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ABSTRACT

A job-scheduling algorithm based upon round~robin
scheduling with a wvariable time-slice is studied under simula-
tion. The simulation model 1s described, and a measure of per-
formance of scheduling algorithms 1s developed. The measure of
performance is based upon the cost curves suggested by Green-
berger and, in contrast to Greenberger's analytical study,
non-linear cost curves are used,

The job-scheduling algorithm which uses wvariable time-
slice allocation is shown to be more efficient than an analo-
gous algorithm which uses constant time—élice allocation. The
improvement in the measure of performance for the variable
time-slice algorithm relative to the constant time-slice algo-
rithm is approximately 15% for the job load considered.

The optimum round-robin cycle time was determined to be
1.5 secs, for a particular job-load, and this value is in fair
agreement with values found by Greenberger in an analytical
study using linear cost curves with a constant time-slice

algorithm.



ABSTRACT

A job-scheduling algorithm based upon round-
robin scheduling with a variable time-slice is studied
under simulation. The simulation model is'described,
and a measure éf perférmance of scheduling algorithms
is developed. The measure of pérformance is based upon
the cost curves suggested by Greenberger.[B] and, in
contrast to Greenberger's analytical study, non-linear
cost curves are used.

The job-scheduling algorithm which uses variable
time-slice allocation is shown to be more efficient than
an analogous algorithm which uses constant time-slice
allocation. The improvement in the measure of performance
for the variable time-slice algorithm relative to the
constant time-slice algorithm is approximately 15% for
the job load considered, |

. The optimum réund—robin cycle time was determined
to be 1.5‘secs. for a particular job-load, and this value
is in fair agreement with values found by Greenberger in
an analytical study using linear cost curves with a con-

stant time-slice algorithm.
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The following notations have been adopted for

use in this

CPU

£,
J

FTS

i-j mix

i-j-k mix

P(t)

=4

NOMENCLATURE

thesis:

or

..

LAl

e

Central processing unit

Penalty function associa

priority j

Fixed time-slice

Program mix consisting of a priority i

ted with

program and a priority j program

Program mix consisting of a priority i,
a priority j and a priority k program

class i

Mean of normal distribution for
requested CPU time of priority

Current accumulative penalty of

program i at time t

Final penalty of the finished program i

Total opérating penalty of the
computer system at time t

Sum of the final penalties of N

finished programs

Quantum or time-slice for program 1

Standard deviation'of normal distribution
for requested CPU time of priority class 1

Standard deviation of normal distribution
for interarrival time of priority class i

Mean of normal distribution for
interarrival time of priority class i
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Q
=t

[n]

e

(1]

(XY

ix

Intended round-robin time and is
referred to simply as the round-
robin time

Optimum round-robin time

The real time which has elapsed since
the desired time of entry of program i

"into the computer system

Time interval between the start of the
round-robin cycle in which the program
completes processing and the time when
the program leaves the system after it
has completed processing

Lack of attention to program ij
and is defined by the formula

T A
Variable time-slice

Final penalty of program i under

FTS algorithm minus final penalty

of program i under VTS algorithm
Exit time of program i under FTS
algorithm minus exit time of

program i under VTS algorithm
Population mean

Priority number of program i
Standard deviation of the population
The sum of the central processor
time and device time devoted to
program. 1 since it entered the
computer system

Refers to the nth entry in -the
Reference Section




CHAPTER I

INTRODUCTION

A major advence in the design of digital
computers was achieved when provision was made for
autonomous input/output transfers, which allowed
computation to proceed concurrently with transfer

of data into or out of the main memory1 (core) of

a computer,

In many computations, howéver, the processing
" associated with an input/output transfer normally
takes much less time than the transfer itself and
therefore the total saving obtained in spite of the
computer's capability of autonomous transfer of data
is usually very small. Tc make further savings one
could reduce the cost of having the central process-
ing unit2 (CPU) idle while a data transfer is taking

" place by using a slower and cheaper CPU, A problem

1Main memory is the fastest storage device of
a computer and the one from which instructions are
executed. The storage device is usually composed of
ferromagnetic cores and hence is also called core
memory or core.

2Central processing unit (CPU) is the unit of
a computing system that contains the circuits that
control and perform the execution of instructions. It
contains an arithmetic unit and special register
groups.



that arises from using the latter approach however,
is that such a>CPU could not handle those types of
operation which require high-speed processing.
Therefore, if the jbb mixture is at all varied
regarding CPU demands, a fast CPU may be necessary.

A second problem concefning the efficient
use of the capability of autonomous transfer arises
because many input/output devices are capable of
working independentiy of £hemselves and of the CPU,
In addition, it is very unlikely that one program
could use all the independent facilities all of the‘
time. Thus, many of the facilities arée often idle for
significant periods of time. However, computer effi-
ciency may be improved if these idle periods are
reduced. The problem automatically siuggests allowing
more than one program to share the main memory in the
hope that the combined demand of the executing programs
can maintain the fullest possible useful activity in
those parts of the computer which can function simul-
taneously. This'facility is known as time-sharing.

It appears that time-sharing méy largely solve
the problem of how to use modern computer facilities
most efficiently, but the logic to organize all the
data transfers and the allocation of the central pro-

cessor's time to the various programs being executed




must be present. This logic is usually in the form of
a supervisory program, part of which is always resident
in core,

The efficiency of a computer system is dependent
on the capability and'Speed of the data tfahsfers, on the
speed of the CPU and on the design of the supervisory
programs. If the supervisory program schedulec the data
transfers and allocates the central processor time‘in—
efficiently; the computer system will operate
inefficiently. Thus, the selection of an efficient
algorithm for the scheduling function of the supervisory
program is necessary to achieve desired system perfor-
mance sténdards. An algorithm which effects the schedul-
ing functicn of a supervisory program is called a job-

scheduling algorithm.

Competition for the Computer Facilities

Since it is the purpose of the supervisory program
to keep the demand for the computer facilities at a high
level, it is inevitable that two or more programs will
require a particulaf data transfer facility or processing
facility at the same time. The supervisory program should,
therefore, contain sufficient logic to detérmine how the
facilities should be shared among a number of competing

programs.




A basic téchnique for scheduling the central
proceésing unit is to give each program sharing the
computer's main memory & short burst or quantum of com-
putation. The guantum of computation is also called a
time-slice., The sequence in which the programs in core
receive time-slices may be a simple round-robin cycle in
the most straightforward case., A supervisory nrogram
which schedules this way is called a time-slicing
supervisor.

Study of the Performance of Supervisory
Programs

The need to establish more and better guides or
rules-of-thumb for evaluating the efficiency of modern
computer systems, and hence the performance of supervisory
programs, has been expressed by Neilsen [1]3 and Fife [2].
The acquiring of such information, however, usually re-
quires a great amount of time and effort in the investiga-
tion of such complex systems. |

Most of the performaﬁce studies which have been
conducted on supervisory progfams, have used either
analytic or simulation.techniques. Becausé the complexity'

of supervisory systems does not easily lend itself to

3The nomenclature [n] refers to the nth

in the Reference Section.

entry




"theoretical analysis, any analytical stgdy usually
ihvolves making some simplifying assumptions about the
system under consideration. Some of the analytical
studies which have been made include studies by Scherr [3]
who was able to design a simple médel of the Project MAC
(Multiple Access Computer) at Massachussetts Institute of
Technology, by Kleinrock [4] who gavé a.theoretical treat-
ment of several models of time-shared processor system and
by .Shemer [5] who did analytical studies of several schedul-
ing algorithms., Such analytical ﬁodels, however, usually
have rather limited application and lack the flexibility
necessary to test a wide variety of'system changes, a
facility which is desirable in this type of study.

Simulation, on the other hand, was found to be more
adequate in dealing with the problems arising from the
eomplexities of supervisory systems.'One advantage of simu-
lation models is- their relative flexibility in adaptation
to different computer systems., In studies conducted by
Scherr [3] of the Project MAC system, by Fine and
McIsaacs [6] and by Neilsen [1], their simulation models
were not only used to discover areas in'need of modifica-
tion but also to determine the effectiveness of proposed
improvements,

Of the two technigques, analytic and simulation,

simulation seems to be more promising in studying




supervisory sysﬁem performance., The simula£ion approach
not only is potentially more flexible than analytic
approach but has been found satisfactory in the analysis
Of Some
the Project MAC system [3] and Fine and McIsaac's study [6].
The present research is an investigation, using

simulation téchniques, into the scheduling function of
a supervisor, namely, a job-scheduling algorithm.

‘ Time-slicing algorithms which are in use today
can be broadly divided into two types: round-robin pro-
cedures and multiple-priority-level procedures. A round-
robin scheme, which has been mentioned eariier, services
programs in a-queue, giving each program a slice of CPU
time before passing control of the CPU to the next pro-
gram in sequence, A -multiple-priority-level scheme assigns
each program, as it enters the system, to one of several
priority-level gueues according to its size and determines
the amount of time-slice to be allocated to a program
according to the level which the program occupies. In this
scheme, servicing begins with the program at the head of
the highest level queue which is occupied, and if a pro-
gram is not completed after executing its time-slice, it
is placed at the end of the next level quéue immediately
below the current level queue. A gueue is only serviced

when all higher level queues cannot make use of the service.




This latter scheme has been employed by Corbato's

Compatible Time-Sharing System [7]. Compared to the

round-robin procedure, the multiple—priority—level

of initial priority assignment of programs and the
maximum CPU time allocated to programs of each priority
level,

The algorithm which is simulated, services pro-
grams (up to a maximum of three) in core using the round-
robin scheme with each program's'quantum computed accord-
" ing to the logic of the algorithm., Programs which do not
gain entry into core upon their arrival are queued and
their selection from the queue is determined by the logic
of the scheduling algorithm.

The emphasis of this study is on the behaviour
of the job-scheduling algorithm with given work-load
environment., The overall study includes the specification
- of a model and the specification of a performance measure
which is used to evaluate the-efficiency of the scheduling
algorithm modeled,.

The results from this type of sfudy are necessary
in order to gain a clearer insightbinto both the basic
operation and the characteristics of the algorithm modeled
and to enable some assessment both qualitafive and quan-

titative to be made of the performance of the algorithm.




Further, the results obtained can be used to determine
whether the algorithm should be commended for future

studies.

1.1 Summary of Frequently-Used Terminology

* Central Processing Unit (CPU). This is the

element of a computer which handles the actual computa-
tion and decision-making functions. It consists of two
sections: the control section which directs and coordi-
nates all operations called for by instructions and the
arithmetic-logical secﬁion which contains the circuitry
to perform arithmetic and logical operations.

* Job-Scheduling. This term refers to the task of

-determining the allocation of computer time among the
different users of a time-shared comppter system. It also
involves the forming of queues, handling of priorities and
swapping of programs.

* Main Memory. This term, usually called core,

refers to the fastest storage device of a computer and
the one from which instructions are executed. Generally,
‘main memories utilize magnetic core construction.

* Supervisory Program. The supervisory program or

supervisor is a special program responsible for controll=
ing and coordinating all the activities of a computer

system, It controls all input and output functions of the




system and is reéponsible for the scheduling of jobs
for execution. It also establishes user priorities,
allocates storage, keeps track of all work in progress,l

popp |

and activates the necessary routines to handle whatever

problems that arise. In general, it acts as the controll-

ing element which assures continuous, accurate operation

of the computer system.

* Time-slicing. This term refers to the technique

of processing a number of user programs by giving a pre-
.determined amount of CPU time to each program in turn,

providing the program can use it.



CHAPTER IXT

DESCRIPTION OF THE SIMULATION MODEL

a job—scheduling algorithm which can simultaneously
échedule up to three jobs.4 The model used is the first
stage of a comprehensive computer—system'simulation kkkkk
model which will include the operatidns of logging-in,
1oading into core, job-scheduling and outputting of the
results, This first stage may be considered as a model
of a hypothetical computer system which incurs no over-
heads to load programs info core, and which processes to
completion programs which require no input or output
during their execﬁtion.
The present study, therefore, concentrates on the
logic and efficiency of the algorithm by which the pro-
grams to be processed recéive their slices of central-
processing-unit time.
The model includes a'job generator which creates
a series of entities, célled jobs or programs, from

‘previously chosen program-load statistics using Monte Carlo

4In this study, the maximum number of jobs which
can be scheduled simultaneously is restricted to 3.
However, for possible future studies, a facility is
provided for expanding the model so that as many as 20
jobs can be scheduled simultaneously.
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techniques, It maintains a list which records the des-
cription and status of ali programs in cére (execution
list). Programs in core receive CPU attention until
their total amount of CPU time required (a program-—-load
statistic) has been accumulated. Since a maximum of
three programs can be scheduled simultaneously, this
execution list can have as many as three entries. In-
addition, the model maintains a queue of waiting programs
(waiting list) which is fed by new programs that are not
accepted into core upon their arrival and which is
" emptied by acceptance of programs into core for CPU atten-
tion according to the logic of the scheduling algorithm.
‘The queue 1is iimited to 20 programs,., When this limit is
exceeded, the simulation run is terminated automatically.
Appendix A gives the contents of an entry in the
waiting list and also in the execution list.
The job-scheduling algorithm whose function is
' to coordinate the processing of the jobs may be divided
into three sections:
(I) A piece of logic to select a program
or job from the waiting list;
(II) A piece of logic to determine the
amount of CPU time which a program
in core is to receive as ifs time—

slice; and
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(IIT) A piéce of logic to determine the
action to be taken when a program has
completed execution of its time-slice
Or when a program 15 interrupted durlng
its time-slice by the arrival of a new
program 1in core,

The basic design of the simulation model, and
hence of the supervisory program which is being |
simuiated, involves a perpetual cycling. On each such
supervisor cycle the model performs one of three rather
elementary operations which contribute towards the
simulated execution of the programs that pass through
the hypothetical computer system., These operations will

be covered in detéil later, but very briefly they are

(i) the execution of a guantum-allocation

routine which computes the time-slices
of all the programs in core for the next‘
round-robin cycle (this is done in
accordance with the logic of the job-
scheduling algorithm for determining a
program's time-slice - section II above);
(ii) the execution of a routine to locate from
the execution list a program iﬁ core with

an outstanding time-slice (search routine),

followed by the execution of a routine which
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simulates the initiation of the time-slice

(service routine) if the search routine
finds a program for executionj; and

(iii) the execution of an update routine which

records the current accumulated CPU time
for a program in core immediately after
that- program has received the whole or part
of its time-slice, followed by the 'execution

of a removal routine which removes the pro-

gram from core if thé~required CPU time has
been satisfied,
Figure 1 is a general flow—diagram of the model
showing the positions of the five routines mentioned above,
It also illustrates that one of three paths may be taken

during each supervisor cycle with the event-control routine

common to each path.

The job generator is contained in the event-control
 routine along with the logic to determine which program
is accepted next from the waiting list (section I above).

It is convenient to call the quantum-allocation and
~ the search routines prihary routines so that they can be
distinguished from the other routines later in the des-
cription.,

As mentioned above, whenever the supervisor cycle

is executed, the event-control routine is performed. The
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function of thig routine is to monitor the simulated time
to deéermine if & new program is due and to determine if

a program from the Jjob gueue can be accepted for execution
according to the logic of the scheduling algorithm for job
'selection., One-further important function of this routine
is to advance the simulated time to the time of the next
event. The next event could be the arrival of a new pro-
gram into core or the termination of servicing of a pro-
gram which has either completed its time-slice or completed
processing during execution of its time-slice.

If no program is executing when the event-control
routine has been completed, the supervisor cycling is
allowed to continue along the section common to paths 1
and 2, otherwise control is transferred to path 3 where
the update routine is entered. When no program is execut-
ing, an address is taken from a table (switch table)
according to the most recent primary routine entered and the
path taken on the most recent cycle. This address determinés
which of the two primary roﬁtines: quantum-allocation or
search, should be executed nekt. The switch.tablé, there- .
fore, embodies the legic of the section of the scheduling
algorithm for determining what to do next when a program
is interrupted either by completion of its time-slice or
by the arrival of a new program into core (section III of

the job-scheduling algorithm). The switch table is referenced
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after the details of an executing program have been up-
dated. |

A small amount is added té the simulated time by
the event-control routine in order to allow for the time
of execution of the forthcoming cycle. This small amount
is the same regardless of the path involved (supervisor-

cycle time).

2.1 Switch Table

The switch table which i1s entered whenever no
. program is executing, contains thé logic of the schedul-
ing algorithm for determining what to do next when one
supervisor cycle is finished and the next is about to
start. This table simply provides information about the
next cycle when the most recent primary routine executed
and path taken on the most recent cycle are specified.
The switch table is presented as Table I.
The selection from the table of the next primary
routine for execution depends on two factors :
(1) the most recent primary routine executed
(since the cyclic process does not involve
a primary routihe on every cycle, the exe-
cution of the most recent primary routine
might not necessarily occur on the most

o recent cycle); and




TABLE I

SWITCH TABLE CONTAINING THE DESCRIPTION
OF THE NEXT CYCLES

17

Most Recent Primary
Routine Executed

Path Number for the
Most Recent Cycle

1

-Search

Quantum~Allocation

1 ) 3
Quantum-
Allocation - Search
Search N _
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(2) the bath taken on the most recent cycle,
that is, the most recent path-number
used (the significance of the path
numbers is explained in the following
paragraphs).

The flow diagram of Figure 1 shows three paths
which connecf at the event-control routine. If the search
roﬁtine is executed in the cycling, and path 1 is taken,
it means that no program has been found with an outstand-
ing time-slice. This can occur when all the programs in
core have already received their time-slice in a round-
robin cycle or when there are no programs in core. A
cycling which involves the execution of the gquantum-
allocation routine and path 1, indicates that the time-
slices of all the programs in core have been computed
for the next round-robin cycle.

Not all of the entries in the switch table are
filled. This arises because only certain combinations of
most recent primary-routineé and most recent path-number
occur during the execution of.the simulator. Of the non-
occurring combinations.of primary routine and path number
(indicated by dashed entries in the switch table), the
combination of the search routine and path.2 is noteworthy.
- When the cycling enters the event-control routine after

completing path 2 the servicing of a program in core has
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been initiated. The termination of this servicing is
determined by the logic of the event-control routine
which advances the simulated time to the time which

cccurs £ he following

3
i Ve e -

(1) the time when the time-slice is finished;

(2) the time when the next program is duej; and

(3) the time when the program completés pro-

cessing during execution of its time-slice,

When a program has been executing, control is always
passed to the update routine on path 3 on the next cycle
(and possibly the removal routine if the servicing of
the program is completely finished). .Therefore, there
is no need for an entry in the switch table correspond-
ing to a most recent primary-routine "search'" and a most
recent path-number of 2.

2.2 Penalty Function and
Quantum-Allocation Routine

(a) Penalty Function

In a computer installation, where the service
facility is demanded by a great many users, the inevitable
question is éosed of which user to service next, a problem
for the selectilon logic of thé séheduling algorithm for
queued programs (sectiqn (I)). Such a.question which is
referred to as a priority problem, gives rise to some plan

or rule (priority rule) whereby a user's program is selected
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in -some preferred manner according to the priority class

to which it is assigned.

The method by which programs are selected from a

waiting list, that is, the priority rule, depends to a

large extent on the objectives or goals which are to be

achieved, Three common priority rules are outlined below:

(1)

(2)

(3)

First-come-first-served, Accordin¢ to

this rule, programs are selected in the

order of their arrival. This scheme tends

to favour the longest-waiting user and
guards against exceésive delays. However,
no recognition is given to more urgent

jobs which may not be at the head of the
queue.

Shortest-job-next. This rule gives higher
priorities to shorter jobs. If two jobs

are equally short, then the job which
arrives first is selected. The rule is
aimed at reducing the number of programs
in a queue. However, it tends to discrimi-
nate against long jobs.
Highest-priority-number-next. In this scheme,
a program's priority is designated by an
integer (priority number) which 1s assigned

to the program before it enters the computer
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system. Selection of programs is made
according to priority numbers, the pro-

gram wlth the highest—priority number

programs have the sam€ prilority numbers,

the programs are selected on a first-come-
first-served basis. The rule fails to
recognize that after a period of neglect,
the processing of a lower priority program
may be as vital as that of a higher priority
program which has not been neglected.

Another problem to be considered by the scheduling
algorithm, is the determination of the amount of CPU time
which a program in core should receive as its time-slice
(section (II)). A frequently used technigue involves a
cyclic discipline within which, each program in core is
given a constant slice of CPU time unless its processing
" is completed during the interval. Hence, control is trans-
ferred to the next program in sequence when a time-slice
is completed or when a program'Has finished processing.
If a program requires further processing after it has
compieted its time-slice, it enters a queue and waits
for its next service cycle. This type of priority rule
is called round-robin scheduling with a coﬁstant time-

slice, Under this type of scheduling, short jobs are
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favoured at the expense of long jobs which are urgent.

From the priority schemes or rules described so
far, different scheduling algorithms can be constructed,
each having a different priority rule for job selection
combined with the round-robin scheduling with a constant
time-~slice., To decide on which algorithm gives best per-
formance for a particular computer system, it is necessary
to have some quantitative evidence of their relative merits.
Therefore, é meésuré of pérformance of the algorithms is
needed, |

Greenberger [8] suggested an inverse measure of
performance based upon penalty or cost of delay. He con-
siders each program-type to have a separate cost rate curve
which represents the variation of the rate at which the
cost of delay is accumulating with the time of waiting.
Examples of such cost curves are shown in Figure 2.

Curve (a) shows the simplest case of the cost of
delay accumulating at a constant rate, ¢, throughout the
waiting period of a program. If the waiting time is w,
then the total accumulated cost is cw. However, this case
does not give adéquate attention to tﬁe growing wait
suffered by longer programs 1f one believes the next timg
unit (say minute) of waiting is worse than the previous
time unit,

For the latter problem, curves like (b), (c) and
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(d) in Figure 2 are necessary for the costing. In this
case, the total accumulated cost is obtained by taking
the integral of the curve over the period of waiting.

The form of these cost curves, therefore, can be
used to express the types of attention réduired by pro-
grams insofar as the height of the curve reflects a
program's importance and the slope reflects a user's
intolerance to delay.

For the scheduling algorithm, the cost curve
needs a few modifications., Since in most cases, the pro-
cessing time required by a program is not known before-
hand, the cost curve, as a function of real time, does
not allow any mechanism whereby the scheduling algorithm
or the scheduler may knowingly prevent a program from
receiving a final penalty. Furthermore, if a program should
have a penalty or cost accumulated at some stage prior to
the completion of its processing, this penalty will con-
tinue to increase with time as long as the program has not
completed processing. The scheduler, in this case, has no
means of eliminating or reducing the intermediate penalty.
The best the scheduler can do is to give larger time-slices
to the program and hope that the final penalty is not much
higher,

Rather than a function solely of real time, there-

fore, the penalty is made a function of the lack of
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attention received by a program. The lack of attention to
a‘program i is defined by

Ui = Ti/"[l (1)

where Ti is the real time which has elapsed since the
desired time of ehtry of the program into the compﬁter
system and’ti is the sum of the cent;al processor time
and device time dévotaed to the program since it entered
the system., Since no input or output operation is con-
sidered in this simulation, in order to take care of the
indeterminate case of uy when"ci = 0, a fixed value of
1.0 second is used as the device time of each program.
This value is assigned at the time when a program enters
the systém.

The lack of attentioh u; can increase or decrease
within real time. It is a relative function which is
independent of the total processing time required by a
program.

Another modification which is less serious, is to
use an accumulative penalty variable instead of a cost
rate variable, This removes the need for integration of
the function.

Figure 3 shows two examples of the type of penalty
curves which are used in the simulation. Curve (a) is used
for a fast response progfam where the penalty increases

very rapidly for low values of uy and very slowly for high
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- values of u; . Curve (b) is for a slpw response program
where the penalty value increases slowlyvat first but
rises very rapidly as us gets 1afger.

As 1n the case of Greenberger's cost curve, each
priority class of users has associated with it a penalty
curve which rises to a different extent, according to
the type of attention required, as the lack of attention
increases. The degree of attention demanded by the user
is reflected in the slope of the curve, The priority
classes are designated by integerév(priority numbers) ,
"where priority i is considered as more important than
priority j if i < j.

The current accumulative penalty (or simply
penalty) of program i at any time t may be expressed
by

pi(t) = fﬂi(ui(t)) (2)

_where Ty is the pfiority number of program i and oo
i
is the penalty function associated with priority‘Ti.

The total operating penalty of the system can be

calculated at any given time by performing the summation

P(t) = ZIp, (t), ' : (3)
i
that is,
P(t) = B, (u;(£)). (4)

1 1
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The penalty values are used for the following

purposes :

(1)

(2)

To serve as a basis for program selection
from a queue with the programbhaving the
highest penalty being selected first. If
two or more programs have the same highest
penalty, the programs are selected on a
first—-come-first-served basis.

To be uéed as‘a basis for determining the
amount of CPU time a program should receive
as its time-slice in a variable time—slice
scheme. Under this scheme, the size of the
time-slice is dependent on the program's
current penalty and the total operating
penalty of the system. (A more detailed
description of this is,given in the next

section, "Quantum-Allocation Routine").

Further, a measure of the efficiency of a sche-

duling algorithm is taken as the sum of the final penal-

%
ties of a number of completed programs. If Py is the final

penalty of the finished program i, then the sum of the

final penalties of N finished programs may be denoted by

* N *
Py = .1 P; - _ (5)

A simple comparison between two scheduling algorithms
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%
may be effected by evaluating PN for the two algorithms
using the same N programs and the same set of penalty
functions.

(b) Quantum-Allocation Routine

This routine which is entered immediately before
the start of every round-robin cycle, determines the
amount of CPU time that each program is to be allocated
as its time-slice (quantum-allocation scheme). It
allocates CPU time according to two'scheduling élgorithms
which are considered by the simulation study. Both
_algorithmé have the same piece of-logic for job-selection
from a waiting iist, namely, to select the program with
the highest penalty, but use different types of quantum-
allocation scheme with their round-robin scheduling.

One type is the constant time-slice allocation
scheme in which a fixed amount of CPU time is allocated
to each program in core. This amount of CPU time is
~determined from the relationship
q; = t../n _ (6)

1

where a3 is the constant time-slice, trr is the intended

round-robin time5 (and is simply referred to as the

5It must be noted that the actual round-robin time
differs from the intended round-robin time, t__. This
difference is due to the amount of supervisor ¢ycle time
incurred in the round-robin cycle and to the unused portion
of the allocated time-slice in the case where a program
completes processing before expiration of its time-slice.
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round-robin time) and n is the makximum number of jobs
which can be scheduled simultaneously by the algorithm
(in this case, n = 3).

The round-robin scheduling with a constant time-
slice, however, gives preferential treatment to shorter
jobs at the expense of penalizing longer jobs which are
urgent. There is an apparent need, therefore, for an
_algorithm which incorporates the interests of the indi-
vidual users. In anAattemﬁt at solving the latter, it
appears reasonable to modify the round-robin scheduling
with a constant time-slice to a round-robin scheduling
with variable time-slice, This, therefore, gives rise
to the second type of allocation scheme which considers
-variable time-slice,

fhe calculation of the variable time-slice
involves a two-stage process. First, the total penalty
received by all the programs in core is determined by
computing the current accumulative penalty of each pro-
gram. Secondly, based on these penalty wvalues, the time-
slices of the pfograms are determined. -

Thé time—Slice'allocated to program i by the
quantum-allocation scheme at time t is calculated from
the relationship

qa; = (p; (£)/P(E))t (7)

so that the round-robin time, t__, is divided among the
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programs accordihg to their current penalties. Two
excepéions to the above should be noted.
| (1) When the total operating penalty, P(t),
is zero, trr is divided equally among
the programs.,

(2) If a program's quantum is calculated to be
1éss than a fixed minimum amount of CPU"
time (minimum time-slice), then the minimum

“amount is allocated as the quantum of the

program,

2.3 Event-Control Routine

The event-control routine which is entered on
every cycle, performs the following basic functions.

(1) Assuming that a queue of waiting pro-
grams exists, the routine first calcu-
lates the penalty values of all the
programs in the queue. It then selects
the program with the highest penalty
value and scans through the execution
list to see if there is a space avail-
able for.tﬁe program. If a space is
found, the program is entered on the
execution list, otherwise it is returned

to the queue.
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(3)

(4)
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It ascertains whether a new program is
due or not by checking the pfogram's
scheduled arrival time against the simu-
lated time. If it is established that a
new program is due, the routine determines
if it can be accepted into core by search-
ing for a space on the execution list., In
the case where the list is full, the new
program is placed in the queue.
It advances the simuiated time to the time
of the next event. The time of the next
event is the smaller of the following
(1) the time of arrival of a new

program which can be accepted

intc core; and
(ii) the time of service termination

. which could be either the time

when a time-slice is completed

or the time when a program has

completed précessing prior to the

expiration of its allocated time-

slice. |
In the case where no program is executing
when the event-control routine-has been

completed, the supervisor cycling is
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allowed to continue along the section
common to paths 1 and 2.

On each exit from the event-control routine, the
Supervisor cycle Lime ls added to the simulated time to
allow for the execution time of the forthc¢oming cycle,

Figure 4 gives a description of the flow logic

of the event~¢ontrol routine,

2.4 - Search and Service Routines

(a) Search Routine

The purpose of this routine is to determine the
next program to be serviced in the round-robin cycle,
When the routine is entered, it scans through the
execution list sequentially and selects the first pro-
gram it finds with an outstanding time-slice, If a |
program is fqund, the service routine is entered to
initiate servicing of the progrém. If no program is
found with an outstaﬁding time-slice, then path 1 is
taken on exit from the search routine,

(b) Service Routine

When a program has been-found with an out-
standing time-slice By.the search routine, control is
passed to the service routine which initiates the ser-
vicing of the program. A record is also made of the time

when the time-slice is completed or the time when the
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program completes processing, depending on which occurs
first. On exit from this routine, path 2 is taken in

the cycle,

2.5 Update and Removal Routines

{a) Update Routine

The update routine is executed whenever the
execution of a pfégram has been interrup%ed. The routine
updates the accumulated central—proéessing time for the
program in the execution list, If execution of the pro-
.gram is terminated before its timé—slice is completed
owing to the arrival of a new program into core, an
updated time-slice, representing the remainder due to
the program in the current round-robin cycle, 1s
calculated,

(b) Removal Routine

The removal routine is executed whenever the
4centra1—processiné requirements of one of the programs
in core has been met, The routine outputs on a card for
subsequent statistical analysis, the program number, the
priority, the current simulated time and the amount of
CPU time requested. After this information is output,
the associated information stored in the execution list
is erased so that another program can take its place on

a later supervisor cycle.




CHAPTER III
VARIABLE PARAMETERS FOR THE SIMULATION MODEL

The wvariable parameters, which are input at the
start of the simulation, are the penalty functions, job-
load parameters, supervisor-cycle time, round-robin

cycle time and minimum time-slice.

3.1 Penalty Functions

Five different penalty functions are used for the
simulation. Each function is associated with one of the
five priority classes which the scheduling algorithm
presently admits. ‘

The penalty functions are arbitrary analytic
functions which are specified by using the mathematical
relationship

£(u) = 999 (((u-1)714)°) + 1 (8)

where b = 2<K_3)

,7Uis the priority number which takes on
integral values 1, 2, 3, 4 and 5, and u, the lack of
attention, is only considered over the closed interval
{1,15]. Thus -if the calculated value of u lies outside
this interval, u is set equal to 1 or 15 depending on
whether u is less than 1 or greatef than 15 respectively.
These penalty functions remain unchanged throughout the

entire simulation study.

Figure 5 illustrates the graprhs of the five
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functions. The notation, fi, denotes the penalty func-
tion associated with programs of priorit& class i.

fl and f2 which are functions fof the shorter response
progyrams with priorities 1 and 2, rise very steeply

at low values of u. On the other hand, f, and £, which
are functions for longer response programs with priorities

4 and 5, rise very ravidly at higher'values of u.

3.2 Job-Load Parameters

The work-load environment for the simulation
~study is created by a job—generatdr routine that simulates
a series of entities called jobs or programs using Monte-—
Carlo technique, Each job description consists of the
following items :

(1) The job number

(2) The priority class number

(3) The amount of central processing time

requifed or requested

(4) The arrival time

Tﬁe CPU time and the interarrival time of jobs
within a particular priority class are selected at random
from a normal distribution of each. The normal distribu-
tions are specified by a mean and a standard deviation
which are input parameters, Five priority classes are

considered. Thus, this description of the job load gives
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rise to twenty independent variables. In order to be
able to study the effects of changes in £he scheduling
algorithm upon efficiency, as a function of job load,
it is reasonable to reduce the number of independent
varilables to a manageable level by introducing restric-
tions,

The mean CPU times for the five priority classes
are linked together according to the equation

mg, q = kmy (9)

where i = 1,2,3,4 and k is a proportionality constant.
This, therefore, allows the complete set of mean CPU times
to be calculated from the specification of k and the mean
CPU time of priorify 1 programs (m1 seconds of CPU time
per program). |

The mean interarrival times are linked in a
similar manner according to the equation

ri,q = kri (10)

where i = 1,2,3,4 and k is the same proportionality
constan£ as in equation (9). This also allows the com-
plete set of mean interarrival times to be calcglated'
from the specification of kX and the mean interarrival
time of priority 1 programs (rl seconds per program).
All standard deviations are taken to be 25%

of the corresponding mean values.
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Values of the three independent parameters
k, my and r, are used to completely describe the job
loads which are to be used in this simulation study.

In order to have some control over the condi-
tions which give rise to system overloading, it is
desirable to have some guide for estimating the propor-
tion of the processor‘s capacity which i$ demanded by
programs of each priority class over a given time
interval. Using parameters m, and‘ri, the proportion of
the processor's capacity demanded by priority class i
for a given time interval can be approximated by means
of the formula

di = mi/ri. (11)

Thus for a specified di’ the proper choice of
r, or m; can be determined depending on whether m; or
ry is given respectively. For example, if it is desired
.that each priority class demands only 1/5 of the total
processo;'s capacity over a particular time interval,
that is, di = 1/5, this can be effected, though loosely,

by using the following equation

mi/r:.L = 1/5 (12)

where i = 1,2,3,4,5. Hence, from equation (12), the

proper choice of r; can be obtained if m, is given and
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vice versa,

Furthermore, since from equations (9) and (10)

Mi41 o, (13)
r r.

L <
LT A L

it follows that for a given my and Ty,

of the processor's capacity demanded by each priority

the proportion

class for a particular time interval is the same,
~ namely, ml/rl. Thus, only the choice of my and ry needs
to be considered.

The method by which normally distributed random
variates are generated using the Central Limit appréach
is déscribed in Appendix C. :

Ten separate sequences of random numbers are
'generated for the ten normal distributions (2 for each
priority class: CPU time required and interarrival time).
All ten starting values used by the random number generator
for these sequences are the same. This wvalue is 157832165,
Ité choice is arbitrary with the exception that it must be
odd and less than 231. A discussion of the random number
generator can be found in Appendix.B.

The nofmal distributions used were truncated at
the + 40 limits where o is the standard deviation, Since
all standard deviations are taken as 2-% of their corres;

ponding means, the lower and upper limits of each distri-

bution are in fact 0 and 2u respectively, where um is the
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mean. Thus within priority class i, the upper and lower

limits of the normal distribution for the requested CPU

time are 0 and 2mi reSpecﬁively, and for the interarrival

time, are 0 and Zri respectively. Hence, if a normally
~distributed random variate generated lies outside these
limits, it is rejected and another is generated.

The cﬁoice to truncate the normal distributions
at the + 4o limits appears reasonable. For the lower
limit, a normally distributed random variate less than
(# - 40+) is undesirable since it is negative, while for
the upper 1limit, a normal variate obtained in the region
beyond (g + 49) is likely to be unreliable (see [10]).
Further, with limits of (}Li 40-) , the proportion of the
normal distribution considered is about 99.98%.

A sample listing of 20 programs that have been
created by the job generator routine is shown in

Appendix D,

3.3 Supervisor-Cycle Time

The supervisor-cycle time is the time taken to
execute a cyclic path in the simulation model (see
Figure 1). Strictly speaking, this time which contributes
to the supervisor overheads, varies according to which
path is takéh. However, for convenience, one fixed value

is assumed for the supervisor-cycle time. It appears
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reasonable to uge a time of 0.01 second. On the‘IBM 360/65
compu&er system, this value is equivalent to approximately
3000 instructions.

In order to get an idea of the supervisor-cycle
times which are involved during the simulation process,
two simple examples are described illustrating the number
of supervisof cycles necessary for the case under con-
side;ation.

Example 1. Consider the situation where a program
enters core which is empty, completes its processing within
the first time-slice it receives, and is then removed from
core.

Since core is empty prior to the arrival of the
program, the most recent primary routine is taken as
"search" and the most recent path is taken as path 1.

The combination of the search routine and path 1 is used
to determine the next primary routine to be executed.

After the program has entered core, one supervisor
cycle is taken to execute tﬁe quantum-allocation routine
for calculating its time-slicé; another cycle is needed
to enter the search routine followed by the service
routine which initiates servicing of the program and a
final cycle 1s reguired to execute the updéte and
- removal routines when the program completes processing.

Thus, three supervisor cycles are taken for the entire
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operation. The total supervisor-cycle time involved in
this case is 0.03 second. |

If the program in the abo&e example had required
more than one time-slice, say two time-slices, to com-
plete processing, then after the dpdate routine is
executed on the third cycle mentioned in the foregoing
paragraph, a fourth cvcle is used to enter the search
routine to determine if any other program is to be
serviced. In this case no other program is found., On
the next (fifth) cycle, the quanﬁum—allocation routine
" is executed followed by a further (sixth) cycle to
execute the search and service routines with a final
(seventh) cycle to execute the update and removal rou-
tines. Thus, for the second time-slice received by the
program, an extra four supervisor cycles are reguired,
The total supervisor cycle time involved in this case,
therefore, is 0.07 second.

In general, if the program mentioned in Example 1
regquires more than one time-slice to complete processing,
then for each additional time-slice after the first
time-slice, four superviéor cycles are réquired.

Example 2. Consider the same situation as in
Example 1 with the addition that a second program enters
core while the first one is executing.

In this case, the first two cycles are the same
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as those in Example 1. However, when the first program
is interrupted during its execution by the arrival of a
new program in core, two cycles are necessary to resume
processing of the first proygram; namely, one cycle [or
entering thebupdate routine to calculate the updated
time~slice of the first program and another cycle for
executing the search and service routines to re-initiate
servicing of. the first program. When the program com-
pletes processing, a furtﬁer cycle is needed for entering
the update and removal routines. Five supervisor cycles
are involved in the processing of the first program;
thereby contributing 0,05 second to the supervisor

overheads.

3.4 Round-Robin Cycle Time

“ For both the constant time-slice and the variable
time--slice allocation schemes associated with the round-
robin scheduling, the value of the intended round-robin

time, trr’ is read in as data. In the constant time-slice

scheme, the quantum allocated to a program is simply trr/3’

For the variable time-slice scheme, t., is divided up
among the programs in core according to their current
penalﬁies. |

It is very likely that the efficiency of the

* T
algorithm, that is, the value of Py or Z§=1 p; (where

.
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N programs are cénsidered), is dependent upon the size

of tr;' If trr decreases, the time-slices are also
proportionately decreased and'thé frequency of switching
from one program to another increases. ''his results in an
increase in supervisor overheads which tend to degrade
the processing efficiency of the system, tﬁat is, to
increase the ﬁalue of Pg . On the other hand, when trr

is large, the supervisor overheads are low but the
shorter programs, which tend to have penalty curves that
increase very sharply at low values of u, are neglected
more than when trr is small. This occurs when the average
quantum, g, is much larger than the mean value of the
CPU time of priority class 1 programs, that is, g >> m, .
These effects were noted by Greenberger [8] in an

analytical study using linear penalty curves.,

3.5 Minimum Time-Slice

In the round—fobin scheduling with variable time-
slice, a program's calculated time-slice, which is deter-
mined according to the program's current penalty, could
be so small that it is not efficient for the system to
process the program for such a short time interval due
to the relatively- high overheads involved,  -To illustrate
this point, consider a simple case where only one program

is in core, As seen from the discussion in the section
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"Supervisor-Cycle Time" three supervisor cycles are
nécessary to carry out the operations of'a round-robin
cycle, which involve calculation»of the time-slice,
initiation of servicing and execution of the update
routine after the time-slice is completed. If the
time-slice in this case is approximately equal to the
supervisor-cycle.time, then only about 1/4 of the CPU
time is useful, since out of the total CPU time of
0.04 second, only about 0.01 second is devoted to the
processing of the program. |

In an attempt to avoid excessive loss of CPU
efficiency, the size of the time-slice is not allowed
to fall below 1/100 of the round-robin cycle time. This
amount is called the minimum time-slice. Thus, whenever
a calculated time-slice falls below this value, the
minimum time-slice is allocated instead.

It seems likely that the size of the minimum time-
“slice would affect the efficiency of the algorithm, that
is, the -value of P° . As the size of the minimum time-slice

N
increases to t . (the round-robin time) the round-robin
scheduling with variable time-slice becomes a round-robin
scheduling with a constant time~sli¢e. If the minimum
time-slice continues to increase until it becomes much

larger than trr’ the scheduling algorithm approaches a

batch processing type of scheduling with a first-in-first-
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out discipline,? where long jobs are favoured at the
expense of short ones. On the other hand, if the minimum
time-slice is very small, supervisof overheads are in-
creased thereby degrading the efficiency of the algorithm,
%

that is, increasing the value of Py

3.6 OQutput of the Simulation Program

Both intermediate and final details of each pro-
gram which was processed are punched out on cards. The
intermediate program details are output after each
execution of the quantum-allocation routine, while the
final program details are output when .2 program has
completed its entire processing and has been removed from
"the execution 1list.

The intermediate program details consisted of :

(1) Program number

(2) CPU time required or réquested

(3) 1Initial entry time into the system

(4) Accumulated CPU time received

(5) Accumulated combined processor and

device time

6 e s . et
In a first-in-first-out discipline, programs are

serviced on a first-come-first-served basis with each
program being serviced to completion before control is
passed to the next program.
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(6) Current penalty value

(7) Zmount of time-slice allocated

(8) Time when time-slice was allocated

The final program details have items (1) to
(5) above and in addition, the following two items:

(9) Final penalty

(10) Ekit time of program from the system

A.listing of the final details of 20 programs
whose initial job description are shown in Appendix D

is shown in Appendix E,




CHAPTER IV

PERFORMANCE OF THE SIMULATION MODEL

4,1 Study of the Behaviour of Two
Types of Scheduling Algorithm

The relative performance of two scheduling
algorithms was estimated by simulating the execution
of identical job streams with each algorithm in turn,

and observing the effect on the measure of efficiency,
%
PN.
The two algorithms studied were :
(i) fixed time-slice (FTS) and
(ii) wvariable time-slice (VTS).
Both algorithms use round-robin scheduling,

Table II shows the input values that were used

for the variable parameters,

(i) Fixed Time~Slice Algorithm

The fixed time-slice algorithm accepts programs
from the waiting list according to which precgram has
the highest penalty. If two or more programs have the
same highest penalty, tﬁen'the first ofAthese programs
to arrive is selected, For programs which are in core,
the time-slices for these programs are calculated

according to formula (6) (see section '"Penalty Function
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TABLE IX

INPUT VALUES FOR THE VARIABLE PARAMETERS
USED IN THE S2UDY OF THE BEHAVIOUR OF TWO
TYPES OF SCHEDULING ALGORITHM

VARIABLE PARAMETERS ' VALUE

Job-lcad parameters:

Proportionality Constant, k 4.0
Mean value of CPU time for
priority class 1, my 10.0 secs.

Mean wvalue of interarrival

time for priority class 1, r 30.0 secs,

1

Round-robin time, trr 3.0 secs.

Minimum time-slice 0.03 sec.

Supervisor-cycle time 0.01 sec.
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~and Quantum-Allocation Routine'", page 29), namely,

qi = trr/n

which takes no account of the current penalties of the
programs. The variable n refers to the maximum number

of programs which can be scheduled simultaneously and

in this case, its value is 3.

From the input values of the job-load parameters,
my (the mean of the normal distribution associated with
the requested CPU time for priority 1 programs) and k
(proportionality constant) in Table II, the means
(mi, where i = 2,3,4,5) of the other four priority classes
of programs, were derived by using tﬁe following relation-
ship

m. .y = kmi (i = 1,2,3,4). (14)

The standard deviations (Sm.) were calculated
by taking 25% of the means. The ldier and upper limits
of the ranges for the requested CPU times considered,
were determined by using m, - 4smi and m; + 4smi
respectively where 1 denotes priority class i. Since
s, 1is 25% of m,, the lower limit of a range is in fact
ze;o which is a reasonable lower limit since negative
values were not meaningful. The upper limit (mi + 4sm')‘
appears reasonable also, since values 1lying in the :

region beyond this limit were not likely to be reliable
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(see [10]).

' Table IITI gives the values for the mean, the
standard deviation and the range of the requested CPU
time of each priority class.

Similarly, by using r, and k, the values for the

1
means, the standard deviations and the ranges of the
interarrival times of all the priorify classes were
determined. The result is shown in Table IV,

The simulation run was terminated after a
simulated time period of 1202 sécOnds. During this time
period, 48 programs completed processing, 2 programs
were in core unfinished and 20 programs were in Ehe gueue,
No priority 4 or 5 programs arrived in this run and there-
fore only the first three priority classes of programs
were effectively considered,

Final and intermediate details of each program
were collected and a graph of penalty versus time was
plotted. Figure 6 shows a portion of this graph over
the interval 450 seconds to 1000 seconds. The number
or numbers on each curve represent the priority class
of the associated progrém.-The curves with their priority
number marked at the beginning and end are for programs
which completed processing, while curves with their
priority number written only at the start are for pro-

grams which did not complete processing at the end of
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TABLE IIT

VALUES OF THE MEAN, STANDARD DEVIATION
AND RANGE OF THE REQUESTED CPU TIME
FOR FIVE PRIORITY CLASSES

Priority Mean Standard Range of
Class CPU Time (secs) Dev, (secs) CPU Time (secs)
1 10.0 2.5 0.0 - 20,0
2 40.0 10.0 0.0 - 80;0
3 160.0 40,0 0.0 - 320.0
4 640.0 lé0.0 0.0 - 1280.0

5 2560.0 640.0 0.0 - 5120.0
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TABLE IV

VALUES OF, THE MEAN, STANDARD'DEVIATION
AND RANGE CF THE INTERARRIVAL TIME
OF FIVE PRIORITY CLASSES

Mean Inter-

Range of Inter-

Clas Sl oI, errivel tine
1 30.0 7.5 0.0 - 60.0
2 120.0 30.0 0.0 - 240.0
3 480.0 120.,0 0.0 - 960,0
4 1920.0 480.0 0.0 - 3840.0
5 7680,0 1920.0 0.0 - 15360,0
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1000 seconds,

One notiéeable feature about the behaviour of
the curves in Figure 6 1s that when core is full curves
belonging torthe same priority élass seem to approach
a common penalty value which is specific to that priority
class. Thus, there seem to be three different common
values corresponding to the three priority classes studied.
. The common penalty values seem to decrease with descending
order of prioriﬁy. This cﬂaracteristic may be attributed
to the associated penalty functions themselves,

From Figure 6, the common penalty value for
priority 1 programs is about 625 penalty units. For
priority 2 programs, it is about 390 penalty units, while
'priority 3 programs approach an approximate value of 150
penalty units. Thus it can be seen that for programs of
the same priority class, if their curves are above the
common value for that class, they tend to decrease and
approach this value while curves below the common value
tend to rise to meet 1t.

In ordgr.to determine whether the observation
of these common values could be sgppofted by further
analysis, a simple analytical study was performed.

‘With Ti and T initially at zero and a program

mix consisting of a priority 1, a priority 2 and a
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priority 3 progrem, the current penalties of the three
progréms, each receiving a quantum of 1/3 of the round-
robin time were calculated with supervisor overheads
disregarded. The penalty values obtalned, plotted against
time, are shown in Figure 7. The numbers in parenthesés
at the end of each curve, from left to right, indicate
the priority humber,.the round-robin time and the quantum
respectively.

Bach curve in Figure 7 is approaching a separate
penalty level, For the priority 1 program, the level is
about 600 penalty units. For the priority 2 program, it
is about 375 penalty units, while for the priority 3
program, it is about 140 penalty units. These three values
are relatively Ciose to the common values observed in -
Figure 6, the difference being mainly due to supervisor

overheads. Hence this supports the view stated earlier.

(ii) Variable Time-Slice Algorithm

The variable time-slice algorithm accepts programs
from the waiting list in the same manner as the fixed
time-slice algorithm. However,.the amount of time-slice
a program receives is dependent on its current penalty
and on the operating penalty of the system. The time-
siice to be allocated to a program at time t is determined

by formula (7) (see saction "Psnalty Function and Quantum-




PENALTY

61

1600 .
.NOTE !: The nunbers in pgarentheses| from lefft to
' right, {denote th¢ priority|number, the
round-robin time|and the tfime-slice
respectively,
730.
f)_h.‘.mnmmrfrrf?-‘-"P?Pf"?""h"-*””"”"""m“m""‘"”"”""” (1, B.00OG, 1-800G0 )
500 .
‘wwmmf‘mf """"""""""""""""""" 'L C; 3 SSG; }. (:I_}:l }
7
f
230 . |
| e e 33 2. 000G, i-DUS )
/
0.
0. : . e06. 400 . BGO
' ' - -
TIME IN SEC-
FIGURE 7

PENALTY VS. TIME OF THREE PROGRAMS OF DIFFERENT
PRIORITY CLASSES USING THE FTS5 ALGORITHM



62

Allocation -Routine", page 30), that is,

q; = (pi(t)/;pi(t))tr

1

i r

where pi(t) is the current penalty of program i, Zp, (t)
is the total operating penalty anq trr is the rou;d—robin
time, |

Using the same input values fo; the variable
‘parameters shown in Table II, the simulation run was
terminated after a simulated time périod of 1584 seconds,
In this time intervai, 65 programs completed processing,

3 programs did not complete execution and 1 program was
in the queue., As in the fixed time-slice ruh, only
priority 1, priority 2 and priority 3 programs arrived
during this time period,

Intermediate and final details of all the programs
that received processing were collected and a graph of
penalty values versus time was drawn, Figure 8 illustrates

a portion of this graph over the interval from 450 secs.
to 1000 secs, As in Figure 6 the priority numbers are
marked beside the curves, Those curves with no priority
number marked at the end are for programs which did not
complete processing at the end of 1000 sécs. Some of the
curves are labeled with letters so that they can be
referred to more conveniently in later discussions,

All the priority 1 and priority 2 programs,
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compared to thosé in Figure 6, have lower final penalties.
This ébservation seems to indicate that priority 1 and
priority 2 programs receive better treatment from the
VIS algorithm than from the FYS algorithm,

Since the size of the time-slice in this scheme
is variable, it is interesting to examine how the size
of the time—siice arffects the penalty value of a pro-.
gram. In particular, if p(tl) is the penalty of a

program at time t, and p(t,) is the penalty of the same

1
program at time t2, where t2 is either the time which is
one round-robin cycle later or the time when the program
leaves the system whichever occurs first, it is possible

to determine how large a time-slice is necessary such that

the condition

]
wn
~

p(t,) < plty) (

is satisfied.

By definition,

i

p(tl) f(ul)

and

p(t,) = £(u,)

where f 1s the penalty.function associated with the

priority class of the program and uy and us are the

lack of attention values at times t, and t2 respectively,

1
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Thus,

p(tz) < p(tl)
is equivalent to

AY

£(u,) < £(u)). | (16)
Since f is a monotonically increasing function

over the closed interval [1,15] then (16) implies that

u

5 S u . . (17)

1
Let T be the timé which has elapsed (since the
arrival of the program) at time tl and AT be the increment
- in time from tl ﬁo t2. Furthermore, let T be the accumu-
lated processing time received by the program at time tl
and AT be the increment in processing time received
during the time interval AT,
Then, according to the definition of the lack of

attention from equation (1) (see "Penalty Function and

Quantum-Allocation Routine", page 25), (17) becomes
T+ AT T . (18)
T+ AT — T

By factdring, (18) can be rewritten as

éI.)
T <
AT ) -
T

T 1 +

I, | (19)
T(C 1 + t

However, since T > 0 and T > 0, (19) becomes

)
)

< 1. . (20)

AT

T

AT
T
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Also, since ( 1 + %% ) > 0, (20) can be written as
1+ AT < 1+ %é .
T T
Therefore,
AT < AT |
T - T
Thus,
AT > AT/ul . ' (21)

From (21) therefore, the increment in central process-
ing time (or the time-~slice) AT must be greater than or
equal to AT/ul in order that p(t2) < p(tl). For example,
if uy = 4,0 at time tl and AT = 3.0 seconds then in order
that p(t, +4T) < p(tl), the quantum AT > 3.0/4.0 second or
0.75 second. In the case where t2 is the time when a finished
program leaves the system during a rcund-robin cycle, AT
is the time interval from the start of the cycle to the
exit time of the program and may be denoted by T;r.

In Figure 8, ﬁhe curves labelled A, B and C show
pronounced hooks at their ends, These situations are due
to the fact that (21) is ﬁot satisfied. For instance,
when curve A. was examined more closely it was found that
in the last round-robin cycle, T;r was 2,052 seconds and
the u value at the start of the cycle was 1.,7. From (21),
this therefore requires a quantum of at least 1,207 secs.

to maintain the final penalty at the same level as the
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intermediate penéity from the previous cycle, However,
the a&ount of CPU time which the program required in
this cycle‘before combleting its processing was only
0.701 second. Therefore, the increase in penalty when
the program completed processing in its final round-
robin cycle was unavoidable.

It is.observed also that in cases. where a penalty
increase incurred by a program is unavoidable, the size
of this increase can vary depending on the position of
the program on the execution list. Since programs are
serviéed sequentially with the one at the head of the
list being serviced first, a program closer to the.head
of the 1list leaves the system sooner in its final round-
robin cycle than if it were lower on the 1list. Thus, the
unavoidable penalty increase will accordingly be reduced
by an earlier departure from the system in the case where
the program is higher on the list.

A situation where no penalty increase occurred
in the final round-robin cyéle of a program is seen 1in
curve D, In this case, u at the start of the final
round-robin cycle for the program was 4.3. With T;r as
0.458 second, the time-slice necessary to keep the
penalty constant, AT, was calculated to be'0.107 second.,
- However, the actual time-slice given to the program was

0.438 second. This amount being greater than AT, caused
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a penalty decrease instead.

The curves in Figure 8 seem to vafy according
to the program load. For example; when the priority 1
progiram represencted Dy curve A entered <o
which corresponds to a priority 2 ‘program and which was
decreasing began to rise., Also, when the priority 1 pro-
gram represented by curve A left core, curve E started
to decrease again until another priority 1 program
(curve B) entered core later, In both instances however,
the penalty values of the priority 3 program (curve F)
" which was in core during this interval, seem to rise
quite steadily without much fluctuation as is seen in
curve E, This behaviour is partly due to the constant
slope of the penalty function associated with priority
- 3 programs. On the other hand the greater degree of
fluctuation seen in curve E is partly reflected by the
steeper slope of the penalty function associated with
" priority 2 programs in the region where the penalty

value is between 200 and 300. In general, therefore, the

curves are partly influenced by the program mix and partly

by the height and slope of the associated penalty functions.

In the majority of cases, the priority 1 and
priority 2 penalty curves decrease quite rapidly at first
but seem to level out with time if the re@ﬁested CPU times

are long enough, The two priority 3 penalty curves seem
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to increase quite steadily and their behaviour suggests
that they would probably level out also as time increases,
if the corresponding programs wefe given longer execution
time.

Generally, the penalty curves in Figure 8 do not
seem to converge at any common penalty level or levels
such as those observed in Figure 6. Furthermore, since
most of the priority 1 and priority 2 programs remain in
core for relatively short times, it is difficult to pre-
dict the directions towards whicﬁ their penalty curves
" are heading in the long run. However, it seems from the
levelling out of some penalty curveé, that the curves may
become asymptotic at values which are specific to the
program mixes, if the programs associated with the curves
were to have greater reguested CPU time.

In view of this, a supplementary experiment was
performed to simulate the execution of programs from
" various program mixes using the time-slice allocation
scheme of the VTS algorithm., No supervisor overheads
were considered. All programs were given a requested
CPU time of 80.0 secs. The intermediate and final
penalties were collected and plotted against time.

A-set of these graphs which have been obtained
is shown in Figure 9 using a program mix which consists

of a priority 1, a priority 2 and a priority 3 program
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(that is, a 1-2-3 mix).7 The numbers in parentheses at
the end of each curve, from left to right, denote the
slot number or the entry number on the éxecution list,
the priority number and the final penalty. ,

In addition, when the final penalty of the first
program to complete processing was collected, the
intermediate penalties of the other programs in core
were also recorded at this inétant. These results for all
possible i~j and i—j—k mi%es are shown in Table V., The
dashed entries within each row of the table indicate that
these entries are not relevant. |

From the graphs in Figure 9 and the graphs for the
other mixes which have not been shown, it is observed that
the curves in general exhibit some degree of fluctuation
in the early stages of program execution, and that they
all tend to level out into constant penalty levels as
time increases until the first program to complete pro-
cessing departs from core. Thus, the penalty values
obtained in Table V can be regarded as the approximate
asymptotes of the penalty curves for the programs in the

various program mixes, In some mixes which contain two

7The nomenclature "i-j~k mix" denotes a program mix
consisting of a priority i, a priority j and a priority k
program. Similarly, the nomenclature "i-j mix" denotes a
mix of a priority i and a priority j program.
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TABLE V

APPROXIMATE ASYMPTOTIC VALUES OF PROGRAMS IN
VARIOUS MIXES USING THE VARIABLE TIME-SLICE

ALGORITINT (SUPERVISCOR OVERIIEADS IGNCORED)

No. of PRIORITY CLASSES

Programs

In Mix 11 1 2 2 2 3 3 3
2 515 515 - - - - -
2 466 - - 321 - - - . .
2 410 - - - - - 171 - -
2 - - - 265 266 - - - -
2 - - - 203 - ' - 120 - -
2 - - - - - - 71 71 -
3 613 613 613 - - - - - .
3 589 591 - 437 -~ - = - -
3 568 569 - - - - 284 - -
3 - - - 376 376 376 - - -
3 564 - - 410 410 - - - -
3 - - - 339 340 - 220 - -
3 - - - o oo 14 141 141
3 499 - - - - - 227 227 -
3 - - - 294 - - 184 184 -

3 534 - - 382 - - 255 - -
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programs belonging to the same priority class, the slight
difference in penalty value in the table between the two

programs 1is due to the order in which the programs were

serviced, with the one serviced [irsl having lhe smaller

¢4

penalty., Within a particular program mix, therefore,
-programs whose penalty curves initially start above or
below their asymptotes will eventually have their curves
converge at the asymptotes, provided that they requested
a sufficient amount of CPU time,

To facilitate the discussion of the curves of
various program mixes in Figure 8, the time interval
from 450 - 1000 secs. has been partitioned into time
segments with most of these segments lettered as shown
in Figure 10.

As seen in Figure 10, only two program mixes
can be singled out as remaining in core'for any length
of time and these are the 2-3-3 mix in time segment I
and the 2-3-3 mix in time segment L. The values to which
these penalty curves are approaching compare quite
favourably with the corresponding asymptotic values in
Table V, which are 294 for the priority 2 penalty curve
and 184 for the priority 3 penalty curve. In time seg-
ment P which also involves a 2-3-3 mix, it.appears that
the priority 2 curve would likely approach the value of

294 also. And in time segment G, the priority 1 and
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priority 3 penalty curves in the 1-3 mix seem to be
approaching the asymptotes of 410 and 171 respectively.

With regard to the other mixes in Figure 10,
not much can be said about the penalty levels towards
which their curves are apprbaching, since these mixes
did not remain for a long enough period in core for
the curves to achieve any form of stability. The in-

. crease in the priority 1 penalty curve in time segment
B seems reasonable és the-asymptotic value for the
priority 1 curve in a 1-3 mix is 410.

The results in Table V can also be derived
analytically, but such'an approach involves fairly
complex calculations in most cases. However, an example
is considered using a 3--3 mix.

Since, from equation (2) (see section "Penalty
Function and Quantum-Allocation Routine", page 27),

p; = f3(ul)
where Py is the penalty for program 1, f3 is the penalty
function associated with priority class 3 programs and Uy

is the lack of attention to program 1, then

]

p; = 999 ((u, - 1)/14) + 1. (22)

Similarly,

i

Py = 999 ((u, - 1)/714) + 1 (23)

Let Atl and ATZ be the increments in processor
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time received by program 1 and program 2 respectively.
Then

A, + AT, = &t | (24)

u. = T./%T. = t_ /AT, (25)

where Uy is the lack of attention, Ti is the elapsed
time since program entry and T& is the accumulated
processor time; and

AT& = ATé . (26)

From (22) and (25) therefore,

Py = 999 (£ /AT, ~ 1)/14 + 1. (27)

Since from (24) and (26)

b = ZATi

then (27) becomes

999 (2-1)/14 + 1.

11

P1
Hence,

Py = 72.4.
Similarly, it can be found that

P, = 72.4.

Thus the values obtained in Table V for a 3-3
mix appear guite reasonable compared to the analytic

values,
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(iii) Comparison of the Variable and
Fixed Time-Slice Algorithms

The results obtained earlier on the fixed time-
slice and variable time-slice algorithms were used to
examiné the relative performance of the two algorithms.
Only those proérams which had completed processing under
both algorithms were used in the comparison. The number
of completed programs were 48,

The difference in the final penalty values for
the execution of program i under the two algorithms
is defined as

* * _

Lp; = p; (FTS) - p, (VTS) (28)

where p;(FTS) and p;(VTS) are the final penalty values
for program i under the fixed time-slice and variable
time-slice algorithms respectively.

Figure 11 shows the graph of Api versus the exit
time of program i under the variable time-slice algorithm,
ti,out(VTS)' The number beside each point or program
indicates the priority number of the program,

As seen in Ffigure 11, most of the Ap,.'s for
priority 1 and priority 2 programs are positive. This
resulted from the relatively lower penalties incurred
by most of the priority 1 and priority 2 programs under
the variable time-slice algorithm than under the fixed

time-slice algorithm. Thus, higher priority programs seem
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to be favoured by the VIS algorithm. On the other hand,
the negative Api's for the two priority 3 programs in
Figure 11 show that the priority 3 programs have relatively
lower penalties under the FTS algorithm, Hence, the lower
priority programs are given better serviéé under FTS
algorithm,

The difference in the exit times for the execu-
tion of program i under the two algorithms is defined as

Ati = t. (FTS) - t (VTS) (29)

i,out i,out

where ti Out(FTS) and ti,out(VTS) are the exit times

3

[oN

for program i under fixed time-slice and variable time-
slice algorithms respectively.

A graph of Ati versus ti ut(VTS) was plotted and

9
is shown in Figure 12. The numbers on the graph represent
priority numbers as in Figure 11.

In Figure 12, the Ati's for most of the priority 1
and priority 2 programs are positive. This is due to the
earlier departure from the system of most of the priority
1 and priority 2 programs under the VTS algorithm than
under the FTS algorithm. For tﬁe two priority 3 programs,
however, the opposite is true, that is, they leave the
system later under the VTS algorithm than under the FTS

algorithm. These observations, therefore, are consistent

with those made from Figure 11.
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In summary, both Figure 11 and Figure 12 seem to
indicate that higher priority programs ére favoured by
the VTS algorithm rather than by the FTS algorithm, while
lower priority programs received better service under the
latter scheme,

To determine the relative merits of both algorithms
by a quantitative approach, the measure , of efficiency,

P; for each algorithm was calculated, where N-= 48.

The measure of efficiency for the VTS algorithm, PZS(VTS),
was 21869 while the measure of efficiency for the FTS
algorithm, PZ8(FTS) was 25893, The relative percentage
improvement of the VTS'algorithm over the FTS algorithm

was found to be 18.4% in this restricted study. This result

further supports the earlier observations made and indi-

th

tes that the VTS algorithm is more efficient than the

PTS algorithm for a given job load and job mix.

4.2 Investigation of the Optimum
Round-Robin Time

As was mentioned earlier (section "Round-Robin
Cycle Time", page 47), the size of trr ought to influence
the performance of the algorithm. Such effects were found
by Greenberger for linear penalty functions [8]. It
appears that for a given work-load environment, the
shorter the round—robin'time, the higher the supervisor

overheads. However, since lengthening the round-robin
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time to minimize the supervisor dverheéds gives rise to
greater neglectvof higher priority programs, the round-
robin time cannot be chosen arbitrarily large for more
efficient performance of the algorithm. Hence, there is
apparently some intermediate value of trr where the
combined influence of these two factors is a minimum,

The object of this study was to find the optimum
_ round-robin cycle time for a given job load and job mix
environment using the VTS.algorithm with P; as the per-
formance measure.

The execution of a given job load and job mix
environment was simulated in seven separate runs with
trr assuning a different value in each run. The values
'of trr were 0.5 sec,, 1,0 sec., 1.5 secs., 2.0 secs.,
3.0 secs,, 4,0 secs., and 5.0 secs,

Table VI shows the input values of the job-load
parameters used for each run.

The mean CPU fime and mean interarrival time of
all five priority classes of programs with their standard
deviations and fanges are shown in Tables VII and VIII
reSpectively.-

Slightly more than 500 programs were processed
in each run and the P; values were calculated from the
500 programs which were common to each run.

Table IX shows the performance measure of each run
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INPUT VALUES OF JOB-LOAD PARAMETERS FOR

INVESTIGATION OF THE OPTIMUM

ROUND~ROBIN TIME

JOB-LOAD PARAMETERS VALUE
Proportionality constant, k 4
Mean CPU time for Priority

1.0 sec.

class 1 programs, my
Mean Interarrival time for

Priority Class 1 programs, ry

6.0 secs.
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TABLE VIT

VALUES OF MEAN, STANDARD DEVIATION AND
RANGE OF RZQUESTED CPU TIME FOR
FIVE PRIORITY CLASSES

Priority Mean Standard Range of
Class CPU Time (secs) Dev. (secs) CPU Time (secs)
1 1.0 0.25 0 - 2.0
2 4.0 1.00 0 - g€.0
3 16.0 4.00 0 - 32.0
4 64.0 - 16.00 0 - 128.0
5 256.0 64.00 0 - 512.0

fl
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TABLE VIII

VALUES OF MEAN, STANDARD DEVIATION AND
RANGE OF INTERARRIVAL TIME FOR
FIVE PRIORITY CLASSES

Mean Inter- Range of Inter-

Priority B . . Standard i e

Class drf;gii)Tlme Dev. (secsg) arrlzziééime
1 6.0 1.5 0 - 12.0
2 24 .0 6.0 c - 48,0
3 96.0 24.0 0 - 192.0
4 384.0 96.0 . 0 - 768.0

5 1536.0 384.0 0 - 3072.0
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TABLE IX

RESULTS OF 7 SIMULATION RUNS SHOWING
t AND THE CORRESPONDING

o Pys WHERE N = 500
*
Run trr(secs) PSOO
1 0.5 142899
2 1.0 140418
3 1.5 126476
4 2.0 131365
5 3.0 135944
6 4,0 151089
7

6.0 157875
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with its associated round-robin time, From the table,

- %
there is a minimum value among the values for PN as

%

N

value is 126476, and this corresponds to a t . value of

trr goes from 0.5 sec, to 6,0 secs. The minimum P

1.5 secs. which is the optimum roﬁnd—robin time (tgr)
for the given job load and job mix.

One would - expe~t the optimum ﬁrr value to be
dependent on the work-load environment. For example, if
if the work load consists entirely of high priority pro-
grams with short response time, éne would expect tgr to
be small; on the other hand, if the work load consists
solely of low priority programs witﬁ long response time,
one would expect t?r to be large,

Greenberger observed that the optimum quantum
size varied with parameter values in an analytical study
using linear cost curves and a fixed time-slice scheduling
algorithm. The parameter values used by Greenberger which
are most comparable to the ones used here give an
optimum quantum size of approximately 0.6 sec. This value
compares well with the optimum round-robin time of 1.5 sec.,
since on the average the-number of programs being pro-

cessed at any one time is intermediate between 2 and 3.
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4.3 Summary

This chapter investigated the performance of
the simulation model., A study of the behaviour of the
variable time-élice (VTS) scheduling algorithm and of
the relative performance of this algorithm‘compared to
the fixed time-slice (FTS) algorithm has been made.
Furthermore, an optimum round-robin time for the VTS
algorithm with a given job load was determined,

The analysis, both qualitative and quantitative
(using the measure of performance P;), showed that the
VIS scheduling algorithm when compargd to the FTS
algorithm gave preferred treatment to higher priority
programs at the expense of penalizing but not neglect-
ing lower priority programs. The guantitative improve-

ment in the P, value of the VTS algorithm over the FTS

*
N
algorithm in a very restricted study was 14.8%.

The investigation of the optimum round-robin
time using a given job load has indicated that while
more supervisor overheads might be incurred in using
a small round-robin time, it doesAnot»imply that the
round-robin time can be taken arbitrarily large (since
in such a case high priority programs with short response

time will likely be neélected). The optimum value found

(1.5 secs.) is one that minimizes the inefficiency of the
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scheduling algorithm for the job-load considered,

4.4 Suggestions for Future Research

The results of the present research have provided
some understanqing about the basic operation and charac-
-teristics of the job-scheduling algorithm using round-
robin scheduling with a variable time-slice allocation
scheme, The overall study revealed that the algorithm
reacted quite favourably in the test environment to which
it was subjected., The algorithm, therefore, should be
commended for future studies.

Some investigatioﬁs which may be considered for
future research are the following:

(1) To increase the simulation run %o include

the processing of more priority 3,
priority 4 and priority 5 programs so
that their effect on the performance of
the algorithm can be investigated.

(2) To determine the optimum value for the
maximum number of programs which can be
scheduled simultaneously by the job-
scheduling algorithm for given work-load
environment,

(3) To expand the simulation study to include

input and output operaticns.




(4)
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To study the effects of roll-in and
roll-out of programs in the case where

a higher priority program in a gueue can
pre-~empt a lower priority program in core

for CPU attention.
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APPENDIX A

DESCRIPTION OF WAITING-LIST AND
EXECUTION-LIST ENTRILS

the waiting list are the following

job number

priority class number
requested CPU time
arrival time

current penalty

T

the execution list are the following :

job number

priority class number
requested CPU time |

arrival time

accumulated CPU time received
intermediate or final penalty

allocated time-slice
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APPENDIX B
DESCRIPTION OF RANDOM NUMBER GENERATOR

The random number generator used by the job
generator routine is the power residue or multiplica-
-tive congruential method. The method stafts with a
constant k, a starting value Ny and a modulus m., A
seqguence {ni} of non-negative integers, randomly
distributed, with each less than m is generated by
means of the recursive formula

n,, ;= kng (mod m) (30)
where k = 65539 and m = 231.

Any positive odd integer less than 231 may be
chosen as the starting wvalue Ny

To obtain a real number, vy, raﬁdomly distributed
in the interval (0,1) a further calculation is necessary

using the formula

y = ni/(231 - 1) (31)

where ny is an integer randomly distributed and is first
obtained by means of formula (30).
Further discussion of the multiplicative con-

gruential method may be found in [9].
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APPENDIX C

DESCRIPTION OF METHOD FOR GENERATING
NORMAL RANDOM VARIATES

The method for generating normaily distributed
random variates in this study utilizes the Central
Limit approach (see [10]).

With a given mean m. and standard deviation
S,s & normally distributed random variate, x, may be
generated using the following formula:
1/2 K
) (Z

X = sx(lZ/K n; - K/2) + Mmoo (32)

=1
where n, is a uniformly distributed random number
between 0 and 1 (ni can be obtained by using the random
nunber generator described in Appendix B) and K is the
number of wvalues ny to be used.

According to the Central Limit Theorem, as K
approaches infinity, the set of values of x approaches
a true normal distribution asymptotically. However,
to reduce execution time, K was chosen as 12. Thus

formula (32) becomes :

X = s (2}2'

x o1 0y - 6'0),+ M . (33)

For further treatment of this topic, see [10].
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APPENDIX D
SAMPLE LISTING OF INPUT JCB STREAM

With the input values chown in Table IT for the
variable parameters and 157832165 -as the starting

nunber for the random number generator, a sample listing
of the first 20 programs with their initial job descrip-

tion (namely, program number, priority number, CPU time

requested and arrival time) is shown below.

Program Priority CPU Time Arrival
No. No. Requested Time
- (secs.) (secs.)
1 1 10 29,350
2 1 5 42,154
3 1 7 62,406
4 1 11 94,822
5 2 40 120.3298
6 1 12 131.210
7 1 9 159.228
8 2 17 171.606
° 1 10 188,162
10 1 7 208.860
11 1 8 232,234
12 2 27 252,612
13 1 12 270.438
14 1 10 299,088
.15 1 14 344,906
16 1 10 373.549
17 2 43 382.276
18 1 14 417,436
19 1 5 - 428,958
20 1 8 . 450,382



APPENDIX E
SAMPLE OUTPUT LISTING OF FINISHED PROGRAMS

The programs in the sample input joh stream
shown in Appendix D were processed using the variable
-time—slice algorithm and the input parameter values
shown in Table II,. |

The final details of these programs are listed

on the following page in order of program departure time

from the system.



Program Priority CPU Time Arrival Accum. CPU Accum. CPU & Final Exit Time

No. No. Requested Time Time Rec'd Device Time Penalty of Program
(secs) (secs) (secs) Rec'd (secs) (secs)
1 1 10.0 .29.350 10.0 11.0 272 40,500
2 1 5.0 42,154 5.0 6.0 164 48,224
3 1 7.0 62.406 7.0 8.0 72 70.516
4 1 11.0 94,822 11.0 12.0 .68 106,972
6 1 12.0 131.210 12.0 13,0 435 150.689
7 1 9.0 159,228 9.0 10.0 470 176,018
5 2 40.0 120.398 40.0 41.0 247 196,303
9 1 10.0 188.162 10.0 11.0 491 208,095
8 2 17.0 171.606 17.0 18.0 294 211.248
10 1 7.0 208.860 7.0 8.0 341 218,368

11 1 8,0 232.234 8.0 9.0 . Les8 C 241,344 -
13 1 - 12.0 270.438 12.0 13.0 415 - 288.825
12 2 27.0 252.612 27.0 28.0 . 181 293,300
14 1 10.0 299.088 10.0 11.0 172 310.238
15 1 14.0 344.906 14.0 15.0Q 172 . 360.096
16 1 10.0 373.549 10.0 11.0 .79 384,719
18 1 14.0 417,436 14.0 15.0 465 442.218
19 1 5.0 428,958 5.0 6.0 562 443,318
17 2 43.0 382.276 43.0 44.0 .88 447.859
20 1 8.0 450.382 8.0 9.0 .68 459.493
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