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Abstract

Under some conditions in real world, precise parameters and/or initial values of dynamic systems

are hard to be determined. Fuzzy Differential Equation (FDE) is a powerful tool to model dynamical

systems with the uncertainty of impreciseness. This thesis presents the first numerical solution for

Fuzzy Differential Equations with multiple fuzzy parameters and initial Values (FDEPIV) problems.

Previous approaches for solving the FDEs only focused on FDEs with single fuzzy condition. In this

thesis, we applied the proper fuzzy arithmetic on Runge-Kutta method for solving the FDEPIV

problems with multiple fuzzy parameters and initial conditions. Furthermore, comparing with

directly applying the extension principle in solving FDEPIV, the complexity of the proposed method

is much lower, and parallelization of the proposed algorithm is feasible. Numerical examples of the

FDEPIV problems are presented to demonstrate the effectiveness of the proposed method.

ii



Acknowledgements

I wishes to express my great gratitude to my advisor, Prof. Dr. Wai-keung Fung, who was

abundantly helpful and offered invaluable assistance and guidance. This thesis would not have

been possible without the support of him. I also want to thank my parents and my girl friend

Siyang Lei for supporting and encouraging me to pursue this degree.

— Taiming Zhang

iii



Nomenclature

µ Membership grade of fuzzy set or fuzzy number, which the range is [0,1]

ã Fuzzy set or fuzzy number

R Real Space

Rn n-dimensional Real number space

En Fuzzy set space

D Hausdorff distance

L Lipschitz Condition

Ck Power set which contains all nonempty compact subsets of K

t[a, b, c] Triangular fuzzy number, the support is [a, c] and the core is b

g[a, b, c] Gaussian Fuzzy Number

q[a, b, c] Quadratic Fuzzy Number

e[a, b, c] Exponential Fuzzy Number

ãα α is the α-cut of ã, and the membership grade of the α-cut is µ = α

a Lower bound of fuzzy number ã at a particular membership grade

a Upper bound of fuzzy number ã at a particular membership grade

ẏ, dydt Time derivative of y

FDE Fuzzy Differential Equation

FIVP Fuzzy Initial Value Problem

FDEPIV Fuzzy Differential Equation with multiple fuzzy Parameters and Initial Values

KVL Kirchhoff’s Voltage Law

VAR Volt Ampere Relationship
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Chapter 1

Introduction

Dynamic systems are ubiquitous. Inverted pendulums, biped walking robots, nuclear reactors,

power system networks, missiles, biological neurons, flying birds, population dynamics of multiple

species in a closed ecosystem and earth quakes and tsunamis are just few examples of dynamic

systems found in human world and nature. In order to understand and analyze the working

mechanisms of these systems, mathematical models of the interested systems are constructed to

simulate their behaviors under the influence of external inputs. Dynamic systems are usually

modeled by differential equations with various parameters and initial or boundary conditions. For

instance, weights of the mass and the length of the rod are examples of the parameters of a

differential equation that models an inverted pendulum.

Precise values of parameters and initial conditions of a given differential equation must be

known in order to obtain the accurate behavior of the corresponding dynamic systems. However, it

is hard to obtain exact values of parameters or initial conditions in these system in real life. Vague

estimates of these system parameters are usually obtained. In order to incorporate uncertainty in

behavior analysis of real world dynamic systems, the notion of fuzzy differential equations (FDE),

in which parameters or initial conditions of the systems are represented by fuzzy numbers, was

proposed in the 80’s [23]. The fuzzy sets of the solution of fuzzy differential equations show all

possible solution trajectories of the target systems with different degrees of membership.
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1.1 Motivations

Various formulations and computational schemes have been proposed to obtain solution of fuzzy

differential equations and they have limitations like ever-expanding support in fuzzy solution trajec-

tory in time evolution and computational intractability of the solution with multiple fuzzy param-

eters. Moreover, previous approaches usually focused on FDEs with single fuzzy condition (fuzzy

initial value or parameter) only. The limitation of these works is that they could not handle FDEs

with multiple fuzzy conditions. Although in [22] [12], the authors gave theroetical investigations on

solving FDEs with multiple fuzzy initial values and parameters, these approaches are not practical

in reality as they could not provide a computational method for solving FDEs. Theoretically, it is

possible to apply the extension principle to solve the FDEs with multiple fuzzy conditions. How-

ever, the complexity in using the extension principle is high and intractable. Under this condition,

the necessity of a practical method in solving FDE with multiple parameters and/or initial values

problems is needed for simulation of fuzzy dynamic systems.

1.2 Overview of the proposed approach

In this thesis, the proper fuzzy arithmetic with Runge-Kutta method is employed for solving Fuzzy

Differential Equations with fuzzy Parameters and Initial Values (FDEPIV) problems. Application

of proper fuzzy arithmetic in fuzzifying common numerical solution schemes for ordinary differential

equations(ODE) is proposed. The proposed method can guarantee convergent support of the fuzzy

solution trajectories. In particular, this thesis focuses on fuzzifying the Runge-Kutta scheme for

solving FDEs with multiple fuzzy parameters and initial conditions. The proposed method not

only overcomes the shortcomings of existing methods mentioned in Section 1.2, but also provides

an efficient numerical scheme for solving nonlinear, higher order fuzzy differential equations with

multiple fuzzy parameters and fuzzy initial conditions. Moreover, parallelization of the proposed

methods is feasible.
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1.3 Contribution

The proposed method for solving FDEPIV applies proper fuzzy arithmetic with Runge-Kutta

method, which does not need the analytical solution of the non-fuzzy counterpart, and provides

solution with high accuracy. This method eliminates the overestimation of using standard fuzzy

arithmetic in solving the FDEPIV problems. Moreover, it can solve nonlinear and higher order

FDEPIV problems. To the best of the author’s knowledge, this thesis proposes the first numerical

scheme for higher order, nonlinear differential equations with multiple fuzzy parameters and initial

conditions.

1.4 Thesis Organization

In Chapter 2, the background of fuzzy sets theory is provided, which includes the extension prin-

ciple, standard fuzzy arithmetic and the proper fuzzy arithmetic. In Chapter 3, fuzzy differential

equations and some preliminary analysis on FDEs are introduced. Moreover, the technical chal-

lenges in solving FDEPIV problems are discussed. In Chapter 4, a new method on solving the

FDEPIV problems using proper fuzzy arithmetic is proposed. The examples and comparisons be-

tween new method and other approaches are illustrated in Chapter 5. Finally, the conclusion and

the future works of the thesis are presented in Chapter 6.
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Chapter 2

Basics of Fuzzy Sets

Professor Lotfi A.Zadeh in 1965 first proposed the notion of fuzzy sets for representation of concept

of ”vagueness” and ”impreciseness” in [42]. Fuzziness occurs when the extent of information is not

sharply defined. In classical set theory, the membership of elements in a set is binary. An element

either belongs or does not belong to the set. In contrast, fuzzy set permits a gradual assessment

of membership of elements in a set, which can be considered as a generalization of a classical set

or a crisp set. Nowdays, fuzzy sets theory has been developing in a high speed to becoming a

well-established tools for uncertainty handling, and enormous progress has been made. Branches of

fuzzy set theory have emerged, like fuzzy logic, fuzzy modeling, fuzzy expert system, fuzzy control,

fuzzy arithmetic and fuzzy differential equations, and it is widely applied in engineering and science.

In this chapter, we will introduce basic notions of fuzzy sets, which are important in this thesis.
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2.1 Fuzzy sets

In the real world, there is information that can be expressed precisely, such as ’The retire age in

Canada is 65’ : a person who is aged 65, can retire from their work place and enjoy the pension from

the society or company; an international student, whose TOFEL test score is over 80 is qualified

to enroll in the University of Manitoba. People whose age are 65 and older are all in the set

A : {qualified retired person in Canada} and whose test scores are higher than 80 are in the set

B : {qualified person enrolled in U of M}.

However, some notions do not have precise measurement standard, as ’Tom is an old man’, the

interpretation of ’old ’ is fuzzy. If Tom is 65 years old, we can say ’Tom is a little bit old ’. If Tom

is 90 years old, we can say he is ’pretty much old ’. If a person’s TOFEL score is 80 we say the

score is fair good. If a person’s score is 100, we can say his score is excellent. The elements in the

sets C : {old men} and D : {good TOFEL scores} have a degree of the membership in the sets.

The phrases ’a little bit old ’, ’pretty much old ’, ’fair good ’ and ’excellent ’ describe the degree of

elements in the corresponding sets. In fact, the sets A,B are classical or crisp sets examples, and

C,D are fuzzy sets examples. The following subsections presents concepts of fuzzy sets that are

important in this thesis.

2.1.1 Universal set

In set theory, a universal set is a set which contains all objects, including itself [10]. The universal

set X is a nonempty set consisting of all possible elements x of relevance in a particular context.

The characteristic function µX(x) of universal set X is given by:

µX(x) = 1, ∀x ∈ X. (2.1)

2.1.2 Membership function

The main difference between classical sets and fuzzy sets is their characteristic function (in fuzzy

sets we name it as membership function). Assume that a classical set A includes all the possible

5



elements x, and X is the continuous and uncountable universal set. The classical set A can be

written as:

A = {x ∈ X | for x satisfies A(x)} (2.2)

where A(x) denotes a property of an element x that belongs to the set A. For example, in Section

2.1, the property A(x) for set A : {retired person in Canada} is ’x is equal to or over 65 ’. For

any element x ∈ X satisfying A(x), the characteristic function is as expressed

µA(x) =


1 , x satisfies A(x)

0 , otherwise

, x ∈ X . (2.3)

In the classical set theory, the characteristic function µA(x) of equation 2.3 is binary and has only

values 0 and 1. In contrast, the charactiristic function or membership function of a fuzzy set for

fuzzy sets Ã is generalized as follows: the membership grade of a fuzzy set takes a value in the

continuous interval [0,1], instead of two distinct values, 0 or 1.

µÃ : X → [0, 1] (2.4)

The fuzzy set Ã can be written as:

Ã = {(x, µÃ(x)) |x ∈ X ,µÃ(x) ∈ [0, 1]}. (2.5)

A fuzzy set can be classified as a continuous fuzzy set or a discrete fuzzy set. For continuous fuzzy

set, it is represented in form of (2.5). The discrete fuzzy set is represented in the form as follows:

Ã =
(
µÃ(x1)/x1, µÃ(x2)/x2, ..., µÃ(xn)/xn

)
, xi ∈ X, xi = 1, 2, 3, ..., n. (2.6)

The following example illustrates the difference between the classical sets and fuzzy sets.

Example 2.1.1. A basketball team in U of M is recruiting people now. We denote a set A as

{Players’ heights requirement in U of M basketball team}. The minimum height requirement of

being enrolled into University of Manitoba basketball team is 180cm. If a student whose height is

over 180cm, we say that he satisfies the minimum height requirement to become a basketball player

in U of M. Even if he is just 179.5cm tall, the basketball team will not accept this person. Fig.1.1
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depicts the perception of ’tallness’ of a person using fuzzy sets. If a Tom’s height is 175cm, which

is between 170-180 cm we can say that he is ’a little bit tall ’ and his degree of ’tallness’ is ’medium’.

In other words, the height of Tom is one element in the fuzzy set Medium, with membership grade

of 1. It is also an element in fuzzy set Tall , with the membership grade of 0.5.

¹

height

1

0.5

170cm
0

180cm160cm150cm

Short Medium Tall

175cm

Fig. 2.1: Comparison of classical set and fuzzy set

2.1.3 α-cuts of Fuzzy Sets

Given a universal set x, and a fuzzy set Ã, Ã ⊆ X, the α-cut of set Ã is denoted as cutα(Ã) = Aα,

Aα is a crisp set of all elements x ∈ X that belongs to fuzzy set Ã with the membership grade

α ∈ [0, 1] or higher. Specifically, when uÃ(x) = 0, the corresponding α-cut is called the support of

the fuzzy set Ã, or supp(Ã). When uÃ(x) = 1, the α-cut is called the core of the fuzzy set Ã, or

7



core(Ã). They are defined as follows.

cutα(Ã) = Aα = {x ∈ X| µÃ(x) ≥ α} (2.7)

and

cutα=0(Ã) = supp(Ã) (2.8)

cutα=1(Ã) = core(Ã) (2.9)

α1 < α2 ⇒ cutα2(Ã) ⊂ cutα1(Ã) (2.10)

The definition of α − cuts is illustrated in Fig.2.2: In particular, α-cut of the fuzzy set in Fig.2.2

¹(A)

x

supp(A)~

cutα1(A)
cutα1(A)

core(A)

~
~

~

~

A
~

0

α2

α1

1

Fig. 2.2: The illustration for core support and α-cuts of fuzzy set Ã.

is a closed interval [a, a], where a,a are the lower and upper bounds of the interval respectively.

2.1.4 Convexity of Fuzzy Sets

The convexity of a fuzzy set is defined as follow:

Definition 2.1.2. A fuzzy set Ã is convex if and only if all possible α-cuts in the fuzzy set are

convex. If every element u ∈ cutα(Ã) and v ∈ cutα(Ã), for every membership grade α ∈ [0, 1], we

8



have

u(λx+ (1− λ)y) ≥ min[u(x), u(y)], ∀ λ ∈ [0, 1] (2.11)

Example 2.1.3. Two fuzzy set Ã and B̃ are given by their membership function µ(Ã) and µ(B̃)

as show in Fig.2.3 and 2.4 respectively. For fuzzy set Ã, every possible α-cut is convex. In fuzzy

set B̃ at least one α-cut is not convex.

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

¹(A)~

A~

®

cut®(A)~

convex fuzzy set

Fig. 2.3: Convex fuzzy set

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

¹(B)~

B~

®

cut®(B)~

non-convex fuzzy set

Fig. 2.4: Non-convex fuzzy set

2.1.5 Fuzzy numbers and its properties

A fuzzy number is a special case of a convex fuzzy set[19], which is convex and normalized. A fuzzy

number has following properties:

Definition 2.1.4. For a fuzzy set whose membership function is u : R→ I = [0, 1], and u(x) has

the following properties:

i u(x) is upper semi-continuous;

ii u(x) is bounded subset of R;

iii u(x) is fuzzy convex, ie. u(λx+ (1− λ)y) ≥ min[u(x), u(y)] for any λ ∈ [0, 1];

9



iv u(x) ≥ α is compact subset of R for all α-cuts, α ∈ I;

v There are real number a, b, c ∈ R, and 0 ≤ a ≤ b ≤ c for:

1. u(x) is monotonic increasing on [a, b],

2. u(x) is monotonic decreasing on [b, c],

3. u(b) = 1.

2.1.6 Types of fuzzy numbers

As listed in (v) of Definition 2.1.4, the membership function can be divided into left and right sides.

Based on this observation, there are standard types of fuzzy numbers [19] discussed in this thesis:

Triangular Fuzzy Numbers

Consider p̃ is a triangular fuzzy number, we denote it as:

p̃ = t[a, b, c], with a ≤ b ≤ c, a, b, c ∈ R (2.12)

with membership function:

µp̃(x) =



0 for x ≤ a,

1 +
x− b
b− a

for a < x < b,

1− x− b
c− b

for b ≤ x < c,

0 for x ≥ c.

∀x ∈ R (2.13)

Gaussian Fuzzy Numbers

We denote the fuzzy number p̃ as a gaussian fuzzy number:

p̃ = g[a, b, c], with a ≤ b ≤ c, a, b, c ∈ R (2.14)

10



with membership function

µp̃(x) =



0 for x ≤ a,

e

−(x− b)2

2(β1)2 for a < x < b , (β1 =
b− a

3
),

e

−(x− b)2

2(β2)2 for b ≤ x < c , (β2 =
c− b

3
),

0 for x ≥ c.

∀x ∈ R (2.15)

Quadratic Fuzzy Numbers

We denote the fuzzy number p̃ as a quadratic fuzzy number:

p̃ = q[a, b, c], with a ≤ b ≤ c, a, b, c ∈ R (2.16)

with membership function

µp̃(x) =



0 for x ≤ a,

1− −(x− b)2

γ21
for a < x < b , (γ1 = b− a),

1− −(x− b)2

γ22
for b ≤ x < c , (γ2 = c− b),

0 for x ≥ c.

∀x ∈ R (2.17)

Exponential Fuzzy Numbers

We denote the fuzzy number p̃ as an exponential fuzzy number:

p̃ = e[a, b, c], with a ≤ b ≤ c, a, b, c ∈ R (2.18)

with membership function

µp̃(x) =



0 for x ≤ a,

e

−(x− b)
δ1 for a < x < b , (δ1 =

b− a
4.5

),

e

−(x− b)
δ2 for b ≤ x < c , (δ2 =

c− b
4.5

),

0 for x ≥ c.

∀x ∈ R (2.19)

Fig.2.5,2.6,2.7 and 2.8 show the membership functions of each type of fuzzy numbers.
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Fig. 2.5: Triangular fuzzy number
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Fig. 2.6: Gaussian fuzzy number

a b c
0

0.5

1
u(x)

x

Fig. 2.7: Quadratic fuzzy number
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Fig. 2.8: Exponential fuzzy number

a b c
0

0.5

1
u(x)

x

Fig. 2.9: Other types fuzzy number
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Fig. 2.10: Fuzzy singleton (crisp value)
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Other types of fuzzy numbers

As long as a fuzzy set satisfies the conditions in Definition 2.1.4, it is called a fuzzy number. See

Fig. 2.9.

Example 2.1.5. We can define a fuzzy number that satisfies the following membership grade:

µp̃(x) =



0 for x ≤ a,

1− −(x− b)2

ω2
1

for a < x < b , (ω1 = b− a),

e

−(x− b)
ω2 for b < x < c , (ω2 =

c− b
4.5

),

0 for x ≥ c.

∀x ∈ R (2.20)

Fuzzy Singletons

When a = b = c, the fuzzy number is reduced to a fuzzy singleton, or a crisp number, which is

illustrated in Fig.2.10. In this thesis, we only consider the first 4 types of fuzzy numbers.

2.2 Extension Principle

The Extension principle is introduced by Zadeh in 1965 [42], and it provides an universal way of

extending mappings or functions from the crisp domain to the fuzzy domain

Definition 2.2.1. Suppose that function f is a mapping X → Y , Ã and B̃ are fuzzy sets, X is

the universe of discourse of Ã, Y is the universe of discourse of B̃. Ã ⊆ X and B̃ ⊆ Y respectively,

Ã =
(
µÃ(x1)/x1, µÃ(x2)/x2, µÃ(x3)/x3, . . . , µÃ(xm)/xm

)
, xi ∈ X, i = 1, 2, 3, . . . ,m. Thus we

have,

B̃ = f(Ã) (2.21)

Consequently we have B̃ =
(
µÃ(x1)/y1, µÃ(x2)/y2, µÃ(x3)/y3, . . . , µÃ(xm)/ym

)
, f(xi) = yi

, yi ∈ Y ,m = 1, 2, 3, . . . ,m. If there exist yj = yk = ξ, j 6= k µÃ(xj) 6= µÃ(xk), we take

13



µB̃(y = ξ) = sup(µÃ(xj), µÃ(xk)). We denote this as:

µB̃(y) =


sup µÃ(x) for y = f(x),

0 for y 6= f(x).

(2.22)

Example 2.2.2. Ã = (0.1/− 1, 0.5/0.5, 1/1, 0.5/2, 0.1/3), B̃ = f(Ã) = Ã2.

B̃ = (0.1/1, 0.5/0.25, 1/1, 0.25/4, 0.1/9), The output 1 can be obtained from input 1 or −1, which

have different membership grade, 0.1 and 1 respectively. According to the extension principle, we

take the maximum of them, so the fuzzy set B̃ = (0.5/0.25, 1/1, 0.25/4, 0.1/9).

Definition 2.2.3. In general, if we have fuzzy sets Ãi and crisp sets Xi, where Xi is the universal

set of Ãi (Ãi ⊆ Xi, for i = 1, 2, ..., n.), defined by membership functions µ
Ã1
, µÃ2

, µÃ3
, . . . , µÃn

respectively. Define a function f :

f : X1 ×X2 × . . .×Xn → Y (2.23)

The membership function for B̃ ⊆ Y is then given as:

µB̃(y) =


sup{min{µÃ1

(x1,j), µÃ2
(x2,j), . . . , µÃn

(xn,j)}} for y = f(x1,j , x2,j , . . . , xn,j),

0 for y 6= f(x1,j , x2,j , . . . , xn,j).

(2.24)

with xi,j ∈ Xi, i, j = 1, 2, 3, . . . , n.

Example 2.2.4. Ã1 = (0.1/1, 0.5/2, 1/3, 0.5/4, 0.1/5), Ã2 = (0.1/2, 0.5/4, 1/6, 0.5/7, 0.1/8). Define

B̃ = Ã1 + Ã2. Suppose x1,i ∈ Ã1, x2,i ∈ Ã2, i = 1, 2, 3, 4, 5.
x1,1 = 1 , x1,2 = 2 , x1,3 = 3 , x1,4 = 4 , x1,5 = 5

µÃ1
(x1,1) = 0.1 , µÃ1

(x1,2) = 0.5 , µÃ1
(x1,3) = 1 , µÃ1

(x1,4) = 0.5 , µÃ1
(x1,5) = 0.1

(2.25)
x2,1 = 2 , x2,2 = 4 , x2,3 = 6 , x2,4 = 7 , x2,5 = 8

µÃ2
(x2,1) = 0.1 , µÃ2

(x2,2) = 0.5 , µÃ2
(x2,3) = 1 , µÃ2

(x2,4) = 0.5 , µÃ2
(x2,5) = 0.1

(2.26)
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By using the extension principle, we have the following table:

µB̃(y)/y µÃ1
(x1,1)/x1,1 µÃ1

(x1,2)/x1,2 µÃ1
(x1,3)/x1,3 µÃ1

(x1,4)/x1,4 µÃ1
(x1,5)/x1,5

µÃ2
(x2,1)/x2,1 0.1/3 0.1/4 0.1/5 0.1/6 0.1/7

µÃ2
(x2,2)/x2,2 0.1/5 0.5/6 0.5/7 0.5/8 0.1/9

µÃ2
(x2,3)/x2,3 0.1/7 0.5/8 1/9 0.5/10 0.1/11

µÃ2
(x2,4)/x2,4 0.1/8 0.5/9 0.5/10 0.5/11 0.1/12

µÃ2
(x2,5)/x2,5 0.1/9 0.1/10 0.1/11 0.1/12 0.1/13

(2.27)

y membership grades max

3 0.1 0.1

4 0.1 0.2

5 0.1 0.2

6 0.1, 0.5 0.4

7 0.1, 0.5 0.4

8 0.5, 0.1 0.5

9 0.1, 1, 0.5 1

10 0.5, 0.1 0.5

11 0.1, 0.5 0.5

12 0.1 0.1

13 0.1 0.1

(2.28)

and we have B̃ = (0.1/3, 0.1/4, 0.1/5, 0.5/6, 0.5/7, 0.5/8, 1/9, 0.5/10, 0.5/11, 0.1/12, 0.1/13).

2.3 Standard Fuzzy arithmetic

Standard fuzzy arithmetic operation is based on the Extension Principle. Interested readers may

refer to [19] for details of standard fuzzy arithmetic.
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2.3.1 Fuzzy sets operations using the Extension Principle

Consider the Example 2.2.4 with fuzzy sets Ã1 and Ã2 are fuzzy numbers, Ã1 = t[0.9, 3, 5.1] and

Ã2 = t[1.9, 6, 8.1]. For two crisp values x1 = 3 from Ã1, µÃ1
(x1 = 3) = 1 and x2 = 6 from Ã2,

µÃ2
(x2 = 6) = 1, y = x1 + x2 = 9, the membership grade is given by min{µÃ1

(x1 = 3), µÃ2
(x2 =

6)} = 1. However, the result y = x1 + x2 = 9 can be obtianed from x1 = 5, µÃ1
(x1 = 5) = 0.1,

x2 = 4, µÃ2
(x2 = 4) = 0.5, the membership grade of y is given by min{µÃ1

(x1 = 5), µÃ2
(x2 =

4)} = 0.5. According to the Definition 2.1.4, a fuzzy number is a continuous fuzzy set. There is an

infinite number of combinations of x1 and x2 , which lead to the same result y. This makes fuzzy

arithmetic using the Extension Principle difficult.

2.3.2 Standard fuzzy arithmetic

Directly applying the extension principle for the operation of fuzzy numbers is not practical in

the computational context. Approximated solution of fuzzy arithmetic is given by discretizing the

continuous membership grade range [0, 1] and then performing interval arithmetic on the α− cuts

of input parameters [17].

Definition 2.3.1. For any two fuzzy numbers ã b̃, at any membership grade µ(ã) = µ(b̃) = α

,α ∈ [0, 1], we have

• [a, a]α + [b, b]α= [(a+ b), (b+ b)]α

• [a, a]α − [b, b]α= [(a− b), (a− b)]α

• [a, a]α · [b, b]α= [min
(
ab, ab, ab, ab

)
,max

(
ab, ab, ab, ab

)
]α

• [a, a]α / [b, b]α=[min
(aα
b

,
a

b
,
a

b
,
a

b

)
,max

(a
b

,
a

b
,
a

b
,
a

b

)
]α

where a < a and b < b. Moreover, aα bα denote as the lower bound, and aα b
α

denote as the

upper bound of α-cuts of [a, a]α and [b, b]α respectively, at membership grade α, α ∈ [0, 1]. If α = 1,

a = a = a, b = b = b.
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Example 2.3.2. Suppose x̃1 = t[1, 2, 4]†, x̃2 = g[3, 5, 6]†.

1. For the membership grade α = 0,

x̃α=0
1 + x̃α=0

2 = supp(x̃1) + supp(x̃2) = [1, 4] + [3, 6] = [4, 10].

2. For the membership grade α = 1,

x̃α=1
1 = core(x̃1) = 2, x̃α=1

2 = core(x̃2) = 5, core(x̃1+x̃2) = 7, the result for x̃1+x̃2 is [4, 7, 10]

††.

3. For the membership grade α = 0.1

x̃α=0.1
1 = [1.1, 3.8], x̃α=0.1

2 = [3.5, 5.7], [x̃1 + x̃2]
α=0.1 = [4.6, 9.5].

4. For the membership grade α = 0.5

x̃α=0.5
1 = [1.5, 3], x̃α=0.5

2 = [4.2, 5.4], [x̃1 + x̃2]
α=0.5 = [5.7, 8.4].

The resultant and fuzzy number is denoted in Fig.2.11.

Example 2.3.3. x̃1 = q[1, 2, 3]†, x̃2 = e[3, 5, 6]†.

1. For the membership grade α = 0, supp(
x̃α=0
2

x̃α=0
1

) =
[3, 6]

[1, 3]
= [1, 6].

2. For the membership grade α = 1, x̃α=1
1 = core(x1) = 2, x̃α=1

2 = core(x2) = 5, core(
x̃α=1
2

x̃α=1
1

) =

2.5.

The result for x̃1 + x̃2 is [1, 2.5, 6] ††. The resultant fuzzy number is denoted in Fig.2.12.

†t denotes triangular fuzzy number, g denotes gaussian fuzzy number, q denotes quadratic fuzzy number, e denotes

exponential fuzzy number.
††The resultant fuzzy set may not follow the standard types described before, as Triangular or Gaussian fuzzy

numbers. This representation only lists the core and support of the fuzzy number, but not the left side and right side

membership functions. These functions may not follow standard forms.
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Fig. 2.11: Example of Fuzzy Arithmetic operation: addition
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Fig. 2.12: Example of Fuzzy Arithmetic operation: division
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2.3.2.1 Drawbacks of the Standard Fuzzy Arithmetic

When we perform with the arithmetic operations of fuzzy numbers, standard fuzzy arithmetic is

based on interval arithmetic, which may overestimate the interval at each α-cut of the resultant

fuzzy set.

Example 2.3.4. Considering the fuzzy polynomial function:

f(x̃) = x̃2 − x̃ (2.29)

Let x̃ = t[2, 2.5, 3]. By directly applying the fuzzy arithmetic we can get:

support : [2, 3]2 − [2, 3] = [4, 9]− [2, 3] = [1, 7],

core : 2.52 − 2.5 = 3.75.

(2.30)

The result is [1,3.75,7]. Consider the same function in factored form:

f(x̃) = x̃2 − x̃ = x̃(x̃− 1) (2.31)

using the standard fuzzy arithmetic we have:

support : [2, 3]([2, 3]− 1) = [2, 3][1, 2] = [2, 6],

core : 2.5(2.5− 1) = 3.75.

(2.32)

In fact, the function f is monotonic increasing in [2, 3], the local minimum value for x̃ =

t[2, 2.5, 3] in function f is f(2) = 22 − 2 = 2, the local maximum value is f(3) = 32 − 3 = 6. The

second result of using the factored form which will lead the exact result. However, not all the fuzzy

function written as other forms using the standard fuzzy arithmetic can get the exact result. For

example:

Example 2.3.5. Considering the fuzzy polynomial function:

f(x̃) = x̃3 − 2x̃2 − 3x (2.33)
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x̃ = t[2, 2.5, 3], directly using the standard fuzzy arithmetic we can get:

support : [2, 3]3 − 2[2, 3]2 − 3[2, 3]

= [8, 27]− [4, 6]− [6, 9]

= [2, 23]− [6, 9]

= [−7, 17].

core : 2.53 − 12.5− 7.5 = −4.375.

(2.34)

Consider the function as a factored form:

f(x̃) = x̃3 − 2x̃2 − 3x = x̃(x̃− 3)(x̃+ 1) (2.35)

using the standard fuzzy arithmetic we can get:

support : [2, 3] · ([2, 3]− 3)([2, 3] + 1)

= [2, 3] · [−1, 0][3, 4]

= [−3, 0] · [3, 4]

= [−12, 0]

core : 2.5 · (2.5− 3) · (2.5 + 1)

= 2.5 · (−0.5) · (3.5)

= −4.375.

(2.36)

Express the function in Horner’s form:

f(x̃) = x̃3 − 2x̃2 − 3x = x̃
(
(x̃− 2)x̃− 3

)
(2.37)

using the standard fuzzy arithmetic we can get:

support : [2, 3] ·
(
([2, 3]− 2) · [2, 3]− 3

)
= [2, 3] · ([0, 1] · [2, 3]− 3)

= [2, 3] · [−3, 0]

= [−9, 0].

core : 2.5 ·
(
(2.5− 2) · 2.5− 3

)
= −4.375.

(2.38)
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In fact, the function f is monotonic increasing in the interval [2, 3], the local minimum value

for x̃ = t[2, 2.5, 3] in function f is f(2) = 23 − 2 · 22 − 3 · 2 = −6, the local maximum value

is f(3) = 33 − 2 · 32 − 3 · 3 = 0. The exact result is [-6,-4.375,0]. Comparing with the 3 results,

apparently, the supports of three results in using standard fuzzy arithmetic are larger than the exact

result, in which the size of α-cuts are overestimated. Proper fuzzy arithmetic [18] can alleviate the

overestimation problem in resultant α-cuts of fuzzy set under arithmetic operations.

2.4 Proper Fuzzy Arithmetic

Proper fuzzy arithmetic is proposed in [18]. (Interested readers may refer to [18] for the proof of

overestimation avoidance by proper fuzzy arithmetic.)

Definition 2.4.1. If we have n fuzzy numbers: x̃i, i = 1, 2, 3, . . . , n, each of which has a membership

function µx̃i(x),where x ∈ x̃i. Assume that the result of operating these n fuzzy numbers is X̃, for

each α-cut of µ(X̃) ≥ α ∈ [0, 1] we have following properties:

[X]α = [X,X]α,

Xα = min(C),

X
α

= max(C).

where C is all possible combinations of operating the crisp values of upper bound and lower bound

of α-cuts of all fuzzy numbers at membership grade µ(X̃i) ≥ α ∈ [0, 1]. The number of combinations

is 2n.

The following example shows how all possible combinations of upper and lower bounds of α-cuts

are generated:

Example 2.4.2. Assume that we have a fuzzy function:

f(x1x2x3) = x̃1x̃2x̃3 −
x̃1x̃2
x̃3

(2.39)
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with x̃1 = t[−1, x1, 2], x̃2 = t[1, x2, 3],x̃3 = t[2, x3, 3], (−1 < x1 < 2), (1 < x2, 3), (2 < x3 < 3).

At the membership grade µ = 0 we have the support of the result, by using the standard fuzzy

arithmetic, we have

support : [−1, 2] · [1, 3] · [2, 3]− [−1, 2] · [1, 3]

[2, 3]

= [−3, 6] · [2, 3]− [−3, 6]

[2, 3]

= [−9, 18]− [−1.5, 3]

= [−12, 19.5].

(2.40)

Actually if we directly apply the extension principle, the result is [-8,16] †.

If the proper fuzzy arithmetic is applied, we can construct this matrix using the upper bounds and

lower bounds of α-cuts of fuzzy sets x̃1, x̃2 and x̃3 at µ = 0:
−1 −1 −1 −1 2 2 2 2

1 1 3 3 1 1 3 3

2 3 2 3 2 3 2 3

 (2.41)

For n = 3 (3 fuzzy numbers), we have 2n = 8 combinations which located in every column in (2.41),

the set of these combination is:

{
{−1, 1, 2}, {−1, 1, 3}, {−1, 3, 2}, {−1, 3, 3}, {2, 1, 2}, {2, 1, 3}, {2, 3, 2}, {2, 3, 3}

}
. (2.42)

and we have : 

(−1 · 1 · 2)− (
−1 · 1

2
) = −11

2 ;

(−1 · 1 · 3)− (
−1 · 1

3
) = −22

3 ,

(−1 · 3 · 2)− (
−1 · 3

2
) = −41

2 ,

(−1 · 3 · 3)− (
−1 · 3

3
) = −8 (minimum),

(2 · 1 · 2)− (
2 · 1

2
) = 3,

(2 · 1 · 3)− (
2 · 1

3
) = 51

3 ,

(2 · 3 · 2)− (
2 · 3

2
) = 9,

(2 · 3 · 3)− (
2 · 3

3
) = 16 (maximum).

(2.43)

†Calculation is not shown due to the complexity. It is calculated in the Appendix A.
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At µ = 0, the lower bound of α-cuts of x̃1, x̃2 and x̃3 are −1, 1, 2 respectively; the upper bound

of α-cuts of x̃1, x̃2 and x̃3 are 2, 3, 3 respectively. The support of the resultant fuzzy set is [-8,16].

Through the results comparison we can find that the proper fuzzy arithmetic can overcome the

over estimation by using the standard fuzzy arithmetic.

2.4.1 Modified Proper Fuzzy Arithmetic

If the function is monotonic, the local minimum or maximum of a α-cut interval of the resultant

fuzzy set is at the lower or upper bounds. When a fuzzy function is non-monotonic, the local

minimum or maximam of the functions f are located within the range of α-cuts of the fuzzy

numbers, at membership grade value µ ∈ [0, 1]. We discretize the corresponding α-cut interval in

to multiple subintervals for calculation to locate the local minimum or maximum.†

Example 2.4.3. Consider the fuzzy polynomial function in Example 2.3.4:

f(x̃) = x̃2 − x̃

with x̃ = t[0, 1, 3], which is triangular fuzzy number. At membership grade µ = 0, by directly using

the fuzzy arithmetic the support of the resultant fuzzy set is,

[0, 3]2 − [0, 3] = [0, 9]− [0, 3] = [−3, 9].

by using proper fuzzy arithmetic, we have the result:

f([0, 3]) = [0, 6].

Actually, from the Fig.2.13 we can see that, the actual exact range is [-0.25, 6]. The reason

for this error is that the local minimum of the function f is located at x = 0.5, 0.5 ∈ [0, 3].

Due to this phenomenon, we can discretize the fuzzy number at membership grade µ = 0 into l

subintervals, and use proper fuzzy arithmetic to divide each subintervals to get the local minimum

and maximum crisp values within the range. The larger the value m is, the more accurate the

result is. The example is illustrated in Fig.2.14.

†The reason why using this method instead of other optimization methods is explained in Section 4.4.3
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Fig. 2.13: Range of the function
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The exact support of the result is [-0.25,6]
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Fig. 2.14: Discretization of the fuzzy number

Example 2.4.4. As the Fig.2.14 shown, f = 0.5sin(x), x = t[2, 4, 6]. At membership grade

µ = 0, the valley value of f is located in the interval as the figure shown. We discretize the fuzzy

number at membership grade α = 0 into 3 pairs: [2,6],[3,5],[4,4], and calculate each of them to

find the minimum and maximum, in order to get optimal boundary values at µ = 0. For the next

membership grade, the same procedure is repeated.

In this chapter, we investigated the background of fuzzy sets, discussed the extension principle

and standard fuzzy arithmetic. Finally, proper fuzzy arithmetic is introduced.
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Chapter 3

Fuzzy Differential Equations

Dynamic systems in real world are modeled by ordinary differential equations(ODE) as:

ẋ = f(t, x), x(t0) = x0. (3.1)

or a system of differential equations, for the study of their behaviors. However, it is hard to obtain

precise parameters of the model of a dynamic system in reality. Moreover, it is difficult to get

accurate analysis of behaviors of the systems, which will make decision making difficult due to

the uncertainty. One type of uncertainty in real world modeling is impreciseness or vagueness. If

the initial value or the parameters in the ODE is uncertain, the model of the dynamic system is

uncertain.

Based on the fuzzy sets theory, the calculus of fuzzy functions is investigated. In [34] the authors

first developed the concept of fuzzy functions. Based on that, the concept of fuzzy derivative was

first introduced by Chang and Zadeh [9]. Later Dubois and Prade [14] defined fuzzy derivative

using the extension principle. Based on the above notions, the ODEs with imprecise information is

investigated. Differential equations with the fuzzy initial values or parameters are named as Fuzzy

differential equations (FDEs). In 1987, Kaleva [23] initially developed the theory of FDEs.

FDEs are usually employed for the purpose of modeling dynamic systems with uncertain parame-

ters in science and engineering. Most of the problems in science and engineering require the solution

of a FDE which is characterized by fuzzy parameters or/and initial conditions, and is named as
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a fuzzy initial value problem (FIVP) or fuzzy cauchy problem. The FDE and the initial value

problem (cauchy problem) were rigorously investigated by Kaleva [23] and Seikkala [37]. In the last

few years, many works have been reported in theoretical and applied research in FDE based on

Hukuhara derivative(H-derivative). The H-derivative of a fuzzy-number-valued function was intro-

duced in [34]. Under this condition, mainly existence and uniqueness theorems for the solution of a

fuzzy differential equation are considered (e.g.[23] [37] [38]). However, in some cases this approach

suffers disadvantages since the diameter of the support of the solution x(t) of an FDE is unbounded

as time t progresses, which has been pointed out in [11] [13] [6] and [40] . Under this condition,

generalized differentiability theorem is introduced in [3] [4], which allow us to overcome the above

mentioned shortcomings.

Another approach in modeling uncertain dynamic systems is to treat fuzzy differential equation as

a system of differential inclusions (see e.g.[22] [12]), where they introduce a more general definition

of derivative for fuzzy functions enlarging the class of differentiable fuzzy mappings by considering

fuzzy lateral H-derivatives.

In some other approaches, the extension principle is directly applied to solve FDEs, like in [30].

However, in paper [39] the authors show an counter-example to prove the result in paper [30] was

not valid if the FDE is non-monotonic. The aim this paper was to find an explicit solution of the

FDE.

3.1 Fuzzy Derivatives

In this section, we will review some definitions and properties of fuzzy differential equation. Recall

the Definition 2.1.4 in Chapter 2, we have:

Definition 3.1.1. Denote that En is the space of all fuzzy subsets u of Rn satisfying the Definition

2.1.4: For u, v ∈ En, λ ∈ R, we can have [u + v]α = [u]α + [v]α, [λu]α = λ[u]α, ∀α ∈ [0, 1], where

’[ ]α’ denotes the α-cuts.
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Definition 3.1.2. Let f : T → En, T is the time span, T ⊂ R+, its α-cut (α ∈ [0, 1]) is written as

follow:

[f(t)]α = [f(t), f(t)]α. (3.2)

where f(t)α denotes the lower bound, and f(t)α denotes the upper bound of the α-cut.

The metric structure is given by the Hausdorff distance:

D(u, v) = sup max{|u(x)− v(x)|, |u(x)− v(x)|}, u, v ∈ En. (3.3)

Theorem 3.1.3. (En, D) is a complete metric space.

Proof. See the reference in [40].

And we have the following properties:

D(u+ w, v + w) = D(u, v), ∀u, v, w ∈ En (3.4)

D(ku, kv) = |k|D(u, v), ∀k ∈ R \ {0}, u, v ∈ En (3.5)

D(u+ v, w + e) ≤ D(u,w) +D(v, e), ∀u, v, w, e ∈ En (3.6)

Some basic definitions of H-derivatives were described in Definition 3.1.4 and 3.1.5.

Definition 3.1.4. Let x, y ∈ En. If there exist z ∈ En such that x = y + z, then z is called the

H-difference of x, y and it is denoted by x	 y. [20]

Note that x	 y 6= x+ (−1)y = x− y.

Definition 3.1.5. Let f : T → En is differentiable at t0 ∈ T , if there exist a f ′(t0) ∈ En, it is

defined as,

lim
h→0+

f(t0 + h)	 f(t0)

h
= lim

h→0+

f(t0)	 f(t0 − h)

h
= f ′(t0). (3.7)

as in [35].

Definition 3.1.6. If f is differentiable, then the multi-valued mapping fα is H-differentiable for

all α ∈ [0, 1] and

Dfα = [f ′(t)]α (3.8)

where fα denotes the α-cuts of f , Dfα denotes the H-derivative of fα [23].
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Example 3.1.7. Consider a FDE problem

ẋ = ax, x̃0 = t[−1, 0, 1], a ∈ R, x̃0 ∈ En (3.9)

From the Definition 3.1.2, we have:

[x(t)]α = [x(t), x(t)]α, for α ∈ [0, 1], and t ∈ [0, T ] (3.10)

From the H-derivative, we have:

[ẋ]α = [ẋ, ẋ]α, for α ∈ [0, 1], and t ∈ [0, T ] (3.11)

By applying the extension principle, we have:

[ax(t)]α = [min{ax(t)α, ax(t)α},max{ax(t)α, ax(t)α}] (3.12)

which will lead to:

ẋ = min[ax(t)α, ax(t)α], ẋ = max[ax(t)α, ax(t)α]. (3.13)

Now consider a = −1, we have FDE:

ẋ = −x, x̃0 = t[−1, 0, 1], −1 ∈ R, x̃0 ∈ En (3.14)

Equation (3.13) becomes:

ẋα = −xα, ẋα = −xα (3.15)

Assume λ1 = xα, λ2 = xα, we have:
λ̇1 = −λ2

λ̇2 = −λ1
⇒


λ̈1 = −λ̇2 = λ1

λ̈2 = −λ̇1 = λ2

(3.16)

Apparently, the differential equation ẍ = x has solution x = k1e
t + k2e

−t. With the initial value

x̃0 = t[−1, 0, 1] with α-cuts [x0]
α = [x0, x0]

α = [α− 1, 1−α], we can get the solution for λ1 and λ2:
λ1 = 1

2 [α− 1− (1− α)]et + 1
2 [α− 1 + (1− α)]e−t,

λ2 = 1
2 [1− α− (α− 1)]et + 1

2 [1− α+ (α− 1)]e−t.

(3.17)

We can obtain λ1 = x(t)α = (α − 1)et, λ2 = x(t)α = (1 − α)et, which λ1 = x(t)α and λ2 = x(t)α

are left side and right side membership function of the solution respectively. As time t → +∞ ,

the diam(x(t))→ +∞ The support of the solution keeps increasing as time t increases.
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To overcome the inconvenience, we define generalized H-derivatives:

Definition 3.1.8. Let f : T → En is differentiable at t0 ∈ T , if there exist a f ′(t0) ∈ En and meet

the following limits:

i

lim
h→0+

f(t0 + h)	 f(t0)

h
= lim

h→0+

f(t0)	 f(t0 − h)

h
= f ′(t0). (3.18)

ii

lim
h→0−

f(t0 + h)	 f(t0)

h
= lim

h→0−

f(t0)	 f(t0 − h)

h
= f ′(t0). (3.19)

as defined in [3].

Theorem 3.1.9. [8] Let f : T → En be a function and denote

[f(t)]α = [f
α
(t), fα(t)] (3.20)

for each α ∈ [0, 1]. Then:

i if x is differentiable in the form (i) of Definition 3.1.8, then f
α

and fα are differentiable functions

and

[f ′(t)]α = [f ′
α
(t), f

′
α(t)] (3.21)

ii if x is differentiable in the form (ii) of Definition 3.1.8, then f
α

and fα are differentiable functions

and

[f ′(t)]α = [f
′
α(t), f ′

α
(t)] (3.22)

Let us consider the fuzzy differential equations with initial value problem (FIVP):

x′(t) = f(t, x(t)), t ∈ T, x(0) = x̃0 (3.23)

where f : T → En is a continuous fuzzy mapping and x̃0 is a fuzzy number. Let the α-cut

[x(t)]α = [xα(t), xα]. If x(t) satisfies (i) of Theorem 3.1.9, define [D1x(t)]α = [xα(t), xα(t)] and
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(3.23) is translated into following set of ordinary differential equations:
x′(t) = f

α
(t, xα, xα) = F (t, x, x),

x′(t) = fα(t, xα, xα) = G(t, x, x).

(3.24)

We call it as (1)-solution.

If x(t) satisfies (ii) of Theorem 3.1.9, define [D2x(t)]α = [xα(t), xα(t)] and (3.23) is translated

into following set of ordinary differential equations:
x′(t) = fα(t, xα, xα) = G(t, x, x),

x′(t) = f
α
(t, xα, xα) = F (t, x, x).

(3.25)

We call it as (2)-solution.

In [8], the authors proved that the solution of [xα(t), xα(t)] of (3.24) are valid α-cuts of a fuzzy

number-valued function. If [x′α(t), x′α(t)] are valid α-cuts of a fuzzy valued function, by the Stacking

theorem [23] , it is possible to get the (1)-solution(3.24) of FIVP (3.23). In the meantime, we can

proceed in a similar way with system (3.25) for (2)-solution. Details of the proof is given in [33].

Theorem 3.1.10. If f satisfies a Lipschitz condition on an interval T then f is uniformly continuous

on T .

If f satisfies Lipschitz condition on an interval T if there exists M > 0 such that

|f(x1)− f(x2)| ≤M |x1 − x2| (3.26)

for all x1, x2 ∈ T and x1 6= x2. Notice that if x1 = x2 then f(x1) = f(x2) and Lipschitz is

automatically satisfied for any M .

Proof. For any ε > 0 we choose δ < ε
M so that for all x1, x2 ∈ T that satisfy |x1 − x2| < δ we have

|f(x1)− f(x2)| ≤M |x1 − x2| < Mδ < ε

Thus, consider the problem (3.23) we have:
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Theorem 3.1.11. f
α

and fα are equicontinuous, there exists L > 0:
|f
α
(t, x1, y1)− fα(t, x2, y2)| ≤ L max{|x1 − x2|, |y1 − y2|}

|fα(t, x1, y1)− fα(t, x2, y2)| ≤ L max{|x1 − x2|, |y1 − y2|}
, ∀α ∈ [0, 1]. (3.27)

(3.23) and (3.24) are equivalent under the condition (i) of Theorem 3.1.9, (3.23) and (3.25) are

equivalent under the condition (ii) of Theorem 3.1.9.

Proof. See [8] and [2].

3.2 Numerical Methods for Fuzzy Initial Value Problem

This section presents traditional numerical methods for FDE solution using Runge-Kutta method.

3.2.1 Runge-Kutta Method

Given an ODE,

dy

dt
= f(t, y) (3.28)

The Runge-Kutta solution is given as,

yn+1 = yn + h
s∑
i=1

biki

ki = f

(
tn + cih, yn + h

i−1∑
j=1

aijkj

)
.

(3.29)

where h is the time step, aij , bi, ci are coefficients listed in the table.

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...

cs as1 as2 . . . ass

b1 b2 . . . bs

(3.30)

In this chapter, we consider the RK-2 numerical method for the FDEs in Section 3.2.2:

0

θ θ

1− 1
2θ

1
2θ

(3.31)
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In this thesis, we apply the Dormand-Prince coefficients (RK-5) [16] in numerical examples

presented in Chapter 5:

0

1/5 1/5

3/10 3/40 9/40

4/5 44/45 −56/15 32/9

8/9 19372/6561 −25360/2187 64448/6561 −212/729

1 9017/3168 −355/33 46732/5247 49/176 −5103/18656

1 35/384 0 500/1113 125/192 −2187/6784 11/84

35/384 0 500/1113 125/192 −2187/6784 11/84 0

(3.32)

Among other RK methods, Dormand-Prince coefficients usually minimize the error of the fifth-

order solution, which is constructed so that the fourth-order solution has a small error[16]. For this

reason, the Dormand-Prince method is more suitable in the higher-order solution.

In this section we present Runge-Kutta (RK) method for solving FDE

ẋ(t) = f(t, x), x(t0) = x̃0, (3.33)

f : T × En → En, x̃0 ∈ En. The existence theorem for FDE is stated as follows [15]:

Theorem 3.2.1. Suppose the equation (3.33) considered under generalized differentiability of

Definition 3.1.8, which has solution:

x(0) = x0, xn+1(t) = x0 +

∫ T

t0

f(s, xn(s))ds (3.34)

and

x(0) = x0, xn+1(t) = x0 −
∫ T

t0

−f(s, xn(s))ds (3.35)

converge to the Definition 3.1.8 of the limits (i) and (ii) separately.

Proof. See [38] and [4]
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3.2.2 Existing approach in solving FDEs using the Runge-Kutta method

Assume that Y = [Y , Y ] is the exact solution and y = [y, y] be the approximated solution using

the RK method, which was introduced in [7] of the α-cuts of the FDE problem(3.33). Consider the

time interval [t0, T ] in the solution, we have t0 < t1 < t2 < ... < tN = T , ti = t0 + ih, h = T−t0
N ,

so [Y (tn)]α = [Yn(t), Yn(t)]α and [y(tn)]α = [yn(t), yn(t)]α. Consider [Y1(tn)]α = [Y1(tn), Y1(tn)]α

and [y1(tn)]α = [y1(tn), y1(tn)]α satisfy equation(3.24); [Y2(tn)]α = [Y2(tn), Y2(tn)]α and [y2(tn)]α =

[y2(tn), y2(tn)]α satisfy equation(3.25). We have to ensure the the approximated solution is con-

vergent to the exact solution. At each instant time ti, 0 ≤ n ≤ N , the solutions for exact and

approximation are denoted as [Yn(t)]α and [yn(t)]α. Based on the RK-2 coefficient, ∀α ∈ [0, 1]we

have :

y1α(tn+1) = y1α(tn) + (1− 1
2θ )hF (tn, y1α(tn), y1α(tn)) + 1

2θhF (tn + θh, z1
α
n+1

, z1
α
n+1),

y1α(tn+1) = y1α(tn) + (1− 1
2θ )hG(tn, y1α(tn), y1α(tn)) + 1

2θhG(tn + θh, z1
α
n+1

, z1
α
n+1),

z1
α
n+1

= y1α(tn) + θhF (tn, y1α(tn), y1α(tn)),

z1
α
n+1 = y1α(tn) + θhG(tn, y1α(tn), y1α(tn)),

y2α(tn+1) = y2α(tn) + (1− 1
2θ )hF (tn, y2α(tn), y2α(tn)) + 1

2θhF (tn + θh, z2
α
n+1

, z2
α
n+1),

y2α(tn+1) = y2α(tn) + (1− 1
2θ )hG(tn, y2α(tn), y2α(tn)) + 1

2θhG(tn + θh, z2
α
n+1

, z2
α
n+1),

z2
α
n+1

= y2α(tn) + θhF (tn, y2α(tn), y2α(tn)),

z2
α
n+1 = y2α(tn) + θhG(tn, y2α(tn), y2α(tn)).

(3.36)

which satisfy the conditions (i) and (ii) in Definition 3.1.8.

The following theorem shows that the generalized Runge-Kutta approximation pointwisely con-

verges to the exact solutions. Let F (t, u, v) and G(t, u, v) be the functions F and G of equations

(3.36), where u and v are constants and u ≤ v. The domain where F and G are defined is :

K = {(t, u, v)|0 ≤ t ≤ A, 0 ≤ v ≤ ∞, 0 ≤ u ≤ v}.

Theorem 3.2.2. Let F (t, u, v) and G(t, u, v) belong to CK
† and let the partial derivatives of F

and G be bounded over K. Then for any α ∈ [0, 1] the generalized Runge-Kutta approximation of

†CK : Power set which contains all nonempty compact subsets of K
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equations (3.36) converge to the exact solution [Y α, Y
α
] uniformly in it.

Proof. The details of the proof can be found in [15] [31] [28] [1]

3.3 Fuzzy Differential Equations with Fuzzy Parameters and Ini-

tial Conditions

In the previous section, we discussed the FDEs with fuzzy initial values. Fuzzy differential equations

with fuzzy parameters is discussed in this section. Assume we have a FDE with a single parameter

p̃ and fuzzy initial value x̃0: 
ẋ(t) = f(t, x(t), p̃)

x(t0) = x̃0

p̃, x̃0 ∈ En. (3.37)

Normally, the membership grade of p̃ is discretized into m subintervals, there are m α-cuts (exclud-

ing core of fuzzy parameter), the left and right side membership functions of the fuzzy parameters

will be discretized into m subintervals either. Here we only need to consider 2m + 1 boundary

values from m α-cuts and the core. As the Fig.3.1 shown, each α-cut is an interval, which includes

several elements with the same membership grade. If we find one element A in α-cut at membership

grade ai, we can always find an boundary value B of α-cut at membership grade aj , 1 ≥ aj > ai.

Therefore, if the number of discretization is m, we need only 2m + 1 α-cuts boundary values (for

core, there is only one value). Consider these elements as the parameter of the original FDE, we

have 2m+1 transformed FDEs with the same fuzzy initial value. We have some bounded conditions

for functions f of problem (3.37):

Proposition 3.3.1. For the new 2m+ 1 FDEs created from (3.37), Pi is the discretized element,

i = 1, 2, ...2m + 1. as t → 0, the support of |f(t, x(t), p) − f(t, x(t), Pi)| will not goes to infinity.

(p ∈ R is the core of fuzzy number p̃)

Using the extension principle is a directly brute force method for the solution of (3.37), which

enumerate all combinations of possible parameter values, computations are repeated. If we have
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Fig. 3.1: Discretization of fuzzy parameter p̃

multiple fuzzy parameters, the process of calculating the solution is complicated. Suppose there are

k fuzzy parameters within the FDE, discretize each parameter into m subintervals regarding the

membership grade α ∈ [0, 1], we have (2m+1)k transformed FDEs need to be solved. According to

the previous approaches, to the best of our knowledge we do not have a practical method to solve

such FDE.

Few works were reported on research of FDE with multiple fuzzy parameters. In[36], the authors

T. Rzezuchowski and J. Wasowski only give preliminary study about FDE with multiple fuzzy

parameters:

Let f : T (time dimension) × Rn → Rn be a continuous function and p1, p2, ...pm ∈ Rn are

parameters, x̃0 ∈ Rn We consider the initial value problem with parameters:
ẋ(t) = f(t, x(t), p̃1, p̃2, ..., p̃m),

x(t0) = x̃0.

(3.38)

Assume that the parameters p̃1, p̃2, ..., p̃m ∈ En and initial values x0 ∈ En. The functions f will

satisfy the following conditions:

Definition 3.3.2. The function f should satisfy:
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i There is an integrable functions L : T → R+ , for all x, y ∈ Rn and pi ∈ R

‖f(t, x, p1, . . . , pn)− f(t, y, p1, . . . , pn)‖ ≤ L(t)‖x− y‖ ;

ii f is continuous for every fixed x ∈ Rn;

iii f is convergent;

iv There is an integrable functions L : T → R+

‖f(t, x, p1, . . . , pn)‖ ≤ L(t)‖x‖+ ψ(t) ;

Note that ψ(t) is an integrable function.

Proof. See [36].

Assume there is a function F which satisfies: Fα(t, x) = f(t, xα, pα1 , ..., p
α
n). We have the

following differential inclusions:

ẋ ∈ Fα(t, x) x(t0) ∈ [x0]
α. (3.39)

[21] [36] and [40] emphasized on fuzzy differential inclusions, which is a general method of FDE

with multiple fuzzy parameters and initial values. However, no analytical or numerical solution

scheme was given. In the next chapter, computational algorithms for solving the FDEs with multi-

fuzzy parameters and initial values is proposed.

In this chapter, the theory of fuzzy derivatives were briefly reviewed, including H-derivative and

fuzzy differential equations. The concept generalized H-derivative is introduced. Moreover, the

properties of FDEs with multiple fuzzy parameters and initial values is discussed.
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Chapter 4

FDE Numerical Solution with

multi-fuzzy parameters and initial

values

In this thesis, we propose to combine the RK-5 (Dormand - Prince coefficients [16]) and the proper

fuzzy arithmetic to solve the FDE with multiple fuzzy parameters and fuzzy initial values. In this

thesis we name the Fuzzy Differential Equation with multiple fuzzy Parameters and fuzzy Initial

Values for short, as FDEPIV.

4.1 Using Proper Fuzzy Arithmetic for Solving FDE

For example, a fuzzy function is given as:

f = (ãx0)
b̃ ã, b̃ ∈ En, x0 ∈ R. (4.1)

Suppose at the membership grade α ∈ [0, 1], the lower and upper bound of α-cuts of a, b are

a, a, b, b, (a < a, b < b, a, a, b, b ∈ R) repectivley (see Fig.4.1). By using the proper fuzzy arithmetic,
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we have the solutions set X :

Y =
(
(x0a)b, (x0a)b, (x0a)b, (x0a)b

)
, Xα = [min Y,max Y ]. (4.2)

The number of the elements in the set Y is 22 (x0 is a crisp value, see Fig.4.2). If the function

involves n fuzzy parameters, at membership grade α, we have 2n elements in set Y (see Fig.4.3).

If x0 is a fuzzy number, we have [x0]
α = [xα0 , x

α
0 ] at membership grade α ∈ [0, 1], substitute the

boundary values into the function, we get a set (as the set Y in (4.1)) which includes 2 ·2n elements.

Especially, if the functions f is non-monotonic, recall the modified proper fuzzy arithmetic method

discussed in Section 2.4.1, we have 2p · 2n elements in the solution, where p is the number of

discretization pairs † of each α-cut.

The advantage of using the proper arithmetic method to solve the fuzzy function f with several

a a b b

1
a b
~

m
em

bersh
ip

gra
d
e

-
-

-
-

~

[ [] ]

Fig. 4.1: α-cuts at corresponding membership grade

fuzzy parameters, especially if the function is non-monotonic, is that we can efficiently avoid the over

estimation of the solution as applying the standard fuzzy arithmetic. In solving the FDEPIVs, we

apply the Runge-Kutta method for every transformed FDE with proper fuzzy arithmetic method,

the most approximated result can be get from. If any transformed FDE does not satisfy the

†The core overlapped in computation.
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initial value

a a

b b b b

x0

 Y

Fig. 4.2: 2 fuzzy parameter in function f (The crisp initial value needs 22 calculations)

initial value

a a

b b b b

x0

 Y

c c c c c c c c

n parameters

4

2

16

2n

Fig. 4.3: n parameter in function f (The crisp initial value needs 2n calculations, if the number

of fuzzy parameters is n)
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Proposition 3.3.1, the trajectory support of the solution will keep expanding.

4.2 Higher Order FDEs

Under the generalized H-derivative, there usually exists two solutions of first order fuzzy initial

value problems [5] and four solutions of second order initial value problems [25].In this paper we

need only cite two conditions of them, which is discussed in Chapter 3. The higher order FDE

problems were investigated in paper [25] [32] [27] [26]. Normally, the previous papers study in

the higher order FDE will consider the 4 kinds of H-differentiable conditions, in this paper, we

translate high order FDE into multi-dimensional first order system, like multi-dimensional FDEs

system.Suppose we have a second order FDE:

ẍ+ p̃1ẋ+ p̃2x+ p̃3 = 0, ẋ(t0) = ã1, x(t0) = ã2 (4.3)

we can easily transform the FDE into 2 first order FDEs:
ẋ = y

ẏ = −p̃1y − p̃2x− p̃3
, y(t0) = ã1, x(t0) = ã2. (4.4)

Or in matrix form, define

ξ =

 ξ1

ξ2

 =

 x

ẋ

 ,
ξ̇ =

 0 1

−p̃2 −p̃1

 ξ +

 0

−p̃3

 ,
x =

[
1 0

]
ξ.

(4.5)

4.3 Computational methods

Consider we have a FDEPIV with k fuzzy parameters and l initial values (k, l ∈ N), three approaches

are presented in the following three sections.
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4.3.1 By the Extension Principle

Suppose a FDEPIV with initial values ã1, ã2, ..., ãl, and parameters b̃1, b̃2, ..., b̃k. If we directly using

the extension principle to solve the problem, we have to transform the FDEPIV into multiple FDEs

with different parameters (crisp) which include the same fuzzy initial values. Suppose the discretized

number of membership grade is m, if we have k parameters, we need to compute (2 ·m + 1)k (2

boundary values of α-cut, one for core) times for just one combination of crisp initial values. This

is due to the characteristic of the extension principle: if there are k fuzzy numbers for calculation,

the discretized membership grade number is m, we need to process all possible combinations of

each α-cuts crisp values regarding to their membership grade. Additionally, we have l fuzzy initial

values, therefore there will be in total 2 ·(2 ·m+1)k+l = (4 ·m+2)k+l ordinary differential equations

needed to be solved in time span T . The algorithm analysis is showed in following table †. The

difficulty in using the extension principle for solving FDEPIV is that, the process of calculation is

tedious, it is hard to derive a general program to solve all kinds of FDEs problems. On the other

hand, the extension principle is the fundamental calculation rule for the operation for the fuzzy

sets, in solving the FDE problems, it is hard to directly using it practically due to the ’curse of

dimensionality’.

†Due to the high complexity of the extension principle method, we only consider one fuzzy parameter and one

fuzzy initial value as in the algorithm table.
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Algorithm 1 Calculate FDEPIV using Extension principle

1: equal the fuzzy parameters and initial values into m intervals of length 4µ = 1
m

2: initialize (time step h, processing time span)

3: Define µ-cut of parameters as [b, b]µp , which has 2 crisp number combinations as parameters at

local membership grade in the equation

4: for µparameters=0 : 4µ : 1 do

5: reset the process time t→ 0

6: for crisp parameters values combinations = 1 : 2 do

7: reset µinitial = 0

8: for µinitial = 0 : 4µ : 1 do

9: reset the process time t→ 0

10: Define µ-cut of initial value [a, a]µi , which has 2 crisp initial values combinations at

current membership grade

11: for crisp initial values combinations = 1 : 2 do

12: reset the process time t→ 0

13: while t < processing time span do

14: calculate the function using RK-5 method, derive each crisp initial values into

the equation get a series values, store into a set R

15: t = t+ h(time step)

16: end while

17: end for

18: end for

19: end for

20: find the minimum and maximum values at each time step t at local membership grade.

21: end for

22: create a membership grade matrix
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4.3.2 By Using the Numerical Method in Chapter 3.2.2

Recall the preliminaries in Chapter 3.2.2, if we utilize the previous approach about Runge-Kutta

method on solving FDE for solving the FDEPIV. To the best of our knowledge, there is no paper

discussed the issue yet. The current approaches on solving the FDEs by using the numerical

methods are all based on the exact solution can be derived from FDEs. However, it is hard to get

an exact solutions in most cases in the real world. Therefore, the previous approach discussed in

Chapter 3.2.2 is not practical for solving FDEPIV problems.

4.3.3 Our approach

In order to overcome the shortcomings of existing methods, we propose to solve the FDEPIV

problems using the proper fuzzy arithmetic with Runge-Kutta 5 method. The procedure of utilizing

the FDE solver is summarized in algorithm table.

Suppose we have a FDEPIV problem, the α-cut of the solution is [x(ti)]
α at time ti at membership

grade α ∈ [0, 1]. We can apply the golden ratio search method (bisection search method or other

mathematical optimization methods) to locate the minimum and maximum of the solution at ti

at membership grade α ∈ [0, 1]. However, if the system is nonlinear, the boundary values of

[x(ti +4t)]α for next time step may not be obtained from the boundary values [x(ti)]
α. As shown

in Fig.4.4, points A and B are the boundary values of x(ti) at membership grade α, α ∈ [0, 1]. If

we consider A and B as the initial values for next time step ti +4t, we get point C from A and D

from B. However, the actual lower bound and upper bound of x(ti+4t) are F and E respectively.

Therefore, if we apply golden ratio search method or other mathematical optimization methods to

locate the boundary values at ti, which may not lead the boundary values at ti +4t.

Under this condition, we apply the modified proper fuzzy arithmetic, which discussed in Section

2.4.1. We do not consider the x(ti) as initial value for next time step calculation. Instead, we

consider the transformed crisp values form the fuzzy initial values as initial values, in order to get

a solutions set. From the solutions set, we can obtain the boundary values at each membership
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Fig. 4.4: The boundary values of [x(ti+4t)]α (points E and F ) are not obtained from the previous

boundary values of [x(ti)]
α (point A and B)

grades for each time step, in order to get the solution trajectory of the FDEPIV problem. The

advantages of using the proposed FDE solver can be summarized:

1. Eliminate the overestimation of using the standard fuzzy arithmetic in calculating the FDE-

PIV problem,

2. Has less complexity than using the extension principle,

3. Can solve higher order and nonlinear FDEPIV problems,

4. Be able to parallelize the computation †.

The algorithm is shown below. We have a initial values Matrix l× 2l and a parameters Matrix

k×2k. Additionally, we use the modified proper fuzzy arithmetic, there will be c pairs subintervals

for corresponding membership grade of initial values. Therefore, there will be 2 ·2k+l ·m ·c ordinary

†Will be discussed in Chapter 6
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differential equations needed to be solved in time span T . On the other hand, the number of ODEs

solved using the Extension Principle is (4·m+2)k+l (se Section 4.4.1). Since m� 2, the complexity

of the proposed method is significantly lower than that of the Extension Principle.

In this chapter, a new method in solving the FDEPIV is proposed. Comparing with other

methods, advantages and contributions are discussed as well.

Algorithm 2 Calculate FDEPIV using proper fuzzy arithmetic with RK-5 Part 1

1: Divide the membership grade range µ ∈ [0, 1] of the fuzzy parameters and initial values into m

equal intervals 4µ = 1
m

2: initialization (time step h, processingtimespan)

3: for µ=0 : 4µ : 1 do

4: create a proper fuzzy arithmetic Matrix with parameter boundary values, denote as Mp

5: discretize initial values into c pairs

6: for 1→ c pairs do

7: . The algorithm continues in next page.
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Algorithm 3 Calculate FDEPIV using proper fuzzy arithmetic with RK-5 Part 2

8: create a initial value fuzzy arithmetic Matrix with current pair as boundary values,

denote as Mi

9: use k as indexing values for initial value Matrix Mi, Mi(k, ; ) gives the k-th row of Mi

10: use l as indexing values for parameters Matrix Mp, Mp(l, ; ) gives the k-th row of Mp

11: for The crisp values from 1→ l do

12: for The crisp values from 1→ k do

13: reset t→ 0

14: while t < endtime do

15: calculate the function using RK-5 method, derive the crisp values into the

equation get a series values, as a set R

16: t = t+ h

17: end while

18: find the maximum and minimum of R at each time step as the solution for current

membership grade µ

19: end for

20: end for

21: reset the Matrix Mp and Mi

22: end for

23: end for

24: create a membership grade matrix
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Chapter 5

Numerical Examples

In this chapter, numerical examples are given to illustrate the advantages of the proposed FDE

solver. The proposed FDE solver is implemented using MATLAB.

5.1 Comparison with solving FDE using the Extension principle

and the proposed method

Consider the fuzzy initial value problem:
Ẋ = −X(t)

X(0) = C̃

, C̃ ∈ En. (5.1)

Its crisp version is:

ẋ(t) = −x(t), x(0) = c,

which possesses the exact solution

x(t, c) = ce−t.

Note that x(t, c) is continuous in c ∈ R for each t ≥ 0 fixed. We apply the extension principle

to x(t, c) in relation to c, for each t ≥ 0 fixed. Then we obtain the unique fuzzy solution X(t) =

x̂(t, C), C ∈ R of problem (5.1) for any initial fuzzy number C, which is given by

X(t) = Ce−t, t ≥ 0. (5.2)
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Assume we have a fuzzy initial value problem:
Ẋ = −X(t),

X(0) = 4̃.

(5.3)

4̃ = t[2, 4, 5] ∈ En. According to the result in (5.2), we have:

X(t) = 4̃e−t, t ≥ 0. (5.4)

Discretize the membership grade µ ∈ [0, 1], we can get the result as following (t : 0→ 1, time step

h=0.1):

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5
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time t

x
(t
)
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Fig. 5.1: The solution of problem (5.5)
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A comparison between the exact and the approximate solutions at t= 0.1 and the error of using

the FDE solver is shown in the following tables and Fig. 5.1.

µ x X error

0 1.80967483607192 1.80967483666667 5.94747584514721e-10

0.1 1.99064231967911 1.99064232033333 6.54222231943891e-10

0.2 2.17160980328630 2.17160980400000 7.13697101417665e-10

0.3 2.35257728689350 2.35257728766667 7.73171748846835e-10

0.4 2.53354477050069 2.53354477133333 8.32646840365214e-10

0.5 2.71451225410788 2.71451225500000 8.92121043705174e-10

0.6 2.89547973771507 2.89547973866667 9.51596135223554e-10

0.7 3.07644722132226 3.07644722233333 1.01107122674193e-09

0.8 3.25741470492945 3.25741470600000 1.07054587417110e-09

0.9 3.43838218853665 3.43838218966667 1.13002007751106e-09

1 3.61934967214384 3.61934967333333 1.18949516902944e-09

µ x X error

0 4.52418709017980 4.52418709166667 1.48686929435371e-09

0.1 4.43370334837620 4.43370334983333 1.45713130450531e-09

0.2 4.34321960657261 4.34321960800000 1.42739420283533e-09

0.3 4.25273586476901 4.25273586616667 1.39765710116535e-09

0.4 4.16225212296541 4.16225212433333 1.36791999949537e-09

0.5 4.07176838116182 4.07176838250000 1.33818200964697e-09

0.6 3.98128463935822 3.98128464066667 1.30844446388778e-09

0.7 3.89080089755463 3.89080089883333 1.27870736221780e-09

0.8 3.80031715575103 3.80031715700000 1.24897026054782e-09

0.9 3.70983341394743 3.70983341516667 1.21923227069942e-09

1 3.61934967214384 3.61934967333333 1.18949516902944e-09
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In the two tables the x and x are lower bound and upper bound of exact solution, X and X are

lower bound and upper bound of approximated solution. Fig.5.2 shows the fuzzy set of the solution
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Fig. 5.2: Solid line:exact solution (+):FDE solver

at time step h = 0.1s. The two solutions match perfectly.
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5.2 Solving the Example 3.1.7 in proposed method

Assume we have a fuzzy initial value problem:
Ẋ = −X(t),

X(0) = 0̃.

(5.5)

4̃ = t[−1, 0, 1] ∈ En. Applying the proposed method, we can obtain the trajectory of the solution

in Fig.5.2 and Fig.5.2. Fig.5.2 shows the mesh and surface plot of trajectories of X(t) in different

membership grade as time t increase.

Fig.5.2 shows trajectories of X(t) in the form of fuzzy numbers in three dimensions and two di-

mensions as time t increase respectively.
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Fig. 5.3: X(t) in Mesh plot
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5.3 Zero input response for RLC electric circuit

C uC t

Ki t

L

uL

RuR

Fig. 5.5: The zero input response circuit

The RLC electrical circuit can be modeled as:

KV L : uL + uR + uC = 0, (5.6)

V AR : iL = C
duC
dt

, uL = L
diL
dt
, uR = RiL. (5.7)

From equation (1) and (2), we can get the second-order system:

LC
d2uC
dt2

+RC
duC
dt

+ uC = 0 (t ≥ 0+) (5.8)

at time t = 0, the switch is turn on and we have the following initial values:

uC(0) = 0 , i(0) = 1. (5.9)

Assume all the parameters and initial values are fuzzy numbers, and are listed in Table (5.3). We

use the MATLAB FDE solver in Appendix Bto solve the fuzzy differential equation, and get the

trajectories for uC(t) and i(t) (time t : 0→ 20s).

In Fig.5.8, the red lines (inner lines) are the boundaries of the trajectories at membership grade

µ = 1; the blue lines (middle lines) are the boundaries of the trajectories at membership grade

µ = 0.5; the green lines (outer lines) are the boundaries of the trajectories when the membership
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Table. 5.1: Initial values and parameters of the RLC circuit

Elements Description Core Support Type of Fuzzy number Matlab code

L inductance 1 [0.8 1.1] Triangular 1

R resistance 3 [2.8 3.4] Gaussian 2

C capacitance 1 [0.9 1.2] Exponential 4

uC(0) initial voltage of C 0 0 Singleton(crisp number) N/A

i(0) initial current of L 1 [0.9 1.2] Exponential 3

grade is µ = 0.

The Fig.5.3 shows the mesh and surface plots of trajectories of voltage uc and current i(t) in

different membership grade as time t increase.

The Fig.5.7 shows the trajectories of voltage uc and current i(t) in the form of fuzzy numbers as

time t increase.

The Fig.5.8 shows the trajectories of voltage uc and current i(t) in the form of different membership

grade at 0,0.5 and 1.
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5.4 A second-order Non-Linear System: The Pendulum

   

 

µ

 

 L 

  mg angluar
velocity

angle

.

Fig. 5.9: The Pendulum System

The dynamic model of the pendulum is given as,

d2θ

dt2
+ c

dθ

dt
+ k2sin(θ) = 0 (5.10)

with k2 = g
L . The constant c is a measure of the amount of friction or air resistance. We convert

this to a system by setting

x = θ, y = θ̇. (5.11)

therefore,

ẏ = −cy − g

L
sinx (5.12)

Or in matrix form, define

ξ =

 ξ1

ξ2

 =

 x

ẋ

 (5.13)

ξ̇ =

 0 1

−c 0

 ξ +

 0

− g
L

 sinξ,
x = [ 1 0 ]ξ.

(5.14)
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with initial condition:

initial angle position : ξ = p1 (5.15)

initial angle velocity : x = p2 (5.16)

Which p1 and p2 are initial values. Assume all the parameters and initial values are fuzzy numbers,

and they are listed in Table (5.2):

Table. 5.2: Initial values and parameters of the The Pendulum System

Elements Description Core Support Type of Fuzzy number Matlab code

c air friction 0.2 [0.18 0.24] Quadratic 3

g gravity 9.8 [9.7 10]† Gaussian 2

L length of the rod 9.8 [9.6 10.2] Exponential 4

θ(0) initial angle position 0 0 Singleton(crisp number) N/A

θ̇x(0) initial angular velocity 1 [0.5 1.2] Triangular 1

† In Fig.5.10, the red lines (inner lines) are the boundaries of the trajectories when the mem-

bership grade is µ = 1; the blue lines (middle lines) are the boundaries of the trajectories when

the membership grade is µ = 0.5; the green line (outer lines) are the boundaries of the trajectories

when membership grade is µ = 0.

The Fig.5.10 shows the mesh and surface plots of trajectories of angle and angle velocity in

different membership grade as time t increase, which display the surfaces in three dimensions.

The Fig.5.11 shows trajectories of angle and angle velocity in the form of fuzzy numbers as time t

increase.

The Fig.5.12 shows trajectories of angle and angle velocity in the form of different membership

grade 0,0.5 and 1, in 2-D.

†Here we consider the gravity is uncertain due to unknown of the local altitude.

60



0
10

20
30

40
50

−1
−0.5

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

time t

m
em

bersh
ip

d
egree

angle

Mesh plot of the solution of the Angle

0
10

20
30

40
50

−1

−0.5

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

m
em

bersh
ip

d
egree

time t

Angle
Velocity

Mesh plot of the solution of Angle Velocity
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5.5 Van Der Pol oscillator as a modified Chua’s circuit

L

iL

C

iC

RNVR

iR

Fig. 5.13: The Van Der Pol oscillator circuit

The Van Der Pol oscillator is a fundamental example in nonlinear oscillation theory [24]. It was

used by Van Der Pol in the 1920s to study oscillations in vacuum tube circuits [41]. The dynamical

equation of the Van Der Pol oscillator is given below.

ẍ− ω(x− x2)ẋ+ x = 0 (5.17)

We employ the circuit from [29] and it is modified as in Fig.5.13:

Kirchoff’s Current Law:

iC + iC + iR = 0

⇒ diL
dt

+
diC
dt

+
diR
dt

= 0

⇒ vR
L

+ C
d2vR
dt2

+
diR
dt

= 0

⇒ vR
L

+ C
d2vR
dt2

+
diR
dvR

dvR
dt

= 0 (5.18)

let us rescale the time variable as [24]:

τ ≡ t√
LC

(5.19)
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Table. 5.3: Initial values and parameters of the Van Der Pol circuit

Elements Description Value Support Type of Fuzzy number Matlab code

L inductance 1 [0.3 1.6] Triangular 1

R resistance 3 [1.5 4] Exponential 3

C capacitance 1 [0.3 1.9] Exponential 4

iR(0) initial voltage of RN 2 [1.1 3.3] Gaussian 2

vR(0) initial current of RN 1 [0.5 1.9] Triangular 1

Substitute (5.19) in (5.18):

C

LC

d2vR
dτ2

+
1√
LC

diR
dvR

dvR
dτ

+
vR(τ)

L
= 0

⇒ d2vR
dt2

+
L√
LC

diR
dvR

dvR
dt

+
vR
L

= 0

⇒ v̈R + ω
diR
dvR

˙vR + vR = 0, ω =

√
L

C
(5.20)

Assume the current of nonlinear resistor is:

iR =
−vR +

v3R
3

R
,RN = R (5.21)

Comparing (5.20) to (5.17):

v̈R + ω
d

dvR
(−vR +

v3R
3

)
˙vR
R

+ vR = 0

⇒ v̈R − ϕ(1− v2R) ˙vR + vR = 0, ϕ =
1

R

√
L

C
(5.22)

We convert this system by setting

x = vR, y = ẋ = iR (5.23)

With initial condition and parameters: In Fig.5.16, the red line (inner lines) shows the boundaries

of the trajectories at membership membership grade µ = 1; the blue lines (middle lines) are the

boundaries of the trajectories when the membership grade is µ = 0.5; the green line (outer lines)

are the boundaries of the trajectories when the membership grade is µ = 0.
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Fig. 5.14: iR and vR in Mesh plot
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The Fig.5.14 shows the mesh and surface plots of trajectories of current iR(t) and voltage vR(t)

in different membership grade as time t increase. The Fig.5.15 shows trajectories of current iR(t)

and voltage vR(t) in the form of fuzzy numbers in three dimensions as time t increase. The Fig.5.16

shows trajectories of current iR(t) and voltage vR(t) in the form of different membership grade at

0,0.5 and 1, in 2-D.

In this chapter, five examples to demonstrate the effectiveness of the proposed new method in

solving the FDEPIV problems were given.
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Chapter 6

Conclusions

In this thesis we studied the numerical solution of Fuzzy Differential Equations with multiple fuzzy

parameters and fuzzy initial Values (FDEPIV). In particular, this thesis proposed to apply proper

fuzzy arithmetic in fuzzifying Runge-Kutta method for the solution of FDEPIV problems. In the

previous approaches, researchers either only considered the FDE with fuzzy initial values, or not

given a computational method for solving FDEPIV. One of the most powerful tool of calculating

the fuzzy numbers is standard fuzzy arithmetic, which is based on the extension principle. In order

to avoid the drawback of the standard fuzzy arithmetic, we utilize the proper fuzzy arithmetic,

in generating more accurate solutions in solving FDEPIV problems numerically. The proposed

method, to the best of our knowledge, is the first numerical method that solve the FDEs with

multiple fuzzy parameters and initial values. One limitation of the proposed method is high algo-

rithmic complexity.

Future work for solving the FDEPIV will focus on developing a method to reduce the calculation

time. More approaches will be investigated, such as parallelization of the proposed method. Re-

calling the subsection 2.3.1 in Chapter 2, we investigated using the extension principle for fuzzy

sets calculation will lead to an infinite number of combinations of input values of x1 and x2 that

produce the same output of y. According to this limitation, we utilize the fuzzy arithmetic for

the fuzzy sets operations. When applying the fuzzy arithmetic we discretize the membership grade
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into m intervals, each α-cut is independent in the calculation process. Due to this characteristic,

computation at each membership grade of the resultant fuzzy set can be executed in parallel, in

order to achieve high efficiency of the proposed method.

In Chapter 4, we established a model in nonlinear FDEPIV problem. Some nonlinear system will

become chaotic if their parameters reach critical values. For example: Verhulst Predator-Prey

Relationship mathematical model has a parameter, r, which is the intrinsic growth rate.

xn+1 = rxn(1− xn) (6.1)

If r changes from 2.6→ 3.6 the dynamic behavior of the system changes drastically.

• For r=2.6 and x0 = 0.2, the system has a single equilibrium point x ≈ 0.61538 (Fig.6.1),

• For r=3.1 and x0 = 0.2, the system has a 2-Points steady state at a1 ≈ 0.5578 and a2 ≈ 0.7679

(Fig.6.2),

• For r=3.5 and x0 = 0.2, the system has a 4-Point steady state at b1 ≈ 0.3828 b2 ≈ 0.5011

b3 ≈ 0.0.8270 b4 ≈ 0.8750 (Fig.6.3),

• For r=3.6 and x0 = 0.2, the system has a 2n-Point periodic steady state with an even number

of points (Fig.6.4).

As the value of r increases further, the system becomes chaotic. 3.6 is the critical value of the

system.
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Fig. 6.4: 2n-Point Steady State

Chaotic system is sensitive to initial conditions. The fifth example in Chapter 5 of using the

FDEPIV solver ignore the factor of chaos of the system. In the future work, we may study the

behavior of fuzzy chaotic system with parameter around its critical values. For example, if a chaotic

system with a fuzzy parameter or initial value p̃ (see Fig.6.5).
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Appendix A

Appendix

Applying the Extension Principle for solving the Example 2.4.2

The original function f needs 3 multiple multiplications, 1 division and 1 subtraction. Due to the

extension principle is complex for calculation, we re-write the function in factored form:

f = x1x2(x3 −
1

x3
) (A.1)

Therefore, the function in factored form needs 2 multiple multiplications, 1 division and 1 sub-

traction. For x1x2: we can follow the Example 2.2.4, x̃1 = (0/ − 1, 0.5/0, 1/1, 0.5/1.5, 0/2), x̃2 =

(0/1, 0.5/1.5, 1/2, 0.5/2.5, 0/3). Where x1,i ∈ x̃1, x2,i ∈ x̃2, i = 1, 2, 3, 4, 5.
x1,1 = −1 , x1,2 = 0 , x1,3 = 1 , x1,4 = 1.5 , x1,5 = 2

µx̃1(x1,1) = 0 , µx̃1(x1,2) = 0.5 , µx̃1(x1,3) = 1 , µx̃1(x1,4) = 0.5 , µx̃1(x1,5) = 0

(A.2)
x2,1 = 1 , x2,2 = 1.5 , x2,3 = 2 , x2,4 = 2.5 , x2,5 = 3

µx̃2(x2,1) = 0 , µx̃2(x2,2) = 0.5 , µx̃2(x2,3) = 1 , µx̃2(x2,4) = 0.5 , µx̃2(x2,5) = 0

(A.3)
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By using the extension principle, we have the following table:

µ(x1x2)/x1x2 µx̃1(x1,1)/x1,1 µx̃1(x1,2)/x1,2 µx̃1(x1,3)/x1,3 µx̃1(x1,4)/x1,4 µx̃1(x1,5)/x1,5

µx̃2(x2,1)/x2,1 0/− 1 0/0 0/1 0/1.5 0/2

µx̃2(x2,2)/x2,2 0/− 1.5 0.5/0 0.5/1.5 0.5/2.25 0/3

µx̃2(x2,3)/x2,3 0/− 2 0.5/0 1/2 0.5/3 0/4

µx̃2(x2,4)/x2,4 0/− 2.5 0.5/0 0.5/2.5 0.5/3.75 0/5

µx̃2(x2,5)/x2,5 0/− 3 0/0 0/3 0/4.5 0/6

(A.4)

For x3 − 1
x3

, set y = 1
x3

,

x̃3 = (0/2, 0.5/2.25, 1/2.5, 0.5/2.75.5, 0/3), ỹ = (0/0.5, 0.5/0.44.5, 1/0.4, 0.5/0.36, 0/33).Where x3,i ∈

x̃3, yi ∈ ỹ, i = 1, 2, 3, 4, 5.
x3,1 = 2 , x3,2 = 2.25 , x3,3 = 2.5 , x3,4 = 2.75 , x3,5 = 3

µx̃3(x3,1) = 0 , µx̃3(x3,2) = 0.5 , µx̃3(x3,3) = 1 , µx̃3(x3,4) = 0.5 , µx̃3(x3,5) = 0

(A.5)
y1 = 0.5 , y2 = 0.44 , y3 = 0.4 , y4 = 0.36 , y5 = 0.33

µỹ(y1) = 0 , µỹ(y2) = 0.5 , µỹ(y3) = 1 , µỹ(y4) = 0.5 , µỹ(y5) = 0

(A.6)

µ(x3 − 1
x3

)/(x3 − 1
x3

) µx̃3(x3,1)/x3,1 µx̃3(x3,2)/x3,2 µx̃3(x3,3)/x3,3 µx̃3(x3,4)/x3,4 µx̃3(x3,5)/x3,5

µỹ(y1)/y1 0/1.5 0/1.75 0/2 0/2.25 0/2.5

µỹ(y2)/y2 0/1.56 0.5/1.81 0.5/2.06 0.5/2.31 0/2.56

µỹ(y3)/y3 0/1.6 0.5/1.85 1/2.1 0.5/2.35 0/2.6

µỹ(y4)/y4 0/1.64 0.5/1.89 0.5/2.14 0.5/2.39 0/2.64

µỹ(y5)/y5 0/1.67 0/1.92 0/2.17 0/2.42 0/2.67

(A.7)

From A.4 and A.7, we can find that the two result for a1 = x1x2 and a2 = x3 − 1
x3

, when

membership grade µ = 0, supp(a1) = [−3, 6], supp(a2) = [1.5, 2.67]; when membership grade

µ = 0.5, aα=0.5
1 = [0, 3.75], aα=0.5

2 = [1.81, 2.39]; core(a1) = 2, core(a2) = 2.1. The function

f = a1a2. Repeat the procedure of very beginning: ã1 = (0/ − 3, 0.5/0, 1/2, 0.5/3.75, 0/6), ã2 =
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(0/1.5, 0.5/1.81, 1/2.1, 0.5/2.39, 0/2.67). Where a1,i ∈ ã1, a2,i ∈ ã2, i = 1, 2, 3, 4, 5. By using the

extension principle, we have the following table:

µ(a1a2)/a1a2 µã1(a1,1)/a1,1 µã1(a1,2)/a1,2 µã1(a1,3)/a1,3 µã1(a1,4)/a1,4 µã1(a1,5)/a1,5

µã2(a2,1)/a2,1 0/− 4.5 0/0 0/3 0/5.625 0/9

µã2(a2,2)/a2,2 0/− 5.43 0.5/0 0.5/3.62 0.5/6.79 0/10.86

µã2(a2,3)/a2,3 0/− 6.3 0.5/0 1/4.2 0.5/7.88 0/12.6

µã2(a2,4)/a2,4 0/− 7.17 0.5/0 0.5/4.78 0.5/8.96 0/14.34

µã2(a2,5)/a2,5 0/− 8 0/0 0/5.34 0/10 0/16

(A.8)

Therefore, supp(a1a2) = [−8, 16], [a1a2]
α=0.5 = [0, 8.96], core(a1a2) = 4.2.

80



Appendix B

Appendix

Usage of FDE solver

The MATLAB code for using this FDE solver is shown in Listing B.1.

Listing B.1: MATLAB Code

[ l e f t , r i ght , tout , u ] = xxpro45 (FUN, tspan , miu , h , number para , vararg in )

% Here ’ l e f t ’ and ’ r i ght ’ are the boundar ies matrix o f s o l u t i o n s at d i f f e r e r n t

% a−cuts , ’ tout ’ i s the time per iod matrix , ’u ’ i s the membership degree matrix . On the

% RHS, ’FUN’ i s the fuzzy d i f f e r e n t i a l equation , ’ tspan ’ i s the time

% period , ’miu ’ i s the value o f d i s c r e t e constant space o f membership

% degrees , ’h ’ i s time step , ’ number para ’ i s the number o f a l l parameters ,

% and ’ vararg in ’ i s the input va lue s f o r i n i t i a l va lue s and parameters , f o r

% example , i f a fuzzy i n i t i a l va lue i s a t r i a n g l u a r fuzzy number p1 with

% support [ 2 5 ] , and membership degree u=1, p1 = 3 , so the input can be

% wr i t t en as [ 2 3 5 1 ] , the l a s t ’1 ’ i s the type o f fuzzy number which i s

% t r i a n g u l a r . Here i s the l i s t o f the fuzzy number type :

% 1 . Tr iangular

% 2 . Gaussian
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% 3 . Quadratic

% 4 . Exponent ia l

Back to Section 2, the m file of the circuit is shown in Listing B.2

Listing B.2: MATLAB Code of FUN

func t i on dy = l c r ( t , y , l , c , r )

dy (1 ) = y ( 2 ) ;

dy (2 ) = −(r / l )∗y(2)−(1/( c∗ l ) )∗ y (1 )

For example: if we try to solve the model in Section 2, with the fuzzy numbers described in 5.3,

we can use the solver as following: [left,right,tout,u] = fdesolver(@fde,[0 20],0.1,0.1,3,0,[0.9 1 1.2

3],[0.8 1 1.1 1],[0.8 3 3.4 2],[0.9 1 1.2 4])

82


	Abstract
	Acknowledgements
	Nomenclature
	List of Tables
	List of Figures
	Introduction
	Motivations
	Overview of the proposed approach
	Contribution
	Thesis Organization

	Basics of Fuzzy Sets
	Fuzzy sets
	Universal set
	Membership function
	-cuts of Fuzzy Sets 
	Convexity of Fuzzy Sets
	Fuzzy numbers and its properties
	Types of fuzzy numbers

	Extension Principle
	Standard Fuzzy arithmetic
	Fuzzy sets operations using the Extension Principle
	Standard fuzzy arithmetic
	Drawbacks of the Standard Fuzzy Arithmetic 


	Proper Fuzzy Arithmetic
	Modified Proper Fuzzy Arithmetic


	Fuzzy Differential Equations
	Fuzzy Derivatives
	Numerical Methods for Fuzzy Initial Value Problem
	Runge-Kutta Method
	Existing approach in solving FDEs using the Runge-Kutta method

	Fuzzy Differential Equations with Fuzzy Parameters and Initial Conditions

	FDE Numerical Solution with multi-fuzzy parameters and initial values
	Using Proper Fuzzy Arithmetic for Solving FDE
	Higher Order FDEs
	Computational methods
	By the Extension Principle
	By Using the Numerical Method in Chapter 3.2.2
	Our approach 


	Numerical Examples
	Comparison with solving FDE using the Extension principle and the proposed method
	Solving the Example 3.1.7 in proposed method
	Zero input response for RLC electric circuit
	A second-order Non-Linear System: The Pendulum
	Van Der Pol oscillator as a modified Chua's circuit

	Conclusions
	Bibliography
	Appendix
	Appendix

