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ABSTRACT

The central problem discussed is the coordinatisation of three-
dimensionsl affine geometry, Our study begins with the vresentation and
development of an axiom system for affine geometry, Vectors are intre-
duced into the geometry as equivalence classes of ordered pairs of
points, Sealars are defined as functions of vectors onto vectors which
in essence preserve parallelism and fix the zero vector,

It is proved that the scalars, undexr suitably defined operations,
forrm a division ring and the vectors form an gbelian group under addition,
¥We next show thst the vectors form a2 veetor space of dimension three over
the sealars, Ye further outline a preof that, given a vector space of
dimension three over a division ring, under suitable definitions of point,
line, plane, incidence, and parallelism, the geometry of the vector space
is three-dimensional affine, in the sense of our axiom system, The cen-
tral problem is tlus completely solved,

Axioms of order are then imtroduced into the system and the notion
of direction is discussed with regard to classes of payrallel lines and
to vectors, Real affine geometry is characterized as an ordered affine
geometry where the order relation is analagous to that of the real mubers,
lastly, a metrie is introduced into real affine geometry and the usual
charscterization of vectors in terms of length and direction is obtained,

In developing affine geometry in preparation for a study of vectors,
we congsider various Desarouesian configurations and prove that the cor-
responding configuration theorems are valid., In particular, the affine
1ittle Pesaroues Theorem is used to prove that the relation defining veec-
tors is an equivalence relation, The central affine Desarcues Theorem is

used in the main existence theorem for scalars,




CHAPIER I - INTRODUCTION

In the present chapter, we shall outline the scows of this work and
compare its aperoach with that of the literature on the subject,

Chapter II is devobed entirely to the study of a set of nine axioms
Tor three-dimensional affine geometry, In order to obtain a convenient
‘hotation for the point of interseetion of two lines, we have chosen to re-
gard lines as nothing nors than distinguished subsets of points., The affine
“theory developed is entirely equivalent to that obbtained by regarding lines
as entities associated with poinbs by an incidence relation I§533Jtdi,
for the element-set inclusion symbol '& ' plays essentially the same role
in our yresentation as 'L! does in the more common one,

In line with the above eomments, a plane is defined to be a point set
of a speecial type, and it is shown that any three noncollinesr points deter-
mine a unique plane, Parallelism of lines is defined as an ecuivalence re-
‘1ation satisfying Playfair's equivalent of Zuclid's Parallel postulate, From
this, it is proved as Cor, 2.,4,6 that two lines are varallel if and only if
they are coplanar and do not interseet, Chapter II conecludes with a study
of finite affine spaces and several counting arguments to compute, for ex-
ample, the total nunber of points in a plane or in an affine space,

On referring to D, Hilbert's Grundlagen der Geometrie, we see that

Chapter II essentially covers the so-called "Axioms of Connection” and Maxiom

of parallel", We note that in our system, fZuclid's defining characteristic of
a plane, nanmely that it contain all points of a line cogtaining two points of

the plane, is obtained as Theorem 2,3, Furthermore, parallelism of planes is

defined and proved to be an ecuivalence relation satisfying an analogue of

Huelidts parallel postulate, As indicated in I, Moise, Elementary Ceometry

from an Advanced Standpoint, this result is usually proved in a metric geometry




with the aid of congruence postulates,

Chapter TII is concerned with the definition of vectors in a three
dimensional affine space, Although similar studies have been made in two
dimensions, the specific details for the three-dimensional ease do not ap-
pear to have been worked out elsewhere. Our approach owes much to G, Papy,

” '
Geometrie APfine Plans et Nombres Régls. One important difference between

Papy's work and the present study is that, unlike Papy, we do not suppose
initially that we are dealing with an ordered infinite geometry, Another
is that three-dimensionality allows us to prove, via Desarques'! Theorem,
that vectors are well-defined, Restricted to two dimensions, Papy postu-
lates well-definedness of vectors, Specifically, we are indebted to Papy
for the definition of the relstion :[]*.

Similar definitions of vectors are to be found in K, Reidemeister,

Grundlagen der Geometrie and also in notes from a seminar given by FProf,

G, Pickert =zt Justus Lisbig University in Giessen in 1963,

In Chapter IV, we adopt Dr, Pickertte functional definition of muiti-
plication of a vector by a scelar, Theorem 4,3 ststes that any non zero
scalar is & one~to~one mapping of .the vectors onto themselves, Corollary
4,8 states that the vectors form a veetor spasce of dimension three over
the division ring of scslars, thus indicabing the conmection of our defini-
tion of vectors with the common algebraic definition of a veector space,

Definitions gimilar to, but not identical with, Prof, Pickert's defini-

tion of scalars are found in the litereture, In Geometrie Algebrs, E, Artin
studies dilatations, defined as mappings of points into points such that if
EX#Q and g is the unique line through f (P) and pavellel to FQ, then f (Q)

lies omn}L. Artin proves that dilatations are determined uniquely by the




images of two distinet points and that all nonconstant dilatations are

one to one onto functions, In Grundlagen der Elementarmathematik, H, Lenz

studies dehnungen, mappings £ of points ontp points such that either

£ (A)=f (B)or £ (A) £ (B)|\ AB. Such a mapping is called & vektor if
it is either the identity mapping or fixed point free, Lenz proves that
any dehnung which nmaps two distinct points>into the same point is a con-
stant function, Moreover, if O is a fixed point of the dehnung T and
Piﬁfo, then £ (P) lies on OP, Lenz vproves the existence theorem thab
given O, Aﬁ#:cu B on 0A, there is a unique gehnung f such that £ (0) = 0,
£ (A) = B; moreover, given any points A, B, there is exsectly one vektoxr
g such that g (A) = B,

Tn terms of the definitions and notation sdopted in the vresent work,
if the vector space is vepresented at sny point P, then any raltiplication
by a gcalar f may be associated with the mapping Krdefined as follows,
For eny voint @, let‘_\{’E \‘ybe such that (P, O)éy: and let REEJ be such
that (P, R¥E £ (v=), Define £¥ () = R, It is readily showm from the
results of this thesis that £ ¥ {s a funetion, Moreover, f ¥ is a dehnung,
but clearly not a vektor, Similarly, given a representation of the vecior

space at a point P, any non~constant dehnung vhich is not a vektor, may be

interpreted as a scalar, with the aid@ of Desaroues! Theorems, The proof con~ '
gists in representing the vector'space at thé unioue fixed noint of the
dehnung and arguing as in Theorems 4,1, 4,2,

With regard to dilatations, we note that if (4, Bl (C, D) or if
(A, B)“f~ (¢, D), then there exists a unique dilatation f such that f {a)
w C and £ (B) = D, provided A% B,

Chapter IV concludes with a comprehensive study of non-degenerste

Desarguesian configurations, The author is not aware of any similar study




elsewhere in the literature.

In Chapter V, axioms of order are introduced into an affine geometyy
and directién ie defined in terms of equivalence classes of certain types
of orders on lines of a parallel class under'parallel projection, FPosi=-
piveness of scalars is defined, and from this an order relation on the
scalars is induced so that the sealars form an ordered division ring.
Theorems 5, 12 and 5, 13 ave the so-called "plane-seperation axiom" and
"gpace~separation axiom"” respectively, In the book by £, Hoise referred
to above, these results arse each taken as axioms, As a corollsry to Th,

5, 12, we prove the clessical axiom of Pasch, Adopting Papy's vector defi-
nition of mid-point, we prove the existence of unigue mid-points end general-
ize and solve the analagous problem of n=division points;

The proof of Theorem 5. 2 ig a simplification of that found in He,

Tenz, Grundlegen dex Elementarmathematik; Tenz uses axioms of order

egquivalent to those in Chapter V.,

The roader interested in seeing other approaches %o order defined in
terms of postulates of betweenness and the axiom of Pasch is referred to
the works of D, Hilbert and E, Moise mentioned above. An alternative ap-
proach to order in which axioms for order of a one dimensional subgroup of
veetors are used is to be found in Papy s book,

Chapter VI serves as a tpansition from ordered affine goometry to
metric geometry. By means of Corollary 4, 8 and Theorems 5. 12, 5, 13, we
define an orientation of our vector space as an equivalence class of bases,
where the relevant equivalence relation is defined with the aid of a ter-
nary "box product" function from the vechbor space into the sealars, The
classical sealar product is used to define the length of a vector, The

traditional geomebric definition of a vector as a gquanbity uniquely deter-




mined by ite length and direction is then obtained as Theorem 6,3, Finally,

with the aid of well-known results from linear algebra, the class of metrie-

preserving linear transformations of the vector space onto itsgelf whose mat-

rix representation has positive determinant 18 manned into the real numbers

from O to i1 .

The numbering system employed in this work is illustrated in the fol-

lowing table:.

Axiom 2,1
Definition 2.1
Proposition 3.1
Theoren 2;1
Lemna 2,4,1

Corollary 2.1.3

first
First
First
First
Tirst

Third

axion introduced in Chapter II,
definition in Chanter II,

proposition in Chanter III,

theorem in Chapter II,

lemma leading to the wroof of Th, 2,4,

corollary to Th, 2,1,




II Axiometic Study of Affine Spaces

An affine space (L is a guadruple (ZP,:L,“ ,6 } where §lis a cot of

elements called "points",\;ﬂis a collection of subsets of & called "lines",
and C‘: and " are undefined relations, The statement “,Q,{] m' may be read
"The line ﬂ'is parallel to the line m," The statement "PE_,Q. " may be read
"The point P lieg on the line ,Q,“ or "The lineﬂzpasses through the wpoint P,V
Its negation will be abbreviated as "E%éﬁ, ", We shall understand all stabte-
ments of the form "P&,Q, " or PEL" to imply that P is a point of & ana L
is a line of &, lastly, "P;, Pgé. ,Q,I;Q.. o" will be taken to mean thet Pi@.ﬂvj
(i, j =1, 2),
Axiom 2,) Pi, PZE,QI,}@# Py =Py or L1 BJLB (or both).

Nobice that this is simply a concise way of saying that any two distinct
points (vesp, lines) determine at most one line (resp, point).
hxiom 2,2 P1eP, D thore exists S such that Py, B,EL

In view of Ax, 2,1 - 2, it is clear that any two distinet points Py and
Py determine exactly one line which we may denote indifferently by either
"P1Pe" or "PoPy ", The expression "P,Pg" will be usced only in the event
P17 Pa.
Axiom 2,3 FEach line passes through at lesst two distinet noints,
Axiom 2,4 Parallelism among lines is an ecuivalence relation,

Ve denote the parallelism of any lines £ ana m vy "L // nt or "m //ﬁ,".
Axiom 2,5 Pé?«-}, there exists exactly one line m such thet PE m and 27/ m,

The reader will recognize Ax, 2,5 as Playfair's equivalent of the famous
parallel postulate of Euclid,
Theorem 2,1 £ 3m, L // n ':}an = ¢ {the mull set)
Proof Suppose oE ,Q.,, m, By Ax, 2,1, 3, there exist points R and S such
that REL , SGn, REm, SE L, and RF=S, R and S determine the unique
line RS, If QERS, then we have Q, R&L , RS, As 0Emn and R&E m, we may

infer Q5% R, whence Ax, 2,1 implies ,Q, = RS, Interchanging the roles of R



and ‘S gives m = RS and so,Q, = m, a contradiction, Thus 0% RS,
Consequently, there is a unicue line n // BS suech that Q& n, by Ax,
2.5. Now, Ax, 2.3 gives a point TE€ n such that T# Q. If 7€ m,d, then
since T ¥Q, Ax, 2.1 implies 52/-‘- m, a contradiction, Assuming for definite=-
nese that T% m, we have a unigue 111197. shrough T such that}/ / m,
Suppose Qé}\. Since Q¥ T and Q, Tej\ , Wwe may conelude that
ally = gr = »llrs vy 4x, 2,1, 2. We now haveﬂ.llm\\ oll &S vy Ax, 2.4, Fur-
“ther 2# m, RS # 0, and RS ¥m as @ & RS, Through Q, m end Mre distinet
lines parallel to RS, a contradietion to Ax, 2,5, Thus Q#\* . However,
Q Q\h s Q,G:)Q,n m, and ﬂ‘“’a“&r\ :>/Q, =m by Ax, 2,5, As this contradicts
the hypotheses, ne ¢ satisfieé Qéﬂ- ’ ﬁl. Thus,}@/\ me Q)', as reouired,

Alternate proof of Th, 2.1:3‘

Let ,Q, m, Q be as in the preceding proof, By Ax, 2.4, 5, since
.ﬂ-%m, all lines parallel to £ pass through Q,

Wow let n be any line through ¢ other than/Q,or n and let T be any
point of n other than Q, By Ax., 2,1, 2, T%/,Q, sincei ¥ hn, It follows
from Ax, 2,5 that there exists a unique line p through T and parallel to
,QI. By our earlier comments Q€ p., As T, Q& n, p and T Q, Ax, 2,1 37
n = p, Hence all lines through Q are parallel to L.

As Qé. RS, there is a unigque line g through Q and parallel to RS,
Since Q€ q, it follows that q\& . Ax., 2.4 implies that L|| &S, whence
QERs, & contréaiction. Thus AN m= ¢ .

Corollsry 2,1,1 TFor any point P and line/q,, there exists exactly one line

nm such that ?e n and )?,“ m,

The proof is immediate from Ax. 2,5 and Th, 2,1,

1 Proof due to Ur», W, J, Jonasson,




Corollary 2,1,2 All points are contained in the same number of lines, More=-

over, this number is the number of paralliel oclasses ind"i.
The proof follows from the preceding corollary,

Corollary 2,1,3 If two distinet lines exist, then not all lines are parallsl,

Proofs Suppose that £ and m are two distinet lines, By Ax. 2,1, 3 there exist
distinet points R and P such thet P& {,7% n, RE m, snar &L 1eRP| A,
then Cors 2,11 =y REK , a contradiction. Thus, RPA.

Axiom 2,6 If P, O, and R are distinct non-collinear points such that PG/Q

i OR and R m || P0, then there exists & point sC { f\n.

-
4 H It is easy to show that this femiliay.process of

f Toompleting the parallelogram” leads to a unique g,

PE&
, By Ax, 8.1, it suffices to show & m. 18 £z m,
then Ax, 2.1, 2 =>/Q =m = PR \iPO. However, Th, 2.1 =)FR = PO, a contradic-

tion to the non-collinearity of P, Q, and R, Consequently, S is uniocue,

Tt is also clear that Ax, 2,3, 4, 6 and Th, 2.1 5 parallel lines have
+the same number of pointe,

We are now in a position to state the following definitions,

Definition 2,1 If fZ]_ and ﬂg gre distinet lines intersecting in a point P,

then the plane TFX 1,:22 is defined as gx ‘xe (mlﬂ mz), mi\\ﬂi (i -1, 2),
min ﬂ;,e?& g for i“‘?’j(}.

Definition 8,2 ,@ ig a line of the plane _‘T /Q 1s 12 if and only if there

exist distinet points P and Q such that P, 0§ (LN W Zl,g Ve

Yie remark that PE]TX 19 Ay as one need only let m; = "ﬂi (i =1, 2),
Also any other point of ﬂl U)eg is inK B 1,1 o by Cor, 2.1.1, Ax, 2.3
then guarantees that .«el and ;4 are each lines of T\—j 1, ,Qz. The next

theorem exbends these comments,




Theorem 2,2 (i) With the notation of Def, 2.1, mlﬂ m, contains exactly
one voint, (ii)ﬂgn ny 9= B, -Qll\ml '-? my is a line oi‘"iT /Q.l’ X o
Proof (i) Unless m 1 = /Ql or m , = /Q, o, Ax, 2,6 and the comments immediately
following it ’> ml(\! fg -%S‘S where 8 ig & unique point,
Iftmgq = /Qi (i = 1 or 2), then nl(\ mg is either m 10\ Jz?,i A Mo,
or le N X 0. Using &x, 2.1, 4 and,Ql %./Q 0, we may readily show that these
sets eééh contain exactly one point,
(ii) Suppose ,Ql/‘] QQ\j m}_‘ Xl and n r\’e? —Q‘P} By Ax, 2,3, there
exists a point R ¥ P such that RE m,.

Now by our comments after Def, 2,2, we

. ny R may assume /Ql & my, Hence, by T, 2.1,
/ mﬂjzﬂﬁanﬁ“PO aR
! 1A i Sq P, 0, and are non-
” collinear, Then Ax, 2.6 allows us teo in-
S
() /Q, 1 4 fer that the line through R parallel to

Rz interssets :qu in a unique point S,
By Def., 2.1, we may conclude that r& le,
44?2. Sinee P& ""\.R 1,»Q2 by our comments

attor Def, 2.2, Dof, 2.2 D my is a line 7 A7, X,

Axiom 2,7 If JZ and 1 are any lines of any plane such that /Q--urm, then

there exists a point P such that P& (Jﬁ m).

As,?*%m -JQ-‘?-’? m, Ax, 2,1 'l)' P is unioue,

Theoren 2,3 If ,Q ig a line of %the plane -T;Q, 1 ,Q o, then for any vpeint

P, P(_ﬂ) € “/{)1"’62.

proof: If || 4 |, then mx. 2.4 ana Th. 2.1 smply MM 5. As {5 is a line

of 1\21”@ o, we may infer thatQﬂ/Q -7{: B. Ifﬁ(\ﬂg»&'ﬁb then T

& T\' , as T& /?2. For any point R ef}? such that R 55T, we may apply the




proof of Th, 2.2 (ii) to show thet R € 7 -4 1,&- 5.

Since ;T«Q»}_’.JQZ = _IT’QB’-/Q‘J_’ the above argument takes care of the
case L H,@g as well,
, We may now agsume zQ-‘H"»Q,;, {1 =1, 2), By Ax, 2,7, there exist points

Q end R such that ,Qn.,ﬂ_l - {Q} , Bnd n ,Q.z = {3} . Denending on whether

'Q T R, we have two cases to consider,

Ir =R, then JNAp = ({Q‘), by Ax, 2.1, As s a line of T -, v
,Q.z, there exists a point A€ (ANTN)
such thet Az 0, Let my, m, be as
in Def. 2.1 as apnlied vo 4,
w36 (L, m,), then kx, 2.6 as
applied to Q, A, and B allows us to
conelude that the line through B

parallel to AQ intersects 92. Heneoe,

Bé?Tj_g,.z, since 0 &G Wu@z,ﬂ,
and A Q 2)%125‘:’:},@2 N,z
D B AL, DoF B, it follows
that 4 1 is a line of ?T/Qz,ﬂ.

Now & -ﬁ—ﬂ. 1,«Q&?. For any point

c%q of X, the line through C parallel to £, is a line of TR z,ﬁ by

Th, 2,2 {ii). This line (ng in the figure) is not parallel to 9.1, and &0

Ax, 8.7 é‘)(ngf\\h) contains a single point D, As Q ?— ng, the pointe

Q, C, and D are ﬂon-colline;w, whence Ax, 2,6 =§' the line through C and paral-
lel to fj intersects . p. By Def. 2,1, it follows that C& T[}Q 1 ﬂg and

so the theorem is proved if Q = R,




However, if @ % R, then suppose Jl lﬂi 2 =§I’\!. It is eclear that
o, €A 5, Rana ot ». s, A
is a line of i uQ . ,Q and the proof may

f now be completed as 1in the nrevious case

with the use of 4&x, 2.6,

s Ky
We note that an immediate eonseguence of Th, 2,% ig that the point P

of Ax, 2,7 is in any plane of which ,Qand m are each lines,

Axion 2,8 If i end -ET
e 2

PE (N lﬂ Tz ), then there is at least one 1line [} such that R is a

are any planes and P any point such that

line of both Tfl and T\—B' |

Ye shall see that Ax, 2.8 is the vrineipal reason that @_ is three-
dimensional,
Axiom 2,9 There exist (at least) four distinet non-c¢llinear, none-
coplanar points,

From this particular existence axiom, many interosting results fol-
low, In partieular, Cor, 2,1.3 :> not all lines are peamllel. The 2.3 im-
plies not all lines lie in the same plane, Ax, 2,9 clearly implies that
every point lies on at least three distinct lines, Conszeguently, non=
coilinear points must be distinet, Furthermore, non-corlanar lines must
be distinet, as any line PQ lies in a plane determined by 1t and PQ and PR,
where R is a point & MQ, the existance of R being guaranteed by Ax. 2.9,
Lomma 2.4,1 If R, is a line of T,Ql,ﬂz such that R, | % , then
LR, 2T A A
Proof Since /QIH"/Q o Az, 2.4 =‘>~’Q iH— -’Q.3 and Ax, 2,7 é}le inter-

sects,Q % in a unique point, P, Thus 'E-X- 1,/Q 5 18 defined,



Without loss of generality, L o o= j. e Let R be any point of
T/Q 1,»/Q4 o such that REG (’Q 1U X = ). Suppose that the line mg
through R parallel to J\g intersects wa in the point T, (T exists since
RE 1T l"’Q ole As p&: mo by Th, 2,1, it follows from Ax, 2,56 as ap-
plied to R, T, and P that the line through R parallel to .,Ql intersects
Az, TsRE T R l’j s » It is clear that all points of —.Tj 1s
.;Qg that are in (R 1U,Q z) are also inT\-JZ 1,’6 e Consequently,
7L, R, & TR,L

Now, Th, 2,2 (i) 2> A 5 is & line of i .ﬂl,VQ 5+ Repeating the
aﬁove argument, we have ‘;TJ 1 /Q . & 'ET/? 1 ,/QB. Hence, T\— Jl’

JQ?) - Ti-/Q 1:‘ﬂ3'

Temma 2.4,2 If 25 is a line of T/Q 1"2% such that ’0‘5 /)Jl =

25/}-/&3 :‘/Qlﬂ/q»?.:then_ﬁ./q,2"’€5 - ‘H/Q 1,"(2-

Proofl Since '?1” /Q 5 contains a single point, ﬁ-\,Ql,XB_ is defined,

Iet R be any point ofT{&Q l’/Qz such that R & (/Q_?Uﬂg }, T

he

line through R parallel to £ 5 (denoted m, in

the figure) intersects f 1 since R Ew R 1*

by Def, 2,2, Sinee -.Rg n LQ 3 contains a

2 os Supvose mg (] .,Ql :{S} . IfR=S8,

then mg is a line of Tf L 1, /e? by Th, 2.2(ij)

If R% S, then m, is a line of";'{‘,ﬁ 19/2‘?

single voint, Ax, 2,3, 4 and Th, 2,1 9"2 2

-3‘3‘_}5 =>'VQ1¢/€.3. Conseguently, Ax, 2,7

:> "Qlﬂ"'q‘:‘j % ¢ . If JQZ A,Q,S :{P} and m,, /\,Q. 3 n{@,} , then Ax,

2.1 é Q@'w@z gince /?2 % . Heneg Ax, 2,6 applied to P, Q, end R in-




plies that the lins through R parallel to "’Q‘S intersects aQ.?,. According
to Def, 2.1, we have shown R& T\‘ /Q 2,/25 . As in the previous lemma,
TRA L T Ao ke

By the reasoning Qf the previous lemma, the wroof will be complete if
we show that f] is a line of T A 2,43, with the sbove notation, 1t
clearly suffices to show that S& 1| 2 2, VQB. e already have S € m, \
;/Qg such that mgﬂ ,Qg = %QB‘ Wk @#, It only remains to vrove that the
line through S parallel to fg intersects ./Qg. As above, this follows by

M. 2.6¢

Theorem 2,4 If ml and mB are any two distinet intersecting lines of

_3“./?1,/@8, then_ﬂ' jl, Xz - .Tr Tﬂl, o,
Proof Sunpose that mln mg 2{ P) and P& ny H/Ql (1t =1, 2), By Th, 2.3,

PR '91’ 2, ana so n, () /Ql_;/g, nln jz / . Then either by Th, 2.2

: (i) or Def, 2,2, n,

lines ofT\- /? 1s /\92. Lemma

and nE are

2.4,1 implies '}\" ’el’ 1? =

o

_{\—’Ql’ ng = T HBJJZJ. -

T ne, n,, ¥rom the hypotheses,

it follows that ml and m? are

each lines of | =n,, n,, With-

out loss of generality, ni% my (i, =1, 2), Then Lemma 2,4,2 implies W ng,

ny = T my, ng ® T mng, My, Thus hy ‘Ql: 2 - | ™M, my and the proof is com-

plete,

Corollary 2,4,1 If P3, Pg and P, are non-collinear points, then there exists

a uniocue plane"ﬁ' such that Pi&_{f (i= 1, 2, 3).




1a T

Proof (i) There exists at least one such v , namely T P P2, T To

8 3°

verify this one need only guarantee Pi$ P § whenever 13 §, This follows

Trom our comments preceding Lemma 2,4,1.

(ii) YWe must now show that there is at most one such -[T e This fol-
lows from Def, 2,2 and Th, 2,4 as any such jj equals i Png, P P
Corollary 2.4.2 For any point P, and line ,quch that P1@¢,Q , there exists

exactly one plame ] such that pE i and,Qis a line of _{{.
Proof (i) By Ax. 2.3, there exist distinet points P& AL (1 = 2, 3,
Since Pl% K, we have PyPp and Py non-collinear, The preceding corollaxry
implies that there exists a plane W~ © such that Pie I T (1=1, 2 3),
Since Py 7% Py, Def, 2,1 F A is & 1ine or T ¥ Henae T ¥ i o satis-
factory || .

{(11) We now show that there is at most one such j|, for any satisfac-
tory j| must contain P; (i = 1, 2, 3) by Th, 2,5 and so by Cor, 2,4,1,
is unigue,

Corollary 2.4,%3 Any two distinet planes interseet in sither the null set

or a line,

Proof  Suppose two distinet planes have a non-enpty intersection. By Ax,
. 1\

2.8, that intersection contains a line A . However, no point not on /Q,can

be in both planes, for such a point, together with ,Q, , determines a unique

plane, by Cor., 2.4,2. Of course, the intersection of two distinct planes

may be enpty,

Gorollary 2,4.,4 TFor any two planes —ﬂ-l and 4 , ® = _\Tz =y (for any
2 1

<

line R, Kis a line of T}@?'Qis a line of "ﬁ' 2).

Froof (1) If 15 #gs then 4/, and 4 o contain the same points which

by Ax, 2,1, 2 determine the same lines satisfying Def, 2,2,




{ii} If Tl %+ 71—2, then there are two cases to consider,
It LN o =@, then if TR “ﬁ“"ﬁZl,ig , it iz clear that 4, is

a line of ;\l, but not of W,.

Otherwise, ﬂ—l N 7}72 * @ '=> iy n _ﬁ_g = m for some line m, by the
preceding corollary, As any plane conbains three non-collinear points, ﬁe
mey suppose that Py, Pp, and Pz are points such that Pié:ni(i.= 1, 2), P3
’ éi m, and PiGE ?T.l (i =1, 2, 3). Now, Cor 2.4.,1 implies that P; (i =1,

2, 3) unicuely determine a plane, which must be Tri. Since 7T]4¢>’?T by
4 2

o]

assunmpbion and Piﬁi'TTg (i = 1, 2), it follows that P5€£ 'Trg, whence P.Px

1
(or indeed P Py) is a line of —“_1’ but not of jj .

‘Corollary 2,4,5 There exist at least eight distinet goints.l

Proof By Ax, 2,9 and Cor, 2,4.2, there exist four distinct non-coplanar
points P; (i = 1, 2, B, 4), no three of which are collinear, aAx, 2.6 allows
us to complete the parallelogram of

Pl, Po, and P5 with the point PS' By

the reasoning of th, 2,2 (ii), P5 lies

in the plane determined by Py(i = 1, 2,

3), Furthermore, P5 is distinet from

Py, Pp, Py, and P,, since PspsnPle =

PpPy nPlPS Sfenda P, (i=1, 235

4) sre non-coplanar,

By precisely the same argument, there exists & voint P in the plane
6

of P; (i = 1, 3, 4) such that Py, Py, Pz, P4, P5, ond Fg are all distinet,

Similarly, P.

;3 (1= 1, 2, 4) lead to P, and P, (1 = 3, 5, 6) lead to Py as

indicated in the figure,

1 Essentially the same treatment of vor, 2.,4,5 and Th, 2,5 1s to be
found in [ 8t], whieh was published after the final draft of this theais,




Corollary 2.4,.6 Any two distinet lines ,Q 1 and ,?2 are parallel if and

only if they are coplanar and do not intersect,
Proof (i) Suppose JQ;L-'?&‘./QE and jl\\ﬂz. By Th. 2.1,/Q1 (‘\ 22 = P, Ax,
2.5 S distinet points A, B, C, and D exist such that A, BE4,, emac, D

&jg. By Cor, 2.4,1, we know that 4, B, and C deternine a unique plane

T CA, AB, Th, 2.2 {ii) implies that ,?2 ig a line of “ﬁ‘ CA, AB, However,

ng Def. 2.2 =}J21 is a line of | CA, 4B, Thus

11 and IJQ o are coplanar and the plane in

A o/
_-—A/'E——/ 1 which they both lie is, by Cor, 2,4.1, unigue,

Conlanar, non-intersecting lines are parallel, by Ax, 2.7,

Corollary 2,4,7 If fl_,and 22 are any distinet interseeting lines, then

they have the ssme number of points,

Froof Suprose jlﬁ 23 =<P>. By Ax, 2,1-3, there exist points Py (1 =

' 1, 2) such that P7 P, (1 =1, 2) and Py
¢ A , (121, 2), Tow it follows by Ax,
2,1, 2 that P1P2 is a well-determined line
of "\ K 1,_22. Furthermore, PyPg c?i“,eg, for
PP2 == [ =>P11’2F‘ 4 1 =42 NAL 1 =

P =P q, a contradiction, Thus Th, 2.1

implies PlPM’e o and we way show similarly
that P Pz“\-\\ﬁ 1.
Tor any point Q of /E)l’ Cor, 2.1,1 implies that there exists a unioue

1ine~JQ (@) sueh that p (@} \\ Ple. Since ,QQ,) iz & line of T\'Jl,gg such

that Q (QM 2, it follows from Ax, 2.7 thet ﬂ 3”4@ (@) is a single voint
% (0). Furthermore, the seme argument shows that TE ,Q’ 5 ;> there exists
v & L such that £ (V) = T,

Now, for any point W of ﬂg,‘.’n‘ =f (PS) -7 (Pé) implies that Pz = Py,



since the line through W parallel to Ple interseots oL 1 in a single point,
as Png%( /e 1. Thus f iz a one~to-one mapping from 'Ql onto »q 5 and the
proof is complste,

We note that instead of showing Té.ﬂ o % there exists VE:.E sueh
that £ (V) = T, one could exhibit functions from ﬂ 1 (resp.«g 2) into
22 {into Q 1} and then establish the corollary by appealing to a famoup
result of Bernstein and Schrosder,

“"Gorollary 2.,4,3 All lines have the same number of points,

Proof Suppose,Q 1 and& are two non-interseeting lines (distinct by Ax,
2,3), Vhere P is an arbitrary point of ‘El’ let 25 be the line through P
parallel to 8, If /el -&5, then it is trivial that Q1 anc'l/Q3 have the
same number of points, Otherwise, the same result follows from the preced-
ing corollaxy,

However our comments after Ax, 2.6 imnly that "Q?, and ,st have the
same number of points, Thus, the same is true of /Ql and ,Qg.

By Ax, 2.2, 9 it follows that at least one line, say n, exists, Now
every line either fails to. interseet m, intersects m in only one point, or
js identieal with m, The above comments, along with Cor, 2,4,7, establish
that all lines have the same number of points as m, and so, have the same
number of points,

YWe note that Cor, 2.1l.2 implies that all points lie on the same namber
of lines, The following result will also be useful.,

Corollary 2,4,9 Let T{' be any plane and P any point of Tf + 1T every

1ine contains exactly n points, then P lies on exactly n+~ 1 lines of .
Proof  Iet Jbe any 1ine of 77 such that P&k By Ax. 2.7, for any line m

of |j such that P& m, sither ¥ {{m or Q interseets m in a unicue point, If



Q and R are distinet points of /Q, then FQ7 FR, sinece ) = PR :>' P& QR
= X » & conbradiction, Thus there is a one~to-one mapping from the points

of IQ onto the lines of Tr through P and not parallel to ,? » A8 there is

exactly one line of -;T through P parallel to 2, the mumber of lines of _;T

through P is nd 1,

Definition 2,3 Any two.distinet planes having an empty interseetion ave

sald to be parallel, For the sake of completeness, we define any plane %o
be parallel to itself and any line ,Q. to be parallel to any plane _|T if

(_fﬂ 11} does not consist of a single point,

Lemna 2,5,1 TFor any planes -“—i (1=1, 2, 3), if iy

01 W, = ana if
7 e, ma o) T T T,

Proof  As “ﬁ‘ﬁ‘f“?i (i = 2,3), it follows by Cor, 2,4,5 that ',T} N o

and ;“"lﬂ TS are each lines, Since

sect, Howsver, they are covlanar (in 7 1). Thusg Cor, 2,4,6 imnlies that

O 7?5 = ¢, those lines do not inter-

they are parallel,

Lemma 2,5,2 TFor any planes Ti‘l (L =1, 2) and 1ines,z@i (1 =1, 2), if 1
N e =% A1 is & line or "g(l,/ell\ﬂg, and «?2 N, # 8 then { ,
is a line of “\ 9¢

Proof Suprose that /ez is not a line of _{{'2. Then J? o "'K? contains ex-
actly one point, say Pz. As “2 A ﬁl
= @, Th, 2,3 implies that ,(L /\T\‘l either
is empty or contains a single point, Ve

shall show that each of these alternatives

is untenable,




If jg /\“‘T 1 is not empty, suppose that 1t contains the single point
Q. 4s P& -}Tz and Ay is a line of .._\.\.l’ Th, 2,1 and —;Tlﬂ T? = § imply
Pods [, Thus fy 7 Kp and Th, 2.1 F 0% 0. By Cova. 2.4.2, 6, it
follows that the ];Q_ane containing Jg 1 and J?z is determined by jl and 4,
By the preceding 1émma, thisg pleane intersects T‘_l in ',Qﬂ_, and _irg in a line
through Pp and parsllel to {?L- Since Ax, 2,5 imvlies that this line is
£ o, it follows by Th, 2.3 that Q,E:(_T\-zﬁ “;T’l) = @, a contradiction,

If Xz ﬂ‘l-{ 3 = @, let Pz be any point of RB other than Pp and let Py
be any point of L3, As Py (i =1, 2, B) are non-collinear, Cor, 2,4.1 im-
plies thet they determine a unique plane, . Tt is clear that P,G ('[\'4[}
—\E) \\ (Té(\\ o) Now /an.n(flré:ﬂ '\'\1) are coplanar (in ||,), but do not
intersect, as ,Qg(\ T\"l =~ # by assumption, Hence Cor, 2,4,.6 => ,?2 i\
(&.*T:i N T73) ana Cor. 2,1,1 > Téﬂ Tl = XL' However, Po(= (‘{f"éﬂ Tg) I
(“'\r é‘(“ T]_) ="'Ql implies that TQ(}TB ’-boz, again by Cor, 2.1,1. This
contradicts the assumption that £ o is not a line of T?, and so the lemma
is established,
Theorem 2,5 Parallelism of planes is an ecuivalence relation,
Proof The only non-trivial part of this theorem concerns the transitivity

——

o . Tet T ; (1= 1, 2 B) be any planes such thet Tzf\i'{t"j =p (5=1, 3),
e
the line through Ps parallel to £ . Let

s ¥ T:S , then /\} 77.3 is a line {. Tet Py be any point of and m

1

. ‘>ﬂ Pg . n be any line of _ﬁ? through P, such that
il ‘ i i

n #m. {We have not claimed that m is a

line of Tg. Although Lenma 2,5,2 implies
Yhat it is, the existence of n follows simply
from the fact that every nlane conbtains

at lesst three non-collinear moints,)




Let Pl be any point of ﬂan& », the line through Pl and parallel to n,
A8 p }\ n¥ mﬂ/Q, Ax, 2,4 and Th, 2,1 inply p\M and so u# /Q; However,

.

the immediately preceding lemms implies that p ig a line of both | » and

3
T\-l . Since p ;fjans { is & line of voth iz and —li—l’ we may infer by Th,

e —

2.4 thet 1 = T\—X, » = Kz, o contradiction to the assumpbtion T;ﬂcﬁﬁ .

[

thus 1 Trs and the proof is complete, With resard to the conditions of

Lemma 2,5.,1, we note that Th, 2.5, | 2“ i 3 - g, and i 11\k-“_g => _i\_ 1“\
_\Ta. In other words, we may infer that if any plane _\'\‘1 intersects another
plang _]T? in & line ,e 1 then “{Tl interseets any plane parallel to “iT? in a

2 ,
line such that /(1 I\ ./? 24
Gorollary 2,5,1 Given any plane _ﬂ' and point P, there sxists exactly one
X
nlane | containing P and parallel %o Tf.

¥
Proof (i) If PE i » then l{ is clearly a satisfactory | , lMoreover,
X X
no other vlane ij could suffice, as Th, 2,5 and Def, 2,3 imply f\ =
Y

o |
(11) Suppose P& I , where T may be defined as ,.\i. RS, S0, By
Ax, 2.5, there exist lines)?and m such that PC (§ [} m),.f" S0, and m liRS.
The non-cellinearity of Q, R, and 5, along with Cor, £,1,1, implies f #m.
HWe now proceed to show thst TJ? , m (which exists by virtue of the fore-
going remarks) is a satisfactory Tx.
If—ﬁ-ﬂ, m%-\r s then—(:\-/Q s mandT

P\,_é
m/ — int erseet in & line, say s, As 8 cannot
T é : be parallel to both J? and m sincei :5& 1,

n we may suprose without loss of general~
5 p———Q
ity that s--\*,Q » VWhere T is anmy point of
R

s, the line n through T parsllel %o /Q is

o

distinet from s and lies in both || and

T"Q«, m by Th, 2.2 (i), Ax, 2,4 and Th, 2.4,



It follows by Th, 2,4 that T = (Y s, 0 = -;T/( , M, a contradietion to the
4

assumption || Ve , m-i- _;T. Phus T\—R , m is a satisfactory | .
hias
Furthermore no other Tr suffices by Th, 2.5 and the argument of
part (i) of this proof, -

Corollary 2,5,2 Thore sxist at least twenty-eight Aistinet lines,

Proof Ue continue the argument of Uor, 2,4,5, There are clearly at most
tyenty-eight distinet lines determined by taking combinations of Pi (1 =
1-8) two at a time as repetitions may occur., We now proceed to show that
repetitions do not ocecur,

The argument of the preceding corellary proves that the plane eontain-
ing Py (1= 1, 2, 3, B} is parallel to, but @istinet from, the plane con-

taining Py (j = 4, 6, 7, 8), It follows that every line of the form Pj_P:J

(i, 3=1, 2, 3, 5; 1 % J) ie distinet {rom every line of the form Pin
(i, j= 4, 6, 7, 8 1% j). Furthermore, no three of P; (1 =1, 2, 3, 5

or 4,6,7,8) are collinear, by the considerations of Cor, 2.4,5.
It only remains to vrove thet all lines of the form P;P. (i =1, 2, B,
J

B3 =4, 6, 7, 8) are aistinet frorm each other and from each of the pre-
viously enumerated lines, This follows sinee any such PiP 3 intersects the

planes of the P; and the P, in one point each‘, by virtue of Th, 2,3,
Corollary 2,5,3 Let P and'Q be any vpoints and T any plane such that P

= \

s Q E -iT « Then the plane through P parallel to I} contains all the lines

through P parallel to lines of || through Q,

Proof: By Cor, 2,5,1, the plane through P parallel to T exists and is uni-
®
que, Denote this plane by | . Let ,,R be eny line of —iT such thet Qé:/q .

/ Further let m be the line through P parallel to
- x
- / JQ . We proceed to show that m is a line of ‘\ .

By Cor. 2.4.6, 2 and m determine a plane, which

//’T':Z/ by Cor, 2.4,1 is unique, If this plane is dnoted
/‘PQ/ T a2




BN ¥ T S

X . _ x
{(n () it 4) ” (114(\ ” ) -)z by Lemma 2,5,1, As PC, n “
. ¥
il 4) , Cor, 2,1.1 implies that W ﬂ —T “mend som is a line of |t .

sorollary 2,5.4 For any points Pi (i =1, 2, 3) andplane —ﬁ_, P5€ —[T, Ple

A'ﬁ" =g 17 PP, is a line of the plane through Py and parallel to .,
Proof Let ﬂ be the line through P:5 parallel to P1P2- By virtue of the jpre-~

ceding eorollary, it suffices to show that fgis a

Py

line of 1, By Cor. 2.4,6, fand PyPy determine a

plane, which by vor, £.4,1, is unicue, If this

plane is denoted by T\-.l’ then —‘Tln -ir is a line

,ji-'—‘/ m through Pz, Asm f] PPy = § and m and P;Pg sre
lines of 51‘ s Cor. 2,4.6 % m H PyPs, whence by
A%, 2.5, X =n. since _ETl I =4, K is a 1ine of i and the vroof is
complete,

Corollary 2.5.5 For any line 1 and »lane T s /\7’ if parallel to T\_ if and

only if there exists a line m of "ﬁ’ such that ;Q U m.
Proof It is clear that the only non-trivial case is /Qnot line of \\ .
Now, if Xis parallel to 1| , INF = ¢ and so the vreceding result
implies that /’?is a line of a plane parallel to, but distinet from, ]T' .
Henee, Cor, 2.5.5 f‘—"?’ through any ppint of ‘}T, there exists a line m of i
such that ¢e ﬂ m, Thus there exists at least one sabisfactory m, (Indeed,
there are obviously meny more}.
Conversely, if there exists a line m of T{' such that /Q H m, then Cor,

2.5,3 >£ lies in a plane parallel to, but distinct from, T . Thus VQ (] i

* ¢, whence xeis parallel to |l .

Corollary 2,5.6 TFor any distinet lines «(1 and /Q? and nlane 'Tl. , if

1“}2;; and /Ql ﬂ T\" containg exactly one noint, then z '20 "',T contains

exactly one point,




23

Proof As Qlﬂ ’;T containg & single point, say Pl, then T?, the

plane of )1 and /62, intersects 3 in a line A3 such that PIE'-’Q?,'

Corollary 2,5,7 If Ti (1 =1, 2) are any vplanes andﬂ any line such that

Tln -4'-1"2 = ¢ and ‘.,? I\Tl contains exactly one point P, then ﬂﬂ sz con-

teins exactly one point,

Now if _ﬂ_ﬂ /gg =R thenjz mdﬂg
are coplanar (in _‘\‘2) but do not inter-
sect, Hence, by Cor, 2,4.6, L o “j 2,
As [l“fz by assumpbion, Ax, 2.4 :\/‘.
R1Y Az, since 2 & (£, NA,), .
2.1 '-?,R 1= 25. This, however contra-
dicts the assumptien that Q 1 n F =
fS;Pl—B, because of Ax. 2,3, Thus X
(\_ﬁ- s ¢. On the other hand, ,,e 9 ﬂ
Tl- cannot contain more than one point,
The pléne determined by //? p and /Qz is
the plane determined by { o and P, since
L0Rs=9d e &L, vy 2.1,
IfﬂzﬂT - fzthen?z = n;T,a
contradiction to the assumption that

T =L = T




- Proof  If f ﬂ_;r 5 = @, then Cor, 2,6.4 implies that ,Qlies in a plane

parallel to 1| . It follows from Cor.
/ 2.5.1 thet A lies in Ty, as {7 is the
T unioue plane through P parallel to Tr?,'
This however contradicts Def, 2,2 and the
assunmption about ﬂ “ -ﬁ—l' Consecuently,
_ X0, - g.
If ,Qf] Tz = j, it follows that /zﬂ Tl = ¢ (since TPQ T\.l =

@), a contradiction. Hence {(\ il o conteins exsctly one poinmt, a8 it is

¢lear from.Th. 2.% that all other possibilities lead to contradietion,

We note that the last two corollaries show thet if a plane is pierced
by one of two parallel lines then it is wpierced by the other and thet if a
line pierces one of two parallel nlenes, thenit pierces the other, These
facts are important in those special cases where one wishes to introduce
the notions of the normal to a plane,

Corollary 2,5,8 If ;:\ is any plane and L is any equivalence class of paral-

Jel lines, then _lr end I have the seme number of elements,
Proof {a) Let jbe any element of I and suppose there exists a point P
such that ﬁ n_ﬂ— =<P>. Then by Uor, 2,5.6, for eny line m, if m& I,
then nm N —IT contains exactly one point. It is elear from Th, 2,31 that /q ,
m& L, JQ A om *?f /\ W ¥ n ﬂ T . Thus we have displayed a one~to=-
one mapping from I into T . This mapping is c¢learly onto —[T as wells that
is, Ax. 2.5 é for any point Q of Tl" , there exists qeL such that Q& a.
(b} Let Tl and 7\_2 be any distinct planes. (Such nlanes exist by
Cor, 2.5.1l.) If P3 eand Pz are any points such that 1316 "TI“], <:> i=1],

then the line PPy clearly pierces both 'T\‘l and —ﬁ—? , by virtue of Th, 2,5,




By ease (a), it follows that —;T 1 and T? contain the same aumber of points,
(¢) Let Ave any element of L., By the above, we may assume without

loss of generality that ,Q ‘(\—“’ does not contain a unicue element, There

are now two possgibilities, Either «Q(\T /(/ or Q(\ v =4, If,Q n_T

= f, then by Cor, 2.5.4, £ 1ies in a plane “1 such that i\l‘\ \. Since

case {b) -7 “ | and gl have the same number of points, it clearly suffices

to suppose that ? W = j.

If P is any point of {, R is any point of || not in Q) and S is any
poin 'Ir' then Cor, 2.5,1 9 P, 4i1‘-:\:, and S determine a uniocue plane —[TI ’
which, since S&, R ana XQ W, is not identical with [| . As case (b)
shows that “ and _T have the game number of elements, we need only
prove that the same is true of L and “'x . By case (a), however, it is

X
enough to establish that A pierces T . Tinally, we know )a:ierces 1\

since P& (R Pﬁ\} ) and since J?(;: (£ [\Tx ) '}2@ Tx "> o= Tx
(vy Cor, 2,4.2 as applied to Xan& R&/Q),r a contradietion, Thus the proof
is complete,

Ve note that Cor, 2.5.8 proves that (1) all planes have the same number
of points and (2) all equivalence classes of parallel lines have the same
ndmber of lines, by allowing “— and then L to vary, The next result pro-

vides two ways of determining this number,

For the remainder of the corollaries of Th, 2.5,&1}1 denote the number
of points on any line,
Corollary 2,5.9 IBvery plane contsins exactly n® points,

Proofs (1) Let || be defined as W o, m. Then Def, 2,1 and Cor, 2.1.1
imply that for every poeint P of “ , thepe 6xists a unique line {of “ )
through P parallel to _#, As there are n such lines, each containing n
points, 11 contains exactly n® points,

-
() By &x, 2.6, if /Qf\m = '\P7 and Q, R any points such that PCR,

Qé m, and Q&P #R, then P, Q, and R determine a unique point T of 1. Now




A

Th, 2,1 implies that P, Q, and R determine the same point as P, Ql, and R

/]

if and only if @ = &1 and R = RY, Thus, exeluding the points of Je and m,

T contains (n - 1)® points, Since ,Qand m have P in common, the number

o

, . - B
of points in # is (n - 1)2-4\—2n - 12 n, as above,
We have immediately

Corollary 2.5.10 Every equivalence class of rparallel lines contains exactly

n2 lines,

Corollary 2,5,11 There exist exactly n2 4 n -+ 1 lines through any vnoint,

Proof TLet P be any voint and T\' any plane such that €6T. Now there

are n.- 1 lines of ”ﬂ‘ through P, by Cor, 2.4.9, By Def, 2,7, Cors, 2.5,1,
b'4 — ' X

4, and Th, 2.3, if —ﬂ' is any plane other than {I such that T n il

I .
then any line /chrough P not in [\ intersects ‘i in a single point Q.
X
Since T ﬂ-[T = #, there is a one-to-one mapping from the lires through
X
P not inT\- onto the points of “ﬁ . Thus the number of such lines is nz,
by Cor. 2,5,9. Consequently, the number of lines through F is n® A L1,

ag claimed,

Corollary 2,5,12 Every equivelence class of parallel planes containg

exactly n planes,
FProof Let /Qbe any line and i any plane such thei zQ pierces T\' « Then,
through distinct points of)c there are distinet planes parallel to T,
X

Furthermore, /epierces every plane parallel to 'ﬁ_ {otherwige, if qu\_ﬂ- -
@ vhere T\} \\ T, then Cor, 2.,5,4 implies j iz a line of _f—r, a contradic-
tion), whence there is a one-to-one function from the points of L onto the
sot of plsnes parallel 1o Tr Thus, the result follows,

Since Corollary 2,5.1 states that every point oleies on exactly one
plane parallel to a fixed planse, by considering plane _?'__E parallel to a fixed

T
plane {| , each '“— through a different moint of any fixed line,(piercing




Tr, we may prove.

Corollary 2,5,13 (? contains exactly n:3 points,

Corollary 2,5.14 TFor any plane —\T , || contains exactly n®4 n lines,

Proof If | is defined as i L m then there exist m lines of [ other
‘than R through every point of 5{ and by Axs, 2,1, 2, these are all distinct.
Turthermore, by £x, 2,7 and Cor, 2,1,1, there is a one-to-one mapping from
the points of m onto the lines of _\T that are parallel to}z. Thus there are
n such lines and _\T contains n {n) 4+ n = n2+ n lines in all,

Corollary 2.5,12 There exist exactly n*-{- n° + n® lines in é?x .

Proof Let || be any plane, Then the number of lines lying in some
plane parallel to W is n (nz-}a n), Any other line pierces "\T (by Cor,

2.5.4) and so is determined by one neint in \\ and one other point in sonme
¥, . _X —_— o
fixed plane '\T “ \\, \\ (\\ W= @, As each plane contains n points,
- 4
there are (nz)(n?’) such lines and so (nz) (n?’)-,b n (n?‘.}— n) = n 4 n5r.}— n°

lineg in all,

from Cors, 2,5.,10, 15, we have immediately

Corollary 2,5.16, There exist exactly n4'tn5 4= n? = nzq;.n + 1 equivalence

n
classes of parallel lines,

Corollary 2,5,17 TFor any line S\ , there exist exactly n+ 1 planes sonteine
ing.'f .
Proof By Cor, 2.4.2, any planc conbaining ,Q, is determined by a point not

on /e. Since any such plsne contains nz - 1 points not on :R, by considering

the total muber of ways of associating /E with a point not on /Q, we shall

8 _ n times, Sinee there exist

determine any plane through X exactly n
exactly n:5 - n points of ??nct on /Q , the number of planes through /Q is

ﬁB-D.:nr'\“l.
n~ =1



Corollary 2.5.18 For any point P, there exist exactly n2.-~ n-+ 1 planes

through P,

Proof Iet T be any plane containing P, Corresponding to each of the
nt 1 lines /\7 of —{l- through P, there exist n planes (other than _;\_ ) con-
taining R. By Cors, 2.4.3, 9, there exist (n+1l) n4. 1 = ng,;» n++ 1
planes through P,

" Corollary 2.5.,19 There exist exactly n5+ nz.;— n planes,

[N

Proof Ist I be any plane, The number of planes {other than | } which

on a

intersect 'T( is tho product of the number of glanes other than W
line/Q of T and the nmuber of lines in T\“ s that is n (n?i{-- n) = ng‘f- n2,
As Cor, 2,5,12 %/ there exist exactly n planes parallel to n, it follows that
there exist exactly n5-§-n3-g- n planes in@, .

#rom Cor, 2.5,12, 19, we have immediately

Cor, 2,5,20 There exist exactly 113 +n 4 1 equivalenee classes of parallel
planes,

-Remark Let us return once again to Corollery 2.4,5, By Corollary 2,5.1,
the planes determined by Py (i = 1, 3, 4) and Py {j = 2,5,7) are parallel
and distinet, Thus PyPgi\ PyPg = @, by virtue of Th, 2,3, However Th, 2.2
{ii) implies that P, (x = 4, 6, 7, 8) are coplanar, Thus, Cor, 2,4.6 allows
us to infer that PgPg A\ PyPg. In other words, Py (X=4, 6, 7) and By (m =
3,5,6) both lead td the same point, Pg, on completion of the respective
parallelograms,

By essentially the same srgument, one may show that PyPs “ P7P5. This
observation leads us to consider the folleowing important results originally

proved by Desarques,

Theorem 2,6A Let /Qi (i =1, 2, 3) be any distinet lines such that there

exists a point P& ({1020 Ls). Further, let Ay, Bi, C; (1 = 1, 2) be
any points other than P such that A1, Ao ﬁ fl, Bi, Bs & Je o, and C1, Cg

& X 5o Then if Alcl‘\ AgCp and A3B) | AgBp | 1t follows that B0 I{ BeCe.




Proof (a) If 4) = A, then AlBl‘\ AsBg => A]_Bl“ A4Bg. By Th, 2.1,
it follows that AlBl = AlBg- Denoting
the common value of A,B, and 4.Bs b
Ly A APy end A48 by
e ™", we see that m %L ,q 55 TOr m \\ ,Q 5

P /_4_ £y B) b P n=fe Gy 20 D uEL, o

Sai

‘\\

.
.\K ,é 3 / as AI:# P}, which contradiets the assump-

definition of m) :}fl = R, (by Ax, 2.1,

s

C
. B tion that £, (1 =1, 2, 3) ave distinct,

Sinece mﬂ_,e o, we have that m¥ ,E o, whence Ax, 2,2 implies that mﬂ fz
contains at most one point, Consequently, By = Bz, In genersl, it is clear
that A = A,%> By = B0y T Cg. Them, Ay = A, 3 By0; = ByCp and €0
the required r\esult follows by Ax., 2.4, Henceforth, we may assume Al#‘ Aoy
By ¥ By, and C1 % Csg.

If A1, By, and Cp ave collinear, then AyBy = A1C; 2> AgBy = A.0p, by

Ax, 2,5, As a result, Ay, By and Cp are also collinear, Similarly, it is

clear that the collinearity of Ap, Bg, and Cp imvlies the collinearity of

Ay, By, and Gi. KNow, if A3, B,, and C3 are collinear, ByCy = Alcl “ Aglo
= Bglo, proving the theorem in this case, Hencefore, we may assume that Ay,
Bj, and C; (i = 1, 2) are each non-collinear,

It is clear from Uor, 2,4,1 and Cor, 2,5.1 that the vlanes -ﬁ—BlAliclﬁl
angd TBPAE, Cohg are parallel, If their intersection is the empty set,
then Byuy (1 BgCy - #. However, BiC, (i =1, 2) are coplanar (in || ¢ 2’_Q5)
by Th, 2,3 and Def, 2,2, Then Cor, 2,4,6 implies that Blclu B2Cgp, the re-
quired result, Henceforth we may assunme .ﬁ_ B4y, C3aq - T BgAg, Cohz,

which common value we denote by " -T\‘ ",




(b) Let P’t be any point ETI‘ . (Pl exists by Ax, 2.9.) Dy Cor,
2,1.1, there exist unique lines m and n such that AEEZ m .;’—11?91 and B?E,n
“31?1- Now, Cor, 2.,5.1 implies that the planes determined by n, AZBP and

n, APB,, respectively are each parallel to T\- PlAl, BlAl’ whence ’Tf m, A_B

22
= _ﬁ' n, ApBp, which common value we denote by " | i"’ Fow m and n are not
P Py . :
1 _, parallel, for n \\n = A \ B1P)

Q
W

AP, = ByPy (bv Th, ?1))?

/ n

X1 Ay < l/ & (es AF By) by Th, 2.3, a
s 4 contradiction, Since m and n are

, ' .
. ‘_/_ . ,E o lines of “4— such that m Yen, Ax,

B
\\ 2 &€,7 implies that there exists a
£ 3

c1 C> unigue poing PB mﬂ . 1t is
clear from Cor, 2,5,6 that Pg GFW]T.

¥ow, Th, 2,3 and Cor, 2,4,1 imply thet the plane || 4, ;P A ¢y {(1=1, 2)

is
exist end Cor. 2,85,1 implies that they are parallel, Furthermore, they are
distinet, for the assuwmption that they are identieal, along with Cor. 2,4.1,
> s

implies Plf | s & contradiction,

Consider the line PP, If PP\ m, then Ax, 2,5 implies Py || PyA;
and Th, 2,1 > PjP = PyAj, However, as Plgé_ﬁ-, we know from Th, 2,3
that (P1P N 77) contains at most one point, Thus, PiP = PyA, '-'>
P = Ay, a contradiction to our assumvtions, As a result, PyP >5(m. Since

R 7. and Py determine a unigue vlane T XL 1» PyA; (by Cor, 2,4,2), it follows

from Th, 2,2 (ii) that P;P and m are coplanar, Consequently, as P.P {Fm,

it follows from Ax, 2,7 that there exists 2 unique voint Q PPlf] m) e

now proceed to show Q = Pg,




It is clear that Q %Az, for if Q = Ap, then Yh, 2,3 imonlies that

3 o0 A A, N

Blﬁz)! AlBl l\ A2B2, A]-P}_ ‘“Az Q - m, and *)lanes nqﬂ- Al PI’ P}_Bl and .-‘-\- m, n

Ple- _'\T, a contradiction, By a wprevious case, since P& (P

arve distinet, it follows that Py Bl “ Q Bg, Now 4x, 2.4 :>\Q Bo \l n, whence
by Cor, 2.1.1, GBg = n. Since Py, Q& m, nand m¥ n (for m+é n '-"-} m
% n), we have from Ax, 2,1 that § = Pg,

Y& have now shown that P (Png n Ahp ﬂ CyCs), APy \\ AgPo, A.C
fl 450,, and T\ 1 is parallel to, but distinet fvom (| A,0;, 4P, By a
previous case, it follows that CyPy ”CBPB. Finally, it is clear that
W P18y, B,0, is parallel to, but distinet from, | BaUz, n. Since P &
(Py Py} By By () ©302), 1By \\Png and 1Py || CgPp, we got B0, Y\ wa0,:
QuE.D.

Theorem 2,68 Let /Qi (1 =1, 2, 3) be any distinet lines such that /qll‘

PB\\jgo Further, 1let Ay & B, Cy (i = 1, 2} be any points such that A5,
Ag,{:—:_axl, B, , Bge £ 2, and Cq, 0 & 523. Then if 440y ‘i\ Agl, and

AyBy. \\ AgBg, it Tollows that ByCy \\ BgCs.

Proof  (a) The argument of part ( a) of the preceding theorem holds almost
entirely in this case as well, The only excepbions are the proofs that Al
= Ay =\/ BYBp and that ByC; (i = 1, 2) are coplanar., In the case now under
consideration, Ay = A2 % A8, “AlBg "-?] AlBl = A B {by Th, 2,1) and
sinee A;&X:g, AlBl%k o ﬁ) Bl = Bg since By, B & AlBl,,Q. Further-
more, B;Cy (i = 1, 2) are coplanar in virtue of Cor, 2,4.6. Ve may there-
fopé assume henceforth that Ay ¥& A, Bl# Bs, cl¢ Gy Agy By 4nd O,
(i = 1, 2) are non~collinear, and || AgBy, 4,0, = ] AgB,, A0, which come

mon value we denote by "T v,

(b) et Py ve any point @ T . (P . ;ots by Ax, 2,9,) By Cor,



2,1,1, there exist unioue lines m and n such that Azé m Ay Py and Plé

n il Xl' It follows from Ax, 2,6 that there exists exactly one point Pz&

(mn) n)., Now T\-‘ APy, ByB and 1 AgB,, m are parallel by virtue of Cor,
2.5.1 and distinet since any as-
sumpbion to the contrary implies by
Cor, 2.,4,1 that Plé. T, a con-
tradiction. Thus the case consider-
ed in part (a) allows us to cone

clude that PlBl “ stg‘ A simi-

lar argument shows i Al]?l’ {f}l(}l
is varallel to, bubt distinet from,

T APy, AC,, whence Plcl\\ P

2 a2 202'

Now the planes T\“ B1Cq» B:LP], end

T BaCs, BpPp are parallel and dis-
tinct, again by a similar argument, whence ByCp i} BoC, & Q.E.D,

Theoren 2.6C Iet -21 (i =1, 2, 3) be any distinct lines and Ay, By, Cs

(1 = 1, 2) he distinet poinbs such that A,, ABE-/Q 1s Bi1, BgQ,Q o and C1,
¢o& {3. If M1 | AgB2, A10) \’\ AgCz, BiCy \\ BoCg, Aud there exists a

unique point DE (ByBg [\ C105), then if Ay 3k A, and ¢, €& ABy, it fol-

lows that Dl AjAg.

Proof It is clear we may assume D7 Ag, for D = Ap ‘-‘-\) p& AyA,. Furthor-
more, as G 3= Cg, either D % O3 or D7 Cg.

For definiteness, we may suppose D% C,,

Farthermore, Azﬁi DGl for .L\gé Dcl = 0102

P M0 T A0, - 3 (by Th, 2.1) ?JZ 3

= AjhAp = /Ql: a contradiction, By Cor, 2.4.1

and Th, 2,3, the poiats D, Ap, C4 and Cgp de-




termine a unique plane || such that DAs is a line of K

Now, DA, A10y, for DAg || A0 D pa | Ay (by ax. 2.4) DDAy
= AgCp (by Th, 2,1), If D = Cg, then D ¥ Bp as the hyvotheses state Co
%= Bg. The line through ¢ parallel to Bgly is the line through C, maral-
lel to BoD, that is marallel to JZg » By Th, 2,1, the line through Cl paral-
lel to 22 is X o+ This implies that B1,By, and €, are collinear, Since
By 7 Bz it follows that By, Byy D, Gy, and Cp are collinear whence by Ax.
2.1, ﬁ o :’QS’ a contradiction, Thus D& Cg.

Since DAg = Ang, it follows that Agé: ,Qg =D 02. As Al lies on the
line through C3 parallel to A2Cg, it follows that Aléw? 3 Since Alﬁé
Ap by hypothesis, Ax, 2.1 5£ o= /%, a contradiction to the assumetions,
Thus DAk A1Cq, although both these lines are coplanar (in W ). It fol-
lows from Cor, 2.4,6 that there is exactly one point, say T, common to DA2
and AyCq,

Since D& (DA o [\ /Q 2“&5), 13101“ Bgly and Alcl\l AgCg, it follows
from Th, 2,64 that B17 || Boag. As azpy || AgB2 by hyvothesis, Ax, 2,5 >
By T ” A1B1 and Th, 2,1 =y ByT = A)B;, Consequently, Ay, T €A3Cy, AyBi.
As we are assuming C1&& A3By, Ax. 2l, 2 imply Alcl‘% A1B,y, whence Ax, 2,1
implies A) = T. 4s a result Ay = T @D Ap, whence DE AqAp @ Q,L,D,

Theorem 2,60 If R ; (i =1, 2, 3) are distinct lines and A;, Bs;, and

Cs {i = 1, 2) points such that Ay, Ao ffq 1s B, Baé ,?2 , C1, 026 .XS,
AqBy, “ AgBg, A3Cy “ AsCGo, B101 \\ BgCg, and BqBg “0103 then if Al*;s Az, AlA)
\\ B1Bg.

Proof: In order to verify that A;, Bj, C, (i = 1, 2) be distinet, it suf-
Tices to show that Al »?5 Bg, Ay % Cg, Azaﬁ By, and Ag%cl- As all these

cases are essentially the same, we shall consider only the first one.



- = - ‘ N _ B

It A1 = By, then L2 = BBy = Buy || B2he S Bypy = B, Comse-
quently, A;, By (i, j = 1, 2) ave all collinear, whence Ax, 2,1, 2 imply
Jeg_ :_,ez, a contradiction, By our above remarks, all of Ay, Bi’ ¢y (1=
1, 2) are distinct,

As AlBl 'd AoBo, 1t follows from Th, 2.8 (ii) and Th, 2,3 that AIAg and
13152 are coplanar, It is clear that the theorem is proved if we show A1A2
ﬂ,BlBg = ¢, If there exists a point Pg (AlAgn B1Bg), then Th, 2,6C implies
P& (C1C,), whence ByBp ﬂ C1Cg 7 ¢, Since BiBg JI G10p, it follows from
Th. 2.1 that ByBg = C1Cp. However Ax. 2.1, 2 imply Bysg =& , and 010 =
Xg, whence 22 = ,@3 » & contradiction to the hypotheses, Hence A4, f]

BiBg = # : Q.ED,



felo]

III vVectors: Definition and Elementary Préferties

Crucial to the following discussion is the notion of an ordered pair

of points, Where ()] = & ﬁ,j’lﬁ\,E} , we define the gst of ordered point
pairs to be the Cartesian product f xﬂo o -By definition, we shall say that
the ordered point pair (P, ¢) is equal to the ordered point »air (R, T)
ifrboth P= R and & = T, With regard to the ordered point mair (P, Q), we

shall refer to P (resp, Q) as its initial (resp, terminal) point, It is

clear that equality of ordered poinbt pairs is an equivalence relation,

Definition 3,1 We say that the ordered point pair, (A, B) is related by

a parallelogram to the ordered point pair (C, D) and write "(}i., B3

{C, D)" if and only if at least one of the following conditions obtains:

(1) A=Band C =D A ¢
° ®
B D
(8) A=C and B «D f. B
& D ¢ D
(3) AB¢-oDp, aBll cp, and AG \\ BD
A B

Obviously the "parallelogram" in the above definition refers to
case {3), which is,,in a sense, the only non~trivial (non-degenerate) one,
We remark that in case (3), all the points, A, B, C, and D are distinet, by
~ yirtue of our convention about expressions of the form "15? 16‘52" and by an
application of Th, 2,1,

We note in passing that ﬂis both reflexive and symmetrie, However,
the trensitivity of [] is not obviously twe in (L, If the enumeration of
points and lines in Cor. 2,5.,2 does in fact exheust @, the reader may verify
that [Jis transitive, If, on the other hand, there exists a line ,Q, contain-

ing distinet points P, Q, and R and if there exist disbinet points T and V




not on J) such that (P, Q) {1 (T, V), then by Cor, 2.4.1, Th, 2,2(ii), 4x,2.5,
and Ax, 2.7, there exists a point W& _{
such that TR // VW, According to Def., 3,1,
this means that (7, V) ]:1 (R, W), although
oF P AR D (7, o) AR, W. By vir-

tue of Ax, 2,9, we are guaranteed the exist-

ence of P, Q, and T, and consecuently, that

of V as well (by Ax, 2,6), Thus, it is
clear that [_1 is transitive (and hence an equivalence relation) if and only
if every line contains exactly two points, Since we shall see that affine
spaces with more than two points psr line are of considerable interest, Dis

unsatisfactory as an equivalence relation on y X ®.

Definition 3,2 We say that the ordered point mpair (A, B} is eguinollent
to the ordered point pair {C, D) and write " (A,B)"]‘ {C,D)" if and only if
there exists an ordered point nair (E, F)} such thaﬁ both (4, B)OQ (B, F)
and (B, *)|7(C, D),

A

It is clear that the symmetry and reflexivity of ﬂ imply thet I also
N

has these properties, We shall shorily demonsitrate that, unlike I:I, ‘ is

transitive in all affine spaces, regardless of the muiber of noints per line

in the space, Indeed, Th, 3,2 will justify our introduction of’/l\ .

Proposition 3,1 (A,B)‘f:}(c,n)e) (a,B) (c,D).

Proof  (4,B) 1 (4,B) by Def, 3,1, (2), whence by Def, 3,2, (4,8) D (c,D)
> (4,51 (4,3) ana (4,81 (6,0) 3 (4,81 (¢,0) : a.mD,
In anticivation of later developments, it is convenient to introduce

the notation O for the set{‘ (P,P)\ Pé_y} .




D) I (4,0)

Proposition 3.2 (i) (4,B)ix (C,D) and {either A = B or C =
- (8,D).

(11) (4,B) (M (c,D) and (either A = B or C = D) Y (4,0)
= (B,D).

Proof (1) If A = B, then we xay conclude ¢ = D, by Def. 3.1, (1){2).
Similarly, ¢ =D '-’> A 2 B, By the definition of ecuality of ordered voint
paivs, (A,C) = (B,D). Consequently, X€o0 => (vyux -<=7y€ 0),

(ii) By Def. 3.2, there exists an ordered point pair (E,‘E‘) such that
(a,3) 1 (®,7) and (#,F)1(C,D), If A =B, then ® =T, by part (i), By
repeating the argument, C = D, Hence A= B ;> ¢ =D, Similarly C =D
=> A = B, As above, it Tollows that (a,¢) = (B,D), Consequently, x&0
D (3N x £ vE 0.
Theorem 3.1 For any points, A, B, C, and D such that (A,B)'/]\ {¢,D} and
AB % (D snd any plane 1 containing A, B, C, and D, there exists points E
end F such that TE W , r& W, (4,31 (®,T) and (8,F) A(C,D).
Yroof By Def., 3.2, there exists an ordered voint rair (G,H)} suck that
(4,8) [X(G,H) eand (G,H)i3 (C,D). If G-G T, then since A# B and (4,B)
(e, H), it follows £rom Def. 3.1 that asllen, as 4, BE ’ﬁ , Th, 2,3 =>
all points of AB lie in \ , whence T > 6’& AB Z> AB % GH (by Th,
2,1). Thusg, Cors, 2.4,1, 6 imply that there is a unique plane Tx contain-
ing AB and GH, Since AB 3% GH, Th, 2,1 => s\t = g, whenee HE 4B, As
A,B, and H uniquely determine _WE by virtue of Cor. 2.4.1, HE T :->'T\_ =
T‘x ._Z_) Gﬁ'\_\', s contradiection, Consecuently, H “ T‘r and so if 6’%— ",
one need only let (E,¥) = (G,H) in order to prove the theorem, As a result,

we may henceforth assume without loss of generality that G C’:Tf . Under this

agsumpbtion, the above argument shows IIe -{r , on interchanging the roles of



(. end H,

By Axiom 2,10, there exists a point 8 €& | , Consequently, E% A
6;7{ , and the line TA exists (by Ax,
2.1, 2), By Cor, 2,1.1, there exist
unicue lines Enﬂ m such that B & {//
AB and BE m // EA, NowQ}g( m, for if
L7/ m, tx. 2.4 BA // 8D :') FA = AB,

by Th, 2,1, Hence by Th, 2,3, BA = AB '-> E & AB ? & _ﬂ-, a8 contradic-

tion, However, since /Q// AB, Th, 2.2 (ii) implies that Qand m are coplanar,
whence Ax, 2,7 implies that there exists a unioue point Féﬂ\ m,

t is clear from the above construction that (A,B} 3 (8,7) according to
Def, 3,1, (3)., Now the argument of the first paragravh of this proof shows
that T ¢ 1 ., If CD - GH, then Def, 3,1 implies (C,D) - (G,H) and CA // DB
since CD = GH '5;/ AB % GH t-\/ {A,B)¥Q (G,H) according to Def, 3,1 (3).
Similarly, AB = GH implies AC // DB. 1If GH is distinet from both CD and AB
then Def. 3,1, (3) implies CG //DH, GA // 1B, ¢D N aH = cH () 4B = AB/\CD -
#, whence by Th, 2,6B, CA // DB, Thus we have CA // DB in all cases,

As FF =ﬂ // BB // CD {by Ax, 2.4 and Def, 3,1), BA// ¥B w m, and CA //
DB, it follows from Th, 2,6B that EC // ¥D, In conjunction withﬂ // CD, this
implies that (E,F){1 (C,D) by virtve of Def, 3.1(3). As we have already shown
(4,B) {{ (E,F) the proof is complete,

Gorollary 2.1,1 (4,B)T (6,D), AB¥ D3 (4,8) R (c,D),

Proof With the notation of the preceding theorem, there exist pointe I and
¥ such that (4,B) I} (®,F), (&,7){3 (C,D), and AB% EF % CD% AB, Since
A# B, Prop., 3.2 implies Es6 F, As AB // TF // CD, EC // ¥D and FA // ¥B,
it follows from Th, 2.6,B tkat CA //DB, In conjunction with AB //CD, this im-

plies {4,B)Q\ (¢,D), the reguired result,




Corollary 3.1.2 (4,B)7 (¢,D) =) (4,B)j(c,D) or AB = oD,

Proof If AB £ CD, the result follows from the preceding corollary, The

only other possibilities are A = B and AB = €D, If A = B, it follows from
Prop, 3.2 that (4,B)T3 (C,D), Iastly, if AB = CD, there is nothing to
prove,

Corollary 3,1,3 If (A,B)’“ (C,D), then (1) A Z ¢ <i—‘f BZDand (28) Bs

br A =D =) AB = (D or A = B,
Proof (1) If (4,B) (C,D) and A = C, then either (A,B)T1 (A,D) or AB = AD,
by virtue of the last corollary. If (A,B) J {A,D), it follows Trom Def, 3.1
that either A =B and A =D or B =D, In either of these cases, we have B =
D, If AB = AD then,as there exists an ordered noint »air (E,F) such that
(A,BYI3 (E,7) and (2,F) 03 (A,D)) it follews that either AB = EF, in which case
(A,B) = (E,F) = (A,D) S B = D, or AB-$ EF, AB |\ T¥, A% (|BF and EA||FD. The
lagt two equations ihnply, via Th, 2,1, that BF = D, If F& AB then since
AB // TF, Th, 2,1 -'-> AB = EF, a contradiction, Consequently »& AB and so BF
7'1" AB, TFinally, B, D& AB, BF =¥ B = D, by Ax, 2,1, We have proved that A -
C % B =D, The proof that B = D «) A w C is similar and hence omitted,

(2) Let (4,B) (¢,D), B= 0, and AR B, By Pron, 3.2 (ii), we have
C3= D, Hence AB and OD exist and we need only show AB = (D,

If AB% (D, then Cor, 3,1.2 implies (A,B)TI (C,D), Under these condi-
tions, AB ![ ¢ and Ac !/ 3D by Def. 3,1, Since we are supposing B = ¢, Th, 2,1
implies AB = CD, é contradiction., Thus, with the assumption B = ¢, we have
shown AB = CD, ag recuired, The case A = D is handled similarly,

Ve now proceed to show that ? is transitive, In virtue of Prop, S.B(ii),
it sufTices to prove the following result,

Theoren 3,2 If (A,B), (C,D), and (E,F) are any ordered voint pairs not in 0

such that (4,8) 7 (0,D) and (c,0) 7 (&,F), then (4,B) } (E,T),




Proof (i) If AB F 0D and 0D BF, then by two applications of Cor, 3.1.2,
Def, 3,2 implies (A,B)T (E,F), as required,

(ii) We consider the remaining cases where exactly two of AB, CD, snd
E¥ are distinet, It suffices to vrove the theorem on the assumption AB‘.tCD
= EF, Then, as AB’«#GD, we have from Cor, 5,1,2 that (A,B) 7] (C,D) and so,
by Def, 3.1, AB “ CD and AC% BD, It follows fr_om Th, 2.2 (ii) that A, B, C,
D, &, and T determine a unique plane, say Tr « By Th, 3,1, there exists (G,H)
é 0 such that Gé}T , Héﬂf , (6,000 (1)
and (G,H) I3 (E,F), Thus CD YGH, CG || DH and EG

.

In particulsr, we have that CDFAB Y cHI
CD, AC | BD an@ CG [{Dif, Tt follows from Th,
2.6B that AG || BH, In conjunction with AB || o2 (which rollows from Ax, 2.4),
this implies (A,B)13 (G,H). Since (G,H)Q(ﬂ,F), Def, 3.2 allows ue to conclude
(A,B)T {8,F), as recuired,

(iii) Suppose AB = CD = EF, Without loss of generality, (A,B):}S(C,D)
#(2,F). By Def. 3,1 there exists (G,H)&p_ such that GH - AB, (4,B) % (G,H)
and {(G,H) E] (¢,D). By Prop. 3.1, (G.H) ']\(C,D), and so the preceding case im-—
plies (G.H)N(E,F).

Since GH JAB = IF, Cor. 3.1.1 implies

c H
that (G,H) [3(®,F)., In conjunction with
B ¢ \UD (4,B) (G ,H), this implies that (A,B)
Ad E I
) ki ) W kS ? ?(E,E‘)o

The nreceding theorem completes the demonstration that 1‘ is a symmetric,
reflexive, and transitive relation, that is, an ecquivalence relation, By a
well known result, it follows that the relation’i\ induces a partitioning of

r

the set of all ordered point pairs into mutually exelusive and exhaustive nen-



empty subsets called "eguivalence classes", Thig observation motivates
the following definition,

Definition 3,3 Any subset T of the detb E’x‘ﬁ’of all ordered point pairs is

gaid to be a veetor if and only if T is identical with exactly ene of the
equivalence classes covrespending toT inﬂ?x"@. A single vector will he
denoted by an underlined lower case letter, for example,V, The set of all
vectors will be denoted by \7’.

We shall now prove that \.Svhas a unigue renresentation at every
point P & ¥, -

Theorem 3,3 For any vector 'V and any point P, there exist unicue noints
Q and R such that (P,Q)& V. end (R, P)& V.
?f.?.?f. Weo shall establish that there is o unique point Q sueh that (P,Q)
& 7. The proof thet a unioue point R exists such that (R, P) &V is
similar and hence omitted, It is clear from Prop, 3,2(ii) that we may as-
sume V= 10 = O,

| There camot exist two distinct satisfactory Q, for (,0) 7\ P, Q)
:)1 = Qg, by Cor, 3,1.3, Thus it suffices to demonstrate the existence of
at least one satisfactory Q.

Ir (A,B)e _W and PE A B, then Ax, 2,6 guarantess the existence of a
point T such that PT “A}S and PA\ TB, By Def., 3,1, these relations imply
that (4,B) 7} (P,T) and so by Prop. 3.1, (A,B)D (P,7), Thus {P,T)E& V" and T
is a satisfactory Q. |

1f (¢,0)€ v and P& CD, let E be

3
E ! . any point %GB. Then Ax, 2,6 guaran~
‘. - ~
Z ! e tees the exisbtence of a point F such
¢ D P G that (¢,D)Wd (B,F)., Since E&;cn, it

is elear from Def, 3,1 and Th, 2,1 that
& u.‘uvzfs'g,/)
LIBRARY
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L, F, and P are distinet., Consequently, Ax, 2.6 and Cor, 2.1.,1 guarantee
the cxistence of & point G & OD such that EP | T¢, As ¥F || To = ¢D, we
have (2,F) 4 (P,G) and so (E,F}"T (P,G), In virtue of the preceding para-
graph and Th, 3,2, these relations imply (G,D)’f‘ (p,c}, whence (P,G)& L,
i':ith G gerving as Q.

We now discuss the first of the vector operations we shall consider,
that of vector addition,

Definition 3,4 Let\, and \J be any vectors (possibly U = V) end P any

point, Iet Q and R be the unique points such that (P,Q) &\l ans (q,R)

& v~., Ve define the sum of L and Y~ to be the unioue veetor (N~ contain-

ing (P,R} and denote W by YtV .

Theoyren 3,4 The sum of any two vectors & and _\_{" is well defined, that
is, independent of the point P of Def, 3.4,

Proof ILet P, Q, and R be any points such thab (P,Q)é:_(}; and (Q,R)é “\._):.
It is clear from Prop., 3.2(ii) that we may assume P 4: Q'Z’{i’ R,

(1) Suppose RGP Q, Let P! be any point such that P $ PQ, By Th,
%,%, there exist points Qt and Rt such that (P!, Q) e b, (0of, RY) e\
and Pt FRY, As (?,Q,) 4 (P',Q'} and PQ#‘ 101, we have from Cor, 3.1.1
that {P,0) (I(P',01). By Def. 3.1, it follows that PO liprar, ana'wfﬂc;@,?.,-
Thugs Th,81 implies that PQ('\TP'Q' = f, whence in varticular Q'&QR =F Q.
GConsequently, Q,'R'd: OR and, as above, we get QR |\ grr! ana Q! ﬂ RRY,
since Prot il PRz R \\Q’R', Th, 2,1 implies that Pt, O, end R! are col-
linear, Applications of Ax, 2.4 give P R “ P'Rf and @!P' |\ RR!' whence Def,
3,02 (f, )0 (Pr, rR') and Prop., 3.1 :> P R (P, R,

IfP” is any point of PQ, then the above argumeant shows that n \_):_
caloulated from P1t eguals Ut V™ caleulated from ®, since each equals UV

calculated from P!,



(ii) 1 P, Q, and R are not collinear then, by Cor, 2.4,1, they
ere contained in a unicue plane, say W » If Pt is any point such that Pt
§ Tf » there exist unigue points Q' and R' such that (Pt,Q!) é_g s (QT,RY)
€V ama prords Rr, 4s Th, 2,5 Horg

¢ _‘T, it follows that P'é" ™ and so Ptg!#

Qr .
Pt PO, As in ecase (i), we get M \\ Ptot ang PP
g, simitarty e \ PRt ang 22 | R, By
Rr¢ - Q
P ‘ Ax, 2,4 and Th, 2.6B, it follows that Q! ||

or end RR | 010, Thus, Der. 5.1 2 (P,R) 1
R
(P1rt) ana (P,R)T (Pt ,m1),

If P*'' is any point of _T , then \_’_\..‘}‘\[ calculated from P'! equals
L_E‘f’\_f caleulated from P, since each equals ;@4‘ \anlculated from Pt,

The reader will realize that the argument in case (i) of Th, %.4 es-
tablishes the following important resuld,
Prop, 3,5 Iet Y and U~ be any vectors and A and D any voints, Let B,
C, @, and ¥ be the unicue points such that (A,B)}E= _L_f\- s (B,C)E‘.\_{“, (b,B)
éll-‘—‘, and (E,¥7) Q _U:_. Then A, B, and C are collinear if and only if D, &,
and ¥ are collinsar,

If, in the notation of Prop, 5.3—, it happrens that A, B, and C are col-

linear, we say that the vectors _!J;_ and y_" are collinear or parallel and

write E(\ V_: . Parallelism of vectors is c¢learly reflexive and swmetriec,

Tn the Tollowing pronosition, we prove that collinearity of veetors is also
& transitive relation in a speecial subset of \9{

Proposition 3,4 If W ,_\_v"_ and\._A__f: be any three vectors, each of which inter-

sects O in @, then W [V} M“r\\_/_\f ‘éu_“_'“ W=,

Prootf By virtue of the preceding result, it suffices to consider the rep-

resentation of \Vat any point P, Tet Q, R, and T be the unicue points




guaranteed by Th, 5,5 such thet (P,0)&W, (Q,R)EV, and (R,T)& W .
From the definition of the collinearity of

vectors, P and T are each collinear with

Q and R, A4s f() 0 -8, Q¢R and so by
Axs, 2,1, 2 we conclude that P, ¢, R, and
T are collinear,
Tet X be the unicue point such thet (Q,X)& T, that is, such that
@, )7 (r,m). As{g{‘ﬂ 0=¢, RFT and so by Prop, 3.2 (ii), ok x, 1t
~ follows from Cor, %.,1.2 that either QX = RT or (Q,X)ﬂ (R,T), Since R-?éT,
Qi?‘:‘ﬂ, and Q€ RP, Def, 3,1 and Th, 2,1 imnly (Q,X)d (R,T), Thus QX = RT,
since W [\ 0= ¢, PF Q and sxs, 2,1, 2 imply PQ T RT, Thue PO = OX,
whence P, Q, and X are collinear, This »roves that g_. and iy ave collinear,
as claimed, _
Proposition 3,5 For any vectors W  \[7  ang W, ir _(,é:ll__\_[" s b}:ﬁ\\ﬁ_{', ang U~

[\9_ = ¢, then &”ﬁf- Q';\‘\_{i.

Proof Sinee 0 is collinear with every vector, it follows thet both W and
e interseet O in @, By Prop. 3.4, we may conelnde that l_{_"\}\\_\f . Assume
w iy -

Tet P be any point and Q, R, and S the uniquely determined voints such
that (P,Q)E_\{\_-. , (0,R)& \r- and (R,S)E W, Thus (Q,8)S U+, Since U
and Q:T each interseet 0 in ¢, Q#R '%S. Turthermore, Q‘%S, for @ =S =>
R, &0 DU \ W, a contradiction. Iet T be the unicue point such that
(0,T)& W. A4s Q%’-‘R li::.s #Q, the argument of Prov, %.4 proves QT = RS,
Sinee w. |\ y=, PQ = RS, whence PQ = OF and _Ug“ -, a contradiction. Conse-
quently, g\,_‘ﬁ\ﬁ—y_f_ , as claimed,

Proposition 3,6 TFor any vectors W and V" and any point P, if (P,0) & (A ang

(P,R) E\, thenid “ U~if and only if, P,Q, and R are collinesr,




R Proofs. _§np;éo"ge§_,njf » If (8,T)& VJ, then P, Q, snd T are collinear,
without loss of generality, R%P % Q & T and % R, Sinee (P,R)T (Q,T),
we get from Th, 2,1, Def, 3,1, and Cor, 3,1.2 that PR = QT, as in the vroof
of Prop, 3,4, Thus Q& PR and P, Q, and R are collinear,

Conversely, if P, Q, and R are collinear end if (Q,T) & U then (P,R)
%(Q,T). Without loss of generality, ik Q# r'_P# R and the above argument
proves PR = O7, Thus P, G, and T are collinear and Lk\hz . This completes
the proof,

It will now be shown that\sj forms an abelian group under addition,
Hore yprecisely, we have the following theorem,

Theorem 3,5 (i) For all vectors |,V and b , it follows that W+ W)
T (DS WT,
(1i) There is a unique vector _(_)_.jit such that, for all _‘[ & \y/,

o =gt o=y
(iii) TFor each vector{, there is a unigue vector Y ' (often de-

noted -\ sueh that Y=+ =W t+\r-= 0.

(iv) For all vectors I\ and lA}: , there is a unicue vector X (often
denoted W -|p )} such that X+ WU = W,

{v) For all vectors o and = W US IybL
Proof (i) There exist points, ¥, Q, R, and 8 such that (P,Q) ¢ \_}_ , (Q,R) &
Y, and (R,S)& (. Since (P,R)& (W ), we have that (P, S) & (M)
4 . However, since (Q,8) &~ T W™, we also have that (B, )& Wb (F+ud.
As any ordered point pair belongs to exactly one vector, it must be that (A 4
g = h e, _

(ii) Tet p_g be a vector such that for all_}[EV?/;: ,,354'9_1{ = Q_K*»u: =

U: . Tor any points P and Q, there is a unioue vector )J such that (P,Q) &

J. If (0,8)& 0F, then (£,8)&Q Y ¥ 0¥ =\ end Th, 3.3 implies that O = S,



Since (S,8)g OF , Prop,. 3. 2 (ii) implies that there is at most one satis-
4 factory p_x , nemely the vector O defined before as { (r,P) \P& 8)7}.

Let ys be an arbitrary vector and A any point. There isg a unique mpoint
B such that (A,B)&E (V" . Since (A,A)E 0! and (B,B)é (MJ'r, the reasoning
of case (i) allows us to conclude 0t T W =|N"4 0t =W,

- (114) For any vector y~ and any point P, there is a point § such
that (B, Q)€ V=, Ifg"' is defined as the vector containing (Q,P), then
Th, 3.4 => Uy = yj" #y~= 0, The uniqueness of Y°' follows from the
unigue representation of 0, for if (P,Q)e N (Q,R)& Jo ', and l[.""[' =0
then (P,R) and (B,p) are each in O, whence Th, 3,3 =>R =P and V' is
unigue,

(1v) TEXHF W =W, then X 2 Xk 0 2 xh (Ut B v) = (X4 ) F (")
= W“"’"_\’}". Thus there is at most ons sabtisfactory value of 2‘2. The verifica-
tion that | }_Ar +g ')'i"_% = W is straightforward and shows that a wnioue satis-
factory X exists.

(v) By (ii), we may assume that WFO X3

Assume _i{\,.H’ 0*, Let P be any point and Q and R points such that
(r,q) & \_Aand (Q,R)& {[>» Then by Ax, 2,5, 6, there exist unigue linesj and
m and unicue point Rt such that PE:,Q [@R, R@mn “ P, and g.ﬂm =°< R'S’. By

‘Def, 3.1, (BR') T (2,R) and (P,Q) § (R*,R)

P R .
P4 whemee {p,R')T (Q»_,,R) and (P ,Q,)’P (*,R), Con-
4 sequently, (P,RIG -+ W, W ¥V and so 4+ W
Q R .
=WV,
ir l{g\\ =, let W~ be any vector ﬂ_\}_. Then i,y_'ﬂj[-t W™, by Prop, 3.5,

Using what has already been proved for mon-collinear vectors, we find (.u.ﬁ_])“" )

P o=y (Cepr )= (b ) F W =Y e ) =R e = U



W )‘*‘_\L\_Y‘-‘ . Adding W' to the extreme members of this equation, we gst 54-
V=Vt W, as required.

since LI + (-4 D ST =R VR SIS * U:] = __\1_0*‘_0_ W, it 1s elear
that W4 (=Y ) =h - |7, It is also clear that -0 = 0.
Remark The commutativity of vector addition is esuivalent to the minor
theorem of Pappns: If )\'and m are distinet parallel lines with S, T, and U
distinet points oi‘i and P, Q, and R distinet points of «Q, then any two of

so || TR, TP {| Y9, and SP | R imply the tnira,




TV Scalars and Coordinatisation

Intuitively muliiplication by a scalar is a function yhich mmltiplies
the length of any line sesment representing any vector by a fixed number,
without changing the veetorts line of action, Using a theorem from Euecli-
dean geometry, we may make this notion more precise, It is well knovm that
if ABC is a triangle, B' a point on AB, and C' a point on AC, then BC \\ BIC
if and only if ABt : AB :: ACt : AC, This is the principal motivation for
the following definition,

Definition 4,1 A function £ from \?ﬁ.zﬁ:o \9! is a multinlication by a sealar,

or simply a scalar if and only if

(1) £ (0) =0 and
\ R . L ; C_\y
@ ) -t W) i, r enl MRV

\ The set of sealars will be denoted by P .

T

Proposition 4,1 Tor all scalars [ and all vectors _}_T, f (j_[’) and \Iare col-

linear,

plies that £ (V) = £ ()4 0=1 (Y )+ (x0) = () -0=2 (V) -¢
(,_\.\—')\\V:“M =y -0 =V + (-0 =yt o=\ . Thus f (u-)\Lv-.

Proposition 4,2 (i) There exists a uniocue sealar 0 such that O (V') = 0 for

an V& V-

(ii) There exists a unicue scalar 1 such that 1 (J Y=
ror a1l =& V.
Proof (i) Iet Dk_be a function from \9/ into \?/suc‘n thatc{: '}I > 0,
all IE: \j/. Certainly, there is exactly one such function, I% remaine only

%o verify that < is a scalar., by the definition of 0(, Q( (0)

0. Tor any
vectors W and f, we have@\(}_ﬁ-) - 0{(_\;) Z0-~-0 =_g+ (~0) 29_'\’_0_ =0

u l_é_. - _\Z’, since O is collinear with every vector, Thus Dl:satisf‘ies vef, 4,1

and so is a scalar,

48 o



(ii) The proof for (ii} is similar to the above and hence omitted.
Tt is convenient to have an alternative form of the defimition of
sealars in terms of parallelism of lines and parallelism of vectors,
Provosition 4,3 For any vectors Y,V ,y end 4, and any points P, Q, R,
S, and T, and any scalar ﬁ, ir WUk o, g\ﬂx\p_:, (PRl& W, (PR)ECT,

(5, SIS W, (B, )& Z, and P~= £ (b ), then Z = £(W) if and only if

TEPS and 50\ TR.

Proof: Let Y = £(Ud and (P,X) €Y. Then (,8)& W - U and (R,X) G

(W) =-f (M), Let Y be the uniocue
point such that (Q,S)/}\ (R,Y). Since 0
# WW Fo, 1t rollovs tat 0 F S,

whence Defs, 3.1, 2 and Ax, 2.4 imply

Q8 “RY. Since W -&\\ (W) - (),
Prov, 3,6 implies that R, ¥, and X are
collinear, Since QS // RY = RX, Ax, 2.4
implies SQfl xR,

Gonversely, it (P,2) &z ,7& P s, ama s \ o=, it follows thet % =
T (W. For if (P,V)C £ (w ) thenV, T & P S, VR by what has already been
proved, However, ES ¥ VR for PS = VR 2 s lsd m=s :'>\.L“ W, a
contradiction. Thus by Ax, 2,1, V = T and the proof is comnlete,

We now prove an imporbant theorem about the existence of scalars,
Theorem 4,1 O :{:__\j: 1\ \_f’g % \I_, 0 '7) there exigsts a scalar f such that U =
£ (M.
Proof We shall define a mapping f from Vinto Weuch that v~ 2 £ (%) and
then show that f isindeed a scalar,

For any o, & Y, it A T W , then supvosing that (P,Q)& W , (P,R)

& y~, and (P,S)@ L, it follows from Prop, 3.6 that the line through R




lines have a uniaue common point), Define

(i‘O__( ) to be the vector containing(P,T),

R
Set};ing ezide for the moment the cuestion of the images under I of
vectors collinear with _l_A_ , we show £ {ﬁ) - f (X) “ ‘@_ -g for all other
BYC 1_9/ » It B P, the result is trivial, by virtue of Prop., 4.l
1 g W, suprose (2,0) €k, (BRIE Y,
(P, A& B, (,8)& ¢ (@), (P,0)&Y, and
®,0)& ¢ (y). It follows from Th,2,64
that oA Il DB, Wow (¢,A)& g - and
e 0B E ¢ (B) - (). Ir 0,7 (0,4,
thenﬁ*"%_’ ;=> C 34‘ A=y DF N ca (from Def, 3,1, 2 and Ax, 2.4) =y DF

Z DB (from Th, 21) => D, T, and B ave collinear oY B -\ e @ - &),
by Prov., 3.6,

~ It now remains to define the image under  of veefors collinear with
’_U’:__ and show that, with regard to them, £ still satisfies Def, 4.1, It suf-

fices to show that if a vector _(:_ﬂ__q._ is employed to determine f (&) for

all _Q:‘Tei__“_\{_, the result is the same as if one were o use W \H\_C_:_ t{*_
instead of C_'._: . {Clearly, for all vectors ¥ and ¢, we must define f {0) = _f_)_.)
sunrose (P,0) € U, (PRIEYS (RAEY, (BBG £ (), (7,0)& &,

@, € £ (L), (PM)& L and (PN)E £ () vhere £ (& ) is calculated

by means of £ (). By Prop. 4.3, it suffices to show that AM NSN .

By our previous comments, CA l‘ DB and by construction, CH “DN. One may



verify that the conditions we have im-

posed on W\ and Y~ imply P#A, B, C, D,
]

M, N, Thus, by Th, 2,64, we get AM || BN,

whiceh proves the theorem,

Remerk  The proof of Th, 4.1 establishes not only the existence of a
scalar T but also the unicuensss of f, under the stated conditions, Now
if we omit the condition _l_l:% Vo, then, given i = ™, it is clear that a
satisfactory “g, namely 1, exists. In order to show that 1 is the only
sealar that fixes the non-zero vector W, consider any veetor _W'__N\’\\__l&_ and
letW = £ (). We need only show that © (W) = wr. If (PQ)&Y%, (P,R)
& W, and (P,5)&f (0¥, then Pron, 4,5  S& IR and R |l SR, whence @R =
SR and S,R & ¥S, Q8, As in the proof of Pron, 4,3, S =R and W™ = £ (i,
Suppose we omit the condition [-‘f—' 0 in Th, 4,1, Certainly, ify~ =0,
there exists a sealar £, namely O, such that 0 = f (W) ). In order to show
that O is the only scalar that sends the non-zero vector Y into 0, consider
any vector_“'\z\f%?\-_ﬁ' and let 0 = f {W. We need only show that 0 = f (w.
Let (P,0) & W, (P,RIGY and (P,8) K £ (W), It is clear thet (Q,R) &
Wooh, 2,8 &r (W) - (A), ana W
-Wle ) -2 (W, I (B 9) T 0,1 ana
R P-#S, then by the argument of Prop. 4.3,

P5 \\ QT, Furthermore, 0, R, and T avre col-

Q linear since W~ - W \\f (W -t ({). Now,
RAT for R =T 3 (P,5) (Q,R) > wll ar




*? Q& PR ﬂ} M “ “W_:_, a conbradiction, Consequently, QT = RT e s = e

\II/’

Q& PR, again a contradietion. Thus S = P, (P,P) € f (W) and £ (W™ )
= 0. The above corments establish the following theorem and corollaries,
Theoren 4,2 N \\ \..A.._. :IS 0 '-T> there exists a unigue secalar ‘6 such that
I U
Cor. 4,2.) For any scalar £ and any non-zero vector i, £ (V') =\~ 2
=1,

Cor, 4.,2.2 For any scalar f and any vestor VYV , £ (I~ ) 2 0 'Jb’f Z0or
Y = 0 (or both),

Q‘g_ng_.__b_z__.g There exists a one-to-one correspondence between 7 and the
points on any line ofﬁ.

' Proof By Cor, 2,4,8, it suffieces to prove the result for any line _/Qof

j. Let P and Q be any distinet points ofﬂ and Q , the non zero vector
'containing {P,Q}. Associate with every point R of , ,Q , the unigue scalar
£ such that if (P,R)C W then f ~ £ (W ), Since scalars are functions,
Th, 3.3.implies that no scalar is assoclated with more than one point, Fur~
thermore, for any scalar 6, 3 (W) {\t& and there exists & point T & E such
thst the :'imagé; of T is ﬂ under the mapping deseribed above, As we have
digplayed a one-to-one mapping from the points of /Q onto the sst of sealars ,
the proof is ecmplets,

We shall now show that any non zero scalar is a one-to-one mapping froem
\}/on’so \9/. It suffices to prove the follewing result,
Theoren 4,3 For any non mero scalar f and non zero vector |}, there is a
unigue {non zere) vector | ‘\\Jﬁ such that W = £ (W),
Proof Let Y~ be amy vector such thas YW . Let P, 9, R, and S be points

such that (P,0) & (), (P,R)& £ (J), and (P,S)QQA. Iszis the line through



Q paraliel to RS, then A 5s since/q {{ s éj PS\\ RS 'b’ PS = RS é) R& PS
S R =P (stnce PgFBS) £ (VI 20y £ =0o0r | =0, a contradiction,
since £ and BS both lie in Y,

SR, SP
,f,g,n@ PS5, If Z is the veetor containing (P,T) we assert € Z U« This

there is a8 unique point T cormon +o

follows from Prop, 4,5 asP 1 T, BT >2 l PR \\ RS ) PO I PR I RS 2
s&fq "> I “ V‘, a eontraéictlon.)

We have shown that one satisfactory W~ exists, We now show that enly
ons exists, for let (I";\L)Q —U\_}: and'% (W) =M . Then by Prop, 4.3, RS {]
Q‘ka:nd U, w T where T is the uniquely determined point of the oreceding
paragraph, Thus W™ is uniquely determined as the vector containing (P,T},

We are now in a position to define addition and mltinlication of
scalars,

Definition 4,2 TFor any -6 ,H—& }, and any V" & U/, the sum and- product of

T and 6,, denoted by "f4 " and "fa" respsctively are defined by
(1) (£+d )yo =2 (V) v dly~) and
(2) (sg\w =1 (g )

Proposgition 4.4 Z_ ig c¢losed under the overations of addition and multi~

plication,

Proof Let‘% and g be any functions satisfying Def, 4.1. It suffices to
show that i‘+g and fg also satisfy Def, 4,1,

For any W, V“é\?/(fl—ﬁ -(f+%)_§“:f(_\_’_\)+ﬂ(;\§)-(f ({74
4p)) =1 ()b Qi) = £ (V) =AM =2 () - £ () (W - 49y),
where we have used the readily proved fact that - (£ () -4 9 Y) = -7
() - 4(U), Since £ (L) - £ («w~) and Q) -‘q(v} are saeh collinear
with W - ¥, let P be any point and Q, R, and S the unioue points such that

@, 0&h-I, GrIge (W) -2 (g, ana (Be)S gW) -0 (). By



Prop. 3.6 and Axs, 2,1, 2, and 9, it follows that P, Q, R, and S are col-
linear, whence‘g (b)) -g (V) ‘\(A (W -%(_U_‘). If T is the unique point
such that (R, T}& 61 (W - Q {y7, it follows from the definition of col~
linearity of veetors that P, R, and T are collinear. As (P,T)€ £ (W) =
£ (4 g )to (W = (£4-9) - (20 )y, the collinearity of P, T, and
¢ implies \)}; - U (f-rg )W - (£+94)\r, by Prop, 3.6, Since £+ ) 0=
£ 0+ A0 =040 =0, £44 is a scalar,.

Similarly, for any W , U_‘_‘Q\Z (EFI W - (£ y-= 7 (5 M)} -2 (5(}_3_’))
\\5@')‘%\_@ -y sinee (4 ), Al ) &\, Sinece _Q'\\ a for a1l a&V{,
without loss of generality, f:‘:;'}of#: 3 and ﬁ:‘:_‘\r N wb.enceAProp. %4 -‘:->' (fﬂ)
i - Qi -0, Finaly, () Q=1 (2(0) = £ (0) =0 amd 50 £q is
also a scalar,

Theorem 4,4 For all scalars g and%,

(i) fg=o,f:(=o?5;o-;g\fno,f#oég = 0,

(i1)  £40 = Or = 1,

{ii1) ﬂjt. 0 ‘-?-) there exists a u_nique‘h&z guch thst -‘{‘,g‘ .

{iv) f {gq‘\) =(fq )21; (fs)pl = ﬂ s -3', if either side exists,
(v) For all,ﬂfé'f , (Q:H,\) £=3 £4+h o,

(vi)  rr(ard) = (e 8)+ A,

(vii) £ +q =G+f,

(viii) there existe a unique sealar %Q E such that 6"3"’& = ﬁ\"f = 0,
Proof (i) Suppose T 4 =0 :%-' f. For arbitrary non zero vector U, Cor.
4,220 = (P =t (g(_\f))>_0_ =4 V) 99 = 0.

Similarly, if §f = O -“‘F f, then for arbitrary non zero vector V , f
(Y)F oana o= (ge)w = {le (J)) > g = o.

(ii) Let Y~be arbitrary non zero vector, Then we have (f+ O) U~ =

TR0 (V) =f (V)b 0=2 (Y, Similarly, (0T £\ = £ (V). By Th,



B o 1o T

2.2, JE O Dok £ = £ =rro0.
(iii) Let U~ be arbitrary non zero vector, By Prop. 3.4 and Lor, 2.4.2,
T () \\ 3(2“) unless £ {(V°) = 0 . Since 0 “ a, for all g € U/, it follows
that £ (U7} “5 ('\[)'31:&(_),. By Th, 4.2, there exists a unique scaler E\ such that
f (y7) =X{g(_\[)) = (ﬁ\.g )V . From Prop, 4.4 and Th, 4.2, we get =h3,
whence 2\ is a satisfactory t. Conversely,f :'JG 4 'é ‘{:’9(3{‘) ‘-‘-ﬁ\ﬂ(}f) '—\/
JC :/9\ , sinceg (\_,:)3# 0, Thus /Q'\ is unioue such that T =‘r\3 .
In particuler, we denote the unicue scalar }\eorresponding to ﬁ:ﬁ 0

such that 1 -,e\ 4 by "S =L and call Jer\ "the mltiplicetive inverse of 4",

(iv) Iet U~ be arbitrary non-zero veetor, Then (£ (62’\))__\_7“ = f
gy ) =2 (g At = (2 )R )) = (29 R0, whonce Th, 4.2 in-
plies (fg)x& - f (%).

By (1), if £~1 and % exist, then e o-fzg, ()9 0 and (fﬂ)-l
exists and, of course, is unioue, By the result of the-preceding paragranh
(g‘lf_l) (fq) = (3—1 (£71£)) Q - (4-1 anNg =g\'lﬂ = 1 , whence g-lf"l
- (i"@ -1, a8 cleimed, By letting g-'- S': 1, we get 1‘11"1= 1-1 => 1=l =

—1,.-1 1= - -1
Lata™y = athy 12177 1= 15 that ds, 171 = 1, whence (17H)1

-
=31 =1, In general, the substitution T =f:\ -1 gives g_l‘g 1= l'_l =
(23 - 5)_1 = 0&-1 { ,(3 _1)"1, s0 that rultiplication of the extreme members on

a1
g Th =1,

~

the left by (( ~1)=1 gives 4= (q '1)'1; that is, 33’1 = (g"l)“
Note that ("L )" exists, since G Lz, 31 = 9\"15 = 0q = 0, a contradie-
tion to the existence of two distinet points.

The above remsrks show that 470 = thore exists & unigue T €L suen
that f -g’t For =q-1 f clearly suffices, and 3{‘ = g@:'t =1t = (4 m
gk =gl (qD) =87 (g = (G TMg) e =2 b e A,

(v) For sny non zero veetor v=, ((4+N) £l = (4+h)(e (y)) =
0 (2 (w))+FAE (0 = (q 2+ (RE) v = (rk |£)and the conolusion

follows from Th, 4,2




(vi) ¥or any non zmero vector Y, Th, 3.5 (i) imnlies thet ((£+4 )+ 1)
VFEEFG)TF 0 () = (£ ()TY (V))+n () =1 (J)+ (4
h (W) =1 () (E'ﬁ' n) g = (PH(94n)) VT, and Th, 4.2 implies (f g )
+h = £+ (4+n),

(vii) For any non zero vector Y=, Th, 3.5 (v) implies that (r4+9 )
= () 9& (V) =9 (e £ () = (4+ )y~ , and the conclusion follows
as in {v) and (vi).

{viii) For any non zero vector ¥, Th, 3,5 (iii) implies that there
is a unique vector |A such that £ (V)4 W = 0, By the definition of
vector addition, it follows that ik \\£ () . 4s £ (&) { by Prop. 4.1,

5.45\&_\\ y:, unless £ () 20, If £ () =0 then £ (y)+ W
20 DU (L) -0=r (F )k (0)zo+ (-0 T 0z odUNY,
W

“ V: :L\' @ in all possible cases,
By Th, 4.2, there exists a unique scalar g such that { =0 ({r'). Then
(fq;g\)_u—= £ L)FANT) =2 (U)W S 0=0(y ) and, as in (v), £ +{
= 0, From (vii), we get 4+ f = O, Furthermore if £{ § = £4 b, then g =
OkG = (gro)+g = Qb (eh) = G¥ (4 1) = (g )+ n=0% h=n, 0

that 0= P4+ kX I k4 <’=? k =3 . We denote Sby ".f" and call A"the additive

inverse of f", By analogy with vectors, we define f = ag f.L(=-0).
¥ s

Theoren 4.5 For all scalars f and all (A ,_\1‘6 , it follows that £ (A4
) = (B (U7
Proof: (1) Ir h =0, _\_[‘ =0, £ =0, or £ =1, the theorem is trivial, Hence-
forth, we assume _‘_f}_i‘ 0 o o, £ 50, and £ F1,

{R) Suppose _1_)_\ \\\~ E, and let P be any point. Ist R,R',Q, and 9! be

the unique points such that (P,R)E g , (PR)& £ (W), P& U: , and (P,0r)



&

£ (V). Since W\ |, it is clear that P, 0, R, P', Q', and B! are all

digtinet,

R Rt

Iet the line through Q {resp, Q') parallel to TR intersect the line through
R (resp, R') in the unioue point S (resp., S'), by 4x, 2.6, Since (9,s) 24
(P,R) by construction, Prop. 3,1 and Def, 3.4 imply (P,8)& U +W | ang
gimilarly (P, S')GZ PU)+7F (). Sint_ze ih, 2,1 :> Sz": St, it follows
from Prop, 4,% end Th, 2.éc that Perg gf, thus RS || st S (vhW) =
T () £ (), as elaimed,

(3Yy 1f _\_g“\\ v , let w be any vector such that \__&_.i\\‘g’. Since Prov,
7,5 9 %..T"“["’BZ , the preceding case implies that £ (jl+ (V+W")) =
P L (e W) = £ () (£ (s (W) = (8 ()4 () b e
(W }e If Wy O then if _\_A_}’l\ W+ 1[‘, there exist scalars gand h such
that wh = 4 (W) = QU+ B (A)) =G+ g (n (W) = 4 W+ h)
= (ﬂ'ks h) W, so that Prope, 4,1, 4 ‘:"-') i “ (s & contradietion, Thus, if
A0, then £ (WA (VF W) T8 (V) W) =0 (MY )+1 (W),

By Th, 3.5 (iv), it follows that T (i )4 7 (V) (W V),

il
b}

If WtV = 0then i = ~\and £ (W+V") = £ (0) = C, To complete

the proof, we need only show that £ (=i#)dw £ ({* )= 0, Since for ell % &
\}/, ZH-B) =0=02= (14 (-1) & =22 (-1) 2 =24 (-1) %, Th, 5.5
{iv) -b' -7 = (-1} Z, Thus, it suffices to prove that £ ((-1) v~ )+ £ (Y)

;- 0. However since f (1) = f, Th, 4,4 (v) implies T ((-1)ﬁ+f () =7 (€1
vty f (1U_f) = (f-1N T ED s = (f (AT D)) = (f0) g =1 (0V)

= £ {0}, and the proof is comvlete,



Covollary 4,5,1 Tor all scalers f,{ﬁ, and h, it follows that T (ﬂ*' h) =

:fg + 1 h,

Proof IJet jfbe any non zero vector, The conelusion follows from Th,
4,2 gince Th, 4,5 imvnlies (f (6+ W)uw = (qb MIY) =2 (Z\(j) 4
h () =2 (K )+ ¢ (b () = (v Hfr )y = (f gt fh)y,

Corollary 4,5.2 For all scalars f and 4, - £ = (1) £ =1 (<1), - (£+4)
= - 0- £ and -~ (=f) = F,

Froof By Th, 4,4 (v), (viii), we have 0 = 1da{=1)) £ = 1 H(-1) £ =r¢
H-1) £ = £4 (=£) D (=1) £ = - £, Similarly by Th, 4.4 (viii) and Cor,
4,5,1, one may show f {=1) = - £,

Since (-Q- )+ (f4 @) = (-G (-£4£))p g = (~g+ )T Y] = -4+
= 0, the unicueness of - (£+4 ) implies - (f ¥ A =~ %-f .

Similarly, we may conclude that «{=f) w f, since «(=f) 4 (=f) = (=1)-

(=£)& L (=f) = (=1& 1)(=f) = 0 (-f) = O,
Our next corollary simply restates the results of Th, 4.4 end Cor, 4.5,1,
Cor, 4,5,3 (¥,+ , .) is a division ring,

We have shown that the scalars 0, 1, and -1 commute with all scalars
under the operation of multiplication, In general, we shall see that multi-
rlication of scalsrs need not be commtative, (If it were, then Th, 4.4 (v)

;} Cor, 4,5.1, without the aid of Th, 4,4,) If one postulates that multi-
plication of scalers is indeed commitative, then Th, 4,4 and vor, 4,5,1 imply
that the getiilof secalars forms a field under the operabtions of asddition and
multiplication. In the next chapter, we shall indicate why such an assumntion
is useful,

Remark  In view of the vreceding comments, it is clear that the commutativity

2

of multiplication of scalars is eguivalent to the major theorem of Pappus: |



Ir ,,Q and m are any distinet lines intersecting in a point P, if Q, S, U\.,
W, R, T, and V are any points distinet from
each other and also from P, if Q, S, 0, w
EX, irr, v, W m, and it 29 it s v,

then &S || v 1r ana only ir R UV ww,

It is well known that the major theorem of Pappus cannot be proved on
the basis of the axioms we have introduced thus fer, as there exist none
comrutative divisgion rings which may be used as models forz .

One well known example is that of the quaternions v{ Q, + . ..\j wherse

Q= ‘{_(Xl, Koy Kg, X@)\ Xy real\,], (Xy, X2, X3, Xy )4 (H l,ﬂg,gg,\ﬁé) =
(v Yo, ¥ Y, K5+M5, Kok Uy ) and (G, Xp, X3, Xa) o (41 Yord g
Y, =
4 o
(% - X2\, - X5 Y5 - X, Yg, Rt Y vy, - X, Ups X3 -
+xge - KW X1 4 hX, YU+, Uy - %, Y ol
We shall now show that in Euclidean geometry, with whieh the readsr is
likely fTamilisr, fg =4f, for all scalar multiplications € and %.
Let W™, V& \be such that W ﬁ \= . Suppose (P,Q)& V7, (P,R) &
T ), (Bl gy ), E,NE W, (R,WE ¢ (W) and (P,V) & gl ). If
the line from V parallel to TR intersects PQ in X, then clearly (P,X) & (%f‘)
;_'\l'. As _\_J_“$ 0, to show fg = 4 7, it suffices to establish that TS \\ Ub X,
Without loss of generality, f#’ 0=F & , and so P is distinet from X, V,
u., and S, By the theorem quoted in the first varagravh of this chapter,

R o= PI and PR=aPW ., Thus X . PT =P i) PS (2 TR , PV) and BT = BS

el s

¥ b5 oW P X

vhence T\L\\\j\_. X and the proof is comlete,
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Veetor Hquations of Lines and Planes

The theory of sealars allows us to revresent eguations of lines and
planes in very cowpact form and will also furnish us with a proof that \9/
—
forms a vector space of dimension three over the division ring £.,

Definition 4,3 The position vector of any point Q with respeet to a fixed

point P ealled the "origin® is the vector containing (P,Q),

Temna 4,6 QGiven any line X.through any origin P and given any voint O with
£ Y

]

position vector & with respect to P, 6& ,Q é} a f (l;') where f(—; Z: and

M. is the position vector (with resvect to P) of a fixed point R&G ,e, such that
mte P,

Froof (i) suprose @ & KR, Since g\ y"F 0 by Prov. 5.2 (i1), the existence
of & unicue satisfactory ¥ is guaranteed by Th, 4,2,

(1i) If g = £ (i), then Prop, 4,1 implies £ (v) I\ and Prov. 3.6
implies P, Q, and R are collinear, Thus R%‘ P '-'> O":.j , by Axs, 2,1, 2,
Theorem 4,6 Suprose that ﬂis a line determined by (distinet) points Q end
R, with vnosition vectors q and}_\_J respectively, such thatk does not contain
the origin P, Then any noint T, with position vector %, lies on Q if and only
if there exists a secalar f such that LT N g O I S (q).

Proof (i) Supnose T ¢ ﬂ.. By considering the representation of V¥ at 0, we
may infer from the preceding lemma that a unique sealsr £ exists sueh that
t-gmrt (_)‘}_ )+ o (=g} = 7 (_{\ } - F (q), by Cor, 4,5,2, Hence t = f ('J_:l:)
=T (g ) a=t (A )4 (1-1) q, as claimed,

(ii) If t = F A+ (1 - 1) 4, then we may reverse the steps of (i) to
obtain t - g=f (_{\- q ), whence L - a \\._}_\; - g, by Prop, 4.1, DBy consider-
ing the renresentation of \3/ at @, we may infer from Prop. 7.6 that Q, T, and R
are collinear, Thus, as above, ACY Q.

Vie remerk that the vector squetion of a line given in Th, 4,6 is completely



-

H

general, for g = £ (~) sy

.

)+ (1 -£) (Q), and if g = £ (y°)

ba

4 (1 ~ £)uf where W = h (Y°), then g = (£4 h ~ fh)u~

Temma 4,7 If the plane ']\" is determined by the origin P and the points

Q and R, with position vectors g and /1) respectively, then the voint T (with

position vector t) is in _ﬂ. if and only if there exist secalars T and(a sueh

that t = £ (q) 4 ‘:6

Proof (i) Let t = (%)%—3 (21), (BW)E £ (g), ana (P) X (1)
Let the line through M parsliel to PQ
interseet the line through W parallel to

. R at . Tt follows from Def. 2,1 that
e W\. Since Prop, 3,1 => PWE

e
Fin

(@ )+ % (A), the unicue revresentation

L

P
of Vbt » implies {f= T, Thus T& T .
Suppose TG 1§ » By Cor. 2,4,1, there exist lines ﬂ and m such

that N e, mll mr, & R, TG, an Ry p, and n A PR kP, It follows

from Th, 2,2 (i) that ,e r\P‘R and m (} PR each consist of single points, say A

(ii)

and K respectively., How, Th, 4,2 % there exist unioue sealars f and ﬂ sueh
that a =<é (K) end n=f (@. By Prov,
(w,7)4 (P,A), whence (i,T)G& % (A

i Thus, by Def, 3,4, t = £ (g )+ % (M),
A P T I’
R as required, Since g_"g\\_n , it follows
m that T and('& are uniguely determined, foxr
. N
P Q N t =1y (@ *Pr (A ) = £ (kg U =

(f1 - 12) g N gy -ge I 2 D alls, e con-
tradiction unless fy - fp = 31.,3 o = 0,
Theorenm 4,7 If the plane _ir is determined by the voints R, S, and T, the

origin P & _T\- , and Q is any voint, then Q E-T<:> there exist scalars f



and ¢ such that g = f M )k (s)F (1~f-%)3;_.

Proof (i) If g = T (A )k X {(s)¥ (1 ~7 -a) t, theng -t =7 (-ﬂ-;q)
gy % (s -t ). Interpreting this statement in terms of the revpresentation of
\}/at T, we may infer from the preceding lemma that Q lies in the plane of R, 5,
and Ty that is, Qe-%'- .

{ii} If Qé"’-r,_\- , then by representing \?/at T, we may usge Lenmma 4.7
to establish the existence of unique sealars T and (A such that g - t = ¢
(A - 1)+ % (8 - t), whence the stated result follows,

As with Th, 4,6, the veetor equation of Th, 4,7 way be showm to be
completely general,

Definition 4,4 The vectors A, V™, and W are said to be coplanar iff for

any point P, (P,Q)& th, (P,RICVT, (P,8)& (/- é} P, 0, R, and S ave co-
planar,

Notice that, for all vectors W and V-, it follows that O, N, and
U are coplanar, Furthermore, for all vectors .\_}“ and S_)_“ and all scalars f,
it also follows that §, £ (W), and y~are coplanar,

Provosition 4,5 The veetors Y, , V" , and y~ are coplanar iff they satisfy

Def, 4,4 for (at least) one point P,

Proof Suppose (P,0)& W, (P,R) & V7, (P,S)é_}g" and P, Q, R, and S arse co-
planar, Now if, P, 0, R, and S fail to determine a unioue plane, then @_,
_g', and W are parallel, and hence satisfy Def. 4,4 at any point, Other-
wise, let P, Q, R, and S determine the unique plane "%, Tt suffices to show
P'éﬁ I ‘=} W, V; W satisfy Def, 4,4 at Pt, Without loss of generality,
none of i, ¥~, W 1is 0 or a scalar multiple of enother vector in the set
9{@,_@', EE. Since P, Q, R, SE{I, Temma 4,7 '-'-'} there exist scalars f and
t&such that _V_\: = f (M")%{Q (W ). If (P, Q') & &, (Pr, R*) & U~ and

(p*, St} & W, the last equation implies P!, Qf, R!, and S* are coplanar,




Theoren 4.8 Tet ¥ bhe any point and '_U:, \[, and \,j_)“ any nonconlanar vectors
such that (2,0)& .l_k_, (FRIE V", and (P,5)& W . For any vector x, there
oxist unicue scalsrs (X, B, andq such that x = O(\A”!f‘ EU“;‘T{W‘,
Proof (i) There is at most one such ordered triple D{ \2‘ . for if
Q{lm + Ql_\_fﬁ‘w 1Y 0< U.. *‘B? Y- -FK UJ‘ where, say, ‘3(1:1: Q\{ o
Tind (0< —°<2)\& = ? V [‘% \(S 7{ How Q{ :.:I: Q(p §
AR N A
D{. d\l K o -Kl) \_)\f . Usine Lemma 4,7, we may conclude that P,
Q, R, and S are coplanar, a contradiction to the fact that W, \J:, and W are
noncoplanar,

(ii) ¥We nust now exhibit the existence of 5‘ \, 6 It x “ W (‘%’"Q),
then Th, 4.2 =>there exists £ such that x -f (.LV o In this case, we need
only let (¥, B, ) = (0, 0, £), Otheryise, ir (P, T)& x, then P, T, and 8
determine & vplane distinet from that of P, R, and @, sinece P, &, R, and S5
are nonconlanar., These planes interseet in a line Q containing ¥, Tet W &
,Q such that ! * P, Then if (P,¥) && ,\i ~{=9’ and by Lemma 4,7, there exist
scalars a, b, ¢, and & such that § = ey v bvx = e % 4y, ow P, Q, R, and S

are not coplanar and i ;{" 0 = o b#—* 0 =rb "1 exista Px = (v-Le)
: x A

A (b— a) \£+ (-b— a) W™, This equation disnlays avpnropriate values of&\,?v’, anﬂ?{_

Gorollary 4,8 \yforms a vector space of dimension three over the division ring i

Proof The proof is immediate, from the uniqueness oni\, @ ,‘6 in the vreced-
ing theoren,

Comment  For a fixed noncoplanar set of vectors _\:_l“ ,\2: , and W™, each gg_%\jl
ray be associated with the unique trinle (X, ?, ‘D’) such that x - O{ [AH- BU:_

+0 U}[ . (D(,F’,\Df) is called the affine coordinate of x with respect to (W ,

ors W ). By mapning x into (°< , p,v ), we may define a function from \yinto
b 1 f oy . . . . .
E:}: 2. x L. « Since vector addition is well defined, this mavoing is both one-

to~one and on to,



Let X be as above and f e .. Then X (—-) (od ;?),2)/) and ¥ (}é){—-—)

(£, f?), £Y), by Th. 4.5, Turthermore if Y=y (6‘,6, n), then X 4+Y

(d“’g, 9%’&,)’—‘1‘ n) by Th, 3.5 (i), {(v). Thu's\?/is isomorphic to the
vector space Z-x Zx Z under E in which addition of vectors (i.e,, elements
of E:‘:}:.x*}: } is defined componentirise and multiplication of vectors by a
scaler ic defined distributively, This observation explaing why some authors
define a vector as an ordered triple (n -~ ‘bu?ﬁwle) of entities called “scalars",
We shall see in Chapter V that the isomorphism of \\)/ana E- 2 E is very
important and useful,

Civen 2 vector space V of dimension threes over a division ring D, we
shall indicate how one may define various geomeirie concepts so that each of
ixS, 2,1 - 9 is verified, i.,e, so that the defined geometry is threec-dimen-
sional affine in the senge of Chapter IT,

Let &+ = “{E" y X, \\ L & '?T} be defined as follows,: ?8 = Qi\}"\ \J"E"f‘-\]
is the set of points and;ﬁ the set of lines, where a linekij,a.r{a W (1 - a}\~
\ a " Dj} for fixed distinet W, U"& V, We define P(;’)Z<=7 P E—;—Qto mean
that P lies on, or is contained in, —Q. The line /Q“S\a o (1~ a) \}“\5 is said
to parallel to the line m = € b WH(1 - b) Z?} if there exigts A D such that
V- A =a (z -W), The parallelism of /Q to m is denoted dy yQ \\‘ m, 4 plane
Then 15 gauu—b\r*(l ~a-b)w | e v& D\ for fixed distinet U, Uy W€
YV such that none of q,\}“, Wlies on a line containing the other two .

e note first that vamllelism is well defined. Supprose CQ - °<au,-i—-(:|_ -
a)\rk \ m= %bwf {1 - D) 7\{ such that (= =4 (2 -i}? ). If we may also
represent { as -L atiyy ' (L - ar) W\‘} and m as g\b\}r' + (1 -1') Zj}, then
there exist att, arrt, btt, hrt D such that Wz arr y t 4 (L -art) gy, U™

=mogtt! Wt+ (3_,,atn)v__|, \N = bt (1L - Dbt} 2, and Z2 = p'*? TR



(1 - Dbrer) 41, Since \=|l= 4 (2 =-W), it is readily verified that

LV B CARE a“')"l d (bt = brrr) (4t ~fy-1) unless att - a "¢

= (), However at! - at?!t m Q -% att =a 't SIA =V, a contradiction,
Since {att ~ arrt)=l g (b1t « brer)E D, parallelism is well defined,

ote that Ax, 2,2 follows immediately from the definition oi‘x?, as O
#: L. ZTor the same reason, the line ﬁ = -( au 4 (1 - a) 'LS'} conteins the
distinet points A ,N7 . Thus 4x, 2.3 has been verified,

It is a well known result from the algebraic theory of vector spaces
that 0\ = 0, for all V' £ Vv, Suppose the line ,Q. = { alA+(1 - a)U‘}
is varallel to m = { b+ (1L - b) Z} ; i.6., 4 @ €D such that UV -WU= &'
(2 - W), 3By the above remark, d = 0 Y ~WA=0 =->U"= W, a contradic-
tion., Tence % ~W=a v (V-W), & ~* € D, whence m [\'Land ([ 1s
syrmetrie, ‘he reflexivity and transitivity of [l !t are imwediate, This
verifies Ax, 2.4,

Supnose i ';{a W (1 - a)U"}g i' and W £ @'. Since WK :f: v,
Wwtw- (K- )adsoWgrn={awd(l-a) (w- (R -\m}“'( .
If ngi' is such that ¥ £t n = -{bt--Hl - b) Z} \ t { , there exists e,
d&Dsuehthat Wmet (1l ~c) Zand 2 - ¢ = 'd (U=WA). By the remarks
of the vreceding paragraph, dgf O and so W= (U=~ {7) = ot 4~(1 - C) Z*I--dm’;L
Zet)=lcmaN)t 4 Q-(c-a1))Z2En, AW gy, Mx, 21Hnin
whence 4x, 2,5 follows, once #x, 2,1 is proved.

I the line E,‘-’- { apt(l - a) U-} contains distinet points x =egfint (1 "°<)U‘

and vy =ﬁ\k,-’r {1 -{3 W, we prove ,@2 n ;{b %4 {1 - b) y} . For
1 c,Q,; it suffices then to show (A, VE m, As x#y,d*ﬁ , and 80 X = ¥y =
o -Prut(f-oOv , (_ﬁ-ou"l (x -3) TV =W. Tms V=x =g -V)
= x4 o{_(@ ~ol) L (x-y)=b x4 (L -Db)yEm withd z l--{—o((g - ),

Similarly W § m, and so Sz, 2,1 is proved,




Let W, 53 V" be distinct non collinear voints, £ ! the unioue Line
containing V; W and m! the unique line containing (A ,U. By the remarks of
the second last varagraph, the unicue line through A parallel to JZ tig
/Q ;{'a,\,h + (1 - a) (Y- (g -M) )g . Similarly, the unicue line through
«Vr parallel to n! is m = % W 4 (1 - Db) (W= (W~ \5’7)\} . To verify ax,
246, it suffices to display a solution for a and b in the eguation al + {1 -
a) (W= (1 ~W)) 2bw & (1-1) (

aw0, bm=ld1,

(W ~VU"}), Such a solution is

Ve shall now verify 4x, 2,7, Iet W { ai\d b \,—DT and §, m non~
narallel lines of T. Thus there exist \Ji, U‘;'s f ﬂ' ﬂ_ﬁ' and there exist
Y5 V2 & n A [, Purthermove, there exist aj, by (i = 1 - 4) &D such
that Vi = ag (L d by U7 (i = 1 - 4), Since )}(\\*\ m, for all 4 & D, [} -
vy *@% a (g7 - Usl.

Consider the equation a ¥ ( 1 -~ a)VY3 = b Wz 4+ (1 - 1) \)1: in the un-
knovms a, b, Substituting for Vi (i = 1 = 4), we see thet it suffices %o
solve the equations.

a(al-az)ni-b (8.4:-35)=a4.—ag

and a (b1 - bp) 4+ Db (bg - bz) = by ~ by, obsained by

equating corresvonding coefficients of U\and Jo This system of equations
has a solution for a, b, unless the left column rank of the matrix

(a1 - a5 a, - ag ) is less than two,

gbl - by by - by )
However, if the left column rank is less than two, the vector space of column
vectors is of dimensionality at most one, a contradiction to the Ffaect that for

alldC-D,Uf;;-U‘l" ‘\:ﬁ(U:L-U’g).

If the above vroblem is altered by letting “K = {au\‘“i- b U""%(l - b)w')'J
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:“{ a (i *W)".“‘"‘7 v (v <o )+ Uf-}, then the ‘non=

parallel lines /Q and m of -;T intersect, For the sets 2 'tz 5\ - VJ'\
\r = ﬂ \J and mt = {X -~ W \ L6 mglf are clearly nonrarallel lines of
& % -~ k:ﬁ (—: -T\' \j , which is evidently a plane, By the vrevious case,

,Q t {‘\ m! .'# % , vhence ﬂ ﬂm :& # . This proves Ax, 2.7.

ir _\T - -& allh +b V"R , then it is clear that —{\'— is elosed under
addition; that is X < _ir, \}b Q" E\_ :'} K A=~ “i 6- "ﬁ . Thus Mﬁis a8 sub-
space of V of dimensionality two, Tor if there exists d&_D such that \X =
dvT, then O, U», and U~ are collinear, a contradiction to the definition of a
plane, Similarly, _W * = % 4 o %\,\r\ ig also a subspace of V of dimen~
sionality two, It is well knownm from the algebraiec theory of vector spaces
that

dimension (“\Tl) J(dimension (Tg) - dimension (‘-\\:I\f —\Tg Y = dimension (“ﬁ-lﬂ “{TL’.
Since dimension (7§ 1y "{T? )5 dimension (V) = 3, it follows that dimension
(Tl[\ Tz) ?1. Hence, any two planes intersecting at O & P* heve at least
one line in common,

By the same device used to prove ax, 2,7 in the general case,one may now
prove Ax, 2,8, namely that any two intersecting planes have at least one line
in comzon, The details of the arpument are left to the reader,

Tinally, as V is isomorphic to D X D X D, it is easily checked that
(o, 0, 0), (1, 0, 0), {0, 1, O}, end (0, O, 1) are four non-coplanar points,
This verifies Ax, 2.9 and completes the demonstration,

We shall now apply the theory of sedlars to the study of Desarcuesisn con-

figurations, In Chapter II, four results of interest were established {Th.,

2.6 4 - D), ¥e now investigate eight additiomal cases (Th, 4.9 A - H),

Theorem 4,94 Let ’e ,JZ 2, and ﬂ % be any disbinct lines and P, Ai’ By U3

{1 =1, 2) be any points such that Aiéjel, BiEZ .,.,Qg, and G4 E’Q’B (i=1, 2),



Ai@{a‘ Bi*# Uy :{:A 4 (1=1, 2) P‘#A ,P;F Bl’ end P Cq1. Then if unicuely
determined distinet points X and Y exist sueh that A A-LC]_[\ A? = é‘;‘l{‘l} and

B1C1 () BgC, { \J and. if ABy \\ AgBg, then ByAj u XY,

Proof et (P, A1) & (A, (P, C1)& Y™, and (P, B3)& W, . From Pron, 5.2,

(ii}, it follows that W, jf-, and W~ are each non zero, Thus Th, 4,2 im-

plies that there exist unigue scalars £ and 3 such that (P, ?),Ié. (W) and
Cp) & & (). By Prov, 4,3, A1B, |23, = (@ B)& s (\ﬂ.‘) Further-

more, fﬂfa% since £ = & = 2307 |} Agls by Prop, 4.3, a contraiiction to the

gxistence of a unigue point X such that X kA-;Glﬂ A C Thus T -3#: 0 and

2 2
{£ - 6)"1 exists,

Since A]_CJ (\AZCB - {‘Xk, Th, 4,6 % there exist unious scalarsoi



and Q) such that X =0 4 (1 o u==PFr (44 (1 -P1 g W), stmilavy,
thore exist unioue scalors Y and @ eueh that § = WY~ 4+ (1 -F ) =
%% (1 -6) £ (W ). Since WYRAT, the rirst of these equations
mpllesv:{ Q‘ Arana1 -8 = (1-P )gy. Sinilarly, il DT=d % ano
1-% = (1-%) 1. Thus(l-a@)% 1 =& 1-\35-% ?5%}1-
B -‘@3: 9 (£ -9) :7% - 0-q) (£-q )L, Conseqmently, 1 - P = (¢

(‘féﬁ)_l-l-”@(i‘—g)_l“f— Sy 1=(f-1.) ( -
fg\)‘l. Thus L= (1-Q (£ -g) Yo (W) He - 1) (2 ~g) %( W . Sinilarly,
@= (1L - f) %-i‘)—l%(\r)'\" G- 1) ( ‘&»-—f) Lo (@)

Tt is straightforwerd to verify that X - U= (1 -q) ¢ (£ - _LL -

W- ). Thus Prov, 4,1 & X - %\\ W~y Since (X, V)& (X - ¥, ) and (Bl’jﬁ)

S (A-w ), if (B1,D)& (X ~Y ), then Prop, 3,6 =>B1’ D, and &, ave collinear,
Howaver, (B-L, D)’P (X, Y) }C#:Y >B]_D “ XY, Thus ByD = 3443 (by fxs, 2.1, 2)’
whence Bj. f‘»l \\ XY, Q.E.D.

Theorem 4,98  Teb X}_ , .,Q o, and JZ% be any three distinct parallel lines and Ai’

Bi, C3 (i =1, 2) any distinet voints such that Aie‘R 1s Bie 'QP’ and Ci &
,?3 {i =1, 2), Then if uniquely determined voints X end ¥ exist sueh that
-"‘-101‘{\\*&203 B{KWj and B4Cy P\BZC:2 = (Y\ , and if A4B) \\ ApBo, then AlBl“

K - A1 o




Proof Represent Voat any origin P¢ Jl'. By the conditlons of the

theoren, (4y,A9)T] (B1,Bg) ’-'} (Al,A2)7| (B1,Bs) (by Prov, 3,1) :> Bp - 2,

= b - by #: 0., By Th, 4.2, ﬁxlBl\\ A2B2 = >there exists unloue scalars 1‘18@&%‘ such
that 8p - C) = Q (a, ~ a;) and b =23 "h( bp - 8y). As in the vreceding
theorem, there exist unique scalarso'{ s @,‘6", and(b such that X = 5{31‘%(1 -
g =Pat a-Proem YT a-YG 4 (1-G)e

Co, Thus X ”OLEJ.%‘ (1 -oN) 9‘1 - \2332 +(1 ~ p) (Gl'*F ‘:-i (32 - El)), whence

by the method of the wpreceding theorem,o\ = (E,- 1 )?j’ 0 = \?,y# {1 - IB)% ,

and 1 - Q( -1 - B. (We need only show that no voint other than P of PCJ_ can

lie onQ e ‘fhis is clear since any assumption to the contrary implies ’Ql

= /{5 ( by Axs, 2.1, 2, Th, 2,1), a contrediction,)

Tt may be readily showm that %‘&0{ = %(6 - 1)=% and =0 X = % (ﬁ‘

-1t a) + (= 1) (%.. 1)t Cy+ Similarly, ¢ 2% (% - 1) b+ (1)

(%- 1)~1 Cq. Thus }é -X= %I;\. 1)-1 (33.1 _El), Nowr, (d%-l since there

ig a2 unique X éA]_Clﬂ Ang, and OQ%:O gince Al% ’-‘L?, Thus by the argunent
of Th, 4,94, we find BjAq \\ XX . G.E.D,

Theoren 4,9C Tet fl,,@g, and ¢Q5 be any distinet lines and P, Aj, By, G4

(i » 1, 2) be any distinet points suen that A& R | Bi& R, €€ 4

{i =1, 2) and X'L(\JZ? P\X 5 = E\P\‘ . Supposo that there exist distinect

points P, Q, and R suech that BG4 f\ B?CP = § P\S ’ ClAl.(\C A? = &OX , and
(v 5 2 o

AlBlr\Ang = {{P\] . If there exists a point D such that A1A2 ﬂBlBg [\Cl()2

=i D\, then P, 0, and R are collinesar,




71

Proof  Since A, BBy [} Ciug = Dwf Th. 4,6 implies that there ex-
ist scalars( , P, Y, and § such that @ =Xy ¥ (1 -X) a, = %}9_1 (1 -
ﬁ) bo =e1L & (1 -T) Cg It follows from Th, 4,6, the existence of D,
and the distinctness of A 1,'Q2, and 25 thet = (P-y) 71 ({3 b, -¥8,),
q = (K—DL)—l (B“ [ -0{31), and JA 2 (X- \’J)_l D<a1 —p b1)' éhus'(\}-
) 2+ (F-00 g+ (o= PrTo amp = (h ¥ (B( Fat (P-
7P c{)f_-. wow (P=)71 (A -T+ (B-X) T p-d)
o -+ P-0) = (y -zy)_l (B-% ) =1, whonco Th. 4,6 inplies P, O, and R

are collinear, Q.E.,D.

lo

1"
-
!
=
L

Theorem 4,90  Let .»Ql,/q?, and }?5 be any three distinet parallel lines and Ay,

By, 63 (1 =1, 2) any distinet points such that Ai(‘; ﬂ;l, bié:. ,Q 09 and Gi&' "QB

(i = 1, 2). Then if there exist distinet points D, &, and I' such that Ay By

(\ A21-32 = D\j, AJCl. ABC “{E\e and Blclr\ BoCo :% \f then D, B, and ¥

are collinear,



.
™0

Proor  Since ;Q /Q " .,Q and (}1# bn, it follows as in vh, 4,9B that
there exist scalars Q and g~ such that ag - ay =? (_‘Lip - Cl} and by ~ by = ({.

(Lo ~ Ul). Tow Q#z 1 *6‘ by virtue of the existence of ¥ and F, Furthermore,

1‘%?5 since 1 = \}6- }Q G }ap ~ay = b? - b}, which contradidts

S

the existence of D, Whus 4 = (2 —@C; ) ?( = (1 -ﬂ36‘ -

(as -fo—;ljgﬁ_f_{), o= (1 -g) (2 -8 8,) = (2 -{3) ", - le) end £ =
(-5 by =6 e,) = (0 -6) -1 (b, _G‘E;l . It is readily verified that
-t o -?6' 1 ) 44 ¥ = (¢ -12) EJF-OF“J' (1 -d‘) £ =0, Sincey -
Q(f -“-L).-l ig non zero, we mey multinly this ecuaiion by its inverse and obtain
an (g o9 T e - e T 0 -8 T 6

(G- 1) £ = 0, By our comments in the pro~f of Th, 4.4 (iv), the sum of

=1

the coefficients of e and I is (1 —'\)6’ “1)? "3‘(1 - u\* {1 qu‘ ’ -}?9’ ?-J

a6 s -9 p Q6 ) 2196 T g

1, Thus 4,6 => D, #, and ¥ are collinear, ©,5.D,

3]

is Ti, Cj_ (

1, B) distinet points such that f‘li&’e 1, ;%.’;i(:—_ \Q?, and v-‘é ﬂr,‘ (i =1, 2).

i -

Theorem 4,98 Iet ﬂ}, /€" and /Q- he distinet lines and A,
i [




Tet D, £, and ¥ be points of 2 unicue Lline A :!: A8, (1 =1, 2) sueh that

a8y N1 By n%DR My () ag0, :{ BY , and B0, ) 350, = { "‘;

If there exists a voint P‘F Aj (1 =1, 2) guch that ,2 P(‘\ ,Qv =z '{P\j , and
) : 2

100, 5, W, By, 0f (1= 1, 2) are all distinet thon P& £,

P

Proof It is straighiforward to verify that Th, 4,9C may bhe avplied to

the lines By C3 (i = 1, 2) and .X to obtain the collinearity of Aqy Bp, and

?'f‘

P. *ince "*1 -Ag, Ax, 2,1 'biin-l_l"’s Pé Ql. G.E.D,

Theoren 4,98 ILet _,Q 11 «Q o, and 2-5 be distinet lines and Ay » B1y Gy (i = .

1, ?) distinet points such that Aj_E,QN, Bié' /?p, and G4 & ,Q (1 =1, 2),

Tarther, suprose AlCl “ 20 s Al \\ A?B?, B] l\\B CQ, 40 “ ./Q?, and Clé Jbl'

hen ﬂ 1 “ XB'




.2 1 Al Ag

P,roof Iet the plane determined by 1 o and A
¥
plane _W parallel to T\ , Lhen there is a line m of it through C

3 be fl. I Qq lies in a
¥

1

rarallel to Xl, by Vor, 2.5.%. By dx, 2,6, A
point D, since E\ is the »plane determined by 44, A_, C. (by Yor, 2,5,1

?C? interseets m in a

27 71

and A%, 2,7}, By Th, 2.6B, it follows that B?D |\ B,C., whenece Vor, 2,1,1 and

Ax, 2,4 imply BED = 5202. Thus D& Bgcg, If B?éﬁ ‘\\ , then Th, 2,3 :>
D= ¢, -‘? m= G (since ok 0p) => m = 25 :} ,JZS “ le. Otherrise,
le (i = 1, 2, 3) are conlanar, If ,Qg intersects ,Qg in some noint P, then
Th. 2,60 tnplies P& A 4 27.}2 1N, F 4, a contwadiction to Th,
2.1, s K 1 () 25 = # and Cor, 2,4.6 1>J( 1\\,Q ge  QLED.

Theoren 4,9 Let Xl, 'Qg , and j z be distinet lines and A4y, By, and C4

(1 = 1, 2) distinet noints such that A3 Ri’ Biékg’ Ci% 25, and Gié‘

","‘iBi (i = 1, 28), Supvose x and Y are distinet points such that Cq Bln

CoBy =“( x\f, GlAl (\ Cohg = {Y.\j ,andx Y “ A8, “ AgBgy o If /? 1 \\
,Q o3 "'chenx 1 “ ’QB‘




.:TZQ.E’}:’ It suffices 4o verify that Th, 4,95 may he apvlied to the lines
AiB1 (1 =1, 2) and x Y to obbain CIC f\ Agf \d\ BlBB :)49,2 L\ —Ql' We need
only show that A4B; (1= 1, 2) and ¥ Y are dic stinet., Now AyB, - A B :>
A, age 2 1s AsBs, Since 2 1(\/€ o = @ and b?c }ZP , clearly B § Jl
whence 117%\‘ ApBo. By Ax, 2,1, 47 = Ag, a contradietion; thus, 493, 4’:
LeBos  Furthermore, | A48, :}:k Y, for A;By ~xY (iw ?«_01' 2) % Ciﬂi‘nx Y=
5\“3) %V\? > Ay =Y, (CiAiﬂx Y, for CiAi‘\‘ x Y => Giﬁi “ E’i‘qi

lz-LAl = Byhi, a contradiction since b A3B4.) However, Ai =Y :> A
Ay 3:{: il Je 1» ¥ Cijo Since 1414; f‘x X :?}Z =Y C.. Similarly,

n}"\r'—{u\f g k?b -—xandg < C.Lowcvevzn/e

=4 %‘Y Cj ﬂ . Gj. Thus Aiul Fx Y, and the vroof is comnlete,

C.

.|

(i =1, 2) distinct voints sueh that & ﬂ w?g “( \f & A By (1=1
2), Clxﬁ; (%‘U/()g) and CBQ’Q pe Suprose that there exist cistinct wointe

x end ¥ such thet Cieiy ¢ Be -_-_{ 15 ; .
“ ! 2 Bg x4, AlBlﬂ n?BP =§ Y\‘ and x Yn
4202 . Then p & XS.

Theoren 4, ! Tet .(] 1,-4? oy and ’QS be distinet lines and P




Eroof

Case 1 Aseume P, Ay, By, and ¢, are not coplanar., Let (P, Ay)& W ,

53_)@__12\, (®, c)E W, mna (p, c,)& x . By T, 4.2, theve exist scalars
d% such that (P, Ao)e (W_ ) ana (P, Bz)%% (V7). Now 4 cl”a £

>U‘ e - X by Ax, 2.4, Prop, 5.4 and Defs, 3,1, 2, hus Th,

']

. ——

4,2 => there exists a scalar h such that x - £ (A ) = h ('\J\a-—\Af’); that is,
= (f+h )W =h (W)
Since °(x\f = U1y ﬂ CeoBg, there exist seakms“{ and Psuch that ¢ =
KW o)y - *Pera-praw=Pooerow -nor)

(1 - E,) % (" ). Sinee LL \E , and \,\T’ are nonconlanar, we msy equate cor-

resvonding ecoefficients, Gonsenuently,% = ..@ h, 0 = % (£ -i"'h ), end 1 -
K = {1 -B )% . I ?7 = 0, then%( = 0and ¢ =V :%(\7). However,[:‘:

0= A4 =1 =) Bl = By, a contradiction., Thus BT 0, whence £+ h = 0,

—




aubstitubion in the exoression Tor x gives x - £ (VW ): that is, P ig col-
Tineay with U3 and Cg, ©Since C ={'~' Co £ 5 = 0.0
1 I T PE) &3 1 © snd so D 6:/({5'
4
Case 2 Assume P, 4y, By, and Uy are ecoplanar, Since /Q l“h\ﬂ?_, it fol-

lows that )2 *‘\\y\ 5y OV ih, 4,95, By &x, 2.7, there exists a point R

(without loss of generality R"i‘:P) such that JZ? hjq) :°< R\f . Since
P Ay, ond y' I‘\ S\ \S it is clear that ARE j?q, whence R A,

It B ;i_?

i

interseet A10- and A-.B. respectively in the points J’;K and B¥ -
1V 171 & +

Furtherimore, notlce that Ax

and B¥ are unicuely determined, for if A 4904 -
R Ag then 01& MAg '-'-j 1, & contradietion, Similarly, Ajs, —n hg 37
Alﬂ'ﬁ ‘:-/Q]_ = X o = By R (a contradiction) unless R = By, However if R = By
then R Ay intersects AjB) only in By, for any assumnbion to the contrary
implies B Q,ng, A hg =»2 :75 = B,, a contradiction,

Since zl.?% ,(Z?, it ig clear that R A 4’:2 ¥orsover, R A fifw@,%,
as & A o =j B = f? o = COqug \\_L]m } C w = .ixlcl - A i,;, "7 /Ql j
a cont:cadiction.r mrthermore, i By and 5 * ;]": vy, since B = 39 —} ,Q}
Ao B -? By = F_’_ a contradiction and BY = Ul -':> ..ﬁ.lul = £1By, a contradic-

tion since C1&% AiBy. Iow, R is distinct fron B*, Cq, an By since A é{/q

.22;# my and = By => R A o [\ Aq3, - %u{\ :.{ ﬁ"z} from above, contra-

. . L X . - . s .
aicting ﬁl%ﬁ . Tinally ® is distinet from (JP gince Up§ /{ oy @and R

‘:4_-;’;‘ i R =B D he T ALp, = =7 A, & A =P N
By since R B n} 2 Ay JLg_ug ﬂ? 71? é 21“ ﬂp >J-2 P, a con

tradiction to the hypotheses. Thus we may apply Th, 4,9C to show that B G

‘h Le \7‘”3{ 0 *’*Pbp 2 >X ¥ =4AC0 > gince C §{\,?‘5?) x I B, . Y,

a contradiction, lience B ’, Alé 4704, Alls -7;5 i . Thereiore %”2\1

Ajhe ﬂ /g - .,Ql l\ ¢p2 = &P\{, whenee R = P, 0,50,

Uonsider the correspondence

H

!




Theorem 2,64 £~ ‘lheorem £,6U

Theorom 2,615 { w7 ‘Theorem £,6D
Theoren 4,94 ( ——7 Theorem 4,99

Theoremn

s
L]

-~  Theorem 4,0

B

Theorem 4, 90 -7 Theorem 4, 0L

AN

Theoren 4, 9D --7 Theorem 4,97
This illustrates the six important cases of Lesaraues' Theorem and their
converses where, in the sense of wrojective geometry, Dessrcues! Theorenm

may be taken to say that any two {riangles in nerspective from a voint

are in perspective from a line,




D DIRECTTON

some intuitive notions,

We begin our discussion of oxder hy clarifying

An order on a set 5 is s binavy relation < sweh that (1)

PTa,n <P can hold for P, {;‘;E S and {(2) P, 0, R (:

P=aq,

vefinition 5,1

Gxactly one of P 0,

:P (“‘ Q, < ? < R}, The nair (3,X ) is called an ordered set .

U

!

> <Q may be read as "P precedes Qf,

seen that the "opvosite® ordering ¥y also sabisfies Det,

It is easily
5,1, where we define P> Q< -'-'-> 0} < P whenever P, O E =,

Definition 5,2 £ is a (strictly) monotonic funetion frowm the ordered set

(fﬁ,<) into the ordered set (S',< ') if =nd only if either (1) a, P& S =>

(a<b=p £ (a)L ' 7 (b)) or (2) a, b&a (e D m)<rr (a).

In Def, 5,2, the orders on 8 and St were represented by different svm

In general, we shall use '<£t Tor an order on any set,

' oclear,

bols, HNo smbiguity
the context will make the meaning of

need result, =28
a nan-

s

i

jefinition 5.3 A paw ojectlon from a line /Q to a line m ig
'« O the points of ,Q into the points of m sueh that P?‘S T (P) =:> rt
C

m
(P-)& ¢ for 211l P& /Q, where C is a

pol
=
[
=
2
[N
Q

{fixed) equivalence class of wnarallel
lines such that ’q é\ C and m@é.

vie shall write '£' for Tol

> =2

Yhere context nermits,

Provposition 5,1 It fc a narallel projection from a line Q

point such that P& £ Om, then ¢ () = .

and P is®a
then Axs. 2,1, 2 and Def, 5,3

wonr £ P"‘#fc PME n,

-

o

wdiction to lef, 5,3, Thus P o

6. C, a contra

e note that Pron, 5,1 implies there exists exactly one marallel projee-
tion from & line/@into itsell, nemely the identity trensformation £ (P) = P

for 21l P& ,Q .




stg no

b4
e

Proposition 5,2 IT ‘,Q,and m are noncoplanar lines, then there e

yarallel nrojection from/Q o 17,
Proof Let ¥ and Q be any distinet points of ,e If the theoren is false,
there exists a narallel vrojection £ from ﬁ

to m, 4w ﬂazzc‘; m 2re noncoplanar, vef, 2,1

Rt e 4

T /
// / implies /Qﬁn = f, I (P) -f (4), then Cor,
, i /
i / 5.117 () =& £ {Q) ?}f 0& §, e

_,Z 4___.;.-—--—-""/ >z Q, bv Aix, 2.1 S‘anelef\ “?j >

(P) Gy
o £ (P) ﬁ; X —)/Q %‘3 £ (P), As D«‘]: 0 by hypo-
thesis, it follows that € (P)3r (2). Hov-

ever, *h, 2.8 (ii) and Th, 2.5 =7 £ (0) lies in the plane "\T {(nnicue by
Cor, S.4.1) deternined by P, 2, end £ (P), Since f (?):’:f (0}, it follows
from Def, 2.1 that /Q and m are each lines of T\-, contradicting the hypothesis

theat fz and m are noncoplanar., “hus no msrallel projection £ {Trom Qto M ¥~

1 -«
SUS,

e

rrovosition 5,4 If £, is & parallel orojection from a line /Qto g line n,

then ¢ is a one-to-one onto mapping,

Proof Supnose there exists a point }'QIQ ‘\“1. By Prop, BG.1l, P = T ().

e 2 s

Moreover, ¥ = T (W,\ﬂ.# P =>,Q, 74: T, ,Q:- br=Wr (W)& ¢, a contradic-

tion, ILebt & be any woint onm, I OQ ,Q then the line through @ and in C
intersects Kin exactly one point, #As this point is not on m, its image must
be &, Thus there is at least ope yabwhich maps into & under f, durtvhermore,

thowe cannot be more than one as & = £ () = £ (T) '-"-> OR \\ 0 (eince §Q %lﬁ‘,

2R and

A 4

\—Jc

QT e .;}. OR = Q7 by Th, 2.1 and vor, 2,1,1, IFf ?.""‘ then &
6—1“31 = X , & contradiction. CLon nsecuently & = T, and the unicueness of the

pre~inage of U is established; that is, T ie one-to-one from ,Qonto m,




Pronosition 5.4 Ir ,Q end n are any distinet coplaner lines, then there

existg a different parallel projection Tron .Rto‘ n for each arbitrary assign-
ment of en image £, (P)& m to any fixed noint P Q 2 , 33% .,
Proof Tt suffices to show that each choice of © (P) determines a unione
function,

iet a particular £ (P) be assigned and let 2 be any vpoint other than
P 031’)2 sieh that ﬁ\§ m., If one were to assign R 2 f (@)€& m, then QR & C
T> OR \\ P (P)""ﬁ m, By &x, 2.4, OR ’\‘\m, whence Ax, 2.7 '-'}’ there exists a
unicgue point T (—:QR (\ m. Thus R =T and so T can be defined in at most one

way, given f (P}«

Consider £ (0) =/ Q , o6& f0\n , )
afl s, 0e 4 Q,%m, &, t Qih . N “P £ (P;\f

It is readily verified that £ is a parallel projection fromdq to n, Conse-
quently f can be unicuely defined as a marallel projection, given f (P), and
the proof is complete,

in a trivial manner, the lines of an affine speace with only two poiynts
on every line may be ordered, As this "geometry of the sheared suger cube!
smd other finite affine goeometries have been thorvoughly investigated (Cox,
2,4,5, cor., 2,5.2, Remark following Cor, 2,5,20; Cor. 2.4.9, Cors, 2,5,9 - 20),
it will now be of interest to investigate gaf‘fine spaces characterized by non
finite n, the number of points on a line, Our assumptions are as follows,
sxiom 5,1 For each /() C:‘ i there exist {at least one) order £ ,Q, onR such
that, for any m Qi'and for any marallel projection T fromﬂ to m, either
1) Piﬂ Q,Z?f () = £ (0) or £ (PYL, £ (a), for all P, 0K & or
2) P-’éﬂ Q=71 (¥

ienceforth, we shall use the symbol '.,< ' only to refer to those £ of

11

£ (Q) or £ (P) "7],&1" (Q), for sll P, Q Q; .Q- .

,Q vhose existence is guaranteed by &x, 5.1, Unless it is explicitly stated
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to the contrary, all orderings referred to and all occurences of *4 ' are
supposed of this tyne.
it is immediate from Ax, 5,1, Frov, 5,3 and Def, 5,1 that narallel
projection is a strietly monotonic funetion, Moreover, marallel projection
is a one-one onto function and so invertible, Consecuently, in Ax, 5,1, we
ney renlace 'from /Qto n' and 'LX . £ nt by tfrom m to ﬂ- ' and "Am, Lx !
respectively, whenever the alternative Torms are more convenient,
Axionm 5,2 There exists m{-;‘?\ containil}g (at least) three distinet points,
Tt follows from Yor, 2,4.8 that ever;r /E(:f contains at least three
distinet points,
Our next resvlt indicates that the affine space now under consideration_
ig nobt characterized by finite n,
Theorem 5,1  For all points P, and lines /Q s
(1) P& ,E ’=> there exists a point Q& &such that P A_Q 0
(i1) P & Q =\7 there exists a point R & Rsueh that R AJ{ P
{1ii) Q contains infinitely many points,
Proof Note that (1ii) follows immediately from either (i) or {ii), by Ax,
5.1, de shall prove (i) and (ii) simultaneously,
Consider any line m parallel to, but distinct from, R and ?1, Q“l’ Rl

any three distincet points of m ordered so that 314 m T1 <

m Q. By Th,
2,1 and Prop, 5,4, there exists a parallel projection from m to ,Q such that
£ (P) =P, ITFf (0q) =0 and {R1) = R, then our wemark following the
statement of fx, 5.1 implies that either R 4){ P '<"J,Q or Q,’*:__x P &,e R,

in either case, (i) and (ii) are proved,

Covollary 5,1,1 ‘There exist infinitely many scalaers,

Proof ‘he resuli follows immediately from Uow, L[.gl"% and Th, 5,1,




~

Theoremn 5,2

exists a
Proof Iet m he
gt any points of

Case 1

m At B ct
{
. f
{
{
!
£ A B G

Case 2 Supnose A'A"’f\\ crC,

point Y common to A'A and C1C,

that 4= Af,

A D<TAt, then the parallel orojection from A A' to /Q using lines

t

Th sufTices to consider A< A' <D as the remaining poseibility.

m At

\

\
\
\

yay B c

poink Be ﬂsuch that A ?SZ.IQ B’(X G,

any line marallel to, but distinet Trom, ﬂ

For all points & and € and lines X , A, C & Q, AA/QC :}there

and A', B, and

m such that At A m B! < m Gt

Suppose ath “ CtC, Then the narallel nrojection fromJZ to m such

that £ (A') = A and £ (C!') = € defines a point
Jé Qsatisfying £ (B'}Y T R, Byv ix, 5,1 either
A-‘<£ B & g Corc éRIKX A, However, the
latter condition econtradicts Jlfj[) {since G<,Q
B, }34/0\ AZTe (2 A Z} A‘t{xc). Thus A<Z @
By C.

By Ax. 2,77

Ye may assume without loss of generality

and Prop, 5,2, there is a unicue

parallel to A'C gives a voint B& Las the

image of U, By Ax, 5.F, it follows that

eithar ;’1'4/[23(1 ¢ or C<,i? Bﬂ"zé. The argu-

ment conceludes as in Case 1,
Lat

the parallel vrojection % from A'A to R using

- i)
e Al

lines parallel to ¢'C define % (Ar) =

above AT At D and fl.be C dmnly 1&<}€B'<X c,

as reouired,

Tn order to simplify our notation, we make the following definition,

Definition 5,4

Ve say that the vpoint B

3

lies between the point A and C and write



o

aa—

“ﬂ.‘ 5 \ ¢v it and only if for every oxderi \Q of any line JY containing
both 4 and G, sither A’?‘(B”‘EQ C or Ufiﬂiﬂﬁ.

Tena 5,0

LS
e

Por any points A4, B, and U and any line ﬂ , if for some oxiering

\*:g compatible with Ax, 5.1, either 'a\,QB \QC or C<2 }“vﬁ--, then A \'B\ C,
Froof Iet m be any line mparallel to, but distinet from, 4B, Without loss
of genorality, we may assume A?Q B\QC. If £ is any varallel projection

from 4B to m, then Ax, 5,1 implies that either f (A -< £ (B) ;n £ () or

£ ()< £ (B, £ (A). Without loss of generality, we may consider £ {A)
<yt (B)<, £ (6). MNow, it is clear that Prop, 5.3 = the funetion f -1

is a parallel projection from m to iB, Consecuently, for eny ordering <'f

-1 - -1
oz("q satisfving 4Ax, 5.1, either T &y (h))\)? f 1 (£ (B))(:z LR

(e}) or £ (£ (¢))<g ! f"l (£ (B)y ! f“l (£ (4)) 3 that’is, either qu' B

,.<)?f G ox C‘iq' Bw('g' A, Thus A \

PT‘onoai‘ui‘on 5.5 (J:_) Por all poizﬂ:{;s Ay, B, and Y, A"\ B \ ¥ \/=> G \ B\ 4,
{ii) For any distinet collinear points 4, B, snd C exactly
one lies bebween the remaining two,

(i1i) For eny distinet collinear points At, B', G, and D',
there exist exactly two dis tiuc.,func‘ticns;rw“mm-& A, B, O, Df\) anto
i\;’&', B ¢ Di\i such the bothmgfﬂjgk ) 3&(’5@)&@)\ (1))

(iw) If £ is a parallel projection frow any line to
[shehcy (con_lap_ar) line W and A, 13, and C are any points of Jz , then A \ 3\ &
(37 £ () \ T (;3)\ e,
Mobivation for the definition of veetors given in Chapter II is wmro-

vided in vart hy the next theorem,

heoren Do Let ‘e_ and m be any lines such that ﬁ n, 1T f and fl are eny

e

rallel projections satisfying © 9\ “2m and % hi:d -—? jg , then the compo-
R




site functiond € : f ~ 4 preserves all ovderings t:‘g of A.

Procf e wich to show that A, B & ﬁ\ and A‘sz ':} ((53?'} 1",.(51 (% Y B,

Without loss of generality, we may assume R“f m, for if ,Q = m, then Provn,

Dol :-> 061’“ is the order~preserving identity tmﬁf’fownatlon, T —Q*?/?.

Since {k and T are strictly monotonic (marallel vro jections}, their comno-

site function f@  is also strietly monotoniec and so either wreserves or

reverses ‘Y/Q 0315[ . Thus it sufficesidtestancordersd noint maiy (é,if‘;)é 0

of /Q X/Q in order to verily the theorem, As A = 66 (&) 'Z»% T is the

ovder-nreserving) identity transfommation £ /Q by FPron, 5,4
S ] b & J ]

we may assume without loss of generslity thet Af‘e (%f) A, Sinee we need

only test one (4, B)Ec 0, it follows from Th, 5,2 thad we moy assume A
QB of (4),
v ar (a) ) s ““”’é £ (4), then Gow, 2,11 T A © (4) *)% r

> (g) & ( 8, 4 £ (4), torveover, Cor, £,1.1 => f &Q >

famd

JFX w? A= {gf) &, by Ax, 2,1, As we are sumnosing fﬂ]%‘f) A, it follows

i £ ln) 1) that A T 1%)\'\‘:{‘ (i) (af‘ {4), By

Cor, 2,4,6 and Ax, 2,7, there ex-
3

ists 2 unicue noint CE B £ (B) (\

x

T (A) (§1) A Sinoe<ﬁ\ B‘(%F)
Ax, 5.1 :> (Cﬁf) :‘-‘1.\(}\7',‘ (&), by

L

projection from £ (4) (‘% Y A to B £ (i) by lines parallel to ) gives B

g,q

inelly, the parallel projection from B £ (B) to { by lines varallel to

(Cﬁf) B oegives ‘ * \ Oij As 5‘.{633 ‘ZQ(U@ ) A, we may conclude

AR (T) B, Q.ED.

4]

QO

sidering the »arallel projection from

iy I3 91) Y )B ,Qto T {4) {4 1r) A whieh maps 4 onto

£ (3}
(gr)
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y 1

Corollary 5,3,1 For any ordering ‘*‘:Jland any distinet points A 2nd B
‘?g B and if the betweenness relationships that exisgt among the points of
,{ are given, then the order relationships underﬁ(g’ of any poiunts of R may

he determined,

jouws
[

Proof If A lﬁ ‘| ¢, then (IT_‘Q ?j\:q ¢ or G‘ﬁ B‘t‘l 1), A(:Q -.:'> ;ﬁ]gp,*{q C 3
that is, A<g and e, Tr Afc ‘}3, then (AN,C<pB or BSHC Ga), A
\‘QB > :»“a_?%C"\_QB, since B‘:QC\-Q\ Ay, A B -:? 8 \’%A, AYB :> B {:QB, a
contradiction, Ths A Ty\c and C?&B. Similarly, € \ AK B f} ¢ (‘Q A,
C™M 13, Since 4, B, and ¢ are distinet, Prov, 5.5 (1), (ii) imoly thai

the three cases congidered above exhaust all nogsibilities,

Corollary 5,%,2 If 4, B are distinct points of a line 2 theon the sitipu-

latvion A\':Q B determines exactly one orderins of X of the type gunaranteed
by A%, 5.1, Thus there are exacfly tvwro such oxderings on every line,

Proof Ye may assume thet the betweeness relationships that exist among
noints of /Q are given, If there is an ordex TQ satisfying Def, 5.1 such
that & Y,QB’ then Cor, 5,3,1 =?' the stimulation AN B uniouely determines

3

. X
v(>also satisfies Def, 5,1 and since either R\‘&H B or ‘Q‘JZPB’ there exists

¥ . . . .
. However, at least one oréer?uq exists satisfying Pef, 3,1, Since

in _LELC’LL some order< on & compatible with Pef, 5.1 sueh that AN B, By the
ahove comments, this order is uniguely determined dy the stinulation

thet A< B, By reversing the roles of 4 and B in the above srgument, 5ne
zets a similer resuldt with resvect to the stinulation thatb BY A, Since

Der, 5,1 ‘=> (not both AN B and BY A), the proof is complete,



voroliary 5,3.5 Leb 2 be any non mero veector, TLet X he any line and P

s01me point of Xsuoh that (P,R)é a :>°P =\J2. T, Let 8
and ' he any distinet points of )?and \Aand V the uvninue voints such thsat
(5, WS a, and (T,7) &a . Then (i) U\ s V‘QQand

(ii) ¥or any ordering &g of E, S<£D i}[kan
Proof Since (P, R) 1‘ (S,M)§~9 , it follows from Defs, 3,1, 2, Ax, 2,4 and
3] U\, Thus \AQ /Qand similarly V& /Q. Wow, it is readily
verified that, for all points, A, B&,Q, (5, N & (4, B) :> (A, B)Eb (T, V)
since S{j:T. Thus there exist a line m +'/Q‘and points U, DE m sueh that
1m \\X, (3,0, 13 (o; D) and (¢, D)J (T, v). It is evident that S<FC
delines a parsllel projection £ from -/Qto m snuch that ‘A = D, Similarly,

o=PT defines a paralliel projecting from n to-ﬂ such that D -V, As S‘(ﬂ T,

Th, 5.% implies WP v since ¢t s, W7

Corollary 5,5.4 1 130

72}

Proof Iet P and O be any distinet points and R the uniacue noint sueh that

such

s

(¢, R}, By Yor, 3,1.3, R& P Q, IT L<JZ is the ordering of I
4 O, then Cor, 5,3,3 imolies O R, Since T{ ig transitive, P
g Ry that is PR, IfY is the vector containine (P, @), then (P, R)

CUtV~ayday =0+ 1)y ena (7, )€ 0y, 2s P'#R, it fol-

lows from Th, 3,3 that 11’1:(:0.

Corollary 5,3.5 For all wnositive integers n, 14 1, 4o 1 (n *times)"ﬂ|=
0,

Froof The proof proceeds via mathematical induetion on n, A4As the theorem
hes been verified for n = 1, 2, suvpose 1+ 14 ... 4+ 1 (k times )-:F 0 whare
X dis any positive integer other than 1, Tet P and @ be any distinet voints

and let ¥ be the vector containing (;P’)Q)g‘i‘hen it "\:Q's the ordering of I such




that :9\‘9 3, consider the points R and S vhere (P, R) & (24 v oo 371 AL

and (R, S) & V. A we mey assume as nart of our induetion typobhesis tha

PR, 16 follows from Th, 5,3 that P <R :7 0<g 8. Thus P<go0,
G“TQS = P{gs =7 Pi‘:, . Since (P, 8) €& (14~ e t1) 4, ve heve, by
{ 4.43) tmeq
the argument of the preceding corollary, ?«P oo 1 #‘ 0, 'Whie comwnletes
de 3

Lhe yroof,

The result of Vor, 5,3%.5 is often expressed by stating thatz ig of

characteristic zero,

Tet 7% ve the set of positive integers, UJefine the relation\{) from Z’I‘”
into & a8 Tollows: 6{, (1) - 1, \l"‘(’l"\' 1} = ¢, (n)"f’ 1 for 811 positive inte-
pers other than 1, It is possible to show by mathematical induction thsat
"{fis 2 (single-valued) one-to-one function, I the range of'L[f is A, then
4 is dsomorphic to ZT For, it is readily shown by mathematical induction
%:hat"(“‘“ {m + n) = l[“*' (m) ’i’q“(n for all positive integers m, n, One nmay
then show that t{-ﬂ(m n} = \I-(m) (1), In particular, since mn = n m, it

llows thatk\‘- (11 = \l—(n)* (m}; that is, multiplication of scalars
is comrmtative in A,
Siz@'zilarly, A has a subset B A sueh that B is isomorphic to the set

of all iategers,

Delinition 5,5 Letge and m be any narallel lines and C‘jan orvder onX

oi the tyvne guaranteed by ix, 5,1, The ordering (;l of m corresvonding to

-T:Q is the ordering of m such that, under any projeetion £ from £ to m,

A, 3& Q ApB =7 (&)< (B},
Theorem 5,4 JTet X, m, and n be any parallel lines with Q‘Qa fixed ordering
of ﬂ Then G n 2ud <y ave well defined and <, is the oxdering of n cor-

responding to<y oo m ,




Froof If ,Q = m, then the only parallel nrojection from R $o 1 ig the iden-
tity transformstion and $y, mey be uniguely chosen as TE, gince 4 ﬂ B

m> ob A ?B it /Q %‘s’m, then let & and 2 be any woints of ﬂ such thet
A‘T:?B. Since any parallel projection is one-to-one, if f is any definite

pamllel projection from gto n, Cor, 5,3,2 implies that there iz & unicue
pis

X
ordering<T  on m such that £ (4)<T £ (B), Now, Ax, 5,1 Lmplies that
¥
T ig indenendent of the particular A and U we have considered,
X
Ioreover, we claim that igs independent of the parallel projec-

tion £, ¥or, let A and B be the definibe vpoints considered above, (5 any
JZ s
varallel projection from “A to m, and < the ordering of m such that

ba 4
@ ARY fﬂ (8), As £l is a varallel projection Trom m to {K, it
ollows from Th, 5.3 that £ (A)< £ (B)
b

2 Y e (famf ca (£=" (2 (B)));
that is, ' {a) < (6 Since a(_»"‘«_)

hid ¥

N 3 {(B) by assummtion, Cor, 5,3,2
I} N = X , whenes the ¢laim is

proved, Thus <y end (similarly) Ny ave

well defined,

e shall now show that <y is the ordering of n corresnondiing to Ny
on 1, isv the firet remark of this proof, we may assune J'Q“"Fm ;‘Fn. fur-
therrore, we may assume /Q q:' without losa of generality, For if £ 1ls any
parallel projection from _Q = n tomand A and B are noints of -.qu.ch that
AXyB, then £ (A) Ty £ (D) :} 1 (e (a)) < f “1 (£ (B)); that is, ASG
B, where \x is the order of ..Q = n corresyonding to {1‘ on m, A8 AQ‘:Q}E,

¥

Cor, 5.%.2 implieS'Tg =<x. since T X, we have <) I <., the reounired

resuli, Thus it remains to consider the case VQ, ®» , and n distinet, Under




these conditions, if'ﬁ%x is the owdering of n corresvonding to‘<% on m,

-
-

. -
it is an immediste consecuence of Th, £,6B thatb <;x N This com-

ne
plates the vproof,

t is clear that Th, 5,4 implies that the orderings of lines of any
glven paraliel class are sevarvebed into two nonemnty equivalence classes
under parallel projection such that two orderings, <3 of J& ané"% of

“Qz are in the same equivalence class if and only if <, is the orderins of

1
_jg corresponding to <E,on.Jé .

Definition 5,6 An equivalence class of crderings on lines of some paral-

lel class under narallel projection is called g igivectim, Two direetions
T A e A

D1 and Do are said to be ovposite if and only if there exists an ordering
€Dy sueh that > & Da,

Mote that eny two orderings are in the same direection only ii thev
are ovderings of vnarallel lines,

From our preceding remerks, i1t is resdily seen that corresponding to
eny direction Dy containing an ordering ﬁ’, there exists a unique direction
Do (namely, the direction containing >~) such that Dy and Dy arve ovnvosite
directions, Since for all orders'<, the order ovnosite to the order opposite
10 is f; it follows that D3 and Dp are opposite diveetions if and only if
D2 and Dl are opposite direetions, Thus, we may refer unambiguously to the
directioh opposite to a given direction D, In particular, for all directions
D, the direction opwosite to the dirsection opposite o D is D itself,

Definition 5,7 For any (A,B)%&bg, if X is the ordering of AB such that

A< B, then the unicue dirvection containing ™ is said to bhe the direction

determined by (A,B).

- /] .
‘Theoren 5,5 Tor amy {4,B), (C,D)& 0, (4,B)[N (C¢,D) = (4,B) end (C¢,D) deter-




mine the same direction.
Proof If (4,n) 1 (C¢,D) and AB‘!‘FCD, then Def, 3,1 :> AB \\ ¢ and AD (\

LD, Thus there exists a parallel vrojection £ from AB to €D such that £{4)

1
"

> and £ (B) = D. 3By Th, 5.4, (A,B) and (C,D) determine the same direc-
tion, Otherwise, Cor, f’f.l.é =‘->.11_’B = D, IT (4,B8) = (C,D), the theorem
is #rivial, If (z’i-,.,B)i#” (c,D), then Def, 3,1 and Th, 2,1 =} there exists
voints #, ¥ and a line m-‘-L\;RB such that ¥, ¥ &n, (4,5) ] (3,7) end (3,¥)
i1(Cc,D). By the Tiret case considered, (4,B) and (E,F) determine the same
divection, as do (&,F) and (C,D), Thus, {(4,B) and (C,D) determine‘ the same
direcvion,

Remark By the previous theoren, for any _g‘é \?/such that j ;t: 0, we
nay refer o the unigue direction determined by any (A,B)%_@_, (A,B)\as
the direetion of yv The vector 0 is not assigned & direction., ¥For any
“direction D, it is clear from Th, 5,1 (ii) and Th, 3,3 that there exist
infinitely many vectors with direction lp Turbhermore, we have now showm
the manney in which our definition of veetors comnares with the nore con-
mon apnroach of defining vectors as sense-vreserving rigid narallel dig=-
placements,

e now relate the theory of ordered affine swpaces to that of scalars,

Definition 5,8 et JZ be eny line, < any order of uQo:{' the type postulated

in Ax, 5.1, and P any point of ﬂ. Then we define the half-lines of ﬂ with

resoect to P to be the sets % o\o&:  a<roras= P\andg\@,\ qéﬁ,
»< Q or Q = PX.

Definition 5.9 A non zero scalar £ ig positive if and only if for any points
P, 0, and B and non zero vector \["such that (P, P)Q_\_j" and {P, R}C £ (F, it

follows thet Q and R lie on some half-line relative to P,




Iemna 5,6 ILet P, G, R, B, and U be points, £ a scalar, and W™ and { non
zero vectors such that (P, Q,)é U:_, (r, )& ¢ (), (P, B) &l}i, (P,C)

é iy (_S}:r), and ¢ and R lie on some halfline relative to P, Then B and C
2lso lie on some halfline at C,

Proof  Suppose @r‘\k\[ . If P\ n\ R, then Prop 4.3 implies nB\\ RG, and
Prov, 5,5 (iv) implies P \B \ C by considering the parallel nprojection from
PR to FB by lines parallel to

0B. Conseauently, B and C lie on
exactly one half - line relative

to P, Similarly, P \R \Q :7 Pt.

" \B =? ¢ and B lie on exactly one

half-line relative to P, Horeover,

R=w0 =>,f‘ = 1 (bv Cor, 4,2,1) ;:>-
B - ( => B and ¢ lie on exactly
one half line {corresnonding to
PB} relative to P, Thus it remains only to consider the case of a non zero
vector A \\ Yy~ such that (P,D) & l}\anc?_ (P,E)é £ (0), Since we have already
shovm @ and R lie on some half line ve lative to P and since \[\[: ““\ __\_N, (by
Prop, 3,4), the above argument shows that D and E also lie on some half line

relative to P,

Proposition 5.6 Tor any secalar f, if there exists a point P sueh that Tor

any voints @ and R and any vector ___"f', (p, 9)6. ¢, (P, RIG T (;\5_") =>Q and
R lie on some half line relative to P, then f ig positive,

Proof  Iet v~ be any non zero vector and O and R ynointe such that (P, Q) &
_\_f'and (¥, R) 6”1‘ (f). Tet Pt be any point not on Fo and O snd E' points

sueh that (P, 0') & \I and (P', R?) Q‘f (_;\5'. Then by the proverty of f at P,




9%

e have
one ot/ 7 lal » P!f@,v\n'
! Q1 R pz\o Dprird o => 41 and
3 Rt lie
R=0n %}f =150 '=R'{ on some
. half
R = P =M =0F'=R') line ve-
lative
to P!
P <) ¥R

by arguments shnilaf of those of the preceding lemma, By Lemms 5.6, we
may infer that 2ll npoints P! not on PQ have the stated property of P, How-
ever, for arbitrary wpoint T, there exists a non zero vector yP such that
for eny point R, (¢, R)& W I}’ T éiP’R. Thus all voints have the stated
proverty of P3 thet 1s, £ is positive,

wemark Iermms 5,6 and Prov, 5.5 establish that a scalar f is positive

il and only if there exist voints P, §, and R and a non zero vector jf
such that (P, @) ™ !: (P,R) & ¢F (¥') and © and R 1ie on some helf line
relative to P,

Definition 5,10 Any non-positive, non-zero scalar is seid to be negative,

The sealars have now been separated into three mutually exclusive and
exhaustive sets : that ¢f nositive scalars, that of negative scalars, and
a1 ( ’ . k) ) .
the set % O\i. It is clear from DefseB.8 - 10 that we may think of posi-
tive secalars as order preserving, negetive sealars as order reversing, and
the zero scalar as owvder destroying.

The following theowem justifies the use of the words "positive" and
megative" in referring to scalars,

Theoren 5,58 sor any scalars £ and G,

T positive, a vositive '-'-} il G,l vositive, i‘%positive




i positive, ﬂnegative => T & negetive

1
£ negative, ¢ negabive ‘—'? T gnegative, i‘g nositive
= #

f negative, g pogitive "-‘? T Qne{gaﬁive
Proof (i) If f, 6} are each positive scala.rs)g:‘: \’: 6\» \Y, r, ) &
l],/ (P, ) G’% (y*) and (P, sy &t g)f, then 9 and R lie on some half
line (of =2 line ,Q) relative to ¥, Similarly, R and 5 lie on some halfl
line (of a line m) at P, If P =R, then Cor. 4.2.2 = @ 20 (4 )V
= T (ﬂ (=1 (C‘@ =0 2} P=g u>- 0 and S lie on sowme half line rela-
tive to P, by Ax. 2,8, Since Lh, 4.4 (i) implies f 3':'%0, we have that
f‘g\\ is positive, by the remark following the proof of Pron, 5,6, I P
:;-x’, then ,Q end m are unicuely determined lines which, by Zx, 2.1, are
+the same, Thus @ and S (and R) lie on some half line relative to P, whence
i‘a is poaitive,

(i1} If £ and Y are any negative and nositive scalars reapectively,
oF e '\‘3/, @, &V, (2, 0& ZK, e (2, 8) & (r4) 7 then
S and R do not lie on a half line relative to P, while R and & do, Con-
sequently, O and 5 do not lie on a half line relative to P and ?3 is
negative, Similarly, %ﬁ‘ is negative,

(iii) If £ and 333?@ any negative
scalars)_g_:% Ufé"’ \?J, (P, ﬂ)& _\I‘,
(°, 1) & ¢ (\) and (,8)& (£
\, then Q and R are not on a half

line relative to P, and neither are

o —— +— g -&
T R and &, Since evervy line has bub

R S
e (ir) 6 (@( W
v + Qf) %L =  two half lipes relative to T and
o -

Props, 3.6, 4.1 '-'-> P, 0, R, and S are

F

ecollinear, it follows thalt § and S lie
on sone half line relative to P, Thus

fyis positive,



{iv) ILet f and ;:1 be - any vositive scalars such that (?,Q,)C‘:I Ve
& W), (2,8)& % (v) ang (P,7) & (£ %9) ", In order to
compute (¥ ¥ (6 ) ¥, we emoloy Def, 5,9 to find that Q and 2 are on a

hal? line relative to P, as are § and S5, It follows from Yor, 5.3.3 that

L9 P

9 and T are on some half line velative to P, ¥For if PL R (resp, R P

N - k) 1
then 8 T (resp, T< 8), Purthermore, PX 4 (resp, < P) and P< 8

(resn, o< P), Thug we have P S T T (resn, < & < ) => » <7 (reso,

-
>

T X P}, Since PN O (resy, o N

e

o

}, it ig indeed true that 5 and Tlie on
gorme half line relative at ¥, whence f-iv& ig vositive,
(v) v a method analagous to that of (iv), one.may prove that the

sum of any two negelive séalars is iteelf negative, Tor, with the nota-

tion of (iv), we have R and O are not on & half line relative to T, ond
neither are & and 9, Sinece P, 0, R, and S ave collinear, B and 5 lie on

some half line relative to P, Bv Theorem 5,6, if p< n (resp, R (P) then

g < p (resp, < 8), ¥oreover, QN F (resp, P Q) and P S (resp, a<< P,
Thus 0K PSS ST {resp, TX 5 S P <o) :?' 0< P <L {resp, TSN P 0) =>

and

5

do not lie on a hal? lins relative to 7, This completes the proof,

Corollary 5,6,1 TFor any non zero scalar £, £f ls positive,

Proof Lither £ is poszitive or £ is negative. In the former case, the
proof is immediate from Th, 5.7, If © is negative, we assert that - is
positive, for if -f = 0, then £ = =~ = ~0 = 0 (which is not nrositive) and
if ~f were negative, then 0 = f t (=), as the sum of two nezative scalars
is itself negative, a contradiction, Thus -f is positive, and by the Tirst

case considered, (-f)(-T) is also vositive, Since (~f){-7) = ({~1)F) {((=1)7)

= (=) (2((=2)8)) = (=2 {(L(=1))F) = (-0 (((-1)2)1) = (=0 ((-1) (££)) = ~((=2){£F))

= ~- (If) = 1, the nroof is complete,



in

oroving Yor,

5,6,1, we have also proved

PN

Gorollary 5,8,7 For any scalar f, ¥ is vositive X3P ~f is ne
corollary 5,6,3 1 iz positive,
Froof Since 1J#’ 0, ir 1 is not positive, then 1 is nematvive
ceding corollary, as 1 = -(~1), we have that -1 is nositive,
(=1){-1) is vositive, Towever (-1)(=1) = L since (-1){-1}d
(,_1)%. (l) (-1} = (-—l;\" 1)(-1) = 0 {-1) = £, Thus 1 i= posid
diction, This comvletes the wnroof,
Cor, £,5,4 ror all positive integers n, 14, . .+ 21 is pos
ST n tines

The trivial proof by induction may safely be left to the

Corollayry 5

(resn, neg.

Proof

e e b

conclusion

Gorollary B

tors with direction Q& as vectors with direecltion Dg

froof  ithout loss of generality D ¥ Dg, If Dy and Dy are
tions, then the result is obvious; for corresvonding to every
direction Dy, theve is a vector -\, with direction D,, If D

Ma

Oy
1)
¥ov Lthere

{

Gz

i

£

o}

oth +

w

H

1

are exactly as
ian P) on the half line relative to P whos

by Th, 3,5 and Th,

s

then thev conbain orderings of lin of

rections, )

¥

and C?.

be anv point andJQj the unioue line of Gy (i =1,

nany vectors with divection Di as th

5]

cor

fal

5.5, This latter number is simoply the

snondi

cavive,

ive, & controw
itive,
reader,

5.5 Yor any non mero scalarx £, £ 0% (resp, nex) ¥> f"l ne 5§

1 is positive, so must £™% £ be positive, Since #:U the

Tollows from Th, 5.6,

6.6 TYor any divections Dy and D,, there arc exactly as many vec-
ra

onnosite direc-

Joort

vector V7 with
o D are not
1 and o

distinet »arallel

2) through P,

ere are noints

ing line 1is in

number of nosi-




tive (or indeecd the number of negative) sealars, by Th, 4.2, 4s this mm-
ber is the same for (that is, funetionally indevendent of) D;, the conclu-
sion Tollows,

In vroviag Cor, 5.6,6 we have also nroved

Corollary 5,6,7 The number of positive sealars is the seme as the number

of negative scalers which com on value is the same asg the number of vectors
with any egiven direction and also the sane as the number of points on any

haifl line,

Definition 5,11 Yor any secalars f and th we say that f precedes L’d and
write f("% if and only if %4- (=) is vositive.
Provosition 5,7 For any sealers f,% » and h, (i} f"'dﬁ ,%{ h =A>f< h
(ii) £ < 4 =>f“i’ hfﬁﬁ%h
(iii} '{‘CZ 0T h ‘i}fh(C’hth‘hG@
(1) £, 0 0 Ynu<rn, ngyTne
Lzoof (3) By Th, 5.8, ht(-£) = (g% () (¥ (<)) D nA(er) is

nositive =>~ £X h,

(ii) Since (%-’r ﬁ,‘)‘f’(ﬂ:-(_f. h u{%"rh Y+ (= o\«v -f)
it follows that f‘(’dzs :? Ua Ji"(nf) is vositive => (%"-\f h) =(£4 h)) is

rositive => fdih T OA &

(1i1) since ((@ n}d (-(n)) = hn F (-1 (£ 1)) :0511 *(((-1)0)n) =
%h + ({-f) h %’P‘ (~f)}} h and hothr,aw\« (=f) and h are vositive, it fol-
love from Th, 5,6 that (ﬁ n) ¥ (=(£ h)) is vositive; that is, £ h i“?s h,
Similarly h £ < ng.

(iv) The proof of (iv) may be patterned after that of (iii),

¥roposition 5,8 VYor any scalars f and CX such that f T there exists at

least one scalar h such that £< h and h < ‘?S .




Froof Jet h = (f+ ﬂb)(l”f’" 1) 7. HWow, h{-T)

m (7 Q) (LR 1)Ly (=) 1= (£ 4 Q) (14270 (-0 ((L41) (2517

= (2 g )4 (=) (1) (1317 = (1% Q)b (-10)) (k1)

=(%%($H Hﬁ'Dh. By Cors, 5,8.4, 5, Def, 5,11 and Th, 5,6,
it Tollows that hﬁ%{-f) is positive, Thus £ ¥ h and one shows similarly
that h % .

Reeall thatég: contains subsets A, B vhich are isomorphic {vyith res-
peet to addition and maltiplication) to the sebs of vpositive inbtegers and
intogers respectively., Tt is now evident that these isomorphisms persist
with respect Lo order,

1et R be the set of rational mumbers. The elements of R are ecuiva-
lence classes of ordered pairs (m, n) of integers for which ni? 0, such
that (m, n) is in the same rational number as (v, q) if and only if mg = mn,
Denote the rational number containing (m, n) by-E;ng ;:3. ﬁhereV* is the
furction coneidered in the remark following the proof of Cor. 5.2.5, define
the relation @ Trom R j.m‘;og as follows:

@ ({: 1, IJ ) = \i"' () (l',ﬂ(n))'l if m and n are each nositive,
' -k¥-(-m) (¥ (n)) =L 5 m is nepative and n is vositive,
0 if m = 0,

Tt is now possible to show that @ is a (single-valued) one-to-one func-
tion from R} onto a subset D of i:, B(:~D, sucgh that D is isomorphic to R
{with respect to addition, rmlbiplication, and order}. This result is al-
50 a direct consequence of the well-known theorem that, for any division ring
T of characheristic zero whose idenbity element for mulbtinlication generates
a sub division-ring ¢ of ®, G is isomorphic to & (with respect to addition,

milbiplication, and order,)




Proposition 5,9 Tor any scalars f and (b, exactly one of the Tollowing

holds: (1) © :fﬁ
(&) =< 4
{3) %‘f i
Proof  Since 0 is not nositive, it is clear that (1) cannot hold when
(2) or (B} does, Woreover (2) end (3) cannot hold together, for 1"’(‘(?},
%‘( £ => 0= (%Jﬁ"(-f)).\_ (¥ (-9)) is vositive, a contradiction, ‘
e need only show that f#‘i‘a , %{ £ D 4 . Yow, it f#dﬂ and
f{% , bhen 4 (-(l\) is neither pogitive nor zero and hence is negative,
Ag 0 is not negative, Th. 5.6 => - (T4 (4-02\) ig positive, Thus - (£ (-Ca 1)
= . (..(6 )4 (~7) =% {-) is positive and so £< 0() - ‘
Preparatory to stating an important theorem about L , we make the fol-
lowing definition,

5 ol ) o . ] > . i -~ . )
An ordered field is & field in which an order wrelabtion ¥ is defined satig-

fving the conditions of Props, 5.7, 9.

Definition 5,12 Any nonemnty set S in an orderved division ring ¢ = {¥F3,

. ,~ ) is bounded ahove if and only if there exists an element F in ¥ such

. - - - . R
“or all x@_ 5, either x = £ or x N\ £, Any such £ is called an uvnper

b

that

e

beund of S, If there exists an unper bound [fs of 5 such that for all upner

bounds h of 5, either 6"6 = h or Cﬁ{ h, then Cﬁ iz called a least uppexr bound

=

of 5, G is said to be complete if and only if every nonenpty set S5 of F
has a least unper bound,
Tt is well knowm that any comnlete ordered field is isomorvhic to the
- v3p 1, <- . 2 3 - L] ]
veal pumber syestem. We have oroved that &~ is a division rineg (Cor, 4.5,3)

and ordeved (Props, 5.7, 9). Consecguently, we have the followinz imnortant.

result.



Theorer 5,7  “he omlered division ring z of sealars is isomorphic to the

i st 7t

real number system if ang only if

(1) f,GQ(:Z :7 T4 =9 r
and (',-?.) z is commlete,

‘e conclude this chanter by cshowing that some elassicel vesults in

fuelidean geonetry are also valid in the ordered afiine space under congi-

Delinition 5,15 let P and Q be any points, Then any noint R such thet

(P, )4 (2,2) is called a nidpoint of P ang 7,
It is dimmediate from Defs, 5,1, 2 that any midpoint of ¥ and 0 is

also a midpoint of © and P,

13:113995@1 5.8 If P and § are any points, then there exists s unicue vpoint

R sueh thet R is 2 midpoint of ¥ and 0.

Iroof (i) Tet P = Q, If there exists a point 2 such thet (P, (r,0)

and |V~ is the vector con aining (P,R), then (P,R)T‘ (R,P) :}£ = —{\[

DR T ML LN T ST

il,‘)“lfo) 0, Since (P,R)& 0, Th, 3,3 implies P = R; thus, P and ¢ have at

;=4

=

rnost one midpoint, 4As it is clear that (P,P)T\ (P,P}, we have thet P is a
midnoint of PP and 8, whence P is the unicue midpoint of P and ¢,
(i1} Tet P% Q andV  be the (non zero) vector containing (P,2). Dy

Th, 4,2, there exisis unicue W & @/;such that J~ = (1% 1) W, IPT

is the unicue point sueh that (P,1)& ,,U: s then we need only let T = R, Tor,
) + = 3 - W ;o $ 4 = ';3'1/’\ Ty
V =Wrw = (00& W (by Th 5.5 (11)-(v)) D (2,1 P (1,0),
It is clear that no value Tor 2 obher than T suffices, For if (P,R)
T (R,¢) and (2,R)& \é_“, then W~ = (I41) W = (1% 1) w” "}UL = {147 1)
-1

(CFUW ) = (1% 1) (W) =W 2R =1, by 0, 5.5,

et




Thus, it is unambiguous $o refer to the midpoint of ¥ and 0, Using
his notion, we now vrove the celebrated theorem of Thales and itg converse,
3

Theoraon 5,9 If &, B, and C are any three noncollinear wointe and D is the

e e

mid point of 4 and B, then for any point Z e A C, B is the midpoing oi‘A and

m
C if and only if DE \\ BC. Moreover, if B is the midpoint of & and C and th
A and Y~ are vectors such that (B,C}

e{i and (D,B) & \J°, then \§ =

e

JE G
Proof {i) Tet 3 bs any noint such that DE \\ BC, Then if (A,D)RQ 4

&b, :x.,u C e and (A, Q C, it follows from Proy, 4,3 that b = {1 4 1) a

S0 =141 =€+ | 1r (E,C)(‘_%‘, then ¢ =@ +& =&+ :->
e =G =y (0, B) P (5,0) T # i the midvoint of A and O,
(11) Suppose £ ig the midpoint of & and C and D‘"*\\”C Then if Q ig
the 1line throush D parallel to BC, it follows Trom Th, 2,3, Cor, 2.4,1, ix, 2,7,

and vnart (1), that the intorseetion of 52am‘z AC containg only the midpoint of
A and C, namely &, dy Ax, 2.1, X = D, a contradietion, Thus D& !\ ie,
{(1i1) Tet D and & be the midpoints of 4, B and £, € respectively, Let

the line thl’oﬁgh B parailel to AB inbersect BC in the noint ¥, Iet (3,C) &
o, (]J,lﬁi)&‘\r, and (B,7) & J_\_T Then by part (i), U = (1% 1) W, Since
(0,2} TI (B,7) by construction, we have (D,R) IP (2,%) =>'\3& =Wy = A
+yr = (LY. 2R,

e shall now generalize the nreceding resulis,

Definition 5,14 Tet P and O be any pointe end n anv pogitive indeper, The

(n - 1) taple’ (P1y aees P _q) ie called an n-division of P and 2 i7 and only




& is immediate thet if (Pl! Poy asey P l) is an n=division of T and 2,
Pr P.L) is an n-division of ¢ and 7,

™ >
e l? TNets teey

Theoren 5,10 Tet P and 4 be any points and n any vogitive integer, Then

there exists a unioune n-division of ¥ and

e
-

Prool {1) ¥e shall prove thet there existe at most one n-divigion of P and
Qe

Supnose P = 0, Then 1f (P71, ..., Ii?n_l) ig an n-~division of ¥ and O,
let \,_!\_r be the vector containing (P,Pl). B the definition of an n division,
it follows thet {(P,0)& nW . Since g = P, pW = Q and
Gor, 4.2,2 and Cor, 5,3,5 imply W = 0, whence Th, 7.7 gives ¥ = ¥y, Iy
Prov, %,.2 (ii} ard en obviocus mathematical irduction r)n i, we have E)i =P
2, ve., =1, Consecuently, at most one n-division of ¥ and 0 existe,
IJ# 9, leb (P71, .ee, j?nug.) be an n-division of P and #Juﬁe vechox
containing (P, Py) and \J~ _(:3‘(:;9 ) the vector containine (P,0), &g above, it
follows that U™ = n W, Sinee L4 ... +1 (n tines sF 0 and“«{'t 0,
Th, 4,3 implies that g_" uniocuely determines }& , whence Th, 2,7 implies Py is
unicuely determined, Siwmilarly, by mathematieal induetion, one shovre that
(P1, +e » Ppo1) is uniouely deternined,

(1i) Tt remains to Tind an n-division of P and 0, If P =14, it is evi-
dont that Py =7 ¢ 1 = 1, 2y eeey -1 is satisfactory, it P;‘F 0 and XE‘" is
the {non zero) veetor containing (P,2), le'tQ\j be the unicue vector such that
\ﬁ‘ = NA .

IL Py, eesy Ppal ave the points such that (P, F] 1S ‘A___, (Ps, Py l) Q u&_

1, 2, eesy D1, then it is immediate that (131, vesy ) is an n-divisgion

Theorer 5,11  Iet A, B, and U be three noncollinear points, D and ¥ any nointe

—*.4,-4\—...“.._.,_,..,‘.

such thot D& AR and B AU, U\ \~, W7, and x the vectors containing {4, D),




PRV

(3,10, {A,5), and (A,C) rospectively, m and n any positive integers, end &

a vector such that 8 nk =2n g . ThennW 2 mx 1f and only 4f DE | 5o,

~
Byl kA .
Lo

I D 1_\ #G, and § end z ara tho vootors such that (D,E)& i} end (B,0)

]

thomny, S m (g_-l_L Yo

4 4 Z

Zroof  YTet T, G, and ¥ be the unicue points and b the veetor mueh that
(;1,3‘)@&__9., {4,0) = mx = b, and tho veetor ¢ containing (A7) i such that
n G b, By Prop, 4.5, DHY ¥¢ ana B0 \re. By Ax. 2.4, wo mave DH ‘l;ac. Xow
D.,\\ BG /"> £ = since the line th’cmmh D parallel to BC intersects AC in
exactly oo point; for all the lines bolng eonsidersd are conlansy and A,

B, G noneollinens :}_1[ Tonlto DHufo % a4p =) D)i AC

(by Axe 2.1}, This proves that » W' = nx 40 and only if DB :,.\...0. The

© fivnl conelusion of the theoren follova hy an avgunent anelasous 4o that of
The H.9 (111},

Jomawle Yot Qi (1 =1, 2, 3) be distinet lines interrectin~ in o point P,

L Py (4 w1~ 6) bo points distinet from one another and also from P sueh

that P21-1’,1z,’5:l;("= 1,2), PP, // B,p, , and P,B.. If there exist

—>

positive integers m and n such that m PP3 = n PP4 , than PlP5 // P P6
—> } .;

(where PP3 1s the vector containing (P,i’s)). Form PP =n PPI; —_




P1Pg \\ Folgy DY Th, 5.11l. Thus the generalized form of Thales! theorem al-
lows ue to inTer one of Desaraues! theorems, under certain special condi-
tions (namely, that m and n be "positive integral" scalars),

Definition 5,15 An ordered set (S,< ) is convex if and only if ¥, oGS
=) (P¥ R Q o QT R < P =?'R&s).

. Y . oy 3 oy ,
fheoren 5,12  Given a line ,P and & plane | such that -ﬁ C 1 the set of

noints of "\Fnot on 2 can be expressed as the union of two nonemvnty seibs
called half planes such that (1} each half plane is convex and {2) Tor all
points P and & in distinet half planes, there exists a point R (':,‘Z such
thet ?'\ R\Q.
Define the linary z'elation% on \y -/Q as follows,
ifor all P, "‘& T"*’Q, P% Q <: at least one of
(1) P=q
() wil g |
(3) there exists a vpoint R&E P ﬂﬂ)’ﬂ sueh that P\ﬂb or QK}D\R
holds,
VWie now procesd to show that QFl()'is an equivalence relation on ’l,r-»/Q '
Proof (i} Suprose &, B, and U are distinet points:o6f 7;\"‘} such that

B \\jﬁ\\ ¢, ILet R and S be the unicue points such that iR\-‘ = sof JE

andi "Lf = ach X, ze5 \ c‘ R, then the rarallel vrojection from BC

to A with lines parallel to& gives A \C \S, by Propn, D.D (sv).
A

A 15

d
L K\ﬁ

(ii) Tet A, B, and ¢ be distinet points of '\T"=~,Q such that there

exigt unicue points R and S satisfying ’f\f’\f =B G[\ 2 and i J\'\ = AC



(\ﬂ . 1T B \ R \C and AB \/& , Lhen the paraliel projection fyom BC to AC

T
with lines parallel to AB gives Al 8 ‘ C.

e
5\1 A

¢ ,
(iii) Let A, B, and C be distinet roints of -QT-Q such that AB ‘\ j

and o \‘\ /Q . Then Ax, 2.4 :> AC \\R.

(iv) Let, A, B, and © be distinet points of | = § such that there

exists unioue pointe Bt, Dt, and E' satisfying AB [\«Q =§ D']( AC ﬂﬂ =

R D'\}’ B Cﬂ = sﬁ s ."L\B\B‘, and
Al Dt l C. ¥e ghall vprove B i F" C., Tor
B

A I B ‘ 1 =7 there exists FE A G such thab

B
=
b

( Dt, by congidering the nerallel pro-

jection from AB to AC by lines parallel to/e

¥

asal vl ¢, it follows that 7 | Do \ c
Parallel vrojection from AC to 5C by lines parallel to ,Qgives B l Bt l C.

(v} Let A, B, and C be distinct wnoints of W-/Q such that there ex-

ist unicuve points P, 0, snd R satisfying;& P\Y = AB Q/Q ,'E Q\{ = AC (\ .{,
and ﬂ Pj‘ = BC n vQ. Supnose that A | r ‘}i and .ff‘x\ Q \ C, I P, 9, and

R are not all distinct, then A, B, and C are collinear and it is clear that

Enl

£

CX I, Henceforth we assume P, 0, and R are all distinet, Then the
parallel projection from AQ to_ﬂﬁf{}B by lines parallel to &0 gives @s the image

of Q a voint T < AB such $hat A lT‘B. Hence, either P\ T [B or T\ Pl B,




How the parallel

slalr or i

from Al

o B0 by lines warallel to AC

~h

orojection B to PG with lines

1oTL £ parallel to 5C im-

P|R, since either PlT}B or T ‘1“ B, Then the narallel

projechion g lds a voint VE— BC as
the image of P gueh that B {V ‘C, Thus the narallel wrojection from IR to
B by lines parallel to G0 gives V‘ c \ R or Cf v {R, It is clear that _)‘
V’ C and ¥ l C‘R =% 0 \ 5(1"’-. I 43‘ ‘\f\ C ang C‘\V\_ R, ve claim C‘ [ g? or
J’ ¢ I R, since 3‘ R \G contradicts (iv)sas applied tothe line AB and the wints C,R,andQ,
(vi) Let A, B, and € be any distinct voints of Y ~52 and B, A, and
Ct the unicue points such that ABA £ %D'\Y Ach R i \i BC ﬁj
° N [}
1\ Af\ , 4 \ B!B! and fa]C%C'. It B\ n' €, then we have a contradiction to (v),
Tt is immediste from (i) to (vi) tha,tw is an equivalence relation on

1]

convex, {Lurth

= V3

R

enmpby,

Gorollary

RN
G

Hl and 1{2 are

game number of points

Proof  Let P pe any voint of R and 4 any point of T"J{

N Q , with exactly v

grrore neither hal

half-

;0 ecuivaelence classes (haly plenes) which are evidently

is emnty, for if }?é'\. Q , {‘6 2 , and

T

plane

4hen there exists a point Té& PQ by Wh, 5,1 sueh that Q< T , that is,
“'? P and T are in disbinet half vlanes =? neither half plane is
This comnletes the proof,
9 — N
3,12,1 Let A be any line and || any »lane sueh that Q < if

planes of Jyrelative towq , then Iy and I, contein the

Corresnonding to

any vpoint 2 & 1= X , there is exactly one line m \ ) sueh thet REG m, Tt

followg from Lemwa 2,4,1 and #x, 2,7 that m(\‘R containg exaetly one noint,

“hue, for any line n \\ 0, if 5, T, and ¥ are any distinct noints of n such

that ﬂni g \( then & and ¥ lie in the same half plane h1 or 11 if and
I

only i7T S5 and ¥ lie on a half line relative to ¥, Since anv two half lines

contain the same number of pointes, the faet that each R& T\R lies on ex-

[SERa]

actly one line p

1lel to ¥ implics the reguired result,




Covollary 5,18,2 Iet 4, B, and C be any noncollinear noints of a nlane '\T

and Rzz line of Tcontaini-«ng none of 4, B, ¢, If there exist points D, &, ¥
7 snon that DG AN A 2, 2 ¢ A5 ¢ ana

EAN 20, then

(1) 4 lD\B, B\B [c =N 2{cl

4
D \ and (2) (a3 ’D or
C/ or GIQ( ) :}a\m I1

l’b H i

Zroof (1) Since A| D} B, it follows that 4 and B lie in distinct half

bt

=

nlanes relstive to /q . Similarly, B l 5 k G '—> L oand C lie in distined half
nlanes relative to Q . As there exist bui two helf vlanes of (relative to
.,? , it follows that some one of them contains both & and O, Thus ¥ does not
lie betveen £ and ©,

(2) As in the vrevious case, A and B 1

[ N
(e

¢ in gome helf vlane of

=

relative to /Q , end so do » and C, Sinee B lies in exactly one half nlane
of T relative toJ? , it Tollows that & and v lie in the same half planes,
whence il cenrot be the case that 4 | F\ C.

P

A . L —_—
Corollary 5,12,%5 Let &, B, and ¥ be any noncollinear mnoints of & nlane \ and

/ 1 ' =y Yol . » . ]
R a line of | sueh that B & X . If there exists & voing U such that

1’1[ DY O and R F\ 40 Li D) , then there exists a point & such that either

TYroof  Since -'*-l ) ‘ ¢, it follows that A ;D# G, whence 51&:2 and CQ ./Q.

T7 there does not exist & point B with the stated nroverties, then 4 and B

n

lie in some half plane of’frelative to ,Q , and so do B and G, Thus the sanme
is true of & and U, a contraddection to the faet that .zl D\ C,

The reader will recopnize Yor, 5,12,% ag Lhe femous axiom of VPasch,

With the aid of Th, 5,12 and its corollaries, one may define the interior

of the engle between the half lines FO and QR in the plane 3 D0, OR as the

intersection of the hall pnlane determined by P9 and conteining R with the halfl




plane debermined by R and conteining P, It is clear thet the definition
is indenendent of P and R, One may then yrove that if D is in the interio
of the ancle between the half lines 24 and AC, then there exists a point &
suceh thet B\ L\ ¢ and nob (D[ »‘ B), It ie then immediate that the diagon-
als of a convex muadrilateral intersect one another,
Yopr dedails, the reader is referred to E 4:] , Chanter 4.

Theoren 5,13 Let T be any plane, Let% he the reletion such that, for
any noints P, A& » »-’W R 1?% & <:> at lesst one of

{1) »=20

(2} P Oﬂ

Eorm)
(%) There exisbs a point & R’\Jﬂ \ such that ?\ ol R or

Q\ P\ X holds,
T}zen% is an enuivelence relation on ? -4,
Proof  Let &, B, and U be distinet points of @ - .

(1) 1 4 B T = ¢ and there exist noints v' and D' of "\T" such that B\C\C'
and A C 1\ -ﬁgg an , we shall show A‘c %)’
Tet m be the line through Y1 narallel to AR, By lors, 2,5.1, 3, 4, it
a line of § . ©eb D be the noint of m which is on the line
through & parallel to UCy let & be the voint of
AD which is on the Lline throush U narallel to

vince 3£ \ 1, it follows from Prop, 5,5

w

n,

w

(iv) that ]2 | D, ®n, 2.2 (1)

¢

that AC intersects m in & unicue poinbt, Tor m

mined by 4, C, and O, As A C 0\ '\\ :,S ]J'\ , we may infer thab m(\ AC =

SD'\S . Bv considering the varallel mrojection from AD to ADt with lines

parallel to m, we Find f\\D :>za\ c\ nr,

ond Ax, 2,7 innly

and 40 are nonparallel lines of the plane deter-



then we ghow there exists & polnt n& 1 cuch that ‘L‘ D\ C,

Tr AC is varellel to§ , then Uow, 2.5.1 = the vlane{[  perellel

it

P - " - N - 'Y T s & R - s
toTyy is determined uniauely by &, 5, eand O, s s & \ , ve have 7Y (\

‘.’4—-

[4 T-? BC (\ W = #, a contradiction to the existence of C1, Tmg 4 C

B,

Tet D be the point in A U ﬂ ]\ , m the line through U' parallel to 4B, and
o 5 . ;. i i v 1 o . 2 - . "
|1 the plane determined by &, 8, and ¢, Sy Th, 2.2 (i), AD end m each lie in

1‘ but are not parallel since C& A8, As fx, 2,7

1
'.;} £D n nm containg exactly one point and D [\ W\
’-‘-iD\ﬂ , it follows that DE m, Since & EBC, we
have C"“tT" D, whence Azs, 2,1, 2 imvly V'D = m,

1

iy comsidering the mparallel oro jeetion from £C

1o 4C with lines parellel to m, we find 5 \ oo \ ¢ Z-'>' A‘ D K C.

(iii) I A Eﬂ T\- = BC (\ W = ¢, we shall show AC (\ '\T =@, By Cor.

% Ty g . . - : . B . “rr R
AT and BC lie in 1, the plane through B parallel toll, without

T2

loss of generality, AB '%'BG, whence |} 1 is uniouely determined by &, U, and

¢. Since ACC-T\ 1 and 4 § ’\f =>' -ﬂi (\’ﬁ ¢, it foliows that 4 C \ "“

.

= 2.

L3

(iv) If there exist points B, LT, and D of \\ such that ﬁ.t B! \D and A\

I3

C'l ¢, we may infer that B]C ‘D or C\B\D, Tor B0t gnd BC each lie in the

5 ]

plane of #, 5, and U {which is unicue since G a B '-'-\fiﬁf = ¢t =D, a trivial

EaLh}

case) and are not parallel sinee B GOy 'JG ¢, It follows from fx, 2,7, Th,

2.% that 5‘5'6‘!“ oo = 41\; , Thus either B\ C \D or C \B \D, br Vor, 5,103

{v) If there exist voints 5' and Ct of 7 such that fa‘ B'x 3 and zl\ C‘ Gt

then we sghall show there exists 2 poing D& V sneh that B‘ D\ ¢, Por irf BC \\

AV R




hﬁ." then A\ B’l B :> ale ‘ ¢, by (ii), a contradiction, Iet D be the

“unicue point such that B G[‘\ T '-2{ U\ , Since the plane of 4, B, and C

interese m in nrecisely a line, it follows that Dz B'C!, Tor the hypo-
3

theses exclude Lthe possibility that 4, B, € collinear, ‘e may infer jjl D l ¢

ftal — - g 3
fyom Yor, 5,12,2.

b4

(vi) Tt there exist voints B', Ct, and J of | euch that A} B} BT, A clot
s ’ %

and DG B G, then D & nrge by the argument of {v), It follows from Uor,

(%1
.
[
s}
u
F‘Z
S‘J

hat either U'l B'\D or W‘G*\D.
Thu.s% is transitive. The reflexivity and symmetry of are evident,
or a given pnlane \\ we call the two ecuivalence classes of the rela-

on% the half spaces relative to . It ig evident Tror the definition

of a’eﬂthat half spaces are convex sets, It may be shown, as in “h, 5,12,

fav]

that hall spaces are non-emoty, With the aid of vor, 2.5.6, one may use the

=5

nathod of Cor, 5.12.1 Lo prove that, for a fixed v»lane "\/\', the corresponding

half spaces conbain the same number of points,



VI TRIPLE vECTOR PRODUCT, BASES, AMD MUTRIC GRONETRY

befinition 8,1 We define a trinle vector wroduct (or "box wnroduct") as

as a Tunction from\jb}: \}):x: \?Jinto z satisfying the following conditions

for all vectors \J'{ and scalars f:
L\}_:L’ o2 U_:'Tjj \:QEU’Q W - ] E_.gs 19 ,,_ j] s
Y_&f'] t“‘ U.;’ \£.3! j EW} ’,__rgs j*. E\f‘ny"ﬁs ]

(3) Li, 3, ¥ c[ = 1 where i, j, and k are three fixed nonconlanar

veetors (which, by Th, 4,8, svan Vunder \ ),
) s

Proposition 6,1 (i) ¢, 4 & \}’ "> O c, dj
(ii) b, c, .@E \9{ f e 42- £> Lf b, ¢, fﬁ] = f Lb;_ Ca d-:] S
(111) a8, bE\Y [, 2, a7} |

{iv) _cl..gg’é_ \}f => any interchange of d; and gj, i JWQ i, in td‘——l’ g_g,

gﬁj changes a box product into - ﬁd -'P’ gﬁ].
Proof (i) On substituting € = 1, u"g = 0 into Ver, 6,1(2), Find
E.lrl’“:z’ = Lv‘l, s ] *’LO, ¥z, V\:f By adding - L[]_, vz,

A 3 to both sides of this equation and setting w

o ¢ al
(i1) substituve VT =0 ,Vp =5,V =¢, {7 =4a into Der, 6,1 (2)

1T L LS A

and use (i), o
(iii) By Yef, 6.1 (1) we have E}, a, _gj b a aj >‘ (1+1)- \

Cboaal=o=zln 8 a)=0rn™

{iv} Proof i left to the reader,

0.

H

The reader is asked to suoply the long, but straisht-forwe yrd, comvu-

tation recuired to vrove the following resulis,

froposition 6.8 For alla i j& F\:'and \FC \7/ =1, 2 3), it fol-
' 3
- 5
low ’sllaul:élil aj .}___3,_2’ agjjf_?:_, j=1 __\J_",

Jj =

!.u.)



a ags @, \:\r U ] = (aet aij) LU’ V.. ’U‘;j

, s

— 1 ..,.2"....7}

Corollary 6.2 Let V3, U";, VE be any vectors and ag the unicue sealars such
i

that U, = amyi v angj aqu, (n=1, 2, %}, ThenLU‘ \r j = det (& gp).
Definition 6.2 The triple \J: Y\f ig a bagis for \f" if and only if x &

\]J .,,> there exist f"ﬁ’ h& Z such that x - . \)'-"#"% U' +n Uf

1% follows from Th, 3.5 that (I, VT, \M ig & basis J.O'Y'ﬁ‘ =y =0 are

(‘_‘{"Ef)s WV, W), (\E"KE’-\_D: (% W, \Eu) end (7, Wy W), An dmied-

iabe conseguence of Uor, 4,8 is that (W,y5 W ) is a basis for \;u¢> W,

Sear

Js \Wave not conlanar,

iheoren 6,1 Iet }'_' , Vo, \m & \}/and °Qm the unicue sealars such that

¥ o-aida, o itank (=12 3}, Then (»\-5:1"{-2’ U~ ) is a basis

s TY n 7

for \Pif and only if det (aQn) ':!: O,

rroof e have [:\J"i, UZ, '\r ] det /(, } froy Cor, 6.2,
(1) I (1, Y2, V) is a basis Por \ij then thgre exist 19, 3oy knq(p =
1, 2, )& 2 sueh that 1= Z i QJ ] *i
g=1 979 = 1
By Prop., 6.2 and Yer, 6,1 (3), we have O& 1 = i, gy X7
= 17, 12 L .
3 (aet a}Z }. By Prop. 4.2 (1), we have (det aﬂ pq}"F
. . m o
i, 3o
1 -
Iy }12 kg !
(i1} suppose (—\Z_l’ &J.y{n, U:_B) ig not a basis, Then by th, 4.8, it follows
that T1 s V? :1(1\_[5 are coplanar, ithout loss of generality, there exist
ay By C :a:i: 0, & fl’S’ b ng J‘/Cfg = 0, Totbing -a~F b = d and -a"" ¢




(=

£, we find det ag . = [\Ei’.i\f}’ Vo

= [\b__u‘z T 0 Vigy \ps WST( =b [:~23’U:2’ \-}:5]‘*‘6-['\?2’ e 4

. ¥

—

betco=0%v0=0, by Prop., 6.1 (iii), (iv).
Gorollexy 6,1 Tet £C & ,W, V& V ena ‘-L-‘\‘V\\"E . Then therc exist in-
initely many W - \9/ such that \T\U;," VT, '\Ji-j = f,

Proof  If £= 0, let W = a (W) where & is eny scalav, If £F 0,

i

then Ax, 2,9, Cor, £.,8, and Th, 6.1 there exists :f.é\?/ such that [g_,, U:_, s

3 D . - -1
= % for some O‘{:%(‘, Y. . We need only let W - 'i‘ﬂ?é TxtD (%F Y7} for
any bé‘z .
Theoren 6,2 Tot W, Y, @je\?/}ae noncoplanar, P, &, R, and 5 be points such
that (P,0)& A, (P,R)GN_, and (P,S)QV_\_)":, and | the unicue plane contain-
ing ¥, 0, and R, Tet x g\}such that W, U7, and x are noncoplanar, and T

~ —

the point sueh that (P,T)& x, Then OFY Lu_{, V:, .\,3.\"1\\&“:“13 351 <:> S and
T are in the same half space relative tb T,
Proof If a, b, ¢& X ave such that x = a W TV ¥ ¢ W, then o< uy .
\ s Uﬂ [U-f, v, _X,_] :DL ' Uﬂ-:] &L;’\};’ aWer v te l_}_\fs—j = CE“.,.’..\I:.*\[\]E}:.’
“\7_:, \ffj <=y 0< C, by Th, 5,6 and Cor. 5.6.1., le claim o< C(’-“}T and S are
in the same half space relative $07l .

Suppose a = b = 0, Then 35 =C \j‘:x-.fith C'ff 0, IfO< C, then S and T lie
on a half line relstive to P, so that either ‘PT\SYI‘, PY‘I_‘ \S, or 3 =T, By
Th, 5,13, it follows that 5 and T 1ie in the same half snace relative to T\‘ .
If ¢ X0, then S and 1 do not lie on a half line relstive to P, and so S\P E]_’,
Thus 5 and T 1iein aifferent half spaces relative to ™ and the theorem is
vroved, if & = b = O,

Teb us remove the mestrietion a = b = 0, The recuired conclusion Tol-
lows fron the above argument, by virtue of Yer, %,4, Lor, %,1,1, Vor, 2,5,1
and Th, 5.1% which imply thet the addition of (U\»‘_f:"* by ) to e concerns

only transformations which vreserve the half space,




In view of the nrecedins resuli, we make the following definition,

FIO S a3 A3 N Fa B 4 Ay - 47, P + i~ S £
Jefinition 6,3 Any two bases (u’f]‘,\f?;,\rg) and U'rﬂ\l.‘f?’ ,5 of \/have the

sare orientation if and only if 0< \\_\[i, \Eg, Vs El}_&{, 5, Uﬁ] .

Tet B be the set of bages oi’\}) and R the ralation defined on ¥ such

that by R by {3\‘—} by and by have the same orientation, for by, bo € B,
o~

By Cors, 5,6,1, 5 and Th, 5,6, one may readily show that R is an equiva-

lence relation, whose eguivalence c¢lasses we may define to be the orienta-

el

tions of\?/. lie note that Def, 6,1 (1) and Cov, 5.6,1 = (W, v W), (7,

W W ) and (", V’\_, , ¥7} are all in the same orientation, for any basis (W,

Arowhe

Aomark  In the remsinder of this chanter, we shall assume

e

N
(L) hk = xh, for all h, k& &£

and (&) O'é T Q i =/ there exists a unique g O (\C_ T such that

T “‘@(0 . e dencte ‘(—)b}r {f‘)‘.

Definition 6,4 For any vectors y\ = W2 i T UL Uu,,f’, kend | =y
i+V2 i4-\gk the inner vroduct of Why ' \"is defined as Wy o Y = \Ll\r

i
C-Y-

xﬁ

UL5 \]‘L;} In particular, if Y =V, then we define the lenzth of ¥
1o be \U\,\ = (WL )%:—.
Tt is immediate that (£ ) =t (W ST, (M, = (V. W),
(W SN LW Y Wforeﬂf‘(JZ' WV, WQ\9/ HMore~
over, _\_1\ \J\ Y% 0 for all non zero \}ngﬂ/and so \ ig well dofined,
Theoren 6,2 For any non zer y_& Zand any dirsction D, there exisis exactly
one vector }fE \ﬁ/'»rith 1ength/Q and dirvection D,
Froof By the remark following Th, 5,5, there exists a non zero vector _\_}_r
with direetion D, The reaquired vector lf clearly must he of the form k \_LJ\,

-
-

x & Z. Tt ig epnarent that k =i;~‘ is the uninue scalar such that |k \g\
W :

X.




ing (?,0). The length feom P to 0 is defined to be \U" and is denoted by

end {1i) 7O > 0 unless P = @, in which case m =0

Definition 6.6 For any f Q_L , the absolute value of f, denoted ’oy\ f \ , 1is

derined as the non negative member of the wmair (£, -f),

Tt follows from Fron, 5.9 thet | £ | is well detined,

Consider any vectors W = W1 i4LWe g U - k and iy~ = \F}_"f Ve 3
z o & 2
Wy ke Toreny t& 2, © S (Wt b)) 5 0. IS T 20, then
. i= 1 - - i1
) o P2 T
jig_an@\yL .\[_\=\g3“g\ -0, I §  \, ¥ o0, then oKX (t~+-:3:1\):)
=1 Tt
Ui

+ (Z U, - NI} 2). Setting ’—"-"ZU" 1\)—’ VASTE ¥
L7 o b “":-‘*pl""‘?egetx&'\):\ WY

‘_\f\ This roves.,

Proposition 6,5 (A, \f@,\f/2> \\& \E\:/: \’v}_\\\)’\(cauctw - Schwarz inequality),
ww"’r\f‘\ W\L’ ) R TN - I (T S R T
-Nu\ 2 (W)Y .‘ é _\ AN \E\ + \8,?3,«01;.5” SALa A MK

§\V\\ AL \ vir o7 gi\:\ *’[\5”\\\ . Since o\'\"\\;\“’r\i‘\,\\i\‘g\'&rl,

. : < . .
the order wnrowerties of secalars inmply \& Y ,\,J.\\ ~ ‘i\'_ - \\J“\ , for any assumption

)

to the contrery brings an imwediate contradiction to Pron, 5.7, (i), (1ii).
e argument of the preceding paragraph imvlies bhat ?h?\ﬁ' :}::" +“ OR for all
- ¥

P, 0, 2§ b.’, for we need only let Q}_ » V' be the vectors containing (P,0), (2,R)

respectively, Thus, using the standard terminology, we have nroved



Theorenm 6,4 (i) Tor any W\, U~ & \}‘{ the triangle inenuality holds: i,e.,

sl it

-

2,_ defined by m {P,0) = ™ is a

"d

(i1} The function m
metric Tor P,
nition 6,7 An isometry f is a linear trangformation from \}/into \BJSuch
‘ohat;U_”Q\j/:>\f('U:_)\ \I‘\.

Proposition 6,4 Tet £ : \}/9 \Sube linear, £ (i} = i]j_"‘" isi ™ i k, £ (i) =

=
Q

i
J—

A gl “igk end £ (k) - kl_i_"' koj T kgk . Then for any a, b, ek Z,
. " s sk : . . ] .
£ {ai ~§¢b3 Yoekl)= (8.1.1"531 Gk )i ¥ (312-\-1332“\ Ckg y i (an.::,}srbj5 4+
Ckﬁ) _15'_ ®
Froof  The result is immediate, from the linearity of T,

}Egjnark Using the notation of Prop, 6.4 note that

By letting (a, b, ¢) be {1, 0, o, {0, 1,0), and (0, O, 1} in succession,

it is readily seen that there is only one matrix A such that £ : {a) (a)
(b) 4 (b)
(e} (el
Thig matrix A ig said to renresent £ with respect 'bo-{ i,4d, 393 .
Tf £ ig an isometry then (a, b, ¢) (a)
{b)
{e)
- (a, b, ¢} A f& {a) where 4T ig the transvose of A,
{b)
{c)

By letting a, b, ¢ vary over Z one may readily vrove that the identity
o £ k] ? Rt s

matriz I = (100 = A A, Since the determinant of a matrix wroduct
{010 )
(001)
T
is the produet of the matrices! own determinants, I = det (I) = det (A7) det

(4) = det (&) det {4) = (det (A)) , whence det A =": 1, The fact that ATA = T




may he interpreted to mean that A is orthogonal,

I B vevresents ¥ with resnect to a basisi\rl, U\;R, U:‘IS 01"\?}, then
—1 2! 3

th .
, where the t == column of ¥ consists of

one may verify that 8 TN AN
the affine coordinates of \]';} with respect to%._ s J E:\S . Thus det (B) =
det (i1) det (A) det (i\?"l) = det (A) det (i) det (Nfl) = det (&) det (1@:\1"1) =
det {4&) det (I) = det A, These corments nrove

dheorem 6,5 All isometries are onto . Koreover, the class of isometries
may be partitioned into two mutually exclusive and exhaustive subfamilies:
tho representable by wmatrices with determinant 4+ 1 and those representahle

by matrices with determinant -1,

Definition 6,8 An isometry rewresentable by & madrix with determinant ‘4’1

ig said to be a rotation,

It ig well kmovm thal every entry in a matrix A rerresenting a rota-
tiond\ is ecual to its cofactor in the corresvonding determinant, Using
this fact, one may nrove that unlessfe is the identity map, J\ fixes a one-
dimensional subspace of vectors, Consequently, A has at least one eigen-
value equal to 1,

Iz’.’Z is isomorphic to the field of real mumbers, then it is well known
that A orthogonal ’-‘:? L orthogonally similar to a matrix of the form

(1 D 0 )
K= (0 COSE& -Sin® ) « The eigenvalues of 1 are 1,
(0 5in® ©08 @)
gos © i i Sine . Since any matrix similar to A has these same eigenvalnes,

ve may uniouely assign to A\ & real number © between 0 and § as Tollows,

Tet A be represented with resvect 'to‘{ i, 3, E\S by the matrix N with
sigenvalues 1, a® ib, Without loss of generality, b} 0., By the theory of
trigonometric funetions, there exists a unlaue e sucn that OS, %S‘ﬂ , CO0S

Bz a, and sin Q= b, Ve assien @toM and ¢all the angle of the rotetion v ,
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