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Introduction.

The study of the spectrum Spec(A) of a commutative ring A with unity, that

is, the set of all prime ideals of A endowed with the so called Zandxí topolo-

gy is very important in Algebraic Geomety. The study of Spec(A) as a topo-

logical space is in itself a very interesting subject. One of the key results in

this area is due to Hochster (cf. [Hoc,1]) (Note: All items indicated like this

within square brackets refer to books or papers listed in the bibtiography)

where he showed that there exists a category I of topological spaces called

spectral spaces with spectral maps as morphisms, such that Spec is a full

functor from the category € of commutative rings with unity and ring

homomorphisms as morphisms to the category I of spectral spaces. He

further showed that Spec can be inverted on some subcategories of gbut not

on all the subcategories of I The object of this thesis is to present in detail

the study of spectral spaces, and minspectral spaces and maxspectral

spaces (the latter classes of spaces correspond respectively to the minimal

prime spectra and maximal ideal spectra of commutative rings). For rea-

sons of restricting the length of this thesis the study of other classes of rela-

ted spaces such as Jacobson spectral spaces, Jacobson spaces and Goldman

prime spectra are presented in summary form only.

In chapter 1, section 1, the topological properties of Spec(A) are estab-

lished. Note (I.2.2) shows that Spec(A) is a spectral space in the sense of the
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definition in section 2. In section 2, tlne study of spectral spaces begins. To

the spectral topology on a spectral spaces there is a related compact (we use

this terminology to indicate Hausdorff quasi-compact) topology called the

patch topology, which is very useful. Proposition (1 .2.L8) shows how spec-

tral spaces and compact spaces are related. This relationship is so signifr-

cant that the class of compactifiable spaces (which are characterized as

subspaces of compact spaces) has an analogue in the class of spectral

spaces. These are the so called spectralifiable spaces studied in section 3

(cf. (1.3.3)). Theorem (1.3.4) shows that a topological space is spectratifiable

iff it is "spectrally embeddable" in a spectral space.

In chapter 2 our principal object is to show that every spectral space is in-

deed the spectrum of some commutative ring with unity (cf. (2.r.26.1)). In

fact we show that Spec is a full functor from € Lo g (cf. (2.2.r)). The proof of

this fact is ver:y technical and involves the construction of some categories

and functors (cf. from (2.1.1) to (2.1.4) for an overview and also (2.1.28)) and

is presented in section 1. In section 2 we show some applictions in (2.2.1),

(2.2.2) and (2.2.3). A very interesting application is (Z.Z.I0) where we pre-

sent the proof that a topological space is the underlying space of a

prescheme iff it is a locally spectral space.
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In chapter 3, section l- we study the topological properties of minimal

prime specturm of a commutative ring and (3.2.6) in section 2 provides topo-

logical characterization of such spaces.

Chapter 4 describes the topological properties of the maximal ideal spec-

trum of a commutative ring with unity and (4.2.2) establishes its topological

characterization.

In chapter 5 we present in summary form some further results in the

area relating to the Jacobson ideal spectrum and Goldman ideal spectrum

in section 1 and the answers to the question of compactness of the minimal

prime spectrum is given in section 2.



&qa3. sKlmces.

Section L. Frime Spectra.

The word "ring" stands for a commutative ring with unity 1.

Definition (1.1.0). 
- The prime spectrum of a ring A, denoted by Spec(A),

is the set of a1l proper prime ideals of A end,owed with the topology whose

closed sets are the subsets V(E) = {[Pl e Spec(A): E c P}, where E is a subset

of A. It is well known that fV(E): E E A) is indeed the set of all closed sub-

sets of a topology on Spec(A). For a prime ideal P of A, we use the notation

[P] when it is thought as a point of the topological space X = Spec(A), and for

a point x in X, denote x as j* when x is considered as a prime ideal of A. If
E is a singleton set {f}, we use the notation V(f) rather than V({f}).

The topology thus defined is called t}re spectral topology or the ZarísQ¿i

toplogy on Spec(A).

Let A, A' be two rings, h: A + A' a ring homomorphism, and X -
Spec(A), X' = Spec(A'), then the map "h: X' + X from X'into X defined by

uh([P']) 
= [h-l(P')] is called the øssoc iated, map of the homomorphism h.

([Bou,2], ff, sec.4, no 3)
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Proposition (1.1.0.1). 
- The associated map uh: X'+ X is continuous.

([Bou,2], fI, sec.4, no 3, Prop.13)

tPfl Let E be any subset of A; then the subset (uh)-l(V(E)) of X'is the set of

prime ideals P' of A' such that E G h-I(P'). This inclusion relation is equi-

valent to h(E) c P', therefore (ufr)-l(V(E)) = {[P'] e X': h(E) c p'] = V(h(E)),

that is, the inverse image of any closed subset of X by uh is closed in X'. Wl

Definition (1.1.1). 
- Let rad(E) be the radícal of the ideal of A generated

by E, that is, the set of elements f of A such that fn, for some n e N, belongs

to the ideal generated by E. An ideal J of A equal to its own radical, i.e., J =

rad(J), is called a radícal ídeal of A.

Note (1.1.2). 
- 

(i) rad(E) = n {P: [P] e V(E)].

(ii) V(0) = X, V(1) = Ø.

(iii) For subsets E, E' of A, E' e E implies V(E) EV(E').

(iv) For any family {E¡: i e I} of subsets of A, V(r-.r {E¡: i e I}) = V(L{Ei: i e

I)) = n{V(Ei): i e I}, where L{Ei: i e I} represents the ideal generated by the

union of Ei.

(v) V(E) = V(rad(E)), for any subset E of A.

(vi) V(E) uV(E') = V(EE'), for any subsets E, E' of A.

Let D(E) = X - V(E), for any subset E of A. Then

(vii) D(f) = {[P] e Spec(A): f ø P], for any element f of A.

(viii) D(fg) = D(Ð n D(g), for any elements f, S of A.

-2-



Section 1. Prime Spectra.

Proposition(1.1.3).-ThesetsD(f)= {[P] e Spec(A):f e P],for allf e A,

form an open basis of the spectral topology on X = Spec(A). ([Bou,2], II,

sec.4, no 3, p.L26)

tPfl Clearly, D(Ð is open for any f e A. For any open subset U of X, there

is a subset E ofA such that U = X - V(E). By (f.f.2), (iv), U = X - V(E) - X -

nfV(Ð: fe E) = u{D(f): fe E}. @

Proposition (1 .1.4). - For any subset Y of X = Spec(A), define I(Y) as n{P:

[P] e Y]. Then

(i) \Ø) = n.

(ii) For Y, Y' c X , Y c Y' implies I(Y) : I(Y').

(iii) For any family [Yx: 1. e L] of subsets of X, I(u{Y1: }" € L}) = n{I(Y¡):l.

€ L). (lBou,2l, fI, sec.4, no 3)

Proposition (1.1-.5). 
- Let A be a drg, J an ideal ofA and Y a subset ofx

= Spec(A).

(i) The set V(J) is closed in X and I(Ð is a radical ideal.

(ii) I(V(J)) is the radical of J, and V(I(Y)) = ClxY, the closure of Y in X.

(iii) The correspondences I and V define order-reversing bijections be-

tween the set of all closed subsets of X and the set of all radical ideals of A

and are inverses to each other. ([Bou,2], II, sec.4, no 3, Prop.l1).

o-ù-



Chapter 1. Prime spectra and spectral spaces. -4-

tPfl (i): By (1.1.0), V(J) is closed in X; since ICY) = n{P E A: [P] e Y] and

since the radical of I(Y) is the intersection of prime ideals containing I(Y),

I(Y) = rad(I(Y)). w

(ii): I(V(J))=n{P: [P] e V(J)]=n{P: JcP, Pis aprimeideal of A} =

rad(J). Next if a closed set V(E) contains Y, then for any tPl e Y, E c P.

Thus E c I(Y). Then by (r.L.2), (iii), V(I(Y)) c V(E). This shows that

V(I(Ð) is the smallest closed subset of X containing Y, that is, the closure

ofY. g

(iii): The correspondences V and I are decreasing by (1.1.2), (iii) and

(1.1.4), (ii) respectively. If J is a radical ideal, then I(V(J)) = rad(J) = J; if Y

is a closed subset of X, Y = CIY = V(I(Y)). W

Proposition (1.1 .6). - Let {f¡, : }" e L} be a family of elements of A, and let g

eA. Then, D(S) cu {D(ff): Àe L} iffthereexistsanintegern> 0 suchthat

gn belongs to the ideal generated by fr, that is, g belongs to rad(L{f^: }, e L}).

([Bou,2],II, sec.4, no 3, Cor to Prop.11).

[Pfl The relation D(S) c u{D(fr): }. e L} is equivalent to V(g) : n[V(fr): ]. e

L] = V(I{fr:}' e L}). By applying the correspondence I we have (g) c rad(g)

= I(V(g)) c I(V(I,{fr: I e L})) = rad(I{f¡,: }" e L}). W

Proposition (l-.f .7). - For any ideal J of A, Spec(A/J) is identified cano-

nically to the closed subset V(J) of Spec(A). ([Gro-Die ,2f , (I, t.2.4))
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lPfl There is a canonical bijective correspondence preserving the order

structure of inclusion between the set of ideals (resp. prime ideals) of A/J

and the set of ideals (resp. prime ideals) of A containing J. This corre-

spondence provides what is required. W

Proposition (1.1.8). 
- Let N be t]ne níIradical (or prirne radícal in [Lam])

of a ring A (i.e., the set of nilpotent elements of A). Then the topological

spaces Spec(A) and Spec(A/IV) are homeomorphic. ([Gro-Die,1-], (I, 1.1.12))

[Pfl Since the nilradical of a ring A is the radical of the zero-ideal,

Spec(A/[t) =V(N) = V(rad(O)) = V(0) = Spec(A) bv (1 .r.D. @

Proposition (1.1.9). 
- Let [P] e Spec(A). Then Cl{tPl} = V(P). The set

{tPl} is closed in Spec(A) iff P is a maximal ideal (in this case [P] is called a

closed point). ([Bou,2], If, sec.4, no 3, Cor.G to Prop.11)

lPfl Since P is prime, I({[P]]) = P. So that by (r.1.5), (ii), Ct{tPl} = V(I{tPl})

= V(P). It is clear from definition of V(P) that the singleton set {tPl} is closed

in Spec(A) iff P is a maximal ideal of A. W

Proposition (1.1.1-0). 
- The prime spectrum X = Spec(A) of a ring A is Ts.

([Gro-Die,l], (I, 1.1.8))

[Pfl Let [PtJ * [P2 ]. Then Pt + Pr. There are two cases possible: in the

case that P1tP2, we have P2 ø V(P1) = CI{[Pr]]; in the case that P1 c P2, vrê

have Pz tP1, then Pt e V(P2) = Cl{[Pz]]. This proves that Spec(A) is To. w

-5-



Chapter 1. Prime spectra and spectral spaces.

Definition (1.L.11). 
- A ring A is called Noetherían if t]ne ideals in A sa-

tisfy the ascending chain condition, that is, for any ascending chain of

ideals J6 gJ1 c... c J' G ... there exists aninteger m > 0 such thatifn ) m

then Jrr, = Jr,.

A topological space X is called Noetherian íf the closed subsets of X satis-

fy the descending chain condition (or equivalently, the open subsets of X sa-

tisfy the ascending chain condition).

Proposition (1.1.11.1). 
- A ring A is Noetherian iffevery ideal of A is

finitely generated. @

Proposition (1.1 .71,.2). - rf every prime ideal of a ring A is finitely gener-

ated, then A is Noetherian. (lKapl, Th.8) W

Note (1.1.12.1). 
-The converse of (1.1.11.2) need not be true: for example,

a non discrete valuation domain of rank l- has an infinite ascending chain

of ideals and so is not a Noetherian ring but its prime spectrum is a double-

ton space, and so obviously is a Noetherian space.

Proposition (1.1.11.3). 
- 

(i) Every subspace of a Noetherian space is

Noetherian.

(ii) Let {E¡: i e I} be a finite cover of a topological space x. If
spaces Ei of X are Noetherian, then X is Noetherian. ([Bou,2, rr, sec.4, rto 2,

Prop.8)

-6-



Section 1. Prime Spectra. -7 -

[Pfl (i): Let X be a Noetherian space, E a subspace of X, and {Frr: n =

0,L,2,...) be a descending chain of closed subsets of E. Then for any 11, Fr, =

CIEFn = ClxFn n E. {Cl¡Frr: n = 0,1 ,2,...1 is a descending chain of closed

subsets of X, since Fr,+l c F' implies ClxFn+l e ClxFn for any n. Since X

is Noetherian, there exists an integer m e I{ such that n > m implies CIF'

= ClFm, so with this m, n > m implies Fr, = F-, thus E is Noetherian. 6

(ii): Let {G,r: n = 0,1 ,2,...1be a descending chain of closed subsets of X. By

hypothesis, for any i e I, there exists ân nl e l{ such that if n ) ri then G,r.

ñ E¡ = G' n Ei, since (Grr n Ei: n = 0,1 ,2,...j is a descending chain of closed

subsets of Ei. Furthermore since I is finite, there exists m e N such that if
n2m, then GrrôEi= G-ôE¡ for anyi e I(for example m = max{n¡: i e I}).

Now {E¡: i e I} is a cover ofX, so that Gr, - u {GrrnE¡: i e I} for anyn = 0, 1,

2,..., that is, for n ) m, Gr, = G-. Thus X is Noetherian. W

Proposition (1.1.11.4). 
- A topological space X is Noetherian iff every

open subset of X is quasi-compact (that is, for any open cover {U¡: i e I} of X

there exists a finite subset F of I such that {Ui: i e F} covers X). ([Bou,z7, rr,

sec.4, Íto 2, Prop.9)

tPfl Suppose X is Noetherian and Y is open in X. Then Y, as a sub-

space, is Noetherian. So we need only to show that X is quasi-compact.

Let {Ui: i e I} be an open cover of X, then the set E of finite unions of Ui, i

e f, is nonempty since each U¡ belongs to this set. Since X is Noetherian
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every ascending chain (witfr respect to set inclusion) of members of E termi-

nates at some finite stage. Thus every ascending chain has an upper

bound. So that, by Zorn's lemma, there exists a maximal member v =

u{U¡: j e H} of E, where H is a finite subset of I. Thus for any i e I, V n Ui

= Ui by the maximality ofV. This implies thatX = u{Ui: i e I} = UIV n U1: i

c I) -Vn (u{U¡:ie I})=VnX=V. ThereforeXis quasi-compact.

Conversely, suppose that every open subset of X is quasi-compact. Let

{Urr: n e N} be an increasing sequence of open subsets of X. The union V of

the u' is open and hence quasi-compact; as {urr} is an open covering of v,

there is a finite subfamily of {U.r} which is a covering of V and hence V = lI.,

for some index n, which proves that the sequence {Urr} terminates at some

finite stage. W

Proposition (1.1.12). 
- If a ring A is Noetherian, then Spec(A) is a

Noetherian topological space. ([Bou,2], II, sec.4, Cor.T to prop.11)

Note (1.L.L2.1). 
- The converse of (1.1.12) need not be true: for example, a

non discrete valuation domain of rank l- has an infinite ascending chain of

ideals and so is not a Noetherian ring but its prime spectrum is a doubleton

space, and so obviously is a Noetherian space.

Proposition (1.L.13). 
- For any f e A, the subset D(Ð of Spec(A) is quasi-

compact; in particular, the space Spec(A) = D(1) is quasi-compact. ([Bou,2],

II, sec.4, no 3, Prop.l-2)

-8-



Section 1. Prime Spectra.

lPfl Since {D(g): g € A} forms an open basis of Spec(A), it suffices to consi-

der the case that an open cover of D(Ð is {D(gi): i e I, g € A} and show that

there exists a finite subcover. By (f .1.6) D(f) c'J[D(gi): i e I] ifff belongs to

the radical ideal rad(L{s¡: ie I}) generated by {gi: i e I}, that is, there exist

an integer n > 0 and a finite subset H of I such that fn e rad(I{ gi: i e I}).

Then D(Ð e u{D(S1): i e H}. This shows that D(f) is quasi-compact. W

Proposition (1.1.14). 
- Let A, A' be two rings, h: A -+ A' be a ring homo-

morphism, x = Spec(A) and x' = Spec(A') . Then the inverse image of a

quasi-compact open subset Y of x by uh, the associated map of h, is quasi-

compact (open) in X'.

[Pfl Since Y is quasi-compact, Y can be taken as a finite union of D(4), i =
1,...,D. so in order to show that (ah)-t(Y) i. quasi-compact, it suffi.ces to

show that for any f e A, (ah)-t(o(Ð) is quasi-compact. Now in the proof of

(1.1.0.1), we showed (uft)-1(v(p)) = V(h(E)) for any subset E of A, therefore

(uft)-l(n(Ð) = D(h(Ð). This is quasi-compact in X'by (r.1.t B). w

Proposition (1.1.15). 
- Let h be as in (1.1.14). If for each f '€ A', there are

a unit u' of A' and an element f in A such that f ' = u'(h(Ð), then th is a ho-

meomorhphism of X'onto uh(X'). ([Gro-Die,1], (I, L.2.4))

lPfl Let E'be a subset of A'. By hypothesis, for each f ' € E' there exist f e

A and a unit u'€ A' such that f ' = u'(h(Ð). Since u'is a unit, u'(h(Ð) = f '€

P', where P' is ¿ (prime) ideal, is equivalent to h(Ð e P'. Thus V(E') =

-9-



Chapter l-. Prime spectra and spectral spaces. -10-

v(h(E)), where E = {f e A: there exist a unit u' € A' such that u'h(Ð e E'}.

Now we are ready to prove that ah is injective. Consider two prime ideals

P1', P2' of A'. There exist two subsets Er, E2 corresponding to Pr', pr'respec-

tively in the manner as above, that is, E1 = {f e A: there exists a unit u' € A'

such that u'(h(Ð) = f ' e P1'Ì and E2 - {fe A: there exists a unit u e A' such

that u'(h(Ð = f 'e P2').

Since Pt'is a prime ideal and u'is invertible u'h((f)) . Pt' is equivalent to

h(f) e P1', so that in fact E, = h-l(Pr'). Similarly, F-z= h-l(pz'). Suppose

ah(lPl']) - ah([Pz']) then h-1{pr') = h-1(pz'), i.e., E1 = E2, and. so v(p1') =

V(h(El)) = V(h(Ez)) = V(Pz'). This implies P1'= P2' since X' is T9. Thus ah

is injective.

Finally any closed subset of x' is of the form v(E'), E' c A'. Let E E A be

defined with respect to E' as above. By a routine verifi.cation, th(v(E')) 
=

V(h-l(p')) ñ ah(X'). So that uh is a closed map. Consequently, it is a ho-

meomorphism of X' onto ah(X'). 
W

Remark (1 .L .1 5.1 ). - If h in (1 .1 .1- 5) above is surjective, then the condition

in (1.1.15) is fufilled when we set the unit u' of A' as the unity of A', and E =

h-1(E') for any subset E'of A.

This observation provides another proof of (1.1.8) since the canonical map

h: A -+ A,Õ{ is surjective.
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Definition (1.1.L6). 
- A ring A is called a local ring if A has exactly one

maximal ideal M. Then M is the set of non-invertible elements of A. M is

also the Jacobson radical of A (=uurthe intersection of all maximal ideals of

A).

The quotient field A/NI of A by its Jacobson radical (that is, the only maxi-

mal ideal of the local ring A) is called tlne residue fr.eld of A.

Let A be a ring, and S a subset of A closed under multiplication and. con-

taining the unity of A. Such an S is called a multiplícatíue subset of A.

Let us define an equivalence relation - on A x S as : (a, s) - (a', s') iff
there exists a t e S such that t(a's - s'a) = Q. Then (A x S)/- is a ring called

thle ríng of fractíons of A with respect to S and is denoted by S-rA; let us de-

note by a I s t]ne equivalence class of (a, s).

The map i4,g: A -+ S-14 sending a to a/I is called tine cønonícal hom,o-

morphísm and has the following properties:

(i) for any s e S, i6,g(s) is invertible in S-14;

(ii) if i4g(a) = 0 then âs = 0 for some s e S;

(iii) every element of s-14 is of the form i4,g(a)i6,r(s)-1for some a e A and

se S.

Note (1.1.16.1). 
- Let g: A -+ B be a ring homomorphism such that g(s) is

invertible for all s e S. Then there is a unique ring homomorphism fl S-14

-+ B such that g = f " i6,g. (cf. [Ati-Mac], Prop.3.1)

-77 -
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Note (1.1.16.2). 
-Let P be a prime ideal, and S = A - P, then S is a multi-

plicative subset of A. Thus we have the ring of fractions S-14, and we de-

note it by Ap. Let s be a nonzero element of A, then S = {sn: n e hfl, where N

contains 0, is a multiplicative subset of A, which is denoted by A, instead of

S-14. If A is an integral domain then the canonical homomorphism is in-

jective and if S = A - {0}, then S-14 is the field of fractions of A.

Proposition (1.1.1-6.3). 
- Let S be a multiplicative subset of a ring A, and

i6,g: A + S-14 be the canonical homomorphism. Then the associated map

uiA,s is a homeomorphism of Spec(S-lA) onto the subspace y of Spec(A) con-

sisting of prime ideals disjoint from S. ([Bou,Z], II, sec.4, no B, Cor. to

Prop.l3)

lPfl since any element of s-14 is of the form i6,g(a)i4,g(s)-1, where a e A

and s e S, our setting satisfies the hypothesis of (1.1.15). Thus uiA,s is a ho-

meomorphism of Spec(S-lA¡ onto Y = 
uiA,S(Spec(S-14)). 

So it remains to

show that any element of Y is a prime ideal which is disjoint from S.

Let P be a proper prime ideal of s-14. By definition aia,g([p]) 
= [iA,s-lG)].

Since iA,g is a ring homomorphism, for any elements a, b e io,r-l{p) and c

e A, a - b e i4,g-1(p) and ca e i6,g-t(p). rrab e i4s 1(p) then ia,g(a)i4,aft) =

i4,g(ab) e P, soi¿,g(a)e P ori6,gft)e P. Thusae i4,g-1(P) orbe io,g-l(p).

So i¿,g-l(P) is a prime ideal of A. If io,r-l{p) n S * Ø, tnens = i4,g-1(p) n S
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implies ia,g(s) is invertible in S-14; but then 1- = i4,g(s)i4,g(s)-1e F, which is

impossible as P is a proper prime ideal. Wl

Proposition (1.1-.16.4). 
- Let A be a rirg, S be a multiplicative set and J be

an ideal of A. If we identify S-lJ \Mith the ideal generated by J in S-1A,

then s-l(¿r,r) = S-14/S-1J. ([Bou,2], II, sec.2, rf 4,p.gg) w¡

Proposition (1.1.16.5). 
- Let A be a tirg, P a prime ideal of A. Then the

ring Ap is local; its maximal ideal is PAp, the ideal generated. by the cano-

nical image of P in Ap; its residue field is canonically isomorphic with the

field of fractions of AÆ. ([Bou,2], II, sec.B, no 1, prop.2)

tPfl By (1.1.16.3), every prime ideal Q' of A" = S-14 corresponds bijectively

to a prime ideal P' of A which is disjoint from S = A - P. Then p' is contai-

ned in P. Thus PAp is the maximal ideal of At. Therefore Ap is a local

ring with the maximal ideal PAp.

Let f: A + AÆ be the canonical surjection. Then f(S) is the set of nonzero

elements of the integral domain AÆ. Thus f(S)-l (ffp) is the field of frac-

tions of AlP, and is identified \Mith S-11alp¡ by the map afis) I -+ a./s, where

a e AÆ and s e s. Now s-l(a¡p) is identified with A/(pAp) . on the other

hand Ap/(PAp) is the residue field by definition. So we have a canonical

identification between the residue field of A at P and the field of fractions of

A/P. @
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Corollary (1.1".16.6). 
- Let A be a ring, s an element of A and, f: A -+ A.

the canonical map f(a) = a/L,for any a e A. Then âf: Spec(Ar) -+ Spec(A) is

a homeomorphism from Spec(Ar) onto D(s).

tPfl By (l-.1.16.3), "f is the homeomorphism from spec(Ar) onto the subset

of Spec(A) consisting of prime ideals of A disjoint from the multiplicative

subset generated by s, but this subset of Spec(A) is D(s). W

Definition (1.1 .17). - A topological space X is said to be írred,ucible if very

finite intersection of nonempty open subsets of X is nonempty. A subset E of

X is called irreducible 1f as a subspace of X it is irreducible. Every maximal

irreducible subset of xis called anirreducible conxponenú of x.

Proposition (1.1.17.1). 
- Let X be a nonempty topological space. Then the

following conditions are equivalent:

(i) X is irreducible;

(ii) every nonempty open subset of X is dense in X;

(iii) every open subset of x is connected. ([Bou,2], II, sec.4, no 1, prop.l)

tPfl (i) <+ (ii): A dense subset of X is a subset with which every open sub-

set has nonempty intersection, thus (i) and (ii) are equivalent. K

(iii) =+ (i): Suppose X is not irreducible. Then, there are two nonempty

disjoint open subsets U, and U2 of X, and then Ur u U2 is a disconnected

open subset of X. K
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(i) =+ (iii): Let U be a disconnected open subset of X. Then U is a union of

two disjoint open subsets U'and lI" of lI. But since U is open in X, IJ'and

lF" are disjoint open subsets of X, so X is not ii-reducible. W

Note Q.1.L7 .2). - Let E be a subset of a topological space X. Then the fol-

lowing are equivalent:

(i) E is irreducible;

(ii) If two open subsets u, v of X meet E (i.e., they have nonempty in-

tersection with E), then U n V also meets E;

(iii) for any two closed subsets F, G ofXifE c F u G then E cF or E c G,

or by finite induction, for a finite family F1,F2,..., F' of closed subsets of X, if
E ç u F¡ then E E Fi for some i = 1,2,...,n.

Proposition (1.1.17.3). 
- Let E be a subset of a topological space X. Then E

is irreducible iffClE is irreducible. ([Bou,2], If, sec.4, no 1, prop.2)

tPfl An open subset u of x meets E iff u meets ClE, for if u meets CIE

then U is a neighbourhood of each point that belongs to U n CtE in X, thus

U meets E; the other implication is obvious.

Now let U, Vbe open subsets of X. Itis clear thatU nVn E*Ø is equi-

valenttoUnVnCt(E) +Ø. Soby (1.1.17.2), theirreducibilityof E is equi-

valent to the irreduciblity of ClE. Wl
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Proposition (1 .I.L7 .4). - Let X and Y be topological spaces and f a contin-

uous map of X into Y. If a subset E of X is irreducible, f(E) is irreducible.

([Bou,2], II, sec.4, no 1, Prop.4)

lPfl Let U, V be two open subsets of Y which have nonempty intersection

rrith f(E). Then f -lru) and f -1(V) are open and have nonempty intersection

\Mith E. since E is irreducible, r-1ru) n f -1(Ð n E ¡¿ Ø. Tlr:us an element x

in this intersection has its image f(x) in U n V ô f(E), that is, U n V meets

f(E); so that by (1.1.1 7.2), f(E)is irreducible. W

Proposition (1 .1 .1 7 .5). - Let U + Ø be an open subset of a topological space

X. The map cr defined by øN) = ClxV is a bijection of the set of irreducible

subsets of U closed in U onto the set of closed irreducible subsets of X inter-

secting lI, and its inverse map Bis defined by þ(z) = zarJ. ([Bou,2], II,

sec.4, no 1, Prop.7)

[Pf] Let v be a closed irreducible subset of U. Since u is open in x, v is

also an irreducible subset of X. Thus its closure Cl¡V in X is irreducible

subset of X by (1-.1.17.3). Conversely, let Zbe an irreducible closed subset of

X which meets U. Then Z nU is a nonempty closed irreducible subset of U.

Thus we have two correspondences in both directions.

Let Zbe a closed irreducible subset of X, then Z nlJ if nonempty, is

dense in Z by (1.1.17.!), that is, Clz(Z ¡U) = Z. But then Z = Clz(Zn U) =

CIp(Z n U) r¡Z = Clx(Z rr U), since Z is closed in X and Z nTI c.Z. Therefore
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the composition cr " B is the identity map on the set of irreducible closed sub-

sets of X. Let V be a closed irreducible subset of U. Then clearly V = ClxV n

U. So p. a is the identity map. W

Proposition (1.1.1s). 
- Let A be a ring. Then a subset y of Spec(A) is irre-

ducible iff I(Y) - r1[iv ç A: y e Y] is a prime ideal. ([Bou,2], fI, sec.4, no B,

Prop.14)

tPfl At first note that for an element f e A, f e I(y) is equivalent to y ç
v(f).

Suppose that Y is irreducible. Let f, g e A be two elements such that fg e

I(Y). Then Y E V(fg) = V(Ð u V(g). Since Y is irreducible and V(Ð, V(g)

are closed, YcV(Ð orYEV(g), thatis f e I(y) orge I(\). Thus I(y) is a

prime ideal.

Conversely suppose I(Y) is prime. Then Cly = V(I(y)) = Cl{tl(y)l}, since

I(Y) being prime implies I({tI(Y)l}) = I(Y). Since the closure of a one-point

set {[I(y)]] is irreducible, so is cly, and y is also irreducible. w

Definition (1.1.18.l-). 
- When CUIPI)=Y, the point [p] is called a generic

point of Y.

Proposition (1.1.19). The prime spectrum X = Spec(A) of a ring A is irre-

ducible iff the quotient AA{ of A by its nilradical N is an integral domain.

([Bou,2], II, sec.4, no 3, Cor.1 to Prop.l4)
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[Pfl Since I(X) is the radical of the zero ideal (0) which is the nilradical N

of A, X is irreducible iffN is prime by (1.1.18), thus iff AAI is an integral do-

main. W

Proposition (1.1.20). 
- The map ü defined by cr(tPJ) = V(P) is a bijection of

X = Spec(A) onto the set of the closed irreducible subspaces of X; in particu-

Iar, any irreducible component of a closed subspace Y of X is of the form

V(P), where P is minimal among prime ideals of A which contain I(y).

([Bou,2], If, sec.4, no 3, Cor.2 to Prop.l4)

lPfl For any prime ideal P of A, I(V(P)) = P, that is, V(P) is irreducible by

(1.1.18); we know that V(P) is closed, and V is a bijection when restricted to

the set of all radical ideals of A by (1.1.5), (iii). In particular, for two dis-

tinct prime ideals P and Q, we have V(P) + V(Q), that is, cr is injective. Now

for any closed irreducible subset Y of X, Y = Ct(Y) = V(I(Y)), since y is clo-

sed. Furthermore I(Y) is prime since Y is irreducible, that is, Y is an ima-

ge of a prime ideal by the map cr, so the map is surjective; therefore cr: [P]

I -+ V(P) is a bijective map of X onto closed irreducible susbspaces of X.

on the other hand, Y ¡ v(P) :¡v(Q) iff Q : P = r(v(p)) : I(y); thus v(p) is

an irreducible component of Y, i.e., a maximal irreducible subset of Y, iff P

is minimal among the prime ideals that contain I(Y). W
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Proposition (L .l.2r). - The prime spectrum x = Spec(A) of a ring A is

connected iff 0 and L are the only idempotent elements of A. ([Bou,2], II,

sec.4, no 3, cor.Z to Prop.15)

lPfl Suppose that X is not connected and is a disjoint union of nonempty

open subsets Y1 and Yr. Since Yt and Y, are also closed, there exist two ra-

dical ideals I, and I, such that Y, = V(Ir), Y2= V(Iz). By hypothesis we

have atfirstV(I1 + 12) = V(I1) nV(Iz) = Yl ôYz=Ø =V(1), thus there exist

ee I1,, f e12 suchthate + f =1 (cf. (1.1.6)); secondlyV(I1I2) =V(Ir) uV(I2)

= Y1 U Y2 =X = V(0), thus we have some integer n > 0 such that (eÐn = enfn

= 0. Since V(e") = v(e) and V(fn) = V(f), V(en+ f") = V(e") n V(f") = V(e) n

V(f) = Ø =Y(l). So that there exist u, v € A such that uen + vfl = l- and then

0 = uv(enfl) = ,retrrfl = uen(1 - uet) = uetr - (o"t)2, that is, uet is an idempo-

tent. Similarly, vfl is idempotent. If uen = 0, then vft = 1-, so Ø = y(I) =
v(vf") =v(v) uv(fl) =v(v) uv(f) =v(v) wY2, thatis, yz=Ø,a contradic-

tion. If uen = 1, then by a similar argument, we have the contradiction Y, =

Ø. Thus uet is an idempotent different from 0 and l-.

Conversely if there exists an idempotent e distinct from 0 and 1, we get

V(e) + Ø,V(1 - e) + Ø, and,V(e) u V(l - e) = V(e(l - e)) = V(e - e2) =V(0) = X,

V(e) nV(l - e) = v(e + 1 - e) = V(1) = Ø, thatis, v(e) and v(1 - e) are disjoint

nonempty clopen subsets of X whose union is X, thus X is not connected. KK
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Section 2. Spectral spaces and the patch topolory.

Definition (1.2.1). 
- A topological space X is calle d spectral if it satisfies the

following four conditions: (i) X is a Ts-space; (ii) X is quasi-compact; (iii) X

has an open basis consisting of quasi-compact open subsets of X; and (iv)

every closed irreducible subset of X has a generic point.

A continuous map between two spectral spaces is called a spectral map

if its inverse image of any quasi-compact open subset is quasi-compact.

A subspace Y of a spectral space X is called a spectral subspace of Xif the

inclusion map is spectral. ([Hoc, 1])

Note (1.2.2). 
- The prime spectrum of a ringis a spectral space (1.1.2)

(for (i)), (1.1.13) (for (ii)¡ and (1.1.8) (for (iii)), and (1.1.18) (for (iv)); the ass-

ociated map of a ring homomorphism is a spectral map by (f .1.14).

Definition (1.2.S). 
- By tlrre pøtch topology \ile mean the topology defined

on a spectral space X with a subbasis for closed sets consisting of the closed

sets and quasi-compact open subsets in the original space X (or equivalent-

ly, which has the quasi-compact open sets and their complements as an

open subbasis), and the space considered to be a topological space with the

patch topology is denotedby con(X). A subset of X closed in con(X) is called

a patch of X. ([Hoc,l])

Proposition (1" .2.4). 
- The patch topology is compact (that is, Hausd.orff

and quasi-compact). ([Hoc,1], Th.1)
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[Pfl Let X be a spectral space. (i) con(X) is Hausdorff: for any distinct

points x, y in X, there is an open neighbourhood U of one of the two points,

say x, not containing the other, y. Since quasi-compact open sets form an

open basis of X, we can take U as quasi-compact open in X, and thus U is a

clopen neighbourhood of x in con(X) that doesn't contain y. So that we have

an open neighbourhood X - U of y in con(X) that is disjoint from the open

neighbourhood U of x. K

(ii) con(X) is quasi-compact: Let ?/ be a maximal family of subbasic closed

subsets of con(X) with (FIP). So % consists of quasi-compact open sets and

closed subsets of X. We plan to show tlnat ¡%+ Ø (tlnen by the Alexander

subbasis theorem, con(X) is quasi-compact). Let v be the subfamíIy of fu

consisting of closed sets. Clearly Thas (FIP) and since X is quasi-compact,

F = r¡T* Ø. Clearly F is closed in X. If F ø %, then% ' =% w {F} V'ü consísts

of subbasic closed sets of con(X) with (FIP), contradicting the maximality of

% TJn.usE e %. Next we show F is irreducible. For if F = F' U F", F', F" clo-

sed in X, F' + Ø,F" + Ø, consider % u {F', F"}. This is a family of subbasic

closed subsets of con(X), and strictly contains?/, If we verify that?/ u {F',

F") has (FIP), that will contradict the maximality of ?/ and so it follows that

one of F', F" is empty, and thus F is irreducible.

Let {U1,...,U,r} c7/ -V: Now IJ1 ô... rìUr,ôF *Ø. SupposeUr n...ôU'
ô F" = Ø (krence Ut ô ... ^ Un oF' + Ø). Then we claim that for every

-2r
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{V1,..., V*} e 7/ -T Vr n...nV-nF'ÉØ. NowVr n...ôVrr, ñF* Øby

(FIP) of ?/. Vr ô ... ô V- n F : Vr n ... ñ V* ô Ur n ... .ì Ur, ô F and this is

equal to 0/r n... ôV-ôUr ô... ôU' nF') u (V, n... nV_n Ur n ... nU,,

ôF") =V1 ô... nV-n... nUr ô... nUrrnF' as Ur ô... nUr, 
^F" = Ø.

Thus Vr n...ôVroñF'=Vrn...ôV,oôUr ô... ñU'ôF'*Ø. This

proves our claim. So F is irreducible. Finally since F is a closed irreducible

subset of the spectral space, F has a (unique) generic point x, i.e., F =
Cl¡{x}. We show that for each IJ e 7/, x e U. Since x e F, clearly x is contai-

ned in every member orT Let u e ?/-vi rhen uis open in X, so u n F + Ø.

This implies x e U since F = Cl{x}. W

Proposition (1 .2.5). 
- Let X and X' be spectral spaces.

(i) For any spectral subspace Y of x, con(Y) is the subset y of con(x) with

its subspace topology.

(ii) A map f: X -+ X' is spectrat iff it is continuous in both original and

patch topologies.

(iii) For a spectral map f, X + X', f(X) is a patch in X'. ([Hoc,l], p.a5)

tPfl (i) Let Y be a spectral subspace of X. Since the inclusion map is spec-

tral, for any quasi-compact open subset V of x, V n y is quasi-compact

(open) in Y. Therefore a basis of open sets for Y is [V n y: V e ?/1, where %

is a basis of open sets for X. So each member of the subbasis of open sets for

con(Y) (which consists of the family of an quasi-compact open subset of Y
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and their complements in Y) can be obtained as S n Y, where S is quasi-

compact open in X or the complement of a quasi-compact open subset in X.

So con(Y) is the subset Y of con(X) wittr the induced topolory. @

(ii): Let f: x + x'. Let' both f: x -+ x', and f: con(x) -+ con(x') be contin-

uous. We show that f: X + X' is spectral. Let U' quasi-compact open in X'.

Since f: x -+ x' is continuous, f -1(u') is open in x. Since U' and its comple-

ment are basic open sets in con(X'), they are both clopen in con(X). There-

fore f -t(U') is clopen in con(X) as f: con(X) -+ con(X') is continuous. So that

f -1(U') is quasi-compact in con(X) and. so quasi-compact in X, because X

has a coarser topology than con(X). So f; X -+ X' is spectral. Conversely let

f: X + x' be spectral. Then f: x -+ x' is continuous We check that f:

con(X) + con(X') is continuous. Let F' be a subbasic closed subset of

con(X'). Then F' is either closed. in X', so f -1(F') is closed in X or F' is quasi-

compact open in x', so f -1(F') is quasi-compact as f is spectral, and thus in

either case f -t(F') is closed in con(x). This shows that f: con(x) + con(x') is

continuous. K

(iii): Let f: X -+ X' be spectral. Then f: con(X) + con(X')

Now con(X) is compact, so that f(X) is compact in con(X'),

con(X'). By definition, f(X) is a patch of X'. W

Proposition (1 .2.6).- A subspace Y of a spectral space

subspace of X iffit is a patch in X. ([Hoc,1], p.45)

is continuous.

thus closed in

X is a spectral
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tPfl If Y is a spectral subspace of x, then the inclusion map i: y -+ X is

spectral and so by (f .2.5), (iii), it follows that Y is a patch in X.

Conversely, Iet Y be a patch in X. Since every quasi-compact subset F of

x is closed in the Hausdorff space con(X), F n y is closed in con(y) by

(1.2.5), (i). So F n Y is quasi-compact in con(Y) and also in the coarser to-

pology of Y, that is, i-l(f) = F n Y is quasi-compact in y. Therefore for the

inclusion map i: Y + X, preimages of quasi-compact open subsets are quasi-

compact, that is, i is spectral. Hence Y is a spectral subspace of x. w

Definition. (r.2.6.1). 
-Let x, y be two points of a topological space x.

Then y (resp. x) is said to be a specialization of x (resp. generalization of y) if
y e cl[x]. Let Y be a subset of x, then let us denote by sp(y) (resp. gen(y))

the set of specializations (resp. generalizations) of all elements of y, that is,

sp(Y)= {ze X:ze Cl{y}forsomey€ Y},andgen(Ð ={ze X:ye Cl{z} for

some y € Y). We note that Y = sp(Y) for any closed Y.

Proposition (l-.2.7). 
-A spectral subspace Y of a spectral space X is clo-

sed iff it is stable under specialization, that is, Y = sp(Ð. ([Hoc,l], cor. to

Th.1)

[Pf] Since obviously CIY = sp(Ð, it sufÊces to show CtY E sp(Y). Let y e

CIY and % be the family of all quasi-compact open neighbourhoods of y. Let

V=7/ u {Y}. Then Tis a family of closed sets of con(X) which has (FIP),

since any neighbourhood of y intersects Y. By the compactness of X, aViy
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o(n%)+Ø. So there exists anxeY, suchthatx e a%,thatis, ye Cl{x}, so y

e sp(Ð. W

Definition (1.2.8). 
-A topological space is said to be quasi-Hausd.orff if

any two distinct points either have disjoint neighbouhoods or aïe in the clo-

sure of a third point.

Proposition (1.2.8.1-). 
- Every spectral space is quasi-Hausdorff. ([Hoc,1],

Cor. to Th.1, p.45)

lPfl Let x, y be two points of x, %*,%be the set of all quasi-compact open

neighbourhoods of x, y respectively. If no two neighbourhoods U in ?/*and,

Y in 7/, are disjoint, then %* w 7/, ís a family of closed sets in con(x) with

(FIP). So there exists a point ze 
^(?/xw?/r). 

Since ?/*,?/yare bases of neigh-

bourhoods of x, y respectively, x, y G Cl{zl. W

Definition (1.2.9). 
- Clearly the class of spectral spaces with spectral

maps as morphisms forms a category, which we denoteby ,g

Proposition (l-.2.9|1,). 
-In .fl arbitrary products, images, inverse limits

and fi.nite coproducts exist and all the underlying spaces are respectively

counterparts in the category .V of topological spaces with continuous maps

as morphisms. ([Hoc,].1, Th.?)

lPfl The categorical products: Let {\: i e I} be a family of spectral spaces.

Then it is easy to verify that X = fI{4: i e I} with the product topology is a
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spectral space, each projection pri: X -+ X' is spectral and X is the categori-

cal product of the \'s.
The statement about arbitrary inverse limits immediately follows.

Because images with spectral maps of spectral spaces are patches (cf.

(-J..2.5), (iii)) and a subspace is spectral iff it is a patch (cf. (1 .2.6)), spectral

images in I are spectral spaces.

Let Xt,..., \, be spectral spaces. Let X be the disjoint union of X1,..., \.
Then it can be easily shown that X is a spectral space and the inclusion

map i¡: \ + X is spectral for any j = 1,..., n. It is easy to prove that X is the

coproduct of X1,..., \. K

Remark (1.2.9.2).-If t4,i € I) is not a finite family of spectral spaces,

the disjoint union X of {\} need not be spectral. However we shall prove ar-

bit'rary coproducts, quotients, and direct limits exist in,7 in (1.8.5), (1.8.2)

and (1.3.8).

Proposition (1.2.10). 
- A topological space X is spectral iffX is isomor-

phic to a patch of a product of copies of the topological space W = {0, 1} whose

open sets are Ø, {01, and W. ([Hoc,]-1, Prop.9)

tPfl At first note that W is spectral with {{0}, W} being the open basis and

{{1}, !V} being the set of all closed irreducible subsets.

=r: Let v be the set of all spectral maps from X to w, wv be the product

space of copies of W indexed by V, and e: X -+ WV defined by e(xXf) = f(x) be
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the evaluation map. Then Wv is spectral (because it is a prod,uct of spectral

spaces) and e is spectral (because e is continuous with respect to both the or-

iginal and the patch topologies since for any x e xandf e v, (pr¡.eXx) =

f(x), where both pr¡ (the f-th projection map) and f are continuous with re-

spect to the original and patch topologies).

Next, for any two distinct points x, r of X there exists a quasi-compact

open subset U of X which contains one of x, y and not the other, since X is

T0. Sayxe U,yø U. Defineamapf:X-+Wby(U) = {0},f(X- U) = {1}.

Then since the only nonempty open sets in W are {0} and W, and f -1({0}) 
= U,

f -1(W)=X, fis spectral. Ande(xXf)=(x) =0*1=f(y)= e(yXÐ,thus e(x)+

e(y), that is, e is injective.

supposeEis aclosed subsetofxandy€ x- E. Define amap f:X-+wby

f(E) = {1}, f(x - E) = {0}, then a similar argument as above shows that f e v
and f(y) = 0 É {1} = Cl(f(E)), that is, V separates points from closed sets. Let x

e X and U be an open neighbourhood of x in X. Choose f e V such that f(x)

= prfe(x)) ø cl(f(x -u)), and let B = {y c wv: pr{r) ø cl(f(x - u)), then e(x)

e B and B = pr¡1(W - Cl(fO( - U))) is open in Wv. Since f(x) ø Cl(f(X - U)), we

getCl(f(X- U))+W, thatis, Cl((X- U)) = {1} = f(X- U), f(U) = {0}. Thus from

the injectivity of e, it follows obviously that u-t(B n e(X)) = e-l(B) n X = e-

l(ptlW - C(f(X - U))) = e-l(prr1({0})) = f 
-1({0}) 

= U. So by considering e as a

bijection of X onto e(X), we have B n e(X) = e(e-l(B n e(X))) = e(U), that is,
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e(U) is open in e(X). This shows that e is an open Dâp, and consequently e

is a homeomorphism of X onto e(X). As a result, e is a spectral embedding

of X into Wv. Thus X is isomorphic to the patch e(X) in r ¡V. ø

e: The converse is immediate from 0.2.6) taking into account that \Mvis

a spectral space by (f .2.9.1,). WN

Proposition (1 .2.1L). - A topological space is spectral iffit is an inverse li-

mit of finite T6 spaces. (Efoc,ll, Prop.1O)

lPfl Obviously any finite Tg space is quasi-compact and has an open basis

consisting of quasi-compact open subsets. Let {x1,..., xrr} = E be a closed ir-

reducible subset of a finite T6 space X, and U be the intersection of all the

open subsets of E. Since E is irreducible, U is not empty and is finite. If U

contains more than one point, lf cannot satisfiz T6 separation axiom, thus U

is a singleton and CIEU = E, that is, E has its generic point. It follows that

any finite To space is spectral. So an inverse limit of finite Tg spaces is spec-

tral by (1.2.9.1).

Conversely, let x be a spectral space, then by (1.2.10), x is isomorphic to a

patch of wv. Let e: x -+ wv be the embedding. we are going to construct

an inverse system (Xg, fg,'¡'i I) relative to the set f, the set of finite subsets of

V ordered by inclusion, such that X = inv.lim.Xs. For any S e I let ag: !fl
+ ws be the map such that for any element f c wv, ag(Ð e ws, where f(s) =

ag(CI(s), s e S, i.e., øg is the coordinate-wise projection. Define fS = øS o e, XS
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= fs(x) and for S, T e r with S g T define fg,,¡, to be the restriction of hg,1 to

X,.¡,, where hs,T : WT + Ws is a map such that hg,,¡((w¿)t e r) = (wr), e g for

(w¿)¿e T e wT. Then for any x e x, fg(e(x)) = fs,r(f¡(e(x)) for S, T e I rlrith s

ET; and forS, T, U e Iwith SETCU, fs,u=fs,r"fT,u. HenceX =

inv.lim.(Xs, fs,T; I) and so X is realized as an inverse limit of finite T6

spaces. W

From the following up to (1.2.14) we generalize the definition of con(X) to

arbitrary T6 spaces instead of spectral spaces as we did earlier in (L.2.3)

above.

Definition (1.2.rÐ. 
-Let x be a Ts space. (i) By con(x) we mean the topo-

logical space whose underlying set is X with topology for which the closed,

subsets and the quasi-compact open sets of X form a subbasis for closed

sets. A closed set in con(X) is called a patch in X. (ii) We can define a par-

tial order on x thus: If x, y e X, x < y means y € Cl{x}. (This is indeed a

partial order on X.)

Proposition (1 .2.72.7). - If a quasi-compact To space X has an open basis

consisting of quasi-compact open subsets of X stable under finite intersec-

tion, then the following are equivalent:

(i) X is spectral.

(ii) Every nonempty closed irreducible subset of X has a generic point.

-29 -
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(iii) If a family of quasi-compact open subsets of a closed subset of X has

(FIP), then it has nonempty intersection.

(iv) con(x) is compact with a basis consisting of clopen subsets.

(v) con(X) is quasi-compact.

(vi) If a family of patches in X has (FIP), then it has nonempty quasi-

compact intersection in X.

(vii) Every closed subspace is quasi-Hausdorff and every lower directed

set has a greatest lower bound in its closure. ([Hoc,l], prop.6) (Note: The

partially ordered set X is said to be lower dí.rected if for any x, y, there is z e

X such t}nat z S x, y.)

tPfl (i) <+ (ü): obvious by the definition of spectral space (1.2.1). e

(i) =r (v): By (I.2.4), we have this implication. K

(v) =+ (vi): A patch is a closed subset of con(X), so a family of patches v¡ith

(FIP) has a nonempty intersection, which is closed in the quasi-compact

space con(X), so is quasi-compact in con(X) and then also in coarser topol-

ogy of X. K

(vi) + (iv): By the Alexander Subbasis Theorem, the assertion (vi) implies

that con(X) is quasi-compact. By hypothesis, X has an open basis .% con-

sisting of quasi-compact open subsets of X closed under finite intersection.

Let con(.Ø) be the collection of subsets of X generated by the members of .%

and their complements in X under finite intersection. We claim con(.Ø ) is
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a basis for open sets of concK) and the proof of this claim would establish the

above implication. Let U be open in con(X) and x e U. Then F = X - U is clo-

sed in con(X) and x e F, i.e., Fr n ... ô Fr, = F, x ø Fi for any i, where each

Fi is closed in X or a quasi-compact open set in X. So x belongs to an open

subset of U or x belongs to the complement of a quasi-compact open subset of

X contained in U, that is, x belongs to some quasi-compact open subset of X

contained in U (as ,Ø is an open basis of X) or x belongs to the complement

of quasi-compact open set of X contained in U. Thus in any case x belongs

to some member of con(.Ø ) contained in U. So con(.Ø ) is a basis for open

sets of con(X). This completes the proof of our claim. It is clear that con(X)

is Hausdorff. So con(X) is compact. &

(iv) =+ (iii): Let Y be a closed subset of X. Then Y is a patch of X and any

quasi-compact open subset of Y is closed in con(Y). Thus a family of quasi-

compact open subsets of Y is a family of closed subsets of con(y). If this fa-

mily has (FIP) then it has nonempty intersection. B

(iii) = (ii): Let Y be a nonempty closed irreducible subset of X. Take the

family 7/or all the quasi-compact open subsets of Y, then %lnas (FIp), since

Y is irreducible. Therefore a7/* Ø. If nU contains two distinct points, then

there exists a basic open subset U of X that contains only one of them. But

then U n Y is a basic open subset of Y which is quasi-compact open, and. U
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nYø 7/,acontradictionsinceUnY elhy the definitionofZ. Thus a?/ re-

duces to a set of one point which is obviously a generic point of y. w

(i) (equivalently, (ii)¡ = (vii): Every spectral space X is quasi-Hausdorffby

(1.2.8.L). If Y is a closed subset of X, then Y is a patch in X and so y is a

spectral subspace of X. Hence Y is quasi-Hausdorff. Let E be a lower direc-

ted set. Let U, v be two relatively open subsets of E. Let x e lI, y e v. Then

there exists z e E such that z 1x, y, that is x, y e Cl{z}. Thus any neigh-

bourhood of x and y contanitas z, so that z e TJ n V. Therefore E is irreduc-

ible, and so is ClE. Let zgbe a generic point of ClE, then obviously E c CIE =

Cl{29}, so that z6 is a lower bound of E. If there exists another lower bound

z' of E, then E is contained in cl'iz'\. Then we have cl{zo} G cl{z'}, and so z'

< zo, that is, zo is the greatest lower bound of E. K

(vii) + (ii): Let Y be a nonempty closed irreducible subset of X. Since Y is

closed in X so it is quasi-Hausdorff. Let x, y be any two distinct points of Y.

Since Y is irreducible, x and y have no disjoint open neighbourhoods rela-

tive to Y and hence in X. Since X is quasi-Hausdorff, they are in the closure

of a third point z,that is, x, y eC.lfizl, so that x,y) z. Thus Yis lower direc-

ted, and so by hypothesis, there exists a greatest lower bound zg of Y in y =

ClY. Since for anyy € Y 203y, ye Cl{zo}. Therefore z6is a generic point

of Y. Wð
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Proposition (1.2.1-3). 
- Let x be a compact space, and let v= {rJi: i e I} be a

family of clopen subsets of X. LetX'be the topological space whose under-

lytng set is X and with the topology whose open subbasis is Z Then X' is

spectral iff it is T6, in which case X is the patch space of X', that is, X =

con(X'). Conversely, every spectral space arises from its patch space in this

way. ([Hoc,].1, Prop.7)

[Pfl Let T be the family of all finite intersections of the memberc of ?/

Then any member of v is a clopen subset of X, namely, compact open sub-

set of X. Obviously V is an open basis of X' and the original topology on X is

finer than the topology on X'. So any member of 7/ is quasi-compact open in

X' and X' is quasi-compact. Now if X' is Tg, then it satisfies the hypothesis

of (L.2.I2). So in that case if we can show that the patch space of X'is X,

then by (r .2.12), (iv), we know that x' is spectral. But since the patch space

of X' is compact (so HausdorfÐ and coarser than the compact (HausdorfÐ

topology on X, the patch topolog¡r on X' coincides v¡ith the topology on X. By

hypothesis, x' is Tg and so it follows that x' is spectral and con(x') - x. w

Proposition (1 .2.I4). 
- A topological space X' with a basis of quasi-

compact open sets is spectral iff its patch space is compact. (Floc,1l, Cor. to

Prop.7)

tPfl If X' is spectral then its patch space is compact by (f .2.4). Converse-

ly, suppose the patch space con(X') is compact. If we show x' is Tg, then by
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taking the family of quasi-compact open subsets of X' as {U¡: i e I} in

(1.2.13), we will have shown that X'is spectral.

Take two distinct points x, y of X'. By hypothesis, con(X') is Hausdorff.

So there exists abasic open subsetU of con(X') such thatx €IJ, ye U. Uis

a finite intersection of quasi-compact open subsets 46,..., \ of X' and the

complements of quasi-compact open subsets 86,..., B* of X'. So that there

existAiorB¡suchthatyé A¡oryø X'-Bj. Inthefirstcase,xe A¡, ye 4,
and in the second case, x ø B¡, y e B¡l thus X is Tg. Ml

Definition (1.2.15). 
-We recall the foltowing definitions:

Let€ be a category, A, B, C e Obj(V). (1o) Let f: A -+ C, g: B -+ C morph-

isms. If there existD e Obj(€), æ1:D rA, n2:D -+B suchthatf o?rL = g oTEz

andif there existUe Obj(ff), p1: UÐ4, p2: U-+B withf "pl =gop2, then

there is a unique morphism t: U -+ D such that p1 = 11 o t and p2 = 1r2 "f,.

Then D is called the fibered product (or puII bach) A *c B of A and B over C.

(rt is not diffi.cult to see that D is unique up to "canonical" isomorphism.)

(2o)Letf: C -+A,g: C +Bbemorphisms. If thereexistDe Obj(?),ir:A

Ð D, i2: B -+D suchthatit "f =í2.gandwheneverthere exist U e obj(ff),

j1 : A Ð U, j2:B -+ U with jr " f - jz" g, then there exists a unique morphism

t: D + U such that j1 - toi1, jz= t " iz. Then D is called a fibered sum (or

push out) A +c B of A and B over C. Again it is well known that A +g B is

unique up to "canonical" isomorphism.
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Note (L.2.1,5.L). 
-(i) If A, B and C are rings and u: A + C, v: B -+ C are

ring homomorphisms, then the ring {(a, b) e A x B: u(a) = v(b)} = A xC B as

a subring of A x B along \Mith fi1, Tt2 the restrictions of projections of A x B to

A and B, respectively.

(ii) If A, B and c are rings and u: c -+ A, v: c + B are ring homomorph-

isms,thenA*CB=A@CB.

(iii) If X and Y are topological spaces and Z is a closed subset of Y, a: Z -+

X is a continuous map, then X *zY = X Ua Y, where X ro y is the quotient

topological space of disjoint sum X + Y of X and Y modulo the equivalence

relation generated by, - a(z) for all z e Z (often called attøchíng spøce of Y

to X ouer the closed set Z by the contínuous mo,p cr, or adjunction space of X

and Y). Let q: x + Y -+ x uo Y be the quotient map. It is known that: (1o)

ql¡ is a homeomorphism and q(X) is closed in X r-.ro y; (2o) qlfv _ z¡ is a ho-

meomorphism and q(Y - Z) is open in X uo Y.

(iv) Let v be the category of atl the preschemes. Let x = Spec(A), y =

Spec(B), z = spec(c), where A, B, c are objects in the category of commuta-

tive rings 6 and f: C -+4, g: c + B are ring homomorphisms, then spec(A

@c B) =XxzY. ([Har], chap.III, Th.3.3)

(v) As a special case, we have Spec(A x B) - Spec(A) u Spec(B) (disjoint).

-35-
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Proposition (1 .2.16). - Let u: A -+ c, v: B -+ c be ring homomorphisms

and v surjective. Then Spec(A) +Spec(C) Spec(B) = Spec(A) uo Spec(B), where

ct = 
au. ([Fon], Th.1.4)

[Pfl Let U be a spectral space, p1: Spec(B) + U and p2: Spec(A) + U be

continuous maps such that p1 o 
uv 

= p2 o 
urr. Then there exist a ring D ',\rith

u = spec(D) and ring homomorphisms f: D -+ A, g: D -+ B with uf 
= p1, "g =

P2 (as \Me prove later in Chap.2 the existence of such a ring and homomor-

phisms independently of this theorem). Then we have f o u = g o v. So by the

universality property of A *C B there exists a unique ring homomorphism t:

D -+ A xc B and at: Spec(A xC B) + Spec(D), that is, Spec(A xC B) satisfies

the universality property. Thus Spec(A xC B) = Spec(A) +Spec(C) Spec(B). So

it sufices to prove that Spec(A xa B) = Spec(A) u o Spec(B).

Claim (1.2.1-6.1). 
- Let A, B, C, u and v as above, and D = A xc B. Let u':

D -+ B, v': D -+ A be the restrictions to D of the projection maps. set x =

Spec(A), Y = Spec(B), Z= Spec(C), W = Spec(D), o( = 
au: Z -+X,F = 

tv: Z -+y,

G' = 
âu': Y -+ W, and p' = 

âv': X + W.

v't\
D_+C,

.d/t
rl /u., lY

/
B

A X
,/k

þ',/ J \"r'\
e-X woY <- Z.

\,/
Y

w
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Then v' is a surjective homomorphism,

bedding (cf. (1.1.15.1) or (1.1.8)).

and so Ê'= uv'is a closed em-

lPfl For any a e A, u(a) e c. since v is surjective by hypothesis, there is

be B suchthatv(b) =u(a). Hence (a,b)e AxCBandv'(a,b) =prrl¡(a,b) =

a. Thus v' is surjective. B

claim (7.2.76.2). 
-Let b = Ker(v) and d. = Ker(v'), then (10) u'l¿: d -+ b is

an isomorphism of modules (subordinate to u': D + B), (20) tine cond.uctor

(is by definition the ideal Anna(BÆm(Ð) for a ring homomorphism f: A -+

B, in our case, Ann¡(B/u'(D)), contains d, and (Bo) for every h e d, the cano-

nical homomorphism Dh - Bo,(h) is an isomorphism, where D¡ is the ring

of fractions of D with the multiplicative set {hn: n € N}.

tPfl (1o): v(u'(d)) = u(v'(d)) = u(0) = 0. Thus u'(d) s b. Let b e b, then v(b) =

0, so that for any a e ker(u), (a, b) e d, and u'(a, b) = pr2l¡(a, b) = b. Thus b

c u'(d), so r,¡¡e have u'(d) = b. Next let d, d' e d, d = (a, b), d' - (a', b'). Sup-

pose u'(d) = u'(d'), thatis, b = pr2lo(a, b) = u'(a, b) = u'(d) = u'(d') = b'. Since

d, d'e d = ker(v'), â = pr, l¡(a,b) =v'(d) = 0 =v'(d') - a'. Hence d. = d', and so

u' I ¿ is a bijection of d onto b. Obviously it is an isomorphism of modules. W

(2o): since B/b = B/u'(cl), and b = Ann(B/b) : Ann(B/u'(D)), u'(d) E

Ann(B/u'(D)). Therefore d e Ann¡(B/u'(D)). W

(3o): Let e¡: Dn + Bu'(h) be the map defined by e6(d/hn¡ = u'(d)/u'(h)n.

Now d. c Ann¡(B/u'(D)) means that for any b e B and h e d, bu'(h) e u'(D),
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that is, there exists d e D such that bu'(h) = u'(d). Let b/u'(h)- be an arbi-

trary element of B..,1¡;, where h e d. Then u'(h)b/u'(h)-*1= u'(d)/u(h)m+1 .
qh(Dh). Thus e¡, is surjective. Let d/ht, d'lhm. Dn. suppose g¡(d/hn) =

eh(d'lhm). Then by definition, there exists k e N such that 0 =

u'(h)k(u'(d)u'(h)m - u'(h)tu'(d')) = u'(dh-*k - ht*kd'). obviously ¿6m+k -

6n+k e d. since h e d. By (1 .2.1G.2),u'is bijective when restricted to d, so

¿6m+k - 6n+k¿' = 0, that is, d./hm = d./ht' This shows that e¡ is injective,

and so it is a bijection. It is obviously a ring homomorphism. ø

claim (1.2.16.3).-LetPbe aprimeideal of D -A*c B withpód. Then

there exists a unique prime ideal e of B such that u'-l(e) = p with e :ó b

and Bq 
= Dp.

[Pfl Let S = D - P, S' = u'(S), then S and S' are multiplicative sets in D and

B respectively. SinceP ó d, thereexists he d- p gD - p = S. Note thatu'(h)

e b n S'. By (1 .2.16.2), u' extends to the isomorphism u'6: Dn -+ Bu,(h). By

([Bou,2], II, sec.2, no 1, Prop.2 and cor.4 to Prop.2), u'h can extend to the

isomorphism u'g: D -+ S'-18 by the change of multiplicative sets, where D¡

is regard,ed as a subring of S-1D. Since P is a prime ideal of D with p n S =

Ø, there exists a unique prime ideal P' of s-1D such that u'g-1(e') = p'. Let

Q be the prime ideal of B such that Q = Q'n B. Then e ó b. Since u'g is an

extension of the map u', .r'-1(Q) = P. Thus there exists a bijective corre-
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spondence between the prime ideals P of D such that P ó d and the prime

ideals Q of B such that Q ó b. H

Remark (7.2.76.4). 
- We know from (I.2.16.1), av' is a closed embedding

of Spec(A) to Spec(D) and v is onto by hypothesis so av is also a closed em-

bedding. Thus Spec(C) can be identified with the set of all the prime ideals

Q of B such that Q: b - ker(v), that is, a closed, subset V(b) of Spec(B). More-

over cr, = 
uu: Spec(C) -+ Spec(A) is continuous, so it is meaningful to tatk

about Spec(A) uo Spec(B).

Now we want to show Spec(A xC B) = Spec(A) vo Spec(B), that is, we want

to construct a continuous closed bijective map o: Spec(A) uo Spec(B) _+

Spec(A xc B).

As Spec(A¡ uau Spec(B) = Spec(A) +Spec(C) Spec(B) and au' 
o 

uv 
= 

uv' 
o 

url,

that is, cr' " Ê = b' o cr, by the universality of spec(A) +spec(c) spec(B), we

have a unique morphism o: Spec(A) uo Spec(B) + Spec(Axç B). Note that o

is continuous as it is a morphism.

Proposition (1.2.16.5).- o: Spec(A) uo Spec(B) + Spec(D) is a bijection.

[Pfl Let P be a prime ideal of D = A *c B. If p: d., then p corresponds to a

unique prime ideal of Spec(A) with respect to the surjective homomorphism

v': D -> A (cf. (1.1.2) or (1.1.15.1)), namely V(d) = Spec(D/d) = Spec(A). lr[ow

Spec(C) is identified with a closed subset of Spec(B) as the subspace of all

prime ideals of B which contain b, that is, the kernel of the surjective homo-
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morphism v: B -+ C. So the set of all prime ideals e of B such that e ó b is

the open subset Spec(B) - Spec(C). Thus o is the bijection from Spec(B) -

Spec(C) onto the set of all prime ideals P of D such that p ó d. g

Claim (1.2.16.6). 
- The map o is a closed map.

[Pfl Let F' be a closed subet in spec(A) uo spec(B). Let o(F') - F. lve show

thatFis closedin Spec(D). LetX = Spec(A), Y= Spec(B), Z = Spec(C), W -
Spec(D). Leti¡: x-+X+Yandiy: Y-+X+ ybe the canonical injection, p:

x+Y+xuoYbethe quotientmap. Letcr= uu: z-+x, cf,'= âv': y+w, 
B'

= 
âu': X -+ W. Then the following diagram commutes:

X
,/\.'/,ix ,/ Jr"\ B'

{\
X + Y-P-+X uoY i+ W.

sincecr'=oopoiy,wegetg'(F)=i"-1{n-1{o-1(¡')))=iy-1(p-1(F,))=p-l(F')n

Y, that is, cr'-11F¡ is ciosed in Y, since x + y is disjoint. similarly, B'(F) is

closed in x. we need show that if F c w is such that s'-l(F) is closed in y

and B'-11F) is closed in X then F is closed in W. First , since cr'-1(F) is closed

in Y = spec(B), s'-1(F) = v(I) for some ideal I of B. similarly, p,-1(F) = v(J)

for some ideai J of A. Then we have a ring homomorphism h: A xç B -+

(A/J) x (B/I) composed the canonical injection A *c B -+ A x B and the cano-

'\r'/"
Y.
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nical surjection A x B -+ (A/J) x (B/I). Then uh(spec((A/J) x (B/I)) =
ah(Spec(A/J) u Spec(B/I)) (disjoint) c W = Spec(A xg B). Next we show F =
ah(spec(A/J) u spec(B/I)). Let x e F. since rv' = x u o'(y), either x e F n x
oï x G F n o'(Y). In the first case, p'-1(*) . Þ'-1(F) = V(J), that is, jp,-11*¡ :
J. so h-1ç;*¡ : J x I, and x e uh(spec(A/J)). The steps above can be ïever-

sed. In the second. case, we have cr'-1(x) € c,('-1(F) = V(I), that is, jo,-1(x) J I,

and so x e uh(Spec(B/I). Again the steps above can be reversed. Therefore

p = 
ah(Spec(A/J) ,; uh(Spec(B/I)). Let x e Cl[y], for some y in F. Then j* ¡

j' ye F. If ye uh(Spec(A/J)), then jr: J, and so j*= jr¡J. Thus x e F.

Similarly if y e uh(Spec(B/I)), we obtain x e F. Therefore if x e Cl{y} for

some y in F then x e F. Consequently F is closed under specialization and

so by (I.2.7), F is closed in W. W
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Section 3. IQO sets and spectralification.
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Definition (1.3.1). 
-Let X ]:e a topological space. By an IQo set we mean an

open subset U of X such that for any quasi-compact Q of x, Q n U is quasi-

compact.

Remark (l-.3.1.1).-tr'inite unions and finite intersections of IQO sets are

rQo. If x is quasi-compact then every IQo set of x is quasi-compact open.

Definition (1.3.2). 
- Let X, Y be topological spaces and f: X -+ y contin-

uous. If for any IQo set E of Y, f -t(E) ir IQo in x, then f is called spectral.

Remark (L.3.2.1). 
- If x, Y are spectral spaces, the above definition of

spectral maps coincides with the concept of spectral maps defined in (1.2.1-)

[Pfl Since Y is spectral, Y is quasi-compact. So every IQo set E of y is

quasicompact open. If f: x -+ Yis spectral in the sense of (1.2.1), r-1(E) it
quasi-compact open. In order to show that f -t(n) is IQo, we must show

that its intersection with any quasi-compact open subset of X is quasi-

compact. In fact we prove that the intersection of any two quasi-compact

open subset of X is quasi-compact open. For if U, V are quasi-compact open

in X, then u, v are patches in the compact patch topology, that is, IJ, v are

closed in the patch topology. Hence U n V is closed and so compact in

con(X). Therefore U n V is quasi-compact in the (coarser) g¡ven topolog¡r on

X. Thus f is spectral in the scnse of above clefinition.
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Conversely, let X, Y be spectral, f: X -+ Y spectral in the sense of the defi-

nition above. Let E be quasi-compact open in Y. By the foregoing argrrment

which shows that in a spectral space the intersection of any two quasi-

compact open sets is quasi-compact open, E is IeO in y. Since f is spectral

as in the definition above, f -1(E) is leo. Since X is spectral, x is quasi-

compact. So by (1.3.1.1), f -t(P) is quasi-compact open in X. Thus f is spec-

tral in the sense of (1.2.1). W

Remark (1".3.2.2). 
- Let f: X -+ Y be continuous, and f(X) c u{E¡: i =

1,...,r), where E¡ is quasi-compact open in Y for any i. If for any quasi-

compact open V inY, f -lff) is IeO in X, then f is spectral.

[Pfl LetE be IQOinY. Theng = u{Ei n E: i = 1,...,û}, and eachEin Eis

quasi-compact open as E is IQO. Thus f -1(E) 
= u{f -l(Ei 

^ E): i = 1-,...,n} is

IQO as a finite union of IQO sets (cf. (1.8.1.1)).M

The following is an immediate corollary.

Corollary (1.3.2.3). 
- Let X, Y be topological spaces, y spectral and f: X

+ Y a continuous map. Then f is spectral if for any quasi-compact open V

inY, f -t(v) is Ieo in x.

Definition (1.3.3). 
- Let X, X' be topological spaces and. g: X + X' a spec_

tral embedding. Then the pair (X', g) is called a spectralificøtíon of X if X'

is spectral and if for any pair (Y, f) of a spectral space y and. a spectral map
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f: x -+ Y, there is a unique spectral map f ': x'-+ Y such thatf = f 'o g. we

say X is spectralifiable if X has a spectralification (X', g).

Theorem (1.3.4). 
- The following conditions on a topological space X are

equivalent:

(i) The space X is spectralifiable;

(ii) the space X is Tg and the IQO sets form an open basis;

(iii) the space Xis To andforanyclosed subsetA of Xandx e X- A, there

exists a spectral map f: X + W such that f(x) = {0} and f(A) = {1}, where W =

{0, t} \Mith {0} and W being nonempty open sets;

(iv) the space x can be spectrally embedded in some spectral space.

tPfl (i) =+ (iv): Obvious by definition.

(iv) =+ (ii): Let X be a spectral embedding in a spectral space X'. Since X'

is T6, X is Tg. Let U be open in X, and x e U. Then the supposition that X'

is spectral implies that there exists a quasi-compact open subset E of X'

such thatx e E andE nXEU. By(1.3.1.L), E is IQo inX'. SinceXis spec-

trally embedded in X' the preimage with respect to the embedding of E in X

which is E n x is IQo in x. So the IQo sets of x form an open basis.

(ii) =+ (iii): Let A be closed in X and x ø A. So there exists an IQO set U of

x such that x e U cx - A. Note that U n A = Ø. Define f: X -+ Wthus: f(y) =

0 ify e U and 1 ify ø U. The quasi-compact open (hence IeO) sets in W are
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Ø, {0},W. Since f -1({0}) 
= IJ and U is IQO, it follows that f is spectral, and

f(x) = 0, f(A) = {1}.

(iii) =+ (ii): It is enough to show that if u is open in x, and x e u then

there exists an IQO set E in X such that x e E c U. If U = X, then there is

nothing to prove as X is IQO and so we need only set E = X. If U ç X and x

does not belong to X - IJ, a closed set of X, there exists a spectral map f: X -+

!Vsuchthatf(x) = 0 and f(X-U) = {1}. LetE =f -1({O}). Asfis spectral,Eis

IQO in X, and clearly x e E ç U.

(ii) (or equivalentty (iii)) =+ (iv): Let V be the set of all the spectral maps f:

X -+ w. Let wv be the product of copies of w for each f e v. since w is

spectral, \Mith the product topology, wv is a spectral space. Let e be the eva-

luation map X + WV, that is, e(xXf) = prfe(x)) = f(x), then e is clearly con-

tinuous. lf x * y, x, y e x, v¡e can assume without loss of generality x e

Ct{v}. Then by (iii) there exists a spectral map fl X -+ W such that (x) = 0

and f(Cl{y}) = 1. So f(x) * f(y). This shows that e(x) * e(y), and e is injective.

Let B be open in X, and x e B. Then by (iii), there exists a spectral map f:

X-+Wsuchthatf(x) = 0 and f(X-B) = {1}. LetU= {Ée WV: pr(() = 0}. SoU

is open in the product topology on WV. Clearly e(x) e U n e(X) E e(B). So e

is an open map from X onto e(X). Finally we claim that e is spectral. For

since wv is spectral by (r.3.1.1) it sufTices to show that for any quasi-

compact open set Q of slv, 
"-1(Q) 

is IQo in x. since e is quasi-compact
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open subset in the product topology, Q is a finite union of basic open subsets

Ei = fI{Uv: v € V}, i = l,...,fl, where for each i, at most finitely many IJ,,, are

the proper open (quasi-compact open) subset {0} of the v-th factor space IV

and all others are whole factor spaces, copies of w. so e-l{E¡) = n{v-l(urr): v

e v'), where u'*, = {0} forve V'cVandV'is a finite subset of v, is afinite

intersection of IQo sets because each v is spectral and {0} is Ieo in W.

Thus 
"-1{E¡) 

is IQO by (r.8.1.1). Consequently, by (t-.8.1.t), e-l(e) = u{e-l(Ei):

i = 1,...,n) is IQO. ø

(ii¡ - (i): we have the spectral embedd.ing e: x -+ s/v in the paragraph

above. Let X' = Cl.orrl¡¡e(X). Let us restrict the range of e to X' and call this

spectral map also as e: X + X'. We claim (X', e) is the spectralifi.cation of

X. LetYbe a spectral space, f: X+ Ya spectral map. We construct a spec-

tral map f ': X'+ Y suchthat f = f 'o e. LetV'be the set of all spectral maps

from Y to W. Since Y is spectral, it satisfi.es (ii) (for when Y is spectral IQO

sets are quasi-compact open, .f. (t.3.2)), and we have a spectral embedding

e': Y -+ Wv'. Let fx: V' -+ V be defined by fx(v') = v' o f for every v' € V', and

f**: Wv -+ WVdefined by fx*(q) = q o f* for every q e Wv (cf. [Kel], pp.152-158,

Lem.3.3). Let v' e v'. Then (pr*. f*Xv') = pr*(v' o Ð = v'(f(x)) = pr¡i*¡(v') for

every x e X. So pr* o f* = pr¡1*). Next we show that fxt is spectral. Since

fx*(q) = qofx, foranyv'€ V', we get (pru, o f**Xq) = prv,(e"f*) = e(f*(v')) =

Pr¡1u')(q). Thus prv,o fx* = pr(v,) for every v' e v', and this shows that f**

-46-
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is spectral since prf(v') is spectral (the proof is similar to [Kel], Th.B.B).

Nowwe have the commutativitye'of =f** o e. Becausefor anyx e Xand v'

€ V', ((f** . eXx)Xv') = fx*(e(x)Xv') = (e(x) " fxXv') = e(xXf*(v')) = e(xXv' o Ð =

(v'. Ð(x) =v'(f(x)) =prrr'(f(x)). Thus f** oe = e'o f as we claimed. We wantto

show that e'-1 " fx* l¡, is the map f ' \¡¡e are looking for. rn order to do it, we

need show that e'(Y) = f**(X'). Since f** is spectral, it is a continuous clo-

sed map v¡ith respect to the patch topology. So f**(X') is closed in the patch

topology and hence a patch in the spectral topology on Wv'. And since e'is

a spectral embedding, e'(Y) is a patch in Wv'. So that fx*(X') =

f**(ClconlryV¡e(X)) = Cl.o,r1ryV'¡(fx* . eXX) = Clcon(WV'¡(e' . Ð(X) =

Cl.or,(WV'¡(e'(f(X)) e Cl.orrlryV')e'(Y) = e'(Y) (the second equality holds as

f** is continuous and closed). It remains to show that f ' - 
"'-1 " 

f** l¡, is an

extension of f to X'. Since f**(X') is a patch in 'Wv' and fx*(X') is contained

in the patch e'(Y), f+*(x') is a patch in e'(Y). Thus u-l l¡*qx,¡ is spectral.

Since f**: X' + fx*(X') is spectral, f is spectral. W

Proposition (l-.3.5). 
-Arbitrary coproducts of spectral spaces is spectra-

lifiable. ([Hoc,l], Th.7)

[Pfl Let {U¡: i e I} be a family of spectral spaces. Since quasi-compact

open sets in U1 are IQO and form an open basis of U1, the collection of all

IQO sets it Ui, i e f, form an open basis of the coproduct space of the family

-47 -
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X = L{Ui: i e I}. Thus by the previous theorem, the coproduct of the family

{Ui: i e I} is spectralifiable. W

Definition (1.3.6). 
- Let X be a spectral space, E an equivalence relation

on X. A spectral space structure on XÆ is called the quotient spectral

space structure with respect to ^E if (1) the quotient map p: X -+ XÆ is spec-

tral and (2) whenever g: X -+ X' is a surjective spectral map which is con-

stant on equivalence classes in X with respect to E, there exists a unique

spectral map h: X/E -+ X' such that g = h o p.

Proposition (l-.3.7). 
-Quotients 

exist in the category -3 (lH:oq1l, Th.Z)

[Pfl Let X be a spectral space, E an equivalence relation on X. Let D be the

set of all spectral maps from X to spectral spaces whose underlying sets are

subsets of X and which are constant on the equivalence classes with respect

to E. Clearly D is not empty. For any f e D, let Y¡ denote the range space of

X with respect to f. Consider lI{Y¡: f e D} which is a spectral space by

(1.2.9). Let e: x + lI{Y¡ f e D} be the evaluation map. Note that e is spec-

tral. Because prf o e = f and both f (because it is spectral) and prf are con-

tinuous in the spectral and patch topologies it follows that e is continuous in

the spectral and patch topologies. So by (1.2.5), (ii), e is spectral. Let eg: X

-+ e(X) = Y. Then Y is a patch in lI{Yr f e D} and so has a spectral space

structure. Then (Y, eg) is the quotient spectral space with respect to the

equivalence relation E. For let g: X + X' be a given surjective spectral map
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constant on every equivalence class vrith respect to E. For each point x' G X'

choose a point from every class that is contained in g-l(x'). Let us denote by

Zr t}l.e subset of X consisting of points thus chosen. Then we have the sur-

jection lnr: Zr4 X', \Mith the property h*-l(U') = Zs.,g-l(U') for any If' c X'.

Since g is spectral, it is continuous with respect to both spectral and the

patch topologies. So h*is spectral with respect to the subspace topology of X

on Zr. Thus for every g: X -+ X' we have its representative f; X -+ Yf = Zrín

D. Now f = pr¡lyo ê0, so if we define h: Y +X'as h = hg. pr¡l y,wlnereZr

defined as above and pr¡ly is the restriction of the projection map ll{Ti f e

D) + Y¡ to Y, then we have g = h " e0. This shows that (Y, e9) is the quotient

object of X with respect to E. &

Corollary (1.3.8). 
- Direct limits exist in the category ,9 (lIJoc,ll, Th.Z)

lPfl Since an arbitrary coproduct of spectral spaces is realized as a space

that can be embedded into a spectral space by (1.S.5) and quotients exist in

8bV (1.3.7), this is an immsfiate corollary. W



Let € denote the category of commutative rings with unity as objects and

unitary homomorphism as morphisms. Let -Tdenote the category of topo-

logical spaces as objects and continuous functions as morphisms. Let us

denote by I the subcategory of I consisting of spectral spaces as objects

and spectral maps as morphisms. Then spec: €-+,T is a contravariant

functor and the image of Spec is clearly contained in .9. The object of this

section is to show that every object and morphism in g is in the image un-

der Spec of an object and morphism in €, that is, Spec is a full functor from

€to9

we noticed that if A is a ring (commutative and with unity), then spec(A)

is a T6 topological space such that (i) it is quasi-compact, (ii) its quasi-

compact open subsets form an open basis, and (iii) every closed irreducible

subset has a unique generic point (cf. (1 .2.2)).

We show that given To topological space x with the properties (i), (ii) and

(iii), there is a ring A such that X = Spec(A).

We also noticed that if f: A -+ B is a ring homomorphism from A to B,

then the adjoint map af: Spec(B) -+ Spec(A) is a spectral map.

In what, follows we show that if x, X' are spectral spaces and f: x -+ x' a

spectral map then there exist rings A, A' and a homornorphism g: A' + A.
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such that X = Spec(A), X' = Spec(A') and f = 
ug 

= Spec(<p), that is, every spec-

tral space and spectral map is in the image of Spec.

It should be noticed that this does not mean there exists a contravariant

functor from I to € w}ridn is the inverse of the functor Spec. What is im-

plied is the following:

Let -Ø = [X, X' objects of I idx, idx, and f: X + X morphisms of .7). Then

,-Ø is a subcategory of 9. What is asserted is that there is a functor from -Ø

to € which is the inverse of Spec.

In what follws we also examine some examples of the following question:

Given a subcategory ,9 of .9, can we invert Spec on.Ø?

'We show that there are some subcategories of .7 on which Spec can be in-

verted and there are subcategories of I on which Spec cannot be inverted.

The process is quite technical and for a quick summary refer to (2.7.28) be-

low.
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Section l-. Topological characterization of spectral spaces.

Definition (2.11). 
- We say that the Spec: €-+ -T is inuertible on a sub-

category .fr. of I if there is a (contravariant) functor F: .g -+ € whose com-

posite with Spec is isomorphic with the inclusion functor incl fuom.fi,into .fr

that is, for any object X of .fr there are isomorphisms f(X): (Spec . FXX) -+

incl(X) and f(X'): (Spec . F) + incl(X') in9 such that for any morphism u: X

-> X' in E (X'). (Spec " FXu) = incl(u) . f(X). Then we shall also say that F

is a space preseruing functor from -Tto €.

Definition (2.1.2). 
- Let X be a spectral space and let Q(X) denote the set

of all quasi-compact open subsets of X. Define a contravariant functor Q: -9

è 8, where tsdenotes the category of sets and functions, as follows: if f: X -+

X' is a spectral ñâp, Q(f): Q(X') -+ Q(X) is defined bV Q(Ð(U') = f 
-1(U') (since

f is spectral, for any quasi-compact open subset u' of X', f -t(u') is quasi-

compact in X.)

Definition (2.1.3). 
- Let X be a spectral space, E a set and g: E -+ e(X) a

function such that g(E) is a basis for open sets of X. Then the triple G(X) =

(x, E, g) is called the spo.ce with indeterminates assocíated with x .

Let x, x' e obj(9). Then a pair (f, r) is said to be a morphísm of the

spaces with indeterrninates : (X, E,g) -+ (X', E', g') if (1o) f: X -+ X'is spec-

tral, (2o) r: E'-+ E is an injection, and (Bo) e(f).g'- g o r. The class consist-

ing of spaces with indeterminates and morphisms obviously forms a cate-

-52 -
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Bory, which we shall denote by & Let G(x) = (x, E, g), G(x') = (x', E', g') be

the spaces with indeterminates associated with X, X' respectively, and G(f)

= (f, r), where r: E' -+ E an injection. Then G is a functor from ,g into-f

which we also call a spoce preseruíng functor.

Remark (2.1-.3.1). 
- 

In what follows we show that given any field r, there

exists a contravariant functor L: I -+ € such that for any object (X, E, g) of

g,L(X, E,g) = R is a r-algebra with X = Spec(R). Furthermore, R can be

viewed as the set of functions on X whose values are polynomials over K.

our technique of inverting Spec on a subcategory .Ø of ,g is as follows:

Construct a space preserving functor G: ,-Ø + .g and use the functor L: J

-+ € to obtain the contravariant functor LG -Ø --+ € whichinverts Spec on

.-Ø. (cf. section 2 below for such applications).

Definition (2.L.4). 
- A tripte ^& = (X, {A(x)}, A) consisting of a spectral

space X, a family of integral domains {A(x): x e X} and a ring A (without

radical) isomorphic to a subring of lI{A(x): x e X} (so that every element of

A can be regarded as a function X + u{A(x): x € X}), is called a spring if (i)

foranyxe X,A(x)={a(x):ae A},(ii)foranya e A,d(ø) ={xe X:a(x)*0}is

quasi-compact open in X, and (iii) {d(a): a e A} is a basis for open sets of X.

Let 
^4, = (X, {A(x)}, A),.4, = (X', [A'(x')], A') be springs, f: X -+ X' a spectral

map and h: A' + A a ring homomorphism. Then for any x e x, there is a
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ring homomorphism hx: A'(f(x)) + A(x) defined by h*(a'(f(x)) = h(a'Xx). Let

us denote by v*: A + A(x) defined by v*(a) = a(x). Define v'*, similarly.

A triple (fl {h*}, h), where f: x + X' is a spectral ffiâp, h: A' -+ A is a ring

homomorphism and {h*}*e¡ is defined as above is said to be a morphism of

springs from 
^4. = (X, {A(x)}, A) to ^4.'= 

(X', {A'(x')}, A') if for any x e X, V* o h

= 4 " V'q*; and for any a' eA', f -l(d(a')) 
= d(h(a')).

This definition of morphisms makes the class of springs into a category

denoted by -ú

Example (2.1.5). 
- Let (X, E, g) e Obj(.f) and K an arbitrary field. Let

{t(e): e e E} be algebraically independent indeterminates over K. Let K =

r[t(e): ee E]. Foranyee E,T(e):X+Kisdefinedthus:T(eXx) =t(e)if xe

g(e) and 0 if x É g(e). Let Kx denote the commutative ring of all functions

from X to K. Let A = r[T(e): e e E] be the subring of KX generated by the

functions{T(e):e e E}.

Let S e Abe anonzero monomialin T(e)'s, say, S = î,T(er)...T(e¡), î,e r-
{0}. Then for x e X, S(x) = }"t(er)...t(e¡) (nonzero monomial in the ind.epen-

dent indeterminates {t(e)} over r) or 0 according as x e g(e1).ì ... n g(e¡) or

not. Thus {x e x: s(x) + 0} = g(er) n ... ô g(e¡), which is quasi-compact open

in X because by the hypothesis g(E) is an open basis consisting of quasi-

compact open subsets of X.
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Let a be an arbitrary element of A, u = r,{L0,1)...(;,i¡)T(e;,t)...T(ej,ir): j =

1,...,k). For any x e x the value a(x) is a pol¡momial in t(e)'s, that is, a finite

sum of monomials in t(e)'s. So it follows from above remark that d(a) = {x

e X: a(x) * 0) is a finite union of quasi-compact open sets in X. Hence it is a

quasi-compact open subset of X. For later use define z(a) = X - d(a). Since

{S(e): e e E} is an open basis of X and each d(a) is a finite union of finite inte-

rsections of g(e)'s, {d(a): a eA} is an open basis of X.

Let A(x) be the subring of K generated by {t(e): e e E, x e g(e)} for any x

e x. Each A(x) is clearly an integral domain. For each x e x, we have a

ring homomorphism vx: A + A(x), defined by v*(T(e)) = T(eXx). It is easily

seen that v*(T(e1)T(e2)) = v*(T(er)v*(T(ez)). Thus vx can be extended to a

ring homomorphism A + II{A(x): x e X}. Since A(x) is an integral domain

ker(v*) = P* (say) is a prime ideal of A.

Next, we verify that A is isomorphic to a subring of fI{A(x): x e x}. we

check for any a e A - {0} there exists x e x such that v*(a) = a(x) * 0. Now a

is of the form r'{À6,r1...0,¡)T(e¡,r)"'T(ej,ir): j = 1,...,k} and since a + o, there

exists x e X such that I{f,0,r)...0,i;)T(ej,rXx) ... T(ej,irX*): j = 1,...,k}

0...(ø). By definition v*(a) = I{Lq¡.r)...(j,i¡)vx(T(e¡,1))...v*(T(e¡,¡.)): j
1,...,kXx) = I{À6,r)...ti,¡)T(ej,rXx) ... T(ej,irX*): j = 1,...,k} * 0 by (ø). So if we

define the evaluation map v: A -+ IJ{A(x): x e X} by v(a) = fl{v*(a): x e X}, v

is clearly an injective ring homomorphism.
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Thus starting with a spectral space X and a field K \rye obtain a triple (X,

{A(x)}, A) where {A(x)} is a family of integral domains indexed by X and A

is a ring which is isomorphic to a subring of lJ{A(x): x e X}. Clearly A is a

ring without radical. We call this spring the associated spring of (X, E, g),

and this association is indeed a functor from .-f to ,M Piut for our problem of

inverting Spec on a subcategory of E we need construct a different functor

H (cf. (2.117) below) based on this association.

Proposition (2.1.6). 
- Let 

^4. = (X, {A(x)}, A) be a spring. Then X is homeo_

morphic to a dense patch of Spec(A).

[Pf] Define g: x + spec(A) as follows: For x e x, tet <p(x) be the subset of A

consisting of all functions in A which vanish at x, that is, g(x) = {a e A: a(x)

= 0). Then q(x) is obviously a prime ideal of A. In Spec(A), a basic open set

could be taken, without loss of generality, to be D(a) = {tpl e Spec(A): a e p},

a e A (cf. (1.1.3)). We have following equivalent assertions: g(x) e D(a) <+ a

e g(x) <+ a(x) * 0 e x e d(a). So g-l{n{a)) = d(a), which is quasi-compact

open, and <p(d(a)) = D(a) n <p(X). This shows that <p is a spectral and open

map of X onto g(X). Thus <p(X) is a patch in Spec(A).

Next let x, y € x, x + y. Since x is T6, one of them is not in the closure of

the other, say x ø Cl{y}. Then there exists a basic quasi-compact open set

u(x) such that y ø u(x) = g(e), x e u(x) for some e e E. we have t(e) = T(eXx)



Chapter 2. Topological cha¡acterization.

+ T(eXy) = 0, thus T(e) ø <p(x) while T(e) e g(y), that is, rp(x) + <p(V). So <p is in-

jective. Consequently rp is a spectral embedding.

Let D(a) be a basic open set in Spec(A) for some nonzero element a of A.

Then there exists x e X such that a(x) * 0, that is, g(x) e D(a) by the previous

equivalent assertions. So <p(X) is dense in Spec(A). W

Remark (2.1.6.1). 
- Note q-lff(a)) = z(a).

Proposition (2.1.7). 
- Let (X, A) be a pair of a spectral space X and a ring

A without radical such that X is homeomorphic to a dense patch of Spec(A).

Let for each x e X, A(x) = Nj*, where j* is x regarded as an ideal of A (cf.

(1.1.1)). Note that A(x) is an integral domain. Then (x, {A(x)}, A) is a

spring.

lPfl From the definition of A(x) = A/jx, it is clear that the condition (i) for

springs is satisfied. Next, for any a e A, D(a) is quasi-compact open in

spec(A). Let rp be the homeomorphism of X to a dense patch of spec(A), then

D(a) n q(x) is quasi-compact open in g(x). so d(a) = e-l(D(a)) is quasi-

compact open in X, this is the condition (ii). Since {D(a): a e A} is an open

basis for Spec(A), {d(a): a e A} is an open basis of X. Hence condition (iii) of

definition of the springs is satisfied. &n

Note (2.1.7.r)' 
- We notice that the pair (f, h) consisting of a spectral

map f: X -+ x' and a ring homomorphism h: A' + A determines a spring

morphism (f, {h*}, h) from (X, {A(x)}, A) to (x', {A'(x'), A'), where for each x

-57 -
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e X, hx is the canonical homomorphism from A'(x') = A'/h-l(j*) to A(x) =

A/j*. Thus if we define pairs tike (f, h) as morphisms (X, A) -à (X', A') then

we get a category equivalent to .Å

Remark (2.7.7.2). 
- Thus we may refer to a spring either as a triple (x,

{A(x)}, A) as in (2.1 .4), or equivalently as a pair (x, A) as in (2.r.7) above.

Definition (2.1.8).- Let^4, = (X, {A(x)}, A) be a spring. .A is said to be

affine if X = Spec(A).

Proposition (2.1-.9). 
- A spring A is affine if the condition (*) below is sa-

tisfied:

(*) For each {a, br,..., br} c A, ur{d(b;): i = 1,...,n} = d(a) + a e rad(b1,...,

brr)

[Pfl Let A satisfy (*). suppose .4. is not affine. Then g(X) ç spec(A),

where g is defined as in the proof of (2.1.6). Since q(X) is a patch in Spec(A)

(cf. (1.2.5),(iii)), q(X) is a proper closed set in the patch topology of Spec(A).

Recall that quasi-compact open sets and closed sets of Spec(A) form a subba-

sis for closed sets of the patch topology of Spec(A), thus <p(X) being a proper

closed set implies that there exist {a, b1,..., brr} E A such that <p(X) e V(a) u

(u{D(bt¡; i = 1,...,n}) ç Spec(A)... (I).

Sincegisinjective,X=,p-l{.p{X))=g-l(V(a))u(u{.p-1(o(b¡)):i=1,...,n})=

z(a) v (u{d(bi): i = 1,...,n}) (cf. the proof of (2.r.2)), so that u{d(b¡): i = 1,...,n} :
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d(a). Then by (*), a e rad(b1, ..., brr), so V(a) : V(b¡): i = 1,...,n) = Spec(A) -

u{D(bi): i = 1,...,n}, a contradiction to (I). @

Defrnition (2.110). 
- Let A = (X, {A(x)}, A) be a spring. If A(x) are all

subrings of some common ring K (in which case each element of A can be

interpreted as a function on X) and having only a finite numbers of distinct

values, then we say that the spring Ais símple.

Note (2.1.10.1). 
- Let X be a spectral space, .4. = (X, {A(x)}, A) its associa-

ted spring. We note that all A(x) are subrings of K and A is a ring of func-

tions on X into K and each element a eA as a function on X has only a finite

number of distinct values in K. So the associated spring of a spectral space

is simple.

Proposition (2.1.11). 
-If a springA = (x, {A(x)}, A)is simple and satis-

fies the following condition (**), then it is affine:

(*t) d(a) c d(b) :+ a € rad(b). ([Hoc,l], Prop.l)

tPfl It suffices to show that (**) implies the condition (*) in (2.1.g). Let a,

b1,..., b' e A such that d(a) c d(b1) u ... L/ d(bn). In order to show that a e

rad(b1,..., br) it is enough to show that there exist 6 6 (br,..., br) such that

d(b) = d(b1) \-/...\J d(brr). By finite induction it suffices to show it in the case n

- 2. Now each b¡, j = 1,,2, cant be interpreted as a function on X \Mith only a

frnite number of distinct values in the ring K since ^4, is simple. Let

Wj(l),..., Wj(kj) denote the mutually disjoint subsets of d(b¡) on which b¡ has

-59-



Section L. Topological characterization of spectral spaces. -60-

mutually different constant r'onzero values. Choose from wj(ij), ij = 1,...,

k¡, a Point yw¡fïi. Also choose from every nonempty intersection of \M1(i1)

and W2(i2) a point yw1{i1),w2{t2). Let Y be the set of all of these y's so cho-

sen. Then Y is a finite subset of X and b1, b2 do not vanish at any point in Y.

Let a e lbr, b2J (which designates the unitary subring generated by br,b2 in

A), anda = ob1 + Fbz +þyb2, where ø, F,yare integers. Then a as afunc-

tion on x vanishes outside d(bl) u d(b2). Let x e d(r) - d(b2). Thus we observe

thatdependingonxe d(bl) - d(b2), x e d(b2) - d(bl) orx € d(b1) nd(bz) theva-

lue of a at x is the same as its value at some point in Y of the form ywr(it),

Ywz(iz) or Ywr(ir),W26) respectively. Let ¡ - (br,b2) n [b1, b2]. We note that

J is a subset stable under addition and multiplication. Now b1b2 e J and

btb2(r) = br(y)bz(y) * 0 for anyy c Y. Therefore brbrø g(y). Thusfor anyye

Y the prime ideal q(y) ¿ J. So by ([Bou,2], II, sec.1, no 1, prop.2), u{g(y): y e

Y) Ð J. Let c e J - u{q(y): yc Y}. WeveriSr d(c) = d(b1) u d(b2). Let c - qbr

+ Fbz + yblbr and x e d(br) u d(b2). Now c(x) = c(y) for some y e yby the

earlier observation. Since c e J - u{<p(y): y € Y}, c(y) * 0. So c(x) * 0. There-

forex e d(c). If xø d(b1) u d(bz)thenbl(x), b2(x) areboth0 and so c(x) = 0,

that is , x ø d(c). Thus d(c) = d(br) u d(br). W

Definition (zJ.fÐ. 
-Let 

(X, {A(x)}, A) be a spring, a, b e A \Mith d(a) c

d(b) and A*(x) the field of fractions of A(x). Then ø#ó is the element in

fI{A*(x): x e X} such that a#b(x) = 0 ifx ø d(b) and a(x/b(x) ifx e d(b).
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Propositio:¡- (2.7.13). 
- Let.4. = (X, {A(x)}, A) be a spring. Then A satisfies

(**) if A satisfi.es the following condition (***):

(***) if a, b eA, d(a) c d(b) implies that there exists a nonnegative integer

n such that an#b e A.

[Pfl Since A is isomorphic to a subring of fl{A(x): x e X}, \üe may identify

every element of A with its image in lI{A(x): x e X}. Now b(a"+bXx) = 0 if x

ê d(b), at(x) if x e d(b). since by hypothesis a#b e A, this implies a e

rad6). æ¡

Remark (2.1'.14). 
- In summary, starting with a spectral space x we

associated with it a spring (X, {A(x)}, A). In general X is only homeomor-

phic to a dense patch of Spec(A). So we are interested in constructing a

spring (x, {A'(x'), A'), where the underlying space is the space x which we

started with and is actually homeomorphic to Spec(A'), that is, an affrne

spring whose underlying space is X. So we developed suffi.cient conditions

for a spring to be affine. First we introduced (*) in (2.L.9). Then we showed

that simplicity along with (**) implies affrneness (cf. (2.1.11)). Finally we

show that if A. is a simple and satisfres (***), then we can "extend" the ring

A to M(A) so that M(A) satisfies (*'i{'<*) without disturbing X and in this man-

ner obtain an afTïne spring.

Definition (2.1.15). 
- Let ^4, = (X, {A(x)}, A), A' = (X', {A'(x')}, A') be

springs. If X=X'andfor anyx e X, A(x) cA'(x) e A*(x) thenA'is said to

-61
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be an ex,tension of.A. Let B be a subset of fl{A*(x): x e X} and C = A[B] be the

subring of lI{A*(x): x e X} generated by A and B, A identiflred as subring of

fI{A*(x): x e X}. If for any c e c, d(c) is quasi-compact open in x, then we

say that B induces an extensíon of the spring A. Let for every x e x, C(x) =

{c(x): c e C}. Note that (X, {C(x)}, C) need not be a spring, because d(c) may

not be quasi-compact open in X.

Remark (2.1.15.1). 
- Let A, be a spring as above, a, b e A, d(a) c d(b), so

that a#b is defined. Does there exist an integer n such that a#b induces an

extension of A? In what follows we will show for a given spring ^{ there is

an extension M(A) such that whatever be a, b e M(A) with d(a) c d(b), there

exists an integer n such that an#b c M(A). This would imply in the case of

a spectral space X for the associated spring ^4. = (X, {A(x)}, A) such an ex-

tension exists and so satisfi.es (***). Furthermore it is simple. So by (2.1.11)

and (2.1.13) we obtain an affîne spring M(A) = (X, M(A)), that is, X =

Spec(M(A)) (cf. (2.I.26.Ð). In what follows we describe the construction of

M(A).

Definition. (2.L.16). 
-Let,4, = (X, {A(x)}, A) be a spring. Let o(X) = {(y, x)

e X x X: x e Cl(y)Ì. By an index v on .4. \Ã/e mean a family of additive valua-

tions vn: A*(y) è Ø, where Z ís tlne ordered group of integers with respect to

addition and for any p = (y, x) € o(X) subject to the following conditions (I1),

(12):
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(I1)Forall a eAandp = (y, x) e o(X) such thaty e d(a),0 <vn(a(y)) with

equality iff a(x) + 0.

(I2)Forall ae Athere is anintegerN > 0 such thatifp = (y, x) e o'(x) and

y e d(a), then vn(a(y)) < N.

A spring A. together with an index v for it is called an ind,exed, spring,

and is denoted by (4, v).

A morphism of indexed springs (4, v) to (.4.', v') is a morphism of springs

(f' h) with the additional condition vn(h(a'Xv)) = v'¡1n¡(a'(f(x))), where a' €

A', p = (y, x) e o(X) with y e d(h(a')), and f(p) = (f(y), f(x)) (as is easily ver-

ified that (f x fl161¡)) E o(X')).

Indexed springs and morphisms of indexed springs form a category,

which we denote by ß.

Remark (2.r.L7).- The spring associated with a spectrar space (descri-

bed in (2.1.5)) can be made into an indexed spring thus:

Recall that the spring associated to a spectral space X is the triple (X,

{A(x)}, A) defined as follows: Let r be a fixed field and K = r[t(e): e e E],

where {t(e): e e E} is a family of indeterminates not belonging to rc, indexed

by E. Let A = r[T(e): e e E], where T(e): X -+ K is the function defined by

T(eXx)=t(e)ifxe g(e)and0if xe g(e). LetA(x)=r<[t(e): ee E,xe g(e)] =

{a(x): a eA}. Note thatifp = (y, x) e o'(X), thenx e g(e) implies y e g(e). So

A(x) c A(y), and for any a e A, a(y) can be regarded as a polynomial over



Section 1. Topological characterization of spectral spaces. -64-

A(x) with indeterminates {t(e): e e Eo}, where En = {e e E: y e g(e), x ø g(e)}.

In this case a(x) occurs as the constant term of the polynomial a(y) in

A(xXt(e): e e Enl = A(y). Now define v as follows: Let p = (y, x) e o(X), v = (vp)

be the family of functions vp: A*(y) ->Ø,p e o(X) which assigns to each a(y)

e A(y) the order of a(y) regarding it as a polynomial over A(x) with indeter-

minates {t(e): e e En} (i.e., the minimal degree of nonzero monomials in

a(y)).

First we show that for any p = (y, x) e o(x), vn: A(y) -> zis the additive va-

Iuation with the properties:

(i)vp(T(e)(x)) =vn(t(e)) = 0ifx eg(e), andl if xø g{e).

(ii) For distinct monomials s1,..., s,, inA(y) and for elements ì.1,...,1,,rof

r - {0}, vn(I{Àisi: i - 1,...,n}) = min{vn(s¡): i = 1,...,û}.

Furthermore vp extends to vn: A*(y) -+ Øby vn(a(f)/b(y)) = vn(a(V)) - vo(b(f))

for a(y/b(y) e A*(y) - {0}.

tPfl BV definition, for any two elements a(y), b(y) of A(y), vn(a(V)b(V)) =

vn(a(v)) + vnft(v)), vn((a + bXV)) = min{vp(a), vn(b)}, vo(a(v)) > 0, and vn(l) = 0.

So that vn is an additive valuation. It is also verifi.ed that vn extends to A*(y)

--> ØwiL}r the definition: for an element a(y)/b(y) of A*(y), vn(a(y)/b(y)) = vn(a) -

vnft).

second, in order to show that the spring.A, = (x, {A(x)}, A) associated with

a spectral space X is an indexed spring with the index v defined as above, it
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is sufficient to show that for any p = (y, x) € o(X), vn defined above is indeed

an index on the spring A which satisfi.es the conditions (I1), (I2) in the de-

fintion Q.f .5). Note that any a e A is of the form

I{Iç;,r)...6,¡)T(e;,r)...T(e;,¡): j = 1,..., k}, thus if ye d(a), a(y) can be written

in the form a(y) = a(x) + F1s1 + ... * Fmsm, where Lr¡, e A(x) and s¡is a mono-

mial in T(er,rXy),..., T(ê1,irXy),..., T(ei,rXy),..., T(ei,ij)(y),... , T(err,1)(y),...,

and T(err,irrXy), 1" = 1,..., m, where m is taken to be the greatest degree of

nonzero monomials s1.

(I1): clearly for any a e A and p = (y, x) e o'(x), we obtain vn(a(v)) > o.

Since the order of a pol5momial a(y) is 0 iffits constant term a(x) is nonzero,

that is, iff x e d(a). (I2): Take N in (I2) as m, that is, the greatest degree of

nonzero monomials in a(y). W

Now we shall defi.ne a covariant functor H: *F-+ .% wlnícln preserves the

space.

Remark and Definition (2.1 .1- 8). - Let G(X) = (X, E, g) e Obj(-F). Then by

(2.1.I7), we can assign to G(X) an indexed spring (4, v) = ((X, {A(x)}, A), v).

Let H be this correspondence H: -F-+.gt and denote bV H(G(X)) this corre-

sponding indexed spring. Let G(X) = (X, E, g), G(X') = (X', E', g') e Obj(-f)

and (f, r) a morphism in the category -fr Let ho: K' -+ K be a r-
homomorphism defined by h6(t(e')) = t(r(e')), where K = r[t(e): e e E] and K'

= r[t(e'): e' e E']. Note that r: E' -+ E is an injection. Let 11: K + A (resp. q':
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K' -+ A) be defined by q(t(e)) = T(e) (resp. n'(t(e')) = T(e')). If we defrne a

function h: A' -+ A byh o I' = 1'¡ o h6, then h is a r-homomorphism which ar-

ises from ho. Furthermore since the family {t(e'): e' e E'} generates K', ob-

viously h is unique. Conversely by defining a function h0 with the identities

above, we have a unique r-homomorphism ho. Next if we define h by h. q'

= tl " h0. Then h is a unique r-homomorphism from A' to A (uniqueness is

shown by the fact that {T(e'): e' e E'} generates A').

We show that (f, {h*}, h) is a spring morphism. It is not difficult to show

that v": A -+ A(x), V'¡1*)i A' -+ A'(f(x)) and h* are ring homomorphisms, so

the proofs are omitted. So we show that v* o h = h* o V'fl*) and. f -t(d(u')) 
=

d(h(a')). Since h(T(e')) = h(n'(t(e'))) = tlhs(t(e')) = n(t(r(e')) = T(r(e')), we ob-

tain(v*"hXT(e')) =T(r(e')Xx) =l- if xe g(r(e')) =f -1(g'(e')) 
= (Q(Ð "g'Xe') and

0ifxø g(r(e'))=f -l(g'(e')). And(h*.v'¡1*¡(T(e'))=h*(T(e'Xf(x))) =h*(1)=1

if f(x) c g'(e') and h*(0) = 0 if f(x) e g'(e'). So that Vx o h = h* o V'f(*),by the

equivalent relations x € g(r(e')) <+ x € f -1(g'("')) ... (#) induced by e(fl o g, =

I o r. Next by observing d(T(e)) = g(e), d(T(e1)...T(er,)) = g(e1) ô ... n g(e,r) and

for distinct nonzero monomials s1,..., s' in K and r1,...,Àr, c K - {0}, we have

d(n(L{X.1si: i -1,...,n})) =u{d(q(si)): i=1,...,n}. Sof -1(d(f(e'))) =f -11g'qe'¡¡ 
=

Q(Ð(g'(e'))=g(r(e'))=d(T(r(e')))=d(tl(t(r(e'))))=d(q(ho(t(e')))=d(h(rl'(t(e'))))

= d(h(T(e'))), and thus for any a' € A', f -l(d(a')) 
= d(h(a')). Therefore the

triple (f, {h*}, h) is a morphism of springs. Finally we show (f, {h*}, h) is a
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morphism of indexed spring. We need to show vn(h(a'XV) = v'(*)(a'((y)) for

every a' e A' and p - (y, x) e o(x). Take T(e') e A'. Since h(T(e')) =

h(n'(t(e'))) =q(ho(t(e'))) =q(t(r(e'))) = T(r(e')), vn(h(T(e')Xy)) = 0 if xe g(r(e'))

and L if x e g(r(e')). But again by (#), v'¡1n;(t(e')(f(y))) takes the same value

as vn(h(T(e')Xy)), so that vn(T(e')Xv)) = v'¡in¡(T(e'Xf(y))). Since T(e')'s gener-

ate A', this suffices to prove that (f,{h*}, h) is a morphism of indexed

springs. As a consequence, \¡r'e can associate to a morphism (f, r) of the ca-

tegory *f a morphism (f, {h*}, h) of the category .Ø, thus we have established

a functor H: -9+ ß by defining H(f, r) = (f, {hx}, h).

Remark (2.1.18.1). 
- Since every element a e A is a pol¡momial with re-

spect to {T(e): e e E} over K, say a = I,{[jT(ej,1)...T(e;,tr): j = 1,...,r], its value

at anyx e X cannot exceed n.max[!: j = ]_,...,î]. This shows thatfor anyX

e Obj(9 ), H(G(X)) is a simple indexed spring.

Definition (2.1.19). 
- Let (4, v) and (.4.', v') be indexed springs \Mith .4.' an

extension of A. So for any y eY, A(y) e A'(y) E A*(y) and for each p = (y, x)

e o'(X), vp, v'p are additive valuations on A*(y). If vn = v'n for any p e o(X)

then we say the indexed spring (A', v') is a u-extension of the indexed

spring (.4,, v).

Proposition (2.1 .20).- Let (,4., v) be an indexed spring, and let a, b e A be

such that d(a) c d(b) (so a#b is defined) then the following conditions on the

pair (a, b) are equivalent.
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(i) for each p = (y,x) € o(X) with y e d(a), we have vn(a) > vn(b), and equality

holds only if x e d(b).

(ii) a#b induces a v-extension of (.4., v). ([Hoc,l], Th.B)

tPfl (ii) + (i): Let v be an index for ^A,[a#b]. Let a, b e A such that d(a) c

d(b)' p = (y, x) e o(X) and y ed(a). Now vn((a*bXv)) > 0 as v is an index on

A[a#b]. Since y e d(a) Ç d(b), (a#bXv) = a(y/b(y). So 0 <vn((a#bXv)) = vn(a(v))

- vn(b(v)), that is, vn(a(v)) > vnft(v)). If vn(a(v)) = vp(b(y)) then vo((a#bXr)) = 0,

so by the condition (Ir) for the index, (a#bXx) * 0; this implies x e d(a) and

soxe d(b). K

(i) + (ii): First we prove that ^A,[a#b] is a spring extension of ^4.. We need

show that for any r e A[a#b], d(r) is quasi-compact open. Let r = I{ala#b)i:

i = 0,1,...,r], where â¡€ A,andc=btr=E{aiaibt-i:i =0,1,...,n}. Thenc

eA. ForanyxeX, eithera(x) = 0 or*0. If a(x) -0, thenr(x) - ag(x), so r(x)

* 0 is equivalent to as(x) + 0. And if a(x) * 0, then d(a) c d(b) yields b(x) * 0,

and so r(x) * 0 is equivalent to c(x) + 0, that is, d(r) = (d(c) n d(a)) u (d(ap n

z(a)); by a similar argument we have also d(r) = (d(c) n d(b)) u (d(ao) n z(b)).

It results that d(r) is a patch as it is a finite union of finite intersections of

quasi-compact open sets. It follows immediately that d(r) is quasi-compact.

fn order to show that d(r) is open, it suffices to show that z(r) is closed in

X, for which we show that z(r) is a patch and Cl¡z(r) = sp(z(r)), then apply

(L.2.7) to get the result required.
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Now by an argument similar to the one for d(r) above, vre obtain two iden-

tities for z(r), z(r) - (z(c) n d(b)) u (z(aù n z(b)) ... (1), and z(r) = (z(c) n d(a)) u

(z(aù n z(a)) ... (2). It follows that z(r) is a patch. Let y e z(r) and x e Ct{y}.

If we show that x e z(r) then (I.2.7) can be applied to conclude that z(r) is

closed in X. Since z(aù o z(a) is closed in X, if y e z(ao) ¡ z(a) then x e Cl{y}

z(ao) n z(a) c z(r) by (2). So assume the other case that y e z(c) n d(a) c

z(c) a d(b). IVe check the two cases when x e d(b) and x e z(b). Since z(c) n

d(b) is closed in d(b), so if x e d(b), x e Cl{y} n d(b) l:z(c) n d(b) cz(r). Next

if x e z(b), by the condition (i), we have vn(a) > vn(b), where p = (y, x) e o'(X).

Thenr(y) = 0implies 0 = L{ai(yXa(y)'/b(v)i) rin."ye d(a) c d(b). Therefore

by multiplyrng b(y)ton both hand sides, we have o = I{aly)a(y)ib(y)"-i. Atrd

thus - b(v)"as(v) = I{ai(y)a(y)ib(y)"-i. So operating vp on both hand sides, we

have vn(- b(v)"as(r)) = vp(I{aly)a(y¡i6çt)^-i). No* the left hand side is nvnft)

+ vn(as), and the right hand side is min{vn(ai) + ivn(a) + (n - i)vp(b): i = 1,...,n}

> min(vn(ai) + nvn(b): i = 1,...,n) > nvo(b), since vn(ai) > 0 for any i, and vn(a) >

vnft). so nvnft) + vn(as) > nvn(b), and vn(a6) > 0. Thus by (Ir), a6(x) = 0 and so

x e z(ao). Therefore x e z(ao) n z(b) c. z(r). Consequently, every possible

case we have x e z(r). This completes the proof that a#b induces a spring

extension of 4..

It remains to show that v is an index for ^A,[a#b]. We need show for any r

e A[a#b] and v e d(r), vn(r) > 0, with equality iffr(x) * 0 (for (I1)), and there
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is an integer N > 0 such that vn(r) < N (for (I2)). At first recall that d(r) =

d(c) n d(b)) u (d(ao) n z(b)) and c = b'r e A. Since y e d(r) by assumption, y

e d(c)nd(b))orye d(as)nz(b). Supposeye d(c)ôd(b). Bytheformof c,

the assertionthat for anyu e X, c(u) * 0 implies u e d(bn) = d(b), thatis, d(c)

c d(bn). so c#bn has meaning and equals to r. Now vn(r(v)) = vn(c(y)) -

vn{b"(v)) > 0 andequalityonlyif x e d(bn) = d(b) by(i). Butxe d(b)is equiva-

lent to vnft(V)) = 0, so that vo(r(I)) = 0 also implies vn(c(f)) = 0, that is, x e d(c).

Therefore if vn(r(v)) = 0, then x e d(b) n d(c) e d(r). Let vn(c(l)) < N. Then

vn((v)) = vn(c(v)) - vo{b"(v)) = vn(c(y)) - nvn(b(v)) < Nbecause vnft(v)) > 0 byb e

A. Next suppose y e d(a6) n z(b). Then from the form of r, r(y) = ao(y).

Clearlyvn(r(f)) = vp(ao(y)) > 0 with equality onlyif x e d(as). Since y e d(as) n

z(b) 
=z(b), 

x e Cl{y} c z(b). Thus ifvn(r(y)) = 0, then x e d(as) n z(b) c d(r).

Therefore in every possible case, v satisfies the condition of being an index

on A[a#b]. @

Definition (2.L.2L). 
- Let (^4., v) = ((X, {A(x)}, A), v) be an indexed spring.

Define G(A,v)= {(a,b)c AxA: a#b induces av-extension of (A,v)}. In

other words, by (2.L.20), G(4, v) = {(a, b) e A x A: d(a) E d(b) and for an} p =

(y, 
") 

e o(X), vn(a(v)) > vnft(v)) with equality only if x e d(b)). Let us denote by

(41, v) the indexed spring whose underlying ring is A1 = A[a#b: (a, b) e

G(.4, v)1.
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Note (2.7.2L.1). 
-'We can show by a similar argument as in (2.]-20) and

with the finite induction that the ind.exed spring (.{1, o) is well defined and

it is a v-extension of (^4, v). For, every element r e A1 belongs to some

Alar#br,..., arr#brr], a subring of A1 generated by a finite number of a¡#b¡,

where (ai, bi) e G(.4., v). Note also that G(^41,v) ô (A x A) - G(4, v).

Definition (2.1,.22). 
- When a v-extension (^4.n, v) of (^4, v), has been defi-

ned, let (At*l, v) be the v-extension of (.4., v) ind,uced bv G(At, v). And let

M(4, v) be the v-extension induced by the union of the underlying rings An

of all the .4.n. Denote bV M(A) the underlying ring of M(4, v).

Note (2.1.22.7). 
- ft is easy to show for any n, G(At+l, .rr) ,-.,l (At x At) =

G(At, v), this implies that {(An, v): n = 0,1,...} is an ascend,ing chain of v-

extensions of (.4., v) with respect to inclusion. Therefore for any a, b e M(A),

there exists an integer n ) 0 such that a, b e An, and it is possible to think of

the v-extension M(^A., v) of (^4', v).

Proposition (2.1.23). 
- If an indexed spring (4, v) is simple, so is M(4, v).

([Hoc,1], Th.4)

lPfl If a, b e A have finite image, so does a#b, because every element r e

M(A) is a polylnomial of a finte number of a¡#bl over A, where (ai, b¡) e

G(At, v) for some n for every i. so each r e M(A) has only finitely many va-

lues on X. ffi

Proposition (2.L .24).-M(4, v) satisfies the condition (***) of (2.1_.18).

-77
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[Pfl Let a, b e M(A) and d(a) E d(b), then a, b e An for some n, and there

exists N e N, such that for any p = (y,x) e o(x), vnft(r)) < N. we want to

show (aN+r, b) e G(^An, v). Because, then .N*l#b e At*1 c M(A). First

d(aN*l) = d(a) E d(b), ro uN*l#b is defined. It remains to show that

lro{.N*1{y))>vnft(v)) witfrequalityonlyif x e d(b). Ifvo(a(r)) = 0 thenxe d(a)

c dft) because v is an index on (.4., v). So vn(b(v)) = 0, and x e d(b). Therefore

on{"N*l{y¡¡ = vn(b(v)) and x e d(b). If vn(a(r)) * 0, then vn(a(v)) ) 1. So vnft(t))

< N < N + 1 < (N + l)vn(a(v)) = vp(aN*l(y)). This shows (uN*l, b) e G(A", v) by

(1.3.18). Consequently aN*l#b e M(A) and so there exists c e M(A) such

that aN+1 = bc, that is, a e rad(b), which is to be shown. W

Proposition (2.1 .25). - Let (f, h) be a morphism of indexed springs from

(.4., v) to (A', v'). Let (a', b') e G(.A,',v'). Then (h(a'), h(b')) e G(4, v) and

there is a unique extension h1 of h to a homomorphism from A'[a'#b'] to

A[h(a')#h(b')] such that h1(a'#b') - h(a')#h(b') and for this hl, (f, h1) is a

morphism of indexed springs from (A[h(a')#h(b')], v) to (.4.'[a'#b'], v').

Moreover if (Ar, v), (.4.'1,v') extend (4, v), (^A.'[a'#b'], v') respectively and h2:

A'1- At is a homomorphism agreeing with h on A' such that (f, h2) is a

morphism of indexed springs from (41, v) to (A'1, v), then h(a')#h(b') = Ar

and h2(a'#b') - h(a')#h(b'). ([Hoc,]"1, Prop.2)

lPfl By (a', b') e G(A', v'), we get v'¡qn¡(a'(y)) > v'¡10¡(b'(y)) with equality

only if flx) e d(b'), where f(p) = (f(x), f(y)) e o'CK) and f(y) e d(a'). Since (fl h)
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is a morphism of indexed springs, f(y) e d(a') implies y = f 
-l(d(a')) 

=

d(h(a')) and also f(x) e d(b') implies x € f -l(dft') 
= d(h(b')). So vn(h(a')) =

v'1¡o¡(a') > v'¡1n¡(b'y)) = voft(b')) with equality x e d(h(b')). Therefore (h(a'),

h(b')) e G(.4., v). Next by defining hr: A'[a'#b'] + A[h(a')#h(b')] by h1(a') =

a'and h1(a'#b') = h(a')#h(b'), we have an extension h, of h to A'[a'#b']. Ob-

serving that a'#b' generates A'[a'#b'], the uniqueness follows. M

Definition (2.1.26). 
- Let (.4., v), (A', v') be indexed springs. Let (f, h) a

morphism from (.4', v) to (^4.', v'). Then by the previous proposition, \¡¡e have

a homomorphism h2: M(A') + M(A) which is an extension of h. Let M(f, h)

= (f, h2). Then M is a space preserving functor g+.ß w]nic]n assigns to a

simple indexed spring an affine spring.

Remark (2.7.26.7). 
- Let X be a spectral space. We defïned H(G(X)) in

(2.7.1,7) and we observed in (2.1.18) that H(G(X)) is an indexed simple

spring. so by (2.r.23), M(H(G(X))) is also an indexed simple spring. on the

other hand, by (2.1.24), M(H(G(X))) satisfies the condition (**.*¡) of (2.1.13), so

that it satisfies the condition (**) in (2.t.11) and it results from (2.1.11) that

M(H(G(X))) = ((X, {M(AXx)}, M(A), v) is affine, that is, X = Spec(M(A)).

Conclusion (2.1 .27). - Let F: ß --> € be the forgetful functor defined by

f(.4., v) = A, where (.4., v) = ((X, {A(x)}, A), v) constructed in (2.1.18). Then the

functor L referred in (2.1.3.1) can be taken as FMH: *F--+ €. ([Hoc,l], Th.5)

(2.1.28). 
- Description of the categories and functors involved.
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(Io) E: The category of sets and functions.

(Zo) V: The category of commutative rings and ring homomorphisms.

(3o) -7. The category of topological spaces and, continuous maps.

(4o) 9: The category of spectral spaces and spectral maps.

(5o) Q : 9-+ 8 t]ne contravariant functor such that

Q(X) = {U c X: U is quasi-compact and open} for X e Obj(.9),

Q(Ð: Q(X') + Q(X) defined. bv Q(ÍXU') = f 
-t(U'), for f e HomgdX, X').

(6o) o: I + 8 t]ne covariant functor such that

o(X) = {(y, x) e X x X: x e Cl{v}} for X e Obj(.9),

o(Ð: o(X) + o(X') defined by o(Ð = (f(y), f(x)) for f e IJorn5dx, X').

(7o) *F: The category of spaces with indeterminates.

Objects: G(X) = (X, E, g), where X is a spectra space, E is a set and g: E -+

Q(X) the function whose image g(E) is an open basis of X.

Morphisms: (f, r): (X, E, g) + (X', E', g'), where f: X -+ X' is a spectral

ffiâp, r: E' -+ E is an injective function such that g o r = Q(Ð . g'.

(8o) G : I -+ ,-f t]ne functor such that:

G(X) = (X, E, g), for X e Obj(Ø,

G(f) = (f, r): (X, E, g) + (X', E', g').

(9o) ø: The category of springs and spring morphisms.

Objects: springs.4. = (X, {A(x)}, A).
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Morphisms: (f, {hx}, h): ,4. Ð A', where f: X -+ X' is a spectral ffiâp, h: A'

-+ A is a ring homomorphism such that f -l(d(r')) 
= d(h(a')), and h*: A'(flx))

-+ A(x) such that \(a'(f(x))) = h(a'Xx) (or v* o h = 4 " u'f(*)) for any a'€ A'.

(10o) ,%: Tlne category of indexed springs and those morphisms.

Objects: indexed spring (.4., v) = ((X, {A(x)}, A), v).

Morphisms: (f, h): (4, v) -) (A', v'), where (f, {h*}, h) is a spring morph-

ism with the property vn(h(a'Xy)) = v¡qn¡(a(f(v))), for a' € A', p = (y, x) e o(X),

y e d(h(a')) and f(p) = (f(y), f(x)) e o'(X').

(11o) H: -F-+.91 the covariant functor whose image objects are simple

such that H(G(X)) = ((X, [A:K], A), v), defined in (2.1.18) and with the proper-

ty (*) in (2.1.9), for G(X) = (X, E, g).

H(f' r) = (f, {hx}, h): G(x) -+ G(x'), where h: A' -+ A is defined as follows:

Let K = r[t(e): e e E], K' = r[t'(e'): e' e E'], and n: K-+ A = r[T(e): e e E]

(resp. Tl': K' -) A' = r[T'(e'): e' e E']) be a r-homomorphism n(t(e)) = T(e)

(resp. rl'(t'(e')) = T'(e')) and for each x e X, h* is defined as above. We have

a r-homomorphism h6: K' -+ K such that h6(t'(e')) = t(r(e')). Then we obtain

a unique r-homomorphism h: A' -+ A such that h o T'ì' = q o hg, and (f, {}k},

h) = H(f, r) is a morphism of indexed spring.

(12o) M:.91 -+.% Llne covariant functor such that M(A,v) is defined as in

Q.f .22) and with the property (**) in (2.1.11).



Section 1. Topological characterization of spectral spaces. -76-

M(f, h) = (f, h*): M(,A.,v) -+ M(.A',v'), where h* is the extension of the r-

homomorphism h to M(A') -+ M(A).

(13o) F : ,Ø -+€ the forgetfirl functor such that

F(^A',v) = F((X, {A(x)}, A),v) = A for (Á,,v) e Obj(,%),

F(f, h) = h: A' -+ A for (f, h) e Hom((A,,v), (^&',v)).

(1+o¡ Relation of categories (on the next sheet).
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Categories Objects

9X

JG

-F G(X) = (X, E, g) space with indeterminates

JH

.ø H(G(X)) = (.&, v) = ((X, {A(x)}, A), v) simple indexed spring

Jnr

.% M(H(G(X))) = (M(A), v) = ((X, {M(AXx)}, M(A)), v) indexed

J spring simple and affine

€ LG(X) = F(M(H(G(X)))) = M(A) the ring whose spectrum is X

J Spec

I Spec(LG(X)) = Spec(M(A)) = X spectral space

(15o) Construction (on the next sheet).
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o(x)-(o(r))- o(x') o'(Ð(y, x) = (f(y), f(x)) e o(x'), where (y, x) € o(x)

o1 1o

X ----+(Ð------+ X' given spectral spaces X, X' and spectral map f

Q J J Q Q(Ð (U') =d"rf 
-t(u'), 

Q(Ð(d(a') = d(h(a')) (va'e A')

Q(X) <_ 
(Q(f)) _ Q(X')

g 1 1g' g(E) (resp. g'(E')) an open subbasis of X (resp. X')

E <-fr)-E'

t J J t t(e') is an indeterminate corresponding to g(e')

K <- -(ho)- 1ç' = r[t(e'): e' e E'], ho(t(e')) =u"rt(r(e'))

q J Jq'r'¡'(t(e')) =T(e'), T(e'Xx') =1 (x' e g'(e')), 0 (x' ø g'(e'))

A <-ft)-A' = r[T(e'): e' e E'], h oTl, = n .hO

v*J Ju'*, v'*,(T(e')) =uu, t(e'Xx')

fl*E¡A(x) (- flx,eX,A'(x') :fl*=¡h*, A(x) = r[t(e): e e E, x e g(e)]

JJ
lI*s ¡A[a#b](x)<-flx,e X,A' Ia'#b'] (x' )

JJ
[*. xM(AXx) <- [*'. x'M(A'Xx')

JJ
ilxexA*(x) ç-fl¡,€x,A'*(x'), A*(x) is the fietd of fractions of A(x)

v J J v' v = (vn), vn: A(y) --+Z,p = (y, x) e oQÇ

ø.ø
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Section 2. Some applications.

Theorem (2.2.1). 
- Every spectral space and morphism is in the image of

Spec (In other words, Spec: €-+ I is a full functor). ([Hoc,l], Th.6)

[Pfl Let X, X' be spectral spaces, f: X -+ X' a spectral map and id¡, id*,

are identity maps of X and X'respectively. Then ."9t= {X, X'; id¡, id¡,, f} is a

subcategory of I Define G: .fr,-+ ,9 thus: G(X) = (X, Q(X) x Q(X'), gx),

where gx: Q(x) x Q(X') -+ Q(X) defined by gx(U, lr') = U, for U e Q(X) and U'

e Q(X'). G(X') = (X', Q(X'), g¡'), where Bx = idq6'). Let r: Q(X') -+ Q(X) x

Q(X') defined by r(V') = (f 
-1(V'), V') for V' e Q(X'). Let G(Ð = (f, r), G(idx) =

idcfxl and G(idx'¡ = idç1x'). Then obviously gx(Q(X) x Q(X')) = Q(X) is an

open basis of X and Sv(Q(X')) = Q(X') is an open basis of X', so that G(X),

G(X') e Obj(,?). It is not difficult to show that r is injective and Q(Ð " gX,=

gX o r, so that (f, r) is a morphism in the category ,fr Therefore G is a space

preserving functor. Hence Spec is invertible on .9, and so the functor Spec

is a full functor from € to I W

Proposition (2.2.2). 
- On the following subcategories 4of -f Spec is in-

vertible.

(i) The subcategory .% of all spectral spaces and surjective spectral

map s.

(ii) For each spectral space X, the subcategory q, of I consisting of spec-

tral subspaces and inclusions of these. ([Hoc,L], Th.6)

-79 -



Section 2. Some applications. -80-

[Pf] (i): Let X, X' e Obj(.9Q and f: X + X' be the surjective spectral map.

Then Q(Ð is injective. For let IJ', V' € Q(X') such that Q(Ð(U') = Q(Ð(V'),

then we obtain U' = f(f 
-1(U')) 

= f(Q(Ðg')) = f(Q(Ð(V')) = f(f 
-1ff')) 

= V'by the

surjectivity of f.

Define Go:.%-->,9 by Gs(X) = (X, Q(X), ide(x)), G'(X') = (X', Q(X'),

idqx')). Then evidently Gg(X), Gg(X') e Obj(-P). Since obviously idet*l . Q(f)

= Q(Ð. idql¡'¡,, G0(Ð = (f, Q(Ð) is a morphism in,-F. Hence Gg is a space pre-

serving functor from .%to ,-F. Therefore Spec is invertible on 9n.

(ii): Let Y e Obj(.ft), and f: Y -+ X the inclusion map. Defïne Gl(Y) = (Y,

Q(X), Q(f)), G1(X) = (X, Q(X), idql¡¡), and G1(Ð = (f, ide6)). For any U e

Qü), U EYcx, so QCO-l(ul = [V'e Q(x): Q(Ðm = f 
-1(v) 

= U] *Ø since Ue

Qto-lrul. Hence Q(fl is surjective, and Q(Ð(Q(Ð) = Q(Ð is an open basis of

Y consisting of quasi-compact open subsets of Y. Therefore G1(Ð e Obj(,,F).

Obviously Gl(X) e Obj(-r). Since Q(Ð . idef*l = Q(Ð . ide(*), hence G1(Ð is a

morphism in ,fr So G1 is a space preserving functor from 4, to -F and so

Spec is invertible on -%. W

Proposition (2.2.3). 
- The functor Spec is not invertible on the following

subcategoñes .91of .q í = 2,3,4,5.

(i) Subcategory .92 containing a spectral space X, a one-point space P,

and maps f: P -+ X, f ': X -+ P such that f(P) is not a closed point in X.
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(ii) Subcategory ..Øg containing a spectral space Y with generic point, a

family {X} of spectral spaces with generic point such that the cardinalities

of the spaces in the family are not bounded, and for each X, a map from Y to

X which preserves generic points.

(iii) Subcategory ,-Ø4 conLaining a one-point space P, spectral spaces X, Y

with generic points, a map taking P to the generic point of Y, and two dis-

tinct maps from Y to X preserving generic points.

(iv) For any spectral space X containing a point xg such that Card(Cl{xo})

2 3, the subcategory 9s of ,9 whose objects are spectral subspaces of X and

whose morphisms are embeddings (as opposed to inclusions) of these into

others. ([Hoc,l], Prop.S)

lPfl We prove these assertions in the following manner: Assume the ex-

istence of a space preserving functor G1 from the subcategories gito ,9. So

LG¡ is a space preserving functor from ,%ito Ø Since the functor from € to

the full subcategory Jrof € whose objects are the reduced rings which car-

ries every commutative ring to its reduction is space preserving, wê obtain

a fuctor T¡ from ftto ,i( Since every commutative ring and its reduction

have the same prime spectrum, the functor from ,-Øito.,4ris space preserv-

ing and inverts Spec. We show that this leads to a contradiction.

(i): Since P is a one-point space, f 'o f - idp and T2(P) is a field. Now

iùr2f9 = T2(idp) =Tz(f'o f) = T2(f). T2(f '), so that T2(Ð: T2(X) + T2(P) is a
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surjective homomorphism. Identifying X with Spec(T2(X)) and P with

Spec(T2G)), we can identify Spec (T2(Ð) with f. Then bv (1.1.15.1), f(P) =

Spec(T2(ÐXSpec(T2(P))) = uTz(Ð(Spec(T2(P))) is a closed subset of x =

Spec(T2(X)), a contradiction.

(ii): Let f: Y -+ X be a morphism preserving generic point, Ts: 4 -+ -,/
the functor inverting Spec on 4. Since Y and X are To spaces there is one

and only one generic point (say¡ y6 (resp. x6) of Y (resp. X). Then f(I6) = *o

by hypothesis. On the other hand for any h e Y, y e Cl{ys} = Vfiro) (where

jro is the prime ideal corresponding to y6), so that jro - ^{jv 
e T3(Y): y ey} =

rad(O) = {0} since T3(Ð e Obj(-y) is reduced. Therefore T3(Ð-1(0) = {0}, that

is, T3(fl is injective. But since X can be taken v¡ith arbitrary cardinality,

Ts(X) can have arbitrary large cardinality, a contradiction.

(iii): Let fur P + Y be a map which sends P to the generic point y9 of y.

Letf, f ': Y+ xbe maps preserving genericpoints and f *f'. Letx6 bethe

generic point of X. Then (f . fyXP) = f(fs) - x0 = f '(xs) = (f 'o fyxp), thus f . f1.

= f '" f1'. Hence T4(fy) " T4(fl = T¿(f . &) = T4(f '. ft.) = T4(fy). T4(f '). As a

special case of (ii), T4(fy) is injective. Therefore T4(Ð = T¿(f ') and thus f =

(Spec " T4XÐ = (Spec. T4Xf ') = f ', a contradiction.

(iv): We can reduce this case to the case that x = {x, x', x"}, where x', x" €

Cl[x]. LetY= {x, x'}, f: Y+ Xthe inclusionüâp, f ': Y-+ Xthe map defi-
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ned by f '(x) - x, f '(x') = x" and fp: {x} -+ X defined by f(x) = x. Then obvious-

ly,f * f '. By applying (iii) vve have a contradiction f =f '. W

Remark (2.2.4.1). 
- Our next object is to characteri ze t]ne topological

spaces underlying preschemes.

At this point refer to (2.1.13.1) about inverting Spec on subcategories of g

We also note an additional remark which would be useful in the proof of the

characterization theorem (2.2.70).

Remark (2.2.4.2). 
- Let G be a space presersving functor from a subcate-

goty .fr of I to ,9. Then for any object x of .9,, the corresponding ring

LG(X) has the following property:

Let b e LG(X) be such that b does not vanish at any point of X, then b is in-

vertible in LG(X).

lPfl Since b does not vanish at any point of X, d(b) = Df(b) = X = D(1). And

so 1#b =L/h. For any p = (y, x) e o(x), vn(l(v)) is clearly 0 and voft(v)) = 0 as

whenever x e Cl{y}, x e X = d(b). So thatvn(l(V)) > vnft(V)). Thus by (2.1.20),

l-#b = l"/b induces a v-extension of MHG(X) = ((X, {LG(xXx)}, LG(X), v). But

MHG(X) is maximal with respect to v-extensions, so l-lb e FMHG(x) =

LG(X). @

Definition (2.2.5). 
- A topological space is callled locally spectral if it has

a cover by open spectral subspaces. ([Hoc,l], p.58)
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Propositiorl (2.2.6). 
-A locally spectral space X is Tg and its open spec-

tral subspaces form an open basis. ([Hoc,l], p.58)

[Pfl Let ts be the family of all open spectral subspaces of X. Let U be open

in X and x e U. Since ts is a cover of X, there is Y e ts such that x e Y.

Then U n Yis openrelative to Yand x e Un Y. Since Yis spectral, ithas

an open basis consisting of quasi-compact open subsets which are spectral

(because they are patches, .f. (t .2.6)). So there is an open spectral subspace

ZofY suchthatxeZcUnYe U(notet]natZe ts). W!

Note (2.2.7). 
- Let X be a topological space. A preslteaf F on X consists

of:

(i) For any open subset U of X, F assigns a set F(U).

(ii) For all pairs of open sets U1 cUz there exists a map, called restric-

tion, res¡¡r,UI:F(Uz) -+ F(U1) with the following axioms being satisfied:

(a) resg,g = idpg).

(b) If Ur G Uz c Ur, then t.tug,Ul = resu2,U1 o resU3,U2. ([Mum], I, sec.4,

Def.1)

Let F1, F2 be presheaves on X, a map (of sheaves) g: F, + Fz is a collection

of maps <p(U): F1(U) -+ F2(U) for each open U such that if U c V, q(U) .

rêsLv,U = rês2y,g . g(V), where resl and res2 are the restriction maps of F1

and F2 respectively. ([Mum], I, sec.4, Def.2)
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A presheaf F is called a sheaf if for every collection {Ui} of open sets in X

with U = u{Ui}, the map nresU,Uit F(U) + [I¡F(U;) is injective and its image

is the set on which il"u*Ur,,ri..,Uj: iliF(U¡) +[Ii,jF(U, n U¡) and

Iljrutuj,ui^uj: IIjF(Uj) + lIi;F(Ut n U¡) agree.

We may write f(U, F) for F(U), and call it the set of sections of F ouer U.

f(X, F) is called the set of global sections of F.

Let F be a sheaf on X, and x e X. The collection of all F(U), where each U

is open and containing x, is a direct system ordered by inclusion and we

can form Fr = dir.lim.F(U), which is called t]ne støIk of F at x. ([Mum], I,

sec.4, Example (1))

Let F6 be a presheaf on X. Then there is a sheaf F and a map f: F6 -+ F

such that if g: Fo -+ F' is any map with F' being a sheaf, there is a unique

map h: F + F' such that g = h o f. We call this process a sheafi,fi.cøtion of

the presheaf Fs and F the sheaf associøted to the presheaf F0. ([Mum], I,

sec.4, Example (2))

Suppose for all U, F(U) is a group (resp. drg, field, etc.) and each restric-

tion map is a group (resp. drg, field, etc.) homomorphism. Then F is cal-

led a sheaf of groups (resp. rings, fields, etc.). In this case F* is a group

(resp. 
"irg, 

field, etc.). ([Mum], f, sec.4, p.37)

Let X be a toplogical space, E an open basis of X. Then we call F' the

presheaf on W with ualues in G, a family of objects F'(U) e Obj(€) for each U
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e B and a family of morphisms (in €) resy,11: F'(V) + F'(U) defined for any

U,Ve B, UgV, with 
"êsU,U =idp,(U) and resry,U = resy,I¡orêsW,Vif U,V,

W e B, U c V G W. Then we can associate to F' a presheaf Fo on Xin the

following \ryay:

For any open subset U of X, Fo(U) = inv.lim.VF'Cv), where V belongs to

the subset [V € ts: V c U] ofts ordered by inclusion. IfU e ts then the cano-

nical morphism Fo(U) + F'(U) is an isomorphism. ([Gro-Die], (0,8.2.1)).

Definition (2.2.8). 
- A ringed space is a pair (x, q) consisting of a topo-

logical space X and a sheaf of rings ûxin X. X is called the underlyíng

space of the ringed space (x,q) and G* is called its structure sheaf. A

ringed space (x, &) is called a locally ringed spd.ce if for each point x e x
the stalk &¡,* of & i, a local ring. 'When there is no confusion (X, Q) is

written as X briefly.

A morphism of rínged, spaces ff, f#): (X, eì -+ (Y, G) bccasionally writ-

ten as Ð is a pair of continuous map f: X -+ Y and a map f , & + f*&¡ of

sheaves of rings onY, wherc f*q is the sheaf on Y defined thus: for any

open set V contained in Y, f-4,<ff) = aÃff -ttr)). A rnorphism of ringed

spaces Cf, dl is said to be an isomorphism if f is a homeomorphism and d

is an isomorphism of sheaves. A rnorphísa (f, fl "f 
locølly rínged, spaces

is a morphism of ringed spaces such that for each point x e X, f*#: &,tG) +

G¡,* is a local ring homomorphism, i.e., {ç#)-1{nn*) c Mr,*¡, where M*

-86-



Chapter 2. Topological cha¡acterization. -87 -

(resp. Mfl*¡) is the maximal ideal of the local ring û¡* (resp. &,X*).
([Har], II, sec.S, Def., p.72)

Definition (2.2.9). 
- An affine scheme is a locally ringed space (x, GÃ)

which is isomorphic to (Spec(A), 4spec(R)) for some ring A. A prescheme is

a locally ringed space (X, q) in which every point has an open neighbour-

hood U such that the topological space U, together with the restricted sheaf

q.lu is an affine scheme.

A morphísm of preschemes (f, t#) ir that of locally ringed spaces.

Ãn open subscheme (U, 4s) of a prescheme (X, &) ¡s such that U is an

open subset of X and structure sheaf 4t i, isomorphic to the restriction

q,lTJ of the structure sheaf of X. An open ímmersion is a morphism f: X -+

Y, which induces an isomorphism of (X, 4) wittr an open subscheme of (Y,

q). A closed subscheme (Y, &) of a prescheme (X, Q) is a prescheme, to-

gether with a morphism (i, i#)r Y r x, where Y is a closed subset of X and i

is the inclusion ffiâp, and the induced map i#: e¡-+ i*Aç of sheaves on X is

surjective. A closed immersion is a morphism f: (X, eì + (Y, Q) which

induces an isomorphism of (Y, fr) onto a closed subscheme of (X, ü¡).

([Har], II, sec.3, Def., p.85).

Let f: x + Y be a morphism of preschemes. Tte díagonal morphísm is

the unique morphism Â: X -+ X xy X whose composition with both projec-

tions is identity map of X, p1 . Â = pzo Â = idx. We say that the morphism is
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sepd'rated if the diagonal morphism Â is a closed immersion. In that case

we also say X is separated ouer Y. A prescheme X is said to be a scheme lf
it is separated over Spec(Z). (lHarl, If, sec.4, p.g6)

Now we are ready to state and prove the main theorem of this section.

Theorem (2.2.10). 
- A topological space is the underlying space of a

prescheme iffit is locally spectral. ([Hoc,].1, Th.g)

[Pfl From the definition of the prescheme, it is clear that the underlying

space of a prescheme is locally spectral.

Conversely, let X be a locally spectral space. Bv Q.2.6), it is T6, and the

set B of all the open spectral subspaces of X is an open basis of X. We con-

struct in what follows a prescheme structure (X, Q) on X and show that for

any Y e B, (Y, 4xlY) is an affine scheme and thus (x, q) is a prescheme.

The proof is long and technical so we break it into several steps. Let r be an

arbitrary field and {t(U): U e ts} a family of algebraically independent inde-

terminates over r (disjoint from r<) indexed by ts. Let e = r(t(U): U ets). We

propose to construct a prescheme structure on X over r, then sections are

functions with values in O.

step L. consider the subcategory .g of ,9 defined as follows: obj(-Ø) =ts

and morphisms are inclusion maps (then .Øis clearly a subcategory or,y).

LetYe E, E(Y) = {Ue ts: UnYe ts} andBy: E(9 +Qry)definedbygvru)

= LI n Y. This map is well-defined since U n Y e ts by the definition of E(Ð,
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= U nY. This map is well-defined since U nYe B bythe definition of E(Y),

and so U n Y is quasi-compact open in Y. We show that gy is the retraction

of E(Y) over Q(Y). For let U € Q(Y), then U n Y = lf is quasi-compact open

in the open spectral subspace Y of X, so that U n Y = U is an open spectral

subspace of X, thus U e E(Y) and (gyIQü)XU) = lI n Y = U. This shows

that gy lQ(Y) = ide(v). Therefore By is the retraction of E(Y) over Q(Y).

Note that gyis thus surjective and {U ets: U € Qff)} c Qü). So gv(p(Ð) It

an open basis of Y consisting of quasi-compact open subsets of Y. Therefore

\¡¡e can define G(Ð = (Y, E(Y), gy) e Obj(Æ).

Let Y' e ts and f: Y -+ Y' the inclusion spectral map. Then clearly, Q(Y)

E Q(Y') and Q(Ð: Qff'¡ -+ Q(Y) is the retraction of Q(Y') over Q(Y). As

G(Y), G(Y') = (Y', E(Y'), gy,) is an object of ,t We observe that E(y') c
E(Y). For let u' e E(Y'), then u', IJ' n Y' e E. since f is spectral, IJ' ôy =

IJ' n Y' n Y = f 
-1(u' .ì Y') is quasi-compact open in y. Thus II n y is an

open spectral subspace in Y and so is in X. Therefore lf' ô Y e E and IJ' e

E(Y).

Let r¡: E(Y') + E(Y) be the inclusion map. Obviously gy o r¡ = Q(Ð o gy,,

so that B(Ð = (f, r¡) is a morphism in ,-f from G(Y) to G(Y') corresponding to

f and thus G: .9 -+ *F ís a space preserving functor.

step 2. Let CI be as in the beginning of the proof, and Y e obj(.9 ). (Note

that if U e E(Y) then Un Ye ts.) Let FHG(Y) = r[Ty(II): U e E(Y)], where
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Then for any U e E(Y), Ty(U) is a function on Y with values in Q. Thus by

(2.L.27), LG = FMHG is a space preserving functor from ,-Ø to Ø which in-

verts Spec on.Ø.

Let Y' e obi(,9) be such that Y c Y'. We show that Ty(U) is the restric-

tion to Y of a function of the form Ty'(U') in FHG(Y') = ri[Tv,(U'): U'e

E(Y')1. Since U e E(Ð, By(U) = tI n Y e Qff) s Qü'). Since gy, is onto, it

follows that there exists U' e E(Y') such that gy(U') = gy(U). Consider the

function Ty'(U') and take y e Y. If y e gvru) - gy,(U'), then we obtain

Tr(UXv) = t(UnÐ andT"'(U'Xv) = t(U'n Y) =t(Un Y) -Ty(UXr). Andif

I ø Bv(U), then Ty(UXv) = 0 = Ty'(U'Xv). Therefore Ty'(U') lY = Ty(U). As

a consesquence of this observation, for any a e FHG(Y), there exists an ele-

ment a' e FHG(Y') such that a' lY = â, regarding a (resp. a') as a function

from Y (resp. Y') into CI.

Step 3. By (2.t.26.!) and (2.1 .27), t]ne functor LG: -Ø -+ € inverts Spec on

-ø. The functor thus defînes a presheaf structure on the basis ts of X,

which, by [Gro-Die],(0,3.2.1-), can be extended to a sheaf structure G¡onx

because by the remark in Step 2, elements of LG(Ð, Y e B, can be regarded

as functions on Y v¡ith values in O. Thus if V is an open subset of X and a e

Ç)v, then a e f(Y, aì itthere is a covering tvi e ts: i e Il ofV such that for

any i, a lvi e LG(V¡). (If V is quasi-compact open in X, the above covering

can be taken to be a fi.nite covering. We also note that for any Y e B, LG(Y)
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can be taken to be a finite covering. We also note that for any Y e B, LG(Y)

E f(Y, 4). So from Step 2 it follows that the restriction homomorphism

from f(Y', &) tol(Y, ôX) carries FHG(Y') onto FHG(Ð.

conuentíon- Let Y c Y'. Note that elements of f(Y, q) (resp. f(y', q))

are functions fromY(resp. Y') to O. Foranyelementae Yextend ato a

function from Y' to O by setting a lY' - Y = 0. Let us denote the extended

function also by a. Notice however a may not belong to f(Y, e). rn what

follows we adopt this convention. Let a e f(Y, â¡), a'e f(y', e). By aa' we

mean the function from Y' to Ç) defrned by extending a to a function from Y'

to O in the above manner and taking its product with a'.

step 4. since for any Y e B, Y is spectral, (Y, LG(Y)) is an affine spring.

We assert that for any Y e B, (Y, f(Y, 4)) is an affrne spring, or equivalent-

ly, (Y, {fy}, f(Y, 4)) is an affine spring, where f, = {a(y): a e f(Y,e)} for

any y e Y. In order to show that it is a spring, wê need to prove that (i) for

any a e f(Y, Q), d(a) = { y e Y: a(y) * 0} is quasi-compact open in Y and (ii)

{d(a): a e f(Y, 4)} is an open basis of Y.

By Step 3 above we have a fi.nite open covering [Vre E: i = 1,...,n] of y

such that for any i, a lV¡ e LG(Vi). Since Vi is a spectral space, V, =

LG(Vi) and so d(alV1) = D(alVl) is quasi-compact openinY. So the finite

union of them d(a) = u{d(alV¡): i = 1,...,n} is quasi-compact openinY. For

(ii), observing that Y is spectral, we know that {d(a): a e LG(Y)} forms an

-91
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open basis of Y. Since LG(Y) G f(Y, Q), d(a): ae f(Y, Q)l arso forms an

open basis of Y.

Next, we show that (Y, l(Y, tXÐ is a simple spring. Let a e f(y, e). We

note that for any y € Y, a(y) e o. Since a e f(Y, &¡), there is a finite cover-

ing {vie B:ie I} of Y such that alvie LG(vi). For each i, LG(v¡) is

simple, so the image of a l\ is finite subset of O. Therefore (Y, f(Y, 4)) is

simple.

Finally v¡e prove that (Y, f(Y, 4)) satisfies the condition (**) of (2.1.11).

Let a, a' e f(Y, &¡) and d(a) E d(a'). By the definition of f(Y, G¡), t]nerc exist

coverings tV¡ e B: i = 1,...,n) and {U¡ e ts: j = 1,...,m} of Y such that aly,.
LG(Vi) for any i, a' I V¡ e LG(U¡) for any j, and Y = uiujfVi n U¡: i = 1,...,n, j

= 1,...,m). For this frner covering, alV¡^ Uj,a'lVi nU¡ e 
"ç(Vin 

U¡) and

d(alvi n u¡) c d(a'lvt n u;). More generally, given any finite number of

elements â1,..., a' e f(Y, Q) we may assume that there is a suitably fine fi-

nite covering [Vi e ts: i = 1,...,m] of Y such that a¡ lV¡, a¡ lVi e LG(\) and

d(a¡lV¡)c d(a¡lVi)fori = 1,...,m, j =1,...,r. Let tY¡e ts: i = 1,...,n) be such

a fine covering of Y. Then a lY¡, a' lYi e LG(\) and d(a l\) e d(a' l\) for

all i. Hence for each i we can choose an integer Ni > 0 such that

(a lYi)n#(a'lY¡) e LG(\) for all n > Ni. Thus for some n, at#a' e f(y, &)
and so a e rad(a') in the ring f(Y, 4). Therefore the condition (**) of

(2.1.7I) holds. Since (Y, f(Y, 4)) is simple, (Y, f(Y,4)) is an affine spring.
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This completes the proof of Step 4, and so we are allowed to use z and V

(also d and D) interchangeably.

Step 5. rn order to verify that (Y, q.lY is an afflrne scheme, we have to

show that for any b e f(Y, q),b É 0, f(Y, Q)6 is isomorphic to f(D(b), q).
(Recall that D(b) = d(b) = {y e Y: a(y) * 0i.)

(i) since b e f(Y,4), b * 0, b lD(b) e f(D(b), e) does not vanish at any

point of D(b). So 1/b makes sense on D(b). We claim t}rat llb e f(D(b), Q).
There exists a frnite cover [Vi e B: i = 1,...,n] of D(b) such that blV¡ e

LG(vi) for any i. So b l\ does not vanish at any point of vi. By (2.2.6), for

any i, L/h e LG(\), and so by the defrnition of f(D(b), Aì,Ilb e f(D(b), e).
(ii) Let f be the restriction map of the sheaf aÃ, f = resy,D(b¡: f(y, &) -

f(D(b), Q) then f extends uniquely to a homomorphism h: f(y, e)6 -+

f(D(b), Q) wit]n f = h o g, where g: f(Y, &) - f(Y, e)5 is the canonical

homomorphism defined by b(a) = a/L, because b is invertible in f(D(b), A)
(cf. (1.1.16.1)).

We verify that this homomorphism is an isomorphism. First we show

that h is injective. Let a/hn, a'/om be two elements of f(y, e)5 such that

h(a/b") = h(a'lb*). Then for any y c D(b), (a/bnxy) = (a'lbmxy) in f(y, &):v.

Thus there exists " * 
jv such that c(bma - bna') = 0 in f(y, q). Let J =

Ann(bma-6na'), then c e J - jr,thatis, JÉjrforeveryye D(b). Sothat

V(J) n D(b) = Ø,henceb e rad(J). Therefore there is an integerk > 0 such
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that bk e J, and so bk(bm - bta') = 0. Thus albn = a'/rm in f(D(b) , E). There-

fore h is injective (which can be viewed as restriction of functions (cf. Step

2). So it remains to verify that h is surjective.

(iii) Let a e f(D(b), E). We are going obtain an integer n ) 0 such that

bta e f(Y, 4) (cf. Convention at the end. of Step 3). For then there is c e

f(Y, áX) such bna = c, so that f(cX(6n¡-1 since f(b) is invertible in f(D(b), q).

Since eft) is invertible in f(Y, Q)5 and its inverse is 1/b, where 1/b de-

signates the equivalence class which contains 1/b. So that from the injectiv-

ityof handf = S. h it follows that a = h(a/l) = f(a) = f(c)f(bn)-l =

h(g(c))h(eft")-1) = h(g(c)s(b")-1) = h((c/1X1/b')) = h(c/b"). Therefore a is rhe

image of c/bt by h, and this proves that h is surjective. So we are d,one if we

show how to obtain such an integer.

Now there exists a sufficiently fîne fînite covering {D(bi): i e I} of D(b)

such that bi e LG(Y) c f(Y, Q) and a lD(br) e LG(D(b¡)). Let us denote by at

the restriction of a to D(bi), and we regard bi as an element of LG(D(b¡)) be-

cause b; vanishes only outside of D(bi). By (2.2.Ð, LG(D(bi)) 
= LG(D(bI))5., so

there is an integer m(i) > 0 such that b¡*(i)a¡ e LG(D(bi)) for any i.

We show that for every i e I, there exists an integer n(i) > 0 such that

bit(i)ui = LG(Y) (cf. Convention at the end of Step S). Let Ai = {x e

LG(D(bi)): b¡nx e LG(Ð for some integer n > 0). Then clearly Ai is a subr-

ing of LG(D(bi)). We show that,\ = LG(D(bi)).
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For the sake of convenience, \¡re drop the subscript i till the end of the

proof in (iii). We observe that A ¡ FHG(D(b)). For this it suffices to prove

that for any U e E(D(b)), TDft)(U) e A. By the note at the end of Step 2, there

is u' e E(Y) such that Ty'(u') lD(b) = Toft,(u). Then brDft)(U), regarded as

a function on Y by Convention in Step 3, is easily verifîed to be equal to

bTy(U'). Since FHG(Y) c LG(Y),Ty(U') e LG(Ð and b e LG(Ð, so bTy(U')

e LG(Ð. Hence bTof¡) e LG(Y), that is, T¡6¡(U) e A

By (2.r.22), LG(D(b)) (resp. LG(Y)) is the underlying ring of the maximal

v-extension of HG(D(b)) (resp. HGY)). So that, every element x of LG(D(b)) is

of the form a#a' for some a, a' e FHG(D(b)) E A. Thus by the definition of

A, there is an integer n > 0 such that bna, bna' e LG(Y). As a#a' is defined,

D(a) e D(a'). so D(bm+na) = D(b) n D(a) c D(b) n D(a') = D(bna'), thus

b**t#bta' has meaning for every integer m > 0. rt is easy to see that for

any integer n, b-(a#a') = bm+na#bna'. Since bta' e LG(Y) = FMHG(y), by

(I2) of (2.1.L7), there is an integer n > 0 such that voft(v)ta'(y)) < m for any p

e o(Y).

We claim that (bm+na, bta') satisfies the condition (i) of (2.1.20), that is,

we verify that for any p = (y, x) e o(Y) v¡ith y € Dftm*ta), vn(b*+ta(V)) >

vn(bta'(y)), and that equality holds only if x e D(bna').

Now vn(b-+'a(y)) - vn(bna'(v)) = (m + n)vn(b(y)) + vn(a(y)) - nvo(b(r)) -

vn(a'(v)) = mvn(b(y)) + vn(a(y)) - vn(a'(v)). So if x e V(b), that is, if vnft(r)) > 0,
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then vn(b-+ta(v)) > m + n ) ¡n ¡ vn(bta'(v)). So we have vn(b-+ta(y)) >

vnft'a'(f)). If xe D(b),thenye D(b)becausexe Cl{y} andye D(b)implies

that x e V(b). Thus we have only one case left to examine, namely, p = (y, x)

e D(b) x D(b). Since x e D(b), vnft(V)) = 0. But a#a' e LG(D(b)) implies that

a#a'induces a v-extension. So by (2.L.20), vn(a(V)) - vn(a'(y)) > 0 equality

holds only if x e D(a'). Therefore vn(b**"a(y)) 2 vn(bna'(y)) and equality

holds only if x e D(b) n D(a') = D(b"a'(y)). This shows that b*(a#a') -
b**ta#bta' € LG(Y) E fff, Q). Consequently, x = a#a' e A, and A =

LG(D(b)). From now on we retain the subscript i.

(iv) By the preceding result, for each i, there is an integer n(i) > 0 such

thatbi'(i)aieLG(Y) gf(Y,4). LetN>max{n(i): i e I} andb¡N - ci. Then

cl e f(Y,Q), ciai = ciâ on D(br) for each i. Since D(b) = u{D(bt): i e I}, V(b) =

n{V(bi): i e I}. By an argument similar to one in the proof of (2.r.11), there

is an element c in the ideal (ci) generated by {ci} in f(Y, q) such that V(c) =

n{v(ci): i e I}. since (ci) is an ideal, ca e (ci) e fff, eç). It is easy to see

that V(c) = V(b), so that b e rad(c), that is, bn e (c) for some n e l{. There-

fore bna e (c) E (c¡) e fff, 4(). This is what we wanted. in order to conclude

that h is surjective (cf. the beginning of (iii)). Consequently h is an isomor-

phism, and (Y, 4) is an affine scheme. W&

Definition (2.2.7I). 
- 

A topological space is said to be semíspectral if t]ne

intersection of any two quasi-compact open subsets is quasi-compact. A



Chapter 2. Topological characterization. -97 -

continuous map f of semispectral spaces witt be called spectra,I if the

preimage by f of every IQO set is IQO. (Floc.1l, pp.55,56)

Remark (2.2.12). 
- It is immediately seen that a topological space X is

semispectral iffall the quasi-compact open sets are IQO. If the range space

of a continuous function f can be covered by quasi-compact open sets then f
is spectral iff preimage of every quasi-copact open set is IQO. Note also that

the category ,9 of spectral spaces and spectral maps is a full subcategory of

the category 7 of semispectral spaces and spectral maps, by observing that

if the space is quasi-compact then IQO sets are quasi-compact open sets.

Proposition (2.2.13). 
- The following conditions on a topological space X

are equivalent:

(i) X is the underlying space of some scheme.

(ii) X is locally spectral and semispectral.

(iii) x is homeomorphic with an open subspace of a spectral space.

(iv) X is the underlying space of an open subscheme of an affine scheme.

([Hoc.1], Prop.16)

tPfl (iii) =+ (iv): Let x be homeomorphic with an open subspace u of a

spectral space Y. By the proof of (2.2|1,0), (U, {fy}, f(U, EÐ is an affine

spring and therefore (U, f(U, 4)) is an affine scheme.

(iv) =+ (i): Obvious.
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(i) =+ (ii): Since the set of open affine subsets is an open basis of the topolo-

gy of the underlying space of a prescheme (cf. [Gro-Die], (I,2.1.3), Xis loc-

ally spectral because an open afñne subset V of X is an open spectral sub-

space. The intersection of two open affine subsets is an open affine subset,

so that the intersection of two quasi-compact open subsets of X is quasi-

compact open. For every quasi-compact open subset of X, it is a finite union

of open affr.ne subsets. Thus X is semispectral.

(ii) =+ (iii): Consider the spectral embedding e: X + Wv in the proof of

(1.3.4). Let {U¡: i e I} be a cover of X consisting of open spectral subspaces of

X. Since e is an embedding, for any i e I, e(Ui) is an open subspace of WV,

and e(X) = u{e(Ul): i e I} is an open subspace of Wv. This completes the

proof. W



Section l-. Minimal prime spectra.

In this section we define the minimal prime spectrum Min(A) of a commu-

tative ring with unity and study its properties. We discuss Min(A) for two

special types of rings A in (3.1.5) and in (3.t.6), (3.1.7) and (3.1.8).

Recall that the nilradical of a ring is the set of all the nilpotent elements,

and it is the intersection of all prime ideals (it is called the prime rad,ícal of

A in [Lam]). A ring is called semiprime if its nilradical is 0. A ring is cal-

led reduced if it has no nonzero nilpotents. We know that for commutative

rings these two notions coincide, so we adopt the term "reduced" to indicate

this type of ring.

Definition (3.1.1). 
- Let A be any commutative ring with or without uni-

ty. By the minimal prime spectrum Mín(A) of A we mean the set of all

minimal prime ideals of A equipped with t]ne Zanski topology. If A has un-

ity then Min(A) could be identified with a subspace of Spec(A). We define

for any subset E of A,V*(E) - V(E) n Min(A), and Dm@) = D(E) n Min(A).

Proposition (3.1.1.1). 
- A prime ideal P of a ring A is minimal iff for

eachxe Pthere exists a e A-P andanintegerk> 0 suchthataxk =0.

([Kis,1], Lem.3.1)

tPfl supposethatPisminimal. Theng = {axk: ke I{, ae A-P}is amulti-

plicative subset of A. If 0 e S, then by Zorn's Lemma there exists a prime
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ideal P' disjoint from S. Since x É P', P' is properly contained in p. This

contradicts the assumption that P is minimal prime, so 0 e S and the condi-

tion is satisfied.

conversely, letQçPbe anotherprimeideal, andx e P- Q. Thenthere

existan elementae A-PçA- Qand anintegerk > 0 suchthataxk = 0.

But A is reduced, so (ax)k = ak-1a*k = 0. This implies a e Q or x e Q, which

is a contradiction. So P is minimal prime. W

Proposition (3.1 .2).- Min(A) is a Hausdorff space which has a basis for

open sets consisting of clopen subsets. ([Hen-Jerf, Cor.2.4; [Kis,l], Th.B.2)

tPfl We know that {D(Ð: f e A} forms an open basis of Spec(A). 'We are

going to show that D-(f) is closed in Min(A). Let P be a minimal prime

ideal of A such that [P] É Dm(Ð, thenf e P and by (3.1.1.1), there exist an

element t e P and a positive integer i such that tfi = 0. Hence Ø =Dm(0) =

Dm(tf t) = D,,'(t) n D*(Ð and [P] e D-(t) cV*(Ð, that is, V,'.,(Ð is open,

therefore Dm(Ð is closed. To show that Min(A) is Hausdorff is easy because

it is T6 and Drrr(f) is clopen for any f e A. W

As immediate corollaries to (3.1.1.1), we have the following two charac-

terization of a minimal prime ideal of a reduced ring:

Corollary (3.1.2.2). 
-A 

prime ideal P of a reduced ring A is minimal ifffor

anyxe P,Ann(x)¿P.
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tPfl If P is minimal and x is an element of F, then by (8.f .1.1), u*k = 0, for

some ae A- Pandsomeintegerk> 0. So ax= 0 sinceAisreduced. Thena

e Ann(x).

Conversely, let x e P. If there exists a e Ann(x) - P, the condition of

(3.1.1.1) is satisfied by taking k = 1. ffi

Corollary (3.1.2.3). 
-A 

prime ideal P of a reduced ring A is minimal iff

every finitely generated ideal I in P, Ann(I) ¿ P. ([Art-Mar], Lemma, p.80).

[Pfl The condition of (3.1.2.3) obviously implies that of (8.j. .Z.Z). Converse-

ly, let â1, ...r a,'. e P generate I, and for each i = 1,..., n, choose b, e Ann(ai) -

P; then b = br...b^ e Ann(I) - P. @

Note (3.1.2.4). 
- Thus if A is reduced then for any finitely generated ideal

I,Ann(I)=0iffV-(I)=Ø.

Proposition (3.1.3). 
- Min(A) is a subspace of Spec(A) \Mith respect to the

patch topology. ([Art-Mar-Mor], p.95)

lPfl Recall that {D*(f): f e A} is an open subbasis of the subspace Min(A)

of Spec(A) consisting of clopen subsets (cf. (3.1.2)), Min(A) = Dm(1) is a patch

in Spec(A).ffi

We next discuss Min(A), where A is a direct product of domains.

Definition (3.1.4). 
- Let fI) be the set of ultrafilters on a set I. We call the

canonical spa,ce of ultrafr.Iters on.I the topological space dI) with the topolo-

g¡' whose closed sets are of the form VdY) = {%e fI): y e 7/} where Y e I.
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Proposition (3.1.5). 
- Let {4: i e I} be a family of domains none of which

has characteristic 2 and let A = f[{Ai: i e I}. Then Min(A) is homeomor-

phic to the canonical space of ultrafilters fI) on I. ([PicJ, Remark, p.Z7)

[Pfl For any a e A, define s(a) - {i e r: pri(a) = 0}. Then obviously s(a) n

S(b) c S(a + b) and S(a) u S(b) = S(ab). For each minimal prime ideal j* of A,

let y(x) = {S(a): a € j*}, and for every ultrafilter % onl, let e(%) = {a e A: S(a)

e %]. We show that ry(x) is an ultrafilter onI,,p(?/) is a minimal prime ideal

of A. Furthermore the two maps g: {I) -+ Spec(A) and ry: Spec(A) --+.y(I) are

homeomorphisms inverse to each other.

(i)V(x) = {S(a): a = 
j*} is anultrafilter:Letac j*,U c I and S(a) cU. De-

fine an element c e A as follows: pr¡(c) = 1 ifi e IJ -S(a) and 0 ifi e U - S(a).

Then S(c) =U - S(a) and S(ac) = S(a) u' (c) = S(a) u (U- S(a)) = U. Since j*is

anideal and ae j*, ace j*. Thus S(a) Euimpliesu = S(ac) € \(x). Leta,b

e j*andS(a),S(b)e y(x). LetJ= {ie I:ie S(a+b)-S(a)nSft). ThenforJ

=Ø,S(a)nS(b)=S(a+b). SoS(a)nS(b)e ry(x). If J+Ø,for everyie J,

pr¡(a+b) = 0, pr¡(a)*0 andnr¡(b)*0. Notethatpr¡(a¡ = - pr¡(b)*0. Define

an element c as pr¡(c) = 1 if i ø J and - 1 if i e J. Then since a, b e j*, we

havebc e j*anda+bce j*. NowS(a)n S(b)cS(a) n(S(b) u S(c)) = S(a) n

s(bc) c s(a + bc). conversely let i e s(a + bc). Then if i e J, pri(a + b) =

pr¡(a) +prlft) = 0 and0 -pr¡(a+bc)=pr¡(a)+prift)prl(c) =pr¡(a) -pri(b). so

if the characteristic of { is not 2, prl(a) = pr¡(b) = 0. On the other hand if i e
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J,theniø S(a+b)orie S(a)nS(b). Sinceie S(a+b),ie S(a)n S(b).

Therefore in every case i e S(a + bc) implies i e S(a) n S(b). This shows that

S(a+bc) = S(a) nS(b), andso S(a)nS(b) = S(a+bc) e úx). Thusy(x)is cto-

sed for finite intersection. Next we show Ø ø ty(x), in other words, S(a) * Ø

for every â € j*,thatis, for everyr e j*thereisi e I suchthatpri(a) = 0.

Suppose not, that is, suppose for every i e f, pr¡(a) * 0. Since x is a minimal

prime ideal and a e j*, there existb e A- j* and anintegerk > 0 such that

bak = 0 (cf. (3.1.1.1)). Thus for each i e I, prr(bak) = pr¡(b)pr¡(a)k = 0. Since

each Ai is a domain, prlft) = 0 or pri(a) = 0. By supposition, pr¡(a) ;¿ 0 for

eachi, soprdb)= 0 foreachi,thatis,b = 0. Butthen0 e A- j*, acontradic-

tion. Consesquently, for any â e j*, there is i e I such that pri(a) = 0, so S(a)

+ Ø for every ¿ e j*. Hence Ø ø V(x). These show that \¡(x) is a filter.

Furtheremore, Iet a, b e Aand S(a) u S(b) e V(x). ThenS(ab) = S(a) u S(b)

e y(x) so ab e j*. Since j* is a prime ideal, u e j* or b e j*. So that S(a) e

V(x) or S(b) e y(x). Therefore V(x) is an ultrafilter on I. ã

GÐ A@) = {a e A: S(a) e %} is a prime ideal of A: Let a, b e rp(%), then S(a -

b)=S(a)nS(b) e?1, Since7isafilter,S(a-b) e%,soa-be q(%). Letae A,

b e rp(?'), then S(ab) = S(a) u S(b) since for any i, A¡ is a domain. Now S(a) u

S(b) : S(b) e \¡(x) implies ab e g(%), because % ís a filter. Let cd e <p(Z), t]nen

S(c) u S(d) = S(cd) e ?. Since%'is an ultrafilter, we have S(c) e % or S(d) e %

thatis, ce,p(%) orde g(%). Thisshowsthat g(%)e Spec(A). Letae ç(%),
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a + 0. Then S(a) ç I. Define c e A such that prl(c) = 1 ifi e S(a) and 0 ifí e

S(a). Then S(c) n S(a) = Ø. Since % is an ultrafilter, we have S(c) ø % t]nat

is, c ø aØ). Therefore for any ae g(%), thereis c e A- q(%) suchthat ac =

0, so that <p(%) is a minimal prime ideal.

So far we have established two functions g: {I) -+ Min(A) and ry: Min(A)

-+ T(I).

(iii) g and ry are bijective and inverse to each other: Let x e Min(A) and a

e <p(V(x)). Then S(a) e V(x) and so a e j*. Thus q(V(x)) G j* as an ideal, but

j* and q(V(x)) are minimal prime so we have e(rl¡(x)) = x. On the other

hand, letU e Vkp(%)). Thenthereis ae <p(%)suchthatU= S(a). So S(a)e ?4

that is, V(<p(%)) c?/, ButVkp(%)) is an ultrafilter , so ty(ç(%)) = %

(iv) q and ry are homeomorphisms:

At first note that vy(U) - {%e dI): u e %},u c I (resp. vm(E) = {x e

Min(A): E - j*), E E A) are the closed sets of fI) (resp. Min(A)). Let U c I.

Then there is a e A such that u = S(a). (For example, set pr;(a) = 0 ifi e u
and 1 ifi ø U.) Since <pis bijective, S(a) = lJ e % is eqtnvalent to a e <p(%), so

that VfU) = {%e fI): a e ç(%)}. Hence q0ryU)) = {ç(%)e Min(A): a e <p(%)}

= Vrrr(a). So that <p is a closed map and v = g-1 is continuous. Let E E A and

u = n{s(a): a e E}. Thenv-(E) - {x e Min(A): E sj*}. since B cj* is equi-

valent to U = n{S(a): a e E} e ry(x), Vrym(E)) = {rJ¡(x) € fI): U e r¡(x)} = VIU).
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Therefore y is a closed. map and q = V-l is continuous. Consequently, <p and

\f are homeomorphisms.@

Definition (3.1.6). 
- For any ring A, denote by Max(A) the subspace of

Spec(A) consisting of all the maximal ideals of A.

A topological space is called a Stone spd,ce if it is T1, euasi-compact and

has an open basis consisting of clopen sets.

Proposition (3.1.7). 
- LetAbe a ring, X = Spec(A) and j: A -+R =

fI{A*(x): x e X} be the canonical homomorphism, where A*(x) is the resi-

due field of A at j* (note that it is also the field of fractions of A/j*). Then

Spec(R) = Min(R) = Max(R).

[Pfl Let X = Spec(A), P(x) = {0} x II{A*(y): y € X - {x}} and pr* be the projec-

tion map R + A*(x). rt is obvious that P(x) is a prime ideal of R, and if x * y,

then P(x) * P(v). Since RÆ(x) = A*(x) for any x e X, P(x) is a maximal ideal.

Now take an arbitrary prime ideal P of R. Then j-l(p) is a prime ideal of

A, say j-l(p) - j*0, xg e X. Take an element o e P, then pr*o(cr) e A*(xg), so

pr*o(o) = (b+ j*o){c+ j*o)forsomeb, c e A, cø j*o sinceA*(xg) is the field

of fractions of 1r,/jx0 Now j(c) e P, and P is a (prime) ideal of R. So j(c)g e

P. Butpr*'fi(c)a) = b + j*o,so thatO + jx' € j-l(P) - jx'. Thus pr*o(cr) = 0 e

A*(xg). So every prime ideal of R is contained in some P(x). Consequently,

{P(x): x eX} is the set of all maximal ideal of R.
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Let P be any minimal prime ideal of R. Since iP(x): x e x) are the maxi-

ma1 ideals of R, P is contained in some P(x6), xg e X. If P is properly con-

taied in P(x6), choose õ eP(x6) - P, and e such that pr*o(e) = 1, prr(e) = 0 for y

* x0. Note that e e P(xg) and so e ø. P. But eõ = 0 e P. This contradicts the

assumption that P is prime. So that P = P(xo), and so P(x) is a minimal

prime ideal of R for any x in X.

Consequently any prime ideal of R is of the form P(x) for some x in X, and

Spec(R) = Min(R) = Max(R). W

Proposition (3.1.8). 
- Let A, X and R be as above. Then

(i) Spec(R) -+ Spec(A) is surjective;

(ii) Spec(R) is a Stone space;

(iii) {Spec(A)) is homeomorphic with Spec(R). ([Pic,2], Rem.2, p.27)

tPfl (i): For any x in X, we have j* = j -t(p(*)) (cf. the proof of (3.1.7)). Thus

aj: Spec(R) -+ X = Spec(A) is a surjective map.

(ii): Since Spec(R) = Max(R), by (3.1 .7), any prime ideal of R is maximal,

that is, every point of Spec(R) is closed by (1.1.10). So Spec(R) is Tr. For any

ring, its prime spectrum is quasi-compact (cf.(l.1.13)), in particular,

Spec(R) is quasi-compact.

By (3.f .2), we know that Min(R) is a Hausdorffspace which has a base for

open sets consisting of clopen subsets. By (S.f .7) we have Spec(R) = Min(R).

Therefore Spec(R) is a Stone space.
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(iii) We proved in (3.f .5) that y(Spec(A)) is homeomorphic to Min(R6),

where R0 = II*.¡A(x), A(x) =Uj*, and X = Spec(A). So it suffices to show

that Min(Rs) is homeomorphic to Spec(R). Let P be any minimal prime

ideal of R6. We claim that there is at most one x e X such that pr*(P) * 4.
Suppose there are x, y € x, x + y such that pr*(P) and prr(P) are properly

contained in A* and \ respectively. Then pr*(P) and prr(P) are proper

prime ideals of A* and\ respectively. Define a e R6 bypr"(a) = 1if z=x

and0 otherwise, andbe Robypr"(b) =1if y =zand0 otherwise. Then a,bÉ

P as pr*(a) = 1 ø pr*(P) and prr(b) = 1 ø prr(P) because pr*(P) and pr"(p) are

proper prime ideals of A* and AO respectively. Yet ab = 0, which contra-

dicts the hypothesis that P is a prime ideal. So there exists at most one x €

X such that pr*(P) * .\. Since pr*(P) is a minimal prime ideal of a domain

A(x), pr*(P) = {0}. Clearly, P e P(x), but by the above claim, no ideal proper-

ly contained in P(x) can be prime. So it fotlows that P = P(x).

Let g be the inclusion map of Rs to R. Then we have ag: Spec(R) +

Spec(R6). We know from the proof of (3.1.7) that every element of Spec(R) is

of theform{0} xII(A*(V):ye X- {x}}forsomexe X. Thereforeugmaps

Spec(R) bijectively to Min(R6). Now it is routine to verify that ag is indeed a

homeomorphism. W



Chapter 3. Minimal spectral spaces. -108-

Section 2. Minimal spectral spaces.

Defi.nition (3.2.1). 
- A topological space is called a minimal spectral spd,ce

(or mínspectral space) if it is homeomorphic to the minimal prime spec-

trum Min(R) of a commutative ring R (with or without unity) (It will be

shown in (3.2.6) that Min(R) is homeomorphic to Min(A) for some ring A

with unity). By an nt-subbasls (resp. m-basis) .91 for a Hausdorff space X

we mean a subbasis (resp. basis) for the open sets such that each subset of

g wit}r (FIP) intersects. We call a subbasis .% fuII if Ø ,X e .% and -Ø is

closed under frnite union and intersection. ([Hoc,2], p.749)

Proposition (3.2.2). 
-.ø 

is an m-subbasis iffit is an open subbasis and at

the same time a closed subbasis of a quasi-compact topology on X. ([Hoc,2],

p.749)

lPfl The topology taking ß as a subbasis for closed sets as well as that for

open sets is quasi-compact as any basic open set is a frnite intersection of

the members of ß, and each subfamily of -ø wittr (FIP) intersects (cf. [Kel],

Th.6, p.139). Conversely, if the condition is satisfied, each member of .Ø is

clopen, so the quasi-compactness implies the additional condition that,Ø be

an m-subbasis. W

Proposition (3.2.3). 
- The following conditions on an open basis .ß of a

Hausdorff space X are equivalent:

0) .ø is a full m-basis.
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(2) There is a commutative ring A \Mith unity and an embed.ding f: x -+

Spec(A) such that fO() = Min(A) and h induces a bijection of ß onto €= {u n

Min(A): U e Q(Spec(A))). ([Hoc,2], Prop.l)

tPfl (1) + (2): Let W = {0, l-} be the topological space r,\rith the set of open

sets {Ø, {0}, W} as in (1.2.1-0). Let Ws a copy of W for each B e .%. Let f6: X -+

Wg be defined byfs(x) = 0 ifx e B and fs(x) = 1 ifx ø B, then fg is continuous

for any B e.Ø and we get a continuous (evaluation) map f = ll{fB: B e ,%}:x

-+ P = fl{Ws: B e .%}. Let us topologize P with the product toplogy of Ws's

and denote by P¿ the topological space P endowed v¡ith the product topology

obtained by letting each \Ms have the discrete topology (which coincides \Ã¡ith

the patch topology on Ws). Let Y be the closure of f(X) in P¿ and topolog¡ze

Y as a subspace of P. Then by (r.2.10), Y is spectral, that is, there is a com-

mutative ring A with unity such that Y is homeomorphic to Spec(A). Let

Yo=Min(A)cSpec(A).

Since .%' is an open basis of a Hausdorff space X, the maps fg separate

points and closed sets, and hence f is an embedding of X into p (cr. [Kel],

p.116). We show that f(X) - Y0. We observe that for any y e Y there is x e X

such that y e Cly{f(x)}. For each y e Y, let ßy = {B e .ß:fs(V) = 0}, then the

sets ofthe form U(,9) - {z e P: fp(z) = 0 for any F e ..g'},where ..g'isa frnite

subset of .Ør, form a basis of neighbourhoods of y in P. fn order to prove this

observation it suffices to show that the intersecti on o[J(,T) n f(X): .-g-is a fr-
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nite subset of ,%rl is nonempty. For then any neighbourhood of y contains

the point f(x) in the intersection, and this is equivalent to r¡tt-l(V(,g): ,T-is

a fi.nite subset of ,Ørl +Ø as x is in this inersection. But since f -L(lJ(:ør) 
=

n{F: F e 31, ..9-e .Ø, ç.% and a family of sets in .% \Ãrith (FIP) intersects,

we need only show that if 91,...,fl- ß, then J = n{n{F: F .4}: i = 1,...,k}

* Ø. Now y is in the closure of f(X) in P¿ and the set n(n{ff i = 1,...,k}) = {z

eP: fp(z) = 0 for any F e v{fi.i = 1,...,k}} is an open neighbourhood of y in

P¿, so that it meets f(X). This means n(n{F:F e .fl: i = 1,...,k}) * Ø, which

is what we wanted to show. Thus for any y € Y there exists x e X such that

y e Cl{f(x)}.

'Wecanno\¡provethatf(X) 
=Ys. Letxe X. Thenf(x)e Y=Spec(A). So

there exists a minimal prime ideal j, of A such that j, c jf(*), that is, f(x) e

Cltv). By the observation above, there exists x' e X such t]nat y e Cty{f(x')}.

Since f is an embeddingof Xinto Y(onto f(X)), x e Cl¡{x'}, andso x =x'be-

cause X is Hausdorff. Thus f(x) = f(x') = y. Hence f(X) c Yo = Min(A).

Conversely, let y e Yo. Then y € Y. So by the above observation, y €

Cly{f(x)} for some x e X. Since y is a minimal prime ideal, this implies that

y = f(x) e f(X). Consequently, f(X) - Y0. It follows by a routine verification

that f induces a homeomorphism of X onto Y.

It remains to show that f establishes a bijective correspondence between

,Øandtheset{UnY6: Ue Qff)}. WenotethatforanyBe.Ø,f(B) = {ye Ys:
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fg(f) - 0) = (Ug n Ð n Y6, where Ug = {z e P:fs(z) = 0}, is quasi-compact

open in P, and Ug n Y is quasi-compact open in Y. Now every quasi-

compact open subset of Y is a finite union of the sets which have the form

Ug, n...nuBkn Y, since the sets of the form constitute an openbasis of Y.

The inverse image of any quasi-compact open subset of Y is, therefore, â fi-

nite union of finite intersesctions of F.ie ß, and is in .Ø since ,9! is full.

(2) + (1): Let A be a ring. W'e show that Min(A) has a full m-basis. Since

Q(Spec(A)) is a full basis for Spec(A), €= {U n Min(A): U e Q(Spec(A))} is a

full basis for Min(A). Let €' = {Uin Min(A): Ui e Q(Spec(A), i e I} c€ lnas

(FIP). By (f .2.4), the patch topologyis compact, so nif' *Ø. Letp e 
^€,p 

e

Spec(A). Then there is p' e Min(A) such that jp, - jp, that is, p e Cl{n'} For

eachie I,p€ Ui,sothatp'e Ui. Therefore p'e r\€'. This showsthat€

is an m-basis of Min(A). W

In order to prove our main characterization theorem of this chapter (Th.

(3.2.6) below) we need some preliminaries.

Defrnition (3.2.4). 
-rf .ø is an open subbasis of x, we call the topology on

X which }'as Æ as a subbasis for its closed sets the dual topology on X de-

termined by ß.

Note (3.2.4.L). 
- We note that any subbasis -Øgenerates a least futl basis

containing it, consisting Ø, X, and the finite unions of finite intersections of
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sets in -Ø. This full basis and .Ø obviously determine the same dual topol-

ogy.

Proposition (3.2.5). 
- Let X be a Hausdorff space. Then

(a) If .Ø is an m-basis, the full basis ß generated by .Ø ís an m-basis.

(b) If -Ø is an m-subbasis, any subset ß' of ß which is a subbasis is an m-

subbasis.

(c) If ,% ís an m-subbasis (resp. m-basis, full m-basis) for X, and Y e X is

closed in the dual topology determined by ß, then {B n Y: B e .ßl is an m-

subbasis (resp. m-basis, full m-basis) for Y.

(d)If .ø is an m-basis for X and U E Xis open, then {B e .% :B eU} is an

m-basis for U.

(e) If .Ø is an m-subbasis for X, each set in ß is clopen. ([Hoc,2], Prop.2)

[Pfl (a): Let .ß be an m-basis of X and ß' t]ne full basis generated by ß.

By (3.2.+.L), Æ, ß' have the same dual topology. Since Æ is an m-basis for

X, by Alexander Subbasis Theorem ([Kel], Th.6, p.139), the dual topology de-

termined by ß is quasi-compact. So the dual topology determined by .ß' is

quasi-compact. Since members of .Ø 'form a subbasis of closed sets for this

quasi-compact topology, it follows that,Æ 'is an m-basis.

(b): We notice that any subfamily of ß'is a subfamily of .Ø, and so the re-

sult follows.
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(c): It suffices to show in the case of m-subbasis. By observing that Y is

quasi-compact in the inherited dual topology determined by {B n Y: B e.%},

we have the assertion by (3.2.2).

(d): Since U is open, for any B e.Ø, B = B n U is equivalent to B c U, and

{B n U: B e .91} is obviously an m-basis for U.

(e): It suffi.ces to show clxB e B for anyB e .%. Let p e Cl¡B, and.Øn= {c

e .Ø: p e CÌ. For each finite subset {C1,...,C¡} o1.Ør, (C1 n...n C¡) n B * Ø

since C1 n...n C¡ is a neighbourhood of p. Hence %pu {B} has (FIP), and

n{C: Ce,Øn} nB* Ø;btún{C: C e .Øn} = {p} sinceXis Hausdorff. There-

fore p eB. W

Theorem (3.2.6). 
- The following conditions on a Hausdorff space X are

equivalent:

(a) x is minspectral, that is, x is homeomorphic to the minimal prime

spectrum Min(R) for some commutative ring R (not necessarily with unity).

(b) X is homeomorphic to the minimal prime spectrum for some commu-

tative ring A with unity.

(c) X has an m-subbasis.

(d) X has a fuIl m-basis. ([Hoc,2], Th.1)

tPfl (b) <+ (d): This follows from (3.2.3).

(c) =+ (d): By (3.2.4.2) and (3.2.5), wê have this implication.

(d) =+ (c), (b) + (a): Obvious.
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(a) =+ (b): Assume (a) and suppose R has no unity element. Then we can

extend R to a ring A with unity in the standard way by considering A = R x

Ø defining addition componentwise, and multiplication on A by the rule (a,

mxb, n) = (ab + mb + na, mn) and identifying R with R x {0}. With this iden-

tification, it is clear that R is a prime ideal of A. Since {0} is the only mini-

mal prime ideal of Ø, it follows that R is a minimal prime ideal of A and

also there is no minimal prime ideal of A which properly contains R.

Therefore Min(R) = Min(A) - {R}. By (S.f .2), Min(A) is Hausdorff. Thus

Min(R) is open in Min(A), and so by (3.2.3) and (d) of (3.2.5), Min(R) has a

full m-basis. This shows that (a) implies (d). Since (b) is equivalent to (d), it

follows that (a) implies (b). m

'We prove the following applications of these results.

Proposition (3.2.7). 
- A locally compact totally disconnected Hausdorff

space X is minspectral. ([Hoc,2], Prop.3)

[Pf] Let ,91 be the family of all open compact sets. Since X is locally com-

pact Hausdorff and totally disconnected, ,91 is a basis for X. Since each

member of ,9f is compact,if ,Tis a subfamily of .Ø wit]n (FIP), then clearly

n7+ Ø. Therefore ,Ø is an m-basis for X. Thus bv (3.2.6), it follows that X

is minspectral. W
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Proposition (3.2.8). 
- Arbitrary products and arbitrary topological union

of minspectral spaces are minspectral. Open subspaces of minspectral

spaces are minspectral. ([Hoc,2], Prop.5)

[Pfl Product: Let {X1: À e Ä} be a family of minspectral spaces with an m-

basis for each î". Then subsets of X = fl{xl,: }" e Ä} of the form 81, x...x

lI{Xi,: ?ue {}"1,..., I¡}} with B^, .fiifor each i, form a subbasis.% of open

sets for the product topology. As ßx is an m-basis for each X¡, the dual to-

pology is quasi-compact for each À. So by Tychonov's Theorem, the dual to-

pology of the product topology on X is quasi-compact. So it follows that .% is

an m-basis for X. By (3.2.6), it follows that X = flfXi"i L e ,4.] is a minspectral

space.

Union: It is obvious that the union of m-basis for the various spaces in

the union forms an m-basis for the union of the minspectral spaces.

Open subspace: This is precisely (d) of (3.2.5). W



Section l-. Maximal ideal spectra.

Definition (4.1.1). 
- The set of maximal ideals of a ring A \Ã¡ith the spectral

topology is called t]ne maximal ídeal spectrum of A, and denoted by Max(A).

Define for any subset E of A, VM(E) = Max(A) n V(E) = {M e Max(A): E ç

M], and DM(E) = Max(A) - VM(E).

Recall that the Jacobson radical (or radical in [Lam]) of A is the intersec-

tion of all the maximal ideals of A.

Proposition (4.1 .2). - The maximal ideal space of a ring A, Max(A), is

T1.

[Pfl We know that every singleton subset of Spec(A) consisting of a maxi-

mal ideal is closed in Spec(A),by (t.1.10). W

Proposition (4.1-.3).- Let Y be a subspace of the prime spectrum Spec(A)

of a ring A. If Y contains all maximal ideals of A, then Y is quasi-compact.

In particular, Max(A) is quasi-compact. ([Lam], chap.2, sec.5, Prop.l)

lPfl Let U;:ie I] be afamilyof ideals of AsuchthatY= u{D(Jt):ie I} =

D(IUi: i e I)) (cf. (1.1.2), (iv)). Then IU¡: i e IÌ, the ideal generated by the

family {{: i e I}, is contained in no maximal ideals, thus it contains L. But

thenl e LUi:ie FlforsomefinitesubsetFof I. HenceY=D(IUi: ie F) -
u{D(Ji): i e F}, that is, Y is quasi-compact. K
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Defïnition (4.1".4). 
- A ring A is called regulo,r (in the sense of von Neu-

mann) if for any element a of A, there exists an element x of A such that
22xa=xrax=4.

Proposition (4.1.5). 
- Let A be a reduced ring. Then A is regular iff

every prime ideal of A is maximal, that is, iff Max(A) = Spec(A).

lPfl Suppose A is regular. Let P be any prime ideal of A and a an element

which doesn't belong to P. Then there is x e A such L]nat a2x = a, that is,

a(ax - 1) = 0 e P. Thus ax - 1 e P, and so 1 e P + ax, hence P is maximal.

Conversely, suppose Max(A) = Spec(A). If a = 0 or 1, the existence of such

an element x is obvious (iust take a = x). Assume a e A - {0, t}. IfD(a) = {[Pl

e Spec(A): a e Pl = Ø = D(0), then an = 0 for some n e F{ by (l-.1.G), and we

have a = 0 since A is reduced. So D(a) * Ø, and there exists a prime ideal P

which does not contain a. By hypothesis, P is also maximal, hence p + aA =

A. So there is an element x in A such that 1 - ax e P. Note that this x does

not belong to P, for otherwise, ax e P, which induces a contradiction that 1

e P. Now consider S-14, the ring of fractions of A with respect to S = A - p.

If (>r/s)n = 0 for some >i/s in S-14 and n e N, then there exists an element t in

S such that txn = 0, thus (tx)n = 0. Since A is reduced., tx = Q. This implies

that >i/s = 0, and so s-14 is reduced,. Now :/s = 0 = 0/s, and so sx = 0. we

now observe that if (>i/s)n = 0 for some n, then sx = 0. By (1.1.16), Spec(S-lA)

is homeomorphic to Y = {[P'] e Spec(A): P' n S = Ø]. Since every prime
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ideal of Spec(A) is maximal and S = A - P, Y = {tPl}. Thus \Me can obtain

Spec(S-lA) = {[S-lP]], and S-1P - rad(0). Therefore a e A - p = S and 1 - ax e

Pimply(1 -ax)/ae S-14, and so((1 -ax)/a)t=0forsomene I{. Thenbythe

preceding observation, a(1- - ax) = 0 (and also x(1 - ax) - 0, since x e A - P =

S), which shows that A is regular. W

Definition (4.1.6). 
- A subset E of a topological space X is called IocaIIy

closed if for any point x of E, there exists an open neighbourhood U of X

such that E n U is closed in U.

A subset Xo of X is said to be uery dense if for any nonempty locally closed

subset E of X, E n Xo is nonempty.

Proposition (4.1 .7). - Let L be a subset of a topological space X. Then the

following conditions are equivalent:

(a) L is locally closed;

ft) L is open in Cl¡L;

(c) L is an intersection of an open subset u and closed subset F of x.

lPfl (b) + (c): L is the intersection of ClxL and an open subset u of X.

(c) + (a): For any point x of L, U is an open neighbourhood of x in X and L

= IJ n F is closed in U.

(a) =+ (b): By definition, for any x e L, there exists an open neighbourhood

Uof x suchthatUn Lis closedinU. ThusU nL = CluL = lIn Cl¡L, that

is, x is in the interior of L. Therefore L is open in Çlxl. @
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Proposition (4.1.8).- Let A be a ring, then the following are equivalent:

(a) Max(A) is locally closed in Spec(A);

(b) Max(A) is closed in Spec(A);

(c) Max(A) = V(J), where J is the Jacobson radical of A;

(d) A/J is a regular ring.

On the other hand if any of the above is verified, Max(A) is a Hausdorff

space. ([Fon-Mar], Lem.3.2)

lPfl Let X = Spec(A) and X¡ = Max(A).

(a) + (b): Suppose Xg is locally closed. Then there is an open set U such

that \ = IJ n Clxxo. If & is not closed, then there is a (proper) prime ideal

j* ofA suchthatx e ClXg -Xo. Nowx É Ubecause ifx e If, x e Un ClXo =

Xg, so we have a contradiction. Since j* is proper prime, there is a max-

imalideal j"ofAsuchthat j*c jr. Therfore z e V(j*) = Cl{x}cX-Ube-

causexe X-UandX-Uisclosed. Thus ze.Uyetz e Xg,this contradicts

Xg c U. Consequently ClXg = X0 and thus X6 is closed.

(b) = (c): If Xo is closed in X, there is a radical ideal J' of A such that Xo =

V(J'). This means all maximal ideals contain J', so that J = nûx: x eXg) =

I(V(J')) = rad(J') = J'. Therefore X0 = V(J).

(c) + (a): If \ = V(J), then Xo is closed in X, so it is locally closed in X.

(c) <+ (d): Spec(e/Ð is homeomorphic to the subspace of X consisting of all

prime ideals of A containing J, which is V(J). So if V(J) = X0, V(J) is ho-
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meomorphic to Max(A/J). Thus Max(A/J) = Spec(A/J), that is A/J is regu-

lar by (4.1.5). Conversely, if A/J is regular, Spec(A/J) = Max(A/J) again by

(4.1.5). Since spec(A/J) = V(J) is closed in X and Max(A/J) = Max(A) = X0,

X6 is closed in X.

Finally suppose X0 = Ma*(A) is closed in X = Spec(A). Let x, y € &,x * y.

Since con(X) is Hausdorff, there exist disjoint open neighbourhoods U(x)

and u(y) of x and y respectively. Since X6 is closed in x, \ - U(x) is closed

in con(X). Furthermore x6 - U(x) c Xg, so that Xo - U(x) is closed under

specialization, and so by (L.2.7), Xo - U(x) is closed in X. Similarly Xo - U(y)

is closed in X. Hence Xo n U(x) and Xlo n U(y) are disjoint open neighbour-

hoods of x and y in Xb. Therefore Xo is Hausdorff. W
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Section 2. fuIaximal spectral spaces.

Definition (4.2.1). 
- A topological space is called a maxitnal spectral

spo,ce (or M-spectral space) if it is homeomorphic to Max(A) for some ring

A.

Our charactenzation of M-spectral spaces is the following proposition.

Propositiorr (4.2.2). 
- A topological space X is M-spectral iff X is T1 and

quasi-compact. ([Hoc,1], Prop.11)

[Pfl =+: We have proved this implication in (4.t.2) and (4.1.3).

e: Suppose X is Tt and quasi-compact. Let V be the set of contirutous maps

from X to \M = {0,1}. Let f be the evaluation map from X to WV, and. X'the

closure of f(X) with respect to the patch topologSr on WV. Topologize X' with

the relative prod.uct, topology of spectral topolory. Then WV is a spectral

space by (f .z.g|), and X'is a patch in WV, so X'is spectral, that is, there ex-

ists a ring A such that X' = Spec(A). Since f is an embedding by the proof of

(L.3.6), f(X) is homeomorpic to X. So f(X) is T, and quasi-compact in X'.

Since f(X) is T1, every singleton subset of f(X) is closed. Conversely let a be a

closed point of X'. We claim a e f(X). Let {U1(a): }" e Â} be the set of all quasi-

compact open neighbourhoods of a. Then U¡(a) n f(X) + Ø for every î" in,ô..

So {U¡(a) n f(X)} has (FIP) and since f(X) is quasi-compact n{Ur(a) n f(X)} +

Ø. Let x6 e n{Ul(a) n f(X)}. Then every neighbourhood U1(a) of a contains

x6, that is, a e Cl{xg}. Since xg e f(X), Cl{xo} = x0 âûd a = x0 € f(X). There-
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fore f(X) is precisely the set of all closed points of X' = Spec(A). So flX) =

Max(A). W



Ç-&aagpËexr 5. Sq.xÆamæxry of fq.erÉher reseå3És,

The area of study on associating \Mith commutative rings with unity topo-

logical spaces which arrises as topologres on various subsets of the prime

spectrum is a very wide and active field. In this thesis we discussed the

topological spaces, Spec(A), Min(A) and Max(A). For reasons of length, we

did not include Jac(A), the Jacobson spectrum and Gold(A), the Goldmen

spectrum. In this chapter we define these spectra and present in summary

form the principal results.

Section l-. Jacobson spectra and Goldman spectra of a ring.

Defrnition (5.1.1). 
- A prime ideal of A is called a Jacobson ídeal or J-

ideal if it is an intersection of maximal ideals of A. Let Jac(A) denote the

subspace of Spec(A) consisting of all the Jacobson ideals of A. Jac(A) is cal-

led the Jøcobson ideal spectrurn of A. ([Fon-Mar], p.Z4B)

Definition (5.1.2). 
-A prime ideal of A is called a Goldmo,n ideal or G-

ídeal if it is the contraction of a maximal ideal of A[x], the polynomial ring

in one indeterminate over A. Let GoIdlA) denote the subspace of Spec(A)

consisting of all the G-ideals of A. Gold(A) is called t]ne Goldman ideal

spectrum of A. ([Pic,1]), p.73)

Note (5.L.2.L). 
- Every prime ideal of A is an intersection of G-ideals of A

(cf. the proof of [Pic,l], Prop.L).
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Definition. (5.1-.3). 
- A topological space is called sobre if every closed ir-

reducible subset of X has a unique generic point. ([Gro-Die], (0,2.1.1))

Definition (5.1.4). 
- Let X be a topological space. Let sX be the family of

all closed irreducible subsets of X topologized with the following topolory:

Let% be the family of all open subsets of X. Let Y e % Let us denote by V-

all elements s of sx (\¡/hich are closed irred,ucible subsets of x) such that s n

Y +Ø. Let%- = [V-: Y e %1. Then %- lnas the required properties of a fa-

mily of subsets to be the family of open subsets of a topology on tx. we de-

note this topological space also by sX and call it the øssoc iated. sobre spa,ce

of X. ([Gro-Die], (0,2.9.7), (0,2.9.2))

Definition (5.1 .5). - A topological space X is calle d j-spectral if it has the

properties (i) - (iv) listed below: (i) X is quasi-compact, (ii) X is To, (iii) every

closed irreducible subsets has a generic point, and (iv) every closed irred.uc-

ible setis the closure of the set of its closed points. [wie-wie], p.l3g)

Proposition (5.1.6).- (a) Jac(A) c Gold(A) E Spec(A).

(b) Jac(A), Gold(A) are quasi-compact subspaces of Spec(A).

(c) Max(A) is very dense in Jac(A) (for the definition of "very dense" cf.

(4.1.6)). Gold(A) is very dense in Spec(A).

(d) Jac(A) = 
sMax(A) and Spec(A) = 

scold(A). ([Fon-Mar], pp.T4B -744)

(e) A topological space X is j-spectral iff x = Jac(A) for some ring A.

([!Vie-Wie], Prop.L)
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Definition (5.1.7). 
- A ring is called a Jacobson ríng if every prime ideal

is a Jacobson ideal.

Definition (5.1.8). 
- A topological space is called a Jacobson spo,ce if the

subset of all closed points of X is very dense in X. ([Gro-Die], (0,2.8.1))

Proposition (5.1.9). 
- For a ring A the following are equivalent:

(a) A is a Jacobson ring.

(b) Spec(A) is a Jacobson space. ([Gro-Die], (I,6.4.1-))

(c) Jac(A) = Spec(A).

(d) Max(A) = Gold(A).

(e) Gold(A) is T1. ([Fon-Mar], sec.l., Prop.2)

For details of the proof, refer to the papers [Fon-Mar], [Pic,1] and [Wie-

Wiel.



Chapter 5. Summary of further results. -L26 -

Section 2. Outline of quasi-compactness of minimal prime spectra.

All the rings in this section are reduced commutative rings with unity

unless otherwise specified.

'we know that Spec(A), Max(A) are quasi-compact spaces. From the sec-

tion 1 above, Jac(A) and Gold(A) are also quasi-compact. Mewborn gave an

example of a reduced commutative ring A with unity such that Min(A) is

not quasi-compact (cf. [Mew], Lem. 3.2). Thus the question of the quasi-

compactness of Min(A) is significant. Since Min(A) is Hausdorff (cf. (B.l_.2),

quasi-compactness of Min(A) is equivalent to compactness.

Various conditions for the compactness of Min(A) are known. These are

summarized in the following (5.2.1), (5.2.2) and (5.2.3).

Theorem (5.2.7). 
- For a ring A, the following are equivalent:

(a) Min(A) is compact and A satisfies the annihilator condition (A is said

to satisfy the annihilator condition if for any a, b e A, there exists c e A

such that Ann(c) = Ann(a) n Ann(b).).

(b) Min(A) is compact and [V*(a): a e A] is an open basis for Min(A).

(c) For any a e A, there is b e A such that Ann(Ann(b)) = Ann(a). ([Hen-

Jerl, Th. 3.4)

Henriksen-Jerison observed in the above paper that given a e A there is a

finite subset {b1,..., brr} of A such that V(Ann(a)) = V(b1) n....ì V(brr) to be a

necessary condition for the cornpactness of Min(A). Then they raised the
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question whether this condition is suffi.cient as well. [Quel, [Mew] and

others ans\trered this affrrmatively and proved the following results.

Theorem (5.2.2). 
- For a ring A the following are equivalent:

(a) Min(A) is compact.

(b) II{Ap: P e Min(A)} is aflat A-module.

(c) The injective envelope IA(A) of A is a flat A-module.

(d) For any a e A, there exists a finitely generated ideal I of A such that

aI = Ann(Aa + I) = 0. ([QueJ, Prop. 3, 4)

Theorem (5.2.3). 
- For a ring A, the following are equivalent:

(a) Min(A) is compact.

(b) The complete ring of quotients Q(A) of A is a flat A-module.

(c) For any x e Spec(Q(A)) ( = Max(Q(A))), the intersection j* n A is a

minimal prime ideal of A.

(d) For any a e A and U = {x e Spec(Q(A)): a e j* n A}, there exists a fini-

telygeneratedideal I of A suchthatspec(Q(A)) - u = {x e spec(Q(A)): I É¡*

ñ A). ([Mewi, Th. 3.1)
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