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ABSTRACT

In this thesis, geometric methods of constructing
symmetric balanced incomplete block designs with parameters
(36, 15, 6), (45, 12, 3), and (56, 11, 2) are described.
Other methods of constructing designs with the same parameters
are surveyed. Methods of testing designs for isomorphism are
given, and these methods applied to the designs which we have
listed. An appendix is included, which contains computer
programs for construction of incidence matrices for the designs,
programs for conducting isomorphism tests, listings of the

block designs, and the results of the isomorphism tests.
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Chapter 1 - Introduction

The object of this thesis is twofold. First, we
shall present some geometric constructions for balanced incom-
plete block designs. Second, we shall describe some methods
of testing different designs for isomorphism, and apply these
methods to several sets of known designs. In this chapter,
we define balanced incomplete block designs and give some
elementary results here as well.

The material in this chapter is elementary, and
may be found in a variety of sources. In particular,

Hall [18] and Ryser [30] discuss both BIBD's and finite
geometries. Stanton [37] provides an excellent source for

some of the relevant aspeéts of Combinatorial Theory.
§1.1 - Balanced Incomplete Block Designs

A balanced incomplete block design (BIBD) with
parameters (v, b, r, k, A) is a pair of sets,

V=V, Vys ooy V1,

and B

i

{Bl, BZ’ ey Bb} s

called, respectively, varieties and blocks, and an incidence




relation between varieties and blocks such that

(i) each variety is incident with r

blocks,

(ii) each block is incident with k

varieties, and
(iii) every pair of distinct varieties
is mutually incident with A blocks.

From these definitions, it is immediately apparent
that v>2k =20 and b2r2>x20. It is usual, in order
that trivial cases may be avoided, to demand that these
inequalities be sharpened to v>k>1, and b>r > X > 0.
We are led immediately to ask whether a block design exists
for any parameters (v, b, r, k, A) satisfying the specified
inequalities. That some further restrictions are necessary

is seen from the following well-known theorem.

Theorem 1.1.1.  If a balanced incomplete block design exists

with parameters (v, b, r, k, A), then

(i) vr = bk , and

(ii) A(v-1) = r(k-1) .
Proof: (i) We shall count the number, x, of pairs (Vi, Bj) of
a variety and a block which are incident. First, for a fixed
variety Vi , there are r blocks Bj incident with Vi . As there
are v varieties, we have x = vr. Similarly, by counting
varieties incident with a fixed block, we obtain x = bk.
Hence vr = bk.

(ii) 1In this case, we count the numbef, x, of pairs

(Vi’ Bj) of a variety and a block which are incident, and such
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that Bj is also incident with a fixed variety, V First, let

17

Vi be any variety other than V There are A blocks Bj incident

1
with both Vi and Vl' As there are v-1 choices for Vi’ we have

x = A(v-1). On the other hand, let Bj be a fixed block incident
with V

1° There are k varieties incident with Bj, one of
which is Vl'

As there are r choices for Bj’ we have x = r(k-1). Hence

Thus, from B_, we may select Vi in k-1 ways.

CA(v-1)

r(k-1). X

There are other restrictions on the parameters.
Before we obtain these, we introduce the idea of an incidence
matrix for any relation on finite sets. Let us take thg
finite sets

V= {Vl, ceny VV}

.

and B {Bl, ..y B .} , and let a relation from V to B

b

(aij) be the v x b matrix given by

be given. Let A

1 if Vi and Bj are incident,
a,. =
+J 0 otherwise.

We say that A is the incidence matrix for the relation.

(If V = B, we shall always take Vi = Bi’ i=1, ..., v.)
Obviously, the matrix A is dependent upon the order in which
we number the varieties and the blocks, different numberings
leading to different matrices. We shall return to this pro-
blem later, when we discuss isomorphism of designs.
Throughout this thesis, we shall let In denote the
n x n identity matrix, and Jmn denote the m X n matrix (aij)

given by




=1, i=1, ..., m

j=1, ..., n
Whenever the context makes their values clear, we shall omit

the subscripts.

Theorem 1.1.2.

(1) s = AT+ (-0

(ii) J vA = kJ

1 1b

Proof: (i) The element bij in B = AAi is the inner product of
row i and row j of A. These rows correspond to varieties Vi
and Vj in the design, and a typical term in the inner product
will be 1 if the varieties are both incident with the appropri-
ate block, 0 otherwise. Thﬁs bij counts the number of blocks
with which Vi and Vj are incident. For i = j, this value is
r, and for i # j, the value is A. Thus, B contains r on its
diagonal, X elsewhere.

(ii) leA computes the column sums of A. Each column

represents a block, and contains k 1's. K

Theorem 1.1.3. If a v x b matrix A exists which contains only

0's and 1's, and which satisfies (i) and (ii) of the previous

theorem, then there is a BIBD with parameters (v, b, r, k, 1).

We can use Theorem 1.1.2 to obtain another restriction on the

parameters, known as Fisher's inequality.

" Theorem 1.1.4. b=v and r = k .

Proof: Since vr = bk, the two inequalities are equivalent.
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T . . . ,
Now, AA" contains r on its diagonal, XA elsewhere, and is v x v,

It is easy to compute

]

det (AAT) = -0V -1 + 1)

-0 e k-1) + 1)

rk(rfx)v—l .

As we have demanded that all parameters be positive and that
r > A, we see that det (AA?) >0 . Thus, AAT is nonsingular,
and consequently, v = rank (AAT) < rank (A) < min (v, b).
Thus v < b. Kl
Thus we see that, if b > v, AT can not be the matrix of a BIBD.
We shall ndw prove that, in the case b = v, the exact opposite
is true: AT does yield a BIBD.

If a balanced incomplete block design has v = b, we

shall call the design symmetric.

Theorem 1.1.5. For a symmetric BIBD,

(1) r = k 9 V"‘l
(ii) Idet A] = k(k-1) 2 , and
(i11) ATA = A" |
Proof: (i) We have vr = bk and v = b, Hence r = k.
(ii) Since A is square, det A exists, and det A = det Ai.

Thus, (det A)2 = det A det AT

v-1

det (AAT) = rk(r-2)

kz(k—k)v—l .
v-1

K(k-2) 2 .

Hence |det A|

(iii) Let J = va. Let k- = n. We have

AAI =nl + AJ =B, and JA = kJ . It is clear
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that we also have AJ = kJ . By (ii), A is non-

singular. From AJ = kJ , we derive J = A-l(kJ)

or Aty =x7ly .

Now
R
-1

= A (ol + AJ)

-t + "l

= na™ + AL
Thus ATA = na”la + a7l

=nl + Ak 1k

<
=

nl + AJ =B .

We usually write (v, k, 1) rather than (v, v, k, k,

~A) for the parameters of a symmetric BIBD.

Corollary 1.1.6. If A is the incidence matrix of a symmetric

BIBD with parameters (v, k, A), then AT is also the incidence

matrix of a symmetric BIBD with parameters (v, k, A).

The design given by AT is‘called the dual design of
that given by A.

Suppose that a design with parameters (v, b, r, k, A)
has an incidence matrix A, We noted earlier that the matrix A
depends upon the order in which varieties and blocks are
numbered. Clearly, renumbering varieties is equivalent to
permuting the rows of A, and renumbering blocks is equivalent
to permuting columns. Clearly, any one of the family of
matrices obtained from A by row and column permutations will

serve as an incidence matrix for the design.
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Let D and D' be two designs with the same parameters

(v, b, r, k, A). Let the varieties and blocks of D be V and B,
and let the varieties and blocks of D' be V' and B'. We will
say that D and D' are isomorphic if and only if there exists

a pair of bijections

£: V-V
and g: B> B

such that V is incident with B (in D) if and only if f(V) is

incident with g(B) (in D').

Lemma 1.1.7. Let D and D' be two BIBD's with the same para-

meters, and let A and A' be incidence matrices for the designs.
Then D is isomorphic to D' if and only if A' can be obtained

from A by row and column permutations.

Lemma 1.1.8. If a symmetric design is given, then its dual

design is unique up to isomorphism.

There are very strong conditions which must be

satisfied by the parameters (v, k, A) for a symmetric design.

Theorem 1.1.9. If a symmetric BIBD has parameters (v, k, 1),

then
(1) A(v-1) = k(k-1)
(ii) If v = 0(2), then n = k-A
is a perfect square.
Proof: (i). We have A(v-1) = r(k-1) and r = k. Our result
is immediate. |

(ii) Let A be the incidence matrix for our design.




We know that det A is an integer, and have computed
|det A] = k n(V"D/2
Thus, when v is even, v-1 is odd, and n must be a perfect

square. ' i

The second part of Theorem 1.1.9 is half of the well-known
Chowla-Ryser Theorem. The other half of this theorem

(c.f. Ryser [28]) deals with the case v = 1(2) and asserts

Theorem 1.1.10. If a symmetric BIBD has parameters (v, k, 1),

v = 1(2), then the equation
z2 - nx2 + (_1)(v—1)/2‘A y2

has a non-trivial solution in integers. (Again, n = k-i.)
We note that, at the present time, no counter-
example has been obtained for the hypothesis that the conditions

of Theorems 1.1.9 and 1.1.10 are sufficient to guarantee the

existence of a (v, k, A) design.

Lemma 1.1.11. The parameter sets (36, 15, 6), (45, 12, 3),

and (56, 11, 2) all satisfy the conditions of Theorem 1.1.9

or 1.1.10.

Proof: In each case, A(v-1) = k(k-1) holds, and n = k-A = 9,
For (36, 15, 6) and (56, 11, 2), we are done when we note that
n is a perfect square. For (45, 12, 3), Theorem 1.1.10 must
be applied, and we see that (x, y, z) = (1, 0, 3) is a non-

trivial solution to the Diophantine equation. B

We shall construct designs with these parameters.
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There is one method of presenting BIBD's which allows
a concise description of the design, and a short method of test—
ing that the purported design exists. This is the construc—

tion by means of a group difference set.

A group difference set (or difference set) with

parameters (v, k, }) is a k«subset {g1, 8ys cees gk}

éf an abelian group_G of Qrderuv_such that if d is |

a non-zero element of,G, there are exactly X ordered pairs
ﬂ (gi, gj) such tha# d =8 - gj.

A simplé?éxample is afforded by {1, 2, 4} in the
group of integers modulo 7.'(This is a (7, 3, 1) difference
set. We shall allow one abuse of standard mathematical nota-
tion; which is best illustrated by an'example. It is well
known that a (16, 6, 2) difference set is given by

{a, 0, 0, ®, (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
(1, 1, 0, 0), (0, 0, 1, 1)} in the group C2 & 02 & c, @ 02 .
We shall abbreviate this by saying that
{1000, 0100, 0010, 0001, 1100, 0011 mod (2222)} is a
(16, 6, 2) difference set. This notation tacitly assumes

that the abelian group G is the direct sum of cyclic

groups of orders < 10.

Theorem 1.1.12. If a (v, k, 1) difference set exists, then

there is a symmetric BIBD with parameters (v, k, M.

" Proof: Let G be an abelian group of order v, and let K
be the k-subset of G which yields a (v, k, A) difference

set. Let' U = {Vg|g e G} and B = {Bglg ¢ G} be two




v-sets of formal symbols. We define an incidence relation
Vg is incident with Bg'
if and only if g - g' € K. We now prove that we have
defined a (v, k, A) BIBD.
Let K =‘{g1, cens gk}. Fix a variety Vg. Now,
there are exactly k choices for g' such that g - g' ¢ K,

namely,

|

g' =g - 8 > l<ic<k.

Thus, Vg is incident with exactly k blocks. Similarly, Bg'
is incident with k varieties. Finally, let Vg and Vg' be
two distinct varieties. These varieties occur together in

Bg" if and only if

and g' -g"=beK.

Subtracting, we have

a-»>ob.

]

Now, the difference d = g - g' is fixed, and non-zero.

Hence, there are exactly A distinct values for g".

We make one comment: if we define incidence by
"Vg is incident with Bg' if and only if g+ g' ¢ K ", the
theorem remains valid. The two designs thus obtained are

isomorphic (cf. Theorem 4.2.4).

10




11
§1.2 - Projective Geometry

In this section, we define a projective geometry;
and present a family of explicit examples of projective geo-
metries. While this family will not exhaust all projective

geometries, it is sufficiently large for our purposes.

A projective geometry is a system composed of two

disjoint sets, P and L, called points and lines respectively,

and a relation I S P x L called incidence, which satisfies
certain axioms: Before presenting the axioms, we introduce
some optional termiﬁology for the incidence relation: if the
~point P ‘and the 1ine'£ are incident, we may alsoc say

"P is on &", "4& passes through P", or even "% contains P".

If there is a point P incident with fwo distinct lines k and
%, we will say that "k meets 8" or, more explicitly, that

"k meets & in P". The axioms which ourvobjects must satisfy
are three in number:

(Al), There are at least four distinct points,
and no three of these are incident with

a single line.

(A2) Every pair of distinct points is contained
in exactly one line. (The points A and B

lie on a line denoted by AB.)

- (A3) 1If A, B, C, D are four distinct points,
and if AB meets CD, then AC meets BD.

(A4) Every line is incident with at least
three distinct points.
Our definition makes it clear that a line and the
set of points on that line are distinct entities. We shall

generally not distinguish between them, allowing a certain
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amount of set terminology as a convenience.

" Projective geometries may be derived from vector

spaces; so we present a minimal amount of linear algebra here,

without proof.

Let F be a field, and let V be a vector space

over ‘F. Underscored Roman letters denote vectors.

i) If Xcy , S(X) is the smallest subspace of
containing X.
ii) 1If U; and U, are subspaces of U/, then
Ul + U2 = S(U1 u’uz).
iii) dim Ll1 + dim U2 = dim (ul + U2) + dim (U1 n Uzz

iv) SX) + s(Y) = S(X’U Y)

Theorem 1.2.1. Let V be a vector space of dimensionﬂ3 or

greater over F. If we call l-dimensional subspaces,vpoiﬁts,, 
and 2-dimensional subspaces, lines, and if we define .

incidence by containment, then we have a projective geometry.

Proof: Since | has dimension at least 3, there are at
least 3 independent vectors in I/ . Let e EQ? e, be
independent. Let f = e+ e, T &5, Itis clear that

S(gl), S(gz), S(SB) and S(f) are 4 distinct points, and that
any 3 of the points generate S<§1’ &ys Eg) » which has
dimension 3. Thus, ﬁo 3 of the points lie'oﬁ a single line,
and (Al) holds. Secondly, the points S(u) and S(v) are

distinet if and only if>ﬁ£,;g} is an independent set. In this

case, 5(2)42) is the unique line containing S(u) and S(v) .
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This verifies (A2). Thi#d,"let S(gi), i=1, ..., 4, be distinct
points. If S(Ei’~22) meets S(Ea, 24), their intersection has
dimension = 1, and dim S(ul, P u3, _4) . If, on the other
hand S(u » u ) and S(u2 _4) do not meet, dim S(ul, Uy, us, —ﬁ)
is 4, a contradiction. Thus, (A3) holds. Finally, to see (A%4),

we note that the line S(u, v) is incident with the points S(u),

S(v), and S(u + v). Thus, we have a projective geometry. b

If I/ is the vector space Fn+l (n 2 2), we denote the

geometry of Theorem 1.2.1 by PG(n, F) . 1If, further,
F = GF(s) where ‘s is a prime power, we will write
Pé(n, s).

In the vector space Fn+1 , every vector is an (n+l)-
tuple. A point in the corresponding geometry is a 1-
dimensional subspace, and this is the set of all scalar
multiples of any non-zero vector in the subspace. We agree
that any non-zero vector shall serve as codrdinates for its
corresponding point. From‘a set of cobrdinates for a
particular point may be obtained other codrdinates for the
same point, by multiplying by any non-zero sgalar. In

particular, in' PG(n, s) , every point has - (s-1) distinct

codrdinate sets. These are called homogeneous codrdinates.

In PG(n, F), an r-flat is the set of points in an (r+l)-
dimensional subspace of the underlying space Fn+l . This
has meaning for -1 < r < n , although a (-1)-flat is the null

set. In this terminology, the points are 0-flats, the lines

are l-flats, and there is exactly one n-flat, namely the set
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of all points in the geometry. For PG(n, s) , we can

count various quantities associated with r-flats.

Theorem 1.2.2. In PG(n, s) , any r-flat contains

points.

Proof: We are, in fact, counting the number of points in an

(rt+1)-dimensional subspace. There are sr+1 vectors in the

subspace, of which one is the zero vector. The remaining

vectors determine each point s-1 times, whence the number
r+l1
-1

S
£ . . s - -
of points is s - 1

Corollary 1.2.3. The number of points in PG(n, s) is

"y /s-1) .

Corollary 1.2.4. The number of points on any line (l-flat)

is stl.
As we shall be particularly interested in planes (2-flats),

we note

Corollary 1.2.5. PG(2, s) contains 1+ s + s2 points.
There are "dual" results for corollaries 1.2.4 and 1.2.5.

in the sense of Hall [17].

Theorem 1.2.6. In PG(2, s), any two lines meet.

Proof: Let S(El’ 22) and S(gs, 34) be lines. Since the
underlying vector space has dimension 3, then
dim S(El, Uy, Ug, 34) < 3 , whence dim (s(gl,ng) n S(EB’-EA))

2 1, and there is at least a point in common. K




Corollary 1.2.7. Through every point pass s+l 1lines.

Proof: Let P be a point, and let & be a line not

.15

through P . Every line through P meets £ in a point,

and every point of & determines a line through P .
the number of lines through P is equal to the number

points on & , namely s+l.

Thus,

of

Corollary 1.2.8. There are 1+ s + s2 lines in PG(2, s).

Lemma 1.2.9. PG(2, s) is a symmetric BIBD with parameters

(32 +s+1, s+ 1, 1).
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Chapter 2 - A Design from a Finite Plane

§2.1 - Arecs and Ovals

In this section, we discuss the existence of sets of
points in a finite plane, no three collinear. Upper bounds on
the size of such sets are obtained, and the number of such sets
counted for certain values.

The results 2.1.1 - 2.1.8 are originally due to
Bose [7]. The geometric proofs come from Quist [29]. The
counting theorems 2.1.9 - 2.1.14 are due to the author.

Consider the finite projective plane PG(2, s), where
s is a prime power. We say that a set of points is an arc if
no three of the points are collinear. More specifically, an
arc containing m points is an m-arc. .

Two numbers associated with the arcs of PG(2, s)
are of interest. First, we should like to know the greatest
integer m = m(s) for which an m-arc exists. Second, we
should like to know how many k-arcs there are, for 1 < k < m(s).
We shall call this number n(k, s) . Finally, an m(s)-arc is

termed an oval.
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The number m(s) has been studied in a more general

context by Quist [29] and others. Let s be a prime power, and
/' the vector space of dimension r over GF(s) . Then

m(t, r, s) 1is used to denote the cardinality of the largest

set of vectors in V with the property that any t are
independent. It is evident that our quantity m(s) is, in

fact, m(3, 3, s)

Theorem 2.1.1. m(s) < s+2

Proof: Let A be an m-arc in PG(2, s) , and let P be any
point of A . There are s+l lines through A , each of which

may contain at most one further point of A . Thus

S

m<1+ (st+l) = s+2 X

Theorem 2.1.2. s+l < m(s)

Proof: lLet

A= {, 0, 1), (0, 1, 00} v {(1, a, a’l)la e GF(s) and o # 0}
A 1is clearly an (s+l)-set, and we need only test whether A
is an arc. We may test any three points of A by the deter-
minant test. There are four cases.

Case (i) Consider the points (1, o, aal), (o, 1, 0), (0, 0, 1).

We have

so the points are not collinear.
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Case (ii) Consider the points (1, o, d "), . (1, B, B ),
(0, 1, 0), where o # B . We have

1 o o

Again, the points are not collinear.

Case (iii) Consider the points (1, d, a-l), (1, 8, B-l),

(0, 0, 1), wherea # 8 . We have

Again, the points are not collinear.

Case (iv) Consider the points (1, o, a—l), (1, B8, 8—1),

1, vy, Y—l), where o, B, y are all distinct. We have

-1

1 o o

1 g 8l = (ae8) (B=y) (=) aBY) L,
-1

I vy

which is non-zero, as each of its factors is non~zero. Again,
the points are noﬁ collinear.

As this includes all possible cases of three points from A ,
we conculde that A is an (s+l)-arc, and that

s+l < m(s) . b

Before we proceed to determine which of s+l or
s+2 1is the correct value for m(s) , we shall define some
additional terms. Let A be an arc, and & any line. As
no three points of A are collinear, the line £ meets A

in 0, 1, or 2 points., We shall say that ¢ 1is a skew line,
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a tangent, or a secant to A , according as the number is

0, 1, or 2.

“Theorem 2.1.3. An . (s+l)-arc has a unique tangent at every point.

Proof: Let P be'é‘point_of the (s+1)-arc  A . There are ,S+1  

lines through P , s of which are secants (one for éach’

remaining point of A). This leaves one and only one line

through P , which forms a tangent. | X
We note that, if an (s+2)-arc exists, each of its

(s+1)-subsets is an (s+1)-arc.

Theorem 2.1.4. An (stl)-arc may be extended to an (s+2)-arc

in at most one way. This extension is possible if and only if

the tangents of the (s+l)-arc are concurrent.

Proof: Suppose the tangents to an (st+l)-arc, A, concur in the
point P . Then A' = A y {P} is an (s+2)-set. Now, there
are s+l tangents to A , all passing through P . Thus, no
secants of A pass through P , and no three points of A’
may be collinear, so A' is an (s+2)-arc.

| Second, suppose A' = {P} u A is an’(s+2)~arc. The
lines from P to points of A are clearly the tangents to Aj;
so these tangents concur in P . As there is at most one pqint
P in which all tangents may concur, there is at most one o

extension of A to an (s+2)-arc. ' o R

Theorem 2.1.5. If s is even, the tangents to any (s+1)—ar¢

are concurrent, and the arc can be extended to an (s+2)-arc.
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- Proof: Let A be an (st+l)-arc, and let P and Q be distinct

points of A . The line PQ is a secant. Let X be any point
on the line PQ . There are a number, say n, of secants through
X. There are then 2n points of A 1lying on secants through
X. However, s+l 1is odd, so there is at least one point, Y ,
which is in A , not on a secant through X . This means that
the line XY is a tangent. Thus, through every point on a
secant passes at least one tangent. There are s+l points on
any secant, and s+l tangents. Thus, through every point on

a secant passes exactly one tangent. If P 1is a point where
any two tangents meet, there are no secants through P , whence
the (s+l) 1lines joining P to points of A are all the tan-

gents to A, and A u {P} is an (s+2)-arc. K

Theorem 2.1.6. An (st+2)-arc has no tangents.

Proof: Let A be an (st+2)-arc, and let P be a point on A .
Through P pass s+l secants to A , one for each further
point of A . This accounts for all the lines through P ,

so there is no tangent at P . ' X

Theorem 2.1.7. If s is odd, m(s) < s+l .

Eggggﬁ Let A be an (st2)-arc, and let P be a point not on

A ., The lines through P consist of secants and skew lines,

as theorem 2.1.6 ensures no tangents. Thus, the number of points
on A is even, being twice the number of secants through P .
This contradicts the fact that s+2 1is odd; thus, an (s+2)-arc

cannot exist, and m(s) < s+l . R

ST
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Gathering these results together, we have

Theorem 2.1.8. n(s) = s+l , s odd
st2 s .even

Proof: For s odd, theorems 2.1.2 and 2.1.7 yield m(s) = s+1.
For s even, theorems 2.1.1 and 2.1.5 yield

m(s) = s+2 . &’

Henceforth, we use the term "oval" to denote an m(s)-arc in

PG(2, s)

Theorem 2.1.9. n(l, s) = s2 + s + 1

Proof: Evidently, n(l, s) is the number of points in

PG(2, s) . | g
Before proceeding to determine n(k, s) for values

of k >2 , we introduce some further functions. Let t(k, s)

be the number of ordered sets of k distinct points which

form a k-arc (more briefly, an ordered k-arc).

Lemma 2.1.10. t(k, s) = k! n(k, s) .

Proof: There are n(k, s) k-arcs. Each gives rise to k!
ordered k-arcs, one for each permutation of the vertices.
As these are all distinct, and comprise all ordered k-arcs,

we have our result. b

Let"é(k;'s)' be the number of points which may not be chosen
to augment a k-arc into a (k+l)-arc, and let f£(k, s) be the
number of points which may be chosen. Evidently,

e(k, s) + f(k, s) = s2 + s+ 1 . As we shall see, these num-
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bers do not depend on the particular k-arc chosen, provided

that k is sufficiently small.

Lemma 2.1.11. If f(k, s) is invariant, then

t(k+l, s) = t(k, s) x f(k, s)

Proof: An ordered (kt+l)-arc can be obtained uniquely by first
selecting an ordered k-arc, and then augmenting this to a (k+1l)-
arc. The first step can be performed in t(k, s) ways, and,
assuming that £(k, s) is invariant, each ordered k-arc so
chosen may be extended in f(k, s) ways. Thus

t(k+l, s) = t(k, s) x f(k, s) . : R

n(k, s) x f(k, s)
k+1

Corollary 2.1.12. n(k+l, s) = , provided

f(k, s) dis invariant.

Proof: Substitute the result of lemma 2.1.10 for both t(k, s)
and t(k+l, s) in the equation of lemma 2.1.11. The result is

immediate. ' X

w

Theorem 2.1.13, If k < , the quantity e(k, s) is invariant,

and is given by e(0, s) =0

e(l, s) =1

e(2, s) = s+l

e(e, s) = 3s

e(4, s) = 6s - 5
e(5, s) = 10s - 20

Proof: For k =1, it is evident that we may choose any point
other than the one already taken.

}, k=22 .

Now, let the k-arc be A ='{P1, cees Pk
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We have to count the points on the secants of A . There are
(?) secants, each containing s+l points. However, the quan-
tity (s+1)(§) counts several points more than once. The
points of A are each counted k-1 times, so we must subtract
k(k-2) as a correction for this fact. There is also the
problem that, for k > 4 , there are "diagonal" points, that is,
points lying on 2 or more secants, but not part of A . It is
here that the condition k < 5 appears. We note that a point
not in A can lie on at most 2 secants, for otherwise, k > 6 .
Now, each diagonal point is determined by 2 secants, which are
in turn determined by any 4 points of A . Each set of 4 points
of A determines 3 diagonal points, whence the number of dia-
gonal points is 3 (t) . Each diagonal point is counted twice;

so we must further subtract 3(2) as a correction. This yields

ek, s) = (g)s + (g) - k(k-2) - 3(&) :

and computing these quantities for k'= 2, 3, 4, 5, gives the

stated results. ' b

Corollary 2.1.14.

£(0, s) = s2 + s+ 1
£f(1, s) = s(s+l)

f(2, s) = 82

£(3, 8) = (s-1)2

£(4, s) = (s-2)(s-3)
f(5, s) = S2 - 9s + .21

We note the consistency of these formulae with earlier theorems.
When s is even, we should have f(s+l, s) = 1 and

f(s+2, s) =0 ; for s odd, we should have f(s+l, s) =0 .
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These are exactly the results-obtained here for small values

of s , namely

]

[
= O O

£(3, 2)
£(4, 2)
£(4, 3)
and £(5, 4)

- -

]

We conclude this section by tabulating f(k, s) and

n(k, s) for s = 2, 3, 4, 5, and 1 <k < m(s) .

. Table 2.1.1 -- f(k, s)

S

k 2 3 4 5
0 7 13 21 31
1 6 12 20 | 30
2 4 16 25
3 1 9 16
4 0 2 6
5 ’ 1

6 0 0

Table 2.1.2 — n(k, s)

k 2 3 4 5
1 7 13 21 31
2 21 78 210 465
3 28 234 1120 3875
4 7 234 2520 |} 15500
5 1008 | 18600
6 - 168 3100
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§2.2 - The Ovals of PG(2, 4)

We now fix our attention on PG(2, 4) , the finite
plane of 21 points and lines. According to Theorem 2.1.8, an
oval is a 6-arc, and the number of ovals is 168, as indicated
in Table 2.1.2. The results of this section all come from
Edge [15].

Several other quantities will be of value. First,
let f(k) be the number of ovals containing a fixed k-arc.
Let g(k) be the number of ovals meeting a fixed oval exactly
in a specified k-arc. Let h(k) be the number of ovals
meeting a specified oval in exactly k points. Evidently,
f, g, and h are defined for 0 <k < 6 . The values of

f, g, and h are given in

Table 2.2.1

Kk 0 1 2 3 4 5 6
£(k) 168 48 12 3 1 1 1
g (k) 10 12 3 2 0 0 1
h(k) 10 72 45 40 0 0 1

We now establish these values.

Theorem 2.2.1. Any quadrangle (4-arc) is contained in exactly

one oval.

Proof: Referring to Table 2.1.1, we see that f£(4, 4) = 2.

This implies that there are only 2 points available for extending
a quadrangle, and so at most one 6-arc. That we may use both

points to obtain an oval is a consequence of Theorem 2.1.5, or
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of the fact that f(5, 4) = 1. b
Equivalently, we may state

Corollary 2.2.2. If 2 ovals have 4 or more points in common,

they are coincident.

Hence

Corollary 2.2.3. The values given in Table 2.2.1 are correct

for 4 <k <6 .

If we denote by F(k, m, s) the number of m-arcs
containing a fixed k-arc (for 0 <k < m < 6), in PG(2, s) ,
we have
m—-1 .

L £(i, s)
(m~k) !

Theorem 2.2.4. F(k, m, s) =

where we understand that F(k, k, s) = 1

Proof: Evidently, (m-k)'!F(k, m, s) counts the number of

ordered sets which may be used to extend a k-arc to an m-arc,

m-1

ek f(i, s) . X

and this quantity is exactly

Corollary 2.2.5. The values of f(k) are as asserted in

Table 2.2.1.

Proof: f(k) = F(k, 6, 4) .

Lemma 2.2.6. h(k) = (12) g (k)

Proof: Each oval contains (E) k-arcs.

Theorem 2.2.7. The values of g(k) and h(k) given in Table

2.2.1 are correct.
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Proof: Let H be a fixed oval, and let A be a 3-arc con-
tained in H . A is contained in f(3) = 3 ovals. One of
these is H , and the other two have at most 3 points in commbn
with H , by Corollary 2.2.2. ‘Thus, these two ovals have

2 . Now let A

exactly A in common with H , and g(3)

"

be a fixed 2-arc in H . There are £(2) 12 ovals contain= :
ing A . Of these 12, one is H . Also, there are 4kways to
choose a third point of H , and, for each of these cases,

there are g(3) = 2 ovals meeting H in 3 points.‘ Thus 8
ovals of the 12 meet H in 3 points. Excluding these, we see
that g(2) =12 -1 -8 =3 ., Similarly, we see that

£ -1 - (3) 8(3) - (i’) 8(2)

=48 -1-20-15=12 ,

g(1)

and g(0) = £(0) - 1 - h(1) - h(2) - h(3)

168 - 1 - 72 = 45 - 40

>3

= 10 . o A

Theorem 2.2.8. In PG(2, s) , an (s+1)-arc has secants,

s+
2
(s+1) tangents, and (3) skew lines. An (s+2)-arc has (ng)

secants, 0 tangents, and (;) skew,lines.‘

P

Proof: The number of secants for‘a‘k-arc is (g) . By
Theorems 2.1.3 and 2.1.6, (s+L);arcs and (st+2)-arcs have,

respectively, s+l and 0 tangents. However,

.2
s+l _ 8 + 3 +2 _ (st2
( 2 ) + (st1) = > = ('2 )

so, in both cases, the number of skew lines is




2 s+ 3s+2 (s _
S+s+l————-—-§-——(2>. %

Corollary 2.2.9. An oval (in PG(2, 4)) has 6 skew lines.

Let us use the term hexagram for the figure dual to

a 6-arc, that is, for 6 lines, no 3 of which are concurrent.

.Theorem 2.2.10. The 6 lines skew to an oval form a hexagram.

Proof: Let P be a point where two.skew lines meet. There
are always 3 secants through P (bec.ause there are.no tangents).
Thus, if 3 skew lines were concurrent in P ,» we should have
6 lines through P , whereaskthere are in fact only s+l = §

such lines. k B

We can use the hexagram skew to a fixed oval, A, to define all

the ovals disjoint from A.

Theorem 2.2.11. If the hexagram skew to an oval A be parti-

tioned into two triangles, the vertices of these triangles form
an oval disjoint from A. Conversely, every oval disjoint from
A arises in this way.

Proof: As the 6‘lines'skew to A form a hexagram, any parti-
tion of the lines into two triangles does, in fact, yield 6
distinct vertices, for, otherwise, we should have four of the
lines concurrent; Let the vertices of the triangle be Pl’ P2,
49 PS’ P6 - If some 3 of these points were collinear,

they would have to be divided as 2 from one triangle, one from

P3, and P

the other. (If all 3 were from ong:triangle, they would, in
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'fact, be the same point, and 3 of the skew lines would then
coﬁcur in that point).

Assume now that the three collinear points are
Pl’ P2, and P4 . In this case, P4 lies on the lines
P1P2, P4P5, and P4P6’ all of which are lines of the
hexagram. Thus we may conclude that the vertices of the‘
triangles form an oval, and, as these pointé all lie on
lines skew to A , this oval is disjoint from A .

That this accounts for all ovals disjoint from

6
3

partitioning the hexagram into triangles, and hence, there

A may be seen by counting. There are %( ) = 10 ways of

are 10 ovals disjoint from A which arise out of this
construction. The total number of ovals disjoint from A

is g(0) = h(0) = 10 ; hence, all have been constructed. R

Theorem 2.2.12. Let A, B, and C be three distinct

ovals such'that AnB=AnC=0¢ . Then B and C have

two points in common.

Proof. Let the hexagram of lines skew to VA be {a, b, c,
d, e, f} . Then B and C arise from partitions of the
hexagram into triangles. Let these partitions’be,
respectively, abc/def and abd/cef . It is immediately
;evi&ent that the points ab and ef are commbn to both B
and C , and additional common points would violate the

hexagram property. v j L - R




Corollary 2.2.13. There do not exist three mutually disjoint

ovals.

We recall that, by Theorem 2.2.1, an oval is

determined by any 4 of its points. This fact permits us to

30

describe a geometric method of finding the 2 extending points,

when given a 4-arc.

Theorem 2.2.14. If A is a quadrangle (4-arc) , the

diagonal points of A are collinear. This line contains
5 points. The two points which are not diagonal points
are the points which extend A to an oval.
Proof: That the diagonal points are collinear follows from
the fact that s =4 is a power of 2. The number 5 , of
points on this line, is, of course, s+l . Removing the 3
diagonal points leaves exactly 2 points remaining. Leﬁ
the points of the 4-arc be Pl’ ey P4 » and let the two
‘constructed points be X and Y . That no 3 of these six
points are collinear follows by considering two cases.

First, we can not have Pi’ X, and Y collinear,
for this would mean that Pi iskon the line of diagonal
points, and, hence, infact, is a diagonal point. Secondly,
we can not have Pi’Pj , and one of’,X or Y collinear,
for Pin meets the line of diagonal points in one of the
diagonal points, not in X or Y.

Thus, '{Pl, cees P4,:X; Y} 1is a 6-arc or ovalj

by Theorem 2.2.1, this is the ﬁnique oval containing

Pl, P2, P3, P4 .
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Theorem 2.2.15. Let A, B, C- be ovals such that |An B| =2

and |A a C] = 0 . Then [B n CI =0 or 2.

Proof: Let An B={P, Q} . Then A ={P, Q} + qp » where

9 is a quadrangle. The line PQ containg three other points,

Dl’ D2’ and D which are, by Theorem 2.2.14, the

3 9

diagonal points of 9 - Now, the sides of qO passing
through Dl contain 4 points not associated with 9 -
These form a quadrangle q; - It is clear that

A = q + {P,Q} is a 6-arc. If 3 points of A, are

1

collinear, they can not all come from 94 (which is a 4-arc),

1

v

nor can they be P, Q and one from (else the latter
y q

1’ D2, D3); This 1eaves the possibility

that the points are P and two points of q; - The two from

point would be one of D

9 can not lie on a side of 9 through D1 s becausé this
line does not meet P . Thus, we have q =‘{X1,Y1,X2,Y2 }
where X1X2 and Yle meet in Dl ; are sides of q0 s, and
the points Xl’ Yz, and P are collinear. By Theorem 2.1.6,
~X1Y2P is a secant of A , and meeté A in another point, R .
R can not be Q 3 so R' is one of the points of qQ@ -

- Hence RD1X1 2 is aaside of both qO and qi , and contains
anoﬁher point of qq 3 thus it contains 3 points of A - a
~contradiction. ,Copééquently, Al is an oval;ras likewise

are the sets A2 énd‘kA3 determined analogously from the

diagonal points D2 and D3 via quadrangles q, and 93 -

It is clear that the quadrangles q; are mutually

disjoint (and exhaust the 16 points of our plane not on PQ).
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Since g(2) =3, Al’ A2, and A3 are exactly the 3 ovals

meeting A in '{P,Q} .. Hence 'B. is one of Al’ A2, A3 .

Consider now the 5 lines through D One is PQ ,

1"
and two more are common sides of 9 and q; - Hence, the
other two lines are common sides of 4, and dg - Likewise,

common sides of 9> 9, and d;» 43 Pass through D2 . For

D, , the pairing is 9p> 43 and 435 9y -

Now consider the hexagram of lines skew to A .
These 6 lines each meet PQ , but not in either of the points
P or Q . Thus, they must pass, in pairs, through each of
Dl’ D2’ and D3 . The two lines through D1 do not meet 94
and thus can not meet q; - Thus, they must be the lines

forming sides of 49 and d3 - Similar results hold for the

lines through D2 and D3 .

By Theorem 2.2.11, C is an oval obtained by partitio-
ning the hexagram into triangies. Thére are two ways in which
this can happen. In the one case, the sides of one triangle
1° DZ’ and D3 . Then the sides of the

other triangle do likewise. Consider the vertex on the lines

contain each of D

through D1 and D2 . The line through D

from q, and 43 - The line through D

1 contains points

2 contains points

from 9 and q3 - Thus, this vertex lies in 43 - But this

happens for both triangles similar results occur for Dl and

D3 and for ‘D2 and D3 . Hence C meets two points from

each of a5 q2,‘and a3 > and hence from‘vAl, A2’ and A3 .
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But one of these is B, so |B n C| =0 . (This accounts for

4 of the possible ways of fixing C disjoint from . A.)

In the other case (which accounts for the other 6
choices for C), the first triangle has two sides meeting in,

say Dl , and one passing through, say D The second

3 -

triangle then has two sides through D2 and one through D3 .

From the first triangle, we get D. and two points of 4y -

1
From the second, we get D2 and two points of q; - Thus
|c n Dl =cn D2[ = 2 and
lCnD3|=0.

1° A2, A3 . This accounts for all

the cases. X

Again, B is one of A

Corollary 2.2.16. 1If ]A n Bl = 2 , there are exactly two

ovals C such that lA n C[ = IB n C| =0 .

Proof: Using the notation of Theorem 2.2.15, we may assume

B = A1 . C must be obtained by partitioning the hexagram of

lines skew to A so that the lines through D, are separated,

3

and the lines through D respectively, not separated.

1> Doo

This can happen in only 2 ways. X

§2.3 - The Block Design (56,11,2)

We now see how a (56,11,2) block design may be
obtained from the geometric properties of ovals in PG(2,4)
The results of this section are due to the author.

We now fix our attention on any one oval, A .

Let a={X| |[AnX| =01(2) , and X is an ovall}

~
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Theorem 2.3.1. |a] = 56

h(0) + h(2) + h(4) + h(6)
10+ 45 +0+ 1
= 56

Proof: Evidently la]

Theorem 2.3.2. If Xe a and X n Y = ¢ them Y e a .

Proof: There are clearly 4 cases depending on [X n 4] .

First, if [X n Al =6 , X = A and the result is trivial.

Second, if [Xn Al =2 and [XnY| = 0, then |[AnY| =0
or 2 , by Theorem 2.2.15. In either case, Y e A .
Thirdly, if [X 0 4| =0 and [X 0 Y| =0, then |Y na| =2

by Theorem 2.2.12, Finally, [X n A[ = 4 1is not possible, by

Corollary 2.2.2. : ‘ Dl

Now, define a relation = on A by

X=Y if [XnY| =0, 0r X =Y .

Let [X] = {Y|X = Y} .
Lemma 2.3.3. The relation = is symmetric, and so is the
incidence matrix for = .

Theorem 2.3.4. [[X]]| = 11

Proof: |[X]] = h(0) + 1
=10 + 1
=11 X

Theorem 2.3.5. If X, Ye aand X # Y, |[[X] n [Y]] = 2.

Proof: There are two cases, [X n Y| =0 or 2.

If |[Xn¥| =0, then {X,Y} c [X] n [Y]
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By Corollary 2.2.13, there are no other ovals disjoint from X

and Y ;
so |[X] n [Y]] = [{x,Y}] =2 .
If IX n Yl = 2 , there are exactly two ovals disjoint from

both, and these comprise |[X] n [Y]] .

Corollary 2.3.6. The incidence matrix, M , for = , yields

a symmetric balanced incomplete block design which has

parameters v =b =56 , r =k =11 , A = 2 . The design is

self-dual.

Proof: v =0>, 56 expresses the size of M , and hence
the dimensions of the incidence matrix.
Now, r =k = 11 is the result that each block has
- 11 elements, together with the fact that M is symmetric.

Finally, A= 2 is obtained from Theorem 2.3.5,

again using the symmetry of M . , b
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Chapter 3 - Two Cubic Surface Block Designs

In this chapter, we present the structural geometry
of the double-six configuration, and indicate its relation to
lines on a cubic surface in 3-space. From this, we derive
symmetric balanced incomplete block designs with parameters
(36, 15, 6) and (45, 12, 3) .

For this chapter, we confine our attention to
PG(3, R) , real projective 3-space. Before proceeding with a
discussion of the double-six, we summarize properties of ruled
quadric surfaces, and consider related topics. The theory in

the next section is presented without proofs. (cf. Baker [3].)

§3.1 - Preliminary Topics

A ruled quadric surface is a set of points whose

homogeneous co-ordinates, after proper choice of axes have been

made, satisfy

+,X2

xz + x2 ='x2 4

1 2 3
In linear algebraic terms, a ruled quadric surface is the set

of points determined by

Qxy> %55 X35 1) =0,
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where Q 1is a quadratic form of rank 4 and signature O .
The properties of ruled quadric surfaces are enumerated in the

following sequence of theorems.

Theorem 3.1.1. Through every point on the surface, there pass

exactly two (distinct) lines lying wholly within the surface.

Theorem 3.1.2. The lines of ruling may be partitioned into

two families with the property that two lines from the same
family never meet, but two lines from distinct families always
meet. Consequently, the lines of ruling through a fixed point

comprise one from each of the two families.

Theorem 3.1.3. If two distinct quadric surfaces have two

intersecting lines as common points, then their remaining

common points lie in a single plane.

Theorem 3.1.4. A ruled quadric surface is completely determined

when three distinct lines from one of its families have been

given.

We shall return to the ideas of theorem 3.l.4 shortly.
A set X of lines is called skew if no two of the lines meet.
A line & 1is called a transversal of a set of lines X if &
meets each member of X . With this terminology, we can re-
phrase Theorem 3.1.2 as

The lines on a ruled quadric surface are partitioned
into two ske% sets. Each line of one set is a transversal of

the other set.
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We now summarize. the nature of transversals for

small finite sets of lines.

Theorem 3.1.5. A set of two skew lines has a unique transver-

sal through every point not on one of the lines.

Theorem 3.1.6. A set of three skew lines has a unique trans-

versal through any point on one of the lines.

According to Theorem 3.1.4, a set of three skew
lines is contained in at most one ruled quadric surface. We
now see that such a set is, in fact, contained in exactly one

ruled quadric surface.

Theorem 3.1.7. The set of points on the family of transversals

to a set of three skew lines forms a ruled quadric surface.
The transversals are one of the skew sets of lines on the sur-

face, and the three given lines are in the other skew set.

Theorem 3.1.8. A set of four skew lines having one transversal

has, in general, exactly one more.

Proof: We give the proof of this theorem mainly to indicate
conditions under which it fails to hold. Let three of the four
lines be fixed. They determine a unique ruled quadric surface,
and lie in onme of the skew families. The transversal lies in
the second family. There are several possibilities for the
fourth line. First, it may lie on the surface, as part of the
first skew family. In this case, the four have an infinitude

of transversals (all of the second family). Second, it may be
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a tangent. In this case, there is no further transversal.
Finally, if neither of the first two cases holds, the fourth
line will meet the surface in two distinct points, one of
which is already known, namely, its point of intersection with
the given transversal. From Theorems 3.1.1 and 3.1.2, we see
that there is a line of the second skew family through the
other point of intersection with the surface. This is, then,
a éecond common transversal to the set of four skew lines, and
no further transversal is possible unless the four lines lie

wholly in the quadric surface determined by any three of them. ¥

§3.2 ~ The Double Six Configuration

The theorems in this section are to be found in
Baker [3] and Henderson [2] . The notation for the double-
six is due to Schldfli [31] , and additional historical
material may be found in Sylvester [39].

A double-six or Schlidfli double-six is a set of twelve

distinct lines {al, ays 835 8y, ag, ag, bl’ bz, b3, b4, bS’ b6}
with the intersection properties
1) a, meets b, for i # j
1 J
2) there are no other intersections

3) no three of the lines concur.

" Lemma 3.2.1. A set of 12 lines satisfying properties 1) and 3)
above and having one other intersection, lies in a plane, in
which case all lines meet; or in a ruled quadric, with the a;

lines in one skew family, and the bj in the other.
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Proof: There are two cases to consider, namely the case that

a In the first case,

1 1°

3y and a, define a plane = . All the lines b3, b4, b5,

b6 lie in this plane, as they meet al and 32 . Then, a3,

meets ay » or that a, meets b

1

4 25» and ag lie in this plane, as each meets three of

the b-lines. Finally, this places b1 and b2 in the plane.

In the second case, consider the ruled quadric sur-

a

face generated by a Let A be the family of

1> 395 33 -
rulings including aps 3y, a3b. Let B be the other family.
Now, bl’ b4, bS’be are transversals of ajs a5, 25 . Thus

6 € B. Finally, b2 and b3 € B 3 so all of

the lines lie on a ruled quadric. X

bl’ b4, bS, b

It is by no means obvious that double-six configura-
tions actually exist. This is guaranteed by the following
theorem, which migh appropriately be termed the "Fundamental

Theorem of Double-Sixes'.

Theorem 3.2.2. Let lines 85 sees ag and b6 be given, so

that b6 is a transversal of a5 cees ag . If the lines

8ys ooy a5 are placed so that each four of them determine
uniquely another common transversal (as in Theorem 3.1.8),
then there is a unique double-six including the given lines.

Proof: There are unique lines _bl’ b2, b3, b4, and b5 such

a (all except its like-

that each meets four of 815 +ees 35

numbered mate). It remains to be seen that 'bl, b2, b3, b4,

and b5 have a common transversal. Any four of the latter
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have a transversal not yet noted. For example, bl’ bZ’ b3,
and b4 all are met by ag and a uniqué other line, & .
Likewise, bl’ bz, b3, and b5 have 34 and another line m
as transversals. If we can show that ¢ and m coincide,
then, denoting this single line as ag , we have constructed
a complete double-six in a unique way. Alternatively, we may
show that & ‘is cdmpletely determined by the lines a1 3y,
a3, bl’ b2, b3, and b6 . We should then conclude that &
and m coincide.

an51der the nine points P12’ P21, Pl3’ P31, P23,
P32, Pl6"P26’ P36’ where Pij is the intersection Qf a;
with bj . Now, consider the two quadric surfaces generated
by ay, ags ag and b2, b3, b4 . These two surfaces share
lines ag and b4 (which meet one another) and so, by
Theorem 3.1.3, their remaining common points lie in a single
plane. P23 and P32 are such common points, as is P16 .
These three points thus determine the plane. Finally, let X
be the intersection of b1 and %, . X is common to both ;
quadrics, and so lies in the plane of Plg Pygs Paos where
this plane is met by bl . The same argument will place the

intersection of bl and m in this plane, again at the

point X . Thus, &, m and b1 concur in a single point, X .

Likewise, £, m, and b3 concur in a point Z (in plane P36’

P> P21). Thus, £ and m are identical, and yield the final

line, ac, for the double-six configuration. &
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Having been given a double-six configuration, we may

derive further lines from it. For example, since a; meets b2,

12° Likewise, a2 and bl define another

The intersection of these two planes is a line

they define a plane w

plane Toye

which we may denote either by c¢ This method allows

12 °F C9y-
us to derive {gJ = 15 lines cij' We state now, but reserve

for later proef, a fundamental theorem.

Theorem 3.2.3 The 27-line configuration of 12 lines in

a double-six and its 15 derived lines form a closed system,
in the sense that, finding a second double-six amongst the
27 lines, and deriving 15 new lines from this, we are led to

the same totality of 27 lines as before.

We call this configuration a complete double-six. It is

connected with the set of lines on a general cubic surface;
we indicate this connection by stating without proof several

theorems.

Theorem 3.2.4. A general cubic surface contains exactly

twenty-seven lines.

Theorem 3.2.5. The twenty-seven lines on a cubic surface

form a complete double-six.

Theorem 3.2.6. There is exactly one cubic surface

containing a complete double-six.
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Thus we see that the étudy of the complete double-six is
exactly the study of lines upon a general cubic surface.
Whlle we have not proved this connectlon we shall feel free
kto use terminology which arises naturally therefrom. Oﬁrr:esulﬁs
do not in any way depend on this connection with cuﬁic |

surfaces.

§3.3 - The Structure of the Complete Double-Six

The theorems 3.3.1 - 3.3.10 which establish the
structure of the complete double-six come from Baker[B], and
Henderson [20]. The combinatorial results 3.3.11 - 3.3.14,
whereby the (36, 15, 6) design is obtained, are due to the

author.

Theorem 3.3.1, The 27 lines of a compléte double-six

have the following intersection_propérties:
1) a; meets bj if i # J;

2 a, meets c¢,, = 3
) i s 1-J ‘ cji’

3) b, meets c,, c,.5
J 1] J¥ 4

4) cij meets e if {i, j} n {m, n} = ¢;

5) there are no furﬁher intersections.
Proof: The first property follows from the definition of
the double—éix, and the second and third properties follow
directly from the definition of the derived lines Cij'

We utilize the proof of Theorem 3.2.2 to show

the dual of property (4). As in that theorem, let Pij be

the point of intersection of the lines ai and bj'
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Now, let d.. = d,. be the line joining P_, to P, . Noting
ij ji ' ij ji ‘

that we may identify the point X of Theorem 3.2.2 as P

61°
we have that,P16’ P6l’ P23, and P32 are all coplanar. Thus,
d16 meets d23. The dual result is that c16 meets c23. This

case is general.
Finally, we show that no further intersections
can occur. There are two cases to consider. We may have
a derived line meeting a line of the original double-six, or
we may have two derived lines meeting. As an example of the

first case, suppose that a, meets c,,. Then as b2, and Cy3

1 23

all meet, and hence lie in the plane 7 Likewise, the lines

12°
aps b3, and Cy3 all meet, and thus lie in plane Ty3e These
two planes, containing both a, and Cyqo must coincide; thus,
b2 meets b3 and we have violated a condition on the original
double~-six.
In the second case, suppose that 2P meets i3 Now,
b2 and b3 meet both these lines, and consequently lie in
the plane determined by 1y and 3¢ This means that b2 and b3
meet, again a violation of the double-six requirements. X
This theorem is the foundation upon which all of our
structural results rest; taken as a starting point, .it.leads

to the block designs without regard to the reality of the

complete double-six.
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Theorem 3.3.2. Every line meets exactly 10 others.

Proof: Lines a, and c

1 are general cases. Line a, meets

12 1
_b2 _b3, b4, bS’ b6’ and_clz,nc13, 140 S150 C16° and no others.

Line c12 meets al, az,’bl, bz, and c34, c35, C36’ c45, c46,

s and no others.

R
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Theorem 3.3.3. There are 216 pairs of skew lines, and 135

pairs of lines which meet,

Eggéﬁ: Each line meets 10 others, and is skew to 16. Thus,
the number of ordered skew pairs is 27 x 16, and the number of
unordered pairs is % x 27 x 16 = 216. Similarly, the number of

unordered pairs of lines which meet is % x 27 x 10 = 135, K

Theorem 3.3.4. A pair of skew lines has exactly 5 transversals.

Proof: We consider cases. Lines a, and a, are skew, and meet

1 2
éach of b3,,b4, b5, b6’ and e Lines a; and b1 are skew, and
meet each of 012, c13, c14, clS’ c16° Lines a; and c23 are skew,
and meet b2, b3, Ci40 C15’ C16' Finally, lines i and ¢4 are
skew and meet ars bl’ €455 C46° Csg- This accounts for all
possible cases. X

In our original double-six, we say that a; and bi are mated.
It is clear that the property of being mated is intrinsic to
the double-six, and is not dependent on the way in which

we assign names to the twelve lines. Let us use the notation
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to assert that the set '{ai, cees @iy by oeus, bG} forms a

62 71°
double-six.

Theorem 3.3.5. There are at least 36 double-sixes.

Proof: We provide a list. There is the original double-six.

Now

is a double-six, and is characteristic of (2] = 20 examples.

Likewise

8 by oehy oy ch5 Gy

a, by cy5 ey oy Cgp

is a double-six, characteristic of (2] = 15 cases.

Thus, at least 36 = 1 + 20 + 15 distinct double-sixes exist. [

Theorem 3.3.6. A given pair of skew lines can occur as mates

in at most one double-six.

Proof: Given two lines, we require ten more. There are ten
lines meeting the first given line, five of which also meet the
second. These five cannot be used. Likewise, of the ten lines
meeting the -second, five also meet the first, and so‘cannot be
used. This gives us exactly ten lines from which to choose ten,

§O0 we can construct the double-six in at most one way. X
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Corollary 3.3.7. There are exactly 36 double-sixes.

Proof: We have 216 pairs of skew lines. Each can occur as
mates in at most one double-six, and each double-six accounts
for 6 mated pairs. Since 216 = 36 x 6, we have accounted for

all the pairs, so no further double-sixes are possible. K

Theorem 3.3.8. For a given pair of lines which meet, there is

exactly one further line meeting both of the given lines.

Proof: We illustrate by cases. Lines ay and b2 meet c,,.

Lines a1 and c12 meet line b2. Lines c12 and c34 meet line 056‘

RA

These account for all possible cases. X

Sets of three lines, each two meeting the third, are

called tritangent planes. This terminology arises from the

relation with cubic surfaces in an obvious way.

Corollary 3.3.9, There are exactly 45 tritangent planes.

Proof: There are 135 pairs of intersecting lines.

~Each tritangent plane contains 3 of these pairs, so the number

R

of tritangent planes is 1/3 x 135 = 45, ' X

We are now in a position to prove

Theorem 3.2.3, The complete double-six is a closed figure, in

the sense that from any double-six amongst the 27 lines, the 15

derived lines are the remaining 15 lines of the figure.

Proof: We show the truth of this theorem for the two double-
sixes of theorem 3.3.5. Having picked a double-six, we will

rename its lines A A B B_ and let Cij be the 15

q> =+ BgBys eees By
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derived lines. We have to show that the derived lines are

lines of the original configuration.

In the first case, let

By 7y By = Co3
By = 3 By = cyg
Ay = a4 By = e
By = Cgq By = by
Bs = g By = by
B = Cys B = Pg

The results we require can then be obtained from Theorem 3.3.7.

For example, C,_ 1lies in the plane formed by a, and c, .. C

12 1 13 12

also lies in the plane formed by a, and c._,. Now b3 is the

2 23
unique line common to both planes. Thus, C12 = bS' Similarly,
C13 = b2, C23 = bl’ and C45 = &g, C46 = a5, 656 =a,. Now
C14 lies in the plane determined by ay and bu. C14 also lies
in the plane determined by Ceg and Cra- The single line common
to both planes is ST Thus, C14 = Sy and similarly,
Cij = cij fori=1, 2, 8 and j = 4, 5, 6.

In the second case, let

17 % 17 %
A, = b, B, = b,
Ay = cyg By ® 43
By = ey By = cqy
Bg = 5 Bs % 5
A =c B. . =c¢
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It is immediate that C = c

12 12° Now, C

13 lies in the plane

formed by ay and g and also in the plane formed by a, and

Similarly, C., =b , C,_=b_, C . =b

Thus Cj5 = b 14 4> 15 5° “16 6°

Co3* 13 3

and 023 = a C = ag, C = a.. Finally, C =

4> “25 26 5 34 - Ss6°

X

@3> Cpy =

35 = Cup> C36 =

¢ Cy5> Cys =

36> Cug = Cgg» ad Cge = cg) .

For the double-six

we say that '{ai, cees a6} and '{bl, cees b6} are the rows
of the double-six. It is evident that the partition of the
twelve lines into two rows is determined without reference to

the labelling of the lines.

Theorem 3.3. 10. Two distinct double-sixes are related in one

of two ways:

i) each row of the first shares one line

element with each row of the second, or

ii) one row of the first shares three lines
with a row of the second, and shares no
lines with the other; the second row of
the first shares respectively 0 and 3

lines with the rows of the second.

Proof: We may take one of the double-sixes to be

and the other to be
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either
(3, Dy chy Sy s )
22 P2 C13 Gy %45 g
or
3, 3, a5 ey cyp .
%23 ®13 %2 Py D5 Dg
The results follow by inspection. bS]

Now, let 4 be the set of double-sixes. Define a
relation, = , on Aby X =Y if and only if the rows of X

and Y share one line each.

Lemma 3.3.11. The relation = 1is irreflexive and symmetric.

Theorem 3.3.12. If X =Y, there are exactly 6 double-sixes,

Z, such that X =2 and Y = Z.

Proof: We may suppose that

% - 31 a2 a3 a,4 aS a6
b, by, by b, by b
and
[al by Cy3 Sy %5 S
Y= b c c c c *
laz 2 “13 ‘14 %15 C16

Let (i, j, k, 2, m, n) be a permutation of (1, ..., 6). Then

the most general double-six related to X is

and we see immediately that
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IA
o

Y = Dij if and only if 3 < i, j

There are (;} = 6 such cases. | &

Theorem 3.3.13. If X # Y and X # Y, there are exactly G;Z;such
that |
X=%Z wand Y =2,

Proof: We may assume

28 718 12 T4 5 6

Letting Dij be the same as in the previous theorem, we find

that
Y = Dij if and only if 1 <4i, <3 or 4 <i, j<6.

. . 3] 3 ' , -
This yields ol T ol = 3+8383=686 cases. X
Theorem 8.3.14. The incidence matrix for = yields a

(36, 15, 6) block design.

b = 36. We have

Proof: Since there are 36 double-sixes, v
noted that the relation = is symmetric. With the count given

in Theorem 3.3.5, we see that/r = k = 15.

Finally, Theorems 3.3.12 and 3.3.13 together imply A = 6. &

§3.4 - The Tritangent Planes

In this section, we develop the (45, 12, 3) design from
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the 45 tritangent planes. Theorems 3.4.1 - 3.4.4 come from

Baker [3] and Henderson [20]. Theorems 3.4.5 and 3.4.6 are due
to the author.

Theorem 3.4.1. Every line lies in five tritangent planes.

Proof: According to Theorem 3.3.2, a fixed line meets 10
other lines. Then, by Theorem 3.3. 8, they must pair off, to

yield 5 planes. K

Theorem 3.4.2. Each tritangent plane shares one line with 12

others.

Proof: A given tritangent plane is composed of three lines.
Each line lies in five planes, one of which is the plane under
consideration. Thus, the total number of planes sharing one

line with the fixed plane is 3 x (5 - 1) = 12, &

Now, let A be the set of tritangent planes, and define a rela-

tion = , on 4 by

X =Y if and only if X and Y share one line.

Theorem 3.%4.3. If X =Y, then there are exactly 3 tritangent

planes Z such that

1
N

X =12 and Y =

Proof: Let % be the line shared by X and Y. There are five
planes including %, by Theorem 3.4.1. Two of these are X and Y.
The other three serve as choices for Z. Now suppose

that X ='{£, m, , m2}, Y = {2, n,, n2}, and Z ='{m1, n,, pl.

Then &, m s and ny meet in pairs, and so they form a tritangent
plane. This means that X = Y. Thus, the only choices for Z are

~




the 3 additional planes through 2. b

= ) . 3
Theorem 3.4.4, Let X = {21, 22, 23} and Y = {mi, My, Mol

be two planes with no line in common. Then, by renumbering if
necessary, we may assert that zi meets mj if and only if

i=3.

Proof: We may choose X =‘{a1, b2, 012}. The proof follows by
cases. For example, if Y =A{a2, b3, c23} , then

ay meets.b3,

b2 meets Cogs and

c12 meets a2 .

If Y ='{c23, c },

14> “s6
a1 meets 014’

b2 meets 023,

c12 meets 056'

If Y={a,, b

3> Dy cgyt

a, meets b
b, meets a

c meets c
All other cases follow similarly.

Theorem 3.4.5. If X # Y and X # Y, then there are exactly

three Z such that X = Z and Y = Z.

Proof: Let X = {21, 2ys 23} and Y = {ml, m, ma} where L.

meets m with no other intersections. Now zi and m, meet,
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and thus form a tritangent plane with some further line n; .

This gives 3 planes Z. No other possibilities exist, for

<

otherwise we should have zi meeting mj for i # j. k

Theorem 3.4.6. The incidence matrix for = yields a (45, 12, 3)

block design.

Proof: v = b = 45, because of the number of tritangent planes.

Noting that = is symmetric, we see that Theorem 3.4.2 gives
r = k = 12. TFinally, A = 3 is a consequence of Theorems 3.4.3

and 3.4.5. K
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Chapter 4 - Isomorphism of Designs

In this chapter, we discuss two general ways of
testing whether designs with the same parameters are isomorphic.
Both methods of testing were conceived by the author, although
Wallis [44] and Newman [28] have discussed the first method

as an isomorphism test as well.

§4.1 - The Smith Normal Form
In this section, theorems 4.1.1 - 4.1.16 are taken
from Stanton [37]. Theorems 4.1.17 - 4,1.23 are from Wallis [447.

We recall that we have used the term incidence matrix

in the following way: given a balanced incomplete block design
with parameters (v, b, r, k, A), let the varieties be
'{vl, Vs ees vv} and let the blocks be {Bi, By, «ony Bb},

where each set is numbered in arbitrary fashion. Then

]

define the vxb matrix A (aij) by

1 if v, ¢ B.,
1 J
ij
0if V, ¢ B..
i” 3
The basic properties of A are
(i) the column sums of A are all k;
(ii) the matrix AA: has r on the

main diagonal and A elsewhere.

Conversely, if a matrix A satisfies conditions (i) and
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(ii) above is given, then the reverse procedure yields a

balanced incomplete block design with parameters (v, b, r, k, A).

Before proceeding with our discussion of block
designs, we consider some properties of permutation matrices.

A permutation matrix is a square matrix consisting of 0's and

1's such that each row and each column contains exactly one 1.

The basic theorem on permutation matrices is

Theorem 4.1.1. The set of n x n permutation matrices forms a

group isomorphic to Sn (the symmetric group on n symbols).

Proof: Let o be a permutation from Sn . Define the n x n

matrix A = (a..) by
1]

0 if J # a(i) .
It is clear that A is a permutation matrix, and that the rela-
tion a > A is invertible. We need only show that matrix
multiplication is equivalent to group multiplication in Sn .
To this end, let B be another permutation in Sn , and

B = (bij) be the corresponding matrix. TNow

8 = aB means 6(i) = B(a(i)). Thus
n
cij = zkzl aik bkj
We know that a,, = 0 unless k = o(i) , and then a., = 1 .
ik ik

Thus,

c..=b ., .. ..

1] a(i)’j

By the definition of bij’




57

1 if 5 = B(a(i)) = 6(i) ,
c,. =
ij , :
0 if 3 # Bla(i)) = &(i) .
Thus C 1is the matrix corresponding to § = o . v K
-1 T . .
Corollary 4,1,2. A" = A" for permutation matrices.

Corollary 4.1.3., If 4 is a permutation matrix, then

det A = #1,

-1 T
Proof: Let det A = 3 - We have I = AA™" = pa s and thus
1=det I = det A det AT = a2 . Hence a = #1 , K

A matrix A with integer entries and determinant #1

will be called an integer non-~singular matrix, or INS-matrix.
e etrix

Thus we obtain

- Corollary 4.,1.y4, Permutation matrices are INS-matrices.

The utility of permutation matrices in connection

with block designs arises from the well-known

Lemma 4.1.5. If P is g permutation matrix, and if A is any
= e

matrix, then PA is a matrix which can be obtained from A by
row permutations. Conversely, any row permutation of A can be

realized in this way, and such correspondence is biunique.

A similar result holds for column permutations, but

the permutation. matrix appears on the right.

Let A and B be two matrices of the same size.

- We will say that A is permutation isomorphic to B if B can be
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obtained from A by use of row and column permutations. In view
of Lemma 4.1.5, this is equivalent to asserting that permutation
matrices P and Q (of appropriate sizes) exist, such that

B = PAQ.

It is easy to check the following result.
Lemma 4.1.6. Permutation isomorphism is an equivalence relation.

Lemma 4.1.7. If A 1is the incidence matrix for a balanced
incomplete block design with parameters (v, b, r, k, A), and

if B is permutation-isomorphic to A, then B is also the incidence
matrix for a balanced incomplete block design with parameters

(v, b, r, k, A).

We note that two balanced incomplete block designs
with parameters (v, b, r, k, A) are isomorphic if their inci-

dence matrices are permutation-isomorphic.

A canonical form for permutation-isomorphism is not
known. As a result, algorithms for testing permutation-
isomorphism of matrices generally take the form of merely
testing row and column permutations of one matrix agaiﬁst‘the
other. However, there are generalizations of permutation-
isomorphism for which canonical forms are known, and these can
be used to obtain negative results. For example, we might con-
sider ordinary equivalence of matrices. Two matrices A and

"B are called equivalent if there exist non-singular matrices
P and Q such that B = PAQ. This relation is an eéuivalence

relation, and a canonical form is known. Every matrix is
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equivalent to a matrix containing r 1's on the main diagonal,

and 0O's elsewheré.« The quantity r is invafiant5 and is calied
the rank of the matrix. Thus, we see'that two matrices‘aré
equiyalent if and §p1j if»fheykhave the'same,dimensions and
rank.v By'Theorémtuli;é,,permutation ﬁatpices’afe ndn—singﬁlar,:l
‘hence, if A is permutation-isomorphic tokB, then A is equivalent
to B. Equivalently, if A is not equivalent té B, then A is not
permutation-isomorphic to B. This does not lead to any useful

results, since, if A is the incidence matrix of a (v, b, v, k, 1)

block design, the proof of Fisher's inequality (v < b) yields
incidentally the fact that A has rank v. Thus, all incidence
matrices fo; balanced incomplete block designs with v varieties
arevequivalent. This can not possibly help us. The technique,

however, can be applied in another case.

In what follows, we are essentially considering equi-

valence of matrices whose entries lie in a commutative ring with
cancellation. The traditional application of these vesults is
to matrices with polynomial entries for the purpose of deter-
‘mining invariant factors. We shall state and prove our results

with respect to the ring of integers.

Let A and B be n X n matrices. We say that

A is integer-equivalent to B if,there exist two INS matrices

P and Q such that B = PAQ. One immediately obtains
Lemma 4.1.8. Integer equivalence is an equivalence relation.

An elementary integer operation on a matrix A is one

of the following:
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Y i) interchanging two rows of A,
ii) multiplying a row of A by -1,

iii) adding an integer multiple of one
row to another row;

or any similar column operation.

Lemma 4.1.9. Now, let an elementary row operation E be
specified. Then there is a unique INS matrix P such that
E(A) = PA , that is, elementary row operations can be peré
formed by premultiplication by a suitable matrix. Dually,
elementary column operations can be performed by a post-
multiplication such as E(A) = AP . In either case, the

desired matrix is given by P = E(I) .

Corollary 4.1.10. If B 1is obtained from A by a sequence

of elementary operations, then A and B are integer equivalent.

Now, let A be a fixed n X n matrix with integer

entries. Let & = ek(A) be the greatest common divisor of

all k x k minors of A, 1 <k € r = rank A. We shall also set

ey = 1 and e = 0 forr <k <n. We obtain
Lemma 4.1.11. (i) e > 0 ,0<k<r.
(ii) e = !det AI_'
(iii) e, = ged (all aij).
(iv) ek-llek ,1<k=<pr.

We now define dk = ek/ek__1 , 1 <k <r and

dk =0, r< k<n. Wecall '{di, ceey dn} the invariant

factors of A. Further, let S = S(A) = diag (di’ cees dn) .
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We call S the Smith Normal Form of A. In terms of the di .

the previous Lemma becomes

Lemma 4.1.12. (1) dk >0 ,1<k<r.
(ii) e = d1 e dk , 1<k <n.
(iii) d1 = ged (all aij) .

Lemma 4.1.13. If B is obtained from A by an elementary

operation, then S(B) = S(A) .

Lemma 4.1.14. If d dn are integers such that

EERREE

IA

rs

(i) d >0 ,1<k
(ii) 4 =0, r<k<n;

(iii) dk_1|dk , 1< k<r;
and if D = diag (dl’ cees dk) , then S(D) =D .

Theorem 4.1.15. Let A be any square matrix with integer

entries. Then, there exists a matrix D which can be obtained
from A by elementary operations and which satisfies the require-

ments of Lemma 4.1.4.

Proof: Let r = rank A. If r = 0, we are finished. Otherwise,

let d1 be the greatest common divisor of the elements of A.

Now, let aij be the non-zero element which is smallest in

absolute value. Place this element in position (1, 1) by row
" and column permutations, and multiply row 1 by -1 if aij < 0,
There are now two cases, according as 2y = d1 or a,, > dl'

In the first case, by adding appropriate multiples of row 1 to

other rows, we may reduce all entries in .column 1 except all,to

zeroes, Similarly, the same ‘pro-

~
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cedure may clear row 1 to 0's, and we have A converted to

where d1 divides every element of A'.

In the second case, we show that we can replace a

by a smaller number. There are two subcases, according as ayq
does not divide every element of row 1 and column 1 evenly, or
does. In the first subcase, let aij =qaytr, where

0 <r«< aq - Then, subtracting q times column 1 from column j
produces a matrix containing r, and we have accomplished a
reduction. In the second subcase, we may clear all of row 1
and column 1 to 0's (except, of course, a,,). As a,, > d, ,
11 11 1
and, by Lemma 4.1.183, d1 is the greatest common divisor of the

entries in the matrix, there is an entry aij such that

unaltered, and

a4 I aij . Adding row i to row 1 leaves a4

places the value aij into position (1, j). We may accomplish
a reduction as in the first subcase. After repeating this
process a finite number of times, we eventually find that

a,, = d, , and the first case applies. Thus, A may always be

11 - %
‘0
o | a)’

where d1 divides every element of A'.

reduced to

Now, let d2 be the greatest common divisor of A'.

Clearly dlld2 . Evidently, repeating this procedure yields
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&<

Corollary 4.1.15., If D = diag (di’ cees dk) = S(A) , then

d 4la ,1<ksr.

Corollary 4.1.16. A is integer-equivalent to B if and only if

S(A) = S(B) , that is, the Smith Normal Form is a canonical

form for integer equivalence.

Lemma 4.1.17. If A is permutation isomorphic to B, then A is

integer equivalent to B.

In terms of BIBD's, this result may be stated as:

If A and B are the incidence matrices for isomorphic
designs, then S(A) = S(B).
or

If S(A) # S(B), then A and B represent different
designs.

Unlike the rank, the Smith Normal Form will serve to
distinguish among designs with the same parameters. We now
Present some results concerning the invariant factors of the
incidence matrix of a balanced incomplete block design. In
‘the following, J is a matrix of appropriate dimensions, all of

whose entries are 1.
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Theorem 4.1.18. Let A be the incidence matrix of a (v, k, A)

block design, and let n = k -~ A. Let the invariant factors of

A be '{ai, cees av} . Then a =n , and a = nk/(n, k) .

v-1
T
Proof: Let B = kA" - AJ.
Since AAT =nl + AJ
and A = kJ,
then AB = kAAT'- AAJ

knl 4 kAJ - kAd

= knI .

Let D = diag (al, cens av) be the Smith Normal Form of A, and
let P and Q be the INS matrices such that D = PAQ. Then
-1__~1

Q "BP = knD—1 . Let b,, ¢e., Db be the invariant factors
1 v

1. knD_l has integer entries, is

of B. The matrix Q 'BP”
diagonal, and every element on the diagonal divides the
preceding one. Thus, knD_1 is the Smith Normal Form of B with

its entries in reversed order, that is

4 bv+1—i = ko .

. R T .
The matrix B contains n = k - A wherever A" contains a 1, and

B contains -A wherever AT contains 0. Since both situations

occur,
b, = ged (n, 1)
= ged (k, n) ,
and
a, = kn/(kx, n) .
Likewise, to obtain a, q » we must show b2 = k. We know that

b1b2 is the gecd of all 2 x 2 submatrices of B. There are
y

2 = 16 possible 2 x 2 submatrices. In the cases where all

~
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entries are the same (n or -A), the determinant is 0. If
there is one n and three -A's, the determinant is #)k. If
there are two n's and two -A's, the determinant is either 0

2 2

or #(n” - A%) = #k(n-A). Finally, three n's and one -) yield

tkn. Thus

b.b

4P, = ged (kA, k(n-A), kn)

[§]

k ged (A, n-A, n)

fn

n

k ged (A, n) = kb1 .

Thus b2 =k , and a4

1
=]

This theorem is very powerful, for it may greatly
reduce the amount of work required to calculate the invariant

factors of the matrix at a balanced incomplete block design.

Theorem 4.1.19. If n = p2 , the invariant factors for a

(v, k, A) block design are completely determined once the

number of 1's in the Smith Normal Form is known.

Proof: Let the invariant factors be ags cees A, - We know

that a_ = nk/(n, k) and a4 =mn-= p2 . From the fact that
a;la, 4 i<vwv-1,
we must have
a, = 1, p, or p2 s i<v-1.

We also know

1 — —

ldet a] = k 0271 o vl

and ay e.. @ = |det A .

Now (n, X) =p°, O0O<as<2.
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Hence v-1
172

vt+a-3
P

Let 1, p, and p2 occur respectively a, B, and y times in

a e, A .
1° > Ty-1

Then o+ B+y=v-1,

B+ 2y =v+a-3.

As v, a, and o are all known quantities, these equations have

a unique solution for B and y, namely

B=v+1-a- 2a

Yy=a-2+a.

We shall say that the Smith class of a balanced
incomplete block design is the number of 1's among the invari-
ant factors. For each of the block designs which we have

constructed, we have n = 9. Thus,

Corollary 4.1.20. The invariant factors of a block design with

parameters (36, 15, 6), (45, 12, 3), or (56, 11, 2) are com-

pletely determined by its Smith class.

Theorem 4.1.21. If two block designs with the same parameters

lie in different Smith classes, they are not isomorphic.

We shall close this section by stating the following

theoYem without prdof.

Theorem 4.1.22. Let A be an n X n matrix of 0's and 1's. Then

the number of 1's among the invariant factors of A is at least

~
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1+ [log2 nl, provided A is ﬁon-singular.

We can combine Theorem 4.1.22 and the condition
B=v+1l-a-2u20 of Theorem 4.1.19 to obtain bounds on

the Smith classes of our designs.

Theorem 4.1.23. Let o be the Smith class of a (v, k, A)

block design.

If (v, k, A) = (36, 15, 6) , 6<aq <18 .
If (v, k, A) = (45, 12, 3) , 6 <a < 22 .
If (v, k, A) = (56, 11, 2) , 6 <a < 28 .

§4.2 - Generalized Intersection Numbers

It is well~known that, if A be the incidence matrix
for a (v, k, 1) block design, then AT is likewise the matrix

of a (v, k, 1) design, called the dual design. The next results,

4.2.1 - 4.2.4, are due to the author.

Lemma 4.2.1. If A is permutation isomorphic to B , then

T . .
A" is permutation isomorphic to BT .

We shall say that A is self-dual if A is
permutation isomorphic to AT . We shall say that A is

strongly self-dual if A is permutation isomorphic to a

symmetric matrix.

Lemma 4.2.2.. If A is strongly self-dual, then A is self-
dual.

Proof: Let S = PAQ , where S is symmetric, and P and Q
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* are permutation matrices. Then ST = QTATPT = § . Thus

PAQ = QTATPT , Or AT = (QP)A(QP) . b

Lemma 4.2.3. A is strongly self-dual if and only if there is

T
a permutation matrix P such that A~ = PAP .

It is known (c.f. Marshall Hall [16]) that a
symmetric block design need not be self—dual. It is an open
question whether a design may be self-dual without being

strongly self-dual, and we shall regard this as possible.

Theorem 4.2.4. A balanced incomplete block design arising

from an abelian group difference set is strongly self-dual.

Proof: The customary construction of the incidence matrix
does not yield the result directly. However, if a row-
permutation is introduced which interchanges the rows corres-—
ponding to g and ~-g , the result is a symmetric matrix,

since the condition gj -8 € D then becomes gj + g:.L e D. K

It is apparent that S(A) = S(AT) » SO testing invari-
ant factors is not a final determination of isomorphism. The
test described in this section can sometimes distinguish a
design from its dual. We shall describe our quantities first

in terms of a non-symmetric design.

Let A = (a..) be the incidence matrix of a
ij’vxb

(v, b, r, k, 1) block design. We define the intersection

numbers of the first kind. (c.f. Stanton and Sprott [36])
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b

Iy = Zj=l L x aij » where X 1is a subset of the

rows, and dually,

v ,
kX = Z HjeX aij » where X 1is subset of the columns.
i=1
Lemma 4.2.5.
(i) k¢ =v .
(ii) r¢ =b .

If X is a singleton,

(ididi) ry =1, and

(iv) kg

If X 4is a doubleton,

k .

() ry = A

These numbers clearly are intrinsic to a design, and
not dependent upon a particular incidence matrix. They are not
particularly convenient to use for classifying designs, as the
number of values involved, respectively 2V and 2b , are
large. They are called intersection numbers because, for example?

k{1’2’3} is the number of elements in B1 n B2 n B3 .

We now define intersection numbers of the second

kind, which will also serve as invariants, and are fewer in
number. These definitions and the results 4.2.6 - 4.2.11 come
from Dulmage and Mendelsohn [14], and were established indepen-

dently by the author.
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R; = the number of X such that X is an n-subset
B of varieties, and ry=m.

Dually,
K$'= the number of X such that X is an n-subset

of blocks and ka= m .

Thus, Rg counts the number of unordered triples of

varieties which occur together exactly twice.

Theorem 4.2.6. (1) Rm =1 if m=b ,
=0 if m# b .
KO =1 1if m=v ,
m
=0 if m# v .
. . 1 .
(i1) Rm =v if m=r,
=0 4if m# r .
1 .
K =b if m=k ,
m
=0 if m# k .
c .. 2 vy .
(iii) Rm = (2> if m= ),
= 0 4if m# A .
Proof: (1) There is one O-subset, namely, the empty set.

Our values follow from r¢ = b, k¢ =v .

(ii) There are v l-gsets of varieties, and each con-
tains r elements. Hence, we obtain the values
1

of Rm . Ki is obtained in dual fashion.

(i1i) In similar fashion, there are (;) 2-sets of

varieties, and each 2-set occurs in A blocks. K



Theorem 4.2.7.

(1)
(ii)
Proof: (i)
(ii)

Theorem 4.2.8.

71

=}
]
o

o) ()

0 4if m# 0

Forn>r ,

KD = n
o 0 if m#0
n
For n2>21 and m> r R Rm =0 .
For n21 and m> k , KZ =0 .

If n>k, let X be an n-set of varieties.
Clearly ry = 0 , since every term in the sum
for ry contains a factor of 0 . The dual

result holds for blocks.

These conditions reflect the fact that a set

of blocks can share at most the k varieties

in any one of them, and the dual condition for

varieties.

If n22 and m> A, then Rz =0 .

For a symmetric design, the same results hold for K; .

Let NSt be the number of s x t minors consisting

of all ones in the incidence matrix A . For s =0, we shall

take this to mean

and for t = 0Q

(v
NSO (s ) -
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Theorem 4.2.9.

m S

-z () R

st m>t t m

= 3 (Z) K;
mzs

. X s
Proof: Fix the integer m . There are Rm ways to choose s
rows so that there are exactly m columns consisting entirely
of 1's. From the n columns, we may'now make a selection in

(?) ways. Summed over all values of m , we obtain
_ m\ s :
Nst - Zm(t) Rm :
A similar argument applied to columns yields the dual result. §

Corollary 4.2.10.

. n_ (v
(1) r R = (n) R
. n _ (b
(ii) Zm Km = (n) ,
(iii) r_ aRr” = b (k) ,
m  m n
(1v) I_ ok = v (r)
m m n
o m n_ (v AN
(v) 2. (2) Kmvw (2) (n) :
Proof: | (i) is the assgrtlon NnO = (n) .

cay _[b
Duallyfv (11)"lS thg result that NOn —'(n) .
(iii)‘ We require an .- Since there are
b ways of picking the column, and

(E) ways of picking the n rows,

we obtain
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(iv) 1is dual to (iii). Hence
T
Nln =v (n) .
. v
(v) We require N2n . There are (2)

ways of selecting two rows.
This gives X columns from which

n must be selected. Thus

e ()

Corollary 4.2.11. TFor a symmetric design,

W (3) %= (3) ()

The utility of considering intersection numbers of the

second kind in testing isomorphism in balanced incomplete block

designs arises from the following observation of the author.

Theorem 4.2.12. The intersection numbers of the second kind

and the numbers NSt are invariant under row and column

permutations of the incidence matrix A .
Equivalently, we obtain

Theorem 4.2.13. If two designs differ in any intersection

number of the second kind, they are not isomorphic.

We shall employ the results of this chapter to give
computer tests for isomorphism of designs. Our results are

discussed in Chapter Five.
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Chapter 5 - Algorithmic Techniques in Block Designs

In this chapter we discuss a variety of topics.
First, we describe computer programs for constructing incidence
matrices for the three designs developed in Chapters Two and
Three. Second, we survey the literature for other occurrences
of designs with the parameters (36, 15, 6), (45, 12, 3), and
(56, 11, 2), and provide a tabulation of these designs. Third,
we apply ﬁhe theory of invariant factors and of generalized
intersection numbers as described in Chapter Four to determine
nearly completely the isomorphisms which exist among the known

designs.

§5.1 ~ Computer Construction of Incidence Matrices

§5.1.1 -~ The (56, 11, 2) Design

The plane PG(2, 4) 1is an example of a (21, 5, 1)

block design. It is well-known that the difference set

K= {0, 1, 4, 14, 16 modulo 21}
describes PG(2, 4), and it is this description which we use

in our computer program; PG(2, 4) is specified by a set
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{PO’_P1’>°"’ on} of points, a set {LO’,Ll’ cens LZO} of

lines, and the incidence rule
P is on Ly if and only if x +y ¢ K,

the addition beiﬁg performed modulo 21.

Lemma 5.1.1. There are two unique functions f and g with

range {1, ..., 20} and domain K such that
n = f(n) - g(n) (modulo 21).

Proof: This is just another way of saying that K forms

a (21, 5, 1) difference set. - X

In any computer program for PG(2, 4) we shall need
the function h(x,y) which produces the subscript 2z of the
line Lz which passes through Px and Py . We note that,
because of the form in which we have stated the incidence rule,
the function h alsoc computes the subscript for the point

common to a pair of lines.

f(x - y) - x (modulo 21)

i

Lemma 5.1.2. h(x,y)

g(x - y) -y (modulo 21).

Proof: Let LZ be the line through PX and Py . Then we

have
X+ z = dl e K, and
y+ z= d2 e K.
Subtracting, we obtain x - y = dl - d2 . As dl and d2 are

both in K , they must be the unique components of the difference

X -y . Then d1 = f(x - y) and d2 = g(x - y) . Our results

are immediate. ' , X



To illustrate, we shall compute the three ovals

through three fixed points (cf. Table 2.2.1). We begin by

~forming a table of the differences of pairs in K .

We then

use these differences to tabulate the functions f and g .

Table 5.1.1 -~ Differences (x - y) from K

h(1,0) = 0, h(2,0) = 14,

K

¥ 0 1| 4 |14 | 16
X
0 - |20 | 17 5
1| - 18 8
4 4 3 - |1 9
14 14 | 13 | 10 - |19
16 16 | 15 | 12 2 -
Table 5.1.2 - f(x) and g(x)
x 12 3 4 5 6 7 8 9 10
£ |1 16 4 4 0 LI 0 1 4 14
s® |0 1 1 0 16 16 14 14 16 4
x []11 12 13 14 15 16 17 18 19 20
£(x) [| 4 16 14 14 16 16 0 1 14 0
g ||1& 4 1 0 1 0. 4 4 16 1
We start by selecting Pd,fPi, - and P2 . We have

and h(Z;I) = 20 . ‘Thus, we see

that the points are not collinear, but rather form a triangle

whose sides are LO’ Ll4’ ané;st

on these thfee‘lines, we get -

0 °

Tabulating the points
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g

Pro Brao Pig

L. = {P

0 P

0> "1

L ' } and

167 Bg> Fps Bys Pgy By

1

L

20~ fF

1’ P2’ PS’,PIS’,P17}
None of the twelve points in this list may be used to augment

our triangle to a quadrangle. P is an allowable point.

3
Computing again, we obtain h(3,0) = 1, h(3,1) = 13,

h(3,2) = 19 . Thus, we have a complete quadrangle

1’ Bz, P3 » whose sides, written in opposite pairs,
are LO and L19; L13 and L14; and L1 and L20 . Using h

again, we get h(19,0) = 16, h(14,13) = 8, and h(20,1) = 15 .

Po, P

The diagonal points for the quadrangle are thus P8, PlS’ and

P16 . As we have h(15,8) = h(16,8) = h(16,15) = 6 , we see

that L6 are P8, PlO’ PlS’ P16’ and P19 . Excluding the
three diagonal points, we find that {PO, Pl’ P2, P3, PlO’ P19}

is an oval. Similarly, selecting P to complete a quadrangle

6
gives rise to the oval {P_, Pl, P2’ P6, P12’ P13} . Finally,

0
choosing Pg yields {PO, Pl’ P2, P9, P18’ PZO} . Denote
these three ovals respectively by A, B, and C .

The program for computing the incidence matrix begins
by computing all quadrangles. For each quadrangle, the diagonal
points, the diagonal line, and finally, the two non-diagonal -
points on the diagonal line are computed. These two points
complete the quadrangle to an oval. As each oval is obtained,
it is compared against the three known ovals A, B, and C .

The computed oval is placed into one of three lists, depending

on which one of A, B, or C it meets an even number of times.




78
After all of the quadrangles have beeﬂ'computed, each of the
lists contains 56 ovals.

The program then computes the incidence matrix for
the (56, 11, 2) design directly from the definition given in
§2.3. Only those ovals which meet A an even number of times
are used. The rows and columns of the incidence matrix
correspond to these ovals in the order in which they arise
’during the first stage of the program. This happens to be
the lexicographic order which arises from our numbering scheme
for thé points of PG(2,4).

Finally, the incidence matrix, with an appropriate
heading, is written onto an external storage medium. The
matrix will be examined later to verify that a BIBD has been
produced, and to calculate some of the invariants associated’
with the design (cf. §5.3). The program is listed(pn pagegfﬂ'

A.l - A.3, and the design on pages B.12 - B.13.

§5.1.2 - The Double-Six Design
When dealing with the cubic surface designs, we:

will use the integers 1, 2, «++s 27 to denote the 1ines:

Lemma 5.1.3. The function
c(i,j) =i x (11 -i)/2+ 3+ 6

maps {(i,j) [ 1 < 1 < j < 6} biuniquely onto {13, ..., 27}.

We then adopt the representation
a, - 1

bj > 6 + j, and
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. cij > e(i,3), wherg i<

The starting point for the program is Theorem 3.3.5.
We prepare a list of the 36 double-sixes as enumerated there.

First, the original double-six

[
a; a, ag a, ac ag

,kbl b2 b3 b4 b5 b6

@

is recorded. Next, the 20 double-sixes characterized by

f

2 23 Ss56 46 45

€12 by PBg By

| “23 13
are recorded, and finally, the 15 double-sixes characterized by
3 Py 33 Cy4 S5 S
% P2 13 C14 °15 6 |
are recorded.

After the list of double-sixes is complete, the
incidence matrix for the (36, 15, 6) design is computed. The
definition of = given in §3.3 is used. As in the case of the
(56, 11, 2) design, the incidence matrix is then stored for

later use. The program is listed on pages A.4 - A.6, and the

design on page B.5.

§5.1.3 The (45, 12, 3) Design

In this program, we begin by constructing the
incidence matrix for the lines of the complete double-six,

according to Theorem 3.3.1. We then consider all (2;)
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unordered pairs of lines. Whenever the lines meet, we findrthe
third lineAwhich meets both, and enter the three into a table
of the tritangent planes. Finally, we compute and save the
incidence matrix for the (45, 12, 3) design, using the
definition of = from §3.4. The program is listed on pages

A.7-A.8, and the design on page B.10.

&

§5.2 - Other Constructions for the Designs

In this section, we tabulate additional descriptions
of the designs with parameters (36, 15, 6), (45, 12, 3), and
(56, 11, 2). If the presentation is made by a difference set,
the difference set is included here. Otherwise, only a brief
comment as to the nature of the derivation is included.
Programs to compute incidence matrices for all of the designs
listed here may be found in an appendix. The presentation of
this section is chronological.

In 1962, K. Takeuchi [40, 41] gave differénce sets
for both (36, 15, 6) and (45, 12, 3). We shall refer to these
designs as KTI36 and KT45 . The difference sets are

{000, 010, 020, 100, 110, 120, 001, 101,

201, 002, 112, 222, 003, 123, 213 modulo 334}, and

{oo1, o11, 021, 002, 102, 202,

003, 113, 223, 004, 124, 214 modulo 335}.

A program was written to produce an incidence matrix
from a difference set in any Abelian group which is the direct
sum of three cyclic groups. This program appears on page A.9,

and the designs are listed on pages B.3 and B.8.
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In 1962, Shrikﬁandg and Singh [34] show that BIBﬁ's
can be derived from two-class association schemes. We describe
their method in detail, as we shall return to it ultimately in
settling the (45, 12, 3) isomorphisms. Although association
schemes may be defined with a larger number of classes, we
shall only discuss the two-class case here.

A two-class association scheme on v varieties is given

when (1) any (unordered) pair of varieties is
said to be either first or second

associates; and

(ii) each variety has n, first associates

and n, second associates; and
(1ii) 4if an (ordered) pair of distinct
varieties are i-th associates,
i . .
.then there are pjk varieties which

jth associates of the first and kth
associates of the second
variety, for 1< i, j, k< 2, the

numbers p;k being independent of

the choice of varieties.

Theorem 5.2.1. (Shrikhande and Singh [34])

(i) p;k = p;j 1<i, j, k<2
(ii) n; + n2‘= v-1
i i
iii) p.. + pr. = n, if i # j
(1ii) Py1 * Py 3 .943
nj_1 if i=3.

The main theorem of Shrikhande and Singh [34] is

‘Theorem 5.2.2. If there is a two-class association scheme with

parameters v, Ny, Dy, and p;k, 1 <i, j, k £2 such that

.P;l = Pil , then there is a strongly-self-dual BIBD with



82

parameters v, k =mn;, ) T P11 TPy -

Proof: Define blocks Bi’ 1=1i< v so that block Bi

contains all first associatesfof‘ Vi . Each block contains

n, varieties. The intersecﬁion of distinct blocks ‘Bi and
. 1 2 .

Bj contains Py; or P;; Vvarieties, accord;ng as Vi and

V. are first or second associates. As these numbers are

1 _ 2
11 - P13

elements. Consequently, our incidence structure is the dual

equal, two distinct blocks;intersect in exactly A = p

of a symmetric BIBD with pérameters v, k =n A, and hence -

1’
a BIBD of those parameters. That the BIBD is strongly self-
dual follows from the fact that V; € B, if and only if V,

and Vj are first associates if and only if Vj € Bi . X

Corollary 5.2.3. If a two-class association scheme has

, p%z = p§2 s then there is a strbngly—self—dual BIBD with

; _ _ 1 2
parameters v, k = Ny, A = Pgy = Pyy. -

In describing a two-class association scheme, it is
customary to write the parameters p;k as' matrices
‘ pi pi ‘
P, = %l %2 . =1, 2.
i i i
Poa1 Py
In 1954, Bose, Clatworthy, and Shrikhande [91] presented

a two-class association scheme with v = 45, n, = 12, n_ = 32,

1 2
(3 8 /3 9)
and P, = s P, = .
1 8 21} 2 (9 22

Theorem 5.2.2 applies to yield a (45, 12, 3) design, which we
denote by SS45.

A pfogram was written to convert certain two-class
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association schemes into. (45, 12, 3) designs. This programme
appears on page A.10, and the associated design on page B.1l.

Shrikhande and Singh refer to the following theorem
of Bose and Shimamoto [8]:

Theorem 5.2.4: If there exists a set of (t - 2) mutually

orthogonal Latin squares of side 2t, then there exists a two-

R . 2
class association scheme with v = 4t » 0y = t(2t - 1), and

1 _ 2
P11 = Pnp

O0f course, the other parameters are also mentioned, but we

= t(t - 1).

omit them here as they are not necessary for our purposes.
They may be easily deduced from theorem 5.2.2. An immediate

corollary of theorems 5.2.2 and 5.2.4 is:

Theorem 5.2.5: If there exists a set of (t - 2) mutually

orthogonal Latin squares of side 2t, then there exists a
balance incomplete block design with parameters v = 4t2,
k =t(2t - 1), and X = t(t - 1).

Shrikhande and Singh state this result, which has
been obtained independently by the author. It is immediate
that the conditions of the theorem hold for t = 3, and this
ylelds a (36, 15, 6) design. We shall return to this design
when we discuss the work of Blackwelder below.

In 1963, a (36, 15, 6) design was printed in [16].
The design, attributed to P. K. Menon, we shall call PM36. It
is given as

{11, 12, 14, 16, 21, 24, 26, 35, 41, 42, 46,
53, 61, 62, 64 modulo 66}.

A program for converting (6,6) difference sets into (36, 15, 6)
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designs was written. This pfogram appears on page A.11, and
the design on page B.4.

In 1966, Bose and‘Chakravarti [10] constructed a
two-class association scheme from the points on a cubic
surface in PG(3,4). Using the method of theorem 5.2.2 they
derive a (45, 12, 3) design which we call RB45S. Using the
same program as for SS45, we obtain the design listed on
page B.9.

In 1969, J. Wallis [40] presented both a (36, 15, 6)
and a (45, 12, 3) by listing tﬁe incidence matrices. The iétter
design is given incorrectly,’and should be corrected as follows:

change the 9 x 9 minor in rows 37 - 45 and columns 27 - 36

I ML , I L M
from I M L to I L M .
I M L I L M

This should be regarded as a correction to a transcription
error in the source text. We shall refer to these designs
as JW36 and JW45 respectively. Programs for converting

the abbreviated descriptions in the source to“incidence
matrices are given on pages A.12 -~ A.15, and fhe designs are
listed on pages B.2 and B.7.

In 1969, W. Blackwelder [5,6] presented the construction

of theorem 5.2.2. From the two-class association scheme of
Bose, Clatworthy and Shrikhande he derived a (45, 12, 3) design,
which we shall call WB45. He also;ébtéined_a (36, 15, 6) design
from a single 6 x 6 Latin square,?técitly using theorems

5.2.2, 5.2.4, and 5.2.5. We shall call this design WB36.
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The author has shown thaé)thg design WB36 may be realized aé
a difference set. To see thié, we first explaiﬁ Blackwelder's
construction. Let A = (aij) be the 6 x 6 Latin square defined
by aij =i+ j (mod 6), for 0 < i, j < 5.
Let the varieties consist of the set of ordered pairs

{(1,5)1 0 < 4i,j < 5}.

Two distinct ordered pairs (i,j) and (k,1) are first associates

if i) i=k, or
ii) j=1, or
iii) aij = 3.

Theorem 5.2.6: The design WB36 is isomorphic to the design

given by the difference set {01,02,03,04,05,10,20,30,40,50,
15,24,33,42,55 modulo 66}.

Proof: » We havé an immediate identification of the varieties
with our group elements. We now interpret the three original
conditions on varieties as group conditions on the difference
d=(i,j) - (k,1) = (i -~ k, j - 1). The first and second
conditions are equivalent respectively to d = (0,x) and d = (x,0),
where, in either case, x # 0. If the third case applies,

- we have | aij =a., whence

i+ 3 k + 1 (mod 6), and

i-k=-(-1 (mod 6).
That is to say, d = (x,6-x) for some x # 0. This argument

can be reversed as well. We see then that each of the three
Latin square conditions accounts for five of the fifteen group

difference elements which we have specified. Thus we have

exactly the noted difference set. X
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The difference set was used with the program cited for .
PM36, and the resulting design is listed on page B.6.
In 1970, Hall, Lane, and Wales .[19] presented both
a (45, 12, 3) and a (56, 11, 2)._'We shall call these designs
MH45 and MH56. MH45 is derived from a cubic surface in
PG(3,4), and MH56 from ovals in PG(2,4). In boéh cases,

the development is via permutation groups, not geometry..
In 1971, E. Spence [35] showed that a (36, 15, 6)

design may be derived from a Hadamard matrix of side 36. A
program for performing this construction is listed on page A.16,
and the design, which we call ES36, is on page B.l.

Finally, we shall use the names RK36, RK45, and RK56
to designate the designs derived in Chapters Two and Three of
this thesis. We see that we have six designs with parameters
(36, 15, 6): ES36, JW36, KT36, PM36, RK36, and WB36; we have
seven designs with paraﬁeters (45, 12, 3): JW45, KT45, MH45, RB4S,
RK45, SS45, and WB45; and we have two designs with parameters

(56, 11, 2): MH56 and RK56.

T -In a private communication, A. Rudvalis states that he
has obtained a (56, 11, 2) and a (36, 15, 6), and that Hall
has obtained a (36, 15, 6). These designs have all been
obtained by group-theoretic methods. Rudvalis states that
his (56, 11, 2) is isomorphic with that of Hall (MH56), but
that the (36, 15, 6) designs are not isomorphic. We will
not deal with these designs in this thesis.
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§5.3 - Isomorphisms among the Desigﬁs

For the designé with parameters (56, 11, 2), we
have noted that both are derived from the ovals of PG(2,4),
although no details df the derivation for MH56 are given.
Howeve?, Jonsson 22 ] gives the geometric derivation of MH56 ,
and this work shows that the designs are the same. Thus, in
the case of‘parameters (56, 11, 2), we have one design.

In the (45, 12, 3) case, there are two obvious
isomoréhisms among the seven designs, namely MH45 with RBY5,
and SS45 with WB45. The possible number of distinct designs
is thereby reduced to five. We shall see that there are at least
three non-isomorphic designs among the five.

Among the six (36, 15, 6) designs, there are no
obvious isomorphisms. We shall see that there are at least
four non-isomorphic designs among the six.

We employ a computer program to calculate‘some of
the invariants described in Chapter Four. First, the intersection
numbers R; (0 ¢ m £ 1) are computed. (For the remainder of this
section, we sh;ll drop the superscript, and write Rm.) During
the computation of these quantities, it is convenient to test
that the row (variety) restrictions for a BIBD are satisfied,
and this is done. After these values have been calculated,
the incidence matrix is transposed, and the process repeated.
If the incidence matrix is symmetric, or if the design is known
to be strongly self-dual (as, for example, is the case when the

design arises from a difference set), the latter step is
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supressed. Finally, the Smith élass is computed for each
design. In fact, this last calculation is not a full computation
of the invafiant factors. We continue reduction of the incidence
matrix, and consequent counting of 1's among the invariant
factors, for as long as the matrigvcontains an entry of‘ii.
When all of these have been exhaus{ed, the remaining entries
are tested for divisibility by three, as this iscthe indication
that we have completely determined the invariant factors. It
is entirely possible that we might not reach this stage. However,
in practiée, it turns out that ES36 is the only design which
does not run to completion, and other factors make it unnecessary
to pursue the calculation in this case. The program is listed on
pages A.17 - A.21.

The matrices WBU45, MH45, and MH56 were not tested,
as they are known to be isomerphic to others among the designs.
In every case, the design and its dual turned out to have the
same row (variety) structure. We might note that the numbers
Rm for the (56, 11, 2) design can be calculated without computation.
We demonstrate this, and provide check values for the other cases in

Theorem 5.3.1. (i) For the (36, 15, 6) design, we have

6 _

oo R = 71M0,

6

I . mR = 16380, and
m=1 m

2 MR = 12700,

m=2 2 m




©

(ii) For the (45, 12, 3) designs, we have

3 _ " °
=0 Rm = 14200,
Z3 mRm = 9900, and

m=1

3 m
zm=2 (2)Rm = 999,

(iii) For the (56, 11, 2) designs,

&

R, = 18480,
R1 = 9240, and
R2 = 0.
Proof: Put n = 3 in (i) and (ii) of Theorem 4.2.10,

and also in Corollary 4.2.11. In the first two cases,
this gives the stated results. In the case of (56, 11, 2),
we get 32 = 0 from Corollary 4.2.11, and the other two
conditions enaﬁle us to solve for R_ and Rl' We could also

0

have had R2 = 0 as a consequence of Theorem 2.2.13.

Table 5.3.1 - Invariants of the (36, 15, 6) Designs

SMITH
DESIGN RO R1 R2 R3 Rq R5 R6 CLASS
ES36 0 846 3753 2142 396 0 3 216
JW36 b4 468 3996| 2232 288 0 12 12
KT36 72 648 3888| 2196| 324 0 12 14
PM36 4y 468 33996} 2232f 288 0 12 12
RK36 0 | 540 4320| 2160 0 0 120 15
WB36 144 468 l 3996 2232 288 0 12 12

89
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Table 5.3.2 - Invariants of the (45, 12, 3) Designs

SMITH
DESIGN R, R, R, R, |cLASS
JW45 5220 | 8100 | 810 | 60 18
KT45 5220 | 8100 | 810 | 60 17
RBUS || 5040 | 86u0 | 270 | om0 | 15
RKY45 5040 | 8640 | 270 | 2u0 15
SSU5 5040 | 8640 | 270 | 2u0 15

The design RK56 has a Smith class of 20.

We can now draw some conclusions, based on Tables
5.3.1 and 5.3.2. First, the (36, 15, 6) designs ES36, KT36,
and RK36 are all distinct. Second, the designs JW36, PM36,
and WB36 are distinct from the first group of three designs,
but, of this group, any or all of the designs\may be isomorphic.
Thus, there are at least four, and possibly as many as six,’
non-isomorphic designs with parameters (36, 15, 6).

We also see that the designs JW45 and KT45 are
distinct. Among the designs RBU5, RK45, and SS45, which are
all distinct from the first two designs, we may again have
some or all isomorphic. .

The possible isomorphisms among JW36, PM36, and
WB36 remain unresolved at the current time, although the fact
that the latter two arise from (6,6) difference sets suggests
that there may be an isomorphism here at least. The (36, 15, 6)
designs of Hall and Rudvalis remain outside our classification

as well.
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§5.4 - Isomorphism of RK45, RB45, SS45

)

We now complete the discussion of isomorphism among
the designs RK45, RB45, and SS45. We shall see, in fact, that
the designs are all isomorphic, and obtain explicit permuta-

tions to demonstrate this.

As noted earlier, the designs R345 and SS45 are both
obtained from two-class association schemes. The association
schemes are presented in idenﬁical fashion: 27 groups of 5
varieties each are giveﬁ, the varieties in each group being
mutually first associates; each variety occurs equally often
(3 times), and a pair of varieties occurs together at most
once. The program cited for creating the designs RB45 and SS45

is designed to process association schemes of exactly this form.

We note now that our design RK45 can also be des-
cribed in this format: for each line on the cubic surface
we note as a group the five tritangent planes which contain
that line. The association schemes for the three designs
are listed in Table 5.4.1. The lines of RK45 occur in the
order implied by the representation noted in §5.1.2,
immediately following lemma 5.1.3. The numbers assigned to the
tritangent planes are the row and column numbers that apply
- to the incidence matrix for RK45. These numbering schemes are

displayed explicifly in tables 5.4.2 and 5.4.3.

We now utilize table 5.4.1 to comstruct explicit

isomorphisms between RK45 and RB45, and between RK45 and SS45.
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For the remainder of this discussion, we presume that the
isomorphisms exist, and that the problem is to identify them.

We also presume that the isémorphisms may be recognized by
treating the association schemes for RB45 and SS45 as line/plane
incidence schemes analogous to the cubic surface scheme.
Henceforth we shall use the terms line and plane with respect

to the latter two designs in the way suggested by our
presumptions. Of course, we say that two lines of a scheme

are incident if they are incident with a common plane.

We deal first with the question of isomorphism
between RK45 and RB45. We attempt to find a double-six among
the lines of RB45. Theorem 3.3.2 gives us the key to our search:
find a set of five skew lines with a common transversal, and a
double-six should appear. We begin by selecting the first
line of RB45, and identifying it as line a, in the Schlifli
notation. We immediately see that the ten lines 2 and 3,
4 and 7, 10 and 19, 14 and 15, and 26 and 27 all meet line a; s
the lines have been written in incident pairs, the incidences
arising out of planes 17, 1, 16, 21, and 25 respectively.
Accordingly, we assign names b2, b3, bé’ b5 and b6 respectively
‘to:lines 2, 4, 10, 14, and 26.. This has immediate implications;
lines 3, 7, 19, 15, and 27 must be respectively lines C12’ C13,

Clé’ ClS’ and C planes 17, 1, 16, 21, 25 in RB45 must be

16°
planes 1, 2, 3, 4, 5 respectively in RK45. We should now be

able to complete our naming of the lines in RB45 according to

the Schldfli scheme, following the outline of theorem 3.3.2.
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Every 4-subset of the lines ’{bz, b3, b4, bS’ bb} must have

1

bi has been excluded from the 4-subset. Moreover, there

two transversals, a, and another, the latter being ai , Where

‘must be a transversal to all of '{az, ays 8,5 2c, a,} and it

6

must be skew to bi’ i=2, ..., 6 . This line is, of course,
b1 . Having established these names, we can pfoceed to name

all other lines according to theorem 3.3.1. Of course, we get

immediate identification of our planes.

Proceeding along these lines, we find that line 13 is
a second transversal of {bZ’ b3, b4, bS} , SO we name this
line ag - Unfortunately, we now have problems:

i) ag and b6 meet (in plane 33),

ii) none of the other 4-subsets has a second

transversal, and

iii) there is no line skew to b

b5 and b6 .

20 P3s Dy

All of these problems are consistent with a reversal of the

roles of the two lines b6 and c16 3y we try again, this

time identifying line 27 as b6 , (and line 26 as C16)'

does not force a change in any of the other names assigned.

This

Proceeding as before, we find that lines 18, 5, 11, and 21 are

respectively and a, . Finally, we discover that

850 90 232 2
line 12 is bl , and we do in fact have a double-six.
Continuing to name lines according to theorem 3.3.2, we are

led eventually to a complete double-six in the twenty-seven

lines; as no further problems arise, we have
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Theorem 5.4.1. The designs RK45 and RB45 are isomorphic.

A similar argument shows that the lines

21 2 4 6 8 10
form a double-six in $S45, and again the naming of the 15

auxiliary lines can be completed without problem. Thus

. Theorem 5.4.2. The designs RK45 and SS45 are isomorphic.

The actual isomorphisms are summarized in tables 5.4.2 and

5.4.3.

We may now conclude that there are three distinct

(45, 12, 3) designs, characterized by JW45, KT45, and RK45.

o
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APPENDIX A

COMPUTER PROGRAMS
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20 13 L=1,8

TR{LL G E0 DU L) )KT=KT+1

TR{KT . NZ.1) 60 T 12

MALT y S =1

ALY =1

Conrminngr . '

PUMTH, '35 15 6 BLOCK DESIGM DUE TO R. A. KINGSLEY AND R, G. STAY
RTOA !

PUNTCH 40440

SOR4AT (3511)

POINT 11121

FORMAT (LY

3T
a0

5

A.6



S W N

4 O

10

11

12
13
RS
15
15
17
18
12
29
21

22
23
24
25
25

Ead

bR

A0 OO

13

[0 e B

32
TS A CURTC

P e I S

ALTEIV - POGER L IOWARE JNOCEXT

S RIUTINE CLHPUTES THD NDESIGN RK45
I0OCN THT TTITANGEMT PLANES

3R FACT

MEET 15 A qucrlcn'wHICH CCUPUTES THZ INCIDENCE MATRIX
FOROTHT RULTNGS I A CUBIC SURFACE

IMTZ522 FURCTION MEET(X,Y)
IMCLICTY TMTZ502 (A=7)
INZ;?;:XT(}S'2)/6*1,4*2’3*3,2*4’5'2'3'4’5’613,4,5’6'4,5’6,5'6,6/
A=y s Y

S REMAXI(X,Y)

AT T

NDe3e M eBaGTL27)RETURN

o
T
3 o~

.

-
P

L
5T=)
FlaoLTas)enTyan .
FU3.6T412167 TY 13
FUAaBT o )T
T{B=ALT0L 4 ) 27T yne

o
]

11=7(2-12,1)

R2=T(F=12,2)

IFMASSGT 12150 T 12

AT=L+MID (A= ,4)

TFOAL e i0 el a0\l S0,P2IMEET=]

SET R

Al=T(2A=12,1)

A2=T{8=12,2) ’
MIE T - ‘

TNl m0 81 3R 0L F 0 P200P,A2.50,81.7%, A2, FQ.B2)MEST =1
2T “
200

COPY THI EUNCTION 4ES7

—

-4
—y
3
I
e

TABLE T FOR SPEED

IMELICIT INTZGER (4-7)

: PLAMEZ(4543),7(27,27)
M(45,45)/2025%0/
MZ(12)

071 J=JdR, 27
K=MI=T(1,4)
?(IvJ)=K
T(JyT)=K

A7




Oy O

4

O DOy

14

21

22233
100

.
w

COMPYTT THL 45 TFF ITANGE™ PLANES

v J)YGT TO 2

D7 3 K=Kn,27

IF(l.f“”"'( T yK) «AND, 10(:q
COMTINT

G7 Ty 2

PLA TN, 1) =1

PLAMTIIN,2) =
PLATI(H,3) =K

h‘j:,‘\‘t"’_l

COUTT T

COMDUTT THE

SO OTHI NZ

¥2]
-
NI
2ol
-
-t
)
Pt
O
1l
<
™
—
Q
(=)
>

A ’.'.:qu»&'
::r+]

L2 U=d3,45
PR V 1,2
i"‘":‘_” ANT (Iv
j..‘ 1_',- L 1 A
TR 0 PLA T, L) 60 T 21
COATIWE

ST 1

M1, 4)=1

U, 1)=1

"(‘H 7‘i1}..

“

“d Do \_J

K)

PUNCHy 145 12 3 BL2CK DESIGM nUz

TN

PUNCH 40,0

fonuToy

ENRMAT (4671
PRINT 22223
C')pA:T('l')
5T

,".?‘I?\‘

A.8

cTHUIHWKIIGD T &




W0 N T D W N e

Jan

DYDY

333
42

12

13

11
49
10
30
G4

§TNTO Y
ILICK
ALATK

WATETY ROGTR,NOWARN
THIS "RILTTHT CC4PUTES AN INCIDINCE MATRIX
200 A DTEFIRINCE SET GIVEN IN A GROUP
AHICH TS TET DIRCCT SUM TF 3 CYCLIC GROUPS -
IMBLICIT INTOGER (2A=2)
[MTI532%2 M(A40,50)
[MTIGIR CA(29),08(2C),DC(20)
CHARACT TR HOR%80
DTAD 42 ,HOR VK, L
FA24AT(AID, T, 313)}
I5(V.37.2)60 T2 30
PUILCH 43,405
PRI T 53,HNR
FAoALT (130
N 2397 I8=1,Y
I ITY Tu=1,V
IV, T ) =0
RZAD VA M VO
%'r—%i*”c
PUAY 41 (TA(TI)ZCRETI)4DC(T),I=1,K)
EOUAAT (R3T1) i
MAZ)
NP=)
NC =7
1Y IR=1,Y
0L I=1,X
XA= AN+ (1) 4 MA)

SEERDIUESDEIS R REEY
XC= A0 (NCATC (T ) sMC)

TV=1 YO+ AR XB+MA0RXA
i/, IRY=1

;f‘...\' ‘_1

IF(‘” C)Y GO TH 13
NEC=D

Na=m3+1

IF {(13.LT.42) G TO 13

NR=)
SEERENS]

COUNTIMNUE
D2 11 Iv=1,V

PUNCH
FORY4T

G0, {MIV,1BY,IB=1,V)
{(3011)

677 T 223
PRTIT 44

EDAAT( L)

ek

M0

NTSTSY DUE T K, TAKEUCHI
NZ3154 CUT TC K. TAKZUCHI

A9

JNOEXT




e i i e T el o N gy
FORES S Y S B A N )

20

21
22

23
27
25
25
27
29
273
30
31
32
23
34
35
3o
37
33
33

12
12

D N O W N e

$J08  WATFIV  PDOGIR,NOWARN,MOEXT

. ,

c THIS 229GRAM COUVERTS A TWO-CLASS ASSOCIATION
r SCHIZAZ INTT THE INCIDENCE YATRIX FOR

¢ A" (45412,3) 318D BY THE METHOD OF

C SHRIKHANDT AND SINGH

c

[NTZGZR%2 "{45,45) 3A38,C,0,F
CHARACTER%3] kDR

1 BZAD 41 ,HOR

41 FIRMAT(220)
IF{HD2.50, ') G0 79 30
PRAIAT 41,HRR
DINCH 41,ECR
017 33 1=1,45
Do 23 J=1,4°%

33 M{T4,J0Y=0
D712 1=1,27
Pr‘\jyf\wy-‘>961!)9p
MA,R) =1
1(Acﬁ)=1
MA,D) =1
M{A, D) =1
M{2,4)=1
MB,C1=1
M{3,7) =1
M{3,2)=1
MICy 2 =1
V({:,‘J)):l
MIC,yD) =1
MLy =1
M{Ty ) =1
M{3,y3)=1
ACT,C)=1 .
Iy 2) =1
A{Zy4) =1
N?(‘E,“B)=1
MUZ,0) =1

12 M{Zs0)=1
BUNTH 40 ,M

49 FIRMAAT (4511)
G2 721

390 PRINT 44

44 FORAAT(LY)

10 5T0P
ND

$ENTEY

IKHAMDE AND SINGH
Ce. BOSE

3 FLBCK IZSISY 2UT T2 SHR
3 8L3CK DESIHY NUS T3 R

A.10




ot b e e ot ped fnd et
~NoumPwNn~O

-
O ©

20
21
22
23
24
26
27
28
29
390
31

15
15

J3GB

ODOOO0O0»

43

12

13

49

30
50

$TNTRY
5 8LICK
A 3LGCK

WATFIV RCGERyNOWARMNZNOEXT

THIS PRTGRAM COMPUTES THE INCIOSENCE
MATRIX FOR A (35,15,5) BLOCK DESIGN

FRTM A (5,6) DIFFZRENCE SET

IMELICIT INTECER (A-2)
IMTEZGZa%2 M(34,364)
INTEGEZR DA(20),R{20)
CTHARACTER®R] HLOR

READ 40, HDR
IF(A3R.%204 ') GO TO 30
PRLINT 40,HDR

FAORMAT (ABD)

PUNCH 40Q,HD=

READ 41, (CALD),DB(T),1=1,15)
FCRMAT (3011)

N& =0

NR=0

DT 13 IB=1,36

N 12 I=1,415
XA=HIN(MA+CA(T ) 4 6)
XB=MAD(MNE4DE(T),6)
TV=1+XB+6%XA
MEIV,I3)=1

NB=N3+1

[F{MRLLT.A) GO ™) 123
NB=D)

NA=MA+H]

CoNTIMNUT

BUNCH 43 4%
FORMAT(36I 1)

Gt T3 1

PEINT 50

FORMAT(Y1Y)

STQP

ZND

DZSIGN BUE ™2 P, K. MENCM
DESIGN DUZ ' TI We BLACKWELDER

A.11




40

41

i3]

THIS RIUTINE CCHPUTES THE INCIDSMCE MATRIX

FOR THE CESISN JW3h

INTZGTZR*2  "M{3£,35)/1236%0/
CHARATTER Z{12412)4XX
READ 40,7

EOCRMAT (1241)

PRINT 41,7

FARMAT (1X,12A1)

N0 1 T=1,4,12
[R=3x5{I~-1)+]

D3 1 J=1,1
JR=3%(J-1}+1

¥X=2(J,1)

IF (XX MEL'Tv) GO TO 2
M{IR,J3)=1
MOIB+1,dB+1)=1
MIR+2,0R+2)=1

RO T 1

TP {XXeNMEgLYY GO TO 3
IR JR+1) =1
METB+1,J842) =1
MOIR+2,483)=1

GO T 1

I8 XX Tty G370 4
I3, 52+2)=1
MI3+1,4%)=1
MI3+2,43+11 =1

57 T3 1

ITFE IXXeNEetJry G2 79 5
[T=i3+2

JT=J073+2

DT 5 IX=182,1T7

D7 56 IX=d8,4,JT

MITX, X)) =1

{1
GOOTa 1
TF (XXeiDet ') GO TO 1
PRINT S VORRDRY 4y T, Jy XX
STN®
CoNTINUE

A.12




33
32
40 42
41
42 43
43
44

$EMT

JITITITITY
JLLLMMMIT]
COMMMLLLTIE
LoJJdILmovL
Ld JeMIHLT
LJJd M1LLeI
MIML JJrILe
AMLT S gL Ml
ALT®Jd ATL
TTLAINML
TLMIMLIT S g
IMILLIMGY

RY

PUNCH,'36 15
PUMNCH 42,M
FORMAT(3511)
PRINT 43
EORMAT (Y1)
STOP

ZND

5 BLOCK DESIGN DUE T0O J.

A.13

WALLIS?




THIS PROGRAM CCMPUTES THE INCIDENCE MATRIX
FO2 74= BLCCK DESIGN Jw4s

OO0

1 INTZ5ZR*2 M{45,45)/2025%0/
2 CHARACTER Z{15)4XX,22%15
3 IQUIVALENCE (Z,22)
4 IR=-2
5 N2 1 1=1,15
5 IB=13+3
7 READ,ZZ
8 PRINT, 27
9 JP==2
10 211 J=1,15
11 JR=J2+3
12 XX=2(.4)
13 IF(XXMELTTIY)GOTO2
14 MUIR,JR)y =1
15 MOIB+1,J8+1)=1
15 MIIB+2,JB4+2)=1
17 G3 TH 1
18 2 IFIXXNELTLYIGD TO 3
19 MII3,02+1)=1
29 MOI3+1,U0B+2)=1
21 M{IB+2,J0)=1
22 50 T 1
23 3 [FIXXNT ' MT)IGOTOS
24 I3, J3+2)=1
25 I3+ ,d8) =1
25 A(13+2,47+1)=1
27 GO T3 1
23 4 IEIXK HELTINYIGO TO 5
29 IT=15+2
30 JT=49%+2
31 23 5 IX=IB,IT
32 N7 5 JIX=d8,JT
33 b MUIA, UX)=1
34 G2 T1 1
35 5 [FAXXs5Qer IGO0 70 1
35 PRINT yPERACRY ,T,J,XX
37 STap
33 1 CONTINYE

A.14



393
49
41
42
43
A
45

J
J
J
J
J
MIML
1TMLT
LLIH
Il
LMt
MMIL
IT11
MLLL
LM

YOO

©

$THTRY
TITTTITIT
LLL#MaTTT
MIELLLTT ]
TLTMLTE
LMIVLITLY
MILLT AL

J L

J [
J THL

I¥LJ

40 J

™
Ty
e d
ey

CINTIUATICN IF ThE PROGPAM TO COMPUTE
THE TNCIDEAGE

PUNCH, 145 12
PUNCH 44
FORAYT(4511)
PAIT 45
ST L)
370

2D

MATRIX FOE JuW45

3 BLACK DESIGN DUE TC Jo WALLIS®

A.15




o U W) e

THIS 237GRAM CCMPUTES THE INCIDENCE MATRIX FOR £S36

IMFLICIT INTEZGER (4-7)

INTEIGERIRD2 N(35,36)/1296%0/
INTEGE2 A(Q)/143%04,141,3%0/

INTZGZR B(S)/14050514C04904+140,0/

INTZGER C{S)/1404144%C,y1,0/

INTZGTR C(S)/1s1496%041/
PRINYT 1
FORMAT(Y1Y)

27 12 14=1,3
TR=TA+?2

IC=T4+11%

D=TA+27

29 12 Je=1,7
JB=J4+5

JC=J4a+l8

JO=JA+27
P=1+M1C(9+JA-TA,9)

X=23(DP)

A{TA, JA)=1-X
1{13,.03)=X
MEIC,J2)=X
I, d0) =X
X=2(P)

MUITA,dR)=X
M{I3,J0)=X
T2, 00 )=1-X
41D, 3001 =X
X=C(P)

MITA, J2)=X
MI3,10)=X
METZ %=X
HI7,J3)=1-X

X=2(?)

MUIZ,J3) =X
1), J2) =X

PUMZH,*36 15 5 BLOCK DESIGN

Nd 14 T=1,35
PUNCH 41,y (4(
FORIMAT (3511
ST3?
MY

Tyd)ed=1y 36
)

)

A.16




T e N e

L
~

Pt P e s
SR AV GV REG SN RS N

4~

N bt ek s s s
C Lo N e

)

i

NN N PN
L N

246
27
23
29
30
31
32
33
34
35
3‘3
37
33
39
47)

42
43

&5

[
[

(SR IR I G T T G T g B

41

3
31

T AL e TG O

WETFEIY PTG NT WA G NCEXT yNOCHECK

TEZ FILLOWING 15 THE “AIN RCUTINE FOR
LISTI' 'S 2LZCK CESIGNS, COMPLTING
INTZR5ICTICY JUMBERS, AND CCMPUTING
SMITH IZRUAL FCRM

SIMPLICTIT INTZGIR(A-Z)
INTLGZR M{E4,64)/4036%0/
REALRT P4
HARANIDT I8 FLAGyHCRFA2,FUTX22{ 1), FFF{5) ,FRF*
GLIVAIL =T (r4.,rFr).(FFF(5).F$F)
gr: ,’I’\‘T/!(1;(,13(1!’2’!,!1'!! ,1)'!| l'))l/
AT=022 KT (10)
r"_?"'x;f(L,«/—gl)\,"ﬁ'L'FLHG,HPQ
TRAAT(2]13,414252)
ﬁfITE{Z,Qu)H37
PRTINT 4C,1IDK
EORAET (V1Y ,A52)
ICTTZ024,42)Y4K,L
PTAdT 42:Y,K,L
]

D‘I.J-"y S = 7FL"\‘S
EURAMTLY UITH PARAMITERS vatr, 12,0 K=t,12,'y LAMBDA=t,12/)
Jl L IT=1,V

2 IV (I, sd=1,4V)

o f
FARAAT (4
CALL ANINT AV ,,K)
CQLL 7‘C"(\’7P9\/)
CALL TRIPLLS(P 3V 9Ky LyKTHEPR)
IF(?FQ.\EgV} STaP
LL=L+1
ARTTIA24%) * THE TRIPLZ STRUCTURE OF THT DESIGN ISt
ARTITE(FEF, a7 L L
FCRIAT(IZ2)
WRITI(Z23FATI{I=1KT{I)yI=1,LL)

TRIRLAGLZ9.95Y) GJ T2 30

CALL TRANS(4,V,=LAC)

TF(SLAS.59.'SY ) GJ T2 3¢C

CALL PACKA{NM,P,V)

CALlL TRIPLESUP 4V KyL KTHERR)

IF{TRRA,HZCISTOP -

MQITE(),J)' 10 ThHe TRIPLT STRUCTURSE 2F THE DUAL DESIGN ISt
)y 1=

ARTITEZ(2sFATI(I~1,KTII 1,LL)
60 T 21

YRIT ()s‘)'JESISH IS {STRCNGLY) SELF-DuUAL?
CLASS=D

PRINI=3
CALL 3¥1THA(M,V, CLZS§oDRI”E)
4?ITT(2y*)'a‘IT+ CLASS=1',CLASS
P2IIT, PRIV izt or N2

5TCP

24D

A.17




47
43
49
50

51
52

-

Ul U
Ul D

[ 36 N UESTNNG SIS IS S MO L O I A IS IR IR S
DO N W N O &~

~N g o
D

72
73
T4
75
76
77
73

YOO

30
31

SUBRIUTING TRIPLES(P, VKK L,CyERR)

THIS IS THES RCULTINE WHICH VALICATES TFE
e MATRIX, AND CCMPLIES THE ROW
INTZASTOTTION NUYBERS

IMPLICIT INTEGER (A-2)
REAL®RI Ple4)yAy3,CCySA
INTEG 3R C(10)

cALL 3175
IF( 1. 17.KK) G2 TC 30
IX=1+1

DO 1 J=IX.vl

2=0(J)

CC=5A

CAaLL CAMD
IF({deiZet) 53 T3 30
2C=A

JX=J+1

D0 1 K=JdX,V

B=P{K)

CALL ©AMD

N=N+1

CN)Y=C(HY+1

G323 T3 21
EFR=100%1+J

PRIMT, PERR=1,Z3A
RETHRN

IND

A.18



79

80
81
82
853
84
85
86
87
883
873
90
a1
92
';)3
94
Q5
35

97

e aNte]
&b U

101
102
103
104%
105
106
107
107
102
110
111
112
113
114

OOOOO

[SSINAN]

OO OO

SLRJUTINE CAND

THIS RIUTINT CCAPUTES THE INNER PRIDUCT

X I

OF Tw) RCWS OF THE INCICENCE MATRIX, USING

ACCLEAM (31T STRIMNG) OPERATIONS

QUIVALSNCEL(Z, L)

AT/ W/ XY 9 B9 35CyE 9N
AND{C W A)

ND(Cy8)

RY 217S

i1
X J
=

poy

oo

— N T = XD
prad

mnonon
—_x O >

it

LeZG.0)C3 TC 2
N=nN+ 1
Z=A4C(L,L-1)

GO T2 1

=Y
IF(L.Z22.0)RETURN
M=N+1
7=A4D1{LyL—-1)

G737 171 3

NG

SUBRIITING TRANS(MyV,F)

THIS RIUTINGE TRANSPOSTS THE INCICENCE
MATRIXy AHC SIMULTANZOUSLY CRECKS TO

SEE Ir THIZ MATPIX IS SYMMETRIC {(IN WHICH
CASZ, THI DESIGY IS STRCNGLY SELF-DUAL

INTZGE2 VM &L,54)
CHARACTZIR F
PRINTH*STARTING TO TRANSPOSE!?
F=1g0 .
MV=VY-1

00 1 I=1,M¥

N=1+1

’J":’ 1 J:!‘lgv

MU=A(14J)

YL=M(d, 1)

[F{Y eSS0 ¥LIGE TQ 1
MTed)=rL

“{JyT)=MU

}::'%\J'

CONTIVUE

RETHR:

D




115

115

117,

118
112
120
121
122
123
124
125
125
127
123
1272
130
171
132

123

134
13>
135
137
132
133
140
141
142
143
144
145
144
147
143
147

OO O

3

SUSRIUTING SMITHA(NM,V4N,P).

THIS RCUTING CALCULATES THE S

MORAAL O FCE A JF THE TICICENCE

IYPLISITY INTEGe~ (L-1)
INTEZGE MlE4,464) 4A(6%)
00 3 I=1,V

a3 d=1,v

M=l ,d1+2

GG T (Z29242) 44y
DONTILLD

DR R I:].y\/

N7 4 f=1,V

SHED{M(INIY,P)) GO TO

ConTIn
1T S
O=0
2T
S5 JJd=1,V
AL Y=V {1,14)
=]
TX=1
T o Tl=1,v
S{Ias0eIl) GJ TO 6
MLIT L)
(. .-

nou

e = o
°
o~
s
W
-
{l
{
~—~

>
1t
—

977 Jdd=1.v

TF(JdeTDed) 63 T 7
ACTC IX =211, dd)+L*Y(JJ)
JX= X+ 1

CONTINLD

[X=1X+1

CONTINILE

V=y—1

IF(VLSTLO) GO T 1

ST TR

ol ST
ND

4

A.20

AITH

MATRIX

30




159 L SUTEIUTINE  DACK (M, By Y)
, - , |
C THIS 2TULTING PACKS ThE IMNCIDENCS MATRIX
C INT Y 327LeA T (RIT=-STRIMG) FCRM FOR
C PRACISSING RY (TRIPLES!
C .
151 THPLICIT ILTE553 (A=7)
: 152 IT—:\)‘; 4(**,(24)
153 - USSP (LA ) Dy X { 2)
154 TUUTUAL NG (D Ky LY ) UX(2) 4 12)
15% 1! I:ly\/ )
15- TY=)
157 [7=9
155 S .
154 097 0?2 =1, u7
150 DO, 23-0) 0 TG0 1) Y= [y 4m
161 2 Wi =t A
152 JS=6n=y
143 =D G- )
164 )(:' 3 d=dsS,22
155 CIF (T, t= ) 20 1) 12T Z4MM
1o 3 M et :
167 11 Py =)
153 SIS
5 M0

179 S UBRDUTING PRINT (M, ¥, K)

1

o THIS ACTUTIMNE PRINTS THE RBIAN

C BY LISTING THI YARTZETIES wHICH

C STV TN SACH 2L0CK: TER=S NUMBIZR

C AT Tils HEAD OF TACH ROW IS THE

c IL2TH NME T f“) THZ CTHER NUMRSRS
C SRS THID YARIZITI: INCIDENT WITH THAT
i 3L 30K :

C

171 IVMELICTIT INTUEGIA(A=7)

172 INTZ6T2 M{eayEa),LINS(30)
173 972 1 J=1,v
74 Lx=9

175 B2 2 I=1,v
175 ) IR0 e
77 LX=LX+1
173 ' L'\?xLX)=I

\,',. \ '

>
1 v*IT (?,+u)Jp(LIii(I) I=1,LX)
490 Rk AT(lK I?y’i' 3“1?/(“X 3014))

..‘:T
3 =0 . A.21



" APPENDIX B

LISTINGS OF DESIGNS

o



BLICK N=5I6YN SHUE T =, SPENCE
WITH 2A°NIITIRS V=35, K=15, LAM3CA= 4

10 13 16 19 21 26 28 29 36

1: 2 3 4 7 3. 9
2t 1 E 5 3 @ 11 14 17 20 22 27 28 29 30
3 1 ? 4 5 5 2 12 15 18 19 21 23 29 130 31
A 1 2 3 5 6 7 17 13 16 20 22 24 30 31 32
5 2 3 4 4 7 8 1114 17 21 23 25 31 32 33
A3 30 4 5 7 3 9 12 15 18 22 24 26 32 33 34
7 1 4 3 05 3 S 10 13 16 23 25 27 133 34 135
32 1 2 s A 7 3 11 14 17 19 24 26 34 135 35
2 1 2 3 4 7 8 12 15 18 20 25 27 28 35 3&
10 1 4 7 C 14 15 13 20 27 29 31 32 33 34 136
11: ? 5 3 11 15 1&é 1S5 206 21 28 30 32 33 34 35
12 3 5 @ 12 15 17 23 21 22 29 31 33 34 35 134
13: 1 4 7012 17 1% 21 22 23 28 30 32 34 35 35
IR 2. 5 212 14 18 22 23 24 28 29 31 33 35 35
15 3 5 5 10 11 15 23 24 25 28 29 30 32 134 34
15 1 4 7 11 12 16 24 25 26 28 29 30 31 33 35
17 > 3 212 13 17 2% 26 27 29 30 31 32 34 135
19 3 A 2 13 14 18 19 26 27 28 30 31 32 33 35
17 1 3 8 12 13 14 15 15 17 19 23 24 23 21 134
20 2 4 °© 13 14 15 14 17 18 20 24 25 29 32 35
21: 1 3 5 1C 14 15 15 17 18 21 25 256 30 33 36
22 2 4 5 10 11 15 15 17 18 22 25 27 23 31 34
23 3 5 718 11 12 15 17 18 19 23 27 29 32 35
24 4 5 8 10 11 12 13 17 18 19 20 24 130 33 36
25 5 7 < 10 11 12 13 14 18 20 21 25 28 31 34
2ht 1 3 3 10 11 12 13 14 15 21 22 26 29 22 35
273 ? 7 9 11 12 13 14 15 16 22 23 27 30 33 36
23 1 2 2 10 12 17 20 21 22 24 26 27 23 32 33
29 1 2 3011 13 18 19 21 22 24 25 27 29 23 34
30 2 3 4 1C 12 14 1S 20 22 23 25 26 30 34 135
31t 3 4 5 11 13 15 2C 21 22 24 26 27 31 35 3%
32 A 5 & 12 14 16 15 21 22 24 25 27 28 32 3%
33: 5 57 13 15 17 1S 20 22 23 25 26 28 29 33
343 5 7 8 14 15 18 20 21 23 24 26 27 29 30 34
351 7 a s 10 15 17 15 21 22 24 25 27 30 31 35
36 1 3 S 11 16 18 1S5 20 22 23 25 26 31 132 3¢
THZ TRIPLZI STRUCTURES OF THE DESIGN IS
0= 9 R1= 845 R2= 3783 R3= 2142 R4= 396 R5= 0
RA= 3
ANID THE O TRIPLE STRUCTURT IF THI CUAL CESIGN IS
R0= ) 21= 345 R2= 3753 R3= 2142 R4= 3954 RE= 0
RbH= - 3
SHITH CLASS= : 15



BL3CK DESIGY CUN T2 J. WALLIS
z QS

WITH PADAMS V=36, K=15, LAMBDA= 4
1: A 5 A 7 3 9 10 13 16 19 22 25 28 31 34
2 4 5 5 7 5 3 11 14. 17 20 23 25 29 32 135
3 4 5 é 7 8 9 12 15 18 21 24 27 30 23 .34
A 1 2 3 7 2 9 11 14 17 21 24 27 28 31 34
5 1 25 3 7 2] 712715 18 19 22 25 29 32 135
61 1 2 3 7 3 2 10 13 16 20 23 26 30 33 36 .
7 1 2 3 4 5 6 12 15 18 20 23 26 28 31 34
31 1 2 3 A g & 10 13 16 21 24 27 29 32 135
Qs 1 2 3 &% 5 & 11 14 17 19 22 25 33 33 134

19 1 5 3 13 14 15 14 17 18 19 23 27 2% 1233 35
11 P 4 g 13 14 15 16 17 18 20 24 25 29 31 35
12: 3 = 7 13 14 15 1A 17 18 21 22 26 30 32 34
133 1 4 8 10 11 12 15 17 18 20 2& 25 30 32 34
141 2 4 S 10 11 12 16 17 18 21 22 26 28 33 135
15 3 5 710 11 12 16 17 18 19 23 27 29 31 136
151 1 4 3 19 11 12 13 14 15 21 22 26 239 31 3%
17: 2 4 S 1C 11 12 13 14 15 19 23 27 30 32 34
13 3 5 7 16 1t 12 13 14 15 20 24 25 23 33 35
19 1 3 210 1% 17 22 232 24 25 26 27 28 2 35
20 2 5 7 11 13 18 22 23 24 25 26 27 29 33 34
21: 3 4 8§ 12 14 146 22 23 24 25 26 27 30 31 35
22 1 5 2 12 14 16 13 20 21 25 26 7 29 33 34
23 2 5 7 10 15 17 1S 20 21 25 26 27 30 131 35
24 3 4 8 11 13 18 15 20 21 25 26 27 23 32 35
251 1 52 11 13 18 17 20 21 22 23 24 30 31 35
267 . 2 4 7 12 14 16 19 20 21 22 23 24 28 32 36
27 3 4 8 10 15 17 1S 20 21 22 23 24 29 33 34
23 1 4 7 10_ 14 18 19 24 26 31 32 33 34 135 34
29: 2 5 83 11 15 146 20 22 27 31 32 33 34 35 34
30 3 A S 12 13 17 21 23 25 31 32 33 34 35 36
31: 1 4 7 11 15 16 21 23 25 28 29 30 34 35 36
37 2 5. 8 12 13 17 19 24 26 28 29 30 34 35 34
331 3 4 S 10 14 18 20 22 27 28 29 30 34 35 36
341 1 4 7 12 13 17 20 22 21 28 29 30 31 32 33
35 2 5 8 10 14 18 21 23 25 28 29 30 31 22 33
351 3 4 9 11 15 16 19 24 26 28 29 30 31 132 133

THI TRIPLT STAUCTUSE 7IJF THT DESIGN IS

RO= 144 Dl= 443 R2= 3234 R3= 2232 R4= 288 R5= 0

RoH= 12

NESTIGH 18

5 (STRINGLY) SELF-DUAL
SUYITH CLASS= 12

B.2



PLOCK DESIGN CUR T3 K, TAKEUCHI
WITH PARANITERS V=36, K=15, LA¥BDA= 4

o

1: 1 2 3 4 5 9 13 14 17 19 21 24 26 32 35
2 1 2 3 4 6 10 14 15 18 20 21 22 271 29 134
3: l 2 3 & 7 11 15 16 17 19 22 23 238 30 33
4 1 2 3 43 12 13 16 18 20 23 24 25 131 34
5 1 3 & 7 8 9 13 16 17 18 21 23 27 30 36
43 2 5 6 7 8 10 13 14 18 19 22 24 28 131 33
7: 3 5 6 7 8 11 14 15 19 20 21 23 25 32 13z
3 4 5 A 7 8 12 15 16 17 20 22 24' 26 29 135
as 1 5 @ 10 11 12 13 15 17 20 21 22 28 31 34
10 2 5 S 10 11 12 14 16 17 18 22 23 25 132 35
11 3 7 S 1C 11 12 13 15 18 19 23 24 26 29 36
12 A 5 9 10 11 12 14 16 19 20 21 24 27 30 133
13: 2 3011 13 14 15 16 17 21 25 26 29 31 33 36
14 3 512 13 14 15 16 18 22 26 27 30 32 33 34
15 4 6 s 13 14 15 16 19 23 27 28 29 31 34 35
14t 1 710 13 14 15 16 20 24 25 28 30 22 35 3%
17 3 5 12 13 17 18 18 20 21 25 28 29 30 33 3§
19 4 7 9 14 17 18 19 20 22 25 26 30 31 34 36
102 1 510 1% 17 18 1% 20 23 26 27 31 32 33 3%
201 2 5> 11- 16 17 18 1S 20 24 27 28 29 132 134 38
21 4 7010 13 17 21 22 23 24 25 27 29 32 233 34
22 1 o1l 14 18 21 22 23 24 256 28 29 30 34 135
23 2 > 12 15 19 21 22 23 24 25 27 30 31 35 36
242 3 £ 9 16 23 21 22 23 24 26 28 31 32 23 134
251 1 2 5 7 9 12 14 20 23 25 26 27 28 25 33
A 2 3 ¢ 3 S 10 15 17 24 25 26 27 28 130 34
27 3 4 5 710 11 15 18 21 25 256 27 28 31 35
21 1 4 6 8 11 12 13 19 22 25 26 27 28 132 34
2a: 1 4 5 & 2 11 15 18 24 25 29 30 31 132 33
30 1 2 5 7 10 12 16 1S 21 26 29 130 31 32 34
31 2 3 7 3 9 11 13 20 22 27 29 30 31 37 35§
30 3 4 5 3 10 12 14 17 23 28 29 30 31 32 35
333 1 3 & 8 9 10 16 1S 22 25 29 33 34 135 3¢
34 2 4 5 6 19 11 13 20 23 26 30 33 34 135 34
35 1 3 € 7 11 12 14 17 24 27 31 33 34 135 36
342 2 4 7 3 9 12 15 18 21 28 32 33 34 135 34
THT TRIPLT STRYCTHURT OF THE DESIGN IS -
R0= 72 A1= 443 R2= 3883 R3= 2195 R4= 324  R]5= 0
RAh= 12 .
AMATHT O TRIPLE STRYUCTURS OF THE DUAL DESIGN IS
Q0= 72 Rl= 643 2= 3388 R3= 2195 R4é= 324 R5= 0
RA= 12
SUTTH CLASS= 14

B.3



BLOCK DIZSIGYM [Cus T3 P, K. MENIN
WITH PARAMEITTRS y=36, K=15, LAMBDA= 5
1: 2 3 5 7 2 @ 11 12 14 17 24 25 26 27 34
2: 3 4 ¢ & 2 10 12 14 15 13 19 26 27 28 38
S 1 4 5 7 @ 10 11 13 15 16 20 27 28 29 34
L3 2 5 4 2 1Cc 11 12 14 16 17 21 28 29 30 31
e 1 3 A 7 g 11 12 15 17 18 22 25 29 30 22
5t 1 2 4 7 e 10 12 13 16 12 23 25 26 30 33
7 & 3 ¢ 11 12 14 15 17 19 20 23 30 21 32 33
q: 5 10 12 14 15 16 18 20 21 24 25 32 33 34
a % 7 e 11 13 15 16 17 19 21 22 25 33 34 3%
10: 1 3 11 12 14 16 17 18 20 22 23 27 34 35 34
11: 2 7 G 12 13 15 17 18 21 23 24 28 31 35 36
172: 3 7 2 160 13 1% 14 18 19 22 24 29 31 32 34
1% 1 2 P 1c 14 15 17 1% 20 21 23 25 246 29 34
14 2 2 % 11 15 14 18 20 21 22 24 256 27 30 31
152 3 & 5 12 13 14 17 1Q 21 22 23 25 27 29 32
161 ¥ z A 7 14 17 18 20 22 23 24 26 23 29 33
17 1 5 Y o 13 15 13 12 21 23 24 27 29 130 34
13 1 2 £ 5 13 14 16 1¢ 20 22 24 25 28 30 35
131 6 T8 < 16 20 21 23 5 2&6 27 29 31 22 35
281 1 3 E 10 17 21 22 24 26 27 23 30 32 23 36
21 2 2 13 11 13 19 22 23 25 27 28 29 31 33 34
22 310 11 12 13 20 23 24 25 28 29 30 32 34 35
23: 4 70011 12 14 1% 21 24 25 27 29 30 33 35 135
24z 5 7 212 15 19 20 22 2% 26 28 30 31 34 36
251 1 2 5 12 13 14 15 22 26 27 29 31 32 23 35
2591 2 3 £ 7 14 15 15 23 27 .28 30 32 33 34 36
271 1 3 % 2 15 16 17 24 25 28 29 31 33 34 135
28 2 4 = G 15 17 18 19 246 29 130 32 34 35 36
29: 3 =z 6 G 13 17 18 20 25 27 30 31 33 35 36
S 30: 1 4 5 11 13 14 18 21 25 26 28 31 132 34 34
ER 1 2 3 5 7 8 11 18 16 20 21 28 32 133 35
321 2 3 4 & 8 © 12 13 20 21 22 29 33 34 34
33: 1 3 4 5 7+ 9 10 14 21 22 23 30 31 134 35
34 2 4 5 & 3 10 11 15 22 23 24 285 132 135 3¢
35 1 3 5 6H 9 11 12 154 19 23 24 26 21 33 36
36 1 2 A ) 7 10 12 17 1§ 20 24 27 31 32 34
THE TRIPLT STRUCTYRT NE THE DESIGN IS :
RO= | A Rl= 4573 R2= 39¢5 R3= 2232 Ré= 288 R5= 0
Ba= 12 ‘
AU THT TRIPLE STRUCTURT NF THE DUAL DESIGN IS
RO= 144 1= 453 R2= 2994 R3= 2232 R4= 288 R5= 0
Ra= 12 : : .

SH4ITH CLASRS= 12



e Ao KINGSLEY AND R. G. STANTON

RLICK DESIG 2J% 72 .
K=15, LAMBCA= 6

5l
NITH PA23V1ZTE25 V=36

- I

25 27 28 26 30 31 32 33 34 35 35

s 722 22 4 28 ;
P @ 1) 11 1S 16 17 13 13 20 22 23 27 34 135 36
33 7 a 11T 13 14 17 18 19 21 22 24 23 32 33 .34
4 4 1 12 14 1é& 18 20 21 22 25 29 31 33 35
5 & 7 ¢ 12 13 15 19 20 21 22 26 30 31 32 34
&1 4 5 11 12 14 15 16 20 21 23 24 29 30 31 36
7 3 5 19 12 14 1% 17 19 21 23 25 28 30 32 3%
3 3 A S 12 13 18 17 18 21 23 245 28 29 33 34
2 ? 5 2 12 13 16 17 19 20 24 25 27 30 33 34
191 2 4 7 12 14 15 17 1% 20 24 26 27 29 32 135
BRI 2 3 6 13 14 15 164 18 19 25 26 27 28 31 36
12: 4 5 7 3 3 10 17 20 21 25 26 27 238 .31 35
13 2 5 A 8 2 11 15 19 21 24 26 .27 23 132 135
143 3 4 4 7 19 11 15 18 21 24 25 27 30. 33 34
15: 2 3 A 7 1C 11 14 16 20 23 26 28 29 23 34
156 2 A 4 8 2 11 13 18 20 23 25 28 130 32 35
17 ? 3 7 g 210 12 18 13 23 24 29 30 31 36
12 2 3 A 2 10 1t 14 14 17 22 25 30 31 32 34
12: 2 3 3 7 9 11 13 15 1T 22 25 2% 31 33 35
201 2 4 = 5 3 10 12 15 16 22 2& 28 32 33 3¢
21 3 4 3 6 7 8 12 13 14 22 23 27 34 35 1354
22 1 2 3 4 5 18 1% 20 21 31 32 133 34 35 34
23 1 2 £ 7 8 15 16 17 21 28 29 30 34 35 36
242 1 3 6 3 10 13 14 17 20 27 29 30 32 33 35
25 1 4 7 9 11 12 14 16 19 27 28 30 31 33 35
261 1 5 & 10 11 12 13 15 18 27 28 29 31 32 34
27: 1 2 S 10 11 12 13 14 21 24 25 26 34 35 354
29 1 3 7 R 11 12 15 16 20 23 25 26 32 33 36
291 1 4 6 3 10 13 15 17 1S 23 24 26 31 33 35
30: 1 5 £ 7 g 14 16 17 18 23 24 25 31 32 34
31 1 4 £ 6 11 12 17 18 1§ 22 25 26 29 30 36
32 i 3 5 7 10 13 15 18 20 22 24 26 28 30 35
33 1 3 4 8 3 14 15 19 20 22 24 25 28 29 34
3¢ 1 2 g 8 2 14 15 1® 21 22 23 26 27 30 33
35 1 2 4 7 10 13 16 19 21 22 23 25 27 29 732
36 1 ? 3 6 11 12 17 20 21 22 23 24 27 28 131
TH™ TRIBLI STRUYCTURT OF THFE DESIGN IS
EHE 0 Rl= 540 R2= 4320 R3= 21560 R4= 0 RS5= -0
R 4= 120 )
NTSIGM IS {STRINGLY) SELF-DUAL
SUITH CLASS= 15

B.5
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=15,

e Y
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- OF THE DESIGN
3964
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LAMRC A=
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17
17
17
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20
20
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R3= 223

~

19
20
21

19

290
21
13
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19
20
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19
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23
23
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27
28
29
30
29
30
23
29
30
23
29
30
29
30
27
23
29
30
20
26
27
23
2¢
30
30
30
30

30

30
29
34
34
34
33
33
33

R5

31
32
23
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BLACK DIESIGY DUR T2 4. WALLIS
WITH PARAMEITTIRS y=45, K=12, LAMARCA=
1 1 2 301¢ 22 28 238 31
2 1 p) 3020 23 25 23 132
33 1 203 21 24 27 3n 33
A 4 3 6 23 23 25 33 133
5 4 3 5 21 24 27 23 131
1 4 3 & 1 22 25 20 37
7 7 2 © 21 24 27 235 32
2 7 2 ©1e 22 25 30 33
ek 7 @ o 20 2% 25 28 31
g 10 11 12 13 23 27 28 33
Il: 13 11 12 29 24 25 29 3]
t2: 12 11 12 21 22 26 303 132
13+ 13 14 15 20 24 285 30 32
4T 13 1% 1% 21 22 24 23 33
15: 13 14 15 1¢ 23 27 23 31
15t 15 718 21 22 26 29 131
17: 15 17 18 13 2% 27 g 32
tar 15 17 13 206 24 25 28 33
19 1 5 2 10 15 17 19 20
201 2 4 7 11 13 18 19 29
21 2 4 2 12 416 19 20
22 2 5 712 14 15 220 23
23 3 4 & 190 153 17 22 23
2% 1 5 2 11 13 1828 22 23
25 3 4 2 11 13 18 25 24
250 1 5 S 12 14 16 25 26
27: 2 5 7 10 15 17 25 24
231 1 5 g 10 14 18 19 24
273 2 4 < 11 15 16 20 22
39 3 5 7 12 12 17 21 23
31 3 5 7 11 15 16 19 24
32: 1 5 & 12 13 17 2¢ 22
33 2 4 5 10 14 18 21 23
34 2 4 S 12 13 17 19 24
351 3 5 7 10 14 13 20 22
345 1 5 8 11 15 16 21 23
37: 1 4 7 10 13 16 28 132
3s 2 3 2 11 14 17 29 33
30 3 A ¢ 12 15 18 337 131
401 3 ) S 11 14 17 23 32
411 1 4 7 12 15 18 29 33
47 2 5 210 13 15 30 31
431 2 5. A12 15 18 23 132
T 3 5 2 10 13 16 25 23
451 1 4 711 14 17 30 31
THY TRIPLE STRUYCTURE NF THE PTSSIGHN IS
RI= 35229 1= 3109 R2= 810 R3=
AN THE TRTIPLT STRUCTURE I8 THE CUAL
R)= 3220 R1= 2100 R2= 8190 R3=
SHMTTH CLASS= 19
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24 32
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35 490
34 40
35 40
36 43
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35 43
69
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60 -
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K. TAKEUCHI

RLOCK DISIGHY Dyt T3
WITH DARAATTERS V=45, K=12, LANMBCA= 3
1: 2 3 4 -5 7 12 12 24 30 33 40 44
2: 1 3 4 53 713 19 25 26 34 386 45
ER 1 2 4 5 3 14 20 21 27 35 37 41
A 1 2 3 5 10 15 16 22 23 31 138. 42
52 1 2. 2 A 4 11 17.23 29 32 39 43
A ? 7 3 3 12 12 20 23 29 34 38 45
7: 3 4 A 2 19 13 16 24 139 35 32 4} .
21 4 A 7% 13 14 17 25 26 31 40 42 '
o 5 4 7 3 10 15 18 21 27 32 35 43
10: 1 4 7 3 3 11 12 2?2 28 33 37 44
11: 2 712 13 14 15 19 25 28 35 39 43
12 3 11 13 14 15 20 21 25 31 40 44
131 4 T 11 12 14 15 154 22 30 32 35 45
14 51T 11t t2 13 1% 17 23 25 33 37 41
15 1 5 11 12 13 14 13 24 27 34 383 42
141 1Y 14 17 13 19 20 22 27 33 39 45
17 4 Sl 15 13 15 20 23 28 34 40 4]
1o 5 7oL le 17 1% 20 24 29 35 36 42
19 1 312 15 17 1% 20 25 30 31 37 43
20 2 1% 15 17 18 13 21 26 32 38 44
21 A 318 17T 22 23 24 25 27 35 38 44
22 5 S 1l 12 2tY 23 24 2% 28 31 33 45
23 L 1D 12 19 21 22 24 25 29 32 40 41
241 2 5 13 20 21 22 23 25 30 33 34 42
L 3 7le 1a 21 220 23 24 26 34 37 43
246 5 P13 17 22 27 23 29 3D 34 40 43
271 110 14 13 23 26 28 29 30 35 36 464
29 2 5 1% 19 24 26 27 29 30 31 37 45
29 3 7 11 20 -25 26 27 23 30 32 38 41
30 &4 3 12 16 21 26 27 28 29 33 39 42
31 3 9 15 18 25 29 22 33 34 35 37 42
32 4 1C 11 1% 21 30 21 33 34 35 38 43
33 5 A 12 20 22 26 21 32 34 35 39 44
342 1 713 16 23 27 21 22 33 35 40 45 .
35 ? 3 14 17 24 28 2 22 33 34 34 4]
361 5 3 14 19 23 30 32 37 38 39 .40 42
37 1 2 L% 20 24 26 23 38 38 39 40 43
38 2 12 11 146 25 27 34 36 37 39 40 44
391 3 5 12 17 21 28 35 36 37 38 40 45
Z0 4 7 13 18 22 29 31 36 37 38 39 41
410 210 13 20 24 28 32 37 42 43 44 45
L7 5 5 14 16 25 29 33 38 41 43 44 45
430 1 7 5 17 21 30 34 39 41 42 44 45
Lk » 2 11 1?2 22 26 35 40 41 42 43 45
L5 3 212 1 23 27 31 36 41 42 43 44
THE TRIPLT STRIUCTURE OF THEZ COSIGN IS .
PN= 5220 21= 2100 R2= 810 R3= 60
AND THT TRIPLE STRUCTURT NF “THE CUAL DZSIGN IS -
RO= 5220 1= §1090 R2= 810 R3= 60

SYITH CLAGS= 17
| | B.8
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UCTURE NOF THE DISIGN IS

5
N

T3 2. C.

V=45,

28
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17
12
1S
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29
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13
1%
17
20
23
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13
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1
ic
11
12
10
11
12
27
10
11
12
10
11
12
10
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37
10
11
12
10
11
12
10
L1

640
GLY)

BNSE
K=12, LAMBCA= 3
26 27 21
25 28 32
26 29 30
20 23 28
21 24 29
22 25 21
18 19 30
21 22 33
24 25 27
20 23 27
21 24 28
22 25 29
18 19 27
21 22 39
24 25 33
13 19 20
13 16 21
13 1% 22
13 15 20
14 16 19
14 16 17
14 15 18
15 15 13
15 16 19
15 16 17
23 29 30
13 19 23
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13 18 25
14 17 22
14 18 20
14 15 21
15 20 25
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13 15 21
13 17 2?
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3LAOCK DESIGM CUE TD Re A. KINGSLEY AND R. Go. STANTON'
WITH PARAMETIRS V=45, K=12, LAM3DA= 3

1: 2 3 4 5 b5 12 17 22 27 31 32 33
2: 1 3 4 5 7 11 138 23 28 34 35 3%
3 1 2 4 5 8 13 16 24 29 37 38 139
42 1 2 3 5 9 14 19 21 30 40 41 42
52 1 2 .3 4 10 15 20 25 26 43 44 45
A3 1 7 é S 10 11 16 21 26 31 132 33
T2 2 H 8 S 10 12 13 23 23 37 40 43
] 3 & K 9 10 13 17 24 29 34 41 44
9: 4 o) T -8 10 14 15 22 30 35 38 45
10: 5 & 7 2 9 15 20 25 27 35 39 42
11: 2 512 13 14 15 16 21 26 34 35 356
123 1 Tl 13 14 15 17 22 27 37 40 43
13: 3 211 12 14 15 18 24 26 31 42 45
la: 4 5 11 12 13 15 19 23 30 32 139 44
152 5 10 11 12 13 14 20 25 28 33 33 41
152 3 5 11 17 18 12 20 21 26 37 33 39
17: 1 312 16 18 19 20 22 27 34 41 44
18: 2 713 18 17 1@ 20 23 28 31 42 45
18 4 2 14 14 17 13 20 24 30 331 36 43
29 5 10 15 16 17 1% 19 25 29 32 35 40
211 4 5 11 16 22 23 24 25 26 40 41 42
22: 1 2 12 17 21 23 24 25 27 35 33 45
231 2 7T 14 18 21 22 24 25 28 32 39 44
24z 3 3 13 19 21 22 23 25 29 33 356 43
253 5 180 15 2C 21 22 23 24 30 31 34 37
263 5 6 11 1¢ 21 27 28 29 30 43 &4 45
27: 1 10 12 17 22 26 23 29 3C 36 39 42
23z 2 7T 15 18 23 26 27 29 30 33 38 41
29 3 3 13 20 24 25 27 28 30 32 35 40
30:¢ 4 5 14 13 25 26 27 28 29 21 34 37
31t 1 5 13 18 25 30 32 33 34 37 42 45
321 1 65 14 20 23 29 31 33 35 39 40 44
33: 1 5 15 19 24 28 21 32 36 38 41 43
34 2 8 11 17 25 30 31 35 36 37 41 44
353 2 2 11 20 22 29 32 34 36 38 40 45
36: 2 10 11 1¢ 24 27 33 34 35 39 42 43
37: 3 712 15 2% 30 21 34 38 39 40 43
33: 3 2 15 16 22 28 33 35 37 39 &1 45
33: 3 10 14 16 23 27 22 35 37 38 42 44
40 4 712 20 21 22 32 35 37 41 42 43
41: 4 3 1% 17 21 28 33 34 38 40 42 44
S L2 4 10 13 1&€ 21 27 31 346 39 40 41 45
43: 5 712 1% 24 26 33 36 37 40 44 45
44 5 2oola 17 23 26 22 34 36 41 43 45
451 5 5 13 18 22 26 31 35 38 42 43 44
THE TRIPLE STRUCTURE OF THE DESIGN IS
RO= 5349 Rl1= 8440 k2= 270 R3= 240
TRCNGLY ) SELF-RUAL

NZSIGN IS (3
M ITH CLASS= 15

B.10



BLICK DESIGN DUE T3 Se So SHRIKHANDE AND

WITH PARAMZTERS V=45, K=12, LAMBCA= 3

1: 2 3 4 5
2 1 3 &4 3
3: 1 2 .4 5
43 1 2 3 5
53 | 3 4
5 1 7 8 Q
7 1 ) 3 3
81 1 & 7 g
Qs 1 3 7 8
102 1 11 .12 13
11: 1 10 12 12
12: 1 10 11 13
13: 1 17 11 12
las 2 & 13 15
15: 2 7 11 1%
15 2 2 12 14
17: 2 2 13 14
18: 2 o) 10 16
1ay 2 7 11 19
20+ 2 2 12 18
21 2 2 13 18
22: 3 7 10 14
23: 3 5 11 15
241 3 7 13 15
25 3 2 12 17
263 3 3 12 15
27 3 3 13 17
28t 3 7 10 15
29 3 & 11 14
30: 4 3 10 14
31 4 ) 12 146
32 4 S 11 17
33 4 7 13 158
34 4 5 11 15
35: 4 7 13 17
& 4 3 10 15
37 4 A 12 14
382 8 3 10 14
30 5 ) 13 17
20t 5 B 11 1¢
410 3 7 12 18
L2 5 3 11 15
433 5 7 12 15
Hboe 2 3 10 17
4513 5 3 13 14
THE TRIPL= STRUCTUR S
Ry= 50490 Rl= 8440
RTSISN TS (STRIOIAGLY)
SY1TH CLASS=

6

270

7

14 15
22 23
3¢ 71
38 39
14 18
15 19
16 20
17 21
14 18
15 19
16 20
17 21
16 17
16 17
15 17
15 16
20 21
20 21
17 21
19 20
19 23
13 22
21 22
20 22
21 27
2C 26
13 25
19 26
20 22
18 23
19 25
21 24
21 23
19 22
13 24
22 25
21 22

13 23
13 24
20 25
22 23
19 22
12 25
21 24

© OF THE

R2= .

STLF-CUAL

15

8
16
24
32
40
23

22
24

25
22
23
25
24
22
23
24
25
23
25
24
24
24
23
23
28
28
27
27
27
26
29
28
26
27
29
292
25
27
253
23
27
26
28
29

.11

.9
17

25
33
41
29
23
27
25
23
29
26
27

29 .

23
25
27
28

s Xn)
~07

27
26
25
25
25
24
29
26
29
23
31
30
30
30
35
34
34
34
30
21
32
33
30
21
22
33

D=SIGN IS
Q3=

10
18
26
34
42
31
33
30
32
30
32
31
33
30
33
31
32
31
22
30
33
30
31
33
32
31
30
33
32
32
32
31
31
36
36
35
35
34
35
36
37
34

35

36
37

240

N

11
19
27
35
43
37
35
36
34
36
34
37
35
37
34
34
35
35
35
37
34
35
34
36
37
34
35
36
37
33
33
33
32
37
37
37
36
39
383
38
38
43
42
42
42

SINGH

12

20
28
36
44
39
41
40
38
33
40
41
33
33
41
40
39
39
45
41
33
383
30
49
41
33
39
41
40
33
39
40
41
38
39
40
41
40
40
39
39
A
44
43
43

13
21
29
37
45
45
43
42

44

44

42
43
45
45
42
43
44
A

43

42
45
43
42
45
44
43
42
44
45
42
43
44
45
42
43
44
45
41
41
41
40
45
45
45

£

44




BLACK DESs
WITH PAzYy:

STANTON

UETI Re AL KINGSLoy AND R. G
=5&, K:»]_l, LAMBL A= 2

1: L4445 47 49  4q 50 21 53 54 sg¢4
23 223 3435 34 4 42 43 45 44 43
3 330 21 3o 35 38 43 44 47 52 55
Gt T23 220 33 37 3q 39 40 46 50 g
5 521 25 25 23 a9 42 43 5] 55 g
4 £21 23 24 27 34 40 41 45 54 g5
7F 7 29 22 53 25 40 42 45 47 g 52
3 ¢ 3 13 25 27 23 a3 34 35 50 53 g4
Rk 217 18 24 23 3 37 45 47 53 g5
L3210 15 23 o4 25 22 346 37 4g 51 52
Ll: 11 13 190 35 2731 35 40 43 53 54
L2: 12 13 21 55 2630 35 37 41 49 50
130 13 17 2> 5. 25 23 30 34 39 44 54

L4t 14 1a  2p 23 23 29 3 33 41 4% 51

L5 15 17 25 o) 27T 31 32 34 39 48 49
Pseqe 17 12 54 26 30 33 33 4, 45 53

17: 713 18 14 1 40 41 43 50 5y 52

HRE Tt 12 14 g3 38 39 42 439 52 54

R 712 11 14 g 39 41 44 44 49 55

27: Told 15 1e 2g 35 36 37 54 g 55

21: 5 512 if 21 a3 35 44 45 53 g3

22 Tl 12 13 2o 32 33 34 45 51 55 ,
23: 5 710 14 23 13p 34 39 4«3 59 53 .
24y 5 5 10 13 24 2 3335 42 49 g f
25 5 7 13 25 31 37 33 41 48 53

2oy 5 1C 12 15 24 29 31 34 40 47 54

27 A 211 15 27 oq 3037 42 47 5y

2% 3 3 714 23 30 13 36 40 45 49

B.12
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w2
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(@]
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2

12 14 2& 27 2S5 49 52 53 55
13 16 23 27 28 30 46 48 55
14 1% 24 25 26 31 45 456 50
16 15 22 28 22 41 42 53 54
1e 21 22 24 23 43 47 48
12 22 23 25 34 38 44 564
12 22 24 35 39 &40 51 53
13 20 21 283 36 38 47 50
12 20 25 27 37 43 44 45
14 13 2% 34 36 38 49 51
15 18 19 23 35 36 45 47
11 17 26 28 35 40 44 48
4 17 19 25 32 41 47 56
16 13 24 27 32 42 44 50
11 17 23 33 37 43 49 54
14 1% 21 34 37 4C 42 44
16 22 2% 21 37 39 45 52
S 13 21 30 321 46 51 54
¢ 26 27 33 36 39 41 47
1o 15 18 25 20 33 40 48 55
12 15 19 24 238 23 38 43 49

Pt et

[ — —
Ned TN LN N N e O OO

NP N W W G
—

. & 12 17T 23 21 326 42 56 55
> e 14 17 22 27 35 38 46 51
K 310 17 18 21 29 45 52 56
2 11 1& 21 22 25 29 32 135 §3
5 3 13 18 20 26 2322 43 46 54
5 £ S 15 20 22 2¢ 48 50 585
4 5 11 20 24 30 34 41 52 86
STRUCTURE OF THE DESIGN IS

Rl1= 5240 ° R2= G

STRONGLY ) SZLF-DUAL

= 20

B.13
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