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ABSTRACT

With the emergence of HVDC transmission, the studies of
corona and 1its influence on attenuation and distortion of
travelling waves became 1increasingly important. The
practical significance of such studies is thet all HVDC
transmission lines operate above corona onset voltage and
that voltage surges on the 1line associated with either
switching or 1lightning phenomena, are of even greater
amplitude. Several good mathematical model for handling the
problem of surge propagation on HVAC lines, taking corona
into account, have been developed in the past. In this
study, the performances of some of these models are compared
and the most suitable one, from the point of view of
accuracy and practical applicability, is implemented on a
monopolar semi-infinite HVDC transmission line. The
propagation of overvoltage surges along one pole of the
Nelson River transmission line is simulated with a practical
range of positive input voltage waveforms and the numerical
procedure optimized. The results of the simulation are
analyzed and their possible 1implication on the insulation

co-ordination in HVDC transmission systems is indicated.
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1. INTRODUCTION

Power systems are subjected to two types of overvoltage
surges. They are classified, according to their origin as
lightning or switching surges. Lightning surges can be
direct or indirect. They are characterized by a very short
rise-time (in the order of a microsecond), high amplitude,
and relatively short duration. Switching surges are caused
by switching of a circuit either to clear the fault or as a
normal operating procedure. They have a much 1longer
rise-time (in the order of a few hundreds microseconds) and
decay more slowly. Switching surges are of prime importance
in the determination of insulation levels in EHV, UHV, and

HVDC transmission systems.

The effect of an overvoltage surge on a piece of
equipment 1is dependent on the waveform of the surge
impressed upon the piece of equipment. This waveform is
usually different from the waveform at the point of
injection into the system. The modifications are caused by
attenuation, distortion, and reflections of the overvoltage
wave as it travels from the point of its origin to the point

of interest.

It 1is evident that for a better evaluation of the
effects of overvoltage surges at different points in a power
system, it is necessary to take into consideration as many

-1 -



2
effects as possible which affect the propagation and change
the shape of the overvoltages. This study focusses on the
influence of the corona effect on overvoltage surges

propagating along HVDC transmission lines.

1.1 Transmission Line Corona

Transmission line corona has been studied since almost the
beginning of this century. F.W. Peek was the foremost
pioneer in this area and his work' resulted in the empirical
expressions for corona losses and corona inception voltage,
expressions that are in use even today. His work was
followed by that of many researchers. In 1924, Ryan and
Henline explained the hysteresis character of corona.® 1In
1937, Skilling and Dykes published experimental resultsS®
showing the influence of corona on the distortion of
travelling overvoltage waves. Since then, due to an
increase in the operating voltage of AC transmission lines
and the emergence of HVDC transmission, studies of corona

and its effects have become increasingly important.

Transmission line corona is a self-sustained partial
breakdown of the air around a high voltage conductor where
the electrical field is non-uniform. Corona can be
established around a conductor of either positive or
negative polarity. Altﬁbugh the ionization process differs
in these two cases, the resulting effect 1is similar - a
space charge of like polarity 1is 1inserted into the

surrounding space, and moves away from the conductor. When
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the conductor 1is energized with alternating voltage, the
periodic reversals of polarity prevent the space charge from
leaving the vicinity of the conductor. Corona can be
established wunder steady-state conditions (steady-state
corona), or be initiated by an overvoltage surge. In both
cases, the instantaneous value of the applied voltage must
be higher than a critical value, known in the literature as
the corona 1inception voltage. This value depends on
conductor bundle geometry, conductor surface condition,
atmospheric pressure, air humidity, etc. Corona initiated
by an overvoltage surge has a unipolar character and it is

known in the literature as impulse corona.

The space around a conductor in corona can be divided
into two zones, the ionization zone and the interelectrode
zone. The ionization zone is defined® as the space around
the high voltage conductor where the resultant electrical
field 1is strong enough so that the first Townsend
coefficient of ionization exceeds the coefficient of
attachment. 1In this zone, electrons are released from the
atoms of the air and accelerated towards or away from the
conductor, depending on its polarity. Collisions between
fast electrons and atoms of the air result in additional
electrons in an avalanche process. The interelectrode zone
is considered to be the space between the boundary of the
ionization zone and adjacent conductors, or between the
boundary and the ground. In this zone, the attachment

coefficient is larger then the first Townsend coefficient of
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ionization. In the case of wunipolar corona, the

interelectrode zone consists primarily of ions of the same

polarity as the conductor, forming a space charge which
migrates away from the conductor, deeper into the
interelectrode space. The formation of the two zones and

the different types of charges will be explained by means of
Fig.1.1 using an example of a conductor 1in steady-state DC

corona.

Fig.1.1.a represents the case of a positive conductor
in corona. As long as the voltage 1is below the corona
inception voltage, Vo, the charge on the conductor surface
changes proportionally with the applied conductor voltage;
the constant of proportionality is the geometric capacitance

of the line per unit length, Co, i.e.:
Q=CoV L., (1.1)

In this case, no space charge exists as the air 1is not
ionized. Once the inception voltage 1is exceeded, the air
around the conductor becomes ionized. In an avalanche
process, positive ions are created by the electrons which
are readily attracted by the conductor and neutralized at
its surface by an equal positive charge supplied from the
source. Positive ions, which are left behind, slowly migrate
away from the conductor. As the mobility of the electrons
is much higher than that of the positive ions, the

neutralization of the electrons 1is a much faster process



bﬁ.%‘;f
At

a - conductor

b - ionization zone

¢ - interelectrode zone

Q - total charge per unit length supplied

from the source

Q, - positive space charge per unit length

Qn - negative space charge per unit length

p - radius of the ionization zone
Figure 1.1: Charge disposition around a conductor in corona
than the movement of the ions. Therefore, it can be

considered that the electric field around the conductor is
affected only by the positive space charge, Q,, dominating

in both the ionization and the interelectrode =zone. The
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Charge per unit length,

6

relationship between the charge supplied by the source, 0,

and the applied voltage, in this case, 1is shown in Figq.
1.2.a. It can be noted that for different values of
steady-state voltage above the inception value, the charge

Q increases at a rate much higher than that before corona

| |
Q = Q
=y
\
Co¥ et eV
—_ /Qp t: ///
S 5 = -
| - ool
X _ -~ " Voltage o E Voltage
Vo [ i \\\ -
v N Vo ~N v
g \
N Qg
(a) (b)

Figure 1.2: Steady-state Q-V characteristics

initiation.

An example of a negative conductor in corona is shown
in Fig.1.2.b. When the voltage is below the inception value
Vo, the relationship between the charge supplied from the
source and the voltage 1is the same as that described by
expression (1.1). When the inception voltage is exceeded,

the air around the conductor becomes ionized.
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New electrons, «created in an avalanche process, move
away from the conductor leaving the positive ions to be
attracted by the conductor and neutralized. The electrons
move up to the boundary where ionization and attachment are
equally probable. Beyond this boundary they are captured by
the neutral atoms of the air, forming negative ions. These
processes result in a positive space charge, Q , dominating
in the ionization zone, and in a negative space charge, Q ,
dominating in the interelectrode zone. The space charge
from the ionization =zone is attracted by the conductor and
neutralized at its surface by an equal negative charge which
is supplied from the source. The neutralization process
causes the charge Q to increase at a much higher rate than
that defined by Eqg.(1.1). The Q-V relationship, 1in this
case, is shown in Fig.1.2.b for different values of
steady-state voltage. It should be noted that this
relationship shows the same form of nonlinearity as in the

previous case.

Experimental results® as well as the experience of
several researchers®''S indicate that the charge neutralized
at the conductor surface (-Q ) 1is voltage-dependent. The
magnitude of this charge increases nonlinearly with the

applied voltage.

Under steady-state conditions, the radius of the
ionization zone as well as the value of the space charge are

time invariant. In the case of impulse <corona, however,
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I3

these values which are functions of voltage, become
functions of time. Experiments® have shown that, in the
case when the applied conductor voltage has the form of an

impulse, the Q-V characteristic has the form of a loop, for

Charge per unit length

(=]

awty

v,

4

Figure 1.3: Typical impulse corona Q-V characteristic

both positive and negative voltage impulses(Fig. 1.3).

Section o-a on the Q-V loop in Fig.1.3 is 1linear and

corresponds to non-corona conditions. The charge Q
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increases proportionally to the applied voltage according to
Eqg.(1.1), as long as the voltage is below Vo . Section a-b
of the loop corresponds to corona conditions where V>V, and
v/ t>0. Under these conditions, an additional charge of
the same polarity as the conductor is supplied from the
source to neutralize the space charge which is 1in contact
with the conductor surface. Point b on the loop (Fig.1.3),
corresponds to the maximum instantaneous value of the
applied voltage. From this point on, as the voltage
decreases, the space charge around the conductor remains
almost constant which cause the total charge in the ionized
region, Q, to change almost linearly with the voltage.
Section b-c of the Q-V loop represents the conditions when
v<v and V/ t<0. Experimental results® show that the
return slope of the Q0-V 1loop is almost equal to that of
section o-a. If the voltage decays very slowly, the space
charge eventually disperses due to diffusion which causes a
curving of the return slope of the Q-V loop. Section o-c in
Fig.1.3 represents the value of the space charge generated
during impulse corona after the applied voltage is decreased
to zero. This space charge migrates away from the conductor
in the process of diffusion wuntil it reaches the distance
where its influence on the electric field around the

conductor is negligible.

Although the radius of the 1ionization zone varies with

voltage, 1its thickness is negligible in comparison with the



10
radius of the conductor. Hence, it is often assumed in the
literature that even in the case of impulse applied voltage,
the interelectrode zone starts from the surface of the
conductor and that the conductor gradient is maintained
constant at a value of Eg, for all voltages greater than the

inception value (Kaptzov).

1.2 Transmission Line Equations (TLE)

The response of a transmission 1line, neglecting corona and
the skin effect, can be represented by a system of two
linear partial differential equations known as Transmission

Line Equations (TLE), i.e.:

-31/9x=Co (QV/2t)+GovV  ..... (1.2.a)

-3V/3x=Lo (JdI/3t)+RolI ce...(1.2.b)
where:

V = instantaneous value of voltage,

instantaneous value of current,

-
]

Co = geometric capacitance of the 1line per unit
length,

Lo = self inductance of the line per unit length,

Ro = resistance of the line per unit length,

Go = conductance of the line per unit length,

time variable,

ct
it

and x distance from the location of excitation
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Egs.(1.3.a) and (1.3.b) are linear because the
parameters Co, Lo, Ro, and Go are constant. When the
transmission line is not in <corona, the conductance Gy
is very small and it 1is usually neglected. However,
when the 1line operates 1in corona, both the 1line
capacitance and the conductance become nonlinear

functions of the conductor voltage.

Furthermore, when the line 1is subjected to fast
transients such as 1lightning surges, in addition to
corona, the skin effect contributes to the attenuation
and distortion of the transient response. Since the
corona effect is reflected in the voltage-dependent line
capacitance and line conductance, and the skin effect in
the freguency dependent line resistance, these two
phenomena do not interact with each other and therefore

can be studied independently.

According to the results®'9'11'15 ayailable in the
literature, the corona effect can be represented
accurately enough by assuming that the total charge
supplied by the source per wunit length, Q, depends on
both the magnitude V and the rate of rise

dV/ot of the applied voltage, i.e.:
0=0(V,3V/at)

In order to take the corona effect into account, the
system of equations (1.3) can be written in the

following form:
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-31/3x=(30/3V) (3v/>t) cee..(1.3.2)
-3V/3x=Lo (21/2t) + Rol eee..(1.3.b)

The coefficient 3Q/ dV is called the dynamic capacitance of
the line, C;, and represents the slope on the appropriate
Q-V characteristic. Thus, the TLE in Egs.(1.3), may be

written as:

-31/ax=C4 (3V/at) eee..(1.4.a)
~aV/3ax=Lo (3I1/3t)+Rol ceeea(1.4.b)

It should be noted that Cy depends not only on the voltage

amplitude, but also on rate of rise of the applied voltage,

i.e.:

Cy =C4 (V,3V/2t)
In other words, the Q-V characteristics are different for
different types of surges. Field measurements® indicate

that Q-V loops are narrower for steeper surges.

It should also be noted that the conductance term is
omitted from Egs.(1.3). This is justified by the fact that
the area enclosed by a Q-V 1loop is proportional' to corona
losses and therefore no additional parameter is needed to

account for these losses.
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1.3 Approaches to Corona Modelling

There are two basic approaches to model impulse corona.

One approach is based on an analytical approximation of
the Q-V characteristics, which is usually done piecewise.
The TLE, in this case, have the form of Eqs.(1.4), and are
solved with Cy taken as the slope on the approximate Q-V
characteristic. The main disadvantage of this approach is
the very limited practical applicability of the model since
the Q-V characteristics are available only for those classes
of voltage waveforms which are easily generated under

laboratory conditions.

The other approach 1is based on the analytical

approximation of that portion of the Q-V characteristic

which has a positive first derivative. This approximation
results in a single-valued Q-V characteristic. Corona
losses, however, are accommodated by an appropriately

defined conductance term G(V) derived from consideration of
either Peek's or Popkov's corona loss laws which are valid
in the steady state. Therefore, the TLE in this case have

the following form:

— 31/3x=Cq4 (}V/3t) + G(V)V ee...(1.5.a)
— 3I/3t=Lo (3I1/3t) + RolI eee..(1.5.b)

The expressions for C4 and G are both nonlinear functions of

the applied voltage.
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A detailed description of models based on each of the
above approaches, as well as a comparison of results
obtained by application of each model to a practical

transmission line geometry, is included in Chapter 2.

1.4 Numerical Methods

Once a particular approach to corona modelling is chosen and
its parameters defined, an appropriate numerical method for
solving the nonlinear TLE remains to be chosen. This

section discusses some numerical techniques that may be

used:

1.4.1 Frequency-Domain Based Technique

In the frequency-domain, it 1is very convenient to use a
Fourier Series or, more preferably, a Fast Fourier Series
based method. It is assumed that all the parameters in the

TLE have constant values associated with each harmonic

considered.

The corresponding wave propagating along positive

x-direction has the following form:
V2 (x,t)=V, [exp(-ax)]cos(wt-Bx) ceeel(1.6)

where:
a - attenuation coefficient,
f - phase constant,
w - angular frequency,

V, — maximum value of voltage.
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Since some parameters in the equations are nonlinear
functions of voltage, it is necessary to obtain the solution
for several voltage ranges above the corona inception

voltage, using different but constant voltage-dependent

parameters within each range. The original input waveform
A
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Figure 1.4: Waveform decomposition into levels

is decomposed into sub-waveforms, each of them corresponding
to a particular voltage range, Fig.1.4, and a transient

response of the 1line is found using each of the
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sub-waveforms as an input waveform. A superposition cf these
solutions yields the solution to the original problem for

given time and displacement.

It is apparent that the accuracy of the final solution
depends on the number of voltage 1levels above the corona
inception voltage. The advantage of this method is that it
is wvery convenient for considering frequency-dependent

phenomena such as skin effect.

1.4.2 Time-Domain Based Methods

Time—-domain based methods are more convenient for dealing
with the nonlinear voltage dependent problems only and
distributed transmission line parameters. The TLE given by
Egs.(1.5) can be solved by the Finite Difference Method
where the partial differential equations are replaced with

their finite difference representations.

1.5 Scope of the Thesis

This study focusses on the attenuating and distorting effect
of corona on overvoltage waves travelling along monopolar
single and multiconductor HVDC transmission lines. Several
corona models developed for application on AC transmission
lines will be reviewed in Chapter 2. The performances of
several of those models will be compared in Chapter 3 and
the results presented in this chapter serve as a basis for

corona model implementation in HVDC transmission systems.
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The application of the Finite Difference Method for
modelling purposes in this study is also justified in this

chapter.

The analysis of skin effect and 1its influence on
attenuation and distortion of travelling overvoltage waves
in HVDC transmission systems is not included in this study.
It should be noted that corona and skin effects are
phenomena that do not interact with each other. It is
possible, therefore, to exclude the skin effect from the

analysis without affecting the modelling of corona.

The implementation of a corona model in an HVDC
transmission system is performed in Chapter 4. Distortion
and attenuation of different types of overvoltage surges
propagating along one pole of the Nelson River DC
transmission line are analyzed, 1including the case when an
overvoltage surge is superimposed on DC steady-state
voltage. A description of the program used for the

simulation is also given in this chapter.

The corona modelling in this study 1is performed in
time-domain for the reasons explained in section 1.4.2. As

a numerical technique, the Finite Difference Method is used.

The influence that corona has on attenuation and
distortion of overvoltage surges travelling along a
monopolar HVDC transmission line is analyzed and its

possible implications on the insulation co-ordination in



18
HVDC transmission systems indicated in Chapter 5 of this
thesis. The thesis 1is concluded by giving several

suggestions for further research in this area.



2. EXISTING MODELS

The propagation of overvoltage waves along single and
multiconductor transmission lines including the corona
effect has been studied extensively, and different modelling
techniques and computer programs have been developed. Most
of the studies have focussed either on impulse corona on

HVAC lines or steady state corona on HVDC lines.

In this chapter, several existing models are reviewed.
Based upon a comparison study, the results presented in this
chapter serve as a basis for corona model implementation on

HVDC lines.

2.1 Literature Review

The transient behaviour of coronating HVAC or HVDC
transmission 1lines may be described by the set of TLE,
Egs.(1.5), with corona taken into account by means of
nonliﬁear transmission line parameters, as described in

section 1.3.

In the past ten years several good models for handling
the problem of surge propagation on HVAC lines, taking
corona into account, have been developed. These models
differ from each other in the approach adopted to model

corona and the numerical methods that have been used to
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solve the system of TLE. In this section, five of these

models are reviewed.

2.1.1 sSingle Shell Model (SSM)

This model has been proposed by M. Afghani and R.J.
Harrington® and employs what the authors call the "single
shell method". It represents a simplified version of the
multishell model applicable for the analysis of AC
steady-state corona developed by the same authors. The
simplified version is applicable for analyses involving the
propagation of 1lightning and switching overvoltage surges
along HVAC transmission lines. In this model, corona is
simulated by means of Q-V characteristics. However, what
makes this model distinct from other models based upon the
use of the Q-V characteristics for modelling corona is that,
in this case, the Q-V characteristics are numerically
generated by the model. The characteristics are used
thereafter for evaluating the appropriate voltage-dependent

nonlinear transmission line parameters.

For modelling the system of the coronating conductor
and the surrounding space charge, the authors assume that
the space charge 1is situated concentrically around the
conductor; their analysis 1is based on the following

assumptions:

1. The ionization zone is neglected which implies that,

for both the positive and negative conductor in
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corona, the space charge consists of ions of the same
polarity as the conductor.

2. The space charge emitted by the conductor in corona
1s concentrated within a thin shell of a radius p,
concentric with the conductor.

3. The total charge in the ionized regions is the sum
of:

a) the space charge emitted by the conductor

b) the charge bound on the conductor surface, which
is assumed to be constant and equal to the
inception value Q¢ as long as corona exists

c) the charge returned to the conductor from the
space charge, either due to an alternating applied
voltage, or due to a reversal of polarity of an
overvoltage surge.

4, Half the magnitude of the total space charge

contributes to the electric field which controls the

movement of the shell.

The Q-V characteristics are generated through the following

iterative procedure:

As long as the applied voltage is below the inception
value Vy, the charge bound on the conductor surface is

represented as:
QJ=COVJ =CO V(tJ)' j=1,ooo,n -0000(201)

where:
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Co = geometric capacitance of the line
V; = applied voltage at the point of time t; = j At
At = a time step

The value of the inception voltage V, is determined from

Peek's expression for the inception voltage gradient.'

Assume that at time t, , k<n, the applied voltage
exceeds the inception voltage Vg . In this case, a shell

with the space charge:
Q,=CoV,-Qo .. (2.2)

emerges from the conductor. The radius of the shell is

found from the following two eguations:

ry =a+Ar, L. (2.3)

Ar, =uEo, At cee..(2.4)

where:

a = equivalent (GMR) radius of a conductor bundle
u = mobility of the ions that the space charge

consists of.

This space charge induces on the conductor surface charge Q
which is taken into account in the subsequent time step as

an algebraic value.

0} =-0;1n(r, /a)=-(CoVi-Qo ) 1n(r,/a) .....(2.5)
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The total charge supplied by the source at this point is
obtained by addition of the total charge bound on the

conductor surface, and the space charge Q,, i.e.:
Q, = Qo +Q,-Q_, ceee..(2.6)

where QL_]is equal to zero. Using the fourth assumption,
the electrical field which controls the movement of the

shell, is evaluated as:
E, =(1/2meo ) (CoV, +Q,/2) ..., (2.7)

In the subseguent time step, a new value of the shell radius

is obtained from:

g =Ty +Ar,

The new value of the space charge is equal to the difference

between the total charge bound on the conductor surface and

Qo, i.e.
Qi.'.] = COVIH.] —QO .....(2.8)

The induced charge due to the new space charge is obtained

as.:
QLH= -Q;.,In(r,,, /a) ee...(2.9)

and the total charge in the ionized region as:

S

0,70+ -0,
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The step is concluded by the calculation of the electrical

field at the radius r as:

k1 !

Ek+]=(1/27750rk+] )(Covk+l+Qi+l/2)

The Q-V characteristic generated by the model
represents the relationship between the total charge in the

ionized region, Q, and the applied voltage, V; a typical Q-V

Charge per unit length, Q

Figure 2.1: A typical Q-V characteristic generated by SSM

characteristic generated by this model is shown in Fig.2.1.
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In the case of semi-infinite transmission lines, when
distortion and attenuation of overvoltage surges without
multiple peaks have to be calculated, the authors suggest
the use of linearized Q-V characteristics with C expressed

in the following form:

Co, V<Vo, aV/3t>0  ..... (2.10.a)
Cy= { Co +AC, Vo<V<V,, 3v/3t>0 cee..(2.10.b)
Co, 0<V<V,,, &/3t>0 cee..(2.10.¢)

The Q-V characteristic generated in this model is used to
define an appropriate current source I, which is actually
a function of the nonlinear 1line capacitance and the line
conductance. The transmission line is sectionalized and the
current source lumped between two adjacent sections and
ground, Fig.2.2. The length of the sections varies in the

range of 30-400m, depending on the rate of rise of the

Figure 2.2: Representation of transmission line sections in
the SSM
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voltage impulses used in the simulation.

Conseqguently, the transient response of a coronating

transmission line is found in the time-domain by solving the

following set of partial differential equations:

(02/3x2 ) V(x,t)=[z]1[¥Y] Vix,t)

(3/3x) T(x,t)=

cevee{2.11.3)
=-{z] I(x,t)

e (2.11.b)

written for each section and the conditions at the interface

of any two adjacent sections (i and i+1, for example):

T,i- (llt)=‘\—li+1(ort)

ceee.(2.12.a)
_I.i (l,t)_-I—;+1(0,t)=Tcor

.....(2.12.b)
where:

x =distance along the line
1 =length of the section

t =time from the beginning of the voltage impulse
application at the beginning of the line

V =voltage vector

I =vector of the current

[Z] =series impedance matrix per unit length

(Y]

=shunt admittance matrix per unit length

The authors analyzed the propagation of both lightning
and voltage impulses

4-conductor bundle transmission lines.

switching positive

along single and

The crest values of
the voltage impulses in their examples ranged from 390 kV to
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8950 kv. It should be noted that the SSM generates Q-V
characteristics which are dependent on the rate of rise of
the voltage impulses. Therefore, the propagation of the
voltage impulses is also affected by their steepness which
is in agreement with the experimental measurements,8'!3
However, some limitations are inherent 1in this model. In
the cases where the input voltage impulses do not exhibit
oscillatory character, the ionized region ( a shell in this
model) continues to expand. Since the propagation time on
long transmission 1lines can be relatively large, the
assumption of cylindrical geometry is soon violated, which
limits the propagation distances for simulating

non-oscillatory transient conditions on transmission lines.

2.1.2 Conductance Model

This model 1is proposed by K.C. Lee,'® and is based on a
time-domain solution to the system of TLE given by Egs.
(1.5) with line resistance neglected. Corona is introduced
by the nonlinear parameters C; and G which are modelled as

nonlinear functions of the applied voltage.
The dynamic capacitance in this model is defined by

Cq4=Co, V<Vo  eeen (2.13.a)

Cd'-:Co + 2k1 (1—V0/V ), V>Vo  ee e e (2.13.b)

where:

ky = o1q(ah)/2 x 1078 [F/km],
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01 = an empirically derived corona loss constant,
[(dimensionless],
a = equivalent radius (GMR) of a conductor bundle
[m],
h = average suspension height [m],
Co = geometric capacitance of the line [F/km],

Vo = corona inception voltage [kV].

Corona losses, however, are introduced by means of the

conductance term, G, defined as:

G= kz (1—VO/V )2 oooo-(2014)
where:
ky, = OZV(ah)/Z x 10-8 [S/km],
02 = another empirically derived corona loss
constant, [dimensionless]
Parameters o¢; and o0 are derived empirically for a

single-conductor and a 4-conductor bundle configurations by
comparison of numerical and field measurements for these
configurations under application of both positive and
negative lightning-type voltage impulses. In the examples
that the author used for simulation, the applied voltage
impulses had the crest value of about 1500 kV and were taken

from experimental measurements.

It should be noted that the Q-V characteristic in this

model does not have the form of a loop. Such characteristic
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is shown in Fig.2.3 and represents an analytical

approximation of the part of an actual Q-V characteristic,
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Figure 2.3: A typical single-valued Q-V characteristic used
in the conductance model

where the first derivative is positive.

The characteristic in Fig. 2.3 is obtained by defining
its slope, i.e. the dynamic capacitance, according to
Eg.(2.13). Since the characteristic 1is single-valued,
corona losses are introduced by another nonlinear parameter,
i.e. conductance G defined in Eq.(2.14). The values of the
modelling parameters proposed by the author are given in

Tab.2.1.
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TABLE 2.1

Line geometry and the modelling parameters used by Lee

constant single cond. 4-cond.bundle

Vo [kV] 277 558
positive impulse 30 30
negative impulse -= 15
positive impulse 107 2x106¢
negative impulse - 107

a lecm] 1.265 1.12

h  [m] 22.200 14.00

The transmission 1line under consideration is divided into
sections and the voltage dependent elements are lumped at
the end of each section (Fig.2.4). A section length of 70m

was found by the author to be the optimal length.

The solution to the problem is obtained in two steps.
First, for each section, the solution is obtained by
Bergeron's travelling wave technique without taking the
nonlinear elements into account, yielding a Thevenin's
equivalent for the 1linear part of the section. In the
second step, the nonlinear elements are taken into account
by applying the trapezoidal rule of linear interpolation.
This procedure yields the values of the voltage and the
current at the end of each section which are used as the

input data for the next section.
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Thevenin's )
section 1 ._.Z/
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Figure 2.4: Representation of a transmission line section
in the conductance model

It should be noted that the values of constants o, and
o2 depend on conductor bundle configuration, polarity and
shape of a voltage impulse. A weakness of the model is that
these constants can only be determined empirically, by
comparison of numerically computed voltages with those
obtained from field measurements. However, this is not a
serious disadvantage because it 1is relatively easy to
optimize a model with two adjustable parameters upon

availability of experimental measurements.
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2.1.3 Approximate Q-V loop Model of C. Gary et.al

This model''! includes both the corona and skin effects. The
model is based on the time-domain solution of the system of

TLE which has the following form:

=31/3x=Cy (AV/3t)+G V o e (2.15.a)
-3V/2x=Log (bI/bt)+(b/bt)/R(t—t')I(x,t')dt' ..(2.15.b)

0
The skin effect 1is accounted for by means of the

time(frequency)-dependent line resistance, R(t), which
includes the resistances of the conductor and the ground

return.

The authors replaced experimentally obtained Q-V
characteristics with a simplified empirically developed one,
Fig.2.5. The simplified characteristic was obtained after
numerous laboratory experiments. The model was tested in
the example of a 225 kV single-conductor line with the earth
conductivity varied in the range from 0.015 S/m to 0.007
S/m. At the beginning of the 1line, different forms of
positive lightning-type voltage impulses, with a crest value
of 1120 kv, were applied. The line considered by the

authors was assumed to be non-energized.
The dynamic capacitance ,C;, is defined as:

Co, V<Vo, V/2t>0  ..... (2.16.a)
Ca, Va<V<V,, /3t>0 cee..(2.16.¢)

Co, 0<V<V,, v/3t<0 ......(2.16.4)
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where:
C, =C2 (Co, cond.radius),
f(n)=£(V,Vo,V,,Fy ),
Vy =Va (Vo,Vy,Fy ),

Vi =Vy (Vo,po, cond.radius,front time,Vy),

Fq 2t03,

0.5 to 1.2 .
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Figure 2.5: A typical Q-V loop used in the approximate Q-v
loop model of Gary et.al.

Parameters Po and F; are chosen to obtain the closest
possible agreement between the simplified and experimentally
obtained Q-V characteristics for the type of voltage

impulses considered by the authors.
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The TLE 1in this model are solved by the Finite

Difference Method.

2.1.4 Frequency-Domain Q-V Loop Model

This model has been proposed by N.L. Ovic and G. Kusic.'2
The transient response of a transmission line is obtained in
the frequency-domain, and the model includes both the skin

and corona effects.

In this model the conductor in corona is assumed to be
surrounded by the space charge in the ionization zone, which
the authors call ‘"corona cloud". The total charge formed
during corona, Q, consists of the charge per unit length
bound on the conductor surface, Qy and the space charge of

the ionization zone, denoted by Qs i.e.:
Q=Qb+Qf -0.0.(2.17)

When the applied voltage is lower than the inception voltage
Vo, the capacitance of the line is egqual to its geometric

capacitance, i.e.
Co = ( 2mep )/ln(2h/a) ..... (2.18)

where:

h = average suspension height,
a = equivalent radius (GMR) of a conductor bundle
€o= permitivity constant .
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The geometry wused in this model to represent a coronating

~ h
rTTT T 77 7777 VA

Figure 2.6: Geometry of a coronating conductor used in the
frequency-domain Q-V loop model

conductor is shown in Fig.2.6.

Above Vo, the 1ionization zone is formed and 1its
equivalent radius p 1is defined as the distance from the
conductor, where the electric field 1is equal to the

inception value Eg, i.e.:
Eo =Q/( 2mpeo ) e (2.19)

By letting Q=CoVo, the inception voltage, Vo, is obtained

ass

VO =EO a ln(2h/a) -000000(2020)
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The electric field within the 1ionization =zone 1is

assumed to be constant and equal to Eg, 1.e.

E=Eo, a<r<p i iiee. (2.21)
and beyond this zone, it has the form:

E=Q/( 2mpeo ), r>p e (2.22)

The applied voltage is equal to the integral of the electric

field over the region between the conductor and the ground

/Edf" /Eodr + /Edr 00000(2023)

After substituting the charge at the boundary of the

plane, i.e

ionization zone as Q =2wpeoEo , the following is obtained:

V=Eo (p-a)+Eop 1n(h/p) cee..(2.24)
To determine the radius of the ionization zone, p, for a
given applied voltage, v, this equation is solved
iteratively. This is done by rearranging Eq.(2.24) to
produce:

p=(a+V/Eo )/[1+1n(h/p)]  ....... (2.25)

The calculated radius p is used to find the total charge Q,

from Eq.(2.22), i.e.:

Q=Eo 2mpeo ceeee..(2.26)
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For different values of the voltage, different values of Q
are obtained. The desired dynamic capacitance is obtained

from:
C4=dQ/AvV = AQ/AV=(Q -Q, ) /(V, -V._1) cee...(2.27)

where Q. , Q. (., V,, V,_.( are the subsequent values of the
total charge Q, obtained by Eq.(2.29), and the applied

voltage V, respectively.

Corona losses are modelled independent of the procedure

used to model the dynamic capacitance.

Based upon the results of laboratory experiments,? the
authors developed an approximate Q-V characteristic for each
polarity whose shape depends only on the maximum value of
the applied voltage impulse. The approximate -V
characteristics for positive and negative voltage impulses
are shown in Fig.2.7. The points d,e,f,r,s, and u on the
characteristics are determined graphically by observing the
various experimentally recorded Q-V loops and their

relationship.

The slope of section a-b on the characteristic in
Fig.2.7 is equal to the geometric capacitance of the line.
The slope of section b-c is determined by calculation of the
dynamic capacitance according to Eq.(2.27). Section c-d has
a zero slope and the charge in this section equal to Q , the

value which corresponds to the maximum instantaneous value
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Figure 2.7: Simplified Q-V characteristics used in the
frequency-domain Q-V loop model

of the applied voltage. The slope of section d-e is defined

as:
Cq_,=Co + (1/3)(Q, /V ) ceeen. (2.28)
giving the coordinates of point e as:
point e: [Vo, (7/10)(Q, )+(1/3)(Vo/V, )Q; +VoCo ]

The charge Q is identified in Fig.2.7 as the space charge
which corresponds to the maximum instantaneous value of the
applied voltage. Similarly, the slope of section e-f is

defined as:
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Ce_f=Co +(1/3)(Qq, /V,)+(35/200)(Q; /Vo ) ..(2.29)
giving the coordinates of point f as:
point f: (0.0, 0.5250Q; )

For negative going waveforms, section a-p-r-s is defined in
the same way as for section a-b-c-d. The slope of section

s-u is defined as:
C,_,=Co +(2/3)(Q¢,/ V)Y ... (2.30)
giving the coordinates of point (u) as:

point u: (0.0, -0.4 Q. )

The expressions (2.28-2.30) are derived empirically,

from the oscillograms recorded in field measurements.’

To represent the corona losses 1in this model,the

authors use a resistive element whose value is obtained from

W = j{lz R, dt ceeeeeesa(2.31)

and
I=1(t)=v(t)/(2o + R.)  ...... (2.32)

where Z, represents the characteristic impedance of the

transmission line defined as:

Zo =VL/Cd ....(2.33)
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It should be noted that this impedance is a function of
dynamic capacitance C4y defined in Eg.(2.27). Since Zy>>R_,

Eg.(2.31) becomes:

W, = /[v(t)/zo 12 R, @t ... (2.34)

In the above eguation, R, is assumed to be constant. Hence,
1t can be removed from the integral and be expressed in the

following form:

Rc=wc//[V(t)/Zo ]J2da ... (2.35)

In this equation, the value W. 1is determined from the area
enclosed by the Q-V loop in Fig.2.7, either for a positive

or for a negative voltage pulse.

The resistance R, is represented as a series resistive

Figure 2.8: Resistive element R, used in the frequency-
domain Q-V loop model to account for corona

element which exists only when V>V,, Fig.2.8.
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In order to include the skin effect, the authors use a
frequency-dependent longitudinal resistance per unit length
which also includes the resistance of the ground return.
The solution of the transmission line equations is obtained
in frequency-domain by means of the Fourier Series, as

described in section 1.4.1,

The authors tested their model in the examples with 2
in., 1.32 in., and 0.927 in. diameter, single-conductor
lines subjected to positive and negative 1lightning voltage
impulses whose maximum value ranged from 800 kV to 1750 kV.
The lines considered by the authors were assumed to be

non-energized.

A weak point of this method is the technique that the
authors use to simplify the Q-V characteristics in order to
determine the resistive element R, , 1i.e. corona losses.
This approach could be tolerated 1if the Q-V characteristics
were not dependent on the rate of rise or fall of the

voltage pulse. However, this is not true.'3

Another simplifying assumption used in this model is
that the electrical field within the ionization zone |is
constant and equal to Eo . In the theory of corona
discharges®, however, it can be found that the electrical
field within the ionization zone changes a great deal and
may be considered to be equal to Eo¢ only at the conductor

surface.
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2.1.5 Approximate Q-V loop model of A.Inoue

This model'* 1is based on the time-domain solution of the
system of TLE given by Egs.(1.5) with the resistance and the
conductance of the line neglected. An empirically obtained
Q-V characteristic, shown in Fig.2.9 1is used to obtain the

values for the dynamic capacitance, C;, defined as:

Co, V<Vo, &V/3t>0 ..(2.36.a)
m 1

Co +[miky (V-Vo ) 1/v, Vo<V<V;, 3V/3>0 ..(2.36.b)
. maq—1{

Co +[myk, (V-Vo )2 1/v, Vi<V<V,, />0 ..(2.36.c)

Co, 0<V<V,, adV/3t<0 ..(2.36.d)
where:

Co = geometrical capacitance of the line [F/m],

corona inception voltage [kV],

<
o
n

characteristic value of voltage determined

<
i

experimentally (introduced by the author) [kV],
V, = maximum value of applied voltage [kV],

ki, ko = constants defined as:

k =0,Va/(2n) x 10° ' [F/m],

i=1,2
my, m, = free parameters [dimensionless],
01, 02 = corona loss constants determined

empirically [dimensionless],

a = equivalent (GMR) radius of a conductor bundle

h = average suspension height [m].
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Figure 2.9: A simplified Q-V characteristic used in the
approximate Q-V loop model of Inoue

The parameters my;, m2, o¢; and o; as well as V,; are
determined empirically in order to .obtain the best possible
agreement between the the voltages recorded in field
measurements and the results of the numerical simulation
with this model. The field measurements were performed on
single~-conductor, 2-conductor bundle, and four-conductor
bundle non-energized transmission lines with 2.24cm and
2.53cm diameter subconductors. The lines were subjected to
positive and negative lightning-type voltage impulses whose
maximum value ranged from 850 kV to 1720 kV. The values of
the model parameters suggested by the author are given in

Tabs.2.2 and 2.3.
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TABLE 2.2

Geometric and electric line parameters used by Inoue

conductor h a Vo ay Zo

configur. [m] [cm] [kv] [cm] (2]

single cond. 22.2 1.265 303 1.265 375

2-cond. bundle 14 1.265 421 1.952 315

4-cond. bundle 14 1.120 599 2.939 250
TABLE 2.3

Values of the empirical constants suggested by Inoue

v Vi (o] C2 m 4 mp

[kV] (kV] - -— —— -
Impulse 1 1580 1150 30 3 2 2.4
Impulse 2 1130 850 40 15 2 2.2
Impulse 3 850 700 45 20 2 2.2

The TLE are solved by the Finite Difference Method
using a time step of At=0.01 us and a displacement step of

Ax=7.05 m.

In Tab.2.2, a; is defined by the author as the radius
of an equivalent single conductor whose maximum surface
field strength 1is equal to that of the bundled conductor.
The characteristic impedance of the line ,Zy, is obtained by
measurement at a voltage below Vg . Also, the values for
Co are calculated from the value of Zo and the conditions of

surge propagation at the speed of light.
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TABLE 2.2

Geometric and electric line parameters used by Inoue

conductor h a Vo a Zo

configur. [m] (cm] [kV] [cm] (el

single cond. 22.2 1.265 303 1.265 375

2-cond. bundle 14 1.265 421 1.952 315

4-cond. bundle 14 1.120 599 2.939 250
TABLE 2.3

Values of the empirical constants suggested by Inoue

v Vi (o8] g2 my msy
[kV] [kv] - == -—  --
Impulse 1 1580 1150 30 3 2 2.4
Impulse 2 1130 850 40 15 2 2.2
Impulse 3 850 700 45 20 2 2.2

The TLE are solved by the Finite Difference Method
using a time step of At=0.01 us and a displacement step of

Ax=7.05 m.

In Tab.2.2, a3 is defined by the author as the radius
of an equivalent single conductor whose maximum surface
field strength 1is equal to that of the bundled conductor.
The characteristic impedance of the line ,2,, is obtained by
measurement at a voltage below Vg . Also, the values for
Co are calculated from the value of Zo and the conditions of

surge propagation at the speed of light.



TABLE 2.4

Key features of the reviewed models-

Single Shell Conductance Frequency Domain Q-V Loop Approximate Q-V
Model® Model° Q-V Loop Model‘t2 Model 14 Loop Modelt?
Authors Harrington, Lee Ovic, Kusic Inoue Gary, Timotin,
Afghani Cristescu
solution time-domain solve the TLE solve the TLE in solve the TLE solve the TLE
technique using modal in time-domain frequency-domain in time-domain in time-domain
transformation by FDM by Fourier Series by FDM by FDM
type of Q-V approximate single-valued approximate approximate approximate
characteristics Q-V loops Q-V charact. Q-V loops Q-V loops Q-V loops
technique used numerically empirically by empirically by empirically empirically
to obtain generated by comparison of graphical from from
the Q-V the model computed and approximation of experimentally experimentally
characteristics experimentally experimentally recorded Q-V recorded Q-V
recorded recorded Q-V loops loops
waveforms loops

corona losses
modelling
technique

by means of
current sources
between the
line and

the ground

by means of
nonlinear
voltage
dependent
conductance

G determined
from Peek's
Law for corona
losses

by means of a
series
resistance Rg
determined from
the area
enclosed by the
approximate

Q~V loop

already
included by
the
approximate
Q-V loop

already
included by
the
approximate
Q-V loop

9%



TABLE 2.5

Rey features of the examples used for numerical simulation
with the reviewed models

Single Shell Conductance Frequency Domain Q-V Loop Approximate Q-V
Model® Model1t® Q-V Loop Modelt?2 Model 14 Loop Model1?
Authors Harrington, Lee Ovic, Kusic Inoue Gary, Timotin,
Afghani Cristescu
impulse
polarity + - +,- +, =

conductor-bundle
configuration/Vo

1x30.5 mm/219 kV

4x30.5 mm/490 kv
1x20.5 mm/350 kV
1x23.5 mm/220 kV

1x25.3 mm/277 kV
4x%22.4 mm/588 kV

1x51.0 mm/400 kv

1x23.6 mm/220 kv
1x13.2 mm/150 kV

1x25.3 mm/303 kV

1x23.3 mm/421 kV
4x22.4 mm/599 kv

1x26.4 mm/320 kV|

max. amplitude
of the applied

impulses [kV] 390 to 610 1500 800 to 1550 850 to 1720 1050 to 1120
types of applied lightning,

voltage impulses switching lightning lightning lightning lightning
max. voltage

rate of rise

[kV/us] 66.6 1000 2150 2188 5600
min. voltage

rate of rise

[kV/us] 8.8 750 1317 400 933

Ly
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2.2 Finite Difference Representation of TLE

The Finite Difference Method (FDM) is frequently used as a
method for solving the system of TLE in the time-domain.
Its simplicity is the main reason that this method was
chosen for the overvoltage propagation analyses 1in the
remaining sections of this and the next chapter. Before
proceeding with an analysis using this method, a detailed
description of the method, as well as its limitations, will

be presented.

Generally, the finite difference representations of
the first derivative of any differentiable two-argument

function F{x,t) are:

AF/3x=[F(x+1,t)-F(x,t)]/Ax cee..(2.37)
3F/dt=[F(x,t+1)-F(x,t)/at  ..... (2.38)

In the theory of finite differences, these expressions are
known as forward differences. Using these forms for the
derivatives in Egs.(1.5), the finite difference

representation of the TLE is:

-[1(x+1,t)-1(x,t)]/Ax=Cy [V(x,t+1)-V(x,t)]/At
+ G V(x,t) ce...(2.39a)
~[vi(x,t+1)-v(x-1,t+1)]/Ax=Lo [I(x,t+1)-I(x,t)]/At

+ Ro I(x,t) ce...(2.39Db)
After rearranging, these equations become:

V(x,t+1)=AV(x,t)-BlI{(x+1,t)-I(x,t)] ceeo.(2.40a)

I(x,t+1)=CI(x,t)-D[V(x,t+1)-V(x-1,t+1)] ...(2.40b)
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where:

A= 1-4t/(G Cy4) cevee.(2.41.a)
B= At/(cy AX) ... .(2.41.b)
c= 1-at( Ro/Lo ) Lo, (2.41.¢c)
D= At/( LoaAx ) L., (2.41.43)

The computation is started at x=Ax and t=At using equation

(2.40.a) with the following boundary and initial conditions:

v(x,0)=v, v(0,t)=E(t)

I1(x,0)=0

where E(t) represents the input pulse and V a value of the
steady-state voltage.. Equation (2.40.b) is then used to
compute the new current values I(x,t+1) using the new values
of the voltages V(x,t+1) and V(x-1,t+1). During each time
step, the values of the voltages and the currents are
computed all along the line according to an appropriately

chosen displacement step Ax.

According to the theory of finite differences,® for the
numerical procedure to be stable, the following condition

(Courant-Friedrich-Lewy) must be satisfied:
(At/Ax)/( 4 LoCo ) <1

This is the condition of stability for the finite difference
approximation of the hyperbolic partial differential
equation. The condition can be satisfied by adjusting the

ratio At/Ax.



3. COMPARISONS

Three models have been chosen for comparison from those that
were reviewed 1in section 2.1, All three models are
applicable for the analyses of transient phenomena on HVDC
transmission lines. In order to obtain a valid comparison,
they are all analyzed wusing the Finite Difference Method

(FDM) .

3.1 Application of the Finite Difference Method (FDM)

Before comparing the different models wusing the FDM, it is
necessary to investigate the accuracy obtained by the

implementation of FDM.

As a test example, a lossless transmission line with
the parameters Co = 8.89 nF/km and Lo = 1.25 mH/km was
chosen. The propagation of a 1200 kv, 1.2/50 us standard
lightning 1impulse along the line energized with zero
steady-state voltage was simulated. The results of the
simulation were compared with the analytical solution for
this case. The error was expressed in the form of standard

deviation defined as:

N
o=ﬂ/§:[v(x,i%4@(x,i)]2/N ...... (3.1)

i=1

where:
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V(x,i) = value of the calculated voltage at distance
x and at time t=i At,
Vv, (x,i) = base value for voltage at the same time
and location as V(x,1i) (from the
analytical solution or from experiments)

N = number of discrete values of voltages (N=1000)

The standard deviation given in Tab.3.1 was calculated in

the following three time ranges:

Time Range A (range of the front): 0.0-1.3 us
Time Range B (range of the crest): 1.3-3.0 us
Time Range C (range of the tail): 3.0-6.0 us

The choice of a time step of At=0.01 us and a
displacement step of Ax=6 m used for these calculations

resulted in a stability factor of 0.50 .

Using the same time step, the problem was simulated
with the Electromagnetic Transient Program (EMTP). The
numerical results were obtained at the same distances as
before and compared with the analytical solution. Again,
the error had a form of the standard deviation calculated
within the same three ranges. These results are also shown

in Tab.3.1

It can be noted that the EMTP consistently gives

slightly more accurate results. However, this difference
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TABLE 3.1

Comparison of the performances of EMTP and FDM in terms of
the standard deviation for a lossless line subjected to a
1200 kv, 1.2/50 us voltage impulse

STANDARD DEVIATION [kV] - FDM

X=360m X=720m X=1080m
Time Range A 0.7384 0.6054 0.7299
Time Range B 0.3091 0.4794 0.6541
C 0.2396 0.4123 0.5914

Time Range

STANDARD DEVIATION [kV] - EMTP

Time Range A 0.5138 0.3675 0.5965
Time Range B 0.1841 0.3927 0.5808
Time Range C 0.1922 0.3758 0.5546

was found to be negligible for the simulations performed in
this work and, therefore, the FDM is chosen for modelling

purposes in the present study.

3.2 Comparison of Corona Models

Among the models reviewed in section 2.1, the conductance
model, '° the approximate Q-V loop model of Gary et al'', and

the Q-V loop model of Inoue'? were chosen for comparison.

There are several reasons to account for this choice.
First, all three models are time-domain based models and
represent the typical modeling techniques used in this
domain. Second, the other two reviewed models, are based on

some assumptions which would greatly limit their application
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in HVDC transmission systems (sections 2.1.1 and 2.1.4).
Besides, one of them is a frequency-domain based model which

was found to be inconvenient for this study.

The model of Gary et al, 1in addition to corona effect,
also includes the skin effect, whereas the other two models
deal with the corona effect only. In order to obtain valid
comparisons of these three models, from the point of view of
modelling the corona effect, this model was modified by
excluding the skin effect. This was achieved by setting the
line resistance 'in the model to zero. This modification does
not affect the analysis of the influence that corona has on
overvoltage travelling waves, because there 1is no

interaction between these two phenomena.

The comparison was carried out using the same
transmission line geometry as that considered by both Lee'®

and Inoue'#, which is:

a) line inductance, Lo 1.25 mH/km
b) geometric line capacitance, Co 8.89 nF/km
c) equivalent radius of conductor,a 12.65 mm
d) average suspension height,h 22.20 m.
e) number of conductors in a bundle, 1

f) steady-state voltage of the line, V 0. kv

The input waveform used by Lee 1is shown in Fig.3.1 and
that used by Inoue in Fig.3.5. These input waveforms were

recorded, experimentally, on the transmission line of the
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geometry described as above. It can be noted that although
the line geometry was the same, the values of the inception
voltage were different. This can only be explained as a

result of wusing different expressions for calculating the
inception voltage. Unfortunately, the authors did not

provide sufficient information about calculating Vj

The purpose of the comparison carried out in this
section was to verify the results published by Lee and Inoue
and compare those results with the results obtained by using
different modelling techniques. The comparison of the models
was carried out choosing infinitesimal segments of distance
and time as Ax=7.05 m and At=0.01 us, respectively. These

values resulted in a stability factor of 0.425

The values of the parameters in the conductance model
are listed in Tab.2.1. For the purpose of the comparison
study in this section, the model parameters had values that
correspond to a single-conductor transmission line

configuration and a positive voltage impulses.

The values of parameters used in the Q-V loop model of
Inoue are listed in Tabs.2.2 and 2.3. The comparison study
in this section was <carried out with the values that
correspond to a single-conductor configuration, and the

voltage impulse denoted by 2, Tab.2.3.

The set of adjustable parameters in the modified Q-V
loop model of Gary et al consists of parameters F; and po .

It was found that the best agreement between numerical and
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the experimental results were obtained with the following

values of these parameters:

F1 = 2.3

Po = 0.8
First, the waveform shown in Fig.3.1 was used as the
input waveform for each of the three compared models. For

each model, the voltages were computed at the distances of
352.5m, 705m, and 1057.5m. These results were compared with
the experimental results recorded by Lee at the same
distances. The results from the models were assessed by
comparing the standard deviation computed according to
Eq.(3.1) where the base value at any location on the line
was the experimentally recorded value by Lee'® at that
location The standard deviations given in Tab.3.2 were

calculated for the following three time ranges:

1. Time Range A (range of the front) 0-2 us
2. Time Range B (range of the crest) 2-3 us
3. Time Range C (range of the tail) 3-4 us

The experimental and computed voltage waveforms are

shown in Figs.3.2-3.4.
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The same kind of comparison was carried out using the
waveform shown in Fig.3.5 as the input waveform for each of
the three models. The voltages were computed at the same
distances and using the same time and displacement steps as
before. These results were compared with the experimental
results recorded by Inoue. The errors are calculated for
each of the three models using the same technigue as in the
previous case, and the results are shown in Tab.3.3. The
experimental and computed voltage waveforms are illustrated

in Figs.3.6-3.8.



Comparison
voltages

TABLE 3.2

experimentally obtained by Lee

STANDARD DEVIATION [kV]

in terms of the standard deviation between
computed by different models and voltages

Conductance Model'® - Lee
X=352.5m X=705m X=1057.5m
Time Range A 52.75 59.29 80.82
Time Range B 36.72 24 .42 87.38
Time Range C 73.27 101.71 246.80
Q-V loop model'® - Inoue
Time Range A 64,12 73.30 78.60
Time Range B 57.67 111.03 43,94
Time Range C 50.28 60.71 258.52
Approximate Q-V loop model'! - Gary
Time Range A 105.87 118.26 126.13
Time Range B 112.45 210.87 335.18
Time Range C 25.10 81.87 469.56
S -
S~
\_—-
=4
2
'3
on
[14]
Il )
°°
T 1
.00 2.00 4.00
Time [us]
Vo = 277 kV
Figure 3.1: Input waveform used by Lee
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TABLE 3.3
Comparison in terms of the standard deviation between

voltages computed with different models and voltages
experimentally obtained by Inoue

STANDARD DEVIATION [kV]

Conductance model'® - Lee
X=352.5m X=705m X=1057.5m
Time Range A 67.55 69.40 68.29
Time Range B 46.46 76.14 54.50
Time Range C 44,32 65.24 95.98
Q-V loop model'? - Inoue
Time Range A 116.28 70.99 116.39
Time Range B 50.87 112,53 125,53
Time Range C 59.79 11.640 141.49
Approximate Q-V loop model'' - Gary
Time Range A 98.26 185,51 159.24
Time Range B 65.74 303.56 386.99
Time Range C 62.05 140.32 387.76
fl)
S =
S =
S ///¥
=
.3}
o
S o
— o
2 X T 1
.00 2.00 4. 00
Time [us]

Vo = 301 kv

Figure 3.5: Input waveform used by Inoue
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3.3 Conclusion

Comparison of the models in section 3.2 was carried  out
through numerical simulation of transient conditions on a
single-conductor transmission line. The simulation was done
using two different, experimentally derived, 1lightning-type
input waveforms. The results of this comparison, shown in
Figs.3.2-3.4 and 3.6-3.8 and in Tabs.3.2 and 3.3, 1indicated
that the model with highest accuracy is the conductance
model. Slightly 1less accurate results were obtained with
the Q-V loop model of Inoue and much less accurate ones with
the approximate Q-V loop model of Gary et al. The less
accurate performance of the Q-V loop models under
consideration can only be explained by inaccurate modelling

of the experimental Q-V characteristics.

It can Dbe noted thqt each of the compared models is
based on é different number of empirically determined
constants. These constants describe the increase of
capacitance and/or conductance beyond the corona inception
voltage and depend on conductor bundle configuration as well
as the shape and polarity of voltage impulses. They have to
be determined through an optimization process which implies
the availability of experimental results. The degree of
difficulty in deriving the appropriate values of these
constants determines the practical applicability of these
models. The conductance model, which turned out to be the

most accurate of the compared models, is based on two
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empirical constants, whereas the slightly less accurate Q-V
loop model of Inoue is based on five empirical constants.
Since it 1is much easier to optimize a model with two, than a
model with five adjustable constants, it is evident that the
conductance model has a higher practical applicability.
Therefore, considering both the accuracy and practical
applicability of the models, it 1is suggested that the
conductance model should be utilized for modelling corona on

HVDC transmission lines.



4. CORONA MODEL IMPLEMENTATION ON HVDC
TRANSMISSION LINES
The results presented in Chapter 3 indicate that from the
point of view of accuracy and practical application, the
conductance model'® is the most suitable of the reviewed
models for implementation in an HVDC transmission system.
Since overvoltage transients usually occur when an HVDC line
is energized, a few additional assumptions must be included

in this model to accommodate this condition.

4.1 Important Assumptions

Normally, the steady-state operating voltage of HVDC
transmission lines is approximately 30% higher than the
corona inception voltage. This implies that an HVDC line
already coronates under steady-state conditions. I1f the
line is subjected to an overvoltage surge, the intensity of
ionization changes and it is accommodated through a change
of voltage-dependent transmission line parameters. In order
to analyze the performance of an HVDC transmission 1line

under these conditions, the following assumptions were made:

1. Voltage-dependent steady-state transmission line
parameters are determined by the intensity of corona

under steady-state conditions. Since the
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steady—-state voltage is always higher than the corona
inception voltage, the parameters are determined
according to Egs.{(2.13) and (2.14).

2. If an energized 1line is subjected to an overvoltage
surge of polarity opposite to that of the energized
line, and of an amplitude which is higher than 2.0
p.u., impulse corona is considered to start when the
absolute value of the steady-state voltage 1is
exceeded. As long as this value is not exceeded, the
voltage-dependent line parameters are assumed to be
constant and to have the wvalues that correspond to
the steady-state conditions.

3. In the case when the surge is chopped either on the
front or on the tail, the transmission line
parameters are assumed to be constant and to have the
values determined by the maximum value of the applied

voltage after this value of the voltage is reached.

Assumption 2 may yield attenuation values that are slightly
higher than that which can occur in reality. Assumption 3
affects the tail of a computed waveform, resulting 1in
attenuation that is slightly higher than that which can
normally occur. The peak value, however, is not affected by

this assumption at all.
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4.2 Parameters of the Model

The adopted corona model has 2 sets of parameters. One set
of parameters depends solely on the transmission line

geometry and is comprised of:

R = line resistance per unit length,
Lo = line inductance per unit length,
Co = geometric capacitance of the line per unit length,

Vo corona inception voltage.

The other set consists of the dynamic capacitance, C4, and
the conductance, G, which depend on both the geometry and

the applied voltage, and therefore, are affected by corona.

The influence of the steady-state resistance, R, was
found to be negligible. Since the skin effect is neglected

in the present study, a resistance of zero is assumed.

4.2.1 Transmission Line Inductance, Lo

The line inductance, Lo, 1s represented as a sum of the

external component, L , and the internal component, L , i.e.

Lo = L. + L cee..(4.1)
where:

L = (po /27)1n(2h/a) cee.. (&.1.a)

L; = uo /8w ceee.. (4.1.b)

h = average suspension height,
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a = equivalent radius (GMR) of a conductor bundle,

uo = permeability of air (uo ~ 47x10~7 H/m).

The equivalent radius of bundled conductors is determined as

the Geometric Mean Radius of a bundle (GMR).

4.2.2 Geometric Capacitance of the Line, Cgo

The capacitance, Co, is determined from the following

expression:
Co = ( 2meo )/1In(2h/a) ..., (4.2)
where:
€o = permitivity of the air (eo ~ 8.85 x 10°'2 F/m)
This capacitance 1is the 1line capacitance under non-corona

conditions.

4.2.3 Corona Inception Voltage, Vg

Corona inception voltage is determined from the expression
proposed by C.F. Wagner? which can be used for monopolar

HVDC transmission lines, i.e.:
Eo = [2Ve (1+B)]1/[n 4 1n(2nh/a)] ..... (4.3)
where:

Eo inception voltage gradient [kVv/cm],

Vo corona inception voltage [kV],

n = number of subconductors in a bundle [dimensionless],
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d = diameter of the subconductors [cm],
a = equivalent radius (GMR) of a conductor bundle [cm],
h = average suspension height [cm],
B = bundling coefficient:

B = B(d,s) [dimensionless],

s = spacing between subconductors [cm].
The coefficient, B, is introduced to account for the
influence of the charges on other subconductors. The

expressions that define this coefficient for different

TABLE 4.1

Values of the bundling coefficient B?

n 1 2 3 4 6
B 0 d/s 3.644/2s 4.244/2s 5.314/2s
bundle configurations are given 1in Tab.4.1. Corona

inception voltage, Vo, is obtained from Eg.(4.3) as:
Vo = Eo n d 1n(2h/a)/[2(1+B)] cee..(4.4)

The values for the corona inception voltage gradient, Eo,

are determined from Peek's equation?, i.e.:
Eo =30m[1+(o.3o1AJ§5] [kV/cm] cev..(4.5)
where:

conductor surface factor [dimensionless],

3
]

o}
i

equivalent radius (GMR) of a conductor bundle [cm].
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.The value of the factor m depends on the type of conductor
and the weather conditions. For the 4.06 cm diameter
conductor used for the Nelson River 1line, the values for m
are accepted to be 0.5 for summer, and 0.6 for winter.?
According to the experimental results,® the values for Eg
determined by Eq.(4.5)'are in agreement with measured values
for switching impulses. For lightning impulses however, it
has been indicated® that this value should be increased by

about 10 to 15%.

3.2.4 Dynamic Capacitance, Cgd

The dynamic capacitance is fully defined by Egs.(2.13). It
can be noted that this parameter 1is a function of the
applied voltage, the line geometry and a corona loss

constant which is determined empirically, i.e.:
Cd = Cd( V,Vo,a,h,01 ) ...... (4.6)
where:

V = instantaneous value of the applied voltage [kV],
Vo= corona inception voltage [kV],

a = equivalent radius (GMR) of a conductor bundle [m],
h = average suspension height [m],

o0y = empirical corona loss constant [dimensionless].
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The corona loss constant o, determines the rate of
increase of the dynamic capacitance beyond the geometric

value. Experimental results® indicate that the value of o::

- is larger for impulses of positive polarity
- is larger under fair weather conditions

- increases with the steepness of an impulse
- increases with the conductor diameter

- decreases as the number of conductors in

a bundle increases

This constant c¢an only be determined empirically, by
comparison of computed and measured voltages at a position
on the line. For example, for a monopolar 1line with the
same conductor configuration as that used for the Nelson
River line, o, is determined to be 30 for positive voltage

impulses of the lightning-type.'?°

Fig 4.1 shows the variation of the dynamic capacitance,
as a function of the applied voltage, when the same line, in
a non-energized condition, is subjected to a 900 kv, 1.2/50

us positive voltage impulse.
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3.2.5 Transmission Line Conductance, G

When a transmission line is not in corona, the conductance
of the line, G, 1is very small and it is usually neglected.
In the case of a coronating transmission 1line, this
parameter is fully defined by Eg.(2.14). Using the same
notation as that used to describe C;, the conductance, G,

can be represented as:

G =G( V,Vo,a,h,()‘z ) .....(4.7)
where Vv, Vg, and h have the same significance as in
Eqg.(4.6). The constant o0, is another empirical corona loss
constant which depends on the intensity of energy
dissipation for a conductor in corona. It is obtained

through a comparison analysis similar to that used to obtain
o1 . This constant affects the attenuation of a voltage
impulse, whereas its influence on the steepness of a voltage
impulse is negligible. According to experimental results,?®

this constant depends on:

- weather conditions
- conductor bundle configuration
- polarity of a voltage impulse

— duration of a voltage impulse

For a specific weather condition and impulse polarity, the
energy dissipated by corona has been shown® to depend mainly
on the total duration of the voltage impulse, rather than on

the steepness of its front.
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For example, according to experimental results,'?® this
constant is determined to be 1x107 for the monopolar line
under consideration, positive voltage impulses of the
lightning-type, and a fair weather condition. The variation
of the line conductance as a function of the applied voltage
when the non-energized line was subjected to 900 kv, 1.2/50

us positive voltage impulse is shown in Fig.4.2,
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4.3 Parameters of the Line Used for Simulation

For the numerical simulations, a two-conductor bundle
monopolar HVDC semi-infinite transmission line was
considered. The configuration of the bundle is the same as
that wused for the Nelson River transmission line. The

geometry of the line is shown in Fig.4.3 and the parameters

4.06 cm

!

18.30 m
{

LTSS LLLISTT LTI 7 777777777

Figure 4.3: Nelson River conductor bundle geometry

of the line are given in Tab.4.2.

The corona inception voltage gradient, Eo, was calculated
according to Eqg.(4.5), using a value of 0.5 for the
conductor surface factor, m, and assuming a single-conductor
configuration of the bundle. This assumption is justified

by the fact that the bundling effect on the inception
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TABLE 4.2

Electrical parameters of a monopolar HVDC transmission line
with the Nelson River conductor bundle configuration

Parameter . Symbol Value
Steady-state +450 kv
operating Vo 0
voltage -450 kv
Line inductance L, 1.238 mH/km
Geometric capacitance Co 9.360 nF/km
Corona Lightning
inception impulse 20.89 kvV/cm
voltage Eo
gradient Switching 18.17 kV/cm
(Peek) impulse
Corona Lightning
inception impulse 318 kv
voltage Vo
(Wagner) Switching 277 kv
impulse

voltage is negligible when the spacing between the
subconductors is large. The spacing between them can be
considered as large if the ratio between the spacing and the
subconductor diameter is greater than 10. In other words,
corona starts independently on both subconductors as in a
single-conductor arrangement. For the same reason, the
empirical corona loss constants in the model, o7 and o2,
have the same values as for a single-conductor
configuration, Tab.4.3. These values are obtained for

positive voltage impulses and a fair weather condition.
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The values for lightning impulses are those determined

by Lee,'® and can be used only for this kind of voltage
impulses. For switching-type voltage impulses, however, the
values of 01 and o0, are estimated from experimental results®
obtained for a line with a conductor bundle configuration
similar to that of the Nelson River line. The new values
are estimated by means of a Q-V loop recorded for a 1.82 in.
conductor and a fair weather condition, when a
switching-type voltage impulse is applied at the beginning
of the test line. The value of o7 is obtained by adjusting
its value in the expression for Cy4, Eqg.(2.13.b.), in order
to obtain the calculated value of C;y equal to that
determined from the slope on the Q-V loop at the point that
corresponds to the same applied voltage above the inception
value. Similarly, the value of o0, is obtained through the
process of adjusting 1its value 1in the expression for G,
Eq.(2.14), 1in order to obtain the same energy dissipated by

corona as that determined from the area enclosed by the Q-V

TABLE 4.3

Values of empirical corona loss constants o7 and oz for
positive voltage impulses, a fair weather condition and the
' Nelson River conductor bundle configuration

waveform type 01 02
lightning 30 1x107
switching 12 1.09x105

loop.
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4.4 Description of the Waveforms Used for Simulation

The numerical simulation was carried out using the input
voltage waveforms in the form of positive 1.2/50 us standard
lightning, and 250/2500 us standard switching voltage
impulses. Since practical experience with the Nelson River
line indicates that the line voltage wunder transient
conditions seldom exceeds 2.0 p.u., the amplitude of these
impulses was chosen as 450 kvV. Under such circumstances,
the situation when the polarities of the steady state
voltage and the voltage impulse are opposite has no
practical significance and, therefore, was not simulated.
The simulation was carried out with full and chopped
standard lightning waveforms; the waveforms were chopped

at either the front or the tail.

The full waveforms are generated by the following

double exponential form:

E(t) Ey lexp(-t/Ty ) - exp(~-t/T, )] ...(4.8)

The chopped waveforms are generated by the following system

of equations:

E; lexp(-t/T; )-exp(-t/T, )1, t<T ...(4.9.a)
E(t)= E(T.) - 1000(t-T.), T, <t<T, ...(4.9.b)

F(t)sin[3.124(t-T,)], t>T, ...(4.9.c)
where T 1is the time to chopping and:

T, = T. + E(T.)/1000 ces.(4.10)
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F(t) = -0.4exp[-(t+T,)/0.8] ceeea(4.11)

E, in Egs.(4.8) and (4.9.a) represents a constant which
is adjusted in order to obtain a waveform of the desired
maximum amplitude, E.ox - The ratio E/E,,, can be
determined from the expression for the maximum amplitude of

the function given by Eq.(4.8). The parameters of the input

waveforms used during the simulation are given in Tab.4.4.

TABLE 4.4

Parameters of the input waveforms

waveform Emax T, T, T. [us]
type [kV] [us] [us] front tail
1.2/50 1300 68.2 .405 1 7

250/2500 1300 3155 62.5 - -

4.5 Analysis of Numerical Accuracy

The purpose of this analysis was to determine the
combinations of steps At and Ax which satisfy the stability
condition and yield numerical results of acceptable accuracy
for the shortest possible computational time, known as CPU
(Central Processor Unit) time. The influence of these two

steps on the accuracy was examined in examples involving the
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line of geometry shown in Fig.4.3. In each case, the line
was subjected to 450kV positive voltage impulses of the

1.2/50 us and the 250/2500 us types.

It was noted that higher values of At and Ax, which
also satisfy the stability condition, produce high-frequency
oscillations around the crest value of the computed voltage
waveforms, and that amplitude of these oscillations
decreases as the magnitudes of the steps decrease.
Furthermore, 1in the examples with the line energized with
zero steady-state voltage, it was noted that similar
oscillations appear around the knee which corresponds to the
point of transition to corona conditions, causing an error
in the inception voltage. When the line, energized with
zero steady-state voltage, was subjected to a 1.2/50 us
voltage impulse, the influence of steps At and Ax on
numerical accuracy was found to be the strongest. This was
the situation when the rate of rise of the computed voltages
was the highest. The effect that At and Ax have on the
corona inception voltage can be seen from Fig.4.4. The
waveforms in this figure are computed when the non-energized
line under consideration was subjected to a 450 kv, 1.2/50
us positive voltage impulse. The waveforms were computed at
distances of 0.6, 1.2, and 2.4 km from the beginning of the
line. The 1influence of these two steps on numerical
accuracy was also examined in the example when the line
under consideration, energized with 450 kV, was subjected to

a positive , 450 kv, 250/2500 us voltage impulse.
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km.

The values of At and Ax were varied in two ranges, and

they are given in Tab.4.5, along with the values for the

stability factor, CPU time, and computed errors. When
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TABLE 4.5

Numerical errors caused by variation of time and
displacement steps

Error [¥%]
At Ax Stability CPU
factor time € €,
[us] [km] - [s]

Impulse 1.2/50 us, Vo =0, x=2.4 km

0.01 0.003 0.979 70.51 0.000 0.50
0.01 0.006 0.490 36.00 0.00% 6.30
0.01 0.010 0.293 22.13 0.020 7.20
0.02 0.006 0.979 17.64 0.060 3.60
0.02 0.010 0.587 11.53 0.090 7.80
0.02 0.020 0.293 6.17 0.186 8.30
0.02 0.030 0.196 4.49 0.329 13.40
0.04 0.012 0.979 4.94 0.201 4.32

Impulse 250/2500 us, V¢ =450 kV, x=240 km

10 5 0.587 4.80 0.000 -
10 10 0.293 2.84 0.035 -
20 6 0.979 2.38 0.058 -
20 10 0.587 1.70 0.088 -
40 12 0.979 0.82 0.197 -

propagation of a lightning-type voltage impulse was
simulated, a waveform computed with At=0.01 us and Ax=0.003
km was chosen as a basis for error computation. This
waveform satisfies two conditions. First, it exhibits no
high-frequency oscillations around crest; second, the point
of transition to corona occurs at the voltage which is
almost equal to the value calculated by Eg.(4.5).
Similarly, when propagation of a switching-type voltage
impulse was simulated, the waveform computed with At=10 us

and Ax=5 km was chosen as a basis for error computation,
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since it satisfies the same conditions. For all the
examples, the error was computed in the region around the
crest, as a maximum relative error between the base waveform
and the waveforms computed with different steps At and Ax,
as shown 1in Fig.4.4. This error 1is denoted as e . In
cases where the line was energized with zero steady-state
voltage, the relative error in the inception voltage was

computed too, and it is denoted by ¢ .

From Tab.4.5 and Fig.4.4, it can be concluded that the
error effect due to different steps At and Ax, 1is much more
pronounced at the point of transition to corona conditions
than around the crest value of a computed voltage waveform.
The results in Tab.4.5 also indicate that the high-frequency
oscillations are of smaller amplitude if displacement step,
Ax, is chosen as a distance slightly greater than that
travelled by the wave for time At. If this condition is
satisfied, the performance of the FDM can be significantly
accelerated. It should be noted that, 1in such a case, the
stability factor is almost equal to 1. Some
researchers'?''4 did not pay enough attention to this

condition.

Since the main purpose of this study is the analysis of
the effect that corona has on attenuation and distortion of
overvoltage waves on HVDC transmission lines, the error e
is considered to be of prime importance in the analysis of

numerical accuracy. In this case, the error of ¢ =0.2% was
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considered permissible. Therefore, the values of At=0.04 us
and Ax=0.012 km were chosen for the simulations involving
the lightning-type voltage impulses, and At=40 us and Ax=12
km for those involving the switching-type impulses. These
values show that, with the FDM, a very god description of a
standard lightning voltage impulse can be obtained with not
less than 30 points in the region of its front. For a

standard switching impulse, number of points in the region

of the front should not be less then 6.

4.6 Description of Simulation Cases

Based upon the value and polarity of the steady-state

voltage, the following two cases were considered:
Case 1: Steady-State Voltage, Vg = +450 kV

Here, the line energized with +450 kV was subjected to
450 kV lightning and switching type positive voltage
impulses. When the line was subjected to lightning-type
voltage impulses, the voltages were computed at distances of
0.6 km, 1.2 km, and 2.4 km from the beginning of the line.
When a switching-type impulse was applied at the beginning
of the line, the voltages were computed at distances of 60
km, 120 km, and 240 km. For each of the computed voltages,
values of the maximum amplitude and attenuation were
computed and they are given in Tabs.4.6-4.9. The waveforms

obtained in this example are shown in Figs.4.5-4.8.

Case 2: Steady-State Voltage of the Line, Vig = 0 kV
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In this case, the 1line was considered to be
non—energized. The types of voltage 1impulses and the
respective distances on the line, where the voltages were
computed, were the same as in Case 1. The values of the
maximum amplitude and attenuation for each of the computed
voltages are given in Tabs.4.10-4.12, The waveforms

obtained in this example are shown in Figs.4.9-4.11.

4.7 Analysis of the Results of the Simulation

It can be noted that, 1in the cases where the line 1is not
energized, Figs.3.9-3.11, the waveforms are characterized by
a sudden change of the slope in the region of the front,
which results in the characteristic knee on the diagrams.
This point on the diagrams corresponds to the moment of
transition from non-corona conditions to impulse corona
conditions. The voltage which corresponds to this point is
the corona inception voltage. When the line 1is energized
(Figs.4.5-4.8), the knee does not appear because corona
already existed during the steady-state (Assumption 2,
section 4.1). According to the results in Tabs.4.6-4.12,
the attenuation in this case, is the highest. It should be
also noted that in all simulated examples, the rate of
attenuation decreases as a surge propagates along the line

and that this decrease 1s nonlinear.
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It is interesting to analyze the propagation of a full

and chopped voltage impulse of the same type. Tabs.4.10 and
4.12 show the results for the attenuation of a 450 kv, full
1.2/50 wus, and a 450 kV 1.2/50 us chopped at the tail
positive voltage impulse, respectively. It can be noted that
both impulses are equally attenuated. This result may appear
surprising since the chopped impulse dissipates less energy
during corona than the corresponding full one, and therefore
expected to be less attenuated. However, the chopped impulse
is an impulse that also has a lower energy level than the
corresponding full one. The degree of attenuation of an
impulse due to corona, depends on the amount of energy
dissipated by corona relative to the total energy of the
unattenuated impulse, rather than on the absolute amount of
the dissipated energy, alone. Realistically, chopped
impulses should be even more attenuated than the
corresponding full ones because of the skin effect which is

very pronounced for this kind of voltage impulse.

The values of the maximum amplitudes given 1in
Tabs.4.6.-4.12, indicate that the highest overvoltages can
be expected when an energized line is subjected to a voltage
impulse of the same polarity as the steady-state voltage.
When the line was subjected to a full lightning-type voltage
impulse, the maximum amplitude of the line voltage decreased
from 2 p.u. to 1.75 p.u. after the impulse propagated a

distance of only 2.4 km, Tab.4.6. This result indicates
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that lightning-type overvoltage surges can be dangerous for
a substation only for 1lightning strokes intercepted by a
line at a distance from the substation which is comparable

to those in the simulation example.

The results of the simulation with a switching-type
voltage impulse, Tab.4.9, show that the maximum amplitude of
the line voltage decreased from 2 p.u. to 1.67 p.u. after
the impulse propagated a distance of 240 km. Considering
that the switching-type overvoltage surges on present HVDC
transmission lines have to propagate the distances 1in the
order of several hundred kilometers, this type of
overvoltage surges can be considered to be even less

dangerous than those resulting from lightning strokes.
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TABLE 4.6

Computed attenuation of a full 450 kv, 1.2/50 us positive
voltage impulse

STEADY-STATE VOLTAGE: V = 450 kV

LOCATION MAXIMUM VOLTAGE AMPLITUDE ATTENUATION
km kv pP.U. % db
0.0 899.99 2.00 0. 0.
0.6 867.72 1.93 7.2 -0.32
1.2 838.85 1.86 13.6 -0.63
2.4 789.60 1.75 24.5 -1.22
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Figqure 4.5: Propagation of a positive 450 kv, 1.2/50 us
voltage impulse along the line energized with
450kv. a) 0 km, b) 0.6 km, c) 1.2 km, d) 2.4 km
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Computed attenuation of a 450 kV, 1.2/50 us positive voltage

impulse chopped on the front

Figure 4.6:

STEADY-STATE VOLTAGE: Veg = 450 kv
LOCATION MAXIMUM VOLTAGE AMPLITUDE ATTENUATION
km kv P.U. % db
0.0 870.46 1.93 0. 0.
0.6 832.76 1.85 8.0 -0.41
1.2 805.06 1.79 15.6 -0.73
2.4 759.04 1.69 26.5 -1.34
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Propagation of a 450 kv, 1.2/50 us positive
voltage impulse chopped at the front, along the
line energized with 450 kvV. a) 0 km, b) 0.6 km,
c) 1.2 km, d) 2.4 km
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Computed attenuation of a 450 kv, 1.2/50 us positive voltage

impulse chopped at the tail

STEADY-STATE VOLTAGE: Vsg = 450 kV
LOCATION MAXIMUM VOLTAGE AMPLITUDE ATTENUATION
km kv p.u. % db
0.0 899.99 2.00 0. 0.
0.6 867.71 1.93 7.2 -0.32
1.2 838.84 1.86 13.6 -0.63
1.8 789.59 1.75 24.5 -1.22
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Figure 4.7:

Propagation of a 450 kv, 1.2/50 us positive
voltage impulse chopped at the tail, along the
line energized with 450 kVv. a) 0 km, b) 0.6 km,

c) 1.2 km, 4

) 2.4 km
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TABLE 4.9
Computed attenuation of a 450 kv, 250/2500 positive voltage
impulse
STEADY-STATE VOLTAGE: Vg = 450 kvV

LOCATION MAXIMUM VOLTAGE AMPLITUDE ATTENUATION
km kv p.u. % db
0.0 899.99 2.00 0. 0.
60 855.26 1.90 9.9 -0.45
120 816.24 1.81 18.6 -0.89
240 753.25 1.67 32.6 -1.71
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Propagation of a 450 kV, 250/2500 us positive
voltage impulse along the line energized with
450 kv. a) 0 km, b) 60 km, c) 120 km, d) 240 km



Computed attenuation of a full 450 kv, 1.2/50 us positive

TABLE 4.10

voltage impulse
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Figure 4,9:

Propagation of a positive 450 kv, 1.2/50 us
voltage impulse along the non-energized
line. a) 0 km, b) 0.6 km, ¢) 1.2 km, d) 2.4 km.

Vo =318 kVv.

STEADY-STATE VOLTAGE: Vg, = 0.0 kV
LOCATION MAXIMUM VOLTAGE AMPLITUDE ATTENUATION
km kv p-u. % db
0.0 449,99 1.00 0. C.
0.6 442.05 0.98 1.8 -0.08
1.2 434.89 0.96 3.4 -0.15
2.4 422.49 0.94 6.1 ~0.27
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TABLE 4.11

computed attenuation of a 450 kv, 1.2/50 us positive voltage

impulse chopped on the front

STEADY-STATE VOLTAGE: V$ = 0.0 kv
LOCATION MAXIMUM VOLTAGE AMPLITUDE ATTENUATION
km kv p.u. % db
0.0 420.45 0.93 0. 0.
0.6 409.74 0.91 2.5 | -0.11
1.2 404.09 0.89 3.9 | -0.17
2.4 395.35 0.88 6.0 | -0.27
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Figure 4.10:

Propagation of a 450 kv, 1.2/50 us positive
voltage impulse chopped at the front, along
the non-energized line. a) 0 km, b) 0.6 km, c¢)
1.2 km, d) 2.4 km. Vo = 318 kV
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TABLE 4.12

Computed attenuation of a positive 450 kV, 1.2/50 us chopped

at the tail

STEADY-STATE VOLTAGE: V% = 0.0 kV
LOCATION MAXIMUM VOLTAGE AMPLITUDE ATTENUATION
km kv p.U. % db
0.0 449.99 1.00 0. 0.0
0.6 442.05 0.98 1.8 | -0.08
1.2 434.89 0.96 3.4 | -0.15
2.4 422.49 0.94 6.1 ~0.27
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Figure 4.11:

Propagation of a 450 kv, 1.2/50 us positive
voltage impulse chopped at the tail, along the
non-energized line. a) 0 km, b) 0.6 km, c) 1.2
km, d) 2.4 km. Vo = 318 kV.
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4.8 Description of the Program

Based on the system of TLE given by Egs. (2.40) a computer
program was developed to simulate the propagation of
overvoltage surges along semi-infinite HVDC monopolar
transmission lines. The program consists of a main program
where the values of currents and voltages ‘are computed for
given time and displacement, and three subroutines which
generate different input voltage waveforms and the
coefficients &, B, C, and D, Egs.(2.41). The flowchart of

the main program is shown in Fig.4.12.
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The program starts with reading the 1input data,

arranged through the following READ statements:
READ statement 1: ( T¢,T2,T. ,E.o +Vo,Vss ,ITYPE )

The first three parameters are time constants
specified in microseconds and they define the shape
of the input voltage impulse. Thus, the constants
Ty and T represent the constants for double
exponential form and the constant T. represents the
time for chopping. The parameters E_,, Vo, Vi are
voltage parameters with the values specified 1in
kilovolts. They represent the maximum amplitude of
the input voltage impulse, the corona inception
voltage, and the steady-state operating voltage of
the line, respectively. The parameter Vo 1is
specified as a positive value only. This implies
that both positive and negative corona start at the
same voltage which is just an approximation whose
influence on the final result is negligible. The
parameter ITYPE specifies the type of an input
waveform. It has a form of an integer whose value

can be either 0 or 1, which denote:

ITYPE = 0, Full input waveform of the lightning
or switching-type.
ITYPE = 1, Chopped input waveform of the

lightning or switching-type.

READ statement 2: (X, . ,A%,At, T . )
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The first two parameters are spatial parameters
specified in kilometers and they define the length
of the line and the displacement step Ax,
respectively. The second two parameters are time
parameters specified in microseconds and they define
the time step and the maximum time of propagation
,respectively. The maximum propagation time 1is
determined from the value for X and ‘the actual

max

speed of propagation.
READ statement 3: ( R,L,Co,01,02,a ,h )

These ©parameters represent the transmission 1line

parameters. Thus,

R = transmission line resistance, [Q/km]. This
study was carried out with R=0,
L = transmission line inductance [H/km],

Co= geometric capacitance of the line [F/km],

o2 corona loss constant [dimensionless],

another corona loss constant [dimensionless],

01
a = equivalent radius (GMR) of a conductor bundle
[m].
If the ratio between the spacing and a
subconductor diameter is greater than 10,
the bundling effect can be neglected. 1In
such cases, this parameter should have

the value of the equivalent radius of a
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subconductor. This approximation 1is
valid for the Nelson River conductor
bundle configuration.

h = average suspension height [m].
READ statement 4: (NX1,NX2,NX3,IPR)

The first three parameters are integer parameters
and they define the location on the 1line where the
voltage waveforms are to be computed. They
represent the number of displacement steps Ax from
the beginning of the 1line up to the desired
locations on the line. This program enables a
choice of three such locations. Parameter IPR
specifies a printing option related to printing the
output results. It has the form of a positive

integer where:

IPR = 0, The values of maximum voltage amplitudes
and the attenuation are printed only.
The values of the voltage amplitudes are
expressed in kilovolts and in units
relative to the value of the
steady-state voltage, Vo . The
attenuation is expressed 1in percent and
in decibels.

IPR > 0, The complete waveforms at desired

locations will be obtained 1in a printed
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form. This option also includes the

option obtained for IPR = 0.
READ statement 5: (XBEG,YBEG,XDIV,XNDIV,YDIV,YNDIV)

These parameters are scaling parameters and are
related to plotting of the output results. The

parameters have the following meaning:

XBEG = starting value on the time-axis, [us]

YBEG = starting value on the voltage-axis, [kV]

XDIV = scaling factor for the time-axis,
[us/div]

XNDIV = number of divisions on the time-axis,

[div] (1 division = 1 in.)

YDIV = scaling factor for the voltage-axis,
[kv/div]
YNDIV = number of divisions on the voltage-axis,

[div] (1 division = 1 in.)

After setting the initial conditions, a voltage impulse
of the desired type 1is generated at the beginning of the
line, in accordance to Egs.(4.8) or (4.9). During each time
step, the voltages and the currents are computed all along
the 1line. At each location the values of the computed
voltages are compared with the values of either the
inception voltage or the steady-state voltage and the
coefficients A, B, c, and D, Eqgs.(2.41) computed

accordingly. When the maximum propagation time is exceeded,
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the computed values of the line voltage at the desired
locations are printed and/or plotted, depending on the

specified value of parameter IPR.

The coefficients A, B, C, and D are computed 1in a
subroutine nameds PAR. Whenever the new values of these
coefficients are to be computed, this subroutine is invoked

from the main program.

The input voltage impulses are generated by two
subroutines. A subroutine named SWLSUR generates full
lightning or switching-type voltage impulses according to
Eq.(4.8), whereas a subroutine named CHPSUR generates the

chopped voltage impulses according to Egs.(4.9).

The limitation of this program is determined by the
number of time steps At, chosen for computation. This
number is determined by the ratio T /At and not more than

max

2000 such steps can be used with this program.



5. CONCLUSION AND SUGGESTIONS FOR FURTHER
RESEARCH
The purpose of this study was to highlight the influence
that 1impulse corona has on overvoltage surges which
propagate along monopolar HVDC transmission lines, and to

indicate an optimal technique for modelling this phenomenon.

In Chapter 3, the performances of three, already
existing, corona models are compared. These models are
based on two approaches to corona modelling which are the

most applicable for the HVDC environment.

One approach 1is based on approximation of Q-V loops
experimentally recorded for different conductor bundle
configurations, weather conditions, and different shapes and
polarity of applied voltage impulses. Although different
approximation techniques are used by different authors, the
idea 1is the same - to develop the expressions which
approximate experimental Q-V loops in order to render them
valid for a range of different line geometries, and voltage
polarities and waveshapes. Such loops are usually dependent
on at least two empirical constants which accommodate the
change of the Q-V 1loop shape in different practical
situations. Since the area enclosed by the 1loop is

proportional to the energy dissipated by corona, this kind

- 105 -
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of modelling technique results in exclusion of a conductance
term from the TLE. 1In this study, the models utilizing this

approach are classified as Q-V loop models.

The other approach is based on analytical approximation
of only that part of an experimental Q-V loop where the
first derivative is positive. Corona losses, however, are
accommodated by an appropriate conductance G, derived from
one of the existing corona loss laws. This approach, too,
is dependent on empirical constants which, generally
speaking, determine the rates of capacitance 1increase and
the energy dissipation during corona. In this study, the
models wutilizing this approach to corona modelling are

classified as conductance models.

The main disadvantage of both approaches 1is their
dependance on empirical constants. Modelling techniques
that do not wuse such constants are available in the
literature. However, they are developed for application in

HVAC transmission systems only.

The results of the comparison study carried out in
Chapter 2, represent the main contribution of this thesis.
These results clearly indicate that the conductance model,
with the conductance G determined from Peek's law for
steady-state corona losses, yields the most accurate results
of all the compared models. In addition to this, 1it is a

very simple model and has high practical applicability.
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Because of these reasons, the conductance model is

recommended for implementation on HVDC transmission lines.

The implementation of this model on a monopolar HVDC
transmission line, Chapter 4, necessitated the determination

of a set of values for the two empirical constants used in

the model, which are valid for switching-type voltage
impulses. These values (Tab.4.3) are determined for the
Nelson River conductor bundle configuration, positive
voltage impulses, and a fair weaﬁher conditibn. The

extension of the conductance model for this class of voltage
waveforms and therefore its application for an energized
monopolar transmission line, represents another contribution

of this thesis.

As a part of the implementation, the FDM used as a
numerical procedure in this study, is optimized through an
analysis of numerical accuracy, which is also carried out in
Chapter 4. The results for CPU time, and the numerical
errors presented in Tab.4.5, indicate that the value of the
stability factor should be maintained slightly less, or if
possible, equal to 1. I1f the time and displacements steps
are chosen in accordance with this condition, the
performance of the FDM can be significantly accelerated,
without sacrificing the accuracy of computation very much.
For example, with At=0.04 us and Ax=0.012 km, the CPU time
is more than seven times shorter than that obtained with the
combination of At and Ax used by Inoue, while the numerical

error remained as small as 0.2%.
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The conductance model implementation 1is concluded with

a numerical simulation of transient behaviour of the line
considered in this study, and it was carried out with a
practical range of input voltage waveshapes. The results of
the simulation presented in Chapter 4, 1indicate that the
influence of corona on the attenuation of both lightning and
switching surges is very strong. In other words, it acts as
if the surge arresters were placed all along the line, and
therefore, provides an additional level of surge protection
on these 1lines. This implies that the analyses of
overvoltage transient phenomena on HVDC transmission lines,
with the inclusion of the corona effect, may result in

reduced insulation level of equipment connected to the line.

The corona model considered in this study 1is based on
experimental results obtained for positive voltage impulses
of the lightning and switching-type. Unfortunately,
experimental results for negative voltage impulses are not
available in the literature and therefore the utilization of
this model for this kind of voltage impulses was not
possible at this time. Furthermore, the model proposed in
this study does not take skin effect into account, which
also contributes to additional attenuation and distortion of
the overvoltage surges. Therefore, further improvements of

this model are necessary and the following is suggested:

1. Utilization of the model for negative voltage
impulses. This is particularly important for the

analyses involving the lightning-type voltage
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impulses, since the most of direct lightning strokes
result in negative voltage surges. This will be
possible only when experimental results for this kind
of voltage impulse become available.

2. A more general program which includes both the skin
effect and corona should be created. Since the skin
effect is a frequency-dependent phenomenon, it is
suggested that the modelling of both corona and the
skin effect should be done in the freguency-domain.

3. The research has to be extended to include modelling
of corona on bipolar HVDC transmission lines. In
this case the pole-to-ground and the pole-to-pole
capacitances will both be nonlinear functions of
voltage and, therefore, it is expected that the
overvoltage surges will be even more attenuated and

distorted than those on the monopolar lines.

The results presented in Chapter 4 of this study, as
well as research done in the past, 1indicate that a certain
level of steady-state corona should be allowed in HVDC
transmission systems in order to obtain an additional level
of overvoltage protection and, therefore, reduce the
associated investments. On the other hand, steady-state
corona produces power losses which transmission line
designers tend to minimize. It becomes obvious that, 1in
order to determine the permissible level of steady-state

corona, an optimization study which will take into account
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the cost of power losses due to corona on one side, and the
reduction of investments for the surge protection on the

other side, must be done in the near future.
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Appendix A
PROGRAM FOR THE SIMULATION OF CORONA-AFFECTED
VOLTAGE SURGE PROPAGATION ALONG MONOPOLAR
TRANSMISSION LINES

SUBROUTINE PAR
REAL*8 A,B,C,D
COMMON A,B,C,D,R,XL,CDYN,G,DX,DT
A=1.-G*DT*1.D-6/CDYN
B=DT*1.D-6/(CDYN*DX)
C=1.—R*DT*1.D—6/XL
D=DT*1.D-6/(XL*DX)
RETURN
END
SUBROUTINE CHPSUR(K)
REAL*8 T(2100),E(2100)
COMMON /W/ T,E,E0,T1,T2,TC
EKSP=(EXP(-ALOG(T2/T1)/(1-T1/T2))

-EXP(-ALOG(T2/T1) /(T2/T1-1)))
EA=E0/EKSP
IF(T(K+1).GE.TC) GO TO 1
E(K+1)=EA* (DEXP(-T(K+1)/T1)-DEXP(-T(K+1)/T2))
EN=E(K+1)
GO TO 3
E(K+1)=EN-1000.* (T(K+1)-TC)
IF(E(K+1).LE.0.) GO TO 2
GO TO 3
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TCE=EN/1000.+TC

E(K+1)=—.04*EA*DEXP(-(T(K+1)-TCE)/.80)

*DSIN(3.124*(T(K+1)-TCE))
CONTINUE
RETURN
END
SUBROUTINE SWLSUR(K)
REAL*8 T(2100),E(2100)
COMMON /W/ T,E,Eo,Ti,Tz
KSP=(EXP(-ALOG(T2/T1)/(1-T1/T2))

-EXP(-ALOG(T2/T1)/(T2/T1-1)))

EA=E0/EKSP
TCTRL=(T(K+1)) /T2
EP1=DEXP(-T(K+1)/T1)
IF(TCTRL.GE.180.) GO TO 1
EP2=DEXP(-T(K+1) /T2)
GO TO 2
EP2=0.
E(K+1)=EA*(EP1-EP2)
RETURN

END

REAL*8 T(2100),E(2100),VK1(2000),VK(2000),

SK1(2000),8K(2000)
REAL*8 A,B,C,D
REAL VSS.,VSWCH,VCOR,SG,RC,H

DIMENSION IBUF(4000),YARRAY(2002),

XARRAY(2002),VOLT(2000,4),

VMAX (2000),DIST(4),VMX(4),
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& VMPU(4) ,ATTN(4) ,ATDB(4)
COMMON A,B,C,D,R,XL,CDYN,G,DX,DT
COMMON /wW/ T,E,E0,T1,T2,TC
READ *,T1,T2,TC,E0,VCOR,VSS,ITYPE
READ *,XMAX,DX,DT,TMAX
READ *,R0,XL,C0,SG,SC,RC,H
READ *,NX1,NX2,NX3,IPR
READ *,XBEG,YBEG,XDIV,XNDIV,YDIV,YNDIV
NX=XMAX/DX
NT=TMAX/DT
VSWCH=VCOR
IF(ABS(VSS) .GE.VCOR) VSWCH=ABS(VSS)
QC=SC*SQRT(.5%RC/H)*1.D-8
0G=SG*SQRT(.5*RC/H)*1.D-8
C1=C0+2*QC*(1,.-VCOR/VSWCH)

G1=QG* (1.-VCOR/VSWCH) **2
DO 50 I=1,NX

VK(I)=VSS

SK(1)=0.

VMAX(I)=VK(I)

CONTINUE

EMAX=0.

DO 1000 K=1,NT

R=R0

T(K+1)=K*DT
IF(ITYPE.GT.1) GO TO 2000
IF(ITYPE.EQ.0) CALL SWLSUR(K)

IF(ITYPE.EQ.1) CALL CHPSUR(K)



IF(ABS(EMAX).GT.DABS(E(K))) GO TO 51
EMAX=E(K)

51 CONTINUE
IF (DABS(VK(1)).GE.VSWCH) GO TO 1
IF(ITYPE.EQ. 1
& .AND.DABS(VK(1)).LT.ABS(VMAX(1))) GO TO 3
GO TO 2

1 IF(ITYPE.EQ.1) GO TO 3
CDYN=C0+2%QC* (1.-VCOR/DABS(VK(1)))
G=QG* (1.-VCOR/DABS (VK (1)) )*%2
CALL PAR
GO TO 4

2 CDYN=C1
G=G1
CALL PAR
GO TO 4

3 CDYN=CO0+2*QC* (1.-VCOR/ABS (VMAX(1)))
G=QG* (1.-VCOR/ABS (VMAX (1)) )**2
CALL PAR

4 VK1(1)=A*VR(1)-B*(SK(2)-SK(1))
SK1(1)=C*SK(1)-D*(VK1(1)-E(K))
IF(DABS(SK1(1)).LE.1.D-70) SK1(1)=0.
IF(DABS(VK1(1)).LE.1.D-70) VK1(1)=0.
IF(ABS(VMAX(1)).GT.DABS(VK1(1))) GO TO 45
VMAX(1)=VK1(1)

45 CONTINUE
DO 200 I=2,NX

IF(DABS(VK(I)).GE.VSWCH) GO TO 5
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IF(ITYPE.EQ. 1

JAND.DABS(VK(I)).LT.ABS(VMAX(I))) GO TO 7

GO TO 6

IF(ITYPE.EQ.1) GO TO 7

CDYN=C0+2*QC* (1.-VCOR/DABS(VK(1)))
G=QG* (1.-VCOR/DABS(VK(I)))**2

CALL PAR

GO TO 8

CDYN=C1

G=G1

CALL PAR

GO TO 8

CDYN=C0+2*QC* (1.-VCOR/ABS (VMAX(I)))
G=QG*(1.-VCOR/ABS (VMAX(I)))**2

CALL PAR
VK1(I)=A*VK(I)-B*(SK(I+1)-SK(I))
SK1(I)=C*SK(I)-D*(VK1(I)-VK1(I-1))
IF(DABS(SK1(I)).LE.1.D-70) SK1(1)=0.
IF(DABS(VK1(I)).LE.1.D-70) VKR1(1)=0.
IF(ABS(VMAX(I)).GT.DABS(VK1(I))) GO TO 200
VMAX(I)=VK1(I)

CONTINUE

VOLT(K,1)=E(K)

VOLT(K,2)=VK1(NX1)

VOLT (K, 3)=VK1(NX2)
VOLT(K,4)=VK1(NX3)

DO 300 I=1,NX

VK(1)=VR1(I)



SK(I)=SK1(I)

300 CONTINUE

1000 CONTINUE
VMX (1) =EMAX
VMX (2)=VMAX (NX1)
VMX (3)=VMAX (NX2)
VMX (4)=VMAX(NX3)
DO 1100 1sz=1,4
ATTN(1S2)=100.*(1.-VvMx(152)/VMX(1))
ATDB(ISZ)=10.*ALOG10(VMX(1S52))/VMX(1))
IF(VSS.EQ.0.) GO TO 1100
VMPU(1S2)=ABS(VMX(1SZ)/VSS)

1100 CONTINUE
DIST(2)=DX*NX1
DIST(3)=DX*NX2
DIST(4)=DX*NX3

WRITE(6,9) (DIST(I),VMX(1I),VMPU(I),

& ATTN(I),ATDB(I),I=1,4)

9 FORMAT(8X, 'X=',F8.4,1X, 'KM',3X, 'VMAX="',F12.5, 1X,
& 'kv (',F4.2,1X,'P.U.)"',3X,'ATTN=",F4.1,1X,
& '"PER CENT=',F7.2,'DB')

WRITE(6,10) VSS
10 FORMAT(24X,1X,'VSS=',F12.5,1X,'KV"')
IF(IPR.EQ.0) GO TO 1200
WRITE(6,11) (T(K),VOLT(K,1),VOLT(K,2),VOLT(K,3),
& VOLT(K,4) ,K=1,NT)
11 FORMAT(//,(1X,'T=',F8.4,4X,'E="',F10.4,4X,

* 'v=',F12.6,4X,'V=",F12.6,4X,'V=",F12.6))
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400

500
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-- PLOTING ROUTINE --
CALL AREA(8.25,10.75)

CALL PLOTS(IBUF,4000)

CALL PLOT(1.5,1.5,-3)

XARRAY (2001)=XBEG

XARRAY (2002)=XDIV

YARRAY(2001)=YBEG

YARRAY(2002)=YDIV

CALL AXIS(0.,0.,"'MICROSECONDS',-12,XNDIV,0.0,
& XARRAY(2001) ,XARRAY (2002))
CALL AXISs(0.,0.,'KILOVOLTS',S,¥YNDIV,90.,
& YARRAY(2001),YARRAY(2002))

DO 500 L=1,4

DO 400 1=1,2000

XARRAY(I+1)=T(1)

IF (XARRAY(I+1).LT.XBEG) XARRAY(I+1)=XBEG
YARRAY(I)=VOLT(I,L)
IF(YARRAY(I).LT.YBEG) YARRAY(I)=YBEG
CONTINUE

XARRAY(2001)=XBEG

XARRAY(2002)=XDIV

YARRAY(2001)=YBEG

YARRAY(2002)=YDIV

CALL LINE(XARRAY,YARRAY,2000,1,0,0)
CONTINUE

CALL PLOT(0.,0.,999)

CALL PLOT(0.,0.,9999)

GO TO 2100
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2000 WRITE(6,15)
15 FORMAT(1X, 'ERROR - UNKNOWN TYPE OF INPUT SIGNAL')
2100 CONTINUE
STOP

END



