the eva-
luation map X — WV, that is, e(x)(f) = prde(x)) = f(x), then e is clearly con-
tinuous. If x #y, x, y € X, we can assume without loss of generality x ¢
Clly}. Then by (iii) there exists a spectral map f: X — W such that f(x) = 0
and {Cl{y}) = 1. So f(x) = f{(y). This shows that e(x) # e(y), and e is injective.

Let B be open in X, and x € B. Then by (iii), there exists a spectral map f
X — W such that f(x) = 0 and fiX - B) = {1}. Let U={Ee W": pret) = 0}. So U
is open in the product topology on wY. Clearlye(x) e UneX) ceB). Soe
is an open map from X onto e(X). Finally we claim that e is spectral. For
since W' is spectral by (1.3.1.1) it suffices to show that for any quasi-

compact open set Q of WV, e'l(Q) is IQO in X. Since Q is quasi-compact
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open subset in the product topology, Q is a finite union of basic open subsets
E; =II{U,:ve V},i=1,...,n, where for each i, at most finitely many U, are
the proper open (quasi-compact open) subset {0} of the v-th factor space W
and all others are whole factor spaces, copies of W. So e'l(Ei) = m{v’l(Uv): v
e V'], where U, ={0} forve V' c V and V' is a finite subset of V, is a finite
intersection of IQO sets because each v is spectral and {0} is IQO in W.
Thus ¢™'(E;) is IQO by (1.3.1.1). Consequently, by (1.3.1.1), e (Q) = Ue }(E,):
i=1,..,n}is IQO. E

(ii) = (i): We have the spectral embedding e: X — WY in the paragraph
above. Let X' = Cloonx)eX). Let us restrict the range of e to X' and call this
spectral map also as e: X —» X'. We claim (X, e) is the spectralification of
X. Let Y be a spectral space, f: X — Y a spectral map. We construct a spec-
tral map f": X' = Y such that f =" - e. Let V' be the set of all spectral maps
from Y to W. Since Y is spectral, it satisfies (ii) (for when Y is spectral IQO
sets are quasi-compact open, cf. (1.3.2)), and we have a spectral embedding
1Y - W". Let f*: V' > V be defined by £*(v') = v' « f for every v' € V', and
£%; WY — W" defined by £**(q) = q » £* for every g e W" (cf. [Kel], pp.152-153,
Lem.3.3). Let v' e V'. Then (pr_ o f*)(v) = pr (v o f) = vI(flx)) = Pryy(v) for
every x € X. So pr, o f* = Prey). Next we show that f** is spectral. Since
£%(q) = q o f*, for any v' e V', we get (pr, o £¥*)(q) = pr,.(q - £¥) = q(F*(v)) =

Preyy(@). Thus pri o £ = pryy for every v e V', and this shows that f*
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is spectral since Prey) 18 spectral (the proof is similar to [Kell, Th.3.3).
Now we have the commutativity e' - f = f** . e, Because for any x ¢ X and v'
€ V', ((F** o e)(x)(V) = £F¥e@N(V) = (e(x) o« F)(v) = ex)(E*(¥)) = e(x)(v' o f) =
(v' o H)(x) = V(f(x)) = pr(fx)). Thus f**.e =e' o fas we claimed. We want to
show that e o f* I ¢ is the map f' we are looking for. In order to do it, we
need show that e'(Y) o f**(X'). Since f** is spectral, it is a continuous clo-
sed map with respect to the patch topology. So f**(X') is closed in the patch
topology and hence a patch in the spectral topology on WV, And since ¢ is

a spectral embedding, e'(Y) is a patch in W' . So that £*X') =

55 (Clgon(wVyeX) = CleonwVHE** o )X) = CleonwV'(e' o H(X)
Clcon(WV')(e’(f(X)) c Clcon(WV')e'(Y) = e'(Y) (the second equality holds as
£** is continuous and closed). It remains to show that f' = el o f** lx is an
extension of f to X'. Since f**(X') is a patch in WY and f+*(X") is contained
in the patch e'(Y), f#*(X') is a patch in e'(Y). Thus el If**(X') is spectral.
Since f**: X' — f**(X') is spectral, f ' is spectral. H

Proposition (1.8.5). — Arbitrary coproducts of spectral spaces is spectra-
lifiable. ([Hoc,11, Th.7)

[Pf] Let {U;:i e I} be a family of spectral spaces. Since quasi-compact
open sets in U; are IQO and form an open basis of U, the collection of all

IQO sets in U, i € I, form an open basis of the coproduct space of the family
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X =2{U;:ie I}. Thus by the previous theorem, the coproduct of the family
{U;:ie I} is spectralifiable. B

Definition (1.8.6). — Let X be a spectral space, E an equivalence relation
on X. A spectral space structure on X/E is called the quotient spectral
space structure with respect to E if (1) the quotient map p: X — X/E is spec-
tral and (2) whenever g: X — X' is a surjective spectral map which is con-
stant on equivalence classes in X with respect to E, there exists a unique
spectral map h: X/E — X' such that g=h o p.

Proposition (1.3.7). — Quotients exist in the category .% ( [Hoc,11, Th.7)

[Pf] Let X be a spectral space, E an equivalence relation on X. Let D be the
set of all spectral maps from X to spectral spaces whose underlying sets are
subsets of X and which are constant on the equivalence classes with respect
to E. Clearly D is not empty. For any fe D, let Y, denote the range space of
X with respect to f. Consider [1{Yy fe D} which is a spectral space by
(1.2.9). Let e: X — [I{Yg f e D} be the evaluation map. Note that e is spec-
tral. Because pry - e = f and both f (because it is spectral) and pry are con-
tinuous in the spectral and patch topologies it follows that e is continuous in
the spectral and patch topologies. So by (1.2.5), (ii), e is spectral. Let eg: X
— e(X) =Y. Then Y is a patch in [I{Y¢ f € D} and so has a spectral space
structure. Then (Y, ej) is the quotient spectral space with respect to the

equivalence relation E. For let g: X — X' be a given surjective spectral map
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constant on every equivalence class with respect to E. For each point x' € X'
choose a point from every class that is contained in g'l(x'). Let us denote by
Zg the subset of X consisting of points thus chosen. Then we have the sur-
jection hg: Zg — X', with the property hg'l(U') = Zg a) g'l(U') for any U' ¢ X'.
Since g is spectral, it is continuous with respect to both spectral and the
patch topologies. So hg is spectral with respect to the subspace topology of X
on Zg. Thus for every g: X — X' we have its representative f: X — Y= Zg in
D. Now f=prelyo ey soif we defineh: Y > X ash = hg o prely, where Zg
defined as above and pryly is the restriction of the projection map [M{Tgfe
D} - Y,to Y, then we haveg=ho ey. This shows that (Y, ej) is the quotient
object of X with respect to E. H

Corollary (1.3.8). — Direct limits exist in the category .% ([Hoc,1], Th.7)

[Pf] Since an arbitrary coproduct of spectral spaces is realized as a space
that can be embedded into a spectral space by (1.3.5) and quotients exist in

by (1.3.7), this is an immediate corollary. H



Let %€ denote the category of commutative rings with unity as objects and
unitary homomorphism as morphisms. Let .9 denote the category of topo-
logical spaces as objects and continuous functions as morphisms. Let us
denote by % the subcategory of .7 consisting of spectral spaces as objects
and spectral maps as morphisms. Then Spec: ¥—.9 is a contravariant
functor and the image of Spec is clearly contained in .% The object of this
section is to show that every object and morphism in % is in the image un-
der Spec of an object and morphism in %€ that is, Spec is a full functor from
€ to &

We noticed that if A is a ring (commutative and with unity), then spec(A)
is a T, topological space such that (i) it is quasi-compact, (ii) its quasi-
compact open subsets form an open basis, and (iii) every closed irreducible
subset has a unique generic point (cf. (1.2.2)).

We show that given T topological space X with the properties (i), (ii) and
(iii), there is a ring A such that X = Spec(A).

We also noticed that if f: A — B is a ring homomorphism from A to B,
then the adjoint map ?f: Spec(B) — Spec(A) is a spectral map.

In what follows we show that if X, X' are spectral spaces and £ X — X' a

spectral map then there exist rings A, A' and a homomorphism ¢:A'—= A
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such that X = Spec(A), X' = Spec(A') and f = #¢ = Spec(o), that is, every spec-
tral space and spectral map is in the image of Spec.

It should be noticed that this does not mean there exists a contravariant
functor from % to € which is the inverse of the functor Spec. What is im-
plied is the following:

Let & = {X, X' objects of . idy, idy and f: X — X' morphisms of #}. Then
Z is a subcategory of . What is asserted is that there is a functor from &%
to € which is the inverse of Spec.

In what follws we also examine some examples of the following question:
Given a subcategory % of %, can we invert Spec on % ?

We show that there are some subcategories of . on which Spec can be in-
verted and there are subcategories of % on which Spec cannot be inverted.
The process is quite technical and for a quick summary refer to (2.1.28) be-

low.
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Section 1. Topological characterization of spectral spaces.

Definition (2.1.1). — We say that the Spec: ¢— 7 is invertible on a sub-
category Zof % if there is a (contravariant) functor F: % — % whose com-
posite with Spec is isomorphic with the inclusion functor incl from %Zinto %
that is, for any object X of .% there are isomorphisms f(X): (Spec -« F)X) —
incl(X) and fIX"): (Spec + F) — incl(X') in.# such that for any morphism u: X
- X'in % f{IX") o (Spec » F)(1) = incl(u) - iX). Then we shall also say that F¥
is a space preserving functor from T to €

Definition (2.1.2). — Let X be a spectral space and let Q(X) denote the set
of all quasi-compact open subsets of X. Define a contravariant functor Q: .$
- &, where &denotes the category of sets and functions, as follows: if £ X —
X' is a spectral map, Q(f): Q(X') —» Q(X) is defined by QH(U") = £ 1(U") (since
f is spectral, for any quasi-compact open subset U' of X', f '1(U’) is quasi-
compact in X.)

Definition (2.1.3). — Let X be a spectral space, Easetand g: E - QX) a
function such that g(E) is a basis for open sets of X. Then the triple G(X) =
(X, E, g) is called the space with indeterminates associated with X .

Let X, X' € Obj(5). Then a pair (f, r) is said to be a morphism of the
spaces with indeterminates : (X, E, g) - (X', E', g) if 1°) £ X — X' is spec-
tral, @°) r: E' > E is an injection, and (3% Q(f) - g'= g - r. The class consist-

ing of spaces with indeterminates and morphisms obviously forms a cate-
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gory, which we shall denote by .# Let GX) = (X, E, g), 6(X) = X, E, g') be
the spaces with indeterminates associated with X, X' respectively, and G(f)
= (f, r), where r: E' - E an injection. Then G is a functor from &% into %
which we also call a space preserving functor.

Remark (2.1.3.1). — In what follows we show that given any field x, there
exists a contravariant functor L: .¥ — % such that for any object (X, E, g) of
J, LX, E, g) = Ris a x-algebra with X = Spec(R). Furthermore, R can be
viewed as the set of functions on X whose values are polynomials over «.

Our technique of inverting Spec on a subcategory FZof . is as follows:

Construct a space preserving functor G: % — .# and use the functor L: _?
— € to obtain the contravariant functor LG: % — % which inverts Spec on
. (cf. section 2 below for such applications).

Definition (2.1.4). — A triple A = (X, {Ax)}, A) consisting of a spectral
space X, a family of integral domains {A(x): x € X} and a ring A (without
radical) isomorphic to a subring of [T{A(x): x € X} (so that every element of
A can be regarded as a function X — U{A(x): x e X)), is called a spring if (1)
foranyx e X, A(x) = {a(x):ae A}, (ii) foranya e A, d(a) = {x e X: a(x) = 0} is
quasi-compact open in X, and (iii) {d(a): a € A} is a basis for open sets of X.

Let A = (X, {A(x)}, A), A = (X', {A'x")}, A") be springs, f: X - X' a spectral

map and h: A' - A a ring homomorphism. Then for any x € X, there is a



Section 1. Topological characterization of spectral spaces. -54 -

ring homomorphism h_: A'(f(x)) — A(x) defined by h, (a'(f(x)) = h(a)(x). Let
us denote by v.: A — A(x) defined by vy(@) = a(x). Define v',: similarly.

A triple (f, {h,}, h), where f: X — X' is a spectral map, h: A' - Ais a ring
homomorphism and {h }iex is defined as above is said to be a morphism of
springs from A = (X, {A(x)}, A) to A'= (X, {A'x")}, A") if for any x € X, v,oh
= hy o V' and for any a' € A', £ 1(d(a") = d(h(a)).

This definition of morphisms makes the class of springs into a category
denoted by

Example (2.1.5). — Let (X, E, g) ¢ Obj(.¥) and x an arbitrary field. Let
{t(e): e e E} be algebraically independent indeterminates over k. Let K =
k[t(e): e € E]. For any e € E, T(e): X = K is defined thus: T(e)(x) = t(e) if x e
gle) and 0 if x ¢ g(e). Let KX denote the commutative ring of all functions
from X to K. Let A = x[T(e): e € E] be the subring of KX generated by the
functions {T(e): ¢ € E}.

Let S € A be a nonzero monomial in T(e)'s, say, S = AT(ep).. T(ep), A e k-
{0}. Then for x € X, S(x) = At(ey)...t(e}) (nonzero monomial in the indepen-
dent indeterminates {t(e)} over ) or 0 according as x e glep) N ... gley) or
not. Thus {x € X: S(x) # 0} =gle;) N ... N g(ey), which is quasi-compact open
in X because by the hypothesis g(E) is an open basis consisting of quasi-

compact open subsets of X.
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Let a be an arbitrary element of A, a = Zﬁ(j,l)...(j,ij)T(ej,l)---T(ej,ij):j =
1,...k}. For any x € X the value a(x) is a polynomial in t(e)'s, that is, a finite
sum of monomials in t(e)'s. So it follows from above remark that d(a) = {x
€ X: a(x) # 0} is a finite union of quasi-compact open sets in X. Hence it is a
quasi-compact open subset of X. For later use define 2(a) = X - d(a). Since
{g(e): e € E} is an open basis of X and each d(a) is a finite union of finite inte-
rsections of g(e)'s, {d(a): a €A} is an open basis of X.

Let A(x) be the subring of K generated by {t(e): e € E, x e g(e)} for any x
€X. Each A(x) is clearly an integral domain. For each x € X, we have a
ring homomorphism v, : A — A(x), defined by v (T(e)) = T(e)(x). It is easily
seen that v (T(e;)T(ey)) = v (T(e 1)vX(T(ez)). Thus v, can be extended to a
ring homomorphism A — [T{A(x): x € X}. Since A(x) is an integral domain
ker(v,) = P, (say) is a prime ideal of A.

Next, we verify that A is isomorphic to a subring of [T{A(x): x € X}. We
check for any a € A - {0} there exists x € X such that ve(a) = a(x) #0. Now a
is of the form Z{?LG,l)_"G’ij)T(ej,l)...T(ej,ij): j =1,...,k} and since a # 0, there
exists x € X such that Zm(j,l)...(j,ij)T(ej,l)(X) T(ej,ij)(x): J =1,k #
0...(¢). By definition v (a) = 2{Kﬁ_l)_..(j,ij)vx(T(ej,l)) Vx(T(ej,ij))3 ji=
1,...k}x) = z{}“(i,l)...(i,ij)T(ej,l)(X) T(ej,ij)(x):j =1,...,k} # 0 by (¢). So if we
define the evaluation map v: A — [T{A®x): x € X} by v(a) = IT{v,(a): x € X}, v

is clearly an injective ring homomorphism.
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Thus starting with a spectral space X and a field ¥ we obtain a triple (X,
{A)}, A) where {A(x)} is a family of integral domains indexed by X and A
is a ring which is isomorphic to a subring of [T{A(x): x € X]. Clearly A is a
ring without radical. We call this spring the associated spring of (X, E, g),
and this association is indeed a functor from ¥ to 7 But for our problem of
inverting Spec on a subcategory of .% we need construct a different functor
H (cf. (2.1.17) below) based on this association.

Proposition (2.1.6). — Let A = (X, {Ax)}, A) be a spring. Then X is homeo-
morphic to a dense patch of Spec(A).

[Pf] Define ¢: X — Spec(A) as follows: For x € X, let ¢(x) be the subset of A
consisting of all functions in A which vanish at x, that is, ¢(x) = {fa e A: a(x)
= 0}. Then ¢(z) is obviously a prime ideal of A. In Spec(A), a basic open set
could be taken, without loss of generality, to be D(a) = {[P] e Spec(A): a € P},
ae A (cf. (1.1.3)). We have following equivalent assertions: ¢(x) € D(a) = a
¢ 0x) ® ax)# 0 @ x e d(a). So (p'l(D(a)) = d(a), which is quasi-compact
open, and ¢(d(a)) = D(a) N ¢(X). This shows that ¢ is a spectral and open
map of X onto ¢(X). Thus ¢(X) is a patch in Spec(A).

Nextletx,ye X, x #y. Since X is T\, one of them is not in the closure of
the other, say x ¢ Cl{y}. Then there exists a basic quasi-compact open set

U(x) such that y ¢ U(x) = g(e), x € U(x) for some e ¢ E. We have t(e) = T(e)(x)
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# T(e)(y) = 0, thus T(e) ¢ ¢(x) while T(e) € ¢(y), that is, ¢(x) = ¢(y). So ¢ is in-
jective. Consequently ¢ is a spectral embedding.

Let D(a) be a basic open set in Spec(A) for some nonzero element a of A.
Then there exists x € X such that a(x) # 0, that is, ¢(x) € D(a) by the previous
equivalent assertions. So ¢(X) is dense in Spec(A). H

Remark (2.1.6.1). — Note ¢ (V(a)) = z(a).

Proposition (2.1.7). — Let (X, A) be a pair of a spectral space X and a ring
A without radical such that X is homeomorphic to a dense patch of Spec(A).
Let for each x € X, A(x) = A/j,, where j_ is x regarded as an ideal of A (cf.
(1.1.1)). Note that A(x) is an integral domain. Then (X, {A(x)}, A) is a
spring.

[Pf] From the definition of A(x) = Afj,, it is clear that the condition (i) for
springs is satisfied. Next, for any a € A, D(a) is quasi-compact open in
Spec(A). Let ¢ be the homeomorphism of X to a dense patch of Spec(A), then
D(a) n ¢(X) is quasi-compact open in ¢(X). So d(a) = (p'l(D(a)) is quasi-
compact open in X, this is the condition (ii). Since {D(a): a € A} is an open
basis for Spec(A), {d(a): a € A)} is an open basis of X. Hence condition (iii) of
definition of the springs is satisfied. H

Note (2.1.7.1). — We notice that the pair (f, h) consisting of a spectral
map f: X — X' and a ring homomorphism h: A' — A determines a spring

morphism (f, {h.}, h) from (X, {Ax)}, A) to (X', {A'(x"), A"), where for each x
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€ X, h, is the canonical homomorphism from A'(x') = A'/h"l(jx) to A(x) =
Alj,. Thus if we define pairs like (f, h) as morphisms (X, A) - (X', A") then
we get a category equivalent to <2

Remark (2.1.7.2). — Thus we may refer to a spring either as a triple (X,
{A(x)}, A) as in (2.1.4), or equivalently as a pair (X, A) as in (2.1.7) above.

Definition (2.1.8). — Let A = (X, {A(x)}, A) be a spring. A is said to be
affine if X = Spec(A).

Proposition (2.1.9). — A spring A is affine if the condition (*) below is sa-
tisfied:

(*) For each {a, by,..., b A uldb):i=1,..,n)od@)=ac rad(by,...,
b,)

[Pf] Let A satisfy (*). Suppose A is not affine. Then ¢(X) ¢ Spec(A),
where ¢ is defined as in the proof of (2.1.6). Since ¢(X) is a patch in Spec(A)
(cf. (1.2.5),(iii)), @(X) is a proper closed set in the patch topology of Spec(A).
Recall that quasi-compact open sets and closed sets of Spec(A) form a subba-
sis for closed sets of the patch topology of Spec(A), thus ¢(X) being a proper
closed set implies that there exist {a, by,..., b} € A such that ¢(X) c V(a) U
(U{D(by: i =1,...,n}) ¢ Spec(A)... (D).

Since ¢ is injective, X = ™ (9(X)) = 9™ (V(2)) U (U{¢ ' D(by)): i = 1,....n}) =

z(a) U (U{d(by: i =1,...,n}) (cf. the proof of (2.1.7)), so that uld(by):i=1,...n} o
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d(a). Then by (*), a rad(by, ..., by), soV(a) o V(b;): i =1,...,n} = Spec(A) -
U{D(b;): i =1,...,n}, a contradiction to (I). HE

Definition (2.1.10). — Let A = (X, {A(x)}, A) be a spring. If A(x) are all
subrings of some common ring K (in which case each element of A can be
interpreted as a function on X) and having only a finite numbers of distinct
values, then we say that the spring A is simple.

Note (2.1.10.1). — Let X be a spectral space, A = (X, {A(x)}, A) its associa-
ted spring. We note that all A(x) are subrings of K and A is a ring of func-
tions on X into K and each element a €A as a function on X has only a finite
number of distinct values in K. So the associated spring of a spectral space
is simple.

Proposition (2.1.11). — If a spring A = (X, {A(x)}, A) is simple and satis-
fies the following condition (**), then it is affine:

(**) d(a) c d(b) = a e rad(b). ([Hoc,1], Prop.1)

[Pf] It suffices to show that (**) implies the condition (*) in (2.1.9). Let a,
b1,..., b, € A such that d(a) c d(b;) U ...ud(b,). In order to show that a e
rad(by,..., b,) it is enough to show that there exist b (by,..., by) such that
d(b) = d(by) u...u d(b,). By finite induction it suffices to show it in the case n
= 2. Now each bj, J =1, 2, can be interpreted as a function on X with only a
finite number of distinct values in the ring K since A is simple. Let

Wj(l),..., Wj(kj) denote the mutually disjoint subsets of d(bj) on which bj has
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mutually different constant nonzero values. Choose from Wj(ij), ij =1,..,
kj, a point ij(ij)' Also choose from every nonempty intersection of W, G;p)
and Wy(iy) a point yy 1(1), Wolig)" Let Y be the set of all of these y's so cho-
sen. Then Y is a finite subset of X and by, by do not vanish at any point in Y.
Let a € [by, byl (which designates the unitary subring generated by by, by in
A), and a = ab; + Bby + Yb; by, where «, B, yare integers. Then a as a func-
tion on X vanishes outside d(b;) U d(by). Let x e d(;) - d(by). Thus we observe
that dependingon x e d(by) - d(by), x € d(by) - d(by) orx e d(b;) N d(by) the va-
lue of a at x is the same as its value at some point in Y of the form YW1(ip)
YWo(ig) O YW, (1), Wolig) Tespectively. Let d = (by, bg) M [by, byl. We note that
J is a subset stable under addition and multiplication. Now b;by € J and
b1bo(y) = by (¥)by(y) # 0 for any y € Y. Therefore b;by ¢ ¢(y). Thus for any y e
Y the prime ideal ¢(y) 2dJ. So by ((Bou,2], II, sec.1, n° 1, Prop.2), Ulo(y): v €
Y} 2 d. Letce J- U{p(y): y e Y}. We verify d(c) = d(by) LU d(by). Letc= ab;
+ Bbg + Yb by and x e d(b;) U d(by). Now c(x) = c(y) for some y € Y by the
earlier observation. Since ce J - U{p(y): y e Y}, c(y) % 0. So c(x) #0. There-
forex e d(c). Ifx ¢ d(by) U d(by) then b; (%), by(x) are both 0 and so c(x) = 0,
thatis,x ¢ d(c). Thus d(c) =d(b;) U d(b,). B

Definition (2.1.12). — Let (X, {A(x)}, A) be a spring, a, b € A with d(a)
d(b) and A*(x) the field of fractions of A(x). Then a#b is the element in

IT{A*(x): x € X} such that a#b(x) = 0 if x ¢ d(b) and a(x)/b(x) if x € d(b).
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Proposition (2.1.13). — Let A = (X, {A(x)}, A) be a spring. Then A satisfies
(**) if A satisfies the following condition (¥**):

(***¥)if a, b € A, d(a) c d(b) implies that there exists a nonnegative integer
n such that a”#b € A.

[Pf] Since A is isomorphic to a subring of I[[{A(x): x € X}, we may identify
every element of A with its image in JT{A(x): x € X}. Now b(an#b)(x) =0ifx

¢ db), a"(x) if x € d(b). Since by hypothesis a#b e A, this implies a e

rad(b). B

Remark (2.1.14). — In summary, starting with a spectral space X we
associated with it a spring (X, {A®)}, A). In general X is only homeomor-
phic to a dense patch of Spec(A). So we are interested in constructing a
spring (X, {A'(x"), A"), where the underlying space is the space X which we
started with and is actually homeomorphic to Spec(A"), that is, an affine
spring whose underlying space is X. So we developed sufficient conditions
for a spring to be affine. First we introduced (*) in (2.1.9). Then we showed
that simplicity along with (**) implies affineness (cf. (2.1.11)). Finally we
show that if A is a simple and satisfies (***), then we can "extend" the ring
A to M(A) so that M(A) satisfies (***) without disturbing X and in this man-
ner obtain an affine spring.

Definition (2.1.15). — Let A = (X, {A®®)}, A), A' = (X, {A'®)}, A") be

springs. If X = X' and for any x eX , A(x) c A'(xX) ¢ A*(x) then A'is said to
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be an extension of A. Let B be a subset of [T{A*(x): x € X} and C = A[B] be the
subring of [T{A*(x): x € X} generated by A and B, A identified as subring of
IT{A*(x): x € X}. If for any c e C, d(c) is quasi-compact open in X, then we
say that B induces an extension of the spring A. Let for every x ¢ X, C(x) =
{c(x): ¢ € C}. Note that (X, {C(®)}, C) need not be a spring, because d(c) may
not be quasi-compact open in X.

Remark (2.1.15.1). — Let A be a spring as above, a, b € A, d(a) c d(b), so
that a#b is defined. Does there exist an integer n such that a#b induces an
extension of A? In what follows we will show for a given spring A there is
an extension M(A) such that whatever be a, b € M(A) with d(a) c d(b), there
exists an integer n such that a"#b € M(A). This would imply in the case of
a spectral space X for the associated spring A = (X, {A(x)}, A) such an ex-
tension exists and so satisfies (***). Furthermore it is simple. So by (2.1.11)
and (2.1.13) we obtain an affine spring M(A) = (X, M(A)), that is, X =
Spec(M(A)) (cf. (2.1.26.1)). In what follows we describe the construction of
M(A).

Definition. (2.1.16). —Let A = (X, {A(X)}, A) be a spring. Let 6(X) = {(y, x)
€ Xx X:x e Cl{y}}. By an index v on A we mean a family of additive valua-
tions vy A*(y) — Z, where Z is the ordered group of integers with respect to
addition and for any p = (y, x) € o(X) subject to the following conditions Ip),

Iy):
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(I;)ForallacA and p =(y, x) € 6(X) such thatye d(a), 0 < Vp(a(y)) with
equality iff a(x) = 0.

(Iy) For all a € A there is an integer N > 0 such that if p = (y, x) € o(X) and
y € d(a), then vp(a(y)) <N.

A spring A together with an index v for it is called an indexed spring,
and is denoted by (A, v).

A morphism of indexed springs (A, v) to (A, v') is a morphism of springs
(f, h) with the additional condition vp(h(a')(y)) = v’f(p)(a'(f(x))), where a' ¢
A, p =(y, x) € 6o(X) with y € d(h(a")), and fip) = ((y), fx)) (as is easily ver-
ified that (f x H(c(X)) < o(X")).

Indexed springs and morphisms of indexed springs form a category,
which we denote by &

Remark (2.1.17). — The spring associated with a spectral space (descri-
bed in (2.1.5)) can be made into an indexed spring thus:

Recall that the spring associated to a spectral space X is the triple (X,
{Ax)}, A) defined as follows: Let x be a fixed field and K = «[t(e): e K],
where {t(e): e € E} is a family of indeterminates not belonging to x, indexed
by E. Let A = x[T(e): e € E], where T(e): X — K is the function defined by
T(e)x) =tle) if x e gle) and 0 if x ¢ gle). Let A(x)=«[tle):ec E, x e gle)] =
{a(x): a € A}. Note thatifp = (y,x) e 6(X), thenxe gle) implies y € g(e). So

A(x) ¢ A(y), and for any a € A, a(y) can be regarded as a polynomial over
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A(x) with indeterminates {t(e): e € Ep}, where Ep ={ee E:ye gle), x ¢ gle).
In this case a(x) occurs as the constant term of the polynomial a(y) in
A)tle) ec Ep] = A(y). Now define v as follows: Let p = (y, x) € 6(X), v = (Vp)
be the family of functions vy A*(y) = Z, p € o(X) which assigns to each a(y)
€ A(y) the order of a(y) regarding it as a polynomial over A(x) with indeter-
minates {t(e): e e Ep} (i.e., the minimal degree of nonzero monomials in
a(y)).

First we show that for any p = (y, x) € o(X), Vp! A(y) — Z is the additive va-
luation with the properties:

@) vp(T(e)(x)) = Vp(t(e)) =0ifxegle),and 1 ifx e gle).

(ii) For distinct monomials 815-..» 8, in A(y) and for elements Aok Of
x - {0}, vp(Z{?Lisi: i=1,..n})= min{vp(si): i=1,..,n}

Furthermore v, extends to vyt A*(y) > Z by vp(a(y)/b(y)) = vp(aly)) - v (b(y))
for a(y)/b(y) e A*(y) - {0}.

[Pf] By definition, for any two elements a(y), b(y) of A(y), Vp(a(y)b(y)) =
vpaly)) + vp(b(¥)), vy((a + b)) = min{vy(a), v,(b)}, vp(aly)) 20, and vp(1) = 0.
So that vy, 1s an additive valuation. It is also verified that v, extends to A*(y)
— Z with the definition: for an element a(y)/b(y) of A*(y), vp(a(y)/b(y)) = vp(a) -
vp(b).

Second, in order to show that the spring A = (X, {A(x)}, A) associated with

a spectral space X is an indexed spring with the index v defined as above, it
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is sufficient to show that for any p = (y, x) € o(X), p defined above is indeed
an index on the spring A which satisfies the conditions (I;), (Iy) in the de-
fintion (2.1.5). Note that any a e A is of the form
E{?»G,l)m(j’ij)T(ej,l)...T(ej,ij):j =1,.., k}, thus if y € d(a), a(y) can be written
in the form a(y) = a(x) + ;87 + ... + U8, where uy € A(x) and s, is a mono-
mial in Tles 1)), T(el,il)(y),..., T(e; 1)¥)s..., T(ej,ij)(y),... » Tlep 1)(9),-.s
and T(en,in)(y), A =1,..., m, where m is taken to be the greatest degree of
nonzero monomials s;.

(I;): Clearly for any a € A and p = (y, x) € 6(X), we obtain vp(a(y)) > 0.
Since the order of a polynomial a(y) is 0 iff its constant term a(x) is nonzero,
that is, iff x € d(a). (I,): Take N in (I,) as m, that is, the greatest degree of
nonzero monomials in a(y). B

Now we shall define a covariant functor H: .#— . which preserves the
space.

Remark and Definition (2.1.18). — Let GX) = (X, E, g) € Obj(_#). Then by
(2.1.17), we can assign to G(X) an indexed spring (A, v) = (X, (A)}, A), v).
Let H be this correspondence H: .#— % and denote by H(G(X)) this corre-
sponding indexed spring. Let GX) = X, E, g), GX) = (X, E', g') ¢ Obj(_#)
and (f, r) a morphism in the category .# Let hy: K' - K be a -
homomorphism defined by hy(t(e")) = t(r(e")), where K = «[t(e): e € E] and K'

= k[t(e’): &' € E']. Note that r: E' — E is an injection. Let : K —» A (resp. n":
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K' — A) be defined by n(t(e)) = T(e) (resp. n'(t(e")) = T(e"). If we define a
function h: A' 5 Abyhon'=1no hg, then h is a k-homomorphism which ar-
ises from hj. Furthermore since the family {t(e): e' € E'} generates K', ob-
viously h is unique. Conversely by defining a function h, with the identities
above, we have a unique x-homomorphism hy. Next if we define h by hon'
=Mo hy. Then h is a unique x-homomorphism from A' to A (uniqueness is
shown by the fact that {T(e'): ' € E'} generates A").

We show that (f, {h.}, h) is a spring morphism. It is not difficult to show
that v_: A - A(x), Vi) A = A'(fx)) and h, are ring homomorphisms, so
the proofs are omitted. So we show that veeh=h_ o Vg and £ '1(d(a')) =
d(h(a). Since h(T(e) = h(n'(t(e")) = nhy(tle)) = n(t(x(e)) = T(x(e"), we ob-
tain (vy - h)(T(e") = T(r(eN(x) = 1 if x € gx(e)) = £ ' (g'(e)) = QM - g)e") and
Oifx e g(r(e)) = £ 1(g'e"). And (hy o Vigy(T(e)) = h(T(e)(fx)) = h (1) =1
if fix) € g'(e) and h,(0) = 0 if f(x) ¢ g'(e). So thatv,-h=h_o V'ix)» bY the
equivalent relations x € g{r(e') @ xe f 'l(g'(e’)) ... (#) induced by Q(f) o g' =
g or. Next by observing d(T(e)) = gle), d(T(e;)...T(e)) = gle;) N ... N gle,) and
for distinct nonzero monomials 815+ S, in K and Mseshy € % - {0}, we have
dnZ sy i =1,...,0)) = u{dn(s)): i =1,...,n}. So £ LdTee) = f'l(g'(e')) =
QB(g'(eD) = gr(e?) = d(T(x(e)) = dM(t(r(e)))) = dnlhy(te))) = d(h(n'(te))))
= d(h(T(e")), and thus for any a' € A", f 1(d(@")) = d(h(a')). Therefore the

triple (f, {h.}, h) is a morphism of springs. Finally we show (£, {h;}, h)is a
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morphism of indexed spring. We need to show vp(h(a')(y) = V(@' (f(y)) for
every a' € A' and p = (y, x) € o(x). Take T(e') € A'. Since h(T(e")) =
h(n'(te)) = n(hy(tleN) = ntx(eN) = T(x(e)), v,(W(T(eN) = 0 if x € glr(e))
and 1 if x ¢ g(r(e')). But again by (#), v'f(p)(t(e')(f(y))) takes the same value
as vp(h(T(e'))(y)), so that vp(T(e'))(y)) = v'f(p)(T(e')(f(y))). Since T(e')'s gener-
ate A', this suffices to prove that (f,{h,}, h) is a morphism of indexed
springs. As a consequence, we can associate to a morphism (f, r) of the ca-
tegory .¥ a morphism (f, {h,}, h) of the category ., thus we have established
a functor H: #— & by defining H(f, r) = (f, {h,}, h).

Remark (2.1.18.1). — Since every element a € A is a polynomial with re-
spect to {T(e): e € E} over x, say a = Z{ij(ej,l)...T(ej’ij):j =1,...,n}, its value
at any x € X cannot exceed n.max{ij: j =1,..n}. This shows that for any X
e Obj(%), H(G(X)) is a simple indexed spring.

Definition (2.1.19). — Let (A, v) and (A, v') be indexed springs with A' an
extension of A. So for any y €Y, A(y) ¢ A'(y) < A*(y) and for each p = (y, x)
e o(X), Vi v'p are additive valuations on A*(y). If Vp = v'p for any p € o(X)
then we say the indexed spring (A', v') is a v-extension of the indexed
spring (A, v).

Proposition (2.1.20). — Let (A, v) be an indexed spring, and let a, b € A be
such that d(a) ¢ d(b) (so a#b is defined) then the following conditions on the

pair (a, b) are equivalent.
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(i) for each p = (y,x) € 6(X) with y ed(a), we have Vp(a) > vp(b), and equality
holds only if x € d(b).

(ii) a#b induces a v-extension of (A, v). ([Hoc,1], Th.3)

[Pf] (ii) = (): Let v be an index for A[a#b]. Let a, b € A such that d(a) c
d(b), p = (y, x) € o(X) and y ed(a). Now vp((a#b)(y)) 2 (0 as v is an index on
Ala#b]. Since y e d(a) < d(b), (a#b)(y) = a(y)/b(y). So 0 < vp((a#b)(y)) = vp(a(y))
- vp(by)), that is, v,(a(y)) 2 vy(b(y). Ifv,a(y)) = v,(b(y)) then v,(@#b)y)) = 0,
s0 by the condition (I;) for the index, (a#b)(x) # 0; this implies x e d(a) and
soxe d(b). H

(1) = (ii): First we prove that A[a#b] is a spring extension of A. We need
show that for any r e Ala#b], d(r) is quasi-compact open. Let r = Z{ai(a#b)i:
1 =0,1,...,n}, where a;e€ A,and ¢ = b"r = Z{aiaibn'i: i=0,1,.,n}. Then c
€A. For any x eX, either a(x) =0 or 2 0. Ifa(x) = 0, then r(x) = a,(x), so r(x)
# 0 1s equivalent to ag(x)# 0. And if a(x) # 0, then d(a) ¢ d(b) yields b(x) # 0,
and so r(x) # 0 is equivalent to ¢(x) # 0, that is, d(r) = (d(c) n d(a)) U (d(ag) N
z(a)); by a similar argument we have also d(r) = (d(c) N d(b)) U (d(agy) M z(b)).
It results that d(r) is a patch as it is a finite union of finite intersections of
quasi-compact open sets. It follows immediately that d(r) is quasi-compact.

In order to show that d(r) is open, it suffices to show that z(r) is closed in
X, for which we show that z(r) is a patch and Clxz(r) = sp(z(r)), then apply

(1.2.7) to get the result required.
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Now by an argument similar to the one for d(r) above, we obtain two iden-
tities for z(r), z(r) = (z(c) N d(b)) U (z(ay) N z(b)) ... 1), and z(r) = (z(c) N d(a)) U
(z(ag) N z(a)) ... (2). It follows that z(r) is a patch. Lety e z(r) and x e Cl{y).
If we show that x € z(r) then (1.2.7) can be applied to conclude that z(r) is
closed in X. Since z(ay) N z(a) is closed in X, if y € z(ay) N z(a) then x e Cl{y}
c z(ag) N z(a) < z(r) by (2). So assume the other case that y e z(c) nd(a) <
z(c) N d(b). We check the two cases when x € d(b) and x € z(b). Since z(c) N
d(b) is closed in d(b), so if x € d(b), x € Cl{y} N d(®b) = z(c) N d(b) c z(r). Next
if x € z(b), by the condition (i), we have vp(a) > vp(b), where p = (y, x) € 6(X).
Then r(y) = 0 implies 0 = E{ai(y)(a(y)i/b(y)i) since y € d(a) ¢ d(b). Therefore
by multiplying b(y)"on both hand sides, we have 0 = 3{a(y)a(y)'b(y)™ . And
thus - b(y)nao(y) = Z{ai(y)a(y)ib(y)n'i. So operating v, on both hand sides, we
have vp(— b(y)nao(y)) = vp(E{ai(y)a(y)ib(y)n'i). Now the left hand side is nvp(b)
+ vp(ao), and the right hand side is min{vp(ai) + ivp(a) + (n - i)vp(b): i=1,..,n}
> min{vp(ai) + nvp(b): i=1,..,n}= nvp(b), since vp(ai) 2 0 for any i, and vp(a) >
vp(b). So nvp(b) + vp(ao) > nvp(b), and vp(ao) > 0. Thus by (I;), ay(x) = 0 and so
x € z(ay). Therefore x z(ap) N z(b) ¢ z(r). Consequently, every possible
case we have x € z(r). This completes the proof that a#b induces a spring
extension of A.

It remains to show that v is an index for A[a#b]l. We need show for any r

e Ala#b] and y € d(v), vp(r) 2 0, with equality iff r(x) = 0 (for (I;)), and there
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is an integer N > 0 such that vp(r) <N (for (Iy)). At first recall that d(r) =
d(c) nd(b)) U (d(ay) N zb)) and ¢ = b"re A. Sinceye d(r) by assumption, y
€ d(e) n d(b)) or y e d(ay) N z(b). Supposey e d(c) N d(b). By the form of c,
the assertion that for any u € X, c(u) # 0 implies u € d(b™) = d(b), that is, d(c)
c d®™). So c#b™ has meaning and equals to r. Now vp(r(y)) = vp(c(y)) -
vp(bn(y)) >0 and equality only if x € d(b™) = d(b) by (). But x e d(b) is equiva-
lent to vp(b(y)) =0, so that vp(r(y)) = 0 also implies vp(c(y)) =0, that is, x € d(c).
Therefore if vp(r(y)) =0, then x € d(b) N d(c) < d(r). Let vp(c(y)) < N. Then
vp(y)) = v, (ely)) - Vp(bn(y)) = v, (e(y) - nv,,(b(y)) < N because V(b)) 20byb e
A. Next suppose y € d(ag) N z(b). Then from the form of r, r(y) = ag(y).
Clearly v r(y)) = vp(@g(y)) 2 0 with equality only if x € d(a;). Sincey e d(ap) N
z(b) ¢ z(b), x e Cl{y} < z(b). Thus if vp(r(y)) = 0, then x € d(ay) N z(b) < d(@).
Therefore in every possible case, v satisfies the condition of being an index
on Ala#b]. H

Definition (2.1.21). — Let (A, v) = (X, {A®)}, A), v) be an indexed spring.
Define G(A, v) = {(a, b) € A x A : a#b induces a v-extension of (A,v)}]. In
other words, by (2.1.20), G(A, v) = {(a, b) € A x A: d(a) c d(b) and for any p=
(y, x) € o(X), vp(a(y)) > vp(b(y)) with equality only if x € d(b)}. Let us denote by
(Al, v) the indexed spring whose underlying ring is Al = Ala#b: (a, b)
G(A, v)1.
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Note (2.1.21.1). — We can show by a similar argument as in (2.1.20) and
with the finite induction that the indexed spring (Al, v) is well defined and
it is a v-extension of (A, v). For, every element r e Al belongs to some
Ala;#bq,..., a #b_], a subring of Al generated by a finite number of a#b;,
where (a;, b;) € G(A, v). Note also that Gr(A1 V)N (AxA) =GA, v).

Definition (2.1.22). — When a v-extension (A", v) of (A, v), has been defi-
ned, let (An+1, v) be the v-extension of (A, v) induced by G(A™, v). And let
M(A, v) be the v-extension induced by the union of the underlying rings A™
of all the A". Denote by M(A) the underlying ring of M(A, v).

Note (2.1.22.1). — It is easy to show for any n, GA™!, v) A (A™ x A®) =
G(A", v), this implies that {(A", v): n = 0,1,...} is an ascending chain of v-
extensions of (A, v) with respect to inclusion. Therefore for any a, b € M(A),
there exists an integer n 2 0 such that a, b € A", and it is possible to think of
the v-extension M(A, v) of (A, v).

Proposition (2.1.23). — If an indexed spring (A, v) is simple, so is M(A, v).
([Hoc,1], Th.4)

[Pf]If a, b € A have finite image, so does a#b, because every element r e
M(A) is a polylnomial of a finte number of ag#b; over A, where (a;, b;) €
G(A", v) for some n for everyi. So each r € M(A) has only finitely many va-
lues on X. H

Proposition (2.1.24). — M(A, v) satisfies the condition (***) of (2.1.13).
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[Pf] Let a, b € M(A) and d(a) < d(b), then a, b € A" for some n, and there
exists N € N, such that for any p = (y,x) € o(X), vp(b(y)) < N. We want to
show (a*1, b) & G(A®, v). Because, then a™*!#b ¢ A™! c M(A). First
d(a™*!) = d(a) ¢ db), so a¥*1#b is defined. It remains to show that
vy(@" (7)) 2 v,(bly)) with equality only if x & d(b). Ifv,(a(y)) = 0 then x  d(a)
c d(b) because v is an index on (A, v). So vp(b(y)) =0, and x € d(b). Therefore
vp(aN+1(y)) =vy(b(y) and x & d(b). Ifv,(a(y)) =0, then vp@y)) = 1. So v, (b(y)
SN<N+1<® +1)v,(ay) = v (a" ' (y). This shows (@*1, b) e GA®, v) by
(1.3.18). Consequently aN*lyp e M(A) and so there exists ¢ € M(A) such
that al*1 = be, that is, a € rad(b), which is to be shown. B

Proposition (2.1.25). — Let (f, h) be a morphism of indexed springs from
(A, v) to (A', v). Let (a, b") € G(A",v'). Then (h(a'), h(b")) € G(A, v) and
there is a unique extension h; of h to a homomorphism from A'[a'#b'] to
Alh(a"#h(b"] such that h;(a'#b') = h(a)#h(b") and for this hy, (f, h;)is a
morphism of indexed springs from (A[h(a")#h(b")], v) to (A'[a'#b'], v").
Moreover if (A, v), (A'},v') extend (A, v), (A'[a'#b'], V') respectively and hy:
A';— A, is a homomorphism agreeing with h on A' such that (f, hy) is a
morphism of indexed springs from (A, v) to (A'{, v), then h(a)#h(}") e A
and hy(a'#b") = h(a)#h(b"). ([Hoc,1], Prop.2)

[Pf] By (a', b") e G(A', v'), we get v'f(p)(a'(y)) > V'f(p)(b'(y)) with equality

only if f{x) € d(b"), where f{p) = (f{x), f{y)) € 6(X) and f{y) € d(a"). Since (f, h)
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is a morphism of indexed springs, f(y) € d(a') implies y € f"l(d(a')) =

d(h(a")) and also f(x) € d(b') implies x e f'l(d(b') = dh(®"). So vp(h(a'))

Viep)(@) 2 vig,y(b'y)) = v(h(b")) with equality x € d(h(b")). Therefore (h(a"),
h(b)) € G(A, v). Next by defining h;: A'Ta'#b'1 — Alh(a")#h(b"] by h;(a") =
a' and h;(a'#b") = h(a")#h(b'), we have an extension h; of h to A'la'#b']. Ob-
serving that a'#b' generates A'la'#b'], the uniqueness follows. H

Definition (2.1.26). — Let (A, v), (A', v') be indexed springs. Let (f, h) a
morphism from (A, v) to (A", v'). Then by the previous proposition, we have
a homomorphism hy: M(A") — M(A) which is an extension of h. Let M(, h)
= (f, hy). Then M is a space preserving functor & — % which assigns to a
simple indexed spring an affine spring.

Remark (2.1.26.1). — Let X be a spectral space. We defined H(G(X)) in
(2.1.17) and we observed in (2.1.18) that H(G(X)) is an indexed simple
spring. So by (2.1.23), M(H(G(X))) is also an indexed simple spring. On the
other hand, by (2.1.24), M(H(G(X))) satisfies the condition (***)) of (2.1.13), so
that it satisfies the condition (**) in (2.1.11) and it results from (2.1.11) that
MH(GX))) = (X, {M(A)x)}, M(A), v) is affine, that is, X = Spec(M(A)).

Conclusion (2.1.27). — Let F: % — <% be the forgetful functor defined by
flA, v) = A, where (A, v) = (X, {A(x)}, A), v) constructed in (2.1.18). Then the
functor L referred in (2.1.3.1) can be taken as FMH: .#— < ([Hoc,1], Th.5)

(2.1.28). — Description of the categories and functors involved.
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(1°) &: The category of sets and functions.

(2°) %¢: The category of commutative rings and ring homomorphisms.

(3°%) 77 The category of topological spaces and continuous maps.

(4°) & The category of spectral spaces and spectral maps.

(5°) Q : ¥ & the contravariant functor such that

QX) = {U cX: Uis quasi-compact and open} for X € Obj(.%9),

Q): QX)) - Q(X) defined by QE(U") = £ 1(U"), for f e Hom AX, X",

(6°) 6: % — & the covariant functor such that

o(X) = {(y, x) e XxX: x e Cl{y}} for X e Obj(.5),

6(f): 6(X) — o(X") defined by o(f) = (fy), f{x)) for f € Hom X, X".

(7°) #: The category of spaces with indeterminates.

Objects: G(X) = (X, E, g), where X is a spectra space, Eisasetand g: E —
Q(X) the function whose image g(E) is an open basis of X.

Morphisms: (f, r): (X, E, g) » X, E', g"), where f: X - X' is a spectral
map, r: E' — E is an injective function such that gor = Q(f) o g'.

(8°) G : & — _# the functor such that:

GX) =X, E, g), for X € Obj(%),

G =f1r):XE g ->X,E, g

(9°) &7 The category of springs and spring morphisms.

Objects: springs A = (X, {Ax)}, A).
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Morphisms: (f, {h.}, h): A - A', where f: X — X' is a spectral map, h: A’
— A is a ring homomorphism such that f '1(d(a')) = d(h(a")), and h,: A'(f(x))
— A(x) such that h (a'(f(x))) = h(a')(x) (or Viyeh=h o V'f(x)) foranya'e A'.

(10°) . : The category of indexed springs and those morphisms.

Objects: indexed spring (A, v) = (X, {AX)}, A), v).

Morphisms: (f, h): (A, v) = (A", v'), where (£, {h.}, h) is a spring morph-
ism with the property vp(h(a')(y)) = Vf(p)(a(f(y))), fora'e A',p =(y, x) e o(X),
y € d(h(a")) and f(p) = (fy), f(x)) € o(X').

(11°) H : #—.# the covariant functor whose image objects are simple
such that H(G(X)) = ((X, {A}, A), v), defined in (2.1.18) and with the proper-
ty (*)in (2.1.9), for GX) = X, E, g).

H(, r) = (£, (b}, h): GX) - GX'), where h: A' - A is defined as follows:
Let K = x[tle): e € E], K' = «[t'(e): ' € E'], and n: K = A = «[T(e): e € E]
(resp. N K' = A' = x[T'(e): ' € E']) be a x-homomorphism n(t(e)) = T(e)
(resp. n'(t'(e")) = T'(e")) and for each x € X, h, is defined as above. We have
a K-homomorphism hj: K' — K such that hy(t'(e")) = t(r(e")). Then we obtain
a unique K-homomorphism h: A' — A such that hon'=1no- hy, and (f, {h,},
h) = H(f, r) is a morphism of indexed spring.

(12°) M : & —.Z the covariant functor such that M(A,v) is defined as in

(2.1.22) and with the property (**) in (2.1.11).
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M, h) = (f, h*): M(A,v) — M(A',v'), where h* is the extension of the x-
homomorphism h to M(A") — M(A).

(1839 F: F — ¥ the forgetful functor such that

F(A,v) = F(X, {Ax)}, A),v) = A for (A,v) € Obj(.D),

F(f,h) =h: A' > A for (f, h) e Hom((A,v), (A',v)).

(14°) Relation of categories (on the next sheet).
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Categories Objects

F X
l G

F GX) =X, E, g) space with indeterminates
l H

Z H(GX)) = (A, v) = (X, {A(x)}, A), v) simple indexed spring
Il M

z MH(G(X))) = (M(A), v) = (X, (M(A)x)}, M(A)), v) indexed
d spring simple and affine

€ LGX) = FIMH(G(X)))) = M(A) the ring whose spectrum is X
! Spec

F Spec(LG(X)) = Spec(M(A)) = X spectral space

(15°) Construction (on the next sheet).
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oX)— D 65Xy o)y, x) = ((y), fx)) € 6(X), where (3, x) € o(X)

oT To
®

X—""—— X' given spectral spaces X, X' and spectral map f

Q! 1Q Q) (U) =g £ H(U), QDA() = d(h(a) (Va' € A)
QX) « P _qx)
) Tg'  g(E) (resp. g'(E)) an open subbasis of X (resp. X)
Ee ®___ @
td Lt  t(e) is an indeterminate corresponding to g(e')
K ¢ —Mol_ K = ft(e): &' e B, hy(t(e)) =g,¢t(r(e))
nid In' ') = T(e), TeNx) =1 (x' e g'e)), 0 (x' & g'e"))
A" A= T(): e e E],hen =n5h,
vd Wy V(T(e)) =g.p te)(x)

er XA(X) A Hx'e X'A'(X') :HxE th’
\ \’

Ax) =«[tle): e € E, x e gle)]

T e xAla#b]() T, - ATa #b1(x")
! !

e xMAX®) « T, xM(A) X"
! !

Iiex A*X) ¢— Il e xA*(x), A*(x)is the field of fractions of A(x)

vi v v= (vp), Vp! Ay) > Z,p=(y,x) e oX)

Z Z.
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Section 2. Some applications.

Theorem (2.2.1). — Every spectral space and morphism is in the image of
Spec (In other words, Spec: ¥— & is a full functor). ((Hoc,1], Th.6)

[Pf] Let X, X' be spectral spaces, f: X — X' a spectral map and idy, id,.
are identity maps of X and X' respectively. Then %= {X, X; idy, idg, flis a
subcategory of % Define G: % — ¥ thus: GX) = (X, QX) x QX), gx),
where gy: QX) x QX') = Q(X) defined by gx(U, U") =U, for Ue Q(X) and U’
e QX). GX) =X, QX), gg), where gx = idgxy. Let r: QX)) = QX) x
QX" defined by r(V') = (f 1(V"), V') for V' e QX). Let G(f) = (f, r), Gidyg) =
idG(X) and G(idy) = idG(X‘)' Then obviously gx(Q(X) x QX)) = QX) is an
open basis of X and g¢(Q(X") = QX' is an open basis of X', so that G(X),
G(X") € Obj(#). It is not difficult to show that r is injective and Q(f) - gx =
gx o T, so that (f, r) is a morphism in the category .# Therefore G is a space
preserving functor. Hence Spec is invertible on %, and so the functor Spec
is a full functor from ¥ to & B

Proposition (2.2.2). — On the following subcategories .% of .% Spec is in-
vertible.

(i) The subcategory .%, of all spectral spaces and surjective spectral
maps.

(i1) For each spectral space X, the subcategory .% of % consisting of spec-

tral subspaces and inclusions of these. ([Hoc,1], Th.6)
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[Pf] (G): Let X, X' € Obj(#,) and f: X — X' be the surjective spectral map.
Then Q(f) is injective. For let U', V' € Q(X') such that Q(H)(U") = QH(VY),
then we obtain U’ = f(f 1(U")) = AQUEN(U") = RQD(VY) = f(f (V")) = V' by the
surjectivity of f.

Define Gy: % —.7 by Go(X) = (X, QX), idgx)), GoX) = X, QX),
idQX‘))- Then evidently G((X), G((X") € Obj(-#). Since obviously idQ(X) o QD
= Q) - idgxy, G oD = (£, Q) is a morphism in % Hence Gy is a space pre-
serving functor from .9, to .~ Therefore Spec is invertible on .%,.

(ii): Let Y € Obj(.%)), and £ Y — X the inclusion map. Define G{(Y) = (Y,
QX), Q(f)), G;X) = X, QX), idgex)), and Gy () = (f, idgx,). For any U e
QY), UcYcX, 50 QO (U) = (Ve QX): QOV) = £ (V) = U} @ since U e
Q(f)'l(U). Hence Q(f) is surjective, and Q(NQX)) = Q(Y) is an open basis of
Y consisting of quasi-compact open subsets of Y. Therefore G1(Y) € Obj(A).
Obviously G;(X) € Obj(.7). Since Q() - idgxy = QD) idq(x) hence G;(Dis a
morphism in % So Gy is a space preserving functor from 2 to ¥ and so
Spec is invertible on .97, B

Proposition (2.2.3). — The functor Spec is not invertible on the following
subcategories % of % i =2, 3, 4, 5.

(i) Subcategory %%, containing a spectral space X, a one-point space P,

and maps f: P — X, f': X — P such that f(P) is not a closed point in X.
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(ii) Subcategory .%; containing a spectral space Y with generic point, a
family {X} of spectral spaces with generic point such that the cardinalities
of the spaces in the family are not bounded, and for each X, a map from Y to
X which preserves generic points.

(iii) Subcategory .%, containing a one-point space P, spectral spaces X, Y
with generic points, a map taking P to the generic point of Y, and two dis-
tinct maps from Y to X preserving generic points.

(iv) For any spectral space X containing a point x, such that Card(CHl{xg})
2 3, the subcategory %5 of ¥ whose objects are spectral subspaces of X and
whose morphisms are embeddings (as opposed to inclusions) of these into
others. ([Hoc,1], Prop.3)

[Pf] We prove these assertions in the following manner: Assume the ex-
istence of a space preserving functor G; from the subcategories % to % So
LG, is a space preserving functor from % to € Since the functor from % to
the full subcategory .# of € whose objects are the reduced rings which car-
ries every commutative ring to its reduction is space preserving, we obtain
a fuctor T, from % to 4 Since every commutative ring and its reduction
have the same prime spectrum, the functor from % to .#"is space preserv-
ing and inverts Spec. We show that this leads to a contradiction.

(1): Since P is a one-point space, f' - f = idp and Ty(P) is a field. Now

idp,(p) = Todp) = Ty(f"  £) = To() o To(f"), s0 that Ty(f): To(X) — To(P) is a
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surjective homomorphism. Identifying X with Spec(Ty(X)) and P with
Spec(Ty(P)), we can identify Spec (Ty(f)) with f. Then by (1.1.15.1), f(P) =
Spec(Ty(£)(Spec(Ty(P))) = aTz(f)(Spec(Tz(P))) is a closed subset of X =
Spec(Ty(X)), a contradiction.

(ii): Let £ Y — X be a morphism preserving generic point, Tg: Gt — A
the functor inverting Spec on 2. Since Y and X are T, spaces there is one
and only one generic point (say) ¥o (resp. xy) of Y (resp. X). Then f(y,) = Xq
by hypothesis. On the other hand foranyh e Y,y e Clfygl = V(jyo) (where
jy 0 is the prime ideal corresponding to ¥o)» so that jy 0= m{jy e To(Y):yeY}=
rad(0) = {0} since T3(Y) € Obj(.#) is reduced. Therefore T3(f)'1(0) = {0}, that
is, Tg() is injective. But since X can be taken with arbitrary cardinality,
T4(X) can have arbitrary large cardinality, a contradiction.

@i1i): Let fy: P = Y be a map which sends P to the generic point yo of Y.
Let f, f: Y — X be maps preserving generic points and f= f'. Let xq be the
generic point of X. Then (f. f)(P) = flyy) = xy = f'(xy) = (£ - £{)(P), thus f. fy
=f"ofy. Hence T (fy) o Ty() = Ty(fo fy) = T,(f' o £y) = Ty(fy) T, Asa
special case of (ii), Ty(fy) is injective. Therefore T,(f) = T,(f") and thus f =
(Spec o T () = (Spec o Ty(f") ="', a contradiction.

(iv): We can reduce this case to the case that X = {x, %, x"}, where x, x"

Clfx}. LetY = {x, x}, £ Y - X the inclusion map, f': Y — X the map defi-
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ned by f'(x) = x, f'(x') = x" and fp: {x} — X defined by f{x) = x. Then obvious-

ly, f=f'. By applying (iii) we have a contradiction f = .

Remark (2.2.4.1). — Our next object is to characterize the topological
spaces underlying preschemes.

At this point refer to (2.1.13.1) about inverting Spec on subcategories of .%
We also note an additional remark which would be useful in the proof of the
characterization theorem (2.2.10).

Remark (2.2.4.2). — Let G be a space presersving functor from a subcate-
gory % of & to % Then for any object X of %2, the corresponding ring
LG(X) has the following property:

Let b € LG(X) be such that b does not vanish at any point of X, then b is in-
vertible in LG(X).

[Pf] Since b does not vanish at any point of X, d(b) = Dfib) = X = D(1). And
so 1#b =1/b. Forany p = (y, x) € 6(X), vp(l (y)) is clearly 0 and vp(b(y)) =0 as
whenever x € Cl{y}, x € X = d(b). So that vp(l (y)=z Vp(b(y)). Thus by (2.1.20),
1#b = 1/b induces a v-extension of MHG(X) = (X, {LGX)(x)}, LGX), v). But
MHG(X) is maximal with respect to v-extensions, so 1/b ¢ FMHGX) =
LGX). H

Definition (2.2.5). — A topological space is callled locally spectral if it has

a cover by open spectral subspaces. ([Hoc,1], p.58)
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Proposition (2.2.6). — A locally spectral space X is T and its open spec-
tral subspaces form an open basis. ([Hoe,1], p.58)

[P{] Let B be the family of all open spectral subspaces of X. Let U be open
in X and x € U. Since B is a cover of X, there is Y € B such that x € Y.
Then U N Y is open relative to Y and x € UN Y. Since Y is spectral, it has
an open basis consisting of quasi-compact open subsets which are spectral
(because they are patches, cf. (1.2.6)). So there is an open spectral subspace
Zof Ysuchthatxe ZcUNYcU (notethatZe B). B

Note (2.2.7). — Let X be a topological space. A presheaf F on X consists
of:

(i) For any open subset U of X, F assigns a set F(U).

(i) For all pairs of open sets U; ¢ U, there exists a map, called restric-
tion, resy,, Uy F(Uy) — F(U;) with the following axioms being satisfied:

(a) resy yy = idpy)-

(b) If U; € U, c Ug, then Tesy, U; = TeSy,, Uy ° TeSU5, Uy (IMum]}, I, sec.4,
Def.1)

Let ¥y, Fg be presheaves on X, a map (of sheaves) ¢: F; — F is a collection
of maps ¢(U): F;(U) — F4(U) for each open U such that if U c V, ¢(U) -
res|y 1y = reSgy o ¢(V), where res; and res, are the restriction maps of Fy

and F, respectively. ([Muml], I, sec.4, Def.2)
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A presheaf F is called a sheaf if for every collection {U;} of open sets in X
with U = U{U}}, the map HresU’Ui: F(U) — ILF(U)) is injective and its image
is the set on which HreSUi,UimUj: II;F(U) “’Hi,jF(Ui N UJ-) and
ereSUj,Uint: ILFU) — I1; ;F(U; " U)) agree.

We may write I'(U, F) for F(U), and call it the set of sections of F over U.
I'X, F) is called the set of global sections of F.

Let F be a sheaf on X, and x € X. The collection of all F(U), where each U
is open and containing x, is a direct system ordered by inclusion and we
can form F, = dir.lim.F(U), which is called the stalk of F at x. ((Mum], I,
sec.4, Example (1))

Let Fy be a presheaf on X. Then there is a sheaf F and a map f: Fy—F
such that if g: Fy — F' is any map with F' being a sheaf, there is a unique
map h: F — F' such that g = h - f. We call this process a sheafification of
the presheaf F, and F the sheaf associated to the presheaf Fy. ([Mum], I,
sec.4, Example (2))

Suppose for all U, F(U) is a group (resp. ring, field, etc.) and each restric-
tion map is a group (resp. ring, field, etc.) homomorphism. Then F is cal-
led a sheaf of groups (resp. rings, fields, etc.). In this case F, is a group
(resp. ring, field, etc.). ([Mum], I, sec.4, p.37)

Let X be a toplogical space, B an open basis of X. Then we call F' the

presheaf on B with values in %6, a family of objects F'(U) € Obj(¥) for each U
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€ B and a family of morphisms (in %) resy 1yt F'(V) — F'(U) defined for any
U, Ve B, UcV, with resy iy = idF’(U) and resy y = reSy yy o TeSyy y if U, V,
We B,Uc VcW. Then we can associate to F' a presheaf Fy on X in the
following way:

For any open subset U of X, Fy(U) = inv.lim.yF'(V), where V belongs to
the subset (V€ B: V < U} of B ordered by inclusion. If U € B then the cano-
nical morphism Fy(U) — F'(U) is an isomorphism. ([Gro-Die], (0,3.2.1)).

Definition (2.2.8). — A ringed space is a pair (X, &%) consisting of a topo-
logical space X and a sheaf of rings & in X. X is called the underlying
space of the ringed space (X,%) and % is called its structure sheaf. A
ringed space (X, &%) is called a locally ringed space if for each point x € X
the stalk @(,X of % is a local ring. When there is no confusion (X, %) is
written as X briefly.

A morphism of ringed spaces (f, £ ): X, &) —= (Y, &) (occasionally writ-
ten as f) is a pair of continuous map f: X — Y and a map £ Ky — £ of
sheaves of rings onY, where f*q( is the sheaf on Y defined thus: for any
open set V contained in Y, fi& (V) = &(f '1(V)). A morphism of ringed
spaces (f, £ ) is said to be an isomorphism if fis a homeomorphism and £
is an isomorphism of sheaves. A morphism (f, f# ) of locally ringed spaces
is a morphism of ringed spaces such that for each point x € X, fx#: ﬂY,f(x) -

% x is a local ring homomorphism, i.e., ;") (M) € M), where M,



Chapter 2. Topological characterization. -87-

(resp. Mgyy) is the maximal ideal of the local ring % x (resp. A £(x))-
([Har], II, sec.3, Def., p.72)

Definition (2.2.9). — An affine scheme is a locally ringed space (X, &)
which is isomorphic to (Spec(A), %pec( A)) for some ring A. A prescheme is
a locally ringed space (X, %) in which every point has an open neighbour-
hood U such that the topological space U, together with the restricted sheaf
O U is an affine scheme.

A morphism of preschemes (f, £# ) is that of locally ringed spaces.

An open subscheme (U, (F;) of a prescheme (X, %) is such that U is an
open subset of X and structure sheaf %y is isomorphic to the restriction
O 1 U of the structure sheaf of X. An open immersion is a morphism f: X —
Y, which induces an isomorphism of (X, &%) with an open subscheme of (Y,
&). A closed subscheme (Y, &%) of a prescheme (X, %) is a prescheme, to-
gether with a morphism (i, i#): Y — X, where Y is a closed subset of X and i
is the inclusion map, and the induced map i*: O — i*Q of sheaves on X is
surjective. A closed immersion is a morphism f: (X, &) — (Y, &) which
induces an isomorphism of (Y, &%) onto a closed subscheme of (X, ¢%).
([Har], II, sec.3, Def., p.85).

Let f: X — Y be a morphism of preschemes. The diagonal morphism is
the unique morphism A: X — X xy X whose composition with both projec-

tions is identity map of X, p; ¢« A =py o A =idy. We say that the morphism is
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separated if the diagonal morphism A is a closed immersion. In that case
we also say X is separated over Y. A prescheme X is said to be a scheme if
it is separated over Spec(Z). ([Harl], II, sec.4, p.96)

Now we are ready to state and prove the main theorem of this section.

Theorem (2.2.10). — A topological space is the underlying space of a
prescheme iff it is locally spectral. ([Hoc,1], Th.9)

[Pf] From the definition of the prescheme, it is clear that the underlying
space of a prescheme is locally spectral.

Conversely, let X be a locally spectral space. By (2.2.8), it is Ty, and the
set B of all the open spectral subspaces of X is an open basis of X. We con-
struct in what follows a prescheme structure (X, &) on X and show that for
any Y € B, (Y, & 1Y) is an affine scheme and thus (X, %) is a prescheme.
The proof is long and technical so we break it into several steps. Let x be an
arbitrary field and {t(U): U € B} a family of algebraically independent inde-
terminates over x (disjoint from x) indexed by B. Let Q = «(t(U): U eB). We
propose to construct a prescheme structure on X over x, then sections are
functions with values in Q.

Step 1. Consider the subcategory .% of % defined as follows: Obj(.%) = B
and morphisms are inclusion maps (then #is clearly a subcategory of .%).
LetYe B,E(Y)={Ue B: UnY e B} and gy: E(Y) - Q(Y) defined by gy(U)

=UNY. This map is well-defined since U N Y € B by the definition of E(Y),
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= U NY. This map is well-defined since U N Y € B by the definition of E(Y),
and so U N Y is quasi-compact open in Y. We show that gy is the retraction
of E(Y) over Q(Y). Forlet U e Q(Y), then U Y = U is quasi-compact open
in the open spectral subspace Y of X, so that U n Y = U is an open spectral
subspace of X, thus U € E(Y) and gy QYNU) = U NY =U. This shows
that g 1Q(Y) = idQ(Y). Therefore gy is the retraction of E(Y) over Q(Y).
Note that gy is thus surjective and {U € B: U e Q(Y)} < Q(Y). So gy(E(Y)) is
an open basis of Y consisting of quasi-compact open subsets of Y. Therefore
we can define G(Y) = (Y, E(Y), gy) € Obj(.%).

Let Y' e B and f: Y — Y' the inclusion spectral map. Then clearly, Q(Y)
c Q(Y') and Q(f): Q(Y") — Q(Y) is the retraction of Q(Y') over Q(Y). As
G(Y), GY") = (Y, E(Y), gy') is an object of .# We observe that E(Y')
E(Y). Forlet U' e E(Y"), then U, U' n Y' e B. Since fis spectral, U' nY =
UnNnYnY=f '1(U' N Y') is quasi-compact open in Y. Thus U' n Y is an
open spectral subspace in Y and so is in X. Therefore U nYeB and U' e
E(Y).

Let rg E(Y') —» E(Y) be the inclusion map. Obviously gy . rp= Q() o gy
so that g(f) = (f, rp) is a morphism in # from G(Y) to G(Y") corresponding to
f and thus G: % — .# is a space preserving functor.

Step 2. Let Q be as in the beginning of the proof, and Y € Obj(.92). (Note

that if U € E(Y) then Un Y eB.) Let FHG(Y) = K[Ty(U): U e E(Y)], where
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Then for any U e E(Y), Ty(U) is a function on Y with values in Q. Thus by
(2.1.27), LG = FMHG is a space preserving functor from % to ¥ which in-
verts Spec on %7

Let Y' € Obj(%) be such that Y ¢ Y. We show that Ty(U) is the restric-
tion to Y of a function of the form Ty.(U") in FHG(Y') = «[Ty(U"): U'e
E(Y)]. Since U e E(Y), gg(U) = U N Y e QY) ¢ Q(Y). Since gy is onto, it
follows that there exists U' € E(Y') such that gy(U") = gy(U). Consider the
function Ty(U') and take y € Y. Ify e gy(U) = gy(U"), then we obtain
TY(U)(y) =t(UnY) and Ty(UXy) = t(U' N Y) =t(U N Y) = Ty(UXy). And if
y ¢ gy(U), then Ty(UXy) = 0 = Ty(U')(y). Therefore Ty(U)IY = Ty(U). As
a consesquence of this observation, for any a € FHG(Y), there exists an ele-
ment a' € FHG(Y') such that a'lY = a, regarding a (resp. a') as a function
from Y (resp. Y') into Q.

Step 3. By (2.1.26.1) and (2.1.27), the functor LG: % — ¥ inverts Spec on
. The functor thus defines a presheaf structure on the basis B of X,
which, by [Gro-Die],(0,3.2.1), can be extended to a sheaf structure O on X
because by the remark in Step 2, elements of LG(Y), Y € B, can be regarded
as functions on Y with values in Q. Thus if V is an open subset of X and a e
QV, then a e I'(Y, %) iff there is a covering {V ; € B:ie I} of V such that for
any i, alV; e LG(V,). (If V is quasi-compact open in X, the above covering

can be taken to be a finite covering. We also note that for any Y € B, LG(Y)
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can be taken to be a finite covering. We also note that for any Y € B, LG(Y)
c I(Y, &). So from Step 2 it follows that the restriction homomorphism
from I'(Y', &) to I'(Y, &) carries FHG(Y') onto FHG(Y).

Convention. Let Y < Y. Note that elements of I'(Y, &) (resp. I'(Y', &)
are functions from Y (resp. Y') to Q . For any element a € Y extend a to a
function from Y' to Q by setting alY' - Y = 0. Let us denote the extended
function also by a. Notice however a may not belong to I'(Y, ). In what
follows we adopt this convention. Let a e I'(Y, &), a e I'(Y, &). By aa' we
mean the function from Y' to Q defined by extending a to a function from Y'
to Q in the above manner and taking its product with a'.

Step 4. Since for any Y € B, Y is spectral, (Y, LG(Y)) is an affine spring.
We assert that for any Y e B, (Y, I'(Y, &)) is an affine spring, or equivalent-
ly, (Y, {I‘y}, (Y, &&)) is an affine spring, where Fy = {a(y): a € T(Y, &)} for
any y €Y. In order to show that it is a spring, we need to prove that (i) for
any a € I'(Y, &), d(a) = {y € Y: a(y) # 0} is quasi-compact open in Y and (ii)
{d(a): a € T(Y, &)} is an open basis of Y.

By Step 3 above we have a finite open covering {VieB:i=1,..n}of Y
such that for any i, alV; e LG(V)). Since V; is a spectral space, V; =
LG(V)) and so d(alV;) = D(alV,) is quasi-compact open inY. So the finite
union of them d(a) = U{d(alV)): i =1,...,n} is quasi-compact open in Y. For

(ii), observing that Y is spectral, we know that {d(a): a e LG(Y)} forms an
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open basis of Y. Since LG(Y) c I'(Y, %), d(a): ae T'(Y, %)} also forms an
open basis of Y.

Next, we show that (Y, I'(Y, %)) is a simple spring. Let a e I'(Y, %). We
note that for any y € Y, a(y) € Q. Since a € I'(Y, %), there is a finite cover-
ing {V;e B:ie I} of Y such that alV;e LG(V;). For each i, LG(V)) is
simple, so the image of alV; is finite subset of Q. Therefore (Y, I'(Y, x)) is
simple.

Finally we prove that (Y, I'(Y, ¢%)) satisfies the condition (**) of (2.1.11).
Let a, a' e I'(Y, &%) and d(a) c d(a'). By the definition of I'(Y, %), there exist
coverings {V; € B:i=1,..,n} and {Uj € B:j=1,...,m} of Y such that alV;e
LG(V;) for any i, a' le € LG(Uj) for any j,and Y = Uin{Vi N Uj: i=1,.n,j
=1,..,m}. For this finer covering, alV;n Uj, a'lv;n Uj e LG(V;n Uj) and
d(alV;n Uj) c d@'v;n Uj). More generally, given any finite number of
elements ay,..., a, € T'(Y, %) we may assume that there is a suitably fine fi-
nite covering {V;eB:1i =1,...,m} of Y such that a 1V, a'j 'V, e LG(V;) and
d(aj V) d(a’jIVi) fori=1,..,m,j=1,...n. Let {Y;e B:i=1,..,n} be such
a fine covering of Y. Then alYj;, a'lY; e LG(Y;) and d(alY;) c d(a'lY;) for
all i. Hence for each i we can choose an integer N; > 0 such that
(al Yi)n#(a' 1Y) e LG(Y;) for all n 2 N;. Thus for some n, a#a' e T(Y, %)
and so a € rad(a') in the ring I'(Y, ). Therefore the condition (**) of

(2.1.11) holds. Since (Y, I'(Y, ¢%)) is simple, (Y, I'(Y,c%)) is an affine spring.
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This completes the proof of Step 4, and so we are allowed to use z and V
(also d and D) interchangeably.

Step 5. In order to verify that (Y, & 1Y) is an affine scheme, we have to
show that for any b € I'(Y, &), b =0, (Y, &), is isomorphic to I'(D(b), &).
(Recall that D(b) = d(b) = {y € Y: a(y) = 0}.)

(i) Since b € T'(Y,&), b = 0, b1 D(b) € T'(D(b), &) does not vanish at any
point of D(b). So 1/b makes sense on D(b). We claim that 1/b € I'(D(b), ).
There exists a finite cover {Vie B:i=1,...,n} of D(b) such that blV; e
LG(Vy) for any i. So blV; does not vanish at any point of V;. By (2.2.6), for
any i, 1/b € LG(V)), and so by the definition of T(D(b), &), 1/b € T(D(b), ).

(ii) Let f be the restriction map of the sheaf &, f= resy p(p): Y, &) —
I'(D(b), &) then f extends uniquely to a homomorphism h: I'(Y, &, —
(D), &) with f = h - g, where g: T'(Y, &) —= I'(Y, &)y, is the canonical
homomorphism defined by b(a) = a/1, because b is invertible in T'(D(b), &)
(cf. (1.1.16.1)).

We verify that this homomorphism is an isomorphism. First we show
that h is injective. Let a/b”, a'/b™ be two elements of I'(Y, &), such that
h(a/b”) = h(a/b™). Then for any y € D(b), (a/b™)(y) = (a/b™)(y) in I'(Y, Zun
Thus there exists ¢ ¢ j, such that ¢(b™a - b"a) = 0 in (Y, &). Let J =
Ann(b™a - b"a'), thence J- Jy» that is, J & j, for every y e D(b). So that

V(J) N D(b) = &, hence b € rad(J). Therefore there is an integer k > 0 such
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that b* ¢ J, and so b*(B™ - b"a") = 0. Thus a/b” = a/b™ in T(D(b), &). There-
fore h is injective (which can be viewed as restriction of functions (cf. Step
2). So it remains to verify that h is surjective.

(iii) Let a € T(D(b), &). We are going obtain an integer n = 0 such that
b"a e I(Y, &) (cf. Convention at the end of Step 3). For then there is ¢ e
(Y, &) such b"a = ¢, so that f(c:)f(bm)'1 since f(b) is invertible in I'(D(b), ).
Since g(b) is invertible in I'(Y, &), and its inverse is 1/b, where 1/b de-
signates the equivalence class which contains 1/b. So that from the injectiv-
ity of h and f = g -« h it follows that a = h(a/1) = f(a) = f(c)f(bn)'1 =
h(g(e)h(g(d™™) = h(g(e)g®™™) = h((/1)A/B™) = h(c/b™. Therefore a is the
image of ¢/b” by h, and this proves that h is surjective. So we are done if we
show how to obtain such an integer.

Now there exists a sufficiently fine finite covering {D(b;):ie I} of D(b)
such that b; € LG(Y) c I'(Y, &) and alD(b;) € LG(D(by). Let us denote by a;
the restriction of a to D(by), and we regard b; as an element of LG(D(b;)) be-
cause b; vanishes only outside of D(b)). By (2.2.4), LG(D(by) = LG(D(bi))bi, S0
there is an integer m(i) = 0 such that bim(i)ai e LG(D(by)) for any i.

We show that for every i € I, there exists an integer n(i) > 0 such that
bin(i)a]-L € LG(Y) (cf. Convention at the end of Step 3). Let A =1{xe
LG(D(by): binx € LG(Y) for some integer n > 0}. Then clearly A; is a subr-

ing of LG(D(b;)). We show that A; = LG(D(b,)).
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For the sake of convenience, we drop the subscript i till the end of the
proof in (iii). We observe that A o FHG(D(b)). For this it suffices to prove
that for any U € E(D(b)), Tpp,)(U) € A. By the note at the end of Step 2, there

is U' e E(Y) such that Ty«(U")ID(®) = T_ , (U). Then bTD(b)(U), regarded as

D(b)
a function on Y by Convention in Step 3, is easily verified to be equal to
bTy(U"). Since FHG(Y) ¢ LG(Y),Ty(U") € LG(Y) and b € LG(Y), so bTy(U")
e LG(Y). Hence bTpgy € LG(Y), that is, Tppy(Ul e A

By (2.1.22), LG(D(b)) (resp. LG(Y)) is the underlying ring of the maximal
v-extension of HG(D(b)) (resp. HGY)). So that every element x of LG(D(b)) is
of the form a#a' for some a, a' € FHG(D(b)) c A. Thus by the definition of
A, there is an integer n > 0 such that b™a, b™a' € LG(Y). As a#a' is defined,
D(a) ¢ D(a"). So D(»b™™™a) = D(b) n D(a) = D(b) n D(a') = D(b"a"), thus
b™*#b™a’ has meaning for every integer m > 0. It is easy to see that for
any integer n, b™(a#a’) = b™ "a#b"a’. Since b"a' e LG(Y) = FMHG(Y), by
(I5) of (2.1.17), there is an integer n > 0 such that vp(b(y)na'(y)) < m for any p
e o(Y).

We claim that (b™"a, b"a’) satisfies the condition (1) of (2.1.20), that is,
we verify that for any p = (y, x) € o(Y) with y € D™ a), Vp(bm+na(y)) >
Vp(bna'(y)), and that equality holds only if x € D(b"a').

Now v, (b™""a(y)) - v,(b"a'(y)) = (m + n)v,(b(y)) + vp(ay)) - nv,(b(y)) -

vp(a’(y)) = mvp(b(y)) + Vp(a(y)) - vp(a'(y)). So if x € V(b), that is, if Vp(b(y)) >0,
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then vp(bm+na(y)) Z2m+n2=2m > Vp(bna'(y)). So we have vp(bm+na(y)) >
vp(bna'(y)). Ifx € D(b), then y € D(b) because x € Cl{y} and y € D(b) implies
that x € V(b). Thus we have only one case left to examine, namely, p = (y, x)
e D(b) x D(b). Since x € D(b), vy(b(y)) = 0. But a#a’ e LG(D(b)) implies that
a#a' induces a v-extension. So by (2.1.20), vp(a(y)) - vp(a'(y)) > 0 equality
holds only if x € D(a'). Therefore Vp(bm+na(y)) > vp(bna’(y)) and equality
holds only if x € D(b) N D(a') = D(b™a'(y)). This shows that b™(a#a') =
b™* Pa#ba' € LG(Y) I'(Y, &&). Consequently, x = a#a' € A, and A =
LG(D(®)). From now on we retain the subscript i.

(iv) By the preceding result, for each i, there is an integer n(i) = 0 such
that b;"¥a; e LG(Y) cT(Y, &). Let N > max{n(i):i e T} and b = ¢, Then
¢; e 'Y, &), ¢;a; =c;a on D(b,) for each i. Since D(b) = U{D(y:ie I}, V(b) =
N{V(b;):i € I}. By an argument similar to one in the proof of (2.1.11), there
is an element c in the ideal (c;) generated by {c;} in T(Y, &) such that V(c) =
N{V(c):ie I}. Since (c;) is an ideal, ca e (¢, c I'(Y, &). It is easy to see
that V(c) = V(b), so that b € rad(c), that is, bI’1 € (c) for some n € N. There-
fore b"a e (c) c (¢;) e T(Y, &). This is what we wanted in order to conclude
that h is surjective (cf. the beginning of (iii)). Consequently h is an isomor-
phism, and (Y, &) is an affine scheme. H

Definition (2.2.11). — A topological space is said to be semispectral if the

intersection of any two quasi-compact open subsets is quasi-compact. A
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continuous map f of semispectral spaces will be called spectral if the
preimage by f of every IQO set is IQO. ([Hoc.1], pp.55,56)

Remark (2.2.12). — It is immediately seen that a topological space X is
semispectral iff all the quasi-compact open sets are IQO. If the range space
of a continuous function f can be covered by quasi-compact open sets then f
is spectral iff preimage of every quasi-copact open set is IQO. Note also that
the category & of spectral spaces and spectral maps is a full subcategory of
the category Z of semispectral spaces and spectral maps, by observing that
if the space is quasi-compact then IQO sets are quasi-compact open sets.

Proposition (2.2.13). — The following conditions on a topological space X
are equivalent:

(1) X is the underlying space of some scheme.

(ii) X is locally spectral and semispectral.

(iii) X is homeomorphic with an open subspace of a spectral space.

(iv) X is the underlying space of an open subscheme of an affine scheme.
([Hoc.1], Prop.16)

[Pf] (iii) = (@iv): Let X be homeomorphic with an open subspace U of a
spectral space Y. By the proof of (2.2.10), (U, {I‘y}, I'(U, &&)) is an affine
spring and therefore (U, I'(U, ¢%)) is an affine scheme.

(iv) = (i): Obvious.



Section 2. Some applications. -98-

(i) = (ii): Since the set of open affine subsets is an open basis of the topolo-
gy of the underlying space of a prescheme (cf. [Gro-Die], (I1,2.1.3), X is loc-
ally spectral because an open affine subset V of X is an open spectral sub-
space. The intersection of two open affine subsets is an open affine subset,
so that the intersection of two quasi-compact open subsets of X is quasi-
compact open. For every quasi-compact open subset of X, it is a finite union
of open affine subsets. Thus X is semispectral.

(ii) = (ii): Consider the spectral embedding e: X — WY in the proof of
(1.3.4). Let {U;:ie I} be a cover of X consisting of open spectral subspaces of
X. Since e is an embedding, for any i € I, e(U;) is an open subspace of WV,
and e(X) = U{e(U;):ie I} is an open subspace of WV. This completes the

proof. H



Section 1. Minimal prime spectra.

In this section we define the minimal prime spectrum Min(A) of a commu-
tative ring with unity and study its properties. We discuss Min(A) for two
special types of rings A in (3.1.5) and in (3.1.6), (3.1.7) and (3.1.8).

Recall that the nilradical of a ring is the set of all the nilpotent elements,
and it is the intersection of all prime ideals (it is called the prime radical of
A in [Lam]). A ring is called semiprime if its nilradical is 0. A ring is cal-
led reduced if it has no nonzero nilpotents. We know that for commutative
rings these two notions coincide, so we adopt the term "reduced" to indicate
this type of ring.

Definition (3.1.1). — Let A be any commutative ring with or without uni-
ty. By the minimal prime spectrum Min(A) of A we mean the set of all
minimal prime ideals of A equipped with the Zariski topology. If A has un-
ity then Min(A) could be identified with a subspace of Spec(A). We define
for any subset E of AV, (E) =V(E) N Min(A), and D, (E) =D(E) N Min(A).

Proposition (3.1.1.1). — A prime ideal P of a ring A is minimal iff for

each x € P there exists a € A - P and an integer k > 0 such that axt = 0.

([Kis,1], Lem.3.1)
[Pf] Suppose that P is minimal. Then S = {axk: ke N,ae A -P}is a multi-

plicative subset of A. If 0 ¢ S, then by Zorn's Lemma there exists a prime
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ideal P' disjoint from S. Since x ¢ P', P' is properly contained in P. This
contradicts the assumption that P is minimal prime, so 0 € S and the condi-
tion is satisfied.

Conversely, let Q ¢ P be another prime ideal, and x € P - Q. Then there
exist an elementae A-P ¢ A-Q and an integer k > 0 such that axt = 0.
But A is reduced, so (ax)k = a*Tax¥ = 0. This implies a € Q or x € Q, which
is a contradiction. So P is minimal prime. H

Proposition (3.1.2). — Min(A) is a Hausdorff space which has a basis for
open sets consisting of clopen subsets. ([Hen-Jer], Cor.2.4; [Kis,1], Th.3.2)

[Pf] We know that {D(f): f € A} forms an open basis of Spec(A). We are
going to show that D_ (f) is closed in Min(A). Let P be a minimal prime
ideal of A such that [P] ¢ D_ (), then f € P and by (3.1.1.1), there exist an
element t ¢ P and a positive integer i such that tf 12 0. Hence @ = D_0) =
D, tf i) =D, ) "D (f) and [P] D, &) €V, (), that is, V() is open,
therefore D, (f) is closed. To show that Min(A) is Hausdorff is easy because
itis Ty and D_ (f) is clopen for any fe A. H

As immediate corollaries to (3.1.1.1), we have the following two charac-
terization of a minimal prime ideal of a reduced ring:

Corollary (3.1.2.2). — A prime ideal P of a reduced ring A is minimal iff for

any x € P, Ann(x) ¢ P.
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[Pf] If P is minimal and x is an element of P, then by (3.1.1.1), axk = 0, for
some a € A - P and some integer k > 0. So ax = 0 since A is reduced. Then a

e Ann(x).
Conversely, let x € P. If there exists a € Ann(x) - P, the condition of

(3.1.1.1) is satisfied by takingk =1. H
Corollary (3.1.2.3). — A prime ideal P of a reduced ring A is minimal iff
every finitely generated ideal I in P, Ann(I) ¢ P. ([Art-Mar], Lemma, p.80).
[Pf] The condition of (3.1.2.3) obviously implies that of (3.1.2.2). Converse-
ly, let a;, ..., a, € P generate I, and for each i = 1,..., n, choose b; € Ann(a,) -

P; thenb =by..b, € Ann(l) - P. H
Note (3.1.2.4). — Thus if A is reduced then for any finitely generated ideal

I, Ann(D) = 0 iff V (I) = &.
Proposition (3.1.3). — Min(A) is a subspace of Spec(A) with respect to the

patch topology. ([Art-Mar-Mor], p.95)

[Pf] Recall that {D_,(f): f € A} is an open subbasis of the subspace Min(A)
of Spec(A) consisting of clopen subsets (cf. (3.1.2)), Min(A) = D,,(1) is a patch
in Spec(A).H

We next discuss Min(A), where A is a direct product of domains.

Definition (3.1.4). — Let ¥(I) be the set of ultrafilters on a set I. We call the
canonical space of ultrafilters on I the topological space y(I) with the topolo-

gy whose closed sets are of the form V(Y)={Ze yI):Ye #} where Y c I.
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Proposition (3.1.5). — Let {A;:i eI} be a family of domains none of which
has characteristic 2 and let A = [T[{A;:ie I}. Then Min(A) is homeomor-
phic to the canonical space of ultrafilters y(I) on I. ([Pic], Remark, p.27)

[Pf] For any a € A, define S(a) = {i € I: pri(a) = 0}. Then obviously S(a) N
S(b) < S(a + b) and S(a) U S(b) = S(ab). For each minimal prime ideal Jx of A,
let y(x) = {S(a): a € j,}, and for every ultrafilter Z on I, let ¢(%) = {a € A: S(a)
€ 7). We show that y(x) is an ultrafilter on I, ¢(%) is a minimal prime ideal
of A. Furthermore the two maps ¢: Y(I) — Spec(A) and y: Spec(A) — y(I) are
homeomorphisms inverse to each other.

() y(x) = {S(a): a € j,} is an ultrafilter: Let a e Jp UcgTand S(a) c U. De-
fine an element ¢ € A as follows: pry(c) =1 ifie¢ U-S(a)and 0 ifie U - S(a).
Then S(c) = U - S(a) and S(ac) = S(a) U (c¢) = S(a) U (U - S(a)) = U. Since Jg 18
an ideal and a € j,, ac € j,. Thus S(a) ¢ U implies U = S(ac) e y(x). Leta,b
€ jy and S(a), S(b) € y(x). LetJ =fie I:ie S(a+b) - S(a) n S(b)}. Then for J
=@, S(a) N S(b) = S(a + b). So S(a) N Sh) € y(x). IfJ D, for everyie J,
prj(a +b)=0, prj(a) # 0 and prj(b) # 0. Note that prj(a) = - prj(b) # 0. Define
an element c as pri(c) =1 ifi¢ Jand -1 ifie J. Then since a, b € Jx» We
havebc e j, and a + bce j,. Now S(a) n S(b) = S(a) N (S(b) U S(c)) = S(a) N
S(be) < S(a + be). Conversely let i € S(a + be). Then ifi e J, pri(a + b) =
pri(a) + pri(b) = 0 and 0 = prj(a + be) = pri(a) + pry(b)pry(c) = pry(a) - pryh). So

if the characteristic of A, is not 2, pr;(a) = pry(b) = 0. On the other hand ifi ¢
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Jd,thenie¢ S(a+b)orie S(a) N S(b). Sinceie S(a+Db),ie S(a)nn Sh).
Therefore in every case i € S(a + be) implies i € S(a) N S(b). This shows that
S(a + be) = S(a) N S(b), and so S(a) N S(b) = S(a + be) € yx). Thus y(x) is clo-
sed for finite intersection. Next we show & ¢ y(x), in other words, S(a) # &
for every a € j,, that is, for every a e j_ there is i € I such that pr;(a) = 0.
Suppose not, that is, suppose for every i € I, pr;(a) # 0. Since x is a minimal
prime ideal and a € j,, there exist b € A - j, and an integer k > 0 such that
ba® = 0 (cf. (3.1.1.1)). Thus for eachi e I, pr;(ba®) = pr,(b)pr,(a)* = 0. Since
each A;is a domain, pry(b) = 0 or pr;(a) = 0. By supposition, pr;(a) = 0 for
each i, so pry(b) = 0 for each i, that is,b=0. ButthenOe A - Jx» @ contradic-
tion. Consesquently, for any a € j, there isi e I such that pr;(a) = 0, so S(a)
# (O for every a € j,. Hence @ ¢ y(x). These show that y(x) is a filter.

Furtheremore, let a,b e A and S(a) U S(b) € y(x). Then S(ab) = S(a) U S(b)
€ y(x) so ab € j;. Since j, is a prime ideal, a € j orb e j,. So that S(a) e
y(x) or S(b) € y(x). Therefore y(x) is an ultrafilter on 1. &

(i) ¢(Z) = {a € A: S(a) € ) is a prime ideal of A: Let a, b € ¢(%), then S(a -
b) 28(a) " S(b) € 2 Since # is a filter, S(a-b)e Z soa-be ¢&). Letac A,
b e ¢(Z), then S(ab) = S(a) U S(b) since for any i, A;is a domain. Now S(a) U
S(b) 2 S(b) € y(x) implies ab € ¢(Z), because Z is a filter. Let cd € ¢(%), then
S(e) u S(d) = S(ed) € Z Since Z is an ultrafilter, we have S(c) € % or S(d) e %

thatis, ce ¢(@) or d e ¢&). This shows that ¢(%) € Spec(A). Let a e ¢@),
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a# 0. Then S(a) ¢ I. Define ¢ € A such that pric)=1ifie S(a) and 0 ifi ¢
S(a). Then S(c) N S(a) = J. Since Z is an ultrafilter, we have S(c) ¢ % that
is, ¢ & @(Z). Therefore for any a € (%), there is c € A - (%) such that ac =
0, so that ¢(Z') is a minimal prime ideal.

So far we have established two functions ¢: YI) — Min(A) and y: Min(A)
— (D).

(iii) ¢ and v are bijective and inverse to each other: Let x € Min(A) and a
€ @(y(x)). Then S(a) € y(x) and so a € j,. Thus @(¥(x)) < j, as an ideal, but
Jx and ¢(y(x)) are minimal prime so we have ¢(y(x)) = x. On the other
hand, let U e y(¢&)). Then there is a € ¢%) such that U = S(a). So S(a) € %
that is, y(¢(#)) c Z But y(@(2)) is an ultrafilter, so y(@@)) = Z

(iv) ¢ and y are homeomorphisms:

At first note that VyU) = {&e yI): Ue )}, Uc I (resp. V(E) = x €
Min(A): E cj,}, E ¢ A) are the closed sets of Y(I) (resp. Min(A)). Let U c 1.
Then thereisa € A such that U = S(a). (For example, set pr(a)=0ifie U
and 1 ifi¢ U.) Since ¢ is bijective, S(a) = U € # is equivalent to a € ¢(%), so
that V(U) = {Ze y(I): a € ¢(@)}. Hence ¢(V(U)) = {¢(%) € Min(A): a € o)}
= V(a). So that ¢ is a closed map and y = q)'1 is continuous. Let E ¢ A and
U=n{S(a):ae E}. ThenV_(E) = {x e Min(A): E C jy}. Since E cj, is equi-

valent to U = n(S(a): a € E} e y(x), y(V,(E)) = {y(x) e yD: U e y(x)} = V(U).



Section 1. Minimal prime spectra. -105-

Therefore vy is a closed map and ¢ = \u'l is continuous. Consequently, ¢ and
y are homeomorphisms.H

Definition (3.1.6). — For any ring A, denote by Max(A) the subspace of
Spec(A) consisting of all the maximal ideals of A.

A topological space is called a Stone space if it is T1, quasi-compact and
has an open basis consisting of clopen sets.

Proposition (3.1.7). — Let A be a ring, X = Spec(A) and j: A > R =
IT{A*(x): x € X} be the canonical homomorphism, where A*(x) is the resi-
due field of A at j. (note that it is also the field of fractions of Afj). Then
Spec(R) = Min(R) = Max(R).

[Pf] Let X = Spec(A), P(x) = {0} x [T{A*(y): y € X - {x}} and pr, be the projec-
tion map R — A*(x). It is obvious that P(x) is a prime ideal of R, and if x # v,
then P(x) # P(y). Since R/P(x) = A*(x) for any x € X, P(x) is a maximal ideal.

Now take an arbitrary prime ideal P of R. Then j'l(P) is a prime ideal of
A, say j'l(P) = jy 0 X0 € X. Take an element o € P, then pr, O(oc) e A*(xq), so
pry (o) = (b + Ixg)/e + Jxo) for some b, ce A, ce Jx, since A*(xy) is the field
of fractions of A/j, o Now j(c) € P, and P is a (prime) ideal of R. So j(c)o
P. But pr, ((e)o) = b + jy, so that b +j, & j(P) = j, . Thus pry (@) =0e
A*(xg). So every prime ideal of R is contained in some P(x). Consequently,

{P(x): x € X} is the set of all maximal ideal of R.



Chapter 3. Minimal spectral spaces. -106 -

Let P be any minimal prime ideal of R. Since {P(x): x € X} are the maxi-
mal ideals of R, P is contained in some P(xqy), xg € X. If P is properly con-
taied in P(x), choose 8 e P(x() — P, and € such that pr, O(e) =1, pry(e) =0 fory
# Xy. Note that e ¢ P(xy) and so e¢ P. But ed =0 € P. This contradicts the
assumption that P is prime. So that P = P(x,), and so P(x) is a minimal
prime ideal of R for any x in X.

Consequently any prime ideal of R is of the form P(x) for some x in X, and

Proposition (3.1.8). — Let A, X and R be as above. Then

(1) Spec(R) — Spec(A) is surjective;

(i1) Spec(R) is a Stone space;

(iii) Y(Spec(A)) is homeomorphic with Spec(R). ([Pic,2], Rem.2, p.27)

[Pf] (i): For any x in X, we have j, = 'l(P(x)) (cf. the proof of (3.1.7)). Thus
%j: Spec(R) — X = Spec(A) is a surjective map.

(ii): Since Spec(R) = Max(R), by (3.1.7), any prime ideal of R is maximal,
that is, every point of Spec(R) is closed by (1.1.10). So Spec(R) is T;. For any
ring, its prime spectrum is quasi-compact (cf.(1.1.13)), in particular,
Spec(R) is quasi-compact.

By (3.1.2), we know that Min(R) is a Hausdorff space which has a base for
open sets consisting of clopen subsets. By (3.1.7) we have Spec(R) = Min(R).

Therefore Spec(R) is a Stone space.
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(iii) We proved in (3.1.5) that y(Spec(A)) is homeomorphic to Min(R),
where Ry = I, xA®®), A(x) =A/j,, and X = Spec(A). So it suffices to show
that Min(R;) is homeomorphic to Spec(R). Let P be any minimal prime
ideal of R;. We claim that there is at most one x € X such that pry(P) = A,
Suppose there are x, y € X, x # y such that pr.(P) and pry(P) are properly
contained in A, and Ay respectively. Then pr (P) and pry(P) are proper
prime ideals of A, and A.y respectively. Definea e Rybypr,(a)=1ifz=x
and 0 otherwise, and b € R, by pr,(b) =1 if y = z and 0 otherwise. Then a, b ¢
Paspry(a)=1 ¢ pr(P) and pry(b) =1¢g pry(P) because pr (P) and pry(P) are
proper prime ideals of A, and Ay respectively. Yet ab = 0, which contra-
dicts the hypothesis that P is a prime ideal. So there exists at most one x
X such that pr,(P) # A,. Since pr(P) is a minimal prime ideal of a domain
A(x), pry(P) = {0}. Clearly, P c P(z), but by the above claim, no ideal proper-
ly contained in P(x) can be prime. So it follows that P = P(x).

Let g be the inclusion map of R to R. Then we have 2g: Spec(R) —
Spec(Rj). We know from the proof of (3.1.7) that every element of Spec(R) is
of the form {0} x [T{A*(y): y € X - {x}} for some x € X. Therefore ?g maps
Spec(R) bijectively to Min(R,). Now it is routine to verify that g is indeed a

homeomorphism. H
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Section 2. Minimal spectral spaces.

Definition (3.2.1). — A topological space is called a minimal spectral space
(or minspectral space) if it is homeomorphic to the minimal prime spec-
trum Min(R) of a commutative ring R (with or without unity) (It will be
shown in (3.2.6) that Min(R) is homeomorphic to Min(A) for some ring A
with unity). By an m-subbasis (resp. m-basis) & for a Hausdorff space X
we mean a subbasis (resp. basis) for the open sets such that each subset of
& with (FIP) intersects. We call a subbasis Ffull if & ,X e & and & is
closed under finite union and intersection. ([Hoc,2], p.749)

Proposition (3.2.2). — % is an m-subbasis iff it is an open subbasis and at
the same time a closed subbasis of a quasi-compact topology on X. ([Hoc,2],
p.749)

[Pf] The topology taking % as a subbasis for closed sets as well as that for
open sets is quasi-compact as any basic open set is a finite intersection of
the members of &, and each subfamily of & with (FIP) intersects (cf. [Kell,
Th.6, p.139). Conversely, if the condition is satisfied, each member of . & is
clopen, so the quasi-compactness implies the additional condition that & be
an m-subbasis. H

Proposition (3.2.3). — The following conditions on an open basis .& of a
Hausdorff space X are equivalent:

(1) .& is a full m-basis.
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(2) There is a commutative ring A with unity and an embedding f: X —
Spec(A) such that fiX) = Min(A) and h induces a bijection of & onto ¥= {U N
Min(A): U € Q(Spec(A))}). ([Hoc,2], Prop.1)

[Pf] (1) = (2): Let W = {0, 1} be the topological space with the set of open
sets {J, {0}, W} asin (1.2.10). Let Wy a copy of W for each B e .% Let fg: X—
Wg be defined by fp(x) =0 if x € B and fg(x) =1 ifx ¢ B, then fp is continuous
for any B € % and we get a continuous (evaluation) map f = IIifg: Be &1 X
— P =Il{Wg: B e #}. Let us topologize P with the product toplogy of Wg's
and denote by P4 the topological space P endowed with the product topology
obtained by letting each Wy have the discrete topology (which coincides with
the patch topology on Wg). Let Y be the closure of f{X) in P4 and topologize
Y as a subspace of P. Then by (1.2.10), Y is spectral, that is, there is a com-
mutative ring A with unity such that Y is homeomorphic to Spec(A). Let
Y, = Min(A) < Spec(A).

Since & is an open basis of a Hausdorff space X, the maps fp separate
points and closed sets, and hence f is an embedding of X into P (cf. [Kel],
p.116). We show that fiX) = Y,,. We observe that for any y € Y thereisx e X
such that y e Cly{f(x)}. Foreachye Y, let ‘%’y ={B e #: fz(y) = 0}, then the
sets of the form U(%) = {z € P: f(z) = 0 for any F € .¥ '}, where .% is a finite
subset of ﬁﬁ‘y, form a basis of neighbourhoods of y in P. In order to prove this

observation it suffices to show that the intersection N{U(.%) N fX): .Fis a fi-
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nite subset of %’y} is nonempty. For then any neighbourhood of y contains
the point f{x) in the intersection, and this is equivalent to N{f LU Fis
a finite subset of ‘%’y} # @ as x is in this inersection. But since £ (U(.9) =
~F: Fe ¥}, Fc %’y ¢ % and a family of sets in & with (FIP) intersects,
we need only show that if .%,...,.% %’y thend =n{n{F:Fe. 7 }:i=1,.k}
# . Now y is in the closure of fiX) in Pjand the set N(n{Fi=1,..k}) =z
eP: fp(z) = 0 for any F ¢ U{%:1 = 1,...,k}} is an open neighbourhood of y in
P4, so that it meets f{X). This means N(N{F: F e i =1,k # &, which
is what we wanted to show. Thus for any y € Y there exists x € X such that
y € CLH{f(x)}.

We can now prove that f{X) = Y. Let x € X. Then flx) € Y = Spec(A). So
there exists a minimal prime ideal jy of A such that jy C Jjgx) that is, f(x) €
Cl{y}. By the observation above, there exists x' € X such that y e Cly{f(x")}.
Since fis an embedding of X into Y (onto fX)), x € Clx{x", and so x = x' be-
cause X is Hausdorff. Thus f(x) = f(x') = y. Hence fiX) ¢ Y, = Min(A).

Conversely, let y € Y;. Theny e Y. So by the above observation, y €
Cly{f(x)} for some x € X. Since y is a minimal prime ideal, this implies that
y = f{x) € fIX). Consequently, fiX) = Y,,. It follows by a routine verification
that f induces a homeomorphism of X onto Y.

It remains to show that f establishes a bijective correspondence between

Zand the set {UnN Yy Ue Q(Y)). We note that forany Be .% (B) = {y e Y
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fg(y) = 0} = (Ug N Y) n Y, where Ug = {z € P:fg(z) = 0}, is quasi-compact
open in P, and Ug n Y is quasi-compact open in Y. Now every quasi-
compact open subset of Y is a finite union of the sets which have the form

Ug N...AUp, N Y, since the sets of the form constitute an open basis of Y.

1
The inverse image of any quasi-compact open subset of Y is, therefore, a fi-
nite union of finite intersesctions of B; e %, and is in .F since ¥ is full.

(2) = (1): Let A be a ring. We show that Min(A) has a full m-basis. Since
Q(Spec(A)) is a full basis for Spec(A), €= {U n Min(A): U € Q(Spec(A))} is a
full basis for Min(A). Let ¥ = {U; n Min(A): U; e Q(Spec(A),ie I} ¥ has
(FIP). By (1.2.4), the patch topology is compact, so "€ # . Letpe "€ pe
Spec(A). Then there is p' € Min(A) such that jp. c jp, that is, p € Cl{p'}. For
eachie I,p e Uj, so that p' € U.. Therefore p' € n%¢". This shows that ¢
is an m-basis of Min(A). H

In order to prove our main characterization theorem of this chapter (Th.
(3.2.6) below) we need some preliminaries.

Definition (3.2.4). — If & is an open subbasis of X, we call the topology on
X which has & as a subbasis for its closed sets the dual topology on X de-
termined by Z.

Note (3.2.4.1). — We note that any subbasis .% generates a least full basis

containing it, consisting &, X, and the finite unions of finite intersections of
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sets in &, This full basis and & obviously determine the same dual topol-
ogy.

Proposition (3.2.5). — Let X be a Hausdorff space. Then

(a) If & is an m-basis, the full basis & generated by .% is an m-basis.

(b) If #is an m-subbasis, any subset %' of . & which is a subbasis is an m-
subbasis.

(c) If & is an m-subbasis (resp. m-basis, full m-basis) for X, and Y ¢ X is
closed in the dual topology determined by %, then (BN Y: Be &} is an m-
subbasis (resp. m-basis, full m-basis) for Y.

(d) If & is an m-basis for X and U ¢ X is open, then {Be .%: B c U} is an
m-basis for U.

(e) If & is an m-subbasis for X, each set in & is clopen. ([Hoc,2], Prop.2)

[Pf] (a): Let % be an m-basis of X and &' the full basis generated by .%.
By (3.2.4.1), &, %' have the same dual topology. Since .% is an m-basis for
X, by Alexander Subbasis Theorem ([Kel], Th.6, p.139), the dual topology de-
termined by & is quasi-compact. So the dual topology determined by &' is
quasi-compact. Since members of %' form a subbasis of closed sets for this
quasi-compact topology, it follows that %' is an m-basis.

(b): We notice that any subfamily of &' is a subfamily of .%8, and so the re-

sult follows.
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(c): It suffices to show in the case of m-subbasis. By observing that Y is
quasi-compact in the inherited dual topology determined by {B N Y: B €.},
we have the assertion by (3.2.2).

(d): Since U is open, for any B €., B = B n U is equivalent to B c U, and
{Bn U:B e &} is obviously an m-basis for U.

(e): It suffices to show ClyBc BforanyBe &. Letpe Cl¢B, and .%p ={C
e #:.pe C}. For each finite subset {Cqy)...,.Cy} of%p, C;N.nCINnBzd
since C; N..n C is a neighbourhood of p. Hence U {B} has (FIP), and
N{C : Ce %p} NBz;butn{C:C e ﬁp} = {p} since X is Hausdorff. There-
forepeB. B

Theorem (3.2.6). — The following conditions on a Hausdorff space X are
equivalent:

(a) X is minspectral, that is, X is homeomorphic to the minimal prime
spectrum Min(R) for some commutative ring R (not necessarily with unity).

(b) X is homeomorphic to the minimal prime spectrum for some commu-
tative ring A with unity.

(c) X has an m-subbasis.

(d) X has a full m-basis. ((Hoc,2], Th.1)

[Pf] (b) & (d): This follows from (3.2.3).

(c) = (d): By (3.2.4.2) and (3.2.5), we have this implication.

(d) = (c), (b) = (a): Obvious.
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(a) = (b): Assume (a) and suppose R has no unity element. Then we can
extend R to a ring A with unity in the standard way by considering A = R x
Z defining addition componentwise, and multiplication on A by the rule (a,
m)(b, n) = (ab + mb + na, mn) and identifying R with R x {0}. With this iden-
tification, it is clear that R is a prime ideal of A. Since {0} is the only mini-
mal prime ideal of Z, it follows that R is a minimal prime ideal of A and
also there is no minimal prime ideal of A which properly contains R.
Therefore Min(R) = Min(A) - {R}. By (3.1.2), Min(A) is Hausdorff. Thus
Min(R) is open in Min(A), and so by (3.2.3) and (d) of (3.2.5), Min(R) has a
full m-basis. This shows that (a) implies (d). Since (b) is equivalent to (d), it
follows that (a) implies (b). HE

We prove the following applications of these results.

Proposition (3.2.7). — A locally compact totally disconnected Hausdorff
space X is minspectral. ([Hoc,2], Prop.3)

[Pf] Let & be the family of all open compact sets. Since X is locally com-
pact Hausdorff and totally disconnected, & is a basis for X. Since each
member of & is compact, if F is a subfamily of % with (FIP), then clearly
NS # J. Therefore & is an m-basis for X. Thus by (3.2.6), it follows that X

1s minspectral. H
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Proposition (3.2.8). — Arbitrary products and arbitrary topological union
of minspectral spaces are minspectral. Open subspaces of minspectral
spaces are minspectral. ([Hoc,2], Prop.5)

[Pf] Product: Let {X;: A € A} be a family of minspectral spaces with an m-
basis for each A. Then subsets of X = [T{X;: A € A} of the form Bxl XX
MXy: A e (Aq,..., M} with Bxi € %,; for each i, form a subbasis & of open
sets for the product topology. As ) is an m-basis for each X, the dual to-
pology is quasi-compact for each A. So by Tychonov's Theorem, the dual to-
pology of the product topology on X is quasi-compact. So it follows that .& is
an m-basis for X. By (3.2.6), it follows that X = [T{X;; A € A} is a minspectral
space.

Union: It is obvious that the union of m-basis for the various spaces in

the union forms an m-basis for the union of the minspectral spaces.

Open subspace: This is precisely (d) of (3.2.5). H



Section 1. Maximal ideal spectra.
Definition (4.1.1). — The set of maximal ideals of a ring A with the spectral
topology is called the maximal ideal spectrum of A, and denoted by Max(A).

Define for any subset E of A, V((E) = Max(A) " V(E) = {M e Max(A): E ¢
M}, and Dy (E) = Max(A) - Vi (E).

Recall that the Jacobson radical (or radical in [Lam]) of A is the intersec-
tion of all the maximal ideals of A.

Proposition (4.1.2). — The maximal ideal space of a ring A, Max(A), is
T;.

[Pf] We know that every singleton subset of Spec(A) consisting of a maxi-
mal ideal is closed in Spec(A), by (1.1.10). H

Proposition (4.1.3). — Let Y be a subspace of the prime spectrum Spec(A)
of a ring A. If Y contains all maximal ideals of A, then Y is quasi-compact.
In particular, Max(A) is quasi-compact. ([Lam], chap.2, sec.5, Prop.1)

[Pf] Let {J;:i € I} be a family of ideals of A such that Y = uD:ie I} =
DZ{Jzie I)) (cf. (1.1.2), (iv)). Then 2{d;:ie I}, the ideal generated by the
family {J;:i e I}, is contained in no maximal ideals, thus it contains 1. But
then 1 e X{J;:i e F} for some finite subset F of I. Hence Y = DRX{d;:ie F} =

U{D(J;): i € F}, that is, Y is quasi-compact. H
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Definition (4.1.4). — A ring A is called regular (in the sense of von Neu-
mann) if for any element a of A, there exists an element x of A such that
x%a = x, a’x = a.

Proposition (4.1.5). — Let A be a reduced ring. Then A is regular iff
every prime ideal of A is maximal, that is, iff Max(A) = Spec(A). |

[Pf] Suppose A is regular. Let P be any prime ideal of A and a an element
which doesn't belong to P. Then there is x € A such that a’x = a, that is,
a(ax-1)=0¢e P. Thusax-1e P,andso1 e P + ax, hence P is maximal.

Conversely, suppose Max(A) = Spec(A). If a = 0 or 1, the existence of such
an element x is obvious (just take a = x). Assume ae A -{0,1}). IfD(a) = {[P]
€ Spec(A): a ¢ P} =@ = D(0), then a" = 0 for some n € N by (1.1.6), and we
have a = 0 since A is reduced. So D(a) # &, and there exists a prime ideal P
which does not contain a. By hypothesis, P is also maximal, hence P + aA =
A. So there is an element x in A such that 1 - ax € P. Note that this x does
not belong to P, for otherwise, ax € P, which induces a contradiction that 1
e P. Now consider S'lA, the ring of fractions of A with respect to S = A - P.
If (x/s)™ = 0 for some x/s in STA andn e N, then there exists an element t in
S such that tx™ = 0, thus (tx)™ = 0. Since A is reduced, tx = 0. This implies
that x/s = 0, and so STA is reduced. Now x/s = 0 = 0/s, and so sx = 0. We

now observe that if (x/s)" = 0 for some n, then sx = 0. By (1.1.16), Spec(S'lA)

is homeomorphic to Y = {[P] € Spec(A): P' n S = J}. Since every prime
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ideal of Spec(A) is maximal and S = A - P, Y = {[P]}. Thus we can obtain
Spec(S™A) = ([S'P]}, and S'P = rad(0). Thereforeac A-P=Sand1-axe
Pimply (1 -ax)ae S'lA, and so (1 - ax)/a)" = 0 for some n € N. Then by the
preceding observation, a(l - ax) = 0 (and also x(1 - ax) =0, sincex e A-P =
S), which shows that A is regular. B

Definition (4.1.6). — A subset E of a topological space X is called locally
closed if for any point x of E, there exists an open neighbourhood U of X
such that E n U is closed in U.

A subset X, of X is said to be very dense if for any nonempty locally closed
subset E of X, E N X, is nonempty.

Proposition (4.1.7). — Let L be a subset of a topological space X. Then the
following conditions are equivalent:

(a) L is locally closed;

(b) L is open in ClxL;

(c) L is an intersection of an open subset U and closed subset F of X.

[Pf] (b) = (c): L is the intersection of ClxL and an open subset U of X.

(c) = (a): For any point x of L, U is an open neighbourhood of x in X and L
=UnNFisclosed in U.

(a) = (b): By definition, for any x e L, there exists an open neighbourhood
U of x suchthat U Lisclosedin U. Thus UNnL = ClyL = U n CIkL, that

is, x is in the interior of L. Therefore L is open in ClikL. B
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Proposition (4.1.8).— Let A be a ring, then the following are equivalent:

(a) Max(A) is locally closed in Spec(A);

(b) Max(A) is closed in Spec(A);

(c) Max(A) = V(J), where J is the Jacobson radical of A;

(d) A/J is a regular ring.

On the other hand if any of the above is verified, Max(A) is a Hausdorff
space. ([Fon-Mar], Lem.3.2)

[Pf] Let X = Spec(A) and X, = Max(A).

(a) = (b): Suppose X, is locally closed. Then there is an open set U such
that Xy =U n ClgX,. IfX; is not closed, then there is a (proper) prime ideal
jx of A such that x e CIX;, - X,. Now x¢ U becauseifxe U,xe Un CIX, =
X 80 we have a contradiction. Since j, is proper prime, there is a max-
imal ideal j, of A such that j, ¢ j,. Therfore z € V(j,) = Cl{x} ¢ X - U be-
cause x € X - Uand X - Uis closed. Thus z ¢ U yet z € X5, this contradicts
Xy < U. Consequently CIX; = X, and thus X, is closed.

(b) = (0): If X, is closed in X, there is a radical ideal J' of A such that Xy =
V(J). This means all maximal ideals contain J', so that J = N{j,: x eXyl =
I(V(J")) = rad(J") = J'. Therefore X, = V(J).

(¢) = (a): If X = V(J), then X, is closed in X, so it is locally closed in X.

(c) & (d): Spec(A/J) is homeomorphic to the subspace of X consisting of all

prime ideals of A containing J, which is V(J). So if V(J) = X, V(J) is ho-
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meomorphic to Max(A/J). Thus Max(A/J) = Spec(A/J), that is A/J is regu-
lar by (4.1.5). Conversely, if A/J is regular, Spec(A/J) = Max(A/J) again by
(4.1.5). Since spec(A/) = V(J) is closed in X and Max(A/J) = Max(A) = Xg»
X, is closed in X.

Finally suppose X, = Max(A) is closed in X = Spec(A). Let x,y e Xy X#Y.
Since con(X) is Hausdorff, there exist disjoint open neighbourhoods U(x)
and U(y) of x and y respectively. Since X, is closed in X, Xy - U(x) is closed
in con(X). Furthermore X, - U(x) c Xy, so that Xy - U(x) is closed under
specialization, and so by (1.2.7), X, - U(x) is closed in X. Similarly Xy - Uy
is closed in X. Hence X, N U(x) and X, N U(y) are disjoint open neighbour-

hoods of x and y in X,,. Therefore X, is Hausdorff. H
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Section 2. Maximal spectral spaces.

Definition (4.2.1). — A topological space is called a maximal spectral
space (or M-spectral space) if it is homeomorphic to Max(A) for some ring
A,

Our characterization of M-spectral spaces is the following proposition.
Proposition (4.2.2). — A topological space X is M-spectral iff X is T; and
quasi-compact. ([Hoe,1], Prop.11)

[Pf] =: We have proved this implication in (4.1.2) and (4.1.3).

¢: Suppose X is Ty and quasi-compact. Let V be the set of continuous maps
from X to W = {0,1}. Let f be the evaluation map from X to WV, and X' the
closure of fiX) with respect to the patch topology on wV. Topologize X' with
the relative product topology of spectral topology. Then WY is a spectral
space by (1.2.9.1), and X' is a patch in WV, so X' is spectral, that is, there ex-
ists a ring A such that X' = Spec(A). Since fis an embedding by the proof of
(1.3.6), f{X) is homeomorpic to X. So fiX) is T; and quasi-compact in X'
Since f{X) is Ty, every singleton subset of fiX) is closed. Conversely let a be a
closed point of X'. We claim a € fiX). Let {Uj)(a): A € A} be the set of all quasi-
compact open neighbourhoods of a. Then U,(a) N fX) # & for every A in A.
So {Up(a) n fIX)} has (FIP) and since f{X) is quasi-compact n{Uj(a) N fIX)} =
. Let xye n{Uy(a) N fIX)}. Then every neighbourhood Uj(a) of a contains

X, that is, a € Cl{zy}. Since x5 e fiX), Clxy} = x5 and a = x € {iX). There-
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fore f(X) is precisely the set of all closed points of X' = Spec(A). So fiX) =

Max(A).



The area of study on associating with commutative rings with unity topo-
logical spaces which arrises as topologies on various subsets of the prime
spectrum is a very wide and active field. In this thesis we discussed the
topological spaces, Spec(A), Min(A) and Max(A). For reasons of length, we
did not include Jac(A), the Jacobson spectrum and Gold(A), the Goldmen
spectrum. In this chapter we define these spectra and present in summary

form the principal results.

Section 1. Jacobson spectra and Goldman spectra of a ring.
Definition (5.1.1). — A prime ideal of A is called a Jacobson ideal or J-
ideal if it is an intersection of maximal ideals of A. Let Jac(A) denote the
subspace of Spec(A) consisting of all the Jacobson ideals of A. Jac(A) is cal-
led the Jacobson ideal spectrum of A. ([Fon-Mar], p.743)

Definition (5.1.2). — A prime ideal of A is called a Goldman ideal or G-
ideal ifit is the contraction of a maximal ideal of A[x], the polynomial ring
in one indeterminate over A. Let Gold(A) denote the subspace of Spec(A)
consisting of all the G-ideals of A. Gold(A) is called the Goldman ideal
spectrum of A. ([Pic,1]), p.73)

Note (5.1.2.1). — Every prime ideal of A is an intersection of G-ideals of A

(cf. the proof of [Pic,1], Prop.1).
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Definition. (5.1.3). — A topological space is called sobre if every closed ir-
reducible subset of X has a unique generic point. ([Gro-Diel, (0,2.1.1))

Definition (5.1.4). — Let X be a topological space. Let °X be the family of
all closed irreducible subsets of X topologized with the following topology:
Let Z be the family of all open subsets of X. Let V € % Let us denote by V™
all elements S of °X (which are closed irreducible subsets of X) such that S N
V#O. LetZ™ ={V": Ve ). Then %" has the required properties of a fa-
mily of subsets to be the family of open subsets of a topology on *X. We de-
note this topological space also by *X and call it the associated sobre space
of X. ([Gro-Die], (0,2.9.1), (0,2.9.2))

Definition (5.1.5). — A topological space X is called j-spectral if it has the
properties (i) - (iv) listed below: (i) X is quasi-compact, (ii) X is Ty, (iii) every
closed irreducible subsets has a generic point, and (iv) every closed irreduc-
ible set is the closure of the set of its closed points. [Wie-Wie], p.139)

Proposition (5.1.6). — (a) Jac(A) c Gold(A) Spec(A).

(b) Jac(A), Gold(A) are quasi-compact subspaces of Spec(A).

(¢c) Max(A) is very dense in Jac(A) (for the definition of "very dense" cf,
(4.1.6)). Gold(A) is very dense in Spec(A).

(d) Jac(A) = *Max(A) and Spec(A) = 5Gold(A). ([Fon-Mar], pp.743-744)

(e) A topological space X is j-spectral iff X = Jac(A) for some ring A.

([Wie-Wie], Prop.1)



Section 1. Jacobson spectra and Goldman spectra of a ring. -125-

Definition (5.1.7). — A ring is called a Jacobson ring if every prime ideal
is a Jacobson ideal.

Definition (5.1.8). — A topological space is called a Jacobson space if the
subset of all closed points of X is very dense in X. ([Gro-Die], (0,2.8.1))

Proposition (5.1.9). — For a ring A the following are equivalent:

(a) A is a Jacobson ring.

(b) Spec(A) is a Jacobson space. ([Gro-Die], (1,6.4.1))

(c) Jac(A) = Spec(A).

(d) Max(A) = Gold(A).

(e) Gold(A) is Ty. ([Fon-Mar], sec.1, Prop.2)

For details of the proof, refer to the papers [Fon-Mar], [Pic,1] and [Wie-

Wiel.
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Section 2. Outline of quasi-compactness of minimal prime spectra.
All the rings in this section are reduced commutative rings with unity
unless otherwise specified.

We know that Spec(A), Max(A) are quasi-compact spaces. From the sec-
tion 1 above, Jac(A) and Gold(A) are also quasi-compact. Mewborn gave an
example of a reduced commutative ring A with unity such that Min(A) is
not quasi-compact (cf. [Mew], Lem. 3.2). Thus the question of the quasi-
compactness of Min(A) is significant. Since Min(A) is Hausdorff (cf. (3.1.2),
quasi-compactness of Min(A) is equivalent to compactness.

Various conditions for the compactness of Min(A) are known. These are
summarized in the following (5.2.1), (5.2.2) and (5.2.3).

Theorem (5.2.1). — For a ring A, the following are equivalent:

(a) Min(A) is compact and A satisfies the annihilator condition (A is said
to satisfy the annihilator condition if for any a, b € A, there exists c € A
such that Ann(c) = Ann(a) N Ann(b).).

(b) Min(A) is compact and {V_,(a): a € A} is an open basis for Min(A).

(c) For any a € A, there is b € A such that Ann(Ann(b)) = Ann(a). ([Hen-
Jer], Th. 3.4)

Henriksen-Jerison observed in the above paper that given a € A there is a
finite subset {by,..., b} of A such that V(Ann(a)) = V(b)) N...n V(b)) to be a

necessary condition for the compactness of Min(A). Then they raised the
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question whether this condition is sufficient as well. [Que], [Mew] and
others answered this affirmatively and proved the following results.

Theorem (5.2.2). — For a ring A the following are equivalent:

(a) Min(A) is compact.

(b) II{Ap: P € Min(A)} is a flat A-module.

(c) The injective envelope I,(A) of A is a flat A-module.

(d) For any a € A, there exists a finitely generated ideal I of A such that
al = Ann(Aa + I) = 0. ([Que], Prop. 3, 4)

Theorem (5.2.3). — For a ring A, the following are equivalent:

(a) Min(A) is compact.

(b) The complete ring of quotients Q(A) of A is a flat A-module.

(c) For any x € Spec(Q(A)) ( = Max(Q(A))), the intersection IyNAisa
minimal prime ideal of A.

(d) For any a € A and U = {x € Spec(Q(A)): a ¢ j, N A}, there exists a fini-
tely generated ideal I of A such that Spec(Q(A)) - U = {x € Spec(Q(A)): I £ Jx

N A} ([Mew], Th. 3.1)
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