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with the emergence of

ÀBSTRÀCT

HVDC transmission, the studies of
corona and its influence on attenuation and distortion of
travell ing v¡aves became increasingi_y important . The

practical- significance of such studies is thet all HVDC

transmission Iines operate above corona onset vortage and

that vo)-tage surges on the line associated with either
switching or lightning phenomena, are of even greater

amplitude. several good mathematical model for handting the
problem of surge propagation on HVÀc 1ines, têking corona

into account, have been developed in the past. In this
study, the performances of some of these moders are compared

and the most suitable one, from the point of view of
accuracy and pract ical appr icabi t i ty, i s implernented on a

monopolar semi-infinite HtrDC transmission Iine. The

propagation of overvortage surges along one pore of the

Nelson River transmission line is simulated with a practical
range of positive input voltage waveforms and the numerical
procedure optimized. The resurts of the simulation are

analyzed and their possible implication on the insuration
co-ordination in H\IDC transmission systems is indicated.
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1. INTRODUCTION

Power systems are subjected to two types of overvoltage

surges. They are classified, according to their origin as

lightning or switching surges. Lightning surges can be

direct or indirect. They are characterized by a very short

rise-time (in the order of a microsecond), high amptitude,

and relatively short duration. Switching surges are caused

by switching of a circuit either to clear the fault or as a
normal operat ing procedure. They have a much longer

rise-time (in the order of a few hundreds microseconds) and

decay more slowly. Switching surges are of prime importance

in the determination of insulation levels in EHV, UHV, and

HVDC transmission systems.

The effect of an overvoltage surge on a piece of

equipment is dependent on the waveform of the surge

impressed upon the piece of equipment. This waveform is
usually different from the waveform at the point of

injection into the system. The modifications are caused by

attenuation, distortion, and reflections of the overvoltage

wave as it travels from the point of its origin to the point

of interest.

It is evident that for a better evaluation

effects of overvoltage surges at different points in

system, it is necessary to take into consideration

1-
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effects as possible which affect the propagation and change

the shape of the overvol-tages. This study focusses on the

influence of the corona effect on overvoltage surges

propagating along H\IDC transmission lines.

1.1 Transmission Line Corona

Transmission rine corona has been studied since armost the

beginning of this century. F.W. Peek was the foremost

pioneer in this area and his workl resurted in the empirical
expressions for corona losses and corona inception voltage,
expressions that are in use even today. His work was

followed by that of many researchers. In 1924, Ryan and

Henline explained the hysteresis character of corona.s In

1937, SkiIling and Dykes published experimental resultsG

showing the influence of corona on the distortion of

travelling overvoltage waves. Since then, due to an

increase in the operating voltage of Àc transmission rines
and the emergence of HVDC transmission, studies of corona

and its effects have become increasingly important.

Transmission line corona is a self-sustained partial
breakdown of the air around a high vortage conductor where

the electrical field is non-uniform. Corona can be

established around a conductor of either positive or

negative polarity. Although the ionization process differs
in these two cases, the resulting effect is similar a

space charge of like polarity is inserted into the

surrounding space, and moves away from the conductor. t{hen
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the conductor is energized with alternating voltage, the

periodic reversals of polarity prevent the space charge from

leaving the vicinity of the conductor. Corona can be

established under steady-state conditions (steady-state

corona), or be initiated by an overvoltage surge. In both

cases, the instantaneous value of the applied voltage must

be higher than a critical value, known in the literature as

the corona inception voltage. This value depends on

conductor bundle geometry, conductor surface condition,
atmospheric pressure, air humidity, etc. Corona initiated
by an overvoltage surge has a unipolar character and it is
knor+n in the l iterature as impulse corona.

The space around a conductor in corona can be divided
into two zones, the ionization zone and the interelectrode
zone. The ionization zone is defineds as the space around

the high voltage conductor where the resultant el-ectrical
field is strong enough so that the f irst Townsend

coefficient of ionization exceeds the coefficient of

attachment. In this zone, electrons are released from the

atoms of the air and accelerated towards or anay from the

conductor, depending on its polarity. Collisions between

fast electrons and atoms of the air result in additional
electrons in an avalanche process. The interelectrode zone

is considered to be the space between the boundary of the

ionization zone and adjacent conductors, oî between the

boundary and the ground. In this zone, the attachment

coefficient is larger then the first Townsend coefficient of
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ionizat ion. I n the case of un ipolar corona, the

intereLectrode zone consists primarily of ions of the same

polarity as the conductor, forming a space charge which

migrates away from the conductor, deeper into the

interelectrode space. The formation of the two zones and

the different types of charges will be explained by means of

Fig.1.1 using an example of a conductor in steady-state DC

corona.

Fig.1.1.a represents the case of a positive conductor

in corona. Às long as the voltage is below the corona

inception voltage, Vo, the charge on the conductor surface

changes proportionally with the applied conductor voltage;

the constant of proportionality is the geometric capacitance

of the line per unit length, Co, i.e.:

O=CoV (1.1)

In this caser Do space charge exists as the air is not

ionized. Once the inception voltage is exceeded, the air
around the conductor becomes ioni zed. In an avalanche

process, positive ions are created by the electrons which

are readily attracted by the conductor and neutralized at
its surface by an equal positive charge supplied from the

source. Positive ions, which are left behind, slow1y migrate

away from the conductor. Às the mobility of the electrons

is much higher than that of the positive ions, the

neutralization of the electrons is a much faster process
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Figure 1.'l : Charge disposition around a conductor in corona

than the movement of the ions. Therefore,

considered that the electric field around the

affected only by the positive space charge, eo

in both the ionization and the interelectrode

it can be

conductor is

, dominating

zone. The
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rerationship between the charge supplied by the source, e,,

and the applied voltage, in this case, is shown in Fig.
1 -2 -a. I t can be noted that for di fferent values of
steady-state voltage above the inception vaIue, the charge

O increases at a rate much higher than that before corona

(a)
(b)

Figure 1.2: Steady-state Q-V characteristics

initiation.

Àn exampre of a negative conductor in corona is shown

in Fi9.1.2.b. when the voltage is below the inception value

Vo, the relationship between the charge suppried from the

source and the voltage is the same as that described by

expression (1.1). When the inception vottage is exceeded,

the air around the conductor becomes ionized.

Voltage
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an avalanche process, move

away from the conductor leaving the positive ions to be

attracted by the conductor and neutralized. The electrons
move up to the boundary where ionization and attachment are

equally probable. Beyond this boundary they are captured by

the neutral atoms of the air, forming negative ions. These

processes result in a positive space charge, e , dominating

in the ionization zone, and in a negative space charge, e,
dominating in the interelectrode zone. The space charge

from the ionization zone is attracted by the conductor and

neutralized at its surface by an egual negative charge which

is suppried from the source. The neutralization process

causes the charge Q to increase at a much higher rate than

that defined by Eq. ( 1 .1 ) . The Q-V relationship, in this
case, is shown in Fig.1.2.b for different values of

steady-state voltage. I t should be noted that this
relationship shows the same form of nonrinearity as in the

previous case.

Experimental resultss as weIl as the experience of

several researcherss I 1 s indicate that the charge neutralized
at the conductor surface (-A ) is voltage-dependent. The

magnitude of this charge increases nonrinearly with the

applied voltage.

Under steady-state conditions, the radius of the

ionization zone as well as the varue of the space charge are

time invariant. In the case of impulse corona, however,
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these varues which are functions of voltage, become

functions of time. ExperimentsB have shown that, in the

case when the applied conductor vortage has the form of an

impulse, the Q-V characteristic has the form of a loop, for

Vol tage

Figure 1.3: Typical impulse corona e-V characteristic

both positive and negative voltage impulses(nig. 1.3).
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Section o-a

corresponds to

on the Q-V loop in Fig.1.3 is linear and

non-corona conditions. The charge O

tan0=Co
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increases proportionally to the applied voltage according to
Eq. ( 1.1 ), as long as the voltage is below Vo . Section a-b

of the loop corresponds to corona conditions where V>Vo and

v/ t>0. Under these conditions, âD additional charge of

the same polarity as the conductor is supplied from the

source to neutralize the space charge which is in contact
with the conductor surface. point b on the loop (fig.1.3),

corresponds to the maximum instantaneous value of the

applied voltage. From this point oD, as the voltage

decreases, the space charge around the conductor remains

almost constant which cause the total charge in the ionized

region, Q, to change almost linearly with the voltage.

Section b-c of the Q-V loop represents the conditions when

V<V and v/ t<0. Experimental resultss show that the

return slope of the Q-V loop is almost equal to that of

section o-a. If the voltage decays very slowly, the space

charge eventually disperses due to diffusion which causes a

curving of the return slope of the Q-V ì-oop. Section o-c in

Fig.1.3 represents the value of the space charge generated

during impulse corona after the applied voltage is decreased

to zero. This space charge migrates away from the conductor

in the process of diffusion until it reaches the distance

where its influence on the electric field around the

conductor is negligible.

Although the radius of the ionization zone varies with

voltage, its thickness is negligibte in comparison with lhe
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radius of the conductor. Hence, it is often assumed in the

Iiterature that even in the case of impulse applied voltag€,

the interelectrode zone starts from the surface of the

conductor and that the conductor gradient is maintained

constant at a value of Eo, for all voltages greater than the

inception value (t<aptzov) .

t.? Transmission Line Equations (rrn)

The response of a transmission line, neglecting corona and

the skin effect, can be represented by a system of tero

linear partial differential equations known as Transmission

Line Eguations (tr,e), i.e.:

-àt/¿x=Co (av/¿t ) +Gov

- àv/ò x=Lo ( ¿t /¿ ¡ ) +Rs r

= instantaneous value of voltage,

= instantaneous value of current,

= geometric capacitance of the

Iength,

Iine per unit

= self inductance of the line per unit length,

= resistance of the line per unit length,

= conductance of the line per unit length,

time variable,
distance from the location of excitation

1.2.a)

1.2.b)

(

(

where:

v

I

Co

Lo

Rs

Go

!-L_

andx=



Eqs. (1.3.a)
11

and ( 1 .3.b) are linear because the

parameters Co, Lo, Ro, and Ge are constant. t^lhen the

transmission Iine is not in corona, the conductance Gs

is very small and it is usually neglected. However,

when the line operates in corona, both the line
capacitance and the conductance become nonlinear

functions of the conductor voltage.

Furthermore, when the line is subjected to fast
transients such as Iightning surges, in addition to
corona, the skin effect contributes to the attenuation
and distortion of the transient response. Since the

corona effect is reflected in the voltage-dependent line
capacitance and line conductance, and the skin effect in

the frequency dependent line resistance, these two

phenomena do not interact v¡ith each other and therefore
can be studied independently.

Àccording to the resultss'et 1 1 | 15 available in the

literature, the corona effect can be represented

accurately enough by assuming that the total charge

supplied by the source per unit length, Q, depends on

both the magnitude V and the rate of rise

¿V/¿t of the applied voltage, i.e.:

e=e (v , òv/¿¿¡

In o'rder to take the corona ef f ect into account, the

system of equations (1.3) can be written in the

following form:
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-òt /¿ *= (òe/òv) ( ¿v,/¿t )

-òv/òx=Lo (¿t/¿t) + Rol

-èr/òx=ca ( àv/¿r)
-òv/òx=Lo (¿t/¿¡ ) +Rer

(1.3.a)

(1.3.b)

The coefficient ¿A/ àV is called the dynamic capacitance of

the line, C¿, and represents the slope on the appropriate

Q-V characteristic. Thus, the TLE in Eqs. ( 1 .3) , hây be

written as:

(l

(1

.4.a)

.4.b)

It shoul-d be noted that C¿ depends not only on the voltage

amplitude, but also on rate of rise of the applied voltô9ê,

i.e.:

c¿ =c¿ (v,¿v/¿t)

In other words, the Q-V characteristics are different for
different types of surges. FieId measurementss indicate
that Q-V loops are narrower for steeper surges.

It should also be noted that the conductance term is
omitted from Eqs.(1.3). This is justified by the fact rhat

the area enclosed by a Q-V loop is proportional to corona

losses and therefore no additional parameter is needed to
account for these losses.
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1.3- Àpproaches to Corona Modellinq

There are two basic approaches to model impurse corona.

one approach is based on an anaryticar approximation of
the Q-V characteristics, which is usualry done piecewise.

The TLE, in this case, have the form of Eqs.(1.4), and are
solved with c¿ taken as the slope on the approximate e-v
characteristic. The main disadvantage of this approach is
the very limited practical appricability of the modeL since
the Q-v characteristics are availabre only for those classes
of voltage waveforms which are easiry generated under

laboratory condi t ions.

The other approach is based on the analytical
approximation of that portion of the e-v characteristic
which has a positive first derivative. This approximation
results in a single-valued e-v characteristic. corona

losses, however, are accommodated by an appropriately
defined conductance term G(V) derived from consideration of
either Peek's or Popkov's corona loss laws which are valid
in the steady state.
the following form:

Therefore, the TLE in this case have

c(v)v
RoI

(l

(1.

àt /¿ x=cd ( òv/à r )

¿r /¿t=rs ( àl/¿ t )

5.a)

5. b)

+

+

The expressions for C¿ and G are both

the applied voltage.
nonlinear functions of



A detailed description
above approaches, as well

obtained by application
transmission line geometry,
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of models based on each of the

as a comparison of results
of each model to a practical
is included in Chapter 2.

1.4 Numeríca1 Methods

Once a particular approach to corona modelling is chosen and

its parameters defined, an appropriate numerical method for
solving the nonlinear TLE remains to be chosen. This

section discusses some numerical techniques that may be

used:

1.1_.1 Freguency-Domain Based Technisue

In the freguency-dornain, it is very

Fourier Series oY, more preferably,

based method. It is assumed that all
TLE have constant values associated

considered.

The corresponding wave propagating

x-direction has the following form:

Y2 (x,t)=Vn, [exp(-¿x) ] cos(crt-px)

where:

a - attenuation coefficient,
p phase constant,

(,) - angular frequenCy,

Vm - maximum value of voltage.

convenient to use a

a Fast Fourier Series

the parameters in the

r+ith each harmonic

along positive

(1.6)
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since some parameters in the equations are nonlinear
functions of voltage, it is necessary to obtain the solution
for several voltage ranges above the corona inception
voltage, using different but constant voltage-dependent

parameters within each range. The original input rraveform

v

V2

V1

Vs

0

v
tl tz

level 1

level 2

CzCrCo

V

vo

0

V1

Vs

v

V2

V1

Figure 1 .4:

leve1 3

t

Waveform decomposition into IeveIs

is decomposed into sub-waveforms, each

to a particular voltage range, Fig.1

response of the line is found

of them corresponding

.4, and a transient
using each of Èhe
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sub-naveforms as an input waveform. À superposition cf these

solutions yields the solution to the original probl_em for
given time and displacement.

It is apparent that the accuracy of the final solution
depends on the number of voltage level-s above the corona

inception voltage. The advantage of this method is that it
is very convenient for considering frequency-dependent

phenomena such as skin effect.

L.L.? Time-Domain Based Methods

Time-domain based methods are more convenient for dearing

with the nonlinear voltage dependent problems only and

distributed transmission line parameters. The TLE given by

Eqs. ( 1 .5) can be solved by the Finite Difference Method

where the partial differential eguations are replaced with
their finite difference representations.

1.5 Scope of the Thesis

This study focusses on the attenuating and distorting effect
of corona on overvortage waves traveLring arong monopolar

singJ-e and multiconductor HVrtc transmission lines. several
corona models developed for application on Ac transmission

lines will be reviewed in chapter 2. The performances of

several of those models will be compared in Chapter 3 and

the resurts presented in this chapter serve as a basis for
corona moder imprementation in H\IDC transmission systems.



The applicatÍon

modelling purposes

chapter.

voltage.

s imulat i on
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the Finite Difference Method for
this study is also justified in this

of

in

The analysis of skin effect and its influence on

attenuation and distortion of travelling overvoltage r¡aves

in HVDC transmission systems is not included in this study.

It should be noted that corona and skin effects are

phenomena that do not interact wiLh each other. It is
possible, therefore, to excLude the skin effect from the

analysis without affecting the modelling of corona.

The implementation of a corona model in an HVDC

transmission system is performed in Chapter 4. Distortion
and attenuation of different types of overvoltage surges

propagating along one pole of the Nelson River DC

transmission Iine are analyzed, including the case when an

overvoltage surge is superimposed on DC steady-state

À

is

description of the program used for the

also given in this chapter.

The corona modelling in this study is performed in
time-domain for the reasons explained in section 1.4.2. Às

a numerical technique, the Finite Difference Method is used.

The influence that corona has on attenuation and

distortion of overvoltage surges travelling along a

monopolar HVDC transmission line is analyzed and its
possible implications on the insulation co-ordination in



HVDC transmission systems indicated in

thesis. The thesis i s concluded

suggestions for further research in this

Chapter 5

by giving

area.
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of this
seve ra I



EXISTING MODELS

The propagation of overvoltage waves along single and

rnulticonductor transmission lines including the corona

effect has been studied extensivery, and different modelring

techniques and computer programs have been developed. Most

of the studies have focussed either on impurse corona on

HVÀC lines or steady state corona on HVDC lines.

In this chapter, several existing models are reviewed.

Based upon a comparison study, the results presented in this
chapter serve as a basis for corona model implementation on

H\IDC Iines.

2.1 Literature Review

The transient behaviour of coronating HVÀC or HVDC

transmission Iines may be described by the set of TLE,

Eqs. (1.5), with corona taken into account by means of

nonrinear transmission rine parameters, as described in
section 1 .3.

In the past ten years several good models for handling

the problem of surge propagation on HVÀC lines, taking
corona into account, have been developed. These moders

differ from each other in the approach adopted to model

corona and the numerical methods that have been used to

2.

-19



solve the system of TLE.

models are reviewed.

In this section,
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five of these

Z.L.L Sinqle Shetl ModeI (SSr,l)

This model has been proposed by M. Àfghani and R.J.

Harringtons and employs what the authors carl the "singre
shell method". rt represents a simprified version of the

multishell model applicable for the analysis of AC

steady-state corona developed by the same authors. The

simprified version is appticable for analyses involving the

propagation of lightning and switching overvortage surges

along HvÀc transmission rines. rn this model, corona is
simulated by means of Q-V characteristics. However, what

makes this modeL distinct from other models based upon the

use of the Q-v characteristics for moderling corona is that,
in this case, the Q-v characteristics are numericaJ.ly

generated by the model. The characteristics are used

thereafter for evaruating the appropriate vortage-dependent

nonlinear transmission line parameters.

For moderring the system of the coronating conductor

and the surrounding space charge, the authors assume that
the space charge is situated concentricalry around the

conductor; their analysis is based on the following
assumptions:

1. The ionization zone

for both the posi

neglected which implies that,
ve and negative conductor in

1S

ri



¿.

3.
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corona, the space charge consists of ions of the same

polarity as the conductor.

The space charge emitted by the conductor in corona

is concentrated within a thin shell of a radius p¡

concentric with the conductor.

The total charge in the ionized regions is the sum

4. Half the magnitude of the total space charge

contributes to the electric fierd which contrors the

movement of the shelI.

of:
a) the space charge emit

b) the charge bound on

is assumed to be

inception value Qo as

c ) the charge returned

space charge, either
voltage t ot due to

overvoltage surge.

ted by the conductor

the conductor surface, which

constant and egual to the

long as corona exists
to the conductor from the

due to an alternating applied

a reversal of polarity of an

generated through the f olJ-owingThe Q-V characteristics are

iterative procedure:

Às long as

value Vo, the

represented as:

the applied voltage

charge bound on the

is below the incepti

conductor surface

on

is

where:

Q¡ =CoV, =Co V(tj ), i=1 r... 'n
(2.1)
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Co = geometric capacitance of the line
V; = applied voltage at the point of time t.¡ = j At

At=atimestep

The value of the inception voJ.tage vs is determined from

Peek's expression for the inception voltage gradient.l

Àssume that at time tk , k(D, the applied voltage
exceeds the inception voltage ve . rn this case I a shert
with the space charge:

Qi =CoV¡ -Qo (2.2)

emerges from the conductor. The radius of the shel-r is
found from the following two equations:

r¡ =a+ArU

Ar¡ =trEo At

where:

a = equivalent (Cun) radius of a conductor bundle

u = mobility of the ions that the space charge

consists of .

This space charge induces on the conductor surface charge 0

which is taken into account in the subsequent time step as

an algebraic value.

A I =-gi tn (r,r /a) =- ( covl -eo ) tn (re /a) (2.5)
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The total charge supplied by the source at this point is
obtained by addition of the totaL charge bound on the

conductor surface, and the space charge 0;, i.e.:

Qk = Qo *Oi-Ai.-r

where ai._, is egual to zero. Using the fourth assumption,

the electrical field which controls the movement of the

she11, is evaluated as:

Er =( 1/2reo ) (cavu +Ai/2) Q.7 )

In the subsequent time step, a new value of the shell radius

is obtained from:

F¡*, =E¡ +Af ¡

Art =uEuAt

The new value of the space charge is equal to the difference

between the total charge bound on the conductor surface and

Qo, i.e.

The induced charge due to the nev¡ space charge is obtained

AS:

Qi*r = CoVk*, -Qo

Ql*r= -Qi.,rn ( r,.*,/a )

and the total charge in the ionized region as:

Q¡*,=Qo *Q'u*, -O;.

(2.e)



The step is concluded by the calculation
f ield at the radius Fk*r , as:

24

of the electrical

Et*ì = (1/2r€ork*r ) (cov,.*, +ei.t/z)

The Q-V character i st ic generated by the model

represents the relationship between the total charge in the

ionized region, Q, and the applied voltage, V; a typical e-V

Qn',

V.-, Vo

c¡

.c
JJ
Crl
c
OJ

.¡J

c)
l{
OJ
o.
(u
or¡
!¡
ro
-c(J

v*

VoÌtage, V

Figure 2.12 À typical Q-V characteristic generated by SSM

V*.,

I

characteristic generated by this model is shown in Fig. 2.1 .
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In the case of semi-infinite transmission lines, when

distortion and attenuation of overvoltage surges without
murtiple peaks have to be calculated, the authors suggest

the use of lineari.zeð Q-V characteristics with c expressed

in the following form:

,_d _

Co,

Co +AC,

Co, 0<v<v,, àv,/àt>0

(2.10.a)

(2.10.b)

(2.10.c)

The Q-v characteristic generated in this model is used to
define an appropriate current source I.o, which is actually
a function of the nonlinear line capacitance and the rine
conductance. The transmission line is sectionalized and the

current source lumped between two adjacent sections and

ground, Fi9.2.2. The length of the sections varies in the

range of 30-400m, depending on the rate of rise of the

l¿l¿r
vr-, t-- v¿ R

Represen ta t
the SSM

cor

Figure 2.22 ion of transmission line sections in
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voltage impulses used in the simulation.

Consequently, the transient response of a coronating

transmission line is found in the time-domain by solving the

following set of partial differential equations:

( ò2/¿xz

( ò/¿x)

lz I tvl V( x, t)
I T(x,t)

V(x,t)=

,t)=-lzT

(0,

(0,

)

(x

11.a)

.11.b)

at the interface

example ) :

(z

Q

wr

of

itten for each section and the conditions

any two adjacent sections (i and i+1, for

vt (1,t)

L (1,t)

x =distance along the line
I =length of the section

t =time from the beginning

application at the beginn

V =voltage vector

I =vector of the current

lz) =series impedance matrix

tvl =shunt admittance matrix

Q.12.a)
(2.12.b)

of the voltage impulse

ing of the line

per unit length

per unit length

=V* r

_-î-¡ i+t

r)
t ) =I.o.'

where:

The authors analyzed the propagation of both lightning
and switching positive voltage impulses along single and

4-conductor bundle transmission lines. The crest values of

the voltage impulses in their examples ranged from 390 kV to
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950 kV. It should be noted that the SSM generates e-V

characteristics which are dependent on the rate of rise of

the voJ-tage impuJ-ses. Theref ore, the propagat ion of the

vortage impulses is arso affected by their steepness which

is in agreement with the experimental measurements. s | 1 3

However, some Iimitations are inherent in this model. In

the cases where the input voltage impulses do not exhibit
oscillatory character, the ionized region ( a shel-I in this
modet) continues to expand. Since the propagation time on

J-ong transmission lines can be relativeLy Iarge, the

assumption of cylindrical geometry is soon violated, which

l- imi ts the propagation distances for simulating
non-oscillatory transient conditions on transmission lines.

?.L.2 Conductance Model

This model is proposed by K.C. Lee, lo and is
time-domain solution to the system of TLE gi

(1.5) wittr line resistance neglected. Corona i
by the nonlinear parameters Cd and G which are

nonlinear functions of the applied voltage.

based on a

ven by Eqs.

s introduced

modelled as

(2.13.a)

(2.13.b)

The dynamic capacitance in this model is defined by

C¿

C¿

-LO r

=co + 2kr (1-vo/v ),
V<Vo

V>Vo

(ah) /z

whe re :

kr = ot x 10-8 lr /x.n) ,
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o 1 = ar¡ empirically derived corona loss constant,

Idimensionless] ,

a = eguivalent radius (Cun) of a conductor bundle

lml ,

h = average suspension height [m],

Co = geometric capacitance of the line lf/Unl,
Ve = corona inception voltage IfV].

Corona losses, however, are introduced by

conductance term, G, defined as:

Ç= kz (1-vr/v )2

where:

k2 = ort[(un)/z x 10-8 ls/un),
a 2 = another empi r ical 1y der i ved

constant, Idimensionless]

means of the

(2.14)

corona loss

Parameters o 1 and oz are der ived empi r ically for a

single-conductor and a 4-conductor bundle configurations by

comparison of numerical and field measurements for these

configurations under application of both positive and

negative lightning-type voltage imputses. In the examples

that the author used for simulation, the appJ-ied voltage

impulses had the crest value of about 1 500 kV and were taken

f rom exper imental- measurements.

It should be noted Lhat the Q-V characteristic in this
model does not have the form of a loop. such characteristic



i s shown in

approximat ion of

Fig.2.3 and

the part of an

represent s

actual Q-V
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an anaJ.yt icaJ-

characteristic,

v max
Voltage, V

Figure 2.32 typical single-valued Q-V characteristic used
the conductance model

where the first derivative is positive.

The characteristic in Fig. 2.3 is obtained by defining
its slope, i.e. the dynamic capacitance, according to

Eq. ( 2.13) . Since the characteristic is single-valued,

corona losses are introduced by another nonlinear parameter,

i.e. conductance G defined in Eq. (2.14). The values of the

modelling parameters proposed by the author are given in

Tab.2. 1 .

A
in

o¡

¡J
orl
C
(u

.1

¿J

C
a
}{
OJ

o.
o
ort
t
flt

-É(J
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Line geometry

TÀBLE 2

and the modelli parameters used by Lee

.1

n9

c on stant single cond. 4-cond. bundLe

ve I tv] 277 558

positive impulse
negative impulse

30 30
15

positive impulse
negative impulse

107 2x106
107

a [cm] 1 .265 1 .12

h [m] 22.200 14.00

The transmission line under consideration is divided into
sections and the voltage dependent elements are lumped at

the end of each section (fig.2.4). À section length of 70m

was found by the author to be the optimal length.

The solution to the problem is obtained in two steps.

First, for each section, the solution is obtained by

Bergeron's traveLling wave technique without taking the

nonlinear elements into account, yielding a Thevenin's

equivalent for the linear part of the section. In the

second step, the nonlinear elements are taken into account

by applying the trapezoidal rule of linear interpolation.
This procedure yields the values of the voltage and the

current at the end of each section which are used as the

input data for the next section.
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v ir¡

Figure 2.4: Representation of a transmission line section
in the conductance model

It should be noted that the values of constants o1 and

oz depend on conductor bundle configuration, polarity and

shape of a voltage impulse. A weakness of the model is that

these constants can only be determined empirically, by

comparison of numerically computed voltages with those

obtained from field measurements. However, this is not a

serious disadvantage because it is relatively easy to

optimize a model with two adjustabJ.e parameters upon

availability of experimental measurements.

sect i on I
Thevenin's

Equi valent
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?.L.1 ÀpÞroximate O-V loop Model of ç.. Gary et.al-.
This modeI11 includes both the corona and skin effects. The

model is based on the time-domain solution of the system of

TLE which has the following form:

-àr/àx=c, ( ¡v/àr)+c

-¿v/¿x=Lo (¿lrl¡t)+( )l(x,t')dt'

vr
f

¿/¿t) ln(t-t'
J
ô

s accounted

dent 1 ine

nces of the

(2.15.a)

(2.15.b)

The skin effect i
t ime ( f requency ) -depen

includes the resista
return.

for by means of the

resistance, n(t), which

conductor and the ground

The authors replaced experimentally obtained Q-V

characteristics with a simplified empiricalJ-y developed one,

Fig.2.5. The simplified characteristic was obtained after
numerous laboratory experiments. The model was tested in

the example of a 225 kV single-conductor Iine with the earth

conductivity varied in the range from 0.01 5 S/n to 0.007

S/n. Àt the beginning of the Iine, different forms of

positive lightning-type voJ.tage impulses, with a crest value

of 1120 kV, were applied. The line considered by the

authors was assumed to be non-energized.

The dynamic capacitance ,C¿ , is defined as:

Co,

co +(cz -co )f(a),
Cz,

Co,

v<vo , òv/ òt>0

vs <v<V2 ¡ )v/òt>0
V2 <V<V- , àV,/àt>0

o<v<v., àv/¿L<o

(2.16.a)

(2.16.b)

(2.16.c)

(2.16.d)
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where:

Cz =C2 (Co, cond.radius),

f (4)=f (v,vo,Y2,F1 ),

V2 =Yz (VsrV1rF1 ),

V1 =Vl (Vo rpo, cond.radius, f ront timerVrn),

F¡ = 2 Eo 3 ,

po = 0.5 to 1.2

Ve V1 V2 Vn

VoJ.tage, V

Figure 2.52 À typicar Q-v roop used in the approximate e-v).oop model of Gary et.aI.

C)¡

-c
4J
ol¡c
(u

¡J

C
J
l¡
o
o.
(U
orl
f{
ro
-c(J

Parameters Po and Fr âEê chosen to obtain the crosest
possibre agreement between the simplified and experimentarly
obtained Q-v characteristics for the type of voltage
impulses considered by Èhe authors.

I
I
I
I
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teThe TLE in this

Dif ference Method.

model are solved by the Fini

?.t.L Frequency-Domain O-V Loop Model

This modet has been proposed by N.L. Ovic and G. Kusic.r2

The transient response of a transmission line is obtained in
the freguency-domain, and the model includes both the skin

and corona effects.

In this model the conductor in corona is assumed to be

surrounded by the space charge in the ionization zone, which

the authors caIl "corona cLoud". The total charge formed

during corona, Q, consists of the charge per unit length

bound on the conductor surface, Q,5, and the space charge of

the ionization zone, denoted by Q' i.e.:

0 = Q¡*Qt

When the applied voltage

Vo, the capacitance of

capacitance, i.e.

(2 .17 )

Co=(2reo)/In(zh/a) (2 .18)

where:

is lower than the

the line is equal

inception voltage

to its geometric

h

a

€9

average suspension height,

equival-ent radius (Cun) of

permitivity constant

a conductor bundle
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coronat ingThe geometry used in this model to represent

Geometry of a coronating conductor used in the
freguency-domain Q-V loop model

a-------. 2a\

Figure 2.52

conductor is shown in Fig.2.6.

Àbove Vo, the ionization
equivalent radius p is defined

conductor, where the electric
inception value Eo , i. e. :

Ee =Q/( 2rpeo )

By Ietting Q=CeVe,

as:

the inception voltage, Vo,

zone is formed and its
as the distance from the

f ield i s equal to the

(2.1e)

is obtained

Ve =Eo a ln (2h/a) (2.20)



hph

,,= Iru'= Ir"u, 
+ I,u,

Àfte, =.rU"rltuting the .l.rn.
ionization zone as 0 =2rpeoEo ,

36

The electric field within the ionization zone is

assumed to be constant and equal to Eo, i. e.

E=Eo, a<l<p

and beyond this zone, it has the form:

(2.21)

e=Q/( 2rpes ), r>p (2.22)

The applied voltage is equal to the integral of the electric
field over the region between the conductor and the ground

p1ane, i . e.

(2.23)

at the boundary of the

the following is obtained:

v=Eo ( p-a ) +Eo p In(h/ p) (2.24)

To determine the radius of the ionization zone t p, for a

given applied voltage, v, this equation is solved

iteratively. This is done by rearranging Eq. ( 2.24 ) to

produc e :

,=(7+v/Eo ) /[ 1 +rn (n/ p)]

The calculated radius p is used to find the total charge Q,

from Eq.(2.22), i.e.:

Q=Eo 2Ípes (2.26)



For di f f.erent

are obtained.

f rom:

values of the

The desired

voltage, di fferent

dynamic capacitance

37

vaLues of O

is obtained

where Qn, Qn_l , %, Vn_t

total charge Q., obtained

voltage V, respectively.

c¿ =ðe/dv x ag/ av=( e" -e"_r ) / (v^ -%_ r ) (2.27 \

are the subsequent values of the

by Eq.Q.29) , and the applied

corona losses are modelled independent of the procedure

used to model the dynamic capacitance.

Based upon the results of laboratory experiments,T the

authors developed an approximate e-v characteristic for each

polarity whose shape depends onry on the maximum varue of

the applied voltage impulse. The approximate g-V

characteristics for positive and negative vortage impurses

are shown in Fí9.2.7 . The points d ,ê,f , F, s, and u on the

characteristics are determined graphicalry by observing the

various experimentally recorded e-v loops and their
relat i onship.

The slope of section a-b on the characteristic in
Eí9.2.7 is equal to the geometric capacitance of the line.
The slope of section b-c is determined by catcuration of the

dynamic capacitance according to Eq.(2.27). section c-d has

a zeto slope and the charge in this section equal to e , the

value which corresponds to the maximum instantaneous value



3B

ol
J;I
¿J
ctt r

C,
d,.{

¡J

ca
l¡
o
o.
OJ
olìr{'
fú

.c
L)

Qf*

Q¡*

P ---'-' 0.9vm vm

Voltage,V

Figure 2.7 z Simplified Q-V characteristics used in the
frequency-domain Q-V loop model

of the applied voltage.

as:

The slope of section d-e is defined

Cd_" =Co + (1/3) (e,^ /v^) (2.28)

giving the coordinates of point e as:

point e: [vo, (7/10)(er-)+(1/3)(vs/v^ )e,_ +VoCo ]

The charge Q is identified in Fig.2.7 as the space charge

which corresponds to the maximum instantaneous value of the

applied voltage. Similarly, the slope of section e-f is
defined as:

,/
/ ,,.

/r/L-{
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c"_r =co +( 1 /3) (et^/v^)+(35/200) (0 ¡^/vo ) .. (2.29)

giving the coordinates of point f as:

point f: (0.0, 0.525Qr,")

For negative going waveforms, section a-p-r-s is defined in

the same way as for section a-b-c-d. The slope of section

s-u is defined as:

C.-u =C o +(2/3)

giving the coordinates

(9,^ /v^)

of point (u) as:

..(2.30)

point u: ( 0.0, -0.4 Ql,n

The expressions (2.28-2.30) are derived empirically,
from the oscillograms recorded in field measurements.T

To represent the corona losses in this model, the

authors use a resistive element whose value is obtained from

W.= 72 Rc dt (2.31)

and

I=I(t)=v(t)/(zo + R.) . (2.32)

where Zs represents the characteristic
transmission line defined as:

impedance of the

r-/c¿Lo ....(2.33)



It should be noted that this
dynamic capacitance C¿ defined

Eq. ( 2.31) becomes:

impedance is

in Eq. ( 2.27 ) .
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a function of

Since Zo))Rc r

w. = I*(t)/zo l2 R. dr

In the above equation, Rc is assumed to

it can be removed from the integraJ- and

following form:

r
R,=w,/ llv(t)/zo )2 dt

J

In this equation, the value Wc is

enclosed by the Q-V loop in Fig.Z.7

or for a negative voltage puIse.

Resistive element R.
domain Q-V loop model

(2.34)

be constant. Hence,

be expressed in the

(2.3s)

determined from the area

, €ither for a positive

The resistance Rc is represented as a series resistive

open when

V>Vo

Rc

Figure 2.8: used in the frequency-
to account for corona

element which exists only when V>Vo, Fi9.2.8.
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I n order to incLude the skin ef fect , the authors use a

frequency-dependent Iongitudinal resistance per unit length
which also includes the resistance of the ground return.
The solution of the transmission ]ine eguations is obtained

in frequency-domain by means of the Fourier Series, as

described in section 1.4.1.

The authors tested their model in the examples with 2

in. , 1 .32 in. , and 0.927 in. diameter, single-conductor

Iines subjected to positive and negative Iightning voltage

impulses whose maximum value ranged from 800 kV to 1750 kV.

The lines considered by the authors were assumed to be

non-energized.

À weak point of this method is the technique that the

authors use to simplify the Q-V characteristics in order to
determine the resistive element R. , i.e. corona losses.

This approach could be tolerated if the Q-V characteristics
r¡ere not dependent on the rate of rise or fall of the

voltage pulse. However, this is not true.13

Ànother simplifying assumption used in this model is
that the electrical field within the ionization zone is
constant and equal to Ee . In the theory of corona

discharges3, however, it can be found that the electricaL
field within the ionization zone changes a great deal and

may be considered to be equal to Es only at the conductor

sur face.
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2.L.2 Approximate O-v loop model of À.Inoue

This model 1 a is based on the time-domain solution of the

system of TLE given by Eqs.(1.5) with the resistance and the

conductance of the line neglected. Àn empiricaJ-ly obtained

Q-V characterisr-ic, shown in Fig.2.9 is used to obtain the

values for the dynamic capacitance, C¿, defined as:

Co,

Co +[mrkr

Co +[mzkz

Co,

where:

(v-vo i'-' J /v,
mo- I(v-vo )' )/v,

V<Vo,

Ve<V<V1,

V1 (V(V, ,

0<v<v- ,

òv,/ àt > o

òv,/ àt > o

àv,/ )t>o

òvl àr <0

..(2.36.a)

. .(2.36. b)

..(2.36.c)

..(2.36.d)

vm

kr

Co = geometrical capacitance of the Iine lv/nl,
Vs = corona i ncept i on voltage Ikv1 ,

V1 = characteristic value of voltage determined

experimentally (introduced by the author) [tv],

= maximum value of apptied voltage It<v1 ,

, kz = constants defined as:

=o,',lu¡{Ñ x 1o-11

= 112

rrì1r Í12 = f ree parameters Idimensionless] ,

o1t o2 = corona loss constants determined

empirically [dimensionless],

a = equivalent (Cun) radius of a conductor bundle

Im]

h = average suspension height [m].

k

i

Ir /nl ,
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clr

L
JJ
orl
C
(u

¡J

c)
}{
u
o.
c,
orl
l¡
rg

-É(J

Vo Vr

Voltage, V

Figure 2.9: À simplified Q-V characteristic used in the
approximate Q-V loop model of Inoue

The parameters nìr r tTl 2r o1 and o2 aS well as V1 are

determined ernpi rically in order to .obtain the best possible

agreement between the the voltages recorded in f ield
measurements and the results of the numerical simulation

with this model. The field measurements were performed on

single-conductor , 2-conductor bundle, and four-conductor

bundle non-energized transmission lines with 2.24cm and

2.53cm diameter subconductors. The lines were subjected to

positive and negative Iightning-type voJ-tage impulses whose

maximum value ranged from 850 kV to 1720 kV. The values of

the model parameters suggested by the author are given in

Tabs .2.2 and 2.3.

vm
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TÀBLE 2.2

Geometric and electric Iine parameters used by Inoue

h
lml

a
lcml

Ve
I rv]

22.2
14
14

.265

.26s

.120

303
421
599

â1
Icm]

1 .265
1 .952
2.939

Zs
tol

375
315
250

TABLE 2.3

Values of the empirical constants suggested by Inoue

The TLE are solved by

using a time step of At=O.01

Ax=7.05 m.

In Tab,2.2, âr is defined by

of an equivalent single conductor

field strength is equal to that of

The characteristic impedance of the

measurement at a vo)-tage below Ve

Co are calculated from the value of

surge propagation at the speed of li

the Finite Difference Method

ss and a displacement step of

the author as the radius

whose maximum surface

the bundled conductor.

line ,Zo, is obtained by

Àlso, the values for

Zs and the conditions of

ghr.

conduc tor
conf igur.

single cond.
2-cond. bundle
4-cond. bundle

V V1 o'1 A2 lIì1 l.Iì 2[nv] [kv]

I mpul se
I mpul se
I mpul se

1

2
3

1sB0 11s0 30 3 2 2.4
1130 Bso 40 'ls 2 2.2
Bso 700 45 20 2 2.2
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TÀBLE 2.2

Geometric and electric line parameters used by Inoue

h
Im]

a
Icm]

Ve
I rv]

265
26s
120

303
421
s99

â1
Icm]

1.265
1 .952
2.939

Zs
tol

375
315
250

22.2
14
14

TABLE 2.3

Values of the empirical constants suggested by Inoue

V Vr o1 02 lItl fIì2
t rvl I kv]

I mpul se
I mpul se
I mpul se

1

2
3

1580 11s0 30 3 2 2.4
1130 Bso 40 1s 2 2.2
850 700 4s 20 2 2.2

The TLE are solved by the Finite Difference Method

using a tirne step of At=O.0'1 ¡rs and a displacement step of

Ax=7.05 m.

In Tab.2.2, âr is def ined by

of an equivalent single conductor

field strength is equal to that of

The characteristic impedance of the

measurement at a voltage below Ve

Co are calculated from the value of

surge propagation at the speed of li

the author as the radius

whose maximum surface

the bundled conductor.

line ,Zo, is obtained by

ÀIso, the values for

Zs and the conditions of

qhr.

conduc tor
conf igur.

single cond.
2-cond. bundle
4-cond. bundle



Authors

sol.utlon
technique

Slngle ShelI
Model e

type of Q-V
characterl st 1 cs

Harrington
Afghanl

IABLE 2.4

Key features of the reviewed models

technique used
to obtain
the Q-V
characterlstlcs

tlme-domain
uslng modal
transfornation

Conductance
Model I o

approxlnate
Q-V loops

Lee

corona losses
model I 1ng

numeri cally
generated by
the model

e

solve the TLE
in tlme-domain
by FDM

chniqueh

Frequency Domain
Q-V Loop Model I 2

s i ngle-val ued
Q-V charact.

Ovic, Kusic

by means of
current sources
between the
line and
the ground

enplrically by
comparison of
computed and
experimental 1y
recorded
waveforms

solve the TLE in
frequency-domai n
by Fourier Serles

Q-V Loop
Model t a

approximate
Q-V loops

by means of
nonl i near

Inoue

vo I tage
dependent
conductance
G deternined
f ro¡n Peek's
Law for corona
losses

empirlcaJ.ly by
graphi cal
approximatlon of
experinental ly
recorded Q-V
I oops

solve the TLE
1n time-donaln
by FDM

Approxinate Q-V
Loop Model I 1

approxinate
Q-V loops

by means of
ser i es

Gary, Tinotin,
Cri s tes cu

res i stance
determlned
the area
enclosed by
approxinate
Q-V loop

enpi ri cal 1y
from
experinental 1y
recorded Q-V
I oops

solve the TLE
ln time-donaln
by FDM

a

Rc
from

the

approxlnate
Q-V loops

al ready
included by
the
approximate
Q-V loop

empirlcally
from
experlmental 1y
recorded Q-V
I oops

al ready
included by
the
approximate
Q-V loop

È
Or



Authors

TÀBLE 2.5

Key features of the exampres used for numerical simurationwith the reviewed models

lmpul se
polarity

Single Shell
Model e

conductor-bundl
conf I gurat I onlVo

Harrington,
Afghani

max. amplitude
of the applied
lmpulses IkV]

Conductance
Model 1 o

1x30.5 mm/219 kV

+

types of appliec
voltage lnpulses

4x30.5 mn/490 kV
1x20.5 nm/350 kV

Lee

max. voltage
rate of rlse
Ikv/us ]

.5 m

390 to 610

Frequency Donain
Q-V Loop Model 1 2

min. voltage
rate of rlse
lkv/us l

+-

I ightning,
swi tching

1x25.3 nn/277 kY
4x22.4 nm/588 kV

0vic, Kusic

66.6

I 500

Q-V Loop
Model 1 a

+ ì-

1x51.0
1x23.6 nn/220 kV
1x13.2 mm/150 kV

lightning

I .8

I noue

mm/400 kV

1 000

800 to 1550

Approximate Q-V
Loop Model 1 1

+-

1x25.3 mn/303 kV

lightning

1x23.3
4x22 .4

750

Gary, Timotln,
Cri stes cu

nn/427
nn/599

2150

kv
KV

850 to 1720

1x26.4 nn/32O

+

1317

1 ightning

1050 to 1120

2188

I ightning

400

5600

933

rÞ\¡
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Z.? finite Difference Representation of TLE

The Finite Difference Method (nou) is frequently used as a

method for solving the system of TLE in the time-domain.

Its simplicity is the main reason that this method was

chosen for the overvoltage propagation analyses in the

remaining sections of this and the next chapter. Before

proceeding with an anal-ysis using this method, a detailed

description of. the method, âs wel-1 as its Iimitations, will

be presented.

GeneraIly, the finite difference representations of

the f i rst der ivat ive of any di f ferent iable two-argument

function F(x,t) are:

In the theory of

known as forward

derivatives in

representation of

finite differences,

di fferences. Using

¿y /¿ x = [ F ( x + 1 , t ) -F ( x , t ) ] / A*

¿F/òt= [r'(x, r+1 ) -F (x,t) /at

(2.37 )

( 2.38 )

these expressions are

these forms for the

finite differencetheEqs.(1.5),

the TLE is:

- [l (x+1,t)-r (x,t)J /Lx=C¿ [v(x,t+1 )-v(x,t))/^t
+ c v(x,t) (2.39a)

- [v(x,t+1 )-V(x-1,L+l)) /A,x=fs Il (x, t+1 )-I (x,t)) /At
a Ro I(x,t) .....(2.39b)

After rearranging, these equations become:

V(x,t+1)=ÀV(x,t)-BIi(x+1,t)-I(x,t)] .....(2.40a)
I(x,t+1)=CI(x,t)-¡[v(x,t+1)-V(x-1,t+1)] ...(2.40b)
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erhere:

À= 1-AL/(G c¿ )

þ= Lt/ (c¿ ax )

Ç= 1-Ar ( Ro/Lo )

þ= At/( Leax )

The computation is started
(2.40.a) with the following

(2.41 . a)

(2 .41 .b)
(2.a1 .c)
(2.41.d)

at x=Ax and t=At using equation

boundary and initial conditions:

V( x,0 ) =V*

I(x,0)=0

v(0,t)=E(t)

where n(t) represents the input pulse and V a value of the

steady-state voltage.. Equation (2.40.b) is then used to

compute the new current values I(xrt+1) using the new values

of the voltages V(x, t+1 ) and V(x-'1 , ¡+1 ) . During each time

step, the vaÌues of the voltages and the currents are

computed aII along the line according to an appropriately
chosen displacement step Ax.

Àccording to the theory of finite differences,4 for the

numerical procedure to be stable, the following condition
(Courant-Friedrich-Lewy) must be satisf ied:

( tr/tx) / ( ) -<'1

This is the condition of stability for the f inite difference
approximation of the hyperbolic partiaJ. differentiat
equation. The condition can be satisfied by adjusting the

ratio At/Ax.

LoCo



3. COMPÀRISONS

Three models have been chosen for comparison from those that

nere reviewed in section 2.1. Àtl three models are

applicable for the analyses of transient phenomena on H\IDC

transmission lines. In order to obtain a valid comparison,

they are all analyzed using the finite Difference Method

(rou).

3_.1 Application of the ninite
Before comparing the different
necessary to investigate the

implementation of FDM.

Às a test example,

the parameters Co = 8.89

chosen. The propagation

1 ightning impulse along

steady-state voltage v¡as

s imulat ion Ì.¡ere compared

this case. The error was

deviation defined as;

Difference Method (fnu)

models using the FDM, it is
accuracy obtained by the

a lossless transmission line with

nf/km and Lo = 1.25 nU/kn was

of a 1200 kV, 1.2/50 ss standard

the I ine energized with zeto

s imul-ated. The results of the

with the analytical- solution for

expressed in the form of standard

(x,i)12/N
N

Ðru(x,i)-v,
i=1

where:

o=

50
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V(x,i) = value of the calculated voltage at distance

x and at time t=i At,

V5 (xri) = base value for voltage at the same time

and location as v(x, i ) ( from the

analytical solution or from experiments)

N = number of discrete values of voltages (N=1000)

Time Range À (range

Time Range B (range

Time Range C (range

the front)
the crest)

the tail):

0.0-1 .

1 .3-3.

3.0-6.

The choice of a time step of At=O.01 ss and a

displacement step of Ax=6 m used for these calculations
resulted in a stability factor of 0.50

The standard deviation given in

the following three time ranges:

Using

with the

numerical

before and

the error
within the

in Tab. 3. 1

I t can be noted that the

slightly more accurate results.

Tab.3.1 !¡as calculated in

EMTP consistentJ-y gives

However, this difference

of

of

of

3ss
o rrs

0 ¡¡s

the same t ime step, the problem r\'as s imulated

Electromagnetic Transient Program (eUfp). The

results were obtained at the same distances as

compared with the ana)-ytical soLution. Àgain,

had a f orm of the standard deviat ion calcul-ated

same three ranges. These results are also shown
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Comparison of
the standard

1

TÀBLE 3.1

the performances of EMTP
deviation for a lossless t
2OO kV, 1 .2/50 us voltage

and FDM in terms of
ine subjected to a
impul se

STÀNDÀRD DEVIÀTION ITV] FDM

Time Range À
Time Range B
Time Range C

X=360m X=720m X=1 0B0m

0
0
0

7 384
3091
2396

0
0
0

6054
47 94
41 23

0
0
0

7 299
654 1

5914

STÀNDÀRD DEVIATION ITV] EMTP

Time Range À
Time Range B
Time Range C

0
0
0

51 38
1841
1922

0
0
0

367 5
3927
3758

0
0
0

5965
5808
5545

was found to be negligible for the simulations performed in

this work and, , therefore, the FDM is chosen for modelling

purposes in the present study.

!.? Comparison of Corona Models

Among the models reviewed in section 2.1, the conductance

model,t0 the approximate Q-V loop model of Gary et aI11, and

the Q-V loop modeL of Inouela were chosen for comparison.

There are several reasons to account for this- choice.

Fi rst , all three model-s are t ime-doma in based models and

represent the typical modeling techniques used in this

domain. Second, the other two reviewed models, are based on

some assumptions which r¡ould greatly limit their application
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in HVDC transmission systems (sections 2.1.1 and 2.1.4).
Besides, one of them is a frequency-dornain based model which

was found to be inconvenient for this study.

The model of Gary et â1, in addition to corona effect,

also includes the skin effect, whereas the other two models

deal with the corona effect only. In order to obtain valid

comparisons of these three model-s, from the point of view of

modelling the corona effect, this model was modified by

excluding the skin effect. This was achieved by setting the

line resistance 'in the model to zeto. This modification does

not affect the analysis of the influence that corona has on

overvoltage travelling v¡aves, because there is no

interaction between these two phenomena.

The comparison was carried out using the same

transmission line geometry as that considered by both Leelo

and Inouel4, which is:

a) line inductance, Ls 1

b) geometric line capacitance, Cs B

c) equivalent radius of conductor,a

d) average suspension height,h

e) number of conductors in a bundle,

f) steady-state voltage of the 1ine, V

The input waveform used by Lee is shown

that used by Inoue in Fig.3.5. These input

recorded, experimentally, on the transmissi

.25 mH/km

. B9 nr/km

1 2.65 mm

22.20 m.

1

0. kv

in Fi9.3. 1 and

waveforms were

on line of the



geometry described as above.
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I t can be noted that although

the line geometry nas the same, the vaLues of the inception

voltage r¡ere different. This can only be explained as a

result of using different expressions for calculating the

inception voltage. Unfortunately, the authors did not

provide suf f icient information about calculating Vs

The purpose of the comparison carried out in this
section was to verify the results published by Lee and Inoue

and compare those results with the results obtained by using

different modelling techniques. The comparison of the models

was carried out choosing infinitesimal segments of distance

and time as Ãx=7.05 m and At=O.01 ls¡ respectively. These

values resuLted in a stability factor of 0.425

The values of the parameters in the conductance rnodel

are listed in Tab.2.1. For the purpose of the comparison

study in this section, the model parameters had values that

correspond to a single-conductor transmission Iine
configuration and a positive voltage impulses.

The values of parameters used

rnoue are listed in Tabs.2.2 and 2.

in this section was carried out

correspond to a single-conductor

vo)-tage impulse denoted by 2 , Tab.2

in the Q-V loop model of

3. The comparison study

with the values that

configuration, and the

.3.

The set of adjustable parameters

loop model of Gary et al- consists of

I t v¡as f ound that the best agreement

in the modified Q-V

parameters Fr and po

between numerical and



the experimental

values of these

results were

parameters:

obtained with
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the following

F1

Po

2.3

0.8

First, the waveform shown in Fig.3.1 was used as the

input r¡aveform for each of the three compared models. For

each model, the voltages were computed at the distances of

352.5m, 705m, and 1057.5m. These results vrere compared with

the experimental results recorded by Lee at the same

distances. The results from the models were assessed by

comparing the standard deviation computed according to

Eq.(3.1) where the base value at any location on the line
was the experimentally recorded value by Leelo at that

Iocation The standard deviations given in Tab.3.2 were

calculated for the following three time ranges:

1.

2.

3.

lime Range À (range

Time Range B (range

Time Range C (range

the front )

the crest )

the tail)

of

of

of

0-2

2-3

3-4

gs

¡¡s

t¿s

The experimental

shown in Figs.3.2-3.4.

and computed voltage r.raveforms are



56

The same kind of comparison was carried out using the

waveform shown in Fig.3.5 as the input v¡aveform for each of

the three models. The voltages were computed at the same

distances and using the same time and displacement steps as

before. These results were compared with the experimental

results recorded by Inoue. The errors are calculated for
each of the three models using the same technique as in the

previous case, and the results are shown in Tab.3.3. The

experimental and computed vo).tage waveforms are illustrated
in Figs.3.6-3.8.
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TÀBLE 3.2

Comparison in terms of the standard deviation between
voltages computed by different models and volLages

experimentally obtained by Lee

STÀNDÀRD DEVIÀTION IKV]

O
?
A'. oo 2.00

Time Iss]

Ve = 277 kv

Õ
o

)¿,

(¡,
orl
(¡
JJ
--{o

rJ.00

Conductance Modello - Lee

Time Range À
Time Range B
Time Range C

X=352.5m X=705m X=1057.5m

52.75
36.72
73.27

59.29
24 .42

101.71

80
87

246

B2
38
80

Q-V loop modella - I noue

Time Range À
Time Range B
Time Range C

64
57
50

12
67
28

73.30
111.03

60.71

7B
43

258

60
94
52

Àpproximate Q-V loop modell 1 - Gary

Time Range À
Time Range B
Time Range C

10s.87
112.45
25.10

1 1B .26
210.87

81 .87

126 . 13
335.18
469. s6

Figure 3.1 : Input waveform used by Lee
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TABLE 3.3

Comparison in terms of the standard deviation between
voJ.tages computed with different models and voltages

experimentally obtained by Inoue

STÀNDÀRD DEVIÀTION IXV]

2. 00

Time [¡rs]

Vo = 30'1 kV

O
?

oo

-Í
OJ
(]'r
rO
¿J
,--l
o

0c

Conductance modelro Lee

Time Range À
Time Range B
Time Range C

X=352.5m X=705m X=1 057.5m

67 .s5
46.46
44 .32

69 .40
7 6.14
65.24

68
54
9s

29
s0
9B

Q-V loop modelra Inoue

Time Range A
Tirne Range B
Time Range C

116 .28
50.87
59.79

70.99
1 12 .53
11 -640

116.39
129.53
141.49

Àpproximate Q-V loop model 1 1 - C ary

Time Range À
Time Range B
Time Range C

98
65
62

26
74
05

185.51
303.56
140 -32

159.24
386.99
387 -7 6

Figure 3.5¡ Input waveform used by Inoue
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3-. 3- Conc I us i on

Comparison of the models in section 3.2 was carried out

through numerical simulation of transient conditions on a

single-conductor transmission 1ine. The simulation was done

using tr¿o different, experir4entally derived., lightning-type
input waveforms. The results of this comparison, shown in

Figs .3.2-3.4 and 3.6-3.8 and in Tabs.3.2 and 3.3, indicated

that the model with highest accuracy is the conductance

model. SIightIy less accurate resul-ts were obtained with

the Q-V loop model of Inoue and much less accurate ones with

the approx imate Q-V i-oop model of Gary et aI . The less

accurate performance of the Q-V loop models under

consideration can only be explained by inaccurate modelling

of the experimental Q-V characteristics.

It can be noted that each of the compared models is

based on a

constant s .

different number of empirically determined

These constants describe the increase of

capacitance and/or conductance beyond the corona inception

voltage and depend on conductor bundle configuration as weIl

as the shape and polarity of voltage impulses. They have to

be determined through an optimization process which implies

the availability of experimentaL results. The degree of

difficulty in deriving the appropriate values of these

constants determines the practical applicability of these

models. The conductance model, which turned out to be the

most accurate of the compared models, is based on two
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empirical constants, whereas the slight)-y less accurate Q-V

loop model of Inoue is based on five empirical constants.

Since it is much easier to optimize a model wilh two, than a

model with five adjustable constants, it is evident that the

conductance model has a higher practical applicability.
Therefore, considering both !he accuracy and practical

applicability of the models, it is suggested that the

conductance model should be utilized for modelling corona on

HVDC transmission lines.



CORONA MODEL IMPLEMENTÀTION ON HVDC
TRANSMISSION LINES

The results presented in Chapter 3 indicate that from the

point of view of accuracy and practical apptication, the

conductance modello is the most suitable of the reviewed

models for impJ-ementation in an HVDC transmission system.

Since overvoltage transients usuaJ-Iy occur r+hen an HVDC Iine

is energized, a few additional assumptions must be included

in this model to accommodate this condition.

L.L Important Àssumptions

NormaIIy, the steady-state operat ing voltage of HVDC

transmission Iines is approximately 30% higher than the

corona inception voltage. This implies that an HVDC line

already coronates under steady-state condit ions. I f the

l-ine is subjected to an overvoltage surge, the intensity of

ionization changes and it is accommodated through a change

of voltage-dependent transmission Iine parameters. In order

to analyze the performance of an H\IDC transmission Iine
under these conditions, the following assumptions were made:

4.

Voltage-dependent steady-state transmi

parameters are determined by the intensi

steady-state conditions.

ssion Iine
ty of corona

Since theunde r

-67
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steady-state voltage is always higher than the corona

inception voltage, the parameters are determined

according to Eqs. (2.13) and (2.14).

If an energized line is subjected to an overvoltage

surge of polarity opposite to that of the energized

line, and of an amplitude which is higher than 2.0

p.u., impulse corona is considered to start when the

absolute value of the steady-state voltage is

exceeded. Às long as this value is not exceeded, the

voltage-dependent line parameters are assumed to be

constant and to have the values that correspond to

the steady-state conditions.

In the case when the surge is chopped either on the

front or on the taiI, the transmission line

parameters are assumed to be constant and to have the

values determined by the maximum value of the applied

voltage after this value of the voltage is reached.

Àssurnption 2 may yiei-d attenuation values that are slightly

higher than that which can occur in reality. Àssumption 3

affects the tail of a computed waveform, F€sulting in

attenuation that is slightly higher than that which can

normal)-y occur. The peak val-ue, however, is not af f ected by

this assumption at all.

3.



69

!_.? Parameters of the Model

The adopted corona model has 2 sets

of parameters depends solelY on

geometry and is comprised ofz

The line inductance,

external component, L

of parameters. One set

the transmission line

Lo, is represented as a sum of the

, and the internal component, L , i.e.

R = line resistance per unit length,

Le = Iine inductance per unit length,

Co = geometric capacitance of the Iine per unit length,

Vs = corona inception voltage.

The other set consists of the dynamic capacitance, Cd, and

the conductance, G, which depend on both the geometry and

the applied voltage, and therefore, are affected by corona.

The influence of the steady-state resistance, R, was

found to be negtigible. Since the skin effect is neglected

in the present study, a resistance of zero is assumed.

L.?.t Trans¡1i9sien Line IDd!çtsnç-e., Lo

Ls = L" * Li

where:

( so /zr)rn(2h/a)
tto /9"

L"

Li

..(4.1)

(a.1.a)

(4.1.b)

h = average suspension height,
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a = equivalent radius (Cun) of a conductor bundle,

tro = permeability of air (so x 4rx10-7 tl/n).

The equivalent radius of bundled conductors is determined as

the Geometric Mean Radius of a bundle (Cun).

!.2.2 Geometric Capacitance of the Line, ç_a_

The capac itance, Co , is determined from the following

express ion :

co = ( ZÍes )/tn(2h/a)

where:

€s = permitivity of the air (.o = 8.85 x 10-r2 t/n)

This capacitance is the line capacitance under non-corona

conditions.

!_.2.! Corona Inception VoItaqe, Vo

Corona inception voJ.tage is determined from the expression

proposed by C.F. wagner2 which can be used for monopolar

H\IDC transmission lines, i.e.:

Eo = l7Yo (1+3¡l/ln d In(2h/a)) (4.3)

where:

Ee = inception voltage gradient lUv/cn),

Ve = corona inception voltage InV],

n = number of subconductors in a bundle Idimensiontess],
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d = diameter of the subconductors [cm] ,

a = equivalent radius (cun) of a conductor bundle [cm],

h = average suspension height [cm],

B = bundling coefficient:
! = B(d,s) taimensionlessl ,

s = spacing between subconductors [cm].

The coefficient, B, is introduced to account for the

inf luence of the charges on other subconductors. The

expressions that define this coefficient for different

TÀBLE 4.1

values of the bundling coefficient 32

n 1 2 3 4 6

B 0 d/s 3 .64d/2s 4.24d/2s 5.31d/2s

bundle configurations are given in Tab.4.1. Corona

inception voltage, Vo, is obtained from Eq. (4.3) as:

Vs = Es n d Ln(2h/a)/lZtl+B)l

The values for the corona inception voltage gradient, Eo,

are determined from Peek's equat ion 2, i . e. :

Ee =30mIt*19.301/18)] tkv/cn) (4.5)

where:

m = conductor surface factor Idimensionless],

a = equival-ent radius (cun) of a conductor bundle [cm].
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The value of the factor m depends on the type of conductor

and the weather conditions. For the 4.06 cm diameter

conductor used for the Nel-son River line, the values for m

are accepted to be 0.5 for summer, and 0.6 for winter. 2

Àccording to the experimental results,8 the values for Eo

determined by Eq. (4.5) are in agreement with measured values

for switching impuJ-ses. For lightning impulses however, it
has been indicatedB that this value should be increased by

about 10 to 15%.

1.2.4 Dynamic Capac i tance , Cd

The dynamic capacitance is fu1Iy defined by Eqs. (2.13). It

can be noted that this parameter is a function of the

applied voltage, the line geometry and a corona loss

constant which is determined empirically, i.e.:

C¿ = C¿( VrVo,a,h,o1 (4.6)

where:

\,7 = instantaneous value of the appl ied voltage Ilv] ,

Vo= corona inception voltage Ifv],
a = equivalent radius (c¡ln) of a conductor bundle [m],

h = average suspension height [m],

o1 = empirical corona loss constant Idimensionless].
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The corona loss constant o 1 determines the rate of

increase of the dynamic capacitance beyond the geometric

value. Experimental resultsB indicate that the value of oti

is larger for impuJ-ses of positive poJ-arity

is Iarger under fair weather conditions

increases with the steepness of an impulse

increases with the conductor diameter

decreases as the number of conductors in

a bundle increases

This constant can only be determined empirically, by

comparison of computed and measured vol-tages at a position

on the line. For example, for a monopolar line with the

same conductor configuration as that used for the NeIson

River line, o1 is determined to be 30 for positive voltage

impulses of the lightning-type. ro

Fig 4.1 shows the variation of the dynamic capacitance,

a function of the applied voltage, when the same 1ine, in

non-energized condition, is subjected to a 900 kv, 1.2/50

positive voltage impulse.

AS

a

gs
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G = G( V,Vo,a,h,o2 ) (4.7)

where V , Vo , and h have the same signi f icance as in

Eq.(4.6). The constanL oz is another empirical corona Ioss

constant which depends on the intensity of energy

dissipation for a conductor in corona. It is obtained

through a comparison analysis similar to that used to obtain

o1 This constant affects the attenuation of a voltage

impulse, whereas its infl-uence on the steepness of a voltage

impulse is neg)-igibJ-e. Àccording to experimental resuIts,E

this constant depends on:

1.2.2 Transmi ss i on Line Conductance ,G

When a transmission Line is not in

of the Iine, G, is very small and

In the case of a coronating t
parameter is fully defined by Eq.

notation as that used to describe

can be represented as:

weather condit ions

conductor bundle conf

polarity of a voltage

duration of a voltage

corona, the conductance

it is usually neglected.

ransmission line, this
(2.14) . Using the same

Cd , the conductance , G,

iguration

impul se

i mpul se

tion and impulse polarity, the

has been showns to depend mainly

voltage impulse, rather than on

For a specific weather condi

energy dissipated by corona

on the total duration of the

the steepness of its front.
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For example, according to experimental results, lo this

constant is determined to be '1x107 f or the monopolar Iine

under consideration, positive voltage impulses of the

lightning-type, and a fair weather condition. The variation

of the Iine conductance as a function of the applied voltage

when the non-energized Iine was subjected to 900 kV, 1.2/50

tts positive voltage impulse is shown in Fí9.4.2.
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9.3 Parameters of the Line Used

For the numerical simul-ations,

monopolar HVDC semi-inf inite
considered. The configuration of

for Simulation

a two-conductor bundle

transmiss ion I ine was

the bundle is the same as

that used for the Nelson River tr4nsmission line. The

geometry of the line is shown in Fig.4.3 and the parameters

E
U

t*O

o
sfl

I

,p| 1r. r t_ilt 'l-------+f

Figure 4.3: Nelson River conductor bundle geometry

of the line are given in Tab.4.2.

The corona incept.ion voltage gradient, Eo, was calculated

according to Eq. (4.5), using a value of 0.5 for the

conductor surface factor, m, and assuming a single-conductor

configuration of the bundle. This assumption is justified

T

I

=

E

c)
cî

@

by the fact that the bundling effect on the inception
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TÀBLE 4.2

Electrical parameters of a monopolar HVDC transmission line
with the NeIson River conductor bundle configuration

Parameter Symbol Value

Steady-state
operat ing
voltage

vss
+450 kV

0

-450 kv

Line inductance Lo 1.238 mu/kn

Geometric capacitance Co 9.360 nt/kn

Corona
i ncept i on
voltage
gradi ent

( Peek )

Li ghtn i ng
impulse

Ee
20 .8 9 kv/cn

Switching
impulse

18. 17 kv/cn

Corona
i ncept i on
voltage
(wagner )

Lightning
impulse

Ve
318 kv

Sw i tchi ng
impulse

277 kv

voltage is negligible when the spacing between the

subconductors is large. The spacing between them can be

considered as large if the ratio between the spacing and the

subconductor diameter is greater than 10. In other words,

corona starts independentJ-y on both subconductors as in a

single-conductor arrangement. For the same reason, the

empirical corona loss constants in the model, o1 and ozt

have the same values as for a single-conductor

configuration, Tab.4.3. These values are obtained for
positive voltage impulses and a fair weather condition.
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80

impulses are those determined

by Lee,lo and can be used only for this kind of voltage

impulses. For switching-type voltage impulses, however, the

values of o1 and oz are estimated from experimental resultsB

obtained for a line with a conductor bundte configuration
similar to that of the Nelson River line. The new values

are estimated by means of a Q-V loop recorded for a 1.82 in.
conductor and a fair weather condition, when a

switching-type voltage impulse is applied at the beginning

of the test line. The value of o1 is obtained by adjusting
its value in the expression for Cd, Eq.(2.13.b.), in order

to obtain the calculated value of C¿ equal to that
determined from the slope on the Q-V loop at the point that
corresponds to the same applied voltage above the inception
value. Similarly, the value of o2 is obtained through the

process of adjusting its vaLue in the expression for G,

Eq.(2.14), in order to obtain the same energy dissipated by

corona as that determined from the area enclosed by the Q-V

TABLE 4.3

Values of empirical corona loss constants ol and oz for
positive voltage impulses, a fair weather condition and the

Nelson River conductor bundle configuration

waveform type O1 OZ

lightning
sw i tching

30

12

1x107

1.09x10s

loop.
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!-.!- Description of the Waveforms Used for Simulation

The numerical simulation was carried out using the input

voltage waveforms in the form of positive 1.2/50 us standard

lightning, and 250/2500 ps standard switching voltage

impulses. Since practical experience with the Nelson River

line indicates that the line voltage under transient

conditions seldom exceeds 2.0 p.u., the amplitude of these

impulses yras chosen as 450 kV. Under such circumstances,

the situation when the polarities of the steady state

voltage and the voltage impulse are opposite has no

practical significance and, thereforer wâs not simulated.

The simulation was carried out with ful1 and chopped

standard lightning waveforms; the vraveforms were chopped

at either the front or the tail.

The fuII v¡aveforms

double exponential form:

are generated by the following

E(t) = Er lexp(-t/r, ) exp(-t/r, )) ...(4.8)

The chopped waveforms are generated by the following system

of equations:

E1 lexp(-t/tr )-exp(-t/'tz )], t<T

e(t)= E(T. ) 1000(t-T. ), T. <t<T,

F(t)sin[3.124(t-r, )], t>T,

where T is the time to chopping and:

.rz = Tc + E(T.)/looo

(4.9.a)

(4.e.b)

(4.9.c)

....(4.10)
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F(t) = -0.4exp[-(t+t, )/0.8] (4.11)

E1 in Eqs. (¿.9) and (a.9.a) represents a constant which

is adjusted in order to obtain a waveform of the desired

maximum amplitude, E,no* . The ratio Er/E^o* can be

determined from the expression for the maximum amplitude of

the function given by Eq.(4.8). The parameters of the input

waveforms used during the simulation are given in Tab.4.4.

TABLE 4.4

Parameters of the input waveforms

9.5 Ànalvsis of Numerical Accuracy

The purpose of this analysis was to determine the

combinations of steps At and Ax which satisfy the stability
condition and yield numerical results of acceptable accuracy

for the shortest possible computational time, known as CPU

(Central Processor Unit) time. The influence of these two

steps on the accuracy was examined in examples involving the

wave form

type

E*o*

I xv]

ñL1

[¡rs]

L2

[¡¡s]

Tc Irrs]

front tail
1 .2/50

250/2500

1300

1300

68.2

3155

.405

62 -s

1 7
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line of geometry shov¡n in Fig.4.3. In each case, the line

nas subjected to 450kV positive voltage impulses of the

1.2/50 ss and the 250/2500 ss types.

It was noted that higher values of At and Ax, which

also satisfy the stability condition, produce high-frequency

oscillations around the crest value of the computed voltage

waveforms, and that amplitude of these oscillations
decreases as the magnitudes of the steps decrease.

Furthermore, in the examples with the line energized with

zero steady-state voltage, ít was noted that similar

oscillations appear around the knee which corresponds to the

point of transition to corona conditions, causing an error

in the inception voltage. When the Line, energized with

zero steady-state voltager wâs subjected to a 1.2/50 ps

voltage impulse, the influence of steps At and Ax on

numerical accuracy was found to be the strongest. This was

the situation when the rate of rise of the computed voltages

was the highest. The effect that At and Ax have on the

corona inception voltage can be seen from Fig.4.4. The

waveforms in this figure are computed when the non-energized

line under consideration was subjected to a 450 kV, 1.2/50

¡¡s positive voltage impulse. the waveforms were computed at

distances of 0.6, 1.2, and 2.4 km from the beginning of the

Iine. The influence of these two steps on numerical

accuracy was .also examined in the example when the line

under consideration, energized rrith 450 kV, yras sub jected to

a positive , 450 kV, 250/2500 ss voltage impulse.
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TÀBLE 4.5

Numerical errors caused by variation of time and
displacement steps

At

[¡rs]

Ax

I tm]

Stabi I i ty
factor

CPU
t ime

Is]

Error Í%l

€c €i

Impulse 1.2/50 LLs¡ Vss =0, x=2.4 km

0. 01
0.01
0. 01
0.02
0.02
0.02
0.02
0.04

0.003
0.006
0.010
0.006
0.010
0.020
0.030
0.012

0.979
0.490
0.293
0.979
0.587
0.293
0. 196
0.979

70. 51
36.00
22.13
17.64
11.53

6 .17
4.49
4.94

0.000
0.009
0.020
0.060
0.090
0. 186
0.329
0.201

0. s0
6.30
7.20
3.60
7.80
8.30

13.40
4.32

Impulse 250/2500 ls t V5, =450 kV, x=240 km

10
10
20
20
40

5
10

6
10
12

0.587
0.293
0.979
0.587
0.979

4.80
2.84
2.38
1.70
0.82

0.000
0.035
0.058
0.088
0 .197

propagation of a lightning-type voltage impulse was

simulated, a waveform computed with At=0.01 gs and Ax=O.003

km was chosen as a basis for error computation. This

rdaveform satisfies two conditions. First, it exhibits no

high-frequency oscillations around crest; second, the point

of transition to corona occurs at the voltage which is

almost equal to the value calculated by Eq. (4.5).

Similarly, when propagation of a switching-type voltage.

impulse vras simulated, the waveform computed with At=10 gs

and Ax=S km was chosen as a basis for êrror computation,



since it satisfies the same conditions.
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For all the

examples, the error was computed in the region around the

crest, âs a maximum relative error between the base waveform

and the waveforms computed with different steps At and Ax,

as shown in Fig.4.4. This error is denoted as €c . In

cases where the line was energized with zero steady-state

voltage, the relative error in the inception voltage was

computed too, and it is denoted by €i

From Tab.4.5 and Fí9.4.4, it can be concluded that the

error effect due to different steps At and Ax, is much more

pronounced at the point of transition to corona conditions

than around the crest value of a computed voltage rraveform.

The results in Tab.4.5 also indicate that the high-frequency

osc i Ilat ions are of smaller ampl i tude i f di spJ-acement step,

Ax, is chosen as a distance slightly greater than that

travelled by the wave for time At. If this condition is
satisfied, the performance of the FDM can be significantly
accelerated. It should be noted that, in such a case, the

stability factor is almost equal to '1 . Some

to thisresearcherslorl4 did not pay enough attention

condition.

Since the main purpose of this study is the analysis of

the effect that corona has on attenuation and distortion of

overvoltage waves on HVDC transmission Iines, the error ec

is considered to be of prime importance in the analysis of

numerical accuracy. In this case, the error of €. =0.2% vas
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"onridered 
permissible. Therefore, the values of At=0.04 ¡¡s

and Ax=O.012 km were chosen for the simulations involving

the Iightning-type voltage impulses, and At=40 r,s and Ax=12

km for those involving the switching-type impulses. These

values show that, with the FDM, a very god description of a

standard Iightning voltage impulse can be obtained with not

less than 30 points in the region of its front. For a

standard switching impulse, number of points in the region

of the front should not be less then 6.

4.6 Description of Simulat ion Cases

Based upon the value and polarity of the steady-state

voltage, the following two cases were considered:

Case 1 : Steady-State Vo1tage, Vss = +450 kV

Here, the line energized with +450 kV was subjected to

450 kV lightning and switching Lype positive voltage

impulses. When the line v¡as subjected to lightning-type
voltage impulses, the voltages were computed at distances of

0.6 km, 1.2 km, and 2.4 km from the beginning of the line.
when a switching-type impulse was applied at the beginning

of the line, the voltages were computed at distances of 60

km, 120 km, and 240 km. For each of the computed voltages,

values of the maximum amplitude and attenuation were

computed and they are given in Tabs.4.6-4.9. The waveforms

obtained in this example are shown in Figs.4.5-4.8.

Case 2z Steady-State Voltage of the Line, Vss = 0 kV
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In this case, the Iine was considered to be

non-energized. The types of voltage impulses and the

respective distances on the line, where the voltages were

computed, were the same as in Case 1. The values of the

maximum amplitude and attenuation for each of the computed

voltages are given in Tabs.4.10-4.12. The waveforms

obtained in this example are shown in Figs.4.9-4.11.

4.7 Ànalvsis of the Results of the Simulation

It can be noted that, in the cases where the line is not

energized, Figs.3.9-3.1 1, the waveforms are characterized by

a sudden change of the slope in the region of the front,

which results in the characteristic knee on the diagrams.

This point on the diagrams corresponds to the moment of

transition from non-corona conditions to impulse corona

conditions. The voltage which corresponds to this point is

the corona inception voltage. When the line is energized

(rigs.4.5-4.8), the knee does not appear because corona

already existed during the steady-state (Assumption 2,

sect ion 4. 1 ) . Àccording to the results in Tabs.4.6-4.12,

the attenuation in this case, is the highest. It should be

also noted that in all sirnulated examples, the rate of

attenuation decreases as a surge propagates along the line

and that this decrease is nonlinear.
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It is interesting to analyze the propagation of a fuIl
and chopped voltage impulse of the same type. Tabs.4.10 and

4.12 show the results for the attenuation of a 450 kV, full
1.2/50 lst and a 450 kV 1.2/50 ys chopped at the tail
positive voltage impulse, respectively. It can be noted that

both impulses are equally attenuated. This result may appear

surprising since the chopped impulse dissipates less energy

during corona than the corresponding fuI1 one, and therefore

expected to be less attenuated. However, the chopped impulse

is an impulse that also has a lower energy level than the

corresponding fuII one. The degree of attenuation of an

impuJ.se due to corona, depends on the amount of energy

dissipated by corona relative to the total energy of the

unattenuated impulse, rather than on the absolute amount of

the dissipated energy, alone. Realist icaIly, chopped

impulses should be even more attenuated than the

corresponding full ones because of the skin effect which is
very pronounced for this kind of voltage impulse.

The val-ues of the maximum amplitudes given in

Tabs.4.6.-4.12, indicate that the highest overvoltages can

be expected when an energized l-ine is subjected to a voltage

impulse of the same polarity as the steady-state voltage.

When the Iine was subjected to a full lightning-type voltage

impulse, the maximum ampJ.itude of the line voltage decreased

from 2 p.u. to 1.75 p.u. after the impulse propagated a

distance of only 2.4 km, Tab.4.6. rhis result indicates



90

that lightning-type overvoltage surges can be dangerous for

a substation only for lightning strokes intercepted by a

line at a distance from the substation which is comparable

to those in the simulation example.

The results of the simulation with a switching-type

voltage impulse, Tab.4.9, show that the maximum amplitude of

the line voltage decreased from 2 p.u. to 1.67 p.u. after

the impulse propagated a distance of 24O km. Considering

that the switching-type overvoltage surges on present HVDC

transmission lines have to propagate the distances in the

order of several- hundred kilometers, this type of

overvoltage surges can be considered to be even less

dangerous than those resulting from lightning strokes.
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TÀBLE 4.5

Computed attenuation of a f ull 450 kv, 1.2/50 ¡¿s positive
voltage impulse

STEADY-STÀTE VOLTÀGE: v = 450 kV

LOCÀTION MÀXIMTIM VOLTAGE ÀMPLITUDE ÀTTENUÀTION

km kv p. u. o/
tb db

0.0
0.6
1.2
2-4

899.99
867 .72
838.8s
789.60

2.00
1 .93
1 .86
1.75

0.
7.2

1 3.6
24.5

0.
-0.32
-0.63
-1 .22

rl . 00 DD 2D. DO

O
O
a)

O
C)O

mXr-

cliol.l
OJI

:I.l
LNJ
+l-0.

U)
t--
I
D

D
-.J

)<

D.ö

M]C
00 00 12.00

BÚSECÚNDS

Propagation of a
voltage impulse
450kv. a) 0 km,

posirive 450 kv, 1.2/50 ps
along the line energized with
b) 0.6 km, c) 1.2 km, d) 2.4 km

Figure 4.5:
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TÀBLE 4.7

Computed attenuation of a 450 kV, 1

impulse chopped on

"8.00
M]CBOSEC

Propagation of a 450 kV,
voltage impulse chopped
line energized with 450
c) 1.2 km, d) 2.4 km

.2/50 ss positive voltage
the front

cl
O
O
û)

O
C)o

LNXn-

U)
,O

l¡
Ð.-o-?u)
Ð
J

Ko
D
Ln_
---lr

U 00 12. 16.00
ÚNDS

1.2/50 ss positive
at the front, along the
kv. a) 0 km, b) 0.5 km,

.00

STEÀDY_STÀTE VOLTÀGE: Vss = 450 kV

LOCATION MÀXIMUM VOLTÀGE ÀMPLITUDE ATTENUÀTION

km kv p. u. o/tb db

0.0
0.6
1.2
2.4

87 0 .46
832.7 6
80s.06
759.04

1 .93
1.85
1.79
1 .69

0.
9.0

1 5.6
26.5

0
-0
-0
-1

41
73
34

Figure 4.62
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TABLE 4.8
Computed attenuation of a 450 kV, 1

impulse chopped at
.2/50 ¡rs positive voltage
the tail

O
O
O
o)

O
C)D

r-r)XF

D
O
O_
(.D

.)
c)

Ln_

=b

Ln

l--
J
D

Ð
I
)<

00 q. 00

.2/50 ss posiÈive
the tail, along the

. a) 0 km, b) 0.6 km,

.00 12.0
ICBCISECÚNDS

Propagation of a 450 kV, 1

voltage impulse chopped at
Iine energized with 450 kv
c) 1.2 km, d) 2.4 km

i B. DO 20.00

STEÀDY-STÀTE VOLTÀGE: Vss = 450 kV

LOCÀTION MÀXIMUM VOLTÀGE ÀMPLITUDE ÀTTENUATION

km KV p. u. u
,6 db

0.0
0.6
1.2
1.8

899.99
867 .71
838.84
789.59

2.00
1 .93
1 .86
1.75

0.
7.2

13.6
24.5

0.
-0.32
-0.63
-1 .22

Figure 4.72
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TÀBLE 4.9

Computed attenuation of a 150 kV, 250/2500 positive voltage
impulse

STEÀDY-STÀTE VOLTÀGE: Vss = 450 kv

LOCATION MAXIMUM VOLTÀGE ÀMPLITUDE ATTENUATION

km kv p. u. utb db

0.0
60

120
240

899.99
855.26
816 .24
753.25

2.00
1 .90
1 .81
1 .67

0.
9.9

18.6
32 .6

0.
-0.45
-0.89
-1 .71

O
(f

O
o)

O
C)o

L].)XF

(t)
L

JO
Ð
'-O?a
D
J
Yo

O
LN
T
0.00 lD.OD 2D.DO

M]CBSSECÚNDS

Propagation of a
voltage impulse
450 kv. a) 0 km,

450 kv, 250/2500 ss positive
along the line energized with
b) 60 km, c) 120 km, d) 240 km

30. DD qO. DO
. n2x1u

5D.OD

Figure 4.8:
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TABLE 4. 1 O

Computed attenuation of a f ull 450 kV, 1.2/50 r¡s positive
voltage impulse

STEÀDY-STATE VOLTÀGE: vss = 0.0 kV

LOCÀlrON MAXIMUM VOLTAGE ÀMPLITUDE ÀTTENUÀTION

km kv p. u. o//o db

0.0
0.6
1.2
2.4

449.99
442.05
434.89
422.49

1 .00
0. 98
0.96
0.94

0.
1.8
3.4
6.1

0

-0
-0
-0

08
15
27

oo'. 
o o

c
O

;_
=l

I

I

O
C)C)

O
Xçq

U)
L

'D l¡
D>1
[f
I

)<
D
O

Propagat ion
voltage
line. a) 0
Vo =318 kV.

of a positive 450
impulse along the
km, b) 0.6 km, c)

B.OD 12.00
M I CBÜSECÚNDS

16.00 20. D0

kv, 1 .2/50 ss
non-energi zed
1.2 km, d) 2.4 km.

Figure 4.92
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TÀBLE 4.11

computed attenuation of a 450 kv, 1.2/50 r¡s positive vortage
impulse chopped on the front

STEADY-STÀTE VOLTÀGE: Vss = 0.0 kV

LOCÀTION MÀXIMTIM VOLTÀGE ÀMPLITUDE ATTENUATION

km kv p. u. u,b db

0.0
0.6
1.2
2.4

420.45
409.74
404.09
395.3s

0.93
0.91
0.89
0.88

0.
2.5
3.9
6.0

0.
-0.11
-0 .17
-0.27

O

Lr)

=

O
C)C

O
X ¡-;

00

C
cl

%

U)
L

l¡
D
- LJ)

)
)<

Ll. 00 B. OD 12.00
M]CBCISECÚNDS

16. 0D
.2D.DD

Propagation of a 450 kV,
voltage impulse chopped
the non-energized line.
1.2 km, d) 2.4 km. Vo =

1 .2/50 ss pos i t i ve
at the front, along
a) 0 km, b) 0.6 km, c)
318 kv

Figure 4.10:
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TÀBLE 4.12
Computed attenuation of a positive 450 kV,

at the tail
1.2/50 ss chopped

Lr)
f 7/

tà t'O
Oo

Cf
Xcn

LD
L

JO
Ð.- Ll.)

Ð
J

c)
cf

u.00 .00 12". 16.
M CBÚSECÚNDS

Propagation of a 450 kV, 1.2/50
voltage impulse chopped at the
non-energized 1ine. a) 0 km, b)
km, d) 2.4 km. vo = 318 kv.

2D.DO

ss positive
tai1, along the
0.6 km, c) 1.2

STEÀDY-STÀTE VOLTÀGE: Vss = 0.0 kV

LOCATION MÀXIMUM VOLTÀGE ÀMPLITTIÐE ÀTTENUÀTION

km kv p. u. U
/6 db

0.0
0.6
1.2
2.4

449.99
442.05
434.89
422 .49

1 .00
0.98
0.96
0.94

0.
1.8
3.4
6.1

0.0
-0.08
-0. 15
-o -27

Figure 4.1 1 :
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L.g- Description of the Proqram

Based on the system of TLE given by Eqs. (2.40) a computer

program was developed to simulate the propagation of

overvoltage surges along semi-inf inite H\IDC monopolar

traçrsmission 1ines. The program consists of a main program

where the values of currents and voltages are computed for

given time and displacement, and three subroutines which

generate different input voltage waveforms and the

coef f icients A, B, C, and D, Egs . Q.41) . The f lowchart of

the main program is shown in Fi9.4.12.
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The program starts with reading the input data,

arranged through the following REÀD statements:

REÀD statement 1: ( T1 ,Tz rT. ,E.o, ,Vo,Vss ,ITYPE )

The first three parameters are time constants

specified in microseconds and they define the shape

of the input voltage impulse. Thus, the constants

T1 and Tz represent the constants for double

exponential form and the constant f. represents the

time for chopping. The parameters 8.o,, Vo, Vss are

voltage parameters with the values specified in

kilovolts. They represent the maximum ampJ-itude of

the input voltage impulse, the corona inception

voltage, and the steady-state operating voltage of

the Iine, respectively. The parameter Vo is
specified as a positive value on1y. This implies

that both positive and negative corona start at the

same voltage which is just an approximation whose

influence on the final result is negligible. The

parameter ITYPE specifies the type of an input

waveform. It has a form of an integer whose value

can be either 0 or 1, which denote:

ITYPE = 0,

ITYPE = 1,

FuII input Yraveform of the

or switching-type.

Chopped input waveform

lightning or switching-type.

(x.o" , ax , at , T,no, )

lightning

REÀD statement 2:

of the
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The first two parameters are spatial parameters

specified in kilometers and they define the length

of the Iine and the displacement step Ax,

respectively. The second two parameters are time

parameters specified in microseconds and they define

the time step and the maximum time of propagation

, respect ive1y. The maximum propagation time is
determined from the value for X-o* and 'the actual

speed of propagation.

REÀD statement 3: ( RrL rCo rol,ozta ,h )

These parameters represent the transmission line
parameters. Thus,

R = transmission line resistance , LÙ/knl. Thi s

study was carried out with R=0,

L = transmission line inductance lu/V.nl ,

Co= geometric capacitance of the line [n/XmJ,

o2 = corona loss constant Idimensionless],

ot = another corona loss constant Idimensionless],

a = equivalent radius (Cun) of a conductor bundle

lml .

If the ratio between the spacing and a

subconductor diameter is greater than 10,

the bundling effect can be neglected. In

such cases, this parameter should have

the value of the equivalent radius of a
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approximation is
River conductorvalid for the Ne1son

bundle configuration.
þ = average suspension height [m].

REÀD statement (Hx1 ,Nx2,Nx3,rPR)

The first three parameters are integer parameters

and they define the location on the line where the

voltage waveforms are to be computed. they

represent the number of displacement steps Ax from

the beginning of the line up to the desired

locations on the line. This program enables a

choice of three such Ìocations. Parameter IPR

specifies a printing option related to printing the

output results.
integer where:

It has the form of a positive

IPR = 0, The values of maximum vol

and the attenuation are

The values of the voltage

expressed in kilovolts
relative to the value

steady-state voltage, Vss

attenuation is expressed in

in decibels.

The complete waveforms

locations will be obtained

tage amplitudes

printed onIy.

amplitudes are

and in units

of the

The

percent and

at

in

des i red

a printed

IPR



103

form. This option also includes the

option obtained for IPR = 0.

REÀD statement 5: (xSec,YBEG,XDIV,XNDIV,YDIV,YNDIV)

These parameters are scaling parameters and are

reLated to plotting of the output results. The

parameters have the following meaning:

XBEG

YBEG

XDIV

XNDIV =

YDIV =

starting value on the time-axis, [¡rs]

starting value on the voltage-axis, Itv]
scaling factor for the time-axis,

lus/aiv)
number of divisions on the time-axis,

[div] (l division = 1 in.)
scaling factor for the voltage-axis,

lkvrldivl

YNDIV = number of divisions on the voltage-axis,

ldivl (l division = 1 in.)

After setting the initial conditions, a voltage impulse

of the desired type is generated at the beginning of the

line, in accordance to Eqs. (4.8) or (4.9). During each time

step, the voltages and the currents are computed aII along

the line. Àt each location the values of the computed

voltages are compared with the values of either the

inception voltage or the steady-state voltage and the

coef f icients A, B, C, and D, Eqs. (2.41) computed

accordingly. When the maximum propagation time is exceeded,
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the computed values of the line voltage at the desired

locations are printed and/or plotted, depending on the

specified value of parameter IPR.

The coefficients À, B, C, and D are computed in a

subroutine nameds PAR. l.lhenever the new values of these

coefficients are to be computed, this subroutine is invoked

from the main program.

The input voltage impulses are generated by two

subroutines. À subroutine named SWLSUR generates fulI

lightning or switching-type voltage impulses according to

Eq. (4.8), whereas a subroutine named CHPSUR generates the

chopped voltage impulses according to Eqs. (4.9).

The limitation of this program is determined by the

number of time steps At, chosen for computation. This

number is determined by the ratio T^o* /At and not more than

2000 such steps can be used with this program.



5. CONCLUSION ÀND SUGGESTIONS FOR FURTHER
RESEÀRCH

The purpose of this study was to highlight
that impulse corona has on overvoltage

propagate along monopolar HVDC transmission

indicate an optimal technique for modelling

the influence

surges which

Iines, and to

this phenomenon.

In Chapter 3, the performances of three, already

existing, corona models are compared. These models are

based on two approaches to corona modelling which are the

most applicable for the HVDC environment.

One approach is based on approximation of Q-V loops

experimentally recorded for different conductor bundle

configurations, weather conditions, and different shapes and

polarity of applied voltage impulses. Àlthough different
approximation techniques are used by different authors, the

idea is the same to develop the expressions which

approximate experimental Q-v loops in order to render them

valid for a range of different line geometries, and voltage

polarities and waveshapes. Such loops are usually dependent

on at least two empirical constants which accommodate the

change of the Q-V loop shape in different practical

situations. Since the area enclosed by the loop is
proportional to the energy dissipated by corona, this kind

105
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of modelling technique results in exclusion of a conductance

term from the TLE. In this study, the models utilizing this
approach are classified as Q-V loop model-s.

The other approach is based on analytical approximation

of only that part of an experimental Q-V loop where the

first derivative is positive. Corona losses, however, are

accommodated by an appropriate conductance G, derived from

one of the existing corona loss laws. This approach, too,

is dependent on empirical constants which, generally

speaking, determine the rates of capacitance increase and

the energy dissipation during corona. In this study, the

models utilizing this approach to corona modelling are

classified as conductance models.

The main disadvantage of both approaches is their
dependance on empirical constants. ModeIling techniques

that do not use such constants are available in the

literature. However, they are developed for application in

HVÀC transmission systems only.

The results of the comparison study carried out in

Chapter 2, represent the main contribution of this thesis.

These results clearly indicate that the conductance model,

with the conductance G determined from Peek's law for

steady-state corona losses, yields the most accurate results

of all the compared models. In addition to this, it is a

very simple model and has high practical applicability.
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Because of these reasons, the conductance model is

recommended for implementation on HVDC transmission lines.

The implementation of this model on a monopolar HVDC

transmission 1ine, Chaptet 4, necessitated the determination

of a set of values for the two empirical constants used in

the mode1, which are valid for switching-type voltage

impulses. These values (rab.4.3) are determined for the

NeIson River conductor bundle configuration, positive

voltage impulses, and a fair weather condition. The

extension of the conductance model for this class of voltage

waveforms and therefore its application for an energized

monopolar transmission line, represents another contribution

of this thesis.

Às a part of the implementation, the FDM used as a

numerical procedure in this study, is optimized through an

analysis of nunerical accuracy, which is also carried out in

Chapter 4. The resul-ts f or CPU t ime, and the numer ical

errors presented in Tab.4.5, indicate that the value of the

stability factor should be maintained slightly less, oF if

possible, egual to 1. If the time and displacements steps

are chosen in accordance with this condition, the

performance of the FDM can be significantly accelerated,

without sacrificing the accuracy of computation very much.

For example, irith At=O.04 Ës and Ax=0.012 km, the CPU time

is more than seven times shorter than that obtained with the

combination of At and Ax used by Inoue, while the numerical

error remained as small as 0.2%.
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The conductance model implementation is concluded with

a numerical simulation of transient behaviour of the Line

considered in this study, and it was carried out with a

practical range of input voltage waveshapes. The results of

the simulation presented in Chapter 4, indicate that the

influence of corona on the attenuation of both Iightning and

switching surges is very strong. In other words, it acts as

if the surge arresters vtere placed all along the Iine, and

therefore, provides an additional leve1 of surge protection

on these lines. This implies that the analyses of

overvoltage transient phenomena on HVDC transmission lines,

with the inclusion of the corona effect, may result in

reduced insulation level of equipment connected to the line.

The corona model considered in this study is based on

experimental results obtained for positive voltage impulses

of the lightning and switching-type. Unfortunately,

experimental results for negative voltage impulses are not

available in the literature and therefore the utilization of

this model for this kind of voltage impulses was not

possible at this time. Furthermore, the model proposed in

this study does not take skin effect into account, which

also contributes to additional aLtenuation and distortion of

the overvoltage surges. Therefore, further improvements of

this model are necessary and the following is suggested:

Utilization of the model for negative voltage

impulses. This is particularly important for the

analyses involving the lightning-type voltage

1.
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impulses, since the most of direct lightning strokes

result in negative voltage surges. This will be

possible only when experimental results for this kind

of voltage impulse become available.

À more general program which includes both the skin

effect and corona should be created. Since the skin

effect is a frequency-dependent phenomenon, it is

suggested that the modelling of both corona and the

skin effect should be done in the frequency-domain.

The research has to be extended to include modelling

of corona on bipolar H\IDC transmission lines. In

this case the pole-to-ground and the pole-to-po1e

capacitances will both be nonlinear functions of

voltage and, therefore, it is expected that the

overvoltage surges wiIl be even more attenuated and

distorted than those on the monopolar Iines.

The results presented in Chapter 4 of this study, ês

well as research done in the past, indicate that a certain

level of steady-state corona should be allowed in HVDC

transmission systems in order to obtain an additional level

of overvoltage protection and, therefore, reduce the

associated investments. On the other hand, steady-state

corona produces povrer losses which transmission line

designers tend to minimize. It becomes obvious that, in

order to determine the permissible level of steady-state

corona, âD optimization study which will take into account

2.

3.
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Appendix À

PROGRÀM FOR THE SIMULÀTION OF CORONÀ_ÀFFECTED
VOLTÀGE SURGE PROPÀGÀTION ÀLONG MONOPOLÀR

TRÀNSMISSION LINES

SUBROUTINE PAR

REÀL'IB À,BrCrD

COMMON A, B , C , D, R, XL , CDYN , G, DX, DT

A=1 . -G'rDT* 1 .D-6/CDYN

B=DT* 1 .D-6 / (CDyN'tDX )

C=1.-R¡kDTt 1.D-e/Xf.

D=DT* 1 .D-6/(XL*DX)

RETURN

END

SUBROUTINE CHPSUR(K)

REÀL*8 T(2100),8(2100)

coMMoN /w/ t,E,E0 ,T1 ,T2,Tc

EKSp= ( exp ( -aroc ftz/t1 ) / ( 1-r1 /T2) )

& -ExP(-ALoc ftz/rt) /ft2/rt-1) ) )

EÀ=EO/EKSP

rF(T16+1 ).cE.Tc) co ro 1

E (x+1 ) =EÀ* (nexp( -r(n+ I ) /.rt ) -pexp(-r(n+t ) /rz) I

EN=E (x+l )

GOTO3

1 E(x+l )=EN-1000.*(r(n+l )-TC)

rF(E(n+l).L8.0.) GO TO 2

GOTO3
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2 TCE=F,N/1o00.+TC

e(n+1 ) =-. o4*EA:rDExp(-(r(6+1 ) -TCE) /.e0)
& *DSrN(3.12¿'t(t(n+1)-rce) )

3 CONTINUE

RETURN

END

SUBROUTINE SWTSUN(N)

REÀL*B T(2100 ),8(21 00)

coMMoN /w/ r,E,Eo ,T1 ,T2

EKSp= ( exp ( -¡r.oc $z/rt ) / (t -tt /tzl )

& -Exp(-er,oc ftz/r1)/('tz/r1-1) ) )

EÀ=EO/EKSP

rcrRL=(r(n+l))/rz
EP1=DEXP(-r(n+I)/tl)

IF(TCTRL.GE.180.) GO TO 1

EP2=DEXP ( -r ( ¡r+ 1) /T2)
GOTO2

1 EP2=0.

2 E(x+l )=EA*(ePl-ePZ)

RETURN

END

REÀL*g T(2100 ) ,E.(2100 ) ,vK1 ( 2000 ) ,vK( 2000 ) ,

& sK1 (2000),sK(2000)

REÀL*8 A,B,C,D

REÀL VSS.,VSWCH,VCOR, SG, RC,H

DIMENSION IBUF (4OOO ),YENR¡Y (2002),

& XÀRRAY(2002),VOLT(2000,4) ,

& VMAX(2000),DrST(4),VUX(4),
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& vltPu(4),ÀTTN(4) ,ATÐB(4 )

coMMoN À, B, C,D,R,XL,CDYNTG,DX,DT

CoMMoN /w/ r, E, EO ,T1 ,12 ,Tc

REÀD *,T1, T2,TC,E0,VCOR,VSS, IÎYPE

REÀD :t , XMÀX, DX, DT, TMÀX

READ *,R0,XL,C0,SG,SC rRCrH

REÀD *,NX1,NX2,NX3, IPR

REÀD *,XBEG, YBEG,XDIV,XNDIV, YDIV, YNDIV

NX=XMÀX/DX

NT=TMÀX/DT

VSWCH=VCOR

rF (ÀBS (vss ) .cE.vcoR) vswcs=ÀBs (vss )

QC=SC*SQRT ( . S¡,nC/g) * I .n-8

QG=SGT.SQRT ( . s*RC/H ) * 1 .D-8

C 1 =C3+2,tec* ( 1 . -vcot/vswcH )

6'l=eÇ* ( 1 . -VCOR /vSwCH) *t 2

DO 50 I=1 ,NX

VK(I)=VSS

Sn(I )=0.

vMÀx(r)=vn(r)

50 CONTINUE

EMÀX=0.

DO 1 000 K=1 ,NT

R=R0

t(t<+1)=K*DT

IF(ITYPE.GT.1) CO TO 2OOO

IF( rrYPE.EQ. 0) Cerr, SWLSUR(K)

rF( ITYPE.EQ. 1 ) C¡r,r, CHPSUR(K)
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rF(ABS(el¡ex).ct.DABs(e(K) ) ) co ro s1

emX=E ( K )

51 CONTINUE

rF (oess(vx(l)).ce.vswcH) co ro 1

rr'(rrYPE.EQ.1

& .ÀND.DABS(vtt( I ) ).r,r.ÀBS(t¡uex( 1) ) ) co ro 3

GOTO2

1 rr(rrvpn.Ee.1) co ro 3

CDyN=C0+Z*ecr< ( 1 . -vcon /oens(vn ( 1 ) ) )

Ç=eÇ:t ( 1 . -vcon/oxns(vx( 1 ) ) ) *'tZ

CÀLL PÀR

GOTO4

2 CDYN=C1

G=G 1

CÀLL PÀR

GOTO4

3 CDyN=CO+2*gC,t( t.-vCon/aBS(VMÀX(1) ) )

c=ec* ( 1 . -vcon/xas(v¡lex( 1 ) ) ) **Z

CALL PAR

4 vK1 (1 )=À*vK(1)-n't(sK(2)-sx(1 ))

SK1 ( 1 )=c*SK( 1 )-o* (vttl ( 1 )-E(K) )

rF(DABS(sitl (1 ) ).r,e.1 .D-70) sx1 (1 )=0.

rF(DABS(vnl (1 ) ).LE.1.D-70) vttl (1 )=0.

rr(ess(vu¡x(1 ) ).cr.DÀBs(v¡tl (l ) ) ) Go ro 4s

vMÀx(1)=vK1(1)

45 CONTINUE

DO 200 I=2rNX

rr (nass (ut ( r ) ) .ce.vswcH ) co ro 5



117

IF(ITYPE.EQ.1

& .ÀND.DÀBs(vx(t ) ) .r,r.ÀBS(r¡uex(t ) ) ) co ro 7

GOTO6

5 rr(rrvpe.Ee.1) co to 7

CDyN=C0+z*ec*( 1 . -vcon /onns(vr ( I ) ) )

Ç=eÇ* ( 1 . -vcon /oans(vr( r ) ) ) **Z

CÀLL PÀR

GOTOS

6 CDYN=C1

G=G1

CALL PÀR

GOTOS

7 CDy¡q=gQ+2rtgC't(t.-vCOn/aBS(VMÀx(l ) ) )

Ç=eÇrt ( 1 . -vCoR /xas(rruex( r ) ) ) **Z

CÀLL PÀR

I vK1 (r )=À*vK(r )-B* (sx(r+1 )-sx(r ) )

sK1 (r )=c*sK(r )-n* (vnl ( r )-vK1 (r-1 ) )

rF (DABS (sxl ( r ) ) .L8.1 .D-70 ) sK1 (r ) =0.

rF(DÀBS(vx1 (r ) ) .L8.1 .D-70) vK1 (r )=0.

rr(¡ss(vuex(r ) ).cr.DÀBs(vxl (r ) ) ) Go ro 200

vMÀx(r)=vr1(r)

2OO CONTINUE

voLT(n, I )=n(K)

voLT(x,2)=vK1 (NX1 )

voLT(x,3)=vK1 (NXZ)

voLT(tt,¿)=vK1 (Nxg)

DO 300 r=1,NX

vn(r )=vx1 (I )
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sK(r )=stt1 (r )

3OO CONTINUE

1 OOO CONTINUE

wx(1)=EMÀX

vl¿x(2)=vMÀx(Hxl )

vux(3)=vMÀx(Nxz)

vux( 4 ).=vMÀx(Nxg )

DO 1 1 00 ISZ=1 ,4

ÀTTN( rsz ) =1 00. * ( 1 .-vMx( lsz ) /vt"tx(l ) I

ATDB ( r sz ) = 1 0 .,kÀLoc 1 0 ( vMx ( r s z ) ) /vr"rx( 1 ) )

rF(vss.EQ.0.) Go ro 1100

VMPU ( r SZ ) =ÀBS (V¡¡X ( r SZ ) /VSS)

1 1 OO CONTINUE

DIST(2)=DX*NX1

DIST(3)=DX*NX2

DIST(4)=OX*NX3

wRrrE (6,9) (olsr( I ),v¡rx(r ),wpu(r ),
& ÀTTN(r ),atPg(t ),1 =1,4)

9 FORMÀT(8Xr'X="F8.4r1Xr'KM"3Xr'VMAX="F12.5,11<,

6. 'KV (' ,F4 .2,1Xr'P.U. ) ' ,3X, 'ÀTTN=' ,F4.1 ,1X,

& ' pER CENT=, ,F7.2, 'DB' )

wRrrE(6,10) vss

10 FORMÀT(24r<,1X,'VSS="F12.5,1X,'KV' )

rF(rPR.EQ.0) GO TO 1200

Í.¡Rr rE ( 6, 1 1 ) ( t ( x ), vor,r ( K, 1 ), voLT ( n, 2 ), vor,t ( x, 3 ),

& voLT(x,4),K=1,NT)

11 FORI'ÍÀT(//, (1Xr'T="F8 .4,4Xr'E="F10 .4,4X,
* rv="F12.6r4NrtV="F12.6r4Xr'V="F12.6))
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C PLOTING ROUTINE

1200 CALL ÀREA(8.25,10.75)

cÀLL Pr.ors(rnur,4ooo)

cÀLL PLOT(1.5,1.5,-3)

XÀRRAY(2001 )=XBEG

XÀRRAY (2002 ) =XÐIV

YÀRRÀY(2001 )=YBEG

YÀRRAY (2002 ) =YDIV

cÀLL AXIS(0. ,0. , 'MrcRosEcoNDs' , -12,xNDrv,0- 0,

& XARRÀY(2001 ),XaRRev(2002) )

cÀLL ÀXIS(0. ,0.,'KrLovoLTS' ,9,YNDIV,90. ,

YÀRRÀY ( 200 1 ), veRRev (2002) )

DO 500 L=1 ,4

DO 400 I=1,2000

XÀRRAY(r+1 )=r(I )

rF (xÀRRÀv( r+t ) .r,r.¡BEG) xenn¡v1 1 +1 )=XBEG

YÀRRÀY(I )=VOLT(I,T.)

IF (YÀRRAY( I ) .LT.YBEG) Y¡NR¡Y( I ) =YNEG

4OO CONTINUE

XÀRRÀY(2001 )=XBEG

XÀRRÀY(2002)=XDIV

YÀRRÀY(2001 )=YBEG

YÀRRÀY (2002 ) =YDIV

cÀLL LrNE (XenRev, YARRÀY, 2000, 1, 0, 0)

50O CONTINUE

cÀLL PLOT(0.,0.,999)

cÀLL PLOT(0.,0.,9999)

co ro 2100
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2000 WRrrE(6,15)

15 FORMÀT( 1X, 'ERROR UNKNOWN rvp'n Or rNPUT SIGN¡I' )

21 OO CONTINUE

STOP

END


