TURBULENCE MEASUREMENTS

IN A

STRAIGHT CONICAL DIFFUSER

by

G. G. SLUSAR

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering.

The Faculty of Graduate Studies and Research Department of Mechanical Engineering

University of Manitoba

Winnipeg

c G.G. Slusar 1969

ACKNOWLEDGMENTS.

i

The author would like to express his thanks to Dr. R.S. Azad for his continued interest and guidance during the evolution of the thesis, to Mr. P. Van der Spiegel for the many ideas he contributed and to Messrs. H. Krueger and G. Friesen for their help in some of the experimental work. ii ·

The turbulence parameters in a straight conical diffuser with a total included angle of 8°8'were investigated. Quantity flow through the diffuser was kept constant and inlet boundary layer thicknesses were varied by introducing straight pipes of varying lengths before the diffuser. Measurements of turbulence parameters were made along various traverses at eleven stations in the diffuser. Some of the results obtained agreed with the findings of other workers in the field, and other of the results differed considerably. The turbulence intensities, cross correlation coefficients, and turbulent kinetic energies were calculated for each measuring point. TABLE OF CONTENTS

	Page
Acknowledgements	i
Abstract	ii
Table of Contents	iii
List of Tables	vi
List of Figures	vii
List of Graphs	riii
I Introduction	1
II Theory	3
2.1. Introduction	3
2.2. Equations of Turbulent Motion for	
Incompressible Flows	5
2.3. Dissipation of Energy in Incompressible	en e
Turbulent Flows	12
2.4. Theory of Measurement of Turbulent	
Parameters	24
2.4.1. Introduction	24
2.4.2. Hot - Wire Anemometry - General	25
2.4.3. Theory of Operation of Hot - Wire	•
Anemometers	25
2.5. Limitations of Hot - Wire Anemometers	28
2.6. Mechanics of Hot - Wire Measurements	30
2.6.1. Turbulence Intensities	31
2.6.2. Measurement of the Reynolds	
Stresses	.32
2.7. Conclusion	34

iii

III	Exper	imental	Appar	atus	•	•	• •	•	•	•	•	35	
	3.1.	Introdu	iction	× •	•	•	• •		•	•	•	35	
	3.2.	Stand a	nd Tra	versi	ng M	echa	anis	5m	•	•	•	36	
. •		3.2.1.	Wheel	and Tr	roll	ey I	lsse	embl	у	٠	•	37	
		3.2.2.	Trolle	у.	• .	•	• •	•	•	• 1	•	37	
•	3.3.	Test Eq	uipmen	t.	•	•	•	•	•	•	•	38	
11	· · · .	3.3.1.	Hot -	Wire A	lnem	omet	ters	3.	•	•	•	38	
• •		3.3.2.	Hot -	Wire H	rob	es		• . •			•	39	
1 -		3.3.3.	Correl	ator	•	•	• •	•	•	•	•	40	
		3.3.4.	Digita	l Volt	tmet	er		•	٠	•	•	41	
		3.3.5.	Probe	Calibı	cati	on Ē	Equi	pme	nt	•	•	42	
. •		3.3.6.	Probe	Repair	c Eq	uipr	nent		•	•	•	42	
• • • •		3.3.7.	Miscel	laneou	ıs M	anor	nete	ers	•	•	•	43	
	3.4. (Conclus	ion	• •	•	• •	• •	•	•	•	•	43	
IV	Exper	imental	Proce	dure a	and]	Resi	ilts		•	•	•	44	
	4.1.1	Prelimi	nary C	onside	erat	ions	s ar	nd T	ests	3	•	44	
		4.1.1.	Surfac	e Roug	ghne	ss N	leas	sure	ment	s w	ithin		
			the Di	ffuser	?	•		•	•	•	•	45	
		4.1.2.	Hot -	Wire F	rob	e Ca	alit	rat	ion	•	•	45	
	1	4.1.3.	Tests	for Vi	bra	tior	ns	•	•	•	•	46	
	1	4.1.4. I	Measur	ement	of	the	Mea	n V	eloc	ity			
		(Compon	ents i	n tl	he F	adi	al	Dire	ectio	on	47	
ж.	4.2. 1	Festing	Proce	dure	•	• •	•. •	•	•	•	• • • •	47	
	1	4.2.1.	Wind T	unnel	Cal	ibra	atic	n	•	•	•	48	
	1	4.2.2.	Anemom	eter M	leas	uren	ient	S	•	•	•	51	
	1	4.2.3.	Differ	ential	. Pr	essu	ire	Mea	sure	ement	ts	52	
	4.3.]	Interpr	etatio	n of R	ead	ings	5.	•	•	•	•	53	
	4.4. I	Post Ex	perime	ntal I	est	5.		•	•	•	•	55	
	1	4.4.1.	Fan St	abilit	y Me	easu	iren	ent	S	•	•	55	
	1	4.4.2.]	Diffus	er Rou	indn	ess	•	•	•	●***	•	55	

iv

V Analysis and Discussion of Results	6
5.1. Surface Roughness Tests	7
5.2. Vibration Tests	7
5.3. Fan Speed Regulation Tests	8
5.4. Roundness Tests	9
5.5. Pressure Rise along the Diffuser 5	9
5.6. Turbulence Tests 60	0
5.6.1. General Trend 6	1
5.6.2. Agreement with Published Data 6	Ļ
5.6.3. Relationship of Turbulence Intensities	
to Boundary Layer Growth 6	7
5.6.4. Reasons for Anomalies 6	9
5.7. Discussion of Errors	0
5.7.1. Error in Measurement	0
5.7.2. Error due to Filter Settings 7	2
VI Conclusions and Suggestions for Future Work . 7	4
References	7
General Bibliography 8	0
Appendix A	4
Appendix B	9

υ

LIST OF TABLES

Table		Page
4.1.	Diffuser Surface Roughness Measurements .	81
4.2.	Fan Regulation Measurements	82
4.3.	Roundness Measurements	83

vi

LIST OF FIGURES

Figure		Page
2.1.A	Constant - Current Anemometer	• 84
2.1.B	Constant - Temperature Anemometer	. 84
2.2.	Method of Probe Calibration	. 85
2.3.	X-Probe Calibration	. 86
3.1.	Experimental Apparatus	. 87
3.2.	Test Rig	. 88
3.3.	Test Rig	. 88
3.4.	Traversing Mechanism	. 89
3.5.	Stand and Probe Holder - Side View	. 90
3.6.	Traversing Mechanism Wheel Assembly	. 91
3.7.	Roller Detail	. 92
3.8.	Trolley Detail - Side View	• '93
3.9.	Trolley Detail - End view	• 94
3.10.	Disa 55AOl Constant Temperature	
	Anemometer with Digital Voltmeter	• 95
3.11.	X-Probe and Holder	• 96
3.12.	Test Equipment	• 97
3.13.	Schematic Drawing of Test Equipment	. 98
3.14.	Probe Calibration Equipment	• 99
3.15.	Probe Repair Equipment	. 100
4.1.	Diffuser Traverses	. 101
4.2.	Diffuser Test Stations	. 102
4.3.	Surface Roughness Measuring Stations	
	in Diffuser	. 103
		~~~ · · ·

vii

# LIST OF GRAPHS

	Graph		Page
	4.1.	Probe Calibration	101
	4.2.	Tunnal Coldback and	104
	4.3.	Pressure Pice Alena Difference	105
	5 1	dD/dr Along Disse	106
	5 7 5 7	ur/ux along Dilluser	107
	J+ ~+ - J+ /+	u vs. y/D, Stn. 0 - 10	108-113
	5.85.13.	v' vs. y/D, Stn. 0 - 10	114-119
	5.145.19.	w vs. y/D, Stn. 0 - 10	120-125
	5.205.25.	$(u^2 + v^2 + w^2)$ vs. y/D, Stn. 0 - 10	126-131
	5.26.	u' vs. y/D, L/De = 10.6, Horizontal,	
•		For Stns. 0 - 10	132
	5.27.	v' vs. y/D, L/De = 10.6, Horizontal,	
		For Stns. 0 - 10	133
	5.28.	w' vs. y/D, L/De = 10.6, Horizontal,	
		For Stns. 0 - 10	134
•	5.29.	u' vs. $y/D$ , $L/De = 10.6$ , Vertical.	
		For Stns. 0 - 10	135
	5.30.	v' vs. $y/D$ , $L/De = 10.6$ . Vertical.	
		For Stns. 0 - 10	136
	5.31.	w' vs. $y/D$ , $L/De = 10.6$ . Vertical	<b>~</b> )~
		For Stns. $0 - 10$	137
•	5.32.	$(u^2 + v^2 + w^2)$ vs. v/D. L/De = 10.6	<i>)</i> (
		Horizontal. For Stns. $0 - 10$	120
	5.33.	$(u^2 + v^2 + w^2)$ vs $v/D$ I/D = 10.6	<b>T)</b> O
		Vertical For Stag 0 10	120
:	5.34.	Buy vs $v/D$ $L/Da = 10.6$ Hard $-10.6$	<b>1</b> 37
	×	For Stra $0$ $10$ $100$ $100$ $100$ $100$	
		101.00 $102.0 - 10$ · · · · ·	140

viii

Ruv vs. $y/D$ , L/De = 10.6, Vertical,
For Stns. 0 - 10 141
Ruw vs. y/D, L/De = 10.6, Horizontal,
For Stns. 0 - 10 142
Ruw vs. y/D, L/De = 10.6, Vertical,
For Stns. $0 - 10 \dots 143$

5.35.

5.36.

5.37.

#### I. INTRODUCTION

1

In 1966 the fluid mechanics section of the Mechanical Engineering Department at the University of Manitoba initiated a long term study of air flow in three - dimensional diffusers. It was hoped that this study would extend the work of H.Sprenger who completed an experimental analysis of the flow through a series of diffusers in 1959.

Sprenger was primarily concerned with determining the effects of the boundary layer on the incompressible flow in channels with adverse pressure gradients. He tested various straight and curved diffusers with circular entry and outlet cross - sections, and several straight and curved diffusers with circular entry cross - sections and elliptical outlet cross - sections. (Sprenger, 1959).

Sprenger found that a straight circular diffuser with an outlet to inlet area ratio of 4 : 1 and a total cone angle of 8° produced the best pressure conversion for all boundary layer thicknesses entering the diffuser. Later work by Cockrell and Markland (1963) and Mc Donald and Fox (1965) confirmed that conical diffusers with included angles of 4° to 10° had better pressure recovery characteristics than diffusers which were not in this angle range.

As a result of Sprenger's findings, R. Lipka of the University of Manitoba initiated plans to test a straight conical diffuser with an 8° included angle and an outlet to inlet area ratio of 4 : 1. It was hoped that Sprenger's results could be repeated and that the conical diffuser could be used as a reference diffuser whose characteristics could be compared to the characteristics of circular - curved and elliptical - curved diffusers.

2

Unfortunately, discrepancies between Lipka's findings (Lipka, 1968) and Sprenger's results necessitated the repetition of the experiments in more detail. Since Lipka had not made any turbulence measurements and Sprenger had recommended that any extension of his work should include turbulence measurements inside the diffuser, it was decided that the turbulence intensities and the turbulent shear stresses within the diffuser would be measured during the new series of tests. This thesis deals with these turbulence measurements.

The Mechanical Engineering Department of the University of Manitoba intends to study the flow within the reference diffuser in detail and to extend this study to provide a generalized mathematical model for flow in three - dimensional diffusers of all shapes - particularly those shapes which are of use in fans, compressors, and turbines.

The next chapter shall deal with the equations of turbulent motion and the theory of operation of turbulence measuring equipment.

#### II THEORY

#### 2.1. Introduction.

The purpose of this chapter is to introduce the concepts of turbulent flow and turbulent flow measurement.

Following the method of Hinze(1959) it will be shown how the equations of motion and energy for turbulent flows can be derived by a perturbation method. It will also be shown how this perturbation method can be used to arrive at a theory of measurement for turbulent flows.

In order to arrive at the equations for turbulent flow it is first necessary to note the method by which turbulent flows are characterized.

Usually a turbulent flow is considered to consist of two parts - an 'average' or 'mean' velocity  $\overline{U}$ , and an instantaneous velocity fluctuation, u. Consequently the instantaneous value of the total velocity U, is considered to be the sum of the 'mean' velocity plus the instantaneous velocity fluctuation or,  $\overline{U}$  + u.  $\overline{U}$  is defined as  $\lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} U \, dt$ , where T and t both signify time, and U is the overall velocity. In practice a satisfactory  $\overline{U}$  is obtained if  $\partial \overline{U}/\partial t$  is zero, or is negligibly small. The violence, or intensity of the turbulence fluctuations is taken as the root mean square value of the time averaged instantaneous velocity fluctuations and is usually termed u'. That is,  $u' = \sqrt{u^2}$ . The overscore here denotes an average.

In the following text all averaging procedures will be denoted by overscores. Since it will be necessary to carry out averaging procedures on products of quantities as well as single quantities the properties of these overscores must be defined.

Given:  $A = \overline{A} + a$  $B = \overline{B} + b$ 

where A and B can be any fluctuating quantities.

Then :  $\overline{A} = \overline{\overline{A} + a} = \overline{\overline{A}} + \overline{\overline{a}} = \overline{A} + \overline{\overline{a}}$ from which  $\overline{\overline{a}} = 0$ 

			*				·
Also		ĀB	= A	В	Ħ	Ā	B
and	:	Āь	$=\overline{\overline{A}}$	$\overline{\mathbf{b}}$	=	0	
• • •	•	beca	use	b		0	

Similarly:  $\overline{\overline{B}} = \overline{\overline{B}} = \overline{\overline{a}} = 0$ because  $\overline{\overline{a}} = 0$ Finally:  $\overline{\overline{A}} = (\overline{\overline{A}} + a)(\overline{\overline{B}} + b)$  $= \overline{\overline{A}} = \overline{\overline{B}} + \overline{\overline{A}} + b + \overline{\overline{B}} = a + a b$  $= \overline{\overline{A}} = \overline{\overline{B}} + \overline{\overline{a}} + b$ 

As an example of how these averaging procedures are applied to the equations of turbulent flow consider the continuity equation for compressible flow.

$$\frac{\partial e}{\partial t} + \frac{\partial}{\partial x_i} (e \cup_i) = 0 \quad 2 \cdot 1 \cdot 1$$

where 
$$i = 1, 2, 3$$

- $\mathcal{C}$  = density
- Xi represents a standard cartesian coordinate system.
- Ui = velocity along the three cartesian directions.

The continuity equation must be true at any instant in turbulent flows. It must also hold on the average.

Now, let 
$$\mathcal{C} = \overline{\mathcal{C}} + \overline{\mathcal{C}}$$
  
Ui =  $\overline{U}$ i + ui

where  $\widetilde{\mathcal{C}}$  and u are instantaneous fluctuations and Ui and  $\overline{\mathcal{C}}$  are mean values.

Substituting these values in equation 2. 1. 1, and applying an averaging procedure the following is obtained:

 $\frac{\partial}{\partial t} (\overline{e} + \widetilde{e}) + \frac{\partial}{\partial x_i} (\overline{e} + \widetilde{e}) (\overline{U}i + u_i) = 0$ 

Applying the given properties of overscores this becomes:

$$\frac{\partial \vec{e}}{\partial t} + \frac{\partial}{\partial x_i} (\vec{e} \, \overline{Ui} + \vec{e} \, u_i) = 0 \quad 2. 1. 2$$

It can be seen that one extra term,  $\tilde{\mathcal{E}}u_i$ , has been added to the continuity equation as a result of the turbulent fluctuations.

2.2 Equations of Turbulent Motion for Incompressible Flows.

In a manner similar to the foregoing the equations of motion for turbulent flow can be derived from the Navier - Stokes equations. The Navier - Stokes equations for an incompressible fluid of constant viscosity are:

6

$$e \frac{\partial U_{i}}{\partial t} + e U_{j} \frac{\partial U_{i}}{\partial x_{j}} = -\frac{\partial P}{\partial x_{i}} + 4 \nabla^{2} U_{i} \qquad 2.2.0.$$

$$i = 1, 2, 3$$

$$j = 1, 2, 3$$

Where:

**P =** static pressure

**L** = dynamic viscosity

X;,j= cartesian coordinates

 $\nabla^2$  = Laplace's operator

Introducing:

$$U_{j} = \overline{U}_{j} + u_{j}$$
$$U_{i} = \overline{U}_{i} + u_{i}$$
$$P = \overline{P} + \widetilde{P}$$

Equations 2.2.0. become

$$\frac{\partial}{\partial t} \left( \overline{U}_{i} + u_{i} \right) + \left( \overline{U}_{j} + u_{j} \right) \frac{\partial}{\partial x_{j}} \left( \overline{U}_{i} + u_{i} \right)$$

$$= \frac{\partial}{\partial x_{i}} \left( \overline{p} + \overline{p} \right) \cdot \underline{I} + \vartheta \nabla^{2} \left( \overline{U}_{i} + u_{i} \right)$$

2.2.1.

Where:

$$\partial = \frac{\mu}{e} = \text{kinematic viscosity}$$

7

The equation of continuity for incompressible turbulent flow is:

$$\frac{\partial}{\partial x_i} (\overline{U}_i + u_i) = 0$$
 2.2.2

Therefore since  $\frac{\partial}{\partial x_i}$  must equal zero,  $\frac{\partial}{\partial x_i}$  will equal zero as well

Now consider the term:

$$(\overline{U}_{j} + u_{j}) \frac{\partial}{\partial x_{j}} (\overline{U}_{i} + u_{i})$$

from equation (2.2.1.)

This becomes:

$$\overline{U}_{j} \stackrel{\partial}{\rightarrow} \overline{U}_{i} + \overline{U}_{j} \stackrel{\partial}{\rightarrow} u_{i} + u_{j} \stackrel{\partial}{\rightarrow} \overline{U}_{i} + u_{j} \stackrel{\partial}{\rightarrow} u_{i} = 2.2.3$$

2.2.4.

and

$$u_j \frac{\partial u_i}{\partial x_j} = \frac{\partial}{\partial x_j} (u_j u_i) - u_i \frac{\partial u_j}{\partial x_j}$$

but

$$-u_i \frac{\partial u_i}{\partial x_i} = 0$$
 because of equation (2.2.2.)

2.2.5.

.6.

Similarly

$$\overline{U}_{j} \frac{\partial \overline{U}_{i}}{\partial \overline{x}_{j}} = \frac{\partial}{\partial x_{j}} (\overline{U}_{i} \overline{U}_{j})$$

Applying an averaging procedure to the terms in (2.2.3.) and noting equations (2.2.4.) and (2.2.5.), (2.2.3.) becomes

$$\frac{\partial}{\partial x_{j}} (\overline{U}_{i} \overline{U}_{j}) + \frac{\partial}{\partial x_{j}} (\overline{u_{i} u_{j}})$$

Completion of the averaging procedure on the rest of equations (2.2.1.) results in

$$\frac{\partial \overline{U}_{i} + \partial (\overline{U}_{i} \overline{U}_{j})}{\partial t} = -\frac{1}{c} \frac{\partial \overline{P}}{\partial x_{i}} + \partial \nabla^{2} \overline{U}_{i}$$
$$-\frac{\partial}{c} \frac{(\overline{u}_{i} \overline{u}_{j})}{\partial x_{j}} = -\frac{\partial}{\partial x_{j}} \frac{(\overline{u}_{i} \overline{u}_{j})}{\partial x_{j}} = 2.2$$

Equations (2.2.6.) are called the Revnolds equations, and they govern turbulent motion. In conventional Cartesian notation using

$$u, v, w = u_{1}, u_{2}, u_{3}$$

$$x, y, z = x_{1}, x_{2}, x_{3}$$
and  $U, V, W = \overline{U}_{1}, \overline{U}_{2}, \overline{U}_{3}$ 
equations (2.2.6.) become
$$\frac{\partial U}{\partial t} + \frac{\partial}{\partial x} (U^{2}) + \frac{\partial}{\partial t} (UV) + \frac{\partial}{\partial z} (UW) = -\frac{1}{C} \frac{\partial F}{\partial x}$$

$$+ \partial \nabla^{2} U - \frac{\partial}{\partial x} (\overline{u}^{2}) - \frac{\partial}{\partial y} (\overline{u}\overline{v}) - \frac{\partial}{\partial z} (\overline{u}\overline{w}) \quad 2.2.7.$$

$$\frac{\partial V}{\partial t} + \frac{\partial}{\partial x} (UV) + \frac{\partial}{\partial y} (V^{2}) + \frac{\partial}{\partial z} (VW) = -\frac{1}{C} \frac{\partial F}{\partial y}$$

$$+ \partial \nabla^{2} V - \frac{\partial}{\partial x} (\overline{u}\overline{v}) - \frac{\partial}{\partial y} (\overline{v}^{2}) - \frac{\partial}{\partial z} (\overline{v}\overline{w}) \quad 2.2.8.$$

$$\frac{\partial W}{\partial t} + \frac{\partial}{\partial x} (UW) + \frac{\partial}{\partial y} (VW) + \frac{\partial}{\partial z} (\overline{v}^{2}) = -\frac{1}{C} \frac{\partial F}{\partial z}$$

$$\frac{\partial W}{\partial z} + \frac{\partial}{\partial x} (UW) + \frac{\partial}{\partial y} (VW) + \frac{\partial}{\partial z} (\overline{v}\overline{w}) \quad 2.2.8.$$

It is easily seen that equations (2.2.7.) through (2.2.9.) are the Navier - Stokes equations for incompressible flow with nine additional terms in u, v, and w.

These additional terms are called the Reynoldsstresses and they are a direct result of the turbulent fluctuations in the fluid.

Ferrari (1959) explains these additional terms in the following manner :

10

Consider a fluid in turbulent motion and consider an infinitesimally small element of area  $d\phi_j$ , perpendicular to the  $x_j$  axis.

The term ede; u; dt would represent the mass flow through  $\forall j$  in time dt that is brought about by the turbulent agitation of the fluid. This mass flow would have an associated momentum directed along the  $\mathbf{X}_{i}$  axis of the amount

dqi = ujuied fidt.

This transport of momentum can be interpreted as a force of magnitude  $\frac{d_{\mathbf{x}_i}}{d\mathbf{t}}$  upon  $d\mathbf{x}_i$ . This force would act in the same direction and sense as the positive  $\mathbf{x}_i$  axis.

It would be exerted by the particle masses making up the negative normal side of area  $d \checkmark_j$  upon the fluid located on the positive normal side of  $d \sphericalangle_j$ . Hence the force would be orientated in the same direction as the positive  $\chi_j$  axis.

Then by the principle of action and reaction it may be seen that there is an opposing force transmitted across the face of each elemental area that would be orientated perpendicularly to one of the axes  $x_j$ . This opposing force may be represented by the expression  $d_{x_i} = -eu_i u_i d_j$ . If a time average for these forces is constructed, and if they are divided by **dv**; such that they will represent stresses, the result is

11

 $T_{ij}^{(t)} = -e \overline{u_i u_j}$ where fij represents the time-averaged stress tensor.

Hence the "turbulent stresses" have originated because of the velocity fluctuations introduced into the fluid as a result of the turbulent motion.

If a quantity  $\Pi_{ij}$  is now defined as

 $e\left(\vartheta\left(\overline{U}_{i}+\overline{U}_{j}\right)-\overline{u_{i}u_{j}}\right)$  2.2.10

it will be possible to write the Reynolds equations in a manner that is formally identical to the Navier - Stokes equations for incompressible flow.

Noting that

$$\frac{\partial}{\partial x_i} \left( \frac{\partial}{\partial x_i} + \frac{\partial}{\partial x_j} \right) = \nabla^2 U_i$$

by virtue of continuity, equations (2. 2. 6) can be written as.

$$\frac{\partial U_i}{\partial t} + \frac{\partial}{\partial x_i} (\overline{U}_i \,\overline{U}_j) = -\frac{1}{e} \frac{\partial \overline{P}}{\partial x_i} + \frac{\partial}{\partial x_j} (\overline{TT}_j) \frac{1}{e} 2.2.11$$

Equations (2. 2. 11) are identical in form to equations (2. 2. 0).

The main difference between equations (2. 2. 11) and equations (2. 2. 0) is that the internal forces in equations (2. 2. 0) are all associated with viscous stresses, while in equations (2. 2. 11) the internal forces are associated with the sum of the viscous and the Reynolds stresses.

2.3. Dissipation of Energy in Incompressible Turbulent Flow.

In order to arrive at a set of equations for energy dissipation it is first necessary to note the following:

If the Navier - Stokes equations are multiplied by
 a velocity the resulting equations have the dimensions
 of energy per unit time per unit volume.
 That is, energy per unit time per unit volume has the
 dimensions,

# $\underbrace{ML}_{T^{\frac{1}{4}}} \cdot L \cdot \underbrace{L}_{J} \cdot \underbrace{L}_{J} = \underbrace{M}_{LT^{3}}$

Where M = mass L = length T = time

Given the term  $e \frac{\partial U}{\partial t}$  in the Navier - Stokes equations, and multiplying by a velocity, the following is obtained:

 $e_{U} \underbrace{J_{U}}_{J_{t}}$  has dimensions  $\underbrace{M}_{L^{3}} \cdot \underbrace{L}_{T} \cdot \underbrace{L}_{T^{2}} = \underbrace{M}_{LT^{3}}$ 

This is identical to that which was obtained previously.

 Energy per unit mass per unit time would result if the Navier - Stokes equations were divided by *C* and multiplied by a velocity.

Energy per unit mass per unit time has the dimensions.  $\frac{ML^2}{T^2} \cdot \frac{1}{T} \cdot \frac{1}{T} = \frac{L^2}{T^3}$   $\frac{e_U \frac{\partial U}{\partial t}}{\frac{\partial t}{d t}} \cdot \frac{1}{e}$  has dimensions  $\frac{M}{L} \cdot \frac{L}{L} \cdot \frac{L^3}{T^2}$   $\frac{L^3}{T} \cdot \frac{T^2}{T^2} \frac{M}{M}$ Which is  $\frac{L^2}{T^3}$ .

- 3. The turbulent flow of fluids is dissipative in nature. Because of the instability of the flow turbulent eddies break up and get smaller and smaller until they are dissipated in the form of heat.
- 4. Because of this dissipative nature a continuous supply of energy is required to maintain the turbulence.
- 5. Because of the turbulent motion diffusion of fluid particles, along with their kinetic energy, takes place.
- 6. Because of 3, 4, and 5 above, it is clear that an average steady state cannot exist unless the energy supplied to the turbulent motion is equalled by the diffusion of turbulent energy plus the dissipation of turbulent energy.

Now consider a unit mass of fluid subjected to normal and shearing stresses  $\overleftarrow{\kappa_{ij}}$  .

The work done by these stresses per unit mass and time during the deformation of the fluid is

2.3.1.

2.3.2.

2.3.3.

2.3.4.

$$W = \frac{1}{e} \frac{\partial}{\partial x_i} \forall i j U_j$$

or:

$$W = \frac{1}{e} U_j \frac{\partial}{\partial x_i} + \frac{1}{e} \overline{f_{ij}} \frac{\partial U_j}{\partial x_i}$$

By Newton's second law

$$\frac{\partial}{\partial x_i} = e \frac{d}{dt} U_j$$

where

$$\frac{dU_{j}}{dt} = \frac{\partial U_{j}}{\partial t} + \frac{U_{i}}{\partial x_{i}}$$

therefore

$$U_j \underbrace{\partial \xi_{ij}}_{\partial x_i} = e U_j \underbrace{d U_j}_{dt} = \frac{1}{2} e \underbrace{d}_{dt} (U_j U_j)$$

Equation (2.3.4.) represents the change in kinetic energy per unit volume of the fluid particles.

Substituting in equation (2.3.2.)

$$W = \underbrace{Id}_{2dt} (U_j U_j) + \underbrace{Id}_{e} \underbrace{G_{ij} \underbrace{\partial}_{x_i}}_{ij} \qquad 2.3.5.$$

It can be shown that  $\mathbf{6}_{ij}$ , the stress tensor, can be represented as the sum of the normal stresses and shearing stresses.

$$\overline{\forall ij} = -p \delta ij + l \left( \frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) = 2.3.6.$$

(Schlichting, 1968)

where  $\delta_{ij}$  is the Kronecker delta

$$\begin{aligned} & \mathbf{\delta}_{ij} = 1 & \text{if } i = j \\ & \mathbf{\delta}_{ij} = 0 & \text{if } i \neq j \end{aligned}$$

When equation (2.3.6.) is substituted into equation (2.3.5.)

$$W = \frac{1}{2} \frac{d}{dt} (U_{j}U_{j}) - \frac{1}{2} \frac{\partial U_{j}}{\partial x_{i}} + \vartheta \left( \frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}} \right) \frac{\partial U_{j}}{\partial x_{i}}$$

$$2.3.7.$$

$$\delta_{ij} \frac{\partial U_{j}}{\partial x_{i}} = O \quad \text{if } i \neq j, \text{ and } \frac{\partial U_{i}}{\partial x_{i}} \quad \text{if } i = j$$

Therefore

 $-\frac{P}{C}S_{ij}\frac{\partial U_{j}}{\partial x_{i}} = O \quad \text{by virtue of continuity}$ 

Hence

Where (2.3.8. I) is the change in kinetic energy per unit mass and time of the fluid elements and (2.3.8. II) is the dissipation of energy per unit mass and time of the fluid elements. If equation (2.3.6.) is introduced into equation (2.3.1.) and the result is expanded, the following occurs:

$$W = \frac{1}{C} \frac{\partial}{\partial x_{i}} U_{j} = -\frac{\partial}{\partial x_{i}} (pU_{i})$$
  
+  $\frac{\partial}{\partial x_{i}} U_{j} (\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}}) 2.3.94$   
II

where (2.3.9. I) represents the work done per unit mass and time by the hydrostatic pressure and (2.3.9. II) represents the work done per unit mass and time by the viscous stresses.

When equations (2.3.8.) and (2.3.9.) are equated, the energy equation is obtained.

 $\frac{1}{2} \frac{\partial}{\partial t} (U_{j} U_{j}) + \frac{1}{2} U_{k} \frac{\partial}{\partial x_{k}} (U_{j} U_{j}) = -\frac{\partial}{\partial x_{k}} (P U_{i})$   $+ \frac{\partial}{\partial x_{i}} \left( U_{j} \left( \frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{i}}{\partial x_{j}} \right) \right) - \frac{\partial}{\partial x_{i}} \left( \frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}} \right) \frac{\partial U_{j}}{\partial x_{i}}$  2.3.10.

For an incompressible fluid



17

Hence

$$U_{k} \frac{\partial}{\partial x_{k}} (U_{j} U_{j}) = \frac{\partial}{\partial x_{k}} (U_{k} U_{j} U_{j}) = \frac{\partial}{\partial x_{i}} (U_{i} U_{j} U_{j})$$

Therefore equation (2.3.10.) becomes

18

$$\frac{1}{2} \frac{\partial}{\partial t} \left( U_{j} U_{j} \right) = -\frac{\partial}{\partial x_{i}} \left[ U_{i} \left( \frac{b}{2} + \frac{U_{i} U_{j}}{2} \right) \right] \\
\mathbf{I} \qquad \mathbf{I} \qquad \mathbf{I} \\
+ \vartheta \frac{\partial}{\partial z_{i}} \left[ U_{j} \left( \frac{\partial U_{j}}{\partial z_{j}} + \frac{\partial U_{i}}{2} \right) \right] - \left( \frac{\partial U_{i}}{\partial z_{i}} + \frac{\partial U_{j}}{2} \right) \frac{\partial U_{j}}{\partial z_{i}} \\
\mathbf{II} \qquad \mathbf{IV} \qquad \mathbf{IV}$$

2.3.11.

The terms in equation (2.3.11.) have the following significance:

- 1. (2.3.11. I) is the local change in kinetic energy per unit mass and time.
- 2. (2.3.11. II) is the work done per unit mass and time
  - by the sum of the static and velocity pressures.
- 3. (2.3.11. III) is the work done per unit mass and time by the viscous stresses.
- 4. (2.3.11. IV) is the dissipation of energy per unit mass.

Now, in order to see what influence turbulence fluctuations have on the equation (2.3.11.) the usual perturbation method is followed.

$$U_{i} = \overline{U}_{i} + u_{i}$$

$$P = \overline{P} + \overline{P}$$

$$U_{i}U_{i} = \overline{U}_{i}\overline{U}_{i} + 2\overline{U}_{i}u_{i} + u_{i}u_{i}$$

$$= \overline{U}_{i}\overline{U}_{i} + 2\overline{U}_{i}u_{i} + q^{2}$$

If these above are substituted into equation (2.3.11.) and an averaging procedure is carried out, the following occurs:

$$\frac{1}{2} \frac{\partial}{\partial x_{i}} (\overline{U}_{i} \overline{U}_{j}) + \frac{1}{2} \frac{\partial}{\partial q} (\overline{q}^{2}) = -\frac{\partial}{\partial x_{i}} \left[ \overline{U}_{i} \left( \frac{\overline{p}}{e} + \frac{1}{2} \overline{U}_{i} \overline{U}_{j} \right) \right]$$

$$A \qquad B \qquad C$$

$$-\frac{\partial}{\partial x_{i}} \left[ \overline{U}_{i} \left( \frac{p}{e} + \frac{q^{2}}{2} \right) \right] - \frac{1}{2} \frac{\partial}{\partial x_{i}} \left( \overline{U}_{i} \overline{q}^{2} \right) - \frac{\partial}{\partial x_{i}} \left( \overline{U}_{i} \overline{u_{i} \overline{u}_{i}} \right)$$

$$P \qquad E \qquad F$$

$$+ \frac{\partial}{\partial x_{i}} \left[ \overline{U}_{i} \left( \frac{\partial \overline{U}_{i}}{\partial x_{j}} + \frac{\partial \overline{U}_{j}}{\partial x_{i}} \right) \right] + \frac{\partial}{\partial x_{i}} \left[ \overline{u}_{i} \left( \frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \right]$$

$$G \qquad H$$

$$- \frac{\partial}{\partial \left( \frac{\partial \overline{U}_{i}}{\partial x_{j}} + \frac{\partial \overline{U}_{i}}{\partial x_{i}} \right) \frac{\partial \overline{U}_{i}}{\partial x_{i}} - \frac{\partial}{\partial \left( \frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{i}}{\partial x_{i}} \right) \frac{\partial u_{i}}{\partial x_{i}}}{I}$$

$$I \qquad J$$

The above shall be termed equations (2.3.12.) and are the energy equations for a turbulent flow field.

19

In order, however, to assess explicitly the energy contributions of the turbulence fluctuations alone it is necessary to eliminate the mean motion terms. Consider the Navier - Stokes equations for turbulent flow in the form

$$e[\underline{\partial}\overline{U}_{j} + \underline{\partial}(\overline{U}_{i}\overline{U}_{j})] = -\underline{\partial}\overline{P} + \underline{\partial}(\underline{\lambda}\underline{\partial}\overline{U}_{j} - e\overline{u_{i}u_{j}})$$

$$e[\underline{\partial}\overline{U}_{i} + \underline{\partial}\overline{x}_{i} - \overline{\partial}\overline{x}_{i}] = -\underline{\partial}\overline{P} + \underline{\partial}(\underline{\lambda}\underline{\partial}\overline{U}_{j} - e\overline{u_{i}u_{j}})$$

If equations (2.3.13.) are multiplied by  $U_j$  and divided by  $\mathcal{C}$  they will have the same units as equations (2.3.12.). (Cf. previous argument on dimensions)

2.3.13.

Thus  $\bigcup_{i} j$  times equations (2.3.13.) becomes  $\frac{1}{2} \frac{\partial}{\partial t} (\overline{U}_{j} \overline{U}_{j}) + \frac{\partial}{\partial x_{i}} (\overline{U}_{i} \overline{U}_{j} \overline{U}_{j}) = -\overline{U}_{j} \frac{\partial}{\partial F} + \partial \overline{U}_{j} \frac{\partial^{2}}{\partial x_{j}} \overline{U}_{j}$   $- \overline{U}_{j} \frac{\partial}{\partial (\overline{u_{i} u_{j}})}$ 

Because of continuity

 $\frac{\partial^2 \overline{U}_j}{\partial x_i \partial x_i} = \frac{\partial}{\partial x_i} \left( \frac{\partial \overline{U}_i}{\partial x_i} + \frac{\partial \overline{U}_i}{\partial x_j} \right)$ 

- and

 $-\overline{U}_{j}\frac{\partial}{\partial x_{j}} = -\frac{\partial}{\partial x_{j}}(\overline{U}_{j})$ 

Recalling that **p** is actually **p**Sij, it can be said that

$$-\frac{\partial}{\partial x_{j}}(\bar{p}\,\bar{U}_{j}) = -\frac{\partial}{\partial x_{i}}(\bar{p}\,\bar{U}_{i})$$

Hence equations (2.3.13.) become

$$\frac{1}{2} \frac{\partial}{\partial t} (\overline{U}_{j} \overline{U}_{j}) = -\frac{\partial}{\partial x_{i}} \overline{U}_{i} (\frac{\overline{P}}{e} + \frac{1}{2} \overline{U}_{j} \overline{U}_{j}) + U_{j} \frac{\partial}{\partial x_{i}} (\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}})$$
(i)
(ii)
(iii)
(iii)
(iii)
(iii)
2.3.14.
(iv)

If equations (2.3.14.) are subtracted from equations (2.3.12) it can be seen that the following will happen:

2.3.12. A = 2.3.14. i = 02.3.12. C = 2.3.14. ii = 0

If 2.3.12. G is expanded, the subtraction will result in the following:

$$\frac{1}{2}\frac{\partial \overline{q}^{2}}{\partial t} + \frac{1}{2}\frac{\partial(\overline{U};\overline{q}^{2})}{\partial x_{i}} = -\frac{\partial}{\partial x_{i}}\left[u_{i}\left(\frac{b}{2} + \frac{1}{2}q^{2}\right)\right] - \frac{\partial}{\partial x_{i}}\left(\overline{U}_{j}\,\overline{u_{i}u_{j}}\right)$$

 $+\overline{U}_{j}\frac{1}{2}(\overline{u_{i}u_{j}})+\overline{D}_{2}\overline{[u_{i}(\frac{2x_{j}}{2},\frac{3x_{j}}{2},\frac{3x_{i}}{2})]}-\overline{D}(\frac{2u_{i}+2u_{j}}{2})\frac{3x_{i}}{2})\frac{3x_{i}}{2}$ 

22 or  $\frac{1}{2}\left[\frac{\partial}{\partial t}\left(\overline{q}^{2}\right) + \overline{U}_{i}\frac{\partial}{\partial x_{i}}\overline{Q}^{2}\right] = -\frac{\partial}{\partial x_{i}}\frac{\overline{U_{i}(p+q^{2})}}{\overline{e}} - \overline{U}_{i}\frac{\partial}{\partial x_{i}}\overline{U_{i}(u_{i})}$  $+\overline{u_iu_j}\frac{\partial \overline{U}_i}{\partial x_i} + \overline{U_j}\frac{\partial (\overline{u_iu_j})}{\partial x_i} + \partial \frac{\partial \overline{L}u_j}{\partial x_i} \left(\frac{\partial x_i}{\partial u_i} + \frac{\partial x_j}{\partial x_i}\right)^{-1}$  $- \vartheta \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_j} \right) \frac{\partial u_i}{\partial x_j}$ which becomes  $\frac{d(q^2)}{dt} = -\frac{\partial}{\partial x_i} \left[ \frac{\mu_i}{e} \left( \frac{\mu_i}{e} + \frac{q^2}{2} \right) \right] - \overline{\mu_i \mu_j} \frac{\partial \overline{\mu_i}}{\partial x_i}$ Π III Ι  $+ 9 \overline{9} [n! (\overline{9n!} + \overline{9n!})]$  $- \vartheta \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_j}{\partial x_i}$ 2.3.15. V

Equations (2.3.15.) are the equations which show how the actual <u>turbulent</u> energy terms act. The various terms in equation (2.3.15.) have the following significance:

- 1. 2.3.15. I represents the change in kinetic energy per unit mass for the turbulence fluctuations.
- 2. 2.3.15. II represents the convective diffusion by turbulence of the total turbulence energy.
- 3. 2.3.15. III represents the energy transferred from the mean motion by the Reynolds stresses. It represents the production of the turbulence energy
- 4. 2.3.15. IV represents the work done per unit mass per unit time by the viscous shear stresses of the turbulent motion.
- 5. 2.3.15. V represents the dissipation of energy per unit mass by the turbulent motion.

For the purposes of this work there is a very interesting point to be noted about the energy production term in the energy equation. Consider this 'production' term,

 $-\overline{u_iu_j}\overline{\partial U_j}$ 

2.3.16.

For the purposes of discussion, assume a mean motion along the  $x_1$  axis and assume that  $\frac{\partial U_1}{\partial x_1} > 0$ .

The term (2.3.16.) corresponding to this would be  $-\overline{u_1^2} \frac{\partial U_1}{\partial v_1}$ 

That is, the negative sign would be retained. In other words, a positive velocity gradient would result in a decrease in turbulent energy.

On the other hand, assume that  $\frac{\partial U_1}{\partial x_1} < 0$ .

23



The corresponding term (2.3.16.) would now be or, turbulence energy would increase.

24

Since a negative velocity gradient is usually associated with an increasing static pressure, the turbulent energy would be expected to increase in a diffusive process. That this is in fact the case will be shown in Chapter V.

2.4. Theory of Measurement of Turbulence Parameters.

## 2.4.1. Introduction

The measurement of turbulence parameters is complicated by the very nature of the turbulent flow. The fact that turbulent flow is random, fluctuating, and three - dimensional requires that any device used to acquire physical knowledge about that flow has the following characteristics:

- 1. The sensing element must be small enough to cause only the minimum possible disturbance of the flow.
- 2. The sensing element must have as rapid as possible a response to high frequency fluctuations.
- 3. The instrumentation associated with the sensing element must be stable enough to preclude the necessity of frequent recalibration.

The hot - wire anemometer is, to date, the instrument which best satisfies these conditions.

2.4.2. Hot - Wire Anemometry - General

There are two types of hot - wire anemometer. These are the constant current hot - wire anemometer and the constant temperature hot - wire anemometer.

25

The constant current hot - wire anemometer operates on the principle of heat transfer from a fine wire which is placed in the flow field and heated by passing a constant electrical current through it. As heat is transferred from the wire its temperature decreases, causing a change in the electrical resistance of the wire. This change in resistance causes a change in the voltage drop across the wire and this change in voltage produces a measurable signal.

The constant temperature anemometer operates on the same principle except that the wire is held at a constant temperature. When heat is transferred from the wire its temperature starts to change. This in turn brings about a change in wire resistance which changes the current through the wire. As soon as the current through the wire starts to change, however, the change is sensed and fed to a negative feed back amplifier. This negative feed back amplifier changes the current through the wire such that the wire regains its original temperature.

Figures 2.1.a and 2.1.b are block diagrams of the circuitry involved in both types of anemometer.

2.4.3. Theory of Operation of Hot - Wire Anemometers.

King (1914) found that the relationship describing the

cooling of a wire by a gas flow was:

 $\frac{I^2 R w}{R w-R g} = A + B \sqrt{U}$ 2.4.1. Where I = current through the wire R w = electric resistance of the wire. R g = resistance of the wire at the gas temperature.

U = mean flow velocity

26

A,B= constants depending on the length and diameter of the wire and the heat transfer properties of the gas.

The values of A and B have been calculated by theoretical considerations (King,1914), (Kramers,1946), but the most acceptable method to date for finding them is by calibrating the wire in a moving air stream.  $I^2$  is plotted versus  $U^{\frac{1}{2}}$  and a graph similar to figure 2.2 is obtained.

In order to see how equation (2.4.1) is modified by turbulence fluctuations for the constant temperature method, the following assumptions are made:

1.	$\mathbf{I} = \mathbf{\tilde{I}} + \mathbf{i}$
2.	$\mathbf{U} = \overline{\mathbf{U}} + \mathbf{u}$ is the second secon
3.	Rw is the wire resistance and is essentially
	constant because of the constant temperature of
e esta en la composición de la composic Esta de la composición	the wire.
4.	All fluctuations are small.
	Substituting (1) and (2) above in equation
•	(2.4.1) gives:
	$(\overline{I} + i)^2 Rw = (Rw - Rg) \left[ A + B\sqrt{U} (1 + \frac{U}{U})^{\frac{1}{2}} \right]$
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Expanding equation 2.4.2. and ignoring second order small terms gives

27

$$I^{2} Rw + 2iI\overline{R}w = (Rw - Rg) [A + B\sqrt{U}] + (Rw - Rg) B\sqrt{U} \frac{u}{2U}$$
  
2.4.3.

Noting equation (2.4.1.) it can be seen that equation (2.4.3.) reduces to

$$2i\overline{I} Rw = (Rw - Rg) B \sqrt{U} \frac{u}{2U}$$
 2.4.4.

Therefore

 $\mathbf{i} = \frac{\mathbf{R}\mathbf{w} - \mathbf{R}\mathbf{g}}{4\mathbf{I} \ \mathbf{R}\mathbf{w}} \ \mathbf{B} \ \sqrt{\mathbf{U}} \ \frac{\mathbf{u}}{2\mathbf{U}}$ 

Therefore, by Ohm's law, the voltage fluctuation, e, associated with the current fluctuation, i, will be

2.4.5.

e = Rw i

The sensitivity, s, of the hot wire is defined as that quantity which, when multiplied by the velocity fluctuation, will give the voltage fluctuation of the wire. Therefore, if

 $e = Rw i = \frac{Rw - Rg}{4 \overline{I}} B \sqrt{U} \frac{u}{U} = S u 2.4.6.$ then s must be

$$\frac{\mathbf{R}\mathbf{w} - \mathbf{R}\mathbf{g}}{4 \mathbf{\overline{I}}} \quad \frac{\mathbf{B} \sqrt{\mathbf{U}}}{\mathbf{\overline{U}}} \qquad 2.4.7.$$

In a manner similar to the preceding it is possible to arrive at a sensitivity for constant current operation. If  $s_{c-c}$  is defined as the constant current sensitivity it can be found that

$$s_{c-c} = \frac{(R_W - R_g)^2}{2 \overline{I} R_g} \frac{B \sqrt{U}}{\overline{U}}$$

2.4.8.

Dividing equation (2.4.7.) by (2.4.8.) gives

28

$$\frac{s}{s_{c-c}} = \frac{1}{2} \begin{bmatrix} Rg \\ Rw - Rg \end{bmatrix}$$

It can be seen that, for values of Rw/Rg > 3/2, s is less than  $s_{c-c}$ . ie: the sensitivity for constant current operation for Rw/Rg > 3/2 is greater than that for constant temperature.

The previous discussion points out the fact that the signal which is obtained from the hot wire is a function of the velocity fluctuations. The quantities which are lumped together as the sensitivity are all constants and can be acquired by calibrating the hot wire in a steady air stream.

There are certain limitations to the hot - wire method of measurement. It will be of advantage to note them.

2.5. Limitations of Hot - Wire Anemometers.

The limitations of both the constant current and the constant temperature methods of measurement shall be pointed out here. It will be seen that, in general, the constant temperature anemometer has certain advantages which make it a more versatile instrument for general purpose use.

Perhaps the most severe limitation to the hot - wire method of measurement results from the fact that the wires have a thermal inertia. That is, a finite time must elapse between the impingement of a fluctuation on the wire and the cooling of the wire. It is easy to see that high frequency fluctuations could create a situation such that the wire would not have time to react to each individual perturbation and hence an incorrect signal would be received. In short, the wire has a maximum frequency limit. Once this limit is exceeded the sensitivity of the wire decreases markedly.

The reciprocal of this maximum frequency limit is called the time constant of the wire and is denoted by the symbol M. It can be shown mathematically (Hinze, 1959) that the M for constant temperature operation is .005 times the M for constant current operation. A qualitative discussion of this phenomenon will suffice here, however.

Consider a constant current hot wire. Before it can produce an accurate signal it must first achieve a final lower temperature, and this temperature is dictated by the violence of the eddy. A constant temperature hot - wire, however, need only <u>start</u> to change its temperature before a signal is produced. Since not as much heat need be transferred, the thermal inertia does not have as great an effect in the constant temperature case as it does in the constant current case.

The more appreciable lag in the constant current case causes the sensitivity to fall at high frequencies, and it also introduces a phase shift in the output signal. Both of these must be corrected. Hence the reason for the compensator in figure 2.1. a.

Another limitation which is inherent in constant current operations results from the changing temperature of the wire.

29

As was previously stated (Cf. section 2.1.) the constants A and B rely on the heat transfer properties of the gas in which the wire is immersed. If the wire temperature changes, the film temperature of the gas next to the wire changes and hence A and B change. This does not have very much effect if turbulence intensities are low, but for high intensities it is quite possible that results will be calculated on the basis of calibration curves that are not accurate for the given conditions. This will obviously not occur with a constant temperature hot wire.

Finally, it has also been proven that constant temperature hot - wires collect less dust, and consequently do not require as much recalibration as constant current hot wires. (Collis, 1962)

In conclusion then, it would appear that, in spite of its possible greater sensitivity than the constant temperature hot wire (Cf. section 2.4.), the constant current hot wire is suited for low frequency, low intensity turbulence only. The constant temperature hot wire is more expensive because of its elaborate feedback circuitry, but it is a far more versatile instrument. It is for these reasons that constant temperature hot wire anemometers were chosen for the experimental portion of this work.

2.6. Mechanics of Hot - Wire Measurement.

This section deals with the actual method by which intelligence is gathered from the hot - wire signals.

## 2.6.1. Turbulence Intensities.

The cooling of any hot - wire is determined mainly by the component of velocity perpendicular to the wire. (Hinze,1959) Therefore in figure 2.3 it can be seen that the wires I and II would be most sensitive to the fluctuation components using and vcos  $\odot$ .

31

If the sine and the  $\cos \Theta$  terms were lumped with the wire sensitivity it could be said that the wires would react principally to the a u and b v components of the turbulence fluctuations where  $a = (s)(\sin \Theta)$  and  $b = (s)(\cos \Theta)$ .

If wires I and II have the same sensitivity, and if the velocity fluctuations are directed as shown in figure 2.3 it can be seen that the signals  $e_{T}$  and  $e_{TT}$  from the wires would be

 $e_{I} = a u + b v$  $e_{II} = a u - b v$ and that  $e_{I} + e_{II} = 2 a u$ 

and that

 $e_{I} - e_{II} = 2 b v$ 

Thus by adding and subtracting the signals from wires I and II and knowing the wire sensitivity from a calibration curve, the values of the turbulence velocity fluctuations can be obtained.

The reason that no w component intrudes on the signals from wires I and II is that there is no component of mean velocity in the w direction. Consequently any contribution it could make would be negligible compared to u and v. (Cf. equations (2.4.2.) through (2.4.7.)) In order to measure the w component the wires I and II must be rotated 90^{$\odot$} about the x axis and then w will replace v in the previous discussion.

It should be noted here that the value actually readered on the hot wire anemometer is the root mean square value of the velocity fluctuations. The final results, when they are calculated, are  $\sqrt{\overline{u^2}}$ ,  $\sqrt{\overline{v^2}}$ , and  $\sqrt{\overline{w^2}}$ .

2.6.2. Measurement of the Reynolds Stresses.

The Reynolds stresses are denoted by the tensor

$$e \begin{bmatrix} \overline{u^2} & \overline{u \ v} & \overline{u \ w} \\ \overline{u \ v} & \overline{v^2} & \overline{v \ w} \\ \overline{u \ w} & \overline{v \ w} & \overline{w^2} \end{bmatrix}$$

(Cf. section 2.2)

In order to measure these quantities it is necessary to find some way of acquiring the time averaged values of u multiplied by v, u multiplied by w, and v multiplied by w.

This is done in the following manner: Consider a parameter  $Ruv = \frac{\overline{uv}}{\sqrt{\overline{u^2}}\sqrt{\overline{v^2}}}$ 

This shall be termed the correlation coefficient between u and v.

Consider figure 2.3:

If the Root Mean Square values of  $e_{I}$ ,  $e_{II}$ ,  $e_{I+II}$ , and  $e_{I-II}$  can be found the following will result:

$$e_{I RMS} = \sqrt{(au + bv)^{2}} = \sqrt{a^{2}u^{2} + 2abuv + b^{2}v^{2}}$$

$$e_{II RMS} = \sqrt{(au - bv)^{2}} = \sqrt{a^{2}u^{2} - 2abuv + b^{2}v^{2}}$$

$$(e_{I} + e_{II})_{RMS} = \sqrt{4a^{2}u^{2}}$$

$$(e_{I} - e_{II})_{RMS} = \sqrt{4b^{2}v^{2}}$$

Now consider the term

$$\frac{e_{I}^{2}_{RMS} - e_{II}^{2}_{RMS}}{(e_{I}^{+}e_{II})_{RMS}(e_{I}^{-}e_{II})_{RMS}}$$

Subsituting for the e values the result is,

$$\frac{a^2\overline{u^2} + 2ab\overline{u}\overline{v} + b^2\overline{v}^2 - a^2\overline{u}^2 + 2ab\overline{u}\overline{v} - b^2\overline{v}^2}{4ab\sqrt{\overline{u}}\sqrt{\overline{v}}}$$

Which reduces to

$$\frac{\overline{u} \ \overline{v}}{\sqrt{\overline{u}^2} \ \sqrt{\overline{v}^2}}$$

and this is equal to Ruv.

Therefore it is possible to measure  $\bar{uv}$  if  $Ruv,\sqrt{\bar{u}^2}$ , and  $\sqrt{\bar{v}^2}$  are known.

If the wires I and II are rotated  $90^{\circ}$  about the x axis  $\overline{uw}$  can be found as well.

Unfortunately the measurement of  $\overline{vw}$  presents a considerable problem. Since  $\overline{vw}$  could not be measured during the experimental portion of this work it will not be discussed here. Suffice to say that it requires three anemometers and a three - wire hot wire probe. The measurements discussed in this section are but a very few of the measurements which must be done in order to arrive at a comprehensive picture of the turbulent flow within a diffuser. They are, however, the only measurements which could be done at the present time.

34

2.7. Conclusion.

The preceding sections have discussed the general equations of motion for turbulent flows, the turbulence energy equations, and the theory behind turbulence measuring devices. Some of the limitations of the existing measuring instruments have been noted, and the mechanics of the measurements taken during the experimental portion of the work have been discussed.

The next chapter shall deal with a description of the test rig and the measuring instruments which were used.

#### III EXPERIMENTAL APPARATUS

35

3.1. Introduction.

This chapter describes the equipment that was used in the testing of the diffuser.

The requirements for the testing of the diffuser were as follows:

- 1. Air moving device
- 2. Wind tunnel
- 3. Flow straightener
- 4. Contraction nozzle
- 5. Straight pipes for boundary layer growth
- 6. Diffuser
- 7. Traversing mechanism and stand
- 8. Test equipment

Items 1. through 6. have been described in detail in Lipka (1968), and were assembled exactly as they had been by Lipka with one exception - Lipka's traversing mechanism was not used.

Figure 3.1 is a schematic representation of the wind tunnel and diffuser assembly and is a copy of the drawing from Lipka (1968). Figures 3.2 and 3.3 are photographs of the entire test setup as it appeared during the testing for this work.

The remainder of this chapter shall be a detailed description of those pieces of equipment which were not used by Lipka. 3.2 Stand and Traversing Mechanism.

A device was needed that could carry a sensing element into the diffuser from the diffuser outlet and would allow three dimensional movement of this sensing element.

It was decided that a combination of circular, transverse and longitudinal motion would be best suited to the problem at hand. Consequently the device shown in Figures 3.4 and 3.5 was designed. Its operation is as follows:

- The hot wire probe was mounted in a six foot aluminum tube oriented along the longitudinal axis of the diffuser.
- 2. This aluminum tube was fastened to a movable trolley such that the tube could be moved in and out of the diffuser. The motion of the trolley was perpendicular to the longitudinal axis of the diffuser.
- 3. The trolley ran on a track which was fastened to a circular frame capable of rotating through 360°.
- 4. The circular frame was mounted on a stand. When measurements were to be made, the stand was positioned in front of the diffuser such that the aluminum tube which carried the hot wire probe was true along the longitudinal axis of the diffuser.

With this arrangement it was possible to traverse any diameter at any position within the diffuser.

The following is a description of the wheel and the trolley assembly, and the trolley itself.

### 3.2.1. Wheel and Trolley Assembly.

Figure 3.6 is a drawing of the wheel and trolley assembly. The wheel portion of the assembly consisted of two standard bicycle wheel rims spot welded together. It had a diameter of 25 3/8 ", and was mounted on four rollers at points A, B, C, and D. The trolley track was mounted on the wheel by means of two 1/8 " steel flanges. The screws fastening the flanges to the wheel were considerably smaller than the holes through the flanges and this allowed for a certain amount of adjustment of the track in both elevation and tilt. The rollers upon which the wheel was mounted were made of brass to facilitate machining, and were mounted as shown in figure 3.7. 37

Because of the difficulty of maintaining close construction tolerances on the stand, and because of a certain degree of asymmetry in the bicycle wheels, the rollers were made adjustable in elevation.

#### 3.2.2. Trolley.

Figures 3.8. and 3.9. are detailed drawings of the trolley. The trolley was fashioned from aluminum to facilitate machining and ran along the  $3"x l\frac{1}{2}"$  aluminum channel on two brass rollers. Guide slots were cut into the channel to keep the trolley stable in elevation and to provide a means of clamping the trolley in one fixed position. Subsequent testing showed that these clamps were insufficient and two more clamps were installed on the body of the trolley. The probe holder fitted through the 0.69" radius hole in the trolley, and could be fixed in position by the probe holder lock screw.

The position of the probe holder, and hence the probe, was determined by a centimeter scale fastened to the bottom of the trolley track.

The size of the trolley was dictated by the size of the trolley track and the diameter of the diffuser outlet. Tolerances on the probe holder hole and the guide slots were dictated by ease of longitudinal movement of the probe holder and ease of transverse movement of the trolley. In short, the tolerances on the entire assembly were rather liberal, and were not the same for each piece. Hence the lack of information regarding tolerances in the drawings.

3.3. Test Equipment.

The equipment used for the experimental work was as follows:

3.3.1. Hot - Wire Anemometers.

Two Disa Type 55AOl constant temperature hot - wire anemometers, serial numbers 338 and 817 were used to make the turbulence measurements. Figure 3.10 is a photograph of this type of instrument with an external D.C. Voltmeter.

The frequency response of this instrument was 0 - 60 kHz, it had a probe operating resistance range of 0 - 50 n and a maximum available probe current of 250 x 10⁻³ amperes.

The D.C. Voltmeter with the instrument (marked V in Fig. 3.10) had operating ranges of 20, 10, 5, and 2 volts full scale, with zero - shift D.C. voltages of 1, 2, 5, and 10 volts. The meter accuracy was  $\stackrel{+}{=} 1$  %. This meter indicated bridge D.C. Voltage.

The RMS indicator (marked mV in Fig 3.10) had ranges of 5, 10, 20, 50, 100, 200, 500 and 1000 mV RMS full scale. It measured the RMS value of bridge voltage (velocity) fluctuations to 2 % accuracy.

The instrument had two input filters designated as high pass and low pass and these had settings of 0, 5, 20, 50, 100, 200, 500, and 1000 Hz and 0, 1, 2, 5, 10, 20, 50, 100 kHz respectively.

The maximum R.M.S. instrument noise level under normal operating conditions with the low pass filter set to 5 kHz was  $0.7 \times 10^{-3}$  volts.

The power supply for the instrument was switchable to 90, 100, 105, 110, 115, 120, 130 volts AC and 200, 210, 215, 220, 225, 230, and 240 volts AC, at either 50 or 60 Hz. Line voltage variations of  $\pm$  10 % were permitted in addition to these values. The power consumption was 190 Watts.

The instrument was 12.1 inches high, 16.25 inches wide, 14.45 inches deep, and weighed approximately 50 lbs.

3.3.2. Hot - Wire Probes.

The type of hot - wire probe used was a Disa  $55A32 \times -$  probe mounted on a Disa  $55A30 \times -$  probe holder. Figure 3.11 is a drawing of the probe and probe holder.

The 55A32 X - probe is used in gases. The sensor material is platinum plated tungsten wire, 5 microns in diameter. The maximum sensor temperature allowed is  $300^{\circ}$  C, and the maximum ambient temperature (ie: temperature in which the sensor can be used ) allowed is  $150^{\circ}$  C. The frequency response drops 3 db at 25 kHz for a mean gas flow of 100 ft/sec, but the frequency response is better at higher mean speeds.

The probe was connected to the two anemometers by standard Disa 5 meter, 2.5 ohm coaxial cables.

3.3.3 Correlator.

The signals from the two anemometers were fed to a Disa type 55A06 Random Signal Indicator and Correlator, serial number 320, and all turbulence measurements were taken on the Correlator RMS. (Root Mean Square) meter.

The Correlator was capable of measuring the RMS. values of two signals, the RMS. value of their sum, and the RMS. value of their difference. The RMS. meter had a - 3 db frequency response of 3 Hz - 200 kHz with voltage ranges of .01, .0315, .1, .315, 1, 3.15, 10, 31.5, and 100 volts full scale.

The noise and hum level of the instrument was less than  $50 \times 10^{-6}$  volts RMS. The Voltmeter accuracy was  $\pm 2\%$  at full - scale deflection.

The instrument also had a ratiometer and could provide a time derivative of one channel of the input signals. This meter could not be used for the present work. Information on it can be acquired from Disa (1962).

41

The correlator was 12.1 inches high, 16.25 inches wide, 14.45 inches deep, and weighed approximately 35 lbs.

Figure 3.12 is a photograph of the correlator hooked up to the two anemometers. The correlator is the middle instrument.

3.3.4. Digital Voltmeter.

Because of velocity fluctuations an averaging Bridge meter was used. The bridge D.C. Voltage, which is an indication of the mean flow velocity, was measured by a Disa type 55A30 Digital Voltmeter, serial number 321, which was connected to one of the anemometers. Fig. 3.10 is a close - up photograph of the anemometer and the digital voltmeter.

The Voltmeter had three ranges, 0.000 - 1.000 volts, 00.00 - 10.00 volts, and 000.0 - 100.0 volts. It had an accuracy of .3 % of full scale and a 500 volt overload capacity. The input could be averaged over periods of 1, 3, or 10 seconds. The power supply could operate on 110 or 220 volts  $\pm$  10 % at 50 or 60 Hz.

The instrument was 4.2 inches high, 8.35 inches wide, 9.25 inches deep, and weighed 7.7 pounds.

Figure 3.13 is a schematic representation of the entire test equipment hook - up.

3.3.5. Probe Calibration Equipment.

All probes used were calibrated with a Disa type 55D41 Calibration unit, serial number 240, in conjunction with a Disa type 55D42 motor control unit, serial number 142. (See Figure 3.14)

42

The calibration unit provided a low turbulence wind tunnel which could be used for probe calibration. It was used in conjunction with a Betz micromanometer, serial number 670120, which had a differential range of 400 mm of  $H_2O$ , in .1 mm increments.

The calibration unit provided continuously variable air speeds of 3.28 feet/sec to 656 feet/sec. The background turbulence of the wind tunnel was rated at less than 0.15 % at 328 ft/sec and 5 kHz bandwidth. The unit was 40.5 inches long, 15.75 inches wide, 11.8 inches high, and weighed approximately 44 pounds.

The power supply for the calibration unit was a variable transformer which had a tapped primary that would permit operation from 100, 110, 120, 200, 220, or 240 V AC at 50 or 60 Hz. The maximum power consumption of the unit was 500 Watts. The transformer was 9.7 inches wide, 7.5 inches high, 7.1 inches in depth, and weighed approximately 26 pounds.

3.3.6. Probe Repair Equipment.

All probes were repaired with a Disa type 55All micromanipulator, used in conjunction with an Olympus VS - IV Zoom microscope, serial # 201316. Figure 3.15 is a photograph of this apparatus. The power supply for the micromanipulator was a Unitek 1048 B capacitor discharge power supply which supplied ample current for probe welding. Standard Disa 5 micron platinum coated tungsten wire was used to effect all probe repairs.

## 3.3.7. Miscellaneous Manometers.

In addition to the equipment previously mentioned two other manometers were used in the testing. These can be seen in Figure 3.3. The manometer fluid used was Meriam red.(Specific Gravity = 0.827)

The large U tube manometer was used to measure the pressure drop across the contraction piece. It was the control for the tunnel calibration. It was fabricated of  $\frac{1}{4}$  inch I.D. glass tubing and had a differential range of 30 inches in .1 inch increments.

The bank manometer consisted of a series of pizometer tubes and was connected to the diffuser at each measuring station for the purpose of measuring the differential static pressure along the diffuser. The pizometer tubes were of  $\frac{1}{4}$  " I.D. glass and had a range of 13 inches in .1 inch increments.

3.4 Conclusion.

The aforementioned apparatus was all used during the experimental portion of this work. The next chapter shall deal with the experimental procedure followed during the testing of the diffuser. IV EXPERIMENTAL PROCEDURE AND RESULTS

44

This chapter shall be divided into the following sections:

1. Preliminary Considerations and Tests

2. Testing Procedure

3. Interpretation of Readings

4. Post Experimental Tests

4.1. Preliminary Considerations and Tests

It was decided that the diffuser would be tested for only one inlet air speed and various inlet boundary layer thicknesses because previous work had indicated that diffuser performance was virtually the same for inlet air speeds of 50 ft/sec to 300 ft/sec. (Lipka, 1968)

It was also decided that measurements would be made at various points along the four traverses shown in Figure 4.1 at each of the eleven stations shown in Figure 4.2. These measurements were to be repeated for five different inlet boundary layer thicknesses.

It was necessary to make some preliminary tests to see how the test equipment would react to the existing test conditions and to ascertain just what type of flow could be expected in the diffuser. These shall now be discussed briefly. 4.1.1. Surface Roughness Measurements within the Diffuser.

Because turbulence measurements were to be made it was thought that surface roughness measurements within the diffuser would be valuable.

A Bruel and Kjoer type 6102 surface roughness meter with a 3910 motor drive and an MP 6100 pick up was used to make surface roughness measurements along the generator over a 3cm. distance about the points shown in Figure 4.3. Table 4.1 shows these results

It can be seen from Table 4.1 that the surface roughness varied randomly. It was thought that this variation was attributable to the fact that the interior surface of the diffuser had been coated with a ceramic substance and therefore had no regular lay.

4.1.2. Hot - Wire Probe Calibration.

The Disa 55AOL Anemometers were placed in operation according to the manufacturer's specifications. For the probes being used the high pass and low pass filters on both anemometers were found to require settings of 200 Hz and 5 kHz respectively.

The Disa 55A32 hot - wire probes were calibrated as per the instruction manual for the 55D41/42 probe calibration equipment.

This calibration entailed the reading of the anemometer Bridge D.C.Voltmeter for varying flow velocities. These readings formed the ordinate of a graph whose abcissa was the flow velocity. Graph 4.1, is an example of such a calibration curve. The flow velocities were calculated on the basis of the differential pressure across the calibration equipment nozzle. The formula used for this calculation was

$$V^{2} = \frac{2k}{k-1} R T_{0} \left[ 1 - \left( 1 - \frac{\Delta P}{P_{0}} \right)^{\frac{k-1}{4}} \right]$$
 4.1.1.

where

v = flow velocity (metres/sec)
k = the isentropic exponent for air, 1.4
R = 287.1 joules/kilogram ⁹ K
T_o = nozzle reservoir temperature (^oK)
p_o = nozzle reservoir pressure (kg/cm²)
Ap= differential pressure across the nozzle (kg/cm²)

All  $\Delta p$  were measured with the Betz Micromanometer.

It was found that the differences between  $p_o$  and  $T_o$  and atmospheric conditions were negligibly small. Consequently no corrections had to be applied to equation (4.1.1.).

Probes were calibrated when it was necessary, (eg. after repairing a probe) and the calibration of the probes was checked frequently. ( ie. prior to each new testing sequence )

It was found that the sensitivities of sides I and II of the X - probes (refer to Figure 3.11) were the same.

4.1.3. Tests for Vibration.

It was thought that the vibration of the probe in the air stream would affect the measurement of the turbulence parameters. That is, that the vibration would cause wrong information to be fed to the anemometer.

47

With the low pass filter set at 200 Hz in order to cut out general flow unsteadiness turbulence intensities were checked at several points with the probe vibrating and with the vibrations damped. It was found that the effect of the vibrations was cut out by this filter setting as well.

4.1.4. Measurement of the Mean Velocity.Components in the

Radial Direction.

Since the flow field in the diffuser was expanding it was known that there would be components of mean velocity in the radial direction. It was necessary to see if these radial components were significant.

These radial velocity components were measured using the method of Fiedler and Sakagami (1964). It was found that these components were negligible compared to the longitudinal mean velocity. They were less than 1 % of the longitudinal velocity.

4.2. Testing Procedure

The procedure followed in the testing of the diffuser will now be described.

The apparatus was assembled as shown in Chapter 3 and it was decided that the first two tests would be made at the extreme limits of boundary layer thickness. The pipes used for boundary layer growth were all 3.94 in. in inner diameter. These pipes were installed between the diffuser inlet and the contraction nozzle outlet. The ratio of the length of pipe installed (L), and the entrance diameter of the diffuser  $(D_e)$ , was used to code the tests. High  $L/D_e$  ratios mean a greater boundary layer growth before the diffuser, and low  $L/D_e$  ratios mean a smaller boundary layer growth before the diffuser.

The first test was carried out at an  $L/D_e$  ratio of 0.6, the second test was carried out at an  $L/D_e$  ratio of 16.6, and subsequent tests were carried out at  $L/D_e$  ratios of 10.6, 4.6, and 1.6 in that order.

At every  $L/D_e$  ratio with the exception of 0.6 and 16.6 the method of testing was the same. It was found after the first two tests ( $L/D_e = 0.6$  and 16.6) that the traversing mechanism could not follow satisfactorily along traverses 4 - 8, and 2 - 6. (See Figure 4.1.) Consequently the remaining three  $L/D_e$ ratios were tested along traverses 1 - 5 and 3 - 7 only. With this exception the testing for each  $L/D_e$  ratio proceeded in the following manner:

4.2.1. Wind Tunnel Calibration.

It was decided to test the diffuser with an average inlet velocity of 195 ft/sec and it was necessary to have some method of knowing when the average inlet velocity was at this level. With this in mind the tunnel was calibrated as follows:

48

1. A U tube manometer, (Cf Section 3.3.7.) was connected between the inlet and the outlet of the contraction nozzle.

Fð

2. The wind tunnel fan was set at an arbitrary speed.

3. The hot wire probe tip was positioned in the diffuser inlet plane.

4. The mean velocities at the inlet were measured along traverses 1 - 5 and 3 - 7.

5. The wind tunnel fan was set at a different speed and the mean velocity readings were repeated.

6. After measurements at different fan speeds the average velocity for each fan speed was calculated and these average velocities were plotted versus the differential pressure across the contraction nozzle to form a calibration curve.

The average velocities were calculated by the formula

 $V = \frac{1}{R^2} \int_{-R^2}^{R^2} u d(r^2)$ 

where

V = average inlet velocity (ft/sec),

R = inlet radius (5 cm),

- r = any radial distance from the center line (cm),
- u = velocity at any r (ft/sec).

For various points on a traverse values of u were plotted versus values of  $r^2$ . The resulting velocity profile was integrated by a planimeter and the area obtained was divided by  $2R^2$  to obtain V. The V obtained for profile 1 - 5 was averaged with the V obtained for profile 3 - 7 to obtain a final value for inlet mean velocity. During the calibration it was found that the liquid level in the U tube manometer bounced considerably. It was necessary to judge visually the point about which it was bouncing. Consequently the differential pressure readings obtained were not accurate to more than  $\pm$  .2 inches.

Since local density changes affected the magnitude of the differential pressures these differential pressures were corrthe corrected for local density changes by the relationship

where

p, - p,	. =	pressure differential across contraction
	•	nozzle (inches of Meriam red),
Ba	-	barometric pressure (inches Of Hg),
Та	. =	atmospheric temperature (°F),
.075	. 22	specific weight of air at 68 °F and 30
		inches of Hg.

4.2.2.

Finally, in order to obtain a straight line graph, V was plotted versus

50

After the tunnel was calibrated the inlet average velocity was set to 195 ft/sec and the measurements began.

#### 4.2.2. Anemometer Measurements.

At each station the traverses mentioned previously were measured. The measuring procedure was as follows:

- 1. The probe tip was positioned in the plane of the station being measured.
  - 2. The probe tip was positioned as close as possible to the diffuser wall in the vertical plane and the trolley was clamped.
  - 3. Five measurements were taken with the wires of the probe in the position they are shown in Figure 2.3. These measurements were called Av, Bv, (A+B)v, (A-B)v, and Bridge D.C. Voltage. The A signal was from side I of the probe and the B signal from side II. The Bridge D.C. Voltage measurement was read from the Digital Voltmeter and the other readings were taken from the RMS Indicator on the Random Signal Indicator and Correlator.
  - 4. The probe was rotated 90° about the longitudinal axis of the diffuser and five more measurements called Aw Bw, (A+B)w, (A-B)w, and Bridge D.C. Voltage were taken. These measurements were read from the same indicators as in 3.

5. The trolley clamps were loosened, the probe was moved a short distance away from the wall, and 3. and 4. above was repeated. This went on until the opposite wall was reached.

52

The number of points measured on a traverse varied with the diameter of the station. In general more measurements were taken in the boundary layer than in that portion of the stream where the mean velocity did not vary as the station was traversed.

# 4.2.3. Differential Pressure Measurements.

The differential pressures between the diffuser stations werenheasured with a bank manometer ("Cf. Section 3.3.7") which was hooked to the diffuser as is shown in Figures 3.2 and 3.3.

Measurements were made at various time intervals for each  $L/D_e$  ratio and the results were averaged to arrive at the final values.

During the measurements the liquid level in the manometers bounced considerably and it was necessary to visually average the readings which were taken. The accuracy of measurement was approximately  $\pm$  .2 inches.in 6 inches of Meriam red.

Graph 4.3 is a graph of the pressures along the diffuser for each  $L/D_{p}$  ratio.

4.3. Interpretation of Readings.

The various readings which were taken with the hot - wire anemometers were reduced to a usuable form in the following manner:

53

- Bridge D.C. Voltage measurements were used to find the mean velocity at each measuring point. This mean velocity could be found directly from the probe calibration curve.
- 2. The (A+B)v, (A-B)v, (A+B)w, (A-B)w readings were used to find the turbulence intensities. The v subscripted readings measured u' and v', and the w subscripted readings measured u' and w'. The actual values of the intensities were found in the manner stated in section 2.6.1.

The sensitivity of the hot wire to small voltage fluctuations was found by taking the slope (m) of the probe calibration curve at the mean velocity for each measuring point. Values of y' and v' were found by dividing the RMS' sum or the RMS difference of the signals from the hot-wire by twice this slope.

That is

$$u' = \frac{(A+B)v,w}{2m}$$

$$v' = (A - B)_{v}$$

$$w' = (A - B)_w$$

The final value for u' was found by averaging the  $\frac{(A+B)_{v}}{2m}$  and the  $\frac{(A+B)_{w}}{2m}$  values for u'.

During the measurements it was found that some of the turbulence readings fluctuated considerably. This will be discussed later.

3. The Av,w and Bv,w readings were used in conjunction with the (A+B)v,w and (A-B)v,w readings to find the correlation coefficients Ruv, and Ruw. This was done by the method of section 2.6.2

That is

$$R_{uv} = \frac{A_v^2 - B_v^2}{(A+B)_v (A-B)_v}$$

$$R_{UW} = \frac{A_{w}^{2} - B_{w}^{2}}{(A+B)_{w}(A-B)_{w}}$$

The results of these calculations are shown in Appendix A. All of the calculations were carried out by an IBM series 360 computer. The program used for the calculations is shown in Appendix B. 4.4. Post Experimental Tests.

4.4.1. Fan Stability Measurements.

Because of the bouncing of the contraction nozzle manometer and the bank manometer it was decided to check the fan speed regulation.

55

The fan control potentiometer was left at a constant setting for a period of time and the R.P.M. was checked at intervals. The R.P.M. was measured by the method of Lipka (1968). Table 4.2 is the result of this testing.

4.4.2. Diffuser Roundness.

Certain asymmetry in the flow prompted an accurate measurement of the interior roundness of the diffuser. The results of these measurements are shown in Table 4.3. The measurements were made as follows:

The diffuser was placed on a turntable with its x-axis to arriveat right angles to the turntable. The formation of the follow2x-A dial gauge mounted on a rod which was parallel to

the diffuser x-axis was set to mid-scale (at position 1.

(Cf. diagram, Table 4.3)

3. The turntable was rotated and readings were taken at each of the 8 positions shown. This was done for all 11 stations.

The preceding chapter described the methods used to arrive at the experimental results for this work. The following chapter will discuss these results.

#### V. ANALYSIS AND DISCUSSION OF RESULTS

56

The discussion of the experimental results shall proceed in the following order:

5.1 Surface Roughness Tests

5.2 Vibration Tests

5.3 Fan Speed Regulation Tests

5.4 Roundness Tests

5.5 Pressure Rise Along the Diffuser

5.6 Turbulence Tests

5.7 Discussion of Errors

5.1 Surface Roughness Tests.

It proved impossible to find an actual "value" of surface roughness throughout the diffuser (Cf. Table 4.1). However it can be stated that the maximum surface roughnesses encountered were so small (less than 150 microinches RMS ) that the diffuser could be classified as smooth. Doyle et al (1964) state that tap range of roughness such as this falls within the range of roughness that would be encountered on a surface - ground finish. Surface grinding would produce a finish which would be about the same as the finish in a seamless copper tube.

57

5.2 Vibration Tests.

It was stated previously that the vibration of the hotwire probe did not affect the turbulence readings (Cf. Section 4.1.3). The probable reason for this was that the high-pass filters on the anemometers were set at a value of 200 Hz. This meant that any fluctuation whose frequency was less than 200 Hz would have been heavily attenuated. Any vibrations in the probe which could have caused a spurious signal were far below 200 Hz. Unfortunately any true turbulence fluctuations below 200 Hz were cut out as well. This will be discussed in a later section.

#### 5.3 Fan Speed Regulation Tests.

58

Table 4.2 shows the results of the tests which were carried out to determine whether or not the excessive bouncing in the manometers (Cf Sections 4.2.1 and 4.2.3) was caused by variations in fan speed.

It can be seen that the maximum variation in fan RPM was approximately 0.9%. According to the fan laws the average flow will vary directly as the RPM.

Consequently this change of 0.9% could have caused a change of roughly 2 feet per second in the average flow velocity. Graph 4.2 will show that a change of 2 feet per second will be indicated by a  $\sqrt{\frac{P_1-P_2}{.075}}$  change of approximately 0.05 inches.

This could not possibly have been noticed on the U tube manometer. It is obvious that the manometers did not bounce because of variations in fan speed.

The reason for the relatively large bounce in the liquid in the manometers is unknown. The results of Lipka(1968) showed that the velocity profile entering the contraction nozzle was uniform and symmetrical and the presence of the straightening grids would have precluded any large scale turbulence fluctuations.

The only conclusion that can be drawn is that something in the combination of the contraction nozzle, the boundary



59

5.4 Roundness Tests.

Table 4.3 shows the results of the tests which were done to determine the symmetry of the diffuser. It can be seen that the maximum amount the diffuser is out of round is roughly 0.05 inches, and this is for one station only.

It is doubtful that the asymmetry in the flow noted by Van der Spiegel (1968) at higher L/De ratios could have been caused by the slight asymmetry in the diffuser. It is more likely that his asymmetric mean velocity profiles were caused by the flow's being yawed by the boundary layer growth pipes or that there was something in the system which promoted more rapid boundary layer growth on one side of the pipe than on the other.

5.5 Pressure Rise Along the Diffuser.

Graph 5.1 is a plot of dr/dx along the diffuser for each L/De ratio. Considering the aforementioned accuracy of measurement in the bank manometers it can be stated that it would be as feasible to draw one average curve through the experimental points as it would be to draw separate curves through the points for each L/De ratio.

If there were a significant difference for the curves for each L/De ratio it could be said that the inlet boundary layer thickness affects the pressure recovery characteristics of the diffuser.

60

If, on the other hand, one average curve is the correct curve for all L/De ratios it could be said that inlet boundary layer thickness does not affect the pressure recovery characteristics of the diffuser.

The measurements taken were just not accurate enough to conclude which one of the above statements was true.

5.6 Turbulence Tests.

The results of the turbulence tests will be discussed as follows:

5.6.1 General Trends.

5.6.2 Agreement With Published Data.

- 5.6.3 Relationship of Turbulence Intensities to Boundary Layer Growth.
- 5.6.4 Reasons for Anomalies.

### 5.6.1 General Trends.

Graphs 5.2 through 5.19 are representations of u', v' and w' versus Y/D at every second station for each L/De ratio on the 3 - 7 traverse. These graphs are representative of the 1 - 5, 2 - 6, and 4 - 8 traverses as well.

Here:

Y = distance from top diffuser wall

D = diameter at the station.

61

From these graphs it can be seen that the turbulence intensities had the following characteristies:

- 1. For any given L/De ratio the peak values of turbulence intensity tended to move out from the diffuser walls as the outlet was approached.
- The greater the L/De ratio the greater were the peak values of intensity, and the more rapid was the movement of these peaks away from the diffuser walls.

Graphs 5.20 through 5.25 are representations of  $\mathcal{C}(\overline{u^2}+\overline{v^2}+\overline{w^2})$ versus Y/D for the 3 - 7 traverse for every second station and each L/De ratio. The area under each curve is representative of the turbulent energy in the flow at that L/De ratio for the particular station.  $\mathcal{C}$  was kept constant at .00242 lbm/ft³ and this may have resulted in an error in energy magnitudes of up to 4%. The following trends could be noted:

1. Turbulent energy increased as the L/De ratio increased.

- 2. Turbulent energy increased as the outlet was approached.
- 3. The peaks of turbulent energy behaved the same way as the peaks of turbulent intensity.

Statement 2. above is consistent with theoretical considerations for energy production in an adverse pressure gradient. (Cf section 2.3)

62

Graphs 5.26 through 5.28 are plots of u', v' and w' versus Y/D for every second station for the 1 - 5 traverse of L/De = 10.6. Graphs 5.29 through 5.31 are the same graphs for the 3 - 7 traverse.

These graphs point out more clearly the motion of the peak turbulence intensities towards the centre of the diffuser as the outlet is approached.

Graphs 5.32 and 5.33 are graphs of  $e(\bar{u}^2 + \bar{v}^2 + \bar{w}^2)$  for the 1 - 5 and 3 - 7 traverses of L/De = 10.6. It can be seen that the total energy increased as the outlet was approached.

Graphs 5.34 through 5.38 are representations of Ruv and Ruw under the same conditions as the graphs 5.26 through 5.33. The following trends can be noted for these graphs:

> The values of Ruv and Ruw were lower in the mid Y/D range for stations nearer the inlet than for stations nearer the outlet.
2. There appears to be no pattern in the way the Ruv and Ruw values varied from positive to negative.

63

Ruw and Ruw ratios which are close to 1. imply that turbulence parameters are nearly the same in the x, y, and z directions. If they were exactly the same in the x, y and z directions the turbulence would be called isotropic.

It should be noted here that the L/De = 10.6 ratio was representative of all the L/De ratios. (Refer to Appendix A)

In general then the following statements can be made:

- 1. The greater the L/De ratio, the greater the turbulence intensities.
- 2. The greater the L/De ratio, the greater the turbulent energy.
- 3. The closer to the outlet, the greater the turbulence intensities.
- 4. The closer to the outlet, the greater the turbulent energy.
- 5. Peaks of turbulence intensity and energy moved towards one another as the outlet was approached.

6. The greater the L/De ratio, the more rapidly the peaks of both turbulence intensity and energy. moved towards one another.

64

- 7. At stations close to the inlet the turbulence in the central portion of the diffuser was closer to being isotropic than it was at stations nearer the outlet.
- 8. In general the turbulence within the diffuser was non - isotropic and non - homogeneous, where homogeneous turbulence is defined as turbulence which has identical parameters at any point in a flow field. Homogeneous turbulence need not be isotropic.

- 5.6.2 Agreement With Published Data.
  - (i) Turbulence Intensities.

Laufer (1954) and Gaviglio (1958) measured turbulence parameters in fully developed pipe flow. Both of these researchers found the following :

> The longitudinal component of turbulence intensity was at a maximum near the pipe wall and decreased to a minimum at the centre of the pipe.

2. The radial component of turbulence intensity was close to zero near the wall, rose to a peak as the pipe centre was approached, and fell to a low value at the pipe centre.

Graphs 5.2, 5.8, and 5.14 show that this was in fact the case for the diffuser inlet at the higher L/De ratios (10.6 and 16.6). It should be noted that the flow at the inlet was fully developed for L/De ratios of 10.6 and 16.6 only.

Therefore the turbulence intensities for fully developed flow at the diffuser inlet agreed with the turbulence intensities which had been found for fully developed pipe flow.

Spangenberg et al (1967) and Schubauer and Klebanoff (1951) have made turbulence intensity measurements in adverse pressure gradients. Spangenberg's results were of particular interest because they agreed so closely with the findings in the diffuser.

Spangenberg found the following for u' and v':

- Turbulence intensities were low near the wall, rose to a peak as the boundary layer was traversed, and fell to a minimum as the local mean velocity approached the free stream velocity.
- 2. Turbulence intensities achieved higher peak values at measuring stations nearer the outlet of the test section. That is, peak values of turbulence intensity were higher at lower values of dP/dx.

These above results were identical to the findings in the diffuser. (CF Section 5.6.1) ningva (j

(ii) Correlation Coefficients.

The correlation coefficients Ruv and Ruw which were found by Spangenberg et al (1967), Gaviglio (1958), Laufer (1951) did not agree at all with the values found for Ruv and Ruw in the diffuser.

The results obtained by Gaviglio for fully developed pipe flow were similar to the results obtained by Laufer. In both studies Ruv was approximately 0.3 near the wall, rose to about 0.5 as the boundary layer was traversed, and fell to zero at the centre of the pipe. It can be seen from appendix A and from graphs 5.34 through 5.37 that there appeared to be no pattern to the variation of Ruv or Ruw across any traverse in the diffuser.

Since the correlation coefficients varied erratically, the Reynolds stresses varied erratically. This made it impossible to derive a meaningful conclusion for the rate of production of turbulent energy. (CF. section 2.3) The only qualitative conclusion which could be drawn was that the positive values of Ruv and Ruw must have outweighed the negative values because the mean turbulent energy,

 $C(\overline{u}^{+} + \overline{v}^{-1} + \overline{w}^{-1})$ , appeared to increase along the diffuser even though the true rate of transport of turbulent energy is

Se ui Uda

where U is local free stream velocity, and A is cross-sectional area at the station. 5.6.3. Relationship of Turbulence Intensities to Boundary Layer Growth.

67

Van der Spiegel (1968) analyzed the turbulent boundary layer growth in the diffuser for all L/De ratios. The purpose of this section is to see if there was any relationship between the turbulence intensities and the boundary layer growth in the diffuser.

Prandtl first recognized that certain regions could be distinguished in a turbulent boundary layer. These are as follows:

- A predominantly viscous region adjacent to the wall which is called either the viscous sublayer or the wall region.
- 2. A region just beyond the wall region in which the effect of viscosity decreases gradually with increasing distance from the wall. That is, a region in which the flow is partially viscous and partially turbulent. This region is called either the buffer region or the transition region.
- 3. A region of free turbulence which is characterized by a logarithmic mean velocity distribution. This region is called the logarithmic region.

4. A region called the wake region in which the local mean velocity is almost equal to the free stream velocity.

It is known that the maximum turbulence intensities in the boundary layer occur in the buffer region.( Hinze,1959)

Consider graphs 5.26 through 5.31, the graphs of turbulence intensities for L/De = 10.6.

68

It can be seen that, as the outlet of the diffuser was approached, the peak values of turbulence intensity moved further away from the diffuser walls and that the layers of higher turbulence intensity became larger. This implied that the buffer region was thickening and was moving further from the wall. This agreed with Van der Spiegel's results. He found that the buffer layer thickened as the outlet of the diffuser was approached.

Graphs 5.2 through 5.19 show the same trend as the above. They also show that the buffer layer was thicker for thicker entering boundary layers. This too was in agreement with Van der Spiegel's findings.

It should be noted here that the asymmetry which Van der Spiegel found in the growth of the boundary layer was indicated by the turbulence intensity measurements. Graphs 5.26 through 5.31 indicate a thicker boundary layer at the top of the diffuser than at the bottom, and a thicker boundary layer at the left of the diffuser than at the right. This is what was found by Van der Spiegel. It can be said then, that the turbulence intensities reflected the boundary layer growth in the diffuser.

# 5.6.4 Reasons for Anomalies.

The only major difference between the results of the tests in the diffuser and findings which have been published previously is in the values found for Ruv and Ruw.

It has been stated that the Ruv and Ruw readings are erratic, and that the only conclusion that can be drawn from them is that they tend to be higher near the centre of the diffuser than near the walls for stations nearer the inlet. Unfortunately there are exceptions to even this tentative statement.

The only reason in sight for the gross differences between the correlations in the diffuser and the correlations noted by others is that the flow in the diffuser was not stable. The large amount of bouncing in the bank manometers implied a fairly large, erratic static pressure fluctuation and hence an erratic change in mean velocity. This means that the conditions governing the production of turbulence were constantly changing and this may have affected the correlation coefficients.

The fact that the turbulence intensities reflected published data need not contradict the above statement. The setting on the high pass filter would have heavily attenuated fluctuations below 200 Hz. Consequently any large scale fluctuations due to a large change in mean velocity would have been filtered out. The values obtained for Ruv and Ruw however, depend on the degree of isotropy exhibited by the turbulence fluctuations. If the conditions governing turbulence production are changing it is likely that no consistent degree of isotropy can be attained.

70

In short then, the only reason that can be offered for the behaviour of the correlation coefficients is that the flow in the diffuser was unstable.

5.7 Discussion of Errors.

5.7.1 Error in Measurement.

The approximate errors in reading the manometers have already been mentioned. (Cf. Sections 4.2.1 and 4.2.3) and the errors involved in reading the anemometers were quite small.

The digital voltmeter could be read to the nearest 0.01 volts and this reading was rounded off to the nearest 0.05volts for the computer programs. This introduced an error of less than 1 % in the mean velocity readings. The error involved in reading a steady signal from the RMS voltmeter was negligible. The extreme number of meter ranges available made it possible to read within 1 % of full scale.

71

A conservative estimate of the total error involved insofar as meter readings and calculations were concerned would be approximately 3%. This includes the specified accuracy of the meters.

It was mentioned in Section 4.3 that certain of the turbulence readings fluctuated considerably. It was necessary to take a visual average of these readings, and in this case the error involved could have been as high as 15 % of the final result.

The fluctuations in the readings were charged to the phenomenon known as intermittency. Briefly, intermittency is a state whereby the fluid is turbulent for a period of time, then non - turbulent, then turbulent again, and so on. It occurs at the interface between a non - turbulent fluid and a turbulent one. Intermittency is charactarized by the intermittency factor,  $\lambda$ , which is the ratio of the length of time the fluid is turbulent to the period of time over which the turbulence measurements are made.

Since the fluctuations in measurement occurred at the lower L/De ratios (0.6, 1.6, and 4.6) at stations nearer the inlet it was thought that the central core of almost non turbulent flow was interacting with the free turbulence, or logarithmic region of the boundary layer. No equipment was available for the quantitative measurement of intermittency. Errors in the positioning of the probe were difficult to judge, but it can be said that the probe position was accurate to within  $\frac{1}{2}$  0.3 centimeters.

5.7.2 Error Due to Filter Settings.

It was mentioned previously that the high pass filters on both anemometers had been set at 200 Hz. It was quite probable that these settings affected the absolute magnitude of the turbulence intensities by removing those turbulence fluctuations which had frequencies below 200 Hz.

Laufer (1954) found that there was 25 times as much energy in his u' component at a wave number of 0.6, as there was at a wave number of 1.0. The wave number is defined as

 $\frac{2 \pi m}{11} \quad \text{cm.}^{-1}$ 

where:

n = frequency of fluctuation (sec⁻¹)  $\overline{U}$  = local mean velocity (cm./sec)  $\overline{\Pi}$  = 3.1416

At the inlet to the diffuser the lowest wave number which could be obtained with a filter setting of 200 Hz was

$$\frac{6.2832 \text{ X } 200}{5950} = 0.211$$

As the outlet was approached this wave number would have become higher until it was approximately 1.0 near the wall on an outlet traverse. This means that portions of the u', v' and w' signals were being cut off in varying degrees throughout the diffuser. The effect that this had was to boost the magnitudes of the intensities near the centre of the diffuser relative to the intensities nearer the wall, and to boost the intensities near the inlet relative to those nearer the outlet. This means that the comparative values of the turbulence intensities are distorted. It should be noted that this will happen for any fixed setting of the high pass filters because the local mean velocities vary for a given traverse, and the mean velocity is changing throughout the length of the diffuser. However, had a lower filter setting been used, the distortion would probably not have been as great.

73

Unfortunately a filter setting low enough to minimize the comparative differences in intensity along the diffuser would have also allowed fluctuations due to vibration to affect the turbulence signal. It was the opinion of this author that the suppression if a portion of the actual signal was preferable to the introduction of a spurious signal because, when spectrum measurements are taken, the results of this work can be corrected.

The preceding chapter has discussed the results of the tests done on the diffuser, The next chapter shall state the conclusions which result from the work done and shall offer a few recommendations for future work

### VI CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK.

74

The following conclusions can be drawn from the measurements which were taken:

1. The flow in the diffuser is unstable and asymmetric.

- 2. The turbulence in the diffuser is non isotropic and non homogeneous.
- 3. The turbulence intensity profiles near the inlet of the diffuser were similar to those which have been noted in fully developed pipe flow.
- 4. The turbulence intensity profiles reflected the boundary layer growth in the diffuser.
- 5. The turbulent energy in the diffuser increased as the diffuser outlet was approached, and this is in agreement with accepted theory.
- 6. Because of the erraticity of the flow, nothing meaningful could be concluded from the measurements of Ruv and Ruw.

The following is a list of suggestions for future work:

- 1. The instability in the diffuser flow should be removed. It is possible that a change in the shape of the contraction nozzle, or the addition of more flow straighteners would achieve this.
- 2. Careful consideration could be given to expanding the scale of the experiment. That is, perhaps the diffuser could be made larger so that it would be possible to take measurements within the diffuser more easily.
- 3. The problem of asymmetry in the boundary layer growth could be looked into.
- 4. Many more traverses than two could be measured at each station in order to give a more complete picture of the turbulence at any one station.
- 5. The traversing mechanism could be improved so that vibration would no longer be a determining factor in anemometer filter settings and so that the hot wire probe could be more accurately positioned.

6. Future studies could include measurements of spectrum, intermittency, longitudinal correlations, transverse correlations, and Rvw. Also very thorough measurements of Ruv and Ruw could be taken once the diffuser flow is no longer erratic.

76

In conclusion then, it can be said that this study of the turbulence parameters in the diffuser has shown that the turbulence intensities are in agreement with the findings for boundary layer growth, and that the Ruv and Ruw parameters require considerably more study. It is hoped that future work on the referencediffuser will benefit from what has been done here.

#### REFERENCES

77

Cockrell, D.J., and E.Markland. "A Review of Incompressible Diffuser Flow," <u>Aircraft Engineering</u>, 35, 286-292.

Collis, D.C. "The Dust Problem in Hot - Wire Anemometry," <u>The Aeronautical Quarterly</u>, Vol.IV, August 1952, 93.

Doyle et al. <u>Manufacturing Processes and Materials for Engineers</u>., Englewood Cliffs, N.J.: Prentice-Hall Incorporated, 1962.

Disa. <u>Instruction Manual for the Disa Random Signal Indicator</u> <u>and Correlator Type 55A06</u>, Denmark: Disa Elektronik, 1962.

Ferrari, C. Wall Turbulence, NASA Republication 2-8-59W, 1959.

Fiedler, H., and J. Sakagami, "Methods of Directional Metering with Hot - Wire Instruments with X- and V- Probes," <u>Deutsche Luft- und Raumfahrt</u>, Rep. 64-04, July 1964, 98-112.

Gaviglio, J. <u>Sur Quelques Problèmes de Mésure de Turbulence</u> <u>Effectuées a l'Aide de l'Anemomètre a Fils Chauds Parcouru</u> <u>par un Courant d'Intensité Constante</u>, Ph.D. Thesis, Faculty of Sciences, University of Aix Marseille, 1958.

Hinze, J.O. <u>Turbulence. An Introduction to its Mechanism and</u> <u>Theory</u>. New-York: Mc Graw-Hill Book Company Incorporated, 1959. King, L.V. "On the Convection of Heat from Small Cylinders in a Stream of Fluid," <u>Phil.Trans.Roy.Soc.London</u>, 214 A, 373, 1914.

Kramers H., Physica, 12, 61, 1946.

- Laufer, J. <u>The Structure of Turbulence in Fully Developed</u> <u>Pipe Flow</u>, NACA Report 1174, 1954.
- Lipka, R. <u>An Experimental Investigation of A Straight Conical</u> <u>Diffuser</u>, M.Sc. Thesis, University of Manitoba, 1968.
- Mc Donald, A.T., and R.W. Fox. <u>An Experimental Investigation</u> of Incompressible Flow in Conical Diffusers, ASME Preprint 65-FE-25, 1965.

Schlichting, H. <u>Boundary Layer Theory</u>, 6th ed, trans. Dr. J. Kestin. Toronto: Mc Graw-Hill Series in Mechanical Engineering, Mc Graw-Hill Book Company, 1968.

Schubauer, G.B. and P.S. Klebanoff. <u>Investigation of the</u> <u>Separation of the Turbulent Boundary Layer</u>, NACA Report 1030, 1951.

Spangenberg, W.G., W.R. Rowland, and N.E. Mease. "Measurements in a Turbulent Boundary Layer Maintained in a nearly Separating Condition," <u>Fluid Mechanics of Internal</u> <u>Flow</u>, ed. Gino Sovran. Netherlands: Elsevier Publishing Company, 1967.

Sprenger, H. <u>Experimental Investigation of Straight and Conical</u> <u>Diffusers</u>, Mitt.inst.Aerodyn., Zurich (27). 1959. Van der Spiegel, P. <u>An Experimental Investigation of the</u> <u>Turbulent Boundary layer in a Straight Conical Diffuse</u>r, M.Sc. Thesis, University of Manitoba, 1968





#### GENERAL BIBLIOGRAPHY

Bradshaw, P. <u>An Introduction to Turbulence Measurement with</u> <u>Hot - Wire Anemometers</u> - Part I. National Physical Laboratory, Aerodynamics Division, Rep. 427, April, 1961.

Church, Austin H. <u>Mechanical Vibrations</u>, 2nd ed., New York: John Wiley and Sons, Incorporated, 1964.

- Comte Bellot, Geneviève. <u>Écoulement Turbulent entre deux</u> <u>Parois Parallèles</u>, ed. Service de Documentation Scientifique et Technique de l'Armement. Paris, 1965.
- Cooper, R.D. and Marshall P. Tulin. <u>Turbulence Measurements with</u> <u>the Hot - Wire Anemometer</u>. AGARDograph 12, 1955.

Corrsin, S. <u>Extended Applications of the Hot - Wire Anemometer</u>, NACA TN 1864, 1949

Taylor, G.I. "Statistical Theory of Turbulence", <u>Proc.Roy.Soc.</u> London 157A, 1936, 537. TABLE 4.1.

81

DIFFUSER SURFACE ROUGHNESS MEASUREMENTS.

Position	RMS <i>Winches</i>	Position	RMS Linches	
AA.		3	·	
<b>1</b> 611	50	$1 - 4^{n}$	44 - 92	
<b>T = 0</b>	24	1 - 6"	44 - 60	
1 - 8"	20 - 32			
2 - 6"	16 - 95	1 - 8"	44 - 80	
0 du		2 - 4"	32 - 60	
2 - 8"	28 -133	2 - 6"	32 - 60	•
3 - 6"	20 - 95	o 41	j~ = 00	
3 - 8"	12 - 32	$2 - 8^{n}$	32 - 65	
J. 611	16 36	3 <b>-</b> 4"	40 - 72	
4 = 0	20 - 11	3 - 6"	44 -120	
4 - 0	20 - 44	3 - 8"	32 - 92	
		4 - 4"	40 -140	
		4 - 6"	32 - 60	
		4 - 8 ¹¹	40 - 64	

Note:  $\mu$  inches = inches X 10⁻⁶

TABLE 4.2.

	FAN REG	FAN REGULATOR MEASUREMENTS. Speed control setting = 65						
	Speed c							
Time	RPM	Time	RPM	Time	RPM			
2:10	1040	3:13	1039	4:45	1049			
2:15	1036	3:15	1035	4:46	1046			
2:16	1039	3:45	1035	4:47	1048			
2:17	1036	4:47	1039	:				
2:45	1039	4:15	1040					
2:47	1043	4:17	1045					

Speed control setting = 64.32

	· · · · ·				
1:40	1000	2:46	1012	3:47	1019
1:45	1003	2:47	1012	4:16	1016
1:47	1006	3:15	1007	4:17	1017
2:15	1009	3:17	1003		
2:17	1012	3:45	1018		

Note: "Time" in above denotes time of day in hrs. and minutes. All times above are P.M.

TABLE 4.3.
------------

ROUNDNESS MEASUREMENTS

							•		
Stations	1	2	3	4	5	6	7	8	
0	0	- 3	+ 2	+ 7	+ 6	+ 4	- 4	+ 7	• •
1	0	+ 5	-14	+ 4	0	+12	- 5	- 4	
2	0	- 4	-11	0	- 1	+10	-12	+ 5	
3	0	+ 1	0	+ 5	- 4	+19	0	+10	j.ww.rw
4	0	+ \$	+14	+ 6	+ 5	+12	+ 4	+11	
5	0	+10	+19	+13	+ 8	+20	+ 3	+12	
6	0	+12	+27	+13	+ 8	+14	+ 3	+14	
7	0	+20	+31	+ 2	+ 9	+13	+10	+23	
8	Ó	+33	+37	+32	+15	+16	+16	+25	
9	0	+37	+26	+36	+13	+14	+12	+20	
10	0	+46	+45	<del>1</del> 53	+ 7	+16	+19	+22	



All measurements in thousandths of an inch.



CONSTANT-CURRENT ANEMOMETER

84

FIGURE 2.1A



OSCILLOSCOPE

CONSTANT-TEMPERATURE ANEMOMETER

### FIGURE 2.18









FIGURE 3.2 TEST RIG



FIGURE 3.3 TEST RIG



TRAVERSING MECHANISM













## DISA 55A01 CONSTANT TEMPERATURE ANEMOMETER WITH DIGITAL VOLTMETER



FIGURE 3.11 X-PROBE AND HOLDER



TEST EQUIPMENT Left- 55AOl anemometer, Centre-55AO6 correlator, Right- 55AOl anemometer, Top- 55D3O digital voltmeter.




PROBE CALIBRATION EQUIPMENT Left- variable transformer for speed control, Centre- calibration tunnel, Right- Betz micromanometer.

FIGURE 3.14



FIGURE 3.15

Right- microscope

















THE TOP AND BOTTOM POSITIONS ARE AS SHOWN ABOVE

3.0 2.0 ٠ U⁴ ft/sec 4 • 1.0 • М



1.0

ο.

**.**2





































-----







•6

Y/D

•4

r

Ш

0.

.2

GRAPH 5.16 w' versus Y/D

.8

1.0

3.0 ____ • 2.0 W' ft/sec Ø .0 山 3



Q

0.

ì



. .



*v*.



3.0  $e( \overline{u}^2 + \overline{v}^2 + \overline{w}^2) \times 10^3 \text{ lbm/}_{N}^{\text{fb-sec}^2}$ 4 Я 0. •4 Y/D •6 1.0 .8 .2 STATION 2

> GRAPH 5.21 Turbulent Energy versus Y/D













GRAPH 5.27 v' versus Y/D




3.0 2.0 v' ft/sec A 1.0 I.O BOTTOM Y/D .6 • 8 •4 .0. TOP .2 L/DE 10.6 VERTICAL



136





Turbulent Energy versus Y/D



GRAPH 5.33 Turbulent Energy versus Y/D



.





Ruv versus Y/D

POS. 1.0 ----.8 •6 1 .  $\overline{\mathbf{X}}$ • 4 5 .2 ଲ ত X UW O ð ņ 77 A Ø F .2 -. .4¢ •6 Θ • 8 1.0 NEG. 0. LEFT .2 •4 Y/D **.** 8[.] I O RIGHT •6 • L/DE 10.6. HORIZONTAL

> GRAPH 5.36 Ruw versus Y/D



## APPENDIX A

## TOTAL RESULTS OF EXPERIMENTAL WORK

Explanation of the Coding System

Each table in the following pages has the word "Code", followed by a five digit number, in the upper left hand corner. This code denotes the L/De ratio, the station which was measured, and the traverse which was measured.

> This is done as follows: 1. The first two digits denote the L/De ratio. 16 means L/De = 16.6

10 means L/De = 10.6 46 means L/De = 4.6 15 means L/De = 1.6

06 means L/De = 0.6

2. The third digit denotes the traverse which was measured. For L/De = 16.6 and 0.6 there were four traverses measured. Facing the outlet of the diffuser and looking in towards the fan these were as follows:

Digit	Traverse	
1	1 - 5	
2	2 - 6	· · · · · · · · · · · · · · · · · · ·
3	3 - 7	
4	4 - 8	(Cf. Figure 4.1)

ooking

For L/De ratios of 10.6, 4.6, and 1.6 the traverses were

D:	igit			Traverse					
	1	-			1 - 5				
	2				3 - 7				
ast	two	digits	denote	the	station	<u>2</u> +	7.1		

3. The last two digits denote the station at which the measurements were taken.

Digits	Station
00	0
Ol	1.
	٩
· ø	ø
09	9
10	10

As examples,

Code 15203 means that the measurements were carried out at L/De = 1.6 along a vertical traverse at station 3.

or

Code 6410 means that the measurements were carried out at L/De = 0.6 along traverse 4 - 8 at station 10.

The tables themselves are self explanatory:

y = distance from the diffuser wall in cm and was always taken from top to bottom or from left to right. That is small y is nearer to the top or the left wall of the diffuser. For diagonal traversesy was always measured from the left of centre. RÚV, RUW = Ruv, Rúw

VEL = local mean velocity in ft/sec

				147	********	e a els a pla e s a sig els sis .	
CODE	6100	DIAMETE	ER = 10.				
	Y	U	V		RUV	RUW	VEL
	0.10	0.642	0.307	0.471	-0.181	-0.477	183.680
	0.40	0.043	0.019	0.073	-0.154	-0.079	200.080
	0.80	0.014	0.010	0.012	-0.217	-0.087	200.080
÷ •	4.10	0.011	0.008	0.008	-0.127	-0.0	200.080
	7.10	0.011	0.005	0.005	-0.194	-0.0	200.080
	9.20	0.015	0.011	0.009	-0.0	-0.123	200.080
	-9 <b>.</b> 70	0.064	0.078	0,037	- <del>59,823</del> -		200.080

 6101	DIAMETER	8 = 11.	·				
Υ	U	V	W	RUV	RUW	VEL	
0.05	0.925	0.631	0.505	0.126	0.525	123.656	
0.40	0.062	0.025	0.090	-0.236	0.050	182.860	
0.70	0.021	0.012	0.026	-1.361	-0.034	182.860	
3.40	0.010	0.009	0.009	-0.750	-0.121	182.860	
5.90	0.009	0.006	0.006	-0.167	-0.0	182.860	
8.40	0.009	0.006	0.006	-0.136	-0.349	182.860	
10.30	0.08.8	0.149	0.025	0.258	-0.317	182.860	
10.60	0.875	0.643	0.532	0.131	-0.659	132.020	

and and an of the second of	**********************	999-9999-9999-9999-9999-99 1999-999-999-	na sa sangan ka ka kangan kang	149	000000000000000000000000000000000000000			Slat alaist
CODE	6102	DIAMETI	ER = 12	٥				
	Ϋ́.	U	V		RUV	RUW	VEL	
	0.05	0.934	0.683	0.547	0.163	0.422	74.456	
	0.50	0.494	0.555	0.203	0.447	0.241	150.880	
	1.00	0.057	0.048	0.037	0.267	0.126	155.800	
	3.60	800.0	0.006	0.006	-0.125	-0.250	155.800	
	6.10	0.007	0.006	0.005	-0.123	-0.0	155.800	
	8.60	0.007	0.004	0.004	-0.321	-0.183	155.800	
	10.80	0.019	0.008	0.023	-0.077	0.067	155.800	
	11.30	0.302	0.317	0.212	0.321	-0.074	155.800	
	11.70	0.977	0.698	0.593	0.185	-0.491	90.200	

5103 DIAMETER = 13. 150

Y	U	V	Ŵ	RUV	RUW	VEL	
0.10	0.809	0.592	0.444	-0.094	0.302	48.380	
0.70	1.139	0.846	0.604	0.207	0.402	86.920	
1.50	0.316	0.253	0.253	0.569	-0.198	136.120	
2.70	0.013	0.007	0.014	-0.077	0.100	136.120	
5.20	0.007	0.006	0.007	-0.0	-0.107	136.120	
7.70	0.007	0.004	0.004	-0.0	-0.0	136.120	
10.20	0.007	0.004	0.005	-0.0	-0.0	136.120	
12.00	0.098	0.098	0.075	0.254	0.083	136.120	
12.50	0.880	0.760	d.520	0.099	-0.559	111.520	
12.90	0.842	0.662	0.532	-0.028	-0.441	68.880	

CODEE	ó104	DIAMET	FR = 14.	151				
	Y	U	V	W	RUV	RUW	VEL	
	0.20	0.627	0.473	0.386	0.182	0.234	40.672	
	0.70	0.941	0.790	0.638	-0.101	0.345	72.160	
	1.40	0.574	0.328	0.533	-0.247	-0.169	113.980	
	2.20	0.055	0.273	0.063	-0.0	0.093	119.720	
	3.70	0.012	0.008	0.010	0.156	0.350	123.656	
	6.20	0.006	0.005	0.005	-0.0	0.127	123.656	
	8.70	0.007	0.005	0.004	-0.0	-0.153	123.656	
	11.20	0.015	0.008	0.015	0.061	0.041	123.656	
	12.20	0.057	0.030	0.059	-0.028	0.118	123.656	•
	12.90	0.512	0.574	0.307	-0.054	-0.198	113.980	
	13.50	1.008	0.820	0.632	0.165	0.488	83.640	
	13.90	0.706	0.547	0.456	0.136	0.368	53.300	

6105

DIAMETER = 15. 152

Ŷ	U	V	W	RUV	RUW	VEL
0.10	0.474	0.394	0.257	-0.165	0.111	30.340
0.70	0.746	0.569	0.512	0.152	0.244	53.300
1.90	0.524	0.515	0.439	0.402	-0.062	108.240
2.90	0.102	0.057	0.066	-0.0	-0.217	113.980
3.90	0.029	0.025	0.029	-0.214	-0.107	113.980
5.90	0.009	0.009	0.008	0.059	0.217	111.520.
8.40	0.008	0.006	0.006	0.194	-0.096	111.520
10.90	0.013	0.011	0.014	0.050	-0.086	113.980
12.40	0.048	0.036	0.044	0.353	-0.0	111.520
13.40	0.240	0.160	0.280	-0.162	-0.0	111.520
14.40	0.774	0.638	0.607	0.033	0.254	80.360
14.90	0.550	0.453	0.376	0.221	0.287	42.640

CODE	ò106	DIAMETI	ER = 16.	153		·		
	а с с <b>Ү</b>	U	۷	W	RUV	RUW	VEL	
	0.10	0.438	0.383	0.268	-0.178	-0.075	27.880	
	0.80	0.758	0.658	0.572	-0.152	-0.141	55.760	
	2.00	0.237	0.292	0.182	0.804	-0.0	104.960	
	3.00	0.164	0.146	0.146	-0.350	-0.0	104.960	
	5.50	0.038	0.031	0.019	-0.0	-0.220	108.240	
	8.00	0.016	0.015	0.010	0.270	-0.0	108.240	
	10.50	0.014	0.012	0.012	0.138	0.150	108.240	
	12.50	0.063	0.032	0.057	0.165	-0.0	108.240	
	13.50	0.267	0.191	0.229	-0.233	1.000	108.240	1970-1971 1970-1971 1970-1971
	14.50	0.683	0.615	0.581	0.525	-0.238	83.640	
	15.20	0.607	0.525	0.481	0.113	-0.264	50.840	
	15.80	0.516	0.424	0.376	0.180	0.223	36.736	

CODE 6107 DIAMETER = 17. **154** 

	Y	leter (kell <b>U</b> op fol		<u>N</u>	RUV	RUW	VEL	
16.	.90	0.362	0.288	0.214	-0.0	-0.161	31.160	
16.	10	0.530	0.460	0.410	-0.039	-0.126	50.840	
14.	.80	0.522	0.477	0.313	-0.072	-0.254	78.720	<u> Alexandra a</u>
13.	.00	0.050	0.037	0.037	0.710	-0.149	87.740	
10.	.50	0.018	0.017	0.015	0.640	0.152	87.740	
8.	.00	0.025	0.025	0.022	0.203	-0.0	82.000	
5.	.50	0.155	0.155	0.186	0.092	-0.0	82.000	
3.	.50	0.345	0.288	0.374	0.277	0.280	75,440	
2.	.00	0.482	0.482	0.463	0.146	0.127	48.380	
<b>1.</b>	.00	0.440	0.384	0.362	0.158	0.080	31.160	
0.	10	1.111	0.842	0.691	0.068	-0.119	114.800	

CODE 6108 DIAMETER = 18. 155

	Ŷ	U	V	W	RUV	RUW	VEL	
	0.10	0.273	0.182	0.131	0.101	-0.0	18 040	an an an ann an Anna an
	0.80	0.387	0.253	0.233	-0.043	0.014	25.256	
	2.30	0.540	0.410	0.410	-0.067	-0.018	45.920	
	4.30	0.588	0.619	0.495	-0.321	-0.253	82.000	
	6.80	0.418	0.469	0.201	0.062	0.671	87.740	
	9.30	0.075	0.105	0.052	-0.300	-0.100	90.200	
	11.80	0.055	0.057	0.033	-0.0	0.338	87.740	
	14.30	0.217	0.185	0.232	-0.216	-0.576	82.000	
	16.30	0.494	0.484	0.442	0.276	0.272	53.300	
·	17.30	0.381	0.369	0.344	0.100	0.170	37.720	
	1/•90	0.306	0.285	0.250	0.139	0.107	27.880	
	fa uli operator la presi anterio anterio presi anterio e con e con e constante de la constante de la constante	1995 - Ny Sangara I ang mang mang mang mang mang mang mang						
						27 - 1797 (M. 1977) - 1977 - 1777 - 1797 (M. 1977) - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 19	1,277,7,797,000,000,000,000,000,000,000,000	
inin 1	h 1999 terreter er en en sen er fan de skriede en de het het het het het fan de ferste ferste ferste ferste fer	e and second a deal second a dealed dealer da d	lado en al en arren de la la compañía de la compañí Teorem de la compañía					
	and a second	n an an an Anna an Anna Anna Anna Anna		e innen som den som de sender at som en s	16.7.1.2.66.1.67 <u>77777777</u> 77	onen en gebreken en gebreken in der der sonen en gebreken en gebreken en gebreken en gebreken en gebreken en g Gebreken en gebreken en geb		
					. or see only of the descent we			

1 ²	CODE	6109	DIAMET	ER =	19.	156	Comparison of the second process second according to the second s Second second s Second second s Second second s Second second seco		ingeneration and a state of the st	99 PM 2015 92-4
		Y	U		V	M	RUV	RUW	VEL	
- - -	Angle Winnerspiceren en gege	0.10	0.243	0.15	40	.108	-0.038	-0.085	13.940	
		0.60	0.322	0.21	4 0	.183	-0.036	-0.0	22.960	
- 44 	an in harring and her	1.40	0.417	0.28	1 0	•281	-0.033	0.032	31.160	na 1995 - Santa Santa Santa Santa Santa Manazarta
		2.40	0.473	0.33	50	•351	0.031	0.031	39.688	
		3.90	0.618	0.47	20.	•461	-0.0	-0.0	58.220	
	Second Constants of Constants of Constants	5.40	0.574	0.454	4 O,	.378	-0.077	0.084	65.600	
		7.90	0.410	0.394	40,	.295	-0.565	0.172	85.280	
	1	0.40	0.176	0.134	÷ 0.	.100	-0.193	-0.0	87.740	
	1 	2.90	0.082	0.066	50.	049	-0.350	-0.800	85.280	
	1	5.40	0.288	0.316	÷ 0.	259	0.298	-0.136	75.440	
	1	6.90	0.459	1.771	. 0.	437	0.068	0.235	55.760	
2000 1	1	7.90	0.419	0.419	) 0.	.374	0.242	0.197	44.280	
-	1	8.60	0.363	0.336	› O.	312	0.131	0.156	34.440	
	1	8.90	0.281	0.271	0.	236	0.076	0.113	27.880	

CODE	6110	DIAMETER =	: 20.	157
------	------	------------	-------	-----

\$

	n haar oo haaraa ahaa ahaa haar waxaa ah haar oo haar ahaa ahaa ah	No. And the company is a second strategy of the second	en hann an			
	51111					
<u>18 de la VEL a constan</u>	RUW	RUV	<u> </u>	en na sterning <b>V</b> oret	and and a fact <b>O</b> rac	itt liktor del contro del la
17.220	0.129	-0.036	0.152	0.191	0.250	0.10
23.944	0.039	-0.0	0.221	0.234	0.303	0.60
32.800	-0.0	-0.033	0.304	0.304	0.387	1.60
44.280	0.032	-0.063	0.364	0.383	0.483	2.60
55.760	-0.125	-0.088	0.448	0.481	0.574	4.20
63.140	-0.032	-0.210	0.494	0.506	0.549	6.10
85.280	-0.168	-0.212	0.492	0.492	0.615	8.10
93.480	-0.247	-0.0	0.285	0.392	0.410	10.10
96.760	-0.085	-0.450	0.134	0.186	0.157	12.30
96.760	0.271	-0.218	0.112	0.261	0.175	14.30
85.280	0.396	-0.051	0.525	0.459	0.426	16.30
63.140	0.237	0.111	0.458	0.519	0.519	17.80
45.920	0.259	0.063	0.354	0.399	0.424	18.80
36.080	0.144	0.036	0.257	0.314	0.342	19.50
						hander verden er bester en her

CODE	6200	DIAMET	ER = 10.	158			•
	Y	U	V.	W	RUV	RUW	VEL
	0.10	0.024	0.018	0.025	-0.0	-0.0	198.600
	0.40	0.020	0.018	0.016	-0.0	-0.072	200.080
	0,90	0.014	0.012	0.010	-0.0	-0.093	200.080
	3.90	0.011	0.006	0.006	-0.0	-0.170	200.080
	7.40	0.011	0.006	0.006	-0.0	-0.0	200.080
	9.20	0.045	0.016	0.090	-0.067	0.176	200.080
	9.70	0.620	0.642	0.228	-0.439	-0.152	188.600

6201	DIAMETE	R = 11.	159				
Y	U	V	W	RUV	RUW	VEL	
0.20	0.699	0.386	0.506	-0.493	-0.301	150.880	
0.60	0.176	0.041	0.228	-0.196	-0.0	177.120	
1.00	0.015	0.014	0.014	-0.0	0.144	182.860	
3.70	0.010	0.007	0.009	-0.0	-0.0	182.860	
6.20	0.009	0.005	0.005	-0.357	-0.357	182.860	
8.70	0.009	0.005	0.006	-0.357	-0.257	182.860	
10.50	0.053	0.047	0.050	-0.176	-0.180	182.860	
10.80	0.886	0.635	0.450	-0.417	0.286	155 <b>.</b> 800	

6202 DIAMETER = 12. 160

Y	U	V	W	RUV	RUW	VEL	
0.20	0.770	0.631	0.378	0.394	0.339	1.410	
0.70	0.082	0.095	0.037	0.548	-0.190	155.800	
1.30	0.025	0.019	0.022	0.247	0.219	155.800	
3.80	0.003	0.009	0.007	-0.0	0.246	155.800	
6.30	0.008	0.005	0.005	-0.240	-0.150	155.800	
8.80	0.007	0.005	0.004	-0.135	-0.0	155.800	
10.70	0.029	0.028	0.020	-0.027	-0.068	155.800	
11.10	0.082	0.090	0.058	-0.083	-0.180	155.800	
11.80	0.881	0.592	0.577	-0.349	0.194	80.360	

CODE	6203	DIAMETER	< = 13.	161	n shekar tang kanan kanan kana (kana buku)	na ana sa sa sa sa sa sa	ing ng n	europeusen opean opean hij open.
	Ŷ	U	V	W	RUV	RUW	VEL	
	0.30	0.973	0.604	0.719	0.342	-0.024	68.880	
	1.00	0.610	0.378	0.589	0.120	0.052	123,656	
	7.70	0.049	0.047	0.023	-0.475	-0.383	136.120	
	2.30	0.011	0.011	0.007	14.266	-0.169	136.120	
	5.30	0.007	0.004	0.004	0.151	-0.0	136.120	
	7.80	0.006	0.004	0.005	-0.0	-0.131	136.120	
	10.30	0.020	0.013	0.018	0.129	0.185	136.120	
	11.30	880.0	0.066	0.094	0.266	0.244	136.120	
	11.90	0.892	0.636	0.615	0.301	-0.342	113.980	
]	12.60	0.758	0.559	0.460	0.251	-0.264	55.760	

anan an			NANANANANA.	162		*****************	******	199799368
					R = 14.	DIAMET	6204	ID E
	VEL	RUW	RUV	W	V	U	Y	
	48 <b>.</b> 380	0.137	-0.238	0.592	0.604	0.854	0.05	
	80.360	0.200	0.309	0.699	0.714	0.957	0.70	
	103.320	-0.160	0.628	0.656	0.620	0.738	1.30	
	119.720	-0.0	-0.314	0.294	0.210	0.252	2.00	
	119.720	-0.0	0.321	0.025	0.027	0.038	2.90	
	123.656	0.113	0.188	0.005	0.006	0.007	5.40	
	123.656	-0.0	0.893	0.004	0.004	0.006	7.90	
and an	123.656	-0.0	-0.0	0.008	0.008	0.010	10.40	
	123.656	0.183	-0.145	880.0	0.050	0.078	11.90	
	108.240	-0.151	-0.175	0.648	0.427	0.715	12.70	
	45.920	-0.169	-0.258	0.437	0.503	0.645	13.70	

**C** ()

CODE 6205 DIAMETER = 15.

Ŷ	U	۷	М	RUV	RUW	VEL
0.10	0.646	0.454	0.436	-0.137	0.025	34.440
0.80	0.807	0.641	0.692	0.220	0.103	58.220
2.00	0.793	0.692	0.510	0.150	0.092	103.320
2.80	0.246	0.246	0.287	-0.500	-0.0	113.980
3.50	830.0	0.049	0.123	-0.861	-0.042	113.980
5.00	0.019	0.016	0.014	-0.074	-0.137	113.980
7.50	0.009	0.007	0.006	-0.0	-0.161	119.720
10.00	0.012	0.008	0.011	-0.066	0.053	119.720
12.00	0.066	0.057	0.074	-0.281	0.138	113.980
13.00	0.680	0.600	0.520	0.368	0.048	111.520
14.00	0.716	0.600	0.539	0.257	0.151	62.976
14.90	0.553	0.391	0.353	-0.221	12.990	38.540





CODE	6206	DIAMET	ER = 16.	16	4			
	Y	U	V	W	RUV	RUW	VEL	
	0.20	0.378	0.265	0.265	0.089	0.031	20.500	
	1.10	0.724	0.444	0.492	0.096	0.046	42.640	
	8.80	0.752	0.581	0.717	-0.415	0.294	83.640	
	3.80	0.547	0.474	0.474	-0.164	-0.292	104.960	
	5.30	0.088	0.072	0.095	-0.652	-0.459	108.240	
	7.30	0.019	0.023	0.011	0.047	0.544	108.240	1
	9.80	0.011	0.009	800.0	0.171	-0.0	108.240	
	12.30	0.031	0.023	0.031	-0.0	0.049	108.240	
	13.30	0.082	0.057	0.099	0.120	0.132	108.240	
	14.30	0.794	0.639	0.570	0.310	0.274	86.920	
	15.20	0.692	0.564	0.538	0.300	0.125	58.220	
	15.50	0.516	0.357	0.338	0.168	-0,102	36.736	

CODE	6207	DIAMET	ER = 17.	Transite Source and a second	165	addining out includes a star six	n an	
	Ŷ	U	v	W	RUV	RUW	VEL	
	_			neen metri in torrante transmissione	e dia dia 4 metatra 1 merupakan ara ara ara ara	nar indenkin hed ganna siyasying	Sanda an an an an Stain Stain Stain Stain Stain Stain Stain Stain Stain	alaan ahirkata in in aha addaday ( )
	0.10	0.290	0.170	0.213	0.070	0.065	15.580	
	1.00	0.450	0.316	0.302	-0.0	0.059	29.520	
	2.50	0.610	0.470	0.500	0.221	0.025	50.840	renerie en la substance de la secola de la se Internet de la secola
	4.50	0.503	0.476	0.555	0.228	0.188	68.880	
	7.00	0.042	0.060	0.060	-0.171	-0.0	78.720	
	9.50	0.013	0.014	0.010	0.492	0.683	82.000	
	12.00	0.019	0.016	0.017	-0.0	0.069	82.000	
	14.00	0.201	0.172	0.170	-0.0	-0.129	82.000	
nen en antiko on hin opinan an opinika i	15.50	0.519	0.405	0.470	-0.210	0.033	55.760	
	16.30	0.428	0.330	0.365	-0.101	-0.0	42.640	
	16.80	0.356	0.210	0.254	-0.097	-0.071	30.340	
								-
		en al han an a						
						145 015 155 155 155 155 155 155 155 155 15	20 2 12 12 12 12 12 12 12 12 12 12 12 12 1	

6208	DIAMET	ER = 18	• •		antata ing ata mang kebuangan ang mengana	11/2010/04/04/04	
Y	U	v	W	RUV	RUW	VEL	
0.10	0.225	0.120	0.162	0 04 9	-0.110	1	
0.70	0.318	0.208	0 214	-0 020	-0.110	14.750	
2.00	0.439	() 291	0 224	-0.020	0.068	19.680	
4.00	0.696	0.472	0 524	-0.031	0.029	29.520	
6.50	0 4 95	0.475	0.009	-0.076	0.053	58.220	
9 00	0.405	0.435	0.335	-0.097	0.230	87.740	
31 50	0.059	0.080	0.042	-0.0	-0.120	90.200	
11.50	0.023	0.022	0.013	-0.095	-0.531	87.740	
14.00	0.077	0.069	0.056	-0.0	-0.213	85.280	
16.00	0.562	0.516	0.529	0.225	0.013	68.880	
17.10	0.443	0.429	0.373	0.238	-0.013	45.920	
17.90	0.332	0.266	0.266	0.093	0.122	31.160	
							•

			167		ER = 19.	UIAMEI	0209	
	VEL	RUW	RUV	W	v	U	Y	
	13.120	0.051	0.050	0.119	0.119	0.196	0.10	et also another a transf
	16.400	0.040	0.081	0.175	0.164	0.262	0.80	
	22.960	0.034	0.022	0.221	0.214	0.341	1.80	, And a second constants
	36.080	0.058	-0.0	0.354	0.330	0.474	3.30	
	55.760	0.090	-0.058	0.481	0.470	0.601	5.30	
	85.280	-0.396	-0.375	0.295	0.394	0.525	7.80	de acordo de constano,
	85.280	-0.672	-0.300	0.066	0.082	0.090	10.30	
	85.280	-0.0	-0.320	0.026	0.033	0.034	12.80	
	82.000	-0.350	-0.136	0.124	0.170	0.155	14.80	Artani dibirin
	72.160	-0.0	0.490	0.410	0.465	0.437	16.30	
	42.640	-0.0	0.228	0.348	0.392	0.410	17.80	
	37.720	0.035	0.114	0.312	0.328	0.348	18.40	an Malainn a dhan
	30,340	0.144	0.140	0.247	0.247	0.301	18.80	
ne soona a soona aka na aka s								
							n Managa Japan Kana Jawa Managa Ang Jawa Jawa Jawa Jawa Ja	an a
						19. sent 19 New York, and all the second seco	lanang pelalakan kerinta di 10.5 Merupakkan sebuah seb	ing just strike some er som
								n an an an Arran an Arra an Arra. An an Arra an A
							1. 1943 - Marine Marine Marine I.	i - Constantino - Constanti
						<u> 1969 (198</u>		an baada ah ay ah ah ah ah ah Ah ah ah ah ah ah ah ah ah ah ah Ah ah

1				. 168	ER = 20	DIAMET	6210	CODE	
	VEL	RUW	RUV	W	V	U	Ŷ		
	39.688	0.073	0.200	0.276	0.313	0.335	19.30		
	50.840	0.132	0.211	0.370	0.420	0.415	19.00		
	65.600	0.185	0.260	0.487	0.492	0.479	18.00	landerson an de la secola de la s	
	82.000	0.231	0.158	0.402	0.309	0.340	16.50		
	87.740	-0.241	0.380	0.100	0.087	0.132	15.00		
	90.200	-0.379	-0.152	0.045	0.077	0.056	13.00	termenenen in son son son son son son son son son so	
10° 1990, prostantantantan	90.200	-0.0	-0.667	0.174	0.157	0.183	11.00		
	85.280	-0.250	-0.095	0.492	0.426	0.492	9.00		
	63.140	-0.067	-0.0	0.519	0.458	0.591	7.00		
ete Minu / Abbaneyete Sologianet na was	39.688	-0.0	-0.0	0.377	0.351	0.485	5.00		
	29.520	0.034	0.034	0.273	0.266	0.381	3.50		
	19.680	-0.030	-0.0	0.202	0.202	0.294	2.00	na hanna han a a an	
	15.580	-0.049	0.056	0.128	0.128	0.192	0.80		
	14.760	-0.055	0.181	0.115	0.099	0.172	0.30		
			onennen act	an an ann an Arland ann an Arland An Arland Arland Arland ann an Arland An Arland Arland Arland Arland Arland Arland	an a	and an an an Alaman an Alaman. An an Alaman an Alama	an a	an a	

CODE 6300 DIAMETER = 10. 169

Y	U	V	W	RUV	RUW	VEL
0.50	0.023	0.026	0.016	-0.095	0.064	200.080
0.90	0.015	0.013	0.010	-0.0	-0.321	200.080
4.40	0.012	0.008	0.007	-0.0	-0.0	200.080
7.40	0.011	0.006	0.005	-0.0	-0.194	200.080
9.40	0.026	0.023	0.026	53,138	0.170	200.080
9.90	0.820	0.820	0.361	0.608	-0.180	167.280

CODE	6301	DIAMET	ER = 11.	170					
	Y	U	V	W	RUV	/ RUW	VEL	•	
	0.10	0.216	0.374	0.316	-4.808	-0.252	171.380		
	0.40	0.149	0.093	0.167	4.738	-0.393	182.860		
	0.80	0.022	0.024	0.012	0.215	-0.067	182.860		
	2.00	0.010	0.007	0.007	-0.109	-0.244	182.860		
	4.50	0.009	0.006	0.006	0.140	-0.0	182.860		
	7.00	0.009	0.006	0.005	-0.151	-0.170	182.860		
	9.90	0.018	0.014	0.014	-0.055	0.109	182.860		
	10.50	0.476	0.151	0.459	-0.0	0.337	194.340	۰ ۱	
	10.80	0.933	0.595	0.615	-0.489	0.165	113.980		
CODE 6302 DIAMETER = 12.

Y	U	٧	W	RUV	RUW	VEL	
0.40	0.994	0.558	0.750	-0.522	0.059	90.200	
0.90	0.482	0.241	0.362	-0.119	0.275	145.960	
1.40	0.028	0.032	0.014	-0.0	-0.096	155.800	
3.90	0.007	0.005	0.005	-0.0	-0.286	155.800	
6.40	0.007	0.004	0.004	-0.0	-0.170	155.800	
8.90	0.007	0.005	0.004	-0.135	-0.321	155.800	
10.90	0.057	0.035	0.044	0.022	0.260	155.800	
11.40	0.967	0.526	0.749	-0.476	0.196	119.720	
11.80	0.896	0.531	0.668	-0.486	0.229	74.456	

CODE	6303	DIAMET	ER = 13.	, 172	2			
	Y	U	V	W	RUV	RUW	VEL	
	0.30	0 <b>.7</b> 53	0.591	0.484	-0.136	0.661	65.600	
	1.00	0.484	0.421	0.294	0.044	1.454	123.656	
	1.80	0.040	0.030	0.028	0.612	-0.079	136.120	
	2.80	0.052	0.008	0.008	0.275	-0.026	136.120	
	5.30	0.006	0.009	0.004	-0.074	-0.0	136.120	
	7.80	0.007	0.004	0.005	-0.170	-1.857	136.120	
	10.30	0.011	0.009	0.007	0.136	0.086	136.120	
	11.30	0.066	0.052	0.052	0.180	0.314	136.120	
	12.00	0.615	0.453	0.078	0.635	-1.076	127.920	
	12.80	0.717	0.433	0.569	-0.346	-0.128	53.300	

CODE	6304	DIAMETI	ER = 14.	17	73			
	Y	U	V	Ŵ	RUV	RUW	VEL	
	0.50	0.820	0.514	0.612	0.125	-0.133	45.920	
	1.30	0.747	0.620	0.583	-0.471	-0.072	104.960	
	2.10	0.222	0.177	0.105	-0.686	0.118	123.656	
	2.90	0.030	0.034	0.017	-0.0	-0.068	123.656	
	5.40	0.008	0.006	0.005	-0.0	0.106	123.656	
	7.90	0.007	0.004	0.004	-0.0	-0.293	123.656	
	10.40	0.010	0.009	0.006	-0.0	-0.0	123.656	
	11.90	0.284	0.278	0.168	-0.293	-0.181	123.656	
	12.90	0.944	0.610	0.839	-0.307	0.151	108.240	
	13.80	0.603	0.328	0.473	0.208	0.132	40.672	

E	6305	DIAMET	ER = 15.	174				
	Y	U	V	W	RUV	RUW	VEL	
	0.10	0.532	0.386	0.363	-0.027	0.149	29.520	
	0.80	0.922	0.638	0.581	0.043	0.192	48.380	
	2.00	0.784	0.656	0.620	0.073	-0.322	104.960	
	2.80	0.252	0.168	0.252	-0.292	-0.556	119.720	
	3.50	0.042	0.029	0.055	-0.0	-0.0	119.720	
	5.50	0.012	0.008	0.010	0.208	0.406	119.720	
	8.00	0.018	0.005	0.005	0.123	-0.0	119.720	
	10.00	0.010	0.008	0.009	0.069	-0.129	119.720	
	11.50	0.035	0.022	0.029	0.043	0.142	119.720	
	12.50	0.238	0.126	0.244	-0.0	0.216	119.720	
	13.50	0.855	0.733	0.715	-0.064	-0.297	90.200	
	14.60	0.569	0.453	0.338	0.209	-0.174	40.672	

CODE

CODE	6306	DIAMETE	R = 16.	175				
	Y	U	V	W	RUV	RUW	VEL	
	15.80	0.369	0.259	0.265	-0.093	-0.032	20.500	
	15.00	0.715	0.448	0.505	-0.070	0.022	38.540	
	13.50	0.881	0.638	0.668	-0.300	-0.0	72.160	
	12.00	0.324	0.343	0.267	-0.593	-0.0	108.240	o interna Secondaria Secondaria Secondaria
	11.00	0.071	0.095	0.053	0.528	0.185	108.240	
	8.50	0.016	0.013	0.011	0.168	-0.213	108.240	
	6.00	0.011	0.008	0.008	0.130	-0.333	108.240	1 - 17 - 1777 - 1777 - 1777
	4.00	0.029	0.023	0.026	0.024	-0.0	108.240	
	2.50	0.237	0.255	0.255	-0.214	0.265	104.960	
	1.50	0.837	0.683	0.717	-0.096	-0.060	83.640	
	0.50	0.618	0.405	0.547	0.233	-0.243	45.920	
	0.10	0.545	0.280	0.415	0.236	0.176	36.736	

CODE 6307 DIAMETER = 17. 176

	Y U	V	W	RUV	RUW	VEL	
0.1	0 0.261	0.162	0.178	0.039	0.113	14.760	
0.8	0 0.391	0.259	0.252	0.030	0.031	22.960	
2.1	0 0.611	0.410	0.402	0.093	0.050	39.688	
4.1	0 0.547	0.475	0.504	0.446	0.167	75.440	
6.1	0 0.116	0.155	0.108	0.098	-0.0	82.000	
8.6	0 0.017	0.017	0.015	0.347	0.194	82.000	
11.1	0 0.015	0.012	0.012	0.196	0.187	82.000	
13.1	0 0.060	0.053	0.046	0.223	-0.039	82.000	
14.6	0 0.468	0.432	0.475	-0.047	0.279	75.440	
15.9	0 0.450	0.339	0.455	-0.067	0.263	42.640	
16.80	0.347	0.201	0.316	-0.083	0.129	29.520	

CODE	6308	DIAMETER	= 18.	177
	a da ang kanalan kanala kanala sa	ومحمده المحاط والمراجع والمراجع والمحمد والمحمد والمحمد والمحمد	an an ann an	the factor

an a					같은 것은 문화되었			
	Y	U	V	W	RUV	RUW	VEL	
a na sana sa sa sa sa sa	0.10	0.245	0.151	0.120	0.088	0.174	14.760	
	0.70	0.340	0.233	0.202	-0.020	0.035	21.320	
	2.00	0.523	0.386	0.322	-0.0	-0.0	36.080	
	4.00	0.609	0.555	0.531	-0.032	-0.032	63.140	9596 1917 1918
	6.50	0.368	0.234	0.301	-0.074	-0.0	87.740	
· · · · · · · · · · · · · · · · · · ·	9.00	0.055	0.044	0.050	-0.363	0.249	87.740	
	11.50	0.037	0.020	0.030	-0.150	-0.185	87.740	
	14.00	0.201	0.155	0.186	-0.257	0.104	82.000	
	16.00	0.580	0.469	0.515	-0.066	0.232	60.680	
	17.00	0.410	0.328	0.361	-0.063	0.125	37.720	
	17.50	0.334	0.251	0.261	0.015	0.014	30.340	

		<ul> <li>Control of the second data and the se Second data and the second data and</li></ul>	8	. 17	= 19	ETER	DIAM	9	530'	6	ODE	C	
RUV RUW VEL		RUN	W		v	<b>)</b>		Y					
0.108 0.082 13.940	1	0.108	.54	0.	0.108	5 (	0.22!	0	).1(	0	a Second	ani juli na na	
0.084 -0.0 17.220	-	0.084	202	0.	).163	<b>,</b> C	0.28	0	.9(	0			
0.0 0.030 25.256		-0.0	287	0.1	).240	7 C	0.38	0	.10	2		, i i i Antonina	1
0.030 0.096 45.920		-0.030	38	0•4	.391	' C	0.517	о	•10	4	a stratistica de la construcción de La construcción de la construcción d	ing ng bin	
0.197 0.170 75.440		-0.197	89	0.4	.460	С	0.561	<b>)</b> 1	• 60	6			
0.429 -0.440 87.740		-0.429	67	0.]	•234	0	0.234	) (	•10	9		n ng shi Sanatangi	
0.0 -0.0 87.740	-	-0.0	33	0.(	.100	0	0.075	) (	• 60	11	ى ئەر مەر يەر بەر يەر يەر يەر يەر يەر يەر يەر يەر يەر ي		
0.0 -0.229 82.000	-1	-0.0	08	0.]	.124	0	).124	) (	.10	14			
0.079 -0.116 68.880	1999 	0.079	22	0.6	• 476	0	).542	) (	•10	16		la de la constante La constante	
0.067 -0.102 44.280	- (	0.067	46	0.3	•401	. 0	).446	) (	• 60	17	e trazi na kiji tektori		
0.016 -0.077 29.520	+(	-0.016	30	0.2	.252	0	).324	) (	•60	18.			
												and the second	

CODE	6310	DIAMETE	ER = 20.	179	an na bhu sub chuc lucin nucleoir.			e en el col constructo prior agricado de la constructiva. A
	Ŷ	U.	Ŷ	W	RUV	RUW	VEL	
i a seconda a companya	0.30	0.368	0.284	0.276	-0.039	-0.040	39.688	
	1.20	0.433	0.391	0.373	0.066	-0.034	45.920	
	2.20	0.555	0.494	0.494	0.202	-0.0	63.140	
	3.70	0.472	0.495	0.433	0.196	-0.091	82.000	
	5.20	0.157	0.244	0.140	0.321	-0.0	90.200	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
<u>in an an</u>	7.20	0.174	0.140	0.140	-0.250	-0.0	90.200	
<ul> <li>A state of the sta</li></ul>	9.70	0.349	0.349	0.314	-0.167	-0.162	90.200	a 20 ° territor al la colo grada que a concessió per se la co
	12.20	0.552	0.447	0.507	-0.131	-0.094	78.720	
	14.70	0.573	0.472	0.505	-0.032	0.060	58.220	
	16.70	0.524	0.383	0.428	-0.0	0.044	44.280	
	18.20	0.360	0.247	0.267	0.033	0.032	25.256	
	19.20	0.279	0.172	0.190	-0.0	-0.0	19.680	
والمحافظة والمحافظ	19.60	0.209	0.125	0.157	0.052	-0.0	14.760	nandarya Kiranda yakuta na minada kananandan ya m

					180	$E_{R} = 10.$	DIAMET	6400	CODE
	•	VEL	RUW	RUV	W	V	Ú	Ŷ	
		200.080	0.193	0.156	0.066	0.070	0.068	0.20	
		200.080	-0.0	-0.0	0.019	0.014	0.020	0.60	
		200.080	-0.158	-0.156	0.006	0.007	0.012	1.40	
		200.080	-0.194	0.158	0.005	0.006	0.011	4.40	
:		200.080	-0.181	-0.158	0.005	0.006	0.012	7.40	
		188.600	-0.170	-0.0	0.012	0.016	0.017	9.60	

CODE 6401 DIAMETER =

Y	U	V	W	RUV	RUW	VEL
0.10	0.904	0.589	0.631	0.308	-0.370	119.720
0.50	0.637	0.688	0.217	-0.248	-0.603	155.800
0.90	0.074	0.065	0.071	0.334	-28.468	182.860
1.30	0.017	0.014	0.014	0.194	0.114	182.860
4.30	0.010	0.009	0.009	0.196	-0.094	182.860
7.30	0.009	0.006	0.006	-0.151	-0.151	182.860
10.30	0.035	0.030	0.032	0.210	0.319	182.860
10.50	0.231	0.287	0.082	-0.098	-0.429	177.120

181

11.

CUDE	6402	DIAMETE	R = 12.	182				
u.	Y	U	V	W	RUV	RUW	VEL	
	0.40	0.938	0.656	0.565	-0.068	0.410	104.960	
	0.90	0.057	0.032	0.071	-0.113	0.142	155.800	
	1.50	0.014	0.011	0.013	-0.120	-0.0	155.800	
	4.20	0.007	0.004	0.006	-0.393	-0.0	155.800	
	6.70	0.007	0.005	0.004	0.151	-0.170	155.800	
	9.20	0.007	0.005	0.005	-0.0	-0.0	155.800	
	10.50	0.030	0.028	0.024	0.169	0.292	155.800	
	10.90	0.591	0.241	0.603	0.136	0.567	145.960	
	11.30	0.831	0.465	0.598	0.329	-0.367	132.020	1.000 (1000) 1.000 (1000) 1.000 (1000) 1.000 (1000) 1.000 (1000) 1.000 (1000)

.

CODE	6403	DIAMETER =	13.

_ 183

Y	U	V		RUV	RUW	VEL
0.40	0.807	0.538	0.591	-0.125	-0.260	60.680
1.10	0.171	0.131	0.178	-0.0	-0.374	136.120
1.90	0.027	0.019	0.029	-0.069	0.248	136.120
4.40	0.007	0.006	0.007	-0.106	-0.100	136.120
6.90	0.006	0.004	0.004	-0.0	-0.183	136.120
9.40	0.007	0.005	0,005	-0.0	-0.0	136.120
11.20	0.028	0.023	0.021	-0.054	-0.191	136.120
11.90	0.197	0.131	0.141	-0.097	-0.160	136.120
12.50	0.887	0.629	0.667	0.426	-0.314	108.240

CUDE	6404	DIAMETER =	]4.	184

Y	U	V	W	RUV	RUW	VEL
0.20	0.582	0.391	0.372	0.182	0.192	38.540
0.80	0.906	0.705	0.633	-0.026	0.316	68.880
1.80	0.357	0.286	0.303	-0.058	0.573	119.720
2.80	0.029	0.017	0.031	-0.030	0.072	123.656
5.30	0.007	0.008	0.005	-0.306	0.222	123.656
7.80	0.007	0.005	0.004	0.229	-0.0	123.656
10.30	0.013	0.012	0.009	0.159	0.121	123.656
11.80	0.053	0.046	0.046	-0.264	0.687	119.720
12.80	0.512	0.492	0.369	0.513	-0.058	113.980
13.80	1.017	0.699	0.790	0.360	-0.181	72.160

6405	DIAMETE	R = 15.	185				: Difaita
Y	U	V	W	RUV	RUW	VEL	
0.40	0.478	0.321	0.304	0.099	0.134	32.800	
1.10	0.782	0.628	0.589	0.027	0.276	58.220	
2.10	0.620	0.510	0.456	0.164	0.511	103.320	
3.10	0.074	0.044	0.068	-0.123	0.176	111.520	50000000 0000000 1000000 1000000 00000000
4.10	0.014	0.015	0.022	-0.099	0.528	111.520	
6.60	0.008	0.007	0.007	0.159	0.168	111.520	
9.10	0.009	0.008	0.006	-0.075	0.082	111.520	
11.60	0.026	0.028	0.016	0.265	-0.0	111.520	
12.60	0.140	0.200	0.100	-0.350	-0.400	111.520	
13.60	0.583	0.474	0.547	0.869	-0.084	104.960	
14.10	0.774	0.681	0.588	0.262	-0.221	77.080	- - - -
14.50	1.276	0.911	0.911	-0.225	-0.196	103.320	
	<ul> <li>6405</li> <li>Y</li> <li>0.40</li> <li>1.10</li> <li>2.10</li> <li>3.10</li> <li>4.10</li> <li>6.60</li> <li>9.10</li> <li>11.60</li> <li>12.60</li> <li>13.60</li> <li>14.10</li> <li>14.50</li> </ul>	6405       DIAMETE         Y       U         0.40       0.478         1.10       0.782         2.10       0.620         3.10       0.074         4.10       0.014         6.60       0.008         9.10       0.009         11.60       0.026         12.60       0.140         13.60       0.583         14.10       0.774         14.50       1.276	6405DIAMETER = 15.YUV $0.40$ $0.478$ $0.321$ $1.10$ $0.782$ $0.628$ $2.10$ $0.620$ $0.510$ $3.10$ $0.074$ $0.044$ $4.10$ $0.014$ $0.015$ $6.60$ $0.008$ $0.007$ $9.10$ $0.009$ $0.008$ $11.60$ $0.026$ $0.028$ $12.60$ $0.140$ $0.200$ $13.60$ $0.583$ $0.474$ $14.10$ $0.774$ $0.681$ $14.50$ $1.276$ $0.911$	185 $Y$ $U$ $V$ $0.40$ $0.478$ $0.321$ $0.304$ $1.10$ $0.782$ $0.628$ $0.589$ $2.10$ $0.620$ $0.510$ $0.456$ $3.10$ $0.074$ $0.044$ $0.068$ $4.10$ $0.014$ $0.015$ $0.022$ $6.60$ $0.008$ $0.007$ $0.007$ $9.10$ $0.009$ $0.008$ $0.006$ $11.60$ $0.026$ $0.028$ $0.016$ $12.60$ $0.140$ $0.200$ $0.100$ $13.60$ $0.583$ $0.474$ $0.547$ $14.10$ $0.774$ $0.681$ $0.588$ $14.50$ $1.276$ $0.911$ $0.911$	185 $Y$ UVWRUV0.400.4780.3210.3040.0991.100.7820.6280.5890.0272.100.6200.5100.4560.1643.100.0740.0440.068-0.1234.100.0140.0150.022-0.0996.600.0080.0070.0070.1599.100.0090.0080.006-0.07511.600.0260.0280.0160.26512.600.1400.2000.100-0.35013.600.5830.4740.5470.86914.100.7740.6810.5880.26214.501.2760.911-0.225	185 $Y$ UVWRUVRUW0.400.4780.3210.3040.0990.1341.100.7820.6280.5890.0270.2762.100.6200.5100.4560.1640.5113.100.0740.0440.068-0.1230.1764.100.0140.0150.022-0.0990.5286.600.0080.0070.0070.1590.1689.100.0090.0080.006-0.0750.08211.600.0260.0280.0160.265-0.012.600.1400.2000.100-0.350-0.40013.600.5830.4740.5470.869-0.08414.100.7740.6810.5880.262-0.22114.501.2760.9110.911-0.225-0.196	Hat       Hat         Y       U       V       W       RUV       RUW       VEL         0.400       0.478       0.321       0.304       0.099       0.134       32.800         1.10       0.782       0.628       0.589       0.027       0.276       58.220         2.10       0.620       0.510       0.456       0.164       0.511       103.320         3.10       0.074       0.044       0.068       -0.123       0.176       111.520         4.10       0.014       0.015       0.022       -0.099       0.528       111.520         6.60       0.008       0.007       0.007       0.159       0.168       111.520         9.10       0.009       0.008       0.006       -0.075       0.082       11.520         11.60       0.026       0.028       0.016       0.265       -0.0       111.520         12.60       0.140       0.200       0.100       -0.350       -0.400       111.520         13.60       0.583       0.474       0.547       0.869       -0.084       104.960         14.10       0.774       0.681       0.588       0.262       -0.221       77.080

. . .

CODE	6407	DIAMETER =	17.	186
and the second second second		有些特别的现在分词 化合物合物 医外外的 化合物合金 化合金合金合金合金合金合金合金合金合金	AND RECEIVED AND RECEIVED AND	

Y         U         Y         RUY         RUM         VEL           0.10         0.345         0.273         0.247         -0.0         -0.0         23.944           0.60         0.473         0.402         0.360         0.030         -0.083         39.688           2.30         0.596         0.567         0.447         -0.330         -0.217         78.720           3.80         0.124         0.093         0.077         -0.229         0.308         82.000           6.30         0.021         0.017         0.017         -0.218         0.432         82.000           1.30         0.022         0.022         -0.023         -0.381         0.398         82.000           12.80         0.077         0.074         0.124         -0.0         0.975         82.000           14.30         0.465         0.478         0.161         0.360         72.160           15.30         0.521         0.434         0.375         0.061         0.132         34.440           16.60         0.319         0.254         0.215         0.176         0.051         23.944									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n galan di di Manangkan Manangkan	<u></u>		V	W	RUV	RU₩	VEL	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.10	0.345	0.273	0.247	-0.0	-0.0	23.944	
2.30 $0.596$ $0.567$ $0.447$ $-0.30$ $-0.217$ $78.720$ $3.80$ $0.124$ $0.093$ $0.077$ $-0.229$ $0.300$ $82.000$ $6.30$ $0.021$ $0.017$ $0.017$ $-0.223$ $-0.021$ $82.000$ $8.60$ $0.014$ $0.017$ $0.011$ $-0.278$ $0.432$ $82.000$ $11.30$ $0.022$ $0.022$ $0.023$ $-0.381$ $0.398$ $82.000$ $12.80$ $0.077$ $0.074$ $0.124$ $-0.0$ $0.975$ $82.000$ $14.30$ $0.485$ $0.465$ $0.478$ $0.161$ $0.360$ $72.160$ $15.30$ $0.521$ $0.434$ $0.492$ $0.060$ $0.231$ $48.380$ $16.10$ $0.434$ $0.375$ $0.061$ $0.132$ $34.440$ $16.60$ $0.319$ $0.254$ $0.215$ $0.176$ $0.951$ $23.944$		0.80	0.473	0.402	0.360	0.030	-0.083	39.688	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.30	0.596	0.567	0.447	-0.030	-0.217	78.720	
	Malan ayar Cala a tara	3.80	0.124	0.093	0.077	-0.229	0.300	82.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6.30	0.021	0.017	0.017	-0.223	-0.021	82.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8.80	0.014	0.017	0.011	-0.278	0.432	82.000	
12.80 0.077 0.074 0.124 -0.0 0.975 82.000 14.30 0.485 0.465 0.478 0.161 0.360 72.160 15.30 0.521 0.434 0.492 0.060 0.231 48.380 16.10 0.430 0.344 0.375 0.061 0.132 34.440 16.60 0.319 0.254 0.215 0.176 0.051 23.944		11.30	0.022	0.022	0.023	-0.381	0.398	82.000	
14.30       0.485       0.465       0.478       0.161       0.360       72.160         15.30       0.521       0.434       0.492       0.060       0.231       48.380         16.10       0.430       0.344       0.375       0.061       0.132       34.440         16.60       0.319       0.254       0.215       0.176       0.051       23.944		12.80	0.077	0.074	0.124	-0.0	0.975	82.000	
15.30       0.521       0.434       0.492       0.060       0.231       48.380         16.10       0.430       0.344       0.375       0.061       0.132       34.440         16.60       0.319       0.254       0.215       0.176       0.051       23.944		14.30	0.485	0.465	0.478	0.161	0.360	72.160	
16.10       0.430       0.344       0.375       0.061       0.132       34.440         16.60       0.319       0.254       0.215       0.176       0.051       23.944		15.30	0.521	0.434	0.492	0.060	0.231	48.380	
16.60 0.319 0.254 0.215 0.176 0.051 23.944		16.10	0.430	0.344	0.375	0.061	0.132	34.440	
	ne estada da di	16.60	0.319	0.254	0.215	0.176	0.051	23.944	
	aliyada g								
	a na an	2017 ( 2 14) 2 1,0 14 14 14 14 14 14 14 14 14 14 14 14 14				n an	rent metersenne in ser fan die selfen Wijel.	er er ek det blandtabtetet	
		an a	n a standar	an a		an a	10-10-10-10-10-10-10-10-10-10-10-10-10-1		
			ang September 1990, and relations and wheeled the	1997 - Marine Mandredor, and an	122114114141114441144				

CODE	6408	DIAMET	ER = 18.	187				
	Y	U	V	W	RUV	RUW	VEL	
	17.90	0.297	0.208	0.208	-0.038	0.037	21.320	
	17.40	0.403	0.305	0.334	-0.031	0.095	30.340	
	16.00	0.480	0.420	0.440	0.033	0.232	50.840	
	14.00	0.361	0.262	0.262	-0.0	0.487	85.280	
	11.50	0.075	0.100	0.067	0.101	0.248	87.740	
and a second	9.00	0.054	0.070	0.028	-0.037	-0.273	90.200	
	6.50	0.044	0.033	0.033	-0.531	-0.146	87.740	
	4.00	0.318	0.335	0.268	-0.081	-0.350	87.740	
	2.50	0.609	0.506	0.458	0.064	-0.033	63.140	
langu tang tang tang tang tang tang tang tang	1.20	0.503	0.401	0.335	0.060	-0.056	45.920	
	0.10	0.327	0.257	0.181	0.254	-0.0	27.880	
		د و به سره درای در به درمد رو در و از به مروز در از مروز مروز مروز در در از به سره درای در به در در به در از به در و به مروز مروز مروز مروز در	anna a thainn a million ann an ann ann an ann an ann an an ann an a	a na sana ang ang ang ang ang ang ang ang ang				
a dhealanna an tao a	nin († 1997) – Karlensen († 1997) 19 Mai – Karlensen († 1997) 19 Mai – Karlensen († 1997)							
			n statementer av de ser av de s	1971 To Science and American American				
	an teripa (nga karang nga karang nga nga pang nga karang nga karang nga karang nga karang nga karang nga karang nga pang nga karang nga		inaliyahi Milaakiy Mulaa					
en e	19 fan de Melagas actives anger www.eg	nij 12 ^{ma} njan kalijana fikala sa						
and the second secon	a na an							
a nijelana si sa	1957 M. 1969 Mary Mary Mary Mary Street St							
an a	an baga da kana da kana Anta-Anta-Anta-Anta-Anta-Anta-Anta-Anta-	na de sente de la dese La sente sente de la sente La sente sente de la sente						
		and the state of a state of the state of the		승규는 물건을 가지 않는 것이 없다.		计过程分词 化合成合金 化合合合金		

CODE 6409 DIAMETER = 19. 188

	Ŷ	U	V	W	RUV	RUW	VEL	
ujes er L								i njenje stavni stav V
	0.10	0.363	0.197	0.190	-0.026	-0.025	29.520	
	0.60	0.439	0.293	0.310	0.111	-0.060	39.688	
	1.60	0.540	0.430	0.410	0.093	-0.059	50.840	
	3.10	0.565	0.557	0.433	0.217	-0.215	82.000	10 col e Constant Sector de la constant Maria de la constante de
	5.30	0.218	0.167	0.167	0.640	0.175	87.740	
, da ta cara ang ang ang ang ang ang ang ang ang an	7.80	0.140	0.105	0.174	-0.0	-0.280	90.200	elen en estado en la construcción Real a construction de la construcción de la construcción de la construcción de la construcción de la construcción La construcción de la construcción d
	10.30	0.100	0.100	0.084	0.667	-0.257	87.740	
	12.80	0.164	0.197	0.213	-0.0	-0.692	85.280	
	14.80	0.532	0.432	0.460	0.178	0.530	75.440	
	16.30	0.526	0.473	0.505	0.093	0.317	53.300	
	17.60	0.422	0.422	0.344	0.097	0.094	34.440	
hater or result of the last of	18.30	0.370	0.283	0.268	0.101	0.068	30.340	
	18.70	0.279	0.196	0.190	0.194	0.031	19.680	

CODE	6410	DIAMETE	R = 20.		.89			
	Y	U	v	W	RUV	RUW	VEL	
1	0.10	0.334	0.215	0.214	0.063	-0.0	27.880	
	0.70	0.414	0.297	0.297	0.073	-0.054	36.080	
	1.30	0.427	0.343	0.335	0.053	-0.026	39.688	, and a share and an
	2.30	0.530	0.492	0.470	0.080	-0.051	55.760	
	3.80	0.478	0.492	0.465	0.193	-0.042	72.160	
den en entreta de cara demos de cara en entreta de la cara en entreta de cara de la cara de la cara de la cara Cara de la cara de la c	5.80	0.361	0.426	0,262	0.308	0.071	85.280	
- - -	8.30	0.349	0.384	0.279	-0.0	-0.115	90.200	
	10.80	0.268	0.234	0.335	-0.0	0.069	87.740	
	13.30	0.279	0.197	0.328	0.194	-0.066	85.280	
a secondaria de la compactación de	15.30	0.477	0.462	0.507	0.278	0.353	78.720	
	16.80	0.551	0.504	0.527	0.127	0.244	60.680	
	18.30	0.443	0.351	0.377	0.105	0.176	39.688	
n und ang falang-an dya 191 M 19 (1994) 1 di te	19.30	0.344	0.254	0.278	0.124	0.097	27.880	
	19.80	0.251	0.165	0.182	0.211	-0.0	18.040	

CODE	16100	CIAMETE	R = 10.	190				
	Y Y	U	V	W	RUV	RUW	VEL	
	0.05	0.944	0.696	0.562	0.042	0.476	114.800	177.715
	0.60	0.748	0.696	0.542	0.051	0.245	142.680	
	1.70	0.676	0.648	0.507	0.056	0.359	152.520	
	3.20	0.521	0.488	0.436	-0.093	0.235	195.160	i si
	5.20	0.234	0.268	0.201	-0.507	-0.177	201.720	
	7.20	0.212	0.228	0.182	-1.006	-0.087	195.160	
	8.70	0.636	0.477	0.477	-0.188	-0.279	188.600	
an an Araba. An Araba An Araba an Araba	9.60	0.879	0.703	0.556	-0.154	-0.533	164.000	
	••• •• •• ••			۹ ۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰				

ali di ang Katigan Ali ang

aoo 🏁	t 16101	DIAMET	ER = 11	• 191				
	Y	U	V	W	RUV	RUw	VEL	
	0.05	1.056	0.778	0.556	0.046	0.350	60.680	an a
	0.50	1.033	0.850	0.648	0.066	0.304	100.040	
	1.00	0.927	0.761	0.666	-0.080	0.274	123.000	
1. 1 ₁₁₁ 0	2.00	0.793	0.711	0.601	-0.101	0.323	147.600	
	4.00	0.418	0.402	0.402	-0.198	-0.213	175.480	
	6.00	0.268	0.252	0.252	-0.833	-0.516	182.040	
-	8.00	0.284	0.252	0.252	-0.809	-0.540	182.040	· · · ·
	9.00	0.928	0.433	0.495	-0.103	-0.406	175.480	
	10.00	0.954	0.722	0.567	-0.091	-0.459	142.680	
	10.50	1.047	3.255	0.580	-0.031	-0.386	132.020	

CODE	16102	DIAMETI	ER = 12	° 192					
	Y Y	Ú	۷	W	RUV	RUW	VEL		
	0.10	0.696	0.489	0.406	-0.021	0.142	28.700		
	0.70	1.230	0.820	0.754	-0.058	0.143	55.760		•
	1.50	1.273	1.003	0.810	0.135	0.111	95.940		
	3.50	0.683	0.711	0.574	-0.373	0.286	147.600		ay part by pu
	4.50	0.512	0.469	0.498	-0.399	0.087	164.000		
	6.50	0.218	0.268	0.239	-0.667	-0.0	168.920	-	
	8.50	0.205	0.211	0.187	-0.489	-0.582	164.000		
	10.00	0.674	0.439	0.469	-0.016	-0.352	164.000		
	11.00	1.039	0.808	0.716	-0.0	-0.417	119.720		
	11.80	1.004	0.782	0.536	-0.231	-0.298	68.880		

CUDE	16103	DIAMET	ER = 13	• 193			-	
	Y	U	V	W	RUV	RUW	VEL	
A.	0.05	0.600	0.439	0.351	0.021	0.074	23.780	
	0.70	0.971	0.648	0.616	-0.020	0.039	40.180	
	1.80	1.410	1.000	0.820	-0.060	0.183	75.440	
	3.30	1.028	0.970	0.878	-0.072	0.257	119.720	ajas)je
	4.80	0.738	0.738	0.629	-0.813	0.059	147.600	
	6.80	0.425	0.293	0.293	-0.831	0.081	164.000	
	8.80	0.225	0.225	0.209	-0.137	-0.249	152.520	
	10.30	0.507	0.423	0.479	-0.155	-0.157	152.520	
	11.50	1.061	0.897	0.787	-0.068	-0.315	109.880	
	12.40	0.978	0.804	0.631	-0.249	-0.204	72.160	

	CODE	16104	DIAMET	ER = 14	194				
		¥ .	U	V	W	RUV	RUW	VEL	
		0.05	0.489	0.344	0.278	0.049	-0.0	19.680	·. · · · ·
•		0.85	0.777	0.475	0.509	0.021	0.019	30.340	
		2.10	1.055	0.826	0.803	-0.016	0.052	45.920	
	•	4.10	1.323	1.118	1.044	-0.173	0.229	88.560	an a
		5.60	1.175	1.126	1.028	-0.105	-0.060	127.920	
		8.10	0.423	0.507	0.395	-0.608	-0.411	152.520	
		10.10	0.310	0.254	0.282	-0.356	0.294	152.520	
		12.10	0.845	0.706	0.656	-0.567	-0.205	132.020	
		13.10	1.032	0.984	0.810	-0.298	-0.426	95.940	
-		13.90	0.813	0.709	0.514	-0.335	-0.225	60.680	1.5.656.675

CODE 16105 DIAMETER = 15.195

Y	U	V	W	RUV	RUW	VEL	
0.05	0.436	0.364	0.221	-0.047	-0.0	18.860	
0.55	0.549	0.410	0.395	-0.045	-0.0	23.780	
1.05	0.645	0.446	0.430	-0.087	-0.0	27.060	
2.10	0.865	0.604	0.624	-0.0	0.040	37.720	
4.10	1.293	1.072	1.041	-0.0	0.040	72.160	
6.10	1.296	1.215	1.215	-0.303	0.198	100.040	
8.10	0.984	0.959	0.858	-0.329	0.173	132.020	
10.10	0.464	0.490	0.387	-0.182	0.183	142.680	
12.10	0.645	0.490	0.516	-0.137	-0.058	142.680	
14.10	1.000	0.918	0.754	-0.318	-0.375	75.440	(intration)
14.60	0.918	0.873	0.632	-0.239	-0.229	67.240	
		•	•				

CODE	16106	DJANET	ER = 16	[.] 196				
	Y	U	V	W	RUV	RUW	VEL	
	0.05	0.390	0.299	0.228	-0.117	-0.035	18.860	ain airteithi
	0.70	0.613	0.360	0.345	-0.0	-0.026	25.420	
	2.00	0.865	0.573	0.503	-0.0	-0.0	37.720	
	4.00	1.190	0.820	0.794	-0.117	0.056	55.760	i entre estrelación
	6.00	1.373	1.068	1.049	-0.095	0.171	91.840	
	8.00	1.132	1.063	1.063	-0.189	0.328	119.720	
	10.00	0.619	0.361	0.825	-0.531	0.041	142.680	
	12.00	0.469	0.469	0.469	-0.136	-0.160	137.760	
	13.50	1.033	0.854	0.944	-0.150	-0.340	114.800	
	14.50	1.025	0.932	0.839	-0.326	-0.336	88.560	
	15.40	0.806	0.751	0.625	-0.204	-0.233	60.680	
			•					

CODE 16107 DIAMETER = 17. 197

	VEL	RUW	RUV	W	V	U	<b>¥</b> 1. Antonio - A
	17.220	-0.0	0.031	0.191	0.271	0.370	0.05
	23.780	-0.047	-0.097	0.337	0.359	0.556	0.80
	32.800	-0,065	-0.063	0.492	0.492	0.747	1.80
	44.280	-0.0	-0.020	0.636	0.631	0.948	3.30
	72.160	0.021	-0.019	0.946	1.009	1.293	5.30
	95.940	0.102	-0.255	1.003	1.003	1.312	7.30
an Aurean	119.720	0.086	-0.0	1.063	0.970	1.039	9.30
	127.920	0.146	-0.618	0.685	0.539	0.673	11.30
	123.000	-0.555	-0.241	0.808	0.713	0.654	13.30
	95.940	-0.188	-0.254	0.810	0.388	1.023	14.80
	67.240	-0.303	-0.206	0.707	0.812	0.858	15.90
	55.760	-0.185	-0.240	0.555	0.675	0.741	16.30

CODE 16108 DIAMETER = 18.198

Y	U	٧	W	RUV	RUW	VEL
0.05	0.377	0.430	0.208	-0.060	-0.075	18.860
0.70	0.542	0.318	0.318	-0.053	-0.049	22,960
2.00	0.708	0.432	0.432	-0.0	-0.067	30.340
4.00	0.975	0.665	0.654	-0.042	-0.020	45.920
6.00	1.287	0.981	0.920	-0.076	-0.021	68.880
8.00	1.370	1.081	1.063	-0.180	0.042	85.280
10.00	1.203	1.093	1.115	-0.287	0.161	109.880
12.00	1.016	0.924	0.901	-0.638	0.268	119.720
14.00	0.866	0.832	0.808	-0.170	-0.149	119.720
15.50	1.022	1.012	0.911	-0.306	-0.387	100.040
17.00	0.778	0.764	0.667	-0.289	-0.305	60.680
17.90	0.614	0.543	0.348	-0.243	-0.234	42.640

CODE	16109	DIAMET	ER = 19	· 199	an a			
	Y	U	V	W	RUV	RUW	VEL	
	0.05	0.410	0.284	0.212	0.060	-0.068	19.680	i të projen i projen i kryj K
	0.60	0.512	0.351	0.315	0.050	0.026	23.780	
	1.80	0.682	0.449	0.423	0.066	-0.0	30.340	
	4.30	1.089	0.751	0.751	0.020	-0.020	51.660	l Maria da Angelore
	6.30	1.303	1.104	1.042	-0.035	0.073	68.880	
	8.30	1.478	1.225	1.225	-0.020	0.035	85.280	
	10.30	1.557	1.370	1.370	-0.240	0.119	103.320	
	12.30	1.146	1.168	1.393	-0.103	-0.0	114.800	
	14.30	1.063	0.970	1.155	-0.176	0.120	119.720	
	16.30	1.109	1.080	1.003	-0.0	-0.268	95.940	ala da se provincia da secon La recipió provincia da secon La recipió provincia da secon
	17.50	1.104	0920	0.797	-0.103	-0.188	68.880	
	18.30	0.873	0.820	0.648	-0.132	-0.079	55.760	· · · · · · · · · · · · · · · · · · ·
	8.90	0.731	0.625	0.413	-0.022	-0.067	44.280	

CODE	16200	DIAMET	:K = 10	° 200	)			
	Y	U	V	W	RUV	RUW	VEL	
	0.10	0.997	0.706	0.606	0.222	0.421	132.020	
	0.70	0.902	0.676	0.676	0.210	0.352	152.520	÷.
	1.50	0.671	0.567	0.596	0.135	0.100	168.920	
	2.60	0.390	0.325	0.390	0.158	0.132	195.160	NIN:
	4.60	0.385	0.402	0.301	-0.222	-0.172	201.720	
	6.60	0.181	0.167	0.234	-0.107	0.206	201.720	
	8.10	0.435	0.321	0.482	-0.676	-0.324	201.720	
	8.90	0.850	0.567	0.716	-0.322	-0.233	168.920	
	9.50	0.970	0.574	0.683	-0.410	-0.196	147.600	

CODE	. 16201	DIAMET	IR = 11	• 201				
	Y	U	V	W	RUV	RUW	VEL	en Antonio antonio antonio
	0.10	1.033	0.722	0.623	0.178	0.325	75.440	
	0.50	1.017	0.830	0.664	0.129	0.333	103.320	· .
	1.00	0.869	0.685	0.612	-0.0	0.269	127.920	
	2.00	0.789	0.733	0.620	-0.205	0.252	152.520	
	4.00	0.634	0.588	0.495	-0.137	0.074	175.480	
	6.00	0.426	0.442	0.442	-0.0	-0.090	182.040	
	00.8	0.388	0.318	0.369	-0.327	-0.196	188.600	
	10.00	1.141	0.570	0.832	-0.354	-0.0	123.000	
	10.80	1.276	0.769	0.769	-0.280	-0.064	100.040	

CODE	16202	DIAMETE	2 = 12.	202					
	Y	U	V	bş	RUV	RUW	VEL		
	0.10	1.183	0.725	0.741	0.158	0.193	72.160		
	0.80	1.048	0.830	0.830	0.206	0.107	103.320		
	1.80	0.807	0.677	0.651	0.322	0.153	137.760		
	2.80	0.532	0.460	0.403	-0.0	0.097	157.440		
	4.80	0.197	0.197	0.179	-0.425	-0.076	168.920		
	6.80	0.188	0.131	0.089	-0.599	-0.063	168.920		
	8.80	0.217	0.173	0.217	-0.0	0.114	175.480		
	10.30	0.875	0.629	0.738	-0.337	-0.051	147.600		
	11.30	1.167	0.810	0.849	-0.286	-0.147	95.940		
	11.70	1.150	0.674	0.705	-0.206	-0.045	68.880		

	CODE	16203	DIAMET	ER = 13	°203				
		Y	U	V	W	RUV	RUW	VEL	
1977 		0.05	1.002	0.651	0.676	-0.067	0.110	51.660	
		0.60	1.167	0.820	0.915	0.096	-0.097	72.160	
		1.60	1.006	0.875	0.678	-0.171	0.070	109.880	
		3.10	0.711	0.765	0.711	0.093	-0.037	147.600	siles:
		5.60	0.446	0.460	0.374	0.088	0.212	157.440	
		7.60	0.381	0.410	0.293	-0.506	0.457	164.000	
		9.60	0.374	0.299	0.374	-0.143	-0.0	157.440	
		10.90	1.047	0.782	0.908	-0.408	-0.079	132.020	
		11.80	1.146	0.857	0.895	-0.294	-0.088	88.560	
		12.40	0.917	0.584	0.625	-0.303	-0.026	60.680	
				1997 - 1997 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1					

CODE	16204	DIAMETE	R = 14.	204	į	£		
	Y			W	RUV	RUW	VEL	
	0.05	0.891	0.554	0.608	0.023	0.128	42.640	
	1.25	1.221	1.012	0.803	0.181	0.160	82.000	
	2.55	0.878	0.785	0.785	0.384	0.102	119.720	
	4.00	0.632	0.774	0.490	0.039	0.399	142.680	
	6.00	0.368	0.345	0.403	-0.611	-0.204	157.440	
	8.00	0.437	0.479	0.395	0.235	-0.0	152.520	1
	10.00	0.380	0.374	0.316	0.148	-0.387	157.440	
	11.50	0.967	0.308	0.759	-0.235	-0.135	127.920	
	12.50	1.125	0.915	0.953	-0.141	-0.299	91.840	
	13.60	0.724	0.431	0.539	-0.239	-0.169	49.200	

ODE 16205	-DIAMETER =	15.
-----------	-------------	-----

Y 	U.	V	М	RUV	RUW	VEL	
0.10	0.549	0.337	0.337	-0.024	-0.111	23.780	
0.40	0.621	0.431	0.464	-0.097	-0.136	28.700	
2.00	1.139	0.922	0.840	0.078	-0.166	58.220	
3.30	1.342	1.118	1.006	-0.045	-0.284	88.560	
5.30	1.363	1.321	1.065	-0.204	-0.203	106.600	
7.30	1.299	1.150	1.065	-0.228	-0.196	106.600	
9.30	1.137	0.875	1.093	0.070	-0.230	109.880	
10.80	0.784	0.856	0.618	-0.194	-0.451	123.000	
12.30	1.247	0.832	1.155	-0.313	-0.049	119.720	
13.50	1.274	0.977	1.047	-0.196	-0.077	82.000	
13.90	1.083	0.933	0.903	-0.358	-0.045	67.240	
14.60	0.876	0.651	0.751	-0.291	0.096	51.660	



16206	ULAPLIE	K = 16	206				• • •	
Ŷ	U.	V	' W	RUV	RUW	VEL		
0.05	0.564	0.300	0.366	-0.026	0.023	23.780		
0.80	0.758	0.483	0.531	-0.023	0.021	34.440		
2.10	1.098	0.826	0.775	0.038	0.060	54.120		
4.30	1.370	0.955	0.865	0.024	0.025	85.280		
6.30	1.157	0.988	1.033	-0.093	0.259	114.800		
8.30	1.093	1.022	0.951	-0.550	0.202	123.000		
10.30	0.963	0.523	0.951	-0.344	0.037	123.000		
12.30	0.951	0.713	0.951	-0.173	0.126	123.000		
13.80	1.144	1.011	1.220	-0.205	-0.205	91.840		
14.80	1.084	0.764	0.820	-0.266	-0.0	60.680		
15.70	0.869	0.521	0.586	-0.137	0.021	42.640		
		• • • •						
ODE	16207	DIAMETE	8 = 17.	207				
-----	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------	-------	--------	--------	---------	--
	Y Second Second Second Second Second Second Second Second Second Second Second Second Second Second Se	esta de la composición de la composició En la composición de la	V	¥	RUV	RUW	VEL	
	0.10	0.527	0.286	0.344	-0.0	-0.0	23.780	
	0.90	0.656	0.432	0.449	-0.047	0.046	30.340	
	2.40	1.039	0.739	0.726	0.039	-0.0	51.660	
	4.40	1.230	0.991	0.888	-0.096	-0.070	78.720	
	6.40	1.273	1.003	1.042	-0.130	0.070	95.940	
	8.40	1.373	0.992	1.049	-0.332	0.086	91.840	
	10.40	1.167	1.003	1.042	-0.146	0.194	95.940	
	12.40	1.086	0.937	0.895	-0.060	0.240	106.600	
	14.40	1.144	1.030	1.106	-0.317	-0.026	91.840	
	15.70	0.924	0.806	0.834	-0.313	-0.072	60.680	
	16.60	0.881	0.558	0.602	-0.132	-0.045	44.280	

CODE	16208	DIAMET	ER = 18.	000				
	Y	U U	V	W	RUV	RUW	VEL	
	0.05	0.477	0.275	0.311	-0.062	0.088	22.960	
	0.60	0.621	0.381	0.398	-0.077	0.024	28.700	
	1.60	0.771	0.537	0.547	-0.042	-0.022	36.080	
	3.00	1.071	0.807	0.767	-0.042	-0.020	55.760	
	5.60	1.279	1.000	0968	-0.020	-0.0	75.440	
	7.60	1.370	1.081	1.045	-0.230	-0.0	85.280	
	9.60	1.406	1.081	1.081	-0.235	-0.043	85.280	
	11.60	1.370	1.045	1.027	-0.128	0.083	85.280	
	13.60	1.274	1.029	1.012	-0.0	0.131	82.000	
	15.10	1.104	0.812	0.904	-0.113	-0.023	68.880	
	16.60	0.981	0.710	0.723	-0.205	-0.042	54.120	
	17.80	0.683	0.430	0.459	-0.053	0.026	36.080	

CODE	16209	DIAMETER :	= 19.
0000	10207		

Y	U	v	Ψ	RUV	RUW	VEL
0.10	0.446	0.297	0.258	-0.0	-0.0	31.160
0.80	0.522	0.339	0.346	-0.025	-0.022	33.620
2.30	0.811	0.556	0.528	-0.077	-0.128	49.200
4.80	1.584	1.267	1.081	-0.096	-0.120	83.640
6.80	1.523	1.367	1.328	-0.037	-0.111	86.920
8.80	1.603	1.230	1.305	-0.220	-0.069	83.640
10.08	1.303	0.996	0.996	-0.208	-0.018	70.520
12.80	1.244	0.877	0.905	-0.198	-0.019	68.060
14.80	1.245	0.908	0.937	-0.184	-0.019	70.520
16.40	1.201	0.849	0.937	-0.152	-0.039	70.520
17.80	0.885	0.604	0.604	-0.213	-0.068	54.940
18.50	0.703	0.487	0.505	-0.186	0.021	47.560
18.90	0.585	0.342	0.364	-0.048	0.025	39.360

.

CODE	16210	DIAMETE	ER = 20.	<b>510</b>			
	Y	U	v	W	RUV	RUW	VEL
	0.30	0.478	0.278	0.232	-0.080	0.059	31.160
	0.80	0.468	0.366	0.319	-0.048	-0.054	33.620
	1.20	0.518	0.388	0.388	-0.099	-0.0	36.900
	2.40	0.640	0.476	0.492	-0.045	-0.085	42.640
	4.40	1.012	0.846	0.846	-0.082	-0.0	63.140
	6.40	1.378	1.186	1.151	-0.117	-0.084	80.360
	7.40	1.435	1.230	1.230	-0.252	-0.083	83.640
	9.40	1.396	1.186	1.117	-0.256	-0.132	80.360
	11.40	1.238	0990	1.052	-0.210	-0.0	73.800
	13.40	1.186	0.937	0.996	-0.202	-0.0	70.520
	15.40	1.003	0.807	0.914	-0.229	-0.130	65.600
	17.60	0.987	0.769	0.794	-0.126	-0.088	63.140
	18.60	0.742	0.586	0.586	-0.168	-0.416	50.840
	19.30	0.617	0.473	0.473	-0.047	-0.047	44.280
	19.70	0.524	0.425	0.395	-0.210	-0.105	39.360

	VEI	RUW	RUV	W	V	U	Y	
	164.000	-0.121	0.419	0.644	0.615	0.849	9.70	
	175.480	0.072	0.334	0.526	0.588	0.743	9.20	
	195.160	-0.181	0.322	0.293	0.423	0.351	8.30	
	195.160	-0.582	0.204	0.098	0.111	0.101	7.00	
	201.720	-0.0	0.080	0.154	0.147	0.110	5.00	
	201.720	0.439	-0.0	0.281	0.268	0.261	3.00	
	188.600	-0.0	-0.323	0.572	0.445	0.683	1.00	
	157.440	-0.0	-0.387	0.834	0.547	1.021	0.30	
	137.760	0.086	-0.616	0.755	0.495	1.054	0.05	
1. J.								



DIAHETER = 11. 16301C OD E

CODE 16	301	OTABETE	AR = 11.	212				
	Y	U	V V	W	RUV	RUW	VEL	
10	•60	1,045	0.539	0.741	1.047	-0.037	114.800	
10	•40	1.010	0.570	0.666	0.272	-0.047	123.000	
10	.00	0.877	0.567	0.670	0.373	-0.050	142.680	
9	.00	0.600	0.439	0.469	0.178	-0.0	164.000	
	.00	0.278	0.235	0.248	-0.491	-0.707	175.480	
e e e e e e e e e e e e e e e e e e e	5.00	0.388	0.381	0.381	-0.394	0.022	188.600	
3	3.00	0.378	0.442	0.315	-0.304	-0.125	182.040	
	.00	0.964	0.575	0.806	-0.368	0.047	157.440	
n La serie de la serie de C	.05	1.225	0.613	0.829	-0.303	0.113	85.280	

CODE	16302	OIAMETE	R = , 12	213				a na sana ang sana sa
	алан Алан Алан Алан Алан Алан Алан Алан Алан Алан Алан Алан Алан Алан Алан Алан Алан Алан Алан Алан Алан	U	V	W	RUV	RUW	VEL	
	11.50	1.407	0.979	1.028	0.301	-0.0	127.920	
	10.70	0.921	0.782	0.732	0.287	0.152	132.020	
	9.60	0.561	0.489	0.403	0.146	0.083	157.440	
	7.60	0.173	0.203	0.137	-0.596	-0.340	168.920	and and a second se
	560	0.313	0.209	0.358	-1.057	0.089	168.920	
	3.60	0.447	0.376	0.298	0.233	0.196	168.920	
	2.10	0.817	0.592	0,648	-0.178	-0.0	152.520	di site
	1.10	1.212	0.761	0.998	-0.411	0.276	123.000	
	0.10	1.084	0.500	0.834	-0.253	0.231	60.680	

CODE	16303	DIAMETER	< = 13.	91 <i>1</i> .				
	Y	U	V	W	RUV	RUW	VEL	
	0.40	0.965	0.752	688.0	0.233	-0.112	78.720	
	1.00	1.100	0.872	1.038	0.302	-0.055	103.320	
	1.80	0.807	0.681	0.732	0.474	-0.0	132.020	
	2.80	0.434	0.451	0.451	0.172	-0.203	152.520	
	4.80	0.158	0.146	0.193	0.693	-0.142	164.000	
	6.80	0.264	0.410	0.351	-0.107	-0.173	164.000	
	8.80	0.360	0.403	0.403	0.136	0.117	157.440	
	10.80	0.903	0.722	0.799	-0.441	0.321	142.680	
	12.00	0.955	0.847	1.045	-0.397	0.300	85.280	
	12.80	1.058	0.569	0.846	-0.093	0.142	55.760	ana na ang pana na san

CODE	16304	DIANETE	K = 14.	215				
	Y	U	V	W	RUV	RUW	VEL	
	0.10	0.858	0.328	0.828	0.136	-0.102	67.240	an ang berbahan
	0.70	1.044	0.801	0.988	0.147	-0.0	88,560	
	1.80	0.951	0.832	0.784	0.346	0.040	123.000	
÷.	3.30	0.339	0.897	0.328	-0.064	-0.164	147.600	
	5.80	0.311	0.230	0.288	-0.829	-0.268	157.440	
	7.80	0.734	0.748	0.806	-0.0	0.053	157.440	
	9.80	0.722	0.619	0.593	0.137	0.273	142.680	
	11.30	1.143	1.155	1.016	-0.304	0.261	119.720	
	12.60	2.535	1.610	1.968	-0.045	0.112	168.920	
<i></i>	13.30	1.009	0.631	0.734	-0.044	0.135	45.920	a di stata da kana di sa basa
	13.95	0.787	0.322	0.531	-0.115	0.045	34.440	





C-DDE	305 ن	DIAPETH	R = 15.	216				
	Y	U	V	W	RUV	RUW	VEL	
	0.40	0.757	0.538	0.726	0.092	0.079	51.660	
	1.10	1.059	0.726	0.900	0.229	0.123	63.960	
	2.80	0,934	0.913	0.810	0.064	-0.056	103.320	
	4.60	0.732	0.656	0.555	-0.339	0.159	132.020	ieizeie
	5.60	0.959	0.858	0,908	-0.173	0.164	132.020	
	8.60	1.191	1.078	0.899	-0.174	-0.0	114.800	
	10.60	1.158	1.119	0.810	-0.106	0.349	95.940	
	12.10	1.496	0.793	1.009	-0.132	0.041	85.280	
	13.60	1.162	0.749	0.736	-0.080	0.020	54.120	
	14.80	0.430	0.342	0.398	-0.0	0.071	27.060	a ja jaa

CODE 16306 diameter = 16.

¥	U	V.	M	RUV	RUW	VEL	
0.30	0.757	0.482	0.631	-0.0	0.025	45.920	
1.00	0.917	0.620	0.775	0.079	-0.020	54.120	
2.30	1.153	0.667	0.991	0.270	-0.200	85.280	
4.30	0.725	0.642	0.618	0.364	0.337	123.000	
6.30	1.004	0.881	0.979	-0.117	0.332	127.920	
8.30	1.406	1.108	1.235	-0.268	0.221	106.600	
10.30	1.442	1.153	1.009	-0.019	0.270	85.280	
12.30	1.287	0.889	0.889	-0.065	-0.0	68.880	
13.80	1.053	0.718	0.646	-0.057	0.044	49.200	
15.00	0.806	0.493	0.531	-0.092	0.063	34.440	
15.90	0.605	0.268	0.399	-0.0	0.066	25.420	



CODE	16307	DIAMETER	< = 17.	218				
	Y	U	V	W	RUV	RUW	VEL	
	0.10	0.594	0.332	0.563	0.114	0.025	37.720	
	0.90	0.814	0.505	0.654	-0.109	-0.021	45.920	
	2.10	0.987	0.695	0.764	-0.0	-0.024	60.680	4 1 44
	4.10	1.174	0.931	0.931	0.247	0.102	100.040	la serie de la companya de la company
	6.10	1.045	0.944	0.899	-0.036	0.288	114.800	
e geografie References	8.10	1.331	1.042	1.080	-0.245	-0.022	95.940	
	10.10	1.257	0.904	0.920	-0.165	0.021	68.880	
	12.10	1.140	0.834	0.778	-0.080	0.065	60.680	
	14.10	0.994	0.646	0.622	-0.062	0.023	49.200	
	15.60	0.749	0.531	0.540	-0.022	0.020	34.440	
	16.80	0.544	0.307	0.399	-0.0	-0.046	25.420	

CODE 16308 DIAMETER = 18.

VEL	RUW	RUV	<b>219</b> W	V	U	на се
37.720	0.048	0.033	0.523	0.342	0.664	0.50
45.920	0.023	0.026	0.642	0.550	0.791	1.40
67.240	-0.0	-0.0	0.873	0.828	1.038	2.90
100.040	-0.0	-0.061	0.931	1.093	1.114	4.90
109.880	0.059	-0.163	1.050	1.093	1.137	6.90
85.280	0.046	-0.296	1.081	1.063	1.189	8.90
67.240	0.021	-0.144	0.888	888 • 0	1.204	10.90
54.120	-0.0	-0.020	0.736	0.762	1.098	12.90
42.640	-0.067	-0.022	0.576	0.565	0.880	14.90
27.060	0.026	-0.0	0.342	0.366	0.605	16.40
19.680	-0.0	-0.0	0.291	0.225	0.403	17.50

DE	16309	DIAMETE	R = 19.	220	)			
	Y	U	V	W	RUV	RUW	VEL	
	0.40	0.529	0.312	0.443	-0.0	-0.181	42.640	
	1.00	0.694	0.487	0.541	-0.099	-0.039	47.560	
	1.70	0.974	0.661	0.759	-0.181	-0.084	60.680	
	3.20	1.145	0.928	0.990	0.040	-0.145	73.800	
	5.20	1.442	1.216	1.527	-0.0	-0.289	118.080	
	7.20	1.640	1.581	1.581	0.028	-0.263	123.000	
	9.20	1.773	1.463	1.463	-0.0	-0.114	95.120	
	11.20	1.183	0.941	0.968	0.017	-0.098	65.600	
	13.20	0.949	0.755	0.712	-0.033	0.018	54.940	
	15.20	0.689	0.459	0.492	-0.065	0.056	42.640	
	16.70	0.631	0.465	0.457	-0.039	-0.041	41.000	
	17.70	0.508	0.312	0.339	-0.051	-0.066	33.620	
	18.40	0.439	0.278	0.297	-0.027	-0.107	31.160	
	18.90	0.335	0.196	0.277	-0.079	0.199	25.420	

СО

CODE	16310	DIAMETER =
------	-------	------------

Υ,	U	۷	W	RUV	RUW	VEL
19.50	0.560	0.315	0.410	-0.106	-0.048	41.000
19.20	0.582	0.344	0.459	-0.082	-0.022	42.640
18.40	0.707	0.481	0.547	-0.0	-0.108	49.200
17.20	1.049	0.753	0.833	-0.281	-0.058	65.600
15.20	1.291	1.066	1.189	-0.373	-0.172	90.200
13.20	1.589	1.435	1.384	-0.075	-0.047	108.240
11.20	1.568	1.495	1.399	0.045	-0.096	103.320
9.20	1.378	1.082	1.082	-0.184	-0.072	77.080
7.20	0.979	0.729	0.752	-0.109	-0.075	57.400
5.20	0.748	0.523	0.523	-0.021	-0.142	47.560
3.20	0.526	0.350	0.301	-0.0	-0.056	35.260
1.20	0.430	0.285	0.298	-0.123	0.060	33.620
0.70	0.380	0.262	0.276	-0.0	-0.0	31.980
0.10	0.362	0.271	0.284	-0.175	-0.170	31.160

20.



CODE	16400	DIAMETER	= 10.	R.A.
------	-------	----------	-------	------

			6 6 fa				
Y	U	۷		RUV	RUW	VEL	
0.10	0.932	0.562	0.584	-0.203	0.327	114.800	
 0.80	0.761	0.620	0.648	-0.065	0.172	152.520	
2.00	0.650	0.588	0.464	-0.0	0.187	175.480	
4.00	0.335	0.301	0.355	-0.167	-0.127	201.720	
6.00	0.241	0.215	0.234	-0.852	-0.772	195.160	
7.50	0.251	0.229	0.636	-0.678	-0.289	188.600	
8.80	0.599	0.536	0.442	0.158	-0.361	182.040	
9.60	0.775	0.626	0.567	0.185	-0.406	168.920	
							Sebature tes

C UL/E	16401	DIAMETI	ER = 11	223				
	Y	U	V		RUV	RUW	VEL	
	0.05	1.084	0.705	0.895	0.129	0.171	58.220	
	0.50	1.145	0.854	0.683	-0.0	0.258	78.720	
	1.00	0.958	0.724	0.618	-0.079	0.235	106.600	
	2.00	0.833	0.732	0.580	-0.137	0.348	132.020	Airs
	4.00	0.641	0.537	0.507	-0.283	0.081	168.920	
	6.00	0.291	0.272	0.272	-0.621	-0.593	175.480	
	8.00	0.537	0.477	0.417	0.014	-0.393	168.920	
	9.00	0.793	0.547	0.656	0.136	-0.200	147.600	
	9.80	0.959	0.631	0.706	0.288	-0.272	132.020	
	10.10	0.959	0,580	0.732	0.255	-0.161	132.020	

	CODE	16402	DIAMETL	R = 12.	224					
		Y	U	v v v v v v v v v v v v v v v v v v v v	Ŵ	RUV	RUW	VEL		
		0.30	0.677	0.422	0.358	0.021	0.051	27.060		
		1.00	1.162	0.801	0.775	0.020	0.083	54.120		
· ·		2.20	0.955	0.789	0,996	-0.203	0.370	103.320		
		4.20	0.645	0.696	0.567	-0.501	0.350	142.680		
		5.20	0.498	0.527	0.469	-0.178	0.184	164.000	an an taga sa sa Sa	
		7.20	0.221	0.209	0.191	-1.099	-0.455	168.920		
		9,20	0.259	0.276	0.242	-0.299	-0.442	157.440		
		10.70	0.833	0.677	0.625	-0.056	-0.229	137.760		
		11.50	1.080	0.752	0.810	0.297	-0.225	95.940		



(	CUDE	15403	DIAMETER	= 13	225				
			U	V	ţv <u>ş</u>	RUV	RUW	VEL	
		0.20	0.542	0.324	0.265	0.045	-0.028	19.680	
		1.00	0.936	0.594	0.594	-0.042	0.038	37.720	
		1.80	1.214	0.904	0.852	-0.017	0.097	54.120	
		3.80	1.214	1.108	1.108	-0.155	0.198	106.600	
		5.30	0.761	0.774	0.670	-0.228	0.191	142.680	
		7.30	0.259	0.230	0.288	-0.903	-0.144	157.440	
		9.30	0.217	0.225	0.225	-0.516	-0.422	152.520	·
		10.80	0.658	0.567	0.490	0.059	-0.117	142.680	
		11.80	1.038	0.872	0.830	0.131	-0.386	103.320	
		12.50	1.008	0.786	0.803	0.230	-0.214	78.720	

CODE	10404	DIAMETE	R = 14.					
		IJ	V	<b>226</b>	RUV	RUW	VEL	
	0.05	0.443	0.311	0.258	0.143	-0.130	19.680	
	1.25	0.729	0.431	0.431	-0.0	-0.021	28.700	
	1.95	1.003	0.616	0,627	-0.0	0.040	40.180	
	5.30	1.496	1.081	1.153	-0.150	0.063	85.280	
	7.30	0.478	0.601	0.601	-0.128	0.078	147.600	
	9.30	0,299	0.259	0.282	-0.794	-0.345	152.520	
	11.30	1.001	0.852	0.895	0.068	-0.340	106.600	
	13.40	0.948	0.837	0.769	0.114	-0.245	78.720	

CUDE 16405 DIAMETER = 15.

				AA15				
	Y	U		<b>267</b> W	RUV	RUW	VEL	
	0.05	0.407	0.296	0.222	0.053	-0.0	17.220	
	0.50	0.517	0.331	0.317	-0.0	-0.0	21.320	
	1.00	0.605	().414	0.368	-0.047	-0.0	25.420	
	2.00	0.784	0.492	0.528	-0.046	0.044	32.800	
	4.00	1.220	0.922	0.922	-0.039	0.076	58.220	
	6.00	1.379	1.230	1.193	-0.168	0.089	88.560	
	8.00	0.885	0.833	0.833	-0.247	0.200	137.760	
'	10.00	0.335	0.309	0.309	-0.339	-0.250	142.680	
	12.00	0.631	0.656	0 • 40 4	0.189	-0.198	132.020	
	14.00	0.991	0.854	0.922	0.164	-0.221	78.720	
	14.50	0.867	0.757	0.757	0.165	-0.259	72.160	

COLF	16406	DIAMETE	R = 16.		***************************************				
	Y	U	малар V 1. с.	228 ₩	RUV	RUW	VEL		
	0.40	0.403	0.286	0.215	-0.0	-0.070	18.860		
	1.30	0.555	0.337	0.322	-0.0	-0.0	23.780		
	2.80	0.784	0.492	0.474	-0.0	-0.023	32.800		
	4.80	1.077	0.754	0.706	-0.058	-0.0	49.200		
	7.30	1.454	1.193	1.062	-0.175	-0.0	88.560		
	9.30	0.857	0.881	0.832	-0.660	0.401	127.920		
	11.30	0.417	0.338	0.495	0.211	-0.389	137.760		
	13.30	0.785	0.674	0.741	0.168	-0.394	114.800		
	14.80	0.883	0.811	0.901	0.126	-0.056	85.280	r 1995 - Angeles 1995 - Angeles Angeles	
	15.50	0.767	0.662	0.782	0.070	-0.369	67.240		

CODE 16407 DIAMETER = 17.

en de la composition En la composition de l		U	V	<b>229</b> W	RUV	RUW	VEL	
	0.10	0.340	0.234	0.199	0.064	-0.259	15.580	
	0.90	0.503	0.310	0.317	-0.052	-0.0	21.320	
	1.90	0.629	0.398	0.366	-0.022	-0.025	27.060	
	3.90	0.849	0.527	0.517	-0.044	-0.021	36.080	
	5.90	1.166	0.813	0.813	-0.059	-0.021	58.220	
	7.90	1.380	1.081	1.045	-0.326	0.043	85.280	· · · · · ·
	9.90	1.022	0.903	0.903	-0.272	-0.0	123.000	د. مربق کرد مربق کرد
	11.90	0.551	0.539	0.514	-0.134	-0.0	127.920	
	13.90	0.854	0.764	0.719	0.244	-0.224	114.800	
	15.40	0.880	0.820	0.820	0.058	-0.233	78.720	TRACTER :
	16.40	0.684	0.637	0.637	0.030	-0.201	58.220	

.

CODE	16408	DIAMETE	R = 18. <b>2</b>	30		, an a sharan sharan Sharan sharan s		
	Ŷ	U	V	Ŵ	RUV	RUW	VEL	
	0.05	0.325	0.228	0.187	0.099	-0.193	15.580	
	0.50	0.441	0.289	0.248	-0.0	-0.032	21.320	
	1.80	0.590	0.353	0.353	-0.025	-0.0	25.420	
	3.80	0.849	0.537	0.508	-0.0	-0.044	36.080	
	5.80	1.152	0.789	0.764	-0.018	-0.0	51.660	
	8.50	1.466	1.186	1.134	-0.056	0.056	82.000	
	10.30	1.505	1.078	1.078	-0.147	0.051	114.800	
	12.30	0.918	0.930	0.906	-0.075	0.175	127.920	
	14.30	1.115	0.853	0.875	0.248	-0.262	109.880	
	15.80	1.045	0.901	0.883	0.059	-0.131	85.280	
	17.00	0.757	0.723	0.737	0.089	-0.249	60.680	
	17.90	0.625	0.459	0.493	0.124	-0.092	45.920	

CODE	16409	DIAMETE	R = 19.			ana an an ann an an an an an an an an an		
	ч. т. <b>ү</b>	U	2 V	<b>31</b> W	RUV	RUW	VEL	
	0.10	0.282	0.202	0.164	0.075	-0.207	13.120	월 41 420 년 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	0.70	0.400	0.258	0.231	-0.034	-0.0	19.680	
	2.10	0.571	0.322	0.315	-0.0	-0.026	23.780	
	4.10	0.765	0.456	0.456	-0.023	-0.0	32.800	
	6.10	1.089	0.730	0.682	-0.018	-0.021	49.200	
	8.10	1.339	1.053	0.978	-0.107	-0.0	67.240	
	10.10	1.486	1.196	1.158	-0.079	-0.0	95.940	
	12.10	1.168	1.123	1.123	-0.150	0.061	114.800	
	14.10	1.033	0,988	0.988	0.035	-0.105	114.800	
	16.10	1.081	0.988	0.988	0.122	-0.104	88.560	
	17.60	0.987	0.769	0.827	0.069	-0.182	63,960	
	18.50	0.846	0.675	0.688	-0.0	-0.124	55.760	
	19.90	0.692	0.457	0.524	0.089	-0.136	44.280	

CODE	16410	DIAMETE	ER = 20.	23 <b>2</b>		an a		
	Y	U	۷	W	RUV	RUW	VEL	
	0.30	0.279	0.225	0.213	0.038	-0.079	29.520	
	0.60	0.291	0.200	0.213	-0.107	-0.079	29.520	
	1.20	0.291	0.213	0.213	-0.039	-0.080	29.520	
	2.30	0.387	0.265	0.271	-0.032	-0.084	31.160	
	4.30	0.569	0.340	0.377	-0.0	-0.023	37.720	
	6.30	0.801	0.528	0.528	-0.060	-0.107	49.200	
•	8.30	1.289	0.952	0.937	-0.019	-0.072	70.520	· · ·
	10.30	2.024	1.640	1.537	0.020	-0.0	108.240	
가슴다 	12.30	2.198	1.640	1.640	-0.346	-0.311	139.400	
	14.30	1.783	1.640	1.569	-0.227	-0.229	152.520	
	16.30	1.409	1.332	1.332	-0.440	-0.409	108.240	
	17.50	1.495	1.278	1.399	-0.226	-0.049	103.320	
	18.30	1.174	1.025	1.062	-0.048	-0.0	83.640	
	18.90	0.961	0.749	0.806	-0.078	-0.226	68.060	
	19.70	0.658	0.432	0.507	-0.185	-0.220	54.940	

DE	10100	DIAMET	ER = 10	. 23	3			
	Y	U	V	W	RUV	RUW	VEL	
	0.10	2.109	1.201	0.908	0.056	-0.370	157.440	
	0.60	1.808	1.379	1.006	0.034	-0.263	190.240	
	1.10	1.373	0.984	0.820	0.114	-0.237	213.200	
	2.10	0.553	0.451	0.451	0.034	-0.503	213.200	
	3.60	0.406	0.353	0.369	-0.319	-0.758	213.200	
	5.60	0.488	0.443	0.435	-0.667	-0.590	213.200	
	7.60	0.492	0.451	0.394	-0.636	-0.684	213.200	
	8.60	0.615	0.492	0.574	-0.643	-0.020	213.200	
	9.20	1.517	1.025	1.066	-0.048	0.236	213.200	
	9.70	1.715	1.342	1.081	-0.034	0.209	190.240	

ş

ЭE	10101	DIAMETE	ER = 11.					
				1	234			•
	Y	U	v V v	W	RUV	RUW	VEL	
	0.05	2.299	1.319	0.981	0.324	-0.252	89.380	
	0.60	2.252	1.251	1.028	0.091	-0.141	152.520	
	1.30	1.588	1.117	0.977	0.127	-0.242	183.680	
	2.60	0.648	0.574	0.476	-0.129	-0.588	213.200	
	4.30	0.512	0.508	0.467	-0.654	-0.743	213.200	
	6.30	0.554	0.492	0.467	-0.762	-0.998	205.000	
	8.30	0.539	0.469	0,492	-0.891	-0.727	196.800	
	9.20	0.727	0.634	0.656	-0.161	-0.170	190.240	
	9.90	1.415	1.061	0.900	-0.083	0.188	172.200	
	10.30	1.816	1.201	1.025	-0.030	0.230	157.440	

)DE	10102	DIAMETI	ER = 12.	23	35			
	n Senara <b>Y</b>	U	V	W	RUV	RUW	VEL	
	0.05	0.948	0.759	0.446	0.153	-0.119	50.840	
	0.60	1.454	1.116	0.795	0.195	-0.270	89.380	
	1.30	1.237	1.067	0.859	0.241	-0.284	142.680	
	2.60	0.418	0.301	0.402	0.972	-0.160	177.940	
	4.60	0.153	0.134	0.179	-0.603	-0.446	190.240	
	6.60	0.122	0.112	0.119	-0.908	-0.892	183.680	
	8.60	0.131	0.120	0.127	-0.831	-0.900	177.940	
	10.10	0.434	0.373	0.418	-0.0	0.229	172.200	
	10.80	0.973	0.751	0.778	0.054	0.248	152.520	
	11.40	1.240	0.984	0.820	-0.028	0.395	111.520	

ЭE	10103	DIAMETE	R = 13.	2	36			
	Y	U	V	W	RUV	RUW	VEL	
	0.05	0.653	0.427	0.303	-0.0	0.055	28.700	
	0.60	0.976	0.745	0.573	-0.0	0.060	42.640	
	1.40	1.333	1.134	1.012	-0.018	0.169	78.720	
	2.70	0.699	0.627	0.724	0.137	-0.0	132.840	
	4.40	0.328	0.239	0.417	-1.061	0.527	162.360	
	6.40	0.125	0.116	0.109	-0.275	-0.269	172.200	
	8.40	0.097	0.100	0.094	-0.800	-0.872	177.940	
	10.20	0.167	0.174	0.154	-0.168	-0.306	183.680	
	11.40	1.083	0.990	0.743	-0.120	-0.333	167.280	
	12.20	1.323	1.093	0.875	-0.053	-0.386	120.540	
	12.70	1.263	1.115	0.738	0.142	-0.218	85.280	

DE	10104	DIAMETE	R = 14.	237				
	айа 1997 - Алариан 1997 - Алариан <b>Ү</b>	U	V	W	RUV	RUW	VEL	
	0.50	0.605	0.466	0.262	0.071	-0.028	25.420	
	0.60	0.756	0.578	0.357	-0.068	0.052	33.620	
	1.50	1.028	0.787	0.667	0.078	0.059	49.200	
	3.00	1.388	1.045	1.262	0.018	0.234	96.760	
	5.00	0.859	0.781	0.573	-0.853	0.485	142.680	
	7.00	0.224	0.209	0.388	-0.309	-0.111	162.360	
	9.00	0.132	0.141	0.122	-0.824	-0.762	172.200	
	11.00	0.215	0.199	0.193	-0.341	-0.406	172.200	
	12.30	1.075	1.156	0.807	-0.287	-0.203	147.600	
	13.00	1.268	1.181	0.918	0.080	-0.274	120.540	
	13.80	1.167	1.009	0.678	-0.0	-0.295	82.000	

DE	10105	DIAMETER =	15.	238	
	Y	U	V	W	RUV

0.05	0.556	0.342	0.278	-0.027	0.025	24.600
0.70	0.731	0.459	0.476	-0.064	0.054	33.620
1.40	0.926	0.664	0.624	-0.0	0.038	44.280
2.90	1.260	0.945	0.827	-0.065	0.093	63.960
4.80	1.148	0.779	1.230	-0.211	0.295	111.520
6.80	0.928	0.591	0.807	-0.664	-1.042	147.600
9.30	0.173	0.167	0.209	-0.392	-0.0	162.360
11.80	0.611	0.477	0.388	-0.288	-0.138	162.360
13.30	1.230	1.066	1.025	-0.294	-0.109	111.520
14.00	1.167	0.725	0.773	0.081	-0.109	82.000
14.50	0.918	0.787	0.682	0.021	-0.208	63.960

VEL

RUW

DDE	10106	DIAMETE	R = 16.	2	30		
	на на селото на селот На селото на	U	V	W	RUV	RUW	VEL
	0.05	0.528	0.328	0.250	0.031	0.054	24.600
	0.60	0.648	0.480	0.352	-0.037	-0.0	30.340
	1.30	0.771	0.556	0.484	-0.0	-0.0	36.900
	2.50	1.039	0.722	0.700	0.018	0.018	49.200
	4.60	1.251	1.001	1.001	-0.050	-0.0	68.880
	7.10	1.430	0.925	1.304	0.034	0.390	115.620
n na sana Anglan Anglan Anglan Anglan	9.60	0.556	0.500	0.556	-0.477	0.069	152.520
	11.60	0.253	0.239	0.417	-0.0	-0.0	162.360
	13.10	0.911	0.859	0.755	-0.253	-0.653	142.680
	14.30	1.168	1.191	1.033	-0.142	-0.529	124.640
	15.10	1.104	1.104	0.804	0.019	-0.138	82.000
	15.80	1.013	0.773	0.800	0.020	-0.053	66.420



DE 10107	DIAMETE	R = 17.	21	0		
на на селото и кака и	U	V	Ŵ	RUV	RUW	VEL
0.05	0.488	0.352	0.258	-0.0	0.027	22.140
0.60	0.624	0.424	0.352	0.020	-0.0	30.340
1.40	0.746	0.503	0.408	-0.040	0.097	35.260
2.90	0.961	0.585	0.669	-0.0	0.071	46.740
4.10	1.168	0.971	0.813	-0.051	0.020	63.960
6.60	1.556	1.346	1.514	-0.045	0.159	115.620
9.10	0.847	0.591	0.914	-0.059	0.318	147.600
11.10	0.498	0.381	0.527	-0.444	-0.198	157.440
13.10	1.136	0.890	0.961	-0.155	-0.557	128.740
14.30	1.225	1.117	0.955	-0.0	-0.198	96.760
15.10	1.050	0.892	0.834	0.038	-0.161	72.160
15.80	0.814	0.740	0.617	-0.0	-0.183	58.220

DE	10108	DIAMETE	ER = 18.	. 241			
	Y STATE	U	V	W	RUV	RUW	VEL
	0.05	0.398	0.240	0.182	0.053	-0.035	17.220
	0.80	0.559	0.393	0.302	-0.0	-0.0	27.060
	1.80	0.672	0.394	0.402	-0.0	-0.098	31.980
	3.30	0.854	0.575	0.614	-0.039	-0.0	41.000
	5.30	1.195	0.788	0.941	-0.0	0.078	60.680
	7.80	1.420	1.217	1.251	0.100	0.133	89.380
	10.30	1.206	0.965	1.134	0.263	0.123	132.840
	12.80	0.639	0.612	0.695	-0.205	-0.0	152.520
	14.80	1.054	0.890	0.843	-0.287	-0.493	128.740
	16.30	1.184	1.150	0.812	0.125	-0.262	89.380
	17.20	0.960	0.907	0.773	0.018	-0.127	66.420
	17.80	0.684	0.563	0.382	-0.0	-0.111	44.280

IDE 101	09 D	IAMETER	= 10	9.		242			
	Ч Х	U	V		W	RUV	RUM	1	VEL
0.	05 0	•310	0.211		0.170	-0.0	-0.123	17.	220
0.	70 0	•499	0.292		0.264	-0.056	-0.029	24.	600
1.	50 0	• 574	0.348		0.302	-0.049	-0.0	27.	060
3.	00 0	.705	0.408		0.399	-0.047	-0.0	33.	620
5.	20 0	.971	0.627		0.710	-0.058	0.048	46.	740
8(	00 1	•327	1.073		1.073	0.034	0.116	75.	440
10.5	50 1	.304	1.093		1.304	0.053	0.227	115.	620
13.(	0.00	<b>.</b> 963 (	0.937		0.885	-0.243	0.047	142.	680
15.2	20 1.	.009	0.967		1.072	-0.142	-0.203	115.0	520
17.(	00 1	.150	1.042		1.012	0.039	-0.155	78.	720
18.(	0 0.	.937 (	0.838	į	0.765	-0.0	-0.166	58.2	220
18.7	0 0	.798 (	0.722	(	0.536	0.052	-0.074	49.2	200
DDE	10110	DIAMETI	ER = 20	•					
-----	-------	---------	---------	-------	--------	--------	---------		
				243	6				
	Y	U	V	W	RUV	RUW	VEL		
	0.05	0.278	0,176	0.190	0.149	-0.0	22.140		
	0.70	0.364	0.228	0.250	-0.077	0.184	24.600		
	1.70	0.405	0.255	0.284	-0.035	-0.0	25.420		
	3.40	0.633	0.408	0.399	-0.0	0.051	35.260		
	5.90	0.929	0.678	0.656	-0.0	0.117	49.200		
	8.40	1.325	1.135	0.993	0.034	0.063	82.000		
	10.90	1.399	1.356	1.181	0.069	0.063	120.540		
	13.40	1.037	1.013	0.965	-0.101	0.106	132-840		
	15.90	1.278	1.259	1.182	-0.017	-0.073	103.320		
	17.40	1.065	0.949	0.921	0.081	-0.116	72.160		
	18.60	0.925	0.838	0.715	0.035	-0.041	58.220		
	19.70	0.633	0.556	0.374	-0.0	-0.031	41.000		

 102	00	DIAM	ETER	= 1	0.
		/			0.00

	<i>.</i> .					
Ŷ	U	V	W	RUV	RUW	VEL
0.05	2.138	0.908	1.230	0.349	0.027	157.440
0.50	1.762	1.186	1.186	0.271	0.077	183.680
1.00	1.599	1.148	1.271	0.282	-0.084	205.000
2.20	0.533	0.492	0.451	-0.394	-0.393	213.200
4.00	0.451	0.410	0.410	-0.372	-0.694	213.200
6.00	0.451	0.394	0.451	-0.738	-0.659	213.200
7.70	0.459	0.410	0.426	-0.533	-0.779	213.200
8.80	1.209	0.820	0.943	-0.543	-0.101	213.200
9.50	1.770	1.081	1.342	-0.344	-0.0	190.240
9.90	1.872	0.928	1.238	-0.373	0.030	167.280

244

DE

DE	10201	DIAMETE	R = 11.		245			
	Y	U	V	W	RUV	RUW	VEL	
	0.05	1.953	1.014	1.252	0.345	0.057	75.440	
	0.50	2.219	1.109	1.206	0.406	0.043	132.840	
	1.00	1.879	1.073	1.133	0.089	0.035	162.360	
	2.00	1.132	0.859	0.820	-0.0	-0.122	196.800	
	3,50	0.541	0.451	0.525	-0.722	-0.523	205.000	
	5.50	0.500	0.476	0.476	-0.826	-0.881	205.000	
	7.50	0.545	0.492	0.492	-0.563	-0.891	205.000	
	9.00	0.566	0.492	0.541	-0.662	-0.720	205.000	
	10.00	1.495	0.933	1.190	-0.302	-0.111	172.200	
	10.80	2.079	0.839	1.220	-0.486	-0.037	103.320	

DE	10202	DIAMETI	ER = 12.	· 24	6			
9 - -	$\mathbf{Y}_{\mathbf{r}}$	U	V	W	RUV	RUW	VEL	
	0.05	0.781	0.425	0.590	0.022	-0.037	35.260	
	0.50	1.065	0.766	0.862	0.335	-0.066	55.760	
	1.40	1.158	0.820	0.984	0.682	-0.0	111.520	
- -	2.90	0.480	0.309	0.557	-0.367	0.272	167.280	
	4.90	0.129	0.135	0.135	-0.338	-0.580	172.200	
	6.90	0.122	0.119	0.112	-1.019	-0.896	183.680	
	8.90	0.136	0.140	0.126	-0.812	-0.740	183.680	
	10.40	0.611	0.515	0.515	0.266	0.052	172.200	
	11.40	1.258	0.899	1.056	0.480	0.054	124.640	
	11.80	1.312	0.853	1.000	0.348	0.099	85.280	



. . .

IDE	10203	DIAMETER	R = 13.		247			
	Y	U	V	W	RUV	RUW	VEL	
	0.05	0.739	0.340	0.561	-0.051	0.144	33.620	
	0.60	0.959	0.714	0.848	-0.129	0.084	50.840	
	1.50	1.361	0.942	1.082	-0.216	0.102	93.480	
	2.90	0.963	0.677	0.937	-0.481	0.209	142.680	
	4.90	0.278	0.248	0.248	-0.203	-0.0	167.280	
	6.90	0.135	0.129	0.129	-0.608	-0.255	172.200	
	8.90	0.114	0.120	0.107	-0.583	-0.688	177.940	
	10.40	0.224	0.268	0.234	-0.220	-0.039	177.940	
	11.60	1.304	0.780	1.049	0.571	-0.0	147.600	
	12.20	1.423	0.889	1.067	0.291	0.159	107.420	
	12.80	1.165	0.705	1.012	0.310	0.286	78.720	

DE	10204	DIAMETE	2 = 14.	248	i.			
- - - -	на на на на мара и развити и на на на на на Х	U	V	W	RUV	RUW	VEL	
	0.05	0.637	0.326	0.497	-0.026	0.093	28.700	
	0.60	0.780	0.502	0.574	-0.079	-0.0	36.900	
	1.30	1.161	0.742	0.886	-0.098	0.033	55.760	
	3.20	1.346	1.051	1.388	-0.161	0.182	115.620	
•	5.00	0.686	0.596	0.716	-0.144	0.720	162.360	
•	7.00	0.173	0.142	0.167	-0.435	-0.231	167.280	
	9.00	0.158	0.148	0.129	-0.422	-0.260	172.200	
	11.00	0.280	0.289	0.225	-0.064	-0.146	172.200	
	12.30	1.230	0.916	1.085	0.550	0.146	132.840	
	13.20	1.309	1.012	1.012	0.298	0.141	93.480	
	13.80	1.015	0.584	0.917	0.206	0.128	68.880	

DE	10205	DIAMETE	R = 15.					
				*	49			
	Y A	U	V	W	RUV	RUW	VEL	
	0.05	0.589	0.325	0.469	-0.049	0.090	27.060	
	0.60	0.697	0.459	0.508	-0.0	0.038	31.980	
	1.40	0.892	0.633	0.633	-0.070	0.070	41.000	
	2.60	1.367	1.036	1.122	-0.094	0.016	72.160	
	4.50	1.393	0.899	1.438	-0.171	0.242	124.640	
	6.50	0.860	0.753	0.941	-0.274	0.460	147.600	
	9.00	0.429	0.239	0.328	0.430	-0.0	162.360	
4 	11.00	0.265	0.239	0.227	-0.256	-0.431	162.360	
	12.50	1.028	0.885	0.937	0.263	-0.0	142.680	
	13.70	1.274	1.082	1.151	0.189	0.150	93,480	
	14.40	1.050	0.719	0.921	0.217	0.184	72.160	
	14.80	0.900	0.580	0.703	0.050	0.170	58.220	

DE	10206	DIAMETE	R = 16.	2	50		
		U	۷	W	RUV	RUW	VEL
	0.05	0.547	0.284	0.364	-0.027	-0.026	25.420
	0.60	0.632	0.392	0.368	-0.0	0.054	30.340
	1.40	0.863	0.633	0.575	-0.034	0.059	41.000
	2.90	1.253	0.960	1.013	-0.034	0.016	66.420
	5.10	1.430	1.219	1.514	0.081	0.195	115.620
	7.10	1.305	1.093	1.267	-0.0	0.307	137.760
	9.60	0.995	0.753	0.968	-0.124	0.313	147.600
	11.60	0.483	0.351	0.703	-0.106	-0.072	157.440
	13.30	1.054	0.937	0.937	0.128	0.219	142.680
	14.60	1.334	1.081	1.153	0.262	0.100	96.760
	15.40	1.140	0.917	0.945	0.086	0.221	68.880
	15.80	0.910	0.539	0.694	0.075	0.166	55.760

DE 10207 DIAMETER = 17.

			e 4.	?51		
Y	Ų	V	М	RUV	RUW	VEL
0.05	0.561	0.328	0.423	-0.0	0.077	25.420
0.60	0.689	0.394	0.451	-0.024	0.041	31.980
1.40	0.848	0.512	0.634	-0.134	0.016	39.360
2.90	1.208	0.941	0.864	-0.0	-0.066	60.680
4.90	1.518	1.082	1.326	-0.0	0.066	93.480
7.40	1.471	0.916	1.182	0.070	0.318	132.840
9.90	1.093	0.989	1.276	-0.257	-0.022	142.680
12.40	0.968	0.860	0.591	0.080	0.186	147.600
14.40	1.316	0.744	1.259	0.308	0.037	103.320
15.60	1.165	1.007	1.093	0.109	0.095	72.160
16.50	0.966	0.598	0.915	0.076	0.089	60.680
16.80	0.814	0.402	0.625	0.033	0.089	50.840

ID E	10208	DIAMET	ER = 18.		252		
	Y	U	V	W	RUV	RUW	VEL
	0.05	0.567	0.287	0.423	-0.0	0.041	27.060
	0.70	0.697	0.459	0.493	0.021	-0.041	33.620
	1.50	0.906	0.584	0.664	-0.0	-0.0	42.640
	2.80	1.134	0.838	0.888	-0.018	-0.0	58.220
	4.80	1.460	1.115	1.181	-0.087	0.052	85.280
	7.30	1.535	1.241	1.304	0.023	0.267	115.620
-	9.80	1.348	1.191	1.325	-0.061	0.196	124.640
	11.80	1.007	1.031	1.171	-0.672	0.312	128.740
	13.80	1.206	1.061	1.109	0.061	0.056	132.840
	15.30	1.423	1.304	1.107	0.040	0.024	107.420
	16.60	1.180	1.036	1.036	0.105	0.088	72.160
	17.30	1.030	0.788	0.941	0.040	0.134	60.680
	17.80	0.866	0.393	0.716	0.133	0.101	53.300

.

DE	10209	DIAMETE	R = 19.				
				25	3		
	Y	U	V	W	RUV	RUW	VEL
	0.05	0.539	0.284	0.364	0.028	-0.024	-25.420
	0.70	0.648	0.443	0.476	0.043	-0.040	31.980
	1.70	0.764	0.559	0.540	-0.020	-0.0	39.360
	3.30	1.106	0.864	0.890	0.073	-0.0	60.680
	5.50	1.410	1.148	1.181	0.070	-0.017	85.280
	8.00	1.521	1.225	1.146	0.021	-0.102	107.420
	10.50	1.487	1.312	0.984	-0.0	-0.341	120.540
	13.00	1.191	1.258	1.123	0.157	-0.216	124.640
	15.00	1.312	1.107	1.312	-0.049	-0.134	111.520
	16.50	1.319	1.150	1.116	-0.055	-0.0	89.380
	17.50	1.080	0.853	0.907	-0.053	-0.019	66.420
	18.20	0.946	0.718	0.814	-0.020	-0.072	55.760
	18.90	0.729	0.278	0.614	-0.074	-0.039	41.000

IDE	10210	DIAMET	ER = 20.	•				
				2	54			
	Y I I I I I I I I I I I I I I I I I I I	U ·	V	W	RUV	RUW	VEL	
	0.05	0.466	0.277	0.357	-0.032	-0.026	25.420	
	0.80	0.629	0.399	0.459	-0.026	0022	33.620	
	1.80	0.796	0.575	0.556	-0.0	0.020	41.000	
	3.50	1.093	0.814	0.864	-0.0	-0.0	60.680	
	5.80	1.312	1.181	1.148	-0.017	-0.020	85.280	
•	8.30	1.487	1.335	1.335	0.037	0.103	103.320	
	10.80	1.442	1.304	1.225	0.039	0.127	107.420	
	13.30	1.189	1.189	1.107	-0.055	0.329	111.520	
	15.30	1.278	1.259	1.182	-0.0	-0.0	103.320	
-	17.10	1.165	1.042	1.073	0.143	0.018	78.720	
	18.00	1.053	0.880	0.880	0.057	0.112	66.420	
	18.80	0.962	0.789	0.838	0.038	0.108	58.220	
	19.70	0.714	0.563	0.563	0.021	0.069	44.280	
1							· · · · · · · · · · · · · · · · · · ·	

д

CODE 46100 DIAMETER = 10.

					0.011		VEI	
	Ŷ	U	V	W	RUV	RUW	YLL	, de clabre en
	0.05	1.025	0.732	0.556	-0.047	0.474	157.440	
	0.50	1.014	0.626	0.626	-0.0	0.556	162.360	
	1.50	0.193	0.176	0.184	-0.918	-0.779	205.000	Santan Sani Arrada atir bidakti soradan sadili S
	3.50	0.189	0.168	0.164	-1.057	-0.944	205.000	
	5.50	0.184	0.172	0.164	-0.991	-0.986	213.200	
anna an ann an an an an an an an an an a	7.50	0.160	0.139	0.139	-1.035	-0.891	213.200	lage for the second
	8.50	0.164	0.262	0.148	-0.596	-0.744	213.200	
	9.30	0.189	0.172	0.176	-0.800	-0.829	205.000	
a sanang sanah sanah sanah sana	9.95	1.044	0.716	0.596	0.053	-0.611	162.360	
		lantan sa kananana sa saka sa sika	ىلىغا ئېكى بىرى بىرى بىرى يېرى بىلىنى. يېرى	ija mena je si ju je stanja da je koje je stanja se je s Te se je s	n fin se wit surfis en anem	a a filia di senta di serie de la serie de serie de series. La serie de series de		
								방법 가슴 것 같은 것이 없는 것이다.
		la contrare la constituída de traves.	erne entre strand ernet in och da första av ogs	et ortunes estat datate desembles e des	en den konstantinen konstandel ten Sakt			n de la de la de la desta d La desta de la definitación de la desta
		le contrasse la contrasta de la fila	a na an an ann an Annaich ann an Annaich an Annaich Annaich an Annaich	et volumen vezet tetet tete de calificie e dec	en da ante ante ante de la constato de la constato			n in a de la de E

DE .	46101	DIAMETE	R = 11.	256				
	Y	U	V	W	RUV	RUW	VEL	
	0.05	1.014	0.745	0.537	-0.046	0.450	75,440	
	0.50	1.148	0.703	0.679	-0.085	0.519	128.740	
	1.00	0.424	0.272	0.347	-0.198	0.152	167.280	
	2.50	0.157	0.141	0.147	-1.074	-0.902	177.940	
	4.50	0.167	0.157	0.150	-0.865	-0.982	183.680	
	6.50	0.179	0.160	0.160	-1.102	-1.012	190.240	
	8.50	0.153	0.127	0.134	-0.662	-1.034	190.240	
	9.50	0.194	0.171	0.171	-0.795	-0.812	190.240	
	10.50	1.093	0.937	0.573	0.075	-0.506	142.680	
	10.80	1.182	0.801	0.458	0.030	-0.654	103.320	

DE 46102	DIAMETE	R = 12.	2	57		
n an <b>Y</b>	U	V	W	RUV	RUW	VEL
0.05	0.878	0.762	0.577	-0.106	0.347	53,300
0.50	1.104	0.858	0.766	-0.023	0.355	78.720
1.00	0.781	0.599	0.573	-0.061	0.334	142.680
3.00	0.152	0.134	0.140	-1.001	-0.880	162.360
5.00	0.146	0.146	0.128	-0.892	-0.999	162.360
7.00	0.150	0.149	0.136	-1.028	-0.869	167.280
9.00	0.141	0.130	0.130	-0.975	-0.990	167.280
10.00	0.152	0.142	0.145	-0.896	-0.813	167.280
11.00	0.982	0.820	0.721	0.042	-0.660	137.760
11.80	0.806	0.671	0.499	-0.0	-0.165	41.000

E 46103	DIAMETE	R = 13.		ard			
Y	U	V	W	<b>236</b> RUV	RUW	VEL	
0.05	0.699	0.596	0.466	-0.112	0.210	39.360	
0.50	1.036	0.892	0.777	-0.130	0.383	72.160	
1.00	0.982	0.839	0.706	-0.155	0.434	103.320	
2.00	0.174	0.154	0.184	-0.726	-0.727	137.760	
4.00	0.134	0.129	0.124	-1.013	-1.012	137.760	
6.00	0.135	0.129	0.129	-0.978	-0.959	137.760	
8.00	0.138	0.134	0.132	-0.977	-1.010	137.760	
10.00	0.152	0.149	0.154	-0.824	-0.861	137.760	
11.00	0.543	0.531	0.386	-0.271	-0.289	132.840	
12.00	1.053	0.880	0.800	0.064	-0.252	66.420	
12.50	0.729	0.607	0.486	-0.0	-0.177	35.260	
12.95	0.503	0.386	0.317	-0.126	-0.105	22.960	

DE	46104	DIAMETE	R = 14.	2	59		
· · · ·	Ŷ	U	V	W	RUV	RUW	VEL
	0.05	0.517	0.459	0.394	-0.048	0.204	31.980
	0.50	0.736	0.669	0.591	-0.070	0.355	50.840
	1.00	0.849	0.806	0.662	-0.047	0.354	72.160
	2.00	0.369	0.369	0.369	-0.160	0.173	111.520
	5.00	0.105	0.102	0. 098	-0.927	-1.008	111.520
	8.00	0.111	0.107	0.109	-0.994	-0.903	115.620
	11.00	0.569	0.481	0.481	-1.322	-0.105	120.540
	12.00	1.133	1.082	0.913	-0.0	-0.275	89.380
	13.00	0.783	0.634	0.540	-0.0	-0.184	39.360
	13.80	0.468	0.352	0.285	-0.109	-0.0	22.140

DE 46105	DIAMETE	ER = 15.		260		,	
	U	۷	W	RUV	RUW	VEL	
0.05	0.476	0.435	0.254	-0.100	-0.121	31.980	
0.50	0.678	0.601	0.525	-0.135	-0.106	49.200	
1.00	0.813	0.787	0.669	-0.091	-0.508	63.960	
2.00	0.772	0.648	0.648	-0.284	-0.159	103.320	
3.30	0.180	0.157	0.189	-0.982	-0.386	124.640	
5.30	0.130	0.121	0.126	-0.997	-0.958	124.640	
7.30	0.121	0.117	0.112	-1.043	-0.942	124.640	
9.30	0.171	0.150	0.159	-0.108	-0.512	128.740	
11.30	0.700	0.700	0.612	-0.059	-0.0	120.540	
12.50	1.237	1.01.4	0.924	-0.0	0.288	75.440	
13.50	0.926	0.745	0.684	0.050	0.140	44.280	
14.30	0.630	0.451	0.435	-0.0	0.139	28.700	
14.80	0.470	0.317	0.436	-0.0	0.048	21.320	

DE	46106	DIAMETE	R = 16.	26	1			
	Y	U	V	W	RUV	RUW	VEL	
	0.05	0.476	0.424	0.344	-0.026	0.059	30.340	:
	0.60	0.704	0.573	0.543	-0.109	0.158	44.280	
	1.60	0.949	0.892	0.806	0.041	0.179	72.160	
	3.10	0.420	0.389	0.574	0.307	0.276	111.520	
	5.10	0.137	0.126	0.139	-0.812	-0.532	115.620	e Bolitari en
	7.60	0.151	0.136	0.136	-0.771	-0.659	120.540	
•	10.10	0.337	0.297	0.045	-0.0	-0.0	124.640	
	12.10	0.950	1.044	0.895	0.138	0.188	100.040	
	13.40	1.115	0.997	0.840	0.145	-0.039	63.960	
	14.30	0.863	0.614	0.595	0.019	-0.0	41.000	
	15.10	0.627	0.423	0.423	-0.0	0.040	27.060	
•	15.70	0.482	0.345	0.317	-0.025	0.050	22,960	

.

DE	46107	DIAMETE	R = 17.	*	262		
	Y STREET	U	۷	W	RUV	RUW	VEL
	0.05	0.524	0.432	0.360	-0.049	0.056	30.340
	0.70	0.803	0.759	0.647	0.166	0.127	50.840
	1.40	0.960	0.933	0.800	0.162	-0.106	66.420
	2.80	0.877	0.896	0.839	-0.032	-0.096	103.320
-	5.00	0.195	0.171	0.184	-0.265	-0.133	124.640
	7.50	0.184	0.189	0.189	-0.0	-0.122	124.640
-	10.00	0.514	0.481	0.525	-0.130	0.327	120.540
	12.00	0.973	0.883	0.901	0.119	0.074	96.760
	13.50	1.070	1.001	0.917	-0.0	0.223	68.880
•	15.00	0.834	0.614	0.633	0.092	0.070	41.000
	15.80	0.656	0.496	0.448	0.074	0.082	30.340
	16.70	0.510	0.324	0.303	0.025	0.025	22.960

D E	46108	DIAMETE	R = 18.	2	63		
	$\mathbf{Y}_{1}$ $\mathbf{Y}_{2}$	U	V	W	RUV	RUW	VEL
	0.05	0.568	0.443	0.260	0.112	-0.072	35.260
	0.70	0.745	0.584	0.483	0.106	-0.0	44.280
	1.50	0.889	0.808	0.624	0.128	0.022	53.300
	2.80	1.104	0.867	0.820	0.045	-0.100	82.000
	4.80	0.568	0.526	0.547	0.186	-0.300	115.620
	6.80	0.281	0.292	0.270	0.023	0.282	124.640
	9.30	0.481	0.612	0.437	0.061	0.550	120.540
	11.30	0.800	0771	0.711	0.219	0.191	107.420
-	13.30	1.134	0.981	0.981	0.076	0.277	78.720
	14.60	1.017	0.864	0.864	0.095	0.146	60.680
	15.70	0.835	0.664	0.644	0.055	0.135	42.640
· ·	16.50	0.712	0.503	0.521	0.041	0.078	35.260
	17.30	0.576	0.364	0.394	0.068	0.041	25.420
	17.80	0.456	0.304	0.251	0.025	0.028	21.320

•

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )							
DE	46109	DIAMETE	R = 19.		264		
	Ŷ	U	۷	W	RUV	RUW	VEL
	0.05	0.518	0.425	0.229	0.085	-0.042	33.620
	0.70	0.724	0.604	0.453	0.205	0.024	42.640
	1.50	0.820	0.743	0.634	0.125	-0.0	49.200
l.	2.90	1.050	0.949	0.762	0.135	-0.085	72.160
	4.90	0.881	0.820	0.820	0.356	-0.108	111.520
	7.40	0.601	0.656	0.569	0.094	0.231	120.540
	9.90	0.697	0.738	0.697	0.176	0.255	111.520
	11.90	0.867	0.950	0.857	0.075	0.396	100.040
	13.90	1.006	0.924	0.865	0.075	0.086	75.440
	14.40	0.889	0.808	0.785	0.037	0.146	53.300
	15.50	0.815	0.644	0.624	0.054	0.113	42.640
	16.40	0.680	0.493	0.459	0.040	0.065	33.620
	17.30	0.552	0.408	0.355	0.064	0.049	27.060
	18.70	0.413	0.271	0.212	-0.0	0.064	21.320

DE	46110	DIAMETE	R = 20.		265		
	<b>У</b>	U	V	W	RUV	RUW	VEL
	0.20	0.465	0.355	0.325	-0.0	0.085	27.060
	1.00	0.645	0.448	0.439	-0.074	0.024	36.900
	1.80	0.794	0.585	0.554	-0.021	0.046	46.740
	3.00	0.984	0.761	0.735	-0.0	0.023	63.960
	4.50	0.959	0.820	0.886	-0.0	0.124	85.280
	6.50	0.790	0.692	0.790	-0.389	0.232	107.420
X	9.00	0.761	0.751	0.830	-0.349	-0.061	107.420
	11.50	0.895	0.857	0.876	-0.268	-0.060	100.040
	13.50	1.050	0.902	0.935	-0.048	-0.141	85.280
-	15.50	1.023	0.813	0.735	-0.0	-0.041	63.960
	17.00	0.853	0.612	0.579	0.043	-0.024	49.200
	18.00	0.729	0.480	0.480	0.048	0.024	41.000
	18.80	0.599	0.394	0.377	0.025	-0.025	31.980
	19.80	0.393	0.303	0.262	-0.029	-0.0	22.960

(19) (19)

) E	46200	DIAMETER	2 = 10.	;	266		
	Y	U	V	W	RUV	RUW	VEL
	0.05	0.887	0.469	0.636	-0.473	-0.0	177.940
	1.50	0.174	0.160	0.164	-1.041	-1.039	205.000
	3.50	0.176	0.172	0.164	-0.944	-1.040	205.000
	5.50	0.172	0.172	0.156	-0.948	-1.040	205.000
	7.00	0.164	0.164	0.143	-1.050	-0.857	205.000
	8.50	0.172	0.176	0.148	-0.845	-0.965	205.000
	9.20	0.738	0.549	0.377	0.425	-0.0	205.000
. •	9.95	1.160	0.681	0.743	0.502	0.051	167.280

F	46201	DIAM	FTFF	2 = 11
<b>6</b>	· · · · · · · · ·	L + + + + + + + + + + + + + + + + + + +	S	·

					267		
	Y	U	۷	W	RUV	RUW	VEL
0.	20	1.049	0.555	0.724	-0.398	-0.044	132.840
0.	70	0.731	0.370	0.656	-0.361	-0.0	162.360
2.	70	0.152	0.134	0.147	-0.909	-1.076	177.940
4.	70	0.147	0.137	0.134	-1.053	-0.893	177.940
6.	70	0.161	0.157	0.136	-0.887	-1.007	183.680
8.	70	0.148	0.140	0.140	-0.997	-0.881	183.680
9.	70	0.244	0.286	0.161	-0.101	-0.635	183.680
10.	70	1.334	0.787	0.897	0.425	0.190	120.540
10.	95	1.072	0.568	0.788	0.399	0.192	82.000

DE	46202	DIAMETER	R = 12.	268	8		
	ала 1	U	V		RUV	RUW	VEL
	0.20	1.093	0.691	0.892	-0.345	-0.135	72-160
	0.60	1.126	0.722	0.984	-0.500	0.030	120.540
	1.10	0.310	0.246	0.293	-0.319	-0.164	157.440
	3.10	0.140	0.125	0.137	-1.015	-0.903	162.360
	5.10	0.148	0.137	0.134	-0.750	-1.025	162.360
	7.10	0.158	0.149	0.146	-0.989	-0.711	162.360
	9.10	0.146	0.143	0.128	-0.862	-0.988	162.360
	11.10	1.013	0.699	0.820	0.431	0.211	132.840
	11.60	1.150	0.766	0.920	0.428	0.061	78.720
	11.95	0.859	0.536	0.781	0.340	0.115	50.840

E	46203	DIAMETE	R = 13.	26	59			
	<b>Y</b>	, U	V	W	RUV	RUW	VEL	
	0.20	0.690	0.522	0.559	-0.150	-0.144	39.360	
	0.70	0.945	0.656	0.840	-0.381	-0.128	63.960	
	1.20	1.082	0.715	0.872	-0.355	-0.164	93.480	
	2.20	0.258	0.270	0.247	2.489	-0.129	124.640	
	4.20	0.121	0.117	0.112	-0.953	-0.953	124.640	
	7.20	0.115	0.107	0.114	-0.976	-0.977	120.540	
	9.20	0.107	0.105	0.105	-0.991	-1.033	115.620	
	11.20	0.252	0.279	0.202	0.071	-0.149	124.640	
	12.20	0.876	0.667	0.723	0.337	-0.0	68.880	
	12.70	0.700	0.525	0.612	0.215	0.049	49.200	
	12.95	0.583	0.376	0.538	0.290	0.045	36.900	

				2'	70	augi di mi di m Internet mi di m	***********************	
)E	46204	DIAMETE	R = 14	•				
	Y	U	V	W	RUV	RUW	VEL	
	0.20	0.602	0.404	0.451	0.046	-0.069	28.700	
	0.70	0.864	0.612	0.743	-0.094	0.039	49.200	
	1.20	1.015	0.723	0.889	-0.144	-0.045	68.880	
	2.20	0.857	0.615	0.783	-0.506	0.064	100.040	
	3.20	0.231	0.126	0.252	0.467	0.132	115.620	
	6.20	0.112	0.105	0.103	-0.964	-0.965	115.620	
	9.20	0.108	0.105	0.105	-0.937	-1.002	115.620	
	11.20	0.164	0.168	0.135	-0.347	-0.377	115.620	
	12.10	0.745	0.652	0.634	0.500	-00	100.040	
	13.10	0.945	0.723	0.834	0.424	0.081	68.880	
	13.95	0.533	0.328	0.492	0.329	0.049	31.980	

E 46205	DIAMETE	R = 15.	2	71		• •	
Y Y	U	V	W	RUV	RUW	VEL	
0.20	0.552	0.257	0.355	-0.0	0.026	27.060	
0.90	0.681	0.459	0.508	-0.0	0.035	31.980	
1.60	0.898	0.669	0.710	-0.054	0.109	46.740	
2.90	1.025	0.883	0.915	-0.358	0.121	82.000	
4.40	0.741	0.584	0.517	-0.163	-0.322	124.640	
6.40	0.148	0.127	0.141	-0.677	-0.545	128.740	
8.90	0.122	0.117	0.117	-0.847	-0.951	124.640	
10.90	0.127	0.121	0.121	-0.930	-0.815	124.640	
12.40	0.219	0.262	0.197	0.273	-0.400	120.540	
13.60	0.890	0.768	0.837	0.420	0.135	93.480	
14.40	0.814	0.703	0.765	0.319	0.118	58.220	
14.95	0.538	0.466	0.520	0.235	0.051	36.900	

 $\Box$ 

Е	46206	DIAMETE	R = 16.		272			
	ана (т. <b>Ү</b> . 1916 - К. <b>Ү</b> . 19	U	۷	W	RUV	RUW	VEL	
	0.20	0.559	0.317	0.393	-0.0	-0.0	27.060	
	0.70	0.664	0.426	0.443	-0.023	0.064	31.980	
	1.50	0.855	0.563	0.604	-0.021	0.020	42.640	
	2.80	1.194	0.921	0.978	-0.0	0.074	72.160	
	5.00	0.852	0.631	0.715	-0.243	0.272	115.620	
	7.50	0.195	0.261	0.202	-0.169	0.366	124.640	
	10.00	0.128	0.118	0.120	-0.782	-0.817	120.540	
	12.00	0.186	0.197	0.157	-0.254	-0.684	120.540	
	13.50	0.848	0.745	0.783	0.620	0.089	100.040	
	14.50	0.853	0.733	0.827	0.307	-0.023	66.420	
	15.20	0.809	0.634	0.722	0.246	-0.0	49.200	
	15.95	0.514	0.423	0.469	0.169	0.040	27.060	

DE	46207	DIAMETE	R = 17.	27	3			
	Y Y	U	V	W	RUV	RUW	VEL	
	0.30	0.496	0.221	0.345	0.032	-0.0	22.960	
	0.80	0.597	0.363	0.355	-0.0	-0.024	27.060	
	1.50	0.745	0.578	0.540	0.018	0.022	39.360	
	2.60	0.877	0.669	0.710	-0.0	0.035	46.740	
	4.30	1.167	0.820	1.041	-0.081	-0.021	82.000	
	6.80	0.593	0.751	0.593	-0.0	-0.100	107.420	
	9.30	0.172	0.168	0.168	-0.750	-0.610	115.620	
	11.80	0.166	0.175	0.166	-0.543	-0.365	120.540	
	13.60	0.574	0.656	0.615	0.422	-0.046	111.520	
	15.00	0.866	0.782	0.858	0.319	0.141	78.720	
	15.90	0.855	0.601	0.716	0.248	0.124	53.300	
	16.95	0.569	0.382	0.433	0.132	0.123	33.620	

E	46208	DIAMETE	R = 18.		274		
	Y	U	V	W	RUV	RUW	VEL
	0.20	0.403	0.217	0.278	-0.039	0.089	22.140
	0.80	0.539	0.313	0.350	0.026	0023	25.420
	1.60	0.640	0.476	0.459	-0.020	0.042	31.980
	2.80	0.845	0.584	0.644	-0.0	0.036	42.640
	4.80	1.080	0.853	0.880	-0.037	0.019	66.420
	6.80	0.913	0.778	0.981	-0.354	-0.095	89.380
	9.30	0.492	0.492	0.410	-0.107	0.400	111.520
	11.80	0.225	0.284	0.280	-0.128	-0.0	120.540
	13.60	0.666	0.697	0.553	0.280	0.128	111.520
	15.10	1.082	0.984	1.050	0.391	0.162	85.280
	16.30	0.886	0.766	0.790	0.216	0.115	55.760
	17.10	0.714	0.584	0.644	0.189	0.078	42.640
	17.95	0.457	0.265	0.408	0.176	0.025	27.060

E 4	6209	DIA	ME	TER	=	19.
-----	------	-----	----	-----	---	-----

			2	275		
Y	U	V	M	RUV	RUW	VEL
0.20	0.374	0.178	0.232	0.033	-0.029	18.860
0.90	0.525	0.284	0.313	-0.028	-0.0	25.420
1.70	0.598	0.319	0.396	0.084	-0.0	28.700
2.80	0.755	0.475	0.578	-0.0	0.057	39.360
4.20	0.982	0.742	0.730	-0.0	-0.0	55.760
6.20	0.973	0.806	0.764	-0.0	-0.052	68.880
8.70	0.801	0.725	0.877	-0.259	-0.089	103.320
11.20	0.394	0.350	0.437	-0.172	-0.212	120.540
13.20	0.421	0.484	0.357	0.123	0.114	115.620
15.20	0.904	0.895	0988	0.190	0.029	100.040
16.70	0.945	0.778	0.917	0.136	0.139	68.880
17.70	0.781	0.692	0.759	0.163	0.057	50.840
18.30	0.671	0.470	0.575	0.120	0.124	41.000
18.95	0.443	0.295	0.404	0.068	0.080	28.700

DE	46210	DIAMETE	R = 20.		276			
	Y.	U	$v^{+}$ V	W	RUV	RUW	VEL	
	0.20	0.270	0.214	0.202	0.039	-0.181	18.860	
	1.00	0.379	0.248	0.248	0.039	-0.031	22.960	
	1.80	0.514	0.302	0.333	-0.0	0.054	27.060	
	3.00	0.654	0.399	0.425	0.024	-0.065	33.620	
	4.60	0.795	0.543	0.553	-0.022	0.022	44.280	
	6.50	0.973	0.747	0.787	-0.069	-0.022	66.420	
	9.00	0.856	0.901	0.793	-0.106	0.154	96.760	
	11.50	0.526	0.547	0.463	-0.288	-0.144	115.620	
	13.50	0.494	0.547	0.547	0.061	-0.208	115.620	
	15.30	0.773	0.745	0.783	0.133	-0.080	100.040	
	16.60	0.904	0.858	0.843	0.211	0.076	78.720	
	17.80	0.851	0.765	0.740	0.210	0.065	58.220	
	18.80	0.731	0.522	0.575	0.101	0.068	46.740	
	19.80	0.472	0.344	0.440	0.147	0.050	30.340	

ΕE	15100	PIAMETE	ER = 10.	<i>48.</i>				
	ан 1977 — Пар 1977 — Парала 1977 — Парала 1	U	۷	<b>27</b> W	77 RUV	RUW	·VEL	
	0.05	0.770	0.502	0.469	-0.075	0.506	177.940	
	0.50	0.482	0.154	0.523	-0.511	0.679	183.680	
	1.00	0.051	0.053	0.053	-0.479	-0.0	196.800	
	3.00	0.098	0.016	0.023	-0.450	-0.037	205.000	
	5.50	0.027	0.023	0.025	-0.486	-0.692	213.200	
	8.00	0.015	0.013	0.013	-0.389	-0.333	213.200	
- - 	9.00	0.016	0.017	0.015	-0.145	-0.346	205.000	
	9.70	0.512	0.492	0.234	0.194	-0.356	196.800	

1979-1 1

DE	15101	DIAMET	ER = 11.						•
				2	278				:
	Y Y	U	V	W	RUV	RUW	VEL		
	0.05	0.935	0.672	0.558	-0.060	0.505	85.280		
	1.00	0.037	0.025	0.065	-0.095	-0.178	167.280		
	3.00	0.013	0.012	0.014	-0.691	-0.529	172.200		
8 5	5.00	0.013	0.012	0.014	-0.519	-0.449	172.200		
	7.00	0.015	0.014	0.014	-0.797	-0.557	183.680		
	9.00	0.017	0.015	0.020	-0.478	-1.038	183.680		
•	10.60	0.732	1.054	0.176	0.184	-0.467	157.440		
	10.80	1.044	0.770	0.621	0.123	-0.373	137.760		
	· · · · ·				· · ·				
Ę	15102	DIAMETE	R = 12.	27	9				
---	-------------------------	---------	---------	-------	--------	--------	-----------------		
	ана Каралар <b>У</b>	U	V	W	RUV	RUW	VEL		
	0.05	0.874	0.694	0.527	-0.068	0.345	55 <b>.</b> 760		
	0.50	0.831	0.459	0.700	-0.114	0.486	120.540		
	1.00	0.071	0.032	0.113	-0.195	-0.079	147.600		
	3.00	0.019	0.017	0.020	-0.533	-0.626	152.520		
	5.00	0.029	0.018	0.035	-0.560	-0.731	157.440		
	7.00	0.080	0.062	0.093	-0.831	-0.627	167.280		
	9.00	0.013	0.012	0.015	-0.510	-0.896	162.360		
	10.00	0.028	0.024	0.024	-0.030	-0.165	162.360		
	11.00	0.570	0.667	1.929	0.151	-0.010	152.520		
	11.80	1.079	0.863	0.949	0.173	-0.351	72.160		

0.5	1		
UE.	15103	DIAMETER =	13.

Ŷ	U	V	W	RUV	RUW	VEL
0.05	0.729	0.614	0.422	-0.075	0.362	41.000
0.50	1.041	0.788	0.788	-0.078	0.422	82.000
1.00	0.841	0.526	0.694	-0.105	0.439	115.620
2.00	0.078	0.063	0.082	-0.650	-0.541	132.840
4.00	0.065	0.058	0.065	-0.915	-0.911	132.840
6.00	0.056	0.035	0.075	-0.274	-0.860	137.760
8.00	0.065	0.047	0.089	-0.080	-0.969	142.680
10.00	0.029	0.031	0.031	-0.444	-0.900	142.680
11.00	0.125	0.156	0.109	0.187	-0.230	142.680
12.00	1.335	1.144	0.572	-0.0	-0.638	103.320
12.80	0.661	0.497	0.451	0.081	-0.248	28.700

DE	15104	DIAMETE	ER = 14.		281		
	Y.	U	۷	W	RUV	RUW	VEL
	0.05	0.607	0.525	0.394	-0.040	0.306	31.980
	0.50	0.932	0.866	0.761	-0.081	0.347	63.960
	1.50	0.437	0.306	0.547	-0.110	0.315	120.540
	2.50	0.111	0.094	0.108	-0.845	-0.656	124.640
	4.50	0.099	0.092	0.090	-1.053	-1.023	124.640
	6.50	0.100	0.091	0.096	-0.978	-0.914	128.740
	8.50	0.101	0.091	0.098	-0.831	-1.052	128.740
	10.50	0.125	0.101	0.113	-0.600	-0.528	132.840
	12.50	1.151	1.072	0.820	0.145	-0.441	82.000
	13.50	0.730	0.476	0.492	-0.044	-0.113	31.980
	13.95	0.452	0.309	0.285	-0.0	0.024	18.860

DE	15105	DIAMETE	R = 15.	2	182			
- - - - - - -	Y Y	U	۷	W	RUV	RUW	VEL	
	0.05	0.510	0.452	0.306	-0.041	0.212	25.420	
	0.50	0.724	0.664	0.584	-0.062	0.236	44-280	
	1.50	0.886	0.754	0.738	-0.093	0.322	85.280	
	3.50	0.105	0.093	0.105	-0.931	-0.686	115.620	
	5.50	0.094	0.086	0.086	-0.885	-1.046	115.620	
	7.50	0.099	0.085	0.090	-1.049	-0.979	120.540	
2	9.50	0.105	0.096	0.098	-0.767	-1.045	120.540	
:	11.50	0.394	0.394	0.394	-0.231	-0.519	120.540	
:	12.50	1.064	1.047	0.768	0.143	-0.359	93.480	
	13.50	1.089	0.886	0.814	0.070	-0.130	55 <b>.7</b> 60	
	14.50	0.590	0.364	0.408	-0.0	-0.088	25.420	
	14.80	0.416	0.273	0.238	-0.0	-0.0	18.860	

15106	DIAMETE	R = 16.	285				
Y	U	V	W	RUV	RUW	VEL	
0.05	0.471	0.414	0.285	-0.043	0.173	24.600	
0.50	0.704	0.644	0.563	-0.080	0.201	42.640	
1.50	0.924	0.835	0.805	-0.089	0.255	75.440	
2.50	0.572	0.534	0.610	-0.132	0.245	103.320	
4.50	0.101	0.088	0.094	-0.855	-0.822	111.520	
6.50	0.094	0.084	0.086	-0.993	-0.974	111.520	
8.50	0.103	0.088	0.097	-0.857	-0.898	115.620	
10.50	0.214	0.166	0.192	-0.408	-0.150	120.540	
11.50	0.481	0.350	0.437	0.183	-0.211	120,540	
12.50	0.913	0.932	0.932	-0.0	-0.432	100.040	
13.50	1.208	1.093	0.892	0.033	-0.164	72.160	
14.50	0.906	0.684	0.644	0.019	-0.087	44.280	
15.50	0.570	0.371	0.342	-0.0	-0.0	24.600	
15.70	0.456	0.304	0.291	-0.0	-0.0	21.320	

## DE

DE 151	.07	DIAMETER	= 17.		284		
	Y	U	V	W	RUV	RUW	VEL
0.	.05	0.446	0.385	0.265	-0.053	0.101	27.060
0.	.50	0.578	0.540	0.485	-0.047	0.097	39.360
1.	.00	0.704	0.644	0.563	-0.055	0.187	44.280
2.	.00	0.909	0.835	0.805	-0.046	0.299	75.440
4.	.00	0.207	0.158	0.217	-0.240	-0.074	107.420
6.	.00	0.094	0.086	0.086	-0.901	-0.915	111.520
. 8	.00	0.098	0.086	0.086	-0.791	-0.907	111.520
10.	.00	0.164	0.118	0.135	-0.977	-0.810	115.620
12.	.00	0.697	0.656	0.676	0.270	-0.558	111.520
14.	.00	1.122	1.036	0.892	-0.0	-0.186	72.160
15.	.00	0.855	0.684	0.604	0.018	-0.060	44.280
16.	.00	0.640	0.432	0.448	-0.023	-0.040	30.340
16.	.95	0.423	0.304	0.265	-0.052	-0.030	21.320

DE	15108	DIAMETER	8 = 18.		285			
	u di ¥	U	V	И	RUV	RUW	VEL	
	0.05	0.412	0.350	0.241	-0.109	0.102	25.420	
	0.30	0.531	0.485	0.419	-0.103	0.122	39.360	
	1.00	0.634	0.604	0.543	-0.087	0.148	44.280	
	2.00	0.771	0.792	0.709	-0.104	0.281	68.880	
	3.00	0.689	0.803	0.663	-0.033	0.253	93.480	
	5.50	0.099	0.071	0.099	-0.453	-0.230	107.420	
	9.00	0.113	0.079	0.111	-0.213	-0.774	107.420	
	11.50	0.514	0.514	0.514	-0.0	-0.404	107.420	
	14.00	1.001	0.917	0.778	-0.0	-0.138	68.880	
	16.50	0.654	0.476	0.476	0.042	-0.0	33.620	
	17.00	0.539	0.364	0.335	-0.0	-0.0	25.420	
	17.70	0.433	0.291	0.265	-0.0	-0.0	21.320	
	17.95	0.300	0.232	0.170	-0.0	-0.0	16.400	

				×.				
DE	15109	DIAMETE	R = 19.		286			
	Y	U	V	W	RUV	RUW	VEL	
	0.05	0.389	0.335	0.228	-0.055	0.074	24.600	
	0.30	0.443	0.402	0.344	-0.172	0.062	31.980	
	0.80	0.578	0.540	0.485	-0.109	0.146	39.360	
	1.80	0.658	0.647	0.601	-0.080	0.190	53.300	
	4.30	0.451	0.415	0.469	-0.055	0.053	96.760	
	6.80	0.124	0.095	0.130	-0.247	-0.221	103.320	
	9.30	0.114	0.088	0.103	-0.522	-0.563	103.320	
	11.80	0.400	0.420	0.381	-0.060	-0.390	103.320	
	13.30	0.869	0.886	0.754	0.056	-0.200	85.280	
	15.80	0.783	0.648	0.606	0.021	-0.041	46.740	
	17.70	0.503	0.364	0.321	0.023	0.026	25.420	
	18.70	0.336	0.244	0.214	-0.0	0.021	18.860	
	18.95	0.267	0.206	0.141	-0.0	-0.046	15.580	

DE	15110	DIAMETE	R = 20.		287		
	1 <b> </b>	U	V V	W	RUV	RUW	VEL
	0.20	0.420	0.358	0.280	-0.110	0.068	28.700
	0.60	0.459	0.410	0.377	-0.161	-0.0	31.980
	1.60	0.627	0.585	0.543	-0.100	0.103	46.740
	2.60	0.708	0.735	0.656	-0.129	0.375	63.960
	5.00	0.466	0.466	0.466	-0.178	0.280	100.040
	7.50	0.135	0.126	0.145	-0.491	-0.346	103.320
	10.00	0.267	0.237	0.336	-0.213	-0.527	107.420
	12.50	0.712	0.739	0.649	-0.218	0.102	96.760
	15.00	0.884	0.826	0.712	0.019	-0.097	60.680
	17.50	0.616	0.469	0.434	-0.0	-0.0	35.260
	18.50	0.499	0.363	0.333	0.052	-0.0	27.060
	19.10	0.420	0.312	0.271	-0.0	-0.0	22.140
	19.60	0.345	0.238	0.202	-0.0	-0:0	18.860
	19.90	0.269	0.212	0.174	-0.068	0.039	15.580

•

ЭE	15200	DIAMETE	R = 10.	,			
Stor				288			
	Y	U	V	W	RUV	RUW	VEL
	0.50	0.024	0.028	0.023	-0.251	-0.339	190.240
	2.50	0.019	0.015	0.034	-0.875	-0.417	205.000
	5.00	0.046	0.074	0.020	-0.741	-0.371	205.000
	7.50	0.020	0.022	0.025	-0.759	-0.350	213.200
	9.50	0.335	0.066	0.090	0.046	-0.0	213.200
	9.95	0.727	0.559	0.485	0.600	0.295	190.240

	<i></i>	DIANCIL	R = 11.		289			
	Y	U	V	W	RUV	RUW	VEL	
	0.50	0.297	0.199	0.296	-0.271	-0.293	172.200	
	1.00	0.264	0.116	0.309	-0.190	-0.158	172.200	
	2.00	0.014	0.012	0.013	-0.386	-0.490	177.940	
	4.00	0.029	0.011	0.047	-0.434	-0.653	177.940	
	6.00	0.057	0.087	0.013	-0.219	29.348	177.940	
	8.00	0.016	0.018	0.013	-0.658	-0.421	177.940	
	10.00	0.022	0.031	0.021	-0.259	-0.387	177.940	
а - - -	10.95	0.829	0.652	0.410	0.469	0.235	100.040	

E	1	5	2	0	2	D	I	А	Μ	Ē	T	Ē	R	Ξ	1	2	

D

			2	90		-	
$\mathbf{Y}_{\mathbf{r}}$	U	V	W	RUV	RUW	VEL	
0.40	1.071	0.569	0.918	-0.521	-0.149	120.540	
0.90	0.256	0.183	0.278	-0.053	-0.183	152.520	
1.40	0.064	0.053	0.070	-0.170	-0.556	157.440	
3.40	0.067	0.010	0.108	-0.206	-1.050	157.440	
5.40	0.026	0.047	0.023	-0.425	-0.473	157.440	
7.40	0.064	0.105	0.018	-1.091	-0.427	157.440	
9.40	0.016	0.021	0.015	-0.300	-0.384	157.440	
10.40	0.031	0.040	0.019	-0.184	-0.083	157.440	
11.40	1.135	0.820	0.820	0.500	0.149	103.320	
11.95	1.023	0.630	0.774	0.368	0.082	63.960	

DE 15203	DIAMETE	ER = 13.		291			
а 1	U	V	W	RUV	RUW	VEL	
0.50	1.013	0.072	0.853	-3.054	-0.061	66.420	
1.00	1.151	0.663	1.012	-0.441	-0.073	93.480	
2.00	0.117	0.099	0.117	-0.195	-0.577	137.760	
4.00	0.082	0.045	0.099	-0.800	-1.036	137.760	
6.00	0.089	0.075	0.082	-0.800	-1.061	137.760	
8.00	0.099	0.104	0.077	-0.941	-0.817	137.760	
10.00	0.092	0.084	0.082	-0.815	-0.904	137.760	
11.00	0.104	0.102	0089	-0.727	-0.919	137.760	
12.00	0.696	0.741	0.382	0.559	0.081	124.640	
12.50	1.134	0.837	0.837	0.418	0.054	93.480	
12.95	0.745	0.483	0.644	0.311	-0.0	42.640	

DE	15204	DIAMETE	R = 14.		202			
	Υ.	U	V	W	RUV	RUW	VEL	
	0.20	0.875	0.656	0.722	-0.209	-0.118	49.200	
	0.70	1.067	0.693	0.987	-0.313	-0.081	66.420	
	1.70	0.465	0.404	0.539	-0.493	-0.109	124.640	
	3.70	0.101	0.084	0.101	-0.844	-1.000	128.740	
	5.70	0.102	0.091	0.094	-0.881	-1.037	128.740	
	7.70	0.101	0.092	0.094	-0.780	-0.989	124.640	
	9.70	0.932	0.944	0.854	-0.008	-1.052	124.640	
	11.70	0.207	0.247	0.135	-0.166	-0.140	124.640	
	12.70	0.994	0.837	0.837	0.425	0.027	93.480	
	13.70	0.717	0.485	0.652	0.223	-0.035	39.360	
	13.95	0.623	0.394	0.525	0.159	0.008	31.980	

DE	15205	DIAMETE	R = 15.		293			-	
	Y	U	V	W	RUV	RUW	VEL		
	0.20	0.795	0.604	0.644	-0.174	-0.118	42.640		
	0.70	0.785	0.563	0.664	-0.192	-0.076	42.640		
	1.70	0.960	0.733	0.942	-0.361	-0.053	93.480		
	3.70	0.118	0.105	0.114	-0.616	-0.591	115.620		
	5.70	0.099	0.090	0.092	-0.826	-1.009	120.540		
	7.70	0.092	0.092	0.092	-0.972	-0.887	120.540		
	9.70	0.097	0.098	0.087	-0.912	-0.997	120.540		
	11.70	0.114	0.114	0.096	-0.611	-0.716	120.540		
	13.70	0.984	0.820	0.820	0.450	0.114	85.280	· ·	
	14.70	0.804	0.606	0.710	0.171	-0.0	46.740		
	14.95	0.544	0.311	0.482	0.203	-0.0	28.700		

15206 DIAMETER = 16.

				294			
	Y	U	V	W	RUV	RUW	VEL
C	.20	0.637	0.476	0.510	-0.077	-0.043	33.620
. (	.90	0.775	0.584	0.684	-0.131	-0.053	42.640
]	L.90	0.899	0.725	0.883	-0.361	-0.079	82.000
	3.90	0.164	0.143	0.164	-0.112	-0.281	111.520
c -	5.90	0.094	0.084	0.086	-0.852	-0.889	111.520
1	.90	0.088	0.078	0.086	3.694	-0.828	111.520
ç	9.90	0.093	0.090	0.082	-0.892	-1.031	111.520
11	.90	0.126	0.105	0.147	-0.538	-0.478	115.620
13	8.90	0.855	0.803	0.698	0.414	0.125	93.480
14	F•90	0.866	0.693	0.808	0.243	0.037	53.300
15	5.40	0.755	0.604	0.664	0.140	0.077	42.640
15	ō <b>.</b> 95	0.481	0.277	0.437	0.154	-0.0	25.420

DE

DE	15207	DIAMETE	R = 17.	29	95				
	Ŷ	U	V	W	RUV	RUW	VEL		
	0.50	0.560	0.389	0.420	-0.027	-0.041	28,700		•
	1.00	0.699	0.540	0.578	-0.086	-0.040	39.360		
	2.00	0.915	0.763	0.864	-0.194	0.020	60.680		
	3.00	0.890	0.733	0.872	-0.327	-0.139	93.480		
	5.00	0.228	0.189	0.184	-0.089	-0,175	111.520		
	7.00	0.119	0.094	0.107	-0.564	-0.450	111.520		
	9.00	0.111	0.098	0.102	-0.553	-0.576	111.520		
•	11.00	0.111	0.105	0.101	-0.604	-0.646	115.620		
	13.00	0.315	0.378	0.294	0.302	-0.184	115.620		
	15.00	0.964	0.863	1.007	0.255	0.020	72.160		-
	16.00	0.734	0.604	0.664	0.161	0.021	44.280		
	16.40	0.566	0.426	0.508	0.070	0.037	31.980		
	16.90	0.455	0.248	0.386	0.072	0.061	22.960		
1		· ·							

DE	15208	DIAMETE	2 = 18.		296			
	Y	U	V	W	RUV	RUW	VEL	
	0.05	0.434	0.258	0.298	-0.028	0.058	22.140	
	0.30	0.514	0.333	0.423	-0.027	-0.052	27.060	
	1.00	0.663	0.502	0.538	-0.064	-0.021	36.900	
	2.00	0.866	0.670	0.762	-0.148	-0.0	53.300	
	4.00	0.802	0.757	0.649	-0.254	-0.283	96.760	
5,	6.00	0.237	0.178	0.198	-0.333	-0.708	107.420	
	8.00	0.130	0.107	0.115	-0.031	-0.375	107.420	
	9.00	0.101	0.087	0.111	-0.451	-0.163	107.420	
	11.00	0.103	0.111	0.095	-0.204	-0.354	107.420	
	13.00	0.316	0.217	0.356	-0.0	-0.0	107.420	
	15.00	0.852	0.788	0.852	0.253	0.054	82.000	
Ì	16.00	0.888	0.740	0.814	0.186	0.039	58.220	
	17.00	0.627	0.502	0.538	0.103	0.021	36.900	
	17.50	0.513	0.342	0.435	0.038	0.022	28.700	
	17.95	0.413	0.217	0.339	0.107	0.026	22.140	

)E	15209	DIAMETE	R = 19.	297	,		
	¥	U	V	W	RUV	RUW	VEL
	0.05	0.393	0.210	0.305	-0.037	-0.030	22.140
	0.30	0.462	0.303	0.358	-0.026	-0.071	22.960
	0.80	0.582	0.426	0.459	0.037	-0.058	31.980
	1.80	0.745	0.563	0.624	-0.054	-0.020	44.280
	4.30	0.828	0.676	0*744	-0.248	-0.092	89.380
	6.80	0.362	0.381	0.400	-0.337	-0.230	103.320
	9.30	0.181	0.153	0.229	-0.343	-0.212	103.320
	11.80	0.198	0.158	0.217	0.190	-0.177	107.420
	14.30	0.676	0.613	0.757	0.170	0.034	96.760
	16.80	0.694	0.584	0.644	0.140	0.041	44.280
	17.80	0.528	0.432	0.448	0.076	0.047	30.340
	18.30	0.456	0.342	0.385	0.052	-0.0	24.600
	18.90	0.327	0.178	0.273	0.116	0.018	18.860

or router ro	DE	15210	DIAMETER =	20.
--------------	----	-------	------------	-----

			298			
na stran <b>Y</b>	U	V	W	RUV	RUW	VEL
0.20	0.377	0.218	0.291	-0.0	-0.029	21.320
0.80	0.552	0.384	0.448	-0.0	-0.041	30.340
1.00	0.525	0.410	0.410	-0.054	-0.082	31.980
2.00	0.724	0.543	0.543	-0.067	-0.023	42.640
4.50	0.842	0.775	0.790	-0.167	-0.102	75.440
7.00	0.649	0.613	0.451	-0.161	-0.091	96.760
9.50	0.324	0.343	0.343	-0.093	-0.237	103.320
12.00	0.316	0.257	0.296	0.231	-0.238	107.420
14.50	0.634	0.634	0.578	0.380	-0.087	100.040
17.00	0.777	0.715	0.765	0.125	0.065	58.220
19.50	0.583	0.484	0.502	0.097	0.023	36.900
19.80	0.419	0.350	0.306	-0.0	0.029	25.420
19.95	0.359	0.230	0.305	0.070	-0.032	22.140

### APPENDIX B

299

## COMPUTER PROGRAMMES USED TO CALCULATE TURBULENCE PARAMETERS

#### CONTENTS

Main Programme
Data Printout Programme
Subroutine Readin
Subroutine Uplot

NOTE:

Main programme calculated the following:  $\underline{u}', v', w', \overline{u}^2, \overline{v}^4, \overline{w}^4, \frac{1}{2}e(\overline{u}^2 + \overline{v}^2 + \overline{w}^2),$ Ruv, Ruw,  $\overline{uv}, \overline{uw}, Y/D$ .

Subroutine Readin was the calibration curve for the probe in use at the time of testing.

Subroutine Uplot plotted the calculated parameters versus Y/D.

Data Printout programme printed out the data in Appendix A.

DIGENSIUN AV)21*,6V)20*,ASPV)2/*,FBNV)20*,AF)20*,E0)20*,AEPR)20*, 1ABN#)20*,E)20*,UTV)20*,UTA)20*,UTA)20*,VT)20*,MT)20*,U)20*,V)20*, 2W)2U*,X)2C*,ENERG)2U*,RUV)20*,RUV)20*,UMEAN)200*,EM)200*,SL)200* 3,VEL)200*,UU)200*,UV)200*,UX)200*,DIMDIS)200* 4,VV)20*,WW)20*,R)20*,PK)20*,Y)20* COMMON EM, UMEAN, SL NOTE: *=) CALL READIN)N* ) = ( in this printout WRITE)6,1* FORMAT) ! TURBULENT VELOCITY PARAMETERS 1//* INPUTS READ)5,100,END=99*NCODE,NUMB,DIA FORMAT)15,5X,12,5X,F5.2* WRITE)6,2*NCODE,NUMB,DIA FORMAT) 5X, 'CODE', I5, 5X, 'NUMBER', I2, 5X, 'DIAMETER', F3.0//* READ)5,200*)AV)I*,BV)I*,ABPV)I*,ABNV)I*,AW)I*,BW)I*,ABPW)I*, 1ABNW) I*,E) I*,X) I*, I=1,NUMB* FORMAT)10F8.5* CALCULATIONS DO 600 I=1,NUMB DO 222 J=1,N IF)ABS)E)I*-EM)J**.LT.0.001* GO TO 700 CONTINUE UTV) I*=ABPV) I**100./)UMEAN) J**SL) J**2.* UTW) I*=ABPW) I**100./) UMEAN) J**SL) J**2.* UTM) I*=) UTV) I*•UTW) I**/2. VT)I*=ABNV)I**100./)UMEAN)J**SL)J**2.* WT)I*=ABNW)I**100./)UMEAN)J**SL)J**2.* U) I*=.0328*UTM) I**UMEAN) J* V) I*=•0328*VT) I**UMEAN) J* W) I*=•0328*WT) I**UMEAN) J* ENERG) I*=•001165*) U) I***2•V) I***2•W) I***2* RUV)I*=)AV)I***2-BV)I***2*/)ABPV)I**ABNV)I** RUW)I*=)AW)I***2-BW)I***2*/)ABPW)I**ABNW)I** UU) I*=U) I***2 UV)I*=RUV)I**U)I**V)I*UW)I*=RUW)I**U)I**W)I* VEL) I*=UMEAN) J* VV)I*=V)I***2 WW)I*=W)I***2 PK)I*=)VV)I*-WW)I**/)VV)I*•WW)I** DIMDIS) I*=X) I*/DIA CONTINUE WRITE)6,800* FORMAT)12x, 'X', 9x, 'UTM', 10x, 'VT', 10x, 'WT', 11x, 'U', 11x, 1'V',11X,'W',7X,'ENERG',9X,'RUV',9X,'RUW',7X,'UMEAN'/* WRITE)6,900*)X)I*,UTM)I*,VT)I*,WT)I*,U)I*,V)I*,W)I*,ENERG)I*,RUV)I 1*,RUW)I*,VEL)I*,I=1,NUMB* WRITE)6,111* FORMAT)10X, 'UU',10X, 'VV',10X, 'WW',10X, 'UV',10X, 'UW',10X, 'K1', 14X, 'Y OVER D'//* WRITE(6,333*)UU)I*,VV)I*,WW)I*,UV)I*,UW)I*,PK)I*,DIMDIS)I*, 1I=1, NUMB* FORMAT)7F12.6////* CALL UPLOT)DIMDIS,2.,C.,UTM,4.,C.,NUMB,0.,C.* CALL UPLOT)DIMDIS,2.,0.,VT,4.,0.,NUMB,0.,0.* CALL UPLOT)DIMDIS,2.,0.,WT,4.,C.,NUMB,0.,0.* CALL UPLOT)DIMDIS,2.,0.,U,4.,0.,NUMB,0.,0.* CALL UPLOT)DIMDIS,2.,0.,V,4.,0.,NUMB,0.,0.* CALL UPLOT)DIMDIS,2.,C.,W,4.,O.,NUMB,0.,O.*

CALL UPLOT)DIMDIS,2.,U.,JJ,4.,C.,NUMB,C.,C.*	
CALL UPLOT)DIMDIS,2.,0.,VV,4.,0.,NUMB,D.,0.*	
CALL UPLOT)DIMDIS,2.,0.,WW,4.,0.,NUMB,0.,0.*	
CALL UPLOT)DIMDIS,2.,0.,ENERG,.02,0.,NUMB,0.,0.*	
CALL UPLOT)DIMDIS,2.,U.,RUV,1.5,-1.5,NUMB,0.,-1.5*	
CALL UPLOT)DIMDIS,2.,0.,RUW,1.5,-1.5,NUMB,0.,-1.5*	
CALL UPLOT)DIMDIS,2.,0.,UV,.5,5,NUMB,0.,5*	
CALL UPLOT)DIMDIS,2.,J.,UW,.5,5,NUMB,0.,5*	
CALL UPLOT)DIMDIS,2.,0.,PK,1.,-1.,NUMB,0.,-1.*	
GO TO 11	
STOP	
END	

DIMENSION AV(20).BV(20).ABPV(20).ABPV(20).AW(20).BW(20).BW(20). IABBW(20).E(20).UV(20).UV(20).UV(20).UV(20).VV(20).EV(200).SU(200).SU(200) S.VEL(200).UU(200).UV(200).UV(200).DIMDIS(200) COMMON EM.UVEAN.SL C CALL READIN(N) WRITE(6,1) 1 FORMAT(' TURBULENT VELOCITY PARAMETERS'//) C INPUTS 11 READ(5,100.END=99)NCDDE.WUMB.DIA 100 FORMAT(', TURBULENT VELOCITY PARAMETERS'//) 100 FORMAT(', TURBULENT VELOCITY PARAMETERS'//) 11 READ(5,200)(AV(1).AV(1).ABPV(1).ABNV(1).AW(1).BW(1).ABPW(1). 120 FORMAT(', TURBULENT VELOCITY PARAMETERS'//) 120 FORMAT(', TURBULENT VELOCITY PARAMETERS'//) 130 FORMAT(', TURBULENT VELOCITY PARAMETERS'//) 140 FORMAT(', TURBULENT VELOCITY PARAMETERS'//) 160 FORMAT(1).FS.V.12, S.V.12,	LEVE	L 1, MDD 2	MAIN 302	DATE = 69010	10/02/
<pre>C         CALL READIN(N)         WRITE(6,1)         FORMAT(' TURBULENT VELOCITY PARAMETERS'//)         FORMAT('S, SX, 12, SX, F5, 23)         READ(S, 200) (AV(1), BV(1), ABPV(1), ABNV(1), AW(1), BN(1), ABPW(1),         IABNW(1), F(1), X(1), T=1, NUMB)         FORMAT(10, F6, 1), LT, 0, 001) GO TO 700         FORMAT(10, F6, 1), LT, 0, 001) GO TO 700         CALCULATIONS         DO 600 I=1, NUMB         DD 222 J=1, N         IF (ABS(E(I)-EW(J)), LT, 0, 001) GO TO 700         Z22 CONTINUE         TO UTV(1)=ABPV(1)*100./(UMEAN(J)*SL(J)*2.)         UTW(1)=ABPW(1)*100./(UMEAN(J)*SL(J)*2.)         UTW(1)=ABPW(1)*100./(UMEAN(J)*SL(J)*2.)         UTW(1)=ABPW(1)*100./(UMEAN(J)*SL(J)*2.)         UTW(1)=CONT(1)*UMW(1))/2.         VT(1)=CONT(1)*UMWEAN(J)         V(1)=.0328*VT(1)*UMMEAN(J)         V(1)=.0328*VT(1)*UMMEAN(J)         W(1)=.0328*VT(1)*UMMEAN(J)         W(1)=.0328*VT(1)*UMMEAN(J)         W(1)=.0328*VT(1)*UMMEAN(J)         W(1)=.0328*VT(1)*UMMEAN(J)         W(1)=CONT(NUE         WRITE(6,00)         CONTINUE         WRITE(6,00)         FORMAT(10E,2), (CDE ',15,' DIAMETER = ',F3.0//)         WRITE(6,00)         FORMAT(10E,1)A; (CDE ',15,' DIAMETER = ',F3.0//)         WRITE(6,00)         FORMAT(11,*X,F5.2,6F8.3/)         WRITE(6,01)         KITE(6,01)         FORMAT(11,*X,F5.2,6F8.3/)         WRITE(6,01)         KITE(6,01)         FORMAT(11,*X,F5.2,6F8.3/)         WRITE(6,01)         KITE(6,01)         FORMAT(12X,F5.2,6F8.3/)         WRITE(6,01)         KITE(6,01)         FORMAT(12X,F5.2,6F8.3/)         WRITE(6,01)         FORMAT(12X,F5.2,6F8.3/)         WRITE(6,01)         FORMAT(12X,F5.2,6F8.3/)         GO TO 11         FORMA</pre>		DIMENSION AV(20) 1ABNW(20),E(20),U 2W(20),X(20),ENER 3,VEL(200),UU(200 4,VV(20),WW(20),R COMMON EM,UMFAN	,BV(20),ABPV(20),A TV(20),UTW(20),UTM G(20),RUV(20),RUW( ),UV(200),UW(200), (20),PK(20),Y(20) S1	BNV(20),AW(20),BW (20),VT(20),WT(20 20),UMEAN(200),EM DIMDIS(200)	(20),ABPW(20), ),U(20),V(20), (200),SL(200)
<pre>CALL READIN(N) WRITE(6,1) FORMAT(' TURBULENT VELOCITY PARAMETERS'//) FORMAT(' TURBULENT VELOCITY PARAMETERS'//) FORMAT(15,52x,12,5x,F5.2) READ(5,200)[AV(1),4BV(1),ABPV(1),ABNV(1),AW(1),BW(1),ABPW(1), IABNW(1),E(1),X(1),I=1,NUMB) FORMAT(10FR.5) C CALCULATIONS DD 600 I=1,NUMR DD 222 J=1,N IF(ABS(E(1)-EM(J)).LT.0.001) GD TD TO0 CCONTINUE TO0 UTV(1)=ABPV(1)*100./(UMEAN(J)*SL(J)*2.) UTM(1)=ABPW(1)*100./(UMEAN(J)*SL(J)*2.) UTM(1)=ABPW(1)*100./(UMEAN(J)*SL(J)*2.) UTM(1)=ABPW(1)*100./(UMEAN(J)*SL(J)*2.) UTM(1)=.328*UT(1)*UMEAN(J) W(1)=.0328*UT(1)*UMEAN(J) W(1)=.0328*UT(1)*UU(1)*UT(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU(1)*UU</pre>	C				
<pre>Main(b);) Main(b); Main(b</pre>	en e	CALL READIN(N)			
<pre>C INPUTS 11 READIS,100,END=96)NCDDE,NUMB,DIA 100 FORMAT(15,5X,F5,2) READ(5,200)(AV(1),BV(1),ABPV(1),ABNV(1),AW(1),BW(1),ABPW(1), 1ABNW(1),F(1),X(1),T=1,NUMB) 200 FORMAT(10F8,5) C CALCULATIONS DD 600 I=1,NUMB DD 222 J=1,N IF(ASS(E(I)=EM(J)).LT.0.001) GO TD 700 222 CONTINUE 700 UTV(I)=ABPV(I)*100./(UMEAN(J)*SL(J)*2.) UTW(I)=ABPW(I)*100./(UMEAN(J)*SL(J)*2.) UTW(I)=ABPW(I)*100./(UMEAN(J)*SL(J)*2.) UTW(I)=ABPW(I)*100./(UMEAN(J)*SL(J)*2.) UT(I)=ABPW(I)*100./(UMEAN(J)*SL(J)*2.) U(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UEAN(J)*UMEAN(J) V(I)=.0328*UT(I)*UEAN(J)*UEAN(I)*UEAN(I) V(I)=.0328*UT(I)*UEAN(J)*UEAN(J)*UEAN(J) V(I)=.0328*UT(I)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN(J)*UEAN</pre>	1	FORMAT(' THRB	HENT VELOCITY DAD	AMETEDCI//1	
<pre>11 READ(5,100,END=99)NCDDE,NUMB,DIA 100 FORMAT(15,5X,12,5X,F5.2) READ(5,200)(AV(1),BV(1),ABPV(1),ABNV(1),AW(1),BW(1),ABPW(1), 1ABNW(1),E(1),X(1),I=1,NUMB) 200 FORMAT(10FS) 00 G00 I=1,NUME 00 222 J=1,N IF(ABS(E(1)-EM(J)).LT.0.001) G0 T0 700 222 CONTINUE 700 UTV(1)=ABPV(1)*100./(UMEAN(J)*SL(J)*2.) UTW(1)=ABPW(1)*100./(UMEAN(J)*SL(J)*2.) UTW(1)=ABPW(1)*100./(UMEAN(J)*SL(J)*2.) UTT(1)=ABNV(1)*100./(UMEAN(J)*SL(J)*2.) UT(1)=ABNV(1)*100./(UMEAN(J)*SL(J)*2.) UT(1)=ABNV(1)*100./(UMEAN(J)*SL(J)*2.) UT(1)=ABNV(1)*100./(UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*WMEAN(J) V(I)=.0328*UT(I)*WEAN(J) V(I)=(AU(1)**2-BV(I)**2)/(ABPV(I)*ABNV(I)) VEL(1)=3.28*VE(I) 600 CONTINUE WRITE(6,2000E,DIA 2 FORMAT(1','5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,200) 800 FORMAT(12X,F5.2,6F8.3/) 000 FORMAT(12X,F5.2,6F8.3/) 001 FORMAT(1','5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,01) 3 FORMAT(1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,01) 4 WRITE(6,01) 4 WRITE(6,01) 50 FORMAT(1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,01) 50 FORMAT(1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,01)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 50 FORMAT(1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,01) 50 FORMAT(1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,01)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 50 FORMAT(1',5X,F5.2,C) 50 FORMAT(1',5X,F5.2,C) 50 FORMAT(1',5X,F5.2,C) 50 FORMA</pre>	<b>C</b>	INPUTS	CENT VELOCITY FAR	AMUICKS ///	
<pre>100 FORMAT(15,5x,12,5x,F5,2) READ(5,200)(AV(1),BV(1),ABPV(1),ABNV(1),AW(1),BW(1),ABPW(1), 14BNW(1),E(1),X(1),FU(1),ABPV(1),ABNV(1),AW(1),BW(1),ABPW(1), 14BNW(1),E(1),X(1),FU(1),ABPV(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1),FU(1)</pre>	11	READ(5,100,END=94	)NCODE,NUMB,DIA		
<pre>REDUCTS,200/14V(1),80(1),ABPV(1),ABNV(1),AW(1),BW(1),ABPW(1), 1ABNV(1),E(1),X(1),II,I,ABPV(1),ABPV(1),ABPW(1),ABPW(1), FORMAT(10F8.5) C CALCULATIONS D0 600 I=1,NUMB D0 222 J=1,N IF(ABS(E(1)-EM(J)).LT.0.001) G0 T0 700 222 CONTINUE 700 UTV(I)=ABPV(I)*100./(UMEAN(J)*SL(J)*2.) UTV(I)=ABPW(I)*100./(UMEAN(J)*SL(J)*2.) UTV(I)=ABPW(I)*100./(UMEAN(J)*SL(J)*2.) UTV(I)=ABPW(I)*100./(UMEAN(J)*SL(J)*2.) UT(I)=ABNV(I)*100./(UMEAN(J) WI(I)=0.0328*UT(I)*UMEAN(J) WI(I)=0.0328*UT(I)*UMEAN(J) WI(I)=0.0328*UT(I)*UMEAN(J) WI(I)=0.0328*UT(I)*UMEAN(J) WI(I)=0.0328*UT(I)*UMEAN(J) VEL(I)=0.028*UT(I)*UMEAN(J) WI(I)=0.028*UT(I)*UMEAN(J) VEL(I)=0.000F,000(I)*U(I)*U(I)*U(I)*ABNV(I)) VEL(I)=0.00F,00F,01A 2 FDFMAT(10,5X,*CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,800) 800 FORMAT(12X,F5.2,6F8.3/) 000 FORMAT(12X,F5.2,6F8.3/) 001 FOR</pre>	100	FORMAT(15,5X,12,9	5X,F5.2)		
<pre>C UPELOULATIONS DD 600 1=1,NUMB DD 222 J=1,N IF(ABS(E(I)=EM(J)).LT.0.001) GD TD 700 222 CONTINUE 700 UTV(I)=ABPV(I)*100./(UMEAN(J)*SL(J)*2.) UTM(I)=(DTV(I)+UTW(I))/2. VT(I)=ABNV(I)*100./(UMEAN(J)*SL(J)*2.) WT(I)=ABNV(I)*100./(UMEAN(J)*SL(J)*2.) WT(I)=ABNV(I)*100./(UMEAN(J) W(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) W(I)=.0328*UT(I)*UMEAN(J) W(I)=.0328*UT(I)*UMEAN(J) RUV(I)=(AV(I)**2-BV(I)**2)/(ABPV(I)*ABNV(I)) RUV(I)=(AV(I)**2-BV(I)**2)/(ABPV(I)*ABNV(I)) VEL(I)=3.28*UEL(I) 600 CONTINUE WRITE(6,2)NCODE,DIA 2 FORMAT(11',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,800) 800 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,3)NCODE,DIA 3 FORMAT(12X,F5.2,6F8.3/) WRITE(6,601) 801 FORMAT(112X,F5.2,6F8.3/) WRITE(6,901)(X(I),U(I),V(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) WRITE(6,901)(X(I),U(I),V(I),W(I),RUW(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) 901 FORMAT(12X,F5.2,6F8.3/)</pre>	200	14BNW(I),E(I),X(I) FORMAT(10F8.5)	,BV(1),ABPV(1),AB ,I=1,NUMB)	NV(I),AW(I),BW(I)	,ABPW(I),
DD 222 J=1,N IF(ABS(E(I)=EM(J)).LT.0.001) GD TD 700 222 CDNTINUE UTW(I)=ABPV(I)*100./(UMEAN(J)*SL(J)*2.) UTW(I)=ABPW(I)*100./(UMEAN(J)*SL(J)*2.) UTM(I)=(UTV(I)+UTW(I))/2. VT(I)=ABNW(I)*100./(UMEAN(J)*SL(J)*2.) U(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) RUV(I)=(AV(I)*2-BV(I)*ABNV(I)) RUW(I)=(AW(I)*2-BV(I)*2-BV(I)*ABNW(I)) RUW(I)=(AW(I)*2-BV(I)*2-BV(I)*ABNW(I)) VEL(I)=3.28*VEL(I) 600 CONTINUE WRITE(6,2)NCODE,DIA 2 FORMAT(I6X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'VEL I'//) WRITE(6,3)NCODE,DIA 3 FORMAT(12X,F5.2,6F8.3/) WRITE(6,3)NCODE,DIA 4 FORMAT(11',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,3)NCODE,DIA 3 FORMAT(11',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,3)NCODE,DIA 4 FORMAT(11',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,3)NCODE,DIA 5 FORMAT(11',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,3)NCODE,DIA 5 FORMAT(11',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,0) 6 0 FORMAT(11',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,0) 6 0 FORMAT(11',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,0) 7 FORMAT(11',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,0) 7 FORMAT(11',5X,'CODE ',I5,' DIAMETER = ',F3.0//) 7 FORMAT(12X,F5.2,6F8.3/) 7 FOR		DD 600 I=1.NUMB			
<pre>IF(ABS(E{I)-EM(J)).LT.0.001) G0 T0 700 222 CDNINUE CONTINUE CONTINUE Type="body: contempt and contempt a</pre>		DO 222 J=1,N			
<pre>222 CONTINUE 700 UTV(I)=ABPV(I)*100./(UMEAN(J)*SL(J)*2.) UTW(I)=ABPW(I)*100./(UMEAN(J)*SL(J)*2.) UT(I)=ABNV(I)*100./(UMEAN(J)*SL(J)*2.) WT(I)=ABNV(I)*100./(UMEAN(J)*SL(J)*2.) U(I)=.0328*UTM(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) W(I)=.0328*UT(I)*UMEAN(J) RUV(I)=(AV(I)**2-BV(I)**2)/(ABPV(I)*ABNV(I)) RUV(I)=(AV(I)**2-BV(I)**2)/(ABPV(I)*ABNV(I)) VEL(I)=UMEAN(J) VEL(I)=UMEAN(J) VEL(I)=0.28*VEL(I) 600 CONTINUE WRITE(6,2)NCODE,DIA 2 FORMAT('1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,800) 800 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,900)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 900 FORMAT('1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,900)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT('1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) WRITE(6,901)(X(I),U(I),V(I),W(I),RUW(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) B01 FORMAT</pre>		IF(ABS(E(I)-EM(J)	).LT.0.001) GO TO	700	
<pre>UV(1)=ABPW(1)*100./(UMEAN(J)*SL(J)*2.) UTM(I)=ABPW(1)*100./(UMEAN(J)*SL(J)*2.) UTM(I)=(UTV(I)+UTW(I))/2. VT(I)=ABRW(I)*100./(UMEAN(J)*SL(J)*2.) WT(I)=.0328*UTM(I)*UMEAN(J) V(I)=.0328*UTM(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) RUV(I)=(AV(I)*2-BV(I)**2)/(ABPV(I)*ABNV(I)) RUW(I)=(AV(I)*2-BV(I)**2)/(ABPV(I)*ABNW(I)) VEL(I)=3.28*VEL(I) 600 CONTINUE WRITE(6,800 800 FORMAT(12,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7,10,7</pre>	222			2 . m	
<pre>UTM(I)=(UTV(I)+UTW(I))/2. UTM(I)=ABNV(I)+UTW(I))/2. VT(I)=ABNV(I)+UTW(I))/2. VT(I)=ABNV(I)+UTWEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) V(I)=(AV(I)*2-BV(I)**2)/(ABPV(I)*ABNV(I)) RUV(I)=(AV(I)*2-BV(I)**2)/(ABPV(I)*ABNV(I)) VEL(I)==UMEAN(J) VEL(I)==28*VEL(I) 600 CONTINUE WPITE(6,2)NCODE,DIA 7 FORMAT(11',5X,*CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,800) 800 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'VEL 1'//) WRITE(6,900)(X(I),U(I),V(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 900 FORMAT(12X,F5.2,6F8.3/) WRITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV(I),RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV(I),RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV',FX,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV',FX,'RUW',FX,'RUW',FX,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV',FX,'RUW',FX,'RUW',FX,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV',FX,'RUW',FX,'RUW',FX,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV',FX,'RUW',FX,'RUW',FX,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV',FX,'RUW',FX,'RUW',FX,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUW',FX,'RUW',FX,'RUW',FX,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUW',FX,'RUW',FX,'RUW',FX,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUW',FX,'RUW',FX,'RUW',FX,'RUW',FX,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUW',FX,'RUW',FX,'RUW',FX,'RUW',FX,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUW',FX,'RUW',FX,'RUW',FX,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUW',FX,'RUW',FX,'RUW',FX,'VEL 1'//) WRITE(6,901)(X(I),UE,FX,'FX,'FX,'FX,'FX,'FX,'FX,'FX,'FX,'FX,</pre>	as 100	UTW(T) = ABPV(T) + 1	O / (UMEAN (J)*SL(J	)*2.)	i din terreta de la c
<pre>VT(I)=ABNV(I)*100./(UMEAN(J)*SL(J)*2.) WT(I)=ABNW(I)*100./(UMEAN(J)*SL(J)*2.) U(I)=.0328*UT(I)*UMEAN(J) W(I)=.0328*UT(I)*UMEAN(J) W(I)=.0328*WT(I)*UMEAN(J) RUV(I)=(AW(I)**2-BV(I)**2)/(ABPV(I)*ABNV(I)) RUU(I)=(AW(I)**2-BV(I)**2)/(ABPW(I)*ABNV(I)) VEL(I)=UMEAN(J) VEL(I)=UMEAN(J) VEL(I)=3.28*VEL(I) 600 CONTINUE WRITE(6,2)NCODE,DIA 2 FORMAT('1',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,800) 800 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'VEL 1'//) WRITE(6,900)(X(I),U(I),V(I),RUV(I),RUV(I),VEL(I),I=1,NUMB) 900 FORMAT(12x,F5.2,6F8.3/) WRITE(6,3)NCODE,DIA 3 FORMAT('1',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV(I),RUV(I),RUV(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) WRITE(6,901)(X(I),U(I),V(I),RUV(I),RUV(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) WRITE(6,901)(X(I),U(I),V(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) WRITE(6,901)(X(I),U(I),V(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) WRITE(6,901)(X(I),U(I),V(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>		UTM(I) = (UTV(I) + UT	W(I))/2.	1~~~ • 1	
<pre>WT(I)=ADNW(I)*100./(UMEAN(J)*SL(J)*2.) U(I)=.0328*UTM(I)*UMEAN(J) V(I)=.0328*VT(I)*UMEAN(J) RUV(I)=(AV(I)**2-BV(I)**2)/(ABPV(I)*ABNV(I)) RUW(I)=(AV(I)**2-BV(I)**2)/(ABPW(I)*ABNW(I)) VEL(I)=AV(I)**2-BW(I)**2)/(ABPW(I)*ABNW(I)) VEL(I)=3.28*VEL(I) 600 CONTINUE WRITE(6,2)NCODE,DIA FORMAT('1',5X,'CDDE ',I5,' DIAMETER = ',F3.0//) WRITE(6,800) 800 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,900)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 900 FORMAT('1',5X,'CDDE ',I5,' DIAMETER = ',F3.0//) WRITE(6,3)NCODE,DIA 3 FORMAT('1',5X,'CDDE ',I5,' DIAMETER = ',F3.0//) WRITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>		VT(I)=ABNV(I)*100	<pre>./(UMEAN(J)*SL(J)</pre>	*2.)	
<pre>U(1)=.0328*UT(I)*UMEAN(J) V(I)=.0328*UT(I)*UMEAN(J) RUV(I)=(0328*UT(I)**2-BV(I)**2)/(ABPV(I)*ABNV(I)) RUW(I)=(AV(I)**2-BV(I)**2)/(ABPW(I)*ABNV(I)) VEL(I)=(AW(I)**2-BW(I)**2)/(ABPW(I)*ABNW(I)) VEL(I)=3.28*VEL(I) 600 CONTINUE WRITE(6.2)NCODE,DIA 7 FORMAT('1',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6.4800) 800 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6.900)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 900 FORMAT(12X,F5.2,6F8.3/) WRITE(6.801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6.801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6.901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) 901 FORMAT(12X,F5.2,6F8.3/) 901 FORMAT(12X,F5.2,6F8.3/) 901 FORMAT(12X,F5.2,6F8.3/) 90 FORMA</pre>		WT(I) = ABNW(I) * 100	<pre>./(UMEAN(J)*SL(J)</pre>	*2.)	
<pre>W(I) = .0328 *WT(I) *UMEAN(J) W(I) = .0328 *WT(I) *UMEAN(J) RUV(I) = (AV(I) **2 = BV(I) **2) /(ABPV(I) *ABNV(I)) RUW(I) = (AW(I) **2 = BV(I) **2) /(ABPW(I) *ABNW(I)) VEL(I) = (AW(I) **2 = BW(I) **2) /(ABPW(I) **ABNW(I)) VEL(I) = (AW(I) **2 = BW(I) **2) /(ABPW(I) **ABNW(I) **ABNW(I)) VEL(I) = (AW(I) **2 = BW(I) **2) /(ABPW(I) **ABNW(I) **ABNW(I)) WR ITE(6,800) 800 FORMAT(12X,F5.2,6F8.3/) WR ITE(6,901) (X(I),U(I),V(I),W(I),RUV(I),FUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>		$V(I) = .0328 \times VI(I) $	*UMEAN(J)		
<pre>RUV(I)=(AV(I)**2-BV(I)**2)/(ABPV(I)*ABNV(I)) RUW(I)=(AW(I)**2-BW(I)**2)/(ABPW(I)*ABNW(I)) VEL(I)=(AW(I)**2-BW(I)**2)/(ABPW(I)*ABNW(I)) VEL(I)=3.28*VEL(I) 600 CONTINUE WRITE(6,2)NCODE,DIA 2 FORMAT('1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,800) 800 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,900)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 900 FORMAT(12X,F5.2,6F8.3/) WRITE(6,3)NCODE,DIA 3 FORMAT('1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>		W(I)=.0328*WT(I)*	UMFAN(J)		
<pre>RUW(I)=(AW(I)**2-BW(I)**2)/(ABPW(I)*ABNW(I)) VEL(I)=UMEAN(J) VEL(I)=3.28*VEL(I) 600 CONTINUE WRITE(6,2)NCODE,DIA FORMAT('1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,800) 800 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,900)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 900 FORMAT(12X,F5.2,6F8.3/) WRITE(6,3)NCODE,DIA 5 FORMAT('1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>		RUV(I)=(AV(I)**2-	BV(I)**2)/(ABPV(I	)*ABNV(I))	
<pre>VEL(I)=UMEAN(J) VEL(I)=3.28*VEL(I) 600 CONTINUE WRITE(6,2)NCODE,DIA 2 FORMAT('1',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,800) 800 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,900)(X(I),U(I),V(I),RUV(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 900 FORMAT(12X,F5.2,6F8.3/) WRITE(6,3)NCODE,DIA 5 FORMAT('1',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV(I),RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV',I),RUW',I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>		RUW(I)=(AW(I)**2-	BW(I)**2)/(ABPW(I	)*ABNW(I))	
<pre>600 CONTINUE WRITE(6,2)NCODE,DIA 2 FDRMAT('1',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,800) 800 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,900)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 900 FORMAT(12X,F5.2,6F8.3/) WRITE(6,3)NCODE,DIA 3 FORMAT('1',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV(I),RUV(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>		$VEL(1) = UMEAN(J)$ $VEL(1) = 2.0 \times VEL(J)$	1		
<pre>WRITE(6,2)NCODE,DIA FORMAT('1',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,800) 800 FORMAT(16X,'Y',7X,'U',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,900)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 900 FORMAT(12X,F5.2,6F8.3/) WRITE(6,3)NCODE,DIA 3 FORMAT('1',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>	600	CONTINUE	<b>3</b>		
<pre>2 FORMAT('1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,800) 800 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,900)(X(I),U(I),V(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 900 FORMAT(12X,F5.2,6F8.3/) WRITE(6,3)NCODE,DIA 3 FORMAT('1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) G0 T0 11 99 STOP END</pre>		WRITE(6,2)NCODE,D	ΙA		
<pre>WRITE(6,800) FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,900)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) FORMAT(12X,F5.2,6F8.3/) WRITE(6,3)NCODE,DIA FORMAT('1',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>	2	FORMAT('1',5X,'CO	DE 1,15,1 DIAM	ETER = ',F3.0//)	
<pre>000 FORMAT(18X, 'Y', 7X, 'U', 7X, 'W', 5X, 'RUV', 5X, 'RUW', 5X, 'VEL 1'//) WR ITE(6,900)(X(I), U(I), V(I), W(I), RUV(I), RUW(I), VEL(I), I=1, NUMB) 900 FORMAT(12X, F5.2, 6F8.3/) WR ITE(6,3)NCODE, DIA 3 FORMAT('1', 5X, 'CODE ', I5, ' DIAMETER = ', F3.0//) WR ITE(6,801) 801 FORMAT(16X, 'Y', 7X, 'U', 7X, 'V', 7X, 'W', 5X, 'RUV', 5X, 'RUW', 5X, 'VEL 1'//) WR ITE(6,901)(X(I), U(I), V(I), W(I), RUV(I), RUW(I), VEL(I), I=1, NUMB) 901 FORMAT(12X, F5.2, 6F8.3/) GO TO 11 99 STOP END</pre>	800	WRITE(6,800)			
<pre>WR ITE(6,900)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) FORMAT(12X,F5.2,6F8.3/) WR ITE(6,3)NCODE,DIA FORMAT('1',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WR ITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WR ITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>	900 Si	1+//)	, · U · , / X , · V · , / X , · W	•,5X, RUV•,5X, RUW	*,5X,*VEL
<pre>900 FORMAT(12X,F5.2,6F8.3/) WRITE(6,3)NCODE,DIA 3 FORMAT(*1',5X,*CODE ',I5,* DIAMETER = ',F3.0//) WRITE(6,801) 801 FORMAT(16X,*Y*,7X,*U*,7X,*V*,7X,*W*,5X,*RUV*,5X,*RUW*,5X,*VEL 1*//) WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>		WRITE(6,900)(X(I)	.U(I),V(I).W(I).R	IV(T).RHW(T).VELIT	1-T=1.NUMB
<pre>WRITE(6,3)NCODE,DIA FORMAT('1',5X,'CODE ',I5,' DIAMETER = ',F3.0//) WRITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>	900	FORMAT(12X, F5.2,6	F8.3/)		
<pre>5 FORMAT('1',5X,'CODE ',15,' DIAMETER = ',F3.0//) WRITE(6,801) 801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),RUV(I),RUV(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) G0 T0 11 99 STOP END</pre>		WRITE(6,3)NCODE,D	ΙΑ		
<pre>801 FORMAT(16X,'Y',7X,'U',7X,'V',7X,'W',5X,'RUV',5X,'RUW',5X,'VEL 1'//) WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END</pre>	5	WRITE(6.801)	DE ',15,' DIAMI	ETER = ', F3.0//)	
WRITE(6,901)(X(I),U(I),V(I),W(I),RUV(I),RUW(I),VEL(I),I=1,NUMB) 901 FORMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END	801	FORMAT(16X,'Y',7X 1'//)	, ╹U¹,7X, ╹V¹,7X, ╹₩	,5X,*RUV*,5X,*RUW	',5X,'VEL
901 FURMAT(12X,F5.2,6F8.3/) GO TO 11 99 STOP END		WRITE(6,901)(X(I)	,U(I),V(I),W(I),R(	JV(I),RUW(I),VEL(I	),I=1,NUMB)
99 STOP END	901	FURMAT(12X, F5.2,6	=8.3/)	e e e e e e e e e e e e e e e e e e e	
	99	STOP			
		END			

~ <u>~</u>	LEVEL	1,	MOD 2	ne e e estart attriction of right 23	READIN	30 <b>3</b>	DATE =	69010	10/02/3
	400 500 999	SU CC DT REA FOF FOF RET END	JBROUTIN DMMON XX IMENSION AD(5,400 EAD(5,50 RMAT(3,57 RMAT(3,57 FURN	IE READIN( (,YY,ZZ   XX(200), ))N )0)(XX(J), 7.5)	N) YY(200); YY(J),ZZ	ZZ(200) (J),J=1,N	)		
· · ·									
							• 		
								· · · ·	
At 11 March the spectrum of the							• • • •		

المحيفة بيداري وتستنبسوه بالتواجي المالية التأريب التاري

. .....

SUBROUTINE UPLOT)X;XMX;XMN;Y;MX;YMN;N;XAX;YAX* DIMENSION X)100*,Y)100* INTEGER GRID)60,100* INTEGER BLANK, ASTRSK, DASH, MOD, PLUS DATA MOD/'I'/ BLANK=1077952576 ASTRSK=1547714624 DASH=1614823488 PLUS=1312833600 WRITE )6,100* )X)J*,Y)J*,J=1,N* FORMAT )! !,2F15.4* YMIN=Y)1*YMAX = YMINDO 40 J=1,N NOTE: *=0) IF )Y)J*-YMIN* 28,26,26 6 IF )Y)J*-YMAX* 40,40,30 )=( YMIN=Y)J* for this printout GO TO 40 *U(YHAX=Y)J* CONTINUE IF)YMX* 41,42,41 2 IF)YMN* 41,4,41 1 CONTINUE YMAX=YMX YMIN=YMN 4 YSCAL=)YMAX-YMIN*/99.0 WRITE )6,90* YMAX,YMIN,YSCAL 0 FORMAT )' YAXIS 9 MAX = ',F11.4,', MIN = ',F11.4,', SCALE = ',F11. 14* XMIN=X)1* XMAX=XMIN DO 13 J=1,N IF )X)J*-XMIN* 11,10,10 0 IF )X)J*-XMAX* 13,13,12 1 XMIN=X)J* GO TO 13  $2 \times MAX = X J$ 3 CONTINUE IF)XMX* 43,44,43 44 IF)XMN* 43,8,43 13 CONTINUE XMAX = XMXXMIN=XMN 8 XSCAL=)XMAX-XMIN*/59.0 WRITE )6,95* XMAX,XMIN,XSCAL 95 FORMAT )' XAXIS 9 MAX = ',F11.4,', MIN = ',F11.4,', SCALE = ',F11. 14* DO 55 JP=1,100 DO 55 IP=1,60 55 GRID ) IP, JP*=BLANK DO 80 JP=1,100 GRID)1, JP*=DASH BO GRID)60, JP*=DASH DO 85 IP=1,60 GRID) IP, 1*=MOD 35 GRID)IP,100*=MOD GRID)1,1*=PLUS GRID)1,100*=PLUS GRID)60,1*=PLUS GRID)60,100*=PLUS

IF)YAX-YMIN* 115,45,46 6 IF)YAX-YMAX* 45,45,115 5 CONTINUE JP=))YAX-YMIN*/YSCAL*.1.0 DO 110 J=2,59 0 GRID)J,JP*=MOD 5 IF)XAX-XMIN* 125,124,123 3 IF)XAX-XMAX* 124,124,125

WRITE )6,75* ))GRID)IP, JP*, JP=1,100*, IP=1,60*

IP=))XAX-XMIN*/XSCAL*•1•0

IF)X)J*-XMIN* 60,61,62 2 IF)X)J*-XMAX* 61,61,60

IF)Y)J*-YMIN* 60,63,64 4 IF)Y)J*-YMAX* 63,63,60

GRID) IP, JP*=ASTRSK

5 FORMAT )' ',100A1*

IP=))X)J*-XMIN*/XSCAL*.1.0
JP=))Y)J*-YMIN*/YSCAL*.1.0

4 CONTINUE

1 CONTINUE

CONTINUE

0 CONTINUE

RETURN END

WRITE )6,70* 0 FORMAT )!1!*

3

DO 120 J=2,99 O GRID)IP,J*=DASH 5 DO 60 J=1,N