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ABSTRACT

A new nethod of analyzing a nonlinear feedback system which

has a single zero-memory nonÌinearity followed by a low-pass elenent

in the forward loop is discussed in detail-" Excitation is by

wideband, stationary, ergodic noise with a Gaussian probability

distrÍbution. This new method consists of an analysis by open-

loop considerations of a sanpled system equivalent to the given

one o

The results of the application of this method to a particular

system are found to compare very closely to those yielded by an

application of the Booton technique and to those obtained in

simulation of the sYstem.



PNSFACE

The obiject of this thesis is the i-nvestigation of a proposed

method of analysis of certain nonlinear feedback systems excited

by noise, the nrethod first being described in a paper by Henry and

Schultheiss, published in 1962" This method consists of replaci-ng

the given system by an equivalent sampled one, and calculating, b¡r

open-loop considerations, the probability of transition from a

hypothesized state to any other state in one sampling interval.

The elosed-loop response is then found by the solution of an

integral equation, achieved by the use of a digital computer.

The investigation consists of a detailed discussion of the

application of the new method. A new procedure to shorten the

calculation time and increase the accuracy of calculation is

described, fol-lowed by the analysis of an example, using a cubÍc

tern for the nonlinear portion of the systeri. A method of choosing

the sampling interval to make valid the replacement of the continuous

system by the sanpled one is also discussed.

The resutts are evaluated by a comparison with the results of

a study of an analogue siraqlation of the system and with those

results obtained from the Booton technique of analysis which consists

of approximating the nonlinearity by an equivalent linear term.

This evaluation is discussed in Chapter 5, where possibilities

for future v¡ork w'ith this method are outlined.
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After conpl-etion of the v¡riting of this thesis, two

ercors were found. to have been included..

The first involves the equations of Bright concerning

the conditional transition probability function. This

expresslon, þeing Gau-ssian, is a functlon of the variance of

the process being d-escribed, whereas Bright used. the ¡rean-

squared value of that process, vrhich is the veriance plus

the square of the mean value. The approprlate correction

was mad-e 1n the eomputer program (effected b¡i setting T2o

24, and- 26 equal to zero), and- the set of clata co4sidered

in the text v/as presentecì, the eorrect error curves being

displayed- in Graph !.
The second- error involves a misinterpretation of the

slgnlficance of the analogue simulation of the sampled

systeni" Since the choice of sampling interval discussed- ln

the text 1s only useful in making the Schultheiss technique

predict the same response as that of the continuous system,

and since a sampled system of the type consid.ered (vrittr

non-zero sampling interval) will not yield the same response

as the corresponding contlnuous system, it can be seen that

the comparison of the Schultheiss pred.iction and the ar¡alogue

sinulatlon respon,se, on the one hand., to the sanpled. systen

response, on the other hand., is not relevant, and. should.

be ignored. A]1 other comparisons are unaffected by this
change,
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CHAPTER I
INTRODUCTION

The problem of obtaining an exact solution for the response

of a nonlinear feedback system to a given excitation has been the

subject of much research during the past several yearsr such a solution

being, so far, unattainable. There are, however, several methods for

obtaining an approximate solution, possibly the most widely used of

v¡hich has been the quasi-linearization technique described by Booton

(I); this method, in spite of its w'ide acceptance, has not been

Justified mathematically, but was only suggested as a possÍbIe procedure

which could give acceptable results in rnny cases' This lack of

rigorous derivation curtails the usefulness of the procedure since no

estinate of error is possible, and does not contribute to progress

toward obtaÍning an exact solufion.

Tn L962, a nelr ¡nethod of predicting the response of a nonlinear

feedback system to a given stochastic excitation was described by

Henry and Schulttreiss (2). This method was derived using probability

theory in a rigorous proof and had all assumptions and restrictions

clearly available, thus providing a possible step toward the goal- of

an exact treatment of such systems"

This thesis deals with the Schuttheiss technique, both in principle

and in practical application to a partieular systeut (witfr the aid of a

digital computer), along with a coroparison of the results so obtained

r.Éth both those produced by the Booton techníque and those observed in

a sinulatíon of the system on an analogue con'puter'



CHAPTER II

TI{E SCHULTHEISS TECHNIQUE

The Schultheiss techníque is applicable to a unity feedback

systen of the fo¡sL shown in FÍg. 2-I, excited by a stationary,

ergodic, r,¿'ideband Gaussian process. N is a zero-neuxcry nonlinearity,

and H2 a lovr-pass element with a sufficiently low upper-cutoff frequency

that its response is approximately Gaussian even though tlie output of

the nonl-inearity nra,¡r be grossly non-Gaussian (3).

2"I BASIC ASSUI1PTIoN - THE MARKOV PROCESS

In orCer to apply the technique, the given system mu-sL be

approxinrated by the sampled system shown Ín Fig. 2-2.

Fte, 2-l

Ftc, 2-2
The response ri is then a sequence of const,ants, each lasting for one

sanrpling Ínterwal, T, anC. having the value of the signal at the input

to the sample and hold eircuit at the preceding sa.mpling instant. It

is essential to the method that each value in this sequence be completely

[4jr) Oeoea Hoto'l
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specified subject only to the hypothesis of the value preceding

it; such a sequence is known as a l\4arkov chain, and this ì4arkov

property rmst be proved for any system considered before an attenpt

is made to apply the method.

2-2 THE CONDITIONAL TRANSITION PROBABILITY }'UNCTÏON

If the response of the system between the ith an¿ (i"t)tir

sanpling instants (referred to hereinafter as the Íth sanpling

inten¡a1) is written r1r then 11 + L may be written as

ri+I = ri +^A1Ir1 +ÂoIi 2-t

where á1Xi and ÂoF1 are the changes in the value of y during the

ith saorpling interval due to the excÍtation e and feedback 11,

respectively. That the choice of origin in time is arbitrary ls

assured by the assumption of stationariness of the input process.

If e is sufficiently ruideband, A1X1 wil1 be independent of

rr; in other words, the sampling intenral must be long compared to

the correlatlon time of the excitation, so that r1*1 is independent

of the value of e at the ith sampling instant, (trris is the req-

ui-rement that the response be a ì4arkov process. ) If thís is tr"t e,

then a specification of ri will permit calculation of the stochastic

properties of r1*1, wtrich relatíonship is expressed in the condi.tional-

probability function of ri*1 subject only to the hypothesis of 11,

written Rs(ri*1lri). This calculation nay be carried out more

easily by assuming a Gaussian dlstribution for y -- an approximately

comect assumption even for vÍol-ently nonlinear N provided that H2

is sufficiently tow-pass (3).



the probability distribution of the response nay be obtained

fron the well-knov¡n probabil-ity integral equatiott (5),

ph.,): I: p,(r., ln) ph) dn 2-2
(tr¡ewhere p(x) aenotes the probabllity density function of x

absolute probability of x)"

It should be noted at this time that the sampling intenral

rmrst be snalI with respect to the correlation time of the response,

because if this were not so, the probability of the response at any

given sampling instant r,¡ould not depend upon the value of the output

at the prevlous sanpling instant. (In most cases, however, the

correlation time of the response would depend upon the length of the

sampling interval, ) Also, in order to make the sanpled approxínation

valid, the sampling interval ¡nust be small with respect to the system

response time.

The combinatlon of the restrictions on the sampling interval T

may be expressed in the relationships:

Ti< T<To and T (T*

where Ti and To are some measure of the correlatíon times of the

excitation and response processes, respectively, and T" is the system

ú
response time.' Note that this requires that the response have a rmeh

longer correlation time than the excitation, which means tha,t the

bandwldth of the excitation mrst be much greater than the upper cutoff

frequency of the system,

times quantitatively will
be than T1 and T,

* The nethod of
deterrnine how
respectively.

specifying the correlation
much greater T and To rmst



Eo,uation 2-I rwy be rewritten as

ri*I = 11 +Ay1

in v¡hich Áyi i" defined as the change in y during the ith sanpling

interval. It may now be seen that a specification of 11 urill deternine

the probability of ri*I if the stochastic properties of Áy, can be

found; these Latter properties are available from open-loop considerations

during any one sanpÌing interval since the system is representable as

an open loop excited by the given input process less a hypothesized

constant ri (which excitations are uneorrelated by virtue of the

assumption that the input is wideband).

Equation 2-2 ís in general too complex to be solved by analytieal

methods, and special techniques must be used.

2-3 TrrE SCHULTIETSS SOLUTTON 0F TrE PROBABILTTY INTEGRAL EQUATIoN

EquatÍon 2-2 was solved by Schultheiss by quantizing the response

rt into a finite number, N, of states, each of hridth 4r, and operating

on the resulting conditional probability transition function.

By considering the probability of transition from an initial state

J in the ith sampling interval, j1, to a subsequent state k in the

(i*r)th interval, ki*I, the transition probabilitts, p¡k, is given by:

Pjk = pc(ki*t lii) .

The transition probability matrix may be written from the conditional

transition probability function:



P,,

l'
Prt þz- -

jth to the tth states

P,,

þz
P,,
,:

Pn,
from'

[r¡.] =

Then, if the probability of transition Lhe

in n sampling intervals be denoted by p}t, since the response is a

l¡rarkov process, it nay be shov¡n that the absolute probability of the

kth state, p(kia1) is given by the expression (4,pp. Lg-22í 5rPP.

356-7) z

n(ki*1) = rS*(n¡r)t

Then, for a transitlon probabi-lity nratrix [n¡n] as above, it may be

shown that

Þ3-] = [o¡n]" c

thus the computational method employed by Schultheiss consists of

successive miltiplications of the transition probability natrix

until the rows are identical, i.e., untÍI further rmltiplications

produce no change in the natrix produet. Then any ror¡r represents the

absolute probability density of the response r (in quantized forn).

îhis nultiplication may be caryÍed out on a digital computer.

2-L A REFTNEMENT BY BRIGHT

The Schultheiss technique of solution of the transition probability

equation was refined by Bright (l9), r*ho considered only one rolr of the

matrix multiptying the transition probability natrix, in order to

consenre space in the computer memory, thus yielding greater accuracy
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by permitting a larger ngmber of quantized states for a given memory

size. An arbitrary row rnatrix (initiat vector) was chosen for the

initial mqltÍp1ier, and. nultiplication w'ith the transition probability

matrix was carried out until the row matrix was unchanged by further

nrultiptications. That this method is consistent with the origina'I

w1Il now be shown.

At any stage of conrputation with the schultheiss technlque,

nnrltiplication by the transition probability matrix consists of pre-

multiplying that natrix by another natrix; the ¡nultiplication is

caryj-ed out for one row of the latter na.trjx at a time, each of whieh

is approaching, independently of every other, a coltrnon va1ue. Thus,

any one row nìay be considered" The Schultheiss technique has the

possi-ble advantage of greater speed of computation, si-nce the matrix

multiplications may be car¡ied out by roatrix squarÍng, thus yielding

more rnrltiplications per operation; however, this advantage may be

outvrcighed by the longer time necessarlr for each nmltiplication, since

N rows must be handled" Which nethod would be faster would be determined

by how closely the initial vector could be nade to approxinate the finaL

distribution"

It is of value to note that the schultheiss technique is in

reality an j-terative solution of equation 2-2. That this is so will

now be demonstrated.
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Consider any row matr:x [nf<] representing an arbiNrary initial

vector in the Bright refinement, and let this pre-multiply the transitj-on

probability natrix þrfl trruslr:

[otor---pN]

fnror---qN] 
:

Prr,¡ I
Peru I

| ,-t
Io*-i

the mth

l-Pn Prz

I Pzl Pzz
t_t_
I

I 
Pr,n Puz

in which pm and qm represent the probability of occurrence of

quantized state during the ith an¿ (i+1)th sanpling intervals, respect-

ively. Note that Q* can be expressed in terms of the probability of

the ttcentrerr of the kth state, thus:

ag = o(r¡)'Árn

where r¡ is the rrcentrell of the kth state, it being understood that k

refers to a state duri-ng trre (i+r)th sampling intervar. Then, writing

equation 2-3 in sumnation form yi-elds:

o(r¡) * E, 
ps(r¡lji) n¡

Similarly, replacing Pj by an expression in terms

of the centre of the ith state yield's:

q("r.) = Ë pc(rr.lr¡) n(r¡) arj ij=, a

Letting N * * and rj*o (i.e., elirninating the quantized approx-

inration) produces the expression:

o("¡) = I:"(rr*l*¡) n(r¡) d"j .

The notation concerning the quantized states nay now be dropped, writing

instead, 11 for a value of r during the ith sampling interval:

e(ri*t¡ = ÎÏ"('i*llri) n(ri) dri o

of the probability

2-4



fhe solution is obtained ¡chen þ-] is ídentically equal to

[zu] t i.€or the equalitY:

n(ri*1) Ë 
Ji"('r*rl 

ri) r(r1) ari

5-s satisfied, wtrích is identfcally equation 2-2, the equation whoee

solution was required"

The iterative solution of equation 2-2, Lhen, consists of assuning

a distribution for p(ri), which is the initial vector in the Bright

refinement, and each rov¡ in the transition prnobability natrix in the

Schultheiss technique" This èistribution is substituted into equation

2-2, vthích is then numerical-Iy íntegrated over e finite range to obtain

n(ri*1). This neçr distribution is then taken to be the new initial

vector, and another lntegration is carried out. The correct solution

is that distribution p(rt) which repeats as p(r1*1).

That the p and q functions in equation 2-l+ are identical when the

comect distribution for p is considered may be seen by noting that

since the excÍtation is a stationary process, and since the systen

belng eonsidered is time-invariant, the probability of occurrence of

a given value of r m¡st be the same, at aIL instants in time. In other

words, R(r1n1) mrst be identleally equal to p(ri).

Thus it can be seen that tho Sehultheiss nethod of solution of the

probability integral equati-on is equivalent to a solution by lteration,

which is a completely general method in that it imposes no furthcr

restrictions on the functions belng considered" In future tork, it nay

be found necessary to shorten the sanpling Ínterval, thus allowing
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dependence between the values of excitation at successive sampling

instants; this lvould produce a non-yiarkov response and a probability

Íntegral different from.that of equation 2-2. The derivation by

Schultheiss of the nethod of sol-ution of equation 2-2 assumed the

l"iarkov property, so that this method of solution is not applicable

to the nodified probability integral equation in the new case. The

aceompanying proof that this solution is equivalent to one by iteration

provides a nethod of solution, and illustrates that nothing is gained

by use of the Schultheiss method"

2-( A FURTIfiR NEFIÌ\EMENT

If the response r is assumed Gaussian, and if its mean value u

is known, it ean be seen that a sol-ution for p(u) r.r'ill specify the

entire distribution, Thus if the Bright initial vector ry(rn) is

chosen to be some arbl-trary Gaussian distribution v¡ith mean value u,

it may be mrltiplÍed by the column of the transition probability

natrix 
[trr] correspondlng to r, e ui this r^rill yield an Íntermediate

value 91 of the probabllity of the r = u state:

[ttr---eü

A comparÍson of qI with ry(u) will- indlcate whether the assumed dis-

tribution P1 was correct" If ql does not equal p(u), the variance
to) ot the Gaussian dfstributÍon nr(rn) for which p2(u) I e1 maf, be

ot"l

'il
o*-l

q1
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f,ound from the relation: *

oz=

The Gaussian distribution with the mean value u and variance ê *,¿

ùhen be computed and used as a nert¡ initial veetor"

As in the preceding section, this procedure rnay be continued until

the valu.e of the probability of the eentre state in the trial vector

equals the value of the probability of the centre state prûduced by the

nmltiplication. It nay be possibl-e by inspection of trial data, to

determine a functional relationshlp between suecessive values of /ana

the variance of the actual rszuIt when it is finally reached, so that

the desired result nay be obtained with very few multiplications in

similar conputations"

Thls simplified procedure greatly increases the speed with vutrich

computations may be perfornred, since onl-y the centre column of the

transition probability matrix need be calculated; furthermore, many

more quantized states may be used (a virtually unlimited number), so

that error due to this quantization may be made negligible. Using

this nethod, solution time was reduced to less than five rninutes per

set of data, compared to the forty-five minutes required with the

Bright technique.

I
,llî qr

É This is found fron the

p(x) =

with x = ¡.

function

exp t
Gaussian density

1

't-27 6
(*-"f I2cz 

_i
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2-6 SU}ff,ARY

The Schultheiss technique, then, may be applied to a continuous

nonlinear feedback system rrith a single zero-memory nonlinearity in

cascade with a low-pass element in the forrn¡ard loop" This system is

approximated by a sanpled system, with a sampling intenral assumed

to be long ruiùh respect to the 
.excitation 

correlat'ion ti¡ne and short

wlth respect to the system response tineo

The low-pass element is assuned to have a sufficj-ently low upper-

cutoff frequency so that its output is approximately Gaussi-an" !üith

these restrictions and approximatíons, the conditional transition

probability function of the response Inay be wrj-tten from open-loop

considerations, and the closed-loop response found by the iterative

soluti.on of an integral equation.
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CHAPTER IIÏ

AN EXAIVIPLE

As an example, the Schultheiss technique was applied to a system

of the form shown in Figure J-1, excited by a stationary ergodic

Gaussian process t¡ith a (double-sided) power specürurn assumed to be

of the form

W(æ)= watts/rad/sec. 3-r

fn this chapter, the linear sampled approximation (Figure J-2, B = 0)

r'rilI be analyzed in detail by the Schultheiss technique, and, for

purposes of comparison, the continuoì.ls system of Figure 3-t witl be

analyzed by the Booton technique" A method of choosing the sampling

interval to make the approxirÊtion valid will be discussed.

Fte.3-/

Fto-3-2

3-1 Tr# SCHULTHETSS ANATYSTS 0F TI# SAIIPIED SYSTEM

In order to display the Schultheiss technique, the

the system to the excitation described will be derived;

case, for ivhich the probability integral, equation 2-2,

explicitly, and the nonlinear case, for which a digital

response of

both the linear

may be solved

computer must be

¡¡=flft Bt3

!cr¿t
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used, r,¡ilI be diseussed"

3-1-I the_Linear Case

Before the schultheiss technique is applied, it i-e necessary to

show that the response of the system has the Vrarkov property.

Considering equation 2-I, it nray be seen that for the system under

consideration, ri*I mI be written as
af

-i+t -.i+ atÍi*Jy'Grrdt 3-t

and ri*l = (t * act¡rt o Átri

.åssunning that T is suffi-ciently long so that Atyi is Índependent of

the value of the excitation at the ith sampling instant, it may be seen

that ri*1 is conrpletely specifÍed by a h¡pothesis of rir and is calcul¿Lble

since the stochastic properties of Atyi- are available from the statistics

of the excitation. thus the r€sponse is shovün to be }ierkov.

To apply the schultheiss technique, consider equation 3-1. It is

clear that the function p"(ri*llri) is specified only by the stochastic

properties of the term AlJrl. Since the excitation is assumed ergodic,

the enserrble average of the system response over many sampling inten¡a1s

nay be considered in place of the time average. Since the response has

a zero mean value and is Gaussian, it is completely specified by its

mean-square value, v¡hich wiLl then specify the statistics of A1I1r and

thus those of p"(ri*flri)"

Applying harmonie analysls technlque" (3), it may be shown that



(see Appendix A) tfre

trD"

L5

mean-square change is given by the expression:

= zêGcf r [., -r-;Pr Irs [- Tr-J
conditional probability transition function nây then be written:

p,(c¿*,lr,) = #*rlffi) 3-z

Substitution of equation 3-2 i,n1.'o the probability integral equation

2-2, along with the Gaussian probability distribution of the excitaüion,

yields an expression which may be solved explicitly (see (4), pp" Z5-6

and appendix B, for the method of solution), the result being the

expression:

AG o= 3-3

oJ= p(,-ry)
where 4 t" the variance of the response of the linear sanpled system

of Figure 3-2 excii,ed by the assumed process; this expressi-on will be

exact provided that I is sufficiently large so that values of the

excitation at successive sanpling instants are uncorrelated.

3-L-2 The Nonlinear Case

The expressions for ry and (S7y)' have been carcurated

(4); tne results are quoted for reference in Appendix B. The solution

of the resulting probability integral equation was obtained by the use

of an I.B.Ui. 1620 digital computer; the program used is presented in

Appendix C, and the results of the computations presented and discussed

in Chapter !,
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3-2 Ti{E B00T0N ANALYSIS 0F THE CONTTIWOUS SYSTE}Í

The Booton treatment of the continuous system involves the quasi-

linearization of the nonlinearity and a straightforward analysis of

the rezulting linear system by the harmonic analysis method. This

procedure was carried out by Bright (4), ana his results are quoted

here "

For the systen of Figure J'L, the variance of the response j-s

given by the expression:

o3 = K"qo
3-hG)

AGo=

F+Ac
in order

interval ),

3-4(b)

3-5

to satisfy the

equation 3-5 My

(3 * K.q

in which K*0, the equivalent linear gain of the nonlinear element,

is given by the equation:

Kuo =

3-3 OPTfVtUIvi CHOICE 0F TFìE

By equating the expressions for the response yielded by the Booton

analysis of the linear continuous system and the Schultheiss analysis

of the linear sampled system, a value of sampling interval is specified

lvhÍch will make the Schultheiss technique yiuld the same results as

that of Booton, which, in the linear ""J", yields the exact response

of Èhe physical systeri.

Setting the right-hand side of equations 3-3 and 3't+(a) equal,

one obtains the expression:

AG q" f,p(-ry)v
/-e f'1

By assunring T large (wfticfr mr¡st be true

Schultheiss restriction on the sampling

AG(l +tfio')

SAY]PLING INTERVAL

be
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solved explicitly for

expression:

T. The result is easily obtained as the

J-
FT=.

This value of T, used in the Schultheiss analysis of the linear

sampled system, w1Il- thus yield the same results as the Booton analysis

of the continuous system, For the nonlinear case, the term tAGr ín

equatÍon 3-6 røy be replaced by K"O to obtain an approxi¡rate value

for the correct T to be used"

It should be noted that the result of the Schultheiss analysis,

equation 3-3, predicts a zero value of response for zero sampling

interval, a behaviour which is not predicted by convenüiona} analysis

of sampleA systens (8). This anonaly is due to the violation of the

assumption that T is large compared to the comelation tj-me of the

excitation"

3-4 SU}0uARï

The approxination of the continuous system by a sampled one is

only valid for a careful choice of T" The requirement in the Schult-

heiss technique that the sarnpling interval be large complicates that

selection when using that ¡nethod of analysis; however, it was possible

to nake such a choice analytically in the example considered"

-,]t 3-6
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CHAPTER IV

Tffi ANAIOGUE AND DIGITAI CO}ÍPUTER STUDTES

The nonlinear feedbaek systen described in chapter ÏII was

sÍnn-rlated on a Pace TR-49 analogue computer. The methods of tnêêsüre-

ment of the excitation and response processes, and the sinrrlation of

the system, along with some considerations of the digital computer

study, are discussed in this chapter"

4-I TI{E FREQUENCY SPECÎRUM OF THE GENERATOB

The frequency spectrum of the noise generator ïùas measured in two

parts: high and }ow frequency components were measured by separate

techniques, the dividíng frequency being chosen, somewhat arbitrarily,

as ten cycles per second.

4-l--I High FrequencY Components

The arnplitude of a noise polfer spect¡rm at a frequency fo nay be

measured by passing the noise through a bandpass fil-ter centred at fo

and measuring the variance of the output process€ However, if the

speetrum is not flat in the vicinity of fo, it becomes difficult to

estimate the anplitude of the spectrum at that point. AIso, it is

difficult to obtain a filter with a narrovr passband, variable centre

frequency, and constant (or at least accurately calculable) bandwidth.

These difficulties were overcome in the measurement of the noÍse

generator spectmm by utilizing the heterodyning system depicted in

Figure 4-1.

Notse J
B.aNopass Ftttea

4-l
Cuoppea

Ft o.
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The mean-square value of the output of the filter is proportional-

to the value of the eomponent of the power spectrum of the chopped noise

centred at f" - fo, the lower sidebands being chosen to avoid interference

from the harmonics of the chopped signal. Tuning to various frequencies

is easily accomplished by varying f".

The filter used was of the forn shot'n in Figure la'Z, and placed in

the feedback loop of an operational amplifier to achieve a bandpass

configuration" The bandr.Édüh ôf was adjusted by means of the resist-

ance R, the value used. in the measurements being 0.J cycles per second

(between -Jdb points) at a centre freo,uency fo of approximately 1100 cps"

The filter-arrptifier tre.nsfer function is shown in Graph 1,

It was found that the filter characteri-stics hrere very sensitive

to changes in the resistance of the inductor; to avoid this difficulty,

the filter was placed in a thermally-insulated chamber.

Because the output of the fÍIter vras a slowly-varying random signal,

it was Í-mpossible to measure its meêR-seuare value w'ith any avaíIable

meter. Houever, for Gaussian noise, f(t), it m,ay be shov¡n (6) tnat tfre

forn.so value e is given by the expression

e=
{1,,rr at

rfor large T.

ÍflL
V 2r

L

Fto,4-2
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Since a linearly filtered Gaussian wave remains Gaussian in nature,

the nethoc just described nny be used to determine the r"m,s' value of

the filter output. The circuit used to effect this measurement is shov¡n

in Figure 4-3"

Fte.4-3
As a check, the generator noise was also measured with a commercial

version of the system shor¿n in Figure 4-1.*

Since the readout mechanism of this instrrrment hras a quickly-responding

meter, which ryas useless for noise measurements, the meter signal (which

ïras a slow]y-varyÍng D.C. voltage) was integrated over a long þeriod of

time.

The results of the two methods of measurement were equal to within

qd)þ.

4-I-2 Iow FrequencY Components

It was not possible to measure the spectrum of the noise below five

cycles per second by the above method, since the fundariental component

of the chopper wave became significant in the filter response, and since

the filter bandwidth became significant with respect to the frequency of

the noise eomponent being examined. However, the spectrum of the noise

for these low frequencies was approxi-uetely flat, as can be seen from

Graph 2, p.2llrand was of sufficiently low frequency to enable the use of

a filter slmulated on the computer (ó)"

* General Radio Corp., l''Iave Analyzer T:ype lJ6-A'
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The transfer function of the fil-ter used is given by the expression:

Å 2E s/axú(s)=y(s):Wim
which was sinmlated by the circuít shown in Figure 4-4.

Ftc. 4-4
Excitatíon of this filter by noise with a power spectrum of the

form
tJ(crr) æ No 4-1

1+

produces noise with a meê[-sgì.râre value Tã given by the expression

(Ð"

F'

ß+t
which, for tt;<f, reduces to the simple relationship:

'F 
= NoÇ-o

Xt= N"E*" t)(-/p)zr 4

The mean-square value of the response of this fil-ter v¡as measured by

squaring and integrating.

The amplitude spectrum of the noise generator is displayed in

Graph 2, from which it may be seen that the spectral density assumed

in the analysis of the system (equation 3^I), was available only up

to a frequency of 3OO cycles per second; in order to correct the high

frequency portion, the noise was filtered, obtaining a spectnrm which

vras equal to the assumed spectnrm, to u'ithin 5%, up to a frequency

(ó):

4-2@)

t+-2(b)
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9f l-0OO eycl-es per second; above this frequency correcöion uas not

possible. Hor.¡ever, ow'ing to the lovr-pass nature of the system belng

studi-ed, it is felt by the author that the absence of these high

frequencies produced negligible eruor in the system measurements"

The filtered generator output and the ideal (assuned) amplitude

spectra, are also displayed in Graph 2.

1,-2 THII VARTANCE OF THE Ð(CTTATION

During the measurements on the system being studied, the

variance of the excitation i¡Ias determined by the use of the filter

shown in Figure 4-4, ttre output of which was squared and integrated"

This procedure measured the spectral level, No, of the excitation

about a given low frequency, which was chosen to be five radians per

seeond. Error in the determination of the va.riance of the excitation,

due to the absence of the frequencies above 1000 cycles per second,

v¿as thus elÍminated.

The damping coefficient ( had to be ehosen large enough to

eliminate the detection of any ripple in the low frequency part of

the spectrrrn, but small enough so that the spectrum vras still essen-

tially flat over the pass band of the filter (to nake the correction

term in brackets in equation 4-2(a) as close to unity as possible);

a value of 0.2@ was chosen, necessitating a correction term of I.005'

4-3 PROBABILITY DISTRIBUTION MEAST]REI\',.Ëi\TT

The noise generator was found to have a slowly-varying D.c.

component which had to be removed before any measurements could be

made" To achieve this, a high-pass filter of the form shown in



Figure l¡-J was

spectrum" The

used to remove the D.C,

lower cutoff frequency

23

eomponent in the corrected

of this filter, &1", was chosen

Fte.4-5
to be 0"005 radians per second.

The assumption that the excitation and response processes be

Gaussian llas necessary for the Schultheiss analysis technique to be

applicable. This property was measured by means of the circuit

Norse

Fte, 4-6
the comparator utilized had a response time of approxfunately

five microseconds, and its hysteresis loop riridth was less than 0,0I

volts. Sínce the noise being measured had a lower cutoff period of

more than 15 milliseconds, Ít can be seen that negligible error üras

incurred in this measurement due to the use of the comparator.

It was found by use of this technique that the excitation and

response processes were Gaussian to within the confidence Limits

of the measurenent process, for all val-ues of the system being

considered. (See Appendix D for the pr"obability distribution of

these processes),

shown in Figure 4-6.
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t+-b ESTII¡IÀTE OI COÌ{¡'iUENCE LruITS ON W

since the processes being consÍ-dered r,¡ere stochastic, w'ith

components at arbitre.rily low frequencies, an infinite measurement

time r,¡ould have been necessary in order to determine their values

exactly; since only a finite time was used, there is an uncertainty

in the ¡reasured values. An approxin'rate estimate of this uncertainty

will now be made.

A precise estinate of the confidence línits for the measurements

using the filter shoun in Figure h-2 was not, obtained" However, it

may be shown that the uncertainty of measured values obtaj-ned by fhe

use of a bandpass filter followed by a so¡:arer and integrator is

approxi-nrately the same for several different sharpty selective

filters(6).Sinceonlyanapproxinateestimateisnecessaryrthe

confidence linits for an ideal bandpass filter r.rill be used to

estimate those of the fil-ter used for the spectrum measurement'*

For an ideal bandpass filter of bandwidth Af, if a measurement

is nade of a random Gaussian process w'ith a flat pov,er spectrum in the

passband of the filter, there is a 95% probability that this measured

value is within p% of its real value for a measurement time T given

by the expression (ó):

T=4x104
p2 at

this type of fjl-ter are the largest of
quoted reference; thus i!-i" expected
ihu measnrements rnade w-iIl be modest'

seconds . 4-2

the types
that the* The lirnits for

considered in the
linits quoted for
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In the determination of the spectrum, approximately 3000 seconds

was used for each measurement; since the bandwidth of the filter

was 0,! cycles per second, there is a 95% probabi-lity that the

measured values lie within approximately 5% of the real value.

With the filter used in the determinati-on of the variance of

the excitation, it nray be shovrn (6) tfrat the approximate measurement

time I required is given by the expressíon:

T=4xI04

- 

õ€üür-rüSc
x'p¿af

v¡here the bandwidth Af nay be defined as the frequency difference

bet¡,¿een half-power points.

In the determination of the excitation variance, the bandwidth

of the filter used was O.! cycles per second., ¡rielding a 951,

confidence linit of 3%.

4-4-2 Squaring and Integrating

For Gaussian noise with a spectrrrm of the form given in equation

J-1, the tj¡re T required for a 95{, probability of obtaj-n-ing a rneasured

value within p% of the actual value is given by the expression:

T=4xtO4 second.s.
nPo'

In the analogue computer study, this method r,las used to determine

the varÍance of the response, which had a different bandwidth p for

each of the measurements made, due to the different equivalent gaÍn

val-ues for the nonlinear element. This bandwidth had a ninimum

value of one radian per second and a naximrm of approximately tó
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radians per seeond; the time of measurement was 2000 seconds for

all points considered except the linear cases, for which the ti-ne

was 6000 sesond.s. The resulting confidence limits are displayed

in Graph 4, P.29$ and are all less than 2Ø'

4-4-3 Probability Distribution Measurenents

By examination of the data taken in the determination of the

probability distribution of the noise, it was found that, for the

measurement tÍme used, there hras a 95% probability of the measured

probability density values being within 2% of the measured values'

L,-q SII'II]LATION OF TFIE SA}¡BLE AI{D CLA}P CIRCUTT

clamp circuit was si:rmlated by the circuitThe sample

shov¡n in Figure

and

l+-7.
TG)

Ft e. 4-7
If K is made large conpared to the bandtridth of the excitatíon,

the system response (r¿itfr the comparator sw'itch closed) rrill equal

the excitation, If the switch is opened at any time, the response

w.iII remain at its value at the instant that the sw'itch was opened"

Thus if the switch is closed for a short time, J secorrdu, and then

opened, and this action repeated every T seconds, the circuit w1Il

approxÍmate a sample and zero-order hol-d circuit"
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. In the circuit used in the simulation, K vllas set to be 2000,

so that a rrclosedrt time, á, of approxinøtely one millisecond was

necessary to allow the response to become equal to the excitation

during that rrclosedrr interval. Thi-s rtclosed'r time is small compared

to the sampling intervals psed (which were all greater than ten

miltiseconds), so that the approximalion to an ideal sanple and

clamp circuit r,'ras good.

4-ó cHOrcE oF 9ONSTAMTS

From eo¡ations J-J and 3-4, and from the equations in Appendix

B, it can be seen that A, the gain of the lÍnear portion of the non-

linear element, is a scale faetor, so that it nay be set equal to

unity with no loss of generality" since the bandwidth of the

available noise generator hlas approximately 500 radians per second'

the gain G of the integrator $Ias made unity, so that the response

of the system would be Gaussian for all nonlinearitÍes considered

(B was adjusted successively to 0, 1, 3, ana 5)'

4-? DIGITAL CO}æUTER CONSIDENATIONS

In the solution of equation 2-2, an estimate of the responset

oj, was made by inserting the Booton equivalent gain for the non-

linear element into equalion )-J. The limits of the numerical integ-

ration were È[dor so that the area under the normal curve eonsidered

r,ras greater than 99.9g% of the total areao Examples were computed

for the number of quantized states, N, equal to 11, I01, and 201'

from which it was found that use of 5L states (which was the number

used in all computations) yielded results v¡hich differed fro¡n those
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obtained using 2OI states by less than .01Ø" In fact, by eareful

choice of the integration l-imits, 2I or lI states could have been

used with negligible error.

It was noted in the calculations that the sequence of or2 values,

sl, s2, t3, generated by two successive nmltiplícations of a trial

vector (*itfr variance s1) witfr the column of the transition probability

matrix corresponding to the mean (r = O) state, bore a definite

experimental relationship to each other and to the ultinately conputed

o2; this relationship is given by the expression:

s2-sI _ s3-s2
o--sr re

from which a forecast of ot may be nade:

22
L, = Þo - ÐtÞâ

-L)

2t2- 
"l_ 

- 
"3

Thus a guess of the final (trle) ol (s1 in the above equations) *iff

lead to a very close estin'rate with only two nmltiplications.

l+-8 SUI'fl{iÁ3Y

fn the simulation of the system, measurements and corrections

were ¡nade to ensure that the noise excitation and response were of

the assumed form, The parameters of the system 't{ere chosen according

to the restrictions laid doun by the available equipment.

Checks were nI;lde during the digital computations to ensure that

the numerical integration was taken over sufficiently w'ide limits,

and use was made of a convergence property to bring the computations

to a rapid solution"
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CHAPTER V

DTSCUSSTON OF NESULTS ÁND CONCLUSIONS

The results of this investigation will be discussed as follows:

first, the Schultheiss analysis of the sampled system will be ex-

amined, and then the approximation of the continuous system by the

sanipled one v¡iIl be discussed. The results of the Schultheiss

computations compared to the analogue computer results of the study

of the continuous system, followed by a comparison of these values

with the results of the Booton analysis of the continuous system,

will conrplete the dlscussÍon" conclusions based on these results

and. on the material discussed in Chapter II will be presented.

From Graph 3, it can be seen that the schultheiss analysis

yields results which agree with the analogue computer results for

the sarnpled system for all except small sampling intervals. For

these values of T, as has been pointed out, successive values of the

excitation are not uncorrelated, which is a violation of an assumption

in the Schultheiss analysis.

Graph 4 displays the behaviour of the example used for various

nonl-inearities, the sarnpling interval chosen according to equation

3-6 f,o nrake the approximation of the continuous system by the sampled

system valid" Inspection of this graph shows that there is excellent

agreement between the Schultheiss analysis and the behaviour of the

sanipled system in the linear case; for the nonlinear cases, the

computer analysis yields results which are lfithin the confidence

TIJE SCHUTÎHEISS ANALYSIS OF TIfi SÁI\iP]ED SYSTEM
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timits of the experÍmental measurements in nearly all cases.

However, the computed values are almost all less than the measured

values, which may be due to a slight error in the schultheiss

analysis or to experi-urental error, arising from stra.y noise in the

system, slight deviations from the assumed excitation spectrum, or

from error in the diode approxinations to the rmlltipliers used in

the cubic term of the sinmlated system and in the measurement

techniques.

q-2 THE ANALOGUE COMPUTER STUDY OF THE SAIV1PTED AND CONTINUOUS

SYSTEVIS

A comparison of the results of the analogue study of the

sampled and continuous systems will indicate the validity of the

choice of T" It was found that this choice was critical for large

nonlinearities --- a 101 change in T produced a IO% change in the

sampled systern output" However, from Graph 4 it can be seen that

the sampled s¡r5fs¡ behaviour. was the sa.ne as the coutinuous system

behaviour, within confidence limits, for most points" This would

indicate that the use of equation 3-6 yields the best choice of

sampling interval possible, in spite of the approximation of the

forward gain by the Booton equivalent gain"

A single value of T could have been used for all sanpled

points in Graph 4, but a difference between sampled and continuous

system behaviour of up to 50-100% would have occurred., depending on

how T was chosen. The srlallest maxirum difference for the conditions

considered in Gra.ph 4 is about l5-2O%, for a1l possible T.



3I

5*3 SCHULTHEISS AhlD B00T0N RESULTS COÌü.¡PARED T0 THE ANAL,OGUE

COI\trUTEA, STUDY OF T}IE COI\TIINUOUS SYST!:I'Í

SÍnce the purpose of the application of the Schultheiss method

was to analyze the eontinuous system, a direct comparÍ-son of the

Sehultheiss results with those obtained from the analogue computer

is in order. To give an idea of the quality of the nevr analyLícal

method, the Booton results will also be studied"

Graph 4 displays the behaviour of the continuous system as

determined from the analogue computer, and the results of the

Schultheiss and Booton analyses; from this, and from Graph 5, it

can be seen that the Schultheiss technique yields results with a

sl-ightly larger error than the Booton method. The error in al-most

all cases, however, is within the confidence linits of the Reâsurê-

rnent techniques.

5-Iï CONCLUSIONS Ai\¡D FUTURE INVESTIGATION

The Schultheiss technique was applied to a given sampled system,

the results comparing favorably with those obtained in an analogue

computer study of that system, provided that the sanpling interval

was large conpared to the correlation time of the excj.tation.

Furthermore, an approximate method of choice of sampling interval,

using the Schultheiss equation for the linear system with the

Booton quasi-Iinearized gain for the nonlinear element, made the

sanpled system approximate the behaviour of the corresponding con-

tinuous system, so that, with that choice of sampling interval, the

Schuttheiss technique l.las appticable to the continuous system. A
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comparison of the reflrlts yielded by the Schultheiss and Booton

techniques with the results of the analogue computer study of the

continuous system shovred, that the results for both methods were

equal to the analogue computer results to w'ithin the confidence

ljmits of the measurement techniques.

The Schultheiss nethod of analysis is exact when applied to

a sampled system, provided that the sar',pIing interval is large

compared to the correlation tjme of the excitation. ltlhen applled

to a continuous system, the only source of error is seen to be the

choice of sampting interval to make the sampled and contÍnuous

systems behave identicallY'

From the considerations in chapter II, it can be seen that

the schultheiss technique is equally applicable to noise having

other probabitity distributions than the nornal, provided only

that the fonn of the probability density function is knov¡n in

terms of the mean and l.nrt,s. values of noise at the input to the

nonlinearity, and of the excitation and response processes' use

of povier series approximations to the probability density functions

of these processes may render an analybical solution of the non-

linear problem Possib1e.

The main drawback in the apptication of the schultheiss

technique is the necessity of choosing a sampling interval so that

the sampled system is a reasonable approximation to lhe continuous

one being analyzed, From Chapter Il, it nay be seen that the
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solution of the probabíIity integral equation (equation 2-2) is a

general one, not requiring any restrictions on the functions p and

pg" Thus the conditional transition probability function does not

have to be Ì4arkov, so that if, ín its derÍvation, allowance be uade

for statistical dependence betrveen val-ues of the excitation at

successive sampling instants, the sanpling j-nterval T could be

made arbitrarily small, and the approxlmation of the continuous

system by the sarnpled one v¡ould not be necessary'
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APPENDIX A

CA],CULATION OF THE OPEN.LOOP RESPONSE

ilxcitation of the system has a poi"¡er spect'nim of the

f o ¡r¡r:
F(cd) = 2ß62

(3"+(¡)'

Integration over a period T m¿ry be v¡ritten as a Fourier

transform expression:

H(j-) : .qG (1 - "-ia)jw

A-l-

L-2

The open-loop output power spectrum can be found from the

relationship:
ç(rrr)=F(,) lH(ir)l 2 A-3

in which, the last factor for this example may be urít,ten as:

ln(iw) l' * 
W (1 - cos ¿or) ' A-À

substituticn of equations A-1 and A-4 into equation A-J

produces z

c(ar) = 2ßoz . 2(nCl2 (1 - cos -T) " A-5

F'* -' t^)L

Note that this expression is continuous and finite for all

real (t)ø

The varianc€, o.1e of the output can be found from the

expression:
ol = n(o) = + [-ci-) a-, A-6r 27r J'*

In which n(e) is the autocorrelation function of the

output. Thus the response is given by the expression:

t= J l:ffi(l - cos.,r) du¡. 
^-?
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Revrriting the integrand i-n terms fx=
€

o

J

tÐT produces:

iit - cos xJ"[F + cosx I dxrFffiJ
The first term in the integrand may be integrated by

parts, the second is a standard form, and the third may be

i-ntegrated by complex varia¡fe theory (9)' The solution

is given by the exPression:

af = zo= (açlÍ ru

f
Since the excitation is ergodie, the above expression also

gives the mean-square change of the response during any

sampling interval. This is the desired result'

[r- - r - e- Prf
LPTJ

A-g

I
2

cos x
Ø x Pt)'+ x"
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¿.PPtrNDIX B

M = -(ne)t
(ãiF = s6 1L

where r;-1_

õ."4

s2 (ae¡t rt(t +

õp,o

s6

[R"i +

+s4rl +

is the h¡rpo

(1 +tfté,]",.
s211+so
hesized state, and.

r 
É,F. 

ÁGf{,..)' oo1"-Pt

þþr*ef Gl o¿ ç.-3Pr +

'¡ B 
+ a("qef ;(g(Ê)"

( aef (Ê)' ,'

t
*PT - 'l

3Êo')' + å.[tt(¿el' f;"'t_ + zfto') þ-Pt+fr - 1)

ra(ee)' (R)' "tt.-zPr + zpr - tl
3fv - t)
oo++ftå* r) (e-Ét n pt - t,]

z(rcf r'fcr + tfto'1
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