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Abstract

Longitudinal data arise when a response is measured at several measurement occasions

on the same experimental unit. Special methods of statistical analyses are required to

analyze longitudinal data due to the unique properties these data exhibit. In particular,

the responses collected for each individual tend to be correlated. Longitudinal data

analysis techniques are examined and applied to an experimental study of humans with

metabolic syndrome. Initially, exploratory analyses are conducted by creating several

graphs to visualize the data and make preliminary inferences. Next, simple methods of

analysis for longitudinal data are applied to the data. Finally, more advanced techniques

including mixed model methodology are examined.
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Chapter 1

Introduction

1.1 Background

Longitudin al data arise when fhe søme response variable is measured repeatedly on a

subject across multiple occasions. Longitudinal data analysis techniques have

applications in a variety of different research fields including agriculture and engineering

as well as medical, physical and social sciences.

When attalyzing longitudinal data, the main objectives are to (1) examine how the

response changes over time, and (2) determine which factors influence the change in

response (Singer & Willett, 2003). Statistical models appropriate for data that have a

longitudinal structure must be used in order to analyze the data properly.

1



1 Introduction

The goal of this practicum is three-fold: (a) Outline longitudinal data analysis

techniques that can be applied in a biological setting, (b) apply techniques to a sample

dataset, and (c) obtain results and make conclusions.

1.2 Comparing longitudinal and cross-sectional designs

Sometimes researchers will perform a cross-sectional rather than a longitudinal study

to examine the change in response. In a cross-sectional study for example, a response is

measured once for two or more cohort groups and the 'change' in response is

subsequently analyzed. In contrast, a longitudinal study analyzes change by using the

same set of subjects and measures the response repeatedly. While a cross-sectional study

is both efficient and economical, only between individual differences in the response can

be examined. Cohort effects can also be present. In a longitudinal study, each individual

in the study acts as their own control and change over time for each individual can be

distinguished from the effects of cohorts (Fitzmaurice, Laird & 'Ware, 2004; Hedeker &

Gibbons,2006).

1.3 Longitudinal Data Analysis Approaches

There are a variety of different methods to handle the analysis of longitudinal data,

such as conducting separate statistical tests at each measurement occasion, univariate

analysis of variance (ANOVA), multivariate analysis of variance (MANOVA) and mixed

model methods. Computer software programs such as SAS, SPSS, S-Plus, R, and Stata

have procedures of varying degrees of sophistication and capabilities that assist with

analyses (Littell, Henry & Ammerman, 1998; Fitzmaurice et a1., 2004). For this

practicum, SAS (Version 9.1) was used for all statistical analyses. SAS and R (Version

2.Ll) were used for the graphs.

2



I Introduction

1.4 Terminology and Further Details

Longitudinal studies may be experimental or observational in design (Singer &

Willett, 2003). As an example of the former, a treatment is randomly assigned to 100

individuals and blood pressure is assessed at 3 measurement occasions. An example of

the latter design is measuring weight of infants from birth to 12years annually.

The subjects (units, participants, or individuals) in a longitudinal study from which a

particular outcome of interest can be measured may include anything from humans and

animals to equipment components and geographical sites (Crowder & Hand, 1990).

The occasions (or times) of measurement for recording a response should occur at

times suitable for collecting precise and sufficient data so that the change in response can

be accurately studied (Singer & V/illett, 2003). Measurement occasions can occur on a

fixed schedule or when a particular event occurs (Ware, 1985). In the former case for

example, weight of babies might be measured biennially from birth to age 10 (equal

intervals) or at birth, 2 months, 6 months and 1 year (unequal intervals). In the latter

case, a response might be recorded when a female subject reaches menarche.

Alternatively, a measurement occasion may correspond to a certain experimental or

observable variable attaining a specific level (V/are, 1985). For instance, a child's weight

is measured when a height of 2 feet is realized. An additional detail to note about time is

that the set of occasions at which subjects are measured may be the same for each

individual or may vary across individuals (Fitzmaurice et al., 2004).

The response variable measured can be observed in quantitative, categorical or even

count form (Fitzmaurice et a1.,2004). Examples include measuring cholesterol levels in

J



1 Introduction

humans, classifying the status of a person as 'obese' ot 'not obese', and counting the

number of weeds in a plot, respectively.

In longitudinal studies, covariates are often recorded at each measurement occasion

in addition to the response variable. Covariates can be quantitative and/or qualitative and

can be classified as either within-subject or between-subject covariates. A within-subject

covariate is a subject attribute that may differ over measurement occasions. Examples of

within-subject covariates include a subject's smoking status or age. On the other hand, a

between-subject covariate is a variable for a particular subject that remains the same for

the duration of the study. Variables such as sex, race and treatment group are all

examples of between-subject covariates. Determining how a covariate is related to the

pattern of change in the response over time is an objective in longitudinal studies (Ware,

1e85).

In longitudinal studies, repeated measurements obtained from each subject form

clusters. Clusters exhibit several important properties (Fitzmaurice et al., 2004):

i) 'Within a cluster, responses tend to be positively correlated (i.e., dependent).

ii) Within a cluster, responses tend to be more similar as compared to responses

within a different cluster.

iii) Within a cluster, correlation among responses tends to decrease as time intervals

mcrease.

The correlation among the repeated measurements must be accounted for so that

correct estimates can be obtained followed by correct statistical interpretations and

conclusions (Fitzmaurice et al., 2004). This topic will be dealt with in subsequent

chapters of this practicum.

4



1 Introduction

Fitzmaurice, Laird and Ware (2004) outline three sources of variability that arise in

longitudinal data. They are (a) between-subject heterogeneity, (b) within-subject

biological variation, and (c) measurement error,

Responses for each individual are influenced by their own specific genetic,

environmental, social and behavioral factors which correspondingly lead to natural

variation in response. This is known as between-subject heterogeneity and can explain

why some individuals have a natural tendency to have response values that are above

average while other individuals naturally respond below average. Next, consider that

within each individual, biological processes exist (e.g., circadian rhythms) and are

changing continuously through time. These biological processes subsequently influence

an individual's response. This is called within-subject variation and can explain why

responses that are measured closely in time tend to be more similar than responses further

apart. Finally, unavoidable measurement error can result in variation. As an example, an

investigator can expect that a poor measurement instrument may lead to smaller

correlations among repeated measurements versus higher correlations if a precise

instrument is used.

In longitudinal studies, especially when the subjects are humans, missing data often

arise and can complicate statistical analyses. Missing datamay occur when an individual

in a study misses a scheduled time for a response to be measured or drops out of the

study. Dealing with missingdatawill be investigated further in Chapter 8.

1.5 General Notation

In this practicum, the following preliminary notation will be adopted following

Fitzmaurice, Laird and Ware (2004). Let Y¡ be the response for the lh ittdirridual at the

5



1 Introduction

7'tl' occasion where i : l, 2,..., ¡y' and j : 1, 2, ..., n. The repeated measurements for the

Ith subject can subsequently be grouped into a vector

ï'
Y,,

Y,,

The variance-covariance matrix for the ltl' subject is defined as

Yi

Var(t,)
Cov(tr)

Cov(!,, \r)
Var(tr)

Cov(!,, !,)
Cov(tr, \, )

Pv

P7,

2ot ap
2

azt õ2

õ1,

õ2,
Cov({):

while the correlation matrix for the lth subject is defined as

2
õñ ar2 oil

lPn
Pzt 1

Corr({) =

P,t Pnz 1
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Chapter 2

The Longitudinal Data Study

2.1 Background

During the winter semester of my Master of Science program in 2005 at the

University of Manitoba, I elected to take the Statistical Consulting (5.729) course. As

part of the course curriculum, each student was required to act as a statistical consultant

for a Master's student in a different department. In February 2005,I was assigned my

client, Tejal Patel, from the Faculty of Human Ecology. Ms. Patel needed assistance with

analyzing and interpreting data from her experiment. The longitudinal study and

corresponding data that will be used for the application of longitudinal data techniques is

described in detail in the following sections.
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2 The Longitudin al D ata Study

2.2 Study Design and Details

Thirty-five humans that had been diagnosed as having Type II Diabetes were

randomly assigned to one of three groups: control, milled flax, and flaxseed oil groups.

The control (CO) group consisted of 10 individuals, the milled flax (MF) group consisted

of 13 individuals and the remaining 12 individuals comprised the flaxseed oil (FO) group.

Initial background analyses of the subjects' blood revealed that the participants had

Metabolic Syndrome and were in a "pre-diabetes" stage. Type II Diabetes was being

controlled by exercise and diet (Patel, 2005). Each individual ate a muffin 6 days per

week for twelve weeks. The milled flax group ate muffins containing milled flax and the

flaxseed oil group consumed muff,rns containing flaxseed oil. The muffins eaten by the

control group contained canola oil. The dose of milled flax and flaxseed oil was equal in

the treatment groups. Each muffrn consumed contained 7 .6 gm of o-linolenic acid (Patel,

2005). The muffins were normally consumed at breakfast or lunch.

8



2 The LongitudinalData Study

35 human subjects

Flaxseed Oil
n=12

Milled Flax
n=13

Control
n=10

Randomization

Treatments

Time {weeksi
r=0 t=,1 t=8 t=12 t=0 t=4 t=8 t=12 t=0 t=d t=8 t=12

I variables measured
at eaclr time point

v1 v2 v3 v4 vf v6 v7 vt

Figure 2.1: Study Randomization

Samples of blood and 24-hour urine were collected at four time levels (i.e., before

any treatment was administered (baseline), and at 4, 8 and 12 weeks respectively). The

samples were collected in the mornings at the Health Sciences Centre in Winnipeg,

Manitoba. Eight different variables were measured for each subject at each measurement

occasion. A schematic diagram of the randomization procedure is shown in Figure 2.1.

2.3 Selection of Experimental Units

Flyers were posted at hospitals and universities in Winnipeg, Manitoba and

advertisements were placed in the newspaper to recruit volunteers for this experiment. It

was determined that Type II Diabetes had previously been diagnosed in the selected

subjects between 1 month to 1l years earlier.

2.4 Response Variables

The response variables were:

9



2 The Longitudin al Data Study

o Superoxide dismutase (U/mg protein)

o Catalase (U/mg protein)

o Vitamin A (pg/ml)

o Vitamin C (mg/dl)

o Vitamin E (¡rg/ml)

o Total Antioxidant Capacity (pM/L)

. Hydroperoxide (pM/L)

o Isoprostane (pg/mg Cr)

All of the variables except Isoprostane were measured by analyzing the blood samples.

Isoprostane was measured by analyzingthe Z4-hour urine samples.

2.5 Method of Data Collection

Each variable was carefully analyzed using detailed procedures as outlined in the

Appendices by Patel (2005). The methods had been previously published by various

authors and standard methods were followed to obtain the response values in this study.

To reduce chances of missing data, pafücipants in the study were given reminder calls so

that they would not miss their appointments.

2.6 Summary of Data

Below is a brief summary outlining the features of this particular study in terms of

longitudinal data analysis terminolo gy.

Subjects: 35 humans with Metabolic Syndrome

Occasions of measurement: Baseline (Week 0), 4,8 and 12 weeks (i.e., fixed,

equal intervals)

10



2The Longitudinal Data Study

Response Variable(s): 8 different variables measured in the blood and urine (See

Section 2.4)

Covariate(s): Treatment group (i.e. Between-subject covariate - Control, Milled

Flax or Flaxseed Oil) and Time (i.e. Within-subject covariate - Time since baseline)

For this particular study, the main questions of interest are as follows:

(1) How does each response variable change from Week 0 to V/eek 12?

(2) Canchanges in each response variable be predicted based on a subject's membership

in the control group, milled flax group or flaxseed oil group?

11



Chapter 3

Initial Exploration of the Data

3.1 The Data

For the purpose of applying longitudinal data analysis techniques to these data, two

response variables were randomly selected to focus on, namely Vitamin C and Vitamin E.

To examine all variables in this paper would be too lengthy. Most techniques applied to

the select variables would be appropriate for examining the remaining variables.

Throughout this practicum, a nominal level of significance of s : 0.05 is used.

3.2 Preliminary Glance

Initially, exploratory analyses of the data need to be conducted to obtain a

description of what the data look like in order for appropriate models to be fit. By

creating simple graphs, an investigator is able to clearly see each individual's response

profile. Diggle, Liang and Zeger (1994) outline a few ideas to consider when

t2



3 Initial Exploration of the Data

constructing graphs. They include (a) graphing raw data instead of data summaries, (b)

graphing the data in a manner that illustrates the patterns of change, and (c) presenting

data in order to easily identify outliers. Various graphing techniques are explored in the

following sections.

3.3 Empirical Growth Plots

Graphs called 'empirical growth plots' as coined by Singer and Willett (2003) ate

displayed in Figure 3.1, Figure 3.2, and Figure 3.3. Here, Vitamin C data is plotted

against the measurement occasions for six randomly chosen individuals from each

treatment group. Potential problems that may arise when graphing only a random

selection of individuals are that the samples may not be accurate representations of the

treatment groups and may not include outlying individuals (Diggle, Liang &' Zeget,

1ee4).

C C C

2 lD = 208J; GROUP = C0 2 lD = 2236; GR0UP = C0 lD = 2BJ2; GROUP = C0

1 1 1 !

1 1 1,
t

0 0
a I 0.

0.0 0.

0 +

Tírne

B 12 0 4 I 12 0 4812
Tìme Time

C C tTc

lD = 304J; GROUP = C0 lD = JB96; GR0UP = C0 2 lD = 3970; GR0UP = C0

1 a 1
a

a

11 Ia

0
a

0.

0. 0 8120 4 12 0 4 B 12 0 4

Tíme Tìme Time

Figure 3.1: Empirical Growth Plots (Control Group)

13



3 Initial Exploration of the Data

/TC VII C VIT C

2 lD = 4208; GROUP = lr/F lD = 4845; GROUP = tr,lF 2 lD = 5145; GROUP = MF

1

a

1,

0.

0,

1 a 0
a

0 + 8 17 0 4B
Tìme (Weeks)

12 0 4 B 12

Time (Weeks) Time (Weeks)

/lTC VIT C VIT C

2,0

.Et.J

1.0

0.5

0.0

lD = 6095; GROUP = f/F 2 lD = 6308; CROUP = tr,4F lD = 6850; GROUP = MF

1 1,

l,

0

0.

I a

I t a I
I

0

0

4B
Time (Weeks)

12 0 4B
Tìme (Weeks)

12 0 4B
Time (Weeks)

12

/lTC VIT C /IT C

lD = 7658; GROUP = F0 7 lD = 7854; GROUP = F0 2 lD = B75B; GROUP = F0

1 1

1 1

I
0 0

a
a

I

0
a

0

0 48
Iíme (Weeks)

t1 0 4

Ti

B

(Weeks)

12 0 4 812
me Iime (Weeks)

/II C VIT C c

lD = BB04; GROUP = F0 2 lD = 8874; GROUP = F0 2 lD = 9456; GROUP = F0

1 1.5

1,0

0.5

1
a

a
0

I
I

a 0
a

0 4B
Time (Weeks)

12 0 4 B 12 0 4B
Time (Weeks)

12

Tì me (Weeks )

Figure 3.2: Empirical Growth Plots (Milled Flax Group)

Figure 3.3: Empirical Growth Plots (Flaxseed Oil Group)
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3 Initial Exploration of the Data

In Figure 3.1, Vitamin C levels for the control group seem quite stable across time

for all of the individuals sampled with the exception of ID : 3970. This individual has

what appears to be an outlying Vitamin C value at the third measurement occasion. For

the milled flax group in Figure 3.2, subjects with ID values 5145, 6095, 6308, and 6850

all exhibit a decreasing then increasing pattern in Vitamin C levels over time. Subjects

with ID numbers 4845 and 4208 do not follow this pattern and display constant and

decreasing Vitamin C levels over time, respectively. Finally, empirical growth plots for

six individuals sampled from the flaxseed oil group are shown in Figure 3.3. Here, a

decreasing then increasing configuration over time, similar to that observed for select

individuals in the milled flax group is exhibited by most individuals (i.e., ID : 7658,

1854,8758, 8804, and 9456). In contrast, the subject with ID : 8874 demonstrates an

increasing Vitamin C level pattern across the measurement occasions.

Once simple empirical growth plots of the data have been examined, lines can be fit

to each individual's data using both non-parametric and parametric techniques.

3.4 Empirical Growth Plots - Nonparametric Approach

One method of smoothing is a nonparametric approach that simply connects the data

points on empirical growth plots with smooth line segments. Adding the 'smoothed'

lines to the plots allows the investigator to further examine individual-specific change in

Vitamin C levels. Using the same six randomly chosen individuals for each treatment

group from Figure 3.1, Figure 3.2, and Figure 3.3, nonparametric smoothing line

segments are plotted on the empirical growth plots. The results are shown in Figure 3.4,

Figure 3.5, and Figure 3.6 for the control, milled flax and flaxseed oil groups,

respectively.
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3 Initial Exploration of the Data
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Figure 3.5: Empirical Growth Plots with Nonparametric Smoothing (Milled Flax)
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For the control group in Figure 3.4, most individuals have a level response profile

with the exception of ID :3970 which is strikingly different from the other subjects. For

the milled flax and flaxseed oil groups in Figure 3.5 and Figure 3.6 respectively, there are

many individuals that exhibit a curvilinear pattern of change resembling a 'U' shape' By

fitting nonparametric smoothing curves to the sampled individuals, it is easy to see which

subjects do not follow the common trends in each group.

3.5 Empirical Growth Plots - Parametric Approach

Another approach to facilitate data summary is to fit parametric curves to each

subject's data using ordinary least squares (OLS) regression. According to Singer and

Willett (2003), if the same OLS regression model is used for each individual, the

researcher can discriminate between subjects with ease. To remain simplistic, a linear

regression model is chosen to be fit to each subject's data in the control group while a
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3 Initial Exploration of the Data

quadratic regression model is selected to be fit to each subject's data in the milled flax

and flaxseed oil groups. Figure 3.7, Figure 3.8 and Figure 3.9 present the subject-specific

OLS regression lines fit to the same randomly chosen individuals from Figure 3.1 to

Figure 3.3 in the control, milled flax and flaxseed oil groups, respectively'
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Figure 3.7: Empirical Growth Plots fit with OLS Regression Models (Control)
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Figure 3.9: Empirical Growth Plots fit with OLS Quadratic Models (Flaxseed Oil)
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3 Initial Exploration of the Data

For the control group in Figure 3.7, it appears that the OLS linear regression models

fit the data well for each subject except for the individual with ID : 3970. This poor

model fit was expected due to the outlying Vitamin C value at Week 8' The OLS

quadratic regression models chosen for the milled flax and flaxseed oil groups also fit

most subjects adequately as shown in Figure 3.8 and Figure 3.9, respectively. Summary

statistics such as R2 can aid in assessing goodness of fit for each model but will not be

discussed in this practicum (Singer & Willett, 2003).

3.6 Time Plots

An alternative method of data exploration is to construct a graph (or time plot) that

plots the response variable against the measurement occasions for each individual on the

same graph. The responses for each individual are joined by line segments to distinguish

individuals from one another. The time plot can be stratihed by treatment group or

another covariate to more readily identify response trends, outliers and changes in

variability overtime (Singer & Willett,2003; Fitzmaurice et a1.,2004). Figure 3.10(a),

Figure 3.10(b) and Figure 3.10(c) present the raw Vitamin C dúa for the control, milled

flax and flaxseed oil groups respectively. A researcher may choose yet another

descriptive approach which is to plot the mean response at each measurement occasion

stratified by treatment group (Fitzmaurice et al., 2004). Figure 3.10(d) plots the mean

Vitamin C levels af eachtime point for each group.
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3 Initial Exploration of the Data
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In Figure 3. 10(a), there is no obvious trend in Vitamin C levels for the control group.

There is no clear increase or decrease in the Vitamin C levels over time which is not

surprising and variability across measurement occasions is approximately constant.

Outliers do not appeff to be present. Examining Figure 3.10(b) and Figure 3.10(c), it

appears that the overall trend for both the milled flax and flaxseed oil groups is for

Vitamin C to decrease over time. More specifically, the Vitamin C levels decrease until
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3 Initial Exploration of the Data

Week 8 after which the overall trend changes as Vitamin C levels for both groups

increase for the remainder of the study. Again, for both groups, there do not appear to be

any obvious outliers. For the milled flax group, variability does not seem to increase or

decrease over time while variability for the flaxseed oil group seems to be the greatest at

baseline and decreases thereafter until Week 12. For parts (a), (b), and (c) of Figure 3.10,

there is evidence of between-subject variability as shown by certain individuals having

high Vitamin C levels and others having low Vitamin C levels throughout the study.

Furthermore, within-subject variability is exhibited via the jagged lines that join the

repeated measures for the individuals.

In Figure 3.10(d), plotting the means of each group at each measurement occasion

reveals the overall response trends in a single, tidy diagram. At the baseline

measurement, the groups appear to differ. This is an unexpected result as this

measurement was taken before the commencement of treatment (i.e., muffin

consumption). Mean Vitamin C values for the control group appear to be relatively

constant from the beginning to end of the study. For the milled flax group, mean Vitamin

C levels decrease until V/eek 8 and increase thereafter. At Week 12, fhe mean Vitamin C

level for the milled flax group appears similar to what it was at baseline. This same

pattern is evident for the flaxseed oil group with the mean Vitamin C level reaching a

minimum at Week 4 and subsequently increasing close to the baseline level by the end of

the study. By examining each time plot in Figure 3.i0, it is apparent that there may be a

difference between the control and treatment groups.
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3 Initial Exploration of the Data

Group Week 0 Week 4 \ileek 8 \ileek 12

Control

Milled Flax

Flaxseed Oil

0.71

(0.14)

0.94

(0.14)

0.53
(0.r2)

0.s5

(0.18)

0.69

(0.12)

0.19

(0.06)

0.68

(0.16)

0.60

(0.10)

0.27

0.52

(0.16)

0.89

(0.12)

0.47

(0.08)(0 06)

Table 3.1: Mean (Standard Error) of Vitamin C Data

Time plots can be augmented by including standard deviations (or standard errors)

bars at each measurement occasion. Rather than doing this which would make the graph

unnecessarily cluttered, the mean Vitamin C levels and their corresponding standard

errors for each treatment group are presented in Table 3' 1.
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Chapter 4

Simple Analyses

4.1 Introduction

Researchers with a basic statistical repeftoire may initially gravitate towards

uncomplicated methods of analysis for longitudinal data. Since well-known procedures

such as the simple /-test are relatively easy to conduct and interpret results, it is obvious

why one might proceed in this manner. The simple methods of analysis to be discussed

in this chapter are considered to be more historical in nature. The methods outlined

include the /-test, univariate analysis of variance, and response feature analysis.

4.2 l-tests

Once data have been plotted and graphs examined, further analyses of the dala can

proceed. Everitt (1995) suggests that treatment groups be compared at each time point

where a response is measured using either separate r-tests or a non-parametric equivalent'
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4 Simple An

Table 4.1 shows results of r-tests for the Vitamin C variable when comparing the control

group to each of the milled flax and flaxseed oil groups at each measurement occasion.

Two implicit assumptions when conducting these /-tests are enumerated by Crowder

and Hand (1990) as follows: (1) The sampled observed responses are independent and

normally distributed, and (2) population variances are homogeneous. Table 4.1 shows

that when comparing the control group to the milled flax group at each measurement

occasion, no p-values are significant. This may be an indication of no treatment

difference at each time point. When /-tests are conducted for comparing the control

group to the flaxseed oil group, a significant p-value of 0.0338 is reported for Week 8

indicating there may be a difference between the treatments at this measurement

occaslon

Time (weeks) Control Mitled Flax I p-value

0

4

I

t2

Mean

Std Err
Mean

Std Err
Mean

Std En
Mean

Std Eff

0.7r
0.t4
0.5s

0.18

0.68

0.16

0.52

0,16

0.94

0.14

0.69

0.t2
0.60

0.10

0.89

0.12

- 1 .13 0.2727

-0.1 0.4916

0.44 0.667r

-1.91 0.0696

Time (weeks) Control Flaxseed Oil t p'value

0

4

8

Mean

Std Err
Mean

Std Err
Mean

Std E,rr

Mean

Std Err

0.7t
0.14

0.55

0.18

0.68

0.16

0.52

0.16

0.53

0.t2
0.19

0.06

0.27

0.06

0.47

0.08

1.01 0.3260

r.92 0.0802

2.41 0.0338

0.24 0.8134
t2
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4 Simple Analyses

One must be cautious if choosing to use /-tests to analyze their data. Performing

separate /-tests in this manner is not particularly useful. In fact, p-values produced in

Table 4.I can not even be compared because the /-tests are not independent due to the

correlation between repeated measurements on the same subject (Crowder &. Hand,

1eeO).

4.3 ANOVA

The one-way ANOVA procedure might be more appropriate for this particular

dataset because it can compare three or more treatment groups at the same time rather

than performing multiple /-tests. The sampled observations must be independent and

normally distributed and variances must be homogeneous (Moore, 2003; Crowder &

Hand, 1990). For observations that are non-normal, the Kruskal-Wallis test is an

alternative procedure (Davis, 2002). Results from separate one-way ANOVA tests

conducted at Weeks 0, 4, I and 12 for the Vitamin C variable are shown inTable 4.2.

Time (weeks .F-statistic p-value

0

4

8

I2

2.56

4.79

4.t7
3.81

0.0931

0.01s2

0.0245
0.0328

Table 4.2: One-way ANOVA for Vitamin C

Based on the one-way ANOVA results, significantp-values of 0.0152, 0.0245, and

0.0328 at Weeks 4,8, and 12 respectively, indicate that there may be a difference in mean

Vitamin C levels between the control, milled flax, and flaxseed oil groups. Again, an

investigator should be cautious as these results are based on repeated tests for the same

subject.
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4 Simple

4.4 Response Feature Analysis

Also known as Summary Measure Analysis and perhaps not familiar to every reader,

this approach uses the observations from each individual to create a set of new numbers

called summary measures. The summary measures represent a specihc dimension of

each individual's response trend (Fitzmaurice et al., 2004). There are a variety of

different summary measures that can be adopted. These include the overall mean (i,e. the

average of the repeated measurements for each individual), area under the curve (i.e. the

area under each individual's response trajectory) and the maximum (or minimum)

response (i.e. the maximum or minimum value of the repeated measurements for each

individual) (Everitt, 1995; Fitzmaurice et al., 2004). Upon calculating the selected

summary measures, simple univariate statistical methods (e.g., f-test, ANOVA, or non-

parametric method) can be used to test the difference between groups. AUC, minimum

response and overall mean are three different summary measures calculated for the

Vitamin C data. The ANOVA procedure is used to produce F-statistics andp-values with

results presented in Table 4.3.

Summary Measure ,F-statistic p-value

AUC
Minimum Response

Overall Mean

4.61

4.68

4.49

0.0166

0.0165

0.0191

Table 4.3: Response Feature Analysis Results

According to the response feature analysis approach, all three summary measures

chosen yield significant p-values indicating that there may be a difference between the

groups in terms of the AUC, minimum response and overall mean values'

27



4 Simple Analyses

There are several advantages and disadvantages to the response feature analysis

approach. One advantage is that researchers with a basic knowledge of statistics are able

to grasp this technique easily as introductory methods of analysis are applied to the

summary measures. Secondly, the response feature analysis approach eliminates the

correlation issues present in longitudinal data because the summary measures are

independent. Finally, it works well with small sample sizes, especially in cases where

correlation among repeated measurements is difficult to estimate. A disadvantage of

response feature analysis is that the summary measure is a single feature of the

individual's Íesponse profile; information is thus lost. Also, different individuals may

have the same summary measure even though their individual response trends over time

are not equivalent. Thirdly, only time-invariant covariates (e.g., treatment group) can be

related to the summary measures. Lastly, response feature analysis becomes more

complicated when there is missing data, or responses are measured at irregular time

occasions because variances are not constant making methods of analysis described in

this section not valid (Everitt, 1995; Crowder & Hand, 1994; Fitzmaurice et al., 2004).

It should be noted that simple methods of analysis such as the methods discussed in

Chapter 4 are often omitted. These historical methods were presented so that the reader

could see the natural progression of longitudinal data analysis over the years.
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Chapter 5

General Lin ear Regression Model and
Estimation

5.1 Introduction

In this chapter, a general linear model is introduced that will be used in modihed

forms in subsequent chapters. Two simple examples will be shown to illustrate the

framework of the model. Subsequently, maximum likelihood and restricted maximum

likelihood estimation will be examined to show how unknown parameters can be

estimated in the various statistical models. Also, test statistics that will be used for

statistical inference are introduced.

5.2 Notation

The next section examines the framework of linear models appropriate for

longitudinal data. According to Fitzmaurice, Laird and Ware (2004), one model for
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5 General Linear Regression Model and Estimation

longitudinal data is an approximate multivariate normal distribution with mean F, (i.e.,

E(4)= p,) and covariance .Ð, (i.e., Cov(Y,)=2,). More specifically, the repeated

measurements for each individual are assumed to be multivariate normal, although this

assumption is not absolutely required. The dependence among the repeated measures for

each individual is accounted for by the off-diagonal values in 8,. It will be shown in

Chapter 6 how both ANOVA-type and regression-type models fit within the framework

of linear models outlined in this section.

At this point, notation first introduced in Section 1.5 will be re-visited. Recall the

vector

Yrt

Y,,

Y,,,

that defines the collection of n¡repeated measures for the ith individual. Note that this

vector has been slightly modified by using ni to acçommodate longitudinal studies that

have missing data. The subscript I in n¡ allows for each subject to have a different

number of repeated measurements. For example, the Vitamin C dataset has no missing

values therefore the vector { defined in Section 1.5 is sufhcient. On the other hand,

variables such as Vitamin E and Vitamin A have incomplete datasets, making the vector

{ defined in the current section appropriate. It is important to recall that the timing of

measurements may not be the same for each individual. Let t¡¡ denote the 7th time at

which a response is measured for individual i. This notation allows for the possibility of

mistimed measurements. In this particular study, measurements were taken at the same

occasions {tt : 0, tiz: 4, tn : 8, t¡a: 12} for all subjects. Thus, the subscript i in /y is not

Yi
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5 General Linear Regression Model and Estimation

strictly necessary. It should be noted that an important property of y, is that

independence between the vectors is assumed (Fitzmaurice et al., 2004).

Next, the vector of covariates, Xu , for the lth subject at the/l' measurement occasion

is denoted by

X iil

X,,
ij2

where i:1,2,...,N, j:I,2,...,n¡andpisthetotalnumberof distinctcovariates. The

covariates can include both within-subject and between-subject covariates' The

covariates for each individual i can also be set up in the matrix

X,t, X,r, x,ro

X,,, X¡22 X ¡2px,=

Xir,t Xin,z X in'p

Each row represents the p covariates at a measurement occasion while each column

represents a unique covariate.

5.3 General Linear Model

Let us examine a linear regression model that regresses the repeated measurements

on a set of covariates. The model equation is represented in matrix notation as

Y, = x,B + e, (5'1)

where f :(þr,...,þr)' is a vector of unknown coefficients, e, is a vector of random

effors, and Y, and X, are defined in Section 5.2. The expectation and covariaîce are

E(Y,) = X,f and Cov({) = 2,, respectively'

X

xu,
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5 General Linear Regression Model and Estimation

Model (5.1) can be expanded as shown by model (5'2) below:

Yu: Þrx,¡r+ PrX¡z+.'.+ þrXrott,, (5'2)

whereT : I, 2, ..., ili,and random errors are represented by e,, with zero meaî.

5.3.1 Example: Modeling Treatment Effects as Additive Constants

Next, an example of the general linear model framework is discussed in terms of the

currentstudy. Here, n:4 forall iand j, andh:0,t2:4,h:8 and tt,:12. The

covariates in this study are: (1) the within-subject covariate of time since baseline, and (2)

the between-subject covariate of treatment group. The matrix Xi for this study is

denoted by

X,,,

X,,,

X,r,

X,,,

X,,,

x,rr.

x,r,
x,o,

X ¡13

¡23X
X,

X
X

t33

i43

The first column of X, corresponds to the time elapsed since baseline (i.e., X,,' : f ¡ ) for

the ith individual at each occasion. Given that there are three treatment groups in this

study, the second and third columns of X, denote the between-subject covariates of

treatment group and are necessary to distinguish between the groups. In other words,

Itx', = 
to

if the i'h individual belongs to the milled flax group

otherwise

if the i't' individual belongs to the flaxseed oil group
ij3

otherwise
and X {r

Io

It follows that a series of regression equations for each measurement occasion can be

written as follows:
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5 General Linear Regression Model and Estimation

Y,r= þrX,rr* þrX,rr+ prX,rr+e,,

Y,r= þrX,rrt þrX,rr+ BrX,rr+e,,
Y,r: þrX,r, * þrX,r, + prX,r, + e,,

Y,o= þrX,or* þr.X,or+ p3X,or+e,o

(s.3)

An intercept term p, can be added by setting X ut = 1 for all i and i. Model (5.3) can

be alternatively expressed by

Yu: þ, * þrX,r, + þrXu.' + BoX,ro + e,,

Y,r: þ, * þrX,r, * þrX,r, + poX,ro + e,,

Y,,= þrr þr.X,r,i þrX,r,+ BoX,ro+e,,
Y,o= þr* þrX,ort þrX*r+ poX,oo+e,o

(s,4)

The X, matrix is modified to reflect the addition of the intercept. X,7r depicts the

intercept term,X¡z now represents the time elapsed since baseline, andX¡p and Xr+ now

represent the group effects.

The expectation of Y, given the set of covariates is

E(Y, I Xu) = P, + P2Xaz * þrX,¡, t þoX,¡o .

The conditional expectations for each group are as follows:

Control group E(Y, I Xu) = þ, + þrt,

Milled Flax group E(Y, lX,r) = (þr+ þr)+ þrt¡

Flaxseed Oil group E(Yu I Xu) = (þ, + þ) + þrt ¡

From the expectations above, the slopes are the same for each group. The treatment

groups differ from the control group by the addition of p, and Bo to the intercept term

for the milled flax and flaxseed oil groups, respectively.
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5 General Linear Regression Model and Estimation

5.3.2 Example: Modeling Treatment Effects as Slopes

Another simple example of the general linear model framework in terms of the

current study is presented next. Following Fitzmaurice, Laird and 'Ware (2004), a model

is fit for the Vitamin C data in which the same intercept is set for all treatment group

while slopes are allowed to differ. The model equation is

Y, = Þtx,¡tt þrX,¡r+ B3X¡z* þoX,¡o*e,¡

where Xi,, : lfor all i and j, and the intercept is representedby pr. X,,ris a covariate set

to represent the time elapsed since baseline (i.e., X,,, = t ¡). To allow differing slopes

between treatment groups,

X,,,
if the i'h individual belongs to the milled flax group

otherwise

if the i'h individual belongs to the flaxseed oil group

otherwise
and X¡t

The expected Vitamin C levels are E({)=X,f. More specifìcally, the conditional

expectations for each group are as follows:

Control group E(Yy lXu) = þr+ þrti+ ø(0)+ þo(0)= þt+ þrt¡

MilledFlax group E(Y, lX,r) = þr+ þrt.,+ þrt,+ po(O)= þ,*(þr+ þt)t,

Flaxseed oil group E(Yu lX.,) = þr+ þrt ¡+ ø(0)+ þot¡: þrt(þr+ þ)t ¡

In the above expectations, p, is the intercept or mean Vitamin C level at Week 0.

The terms þr, þr.+p, and þr+þ0, all of which are associated with þ represent the

slope or expected change in mean Vitamin C levels at each measurement occasion for the

control, milled flax and flaxseed oil groups, respectively.

_f,,-lo

_t,,-lo
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The corresponding design matrices for the control, milled flax and flaxseed oil

groups respectively, are shown below. Notice how these design matrices are written

differently from the design matrix in the example from Section 5.3.1. This reflects the

varying slopes for each group.

, aîdX, =

Various hypothesis tests can be conducted to help answer specific questions of

interest. For example, the hypothesis Ho: þt = þq = 0 tests whether the groups have the

same rate of change in Vitamin C levels over time. Hypothesis testing will be discussed

in Section 5.4.2.

5.4 Estimation

Given that E(Y,) = X,P, Cov({) = E,, and { is multivariate normally distributed,

we need to consider how the unknown parameters (i.e., ß and the components that make

up I, ) are estimated. Let Ð, = E,(ó), where / represents the vector of covariance

parameters of dimensioî q x 1. Maximum likelihood estimation and restricted maximum

likelihood estimation are two methods for parameter estimation that will be discussed

next.

5.4.1 Maximum Likelihood Estimation

The maximum likelihood (ML) approach estimates P and þ by maximizing the log-

likelihood function. The log-likelihood function is denoted as

I
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1
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5 General Linear Regression Model and Estimation

where K is defined as I n, , i.e., the total number of observations.
i=1

The likelihood function is the joint probability of the response variables calculated at

their observed values. The resulting maximum likelihood estimates (MLE's) are denoted

by þ and ,,(ø), or alternatively Î,. The details for the derivation of the MLE's will be

omitted in this practicum.

If ^Ð, is known,

(s .s)

Some important properties of / when E, is known are

(Ð þ t u"a multivariate distribution with E(b = P G."., ß is unbiased), and

, = 
{å 

x,'2,'x,\-'Ëk,t,-'r)

Equation (5.5) is the general least squares (GLS) estimator of /

cov(i): {å",,
-l X when { is multivariate normally distributed

-l

(ii) y' nas the smallest variance when .I, is correctly specified.

(iii) The estimate of ß that is derived when multivariate normality is assumed is

valid (but possibly not the best estimate) even if the multivariate normal

assumption is violated.

If ^Ð, is unknown,the MLE of Ð, is obtained first and then substituted into equation (5.5)

to yield

( u ì-t N t , \
þ=|)x,'Ê,'x,l l(x,i,-'f) (s.6)

[ ¡=l ) ¡=t
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5 General Linear Regression Model and Estimation

The same properties hold approximately for the estimate in (5.6) as when .Ð, is

known but with the additional requirement of large sample size. An important remark is

that as the number of covariance parameters to estimate increases compared to sample

size, estimation becomes problematic (Fitzmaurice et aL.,2004).

5.4.2 Maximum Likelihood Inference

Hypothesis tests can be conducted using the MLE of ß . After estimating lÌ ,we can

estimate its corresponding covariance matrix by Côv(/) = xi Then,{å",t
-l

lH'o: þt = 0 is tested using the Wald statistic

1,=
Yâ"(pr)

where Bo is the Æ'h component of P , and ãr(þo) is the square root of the variance

component of Côv(i) for þ0. The 95o/o confidence interv al for þo has endpoints

þo xr.s6Farfß¡

If the investigator desires to test linear combinations of the elements of / , Hs

Lþ = 0 is an appropriate hypothesis where L is a contrast vector with only one row. In

this situation, the Wald test statistic is denoted by

Z. Lß

LCõv(p)L'

The95o/o confidence interval for LP has endpoints

rþ u.oe^@æqþ¡r'

Both of the Wald statistics above can be compared to the standard normal distribution.
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5 General Linear Regression Model and Estimation

Suppose we exploit the well-known property that the square of a standardized normal

random variable (i.e., Z2), is distributed according to a chi-square distribution with a

single degree of freedom. Using this information, the hypothesis Hs: Lþ = 0 just

described above can also be tested with the test statistic

w' = (rit)þcauçþ,r'\'' øìl
The statisti c W2 canbe compared to a chi-square distribution with one degree of

freedom. This methodology can be extended to the case where the L mafrix has more

than one row, say r rows. The test statistic W2 isthen compared to a chi-square

distribution with r degrees of freedom.

5.4.3 Restricted Maximum Likelihood Estimation

An alternative to maximum likelihood estimation is restricted maximum likelihood

estimation (REML). This method of estimation is recommended by Fitzmaurice, Laird

and Ware (2004) to estimate .Ð, due to the fact that diagonal elements of E, are prone to

underestimation when the ML method is used. In REML estimation, J, is estimated by

forming a residual likelihood. This likelihood involves .Ð, but not p from the likelihood

function. See Fitzmaurice,Laird and Vy'are (2004) for further details on this toptc.

5.4.4 The Likelihood Ratio Test

Next, the likelihood ratio test (LRT) will be examined as an alternative to the V/ald

test for testing the null hypothesis of Hs: Lþ = 0 against the alternative hypothesis of H1

LB * 0. First, it is important to distinguish between the null and alternative hypotheses

In the model for the null hypothesis, a constraint is placed in the form of Lß = 0. For the

alternative hypothesis the model is unconstrained (i.e., LP * 0). The constrained model
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5 General Linear Regression Model and Estimation

can be viewed as a reduced model of the unconstrained, or full model. If the reduced

model holds, the full model must hold as well. Thus, the models are nested. In order to

compare these two models, their corresponding log-likelihoods (i.e., iu' and Â.uou.no)

are compared. The likelihood ratio test statistic is

G' = 2(îrutt- Lou"ro)

and is compared to a chi-squared distribution. The degrees of freedom are found by

subtracting the number of parameters in the reduced model from the number of

parameters in the full model. Likelihood ratio tests can be used for inference for the fixed

effects as well as the variance components. When examining the fixed effects using the

likelihood ratio test, results are valid only when ML estimation is used. On the other

hand, when testing hypotheses regarding variance components, both ML and REML

estimation provide valid likelihood ratio test results (Verbeke & Molenberghs, 2000;

Fitzmaurice et al., 2004).
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Chapter 6

Modeling the Mean and Covariance
Structures

6.1 Introduction

In this chapter, the process of finding models for the mean and covariance structures

for longitudinal data will be examined. After this, various models for the mean and

covariance structures will be fit to the Vitamin C and Vitamin E response variables from

the longitudinal study.

6.2 Modeling the Mean Structure

There are two main approaches for modeling the mean structure of longitudinal data,

namely the analysis of response profiles and the response curves method. Both of these

approaches will be examined in Sections 6.2.1 and 6.2.2, respectively'
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6 Modeling the Mean and Covariance Structures

6.2.1 Response Profile AnalYsis

The purpose of response profile analysis is to examine the shape of the mean

response across measurement occasions. No specific constraint is placed on the mean

when using this method. Response profile analysis is ideally suited to the case where

measurement occasions are the same for all subjects and there is only one discrete

covariate. Concerning the present study, the primary goal is to determine whether the

changes in the mean response for each of the eight outcome variables of interest are the

same for the control, milled flax and flaxseed oil groups (Fitzmaurice et al., 2004).

The analysis of response profiles raises three questions:

(1) Is there a group x time interaction? (e.g., If there is no interaction effect, the

mean response profiles for the three groups are parallel)

(2) If there is no group x time interaction, is there a time effect? (e.g., If there is no

time effect, the mean response profiles are level)

(3) If there is no group x time interaction, is there a group effect? (e.g., If there is no

group effect, the mean response prof,rles are the 'same')

The group and time effects are commonly referred to as main effects in the literature on

longitudinal data. Typically, the main effects are not relevant in the presence of a group

x time interaction. To illustrate, parts (a), (b), and (c) of Figure 6.1 depict the situations

of no group x time interaction, no time effect (but a group effect), and no group effect

(but a time effect), respectivelY.
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6 Modeling the Mean and Covariance Structures

o

$.o
E
e<o¡t
o)t-s

N

o

0 2 4

0 2 4

0 2 4

(a)

6

ïne (weeks)

(b)

o

1lne (weeks)

(c)

I 10 12

10 12

I 10 12

o

$coc
8-to
U'
o)É-s

c!

o

I
Soc
8co
U'&.ï

ç!

o

6

l.ìne (w eeks)

Figure 6.1: (a) No Group x Time Interaction Effect (b) No Time Effect (c) No
Group Effect

Recall that the baseline measurements in this study were taken before any treatment

was administered. In theory, the mean baseline responses for the groups should be equal

as they do not depend on treatment group. Recollect the time plot in Figure 3.10(d) that
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6 Modeling the Mean and Covariance Structures

plotted the mean Vitamin C level at each measurement occasion stratified by treatment

group. In this graph, the mean Vitamin C levels for the three groups at baseline did not

appear to be equal, therefore adjustment for baseline differences may be necessary.

Let us examine the hypotheses outlined in the current section fuither. First,

following Fitzmaurice, Laird and Vy'are (2004), define p(Ð: { pt@), .'., p,(g)\' as the

mean response profile where g: l,..., G denotes the group for G > 2 and rz indicates the

measuÍement occasion. To compare the G groups, define Alg) : p¡@) - p¡(G) where j:

I, ..., fr and g : l, ..., G - 1. By def,rning notation in this manner, the null hypothesis test

of no group x time interaction is

H6: A7(g) : Lz(Ð: ... : A,(g)

where g: l, ..., G-I with (G - 1) " (n - l) degrees of freedom.

Now that notation has been introduced, response profile analysis can be expressed in

terms of the general linear model. Recall that

E(4 I X,) = F,: X,lJ

where X, is the design matrix and P represents the vector of regression coefficients. In

the current study, there are G x n (i.e.,3 x 4: 12) parameters that comprise the response

profìles for the three groups. There are a number of different ways that the design

matrices can be written. V/e will examine two different parameterizations.

Parameterization l:

The design matrices, X, , are written as follows:

100000000000
010000000000
001000000000
000100000000

x,=
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6 Modeling the Mean and Covariance Structures

xi for the milled flax group, and

for the flaxseed oil group.

The vector of regression parameters is denotedby f = (þr,.'., þrr)'

Now, following the general linear model and multiplying each design matrix , X, by þ ,

þ,,

þ,
, and pro =l¿¡¡r

þo

As an example of interpretation, þr, þr, and B, are the mean values of the response

variable at the first measurement occasion for the control, milled flax and flaxseed oil

groups respectively. þ, it the mean response at the second measurement occasion for

the control group, and so on.

The null hypothesis test of no group x time interaction is now expressed in terms of /

and is written as H6: (þ, - þ') = (þz - þ) = (þ' - þr) = (þo - p) and

(B' - P) : (þz - þr) = (þ' - þ',) = (þo - þ'r)

and can be re-expressed as Hs: Lf : 0 where

000010000000
000001000000
000000100000
000000010000

000000001000
000000000100
000000000010
000000000001

x,=

þ,

þ,0

þ,,

þ,,

þ'
þu

þ,
þr

þ'
þco
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6 Modeling the Mean and Covariance Structures

L

Parameterization2:

As a second example, the design matrices, X,, are written as follows in reference cell

mode. An intercept is included for the control group which is set as the reference group.

The milled flax and flaxseed oil groups are coded as comparisons to the control (i.e.

reference) group.

for the control group,

X, for the milled flax group, and

xi for the flaxseed oil group

Now, following the general linear model,

I -1
10
10
1 -1
10
10

0

-1
0

0

-1
0

0

0

-1
0

0

-1

1

I

1

0

0

0

0

I

0

0

0

0

1

0

0

0

0

0

00
00
10
0-1
0-1
0-1

00
00
00
00
10
01.

0

0

0

1

0

0

X

i
1

1

1

00000000000
10000000000
01000000000
00100000000

100010000000
110011000000
101010100000
1001100i0000

h o o o o o o o 1o o o
I

_lr 1 o 0 0 o o o I 1 0 o

Ir o r o o o o o I o I o
I

[rooloooo1oo1

þco

þ'

þr+ þ,

þ'+ þt

þ,+ þo

þt+ þ'
(þ,+ þr)+(þr+ þu)

(þr+ þr)+(þr+ þr)
(þ,+ þr)+(þo+ þr)

þ'+ þn

(þ,+ þ)+(þr+ þ*)
(þ,+ þ)+(þr+ þ,,)
(þ,+ þ)+(þo+ þ")

þwp =
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6 the Mean and Covariance Structures

For interpretation purposes, þr, þ, + B, , and þ, + þn are the mean values of the response

variable at the f,rrst measurement occasion for the control, milled flax and flaxseed oil

groups respectively. The rest of the parameters are interpreted accordingly.

The control group is a reference group and the null hypothesis test of no group x time

interaction is modified from the previous example as

Ho: þu = þ, = þz = þro -- þr, = þr, =0

The null hypothesis does not need to be re-expressed in terms of LP. Alternatively,

hypothesis tests of the main effects may be of interest if the hypothesis of no group x

time interaction holds true.

Ho: þ, = þ, = þq = 0 is the hypothesis of no time effect while

Ho: þ, = þ, = 0 is the hypothesis of no group effect'

6.2.1.1 Properties of Response Proiíle Anølysis Method

The response profile analysis method is robust in nature due to the minimal

constraints on the mean response profile and covariance structure. The mean can be

different for each group at each measurement occasion, thus no structure is imposed.

Consequently, risk of bias is nominal. It is unfortunately also a consequence of this

feature and also in part due to the fact that response profile analysis does not take into

account the order of repeated measurements, that only general conclusions can be made

about between-subjects effects acfoss time (Fitzmaurice et a|,2004).

6.2,2 Parametric Curves for Modeling the Mean Structure

A second approach for modeling the mean is to use parametric or semi-parametric

curves. In contrast to the response profile analysis approach, specific constraints or

structure are placed on the mean, and numerical values of the variable time are taken into
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6 Modeling the Mean and Covariance Structures

consideration. Also, individuals do not necessarily have to be measured at the same

occasions. Furthermore, parametric curves for modeling the mean structure do so with

less parameters than response profiles and have greater power for testing main and

interaction effects (Fitzmaurice et al., 2004). The parametric curves to be discussed are

linear and quadratic in nature. Similar to the response profile analysis approach, 'Group'

membership is still treated as a categorical variable. In contrast to the response profile

analysis approach, 'Time' is now a quantitative variable, thus making the parametric

approach fit into the regression-type model category.

6,2,2.1 Linear Response Trends

Define

Y,¡ : þr+ Br(Time)+ Þr(GrouP,)+ po(Time,,xGroup,)+e,, (6.1)

which models the mean response as a linear function of time for a two-group design.

Model (6.1) can be augmented for the case of three groups to fit to the study in this

practicum. This augmentation is shown in model (6.2). Define

Yr, = pr+ pr(Time,)+ Þr(GtouP¿) + po(Time, xGroupo)+

p,(Group,) + pu(Time, x Group,) + e,, 
(6'2)

1 ^ lt ¡f tl',n i'h subiectbelongs to the milled flax group
wnefe LrfOUD, = <t x 

l0 otherwise

, ^ ft i7 tt u i'h subject belongs to the flaxseed oil group
and LrfOUD, = <t t 

l0 otherwise

The subscript i in Timeu has been omitted in equation (6.2) because all subjects are

measured at the same set of occasions.

Thus, in reference to the treatment groups, equation (6.2) is denoted as,

Yuoo = p, + prTime j + eu for the control group (i.e., k: / : 0),
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6 the Mean and Covariance Structures

Y,ro = (þr+ þr)+(þr+ p)Time,+ e,, for the milled flax group (i.e., k: I,l:0), and

Y,7or = (þr+ þr)+(þr+ B)Time,+eu for the flaxseed oil group (i.e.,k:0, /:1).

One can see that each group has a unique intercept and slope'

In reference to the general linear model, Y,= x,ß + e,,the design matrices for each group

are written as follows:

for the control group,

X¡ for the milled flax group, and

X, for the flaxseed oil group

quantitattve covarrates.

6.2.2.2 Quadrøtic Response Trends

Define

00001
0 0 0 0l
0 0 0 0l
ooo o)

X

00
00
00
00

0

4

8

t2

0

4

8

l2
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001
001
001

0
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I
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0

4

8

I2

0

4
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l2
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1

1

I

i
1

1

I

1

I

1

1

1

1

1

I

The models defined above have the capability of handling both qualitative and

y,¡ : þ, + pr(Time ¡) + Br(Tim",.,') *Bo (Group,) +

pr(Time,,x Group,) + pu(Time,,2 x Group,) + eu

(6.3)
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which models the mean response as a quadratic function of time for a two-group design.

Again, the equation can be augmented so that it is appropriate for a three-group design

that fits the current study. That is,

Yu = Þ,+ pr(Time ¡)+ þr(Time j2)+ Bo(Groupo) + pr(Time, x Groupo) +

pu(Time 
,2 

x Groupo) + pr(Group,) + (6.4)

pr(Time,x Group,) + Bn(Time,2 x Group,) + e,,

lI tf subject belongs to the milled flax group
wnefe trfOUO, = <' ^ l0 otherwise

ll if sub¡ect belongs to the flaxseed oil group
and urouD, : <

l0 otherwise

Thus, the expectations based on equation (6.4) arc

E(Y,r00) = þrt pr(Time,)+ fl(Time ,t) fo, the control group (i.e., k: /: 0),

E(Y,¡ro) = (þ, + þ) + (þr+ fl)Time ,+ (þr+ Bu)Time ,' for the milled flax group

(i.e.,k: l,l:0), and

E(Y¡¡or ) = (þ, + þr) + (þr+ pr)Time, + (þ, + p)Time ,' for the flaxseed oil group

(i.e., k: 0, /: 1).

Notice that each group has a different intercept and the rate of change varies as a function

6 Modeling the Mean and Covariance Structures

of time

6.3 Modeling the Covariance Structure

Modeling the covariance structure is an important topic in the analysis of

longitudinal data. Recall that responses observed on the same individual over time are

correlated. This correlation must be modeled properly in order to obtain valid statistical

inferences. In fact, correctly modeling the covariance structure for longitudinal data
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6 Modeling the Mean and Covariance Structures

increases efficiency of the estimates and ensures correct standard errors (Fitzmaurice et

aL.,2004).

The covariance structures for longitudinal data that will be examined in this

practicum are the (a) unstructured covariance, and (2) covariance pattern models.

6.3.1 Unstructured Covariance

A covariance structure in which no constraints are placed on the elements of the

covariance matrix is the unstructured (UN) covariance. The covariance matrix must be

symmetric as well as positive definite and is most suited to a balanced design with few

measurement occasions. The unstructured covariance matrix has n x (n + 1)/2 unique

parameters and is written as

Cov({) =
o2

õtn

õzn

2ol

õzt

6tz
2

2
6n2 Arz an

When there are three measurement occasions, there are 3 x (3 + l)12 : 6 covariance

parameters to estimate. With six measurement occasions, there are 6 " (6 + l)12: 15

covariance parameters to estimate. As shown in these examples, the number of

covariance parameters to estimate increases quickly as the number of repeated

measurements increases. If sample size is small relative to the number of covariance

parameters , it can result in unstable estimation (Fitzmaurice et al, 2004).

6.3.2 Covariance Pattern Models

There are numerous covariance structures which place constraints on the elements

that comprise them. Collectively these structures are known as covariance pattern

models.
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6.3.2.1 Simple Covariance Structure

The 'simple' covariance structure is denoted by

2o
0

0

o 2

0

0
Cov({) =

00 a

p

Potoz
2

o2

2

The variance o' is constant over time

6.3.2.2 Compound Symmetric Structure

The compound symmetric (CS) covariance structure is denoted by

p
1

p

1 p

ICov(Y) = 62

The variançe ot, is constant over time and Corr(Yr, Y¡t): p, (p I 0) for all j and

k, (j + k). For this structure, there are only two parameters to estimate, 6'and P , for

any number of repeated measurements. A variation of the compound symmetric

covariance structure is the heterogeneous compound symmetric structure which is

denoted by

1

ol
PoPz

Põta,
PazõnCov({) =

PõtAn POzA, ol

Notice how the variance is allowed to differ based on the specihc measurement occasion.

For the heterogeneous compound symmetric structute, there are n + 1 parameters to

estrmate.
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6 Modeling the Mean and Covariance Structures

6.3.2.3 AutoregressiveStructure

This structure accounts for the decreasing magnitude in correlation between pairs of

repeated measurements as time increases. This is a common feature of longitudinal

studies. The autoregressive covariance structure of order 1 (AR-l) is written as

p
I

p
p
1 p

a -1p' p"'
n-2

Cov({ ) = ot

n- n-3 1prpp

Thevariance, 02, is constantovertime andCon(Yi¡,Yirr): Oli-rl ,(p Z0) for allj andk,

(i + t¡. Similarly to the compound symmetric structure, the only two parameters to

estimate are õ'and p. A variation of the AR-l structure that allows for heterogeneous

variances is aptly named the heterogeneous AR-1 (ARH-1) structure which is denoted by

2 2

P 6tõz

Pazat

õtõ,

626,

n-õ POtoz
2

Põtõz 02

n-l n-2 t¡-1p 6tõn p aza, p 6ta,

p

Cov({) =

2

n
(t

This covariance structure has n 1- I parumeters to estimate.

6.3.2.4 ToeplitzCovørianceSÍructure

The Toeplitz (TOEP) structure is a variation of the AR-l structure. It accounts for

correlation by assigning the identical correlation between pairs of repeated measurements

that are equally spaced. The variance, o', is constant over time as in the AR-l structure

and Corr(Y¡,Yit): pt for all j and k. There are n covariance parameters to estimate.

The Toeplitz structure is denoted by
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6 Modeling the Mean and Covariance Structures

1 Pz

Pt

Pt

1Pt

P,-t

P,-z

1

Cov(Y ) = 62

Pn¿ Pn-z Pn-z

A covariance sÍucture that is most ideal is a sÍucture that is both parsimonious ln

the number of parameters to estimate and also a good fit to the UN estimates for both the

variance-covariance and correlation components. There are many more covariance

structures that can be specified. PROC MIXED in SAS has the capability of

implementing over 20 unique covariance structures. For furlher details on the vadous

types of structures available in PROC MIXED, refer to the SAS Documentation.

6.3.3 Information Criteria

When fitting various covariance structures to longitudinal data with a specific mean

model, it is useful to be able to compare the different models. This is especially true for

the case where the models are not nested. In this case, the tikelihood ratio test cannot be

used to compare models. We can compare models here by this using various information

criteria such as the Akaike Information Criterion (AIC), the Corrected Akaike

Information Criterion (AICC) and the Bayesian Information Criterion (BIC).

The AIC is

AIC: -2logL+2p

wherep is defined as the number of covariance parameters. The AIC has two main goals:

1. Determine whether the specified covariance structure fits the data well.

2. Determine whether the selected covariance structure not only fits the data well

but is also parsimonious.
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A covariance structure that fits the data well, but is not parsimonious in terms of the

quantity of covariance parameters is effectively penalized.

The AICC is

AICC = -2logL+ plog(N. +1)

where p is defined as the number of covariance parameters and N 
* 

is defined as the

number of 'subjects' (i.e., N 
*: N and N 

*: N + p for ML and REML estimation

respectively).

The BIC is

BIC= -2logL+plogN-

where N 
* 

is defined as the number of subjects (i.e., N*: Nand N*: N + p for ML and

REML estimation respectively). The main goal of the BIC is to choose the model with

the greatest Bayes factor, or posterior probability. The BIC tends to choose more simple

models than the AIC. This is because the penalty incurred for increased covariance

parameters is greater than for the AIC and is not recommended.

When choosing among the models with various covariance structures, the

information criteria with the smallest value selects the best model. The reader should

keep in mind that the same model will not always be selected by the various information

criteria (Fitzmaurice et al., 2004; Hedeker & Gibbons,2006; Lix & Lloyd, 2006).

6.4 Model Diagnostics

Upon selecting a model for the longitudinal data, residuals should be examined as a

final evaluation of model fit. Residuals can assist a researcher in determining

inadequacies for both the mean and covariance structures of the model. Furthermore,

outliers and skewness can also be revealed through residual analyses. Define
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f,=Y, - X,þ

as the vector of residuals for the lh individual.

An important property of r, is that the observations that comprise 4 are correlated

because of the within-subject heterogeneity that arises in longitudinal data. Due to this

property, the residuals must be transformed so that standard residual diagnostics can be

applied. Fitzmaurice, Laird and Vy'are (2004) recommend using the CholeslE

decomposition method to transform the residuals. Although fuither details will not be

discussed in this practicum, by transforming the residuals through the Cholesky

decomposition, one can assume that. the residuals have constant variance and are

uncorrelated. Histograms, normal quantile plots and scatterplots of the transformed

residuals can be examined to detect departures from normality. The resulting histograms,

normal quantile plots and scatterplots are all interpreted in standard fashion.

6.5 Examples

Next, the Vitamin C and Vitamin E response variables in the metabolic syndrome

study will be examined by applying some of the mean models and covariance structures

discussed in the previous sections. Also, hypotheses tests will be conducted using the

inference techniques discussed in Chapter 5.

6.5.1 Example 1: Modeling Vitamin C via Response Profile

Firstly, the Vitamin C data were fit using the response profile analysis method

(Section 6.2.I) for the mean model with an unstructured covariance (Section 6.3.i)

specified for the covariance structure. These particular models for the mean and

covariance structures were indicated using the PROC MIXED procedure in SAS; also

REML estimation was used (see Appendix B for SAS syntax). By default, SAS uses the
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reference cell parameterization, or the second parameterization discussed in Section

6.2.1. The control group and the baseline measurement were set as the reference group

and time, respectively. Multivariate Wald tests were output to test the interaction and

main effects. For the response profile analysis method, both 'Group' membership as well

as 'Time', were treated as categorical variables. Thus, the response profile model is an

ANOVA-type model.

Table 6.1 displays the estimated covariance matrix for the Vitamin C data. Focusing

on the diagonal elements of the matrix, we can see that the variability in Vitamin C levels

decrease slightly from baseline to Week 4. From Week 4 to Week 8, the variability

decreases even more. At Week 12,the variability rises and is almost as it was at baseline.

The largest variance (0.2101) is not more than twice as large as the smallest variance

(01293); therefore homogeneity of variances across the measurement occasions is a

reasonable assumption.

0.2101

0.t224
0.0935

0.083s

0.1224

0.r715
0.0995

0.tr72

0.093s

0.0995

0.1293

0.1 1 13

0.083s

0.1172
0.1 1 13

0.1730

Table 6.1: Estimated covariance Matrix for vitamin c Data

Table 6.2 displays the main and interaction effects test results. Recall Section 5.4 for

Wald test statistic. For the group x time interaction test, the value of the Wald test

statistic is 21.33 with a correspondingp-value of 0.0016. Formally, the null hypothesis

of no group x time interaction is rejected and it can be concluded that mean response

profiles for Vitamin C are not the same for the control, milled flax and flaxseed oil

groups.
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Effect Df ll/ald p-value
Group
Time
Group x Time

2

J

6

8.99
27.59
2t.33

0.0112
<.0001

0.0016

Table 6.2: Tests of Fixed Effects

Table 6.3 displays the estimates (and standard errors) of the p's. For ease of

interpretation, the control group at Week 0 was used as the reference group in the SAS

code. To relate the SAS output to the models just outlined, recall

Fco

þ,

þr+ þ,
þt+ þ'
þ'+ þo

, þMF: , and pro =

þ'+ þt
(þ,+ þr)+(þ.,+ þu)

(þ,+ þr)+(þr+ þr)
(þ,+ þr)+(þo+ þr)

þr+ þ,
(þ,+ þ)+(þr+ þ*)
(þ,+ þ)+(þr+ þ,,)
(þ,+ þ)+(þo+ þ,,)

Effect Group Time Estimate Std Err lløld p-value
Intercept
Group
Group
Time
Time
Time
Group x Time
Group x Time
GrouP x Time
Group x Time
Group x Time
Group x Time

MF
FO

Week 12

Week 8
Week 4

Week 12
'Week 

8

Week 4
Week 12

Week 8
Week 4

0.7r40
0.2291

-0.1 848

-0.1990
-0.0330
-0.1 630

0.1490

-0.3062
-0.0855

0.1440

-0.2228
-0.t737

0.1450
0.t928
0.1963
0.r470
0.t235
0.1170
0.1 956
0.t643
0.1 556
0.r99r
0.1672
0.1 584

4.93
1.19

-0.94
-1.35
-0.27
-r.39
0.76

-1.86
-0.55

0.72

-1.33
-1.1

<.0001

0.2436
0.3534
0.1 854
0.79r0
0.r73r
0.4517
0.0715
0.5867
0.4747
0.1921
0.2811

MF
MF
MF
FO
FO
FO

Table 6.3: Solution for Fixed Effects

þr: O.lt+0, þr:0.22gI, and þr: - 0.1848, are estimates for the first measurement

occasion. Thus, for the control group, 0.7 140 is the estimated Vitamin C level at the first

measurement occasion. For the milled flax group,0.7140 + 0.229I:0.9431 is the

estimated Vitamin C level at baseline. Finally, for the flaxseed oil group, 0.7140 -

0.1848:0.5292 is the estimated Vitamin C level at V/eek 0. Table 6.4 displays the
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observed and estimated mean response for Vitamin C at each measurement stratified by

treatment group

Week 0 Week 4 Week 8 Week 12

Control

Milled Flax

Flaxseed Oil

Table 6.4: Observed and Estimated means at each measurement occasion

Notice in Table 6.4 thaf when the mean is modeled using the response profile analysis

method, the observed and estimated means at each occasion are identical'

Let us go back to Table 6.3 and examine the tests of the group effect. Due to the

reference cell param eterizationfor this model, the mean Vitamin C levels were compared

between the groups at the baseline measurement. Non-si gnificant p-values of 0-2436 and

0.3534 for the milled flax and flaxseed oil groups respectively indicate that the mean

Vitamin C levels at baseline do not differ between the control, milled flax and flaxseed

oil groups. Recall the initial observation that there may be a difference between the

groups based on Figure 3.10(d). This result indicates that there may be no statistically

significant difference between the groups. Based on the results due to this model, no

adjustments are necessary. If adjustments were necessary, there are a few methods for

handling differences at baseline. They include (a) subtracting the baseline response from

the subsequent responses and analyzing the resulting differences, and (b) including the

baseline response as a covariate in the model for the analysis of the post-baseline

measurements (Fitzmaurice et a1., 2004). V/hen comparing the milled flax group to the

control group, from baseline to V/eek 4, the milled flax group has a slightly greater

Observed
Estimated
Observed
Estimated
Observed
Estimated

0.71

0.tr
0.94
0.94
0.53
0.53

0.55
0.55
0.69
0.69
0.19
0.19

0.68
0.68
0.60
0.60
0.27
0.27

0.52
0.52
0.89
0.89
0.47
0.47
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decrease (0.0855) in Vitamin C levels than the control group but the difference is not

significant Qt-value: 0.5867). From baseline to Week 8, the milled flax group again has

a greater decrease (0.3062) in Vitamin C levels than the control group. Again, the

difference is insignificant as suggested by a p-value of 0.0715. From baseline to Week

12,the milled flax group has a greater increase (0.1490) in Vitamin C levels than the

control group but a p-value of 0.4517 indicates that the difference is not statistically

significant. The comparison pattern of the flaxseed oil group to the control group is

similar to that just described for the milled flax to control group. A greater decrease in

Vitamin C levels from baseline to W'eek 4 (0.1737) and baseline to Week 8 (0.2228) is

shown for the flaxseed oil group in comparison to the control group. From baseline to

Week 12, the flaxseed oil group has a greater increase (0.1440) in Vitamin C levels than

the control group. For the three comparisons just described, none are statistically

significant as indicated byp-values of 0.2811,0.1921, and0.4747 respectively.

Next, residuals for this model will be examined commencing with a histogram plot.
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Figure 6.2: (a) Response Profile Model: Histogram plot of transformed residuals,
(b) Histogram plot of untransformed residuals

Figure 6.2(a) displays the transformed residuals due to the Cholesky decomposition

method while Figure 6.2(b) displays the untransformed residuals for comparison. Based

on the histogram of the transformed residuals, the distribution appears normally

distributed.

Next, normal quantile plots (or QQ plots) for the transformed and raw residuals are

shown in Figure 6.7(a) and (b) respectively.
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Figure 6.3: Response Profile Model: (a) QQ plot of transformed residuals' (b) QQ
plot of untransformed residuals

Based on the QQ plot of the transformed residuals in Figure 6.3(a), there may be one or

two outlying individuals. Otherwise, the residuals fit the line well indicating normality'

At this point the reader likely begins to wonder why the omnibus tests of the fixed

effects in Table 6.2were significant and none of the estimates of p in Table 6'3 were.

While non-significant group effects can be explained by the reference cell

parameteri zation, non-significant group x time interactions aÍe more puzzling. Given

these results, there is most likely a better model for these data. Therefore, we will re-

model the VitaminC dataand commence with an entirely different model for the mean.
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6.5.2 Example L (continued): Modeling Vitamin C via Parametric
Curves

Recall that linear trends, quadratic trends and linear spline models (not discussed in

this practicum) can all be examined in the form of the general linear model

E(YtlXt)= lt,= X,þ.

'We will examine both the linear and quadratic trends for the Vitamin C data in fuither

detail. For the control, milled flax and flaxseed oil groups respectively, the design

matrices, X,, for the quadratic trend are written as

X,

X¡

10 0

r416
18 64

I 12 144

10 0

r416
18 64

I t2 t44

10 01
1416 I

18 64 1

tt2r441

00
416
864
12 144

000
000
000
000

X

000000
000000
000000
000000

and

0001
0001
0001
0001

00
416
864
12 144

The regression coefficients are represented by the vector f = (þr,'..,þn)'

In the control, milled flax and flaxseed oil groups respectively, the mean responses are

denoted by
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þ, + 0þr+0 þ,

þ, + 4þr+16p3

þ, +8þr+64p,
, F¡=

(þ,+ þ)+0(þz+ þ,)+0(þ,+ þu)

(þr+ þ)+4(þr+ þr)+16(pr+ Bu)

(þ,+ þ)+8(þr+ þr)+6a(Br+ Bu)

(þ,+ þ)+12(pr+ þr)+144(Pr+ Pu)

andH¡=

F,

p, +12pr+144p,

(þr+ þr)+0(þr+ þr)+0(þr+ þn)

(þ,+ þr)+4(þr+ þr)+16(Pr+ Bn)

(þ,+ þr)+8(þr+ þr)+64(Br+ Bn)

(þ,+ þr)+12(Br+ þr)+144(Br+ Bn)

For the linear trend model, the design matrices above are modified by removing the

columns that contain the quadratic term and adjusting the regression coefhcient vector to

include only six rather than nine p parcmeters. The mean responses can then be

adjusted accordingly.

V/hen using parametric curves for modeling the mean response, it should be noted

that the covariance structure of Í, need not be unstructured and thus a more parsimonious

structure can be adopted (Fitzmaurice et al., 2004).

To apply the linear and quadratic response trend to a numerical example, PROC

MIXED in SAS is fit to the Vitamin C data assuming an unstructured covariance matrix

(See Appendix B for computer syntax). The control group was set as the reference group.

First, a (a) linear trend model with an unstructured covariance was fit using ML

estimation in order to be compared to the (b) response profile trend with an unstructured

covariance structure discussed in Section 6.5.1. These models are nested, thus a

likelihood ratio test can be conducted. The response profile trend model was re-fit using

ML estimation in order to compare the models. As suspected, the response profile trend

model was not adequate in comparison to the linear trend model. In order to compare the

linear and quadratic models, maximum likelihood estimation was used to model these
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response trends to the data using an unstructured covariance structure. The -2 log

likelihood fit statistics are shown in Table 6.5.

-2Los, Likelihood

Lineør
Quødrøtic

96.r

64.9

Table 6.52 -2 Log Likelihood Fit statistics

The likelihood ratio test statistic can be calculated as G2 : 31.2 (i.e., 96' I - 64.9 : 31.2).

The degrees of freedom are calculated by subtracting the number of parameters in the

linear model from the number of parameters in the quadratic model (i.e.,12 - I :4). The

test statistic is then compared to a chi-squared distribution which in this case yields a p-

value <0.005. Thus, the linear model is shown to provide an inferior fit to the data as

compared to the quadratic model.

Recall the time plot of the Vitamin C means across measurement occasions shown in

Figure 3.10(d) and reproduced here as Figure 6.4. Based on this time plot, the quadratic

model seems appropriate for the milled flax and flaxseed oil groups. For the control

group, a cubic trend model may be appropriate but the quadratic model may still provide

an adequate fit for the data.
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Figure 6.4: Time plot of means for Vitamin C

Next, upon re-fitting the quadratic model using REML estimation, the tests of the

fixed effects and the estimated regression coefficients are displayed in Table 6.7 and

Table 6.7 respectively.

Effect Df Wald p-value
Group
Time
Time x Time
Group x Time
GroupxTimexTime

2

1

1

2

2

5.7 5

20.86
25.83
9.67
15.53

0.0564
<.0001
<.0001

0.0079
0.0004

Table 6.6: Tests of Fixed Effects

The time, time x time interaction, group x time interaction and group x time x time

interaction effects are all significant. The most interesting result is the significance of the

Control
Flaxseed Oil
Milled Flax

65



6 Modeling the Mean and Covariance Structures

group x time interaction effects. These significant interactions indicate that there may be

a difference between the groups over time.

Effect
Test

Estimate Std Err Statistic p-value

Intercept
Group

Group

Time
TimexTime
TimexGroup
TimexGroup
TimexTimexGroup
TimexTimex

MF
FO

MF
FO

MF
FO

0.1444
0.r92t
0.1955

0.0284
0.0020

0.0378

0.0384

0.0026
0.0026

4.78

r.36

-0.89
-0.03
-0.37
-2.9r
1<1

3.61

3.32

<.0001

0.t827
0.3825

0.9794

0.7r6s
0.0065

0.0169

0.0010

0.0022

0.6904

0.26t6

-0.t73r
-0.0007
-0.0007

-0.1100
-0.0969
0.0094

0.0088

Table 6.7: Estimated Regression Coefficients for the Quadratic Trend Model

In Table 6.7, aIl of the group x time interaction and group x time x time interaction

effects are significant. It is clear that the intercept and rate of change expressed as

functions of 'Time' and 'Time x Time' respectively are different for the control, milled

flax and flaxseed groups. The estimated mean responses for the treatment groups are as

follows:

E(\) = 0.6904- 0.0007(Time) - 0.0007(Time 2) 
,

E(\ ) = (0.6904 + 0.261 6)- (0.0007 + 0. 1 1 00)Time - (0.0007 - 0.0094)Time 2, 
and

E(Yr) : (0.6904 - 0.1731) - (0.0007 + 0.0969)Time - (0.0007 - 0.0088)Time'z

for the control, milled flax, and flaxseed oil groups respectively.

The observed and estimated means for each treatment group by measurement occasion

are shown in Table 6.8 below.
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Week 0 Week 4 Week 8 Week 12

Control

Milled Flax

Flaxseed Oil

Observed
Estimated
Observed
Estimated
Observed
Estimated

0.7r
0.69
0.94
0.95
0.s3
0.52

0.55
0.68
0.69
0.65
0.19
0.26

0.68
0.64
0.60
0.62
0.27
0.25

0.52
0.s8
0.89
0.88
0.47
0.51

Table 6.8: Observed and Estimated Means

As evident from Table 6.8, the quadratic trend model seems to flt the data quite well'

The only means that do not fit the data well are at Week 4 for both the control and

flaxseed oil groups.

In order to see if any higher order polynomials would provide an even better fit to the

data, acubic trend model was fit. The cubic trend model was compared to the quadratic

trend model but a likelihood ratio test revealed that the quadratic trend model was

adequate.

Next, a comparison of the appropriateness of different covariance structures' fit to

the data will be made using graphs, results of statistical tests and information criteria. As

an unstructured (LIN) covariance structure has already been fit to the data, it will be

compared to various structured covariance matrices. Table 6.9 and Table 6'10 present

the covariance and correlation matrices when an unstructured covariance structure is fit

for the quadratic mean model.

0.2t02
0.1218
0.0936
0.0832

0.1218
0.r743
0.0986
0.1 1 86

0.0936
0.0986
0.1296
0.1109

0.0832
0.1186
0.1109
0.1738

Table 6.9: Unstructured Covariance Matrix for Quadratic Trend Model
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1

0.6365
0.s673
0.4355

0.6365
1

0,6ss9
0.6817

0.5673
0.6ss9

1

0.7387

0.4355
0.6817
0.7387

1

Table 6.10: Unstructured Correlation Matrix for Quadratic Trend Model

From an examination of the diagonal elements of the matrix in Table 6.9 it appears

the assumption of homogeneous variances is reasonable. As a result, equal variances at

the four measurement occasions will be assumed. Table 6.11 displays the relevant

elements for the covariance and correlation structures for simple, compound symmetric,

autoregressive of order 1, and Toeplitz structures. In Table 6.11, within each structure,

the top line shows the variance-covariance components while the bottom line shows the

correlation components, both as a function of time lag (i.e., the entry for Week 0 is the

variance while successive entries are the covariances with Week 0). The complete

covariance and correlation matrices for fhe covqriance pøttern models can easily be

computed using the structure formulas from Section 6.3 '2.

C ovariance/Correlation
Structure Week 0 \ileek 4 Week I Week 12

UN

CS

Simple

AR(l)

Toeplitz

0.2102
1

0.1 690
1

0.1714
1

0.1781
1

0.r778
1

0.1218
0.636s

0

0

0.t044
0.6091
0.1218
0.6839
0.1222
0.6874

0.0936
0.5673

0

0

0.t044
0.6091
0.0833
0.4677
0.1 1 36
0.6387

0.0832
0.4355

0

0

0.1044
0.6091
0.0570
0.3199
0.0810
0.4557

Table 6.1l: Variance-covariance and correlation components

Now, comparisons can be made between the structured covariance and correlation

structures in Table 6.11 and the unstructured (sample) covariance and correlation
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structures in Table 6.9 and Table 6.10. It is clear that the simple structure does not

accurately reflect the trends in covariance and comelation when compared to the

unstructured structure. The compound symmetric structure is quite similar at most

measurement occasions in terms of the variance-covariance components. The correlation

is a good reflection of the IIN structure with the exception of V/eek 12. Similarly, the

AR-l structure also looks like a suitable fit for both variance-covariance and correlation

components, again with the exception of Week 12. The structure that appears to fit best

is the Toeplitz structure.

Alternatively, information criteria such as Akaike's Information Criterion can be

compared for each structure. Table 6.12 compares the AIC, AICC, and BIC criteria for

the structured and unstructured covariance models.

Covariance Structure AIC AICC BIC
Simple
CS
AR(1)
Toeplitz
Unstructured

20t.0
145.2
r44.8
r4t.5
t47.8

20t.1
145.2
r44.9
141.8
r49.6

202.6
148.3
148.0
t47.7
163.3

Table 6.12: Comparisons of Information Criterion

For each information criterion, the covariance structure corresponding to the smallest

value is the best fit for the data. The various information criteria will not always select

the same model. In this particular example, AIC, AICC and BIC all select the Toeplitz

structure as the best fit.

Littell, Pendergast, and Natarajan (2000) describe a graph called a 'correlogram' that

can also be useful when choosing an appropriate covariance structure. A correlogram is a

plot of the correlation between the first measurement occasion and each successive

measurement occasion. In other words, the correlation components for the covariance
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structures from Table 6.11 are plotted against the measurement occasions. Figure 6.5

displays correlograms that compare the unstructured correlation structure to each of

compound symmetric, first-order auto-regressive and Toeplitz correlation structures.
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Figure 6.5: (a) UN vs. CS (b) UN vs. AR-l (c) UN vs Toeplitz

Referring to Figure 6.5, it appears the Toeplitz conelation structure matches the

Unstructured correlation structure best. It is especially evident by the correlograms that

the compound symmetric structure provides a poor fit at Week 12. As shown in Figure

Irc " AR-1

TOEP
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6.5, the correlogram can be a useful tool when choosing amongst covariance structures

for the best fit.

Next, the results of the tests for the fixed effects (i.e., group, time, timex time, group

x time interaction and group x time x time interaction) will be examined to see how the

estimates of the F-statistics are affected when different covariance structures are fit to the

data as compared to the unstructured covariance structure, Table 6.13 displays the fixed

effects results.

Covariance
Structure Group Time TimexTime GroupxTime Groupxf¡mexTime

Simple
CS
AR(l)
Toeplitz
Unstructured

3.84
3.66
3.08
3.70
2.88

7.24
18.26
r8.71
25.09
20.86

6.s3
t6.48
17.70
2s.29
25.83

r.22
3.07
2.76
4.41

4.83

t.s4
3.89
4.18
5.98
7.77

Table 6.13: F-statistics for fixed effects

For the simple covariance structure, F-values differ substantially. The most extreme

differences in F-values for both the compound symmetric and autoregressive structures

when compared to the unstructured covariance lie in the interaction effects. The Toeplitz

structure yields similar estimates for all of the effects when compared to the estimates

due to the unstructured covariance. Based on the comparisons of (a) the variance-

covariance and correlation components, (b) the correlograms, (c) the information

criterion, and (d) the fixed effect estimates as compared to the unstructured covariance

structure, it can be concluded that the Toeplitz structure is adequate for modeling the

covariance structure.

Given the quadratic trend model for the mean with a Toeplitz covariance structure,

the residuals can also be examined. First, a histogram of the transformed (or scaled)
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residuals followed by a histogram of the raw residuals will be examined in Figure 6.6 (a)

and (b) respectively. The raw residuals are included as a comparison to the residuals

transformed by the Cholesky decomposition method.
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Figure 6.6: Quadratic Trend Model: (a) Histogram of Transformed Residuals (b)
Histogram of Untransformed Residuals

As shown in Figure 6.6, the histogram of the transformed residuals appears to be

normally distributed.

Next, normal quantile plots (or QQ plots) for the transformed and raw residuals are

shown in Figure 6.7 (a) and (b) respectively.

/ \
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Figure 6.7: Quadratic Trend Model: (a) QQ Plot of Transformed Residuals (b)

QQ Plot of Untransformed Residuals

By examining the transformed residuals from the QQ plot in Figure 6.7(a), they

appear to be normally distributed. The quadratic trend model for the mean with a

Toeplitz covariance structure appears to be adequate for modeling the Vitamin C data.

As a final check for normality, the residuals plotted against the predicted values are

shown in Figure 6.8.
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Figure 6.8: Residuals vs Predicted values for Vitamin C

As displayed by Figure 6.8, within each group, each measurement occasion has the same

predicted mean thus leading to the striated appearance of the points. Initially the odd

looking graph was thought to be a result of heterogeneous variances across the groups.

Levene's test of homogeneity of variances was conducted which indicated that the

hypothesis of heterogeneous covariances was correct. A modification in the SAS code

was made to account for this variance heterogeneity (Littell, Milliken, Wolhnger &

Schabenberger,2006). The histograms, QQ plots and residuals versus the predicted plots

were all adjusted accordingly but the new graphs appeared to look the same.

The results for this final model for the fixed effects are shown in Table 6.14 below.
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6 Modeling the Mean and Covariance Structures

Effect
Group
Time
Time x Time
Group x Time
GrouPxTimexTime

Df lVald
7.40

25.09
25.29
8.83

I 1.95

2

1

1

2
2

alue
0.0247
<.0001
<.0001

0.0121
0.002s

Table 6.1.4: Fixed Effects results for Vitamin C

Based on the fixed effects results in Table 6.14, we can conclude that there is a difference

between the groups that changes depending on time.

6.5.3 Example 2: Modeling Vitamin E via Parametric Curve

Next, the Vitamin E data will be examined but in less detail than the Vitamin C example

just discussed. The mean and corresponding standard errors for the Vitamin E daT.a are

shown in Table 6.15.

Week 0 Week 4 \ileek I Week 12

Control

Milled Flax

Flaxseed Oil

Mean
Std Err
n
Mean
Std Err
n
Mean
Std Err
n

15.01

2.34
10

12.70
1.32

13

1 1.81

0.84
t2

13.29
1.97
10

t2.57
1.08

13

10.14
0.76

11

12.02
1.68

10

r6.04
t.70
13

12.07
0.62
I2

t2.52
t.29
10

7.ll
t.37
13

10.40
0.95

12

Table 6.15: Descriptive Statistics for Vitamin E data

It appears as though the mean Vitamin E levels are decreasing for the control group as

time progresses. The milled flax group exhibits a substantial increase in Vitamin E from

Week 4 to Week 8, and then drops approximately nine units from Week 8 to Week 12.

Vitamin E levels for the flaxseed oil group are comparable for all of the measurement

occasions with the exception of Week 8. It is not clear which model might provide an

appropriate fit for these data.
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6 Modeling the Mean and Covariance Structures

Accompanying the raw descriptive statistics for the Vitamin E data is a time plot of

the sample means from Table 6.15. The time plot in Figure 6.9 particularly emphasizes

the drop in the Vitamin E level for the milled flax group after V/eek 8.

oN

o

o

t!
c
È
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o

0 2 4 I '1 0 12o

Time (weeks)

Figure 6.9: Sample means of Vitamin E data

Next, a linear trend model was fit to the data with an unstructured covariance.

Following, both quadratic and cubic trend models with unstructured covariances were

also fit to the data. The best model amongst the linear, quadratic and cubic trend models

according to the likelihood ratio test was the cubic trend model.

Using the cubic trend model for the mean, various covariance structures were tested.

The compound symmetric structure was the most appropriate as denoted by the lowest

AIC value. Table 6.16 displays the estimates for the regression coefficients when a cubic

trend mean model with a CS covariance structure was fit to the Vitamin E data.

- 
Control

--- Flaxseed Oil
'""" Milled Flax
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6 Modeling the Mean and Covariance Structures

Effect Estimate Std Err Test Statistic p-value

Intercept

Group MF
Group FO

Time

TimexTime
TimexTimexTime
TimexGroup MF
TimexGroup FO

TimexTimexGroup MF
TimexTimexGroup FO

TimexTimexTimexGroup MF
TimexTimexTimexGroup FO

15.01

2.31
-3.20
-0.38
-0.03
0.00

-r.44
-1.r7
0.64

0.38

-0.0s
-0.02

1.47

1.96

2.00

0.97

0.21

0.01

1.29

r.33

0.28

0.29

0.02

0.02

10.18

-1.18
-1.60
-0.39
-0.1 3

0.29

-t.12
-0.88
2.25

1.30

2.89
-t.43

<.0001

0.2471

0.1 I 87

0.6988

0.8988

0.7706

0.2665

0.3810

0.0268

0.1970

0.0048

0.1 558

Table 6.16: Estimates and Standard Errors for Vitamin E

Based on Table 6.16, the observed and estimated means for each treatment group

were calculated and are shown below

Week 0 Week 4 Week 8 Week 12

Control

Milled Flax

Flaxseed Oil

Observed
Estimated
Observed
Estimated
Obser-ved
Estimated

15.008
15.008
12.699
12.699
1 1.808

1 1.808

t3.292
t3.292
t2.s73
t2.572
1 0.138
10.040

t2.022
12.022
16.03 5

16.032
12.069
12.073

t2.515
12.5rs
7.tt3
7.r04
t0.399
10.409

Table 6.17: Observed and Estimated Means for Vitamin E

The estimated means derived from this model correspond well with the observed

means. Although only three decimal places are shown, discrepancies between the

observed and estimated means were often observed when the means were extended to the

fifth or sixth decimal place. Using this final model, the cubic mean model with a CS

covariance structure, the fixed effects results are shown in Table 6.18 below.
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6 Modeling the Mean and Covariance Structures

Effect Test Statistic p-value

Group

Time
TimexTime
TimexTimexTime
TimexGroup
TimexTimexGroup
TimexTimexTimexGroup

2.69

5.60

7.27

9.15

1.35

5.06

8.36

0.2606

0.0r79
0.0070

0.0025

0.5085

0.0795

0.0153

Table 6.18: Fixed effects results for Vitamin E

The Time, Time2 and Time3 effects are all significant as indicated by p-values of

0.0179, 0.0070 and 0.0025, respectively. More importantly, the Group * Time3

interaction reveals a significant p-va\ue of 0.0153. This indicates that there may be a

difference between the groups in terms of Vitamin E levels that change at different rates

depending on 'Time'. Referring back to the sample means plotted for each group across

time in Figure 6.9, it appears that the cubic trend model best fits the milled flax and

flaxseed oil groups while a quadratic trend model may have been an adequate model for

the control group.
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Chapter 7

Linear Mixed Effects Regression Models

7.1 Introduction

Linear mixed effects regression models are extremely useful in longitudinal studies

as they enable researchers to examine response trends with more flexible models. In the

current literature on longitudinal dafa, these models are also referred to as random effects

models, multi-level models, hierarchical linear models, two-stage models and random

coefficient models to name a few (Hedeker & Gibbons,2006). By using a mixed model,

the investigator can take into account the natural heterogeneity that exists among

subjects. To study how the response profiles of specific individuals change over time,

both fixed and random effects are included in the mean model. The fixed effects are the

population parameters denoted by p , which are common across individuals. The

random effects are simply the individual-specific effects that, when combined with the
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7 Linear Mixed Effects Regression Models

fixed effects, depict the mean response profile for each subject. Due to the incorporation

of random effects in the model, covariance among the repeated measures arises

(Fitzmaurice et al. 2004).

An advantage of the linear mixed effects regression model worth mentioning is that

the data do not need to be balanced. One consequence of this feature is that individuals

with missing responses are still included. This leads to improved statistical power and

reduced bias. Furthermore, measurement occasions can be varied between individuals

because the model incorporates time in a continuous manner. Both between-subject and

within-subject covariates can be included in the model. As a result, determining how the

covariates are related to the response can be studied. Also, estimates of change for each

individual can easily be calculated (Fitzmaurice et al., 2004)

7.2 Linear Mixed Effects Model

The linear mixed model for the lth subject (i: I, ..., n) is written as

V,= X,ß + Z,b,+e, (7.1)

Here, Y, denotes the response vector of dimensi oî ni x 1. This model separates the fixed

and random components. p is a p x 1 vector that contains the fixed effects while X, is a

ni x p design matrix associated with p . For the random component of the model, b, is a

Ø x 1 vector that contains the random effects while Z, is a ni x Q design matrix associated

with á, . The vector e, denotes the random errors of dimensi oî ni x | .

Model Assumptions and Properties

1) Both vectors á, and ti are assumed to exhibit a multivariate normal distribution

and are independent ofeach other.
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7 Linear Mixed Effects Regression Models

2) E(4) :0 and Cov(á,) : ç

3) E(e,) = 0 and Cov(e,) : P,

4) The columns that comprise Z, are a subset of the columns that comprise X, .

This property allows components of / (which are specified explicitly in Z,) to

vary in a random fashion.

Usually it is assumed that the e,r's are uncofrelated, thus,R, - oz I n,. It is possible to

assign a covariance structure such as those considered in Chapter 6 but this will not be

explored in this practicum due to length.

Next, let us examine the mean and covariance of the { vector. Firstly, the mean and

covariance can be expressed conditionally, given the random effects á,. The mean is

denoted by

E(Y,lb)=X,þ+Z¡bi

while the covariance is

Cov({ lb,) = Cov(e,) =.1ç .

Notice that the mean response for the lth subject contains both fixed and random effects.

Alternatively, the mean and covariance can also be expressed marginally, averaged

over the random effects b,. The mean is

E(4) = E{E(I,. lå¡)}

=E(X,p + Z¡bi)

=E(X,þ) +E(2,b,)

= X,ß + Z,E(b,)

= X,f

while the covariance rs
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7 Linear Mixed Effects Regression Models

Cov({) = Cov(Z,b,) + Cov(e,)

= Z,Cov(b,)Zi+R,

= Z,GZ,'+R,

Notice that the marginal mean response for the lth subject does not contain the random

effects ó, (Fitzmaurice et al., 2004; Laird & 'Ware, 1982; Schabenberger &' Pierce,

2002).

7.3 Random Intercept Mixed Model

First let's introduce a mixed model that contains a random subject effect only. The

model is adapted from Fitzmaurice, Laird and Warc (2004) and is

Y,¡ = þr+b,, + þrt,¡*e,¡ (7.2)

for the lth subject at theT*h occasion. Here, þrtb, represents the intercept for the lth

individual and is comprised of the fixed intercept Å common to all individuals plus the

random subject effect b,, which is unique to each individual. Furthermore,

E(br,) = o ; var(br,) = o3, and

E(e) =0; Yat(eu) = o2

The er's are no longer independent of one another. Instead, the errors are conditionally

independent given b,,.

The conditional and marginal means of Y,, are respectively

E(Y, lb,,)= þr*br,+ Brt,,,and

E(Yr) = þt+ þrti¡

while the marginal variance and covariance of Yu are respectively
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7 Linear Mixed Effects Regression Models

Var(Yu) =var(þ, +b,, + prt,,+e,,)

=Yar(br,+e,r) , and

Cov(Yu,Yu,)= Cov(Br+br, + þrt¡ +eu,Pt+br,t þrt,,, +e,,,)

= Cov(b,, + e,,,br, + e,,,)

= Var(b,,)

= oî.

=ol+o2

Thus the covariance structure for Y, is compound symmetric and is

of, +o' ol
2o 22ot)+o

2
O,b

2ob
Cov({) =

b

o of,+o'

Figure 7.1 shows the conditional means and measurement effors of two individuals, 'A'

and 'B', as well as the marginal mean, or population trend for a random intercept model.

2
b

z
bo
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Figure 7.1: Random Intercept Mixed Model

Let us write model 7.2 in terms of the current study where there are three treatment

groups. It must be modified as follows.

Y,ia = þr*br,, + þztu + pr(Group o) + þoQ, x Groupo) +
(7.3)

where Group o :

p, (Group,) + þuQ,¡ x Group,) * eu¿7

I if subjectbelongs to the milled flax group

0 otherwise

and Group, : I if subject belongs to the flaxseed oil group

0 otherwise

For the mixed model Y,=X,lJ+Zibi+ei, the design matrices for each group are

o
o

oo

o

--- Subject A

- 
Population Trend"""' Subject B

specified as follows:
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7 Linear Mixed Effects Regression Models

X

X

for the control group (i.e., k: l:0),

for the milled flax group (i.e., k: l; l: 0), and

for the flaxseed oil group (i.e., k: 0; l: 1), while

Z for any group

7.4 Random Intercept and Slope

Next, the framework for fitting a linear mixed model with a random intercept and

slope for each individual is outlined. Referring to the current longitudinal study, the

subjects belong to one of three treatment groups (control, milled flax, and flaxseed oil)

and are measured at four occasions (0, 4, 8, and 12 weeks).

First, let us look at the general situation, specifically, a longitudinal study with a

single group. The mixed model which allows for random intercepts and slopes for all

subjects is written as

Yu = Þ, +br¡ + (Pr+br,)t¡¡t €,¡ (7.4)

0

4

8

12

0

4

8

T2

0

4

8

t2

1

1

1

1

i
1

1

1

1

1

1

1

0000
0000
0000
0000

00
00
00
00

0

4

8

12

0

4

8

t2

001
001
001
001

X

1

1

1

1

1

1

I

1

85
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for the ith subject at theT'h occasion. Here, pr+b,, is the intercept for the ith individual

(i.e., þ, is the population intercept and b,, is the random subject effect for individual l)

The slope for the lh individualispr+br, (i.e., p, isthe population slope and b, is the

random subject effect for individual l). The e,,'s are normally distributed with mean 0

and variance o2 and are conditionally independent given b,, and br,. The intercept and

slope are bivariate normally distributed with mean 0 and covariance I^ where

t
2

6o,

6oro,

aoro,
2ao,

The conditional and marginal means of Yu are respectively

E(Y, lb,,) = þr+br, +(Pr+br,)t,,, and

E(Y,,) = þrr þrti¡

while the marginal variance and covariance of Yu are respectively

Var(Yr) =var(þt + b, + (pr+br,)t, + eu)

= Var(b,, +b, t,, + e,,) , and

Cov(Yu, Yu,) = Cov(b,, +b,t,, + eu,br, +b,tu, + e,,,)

__2,- .-,b, - Qu +t,,,)do,o, t t,, t,,, of,r.

Figure 7.2 displays the conditional means and generated observations of two

individuals, 'A' and 'B', as well as the population response trend. Notice the varying

intercepts and slopes in the graph.

= o3, *2t,,ao,o, + t,,2 of,, + o2
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Figure 7.2: Random Intercept and Slope Model

If there were two groups, we could write this equation in terms of the mixed model

Y, = X,ß + Z,b¡+ e, in matrix form where

2 4 Ã3

X¡

0

4

8

l2

zi

1

1

1

1

I

t

1

1

1

1

t,t

t,,

t,,

t,o

Model 7.4 does not take into account that there are three treatment groups in the study. It

must be modified as follows

Y,j, = þ,*b,0,+(þ,+b,*,)t¡¡+pr(Group )+ þo(tr xGroupo)+

p, (Group,) + þuQ, x Group,) + e,,0,

o
o

o o
oo

oo

o ---

--- Subject A

- 
Population Trend"""' Subject B

o -_....-O ---....-â-""".''U

o

o
oo

oo
o
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where Group o =
I if subjectbelongs to the milled flax group

0 otherwise

and Group, =
I if subject belongs to the flaxseed oil group

0 otherwise

Notice how model (7.5) is similar to the linear trend model (6.1) in Section 6.2.2.1but

with the addition of the random effects bt¡rt andb2¡¡¡. In order to write this model in terms

of the mixed model Y, = X ,þ + Z ibi + e, , the design matrices for each group are specified

as follows:

for the control group (i.e., k: I : 0),

X¡ for the milled flax group (i.e., k: l; l: 0), and

X

0

4

I
t2

0

4

8

T2

0

4

8

t2

1

1

1

1

1

I

1

1

1

I

1

1

0000
0000
0000
0000

1

1

1

I

00
00
00
00

0

4

8

I2

001
001
001
001

xi

0

4

8

t2

for the flaxseed oil group (i.e., k: 0; l: 1), while

i
1

1

1

0

4

8

12

ZÌ for any group.

In matrix form, the mixed model for the control group is written as
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Y,too

Iroo

Iroo

Iooo

I,o
Y,r,o

I'o
Y,oto

Y,,ot

Iro,
Iro'
ïoo,

þ,

þr

þ'
þo

þ'

I ¡01

buo,

€,tot

e ,zot

€ itot

€, qot

0

4

8

I2

0

4

I
t2

0

I

1

1

i

I

1

I

i

0

4

8

10 0000
r40000
18 0000
r12 0 0 0 0

+

þ'

þ,
þ'
þo

þ'
þu

1

1

1

1

bt,oo

b,oo

€,loo

€,zoo

€¡loo

€,400

+

(/,+b,,*)t€,too
(/, +b,,oo) +(þr+b,oo)* 4+e,roo

(þ, +b,oò + (þ, +b,oo) 
" 

8 + e,,oo

(É, + b,,oo) + (þ, +b,oo) * 12 + e,ooo

For the milled flax group, the mixed model in matrix form is

+

(ø,
lø

\T

100
140
180
It20

0

4

I
t2

0

0

0

0

b,,,

b2il0

€ ¡tto

€ ¡zto

€,llo

€ i+to

+

(þr+ þr*b,,,0) *€,ro

(þ, + þr* b,,,0) + (þ, + þo +bru,Jx 4 + e,rro

(þ, + þr* b,,,0) + (þ, + þo +bru,)x 8 + e,,,0

(þ, + þr* b,,,0) + (þ, + þo +bru)xlZ + e,oro

Finally, for the flaxseed oil group, the mixed model is written as

10 001
| 4 001
18 001
rt2 0 01

0

4

8

12

1

1

I
+

b
+

1 12

(þr+ þr+b,,0,)+e,,0,
(þ, + þr* b,,0,) + (þ, + þu +b,o)x 4 + e,ro,

(þ, + þr* b,,0,) + (þ, + þu *b,o)x 8 + e,,0,

(/3,+ þ, *b,,0,) +(þr+ þu+b,o)xl2+e,oo,
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7.5 Prediction of Random Effects

In the next section, the prediction of the random or individual-specific effects, ó, will

be discussed. This material is adapted from Fitzmaurice, Laird and Ware (2004) and

Littell, Milliken, Stroup, 'Wolfinger and Schabenberger (2006). There are two main

reasons why this may be done: (a) It may be useful to predict the response trajectories for

specific individuals, and (b) it may be useful to examine which individuals have extreme

deviations in the response over time.

If G and Z, are known, the best linear unbiased predictor, otherwise known as the

BLUP, of å, is

E(btlY) = GZ,E,-t (Y,- X,il)

where Ð,=Cov(Y,)=Z,GZ,'+R,. The empirical BLUP of ó, is conditional on { and

depends on the unknown covariance matrices Z, and G. For this reason, Z, and G are

replaced by estimates based on REML. Now, the predictor of á, is

and is known as the empirical BLUP.

For the ith subject, the predicted response trajectory is therefore

v = x,îJ + z,û,. e.6)

The topic of the prediction of random effects would not be complete without

discussing 'shrinkage'. Using the empirical BLUP, the predicted response trajectory for

the lth individual can be 'shrunk' towards the mean response profile that is averaged over

the population. This is done by modifying the predicted response trajectory for the lth

individual to be weighted by X,/. That is,

6, (Y, - X,f)''Gz,'
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y =çfr,Ê,-')x,Ît*(I,, - fr.,t,t¡Y,. (7.7)

The factors that affect the 'shrinkage' include A¡ (within-subject variability),

J, (both within-subject and between-subject variability) and n¡ (the number of repeated

measurements for subject l). For example, when the within-subject variability is small

compared to the between-subject variability, more weight is given to the observed

response for the lh individual. On the other hand, less weight is given to the observed

response for the lh indinidnal when the relationship between the within and between-

subject variability is opposite. Finally, when n¡ is small, there is increased shrinkage

towards the mean response trajectory for the population.

There are options using PROC MIXED in SAS to request the output of the BLUP's

as well as the predicted values.

7.6 Examples

7.6.1 Random Intercept Model: Vitamin C data

Let us see how a random intercept model can be fit to the Vitamin C data from the

study. First, recall the time plot of the Vitamin C values at each measurement occasion

stratifîed by group in Figure 3.10. Upon examination of the baseline measurement for

each group, there is evidence of between subject heterogeneity. Thus, fitting a random

intercept model for the data makes sense.

Recall that the best fitting model for the Vitamin C data was a quadratic trend model

fit for the mean with a Toeplitz covariance structure for the covariance. First, this model

was run with the addition of a random intercept. An error message in SAS resulted.

Perhaps the addition of the random intercept to this model was too complicated to be ht

for the Vitamin C data. Refening back to Table 6.12 of information criteria values, the
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next best choice of covariance structure for the Vitamin C data fit with a quadratic trend

model for the mean was the AR(l) structure. This model was re-run in SAS with no

errors. Table 7.I displays the SAS output when the random intercept model was fit to the

data. A brief explanation of the B parameters is included in the table to assist the reader

with the interpretation.

Parameter Estimate Std Err Z p-value

þ'
þ,
þ'
þo

þ'
/3u

þ,
þ'
þn

2o"

o'

Intercept

Time
2l lme

Intercept Difference for MF

Time Difference for MF

Time2 Difference for MF

Intercept Difference for FO

Time Difference for FO

Time2 Difference for FO

0.698s

-0.0134

-0.0001

0.2504

-0.0925

0.0084

-0.n72

-0.0906

0.0084

0.0886

0.0855

0.1317

0.0317

0.0025

0.n 52

0.042r

0.0033

0.1 783

0.0429

0.0034

0.0346

0.0230

5.30

-0.42

-0.02

|.43

-2.20

2.56

-0.99

-2.1t

2.5r

2.56

3.71

<.0001

0.6721

0.9850

0.1 56 1

0.0304

0,0121

0.3229

0.0370

0.0137

0.0052

0.0001

Table 7.1: Random Intercept model for Vitamin C data

The observed versus the estimated means obtained from fitting the random intercept

model to the Vitamin C data are displayed in Table 7.2. The model fits the data

reasonably well. For comparison purposes, the observed versus the estimated means for

the quadratic trend mean model with a Toeplitz covariance structure for the Vitamin C

data arc displayed in Table 7.3. Recall that the model fit to obtain the estimated values in

Table 7.3 does nothave a random intercept.

92



7 Linear Mixed Effects Regression Models

Week 0 \üeek 4 \ileek 8 \ileek 12

Control

Milled Flax

Flaxseed Oil

Observed
Estimated
Observed
Estimated
Observed
Estimated

0.71

0.69
0.94
0.95
0.53
0.52

0.55
0.64
0.69
0.66
0.19
0.29

0.68
0.58
0.60
0.64
0.27
0.33

0.52
0.52
0.89
0.89
0.47
0.63

Table 7.2: Observed and Estimated Means: Random Intercept for Vitamin C

Week 0 Week 4 Week 8 Week L2

Control

Milled Flax

Flaxseed Oil

Observed
Estimated
Observed
Estimated
Observed
Estimated

0.71

0.68
0.94
0.96
0.53

0.51

0.55
0.64
0.69
0.66
0.19
0.24

0.68
0.60
0.60
0.64
0.27
0.23

0.s2
0.55
0.89
0.88
0.47
0.49

Table 7.3: Observed and Estimated Means: Quadratic Mean with Toeplitz
Covariance for Vitamin C

Given that there are random effects in this model, the predicted values are unique for

each individual. Thus, the plot of the residuals versus the predicted values will not have a

striated appearance as in Chapter 6. Figurc 7 .3 shows this plot.
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Figure 7.3: Residuals vs Predicted Values

Notice that the points in Figure 7.3 are scattered around zero indicating that the model

provides a good fit for the data. The fixed effects results are shown inTable 7 .4

Effect Test Statistic p-value
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+

.t

Group

Time
TimexTime
Groupxfi¡¡s
Groupxfi6exTime

6.66

T9.14

t7.45

5.98

8.25

0.0358
<.0001

<.0001

0.0502

0.0162

Table 7.4: Fixed Effects for Vitamin C data

The GroupxTimexTime effect is significant in Table 7.4 indicating that there is a

difference between the groups as a quadratic function of time.

7.6.2 Example - Vitamin C data with varying intercepts and slopes

Next we will fit a model, that has both intercepts and slopes that vary, to the

quadratic trend model for the Vitamin C data from Chapter 6. Recall our attempt to
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7 Linear Mixed Effects Regression Models

include a random intercept in the previous example which forced us to choose a different

covariance structure for the effors. As suspected, when fitting the quadratic mean model

with a Toeplitz structure, and a random intercept and slope, errors in SAS arose most

likely due to the same reason previously. An AR-l structure was switched with the

Toeplitz structure and the model was re-run with no effors. The results are shown below.

Parameter Estimate Std Err Z p-value

þ'
þ,
þ'
þo

þ'
þu

þ,
þ'
þn

2
õb,

õoro,

2
6b,

2o

Intercept

Time
2l lme

Intercept Difference for MF

Time Difference for MF

Time2 Difference for MF

Intercept Difference for FO

Time Difference for FO

Time2 Difference for FO

0.6914

-0.0123

-0.0001

0.2602

-0.0942

0.0084

-0.r736

-0.0912

0.0084

0. i003

0.rs77

0.0003

0.0634

0.r274

0.0302

0.0024

0.1694

0.0402

0.0031

0.1125

0.0410

0.0032

0.0380

0.29t2

0.0004

0.0262

s.43

-0.4r

-0.02

r.54

-2.34

2.69

-1.01

-2.23

2.65

2.64

0.s4

0.79

2.42

<.0001

0.6881

0.9843

0.t293

0.0222

0.0089

0.3177

0.0293

0.0102

0.0041

0.5880

0.2rs6

0.0077

Table 7.5: Random Intercept and Slope Model for Vitamin C

Let us look at the interpretation of the o parumeters in Table 7.5. The square root of

o3, denotes the standard deviation for the population intercept (i.e., the estimate is

0.1003 =0.32). The square root of ol, denotes the standard deviation for the

population slope (i.e., the estimate is 0.0003 = 0.02). The resulting 95%o confidence

0.6914 + (1.96 x 0.32):0 to 1.3186 for the intercept, and

-0.0123 + (1.96 x 0.02) : -0.0515 to 0.0269 for the slope.

intervals are
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7 Linear Mixed Effects Regression Models

It is interesting to point out that the 95Yo confidence interval for the slope includes both

positive and negative values. This is evidence of between-subject heterogeneity as some

subjects have increasing Vitamin C levels over time while others have decreasing levels.

Vy'e can also request that SAS display the BLUP's and subsequently the predicted

responses that are calculated using the BLUP's. More specifically, SAS displays the

BLUP's of the random effects bt¡tt aîdbz¡nin a table for each subject. A portion of the

table is presented below.

Subject
ID

Group Effect Estimate Std Err t p-value

4208
4208
4563
4563
4756
47s6
4845
4845
5041
s04r

Intercept
Time

Intercept
Time

Intercept
Time

Intercept
Time

Intercept
Time

0.4081
-0.01s4
0.0096
-0.01 18

-0.3954
-0.013 1

0.1135
0.0046
-0.2810
0.0092

0.1670
0.0r47
0.1670
0.0t41
0.1610
0.0t47
0.1670
0.0t47
0.1670
0.0t47

2.44
-1.04
0.06
-0.80
-2.31
-0.89
0.68
0.32
-1.68
0.62

0.0172
0.3002
0.954s
0.4268
0.0208
0.3760
0.4991
0.7533
0.097r
0.5350

MF
MF
MF
MF
MF
MF
MF
MF
MF
MF

Table 7.6: Empirical BLUP's for Vitamin C data

We can use the BLUP's to calculate the predicted Vitamin C values for each subject. The

table below displays the actual observed value as well as the predicted value obtained

using the BLUP's for a few subjects.
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7 Linear Mixed Effects Regression Models

Subiect ID Group Time Actual Predicted
4208
4208
4208
4208
4563
4s63
4563
4563
4756
4756
4756
4756

0
4
8

t2
0

4

8

I2
0

4

8

I2

MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF

L67
t.s2
0.81
0.76
t.37
0.29
0.52
0.66
0.49
0.r7
0.31

0.00

r.36
1.01

r.92
1.11

0.96
0.62
0.55
0.75
0.56
0.2t
0.14
0.33

Table 7.7: Actual vs. Predicted Vitamin C Response Values

Let's examine how a few of the predicted values are calculated referring to Table 7.5

for the fixed effects results and Table 7 .6 for the random effects results. For the subject

with ID : 4208 from the milled flax group, the predicted value at Week 0 is: (0.6914 +

0.2602 + 0.4081) : 1.36 which coresponds to the result inTable 7.7. As a second

example, the individual with ID : 4563 from the milled flax group has a predicted value

of 0.55 at Week 8. The calculation is (0.6914 + 0.2602 + 0.0096) + (-0.0123 - 0.0942 -

0.0118) x8 + (-0.0001 + 0.0084) x 64:0.55. The rest of the predicted values can be

calculated similarly.

The plot of the residuals versus the predicted values looks similar to the plot in

Figure 7.3 so it will not be shown for this example.

7.6.3 Example - Vitamin E with random effects

Using the final model for Vitamin E from Chapter 6, which was a cubic trend model

for the mean with a compound symmetric structure for the covariance, random effects

were attempted to be added. Numerous errors resulted in SAS, namely convergence

effors. Despite changing the covariance structure, no model that included a random
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7 Linear Mixed Effects Regression Models

effect would converge. Again, this was most likely due to the complex nature of the

mean model which had a cubic term combined with the small number of subjects.
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Chapter I

Missing Data

S.L Introduction

Missing data arc common in longitudinal studies especially in health research where

subjects are humans. In this chapter, implications that missing data have on the methods

for analyzing longitudinal data will be discussed.

8.2 Missing Data Patterns

Missing or incomplete data can follow either an intermittent or monotonic pattern.

For instance, a subjectthat has missing observations at sporadic measurement occasions

has an intermittent pattern of missingness. A subject exhibits a monotonic pattern of

missingness if, when there is a missing observation at apafticular measurement occasion,

all observations at future occasions are missing. This latter pattern of missingness is also

known as dropout.
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8 Missing Data

8.3 Complications Due to Missing Data

The lack of observations at certain time points creates an unbalanced dataset. This

can be problematic because some methods of analysis are based on the assumption that

the data are balanced. V/hen the data are incomplete, precision decreases, and potential

bias can occur due to loss of information. Both the reduction of precision and bias can

have an effect on parameter estimation. For these reasons, the investigator needs to

determine if possible why the data are missing so appropriate methods of analysis can be

used (Fitzmaurice et aI, 2004; Hedeker & Gibbons ,2006).

8.4 Missing Data Mechanisms

Missing data mechanisms represent the collection of reasons why data can be

missing in a study. Reasons for missingness may be either related or unrelated to the

topic of study. The missing dafa mechanisms that will be examined in this practicum are

MCAR (missing completely at random), MAR (missing at random), and MNAR (missing

not at random).

8.4.1 Missing Completely at Random

The first missing data mechanism to be considered is missing completely at random,

or MCAR. Under the MCAR classification, the probability that an observation is missing

does not depend on any previously observed responses or the response that should have

been collected. Due to the completely random reason for missingness, the data at hand

are simply a random sample of the complete dataset and thus exhibit the same

distributional properties. Consequently, if valid inferences result from a method of

analysis appropriate for complete data, that method is also appropriate and will lead to

valid inferences for data that have an MCAR pattern of missingness. An example of
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MCAR is a lab technician dropping a test tube of blood containing the sample of a

participant.

8.4.2 Missing at Random

The second missing data mechanism that will be examine is missing at random, or

MAR. The probability that an observation is missing (e.g. at time l), depends on the

previously observed responses (e.g. before time /) but does not depend on the response

that should have been obtained at time /. Consequently, the observed data are not a

random sample of the complete dataset and thus do not have the same distributional

properties. Thus, sample means (covariances) calculated when data are MAR yield

biased estimates of the means (covariances) in the population. It should be noted that if

the mean response and covariance structure is correctly specified for data that are MAR,

valid inferences for the mean response can be made using likelihood based techniques.

An example of MAR is the removal of a subject if their response value does not attain a

specific value.

8.4.3 Missing Not at Random

Data are classified as missing not at random, or MNAR, if the probability fhat an

observation is missing depends on the response(s) that should have been collected. An

investigator cannot ignore this type of missingness, and it is accordingly referred to as

nonignorable missingness. Most methods of analysis will lead to biased estimates of

mean response. Modeling the mean response and missing data mechanism is a

requirement for obtaining valid estimates (Fitzmaurice ef al., 2004). An example of

MNAR is a participant dropping out of the study when their quality of life is

compromised.
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8 Missing Data

8.5 Simulation Study

To demonstrate the effects that missing data mechanisms have on longitudinal data

analysis, repeated measurements were generated according to a multivariate normal

distribution. Observations were subsequently deleted according to MCAR, MAR, and

MNAR patterns in a monotonic fashion. To determine which observations to delete, two

models were used. The models were based on (i) Algina, Keselman and Othman (2003),

and (ii) Fitzmaurice, Laird and Vy'are (2004). Each simulation study is outlined below

followed by an explanation of the simulation study executed in this practicum.

U and

1. Data were generated for a two-group repeated measures design based on the

model equation

Yro=þ0, *þr/¡tt,¡n

for the lth subject (i: 1,...,nn),i'h measurement occasion (J : 1,...,) and,frth treatment

group (k: I,2). Notice that the model is the same for each treatment group and only

differs in the error term. See the Algina, Keselman and Othman (2003) paper for

details regarding coding of t¡, the intercept and slope.

2. Once the data were generated in their complete form, observations were deleted

according to the model

Zao = 0t, + 0rBo, t 0rþr, * 9oY,( 
¡-,)o 

+ 9sYuk.

For each observation Yrr, a uniformly distributed random variable U, was

compared to (Þ(2,,0) where @ represented the standard normal distribution function.

Each Uur was generated using a random number function in SAS. If U iik < Ø(Zuk) ,
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I Missing Data

then the observation was deleted based on MCAR, MAR, or MNAR missing data

mechanisms. In order to specify the missing data mechanism by which the

observations were deleted, the theta parameters were manipulated.

3. The thetø parameters were set as follows:

MCAR: 0r=0r-00=0r=0,

MAR

MNAR-Y: 0r+0,and

MNAR-SI: 0, + 0; 0, + 0 .

A cumulative rate of missingness at the last measurement occasion was set to vary

between 30 - 40% by manipulating the 0r, 's for each missing data mechanism. The

MCAR and MAR mechanisms were dehned as in Sections 8.4.1 and 8.4.2 in this

practicum, respectively. A distinction was made between two types of MNAR

mechanisms, namely MNAR-Y and MNAR-SL Missingness in the MNAR-Y

mechanism was based on the observation that should have been collected (as def,rned

in Section 8.4.3 of this practicum) while missingness in the MNAR-SI mechanism

was based on the subject's intercept and slope.

U Laird and'W

1. Repeated measufes data were generated for the ith subject (t: 1,...,Ð at theT'th

measurement occasion (l :1,...,5) following the mean model

E(yr) = p,+ prt,,

with covariance structure of the observations being autoregressive of order one,

Corr(t",Y,)=Pþ-4

0r=0r=0s=0,
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where p20.

2. Values of þr, þ2, andp were set at 5, 0.5, and 0.7 respectively.

3. The model to determine missingness for either MCAR, MAR, or MNAR missing

data mechanisms was

log = 0t * 9rY,rt -¡ + 9rY,o

D¡ was defined as the 'dropout indicator variable' where D, : k if missingness

occurred between the (k - 1)th and fr'h time points.

4. The missing data mechanisms were all defined as in Sections 8.4.1,8.4.2, and

8.4.3 of this practicum. To set the type of missingness, the theta parameters were set

as follows:

MCAR: 0, = 0, =0,

MAR: 0z:0, and

MNAR: 0r + 0.

8.5.1 Simulation Study: Details

To create the simulation study in this practicum, different aspects of the models just

presented by Algina, Keselman and Othman (2003) and Fitzmaurice, Laird and Ware

(2004) were taken to form a final model which will now be described. The SAS code

was based on a poster presentation by Lloyd &'Lix (2001).

Data were generated for a single-group design with four repeated measurements.

The linear model used to model the mean structure was

E(!.)=þ,+þ,t

P (D, = k I D, 2 k,Y,r,...,Y,0)

P(4 > kl D,> k,Y¡,. ..,I0)
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where i:1,2, ..., { and /: {1,2,3,4\. Values of þt andprwere set at0.735 and

0.323 respectively. An autoregressive structure with order one with P =0.7 was used to

model the covariance. To specify missingness according to either MCAR, MAR, or

MNAR missing data mechanisms, the following model was adopted:

Z¡ = 0, * 9rY,r, ,, + qYu

where i indicates the subject andT specifies the measurement occasion. If U,7 <Q(2,,)

then the observation is deleted. The model Uij <(Þ(Zi¡) is a simplified version of the

model used in the Algina, Keselman and Othman (2003) simulation study. U,;

represents a random variable that is uniformly distributed and (Þ represents the standard

normal distribution function. Again, each U,, was generated using a random number

function in SAS. To create a setting where missing data is MCAR, both 0, and Q were

set to zero. For MAR, 0z = 0, and for MNAR, only 0, + 0 .

The parameters manipulated were:

(a) type of missing data mechanism (i.e., MCAR, MAR, and MNAR),

(b) percentage of missingness (i.e.,20o/o,40o/o,600/0, and 80%), and

(c) sample covariance structure (i.e., AR-l, CS, and UN).

Each combination of conditions was performed when ¡/:20000. The values of 0r, 02,

and 0, were determined by trial and error to obtain various percentages of missingness.

Uu was randomly selected for each iteration using the random uniform function in SAS.

All subjects had complete data for the first measurement occasion with potential for

missingness at the second and subsequent occasions. The percentage of missingness was

calculated based on the number of observations missing at the last measurement occasion.

105
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Once data were deleted, PROC MIXED was used to fit a simple mean model to the

simulated data with covariance structures of AR-l, CS, and UN separately. The mean

models were fit with fixed effects of group, time, and group x time interaction. There

were no random effects. The main objective was to show how the different missingness

patterns have an effect on the regression parameter estimates under a range of conditions.

Figure 8.1 displays the sample means at each measurement occasion plotted against

the population regression line when the generated data were complete and an AR-l

covariance structure was used. Notice how the sample means represented by the triangles

virtually coincide with the population regression line.

q

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time

Figure 8.L: Sample means when data were complete

As a comparison, Figure 8.2 (a), (b), and (c) show the sample means at each time

point plotted against the population regression line when the missing data were MCAR,
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MAR, and MNAR, respectively. Again, an AR-l covariance structure was specified in

the model.
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Figure 8.2: Sample means when missingness is 407o for data that is (a) MCAR' (b)
MAR, and (c) MNAR
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The graphs in Figure 8.2 reflect missingness that is approximately 40%o at the last

measurement occasion. When the missing data are MCAR, the sample means are very

closely matched to the population regression line. This is no surprise as MCAR data are

a simply a random subset of the complete dataset. When missing data are MAR, the

sample means begin to deviate from the population regression line, and deviate even

further when the missing data are MNAR. Based on Figure 8.2, it appears as though

subjects with lower response values are more likely to drop out.

Next, we examine the estimated regression parameters for the simulated conditions.

The results are displayed in Table 8.1. The heading of the first column is an abbreviation

for missing data mechanism (i.e. MDM). Recall that the population covariance structure

is AR-l. When there are no missing data, all three covariance structures fit to the

generated data yield similar results. When the percentage of missing observations is

approximate 20o/o at the last measurement occasion, parameter estimates are similar

across the sample covariance structures when data are MCAR. These estimates were also

comparable to results when data were complete. 'When the data were MAR and MNAR,

we can see differences in the parameter estimates not only when comparing them to the

estimates resulting when data were complete but also when the covariance structure was

misspecified (e.g., CS). When missingness was 20o/o and the data were MAR, the

intercept estimates (standard errors) were 0.7367 (0.0089),0.7357 (0.0089), and 0.7752

(0.0079) when sample covariance structures were lIN, AR-l, and CS, respectively. In

this situation, the slope estimates (standard erors) were 0.3197 (0.0029),0.3206

(0.0029), and 0.2998 (0.0022) when covariance structures were LIN, AR-l, and CS,

respectively. As the percentage of missingness increased, parameter estimates were
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further over-estimated or under-estimated especially when the data were MNAR and the

covariance structure was CS. The results of this illustration in terms of parameter

estimates coincide with what was expected when data were either MCAR, MAR, or

MNAR (i.e. biased estimates of the mean response trend). Furthermore, correctly

specifying the covariance structure is also important and consequences of

misspecification are shown in Table 8.1.
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UN AR-1 CS

MDM Parameter Estimate Std Err Estimate Std Err Estimate Std Err
No Missins Data

None Intercept
Slope

0.7424

0.3203

0.0088

0.0027

0.7423

0.3204

0.0088

0.0027

0.7433

0.3 i 98

0.0078

0.0021

20%o Missinsness

MCAR

MAR

MNAR

Intercept
Slope

Intercept

Slope

Intercept

Slope

0.7218

0.3219

0.7367

0.3197

0.7277

0.3661

0.0089

0.0029

0.0089

0.0029

0.0089

0.0029

0.7218

0.32t9
0.7357

0.3206
0.7213

0.3641

0.0090

0.0029

0.0089

0.0029

0.0085

0.0028

0.7213

0.3218

0.71s2

0.2998

0.7613

0.3499

0.0079

0.0023

0.0079

0.0022

0.0075

0.0022

407o Missinsness

MCAR Intercept

Slope

MAR Intercept
Slope

MNAR Intercept
Slope

0.7s26

0.3209

0.7t92
0.3253

0.7209

0.3568

0.0090

0.0030

0.0089

0.0030

0.0090

0.0028

0.7526

0.3209

0.7180

0.3264

0.7085

0.3561

0.0090

0.0030

0.0090

0.0030

0.0085

0.0027

0.7542

03202
0.7604

0.3030

0.7s 1 1

0.3420

0.0080

0.0023

0.0080

0.0023

0.0075

0.0021

607o Missingness

MCAR

MAR

MNAR

Intercept
Slope

Intercept
Slope

Intercept
Slope

0.7243

0.3254

0.7477

0.313 8

0.6462

0.4148

0.0093

0.0035

0.0092
0.0036

0.0093

0.0035

0.7244

0.3253

0.7465

0.3144

0.651 1

0.4096

0.0093

0.0035

0.0092
0.0036

0.0090

0.0035

0.7236

0.3262

0.7870

0.2900

0.6879

0.3922

0.0083

0.0028

0.0083

0.0029

0.0081

0.0028

807o Missinsness

MCAR

MAR

MNAR

Intercept
Slope

Intercept
Slope

Intercept
Slope

0.1552

0.3195

0.7458
0.321r
0.6301

0.426r

0.0095

0.0043

0.0095

0.0044

0.0096

0.0042

0.75s0

0.3t96
0.7438

0.3229

0.6352

0.42rr

0.0096

0.0043

0.0096

0.0044

0.0095

0.0043

0.7551

0.3194

0.7734

0.3025

0.6702

0.4010

0.0087

0.003s

0.0087

0.0036

0.0086

0.0036

Table 8.1: Parameter estimates under various missing data mechanisms (i.e.

MDM's) and missingness rates
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8.6 Dealing with Missing Data

There are a variety of different ways of handling missing data in longitudinal

analysis. A few of these methods will be discussed in the following sections.

8.6.1 Complete Case Analysis

This method is the easiest to implement. If a subject has a missing observation at any

measurement occasion, that subject is deleted and not included in the analysis. This

method will yietd unbiased estimates only if the data are assumed to be MCAR. This

method is not fecommended in general due to the loss of information.

8.6.2 Available Data Analysis

As the name suggests, this method uses all of the dataavailable for each subject, even

if a subject has missing observations. Again, like the complete cases analysis method, the

available data method yields unbiased estimates only if the missing data are assumed to

be MCAR.

8.6.3 Imputation

For the imputation method, new observations are created where there are missing

data, thus creating a complete dataset. According to Fitzmaurice, Laird and Ware (2004),

rather than performing a single imputation, it is recommended that multiple imputations

are performed. This is done in order to reflect the uncertainty of the imputation values.

There ate several types of imputation. Some of these are: (a) Stratification, (b)

Regression Imputation and (c) Last Observation Carried Forward (LOCF) (d) Deductive

Imputation and (e) Nearest-Neighbor Imputation (Fitzmaurice et al, 2004; Lohr, 1999).

Drawbacks of imputation methods include the underestimation of the variances and
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covariances as well as smaller standard errors. Also, imputation methods can be

unreliable and assume that the dataare MCAR.

8.7 Missing Data in Current StudY

In the current study, there are only a few missing observations. For the response

variables Vitamin A, Vitamin E, and Total Antioxidant Capacity, subject 9508 from the

flaxseed oil group had missing data at Week 4. For the response variables Isoprostanes,

subject 5145 from the milled flax group had a missing observation at Week 0. Finally,

for the response variable Hydroperoxide, subjects 61i5 and 7658 had missing

observations at V/eek 0 and Week4 respectively. None of the subjects'dropped out'of

the study. For the subjects who did have missing observations, missingness often only

occurred for a few of the response variables at the given measurement occasion. Perhaps

the blood sample obtained for an individual could not be analyzed properly and could

only yield results for certain response variables. Or, perhaps the technician made an error

which resulted in missingness. Given these possible scenarios, it is reasonable to assume

that the missingness in the current study is either missing completely at random (MCAR)

or missing at random (MAR).

According to Cnaan, Laird and Slasor (1997), if missing data are MCAR, maximum

likelihood estimates are valid and efficient. If missing data are MAR, estimates are valid

and efficient given the model fit to the data for analysis is correct. If the missing data are

assumed to be MAR, it is particularly important to execute the model diagnostics

discussed in Section 6.4 to ensure that an appropriate model is fit to the data.
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8.7.1 Example: Last Observation Carried Forward Imputation

The variable Hydroperoxide was used to demonstrate the Last Observation Carried

Forward (LOCF) imputation method. The LOCF imputation technique imputes values

using the last observed response for an individual. For example, the vector of response

values for the subject with ID: 7658 was {0.48, missing, 0.07,0.11lr. The

corresponding vector with the imputed value was {0.48.0.48,0.07, 0.17}. A linear

model was fit for the mean response with a Toeplitz covariance structure. This model

was fit to both the original Hydroperoxide data as well as the Hydroperoxide data that

contained the imputed values. Table 8.2 below contains results for the original dataset

that had two missing values.

Parameter Effect Estimate Std Err t p-value

Intercept
Group
Group
Time

Groupxfi¡¡"
GroupxflÍ¡s

0.6852
-0.081 1

-0.1931
-0.0169
0.0026
0.0117

0.0599
0.0806
0.0815
0.0070
0.0094
0.0095

MF
FO

MF
FO

11.44
-1.01
1 1'7

-2.4t
0.27
t.24

<.0001

0.32t5
0.0241
0.0177
0.7849
0.2187

Table 8.2: Fixed effects for original Hydroperoxide data

Table 8.3 below contains the results for the Hydroperoxide dataset that was completed

using the LOCF imputation technique

Parameter Effect Estimate Std Err t p-value
Intercept

Group
Group
Time

Groupxfi¡1s
Groupxfi¡ns

0.6851
-0.0841
-0.1922
-0.0169
0.0029
0.0117

0.0594
0.0790
0.0804
0.0069
0.0092
0.0094

MF
FO

MF
FO

11.54
-1.06
-2.39
-2.43
0.32
1.25

<.0001

0.2949
0.0228
0.0168
0.1528
0.21s8

Table 8.3: Fixed effects for the imputed Hydroperoxide data
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The results in the tables above are very similar. This suggests that any conclusions that

would have made would not differ between the two datasets. For this reason, imputation

for the rest of the response variables that have missing responses will not be explored as

the results are not likely to change.
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Chapter 9

Summary and Conclusions

9.1 Concluding Remarks

LongitudinaL dafa analysis is important in several fields of research, particularly the

health sciences. As discussed in this practicum, there are several approaches that can be

used for the analysis of longitudinal data. These analyses would not be possible without

the specif,rc procedures for longitudinal data in various statistical software programs.

These programs are continually being improved and developed.

There are several steps to follow when analyzing longitudinal data. First, it is

important to represent the data in graphical form. A researcher may choose to select a

sample of subjects and examine the response patterns across time. Or, it may be

convenient to plot the mean response at each measurement occasion especially if there is

more than one treatment group. Upon plotting the data, the investigator can gain a sense

115
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of the overall response trend over time and think about specific models that might be

appropriate for the data. Graphs of the data arc also useful tools for presenting the

information to an audience. After plotting the data, a mean model should be f,rt to the

data. It might be appropriate to choose a very simple linear model, however, a more

complicated model might be necessary. In order to f,rnd the best mean model, one can try

different mean models for the data and examine the model fit using tools such as the

likelihood ratio test. Once a satisfactory mean model is chosen, an appropriate

covariance structure for the data should be specified. Various covariance structures may

be fit separately and subsequently compared using tools such as the information criteria

fit statistics discussed in this practicum. It is also important to consider whether or not to

include random effects for the data. In this practicum, fitting a random intercept alone

and then with a slope were explored. As a final check for appropriate model fit, residuals

should be examined. Graphing tools such as a histogram of the residuals or quantile plots

can be very useful in determining if the model is suitable for the data.

While this practicum did not go into depth regarding background theory in

estimation, differences between ML and REML estimation techniques were discussed.

Also, various tests of hypotheses were introduced.

The response variables that were examined in detail were Vitamin C and Vitamin E.

These response variables were used to demonstrate how an investigator might examine

longitudinal data. Based on the time plot of the mean Vitamin C levels over time (Figure

3.10), it appeared as though there may be a difference between the milled flax and control

groups. Simple /-tests comparing the control to both the milled flax and flaxseed oil

groups separately revealed that there may be a difference in Vitamin C between the
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flaxseed oil and control group at Week 8. ANOVA tests comparing all of the groups

revealed that there may be a difference in Vitamin C levels at Weeks 4, 8 and 12. Simple

methods of analyses were not performed on the Vitamin E dafa. Next, more

contemporary methods of f,rtting models to longitudinal data were fit to the data, First the

response profile method was used to fìt the mean model. An unstructured covariance

structure was used for the covariance structure. Given this combination of mean and

covariance structure, the group x time interaction effect was significant indicating that

there may be a difference in Vitamin C levels among the groups across time. However,

upon testing fuither mean models, the response profile model was not as adequate for the

data as a quadratic mean model with a Toeplitz covariance structure. This model yielded

a significanf p-value for the interaction term (i.e., group t time2). This indicated that

there was a difference in Vitamin C levels among the groups as a quadratic function of

time.

A similar procedure was followed for hnding a suitable model for the Vitamin E

data. The best model was a cubic trend model for the mean with a compound symmetric

structure for the covariance' Based on this model' both the group x time interaction

terms that included the quadratic and cubic time variables were significant. More

specifically, the interaction terms were significant for the milled flax group indicating

that there may be a difference in Vitamin E levels for the milled flax group as compared

to the control and flaxseed groups across time.

Next, linear mixed models were fit to the data. These models included a model with

a random intercept only followed by a model that included both a random intercept and

slope. First, a random intercept was fit for the Vitamin C data using a quadratic mean
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model with a Toeplitz covariance structure. Due to errors in the SAS program, the

Toeplitz covariance structure was set to AR-l instead. Based on this modified model, the

group x timez interaction effect was significant. Next, a random slope was added to this

model. The same conclusion of a difference between the treatment groups as a quadratic

function of time was realized. The BLUP's were displayed for the random slope and

intercept model to illustrate how they were calculated. Next, a random intercept and

slope were added to the cubic trend mean model with a compound symmetric covariance

structure for the Vitamin E data. This model would not converge despite trying various

covariance structures. This was most likely due to the complicated model and the small

sample size.

To explore the consequences of missing data in a longitudinal study, a simulation

was conducted in SAS. A longitudinal dataset with four measurement occasions was

generated following a linear mean model with an AR-l covariance structure.

Observations were deleted according to three missing data mechanisms: (1) Missing

completely at random (MCAR), (2) Missing at random (MAR), and (3) Missing not at

random (MNAR). The main results of the study revealed that missing data classified as

MAR or MNAR showed increasing bias in the parameter estimates as the percentage of

missing data increased. The bias was even more severe when the covariance structure

was misspecified.

The three main methods discussed for handling missing data in this practicum

included complete case analysis, available data analysis and imputation. For the current

study, the 'last observation carried forward' method of imputation was used to complete

the Hydroperoxide dataset which had two missing observations. The same model was fit
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for both the Hydroperoxide data with missing values as well as the Hydroperoxide data

that included the imputed values. The results (i.e., parameter estimates, standard errors,

main conclusions) from the two Hydroperoxide datasets were very similar. Given that

the rest of the response variables in the study had few missing values, imputation was not

investigated further.

An approach for the analysis of longitudinal data that was not examined in this

practicum was a 'Multivariate Repeated Measures' approach. Multivariate repeated

measures data arise when multiple response variables are measured at each occasion. In

the current study, eight dependent variables were each measured at'Weeks 0,4,8, and 12

which corresponds to a multivariate repeated measures design. A decision was made to

examine each variable separately. The variables Vitamin C and Vitamin E were

randomly chosen to be examined. A disadvantage of analyzingthe data in this manner is

that the dependent variables may be correlated. The approaches examined in this

practicum do not consider this potential correlation as only a single outcome variable is

considered at a time. In multivariate repeated measures data, the correlation among the

multiple dependent variables plus the correlation across time should be accounted for in

the covariance structure. A more complicated covariance structure called a Kronecker

product structure is often implemented to model this unique covariance structure that is

typical of multivariate repeated measures data. For example, following notation in Njue

(2001), let Â be the covariance matrix among P dependent variables with dimension P x

P. Let O be the covariance matrix among Z repeated measurements with dimension I x

T. By obtaining the Kronecker product (i.e., I ) of these matrices (i.e., A I O), the

resulting TP x TP matrix is known as a Kronecker product structure. By using a
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Kronecker product structure to model the covariance, the number of covariance

parameters to estimate is substantially reduced compared to Y, fC QC + 1) parameter

estimates if no covariance model is specified (Njue, 2001). Given the nature of this

study, a multivariate approach is not suitable after all. There are eight dependent

variables measured af each of four occasions, which yields atotal of % 4*8(4*8 + 1) :

528 parameter estimates! This is a significant problem as the study only had a total of 35

subjects. Even if a multivariate analysis using only two of the eight dependent variable

was attempted, there would still be yz 4*2(4*2 + 1) : 36 parameter estimates. Thus, a

multivariate analysis approach is unreasonable given the study size.

Although not all of the response variables in this study were examined, the steps

outlined in this practicum could be applied to the remaining variables. The main steps for

the analysis of longitudinal data arc as follows: (1) Plot the data and make preliminary

inferences, (2) Find a reasonable model for the mean, (3) Find a reasonable model for the

covariance structure. If one wishes to separate the effect of experimental units from the

experimental error, random effects for the experimental units can be introduced. The

final step for the analysis of longitudinal data is to (4) Make final conclusions.
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Appendix A

The Longitudinal Data

All of the raw data in the metabolic syndrome study were pÍesented in a multivariate

format. As an example, the Vitamin C dataset is shown in the original multivariate

structure followed by a transformed univariate structure. See Tables A.l and A.2

respectively.

Subject Group ID Week 0 Week 4 Week 8 V/eek 12

I
2

J

4

5

6

7

8

9

l0
lt
t2
13

14

15

Control
Control
Control
Control
Control
Control
Control
Control
Control
Control

MF
MF
MF
MF
MF

2083

2236

2347

2832
2937

3043

3307

3674

3 896

3970
4208

4563

4756

4845

5041

0.03

0.7 5

0.r7
r.37
0.14

1.48

0.00

032
0.79

0.06

1.52

0.29

0.r7
0.96

0.50

0,09

0.s3

0.02

1.32

0.67

1.15

0.00

1.15

0.84

1.04

0.81

0.52

0.31

0.92

0.25

0.00

0.49

0.29

1.28

0.23

1.32

0.00

0,89

0.62

0.03

0.16

0.66

0.00

t.02
0.94

0.35

0.94

0.il
1.29

0.76

1.47

0.14

0.79

0.82

0.47

1.61

1.37

0.49

0.93

0.32

Table 4.1: Vitamin C Data in Multivariate Format
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Subiect Group ID Time Vitamin C Value
Control
Control
Control
Control
Control
Control
Control
Control

2083
2083
2083
2083
2236
2236
2236
2236

0.3 5

0.03
0.09
0.00
0.94
0.7s
0.53
0.49

1

1

1

1

2
2
2
2

0

4
8

I2
0

4
8

t2

0

4
I
12

MF
MF
MF
MF

l5
15

l5
15

5041
5041
5041
504 I

0.32
0.5

0.25
0.94

Table 4.2: Vitamin C Data in Univariate Format

SAS: A Few Details

Different procedures used to analyze longitudinal data in SAS require the data to be

input in different ways. Some procedures require that the data be entered in a

multivariate format where each subject has only one row of datafhat contains all of the

information collected for that particular subject. The procedure predominantly used in

this practicum, PROC MIXED, uses data in a univariate format where each subject has

multiple records of data. This means that a value collected at each time point has its own

record. Data can be convefted from its multivariate format to a univariate format and

vice versa easily in SAS.
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SAS: Sample Syntax

In order to assist the reader with the interpretation of the SAS code below, a brief

explanation of the variables is included below

I D : Unique identification number assigned to each individual

GRoUP : Group membership, (i.e., Control, Milled Flax, or Flaxseed Oil)

T IME : Measurement occasion, (i.e., 0, 4,8, 12)

T : A copy of the \ TIME ' variable, (i.e. 0, 4,8, 12)

T2 : Squared 'T rME' values, (i.e., 0, 16, 64, 144)

Chapter 6

Response Profile Analysis
PROC M]XED DATA : V]TC;
CLASS ID GROUP TIME;
MODEL Y GROUP TIME GROUP*TIME / S CHTSQ;
REPEATED TIME / IYPN : UN SUB ID R;
RUN;

*To modify the covariance structute,
TYPE : UN for Unstructured
TYPE : Simple for Simple
TYPE : AR (1) for Autoregressive of order 1

TYPE CS for Compound Symmetric
TYPE : TOtrPLITZ for Toeplitz

SEE SAS DOCUMENTATION FOR COMPLETE LIST OF COVARIANCE
STRUCTURES

Linear Response Trend
PROC MIXED DATA : VITCi
CLASS ID GROUP T;
MODEL Y GROUP T]ME GROUP*TIME / S CHTSQ;
REPEATED T / TYPA UN SUB ]D R;
RUN;
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Quadratic Response Trend
PROC MIXED DATA : VITC;
CLASS ]D GROUP T;
MODEL Y : GROUP TIME TIME**2 GROUP*TIME GROUP*TIME**2/ S

CH] SQ;
REPEATED T / TYPN UN SUB : ]D R;
RUN;

Cubic Response Trend
PROC MIXED DATA : VITE;
CLASS ID GROUP T;
MODEL Y GROUP T]ME TIME*T]ME TIME*TIME*T]ME GROUP*TTME

GROUP*TIME*TIME GROUP*TIME*TIME*T]ME/ S CHISQ;
REPEATED T / TYPN : UN SUB : ID R;
RUN;

Chapter 7

Random Intercept Model with group effect
PROC MIXED DATA : V]TC;
CLASS TD GROUP T;
MODEL Y : GROUP T]ME GROUP*TIME/ S CHISQ;
REPEATED T / TYPE : UN SUB ]D R;
RANDOM ]NT / SUE : TD;
RUN;

Random Intercept and Slopes Model with group effect
PROC MTXED DATA : V]TC;
CLASS ]D GROUP T;
MODEL Y GROUP TIME GROUP*T]ME/ S CHISQ;
REPEATED T / TYPN UN SUB ID R;
RANDOM INT T]ME / SUE ID;
RUN;
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******+'****'********,k)k-***-*****-f'l<i(**'****i<*)t-***'**-/<*******'****-d-*

Simulation Study, Chapter I

*THE !'OLLOWING
VAR]OUS MISSING

PROGRAM DtrLETtrS OBStrRVATIONS ACCORDTNG TO

DATA MECHANISMS;

**PART 1: Multivariate data
distribution, this is repeated
**Data are generated according
E (Yrk) Betalk + Beta2l< (time) ;
**The purpose is to examine

are generated from a normal
2500 times;
to a linear mean modef . -i.e.

mrssrngness
incorrect Ìy

Betalk and Beta2k when the data
the regression coefficients
are complete as compared to

when data âre missitg;
*-kFurthermore, we also examine the effects of
when the covariance structure is correctly and
speci f iecl;
********d'd-****'{r*-**-******************-*-*-ì,\-d-**'***i'*******'/¡*****-',t

LIBNAME PARTl 'E: \Writing\Unlt\Part 1\a' ;

PROC ÏML;
RESET;
* * ----DEFINE CONDITIONS---- * *,.

ALPHA:. 05;
T:4; *number of repeated measurements;
GSIZE:{2500}; *number of iterations;
?LET GSIZE:2500;
G:1; *number of groups;
?LET G:1;
NG:NCOL (GS]ZE) ;
TYPECOV:I; ntype of covariance structure,'
%LET TYPECOV:1;

*-*-*- ---_MISSTNG DATA MECHANTSMS (MDM) --_-**;

*F'OR MONOTON]C
1:MCAR, 2:MAR,
SWITCH:Z;
SLET SWITCH=2;

*FOR MISSINGNESS RATtrS
I:APPROX 20ea, 2:APPROX
4-APPROX 602, S:APPROX
MTSS:4;
åLET MISS:4;

M]SS]NGNESS SET SWITCH AS þ-OLLOWS:

3:MNAR;

SET MISS AS FOLI,OWS:
30%, 3:APPROX 402,
BO?;
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**-*NOTF.: MISSINGNESS RATES ARE SET TO RtrPRtrStrNT THE

PERCENTAGtr OF VALUtrS MISSTNG AT THE LAST MEASUREMENT'

OCCASION;
***THE FIRST MtrASURtrMENT OCCASION IS NEVER MISSTNG;

***---____DEFTNtr M]SS]NGNESS RATtrS WHEN SWTTCH:I
***-
IF &MISS:1

IF &MISS:2

IF &MISS:3

IF eMISS:4

IF &MISS:5

THEN

THEN

THEN

THEN

THEN

perc: { 0
0

perc: { 0

0

perc: { 0

0
perc: { 0

0
perc: { 0

0

theta2
thet a2
t.heta2
theta2
theta2

08 0.08 0 .08 0.0Ê 0 .08 CI " 08
08 0.08 0.08 0.08 0.08 o. o8 Ì;
115 0.11-5 0.r-15 0.115 0.1-1-5 0.1-1-5
L15 0.115 0.1L5 0.115 0.1-1"5 0.11"5);
t6 0.16 0.16 0. L6 0 " L6 0.l-6
L6 0.16 0.L6 0.1-6 0.1-6 0.16);
26 0 .26 0.26 0 .26 0.26 0 .26
26 CI.26 O.26 0.26 0.26 0.26Ì;
42 0.42 A.42 0.42 0.42 4.42
42 A.42 0.42 A.42 0.42 4.42j ;

**--_-__DEF'INE MISS]NGNESS RATES WHEN SWITCH

IF &MISS:1
IF &MISS:2
IF &MISS:3
IF &MISS:4
rF &MISS:5

J(J<_----DEtrINtr M]SSTNGNESS RATES WHEN SW]TCH

THEN
THEN
THEN
THEN
THEN

-5.0;
-L.9;
_L .L;
-0 . 65;
-Q .42;

]F
IF
rF'
IF
TF

&MI S S:1
&MI S S:2
&MI SS:3
&MI S S:4
&MI S S:5

THEN
THEN
THEN
THEN
THEN

theta3
theta3
theta3
theta3
theta3

-l- . 6;
-3.8;
-0 . 75;
-0 . 55;
-0 . 35;

.K---DEFINtr POPLN COV. STRUCTURE F'OR RtrPEATED MtrASURtrMENTS_-_

*Autoregressive
EPSCORR : {1- .7

.7 I

.49

.343

Covariance for Repeated Measurements;
.49 .343,
.7 .49,
7 L .7,
.49 .7 1Ì ;

**_--DEFINE MEAN STRUCTURE-__**;
XMAT:{1 L,

L 2,
1 3'
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**___ -_GtrNERATE DATA----

Appendix B

1- 4j;
BVECCO:{0.735, 0.323} ;
XBCO:XMAT*BVECCO;
TXBCO:T (XBCO) ;
PMEAN:TXBCO;
*PMtrAN IS THE MEAN STRUCTURE THAT RESUL'IS F'ROM THE AI]OVE
EQUATTON;

**;
NTOT:SUM (GSIZE) ;
DO K:L TO NG;

X1:J (GSIZE IK] , 1-, K) ;
IF K:l THEN X:Xl;
ELSE X:X/ /XL;

trND;

Z:RANNOR ( J (NTOT, T, 0) ) ;
CT1:1";
CT2:O;
DO K:1 TO NG;
L:ROOT (EPSCORR) ;
GRPSZ:GSIZEIK] ;
CT2:CT2+GRPSZ;
GRPMN:PMEAN IK, ];
TEMP:ZICTl:CT2,)*L;

lF K:l THEN DO;
Y:TEMP+REPEAT (GRPMNI GRPSZ,L) ;
END;
ELSE DO;
Y:Y / / (TEMP+REPEAT (GRPMN, GRPSZ, L) ) ;
END;
CT1:CT1+GRPSZ;

END;

d-*CREATE Y MATRIX WTTH MISSING
*SET UP A REPLICATION OF' THE Y

BELOW;
vE Tt¿:v.

Lf

CT1:1";
CTZ:O;
DO K:1- TO NG;
GRPSZ:GSIZEIK] ;
CT2:CT2+GRPSZ;

do jj:CT1 to CT2;
do k2k2:2 to T¡

OBSERVATIONS;
MA'IR]X TO Btr USED IN THE CODE,
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*MDM * McAR/ WHERE c switch:1;
if switch:l- then do;
uni-:uniform (repeat (0, 1, 1 ) ) ;
if uni( perclL,k2k2l then Ytjj tk2k2):
end,'

*MDM - MAR, WHERE c switch:2;
rf switch :2 then do;
COMPMAR:probnorm (perc lL, k2k2l + (theta2 ) * ( yfix l)), k2k2-
1l));
uni:uniform (repeat (0,1,1) ) ;
if uni(COMPMAR then ytjj,k2k2l:.'
end;

*MDM - MNAR-Y, WHERE switch:3;
if switch :3 then do;
compmnar:probnorm (perc lL, k2k2l + (theta3 ) *yfix lj), k2k2) ) ;
uni:uníform (repeat (0,1r 1) ) ;
if uni(compmnar then ytjj,k2k2):. ;
end;

DO LK: (K2K2+L)
rF Y lJJ,R2K2l:
END;

END; *k2k2;
END; 'o 1) ;

TO T;
THEN YIJJ,LK]:.;

CT1:CT1+GRPSZ;
END; *k;

**-----CREATE DATASET USING A UNIVARIATE STRUCTURE TOR INPUT]

TO PROC MIXED_- _____'O * ;
DATAALL:X I I Y;

II- T:4
DV1RM1
append

THEN create datatest from dataall Icolname:{GROUP
DVl3LAST DVl2LAST DV1LAST } ] ;
from dataall;

DATAALL_I:J (T*NTOT, 5, 0) ;
TD_VAL: (1:NTOT) ';
E:1 .

L:NTOT;
CNPT:O;
DO J:1. TO T;

CNPT:CNPT+1-;
DATAALL_I I F : L' 1 ] :DATAALL
DATAALL 1 [F:L,Z]:TD VAL;

l,Ll;
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DATAALL-I I

DATAALL-I I

DATAALL-I I

F:F+NTOT;
L:L+NTOT;

F:L,3
F:Lr4
F:Lr5

END;
CREATtr DATAFIN FROM

APPEND FROM DATAALL

:J(NTOT,L,L);
:J (NTOT ,L, J) ;
:Y [1 : NTOT, CNPT] ;

DATAALL_1ICOLNAME:{GROUP ID DV RM VAL}];
I;

FILENAME NEWOUT 'OUTFILEI ;

PROC PRINTTO PRTNT:NEWOUT NEW;
RUN;

ODS

ODS

LIST]NG CLOSE;
OUTPUT SOLUTIONF:F;

PROC SORT DATA:DATAFIN;
BY TD;
RUN,.

*SET UP PROC MIXED MODEL !{]TH AN AUTORtrGRESSTVtr
STRUCTURE;
PROC MTXED DATA:DATAF]N;
CLASS ]D;
MODEL VAL:RM /SOIUIíON;
REPEATED / TYPU:AN(T) SUBJECT:ID;
RT'N;

COVARIANCE

DATA RtrADIN2; SET F;
COV:1;
IF effect:' lntercept' ;
BETA:L; Est:Estimatei Stde:stderri tstat:tvalue; PVAL:ProbT;
NVAL:&GS IZE;
GRPTYPE:&G;
EP:&TYPECOV;
MDM:& SWITCH;
PERCMISS:&M]SS;
KEEP GRPTYPE COV BETA ep NVAL Est Stde tstat PVAL MDM

PERCMISS;
PROC APPEND BASE:PARTI . estimatescomp ;
RUN;

DATA READIN3; StrT F;
COV:].;
IF effect:'RM' ;
BETA:2; Est:Estimate; Stde:stderri tstat:tvalue; PVAL:ProbT;
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NVAL:EGSIZE;
GRPTYPE:&G;
CP:&TYPECOV;
MDM:&SW]TCH;
PERCMISS:&MISS;
KEEP GRPTYPE COV BETA ep NVAL Est Stde tstat PVAL MDM

PERCM]SS;
PROC APPEND BASE:PART1 . estimatescomp;
RTJN;

J<*-__OUTPUT INF'ORMAT]ON CRTTERTA FOR AN UNSTRUCTURtrD

COVAR]ANCE STRUCTURE---* * ;

ODS

ODS

L]ST]NG CLOSE;
OUTPUT SOLUTIONF:F;

PROC MIXED
CLASS ]D;
MODEL VAL:
RtrPEATED /
RTIN;

DATA:DATAFTN

RM /s;
TYPE:UN SUBJECT:TD;

DATA READIN2; SET F;
COV:2;
IF effect:' Intercept','
BETA:1-; Est:Estimate; StdE:Stderri tstat:tva.Lue; PVAL:ProbT;
NVAL:&GS TZE;
GRPTYPE:&G;
CP:&TYPECOV;
MDM:&SW]TCH;
PERCMISS:&MTSS;
KEEP GRPTYPE COV BETA ep NVAL Est StdE tstat PVAL MDM

PERCM]SS;
PROC APPEND BAStr:PART1 . estimAtCSCOMP,.
RUN;

DATA READIN3; SET F;
aaì\/:, .

4f

IF effect:' RM' ;
BETA:Z; Est:Estimate; StdE:Stderri tstat:tvalue; PVAL:ProbT;
NVAL:&GS TZE;
GRPTYPE:&G;
CP:&TYPECOV;
MDM:&SWITCH;
PERCMISS:&MISS;
KEEP GRPTYPE COV BETA ep NVAL Est StdE tstat PVAL MDM

PERCMISS;
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PROC APPEND BASE:PART1 . estimatescomp;
RI]N;

**---COMPOUND SYMMETRIC COVARTANCE STRUCTURE--** i

ODS

ODS

LIST]NG CLOSE;
OUTPUT SOLUTIONF:F;

PROC MTXED
CLASS ID ;
MODtrL VAL:
REPEATED /
RT'N;

DATA:DATAFIN

RM /s;
TYPE:CS SUBJECT:ID;

DATA READIN2; SET F;
aô\/:?.¿f

IF effect:r Intercept' ;
BETA:I-; Est:Estimate; StdE:Stderri tstat:tvalue; PVAL:ProbT;
NVAL:&GS IZE;
GRPTYPE:&G;
EP:ETYPECOV;
MDM:&SW]TCH;
PERCMISS:&MISS;
KEEP GRPTYPE COV BETA ep NVAL Est StdE tstat PVAL MDM

PERCM]SS;
PROC APPEND BASE:PART1 . estimatescomp ;
RUN;

DATA READIN3; SET F;
arì\/:?.¿t

IF effect:'RM' ;
BETA:2; Est:Estimate; StdE:Stderri tstat:tvalue; PVAL:ProbT;
NVAL:&GS IZE;
GRPTYPE:&G;
CP:&TYPECOV;
MDM:& SWITCH;
PERCMISS:&MISS;
KEEP GRPTYPE COV BETA ep NVAL Est StdE tstat PVAL MDM

PERCMI SS ;
PROC APPEND BASE:PARTI . estimatescomp;
RTIN;

**____CODE TO DtrTERMINE PERCtrNTAGtr OF'MISS]NGNESS AT LAST
MEASUREMtrNT OCCASTON FOR EACH S]MULATfON___***/.
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*CALCULATtr NUMBtrR OI" NON_M]SSING VALUES AT THE THIRD_LAST,
StrCOND-LAST AND LAST OCCASTONS;
PROC MEAI{S n data:datatest;
VAR dvl3LAST;
VAR dvl2LAST;
VAR dvlLAST;
BY groupt
OUTPUT OUT:outtest n:nonmiss3LAST nonmiss2LAST nonmissLAST;
run;

*CALCULATtr NUMBER OF'MISSING VALUtrS AT THE THTRD-LAST,
SECOND_LAST AND LAST OCCAS]ONS;
*CALCULATtr PERCtrNT MISSTNGNESS AT THtr TH]RD-LAST. SECOND-
LAST AND LAST OCCASIONS;
*CALCULAT'tr TOTAL PERCENTAGE OF MISS]NG VALUES;
data percmissing;
set outtest;
no_missing2: (_freq_ - nonmiss3LAST) ;
no_missing3: (_freq_ - nonmiss2LAST) ;
no_missing4: (_freq_ - nonmissLAST) ;
no_miss_tot:no_missing2 + no_missing3 + no_missing4;
percmissGl3LAST: (no_mís stng2 / _freq_¡ *100;
percmissGl2LAST: (no_missing3 / _f req_¡ *100,'
percmissG1LAST: (no_missing4 / _f req*¡ *l-00;
percmisstotGl: ( (no míss tot) / ( freq *4) ) *100;
run;

*SET UP OUTPUT FOR GROUP T;

*MERGtr DATAStrTS ABOVE TO CREATE OUTPUT DATAStrT WTTFI AI,L
RELEVANT PERCENTAGE ]NtrORMAT]ON;
*NOTE _ THE] OUTPUT DATAStrT 'PERCENTAGEFINALl I CAN BE CHANGED

TO RtrF'LtrCT THE M]SSING
DATA MECHAN]SM USED;
DATA PERCFINAL;
MERGE PERCMISSing readin2;
KtrtrP PERCMTSSGl3LAST PERCMISSGl2LAST PERCMISSG1LAST
PERCMTSSTOTG1 grptype MDM PERCMISS EP NVAL;
PROC APPEND U65g:part1. PERCDELETE;
RITN;

**_----END OF CODE TO DtrTtrRMINE PERCENTAGtr MISSTNGNESS--__

**--_MtrANS
PROC MEAI{S
VAR DV1RMl

AT trACH RtrPEATED MtrASURtrMENT----_*d-,.
DATA:DATATEST;
DVl3LAST DV12LAST DV1LAST;

t34



Appendix B

OUTPUT OUT:MEANS MEAN:MEANRMI MEANRM2 MEANRM3 MtrANRM4

STD:STDRM1 STDRM2 STDRM3 STDRM4 STDERR:SERM1 SERM2 SERM3

SERM4 N:N;
RUN;

DATA MEANS2; merge readin2 MEANS;
MDM:& SWITCH;
PERCMISS:&MISS;
EP:&TYPECOV;
KEEP MDM PERCMISS EP GRPtype N

MEANRM1 MEANRM2 MEANRM3 MEANRM4 STDRM1
SERM1 SERM2 SERM3 SERM4;
PROC APPEND BAStr:partl.MEANScomp;
RI'N;

quit;

STDRM2 STDRM3 STDRM4

135


