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ABSTRACT

The reorientational and vibrational broadening of the 992 cmf\
A‘S Raman line of benzene has been investigated through linewidth
analysis, in pure liquid benzene and in benzene-carbon tetrachloride
1iquid mixtures, over a range of temperatures. The results have been
interpreted in terms of the molecular dynamics of the 1liquids studied.

It is concluded that tumbling motions of the benzene molecule
are well described by a rotational diffusion model in the neat liquid,
but appear to approach free rotor behaviour in the mixtures. Also,
evidence has been found to suggest that an unusual, vibratibn—to—
vibration energy transfer occurring during C H,-C H; collisions, dominates
vibrational relaxation in pure liquid benzene.

Linewidth analysis techniques that were developed in the course

of this work, are discussed.
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CHAPTER 1
INTRODUCTION

Experiments involving absorption or scattering of radiation can
contribute many insights to the study of molecular motion in fluids,
particularly in regard to intermolecular forces and the dynamics of
molecular collisions. The traditional sources of information about
molecular forces, such as viscosity and virial coefficients, are largely
insensitive to the angular dependence or "shape" of these forces. In
contrast, certain spectroscopic effects occur because of, or are
modified by, the presence of intermolecular torques. For this reason,
spectroscopic methods are of value in investigating the nonspherical
shape of intermolecular forces. Among these methods. rank microwave,
infrared, and magnetic resonance absorption; also, Rayleigh, Raman, and
fluorescent light scattering.
| Scattering experiments enjoy a peculiar advantage over absorption
experiments probing comparable molecular energy levels. If incident
radiation of a definite polarisation is used, the scattering process may
preserve some of the directional information encoded in the incident
electric field. 1If the scattered radiation is analyzed according to
polarisation, the spectral profile will generally depend on the
polarisation mode selected. Extra information about molecular
interactions can be gleaned from this polarisation dependence. That
this should be so, can be made intuitively pjausib1e. One might
consider a scattering molecule which, from the point of view of incident
radiation, has spherical‘symmetry in the absence of perturbation by
neighbodring molecules. (In the case of Raman scattering, for instance,

the required symmetry consists in a spherical polarisability tensor.)



One might further suppose, that any environmental perturbation of the
scattering molecule takes the form of intermolecular forces of spherical
shape. If the experimental geometry has been arranged so that the
polarisation vector of the incident radiation is normal to the
écattering plane, then, by an elementary symmetry argument, the
scattering process cannot be expected to change the direction of the
polarisation vector. Any such change which is actually observed, must
therefore be a manifestation of asphericity, either in the structure

of the molecule or 1in the forces coupling it to its environment.

Thus, when scattering molecules are selected, which are known to possess
certain symmetry elements, a clear connection can sometimes be drawn
between the depolarisation of the scattered radiation and the angular
dependence of the intermolecular forces.

When applied to the analysis of Raman vibrational lines of certain
symmetry species, the polarisation dependence of the scattering spectrum
is a particularly convenient happenstance. If a few plausible
assumptidns are granted, it allows of a tidy separation of rotational
line-broadening from that induced by other mechanisms (especially
vibrational relaxation). This feature will be exploited in the course
of our investigations.

In the present work, we shall examine the rotational broadening
of the 992 cm:1 Ah3 Raman vibrational line in liquid benzene, both
as a neat ]fquid and in solution with CC1,. An explicit description
of the angular dependence of intermolecular forces is beyond the scope
of this work, and, indeed, beyond the present state of the art. We
shall, however, use lineshape parameters to derive rotatioha1 diffusion

constants, which may be interpreted in terms of the degree to which,



and the manner in which, molecular reorientation is hindered by
interactions with neighbouring molecules. Such hindrance would not
exist if the coupling forces were spherical; the diffusion constants
are thus related to the nonspherical shape of the forces. The
temperature and concentration dependence of the diffusion constants
may further illuminate the kinematic nature of molecular reorientation,
and thence the dynamics governing it.

In addition to the study of molecular reorientation, we undertake
to examine the temperature and concentration dependence of vibrational
relaxation time for the Raman 1ine in question, again by analyzing
Tineshapes. Insofar as vibrational relaxation occurs as a result of
molecular collisions, these times are indicative of the "time between
collisions", and are source of further information about the molecular
dynamics of the f]Qid under study.

Only recenﬂy1 have Raman and infrared lineshapes come to be
regarded as a problem involving, or conversely as a clue to, the time
dependence of molecular variables in a statistical ensemble. The
formalism which relates lineshapes to molecular motion, is a time
correlation function of the molecular variables. The use of correlation
function expressions in analyzing Tineshape data for liquids has now
gained wide acceptance, as it has, indeed, in describing a wide range

of disparate physical phenomena, particularly transport processes.2

References:
1. R. G. Gordon, J. Chem. Phys. 43, 1307 (1965).
2. R. Zwanzig, Ann. Rev. Phys. Chem. 16, 67 (1965).



CHAPTER 2
THEORY
In the following discussion, a quantum mechanical description

.of Raman Tight scattering will be formulated. Once the general
connection between the spectral profile and the time dependence of
molecular dynamic variables has been established, a framework will
be constructed, within which lineshape parameters may be interpreted
in terms of the motion of individual molecules.

I.  Quantum Mechanical Description of Light Scattering:

Foltlowing Gordon‘, we begin with the polarisability formula
developed by Placzek® for non-resonant Raman scattering. These authors
give the cross section (probability per unit solid angle 2, per unit

angular frequency @, that an incident photon will be scattered into

dfldw) as

\ 3 - cal
Lo _ uf ’(:_3‘2’) Y O EvsE H}lz%é(ws;w)
- 5E

dndw c ... (2.1)

3 0 A 2 .
Here, W = u>)~ uf » where wPand Ware the angular frequencies of

the incident and scattered photons, respectively; é“gnd %Qhare

unit vectors a]éng the directions of the electric vectors of the
incident and scattered photons, respectively; [L> and l¥> range over the
(many-particle) eigenfunctions of the scattering system, and have

energy eigenvalues E and E.; hklis the Bohr frequency (E$—Et)/k; Pi
is the probébi]ity of finding the scattering system initially in state
fi>; ?iis the polarisability tensor of the scattering system, evaluated
in the lab frame.

(NOTE: Equation (2.1) differs by the factor béykﬁnfrom the form given

in References 1. and 2., because these authors measure radiation fluxes



in terms of energy, rather than number of photons.)

This formula represents the conventional Schrodinger picture of
Raman spectroscopy, in that it focuses attention on the energy levels,
rather than the time development, of the system. It has Tittle
interpretive value, for, since there is no classical analogue of a
single quantum state, it does not allow any classical correspondence
to be exploited. The Heisenberg picture, on the other hand, leads
nétura]]y to the expression of a spectrum as the Fourier transform of
a time cbrre]ation function, and yields the classical result in the
appropriate limit.

In order to proceed from (2.1) to the corresponding Heisenberg
form, one introduces the Fourier representation of the Dirac 8 function:

§(w) = (aw) Sw‘h exp (Lwt)

whence

’ 2 Uy (N3 A Dr.
e = T DGR 2 e [ e

(\) (w(?-) )

e S dt exp(ﬂwt)}:?( \(€ “}Q-'éa)eXP(LE;C/h)H>

xFEVRED expELMND |

u

where, in the last step, the multipliers exp(iEgt/h) and exp(-iE, t/f)
have been téken 1nsjde the scalar products, and the linearity of

fhe operator é?TE-é“”has been used. This result may be re-expressed

by introducing the Hamiltonian H of the matter (excluding the interaction

of the radiation and matter). Since |i> and I£> are eigenstates of H

with eigenvalues E. and EF , one may write >



exp(iEt/R)IF> =  exp(itt/k) > and
exp(-iE t/R)11> =  exp(-iHt/R)]|i> , whence
2z W (-2_\)?; w o .
fQZm - lk)?.tr(rhc)f’ S_m&t eXP("“‘)t)Z? GIEREE™) exp (HE/R)IE

x CHED G D) expCilit/R)Ly |

One may invoke the completeness relation

Z; By

to remove the sum over final states:

d?'c‘ w¢ )( w(?.))

J‘Q&m P SCH: eXP(—W)'t) ZP<“ A(\)a nm]
X [exy(t HJC/ w04 ﬁ—m) GXP( LW“/’R)MO

The second square bracket within the scalar product may be recogm‘zedd"
as the time - dependent operator @“Za.ﬁ“‘, evaluated at time t, and
may be written as £ a&)- Em, since émand émare constant in time. The
first square bracket may likewise be recognized as the same operator

AV aa A
at time 0, and written as € 'CX(O)*E(?'). Thus,

2 ) ) 3
fszl - “z?cf & dt exe<~wt>29< (R84 6@ £ 1D,

~ 0

The weighted sum over expectation values corresponding to the various
initial states, constitutes a quantum statistical average, which we

denote byv < >°

% (KA]
o S i el EHOPIBOEY, (o

dQdw ?.'Y\‘

-



If the average < 2) is interpreted as a classical ensemble average,
one recovers the classical descriptionstﬂ’Raman scattering, as the
Fourier transform of a time correlation function.

II. Reduction of Polarisability to that of Single Molecule:

In (2.2), the polarisability tensor 4 pertains to a whole group
of interacting molecules exposed to the incident radiation, and
consists, we assume, in the sum of the polarisabilities of the individual
molecules. Thus, every product of a.(0) and a(ﬂ will contain cross terms
between the polarisabilities of different molecules. If it is assumed
that there are no angular correlations among the orientations of
neighbouring molecules, then the ensemble averages of these cross
terms will vanish, and the correlation function in (2.2) will equal
N times the single-molecule correlation function, where N is the number
of molecules contributing to the scattering. When we take cognizance

of this cancellation of cross terms, (2.2) stands as written above,

but éiz; will now be interpreted as the cross section per scattering
molecule, and the polarisability tensor @ as that of a single molecule.
The reduction we have just effected, is central to our objective of
describing the scattering spectrum in terms of the motion of a single
molecule.

Fe]icjtous though it may be to neglect angular correlations, the
assumption involved should be applied only with strict reservations.
" The evident existence of hindered rotations in 11quids must be due to
intermolecular torgues, whose presence implies that the potential
energy of interacting molecules is a function of their relative

orientations. As a result, some relative orientations will be more

energetically favourable than others, and a degree of angular correlation



is inevitable. Quantitative calculations of such effects are difficult
to find in the Titerature, so that no satisfactory treatment can be
given here.

One may proceed further to evaluate the expression within the
‘ensemble average of (2.2). It is assumed that the scattering system
is isotropic - f.e., that the molecule - fixed axes are randomly oriented
with respect to the polarisation vectors é“)amj ém)— as will, indeed,
be the case for a liquid or gas sample. The ensemble average of (2.2)
may be performed by averaging independently over molecular orientations
and over molecular eigenstates. The separation of the two averages is
justified by the fact, that.the eigenstates are indifferent to the
orientation of the molecule in the lab frame. They could depend on
orientatfon only through the interaction of the matter with the incident
radiation, and we have postulated in I. that this interaction may be
excluded from the Hamiltonian which determines the eigenstates.

Assuming isotropy of the scattering system, we shall first
average explicitly over molecular orientations. Letting Iu and I, *
denote the cross sections when ﬁ“’and éﬂhare, respectively, para]]eT

and perpendicular to each other, one obtains® from (2.2):

[, = E(_‘lS_L g &% ext:(*twt)<1gz [20@a@® +a©a (tﬂ>

2wc?

w(“ ('Z.))

and I ,1.("’) S at exF( Lmt)<.50 Z[?ﬁd L0 o \‘(ﬂ Q (0) Qk\‘(’cﬂ>

o
where £ ) now denotes the usual thermal (Boltzmann) average.
Next, one may separate'a into its anisotropic (traceless) and

spherical parts:

* I, and I, will subsequently be referred to as the "polarised" and
"depolarised" spectra, respectively.



=&5.L.3+?’L3 , where o = %T}(a) )

a3

Writing the summations over j and k in trace (Tr) notation, one

readily gets ©

;I(w) uﬁ( &'L‘) SJ{t e&p(—lw’t}(&(&&(ﬂ—i— %Tr["é.@fé,(tﬁ> L ' (2.3a)
and | 1 L) = i‘g_—@fg dtexpl Lut)<\o“;[9;@ @(-Q:D ... (2.3b)

It is convenient to define the isotropic or "trace" scattering by

0y, > (¢
I_S:)) = %%)——S 4t ex?(~Lw’C)<EC(0)&("®>9 ... (2.4a)

and the anisotropic scattering by

L= 87 Sat explut) G I (Bod@])  -.. (2.4b)

e’ )

It is evidently possible, experimentally to separate the anisotropic

from the trace scattering: from (2.3), we see that

1]

Loicld = [, ... (2.53)

and _ | I-L.-,o(w)

[w-5Iw . .. (2.5b)

IIT. Separation of Reorientational and Vibrational Broadening Mechanisms:

We shall now investigate the form taken by (2.4), when a vibrational
Raman spectrum is considered, and when certain assumptions are adopted

in regard to correlations among motions in the various degrees of
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freedom oflthe écattering molecule.

In Gordon's original treatment1, it was postulated that the
polarisability tehsor'a is constant in time, if referred to a co-
ordinate system which rotates with the molecule. The time dependence
of 3., as evaluated in the lab frame, was thus taken to arise solely
through molecular reorientation, with the result that other Tline-
broadening mechanisms were neglected. More recent authors®® have
taken explicit account of vibrational broadening.

Following Bartoli and Litovitz7, we shall consider the polarisability
tensor @ to be modulated by each of the Raman—éctivé normal vibrations
of the molecule. These vibrations are assumed harmonic. A Taylor
series expansion of &y, in powers of the normal co-ordinates qF(t),

yields, to first order,

4 ) = ) + 2o

where 05 (t) is the equilibrium (qr=0) polarisability, and where
ik

af® = 3a0/3dw |y,

Here, dgk and cgiare taken to be constant when referred to the
molecular axes, so that their time dependence in the lab frame arises
solely through molecular reorientation. In principle, other processes,
such as collisions, may contribute to the time dependence, so that
the following treatment represents only a Timited generalization
of Gordon's approach.

Upon decomposing @ into its spherical and traceless parts, we

further break down ¢f(t) and %k(t) in the manner of djk(t) above.



The thermal averages occurring in (2.4) may then be re-expressed:

e (R0 86

n

Z, (FOINOY

]

Z;k&%)@ AOY + Z:. < RO ;ag(t) qey

° ’ LR )
| +Z:<$i§}g%©q'@> +;<ﬁ§°)§§)®)qC0)q(’c)>1. .. (2.8)

P are not

Some simplification occurs, if it is assumed that the g
coupled to the orientation of the molecule, and that the normal modes
may be treated as independent oscillators. Now, if g¥ is uncorrelated
“with orientation, and hence with 85?;3 and p{.; (which depend only on

~ orientation), then

<§§.}(o) HOL W = <§s‘;3 © ¢ 3(t)> CLOS

For a harmonic oscillator, <c\v(t)> =0 .

L An@goOder = o, ... (2.7a)
and sinilarly g0 §E) ) =0. | oo (2.7b)

‘Moreover, if qf' is uncorrelated with orientation, then

<§{3(o) NMOLIO) )y = <@sg<o> 2@ (@)

If different normal modes are independent, then

11



<"{J(0) ff & = <qp(03><q"(’c)> =0 for pP#Y.

Z@ (o)ﬁ(ﬂq”(@q(@ Z<§f> (®@"<t)>< (©) q*’(t)); ... (2.8)

With the results (2.7) and (2.8), (2.6) becomes

<—ﬁ, RoaE) = ;k@;@ﬁ%@» +;<§§3(o)sz{;(t)><ﬁ'ﬁo) O\V(’c)ﬂ

=GRl ) +§;<Tr&‘s”co> FEodey. . o.en

Treating o as we have treated individual components of ‘gi, we find

(GGoaw) =<k + Z(o{”(o) ELONCIOLIONS

Now, the time dependence of & and E(Pwas supposed to arise, if at all,
‘through molecular reorientation. But & and & are, by definition,
rotational invarients (since the trace of a matrix is invariant under

rotation). Thus o and & are constant in time, and we may write

Gorey = <GP+ FZ<(&">Z><<1“<o>q"(t>>. . (2.9)
Use of the thermal averages (2.6') and (2.9) in (2.4) yields

Q\) ( (‘Z))

I()~

iso

So\t expCud{ET> I XE@DEOE} .. @

and IW) = {:&i:) S exF( Wt)km—““t&izo) (t)]>

anis
< STl 7D @l (’c)>} . (2.4'D)

12
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The terms involving equilibrium polarisabilities (Eit‘éf) correspond
to Rayleigh scattering. In the present approximations, the isotropic
Rayleigh scattering is elastic, since the Fourier transform of the
time - constant <Kff°jﬁ> is proportional to S(ub. The anisotropic
Rayleigh scattering, however, is reorientationally broadened, because
of the time dependence of ‘§§° which arises through reorientation. The
scattering terms involving polarisability derivatives ( EZP,fir )
correspond to vibrational Raman lines, the anisotropic components of
~which are broadened in a similar manner by reorientation. It might
thus seem a matter of indifference, whether one attempts to study
reorientation through Raman or through Rayleigh Tineshapes. It will be
recalled, however, that the above results presume the absence of
angular correlations among neighbouring molecules, which, we have
conceded, is a slender reed to lean on. Had we allowed for such
corre]étions, cross terms between the polarisabilities of different
molecules would have survived the process of ensemble averaging; the
correlation functions which appear in (2.4') would represent only the
"self" terms of a sum over all pairs of molecules. The appropriate
generalization of (2.4') would include also the "distinct" terms,
for each of which, the product occurring in every angular bracket of
(2.4') is taken between quantities evaluated on two distinct molecules.
At this point, a crucial difference can be discerned between the
Raman and Rayleigh terms. It may still be argued that the distinct
Raman terms vanish. Each such term contains a factor (qiﬂ)) qt(t2>,

where i and j are distinct particle subscripts; this factor vanishes

if, as might be expected, the vibrational phases of different molecules
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"~ are independent. Any correlation which persists despite the randomising
effect of vibrational phases, is bound to be Tess important than that
which infests the Rayleigh terms, on which no redeeming grace descends.
Thus, the Raman spectrum will be a more faithful manifestation of
the motion of an individual molecule than will the Rayleigh.

Granted that (2.4') holds, at least in regard to the Raman terms
on each side of the equations, we focus attention on a single Raman
vibrational Tine corresponding to the r'th normal mode. So long as
this line does not overlap significantly with any other Tine, we may,

without serious inaccuracy, write

iso

DY b
I - %—lﬁ—“’;”— <<6‘<")°“>S &6 exp Cuil) {foqey

p w(\)(w(?.)f’ A
and L ==

S dt exp (-twl) <’ﬁ- [‘@F(o) 8 P(tﬂ) <qr(0) O‘V(J\?)> s

e
where IF denotes the truncated spectrum obtained by taking the actual
scattering spéctrum in some interval around the modal vibration
frequency in question - Targe enough to include any measurable structure
lof this 1ine, but small enough to exclude that of any other line -

and by Tetting the spectrum vanish outside this interval. If we

ignore the slow variation of W

within the interval, and regard the
factors in front of the integrals as constants, then the spectra are
evidently, within a multiplicative constant, Fourier transforms of
the correlation functions occurring in the integrands, and conversely,

the latter are, within a constant, inverse transforms of the spectra:
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U@ ~ <40 qw)

... (2.10a)
and T:ﬁ’g’ ~<T;~[‘{’3"’(0)-ﬁp(t)]><qy(0)qt}(t)>a ... (2.10b)
e T ;_S_ic\w exp(uit) (o).
Defining the "reorientational spectrun’ I by the relation

T -~ (#0-3w)y o (27

(the nomenclature is motivated by the orientation dependence of 3% ),

we have from (2.10), |
A . A AP
[fr(t) ~ Y;«Ssﬂ/ INOMN ... (2.12a)

The corresponding relation in the frequency domain, by the Fourier

(E ) ] ) 9 . e 2 l2b
I . ) I- [L: Cw . ( . )

where * denotes the folding operation.

Either of equations (2.12), together with (2.5), provides a way
to extract Ii, R and the attendant information about molecular
reorientation, from the data (I“ and I, ) which are available
experimentally.

Having accomplished the separation of rotational from vibrational
line broadening, we consider the effect of any other broadening
influences, such as intermolecular collisions, which may be operative.
An approach occasionally adopted6>9 is to assume that non-reorientational

broadening processes are statistically independent of the vibration
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.and reorientation, and that they contribute equally to the isotropic

and anfsotropic scattering. The effect of such processes is represented
by modifying the polarisability derivatives (Eir,?ir) by a multiplicative
factor f(t). With f(t) taken to be uncorrelated with &kt) and with

orientation, (2.10) would be replaced by

I-io(t) ~ £l 46> FyFE»

ad Lo ~ (T8 RO G |

and (2.12) would follow as before. This method is not rigorous; one

must therefore hope that non-reorientational broadening mechanisms are

. of secondary importance. The approach has, however, at least an
instructive value, in that it emphasises the unique status of reorientation
as the only broadening process under which &f may be expected to remain
invariant.. It is this feature which, in principle, enables a relatively
simple separation of the reorientational spectrum.

IV. Rotational Diffusion -

Derivation of Diffusion Constants from Lineshapes:

Through equationé (2.12) and (2.5), we have demonstrated the
possibility of determining the reorientational spectrum from experiment.
Our next objective is to use the information in the spectrum,
quantitatively to characterise the reorientational motion itself. This
will be accomplished through the derivation of rotational diffusion
constants in terms bf the linewidths of reorientational spectra.

From equation (2.11), and by our assumption that‘ﬁP depends only on
molecular orientation, it is evident that I (W) s determined in
principle, once we have statistical knowledge of the time development

of the angular distribution for an ensemble of molecules. The problem
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of describing this time development is amenable to analysis ifbone
considers that each molecule undergoes a large number of random rotations
in any macroscopic time interval. Descriptions of molecular reorientation
that conform to this pattern of motion are referred to as rotational
Brownian motion modeis, in correspondence with the familiar case of
microscopic translational motion in fluids, which Tikewise proceeds in
random steps. Reorientation models in this category, which further
stipulate that the individual angular steps are of small size, are more
specifically designated as rotational diffusion models. This 1is because
an ensemble of.mo]ecu1es, all prepared in the same initial orientation,.
and Undergoing small-step rotational Brownian motion, will tend in the
course of time to spread out in Euler angle space, in much the same way
as particles undergoing transliational Brownian motion tend to diffuse
in ordinary space. In the case of translational Brownian motion, the
size of individual step is immaterial to the nature of the motion -
a change in the size of step affects only the length scale on which the
phenomenon is viewed, without changing the equations that govern the
motion. In the rotational case, however, a large step size results in
a qualitatively different description of the motion, as compared with
a small step size. That this difference might be expected, is suggested
by the fact that angles are dimensionless quantities, so that a "large"
ang1e_cannot be made equivalent to a "small" angle by a change of scale.
Treatments of rotational Brownian motion which allow for Targe step

! in the 1iterature. These theories

sizes, have been offered '™
reproduce the results of rotational diffusion models in the small-step
Timit, and give at least formal solutions of the time development of

the angular distribution, for arbitrary step size. They do not,



however, provide a simple interpretation of the motion on the basis of
lineshape parameters, when they are applied to cases intermediate
between the diffusion 1imit and the "free" (unhindered) rotation 1imit.
The theory of Reference 11., moreover, is readily applicable only to
1inear and spherical top molecules. Accordingly, the following

discussion will be confined to small-step diffusion.

. 12
A definitive treatment of rotational diffusion is given by Favro

‘who derives a quantum-statistical diffusion equation for anisotropic
rotational motion, that is analogous to the classical Fokker-Planck

equation for translational Brownian motion. Favro obtains,

3 Ora N
S‘EP(Q;‘) - "zj; MijMkP(Q,t), . (2.13)

Here, P(§i,t) d®>Q s the probability at time t, of finding a kandom]y
chosen member of an ensemble of similar rigid bodies undergoing
rotational diffusion, to be in the volume element d*Q of Euler angle
space. Also, ﬁt is the i'th component of the "rotation" operator,
which is related to the quantum-mechanical angular momentum operator

tz for a representative rotor, by

Moo= KL L - ... (2.14)

L L

The Dy, form the components of the "diffusion tensor”, defined by

D, = 5% <ege>, ... (2.15)

where Egis the angular excursion about the i'th axis executed in the

time T, and where<(> denotes an ensemble average. (It is assumed that

Q%EQ)?S proportional to T for sufficiently long T, so that the Djk

are well defined. Also, it is assumed that a "sufficiently long" T is

E
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still short enough, that the € remain essentially infinitesimal: the
tensor transformation properties of the Djk then follow from the vector
character of small rotations €.) The designation of the Djk as
"diffusion constants" is motivated by the relation, similar to (2.15),
which holds for translational diffusion cons’can’cs.‘3

To solve the angular distribution P(ﬁ ,t), one seeks a Green's
function or "evolution" function for (2.13), which will generate P(R,t)
from a known initial distribution P(S_i ,0). In terms of the Green's

function G, one writes
PEw = g&ssz' P&Lo GERTLL . ...(2.16)

Physically, one may expect a suitable G to exist, if the following
superposition principle obtains: tha’t the probability, that a rotor
with given om‘entation §'at time 0, will have reoriented into d3§_2

at time t, is independent of the initial angular distribution P(_Si',O).
For, then one may compute indépendent]y the contribution to d®Q at
time t, from the population of each element d3Q’ at time 0, as implied
by (2.16).

Now, if (2.16) is to hold for arbitrary P(Q',0), then it is readily
seen that, for any fixed ¥, G(R'IR ,t) must be a solution of the
diffusion equation (2.13). This is shown by setting P(R’,0) equal to
S(Q'—ﬁﬂ) in (2.16): then,

Pas = |8 S@FDCERLD = GRIAL .

- o ron =y
Since P($1,t) is a solution of (2.13) so is 67, t) for arbitrary U .
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Let us suppose that the operator
AN A N
A —2;; Mj %h Mk

possesses a complete orthonormal set of eigenfunctions ‘{’“@), with
corresponding eigenvalues ?\“. Then, for fixed Ql and t, G(ﬁ'lﬁ ,t) may

be expanded in the *'(’n@l%
G@RELY) = ; ¢, @6 ¥ (@) . ... (2.17)

Since G| ,t) must satisfy (2.13), one may write

' A
(e @l 4@ =2 e @ ArQ
n n

=— ; e @Dlv @ .

By the orthogonality of the ‘\P“ , it is possible to equate their

coefficients term-by-term:

L@ = A @N) .

) - "'an.t
Hence, Ch(ﬂl,t) = Cﬁn(?l') e
Substitution into (2.17) yields
3 1 =b 0 pur -7‘“'& -
G'(Q.I\Q,t) = Z“: Cn(gll) e '\{’“(Q) . . (2.]7'>

The c:(ﬁ') are to be determined from the initial condition, that
P(-Si ,t)—%P(—Q ,0) as t—=0, for arbitrary P(ﬁ ,0). By (2.16), this

condition will require
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G(ﬁl\ﬁ,’@—* SR as tosn |
Aiso, by (2.17'),
CQRD— 2 @ 4@ as e
Comparison of the last two results gives
)@@ = SED,

If the 4& form a complete orthonormal set, we may invoke the completeness

relation

Z\:wf‘@') Y@ = SQ@=1)

othat P SE@Y@ = I @I
Comparfson of ;oefficients of the 4;(§) gives

c@) = VA
whereupon (2.17') becomes

@R = E:*P (Sl)ed“t\”“(i‘n . ... (2.18)

Substitution into (2.16) yields the time development of the angular

distribution:
P@yp = Z ] S&SQ' P(Q",O)*{)f(ﬁ’)]*{ln(ﬁ) e (2.6

It remains to determine the eigenfunctions 4@ of the operator
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N A &
=2; Mj Dlh_Mk . Referred to the principal axes of D , the operator may
j

be written, with the use of (2.14), as

2 ET D)L

This is recognisab]e‘ﬁas the quantum-mechanical Hamiltonian of a rigid
rotor with principal moments of inertia I, = ‘H?'/ZD.L . Thus the 4& are
merely the quantum—mechanica] eigenfunctions of a rigid rotor with the
same symmetry as that of the diffusion tensor. Since the symmetry of
the molecular frame determines that of the diffusion tensor, the
rotational diffusion of, say, a symmetric top molecule will be described
by a Green's function constructed of symmetric top eigenfunctions.

It is well known‘sthat the rigid rotor eigenfunctions are exactly
soluble for spherical and symmetric tops (although only approximately
for asymmetric tops). Moreover, for a symmetric top molecule, the
eigenva]ues)hof A are just the energy Tevels® E,, of the appropriate

(Il: ﬁz/ZDL) symmetric top rigid rotor, and are thus related to the

diffusion constants by

2 - E, "‘kT J‘(:)"+x)+__(—-- I>K

3

> TEWD, + K%D;'D,) , ... (2.19)

where J and K are the rotational quantum numbers of 4%, and where the
xsaxis is the symmetry axis.
With knowledge of the 4’ and of the % , 1t is possible through (2.16")

to calculate the correlation function <T;-[§5(°) gsf'(’c)]> in (2.11).
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To do so, one begins with an ensemble of molecules, aj1 prepared, at
time 0, with the same initial orientation ﬁ”. This corresponds to an
angular distribution P@&'Q) = 8@1"), so that the subsequent
distribution PQ&LE) , by (2.16') and (2.18), reduces to G(R"IR,t).

Then, explicitly introducing the angular dependence of “\‘5" , one gets

(e (8o -3 @l

T [5G - (1@ o))

1

Te (8- 2 @150 Fa) .

Valiev'evaluates this expression, using (2.18) for G(R"[.t), and
using the transformation properties of tensors in the spherical basis
to find ‘gif’(ii) from ?Sp(ﬁ”) . Valiev's result for a symmetric top

expresses the correlation function as a linear combination of exponentials:
o T = k,expl-6D, 18] + ke, expl-(5D+D 1]
thoexpl-(2D+4D)ME) , L. (2.20)

where the k.L are functions of the components of Er@"), and where
D, = Da=D_‘_ » and D3= D“ . (The diffusion constants enter the expression
through (2.19).)

Some simplification of (2.20) may occur if a specific normal
vibration mode is considered. In the particular instance of an A‘S
(totally symmetric) vibration -in a Deh (symmetric top) molecule, it is

found7 that k2 and k:s vanish, so that for the case of interest in the

present work, viz., the 992 cm?‘ A‘S line of benzene, we have

hlglo s@)) ~ exp (6D tl] | ... (2.20")
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whence the correlation function is exponential with a decay time or

"correlation time"

T, = (6D, ... (2.21)

This reduction is, indeed, expected. A totally symmetric vibration
preserves the symmetry of the molecular frame, so that ?f must havé the
same (symmetric top) symmetry as has the molecular frame. Thus,'ﬁy
should be invariant under reorientations about the molecular symmetry
axis. It is these reorientations that are characterised by D!‘ ;
therefore, D should be absent from the expression for'<1?[§ﬂb}§?tﬁﬁ},
For the benzene ]ine in question, the reorientational spectrum is a
manifestation solely of the “tumbling" motions about axes‘perpendicu1ar
to the symmetry axis.

It is now apparent that the study of Raman vibratioha] lines. of
different symmetry species, insomuch as it furniéhes the correlation
functioné(ﬁ}(@ﬁxg.éﬁ&ﬁ>, may lead to the determination of the complete
diffusion tensor - provided, of course, that the reorientational motion
is well represented by rotational diffusion. |

A final point of considerable importance, is that the correlation
time of (2.21) is readily obtainable from the frequency profile of the
reorientational spectrum, without recourse to the time domain. The
spectrum, by (2.]]), is the Fourier transform of (2.20'). The Fourier
transform of an exponential with time constant %, is a Lorentzian with
a full width at half-maximum (FWHM) of M= 2/T. in units of angular
frequency, or

-1
M= (e .. (2.22)

-1
where ¢ is the speed of 1light, if [” is measured in wavenumbers (cm. ).
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Using (2.21), we may express the linewidth (FWHM) of the reorientational

spectrum, for a totally symmetric vibration of a symmetric top molecule:

r o= 6@ D, . ... (2.23a)

oy
or conversely [)L = %;TTC.E;., ... (2.23b)
With this result, we have accomplished the objective, of deriving

diffusion constants from 1lineshape parameters.

V. Significance of Rotational Diffusion Constants -

Relation of Diffusion Constants to Friction Constants:

Our purpose in this section is to interpret the rotational diffusion
constants of IV., in terms of the torques which couple a rotating
molecule to its environment and which therefore (given that the fluid
does not rotate bodily) tend systematically to hinder the reorientations
of the molecule. Although the connection between rotational diffusion
and rotational friction consiants will be derived below in a concrete
and specific fashion, it may be appreciated in the abstract as a
consequence of the fluctuation-dissipation theorem.

We begin by recasting the definition of the diagonal diffusion
constants in a form involving a correlation function of angular velocity.
‘This is done in a manner similar to a treatment by Zwanzig‘7of
translational diffusion. In consequence of (2.14), the diagonal

elements of the diffusion tensorﬁ may be written
- 1
D, = 5<eln e,

when D, and €, are referred to the principal axes of the diffusion tensor.

One may replace €.(t) by
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e () =S°c\’c w ® ,

where W, is the angular velocity about the i'th principal axis of the

diffusion tensor:

D, = =<l Sz&’c’ u&t’ﬁﬁj&’s” w81

s SZA’c'SjAt"@L(t’) (&,

il

. I'4 174
The integration domain may be separated into the two regions T <:i3

[
and i3¢<ﬁ3’ the integrals over which are equal by the symmetry in t' and
t".

L DS ar o neny.
[ ‘i’,’

With the transformation t = t" - t', this becomes

[j ot -t ' )

.= -f&o 4t go dt w b )wt(‘t-&-"ﬁ» _

The ensemble average may be assumed "stationary" - i.e., invariant
under shifts of the time origin, and therefore dependent only on t,
not on t'. Also, T 1is essentially infinite on the time scale of
characteristic molecular processes, since it must be great enough to
accommodate_a statistically large number of random steps for the
diffusion constant to be well defined. This permits the upper limit
of the inner integral to be replaced by eo. Thus, the inner integral

is independent of t':
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1 g;“ W g‘: 1< 0,(0) w,E

O
-
I

%o At<‘°1(°) ‘“’L(t». ... (2.24)

Next, we evaluate the angular velocity correlation function through

an investigation of the rotational dynamics of the molecule.

Following Stee]eis, we treat the molecule as a classical rigid

19
rotor, described by Euler's equations :

Lo, = wsw%( I,;L) =N,
L0y~ 0, (1-1) N,
Loo,—uu(l-1) =N

Here, I is the i'th principal moment of inertia; @ is the angular

H

%

velocity, referred to the principal axes of the molecule (that is,
evaluated in a non-rotating frame whose axes instantaneously coincide
with those of the molecule); N is the instantaneous torque, again
referred to the molecular axes.

By analogy with the well known treatment of translational diffusion

via the Langevin equationzo, we assign to N the phenomenological form

N o= -%-8 +Nw,

L2 N

where % is the rotational drag tensor, which is constant when referred
to the molecular axes and is responsible for the systematic tendency of
the rotor toward equilibrium, and where ﬁ'(t) is a rapidly fluctuating

torque arising from random changes in the molecular environment of the

27
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LD

-rotor.  Now, ¥ must exhibit all the symmetries of the molecule, since it
is characteristic of the molecule itself and independent of environmental
fluctuations. It follows that the principal axes ofﬁi coincide with
those of the inertia tensor; thusig is diagonal in the same frame as

is‘f. In terms of the diagonal elements ("friction constants") of § ,

the Euler equations become

L‘bx““\;%(\-g‘w = =%, +N:(t) et cyc.

Even with this simplification, the equations are not generally
soluble in closed form for arbitrary values of the I, . Nonetheless,
they become trivial for the case of a spherical top rotor, which is
treated by Stee]e‘aand Hubbardzx. In this case, the Euler equations
are uncoupled, since the cross terms in the angular velocities vanish.

It has been suggestedzz, that if only systems whose reorientation
is of a strongly diffusive nature are considered, then it is permissible
to neglect the crossterms, even for an asymmetric top. When the motion
follows a pattern of small-step rotational diffusion, it is clear that
the frequent sharp changes of rotational direction, executed by the
molecule in the course of small angular displacements, are indicative
of angular accelerations that are Targe in relation to angular velocities.
Thus, the neglect of cross terms in the W¢, 1h favour of terms in the

dJL, is plausible in the diffusion limit.

Upon deletion of the cross terms, the stochastic equations governing

reorientation reduce to the uncoupled form

by =% +N@L/T, , v=1y.2,

which is formally identical to the Langevih equation. This is a linear,
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first order, inhomogeneous differential equation, with solution

t
UL(t) = eX?(-“§it/[g X [HL(O)-F%SOA_E N.:(*G')e"P (%;tl/‘[‘)} -

Knowledge of the time dependence of W; enables us to evaluate the

correlation function <uJLk(0)w-L(t)> :

(u@uy = {ui) exp(-§.8/T;)

t .
+ -‘i- erplEL/L) g}’ﬂ'@%? Gx/INI G,
Since Nl(t) is purely random, we may assume(ﬁl(t')>= 0, whence

C00) Wty ={wiE) expGE /1) . ... (2.25)

It is simple to evaluate (wf(o)} from statistical mechanics.
The kinetic energy of a rotor, evaluated in the principal axis frame,
19
is '}Z'(LU:"&-K?.G)’;-*-IS&);) . Thus, the energy associated with rotation |

about the i'th axis is -}?-_-'[.‘mf . By the equipartition theorem,

CLetey =KT/2 Lo et = KT/T,

Equation (2.25) becomes

(o @y = K- exp(-x.t/1). .o (2.25")

Since the diffusion tensor, like the drag tensor, shares the symmetries
of the molecule, its principal axes coincide with those of the inertia
tensor; (2.24) and 2.25') therefore hold in the same frame of reference.

Substitution of (2.25') into (2.24) yields
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D. =4 | tt e Ct/1)

= \<T/§;\ . .. (2.26)

This establishes the relation between diffusion and friction

constants. The present result parallels that deduced by Einstein (1905)

for the translational diffusion of a Brownian particle.
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CHAPTER 3
EXPERIMENTAL ASPECTS

In its essentials, the experimental setup was typical of Raman
scattering systems. Most individuating features arose from the
necessity, in the present work, to minimize the entry of stray light
from the strong isotropic scattering, into the measurement of the weak
anisotropic scattering.

The system was constituted as follows (Fig. 1): The Tinearly
polarised beam from a laser 1light source was brought to a weak focus
within a sample cell. The cell was located in a temperature-regulated
enclosure. Spherical collection optics, with an axis at right angles
to the beam, viewed the 1ight scattered at the beam focus, analyzed
it according to polarisation, and imaged the 1ight of the selected
polarisation onto the entrance slit of a spectrometer. The T1ight

passed by the spectrometer was detected by a photomultiplier tube, the
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signal from which was processed by digital (photon-counting) electronics.

It will be convenient to discuss experimental aspects in relation
to the various system elements mentioned in the above paragraph
(Part A.). This discussion will be supplemented by some notes on
methods (Part B.).

A. The Experimental Setup

1. Light source and pre-sample optics:

The Tight source was a CRL #52 argon ion Laser, operating at
about 1/4 watt on the 4880 A. Tine. It was equipped with a Brewster
angle window, which so polarised the beam that its electric vector was
perpendicular to the direction of observation. Isotropically

scattered 1ight would thus propagate with maximum intensity along
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the observation direction, with its mode of polarisation unchanged in
the scattering process. This arrangement afforded the freedom to
pass, or to extinguish, the isotropic component, by means of setting
the analyser to transmit 1ight polarised, respectively, parallel or
perpendicular to the electric vector of the beam.

A 1ens of focal length 30 cm;, placed in the incident beam,
brought the beam to a weak focus within the sample. Although a shorter
focal length, according to a study by Schwiesow', would be desirable
from the standpoint of maximum 1ight collection, the longer focus
was selected to preserve a well-defined beam b61arisation. Otherwise
no setting of the analyser would entirely block the transmission of
isotropically scattered 1light.

2. Sample cell and collection optics:

The focused, linearly polarised beam was incident on a rectangular,
fused quartz cell containing the 1iquid sample. Since fused quartz
has nb definite crystal structure, passage through the cell walls
would not depolarise the beam, nor the scattered 1ight.

The axis of the collection optics was at right angles to the beam.
This écattering geometry reduces stray scattered light, and facilitates
depolarisation measurements?

A diaphragm, placed in front of the collection optics, limited
Tight collection to a cone subtending 4° planar angle at the beam focus.
The value 4°has been suggested3as an upper limit, since for larger
collection angles, the isotropic scattering would lose some polarisation
definition, and could not be extinguished entirely at any setting of

the analyser.



The 1ight cone was rendered parallel by a collimator lens, then
presented to an analyser of sheet polaroid in a rotatable mount, whose
extinction ratio was measured to be better than 10-4'. (Analyser light
leak would not, at this value, contribute a significant amount of stray
light.) A second lens focused the light onto the entrance slit of
the spectrometer. The two lenses were chosen and arranged so that the
light they passed would not overfill the acceptance cone of the
spectrometer; otherwise, signal Tosses would occur.

3.  The spectrometer:

The Tight was dispersed by a Jarrell-Ash 25-100 Series scanning
spectrometer. This instrument consists of two grating monochromators
in tandem, in the Czerny-Turner configuration. (The double
monochromator design improves stray light rejection - "stray" Tight
being, in this context, light of the wrong frequency, rather than
of the wrong polarisation mode, as the term has heretofore been
construed.) It was equipped with a grating drive linear in wavenumber,
which divided an advance of 1 cm?1 into 20 mechanical steps.

4.  Signal detection and processing:

Light passed by the spectrometer was detected by an RCA C31034
photomultiplier tube, cooled to -20° C. This tube was selected for
its Tow dark noise, high quantum efficiency, and broad range of flat
spectral sensitivity. It was followed by pulse-counting electronics,
which enjoy several advantagesz over conventional phase-sensitive
amplification systems:

(a) Elimination of drift problems in electronics.
(b) Linear response to light 1nten$ity over a large dynamic range,

due to the high-frequency response of electronic pulse circuitry.
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(c) Direct digital output is possible, and’convenient for digital data
processing. In the present work, spectra were recorded digitally by a
Victoreen ST400M multi-channel analyser (used in the multi-scaler mode).
(d) Discrimination against noise pulses originating in the phototube
dynodes is possible. These pulses, due to secondary electrons emitted
by the dynodes, have a smaller mean height than genuine signal pulses.
Since individual pulses are handled separately, small pulses can be
distinguished as such and blocked by a discriminator. In the present
work, the discriminator level was set in accordance with the criterion
set forth by Young4'for optimal signal-to-noise ratio in the "Tow-signal
Timit".

5. Sample temperature control:

The sample cell reposed in a thermally insulated enclosure, into
which cold Na gas waé ducted. The continuous f}ow of cold, dry gas
both regulated the sample temperature and prevented fogging of the
sample cell. The gas was evolved by boiling off Tiquid N, electrically,
at a rate governed by negative feedback from a thermistor in contact
with the sample cell (Fig. 2). A temperature operating point was
established when equilibrium was reached: feédback produced a gas
flow just sufficient to maintain the current sample temperature. Any
change in temperature was buffered (not wholly offset) by an opposing
change in flow rate. This arrangement fell short of a true closed-loop
control systems, which would have a null output when the selected
operating point were reached, and would act to restore the operating
point once a critical deviation were exceeded. The cycling character

of such a system, however, would introduce stability problems absent

from the former arrangement.
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The regulating characteristics were appraised from the following
point of view. First, one defines a "terminal sample temperature" T
as that which would be reached if a given output level L were sustained
indefinitely. The schedule T (L) (Fig. 3a) depends parametrically on
some set of i1l1-controlled variables {a{& - ambient temperature, etc.
The purpose of the regulator is to suppress any excursions of the
operating temperature T??’ which accompany drifts in {a{}. To assess
how effectively this is accomplished, one considers the output level
L as a function L(T,) of the instantaneous sample temperature, the dependence
arising through feedback. This schedule (Fig. 3b) is fixed once the
design characteristics of the regulator, and any settings made to
chéose_the operating temperature, are specified. A third function T_(T,)
is constructed by composing T.(L) with L(T,). Through T,(L), it
depends parametrically on {aiﬁ . The significance of this schedule is
that, if the current sample température is T,, then the output Tevel
is such as to make the sample temperature tend toward T(T.).
Equilibrium is realized, and an,dperating point established, when
T.(T,) = T, (Fig. 3c). Approximately, T,(T,) may be regarded as linear
near the bperating point. Also, the effect of a change 1in iag} may be
regarded approximately as a uniform shift of the schedule T (T)
through AT along the T, axis (Fig. 3a). The corresponding change x
in To?, if m be the slope of T (T, ), is given by

X - mx = al, or x = aT/(1-m),

as is evident upon inspection of Fig. 3d. But AT is just the "open Toop"
temperature change that would be sustained if {aﬂ- shifted and L
remained constant (i.e., in the absence of feedback modulation). Hence

1/(1-m) represents the factor by which temperature drifts are suppressed
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by feedback, and as such is an index of the performance of the regulator.

Now, m is computable:

m= dT, /dT, = (dTe /dL) = (dL/dT, ).

An empirical determination of dT,/dL was made by plotting equilibrium
temperatures against the corresponding output levels (i.e., voltages
across the heating element R of Fig. 2). Moreover, dL/dT, , the

_voltage change per degree change of sample temperature, at fixed control
settings, was calculable from the characteristic of the thermistor

and from the gain of the amplifier circuit. On this basis, it was
estiméted that maz-10, so that temperature drifts were suppressed by a
factor 1/(1-m) =~ .1, in the operating region.

B.  Methods

1. Measurement of the instrumental profile:

A high degree of spectral resolution can be attained only if the
spectral slit width is made narrow in relation to the structures being
examined. The loss of signai strength which attends a reduction 1in
s1it width, forces a compromise between resolution and signal level.
In the present work, the weakness of the depolarised light signal,
especially at Tower C_H, concentrations, necessitated the use of slit
widths broad enough to produce measurable distortion of the spectra.
Accordingly, some form of instrumental correction was called for.

Any such correction requires the measurement of the "sTit function" -
the distribution in indicated frequency, of unit intensity of
monochromatic light passed by the spectrometer.

S1it functions were obtained by allowing the spectrometer to
observe the Tyndall scattering from an aluminum surface, of the (closely

monochromatic) laser beam, while scanning over the laser Tine freguency.
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New profiles were taken every day the experiment was in progress,
and every time slit widths were changed.

2. Sample preparation:

The chemicals (CgHg and CCl,) used as samples, were supplied by
the J. T. Baker Chemical Cq., and were certified as being of GC
spectrophotometric quality. Mixtures were prepared volumetrically, and
allowed to stand an hour or so to ensure homogeneity. They were then
introduced to the sample cell, through a syringe equipped with a membrane
filter of pore diameter .2 p. Filtration removed any dust particles
which might cause Tyndall scattering while floating through the laser
beam. The quoted mole fractions of C.H, for the various mixtures, are
estimated to be correct within, at worst, 3%.

3. Considerations related ﬁo frequency matching of polarised with

depolarised spectra:

Spectra were taken in an alternating sequence of polarised and
depolarised scans. In each such pair of runs, the same frequency
interval was scanned - 1ns§far as the apparatus behaved reproducibly on
successivé scans - and explicit experimental parameters (temperature,
concentration) were held constant, so that the pair of spectra could
be superposed along the frequency axis, and analyzed together. (In point
of fact, some frequency mismatch appeared to persist, so that satisfactory
results could not be obtained without the introduction of an analytical
correction: this matter will be dealt with in Ch. 4.) S1it widths
were also held constant in each pair of spectra, to permit the application
of one of the modes of Tinewidth analysis to be described in Ch. 4.
The large s1it widths required for the depolarised spectra (as

discussed under 1.), wrought grievous distortion of narrow polarised
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structures, and in fact required the use of neutral density filters
to reduce the polarised 1light signal to a level at which the electronics

could accommodate it.

4.  Measurement of stray Tight:

Notwithstanding such measures, alluded to in A., as were taken
in aid of stray 1light reduction, a significant stray light contribution
was manifest in the depolarised spectra, and an analytical correction

was necessary. This would take the form,
Ij_(w) = I:\(w) - C[\;\l(w) ,
where the superscripts 't' and 'm' denote, respectively, 'true' and
‘measured', and c is constant.
A procedure squestedAby Bartoli and Litovitz® was followed, 1in
an attempt to determine ¢ as a "cell constant”, or characteristic of

the experimental setup. An apparent depolarisation ratio

n S Twde S LI du +ef I du
RWOIE § T} ) do

was measured for the 459 cm.”' Raman band of CC14 . This was compared

to the value which should have been measured in the absence of stray

1ight:
S ﬁ_(bﬁ dw oo . e
§ [ () dw Sy )

where §% is the actual depolarisation ratio, obtained from the
literature”, and ey, €, are grating efficiencies for the L and ||

polarisations. Evident1y,
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This determination of ¢ would seem to be of doubtful re]iabi]ity,
in that the theoretical depolarisation ratio on which it depends is not
known with great accuracy. Moreover, even the objective, by any
means, of making a single master measurement of ¢, is open to question:
for in the course of different experiments, variations in, say, index
of refraction among various liquids at various temperatures, might
lead to different ¢ values.

In preference to reliance on this measurement, an analytical
technique was adopted to associate a value of c with each individual
experiment. This will be discussed in Ch. 4.

5. Selection of temperature range:

Some caution had to be exercised in selecting the range of sample
temperatures over which the experiments were carried out. Benzene
and CC1, form a eutectic mixture in which, for some relative
concentrations, dimerisation may occur at sufficiently low temperatures.8
It would be possible, if dimerisation were allowed to occur, that some
of the depolarisation of the benzene vibrational Tine were due to
reorientations, not of the benzene molecule, but of the dimer. For
this reason, sample temperatures were kept high enough to avoid

significant dimerisation.
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CHAPTER 4
LINEWIDTH ANALYSIS
The determination of correlation times through linewidths,

especially for the reorientational spectra, presented by no means a
trivial problem. We consider that the analytical methods which were
employed merit a full accounting. One reason is that two distinct
approaches to the analysis of reorientational spectra were adopted,
of which, one yielded satisfactory results, whereas the other tended
systematically to overestimate the linewidth. We remain, at this
writing, uncertain of the cause of failure of the latter method, which
has been used with apparent success in the literature. Accordingly,
we fee1 obliged to make a record of our procedures, in the hope that
outside scrutiny may elucidate the nature of our difficulties. The
other reason, less dolorous to report, is that we have brought to bear
on the problem of linewidth analysis, several techniques which, if not
original, have at least been developed independently in the course of
this work - and which, we concede; may have contributed to the
aforementioned difficulties.

| Since the major impediments to our program of linewidth analysis
arose in connection with the reorientational spectra, most of the
following discussion will deal with these spectra. The vibrational
relaxation spectra will be treated somewhat'parenthetica11y. Suffice

it to say, at the outset, that the arsenal to be directed at the

40

reorientational spectra is adequate to deal with the vibrational spectra:

the only major problem encountered in analysis of the latter, is the

deconvolution of the instrumental profile from the spectra.
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We begin by noting that, if it is expected that a spectrum will be
determined by an exponential time correlation function, then two broad
avenues may be followed toward the calculation of correlation times:

(1) Time domain: The Fourier transform of the spectrum may be taken;

the resulting correlation function may then be fit to an exponential test

function, whose decay time T may be identified with the correlation time.

(2) Frequency domain: The spectrum may be fit directly to a Lorentzian,

whose width stands in the relation [~ 1/t to the correlation time.

The statements that the spectrum I(w) is Lorentzian, and that its
Fourier transform ?(t) is exponential, are mathematically equivalent.
It follows, according to Wright et a].1 » that the approximations
inherent in methods (1) and (2) are identical. The second approach was
elected, since it entails only a fitting operation, while the other
requires both that and a Fourier transformation.

Fitting of the spectra was accomplished Ey the well known non-linear
least squares technique of linearisation of the test functiona.v The
computer programming guidelines supplied by Moore and Zeig]er3 were
followed. A statistical weight 1/N was assigned to the datum N -
this weighting formula is appropriate for data in which +/N noise is

expected.

Having dispatched the most general aspects of the linewidth analysis
problem, we devote the remainder of this chapter to those aspects peculiar

to the experiments on which the present work is based.

Separation Of Reorientational From Other Broadening Mechanisms
To this point, we have blithely alluded to the spectrum we propose
to fit, as though it were directly available from the experimental data.

Such is, regrettably, not the case for the reorientational spectrum.
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Rather, as shown in IIL. of Ch. 2>v1a the assumptions that

(a) reorientational and non-reorientational processes contributing

to the spectral broadening are statistically independent, and

(b) non-reorientational processes contribute equally to the isotropic
and anisotropic spectra,

the anisotropic spectrum represents the convolution of the reorientational

and isotropic spectra:

*
Q“LSN I 120 I or

Within the restriction, already agreed upon, to analysis in the
frequency domain, two possible methods emerge, by which one may extract
correlation times from the data:

(1) 1If it is assumed that both I, and I,  are Lorentzian, then
their convolution I, . - which the data yield directly by (2.5) -
is again Lorentzian, with a half-width equal to the sum of half-widths

of I,,, and I,. . The reorientational correlation time

Tor ~ l/r‘:r = ‘/(E\ﬁs—\_’:so)

s thus determined, once I, , and IQM& have been separately fit to

Lorentzians of width [:D and Ylh

N s respectively. This method has been
app]ied'with some success in various Raman linewidth studies > . It
enjoys the advantages of simplicity and economy in data processing.

Its validity 1is restri;ted, however, by the required assumption. that
Iiy) is Lorentzian; also, the results for t;_are subject to instrumental
correction. |

(2) An alternative method, directly suggested by the relation

~ I, % I , 1s to deconvolute I. from I
- VS0 an

anis 150 or , thus recovering

is
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I.. - and to fit the latter to a Lorentzian. The correlation time is

then given directly by

'Co\rN 1/‘—;\" .

This method is in principle more general and more accurate than method
(1), since it obviates both the need for the assumption that I, =~ fis
Lorentzian, and, as will be seen presently, the need for explicit
instrumental correction. Owing to the inherent messiness of deconvolution
procedures, however, it takes its toll in computer time.

Both of the above methods were pursued. \The difficulties encountered,
and the techniques brought to bear on them, will be elaborated below in
considerable detail. A1l points discussed with reference to method (1)
(under I.), save that of instrumental correction, are relevant also to
method (2). Even the latter point is of some importance in (2), inasmuch
as one and the same method has been used for instrumental correction
in (1), and for deconvolution in (2): only the purpose, not the method,
differs. Considerations peculiar to method (2) are discussed under II.

For both methods, I, was used in place of I, , without correction,

i
in all calculations. The strong polarisation of the benzene 992 ij‘
line, rendered negligible the difference between the two spectra. As
indicated by our prefatory remarks, method (2) met with much greater

success than did method (1), for reasons yet unclear to the author.

I.  Method (1) - Separate Fitting of I .

and T, to Lorentzian:
LS 150

The problems to be dealt with here are that of instrumental
distortion of the épectrum, and that of the entry of stray, isotropically
scattered 1ight into the depolarised spectrum. A general approach to

the removal of such effects was adopted, consisting in the introduction
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of corresponding modifications to the test function against which the
(uncorrected) data were fit. By this means, such corrections can be
incorporated neatly within the usual Teast-squares fitting procedure.

A. The Problem of Instrumental Distortion:

The observed spectrum may be taken as a convolution of the true
spectrum, with an "instrumental profile" S(w) describing the distribution
in measured frequency, of unit intensity of Tight unaffected by passage
through the sample. In the present work, the instrumental broadening
is essentially just the "s1it broadening" of the spectrometer. It
Would not matter in principle, however, if, say, the finite width of
the laser line contributed appreciably to the instrumental broadening.
The profile S{(w) is directly measurable; in fact, the measurement
described in B.1. of Ch. 3 was just that of S(w), since the process of
Tyndall scattering has no effect on the frequency distribution of Tight.

The true spectrum can, in principle, be recovered by deconvolution
when S{(w ) is known. We proceed to survey several current methods to
this end, before discussing the method that was actually used.

1. Zero Slit-width Extrapolation:

A purist's solution, which obviates deconvolution altogether, is

the "ZSE" method advocated by Grifﬁths6 . This involves méasuring the

widths of the instrumentally broadened spectra at a series of progressively

narrower slit-widths, then extrapolating these measurements to zero slit-
width. The method may be suspected of systematically overestimating
lTinewidths by, perhaps;fv.-%-cm."1 , because, even in the Timit of zero slit-
width, there remains some instrumental broadening due to the diffraction
1imit of the spectrometer and to the finite width of the laser line.

The loss of signal strength at Tow slit-widths, moreover, would prove
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prohibitive in the present work, where weak depolarised scattering from

a dilute solution must be measured. In any case, a recent investigation7
indicates that deconvolution can reproduce consistently the results
obtained via ZSE.

2. Integral Transform Deconvolution Methods:

~Deconvolution is usually accomplished by Fourier or Laplace

transform methods8 - e.g., the Rakov - Sykora algorithm. These are

not, however, always easy to apply, since: -i?}ii
(a)  The unfolded curve tends to show unphysical oscillations because

of statistical uncertainty in the data points.9

(b) The solution is not unique - it is inherently underdetermined,

because the folded data at the ends of the specified interval inevitably

depend on values of the unfolded curve outside the specified interval.

3. Voigt Profiles:

Methods have recently been suggested ®+'%!

for fitting of Voigt
functions to Raman lines. A Voigt function, which is the convolution

of a Gaussian with a Lorentzian, may be a good approximation to the
observed Raman line, since in the diffraction (narrow slit) limit, the
s1it function of a modern monochromator is closely Gaussian, Upon fitting
a Voigt function to the Raman profile, one obtains separate estimates

for the widths of the Gaussian and Lorentzian components of the profile,
which may be identified respectively with the sTit-width and the true
Raman linewidth, if the slit function is well approximated by a Gaussian.
In the present work, however, the slit-widths used were broad enough
so.that the s1it functions were not Gaussian, but more or less triangular.

Occasionally, in fact, they were visibly asymmetric, owing to alignment

imperfections. They were, in any case, analytically nondescript.
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So Voigt profiles were judged insufficient to the task.

A1l these approaches to instrumental correction were rejected for
various reasons cited above. In their stead, a method of deconvolution
was developed which, as has been indicated above, basically involves a
modifjcation of the test function to which the data are fit.

The Deconvolution Procedure:

The method employed in the present work differs from the usual
(Fourier) deconvolution procedure, in that no attempt is made to solve
the unfolded spectrum point-by-point.

Ordinarily, deconvolution entails the generation of a new set of
"corrected" data from the raw data, without reference to any particular
class of test function to describe the spectrum. It is in the attempt
to correct each datum individually, that the problem of underdetermination
arises. If we represent the convolution S*X of the instrumental profile
S with the spectrum X as a Riemann sum, then our knowledge of the
spectrum is expressible in terms of the data Y as follows:

W _
Ezjsi X = Y, s k= T1,...,0.

=1

The n data supply n equations, but these involve ntw-1 unknown
x-values, and are thus underdetermined for a "slit-width" wsT.

In the present work, however, it is unnecessary to solve for the
individual X5 - Our interest is confined to a few Tineshape parameters
that optimise their congruence to a particular sort of test function.

One might, indeed, explicitly deconvolute the data - and then effectually
discard most of the resulting hard-gotten information by fitting the

deconvoluted spectrum to a test function, and using only the optimal
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parameter values. The task may be considerably simplified, however,
if one aims in the first place only to solve the parameter values; one
then deals with a vastly reduced set of unknowns. The means by whiéh
this was accomplished, are explained below.

To solve the optimal parameter values -

The process of correcting the optimal parameter values for
1nstrumenfa1 effects was incorporated directly within the least-squares
fitting routine. The convolution of the lineshape with the instrumental
profile S was simply absorbed into the form of test function to which
the data were compared in the course of the fit. If F(x; {a\,...,a%}),
a function of frequency x and of a set of adjustable parameters
{a‘,...,aék, were the analytical form expected to represent the true
lineshape (i.e., a Lorentzian plus a constant background), then the
test function would become

S
CT(x) = S*F = Sﬂéx' S(x') F(x-x'; ia\,...,aég), .. (4.7)
where the instrumental profile S(x') has been truncated to Tie within
the finite interval (-c,c). The set {3\,...,5%} of parameter values
which produces the best agreement between T(x) and the data, yields the
best estimate F(x; {3\,...,E€} ) for the true (unfolded) lineshape.

It remains to verify that T(x) is amenable to the usual Teast-
squares analysis. When this is carried out, as in the present work,
by Tinearisation of the test function, a set of initial estimates
{aﬁ,...,a;} for the best parameter values is improved upon by adding

a set of parameter increments {Sa,,...,Saé}, which are solutions to
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the following set of linear "normal equations"?®:

; w [ 4=Txg) b'fb'(x-&

3y ia1ru,a?}=ia§,“,a;}

:PZ 83, [iw. 214 m}

k=\ =y Y an a’dk

(2,2} =, 0} 2 7 LERRIPY

where the ordered pairs (x,,¥, ),...,(x,,¥,) are the data, and where
wy is the statistical weight associated with y, . This procedure

is then repeated, with the improved estimates
fa) .....a} = {&+ 8q »- -2 +0a.]

replacing {aﬁ ,...,a;} . One continues in this fashion until the
estimates converge.

It is evident from the form of the normal equations, fhat any test
function T may be used, so long as T and its parametric derivatives
bT/be% are explicitly calculable. The form of T proposed in (4.1)
above satisfies these conditions: T(x) may be calculated numerically

as a Riemann sum, since S is known experimentally and F is an analytical

form; the derivatives

Y v
= ] 1 __B;_ ERVALEDS
BT(;(’)/B&a g-bdx S(x )BﬁjF(X X ,{a\,...,a?})
méy be calculated Tikewise. Thus, even though T is not an analytical
form, it is perfectly serviceable as a least-squares test function.
Apologia -

" The merits of the above approach to instrumental correction, are:

(a) The method is simple, requiring only minor modifications to an
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operational non-linear least-squares éomputer program.
(b) The amount of data processing is minimized, in that instrumental
correction and fitting are carried out in the same operation.
(c) The problem of underdetermination is eliminated. Thus, no new
convergence problems arise that were not inherent in the iterative
Teast—quares fitting procedure.
(d) The instrumental profile S need only be known empirically; it does
not have to be approximated by any particular analytical form.
The obvious Timitation is that the actual unfolded spectrum is not
recovered, only its best fit to the particular model F. The quality
of the information acquired thus depends on a felicitous choice of model.
The subtle limitation is that meaningful fits can be expected
only if the fUnct?on F is a good model, not only in the data interval
over which the fit is performed, but also, as far beyond the edges
as S overlaps. In practice, however, this poses a problem only if
there are strong peripheral structures in the neighbourhood of the

spectral line of finterest,

The test function of (4.1) was adequate for the fitting of polarised
spectra, and hence for the determination of [{,,. Further elaboration
- of T(x) was required, however, before the depolarised spectra could
be treated, since the analysis of these spectra had to compensate for
stray light as well as for instrumental distortion.

B. The Problem Of Stray Light:

Because of the strong polarisation of the 992 mnf\ benzene 1line,
experimental precautions alone did not suffice to isolate the isotropic

scattering component from the depolarised spectra. Accordingly, a
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correction was undertaken in the analysis. In the same spirit that
informed the instrumental correction discussed above, this was accomplished
by a further modification of the test function to which the depolarised

data were fit. This became,
T (x) = S*EL(X;{a\,...,aé}) + cI“(x), ...(4.2)

where I, is the measured polarised spectrum, and ¢ is a new parameter,
subject to least-squares optimisation along with the aj . (The new
term remains outside the convolution, since the measured form of I,

is already instrumentally distorted.) The problem can still be handled
by least-squares: T, is computable, since In is known experimentally;
3T, / ba3 is as before; aT, /dc =?I"is known experimentally.

Treating ¢ as a least-squares parameter, one avoids the several
drawbacks, mentioned in B.4. of Ch. 3, of making a single experimental
measurement of c. The calculated value of c no longer depends on any
physical constants, such as the depolarisation ratio used in B.4 of
Ch. 3, which might Timit the accuracy of the ca]cu]étion. There 1is no
need to correct ¢ for the change in grating efficiency  with change
of polarisation. Legitimate variations in the value that c might
assume at different temperatures or for different 1liquids, because of
index of refraction effects, etc., are no longer a matter of concern,
since a separate determination of c is made for each new spectrum.
Finally, an important implication to the conduct of the experiment, is
that the requirements for the maintenance, between polarised and
depolarised scans, of optical alignments, laser power, and anything
else that affects the intensity of the spectrum, are somewhat relaxed.

One may, between scans, focus the optics, adjust the laser output, insert
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neutral density filters, and change scanning rates with gay abandon,
without having to adjust the value of c explicitly. All these Tiberties
were exercised in the course of the experiment.

Some a posteriori justification for leaving c as a free parameter,
as opposed to fixing its value, emerged from the results of the fits,
which showed a strong tendency for ¢ to rise as temperature dropped.

One limitation of the method is that it would break down if the
isotropic and anisotropic lineshapes were closely similar. This is
because ¢ is determined by resolving the measured depolarised spectrum
into a linear combination of (S*EL) and of I“ , the coefficients of
which cannot be specified definitively if the basis functions (S*EL)
and I“ resemble each other too closely. But this would occur only
if [o. were small in comparison to [, , in which case r:, could not
be determined accurately, even in the absence of stray light.

Correction for frequency mismatch between polarised and depolarised spectra -

It is implicit in the foregoing discussion,'that in correcting the
depolarised spectrum for stray 1ight, one must superpose the polarised
spectrum on the depolarised in such a manner that data of identical
1ight frequencies are matched together. This requirement posed a problem,
for the two spectra were taken during separate scans of the spectrometer,
and it was found (cf. B.3.of Ch. 3) that the indicated frequency, at which
a given actual frequency would be read out, was not perfectly reproducible
between scans. Computer experiments revealed that the results of the
fit, when (4.2) was used for the test function, were quite sensitive
to a deliberate shifting of one data field relative to the other, even
by .2 cmj1, so that this consideration proved quite critical.

One means that was contemplated to circumvent this difficulty,
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was simply to match together the peaks of the two spectra. Uncertainties
in the peak positions, due to statistical fluctuations in the data

around the peak, could be suppressed by taking as the peak the centroid
of, say, that part of the spectrum above half-maximum. It is not

certain, however, that the actual frequencies of the two peaks coincide
exactly. Some evidence has been reportedsiof a physical frequency

shift between polarised and depolarised peaks in Tiquid phosphine.

Without a priori knowledge of whether such a phenomenon occurs in benzene,
this peak-matching procedure would seem il1l-advised.

A method of correction was devised, which followed in the same vein
as the corrections which have already been discussed: a further
modification of the test function, involving a new Teast-squares
parameter, was introduced. The term cI"(x) in the test function (4.2)

was replaced by its translate along the x-axis. The test function became

TL(X) = S*F, (x; {a\,...,ag} )+ cI“ (x+b) , ... (4.3)

where b is a new parameter, subject to least-squares optimisation,
representing the amount by which one data field has been shifted relative
to the other. A minor annoyance was that the digitally recordedvdata
were taken only at discrete x-values, and (x+b) would generally fall
between two such values. Accordingly, I“(x+b) was defined by linear
interpolation between the two data channels bracketing (x+b). The
computability of TL(x) was thus preserved. By the same token, linear
interpolation of I“ between channels yielded a presciption for the

parametric derivative of, /3 b

3T 3 U SYC B A
—BT = ¢ B(’X+\:} Y_‘u(fx-do) ¢ n'x : - 9

wy T Xy
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where x. and x,,, are the data channels bracketing (x+b). Moreover,
3T, (x)/3c = I“(x+b) , and aT_L/aal is as before. Thus, T, (x) and
all its parametric derivatives are calculable, and TL(x) remains a
valid least-squares test function.

The results of fits to the test function (4.3), indicated a
systematic bias of perhaps .5 cmf‘ in the optimised b-values, from the
expected value of zero, and a comparable amount of scatter. The bias
might be due to an optical wedge effect associated with rotation of the
polarisation analyser, which could shift the frequency calibration
of the spectrometer. The random component might arise from mechanical
backlash in the grating drive of the spectrometer, which could render
the fréquency calibration imperfectly reproducible on different
scans. Some uncertainty lingers, however, as to the origin of this
frequency mismatch.

One might understandably incline toward skepticism of the validity
of introduéing new parameters to the test function in, as it were, an
ad hoc manner. Any resulting success in improving the ‘quality of the
fit, as measured by the value of‘%z; may be challenged on the basis
that adding a new parameter, whether or not it has genuine physical
significance, will inevitably improve the fit, just by augmenting the
degrees of freedom available to the test function.

A case can be made, however, that the non-zero values of b which
were obtained, are not merely an artifact of the fit. Before the
- parameter b was introduced - that is, when b was effectively set to
zero - the fit results, with (4.2) as the test function, were typified
by those illustrated in Fig. 4. It is evident from the figure, that

there are intervals in which the fit departs significantly from the data.
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Also apparent is a discrepancy between the data peak, and the position
assigned by the fit to the peak of EL (not to be confused with a shift
between the peaks of Iu and I, , which, as mentioned earlier, might be
physical in origin). These features are accountable in terms of a
spurious frequency shift between the records of I, and Iy . Such a
shift could be expected to reduce the fit value of c from its true
value, since the fit would scarcely be improved by adding the full
measure of I“ in the wrong part of the depolarised spectrum. A
reduction in ¢ would tend unduly to suppress peripheral structures -
the isotope-shifted peak (a) on the left of Fig. 4, and the hot-band
shoulder (b) on the right - which are prominent in the polarised
spectrum, but which are diffused by reorientational broadening in the
depolarised, and thus appear in the measurement of the latter mainly
through stray 1ight. This expectation is in harmony with the observation
that the fit falls beneath the data in regions (a) and (b). Moreover,
the displacement of EL to the left, can be interpreted as the way in

- which the fit should respond to a spurious shift of I“ to the right:
since the term cI, 1in the test function would be too high on the right
and too Tow on the left of the peak region, the fit would compensate

by making F, too Tow on the right and too high on the left - i.e., by
shifting EL to the Teft. When b was introduced as a free parameter, the
fit results for this same set of data were as illustrated in Fig. 5.

It is evident that the most egregious features of the first fit have
been eliminated. The positive value obtained for b is consistent with
the above supposition that Iy is shifted to the right.

I1. Method (2) - Recovery of I . _by Deconvolution of Lo from Iaﬂs——i

The method discussed in I. requires separate fits to be performed
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on the polarised and depolarised spectra, before ,. may be calculated.
By contrast, the present method permits a determination of E; in the
course of fitting just the depolarised spectrum. The other salient
difference between the two methods, is that the present method requires
no explicit correction to be made for instrumental effects, provided
that the instrumental profile S is the same for both the polarised and
the depolarised spectrum. (This was ensured in the experiment by using
the same s1it width for both spectra.) Stray light, however, was dealt
with identically by the two methods.

The test function to be applied to the depo]afised spectrum, develops
as follows. It will be recalled that the anisotropic spectrum takes the

form

~ I *

s iso or °’

so that its measuremeht, through an instrument with transfer function S,

takes the form

S*I S* (1. *I

anis S0 ov ) *

Because convolution is associative, this may be written

S*I .~ (S*I.

ans tso

) *1

or

On the assumption that S is the appropriate instrumental profile for
the polarised, as well as the depolarised spectrum,v(S*Ilso ) may be
identified as the measurement I“ of the polarised spectrum (insofar as,

for a strongly polarised line, one may ignore the small anisotropic



contribution to Iy ). Hence,

S*1 ~ I * 1

anis i or

With the inclusion of stray light, which enters in the same manner as in

I., the measured form of the depolarised spectrum becomes

I * (x) + cI“(x+b).

i ovr

When a particular analytical form F__ (x;&i,...,aé} ) (viz., a
Lorentzian plus horizontal background) is substituted for I, » one
obtains, in analogy to (4.3), the following test function against

which to fit the depolarised spectrum:
TL(X) = I“ *Fo (xﬂg‘,“.,%J ) +-ch‘(ﬁb) ... (4.4)

Since I is known experimentally, and since (4.3) and (4.4) are
formally 1denffca1, the fitting prob]em‘is the same one encountered
in I., except that I" replaces S. (S no longer appears explicitly in
the test function, because it is subsumed in I" .) Accordingly, the
same deconvolution method which was developed in I.A. to extract EL
from its convolution with S, may again be applied, this time to extract
Foe from its convolution with I“ . In the present case, the solution

Foe (X5 {3‘,...,5€} ) of the least-squares problem represents I

directly, whereas the solution F, in I. represented I Thus, no

anty °
further calculations are required to determine [:r .
The method just described is more general than that of I., in that
no special assumptions are made in regard to the isotropic lineshape.
Peripheral structure in the lineshape therefore presents less of a

problem. Certain limitations, however, ought still to be observed.
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The‘assumption is required"2 , that all structures within the line éhape
have the same depolarisation ratio. While this may be well satisfied

if the peripheral structure consists, say, in a hot band, it may be
quite inappropriate if the structure arises from the overlap of
neighbouring lines corresponding to different vibrational modes.

In actual calculations, the polarised spectrum must, of course, be
truncated to Tie within some finite interval. In principle, the broader,
the better. In practice, the breadth of interval was decided on the
basis of computer experiments, in which the interval was progressively
broadened until the fit values of r:rconverged. The interval settled
upon was just slightly less broad than the depolarised data interval
over which the fit was performed. This interval was, of course, much
broader than the s1it function. For this reason, the present method was
found to devour much more computertime than the method of I.
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CHAPTER 5
RESULTS OF LINEWIDTH ANALYSIS

Here we present the results of our linewidth analysis. A1l widths
quoted are full widths at half-maximum (FWHM). The error quoted for
each Tinewidth, is the larger of the internal and external errors 1, th
former being the error propagating from the statistical uncertainty in
the individual spectral data, and the latter being determined by the
degree of "external consistency" of the body of data with the form
of test function to which it is fit.

In Table 1. appear the results of analysis by Method (1), outlined
in I. of Ch. 4. The reorientational linewidths were obtained from the

relation

r - ‘—;-\Ls ril.so L}

as discussed in Ch. 4. The correlation times and diffusion constants
were thereupon derived, respectively, from

-1

T, = (mwell) . (2.22)
and D.= T=1... ... (2.23b)

In the instance where a comparison with Titerature values is
possible - for pure benzene at room temperature - our Method (1) result
for'ﬁ;significant]y exceeds those quoted by Gillen and Griffithsa, and
by Bartoli and Litovitz3 . (The former authors find F;.= 3.8 unf‘
through separate fiﬁting of the polarised and depolarised spectra to

Lorentzians, as in our Method (1); the latter authors obtain

v -1
fﬂ = 4.0%£1.0 cm. by deconvolution of the polarised from the

oY
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depolarised spectrum, as in our Method (2).) The discrepancy persisted
over numercus repetitions of the experiment. Therefore, we shall base
no further results on calculations using Method (1) values of (:r.
Reference Qi]] be made, however, tovthe isotropic linewidths shown
in Table 1., in the discussion (Ch. 7) of vibrational relaxation. These
11newid£hs were computed by fitting only on the structure-free side of
the polarised spectrum: there is a hot band on the high-frequency-
shift side, which would preternaturally broaden the Tinewidth estimate
if included. It is worth hoting that the broadening effect of the hot
band on the depolarised spectrum was uncompensated in Method (1), while
the effect was removed from the polarised spectrum. This uneven treatment
of the two spectra may be partia11y responsible for the aforementioned

It has been reportedq', however,
1

error in the determination of [:1.
that the hot band, if not removed, contributes only about .2 cm.
to the total observed polarised bandwidth. Our observations are
consistent with this. The effect of our treatment of the hot band, is
therefore quantitatively inadequate to explain the discrepancy.

The results of analysis by Method (2), Which was outlined in II. of
Ch. 4, are presented in Table 2. Correlation times and diffusion constants
were again derived from (2.22) and (2.23b). These results are used in the
further calculations that arise in the discussion (Ch. 6) of reorientational
motion.
References:
1. R. T. Birge, Phys. Rev. 40, 207 (1932).
2. K. T. Gillen and J. E. Griffiths, Chem. Phys. Letters 17, 359 (1972).
3. F. d. Bartd]i and T. A. Litovitz, J. Chem. Phys. 56, 404 (1972).

4. J. E. Griffiths, M. Clerc, and P. M. Rentzepis, J. Chem. Phys. 60,
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TABLE 1.

Results of Method (1) Analysis.

«\Q
TEMP. lavis e, lor Ter 10 X D,
(°K.) (eml (cm. ) (cm. ) (psec.) (sec?')

Mixture #1: f}=1.00 , = 0.00 (pure benzene)

295 6.84+.44 1.79+.04 5.06%.44 2.1£.2 8.0%.7
295 7.74+.48 1.68£.04 6.06%.48 1.8+.2 9.5t.8
291 7.02%+.46 1.92+.03 5.10%.46 2.1+.2 8.0%.7
287 6.62t.44 1.92+.03 4.70%.44 2.3%.2 7.4+.7
283 7.74+.50 2.02+.02 5.72+.50 1.9%.2 9.0£.8
280 6.96%.40 1.98+.03 4.98+%.40 2.1%.2 7.8%.6
279 6.46%.44 2.06%.02 4.40%.44 2.4+£.2 6.9%.7
279 6.24t.44 2.02+.02 4.22+.44 2.5¢.3 6.6x.7
Mixture #2: fy= .81 , fo = .19

295 7.12%.42 1.56%.06 5.56%.42 1.9x.2 8.7%.7
295 6.52+.40 1.594.06 4.92+.40 2.2%.2 7.7%.6
290 6.42%.36 1.63£.06 4.78%.36 2.2t.2 7.5%£.6
286 7.06%.50 1.57%.04 5.50£.50 1.9£.2 8.6%.8
282 6.38%.42 1.65%.04 4.74+.42 2.2%.2 7.5%.7
277 6.52+.44 1.68+.03 4.84+.44 2.2t.2 7.6%.7
273 6.92£.54 1.67£.03 5.26%.54 2.0%.2 8.3%.9
269 5.36%.32 1.69+.03 3.66%.32 2.9%.3 5.8£.5
267 5.78+.34 1.70£.03 4.08%.34 2.6x.2 6.4%.5
Mixture #3: fa= .62 , ,=.38

295 6.68t.48 1.67£.03 5.02+.48 2.1%.2 7.9%.8
295 7.16%.62 1.69%.03 5.48t.62 1.9x.2 8.6x1.0
288 6.54+.42 1.78%.02 4.78%.42 2.2+.2 7.5%.7
281 6.04%£.50 1.64%.03 4.40£.50 2.4%.3 6.9%.8
275 6.48+.48 1.63£.03 4.86%.48 2.2t.2 7.6%.8
269 5.66%.42 1.70£.03 3.96%.42 2.7%.3 6.2%.7
266 5.26+.38 1.72%£.03 3.54£.38 3.03+.3 5.6%.6

*f = mole fraction of benzene in mixture; f = mole fraction of carbon
® ¢ -
tetrachloride.



TABLE 1. (Cont'd)

TEMP. laes (A Mo Tor 10°X D,
(°K.) (cmz) (emt) (emT') (psec.) (sec™')
Mixture #4: f,=.42 , f, =.58

295 6.16%.60 1.46+.04 4.70%.60 2.3t.3 7.4+.9
295 6.62+.56 1.48+£.04 5.14£.56 2.1+.2 8.1+.9
288 6.86%.70 1.50+£.04 5.36%.70 2.0+.3 8.4+1.1
288 7.46%.68 1.46+.04 6.00%.68 1.8£.2 9.4+1.1
281 7.10%.62 1.47+.02 5.62%.62 1.9+£.2 8.8+1.0
275 5.76%.44 1.62+.02 4.14+.44 2.6%.3 6.5%.7
275 5.86%.54 1.58+.03 4.28%+.54 2.5%.3 6.7£.9
269 6.50+.58 1.62%.03 4.88%.58 2.2+.3 7.7%.9
263 6.20%.54 1.62+.03 4.58+.54 2.3+.3 7.2%£.9
263 6.60+.64 1.68+.04 4.92%.64 2.2+.3 7.7£1.0
258 5.76%.52 1.65%.04 4.12+.52 2.6%.3 6.5%.8
258 6.20%.56 1.69+.05 4.52+.56 2.3£.3 7.1+,
Mixture #5: f, =.21 fe =-79 ‘

295 7.92+.94 1.20%.04 6.72+.94 1.6%.2 10.641.
295 7.40t.50 1.20+.03 6.20£.50  1.7+.1 9.7%£.8
288 7.24+.50 1.25%.03 5.98%.50 1.8+.2 9.4+.8
281 6.98+.44 1.22+.03 5.76%.44 1.8%.1 9.0.7
274 6.54+.44 1.27£.03 5.28%.44 2.0%.2 8.3+.7
266 5.60+.40  0.73t.06  4.88+.40  2.2+.2  7.7+.6
260 6.06+.40 0.69+.05 5.36t.40 2.0+.2 8.4+.6
252 5.78%.48 0.64+.06  5.14%.48 2.1%.2 8.1%£.8




TABLE 2

Results of Method (2) Analysis.

TEMP. I T, 107X D,
(°K.) (cm?*) (psec.) (sec')

Mixture #1: f,*=1.00, £*=0.00 (pure benzene)

295 4.34+.46 2.44+.26 6.82+.72

295 4.16%.48 2.55+.29 6.53%.75

291 4.00%.42 2.65%.28  6.28+.66

287 4.12+.60 2.58+.38 6.47+.94

283 4.84+.68 2.19%.31 7.60£1.07
280 3.78+.50 2.81+.37 5.94+.79

279 2.68%.48 3.96%.71 4.21%.75

279 3.02+.44 3.51%.51 4.74%.69

Mixture #2: f,=.81 , f =.19

295 4.26+%.50 2.49%.29 6.69+.79

295 4.20+.42 2.53+.25 6.60+.66

290 3.70+.42 2.87+.33 5.81+.66

286 4.08+.56 2.60%.36 6.41+.88

282 3.56%.46 2.98%.39 5.59+.72

277 4.04+.41 2.63t.27 6.35%.64

273 3.62%.54 2.93%.44 5.69+.84

269 2.82+.40 3.761.53 4.43%.63

267 3.34+.40 3.18+.38 5.25+.63

Mixture #3: fy=.62 , 7 =.38

295 4.38%.76 2.42+ .42 6.88+1.19
295 3.08+.48 3.44+.54 4.84+.75

288 3.76%.48 2.82+.36 5.91+.75

281 3.18%.66 3.34+.69 5.00£1.04
275 3.60+.48 2.95%.39 5.65%.75

269 3.36%.44 3.16%.41 5.28%.69

266 3.02+.50 3.51+.58 4.74+.79

*f%;_ mole fraction of benzene in mixture; fca mole fraction of carbon
tetrachloride.



TABLE 2 (Cont'd)

TEMP. (o T 107X D,
(°K.) (em) (psec.) (sec?")
Mixture #4: f,=.42, f =.58

295 3.8868 2.73t.48 6.09+1.07
295 3.68+.36 2.88+.28 5.78+.57
288 4.04+.86 2.63t.56 6.35+1.35
288 3.84+.74 2.76%.53 6.03+1.16
281 4.08+.92 2.60+.59 6.41%1.45
275 3.40%.54 3.12+.50 5.34+.85
275 3.50.48 3.03+.42 5.50+.75
269 3.44+.54 3.08£.48 5.40+.85
263 3.52+.52 3.01%.45 5.53+.82
263 4.38+.70 2.42+.39 6.88£1.10
258 3.78+.56 2.81+.42 5.94%.88
258 3.72+.54 2.85%.41 5.84+.85
Mixture #5: f£=.21, f =.79

295 4.14%.84 2.56%.52 6.50+1.32
295 4.90+.56 2.17+.25 7.70+.88
288 4.92%.60 2.16%.26 7.73+.94
281 4.98%.54 2.13+.23 7.82+.85
274 4.18%.52 2.50+.32 6.57+.82
266 3.22+.44 3.30%.45 5.06%.69
260 4.16%.44 2.55%.27 6.53£.69
252 4.56%.64 2.33+.33 7.161.01
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CHAPTER 6
DISCUSSION - REORIENTATIONAL MOTION

Within the scope of this chapter falls any information which was
obtained from the lineshapes and linewidths of the reorientational
spectra. In particular, we shall investigate the va]fdity of the
rotational diffusion model proposed in IV. of Ch. 2, as a description
of the tumbling motion of the benzene molecule about axes perpendicular
to the symmetry axis. |

It was seen in IV. of Ch. 2, how a rotational Brownian motion model,
in the diffusion Timit, leads to a Lorentzian lineshape for the
reorientational spectrum. The experimentaT observation of Lorentzian
lineshapes 1is, then, at least consistent with such a diffusive mechanism.
By no means, however, does this observation unequivocally corroborate
the model in question. Other, quite different reorientation models
have been propounded which Tikewise predict Lorentzian lineshapes.
An example is the van Vleck-Weisskopf collision-broadening theory1 s
which postulates that molecules rotate freely between instantaneous
collisions, but that each collision is sufficiently violent to remove
aT] correlation between momenta before and after the event. This model
is applied only to gases, but another due to Gordonz , based on the
same principle, has been applied to 1iquids, and in some cases predicts
Lorentzian or near-Lorentzian Tineshapes. In such "impact" models, a
Lorentzian lineshape, or, what is the same thing, an exponential time
correlation function, may arise from the assumption that free rotations
have a "lifetime", and that the number of rotors whose motions remain,
at time t, uninterrupted since time 0, decays exponentially in t. The

diffusion model which we have discussed, on the other hand, was seen to
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predict an exponential correlation function through the solution of a
differential equation (2.13) that describes aggregate motion over a
large number of elementary rotations, and that does not take explicit
account of the relative time durations of the individual rotational
steps. Superficially, at least, it appears coincidental that both
impact and diffusion models should lead to Lorentzian lineshapes: the
Tinewidths obtained from the two models will differ starkly in physical
significance. In any case, the fact that Lorentzian lineshapes may
characterise the diametrically opposite processes of occasionally-
interrupted free rotation in gases, and of small-step diffusive
reorientatﬁon in liquids, urgently demonstrates that some criterion
apart from mere lineshape must be called upon, to resolve whether
rotational diffusion is a valid description of the motion. Two possible
criteria are applied below.

I. The Hydrodynamic Model:

The hydrodynamic model simply relates rotational diffusion constants
to the bulk viscosity of the fluid in question, by providing an estimate
of the microscopic friction constants which may be used in (2.26). It
is assumed that a molecule in solution may be treated in accordance with
macroscopic hydrodynamics - i.e., that the shearing forces resisting its
rotation may be calculated in the same way as they would be for a
macroscopic body immersed in a fluid.

For a macroscopic sphere of radius a, immersed in a continuous,

homogeneous, and stationary medium, Stokes calculated

¥ = 8ma’ |, ... (6.1)
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where ¥ is the drag constant (as discussed under V. of Ch. 2 - the drag
tensor reduces to a scalar for a spherical body), and where M is the
viscosity of the surrounding medium. Together with the relation (2.26)
between diffusion and friction constants, this affords the "Stokes -

Einstein" relation for the hydrodynamic diffusion constant:
D, - T/ sawnad ... (6.2)

Agreement between (6.2) and the empirical diffusion constants,
is usually construed as evidence supporting the rotational diffusion

34,5
model,” ™

since the hydrodynamic model explicitly assumes small-angle
Brownian rotational diffusion in the calculation of § .

Hydrodynamic theory is applicable to large particles in a medium
of small molecules. There is no rigorous proof that it appliies also to
small molecules in a solvent of molecules of approximately the same
size. While the Stokes-Einstein calculation is generally acknowledged
to be satisfactory for macromolecules in a solution of small, 1ight
molecules, 1its correctness is questionable elsewhere, since, for most
Tiquids, the solute molecules are of roughly the same size as the solvent
molecules, and also, since most molecules are nonspherical in shape.
Aside from these relatively obvioué objections, a doubtful view of the
entire approach is taken by Steele ® » who points out that the hydrodynamic
result is obtained by assuming that there is no slip between the fluid
and the surface of the body - thus, it is implicitly assumed that the
angular dependence of the body-fluid interaction forces is sufficient
to cause fluid molecules to follow the rotation of the body surface.

Some amelioration of these deficiencies is, however, possible:

(a) Perrin’ generalised Stokes' law (6.1) for the sphere, to derive
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the frictional drag tensor of an ellipsoid in terms of the medium
viscosity and the particle dimensibns, again on the basis of macroscopic
hydrodynamics. Each frictional coefficient was found to be proportional
to viscosity, so that, by (2.26), each of the principal diffusion
constants depends inversely on viscosity (cf. (6.2)).

(b) Attention has been drawn ®

to the possibility of accommodating
Steele's objection, noted above. While acknowledging that the usual
“stick" or "no slip" boundary conditions, applied in the hydrodynamics
~calculation, may be 1nappropriate, the authors of Reference 8. consider
there to be some evidence, that the Stokes—Eihstein approximation holds
more generally than would be expected from its derivation. Recent
molecular dynamics ca1cu1ationss, for instance, indicate that if "slip"
rather than the usual "stick" boundary conditions are used, the
translational self-diffusion coefficient changes from D=kT/6Wan to D=kT/4ffan,
which 1is the correct'resu1t for hard-sphere fluids. The corresponding
modification of the Stokes-Einstein result for rotational diffusion
constants, however, does not appear yet to have been attempted in the

Titerature.

(c) Microviscosity Theory - This fairly straightforward extension of
the basic hydrodynamic theory has been applied with some success, in the
synthesis of reorientational correlation times dbtained from NMR ° and
Raman **° experiments. Gierer and w1rtz1°postu1ated a model for a
spherical molecule of radius a, surrounded by concentric solvent shells

of thickness 2b,. obtaining

¥ = smn(Dat

3.~
where 5;‘_= [6—‘5-4-(’\4-\—3-3 ] is referred to as the "microviscosity correction”
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to Stokes' law (6.1). For a neat liquid one has b=a, whence the

"microviscosity" diffusion constant:

D, = KT/x = 615 kT /8nan(T)

The factor 8%a® is recognised as 6V, where V,, is the volume of a single
molecule. Usually V,, is calculated by assuming that Avogadro's number N
of hexagonally close-packed spheres (filling 74% of space) occupy the
molar volume M /p , where M, is the molecular weight of the pure solute

andp its density. Then, V =.74M /N¢ .
D, = 15«10’ T /M (T ... (6.3)

The calculation of V_on the basis of spherical molecules represents a
serious assumption. Woessner et a].“ have suggested that the result
(6.3) for D, may be too large for nonspherical, elongated molecules, and
recommend the application of a multiplicative correction factor less
than unity. Without such correction, however, (6.3) has been found
successfully to predict diffusion constants for reorientations that one
would expect, in'viftue of molecular geometry, to be highly hindered.
Examples are the diffusion constants D, associated with tumbling motions
(reorientations of the symmetry axis) of benzeneé, acetonitr11e5, and
methyl 1od1de‘z. For these.same molecules, on the other hand, it is
found that (6.3) grossly underestimates the diffusion constants Dy
associated with spinning motions (reorientations about the symmetry
axis). This observation is in accord with the expectation that motions
about a symmetry axis should be less hindered, and should therefore
approach the "s1ip" boundary condition. A more probable interpretation

however, is that such motions are not in the diffusion limit at all.
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A1l the above variants of the basic hydrodynamic theory preserve
the inverse dependence of Dk on viscosity as temperature changes. The
modifying factor, however, is quite model sensitive; in practice, the
adjustable parameters absorbed in it offer sufficient latitude to overlap
any diffusion constant measurement taken at a single temperature. It has
therefore been suggested4'that a more meaningful test of the hydrodynamic
theory, is whether it correctly predicts the tempefature dependence of
~a diffusion constant. From this standpoint, the various hydrodynamic
theories discussed above are all as one, in that all predict an inverse
dependence of_Dh onN(T). The test usually reduces to a comparison of
"activation energies", the significance of which is explained below.

Activation Energy:

The usual manner in which the temperature dependence of a diffusion

constant is characterised, is by fitting it to an Arrhenius relation:
D(T) = Q)exp(-ﬁi/kT) s ... (6.4)

where EQ is the so-called "activation energy", and k is Boltzmann's
constant. This re]ationship13 is unabashedly phenomenological, and

in fact is more compatible with a diffusion model we have not entertained
- viz., the "activated jump" model - than with the Brownian motion model
we have considered. (The activated jump model is generally beljeved '

to be more applicable to rotation in solids than in 1iquids, except
strongly hydrogen bonded 1iquids Tike water.) The motivation for the
Arrhenius relation, in the jump model context, is at least transparent.
If it is assumed that diffusion occurs in jumps over a potential barrier
E4 » then the frequency of such jumps is proportional to the probability

that a molecule will have sufficient rotational energy to surmount the
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barrier. Hence the Boltzmann factor exp (—Eq/kT).

Aside from the probability that the jump diffusion picture is
organically wrong in the case of present interest, the Arrhenius
relation is suspect on the grounds that the value of E, might itself be
temperature-dependent, especially in an experiment like the present one,
in which temperature does not vary alone, but also induces a concomitant
variation in density. (If the average size of interstices between
molecules changes, the intermolecular potential changes, and probably
also Eq.) Nonetheless, if E, varies but slowly with T, the empirical
diffusion constant may conform reasonably well to (6.4) over a limited
temperature range. In practice, this is what is generally found. Thus,
while one should be chary of interpreting the empirical value of Eq >
found in a fit to (6.4), as an activation energy in the precise sense
indicated above, this value is still a useful parameter for the concise
description of D(T) in a specific temperature range.

We evaluate the applicability of the hydrodynamic model to tumbling
motions of benzene, by fitting the diffusion constants D, we have derived
from Tinewidth analysis, to the Arrhenius relation, and comparing the
resultant value of E, with the value obtained by fitting the microviscosity
diffusion constant DP to the same relation over a similar temperature
range. The value of D; has been computed from (6.3), with available
Titerature values of benzene density p(T)‘$ and of benzene-carbon
tetrachloride mixture viscoéity‘n(T)15 . The fits have been performed
by applying linear regression to the logarithm of (6.4):

WD = El - Q%%);rfi.
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The value of E, is a measure purely of the temperature dependence
of D, as it would be unaffected by a change in the proportionality
constant D,. The activation energies for the various mixture proportions
are displayed below, the empirical values (from DL(T)) in Table 3, and
.the hydrodynamic values (from DF(T)) in Table 4. These results are
also plotted in Fig. 6. The errors indicated, are the greater of the
internal and external errors for the empirical results, and the external
errors for the hydrodynamic results (since the Titerature sources did

not state the errors of the p(T) and W(T) data).

TABLE 3

Empirical Activation Energies

go;e fraction | 1.00 .81 62 .42 21

SlHiG

Ea(kca]./mole)'l 2.3¢1.3  1.4+6  .7%.8  0.0:5  .7%.5

TABLE 4
Hydrodynamic Activation Energies

@O;e fraction | 1.00 .81 .61 .36 0.00

(WY

E, (kcal./mole) } 2.86%.03 2.91%£.03 2.97%.01 2.93£.02 2.86+.02

For pure benzene, the hydrodynamic estimate of Eq agrees with the
experimental determination, within experimental error. But while
the hydrodynamic estimate remains virtually constant with progressive
dilution, the experimental value decreases strongly. Thus, our results
are consistent with a diffusive rotational Brownian motion model for
pure benzene, but it would appear that another mechanism is operative

in benzene-carbon tetrachloride mixtures. Further consideration will

be given in III. to the results for mixtures.



wc..umcm co.,.un.us.»% ° ~.oZ

omo um ”_\ | @_ w_ o.,w
‘G —0
® )
B =T 2
| Q g G
- mu G /oosﬂﬂésu —
MWL
- > ‘53D IBUD oY pAT}oP
o .WU [onihdwe ayy puL
Nuinuhpoaphy sy Jo
° o 5 o ® e mu;wﬁcmnww,m co.ﬁ.o.ﬁ.smu;oo
T 9914




72

Although, as indicated earlier, not too much significance should be
attached to the numerical agreement of D, and Dlu at a single temperature,
it is nonetheless interesting to compare these values for pure benzene.
The experimental values appear (Fig. 7) to be in reasonable proximity |
of the microviscosity values.

II. The X - test:

A second criterion against which to judge the applicability of the
rotational diffusion model, is the X -test®. This consists in a comparison
of the empirical reorientational correlation time "5‘,,.=1/6D.L for motion
about the i'th axis, to the theoretical reorientation time T =é§5x2ﬂr(L/ET)%
for a free rotor, at the same temperature. (Both these times are defined
as the time for a symmetric-top orientational correlation function
<T%[EG»-@@J]> to fall off by the factor ef‘. Since this occurs‘G
when the symmetry axis has reoriented through a net angular displacement
of 41°,’% is just the time taken by an "average" free rotor, for which
%11‘0:— =k1/2 ., to rotate through 41°.).

One defines the parameter %1by

X o= T 2 30 _‘{E)% . (6.5)

oo 4D\ K

It is clear that a value of')(.t much larger than unity is expected if

reorientation about the i'th axis is diffusive: for; if the direction of
rotation changes randomly in the course of a small angular displacement,
then the total angular displacement glm\&t executed during a net
reorientation of 41°, will be much larger than 41°, and will correspondingly
| occupy a much Tonger time than a free rotation through 41°.

The significance of Xtcan, moreover, be made quantitative: in the

diffusion 1imit, it bears a simple relation to the size of an individual
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angular step. Tb see this, one supposes that the direction of angular
momentum is randomised at the end of each step. It follows readily

that the angular momentum correlation time is just the mean time duration
of a single angular step. From (2.25), then, the mean duration of an

angular step about the i'th axis is
'Ug_ = I'l./i;. .

To realise an estimate of the mean angular step size, we multiply this
duration by an expectation value & for the i'th angular velocity component.
We assume that, during a diffusive step, W, is distributed as it would

be for an ensemble of free rotors. Under such conditions, it was found

in V. of Ch. 2 that
iy = KT/ 1L

Accordingly, we use for'ﬁtthe r.m.s. value of W, 5 our estimate of the

mean angular step size is

b =53 1) (D)

Recalling (2.26), we obtain (in radians)
- L )'v:
(e Di (Tf\‘ .

Comparison with (6.5) reveals that

-1
. (BT Lo
<A9-:7 - 0 ‘x&) - 4,‘29in . cee (6.6)

With a view to interpretation of the value of X, in terms of the
nature of the reorientation process, the following, more or less

arbitrary, guidelines have been suggesteds:



74

X < 2.5 — "inertial" (free rotor) behaviour;
2.5< < 4.2 — “intermediate" region;

4.2 <% — diffusive reorientation.

Using the values of -D, displayed in Table 2, and a literature value™
for the inertial mbment of a benzene molecule about an axis perpendicular
to the symmetry axis, we have found, for pure benzene, that the value .
of X ranges from about 5.6 at 295°K. to 8.8 at 279°K. These results
strongly support the view that tumbling reorientations in pure benzene
are diffusive in nature. By (6.6), the mean angular step sizes range
from about .042 radians (=2.4°) at 295 K., to about .026 radians (=1.5%)
at 279°K.

Interpretation of the results of the ¥ -test for CeHe-CCl, mixtures,
however, poses a quandary. It will be recalled from I. that the
hydrodynamic model did not compare favourably with the experimental
results for mixtures; thus, the diffusion hypothesis was not supported
by this comparison. But it is apparent that the empirical value of
D, > and hence of ¥ , at room temperature, does not change significantly
with benzene concentration. According to the present criterion, then,
if rotational diffusion provides a valid description of reorientation
-in pure benzene at room temperature, so must it for mixtures at room
temperature. The tendency of ¥ to rise as temperature falls, however,
is markedly Tess pronounced in the mixtures than in pure benzene; the
temperature trend is in fact essentially flat for the most dilute
(21% benzene) mixture studied. Thus, diffusive reorientation is not

so strongly indicated in the mixtures as in pure benzene, at Tower
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temperatures.

It may well be the case that the angular step size cannot be
inferred so reliably from (6.6) for mixtures, as for pure benzene. The
shape of a CCl, molecule is more nearly spherical than that of a CeHe
molecule; therefore, the interaction forces between a C.H, and a
neighbouring CC14 molecule, due to steric hindrance by one molecule of
the reorientations of the other, will be less impulsive in nature than
the forces between two C.H, molecules. For this reason, the picture
of discrete angular steps terminated instantaneously by an interaction
that randomises the angular momentum of the éotor, to which we appealed

in the derivation of (6.6), may be a poor model of the situation for
mixtures. Accordingly, we deem it a moot point, whether the results

of the X -test indicate diffusive reorientation in the mixtures.

Finally, we investigate an alternative model to rotational diffusion,
to rationalise the temperature dependence of D, in the mixtures.

I1I. Dynamically Coherent Reorientation - The SDFR Model:

A theory has been advanced by Steele *® td treat motion in the
opposite theoretical Timit to rotational diffusion - viz., the "slightly
damped free rotation" (SDFR) model. This model postulates "dynamically
coherent" reorientation, in which the anguiar velocity component under
consideration remains constant over a long period of time. It has been
applied successfully to the spinning motions (reorientations about the
symmetry axis) of benzene*, acetonitri]es, and methyl 1odide‘2, for
which, as mentioned in I., the diffusion model was found to fail. The
motivation for applying the SDFR model to tumbling motions of benzene
in CGHG—CC1¢ mixtufes, is just the reason cited in II. above, for which

the results of the X -test on mixtures are suspect: one no longer expects
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angular steps to be terminated by sharp, instantaneous changes in angular
velocity.

The result of the SDFR theory, germane to our present considerations,
is the reorientational correlation time

:_ﬁj___ v
T 265 * 2 =)

which is merely the time taken by a free rotor with angular velocity
1
Juy =(EE/L)‘ to execute a rotation through the correlation angle 41°

about the i'th axis. The corresponding diffusion constant, by (2.21), 1is

D=gm = &% <kT)— ... (6.7)

or

It should be noted at the outset that the diffusion constant
predicted by (6.7) is abdut five times too large to match our empirical
results for tumbling motions of benzene. Dismissal of the SDER
hypothesis on this basis, however, may be premature. It is interesting
~to evaluate the SDFR model, as we did the hydrodynamic model, in respect
of the temperature dependence it predicts for Dy, . As in I., we shall
compare the activation energy value predicted by our model, with the
empirical results shown in Table 3.

To derive the SDFR activation energy, one takes the logarithm of

(6.4):

]‘nD = L« Do - %T-I

E.
that ~ e
§o a 0 i( 4) (]n [))

From (6.7) one has

2D = 5;‘;‘ )+ 1T,
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Hence, B, = "7\2‘ é’i‘%{”ﬂ‘) (WD

= E%F for a single rotor,

or E:d = E%;T = .29 kcal. per mole of rotors,

at room temperature. This value is consistent with the experimental
results (Table 3) for the three lTowest benzene concentrations. By this
reckoning, it appears reasonable to interpret the observed trend of E
with decreasing benzene concentration, as an approach to the free
rotor Timit.

References:

1. W. A. Steele in "Transport Phenomena in Fluids", edited by

H. J. M. Hanley (Marcel Dekker, New York and London, 1969).

2. R. G. Gordon, J. Chem. Phys. 44, 1830 (1966).
3 K. T. Gillen and J. H. Noggle, J. Chem. Phys. 53, 801 (1970).
4, K. T. Gillen and J. E. Griffiths, Chem. Phys. Letters 17, 359 (1972).

5. ‘J. E. Griffiths, J. Chem. Phys. 59, 75] (1973).
6. W. A. Steele, J. Chem. Phys. 38, 2404 (1963).
7. F. Perrin, J. Phys. Radium 5, 33 (1934).

8. G. R. Alms, D. R. Bauer, J. I. Brauman, and R. Pecora,
J. Chem. Phys. 58, 5570 (1973).

9. B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53,
3813 (1970).

10. A.Gierer and K. Wirtz, Z. Naturforsch. A8, 532 (1953).

11. D. E. Woessner, B. S. Snowden, Jdr., and E. T. Strom,
Mod. Phys. 14, 265 (1968).

12. J. E. Griffiths, Chem. Phys. Letters 21, 354 (1973).

13. P. A. Egelstaff, "An Introduction to the Liquid State"
(Academic Press, London and New York, 1967), p. 151.



14.

15,
16.
17.

18.

Handbook of Chemistry and Physics, 44th Ed. (Chemical Rubber
Publ. Co., Cleveland, Ohio, 1962), p. 2334.

Thorpe and Rodger, Trans. Chem. Soc. 71, 360 (1897).

F. J. Bartoli and T. A. Litovitz, J. Chem. Phys. 56, 413 (1972).
G. Herzberg, "Electronic Spectra and Electronic Structure of
Polyatomic Molecules" (D. Van Nostrand Co., Inc., Princeton,

New Jersey, 1967), p. 666.

W. A. Steele, J. Chem. Phys. 38, 2411 (1963).

78



79

CHAPTER 7
DISCUSSION - VIBRATIONAL RELAXATION

In this chapter, our concern is with the information recumbent
in the isotropic scattering, available to us (cf.(2.5b)) through the
polarised spectrum. The structure of the isotropic spectrum, as shown
by (2.10a), is governed by the time correlation of the appropriate
vibrational coordinate. Broadening of the isotropic spectrum, then, is
due to the loss of such corre1ation, which occurs as a result of
vibrational relaxation. Accordingly, we may obtain from the isotropic
lineshape, information about the time scale on which such relaxation
processes take place. Contemporary understanding of vibrational
relaxation mechanisms is not greatly advanced’; consequently, the
present treatment will be Targely qualitative.

Isotropic lineshapes were found to conform well to a Lorentzian,
when fitting was performed on the structure-free side, and when
instrumental correction was essayed in the manner outlined in I.A. of
Ch. 4. The isotropic linewidth (FWHM) results E;Qare recorded in
Table 1, for the various temperatures and benzene concentrations at
which the experiment was performed. Also, the results are presented
graphically in Fig. 8, where linear fits have been superimposed to
illustrate the temperature variation of(:; at each concentration. Over
the Timited temperature range studied, the data were generally found to
be supportive only of, and adequately described by, a linear fit. One
notable exception was encountered: the 21% benzene linewidth suffers
an abrupt reduction as temperature falls below about 270°K. This s possibly
due to a change in the nature of the solution resulting from the onset of

dimerisation; it should be pointed out, however, that our experiments
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were apparently confined to a temperature range within which dimerisation
was not expected to bccur (cf. B.5. of Ch. 3), and that the accuracy
of our teﬁperature measurements was confirmed by observations of the
freezing points of the various solutions. Finally, the concentration
dependence of E;o, at 295°K., is plotted in Fig. 9, and a regression
line superimposed to illustrate the trend.

The gross‘patterns evident in the linewidth results are as follows:
(i) “ At a given concentration,ﬁl0 decreases with increasing temperature.
(i1) At a given temperature,f};b decreases as concentration decreases.
(iii)  The slope dﬂlo/dT decreases sharply upon initial dilution with

CC1 but remains roughly constant thereafter (Table 5):

4.°
TABLE 5
Slope of E;b vs. temperature

Mole fraction C Hj , 1.00 .81 .62 .42 .21

103de;&/dT(cmf‘/°K.)! -17.#4. -4.5£.8 -5.9%£2.1 -6.1+.9 -2.8%2.2
Trend (i) has been noted previously in the case of pure CH,I by Wright
et a].z, and by Campbell et a]? Trend (ii) has been observed by
Griffiths et al.” for‘(zf% in solution with Ce Dy -

The impTications of these trends will be explored in following
sections (III. and IV.). Preliminary to this, however, we undertake
a critical examination (in I.) of our linewidth measurements, and
discuss (in II.) the vibrational relaxation mechanisms, in terms of
“which the observed linewidth trends may be rationalised.

I. The Linewidth Measurement:

-1
Since numerous measurements of the isotropic linewidth of the 992 cm.
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benzéne 1ine appear in the literature, it is in order to compare our
results, in instances where this is possible, with available literature
values. We have done so, for pure benzene at RTP. One encounters a
disconcerting degree of variation among reported values of this width.
The earlier measurements® were performed with mercury arc excitation
sources, and yielded widths around 1.8 cm.' It should be noted that the
breadth of the excitation 1line, relative to the benzene 1ine in question,
would render unavoidable the use of a deconvolution technique, accurately
to recover the true benzene Tineshape, if such a source were used.
Frenzel et a]?, using laser excitation and carefully adjusted monochromator
slits, found E;°= 1.5 cm.. Clements and Stoicheff  have made a high
resolution interferometric measurement with laser excitation, and have
found E;°= 2.15:.15 e, Griffiths , using the "zero slit-width
extrapolation" (ZSE) method (cf. I.A.1. of Ch. 4), has obtained

F;£ = 2.24t.1 cm.'  The weighted average of our room temperature results
for puré benzene 15(25 =1.74 + .03 cmfl; if we average through the
assumed linear dependence on temperature, using the regression result
at 295%K., we get Vo= 1.77 + .06 cm.

Despite first appearances, we consider our determination to be
consistent with the laser excitation results of References 4. and 7., when
careful account is taken of what is actually measured in the several
experiments. The ZSE method of Griffiths, as pointed out in‘I.A.l.
of Ch. 4, may be expected to overestimate E;oby the laser Tinewidth
plus the diffraction 1imit of the monochromator. Under the usual
conditions of contemporary laser Raman experiments, the width of the
argon ion laser Tine is about 0.15 cm:: and the diffraction limit

of the double monochromator is about 0.25 cm:\ Therefore, the ZSE
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estimate is approximately 0.4 cm.’ too high. Griffiths has, however,
removed the broadening contribution of the 993 cmt\ hot band on the high-
frequency-shift side, by fitting only on the structure-free (low-shift)
side. We have adopted the same strategy in respect of the hot band,

and therefore expect our measurement, from which laser line and s]it
broadening have been removed by deconvolution, to differ from Griffiths'
only by'the 0.4 cm."1 inherent in the ZSE estimate. Our result is 1in
good agreement with this expectation. Clements and Stoicheff, on the
other hand, apparently do not remove the 993 gmf1 hot band; our results
were similar to the Stoicheff value when fitting was performed over the
entire profile, rather than on the structure-free side, so that the hot
band would seem to account for the discrepancy in this case. The reason
for the extremely low value obtained by Frenzel et al. remains unclear.

II. Vibrational Broadening Mechanisms:

Many models have been proposed for vibrational energy transfer
among polyatomic mo]ecu]esF One mechanism often considered dominant
in gases and Tiquids involves a vibration-translation (V-T) transfer
process? A’rapid intramolecular transfer of vibrational energy is
thought to maintain an equilibrium energy distribution among the
fundamental vibrational modes of an excited molecule. During a collision
with another molecule, the total vibrational energy undergoes a
" vibration-to-translation relaxation process through the lowest energy
vibrational mode. The process has been widely studied, especially
through ultrasonic methods.® Litovitz * has developed a binary collision
model, which has provided a basis for elucidation of this process.
Griffiths* has recently suggested that another mechanism may also

be operative in the liquid phase. At high densities, where the time
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between collisions becomes short, intermolecular vibration-to-vibration
(V-V) energy transfer may dominate the energy cascade. During a collision
between two molecules, vibrational energy will be more readily transferred
from an excited energy level of one molecule to a lower level of the
other, if the two levels involved are close together, than if they were
widely spaced. The energy difference would be transferred to translational
energy if this interaction were successful.

Griffiths has provided an illustration of the latter mechanism
in mixtures of CGHQ and CGDG. The linewidths of the v fundamentals for
pure CiH, and pure CeD» at room temperature, were measured to be 2.24 cmf‘
and 1.52 cqu respectively; the difference is larger than would be expected
for two such similar molecules, if only the V-T relaxation mechanism
prevailed. In G H,, there are two vibrational energy levels, », (985 cm?\)
and 29(970 cm™), slightly below the v, (992 cmf‘) level. These nearby
levels might give play to the V-V mechanism. By contrast, 1n'CGDG,
the closest Tevel to the », (945 cmf‘) Tevel is the higher ¥, (963 cm?‘)
Tevel; no other C.D, levels 1ie in the immediate vicinity, either of
the 3 Tevel of C.Dy, or of the » level of C Hy. For this reason, it is
expected that the V-V relaxation mechanism will be important only in
CeHg-Cg Hg collisions, not in CeHe'Cebe or C¢Dg-C.Dg collisions. Griffiths
proposes that the V-V process; operating preferentially in CeHe -CeHg
collisions, accounts for the difference between the Tinewidths of pure
CeHe and pure C.D.. To support this point of view, he has measured
the isotropic ¥, Tinewidths of both species in CeHe ~CeDg mixtures, as
a function of relative concentration. The observed result is that the

CeHe linewidth depends linearly on the mole fraction of CeHg > while

the CoDe 1linewidth remains constant. Extrapolated to 0% C.H., the
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CeHe Tinewidth equals that of CGDG.' A tidy synthesis of these results
is provided by Griffiths' proposal. At high CeHe concentrations, where
vnumerous CQHQ—CGHG collisions occur, both the V-V and V-T mechanisms
contribute to vibrational relaxation in C.H,. Upon dilution, the number
of such collisions undergone by a given C H, molecule diminishes, and
hence also the contribution of the V-V mechanism to C.H, relaxation.
Such collisions are, however, largely replaced by CGHG—CQDGcollisions.
The structural similarity of CH, and C Dy impels the expectation, that
the probability for a CcHe molecule to undergp V-T relaxation during

a collision, is independent of whether the other collision partner is

a CoH or a C.D, molecule. Thus, the V-T broadening contribution to

the C H, 1inewidth should be independent of concentration. The net
effect of dilution is that, overall, collisions become 1ess efficient 1in
inducing C.H, relaxation, since one mechanism declines in importance,
while the other remains the same. Associated with this reduction in
relaxation efficiency is an increase in vibrational lifetime, and hence
a decrease in C H. Tinewidth. At infinite dilution (0% CeHo)s the

V-T mechanism operates exclusively, and the situation, for C H, relaxation,
is identical to that which governs Ce Dy, relaxation throughout the
concentration range. Hence, the two Tinewidths should intersect at

infinite dilution; this is in accord and Griffiths' observations.

ITI. Concentration Dependence Of BenzeneuuaRe]axation Rate In CQH%—

CCl, Mixtures:

The present Tinewidth data for the g'1ine of benzene in C Hs-CCl,
mixtures, afford a further opportunity to examine Griffiths' hypothesis.
In Fig. 9, ﬁ:o appears as a function of C.H, concentration, at 295°K.

(The individual point plotted for each concentration was read off the
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temperature trend line (Fig. 8) for that concentration, and not taken
directly from Table 1.) As with the CGHG—CGDG system examined by
Griffiths, a Tinear trend emerges. The equation of this regression

Tine 1is
‘—':so = (1.11%.04) + (.647+£.067)Ff -

where f is the mole fraction of C.H,.

Simi]ariy, performing linear regression on Griffiths' data for
the CGHG Tinewidth in C.H.- C.D, mixtures, we obtain

e = 152 + 742 7.

A comparison of these two trend 1lines is interesting on several
counts. First, the two slopes match within experimental error. Thus,
the rapidity of vibrational relaxation depends similarly, in the two
cases, on the frequency of CQHG— CHe collisions. Second, over the
éntire range of f, the difference between our (regression) value for
., and that of Griffiths is roughly constant, at about 0.4 cm.”!
This observation confirms our comments in II. regarding the overestimation
of linewidth inherent in the ZSE method. Third, both C.H,-C.D, and
C¢H,-CCl, collisions apparently yield similar relaxation rates.
De-excitation of_theig tevel of CGHQ is, therefore, presumably insensitive
to the details of the interaction with these two different partners. This
is consistent with the usual view that, since the most auspicious
condition for a successful V-T interaction is a particularly violent
collision, enough distortion of the colliding molecules is apt to occur
that their equilibrium structural details are, so to speak, forgotten

during the interaction.
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IV. Temperature Dependence of the Relaxation Rate:

From Table 5, it is apparent that the slope d o /dT is negative
for all concentrations of Ce Hg - For pure CGHG, its magnitude is largest;
it decreases sharply upon initial dilution, but changes only moderately
thereafter.

To interpret this behaviour in relation to possible relaxation
mechanisms, we have followed a treatment of pure CHZI given by Campbelld,
Fisher, and Jonas-. These authors have found in the case of CH,I
that the relaxation rate ]/Qab («'Y&b) decreases as temperature
increases. In analysing their results, they invoke the binary collision
model of Litovitz = for the V-T process. According to this model, the
relaxation rate may be expressed as

%;b = P (0N [1-exp(h/kT)]

where N is the co]]ision’frequency and P‘_o is the probability per
"hard" collision that a molecule in the first excited vibrational state
having frequency » will go to the ground state upon collision. The
probability P_, is assumed to be a function of temperature but not of
density. It has been shown Y that the harsher or more sudden the
interaction, the higher is the probability that a transition will occur:
Po 15 @ strong function of temperature, and dP_,/dT is positive.

To account for their observation that the re]axationvrate falls as

T rises, despite the rise of P__ with T (and the concomitant increase 1in

o
[1—exp(hv/kT)]), Campbell et al. demonstrate that the collision
frequency N may decrease with increasing temperature, because of a
decrease in the molecular hard sphere diameter 6. Together with the

decrease in density associated with a rise in temperature, a decrease

in ¢ would imply a longer free path between collisions, and might
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therefore result in a longer time between collisions and a lower
relaxation rate, if the countervailing increase in mean translational
velocity did not predominate. That ¢ should decrease as temperature
rises, is expected in virtue of the finite slope the intermolecular
potential: because of this slope, the increase in mean translational
kinetic energy that accompanies a rise in temperature, allows molecules
to approach one another more_c]ose]y before reaching the classical
turning point. In view of the close packing of molecules in a liquid,
a small change in © may represent a significant increment in the mean
free path between collisjons. Campbell et al. have calculated the
collision frequency N, as predicted by several models of liquid dynamics
(the cell model, the Enskog model, and the J-diffusion model), and have
estimated on from gas phase studiesa. They conclude that, as
temperature increases at constant pressure, the increase in time between
collisions,due to the changes in density and hard sphere diameter,
prevails against the competing rise in Ps

We have treated our pure C. H, data in a similar fashion, but‘have
been unable to elicit even qualitative agreement with the binary
collision model for the V-T process. In order simultaneously to
accommodate the value of E;oat 295°K., and the slope dl,, /dT, negative
values of dP,_, /dT must be postulated, whether the cell model or the
Enskog model is used in the calculation of N. This negative result
reinforces the suggestion made earlier, that an unusual relaxation.
mechanism, such as the V-V process discussed in II. and III. above, is
operative in CGHG_CQHQ encounters.

The mixture data is more difficult to analyse, even qualitatively.

Upon dilution, the CoHg-CeHg collisions become less frequent and the
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relaxation rate approaches a value, presumably characteristic of the
V-T mechanism. For pure Caﬂi’ the large negative slope of dfaé/dT
suggests that the temperature dependence of the relaxation rate is
governed primarily by the.behaviour of the collision freguency, and
that the transition probability for a V-V interaction is not a

strong function of temperature. As the V-T process becomes

relatively more important with progressive dilution, dee/dT, which

is positive, begins to offset dN/dT, which is negative, in determining
the net élope 3 Fao/dT : hence the observed reduction (Table 5) in

magnitude of the slope, upon dilution,
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CHAPTER 8

CONCLUSIONS
On the molecular dynamics of benzene, and of benzene-carbon
tetrachloride mixtures:

Our fesu]ts confirm that tumbling motions of benzene in the neat
1iquid are in the rotational diffusion 1imit, but suggest that,
upon dilution with carbon tetrachloride, such motions approach free
rotor behaviour. The observed temperature and concentration
dependence of the vibrational relaxation rate supports the view |

~ that an unusual relaxation mechanism, such as a vibration-to-vibration
energy transfer, operates in CGHG_CGHG interactions.
On possible refinement of the present experiment:

The improvement which is most clearly required, is a reduction in
the stray 1ight component of the measured depolarised spectrum. The
large stray 1light throughput that was experienced, occasioned most
of the analysis problems encountered in the present work. We consider
that our "Method (1)" analysis of depolarised spectra, could not have
failed so abjectly in the absence of stray 1ight. In any case, it
is more desirable in principle, to remove stray light at the source,
than to compensate for it analytically after the fact. We consider
that scrupulous design of the sample cell would be helpful in the
reduction of stray Tight. It should be recognised, however, that the
992 cm:' line of benzene, because of its extreme polarisation,
presents as severe a stray light problem as would ever be encountered.

é The analytical methods developed in the presént work should therefore
| be satisfactory in any other casé, if they perform acceptably in the

present case.
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An improvement in resolution of the polarised spectra could be
effected, if they were studied at reduced slit-widths. Ample
intensity is available to permit such a reduction. (Broad slits
were used in the preéent work to enable the application of
"Method (2)" analysis to the depolarised spectra; the polarised
spectra were of secondary interest.)

Finally, it would be helpful to extend the temperature range
of the experiment by heating samples above room temperature.
Proposals for further work:

| It would be interesting to study reorientational broadening
of the Rayleigh line, in order to investigate the importance of
angular coOperative effects. Agreement with the Raman resuits
would indicate that such effects were insignificant. Moreover, the
Rayleigh line might provide a convenient means to study reorientation
in dilute solutions, since the reduction in intensity with dilution
would not present the problem it does in the study of the much
weaker Raman lines, and since dilution with a solvent of spherical
molecules might eliminate angular cooperative effects.

Comparison of Raman with infrared orientational broadening can
provide a test of whether reorientational motion is diffusive in
nature.’

Raman studies of additional vibrational modes, possibly applying
the Rakov technique* to depolarised lines, may be used to determine
the complete diffusion tensor of benzene.

Examination of the reorientational behaviour of CCl,, as well

as C.He» in mixtures of these two species, might furnish information
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about their interactions. In particular, it might resolve whether

"stick" or "s1ip" boundary conditions are applicable. If the

former, one might expect rotational hindrance between the two

species to be mutual, and that the reorientational behaviour of each

specfes should respond in the same way to dilution with the other

species. If the latter, the presence of a CC1, molecule might offer

steric hindrance to the reorientation of a neighbouring Cole

molecule, while reorientation of the more spherical CC1, molecule

might proceed, indifferent of the presence of é CeHe molecule.
Finally, a theoretical modification of the hydrodynamic model

under "s1ip" boundary conditions, possibly via molecular dynamics

calculations, would provide an opportunity for further interpretation

of ﬁhe present results.
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FORTRAN IV G LEVEL

T2v T TTmaIN T T N

0037

3 LEAST-SQUARES DETERMINATION OF BEST-FIT PARAMETER VALUES
c FOR DISTRIBUTIONS DESCRIBING LINE PROFILES 93
c DECONVILUTION CAN BE PERFORMED IN CONJUNCTION WITH FITTING PROCEDURE
c .
0001 COMMON B(10,10),P{10),T{10),F(500),DP(10,500) '
0032 REAL EST(10),TOL(10),W(420)»E(4021,D(12)»5(100), TEST(10)
0003 DIMENSION KOUNT (40C)»KP(400)»BR(10,10)»DT(10)
0004 DIMENSION KS(120)
0095 READ (5,216) NOFITS
0006 DO 13 NODONE=1,NOFITS
0007 READ (55201) MODEsNPARsNSLIT,»NMAXsNEDGE»DARK
0008 READ (5,203) (KS{I)sI=1»NSLIT)
0009 SUM = 9.
‘0010 D0 31 I = 1,NSLIT
0011 31 SUM = SUN + <S(I) -
col2 DO 32 I=1,NSiIT
0013 32 S{I) = FLOAT(KS(I})/SUM
0014 READ (5,202) (EST(I)»I=1,NPAR)
0015 DO 100 I=1,NPAR
0016 TOL(I) = 5. « EST{(I)
0017 100 TEST(I) = .00001 #* EST(I) , )
0018 READ (55203) (KOUNT(I)»I=1,NMAX)
c
c INPUT PARTICJLARS:
c *NOFITS® 1S NO. JF SETS 1F DATA TO BE PROCESSED
c (MODE=1) INVOKES OPTION TO CORRECT FOR STRAY LIGHT;
c _ (MODE=0) BYPASSES SAME
c *NPAR* IS NO. OF PARAMETERS TO BE GPTIMISED
c *NSLIT® IS NO. OF CHANNELS SPANNED 8Y SLIT FUNCTION
c *NMAX® IS NO. OF CHANNELS SCANNED IN DATA
c "NEDGE' IS NO. OF ADDITIONAL CHANNELS OF STRAY LIGHT DATA ON EACH
c SIDE OF *KOUNT* DATA FIELD (ZERQ WHEN MODE=0)
¢ C®DARK® IS5 EXPECTED DARK ZOUNT IN EAZH CHANNEL
c (NON-ZERO IF DARK COUNT IS TO BE SUBTRACTED ARBITRARILY)
c ®SLIT(I)® IS VALUE OF NORMALISED SLIT FUNCTION IN I*TH CHANNEL
c SEST(I)® IS INITIAL ESTIMATE OF THE I'TH PARAMETER
C "TOL(I)® IS TOLERANCE WITHIN #HICH THE I°TH PARAMETER IS
c CONSTRAINED TO VARY
c STEST(I)® IS THE LARGEST INCREMENT IN THE I*TH PARAMETER THAT
c IS DEEED TO INDICATE CONVERGENCE
c SKOUNT(I)® IS THE DATUM FOR THE I*TH CHANNEL
c *KP(I)}' IS THE STRAY LIGHT DATUM FOR THE I'TH CHANNEL
3 (APPLICABLE WHEN WaDE =1)
c
0019 N = (NSLIT + 1)/2
0020 _NRAR = NPAR
0021 DO 14 I=1,NRAR
0022 14 PUI) = EST(I)
0023 SUM = J.
0024 DO 1 I=1,NMAX
0025 WOI) = 1./{KOUNT(I)+DARK)
0026 1 SUM = SUM+KOUNT(I) -
0027 SUM = SUM = NMAXEDARK
0028 IF (MODE.EQ.)) G3 TO 101
0029 NQAR = NPAR-1
0030 NMAXP = NMAXK + 24NEDGE
0031 READ (55203) (<P(I)sI=1,NMAXP)
0032 PINQAR) = PINQAR) / SUM
0033 NPAR = NPAR-2
0034 101 NMAXP = NMAX ¢ NSLIT
~0035 DO 2 [=1,NHAX
. 0036 2 ECI) = (KOUNT(I)-DARK)/SUM

ITER = 0
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0038 KGO = 1 oL
0039 KCUT = 0
00640 CHISQ = D.
0041 WRITE (6,204)
0042 HRITE (65205 ) ITERs(EST(I)sI=15NRAR)
0043 3 DO 4 I=1,NRAR
0044 T(I) = 0.
0045 DO 4 J=1,NRAR
0046 & B(I,J) = O,
0047 DO 5 I=2s NMAXP
0048 5 CALL EVAL(I»NPARsN)
0049 If (MODEL.EQ.J)) GO T3 92
0050 ISHIFT = P(NRAR)
0051 IF {{P{NRAR))}.LT.0.) GO TO 30
0052 TA = ISHIFT#NEDGE+1
0053 GO 10 91
0054 90 IA = [SHIFT+NEDGE
0055 91 I8 = IA-1
0056 IC = ISHIFT+NEDGE
0057 92 IF (KGO.EQ.l) G2 T3 102
0058 - WRITE (6,218) ’
0059 WRITE (65208) ISt1)sI=1sNSLIT)
0060 N1 = N¢l
0061 N2 = N#NMAX
0062 WRITE (6,211)
0063 WRITE (6,208) (FUI)sI=N1is»N2)
0064 102 CONTINUE
0065 D3 106 I=1sN¥AX
0066 F{I) = 0.
0067 DO 103 J=1,NSLIT
00568 =14+
0069 103 F(I) = FUI) & S(J) * F{1J)
0070 1F (MODE.EQ.)Y )} GO TO 22
0071 ID = [+]IA
0072 IE = 1+I8
0073 16 = I+IC
0074 PSHIFT = KP(IG)Y + (P(NRAR)-ISHIFT)I®(KP(ID)-KP(IE))
0075 F(I)Y = F(I) + P(NQAR)*PSHIFT
0076 20 DY = E(I) - F(I)
0077 GO TO (22,21),KGO
0078 21 CHISQ = CHISY + W(I) #* DY¥*2
0079 22 .D0 104 K=1»NPAR
0080 D(K} = 0.
0081 DO 104 J = 1sNSLIT
0082 =1+
0083 104 DEK) = D(K) ¢ S(J) % DPI{K-1J)
0084 IF (MODE.EQ.J) G3 TO 23
0085 DINQAR) = PSHIFT
0086 DINRAR) = P(NQAR)I*(KP(ID}-KP(IE))
0087 23 DO 105 K=1,NRAR
0088 TI(K) = T(K) + W(I) & DY & D{K)
0089 DD 105 J=KsNRAR
0090 105 B{KsJd) = B(KsJ) ¢ W(I) % DtJ) * DI(K)
0031 106 CONTINJE
- 0092 MA = NRAR-1
0093 DO 6 I=1sMA
0094 MB = [#]
- 0095 U DD 6 J=MBsNRAR
0096 6 BlJsI) = B(IsJ)
0097 IF (KGUO.EQ.1) GO TO 108
0098 DO 107 I=1,NRAR
0099 DO 107 J=15NRAR
0100 107 BR{IsJ) = BlI»J)
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108 CONTINJE ' 95

0162

0101

0102 CALL SOLVE(NRAR»KCUT)

0103 IF {KCUT.EQ.1l) GO TO 13

0104 DD 7 I=1,NRAR

0105 7 PLI) = PLIN4T(I)

0106 IF (MODE.EQ.J) GO TD 24

0107 PUNQAR) = SUM * P(NQAR)

0138 24 DO 15 I=15NRAR

01909 IF (ABS{P(I)-EST(I)).LT.TOL(I)) GO TO 15

0110 PCI) = ESTLIY)

0111 15 CONTINJE

0112 ITER = ITER+l

0113 IF (KGD.EQ.2) GO 70 12

0114 WRITE (6,205) ITERs(P(I)sI=15NRAR)

0115 IF (MODE.EQ.D ) GO 72 8 ,

oll6 PINQAR) = P(NQAR)}/SUM )

0117 8 IF (ITER-39) 9,11»12

0118 9 DO 10 I=1,NRAR

0119 TF ((ABS(T(I})).GT. (TEST(I))) GO 10 3

ol20 10 CONTINUE

o121 ~ IF (MOJE.EQ.)) 63 TO 11
- 0122 TENQAR)} = SU¥ % T{NQAR) - o
- 0123 IF ((ABS(TINQAR)))I.GT.ITESTINQAR))) GO TO 3

0124 11 KGO = 2

0125 GO 10 3

0126 12 CHISQ = CHISQ#SUM#SUM/(FLOAT{NMAX=NRAR))

0127 DO 17 I=1»NRAR

0128 DO 16 J=1,NRAR -

0129 16 T(J) = O,

0130 TLI) = 1./75Ud%%2

0131 DO 109 J=1,NRAR

0132 DD 109 K=1,NRAR

0133 109 B(JsK) = BR{J»K)

0134 CALL SOLVE(NRAR»&CUT) o
- 0135 17 DT(I) = SQRTL(TI(I))

0136 IF (MODE.EQ.?) GO 7O 18

0137 DT(NQAR) = SUM*DT (NQAR)

0138 18 CONTINUE

0139 WRITE (65209) .

0140 "WRITE (65208) (FUI)sI=lsNMAX) -

0141l WRITE (6,207)

0142 WRITE (65208) (E(1)»I=1,NMAX)

0143 WRITE (6,212)

0144 WRITE (6,213)

0145 WRITE {6,205) ITER,{(P{I)s1=15NRAR)

0146 WRITE (65215) (DT(I),I=1»NRAR)

0147 WRITE (6,206) CHISQ

0148 WRITE (6s21%) SUM

0149 13 CONTINUE

0150 CALL EXIT

0151 201 FORMAT (513,F5.3)

0152 202 FORMAT (6F12.6) )
. 0153 203 FORMAT (1016)
0154 204 FORMAT (1H1,3X»14HNO. OF ITER®"NSs9Xs 2HMU»11Xs SHGAMMA»9Xs

1 3HAMP»10X»4HBKGD» L1Xs LHC 5 11 Xs SHSHIFT//)

0155 205 FORMAT (14XsI2,7Xs7F14.7)

0156 206 FORMAT (/720Xs5HCHISQ,F20.5)

0157 207 FORMAT ( //1)X»21HOBSERVED DISTRIBUTION/}

0158 208 FORMAT (10F12.6) :

0159 209 FORMAT (//10X»24HTHEORETICAL DISTRIBUTION/)

0160 210 FJRMAT (5F13.8)

0lel 211 FORMAT (//7/713X,33HFILTERED THEORETICAL DISTRIBUTION/)

212 FORMAT (//72)X,22HFINAL PARAMETER VALUES)

wy
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0163 213 FORMAT ( /753X, 14HND. OF ITER"NS»9X»2HMU> 11Xs SHGANMAS OX, 96
1 3HAMP,10X»44BXGDs 11Xs 1HZ » 11Xs SHSHIFT/7)
0164 214 FORMAT (///9X,12HTOTAL COUNTS»F20.0)
0165 215 FORMAT ( /79X»11HSTD. ERRORSs»3Xs7F14.7)
0166 216 FORMAT (13)
0167 218 FORMAT (/7/710Xs20HINSTRUMENTAL PROFILEZ/)
0168 END
FORTRAN IV G LEVEL 21 soLve

0031 SUBROUTINE SJILVE{K,XCUT) .
0002 COMMON B(10+,10)sP(10)>T{10)sF(500)5DP(105500)
0023 DO 10 L=1,K

0004 DO 5 J=L,K

0005 IF ((ABS(B(JsL))).LT.1.0E-15) GO TO 5
0026 DO 13 I=LsK -

0007 C = B{J,I)

00028 BlJsI) = B(L»1I)

0009 BlLs,I) = ¢C

ooio0 13 CONTINUJE

0011 C =T0J)

0012 T(J) = Ti(L)

0013 TiL) = ¢C

0014 GD 10 5

0015 5 CONTINUE

0016 HRITE (6530)

0017 KCUT = 1

0018 RETURN

0019 6 M = L+l

0020 IF (M.3T.K) 30 T3 8

0021 DO 7 J=M,K

0022 7 BlLsJ) = ~BILs»J)/BILsL)

0023 8 T{L) = T(L)/B(LsL)

0324 IF (M.GT.K) 53 T2 11

0025 DO 9 [=M,K

026 DO 9 J=MsK

0027 9 B(I,J) = B(I,J)+B{LsJ}*B(I,L)

0028 DD 16 I=M,K

0029 16 TUI) = T(I)-BUI,L)#T(L)

0030 10 CONTINUE

G031 11 DO 20 L=2,K

0032 M = K-L+1

0033 MA = M+l

0034 DO 12 I=MAs(

0035 12 T(H) = T(MIFTLI)#B(MH,1)

0036 20 CONTINUE

0037 RETURN

0038 30 FORMAT (/7720X> 15HMATRIX SINGULAR}
6039 END
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0001 SUBROUTINE EVAL(IsNPAR,N) 57
0002 COMMON B(10,10),P(10),T(10),F(500),DP(10,500)
0023 J = I-%
0004 Pl = 3.14159265
0005 Cl = (J-PU1))*%24P(2)%42/6,
0026 €51 = PI&Cl%®#2
T
c *F(I)* IS THE VALUE OF THE UNCONVOLUTED DISTRIBUTIDN FUNCTIDN,
o EVALUATED USING CURRENT PARAMETER ESTIMATES, CDRRESPDNDING
c TO THE VALUE *J* (=I-N) OF THE INDEPENDENT VARIABLE
3
0007 FCI) = P(2)*¥P(3)/(2.%PI*C1)+P(4)
€
c *DP(Ks, I)* IS PARTIAL DERIV. OF UNCONVOLUTED DISTRIBUTIDN
c FUNCTIIN W.R.T. K*'TH PARAMETER, CORRESPONDING TD THE
c VALUE *J* OF THE INDEPENDENT VARIABLE
c
0008 DP{1,1) = P{3)#P(2)¥(J-P(1))/CS1
0009 DP(2s1) = P(3)¥(C1~-P(2)1%%2/2.017(2.%CS1)
0010 DP(351) = P(2)/(2.%C1)
0011  DPl4sI) = 1.
0012 RETURN
0013 END




