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ABSTRACT 

Background: Prenatal ethanol exposure (PNEE) causes irreversible intellectual and 

behavioral disabilities, clinically known as fetal alcohol spectrum disorder. Few neuropathologic 

studies of human brain exist. Hypotheses: First, markers of oxidative stress persist following 

PNEE. Second, PNEE is associated with inhibitory and excitatory neuron changes. Methods: 

Human brain autopsies (153) with known PNEE were reviewed; 18 cases (fetus to adult) and 

controls were selected. Oxidative stress and neuronal differentiation markers were used for 

immunohistochemistry. Results: There were no obvious differences between control and PNEE 

brains using oxidative stress markers. In human PNEE brains, glutamatergic neurons were 

reduced 15.96 % and 18.03% in dentate gyrus and temporal cortex, respectively. GABAergic 

neurons reactive for parvalbumin were reduced in all hippocampal regions (CA1= 57.86%, 

CA3= 65.15%, and DG= 53.39%) and temporal cortex (44.13%) in all age groups. Conclusion: 

GABAergic neuron reduction in human following PNEE could explain motor and behavior 

distractibility in FASD individuals. 
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Chapter 1: Introduction 

1. Background 

1.1 Alcoholism 

 Alcohol consumption is one of the leading causes of death worldwide 1. Alcohol-related 

mortality has been studied in many countries. In the United States, over 100 metabolic and non-

metabolic diseases are attributed to alcohol. Cardiovascular disease prevails in alcoholic 

compared to non-alcoholic individuals 2. In the United States, 60–90% of cirrhosis-related deaths 

have been attributed to alcohol consumption 3. Several types of upper and lower gastrointestinal 

tract cancer have been attributed to alcoholism 1,4. Tumors can also arise in the respiratory tract 

following excessive alcohol consumption 5. Alcohol consumption is a risk factor for serious 

injuries. According to National Trauma Data Bank (NTDB), alcohol is responsible for one fifth 

of all trauma among 10,611 persons 6. In addition, heavy alcohol consumption is associated with 

approximately 42% of injuries 7. Reportedly, one third of death related accidents are admitted to 

alcohol intoxication 8. Consequently, 5% of alcoholics develop lifelong disabilities 1. Therefore, 

alcohol consumption is a major public health issues in western countries and generates enormous 

economic pressure in these countries. Increased awareness of the risks of alcohol intoxication 

appears to decrease the alcohol-related mortality rate, but despite this, the mortality rate has 

increased 3-fold between 2004 and 2005. In Canada, 3,958 deaths were directly attributed to 

alcohol in 2005 9. 

 Alcohol consumption during pregnancy is a substantial risk factor for teratogenic effects 

on the fetus, which include growth deficiency, developmental delay, mental retardation, and 



  2 

facial anomalies. Prenatal deficits following alcohol use is detected frequently in western 

countries where alcohol is commonly consumed 10. Not only in western countries, but also China 

11, Africa 12, Australia 13, and India 14 have reported high prevalence of birth anomalies following 

in utero ethanol exposure. The prevalence of fetal abnormalities is substantially higher in 

countries where alcohol consumption is common among parturient women than in countries 

where alcohol consumption is uncommon 15. 

 In some communities, more than 70% of pregnant women consume alcohol during the 

first trimester before becoming aware of the pregnancy 16. As a result, over 20% of preterm births 

and 8% of prenatal deaths are associated with maternal ethanol exposure 17. In order to 

understand the etiology of alcohol induced fetal anomalies, the patterns of alcohol consumption 

should be considered. The section below defines the different patterns of alcohol drinking. 

1.2 Patterns of alcohol consumption 

 The Centers for Disease Control (CDC) and National Institute on Alcohol Abuse and 

Alcoholism (NIAAA) have defined the standard for alcohol consumption to induce severe harm 

to a biological system. Levels of consumption have been identified as binge drinking, and heavy 

drinking 18. 

 Heavy episodic drinking or binge drinking is defined as four drinks per occasion for a 

woman, and five drinks per occasion for a man. A single drink for a women per day and double 

drinks for a man per day are considered as a heavy drinking in U.S 19. This is equivalent to 10 

UK units (1.5 US units is equivalent to 1 UK unit) weekly and eight UK in a single occasion in 

United Kingdom 20. 
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 Although these measures are slightly different in some literature, researchers have been 

using these indications to evaluate the magnitude of alcohol toxicity and the amount of alcohol 

exposure in individuals with known ethanol abuse 4.  

1.3 Fetal alcohol spectrum disorder (FASD) 

1.3.1 Defining FASD  

 Fetal alcohol syndrome (FAS) was first described in 1973 as an intellectual disability 

with growth deficiency and facial dysmorphology 21,22. Fetal alcohol spectrum disorder (FASD), 

the currently accepted clinical term, is defined as intellectual disability and cognitive impairment 

caused by ethanol exposure during fetal development 10. This exposure causes biological 

malfunction of the brain. FAS, partial FAS (pFAS), and alcohol-related neurodevelopmental 

disorder (ARND) are all considered forms of FASD 10. Multiple approaches have been employed 

to clinically differentiate the various forms of FASD.  

 Individuals with FASD have cognitive and behavioral deficits and are less productive in 

society, school and family, therefore FASD is not only a health concern, but is also a complex 

interplay of social, legal, and educational factors that influence people in multiple communities 

worldwide 15. Early intervention is urgently needed to prevent the most devastating 

complications of FASD, namely lifelong cognitive, behavioral, and physical disabilities. 

1.3.2 FASD Prevalence 

 Numerous studies have correlated the consumption pattern with the prevalence of the 

different FASD forms. FASD may go undetected in children who do not exhibit the 

characteristic facial features of FAS; therefore, it can be difficult to accurately estimate the 

FASD prevalence rather than FAS 23. The FAS prevalence diagnosed by pediatricians in 
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Australia was reportedly 0.58 per 100,000
 
school-aged children. By contrast, the highest FASD 

prevalence occurred in South African communities, with 9% of school-aged children affected 24. 

In South Africa, which has the highest incidence of binge alcohol consumption, the FAS 

prevalence was estimated as higher than the pFAS prevalence. By contrast, in Italy, which has a 

lower binge-drinking incidence, the FAS prevalence was reportedly lower 25. 

 Comprehensive studies in the United States have estimated the FAS prevalence at 2.0 per 

1,000 live births 26 and the FASD prevalence at 9.1 per 1,000 live births 27. A population study in 

North Dakota found that 1 of 7 childhood deaths were in children diagnosed with FASD  (Burd 

et al. 2008). The FASD status was unknown in 1 of 5 childhood deaths in siblings of FASD 

children 3. Potentially, these children may have died before definitive diagnosis or may not have 

exhibited the characteristic features of FASD.  

 Although the FASD prevalence has increased in Canadian subpopulations, the prevalence 

in the general population has not yet been established in Canada 10. In northern Manitoba, a 

reported 0.7% of all live neonates had FASD (Williams et al. 1999). This incidence may be 

higher in select communities. The First Nations community reported FASD in 19% of live births 

in British Columbia and 10% in Manitoba 28. Another study of the same ethnic group estimated 

the FAS and pFAS rate at 55–101 per 1000 live births 29.   

 This high prevalence corresponds to high mortality rate in cases of FASD. A population 

study performed by Li et al. (2012) 3 found that 87% of women with FASD children died at less 

than 50 years of age. Considering the 9.1 per 1,000 live births FASD incidence in England 30, 

FASD diagnosis can play a vital role in determining the risk of preterm death in women with an 

older FASD child. In North Dakota, the risk of stillbirth was increased in mothers who consumed 

alcohol during pregnancy. The mortality rate of FASD children was up to 44-times higher than in 
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normal children. This finding highlights the importance of encouraging pregnant mothers with 

FASD children to enroll in an abuse treatment program 3. 

1.3.3 Risk factors for FASD  

 The risk factors of FASD are categorized into primary and secondary factors. Studies 

have investigated these factors using questionnaires, reported alcohol consumption, and 

population studies 31. The magnitude of alcohol exposure, frequency of consumption, and the 

time of exposure during pregnancy (i.e. quantity / frequency / timing or QFT) are the most 

important factors. Secondary factors include maternal nutrition, weight, socioeconomic status, 

education level, primary caregivers, genetic factors, and other drugs consumption. Accuracy, 

honesty, and specificity are three considerations during data collection from mothers and fathers 

in maternal clinics 32. The following sections describe the risk factors that may increase the 

FASD incidence followed by the secondary factors influencing the variation in FASD 

characteristics. 

1.3.3.1 Primary risk factors for FASD 

1.3.3.1.1 Quantity of alcohol consumption during pregnancy 

 One of the most important risk factors of FASD is the quantity of maternal alcohol 

consumption. The quantity of alcohol toxicity is estimated with maternal blood alcohol 

concentration (BAC). Correlation studies have shown higher incidence of intellectual disability 

in offspring of mothers who reported higher amount of alcohol consumption 33. In addition, a 

retrospective study showed an increase of FASD rate with prenatal binge alcohol consumption 25 
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1.3.3.1.2 Frequency of alcohol exposure during pregnancy 

 Another critical risk factor is the frequency of consumption during pregnancy. The rate of 

alcohol consumption occurrence of a pregnant mother directly affects cognitive and behavioral 

abilities on a fetus 34. Studies of several subpopulation in the United States reveal that the normal 

alcohol consumption pattern differs along cultural and ethnic lines i.e. heavy consumption in one 

group may be considered normal in other groups 25. 

1.3.3.1.3 Time of alcohol consumption during pregnancy 

 The timing of prenatal ethanol exposure has the most significant correlation to FAS 

anomalies. In particular, facial dysmorphology and cardiac malformations have been correlated 

with alcohol exposure during the first trimester. Ethanol induced apoptosis and neural crest 

migration disturbances were speculated to be responsible for facial anomalies in FASD 

individuals 35,36. In addition, cerebellar, hippocampal, and cortical malformations have been 

associated with ethanol exposure during the third trimester. 

 Brain cells proliferate and migrate during almost the entire 9 months of pregnancy, and 

every developmental stage has its own criteria. When the pregnant woman is exposed to any 

chemical agent such as ethanol during pregnancy, FASD can result. Studies in the United States 

have conclusively shown the relationship between prenatal alcohol exposure during the first 

trimester and the specific feature of facial dysmorphology in FASD children, which affects the 

migration and proliferation of neurons in the fetal brain during the first trimester 37,38. The 

characteristic facial dysmorphology of FASD observed in humans has also be replicated in 

animal models of FASD 39. In addition to facial abnormalities, cardiac anomalies in FASD 

individuals mainly occur following prenatal alcohol exposure during the first trimester 40.  
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 The third trimester is one of the most critical stages of fetal brain development. Studies 

continue to strengthen the link between the distinct neuroanatomical features of FASD and 

ethanol exposure during the third trimester. The cerebellum, hippocampus, and frontal cortex are 

the most vulnerable to maternal alcohol consumption during the third trimester 41-43. During 

weeks 32 to 36 of gestation, the areas that are responsible for cognitive and behavioral function 

are developing. As a result, continued alcohol consumption through the third trimester will 

produce a child with the clinical features of FASD as well as behavioral and cognitive deficits 

44,45. The severity of disease depends on the magnitude, frequency, and time of maternal alcohol 

consumption during pregnancy. 

1.3.3.2 Secondary risk factors for FASD 

 While studies continue to employ the QFT factors to predict the characteristic birth 

defects, other studies have explored additional risk factors that may be associated with the FAS 

incidence, such as the maternal weight, gravidity (number of previous pregnancies), parity 

(number of previous births), age, socioeconomic status, education level, primary caregivers, 

genetic factors, and maternal sensitivity to alcohol 46.  

1.3.3.2.1 Maternal nutrition  

 One of the major maternal variables that influence the incidence of FASD is the 

nutritional status of the mothers throughout their pregnancies. Inadequate nutrient intake during 

pregnancy has been found to interact with the metabolism of ethanol which may intensify the 

alcohol toxicity in fetuses known of in utero alcohol exposure 47. In this respect, iron and zinc are 

two major examples of nutrient deficiencies which have been widely reported to be connected 

with developing neurodevelopment anomalies in FASD children 48. 
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 Inadequate iron intake of pregnant women; which is seen commonly in alcoholic 

mothers, raises the chances of destruction of brain neuroanatomical features of fetuses and body 

developmental delay in childhood. Moreover, binge drinker mothers in U.S. who have low iron 

concentration delivered children with somatic growth retardation; that is one of the diagnostic 

criteria for FASD children 49.  

 Zinc is another example for inadequate nutrient leads to increase the risk of having 

classic FASD child. Like iron status, zinc concentration is decreased in alcoholic mothers due to 

metabolic interactions. Longitudinal studies reported that zinc deficiency occurs highly during 

prenatal alcohol exposure is proposed the effect of neurodevelopmental damages in offspring’s  

50.  

1.3.3.2.2 Maternal weight, gravidity, parity 

 Mothers with a higher body mass index have a decreased risk of bearing FASD children 

because the higher body mass reduces the blood alcohol concentration and thus decreases the 

risk of ethanol exposure to the fetus 46. Gravidity, parity, and maternal age in combination play a 

crucial role in increasing the disease severity. Studies in several countries 24,51-54 have found that 

an increase in these three variables in childbearing women directly increases the severity of 

FASD. In addition, maternal age and race have recently added to the childbearing variables in 

mothers of FASD children. A longitudinal study documented higher incidence of FAS in South 

African women and higher age mothers in U.S. 46. 

1.3.3.2.3 Paternal genetic predisposition 

 Genetic variability is another factor influencing the incidence of FASD worldwide 29. In 

fact, the maternal ability to metabolize alcohol and expose the fetus to ethanol is genetically 
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determined 26. Therefore, genetic predisposition and metabolism are essential factors in studies of 

alcoholism and neonatal deficits following alcohol exposure. 

 In fact, genetic susceptibilities have highlighted the importance of studying paternal 

alcohol consumption which have been anticipated to be interconnected with increasing the risk 

of FASD via epigenetic transmission 46,55.  

1.3.3.2.4 Socioeconomic status, education level, primary caregivers 

 Socioeconomic status (SES) can modify the family from raising normal children to caring 

for children with long-life disabilities. The most severe FAS cases have been reported in lower 

SES families 46. Bignol et al. (1987) found that the FAS incidence in the United States was 16 

times greater in lower SES families than in higher SES families 56. Therefore, evaluation of the 

SES of mothers with FAS children or children with undiagnosed FASD is very important in 

determining the rate of FASD in different populations. 

1.3.4 Clinical manifestations of FASD 

 Although FAS has physical characteristics that can be obvious, most FASD is not easily 

diagnosed. Evaluation by multiple clinical specialties is needed 57. Access to prenatal records is 

required to predict the disease severity. The risk of FASD in future siblings must also be 

considered 3. Following prenatal alcohol exposure, the infant will have generalized decreased 

cognitive, behavioral, and motor abilities. Facial dysmorphology and growth restriction are the 

main manifestations of FASD. The following explicitly explain each manifestation appear in 

individual diagnosed with FASD. 
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1.3.4.1 Cognitive and behavioral disabilities 

 Several studies have associated alcohol-mediated changes in neuron development with 

functional and behavioral delay in FAS children 58. These include attention deficits, learning 

disabilities, tremors, and gait disturbances. Intelligence quotient (IQ) tests show cognitive 

disability in children known of prenatal ethanol exposure 59. Behavioral impairments have been 

evaluated with multiple tasks given to FASD children and sex-matched controls and 

comprehensive based study of MRI abnormalities in FASD children 60,61.  

 Along with cognitive and behavioral manifestations, ethanol induced teratogenicity has 

been linked to motor impairments in FASD children. The mechanism of motor control damage 

following binge alcohol consumption have been related to ethanol induced aggregation in both 

central and peripheral nervous systems; especially motor neurons in cerebellum 62,63.   

1.3.4.2 Executive function deficits 

 Executive functions is a set of advanced cognitive abilities of decision-making, flexible 

thinking, working memory, planning, organizing, and prioritizing information 64. Longitudinal 

studies revealed that children diagnosed with FASD manifested with deficient in problem 

solving, strategy planning, thought organizing, time management, and information processing  

59,65. As reported via teachers, parents, and caregiver, FASD children are slower compared with 

normal children at the same school age 66. 

1.3.4.3 Facial dysmorphology  

 Facial abnormality is the main visible feature of FASD and can include microcephaly, a 

smooth philtrum, thin upper lip, dropped eyelid, micropthalmia, and short palpebral fissures 26. 

However, the facial features of FAS are not observed in all affected children. Depending on the 
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severity and the time of alcohol exposure, children may not express the characteristic facial 

features of FAS 10.  

1.3.4.4 Somatic growth reduction 

 Growth restriction and small circumference of the head are other distinct manifestations 

that may occur in children exposed prenatally to alcohol 67. The severity of growth impairment 

may depend on the magnitude of alcohol consumption during fetal developmental; an increased 

BAC increases the likelihood of physical deficits 68. Early intervention is recommended prevent 

lifelong disability in the estimated one million at-risk children 29,57. 

1.3.5 Diagnosis of FASD 

 Diagnosis of FAS may be delayed or overlooked because mothers often do not admit 

alcohol consumption until after delivery; therefore, the magnitude and time of consumption may 

be inaccurate 69. Facial morphology is key in recognizing FASD, but it is not exclusive to FASD. 

Other diseases such as Williams syndrome and Cornelia de Lange Syndrome exhibit similar 

facial dysmorphology 29. Therefore, FASD diagnosis depends on multiple assessments, including 

physical, dysmorphological, and neurobehavioral examinations in addition to confirming 

maternal alcohol consumption 9. Physical assessment can determine the growth rate by 

measuring the patient height, weight, and head circumference.  

Facial assessment for morphological abnormalities is another tool to diagnose the 

severity of maternal alcohol exposure. Cognitive, executive, and communicative functions in 

children should be assessed to determine their neurobehavioral abilities 57 (Figure 1). Then, 

FASD child undergo in one of five diagnostic criteria from Institute of Medicine’s (IOM) for 

alcohol-induced abnormalities, (Figure 2).   
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Figure 1: How FASD diagnosis made according to Canadian guidelines12 

 

Figure 2: Distinct diagnostic criteria of FASD anomalies in Institute of Medicine (IOM) 
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1.3.6 Pathogenesis of FASD 

1.3.6.1 Oxidative stress 

 Metabolic reactions within each cell are controlled via enzymes. Imbalance in these 

enzymes can disrupt the cellular processes 70. Reactive oxygen species (ROS), which include 

superoxide anion (O2-•) and hydroxyl radical (HO•), hydrogen peroxide (H2O2) along with 

reactive nitrogen species (RNS) which include nitric oxide (NO•) and peroxinitrite (ONOO-) are 

the main byproducts of cellular reactions 71. 

Under normal physiological state antioxidant enzymes (superoxide dismutase, catalase, 

and glutathione peroxidase) detoxify and maintain the proper redox potential in the cells 72. 

External risk factors such as alcohol consumption, cigarette smoking, and radiation exposure can 

lead to an increase in the level of ROS 73. Imbalance between ROS/RNS and antioxidants causes 

cellular disturbances, which is called oxidative stress 72. Increased oxidative stress leads to 

apoptosis due to mitochondrial membrane depolarization and involves caspase and cytochrome 

C pathways 74. Mitochondrial membrane disturbance causes damage to macromolecules such as 

DNA, proteins, and lipids 75. In other words, protein, lipid, and DNA damages are consequences 

of persistent oxidative stress in a cell 76. 

Mitochondria utilize less than 5% of the oxygen to produce O2-• 77. O2-• reacts with NO• 

and produce ONOO- that play a vital role in protein, lipid, and DNA oxidations 78,79. O2-• can 

also reacts with superoxide dismutase to produce hydrogen peroxide (H2O2). Under normal 

conditions H2O2 is detoxified by glutathione peroxidase (GPx) or catalase (CAT). A failure in 

this process may produce HO• that later on activates the lipid peroxidation cascade 80. 
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1.3.6.2 Alcohol metabolism 

Ethanol metabolism takes place in the liver (microsomes and mitochondria). Reactive 

oxygen species (ROS) including superoxide (O2−•), hydrogen peroxide (H2O2), and hydroxyl 

radical (OH•) are the main byproducts of ethanol metabolism 81. Ethanol metabolism follows two 

steps (See figure 3). First, alcohol is metabolized into acetaldehyde via enzymatic reactions 82. 

Three different enzymatic reactions may take place depending on the location of the 

metabolization. In the liver, alcohol dehydrogenase (ADH) or cytochrome P450 2E1 (CYPs), 

which is a heme-cofactor protein, convert alcohol to acetaldehyde with reduction of 

NADPH/NADP+ ratio 83. In the brain catalase (CAT), which is a heme-containing enzyme, and/ 

or cytochrome P450 2E1 metabolize ethanol to produce acetaldehyde, followed by another 

conversion to acetate by the enzyme acetaldehyde dehydrogenase 84. 

These reactions stimulate the respiratory chain reaction to produce ROS in the 

mitochondria 82. Chronic alcohol exposure leads to defective mitochondria which increases 

cellular oxidative stress mediated damage 85 and possibly neural developmental delay 86. 
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Figure 3: Ethanol metabolism 

 

Immunohistochemistry can be used to detect byproducts of hypoxic and oxidative 

metabolism. Malondialdehyde (MDA) and 4-hydroxy-trans-2-nonenal (HNE), 4-oxo-trans-2-

nonenal (4-ONE) are markers for lipid peroxidation. Following PNEE, they have been found in 

rat brain tissue at GD17-18 as well as in rat cerebellum, hippocampus, and cerebral cortex at 

postnatal day (PND) 4 to 9 87,88. Following PNEE at GD6-12, 8-hydroxydeoxyguanosine 

(8OHdG), a marker for DNA modification, is found in high concentration in rat cerebellum 86.  

1.3.7 Oxidative stress and FASD corroborations 

 Cellular peroxidation has significant impacts on various organs such as liver, pancreas, 

kidney and brain. Since brain only utilizes 20% of oxygen during metabolic reactions, it is can be 

affected with minimal ROS/RNS imbalance 71. A vast number of immature cells in the brain are 
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results from intracellular ROS/RNS imbalance. In addition to oxidative damage resulted from 

unsaturated fatty acids 89. In the brain, oxidative stress damage causes disturbance to the blood 

brain barrier (BBB) leading to neural cells apoptosis, glutamatergic excitotoxicity, disruption in 

GABA neurons and restriction in synapses 90-94. 

 Oxidative stress damage during early fetal developmental of brain leads to alterations of 

neurogenesis and neural cell migration, causing changes in brain structures because fetal brain is 

where the antioxidant defense mechanism has not been well developed 95.  

Antioxidants have been associated with behavioral deficits in animal models treated with 

prenatal ethanol exposure. Intracellular disturbances can be used as a marker for consuming 

alcohol during gestational period, regardless of the amount consumed 96. The degree of cellular 

damage appears to be correlated with the time, quantity, and frequency of ethanol exposure 83. 

1.3.8 Neuroimaging studies of human FASD  

 Whole-brain imaging technique has been used to assess the abnormalities of brain 

cortices in children diagnosed with FASD 97. Sowell reported severe reduction in the frontal 

cortex volume in children with history of PNEE. This reduction was also associated with 

cognitive deficits and behavioral impairments 97. 

Trying to understand the effect of PNEE on offspring was one of the topics that has 

intrigued a number of authors worldwide.  Structural MRI is an approach that helps specify the 

changes among all brain areas 98. Following cognitive function assessments, functional MRI 

demonstrated stimulation of frontal and prefrontal cortex of children with FASD 99.  

Magnetic resonance imaging (MRI) studies of FASD children reported reduced volume 

of cerebral cortex, hypothalamus, cerebellum, and other parts of brain 100.  The parietal lobe can 

be negatively affected by PNEE compared to the occipital and temporal lobes 101. Specifically, 
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binge drinking causes damage to white matter more than gray matter 102. Hippocampus has also 

been damaged following alcohol exposure 103. These reductions perhaps depend on the sensitivity 

of neuronal cells to ethanol exposure during gestation and the time (i.e. prenatal and/or postnatal) 

of the exposure 104.  

Motor function is affected by PNEE and cerebellar damage has been demonstrated during 

the third trimester in human and first two weeks of PN in rat following alcohol consumption 104. 

Another study reported that basal ganglia, cerebellum, anterior vermis, and corpus callosum were 

changed following excessive alcohol exposure during gestation 83. 

MR imaging of youths with FASD showed significant reduction in the white matter 

(10.7%), cortical gray matter (9.5%), intracranial volume (8.7%), hippocampus (11.3%), 

thalamus (14.0%), and putamen (12.6%) 105.  

1.3.9 Human brain autopsies for FASD 

It is important to note that only 25 autopsy cases of FAS have been described in the 

literature; these are likely the most severely affected cases. The reported abnormalities include 

microencephaly, hydrocephaly, agenesis of corpus callosum, agenesis of anterior commissure, 

periventricular and leptomeningeal heterotopias, cerebral dysgenesis, and brainstem dysgenesis 

63,101,106,107 (Figure 4).  
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Figure 4: Neuropathological anomalies of FASD individual 15,108,109 

 

1.3.10 Neurogenesis and neuron migration in human developmental brains 

Neurogenesis and neuron migration are two critical processes during brain development. 

Neocortex neurons are mainly generated in the ventricular zone (VZ) and migrate using long 

“radial glial guides” 110. These long excitatory projections are generated during 8-10 weeks 

gestational phase in humans 111. Excitatory neurons use glutamate as a neurotransmitter during 

brain development. Inhibitory cortical interneurons develop later in the developmental process, 

most being generated in the subventricular zone (SVZ) by 32 weeks of gestation 110,112. These 
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interneurons migrate transversely into the neocortex and deep gray matter structures. At the end 

of the migration process, the six-layer neocortex will be formed 113.  

Two main classes of inhibitory neurons exist in the central nervous system: glycine and 

gamma-aminobutyric acid (GABA). About 90% of brain inhibitory neurotransmitter is GABA. 

The biochemical synthesis of GABA begins with glutamate precursor which is decarboxylated to 

GABA via glutamic acid decarboxylase (GAD) 114,115. In humans, calcium-binding proteins that 

play a vital role in cell signaling, differentiation, generation, and migration. They are especially 

abundant in GABAergic neurons 116. Three predominant subgroups of calcium binding proteins 

can be detected; parvalbumin (PVALB), calbindin 1 (CALB1), and calbindin 2 (CALB2). 

Exposure to alcohol during the periods of embryonic and fetal development might 

disturb neurogenesis and neuron migration phenomena 83. An early study in mice correlated the 

craniofacial manifestations with impairment in neurogenesis 117. Human autopsies 22 showed 

reduction in the head size and brain volume (microcephaly and microcephaly respectively) 21,61. 

1.3.11 Animal model studies of FASD 

 Animal models demonstrate abnormalities similar to those in humans following alcohol 

exposure. Animals can be exposed to defined amounts of alcohol for a specific period of time. 

Nutritional aspects and other risk factors can be controlled in these experiments. The route of 

administration however, was varied; intraperitoneal injection, gas inhalation, and/or liquid based 

food 118. Studies using animal models help researcher to understand the wide-range of FASD 

associated signs and symptoms, and to potentially formulate a better outcome in humans. Animal 

(mostly rodents) experiments have helped to explain different domains such as facial 

characteristics, behavioral imbalance, and neuropathological deformities. 



  20 

1.3.11.1 Facial dysmorphism  

 Facial dysmorphism appears in FAS animal models 39,119. Kotch and Sulik (1992) have 

explored discrete facial anomalies in C57Bl/6J mouse embryos when the exposure to ethanol 

was done during a time analogous to the first trimester in human pregnancy 39. C57Bl/6J female 

mice were exposed to alcohol at day 7 of gestation and have shown to mimic facial appearance 

of children diagnosed with FAS 120.  

 Non-human primates have also been studied in order to understand the mechanism of the 

spectrum of FASD. Dr. Sterling Clarren and coworkers conducted a series of experiments on 54 

pregnant pigtailed macaque monkeys (Macaca nemestrina). These monkeys were administered 

different doses of alcohol orally once a week throughout their gestation period. Thirty-three 

offspring were born and studies were conducted when they were at 6 months of ages 121. The 

major craniofacial malformations of FAS appeared in three out of twenty four offspring. In 

addition to one of those offsprings had flattened in the midline and one had flattened maxilla 

with dental disruption 122.  

Other report found a correlation between the craniofacial malformation and the amount of 

alcohol consumption by the pregnant monkeys 60. The major finding of this paper was that the 

offspring that had been prenatally exposed to a high percentage of alcohol (1.8g/kg) showed 

severe craniofacial abnormalities. However, these anomalies were expressed along the midline, 

palpebral fissure, upper lip, and smooth philtrum. Authors concluded that the frequency of 

alcohol exposure correlates with the severity of craniofacial dysmorphology 123. 
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Table 1 Published studies on non-human primate 
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1.3.11.2 Functional and behavioral impairments 

 In addition to the facial dysmorphism, functional and behavioral disturbance were also 

associated with FAS animal models. Rats showed impairment of spatial ability following PNEE 

(PN20-30) 124. Another study showed similar deficits in neonatal rats with earlier alcohol 

exposure period (PN7-9) 125. These functional impairments perhaps developed from hippocampal 

and/or frontal cortex damage following neonatal alcohol exposure 126. Furthermore, socio-

behavior disabilities similar to human were also reported in rodents following maternal alcohol 

consumption 127. 

Macaque nemestrina offspring with PNEE demonstrated functional delay when cognitive 

assessments were done 128. Some of them had significant delay in playroom assessment as well 

as in motor ability 128. Hyperactivity of young primates exposed to alcohol during gestation was 

recorded to be 2 to 3 times higher than the offspring who were not exposed to alcohol 128. Several 

studies associated the early ethanol exposure during critical developmental stage with teratogenic 

damage in Macaque brain function 121-123.  

1.3.11.3 Neuropathological distortions 

 Animal models have similar brain structure deformities seen in human FAS. For 

example, mouse embryos exposed to alcohol on gestational age 7 days exhibit agenesis of the 

corpus callosum, defects in development of the cerebral cortex, hippocampus, and basal ganglia, 

and enlargement of the lateral ventricle 120,129. Rat offspring with PNEE (at gestational day GD10 

and GD 21) demonstrates leptomeningeal heterotopias over the cerebral cortex 130.  

Rodents demonstrated microglial loss following 3-5 PND in the cerebellum 131. Other 

authors reported neuronal changes in the hippocampus of ethanol-exposed mice 132.  
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Godin et al. identified anomalies related to ganglionic eminence, corpus callosum 

agenesis, hippocampus, lateral ventricles, cerebral cortex, and basal ganglia in mouse offspring 

prenatally exposed to alcohol at day seven of gestation 120. A later study using rodent models of 

alcohol exposure (at 7 days of gestation) revealed size reduction in the facial and forebrain area 

(holoprosencephaly), one of the critical features noted in FASD children 109. In addition cerebral 

heterotopia and cortical dysplasia also can be present in children born with FASD 120. However, 

exposure to ethanol at a later stage of development showed global volumetric reduction in the 

brain 109. 

1.3.11.4 Neuroimaging studies of FASD animal models   

 Several imaging approaches such as scanning electron microscopy and magnetic 

resonance imaging (MRI) have been used to assess the neuronal changes in offspring following 

exposure to alcohol in animal models 110,133. PNEE on day 7 of gestation in mice caused a 

reduction in neural plate size that indeed can induce brain deformities. Scanning electron 

microscope was used to measure the overall brain size, forebrain in particular 45. MRI of mouse 

embryos prenatally exposed to alcohol at later developmental stage (gestation day10) revealed 

that a global reduction in all brain regions in addition to ventricle enlargement 134. MRI show 

reduced volume of deep brain structures 105, which are postulated to be related to loss of neurons. 
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Chapter 2. Research objectives 

 Overall, my main objective is to verify some of the rodent PNEE experimental data-using 

human and monkey brain specimens with known PNEE. 

2.1 Rationale 

2.1.1 Oxidative stress markers are persistent following in utero alcohol exposure 

Brain tissue from rat offspring of PNEE (GD17-18) via intragastric gavage had increased 

levels of 4-HNE and DNA damage measured by Western blot 87. MDA, a marker for protein 

peroxidation assessed with colorimetric assay specific for lipid oxidation, was increased in 

cerebellar neurons of rat offspring following 6 g/kg/day liquid diet ethanol at postnatal days (PD 

4-9) 88. Moreover, intraperitoneal ethanol injection of pregnant mice at GD9 led to DNA damage 

detected via the level of 8-OH deoxyguanosine (8-OHdG) using DNeasy Tissue kit 96. These 

studies and others in rodents showed that it is possible to detect oxidative stress markers soon 

after PNEE. 

My study is constructed to evaluate the persistence of oxidative stress markers in human 

and non-human primate brain autopsies following in utero alcohol exposure (figure 5). 
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Figure 5: Diagram depicting the experimental hypothesis 

 

2.1.2 Hypothesis 1 

 I hypothesize that markers of oxidative stress will be detectable in the youngest age 

groups of humans (fetuses or neonates) with PNEE and in macaque brains, which are 

comparable to the infant age group in the humans. If there are no differences, there may be 

several possible explanations: 1) Oxidative changes in the brain might be a species-specific 

effect found in rodent but not found in primates, 2) The in utero alcohol exposure might not be 

sufficient, 3) Postnatal life circumstances in monkeys and humans might gradually eliminate 
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markers of in utero hypoxic stress, or 4) Death circumstances in humans cause oxidative changes 

that obscure the in utero changes due to PNEE. 

2.1.3 Neuron distribution changes in individuals with PNEE or diagnosed with FASD 

Guinea pig offspring (PND 12) whose mothers had been administered 4g/kg ethanol during 

pregnancy (GD 2-67) via intragastric gavage showed loss of CA1 hippocampal pyramidal 

neurons stained with cresyl violet stain 135. A similar study with the same circumstances reported 

dying cerebellar Purkinje neurons at PND1 and PND5 as assessed by Terminal deoxynucleotidyl 

transferase (TUNEL), which labels nucleic acid terminals in order to detect DNA damage 136. 

Microscopic neuron counting of brain tissue of PND10 rats exposed to ethanol (GD1- GD20) 

showed neuron reduction in hippocampus regions (CA1, CA3, DG) 42.  

2.1.4 Hypothesis 2 

 I hypothesize that quantitative neuron changes will be identified in children with a 

clinically verified neurological disorder (i.e. FASD). The selective (i.e. relative) reduction of 

excitatory vs. inhibitory neurons might be dependent on the timing of the exposure. Monkeys 

exposed intermittently to alcohol throughout pregnancy might have a reduction in both neuron 

types (relative to the total brain cell density). 
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2.2 Experimental Goals 

2.2.1 Goal #1: To determine if markers of oxidative damage persist in human and non-

human primate brain following in utero alcohol exposure.  

 Immunohistochemistry will be performed to detect the oxidative stress markers of DNA 

and lipids in specific areas from human and non-human primate brain autopsies. Cells will be 

quantified and appropriate statistics will be applied.  

2.2.2 Goa1# 2: To determine if human and monkey in utero alcohol exposure is associated 

with altered balance of excitatory and inhibitory neurons. 

Immunohistochemistry will be used to demonstrate markers of glutamatergic and 

GABAergic neurons in selected hippocampus and temporal lobe of human and non-human 

primate. Controls will be compared to individuals known to have in utero alcohol exposure. An 

appropriate statistical analysis will be performed to calculate the alterations in neuron counts. 
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Chapter 3. Experimental methodology 

3.1 Materials 

3.1.1 Human autopsy brain tissue 

The brains of 153 humans of various ages (22 week fetuses to 49 years) who were 

reportedly exposed to alcohol in utero (as indicated in the autopsy report history) were obtained 

at autopsy at the Health Sciences Centre in Winnipeg, Manitoba, Canada, from 1980 until 2014. 

Permission to conduct the study was acquired from the University of Manitoba Health Research 

Ethics Board (HREB Ethics protocol # H2011: 213). The study is retrospective. Five different 

neuropathologists had performed brain examinations during the study period, so sampling was 

not identical. In general, autopsies were performed 1-2 days after death, the brains were fixed in 

10% formalin for approximately 2 weeks after autopsy, and then cut into ~1 cm thick coronal 

slabs. Brain samples were taken from similar regions (frontal lobe, basal nuclei, hippocampus / 

medial temporal lobe, posterior cerebellum, et al.) and then embedded in paraffin wax. Sections 

were cut at 5µm thickness, applied to glass microscope slides, and stained with hematoxylin and 

eosin. 

The slides were carefully reviewed by Dr. Marc R. Del Bigio, an experienced 

neuropathologist at the University of Manitoba, to document neuropathological abnormalities 

and to verify tissue integrity. Selected cases were harmonized into pairs of alcohol exposed and 

age/sex matched controls in the fetal, infantile (newborn to 1 year), child (1 to 12 years), and 

teenage (12 to 18 years) age groupings.  
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 Table 2: Human controls and FASD cases (sex/age) matched 

Group Control # Age FASD # Age Sex 

Fetuses 

1 22 GW 26 23 GW M 
2 37+ GW 27 36+ GW M 
3 38 GW 28 36+ GW F 
4 38 GW 29 40 GW  F 
5 38 GW 30 40+ GW  F 
6 40 GW 31 40+ GW M 

Infants 

7 24 d 32 23 d F 
8 2 m 33 2 m M 
9 3 m 34 3 m M 
10 5 m 35 5 m F 
11 7 m 36 7 m M 
12 9 m 37 11m F 

Children 

13 9 y 38 9.5 y M 
14 8 y 39 8 y F 
15 7.5 y 40 7 y F 
16 3.5 y 41 3 y F 
17 22 m 42 22 m M 
18 15.5 m 43 16 m F 

Teens 

19 17 y 44 17 y M 
20 16 y 45 16 y M 
21 13.5 y 46 15.5 y F 
22 15.5 y 47 15.5 y M 
23 12 y 48 15 y F 
24 14 y 49 14 y M 
25 12 y 50 13 y M 

 
Notes:  a) d – days, m - months, y – years, GW- Gestational weeks 

 b) M - Male, F - Female, 
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3.1.2 Macaque brain tissue 

 Dr. Sterling Clarren and co-workers conducted several experiments on 54 pregnant 

gravid pigtailed macaques (M. nemestrina) that were orally administered different doses of 

alcohol once a week during their gestation (1st week; 0.0, 0.3, 0.6, 1.2, 1.8, 2.5 or 4.1 gm./kg and 

5th week; 2.5, 3.3 or 4.1 gm./kg). Macaques were monitored during gestation for any unexpected 

complications. Thirty-three offspring were born with no major structural deficits in the brain. 

Macaque brain autopsies were collected at 6 months postnatal age. Tissues were placed in 10% 

neutral buffered formalin (NOTE: detailed information about the duration of fixation is not 

available) and then embedded in paraffin for neuropathological studies  121,122,128,137-139. 

 The major findings of the Clarren et al. studies were as follows:  

• Only one animal, a macaque that was administered the highest dose of alcohol, 4.1g/kg, had 

microcephalic brain and growth delay.  

• The majority of alcohol exposed monkeys showed bilateral ganglion loss from the eyes 122.  

• Purkinje cells loss in the cerebellum was alcohol dose dependent 140.  

• The cranial area demonstrated a 1.7% difference in animals exposed to ethanol 121.  

• Ethanol exposure during the G1-G24 weeks produced more severe cognitive and behavioral 

aberration than late gestational (G6-G24 weeks) exposure 121,128.  

Dr. Clarren kindly provided us with the paraffin embedded tissue from the posterior 

cerebrum of these monkeys.  This included the posterior frontal lobe, hippocampus, temporal 

lobe, thalamus, posterior striatum, parietal and occipital lobe. The tissue blocks, including the 

hippocampus, were heated at 60˚C for 30 minutes to melt the old wax. Therefore, I re-

embedded in new paraffin, which is easier to section with a Finesse microtome 
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(#77510250GB). The blocks were cut into 5µm thickness to proceed with the 

immunohistochemistry.   

3.1.3 Antibodies and optimization 

I conducted two optimization steps to ensure the immunoreactivity of each antibody. The 

first step for optimization used human brain samples with acute (3 days) and chronic (months) 

infarcts and Alzheimer disease. This would ensure that the antibodies were capable of detecting 

oxidative markers and different neuron types. The second step used a four-tissue sample array 

block (Figure 6), which includes two macaque occipital brain sections (control with 0 mg/ml in 

utero alcohol and affected with 0.6 mg/ml in utero alcohol) and two human brain sections 

(normal cerebral cortices from 8h and 39h postnatal autopsies 21 and 23 years old, respectively). 

All paraffin-embedded samples were sectioned at 5-µm thickness.  

 Immunohistochemical testing was carried out (by the author) using four commercially 

available markers of oxidative damage (Glutamate cysteine ligase catalytic (GCLC), 

Malondialdehyde (MDA), 4-Hydroxyno-nenal (4HNE), and 8-Hydroxydeoxyguanosine 

(8OHDG) (Table 3). These antibodies have been used to show oxidative stress changes in a wide 

range of brain disorders including FASD in animal models. GCLC is expressed highly in 

astrocyte cells of human optic neuropathy brains 141. MDA is displayed in cytoplasmic granules 

in neurons, astrocytes, and macrophages of human brains with multiple sclerosis lesions 142. 

Similarly, oxidized lipids in 4HNE exhibited cytoplasmic in hippocampal neurons in rats during 

neurogenesis 143. Nuclear DNA has been immunostaiend with 8OHDG in human hippocampus 

diagnosed with preclinical Alzheimer's disease (PCAD) 144.  

I used five commercially available markers of excitatory or inhibitory neurons. For 

excitatory glutamergic neurons, anti-glutamate transporter (EAAC1) for human brains, and 
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excitatory amino acid transporter 3 (EAAT3) for macaque brains have been selected (by the 

author) in this study. EAAC1 and EAAT3 have been found immunohistochemically in neurons 

and dendrites of patients with schizophrenia 145, Alzheimer disease, and Huntington disease 146.  

I chose parvalbumin (PVALB), and calbindin1 (CALB1) for inhibitory GABAergic 

neurons in human brains, and GAD1/GAD67 for macaque brains in this experiments (see Table 

4). Parvalbumin (PVALB) and calbindin1 (CALB1) have been detected in adult mice cerebellar 

Purkinje neurons, temporal cortex, and hippocampus following alcohol exposure 147. Similarly, 

GAD1/GAD67 has been identified immunohistochemically labeled pyramidal neurons dorsal 

hippocampus of adult schizophrenic rats 148.  
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Figure 6: Four-tissue sample array block 

a. Section from a 12 year old normal human brain cortex 8h post-mortem delay autopsy. b. 

Section from a cerebellum of a human Alzheimer’s brain. c. Occipital cortex section from a 6-

month macaque with 0% ethanol exposure. d. Occipital cortex section from a 6-month macaque 

prenatally exposed to 0.6gm/kg ethanol. 

 

3.2 Methods 

3.2.1 Immunohistochemistry 

 Immunohistochemistry (IHC) has been widely used as the gold standard method to detect 

the presence of an antigen (protein) in a specific tissue. In this project, I used a standard protocol 

to investigate the presence of a targeted protein in the brain tissue. Slides were deparaffinised 

and rehydrated in xylene. The antigen-unmasking step was adjusted (by the author) differently 

for each antibody. This was followed by a distilled water wash (Tables 3 and 4). Then, I treated 
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the slides with a mixture of 30% hydrogen peroxide and 100% methanol for 10 minutes.  This 

was followed by two washes of 1x Phosphate buffered saline (PBS).  

 I blocked the tissues for 30 minutes for non-specific binding with a 1.5% serum blocking; 

this was performed according to the species the secondary antibody was raised for. Then, I 

applied the primary antibodies with a specific concentration and incubation time, adjusted also 

by the author (Tables 3 and 4). The secondary antibodies that arose against the primary 

antibodies were diluted in BSA and added on the tissue sections for 60 minutes. Then, I applied a 

mixture of 1:400 streptavidin, diluted in 1x PBS, for 30 minutes. DAB has been used as a 

chromogenic substrate. Dehydration, mounting, and cover slipping followed a hematoxylin 

counterstain.  

3.2.1.1 Detection of oxidative stress damage 

 Nineteen human FASD cases were selected according to their tissue qualities (6 fetuses, 6 

infants, and 6 children), age-matched controls and sex-matched controls. I examined these cases 

for the presence of markers of cell death and oxidation. I optimized all antibodies using positive 

control tissues to verify that the abnormalities can be detected. Then, I evaluated cell types 

microscopically at 100x and 400x by morphology, which, in some circumstances, can be 

unambiguous (e.g. large neurons, endothelial cells). I used paired blinded evaluation to 

determine if the oxidative marker was similar or differed between the controls and exposed 

subjects (cell distribution, signal intensity) (Table 3). 
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Table 3: Oxidative stress antibody conditions for immunohistochemistry 

Name Antibody 

type 

Catalogue # Antibody 

concentration 

(mg / mL) 

Incubation 

time 

Antigen 

retrieval 

Secondary 

detection 

Glutamate 

cysteine 

ligase 

catalytic 

(GCLC) 

Rabbit 

polyclonal 

Abcam 

(ab40929) 

0.00125 90min PH6 Goat Anti-

Rabbit 

Malondial-

dehyde 

(MDA) 

Rabbit 

polyclonal 

Abcam 

(ab6463) 

0.0006667 90min PH6 Goat Anti-

Rabbit 

4 Hydroxy-

nonenal 

(4HNE) 

Rabbit 

polyclonal 

Calbiochem 

(393207) 

0.0006667 90min PH6 Goat Anti-

Rabbit 

8-Hydroxy-

deoxyguan-

osine 

(8OHDG) 

Mouse 

monoclonal 

Abcam 

(ab48508) 

0.02 90min PH6 Goat Anti-

Mouse 

 

3.2.1.2 Neuronal cell distribution detection 

 The excitatory amino acid transporter 3 (EAAT3) and glutamate transporter EAAC1 are 

expressed in glutamatergic (excitatory) neurons in the brain. I used Anti-parvalbumin (PVALB) 

antibody, Anti-calbindin1 (CALB1) antibody, and Anti-GAD1/GAD67 antibody to identify the 

GABAergic (inhibitory) neurons. IHC with diaminobenzidine (DAB) labeling was used (by the 

author) to determine the abundance of excitatory and inhibitory neurons in the hippocampus and 

temporal cortex areas (Table 4). 
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Table 4: Neuron immunohistochemistry markers 

Name 
Antibody 

type 

Vendor and 

Catalogue # 

Antibody 

concentration 

(mg / ml) 

Incubation 

time 

Antigen 

retrieval 

Secondary 

detection 

Anti-Glutamate 

Transporter 

(EAAC1) 

Rabbit Anti-

Rat 

Alpha 

Diagnostic 

(EAAC11-A) 

0.00125 90min PH6 Goat Anti-

Rabbit 

Excitatory 

amino acid 

transporter 3 

(EAAT3) 

Rabbit 

Polyclonal 

Santa Cruz Bio. 

(Sc-25658) 

0.005 90min PH6 Goat Anti-

Rabbit 

Parvalbumin 

(PVALB) 

Goat 

Polyclonal 

Santa Cruz Bio. 

(Sc-7447) 

0.01 90min PH6 Rabbit Anti-

Goat 

Calbindin1 

(CALB1) 

Rabbit 

monoclonal 

Abcam 

(ab11426) 

0.00125 90min PH8 Goat Anti-

Rabbit 

GAD1/GAD67 Rabbit 

Polyclonal 

Novus 

Biologicals 

(NB100-56385) 

0.005 90min PH6 Goat Anti-

Rabbit 

 

3.2.2 Immunofluorescence 

3.2.2.1 Direct immunofluorescence 

 Following IHC detection, I used immunofluorescence following a standard protocol. The 

sections were deparaffinised (by the author) in xylene and rehydrated with 100%, 95%, and 70% 

ethanol.  This was followed by a tap water rinse. I used the antigen retrieval conditions according 

to the datasheet and literature recommendations (Table 5). Then, I immersed the tissue sections 

completely in 100% methanol at –20°C for 10 minutes.  This was followed by a PBS wash. I 

blocked all my specimens with the appropriate blocking serum for 60 minutes. Then, I drained 
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the blocking solution and applied a primary antibody with the appropriate concentration diluted 

in antibody diluents (1xPBS and 1% BSA) (Table 5).  

 I kept the tissue slides overnight at 3°C. The following day, I washed the slides in PBS 

three times. Then, I applied the appropriate secondary antibodies to a dark area for 60 minutes.  

Multiple PBS washes followed. Then, I mounted the slides with the Antifade-mounting medium 

for fluorescence (#110906). 
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Table 5: Neuronal changes, antibodies specific conditions for immunofluorescence 

Name 
Antibody 

type 

Vendor and 

Catalogue # 

Antibody 

concentration 

(mg / ml) 

Incubation 

time 

Antigen 

retrieval 

Secondary 

detection 

Anti-Glutamate 

Transporter 

(EAAC1) 

Rabbit Anti-

Rat 

Alpha 

Diagnostic 

(EAAC11-A) 

0.00125 90min pH6 Cy3 Donkey 

Anti Rabbit 

Excitatory 

amino acid 

transporter 3 

(EAAT3) 

Rabbit 

Polyclonal 

Santa Cruz Bio. 

(sc-25658) 

0.005 90min pH6 Cy3 Donkey 

Anti Rabbit 

Parvalbumin 

(PVALB) 

Goat 

Polyclonal 

Santa Cruz Bio. 

(Sc-7447) 

0.01 90min pH6 Cy3 Rabbit 

Anti-Goat 

Calbindin1 

(CALB1) 

Rabbit 

monoclonal 

Abcam 

(ab11426) 

0.00125 90min pH8 Cy3 Donkey 

Anti Rabbit 

GAD1/GAD67 Rabbit 

Polyclonal 

Novus 

Biologicals 

(NB100-56385) 

0.005 90min pH6 Cy3 Donkey 

Anti Rabbit 

 

3.2.3 Cell counts  

 I selected anatomical regions including CA1, CA3 and the dentate gyrus sectors of the 

hippocampus and inferior temporal cortex of human brain (Figure 7), in addition to the posterior 

frontal cortex in the macaque brains (Figure 8). Then, photographed at 100x for counting and 

400x for cell morphology. I used ImageJ software, a stereological technique, for counting the 

neural cell population. The ratio of excitatory and inhibitory neurons present in the FASD brain 

tissues was then calculated (by the author).  
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Figure 7: Diagram depicting the specific area of interest in human brain 

Hippocampus regions CA1 (purple square), CA3 (blue square), and dentate gyrus (green square). 

In addition to, inferior temporal cortex (orange square). 
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Figure 8: Left hemisphere from M. nemestrina brain tissue 

embedded in the paraffin. The circles indicate the interest areas of the study: 1. Posterior frontal 
cortex. 2. Hippocampus. and 3. Inferior temporal area. 
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3.3 Data Analysis 

 The data analysis followed three steps: 1. Photograph the tissue slides. 2. Quantify the 

targeted neurons. 3. Conduct statistical tests.  

After pairing human and macaque brain tissue slides (age/sex) (by the author), I used an 

upright optical light microscope; Olympus BX51 connected to a camera (MicroPublisher 5.0 

RTV) to determine the area of interest; CA1, CA3, dentate gyrus, inferior temporal cortex, and 

posterior frontal cortex by their histological features. From these areas, I choose specific zones 

approximately 0.50 mm x 0.50 mm in consistent pattern along all human and macaque cases for 

cell counting. Images were taken (by the author) at 200x magnification for counting and 400x 

magnification for cell features in the specific area of interest. Then, I counted the targeted 

neurons using semi quantitative software (ImageJ). The ratio of positive cells in each region 

were obtained from the formula: 

Number of positive cells in the selected field ÷ Total number of the cells in the field 

After that, I conducted appropriate statistical tests translate the raw data from ImageJ to 

rational results.  

3.3.1 Chi-Square analysis 

 Oxidative stress markers results examined 36 cases, 18 ethanol exposed fetus (6 cases), 

infants (6 cases), and children (6 cases) and 18 sex-matched controls. I blindly categorized the 

cases into three ordinal variables according to the degree immunoreactivity based on the 

darkness of the cells; 0= Absent, 1= Low, 2= Moderate, and 3= High. Chi-square analysis was 

used (by the author) for the association between nominal variables of oxidative stress reactivity 

overall age groups.  
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3.3.2 ANOVA 

 I performed the analysis of variance to calculate the significant interaction between 

neuron distribution; glutamergic, and GABAergic in utero alcohol exposure and non exposed 

individuals among different variables including age, sex, and selected brain regions. These 

variables were besides measured in Paired t test to calculate the percentage different between 

ethanol-exposed and non-ethanol groups in this study. The confidence interval of the difference 

was established equal to 95%. 
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Chapter 4. RESULTS 

4.1 Neuropathological findings in human autopsied brains exposed to alcohol in utero 

 Major pathological deformities in the autopsy series (153 cases) included hydrocephalus 

(4 cases), agenesis of the corpus callosum (2 cases), microencephaly (5 cases), neural tube 

closure defects (one case each of sacral myelomeningocele with Chiari type 2 malformation, 

sacral myelomeningocele, anencephaly, exencephaly), and one case each of lissencephaly, 

holoprosencephaly, and Dandy-Walker malformation. Heterotopic neural tissue was detected in 

the subarachnoid compartment in 2 cases. Ischemic damage included in-utero cerebral infarct (2 

cases), periventricular white matter damage (3 cases), and microscopic evidence of neuronal 

hypoxia in most stillbirth cases. Cases with these major pathological abnormalities were not used 

for the immunohistochemical analysis. 

4.2 Oxidative stress marker detection 

4.2.1 Localization of oxidative stress markers in human and non-human primate 

To measure oxidative stress damage I examined the presence of oxidized DNA, and 

lipids within hippocampal and cortical brain regions using antibodies that recognize GCLC, 

8OHdG, 4HNE, and MDA. It is important to report that these antibodies work very well in non-

FASD human brains and macaque brain tissues. Then FASD brain tissues were examined using 

these antibodies. 

Glutamate cysteine ligase catalytic (GCLC) is the rate-limiting enzyme that catalyzes 

glutathione production, which is up regulated during oxidative stress. GCLC displayed strong 

cytoplasmic positivity in glial cells and less in endothelial cells and macrophages of PNEE 

human, non-PNEE human, and monkey cerebral cortex layer II-III (figure 9). Nuclear oxidation 
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of 8OHDG exhibited robust nuclear labeling in the PNEE and non-PNEE human cerebral 

cortices layer II-III, as well as macaque monkey occipital cortices (figure 10). Both 4HNE 

(figure 11 a,b) and MDA (figure 11 c,d) showed a high population of oxidized cellular lipids in 

PNEE human and monkey in lipofuscin of neurons and in perivascular white matter cells 

presumed to be macrophages or pericytes. Some macrophage labeling appeared individual cases. 

Immunofluorescence of non-PNEE human brain tissue confirms the presence of 8-OHdG in the 

brain tissue (figure 12). 
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Figure 9: GCLC expressed in deep temporal cortical layer. (IHC with 1/800 diluted anti-GCLC 

on paraffin-embedded tissue). a. AD human brain b. Macaque monkey brain 6 months age 

prenatally exposed to ethanol. The human AD and monkey cases show strongly immunoreactive 

glial cells. Glial cells expressed reactive with rich brown cytoplasmic GCLC. 400x 

magnification. 
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Figure 10: Nuclear oxidation expressed in deep temporal cortical layer. (IHC with 1/50 diluted 

anti-8OHdG on paraffin-embedded tissue). a. AD human brain b. Six-month-old macaque 

cortical brain prenatally exposed to ethanol. The human AD and monkey cases show nuclear 

immunoreactive cells. 400x magnification. 
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Figure 11: Lipid oxidation expressed in deep temporal cortical layer. a,b. IHC with 1/1500 

diluted anti-4HNE on paraffin-embedded tissue. c,d. IHC with 1/1500 diluted anti-MDA on 

paraffin-embedded tissue. a,c AD human brain. b,d. Macaque monkey cortical brain 6 months 

age prenatally exposed to ethanol. 
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Figure 12: Immunofluorescence staining of formalin-fixed human brain tissue. Paraffin-

embedded AD human brain tissue immunostained with 1/50 diluted 8-OHdG antibody followed 

by cy3 secondary antibody. Red stain exhibited 8-OHdG staining in brain cells. 400X 

magnification.   
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4.2.2 Quantitative comparison of oxidative stress markers in human  

4.2.2.1 GCLC expression 

GCLC was prominent in the majority of cases, however paired comparisons suggested 

higher expression in control than PNEE cases. When I separated the analysis by age group, it 

was indicted that the difference was most pronounced in fetuses (figure 13,14).  

  

Figure 13: GCLC expression in human brain. Chi square test was performed on ordinal variables 

according to cell immunoreactivity; 1= not detected, 2= low, 3=moderate, and 4=high. There was 

no difference in neuronal immunoreactivity to GCLC in human brain tissues (n=36) (Chi-square 

test value=2.000, df= 2, P= 0.3679). 
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Figure 14: Age-based difference in GCLC expression of human brain. Chi square test was 

performed on ordinal variables variables according to cell immunoreactivity; 1= not detected, 2= 

low, 3=moderate, and 4=high. There was no difference in neuronal immunoreactivity to GCLC 

in human brain tissues (n=36) among all age groups (Chi-square test value=1.667, P= 0.435). 

 

4.2.2.2 Quantitative comparison of DNA oxidation 

Nuclear peroxidation demonstrated with anti-8OHdG was not prominent in any age 

group. Overall there was no statistically significant difference between controls and PNEE 

(figure 15). Among the three age groups tested, fetuses showed the most variance in nuclear 

expression of 8OHdG, tending to be higher in controls (figure 16).  
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Figure 15: 8OHdG expression in human brains. Chi square test was performed on ordinal 

variables according to cell immunoreactivity; 1= not detected, 2= low, 3=moderate, and 4=high. 

There was no difference in neuronal immunoreactivity to 8OHdG in human brain tissues (n=36) 

(Chi-square test value=10.500, df= 2, P= 0.3052). 
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Figure 16: Age-based difference in 8OHdG expression of human brain. Chi square test was 

performed on ordinal variables according to cell immunoreactivity; 1= not detected, 2= low, 

3=moderate, and 4=high. There was no difference in neuronal immunoreactivity to 8OHdG in 

human brain tissues (n=36) among all age groups (Chi-square test value=1.564, P= 0.345). 

 

4.2.2.3 Quantitative comparison of Lipid oxidation 

 HNE and MDA were detected in the majority of cases. There were no significant 

differences between controls and PNEE cases overall or when divided by age, although the 

control cases tended to have more intense immunoreactivity (figure 17, 18, 19). 
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Figure 17: 4HNE expression in human brains. Chi square test was performed on ordinal 

variables according to cell immunoreactivity; 1= not detected, 2= low, 3=moderate, and 4=high. 

There was no difference in neuronal immunoreactivity to 4HNE in human brain tissues (n=36) 

(Chi-square test value=3.167, df= 2, P= 0.2053). 
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Figure 18: Age-based difference in 4HNE expression of human brain. Chi square test was 

performed on ordinal variables according to cell immunoreactivity; 1= not detected, 2= low, 

3=moderate, and 4=high. There was no difference in neuronal immunoreactivity to 8OHdG in 

human brain tissues (n=36) among all age groups (Chi-square test value=2.546, P= 0.2000). 
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Figure 19: Age-based difference in MDA expression of human brain. Chi square test was 

performed on ordinal variables according to cell immunoreactivity; 1= not detected, 2= low, 

3=moderate, and 4=high. There was no difference in neuronal immunoreactivity to 4HNE in 

human brain tissues (n=36) (Chi-square test value=1.202, P= 0.3034). 

 

4.2.3 Oxidative stress detection in non-human primate  

 The macaque monkey controls and PNEE samples were categorized according to the 

intensity of immunostaining: 0= absent 1= low, 2= moderate, and 3= high. GCLC expressing 

glial cells were present in the white matter. However, there were no significant differences in 

GCLC expression between controls and PNEE samples (figure 20). There was no 8OHdG 
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immunoreactivity in macaque brain tissue from either controls or PNEE samples (data not 

shown). Both lipid oxidation markers, MDA and 4HNE, were demonstrated in a small number of 

neurons; there were no significant differences between controls and PNEE samples (figure 21,  

22).  

 

Figure 20: GCLC expression in macaque brains. Chi square test was performed on ordinal 

variables according to cell immunoreactivity; 1= not detected, 2= low, 3=moderate, and 4=high. 

(2 cases with no expression are not shown). There was no difference in neuronal 

immunoreactivity to 4HNE in macaque brain tissues (n=12) (Chi-square test value=2.200, df= 2, 

P= 0.333). 
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Figure 21: MDA expression in macaque brains. Chi square test was performed on ordinal 

variables according to cell immunoreactivity; 1= not detected, 2= low, 3=moderate, and 4=high. 

(2 cases with no expression are not shown). There was no difference in neuronal 

immunoreactivity to 4HNE in macaque brain tissues (n=12) (Chi-square test value=1.400, df= 2, 

P= 0.527). 
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Figure 22: 4HNE expression in macaque brains. Chi square test was performed on ordinal 

variables according to cell immunoreactivity; 1= not detected, 2= low, 3=moderate, and 4=high. 

(2 cases with no expression are not shown). There was no difference in neuronal 

immunoreactivity to 4HNE in macaque brain tissues (n=12) (Chi-square test value=1.200, df= 2, 

P= 0.549). 
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4.3 Neuron type markers 

4.3.1 Glutamatergic neurons in human brain  

Glutamatergic neurons were best demonstrated in human brain samples using indirect 

immunohistochemistry with avidin-biotin peroxidase detection of Anti-EAAC1 (table 2).  

EAAC1 is evident as intracellular cytoplasmic labeling and neuropil staining in neurons of 

hippocampus (CA1, CA3, DG) and cortical layers II-III and V-VI. EAAC1 is expressed similarly 

in all age groups (infants, children, and teenage) in both controls and PNEE cases with but with 

different distribution (Figure 23).  
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Figure 23: Glutamergic neurons in human deep temporal cortical layer. (IHC with 1/800 diluted 

anti-EAAC1 on paraffin-embedded tissue). a. Control female 15 months age, b. FASD female 16 

months age. Control and FASD cases show strongly immunoreactive neurons.  400x 

magnification. 

  

4.3.2 The intensity of EAAC1 expression in human brains prenatally exposed to ethanol 

EAAC1 immunoreactivity in infants, children, and teenage brains exhibits diffuse 

staining in neuropil because of expression in cells bodies, dendrites, and axons. This makes it 

difficult to count the individual neurons in the regions of interest. Therefore, the intensity of 

Anti-EAAC1 cortex was categorized into three ordinal variables according to immunoreactivity 

and neuropil intensity; moderate immunoreactivity within neurons with moderate neuropil 
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staining, high immunoreactivity within neurons with moderate neuropil staining, and high 

immunoreactive diffuse neurons with intense neuropil staining.  

The pattern of high immunoreactive diffuse neurons with intense neuropil staining was 

significantly increased in ethanol exposed infants, children, and teenage brain compared to 

age/sex matched control groups (data not shown).   

4.3.3 Excitatory neuron changes in human brains with in utero ethanol exposure   

Excitatory neuron EAAC1 expression was significantly reduced; 15.96 % and 18.03% in 

dentate gyrus and temporal cortex, respectively. In dentate gyrus, infants and children showed 

significant reduction 26.46% and 16%, respectively among different group ages. Unlike dentate 

gyrus and temporal cortex, CA1 or CA3 hippocampal regions did not show a significant 

difference of ethanol-exposed cases compared with control groups (Figure 24).  
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Figure 24: Mean neuron EAAC1 expression in human brain regions (CA1, CA3, DG, and 

temporal cortex). Asterisks demonstrate significant reductions in the mean neurons count 

expressed to EAAC1 of human dentate gyrus (P value equals 0.0030, t = 3.4341, df = 18) and 

temporal cortex (P value equals 0.0437, t = 2.1694, df = 18) between controls (n=19) and 

Ethanol exposed groups (n=19) among all age groups. Error bars = +/- 1 SE. 

 

4.3.4 Age groups based EAAC1 expression in human following ethanol exposure 

Subfield analysis of dentate gyrus and temporal cortex were conducted (by the author) 

among different group ages (infants, children and teens). Infants and children (but not teens) had 

a significant reduction, 26.50% and 16.00%, respectively of EAAC1 expression in dentate gyrus 
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following in utero alcohol exposure (figure 25). However, all group ages showed no significant 

reduction of EAAC1 expression in temporal cortex (figure 26). 

  

Figure 25: Mean EAAC1 expression in dentate gyrus of human brains in infants, children, and 

teens groups. Asterisks demonstrate significant reductions in the mean neurons count expressed 

to EAAC1 of human dentate gyrus on infants (n=6) (P value equals 0.0354, t = 2.8593, df = 5) 

and children (n=6) (P value equals 0.0117, t = 3.8730, df = 5) between controls and ethanol-

exposed groups. Error bars = +/- 1 SE. 
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Figure 26: Mean EAAC1 expression in temporal cortex of human brains in infants, children, and 

teens groups. Within the temporal cortex there was no significant reduction in all-different age 

groups tested (infants: n=6, children: n=6, and teenage: n=7) between controls and ethanol-

exposed groups. Error bars = +/- 1 SE. 
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4.3.5 Sex difference based EAAC1 expression in human following ethanol exposure 

 In dentate gyrus, a reduction of glutamatergic neurons was significant in female group 

(33.33%) PNEE compared with controls (figures 27). However, neither male nor female group 

showed a significant reduction in human neurons expression to EAAC1 in temporal cortex 

(figures 28).   

 

Figure 27: Mean excitatory neuron counts in human dentate gyrus based on sex difference. 

Within the dentate gyrus, human female (n= 9) (P value equals 0.0092, t = 3.4112, df = 8), not 

male (n= 10), group showed a significant reduction in the mean neurons count expressed to 

EAAC1 between controls and ethanol-exposed groups. Error bars = +/- 1 SE. 
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Figure 28: Mean excitatory neuron counts in human temporal cortex based on sex difference. 

Within the temporal cortex there was no significant reduction in both female (n= 9) and male (n= 

10) groups between controls and ethanol-exposed groups. Error bars = +/- 1 SE. 

 

4.3.6 Inhibitory neurons in human brain 

Distinct inhibitory neuron populations were labeled in human cerebral cortex with the 

anti-parvalbumin (PVALB) (figure 29) and anti-calbindin1 (CALB1) antibodies (figure 30), 

although no labeling was observed when I used this antibody in monkey brain tissue. These 

proteins were also detected with immunofluorescence (figure 31). 
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Figure 29: Inhibitory neurons in deep temporal cortical layer 

(IHC with 1/100 diluted anti-parvalbumin on paraffin embedded tissue). a. Control 

female 12 years; b. FASD female 15 years. The control shows many large immunoreactive 

neurons. Fewer are evident in the FASD case. 400x magnification. 
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Figure 30: Inhibitory neurons in deep temporal cortical layer 

(IHC with anti-calbindin1 (CALB1)). a. Control female 8 years; b. FASD female 8 years. The 

control shows many immunoreactive large neurons. Fewer are evident in the FASD case. 400x 

magnification. 
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Figure 31: Immunofluorescence labeling of Parvalbumin. Paraffin-embedded AD human brain 

tissue, immunostained with 1/50 diluted parvalbumin antibody followed by cy3 secondary 

antibody. Red corresponds to parvalbumin in inhibitory neurons. 400X magnification. 

  

4.3.7 Inhibitory neuron changes in human brains with in utero ethanol exposure 

 I examined tissues from 38 humans in total (infants, children, and teenage; controls n=19, 

PNEE n= 19) (table 6, table 7). The PNEE cases had a substantial reduction in inhibitory neurons 

labeled with anti-parvalbumin (PVALB) in all hippocampus sectors (CA1= 57.86%, CA3= 

65.15%, and DG= 53.39%) and inferior temporal area 44.13% (figure 32). Similarly, calbindin1 

(CALB1) staining of these human cases illustrated a decrease in all tested brain regions (figure 

33). 
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Table 6: Statistical parameters of parvalbumin (PVALB) on human brain regions 

Brain regions Control Ethanol-exposed 

  Mean±SEM Mean±SEM 

CA1 13.74±1.55 5.79±0.41 

CA3 17.68±1.87 6.16±0.57 

DG 13.11±1.04 6.11±0.59 

Temporal Cortex 12.53±0.67 7.00±0.47 

 

Table 7: Statistical parameters of calbindin1 (CALB1) on human brain regions 

Brain regions Control Ethanol-exposed 

  Mean±SEM Mean±SEM 

CA1 12.58±1.64 6.00±0.46 

CA3 12.47±1.39 6.89±0.51 

DG 10.74±0.66 6.42±0.57 

Temporal Cortex 17.32±2.14 8.47±0.65 
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Figure 32: Mean inhibitory neuron counts detected in parvalbumin of human hippocampal and 

temporal cortex. Asterisks demonstrate significant reductions in the mean neurons count 

expressed to parvalbumin of human CA1 (P value equals 0.0001, t = 13.5674, df = 18), CA3 (P 

value equals 0.0437, t = 2.1694, df = 18), dentate gyrus (P value equals 0.0001, t = 17.7034, df = 

18), and temporal cortex (P value equals 0.0001, t = 12.5657, df = 18) between controls (n=19) 

and Ethanol exposed groups (n=19) among all age groups. Error bars = +/- 1 SE. 
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Figure 33: Mean inhibitory neuron counts detected in calbindin1 (CALB1) of human 

hippocampal and temporal cortex. Asterisks demonstrate significant reductions in the mean 

neurons count expressed to calbindin1 of human CA1 (P value equals 0.0001, t = 7.1478, df = 

18), CA3 (P value equals 0.0001, t = 5.2889, df = 18), dentate gyrus (P value equals 0.0001, t = 

7.2607, df = 18), and temporal cortex (P value equals 0.0030, t = 6.9524, df = 18) between 

controls (n=19) and Ethanol exposed groups (n=19) among all age groups. Error bars = +/- 1 SE. 
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4.3.8 Age group based GABA expression in human following ethanol exposure 

 I tested different human age groups for inhibitory neuron quantification of parvalbumin 

(PVALB) and calbindin1 (CALB1) in each brain region separately. In CA1 region, a significant 

reduction of parvalbumin (PVALB) labeled neurons was detected in infants 41.77% (figure 34). 

In CA3 region, the reductions were 33.76% in infants, and 25.33% in children (figure 35). In 

dentate gyrus, parvalbumin was reduced in infants (44.44%) and teenage (45.68%) groups only 

(figure 36). In temporal cortex, the reduction appeared substantially in infants (62.67%), children 

(32.81%), and teenage (41.18%)  (figure 37). 

 Calbindin1 expression also showed significant reduction in all brain regions tested 

separately among different age groups. Within the CA1 region, 68.18% reduction in infants, , 

and 67.90% in teenage groups (figure 38). In CA3 region, the reductions were 64.36% in infants, 

43.49% in children, and 59.09% in teens (figure 39). In dentate gyrus, the PNEE was associated 

with significant diminution in infant; 47.37%, in children; 44.26%, and 71.60% in teens (figure 

40). Temporal cortices of PNEE cases showed declines among different group ages (infants; 

67.83%, and teens 42.86%) compared with the controls (figure 41).     



  74 

 

Figure 34: Inhibitory neurons labeled with anti-parvalbumin in human CA1 among infants, 

children, and teens groups. Within the CA1 region, only human infants (n=6) (P value equals 

0.0016, t = 6.2143, df = 5) showed a significant reduction in the mean neurons count expressed 

to parvalbumin between controls and ethanol-exposed groups. Error bars = +/- 1 SE. 
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Figure 35: Inhibitory neurons labeled with anti-parvalbumin in human CA3 among infants, 

children, and teens groups. Within the CA3 region, human infants (n=6) (P value equals 0.0062, 

t = 4.5398, df = 5) and children (n=6) (P value equals 0.0274, t = 2.8983, df = 5) showed 

significant reduction in the mean neurons count expressed to parvalbumin between controls and 

ethanol-exposed groups. Error bars = +/- 1 SE. 
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Figure 36: Inhibitory neurons labeled with anti-parvalbumin in dentate gyrus of human infants, 

children, and teens groups. Within the dentate gyrus, both infants (n=6) (P value equals 0.0199, t 

= 3.3710, df = 5) and teens (n=7) (P value equals 0.0005, t = 6.7931, df = 6) showed significant 

reduction in the mean neurons count expressed to parvalbumin between controls and ethanol-

exposed groups. Error bars = +/- 1 SE. 

 

 

 

  



  77 

 

Figure 37: Inhibitory neurons labeled with anti-parvalbumin in temporal cortex of human infants, 

children, and teens groups. Within the temporal cortex, all age groups; infants (n=6) (P value 

equals 0.0008, t = 7.2696, df = 5), children (n=6) (P value equals 0.0443, t = 2.6713, df = 5) and 

teens (n=7) (P value equals 0.0025, t = 5.0000, df = 6) showed significant reduction in the mean 

neurons count expressed to parvalbumin between controls and ethanol-exposed groups. Error 

bars = +/- 1 SE.  
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Figure 38: Inhibitory neurons labeled with anti-calbindin1 in CA1 of human infants, children, 

and teens groups. Within the dentate gyrus, both infants (n=6) (P value equals 0.0439, t = 

2.6782, df = 5) and teens (n=7) (P value equals 0.0026, t = 4.9259, df = 6) showed significant 

reduction in the mean neurons count expressed to calbindin1 between controls and ethanol-

exposed groups. Error bars = +/- 1 SE. 
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Figure 39: Inhibitory neurons labeled with anti-calbindin1 in CA3 of human infants, children, 

and teens groups. Within the CA3, all age groups; infants (n=6) (P value equals 0.0485, t = 

2.5950, df = 5), children (n=6) (P value equals 0.0462, t = 2.6352, df = 5) and teens (n=7) (P 

value equals 0.0053, t = 4.2600, df = 6) showed significant reduction in the mean neurons count 

expressed to calbindin1 between controls and ethanol-exposed groups. Error bars = +/- 1 SE.  
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Figure 40: Inhibitory neurons labeled with anti-calbindin1 in dentate gyrus of human infants, 

children, and teens groups. Within the dentate gyrus, all age groups; infants (n=6) (P value 

equals 0.0093, t = 4.1079, df = 5), children (n=6) (P value equals 0.0463, t = 2.6349, df = 5) and 

teens (n=7) (P value equals 0.0004, t = 7.0858, df = 6) showed significant reduction in the mean 

neurons count expressed to calbindin1 between controls and ethanol-exposed groups. Error bars 

= +/- 1 SE. 
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Figure 41: Inhibitory neurons labeled with anti-calbindin1 in temporal cortex of human infants, 

children, and teens groups. Within the temporal cortex, both infants (n=6) (P value equals 

0.0011, t = 6.7748, df = 5) and teens (n=7) (P value equals 0.0020, t = 5.2272, df = 6) showed 

significant reduction in the mean neurons count expressed to calbindin1 between controls and 

ethanol-exposed groups. Error bars = +/- 1 SE. 
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4.3.9 Sex difference in GABA expression in human following ethanol exposure 

 Both male and female groups revealed significant diminution to parvalbumin (PVALB) 

following PNEE in CA1 (32.73%, and 26.60%) (figure 42), CA3 (35.51% and 28.44%) (figure 

43), and temporal cortex (49.58% and 41.90%) (figure 45). However, only male group in dentate 

gyrus (45.31% ) showed significant reduction in neurons expressed in parvalbumin (figure 44). 

 

Figure 42: Sex difference in human mean inhibitory neurons labeled with anti-parvalbumin in 

CA1 region. Within human CA1, both male (n=10) (P value equals 0.0028, t = 4.0704, df = 9) 

and female (n=9) (P value equals 0.0327, t = 2.5786, df = 8) showed significant reduction in the 

mean neurons count expressed to parvalbumin between controls and ethanol-exposed groups. 

Error bars = +/- 1 SE. 
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Figure 43: Sex difference in human mean inhibitory neurons labeled with anti-parvalbumin in 

CA3 region. Within human CA3, both male (n=10) (P value equals 0.0011, t = 4.7088, df = 9) 

and female (n=9) (P value equals 0.0286, t = 2.6656, df = 8) showed significant reduction in the 

mean neurons count expressed to parvalbumin between controls and ethanol-exposed groups. 

Error bars = +/- 1 SE. 
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Figure 44: Sex difference in human mean inhibitory neurons labeled with anti-parvalbumin in 

dentate gyrus. Within human dentate gyrus, male (n=10) (P value equals 0.0006, t = 5.1625, df = 

9) showed significant reduction in the mean neurons count expressed to parvalbumin between 

controls and ethanol-exposed groups. Error bars = +/- 1 SE. 
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Figure 45: Sex difference in human mean inhibitory neurons labeled with anti-parvalbumin in 

temporal cortex. Within human temporal cortex, both male (n=10) (P value equals 0.0001, t = 

6.9479, df = 9) and female (n=9) (P value equals 0.0050, t = 3.8370, df = 8) showed significant 

reduction in the mean neurons count expressed to parvalbumin between controls and ethanol-

exposed groups. Error bars = +/- 1 SE. 
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 Like parvalbumin, calbindin1 immunoreactivity showed significant reduction following 

PNEE in both males and females among different tested brain regions; CA3 (57,60% and 

56.39%) (figure 47), dentate gyrus (65.52% and 44.12%) (figure 48), and temporal cortex 

(56.67% and 45.86%) (figure 49) compared with controls. However, CA1 showed a significant 

reduction in male group only (65.55%) (figure 46), 

 

Figure 46: Sex difference in human inhibitory neurons labeled with anti-calbindin1 in CA1 

region. Within human CA1, male (n=10) (P value equals 0.0001, t = 8.5105, df = 9) showed 

significant reduction in the mean neurons count expressed to calbindin1 between controls and 

ethanol-exposed groups. Error bars = +/- 1 SE. 
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Figure 47: Sex difference in human inhibitory neurons labeled with anti-calbindin1 in CA3 

region. Within human CA3, both male (n=10) (P value equals 0.0012, t = 4.6305, df = 9) and 

female (n=9) (P value equals 0.0232, t = 2.7995, df = 8) showed significant reduction in the 

mean neurons count expressed to calbindin1 between controls and ethanol-exposed groups. Error 

bars = +/- 1 SE. 
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Figure 48: Sex difference in human inhibitory neurons labeled with anti-calbindin1 in dentate 

gyrus. Within human dentate gyrus, both male (n=10) (P value equals 0.0001, t = 7.1956, df = 9) 

and female (n=9) (P value equals 0.0052, t = 3.8100, df = 8) showed significant reduction in the 

mean neurons count expressed to calbindin1 between controls and ethanol-exposed groups. Error 

bars = +/- 1 SE. 
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Figure 49: Sex difference in human inhibitory neurons labeled with anti-calbindin1 in temporal 

cortex. Within human temporal cortex, both male (n=10) (P value equals 0.0044, t = 3.7742, df = 

9) and female (n=9) (P value equals 0.0094, t = 3.3941, df = 8) showed significant reduction in 

the mean neurons count expressed to calbindin1 between controls and ethanol-exposed groups. 

Error bars = +/- 1 SE. 
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4.3.10 Glutamatatergic neurons in non-human primate CNS  

Glutamatergic neurons in macaque cerebral cortex were best detected (by the author) 

with rabbit anti-rat EAAT3 (Figure 50). This antibody also reacted with some endothelial cells, 

however these are easily differentiated from neurons. I found excitatory neurons in the expected 

laminar distribution in both macaque and human cortices. There is little difference between the 

localization of Anti-EAAT3 and Anti-EAAC1 in glutamatergic neurons in the human cortex, 

however only Anti-EAAT3 labels neurons in macaque brains. 

 

Figure 50: Glutamergic neurons in macaque deep temporal cortical layer. (IHC with 1/800 

diluted anti-EAAT3 on paraffin-embedded tissue). a. Control macaque monkey male 6 months 

age, b. FASD macaque monkey male 6 months age. The control and FASD cases show strongly 

immunoreactive neurons. 400x magnification. 
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4.3.11 Non-human primate expresses glutamatatergic transporter following ethanol  

I tested neuronal immunoreactivity for EAAT3 in both control and PNEE macaque brain 

tissues. In the hippocampi and inferior temporal cortices there was no statistically significant 

difference between the two groups (figure 51).  

 

Figure 51: EAAT3 expression in macaque brains. Chi square test have performed on non-

numerical variables according to cell immunoreactivity; 1= not detected, 2= low, 3=moderate, 

and 4=high. (2 cases with no expression are not shown). There was no difference in neuronal 

immunoreactivity to EAAT3 in macaque brain tissues (n=12) (Chi-square test value=1.667, P= 

0.435). 
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4.3.12 GABA neurons in non-human primate CNS 

The anti-calbindin1 (CALB1) antibody demonstrated a limited number of interneurons in 

layer II of the human cerebral cortex and non-specific binding to myelin in macaque brain tissue. 

The anti-GAD antibody demonstrated good labeling of inhibitory neurons in the cortex of 

macaque brains, despite very weak staining of neurons in human cerebral cortex (figure 52). 

 

Figure 52: Inhibitory neurons expressed in macaque deep temporal cortical layer. (IHC with 

1/200 diluted anti-GAD on paraffin-embedded tissue). a. Control macaque monkey male 6 

months age, b. FASD macaque monkey male 6 months age. 400x magnification. 
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4.3.13 Interneurons in non-human primate following in utero alcohol exposure 

 Although macaque monkey brain tissue showed inhibitory neurons clearly in cortical 

layer II-III using GAD antibody, PNEE and controls cases did not show significant difference 

between the two groups. Chi square test have performed on non-numerical variables according to 

cell immunoreactivity; 1= not detected, 2= low, 3=moderate, and 4=high (figure 53). 

 

Figure 53: GAD1/GAD67 expression in macaque brains. Chi square test have performed on non-

numerical variables according to cell immunoreactivity; 1= not detected, 2= low, 3=moderate, 

and 4=high. (2 cases with no expression are not shown). There was no difference in neuronal 

immunoreactivity to GAD1/GAD67 in macaque brain tissues (n=12) (Chi-square test value= 

4.133, P= 0.127) (n=12). 
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Chapter 5. DISCUSSION 

5.1 Human neuropathological changes following in utero alcohol exposure 

Ethanol exposure during pregnancy can cause major negative effects on the developing 

brain. Although FASD is common in many regions in the world, fewer than 25 cases of human 

brain autopsies have been described in detail. The reported abnormalities include 

microencephaly, hydrocephaly, agenesis of corpus callosum, agenesis of anterior commissure, 

periventricular and leptomeningeal heterotopias, cerebral dysgenesis, and brainstem dysgenesis 

21,128,149-153. However, these findings are documented exclusively severe cases with major 

abnormalities in the brain and only represent the worst damage in FAS individuals. In fact, 

FASD has not yet studied thoroughly on human brains. 

In the human autopsy cases from Winnipeg Health Sciences Centre, severe 

neuropathological abnormalities supported the previous studies. However, only a minority of 

these cases had major abnormalities. Hypoxic changes were commonly found in fetus brain 

autopsies, which are likely related to the placental insufficiency that led to fetal death.  

5.2 Absence of oxidative stress markers in human and monkey FASD  

Alcohol is detoxified mainly in liver where byproducts include reactive oxygen species 

(ROS), including superoxide (O2−•), hydrogen peroxide (H2O2), and hydroxyl radical (OH•) 81. 

These products play a vital role in cell signaling and molecule oxidation 154. ROS products, 

which oxidize proteins, DNA, and lipids, are normally metabolized inside the cells. Alteration in 

this balance leads to intracellular destruction followed by apoptotic changes in the cells 81,155. 

Numerous studies have been designed to examine these oxidation products using specific 

antibody markers, e.g., glutamate—cysteine ligase catalytic subunit (GCLC) for protein 
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expression response to oxidative stress, 8-hydroxydeoxyguanosine (8OHdG) for DNA oxidation 

156,157, and malondialdehyde (MDA) 158, acrolein 159,160, and 4-hydroxynonenal (4HNE) for lipid 

peroxidation 161. These markers have illustrated that excessive oxidative products are present and 

might play a mechanistic role in many diseases. Some of these studies correlated the oxidative 

stress modification markers with cognitive and behavioral deficits in AD and MCI 162,163 (Table 

8). 
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Table 8: Published studies associated oxidative stress markers with neurological disorders 

Disorder Model Tested materials Oxidative stress 
marker Reference 

Alzheimer’s 
(AD) 

Human AD 
autopsy 

 Brain, CSF, 
urine 

é8-OHdG (Nunomura et al., 
2006) 164 

Brain  é4HNE  (Jomova et al., 2010) 

165 

Frontal cortex é3-NT 

é4HNE  

(Ansari & Scheff, 
2010) 162 

Hippocampus é4HNE (Perluigi et al., 2009) 

166 

Autism 7±2 age 
autistic 
children 

 Cingulate 
gyrus and 
cerebellum 

é3-NT (Sajdel-Sulkowska et 
al., 2011) 167 

Adult 
autistic 
human  

Plasma éMDA (Meguid et al., 2011) 

168 

Autistic 
human 
autopsy 

Cerebellum êGCLC (Gu et al., 2013) 169 

Parkinson’s 
(PD) 

PD human 
autopsy  

Substantia 
nigra 

é4HNE  

éMDA 

(Jomova et al., 2010)  
165 

Blood, urine é8-OHdG (Seet et al., 2010) 170 

Down 
syndrome 

(DS) 

DS human 
autopsy 

Cortex é8-OHdG (Perluigi & Butterfield, 
2012) 171 

Mild cognitive 
impairment 

(MCI) 

Human 
autopsy 

Brain é4HNE  (Reed et al., 2008) 163 

3-nitrotyrosine (3-NT), 8-Hydroxydeoxyguanosine (8OHdG), Malondialdehyde (MDA), 4-
Hydroxynonenal (4HNE), Glutamate—cysteine ligase catalytic subunit (GCLC), é increase in 
level, ê decrease in level. 
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However, I did not detect increased markers of oxidative stress in human fetuses, infants, 

or children, or in non-human primates prenatally exposed to alcohol. This does not reflect 

findings in previous rodent FASD studies. There are at least three possible reasons: First, 

oxidative changes in brain might be a species-specific effect not found in primates. Second, 

postnatal life circumstances in monkey and human might gradually eliminate markers of in utero 

hypoxic stress. Third, death circumstances in humans cause oxidative changes that might obscure 

the in utero changes; this is supported by the high prevalence of GCLC expression in control and 

PNEE fetal cases. 

 Moreover, I cannot ignore technical factors related immunohistochemical detection that 

might lead to false negative results. First, the blocks of non-human primate tissues were 

originally embedded in an old type of paraffin, which is difficult to cut into 5µm sections and 

was therefore re-embedded. Second, the duration of fixation was not reported from imported 

macaque brain tissue, which could induce false negative results from excessive cross-linking 

epitopes. Third, oxidative stress markers in human and non-human primate brain tissues could be 

present but too low to be detected with the antibodies used. Forth, the antigen retrieval method 

was necessary in positive control specimens, however it can be a factor that produces false 

negative immunolabeling.    

Although the mechanism of oxidative stress damage in FASD individuals has not been 

established yet, a large number of experiments have been proposed to examine the changes using 

distinct assays on different animal models. These experimental studies have detected ROS 

products in brain, antioxidants levels, and molecular damages results from oxidative stress. 

ELISA, immunohistochemistry, and immunocytochemistry are the main approaches tested for 

intracellular imbalance of ROS. However, these approaches have both weaknesses and strengths. 
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Enzyme-Linked Immuno-Sorbant Assay (ELISA), for instance, is very sensitive and inexpensive 

so it can detect low protein concentration in the tissue, but early immune response might be not 

detected in ELISA. In addition, this assay is only monoclonal antibody detection so that cross-

reactive bindings are arising 172. In contrast, IHC is less sensitive, and different staining pattern at 

the same tissue could be misleading in the interpretation. However, it detects monoclonal and 

polyclonal antibodies and maintains the integrity of cellular components in the tissue.  

This metabolic issue has been examined largely in rodent experiments. For example, 

MDA and 4HNE have been found in rat brain tissue on GD17-18 as well as rat cerebellum, 

hippocampus, and cerebral cortex on postnatal day (PND) 4-9 when exposed to ethanol in utero  

87,88. 8OHdG was present in a high concentration in rat cerebellum following ethanol exposure at 

GD6-12 86. Table 9 is a summary of previous studies on oxidative stress and in utero alcohol 

exposure. 
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Table 9: Summary of some previous studies on oxidative stress in prenatal alcohol exposure 

Model 
Time 

exposure 

Time of 

conducting 

study 

Rout of 

consumption 
Tissue Effect Reference 

Mice 

prenatal 

EtOH  

GD17  6h after 

injection 

IP       

(4g/kg) 

Brain ê8-OHdG (Miller et al., 

2013) 173 

Mice 

prenatal 

EtOH 

GD8 GD 9 IP             

(2.9g/kg) 

Brain é8-OHdG (Dong et al., 

2009) 174 

Rats 

prenatal 

EtOH  

GD17 NA Gavage Brain é4HNE (Ramachandran 

et al., 2001) 87 

Rats 

prenatal 

EtOH 

GD 6-

21 

PND1 Liquid-

diet 

Cerebellum é8-OHdG (Chu et al., 

2007) 86 

Rats 

prenatal 

EtOH 

GD10, 

17 

GD18 Gavage 

4g/kg 

Cortex éGCLC (Narasimhan et 

al., 2011) 175 

Thiobarbituric acid reactive substances (TBARS), glutathione peroxidase (GPx), glutathione 
reductase (GR), 8-Hydroxydeoxyguanosine (8OHdG), Malondialdehyde (MDA), 4-
Hydroxynonenal (4HNE), and Glutamate—cysteine ligase catalytic subunit (GCLC) treated 
intraperitoneally (IP). 
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5.3 Shortcomings and limitations of oxidative stress markers detection 

In this study, I selected specific antibodies to glutamate—cysteine ligase catalytic subunit 

(GCLC), 8-hydroxydeoxyguanosine (8OHdG), malondialdehyde (MDA), and 4-hydroxynonenal 

(4HNE) for oxidative stress detection. These antibodies were tested in hippocampi and cortices. 

The major limitation of studying human brain tissues is that the FASD risk factors (quantity, 

frequency of alcohol, and time of exposure) are seldom reported in detail. Further, I cannot 

absolutely exclude the possibility that the control samples did not have PNEE. Macaque brain 

tissues offer some degree of controls in respect of the amount, and frequency of alcohol exposure 

in addition to specific time of exposure; non-human primates might have species-specific effects.  

5.4 Excitatory neurons alterations associated with prenatal alcohol exposure in humans 

Excitatory neurons that use the neurotransmitter glutamate are generated during the first 

and second trimester during early brain development. During this period, modifications in 

excitatory neuron development have been associated with cognitive deficits in individuals 

affected with various neurodevelopmental disorders 176-178. Changes in this neuron population are 

also associated with a range of neurodegenerative disorders, such as Alzheimer disease 179-181, 

Huntington disease 182, and motor neuron disease (amyotrophic lateral sclerosis) 183-185 (Table 

10).  
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Table 10: Published studies correlated excitatory neurons with neurological diseases 
 

Disease Species Brain region 
Excitatory 

marker 
Reference 

Schizophrenia Human Striatum êEAAT-3 (McCullumsmith & 

Meador-Woodruff, 

2002) 186 

Bipolar Human Striatum êEAAT-3 

êEAAT-4 

(McCullumsmith and 

Meador-Woodruff, 

2002) 186 

Multiple Sclerosis Human Brain êEAAT-1  (Pitt et al., 2003)  

Epilepsy Rats Hippocampus êGLAST     

é GLT-1  

(Guo et al., 2010) 187 

Huntington  Human Neostriatum êEAAT-2 (Arzberger et al., 

1997) 188 

Alzheimer Human 

Mice 

Mice 

Cortex 

Astrocyte 

Brain 

êEAAT-2 

ê GLT-1 

êEAAT-1 

êEAAT-2 

(Masliah et al., 1996) 

189 

(Dabir et al., 2006) 

(Masliah et al., 2000) 

Parkinson Human Substantia 

nigra 

éEAAT-3 (Plaitakis and 

Shashidharan, 2000) 

190 

ALS Human Brain ê GLT-1 (Rothstein et al., 

1995) 191 

Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), Glutamate/aspartate transporter 
(GLAST-1), Glutamate Transporter (GLT-1), Excitatory Amino Acid Transporters-1 (EAAT-1)  
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Excitatory neurotransmitter modification has been documented in animal models 

following prenatal alcohol exposure (Table 11). I found a 12.2 % and 17.26% reduction in the 

density of glutamatergic neurons in alcohol-exposed brains (all ages / sexes) in dentate gyrus and 

temporal cortex, respectively. 

5.5 EAAC1 is highly expressed in neurons and dendrites   

Glutamate/aspartate transporter (GLAST-1) 192, glutamate transporter (GLT-1) 193, 

excitatory amino acid carrier-1 (EAAC-1) 194, and excitatory amino acid transporters (EAAT-4)  

195 are four membrane transporter proteins. In the brain, these transporters protect the cells from 

excitotoxicity by decreasing the high glutamatatergic level in the excitatory synapse during 

resting state 196. EAAC-1 was chosen as a marker of glutamatergic neurons in my human autopsy 

investigation, whereas EAAT-3 has been chosen to detect excitatory neurons in macaque 

monkey brain autopsies. It is not clear why the slightly different proteins were not detected 

equally in human and macaque brains. EAAC1 and EAAT-3 are both Na+-dependent L-

glutamate/D, L-aspartate membrane transport proteins 197.   

Previous studies have localized EAAC-1 in neurons and non-neuronal cells in heart, 

kidney, and muscle. Particularly EAAC-1 transporter proteins are expressed in CNS mainly in 

the hippocampus regions (stratum radiatum, CA1) of young rats, cerebral cortex layer II-IV, and 

cerebellum of mice brain 198-200. In the cerebellum, EAAC-1 was found mainly in neurons 

expressed in cerebellar Purkinje cells 197. Moreover, it was expressed in rat astrocyte process, 

mice cortical astrocytes, and human apical dendrites 201-203. A later study co-localized EAAC-1 in 

basal ganglia, dentate gyrus, and olfactory neurons 204, and EAAT-3 has been localized in human 

cortical pyramidal neurons 205.  
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5.6 Sex-based difference in EAAC1 expression of human FASD    

Previous studies discovered sex specific changes in GS protein expression following 

alcohol exposure 206,207. The mechanistic ability of sex hormones, e.g., estrogen infiltration via 

blood brain barrier throughout the brain was discovered to be one of the main intentions behind 

sex-based difference following in utero ethanol exposure 207. Therefore, I anticipated sex 

differences in the expression of glutamatergic neurons in human infants, children, and teenagers. 

However, contrary to my expectations, my results showed both sexes respond similarly to the 

prenatal alcohol exposure, i.e., both males and females have reduced expression of 

glutamatatergic neurons following ethanol exposure.  

5.7 Inhibitory neurons expression reduced following prenatal ethanol exposure 

 Parvalbumin (PVALB) and calbindin1 (CALB1) were selected in my investigation for 

the effect of PNEE on inhibitory interneurons on human. Whereas, glutamate decarboxylase 

isoform-65 (GAD65); the precursor of GABA synthesis 208, was selected to test the changes in 

non-human primate models prenatally exposed to ethanol because preliminary 

immunohistological tests of parvalbumin (PVALB) and calbindin1 (CALB1) did not show 

labeling on macaque brain tissues.  

 A previous study found a substantially decreased number of striatal dendritic inhibitory 

neurons detected with parvalbumin (PVALB) in newborn rats exposed to long-term postnatal 

ethanol at P2-P6 209. Moreover, hypoxic postnatal (P3-P11) mice previously exposed to ethanol 

showed 59% reduction in parvalbumin (PVALB) immunoreactivity in interneurons 210. 

Numerous studies reported the effect of ethanol on brain development in respect of inhibitory 

neuron expression (see Table 11).  
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Table 11: Changes of excitatory and inhibitory neurotransmitter in alcohol exposure 
N

eu
ro

tra
ns

-

m
itt

er
 

Model 
Timing of 

exposure 

Rout of 

consumption 
Tissue Marker Reference 

Ex
ci

ta
to

ry
 

Guinea Pigs GD 2-63 Gavage Hippocampus éGlu (Iqbal et al. 

2006) 

Rats GD15- 

PD9 

BPHC Hippocampus êGLT1 

êGLAST 

(Castaldoa et 

al., 2009) 

Rats PD 8 IH Hippocampus éEAAT1 

éEAAT3 

(Zink et al., 

2011) 

Rats NA NA Cortex éEAAT-1 

éEAAT-2 

(Zink et al., 

2004) 

Rats GD3-21 liquid diet Dentate gyrus êmGluR5 (Galindo et 

al. 2004) 

Rats GD5-20 BPHC Frontal 

cortex 

éEAAC1 (Castaldo et 

al., 2007) 

In
hi

bi
to

ry
 

Mice 

embryos 

GD7-18 Liquid diet Brain ê5-HT (Sari and 

Zhou, 2004) 

Monkeys GD3-42 Gavage Cortex êGABA (Miller 2006) 

Newborn rats NA NA Cortex éGAD (Zink and 

Spanagel, 

2005) 

Rats 1PD IH Cortex −PV      

êCALB1    

éCALB2 

(Granato, 

2006) 
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Mice NA Liquid diet Hippocampus êCALB1 

éGFAP  

(Satriotomo 

et al., 2000) 

Rats Term Gavage Cerebellum êPV      

êCALB1    

éCALB2 

(Wierzba-

Bobrowicz et 

al., 2011) 

Buccopharyngeal cannula (BPHC); Glutamate/aspartate transporter (GLAST-1); glutamate 
Transporter (GLT-1), Postnatal day (PD); Inhalation (IH); Parvalbumin (PVALB); calbindin1 
(CALB1); Calretinin (CALB2); Level decreased (ê); Level increased (é); Level did not change 
(−); Throughout pregnancy (Term) 

In my experiment, both male and female PNEE groups showed reduction in inhibitory 

neuron immunostained with anti-parvalbumin (PVALB) and anti-calbindin1 (CALB1). My 

results are consistent with previous studies, which did not find sex-specific difference in GAD65 

expression in PNEE mice 211. 

5.8 Inhibitory neurons in infant brains are vulnerable to prenatal ethanol exposure 

The maturation of brain structures plays an integral part in the concentration of GABA 

interneuron expression. Several studies explicitly elicited the difference in neuron generations 

and maturations across distinct age groups 204,212,213. For instance, immunolabeling of GABA 

receptor was detected greater in early embryonic age (E11–14) PNEE mice, whereas adult PNEE 

mice did not show a significant difference in parvalbumin (PVALB) expression 214. Additionally, 

the expression of calbindin1 (CALB1) increased with developmental age in human cerebellum  

(children and adults) 116. In my experiment, GABA neurons detected with parvalbumin (PVALB) 

and calbindin1 (CALB1) were reduced in all age groups with PNEE. Infants group 

immunostained with anti- calbindin1 (CALB1) showed the highest difference in GABA 

expression following alcohol exposure.  
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5.9 Absence of neuronal differences in non-human primate brains with PNEE 

I had expected that the monkey brains would show differences that could not be shown in 

the human brains. However, there were none. Perhaps the main reason is the limited (once per 

week) exposure. Neuron generation and migration occurs during a protracted period of 

development and it is possible that the alcohol doses used (which did not cause reduced fetal 

viability) were insufficient to cause obvious damage. Another possibility is that all cell 

populations (including glial cells and endothelial cells) were reduced equally with neurons and 

therefore no changes could be detected with the counting method used. Unfortunately brain 

weights of the monkeys are not available to provide support for this explanation. 

5.10 Neuronal changes might explain the neurobehavioral abnormalities in FASD 

Earlier studies have used antibodies against calcium binding proteins to discover the 

association between inhibitory neuron alterations and neuronal destruction in individuals 

diagnosed with some neurological illnesses, for instance, attention deficit hyperactive disorder 

(ADHD) (Hoekzema et al., 2013), Alzheimer’s disease (AD) 215, and schizophrenia 216. 

Moreover, seizures in epileptic patients have been found to be associated with glutamate/GABA 

neurotransmitter alterations in hippocampus 196. 

Although the mechanism of ethanol insult to brain interneurons following prenatal 

alcohol exposure has not yet been established, previously reported results showed 

immunohistological decreased in calcium binding protein expression in Purkinje cells of rats 

cerebellum following PNEE 217. Neuron loss and motor coordination deficits are interconnected 

218,219. For these reasons, I suggested an association between inhibitory neurons and cognitive 

deficits in individuals with FASD.  
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My human brain autopsies supported these previously published small animal model 

studies (Table 11). I recorded interneuron reduction in hippocampus CA1, CA3, and DG in 

addition to inferior temporal regions expressed in both parvalbumin (PVALB) and calbindin1 

(CALB1) following ethanol exposure.  

5.11 The pathogenesis of neuronal reduction following alcohol exposure 

Based on neuroimaging studies of the human and animal brains 105, I can consider the 

changes in the volume and cell numbers in brain regions, e.g., hippocampus, cortex, and basal 

ganglia etc., as a neurobiological response to PNEE. My investigation affirmed previous reports, 

showing that excitatory neurons were localized predominantly in temporal cortex layer II-V, 

CA1, CA3 and dentate gyrus of the hippocampus of controls (not exposed to alcohol in utero) 

and FASD human brain in infants, children, and teenage groups.  

Neuron loss ought to be explained in order to understand the mechanism of loss and the 

resulting brain dysfunction. I offer five possible explanations of neuronal reduction in human 

brains with PNEE: First, interference with neuronal migration from the ventricular zone to the 

neocortex 61. Second, delay in neurogenesis follows alcohol exposure during second or third 

trimester, which are considered critical periods of neuron generation 220. Third, decreased neuron 

production from sub-ventricular zone throughout the pregnancy in response to PNEE 221,222. 

Fourth, PNEE-induced apoptosis in developing brain, which in turn could decrease the number 

of neurons in the brain tissue 90,223. Fifth, exposure to alcohol might alter or inhibit neuronal 

differentiation in the brain 224.  
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Because many neurological diseases have been found to correlate with excitatory 

neurotransmitter destruction 225,226, I speculate that the reduction in excitatory neurons could 

correlate with cognitive deficits in individuals diagnosed with FASD. Further human studies 

should be done to specify neuronal dysfunctions and their associations with intellectual 

impairments in FASD. Relatively greater loss of the inhibitory neurons following PNEE could 

explain other features of FASD such as tremor and seizures 227. 

5.12 Shortcomings and limitations of neuronal detection 

Cerebellum, striatum, and occipital cortex should be tested further in order to investigate 

the neuronal changes in more brain regions. This might help explain the volumetric changes 

shown using MR imaging in other studies. In addition, use of more neuroanatomical markers 

such as Calretinin or NeuN would generalize the idea of neuronal reduction following the insults 

of alcohol prenatally. Because FASD is associated with addictive behaviors, detection of 

dopamine receptors might be of interest. Macaque experiments have previously relate the 

behavioral deficits in FASD with dopamine reduction 137.  
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Chapter 6. CONCLUSIONS 

FASD is one hundred percent preventable. However, because of a variety of societal and 

individual factors, it continues to occur and therefore understanding the disease is critical. There 

are several  major obstacles to understanding mechanistic changes in the developing brain. 

Interspecies differences make application of  the animal models difficult. With respect to alcohol 

exposure, primary (time, frequency, quantity of alcohol exposure) and secondary (prenatal 

nutrition, genetics, education, socioeconomic, and father’s drinking) biological and non-

biological cofactors influence effects on the brain and likelihood of developing FASD.  

Many studies have been constructed to investigate the pathogenicity of alcohol exposure 

in utero in animal models. However, few studies have been done on human autopsies. Therefore, 

I constructed my study of human and nonhuman primates to validate the highly controlled rodent 

studies of FASD.  

My first hypothesis proposed that persistent markers of oxidative stress would be evident 

by immunohistochemical detection in human and monkey brains following in utero alcohol 

exposure. This was not supported by my data using four oxidative stress markers—GCLC, 

MDA, 4HNE, and 8OHdG. However, his does not exclude oxidative stress in the overall 

hypothesis of PNEE-related damage because there are several possibilities (dose of alcohol in the 

monkeys; postpartum environments and mortal conditions in the humans) that might prevent 

detection of oxidative markers in the samples I studied.  

My second hypothesis proposed that PNEE could alter the balance in excitatory and 

inhibitory neurotransmitters in human and nonhuman primates in the hippocampus and temporal 

lobe. This was supported by my data in human brains. Immunohistochemical detection was 

performed to detect neuronal modifications in glutamatergic and GABAergic neurons. Like 
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previous studies, I found substantial reductions in the proteins calbindin1 (CALB1) and 

parvalbumin (PVALB) in human brains (CA1, CA3, dentate gyrus, and temporal cortex) of 

infants, children, and teenagers prenatally exposed to ethanol. Notably, human infant brains 

appeared most vulnerable to a reduction of excitatory and inhibitory neurons. Unlike in the 

human brain, the excitatory and inhibitory neurons markers in macaque brains did not show a 

significant difference between the controls and those with PNEE. 

6.1 Value and limitations of the study 

Human tissue must be studied to validate the many small animal studies. Verification of 

the hypothesized oxidative and/or neuronal changes will be of extreme value to the literature.  

The major limitation of human studies is the inherent lack of control and the uncertainty 

of the actual alcohol exposure (which was often in combination with other potentially damaging 

agents, including tobacco or illicit drugs such as marijuana or cocaine). Study of the monkey 

brains offered some degree of control and actual ethanol exposure, but this is limited by the fact 

that the monkeys were exposed to alcohol only once weekly in utero and then survived for 6 

months after birth. With respect to studying the oxidative changes, it is not clear how long the 

markers persist in the tissues. Considering the relative difficulty of conducting the immunostains 

on the monkey brain tissues, it seems likely that they were subjected to prolonged formalin 

fixation before paraffin embedding. Consequently, more intense antigen retrieval was required, 

which raised the possibility of false negative results. 

6.2 Future direction of the study 

With respect of neuronal modification following PNEE, more brain regions should be 

studied. Other neurochemical markers, such as those that detect more restricted populations of 
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acetylcholinergic or dopaminergic neurons might also be of interest to understand some of the 

behavioral and cognitive features of FASD.  

Moreover, neuropathology and neuronal alterations in human cases should be matched so 

that the changes can explain the more severe neuropathological malformations. More 

importantly, the quantity of alcohol exposure and time of exposure would be correlated with 

specific areas of neuronal reduction.  
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