A STRONGLY FEASIBLE EVOLUTION PROGRAM FOR

NON-LINEAR OPTIMIZATION OF NETWORK FLOWS

Ph.D. Thesis Submitted to:

UNIVERSITY OF MANITOBA
DEPARTMENT OF CIVIL AND GEOLOGICAL ENGINEERING

Submitted by:

Nesa Ilich
ID 6725635

September 2000

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre réfdrence

Our file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-57510-1

Canada

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

Fedekiek

COPYRIGHT PERMISSION PAGE

A Strongly Feasible Evolution Program for Non-Linear Optimization of Network Flows

BY

Nesa Ilich

A Thesis/Practicam submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree
of

Doctor of Philosophy

NESA ILICH © 2000

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Camada to microfilm this
thesis/practicum and to lend or sell copies of the film, and to Dissertations Abstracts
International to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.

ABSTRACT

This thesis describes the main features of a Strongly Feasible Evolution Program (SFEP) for
solving network flow programs that can be non-linear both in the constraints and in the
objective function. The approach is a hybrid of a network flow algorithm and an evolution
program. Network flow theory is used to help conduct the search exclusively within the
feasible region, while progress towards optimal points in the search space is achieved using
evolution programming mechanisms such as recombination and mutation. The solution
procedure is based on a recombination operator in which all parents in a small mating pool
have equal chance of contributing their genetic material to an offspring. When an offspring
is created with better fitness value than that of the worst parent, the worst parent is discarded
from the mating pool while the offspring is placed in it. The main contributions are in the
massive parallel initialization procedure which creates only feasible solutions with simple
heuristic rules that increase chances of creating solutions with good fitness values for the
initial mating pool, and the gene therapy procedure which fixes “defective genes” ensuring
that the offspring resulting from recombination is always feasible. Both procedures utilize
the properties of network flows. Tests were conducted on a number of previously published
transportation problems with 49 and 100 decision variables, and on two problems involving
water resources networks with complex non-linear constraints with up to 1500 variables.

Convergence to equal or better solutions was achieved with often less than one tenth of the

previous computational efforts.

Key Words: Genetic Algorithms, Evolution Programs, Network Flows, Non-Linear

Constraints

S8

(3]

TABLE OF CONTENTS

INTRODUCTIONt e e 1
BACKGROUND AND LITERATUREREVIEW 4
2.1 Definitions and Review of Related Terminology ... _............... 4
22 NetworkFlows e . 7
2.3 A Summary of LP Applications to Network Flow Problems 8
2.4 Historic Developments in Linear Network Optimizatioon 10
25 Linear Programming Limitations e e 11
2.6 Non Linear Network Optimizationcoeeenon... 12
2.7 Linearly Constrained Programs 13
2.8 Other Non-Linear Search Methods 14
2.9 Dynamic Programming0 ittt 16
WATER RESOURCESNETWORKS, 18
3.1 Network Representation of RiverBasins 18

3.1.1 Flow Conveyance Constraints ccveueeenn... 21

3.1.2 Reservoir Qutflow Constraints 27

3.1.3 Hydropower Flow Constraints c..ccunvuue.... 32

3.1.4 Return Flows from Irrigated Blocks 33
3.2 A Review of Network Models in River Basin Managemsent 34
PROPERTIES OF FEASIBLE CIRCULATIONS 36
4.1 Unbounded Networks it i, 36
42 Circulations with Linear Upper and Lower Bounds ... -............ 38
43 Tucker's Representation of the Circulation Space-............ 42
EVOLUTION PROGRAMS i e it 45

5.1 Introduction and Literature Review 45

52 Explanation of Genetic Algorithm using a Binary Problem 46
53 Numerical Example with a Floating Point Variable 51
DESCRIPTION OF THE PROPOSED ALGORITHM 57
6.1 Initialization e 58
6.2 Recombinationt e 61

CASE STUDY I -- AN EVOLUTION PROGRAM FOR NON-LINEAR

TRANSPORTA’I'IE)N PROBLEM i 64
7.1 INtroducCtioncii ittt e 64
7.2 The Transportation Problem_ 65
7.3 Description of the Proposed Evolution Program 66
7.4 [nitialization e 66
7.5 Evaluation 71
7.6 Y= (o1 5 o3 « e 71
7.7 Recombinationttt 71
7.8 Gene Therapy - ...t vttt e e e e e e 74
7.9 Similarity to Minimum Cost Network Flow Problems 77
7.10 TestProblemsot e 77
7.10.1 Function A e e 81
7.10.2 Function B 82
7.10.3 Function E e 83
7.10.4 Function D 85
7.10.5 FunctionC e 86
7.10.6 Function F 88
7.10.7 Function Got ittt e e 89
7.11 ComparisonofResults 91
28 WP 11 ' + o o V- o2 P 92

ii

10

11

CASE STUDY II - OPERATION OF BIGHORN/BRAZEAU HYDRO POWER

SYSTEM OF TRANSALTA UTILITIES CORPORATION 93
8.1 Introduction 93
8.2 Problem Definition 95
8.3 Methodology 101
8.3.1 Optimization of Historic Reservoir Operations 102
8.3.2 Development of Reservoir Operating Zones 104
833 RegressionAnalysis 106
8.4 Results e e e 108
8.5 Conclusion e 111

CASE STUDY Il - WATER ALLOCATION IN THE BRANTAS RIVER BASIN

IN EAST JAVA, INDONESIA e e e 112
9.1 Introductioniiii i e 112
9.2 Modelling of the Brantas Basin withthe SFEP 119
9.3 Non-LinearFeatures i, 119

9.3.1 Maximum Turbine Flowsand NetHead 119

9.3.2 HydroPower Efficiency 121

933 ComnectionTunnel, 121
9.4 Definition of Modelling Objectives 124
9.5 RESUILS ...ttt it e e 127
9.6 ConClUSIONSttt e e et e 136
CONCLUSIONS ...ttt ettt e et e e e e e e ea s 137
10.1 Summaryofthe SFEPFeatures 137
10.2 Future Research Directions iinn.. 138
REFERENCES ...ttt it ettt e ettt e e 140

iii

LIST OF TABLES

Table 3.1 Results of 14 successive LPsolutions 27
Table 3.2 Technical description of the reservoir outflow test problem 30
Table 5.1 Demonstration of a Genetic Algorithm 54
Table 5.2 Genetic Algorithm without initialization 55
Table 5.3 Top five guesses in Monte Carlo search afer 10000 trials 56
Table 6.1 Sample Five member Mating Pool with one possible offspring 62
Table 7.1 Sample Transportation Problem 66
Table 7.2 Solutions for 7 x 7 Problem with Function A 81
Table 7.3 Solution for 10 x 10 Problem with Function A 82
Table 7.4 Solution for 7 x 7 Problem with FunctionB 82
Table 7.5 Solution for 10 x 10 Problem with FunctionB 83
Table 7.6 Solution for 10 x 10 Problem with FunctionE 84
Table 7.7 Solution for the 10 x 10 Problem with FunctionD 86
Table 7.8 Solution of 7 x 7 Problem with FunctionC 87
Table 7.9 Two solutions for 7 x 7 Problem with Function F 88
Table 7.10 Solution of 10 x 10 Problem with Function ¥ 89
Table 7.11 Solution of 7 x 7 Problem with Function G 89
Table 7.12 Solution of 10 x 10 Problem with Function G 90
Table 7.13 Comparisons of Results for the 7 x 7 Test Problems 91
Table 7.14 Comparisons of Results for the 10 x 10 Test Problems 91
Table 8.1 Summary of historic and simulated pumping energy requirements

inMWh e 110
Table 8.2 Values of the objective function during the SFEP progression 111
Table 9.1 Objective function for various stages of SFEP progression 128
Table 9.2 Tunnel flows from the model and from direct calculation 134

iv

LIST OF FIGURES

Figure 3.1 Network RepresentationofaRiverBasin 19
Figure 3.2 Circulatory Network Representation ofaRiverBasin 21
Figure 3.3 Sample basin modelling system, 24
Figure 3.4 Maximum diversion vsriverflow 25
Figure 6.1 Sample objective function 59
Figure 8.1 Schematics of Bighorn / Brazeau hydro power system 96
Figure 8.1 Bighorn Reservoir Operating Zonescccuiuunnmannn.. 105
Figure 8.2 Brazeau Reservoir Operating Zonescuweeennuuennnnnnnn 105
Figure 9.1 Locationof Brantas RiverBasin 112
Figure 9.2 Brantas River Basin Modelling Schematics 118
Figure 9.3 Sutami and Lahor connection tunnel (131) 122
Figure 9.4 Sutami and Lahor Elevations from SFEP Simulation 135

! INTRODUCTION

The objective of this research is to develop an algorithm for solving minimum cost network
flow problems associated with mixed-integer decision variables (flows) and non-linear
objective function and flow constraints. There are currently no known specialized network
solvers for this problem. The research will focus on the ability to find the global optimum,
rather than the execution efficiency, which may only be addressed in the final stages of this

research.

The field of nerwork optimization has evolved as an important branch of operational research
in the last few decades with application in many areas of engineering and management. The
need for this research was inspired by two possible engineering applications -- one related
to water allocation in complex river basin networks and the other related to optimizing
pipeline operation. Both problems have non-linear constraints and objective function. The
available solution procedures that have been used in the past for solving these types of
problems had limited success. They were addressed using linear programming (LP) solvers
applied to problems which were formulated in terms of separable cost functions and linear
constraints. The objective is to find the best possible allocation within a given time period
in complex river basin networks. To justify the use of linear constraints, the problem had to
be solved using iterations and large calculation time steps. Such solutions were often of
limited practical value for real-time operation. Consequently, the use of the existing models

with linear programming solvers has so far been restricted to planning studies.

The field of optimizing pipeline operation has been another important area of interest to
researchers. The principal goal is to deliver the target volume through a pipeline within a
given time period such that the cost of pumping is minimized. While the pressure constraints
are non-linear functions of flow, the problem also has difficuit non-linear cost functions. It
can also involve mixed-integer decision variables, resulting from the fact that some of the

pumps operate with a fixed speed while others can operate with a variable speed. Very few

solvers are available to address this kind of problem. The GAMS library of solvers, which
is considered as the standard in the operational research community nowadays, offers more
than twenty available modules, but only two of them are capable of addressing the class of
mixed-integer non-linear problems. It comes with a disclaimer that it is only capable of

finding local optimums since it relies on a gradient search approach.

The limitations of various existing search methods to find global optimums for complex
constrained problems with objective functions that had numerous local optimums have
inspired researchers to look for other solution techniques. This gave rise to the recent
development of the search methods known as Evolution Programs (Michailewicz 1994),
which have become popular in the last two decades due to their effectiveness and have also
inspired many researchers to focus their attention in this field. While there is no universal
evolution programming solver applicable to all methods, this research will attempt to show
that certain properties of network flows can be effectively utilized in the search procedure.
The proposed methodology combines the knowledge of network flow theory with the recent
achievements in evolution programming. The following is the expected contribution of the

proposed research:

. A generalized approach to solving non-linear network flow problems which could
be applicable to various fields of engineering, although the testing may be focussed
on problems of interest to water resources;

. The proposed algorithm would allow cost functions of arbitrary shape for each
individual arc in the network, which cannot be handled by most frequently used
solutions methods which rely on the gradient search approach;

. The proposed algorithm would allow linear or non-linear relationships between arc
flows in the network, both in terms of loss or gain of flow along an arc, as well as in
terms of the mutual relationship between flows on two or more arcs; and,

° The method would also be able to handle mixed integer programs with non-linear

objective functions or constraints.

The scope of this research includes the following:

. review of recent developments in evolutionary programming as well as a review of
pertinent background from the network flow theory;

. formulation of an algorithm which combines the building blocks of flow defined in
the flow network theory as the basis for the proposed evolutionary search;

. development of the computer code for a generalized network solver;
o testing of the code by comparing its performance with other published test results;
. testing of the code on new challenging problems that could not have been solved with

other solvers; and,
. publishing the results of the above tests in selected engineering journals or

conference proceedings.

This document starts with introduction of the basic concepts of networks and theory of
network flows, followed by areview of historic developments in network flow optimization.
The summary of historic developments includes a review of strengths and weaknesses of
earlier linear and non-linear solution techniques, which justifies the need for further research.
One section is devoted to introducing the reader to the main application area of interest --
water resources networks. This application is converted into network flow problems and the
nature of the constraints and the objective function is discussed. Chapters 4, 5 and 6 include
areview of the relevant properties of network flows which are used in the process of building
a solution technique, a review of evolutionary programming, and a review of the proposed

solution technique, respectively. Finally, chapters 7, 8 and 9 include the three case studies

where the new solver has been applied.

2 BACKGROUND AND LITERATURE REVIEW

Because of their widespread applicability in various fields, networks are one of the most
extensively studied topics in the last few decades. A bibliography entitled "Deterministic
Network Optimization" compiled over twenty years ago had more than 1000 entries, and that
was still only a partial list (Golden and Magnanti, 1977). In general, networks are studied
in terms of their structure or in terms of associated functions, hence the problems of nerwork
synthesis or network analysis, although for many real world problems it is sometimes
difficult to keep a clear distinction between the two. Of primary interest to this research is

analyses of single commodity flows in networks (Ford and Fulkerson, 1962).

The following sections provide introduction to basic concepts and theorems of network flows

from the graph theory. These concepts form the basis of the proposed algorithm.
2.1 Definitions and Review of Related Terminology

The theory of graphs is a large body of mathematics with many topics on networks and
network flows (Busacker and Saaty, 1965; Rockafellar, 1984; Ahuja et al., 1993). In spite
of the volumes of theoretical contributions from various researchers, theory of graphs is still
missing universal notation. Each textbook or publication on networks starts with defining
its own notation. This review follows the notation used in Network Flows (Ahuja et al.,

1993) as one of the most recent and the most relevant references in this field.

There is no clear distinction between networks and graphs in the literature. Someresearchers
make a distinction by defining networks as special types of graphs which have a flow
function associated with them. In most general terms, a graph is defined as a non empty set
of nodes N, a possibly empty set of arcs A and a mapping function E between N and A
(Busacker and Saaty, 1965). Nodes are also called vertices or points, arcs are also known

as links, edges or branches, and the mapping function is usually referred to as the incidence

mapping. Networks (as special types of graphs) can therefore be defined by using G = (N,
A, E) or simply by (N,A) which implicitly includes the incidence mapping E. The incidence
context is fundamental to a graph, and the usual notation for an arc is (i,j) which means that
the arc is incident with nodes i and j, or that its end points areiandj. A few more terms are

used in the subsequent sections of this document and they are defined below.

Directed (or oriented) graphs differ from undirected graphs in the property that elements of
set A (arcs) are defined as ordered pairs of distinct nodes, as opposed to undirected graphs
where ordering is not required. In terms of networks, arc orientation allows flow in only one
direction. This does not pose a limitation in mathematical programming, since algorithms
which require only non-negative decision variables can use two non-negative decision
variables x' and x" which are related to the original decision variable in the form of:

x - x" = x 2.1)
where x is unrestricted in sign. In the network, this transformation is equivalent to splitting
an undirected arc into two parallel directed arcs with opposite orientation which have non-
negative flows x' and x" associated with them. A directed arc (i,j) has two endpoints, i and

j usually referred to as the head node and the tail node.

Loops (arcs with the same head node and tail node, i.e arcs which originate and terminate at
the same node) have very little use in network flow analysis and they will not be considered
in the following. Multiarcs (several parallel arcs which all share the same tail node and the
same head node) will also be excluded from further analysis with one important qualifier:
except for notation (i,j) which allows the existence of only one arc with the tail node i and

head node j, all other rules and algorithms discussed in the following apply equally to

networks with multiple arcs.

Nodes in the network are classified as sources, sinks or transshipment nodes, depending on
their respective positive, negative or zero balance of inflows and outflows. Circulatory

networks are those which contain only transshipment nodes and their flows are called

circulations, since flow does not leave or enter the network at any point. The problem of
finding optimal circulation is equivalent to the problem of finding optimal flows, since any
standard network can be converted to circulatory by adding one additional node to it (usually
termed universal source/sink or system balance node), and by adding additional arcs oriented
from this node to all other sources as well as additional arcs oriented from the sink nodes to

the system balance node.

A walk in a directed graph G=(N,A) is a subgraph G' which consists of a subset of mutually
adjacent nodes and arcs from G. Because of the existing incidence relationship between
nodes and arcs walk can be defined only as a subset of nodes (a subset of arcs). A directed

walk is a walk which consists of arcs which have the same orientation.

Path is a walk without any repetition of nodes. Arcs which belong to a path are classified
as forward or backward, depending on their orientation. A directed path is a directed walk
without any repetition of nodes, in other words a path without any backward arcs. Path in

a network is a walk from the source to the sink.

Cycle is a path which begins and ends in the same node. A directed cycle is a cycle which

consists of arcs oriented in the same direction.

Nodes i and j are connected if the graph contains at least one path from node i to node j. A
network is connected if every pair of its nodes is connected, otherwise it is disconnected.

Strong connectivity implies existence of at least one directed path from each node to every

other node in the network.

A cut is a partition of set of all nodes N into two subsets, S and N\ S. Finally, atreeisa
connected graph which contains no cycle. Maximum spanning tree or maximum forest is a

connected graph which contains all nodes N of network G while it contains no cycle.

22 Network Flows

Network flow can be defined as a function (or a vector) which associates a value X; with
every arc in the network. The minimum cost flow problem is the most general network flow
problem. Prior to introducing a mathematical formulation of the minimum cost flow
problem, the concepts of bounded networks and feasible flows will be established. Network

is bounded if functions I; and u; are associated with every arc (i,j) in the network such that:

0<1I,<u, v(i,j) e 4 (2.2)

Functions [; and u;; are termed the lower bound and the upgper bound imposed on flow on arc
(ij)- When I; = 0 and u;; > 0 the network is termed capacitated. A circulation consisting of
a set of arc flows x;; is feasible if it satisfies the following conditions:
x,— >.x,=0 VieN (2.3)
{J(i.5)e4} {,-(,-,.)mf
0< Zg. Sx;Suy V({i,j)ed 2.4)

The first expression is a matrix equation with A columns and N rows showing that
summation of all arc flows incident to a given node equals zero in a circulation. The second
condition forces the flows on each arc to comply with the bounds. Finding vector x; which
satisfies the above conditions constitutes the problem of finding a feasible circulation.
Properties of feasible circulations are of significant importance to the developments of the

ideas in this research and they will be addressed in more detail in Chapter 4.

One more vector is required to define the minimum cost flow problem for a network, known
as the arc cost ¢;; It associates a cost of sending a unit of flow from node i to node j along
arc (i,j). The minimum cost flow (or circulation) is then defined as the problem of finding

a feasible circulation x; which also minimizes the total costt of flow in the network. This can

be mathematically expressed as:

minimize)_c,X, Y(i,j)eAd (2.5)

(i.))ed

subject to the feasibility constraints (2.3) and (2.4). Hence, optimal circulation is the one
which minimizes the total cost of flow in the network while satisfying the feasibility

constraints. There can be one or more circulations which are termed optimal.

If functions l, u; and c;; are arrays of constant parameters, the above is a linear program.
Many solution procedures are available for solving the above problem if it can be represented
as a linear program. However, if parameters l;, u; and c;; are not constant even for only one
arc in the network, the above problem becomes a non-linear program which is much harder
to solve. In some cases non-linearities can be 'linearized' and the problem can be converted
to an approximate linear program. In other cases this cannot be done and the program must
be solved using non-linear programming techniques. The benefits and down sides of both
approaches are summarized in the following. Much of'the algorithmic development has been
done in the area of linear programming, while the developments in non-linear programming
lag behind to some extent due to larger complexity and smaller theoretical foundation in
comparison to linear programming. Water resources networks (which represent river basins
and the accompanying set of irrigation canals, reservoirs and other components) are
characterized with extreme non-linearities and sizeable network complexities, yet most of
the applications to date have relied on linear programming approach with various

approximations and simplifications.
2.3 A Summary of LP Applications to Network Flow Problems

A typical textbook on network programming has almost 90% of'its contents devoted to linear
programming applications. There is a large body of available algorithms and theoretical
developments, which originated in the 1950s (Dantzig, 1963; Ford and Fulkerson, 1962).
Normally, an LP program is defined in terms of minimization (or maximization) of an
objective function which has a linear form, subject to a set of inequalities. The program
defined by expressions (2.3) - (2.5) could also be represented in this format, by converting
each equality in Expression (2.3) into a set of two inequalities using the general rule that each

equation of the form a = b is equivalent to a set of two inequalitiesa < band a > b. Re-
writing the program (2.3) - (2.5) using this transformation would provide a definition of the
minimum cost flow problem as a linear program in its canonical form, suitable for Simplex
and other popular LP solvers. However, networks have some special properties which
inspired researchers to develop much more efficient algorithms. Instead of converting the
equalities into inequalities, these algorithms use the equalities in expression (2.3) and take
advantage of them. The cycle cancelling algorithm, the successive shortest path algorithm,
the out-of-kilter algorithm and the network simplex algorithm and their variants are all
examples of these developments. They all take advantage of the equality constraints (2.3).
The ultimate application of network simplex algorithm was extended to problem of

optimizing generalized flows, which can mathematically be expressed as:

minimize)" ¢ X, V(i,j)eA (2.6)
(.)ed
subject to:
X;— D ugx; = b() VieN .7
{i(i./)ea} {7Gi)e4}
0</,<x;<u, V({i,j)e A (2.8)

The new term [4; is called the arc multiplier of arc (i,j) and it is a rational number. If W;=1
for all arcs (i,j) the problem is similar to the one previously defined by expressions (2.3) -
(2.5), however if 0 <L; < 1 then there is a loss of flow along arc (i,j) while if [L;; > [arc (i)
gains flow from node i to node j. Note that the gain and loss functions must be linear to
allow application of generalized network simplex algorithm, while gain or loss of flow in
real world problems may not followa linear function. An LP program defined by expressions
(2.6) through (2.8) is no longer a circulation, as can be seen from the right hand side of
expression (2.7) which no longer equals zero. The value of each b(i) defines a source if b(i)
> 0, sink if b(i) <0 and transshipment node if b(i) = 0, while ¢; is the cost per unit flow
entering the arc at node i. Generalized network flow problems are usually more difficult to

solve, although some recent developments of new solvers claim significant improvements

in execution speed. There is a vast body of literature on the algorithms for minimum cost
flow problems and for generalized network flows. The following literature review is

attempted to capture the most significant works in this field.
24 Historic Developments in Linear Network Optimization

The following is a list of major achievements related to the development of algorithms for
solving the linear minimum cost flow problem in constrained networks. Ford and Fulkerson
initially developed primal-dual algorithms for transportation problems. They later
generalized this approach for solving the minimum cost flow problem (1962). Jewel (1958),
Iri (1960) and Busaker and Gowen (1961) independently developed the shortest path
algorithm and showed how to solve the minimum cost flow problem as a sequence of
shortest path problems. Fulkerson (1961) and Minty (1960) have independently developed
the out-of-kilter algorithm, a specialized network solver for minimum cost flow problemé
which consists of a sequence of changing primal and dual variables such that the optimality
conditions derived from the complementary slackness theorem are eventually reached. Klein
(1967) developed the cycle cancelling algorithm which maintains feasibility at every step as
it tries to converge to optimality, as opposed to the successive shortest path algorithm which
maintains the non-negativity cycle costs and flow capacity constraints, but violates the mass
balance constraints at the nodes. Further improvements of cycle cancelling algorithm are due
to Barahona and Tardos (1989) which modified the algorithm of Weintraub (1974), Goldberg
and Tarjan (1988), and Wallacher and Zimmerman (1991) which all use a different choice
of augmenting cycles to improve convergence efficiency. Zadeh (1973) provided a
comparison of efficiency of cycle cancelling, successive shortest path and out-of-kilter
algorithms. Edmonds and Karp (1972) introduced the scaling approach for the minimum
cost flow problem, based on the capacity scaling technique. Rock (1980), Orlin (1988), and
Bland and Jensen (1992) all experimented with a scaling technique for the minimum cost
flow problem. Goldberg and Tarjan developed several improved implementations of the €-

optimality concept, which was independently suggested by Bertsekas (1979). Goldberg and

10

Tarjan (1987), Ahuja, Goldberg, Orlin and Tarjan (1992) have also developed specialized

applications for minimum cost flow problem.

Comparisons of computational efficiency of various algorithms were conducted by Barr,
Glover and Klingman (1974); and Bradely, Brown and Graves (1977). They concluded that
the best algorithms are the network simplex algorithm and the relaxation algorithm,
developed by Bertekas and Tseng (1988). Kenington and Helgason (1980), Jensen and
Barnes (1980) and Ahuja, Magnanti and Orlin (1993) give substantial treatment of the
generalized network simplex algorithm in their textbooks, although in different ways. Elam,
Glover and Klingman (1979), Brown and McBride (1984) have examined computational
performance of the generalized network simplex algorithm, which is believed to be the
fastest available algorithm for solving the generalized network flow problem in practice.
Brown, McBride and Wood (1985) have created EMNET program which solves combined
generalized network problem with additional non-network linear constraints. Sun et al.

(1995) provide details of EMNET application and report on its computational efficiency.

2.5 Linear Programming Limitations

The most significant limitation of linear programming is the assumption that all constraints
(upper bounds, lower bounds and costs) can be approximated as linear functions of flow.
This is often not the case in water resources networks, as will be discussed at length in the

next chapter. However, in many cases non-linear programs can be ‘'linearized' and solved.

using the existing LP solvers.

There is one more aspect of linear programming which can sometimes complicate its use,
associated with the decision variables of equal priority (cost). Consider for example a
problem of finding a minimum cost flow in a network with two or more arcs whose costs
are equal. The value of the objective function will then be the same for various combinations

of flows in those arcs which yield the same overall flow in the network (the sum of all flows

11

in the network). This has the unfortunate consequence of the existence of more than one
solution with the same optimality. In practical terms, this may prevent computer models
from finding a unique solution, and every small and immaterial change in the input data file
for repeated simulation runs may result in a different solution which is equally optimal.
While this may not by considered as much of a technical problem, it is not socially
acceptable in many instances where modelling is subjected to public scrutiny, as is the case
for example in the water resources field. The problem of finding an equitable distribution
for a set of variables often arises in complex water resources networks, where for example
several water users of the same type are to receive water with equal priority. During
shortages, an LP model may cut supply to some users completely while the others are still
receiving their target levels. In practical terms, the LP model has failed to deliver equitable
supply to all users of equal priority. To avoid this problem, it is necessary to rank the users
in the same type and allow controlled differences. This means that if the number of users in
the same group is & and the maximum allowed difference in deficit relative to their target is
I percent, it is necessary to split each decision variable into 100 new variables each
representing 1 percent of the target demand, so the number of variables is increased from &
to 100k and each of them must be assigned a unique cost ¢;. In terms of network
reformulation this is equivalent to splitting each arc representing a user from the given group
into 100 parallel arcs. It is a workable option if 1 percent differences can be tolerated, but
still messy and very inefficient. Yet in other instances 1 percent differences may constitute

significant violation of equal supply thus further restricting the use of LP.

2.6 Non Linear Network Optimization

While there are special types of solvers for specific linear programs, every linear program
can be solved using the universal Simplex algorithm (Danzig, 1963). Such universal

algorithm for non-linear problems does not exist (Hiller and Liberman, 1995; Avriel, 1976).

In general, non-linear programs are much more difficult to solve due to the following:

12

. optimal point in non-linear program may not be a corner point of a feasible region.
Instead, it can be any interior point within a feasible region, which creates a
significantly larger search space in comparison to linear programs where only the

corner points need to be examined; and,

. except in a few special cases, non-linear programming algorithms are unable to
distinguish between a local minimum and a global minimum (except by perhaps
finding all local minimums). In many complex problems there is no mathematical

proof to guarantee the existence of a global optimum.

In spite of these drawbacks, many special cases related to the constraints and the objective
function have been addressed successfully with specialized algorithms. The following are
some of the better known non-linear programming algorithms. Their strengths and

weaknesses regarding possible applicability to water resources networks are reviewed in

Chapter 3.

The only class of Non-LP programs which can guarantee that local minimum is also a global
minimum are known as the convex programming problems, which have convex objective
function while constraints are all described using concave functions (Kuhn and Tucker, 1951;
McCormick, 1983) . It will be seen that water resources networks described in Chapter 3 fail
both criteria. Hence, the existing Non-LP algorithms cannot guarantee finding a global
minimum for either one of the two problems. Some special cases of Non-LP algorithms that

have been applied to water resources networks are outlined in the following.

2.7 Linearly Constrained Programs

There is a large class of Non-LP programs which have linear constraints and non-linear
objective function. They include quadratic programs if the objective function is quadratic,

which is a sub-set of a larger class of convex problems described by an objective function

13

that is concave and constraints that are convex. Of particular interest is a special case of
convex programming where one additional assumption is valid, i.e. where the constraints and
the objective are represented by separable functions, which means that they can be broken
down into a finite number of individual linear functions. Separable programming (Danzig,
1963) was used in river basin allocation models mentioned in section 3.1.5 with a restriction
that the decision time step be long such that the non-linearities related to river channel
routing can be approximated with linear functions. Additional linearization of non-linear
functions related to hydro power, reservoir and weir outflows is typically handled using an
iterative process built into the model. Limitations and possible errors related to using

iterative procedures are demonstrated in Chapter 3.
2.8 Other Non-Linear Search Methods

There is a large number of non-linear optimization algorithms which fall into the category
of noncovex programming and they are usually much more difficuit to solve. As mentioned
earlier, most of them were developed for a specific class of problems. At this point, there
seems to be no specialized algorithm for solving non-linear network flow problems for any
type of decision variables and non-linear arc bounds. The most general classification of non-
linear search methods is on direct search which require only the objective function values
and gradient search methods which require estimates of the partial derivatives. The oldest
direct search method is known under a variety of names (parallel axis method, univariate
search, etc.) has been attempted by many researchers in a large number of variations. The
basic idea was to fix all coordinates except for one, which is varied in the direction of the
axis by a small positive and negative change. The point with a better value of the objective
function thus becomes the starting point for the evaluation with respect to another variable,
which is evaluated parallel to its coordinate axis. The search progresses in this fashion until
no further improvement in the value of the objective function can be found (Kowalik and
Osborne, 1968; Schechter, 1968; Ortega and Rheiboldt, 1967). Improvements of this

strategy were due to Hooke and Jeeves (1961) who introduced the direct pattern search steps

14

which were not parallel to the coordinate axis, as well as Rosebrock (1960) who introduced
a strategy of rotating coordinates. Both improvements were aimed at reducing the lirﬁitation
on the number of search directions. A combination of Rosenbrock's ideas were expanded
by Swan (1964) and later by Box, Davies and Swan (1969). Nelder and Mead (1965)
proposed the so called 'simplex' search strategy (which has nothing to do with simplex
method of linear programming). This strategy evaluates the objective function at n+/ corners
of the polyhedron and moves in the most promising direction accordingly, where n is the

number of variables or the dimension of the search space.

In gradient search the partial derivatives of the objective function are evaluated at each step
of the search in order to determine the best search direction for the next step. Kantorovich
(1945), Levenberg (1944) and Curry (1944) are considered the originators of the gradient
strategy. A variant of this strategy is known as the steepest descent (for maximization:
ascent) method (Brown, 1959). Other authors who investigated this strategy and its
convergence include Goldstein (1962), Ostrowski (1567) and Wolfe (1969, 1970, 1971).

The gradient strategy is of local character and it cannot distinguish between the global and
local optimums. To increase chances of finding a global optimum, it is necessary to start the
search frequently from various initial values of the decision variables and compare all
optimums found in this repetitive process (Jacoby, Kowalik and Pizzo, 1972). The method
of conjugate directions (Powel, 1962; Fletcher and Reeves, 1964) aims to speed up the search
by evaluating the second order partial derivatives. These methods use the values of the
objective function gathered in the search process to estimate the values of the partial
derivatives numerically, and as such they are considered Quasi-Newton methods. They differ
from the pure Newton strategy (Householder, 1953; Goldstein, 1965) which requires no
explicit values of the objective function, but it does require evaluation of the first and second
order derivatives, a task that often requires a considerable effort. Very few algorithms can
determine the first and the second order partial derivatives numerically using the trial and

error approach (Wegge, 1966). The approximation errors that accumulate in the process

15

often cancel out the advantages of the method which are apparent when the partial
derivatives are known. Efforts were focussed on ways to estimate second partial derivatives
based on the values of the objective function obtained in the previous steps (Brown and

Dennis, 1972; Gill and Murray, 1972; Fletcher and Powel 1963).

[t is recognized that often times the objective function may be too complex for derivation or
it simply may not have derivatives for all values of the decision variables. Since all of these
methods move through the feasible region in a step-by-step fashion, it is conceivable that
their chances of finding a global optimum in problems which are riddled with local optima
are small. The efforts in this research will exploit a new generation of evolutionary search
methods (Michalewicz, 1994), which tackle the search process from all directions within a
feasible region. Even though there is no theoretical proof that they always converge to a
global optimum, the current state of the art confirms that they are capable of finding much
better local optima than the standard methods, and also that they have the capability to find
the global optimum in many problems, given the appropriate setup of convergence

parameters. They are addressed in Chapter 5 in more detail.
2.9 Dynamic Programming

Dynamic Programming (DP) offers possible advantages over other search methods since it
is not affected by the shape of the objective function. DP requires discretization of the
problem into a finite set of stages in the search process. At every stage a number of possible
conditions of the system (states) are identified and an optimal policy is identified at each
individual stage given that optimal policy for the next stage is available (Belman 1957,
Bersekas, 1987; Sniedovich, 1991). In short, the main features of DP approach are:

. DP approach works with a finite number of states (possible outcomes). Therefore,
the accuracy of the solution is defined by the initial discretization of the problem.
. DP applications are not general, each is developed for a specific problem and if

16

something is changed in the configuration of the problem the program coding must
also be changed and tested. The entire process of developing a DP application
requires considerable experience and judgment, and it is usually problem specific

rather than general.
. DP applications are usually more computationally expensive than other methods due

to slower execution.

In closing, most researchers have been looking for new approaches which would combine
efficiency and ability to find the global optimum. Evolutionary Programming approach is
proposed in this research as it seems to hold out a promise to achieve both. As a topic of

special interest it is reviewed in a separate chapter.

17

3 WATER RESOURCES NETWORKS

Constraints related to water supply are associated with existing physical paths, such as
canals, rivers, pipelines, as well as control structures which regulate the flows such as dams,
weirs or pressure valves in pipelines. The problems of water supply can be viewed as
network programming, since the upper bounds, lower bounds and arc costs have a tangible
real world representation in water supply networks. They represent design canal flow limits

or reservoir storage capacities.
5.1 Network Representation of River Basins

A central unit of water resources analysis for any region is the river basin, which comprises
all natural watercourses and man-made structures within the boundary of a given watershed.
Nodes in a river basin network represent the locations in the river where flow is joined or
split, such as a confluence or a weir. These can be represented as the transhipment nodes.
Reservoirs are also nodes in river basin networks, and they can act either as sources or as
sinks, depending on their current mode of operation (refill or release). Hence, in a
circulatory network representation at least two arcs with opposite orientation are added to the
system, connecting the reservoir with the system balance node. The sum of flows in these
two arcs represents reservoir release or refill, depending on its sign. Source nodes represent
locations on the boundary of the modelled region where water is made available to the
system (inflows), and also at the locations where water is lost to the system (e.g. evapo-
transpiration from irrigated land or other consumptive use). Figure 3.1 shows a schematic
representation of a water resources system with typical components which are discussed
below. Modelled region is a part of the basin being studied, and it can include the entire

watershed or parts of it, according to the desired objectives.

18

BOUNDARY OF MODELLED REGION

Figure 3.1 Network Representation of a River Basin

Symbols used in Figure 3.1 denote the following:

[

O O ®m w»

M&I
o

inflow (flow in the river or canal on the boundary of the modelled region);
stream (river segment between the two nodes);

reservoir ;

diversion canal;

consumptive use node (location with significant losses of water to the system
such as evapotranspiration on irrigated blocks);

return flow channel;

hydro power channel;

municipal and industrial diversion; and,

outflow from the system at the point where the modelled region ends.

Before each of the above components is discussed, it should be mentioned that optimal flow

calculations in water resources networks are associated with one or more incremental time

steps, and that estimates of all demands in the system, including crop demand on irrigated

19

land and hydro power demand for all hydro power plants in the system should be available
and converted to the equivalent water requirements (volumetric or flow-equivalent) within
a given time step. Hence, the following review is restricted to the deterministic approach.
Figure 3.2 shows a circulatory network corresponding to the system depicted in Figure 3.1.
The new node added to the system is node B (system balance node). The flow in arcs
oriented from node B to a source node in the system represent inflows into the system, while
the arcs oriented towards node B represent losses (flows out of the system). Increase of
storage in reservoirs is considered as a loss within a given time interval, while reduction of
storage amounts to extra inflow for a given time step. Each of the arcs in Figure 3.2 has the
upper bound, lower bound and a cost function representing the priority of allocating flow to
it. The cost function can be associated with economic cost-benefit analysis, representing the
cost of deficit that each water user would suffer for various range of shortages. This function
1s often difficult to evaluate, since it is hard to attach a dollar value for lost fisheries or
recreational and aesthetic aspects of low flows in natural streams. The conflicting interests
of consumptive (industrial and agricultural users) and in-stream users (other social groups
representing environmental and other water use concerns) are resolved through a political
process for which no final formula exists. Certain reasonable assumptions can be made in
general to address this issue. It will be assumed in the following that a sharing policy
between all components exists (including possible equal sharing as a subset of the entire

policy). The primary goal here is to show the extreme degree of non-linearity of the arc

flows and bounds.

Inflow nodes in Figure 3.2 are labelled with /, reservoirs with R and the consumptive use
nodes with C. There is one node without any label in Figure 3.2, and this is a simple
transshipment node. Given arc bounds and costs, the problem of optimal water allocation
in the basin can be stated using expressions (2.5), (2.4) and (2.3) or in more general terms
using expressions (2.6) - (2.8). The following is a discussion related to the arc bounds for
each of the component types depicted in Figure 3.2. Inflow arcs have their upper and lower

bound set equal to the value of flow entering the modelled region. They represent hard

20

constraints' in this manner, i.e they impose a certain inflow into the system.

Figure 3.2 Circulatory Network Representation of a River Basin

3.1.1 Flow Conveyance Constraints

An arc representing a natural channel that does not have a reservoir as its upstream node has
the lower bound equal to zero and the upper bound equal to the maximum flow that can
possibly be routed through a channel, which is normally a large user-defined number. The
difficulties exist in the differences between the inflow into the channel at its tail node and

the outflow at its head node, which can be caused by several factors:

. for short time intervals and longer river segments, the channel routing effects may
result in a difference between inflow and outflow for a given channel, especially
during periods when variations of flows are experienced,;

. losses to seepage can play a significant role for some streams; and,

. local runoff along the reach can add significant flow within a given time step.

21

It is obvious that a combined effect of the above three factors results in a nonlinear
relationship between the flow in the channel at its tail node and at its head node. This
functional dependence between the inflow and outflow into an arc representing a natural
stream can be convex for some time intervals, and concave for others, depending on the
hydrologic conditions in the basin. The effects of routing can be minimized by choosing
longer simulation time steps. However, this reduces the accuracy of the analysis since the
degree of natural flow variation may be drastically altered or completely lost in the process
of averaging over weekly or monthly time steps. Mathematically, the flows at the upper and

lower end of an arc (i,j) representing a natural stream can be expressed as X; and fs(xij.V,-j)
respectively:

vy =1.(x,.7,) 3.1)
where y;; represent channel outflow at its downstream end and function f; represents the

effect of hydrologic channel routing for a given time step. Function f, has two arguments —
upstream inflow X;; and the initial conditions in the channel represented symbolically by the
initial volume V. Linear programming allocation models have traditionally resorted to
ignoring function £, and assuming that ¥; = X;- This can only be justified by sufficiently
extending the length of the simulated time step, which rules out the use models based on

linear programming to assist in real time basin operation.

Non-linear constraints also exist on diversion canals. While the flow variation may not be
as significant here, the maximum canal capacity is equal to the design flow rate provided that
canal is in good operating condition. The lower bound is usually greater than zero for
primary and secondary canals, since most of them require certain level of flow for successful
operation of gates. However, there is often a non-linear relationship between the inflow into
a diversion canal and the flow in the originating stream. This relationship defines the
maximum flow that can be diverted. There are two types of diversions: controlled (gated)
and uncontrolled. They impact the upper bound and the flow in a diversion canal,

respectively. Both are examined in the following.

22

The relationship between flow Q and depth din a river cross section is usually approximated
using an exponential function of the form:

@ (32)
where d is depth, Q is flow, a and p are parameters determined by calibration. When
elevation in the river is below the invert of the diverting weir, the diversion is not possible
and the flow in the diversion canal equals zero. Hence, there is a minimum threshold flow
in the river which must be available to operate a diversion canal. This is equally the case for
gated and unregulated diversions. Once this elevation is above the invert, the diversion is
possible but there is always the upper bound that can be diverted as a function of the flow
in the river. This bound is dynamic. The gate operator can divert less or equal to the upper
bound within each discrete time interval, depending on the way the gate is operated.
Consequently, the model has to determine the upper bound on the diverted flow as a function
of the overall solution for the whole system, since the flow in the stream supplying the weir

is part of the overall solution. This can be expressed mathematically as:
u, = fox,) (3.3)

where u, is the flow bound of the diversion canal and x, is the available flow in the
originating stream which supplies the weir. Similar constraints exist for ungated weirs. The
difference is that inflow into this canal always equals the upper bound, so instead of the
upper bounds, it is the value of the diverted flow that must be fixed as a function of the flow

in the originating stream, hence
xy = fu(x.) 3.4)

where X, is the diverted flow into the weir and the right hand side is the same as in (3.3).
Note that both X, and X, are decision variables while f; is a non-linear function which can

usually be approximated with a polynomial.

23

The down side of using an iterative procedure with “successive linearization of the above
constraint functions are best demonstrated with an example. Consider a simple system
depicted in Figure 3.3 with one reservoir, one irrigation block, one diversion channel and two
riverreaches. This example is based on a real-world constraint which exists on several weirs
in the South Saskatchewan river basin in Southern Alberta. The system is solved with the
WRMM model which relies on the Out-of-Kilter network LP solver and successive
iterations. Solutions are derived over weekly time steps and iterations within one time step

is presented in the following.

Inflow

Reservoir

River Flow

Weir

Irrigation

Ocean

Figure 3.3 Sample basin modelling system

Note that there are no restrictions imposed on reservoir outflow, but there are restrictions on
the diversions from the river at the weir. Maximum diverted flow is a function of the flow

in the river according to the relationship depicted in Figure 3.4 below.

24

Maximum Diversion vs River Flow

5
£ 4 b Sttt ot Lttt AR SRR SA S S bt Sl s b [A bbbt St
<
E
§ 3o R i bt S AL L poceoneesenneees
7] :
o e e
(=) :
R S i B e

0 i :

0 2) 6 8 10
River Flow (m”"3/s)

Figure 3.4 Maximum diversion vs river flow

As stated earlier, linear programming algorithms require that all upper bounds on flow be

specified as fixed values for each simulated time interval. The above constraint is just one

of many examples when this is not the case. To apply linear programming solvers with non-

linear constraint functions that look like the one in Figure 3.4, it is necessary to go through

the following iterative steps:

a)

b)

c)

d)

assume a set of fixed values for river flow and calculate the corresponding diversion
flow limit;

submit the problem to the solver using the values of the upper bounds for diversion
calculated in step a);

check if the solution flows derived in step b) comply with the function in Figure 3.4
within a given tolerance limit (e.g. +/- 1%).

If the check conducted in step c) failed, reset the upper bound of diversion flow based
on the river flow obtained from the solver in step b) and repeat steps b) and c).

If the check conducted under c) was satisfactory, declare the problem solved and

move on to the next time interval.

25

Assume that the reservoir is full, inflow is zero and the irrigation demand is 5 m®/s. There
is a small penalty (cost factor) for storage deficits, and a large penalty for irrigation deficits,
which describes an allocation policy in this case (i.e. storage should always be released for
irrigation). The best solution for a time step is easy to see: the reservoir release should be
10 m*/s, with 5 m*/s being diverted and 5 m*/s being spilled into the ocean. The initial
setting of the bounds is therefore 10 for the river channel below the reservoir, 5 for diversion
and 10 for spills. However, since the linear programming objective function is to minimize
the total system deficit (1.e. deficit in irrigation supply and deficit in storage), the LP derived
solution for the first iteration is 5 m*/s to river flow, 5 m*/s to diversion canal and zero to
spill. Solvers based on linear programming are unable to “see” that the flow in the river must
be higher than 5 m*/s to allow for a diversion of S m%s. All they see are the fixed bounds of
10 and 5 m’/s for each arc in the network. Naturally, with this kind of problem
representation spilling into the ocean seems unnecessary and detrimental to the objective of
conserving storage. Yet this is exactly what is needed to arrive at the best possible solution.
This will become apparent as the next few iterations are investigated. With the first solution
derived by the model, the process proceeds to step c) where flow in the diversion canal is
checked with the flow in the river. The model finds that the flow in the river derived in step
b) was 5 m*/s, and it finds that for this kind of flow the maximum possible diversion is 3
m?/s. The problem is then sent back to step b) with the new limit on diversion flows set to
3 m’/s. The new solution from the Out-of-Kilter algorithm then becomes 3 m*/s to river
flow, 3 m*/s to diversion canal and zero to spill. Again, a check is made and the river flows
of 3 m’/s are found to correspond to 1.933 m*/s. The process continues in this fashion from
one iteration to another, as depicted in Table 3.1 until the final convergence is achieved only
when the flows in the river channel and the diversion canal have both reached values close
to zero. Hence the linear programming with “successive linearization” resulted in a solution
with no storage release and 100% deficit for irrigation block while the storage was full and

its cost factor was much lower than the cost of deficit at the irrigation block.

26

Table 3.1 Results of 14 successive LP solutions

Iteration River Flow Diversion Flow
0 10.000 5.000
1 5.000 5.000
2 3.000 3.000
3 1.933 1.933
4 1.360 1.360
5 1.002 1.002
6 0.751 0.751
7 0.577 0.577
8 0.456 0.456
9 0.366 0.366

10 0.294 0.294
11 0.237 0.237
12 0.190 0.190
13 0.153 0.153
14 0.123 0.123

The conclusion from the above example is the successive linearization may not work when

flow constraints are non-linear, and in some cases it gives a solution which is far from

optimal.
3.1.2 Reservoir Qutflow Constraints

Reservoir outflows are limited by the capacity of the outlet structure (which can be either a
weir or an orifice, but with similar effects). Reservoir elevation H, determines the maximum
possible outflow from the reservoir at each point during the given time period. Yet this
elevation during the time period is also a decision variable resulting from the overall
reservoir balance equation. For a given outlet and any reservoir elevation H,, the maximum

outflow capacity is an exponential function of H,, i.e.
Uu, = aH f (3 . 5)

where u, is the upper bound on flow in the downstream channel while a and p are coefficients

27

which depend on the type of outlet. Note that on most reservoirs there is usually more than
one outlet structure -- spillway for handling high flows and bottom outlet used in regular
operation. At certain times both spillway and bottom outlet may be operated simultaneously.
Also, in addition to the natural outflow, there may be one or more diversion canals supplied
by the same reservoir with their unique outlet structures represented by their own functions
similar to expression (3.5). Additional difficulty is thatexpression (3.5) shows the functional
dependence for only one point in time when reservoir elevation equals H,. Within a
calculation time step (which can range in the order of days) H, is not constant, and its value
at the end of the calculation time step is part of the overall flow solution for the whole
network. In the first approximation, one could infer that the average outflow capacity over
a time step is the integrated average from the beginning to the end of the time calculation

time step. If H, is expressed as the flow in reservoir arc x, for a given time interval, then
1 Te
U, = ——— x,)dt (3.6)

where T; and T, are the starting and ending times for a given time interval and x, is the sum
of flow in reservoir arcs while f(x) represents the function on the right hand side of
expression (3.5). Only f(x,) attime T; is known. The upper bound u, can either be increased
or decreased within a time interval, depending on the flow solution which may include
reservoir refill or release. Expression (3.6) determines the upper bound on the outflow.
Depending on the downstream demands and the available runoff, the actual release may be
less than the upper bound determined by (3.6) when the outlet structure is controlled by
adjusting the gate openings. When there is no gate associated with the outlet structure, the

above expression not only determines the maximum flow, but rather determines the actual

outflow X.:
1 Te

=TT T{ fi(x,)at 3.7)

where x, on the right hand side of equation (3.7) is the sum of flow in the reservoir arcs

28

which represents the storage change for a time interval. Inflow into the reservoir is part of
the overall flow solution for a given time step, and it also impacts the storage change within
a time step. Equation (3.7) is a non-linear constraint imposed on outflows from reservoirs

which have ungated outlet structures.

Consider a numerical example depicted in Figure 3.5 showing a simple system with one
reservoir and two outflows. One outflow provides supply to a municipality with a maximum
flow governed by reservoir elevation according to the functional relationship in Table 3.2,
while the other outflow is a large capacity bottom outlet for irrigation supply, capable of

completely emptying the reservoir within a week.

Reservoir

Bottom Outlet
(large capacity)

Municipal Demand
Irrigation
District

Figure 3.5 Example of outlet structure flow limitations

Assume that the bottom outlet flow limit is equal to the irrigation canal capacity of 50 m*/s,
while the orifice outflow limits are a function of reservoir elevation as shown in Table 3.2.
The example presented in Figure 3.5 has the following cost factors: municipal demand is the

most important, with a cost factor of 500 per 1m’/s of deficit flows, followed by the irrigation

29

block with a cost factor of 10 per Im’/s of deficit flows, and finally deficit in reservoir
storage is assigned a cost factor of 1 per Im?/s of deficit in the units of flow. Storage is
converted to flow by dividing volume with the length of the time step, which in this case is

assumed to be 7 days.

Table 3.2 Technical description of the reservoir outflow test problem

VOLUME ELEVATION OUTFLOW ELEVATION
(1000m3) {m) (m?/s) (m)

0. 1653.540 0.000 1660.000
195.082 1654.230 2.350 1661.225
406.260 1654.920 3.678 1662.450
631.603 1655.609 4.954 1663.675
871.882 1656.299 6.029 1664.300

1125.811 1656.989 6.977 1666.125
1385.449 1657.679 7.834 1667.350
1679.896 1658.369 8.622 1668.575
1978.765 1659.058 9.355 1669.800
2290.896 1659.748 10.044 1671.025
2620.025 1660.438
2961.258 1661.128
3315.754 1661.818
3682.611 1662.508
4059.384 1663.197
4448.518 1663.887
4847.568 1664.577
5258.979 1665.267
5680.305 1666.000
6850.000 1668.000

RESERVOIR INFLOW 12 m¥/s
MUNICIPAL DEMAND 7.5 m¥/s
IRRIGATION DEMAND 20 m®/s
STARTING RESERVOIR LEVEL 1667 M

PENALTIES PER 1m3/s FOR DEVIATING FROM IDEAL CONDITION:

MUNICIPAL DEMAND PENALTY = 500
IRRIGATION PENALTY = 10
STORAGE PENALTY = 1

The above is a demonstration of a mathematical program which has a linear objective
function and non-linear constraints. The next few lines will examine the results of applying

an LP solver to this problem in an iterative manner:

30

a) the initial outflow capacity for orifice outflow is set to the initial reservoir level of
1667 m, which corresponds to about 7.5 m*/s. This capacity is equal to the municipal
demand;

b) the solution derived by the model results in an empty reservoir since reservoir storage
and inflow are less than the sum of both municipal and irrigation demand which get
7.5 m*/s and 14.87 m*/s, respectively;

c) the model then calculates the average orifice outflow capacity based on time-
integration of reservoir levels for the entire week by starting from 1667 m and
calculating new elevation (and the corresponding maximum outflow) at the end of
each day assuming steady state inflow of 12 m*/s and outflows listed under b); and,

d) the new outflow capacity of 2.85 m?®/s obtained in step c) is checked with the
assumed outflow capacity of 7.5 m*/s and since there is a large difference between
the two the process is repeated from step a) assuming the outflow capacity of 2.85

m*/s instead of the initially assumed 7.5 m%/s.

The final solution renders municipal outflow of 2.85 m?/s, irrigation supply of 19.51 m*/s
with an empty reservoir which corresponds to deficit in storage of 10.359 m?*s. The

objective function (total cost of deficit) of this solution is:
Total cost = (7.5 - 2.85) x 500 + (20 - 19.51) x 10 + 10.359 x 1 = 2340.26 (3.8)

Deficits are calculated in brackets as the difference between the stated target and the
achieved supply. It is easy to see that the above solution is far from the best. A much better
solution can be picked up manually, by assuming that the reservoir stays full during this time
interval. This would result in 7.5 m’/s allocated to municipal demand and 4.5 m%/s to

irrigation, without any storage deficit. The corresponding value of the objective function is

then:

Total cost=(7.5-7.5)x500+(20-4.5)x10+0x I =155.00 3.9)

31

This is certainly a much better solution in terms of minimizing the objective function than
the one obtained previously. The iterative use of LP fails to deliver a high quality solution.
This is because LP only takes into account the fixed value of the channel upper bound, be
it 7.5 in the first iteration or 2.85 in the second, along with the pricing vector, which implies
that storage should yield to both municipal demand and irrigation. LP solvers cannot address
a relationship between emptying storage for irrigation and the resulting change of the limit

on flow capacity for municipal supply.
3.1.3 Hydropower Flow Constraints

The following discussion refers to hydropower plants which operate with variable head-flow
combinations. For a given time interval, the net head H, is determined by subtracting from
the upstream reservoir elevation the tail water elevation and the appropriate head loss across

the plant. The relationship between the power and flow is given by:
P, = H,.Q.y.m, (3.10)

where P, (MW) is the produced power, H; (m) and Q (m*/s) are the average net head and the
average flow over a time interval, ¥ is the specific weight of water (9806 N/m?) and 1), is the
power plant efficiency factor. Hence, a specified demand for power over a given time
interval cannot be converted to the units of flow without knowing the average net head,
which is a function of the overall reservoir balance in the final solution, since it depends on
the average headwater elevation as well as the average tailwater elevation for a time step.
Average headwater elevation is an integrated average between the starting and the ending
reservoir level for a time step, while the tailwater elevation may be either a non-linear
function of flow for the downstream channel or the result of the reservoir balance of a

downstream reservoir which defines the tail water elevations by its lake level.

Note also that Q, H, and 1}, are mutually dependent, which means that if one of them is fixed
it determines a unique range of values for the other two. Assuming that the required power

is known at the beginning of the time step, the flow in reservoir arcs determines the average

32

net head H;, over a time step, which in turn sets the flow requirement Q on the right hand side
of equation (3.10) such that desired power P, can be generated. Therefore, if the power
target is known, it is possible to setup an iterative scheme and use LP, although the dangers
of doing so are similar to those addressed in Sections 3.1.1 and 3.1.2.

More importantly, the hydro power target is often not known, and the hydro power plants

may appear in the objective function in the following form:
maximize ZZ H,.Qv.n, 3.11)

where the first summation is over all time intervals while the second summation is for all
hydro power plants in the basin. The above term may appear as only one item in the
objective functions, where other items may be related to other water management objectives,
such as irrigation, industrial and municipal water use, riparian flow requirements, etc. With
complex non-linear relationships between head and flow for various hydro power plants
withing one time step, as well as across multiple time steps, it is difficult to resort to the use
of linear programming. Previous efforts to apply successive linearization to this problem
have been attempted (Sun et al., 1995) but they have gone on largely without comparing the
results to global optimums, since a reliable non-linear solver with high likelihood of finding

a global optimum for these problems has yet to be established.

3.1.4 Return Flows from Irrigated Blocks

Return flows associated with irrigation or other consumptive use are usually expressed as a
percentage of gross diversion within a time interval, although a constant return flow factor
may be added to the percentage. The value of actual percentage may vary during the season,
but the variation may be considered known as it is based on empirical observations. There
may be one or more return flow channels associated with a single irrigation block. Each
channel returns a portion of the flow diverted into a block at one or more different points of

return in the system. Irrigation return flows are represented by arcs with both upper and

33

lower bounds set to the same value equal to the fraction of the gross diversion, where gross
diversion is part of the overall network flow solution. This can be expressed mathematically

as:

ur = lr =fg"xd (3-12)

where u, and |, are the upper and lower bound of a return flow arc, respectively, f, is the
(constant) fraction of gross diversion X, that is returned to the system. Constraint (3.12) is
linear, however it cannot be included in the minimum cost flow problem as formulated in
with expressions (2.3), (2.4) and (2.5), especially since more than one return flow channel
can be associated with the same irrigation block. Consequently, it is considered as a non-
network constraint and as such it requires more general solution algorithms (McBride, 1985).
The use of standard network solution algorithms such as the Out-of-Kilter algorithm still

requires the use of iterations in addressing the return flow constraints.
3.2 A Review of Network Models in River Basin Management

A large number of various computer models have been developed since the early 1970s in
an effort to aid river basin planning and management. A comprehensive review of these
developments was compiled by Yeh (1985). The most widespread approach was based on
using the network representation as depicted in Figure 3.1 and solving the corresponding
linear minimum cost flow problem. The models which utilized these concepts are SIMYLD
(Evanson and Mosley, 1970), ACRES (Sigvaldason, 1976), MODSIM3 (Labadie et al,
1986), WASP (Kucera and Dimnet, 1988); DWRSIM (Chung et al., 1989), CRAM
(Brendecke et al., 1989), KCOM (Andrews et al, 1992) and WRMM (Ilich, 1993). Non-
linearities associated with the bounds were handled by using longer computational time steps
and by applying successive iterations within a time step if necessary. As stated earlier, this
is done by initially guessing the bounds, solving the minimum cost flow problem, evaluating
the network flow solution against the assumed bounds, re-setting the bounds to new values

based on the previous solution, and re-iterating if necessary until the assumed bounds and

34

the network flow solution were within a reasonable tolerance limit. This process is repeated
simultaneously with reservoir outflow, irrigation return flows, hydro power component and
in some cases the channel time lag, which is also a function of the overall flow solution
(Alberta Environment, 1995) which creates difficulties in the convergence process, requiring
sophisticated convergence algorithms. It should be noted that each time an iteration is
performed, a slightly different problem is submitted to the optimizer resulting in a new
solution that becomes the starting point for the next iteration. There is no guarantee that this
process will result in 2 convergence to the global optimum, as demonstrated by the previous
numerical examples. The problem being solved is non-linear in terms of its bounds, and the

guessing process solves successive linear approximations of a non-linear problem.

Kucera (1988) used a primal simplex method to address the multi-period planning procedure
for a multi-reservoir system. Problems involving network and non-network linear constraints
have been solved efficiently for long planning periods using the EMNET solver, which is
claimed to be the fastest embedded generalized linear programming solver available (Sun et
al., 1995). However, if iterations are employed within any of the above models their effect
on the quality of the final solution has yet to be addressed. The non-linear constraints can

be ignored by avoiding iterations, but with similar effects on the solution quality.

35

4 PROPERTIES OF FEASIBLE CIRCULATIONS

The problem of finding a feasible circulation in the network has ‘two important aspects.
Firstly, if it can be proven that no feasible solution exists for a given -problem, the search for
an optimal solution would cease. Secondly, since an optimal solutiom is necessarily feasible,
itis instructive to gain insight into the properties of feasible solutions. This may help create
algorithms which are capable of conducting a search exclusively thromgh the feasible region.
Some algorithms converge to an optimal point from both feasible and infeasible region of
the search space. This may work well in certain cases, but in many i-nstances this approach
fails to find global optimum and lacks reasonable efficiency. This research will attempt to

develop an approach to conduct search exclusively through the feasiible region.

The theory of graphs defines feasible flow as a vector X;; which satisfies constraints (2.3) and
(2.4). The property of feasible flows (circulations) are examined first for unbounded
circulations, then for problems with linear bounds where I; and u; ame constant for all arcs
(i,j)- The discussion is then extended to problems with non-linear bounds. Note that non-

linearity is here concerned only with the bounds. The shape of the o-bjective functions has

no impact to the issue of feasibility.
4.1 Unbounded Networks

In general, for unbounded networks (l; = 0 and u; = + =) the circulatison vector is subject to
general vector operations such as addition and scalar multiplicatiom. For example, if a

rational number is denoted by g and a feasible circulation vector by x5, then:

g(x,) = (&), (4.1)

Hence a new feasible circulation vector can be generated by scalar multiplication of each

element of x;;. Similarly, if X; and y; are two feasible circulations wvhile g and A are two

rational numbers, then:

36

g(x,)+A(»), (4.2)

is also a feasible circulation. It is easy to see that the transformations do not violate
conditions (2.3) and (2.4) for unbounded problems when (I; = 0 and u; =+ o). The above
vector operations allow generation of new feasible solutions as a linear combination of two
or more existing feasible solutions. Similar operators can be applied for bounded problems
provided that maximum and minimum flows in the network are known, as discussed in the

following.

The other important property of circulations, known as the flow decomposition principle,
states that any circulation can be decomposed into a finite set of directed cycle flows. Let
w be a set of all directed cycles in the network, and let the decision variable be flow along
cycles f{w). By introducing a mapping function ¢¢; which is equal to 1 if arc (i,j) is contained
ina given cycle and 0 otherwise, the flow in arc (i,j) can be expressed as a sum of all cycle

flows w’ which contain arc (i,j). Then

x; = Za,).f(w') (4.3)

Flow decomposition principle is based on the fundamental cycle theorem which states that
each set of directed cycle flows has a unique representation as arc flows x,. Conversely,
every circulation x; can be represented (although not necessarily uniquely) as a set of
directed cycle flows at most m directed cycles, where m is the total number of arcs in the
network. A deductive proof of this principle is as follows: Starting from a given circulation
X; » find an arbitrary directed cycle and reduce its flow such that at least one arc flow on the
cycle becomes zero. After repeating this m times, each arc flow has been reduced to zero and
circulation has been decomposed into m directed cycle flows, represented by a flew
reduction on each of the m cycles found in the process. The Augmenting Cycle Theorem, one
of the most important theorems of network flows, extends this observation to the cycles
which are not necessarily directed (Ahuja et al, 1993). A cycle w (not necessarily directed)

in network G is called an augmenting cycle with respect to flow X; if by augmenting a

37

positive amount of flow f{w) along the cycle the flow x; remains feasible. The augmentation
increases the flow on forward arcs in the cycle and decreases the flow on reverse arcs, so w
is an augmented cycle in G if X; <u;; for every forward arc (i,j) and x; > I; for every reverse
arc. The mapping function ¢(; can also be defined for cycles that are not necessarily directed,
by assigning values of 1, -1 to the arcs which belong to the cycle with forward and reverse
orientation, respectively, or assigning zero for arcs which do not belong to cycle w.
Similarly, the usual way of handling lower bounds is the representation of the entire network
is by the use of residual network. In residual networks each arc (i,j) is replaced by two
paraliel arcs with opposite orientation. The arc with the same orientation as the arc in the
original network has the upper bound equal to u; - X;, while the arc with opposite direction
has the upper bound set to x; - l;. Both arcs have lower bounds set to zero. This
representation is consistent with representing variable x as a sum of two other variables x’
and x", which are easier to handle in terms of bounds since lower bounds are zero. With this
representation, each augmenting cycle w in the original network G with respect to flow X;
corresponds to a directed cycle in residual network G', and vice versa. Hence, fundamental
cycle theorem can be applied on residual networks to account for lower bounds on arc flows.
This opens a possibility of generating any feasible flow in the network by assigning flows
along the augmenting cycles. Most of the existing network algorithms utilize this theorem
in some form. Several algorithms have been developed with the sole purpose to identify the
fundamental cycles in the network (Dorris and Chen, 1981). Once identified, the
fundamental cycles can become building blocks for generating various feasible flows through

the network.
4.2 Circulations with Linear Upper and Lower Bounds

While circulations in unbounded networks are guaranteed one simple starting feasible
solution (zero flows on all arcs), that is not the case for networks with positive lower arc
bounds. It is imperative to first establish that a feasible circulation exists for a given network

prior to conducting a search for an optimal circulation. Infeasible solutions imply that

38

circulation vector which satisfies both (2.3) and (2.4) cannot be found. Expression (2.4) can

be re-written as:
x; = >.x, YieN (4.4)
{/4i.7)e} {/:(s.9)e4]
Arc flows on the left side of the above equation represent all incoming flows into node i
while arc flows on the right hand side represent all outgoing flows from node i. Add
condition (2.5) to both sides of equation (4.4) to give

DI Dx,= Dxy< Du, VieN (4.5)
{AiS)ea} {ii.f)ed} {j(s.7)e4} {/(J.)e4}

Expression (4.5) is a condition for feasible flows through node i, and it states that the sum
of the lower bounds of incoming arcs into node i must be less or equal to the sum of outgoing
arcs for the same node. Ifthis condition does not hold for any node in the network, there can
be no feasible flow. Note that any connected group of nodes labelled as a set of nodes S in
a given network forms a subgraph which can be viewed as a single node in relation to the rest
of the network. Let S be such a set (also called a subgraph on N) and also define a subgraph
S', such that S'=N\ S where N is the set of all nodes in the network. Arcs incident to nodes
(S,S") and (S',S) are said to form a cut. The above expression can be written for subgraph S

instead of node i as:

Zl,j < Zx = Zx.,.s Zuﬁ V(S,S‘) (4.6)

i J
{)ss) {Gndss)}y {GALss)) {(a)s9)}
The existence of a feasible circulation in a network requires that this relationship holds for

all possible cuts (S,S") in the network. Conversely, the existence of one or more cuts (S,S")
for which
v(S,S" 4.7)

[. 2 Zu,.

(CATESY (U85}

is sufficient condition for infeasibility. This implies that all cuts (S,S") have to be examined

using expression (4.7) to determine if the network has a feasible solution or not. This task

39

is included implicitly in most network algorithms associated with either finding the
maximum flow through the network or finding the minimum cost flow. The net flow v
across a cut (S',S) is a sum of all incoming and outgoing flows for (S',S). This is expressed

mathematically as:

v= D x,- D.x (4.8)

i g
{ns.s) {(0)(s.5)}
Since each of the terms on the right hand side of (4.8) is bounded, it can be replaced with arc

bounds provided that the equation changes into inequality

v< Zu,.j - erf “4.9)
{()e(s.85)) {(21)e(52.5)}

Expression (4.8) is also known as the Maximum-Flow Minimum-Cut Theorem (Ahujaetal.,
1993). One important conclusion of this theorem is that every cut (S,S') in the network has

a maximum and minimum net flow v associated with it which can be found by inspecting all

of its cuts (S,S").

Consider now a circulatory network with a cut (S,S') which contains only the arcs incident
to the system balance node. In other words subset S' contains only the system balance node
while subset S contains all other nodes in the network. For this case the upper and lower
bounds on v are defined by two specific (maximum and minimum) circulations that can be

realized in a given network. Denoting those two circulations by Xmin and Xmax, it is

obvious that:

>1,<> Xmin, <> x, <> Xmax, <> u, V(i,j)€d (4.10)
(+.7) (1.7} (+.) %)) (/1)

Therefore, due to flow constraints associated with cuts, the actual flows on some arcs may
never reach their upper or lower bound. The most they could ever reach is determined by the
value of Xmin and Xmax on every arc. Finding the two circulations (Xmin and Xmax) is

of paramount importance, since they explicitly define the limits on feasible flows in each arc.

40

Various algorithms are available for finding feasible flows Xmin and Xmax, which can be
viewed as a set of two maximum flow problems for a network with the same incidence
mapping but different arc bound structure, or it can be viewed as set of two minimum cost
flow problems in the same network which differ only in terms of the sign of the arc costs.
Whichever approach is used, feasible circulations Xmin and Xmax can be easily obtained
using the existing network flow algorithms which are capable of starting with zero flows for
all arcs, and are also capable of identifying infeasible solutions.

Assuming that Xmin and Xmax are available, the generation of other feasible solutions in
a bounded network can be conducted in several ways. One way is to use linear combinations
of Xmin and Xmax and the transformations of the circulation vector stated in (4.2). For

example, a new feasible circulation X can be determined as

x = g(*max) + MXmin) 4.11)

provided that the following conditions are attached to fand A:
g+A=1 and 0 g <1, 0< A <1 (4.12)

Moreover, any circulation X obtained using expression (4.11) can be used as a basis for
generating additional feasible solutions instead of the initial Xmax and Xmin. Another way
of generating a feasible flow X is based on using the flow decomposition theorem (4.3),
which allows subtraction of a directed cycle flow from maximum circulation Xmax or
addition to minimum circulation Xmin. Let X(c) and X(p) be two directed cycle flows.
Then

x= g(xmx - x(c)) + ?\.(xm,-n +x(p)) 4.13)

is also a feasible flow in the same network, provided that the cycle flows X(c) and X(p) are
within the limits related to arc bounds. For example, ifarcs 2, 3 and 7 belong to cycle c, then

the largest possible cycle flow X,.(c) on cycle c is determined by:

41

Kmax(€) = MUN{(X2(2) = Xin(2)), Kinax(3)—Kin(3))s Kinal T — X7} (4.14)
Cycle flow X(c) can have any value between zero and the maximum X(c) defined by (4.14).
4.3 Tucker's Representation of the Circulation Space

The basis of Network Simplex method is the relationship between maximum spanning trees
(also known as maximum forests) and the incidence matrix. Denote with m the number of
arcs in a network and with n number of nodes. Equality constraints expressed by condition
(2.3) represent a set of continuity equations written for every node in the network. It is
obvious that for a connected network, m > n - 1 since each node must be connected to
another node via at least one arc. Typically, the number of arcs is greater than the number
of nodes, particularly in the case in circulatory networks. This leads to an observation that
equality constraints (2.3) are represented by a system of equations with an m x n matrix
which has m-n+/ columns that are linearly dependent and can be expressed as a combination
of other columns, while n-1 columns are linearly independent. Itis known from graph theory
that the search for linearly independent columns in an incidence matrix is equivalent to the
search for a maximum forest in a network (Ahuja et al, 1993). There is a finite number of
maximum forests in any network and each of them is a basis for the minimum cost flow
problem in the Network Simplex algorithm, i.e. each one defines a maximum spanning tree.
The pivoting operation in the Network Simplex method is equivalent to moving from one
maximum spanning tree to another. By denoting the incidence matrix with E and a

circulation vector with X, circulation can be expressed as
EX=0 4.15)

where E is an m x n matrix while X is a column matrix of size m. This system of equations
can be solved for some of the variables X in terms of the others, and written equivalently, for

various subsets of arcs F < A as:

42

E:Xp ==X rEar (4.16)

Arcs which belong to subset F form a maximum forest while all other arcs excluded from the
maximum forest are represented by A \ F where A is the set of all arcs in the network.
Equation (4.16) is known as the Tucker's representation of circulation space (Rockafellar,
1984). The size of matrix Eg on the left side of equation (4.16) is »-1, and the size of matrix
E .\ on the right side of equation (4.16) is m-n+/. For any arbitrary choice of arc flows on
the right hand side of equation (4.16), the arc flows on the left side can be recalculated since
itis known from graph theory that the left hand side matrix in (4.16) can be transformed into
a triangular matrix and solved using direct substitution. Since the choice of arc flows on the
right hand side of (4.16) is arbitrary, it can include integer values for some and mutual non-
linear relationships for others. This gives way to generation of feasible solutions which
would include mixed integer non-linear feasible solutions for m+n-/ decision variables. In
other words, if there is a non linear dependence between two arc flows on the right hand side
of equation (4.16), for any selection of the value of independent variable the dependent

variable could be recalculated.

So far the above analyses excluded constraints on arc bounds, however constraints are easy
to include provided that Xmin and Xmax circulations are known. If the appropriate Xmin
values are input on the right hand side, the recalculation of the left side will yield the
remaining Xmin values thus completing the entire minimum flow vector. The case is the
same if Xmax values are input on the right side of equation (4.16). Consequently, any set
of arbitrarily chosen arc flows between Xmin and Xmax for any given arc would yield a
feasible solution by recalculation of the remaining elements of the circulation vector on the
right hand side of equation (4.16). A conclusion that should be emphasized at this point is

that any feasible circulation X can be created using the knowledge from the network flow

theory.

The above conclusions can be used as the basis for building new search algorithms for non-

43

linear network optimization that utilize various contemporary optimization strategies. When
arcs bounds have finite values, the total value of feasible circulation is also bounded by

maximum and minimum values.

The operator stated in expression (4.11) can only be used to generate a new feasible solution
for a problem with linear flow bounds and non-linear objective function. Several researchers
have taken advantage of this operator on problems with linear bounds and non-linear

objective functions (Grafenstette, 1987; Michalewicz 1994) .

For non-linear flow bounds, flows Xmin and Xmax become functions of the individual arc
flow values, hence it is necessary to keep track of them and update them in each step of the
search process. This results in combination of network flow theory with the new search
strategies. No previous research publications could be found that proposed the same concept.

This approach will be explained in more detail in the following sections.

5 EVOLUTION PROGRAMS
5.1 Introduction and Literature Review

Evolution programs are probabilistic optimization algorithms based on similarities with
biological evolutionary process. In this concept, a population of individuals, each
representing a search point in the space of feasible solutions, is exposed to a collective
learning process which proceeds from generation to generation. The population is arbitrarily
initialized and subjected to the process of selection, recombination and mutation such that
the new populations created in subsequent generations evolve towards more favourable
regions of the search space. This is achieved by the combined use of the fitness evaluation
of each individual and the selection process which favours individuals with higher fitness

values, thus making the entire process resemble the Darwinian rule known as the survival

of the fittest.

Terminology, notation and opinions about the importance and the nature of the three
underlying processes (selection, recombination and mutation) vary throughout the research
community. Back and Schwefel (1993) identified three main streams of evolutionary
algorithms that have emerged in the last three decades: evolution strategies (ES) developed
by Rechenberg (1965) and refined by Schwefel (1981); evolutionary programming (EP)
developed by Fogel Owens and Walsh (1966) and recently refined by Fogel (1991), and
Genetic Algorithms developed by Holland (1975) and refined by De Jong (1975),
Grefenstette (1987) and Goldberg (1989). The field of evolutionary computation has evolved
since the pioneering work of these researchers. Nowadays there are several well established
international annual conferences on this topic attracting hundreds of participants while the
number of papers describing specific applications is growing at an exponential rate. In spite
of the lack of strong theoretical background, the evolutionary approach has emerged in the
last two decades as a powerful and promising technique that has generated much interest in

the scientific and engineering community, mainly as a result of numerous successful

45

applications which far surpassed other search methods in terms of their ability to deliver
superior solutions. It is obvious that many different evolution programs can be formulated
to solve the same problem. They could differ in terms of their data structure used to
represent a single individual, recombination operators used for generating new individuals,
the selection process, methods of creating the initial population, methods for handling the
constraints of the problem, and the search parameters such as population size. Regardless
of these differences, they all share the same principle: a population of individuals is subjected
to selection and reproduction which is carried out from generation to generation until no

further improvement of the fitness function can be achieved.

There are two large classes of problem representation, known as binary or floating point.
Genetic algorithm propounded by Holland (1975) uses a fixed length binary string and only
two basic genetic operators: cross-over and mutation. The raw power of genetic algorithms
is-demonstrated on a specific application related to selecting the best combination of 40
"binary variables, which can be viewed as finding the best combination of 40 off and on
switches in a control related problem. This outline provides insight into some of the
difficulties related to the binary representation and reveals the need for a more suitable

representation, which is addressed in the following.
5.2 Explanation of Genetic Algorithm using a Binary Problem

Most GA application to date have been applied on some form of a binary problem (Goldberg,
1987). This is acceptable if a decision variable represents a real world phenomena which has
only two defined states (on or off). The term gernetic comes from the basic idea to represent
a possible solution of the optimization problem as a long binary string where each binary
value is either O or 1, thus forming an artificial chromosome for one possible solution. The
initial population of artificial chromosomes is random. Having created the initial
population, the algorithm then proceeds by comparing all members of the initial population

and ranking them from best to worst in terms of their fitness. A fraction of the best solutions

46

are retained and used to breed among themselves producing new generation of possible
solutions using the cross over and mutation techniques which were initially designed to
resemble similar processes in nature. The way artificial chromosomes are combined is very
much the same as the way biolog-ical chromosomes are combined when offspring of any life
form is created. The process thus continues from generation to generation and the natural
selection of artificial chromosomnes eventually results in convergence to an optimum. In
other words, in technical optimization based on an evolutionary processes the survival of the
'parent’ chromosomes depends om its fitness with respect to the objective function. This bias
in favour of the solutions with be:tter fitness generates offspring with a high likelihood that
some of the individuals will surpeass the fitness of their 'parents'. The process stops when

there is no improvement in thes value of the objective function of future generations

compared to their parents.

The above approach is very efficient when the decision variable can take one of the two
possible states. Their power and efficiency is reduced when they are applied to problems
with a floating point decision variable with difficult constraints. Several attempts have been
made to convert problems with floating point decision variables into equivalent binary

problems, although with varying success (Koza, 1993).

Denote with a(i) a randomly generated binary string of length 40 with values of O or 1 in each
string bit. For example, a(l) could look like this:

a(l)=1011101000101110111000101100010011101100

In this representation the values 0 or 1 describe the switch status (on=1 and off =0). Since
the total number of switches in the system is 40, the number of combinations to be examined
is 2*°, where number 2 represents “the two possible states (on/off) for each switch. For each
randomly generated solution represented by a binary string a(i), an objective function (total

cost of pumping) can be calculated. The classical genetic algorithm proceeds as follows:

47

1. Generate randomly a population of 100 binary strings a(i);

2. Calculate the objective function for each solution generated in step 1 and rank the
solutions from the best to the worst in terms of their optimality;

3. Select a small percentage (typically 5% to 30%) of the best solutions obtained in step
2 for further reproduction and discard the rest as 'unfit' for having offspring.

4. With the best solutions selected in step 3 as 'parents’, generate a new set of 100 binary
strings of 'offspring' using the cross-over and mutation operators.

5. Repeat the steps 2 through 4 until the calculated objective function value shows no

further improvement in terms of optimality or when the improvement is within a

specified small tolerance limit.

Many types of cross over and mutation operators have been tried by various researchers. In
natural systems, a new organism is created by a random split in the chromosome string at
numerous locations and mutual replacement of the genetic code in the resulting offspring.
A simplified example of this is a single split point of a chromosome into two parts and
mutual replacement. For example, consider cross-over strings b(1) and b(2) obtained as
children of strings a(1) and string a(2) listed above with a split point at cell 11 (for simplicity
of this example string a(1l) has bits equal to O for the first 11 cells and equal to 1 for the

remaining 29 cells):

a(l)=1011101000111110111000101100010011101100
a2)=000000000001I1111I1TT1111I1TYTITTI1IT1I1I1ITIR1ITI1L1111

b(1)=0000000000011110111000101100010011101100
b2)=10111010001111111111111111111111111111T11

Note that string b(1) has the first 11 cells from string a(2) and the remaining 29 cells from
string a(1), while string b(2) has the first 11 cells from string a(1) and the remaining 29 cells

from string a(2). To avoid 'degenerate’ offspring a mutation factor is also introduced, which

48

amounts to a small random change of some cells from 0 to 1 or vice versa. Goldberg applied

the mutation factor to a small fraction of the population (typically 2% to 3%).

A few issues are apparent from this brief description: population size, the death/survival
ratio, cross-over and mutation operators are all arbitrary and entirely dependent on the
experience and judgment of the person conducting the study. It would therefore seem strange
that with so many degrees of freedom and presumably required calibration this approach can
be so successful. This is especially of interest in view of the fact that each of the bit strings
generated in the way described above is not necessarily guaranteed to correspond to a
feasible solution, due to the nature of the processes being control with the control switches. -
[n fact, in many real world problems with the above representation most of the solutions
generated in the above manner could be infeasible. Researchers had to resort to the use of
a penalty function associated with infeasibility which is added to the objective function and
which forces infeasible solutions to 'die faster' in the process of evolution. Goldberg (1987)
demonstrates the immense power of genetic algorithms by showing that they manage to
converge to an optimal solution after having gone through only 25 generations, each with a
population of 100, hence only 2500 possible states were examined out of the search space
of 2*°. However, when this problem is considered in the context of floating point variables,
the decision variable can no longer be binary (0 or 1) but must instead take the form of a real
number, i.e. Xmin(i) <X(i) < Xmax(i), where X(i) is assumed to have the required accuracy
of 0.000<X(1)<£999.999, such that each decimal digit would have to be converted to a binary
format, so each decimal digit would require four binary cells. Hence, a possible solution for
one switch would now have a binary string with a length of 36. Since there are 40 switches,
the total length of binary string is 36x40=1440, and the total number of combinations is
changed from 2*° to 2'**° which clearly puts the problem in a different perspective.. The need
to abandon the binary string representation of the problem has been recognized in the
scientific community for some time (De Jong, 1988). Michalewicz (1994) advocates the use
of "proper (possibly complex) data structures for chromosome representation together with

an expanded set of genetic operators". He speculates that De Jong's historic work on the

49

theoretical formulation of the schemata theorem has inspired subsequent researchers to take
his work like a gospel in spite of overwhelming evidence that binary representation was
awkward in many applications. Instead, it is argued that 'natural' representation of a potential
solution for a given problem and that it is a promising direction for further research. Koza
(1993) observed that "representation is the key issue for genetic algorithms", and that their
failure in many applications deals with the inability of the binary domain representation to
deal with nontrivial constraints. Many other researchers agreed, hence the widespread
propagation of titles such as 4 Modified Genetic Algorithm (Michalewicz et al., 1992),
Specialized Genetic Algorithm (Janikow and Michalewicz, 1990) or a Non-Standard Genetic
Algorithm (Michalewicz et al, 1991). Glover (1987) and De Jong (1990) were also critical
of binary representation and suggest search for better domain representation. There is a
widespread emerging belief that problem specific knowledge must be incorporated in the
algorithm to ensure its efficient operation (Grefenstette, 1987; Davis, 1991; Forrest, 1993).
The current state of the art in the field of Evolution Programs can thus be described as

follows:
. There is no general algorithm applicable to all problems;
. Their efficiency varies from very efficient to inefficient as a function of problem size

and complexity;

. Most evolution programs converge to an optimal point both from inside and outside
of the feasible region, which means that often times more than 99% of the search
effort is wasted on generating solutions that are infeasible;

. Evolution programs do not take into account shape or gradient of the objective
function and they can conduct search within entire feasible domain, which gives them
a better chance to find a global optimum;

. Evolution programs usually require calibration of the search parameters to ensure

efficient convergence.

50

53 Numerical Example with a Floating Point Variable
This research is based on a variant of Genetic Algorithm with the following properties:

a) floating point domain representation, which means that chromosomes are represented
with decimal numbers;

b) massive initialization procedure which uses a Monte Carlo random search to find the
small initial parent population of high quality;

c) multi-parent crossover as proposed by the Genitor algorithm (Whitney, 1989); and,

d) properties of feasible flows in networks are included in the algorithm such that the
search is always restricted to the feasible region by obeying the capacity and flow
continuity constraints.

[tem d) is explained in more details in Chapters 6 and 7. Items a), b) and c) are demonstrated
in the numerical example below. Consider for example the problem of finding the best fit
analytical equation of the outflow vs elevation curve given with ten pairs of (x,y) points in

Table 3.2. A typical empirical equation for this curve is:
O=AH® (5.1)

where Q is flow (m?*/s) while H is the net head (m) above the invert of the outlet, hence in
the case of the curve given in Table 3.2 the net head is reservoir elevation minus 1660 m.
Parameters A and B should be determined in such a way that the difference of the sum of
squares between the analytic and tabulated values of flow for all 10 points is minimized.
This can be formulated as: find the values of parameters 4 and 4 such that the value of the

following objective function is minimized:

10
min) (Qi— A(H:—1660)")* (5.2)
=1

Values of Q, and H; are provided in Table 3.2 for each of the ten points. In addition, from

other empirical studies related to similar curve fits it can be assumed that the most likely

51

range for the values of parameter b is (0,1) and for parameter A is (0,10). To be on the safe
side in this example the values of parameter A are inspected in the range of (0,20). The
value of parameter b must be less than 1 since it is never a straight line, and it must be greater
than 0 since the values below zero would not result in an increasing function, while it is
known that the outflow does increase with the increase in net head. Taking into account this
simple knowledge about the problem reduces the search space to a value for parameter A in
the interval (0,20) and the value of b in the interval (0,1) which has a significant impact on
the solution efficiency. In some ways this can be compared to optimizing network flows
with flow variables in each arc being restricted in value between a given minimum and
maximum. The algorithm first generates randomly 5 possible solutions, as depicted in the
top of Table 5.1. It then goes through a process of initialization, whereby additional 95
solutions have been generated in a pure random manner using the Monte Carlo approach and
assigning random values to parameters A and b within the prescribed range for each. After
each new solution is created, its objective functions is evaluated and compared to the worst
objective function of the initial five solutions. Ifthe new solution has better fitness than the
worst of the five initial parents, the worst parent is discarded from the top five (also referred
to as the “mating pool”) and the new individual is included in it. At the end of the 100 trials,
the mating pool has 5 members which all have a higher fitness values than the initial five
randomly generated solutions at the start of the process. These parents will form the mating

pool and they will be used as genetic material from which the new offspring will emerge.

The final and the most important part of the algorithm is recombination. A new solution is
created by borrowing parameters A and b from one of the parents in the mating pool and
applying a small modification using a normalized variate with a standard deviation equal to
1% of the value of the selected parameter. Denoting with a drand(1,5) a discrete function
that selects an integer number between 1 and 5 with equal chance, and using A(i) and b(i)
to denote the values of parameters A and b that are currently included in the mating pool, a
new solution (values of parameters A and b) are generated using a variant of the standard GA

procedure commonly known as recombination and mutation, shown in the pseud code below:

52

Procedure Recombination and Mutation

1 select = drand(1,5)

2 Anew = A(select) + N(0,A(select)*0.01)
3 if (Anew > 20) Anew = 20

4 if (Anew < 0) Anew = 0

5 select = drand(1,5)

6 bnew = b(select) + N(0,b(select)*0.01)
7 if (bnew > 20) bnew = 20

8 if (bnew < 0) bnew = 0

end

Line 1 assigns a random value between 1 and 5 to integer variable select. The new value of
A is then assigned as being equal to one of the five existing values of parameter A that are
already in the mating pool, with a small mutational change introduced by applying a normal
variate with a mean of zero and standard deviation equal to 1% of the chosen value of A.
Other small variates could have been chosen, the current choice is arbitrary and not critical
to the search progress. Mutation is essential here since it generates the necessary diversity
in the mating pool. Without mutation in this example the progress would soon be halted
after the best of the combinations of A and b from the pool of five is found. However, it will

be seen later that in some cases when the shape of the objective function is known, the

mutation operator may not play such a big role.

Since the normal variate may result in variable Anew being above 20 or below zero, which
is outside of the desirable bounds, it may be necessary to bring the value of Anew back
within the desired bounds, which is done in lines 3 and 4. The entire process is repeated for
parameter b, but with a different value of the variable select, which means that parameter A
is picked from one parent in the mating pool while parameter b comes from another parent.
As in the initialization procedure, each time a child is created with a fitness that is better than
the fitness of the worst parent, the child is included in the mating pool and the worst parent
is discarded from it. From there on the child continues to pass its genetic material to new
generations. Table 5.1 shows the results of the objective function with parameters A and b

for the best 5 solutions after 500 new individuals have been generated using recombination

53

and mutation process described above.

Table 5.1 Demonstration of a Genetic Algorithm

The first five randomly generated quesses:

Objective A b
Function
443.816 0.025 0.564
1045.883 3.866 0.809
3885.054 11.700 0.480
9064.114 7.006 0.886
32137.926 16.457 0.747
The best five out of one hundred generated quesses:
Objective A b
Function
6.294 3.111 0.504
29.131 2.198 0.743
32.011 5.054 0.144
36.606 2.275 0.455
48.131 5.518 0.273
The best five solutions after two hundred recombinations:
Objective A b
Function
0.040 2.107 0.655
0.041 2.091 0.658
0.045 2.084 0.658
0.046 2.077 0.660
0.048 2.154 0.644

By comparison, this problem has also been solved with the Excel solver to give A=2.109,
b=0.654 and the value of the objective function of 0.0395. To obtain this solution with the
Excel solver, the settings must include higher precision requirements than those that are

setup as default within the solver.

The new approach proposed in this research is the initialization procedure. Genetic
algorithms typically start from any randomly generated set of parent solutions and converge
eventually using recombination and mutation as described above. However, starting from
good quality parents can be very beneficial. Consider for example the same problem as the
one above, but solved without the initialization procedure, i.e. the first five solutions shown

on top of Table 5.1 are used as parents that are subjected to recombination and mutation.

54

The results of this process are in Table 5.2, which shows the makeup of the mating pool after

each 500 new individuals were created using recombination and mutation.

Table 5.2 Genetic Algorithm without initialization

The first five randomly generated quesses:

Objective A b
Function
443 .816 0.025 0.564
1045.883 3.866 0.809
3885.054 11.700 0.480
9064.114 7.006 0.896
32137.926 16.457 0.747
The best five solutions after 500 recombinations:
Objective A b
Function
15.505 3.602 0.470
32.043 0.365 1.480
32.045 0.338 1.480
32.519 0.332 1.484
32.562 0.331 1.490
The best five solutions after 1000 recombinations:
Objective A b
Function
7.508 1.048 0.994
7.665 1.008 0.998
7.736 1.004 0.999
7.804 1.024 1.003
7.854 1.009 0.985
The best five solutions after 1500 recombinations:
Objective A b
Function
0.447 1.814 0.726
0.539 1.784 0.732
0.608 1.813 0.734
0.615 1.773 0.740
0.627 1.761 0.742
The best five solutions after 2000 recombinations:
Objective A b
Function
0.050 2.065 0.665
0.063 2.036 0.671
0.065 2.038 0.669
0.067 2.030 0.672
0.067 2.030 g.671

The best five solutions after 2500 recombinations:

55

Cbjective A b

Function
0.041 2.096 0.657
0.041 2.091 0.658
0.041 2.091 0.658
0.042 2.088 0.658
0.042 2.085 0.660

The proposed GA is stable, i.e. it does converge to the same solution eventually, however the
effort is much more significant if the starting search points are of poor quality in terms of
their fitness values. Compared to the 2500 generated solutions in this case, the initialization
process resulted in the same final solution after only 300 generated trials.

To show that GA is not a pure random search, the reader should examine the impact of pure
random search based on Monte Carlo generation of 10000 pairs of parameters A and b and
recalculating the objective function (5.2) for each pair. The best 5 guesses and their values
of the objective functions are listed in Table 5.3. The values of their objective functions are
still three times larger than those obtained with GA.

Table 5.3 Top five guesses in Monte Carlo search afer 10000 trials

Objective A b
Function
G.113 2.037 0.675
0.129 1.975 0.683
0.129 2.008 0.682
0.132 2.108 0.661
0.201 1.965 0.693

56

6 DESCRIPTION OF THE PROPOSED ALGORITHM

The proposed algorithm is intended to combine the properties of feasible circulations in order
to develop evolution programs which conduct the search exclusively within the feasible
region. This is done in an effort to ease convergence. Two approaches have been tested.
The first was based on the use of fundamental cycle flows, and the second on the use of
Tucker’s definition of circulation space, which was found to be superior and it was therefore
adopted in the three cases studies presented in Chapters 7, 8 and 9. The use of fundamental
cycle flows was successfully tested on a pipeline optimization problem and published (Ilich
and Simonovic, 1998). The algorithm outperformed a comparable gradient search method
in terms of the ability to find global optimum. However, an evolution program based on the

Tucker's definition of circulation space is presented in the following as a superior option.

Matrix equation (4.16) allows random selection of arc flows on the right hand side and
recalculation of arc flows on the left hand side by substitution, since the left hand side
contains the spanning tree structure and as such it can be transformed into a lower triangular
matrix. One can pick any values for m-n+1 arc flows on the right hand side as long as they
are within the respective bounds. Additional non-linear relationships related to the loss or
gain of flow along the arcs which belong to the maximum spanning tree can also be included
provided that the maximum spanning tree consists of arcs which all have the same
orientation, or provided that the non-linear function F(x) which maps inflow into the arc into
outflow has its inverse F'(x). For many practical problems non-linear functional dependence
can be approximated using a higher order polynomial so the latter is not too difficult to
achieve using proper representation. The algorithm could then proceed with the following

steps:

a) Determine existence of at least one feasible solution. If there is no feasible solution,
stop and declare the problem infeasible. If there is a feasible solution go to step b).

b) Initialization. Generate randomly a large number of solutions (between 1000 and

57

5000, depending on the size of the problem) and select a small fraction (typically
between 5 and 15) of the best solutions according to the value of their objective
function. These will constitutte “parent solutions” that will form the “mating pool”
used in step ¢) to generate new solutions known as “offspring”.

c) Recombination. Individual values of arc flows for each solution in the mating pool
are considered as genetic maaterial from which the new individual solutions are
created. The process is contiinuous, and each offspring is compared to the worst
ranked parent in the mating peol. If its fitness (value of the objective function) is
better than the worst parent in rthe mating pool, the worst parent is discarded and the
new offspring is placed in it. To discourage being trapped in local optimums, the
algorithm must ensure that idesntical twins do not enter the mating pool, since they
have a tendency to replicate th:emselves very quickly.

d) The process stops in one of theztwo ways -- when a specified number of individuals
has been created or until the imgprovement of the objective becomes negligible within

a given number of generated irmdividuals.

Steps b) and c) above are critical for successful application of this algorithm. They are

reviewed in more detail below.
6.1 Initialization

The massive initialization procedure in step 2 generates feasible solutions randomly,
ensuring that the problem is addressed! from all corners of the feasible region. Additional
improvements in the initialization procedure are related to more frequent sampling of the
points which are known to have a morre favourable outcome. This is done in an effort to

increase the likelihood of generating fesasible solutions with good fitness values.

Consider for example a linarized cost fumction in Figure 6.1. This objective function is linear,
so the flow in this component has a highn likelihood of falling into one of the break points on

58

the curve in Figure 6.1, which are in effect the corners of the feasible region of interest to LP
solvers. On the other hand, pure random sampling within the feasible range for this
component (from 0 to X,,,,) has virtually no chance of ever hitting the exact value of any of
the break points. One should therefore facilitate creation of suitable points in the search
space by directing the random sampling to generate sufficient number of outcomes which

coincide with one of the break points.

| OBJECTIVE
*FUNCT!ON

{

|

i

t

|

|

i

I
; |
: I
H |

; |

i
: i DECISION
| l | i VARIABLE
i : ' — -
] Xo X4 X2 Xmax
,{

Figure 6.1 Sample objective function

The above objective function is related to a single arc flow. Assuming that function
random() returns a pseudo random number between 0 and 1, the rules for generating random

values for this arc flow in the initial population can be summarized as follows:

if (random() > 0.5) // 50% of generated solutions

x = xmax random() ; // have any value between 0 and xmax
else(// 50% of generated solutions have one of Xy, X;, X; OF Xpax
separate = random() ; // generated with equal likelihood

if (separate < 0.25)

59

X = Xg;

if (separate >= 0.25 && separate < 0.5)
X = X3;

if (separate >= 0.5 && separate < 0.75)
X = Xg;

if (separate >= 0.75)

X = Xmaxi

The above sampling approach ensures that there is sufficient number of points which belong
to the corners of the feasible region in the initialization procedure. A similar approach can
be used for other types of objective functions with known shape, such that random generation
of solutions in the favourable region of the search space is encouraged. This is useful with
functions that have multiple local minima for each variable, as demonstrated in Chapter 7,
while Chapter 8 shows that the shape of the objective function is not the only parameter that
can improve the quality of the initial population. Sometimes multiple regression and other
functional relationships between two or more decision variables can greatly aid in the search
for good initial parents, with reasonable expectations that good parents will generate better

offspring faster, thus improving efficiency of the search process.

Once a maximum spanning tree has been identified, it allows for creating a sequence of
solving balance equations for each node in the network. The process starts by selecting the
nodes at the outer edges of the network, which have fixed inflows, and randomly assigning
outflows for those outgoing arcs which are not part of the maximum spanning tree. Each
time one outgoing arc has been assigned a value, the maximum flow bound for the next
outgoing arc from the same node is updated accordingly by reducing the total inflow into a
node with the outflow that has already been assigned, and comparing the balance of
remaining inflow with the upper bound of the next outgoing arc. If the balance of the
remaining inflow is smaller than the upper bound of the next outgoing arc, the upper bound

is dynamically adjusted to equal the remaining inflow balance. Finally, when all outgoing

60

arcs which are not on the maximum spanning tree have been addressed in this manner, the
remaining balance inflow is assigned to the outgoing arc on the spanning tree. This ensures
both the preservation of flow continuity at each node, as well as compliance with the flow
bounds. In water resources networks, typical decision variables are reservoir releases and
diversions from the stream, while the maximum spanning tree is usually defined by the main
river and its tributaries. Reservoir storage, diversion and return flow arcs form fundamental

cycles and they are typically associated with independent decision variables.

Finally, sometimes it is necessary to consider a group of interconnected nodes acting as a
single node, and the application of the above approach requires more knowledge of the

nature of the network in order to adequately set up the search process. This is demonstrated

in Chapter 7.
6.2 Recombination

Recombination and mutation are the main driving engines of genetic programming. To some
extent the “gene therapy” mechanism explained below takes on a twofold role — as a
mechanism that ensures that offspring is always feasible, and also as a mutation operator.
The role of mutation seems to be dependent on the shape of the objective functions. Since
a variety of shapes have been investigated in the non-linear transportation test problems, the

role of mutation is addressed in more detail in Chapter 7.

Recombination is a process of combining genetic material (decision variables) from two
parent solutions in an effort to create a new solution. In this algorithm the number of
crossover points is the same as the number of independent decision variables. In fact, the
entire genetic information describing a single individual is an array of all independent
decision variables belonging to one parent solution. The mating pool is a database of a small
number of parent solutions where each genome (complete solution) is stored as one database

record. A complete solution may contain only independent variables, since the dependent

61

variables can be re-calculated. Consider an example in Table 6.1.

Table 6.1 Sample Five member Mating Pool with one possible offspring

Parent Solutiona | a1 a2 [Easdys| a4 a5 ab a7 [-:a8:i:| a9 at0 | at1
Parent Solutionb | b1 [FUb2%%! b3 b4 [&b55H b6 b7 b8 b9 [-b1037 b11
Parent Solutionc | c1 c2 c3 [FcaEs] o5 c6 c? c8 c9 c10 | el
Parent Solution d {s7d%.:] d2 d3 d4 d5 [kid6: - dri| d8 |v.id9i d10 | d11
Parent Solutione | e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 (rett:

Offspring Solution | x1=d1 | x2=b2 | x3=a3 | x4=c4 | x5=b5§ | x6=db | x7=d7 | x8=a8 | x8=d9 | x10 x11

Recombination operator proceeds as follows: starting from the most upstream node (e.g.
node 1 in the above database), select randomly with equal likelihood one of the existing
solutions for the first independent decision variable (arc flow) associated with this node. In
other words, pick one of al, bl, cl, d1 or el with equal likelihood. In the above table the
selected variables (genes) for inclusion into offspring are shaded gray. For the first
independent decision variable the selection was made from parent solution d and placed in

the first column of the offspring solution.

Note that decision variable d1 has automatically affected the sum of inflows into its
downstream node (x1=d1). Consequently, the inflows and the maximum outflows from that
node will also be affected. Assume that the downstream node is node 2, and that an
independent decision variable that was selected is from parent solution b as shown in Figure
6.1. The value of b2 (x2=b2) placed in the new offspring solution may now be outside of its
flow bounds which were dynamically updated after node 1 was solved. If that is the case,
i.e. if the value of randomly selected x2 is below the minimum or above the maximum
defined by all other inflows and the corresponding minimum outflows from node 2, then the
value of x2 needs to be adjusted such that it is brought within the bounds. The process of
checking the compliance with the bounds and adjusting if necessary is termed “gene
therapy”. This adjustment will take place before the algorithm proceeds to set the value for

x3. This approach has not been published prior to this research, and as such it constitutes

62

contribution to a wider community of investigators who deal with genetic algorithms. Gene

therapy is re-visited in more detail in Chapter 7.

The progress in the search is based on placing each offspring that has better fitness value than
the {ast ranked parent in the mating pool, and discarding this parent from the mating pool
altogether. This provides a stable progression, since the quality of the initial mating pool can

only be improved, it cannot deteriorate.

To summarize, both the initialization procedure and recombination are organized in such a
way to ensure that only feasible solutions are created in the process. These ideas are
explored in more detail in Case Study I in Chapter 7, which demonstrates the main features
of the proposed algorithm. Numerical examples in Chapter 7 deal with a number of non-
linear transportation problems that had previously been solved in the literature.
Transportation problems can be viewed as a subset of network flow problems. Chapters 8
and 9 provide two applications of the proposed solution technique to water resources

networks. They all vary in size and complexity, as outlined below:

Case Study [problems of 49 and 100 variables, linear constraints, one linear and
six non-linear objective functions;

Case Study II 416 variables (156 independent) and 988 non-linear constraints with
linear objective function; and,

Case Study Il 1628 variables (925 independent), 703 linear and 222 non-linear

constraints with non-linear objective function.

63

7 CASE STUDY I -- AN EVOLUTION PROGRAM FOR NON-LINEAR
TRANSPORTATION PROBLEM'

7.1 Introduction

As mentioned earlier in Chapter 6, in this model the first selection of the best individuals is
conducted from the population created by a massive initialization procedure. The initial
selection is later continuously updated to include a specified number of the best solutions
found within a given number of trials. This approach is often described in EP terminology
as ([+ A) - ES (Schwefel, 1981) where L parents produce A offspring and the selection of
the new parents is done from the best |1 individuals selected out of all individuals generated
in the process. The ranked-based replacement algorithm used in this research is similar to
the one used in the Genitor algorithm (Whitley, 1989). This research has been inspired by
previous efforts to apply EP approach to solving both linear and non-linear transportation
problems (Vignaux and Michalweicz, 1989; Michalewicz et al., 1991). The same test
problems that were solved by these researchers were used for investigating the proposed
approach. This allows a comparison of solution quality and the required computational
effort. Without the previous work, it would be hard to gauge the quality of the proposed
approach given that traditional gradient based solvers often fail to provide good solutions to

multi-dimensional non-linear problems.

A brief introduction to the balanced transportation problem is provided first, followed by a
description of the evolution program broken down in five sections: initialization, evaluation,
selection, recombination, and the gene therapy. The final section includes the definition of
the test problems, discussion of the results for individual test functions, summary of

comparison with the earlier results and references. Because of keeping the search within the

1
Content of this Chapter has been accepted for publication in the Journal of Heuristics,
Vol. 7(2), to appear in March 2001 issue (Ilich and Simonovic, 2001).

64

feasible region, the algorithm was termed Strongly Feasible Evolution Program (SFEP).
7.2 The Transportation Problem

Virtually every text book on operations research has some reference to transportation
problems (TP), although most of them are associated with the available linear programming
solution procedures (Hiller and Liberman, 1995). The problem is concerned with finding the
least cost distribution policy for a shipment of a single commodity from m sources to n
destinations subject to the capacities of each source s(i) and each destination d(i). This can

mathematically be expressed as:

m n

minimize), Y, fi(x) 7.1)

i=1 j=l

Subject to:

Z xy=s(), fori=1,2,..m
/=1 (7.2)

Y. xy=d(j), forj=1,2,...n
i=1

The above defines the dalanced transportation problem due to the equality sign in the
constraints. Note that out of the total of m n variables x;, (m+n-1)} are dependent and (m n
+ [- m - n) are independent. When all objective functions f(x,) are linear, the entire
problem is linear. The linearity also assumes that all (m » + [- m - n) independent decision
variables x, are also independent of each other, i.e the value of one independent decision
variable has no impact on the value of another. There is a large body of literature covering

the well established solution procedures for the linear case. A general solution procedure for

a non-linear case is still lacking.

65

7.3 Description of the Proposed Evolution Program

A floating point representation is used to describe all individuals (feasible solutions) which
evolve in the solution procedure. A detailed description of the algorithm is divided in five
sections: initialization, evaluation, selection, recombination and gene therapy. Of those,

initialization, recombination and gene therapy are of particular interest.
7.4 Initialization

The process of initialization takes advantage of the fact that there are (m-+n-1) dependent and
(m n + I - m - n) independent variables. This means that one could assign values to
independent variables in a random manner, and then recalculate the dependent variables to
ensure compliance with the constraints. There are some rules related to the upper and lower
limits of the independent variables that must be observed in the process, as explained below.
To demonstrate this, we use one of the test problems for a 7 x 7 transportation matrix with

the sums of rows and columns printed in Table 7.1.

Table 7.1 Sample Transportation Problem

20 20 20 23 26 25 26
27 X, X2 X3 Xia Xis X6 X7
28 Xo4 X, Xo3 Xo4 X5 Xze Xy7
25 X34 Xso Xis Xas Xas Xse Xa7
20 X1 X Xia) Xss Xas X4z
20 Xs4 Xs2 Xs3 Xsq Xss Xse Xs7
20 X1 Xe2 X3 Xes Xes Xes Xs7
20 X714 X7z Xz3 X4 Xss Xss X7

In this problem the total number of variables is 49, with (7+7-1) = 13 dependent and 36

independent. One can therefore pick any 36 variables as independent. The easiest choice

66

is to simply pick one row and one column and designate all variables on the chosen row and
column as the dependent ones. For example, assume that the last (seventh) row and the last
column contain the dependent variables, while the first six rows and columns contain
independent variables. Therefore, the first 36 variables (x,, through x.) can be picked up
in a random order and each of them can be assigned a value. Each time a value is allocated
to one of the independent variables, the current sum of the total allocated flow in the
corresponding row and column is updated, along with the total sum of flow of all
independent variables. Rather than allocating values to independent variables in a
completely random manner, a more tuned approach can be used based on the knowledge of
the objective function. It is possible to inspect objective function for each decision variable
prior to starting the initialization procedure and save the knowledge about its local
minimums, which can then be used at the time an independent variable is allocated a value.
This process is defined by calling a value from the function allocate on line 10 of the pseudo

code shown below, and it will be addressed again later.

Procedure Initialization

1) set x;3, = 0 i=1, m-1; j =1, n-1;

2) set sumx = 0

3) set sumrow (i) = s(i) i=1, m1;

4) set sumcolumn (j) = d(j) j =1, n-1;

5) set minimum_ sum = uniform(minflow, maxflow)

6) while(sumx <= minimum_sum)

7) j = uniform(1, m-1)

8) i = uniform(1, n-1)

9) limit = minimum(sumrow (i), sumcolumn(j))
10) X;3 = X33 + min(limit, allocate(sumrow (i), sumcolumn(j))
11) sumrow (1) = sumrow (i) - x4
12) sumcolumn (j) = sumcolumn(j) - X;j
13) sumx = sumx + Xy
14) end

end

67

The above procedure starts on line 1) by initializing all independent variables to zero. On
line 2) variable sumx, which represents the sum of all independent variables is set to zero
while variables sumrow(i) and sumcolumn(j) are set on lines 3) and 4), respectively, to the
initial values given in Table 7.1 for each row and column. Variable minimum sum
represents the sum of all independent variables. Itis set to arandomly chosen value between
the previously set minflow and maxflow values. Variable sumx, which represents the total
sum of all independent variables, must be within a range defined by minflow and maxflow.

The definition of minflow and maxflow is given more attention in the following,

Consider the values of sums and rows given in Table 7.1. The total flow through the entire
system including both dependent and independent variables is 160. This can be calculated
by summing either all column sums (i.e. 20+20+20+23+26+25+26) or by summing the row
sums, which, due to the definition of the balanced transportation problem, must be equal.
[f the seventh column and the seventh row have been chosen as the dependent variables, the
maximum flow that can ever be allocated to the dependent variables is 26+20 = 46. This
happens in the case when a feasible solution contains variable x,, which equals zero. In that
case, the minimum flow that must be allocated to independent variables is equal to 160 - 46
which is 114. On the other hand, when variable x,, has its maximum value, which is 20, the
sum of flows along the dependant row and the dependent column is 26. In that case, the
minimum total flow that must be allocated to the independent variables is equal to 160-26,
which is 134. Hence minflow is 114 and maxflow is 134. These considerations result from
the maximum flow -- minimum cut theorem from network flow theory. Any transportation
problem can be viewed as a network flow problem, and the variables in a particular row or
column define a cut - a set of arcs which isolates a given set of nodes (source or destination)
from the other nodes in the network. To generalize, variables minflow and maxflow above
are defined as follows:
m

minflow = Zzn:xg- - max{i Xin+ Z":x,, - xm} (7.3)
i=l

i=l j=I i=1

68

maxflow = Zm:zn:xg - min{i Xin + Zn:x,., - x.n} (7.4
i=1

i=l j=I i=1

Setting the variable minimum_sum in the pseudo code to a randomly chosen value between
114 and 134 was done to ensure that all comers of the feasible region have equal chances of
being addressed. The body of the while loop between lines 6) and 14) represents the
initialization process. On lines 7) and 8) row index i and column index j are picked
randomly, on line 9) variable /imit is assigned a value using the minimum of the currently
remaining capacity of the corresponding row and column, on line 10) independent variable
X;; 1s allocated a value using the allocate function mentioned above (assignment operator is
used since one x; may be visited more than once in a single initialization). Finally, on lines
11), 12) and 13) variables sumrow(i), sumcolumn(j) and sumx are updated. The process goes

on until variable sumx becomes greater or equal to the specified minimum_sum.

The process is finalized by solving the dependent variables on the seventh row and the
seventh column, which ensures feasibility (not shown in the pseudo code above). This
procedure is repeated 500 to 1000 times to create the initial population. Each individual has
the variable minimum_sum set randomly to a different value between 114 and 134, to ensure

that all corners of the feasible region receive equal attention.

The allocate function could have been a simple uniform guess between zero and the current
limit set on line 9). However a simple uniform guess is often not very intelligent. For
‘example, in most transportation problems the goal is to minimize the total cost of shipment,
so many variables in the final solution are set to zero, while a handful of others have high
values. It is easy to see that the chances of guessing a zero with a uniform distribution
between zero and a positive number are virtually nil. Therefore, by inspecting the shape of
the cost function for each decision variable at the outset, a much better guess can be made
regarding its value, with a higher likelihood of hitting the corners of the feasible region

which are essential for accelerating further search. In other words, the use of simple heuristic

69

rules can significantly increase the chances of generating some good solutions in the initial
population. This can lead to major shortcuts in the rest of the search process. The shapes
of the objective functions chosen for the test problems demonstrate this clearly, and this issue

will be revisited in the following sections.

Another important observation should be made at this point: given a large number of
independent variables, it is possible that the initialization process could accommodate some
functional relationships between them. For example, some of the variables could be
completely dependent on the others, or perhaps their upper limit may be a function of the
values of other independent variables. This would require a small adjustment in the
initialization procedure to generate the independent variables first, recalculate their
dependent counterparts, generate the remaining independent variables which have no
dependent counterparts, and then recalculate the values in the dependant row and column.
Similar observation can be made for mixed integer problems: integer variables could be
assigned only integer values in the initialization procedure. While mixed integer problems
with non-linear constraints have not been further explored in this paper, it is worth noting

that the proposed initialization procedure and the rest of the algorithm presented here is fully

capable of handling them.

It was initially felt that simulated annealing (Rudolph, 1994) could be used to direct the
search, in combination with the above procedure. One could obtain the mean and the
standard deviation of each decision variable from the chosen sample of the best solutions.
However, no clear conclusion regarding favorable search directions could be drawn from the
best individuals in the initial population. The approach was tested but convergence was
rather slow and the quality of final solutions was inferior to those found in earlier studies
(Michalewicz, 1994). The use of a GA based recombination operator has proven to be
superior to simulated annealing in this study. However, it will be shown that a combination

of the two approaches can be productive in some cases, especially in the final phases of the

search.

70

7.5 Evaluation

Evaluation of the initial population involves calculation of the objective function (fitness
value) for each of them. It is a standard step in all GA and EP applications. There are no
added penalty functions here since the initialization procedure guarantees that all individuals

in the initial population are feasible.
7.6 Selection

A small fraction of the individuals with the best fitness value are selected to join the mating
pool. The other individuals from the initial population are of no further interest in the
process, they are considered as unsuccessful parents that died without offspring. Various
sizes of mating pool were tested and the best results on the test problems used in this study
were achieved with the mating pool containing between 15 and 25 individuals. Sorting of
the entire initial population is not used, since the selection process does not require that all
individuals in the initial population be ranked. What is needed is merely a selection of a

small fraction of the best.

7.7 Recombination

The recombination operator is the heart of the solution procedure. It is modeled after the
natural process known in biology as crossover, which involves two individuals (or
genotypes) creating a new organism through sexual reproduction by passing some randomly

chosen genetic material from one parent and some from the other.

In technical problems the genetic material is usually represented as a string or an array of
numbers which are values of decision variables forming the feasible solution selected for
mating. The usual procedure in technical applications of GAs is to break the solution string
in only one or two points and conduct a mutual replacement by exchanging the partial string

71

segments. For example, two parents a, and b, would have their solution strings broken at
the same point i (where 1 < a; < n). By exchanging the sub-strings, two children would be
created (a;, by and (b;, a) where k = i+1, n. The problem in technical applications is that
such an operator would often violate the initial feasibility of the parents, since there is no
mechanism to preserve feasibility of the offspring. This is why most GA applications with
floating point domain representation usually resort to some type of linear combination of

parents V, and V, such as, for example
U=cV,+(1-¢)V, (7.5)

where c is a uniform random number between 0 and 1. This approach guarantees that
children of feasible parents are also feasible. Similar linear combinations of parents are used
in other search methods, e.g. Scatter Search (Glover, 1999). However, the downside is that
such operators can be applied only on problems with linear constraints. The GENETIC-2

model (Michalewicz et al., 1994) uses a variant of this operator.

In nature, genetic material is a long DNA chain which is broken randomly at many points
during cross-over. This approach is also based on the multipoint crossover, with the number
of points being equal to the number of the decision variables. All relevant information
which describes the mating pool was stored in a matrix consisting of 25 rows, each row
representing a parent, and 37 columns, with the first column containing the value of the
objective function and the remaining 36 containing the values of the independent variables
(genes). The crossover technique is based on allowing each of the chosen 25 parents to
contribute their genetic material to offspring with equal likelihood. In other words, a new
individual is created by selecting randomly a value from each column of the matrix which
represents the mating pool, and placing it in the corresponding column of the newly created
offspring. In the genetic makeup of a new individual, some parents may contribute more of
their genetic material than the others, but this is completely left to chance -- no bias is

introduced between the parents based on the differences in their objective function. This was

72

done since it was felt that ranking such a small selection out of a massive initial population
has no justifiable merit. All chosen solutions have some good qualities in them, and with
this approach they are allowed to come to the fore without any bias based on relatively small
differences in the objective function, which may be caused by only a few “bad” values
chosen for some decision variables. In this sense the approach presented here differs from
the commonly accepted wisdom that relies on some form of bias among the selected parents,

allowing the best parents to pass their genetic material to offspring more often.

The above recombination operator may result in a new choice of independent variables
which violate feasibility. Either the sum of an individual row or column may be above the
prescribed target, or the sum of all independent variables may be less than the required
variable minimum_sum. The fix must therefore be provided as soon as such a condition is
encountered, hence the recombination procedure is tied together with the “gene therapy”
procedure that fixes defective genes in order to preserve feasibility, as outlined in the next
section. Gene therapy procedure also plays a role of a mutation operator, since it modifies

the individual values in the mating pool. We summarize the features of the process

addressed so far:

. The number of crossover points is the same as the number of independent variables
(in this example 36);
o As soon as a new individual is created which has a better fitness value than that of

the worst parent in the mating pool, the new individual joins the mating pool, while
the worst parent is discarded from it; and,

. Identical twins are not allowed in the mating pool. They tend to reproduce each other
and eventually fill the entire mating pool. While this happens gradually and the
identical twins represent solutions that are usually of very high quality, they often
represent local optima, which should be avoided. Variety of good genetic material
and gradual improvement of its quality is essential to progress towards the best

points in the search space.

73

7.8 Gene Therapy

There are two possible violations of feasibility of the new individual created by
recombination. Either the sum of individual rows or columns may be exceeded, in which
case a quick reduction to the maximum possible value is required, or the sum of all
independent variables may be insufficient, resulting in calling of the initialization procedure
to randomly add additional flows to independent variables. To achieve the two fixes in an
easy and efficient manner, the entire mating process is carried out under the umbrella of a
procedure similar to initialization, which makes sure that the feasibility requirements
associated with independent variables are maintained. The gene therapy is therefore a
monitoring and adjustment procedure which quickly fixes any individual violations of
feasibility that may occur in the mating process. The following describes the recombination

and the gene therapy procedure:

Procedure Recombination

1) set x;5 = 0 i=1, m-1; j =1, n-1;
2) set sumx = 0

3) set sumrow (i) = s (i) i=1, m-1;
4) set sumcolumn (j) = d(Jj) i=1, n-1;

5) set minimum_sum

6) generate_selection

7) while(there is at least one unvisited gene)
8) j = pick_from_selection

9) i = pick_from_selection

10) limit = minimum(s (i), d(j))
11) p = uniform(l, 25)
12) X;3 = xbesty;
13) X;; = minumum(X;y, limit)

14) sumrow (i) = sumrow(i) - Xy

15) sumcolumn (j) = sumcolumn(j) - Xjj
16) sumx = sumx + X;j

17) end

74

17) if (sumx < minimum sum)
18) _ procedure initialization

19) end

Lines 1) through 4) are the same as in the initialization procedure. Line 5) differs a bit, since
the initial mating pool provides sufficient information from which a desirable range for the
sumx variable can be selected more accurately, i.e. a better informed guess can be made
based on the properties of the already chosen for reproduction than a mere uniform guess
between the minflow and maxflow values. On line 6) a random sequence of numbers from
1 to 36 is created to ensure that the sequence of allocating genes to the new individual is
random. Lines 7) through 17) capture the process, in which each gene (decision variable)
isallocated from a participating parent which is randomly chosen on line 11), with the actual
allocation of genetic material carried out on line 12). Gene therapy is performed only if

required on line 13) and on lines 18) and 19).

The mating pool is represented by a three dimensional array xbest,,, where p=(1, 25) is the
parent index while / andj are the row and column indices representing independent variables.
After finishing one pass of the above procedure, it is still necessary to re-calculate the
dependent variables and recalculate the objective function of the new individual. The new
selection then proceeds immediately for each individual. Ifthe individual has a better fitness
value than the worst parent in the mating pool, it will be placed in the mating pool in its
appropriate position, pushing all parents with less favorable fitness down by one place and
pushing the worst parent out of the mating pool. Incest is allowed in this model (i.e. parents
mate with children) and in general all parents produce a new individual. The best parents
may survive to mate with many future generations. One could talk about a whole generation
with a single individual (Hunter, 1998), although there is not much point being strict about
the use of the term “generation” any more. Total lifetime of one individual is only a function
of its fitness value and the fitness value of other individuals in the mating pool. If the best

individual is found by chance in the initialization procedure, it will outlive all of its
offspring.
75

Calling the initialization procedure at the end of recombination is usually not necessary, but
even when it happens it is only executed for a few randomly selected independent variables
which have their flows marginally increased. This serves a twofold purpose: it ensures
feasibility, and it also serves as a mutation operator since it adds a small variation to the
genetic makeup of the parents. A total of 10 test problems were solved using the above
approach, and only two of them required modification to this algorithm by introducing an
additional mutational operator. This is further addressed in the following section.

To summarize, the heart of the algorithm is the recombination procedure, the selection

procedure and the process of updating the membership of the mating pool. The entire

algorithm is depicted below:

Procedure main

1) initialization

2) evaluation

3) selection

4) while (terminating condition not true)

5) recombination

6) evaluation

7) if (fitness(x;;) < fitness (xbest, ;, ;))
8) update xbesty;;

10) end

11) end

On line 7) a the fitness of the new individual is compared with the fitness of the worst parent.
If better, the mating pool is updated. If not, a new individual is created. The total number
of generated solutions x; was used as a terminating condition in the test problems in this
research. Two out of five problems tested with 49 variables already converged after 3000
individuals were generated (initial population of 500 and a total of 2500 individuals created

as a result of mating). This is encouraging considering that the search space consists of 49

floating point variables.

76

It should be noted that the gene therapy is also capable of introducing adjustments that may
be required to preserve the mixed integer nature of the problem, or to preserve the non-linear

relationships in the constraints.
7.9 Similarity to Minimum Cost Network Flow Problems

Both transportation problems and minimum cost network flow problems share similar
constraints, associated with (a) minimum and maximum flow along an arc; (b) minimum and
maximum flow through a node; and (c) a continuity equation for each node. Of those, only
minor adjustment of the aigorithm presented here is needed to include constraint (a).
Selection of one dependent column and one row in the TP is equivalent to making a selection
of arcs that form a maximum spanning tree in a network, which define a set of dependent
flow variables. Flows on arcs which do not belong to the maximum spanning tree are the

independent variables in network flow problems (Ahuja et al., 1993).

7.10 Test Problems

The objective function for both sets of test problems (7 x 7 and 10 x10) is of the form:

m
i=l j

" The shape of the objective function fis the same on all arcs. The variation between arcs is

n

¢y f(xs) (7.6)
1

achieved with the cost parameter c¢;. The 7 x 7 problem is defined below:

Source Flows: 27 28 25 20 20 20 20
Destinations: 20 20 20 23 26 25 26
Cost c¢yj: 0 21 50 62 93 77 1000
21 0 17 54 67 1000 48

50 17 0 60 98 67 25

62 54 60 0 27 1000 38

93 67 98 27 0 47 42

77 1000 67 1000 47 o] 35

1000 48 25 38 42 35 0

77

Note that the diagonal elements have zero cost parameters, while there are six cost

parameters with very large value of 1000 in relative comparison to the rest. The 10 x 10 cost

matrix and source/destination flows are shown below:

Source Flows: 8
Destinations: 19
Cost cyy: 15
13
37
13
31
32
49

13
23

N

17
17
i3
24
36

21
16
42

23
30
30
31

12
17
18
25

40
21

12
11
19
20
48
3s
28
18
42
47
19

11
14

17
27
11
33

45
27

30

o N oy

26

20

44
22
27
32

18
14
16
18
25
41

49

40

20
29

18

41

36
34

11
10
18
32
31

1
33

33
21

11
47
42
35
29

The above problems were taken from the literature since they were tested earlier
(Michalewicz et al., 1991; Michalewitz, 1994), with a total of six objective functions with
the best results being produced by the GENETIC-2 model. Those functions plus a standard

LP form were chosen for this study as defined below and labeled in the same way as in the

work of Michalewicz et al.

Function A: f(x) =0

Function B:

Cyj
2c,j
3c;
4c;
5S¢

i

0.2 Cy

X

if0<x; <2

if2<x; <4;

if4 <x, <6;

if6 <x; <8;

if8<x, <10;

i =

if 10 <x;

if 0 <x; < 5;

if5 <x, < 10;

78

(7.7)

(7.8)

c; (1+0.2(x;-10)) ifl0<x, ;

g

Function C: c; %, (7.9)
Function D: Cij X (7.10)
Function E c L + ! + ! 7.11
ncton c.: iy .
1+ (x-10) 1+ (x-1125°% 1+ (x,—-8.75) (710
- . ”

Function F: ¢y sm(Xy ZJ +1 (7.12)
Function G: ¢;x; (linear programming case) (7.13)

Function G adds a linear programming test in addition to the basic tests conducted earlier.
Before discussing any individual results, it is useful to look at the shape of each function
depicted in Figures 7.1 through 7.6. Simple heuristic rules have been applied in each of the
above functions during the initialization procedure to increase the likelihood of having
parents with high fitness values in the initial mating pool. The knowledge of the shape of
the objective function was used in the process of building the heuristics. The hardest
functions to solve were C and F. The results are first discussed for functions A, E and D.
[t may be mentioned at this point that GENETIC-2 experiments were conducted with 35000
individuals generated for the 7 x 7 problem and 50000 individuals generated for the 10 x 10

problem.

79

Figere 7.1 FunctionA

Figure 7.2 Function B

Flow x

f(x)

Figure 7.3 Function C

400

100

200 e e e

f(x)

Figure 7.4 Function D

4 4
3

...

f(x)

Figure 7.5 Function E

f(x)

Figure 7.6 Function F

Flow x

80

7.10.1 Function A

It is obvious from the shape of this function that flows on any arc that are less than 2 would
result in a zero cost of flow along such an arc. The initialization procedure was therefore
modified to increase the likelihood that the decision variables with ¢, > 0 set to 2, while the
decision variables with ¢; =0 were allowed to have higher values. Many initial solutions that
could not comply with these heuristic rules had to be allowed due to random sequence of
allocating values to x;. Strict adherence to this rule precludes the sum of all independent
variables to equal the required minimum sum, given the random sequence of allocating

values to decision variables.

For the 7 x 7 problem the mating pool was selected from the initial 500 individuals, with the
objective function of the chosen parents ranging from 83 to around 200. After 4500 new
individuals were created the mating pool had the values of the objective function ranging
from O to 65. The best 7 parents had their objective function equal to zero. Four of them are

shown in Table 7.2.

Table 7.2 Solutions for 7 x 7 Problem with Function A

19.69 0.15 0.53 1.85 2.00 1.03 1.74 20.00 0.00 1.38 0.92 2.00 1.91 0.78
0.00 18.85 1.12 1.93 2.00 2.00 1.10 0.00 20.00 0.88 1.93 1.85 1.95 1.38
0.31 0.00 17.60 2.00 2.00 2.00 1.10 0.00 0.00 17.73 2.00 1.81 1.90 1.56
0.00 0.00 0.00 17.21 0.53 1.87 Q.39 0.00 0.00 (.00 18.15 C.00 1.12 0.73
0.00 0.00 0.75 0.00 19.25 0.00 0.00 0.00 0.00 0.00 0.00 19.89 0G.11 0.00
0.00 0.00 0.00 0.00 0.22 18.10 1.67 g.00 0.00 0.00 0.00 0.45 18.00 1.S5
0.0C 0.00 0.00 0.00 0.00 0.00 20.00 .00 0.00 0.00 0.00 ©.00 0.00 20.00

20.00 0.00 1.15 1.98 2.00 0.05 1.81 20.00 0.17 0.00 0.92 2.00 2.00 1l.91
0.06 20.00 1.55 1.83 2.00 2.00 0.52 0.00 19.83 1.61 1.%5 2.00 2.00 0.62
0.00 0.00 17.30 2.00 2.00 1.97 1.73 0.00 0.00 18.39 2.00 1.65 2.00 0.95
0.00 0.00 0.00 17.08 0.00 1.00 1.91 0.00 0.00 0.00 18.13 0.46 1.00 0.41
0.00 0.00 0.00 0.00 19.97 0.00 0.02 0.00 0.00 0.00 0.00 19.89 0.00 0.11
0.00 Q.00 0.00 0.00 0.03 19.97 0.00 0.00 0.00 0.00 0.00 0.00 18.00 2.00
0.06 0.00 0.00 0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00

81

The power of the initialization procedure becomes more evident in the case of the 10 x 10
problem. The initialization procedure generated 1000 individuals. The best among them had
a fitness value of 216, which is fairly close the optimum of 202 found by GENETIC-2 and
much better than the optimum of 281 found with the GAMS (Brooke et al., 1996) solver,
as reported by Michalewicz et al. After 10,000 additional individuals were generated, all
members of the mating pool had their fitness value below 201, with the best of them shown
in Table 7.3 equal to 173.

Table 7.3 Solution for 10 x 10 Problem with Function A

1.81 0.68 1.82 0.00 1.21 0.00 0.49 2.00 0.00 0.00
0.96 0.00 2.00 1.99 2.00 0.00 0.00 0.77 0.28 0.00
0.00 0.00 0.06 0.00 0.00 0.00 0.36 1.57 0.00 0.00
G.43 0.00 20.38 0.59 2.00 0.00 0.00 2.00 0.59 0.00
2.00 1.13 3.53 l.46 2.00 0.00 0.00 1.88 0.00 0.00
0.99 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
.06 0.19 1.66 0.00 1.06 0.54 0.00 1.85 0.77 0.00
11.53 0.00 1.54 0.24 1.15 0.88 0.73 1.92 0.00 0.00
1.28 0.00 2.00 0.72 1.63 9.58 0.42 2.00 0.36 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

7.10.2 Function B

Function B is very similar to a linear function. Judging by the shape of this function, the
obvious heuristic rule here would be to favor allocations of less than 10 on any arc with a
non-zero cost. Allocation on arcs with zero cost could be maximized if necessary, since it
does not affect the objective function. Table 7.4 shows the solution for the 7 x 7 problem.
The objective function value is 203.75, which is almost the same as 203.81 obtained earlier
by Michalewicz et al. This solution was obtained within 5000 iterations. Table 7.5 shows
the final solution for function B with 10 x 10 matrix. This solution was obtained after 10000

iterations, with objective function 0f 159.79, which is a 2% improvement over 163.0 reported

earlier.

82

Table 7.4 Solution for 7 x 7 Problem with Function B

20.00
0.00
0.0¢
0.00
0.00
0.00
0.00

0.16
19.83
0.00
0.00
g.00
0.00
0.00

0.00
1.01
18.99
0.00
0.00
0.00
0.00

2.35
0.17
0.00
20.00
0.48
0.00
0.00

0.00
6.98
0.00
0.00
19.02
C.00
c.00

4.49
0.00
0.00
0.00
0.51
20.00
0.00

0.00
0.00
6.00
0.00
c.00
0.00
20.00

Table 7.5 Solution for 10 x 10 Problem with Function B

0.00
0.00
0.00
11.15
0.00
0.00
0.00
7.84
0.00
0.00

1.56
0.00
c.00
0.44
0.00
0.00
0.00
0.00
0.00
0.00

7.10.3 Function E

This function is yet another case in favor of modifying the initialization procedure such that
parents with good fitness values can be generated in the initial population. Itisobvious from
the shape of the objective function that the most favorable values are either zero or over 20.
In fact, the highest the value of flow along an arc, the better, since the objective function has

a small positive value of about 0.03 even for x; = 0. The initialization procedure was

1.33
0.00
C.05
10.03
10.24
1.00
0.18
10.16
0.00
0.00

2.71
0.00
0.65
1.65
0.00
0.00
0.00
0.00
0.00
0.00

1.28
0.00
0.00
0.00
0.00
0.00
0.00
0.00
9.75
0.00

modified in the following way. Instead of:

X; = x;; + allocate(1,)

the model used

83

0.02
G.00
0.00
2.73
0.00
0.00
0.00
0.00
8.25
0.00

0.70
0.00
1.30
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.42
7.77
0.00
0.00
0.00
0.00
5.81
0.00
0.00
0.00

0.00
0.23
0.00

.76
.00
.01
.00
.00
.00

O © o © o p

0.00
0.00
.00
0.00
0.00
0.00
0.00
0.00
0.00
1.00

x; = limit (7.15)

This approach was chosen to demonstrate one more feature inherent in this algorithm.
Knowing that the constraints (sums of rows and columns) are all integers, this initialization
procedure with the above modification will result in the search space of integer solutions
only. While the global optimum may not be an all-integer solution, the best integer solutions
can be found very quickly. Added search in the floating point space is possible by
introducing an additional mutation operator, which is done for functions C and F, but not
here. The best solution found for a 7 x 7 problem has fitness value of 204.88, fairly close to
204.73 found by GENETIC-2. However, the fitness values of the best solutions found for
10 x 10 problem are all within 71.83 and 72.21, almost 10% better than 79.2 found by
GENETIC-2. Ittook less than S000 individuals to reach these solutions for 10 x 10 problem,
and less than 3000 for 7 x 7 problem. Table 7.6 displays the best solution for 10 x 10
problem with objective function equal to 71.83.

Table 7.6 Solution for 10 x 10 Problem with Function E

0.00 1.00 0.00 2.00 3.00 0.00 0.00 2.00 0.00 0.00
1.00 1.00 1.00 .00 2.00 0.00 0.00 2.00 1.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 26.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 3.00 0.00 1.00 0.00 2.00 4.00 1.00 1.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 ¢.00 0.00
0.00 0.00 1.00 2.00 0.00 0.00 0.00 3.00 0.00 0.00
17.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 1.00 0.00 3.00 11.00 0.00 2.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Although only integer solutions were inspected in both the 7 x 7 and the 10 x 10 test
problems, it was found that large differences of the argument values among the best
individual solutions for the 10 x 10 problem result in very small differences in the objective

function, which demonstrates the existence of numerous local optima. This offers a hint as

84

to why simulated annealing approach, which was initially tried in a combination with the

initialization procedure, had so much difficulty converging to high quality solutions.

7.10.4 Function D

This is also a function which gives large contribution to the overall cost even for small values
of decision variables. For example, for a decision variable equal to 0.2 the square root is
0.45, which, when multiplied with a cost factor of 1000 gives 45. One conclusion that can
be drawn out of this is regarding the 7 x 7 problem is that decision variables with a cost
parameter set to 1000 should ideally be set to zero. This heuristic rule was built in the 7 x
7 problem. Other than that, the shape of the function reveals that several large values of the
decision variables in combination with many zeros would most likely result in the best

overall solution. Hence, the initialization procedure was modified as follows.
allocate(i,j) = minimum {[limit + limit - N(0,1)], limit)} (7.16)

where N(0,1) is a normal variate with a mean of zero and standard deviation of 1. Hence,
there is a 50% chance that a decision variable is set to its current maximum, and a 50% that

it would be less than maximum, but it still remains in the high range with respect to the

constraints.

For the 7 x 7 test problem, the model found a solution with the same fitness value 0of 480.16
as the one found by GENETIC-2. For the 10 x 10 problem, there was a very small
improvement to the solution of 391.9 obtained by GENETIC-2. The fitness value is 388.91

and the solution is shown in Table 7.7.

85

Table 7.7 Solution for the 10 x 10 Problem with Function D

1.00 2.00 0.00 5.00 0.00 0.060 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 3.00 0.00 0.00 3.00 2.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00
0.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 0.00 l1.00
0.00 0.00 7.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 0.co ¢.C 0.00 0.00 0.00 €.00 0.00 0.00
18.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
c.oc0 0.00 0.00 0.00 8.00 10.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00 0.00 c.00 0.00 0.00

7.10.5 Function C

This function is a textbook example of a regular quadratic program for which GAMS and
other gradient based solvers should easily find the global optimum. This problem does not
have a well defined favorable corners of the feasible region that could be exploited in the
initialization procedure. There are however some simple rules that could be used: decision
variables with very large costs (e.g. 1000) should be kept equal to zero if possible, decision
variables with cost parameters equal to zero should be allowed to have high values, and the
remaining decision variables should have values of around 1 or less, since the quadratic
function is exponentially decreased for the argument less than 1. The main difficulty with
this function was a tendency of the algorithm to cluster around a local optimum, since all
members of the mating poll begin to look like identical twins, but not quite since the
numbers differ on the second decimal. So there was a phenomena of having “almost
identical twins” with negative impacts on convergence, the same problem encountered with
the emergence of identical twins. To make sure the variety of good genetic material is

retained in the mating pool, a small mutation operator was added in the recombination

procedure in the following form:

; = xbest; + 0 xbest ; N(0,1) (7.17)

86

where @ was tested with values between 0.1 and 0.01, with 0.05 being. the best value after
conducting several test runs. In other words, the parent’s gene was copie=d but it was mutated
slightly by taking 5 percent of its value as the mean of the standard devdate. The algorithm
converged to good solutions, but it took more computational effort than in the case of the
previous three test functions. This approach represents a form of a manriage of GA based
recombination with simulated annealing. More avenues are being explored at present in

order to ensure a more efficient solution procedure for this type of func:tion.

Typically, the gradient search methods (in this case quadratic programmiing) are expected to
find a global optimum for these objective functions, and other heuristic techniques can be
gauged by measuring their closeness to the global optimum foumd by a quadratic
programming model. Indeed, the entire explosion of interest in heuristic methods is not
because of problems of this kind, but rather the problems with objective: function of type E
or in particular F, where the gradient search methods fair poorly in comparison to GA
methods. Table 7.8 shows the solution obtained from the GAMS solver,, with the objective
function equal to 2535.29, and the best solution from the SFEP after 2000¢Q individuals, with
the objective function equal to 2534.34.

Table 7.8 Solution of 7 x 7 Problem with Function C

GAMS Solver SFEP
20.00 0.52 0.85 1.83 1.59 2.08 0.14 19.83 0.46 1.07 1.49 1.67 2.29 0.19
0.00 19.48 1.86 1.89 2.04 0.15 2.59 0.13 19.51 1.62 2.23 2.09 0.00 2.11
0.00 0.00 17.29 1.18 1.07 1.75 3.70 0.00 0.01 17.31 1.09 0.99 1.83 3.77
0.00 0.00 0.00 18.10 1.27 0.05 0.58 0.03 0.01 0.00 18.19 1.36 0.00 0.39
0.00 0.00 0.00 0.00 19.74 0.26 0.00 0.00 0.00 0.00 0.00 19.51 0.24 0.25
0.00 0.00 0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 0.00 0.08 19.91 0.00
0.00 0.00 0.00 0.00 0.29 0.71 19.00 0.00 0.00 0.00 0.00 0.30 0.42 19.28

While their fitness value is almost the same, some of the individual decisivwon variables differ

by over 20%. There is room for further improvement in the efficiency of SFEP search based

on the ideas outline above.

87

7.10.6 Function F

This is a challenging function with four possible roots for argument values of 0, 6, 14 and
22. The initialization procedure was adjusted in such a way as to favor any of those values.
The same mutation operator as the one described for function C was applied here as well.
Convergence is slower, however the solutions for both problems are better than those found
by GENETIC-2. For the 7 x 7 problem, the entire mating pool ends with the fitness values
between 78.81 and 83.18 while the best solution previously found with GENETIC-2 had a
fitness value of 110.94. Table 7.9 shows the two solutions from the mating pool with their
objective function values, found after 20000 individuals were generated in the process. The
10 x 10 problem was run for 40000 individuals. The best individuals generated in the
process had their fitness values ranging from 173.26 to 175.45 while the best solution
previously found by GENETIC-2 had a fitness value of 201.9. Table 7.10 shows the best
solution generated for the 10 x10 test problem. It should be noted that no attempt was made
to optimize the efficiency of the search process. Examined at this point were only the

robustness of the approach and its overall capability to find good solutions.

Table 7.9 Two solutions for 7 x 7 Problem with Function F

Objective Function = 78.84 Objective Function = 79.72
14.20 0.54 0.08 0.09 6.11 5.97 0.00 14.28 0.48 0.03 0.13 6.11 5.97 0.00
0.00 7.99 5.94 14.06 0.00 0.00 0.00 0.00 7.96 0.00 14.04 0.00 0.00 6.00
5.80 5.58 1.86 0.00 6.02 5.75 0.00 5.71 5.59 1.90 0.00 5.93 0.00 5.85
0.00 5.86 5.90 2.46 5.77 0.00 0.00 0.00 5.97 5.88 2.41 5.74 0.00 0.00
0.00 0.00 0.00 0.14 B8.06 5.73 6.06 0.00 0.00 0.00 0.14 8.09 5.73 6.03
0.00 0.00 6.21 0.00 0.03 7.54 6.21 0.00 0.00 6.17 0.00 0.10 7.54 6.18
0.00 0.02 0.00 6.24 0.00 0.00 13.72 0.00 0.00 6.00 6.27 0.03 5.76 1.94

88

Q.
0.
0.
0.
.04
.07
.00
.24
.40
.00

O O o © O o

25
00
00
00

Table 7.10 Solution of 10 x 10 Problem with Function F

1.43
0.00
0.38
0.00
0.00
0.03
¢.00
0.03
0.12
0.00

7.10.7 Function G

Pure linear programming case has been added to the set of test runs above. Itis easy to solve
using available LP solvers and it provides a way of measuring the ability of the SFEP solver
to find the global optimum. Micorsoft Excel solver was used as LP solver in this case. The
7 x 7 problem was run with 3000 iterations, and 10 x 10 problem was extended to 5000
iterations. The initialization function was modified to include only guesses which are equal
to maximum possible flow at any time. In this way the SFEP is encouraged to search only
the corners of the feasible region, similar to other LP solvers. Identical solution was reached

by SFEP and the Excel solver for the 7 x 7 problem, with the objective function equal to

0.01
0.00
0.00
14.07
5.54
0.61
5.85
6.02
0.00
0.88

0.00
0.00
0.00
4.96
0.
.00
.03
.00
.00
.00

o O O o o

00

5.21
0.00
0.00
0.a0
0.00
0.05
0.02
S.71
0.00
0.00

113.2. This solution is shown in Table 7.11.

0.00
5.79
0.00
0.00
0.00
0.09
0.00
0.00
5.12
c.00

O O O 0O 0O 0o 0O +H o o
N
o

0.64
0.25
0.31
6.15
0.22
0.00
0.08
0.00
6.35
0.00

0.
1.
0.
Q.
0.
0.
.00
.00
.00
.00

o O o o

Table 7.11 Solution of 7 x 7 Problem with Function G

20.
.60

O 0o o o o o

00

.00
.00
.00
.00
.00

20.00
.00
.00
.00
.00

0O 0O O o o

.00

1

0.00

-

9

o O o o

.00
-00
.00
.00
.00
.00

2.00
1.00
0.00
20.00
0.00
0.00
0.00

89

0.00
6.00
0.00
0.00
20.00
0.00
0.00

o O o o wun

20

.00
.00
.00
.ao
.00
.00
.00

©c O O & o o

20.

.00
.00
.00
.00
.00
.00

oJ1]

04
96
00
00
Q0
00

0.00
0.00
0-04
0.81

.15
.00
.00
.00
.00

o O O O ©O

Table 7.12 shows the SFEP solution for the 10 x 10 problem. Here the solution is not
identical, the SFEP failed to converge to the global optimum by a small margin, with the
final objective function of 118.1 while the Excel’s LP solver converged to 117.9. The
difference of 0.17% may not seem significant, but it does serve as a reminder that SFEP and
other similar algorithms provide no proof of converging to a global optimum. After
inspecting the values of decision variables in the mating pool, it was obvious that the global
optimum values were all there, but their right combination did not emerge after 5000
iterations. Rather than increase the number of iterations, the way to compete with LP solvers
on large problems would be to include additional heuristic rules in the search process. These
could be related to mutation or recombination operators. One thing should be noted: there
is no benefit to applying the SFEP where other available LP solvers are much faster and they
guarantee global optimum. A useful comparison between SFEP and an LP solver would be
to use a large dense network and modify the SFEP to solve the dual problem. This has
double advantage to SFEP: (a) no need for gene therapy, since dual variables are unrestricted
in sign and unlimited in value; and, (b) fewer variables, since there are typically fewer nodes

than arcs. For example, in the 10 x 10 transportation problem there are 19 dual variables that
must be found to retrieve the optimal values of all 100 arc flows. To solve an equivalent
(dual) problem with 19 unconstrained variables may be easier than to struggle with 81

independent flow variables which are also heavily constrained.

Table 7.12 Solution of 10 x 10 Problem with Function G

0.00 1.00 0.Cc0 0.00 0.00 0.00 0.00 7.00 0.00 0.00
0.00 0.00 0.00 0.00 $.00 0.00 0.00 1.00 2.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00
19.00 1.00 0.00 5.00 0.00 Q.00 0.00 0.00 0.00 1.00
c.00 0.00 12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00 0.C0 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00
0.00 0.00 18.00 0.00 0.00 0.00 0.00 0.00 0.00 c.ao
0.00 0.00 1.00 0.00 €.00 11.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

90

7.11 Comparison of Results

Table 7.13 provides a comparison of the results from this research with those previously
reported by Michalewicz (1994) with two GA programs: GENOCOP and GENETIC-2. Note
that GENETIC-2 was specifically designed for transportation problems. Solutions obtained
with the GAMS solver were compared with the GENETIC-2 and SFEP programs in Table

7.14.
Table 7.13 Comparisons of Results for the 7 x 7 Test Problems
Function GENOCOP GENETIC-2 SFEP SFEP # Iterations
A 24 .15 0 0 5000
B 205.6 203.81 203.75 5000
cC 2571.04 2564.23 2534.34 20000
D 480.16 480.16 480.16 3000
E 204.82 204.73 204.88 3000
E 119.61 110.94 78.81 20000
Table 7.14 Comparisons of Results for the 10 x 10 Test Problems
Function GAMS GENETIC-2 SFEP SFEP # Iterations
A 281 202 173 10000
B 180.8 163 159.79 10000
(o 4402.04 4556.2 4435.49 40000
D 408.4 391.1 388.91 5000
E 145.1 79.2 71.83 5000
F 1200.8 201.9 173.26 40000

Of the above, the only function where GAMS found a better solution was function C for the
10 x 10 problem, although the difference is only 0.7%. Solutions were obtained quickly.

The last column shows the number of iterations needed to find the best solution. Execution

91

times could not be compared directly with the previous work of Michalewicz et al. since they
were never reported earlier due to a variety of computer hardware that was used in their
study. The CPU times in this study were timed separately for the 7 x 7 and 10 x 10 problem.
To generate 5000 iterations, it takes 0.13 seconds of CPU time for the 7 x 7 problem, and
0.55 seconds for the 10 x 10 problem. The test runs were conducted on a 350Mhz IBM
compatible PC with AMD processor. The timing results show that execution times grow

exponentially with the size of the problem, which was expected.
7.12 Summary

This Chapter presents an evolution program for solving non-linear transportation problems

with possible extension to network flow problems in general. The main features of the

solution procedure are:

. Massive initialization procedure which generates only feasible solutions with
increased likelihood of generating solutions with good fitness based on simple
heuristic rules;

. A multipoint recombination operator which gives all parents in a small mating pool
equal chances of contributing their genetic material to offspring;

. An elitist selection operator which places offspring in the mating pool only if its
fitness is better than the fitness of the worst parent, resulting in the removal of the

worst parent from the mating pool. The selection operator does not allow identical

twins in the mating pool.

. A gene therapy operator which fixes defective genes (those that violate feasibility as
aresult of the genetic crossover), thus ensuring that offspring is always feasible; and,

. Non-linear objective functions and constraints can both be included in the search
process.

The procedure seems to offer a good potential to become an efficient solver for a large class

of network flow problems with non-linear objective functions and constraints.

92

8 CASE STUDY II — OPERATION OF BIGHORN/BRAZEAU HYDRO POWER
SYSTEM OF TRANSALTA UTILITIES CORPORATION

8.1 Introduction

Finding the best reservoir operating rules is a complex problem, characterized with non-
linearly constrained decision variables which vary both in space and in time and have a
stochastic component associated with the uncertainty of reservoir inflows. The development
of reservoir operating rules has been closely associated with the development of
mathematical models to represent the decision making process. There is no universal
approach in dealing with this problem. Yeh (1985) provides a summary of various
approaches that have been tried in the past. Two groups of methods that have gained general

acceptance among researchers are summarized below.

The first group is the explicitly stochastic methods (Simonovic 1987, Loucks et al. 1981,
Young 1967). These methods require that the entire problem be formulated and solved as
a stochastic mathematical program, which means that the uncertainty is represented in some
way with a random function imbedded in the model. These methods have suffered from (a)
computational inefficiency; (b) difficulties related to their proper mathematical formulation;
and, (c) distrust on the part of the reservoir operators due to complexity of the model. Many
models have failed to become practical operational tools (Oliviera and Loucks, 1997), even

though the final formulation of the reservoir operating rules is usually simple, in the form of
tables and graphs (Wurbs, 1996).

The second group is the deterministic optimization methods. They are easier to understand

and much easier to solve. They rely on known inflows, while the reality is that inflows are

unknown.
To overcome this, researchers have resorted to the use of long historic time series of

93

naturalized inflows, where variability and seasonality of the series includes the necessary
stochastic component. The deterministic models could be used in two ways: either (a)
develop optimal rules based on the perfect foreknowledge of the inflow series and target
releases for a year (here the operating rules given as the draw down and refill curves
constitute model output); or, (b) assume an operating rule for a reservoir, run the entire
series of historic inflows and current (or projected) demands, and then evaluate the
performance of the entire system. In this case the assumed operating rule does not change
during the simulation run for all simulated years, and the performance of various scenarios

can be compared based on various rules assumed for each scenario.

Approach (a) provides a set of optimal reservoir draw-down and re-fill curves which are
different for every year, due to inflows and water demands being also different from year to
year. Approach (b) is not so heavily dependent on the inflow series, but it is not easily
applicable to multi reservoir systems where the number of possible combinations of rule

curve shapes is very large.

Reservoir inflows are an important input for analyses of reservoir operation. Historic
hydrologic inflow series are often of insufficient length to capture severe conditions that may
be encountered in the basin. A time series of flows with 30 or 40 years on the record most
likely does not include a 100 year wet or dry hydrologic event. Sometimes there is a need
to extend the historic series, which is usually done either by (i) the use of regional analysis;
(ii) development of rainfall-runoff models, since rainfall data are typically of longer record
length than the hydrometric data; and, (iii) the use of stochastic models to generate stochastic
inflow time series which are statistically similar to the historic records. The stochastic
component relates to the variation of inflows and water demands. This variation is included
in the long time series of data (either historic or stochastic), hence the term implicit
stochastic models. The use of deterministic optimization models over long time series of

inputs is typically referred to as implicit stochastic optimization (Ilich and Simonovic,

2000a).

94

The first modelling attempts were combined optimization and simulation models (Bhaskar
and Whitlach 1980). Various mathematical programming techniques have been used to
address optimal reservoir operation. Russell and Campbell (1996), Bijaya et al. (1996)
experimented with fuzzy programming, while Oliviera and Loucks (1997) used genetic
programming to optimize reservoir releases in a multi-reservoir system. Perhaps the most
popular approach to date is the one based on the use of Linear Programming network solvers
such as the Out-of-Kilter algorithm (Ford and Fulkerson, 1962; Barr etal. 1974) or EMNET
(Brown and McBride, 1984), which were the basis for several popular models already

mentioned in Chapter 3.

The problem in this study exhibits complex non-linearity in constraints, which rules out the
use of linear programming. The use of SFEP algorithm is investigated in this study in the
context of solving network flow distribution over multiple time steps, where reservoir
releases are associated with decision variables. The problem definition is provided first,

followed by methodology and a discussion related to the final results.

8.2 Problem Definition

The goal is to optimize operation of a small system consisting of the Bighorn and Brazeau
reservoirs (Ilich and Simonovic, 2000b) and their respective hydro power plants. These are
the main peaking power generation plants for Transalta Utilites Corporation (TA) that
produce a large portion of the peak power requirement in the Province of Alberta. They are

located in the North Saskatchewan river basin. The schematic representation of the system

is shown in Figure 8.1.

There are two outlets from Brazeau reservoir. One is a set of two gravitational venturi tubes
which are used to provide outflows from the upper part of Brazeau storage. When elevation

drops below 959.8 m, the venturi outlets can no longer be used and water must be pumped

out of the reservoir to Brazeau canal.

95

Bighomn Inflow

Brazeau Inflow

Bighron Reservoir

Brazeau Reservoir

Bighorn Hydro
Power Plant

i Brazeau Hydro
Power Plant

Natural Channel

i
Natural Channel :

North Sask. River

Figure 8.1 Schematics of Bighorn / Brazeau hydro power system

Two pumps of similar capacity are used for that purpose. Both the venturis and pumps
release water from Brazeau reservoir into a long canal. The canal is operated in a narrow
elevation range of 959.35 m to 959.5 m, thus providing a relatively constant head for the
power plant located at its downstream end. The penstock starting at the end of this canal
supplies flows to Brazeau hydro power plant. The canal storage change effect can be taken
into consideration in hourly or daily operation, but it becomes insignificant in weekly or bi-
weekly operation as canal inflows and outflows exhibit a close match. Therefore, one can
assume that the power generation at Brazeau is a function of only the flow through the plant,
and not head since the head has a relatively constant value. This assumption can be verified
by examining the relationship between the historic flow and power generation at Brazeau

plant which demonstrates a strong correlation (R=0.997). Maximum flow through the

Brazeau plant is limited to 347 m?/s.

The outlet from the Bighorn reservoir flows directly into the Bighorn hydro power plant.
The generated power is a function of both flow and the head, where the head can vary from

96

52m to 92 m. The maximum design flow through Bighorn plant is 160 m?/s.

In an effort to increase productivity, TA has initiated the development of new operating
guidelines to minimize the cost of pumping. There are two facets related to pumping costs:
demand charges and energy charges. Of those, demand charges are more significant. The
demand charge is the maximum instantaneous power calculated as the greater of the constant
demand or the maximum demand that occurred in the last 12 months. It is obvious that TA
should make every effort never to use both pumps simultaneously, in order to reduce the

demand charges. This assumption has been incorporated in this study.

The study relied on the 14 years of power generation and hydrologic inflow data in the 1985
to 1999 period. More inflow data are available, however the historic power production
patterns were readily available in electronic format only since 1985. Also, the use of power
generation data prior to 1985 is less attractive as the power generation patterns of more than

15 years ago would poorly represent the current conditions.

This study was based on using a weekly time step. The basic concept in this study was to
allocate power generation between the two plants such that: a) the historic power production
pattern is matched as close as possible; b) only one pump is used for pumping water out of
Brazeau storage at any point in time; and, ¢) pump use at Brazeau is minimized. The above
goals were to be achieved assuming only one week of perfect forecast of reservoir inflows,

the initial reservoir levels at the beginning of the week and the total power production target

for the week.

The goal is to minimize the total pump usage. Assume that each unit (1 m?/s) of flow
through the pump is associated with a cost of P, where P is a constant that can take on any
finite value, e.g. P = 100. Denoting with Qp[i] the flow through a pump in week i, the above

objective can be mathematically formulated as follows:

97

52
min»_ Qp(i)- P (8.1)
i=1

The objective function has a straight forward linear formulation, which can also be re-written
with constant P taken out of the summation. Constant P represents the cost of pumping 1
m’/s of flow from Brazeau reservoir into Brazeau canal. Virtually any non-negative value
of P can be used. The above formulation demands minimum use of the pump in the
operation over the whole year (i.e. 52 weeks, where i is the week counter). There are
eighteen constraints in this problem. They are mutually interlinked with non-linear

relationships, as listed in expressions (8.2) through (8.19) below.

Goli)+Gig(i) = P,(i) 82)
Gio(i) = 23.6877-[Q,(i)+Q, ()] - 42.66223 (8.3)
Gy, (i) > 284 (8.4)
Gyg(i) = 0.19344° Qi) Hig(i)—50.16326 (8.5)
QugD)~Tog() = [Vipgli= 1)~ V@] -,}— 8.6)
ng(i) < ngmax(i) (87)
Hyy(i) = [Boim 1)+Ebg(i)]% - Ty (i) (8.8)
Epe=fi(Vie) 8.9)
The= £2(Qye) (8.10)
Q)+ QuD)~ L) = [Vieli= 1)~ Vie(D)] % (8.11)
Vi) € Virmaei) (8.12)
0 < Q,()+Q,(1) < 347 (8.13)

98

Qv = f:%(Ebr)

(8.14)

Q, < fi(Ee) (8.15)

Epe= £(Vi) (8.16)

0 < Qi) < 160.4 (8.17)

Gye(i) 2 0 (8.18)

Que()+Q,(1)+Q,(1) > 14.16 (8.19)

where:

Gbz(i) average daily energy generated at Brazeau power plant in week i (MWh/day)

Gor(1) average daily energy generated at Bighomn power plant in week i (M Wh/day)

Pr(i) average daily energy requirement for the two plants in week i (M Wh/day)

Qp(1) pumped flow out of Brazeau lake in week i (m?%/s)

Qv(i) venturi flow out of Brazeau lake in week i (m?/s)

Que(i) turbine flow through Bighorn hydro power plant in week i (m’/s)

Ibg(i) inflow into Bighorn reservoir in week i (m?/s)

Hbg(i) net head available to the Bighorn power plant (m) in week i, as defined in
expression (8).

Vig(i) volume in Bighorn reservoir at the end of time step i (m?)

Vbgmax(1) maximum volume in Bighorn reservoir for the end of each week i (m?*)

T length of the weekly time step in seconds (7-86400=604800)

Ebg(i) ending elevation of Bighorn reservoir for week i

Tog(1) average tail water elevation at Bighom plant for week i

fi a mapping function that converts volume into elevation for Bighorn reservoir

f2 a mapping function that converts turbine flow into tail water elevation at the
Bighorn hydro power plant outlet

Ibr(i) inflow into Brazeau reservoir in week i (m?/s)

Vor(i) volume in Braeau reservoir at the end of week i (m?)

99

Vbrmax(i) maximum volume in Brazeau reservoir for the end of week i (m?)

fa

fs

amapping function that converts average elevation in Brazeau reservoir over
week 1 into maximum venturi outflow for week i

amapping function that converts average elevation in Brazeau reservoir over
week i into maximum pump outflow for week i

a mapping function that converts volume in Brazeau reservoir into elevation

Each of the expressions (8.2) through (8.19) representing a constraint is explained in the

following.

(8.1) Objective function formulation.

(8.2) Total power produced at both plants must equal the specified target for each week

(8.3) An empirical relationship between total flow through the turbines (equal to the sum
of pumped flow and venturi flow) and the power generated at Brazeau. This
relationship is derived using the average weekly historic values and it implicitly
includes the efficiency.

(8.4) Minimum average weekly power generated at Brazeau must be 28.4 MW. This can
alternatively be specified as the minimum turbine flow through Brazeau being no less
than 3 m’/s (fish habitat requirement).

(8.5) Bighorn power production equation which converts the available net head and the
average turbine flow into power. This is an empirical relationship based on the
historic data and it implicitly includes efficiency.

(8.6) Water balance equation for Bighorn reservoir for a 7 day time step (inflows -
outflows = storage change). All terms in the equation are in the flow units.

(8.7) Limitations on maximum volume in Bighorn reservoir as a function of time. This is
dynamic since it is necessary to conduct the pre-flood draw down and refill in the
spring.

(8.8) Calculation of net head for Bighorn hydro power plant, which equals average

elevation of Bighorn reservoir over a time step minus the average tail water elevation

100

8.9)

(8.10)
(8.11)
(8.12)

(8.13)
(8.14)

(8.15)

(8.16)

(8.17)
(8.18)
(8.19)

over the same time step.

A function mapping volume of water stored in Bighorn reservoir to surface water
elevation.

A function mapping turbine flow at Bighorn hydro power plant to surface water
elevation below the plant.

Water balance equation for Brazeau reservoir for a 7 day time step.

Limitation on maximum volume in Brazeau reservoir as a function of week i.
Maximum turbine flow at Brazeau must be non-negative and less than 347 m?/s.
Maximum flow in venturis cannot exceed the values dependent on elevation in
Brazeau determined by function f; which converts elevation to the maximum venturi
outflow. The elevation entry into this mapping function should be the average
elevation per week, which is equal to [E, (i~ 1)+*E,(i)}/2, where E,(i) is the ending
elevation per week i.

Maximum pump flow cannot exceed the values dependent on elevation in Brazeau,
The elevation entry into this mapping function should also be the average elevation
per week, which is equal to [E, (i- 1)+E,(i)]/2.

A function for mapping volume of water stored in Brazeau reservoir to surface water
elevation.

Maximum non-negative turbine flow at Bighorn power plant is limited to 160.4 m?/s
Bighorn generation (MWh/day) must have a non-negative value.

Combined release must give a minimum downstream flow of 14 m’/s.

The unknowns are Q,,(i), Q,(i) and Q,(i) for all 52 weeks (i = 1,52). The weekly inflow series

as well as the historic power generation for both reservoirs were used in the initial attempt

to solve the above mathematical program. The output from this exercise is a set of turbine

flows at both plants for all 52 weeks which minimize the use of pumping while in the same

time meet constraints (8.2) through (8.19).

101

8.3 Methodology
8.3.1 Optimization of Historic Reservoir Operations

Mathematical program defined by expressions (8.1) through (8.19) is initially solved with
a perfect foreknowledge of inflows and power requirements for all 52 weeks in each of the
14 years of record. The goal of this exercise is to use solutions obtained in such a way as a
basis for developing operating rules with short term forecasts of inflows and power
requirements. Historically, the operation of the system was carried out with occasional use
of two pumps simultaneously. There is no guarantee that the historic power production can
always be repeated in the model, which relies on the use of only one pump at any point in

time. Hence, condition (8.2) was replaced by

sz(i) + Gbg(i) < Pr(l) (8.20)

while the objective function received one more term:

i=52

rninZ{Qp(i) - P +[P(1) - Goz(1) - Gre(i)]- 10000} (8.21)

where 10000 represents the high penalty for not achieving the same level of generation for
each week during the historic period under investigation. With this term the objective

function also becomes non-linear, since the decision variables are flows, and G,,(i) is a2 non-

linear function of flow.
The problem was solved using a network representation of the system and the existing non-

linear relationships in the constraints and the objective function. The SFEP non-linear

network solver allows simultaneous non-linearities in the constraints and in the objective

function.

To appreciate the complexity of the problem, consider for example a set of perfect solutions

102

for Bighorn turbine flows Q,(i). The model is asked to find 52 values, where each of them
can range from 0 to 160.4 m®/s, such that conditions (8.2) through (8.19) are also satisfied
(note that these conditions include reservoir routing for both venturi and pump outlet to find
the maximum outflow from Brazeau). One small deviation from the best value in week 3
can limit the choices in the remaining 49 weeks. There is no known search method that can
guarantee to find the global optimum across the entire time domain, and the SFEP algorithm
does not make this claim either. It should also be noted that TA did not use any optimization

models to improve its operation in the 1985 to 1999 period.

The initial runs resulted in fourteen annual solutions for the entire system with perfect 52
week forecast for each simulated year. To give more options to the optimizer, each year is
started at the beginning of week 26, which corresponds to July 1 for leap years or July 2
otherwise. At the beginning of July the reservoir levels are high and the model has a wider
range of operational options to examine as opposed to starting the simulated year on January
1, when the reservoir levels can be low and the range of options is severely restricted. The
average potential savings in pumping energy (MWh) achieved with the initial simulation runs
were in the order of 60% in comparison to the historic operation. The summary of the results

is depicted in column B of Table 8.1. Column A gives the historical pump use in the 1985
to 1999 period.

The final convergence in most cases resulted in the Bighorn elevation being too low, as well
as Bighorn reservoir being empty for several consecutive weeks, which would normally be
avoided. Rather than rank the best solution solely based on the value of the objective
function, a near optimal solution was selected using both the value of the objective function
and the shape of the resulting draw down and refill curves. Two judgmental criteria were of
interest when analysing the reservoir elevation patterns. First, the ending elevation for the
Bighorn and Brazeau should be equal to or higher than the minimum elevation of the historic
1985-1999 record on July 1 for either reservoir. Second, neither reservoir should be empty

for longer than one week. Taking all this into considerations, the selected results should be

103

considered as “near optimal”. The results of the above simulated operation with the SFEP
optimizer driving power generation at both plants were subjected to two types of analysis,

as explained in the following.
8.3.2 Development of Reservoir Operating Zones

Since 14 years is not a large enough sample for statistical analysis, the simulations were
repeated for each year individually by selecting a different starting elevation at the beginning
of the year for each reservoir. The only exception to this was 1998/99 when the initial levels
on July 1 were very high, generation was also high, and incoming flows were below average.
If the starting levels in July 1 of 1998 were reduced by 2 metres or more on each reservoir,
the model would have serious difficulties meeting the historic production pattern. This
added set of simulation runs gave 40 simulated years (3 starting levels for 13 years and one

for 1998), which is a slightly better base for statistical analysis of simulation results.

It is possible to look at each individual time slot and find the 10, 20, 50, 80 and 90 percentile
elevations from obtained results in every week. Ifall points with the same percentile are then
joined together, they define a draw down and refill line with a certain probability of being
exceeded. For example, by joining together the points with 50% probability for each week,
a 50% percentile draw down and refill line is obtained. This line tells us that it is the most
likely elevation for every point in time during the year for a given reservoir, since 50% of
simulated elevations were above it and 50% were below. Operating zones shown in Figures

8.1 and 8.2 were defined for 10, 33, 67 and 90 percentile using this approach.

The operating rules are simple to follow. If at any point in time the operator is considering
drawing elevation down from zone 1 in Bighorn reservoir into zone 2 due to high power
requirement and low inflow, he must first make sure that Brazeau reservoir elevation is also
brought to the bottom of zone 1 before any releases from zone 2 are made at Bighomn

reservoir. This rule extends for any other two adjacent zones. Therefore, the policy is as

104

follows: empty zone 1 at Bighorn storage first, followed by zone 1 at Brazeau, zone 2 and
Bighorn, zone 2 at Brazeau, zone 3 at Bighorn, zone 3 at Brazeau, zone 4 at Bighorn and
finally zone 4 at Brazeau. The refill rules are very much the same but the order of priority
is reversed (i.e. zone 4 at Brazeau is re-filled first, followed by zone 4 at Bighorn, zone 3 at

Brazeau, etc.)

) . 3 max zone
Bighorn Reservoir Operating Zones zone 1 ,
zone 2
1330 zone 3
zone 4
1820 | __——
E \/
= 1310 4
9
g 1300
w
1280 A
1280 —
0 75 150 225 300 375
Time (days starting from July 1)
Figure 8.1 Bighorn Reservoir Operating Zones
max zone |
Brazeau Reserwir Operating Zones zonet
zone 2 !
zone3d |
968 zone 4 !

|
|
i
]
i
gl
i
|
!
{
|

0
(02}
o

&
(

Elevation (m)
&
o]

952

948 v : .
%50 225 300 375
Time (days starting from July 1)

Figure 8.2 Brazeau Reservoir Operating Zones

105

These zones can be used in short term simulation with only one week forecast. The number

of zones is arbitrary, in this case five zones were used on each reservoir. The model was re-

run using two significant changes:

1. Only one week forecast was implemented. That means that the model has the inflow
and power requirements known for only one week ahead.

2) The objective function was modified to include the reservoir zones, as listed below:

i=52

min } {Qe(i) - P +[Pe(i) - Goe(i) - Goa(D)]- 10000 + Cor(V(D)) + Coa(Vis(i)) } (8.22)

where functions Cbr and Cbg are well known piece wise linear functions representing the

value of reservoir storage already discussed at length in the literature (Sigvaldason, 1976).

The results of the simulation run that rely on the above zoning rules while using only one
week perfect forecast of inflows and power requirements are encouraging, as shown in
column C in Table 8.1. The pump energy savings are close to 50% , which is not as good
as it was with a perfect annual forecast, but it is still considerable, especially since this
method can easily be applied to systems with many reservoirs and hydro power plants.

However, better results can yet be achieved in this case due to having only two reservoirs,

as explained below.
8.3.3 Regression Analysis

Since there are only two reservoirs and two hydro power plants, it would make sense to look
for a relationship between the turbine flows at each of them as a function of the starting

reservoir levels, inflows and the total power requirement.

The goal is to develop a mathematical form of function f which links the turbine flows at

each reservoir to the inflows, starting reservoir levels and total power requirement for any

106

given week. This function is based on statistical analysis of the results obtained from 52-

week simulation for each year with various starting levels.

Qus = £ie{Ew, Ebr, Lig, L, P} (8.23)

sz = sz{Ebg, Ebf, I‘bg, Ibz, Pr} (8‘24)

Assuming reasonably accurate forecasts of inflows and the total load requirement over a
week, functions f,, and f,; could be used to tell the operator how to best combine releases
to produce the required power. In fact, due to constraint (8.2), only one of the functions is

required as the other reservoir release can be obtained to match constraint (8.2).

A multitude of values on both the right and left hand side of equations (8.23) and (8.24) are
available from a total of 40 simulated years. It was found that the best multiple regression
(R? > 0.995) can be found between the Bighorn reservoir level at the end of a week as a
function of the initial elevations at Bighorn and Brazeau, average weekly inflows into both

reservoirs and the total power requirement for a week. The relationship has the following

form:
E, (1) = a'E,,(i-1 y+b-E,,(i- 1)+C'P,(i)+d°Ibg(i)+e~Ibz(i)+f (8.25)

where symbol E represents the ending elevation for a week while index i represents the week
counter. Hence the ending elevation for week i-1 is the starting elevation for week i.
Coefficients a, b, ¢, d, e, and f have been determined as 0.994422, 0.0564,

~0.000472, 0.0165, 0.0073 and -47.55229, respectively.

The predictive regression model gives the week ending elevation for Bighorn reservoir given
the initial elevations and weekly inflows for both reservoirs, along with the total power
requirement for both hydro power plants. In combination with Bighorn inflow and the initial
elevation, the predicted reservoir level from the multiple regression can be used to estimate

reservoir outflow for a week. The multiple regression model was tried instead of the

107

reservoir operating zones model discussed above, however the trial failed to produce good

results. In some cases regression was causing reservoirs to spill, and in a few rare cases it

resulted in negative turbine flows at Bighorn. It was decided that the relationship developed

using multiple regression cannot be used on its own.

The final avenue that was attempted was to combine multiple regression relationship with

the zoning concept developed in the previous step. This is a promising approach for a

number of reasons:

a)

b)

8.4

The search for good initial solutions for each week can be improved using the
regression relationship. Itis notnecessary to generate any values of Bighorn outflow
between 0 and 160.4, but rather focus on a much smaller search space defined in each
step dynamically using the multiple regression defined by equation (25). The
regression gives the most likely guess, and the other guesses are clustered around it
using normal distribution with a small standard deviation equal to 10% of the value
of the initial guess. The importance of generating initial parent solutions in
favourable areas of the feasible region has been emphasized earlier in Chapter 7. In
this case the favourable region is not determined using the shape of the objective
function, but with the multiple regression instead.

Unintelligible guesses (the ones that result in spills or negative outflows) are
discarded using the zoning concept which forces generated trial solutions to conform
to the stated zoning use policy, as well as the recombination mechanism which

throws away solutions with poor fitness.

Results

The final solutions in column D of Table 1 obtained from a combinatorial mode! consisting

of the above zoning concept in combination with the multiple regression predictive model

gave excellent results with only one week forecast of inflows and power requirements. The

108

average reduction of energy required for pumping is around 88% in comparison to the actual

historic record. In terms of the actual cost savings in dollars, it could be even higher than

88% since a lower demand charge could be negotiated due to the assumed operation of only

one pump instead of two.

The results listed in column D of Table 8.1 surpassed the performance of the model

displayed in the initial runs with 52 week foresight. This means that the initialization

procedure (the first step in the search process) is very significant for the success of the model.

In this case there are two issues that preclude finding the best solutions using the 52 week
foresight:

1)

2)

The use of high penalty for not meeting the total power demand from both plants
(conditions 8.20 and 8.21) is fairly frequent in the first set of simulations with 52
week forecast, however it declines significantly once the operating zones are
introduced. This allows the model to focus more intently on the search within the
true feasible region without wasting time with infeasible solutions that had to be
filtered out using a large penalty. This is yet another argument against the use of

penalty functions in this kind of search.

Initial selection of solutions with 52 week forecast was not only based on the value
of the objective function, but also on the length of period Bighorn reservoir was
empty. In most cases this meant sacrificing optimality by about 25 % and taking
solutions which have not yet converged such that the dam operators can accept the
“role model solutions™ as building blocks for generating short term operating policy.
Therefore, solutions in column B above are a mix of art and science, they are not the
best solutions found, but they are the best solutions that would likely be acceptable

to the operators.

This above conclusions also mean that other search options should be examined in the future

109

to achieve higher optimality in the initial step of this process, especially when penalty

functions are required to ensure convergence to feasibility of the final solutions.

Table 8.1 Summary of historic and simulated pumping energy requirements in MWh

Column A B C D
Historic 52-week one week zones &
Year pumping forecast forecast & zones regression rule
pumping

1985/86 20472 17540 16807 2483
1986/87 18315 1620 2183 204
1987/88 13825 5623 9223 2577
1988/89 14783 3422 5873 393
1989/90 23255 1711 5036 5
1990/91 23094 6364 9974 2294
1991/92 20301 13878 15983 3289
1992/93 16512 8633 9234 1011
1993/94 21515 14835 15831 1514
1994/95 17501 11979 14086 1910
1995/96 15511 4155 7292 886
1996/97 15227 1860 5081 1273
1997/98 13154 1630 4860 3103
1998/99 18540 11435 12815 9043
Average 18000 7482 9591 2142

The problem has three variables — venturi and pump flow at Brazeau along with the turbine
flow at Bighron power plant. These three variables must initially be solved for all 52 time
steps simultaneously, so there are 156 variables along with 19 constraints for each time
interval, which gives a total of 19 x 52 = 988 constraints, virtually all of which are non-
linear. The SFEP solver was capable of solving the above problem within 13 seconds on a
500 MHz PC running the Windows 95 operating system. The initialization procedure
included a total of 1000 individuals. The mating pool has 10 parents, and the recombination
was carried out for up to 3000 trials. Table 8.2 gives the objective functions of the first 10

110

individual solutions, and the best 10 solutions left in the mating pool after 1000 randomly
generated solutions. This is followed by the makeup of the mating pool after each 500 new
solutions were generated using recombination. Solution to this problem could not be
obtained using other solvers. Microsoft Excel could not handle more than 200 non-linear
constraints, while the MATLAB package failed to deliver an intelligible solution even
though we technical support staff tried to help in setting it up for this problem (Ilich, personal

communication).

Table 8.2 Values of the objective function during the SFEP progression

INITIALIZATION RECOMBINATION
solution initial 10 additional 500 1000 1500 2000 2500
rank solutions 990 solutions solutions solutions solutions solutions solutions
1 198016 .679 9756.920 6397.354 5972.465 S872.732 5744.552 5716.279
2 40319.663 9767.353 6427.565 6042.506 5874.132 65769.507 5731.533
3 48629.504 9847.628 6427 .629 6051.479 58S50.697 5804.777 5744.364
4 50986 .731 10052.93S 6434 .765 6062.557 5891.494 SB818.105 §5744.552
-3 53156.772 10052.935 6463.150 6073.715 5896.003 S821.235 5752.498
6 60609 .446 10064.275 6474 .816 6080.030 5903.187 S5821.643 5755.371
7 62221.291 10141.037 6475.504 6084.495 5905.762 5826.763 5756 .664
8 63660.235S 10212.207 6477.797 6085.910 5911.159 5835.306 5756.738
9 75397.84S 10368.341 6482.027 6103.362 5916.579 $835.579 S$757.006
10 119142.199 10543.934 6482.272 6110.854 5919.726 5835.969 5757.383

There are no units in the above formulation, since the penalty for pumping a unit of flow in
expression (8.1) is user-defined, while violating condition (8.2) even by a small amount

incurs a large penalty of 10000, which is also set arbitrarily.

8.5 Conclusion

The SFEP algorithm is used in this study in an effort to minimize pumping from lower
storage of Brazeau reservoir. The promising feature of this approach is the inclusion of non-
linear functions related to reservoir routing and hydro power generation directly in the search
process. The generated rule based on a one week forecast of inflows and energy
requirements and the use of the SFEP solver to simulate operation for each week individually

show potential pump energy savings of close to 90% on average over the last 14 years. This

111

approach can be used on other systems with different objectives, which can include
maximizing energy generation in combination with other in-stream or off-stream water

requirements.

112

9 CASE STUDY I - WATER ALLOCATION IN THE BRANTAS RIVER BASIN
IN EAST JAVA, INDONESIA

9.1 Introduction

This Chapter describes testing of the SFEP solver on the Brantas river basin depicted in
Figure 9.1 and located in East Java, Indonesia. The goal was to use the SFEP such that the
model could find water allocation that best meets the established objectives of Perum Jasa
Tirta (PJT), a water management agency in charge of regulating the major water intake

structures and reservoirs in the Brantas river basin.

N

‘N Pacific Ocean

West Java

Central Java

Indian Ocean : . .
Brantas River Basin

Figure 9.1 Location of Brantas River Basin

Perum Jasa Tirta (PJT) has long been a role model agency regarding water resources
management in Indonesia. The agency is financed mainly by charging fee for water use in
the basin. There are four types of users in the basin: hydro power producers, municipalities,
industries, and agriculture. Although the present situation is in the process of change, the
current fee structure is lenient towards farmers, whose irrigation withdrawals account for

most of the consumptive water use, while they do not pay for it. Other water users in the

113

basin are levied commercial rates which is aimed to encourage water use efficiency and

sound management practices.

While irrigation, municipal or industrial water use all have upper limits on demand which
vary in time and space, there is no such limit explicitly stipulated for hydro power, where the
goal is to maximize power generation. Maximizing total power generation in the basin over
the whole year is adesirable objective since PJT collects a percentage of the generated power
as its revenue, although it has been noted that there is a surplus of electric energy in
Indonesia at present and the goal of maximizing power output from the Brantas basin may
necessarily coincide with the overall government objectives. This objective is constrained
physically by the flow and head capacities of the turbines, and operationally by other
priorities that may take precedence. Hence, the management objective for the Brantas basin

(and many other similar river basins) can be mathematically expressed as:

max{z PRp —ZQpCp +2Q. R. +ZQinRin +ZQmRm +

ir ir ©.1)
+Z(Qm —Drm)cm}

where:

P power generation at any of the hydro power plants in the basin (kwh)

Rp revenue per kwh allocated to PJT as per the existing agreement
(Indonesian Rupiah = Can$0.00019 at the time of this study)

Y P-Rp sum of revenues from all hydro power plants in the basin (Rp)

Qp pumped flow through a pumping station (m’/s)

Cp cost of pumping per 1 m’/s assuming constant head rise (Rp)

Y Qp-Cp sum of all pumping costs in the basin (Rp)

Qir water supply for irrigation (m?*/s)

Rir added value of crop production due to 1 m*/s of irrigation supply (Rp)

E Qir - Cir added value of total crop production from all irrigated areas (Rp)

114

Qin water supply for industry (m?/s)

Rin industrial fee per 1 m3/s of water use (Rp)

Y Qin - Cin total revenue from all industrial water use in the system (Rp)

Qm water supply for municipalities (m?/s)

Rm municipal fee per 1 m3/s of water use (Rp)

YQm - Cm total revenue from all municipal water use in the system (Rp)

Qmm water supply for riparian needs (river maintenance) (m’/s)

Drm river maintenance flow target (m®/s)

Crm the cost of damage caused by not meeting the riparian flow

requirement by having 1 m3/s deficit (Rp)
Y [(Qrm — Drm) - Crm] the value of total loss for not meeting the riparian flow targets (Rp)

The fees that are currently is use are 51Rp/m?, 35 Rp/m? and 13.61 Rp/KWh for industrial,
municipal and hydro power use, respectively. However, there are legal and operational
requirements that may override the economic values attached to them. For example,
industrial users pay a higher fee than municipalities. However, municipal supply takes legal
precedence over industrial water use, and as such it should be assigned a higher pricing
vector indicating higher priority within the model. There are other water management
objectives that are political, such as irrigation or the maintenance flow. The fee levied for
irrigation water use is still a political issue which brings some uncertainty to the value of Cir.
If zero is used as the value for Cir (since irrigators are currently not paying for water at all),
water may not be allocated to irrigation within the model. Hence the value of Cir must be
determined using its political importance. Similar remark is applicable to Crm, which is the
equivalent monetary value associated with river maintenance (this implicitly includes water

quality as the maintenance flows may be governed by water quality requirements).

The above objective can be formulated as maximization of revenue for PJT with inclusion
of important political objectives and operational constraints. It is applicable to each

operational time interval, which in this study is restricted to a 10-day period due to the

115

available input data. Since an allocation decision in one time interval has implications on
the management options in the following time intervals, it is desirable to carry out basin-wide
optimization of allocation both in space (due to spatial variation of supply and demand) and
in time (due to seasonal variations in supply and limited reservoir storage). Emptying
reservoirs too soon may cause high costs to the downstream users later in the dry season, and
vice versa, being too conservative in the beginning of the dry season may limit the final
output for the whole year by using only a fraction of the available live storage. Hence, the
goal of finding optimal allocation must include the time component by summing up the

above expression over all time intervals within a year:

maxZ{Z PRp —Z:QpCp +ZQirRir +ZQinRin +ZQmRm +

+Z(Qrm _D!m)crm}

9-2)

where the first summation is over all time intervals within a year, while the summations
inside the curly braces are conducted over all basin components of the same type (e.g.
irrigation, industrial, or municipal users). The above equation maximizes annual net revenue

for PJT. The following constraints apply to the above maximization problem:

P < Pmax(Q, H) (9.3)

Power generation is constrained by the operating characteristics of the turbine and generator,
which are functions of flow and average net head over a time interval. The average net head
is a function of average reservoir inflow, outflow and the starting elevation for a time

interval.

Qp < Qmax(H) (-4)

Maximum pumping rate is constrained by the operating characteristics of the pump, which

is also affected by the average anticipated head rise over a time step.

116

Qir < Dir (9.5)

Irrigation supply should not exceed the ideal demand Dir defined for each area by the crop

requirements and conveyance losses.
Qin < Din (9.6)

Industrial supply should not exceed the ideal demand Din (m’/s).

Qm < Dm .7
Municipal supply should not exceed the ideal demand Dm (m?/s).

Finally, one more term should be added to the objective function. It represents importance
of storing excess water in the reservoirs. Without this term, the model would be indifferent
to spilling surplus flows as opposed to storing them in reservoirs. The pricing vector for
storage is the lowest in the system, which means that storage will give in to any other
demand. The low pricing vector is still required to make sure that reservoirs re-fill during

the wet season. With this term the objective function takes the following form:

max)y {ZP.RP —ZQp'Cp +ZQir'Rir +Z‘,Qin.Rin +):Qm.RIn +

(9.8)
+Z(Qrm N Drm)'crm +Z(Qr _Dr)'cr}
where:
Qr ending reservoir storage in the units of flow for a time interval (m*/s)
Dr target flow into reservoir required to keep it full at the end of a time
step (m*/s)
Cr the value of storage (i.e. the cost of 1 m*/s of deficit in storage)
Y (@Qr-Dr)-Cr the value of total cost for deficit in storage for all reservoirs

117

Since the cost of storage deficit is the lowest in the system, it does not alter the solution
(water allocation) for other components. It is required by the model to avoid unnecessary

spills and ensure re-fills during high flow seasons.

The model was applied on the current system configuration in an effort to investigate
possible management improvements over the last 23 years. Therefore, the sub-system
consisting of Wonorejo reservoir numbered (34) in the Schematics in Figure 9.2 has been
excluded, along with the entire Wonorejo sub-system, including the pump (141), diversion
canals (114), (116) and (104) and hydro power plants (64) and (66). Basically, the Brantas
river basin has been cutoff from the Wonorejo sub-system and the new developments
presently under way are aimed at re-establishing the connection at node (4). This connection
is still not operational so it was left out in this study. Sutami and Lahor are the only two
reservoirs with sizeable storage. Sengurruh, Wlingi and Lodoyo are weirs with run-off-the-
river hydro power plants. They were modeled as nodes without storage since their entire
storage can be re-filled (or emptied) with a flow of less than 3.5 m*/s over a 10-day time step,
which was used in this study. Typical river flow at those weirs in the dry season is around

50 m®/s while in the wet season it may exceed 200 m’/s.

Return flow channels return a percentage of gross diversions to the points of return, while
inflow nodes represent runoff contribution of a sub-catchment between subsequent inflow
nodes. Local inflows can be either positive or negative, implying gains or losses (mainly due
to channel attenuation) within the same 10 day period. There are 25 decision variables in the
Schematic in Figure 9.2, and they were solved simultaneously for 37 time intervals (one full
year plus one more time interval from the following year), such that the actual network size
of this problem corresponds to 925 independent variables. In addition to testing the SFEP
solver on a problem of this size, the other benéﬁt is to try to examine by how much the Basin
operation could have been improved in the past if the minimum riparian flow of 20 m?/s has

been maintained at the city of Surabaya (channel 85 in Figure 9.2).

118

Figure 9.2 Brantas River Basin Modeling Schematics
|05@
»
155
Sumbaya
Irg+lrg (13) ~86-7)
R
W%RE Mip g .
‘ : L. 4B f Pt M3+ Ms
46 Ingtin ~
& S T
k IR SRR
152 - 83 New Lerh QR AT
- ' ~ New Lengkong
QB\AJB,) & ‘Plosa a ﬂ‘" 158 .\\
244 d [3}3 K o A0i
81 o e m, -
30%RF 309 RF“U\" 23% Retum Flow 10 END
f -5
i@ 2 & 234 (% RESERVOIR/WEIR
Irg . 145 / 7% RF \(% IRRIGATION
- e 15T MUNICIPAL / INDUSTRIAL
14 Keﬂgggno . () JUNCTION (CONFLUENCE OR FLOW SPLIT)
[.88 +— INFLOW
i * [Z HYDROPOWER PLANT
(5) Mrican Barrage l - DIVERSION CANAL
14 5. 65 - RETURN FLOW
I 2m == #~ ..~ RIER REACH
ar N Kediri) Gl_.. - PUMP
d N <% -
\A'” Q3 J 87 g+ Qo [FLOWMONITORING STATION
gegawewelr 715) \ - (}}:" lo‘
1 g (Iij) ;o ; X, 12 ~B0r wy
_ N P TIP
Wonorelo 33 ' qoq V4T “BY g+ n, 417
]-4'\91 16 7 }m‘ Iry (
66 ‘\16) Q4 ;3 . - . 40] Iry21rz
90 4 342" a Lodoyo Wiingi
“f’k IR 2 Lahor 27 e
Do e /0 /75», \m/ 72, 4k KR
9 26% RF ({5~ ol s ol A
- 6 ' 1207 .-3,3&“7 —a
L
',‘g{ @----- %2 S uami '-6(GQ\Senggumzh
Il'4 \ Ml
5 3
! 0{

119

Historically, the imposed minimum was only 7 m*/s. In recent years more water is needed

during the low flows seasons due to municipal supply and water quality concerns.
9.2 Modelling of the Brantas Basin with the SFEP

The model was setup to evaluate system performance over individual time steps as well as
simultaneous time steps up to one year. This was done to ease the use of the model as an
operational tool. PJT is currently using the model as a seasonal planning tool. Of particular

interest are the non-linear constraints in this problem, which are reviewed in the following.
93 Non-Linear Features

The general form of the objective function was defined earlier in Section 9.1. The term
related to pumping can be ignored, since the pump station under construction is a new
component that hasn’t existed over the last 23 years for which the input data are available.
Note that the objective function from Section 9.1 is non linear due to the power term. This
is the only non-linear item in the objective function, but it is rather complex since the values
of head, flow and efficiency have intricate links among them that should be preserved. Of

particular interest are non-linear flow and head constraints which are listed below.
9.3.1 Maximum Turbine Flows and Net Head

Sutami hydro power plant generates about the half of the hydro electric output of the entire
Brantas basin. The maximum turbine flows are given as a function of the available average

net head (NH) over a time step, where NH is given as:
NH = HW,, - TW,, 9.9)

HW,,, and TW,,, are the average head and tail water elevation over a given time step, and

they themselves are functions of the initial storage, inflow and outflow from the reservoir for

120

a given time step. Hence, one could write:

HW,, =f(ZQ;,,,ZQW V;,.) (9.10)

TW,, = (> Qou) 9.11)

The first expression does not include the ending reservoir storage since this is implicitly
included in the three given parameters. The second expression defines outflow as the only
factor that derives the tail water elevation through some form of stage-flow rating curve.
That relationship is in effect for all hydro power plants in the Brantas basin except in the case
of Sengguruh hydro power plant, where TW,,, of Sengguruh is equal to the HW, of Sutami

reservoir located downstream of it. In other words, the Sutami lake level defines the tail

water elevation for Sengguruh.

The desired choice is to route all outflows (ZQout) through the turbines. However, this
may not be possible since the limit on turbine flows is a function of the available NH, and
yet NH depends on the entire reservoir balance (} Qin , Y Qout and the starting reservoir
level for a time step). The maximum flow (QM) function was defined using the polynomial

fit based on the turbine data available from manufacturers, resulting in the following:

For NH > 78 m
QM =3 (0.03097220618 NH?-5.875362193265 NH + 321.32746923567) (9.12)

ForNH<78 m
QM =3 (0.018590866186 NH? - 2.089819347 NH +100.3274692357) (9.13)

Multiplier 3 denotes the maximum flow for the case when all three turbines in parallel

connection are operated at Sutami hydro power plant. The above relationship has been

incorporated into the model for this study.

121

9.3.2 Hydro Power Efficiency

Power is produced with variable efficiency, which depends on the combination of net head
and flow for a given time step. An attempt was made to derive a functional form of
efficiency using the historic operation data for Sutami and Selorejo power plants. This
attempt failed in the case of Sutami hydro power plant, since the historic data contained
errors which often provided efficiencies above 100%. The historic data were used for
developing an empirical expression for efficiency as a function of flow and head for Selorejo,
while the manufacturer’s specifications were used to develop the same kind of expression

for Sutami hydro power plant. The expressions are given as follows:

For Sutami hydro power plant:

EF = - 0.000040699891 Q*+0.010532122949 Q — 0.000055418277 NH? +
0.010878934817 NH -0.293522823168 (9.14)

For Selorejo hydro power plant:

EF = 0.004147914 Q* - 0.096314865 Q- 0.000674151 NH? + 0.055030742 NH +
0.13167155 (9.15)

The above relationships between turbine efficiency (EF), flow (Q) and head (NH) have been

included directly in the source code and used each time the power generation was calcualted.

9.3.3 Connection Tunnel

By far the most challenging non-linear constraint is related to the flows in the connection
tunnel between Lahor and Sutami reservoirs. These flows typically range between 5 and 10

m*/s, although they are known to have exceeded 20 m*/s on rare occasions. The tunnel flows

122

70, : :

Wiingi . J
a a Qa, . 240 |
J 6: 5 Lahoer 30% RF :
”4 . \‘\)(\ .
75;/\“ / 72 ,331\,,\ + 30% RF
Pl L \(/._/‘"“‘”\:/
SN T e, e P
62~ - %8, T30 e
81 N2y :
- Sutami 6o~y Sengguruh
N® =
Q3

Figure 9.3 Sutami and Lahor connection tunnel (131)
are a constituent element in the water balance equation for both Lahor and Sutami. Proper
modeling of those flows is essential for allocation studies and real time operation within the
Brantas river basin. Figure 9.3 gives the layout of the two reservoirs. Inflow into Sutami
reservoir consists of the return flow from Molek Irrigation (block 41), outflow from
Sengguruh weir (power flows through plant 60 along with spills via channel (71) when total
outflow exceeds power plant capacity) and the local inflow (Q;) within the catchment
between Sengguruh weir and Sutami reservoir. The only Inflow into Lahor reservoir is the
local runoff from its catchment (Q,). Lahor has two outflows: (a) downstream spill via
channel (72), and (b) connection tunnel connection tunnel numbered (131) in Figure 9.2.

Flows in the connection tunnel within one time step can be approximated using the

following:

Q=10vH (9.16)
where H is the average elevation differential between the two reservoirs over a given time
interval, i.e.

He (Els;—Ele) _(Ess -;-Ese) ©.17)

123

where:

Els starting elevation at Lahor for a time step (m)
Ele ending elevation at Lahor for a time step (m)
Ess starting elevation at Sutami for a time step (m)
Ese ending elevation at Sutami for a time step (m)

Of those, only Els and Ess are known, while Ele and Ese depend on:

(a) total inflow and outflow for Sutami reservoir;
(b) total inflow and outflow for Lahor reservoir; and,
(c) starting elevation of Lahor and Sutami (Els and Ess).

It should be noted that connection tunnel flows can take any direction between Sutami and
Lahor reservoirs. The connection tunnel flow can act as either inflow or outflow in the
balance equation of each reservoir. Therefore, the connection tunnel flow is a part of (a) and
(b) listed above. The problem of finding the best allocation in the basin considerably
complicated by the above functional dependencies, where the connection tunnel flow
depends on six other variables listed under (a), (b) and (c), while four of those listed under
(a) and (b) are also affected by the connection tunnel flow itself. Note that an error of 0.1
meters in assumed value for the head differential H gives an error in the estimate of the
connection tunnel flow in the order of 3.16 m*/s. The functional dependence is very sensitive
to the value of elevation differential H, thus requiring a sophisticated convergence scheme
in the process of generating feasible solutions. A feasible solution is the one where the
starting and ending levels of both reservoirs give a calculated value of the connection tunnel
flow, while the same value of the connection tunnel flow is included in the mass balance
equations for each reservoir. Permitted tolerance limit is +/-0.01 m?/s between the assumed

and calculated value of the connection tunnel flow.

124

9.4 Definition of Modelling Objectives

The objective function that can be used in the SFEP is not limited only to linear terms. Two
cases are considered, one referring to a single solution for each time interval and the other
referring to a simultaneous solution over the entire year. The following cost factors are
considered, expressed in cost for 1 m’ of deficit from the target for riparian flow and
reservoir storage and the revenue from allocating 1 m’® to industry, municipality, irrigation

and finally revenue from generating 1 KWh of hydro power:

Component Cost Factor (Rp)
riparian flow target 145/ m’
municipal demand -35/m?
industrial demand -51/m’
irrigation demand -25/m?
reservoir storage 0.06 / m’
hydro power -13.61 /KWh

Negative cost factors indicate benefits (revenue) to PJT, while positive cost factors describe
importance (weight) of an undesirable factor. The highest cost is incurred by violating the
riparian flow requirement, which is incurred for each m® of deficit required to maintain the
flow of 20 m?s in channel (85). An effort was made to model the existing cost parameters
that are currently charged by PJT. In that context, maintenance flow target of 20 m®/s is
considered an important political objective. As such, it has a higher value than industrial,
municipal or irrigation water use. According to the current fee structure hydro power has by
far the lowest priority. Using Sutami as an example, with rated head of 78 m, unit flow of
1 m?/s, average efficiency of 0.85 and the cost factor of 13.61 Rp/KWh, the revenue Rs over
a 10 day period is:

Rs = (9.807 78 -1 ~-0.85) KW 10 days ~24hr/day -13.61Rp/ KWh = 2123826.672 Rp

125

When expressed in the units of 1000 Rp, this is equivalent to the revenue of 2123 [10° Rp]
per 1 m*/s of flow for 10 days. On the other hand, 1 m*/s of municipal water use would
generate revenue of 86.4*10*35 = 30240 in the units of [10° Rp]. According to this cost
structure, reservoir releases should be made for other water uses and power should be
generated as a by-product of those releases. A possible conflict between consumptive use
and hydro power is only apparent in the case of the first three irrigation blocks, numbered
(40), (41) and (42) in the schematics in Figure 9.2. Other irrigation blocks are located
downstream and they could readily utilize flows released from hydro generation throughout

the year.

The above fee structure results in a priority policy which is in line with many other river

basins where hydro power generation is a by-product of reservoir releases made for other

purposes, especially in the dry season.
Case A: Single time step optimization

In this case each time interval is handled individually, which means that the model does not
use flow forecast beyond a single 10-day time step. The objective function can be

formulated in general as:
max{>P.Rp ~$Qp.Cp+5Q; Ry +5Qy R, +5Qu.Ryy +

9.18)
+Z(Qrm —Drm)'crm +Z(Qr —Dr)'cr}

Since the SFEP setup on the existing configuration without Wonorejo sub-system, the term
related to pumping costs (ZQp - Cp) can be ignored.

The SFEP was originally setup to solve the minimum cost flow problem in a network with
non-linear objective function and constraints. In the above formulation the objective

function is set to maximize the net benefit. To convert it to a form suitable for SFEP, the

126

terms within should change sign and maximization should change to minimization. This is
a simple mathematical conversion that has no physical meaning, however mathematically

the two forms of the objective function are equivalent.

min{-P.Rp ~FQ; Ry ~£Qpy Ry ~ZQm-Rm +Z(Dem ~Qemn)

Crm +Z(Dr —Qr)-Cr} (9.19)

Cost factors for hydro power, irrigation, industrial and municipal water use are given in the
input data file with negative signs which means that the target is to maximize them, while
the maintenance flow target and storage conservation have a positive sign since the model

is penalizing deficit of deviation from the ideal level for those two components.
Case B: Multiple time step optimization

In this case the objective is the same as in Case A but the entire year is solved at once, which
means that the model uses perfect flow forecast for 365 days. Using the same argument as
for case A related to the conversion of maximization of net benefit into a minimal cost flow

problem, the previous objective function can be expanded over all 36 time intervals

simultaneously.
mmZ{—ZP.Rp -XQ, R, -XQ, .R. -TQ_.R_+

(9.20)
+Z(Drm _Qrm)'crm +Z(Dr —Qr)'cr}

one should keep in mind that there are upper limits to consumptive (irrigation, industrial and
municipal) water use. Those three terms could have also been re-written using a positive

cost applied to the deviation from the ideal zone. In other words,

min{- £ Q; Ry | ©:21)

127

subject to:

Q;, <D, (9.22)

The above formulation is equivalent to
mm{Z(Din -Qin)-Ri,,} (9:23)

in the second formulation the constraint is included in the objective function.
Mathematically, those two forms state the same objective. At this point the SFEP was

programmed to use the former formulation, however that can be easily changed to

accommodate either form.

Case B is based on perfect flow forecast for the whole year. This is a major advantage which
should give better overall results in Case B than in Case A. The studies involving Case B

are of practical use only if they are aimed to develop reservoir operating guidelines.

9.5 Results

The first run was selected on three individual years typical of medium, wet and dry
conditions represented by years 1978, 1984 and 1991, respectively. Table 9.1 shows the
progression of the SFEP algorithm during the solution process. The first column shows the
value of the objective function for a given solution, with corresponding values of only the
first four independent variables belonging to that solution. The problem has 925 independent
variables (25 for each of the 37 time intervals) and additionally there are 703 dependent
variables (19 for each of the 37 time intervals). The entire mating pool therefore consists of
925 columns, too many to show in hard print. However, Table 9.1 is primarily of interest
in terms of the change of the values of the objective function. The year that was chosen in
Table 9.1 is 1991 (dry year) with simultaneous solution for the whole year. Channels (131),
(72) and (73) are the connection tunnel, Lahor reservoir spill and Sutami reservoir spill,

respectively, while component 61 is hydro power plant at Sutami reservoir (the values shown

128

in the table are all in flow units). Inflow into Lahor in the first time step is 7.48 m®/s
(=4.74+2.73), while the maximum hydro power flow at Sutami is about 132 m?/s, so there
is not much room to manoeuver and some spill is inevitable. This is why there is no large
variation of connection tunnel flow in the first time step, however the next 36 time steps are
different. Therefore, each row of 925 numbers contains enough information to rebuild one
complete feasible solution. The first number in each row identified as the “Penalty” is the
actual value of the objective function (9.20) as calculated by the model. Note that this value
can be either positive ore negative, and that the goal is to obtain the minimum possible value.
The initial 10 members of the mating pool have been improved on average by only 30% after
1000 more members were generated in a completely random manner. Additional 4000
random members improve the quality of the mating pool by about 45% compared to the
initial 15 members, but after that any additional improvement would be very small and

Table 9.1 Objective function for various stages of SFEP progression
The first 10 members of the mating pool

—— Penalty -——[l3l]——--[72]-—-—[73}--——[61]-
547501367.521 2.7 0.00 132.39
559135044 .575 4 64 2. 84 0.00 132.08
660889810.337 4.64 2.84 0.00 132.08
670514728.533 4.64 2.84 0.00 132.08
683568706.346 4.47 3.01 0.00 131.57
693739724.549 4.47 3.01 0.00 131.57
702861279.333 4.64 2.84 0.00 132.08
724973698.278 4.64 2.84 0.00 132.08
745785780.547 4.64 2.84 0.00 132.08
773558991.706 4.47 3.01 0.00 136.63

Mating Pool members after initialization procedure
resulting in 1000 randomly created individuals

-— Penalty ---[l3l]~———[72) === 73)}-——-[61]1-
427198566.742 2.84 0.00 132.08
443901576.517 4 47 3.01 0.00 131.57
468538947.104 4.47 3.01 0.00 131.57
471216857.657 4.47 3.01 0.00 131.57
473362569.525 4.64 2.84 0.00 132.08
478902846.830 4.57 2.91 0.00 131.86
479941884.497 4.64 2.84 0.00 132.08
499612370.646 4.47 3.01 0.00 133.00
499621437.714 4.47 3.01 0.00 134.76
503946079.600 4.47 3.01 0.00 131.57

Mating Pool after the first 10 recombinations

-— Penalty ---[131)]--——[72]----[73]-——=[61]-
38145555.645 4.57 2.91 0.00 131.85
349728097.574 4.47 3.01 0.00 131.57
356201935.008 4.47 3.01 0.00 131.57
378282973.290 4.57 2.91 0.00 131.85

129

424806143.423 4.64 2.84 0.00 132.08
427198566.742 4.64 2.84 0.00 132.08
437609286.822 4.49 2.99 0.00 131.61
443901576.517 4.47 g.Ol 0.00 131.57

447996201.007 4.47 .01 0.00 131.57
468538947.104 4.47 3.01 0.00 131.57
Mating Pool after 20 recombinations

-~ Penalty —-—[131]————[72)-===[73}-——-[61]-
-53184871.781 4, 3.01 0.00 131.57

-6952527.701 4.47 3.01 0.00 131.57

38145555.645 4.57 2.91 0.00 131.85
300866705.501 4.51 2.97 0.00 131.65
303438246.571 4.57 2.91 0.00 131.85
349728097.574 4.47 3.01 0.00 131.57
356201935.008 4.47 3.01 0.00 131.57
378282973.290 4.57 2.91 0.00 131.85
410797683.536 4.53 2.95 0.00 131.74
422141278.291 4.47 3.01 0.00 131.57

Mating Pool after 30 recombinations

-- Penalty ———[131]———-[72} -=---[73}----[61]~-
-53184871.781 3.01 0.00 131.57
-20221171.995 4 57 2.91 0.00 131.85
-12657188.718 4.47 3.01 0.060 131.57

-6952527.701 4.47 3.01 0.00 131.57

6154141.700 4.47 3.01 0.00 131.57

21927448.248 4.57 2.91 0.00 131.85

23135214.139 4.47 3.01 0.00 131.57

38145555.645 4.57 2.91 0.00 131.85

83895665.813 4.47 3.01 0.00 131.57
211459134.476 4.57 2.91 0.00 131.85
Mating Pool after 40 recombinations

-—- Penalty —--[131]—~——{ 72]---—[73]-—-—[61l] -
-53184871.781 4.47 3. .00 131.57
-52653475.505 4.51 2. 97 0 00 131.69
-38911474.187 4.57 2.91 0.00 131.85
-35819246.664 4.48 3.00 0.00 131.60
-29851943.183 4.49 2.99 0.00 131.62
-20221171.985 4.57 2.91 0.00 131.85
-15289749.867 4.48 3.00 0.00 131.60
-12657188.718 4.47 3.01 0.00 131.57
-12069957.783 4.57 2.91 0.00 131.8S5

-6952527.701 4.47 3.01 0.00 131.57
Mating Pool after 50 recombinations

-—- Penalty -——[131]-———[72]—---[731-——-{ 6l] -
-59880515.731 2.91 .00 131.85
-58610365.734 4 49 2.99 0 co 131.64
-53184871.781 4.47 3.01 0.00 131.57
-52653475.505 4.51 2.97 0.00 131.69
-50644168.650 4.57 2.91 0.00 131.84
~42471090.880 4.57 2.91 0.00 131.85
-39522745.687 4.50 2.98 0.00 131.67
-38911474.187 4.57 2.91 0.00 131.85
-38063458.027 4.48 3.00 0.00 131.59
-35819246.664 4.48 3.00 0.00 131.60
Mating Pool after 100 recombinations

-- Penalty ---[(131]----[72]----[73]----[61]-
-63268689.809 4.50 2.98 0.00 131.65
-62395074.722 4.57 2.91 0.00 131.85
-61696592.084 4.50 2.98 0.00 131.65

130

-60801009.577 4.50 2.98 0.00 131.65
~-59880515.731 4.57 2.91 0.00 131.85
-58993359.880 4.50 2.98 0.00 131.65
-58610365.734 4.49 2.99 0.00 131.64
-58092264.331 4,51 2.97 0.00 131.68
-57127295.450 4.57 2.91 0.00 131.87
-53369495.251 4.50 2.98 0.00 131.65
Mating Pool after 150 recombinations

- Penaltg -—-[131]—-———-[72}-u——[73} -——={ 611-
-67027274.821 4.50 2. 0.00 131.65
-66958659.611 4.50 2.98 0.00 131.65
-66639419.358 4.48 3.00 0.00 131.60
-66581659.445 4,57 2.91 0.00 131.87
-66490324.241 4.47 3.01 0.00 131.57
-66466367.861 4.50 2.98 0.00 131.66
-66168593.032 4.57 2.91 0.00 131.87
-65068900.831 4.51 2.97 0.00 131.69
-64712454.207 4.48 3.00 0.00 131.59
-64622448.540 4.57 2.91° 0.00 131.87
Mating Pool after 200 recombinations

-—- Penalty --—[131]————[72]—---[73]-—-—--{ 61]-
-67788538.134 . 0.00 131.70
-67373646.137 4 64 2. 84 0.00 132.08
-67243249.961 4.64 2.84 0.00 132.08
-67142915.424 4.51 2.97 0.00 131.69
-67027552.382 4.50 2.98 0.00 131.65
-67027274.821 4.50 2.98 0.00 131.65
-67011366.233 4.47 3.01 0.00 131.57
-66958659.611 4.50 2.98 0.00 131.65
-66664978.566 4.51 2.97 0.00 131.69
~66639419.358 4.48 3.00 0.00 131.60
Mating Pool after 300 recombinations

—— Penalty ——-[131]————[72]-——~[73]----[61]-
~71088013.412 .51 2 0.00 131.69
-70843144.402 4.53 95 0.00 131.74
-70044911.699 4.49 2.99 0.00 131.61
-70038755.226 4.52 2.96 0.00 131.70
-69949546.150 4.53 2.95 0.00 131.74
-69312838.383 4.52 2.96 0.00 131.69
-69111450.715 4.53 2.95 0.00 131.74
-69081912.797 4.53 2.95 0.00 131.74
—-68815832,367 4.53 2.95 0.00 131.74
-68758825.843 4.53 2.95 0.00 131.74

Mating Pool after 500 recombinations

~— Penalty ---[131]--=~[72]——-[73]----[61]-
~72495075.526 4.49 2.99 0.00 131.62
-72029875.865 4.47 3.01 0.00 131.57
-72023906.988 4.48 3.00 0.00 131.59
-71977750.082 4.53 2.95 0.00 131.75
—-71970862.692 4.49 2.99 0.00 131.61
=-71525229.395 4.47 3.01 0.00 131.57
—71800594.002 4.53 2.95 0.00 131.74
-71796512.238 4.48 3.00 0.00 131.59
-71786575.267 4.50 2.98 0.00 131.64
-71785525.034 4.48 3.00 0.00 131.59

Mating Pool after 1000 recombinations
-- Penalty ---[131]----[72]———-[73)--—--{ 61]-

-74451941.077
-74367166.629

4.48
4.48

3.00

131

0.00 131.60
0.00 131.60

-74360959.943 .00 131.60

4. 3 0
-74291170.388 4.48 3.00 0.00 131.60
-74288269.285 4.48 3.00 0.00 131.60
-74288045.782 4.48 3.00 0.00 131.60
~74282711.601 4.48 3.00 0.00 131.60
-74275993.082 4.48 3.00 0.00 131.60
-74252361.960 4.51 2.97 0.00 131.68
-74237789.123 4.49 2.99 0.00 131.61

it would come at a great cost in CPU time. Yet genetic recombination operator speeds up
the improvements tremendously. After starting the process of recombination, of the first 10
individuals generated using the cross-over technique, 7 were eligible for inclusion in the
mating pool. In the next 20 recombinations the model managed to find 2 solutions which do
not violate the maintenance flow target and provide higher reservoir levels, such that huge
positive penalties have disappeared and the negative values (indicating benefit to PJT) have
prevailed. Again, only 4 parents have survived the transition from the tenth to the twentieth
recombination, six of them were replaced in the mating pool by their children. This can be
identified by comparing the values of the objective functions in the mating pool after the first
10 recombinations and after 20 recombinations. A high quality parent solution, such as the
top ranked parent after 20 recombinations with the objective function of -5318487.781 will
offer its genetic material to almost 100 children before it is pushed out of the mating pool by
new solutions with better fitness. After completing the first 1000 recombinations, there is
very little improvement. Most independent decision variables have converged and further
progress is only possible by mutation, which was setup as a small normalized change to
about 2% of all independent decision variables, such that it plays a minor role in this
problem. By comparison, solution of individual time steps of Case A resulted in the total
value of the objective function for the whole year of -41743714 Rp (negative value
representing benefit due to minimization of the objective function), almost 50% below the
-74237789 Rp obtained for annual optimization in Case B, which was to be expected due to

having a perfect inflow forecast in Case B..

It takes roughly 1 second of CPU time on a 500 MHz PC to generate 100 solutions. The
above simulation run has a total of 2000 generated solutions which takes about 20 seconds.

Included in the solution process is a sophisticated iteration scheme which solves the reservoir

132

balance for Lahor and Sutami reservoirs several times iteratively until the connection tunnel
and water balance constraints are all satisfied. This iterative scheme reduces the variance of
the initially generated guess for the connection tunnel flow within the feasible realm, which

is why large variation of the values is not apparent in Table 9.1 even at the initial stage.

Both objective functions have flaws that must be dealt with. Using a single time step
optimization in an effort to maximize hydro power results in an empty reservoir within
several time intervals. The reservoir then does not re-fill for the rest of the year since hydro
power has higher cost factor than storage. Therefore, it was concluded that Case A cannot
be run without including some kind of reservoir operating guidelines, such as the operating
zones used in Case Study II or a realistic hydro power target for each time interval.
Typically, Case B should be run first and its results analyzed in an effort to try to generate
some the shape of storage zones and their pricing vectors which work the best for short term

forecasts considered in Case A. This effort was beyond the scope of testing the SFEP solver.

The danger of finding the best overall solution using the objective function as in Case B
results in an interesting phenomena — the model decides to empty storage at the end of the
year and thus increase power production. To counter this, an additional time interval was
added to include the first 10 days of the following year and place the minimum power
generating elevation of 260 m at Sutami at the end of 37* time interval, which is then
discarded in the final analyses. This worked in some cases, but it still resulted in reservoir
levels that were below the full supply level at the end of the year, when the wet season has
usually been in full swing for at least a month. The effect of the connection tunnel routine

on reservoir levels is discussed below.

Objective function B has been applied to the Brantas Basin in all 23 years (1977 to 1999).
In comparison to the historic operation, it provided higher power generation in each year, and
on average by about 6.5% in spite of the high maintenance flow requirement of 20 m?/s

which was always met in the model while in reality the minimum target was only 7 m?/s.

133

Higher maintenance flow requirement has caused an increase in irrigation deficits in the

Delta region on average by about 3.97%.

There is a hydro power plant only downstream of Sutami, so any spills from Lahor are a loss
to power generation at Sutami. The operators are then faced with an enviable task of having
to generate enough head between the two reservoirs to minimize spills without having a
reliable inflow forecast. Consider for example simulated results for year 1992. This was a
wet year, so the ideal should be to keep both reservoirs full (i.e. Lahor elevation at 272.7 m
and Sutami at 272.5 m). This means that the available head is only 0.2 meters. According
to (9.11) and (9.12) this corresponds to a tunnel flow of 4.47 m’/s. Connection tunnel flow
of 15 m*/s corresponds to about 2.25 m average head differential between the two reservoirs
over a time step. Assume the following situation: both reservoirs are full, Lahor inflow is
15 m*/s and the reservoir operators want to send 15 m*/s of Lahor inflow into Sutami via the
connection tunnel (this results in no spills from Lahor). To obtain 15 m*/s of tunnel flow the
elevation of Sutami should be reduced from 272.5 to 268.4 over a given time step. Lahor
elevation would remain the same since its inflow equals outflow (in this case all outflow is
placed in the connection tunnel). Therefore, the average elevation at Lahor is 272.7, while

the average elevation at Sutami is
(272.5+268.4)/12 = 270.45

This gives the difference between the average elevation of Lahor and Sutami of 272.7 -
270.45 = 2.25 m, which provides the necessary head differential to rout a flow of 15 m?/s
through the tunnel. This also means the loss of head for power generation of Sutami in the
order of 2.25 m. Inflows will change in subsequent time steps and the operators must try to
maintain levels of both reservoirs close, while in the same time trying to minimize the spill

from both reservoir that would bypass hydro power plant at Sutami.

A manual check was conducted to verify that the tunnel flows calculated as a function of the

134

Table 9.2 Tunnel flows from the model and from direct calculation

Lahor Sutami | Connection | Connection tunnel
Year 1993 10-day 10-day | tunnel flows flows using
10-day ending ending ending | from SFEP | hydraulic formula
elevation | elevation (m3/s) (m3/s)
initial elevation | 270.770 | 266.120

1 271.697 | 268.018 20.41 20.41
2 272.700 | 268.814 19.44 19.45
3 272.700 | 270.677 17.18 17.19
4 272.700 | 271.171 13.33 13.33
5 272627 | 271.823 10.80 10.80
6 272.700 | 272.162 8.19 8.19
7 272.700 | 272.498 6.08 6.08
8 272.700 | 269.889 12.27 12.27
9 272.066 | 268.665 17.62 17.62
10 272.111 | 267.785 19.65 19.66
11 272.602 | 272.490 14.90 14.90
12 272.700 | 271.943 6.59 6.59
13 271.166 | 268.034 13.95 13.94
14 268.862 | 268.959 12.32 12.32
15 269.359 | 268.846 4.56 4.56
16 271.732 | 272.144 226 2.26
17 272.700 | 272.062 3.37 3.37
18 272.260 | 272.190 5.95 5.95
19 272.342 | 272.149 3.63 3.63
20 272.481 | 272.459 3.28 3.28
21 272.580 | 272.385 3.30 3.30
22 272.559 | 272.500 3.56 3.57
23 272646 | 272.479 3.36 3.36
24 272.572 | 272.425 3.96 3.96
25 272.089 | 271.670 5.32 5.32
26 272.064 | 272.184 3.87 3.87
27 272.368 | 272.099 2.73 2.73
28 267611 | 263.353 15.05 15.05
29 262.672 | 264.432 11.18 11.18
30 265.388 | 263.657 -1.19 -1.19
31 262.915 | 264.029 5.56 5.56
32 265.147 | 263.805 3.38 3.38
KK 264.122 | 264.172 8.04 8.04
34 265.670 | 264.526 7.40 7.40
35 262.610 | 261.498 10.62 10.62
36 261.632 | 261.775 6.96 6.96

135

average reservoir elevations at Sutami and Lahor is within 0.01 m*/s of the value obtained
by the SFEP simulation. This was followed by a check of the reservoir balance for Sutami
and Lahor, since the tunnel flow is a constituent of reservoir balance for both reservoirs.
In column 4 of Table 9.2 the tunnel flows were assigned by the SFEP, while in column 5
they are calculated as function of the average head differential between the two reservoirs.
A table similar to Table 9.2 can be generated for each simulated year. Figure 9.4 shows the
elevation of Lahor and Sutami for all 23 years using objective function Case B.

Figure 9.4 Sutami and Lahor Elevations from SFEP Simulation Sutami
-------- Lahor
. oot v K w 0 R 1 oM [n i
= 2§ | Y S8 R 1 R e , .- ' '
.E. ' v () ; : ! 5 !
C 267 - - . ' VR
K=} " ! I ' g ' : |
g 263¢§-------- - | R L I § e o 4 !
3 4
W 2sg -
255 4 ; : ; ; ; : — ; : 1
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
Time (years) ‘

Figure 9.4 Sutami and Lahor Elewations from SFEP Simulation
275 -
1 AL oo IR T N0 WV R & 1&
=3 [V 3 7 2% : ¥ iR
= 267 -eenan ... M1 S - s 2. b i, R
S 3 1 { T
S t 1 :) '
] H : W o Al
> 263 1- } t = fe-- i- : +
[H e - e
- : f i - '
259 ot et R et LR PSR =
889 1990 891 92 993 094 0I5 097 998 B33 2000 |
Ttme (years) :

The elevations of the two reservoirs are closely tied together, which should be expected as
a result of the connection tunnel. Table 9.2 demonstrates that the connection tunnel flows
comply with difference between the two reservoirs. Large inflows into Lahor cause lowering
of the elevation at Sutami reservoir in order to create enough head differential to route most

of Lahor inflows through the tunnel. This in turn reduced the head of Sutami reservoir, but

136

it also increases the net head of Sungguruh hydro power plant located upstream of Sutami
dam. This kind of constraint could not be handled using other models based on linear

programming.

PJT indicated a strong desire to use this model as a planning tool to study the various cost

factors as part of the on-going negotiation if the new water pricing policy with the Provincial

Government of East Java.

9.6 Conclusions

The Brantas river basin offers a typical size water allocation problem with several common
non-linear constraints related to hydro power generation, and a few unique non-linear
constraints related to the connection tunnel flow. The SFEP solver was modified to include
several iterative steps between solving the balance equation at Lahor and Sutami reservoir
such that both the connection tunnel flow formula (9.17) and both reservoir balance
equations are satisfied. These iterative steps are also a form of “gene therapy’ approach, but
with additional sophistication since two reservoirs and their levels are involved, along with
the dynamic maximum turbine flows from Sutami reservoir. The SFEP managed to keep all
generated solution within the feasible domain and progressed to the favorable regions of the

search space rather quickly.

The only downside in solving this problem for the whole year (Case B) is that it seems that
an annual solution must be obtained with one or more time intervals of the following year
included in the simulation, to avoid having the ending reservoir level of annual simulation
at the minimum operating level for its respective hydro power plant. These time intervals
belong to the following year and they can bias the solution in the given year if the inflows

are excessively dry or wet.

137

10 CONCLUSIONS
10.1 Summary of the SFEP Features

This research attempted to develop a specialized type of genetic algorithm suitable for
solving non-linear network flow programs which may be non-linear both in terms of bounds
and the objective fumction. The main features of the approach are the massive initialization
procedure that initiates the search from many feasible points in the search space
simultaneously, and recombination procedure which maintains feasibility of offspring by
employing the gene therapy operator. The search can also be assisted by using heuristic rules
that generate more individuals in the favorable areas of the search space when such areas can
be determined. The algorithm provides a stable and relatively fast convergence when
compared to other similar search methods, mainly due to restricting the search within the
feasible region. This helps reduce the large overhead associated with generating infeasible

solutions which is common to other EP search methods.

The proposed algorithm was first tested on a series of non-linear transportation problems for
which various high quality solutions were available in the literature. In addition, the linear
case was added and its solution compared to a standard linear TP solver. The proposed
algorithm either equaled or surpassed the previous solutions in terms of the quality of the
objective function, and it proved to be over ten times faster for several cases of complex
objective functions with multiple minima. The test problems ranged between 49 and 100

decision variables.

The second set of tests was a water resources network with unusual constraints related to the
sum of hydro power being equal to a specified power target. The main difficulty in this
problem was that this constraint was not a direct function of flow. Rather, it is a function of
all 52 inflows, the starting reservoir levels at the beginning of the year and the reservoir

outflows at each of the time steps preceding a given time step. This constraint could not be

138

included in the model such that the model ensures the search within the feasible region alone.
Hence, a high penalty term had to be added for violating this constraint. Although this seems
like a departure from the stated goal to search only within the feasible region, the final results
obtained in the study seem very optimistic.

The final test runs were conducted on the Brantas river basin modeling schematics. This
problem is of standard size for many water resources studies and it has all components that
typically play a role in studies of this size. The objective function is non-linear, and the
constraints related to hydro power and the connection tunnel are also non-linear. This
problem required additional work on modifying and expanding the gene therapy concept to
include difficult hydraulic constraint related to the connection tunnel flows. The model
provides fast solutions however the period being optimized has to be extended by a few

additional time intervals that should be discarded in the final analyses.

10.2 Future Research Directions

There are several possible improvements to this approach that require a larger study
framework. At this point the user has to “calibrate” the model to a particular problem by
finding the most efficient size (number of parents) of the mating pool, the optimal number
of individuals generated during initialization as well as the best mutation frequency and
mechanism. These issues can be resolved by building a database of previously solved
networks and recording their size and complexity along with the best parameters that were
found for a particular application. The solver should eventually be able to scan a new
problem in terms of its size, the shape of the objective function and the complexity of the
constraints, try several parameter options and record the one that works the best such that on
similar problems in the future it can refer to the best set of parameters that were determined
on earlier runs. This means that the SFEP solver can be programmed to be self-adaptive to
a various size and types of network flow problems. The process of developing self-adapting

mechanism must be coupled with building a database of parameters used in the previous

139

solutions that the model could access and “learn” from them. This undertaking was beyond

the scope of this research.

For example, when the objective function is clearly defined for each variable, as in the case
of the transportation problem example, the solver could inspect the values in each cell by
solving the objective function for that cell for 100 discrete values of the argument. The
values with the best fitness (i.e. the local minimums) would then be placed in the database

and used in the initialization procedure to generate more solutions in the favorable areas of

the search space.

For each application the user has to decide which arcs form the maximum spanning tree.
This means that the user must know what a given network represents and what are the
decision variables in it. Similar to other heuristic search techniques, an application of this
algorithm is problem specific, and the knowledge about the problem being solved is
essential. An expert system encompassing a database of previous successful applications
would help a novice user, but the final success of this kind of tool is still very much

dependent on the proper setup, which depends on the experience and judgement of the user.

140

11 REFERENCES

Alberta Environment. 1995. Water Resources Management Model (WRMM,) User’s Manual.
Calgary, Alberta.

Ahuja, R.K, Goldberg, A.V., Orlin, J.B. and Tarjan, R.E. 1992. Finding minimum cost flow
by double scaling. Mathematical Programming, 53, p. 243-266.

Ahuja, R.K, Magnanti T.L., Orlin, J.B. (1993). Network Flows. Prentice Hall.

Andrews, E.S., F.I. Chungand J.B. Orlin 1993. Multilayers, priority-based simulation of

conjunctive facilities. Journal of Water Resources Planning and Management, ASCE,

118(1), p. 32-53.

Avriel, M. 1976. Nonlinear Programming: Analysis and Methods. Prentice Hall, Englewood
Cliffs, NIJ.

Back, T., F. Hoffmeister and H.P. Schewel. 1991. A survey of evolution strategies.
Proceedings of The Fouth International Conference on Genetic Algorithms. R. K. Belew and

L.B. Booker (Eds),2. Morgan Kaufmann, San Mateo, CA.

Back, T. and H.P. Schewel. 1993. An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation 1(1), p. I-23. The Massachusetts Institute of
Technology.

Barr, R.S., F. Glover, and D. Klingman. 1974. An improved version of the out-of-kilter

method and comparative study of computer codes. Mathematical Programming., 7, p. 60-86.

Barahona, F., and E. Tardos. 1989. Note on Weintraub's minimum cost circulation algorithm.

141

SIAM Journal of Computing, 18, p. 579-583.

Bellman, R.E. 1957. Dynamic Programming. Princeton University Press, N.J.

Bertsekas, D.P. 1979. A distributed algorithm for the assignment problem. Working Paper,
Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Bertsekas, D.P. 1987. Dynamic Programming: Deterministic and Stochastic Models.
Prentice Hall, Englewood Cliffs, NJ.

Bertsekas, D.P., and P. Tseng. 1988. Relaxation methods for minimum cost ordinary and

generalized network flow problems. Operation Research, 36, p. 93-114.

Bhaskar, N.R. and E.E. Whitlach. 1980. Derivation of monthly reservoir release policies.
Water Resources Research, 16(6), p. 987-993.

Bijaya, P.S., L. Duckstein & E. Z. Stakhiv. 1996. Fuzzy rule-based modeling of reservoir
operation. Journal of Water Resources Planning and Management, ASCE, 122(4).

Bland, R.G. and D.L. Jensen. 1992. On the computational behaviour of a polynomial-time
network flow algorithm. Mathematical Programming, 54, p. 1-39.

Box, M.J., D. Davies and W.H. Swann. 1969. Nonlinear optimization techniques. /C/
Monograph 5, Oliver and Boyd, Edinburgh.

Bradley, G., G. Brown and G. Graves. 1977. Design and Implementation of large scale
primal transhipment algorithms. Management Science., 21, p. 1-38.

Brendecke, C.M. 1989. Network models of water rights and system operations. Journal

142

of Water Resources Planning and Management, ASCE, 115(5), p. 684-696.

Brooke, A., D. Kendrik, and A. Meeraus. 1996. GAMS: A User's Guide. The Scientific
Press, Redwood City, California.

Brown, R.R. 1959. A generalized computer procedure for the design of optimum systems.
AIEE Transaction I, Computational Electronics 78, p. 285-293.

Brown, G.G. and R.D. McBride. 1984. Solving generalized networks. Management
Science 30(12), p. 1947-1523.

Brown, G.G., R.D. McBride, and R.K. Wood. 1985. Extracting embedded generalized

networks from linear programming problems. Mathematical Programming, 21, p. 11-31.

Brown, K.M., and J.E. Dennis Jr. 1972. Derivative free analogues of the levenberg-
marquardt and Gauss algorithms for nonlinear least squares approximation. Numerical

Mathematics 18, p. 289-297.

Busacker, R.G. and P.J. Gowen. 1961. A procedure for determining minimal-cost network
flow patterns. ORO Technical Report 15, Operational Research Office, John Hopkins
University, Baltimore, MD.

Busacker, R.G. and T.L. Saaty. 196S5. Finite Graphs and Networks. McGraw Hill, New York.

Chung, F.I., M.C. Archer & J.J. DeVries 1989. Network flow algorithm applied to
California aqueduct simulation. Journal of Water Resources Planning and Management,

ASCE, 115(2), p. 131-147.

Curry, H.B. 1944. The method of steepest descent for nonlinear minimization problems.

143

Quarterly Applied Mathematics 21, p. 258-261.

Dantzig, G.B. 1963. Linear Programming and Extension. Princeton University Press,

Princeton, NJ.

Davis, L. (Editor). 1987. Genetic Algorithms and Simulated Annealing, Morgan Kaufmann
Publishers, San Mateo, CA.

Davis, L. 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.

Denardo, E. 1982. Dynamic Programming Theory and Applications. Prentice Hall,
Englewood Cliffs, NJ.

De Jong, K.A. 1975. An analysis of the behaviour of a class of genetic adaptive systems.
Ph.D. Thesis, University of Michigan. Dissertation Abstract International, 36(10), 5140(B).

De Jong, K.A. 1988. Learning with genetic algorithm: an overview. Machine Learning, 3
(2), p. 121-138.

De Jong, K.A. 1990. Using genetic algorithms for supervised concept learning. Proceedings

of the Second International Conference on Tools for AL

Doris R. R. and S. Chen. 1981. A comparison of three algorithms for finding fundamental
cycles in a directed graph. Networks 11, p. 1-12.

Edmonds, J., and R.M. Karp. 1972. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of ACM, 19, p. 248-264.

Elam, J., F. Glover, and D. Klingman. 1979. A strongly convergent primal simplex algorithm

144

for generalized networks. Mathematics of Operations Research, 4, p. 39-59.

Evanson, D.E. & J.C. Moseley. 1970. Simulation/optimization techniques for multi-basin

water resources planning. Water Resources Bulletin, 6(5), p. 725-736.

Fletcher, R., and C.M. Reeves. 1964. Function minimization by conjugate gradients. Journal
of Computing 7, p. 149-154.

Fletcher, R., and M.J.D. Powell. 1963. A rapid convergence descent method for

minimization. Journal of Computing 6, p. 163-168.

Fogel, L.J., Owens, A.J., and Walsh, M.J. 1966. Artificial Intelligence Through Simulated
Evolution, John Wiley, Chichester, UK.

Ford, L.R., and D.R. Fulkerson. 1962. Flows in Networks. Princeton University Press,

Princeton, NJ.

Forrest, S. 1993. Proceedings of the Fifth International Conference on Genetic Algorithms.
Morgan Kaufmann, San Mateo, CA.

Fulkerson, D.R. 1961. An out-of-kilter method for minimal cost flow problems. SIAM
Journal on Applied Mathematics, Vol. (9), No. 1.

Gill, P.E., and W. Murray. 1972. Quasi-Newton methods for unconstrained optimization.

Journal of Industrial and Applied Mathematics 9, p. 91-108.

Glover, F. 1987. Genetic algorithms and scatter search: unsuspected potentials. Statistic and

Computing, Vol. 4.

145

Glover, F., D. Karney and D. Klingman. 1974. Implementation and computational
comparisons of primal, dual and primal-dual computer codes for minimum cost network flow

problem. Networks, 4, p. 191-212.

Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA.

Glover F. 1999. Scatter Search and Path Relinking. To appear in New Methods of
Optimization. McGraw Hill.

Grafenstette, J.J. 1987. Incorporating problem specific knowledge into genetic algorithms.
in Genetic Algorithms and Simulated Annealing, p. 42-60, Morgan Kaufmann Publishers,

San Mateo, CA.

Gunter, R. 1994. Massively parallel simulated annealing and its relation to evolutionary

algorithms. Evolutionary Computation, Vol. 1, (4), p. 361-383.

Goldberg, A.V. and R.E. Tarjan. 1987. Solving Minimum Cost Problem by Successive
Approximation. Journal of ACM 35(1988), p. 921-940.

Goldberg, A.V. and R.E. Tarjan. 1988. Finding minimum cost circulations by cancelling
negative cycles. Mathematics of Operations Research 15 (1990), p. 430-466.

Goldberg, D. 1987. Genetic algorithms in pipeline optimization. Journal of Computing in
Civil Engineering, Vol. 9, No.l.

Golden, B.L. and T.L. Magnanti. 1977. Deterministic Network Optimization: A
Bibliography. John Wiley & Sons Inc.

146

Goldstein, A.A. 1962. Cauchy's method of minimization. Numerical Mathematics 4, p. 146-
150.

Goldstein, A.A. 1965. On Newton's Methods. Numerical Mathematics 7, p. 391-393.

Grefenstette, J.J. 1987. Proceedings of the Sécona' International Conference on Genetic

Algorithms. Lawrence Erlbaum Associates, Hillsdale, NJ.
Hillier, F.S., and G.J. Lieberman. 1995. Introduction to Operations Research. McGraw Hill.

Holland, J.H. 1975. Adaption in Natural and Artificial Systems. University fMichigan Press,
Ann Arbor, Michigan.

Hooke, R., and T.A. Jeeves. 1961. Direct search solution of numerical and statistical

problems. Journal of Applied Computational Methods 8, p. 212-229.
Householder, A.S. 1953. Principles of Numerical Analysis. McGraw Hill, New York.

Hunter, A. 1998. Crossing over genetic algorithms: the sugal generalised GA, Journal of
Heuristics, Vol 4, p. 179-192.

Ilich, N. and S.P. Simonovic. 1998. Evolutionary Algorithm for Minimization of Pumping
Costs. ASCE Journal of Computing, Vol. 12, No.4.

Ilich, N. 1993. Improvement of the return flow allocation in the water resources management
model (WRMM) of Alberta Environment. Canadian Journal of Civil Engineering, Vol. 20,
No. (4).

Iich, N. and S.P. Simonovic. 2000 (a). The benefits of computerized real-time river basin

147

management in the Malahayu reservoir system. Canadian Journal of Civil Engineering.

Vol. 27, No. I., p. 55-64.

Ilich, N., R. Drury, P. Godman and S. Simonovic. 2000 (b). Operation of
Bighorn/Brazeau hydro power system of Transalta Utilities Corporation. Proceedings of
the XIII International Conference on Computational Methods in Water Resources, Vol. 2,

p. 991-998. A.A. Balkema Publishers, Rotterdam.

Hich, N. and S.P. Simonovic. 2001. An evolution program for non-linear transportation

problems. To be published in the Journal of Heuristics. Kluwer Academic Publishers,

March 2001.

Iri, M. 1960. A new method of solving transportation network problems. Journal of the
Operation Research Society of Japan, 3, 27-87.

Jacoby, S.L.S., J.S. Kowalik, and J.T. Pizzo. 1972. Iterative Methods for Nonlinear
Optimization Problems. Prentice Hall, Englewood Cliffs, NJ.

Janikow, C. and Z. Michalewicz. 1990. Specialized genetic algorithms for numerical
optimization problems. Proceedings of the International Conference on Tools for AI, 798-

804.

Jensen, P.A., and W. Barnes. 1980. Network Flow Programming. Wiley, New York.

Jewell, W.S. 1958. Optimal flow through network. Interim Technical Report 8, Operational
Research Center, MIT, Cambridge, MA.

Kantorovich, L.V. 1945. On an effective method of solving extremal problems for aquadratic
functionals. Compt. Rend. Acad. Sci. URSS. 48, 455-460.

148

Kennington, J.L., and R.V. Helgason. 1980. Algorithms for Network Programming.
Wiley-Intersence, New York.

Kirkpatrick, S., C. Gelatt, and M. Vecchi. 1983. Optimization by Simulated Annealing.

Science.

Klein, M. 1967. A primal method for minimal cost flows with application to the

assignment and transportation problems. Management Science, 14, 205-220.

Koza, J. 1993. Genetic Programming: on the programming of computers by means of

natural selection. MIT Press.

Kowalik, G.A., and M.R. Osborne. 1968. Methods for Unconstrained Optimization
Problems. Amer. Elsievier, New York.

Kuhn, H.W. and A.W. Tucker. 1951. Nonlinear Programming, in Jerzy Neyman (ed.),
Proceedings of the Second Berkley Simposium, University of California Press, Berkley,

1951, p. 481-492.
Koza, J.R. (1992). Genetic Programming, MIT Press, Cambridge, MA.

Kuczera, G. and G. Diment. 1988. General water supply system simulation model:

WASP. Journal of Water Resources Planning and Management, ASCE, 114(4), p. 365-
382.

Labadie, J.W., DA. Bode, and A.M. Pineda. 1986. Network model for decision-support
in municipal raw water supply. Water Resources Bulletin, Vol. 22, No. 6, p. 927-940.

Lansley, K., and L. Mays. 1989. Optimization model for water distribution system design.

149

Journal of Hydraulics, Vol. 115, No. 10.

Levenberg, K. 1944. A method for the solution of certain nonlinear problems in least
squares. Quarterly Applied Mathematics, Vol 2, p. 164-168.

Loucks, D.P., J.R. Stedinger J.R. and D.A.Haith 1981. Warer Resources Systems
Planning and Analysis. Prentice Hall Inc., Englewood Cliffs, N.J.

McBride, R.D. 1985. Solving embedded generalized network problems. European Journal
of Operational Research 21, p. 82-92.

McCormick, G.P. 1983. Nonlinear Programming: Theory, Algorithms and Applications.
Wiley, New York.

Michalewicz, Z. 1994. Genetic Algorithms + Data Structures = Evolutionary Programs,

Springer-Verlag, KG, Berlin, Germany.

Michalewicz, Z., Janikow C., and Krawczyk J. 1992. A modified genetic algorithm for
optimal control problems, Computers and Mathematics with Applications, 23 (12) 83-94.

Michalewicz, Z., Vignaux, G.A. and Hobbs, M. 1991. A non-standard genetic algorithm for
the non-linear transportation problem. ORS4 Journal of Computing, Vol. 3, No. 4, p. 307-
316.

Minty, G.J. 1960. Monotone Networks. Proceedings of the Royal Society of London, 2574,
p. 194-212.

Murty, K.G. 1992. Network Programming. Prentice Hall.

150

Nelder, J.A. and R. Mead. 1965. A simplex method for function minimization. Journal of
Computing Vol. 7, p. 308-313.

Oliviera, R. and D.P. Loucks. 1997. Operating rules for multi reservoir systems. Water
Resources Research, Vol. 33, No. 4, p. 839-852.

Orlin, J.B. 1988. A faster strongly polynomial minimum cost flow algorithm. Proceedings
of the 20th ACM Symposium on the Theory of Computing, p. 377-387.

Ortega, J. M., and W.C. Rheinboldt . 1967. Iterative Solution of Nonlinear Equations in

Several Variables. Academic Press, New York.

Ostrowski, A.M. 1967. Contributions to the theory of the method of steepest descent. Archive
of Rational Mechanics Annals 26, p. 257-280.

Powell, M.J.D. 1962. An iterative method for finding stationary values of a function of
several variables. Journal of Computing 5, p. 147-151.

Rechenberg I. (1965). A Cybernetic Solution Path of an Experimental Problem. Royal
Aircraft Establishment, translation No. 1122, Ministry of Aviation, Farnborough Hants, UK.

Rockafellar, R. T. 1984. Network Flows and Monotropic Optimization. John Wiley & Sons.

Rock, H. 1980. Scaling techniques for minimal cost network flows. In Discrete Structures

and Algorithms. Edited by V. Page. Carl Hanser, Munich, p. 181-191.

Rosenbrock, HH. 1960. An automatic method for finding the greatest or least value of a
function. Journal of Computing 3, p. 175-184.

151

Rudolph, G. 1994. Massively Parallel Simulated Annealing and Its Relation to Evolutionary
Algorithms. MIT Press.

Russell, S.0. & P.F. Campbell 1996. Reservoir operating rules with fuzzy programming.
Journal of Water Resources Planning and Management, ASCE, 122(4), p. 165-170.

Schechter, S. 1968. Relaxation Methods for Convex Problems. SIAM Journal of Numerical
Analyses 5, p. 601-612.

Sigvaldason, O.T. 1976. A simulation model for operating a multipurpose multireservoir

System. Water Resources Research, 12(2), p. 263-278.

Simonovic, S.P. 1987. The implicit stochastic model for reservoir yield optimization.

Water Resources Research, 23(12), p. 2159-2167.
Sniedovich, M. 1991. Dynamic Programming. Marcel Dekker, New York.

Sun, Y-H., W. W-G. Yeh, N-S. Hsu, and P.W.F. Louie. 1995. Generalized Network
Algorithm for Water-Supply-System Optimization. Journal of Water Resources Planning
and Management, ASCE, 121(5), p. 392-398.

Swann, W.H. 1964. Report on development of a new direct searching method of

optimization. ICI, Centr. Instr. Lab., research note 64-3, Middlesborough, Yorks.

Tucker, A.W. 1963. Combinatorial theory underlying linear programs. In Recent Advances
in Math Programming. R.L. R.L. Graves and P. Wolfe, eds. McGraw Hill.

Vignaux, G.A. and Michalewicz, Z. 1989. A genetic algorithm for the transportation

problem. Proceedings of the Fourth International Symposium on Methodologies for

152

Intelligent Systems, p. 252-259, North Holland, Amsterdam.

Wallacher, C. and U.T. Zimmermann. 1991. A combinatorial interior point method for
network flow problems. Fourteenth International Symposium on Mathematical

Programming, Amsterdam, The Netherlands.

Wegge, L. 1966. On a discrete version of the Newton-Raphson method. SIAM Journal of
Numerical Analyses 4, p. 134-142.

Weintraub, A. 1974. A primal algorithm to solve network flow problems with convex cost.

Management Science, 21, p. 87-97.

Whitley, D., 1989. The Genitor algorithm for selective pressure: why rank-based allocation
of reproductive trials is the best. Proceedings of the Third International Conference On

Genetic Algorithms. Morgan Kaufmann.
Wolfe, P. 1969. Convergence conditions for ascent methods. SIAM Review 1, p. 226-235.

Wolfe, P. 1970. Convergence theory in nonlinear programming. Editor Abadie (Integer and
Non Linear Programming), North Holland Publishing, p. 1-36.

Wolfe, P. 1971. Convergence conditions for ascent methods II: some corrections. SIAM

Review 13, p. 185-188.

1

Wurbs, R.A. 1996. Modelling and Analysis of Reservoir Systems Operarion. Prentice
Hall Inc., Englewood Cliffs, N.J.

Yeh, W.W-G. 1985. Reservoir management and operations models: a state-of-the art

review. Water Resources Research, 21(12), p. 1797-1818.

153

Young, G.K. 1967. Finding reservoir operation rules. Journal of Hydraulic Engineering,
ASCE, 91(HY®6), p. 297-321.

Yung-Hsin Sun, W-G. Yeh, and Nien-Sheng Hsu. 1995. Generalized network algorithm for
water-supply-system optimization. Journal of Water Resources Planning and Management,

121 (5) September/October.

Zadeh, N. 1973. More pathological examples for network flow problems. Mathematical
Programming, 5, p. 217-224.

154

