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ABSTRACT

A new method of analyzing a nonlinear feedback system which
has a single zero-memory nonlinearity followed by a low-pass element
in the forward loop is discussed in detail. Excitation is by
wideband, stationary, ergodic noise with a Gaussian probability
distribution. This new method consists of an analysis by open-
loop considerations of a sampled system equivalent to the given
one,

The results of the application of this method to a particular
system are found to compare very closely to those yielded by an
application of the Booton technique and to those obtained in

simulation of the system.



PREFACE

The object of this thesis is the investigation of a proposed
method of analysis of certain nonlinear feedback systems excited
by noise, the method first being described in a paper by Henry and
Schultheiss, published in 1962. This method consists of replacing
the given system by an equivalent sampled one, and calculating, by
open-loop considerations, the probability of transition from a
hypothesized state to any other state in one sampling interval.

The closed-loop response is then found by the solution of an
integral equation, achieved by the use of a digital computer,

The investigation consists of a detailed discussion of the
application of the new method. A new procedure to shorten the
calculation time and increase the accuracy of calculation is
described, followed by the analysis of an example, using a cubic
term for the nonlinear portion of the system. A method of choosing
the sampling interval to make valid the replacement of the continuous
system by the sampled one is also discussed.

The results are evaluated by a comparison with the results of
a study of an analogue simulation of the system and with those
results obtained from the Booton technique of analysis which consists
of approximating the nonlinearity by an equivalent linear term.

This evaluation is discussed in Chapter 5, where possibilities

for future work with this method are outlined.
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After completion of the writing of this thesis, two
errors were found to have been included.

The first involves the equations of Bright concerning
the conditional transition probability function. This
expression, being Gausslan, is a function of the variance of
the process being described, whereas Bright used the mean-
gsquared value of that process, which is the varlance plus
the square of the mean value. The appropriate correction
was made in the computer program (effected by setting Z2,
74, and 76 equal to zero), and the set of data consildered
in the text was presented, the correct error curves being
displayed in Graph 5.

The second error involves a misinterpretation of the
significance of the analogue simulation of the sampled
system. Since the choice of sampling interval discussed in
the text is only useful in making the Schultheiss technique
predict the same response as that of the continuous system,
and since a sampled system of the type considered (with
non-zero sampling interval) will not yield the same response
as the corresponding continuous system, it can be seen that
the comparison of the Schultheiss prediction and the analogue
simulation response, on the one hand, to the sampled system
response, on the other hand, is not relevant, and should
be ignored. All other comparisons are unaffected by this

change.
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CHAPTER 1
INTRODUCTION

The problem of obtaining an exact solution for the response
of a nonlinear feedback system to a given excitation has been the
subject of much research during the past several years, such a solution
being, so far, unattainable. There are, however, several methods for
obtaining an approximate solution, possibly the most widely used of
which has been the quasi-linearization technique described by Booton
(1); this method, in spite of its wide acceptance, has not been
justified mathematically, but was only suggested as a possible procedure
which could give acceptable results in many cases. This lack of
rigorous derivation curtails the usefulness of the procedure since no
estimate of error is possible, and does not contribute to progress
toward obtaining an exact solution.

In 1962, a new method of predicting the response of a nonlinear
feedback system to a given stochastic excitation was described by
Henry and Schultheiss (2). This method was derived using probability
theory in a rigorous proof and had all assumptions and restrictions
clearly available, thus providing a possible step toward the goal of
an exact treatment of such systems.

This thesis deals with the Schultheiss technique, both in principle
and in practical application to a particular system (with the aid of a
digital computer), along with a combarison of the results so obtained
with both those produced by the Booton technigue and those observed in

a simulation of the system on an analogue computer.



CHAPTER II

THE SCHULTHEISS TECHNIQUE

The Schultheiss technique is applicable to a unity feedback
system of the form shown in Fig. 2-1, excited by a stationary,
ergodic, wideband Gaussian process. N is a zero-memery nonlinearity,v
and Hy a low-pass element with a sufficiently low upper-cutoff frequency
that its response is approximately Gaussian even though the output of

the nonlinearity may be grossly non-Gaussian (3).

2,1 BASIC ASSUMPTION - THE MARKOV PROCESS

In order to apply the technique, the given system must be

approximated by the sampled system shown in Fig. 2-2.
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Fig. 2-2

The response rj is then a sequence of constants, each lasting for one
sampling interval, T, and having the value of the signal at the input
to the sample and hold circuit at the preceding sampling instant., It

is essential to the method that each value in this sequence be completely



specified subject only to the hypothesis of the value preceding
it; such a sequence is known as a Markov chain, and this Markov
property must be proved for any system considered before an attempt

is made to apply the method.

2.2 THE CONDITIONAL TRANSITION PROBABILITY FUNCTION

If the response of the system between the ith and (i+1)th
sampling instants (referred to hereinafter as the jth sampling

interval) is written ry, then rj +  may be written as

rjq] =T3 + Alyi + Aoyi 2=1

where 4)y; and Ay,

; are the changes in the value of y during the

ith sampling interval due to the excitation e and feedback rj,
respectively, That the choice of origin in time is arbitrary is
assured by the assumption of stationariness of the input process.

If e is sufficiently wideband, 4;y; will be independent of
L in other words, the sampling interval must be long compared to
the cofrelation time of the excitation, so that ry,; is independent
of the value of e at the ith sampling instant. (This is the reg-
uirement that the response be a Markov process.) If this is true,
then a specification of r; will permit calculation of the stochastic

propérties of ry,y, which relationship is expressed in the conditional

probability function of r; , subject only to the hypothesis of ry,

written po(ry,;|r;). This calculation may be carried out more
easily by assuming a Gaussian distribution for y -~ an approximately

correct assumption even for violently nonlinear N provided that Hy

is sufficiently low-pass (3).
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The probability distribution of the response may be obtained

from the well-known probability integral equation (5):

e
/O(/,‘;,‘,): -[,,o e (e lr) /0//3) arr: 2-2

where p(x) denotes the probability density function of x (the
absolute probability of x).

It should be noted at this time that the sampling interval
must be small with respect to the correlation time of the response,
because if this were not so, the probability of the response at any
given sampling instant would not depend upon the value of the output
at the previous sampling instant. (In most cases, however, the
correlation time of the response would depend upon the length of the
sampling interval.) Also, in order to make the sampled approximation
valid, the sampling interval must be small with respect to the system
response time,

The combination of the restrictions on the sampling interval T
may be expressed in the relationships:

T; < '1‘<TO and T<T,

where T; and T, are some measure of the correlation times of the
excitation and response processes, respectively, and T, is the system
response time.ﬁ Note that this requires that the response have a much
longer correlation time than the excitation, which means that the
bandwidth of the excitation must be much greater than the upper cutoff

frequency of the system.

% The method of specifying the correlation times quantitatively will
determine how much greater T and T, must be than T; and T,
respectively.



Eguation 2-1 may be rewritten as
riy =1y o+ Ay

in which Ay; is defined as the change in y during the ith gampling
interval. It may now be seen that a specification of r; will determine
the probability of rsa if the stochastic properties of Ayi can be
found; these latter properties are available from open-loop considerations
during any one sampling interval since the system is representable as
an open loop excited by the given input process less a hypothesized
constant ry (which excitations are uncorrelated by virtue of the
assumption that the input is wideband).

Equation 2-2 is in general too complex to be solved by analytical

methods, and special techniques must be used.

2-3 THE SCHULTHEISS SOLUTION OF THE PROBABILITY INTEGRAL EQUATION

Equation 2-2 was solved by Schultheiss by quantizing the response
r; into a finite number, N, of states, each of width Ar, and operating

on the resulting conditional probability transition function.

By considering the probability of transition from an initial state
j in the i*M sampling interval, J;, to a subsequent state k in the

(i+1)th interval, k the transition probability, Pjks is given by:

i+ls
Pk = Polky,glig) -

The transition probability matrix may be written from the conditional

transition probability function:



I = (P Pem e

L/DNI Prz T T PN
Then, if the probability of transition from the jth to the k

th states

in n sampling intervals be denoted by p?ks since the response is a

Markov process, it may be shown that the absolute probability of the
th . . :

k”" state, p(ks,7) is given by the expression (4,pp. 19-22; 5,pp.

356-7):

P(ki+1) = l%@§“5pjk)n .

Then, for a transition probability matrix ‘?jg} as above, it may be
shown that

Fil = [pad™ .
Thus the computaﬁional method employed by Schultheiss consists of
successive multiplications of the transition probability matrix |
until the rows are identical, i.e., until further multiplications
produce no change in the matrix product. Then any row represents the
absolute probability density of the response r (in quantized form).

This multiplication may be carried out on a digital computer.

2=/, A REFINEMENT BY BRIGHT

The Schultheiss technique of solution of the transition probability
equation was refined by Bright (4), who considered only one row of the
matrix multiplying the transition probability matrix, in order to

conserve space in the computer memory, thus yielding greater accuracy



by permitting a larger nﬁmber of quantized states for a given memory
gize., An arbitrary row matrix (initial vector) was chosen for the
initial multiplier, and multiplication with the transition probability
matrix was carried out until the row matrix was unchanged by further
multiplications. That this method is consistent with the original
will now be shown.

At any stage of computation with the Schultheiss technique,
multiplication by the transition probability matrix consists of pre-
mltiplying that matrix by another matrix; the multiplication is
carried out for one row of the latter mstrix at a time, each of which
is approaching, independently of every other, a common value, Thus,
any one row may be considered. The Schultheiss technique has the
possible advantage of greater speed of computation, since the matrix
multiplications may be carried out by matrix squaring, thus yielding
more multiplications per operation; however, this advantage may be
outweighed by the longer time necessary for each multiplication, since
N rows must be handled. Which method would be faster would be determined
by how closely the initial vector could be made to approximate the final

distribution.

It is of value to note that the Schultheiss technique is in
reality an iterative solution of equation 2-2. That this is so will

now be demonstrated.



Consider any row matrix [p@] representing an arbitrary initial
vector in the Bright refinement, and let this pre-multiply the transition

probability matrix E)JI;! thusly:

[?1 bp ==~ PN] P11 P12 = = - PIN
Poy Po2 = = = PaN

- = - o
[ql a, qN] - 3
| Pm Pro Py

in which p, and qp represent the probability of occurrence of the mth
quantized state during the i%h and (1+1)%" sampling intervals, respect-
ively. Note that q, can be expressed in terms of the probability of

the "centre" of the k' state, thus:
ag = alry): Ary,

where r) is the "centre" of the kth state, it being understood that k
refers to a state during the (i+1)th sampling interval. Then, writing
equation 2-3 in summation form yields:

N

alr) = 2 pelrilis) ps .

J=1 J

Similarly, replacing Pj by an expression in terms of the probability

of the centre of the j'h state yields:

N
Q(rk) = ch(rk|rj) p(rj)Arj :
J=i
Letting N —> and r;—0 (i.e., eliminating the quantized approx-

imation) produces the expression:

[- <]
alry) = S‘pc(rklrj) p(r;) drj .
Q0
The notation concerning the quantized states may now be dropped, writing

instead, ry for a value of r during the ih sampling interval:

q(ri+l) = gpc(ridlri) p(rj_) dry o 2=l



The solution is obtained when Ehﬂ is identically equal to
{?k] s i.e,, the equality:

&0
Plryg) = \y Pe(rya| i) plry) dry
-0
is satisfied, which is identically equation 2-2, the equation whose

solution was recguired.

The iterative solution of equation 2-2, then, consists of assuming
a distribution for p(rj), which is the initial vector in the Bright
refinement, and each row in the transition probability matrix in the
Schultheiss technique. This distribution is substituted into equation
2-2, which is then numerically integrated over a finite range to obtain
p(r;,1). This new distribution is then taken to be the new initial
vector, and another integration is carried out. The correct solution

is that distribution p(r;) which repeats as p(ri+l).

That the p and q functions in equation 2-4 are identical when the
correct distribution for p is considered may be seen by noting that
since the excitation is a stationéry process, and since the system
being considered is time-invariant, the probability of occurrence of
a given value of r must be the same, at all instants in time, In other
words, P(Pi*l) must be identically equal to p(r;).

Thus it can be seen that the Schultheiss method of solution of the
probability integral equation is equivalent to a solution by iteration,
which is a completely general method in that it imposes no further
restrictions on the functions being considered., In future work, it may

be found necessary to shorten the sampling interval, thus allowing
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dependence between the values of excitation at successive sampling
instants; this would produce a non-Markov response and a probability
integral different from that of equation 2-2. The derivation by
Schultheiss of the method of solution of equation 2-2 assumed the
Markov property, so that this method of solution is not applicable

to the modified probability integral equation in the new case. The
accompanying proof that this solution is equivalent to one by iteration
provides a method of solution, and illustrates that nothing is gained
by use of the Schultheiss method.,

2=5 A FURTHER REFINEMENT

If the response r is assumed Gaussian, and if its mean value u
is known, it can be seen that a solution for p(u) will specify the
entire distribution. Thus if the Bright initial vector pl(rk) is
chosen to be some arbitrary Gaussian distribution with mean value u,
it may be multiplied by the column of the transition probability
matrix [?jé! corresponding to Ty = us this will yield an intermediate

value a of the probability of the r = u state:

I:pl Pp == - pN:I Plu

9 =

A comparison of gy with pl(u) will indicate whether the assumed dis-
tribution P) was correct. If gy does not equal p(u), the variance

0% of the Gaussian distribution pz(rk) for which pz(u) = q) may be
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found from the relation:

The Gaussian distribution with the mean value u and variance cg may
then be computed and used as a new initial vector.

As in the preceding section, this procedure may be continued until
the value of the probability of the centre state in the trial vector
equals the value of the probability of the centre state produced by the
multiplication. It may be possible by inspection of trial data, to
determine a functional relationship between successive values of ogand
the variance of the actual result when it is finally reached, so that
the desired result may be obtained with very few mmltiplications in
similar computations.

This simplified procedure greatly increases the speed with which
computations may be performed, since only the centre column of the
transition probability matrix need be calculated; furthermore, many
more quantized states may be used (a virtually unlimited number), SO
that error due to this quantization may be made negligible. Using
this method, solution time was reduced to less than five minutes per
set of data, compared to the forty-five minutes required with the

Bright technique.

% This is found from the Gaussian density function

p(x) = 1 - )
e [ b |

with x = u,
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2-6 SUMMARY

The Schultheiss technique, then, may be applied to a continuous
nonlinear feedback system with a single zero-memory nonlinearity in
cascade with a low-pass element in the forward loop. This system is
approximated by a sampled system, with a sampling interval assumed
to be long with respect to the excitation correlation time and short
with respect to the system reséonse time,

The low-pass element is assumed to have a sufficiently low upper-
cutoff frequency so that its output is approximately Gaussian. With
these restrictions and approximations, the conditional transition
probability function of the response may be written from open=-loop
considerations, and the closed-loop response found by the iterative

solution of an integral equation.
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CHAPTER IIIX

AN EXAMPLE

As an example, the Schultheiss technique was applied to a system
of the form shown in Figure 3-1, excited by a stationary ergodic
Gaussian process with a (double-sided) power spectrum assumed to be
of the form

W (w) = 23 watts/rady/sec. 3-1
ez

In this chapter, the linear sampled approximation (Figure 3-2, B = 0)
will be analyzed in detail by the Schultheiss technique, and, for
purposes of comparison, the continuous system of Figure 3-1 will be
analyzed by the Booton technique. A method of choosing the sampling

interval to make the approximation valid will be discussed.

- tT Iy =Ad+Bd3 | JGxdt s
Fre. 3-/
| X S £ AND ZERo-| . re¢
e +— a’ ‘X=/40/+BC/3 yGXO/t Y 02,::: };:-D"T c

Fre. 3-2

3-1 THE SCHULTHEISS ANALYSIS OF THE SAMPLED SYSTEM

In order to display the Schultheiss technique, the response of
the system to the excitation described will be derived; both the linear
case, for which the probability integral, equation 2-2, may be solved

explicitly, and the nonlinear case, for which a digital computer must be
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used, will be discussed.

3-1-1 The Linear Case

Before the Schultheiss technique is applied, it is necessary to
show that the response of the system has the Markov property.
Considering equation 2-1, it may be seen that for the system under

consideration, r; , may be written as
T
riq =Tyt A1Yy +LAG r; dt 3-1

and Tig = 1+ AGT)I'i + Ay,
Assuming that T is sufficiently long so that z&lyi is independent of

the value of the excitation at the jth sampling instant, it may be seen
that ry 4 is completely specified by a hypothesis of ry, and is calculable

since the stochastic properties of Ajy; are available from the statistics

of the excitation. Thus the response is shown to be Markov.

To apply the Schultheiss technique, consider equation 3-1. It is
clear that the function p,(rs,;|ri) is specified only by the stochastic
properties of the term A Vi Since the excitation is assumed ergodic,
the ensemble average of the system response over many sampling intervals
may be considered in place of the time average. Since the response has
a zero mean value and is Gaussian, it is completely specified by its
mean-square value, which will then specify the statistics of ‘Alyi’ and

thus those of pg(ry,q|ri).

Applying harmonic analysis techniques (3), it may be shown that
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(see Appendix A) the mean-square change is given by the expression:

s 2 2 ' _ﬁ'r‘
&,y = 20" (AG)" T 1-1-¢
s T
The conditional probability transition function may then be written:

. [ — () —AGT)a]Z]
peltanI1e) = a5 {' 25T

32

Substitution of equation 3-2 into ihe probability integral equation
2-2, along with the Gaussian probability distribution of the excitation,
yields an expression which may be solved explicitly (see (4), pp. 25-6
and appendix B, for the method of solution), the result being the

expression:

ogl= AG o [/ — __/;_E—Zi-_r.] >
IGE AT

where oi is the variance of the response of the linear sampled system
of Figure 3-2 excited by the assumed process; this expression will be
exact provided that T is sufficiently large so that values of the

excitation at successive sampling instants are uncorrelated.

3-1-2 The Nonlinear Case

e T \2
The expressions for A,‘)Q and (A,){‘) have been calculated

(L); the results are quoted for reference in Appendix B. The solution
of the resulting probability integral equation was obtained by the use.
of an I.B.M. 1620 digital computer; the program used is presented in
Appendix C, and the results of the computations presented and discussed

in Chapter 5,



3-2 THE BOOTON ANALYSIS OF THE CONTINUCUS SYSTEM

The Booton treatment of the continuocus system involves the quasi-
linearization of the nonlinearity and a straightforward analysis of
the resulting linear system by the harmonic analysis method. This
procedure was carried out by Bright (4), and his results are quoted
here.

For the system of Figure 3-1, the variance of the response is

given by the expression:

2 2
oo = K o
G . 3-4(a)
,3 + Keq
in which Keq, the equivalent linear gain of the nonlinear element,

is given by the eguation:

- B _2 -
Keq AG(L + 3 79 ) 3-4(b)

3-3 OPTIMUM CHOICE OF THE SAMPLING INTERVAL

By equating the expressions for the response yielded by the Booton
analysis of the linear continuous system and the Schultheiss analysis
of the linear sampled system, a value of sampling interval is specified
which will make the Schultheiss technique yield the same results as
that of Booton, which, in the linear ca;e, yiélds the exact response
of the physical system.

Setting the right-hand side of equations 3-3 and 3-4(a) equal,

one obtains the expression:
AG o? [/__/—e—ﬁr]_ AGo?

BI-25)  pT 1 ptAG

By assuming T large (which must be true in order to satisfy the

3=5

Schultheiss restriction on the sampling interval), equation 3-5 may be
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solved explicitly for T. The result is easily obtained as the

T= 7%[\/3?%?—/} 3-6

This value of T, used in the Schultheiss analysis of the linear

expression:

sampled system, will thus yield the same results as the Booton analysis
of the contimuous system., For the nonlinear case, the term 'AG' in
equation 3-6 may be replaced by Keq to obtain an approximate value

for the correct T to be used.

It should be noted that the result of the Schultheiss analysis,
equation 3-3, predicts a zero value of response for zero sampling
interval, a behaviour which is not predicted by conventional analysis
of sampled systems (8). This anomaly is due to the violation of the
assumption that T is large compared to the correlation time of the

excitation,

3.}, SUMMARY

The approximation of the continuous system by a sampled one is
only valid for a careful choice of T. The requirement in the Schult-
heiss technique that the sampling interval be large complicates that
selection when using that method of analysis; however, it was possible

to make such a choice analytically in the example considered.
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CHAPTER IV

THE ANALOGUE AND DIGITAL COMPUTER STUDIES

The nonlinear feedback system described in Chapter III was
similated on a Pace TR-48 analogue computer. The methods of measure-
ment of the excitation and response processes, and the simulation of
the system, along with some considerations of the digital computer

study, are discussed in this chapter.

L4-1 THE FREQUENCY SPECTRUM OF THE GENERATOR

The frequency spectrum of the noise generator was measured in two
parts: high and low frequency components were measured by separate
techniques, the dividing frequency being chosen, somewhat arbitrarily,

as ten cycles per second.

L-1-1 High Frequency Components

The amplitude of a noise power spectrum at a frequency f, may be
measured by passing the noise through a bandpass filter centred at fo
and measuring the variance of the output process. However, if the
spectrum is not flat in the vieinity of fo’ it becomes difficult to
estimate the amplitude of the spectrum at that point. Also, it is
difficult to obtain a filter with a narrow passband, variable centre
frequency, and constant (or at least accurately calculable) bandwidth.

These difficulties were overcome in the measurement of the noise
generator spectrum by utilizing the heterodyning system depicted in

Figure 4=1.

Noise ———— £, LA — Y

CHorPER Banopass FILTER

Fre. 4-1
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The mean-square value of the output of the filter is.proportional
to the value of the component of the power spectrum of the chopped noise
centred at f, - f,, the lower sidebands being chosen to avoid interference
from the harmonics of the chopped signal. Tuning to various frequencies
is easily accomplished by varying f..

The filter used was of the form shown in Figure 4=2, and placed in
the feedback loop of an operational amplifier to achieve a bandpass
configuration. The bandwidth Af was adjusted by means of the resist-
ance R, the value used in the measurements being 0.5 cycles per second
(between -3db points) at a centre frequency f, of approximately 1500 cps.
The filter-amplifier trensfer function is shown in Graph 1.

It was found that the filter characteristics were very sensitive
to changes in the resistance of the inductor; to avoid this difficulty,

the filter was placed in a thermally-insulated chamber.

Because the output of the filter was a slowly-varying random signal,
it was impossible to measure its mean-square value with any available
meter. However, for Gaussian moise, F(t), it may be shown (6) that the

r.m.s. value e is given by the expression

o f]g}f ij(t)l dt
L r

[ I{ — |
\

/

for large T.
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Since a linearly filtered Gaussian wave remains Gaussian in nature,
the method just described may be used to determine the r.m.s. value of
the filter output. The circuit used to effect this measurement is shown

in Figure 4-3.

A r—

Fie. 4-3

As a check, the generator noise was also measured with a commercial

version of the system shown in Figure h—l.ﬁ

Since the readout mechanism of this instrument was a quickly-responding
meter, which was useless for noise measurements, the meter signal (which
was a slowly-varying D.C. voltage) was integrated over a long period of
time.

The results of the two methods of measurement were equal to within

3%.

4-1-2 Low Frequency Components

‘It was not possible to measure the spectrum of the noise below five
cycles per second by the above method, since the fundamental component
of the chopper wave became significant in the filter response, and since
the filter bandwidth became significant with respect to the frequency of
the noise component being examined. However, the spectrum of the noise
for these low frequencies was approximately flat, as can be seen from
Graph 2, p.2l4,and was of sufficiently low frequency to enable the use of

a filter simulated on the computer (6).

& General Radio Corp., Wave Analyzer Type 736-A.
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The transfer function of the filter used is given by the expression:

Xy _ 2L s/wo
W (5)"‘ Y(S) (S/wc)z, + 2 g s/w, +/

which was simulated by the circuit shown in Figure L4-4.

Fie. 4-4

Excitation of this filter by noise with a power spectrum of the

form
Ww) = Yo h-1
1 0+ w?
[
produces noise with a mean-square value x* given by the expression (6):
V2o AL f:w{ Ceon/ + | ]
(T RE (R F 22 ) A ot
which, for u%<K/3, reduces to the simple relationship:
X

= NEw, . : L~2(b)
The mean-square value of the response of this filter was measured by
squaring and integrating. |

The amplitude spectrum of the noise generator is displayed in
Graph 2, from which it may be seen that the spectral density assumed
in the analysis of the system (equation 3-1), was available only up
to a frequency of 300 cycles per second; in order to correct the high
frequency portion, the noise was filtered, obtaining a spectrum which

was equal to the assumed spectrum, to within 5%, up to a frequency
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of 1000 cycles per second; above this frequency correction was not
possible, However, owing to the low-pass nature of the system being
studied, it is felt by the author that the absence of these high
frequencies produced negligible error in the system measurements.
The filtered generator output and the ideal (assumed) amplitude

spectra, are also displayed in Graph 2.

L-2 THE VARIANCE OF THE EXCITATION

During the measurements on the system being studied, the
variance of the excitation was determined by the use of the filter
shown in Figure h4-4, the output of which was squared and integrated.
This procedure measured the spectral level, N, of the excitation
about a given low frequency;’which was chosen to be five radians per
second. Error in the determination of the variance of the excitation,
due to the absence of the frequencies above 1000 cycles per second,
was thus eliminated.

The damping coefficient C’ had to be chosen large enough to
eliminate the detection of any ripple in the low frequency part of
the spectrum, but émall enough so that the spectrum was still essen=-
tially flat over the pass band of the filter (to make the correction
term in brackets in equation 4-2(a) as close to unity as possible);

a value of 0,200 was chosen, necessitating a correction term of 1.005,.

L=3 PROBABILITY DISTRIBUTION MEASUREMENT

The noise generator was found to have a slowly-varying D.C.
component which had to be removed before any measurements could be

made., To achieve this, a high-pass filter of the form shown in
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Figure 4-5 was used to remove the D,C. component in the corrected

spectrum. The lower cutoff frequency of this filter, w,, was chosen

Fre. 4-5

to be 0,005 radians per second.

The assumption that the excitation and response processes be
Gaussian was necessary for the Schultheiss analysis technique to be
applicable. This property was measured by means of the circuit

shown in Figure 4-6.

Rererence
i ”:
ﬁ ’
Noise

Fie. 4-6

The comparator utilized had a response time of approximately
five microseconds, and its hysteresis loop width was less than 0.0l
volts., OSince the noise being measured had a lower cutoff period of
more than 15 milliseconds, it can be seen that negligible error was
incurred in this measurement due to the use of the comparator.

It was found by use of this technique that the excitation and
response processes were Gaussian to within the confidence limits
of the measurement process, for all values of the system being
considered. (See Appendix D for the probability distribution of

these processes),



=

L~ ESTIMATE OF CONFIDENCE LIMITS ON MEASUREMENTS

Since the processes being considered were stochastic, with
components at arbitrarily low frequencies, an infinite measurement
time would have been necessary in order to determine their values
exactly; since only a finite time was used, there is an uncertainty
in the measured values. An approximate estimate of this uncertainty
will now be made.

L<L-1 Bandpass Filters

A precise estimate of the confidence limits for the measurements
using the filter shown in Figure L=2 was not obtained. However, it
may be shown that the uncertainty of measured values obtained by the
use of a bandpass filter followed by a squarer and integrator is
approximately the same for several different sharply selective
filters (6). Since only an approximate estimate is necessary, the
confidence limits for an ideal bandpass filter will be used to

estimate those of the filter used for the spectrum measurem.ent.ﬁ

For an ideal bandpass filter of bandwidth Af, if a measurement
is made of a random Gaussian process with a flat power spectrum in the
passband of the filter, there is a 95% probability that this measured
value is within p% of its real value for a measurement time T given

by the expression (6):
T = 4 x 10%

> seconds . L=2
p* Ar

& The limits for this type of filter are the largest of the types
considered in the quoted reference; thus it is expected that the
limits quoted for the measurements made will be modest.
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In the determination of the spectrum, approximately 3000 seconds
was used for each measurement; since the bandwidth of the filter
was 0.5 cycles per second, there is a 95% probability that the
measured values lie within approximately 5% of the real value.

With the filter used in the determination of the variance of
the excitation, it may be shown (6) that the approximate measurement

time T required is given by the expression:

T = L4 x 104

5 seconds,
K pAf

where the bandwidth Af may be defined as the frequency difference
between half-power points,

In the determination of the excitation variance, the bandwidth
of the filter used was 0.5 cycles per second, yielding a 95%

confidence limit of 3%.

L=L=2 Squaring and Integrating

For Gaussian noise with a spectrum of the form given in equation
3-1, the time T required for a 95% probability of obtaining a measured
value within p% of the actual value is given by the expression:
T = 4 x 104
xﬂp2

In the analogue computer study, this method was used to determine

seconds,

the variance of the response, which had a different bandwidth /3 for
each of the measurements made, due to the different equivalent gain
values for the nonlinear element. This bandwidth had a minimum

value of one radian per second and a maximum of approximately 16
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radians per second; the time of measurement was 2000 seconds for
all points considered except the linear cases, for which the time
was 6000 seconds. The resulting confidence limits are displayed

in Graph 4, p.29B, and are all less than 2%,

L=L-3 Probability Distribution Measurements

By examination of the data taken in the determination of the
probability distribution of the noise, it was found that, for the
measurement time used, there was a 95% probability of the measured

probability density values being within 2% of the measured values.

L=5 SIMULATION OF THE SAMPLE AND CLAMP CIRCUIT

The sample and clamp circuit was simulated by the circuit

shown in Figure 4-7. k+i£—¥
L
\ e

: —— =

v(t)

Fir6. 4-7

If K is made large compared to the bandwidth of the excitation,
the system response (with the comparator switch closed) will equal
the excitation. If the switch is opened at any time, the response
will remain at its value at the instant that the switch was opened.,
Thus if the switch is closed for a short time, S seconds, and then
opened, and this action repeated every T seconds, the circuit will

approximate a sample and zero-order hold circuit.
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In the circuit used in the simulation, K was set to be 2000,
so that a "closed" time, 5, of approximately one millisecond was
necessary to allow the response to become equal to the excitation
during that "closed" interval. This "closed" time is small compared
o0 the sampling intervals used (which were all greater than ten
milliseconds), so that the approximation to an ideal sample and

clamp circuit was good.

J-6 CHOICE OF CONSTANTS

From equations 3-3 and 3-4, and from the equations in Appendix
B, it can be seen that A, the gain of the linear portion of the non-
linear element, is a scale factor, so that it may be set equal to
unity with no loss of generality. Since the bandwidth of the
available noise generator was approximately 500 radians per second,
the gain G of the integrator was made unity, so that the response
of the system would be Gaussian for all nonlinearities considered

(B was adjusted successively to 0, 1, 3, and 5).

L-7 DIGITAL COMPUTER CONSIDERATIONS

In the solution of equation 2-2, an estimate of the response,

og, was made by inserting the Booton equivalent gain for the non-
linear element into equation 3-3. The limits of the numerical integ-
ration were 40, so that the area under the normal curve considered
was greater than 99,99% of the total area. Examples were computed
for the number of quantized states, N, equal to 51, 101, and 201,

from which it was found that use of 51 states (which was the number

used in all computations) yielded results which differed from those
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obtained using 201 states by less than Ol%. In fact, by careful
choice of the integration limits, 21 or 31 states could have been
used with negligible error.

It was noted in the calculations that the sequence of o* values,
sy, Sp, S3, generated by two successive mltiplications of a trial
vector (with variance Sl) with the column of the transition probability
matrix corresponding to the mean (r =0) state, bore a definite
experimental relationship to each other and to the ultimately computed
62; this relationship is given by the expression:

32-81 33-—82

z - 1-52

0% - 5 o
from which a forecast of ¢* may be made:

0’2 = SZ - 5153

2%—ﬁ-33

Thus a guess of the final (true) oj (sq in the above equations) will
lead to a very close estimate with only two multiplications.

L~-8 SUMMARY

In the simulation of the system, measurements and corrections
were made to ensure that the noise excitation and response were of
the assumed form, The parameters of the system were chosen according
to the restrictions laid down by the available equipment.

Checks were made during the digital computations to ensure that
the numerical integration was taken over sufficiently wide limits,
and use was made of a convergence property to bring the computations

to a rapid solution.
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CHAPTER V

DISCUSSION OF RESULTS AND CONCLUSIONS

The results of this investigation will be discussed as follows:
first, the Schultheiss anglysis of the sampled system will be ex-
amined, and then the approximation of the continuous system by the
sampled one will be discussed. The results of the Schultheiss
computations compared to the analogue computer results of the study
of the continuous system, followed by a comparison of these values
with the results of the Booton analysis of the continuous system,
will complete the discussion. Conclusions based on these results

and on the material discussed in Chapter II will be presented.

5.1 THE SCHULTHEISS ANALYSIS OF THE SAMPLED SYSTEM

From Graph 3, it can be seen that the Schultheiss analysis
yields results which agree with the analogue computer results for
the sampled system for all except small sampling intervals. For
these values of T, as has been pointed out, successive values of the
excitation are not uncorrelated, which is a violation of an assumption
in the Schultheiss analysis.

Graph 4 displays the behaviour of the example used for various
nonlinearities, the sampling interval chosen according to equatidn
3-6 to make the approximation of the continuous system by the sampled
system valid. Inspection of this graph shows that there is excellent
agreement between the Schultheiss analysis and the behaviocur of the
sampled system in the linear case; for the nonlinear cases, the

computer analysis yields results which are within the confidence
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limits of the experimental measurements in nearly all cases.
However, the computed values are almost all less than the measured
values, which may be due to a slight error in the Schultheiss
analysis or to experimental error, arising from stray noise in the
system, slight deviations from the assumed excitation spectrum, or
from error in the diode approximations to the multiplieré used in
the cubic term of the simulated system and in the measurement
techniques.,

5.2 THE ANALOGUE COMPUTER STUDY OF THE SAMPIED AND CONTINUOUS
SYSTEMS

A comparison of the results of the analogue study of the
sampled and continuous systems will indicate the validity of the
choice of T. It was found that this choice was critical for large
nonlinearities —-- a 10% change in T produced a 10% change in the
sampled system output. However, from Graph L it can be seen that
the sampled system behaviour was the same as the continuous éystem
behaviour, within confidence limits, for most points. This would
indicate that the use of equation 3-6 yields the best choice of
sampling interval possible, in spite of the approximation of the
forward gain by the Bocton equivalent gain.

A single value of T could have been used for all sampled
points in Graph 4, but a difference between sampled and continuous
system behaviour of up to 50-100% would have occurred, depending on
how T was chosen. The smallest maximum difference for the conditions

considered in Graph L is about 15-20%, for all possible T.
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5-3 SCHULTHEISS AND BOOTON RESULTS COMPARED TO THE ANALOGUE
COMPUTER STUDY OF THE CONTINUOUS SYSTEM

Since the purpose of the application of the Schultheiss method
was to analyze the continuous system, a direct comparison of the
Sehultheiss results with those obtained from the analogue computer
is in order. To give an idea of the quality of the new analytical
method, the Booton results will also be studied.

Graph L displays the behaviour of the continuous system as
determined from the analogue computer, and the results of the
Schultheiss and Booton analyses; from this, and from Graph 5, it
can be seen that the Schultheiss technique yields results with a
slightly larger error than the Booton method. The error in almost
all cases, however, is within the confidence limits of the measure-

ment techniques.

5-l, CONCLUSIONS AND FUTURE INVESTIGATION

The Schultheiss technique was applied to a given sampled system,
the results comparing favorably with those obtained in an analogue
computer study of that system, provided that the sampling interval
was large compared to the correlation time of the excitation.
Furthermore, an approximate method of choice of sampling interval,
using the Schultheiss equation for the linear system with the
Booton quasi-linearized gain for the nonlinear element, made the
sampled system approximate the behaviour of the corresponding con-
tinuous system, so that, with that choice of sampling interval, the

Schultheiss technique was applicable to the continuous system. A
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comparison of the results yielded by the Schultheiss and Booton
techniques with the results of the analogue computer study of the
continuous system showed that the results for both methods were
equal to the analogue computer results to within the confidence
limits of the measurement techniques.

The Schultheiss method of analysis is exact when applied to
a sampled system, provided that the sampling interval is large
compared to the correlation time of the excitation. When applied
to a continuous system, the only source of error is seen to be the
choice of sampling interval to make the sampled and continuous
systems behave identically.

From the considerations in Chapter II, it can be seen that
the Schultheiss technique is equally applicable to noise having
other probability distributions than the normal, provided only
that the form of the probability density function is known in
terms of the mean and r.m.s. values of noise at the input to the
nonlinearity, and of the excitation and response processes. Use
of power series approximations to the probability density functions
of these processes may render an analytical solution of the non-
linear problem possible.

The main drawback in the application of the Schultheiss
technique is the necessity of choosing a sampling interval so that
the sampled system is a reasonable approximation to the continuous

one being analyzed. From Chapter II, it may be seen that the
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solution of the probability integral equation (equation 2-2) is a
general one, not requiring any restrictions on the functions p and
Pe. Thus the conditional transition probability function does not
have to be Markov, so that if, in its derivation, allowance be made
for statistical dependence between values of the excitation at
successive sampling instants, the sampling interval T could be
made arbitrarily small, and the approximation of the continﬁous

system by the sampled one would not be necessary.
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APPENDIX A

CALCULATION OF THE OPEN-LOOP RESPONSE

Excitation of the system has a power spectrum of the

form:
Fw) = _(3@__[2 o . A1
+w

Integration over a period T may be written as a Fourier
transform expression:

H(jw) = AG (1 - e73Ty | A2

Jw

The open-loop output power spectrum can be found from the
relationship:

aw) = Flw) | BGw)| 2 A3

in which, the last factor for this example may be written as:

IH(j“DI 2 = _ﬁéng (1 - cos wT) . A=l
Substitution of equations A-{Uand A=l into equation A-3
produces:

Gw) = _2R0” . 2(A6)% (1 - coswT) . A-5
p2+wl w'}.

Note that this expression is continuous and finite for all
real W),
The variance, o7, of the output can be found from the

expression:
2

o= R(O) = _1 j‘m _
1 -5 ’wG(w) dw, A6
In which R(®) is the autocorrelation function of the

output. Thus the response is given by the expression:

2 -]
0 = _1. L, Bo™ (a) (1 - coswT) dw. A7
2T Jpar( B>+ w?) '
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Rewriting the integrand in terms of x = wT produces:

o7 = 280" (4)" T° 5""

7 l = cos X ax
o BT+ x* ]
L8
= 285" (AG) T° °\1
' X((iT)z l‘-c;_osx - 1 + CcOS X dx
o X (FT)* + x*  (PT)° + %’

The first term in the integrand may be integrated by
parts, the second is a standard form, and the third may be
integrated by complex variable theory (9). The solution

is given by the expression:

& =28 (AG) T 1’—————1-8-m]° A=9
P PT

Since the excitation is ergodic, the above expression also

| o

gives the mean-square change of the response during any

sampling interval. This is the desired result.
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APPENDIX B

Ay. AND (Ay.) FOR THE NONLINEAR CASE
4 1

Ays = =(a@8)T [%-r"i + (1 + 3,%72)11’-1
By = sg Ty + 85 Try + 85Iy + 8,
where rs is the hypothesized state, and

s, = 2(acf 81+ 3867) é— 18(AG)2(§)2 o7 (e PT + pT - 1)]

s, = (ae TP + 386%) « g{:m(mf £S(1 + 2580) (ePLypr - 1)
4 18(a6) (§) 0 (67T &+ 2pr - 1)

8o = é,EL(AG)Z(f)ldé(e‘3{3T + 3pT - 1)
+ 2(ae) 0‘1<9(§)7—0'4 + 4/-%0-1 + 1) (e fT & BT - 1)]

8¢ : (AG)Z (Aé)z 7?
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