
STUDY OP 'TFÌE

ALGORITHi'1 FOR

PERFORM¡\NCE OF A

À TTI,'18-SLTCING

SCFIEDULING

SLTPLJRVTSOR

A Thesis

Presented To

the Faculty of Graduate Studies and Research

The University of iulanitoba

In Partial Fulfill-ment

of the Requirem.ents for: the Deoree

Ivlaster of Science

in the Institute for Computer Studies

by

Lloyd À. Chai

May 1968

TITLE:

AUTHOR:

STUDY OF THE PERFORIVI/\h]CE OF À SCHEDULTNG ALGORITHM.

.FOR À TIIqE-SLICING SUPERVISOR

Lloyd A. Chai

ABSTRACT

A job-scheduling algorithm based upon round-robin

sche<ìu1ing v¡ith a variable time-slice is studied under simula-

tion. The simulation model is-described, anci a measure of per-

formance of scheduling algorithms is developed. The measure of

performance is based upon the cost curves suggested by Green-

berger and, in contrast to Greenberger's .analytical study,

non-linear cost curves are used

' The job-scheduling algorithm which uses variable time-

slice all-ocation is shown to be more effi cient than an analo-

gous algorithm which uses consLant time-s1ice allocation. The

improvement in the measure of performance for the variable

time-slice algorithm relative to the constant time-slice algo-

rj-thm is approximaiely l-5% for the job load considered.

The optimum'round-robin cycle time was determined to be

1.5 secs. for a þarticular job-load, and this value is in fair

agreement with values found by Greenberger in an analytical

study using linear cost curves with a constant time-slice

aigorithm.

ÀBSTRACT

À job-scheduling algorithm based upon round-

robin scheduling with a variable time-sl-ice is .studied

under simulation. The simulation model is.descrÍbed,

and a measure of performance of scheduling algorithms

is developed. The measure of performance is based upon

the cost curves suggested by Greenberger [81 and, in

conLrast to Greenberger's analytical study, non-linear

cost curves are used

The job-scheduting algorithm which uses variable

tirne-slice allocation is shown to be ;íìore efficient than

an analogous algorithm v¡hich uses constant time-slice

allocation. The improvement in the measure of performance

for the va::iab1e time-s1ice algorithr.r relative to the

constant time-sIice algorithm is aporoxirnately 15% for

the job load considered.

The optimum round-robin cycle time was determined

to be 1.5 secs. for a particular job-Ioad, and this value

is in fair agreement with values found by Greenberger in

an analytical study using linear cost curves with a con-

stant time-slice afqårithm.

ACI(NOI{LEDGMENTS

I vrould like to express my deep appreciation

to Professor T.A. Rourker my thesis supervisor, for

the many hours he has spent providing guidance and

direction in this research.

I wish to thank Professors B..Èr. Hodson and

M.A.K. Hamid for the reading of this thesis.

Also, I would like to express my appreciation

to Dr. J. Blatny icr discussing some of the ideas

corrtained herein; ancl to Ðr. S.R. Cl-ark f oc his con-

structive cri ticisms.

TÀBLE OF COÌ'ITEIITS

PAGE

ii

al a

vi-

vii

viii

CHAPTER

I. INTRODUCTION .

1.1 Summary of
Terminology

aaaaaaaaaaaaa

Frequently Used
aaaaaaaaaa B

TI. DESCRIPTION OF THE SIMUL,AIION IVIODEL

2.I SwitchTable

2.2 Penalty Function and Quantum-
Àl-l-ocati on Routine . .

2.3 Event Control Routine . o . .

2.4 Search and Service Routines .

2.5 Update and Removal Routines .

ITT.

10

16

19

31

33

37

VARIABLE PARÀIVIETERS FOR TFiÐ S]}IULATION iVIODEL 38

3.1 PenaltyFunctions 38

3.2 Job-LoadParameters 40

3.3 Supervisor-CycleTime 44

3.4 Round-Robin Cycte Time o . . 47

3.5 Plini-mum Time-Slice 48

3,6 Output of the Simulation Program . . 50

CHÀPTER

TV. PERFORI\IANCE OF THÐ SIMULATION I.1ODEL

4,I Study of the Èehaviour of Two
Tirpes of Schcdull_ng Algorrt.hm

Fixed Time-Slj-ce Algorithm

Variable Time-S1ice Algorithm

Comparison of the Variable and
Fixed lime-Slice ;\lgorithms

4,2 fnvestigation of the Optimum
Round-Robin Time oaaaaaa

4r3 Summary o . .

4.4 Suggestions for Future Research

APPENDIX A.

P/rGE

52

52

60

77

i'TPPEItiDIX

APPENDIX

ÀPPENDTX

APPENDIX

REFERENCES

D

D.

E'

DESCRIPTTON CF IVÀITTNG-LIST ÀND
EXECUTION-LISTEI.JTRIES 9I

DESCRIPTION OF RÀlJDOti Ì'lui"tB-ER GENERÀTOR 92

DESCRIPTTOI$ OF METHCD FOR GENERÀTING
NORIUÀL RAT'IDOT"{ VÀRT.CTES aataa

S.$4PLE LISTTNG OF INPUT JOB STREfu\I .

SÀMPLE OUTPUT LTSTTNG OF
FINTSHED PROGRÀT,iS . .

a a a, a a a a a a a a a a a a a o

B1

88

89

93

94

95

97

LIST OF T/\BLES

TABLE PÀGE

I. S.witch table containing the
ciescription of the next cycles . . . o L't

If. Input values for the variable
parameters used in the study
of the behaviour of tv¡o types
ofschedulingalgorithms_.....53

JïI. Vafues
"t the mean, s,tandard

deviation and range of the
requested CPU time for five
priorityclasses 56

IV. Values of the mean, standard
deviation and range of the
interarri_val time of five
pri-ority classes 57

V. Àpproximate asymptotic values
of programs in various rnixes
using the variable time-s1ice
algorithm (supervisor overheads
ignored).......72

Vf. Input values of job-load parameters
for investigation of the optimum
round-robintime......83

VïI. Values of mean, standard deviation
and range of requested CPU time for

_ five priority classes 84

VIII. Values of mean, standard deviation
and range of interarrival time for
fivepriorityclasses o 85

ïX. Results of 7 simulation runs
sþoling t-- and the corresponding
PN, where-*N = 500, g6

LIST OF I¡]GURES

FIGURtr

1. Fl-ow diagram of simulation model
with its routines and switch
table:.........

PÀGE

l4

23

26

70

74

78

80

2.

3.

4.

5.

6.

aaaa

Flow diagram of the event-control
routine........34135136

Examples of cost curves

Two examples of the types

aaataa

penalty' f unct j-on
of
a a o a. a

Graphs of penalty functions used in
thesimu1ation......

Penalty vs. time of programs processed
in the interval 450 1000 secs.
using the FTS algorithm

Penalty vs. time of three programs
of different priority classes
using the FTS algorithm

Penalty vS. time of prograrrls processed
in the intervat 450 1000 secs.
using tlie VTS algorithm

Penalty vs. time of a I-2-3 mix using
the VTS algorithm with supervisor
overheadsignored.......

Time interval 450 1000 secs. in
Figure I partitioned into segments

Penalty difference vS. exj-t time (VTS)

Exit-time difference vs. exit ti-me (VTS)

39

5B

61

63

'/,

o

10.

11.

12.

NOMANCLÀTURE

The follovring notations have been adopted for

use in this thesis:

CPU : Central processing unit

f= : Penalty function associated with
I priorily j

FTS : Fixed time-slice

i-j mix

i-j -1< mix

m.
l_

' o. (t)

*
o.

P(t,)

a
D'N

o.'1
r.

J.

S
m..a

Sr.
a

Program mix consisting of a priority i
program and a priority j program

Program mix consisting of a priori-ty i t
a priority j and a priority k program

Mean of normal distribption for
requested CPU time of prioritY
class i
Current accumulative penalty of
program i at iime t,

: Fj-nal penalty of the finished program i

: Total operating penaltY of the
computer system at time t

: Sum of the final penalties of N

finished programs

: Quantum or time-slíce for program i

: Mean of normal distribution for
interarrival time of priority class i

: Standard deviation of norrnal distribution
for requested CPU time .of priorj-ty class i

: Stanciard deviation of normal distribution
for interarrival time of priority class i

l-x

t.- - : Intended round-robin time and isEt referred to simply as the round-
robin time

t:- : Optimum round-robin timerr

T., : The real time which has elapsed sincer
ll;"':;å':3-;iî:,":r:î:'v o? p'os'.* i

u.
1

I
Trr

VTS

Ao.

Ar.l-

: Time interval betv¡een the start of the' round-robin cycle in which the program
completes processing and the time when
the program leaves the system after it
has completed processing

: Lack of attention to program i;
and is defined by the formula

u. = T./f.a r'-a
: Variable time-slice

: Fina1 penalty of program i under
FTS algorithm minus final penalty
of program i under VTS algorithm

: Exit time of proEram i unde-r I'TS
alEorithm minus exit time of
program i under V'IS algorithm

: Population mean

Prj-ority number of program i
Standard deviation of the population

The sum of the central proceàsor
time and device time devoted to
program i since it entereC the
computer system

Refers to the .,th entry in .the
Reference Section

tt

7t¡

o-

Ti

In]

CHÀPTER T

NTRODUCTION

Â m.rjor acìvance in tire <iesign of ciigital
computers was achieved when proviéion was made for
autonomous input,/output transf ers, which allowed

computation to proceed concurrently with. transfer

of data into or out of the main *"*oryl (core) of
a computer.

In many computations, hor.vever, the processing
' associated with an input/output transfer normally

takes much less time than the transfer itself and

therefore the total saving obtained in spite of the

computer I s capability of autonornous transfer of data

is usual-1-y .,rery smaII. Tc rnake further savings oiìe

could reduce the cost of having the cenLral process-
)ing unit- (CPU) idle while a data transfer is taking

' place by usi-ng a slower and cheaper CPU. A problem

1_--Ivlain memory is the fastest storage device of
a computer and the one from wirich instructions ere
executed. The storage device is usually composed of
ferromagnetic cores and hence is al-so called core
memory or core.

)-Central processing unit (CPU) is the unj-t of
a computing system that contains the circuits that
control and Þerform the execution of instructions. Tt
contains an arithmetic unit and special register
groups.

that arises from using the latter approach however,

j-s that such a CPU could not handle those types of

operation which require high-speed processing.

'I'herefore, if the job mixture j.s at al-I vari.ecl

regarding CPU demands, a fast CPU may be necessary.

A second problem concerning the efficient

use of the capability of autonomous transfer arises

because many input,/output devices are capable of

vrorki.ng independently of themselves and of the CPU.

fn addition, it is very unlikely that one program

could use all the independent facilities all of the

ti-me. Thus, many of the facilities arb often idle for

significant periods of time. However, computer effi-

ciency may be J-mproved if these idle periods are

-^,J-.-^J
mL^

--^tr-1 ^- -"!^--l--:^-l'ti' n.innnnLa r1 l^'.'.'-alcLÀLl\-cLl. fr¡c Pl-ulJJ-cltl d.uu(Jtl.touI\-ol-IJ ùu99cÞLù qrrL/wrr¡Y

more than one program to share the main memory in the

hope that the combined demand of the executing programs

can maintain the fullest possible useful activity in

those parts of the computer which can function simul-

taneously. This facility is knov¡n .as time-sharing.

ït appears that time-sharing may largely solve

the problem of how to use modern computer facilitíes

most efficiently, bu'" the 1ogi,c to organize alI the

data transfers and the allocation of the central pro-

cessor I s iime to the various prograrns being executed

must be present. This logic is usually in the form of
a supervisory program, part of r,vhich is always resident

in core.

The efficiency of a computer system is dependent

on the capability and speecl of the data transfers, on the

speed of the CPU and on thg desi-gn of the supervisory

programs. Tf the supervisory program schedulel the data

trans,fers and al-locates the central processor time in-
efficíentlyr the conputer system wilI operate

inefficiently. Thus, t.he selection of an efficient
algorithm for the scheduling function of the supervisory

program is necessary Lo achieve desired system perfor-
mance standards. An algorithm v¡hich effects the schedul-

ing functicn of a supervi sory program is caIled a job-

scheduling algorithm.

Competition fo.r the Cqn^tpute{_Facilities

Since it is the purpose of the supervisory program

to keep the demand for the computer facilities at a high

Ieve1, it is inevitable that two or more programs will
require a particular data transfer facility or processing

facility at the same time. The supervisory program should,

therefore, coniain sufficient logic to detérmine how the

facilities should be shared among a number of competing

programs.

4

. A basic technique for scheduling the central

processing unit is to give each program sharing the

computerrs main memory a short burst or quantum of com-

putation. The quanLum of computation Ís al-so call-ed a

time-slice. The sequence in which the programs in core

receive time-slices may be a simple round-robin cycle in

Lhe most straightforward case. A supervisory program

which schedules this way is called a time-slicing

supervisor.

Study of the Performance of Supervisory

The need to establish more and better

rules-of-thumb for evaluating the efficÍency

coniputer systems, and hence the perf orlnance

programs, has been expressed by i.ieilsen tr]3

The acquiring of such information, horvever,

quires a great amount of time and effort in

tion of such complex sYstems.

guides or

of modern

of supervisory

--l Er:€^ f)1
AIlu ! J-!g LLJ.

usually re-

the investiga-

Most of the performance studies which have been

conducted on supervisory programs, have used either

analytic or simulation.techniques. Because the complexiLy

of supervisory systems does noL easily lend itself to

3_.-The nomenclature
in the Reference Section.

tn] refers to the ,,th entry

theoretical analysis, any analytical study usually

involves making some simplifying assumptions about the

system under consideration. Some of the analytical

studies which have been made include studies by Scherr L3l

who vras able to design a simple model of the Project MAC

(tttultiple ¡\ccess Computer) at I'iassachussetts Institute of

Technology, by Kteinrock l4) v¡ho gave a.theoretical treat-

ment of several models of time-shared processor system and

by.Shemer t5] who did analytical studies of several schedul-

ing algorithms. Such analytical models, however, usually

have rather limited appli-cation and lack tire flexibility

necessary to test a wide variety of system changes, a

facility which is desirable in this type of study.

Sj-mul-ationr oh the other hancl, i.Jas found to be more

aciequate in ciealing with the problems arising from tire

complexities of supervisory systems. One advantage of simu-

lation models is their relative flexibility in adaptation

to different compuLer systems. fn studies conducted by

Scherr t3l of the Project MÀC system, by Fine and

I'fcrsaacs t6] and by Neilsen If], their sj.mul-ation mode]s

were not only used to discover areas in need of modifica-

tion but also to determine the effectiveness of proposed

improvements

Of the two techniques., anal-ytic and sinulation,

simulation seems to be more promising in studying

6

supervisory system performance. The simulation approach

noL only is potentially more flexible than analytic

approach but has been found satisfactory ín the analysis

-E !i-^ ^L^-:-^ ^,.-+-^^^ ^"^1^ C¡1-'nrrl c e'l-rrÄr, ¡Ç
L,J- Þlrlttg LllttÇ-Jr¡or JtrV Jy J çslttJ t Jugrr eu v ees-¡

the trroject tiliÇ system t3l and Fine and I'lclsaacrs study i6l .

The pfesent research is an investigationr using

simulation techniques, into the scheduling function of

a supervisor, namely, a job-scheduting algorithm.

Time-slicing algorithms which are in use today

can be broadly divided into two types: round-robin pro-

cedures and muttiple-priority-1eveI procedures. A round-

robin scheme, lvhich has been men"j-oned earlier, services

programs in a queue, giving each progranì a sli-ce oi CPU

time before passing cont-roI of the CPU to the next pro-

g.ram in sequence. A multiple-prioritlr-level scheme assigns

each program, as it enters Lhe system, to one of several

priorj-ty-level queueS according to its size and determines

the amounL of time-slice to be allocated to a program

according to the]evel vr'hich the progrem cccupies. In this

schenre, servicing begins v¿ith the program at the head of

the highest level gueu.e which is occupied, and if a pro-

gram is not completed after executing its time-slice,' it

is placed at the end of the next levet quéue immediately

below the current level queue. A queue is only serviced

when al-l higher level queues cannot make use of the service.

7

This latter scheme has been employed by Corbato I s

Compatible Time-sharing System l7l. Compared to the

round-robin procedure, the mul-tiple-priority-level
-.F-Ã-¡.t'.^

L.- ^-!^- ja^-_-:Ljt:!,..:-L^_^*! j- LL_^ ^L^:^^y!vucvu!s ¡1crù V!sous! rJE^rjJrtf,LJ j-rilis!,eIiu l_lr Líìe Clr\JILU-

of initial pri-ority assignment of 'programs and the

maximum CPU time allocated to programs of each pri ority
leve1

The algorithm which is simulated, servic.es pro-
grams (rp to a maximum of three) in core using the round-

robin scheme with each programfs quantum computed accord-

ing to the logic of the algorithm. Programs which do not

gain entry into core upon their arrival are queued and

their selection from the queue is determined by the logic
of the scheduling algoriihm.

The emphasis of this studlr is on the behaviour

of the job-scheduling algorithm with given work-1oad

environment. The overall study includes the specification
of a model and the specifícation of a performance measure

which is used to evaluate the efficiency of the scheduling

algorithm modeled.

The results from this type of study are necessary

in order to gai-n a clearer insight into both the basic

operation and the characteristics of the algorithm model-ed

ãnd to enable some assessment both qualitative and quan-

t,itative to be made of the performance of the algori-thm.

B

Further, the resul-ts obtained can be used to cie'¿ermine

whether the algorithm should be conmended for future

studies.

1.1 Summary_of FrequenLl)¡-Us-ed Terminology

+ Central Processinq*lJnit (Ci,U). This is the

element of a computer which handles the act.ual computa-

tion and decision-malcing functions. It consists of two

sections: the control secÈion which directs and coordi-

nates att operations ca}Ied for by instructions and the

arithmetic-logical section which coniains the circuitry

to perform arj-thmetic and logical ope{ations.

+ Joþ-scheduling. This term refers to the task of

.determining the allocation of computer time among the

different users of a time-shared computer system. It' al-so

involves the forming of queues, handling of prioriiies and

swapping of programs.

r Main l{emory. This term, usually ca11ed core:

refers to the fastest storage device of a computer and

the one from which instructions are executed. Generallyt

main memories-uti lize magnetic core construction.
t Supervisory Program. The'supervisory program or

supervisor is a special program responsible for controll:'

ing and coordinating all the activities of a computer

system. It controls all input and output functions of the

9

system and is responsible for the scheduli-ng of jobs

for execution. Tt al-so establj-shes user priorities,

allocates storage, keeps track of all work in progresst
-¡,-!.- - - r..- 1--.--1a - -.1^^!ano actl_vatres clle IleceÞiÞdry r L,uL_LIleÞ L(J lloll\.r-L€ wIIcluËvc!

probl-ems that arise. In general, it acts as the controll-

ing element which assures continuous, accurate operation

of the computer systeme

Time-:.licinq. This term refers to the technique

of processing a number of user programs by giving a pre-

determined amount of CPU time to each program in turn,

providing the program can use it.

CHÀPTER TI

DESCRIPTIOÌ,] OF TFIE SIIIUL,\TïON MODEL

rrtL^ ê.i*.'1-]--i^* -^-t^.1
-:- Å^-: ^-^,1 J.^ e-i-,rl-]_^¿¡¡ç or¡rtqru uavl¡ ¡(rvuuI ÅJ vçJ!Y¡Isv uv g¡¡rruf suÇ

a job-scheduling algorithm which can simultaneously

schedule up to three jobs.o The model used is the first

stage of a comprehensive computer-system simulation

model which will include the operations of logging-in,

loading into core, job-scheduling and outputting of the

results. This first stage may be considered as a model-

of a hypothetical computer system v¡hich incurs no over-

heads to load programs into core, and which processes to

completion programs v¡hich require no input or output

during their execulion.

The oresent studlr, therefore. concenLrates on the

logic and efficiency of the algorithm by which the pro-

grams to be processed. receive their slices of ceniral-

processing-unit time.

The model includes a job generator which creates

a series of entities, called jobs or programs, from

previously chosen program-load statistics using ltlonte Carlo

A"'In this study,
can be scheduled simul
Hov¡ever, for possible
provided for expanding
jobs can be scheduled

the maxirnum number of jobs
taneously is restricted to
future studies, a facility
the model so that as many

simul taneous ly.

,"vhich
3.
is
as 20

11

techniques. It maintains a lj-st v¿hich records the des-

cription and status of all programs in core (execution

list). Programs in core receive CPU attention until

theÍr totai amount of CPú time requireci (a progrdm-1ooci

statistic) has been accumulated. Since a maximum of

three programs can be scheduled sirnultaneously, this

execution list can have as many as tLrree. entries. In

addition, the model maintains a que.ue of waiting programs

(waiting list) wtrich is fed by new programs that are not

accepted into core upon their arrival and which is

emptied by acceptance of programs into core for CPU atten-

tion according to the logic of the scheduling algorit,hm.

The queue is limited to 20 programs. When this limit is

exceeded, the simulation run is terminated automatically.

^ --^*li -- ^ -: --^^ ¡-1^ r^-.1- - ^ç an{-rr¡ i n {-}ranppclru-L-ã, ta 9-L vgù u¡ls uvll us¡luJ ur u¡¡ Çr¡ u! J L'¿

waiting tist and also in the execution list.

The job-scheduling algorithm whose function is

to coordinate the processing of the jobs may be divided

into three sections:
(f) A piece of logic to select a program

or job from the waiting list;
(fI) À piece of logic to determine the

amount of CPU time which a Program

in core is to receive as its time-

s1j-ce; and

I2

(fff) e piece of logic to determine the

action to be taken v¡hen a program has

completed execution of its tj-me-sIice
_ -1_ ^._LrJ- 'J1./l.ttjll cr pr(J9l-d.ltt -LÞ JIILe!rUpLe(ì CrU.LJfIg

its. time-sfice by the arrival'of a new

program in core.

The basic design of the simula tion mode1, and

hence of the supervisory program which is being

simulated, involves a perpetual cycling. On each such

supervisor cycle the model performs one of three rather
elementary operations which contribute towards the

simulated executj-on of the programs that pass through

the hypothetical computer system. These operations r,vi11

be covered in cietail later, but very briefly they are :

(i) the execution nf ã r-r! r an flm-ã'l '! or:a l 'l nn

routine which computes the time-slices

. of al1 the programs in core for the next

round-robin cycle (ttri-s is done in
accordance with the logic of the job-

scheduli-ng algorithm for determihing a

programrs. time-slice section II above).

(ii) the execution of a routine to locate from

the execution list a program in core with

an outstandi-ng time-slice (search rout.ine),

follovred by the execution of a routine which

13

(iii)

Figurelisageneral

showing the positions of the

It also illustrates that one

during eacïr supervisor cycle

common to each path.

simulates the initiation of .the time-s1ice
(service routine) if the search routine

finds a program for execution; and

the execution of an update routine v¡hich

records the current accumuLated CPU time

for a program in core immediately after

that-.program has receiveci the v¿hole or part

of its time-slice, followed by the'execution

of a removal routine which removes the pro-

gram from core if the required CPU time has

been satisfied.

flow-diagram of the model

five routines mentioned above.

of three paths may be taken

wiLh the everrt-controi routirre

The job generator is contained in the event-control

routine along with t.he logi-c to dåtermine which program

is accepted next from the waiting list (section I above).

It is convenient to call the quantum-allocation and

the search routines primary routines so that they can be

distinguished from the other routines later in the des-

cription
Ãs mentioned above, whenever the supervisor cycle

is executed, the event-control routine is cerforrned. The

P¡ìOGRAI/I
EXECUTIîüG ?

YES

TA'(E
ADDíIESS
FRcLl S\iriTCC-l
TABLE

EVENT-
CONTROL
ROUTINE

OUANTUM-
¿\LLOCATION
ROUTI¡\E

FLOW DTÀGRAM OF S]MI.]I,ATTON

SEARCH
ROUïNe

UPDATE
ROUT¡NE

FOTJi\,1Ð
ANYTI+ING ?

PROGRAN4
F¡NISHED ?

REMOVÁ\L
ROUTII\E

SERVICË

ROUTINE

FTGURE 1

MODEL I,{TTH fTS

PATH 2

ROUTTNES AND SWTTCFI TABLE

15

function of this routine is to moni-tor the sir¡ulated time

to determine if a new program is due and to deterr,rine if
a program from the job queue can be accepLed for execution

according to the logic of the scheduling algorithm for job

.selection. Cne'further irnportant function of this routine

is to advance the simulaLed time to the time of the next

event. The next event could be the arrival of a new pro-

gram. j-nto core or the ternination of servicing of a pro-

gram which has either completed its tj-me-sIice or completed

processing ciuring execution of its tj-me-slice

If no program is executi-ng when the event-control

routine has been completed, the suoervisor cycling is
allowed to continue along the section common to paths I
and 2, o,therwise control is transferi-ed to peih 3 where

the upciate routine is enLereci. 'vùhen no program is execut-

ing, an address is taken fron a t.able (switch table)

according to the most recent primary routine entered and the

path taken on the most recent cycle. This ad.cìress determines

which of the two prr'mary routines: quantum-allocation or

search, should be executed next. The switch table, there-,

f ore, embodies the log:i-c of the section of the scheduling

algorithm for determining lvhat to do next when a program

is interrupted either by completion of its time-slice or

by the arrival of a new program into core (section III of

the job-scheduling algorithn). The switch table is referenced

16

after the details of an executing program have been up-

dated.

A small- amount is added to t.he simulated time by

the event-control routl-ne j-n order to al-l-ow for the time

of execution of the forthcoming cyc1e. This small amount

is the same regardless of the path involved (supervisor-

cycle time).

2.r Switch Table

The switch table which is entered whenever no

program is executing, contains the logic of the schedul-

ing aigorithm for oetermining what to do next when one

supervisor cycle is fi-nished and the next is about to

start. This table simply provides information about the

next cycle when the most recent prirnary routine executed

and path taken on the mos'u recent cycle are specified.
The switch table is presented as Table I.

The selection from the table of the next primary

routine.for execution depends on two factors :

(1) the most recent primary routine executed

(since the cyclic process does not involve

a primary routine on every cycle, the exe-

cution of the nost recent primary routine

might not necessarily occur on the most

recent. cycle); and

L7

TABLE I

SIdITCFI TABLE CONTAINING THE DESCRTPTION

. OF THE NEXT CYCLES

Path Nurnber for the
Most Recent Cvcle

Most Recent Primary
Routine Executed

.Search

Quantum-Allocation Search

Quantum-
Àl1-ocation search

1B

. (2) the path taken on the most recent cycIe,

that is, the most recent path-number

used (tfre signif icance of the path

numbers is explaineci in the fotiovring

par.agraphs) .

The flov¿ diagram of Figure 1 shov¡s three paths

whi-ch connect at the event-control routine. If the search

routine is executed in the cycling, and path 1 is tal<en,

it means that no program has been found lvith an outstand-

ing time-sIice. This can occur when all the programs in

core have already received their time-slice in a round-

robin cycle or tvhen there are no programs in core. A

cycling which involves the execution of the quantum-

allocation routine and path 1, j-ndicates that the time-

slj-ces of all the programs in core have been compu-ued

for the next round-robin cycle.

Not all of the entries in the switch table are

fi1led. This arises because only certain combinations of

most recent primary-routines and most recent path-number

occur during the execution of the s j-muIator.' Of the non-

occurring combinations. of primary routine and path number

(indicated by dashed entries in the switch table) t the

combination of the search routine and path 2 is noteworthy.

lrlhen the cycling enters the event-control routine after

completing paih 2 the servicing of a program in core has

19

been initiated. The termination of tf-,it servicing is

determined by the logic of the event-control routine

r,vhich advances the simulated time to the time v¿hich

occurs first frorn the fcllowing :

(1) the time v¡hen the time-sl-ice is finished;
(2) the time rvhen the next program is due; and

(3) the time when the program completes pro-

cessing during execution of its tirne-slice.

When a program has been executing, control is alvrays

passed to the update routine on path 3 on the next cycle

(and possiÌrly the removal routine if the servicing of

the program is completely finished). .Ther:efore, there

ís no need for an entry in the slvj-tch tabl-e corresponci-

ing to a most recent primary-routine I'sea.rch" and a most

recent path-number of 2.

2.2 Penaliy Functi-on and
Qu-antum-Al locatLon Rog-t i.ne

(a) Penalty F,unction

In a computer installation, where the service

facility is demanded by a great many users, the inevitable

question is posed of which user to service next, a problem

for the selection logic of the scheduling algorithm for

queued programs (section (f)). Such a question whi.ch is

referred to as a priority problem, gives rise to some plan

or rule (priority rule) r,vhereby a u'serrs program is selected

20

in some preferred manner according t-o the priority class

to which it is assigned.

The methoci by which programs are selected from a

waiting list, that is, the priorit.y rule, depends to a

large extent on the obj ectives or goals wlLich are to be

achieved. Three common priority rules are outlined below:

(1) First-come-first-served. Accordinq to

this rule, programs are selected in the

order of their arrival. This scheme tends

to favour the longest-viaiting user and

guards against excessive delays. Holever,

no recognition is given to more urgent

jobs which may not be at the head of the

queue.

(2) Shortest-job-next. This rule gives higher

priorities to shorter jobs. If two jobs

are equally short., then the job vrhich

arri-ves first is selected. The rule is

aimed at reducing the number of programs

j-n a queue. Hor,vever, it tends to discrimj--

naLe against long jobs.

(3) Highest-priority-number-next. .In this scheme,

a programfs priority is designated by an

integer (priority nurnber) which is assigned

Lo the program before it enters the computer

2T

system. Selection of programs j-s rnade

according to priority numbers, the pro-

gram v¡ith the highest-priority number

lrni-a en-r'^.1 -^..+
-r-ñ .l-1^^ J-]-,l. -t J-,.,^vv¿¡rì, Jv! v9s ¡fer\ça !¡t u¡1ç çvç¡t9 ut¡sç uvvv

programs have the samë priority numbers,

the programs are selected on a first-come-

fi-rst-served basi-s. The rule fails to

recogni-ze that af ter a period of ne.glect,

the processing of a loler priority program

may be as vital as that of a higher priority

program which has not been neglected.

Another problem to be considered by the scheduling

algorithm, is the determination of the amount of CPU time

which a program irr core should receive as its time-siice
(section (fI)). A frequently used technique involves a

cyclic discipline within which, each program in core Ís
given a constant sl-ice of CPU time unless its processing

is completed during the interval. Hence, control is trans-

ferred to the next program ín sequence v¡hen a time-slice

is completed or when a program hras finished processing.

ïf a program requires further processing after it has

completed its time-s1i-ce, it enters a queue and waits

for its next service cyc1e. This type of priority rule

is called round-robin scheduling with a constant time-

slice. Under this type of scheduling, short jobs are

22

favoured at the expense of long jobs which are urgent.

From the priority schemes or rules described so

far, different scheduling algorithms can be constructed,

each having a different priori-ty rule for job selection

combined with the round-robin scheduling with a constant

time-slice. To decide on ',vhich algorithm gives best per-

forma.nce for a particular computer systern, it is necessary

to have some quantitatj-ve_ evidence of their relat.ive merits.

Therefor:e, a measure of performance of the algorithms is

needed.

Greenberger tB] suggested an inverse measure of

performance based upon penalty or cost of delay. He con-

siders each program-type to have a separate cost rate curve

which represents the variation of the rate at which the

cost of deiay i-s accumulaiing with the iime of waitirrg.

Examples of such cost curves are shor,vn in Figure 2.

Curve (a) shows the simplest case of the cost of

delay accumulating at a constant rater cr throughout the

waÍting periocl of a program. If the waiting time is w,

then the total accumulated cost is cw. However, this case

does not give adequate attention to the growing wait

suffered by longer programs if one bel.ieves the next time

unit (say minute) of waiting j-.s worse than the previous

time unit
For the latter problem, curves like (.b), (c) and

a

23

¡-tl
1-

G
F-e"
c,
o()

VJA¡TIhJG TIf\'18

. .FIGURE
2

EXAiUPLES OF COST CURVES

24

(d) in Figure 2 a-ce necessary for the costing. fn this

case, the total accumulated cost is obtained by taking

the i-ntegral of the curve over the period of waiting.

The form of these cost curves, thereforer can be

used to express'the types of attention required by pro-

grams insofar as the height of the curve reflects a

programrs importance and the slope reflects a userfs

intolerance to delay.

For the scheduling algorithm, the cost curve

needs a few modifications. Since in most casesr the pro-

cessing time required by a program is not known before-

hand, the cost curver âs a function of real time, does

not al]ow any mechanism r,vhereby the scheduling algorithm

or the scheduler may knowingly prevent a program from

receiving a final penalty. Furthermore, if a program should

have a penalty or cost accumulated at Some stage prior to

the completion of its processing, this penalty will con-

tinue to increase with time. as long aS the program has not

compl-eted processing. The scheduler, in this case, has no

means of eliminating or reducing the intermediaie penaliy.

The best the scheduler can do is to give larger time-slices

to the program and hope that the fj-nal penalty is not much

higher.

Rather than a functj-on so1ely of real time, there-

fore, the penalty is made a function of the lack of

25

attention received by a program.

a program i is defined by

,i = T i/.íi

The lack of attenti-on to

(1)

where T= is the real time whi-ch has elapsed si-nce the
l_

desired tj-me of entry of the program into the computer

system and T. is the sum of the central processor time

and devi-ce time devoted to the program sl-nce it entered

the system. Since no input or output operation is con-

sidered in this simulation, in order to take care of the

indeterminate case of ,i when 1. = O, a fixed value of

1.0 second i-s r-r-sed as the device time of each program.

This value is assigned at the time when a program enters

the system.

The lack of attention u. can increase or cÌecrease
a

within real ti-me. It is a relative function which is

independent of ihe total processing time required by a

program.

Another modificatj-on v¡hich is less serious, is to

use an accumulative penalty variable instead of a cost

rate variable. This removes the need for int.egration of

the functi-on

Figure 3 shows two examples of the type of penalty

curves which are used in the simulation. Curve (a) is used

for a fast response program where the penalty increases

very rapidly for low values of u. and very slowly for high

26

t--
J
{-
ul
G

LlrCl(0F IITTEIJTlO!'J (u)

(bl

5
z
tll
À

LACt(O¡; ATTEI'JïIOrJ (u)

.
FIGURE 3

T!.JO EXA},IPLES OF THE TYPES
OF PEI\ALTY FUNCTICI'I

27

values of u:. Curve (b) is for a slow response programl-

where the penalty value increases stowly at first but

rises very rapidly as rj_ gets larger
Às i¡l tire ccìse of Greenberger I s cost curve, each

priority class of users has assocÍäted with it a penalty

curve v¡hich rises to a dj-fferent extent, according to

the type of attentj-on required, as the lack of attention

increases. The degree of attention demanded by the user

is reflected in the slope of the curve. The priority

classes are designated by integers (priority numbe¡s) r

where priority i is considered as more important than

priority j if i
The current accumulative penalty (or simply

penalty) of program i at any time t may be expressed

by

p* (t) = f- (u. (t)) (2)r- /,i r_

.where 7¡. is the pri-ority number of program i and tn,

is the penalty function associated with priority 1..
The total operating penalty of the system can be

calculated at any given time by performing the summation

P(t) = Xp.(t) (3)r\e'

í'i-.-"

that is,
P(t) = lt*r(ur(t)).

(4)

2B

The penalty values are used for the following

purposes :

(I) To serve as a basis for program selection

from a queue with the program having the

highest penalty being selected first. If

two or more programs have the same highest

penalty, the programs are selected on a

f i-rst-come-f irst-served basis.

(2) To be used as a basis for determining the

amount of CPU time a program should receive

as its time-slice in a variable time-slice

scheme. Under this scheme, tfre size of the

time-s1j-ce is dependent on the programf s

current penalty and the total operating

penalty of the sysi-em. (À. more detaiied

description of this i. giv"n in the next

section, "Quantum-Àllocation Routine").

Further, a measure of the efficiency of a sche-

duling algori-thm is taken as the sum of the final penal-

ties of a number of completed programs. ff p: is the final
'I

penalty of the finished program i, then the sum of the

final penalties of N fÍnished programs may be denoted
*l\f+P--=X'.'-Þ-l\ l=I 'a

by

s)

A simple comparison betrveen two schedulJ-ng algorithms

29

may be effected by e.raluating e* for the tr.¡c algo.rithms

using t.he same N programs and the same set of penalty

functions.
(b) Quantum-Àllocation Routine

This routine which is enter.ed immediately before

the start of every round-robin cyc1e, determines the

amount of CPU time that each program is to be allocated

as its time-slice' (quantum-allocation scheme). It

al-locates CPU time. according to tvro scheduling algorithms

which are considered by the simulation st.udy. Both

algori-thms have the same piece of logic fo-r: job-selection
Í-^* iL:-- 1.:^:

---^1..
!^ ^^f ^^! LL^ ,,i!L-Ll-(Jllt o \¡Jcr-LL_Lrrv Il-ÐL, rrolltcty t L(, ')ËIst-L Lr¡s P!(Jv!olrr 9vILlr

the highest penalty, but use different types of quantum-

allocation scheme with their round-robin scheduling.

One type is the constant time-slice allocation

scheme in which a fixed amount of CPU time is allocated

to each program in core. This amount of CPU time is

determined from the relationship
(6)qi = Ltt/n

where q. is the constant time-slice. t is the intended'l_ ' rtr
round-robin time5 (and is simply referred to as the

tr

'It must be noted that the actual round-robin tinre
differs from the intended round-robin time , t*-. This
difference is due to the amount of supervi sor'èycle time
incurred in the round-robin cycle and to the unused oortion
of the all-ocated time-slice in the case where a program
completes processing before expiration of it's time-s1ice.

30

round-robin time) and n is the maximum number of jobs

which can be scheduled simuttaneously by the algorithm
(in this case, n = 3).

the rounci-robin sche<ìu1ing with a constan't time-
slice, hor,,rever, gives preferential treatment to shorter
jobs at the expense of penalizing longer jobs which are

urgent. There is an aoparent need, therefore, for an

algorithm which incorporates the interests of the indi-
vidual users. fn an attempt at solving the latter, it
appears reasonable to modify the round-robin scheduling

with a constant time-sIice to a round-robin scheduling

with variable time-slice. This, therefore, gives rise
to the second type of allocation scheme which considers

variable time-slice.

The calculati-cn of the variable time-s1ice

involyes a trvo-stage process. First, the total Þenalty

received by all the programs in core is determined by

computing the current accumulative penal-ty of each pro-
grqm. Secondly, based on these penalty values, the time-

slices of the.programs are determined.

The time-slice allocated to program i by the

quantum-allocation scheme at time t is calculated from

the relationship
qi = (pr(t)/P(t))tff

so thqt the round-robin. time, trr,

(7)

is divided arnong the

.

31

programs according to their current penalties. Tvro

exceptions to the above should be noted.
(1) l{hen the total operating penalty, p(t),

is zero, t* is divided equal.Iy among

the programs. '

(2) If a programrs quantum is calculated to be

less than a fixed minimum amount of CPU'

time (minimum time-s1ice), then the minimum

amount is allocated as the quantum of the

program.

2.3 Event-ControI Routine

The event-control routine vrhich is entered on

every cyc1e, performs the following basic functions.
(1) Assuming that a queue of waiiing pro-

grams exists, the routine f j-rst c.ilcu-
lates the. penalty values of all the

programs in the queue. Tt then selects

the program wÍth the highest penalty

value and scans through the execution

list to see if there is a space avail-

able for the program. If a space is
found, the program i-s entered on the

execution 1ist, otherr,vise it is returned

to the queue.

32

(2' It ascertains r,vhether a new program is
due or not by checking the programrs

scheduled arrival time aqainst the simu-

iaLecì time. ïf it is ."a-Orrsheci that. a
nevJ program is due, the routine determines

if it can be accepted into core by search-

ing fçr a space on the execution list. fn

the case v¡here the list is fuIl, the new

program j-s placed in the queue.

It ad,vances the simulated time to the time

of the next event. The time of the next

event is the srnall-er of the following :

(i) the time of arrival of a new

program which can be accepted

intc core; and

(ii) the ti-me of service termination

. which could be either the time

when a tÍme-s1j-ce is completed

or the time when a program has

(3)

completed processing prj-or to the

expiration of its allocated time-

s1ice.
(4) fn the case where no program is executing

when the event-control routine has been

completed, the supervisor cycling is

33

alloled to continue along the sectj_on

common to paths I and 2.

On each exit from the event-control routine, the
.^--: - -.- t . _Þuy=r- v-LÞer syLre L-LIfie .Ls crgueu tro tne sl_muraEeq El_me Eo

allow for the execution time of the forthcoming cycIe.
Figure 4 gi-ves a description of the flow logic

of the event-control routine.

2.4 Search and Service Routines

(a) Search Routine

The purpose of this routine j-s to determine the

next prograrn io be serviced ir. the ro¡:nd-robin cycie.
I'Vhen the routine is entered, it scans through the

execution list sequentially and selects the first pro-

gram it finds with an outstanding time-slice. ff a

progrem is found, the service routine is entered to

initiate servicing of the program. Tf no program is

found with an outstanding time-sIice, then path 1 is
taken on exit from the search routine.

(b) Service Routine

LVhen a program has been found v,¡ith an out-

standing time-slice liy the search routine, control is
passed to the service routine which initiates the ser-

vicing of the program. A record is also macìe of the tj-me

when the time-slice is completed or the ti-me when Lhe

J¿+

THERE I\
QUTUÉ

SELECT PR

GFIAII IT¡TI-I
¡"I¡G¡-¡EST
PËNAITY

/.\CCËPTED
PLACË pA0-
GrìAll li{
E)iECU'il0î{
L¡ST

PROGRÉ\M
E)(ßCrJTr¡tG

ADVi\flCE
Tli/lE 'io T1î,'13

OF S;RVICE
TgRiill;\j/1Tt0i!

ADD
SUPERV¡SOR-
cYetE Ttl.'tã:
TO Tn.iE

FLCI'V DIÄGR,.U4 OF

FIGUIìE 4

TFIE EVENT-COT,iTROL RCUT].NE

35

PROGiIAI!,I

r\CCHPTED
PLACE PRO -
GRAII Ií.J

EXECUTIOi'I
LIST

PLACE
PROGR¿tî''1
1N QUËUE

AD\¿A¡JCË
Trt,t; To TriilE
OF ARRIVAL

PROGRA[,{
EXECU'I¡NG

/IDVAI{CE
Ttt\,':ã To TlLlE
oF s[RvrcÊ
TERf:'llÎ'JilTl0î"J TO Ttl,lÊ

FLOW DIj''GP.ÀU

FIGURE 4

OF THE ÐVENT-CONiTROL ROUTII\¡E
(Continued)

36

PíIOGíìAI.Í
ElitiGUT¡ì\¡G

Tl)iË'¡'0 Tn,iE
OF SÊNVICË
lEiìllti{A'ilt,^¡

,/ls \
HXãCU'i'¡Clt
LIST Eî.:P"i.Y

tACE N:}(T
ROSiîÂ.lvl li¡
XHCUl¡O)J

SUPERV¡SO.R-
)YCLE Tlt.îã

AEVATJEE
Trtlã -ro TrJã
ots ARi-ìtv,AL

FLOi' DI

F]GURE 4

ÀGP.À}.! OF THE EVENT-CONTROL
(C.ontinued)

a.

RCUTINE

37

program completes processing, depending on r,vhich occurs

first. On exit. from this rbutine, path 2 ís taken in

the cycle.

2.5 Update .and Removal- Routines.

(a) Update Routine

The update routine is executed. v¡henever the

execution of a prograrn has been interrupteo. ,h: routine

updates the accumulated central-processing time for the

program in the execution list. If execution of the pro-

. gram is terminat,ed before its time-slice is completed

owing to the arrival of a new program into core r âñ

updated time-slj-ce, representing the remainder due to

the program in the current round-robin cyc1e, is

ca1cul ated .

(b) Rernoval Routine

The rernoval routine is executed whenever the

- central-processing requirements of one of the programs

in core has been met. The routine outputs on a card for

subsequent statistical analysis, the program number, the

prÍority, the current simulated time and the amount of

CPU time requested. After this information is output,

the associated information stored in the execution list.

is erased so that another program can take-its place on

a later supervisor cyc1e.

CHAPTER TII

VÀRIABLE PI\RÀIqETERS FOR THE SII'{ULÀTION MODEL

The variable oarameters. which are input at the

start of the simulation, are the penaliy functions, job-

load parameters, supervisor-cycle time, round-robin

cycle time and minimum time-s1ice.

. 3. I PenjrJtv Funct j ons
.

Five different penalty functions are used for the

simulaLion. Each function is associated lvith one of the

five priority classes which the scheduling alqorithm

presently admits.

. The penalty functions are arbitrary analytic
functíons which are specified by using the mathematical

relationship

f7i(u) = g9g (((u-1)/I4)b) + 1 (B)

where b = ,@-Z) ,;C is the priority number rvhich iakes on

integral values 1, 2t 3, 4 and 5, and u, the lack of
attention, is only considered over the closed interval

[tr15J. Thus 'if the calculated value of u Ij-es outside

this interval, u is set equal to '1 or 15 depending on

whether u is less than 1 or greater than 15 respectively.
These penalty functions remain unchanged throughout the

entire simulation study

- Figure 5 illustrates the grachs of the five

0.

LRCK

GRÀPHS CF PENÀLTY

Ei. 1e.

¡T RTTINTI!N (U)
FIGURE 5

.FUNCTIONS USED TN THE SIIVIULÀTTON

?o

t--.
J
tf
---7

LJ
o_

100¡.

750 .

500.

40

functions. The notation, fi, denotes the.penalty func-
tion associated v¡ith programs of priority class i.
f. and fn which are functions for the shorter responsel¿

progrcrms wifir priorities I anci 22 rise very steeply

at low values of u. On the other hand, f4 and f5, which

are functions for longer response programs with priorities

4 and 5, rise very raoidly at higher val-Ues of un

3.2 Job-Load Parameters

The work-load environment for the simulation
study is created by a job-generator routine that simulates

a series of entiiies ca1led jobs or programs using Monte-

Carlo technique. Each job description consists of the

following j-tems 3

(l-) The j ob number

(2) The priority class number

(3) The amount of central processing time

required or requested

(!) The arrival time

The CPU time and the interarrival time of jobs

within a particular priorj-ty class are selected at random

from a normal distribution of each. The normal distribu-
tions are specified by a mean and a standard deviation

. which are Ínput parameters. Five priority classes are

considered. Thus, this description of the job load gives

rise to twenty Índependent

aÈle to study the effects
algorithm upon efficiency,

ic i-s reasonable to reduce

variables to a manageable

tions.

The mean CPU times for
are linked together according

*i+1 = k*i-

variables. In order to be

of changes in the scheduling

as a functj-on of job load,

the number of independent

leve1 by introclucing restrj-c-

the five p.riori-ty classes

to the equation

4T

(e)

where i = 1-12)314 and k is a proportionality constant.

This, therefore. al1ows the compleLe set of mean CpU times

to be calculated from the specificati-on of k and the mean

CPU time of priority 1 programs (*, seconcls of CpU tj-me

per program).

The mean interarrival- times are 1inked in a

similar manner according io the equation

ri+l = kri (10)

where Lr2)3r4 and k is the same proportionality
constant as i¡¡ equation (9). This also allows the com-

plete set of mean interarrival times to be calculaied
from the specification of k and the mean interarrÍvaI
time of priori-ty 1 programs (.r_ seconds per program).

AI1 standard devi-ations are taken to be 25%

of the corresponding mean values.

42

Values of the three independent pqrameters

k, *1 and ra are used to completely describe the job

loads which are to be used in this simulation study.

In order to have some control over the condi-

tions v¡hich give rise to system overloading, it is

desirable to have some guide for esti-mating the propor-

tion of the proceisor's caoacity which iS demanded by

programs of each priority class over a given time

interval. Using parameters *i and r., the proportion of

the processor r s capacity demanded by priorj-ty class i

for a gil.en tin.e inter',¡al can be approxi m.ated by means

of the formula

d. = m./r..al_'l
(11)

Thus for a specified di, the Droper choice of

r: or m: can be cietermined depending on whether m: or-i -"i E) a

ti is given respectj-vely. For example, if it is desired

. that each priority class demands only I/5 of the total

proces=of t s capacity over a particular time interval t

that is, di = I/5, this can be effected, though looselyt

by using the folloling equati-on

*i/ri = r/5 (12)

(12), the

i= given and

where i = I)213r4

proper choice of

Flence, from equation

can be obtained if *i
,5.
r

a

43

vice versa.

Furthermore, sj-nce f rom equations (9) and (10)

m. - m.l-+l- l- t
=f*," r.:

JTf J.

it foll-olvs thai for a given m, and rr, the proportj-on

of the processor I s capac-ity demanded by each priority
class for a particular time interval- j-s the same,

namelyr ^L/tI.
Thus, only the choice of ma and r, needs

to be consiclered.

the method by which normally distributed random

variates are generated using the Central Limit approach
t

is described in Appendix C. ,

Ten separate sequences of random numbers are

generated for the ten normal distributions (2 for each

priority class: CPU tj-me required and interarrival time).

^4.11 ten starting values used by the random number generator

for these sequences are the same. This value is 157832165.

Its choice is arbitrary with the exception that it must be

odci and less than 23l. . A discussion of the random number

generator can be found in Acpendix. B.

The normal distri-butions used r¡/ere truncated at

the + 4o- limits where o- is the =t.r-rd.rO deviation. Since

all standard deviations are taken as 25?'" of their corres-

ponding means, the Iower and upper limits of each distri-

bution are in fact 0 and 2¡ respectively, where Ê is the

(13)

44

mean. Thus v¡ithin priority cl-ass i, the upper and lower

limits of the normal distribution for the requested cpu

time are o and 2*.' respecti-vely, and for the interarrj.vala

time, are 0 and 2tí respectively. Hence, if a normally
distributed random variate generated ries outside these

limits, it is rejected and another is generated.

The choice to truncate the no::ma1 dis.l;ributions
at the i 4c'limits appears reasonable. For the lower

limit, a normally distributed random variate less than

(tt - 4æ) i-s undesirable since it is negative, r,vhile for
the upper limit, a normal variate obtained in the region
beyond (p + 4o) is likely to be unretiabte (see [fO]).
Further, vrith lj-mits of (lt + 4o-) 1 the proportion of the

normal- cli-stribution considered is about 99.9e%.

À sample listing of 2A progranrs that have been

created by the job generator routine is shov¡n in
Appendix D.

3.3 Supervisor-CycIe Time

The supervisor-cycle time is the time taken to
execute a cyclic path in the simulation model (see

Figure 1). Strictly speaki-ng, this time which contrj_butes

to the supervisor overheads, varies according to which

path is taken. Hor,.lever, for convenience, one fixed val_ue

is assumed for the supervisor-cycIe time. It apoears

45

reasonabl-e to use a time of 0.01 second. on the rBpi 360/65

computer system, this value is equivalent to approximately

3000 instructions.

In order to get an idea of the supervisor-cycIe

times which are involved during the simulation process,

tv¡o simple exampres are described i1l-ustrating the number

of supervisor cycles necessary for the case under con-

siderati-on.

Example 1. Consider the situatj-on where a program

enters core r,vhich is empty, completes its processing within
the fj-rst time-sl-ice it receives, and is then removed from

core.

Since core is empty prior to the arrival of the

program, the most recent primary routine is taken as

frsearch" and the rnost receirt path is Laken as path I.
The combination of the search routine and path 1 is used

to determine the next primary routine to be executed.

After the program has entered core, one supervisor

cycle Ís taken to execute the quantum-allocation routine
for calculating its time-s1ice, another cycle is needed

to enter the search routine followed by the service

rout-ine v¿hich initiates servicing of the program and a

final cycle ís required to execute the update and

removal routines when the program completes processing.

Thus, three supervisor cycles are taken for the entire

46

operation. The total sucervisor-cycle time involved in

this case is 0.03 second.

Lf the program in the above exarnple had required

more than one time-slì-cer sãy t\ro time-slices, to com-

plete processing, then after the upclate routi-ne is
executed on the third cycle mentioned in the foreEoing

paragraph, a founth c.¡c1e is usecl to enter the search

routine to determine if any other program is to'be

serviced. In ttlis case no other program is found. Orr

the next (fifth) cycIe, the quantum-allocation routine

is executed follor,ved by a further (sixth) cycle to

execute the search and service routines with a final
(seventh) cycle to execute the update and removal rou-

tines. Thus, for the second time-slice received by the

prograûì, arr extra four supervisor cycles are required.

The total supervisor cycle time involved in this cese,

therefore, is 0.07 second.

In general, if the program mentioned in Example 1

requires more than one time-slice to complete processing,

then for each addit.ional time-slice after the first

time-sl-ice, four supervisor: cycles are requì red.

Example 2. Consider the same situation as in

Example I rvith the addition that a second program enLers

core v¡hile the first one is executing.

In this case, the first tl.¡o cycles are the seme

47

as those in Example 1. Hor,vever, r^/hen the f irst program

is interrupted dr-rring its execution by the arrival of a

new program in core, tvro cycles are necessary to resume

prc;cessirtg of t.ire f irst pr ogr cirrr; rrorrreiy, ortc cycie ic.¡r

enieri.ng the update routine to calculate the updated

time-slice of the first program and another cycle for

executing the search and servj.ce routines to re-initiate
servicing of. the first program. Vlhen the program com-

pletes processing, a further cycle j-s needed for entering

the updaLe and removal routines. Five supervisor cycles

are involved in the processing of the first program,

thereby contributing 0.05 second to the supervisor

overheads.

3.4 Round-Robin Cycle Jime
Eor both the constant time-s1ice and the variable

time-s1ice alfocatíon schemes associated r,vith the round-

robÍn scheduling, the val-ne of the intended round-robin

tj-me, trr, is read in as data. fn the constant time-slice

scheme, Lhe quanLum allocated to a program is simply trr/3.
For the variable time-slj-ce scheme', t* is divided up

among the programs in core according to their current

penalties.

It is very like1y that the efficiency of the

algorithm, that. is, the value of Pi or tT=, p; (r.¡here

4B

N .programs are consj-dered) 1 is dependent upon the size
of t**. If t-.^ decreases. the time-slices are alsorrrr-l
proportionately decreased and the frequency of switching
from one program to another rncreases. 'r'his results in an

increase in supervisor overheads which tend to degrade

the processing efficiency of the system, that is, to
increase the value of P; . on the other hancl, when t,1\',rr
is 1arge, the supervisor overheads are low but the

shorter programs, which tend Lo have penalty curves that
increase very sharply at low values of u, are neglected

more than when t* is smal-l-. This occurs when the average

guantum, q, is much larger than the mean value of the

CPU time of priority class 1 programs, that is, q)) mr.

These effects ,¡rere noted by Greenberger tB] in an

analytical study* using linear penalty- curVes¡

3.5 lvlinimum Time-S1ice

In the round-robin scheduling with variable time-
slice, a programrs calculated time-s1ice, which is det-er-

mined àccording to the programfs current penalty, could

be so small that it is not efficient for the system to
process the program for such a short time interval due

to the rel-atively' high overheads involved. ' To illustrate
this point, consider a simple case where only one program

is in core. Às seen from the discussion in the section

49

r?Supervisor-Cycle Timet' three supervisor. cycles are

necessery to carry out the operations of a round-robin
cyc1e, r,vhÍch involve calculation of the time-slice,
initiation of servicing anci execuiion of tne update

routine after the time-slice is completed. If the

time-slice in this case is approximatety equal to the

supervisor-cycle.time, then only about I/4 of the CpU

time is useful, sj-nce out of the total CpU time of
0.04 second, only about 0.0I second is devoted to the

processing of the program

In an attempt to avoid excessive loss of CpU

efficiency, the size of the time-sl-ice is not allowed

to fal1 below f/100 of the round-robin cycle time. This

amount is cal1ed the minimum tirne-sl-ice. Thus, whenever

a calcul-ated time-s1ice fal_1s below this va1ue, the

minimum time-s1ice is allocated instead.
It seems 1ike1y that the sj_ze of the minimum time-

slice rvould affect the efficiency of the algorithm, that
is, the 'value of P: . Às the size of the minimum time-sricet\

increases to tr,' (trre round-robin time) trre round-robin

scheduling with variable time-slj-ce becomes a round-robin

scheduling with a constant time-slice. If the minimum

time-slice continues to increase unt'i I it becomes much

larger than trr, the scheduli_ng algorithm approaches a

batch processing type of scheduling with a first-in-first-

50

out discipliror6 where long jobs are favoured at the

expense of short ones. On the other hand, if the minimun

time-slice is very smal-l-, supervisor overheads are in-
creased thereby degrading the efficiency of the algorÍthm,

that is, increasing the value of PN.

3.6 Outpgt of the Simulation Proqram

Both intermediate and final details of each pro-

gram which was processed are punched out on cards. The

interrnediate program details are output after each

execution of the quantum-allocation routine, while the

fÍnal program deLails are output i^¡hen,a program has

completed its entire processing and has been renoved from
'the execution 1ist.

The intermediate progrôm details consisted of z

(1) Program number

(2) CPU time required or requested

(3) Initial entry time into the system

(4) ,{ccumulated CPU time received
(5) Àccùmulated conbined processor and

device time

6_-In a first-in-first-out discipline, programs are
serviced on a first-corne-first-served basis r¡ith each
program being serviced to completion before control is
passed to the next program.

51

(6) Current penalty value
(7) .ê.mount of time-s1ice allocated
(B) Time when time-sl-ice was allocated
The finat program cietat-ls have items (f) to

(5) above and in adclition, the follovring two items:
(9) Final penalty

(10) Exit time of program from the sysr:em

whose initial- job description are shorvn in Appendix D

is shown in Appendix E.

CHAPTtrR IV

PER.FO}ì}1ÀI'JCE OT' THE SIiViUI,i"TIOh] IqODEL

4.L Study of the Behaviour of Tv¡o
Types of Schedu.Ij-nq Àlgori-t4-m

The rel.rtive performance of tr^¡o scheduling

algorithms ivas estimated by sirnulating the execution

of identical job streams with each -fgoritl^,r in turn,
and observing the effect on the measure of effici_ency,

*
D^N'

The two algorithms studieci tvere :

(i) fixed ti-me-s1ice (FTS) and

(ii) variabl-e time-s1ice (VTS) .

Both algorithms use round-robin scheduling.

Table II sþsÌ.rs the input values that were used

for the varj-able parameters.

(i) Fixed Time-S l-ice Àlqor-ithm

The fixed. time-s1ice algorithm accepts programs

from the wa-i-tíng list accordi-ng to which prcgram has

the hi-ghest penalty. ff two or more progranis have the

same híghest penalty, then the first of these programs

to arrive is selected, For programs which are in core,

the time-slices for these programs are calculated

according to formula (6) (see section ItPenalty Function

53

TABLE II

INPUT VÀLUES FOR THE V}fi ABLE P;iF-/TII']ETtrRS
USED TN TìHE SÎUDY OF THE BEHAVIOUR OF TI,VO

TYPES OF SCHEDULI}.JG ALGORTTHM

VARIÀBLE PAR;\METERS VALUE

Job-l-oacl parameters :

Proportionali-ty Constant , k 4. O

Mean value of CPU time for
priority class 1, *1 10.0 secs.

Mean value of interarrival
time for priority class l, tl 30.0 secs.

Round-robin time, trr 3.0 secs.

Minimum time-slice O.O3 sec.

Supervisor-cyc1e time 0.01 sec.

54

and Quantum-Àllocation Routinet', p.g. 29), namely, ,

qi = trr/n

which Lakes no account of the current penalties of the

programs. The variable n refers to the maximum number

of programs r,vhich can be scheduf ed si multaneously and

in this case, its val-ue is 3.

From the input values of the job-load paramete.rs,

m" (the mean of the norrnal distribut j.on associated with
the requested CPU tj-me for priority 1 programs) and k
(proportionality constant) in TabIe II, the means

(m., rvhere i = 213r4r5) of the other four prioritv classesl-'

of programs, were derived by using tf,e following relation-
ship

m. - = km.a+l- r_
(i = l1213r4). (14)

The standard deviations (srn.) I'Jere calculated
l_

by taking 252L of the means. The lor,.¿er and upper limits
of the ranges for the requested CPU times considered,

were determined by using ^i 4=*. and m. + 4r*.
aa

respectively where i denotes priority class i. Since

s- is 25% of m, , the lower limit'of a range is in factm. r'
l_

zero which is a reasonable lower'Iimit since negative

values rvere not meaningful. The upper limit (*i + 4=*.)
T

appears reasonable also, sincè values lying in the

region beyond this limit vrere not likely to be reliable

(see Iro])

Table ïII gives the val-ues f or the mean, the

standard deviation and the range of the requested CpU

time of each priority class.

Similarly, by using rt and k, the values for the

means, the standard deviations and the ranges of the

interarrival times o:' al-1 the priority classes were

determined. The result is shorr¡n in Table IV.

The simulation run was terminated after a

simulated time period of L2O2 seconds. During this time

period, 48 programs completed processing, 2 programs

were in core unfinished and 20 programs were in the queue.

No priority 4 or 5 programs arrived in this run and there-
fore only the first three priority classes of programs

were effectively consì ciered.

FinaI and intermediate detail-s of each program

were coll ected and a graph of penalty versus time was

plotted. Figure 6 shows a portion of this graph over

the intêrval 450 seconds to 1000 seconds. The number

or numbers on each curve represent the priority class

of the associated program. The curves with their pri-ority
number marked at the beginning and end are for programs

which cornpleted processing, while curves rvith their
prioriLy number written only at the start are for pro-
grams which did not complete processing at the end of

55

56

TÀBLE TII

VÀLUES OF THE ME;\l\i, STÀ}.IDARD DtrVfATION
i\ND RANGE OF TFIE REQUESTED CPU TTME

FOR F]VT PRIORITY CLASSES

Priority
Class

Mean
CPU Time (secs)

Standard Range of
Dev. (secs) CPU Time (secs)

I
2

3

4

5

.10.0

40. 0

160. 0

640. 0

2560.0

2.5

10.0

40. 0

160. 0

640. 0

0.0

0.0

0.0

0.0

0.0

20.0

80.0

320. 0

1280.0

5120.0

57

TABLE IV

VÀLUES OF, THE ME¡.N, STÀND*\RD DEV.I¡\TION
ÀND RANGE CF THE IT'JTERÀRRTVÀL TTi\iÐ

OF FIVE PRIORITY CLÀSSES

Mean fnter-I/rl_orl_ tv;:: ---- -' arrival TimeLlass (secs)

Range of fnter-Standard
Dev. (secs) arrival Time

(secs)

1

2

3

4

5

30. 0

120.0

480.0

]-920 .0

7680. 0

7.5

30. 0

120. 0

480. 0

1920.0

0.0

0.0

0.0

0.0

0.0

60. 0

240 .0

960. 0

3940. 0

r5360.0

1, 1 ril¡lrlrltlT}}l

5B

1

\
11.7. W

1BÜ[.

75[.

5[t

e5t.

0.

----ill

\

\

F"
J
tf
Z.
t-r-l
û_

Ei¡t .

T

PENÀLTY VS. TIIV1E
450 - 1000

9ÛÙ.
crrr
'JLL-I !

6

PROCESSED ll.i TFIE 'fNTERV¡'L

THE FTS ÀLGORITHI'I

75û.

IMI IN
FIGURE

OF PROGRAIUS
SECS. USING

1D:iü
'+ 5û

59

1000 seconds.

One noticeable feature about the beha.viour of
the curves in Figure 6 j-s that when core is full curves

belonging to the same prÍority class seem to approach

a common penalty value whj-ch is specific to that priority
class. Thus, there seem to]:e three different coinrnon

values corresponding to the three prj-ority classes studied.

The coi'¡mon penalty values.seem to clecrease with descending

order of priority. This characteristic may be attributed

to the associated penalty functions themsefves.

From Figure 6, the common penalty value for
priority 1 programs is about 625 penaity units. For

priority 2 programs, it ís about 390 penatty units, while

priorj-ty 3 programs approach an approximate value of 150

penalty units. Thus it. can be seen that for prograrírs of

the same priority c1ass, if their curves are above the

common value for that c1ass, they tend to decrease and

approach this value while curves below the common value

tend to rise to.meet it.

In order to determine whether the observation

of these conìmon values could be supported by further

analysis, a simple analyLical study was performed.

With ti and -¡'. initially at zero and a program

mix consisting of a priority 1, a-þriority 2 and a

60

priori l-y program, the current penalties

programs, each receiving a quantum of I/3

of

of

the three

the round-

robin time v/ere calcul_ated with supervisor overheads

riisreg.rrcìeci. Tire oenaiLy val-ues obi-airrecì, ploi:tecì against

tj-me, are shov¡n in Figure 7. The numbers fn parenthesês

at the end of each curve, from left to right, indicate
the priority numberr.the round-robin time and the quantum

respectively.
Each curve in Figu::e 7 is approaching a separate

penalty leveI. For the priority 1 program, the l-evel is
about 600 penalty units. For the priori_ty 2 program, it
is about 375 penalty units, vrhi-Ie for the priority 3

program, it is about 140 penalty units. These three val-ues

are relatively close to the common values observeci in
Figure 6, the difference being mainly due to supervi-sor

overheads. Hence this supports the view stated earlier.

(ii) Variable Time-Slice Àlqorithm

The variable time-slice algorithm accepts programs

from the waitÍng list in the same manner as .the fixed
time-slice algorithm. Hor,vever, the amount of time-slice
a proÇram receives id dependent on its current penalty

and on the operating penalty of the system. The time-

slice to be allocated to a program at time t is determined

by formula (l) (see section "Penalty Function and Quantum-

61

F--'
J
ü_
Z.
LJ
n_

1t¡'ü

75ü.

5[f].

a5ù

NOTE

PENALTY VS.
PRIORITY

l1 entheses
priority

and the t

0.
etr.
TIMI IN

FIGURE

TTI'iE OF THREC
CLÀSSES USTNG

+c0:
crrn'J L L,'

1

FiìOGR.Ài,iS OF DTFFEREi\iT
THE FTS ALGORITH}î

Ëüt

The nu.
right,
round-
respec

bers in
denote th
obin time
ively.

f rorn lef
number,
me-sl'i ce

FF-.'?FrrFrFií¡,'rìtr

,000, 1 .!

.!0û, 1 .0(-.t .1 ,

62

Ä.f location .Routine" r page 30) , that is,
qi = (pr(t)/xnr(t))trr

l-

where pi(t) is the current penalty

is the total operating penalty and

time,

of program i, Xp. (t)
-;']

t - is the round-robinrr

Using the same input values fo: the variable
parameters shor,vn'ín T¿rble II, the simulation run was

terminated after a simulated time period of l5B4 seconcls.

In this time interval, 65 programs completed processing,

3 programs did not complete execution and 1 program was

in .|-1-ro ñìr^,,ê Aq in the fixed tirne-slice run, only1__q_ ¿ j

priority I, priority 2 and priority 3 programs arrived
during this time perÍod.

ïntermediate and final details of all the programs

that received orocessing were col-lected and a graph of
penalty varues versus time was drar,^¡n. Fi-gure I illustrates
a portion of this graph over the interval from 450 secs.

to 1000 secs. As in Figure 6 the priority numbers are

marked beside the curves. Those curves with no priority
number marked at the end are for programs whj-ch did not

complete processing ai the end of 1000 secs. Some of the

curves are labeled with letters so that they can be

referred to more conveniently in l-ater discussions.

Atl the priority I and priority 2 programs,

1717.
63

\?I

t--
_J
tt
_/
L..J

n_

10ti0 .

75t .

50tt

450

t.
+ s[0 1 t50600 . 75tr .

TIt.,1[IN SF-iIE
FIGURE B

PEI]ALTY VS.
450

TTI{E OF PR.OGRÀI,IS' PRCCE.SSET] IN TT{E. INTERVÄL
1OOO SECS. USII\G THE VTS ALGORITHI,i.

.7L
------+rl--Ð-ì\it

5û.

64

compared to those in Figure 61 have lower final penalties.
Thj-s observation seems to j-ndj-cate that priority 1 and

priority 2 orogranrs receive better treatment from the

V.L.S algorithm than from the ¡"1'5 al_gorithm.

Since the síze of the time-slice iú this scheme

j-s variable, it is inLeresting to examine hor,v the síze

of the tj-me-slice affects the penalty value of a pro-
gram. In particular, if p(tf) is the penalty of a

program at time tl and. p(tZ) is the penalty of the same

program at time LZ, where tZ is either the time which is
one round-robin cycle later or the tj-me when the program

leaves the system whichever occurs first, it is possible

to determine how large a time-slice is necessary such that
the condit.ion

p(tz) < p(tr)
is satisfied.

/atr\\ J-J.'

. By definition,

p(tr) = f(ur)

and

p(t2) = f(ur)

where f is the penatty function associated wit,h the

priority class of the program and u, and u2 are the

lack of attention values at times tt and tZ respectively.

65

Thus,

p(tz) S p(tt)

is equi-valent to

f (ur) f (ua). (16)

Since f is a monoton:'ca1ly i-ncreasing function
over the cl-osed interval [1rf 5] then.(16) implies that

u^ (u-.¿- 1
(17)

Let T be the time v¡hich has elapsed (since the

arrival of the progrêm) at time tt and aT be the increment

in time from tt to t2, Furthermore, leL iú be the accumu-

lated processing tirne received by t.he program at time tl
and AT be the increment in processing time received

during +-he time interval AT.

Then, according to the definition of the lack of
attention from equation (1.) (see "penalty Function and

Quantum-Àllocation Routine", page 25), (I7) becomes

T+AT
"(+ LÍ

By factoring, (18) can be

rcr+Ë)
-ú(I

(r.f)
, ';El

Hov¡ever, since T

rewritten as

f > o, (19)

(rB)

(19)
-f

becomes

l. (20)

66

,å.lsorsince(f.fl

AT.T

Therefora --- - t

AT
T

Thus I

Lr ¿ ATlu, (2r)

From (21) therefore, the increntent in central process-

ing time (or the time-slice) ¡t must be greater than or

equal to ÀT,zu, in order that p(tZ) S p(tl). For example,

if u. = 4.0 at time t. anci ¿rT = 3.0 seconos then in orcÌerr1
that p(t.+/rT) I p(t,), the quantum LT > 3.0/4.0 second or' l_ I,
0.75 second. rn the case lv'here tz is the time when a finished
program leaves the system during a rcund-.rcbin cyc1e, AT

is the tj-me interval from the start of the cycle to the

exit time of the program and may be denoted ¡y Tlr.
ïn Figure B, the curves labelIed À, B and C show

pronounced hooks at their ends. These situations are due

to the fact that (21) is not satisfied. For instance,
when curve À- was examined more closely it was found that
in the last round-ro¡in cyc1e, T:- was 2.052 seconds and'rr
the u value at the start of the cycle rvas r.7. From (zr),

this therefore resuires a quantun of at least r.207 secs

to maintain the fj-na1 penalty at the same level as the

f

67

intermediate pen'alty from the previous cyc1e. However,

the amount of CPU time which the program required in

this cycle before completing its processing was only

0.701 second. Therefore, the increase in penalty when

the program completed processJ-ng in its final round-

robin cycle was unavoidable.

It is observed also that in cases. where a penalty

increase incurred by a program is unavoidable, the size

of this increase can vary depending on the posj-tion of

the program on the execution list. Since programs are

serviced sequentially with the one at the head of the

list being serviced first, a program closer to the head

of the lisL leaves the system sooner in its final round-

robin cycle than if it \¡Jere lor,ver on the list. Thus, the

unavoj-dabie pei-raity inc¡:ease will accordinEiy be reduced

by an earlier departure from the system in the case v¡here

the program is higher on the list.
A situation where no penalty Íncrease occurred

in the fj-nal round-robin cycle of a program is seen in
curve D. In this case, u at the start of the final

.3. bJith T astc
to keep the

be 0.107 second.

the program was

than AT, caused

round-robin cycle for the program was 4

0.458 second, the time-slice necessary

penalty constant , Lf , rvas calculated to

However, the actual time-s1ice given to

0.438 second. This amount being greater

oÕ

a penalty decrease instead

The curves in Figure B seem to vary according

to the program load. For example, r,vhen the priority 1

p.roEiram j:epreseäted by curve À entei'cd corc, curvc E

v¡hich corresponds to a priority 2 'program and which was

decreasing began to rise. ,¡ilsor r,vhen ihe priority 1 pro-

gram represented.by curve Ä left core!, curve E started

to decrease again untj-1 another priority 1 program

(curve B) entered core]ater. In both instances hov.leve::,

the penalty values of the priority 3 program (curve F)

which was in core during this interval, seem to rise
quite steadily without much fluctuation as is seen in

curve E. This behaviour is partly due to the constant

slope of the penaity functíon associated v;ith priority

3 programs. On the other hand the gr:eater degree of

fluctuation seen in curve E is partly reflected by the

steeper slope of the penalty function associated with

priority 2 programs in the region where the penalty

v.rlue is betr,veen 2OO and 300. In general, therefore, the

curves are partly influenced by the program mi-x and partly
by the height and slope ôf the associated penalty functions.

In the majority of cases, the priority I and

priority 2 penalty curves decrease quite rapidly at first

but seem to level out v¡ith time if the requested CPU times

are long enough. The tlo priority 3 penalty curves seem

69

to increase qu:'-te steadily and their behaviour suggests

rld probablv level out also as time i.,...o.."that they would probably level out also as time incl
if the correspondÍng programs rvere given longer execuLion

time.

Generally, the penalty curves in Figure B do not

seem to converge at any cornmon penalty level or l_evels

such as those observed in Figure 6. Furthernìore, since

most of the priorit.y 1 and priori-ty. 2 programs rernain in
core for relatively short times, it is diffícult to pre-

dict the directions towards which their penalty curves

are heading in the long run. However, it seems from the

levelIing out of some penalty curves, that the curves may

become asymptotic at values which are specific to the

program mixes, if the programs associated with the curves

were Lo have greal-er requested CPU time.

In view of this, a supplementary exoeriment ',vas

performed to simulate the executj-on of programs from

various program mixes usi-ng the time-s1ice allocation
scheme of the VTS algorithm. No supervisor overheads

were considered. All programs rvere given a requested

CPU time of 80.O secs. The intermediate and final
penalties v/ere collected and plotted agai-nst time.

À set of these graphs which have been obiained

is shov¿n in Figure 9 using a program mix v¿hich consists

of a priority 1, a priority 2 and a priority 3 orograrn

UE: The numb
right, .d
on the e
the fina

rs in par
note the
ecution t
penalty

ntheses,
l-ot 'no. o
st, the p
espec tive

fs Êì'¡:+x tl¡ll;:i+r' 1.. i.. 53,

t9l.(L, Lt

ì\ìI
I1, I s-.

S'il .J

, 141.)

t---
_l
tf
Z
Lr-' -|
n_

4 f-ìrìnI UTJU

7str

50t

e5c

PENALTY VS. TTi\iE
¿\LGORTTHIIi l.JITH

+c! .

t IN St_C.
FTGURE 9

OF A I-2-3 PiT]{ UST¡JG
SUPERVISOR OVERFIEÀDS

a naìL TJU '

TTM

THE VTS
IGNORtrD

70

rom left
the ent

iori-ty n
1.

0. |-tñar
trl'JLI

71

(trrat is, a r-2-3 mix).7 The numbersin parentheses at
the end of each curve, from left to right, denoLe the

slot number or the entry number on the execution Iist,
i,ire pr iority number anci ihe f inai penaity

fn addition, v,rhen the final penalty of the first
program to complete processing lvas collected, the

intermediate penalties of the other programs in core

were also recorded at this instant. These results for all-
possi-ble i-j and i-j-k mixes are shown in Table V. The

dashed entries wi-thin each roiv of the t able indicate Lhat

these entries are not relevant.
From the graphs Ín Figure 9 and the graphs for the

other mixes r,vhich have not been shown, it is observed that
the curves in general exhibit some degree of fluctuation
in the early stages of progrem executi_cn, anC that they

all tend to 1eveI out into constant penalty revels as

time increases until the first program to complete pro-
cessing departs from core. Thus, the penalty values

obtaj-ned in Table v can be regarded as the approximate

asymptotes of the penalty curves for the programs in the

various program mixes. rn some mixes which contain two

7rh" nomencl-ature
consisting of a priority
program. Similarly, the
mj-x of a priority i and

"i-j-k mixt' denotes a program rnix
i, a 'priority j and a priorj-ty k

nomenclature "i-j mj-x" denotes a
a priori-ty j program.

72

TÀBLE V

¡\PPROXIIIÀTE ÀSYI{PTOTIC VITLUES OF PROGR,\PiS fti
V¿\RIOUS PII)(ES USIhlc TUE V¿\RIABLE Tft'iE-SLfCE

¡T
^/\nr'nlÌr4 1<lrrnnDr¡tcnn ^r¡rnrrr ^ n(- T^Àr^nrn\

^Lr\J\J¡_LrIll'r \ Jufþr\V J-JVr\ vV¡Jr\trLl.\liJ fr:il!/itiJii j

No. of
Programs
In }iix

PRTORITY CLASSES

2

2

2

2

2

2

?

3

3

3

3

3

J

J

3

3

515 515

466

410

613 613

589 59i

568 s69

564

499

534

- 32I

26s 266

203

513

437

376 376

410 410

339 340

294

382

T7I

120

7I

284

376

220

I4I
227

IB4

255

7I

I4T 14I

227

184

73

programs betonging to the same priority crass, the slight
difference in penalty value in the tabre between the tr.vo

programs is due to the order in which the programs were

-^---: ^^l ..i L1_ Lt- ^.>sr- v ¡-us\r , wr L.rr LtlË t.rlre SeaV_LLeC¡ r rr S L itav.l-f rg Lile strtái ie¡.

penalty. l'/ithin a particular program mi_xr. therefore,
programs whose penalty curves initÍar1y start above or
below their asymptotes v¡if t eventually have thej-r curves

converge at the asymptotes, provided that they requested

a sufficient amount of CpU time.

To facifitate the discnssion of the curves of
various program mixes in Figure I, the time interval
from 450 - looo secs. has been partitioned into time
segments with most of these segments rettered as shown

in Figure 10.

As Seen in Figure 10, only two program mi xes

can be singled out as remaining in core for any length
of time and these are the 2-3-3 mix in time segment I
and the 2-3-3 mix in time segment L. The values to r,vhich

these penalty curves are approaching compare qui-te

favourably with the corresponding asymptotic values in
Table vr which are 294.for the priority 2 penarty curve

and 184 for the priority 3 penalty curve. In time seg-

ment P which also involves a 2-3-3 mix, it appears that
the priority 2 curve r,vould likely approach the varue of
294 also. Ànd in time segment G, the priori-ty I and

13
74

1 1A

F-
_J
tf
7_
LJ
tL

\E¡JIJ .

7=n.

l:f-tñ
-,tJu -

¡rc .

'r,]il .

I

ME_

JK7f:n

II\
NO P

3ti¡ -

l, lvl

TI rr T- .-ì
JL-LJ

FIGURE 1O

TIiViE INTERVAL 450 - 1OOO SECS. IN FIGURE 8
.PÀRT]TTCNED INTO SEGIIIEiVTS

75

priority 3 penalty curves in the'1-3 mix seem to be

approaching the asymptotes of 410 and r7L respectively.
i',lith regard to the other mixes in Figure 10,

not much can be said about the penatty Ievels tov¡.¡_rds

v¿hich their curves are approaching, since these mixes

did not remain for a long enough period in core for
the curves to achieve any form of stabi fity. The in_
crease in the priority I penalty curve in time segment

B seems reasonabl-e as the asymptotic value for the
priority l- curve j_n a l-3 mix is 4IO.

The results in Table V can also be der_ived

analyticarly, but such an approach involves fairly
complex calculations in most cases. However, an example

is considered using a 3-3 mix.

Since, from equation (2) (see 'sect-ion Ipenoity

Function and Quant.um-;\llocation Routiner', page 27),

P1 = ft(ut)

where pr is the penalty for program I, f¡ is the penalty
function associated lvith priority class 3 programs and ,l
is the l-ack of attention to program l, then

pr=999 ((u, I)/I4).+ t. (ZZ)

Similarly,

p2 = 999 ((u, t)ita) + 1 (23)

Let AT, and AT" be the j_ncrements in DrocessorL¿i

a

76

ti-me received by program I and program 2 respectively.
Then

Oãf + LfZ = tr, . (24)

For steady state,

ti = Tf/Ti = trr/LÍi (25)

r.¡here ui is the lack of atrention, ti is the elapsedl_ - --- -----) -i

time since program entry and,f. is the accumulateci

processor time; and

ATr- = LfZ (26)

From (22) and (25) therefore,
pl = 999 (Lrr/Ltf, L)/I4 + I. (27)

Since from (24) and (26)

tr, - z\fr

then (2.7) becomes

Hence,

pl = 999 (24) /14 + 1.

Pl = 72.4.

Simitarly, it can be founci that

P2 = 72'4'

Thus the values obtained in Table V for a 3_3

mix appear quite reasonabre cornpared to tÌre analytic
values.

77

(iii'
F;ï3å'å:;:-gír ::"^T;:iî:ffi

=
""'

The r"=r**O earlier on the fixed time-
s'lice and variable time-slice algorithms v/ere used to
examine the relative performance of the tyo algorithms.
only those programs which had coinpreted processing under

both algorithms vrere used in the comparison. The number

of completed programs were 48.

The difference in the final- penalty values for
the executi.on of program i under the two algorithms

is defined as
*Api = pi (FTS) - Þi (vrs) \¿ö)

where p, (FTS) and p* (vts) are the final penalty values-ra

for progran i under the fixed tj-n.e-slice and '¿ariable
time-slice algorithms respectJ_vely.

Figure 11 shor,vs the graph of ¡pi versus the exit
time of program i under the variabre time-stice algorithm,
tirout(VTS). The number beside each point or program

indicates the oriority number of the program.

As seen in Figure 1f, most of the ¡pi s for
priority 1 and priori.ty 2 programs are positive. This

resurted from the relativery lower penalties incurred
by most of the priority I and priority 2 pÈograms under

the variable time-slice algorithm than under the fixed
time-s1ice algorithn. Thus, higher priority programs seem

+tfl .

LI
ü
Z-
lr

fr ?xD.

LJ
L-
L-,-
H'tl

F
I'

----J rìU.il
Z..Ll
0_

-Éuu.
'l nn

rVTT TL/\-L I I

C'Ô'l. IJULJ.

IMt (VT
FTGURE

DTI¡i¡ERENCE 'üS.PENAT,TY

iet¡.
S) IN SIT
11

EXTT T]ME (VT.S)

r a.nn {
.r rrLJU . æ

79

to be. favoured by the VTS algorithm. On the other hancl,

the negative Áp¡_ s for the trvo priority 3 programs in
Figure 11 show that the priority 3 programs have relatively
lorver penalties under the FTS algorithm. Hence, the lower

priority prograrns are gi-ven better service under FTS

algorithm.

The difference in the exit times for ilre execu-

tj-on.of program i under Lhe tv¡o algorithms is defined as

At. = t. _..-(FTS) t, ^-.-(VTS) (29)l_ l_rout j.rout,'

where t= _..-(FTS) and t. , (VTS) are the exiL timesl- r OUC l- r OUf

for program i uncler fixed time-sl_ice and variable time-
slice algorithms respectively.

A graph of, At. ve.rsus tj-rout(VTS) was plotted and

is shov¡n in Figure irz. The numbers on the oraph reoresent

priority numbers as in Figure 11.

In Figure 12, the Atits for most of the priority 1

and priority 2 programs are posi-tive. This is due to the

earlier departure from the System of most of the priority
1 and priority 2 programs under the VTS algorithm than

under the FTS algorithm. I'or the two priority 3 programs,

however, the opposité is true, that is, they leave the

system later under the VTS algorithm than under the FTS

algorithm. These observations, therefore, are consisbent

with those made from I'igure 11.

l rln

rìt_J
L-J
U)

Lr-J

t_l
Z
L-l
u-
t-'J
I

.. LJ-

L.-
H
t:]

L-J
t
r'l

F
I

F-
H

L;

t.

- 1.,+l .

-eËc.
lLrìn
lJrJ.

tXIT TIMt
FIGU1ìE T2

EXTT-TIME DTI¡]¡ERENCE VS.]lXIT TTMII (VTS)

ftnn
L'LiJ.

(VTS) IN
'4 1nñ. -L t:iJU

crrì
LJLTJ

160û. 3

B1

fn summary, both Figure 11 and Figure IZ seem to
indicate that higher priority programs are favourecl by

the vrs argorittlm rather than by the FTS algorithm, lvhire

rotver priority prograrns receiveci becter service uncìer the

latter scheme.

To deterrnine the rela.tive merits of l¡oth argorithms

by a quantitativ.e approach, the measure.of efficiencyr
*

PN, for each algorithm was calculated, where N'= 48.

The measure of efficiency for the vrs algorithm, nnr(vrs),
was 21869 while the measure of efficÍ-ency for the FTS

+algorithm, Pag (FTS) r^ras 25893. The relative percentaEe

improvement of the vrs algorithm over the FTS algorithrn

vras found to be L8.4% in this restricted study. This result
further suÐports the earlier observations made and indi-
cates that the vrs algorithm is more efficient than the

FTS algorithm for a given job load and job mix.

4.2 fnvestigation of the Optimum
Rouryl-Robin Time

. As was mentioned earlier (section "Round-Robin

Cycle Timerrr page 47) I the size of t* ought to influence
the performance of the algorithm. Such effects !./ere found

by Greenberger for linear penalty functions IB]. It
appears that for a given work-load environment, the

shorter the round-robin time, the hj-gher the supervisor

overheads. However, since lengthening the rounC-robin

B2

time to minirnize the supervisor overheads gives rj-se to
greater neglect of higher priority programs, the round-

robin time cannot be chosen arbitrarily rarge for more

efficient performance of the atgorirhm. Hence, there r-s

apparently some intermediate value of tr, ,¡rhere the
combined influence of these two factors is a minimum.

The object of this study was to find the optimum

round-robin cycle time for a given job load ancl job mix

environment usirig the vrs algorithrn with p^i as the Þer-t\

formance measure.

The execution of a

environment was simulated

t__- assuminq a differentrr
of t_* were 0.5 sec., 1.0rr
J?.0 secs., 4.A secs., anC

Table VI shov¿s the

given job load and job mix

in seven separate runs with
value in each run. The values

sec. , 1. 5 secs. , 2.0 secs . ,

5.0 secs.

input values of the job-load
parameters used for each run.

The mean CPU time and mean interarrival time of
a1r five priority classes of programs with their standard
deviations and ranges are shor,vn in Tables vrï and vrrr
respec bively.

SlightIy more than 500 programs were processed

in each run and. the P: values rvere calcurated from the¡\

500 programs which were comrnon to each run.

_
Tab1e IX shor,vs the perforniance measure of each run

83

TABLE VT

INPUT VÀLUES OF JOB-LOAD PARÀI"TETERS FOR
TNVESTIGATION OF THE OPTTI.lU}i

ROUND-ROBIN TIME

--
JOB-LOAD PÀP.AMETERS VALUE

Proportionality constant, k 4

Mean CPU time for Priority
class 1 programs, rnl

Ivlean Tnterarrival time for
Priority Class 1 programs, 11 6.0 secs.

1.0 sec.

84

TABLE VTI

VALUES OF MEAI\], STA]'JDARD DEVïATIO* O*O
RANGE OF RJ:]QUESTED CPU TTIUE FoR

FTVE PRIORTTY CLÀSSES

--
Priority Mean Standarcj Range ofcrass cpu rime (secs) Dev. (secs) cpu rime (secs)

1

2

3

4

5

1.0

4.0

16"0

64.0

256.0

0.25

1 .00

4.00

.16.00
64.00

0

0

0

0

0

2.0

9.0

32.0

128.0

512 .0

B5

TABLE VIII

VALUES OF IqEAN, STANDÀRD DEVTÀTTON AT,ID
RANGE OF TNTERARÌìTV¡\L T]-ME FoR

FTVE PRTORTTY CLASSES

Priority
Cl-ass

Ilean fnter-
arriva I Tirne

(secs)

Standard
Dev. (secs)

Range of Inter-
arrÍvaI Time

(secs)

1

2

3

4

5

6.0

24.O

96.0

384.0

1536.0

1.5

6.0

24.0

96.0

384.0

0

0

0

0

0

12.o

4B .0

r92.0
1C.A ñ, VU . V

307 2.0

B6

TABLE IX

RESTILTS OF 7 STMIIT,ATTON RT]-N.S SFIOÍ.dTNG
t AND THE CORI-IESPONDINGrt p*- WTJERE N = 5oo'Nt

t (secs)rrRun 'ÉÞ'500

1

2

3

4

5

6

7

0.5

1.0

1.5

2.O

3.0

4.0

6"0

r42899

1404 1B

L26476

1313 6 5

L35944

15 1089

r57875

B7

v'/ith its associated round-robin time. Frorn the table,
there is a minimum value among the values for PN as

Lr. goes from 0.5 sec. to 6.0 secs. 'Ihe minimum P;

value is 126476 1 and this corresponds to a t* value of

1.5 secs. which is the opLimum round-robin time (t:r)

for the given job load and job mix.

One would'expe.:t the optimum t-- value to berr
. dependent on the r¡¡ork-load environment. For exaiirple, if

if the work load consists entirely of high priority pro-

grams with short response time, one would expect al, to

be small; on the other hand, if the work load consists

soIely of lor,v priority programs with J-ong response time,

one r,vould expect t:- to be large.'rr
Greenberger observed that the optimum quantum

size varieci with parameter values in an anaiytical study

using' 1inear cost curves and a fixed time-slice scheduling

algorithm. The paramet.er values used by Greenberger which

are most comparable to the ones used here give an

optimum'quantum size of aoproximately 0.6 sec. Thj-s value

compares well with the optimum round-robin time of 1.5 s€c.¡

since on the average the number of programs being pro-

cessed at any one time is intermediate betv¡een 2 and 3.

BB

4"3 Summary

This chapter investigated the perforrnance of
the simulation model-. ¡\ study of the behaviour of the

variabl-e time-s1ice (VTS) scheciuling algorithm and of
the relaLive perforrnance of this algorithm compared to

the fixed time-sl-ice (ffS) algorithm has been made.

Furl-hermore, an optimum round-robin time for the VTS

algorithm rvith a Çi:ven job load v,¡as determined.

The a.nalysis, both qualitative and quantitative
(using the measure of pe;:formance n;), sholved that the

VTS scheduling algorithm l.¡hen compared to the FTS

algorithm gave preferred treatment to higher priority
programs at ihe expense of penalízing but not neglect-
ing lower p-r'iority programs. The quantitative i-mprove-

ment in the P": value of the VTS alqorithm over the FTs
N

algoriihm in a very restricted study was L4.8%.

The investigation of the optimum round-robin

time using a given job load has indicaied that while

more supervj-sor overheacis might be incurred in using

a small round-robin time, it does not imply that the

round-robin time can be taken arliitrarily large (since

in such a case high priority programs lvith short response

time ¡,vi1I 1il<eJ-y be neglected). The optiraum value found

(1.5 secs.) is one that mini.mizes c.he inefficiency of the

B9

schedr.ll-ing algorithm for the job-load considered.

4.4 SuorqesLions for Future Research

The resul ts of the nre.senì-, re.search hrf vê nrovl'decl

some understanding about the basic operatÍon and charac-
teristics of the job-scheduring algorithm usi-ng round-
robin scheduli-ng vrith a variable tj_me-sl.ice arrocation
scheme. The overal-l study reveal-ed that the algorithm
reacted quj-te favourably in the test environment to which

it was sub j ec ted. The algorithm, therefore, shoul-d be

commended for future studies.
some invesiigations which may be considered. for

future research are the follolving:
(1) Tc increase the simulation run tc include

the processing of more priority 3,

priority 4 and priority 5 programs so

that their effect on the performance of
the algorithm can be j-nvestigated.

(2) To de;ermine the optimum value for the

maxi_mum number of programs rvhich can be

scheduled simultaneousl-y by the job-
schedulíng algoriLhm for given ',vork-load
environment.

(3) To expand the simulation study to include
inout and output operaticns.

90

(4) To study the effects of roll-in and

roll-out of progrîams in the case h'here

a hj-gher priority program in a queue can

pre-empt a fower priority program in core

for CPU attention.

91

APPE\IIJIX A

DESCRIPTION OF I'JIIITING-LIST r\ND
EXECUTION-LIST ENTRTES

The items of description whj-ch are recorded

for an entry in the lvaiting list are the follotling .

(1) The job number

(2) The priority class number

(3) The requested.CPU time

(4) The arrival time

(5) The current penalty

The iten.s of descripticn which a.re reccrCed

for an entry in the executj-on list are the follovring :

(1) The job number

(2) The priority class number

(3) The requested CPU time

(4) The arrival time

(5). The accumulated CPU time received

(6) The intermediate or final penalty

(7) The altocated time-sl-ice

92

, APPEI]DIX B

' DESCRIPTIOII OF RÀI'IDOI''1 IJUI,ïBER GENERATOR

The ranclom number generator used by the job

generator routine is the pot^rer residue or multiplica-
tive congruential methocl. The method starts r,vith a

constant k, a starting value nO ancì a nodulus m. A

sequence {n. } of non-negative integers, randorn}y
L .LJ

distributed, vrith each less than m is generated by

means of the recursive formula

D.,, = kñ= (mod m) (30)t_+1 r_

where k = 65539 a.nd. m = 23!.

Any positive odd int.eger l-ess than 231 may be

chosen as the starting value .0.
To obtain a real- number, y, randomly distributed

j-n the interval (0r1) a further calculation is necessary

using the for¡¡ula

y = nr/(23r t) (31)

where n: is en in'teger ranciomly distributed and is first
l_

obtained by means of formula (30)

Further discussion of the ¡",iultiplicative con-

gruential method may be found in t9j.

93

APPENDTX C

DESCRTPTION OF i!ÏETHOD FOR GENETìATING
NOR},iT\L R;U.JDOM VÀRIÀTES

The method. for generating normaLly distributed
random vari-ates in this study uti]izes the central
Limit approach (¡ee IfO]).

'lvith a gÍven mean ** and standard deviation
sx, a normally distributed random variate, x, may be

generated using the follovring formula:

x = s (r 2/K)r/2 '-K-x'*L/'\' * (Xi=l ni K/2) + ** (32)

where n. is a uniformly distributed random numberl-

between 0 and 1 (n. can be obtained by using the random

number generator described in ;\ppsncll)< B) and K is the
ntlmltar ¡F rr¡'llroq n .l-a ha rrcarl¡rsrrrvç! v! y ú¡uÈù ^ai LLj .iJ= LiJËU.

According to the Central Limit Theorenr ðs K

approaches infinity, the set of values of x approaches

a true normal distribution asymptotically. However,

to reduce execution time, K was chosen as 12. Thus

formula (32) becomes:

= "* ,t131 ni 6.0) + rnx. (33)

For further treatment of this topic, see IfO].

94

APPENDTX D

SAMPLE LTSTI\]G O}- INPUT JOB STREi'U,I

'di th the i nput -¡al ues shown in Table T-l- f or the
variable parameters and 157832165'as the starting
number for the random number genera.bor, a sample listing
of the first 20 programs with thej-r Ínitial job descrip-
tion (namely, program number, priority number, .cpu time

requested and arrival time) is sholvn belov¡.

Program
No,

1
2
3
4
5
6
7
I
9

10
11
l2
13
T4
15
16
L7
1B
19
20

Priority
No.

1
1
1
I
2
I
1
2
1
I
1
2
t
I
I
1
2
1
1
1

CPU Tirne Arrival
Requested Time

(secs.) (secs.)

10 29,350
5 42.154
7 62.406

11 94.922
40 120.399
t2 131.210
9 159.228

L7 1 71. 606
10 188.162
7 208.960
B 232.234

27 252.612
12 270.438
10 299.088
14 344.906
10 373.549
43 392,276
t4 417.436
5 42B. g5B
I 450.382

95

A.PPEI.IDIX E

SÀMPLE ourPUT LrsrflJc oF FfNTSHED pRoGRÅl.rS

The Ðrooram-s i n lhe samp_t e ,.i_npirl jOb st-rea-rn

shown in Appendix D were processed using .the variable
time-slice aJ-gori-thm and the input parameter varues
shown in Table II.

The final detaits of these programs are listed
on the following page i-n order of prograrn departure time
from the system

Program
No.

1
2
3
4
6
7
5
9
B

10
1r
13
L2
1A_

15
I6
'rQ

T9
L7
20

Priority
No.

1
1
I
I
I
1
¿

I
2
I
I
I
2
I
I
l
I
1
2
t

CPU Time
Requested

(secs)_

r0 .0
5.0
7.0

ll.0
T2.O
9.0

40 .0
10.0
L7 .O
7.0
8.0

12 .0
27 .0
10 .0
14 .0
1O.O
r4 .0
5.0

43.0
8.0

Àrrival-
Tíme
(segs)

.29.350
42.L54
6?-.406
94..822

131.210
L59.?_2,8
120.398
188.162
171.606
208.860
232.2.34
270.438
252.61.2
299.088
344.906
373.549
4L7 .436
428.958
382.27 6
450.382

Accum. CPU
'Iime Rec I d.

(secs)_

10 .0
5.0
7.0

11.0
r2 .0
9.0

40 .0
10 .0
r7.0

'/ .o
8.0

L2.0
27 .O
r0 .0
14 .0
10 .0
14.0
5.0

4,3.0
8.0

Accum. CPU &

Device Time
Rectd (secs)

11.0'
6.0
8.0

l-2.ú
13"0
10.0
4l_.0
1r.0
1c)

^
8.0
9.0

13"0
îc)

^LL) . W

11.0
15.o
11.0
15 .0
6.0

44.0
9.0

Fina l-
Penalty

__7 2
:.64
:.7 2
-_ 68
tl 1tr,

117 0

"147¿t9l-
,) cì ,/r

:ì4 t
t-68
It 15
i_ 81
i_7 2
:-7 2
).79
465
!;62
i-ÕÕ
:68

Exit Time
of Proqram

(secs)

40.500
1=B "224
70 .5 16

l-06 "9'72
150.689
176 " 018
196.303
208 " 095
21.L.248
2l_8 " 3 68
24L.344
2BB " 825
29)3"300
3r0.238
360"096
3tì4.719
442.2r8
AA) 110a!*J ¡ J!9

447 .859
/rÊo /tO?1!_,/.4/J

\o
O)

97

irl

L2l

t3l

l4l

tsl

t6l

Ri'FERENCES

Neilsen, N.R. , t¡The Sirnulation of Time-Sharing
Sysiems , " Comn. ÀCl.i, VoI, l0 , No. 7(JuIy l-967), pp. 397 4I2.

Fife, D.i4l. , "Àn Optimizati.on Model for Time-
Shar-ing, l1 Sfpceeai_nqs, ¿¡'fpS.
ComÞut, Conf ., Vol. 28, pp. 97 - tó2.
Scherrr A.L. r Àn Ànalysis of Time-Sharesl
@ (i\iÀc-TR-lB, ivlrr .Prã¡ect l4Àc,
Cambridge, iv'iass. , 1965) .

Kleinrock, L. , t?TÍme-Shared Systems: À
Theore bical 'Ireatrneñt ,

t' JÀCtt, VoI. 14 , No. 2
(/tpr . 19 67) 1 pp. 24L

Shemer, J. E. , trsome lvÍathematical Considerations
of Time-Sharing

_
Scheduling Àlgorithms , " ,JÀCI'I,Vol. I4,, No. 2 (Àpr. 1967) ¡ pp. 262 - 27L

Fi-ner G.FI., and McIsaac, p.V., "Simulation of a
Time-Sharing Systemr tr Flanagement Sciencq,
Vof . !2, No. 6 (Feb. 1966), p,o, efSO --19+.
Corbato, E. J. , Merwin-DaggeLt , Pi. , anci Da1ey, R. C.ItAn Experimental Time-sharing
of the Soring Joint Computer
pp. 335 344.

Greenberger, M., "The Priority problem and Computer
Tinre Sharing oIt Management Sc j-ence , Vo1 . I2 , No. I1(Ju1y 1966),

.ppl-
Beã - soo,

l7J
System, " Proceedings

Conference (J-962),

t8l

tel

I ro]

Naylor , T. H. , Bal-intfy, J. L. ,Chu, K., Comouter Simulation
John Idiley & Sons, Inc. , 1966

fbid.r pp. 90 95.

D. S. and
(Ne',v York :

cÁ

Burdick,
TecÌrniqucs

r PP. 49

