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Abstract 

Carbon fiber and fiberglass composite panels are commonly used in the aerospace 

and automotive industries. During the manufacturing process, composite panels undergo 

surface treatment processes such as priming and coating. For coating layers to adhere 

strongly to the surface, the part surface must be free of any contamination such as grease. 

Detection and removal of contamination is an important step in the manufacturing of 

composite panels, particularly in the aerospace industry. This thesis develops a novel vision-

based framework to enable fully automated inspection and robotic abrasion of free-form 

composite panels. 

The first aim of the thesis is to automatically locate arbitrarily placed composite 

panels within the robot workplace. The proposed method employs iterative closest point 

(ICP) registration technique for locating the part in the robot cell. An additional module 

based on vision-based error correction is developed in the thesis for improving the accuracy 

of part localization. The proposed part localization technique eliminates the need for manual 

calibration of part placement in each robot cycle.   

The ASTM-F22 water-break test is widely used for detecting hydrophobic 

contamination on a surface. As the second aim in this thesis, vision-based algorithms are 

developed to allow for the automated detection (inspection) of hydrophobic contamination 

during the water-break test. The developed vision-based algorithms can successfully detect 

the layer of hydrophobic contamination on the free-form panel. 

The third aim of this thesis is to automatically generate robotic abrasion tool paths to 

remove detected contamination. In the proposed framework, the panel surface is divided into 

multiple grids. The point clouds of each grid are first used to reconstruct continuous 

parametric B-spline surfaces. B-spline surfaces are then used to make an abrasion tool path 

for each grid. The developed vision-based inspection algorithm determines which grids 

contain contamination and therefore must be abraded. 



 

iii 

 

To conclude, the overarching goal of this thesis is to develop a fully automated 

vision-based framework for the detection and removal (robotic abrasion) of contamination 

on free-form composite panels. The developed techniques have been successfully 

implemented and verified on a Kuka KR6 industrial robot equipped with 2D and 3D vision 

cameras. 

  



 

iv 

 

Table of Contents 

 

Abstract .............................................................................................................................. ii 

Table of Contents .............................................................................................................. iv 

List of Figures .................................................................................................................... vi 

Nomenclature ................................................................................................................. viii 

Acknowledgment ............................................................................................................ xiii 

1 Introduction ................................................................................................................ 1 

1.1 Background and motivation .................................................................................. 1 

1.2 Problem statement and research objective ............................................................ 3 

1.3 Proposed solution and approach ............................................................................ 4 

1.4 Thesis layout ......................................................................................................... 7 

2 Literature Review ....................................................................................................... 8 

2.1 Overview ............................................................................................................... 8 

2.2 Part localization ..................................................................................................... 8 

2.3 Water-break test .................................................................................................... 9 

2.4 Vision-based inspection ...................................................................................... 10 

2.5 Surface reconstruction and tool path generation ................................................. 11 

2.6 Summary ............................................................................................................. 13 

3 Vision system calibration and automated part localization ................................. 14 

3.1 Introduction ......................................................................................................... 14 

3.2 Experimental Platform: Kuka robot cell ............................................................. 14 

3.3 Establishing coordinate systems in the robot cell ............................................... 15 

3.4 Transformation matrix and pose representation .................................................. 17 

3.5 Kuka socket: communication between robot and vision system ........................ 19 

3.6 Intrinsic camera calibration ................................................................................. 22 

3.7 Hand-eye calibration: finding the robot-camera transformation ......................... 27 

3.8 Automated part localization using vision system ................................................ 34 

3.9 Refining part localization using nominal corner pose ......................................... 36 

3.10 Summary ............................................................................................................. 43 

4 Automated water-break inspection and tool path generation .............................. 44 



 

v 

 

4.1 Introduction ......................................................................................................... 44 

4.2 Vision based water-break inspection and lighting selection ............................... 44 

4.3 Image processing for automated water-break inspection .................................... 51 

4.4 Projection of part grids onto inspected images ................................................... 58 

4.5 Point cloud to B-spline surface reconstruction ................................................... 60 

4.6 Surface derivatives and surface normal .............................................................. 64 

4.7 Conversion of normal vector to Euler angles ...................................................... 65 

4.8 Abrasion tool path generation ............................................................................. 68 

5 Conclusions and Future Work ................................................................................ 74 

5.1 Summary of completed work and contributions ................................................. 74 

5.2 Future work and research directions ................................................................... 75 

6 Bibliography .............................................................................................................. 77 

 

  



 

vi 

 

 

List of Figures 

 

Figure 1.1: Schematics of water-break test results and interpretations [1] ............................ 2 

Figure 1.2: Overview of application and research objectives ................................................ 4 

Figure 1.3: Triton 2D camera (left) [2] and Zivid Two 3D camera (right) [3] ...................... 5 

Figure 1.4: Manual touch probing part for workpiece location calibration [4] ..................... 6 

Figure 3.1 Experimental platform: Kuka robot, cameras, and composite panel ................. 15 

Figure 3.2 Generalized coordinate systems in a robot cell .................................................. 16 

Figure 3.3: Frame transformation between robot and camera coordinates .......................... 18 

Figure 3.4: Kuka EKI networking socket for robot-vision communication ........................ 20 

Figure 3.5: Pin hole camera model for frame representation [14] ....................................... 22 

Figure 3.6: Two types of radial distortions [51] .................................................................. 24 

Figure 3.7: Few images of chess board pattern captured by Triton 2D camera .................. 26 

Figure 3.8: Hand-eye calibration for fixed Zivid (left) and onboard Triton (right) cameras

 ............................................................................................................................................. 28 

Figure 3.9: Robot tool calibration (TCP offset calculation) ................................................ 28 

Figure 3.10: Chessboard coordinate system and three defining points ............................... 29 

Figure 3.11: Transformation between the chessboard and robot’s base .............................. 29 

Figure 3.12: Eye-to-hand transformation chain for the fixed Zivid camera ........................ 31 

Figure 3.13: Camera pose estimation using perspective-n-point [55] ................................. 32 

Figure 3.14: Eye-in-hand calibration for the onboard Triton camera .................................. 33 

Figure 3.15: Illustration of iterative closest point (ICP) for point cloud registration .......... 36 

Figure 3.16: Nominal corner image at nominal corner pose ............................................... 37 

Figure 3.17: Image processing steps for automated corner detection .................................. 38 

Figure 3.18: Implementation of bilateral filter for noise removal ....................................... 38 

Figure 3.19: Image thresholding for corner detection ......................................................... 39 

Figure 3.20: Minimum area bounding box for largest contour............................................ 39 

Figure 3.21: Detected corner point using automated image processing .............................. 40 

Figure 3.22: Detected corner point at the new corner pose ................................................. 41 

Figure 3.23: Robot motion for correcting the corner pose .................................................. 41 

Figure 3.24: Flowchart of the developed algorithms for automated part localization and 

refinement ............................................................................................................................ 42 

Figure 4.1: Water-break regions on a test surface ............................................................... 45 

Figure 4.2: Absorption coefficient vs light wavelength plot for water [60] ........................ 46 



 

vii 

 

Figure 4.3: Projecting IR lights on the curved panel. .......................................................... 47 

Figure 4.4: Quantum efficiency of CMOS sensor [61]. ...................................................... 47 

Figure 4.5: Panel subject to multiple LED light system. ..................................................... 48 

Figure 4.6: Comparison of different types of light used in machine vision applications [59].

 ............................................................................................................................................. 49 

Figure 4.7: Workpiece appearance subject to CFL light. .................................................... 49 

Figure 4.8: Visualizing each color channel separately ........................................................ 50 

Figure 4.9: Proposed image processing algorithm ............................................................... 52 

Figure 4.10: Reference image with wet composite panel (left) and Test image with water-

broken region (right) ............................................................................................................ 53 

Figure 4.11: Result of image subtraction ............................................................................. 53 

Figure 4.12: Subtracted image with adjusted brightness and contrast ................................. 54 

Figure 4.13: Result of applying a median blur filter ............................................................ 55 

Figure 4.14: Resultant binary image after thresholding ...................................................... 55 

Figure 4.15: Masked image obtained by overlaying the detected areas over the original 

image .................................................................................................................................... 55 

Figure 4.16: HSV filtering applied on the masked image ................................................... 57 

Figure 4.17: Detected contours (broken regions) during water-break inspection ............... 57 

Figure 4.18: ROI selection and grid division of the RGB image captured by the Zivid 

camera .................................................................................................................................. 58 

Figure 4.19: Grids reprojection for different poses of the curved panel .............................. 60 

Figure 4.20: Grids overlaid on top of the water-break inspection results ............................ 60 

Figure 4.21: B-spline surface representation using u and v parameters .............................. 63 

Figure 4.22: Generated B-spline surfaces for the ROI and grids ......................................... 63 

Figure 4.23: B-spline surface normal .................................................................................. 64 

Figure 4.24: TCP coordinate system and surface normal .................................................... 66 

Figure 4.25: Desired TCP coordinate system ...................................................................... 67 

Figure 4.26: Area clearance tool path strategies, (a) Raster tool path, (b) Spiral tool path, 

(c) Offset tool path, (d) Offset-Spiral tool path ................................................................... 69 

Figure 4.27: Local coordinates at a point P on the surface .................................................. 70 

Figure 4.28: Visualization of robotic abrasion of each grid ................................................ 71 

Figure 4.29 Summarizing the tool path generation process ................................................. 72 

Figure 4.30: Robot cycle for water-break inspection and robotic abrasion ......................... 73 



 

viii 

 

Nomenclature 

Symbols 

 

𝑇𝑐 
𝑏   Transformation matrix from camera to robot’s base 

𝑅 Rotation matrix 

𝑟𝑖𝑗 Rotation matrix’s term at 𝑖𝑡ℎ row and 𝑗𝑡ℎ column  

𝑡: (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)  Translation vector 

(𝑋, 𝑌, 𝑍) 3D coordinate point 

(𝐴, 𝐵, 𝐶) Euler angles for sequence ‘ZYX’ 

𝑠 Scaling factor of pin hole camera model 

𝑝𝑐 2D pixel point of pin hole camera model 

𝐴 Camera matrix 

(𝑓𝑥 , 𝑓𝑦) Focal length 

(𝑐𝑥, 𝑐𝑦) Optical center 

𝑃𝑤 (𝑋, 𝑌, 𝑍) 3D world point of pin hole camera model  

(𝑈, 𝑉) Pixel coordinate point 

(𝑋𝑐, 𝑌𝑐, 𝑍𝑐) 3D point in camera coordinate system 

𝑘1, 𝑘2, 𝑘3 Radial distortion coefficients 

𝑝1, 𝑝2 Tangential distortion coefficients 

𝑇𝑐 
𝑓    Transformation matrix from camera to robot’s flange 

𝑇𝑐ℎ𝑒𝑠𝑠 
𝑏  Transformation matrix from chessboard to robot’s base 

𝑇𝑐ℎ𝑒𝑠𝑠 
𝑐  Transformation matrix from chessboard to camera 

𝑇𝑐 
𝑐ℎ𝑒𝑠𝑠  Transformation matrix from camera to chessboard 



 

ix 

 

𝑇𝑧𝑖𝑣𝑖𝑑 
𝑏  Transformation matrix from Zivid camera to robot’s base 

𝑇𝑡𝑟𝑖𝑡𝑜𝑛 
𝑓  Transformation matrix from Triton camera to robot’s flange 

𝐾 ICP correspondence set 

𝑝 Corresponding points of target point cloud 

𝑞 Corresponding points of source point cloud 

𝐸( 𝑇𝑤 
𝑏 ) ICP objective function 

𝑇𝑤 
𝑏  Transformation from workpiece to robot’s base 

𝑄𝑃𝐶 Source point cloud 

𝑃𝑃𝐶 Target point cloud 

𝐶𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 
𝑏  Nominal corner pose  

𝑇𝑛𝑜𝑚𝑖𝑛𝑎𝑙𝐶𝑃 
𝑏  Nominal corner pose matrix  

𝐶𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 
𝑤  Nominal corner pose in terms of nominal workpiece location 

𝑇𝑛𝑜𝑚𝑖𝑛𝑎𝑙𝐶𝑃 
𝑤  Nominal corner pose matrix in terms of nominal workpiece location 

𝐶𝑃𝑛𝑒𝑤 
𝑏  New corner pose 

𝑇𝑛𝑒𝑤𝐶𝑃 
𝑏  New corner pose matrix 

𝐶𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑 
𝑏  Refined corner pose 

𝑇𝑟𝑒𝑓𝑖𝑛𝑒𝑑𝐶𝑃 
𝑏  Refined corner pose matrix 

𝑇𝑟𝑒𝑓𝑖𝑛𝑒𝑑𝐶𝑃 
𝑛𝑒𝑤𝐶𝑃  Transformation from refined corner pose to new corner pose 

𝑇𝑤𝑟𝑒𝑓𝑖𝑛𝑒𝑑 
𝑏  Refined part localization transformation 

𝑠𝑢𝑏(𝑈, 𝑉) Subtracted image 

𝑔(𝑈, 𝑉) Contrast and brightness edited image 

𝛼 Contrast gain 

𝛽 Brightness bias 



 

x 

 

(𝐻, 𝑆, 𝑉) Hue, saturation and value 

𝑃𝑔𝑟𝑖𝑑𝑠𝑏 
  Grid corner’s 3D location with respect to robot’s base 

𝑃𝑔𝑟𝑖𝑑𝑠𝑤 
  Grid corner’s 3D location with respect to composite panel 

𝑃𝑔𝑟𝑖𝑑𝑠𝑧𝑖𝑣𝑖𝑑 
  Grid corner’s 3D location with respect to Zivid 

𝑅𝑂𝐼𝑃𝐶 Point cloud of selected region of interest 

𝐺𝑟𝑖𝑑𝑠𝑃𝐶 Point clouds of grids 

𝑆(𝑋) Implicit surface representation 

𝑆(𝑢, 𝑣) Parametric surface representation 

(𝑢, 𝑣) Surface parameters 

𝐶(𝑢) Parametric curve 

𝑁𝑖,𝑝(𝑢) 𝑝th degree B-spline basis function  

𝑁 Unit surface normal 

𝑆𝑢(𝑢, 𝑣) Surface partial derivative w.r.t u surface parameter 

𝑆𝑣(𝑢, 𝑣) Surface partial derivative w.r.t v surface parameter 

𝑅𝑁
𝑤 Rotation matrix from surface normal to nominal workpiece’s frame 

(∆𝑢, ∆𝑣) Parametric difference between two adjacent tool paths 

𝐹 Vector in feed direction 

𝑟 Euclidean distance between two adjacent tool paths 

𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 
𝑏  Pose on nominal tool path 

𝑇𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 
𝑏  Pose matrix on nominal tool path 

𝑃𝑛𝑒𝑤 
𝑏  Pose on new tool path  

𝑇𝑃𝑛𝑒𝑤 
𝑏  Pose matrix on new tool path 

 

Subscripts 



 

xi 

 

 

𝑏  Robot’s base frame 

𝑐 Camera’s frame 

𝑓 Robot’s flange frame 

𝑐ℎ𝑒𝑠𝑠 Chessboard pattern frame 

𝑃𝐶 Point cloud 

𝑤 Workpiece’s frame 

𝐶𝑃 Corner pose 

TP Tool path 

 

Acronyms 

 

ASTM American Society for Testing and Materials 

DOF  Degrees of Freedom  

2D & 3D Two-Dimensional & Three-Dimensional 

ICP Iterative Closest Point 

B-Spline Basis Spline 

CNC Computer Numerical Control 

DXF Drawing Exchange Format 

IR Infrared Radiation 

CAD Computer Aided Design 

RCNN Region-Based Convolutional Neural Network 

SVM Support Vector Machine  

FCN Fully Convolutional Network 

CFRP Carbon Fiber Reinforced Polymers 



 

xii 

 

NURBS Non-Uniform Rational B-Spline 

RGBD Red-Green-Blue-Depth 

RGB Red-Green-Blue 

TCP Tool Center Point 

KRL Kuka Robot Language 

EKI Ethernet-KRL-Interface 

XML Extensible Markup Language 

SVD Singular Value Decomposition 

ROI Region of Interest 

CMOS Complementary Metal-Oxide Semiconductor 

LED Light-Emitting Diode  

CFL Compact Fluorescent Lamps 

HSV Hue-Saturation-Value 

  

 

 



 

xiii 

 

Acknowledgment 

 

I would like to thank my research advisor, Dr. Matt Khoshdarregi, for his invaluable 

guidance throughout my studies. This project would not have been possible without his 

mentorship. I feel lucky and proud to call him my research advisor. He has been an ideal 

mentor and thesis supervisor. 

I would also like to express my gratitude to my friends at the Intelligent Digital 

Manufacturing Laboratory for helping and encouraging me throughout my Master’s Studies. 

Special thanks to Ali Maghami, Michael Newman, Shreyans Dhariawala, and Sina Alborzi 

for staying with me in the lab for long hours.   

This research was financially supported by the MITACS Accelerate program. This 

program helps students find industrial internships and give them the opportunity to innovate 

in and contribute to real applications. 

Finally, I would like to thank my parents and my wife. I would not be where I am today 

without their precious love and support.



Chapter 1. Introduction 

1 

 

1 Introduction 

1.1 Background and motivation 

Carbon fiber and fiberglass composite panels are widely used in the aerospace and 

automotive industries, e.g., in the fuselage of airplanes and body of vehicles. Many surface 

treatment processes such as priming, coating, and painting are performed on panel surfaces 

to improve their functional and aesthetic characteristics. The presence of hydrophobic 

contamination such as oil, grease, and silicon can prevent strong and uniform adhesion of 

the coating to the surface. In order for the coating to adhere strongly to the surface, the surface 

must be highly “hydrophilic” (attracted to water). To achieve this goal, two important steps 

are commonly performed prior to coating: 

I. detection of hydrophobic contamination such as greasy patches, 

II. abrasion (sanding) of the surface to remove contamination and to create micro-

scratches that coating particles can stick to. 

The American Society for Testing and Materials F22 (ASTM-F22) water-break test is a 

commonly used technique to identify hydrophobic contamination on the surface of panels.  

As illustrated in Figure 1.1, the water-break test is used to perform a go/no-go surface 

contamination inspection.  
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Figure 1.1: Schematics of water-break test results and interpretations [1] 

According to the ASTM-F22 standard, during the water-break test, the workpiece is 

placed vertically and is doused with water. The water flowing down on the workpiece’s 

surface can continue flowing without breaking if there is no presence of hydrophobic 

contamination on the surface. Hence, the broken region of water on the surface indicates the 

presence of hydrophobic contamination. The failed regions on the surface must be abraded 

to remove contamination.  

Currently, the water-break test in most industries is performed manually using naked 

eye. Manual water-break inspection is a challenging task and highly susceptible to human 

error. During the water-break test, the surface must be monitored for 10-40 seconds to find 

areas where the water layer breaks. It can be difficult to manually keep track of the entire 

part over the given time frame by relying solely on human observation. This research aims 

to automate the process of water-break inspection using a vision system. The entire 

inspection process is captured by a camera, and then image processing algorithms are used 

to automatically detect contamination on the surface. 

At present, after the detection of contamination with the help of the water-break test, 

the contaminated area is abraded manually to remove grease and create a hydrophilic surface. 

Manual abrasion is a labor-intensive and time-consuming process. As a result, it can interrupt 
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the rapid flow of parts through the production line. Moreover, manual abrasion may expose 

workers to hazardous chemicals such as composite particles. To tackle these challenges, 

industrial robotic arms can be used to automate the abrasion process.  

However, a challenge in using industrial robotic arms is that they can only perform 

preprogrammed commands for calibrated location of the workpiece. Robotic arms cannot 

automatically account for the variations in the robot cell. The location of the workpiece with 

respect to the robot needs to be recalibrated for every part before the robot performs the 

desired operation on the workpiece. Another challenge is to generate an abrasion path that 

the robot must follow. This path depends on the location and size of the contaminated area. 

This thesis develops a methodology that automatically locates the workpiece and generates 

the abrasion tool path based on the detected failed regions captured by the vision system.         

The remainder of this chapter is divided into two sections. Section 1.2 presents the 

problem statement and research objectives. Section 1.3 presents the general elements of the 

developed framework for autonomous robotic inspection and abrasion of composite panels. 

1.2 Problem statement and research objective 

The main goal of this thesis is to automate the process of abrading and inspecting 

composite panels prior to surface treatment steps such as painting and coating. This thesis 

employs a 6-DOF industrial robotic arm equipped with vision cameras to automate both the 

inspection and abrasion processes. To achieve this goal, three main problems (objectives) 

must be addressed, as summarized in Figure 1.2. Assuming that the panel is placed arbitrarily 

in front of the robot (which is often the case in fixtureless manufacturing settings), the first 

objective is to automatically and accurately localize (i.e. find the location and orientation of) 

the panel in the robot cell. The second objective is to autonomously detect hydrophobic 

contamination on the workpiece’s surface during the water-break test. The third objective is 

to generate a smooth tool path for abrading the failed regions to remove contamination. 
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Figure 1.2: Overview of application and research objectives 

1.3 Proposed solution and approach 

This thesis develops a machine vision framework and the corresponding vision 

processing algorithms to automate the surface pretreatment process. The body of the thesis 

is divided into two main parts (chapters) that discuss the proposed solution in detail. The first 

part of the thesis, which is presented in Chapter 3, focuses on vision system calibration and 

automated part localization (Objective 1). The second part, which is explained in Chapter 4, 

presents the developed algorithms and methodology for automated water-break inspection 
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(Objective 2) and tool path generation (Objective 3). The contents of these two parts are 

outlined below in more detail. 

Part 1: Vision system calibration and automated part localization 

For any robotic system that uses machine vision, it is important to know the position 

and orientation of the vision sensors with respect to the robot’s location. In the field of 

precision manufacturing, the location of each component of the machine cell is defined using 

a 3D coordinate system. This thesis proposes a part localization framework based on 

information from a 2D and 3D camera. Specifically, in this work, a LUCID Triton (Figure 

1.3) has been used for 2D imaging, and a Zivid Two (referred to as Zivid in this thesis) has 

been used for capturing 3D point clouds.  

 

Figure 1.3: Triton 2D camera (left) [2] and Zivid Two 3D camera (right) [3] 

As explained in Chapter 3, the pin hole camera model is used to assign a 3D 

coordinate system to vision cameras. Then, a three-point hand eye calibration method is 

proposed that can obtain the transformation between the robot’s coordinate system and the 

camera’s coordinate system. The process of assigning a 3D coordinate system to the camera 

and finding the transformation between the camera and the robot is known as vision system 

calibration. This step is a prerequisite for integrating machine vision cameras in the robot 

cell used in this thesis. 

Deploying robotic arms for performing machining operations such as abrasion needs 

precise information of the workpiece location with respect to the robot’s coordinate system. 

Traditionally, a workpiece is localized in the robot’s coordinates by manually touch probing 

the workpiece using the robot’s end effector (Figure 1.4). Manual workpiece calibration is 

time-consuming and can increase the downtime of the robot cell.  
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Figure 1.4: Manual touch probing part for workpiece location calibration [4] 

Instead of manual workpiece calibration, this thesis proposes an automated 

framework that uses 2D+3D vision cameras for locating the workpiece in the robot’s 

coordinates. The point clouds of the composite panel are captured using a Zivid camera, and 

Iterative Closest Point (ICP) algorithms are used for point registration. A vision-based 

workpiece corner detection algorithm is proposed for improving the accuracy of the part 

localization. The proposed part localization technique ultimately provides the transformation 

between the robot’s and workpiece’s coordinate systems (frames). Hence, the robot can 

perform desired operations on the part knowing the part’s location relative to the robot.  

Part 2: Automated water-break inspection and tool path generation 

For performing the water-break test, water is sprayed over the surface of the 

composite panel. Images of water flowing downwards on the composite panel’s surface are 

captured using the Zivid camera during the water-break test. Image processing algorithms 

are proposed to automatically detect the water-broken regions within the captured images. 

Regions of the composite panel that contain water-broken (failed) areas need to be 

abraded. This thesis proposes to divide the surface of the panel into multiple grids. Hence, 

any grid that contains water-broken areas is abraded. For creating abrasion tool path for each 

grid, the point clouds of the composite panel and all grids are first converted to smooth basis-

spline (B-spline) surfaces. Then, an algorithm for generating area scanning abrasion tool 

paths for B-spline surfaces is developed.  
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1.4 Thesis layout 

The rest of this thesis is organized as follows. Chapter 2 presents the literature review 

and prior work related to automated part localization, vision-based inspection, and robot path 

generation. Chapter 3 discusses the vision system calibration and automated part localization 

in detail. Chapter 4 presents the automated water-break inspection and tool path generation. 

Finally, the findings of the thesis and future work are summarized in Chapter 5. 
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2 Literature Review 

2.1 Overview 

 This chapter presents existing literature in the areas relevant to part localization, 

inspection of composite panels, and vision-guided robotic abrasion. The literature on part 

localization is reviewed in Section 2.2. Section 2.3 provides the prior art in the field of water-

break inspection as a method for detecting contamination. Section 2.4 presents past research 

related to vision-based inspection. Finally, the literature on automated tool path generation 

for robotic treatment of free-form surfaces is reviewed in Section 2.5. Section 2.6 

summarizes the chapter. 

2.2 Part localization  

In order for a robot or a machine to perform an operation on a part, the location and 

orientation of the part with respect to the machine coordinate system must be accurately 

known. Determining the workpiece coordinate system with respect to machine’s coordinate 

system is referred to as part localization. Commonly, the workpiece is localized in the 

machine coordinate by manually touch-probing the part at multiple locations. There are 

several commercial touch probing systems available in the market, e.g. probing systems and 

software by Renishaw [5], Marposs [6], Heidenhain [7], and Mitutoyo [8].  However, as 

investigated by Srinivasan et al. [9], there are some challenges in using touch probe-based 

part localization systems. For example, they require extensive human intervention and 

manual decision making, which is a time-consuming process and leads to machine down 

time. 

To automate the part localization problem, several researchers have employed machine 

vision. For example, Srinivasan [9] developed an automatic part localization system using 

3D scans for Computer Numerical Control (CNC) machines. Zheng et al. [10] used a 2D 

monocular vision system for automated part localization in robotic grasping. Skotheim [11] 
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developed a part localization technique for material handling using 3D machine vision 

sensors. Rajaraman et al. [12] developed a vision-based part localization system for robotic 

welding, and Okarma et al. [13] used a 3D scanning system for workpiece positioning on 

CNC machines. The nature of the workpiece-placement setup defines the preference of the 

type of machine vision system to be used for part localization. For a setup where the part can 

only have translational placement error, a 2D image-based system is preferred. A 3D point 

cloud-based system, on the other hand, is preferred if the workpiece can have orientation 

placement errors as well. 

Hernandez et al. [14] proposed a 2D machine vision framework for automatically 

recognizing a part and extracting its geometrical information from an existing library of 

Drawing Exchange Format (DXF) files. As an example of a 3D point cloud-based system, 

Fan et al. [15] developed a point cloud registration technique for localizing a part. They 

presented a point cloud-to-CAD model registration method based on edge matching.  

Besl et al. [16] proposed the well-known Iterative Closest Point (ICP) method. The ICP 

method is a computationally efficient point cloud registration method. Since the part used in 

this thesis is a free-form surface, and the placement setup can have both position and 

orientation errors, this work uses the ICP method for initial part localization. A 2D vision-

based system is then incorporated in the framework to improve the accuracy of the part 

localization in this thesis. 

2.3 Water-break test 

The water-break test is based on the fact that a contaminant-free surface should be able 

to hold a continuous water film without any breaks. On the contrary, a contaminated surface 

exhibits water-broken regions instead of a continuous film layer [17]. The water-break test 

is a widely used method for organic surface contamination detection and has been used in 

the industry for many years.  Despite being referred to as a “nineteenth century approach” 

[18] , it is still used as the standard method for contamination detection in the aerospace 

industry. 
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The ASTM-F22 [19] standard provides a step-by-step procedure for performing the 

water-break test for detecting the hydrophobic contamination on a hydrophilic surface. The 

standard also suggests that the presence of hydrophobic contamination can prevent the 

adhesive bond of surface treatments like coating, priming, and painting.  

Despite the fact that the water-break test is a widely accepted method for hydrophobic 

surface contamination detection, it has also faced some criticism. Ellis [20] argues that there 

are too many variables in the water-break test, e.g. surface roughness, presence of abrasive 

particles and their nature, and smearing from abrasive brushes. Monzyk et al. [21] state that 

the water-break test is extremely slow and limited to small workpieces. Kolenov et al. [22] 

acknowledge that the water-break test provides satisfactory results, but they find the test to 

be very time-consuming and expensive for large parts. Similarly, Ecault et al. [23] found the 

water-break test to be laborious for large parts.  

This thesis aims to mitigate the issues in utilizing the water-break test on large surfaces 

by developing a fully automated water-break inspection system using machine vision. Amos 

et el. [24] in their patent discussed the potential hazards of manually inspecting the water-

break test. Their patent develops an apparatus for detecting water-broken regions using a 

long infrared radiation (IR) range camera. As a motivation from their patent, the effects of 

near IR lights for detecting water-broken regions have been tested in this thesis. 

The review suggests that the manual water-break test is slow and laborious. Therefore, 

this thesis develops a vision-based system and associated image processing algorithm that 

can automate the water-break detection process.  

2.4 Vision-based inspection 

Vision-based inspection is a non-destructive inspection method that uses vision sensors 

such as digital cameras and 3D scanners. Vision-based inspection relies on the visual 

appearance and shape of the surface defects that need to be detected. Vision-based inspection 

has been used widely in a range of applications. For example, Traband et al. [25] provided a 

foundation for research in the area of Computer Aided Design (CAD) directed inspection 

using solid-state cameras. Chen et al. [26] developed three-part machine vision algorithms 
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comprising segmentation, recognition, and analysis for automated inspection of production 

parts. Wang et al. [27] used back propagation neural networks for developing a machine 

vision algorithm for defect detection in textile fabrics. Bradley et al. [28] used neural network 

classifiers for developing an automatic inspection system for manufactured parts. They used 

a 3D vision system for part identification and part dimensional inspection. Koch et al. [29] 

presented the achievements and challenges in implementation of vision-based inspection 

systems for inspecting large concrete structures. Li et al. [30] proposed a multi-layer feature 

fusion network based on the faster region-based Convolutional Neural Network (Faster 

RCNN) to design an automatic Metro Tunnel Surface Inspection System. Menendez et al. 

[31] developed a preliminary system for inspecting the state of transmission lines based on 

detection of wires through artificial vision. Bong et al. [32] developed a “Support Vector 

Machine” (SVM) based algorithm to classify the type of defects on the surface of leather 

fabric. Maghami et al. [33] designed and trained a deep fully convolutional network (FCN) 

with the U-NET architecture for detecting damages and cracks in drilled holes in aerospace 

carbon fiber reinforced polymers (CFRPs). 

Most of the research that uses 2D digital camera for inspection performs image 

processing as a preliminary step (for enhancing the image quality) or as the main algorithm 

for segmenting the defects. The review also suggests that researchers are employing neural 

networks for detecting defects in the inspection process. However, neural networks need a 

lot of training data. This thesis develops an image processing algorithm for segmenting the 

pixel coordinates of the water-broken regions that represent hydrophobic contamination on 

a composite’s surface. Although this thesis has not employed neural networks for automating 

the inspection process, the detected pixel coordinates of the defects using the proposed image 

processing algorithm can be used for labeling training data for training the neural network.  

2.5 Surface reconstruction and tool path generation  

The problem of point cloud to 3D surface reconstruction falls under reverse engineering. 

Reverse engineering is the process of generating a geometric CAD model from scanned 3D 

points of an existing part [34]. As investigated by Abella et al. [35], reverse engineering has 



Chapter 2. Literature Review 

12 

 

evolved from a skilled manual process to an engineering tool using sophisticated software 

and measuring instruments [36]-[37]. The steps for reverse engineering a mechanical part is 

to first capture the point cloud data, then preprocess the point cloud for surface fitting, 

interpolate the surface using the processed points, and finally create a CAD model using the 

fitted surface. The literature for mathematical modelling of a free-form surface using point 

cloud data is reviewed in the following. 

The mathematical modelling of a free-form surface falls under the problem of 3D 

reconstruction. 3D reconstruction is a process of reproducing a digital representation of an 

object in a computer. Non-Uniform Rational B-Spline (NURBS) [38] is one of the most 

widely used surface fitting models in the field of 3D reconstruction [39]. Several researchers 

have proposed different methods for reconstructing a surface using NURBS especially for 

unorganized point clouds. For example, Wu et al. [40] presented a parametric surface 

modelling method for accurately fitting tea leaf point clouds. Gálvez et al. [41] proposed new 

iterative two-step genetic-algorithm-based method for B-spline reconstruction. Leal et al. 

[39] presented a regression plane projection-based method for B-spline surface 

reconstruction from unorganized point cloud. The literature suggests that B-spline surface 

construction can be complex for unorganized point cloud. To avoid this issue, this work uses 

a 3D camera that outputs an organized point cloud. The organized point cloud can readily be 

used as the set of control points for generating desired B-spline surfaces. 

Once a 3D surface is reconstructed from a captured point cloud, the next task is to 

generate an area scanning abrasion tool path for free-form surfaces. Area coverage 

machining tool paths for a free-form surface can be categorized as iso-parametric and iso-

scallop tool paths [42]. Iso-parametric tool paths possess several advantages. For example, 

they require simpler calculations and are therefore more computationally efficient. However, 

the uneven 3D distance between iso-parametric curves defined on a free-form surface may 

cause redundant or under-cut machining [43]. Can et al. [44] proposed a novel iso-scallop 

tool path generation method for efficient five axis free-form surface machining. Randhawa 

et al. [45] focused on an algorithm that generates tool paths for free-form surfaces. Their 

work includes two components; first, it determines the maximum distance between two cutter 
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points. The second component then determines the maximum distance between two adjacent 

tool paths. In contrast to the iso-parametric and iso-scallop based tool path generation 

methods, Liu et al. [42] proposed a new free-form surface machining tool path generation 

method by introducing the tensor property of machining width.  

Most of the methods mentioned above produce a geometrically uniform coverage tool 

path. Han et al. [46], [47] proposed a tool path planning method for physically uniform 

coverage instead of geometrically uniform coverage of polishing path. This work leverages 

Han’s findings for generating the area covering tool paths for abrading free-form surfaces. 

2.6 Summary 

Prior literature on part localization, vision-based inspection, and abrasion path 

generation is reviewed in this chapter. Common issues with traditional touch probe-based 

part localization methods are presented, and 2D and 3D vision-based methods for part 

localization are studied. The reviewed literature motivated the point cloud registration-based 

part localization method used in this thesis. As a contribution, a novel 2D vision-based 

framework is developed in this thesis for improving the accuracy of part localization 

(Chapter 3). 

Water-break test and vision-based inspection techniques are reviewed. It is found in the 

literature that the water-break test is difficult to implement for inspecting large surfaces. To 

tackle this challenge, this thesis presents a framework for autonomous vision-based 

contamination detection for water-break test. The concepts of 3D reconstruction and tool 

path generation are introduced. Different 3D reconstruction methods are reviewed. Different 

approaches for generating tool paths for free-form surfaces are studied. The reviewed 

literature motivated the method for generating an area scanning tool path developed in this 

work (Chapter 4).  

To conclude, an autonomous vision-based framework for part localization, detection of 

hydrophobic contamination on composite panels, and abrasion path generation is 

contributed.
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3 Vision system calibration and automated part localization 

3.1 Introduction 

The first step in the integration of any machine vision system is to calibrate the vision 

sensors. Digital cameras must first be calibrated to find their intrinsic characteristics such as 

focal length, optical center, and distortion coefficients. This first step is known as intrinsic 

calibration. Intrinsic parameters are used to assign a 3D coordinate system to the camera. 

Once the intrinsic parameters are found, the next calibration step is to find the so-called 

extrinsic parameters. Extrinsic parameters determine the location of the camera with respect 

to the machine. In a robot cell, extrinsic parameters encompass the rotational and 

translational transformation of the camera’s coordinate system with respect to the robot’s 

coordinate system. The process of localizing the workpiece coordinate system with respect 

to the machine’s coordinate system is known as part localization. The current practice of 

touch probing the workpiece for localization is time consuming. Hence, an automated 

technique is needed for efficient and fast part localization.  

This chapter is organized as follows. The Kuka robot cell used as the experimental 

platform in this research is first introduced in Section 3.2. Section 3.3 presents the convention 

for establishing the robot coordinate system. Section 3.4 discusses the homogeneous 

transformation matrix and its relationship with the pose format. The socket communication 

with Kuka robot is discussed in Section 3.5. Calibration of the vision system is presented in 

Sections 3.6 and 3.7. Sections 3.8 and 3.9 present the proposed method for accurate vision-

based part localization. Finally, Section 3.10 summarizes the chapter.    

3.2 Experimental Platform: Kuka robot cell 

Figure 3.1 shows the robot cell used in this research. The cell comprises an industrial 

6-DOF robotic arm (Kuka KR6-R700-2), a 3D colored point cloud camera (Zivid, RGBD), 

a 2D camera (Triton, RGB), and a free-form composite panel (Workpiece). 
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Figure 3.1 Experimental platform: Kuka robot, cameras, and composite panel 

 

The Zivid camera can capture 2D color information (RGB color image) as well as 

3D point cloud (X, Y, Z) information. The point cloud provided by the Zivid camera is 

organized and mapped on to the 2D image color channel. This means that the information of 

each color pixel of image has 3D position data. The point cloud captured by the Zivid camera 

is used for the part localization and tool path generation aspects of this thesis. The 2D color 

image captured by the Zivid camera is used for automatic water-break inspection. As shown 

in Figure 3.1, the Zivid camera is held stationary beside the robot.  

The sanding tool along with the 2D color Triton camera are attached to the robot’s 

flange. This 2D color camera can be moved around by the robot and is used for improving 

the part localization accuracy, as discussed in Section 3.9. The composite panel is placed 

arbitrarily in front of the robot while ensuring the panel is within the view and reach of the 

cameras and the robot. The goal is for the robot to automatically localize the panel, inspect 

it during the water-break test, and abrade the failed regions (i.e. contaminated areas).  

3.3 Establishing coordinate systems in the robot cell 

In robotic applications, the location and orientation of the workpiece with respect to 

the robotic arm must be known accurately. The pose, i.e. position and orientation, of the 

workpiece is defined in the Cartesian coordinate system of the robotic arm. Therefore, it is 
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important to understand the conventions and placement of the coordinate system of the robot. 

As illustrated in Figure 3.2, Kuka robots by convention have four coordinate systems, i.e., 

robot’s root coordinates, world coordinates, tool coordinates, and base coordinates.  

The robot’s root coordinate system is generally located at the center of the base of 

the robot. The world coordinate system is assumed fixed at an arbitrary location in the robot 

cell. By default, the world coordinate system is chosen the same as the robot’s root 

coordinates. The origin of the tool coordinates can be defined by the operator and is kept at 

the tool center point (TCP). Sometimes, it is easier for a robot programmer to define the 

waypoints of the robots with respect to the workpiece’s position in the scene. For defining 

the workpiece coordinate system in the robot cell, the base coordinate system is used. The 

base coordinate system can be defined manually by the robot operator according to the 

position of the workpiece. It is defined in the form of a transformation with respect to the 

world coordinate system.  

 

Figure 3.2 Generalized coordinate systems in a robot cell 
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As shown in Figure 3.2, the robot root’s coordinates and the base coordinates are 

defined with respect to the world coordinates. The tool coordinate system, on the other hand, 

is defined with respect to the flange of the robot.  

To simplify the transformations, and without loss of generality, this thesis assumes 

that the base coordinates and the robot’s root coordinates coincide with the world 

coordinates. Moreover, the reference coordinate system of the free-form composite panel is 

also assumed coincident with the robot’s root coordinates.  

3.4 Transformation matrix and pose representation 

Transformation matrices are used extensively in this work to map information (e.g. 

location data) between different coordinate frames. Therefore, this section briefly discusses 

the homogeneous transformation matrix and its conversion to the pose format. A 

homogenous transformation matrix is a 4x4 matrix that describes the rotation 𝑅  and 

translation 𝑡 between two coordinate systems. As illustrated in Figure 3.3, in robot vision 

applications we have two crucial coordinate systems: robot’s base coordinate system, 𝑏, and 

camera’s coordinate system, 𝑐. For a robot to perform any operation using the camera’s view, 

all the points described in the camera’s coordinate system must be transformed to the robot’s 

base frame. In this work, homogenous transformation matrices are represented by 𝑇∗ 
∗∗

  

 
, 

where the subscript (*) represents the transformation frame from which the points are 

transformed, and the upper prefix (**) denotes the transformation frame where the points are 

transformed to. For example, the homogeneous transformation matrix 𝑇𝑐 
𝑏  maps points 

expressed in the camera’s coordinate system 𝑐 to the robot’s base frame 𝑏.  
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Figure 3.3: Frame transformation between robot and camera coordinates 

 

𝑇𝑐 
𝑏 = [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧
0 0 0 1

] =  [

   |  
 𝑅  | 𝑡
 __ __ __ | __ 
0 0 0 | 1

] 3.1 

As seen in Eq. 3.1, the transformation matrix 𝑇𝑐 
𝑏  consists of 12 variables, out of 

which 9 elements (𝑟11, 𝑟12,… , 𝑟33) represent the rotation 𝑅 and 3 elements (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) 

represent the translation 𝑡 of the camera’s frame relative to the robot’s base frame. 

An alternative way to represent the transformation between two frames is using 

‘pose’. The pose format is resented by only 6 elements as: 

𝑃𝑜𝑠𝑒 = (𝑋, 𝑌, 𝑍, 𝐴, 𝐵, 𝐶), 3.2 

where, 𝑋, 𝑌, 𝑍 represent the 3D translation between two frames (equal to 𝑡𝑥, 𝑡𝑦, 𝑡𝑧). 𝐴, 𝐵, 𝐶 

represent the 3D rotation between the two frames in terms of Euler angles. The Kuka robot 

uses the pose data with Euler angles of sequence ‘ZYX’. Hence, 𝐴 is the rotation along the 

Z-axis, 𝐵 is the rotation along the Y-axis, and 𝐶 is the rotation along the X-axis. Coordinate 

frame transformations are typically performed in the matrix format (Eq. 3.1), while the 

robot’s controller accepts the transformation data in the pose format. Hence, it is important 

to know the relationship between the two formats. 
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 If the transformation matrix is known, the translation part (𝑋, 𝑌, 𝑍) of the pose format 

is the same as the t terms (𝑡𝑥, 𝑡𝑦, 𝑡𝑧). The formulation for the rotation part (𝐴, 𝐵, 𝐶) of the 

pose format can be obtained as: 

 

𝐸𝑢𝑙𝑒𝑟 𝑎𝑛𝑔𝑙𝑒𝑠 

{
 
 

 
 𝐴 = arctan (

𝑟21

𝑟11
)

𝐵 = arctan (
−𝑟31

√1 − 𝑟312
)  ,

𝐶 = arctan (
𝑟32

𝑟33
)  

 3.3 

where the 𝑟𝑖𝑗  terms are the rotation terms as presented in Eq. 3.1. Conversely, if the 

transformation pose (𝑋, 𝑌, 𝑍, 𝐴, 𝐵, 𝐶) is known, the formulation of the transformation matrix 

is given by: 

 𝑇 =  [

cos(𝐴) cos(𝐵) cos(𝐴) sin(𝐵) sin(𝐶) − cos(𝐶) sin (𝐴) sin(𝐴) sin(𝐶) + cos(𝐴) cos(𝐶)sin (𝐵) 𝑋

cos(𝐵) sin(𝐴) cos(𝐴) cos(𝐶) − sin(𝐴) sin(𝐵) sin(𝐶) cos(𝐶) sin(𝐴) sin(𝐵) − cos (𝐴)sin (𝐶) 𝑌

−sin(𝐵) cos(𝐵) sin(𝐶) cos(𝐵) cos(𝐶) 𝑍

0 0 0 1

]. 3.4 

Similar to the notation of the transformation matrix 𝑇∗ 
∗∗

  

 

 
, the upper prefix (target frame) 

and subscript (original frame) in the pose format are shown as ( 𝑃𝑜𝑠𝑒∗ 
∗∗ ).  

3.5 Kuka socket: communication between robot and vision system 

Robot paths are provided to the robot controller in terms of waypoints. Waypoints 

define a series of linear motions that the robot needs to follow. The Kuka Robot Language 

(KRL) is the programming language used to control the Kuka robot. It is a proprietary 

programming language developed by the manufacturer, Kuka Robotics. Kuka robots provide 

a socket communication known as the Ethernet-KRL-Interface (EKI) module, which allows 

direct communication with the robot controller. The EKI module is a networking framework 

specifically made to enable external devices to communicate with the Kuka controller via an 

Ethernet connection. 
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As shown in Figure 3.4, there are three main components in the EKI framework, i.e., 

the server, the client, and the Extensible Markup Language (XML) configuration file. In 

socket communication, the server is the component that listens for the client’s requests. In 

this research, the robot’s controller is the server, and a python script which runs the 

developed vision processing algorithms is the client. The Ethernet connection is configured 

by an XML file that is stored in the robot’s controller. This XML file is used to define the 

type of connection and the format of XML socket messages that are sent and received within 

the network.  

 

Figure 3.4: Kuka EKI networking socket for robot-vision communication 

Considering the extensive use of robot-vision communication in this thesis, a python 

library for communicating with the Kuka controller via EKI was first developed. Table 3.1 

presents the supported functions of the developed Kuka-python library. 

 

Table 3.1: Supported functions in the Kuka-python library 

Name Function Description 

Linear motion move_lin(pose) This function sets the 

robot command for 

performing a linear 

motion through a series 

of waypoints ‘pose’. 
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Point-to-Point motion move_j(joints_pose) This function sets the 

robot command for 

performing a point-to-

point motion to the joint-

angle configuration 

‘joint_pose’. 

Receive current state get_current_state() This function returns the 

current joint pose, flange 

pose, and TCP pose. 

Set base frame set_base(base_frame) 

 

This function sets the 

robot’s base frame to 

‘base_frame’. 

Set TCP frame set_tcp(tcp_frame) This function sets the 

robot’s TCP frame to 

‘tcp_frame’. 

Set acceleration and 

speed 

set_acc_speed(acceleration,speed) This function sets the 

robot’s Cartesian speed 

and acceleration. 

Control digital input set_digin(number,value) This function sets the 

robot’s digital input to 

the Boolean value of 

True or False. 

Control digital output set_digout(number,value) This function sets the 

robot’s digital output to 

the Boolean value of 

True or False. 

Run a predefined 

subroutine 

call_subroutine() This function calls a 

predefined subroutine. 
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3.6 Intrinsic camera calibration 

A 2D camera maps the 3D world appearance to a 2D image. The image contains only 

2D information of an object in the form of pixel values. To determine the transformation 

between the camera and the robot, a 3D coordinate system must first be defined for the 

camera. As illustrated in Figure 3.5, the pin hole camera model is widely used for 

mathematically modeling the coordinate system of a camera. In the pin hole camera model, 

the camera is defined with its own 3D coordinate system that houses the 2D image plane. 

The size and position of the 2D image plane in the camera’s coordinate system depend on 

the focal length and field of view of the camera  

A fundamental problem in the field of machine vision is that 2D images typically 

contain distortions caused by imperfections in optical lenses. Distortions can lead to error in 

extracting information from the image. The process of correcting the image distortion and 

finding the transformation between the camera’s image plane and the real-world coordinate 

system is known as intrinsic calibration, or simply camera calibration. 

The pin hole camera model 

The pin hole camera model is commonly used for the camera calibration process. As 

illustrated in Figure 3.5, this model considers the camera as a box that has an infinitely tiny 

hole. This hole is considered as the camera’s lens through which the light passes and makes 

an image on the other side of the lens.  

 

Figure 3.5: Pin hole camera model for frame representation [14] 
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As presented in Figure 3.5, the pin hole camera model can define a coordinate system 

for the camera (𝑋𝑐, 𝑌𝑐, 𝑍𝑐)  as well as the world (𝑋, 𝑌, 𝑍) . The origin of the camera’s 

coordinate system is at the hole. The distance between the camera’s coordinate system and 

the 2D image plane is the focal length of the camera. The pixel coordinate (𝑈, 𝑉) is the 2D 

coordinate system of the image captured by the camera. The origin of the pixel coordinate 

system is typically at the top left corner of the image. The 3D data from the world coordinates 

are projected on the 2D plane of the image. This projection is modelled with the pin hole 

camera equation as [48]:   

𝑠. 𝑝𝑐 = 𝐴 [ 𝑅|𝑡 ] 𝑃𝑤 , 3.5 

where 𝑠 is a scaling factor, 𝑝𝑐 is a 2D pixel (𝑈, 𝑉) in pixel coordinates, and 𝐴 is the so-called 

camera matrix. 𝑅 and 𝑡 are the rotational and translational components of the transformation 

matrix that transform a point expressed in the world coordinates to the camera coordinates, 

and 𝑃𝑤  (𝑋, 𝑌, 𝑍) is the corresponding pixel point in the world coordinates.  

 

Pin hole camera calibration model solves for two main camera parameters known as 

intrinsic parameters and extrinsic parameters. The internal characteristics of the camera such 

as focal length, optical center, and the distortion coefficients that remain the same are known 

as intrinsic parameters. As seen in Figure 3.5, the pin hole camera model defines a coordinate 

system for the camera (𝑋𝑐, 𝑌𝑐, 𝑍𝑐). The position of the workpiece seen in the camera image 

is defined in the world coordinate system (𝑋, 𝑌, 𝑍). The location and orientation of the 

world’s coordinate system with respect to the camera’s coordinate system can be defined by 

a homogeneous transformation matrix containing a rotation matrix 𝑅 and a translation vector 

𝑡. This homogeneous transformation matrix is known as extrinsic parameter of the camera.  

The camera matrix 𝐴 is a 3x3 matrix that contains the focal length (𝑓𝑥, 𝑓𝑦) and the 

optical center (𝑐𝑥, 𝑐𝑦) of the camera:  
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𝐴 =  [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

]. 3.6 

The pin hole model equation assumes that the camera is distortion free; however, this 

is not the case in reality. The camera always has some distortion due to imperfections in the 

lens. These distortions can be modelled mathematically and can be included in the pin hole 

camera equation. There are mainly two types of distortions in the image, i.e., radial distortion 

and tangential distortion.  

 

Figure 3.6: Two types of radial distortions [49] 

Let us first examine the distortion-free pin hole camera model. The distortion free 

pin hole camera model is given by: 

s[
𝑈
𝑉
1
] = [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

    𝑡1
    𝑡2
    𝑡3

] [

𝑋
𝑌
𝑍
1

].  3.7 

Eq. 3.7 is the matrix form of Eq. 3.5. Equation 3.7 is in terms of the world coordinate system. 

We can simplify Eq. 3.7 by converting it to the camera coordinate system. Since the 

rotational matrix 𝑅 and translation vector 𝑡  define the transformation from the world 

coordinates to the camera coordinates, any point in the world coordinate system can be 

expressed in the camera’s coordinate system by: 
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[
𝑋𝑐
𝑌𝑐
𝑍𝑐

]  =  [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

    𝑡1
    𝑡2
    𝑡3

] [

𝑋
𝑌
𝑍
1

]. 3.8 

By substituting Eq. 3.8 in Eq. 3.7, Eq. 3.7 becomes equivalent to the following:  

[
𝑈
𝑉
] =  [

𝑓𝑥𝑥𝑢 + 𝑐𝑥
𝑓𝑦𝑦𝑢 + 𝑐𝑦

], 3.9 

 

with 

[
𝑥𝑢
𝑦𝑢
] =  [

𝑋𝑐/𝑍𝑐
𝑌𝑐/𝑍𝑐

]. 3.10 

Equation 3.9 is the distortion-free mathematical model for projecting a point in the camera’s 

coordinates into a pixel of the camera’s pixel coordinates. To incorporate the distortion 

factor, Eq. 3.9 can be rewritten as follows: 

[
𝑈
𝑉
] =  [

𝑓𝑥𝑥𝑑𝑖𝑠 + 𝑐𝑥
𝑓𝑦𝑦𝑑𝑖𝑠 + 𝑐𝑦

], 3.11 

where 

[
𝑥𝑑𝑖𝑠
𝑦𝑑𝑖𝑠
] =  [

𝑥𝑓 + 2𝑝1𝑥𝑓𝑦𝑓 + 𝑝2(𝑟
2 + 2𝑥𝑓

2)

𝑦𝑓 + 2𝑝2𝑥𝑓𝑦𝑓 + 𝑝1(𝑟
2 + 2𝑦𝑓

2)
] 3.12 

and 

[
𝑥𝑓
𝑦𝑓
] =  [

𝑥𝑢(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6)

𝑦𝑢(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6)
]. 3.13 

 

The terms 𝑘1, 𝑘2, 𝑘3  are the coefficients of radial distortion. The terms 𝑝1, 𝑝2 are the 

coefficients of the tangential distortion according to the Brown Conrady’s camera distortion 

[50] model, and  𝑟2 = 𝑥𝑢
2 + 𝑦𝑢

2 . 

The OpenCV library [51] provides a procedure for calculating the intrinsic 

parameters. In this thesis, camera calibration for determining the intrinsic parameters and 
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distortion parameters is performed for the Triton 2D camera. The Zivid 3D camera is factory 

calibrated, i.e. the camera matrix and distortion coefficients are provided by the 

manufacturer. 

To model the coordinate system of the Triton camera, its intrinsic parameters are 

determined using the OpenCV library [52]. OpenCV provides a function known as 

‘cv.calibrateCamera(object_points, image_points, image)’. This function takes the input of 

‘object_points’ and ‘image_points’, and it returns the intrinsic parameters of the camera as 

the output. The object_points are the coordinate points in the real world in terms of (𝑋, 𝑌, 𝑍). 

The image_points are the corresponding image points of those real world points in terms of 

pixel coordinates (𝑈, 𝑉). There are several calibration patterns that can be used as the target 

object for defining the object points such as charuco boards, circular pattern calibration 

boards, and checkerboards. Readers can refer to [53] for further details on the calibration 

patterns. These calibration patterns have known dimensions in the real world, which means 

that the ‘object points’ are already known. As shown in Figure 3.7, to calibrate the camera, 

multiple images of the target calibration object are first captured from different viewpoints. 

Then, the image points (image_points) of the target object are detected in the pixel 

coordinates. Finally, the object points and their corresponding image points are used as the 

input to the ‘cv.calibrateCamera(…)’ function to retrieve the intrinsic parameters of the 

camera.  

In this thesis, the checkerboard pattern (Figure 3.7) is used as a target object that 

defines a world coordinate. The images of the chess board pattern are captured from multiple 

angles and saved in a folder.  

 

Figure 3.7: Few images of chess board pattern captured by Triton 2D camera 

The findChessBoard() function, provided by OpenCV, detects the chess board corner 

pixels in all the images. Hence both the object points and the image points of the checker 
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board are known. Using those as the input for calibrateCamera(…), the intrinsic parameters 

for the Triton camera are determined. 

3.7 Hand-eye calibration: finding the robot-camera transformation 

The robot cell used in this thesis has two cameras, i.e. Triton 2D camera (RGB) and 

Zivid Two 3D camera (RGBD). The Triton 2D camera is attached to the robot’s flange and 

the Zivid 3D camera is mounted at a fixed location. The captured images of the 2D camera 

and the point clouds captured by the 3D camera are represented in the camera’s coordinate 

system and therefore must be transformed to the robot’s coordinate system. To transform the 

image or point cloud data to the robot’s coordinate system, the transformation between the 

camera’s coordinate system and the robot’s coordinate system must be known. The process 

of finding this transformation is known as the hand-eye calibration. 

This section discusses the procedure for finding two transformations: 1) The 

transformation between the onboard Triton camera and the robot, and 2) the transformation 

between the fixed Zivid camera and the robot’s coordinate system. As illustrated in Figure 

3.8, these two cameras are mounted in different configurations, one is moving and one is 

fixed. Hence, they need different types of hand-eye calibration. For the moving Triton 

camera (attached to the robot’s flange), ‘eye-in-hand calibration’ is performed, while for the 

Zivid camera (fixed in the robot cell), ‘eye-to-hand calibration’ must be performed. The step 

of finding the hand-eye transformations is a prerequisite for the robot guidance and 

inspection tasks studied in this thesis. 

For the fixed Zivid camera (Figure 3.8, left), eye-to-hand calibration is performed. 

The eye-to-hand calibration retrieves the transformation between the camera’s coordinate 

system and robot’s base coordinate system, i.e. 𝑇𝑐 
𝑏 . Since the Triton camera is attached to 

the robot’s flange, the eye-in-hand calibration is performed (Figure 3.8, right). The eye-in-

hand calibration retrieves the transformation between the camera’s coordinates and the 

robot’s flange, i.e. 𝑇𝑐 
𝑓 . 
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Figure 3.8: Hand-eye calibration for fixed Zivid (left) and onboard Triton (right) 

cameras 

A three-point calibration method is developed in this thesis for retrieving the 

transformations for both configurations. The proposed three-point method uses a chessboard 

pattern as a connecting link between the robot and the camera. The three points of the 

chessboard are used to find the transformation between the robot and the chessboard. Then 

the transformation between the camera and the chessboard is found using the perspective-n-

point problem. These two transformations are used to obtain the desired transformation 

between the robot and the camera. 

The first step for performing hand-eye calibration is to calibrate the tool center point 

(TCP) of a sharp tool. The four-point TCP calibration function provided in the robot’s 

controller is used for calculating the offset of the TCP from the flange.   

 

Figure 3.9: Robot tool calibration (TCP offset calculation) 
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After the TCP calibration process, the chessboard is placed in front of the robot. A 

coordinate system is arbitrarily assigned to the chessboard pattern. Figure 3.10 shows the 

coordinate convention for chessboard pattern used in this thesis. 

   

Figure 3.10: Chessboard coordinate system and three defining points 

The sharp TCP is manually moved to the three points on the chessboard and the 

(𝑋, 𝑌, 𝑍) data of these points w.r.t the robot’s base are saved manually from the robot’s teach 

pendant. The first point P1: (𝑃1𝑥 , 𝑃1𝑦, 𝑃1𝑧) is the origin of the chessboard, the second point 

P2: (𝑃2𝑥, 𝑃2𝑦, 𝑃2𝑧) is any point on the X-axis of the chessboard, and the third point P3: 

(𝑃3𝑥 , 𝑃3𝑦, 𝑃3𝑧) is any point on the positive XY plane of the chessboard. These three points 

on the chessboard w.r.t the robot’s base are used to find the transformation between the 

chessboard and the robot’s base, i.e. 𝑇𝑐ℎ𝑒𝑠𝑠 
𝑏 .  

 

Figure 3.11: Transformation between the chessboard and robot’s base 
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The translation component of transformation 𝑇𝑐ℎ𝑒𝑠𝑠 
𝑏  is the same as (𝑃1𝑥 , 𝑃1𝑦, 𝑃1𝑧), 

since that point is the origin of the chessboard. The rotation component of the transformation 

𝑇𝑐ℎ𝑒𝑠𝑠 
𝑏  can be retrieved by finding the vector of three basis axes of the chessboard w.r.t the 

robot’s base. The x-axis (Vector X), as presented in Eq. 3.14, is simply found by subtracting 

point P1 from P2 and then normalizing the result. 

Vector X: (𝑋𝑥, 𝑋𝑦, 𝑋𝑧) =  𝑛𝑜𝑟𝑚(𝑃2 − 𝑃1) 3.14 

The three points altogether can define a plane that gives the z-axis (𝑉𝑒𝑐𝑡𝑜𝑟 𝑍) of the 

chessboard w.r.t the robot’s base. The formulation for finding 𝑉𝑒𝑐𝑡𝑜𝑟 𝑍 is given by: 

𝑉𝑒𝑐𝑡𝑜𝑟 𝑍: (𝑍𝑥, 𝑍𝑦, 𝑍𝑧) = 𝑐𝑟𝑜𝑠𝑠(𝑉𝑒𝑐𝑡𝑜𝑟 𝑋, 𝑉𝑒𝑐𝑡𝑜𝑟 𝑉), 3.15 

where 𝑉𝑒𝑐𝑡𝑜𝑟 𝑉 = 𝑛𝑜𝑟𝑚(𝑃3 − 𝑃1). Following the right-hand rule, the y-axis (𝑉𝑒𝑐𝑡𝑜𝑟 𝑌) 

can be found by the cross product of the z-axis and x-axis, as seen below: 

𝑉𝑒𝑐𝑡𝑜𝑟 𝑌: (𝑌𝑥, 𝑌𝑦, 𝑌𝑧) = 𝑐𝑟𝑜𝑠𝑠(𝑉𝑒𝑐𝑡𝑜𝑟 𝑍, 𝑉𝑒𝑐𝑡𝑜𝑟 𝑋). 3.16 

Hence the transformation 𝑇𝑐ℎ𝑒𝑠𝑠 
𝑏  can be represented as below: 

𝑇𝑐ℎ𝑒𝑠𝑠 
𝑏 = [

𝑋𝑥 𝑌𝑥 𝑍𝑥 𝑃1𝑥
𝑋𝑦 𝑌𝑦 𝑍𝑦 𝑃1𝑦
𝑋𝑧 𝑌𝑧 𝑍𝑧 𝑃1𝑧
0 0 0 1

]. 3.17 

  

Eye-to-hand calibration for the fixed Zivid camera 

For the case of eye-to-hand calibration, where the camera is fixed in the robot’s cell, 

the transformation between the robot’s base and the camera ( 𝑇𝑐 
𝑏 ) is calculated as follows. 
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Figure 3.12: Eye-to-hand transformation chain for the fixed Zivid camera 

Using the chain of transformations, the transformation 𝑇𝑐 
𝑏  can be given by: 

𝑇𝑐 
𝑏 = 𝑇𝑐ℎ𝑒𝑠𝑠 

𝑏 . 𝑇𝑐 
𝑐ℎ𝑒𝑠𝑠  3.18 

where, 𝑇𝑐 
𝑐ℎ𝑒𝑠𝑠  is the transformation between the chessboard and the camera and must be 

obtained. In this thesis, the transformation between the camera and the chessboard is 

estimated using the perspective-n-point method. Perspective-n-point is a problem that 

estimates the pose of the camera in relation to the real-world coordinates given a set of object 

points in the 3D world space and the corresponding 2D image points (𝑈, 𝑉). The OpenCV 

function ‘solvePnP()’ solves for perspective-n-point problem. This function takes the input 

of 3D object points, their corresponding image points, the camera matrix ‘A’, and the 

distortion parameters of the camera.  
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Figure 3.13: Camera pose estimation using perspective-n-point [54] 

 

Since the real-world dimensions of the chessboard are known, the corners of the 

chessboard are taken as the 3D object points, and the corresponding corner points of the 

chessboard in the captured image are taken as the image points. For finding the chessboard 

corners in the image, the OpenCV function ‘findChessboard()’ is used. Finally, the 

transformation between the chessboard and the camera, 𝑇𝑐ℎ𝑒𝑠𝑠 
𝑐 , is found using the 

solvePnP() method. The inverse of 𝑇𝑐ℎ𝑒𝑠𝑠 
𝑐 , i.e. 𝑇𝑐. 

𝑐ℎ𝑒𝑠𝑠 , is then used in Eq. 3.18 to calculate 

𝑇𝑐 
𝑏 . For the setup used in this thesis, since eye-to-hand calibration is performed for the fixed 

Zivid camera, camera-robot transformation ( 𝑇𝑐 
𝑏 ) is referred to as 𝑇𝑧𝑖𝑣𝑖𝑑 

𝑏 . 

  

Eye-in-hand calibration for the onboard Triton camera 

For the case of eye-in-hand calibration, where the camera is attached to the robot’s 

flange, the transformation between the robot’s flange and the camera, i.e. 𝑇𝑐 
𝑓 , is calculated 

as follows.  



Chapter 3. Vision system calibration and automated part localization  

 

33 

 

 

Figure 3.14: Eye-in-hand calibration for the onboard Triton camera 

Using the chain of transformations, the transformation 𝑇𝑐 
𝑓  can be given by:  

𝑇𝑐 
𝑓 = 𝑇𝑏 

𝑓 . 𝑇𝑐ℎ𝑒𝑠𝑠 
𝑏 . 𝑇𝑐 

𝑐ℎ𝑒𝑠𝑠  3.19 

The only new unknown in Eq. 3.19 is 𝑇𝑏 
𝑓 , i.e. the transformation between the robot’s base 

and flange at the pose of image capturing. The pose of the robot while capturing the image 

of the chessboard is retrieved from the robot’s teach pendant and converted to the 

homogeneous matrix format using Eq. 3.4. This homogeneous matrix provides the 

transformation 𝑇𝑓 
𝑏 . The inverse of 𝑇𝑓 

𝑏 , i.e. 𝑇𝑏 
𝑓 , is used in Eq. 3.19 to obtain the camera-

robot transformation, 𝑇𝑐 
𝑓 . For the setup used in this thesis, eye-in-hand calibration is 

performed for the onboard Triton camera. Hence, the transformation between the Triton 

camera and the robot’s flange is denoted as 𝑇𝑡𝑟𝑖𝑡𝑜𝑛 
𝑓 . 
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3.8 Automated part localization using vision system 

In order to eliminate the need for part-specific fixturing in a robot cell, the robot must 

be able to automatically find the location and orientation of the part. The part’s coordinate 

system is generally defined with respect to the robot’s base frame by touch probing the 

workpiece with the robot’s end effector. This manual process is time consuming and leads 

to robot downtime. The aim of the part localization aspect of this thesis is to develop a vision-

based solution to automate the part localization process. As explained in the following 

section, the iterative closest point (ICP) registration technique is employed to autonomously 

localize the free-form composite panel in the robot’s base coordinate system.  

  

Iterative closest point registration 

The ICP algorithm is a two-step iterative algorithm that finds the mapping (i.e. 3D 

transformation) between two sets of point clouds. In the first step, the correspondence 

between the two point clouds are found. In the field of point cloud registration, there are 

many different techniques to determine the correspondence set 𝐾,  

𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 𝑠𝑒𝑡 𝐾 = {(𝑝, 𝑞)}, 3.20 

where 𝑝  is the correspondence points of the second point cloud where everything is 

transformed to, and 𝑞  is the correspondence points of the first point cloud from which 

everything is transformed. Some examples of point correspondence methods are closest point 

technique [16], closest compatible point technique [55], [56], normal shooting technique 

[57], projection-based approaches [58], [59], etc. In the second step, the objective function 

𝐸( 𝑇𝑤 
𝑏 ), presented in Eq. 3.21, is minimized by updating the value of 𝑇𝑤 

𝑏 , where, 𝑇𝑤 
𝑏   is the 

transformation between the robot’s base ‘𝑏’ and the new location of the workpiece ‘𝑤’, 

𝐸( 𝑇𝑤 
𝑏 ) = ∑ ‖𝑝 − 𝑇𝑤 

𝑏 𝑞‖2(𝑝,𝑞)𝜖𝑘 . 3.21 

The value of 𝑇𝑤 
𝑏  is found using Singular Value Decomposition (SVD) for minimizing the 

objective function 𝐸( 𝑇𝑤 
𝑏 ). These two steps are iterated until both the point clouds are 

aligned tightly. 
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Implementation of ICP using open3D  

In this research, the point cloud of the free-form composite panel at the nominal 

location is captured using the 3D Zivid camera. Using the open3D library [60], this point 

cloud is first cropped to remove the background. The cropped point cloud is represented in 

the camera’s coordinate system. For simplicity, the nominal workpiece’s coordinate system 

is kept at the same location and orientation as the robot’s base frame. Hence, the point cloud 

needs to be first transformed to the robot’s base coordinate system. The transformation 

between the robot’s coordinate system and the camera’s coordinate system is already derived 

using the hand-eye calibration process explained in Section 3.7. The cropped point cloud is 

first transformed to the base frame of the robot using the eye-to-hand transformation, 𝑇𝑧𝑖𝑣𝑖𝑑 
𝑏 . 

In the thesis, the transformed point cloud is referred to as the source point cloud (𝑄𝑃𝐶), which 

represents the nominal location of the panel. 

Suppose a new identical composite panel is placed on the fixture manually for the 

new robot cycle. Since the new panel is placed manually, it cannot be at the exact location 

as the nominal part. The point cloud of the new composite panel is scanned again using the 

fixed Zivid camera. Then it is transformed to the robot’s base coordinates using 𝑇𝑧𝑖𝑣𝑖𝑑 
𝑏 . The 

new transformed point cloud is referred to as the target point cloud (𝑃𝑃𝐶), which represents 

the new location of the panel.   

The open3D function ‘TransformationEstimationPointToPoint()’ is used to perform 

the ICP registration between the source point cloud (𝑄𝑃𝐶)  and the target point cloud (𝑃𝑃𝐶), 

as illustrated in Figure 3.15. This method uses the closest point technique for identifying the 

correspondence set K. In the closest point technique, for every point of the nominal point 

cloud, the closest points on the new point cloud are found. All of these pairs of closest points 

are considered as the correspondence set K. The open3D ICP registration function uses the 

KD-tree search algorithm [61] to find the pairs of closest points.  Once the correspondence 

set K is identified, the C++ eigen library’s ‘umeyama’ function is used to minimize the 

objective function E( 𝑇𝑤 
𝑏 ) by finding the best values of 𝑇𝑤 

𝑏 . Readers can refer to [62] for 

further details on the minimization of the objective function. This entire two-step process is 
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iterated until the solution converges, hence the best value for the transformation 𝑇𝑤 
𝑏  is 

obtained.    

 

 

Figure 3.15: Illustration of iterative closest point (ICP) for point cloud registration 

Since the coordinate system of the source point cloud is the same as the robot’s base 

frame, the obtained ICP transformation readily provides the transformation between the 

robot’s base frame and the workpiece’s coordinate system. This process allows for the 

automation of the part localization by leveraging 3D point clouds captured by the Zivid 

camera. 

3.9 Refining part localization using nominal corner pose 

Due to camera measurement errors and point registration inaccuracies, the part 

localization framework introduced in the previous section may not be able to provide 

sufficient accuracy. This section proposes a novel, secondary layer for improving the 

translation accuracy of the proposed part localization method. 

Since the transformation between the robot’s flange and the onboard Triton camera 

( 𝑇𝑡𝑟𝑖𝑡𝑜𝑛 
𝑓 ) is already known, the pose format of 𝑇𝑡𝑟𝑖𝑡𝑜𝑛 

𝑓  is used to set the robot’s TCP in the 

controller to the Triton camera. After capturing and transforming the nominal point cloud 

(𝑄𝑃𝐶) when the composite panel is still at its nominal position, the image of the curved 

panel’s corner is captured using the onboard Triton camera (Figure 3.16). The robot’s pose 

at which this image is captured is referred to as the nominal corner pose ( 𝐶𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 
𝑏 ). Since 
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the coordinates of the workpiece and the robot’s base are the same at the nominal workpiece 

location, the pose transformation 𝐶𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 
𝑏  can equivalently be represented as 

𝐶𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 
𝑤 . The image captured by the Triton camera at that pose is presented in Figure 

3.16 (right). As explained below, a series of image processing steps have been developed to 

automatically detect the panel’s corner at the nominal location. The nominal pixel 

coordinates (𝑈, 𝑉) of the detected corner are then saved and used in the next steps. 

 

Figure 3.16: Nominal corner image at nominal corner pose 

Image processing steps: Image processing is generally performed to improve the 

quality of captured images and segmenting important information from an image. In image 

processing, the image is considered as a matrix of dimension 𝑈𝑝𝑖𝑥𝑒𝑙𝑠 × 𝑉𝑝𝑖𝑥𝑒𝑙𝑠, where  𝑈𝑝𝑖𝑥𝑒𝑙𝑠 

and 𝑉𝑝𝑖𝑥𝑒𝑙𝑠 are the width and height of the image in pixels, respectively. Each element of the 

image matrix contains the pixel data at that particular location of the image coordinates.  

There are many different image processing techniques that can be performed on an 

image, for instance, image thresholding [63], image blurring [64], image subtraction [65], 

image segmentation [66], canny edge detection [67], image morphological transformation 

[68], image geometric transformation [69], etc. Each technique has its own applications. 
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Figure 3.17: Image processing steps for automated corner detection 

Figure 3.17 shows the flowchart of the performed image processing steps for 

automated ‘corner detection’. As shown in Figure 3.18, the image is first blurred using 

bilateral filter. The bilateral filter removes unwanted noise from the image while maintaining 

the sharpness of edges.  

 

Figure 3.18: Implementation of bilateral filter for noise removal 

After removing the noise using the bilateral filter, large objects in the image are 

segmented using the image thresholding technique. In image thresholding, each pixel of the 

image is converted into either 1 or 0. Hence, the resultant image becomes a binary image 

(Figure 3.19). The value of the pixel in the binary image is set to 1 if the image pixel is within 
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the defined threshold boundaries. Otherwise, it is set to 0. The threshold values are found 

empirically based on the appearance of the part.  

 

Figure 3.19: Image thresholding for corner detection 

Using the OpenCV cv2.findContours() function, the contours in the binary image are found. 

The largest contour found in the image is of the curved panel. As shown in Figure 3.20, a 

minimum area bounding box is then obtained for the largest contour using the 

cv2.minAreaRect() function in OpenCV.   

 

Figure 3.20: Minimum area bounding box for largest contour  

As illustrated in Figure 3.21, the distance between each contour point and the top left corner 

of the bounding box is computed. The contour point that has the shortest distance is marked 

as the pixel coordinates of the panel’s corner in the image. This pixel point is saved in the 

database. Further in the thesis, this pixel point is referred to as the ‘reference corner pixel 

point’. 
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Figure 3.21: Detected corner point using automated image processing 

  

Correcting the corner pose: The nominal corner pose when the workpiece is placed at the 

nominal configuration is denoted as 𝑇𝑛𝑜𝑚𝑖𝑛𝑎𝑙𝐶𝑃 
𝑤 . Now, assume that the part has been placed 

arbitrarily in front of the robot. Let us denote the new corner pose as 𝐶𝑃𝑛𝑒𝑤 
𝑏 . The new corner 

pose represented in the matrix form can be calculated as:    

𝑇𝑛𝑒𝑤𝐶𝑃 
𝑏  =  𝑇𝑤 

𝑏 . 𝑇𝑛𝑜𝑚𝑖𝑛𝑎𝑙𝐶𝑃 
𝑤 . 3.22 

where 𝑇𝑤 
𝑏  is the part localization transformation obtained as described in Section 3.8. The 

matrix form of new corner pose ( 𝑇𝑛𝑒𝑤𝐶𝑃 
𝑏 ) is converted to the pose format, i.e. 𝐶𝑃𝑛𝑒𝑤 

𝑏 . 

In order to implement the proposed method for refining part localization, the robot is 

first moved to this new corner pose ( 𝐶𝑃𝑛𝑒𝑤 
𝑏 ). The image of the free-form composite panel’s 

corner is captured at this new corner pose. The corner detection image processing algorithm 

is used to detect the corner of the composite panel in the image. Figure 3.22 shows the image 

of the new corner point in the image captured from the new corner pose. The red dot in the 

image represents the pixel point for the nominal corner point and the blue dot is the pixel 

point of the new detected corner. As can be seen, due to inaccuracies in the ICP 

transformation ( 𝑇𝑤 
𝑏 ), the detected corner point may not exactly match the projected nominal 

corner point.  
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Figure 3.22: Detected corner point at the new corner pose  

To correct this error, the robot needs to move in such a way that the new corner point 

in the image matches the nominal corner point. Based on the pin hole camera theory (Section 

3.6), the 𝑈 and 𝑉 direction of the image represent the X and Y coordinates of the camera, 

respectively. Hence, the robot must be moved in X and Y direction of the camera’s 

coordinates to correct this error. The TCP of the robot is set to the Triton camera. The robot 

is moved in small amounts in X and Y direction in the TCP’s coordinate system until it 

reaches the position where the nominal and new corner points coincide within a defined error 

threshold. The pose of the robot at this corrected corner pose is referred to as the refined 

corner pose ( 𝐶𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑 
𝑏 ) with matrix form 𝑇𝑟𝑒𝑓𝑖𝑛𝑒𝑑𝐶𝑃 

𝑏 . The total motion in the X and Y axes 

in the tool’s coordinates is saved and referred to as delta X and delta Y.  

       

 

Figure 3.23: Robot motion for correcting the corner pose  
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The transformation between the new corner pose and the refined corner pose 

( 𝑇𝑟𝑒𝑓𝑖𝑛𝑒𝑑𝐶𝑃 
𝑛𝑒𝑤𝐶𝑃 ) in the tool’s coordinate system can be given by: 

  

𝑇𝑟𝑒𝑓𝑖𝑛𝑒𝑑𝐶𝑃 
𝑛𝑒𝑤𝐶𝑃 = [

1 0 0 𝑑𝑒𝑙𝑡𝑎 𝑋

0 1 0 𝑑𝑒𝑙𝑡𝑎 𝑌

0 0 1 0

0 0 0 1

]. 3.23 

Now the refined part localization transformation 𝑇𝑤𝑟𝑒𝑓𝑖𝑛𝑒𝑑 
𝑏  can be found using matrix 

manipulation: 

𝑇𝑤𝑟𝑒𝑓𝑖𝑛𝑒𝑑 
𝑏 = 𝑇𝑤 

𝑏 . 𝑅𝑛𝑒𝑤𝐶𝑃 
𝑤 . 𝑇𝑟𝑒𝑓𝑖𝑛𝑒𝑑𝐶𝑃 

𝑛𝑒𝑤𝐶𝑃 . 𝑅𝑤 
𝑛𝑒𝑤𝐶𝑃 , 3.24 

where 𝑅𝑛𝑒𝑤𝐶𝑃 
𝑤  is the transformation between the workpiece frame and the new corner pose 

frame ( 𝑇𝑛𝑒𝑤𝐶𝑃 
𝑤 ) with translation part kept as zero (𝑥, 𝑦, 𝑧 =  0). 𝑇𝑛𝑒𝑤𝐶𝑃 

𝑤  is given by: 

𝑇𝑛𝑒𝑤𝐶𝑃 
𝑤 = 𝑇𝑏 

𝑤 . 𝑇𝑛𝑒𝑤𝐶𝑃 
𝑏 , 3.25 

where 𝑇𝑏 
𝑤  is the inverse of the ICP transformation matrix 𝑇𝑤 

𝑏 . 

Figure 3.24 summarizes the sequence of steps in the proposed automated part 

localization and refinement framework. 

 

 

Figure 3.24: Flowchart of the developed algorithms for automated part localization 

and refinement 
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3.10 Summary 

In this chapter, the problem of manual calibration of the workpiece location with 

respect to the robot’s base coordinates is addressed. The coordinate systems used in this 

research are first established. The process of calibrating the intrinsic and extrinsic parameters 

of cameras is outlines. Hand-eye calibration is implemented to obtain the homogeneous 

transformation between the cameras and the robot. This homogeneous transformation is used 

for transforming the point cloud from the camera’s coordinate system to the robot’s base 

coordinate system.  

A novel framework for automating part localization is proposed using the ICP point 

cloud registration technique. The ICP technique takes in the sets of two point clouds and 

gives out the transformation matrix that can transform one point-cloud on top of the other.  

A corner detection and error compensation algorithm is developed to further improve the 

accuracy of part localization.
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4 Automated water-break inspection and tool path generation 

4.1 Introduction  

Once the composite panel is localized, the surface is sprayed with water for ASTM-

F22 water-break inspection. The aim of this chapter is to automatically detect water-broken 

regions, i.e. contaminated areas. An image processing-based approach is proposed to detect 

water-broken regions. To provide consistent results, the effect of different lighting conditions 

and filtering is studied. 

After contamination detection, contaminated regions must be abraded. Abrasion 

removes contamination and also creates micro scratches on the surface to facilitate the 

adhesion of coating to the surface (hydrophilic). This thesis proposes to divide the panel’s 

surface into multiple grids and automatically generates abrasion tool paths for all grids.  

This chapter is organized as follows: Section 4.2 discusses the vision-based water-

break inspection and lighting selection. Section 4.3 presents the image processing algorithm 

developed in this thesis for autonomous water-broken region detection. Section 4.4 discusses 

the region of interest (ROI) selection and grids reprojection technique. Section 4.5 presents 

the method for converting discontinuous point clouds to continuous B-spline surfaces. 

Section 4.6 presents the theory for finding the surface normal on each point of the B-spline 

surface. Section 4.7 presents the method for finding Euler angle for robot poses from the 

surface normal of the B-spline surface. Finally, the methodology for abrasion tool path 

generation is discussed in Section 4.8.      

4.2 Vision based water-break inspection and lighting selection 

Once the part is fixed on a vertical fixture, water is sprayed on the composite panel. 

The behavior of the water flowing downwards on the surface is captured using the Zivid 

camera for 25 seconds. The captured video of the water behavior is then examined by the 

developed image processing algorithm for detecting the water-broken regions that represent 
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faulty (contaminated) areas on the surface. Figure 4.1 shows the water-broken region on a 

test workpiece. 

 

Figure 4.1: Water-break regions on a test surface 

The lighting condition in any machine vision application is a critical factor that 

affects the quality and robustness of the vision-based inspection process. Therefore, 

appropriate lighting condition must be employed for generating robust results in detecting 

water-broken regions. Martin [70] presents a practical framework for identifying the ideal 

lighting conditions for typical machine vision applications. He suggests accumulating and 

analyzing data in three main areas. First, the knowledge of lighting types, cameras, sensor 

quantum efficiency, spectral range, and illumination techniques. Second, familiarity with 

vision geometry, light pattern, light wavelength, and wavelength filters. Third, the detailed 

analysis of inspection environment and light interactions with respect to unique samples. 

This research leverages this information to maximize the contrast on water-broken regions 

and minimize the contrast elsewhere. As described in the following, several tests are 

performed by subjecting the composite panel to different types of lights and illumination 

techniques for selecting the best possible lighting condition.   
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Testing Infrared (IR) lights: 

The patent developed by Amos [24]  detects water-broken regions on a metal work 

piece by using a long-range (7-14 𝜇m) IR light camera. It suggests that due to the low 

emissivity of metal surfaces, a long IR range is more appropriate. However, long-range IR 

lights and cameras are very expensive and thus impractical for production systems. Besides, 

the workpiece used in this research is made of carbon composite instead of metal. 

Nevertheless, the idea of using cheaper near-infrared lights for detecting water-broken 

regions is worth investigating as water has a high absorption coefficient. 

Figure 4.2 shows the absorption coefficient of water for different light wavelength. 

Higher light absorption can reduce the reflected light from wet surfaces, thus making them 

appear darker compared to dry areas. Using IR lights can also remove the effect of 

inconsistent ambient light. 

 

Figure 4.2: Absorption coefficient vs light wavelength plot for water [71]  

As shown in Figure 4.3, water-break inspection on the curved panel is tested by 

projecting diffused IR lights on the workpiece. The camera is equipped with a high pass IR 

wavelength filter for rejecting the visible lights and accepting only the IR reflected lights. 
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Figure 4.3: Projecting IR lights on the curved panel. 

By nature, IR lights are more focused than normal visible lights. As can be seen in 

Figure 4.3, illumination is not uniform over the workpiece even after diffusing the light 

source. This nonuniform lighting condition can introduce specular reflections. Moreover, the 

camera cannot capture a good quality image in this lighting condition because of low 

quantum efficiency of the complementary metal-oxide semiconductor (CMOS) sensor at 

higher wavelength (Figure 4.4). 

 

Figure 4.4: Quantum efficiency of CMOS sensor [72]. 

The quantum efficiency of an imager is a measure of the efficiency of the imager to 

convert incident photons into electrons, subjected to different light wavelengths. A low 
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quantum efficiency can introduce noise to the image. Therefore, the idea of using IR lights 

with CMOS sensor was not pursued further in this thesis.  

 

Testing Light-Emitting Diode (LED) and Compact Fluorescent Lamps (CFL): 

In order to investigate the part appearance subject to LED lights, the workpiece is 

projected with low-angled multilight LED system as presented in Figure 4.5. The LED lights 

are projected from different directions in order to analyze the effect of light direction and 

specular reflections on the composite panel. 

 

 

Figure 4.5: Panel subject to multiple LED light system. 
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The low-angled multiple LED light system tends to produce specular reflection on 

regions that are close to the light source. This is because LED lights have large intensity and 

therefore are not ideal for large-area inspection. Hence, the multi-light LED system was not 

pursued further. 

Figure 4.6 suggests that the best type of light for large area inspection is fluorescent. 

As shown in Figure 4.7, a Compact Fluorescent Lamp (CFL) light bulb with a diffuser is 

projected on the workpiece from the top. 

 

Figure 4.6: Comparison of different types of light used in machine vision applications 

[70]. 

   

 

Figure 4.7: Workpiece appearance subject to CFL light. 
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As can be seen in Figure 4.7, fluorescent lights with the diffuser produce the least 

amount of specular reflection. Moreover, due to the higher quantum efficiency of the camera 

at visible wavelength lights, the quality of the image is not compromised. With minimum 

specular reflections and the best image quality, this lighting environment is finally selected 

as the ideal lighting condition for this research. After selecting the suitable lighting condition, 

different types of image processing algorithms are tested for detecting the water-broken 

region.  

Testing different color channels: 

The next lighting test is done by investigating the appearance of each color channel 

of the camera individually. The red, green, and blue channels of the image are split into three 

different grayscale images. These images show the effect of three different light wavelengths 

on the appearance of the wetted workpiece. Figure 4.8 shows the grayscale images of each 

color channel.  

 

Figure 4.8: Visualizing each color channel separately  

As can be seen in Figure 4.8, the red channel does not create a good contrast between 

the wet and dry portions of the composite panel. This is because the color of the part is close 

to red, which makes the red channel the brightest. It is noticed that wetting the curved panel 

makes the part appear even redder because of greater light absorption of water. This makes 

the wet portion of the blue channel image darker. While the image from the blue channel 

alone can potentially be sufficient for inspection, it was determined that using the original 

color image, i.e. leveraging all three channels, provides the highest level of robustness. 

Therefore, the image processing algorithms presented in the following section take 

advantage of full color images during the inspection process. 
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4.3 Image processing for automated water-break inspection 

The proposed image processing algorithm is discussed in this section. During the 

water-break test as water flows over the panel surface, the camera captures a video for 25 s. 

The image-processing algorithm is run on each frame of the captured video in a loop. All 

frames of the video remain nearly the same until the water layer starts breaking. This makes 

the water-break inspection problem equivalent to detecting and marking changes between 

subsequent images in the video. Ergo, the proposed framework is built on the idea that the 

image that contains the dry area (water-broken region) of the surface and the image of the 

same workpiece that does not contain any dry area have changes just at the location of the 

dry areas. To detect changes between two images, several image processing techniques can 

be used [73], e.g. image ratioing, image subtraction, change vector analysis, principal 

component analysis, etc. Image subtraction is the most widely technique for detecting 

changes due to its simplicity and computational efficiency. This research uses the image 

subtraction technique to detect the changes between two images. 

Image subtraction routine: In image subtraction, a reference image is subtracted 

from the test image pixel by pixel. If the images contain more than one channel, e.g. Red-

Green-Blue (RGB) channels in our case, each channel is subtracted from its corresponding 

channel. The OpenCV function ‘absdiff (reference_image, test_image)’ is used to subtract 

the test frames of the video from the reference frame. This function takes in the reference 

image and test image as inputs, and gives out the absolute difference between the images:  

𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒, 𝑠𝑢𝑏(𝑈, 𝑉) = 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒(|𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑈, 𝑉) − 𝑡𝑒𝑠𝑡(𝑈, 𝑉)|) 4.1 

Eq. 4.1 presents the formulation for ‘absdiff(…)’ function, where 𝑈 and V indicate 

the pixel location. The absdiff function uses its internal saturate function that, if needed, 

converts both images to the same data type. It then returns the final absolute subtracted image.      
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Figure 4.9: Proposed image processing algorithm 

Figure 4.9 shows the flowchart of the proposed image processing algorithm. The first 

step in the flow chart is to select the reference image. For this research, the first frame of the 

video after the surface is sprayed with water is selected as the reference image. This is 

because the first image contains the image of the curved panel when it is entirely wet. The 

image with the curved panel entirely wet is the best candidate for the reference image because 

the dry area (water-broken region) in the test image can directly appear while subtracting the 

images.   
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Figure 4.10: Reference image with wet composite panel (left) and Test image with 

water-broken region (right)  

Figure 4.10 shows the reference and test images. Now, the test image is subtracted 

from the reference image. Figure 4.11 shows the resultant subtracted image. 

 

 

Figure 4.11: Result of image subtraction 

The issue with the subtracted image is that it is dark, and the detected dry regions are 

not visible. To address this problem, the brightness and the contrast of the subtracted image 

are adjusted. The contrast and brightness can be changed using the following equation: 

𝑔(𝑈, 𝑉) = 𝛼 ∙ 𝑠𝑢𝑏(𝑈, 𝑉) + 𝛽, 4.2 

where 𝛼  denotes the gain that controls the contrast, and 𝛽  is the bias that controls the 

brightness of the image. The values for 𝛼 and 𝛽 are found empherically. 
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Figure 4.12: Subtracted image with adjusted brightness and contrast 

As presented in Figure 4.12, the adjusted image can properly segment the dry area on 

the curved panel. However, it can also be noticed that the image has a lot of salt and pepper 

noise. To remove the salt and pepper noise, the median blur algorithm is used on the image. 

Similar to the filtration of one-dimensional signals using high pass filters for 

removing noise, a two-dimensional image can be filtered by performing convolution between 

the source image and a kernel. In image processing, a kernel is a small matrix that, if 

convolved with an image, can filter the image for the desired quality. There are many 

different types of image filtering methods such as blurring, sharpening, embossing, etc. For 

each filtration technique, a different kernel matrix is used. In this research, the median 

blurring is performed successively for generating an image that has the least salt and pepper 

noise. In the case of median blurring, the median of all pixel values under the kernel area is 

first calculated. Then, the central element of that particular portion of the image is replaced 

by the median value. This process is performed for each pixel of the image.  
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Figure 4.13: Result of applying a median blur filter 

Once the image smoothing step is completed using the median blur filter, the blurred 

image is converted into a binary image by thresholding the image. The threshold values are 

found empirically based on the appearance of the part. 

 

Figure 4.14: Resultant binary image after thresholding 

The binary image is masked on top of the test image so that only the portion that is 

changed in the image is highlighted in the image.  

 

Figure 4.15: Masked image obtained by overlaying the detected areas over the 

original image 
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As seen in Figure 4.15, the masked image itself properly segments the dry area. 

However, this framework is not fully reliable as it may give false positives over areas with 

reflections and light shifts. To deal with this problem, an additional image processing routine 

based on Hue-Saturation-Value (HSV) filtering is developed to improve the robustness and 

reliability of water-break inspection. 

HSV filtering routine: HSV is a similar color-space model as RGB. An HSV image 

has three channels, i.e., hue, saturation, and value. The hue channel represents the color of 

the pixel. The saturation channel represents the shades of gray in the pixel. The value channel 

represents the brightness or intensity of the pixel. Since the obtained masked image (Figure 

4.15) is in the form of RGB, it is first converted into an HSV image as below: 

𝑉𝑎𝑙𝑢𝑒, 𝑉 = max (𝑅, 𝐺, 𝐵) 4.3 

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑆 = {

𝑉 − min (𝑅, 𝐺, 𝐵)

𝑉
           𝑖𝑓 𝑉 ≠ 0

0                                          𝑖𝑓 𝑉 = 0
   4.4 

𝐻𝑢𝑒,𝐻 =

{
 
 
 

 
 
 

60(𝐺 − 𝐵)

𝑉 −min(𝑅, 𝐺, 𝐵)
,                      𝑖𝑓 𝑉 = 𝑅

120 +
60(𝐵 − 𝑅)

𝑉 −min(𝑅, 𝐺, 𝐵)
,         𝑖𝑓 𝑉 = 𝐺

240 +
60(𝑅 − 𝐺)

𝑉 −min(𝑅, 𝐺, 𝐵)
,         𝑓 𝑉 = 𝐵

        0,                                                    𝑖𝑓 𝑅 = 𝐺 = 𝐵

 4.5 

Once the masked image is converted into an HSV image, the HSV image is filtered 

using a specific range of threshold values for all the three channels. The threshold values are 

found empirically in such a way that only the pixels that represent the dry region of the 

curved panel are kept. As shown in Figure 4.16, the proposed image subtraction method 

followed by HSV thresholding gives robust results in segmenting the water-broken regions 

in the image. 
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Figure 4.16: HSV filtering applied on the masked image 

 

Finally, using the findcontours() [74] function in OpenCV, the contours in the image 

are detected. Contours are the shapes in the image that have a similar color or intensity. Since 

the HSV-filtered image is a binary image, the pixel values of the water-broken regions are 1, 

and all other pixel values are 0. The pixels that have a value of 1 are considered within the 

contour shape. These contours represent the location of the water-broken region in the pixel 

coordinates. Figure 4.17 shows the final result of the developed image processing algorithm 

for water-break inspection. 

 

Figure 4.17: Detected contours (broken regions) during water-break inspection 
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4.4 Projection of part grids onto inspected images 

After performing the water-break test and inspecting the surface, the failed (water-

broken) areas must be abraded to remove contamination. Ideally, only the exact area of the 

broken regions must be abraded. However, considering the infinite possibilities in the shape 

and location of the failed regions, creating a robotic abrasion tool path directly based on the 

detected areas is not reliable. In this thesis, the part surface is divided into several grids, and 

an abrasion tool path is generated automatically for each grid. The proposed vision-based 

water-break inspection algorithm determines which grids contain broken regions. The 

corresponding grids are then abraded by the robot based on the generated tool path.  

As shown in Figure 4.18, the region of interest (ROI) for water-break inspection is 

first defined in the 2D image of the part as captured by the Zivid camera. Using the corner 

pixels of the ROI, the point cloud for the selected ROI is extracted with the help of Zivid’s 

python API. Since the nominal part coordinate system is kept at the same location of the 

robot’s base coordinate system, this ROI point cloud is first transformed to the robot’s 

coordinate system. The transformed ROI point cloud is denoted as 𝑅𝑂𝐼𝑃𝐶. Furthermore, the 

image ROI is divided into multiple grids as presented in Figure 4.18 (right). The point cloud 

for each grid is extracted using the pixel points of each grid’s corner. All the grid point clouds 

are then transformed to the robot’s base coordinate system. The transformed grid point 

clouds are referred to as 𝐺𝑟𝑖𝑑𝑠𝑃𝐶. 

   

 

Figure 4.18: ROI selection and grid division of the RGB image captured by the 

Zivid camera 
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The grids shown in Figure 4.18 are valid only when the part is place at the nominal 

location. However, when the part is placed at a different location in the next robot cycle, the 

part grids will not map properly onto the image. In this research, a method is proposed to 

automatically map the part grids onto the image regardless of the part’s location and 

orientation. In order to locate the exact region of interest on the new image of the arbitrarily 

placed part, the new pixel location of each grid must be known. To find the new pixel location 

of the grid corners, as discussed below, the pin hole camera model (Section 3.6) is used. 

Eq. 3.11 can be used to find the 2D pixel location of a 3D point in the camera’s 

coordinates. The nominal 3D location data of the grids’ corners (in the camera’s coordinate 

system) is extracted using its pixel points with Zivid’s python API. This 3D data is first 

transformed to the workpiece coordinates (same as robot’s base) and saved in the database 

at the ROI selection step. Now for each robot cycle, after the part localization step, using the 

part localization transformation 𝑇𝑤𝑟𝑒𝑓𝑖𝑛𝑒𝑑 
𝑏  obtained in Section 3.8, the new grid corner’s 

location with respect to robot’s base (𝑃𝑔𝑟𝑖𝑑𝑠𝑏) is found by 

𝑃𝑔𝑟𝑖𝑑𝑠𝑏 
 = 𝑇𝑤𝑟𝑒𝑓𝑖𝑛𝑒𝑑 

𝑏 . 𝑃𝑔𝑟𝑖𝑑𝑠𝑤 
 . 4.6 

where 𝑃𝑔𝑟𝑖𝑑𝑠𝑤  is the grid corner’s location with respect to the composite panel. Eq. 4.6 

provides the new 3D grid corner points in the base coordinates system. To find the 2D pixel 

location, the pin hole camera model needs this 3D points in the camera’s coordinate system. 

The transformation between the Zivid camera and the robot’s base ( 𝑇𝑏 
𝑧𝑖𝑣𝑖𝑑 ) is used to 

transform these grid corner points from the robot’s base to the Zivid camera’s coordinate 

system. The transformation matrix 𝑇𝑏 
𝑧𝑖𝑣𝑖𝑑  is found by inverting  𝑇𝑧𝑖𝑣𝑖𝑑 

𝑏 . Finally, each grid 

corner point is transformed to the camera’s coordinate system by: 

𝑃𝑔𝑟𝑖𝑑𝑠𝑧𝑖𝑣𝑖𝑑 
 = 𝑇𝑏 

𝑧𝑖𝑣𝑖𝑑 . 𝑃𝑔𝑟𝑖𝑑𝑠𝑏 
 . 4.7 

where 𝑃𝑔𝑟𝑖𝑑𝑠𝑧𝑖𝑣𝑖𝑑  is the grid corner’s location with respect to the Zivid camera. 

Finally, Eq. 3.11 is used to find the new pixel coordinates of the grid’s corners. 
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Figure 4.19: Grids reprojection for different poses of the curved panel 

Using the reprojection of the new pixel locations of the grids, the grids can be overlaid on 

top of the composite panel’s image as presented in Figure 4.19. Water-broken regions 

detected using the developed automated inspection framework can then be overlaid on top 

of the grids, as demonstrated in Figure 4.20. The grids that contain failed regions will need 

to be abraded. The proposed framework for generating an abrasion tool path for each grid is 

presented in the following section. 

 

Figure 4.20: Grids overlaid on top of the water-break inspection results 

4.5 Point cloud to B-spline surface reconstruction 

In this thesis, it is assumed that abrasion tool paths are generated directly based on 

the captured point clouds of the part surface. The point clouds of the ROI (𝑅𝑂𝐼𝑃𝐶) and grid 

corners (𝐺𝑟𝑖𝑑𝑠𝑃𝐶) in the nominal part position and represented in the workpiece coordinate 

system are used to generate tool paths.   
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Due to measurement errors in 3D cameras, scanned point clouds are inevitably 

discontinuous and contain noise and outliers. That is, adjacent points can have abrupt 

changes in direction. The point cloud must be converted into a smooth surface that can be 

represented by a mathematical function to ensure smooth path generation for robotic 

abrasion. Mathematically, free-form surfaces can be represented in two general forms, i.e. 

implicit surface representation and parametric surface representation. In implicit 

representation, surfaces are described in the form of 𝑆(𝑋)  =  0, where 𝑋 is a point on the 

surface that is implicitly described by the function S. For example, the implicit surface 

representation of a sphere is 𝑆(𝑋)  =  𝑥2 + 𝑦2 + 𝑧2 − 4 = 0, where (𝑥, 𝑦, 𝑧) is a point on 

the surface of the sphere. Implicit surface representation can become very complex in 

modeling free-form surfaces. In CAD and CAM systems, parametric representation is 

commonly used for modeling 3D surfaces. 

In parametric representation, surfaces are described in the form of 𝑋 =  𝑆(𝑢, 𝑣), 

where 𝑋 is a point on the surface, and 𝑢 and 𝑣 are surface parameters. The 𝑢 and 𝑣 terms in 

this section should not be confused with the 𝑢 and 𝑣 of the camera’s pixel coordinates. Some 

examples of parametric surfaces include Bezier surface [75], B-spline surface [76], and 

NURBS surface [38]. In this research, B-spline surfaces are used to model surfaces defined 

by the ROI and grid point clouds. Parametric surfaces can be obtained by taking a 

bidirectional net of control points [38]. In other words, parametric surfaces are simply the 

extension of parametric curves to a two-variable parametric domain 𝑢 and 𝑣.  

It is important to understand the basic formulation for B-spline curves before 

investigating B-spline surfaces. Equation 4.8 shows the parametric representation of a B-

spline curve of degree 𝑝:  

𝐶(𝑢) =∑𝑁𝑖,𝑝(𝑢)𝑃𝑖

𝑛

𝑖=0

  4.8 

where 𝑃𝑖s are the control points and 𝑁𝑖,𝑝(𝑢) terms are the B-spline basis functions defined 

on a knot vector with 𝑚 + 1 knots: 
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𝐾𝑛𝑜𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 = {𝑎,… , 𝑎⏟  
𝑝+1

, 𝑢𝑝+1, … , 𝑢𝑚−𝑝−1, 𝑏, … , 𝑏⏟  
𝑝+1

}, 4.9 

where 𝑎 and 𝑏 are the knot repetition at the beginning and end of the curve. Most commonly, 

it is assumed that 𝑎 =  0 and 𝑏 =  1. The 𝑁𝑖,𝑝(𝑢) basis function is defined by Cox-deBoor 

recursion algorithm [77]: 

𝑁𝑖,𝑝(𝑢) =
𝑢 − 𝑢𝑖

𝑢𝑖+𝑝−1 − 𝑢𝑖
𝑁𝑖,𝑝−1(𝑢) +

𝑢𝑖+𝑝 − 𝑢

𝑢𝑖+𝑝 − 𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢) 4.10 

𝑁𝑖,1(𝑢) = {
1            𝑖𝑓 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1
0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 4.11 

Extending the B-spline curve in two dimensions generates a B-spline surface with surface 

parameters 𝑢 and 𝑣.  

The range of surface parameters 𝑢 and 𝑣 are kept from 0 to 1. The equation for a B-

spline surface can be formulated by taking the tensor product of B-spline curves in two 

directions of the surface: 

𝑋 = 𝑆(𝑢, 𝑣) =∑∑𝑁𝑖,𝑘(𝑢)𝑁𝑗,𝑙(𝑣)𝑝𝑖,𝑗

𝑚

𝑗=0

𝑛

𝑖=0

,           𝑢, 𝑣 𝜖 [0,1] 4.12 

where, 𝑘  and 𝑗  are the degrees of curves along the 𝑢  and 𝑣  direction of the surface 

respectively. 𝑛 and m represent the number of control points, and 𝑁𝑖,𝑘(𝑢) and 𝑁𝑗,𝑙(𝑣) are the 

univariate basis functions along the 𝑢  and 𝑣  directions, respectively. The 𝑢  and 𝑣 

parameters make a 2D rectangular graph (Figure 4.21). Plugging in the values of 𝑢 and 𝑣 

into Eq. 4.12 gives the corresponding point on the B-spline surface. 



Chapter 4. Automated water-break inspection and tool path generation  

 

63 

 

 

Figure 4.21: B-spline surface representation using u and v parameters 

Geomdl python library 

This thesis implements the B-Spline surface generation method using the geomdl 

library [78] in python. A surface, defined as an object in python, can be generated by using 

the class ‘B-spline’ of the geomdl library. The object takes in the input of control points for 

generating the B-spline surface. In this work, the point clouds representing the ROI and each 

rectangular grid are considered as the control points for generating the B-spline surface 

objects. 

 

   

Figure 4.22: Generated B-spline surfaces for the ROI and grids 
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4.6 Surface derivatives and surface normal 

 

Figure 4.23: B-spline surface normal 

The abrasion operation needs to be performed while keeping the tool normal to the 

surface at each part-tool contact point. This makes it important to identify the normal vectors 

for each point on the generated B-spline surfaces. Since a B-spline surface is a 2D 

parametrized entity, it can have two tangents along each parameter direction, i.e. a tangent 

along the 𝑢 direction and a tangent along the 𝑣 direction (Figure 4.23). The normal vector of 

the surface on a particular point can be obtained by taking the cross product of these two 

tangents at that particular point.  

The derivative of a curve gives the tangent vector at each point along the curve. 

Similarly, the partial derivative of a surface with respect to the 𝑢 parameter gives the surface 

tangent along the 𝑢 direction, and the partial derivative of a surface with respect to the 𝑣 

parameter gives the surface tangent along the 𝑣 direction. The surface normal can therefore 

be obtained as: 

𝑁 =
𝑆𝑢(𝑢, 𝑣) × 𝑆𝑣(𝑢, 𝑣)

|𝑆𝑢(𝑢, 𝑣) × 𝑆𝑣(𝑢, 𝑣)|
   , 4.13 

where 𝑁 is the unit normal vector,  𝑆𝑢(𝑢, 𝑣) is the partial derivative of the surface 𝑆(𝑢, 𝑣) 

with respect to 𝑢, and 𝑆𝑣(𝑢, 𝑣) is the partial derivative of the surface 𝑆(𝑢, 𝑣) with respect to 

𝑣. In this thesis, notation 𝑆𝑢 is used for 𝑆𝑢(𝑢, 𝑣) and 𝑆𝑣 for 𝑆𝑣(𝑢, 𝑣). The surface tangent 

along the 𝑢  direction 𝑆𝑢 is given by: 



Chapter 4. Automated water-break inspection and tool path generation  

 

65 

 

𝑆𝑢 =
𝜕

𝜕𝑢
𝑆(𝑢, 𝑣) =∑𝑁𝑗,𝑙(𝑣) (

𝜕

𝜕𝑢
∑𝑁𝑖,𝑘(𝑢)𝑝𝑖,𝑗

𝑛

𝑖=0

)

𝑚

𝑗=0

 

=∑ 𝑁𝑗,𝑙(𝑣) (
𝜕

𝜕𝑢
𝐶𝑗(𝑢))

𝑛
𝑖=0 , 

4.14 

where 

𝐶𝑗(𝑢) =∑𝑁𝑖,𝑝(𝑢)𝑃𝑖,𝑗

𝑛

𝑖=0

                𝑗 = 0,… ,𝑚. 4.15 

Analogously, the surface tangent along the 𝑣  direction 𝑆𝑣  is obtained using similar 

formulation as Eq. 4.14 and 4.15. 

4.7 Conversion of normal vector to Euler angles  

In order to perform abrasion, the robot tool must be aligned with the surface normal 

obtained in the previous section. The Kuka robot uses Euler angle representation for defining 

the orientation of the end-effector with respect to the base coordinate system. Hence, a 

method for conversion from surface normal vector to robot’s Euler angles must be obtained.  

Figure 4.24 shows the coordinate system of the TCP, robot’s base, and the surface 

normal at a particular point. 
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Figure 4.24: TCP coordinate system and surface normal 

The cyan vector (𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 = 0) in the image is the unit normal vector at a 

particular point on the curved surface. To make the end effector normal to the surface, we 

need to align the TCP’s negative Z-axis (Blue-axis) with the cyan normal vector. For 

simplicity, the rotation matrix that can rotate the TCP coordinate system to align with the 

normal vector, all in the robot’s base coordinate system, is first solved: 

𝑅𝑁
𝑤 = [

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

] 4.16 

The 𝑅𝑁
𝑤 is the rotation matrix that needs to be solved for finding the rotation between the 

robot’s base (also, nominal workpiece frame) and the normal vector. Since we are aligning 

the negative Z component of the TCP axis to the normal vector, the Z column of the rotation 

matrix is replaced with the normal vector (−𝑎,−𝑏,−𝑐). Therefore, the rotation matrix 𝑅𝑁
𝑤 

can be rewritten as: 

𝑅𝑁
𝑤 = [

𝑅11 𝑅12 −𝑎
𝑅21 𝑅22 −𝑏
𝑅31 𝑅32 −𝑐

]. 4.17 
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This fixes the rotation of the end effector in the Z direction. The transformation frame can 

have infinite rotation solutions if it is fixed only along one direction. However, the 

transformation can have a unique solution if two axes are fixed. Hence, the next step is to 

find the X column (𝑅11, 𝑅21, 𝑅31) and then the Y column (𝑅12, 𝑅22, 𝑅32). The cross product 

between any two vectors gives the perpendicular vector. For finding the Y column (new TCP 

Y axis), the cross product between the the Z component and the negative Z-axis vector 

(0,0, −1) is taken. 

 

Figure 4.25: Desired TCP coordinate system 

 

Hence, the new TCP Y axis (𝑎𝑦, 𝑏𝑦, 𝑧𝑦)  is found. The rotation matrix can be 

rewritten as: 

  

𝑅𝑁
𝑤 = [

𝑅11 𝑎𝑦 −𝑎
𝑅21 𝑎𝑦 −𝑏
𝑅31 𝑎𝑦 −𝑐

]. 4.18 

For finding the X column (new TCP X axis (𝑎𝑥, 𝑏𝑥, 𝑐𝑥)) of the rotation matrix, the cross 

product between the Y column and the Z column is taken. Finally, the rotation matrix is 

obtained as:   
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𝑅𝑁
𝑤 = [

𝑎𝑥 𝑎𝑦 −𝑎
𝑏𝑥 𝑏𝑦 −𝑏
𝑐𝑥 𝑐𝑦 −𝑐

]. 4.19 

This rotation matrix is then converted into the Euler angles of sequence ZYX using Eq. 3.3. 

The point clouds for each grid are converted into a smooth B-spline surface and the 

surface normal for each point on the B-spline surface can be determined. Along with that, 

the Euler angles for the robot’s TCP for each point on the surface can also be determined. 

Hence, for each parametric point (𝑢, 𝑣) on the B-spline surface, the Euler angles (A, B, C) 

for keeping the end-effector normal to the surface are known. The next step is to plan the 

area coverage tool path for the robot to perform the abrasion operation on the failed grids 

(water-broken regions) of the curved panel.    

4.8 Abrasion tool path generation 

In this section, the framework for generating an abrasion tool path for each grid is 

discussed. The abrasion operation can be performed using area clearance methods. As shown 

in Figure 4.26, there are many types of tool path clearance methods such as raster, spiral, 

offset, offset-spiral, etc. 
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Figure 4.26: Area clearance tool path strategies, (a) Raster tool path, (b) Spiral tool 

path, (c) Offset tool path, (d) Offset-Spiral tool path 

 

In Figure 4.26, the red lines represent the tool path. This research employs the raster 

area clearance tool path method (Figure 4.26.a) and develops algorithms to autonomously 

perform abrasion on the free form surface of each grid of the composite panel.  
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Figure 4.27: Local coordinates at a point P on the surface 

As discussed in the previous section, a B-spline surface is represented in a parametric 

form, i.e. in terms of surface parameters 𝑢 and 𝑣, while the tool path is defined in terms of 

an array of points in the Euclidean space (𝑋, 𝑌, 𝑍). Hence, it is important to determine a 

relation between the Euclidean space and the parametric space. As presented in Figure 4.27, 

the relation between the Euclidean and parametric spaces can be used to find the change in 

surface parameters (∆𝑢, ∆𝑣) for the fixed distance 𝑟 between two adjacent paths. This fixed 

distance r represents the step-over of the tool path. 

Figure 4.27 shows a local coordinate system that can be generated on any point of 

the surface. This local coordinate system is created to find ∆𝑢 and ∆𝑣. For the case shown in 

Figure 4.27, the local coordinate system is generated on a point 𝑃 . Assume that points 

𝑃(𝑆(𝑢𝑝, 𝑣𝑝)) and 𝑄(𝑆(𝑢𝑞 , 𝑣𝑞)) are on adjacent paths. 𝐹 denotes the unit vector in the feed 

direction, and 𝑁 is the unit normal vector at point 𝑃. Using the right-hand rule, unit vector 

𝐷 can be found by the cross product of vectors 𝑁 and 𝐹. From surface differential geometry, 

we have:  

𝑄 − 𝑃 ≈ 𝑆𝑢∆𝑢 + 𝑆𝑣∆𝑣. 4.20 

Multiplying Eq. 4.20 by vector D and F yields: 
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[
(𝑄 − 𝑃).𝐷
(𝑄 − 𝑃). 𝐹

] =  [
𝑆𝑢∆𝑢. 𝐷 + 𝑆𝑣∆𝑣. 𝐷
𝑆𝑢∆𝑢. 𝐹 + 𝑆𝑣∆𝑣. 𝐹

]. 4.21 

Since point 𝑄 is in the direction of 𝐷 and ⌊𝑄 − 𝑃 ⌋ = 𝑟, the above equation can be rewritten 

as: 

[
𝑆𝑢. 𝐷 + 𝑆𝑣. 𝐷
𝑆𝑢. 𝐹 + 𝑆𝑣. 𝐹

] [
∆𝑢
∆𝑣
] = [

𝑟
0
]. 4.22 

Using 4.22,  

[
∆𝑢
∆𝑣
] = [

𝑆𝑢. 𝐷 + 𝑆𝑣. 𝐷
𝑆𝑢. 𝐹 + 𝑆𝑣. 𝐹

]
−1

[
𝑟
0
] =  

[
 
 
 
 

𝑟(𝑆𝑣. 𝐹)

(𝑆𝑢. 𝐷)(𝑆𝑣. 𝐹) − (𝑆𝑣. 𝐷)(𝑆𝑢. 𝐹)

−𝑟(𝑆𝑢. 𝐹)

(𝑆𝑢. 𝐷)(𝑆𝑣. 𝐹) − (𝑆𝑣. 𝐷)(𝑆𝑢. 𝐹)]
 
 
 
 

. 4.23 

Using Eq. 4.23, the surface parameters for point 𝑄 are found as: 

[
𝑢𝑞
𝑣𝑞
] =  [

𝑢𝑝 + ∆𝑢

𝑣𝑝 + ∆𝑣
] 4.24 

The approximated change in the surface parameters can be found in any direction 

using the above equations. In this thesis, the first path is taken for 𝑣 =  0; all adjacent paths 

are then found using the previous paths. Adding all of them together in a raster form 

generates an area coverage tool path for surface abrasion. This technique is used for 

generating the tool paths for all the B-spline surfaces of grids. Hence, the tool path data is 

known in terms of 𝑢 and 𝑣. Using the tool path’s 𝑢, 𝑣 data, the pose data (𝑋, 𝑌, 𝑍, 𝐴, 𝐵, 𝐶) 

for robot waypoints is constructed.   

 

Figure 4.28: Visualization of robotic abrasion of each grid 
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Figure 4.29 Summarizing the tool path generation process 

To conclude, Figure 4.29 summarizes the procedure for tool path generation. The tool 

path robot poses are with respect to the nominal workpiece coordinate system ‘𝑤’, which is 

at the robot’s base coordinate system ‘𝑏’. Therefore, it is referred to as the nominal tool path 

pose ( 𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 
𝑏  or 𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 

𝑤 ). After each robot cycle when a new workpiece is arbitrarily 

placed in the cell, the workpiece’s coordinate system is found using the developed part 

localization method (i.e. transformation 𝑇𝑤𝑟𝑒𝑓𝑖𝑛𝑒𝑑 
𝑏  in Section 3.8). Once the part is localized, 

the next step is to correct tool paths for the abrasion operation. This can be achieved by 

setting the new base coordinate system in the Kuka program as the pose format of the 

transformation 𝑇𝑤𝑟𝑒𝑓𝑖𝑛𝑒𝑑 
𝑏 . Hence, the contaminated portion of the composite panel can be 

abraded.  
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Figure 4.30: Robot cycle for water-break inspection and robotic abrasion 

 

Putting everything together, the sequence of a robot cycle for water-break test and 

abrasion can be summarized as presented in Figure 4.30. 
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5 Conclusions and Future Work 

 

Surface treatment processes such as priming, coating, and painting are commonly 

performed on free-form composite panels to improve their functional and aesthetic 

characteristics. Peel plies, release films, and mold release agents are often used in molding 

of free-form surfaces. These organic contaminations can stay on surfaces after the part is de-

molded. The presence of contamination can weaken the adhesive bond of surface treatment 

processes. Therefore, a framework for autonomous surface contamination detection and 

robotic abrasion on free-form composite panels is developed in this thesis. 

5.1 Summary of completed work and contributions 

The fundamentals of the pin-hole camera model are used for the intrinsic calibration 

of a 2D Triton camera mounted onboard of the robot. To find the positioning relation between 

the robotic arm and the mounted 2D and 3D cameras, a three-point hand-eye calibration 

method is developed. The developed hand-eye calibration method is used to calibrate the 

cameras in both configurations, i.e., ‘eye-in-hand’ and ‘eye-to-hand’. A python API for 

controlling the KUKA robot is developed using KUKA-EKI module. The API supports 

several basic robot control functions such as linear motion, PTP motion, setting base, setting 

TCP, getting current robot state, etc. 

The ICP point cloud registration method is used for initial localization of the part. It 

was found that ICP registration method alone may not provide sufficient accuracy because 

of camera measurement errors and point registration inaccuracies. Therefore, a 2D vision-

based method is also presented to further improve the accuracy of part localization. An image 

processing algorithm for automated detection of water-broken regions in the water-break test 

is developed. Since, lighting conditions can critically impact the robustness of the image 

processing algorithm, different types of lighting conditions were first tested. It was found 

that a Compact Fluorescent Lamp (CFL) with a diffuser produced uniform lighting 
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conditions for the test workpiece, hence it was used for the proposed image processing 

algorithm. The developed vision system can successfully detect the presence of hydrophobic 

contamination on the hydrophilic free-form surface of composite panels. 

The hydrophobic contamination layer on the surface of the workpiece can be in any 

shape. Creating a robotic abrasion tool path directly based on the infinite possibilities in the 

shape and location of the detected layer of the contamination is not reliable. To facilitate 

robot tool path generation for abrasion, the composite panel’s surface is divided into multiple 

grids. A B-spline representation of all grids is constructed using the 3D scanned point cloud 

of the free-form surface. The organized point clouds are used as the control points of the B-

spline surfaces. Finally, a tool path generation method is developed to generate area scanning 

abrasion tool paths for abrading the composite panel’s surface. 

Pre-existing low-level libraries such as OpenCV, Open3D, and NURBS-Python are 

employed for performing tasks such as image processing, point cloud registration, and 

surface construction. Leveraging the usage of those low-level libraries, the techniques and 

algorithms for application-level tasks of autonomous part localization, water-break test, and 

abrasion path generation are developed in this thesis. 

The developed framework including automated part localization, water-break 

inspection, and robotic abrasion allows for fully autonomous surface preparation of 

composite panels prior to priming and coating operations. 

5.2 Future work and research directions 

Future research can be pursued in two main areas, i.e. part localization and real-time 

compliance control for robotic abrasion.  Since the part localization is performed using 

Iterative Closest Point (ICP) registration technique, it can converge to local minima. To solve 

the local minimum problem, the point clouds should be globally registered. Investigation of 

the effect of global point cloud registration algorithms is warranted. Once the point clouds 

are registered globally, the ICP algorithm can be used for the final refinement of the point 

cloud registration. 



Chapter 5. Conclusions 

76 

 

This thesis provides the methodology for abrasion tool path generation. However, an 

actual abrasion process needs active compliance control for ensuring uniform abrasion of the 

composite panel. Excessive contact stress between the abrasion tool and the part surface may 

lead to over-polishing; not sufficient contact stress, on the other hand, can lead to under-

polishing. There are two methods that can be used for active compliance control: 1) through-

the-arm system and 2) around-the-arm system. ‘Through-the-arm’ active compliance can be 

achieved by constrained motion of each robot joint. ‘Around-the-arm’ active compliance can 

be achieved by employing external end-effectors with active compliance control. Further 

research could explore these active compliance systems to ensure uniform abrasion.
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