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Abstract

In this thesis, a modified SLIR model is formulated to describe the dynamics

of Ebola virus disease. This model is peculiar in the sense that an infectious

deceased compartment incorporated into the models, this is due to the fact

that an infected deceased remains infectious as long as the virus remain in

the blood. An isolated compartment is also added to the standard SLIR

model. Mathematical analysis reveals that the disease free equilibrium is

globally asymptotically stable when the basic reproduction number R0 < 1 and

unstable if R0 > 1, while the endemic equilibrium is globally asymptotically

stable when R0 > 1 and is not biologically relevant when R0 < 1. From the

analysis of our model, we conclude that isolation of infected individuals will

help a great deal in controlling the spread of the virus alongside with proper

burial for infected deceased individuals.
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Chapter 1

Introduction

In this chapter, contributions from references [2, 20, 21, 22] and [35] were used.

Humanity has been plagued with infectious diseases for years. The mecha-

nisms of transmission are known for most diseases; generally, diseases such as

influenza, measles, rubella and chicken pox that are transmitted by virus confer

immunity against reinfection, while diseases such as tuberculosis, meningitis

and gonorrhea that are transmitted by bacteria confer no immunity against

reinfection. Other diseases, such as malaria, are transmitted not directly from

human to human but by vectors (usually insects), which are agents that are

infected by humans and then transmit the disease to other humans. West

Nile virus has mosquitoes as its vectors and birds as its hosts. For sexually

transmitted diseases with heterosexual transmission, each sex acts as a vector

and the disease is transmitted back and forth between the sexes.

Infectious diseases have been a major cause of death and illness throughout

the world. Tens of millions of lives have been lost to them. Some of these

1



2 CHAPTER 1. INTRODUCTION

diseases include the Spanish influenza virus of early 20th century, which swept

through Africa, America, Asia and Europe with a death toll of over 30 million

people, the 1348 Black Death Bubonic Plague in Europe which killed over 40

million people within five years. In recent time, measles, malaria, tuberculosis

and AIDS, among others, are causing millions of deaths on a yearly basis.

UNAIDS reports that an average of 1.8 million people became newly infected

with HIV, 36.9 million people are living with HIV in 2016, while over 75 million

people have become infected with HIV since the start of the epidemic in 1981.

1 million people died of AIDS related diseases in 2016, while over 30 million

deaths have resulted from AIDS related illness since the start of the epidemic.

Technological advancement have brought about remarkable fight against these

diseases. Antiretroviral drug have been made available for people living with

HIV. In 2010, 7.7 million were able to access antiretroviral therapy, 17.1 million

in 2015 and 20.9 million as of June 2017, which reveals great appreciable

progress in combating this virus and invariably reducing AIDS-related death

[35].

However, while some infectious diseases have been kept under control due

to technological advances, others are still ravaging lives, the reason being the

diversity of the pathogens coupled with their ability to mutate and adapt to

changing environments and the complexity of their transmission mechanisms.

Infectious diseases impacts are usually devastating, they hamper the survival

rate of children, especially in underdeveloped countries; they also impede

opportunities for economic growth and development. Hence, there is a need for
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a global perspective that accounts for biocomplexity, all the interrelated factors

that contribute to the evolution and survival of infectious agents. In order to

achieve this, individuals from various field such as biologists, ecologists, chemists,

epidemiologists, mathematicians, statisticians and atmospheric scientists must

work collaboratively in order to shed more light on how these diseases can be

eradicated or their impact minimized.

Transmission of infectious diseases occurs through several means that can

be categorized into two major routes, direct and indirect transmission. Direct

transmission involves the transmission from infected people to uninfected people

through close contacts. Their medium include body fluids such as blood, semen,

breast milk, etc. or through shaking of hands with or touching an infected

individual. Indirect transmission involves transmission by non-human infectious

agents such as mosquitoes, tsetse flies, contaminated food/ water, which serve

as intermediate hosts for the disease and later transmit the disease to humans.

The incidence rate of diseases describes the transmission of the disease. An

infectious disease that spreads rapidly to a large number of people in a given

population for a short period of time is known as an epidemic. An infectious

disease that persists in the community/population is known as an endemic

disease while a pandemic is an epidemic of infectious disease that has spread

through human populations across a large region (several continents, or even

worldwide).

Scientists have used mathematical models, which involve the use of mathe-
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matical equations and formula to represent real life problems, solved and made

remarkable prediction based on the solutions obtained from the problems. Epi-

demiologists (scientists that study infectious diseases) have played a vital role

in investigating the transmission dynamics of some of these diseases and have

been able come up with recommendations for different intervention strategies

which have helped to control the spread of some of these diseases.

A recent outbreak of Ebola virus disease in some West African countries

spread to other countries in other continents. This was triggered by the advent

of modern means of transportation. Infected individuals were transported

from one country to another and therefore fostered the spread of the virus.

In July 2014, an infected individual was transported from Liberia to Nigeria

and ended up infecting over ten individuals, who also infected several others.

This happened prior to my arrival in Canada; several countries closed their

borders as a result of this outbreak, several flights from Africa were canceled.

African students were denied admissions into Western world countries while

certain athletes were hindered from participating in competitions they were

registered for. All these facts put together motivated me to base my thesis on

understanding the dynamics of Ebola virus disease and to contribute to the

body of existing knowledge on it.

In this thesis, a modified susceptible-exposed-infectious-recovered (SEIR)

deterministic nonlinear system of equations will be used to model the dynamics

of Ebola virus disease. In addition to infectious individuals, which are known

to be the major carriers of infectious diseases, this model will incorporate the
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effect of the transmission of the disease by deceased infectious individuals,

since they also contribute to the transmission of the disease to the susceptible

population. Chapter 2 will be devoted to mathematical preliminaries that are

relevant to this thesis. Chapter 3 will present the epidemiological preliminaries

and some infectious disease models will be analyzed. Chapter 4 will focus on

a literature review of Ebola virus disease (EVD). Chapter 5 will be devoted

to model formulation, steady state analysis, boundedness and positivity of

the solution of the of the model. The disease free and endemic equilibrium

point will be discussed, alongside with their positivity and stability. The next

generation matrix will be used to compute the basic reproduction number R0

for the model. Chapter 6 will deal with mathematical analysis and numerical

analysis of our model will be carried out in Chapter 7, while Chapter 8 will

focus on a discussion and recommendations.
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Chapter 2

Mathematical preliminaries

This chapter presents some basic mathematical theories and methodologies

that will be used in this thesis. Material in this chapter is based on references

[7] and [29].

Mathematical modeling can be defined as the use of mathematical signs,

symbols and equations to represent a real life situation in order to make

it (real life problem) easier to understand, solve and to infer a reasonable

conclusion from the solution of the problem. Mathematical models of infectious

diseases have been used as a tool to study and understand the dynamics of

diseases, make prediction about future outbreaks of the disease and to suggest

intervention measures that have to be implemented in order to control the

disease. Mathematical models can be classified in various ways:

• Static versus dynamic models. Static models are time-independent while

dynamic models are time-dependent.

7
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• Continuous versus discrete time models. Continuous time models are

models in which the independent variable is continuous, e.g, dx
dt

= ax,

while discrete time models are models used for life phenomena in which the

independent variables are observed at discrete intervals, e.g, xt+1 = axt.

• Stochastic versus deterministic models. Stochastic models are models

in which probabilistic concepts are used and distributions of possible

behaviours are present, while deterministic models are models in which

the behaviour of a population is determined completely by its history

and by the rules which describe the model.

• Homogeneous versus detailed models. A detailed model involves the

spatial or physiological distribution of each state variable specification

while homogeneous models regard state variables as having the same

spatial or physiological distribution.

The tools used are ordinary differential equations (ODEs), partial differential

equations (PDE), delay differential equations (DDE), stochastic differential

equations (SDE), integral equations, Markov chains, game theory, etc.

2.1 Ordinary Differential Equations

Material for this section is obtained from [3] and [40].

Ordinary differential equations (ODEs) are equations that involve the

derivatives of one or more dependent variables with respect to an independent
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variable. In compartmental disease models, the independent variable is time t,

the rate of transfer between compartments are expressed mathematically by

the derivatives of the compartments with respect to time, with an underlying

assumption that the number of individuals in a compartment is a differentiable

function with respect to time. The formulation of models as ordinary differential

equations follows the assumption that the behaviour of a population can be

determined completely by its history and the rules that govern the models.

A first order ordinary differential equation is defined as

d

dt
x(t) = f(t, x(t)), (2.1.1)

where t ∈ R is an independent variable, x(t) is a dependent variable (unknown

function) and f : Rn → Rn is a vector field. Equation (2.1.1) is known as a

nonautonomous ordinary differential equation.

When no ambiguity arises, d
dt
x(t) is often written as x′ so that (2.1.1) is

written as

x′ = f(t, x). (2.1.2)

where the dependence of x(t) on t is also omitted unless this gives rise to

ambiguities. If f does not depend explicitly on time, then (2.1.2) is called

autonomous and takes the form

x′ = f(x). (2.1.3)
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and the general solution is

x(t) =

∫ t

t0

f(τ)dτ. (2.1.4)

For fi : Rn → Rn and xi ∈ Rn, a system of ordinary differential equations is

defined when n > 1; otherwise, for n = 1 the equation is scalar.

In applications, a particular solution, which requires initial conditions, is

usually sought for, rather then a general solution.

Definition 2.1.1. (Initial Value Problem). A first order ODE together with

an initial condition

x′ = f(t, x) (2.1.5a)

x(t0) = x0 (2.1.5b)

is called an initial value problem. The initial condition x(t0) = x0 represents

the position of the objects at some initial time t0. Solutions of a system of

ordinary differential equations are sought for within a given interval (say, I)

that contains t0, so that the solution curves passes through the point (t0, x(t0)).

A solution of an initial value problem is a differentiable function x(t) such

that

1. x′(t) = f(t, x(t)) for all t in an interval containing t0 where x(t) is

defined, and

2. x(t0) = x0.
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Thus, the solution can be expressed in integral form as

x(t) = x0 +

∫ t

t0

f(τ, x(τ))dτ. (2.1.6)

The system of ODEs to be analysed in this thesis is autonomous and takes the

form x′ = f(x) with x ∈ R7
+ and f : R7

+ → R7
+.

2.1.1 Existence and uniqueness of solutions

In this section, we state some basic theorems describing general properties of

solutions of differential equations. Material from this section can be found in

[32, 28] and [40].

Definition 2.1.2. (Well-posedness). System (2.1.5) is well-posed if solutions

exist, are unique, and for systems describing populations, remain bounded and

nonnegative for all nonnegative initial conditions.

Theorem 2.1.1. (Cauchy-Lipschitz). Consider the differential equation (2.1.5)

with x ∈ Rn, and suppose that f ∈ C1. Then there exists a unique solution of

(2.1.5) such that x(t0) = x0, where t0 ∈ R and x0 ∈ Rn, defined on the largest

interval t0 ∈ I on which f ∈ C1.

Theorem 2.1.2. Let f and its partial derivatives (∂Fi/∂xj) in (2.1.3) be

continuous in Rn and let x0 ∈ Rn and t0 ∈ R. Then there is an interval

|t− t0| < h in which there exists a unique solution x(t) = φ(t) of the system

that also satisfies the initial conditions.
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Definition 2.1.3. (Flow). Consider System (2.1.5). The flow φ(t, x0) of

(2.1.5) represents the solution of (2.1.5) over time given an initial condition,

provided that the solutions to the differential equation exist and are unique.

Definition 2.1.4. An equilibrium solution of (2.1.3) is a solution x̄ ∈ Rn such

that f(x̄) = 0, i.e., a solution which does not change with time. The term

“equilibrium point” can be used interchangeably with the following: “fixed point”,

“stationary point”, “singularity point”, “critical point” or “steady state”.

Definition 2.1.5. (Stable and unstable equilibrium point) [29] Let φ(t) be the

flow of (2.1.3), assumed to be defined for all t ∈ R. An equilibrium solution x̄

of (2.1.3) is said to be locally stable if for all ε > 0, there exists δ = δ(ε) > 0

such that for all x ∈ Nδ(x̄) and t ≥ 0, there holds

φt(x) ∈ Nε(x̄).

The equilibrium point is unstable if it is not stable.

Definition 2.1.6. (Asymptotically stable equilibrium point) Let φ(t) be the

flow of (2.1.3) is (locally) asymptotically stable if there exists δ > 0 such that

for all x ∈ Nδ(x̄) and t ≥ 0, there holds

lim
t→∞

φ(t) = x̄.

2.1.2 Linearization

We will be using information from [30] and [40] in this section.



2.1. ORDINARY DIFFERENTIAL EQUATIONS 13

The behaviour of System (2.1.3) near a hyperbolic equilibrium point x̄ is

linked to the behaviour of the linearized system

x′ = Df(x̄)(x− x̄) (2.1.7)

about the same equilibrium, where

J(x̄) = Df(x̄) =



∂f1
∂x1

(x̄) ∂f1
∂x2

(x̄) · · · ∂f1
∂xn

(x̄)

∂f2
∂x1

(x̄) ∂f2
∂x2

(x̄) · · · ∂f2
∂xn

(x̄)

...
...

. . .
...

∂fn
∂x1

(x̄) ∂fn
∂x2

(x̄) · · · ∂fn
∂xn

(x̄)


(2.1.8)

matrix Df(x̄) is the Jacobian matrix of (2.1.3) evaluated at the equilibrium

point x̄.

Definition 2.1.7. (Hyperbolic fixed point) Let x = x̄ be a fixed point of

x′ = f(x), x ∈ Rn. Then x̄ is called a hyperbolic fixed point if none of the

eigenvalues of Df(x̄) have zero real part. A hyperbolic fixed point is called a

saddle if some, but not all, of the eigenvalues have positive real parts. If all

eigenvalues are have negative real part, then the hyperbolic fixed point is called

a stable node or sink and if all of the eigenvalues have positive real part, then

the hyperbolic fixed point is called an unstable node or source.

Definition 2.1.8. A nonhyperbolic fixed point is a fixed point having the real

part of some of the eigenvalues associated to the linearized system equal to zero,
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that is, these eigenvalues are purely imaginary. (Such fixed point is said to be

a center if the system is linear.)

Definition 2.1.9. (Homeomorphism). Let D be a space. A map h : D → D

is a homeomorphism if h is a continuous bijection whose inverse is continuous.

Definition 2.1.10. (Topologically conjugate). Let φ(t, x) and ψ(t, x) be two

flows on a space D. φ and ψ are topologically conjugate if there exists an

homeomorphism h : D → D such that

h ◦ φ(t, x) = ψ(t, x) ◦ h(x)

for all x ∈ D and all t ∈ R.

Theorem 2.1.3. (Hartman and Grobman)[29]. Assume that x̄ ∈ Rn is a

hyperbolic equilibrium (all eigenvalues of the Jacobian matrix evaluated at x̄

have nonzero real part). Then, in a small neighbourhood of x̄, the nonlinear

system behaves in a similar manner as the linearized system

2.1.3 Stability

The Hartman-Grobman theorem tells us that, in a neighbourhood of a hy-

perbolic equilibrium point, we can get a qualitative idea of the behaviour of

solutions of the nonlinear system by studying its corresponding linear system.

Thus, we can determine whether solution trajectories approach or move away

from the equilibrium point over time, that is, we can determine the stability of

equilibria in System (2.1.3) without finding explicit solutions.
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Theorem 2.1.4. Let x̄ be an equilibrium point of the autonomous system

(2.1.3), where f ∈ C1 in a neighborhood of x̄.

1. If all the eigenvalues of J = Df(x̄) have negative real part, then x̄ is a

locally asymptotically stable equilibrium point.

2. If J = Df(x̄) has at least one eigenvalue with positive real part, then x̄

is an unstable equilibrium point.

2.2 Lyapunov functions and Lasalle’s invari-

ance Principle

Lyapunov functions and LaSalle’s Invariance Principle are some of the methods

often used to establish the global stability property of an equilibrium point

Definition 2.2.1. A point x0 ∈ Rn is called an ω-limit point of x ∈ Rn and

denoted by ω(x), if there exists a sequence {ti} such that

φ(ti, x)→ x0 as ti →∞.

Definition 2.2.2. A point x0 ∈ Rn is called an α-limit point of x ∈ Rn and

denoted by α(x), if there exists a sequence {ti} such that

φ(ti, x)→ x0 as ti → −∞.

Definition 2.2.3. The set of all ω-limit points of a flow is called the ω-limit

set. Similarly, the set of all α-limit points of a flow is called the α-limit set.
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Definition 2.2.4. Let S ⊂ Rn be a set. Then S is said to be invariant under

the flow generated by (2.1.3) if for any x0 ∈ S, we have x(0, x0) ∈ S for all

t ∈ R.

If the region is restricted to positive times (i.e., t ≥ 0), then S is said

to be a positively-invariant set (this implies that solutions in the positive

invariant set remain there for all time). The set is negatively-invariant if

solutions remain there when we go backward in time.

Definition 2.2.5. A function V : Rn → R is said to be a positive-definite

function if:

• V (x) > 0 for all x 6= 0.

• V (x) = 0 if and only if x = 0.

Theorem 2.2.1. (Lyapunov)[32]: Consider the autonomous system defined by

(2.1.3). Let x̄ be a fixed point of (2.1.3) and let V : U → R be a C1 function

defined on some neighbourhood U of x̄ such that

i) V (x̄) = 0 and V (x) > 0 if x 6= x̄.

ii) d
dt
V (x) ≤ 0 in U − {x̄}.

Then x̄ is stable. Moreover, if

iii) d
dt
V (x) < 0 in U − {x̄}.
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then x̄ is asymptotically stable.

Any function V that satisfies the conditions from Theorem 2.2.1 is said to

be a Lyapunov function.

Theorem 2.2.2. (LaSalle’s Invariance Principle). Consider system (2.1.3).

Let

S =

{
x ∈ Ū :

d

dt
V (x) = 0

}
, (2.2.1)

and let M be the largest invariant set of (2.1.3) in S. If V is a Lyapunov

function on U and γ+(x0) is a bounded orbit of (2.1.3) which lies in S, then

the ω-limit set of γ+(x0) belongs to M (that is, x(t, x0)→M as t→∞.)

• γ+(x0): part of solution trajectory where t ≥ t0 (positive orbit).

• γ−(x0): part of solution trajectory where t ≤ t0 (negative orbit).

Corollary 2.2.1. If V (x) → ∞ as |x| → ∞ and dV
dt
< 0 on Rn, then every

solution of (2.1.3) is bounded and approaches the largest invariant set M of

(2.1.3) in the set where dV
dt

= 0. In particular, if M = {0}, then the solution

x = 0 is globally asymptotically stable (GAS).

Subsequently V ′ = dV
dt

.

Example 2.2.1. Consider the following system

x′ = y − x3,
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y′ = −x− y3.

The system has an equilibrium solution at (x, y) = (0, 0). Let V (x, y) =

x2 + y2. Obviously, V (0, 0) = 0 and V (x, y) > 0 in any neighbourhood of (0, 0).

Furthermore,

V ′(x, y) = 2xx′ + 2y′y,

= 2x(y − x3) + 2y(−x− y3),

= −2(x4 + y4) < 0.

Hence, V ′(x, y) < 0 if (x, y) 6= (0, 0). Thus, by Corollary 2.2.1, the equilibrium

point (x, y) = (0, 0) is globally asymptotically stable.



Chapter 3

Epidemiological and

Mathematical Epidemiology

Preliminaries

Some basic notation and terminology in mathematical epidemiology of infectious

diseases is given in this chapter. Simple models are presented to show how

infectious disease spread can be modelled.

Epidemiology is the study of the distribution and determinants of health-

related states or events in specified populations and the application of this

study to the control of health problems. In this chapter, we review some

concepts in epidemiology.

19
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3.1 Definition of some basic terms

The following definitions are common in the epidemiology literature. References

used here are [21, 22, 23] and [24].

• Susceptible: Group of individuals in a given population who are not

infectious by the disease under consideration but can become infected

as a result of their interactions with infected individuals or by having

contacts with infected objects. Their susceptibility is dependent on the

disease under consideration; entering into the susceptible compartment

can occur at birth, onset of sexual maturity (e.g., for sexual transmitted

diseases), or loss of protective immunity.

• Exposed (Latently infected): Group of individuals who have been infected

with the disease, but have not started transmitting the disease due to

incubation. Incubation is the time from the time of exposure to an

infectious disease until on set of the disease symptoms.

• Infectious: Group of individuals who are infected with the disease and

are capable of transmitting the infection to uninfected individuals. Trans-

mission could be directly to other individuals or through other means

such as vectors or the environment.

• Recovered /removed : Group of individuals who are no longer susceptible

to the infection at that time. Recovered individuals are individuals

who were once infected with the infection and have developed immunity
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against it. The recovery can be temporary, that is, individuals can be

reinfected, or permanent (no reinfection). Removed individuals do not

affect the transmission dynamics of the infection. The removal could be

through isolation from the rest of the population, through immunization

against the infection, through recovery from the disease with full immunity

against reinfection or through death caused by the disease.

• Vertical transmission: Process in which an infected mother transfers the

infection to her child during delivery or through breast feeding.

• Horizontal transmission: Transmission of infection through body contact

or through contact with infected equipment or materials.

• Force of infection: The transmission dynamics of an infection depends

on the per capita incidence rate of the infection λ(t) in relation to suscep-

tible individuals; λ(t) forms the basis for the transmission dynamics in

the model. The force of infection accounts for the transmission process

between infectious and susceptible individuals and depends on the preva-

lence of infectious in the population, I(t)/N(t), where I(t) is the number

of the infectious individual at time t and N(t) is the total population at

time t the contact rate c′ and the transmission probability per contact

β. A homogeneous mixing assumption means that λ(t) = βc′I(t)/N(t).

Transmission between the infected and the susceptible depends on how

the contact structure is expected to change with the total population.

The transmission dynamic could follow
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– Density-dependent (standard incidence) transmission: In this case,

contacts are assumed to be proportional to the total population

density (c′ = cN ≈ N and λ(t) = βI(t)). The number of new

infected is obtained from λ(t)S(t), which depends on the number of

infectious individuals and susceptible individuals in the population,

if random mixing is assumed.

– Frequency-dependent (mass action) transmission: This is the case

in which the number of contacts is assumed to be independent of

the total population, i.e., c′ = c.

The type of contacts required for the transmission depends on the mode of

transmission of the infection (e.g, physical contact for directly transmitted

infection such as influenza, chickenpox, or physical contact for sexually

transmitted infection such as gonorrhea).

• Incidence is the number of new cases of illness (infection) occurring in a

population during a given time period.

• Prevalence is the number or proportion of cases of illness occurring in

a given population. It is often expressed per 100, 000 people in the

epidemiology literature.

• Prevalence rate is the proportion of persons in a population who have a

particular disease at a specified point in time or over a specified period

of time.
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• Latency period is the period of inapparent pathological changes following

exposure, ending with the onset of symptoms.

• Mortality rate: A measure of the frequency of occurrence of death in a

defined population during a specified interval of time.

• Epidemic: the occurrence of more cases of disease, in a given area or

among a specific group of people over a particular period of time, than

what is expected.

• Pandemic: An epidemic occurring over a very wide area (several countries

or continents) and usually affecting a large proportion of the population.

• Endemic situation: The constant presence of a disease or infectious agent

within a given geographic area or population group; may also refer to the

usual prevalence of a given disease within such area or group.

• Cohort : A well-defined group of people who have had a common expe-

rience or exposure, who are then followed up for the incidence of new

diseases, as in a cohort or prospective study.

• Immunity : Resistance developed in response to stimulus by an antigen

(infecting agent or vaccine) and usually characterized by the presence of

antibody produced by the host.

• Birth rates : This account for the rate at which newborn are introduced

into the population per unit time. It is measured as population per unit
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of time

• Natural death rate: Rate of death of individuals from the population

due to old age and causes not disease related. It has the same unit of

measurement as the birth rate. In models, its value can easily be obtained

by finding the inverse of the average life expectancy of healthy individuals

from the population.

• Recovery rate: Proportional to the inverse of the average time to recovery

from the disease.

• Disease induced death rate: As for the natural death rate, it is proportional

to the inverse life expectancy, on average, of an individual affected by

the disease.

3.2 Model formulation

Material from references [21, 28, 38] and [40] is used in this section.

In order to understand the dynamics of infectious diseases, models are often

formulated. To achieve this, we divide the the population under study into

compartments and make assumptions about the nature and rates of transfer

from one compartment to another. Diseases that confer permanent immunity

have a different compartmental structure from diseases without immunity.

The term SIR describes a disease which confers immunity against reinfection,

indicating that movement of individuals is from the susceptible compartment S
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to the infectious compartment I and to the removed compartment R. The term

SIS describes a disease with no immunity; movement is from the susceptible

compartment S to the infectious compartment I and back to the susceptible

compartment. Other possibilities include SEIR and SEIS models, each

having exposed period between being infected and becoming infectious and

SIRS model describes disease with temporary immunity after recovery from

the infection. Differential equations are used to describe the rates of transfer

between compartments, with time being the independent variable [21].

3.2.1 Equilibria of epidemic models

Section 2.1.2 is relevant here. There are two steady states which are usually

sought after in any epidemiological model; the disease free equilibrium (DFE)

and the endemic equilibrium (EE).

The disease free equilibrium is the state where the population is completely

free from infection; the implication is that all infected compartments are zero

and the total population comprises only susceptible or immune individuals. The

endemic equilibrium is the state where the infection remains in the population,

so there is a positive number of infectious individuals at equilibrium.
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3.3 The basic reproduction number and sta-

bility analysis

The basic reproduction number R0 is defined as the expected number of

secondary infections caused by the introduction of an infectious individual

into a totally susceptible population. This number forms the basis of any

epidemiological study because it helps to predict the future occurrence of any

infection under consideration.

Stability analysis of steady states of the model shall be carried out through

the application of the next-generation matrix in order to determine R0. In

determining R0, there must be distinction between new infections and all other

changes in the population [36].

Let x = (x1, x2, . . . , xr)
T be r homogeneous compartments in a hetero-

geneous population, with each xi ≥ 0 the number of individuals in each

compartment. Let the first m compartments correspond to the infected indi-

viduals (disease) compartments while the rest n compartments make up the

uninfected compartments, where r = m+ n. We define Xs to be the set of all

disease free states, that is,

Xs = {x ≥ 0 |xi = 0, i = 1, . . . ,m}.

Let

x′ = fi(x) = Fi(x) − Vi(x), i = 1, ..., n, (3.3.1)
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represent the dynamics of the infected compartments, where Fi(x) and Vi =

V−i (x) − V+
i (x) are continuously differentiable functions, with Fi(x) the ap-

pearance rate of new infections in compartment i, V+
i (x) the transfer rate of

individuals into compartment i by all other means and V−i (x) the transfer

rate of individual out of compartment i. Each of these functions is assumed

to be differentiable at least twice in each variable. The disease transmis-

sion defined in (3.3.1) is made up of nonnegative initial conditions, that is,

Fi(x) ≥ 0, V−i (x) ≥ 0, andV+
i (x) ≥ 0 for all i = 1, ..., n.

The Jacobian matrices of Fi(x) and Vi(x) are evaluated at the disease free

equilibrium point x̄, giving

F =

[
∂Fi
∂xk

(x̄)

]
and V =

[
∂Vi
∂xk

(x̄)

]
, 1 ≤ i, k ≤ m (3.3.2)

where F and V are m×m matrices, F is a nonnegative and V is a nonsingular

matrix. The basic reproduction number R0 is evaluated as

R0 = ρ(FV−1), (3.3.3)

where ρ denotes the spectral radius of the matrix (FV −1). The following result

is proved in [37], which we closely follow.

Theorem 3.3.1. The disease free is locally asymptotically stable if R0 < 1

and unstable if R0 > 1.

For the computation of the basic reproduction number using the next

generation matrix, the following assumptions need to be satisfied.
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The functions Fi(x) and Vi(x) involve the direct transfer of individuals,

hence they are nonnegative. Thus

i) If x ≥ 0, then Fi(x), V+
i (x), V−i (x) ≥ 0 for i = 1, ..., n.

If a compartment is empty, then there can be no transfer of individuals out of

the compartment by whatever means. Thus

ii) If xi = 0 then V−i (x) = 0, for i = 1, ..., n.

Consider the disease transmission model given in (3.3.1) with Fi(x), i = 1, ..., n,

satisfying the two conditions above. If Xi = 0, then Fi(x) ≥ 0 and hence, the

nonnegative cone is positively invariant. For each non negative initial condition,

there is a unique, nonnegative solution.

The next condition arises from the fact that the incidence of infection for

the uninfected compartment is zero:

iii) Fi = 0 if j > m.

To ensure that the disease free subspace is invariant, we assume that if the

population is free of disease, then the population will remain free of disease.

That is, there is no immigration of infectious. This condition is stated as

follows

iv) if x ∈ Xs then Fi(x) = 0 and V+
j(x) = 0 for i = 1, ...,m.
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The remaining condition is based on the derivatives of f near a DFE. For

our purpose, we define a DFE of (1) to be a (locally asymptotically) stable

equilibrium solution of the disease free model, i.e., (1) restricted to Xs. Note

that we need not assume that the model has a unique DFE. Consider a

population near the DFE x̄. If the population remains near the DFE (i.e., if

the introduction of a few infectious individuals does not result in an epidemic),

then the population will return to the DFE according to the linearized system

v) x′ = Df(x0)(x− x0),

where Df(x0) is the derivative

[
∂fi
∂xk

]
evaluated at the DFE, x̄ (i.e., the

Jacobian matrix). Here and in what follows, some derivatives are one sided,

since x̄ is on the domain boundary. We restrict our attention to systems in

which the DFE is stable in the absence of new infection. That is, if F(x) is set

to zero, then all eigenvalues of Df(x0) have negative real parts.

3.3.1 Global stability analysis

The global stability analysis will be studied using references [18, 19] and [34].

A general compartmental disease transmission model can be written as

i′ = F(i, u)− V(i, u), (3.3.4a)

u′ = g(i, u) (3.3.4b)
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with g = (g1, . . . , gn)T . Here i = (i1, . . . , im)T ∈ Rm and u = (u1, . . . , un)T ∈

Rn represent the populations in disease compartments and non-disease compart-

ments, respectively. F and V are as defined in (3.3.2). If the basic reproduction

number R0 ≤ 1 the disease will die out, while the disease persists at a positive

level if R0 > 1. Global stability results for many disease models are nontrivial.

Endemic equilibrium global stability results in particular, normally become chal-

lenging due to the complexity and high dimension of disease models. Cholera

and other waterborne disease models among others require the incorporation

of their pathogen (water) into their models. This accounts for the complexity

of such models compared to other disease models that are transmitted directly

by human. As was explained in Chapter 2, Lyapunov functions are commonly

used to establish global stability results for infectious diseases models. The

following Lyapunov function (3.3.5)

V =
n∑
i=1

ci

(
xi − x∗i − x∗i ln

xi
x∗i

)
, (3.3.5)

originated from the first integral of a Lotka-Volterra system, is used as a general

Lyapunov function in some mathematical biology literature. Suitable values

for ci have to be determined such that V ′ along solutions of the model is

nonpositive.
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3.3.2 Global stability of the DFE: A matrix-theoretic

method.

Material from [34] will be used in the analysis of the global stability analysis

of the DFE. Define

f(i, u) := (F − V )i−F(i, u) + V(i, u), (3.3.6a)

i′ := (F − V )i− f(i, u), (3.3.6b)

where f(0, u) = 0 is the DFE of (3.3.4). Equation (3.3.6a) represents the

dynamics of diseased compartments of a general compartmental disease model.

Let wT ≥ 0 be the left eigenvector of the nonnegative matrix V −1F correspond-

ing to the eigenvalue ρ(V −1F ) = ρ(FV −1) = R0. The following result provides

a method for constructing a Lyapunov function for (3.3.4), using the Perron

eigenvector.

Theorem 3.3.2. Let F, V be defined as in (3.3.2) and f(i, u) be defined as in

(3.3.6a). If f(i, u) ≥ 0 in Γ ⊂ Rn+m
+ , F ≥ 0, V −1 ≥ 0, and R0 ≤ 1, then the

function Q = wTV −1i is a Lyapunov function for the model (3.3.4) on Γ.

Proof. Differentiating Q along solutions of (3.3.4) gives

Q′ = wTV −1i′ = wTV −1 ((F − V )i− f(i, u))

= wTV −1(F − V )i− wTV −1f(i, u)

= wTV −1(R0 − 1)− wTV −1f(S, I)
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Since wT ≥ 0, V −1 ≥ 0 and f(i, u) ≥ 0 in Γ, this implies wTV −1(R0 − 1) −

wTV −1f(S, I) ≤ 0. If R0 ≤ 1, then Q′ ≤ 0 in Γ, and thus Q is a Lyapunov

function for system (3.3.4).

The Lyapunov function constructed in Theorem 3.3.2 can be used to prove

global stability of DFE as well as uniform persistence and thus establish the

existence of an EE. The result below provides a scenario in which assumptions

can be conveniently checked for disease models.

Theorem 3.3.3. Let F, V and f(i, u) be defined as in (3.3.2) and (3.3.6a),

respectively, and let Γ ⊂ Rn+m
+ be compact such that (0, u0) ∈ Γ and Γ is

positively invariant with respect to (3.3.4). Suppose that f(i, u) ≥ 0 with

f(i, u0) = 0 in Γ, F ≥ 0, V −1 ≥ 0 and V −1F is irreducible. Assume that the

disease-free system u′ = g(0, u) has a unique equilibrium u = u0 > 0 that is

GAS in Rm
+ . Then the following results hold for (3.3.4):

1. if R0 < 1, then the DFE E0 is GAS in Γ.

2. if R0 > 1, then E0 is unstable and system (3.3.4) is uniformly persistent

and there exist at least one EE.

If f(i, u0) = 0 in Γ, F ≥ 0, V −1 ≥ 0 and V −1F is reducible then this theorem

cannot be used to establish the global stability of the disease free equilibrium

point.
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This result was used to study global stability for some disease models in

the following references [12, 33].

3.4 Susceptible-Infectious-Removed (SIR)

References [21] and [40] will be used in this section.

To illustrate the type of problems arising in mathematical epidemic models

and the techniques used to solve these problems, we shall in this section consider

variations on the basic SIR model.

This model was proposed by Kermack and McKendrick in 1927 [16]. It

divides the total population into three compartments, the susceptible S, in-

fectious I and removed R. This model is often used for diseases that confer

natural immunity and which invariably influence the behaviour of the immune

system against reinfection; such diseases include measles, chicken pox, etc. It

is also used for fatal diseases.

S ′ = −βSI

I ′ = βSI − γI

R′ = γI.

S I R
βSI γI

Figure 3.1: Schematic diagram for an SIR model without demography.
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The model is formulated based on the following assumptions:

1. Incidence is mass action.

2. Infectious individuals leave the infectious class at rate γI per unit time,

because of recovery or death.

3. There is no entry into or departure from the population.

From this model, it can be noted that the total population of the system is

constant. This is deduced from the fact that

N ′ = (S + I +R)′ = −βSI + βSI − γI + γI = 0.

Since this is true for all values of t, then N is constant. R can be dropped

since the dynamics of (S, I) do not depend on it. The system is then

S ′ = −βSI (3.4.1a)

I ′ = (βS − γ)I. (3.4.1b)

Through a qualitative approach, much can be learned about the behaviour

of solutions of (3.4.1). It is very important to note that the model makes sense

as long as both S(t) and I(t) remain nonnegative. We observe that S ′ < 0 for

all t and I ′ > 0 if and only if S > γ/β. Thus I increases so long as S > γ/β

but since S decreases for all t, I ultimately decreases and approaches zero. If

S0 < γ/β, I decreases to zero (there is no epidemic), while if S0 > γ/β, I first
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increases to a maximum attainable when S = γ/β and then decreases to zero

(there is an epidemic).

We want to examine if introducing a small number of infectious individuals

into a totally susceptible population will result into epidemic or not.

The quantity βS0/γ is a threshold quantity, called the basic reproduction

number and denoted by R0, which determines whether there is an epidemic or

not. If R0 < 1 the infection dies out without going through a peak, while if

R0 > 1 there is an epidemic as we will see later.

By dividing the equations from (3.4.1), we have

I ′

S ′
=
dI

dS
=

γ

βS
− S

which, when integrated, gives

I(S) =
γ

β
lnS − S + c,

where c is an arbitrary constant of integration, which is determined by the

initial values S0, I0 of S, I, respectively, with c given as

c = I0 −
(
γ

β
lnS0 − S0

)
.

Then

I(S) =
γ

β
lnS − S + I0 −

(
γ

β
lnS0 − S0

)
. (3.4.2)
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This gives a curve in the (S, I) plane. Consider a total population of

size N , into which a small number of infectious individuals are introduced,

so that S0 ≈ N, I0 ≈ 0 and R0 = βN/γ. Recall that lim
t→∞

I(t) = 0 and let

S∞ = lim
t→∞

S(t); then

N − γ

β
lnS0 = S∞ −

γ

β
lnS∞,

from which we obtain an expression for β/γ in term of the measurable quantities

S0 and S∞, namely

β

γ
=

lnS0 − lnS∞
N − S∞

.

This may be rewritten in terms of R0 as the final size relation

lnS0 − lnS∞ = R0

[
1− S∞

N

]
. (3.4.3)

In particular, since the right side of (3.4.3) is finite, the left side is also finite

and this shows that S∞ > 0.

The maximum number of infectious individuals at any time is the number

of infectious individuals when the derivative of I is zero, that is, when S = γ/β.

This maximum is given by

Imax = S0 + I0 −
γ

β
lnS0 −

γ

β
+
γ

β
ln
γ

β
, (3.4.4)

which is obtained by substituting S = γ/β, I = Imax into (3.4.2).
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3.5 Susceptible-Infectious (SI) Model

An SI model is used to describe the dynamics of a contagious and incurable

disease. Examples of such diseases include HIV, which causes AIDS (Acquired

immunodeficiency syndrome), as well as other chronic diseases. They are

lifelong diseases without recovery. The model divides the population into two

compartments, namely susceptible and infectious individuals. Let S(t) be the

number of individuals who are susceptible to the disease at time t and I(t) be

the number of individuals that are infectious with the disease at time t. The

total population at time t is N(t) = S(t) + I(t).

3.5.1 Basic SI model with standard incidence

Assume that the disease occurs on a time-scale much faster than other popula-

tion processes (births and deaths) and there is no disease induced death, so

the population remains constant over time. The dynamics of a basic SI model

using standard incidence is given by:

S ′ = −βSI
N

(3.5.1a)

I ′ =
βSI

N
, (3.5.1b)

with initial conditions S(0) = S0 and I(0) = I0. We observe that

dN

dt
=

d

dt
{S + I} = S ′ + I ′ = 0,
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and so the total population N remains constant over time with N(t) = S0 + I0

for all t ≥ 0. Since N is constant, knowledge of, say, I(t) implies knowledge

of S(t) = N − I(t). As a consequence, we now study the dynamics of I(t), in

which we substitute N − I(t) for S(t). Therefore, (3.5.1) takes the form

I ′ =
βSI

N

= β(N − I)
I

N

= β

(
I − I2

N

)

= βI

(
1− I

N

)
, (3.5.2)

i.e., a logistic equation.

3.5.2 Existence and uniqueness of solutions

Analysis of (3.5.2) requires to ascertain that solutions to the model exist and

are unique. This is done by applying existence and uniqueness Theorem 2.1.2.

We have

I ′ = βI

(
1− I

N

)
,

so

f(I) = βI

(
1− I

N

)
(3.5.3)
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and thus

∂f

∂I
= β

(
1− 2I

N

)
.

Since both f and ∂f/∂I are continuously differentiable in the domain of f ,

solutions to the initial value problem in (3.5.2) exist and are unique according

to the existence and uniqueness Theorem 2.1.2.

3.5.3 Positivity of solutions

Equation (3.5.3) has two equilibrium solutions which can be obtained from

I ′ = f(I) = βI (1− I/N) = 0, yielding I(t) = 0 and I(t) = N . These

reveal that solutions remain nonnegative and bounded. Uniqueness of solutions

implies the solution cannot cross the curve I(t) = 0 (nor the curve I(t) = N).

Equation (3.5.2) with initial condition I(0) = I0 can be solved explicitly

since the resulting equation is a Bernoulli equation. The explicit solution is

obtained to be

I(t) =
NI0

I0 + (N − I0)e−βt
. (3.5.4)

The asymptotic behavior of the solution can be evaluated by considering the

following cases:

• If I0 = 0, then I(t) = 0 for all t ≥ 0.
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Figure 3.2: Dynamics of the SI model without demography (3.5.1). Plot of
some solutions to (3.5.2), for N = 500, and β = 0.6.

• If I0 ∈ (0, N), then βI > 0 and 1 − I
N
> 0, which implies that I ′ > 0.

Consequently, I(t) increases.

• If I0 = N , then I(t) = N for all t ≥ 0.

• If I0 > N , then βI > 0 and I
N
> 1 so 1 − I

N
< 0, which implies that

I ′ < 0; consequently, I(t) decreases.

Hence, suppose that I0 > 0, then the asymptotic behavior of the solution of

(3.5.2) is such that

lim
t→∞

I(t) = N

and if I0 = 0, then I(t) = 0 for all t ≥ 0. This implies that in the absence of

any intervention strategies, the disease invades the whole population.

Figure 3.2 reveals that regardless of the initial population of infectious
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individuals that are being introduced into the total population, in the absence

of intervention measure, the whole population will be infected with the disease.

3.5.4 SI model with demography using the standard in-

cidence function.

Model (3.5.2) examined above is now modified to include demography (birth

and death) and disease induced death. The study will enable us to understand

the effect of birth and death on the transmission dynamics of infectious diseases.

This models the situation in which the disease is fatal and a certain number

of the infected individuals die as a result of the disease. The model takes the

S I

βSI
Nb

dS (δ + d)I

Figure 3.3: Schematic diagram for an SI model with demography and disease
induced death, as given by (3.5.5).

form

S ′ = b− βSI

N
− dS (3.5.5a)

I ′ =
βSI

N
− dI − δI, (3.5.5b)

where β is the transmission rate, b is the recruitment rate, d is the natural

death rate and δ is the disease induced death rate. All parameters and initial
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conditions are nonnegative. The total population satisfies

N ′ = S ′ + I ′ = b− dN − δI ≤ b− dN. (3.5.6)

Equation (3.5.6) can be rewritten as N ′+dN ≤ b, a first order scalar differential

equation that can be solved with the technique of integrating factors. Therefore

the explicit solution to (3.5.6) is

N(t) ≤ N0e
−dt +

b

d

(
1− e−dt

)
.

Thus, the asymptotic behavior of the total population is such that

lim sup
t→∞

N(t) ≤ lim
t→∞

(
N0e

−dt +
b

d

(
1− e−dt

))
=
b

d
.

The steady state of equation (3.5.5) can be obtained by setting S ′ = I ′ = 0,

i.e.,

b− βSI

N
− dS = 0 (3.5.7a)

βSI

N
− (δ + d)I = 0. (3.5.7b)

Equation (3.5.7b) can be simplified to
(
βS
N
− (δ + d)

)
I = 0, which can be

solved further to give

I = 0 or S =
b(δ + d)

βd
. (3.5.8)
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Substituting I = 0 into (3.5.7a) yields

S =
b

d
. (3.5.9)

Substituting the value of S from (3.5.8) into (3.5.7a), we have

b− (d+ δ)I − b(d+ δ)

β
= 0,

which after further simplification gives

βb− b(d+ δ)

β(d+ δ)
= I. (3.5.10)

Thus model (3.5.5) has two equilibrium points: the disease free equilibrium

point (DFE) and the endemic equilibrium point (EE), taking the form (S̄, Ī) =

(b/d, 0) and (S∗, I∗) =

(
b(δ + d)

βd
,
b(β − (δ + d))

β(δ + d)

)
, respectively.

In order to use Theorem 3.3.1 to compute R0 for system (3.5.5), we must

ensure that conditions i) to v) are satisfied. This means the following must be

true. The incidence function is F(I, S) = βSI/N and transition function is

V(I, S) = (δ + d)I. Furthermore,

• F(0, S) = βS0
N

= 0, and V(0, S) = (δ + d)0 = 0 for S ≥ 0.

• F(I, S) = βSI
N
≥ 0 for S > 0 and I > 0.
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• V(I, S) = (δ + d)I ≤ 0 when I = 0.

• V(I, S) = (δ + d)I ≥ 0 for all S > 0 and I > 0.

• S ′ = b− βSI

N
− dS has a unique disease free equilibrium

(
0, b

d

)
that is

locally asymptotically stable.

Based on the definition of F and V in (3.3.2), we have

F =
∂F
∂I

=
βS

N
, V =

∂V
∂I

= (δ + d),

At the DFE, S = N ; then R0 = ρ(FV −1) is computed to be

R0 =
β

δ + d

and hence the endemic equilibrium point can be expressed as a function of R0,

(S∗, I∗) =

(
b

dR0

,
b

β
(R0 − 1)

)
.

Based on Theorem 3.3.1, the disease free equilibrium point is then locally

asymptotically stable if R0 < 1 and unstable if R0 > 1.

3.5.5 Stability analysis of the endemic equilibrium point

for the SI model with demography

The local stability of the endemic equilibrium point can be evaluated by

substituting the endemic equilibrium state into the Jacobian matrix obtained
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after the model equations have been linearized as defined in (2.1.8) and then

evaluating the eigenvalues. We have, at an arbitrary (S, I),

J(S, I) =

−βI
N
− d −βS

N

βI
N

βS
N
− (δ + d)

 . (3.5.11)

Therefore,

J(S∗, I∗) =

 − βd
δ+d

−(δ + d)

d(β−(δ+d))
δ+d

0

 =

 −dR0 −(δ + d)

d(R0 − 1) 0

 . (3.5.12)

The characteristic polynomial resulting from the Jacobian matrix evaluated at

the endemic equilibrium point is given by

P (λ) = λ2 + dR0λ+ d(δ + d)(R0 − 1).

The two eigenvalues of the characteristic polynomial can be obtained from the

quadratic formula

λ1,2 =

{
−dR0

2
± 1

2

√
M

}
,

where M= d2R2
0 − 4d(δ + d)(R0 − 1). Therefore,

• if R0 > 1, then
√
M < dR0, hence the two eigenvalues have negative real

parts, which implies the endemic equilibrium point is locally asymptoti-

cally stable stable.
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• if R0 < 1, then
√
M > dR0, hence the eigenvalues have one positive and

one negative real parts, which implies the endemic equilibrium point is

unstable.

By Theorem 2.1.4, the endemic equilibrium point is locally asymptotically

stable if R0 > 1 and unstable if R0 < 1.

3.6 Other examples of epidemic models

References [21, 23] and [24] were used in this section.

• Susceptible-Infectious-Susceptible (SIS): This type of model has to

do with infections which are transient in nature; the infected individuals

recover without immunity. Such diseases include gonorrhea. A typical

S I
βSI

γI

Figure 3.4: Schematic diagram for an SIS model with no demography.

SIS model takes the form:

S ′ = γI − βSI

I ′ = βSI − γI.
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• Susceptible infectious removed susceptible (SIRS): This type of

model is used for a disease that is curable; the recovered individuals

have temporary immunity which wanes after a while, so they become

susceptible to the disease again.

S I R
βSI γI

αR

Figure 3.5: Schematic diagram for an SIRS model with no demography.

An SIRS model without demography takes the form

S ′ = αR− βSI

I ′ = βSI − γI

R′ = γI − αR.

• Susceptible-Latent-Infectious-Recovered (SLIR): This type of model

is used for a disease in which infected individuals undergo an incubation

period before becoming infectious. Infected individuals are latently in-

fected before becoming infectious and the length of their latent period

depends on the disease. Such individuals do not transmit the disease

until the onset of symptoms.
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S L I R
βSI γL αI

Figure 3.6: Schematic diagram for an SLIR model without demography and
no loss of immunity.

A typical SLIR model without demography takes the form

S ′ = −βSI

L′ = βSI − γL

I ′ = γL− αI

R′ = αI.

Here, 1
γ

is the average duration of the incubation period.

3.7 SI model with mass action incidence

The model is similar to the SI model with vital dynamic (3.5.5) analyzed earlier,

except for the fact that it uses a mass action incidence function, while the

previously analyzed model used standard incidence. This is to illustrate how

to analyze a model with mass action incidence as the force of infection in the

Ebola model that will be analyzed in this thesis uses mass action incidence.

The model takes the form

S ′ = b− βSI − dS (3.7.1a)

I ′ = βSI − (δ + d)I. (3.7.1b)
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Equilibrium points for this model satisfy

b− βSI − dS = 0 (3.7.2a)

βSI − (δ + d)I = 0. (3.7.2b)

Solving (3.7.2b) for S or I,

(βS − (δ + d))I = 0 ⇔ I = 0 or βS − (δ + d) = 0

⇔ I = 0 or S =
δ + d

β
. (3.7.2c)

In the absence of the disease, substituting I = 0 into (3.7.2a) gives

b− dS = 0 ⇔ S =
b

d
.

This gives the disease free equilibrium point (S̄, Ī) =
(
b
d
, 0
)
. In the case when

I 6= 0, substituting S = δ+d
β

into (3.7.2a) gives

b− (δ + d)I − d(δ + d)

β
= 0 ⇔ I =

βb− d(δ + d)

β(δ + d)
.

This gives the endemic equilibrium point (S∗, I∗) =
(

(δ+d)
β
, βb−d(δ+d)

β(δ+d)

)
.

The basic reproduction number for this model, computed using the next

generation matrix, is given by R0 =
βb

d(δ + d)
, so the endemic equilibrium point

can be written in term R0 as (S∗, I∗) =
(

b
dR0

, d
β
(R0 − 1)

)
. Also the local

stability of the DFE follows from using Theorem 3.3.1.
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Local stability of the endemic equilibrium point can be evaluated by substi-

tuting the endemic equilibrium state into the Jacobian matrix for (3.7.1),

J(S, I) =

−βI − d −βS

βI βS − (δ + d)

 (3.7.3)

and then evaluating the eigenvalues. Note that this is similar to the result

found in Section 3.5.5. We obtain

J(S∗, I∗) =

 − βd
(δ+d)

−(δ + d)

(βb−d(δ+d))
(δ+d)

0

 =

 −dR0 −(δ + d)

d(R0 − 1) 0

 . (3.7.4)

The characteristic polynomial is P (λ) = λ2 + dR0λ+ d(δ + d)(R0 − 1). The

two roots of the characteristic polynomial take the form

λ1,2 =

{
−dR0

2
± 1

2

√
M

}
,

where M= d2R2
0 − 4d(δ + d)(R0 − 1).

• if R0 > 1 then
√
M < dR0, hence the two eigenvalues have negative real

part, which implies the endemic equilibrium point is locally asymptotically

stable.

• if R0 < 1 then
√
M > dR0, hence the eigenvalues have one positive and

one negative real part, which implies the endemic equilibrium point is

unstable.
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By Theorem 2.1.4, the endemic equilibrium point is locally asymptotically

stable if R0 > 1 and unstable if R0 < 1.
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Chapter 4

Background on Ebola Virus

Disease

Material in this chapter can be found in references [1, 2, 6, 8, 10, 13, 20, 26, 27,

31, 35] and [39]. Ebola virus disease (EVD), also known as Ebola hemorrhagic

fever (EHF), is a viral hemorrhagic fever of humans and other primates, caused

by Ebola viruses. Ebola first emerged in Sudan and Zaire in 1976. It was named

after the Ebola River in Zaire. The first outbreak of Ebola (Ebola-Sudan)

killed 53% of the 284 infected people. Months later, a second outbreak emerged

in Yambuku, Zaire (Ebola-Zarie, EBOZ). EBOZ led to higher mortality than

Ebola-Sudan: 318 people were infected with EBOZ and over 80% of the infected

people died as a result of the disease. The third strain of the virus, known as

Ebola-Reston (EBOR), was first identified in 1989 when infected monkeys were

imported into Reston, Virginia, from Mindanao in the Philippine. The people

who were infected with EBOR never developed Ebola hemorrhagic fever (EHF).

53
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The last strain was discovered in Cote d’Ivoire in 1994 (Ebola Cote d’Ivoire).

4.1 West Africa 2014 Ebola Outbreak

Ebola virus outbreaks have occurred, most notably in parts of Central Africa.

However, the largest and most devastating outbreak of EVD is the 2014

epidemic in three West African countries (Guinea, Liberia and Sierra Leone).

The first outbreak in West Africa occurred in Guinea in March, 2014. The

outbreak was widely spread in Liberia (its capital city Monrovia and other

metropolitan cities) and Sierra Leone. The disease also spread to Nigeria by an

airline passenger who arrived from Liberia. It spread to Senegal by a student

from Guinea who arrived by land transportation. This spread was not limited

to Africa alone; it affected a Western European country (Madrid, Spain) and

the United States of America (Dallas, Texas; New York City). However, outside

the 3 West African countries, there was little to no local transmission, with

the only local transmission happening in Nigeria which was quickly contained.

4.2 Transmission mechanisms

Several attempts have been made to identify the natural reservoir of Ebola virus.

The fruit bats of the Pteropodidae family are believed to be the natural host

for Ebola virus. The virus is introduced into the human population through

close contact with blood secretions, organs and other bodily fluids of infected
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animals such as chimpanzees, gorillas, fruit bats, monkeys, forest antelope

and porcupines found ill or dead in the rainforest. Transmission is possible

through direct contact with bodily fluids such as blood of infected individuals,

breast milk or through recently contaminated surfaces and materials such

as beddings and clothings. EVD is also transmitted during burial rites of

infected individuals, where the mourners have direct contact with the corpses.

This occurs because infected individuals remain infectious as long as the virus

remains in their blood.

An infected individual does not start to show symptoms immediately,

neither do they start to transmit the virus. This is because the virus undergoes

incubation, the period between the infection and the onset of symptoms, which

usually ranges from 2 − 21 days in the case of EVD. During incubation, the

virus infects cells, replicates and bursts out of the infected cells, producing

EVD glycoproteins that become prevalent in blood vessels, thus rendering

blood vessels more permeable. The increased permeability causes blood vessels

to ooze blood. The natural defense system of the infected individual is also

tampered with by EVD, thereby infecting the immune cells, which are channels

through which the virus can be transported to other body parts and organs

such as the liver, spleen, kidney and brain. This eventually causes the organs

to fail, leading to the death of the individual.

After the incubation period, an infected individual begins to show acute

symptoms, which include fever, sore throat, muscular pain, headaches, loss of

appetite and abdominal pain. After these symptoms comes vomiting, diarrhea
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Figure 4.1: 2014 Ebola outbreak in West Africa [41].

and a rash. Infected individuals also experience liver and kidney dysfunction,

bleed both internally and externally. They become infectious at the onset of

symptoms. The virus has an average case fatality of 50%. During this outbreak,

death usually takes place within 6− 16 days after the onset of the symptoms.

4.3 Literature Review

The recent outbreak of Ebola Virus Disease has led researchers to develop

mathematical models to help understand the dynamic of the virus and the

appropriate intervention techniques which have to be put in place in order

to be able to combat the disease effectively. A stochastic SEIR model was

proposed in [9]. The Ebola outbreak data of Congo in 1995 and Uganda in 2000

were fitted with this model. The basic reproduction number in the absence of
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intervention for Congo was estimated to be R0 = 1.83 while that in Uganda

was R0 = 1.34. A similar model was formulated in [25], which used the same

data for the epidemic outbreak in Congo and yielded a lower estimate for the

basic reproduction number R0 ≈ 1.4. An extension was made to the stochastic

model SEIR model formulated in [9]. This extension, which can be seen in

[17], incorporated two other compartments, namely the hospitalized and the

unburied deceased. The basic reproduction number estimated for this new

model yields R0 ≈ 2.7 with (95%C.I : 1.19− 2.8) for EVD Congo outbreak in

1995 and R0 ≈ 2.7 with (95%C.I : 2.5− 4.1) for the 2000 Uganda epidemic.

Due to a peculiarity of EVD, which is the fact that an infected individual

remains infectious after death, an SEIR model for the 2014 outbreak was

also formulated in [5] that keeps track of the infections that occurred in the

community, in the hospital and during funerals. It was discovered from the

model that the rate of transmission of the virus during traditional burial was

much higher than the rate at which it is being transmitted at all other places

under consideration. The conclusion from this model was that the time of

burial and the funeral rite play a major role in the reduction of the basic

reproduction number R0.

A relentless dissemination among several countries, dramatic number of

cases including health care workers and the inability to control the outbreak

which grew exponentially [4] are the main features of the 2014 EVD outbreak.

Statistics reveal that in October 2014, the new cases count for 2014 EVD
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Legend terms Meaning
Sti-conf-WHO Situation report of confirmed cases
Sti-prob-WHO Situation report of probable cases
pat-conf-WHO Patient database of confirmed cases
pat-prob-WHO Patient database of probable cases
cumsc-WHO Cumulative number of confirmed cases of the situation report
cumsp-WHO Cumulative number of probable cases of the situation report
cumpc-WHO Cumulative number of confirmed cases of the patient database
cumpp-WHO Cumulative number of probable cases of the patient database
HW-deaths-WHO Cumulative number of death by health care workers
HW-cases-WHO Cumulative number of cases by health care workers

Table 4.1: Terms used in the legends of Figure 4.2.

was 8, 997 with fatalities of 4, 493. These numbers increased to 15, 035 and

5, 689 respectively by 23rd of November 2014 [1]. The latest statistical update

from March 2015 reveals that 28, 646 were infected and 11, 323 died from the

disease [27].

Figure 4.2(a) was generated with the situation report and patient database

data obtained from the World Health Organization website. It shows the

confirmed and probable cases of Ebola virus in Liberia. Figure 4.2(b) reveals

the cumulative number of confirmed and probable cases from the situation

report and patient databases of the WHO report. Figure 4.2(c) reveals that

health care workers are not exempt from infection. It shows the cumulative

number of health care workers that were infected and that died as a result of

the infection in Liberia within a one year period.

All these figures reveal that proper attention is needed in order to understand

the transmission dynamics of this virus, in order to successfully combat the
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(a)

(b)

(c)

Figure 4.2: (a) Cases of Ebola virus in Liberia; (b) cumulative number of
confirmed and probable cases of Ebola virus in Liberia; and (c) cumulative
number of Liberia health care workers cases. Legends meaning can be found in
Table 4.1.
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infection and prevent future outbreaks.

A metapopulation stochastic epidemic model for 2014 EVD outbreak was

formulated by Gomes et al [11]. This model was used to assess international

spreading risk associated with the outbreak. Their model was formulated as a

global epidemic and mobility model. The mobility model used integrates daily

airline passenger traffic between over 200 countries. It was used to generate

stochastic, individual based simulation of the epidemic spread worldwide. The

compartmental disease model was used to illustrate transmission dynamics

within a community, hospital and during funeral ceremonies. The results found

an estimate of 1.5− 2.0 for the basic reproduction number for the short-time

growth rate of the diseased in affected West African countries. They also found

that surveillance and containment notwithstanding, the major component of

the overall transmissibility of the disease is from the hospital and during funeral

rites.



Chapter 5

A mathematical model for
Ebola virus disease

This chapter is dedicated to the formulation of a mathematical model for Ebola

virus disease.

Assumptions about the model

The following assumptions will be used in the formulation of the model.

• Individuals can be categorized into different compartments based on their

epidemiological state.

• There is no vertical transmission of the infection: there is no infection

from mother to unborn baby.

• There is no reinfection: after having recovered from the disease, individu-

als do not become infected again.
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• There is no asymptomatic infection: to infect others, individuals must

be in the infectious compartment.

• There is homogeneous mixing; all susceptible individuals have equal

likelihood of becoming infected by infectious individuals.

• Incidence follows a mass action law.

• There is no other intervention procedure than isolation and treatment of

infectious individuals.

• Isolated individuals are under close surveillance, do not contribute to the

transmission of the infection, dead resulting from this compartment are

properly buried.

• Death resulting from the disease only takes place in the infectious and

isolated compartments. Natural death rate for each compartment is the

same.

5.1 Model formulation

A system of nonlinear ordinary differential equations will be used to model the

transmission of Ebola virus disease.

The total population at time t, denoted by N(t), is subdivided into six

compartments of susceptible (S(t)), latent (those who have been infected but

are not yet infectious) (L(t)), infected individuals (I(t)), isolated individuals
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S L I

Q R

Di DU

βS(I + εDI) γL

αI

νQ

(1−
ρ)δI

ρδI

δQ

πDI

b

dS dL

dQ dR

dI

Figure 5.1: Schematic diagram for Ebola Virus Disease transmission with
demography.

(Q(t)), removed individual (R(t)) and the deceased. The latter compartment is

further categorized into two compartments, the infectious (improperly buried)

deceased (DI(t)) and the properly buried deceased (DU(t)). So the total

population at time t is

N(t) = S(t) + L(t) + I(t) +Q(t) +R(t) +DI(t) +DU(t),

Since the model consists of both living infectious individuals and infectious

deceased, the total population for the living is given by

NL(t) = S(t) + L(t) + I(t) +Q(t) +R(t).

The susceptible population is increased by the recruitment of individuals

into the susceptible population, at a rate b. Susceptible individuals may acquire

infection, following effective contact with infected individuals and infectious



64 CHAPTER 5. EBOLA VIRUS DISEASE MODEL

deceased at a rate λ(t), where λ(t) = β(I(t)+εDI(t)), β is the effective contact

rate (contact capable of leading to infection), while the parameter 0 < ε < 1

is the reduction in infectiousness due to being deceased. This population is

further decreased by natural mortality at the per capita rate d. Thus, the rate

of change of the susceptible population is given by

S(t)′ = b − βS(t)(I(t) + εDI(t)) − dS(t).

The latent population is generated by the infection of susceptible individuals at

the rate λ(t). This population is decreased by development of disease symptoms

at the rate γ and natural mortality rate d, so that

L(t)′ = βS(t)(I(t) + εDI(t)) − (γ + d)L(t).

The average duration of the incubation period is 1/γ time units, so in-

fectious individuals are generated from the latent compartment at the rate

γL. The infectious population decreases as infectious individuals are isolated

(hospitalized) at the rate α, die due to the disease at the rate δ or die naturally

at the rate d. This gives

I(t)′ = γL(t) − (α + δ + d)I(t).

The isolated population is generated at the rate α, decreases as individuals

recover at the rate ν, die due to infection at the rate δ and also die naturally

at the rate d, so that

Q(t)′ = αI(t) − (ν + δ + d)Q(t).
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The recovered population is generated at the rate ν and decreases due to

natural mortality, at the rate d. This gives

R(t)′ = νQ(t) − dR(t).

Infectious deceased (improperly buried dead infectious individuals) are gen-

erated at the rate ρδ, where ρ accounts for the fraction of the dead that are

improperly buried. This population decreases as individuals are reburied prop-

erly at the rate π. Hence, the rate of change of this compartment is given

by

DI(t)
′ = ρδI − πDI .

Finally, the properly buried population (DU) is generated at the rate (1− ρ)δ

from the infectious population, δ from the isolated population and π from the

improperly buried population, so that

DU(t)′ = (1 − ρ)δI + δQ+ πDI .

Thus, the model for the transmission dynamics of Ebola virus disease with

infectious deceased population is given by the following nonlinear system of
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differential equations:

S ′ = b − βS(I + εDI) − dS, (5.1.1a)

L′ = βS(I + εDI) − (γ + d)L, (5.1.1b)

I ′ = γL − (α + δ + d)I, (5.1.1c)

Q′ = αI − (ν + δ + d)Q, (5.1.1d)

R′ = νQ − dR, (5.1.1e)

D′I = ρδI − πDI , (5.1.1f)

D′U = (1 − ρ)δI + δQ+ πDI . (5.1.1g)

The associated initial conditions to equations of model (5.1.1) are

S0 > 0, L0 ≥ 0, I0 > 0, Q0 ≥ 0, R0 ≥ 0, (5.1.2)

DI0 ≥ 0 and DU 0 ≥ 0.

The analysis of this model is presented in the next chapter and parameters are

defined in Table 7.1.



Chapter 6

Mathematical analysis of the

EVD model

This chapter deals with the basic mathematical analysis of the model formulated

in Chapter 5. It presents existence and uniqueness of solutions, nonnegativity,

boundedness, existence of equilibria, reproduction number and stability analysis

of equilibria.

6.1 Basic Properties

6.1.1 Existence and uniqueness

Proposition 6.1.1. (Existence and uniqueness of solutions). Consider Sys-

tem (5.1.1) with nonnegative initial conditions (5.1.2). Solutions to (5.1.1)

considered with (5.1.2) exist and are unique for all t ≥ 0.
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Proof. Let x(t) = (S(t), L(t), I(t), Q(t), R(t), DI(t), DU(t))T ∈ R7. System

(5.1.1) is written in the form (2.1.2), that is, x′ = f(x). The components of

the vector field f are denoted by fi for i = {1, 2, 3, 4, 5, 6, 7};

f1 = b − βS(I + εDI) − dS

f2 = βS(I + εDI) − (γ + d)L,

f3 = γL − (α + δ + d)I,

f4 = αI − (ν + δ + d)Q,

f5 = νQ − dR,

f6 = ρδI − πDI ,

f7 = (1 − ρ)δI + δQ+ πDI .

The vector field f consists of sums of linear and bilinear terms written in terms of

S, L, I,Q,R,DI and DU . Thus, the fi are continuous autonomous functions (no

time dependence) on R7 and partial derivatives ∂fi/∂S, ∂fi/∂L, ∂fi/∂I, ∂fi/∂Q, ∂fi/∂R, ∂fi/∂DI

and ∂fi/∂DU exist and are continuous, hence, by Theorem (2.1.2), a unique

solution exists to the initial value problem x′ = f(x) for any initial condition

x(0) ∈ R7.

6.1.2 Nonnegativity of solutions

Given nonnegative initial condition (5.1.2) for System (5.1.1), we require the

solutions of the equation to remain nonnegative. Thus the solutions should
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remain in

Γ =
{

(S, L, I,Q,R,DI , DU) ∈ R7
+ : 0 ≤ S, L, I,Q,R,DI , DU

}
, (6.1.1)

i.e Γ should be positively invariant. We show this is the case.

Proof. To prove that Γ is invariant, we examine the behaviour of the state

variables at the boundaries of Γ.

• At the boundary S = 0, then S ′ = b > 0. Thus, the solution cannot exit

Γ by crossing this boundary.

• At the boundary L = 0, L′ then become L′ = βS(I + εDI) ≥ 0. If

L(t) = 0, S(t) > 0, I(t) > 0 and DI(t) > 0 then βS(I + εDI) > 0 and

the solution cannot exit Γ by crossing the boundary L = 0 in this case.

If L = 0, S(t) > 0, I(t) > 0 and DI(t) = 0, then L′ = βSI > 0, If

L = 0, S(t) > 0, I(t) = 0 and DI(t) = 0, then L′ = 0. If L = 0, S(t) =

0, I(t) > 0 and DI(t) > 0 we have L′ = 0. In each of these cases L′ ≥ 0,

so the solution cannot cross L = 0.

• At the boundary I = 0, we have I ′ = γL. If I(t) = 0 and L(t) > 0

then I ′ = γL > 0 and thus the solution cannot exit Γ through the I = 0

boundary in this case. The case I(t) = 0 and L(t) = 0 has already been

considered above. Thus the solution cannot exit Γ via the boundary

I = 0.
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In a similar manner, we can show that the solution cannot exit Γ via the bound-

ary of any of the states variables. This completes the proof of nonnegativity of

solutions.

6.1.3 Boundedness

Lemma 6.1.1. The closed set

ΓL =

{
(S, L, I,Q,R) ∈ R5

+ : 0 ≤ S, L, I,Q,R ≤ NL ≤
b

d

}
(6.1.2)

is positively-invariant and attracting for (5.1.1).

Proof. To obtain the rate of change of the total living population NL with

time, note that

NL
′ = (S + L+ I +Q+R)′ = S ′ + L′ + I ′ +Q′ +R′.

NL
′ = b − dNL − δ(I + Q). (6.1.3)

It follows from (6.1.3) that

NL
′ + dNL = b − δ(I + Q) ≤ b,

so that

NL
′ + dNL ≤ b.
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By solving the resulting first order differential equation explicitly using the

integrating factor technique, we obtain

d

dt

(
edtNL

)
≤ bedt ⇐⇒

t∫
0

d

dt

(
edtNL

)
dt ≤

t∫
0

bedtdt

⇐⇒ NL(t)edt − NL(0) ≤ b

d
(edt − 1)

⇐⇒ NL(t) ≤ NL(0)e−dt +
b

d

(
1− e−dt

)
. (6.1.4)

Thus, the asymptotic behaviour of the total living population is such that

lim sup
t→∞

NL(t) ≤ lim
t→∞

(
NL(0)e−dt +

b

d

(
1− e−dt

))
=
b

d
.

Hence, the total living population is bounded above by b/d. Since solutions to

(5.1.1) considered with initial conditions (5.1.2) exist and are unique, remain

nonnegative and are bounded, System (5.1.1) is well posed.

6.2 Steady state analysis

In this section, we investigate the existence of steady states for the system of

nonlinear ordinary differential equations (5.1.1) describing the transmission

dynamics of Ebola virus disease. These steady states can be obtained by
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equating the right hand sides of (5.1.1) to zero, giving

b − βS(I + εDI) − dS = 0 (6.2.1a)

βS(I + εDI) − (γ + d)L = 0 (6.2.1b)

γL − (α + δ + d)I = 0 (6.2.1c)

αI − (ν + δ + d)Q = 0 (6.2.1d)

νQ − dR = 0 (6.2.1e)

ρδI − πDI = 0 (6.2.1f)

(1 − ρ)δI + δQ+ πDI = 0. (6.2.1g)

Solving for DI from (6.2.1f), we obtain

DI =
ρδ

π
I.

From (6.2.1b), using the latter expression, we obtain

L =
βSI(π + ερδ)

π(γ + d)
,

while from (6.2.1c), we obtain

L =
(α + δ + d)I

γ
.
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Equating the two equations together,

βSI(π + ερδ)

π(γ + d)
=

(α + δ + d)I

γ
(6.2.2)

⇐⇒ S{β(π + ερδ)} =
π(γ + d)(α + δ + d)

γ
.

Equation (6.2.2) yields two solutions

I = 0 and S =
π(γ + d)(α + δ + d)

βγ(π + ερδ)
. (6.2.3)

6.3 Disease Free Equilibrium (DFE)

Substituting I = 0 into (6.2.1), we obtain what is called the disease free

equilibrium point. Equation (6.2.1) is at the DFE if L = I = Q = R = Di = 0.

Thus equation (6.2.1a) gives S = b/d where d > 0 for b/d to be defined. Hence,

let E0 = (S̄, L̄, Ī , Q̄, R̄, D̄I , D̄U) denote the DFE of (5.1.1):

E0 =

(
b

d
, 0, 0, 0, 0, 0, 0

)
. (6.3.1)

6.3.1 R0 and stability of the disease free equilibrium

As discussed in Chapter 2, the local asymptotic stability of the disease free

equilibrium point E0 can be established by using the next generation matrix

method on System (5.1.1).
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The disease (infected) compartments of (5.1.1) are L, I,DI and the non

disease (non infected) compartments are S,Q,R. Although compartment Q

contains infected individuals, since they do not partake in the transmission

of the infection and do not later progress to DI , only to DU , it is grouped

together with non disease compartments. DU is dropped since the dynamics

of all other compartments do not depend on it and it is not involved in the

transmission of the disease. The model equations (5.1.1) can be written as

d

dt


L
I
DI

S
Q
R


︸ ︷︷ ︸

X

= f(X) =


βS(I + εDI)

0
0
0
0
0


︸ ︷︷ ︸

F

−




(γ + d)L

(α + δ + d)I
πDI

dS
(ν + δ + d)Q

dR


︸ ︷︷ ︸

V−

−


0
γL
ρδI
b
αI
νQ


︸ ︷︷ ︸
V+



The function f satisfies the five conditions given under next generation matrix

method of computing R0:

i) If S, L, I,Q,R,DI ≥ 0, then F ≥ 0,V− ≥ 0, and V+ ≥ 0.

ii) If S = L = I = Q = R = DI = 0, then V− = 0.

iii) If DFE E0 =
(
b
d
, 0, 0, 0, 0, 0

)
, then Fi(E0) = 0,Vi(E0) = 0, i ∈ {2, 3, 4, 5, 6},

since new entry into the population is only into the susceptible compart-

ments, in the absence of the disease, all other compartment do not exist.
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iv) If F = 0, we have the resulting model for (5.1.1) as

d

dt

[
S
]

=
[
b− dS

]
,

with Jacobian matrix

J =
[
−d
]
.

Then λ = −d < 0. Hence, DFE E0 =
(
b
d
, 0, 0, 0, 0, 0

)
is locally asymp-

totically stable.

Computation of the basic reproduction number R0 requires the application

of the next generation matrix, which was explained in Section 3.3. The

subsystem that constitutes the infected compartments of system (5.1.1) are the

latent L, infectious I and infectious dead DI compartments, with dynamics

given by

L′ = βS(I + εDI) − (γ + d)L,

I ′ = γL − (α + δ + d)I,

D′I = ρ(δ + d)I − πDI .

This can be grouped as follows

d

dt

 LI
DI


︸ ︷︷ ︸

X

=

βS(I + εDI)
0
0


︸ ︷︷ ︸

F

−

 (γ + d)L
−γL+ (α + δ + d)I
−ρδI + πDI


︸ ︷︷ ︸

V
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New infections only occur in the L compartment, while transition from one

compartment to the other are common to all the three compartments L, I and

DI . Hence, using the notation of (3.3.2), the nonnegative matrix F representing

new cases and the M-matrix V representing transitions associated with model

(5.1.1) evaluated at the disease free equilibrium point E0 are given respectively

as:

F =


0 β b

d
βε b

d

0 0 0

0 0 0

 and V =


γ + d 0 0

−γ α + δ + d 0

0 −ρδ π

 . (6.3.2)

Since V is a triangular matrix, it has all its eigenvalues having positive real

parts, λ1 = γ + d > 0, λ2 = α + δ + d > 0 and λ3 = π > 0. Hence V −1 exists

and is computed as

V −1 =


1

γ+ d
0 0

γ
(γ+ d)(α+δ+ d)

1
(α+δ+ d)

0

γρδ
π(γ+ d)(α+δ+ d)

ρδ
π(α+δ+ d)

1
π

 . (6.3.3)

Hence, we have

FV −1 =


bβγ(π+ερδ)

dπ(α+δ+d)(γ+d)
bβ(π+ερδ)
dπ(α+δ+d)

βbε
dπ

0 0 0

0 0 0

 , (6.3.4)
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so the basic reproduction number R0 is given by

R0 = ρ(FV −1) =
bβγ(π + ερδ)

dπ(α + δ + d)(γ + d)
, (6.3.5)

where ρ represents the spectral radius. Hence, using Theorem 3.3.1, the

following result is established.

Lemma 6.3.1. The disease free equilibrium point E0 of model (5.1.1) is locally

asymptotically stable whenever R0 < 1 and unstable if R0 > 1.

Lemma 6.3.1 implies that Ebola virus disease can be effectively controlled

in the population (when R0 < 1) if the initial sizes of the subpopulations of

model (5.1.1) are in the basin of attraction of the disease free equilibrium point

(DFE) E0.

6.3.2 Global stability of DFE

Global analysis of disease free equilibrium is carried out here to establish the

asymptotic behaviour of model (5.1.1).

Theorem 6.3.1. The DFE E0 of model (5.1.1) is globally asymptotically stable

(GAS) in (6.1.2) whenever R0 ≤ 1.

Proof. The disease compartment for the model are the latent L, infectious I

and improperly buried dead DI . Let G be a Lyapunov function for model

(5.1.1).
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The matrix of new infections F , and transition matrix V are as defined in

(6.3.2), so

V −1F =


0 βS

γ+ d
βεS
γ+ d

0 βγS
(γ+ d)(α+δ+ d)

βγεS
(γ+ d)(α+δ+ d)

0 βγρδS
π(γ+ d)(α+δ+ d)

βγρδεS
π(γ+ d)(α+δ+ d)

 , (6.3.6)

(F − V )i =

−(γ + d) S0β S0βε
γ −(α + δ + d) 0
0 ρδ −π

 L
I
DI


f(i, u) = (F − V )i−F(i, u) + V(i, u)

= β(I + εDI)(S0 − S) (6.3.7)

where i = (L, I,DI)
T is the infected compartments and f(i, u) is the dynamics

of the model. Since matrix V −1F in (6.3.6) is reducible (the first column is a zero

column), Theorem 3.3.3 fails. Instead, Theorem 3.3.2 will be used to construct a

Lyapunov function for the global stability analysis of the disease free equilibrium

point of the model. Let the infected compartments be i = (L, I,DI)
T , then

i′ = (F − V )i − f(i, u), with f(i, u) = β(I + εDI)(S0 − S) ≥ 0 in Γ. By

Theorem 3.3.2, G = wTV −1i is a Lyapunov function, where wT = (0, 1, 1) is the

left eigenvector of nonnegative matrix V −1F corresponding to the eigenvalue
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ρ(V −1F ) = R0. Then

G = wTV −1i

= (0, 1, 1)


1

(γ+ d)
0 0

γ
(γ+ d)(α+δ+ d)

1
(α+δ+ d)

0

γρδ
π(γ+ d)(α+δ+ d)

ρδ
π(α+δ+ d)

1
π



L

I

DI

 ,

=

(
γ(π + ρδ)

π(γ + d)(α + δ + d)

)
L+

(
π + ρδ

π(α + δ + d)

)
I +

1

π
DI ,

=
R0

βS0

[
L+

γ + d

γ
I +

(γ + d)(α + δ + d)

(π + ρδ)
DI

]
.

We have

G′ = wTV −1i′

= wTV −1 ((F − V )i− f(i, u))

= wTV −1(F − V )i− wTV −1f(i, u)

= (R0 − 1)(I +DI)−
R0

S0

(I +DI)(S0 − S) ≤ 0,

provided R0 ≤ 1. Furthermore, G′ = 0 implies that (I + DI) = 0 or S = S0,

since having I < 0 is not biologically feasible. Therefore, I = DI = 0. Then E0

is the only invariant set containing S = S0, I = 0 and DI = 0. Therefore, by

LaSalle’s invariance principle (Theorem 2.2.2), E0 is globally asymptotically

stable in Γ.
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6.4 Endemic equilibrium point (EE)

In this section, the endemic equilibrium for model (5.1.1) will be evaluated and

conditions for its local and global asymptotic stability will be given.

From (6.2.1a),

b − βS(I + εDI) − dS = 0⇐⇒ b − βSI(π + ερδ)

π
− dS = 0

⇐⇒ βSI(π + ερδ)

π
= b− dS.

Replacing S with the right hand side of (6.2.3), we obtain

bβγ(π + ερδ)− dπ(γ + d)(α + δ + d)

βγ(π + ερδ)
=

(γ + d)(α + δ + d)

γ
I.

By further simplification, we obtain the unique endemic equilibrium value for

I,

I =
1

(γ + d)(α + δ + d)

[
bβγ(π + ερδ)− dπ(γ + d)(α + δ + d)

βγ(π + ερδ)

]
.

(6.4.1)

Let k1 = (γ + d), k2 = (α + δ + d), k3 = (π + ερδ) and k4 = (ν + δ + d). Then

the endemic equilibrium of (5.1.1) takes the form
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S∗ =
πk1k2
βγk3

[the other solution of (6.2.3)] (6.4.2a)

L∗ =
bγk3 − dπk1k2

βγk1k3
(6.4.2b)

I∗ =
bβγk3 − dπk1k2

βk1k2k3
(6.4.2c)

Q∗ =
α

πk1k2k4

[
bβγk3 − dπk1k2

βγk3

]
(6.4.2d)

R∗ =
αν

πk1k2k4d

[
bβγk3 − dπk1k2

βγk3

]
(6.4.2e)

DI
∗ =

ρδ

πk1k2

[
bβγk3 − dπk1k2

βγk3

]
(6.4.2f)

DU
∗ = (1 − ρ)δI∗ + δQ∗ + πDI

∗. (6.4.2g)

6.4.1 Existence and uniqueness of the endemic equilib-

rium

For the purpose of establishing the existence and uniqueness of the endemic

equilibrium (EE), we want to express the equilibrium point in a different form,

for simplicity.

Let E1 = (S∗, L∗, I∗, Q∗, R∗, D∗I , D
∗
u) represent any arbitrary equilibrium of

model (5.1.1). Further, let

λ∗ = β(I∗ + εD∗I ) (6.4.3)
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be the associated force of infection of model (5.1.1) at this equilibrium point.

The model equations (5.1.1) are solved in terms of the aforementioned force of

infection at λ∗. Setting the right-hand side of (5.1.1) to zero gives

S∗ =
b

λ∗ + d
, L∗ =

λ∗S∗

γ + d
, I∗ =

γL∗

(α + δ + d)
,

Q∗ =
αI∗

(ν + δ + d)
, R∗ =

νQ∗

d
, DI

∗ =
ρδI∗

π
.

(6.4.4)

Substituting equation (6.4.4) into the expression for λ∗ in equation (6.4.3)

gives

λ∗ = β

(
π + ερδ

π

)
I∗

= β

(
π + ερδ

π

)(
γ

(α + δ + d)

)(
λ∗b

(λ∗ + d)(γ + d)

)
,

so that

λ∗ =
bβγλ∗(π + ερδ)

π(λ∗ + d)(γ + d)(α + δ + d)
. (6.4.5)

From (6.3.5),

dR0 =
bβγ(π + ερδ)

π(γ + d)(α + δ + d)
. (6.4.6)

Substituting (6.4.6) into (6.4.5) gives

λ∗ =
dR0λ

∗

λ∗ + d
, (6.4.7)
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so the nonzero endemic equilibrium of model (5.1.1) satisfies

λ∗ − d(R0 − 1) = 0, (6.4.8)

which has the unique solution

λ∗ = d(R0 − 1). (6.4.9)

It is clear that the unique solution of λ∗ from (6.4.9) is positive if R0 > 1, since

all model parameters are positive. The components of the endemic equilibrium

E1 are then determined by substituting (6.4.9) into the equations in (6.4.4).

It follows from (6.4.9) that for R0 < 1, λ∗ < 0 (which is biologically not

meaningful). Hence model (5.1.1) has no positive endemic equilibrium point

when R0 < 1. Moveover, if R0 = 1, then λ∗ = 0, corresponding to the disease

free equilibrium point. These results are summarized below .

Theorem 6.4.1. Model (5.1.1) has unique endemic equilibrium E1 if R0 > 1

and none otherwise.

6.4.2 Global stability of endemic equilibrium for special

case

The global asymptotic stability of the endemic equilibrium of model (5.1.1) is

given for a special case when deceased individuals do not transmit infection

(ε = 0). Model (5.1.1) with ε = 0 reduces to:
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S ′ = b − (βI − d)S,

L′ = (βI − d)S − (γ + d)L,

I ′ = γL − (α + δ + d)I,

Q′ = αI − (ν + δ + d)Q, (6.4.10)

R′ = νQ − dR,

D′I = ρδI − πDI ,

D′U = (1 − ρ)δI + δQ+ πDI .

The reproduction number associated to model (6.4.10) is given by

R0r = R0|ε=0 =
bβγ

d(γ + d)(α + δ + d)
. (6.4.11)

We claim the following result.

Theorem 6.4.2. The endemic equilibrium of the reduced model, given by

(6.4.10), is GAS in ΓL given by (6.1.2) if R0r > 1.

Proof 6.4.1. Consider the reduced model given by (6.4.10) Let R0r > 1, so

that the associated endemic equilibrium exists. Further, consider the following
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nonlinear Lyapunov function:

V = S − S∗ − S∗ ln

(
S

S∗

)
+ L− L∗ − L∗ ln

(
L

L∗

)
(6.4.12)

+
(γ + d)

γ

[
I − I∗ − I∗ ln

(
I

I∗

)]

with derivative with respect to time

V ′ = S ′ −
(
S∗

S

)
S ′ + L′ −

(
L∗

L

)
L′ +

(
γ + d

γ

)[
I ′ −

(
I∗

I

)
I ′
]

= b− βSI − dS −
(
S∗

S

)
(b− βSI − dS)

+ βSI − (γ + d)L−
(
L∗

L

)
(βSI − (γ + d)L)

+

(
γ + d

γ

)[
γL− (α + δ + d)I −

(
I∗

I

)
(γL− (α + δ + d)I)

]
(6.4.13)

= b

(
1− S∗

S

)
− dS

(
1− S∗

S

)
+ βS∗I∗ −

(
(γ + d)(α + δ + d)

γ

)
I

+ (γ + d)L∗ −
(
βSI

E

)
L∗ −

(
(γ + d)L

I

)
I∗ +

(
(γ + d)(α + δ + d)

γ

)
I∗.

From (6.4.10), at the endemic equilibrium point,

b = (βI∗ + d)S∗,

(γ + d) =
βI∗S∗

L∗
, (6.4.14)

(α + δ + d) =
γL∗

I∗
.
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Substituting (6.4.14) into (6.4.13) gives

V ′ = −dS∗
(
S∗

S
+

S

S∗
− 2

)
− βS∗I∗

(
S∗

S
+
I∗L

L∗I
+

I

I∗
+

SIL∗

S∗I∗L
− 4

)
.

(6.4.15)

We have (
S∗

S
+

S

S∗
− 2

)
≥ 0

and (
S∗

S
+
I∗L

L∗I
+

I

I∗
+

SIL∗

S∗I∗L
− 4

)
≥ 0.

Further, since all model parameters are nonnegative, it follows that V ′ ≤ 0 for

R0r > 1 with V ′ = 0 if and only if S = S∗, L = L∗, I = I∗. Hence, V is a

Lyapunov function for the reduced model. Hence, the endemic equilibrium for

model (6.4.10) is globally asymptotically stable when R0r > 1.



Chapter 7

Numerical simulation

Numerical simulations of System (5.1.1) are performed in this chapter in

order to further investigate the transmission dynamics of Ebola virus and to

complement the mathematical analysis carried out in the Chapter 6.

7.1 Numerical solution

Parameters used for our analysis are estimated based on related literature and

data from the World Health Organization website. The parameter values can

be found in Table 7.1. Numerical simulation of model (5.1.1) was carried out

with MATLAB software.

Figure 7.1(a) depicts the behaviour of the susceptible population for the

model using the defined parameters values. This figure reveals a decline in

the susceptible population, as the members of the population are becoming

infected and therefore moving to other compartments. Figure 7.1(b) reveals
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1: Numerical simulation of the Ebola virus disease on population of
the (a) susceptible; (b) latent; (c) infectious; (d) isolated; (e) recovered; and
(f) infectious deceased.
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Parameter Base value Source
b: Recruitment rate 183 World Bank
β: Transmission rate 1.4173e−7 Estimated
ε: Deceased transmission rate 0.489 [15]
d: Natural death rate 1/(63× 365) [42]
γ: Progression rate 0.0869 [42]
α: Isolation rate 0.25 [42]
ρ: Improperly buried fraction 0.6 Estimated
δ: Disease induced death rate 0.0901 [15]
ν: Recovery rate 0.1 Assumed
π: Burial rate 0 < π ≤ 1 Assumed

Table 7.1: Parameters values for the numerical simulation. The units are
days, base values are therefore per day. The estimate are obtained from some
computation related the them. E.g, the recruitment rate was obtained from
the total population and the life expectancy of Liberians.

increase in the latent population which reaches its peak at about 300 day and

afterwards declines. Similarly Figure 7.1(c) reveals an increase in the infection

population which also reaches its peak at almost the same time as the latent

population. The infectious population also decreases but never to zero (what

is seen in the picture is due to the scale of the figure). Figure 7.1(d) represents

the isolated population; it also witnesses its own peak and reduction as there

was decrease in the infectious population, but later stabilizes to a positive

value (not zero as appears in the figure). The recovered population is presented

in Figure 7.1(e). Infectious deceased population is presented in Figure 7.1(f).

As usual, we have an increase in the population before a decrease. All these

are what accounts for the decrease in the susceptible population. After the

population of the latent, infectious, Isolated, recovered and infectious deceased
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(a) (b)

(c) (d)

Figure 7.2: Numerical simulation for effect of higher isolation rate on (a)
infectious; (b) isolated; (c) recovered; and (d) infectious deceased populations.

reaches equilibrium, the susceptible population stabilizes.

The effect of increase of the isolation rate was then investigated in our

simulation. It shows that early isolation of infected individuals can help reduce

the spread of the disease. Figures 7.2(a), 7.2(b), 7.2(c) and 7.2(d) are the

numerical simulation plots for higher isolation rates for the infectious, isolated,

recovered and infectious deceased populations, respectively. As can be seen in
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each of these figures, there is reduction in the infectious population and the

infectious deceased population, which in return will affect the number of new

cases. While there is increase in the isolated and the recovered population,

they are not contributing to the transmission of the disease. The implication

is that we have less people transmitting the disease when infectious individuals

are isolated early or their rate of isolation is increased. This is in accordance

with the sensitivity analysis of the basic reproduction number, which showed

that increase in isolation rates will reduce the reproduction number, implying

a decrease in the number of new cases.

Effect of isolation alongside with increase in burial rate of infectious deceased

was also simulated and is shown in Figures 7.3(a), 7.3(b), 7.3(c) and 7.3(d).

Increase in burial rate has more impact in the infectious deceased population

as opposed to only when when increase isolation was made, as increase in

burial rate affect this population directly and has little effect on the infectious,

isolated and the recovered. This is because these individuals are dead, so they

do not increase the isolated or the recovered population but only help to reduce

the number of infectious deceased individuals transmitting the disease. The

sensitivity analysis also reveals that an increase burial rate has less impact on

the reproduction number reduction than an increase in isolation rate.

Figures 7.4(a) and 7.4(b) show the bifurcation diagram of the latent and

infectious population, respectively, as a function the basic reproduction number

R0. The interpretation of the figures is that the higher the basic reproduction

number R0, the larger the number of individuals in latent and infectious
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(a) (b)

(c) (d)

Figure 7.3: Numerical simulation for effect of proper burial and higher isolation
rate on (a) infectious; (b) isolated; (c) recovered; and (d) infectious deceased
populations.
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(a) (b)

Figure 7.4: Bifurcation diagram for (a) latent; (b) infectious populations.

compartments.



94 CHAPTER 7. NUMERICAL SIMULATION

7.2 Sensitivity and uncertainty analyses

Material from [1] and [14] is used in this section.

A deterministic model has been formulated, which implies that the output

of the model is completely determined by the input parameters, the initial

conditions [to explain: here, we don’t have multistability. But a deterministic

a deterministic model can have it, in general, in which case initial conditions

matter] and the structure of the model. Therefore, the uncertainty of the

output is dependent on the input variation. Hence the need for uncertainty

and sensitivity analyses.

Parameter values and initial conditions used as the input factor for most

mathematical model parameters are not known with a sufficient degree of cer-

tainty because of natural variation, lack of current techniques to measure them

or error in measurement. Uncertainty analysis is a technique for assessing the

variability in an outcome variable that arises due to uncertainty in estimating

input values.

Sensitivity analysis is concerned with identifying the key input parameters

that contribute to imprecision in the estimation of the output variables. That

is, uncertainty analysis focuses on accessing the impact of uncertainties in

parameters values of the model being studied (model simulation), sensitivity

analysis focuses on identifying the key parameters of the model that most

influence the outcome (response function).
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Figure 7.5: Sensitivity analysis plot of the basic reproduction R0 number as
a function of the parameters of the basic model (5.1.1), using the baseline
parameter values defined in Table 7.1.

Sensitivity analysis is a method used to quantify the uncertainty of the

model parameters. It identifies critical inputs (parameters and initial conditions)

of the model and quantifies how input uncertainties impact model outcomes.

Sensitivity analysis is carried out by finding the partial derivative of the output

function (the basic reproduction number R0 in our case) with respect to the

input factors.

The partial rank correlation coefficient (PRCC) plot in Figure 7.5 was
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generated with the baseline of parameter values and range in Table 7.1 as

the input parameter, while R0 is the input function. Figure 7.5 shows partial

rank correlation coefficient (PRCC) plot of sensitivity analysis of the basic

reproduction number. This figure was generated by using the parameters values

defined in Table 7.1 and simulating with respect to the basic reproduction

number computed for the model. It reveals the parameters that have relative

high impact on the transmission dynamics of Ebola virus in Liberia. We see

that the parameters having the strongest impact are the transmission rate β,

natural death rate d, fraction of the infectious deceased ε, the isolation rate α,

diseased induced death rate δ and the recruitment rate of susceptible.

It follows from Figure 7.5 that an increase (decrease) in the baseline values

of the aforementioned parameters that have positive impact on R0 lead to a

corresponding increase (decrease) in the value of R0 which increases (decrease)

the number of new cases of Ebola virus disease, while increase (decrease) in the

baseline values of aforementioned parameters with negative impact on R0 leads

to a corresponding decrease (increase) in the value R0. The identification of

these parameters is vital to the formulation of the most effective and efficient

prevention measure for combating the spread the disease.

Figure 7.6 is the Latin Hypercube Sampling (LHS) box plot for the basic

model (5.1.1); it depicts the uncertainty in the parameter values for the model.

This plot was generated by defining the baseline value of each of the parameters

for the basic model (5.1.1) as having continuous uniform distributions, with
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Figure 7.6: Box plot of the basic reproduction number R0 as a function of
number of runs for basic model (5.1.1), using the baseline parameter values
defined in Table 7.1
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the basic reproduction number being the output function. For each number of

runs, each box displays the lower and the upper quartile ranges of R0 (lower

and upper horizontal lines on a box, respectively). The horizontal line within a

box denotes the median value of R0. The extreme values of R0 are presented

by the lower and the upper whiskers. From Figure 7.6, it can be seen that the

distribution of R0 lies in the range R0 ∈ [1.15, 2.03], with median R0 = 1.54.

The essence of Figure 7.6 is to shown that the basic reproduction number R0

obtained for the model is greater than one. Since R0 exceeds unity, it follows

from Theorem 3.3.1 that the Ebola virus disease will persist in the population

which is also confirmed in our simulation as the infectious population remain

positive. Thus, this reveals the need for intervention strategies that can help

to reduce (and maintain) R0 to a value less than unity.



Chapter 8

Discussion and conclusion

In this manuscript, a modified SLIR mathematical model was used to study

the transmission dynamics of Ebola virus disease. The model also incorporated

the infectiousness of the deceased individuals bearers of the disease, where the

virus is transmitted during funeral rites carried out by family members and

mourners. The analysis revealed that it is possible to have a state where the

disease is completely absent from the population (as we have presently) and a

state where the disease is established in the population. Data from WHO on

Ebola situation report, World Bank and from other sources were used to carry

out the numerical simulations of the model.

The numerical simulation reveals that the spread of the disease could be

minimized in the population if the infected individuals are isolated as soon

as their infection has been confirmed (due to medical test), or are suspected

to be infected (individuals that have a feverish feeling who do not respond to

treatment for usual causes of fever in that area, and showing one of the symp-
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toms for Ebola virus) or the probable (suspected cases with an epidemiological

link to a confirmed case), and the dead are properly handled by professionals

trained for this purpose, then the disease can be suppressed to a barest minimal

level even without therapeutic method.

Our analysis is not exempt of limitations. Mobility of individuals was not in-

corporated into the model. Also, the number of cases may be under-ascertained

as reported cases may represent only a portion of the total number of cases.

Another limitation in our model is the assumption that the disease-induced

death rate for infectious and isolated are equal. If some of the assumptions

are modified, this could lead to a different result entirely. On the long run, we

may have the same outcome, but it will definitely change the dynamics of the

diseases and how fatal it will be.

For instance, suppose the assumption that isolated individuals do not

transmit the infection is removed; this implies that infectious individuals,

isolated individuals and infectious deceased are responsible for the transmission

of the virus to susceptible individuals, meaning that we have more individuals

leaving the susceptible compartment for the exposed compartments. This will

also affect the analytic solution and the numerical simulation of the model.

Having stated this, it is important for us to know what we aim at obtaining

at the end of our analysis, as there is no model that is able to answer all the

questions about a particular disease. With this model, we have been able to

study the dynamics of Ebola virus disease in one of the countries affected by the
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2014 outbreak and to see from the sensitivity analysis some of the parameters

that affect the transmission of the virus and the precautionary measures that

need to be taken in case of future outbreaks of the disease. Although the

analysis reveals that the disease could be eliminated completely from the

population, we still need to be vigilant due to the fact that we know that

viruses are capable of transforming their genetic makeup to a different strain

of that virus. This is the reason we must not fold our hands as if everything

that can be done has been done. Recent outbreaks (August 2018) in the

Democratic Republic on Congo (DRC) emphasize that hands must be kept on

deck.



102 CHAPTER 8. DISCUSSION



Bibliography

[1] F. B. Agusto, M. I. Teboh-Ewungkem, and A. B. Gumel. Mathematical

assessment of the effect of traditional beliefs and customs on the trans-

mission dynamics of the 2014 Ebola outbreaks. BMC Med, 13:96, 2015.

(Cited on pages 53, 58 and 94.)

[2] C. Althaus. Estimating the reproduction number of Ebola virus (ebov)

during the 2014 outbreak in West Africa, September 2014. (Cited on

pages 1 and 53.)

[3] J. Arino. Dynamical systems: Theory and applications. Lecture note.

(Cited on page 8.)

[4] S. Baize. Ebola virus in West Africa: new conquered territories and new

risks-or how I learned to stop worrying and (not) love Ebola virus. Curr

Opin Virol, 10:70–76, Feb 2015. (Cited on page 57.)
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